xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision bc1009abdd0a493796645bd983c1601396c09a5f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  * Notes for off-by-1 workaround:
109  * -----------------------------
110  *
111  *    SCSI READ_CAPACITY command returns the LBA number of the
112  *    last logical block, but sd once treated this number as
113  *    disks' capacity on x86 platform. And LBAs are addressed
114  *    based 0. So the last block was lost on x86 platform.
115  *
116  *    Now, we remove this workaround. In order for present sd
117  *    driver to work with disks which are labeled/partitioned
118  *    via previous sd, we add workaround as follows:
119  *
120  *    1) Locate backup EFI label: sd searches the next to last
121  *       block for legacy backup EFI label. If fails, it will
122  *       turn to the last block for backup EFI label;
123  *    2) Clear backup EFI label: sd first search the last block
124  *       for backup EFI label, and will search the next to last
125  *       block only if failed for the last block.
126  *    3) Calculate geometry: refer to sd_convert_geometry(), If
127  *       capacity increasing by 1 causes disks' capacity to cross
128  *       over the limits in table CHS_values, geometry info will
129  *       change. This will raise an issue: In case that primary
130  *       VTOC label is destroyed, format commandline can restore
131  *       it via backup VTOC labels. And format locates backup VTOC
132  *       labels by use of geometry from sd driver. So changing
133  *       geometry will prevent format from finding backup VTOC
134  *       labels. To eliminate this side effect for compatibility,
135  *       sd uses (capacity -1) to calculate geometry;
136  *    4) 1TB disks: some important data structures use 32-bit
137  *       signed long/int (for example, daddr_t), so that sd doesn't
138  *       support a disk with capacity larger than 1TB on 32-bit
139  *       platform. However, for exactly 1TB disk, it was treated as
140  *       (1T - 512)B in the past, and could have valid solaris
141  *       partitions. To workaround this, if an exactly 1TB disk has
142  *       solaris fdisk partition, it will be allowed to work with sd.
143  */
144 #if (defined(__fibre))
145 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
146 #else
147 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
148 #endif
149 
150 /*
151  * The name of the driver, established from the module name in _init.
152  */
153 static	char *sd_label			= NULL;
154 
155 /*
156  * Driver name is unfortunately prefixed on some driver.conf properties.
157  */
158 #if (defined(__fibre))
159 #define	sd_max_xfer_size		ssd_max_xfer_size
160 #define	sd_config_list			ssd_config_list
161 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
162 static	char *sd_config_list		= "ssd-config-list";
163 #else
164 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
165 static	char *sd_config_list		= "sd-config-list";
166 #endif
167 
168 /*
169  * Driver global variables
170  */
171 
172 #if (defined(__fibre))
173 /*
174  * These #defines are to avoid namespace collisions that occur because this
175  * code is currently used to compile two seperate driver modules: sd and ssd.
176  * All global variables need to be treated this way (even if declared static)
177  * in order to allow the debugger to resolve the names properly.
178  * It is anticipated that in the near future the ssd module will be obsoleted,
179  * at which time this namespace issue should go away.
180  */
181 #define	sd_state			ssd_state
182 #define	sd_io_time			ssd_io_time
183 #define	sd_failfast_enable		ssd_failfast_enable
184 #define	sd_ua_retry_count		ssd_ua_retry_count
185 #define	sd_report_pfa			ssd_report_pfa
186 #define	sd_max_throttle			ssd_max_throttle
187 #define	sd_min_throttle			ssd_min_throttle
188 #define	sd_rot_delay			ssd_rot_delay
189 
190 #define	sd_retry_on_reservation_conflict	\
191 					ssd_retry_on_reservation_conflict
192 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
193 #define	sd_resv_conflict_name		ssd_resv_conflict_name
194 
195 #define	sd_component_mask		ssd_component_mask
196 #define	sd_level_mask			ssd_level_mask
197 #define	sd_debug_un			ssd_debug_un
198 #define	sd_error_level			ssd_error_level
199 
200 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
201 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
202 
203 #define	sd_tr				ssd_tr
204 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
205 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
206 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
207 #define	sd_check_media_time		ssd_check_media_time
208 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
209 #define	sd_label_mutex			ssd_label_mutex
210 #define	sd_detach_mutex			ssd_detach_mutex
211 #define	sd_log_buf			ssd_log_buf
212 #define	sd_log_mutex			ssd_log_mutex
213 
214 #define	sd_disk_table			ssd_disk_table
215 #define	sd_disk_table_size		ssd_disk_table_size
216 #define	sd_sense_mutex			ssd_sense_mutex
217 #define	sd_cdbtab			ssd_cdbtab
218 
219 #define	sd_cb_ops			ssd_cb_ops
220 #define	sd_ops				ssd_ops
221 #define	sd_additional_codes		ssd_additional_codes
222 
223 #define	sd_minor_data			ssd_minor_data
224 #define	sd_minor_data_efi		ssd_minor_data_efi
225 
226 #define	sd_tq				ssd_tq
227 #define	sd_wmr_tq			ssd_wmr_tq
228 #define	sd_taskq_name			ssd_taskq_name
229 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
230 #define	sd_taskq_minalloc		ssd_taskq_minalloc
231 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
232 
233 #define	sd_dump_format_string		ssd_dump_format_string
234 
235 #define	sd_iostart_chain		ssd_iostart_chain
236 #define	sd_iodone_chain			ssd_iodone_chain
237 
238 #define	sd_pm_idletime			ssd_pm_idletime
239 
240 #define	sd_force_pm_supported		ssd_force_pm_supported
241 
242 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
243 
244 #endif
245 
246 
247 #ifdef	SDDEBUG
248 int	sd_force_pm_supported		= 0;
249 #endif	/* SDDEBUG */
250 
251 void *sd_state				= NULL;
252 int sd_io_time				= SD_IO_TIME;
253 int sd_failfast_enable			= 1;
254 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
255 int sd_report_pfa			= 1;
256 int sd_max_throttle			= SD_MAX_THROTTLE;
257 int sd_min_throttle			= SD_MIN_THROTTLE;
258 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
259 int sd_qfull_throttle_enable		= TRUE;
260 
261 int sd_retry_on_reservation_conflict	= 1;
262 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
263 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
264 
265 static int sd_dtype_optical_bind	= -1;
266 
267 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
268 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
269 
270 /*
271  * Global data for debug logging. To enable debug printing, sd_component_mask
272  * and sd_level_mask should be set to the desired bit patterns as outlined in
273  * sddef.h.
274  */
275 uint_t	sd_component_mask		= 0x0;
276 uint_t	sd_level_mask			= 0x0;
277 struct	sd_lun *sd_debug_un		= NULL;
278 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
279 
280 /* Note: these may go away in the future... */
281 static uint32_t	sd_xbuf_active_limit	= 512;
282 static uint32_t sd_xbuf_reserve_limit	= 16;
283 
284 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
285 
286 /*
287  * Timer value used to reset the throttle after it has been reduced
288  * (typically in response to TRAN_BUSY or STATUS_QFULL)
289  */
290 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
291 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
292 
293 /*
294  * Interval value associated with the media change scsi watch.
295  */
296 static int sd_check_media_time		= 3000000;
297 
298 /*
299  * Wait value used for in progress operations during a DDI_SUSPEND
300  */
301 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
302 
303 /*
304  * sd_label_mutex protects a static buffer used in the disk label
305  * component of the driver
306  */
307 static kmutex_t sd_label_mutex;
308 
309 /*
310  * sd_detach_mutex protects un_layer_count, un_detach_count, and
311  * un_opens_in_progress in the sd_lun structure.
312  */
313 static kmutex_t sd_detach_mutex;
314 
315 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
316 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
317 
318 /*
319  * Global buffer and mutex for debug logging
320  */
321 static char	sd_log_buf[1024];
322 static kmutex_t	sd_log_mutex;
323 
324 /*
325  * Structs and globals for recording attached lun information.
326  * This maintains a chain. Each node in the chain represents a SCSI controller.
327  * The structure records the number of luns attached to each target connected
328  * with the controller.
329  * For parallel scsi device only.
330  */
331 struct sd_scsi_hba_tgt_lun {
332 	struct sd_scsi_hba_tgt_lun	*next;
333 	dev_info_t			*pdip;
334 	int				nlun[NTARGETS_WIDE];
335 };
336 
337 /*
338  * Flag to indicate the lun is attached or detached
339  */
340 #define	SD_SCSI_LUN_ATTACH	0
341 #define	SD_SCSI_LUN_DETACH	1
342 
343 static kmutex_t	sd_scsi_target_lun_mutex;
344 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
345 
346 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
347     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
348 
349 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
350     sd_scsi_target_lun_head))
351 
352 /*
353  * "Smart" Probe Caching structs, globals, #defines, etc.
354  * For parallel scsi and non-self-identify device only.
355  */
356 
357 /*
358  * The following resources and routines are implemented to support
359  * "smart" probing, which caches the scsi_probe() results in an array,
360  * in order to help avoid long probe times.
361  */
362 struct sd_scsi_probe_cache {
363 	struct	sd_scsi_probe_cache	*next;
364 	dev_info_t	*pdip;
365 	int		cache[NTARGETS_WIDE];
366 };
367 
368 static kmutex_t	sd_scsi_probe_cache_mutex;
369 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
370 
371 /*
372  * Really we only need protection on the head of the linked list, but
373  * better safe than sorry.
374  */
375 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
376     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
377 
378 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
379     sd_scsi_probe_cache_head))
380 
381 
382 /*
383  * Vendor specific data name property declarations
384  */
385 
386 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
387 
388 static sd_tunables seagate_properties = {
389 	SEAGATE_THROTTLE_VALUE,
390 	0,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0
398 };
399 
400 
401 static sd_tunables fujitsu_properties = {
402 	FUJITSU_THROTTLE_VALUE,
403 	0,
404 	0,
405 	0,
406 	0,
407 	0,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables ibm_properties = {
414 	IBM_THROTTLE_VALUE,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0
423 };
424 
425 static sd_tunables purple_properties = {
426 	PURPLE_THROTTLE_VALUE,
427 	0,
428 	0,
429 	PURPLE_BUSY_RETRIES,
430 	PURPLE_RESET_RETRY_COUNT,
431 	PURPLE_RESERVE_RELEASE_TIME,
432 	0,
433 	0,
434 	0
435 };
436 
437 static sd_tunables sve_properties = {
438 	SVE_THROTTLE_VALUE,
439 	0,
440 	0,
441 	SVE_BUSY_RETRIES,
442 	SVE_RESET_RETRY_COUNT,
443 	SVE_RESERVE_RELEASE_TIME,
444 	SVE_MIN_THROTTLE_VALUE,
445 	SVE_DISKSORT_DISABLED_FLAG,
446 	0
447 };
448 
449 static sd_tunables maserati_properties = {
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0,
456 	0,
457 	MASERATI_DISKSORT_DISABLED_FLAG,
458 	MASERATI_LUN_RESET_ENABLED_FLAG
459 };
460 
461 static sd_tunables pirus_properties = {
462 	PIRUS_THROTTLE_VALUE,
463 	0,
464 	PIRUS_NRR_COUNT,
465 	PIRUS_BUSY_RETRIES,
466 	PIRUS_RESET_RETRY_COUNT,
467 	0,
468 	PIRUS_MIN_THROTTLE_VALUE,
469 	PIRUS_DISKSORT_DISABLED_FLAG,
470 	PIRUS_LUN_RESET_ENABLED_FLAG
471 };
472 
473 #endif
474 
475 #if (defined(__sparc) && !defined(__fibre)) || \
476 	(defined(__i386) || defined(__amd64))
477 
478 
479 static sd_tunables elite_properties = {
480 	ELITE_THROTTLE_VALUE,
481 	0,
482 	0,
483 	0,
484 	0,
485 	0,
486 	0,
487 	0,
488 	0
489 };
490 
491 static sd_tunables st31200n_properties = {
492 	ST31200N_THROTTLE_VALUE,
493 	0,
494 	0,
495 	0,
496 	0,
497 	0,
498 	0,
499 	0,
500 	0
501 };
502 
503 #endif /* Fibre or not */
504 
505 static sd_tunables lsi_properties_scsi = {
506 	LSI_THROTTLE_VALUE,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables symbios_properties = {
518 	SYMBIOS_THROTTLE_VALUE,
519 	0,
520 	SYMBIOS_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0
527 };
528 
529 static sd_tunables lsi_properties = {
530 	0,
531 	0,
532 	LSI_NOTREADY_RETRIES,
533 	0,
534 	0,
535 	0,
536 	0,
537 	0,
538 	0
539 };
540 
541 static sd_tunables lsi_oem_properties = {
542 	0,
543 	0,
544 	LSI_OEM_NOTREADY_RETRIES,
545 	0,
546 	0,
547 	0,
548 	0,
549 	0,
550 	0
551 };
552 
553 
554 
555 #if (defined(SD_PROP_TST))
556 
557 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
558 #define	SD_TST_THROTTLE_VAL	16
559 #define	SD_TST_NOTREADY_VAL	12
560 #define	SD_TST_BUSY_VAL		60
561 #define	SD_TST_RST_RETRY_VAL	36
562 #define	SD_TST_RSV_REL_TIME	60
563 
564 static sd_tunables tst_properties = {
565 	SD_TST_THROTTLE_VAL,
566 	SD_TST_CTYPE_VAL,
567 	SD_TST_NOTREADY_VAL,
568 	SD_TST_BUSY_VAL,
569 	SD_TST_RST_RETRY_VAL,
570 	SD_TST_RSV_REL_TIME,
571 	0,
572 	0,
573 	0
574 };
575 #endif
576 
577 /* This is similiar to the ANSI toupper implementation */
578 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
579 
580 /*
581  * Static Driver Configuration Table
582  *
583  * This is the table of disks which need throttle adjustment (or, perhaps
584  * something else as defined by the flags at a future time.)  device_id
585  * is a string consisting of concatenated vid (vendor), pid (product/model)
586  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
587  * the parts of the string are as defined by the sizes in the scsi_inquiry
588  * structure.  Device type is searched as far as the device_id string is
589  * defined.  Flags defines which values are to be set in the driver from the
590  * properties list.
591  *
592  * Entries below which begin and end with a "*" are a special case.
593  * These do not have a specific vendor, and the string which follows
594  * can appear anywhere in the 16 byte PID portion of the inquiry data.
595  *
596  * Entries below which begin and end with a " " (blank) are a special
597  * case. The comparison function will treat multiple consecutive blanks
598  * as equivalent to a single blank. For example, this causes a
599  * sd_disk_table entry of " NEC CDROM " to match a device's id string
600  * of  "NEC       CDROM".
601  *
602  * Note: The MD21 controller type has been obsoleted.
603  *	 ST318202F is a Legacy device
604  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
605  *	 made with an FC connection. The entries here are a legacy.
606  */
607 static sd_disk_config_t sd_disk_table[] = {
608 #if defined(__fibre) || defined(__i386) || defined(__amd64)
609 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
610 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
611 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
612 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
624 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
625 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
626 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
629 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
631 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
632 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
633 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
634 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
635 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
636 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
637 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
638 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
639 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
652 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
653 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
659 		SD_CONF_BSET_BSY_RETRY_COUNT|
660 		SD_CONF_BSET_RST_RETRIES|
661 		SD_CONF_BSET_RSV_REL_TIME|
662 		SD_CONF_BSET_MIN_THROTTLE|
663 		SD_CONF_BSET_DISKSORT_DISABLED,
664 		&sve_properties },
665 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
666 			SD_CONF_BSET_BSY_RETRY_COUNT|
667 			SD_CONF_BSET_RST_RETRIES|
668 			SD_CONF_BSET_RSV_REL_TIME,
669 		&purple_properties },
670 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
671 		SD_CONF_BSET_LUN_RESET_ENABLED,
672 		&maserati_properties },
673 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
674 		SD_CONF_BSET_NRR_COUNT|
675 		SD_CONF_BSET_BSY_RETRY_COUNT|
676 		SD_CONF_BSET_RST_RETRIES|
677 		SD_CONF_BSET_MIN_THROTTLE|
678 		SD_CONF_BSET_DISKSORT_DISABLED|
679 		SD_CONF_BSET_LUN_RESET_ENABLED,
680 		&pirus_properties },
681 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
682 		SD_CONF_BSET_NRR_COUNT|
683 		SD_CONF_BSET_BSY_RETRY_COUNT|
684 		SD_CONF_BSET_RST_RETRIES|
685 		SD_CONF_BSET_MIN_THROTTLE|
686 		SD_CONF_BSET_DISKSORT_DISABLED|
687 		SD_CONF_BSET_LUN_RESET_ENABLED,
688 		&pirus_properties },
689 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
690 		SD_CONF_BSET_NRR_COUNT|
691 		SD_CONF_BSET_BSY_RETRY_COUNT|
692 		SD_CONF_BSET_RST_RETRIES|
693 		SD_CONF_BSET_MIN_THROTTLE|
694 		SD_CONF_BSET_DISKSORT_DISABLED|
695 		SD_CONF_BSET_LUN_RESET_ENABLED,
696 		&pirus_properties },
697 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
698 		SD_CONF_BSET_NRR_COUNT|
699 		SD_CONF_BSET_BSY_RETRY_COUNT|
700 		SD_CONF_BSET_RST_RETRIES|
701 		SD_CONF_BSET_MIN_THROTTLE|
702 		SD_CONF_BSET_DISKSORT_DISABLED|
703 		SD_CONF_BSET_LUN_RESET_ENABLED,
704 		&pirus_properties },
705 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
706 		SD_CONF_BSET_NRR_COUNT|
707 		SD_CONF_BSET_BSY_RETRY_COUNT|
708 		SD_CONF_BSET_RST_RETRIES|
709 		SD_CONF_BSET_MIN_THROTTLE|
710 		SD_CONF_BSET_DISKSORT_DISABLED|
711 		SD_CONF_BSET_LUN_RESET_ENABLED,
712 		&pirus_properties },
713 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
714 		SD_CONF_BSET_NRR_COUNT|
715 		SD_CONF_BSET_BSY_RETRY_COUNT|
716 		SD_CONF_BSET_RST_RETRIES|
717 		SD_CONF_BSET_MIN_THROTTLE|
718 		SD_CONF_BSET_DISKSORT_DISABLED|
719 		SD_CONF_BSET_LUN_RESET_ENABLED,
720 		&pirus_properties },
721 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
722 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
723 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
724 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
725 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
726 #endif /* fibre or NON-sparc platforms */
727 #if ((defined(__sparc) && !defined(__fibre)) ||\
728 	(defined(__i386) || defined(__amd64)))
729 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
730 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
731 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
732 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
733 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
734 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
735 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
736 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
737 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
738 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
739 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
740 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
741 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
742 	    &symbios_properties },
743 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
744 	    &lsi_properties_scsi },
745 #if defined(__i386) || defined(__amd64)
746 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
747 				    | SD_CONF_BSET_READSUB_BCD
748 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
749 				    | SD_CONF_BSET_NO_READ_HEADER
750 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
751 
752 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
753 				    | SD_CONF_BSET_READSUB_BCD
754 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
755 				    | SD_CONF_BSET_NO_READ_HEADER
756 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
757 #endif /* __i386 || __amd64 */
758 #endif /* sparc NON-fibre or NON-sparc platforms */
759 
760 #if (defined(SD_PROP_TST))
761 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
762 				| SD_CONF_BSET_CTYPE
763 				| SD_CONF_BSET_NRR_COUNT
764 				| SD_CONF_BSET_FAB_DEVID
765 				| SD_CONF_BSET_NOCACHE
766 				| SD_CONF_BSET_BSY_RETRY_COUNT
767 				| SD_CONF_BSET_PLAYMSF_BCD
768 				| SD_CONF_BSET_READSUB_BCD
769 				| SD_CONF_BSET_READ_TOC_TRK_BCD
770 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				| SD_CONF_BSET_NO_READ_HEADER
772 				| SD_CONF_BSET_READ_CD_XD4
773 				| SD_CONF_BSET_RST_RETRIES
774 				| SD_CONF_BSET_RSV_REL_TIME
775 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
776 #endif
777 };
778 
779 static const int sd_disk_table_size =
780 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
781 
782 
783 /*
784  * Return codes of sd_uselabel().
785  */
786 #define	SD_LABEL_IS_VALID		0
787 #define	SD_LABEL_IS_INVALID		1
788 
789 #define	SD_INTERCONNECT_PARALLEL	0
790 #define	SD_INTERCONNECT_FABRIC		1
791 #define	SD_INTERCONNECT_FIBRE		2
792 #define	SD_INTERCONNECT_SSA		3
793 #define	SD_INTERCONNECT_SATA		4
794 #define	SD_IS_PARALLEL_SCSI(un)		\
795 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
796 #define	SD_IS_SERIAL(un)		\
797 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
798 
799 /*
800  * Definitions used by device id registration routines
801  */
802 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
803 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
804 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
805 #define	WD_NODE			7	/* the whole disk minor */
806 
807 static kmutex_t sd_sense_mutex = {0};
808 
809 /*
810  * Macros for updates of the driver state
811  */
812 #define	New_state(un, s)        \
813 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
814 #define	Restore_state(un)	\
815 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
816 
817 static struct sd_cdbinfo sd_cdbtab[] = {
818 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
819 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
820 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
821 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
822 };
823 
824 /*
825  * Specifies the number of seconds that must have elapsed since the last
826  * cmd. has completed for a device to be declared idle to the PM framework.
827  */
828 static int sd_pm_idletime = 1;
829 
830 /*
831  * Internal function prototypes
832  */
833 
834 #if (defined(__fibre))
835 /*
836  * These #defines are to avoid namespace collisions that occur because this
837  * code is currently used to compile two seperate driver modules: sd and ssd.
838  * All function names need to be treated this way (even if declared static)
839  * in order to allow the debugger to resolve the names properly.
840  * It is anticipated that in the near future the ssd module will be obsoleted,
841  * at which time this ugliness should go away.
842  */
843 #define	sd_log_trace			ssd_log_trace
844 #define	sd_log_info			ssd_log_info
845 #define	sd_log_err			ssd_log_err
846 #define	sdprobe				ssdprobe
847 #define	sdinfo				ssdinfo
848 #define	sd_prop_op			ssd_prop_op
849 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
850 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
851 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
852 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
853 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
854 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
855 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
856 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
857 #define	sd_spin_up_unit			ssd_spin_up_unit
858 #define	sd_enable_descr_sense		ssd_enable_descr_sense
859 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
860 #define	sd_set_mmc_caps			ssd_set_mmc_caps
861 #define	sd_read_unit_properties		ssd_read_unit_properties
862 #define	sd_process_sdconf_file		ssd_process_sdconf_file
863 #define	sd_process_sdconf_table		ssd_process_sdconf_table
864 #define	sd_sdconf_id_match		ssd_sdconf_id_match
865 #define	sd_blank_cmp			ssd_blank_cmp
866 #define	sd_chk_vers1_data		ssd_chk_vers1_data
867 #define	sd_set_vers1_properties		ssd_set_vers1_properties
868 #define	sd_validate_geometry		ssd_validate_geometry
869 
870 #if defined(_SUNOS_VTOC_16)
871 #define	sd_convert_geometry		ssd_convert_geometry
872 #endif
873 
874 #define	sd_resync_geom_caches		ssd_resync_geom_caches
875 #define	sd_read_fdisk			ssd_read_fdisk
876 #define	sd_get_physical_geometry	ssd_get_physical_geometry
877 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
878 #define	sd_update_block_info		ssd_update_block_info
879 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
880 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
881 #define	sd_validate_efi			ssd_validate_efi
882 #define	sd_use_efi			ssd_use_efi
883 #define	sd_uselabel			ssd_uselabel
884 #define	sd_build_default_label		ssd_build_default_label
885 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
886 #define	sd_inq_fill			ssd_inq_fill
887 #define	sd_register_devid		ssd_register_devid
888 #define	sd_get_devid_block		ssd_get_devid_block
889 #define	sd_get_devid			ssd_get_devid
890 #define	sd_create_devid			ssd_create_devid
891 #define	sd_write_deviceid		ssd_write_deviceid
892 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
893 #define	sd_setup_pm			ssd_setup_pm
894 #define	sd_create_pm_components		ssd_create_pm_components
895 #define	sd_ddi_suspend			ssd_ddi_suspend
896 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
897 #define	sd_ddi_resume			ssd_ddi_resume
898 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
899 #define	sdpower				ssdpower
900 #define	sdattach			ssdattach
901 #define	sddetach			ssddetach
902 #define	sd_unit_attach			ssd_unit_attach
903 #define	sd_unit_detach			ssd_unit_detach
904 #define	sd_set_unit_attributes		ssd_set_unit_attributes
905 #define	sd_create_minor_nodes		ssd_create_minor_nodes
906 #define	sd_create_errstats		ssd_create_errstats
907 #define	sd_set_errstats			ssd_set_errstats
908 #define	sd_set_pstats			ssd_set_pstats
909 #define	sddump				ssddump
910 #define	sd_scsi_poll			ssd_scsi_poll
911 #define	sd_send_polled_RQS		ssd_send_polled_RQS
912 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
913 #define	sd_init_event_callbacks		ssd_init_event_callbacks
914 #define	sd_event_callback		ssd_event_callback
915 #define	sd_cache_control		ssd_cache_control
916 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
917 #define	sd_make_device			ssd_make_device
918 #define	sdopen				ssdopen
919 #define	sdclose				ssdclose
920 #define	sd_ready_and_valid		ssd_ready_and_valid
921 #define	sdmin				ssdmin
922 #define	sdread				ssdread
923 #define	sdwrite				ssdwrite
924 #define	sdaread				ssdaread
925 #define	sdawrite			ssdawrite
926 #define	sdstrategy			ssdstrategy
927 #define	sdioctl				ssdioctl
928 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
929 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
930 #define	sd_checksum_iostart		ssd_checksum_iostart
931 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
932 #define	sd_pm_iostart			ssd_pm_iostart
933 #define	sd_core_iostart			ssd_core_iostart
934 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
935 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
936 #define	sd_checksum_iodone		ssd_checksum_iodone
937 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
938 #define	sd_pm_iodone			ssd_pm_iodone
939 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
940 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
941 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
942 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
943 #define	sd_buf_iodone			ssd_buf_iodone
944 #define	sd_uscsi_strategy		ssd_uscsi_strategy
945 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
946 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
947 #define	sd_uscsi_iodone			ssd_uscsi_iodone
948 #define	sd_xbuf_strategy		ssd_xbuf_strategy
949 #define	sd_xbuf_init			ssd_xbuf_init
950 #define	sd_pm_entry			ssd_pm_entry
951 #define	sd_pm_exit			ssd_pm_exit
952 
953 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
954 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
955 
956 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
957 #define	sdintr				ssdintr
958 #define	sd_start_cmds			ssd_start_cmds
959 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
960 #define	sd_bioclone_alloc		ssd_bioclone_alloc
961 #define	sd_bioclone_free		ssd_bioclone_free
962 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
963 #define	sd_shadow_buf_free		ssd_shadow_buf_free
964 #define	sd_print_transport_rejected_message	\
965 					ssd_print_transport_rejected_message
966 #define	sd_retry_command		ssd_retry_command
967 #define	sd_set_retry_bp			ssd_set_retry_bp
968 #define	sd_send_request_sense_command	ssd_send_request_sense_command
969 #define	sd_start_retry_command		ssd_start_retry_command
970 #define	sd_start_direct_priority_command	\
971 					ssd_start_direct_priority_command
972 #define	sd_return_failed_command	ssd_return_failed_command
973 #define	sd_return_failed_command_no_restart	\
974 					ssd_return_failed_command_no_restart
975 #define	sd_return_command		ssd_return_command
976 #define	sd_sync_with_callback		ssd_sync_with_callback
977 #define	sdrunout			ssdrunout
978 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
979 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
980 #define	sd_reduce_throttle		ssd_reduce_throttle
981 #define	sd_restore_throttle		ssd_restore_throttle
982 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
983 #define	sd_init_cdb_limits		ssd_init_cdb_limits
984 #define	sd_pkt_status_good		ssd_pkt_status_good
985 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
986 #define	sd_pkt_status_busy		ssd_pkt_status_busy
987 #define	sd_pkt_status_reservation_conflict	\
988 					ssd_pkt_status_reservation_conflict
989 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
990 #define	sd_handle_request_sense		ssd_handle_request_sense
991 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
992 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
993 #define	sd_validate_sense_data		ssd_validate_sense_data
994 #define	sd_decode_sense			ssd_decode_sense
995 #define	sd_print_sense_msg		ssd_print_sense_msg
996 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
997 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
998 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
999 #define	sd_sense_key_medium_or_hardware_error	\
1000 					ssd_sense_key_medium_or_hardware_error
1001 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1002 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1003 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1004 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1005 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1006 #define	sd_sense_key_default		ssd_sense_key_default
1007 #define	sd_print_retry_msg		ssd_print_retry_msg
1008 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1009 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1010 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1011 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1012 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1013 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1014 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1015 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1016 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1017 #define	sd_reset_target			ssd_reset_target
1018 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1019 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1020 #define	sd_taskq_create			ssd_taskq_create
1021 #define	sd_taskq_delete			ssd_taskq_delete
1022 #define	sd_media_change_task		ssd_media_change_task
1023 #define	sd_handle_mchange		ssd_handle_mchange
1024 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1025 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1026 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1027 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1028 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1029 					sd_send_scsi_feature_GET_CONFIGURATION
1030 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1031 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1032 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1033 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1034 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1035 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1036 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1037 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1038 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1039 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1040 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1041 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1042 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1043 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1044 #define	sd_alloc_rqs			ssd_alloc_rqs
1045 #define	sd_free_rqs			ssd_free_rqs
1046 #define	sd_dump_memory			ssd_dump_memory
1047 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
1048 #define	sd_get_media_info		ssd_get_media_info
1049 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1050 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1051 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1052 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1053 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1054 #define	sd_dkio_partition		ssd_dkio_partition
1055 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1056 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1057 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1058 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1059 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1060 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1061 #define	sd_write_label			ssd_write_label
1062 #define	sd_clear_vtoc			ssd_clear_vtoc
1063 #define	sd_clear_efi			ssd_clear_efi
1064 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1065 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1066 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1067 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1068 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1069 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1070 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1071 #define	sd_check_mhd			ssd_check_mhd
1072 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1073 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1074 #define	sd_sname			ssd_sname
1075 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1076 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1077 #define	sd_take_ownership		ssd_take_ownership
1078 #define	sd_reserve_release		ssd_reserve_release
1079 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1080 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1081 #define	sd_persistent_reservation_in_read_keys	\
1082 					ssd_persistent_reservation_in_read_keys
1083 #define	sd_persistent_reservation_in_read_resv	\
1084 					ssd_persistent_reservation_in_read_resv
1085 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1086 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1087 #define	sd_mhdioc_release		ssd_mhdioc_release
1088 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1089 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1090 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1091 #define	sr_change_blkmode		ssr_change_blkmode
1092 #define	sr_change_speed			ssr_change_speed
1093 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1094 #define	sr_pause_resume			ssr_pause_resume
1095 #define	sr_play_msf			ssr_play_msf
1096 #define	sr_play_trkind			ssr_play_trkind
1097 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1098 #define	sr_read_subchannel		ssr_read_subchannel
1099 #define	sr_read_tocentry		ssr_read_tocentry
1100 #define	sr_read_tochdr			ssr_read_tochdr
1101 #define	sr_read_cdda			ssr_read_cdda
1102 #define	sr_read_cdxa			ssr_read_cdxa
1103 #define	sr_read_mode1			ssr_read_mode1
1104 #define	sr_read_mode2			ssr_read_mode2
1105 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1106 #define	sr_sector_mode			ssr_sector_mode
1107 #define	sr_eject			ssr_eject
1108 #define	sr_ejected			ssr_ejected
1109 #define	sr_check_wp			ssr_check_wp
1110 #define	sd_check_media			ssd_check_media
1111 #define	sd_media_watch_cb		ssd_media_watch_cb
1112 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1113 #define	sr_volume_ctrl			ssr_volume_ctrl
1114 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1115 #define	sd_log_page_supported		ssd_log_page_supported
1116 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1117 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1118 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1119 #define	sd_range_lock			ssd_range_lock
1120 #define	sd_get_range			ssd_get_range
1121 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1122 #define	sd_range_unlock			ssd_range_unlock
1123 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1124 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1125 
1126 #define	sd_iostart_chain		ssd_iostart_chain
1127 #define	sd_iodone_chain			ssd_iodone_chain
1128 #define	sd_initpkt_map			ssd_initpkt_map
1129 #define	sd_destroypkt_map		ssd_destroypkt_map
1130 #define	sd_chain_type_map		ssd_chain_type_map
1131 #define	sd_chain_index_map		ssd_chain_index_map
1132 
1133 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1134 #define	sd_failfast_flushq		ssd_failfast_flushq
1135 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1136 
1137 #define	sd_is_lsi			ssd_is_lsi
1138 
1139 #endif	/* #if (defined(__fibre)) */
1140 
1141 
1142 int _init(void);
1143 int _fini(void);
1144 int _info(struct modinfo *modinfop);
1145 
1146 /*PRINTFLIKE3*/
1147 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1148 /*PRINTFLIKE3*/
1149 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1150 /*PRINTFLIKE3*/
1151 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1152 
1153 static int sdprobe(dev_info_t *devi);
1154 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1155     void **result);
1156 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1157     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1158 
1159 /*
1160  * Smart probe for parallel scsi
1161  */
1162 static void sd_scsi_probe_cache_init(void);
1163 static void sd_scsi_probe_cache_fini(void);
1164 static void sd_scsi_clear_probe_cache(void);
1165 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1166 
1167 /*
1168  * Attached luns on target for parallel scsi
1169  */
1170 static void sd_scsi_target_lun_init(void);
1171 static void sd_scsi_target_lun_fini(void);
1172 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1173 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1174 
1175 static int	sd_spin_up_unit(struct sd_lun *un);
1176 #ifdef _LP64
1177 static void	sd_enable_descr_sense(struct sd_lun *un);
1178 static void	sd_reenable_dsense_task(void *arg);
1179 #endif /* _LP64 */
1180 
1181 static void	sd_set_mmc_caps(struct sd_lun *un);
1182 
1183 static void sd_read_unit_properties(struct sd_lun *un);
1184 static int  sd_process_sdconf_file(struct sd_lun *un);
1185 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1186     int *data_list, sd_tunables *values);
1187 static void sd_process_sdconf_table(struct sd_lun *un);
1188 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1189 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1190 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1191 	int list_len, char *dataname_ptr);
1192 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1193     sd_tunables *prop_list);
1194 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1195 
1196 #if defined(_SUNOS_VTOC_16)
1197 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1198 #endif
1199 
1200 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1201 	int path_flag);
1202 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1203 	int path_flag);
1204 static void sd_get_physical_geometry(struct sd_lun *un,
1205 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1206 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1207 	int lbasize);
1208 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1209 static void sd_swap_efi_gpt(efi_gpt_t *);
1210 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1211 static int sd_validate_efi(efi_gpt_t *);
1212 static int sd_use_efi(struct sd_lun *, int);
1213 static void sd_build_default_label(struct sd_lun *un);
1214 
1215 #if defined(_FIRMWARE_NEEDS_FDISK)
1216 static int  sd_has_max_chs_vals(struct ipart *fdp);
1217 #endif
1218 static void sd_inq_fill(char *p, int l, char *s);
1219 
1220 
1221 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1222     int reservation_flag);
1223 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1224 static int  sd_get_devid(struct sd_lun *un);
1225 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1226 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1227 static int  sd_write_deviceid(struct sd_lun *un);
1228 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1229 static int  sd_check_vpd_page_support(struct sd_lun *un);
1230 
1231 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1232 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1233 
1234 static int  sd_ddi_suspend(dev_info_t *devi);
1235 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1236 static int  sd_ddi_resume(dev_info_t *devi);
1237 static int  sd_ddi_pm_resume(struct sd_lun *un);
1238 static int  sdpower(dev_info_t *devi, int component, int level);
1239 
1240 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1241 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1242 static int  sd_unit_attach(dev_info_t *devi);
1243 static int  sd_unit_detach(dev_info_t *devi);
1244 
1245 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1246 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1247 static void sd_create_errstats(struct sd_lun *un, int instance);
1248 static void sd_set_errstats(struct sd_lun *un);
1249 static void sd_set_pstats(struct sd_lun *un);
1250 
1251 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1252 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1253 static int  sd_send_polled_RQS(struct sd_lun *un);
1254 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1255 
1256 #if (defined(__fibre))
1257 /*
1258  * Event callbacks (photon)
1259  */
1260 static void sd_init_event_callbacks(struct sd_lun *un);
1261 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1262 #endif
1263 
1264 /*
1265  * Defines for sd_cache_control
1266  */
1267 
1268 #define	SD_CACHE_ENABLE		1
1269 #define	SD_CACHE_DISABLE	0
1270 #define	SD_CACHE_NOCHANGE	-1
1271 
1272 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1273 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1274 static dev_t sd_make_device(dev_info_t *devi);
1275 
1276 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1277 	uint64_t capacity);
1278 
1279 /*
1280  * Driver entry point functions.
1281  */
1282 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1283 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1284 static int  sd_ready_and_valid(struct sd_lun *un);
1285 
1286 static void sdmin(struct buf *bp);
1287 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1288 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1289 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1290 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1291 
1292 static int sdstrategy(struct buf *bp);
1293 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1294 
1295 /*
1296  * Function prototypes for layering functions in the iostart chain.
1297  */
1298 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1299 	struct buf *bp);
1300 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1301 	struct buf *bp);
1302 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1303 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1304 	struct buf *bp);
1305 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1306 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1307 
1308 /*
1309  * Function prototypes for layering functions in the iodone chain.
1310  */
1311 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1312 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1313 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1314 	struct buf *bp);
1315 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1316 	struct buf *bp);
1317 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1318 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1319 	struct buf *bp);
1320 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1321 
1322 /*
1323  * Prototypes for functions to support buf(9S) based IO.
1324  */
1325 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1326 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1327 static void sd_destroypkt_for_buf(struct buf *);
1328 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1329 	struct buf *bp, int flags,
1330 	int (*callback)(caddr_t), caddr_t callback_arg,
1331 	diskaddr_t lba, uint32_t blockcount);
1332 #if defined(__i386) || defined(__amd64)
1333 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1334 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1335 #endif /* defined(__i386) || defined(__amd64) */
1336 
1337 /*
1338  * Prototypes for functions to support USCSI IO.
1339  */
1340 static int sd_uscsi_strategy(struct buf *bp);
1341 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1342 static void sd_destroypkt_for_uscsi(struct buf *);
1343 
1344 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1345 	uchar_t chain_type, void *pktinfop);
1346 
1347 static int  sd_pm_entry(struct sd_lun *un);
1348 static void sd_pm_exit(struct sd_lun *un);
1349 
1350 static void sd_pm_idletimeout_handler(void *arg);
1351 
1352 /*
1353  * sd_core internal functions (used at the sd_core_io layer).
1354  */
1355 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1356 static void sdintr(struct scsi_pkt *pktp);
1357 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1358 
1359 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1360 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1361 	int path_flag);
1362 
1363 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1364 	daddr_t blkno, int (*func)(struct buf *));
1365 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1366 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1367 static void sd_bioclone_free(struct buf *bp);
1368 static void sd_shadow_buf_free(struct buf *bp);
1369 
1370 static void sd_print_transport_rejected_message(struct sd_lun *un,
1371 	struct sd_xbuf *xp, int code);
1372 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1373     void *arg, int code);
1374 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1375     void *arg, int code);
1376 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1377     void *arg, int code);
1378 
1379 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1380 	int retry_check_flag,
1381 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1382 		int c),
1383 	void *user_arg, int failure_code,  clock_t retry_delay,
1384 	void (*statp)(kstat_io_t *));
1385 
1386 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1387 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1388 
1389 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1390 	struct scsi_pkt *pktp);
1391 static void sd_start_retry_command(void *arg);
1392 static void sd_start_direct_priority_command(void *arg);
1393 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1394 	int errcode);
1395 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1396 	struct buf *bp, int errcode);
1397 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1398 static void sd_sync_with_callback(struct sd_lun *un);
1399 static int sdrunout(caddr_t arg);
1400 
1401 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1402 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1403 
1404 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1405 static void sd_restore_throttle(void *arg);
1406 
1407 static void sd_init_cdb_limits(struct sd_lun *un);
1408 
1409 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1410 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1411 
1412 /*
1413  * Error handling functions
1414  */
1415 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1416 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1420 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 
1424 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1427 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1428 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1429 	struct sd_xbuf *xp);
1430 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1434 	void *arg, int code);
1435 
1436 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1439 	uint8_t *sense_datap,
1440 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_sense_key_not_ready(struct sd_lun *un,
1442 	uint8_t *sense_datap,
1443 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1445 	uint8_t *sense_datap,
1446 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static void sd_sense_key_unit_attention(struct sd_lun *un,
1450 	uint8_t *sense_datap,
1451 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1455 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1456 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1457 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1458 static void sd_sense_key_default(struct sd_lun *un,
1459 	uint8_t *sense_datap,
1460 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1461 
1462 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1463 	void *arg, int flag);
1464 
1465 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1480 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1481 
1482 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1483 
1484 static void sd_start_stop_unit_callback(void *arg);
1485 static void sd_start_stop_unit_task(void *arg);
1486 
1487 static void sd_taskq_create(void);
1488 static void sd_taskq_delete(void);
1489 static void sd_media_change_task(void *arg);
1490 
1491 static int sd_handle_mchange(struct sd_lun *un);
1492 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1493 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1494 	uint32_t *lbap, int path_flag);
1495 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1496 	uint32_t *lbap, int path_flag);
1497 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1498 	int path_flag);
1499 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1500 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1501 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1502 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1503 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1504 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1505 	uchar_t usr_cmd, uchar_t *usr_bufp);
1506 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1507 	struct dk_callback *dkc);
1508 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1509 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1510 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1511 	uchar_t *bufaddr, uint_t buflen);
1512 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1513 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1514 	uchar_t *bufaddr, uint_t buflen, char feature);
1515 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1516 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1517 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1518 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1519 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1520 	size_t buflen, daddr_t start_block, int path_flag);
1521 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1522 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1523 	path_flag)
1524 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1525 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1526 	path_flag)
1527 
1528 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1529 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1530 	uint16_t param_ptr, int path_flag);
1531 
1532 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1533 static void sd_free_rqs(struct sd_lun *un);
1534 
1535 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1536 	uchar_t *data, int len, int fmt);
1537 static void sd_panic_for_res_conflict(struct sd_lun *un);
1538 
1539 /*
1540  * Disk Ioctl Function Prototypes
1541  */
1542 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1543 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1544 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1545 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1546 	int geom_validated);
1547 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1548 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1549 	int geom_validated);
1550 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1551 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1552 	int geom_validated);
1553 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1554 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1555 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1556 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1557 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1558 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1559 static int sd_write_label(dev_t dev);
1560 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1561 static void sd_clear_vtoc(struct sd_lun *un);
1562 static void sd_clear_efi(struct sd_lun *un);
1563 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1564 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1565 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1566 static void sd_setup_default_geometry(struct sd_lun *un);
1567 #if defined(__i386) || defined(__amd64)
1568 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1569 #endif
1570 
1571 /*
1572  * Multi-host Ioctl Prototypes
1573  */
1574 static int sd_check_mhd(dev_t dev, int interval);
1575 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1576 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1577 static char *sd_sname(uchar_t status);
1578 static void sd_mhd_resvd_recover(void *arg);
1579 static void sd_resv_reclaim_thread();
1580 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1581 static int sd_reserve_release(dev_t dev, int cmd);
1582 static void sd_rmv_resv_reclaim_req(dev_t dev);
1583 static void sd_mhd_reset_notify_cb(caddr_t arg);
1584 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1585 	mhioc_inkeys_t *usrp, int flag);
1586 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1587 	mhioc_inresvs_t *usrp, int flag);
1588 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1589 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1590 static int sd_mhdioc_release(dev_t dev);
1591 static int sd_mhdioc_register_devid(dev_t dev);
1592 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1594 
1595 /*
1596  * SCSI removable prototypes
1597  */
1598 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1599 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1600 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1601 static int sr_pause_resume(dev_t dev, int mode);
1602 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1603 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1604 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1613 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1614 static int sr_eject(dev_t dev);
1615 static void sr_ejected(register struct sd_lun *un);
1616 static int sr_check_wp(dev_t dev);
1617 static int sd_check_media(dev_t dev, enum dkio_state state);
1618 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1619 static void sd_delayed_cv_broadcast(void *arg);
1620 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1621 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1622 
1623 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1624 
1625 /*
1626  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1627  */
1628 static void sd_check_for_writable_cd(struct sd_lun *un);
1629 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1630 static void sd_wm_cache_destructor(void *wm, void *un);
1631 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1632 	daddr_t endb, ushort_t typ);
1633 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1634 	daddr_t endb);
1635 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1636 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1637 static void sd_read_modify_write_task(void * arg);
1638 static int
1639 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1640 	struct buf **bpp);
1641 
1642 
1643 /*
1644  * Function prototypes for failfast support.
1645  */
1646 static void sd_failfast_flushq(struct sd_lun *un);
1647 static int sd_failfast_flushq_callback(struct buf *bp);
1648 
1649 /*
1650  * Function prototypes to check for lsi devices
1651  */
1652 static void sd_is_lsi(struct sd_lun *un);
1653 
1654 /*
1655  * Function prototypes for x86 support
1656  */
1657 #if defined(__i386) || defined(__amd64)
1658 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1659 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1660 #endif
1661 
1662 /*
1663  * Constants for failfast support:
1664  *
1665  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1666  * failfast processing being performed.
1667  *
1668  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1669  * failfast processing on all bufs with B_FAILFAST set.
1670  */
1671 
1672 #define	SD_FAILFAST_INACTIVE		0
1673 #define	SD_FAILFAST_ACTIVE		1
1674 
1675 /*
1676  * Bitmask to control behavior of buf(9S) flushes when a transition to
1677  * the failfast state occurs. Optional bits include:
1678  *
1679  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1680  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1681  * be flushed.
1682  *
1683  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1684  * driver, in addition to the regular wait queue. This includes the xbuf
1685  * queues. When clear, only the driver's wait queue will be flushed.
1686  */
1687 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1688 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1689 
1690 /*
1691  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1692  * to flush all queues within the driver.
1693  */
1694 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1695 
1696 
1697 /*
1698  * SD Testing Fault Injection
1699  */
1700 #ifdef SD_FAULT_INJECTION
1701 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1702 static void sd_faultinjection(struct scsi_pkt *pktp);
1703 static void sd_injection_log(char *buf, struct sd_lun *un);
1704 #endif
1705 
1706 /*
1707  * Device driver ops vector
1708  */
1709 static struct cb_ops sd_cb_ops = {
1710 	sdopen,			/* open */
1711 	sdclose,		/* close */
1712 	sdstrategy,		/* strategy */
1713 	nodev,			/* print */
1714 	sddump,			/* dump */
1715 	sdread,			/* read */
1716 	sdwrite,		/* write */
1717 	sdioctl,		/* ioctl */
1718 	nodev,			/* devmap */
1719 	nodev,			/* mmap */
1720 	nodev,			/* segmap */
1721 	nochpoll,		/* poll */
1722 	sd_prop_op,		/* cb_prop_op */
1723 	0,			/* streamtab  */
1724 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1725 	CB_REV,			/* cb_rev */
1726 	sdaread, 		/* async I/O read entry point */
1727 	sdawrite		/* async I/O write entry point */
1728 };
1729 
1730 static struct dev_ops sd_ops = {
1731 	DEVO_REV,		/* devo_rev, */
1732 	0,			/* refcnt  */
1733 	sdinfo,			/* info */
1734 	nulldev,		/* identify */
1735 	sdprobe,		/* probe */
1736 	sdattach,		/* attach */
1737 	sddetach,		/* detach */
1738 	nodev,			/* reset */
1739 	&sd_cb_ops,		/* driver operations */
1740 	NULL,			/* bus operations */
1741 	sdpower			/* power */
1742 };
1743 
1744 
1745 /*
1746  * This is the loadable module wrapper.
1747  */
1748 #include <sys/modctl.h>
1749 
1750 static struct modldrv modldrv = {
1751 	&mod_driverops,		/* Type of module. This one is a driver */
1752 	SD_MODULE_NAME,		/* Module name. */
1753 	&sd_ops			/* driver ops */
1754 };
1755 
1756 
1757 static struct modlinkage modlinkage = {
1758 	MODREV_1,
1759 	&modldrv,
1760 	NULL
1761 };
1762 
1763 
1764 static struct scsi_asq_key_strings sd_additional_codes[] = {
1765 	0x81, 0, "Logical Unit is Reserved",
1766 	0x85, 0, "Audio Address Not Valid",
1767 	0xb6, 0, "Media Load Mechanism Failed",
1768 	0xB9, 0, "Audio Play Operation Aborted",
1769 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1770 	0x53, 2, "Medium removal prevented",
1771 	0x6f, 0, "Authentication failed during key exchange",
1772 	0x6f, 1, "Key not present",
1773 	0x6f, 2, "Key not established",
1774 	0x6f, 3, "Read without proper authentication",
1775 	0x6f, 4, "Mismatched region to this logical unit",
1776 	0x6f, 5, "Region reset count error",
1777 	0xffff, 0x0, NULL
1778 };
1779 
1780 
1781 /*
1782  * Struct for passing printing information for sense data messages
1783  */
1784 struct sd_sense_info {
1785 	int	ssi_severity;
1786 	int	ssi_pfa_flag;
1787 };
1788 
1789 /*
1790  * Table of function pointers for iostart-side routines. Seperate "chains"
1791  * of layered function calls are formed by placing the function pointers
1792  * sequentially in the desired order. Functions are called according to an
1793  * incrementing table index ordering. The last function in each chain must
1794  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1795  * in the sd_iodone_chain[] array.
1796  *
1797  * Note: It may seem more natural to organize both the iostart and iodone
1798  * functions together, into an array of structures (or some similar
1799  * organization) with a common index, rather than two seperate arrays which
1800  * must be maintained in synchronization. The purpose of this division is
1801  * to achiece improved performance: individual arrays allows for more
1802  * effective cache line utilization on certain platforms.
1803  */
1804 
1805 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1806 
1807 
1808 static sd_chain_t sd_iostart_chain[] = {
1809 
1810 	/* Chain for buf IO for disk drive targets (PM enabled) */
1811 	sd_mapblockaddr_iostart,	/* Index: 0 */
1812 	sd_pm_iostart,			/* Index: 1 */
1813 	sd_core_iostart,		/* Index: 2 */
1814 
1815 	/* Chain for buf IO for disk drive targets (PM disabled) */
1816 	sd_mapblockaddr_iostart,	/* Index: 3 */
1817 	sd_core_iostart,		/* Index: 4 */
1818 
1819 	/* Chain for buf IO for removable-media targets (PM enabled) */
1820 	sd_mapblockaddr_iostart,	/* Index: 5 */
1821 	sd_mapblocksize_iostart,	/* Index: 6 */
1822 	sd_pm_iostart,			/* Index: 7 */
1823 	sd_core_iostart,		/* Index: 8 */
1824 
1825 	/* Chain for buf IO for removable-media targets (PM disabled) */
1826 	sd_mapblockaddr_iostart,	/* Index: 9 */
1827 	sd_mapblocksize_iostart,	/* Index: 10 */
1828 	sd_core_iostart,		/* Index: 11 */
1829 
1830 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1831 	sd_mapblockaddr_iostart,	/* Index: 12 */
1832 	sd_checksum_iostart,		/* Index: 13 */
1833 	sd_pm_iostart,			/* Index: 14 */
1834 	sd_core_iostart,		/* Index: 15 */
1835 
1836 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1837 	sd_mapblockaddr_iostart,	/* Index: 16 */
1838 	sd_checksum_iostart,		/* Index: 17 */
1839 	sd_core_iostart,		/* Index: 18 */
1840 
1841 	/* Chain for USCSI commands (all targets) */
1842 	sd_pm_iostart,			/* Index: 19 */
1843 	sd_core_iostart,		/* Index: 20 */
1844 
1845 	/* Chain for checksumming USCSI commands (all targets) */
1846 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1847 	sd_pm_iostart,			/* Index: 22 */
1848 	sd_core_iostart,		/* Index: 23 */
1849 
1850 	/* Chain for "direct" USCSI commands (all targets) */
1851 	sd_core_iostart,		/* Index: 24 */
1852 
1853 	/* Chain for "direct priority" USCSI commands (all targets) */
1854 	sd_core_iostart,		/* Index: 25 */
1855 };
1856 
1857 /*
1858  * Macros to locate the first function of each iostart chain in the
1859  * sd_iostart_chain[] array. These are located by the index in the array.
1860  */
1861 #define	SD_CHAIN_DISK_IOSTART			0
1862 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1863 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1864 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1865 #define	SD_CHAIN_CHKSUM_IOSTART			12
1866 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1867 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1868 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1869 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1870 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1871 
1872 
1873 /*
1874  * Table of function pointers for the iodone-side routines for the driver-
1875  * internal layering mechanism.  The calling sequence for iodone routines
1876  * uses a decrementing table index, so the last routine called in a chain
1877  * must be at the lowest array index location for that chain.  The last
1878  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1879  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1880  * of the functions in an iodone side chain must correspond to the ordering
1881  * of the iostart routines for that chain.  Note that there is no iodone
1882  * side routine that corresponds to sd_core_iostart(), so there is no
1883  * entry in the table for this.
1884  */
1885 
1886 static sd_chain_t sd_iodone_chain[] = {
1887 
1888 	/* Chain for buf IO for disk drive targets (PM enabled) */
1889 	sd_buf_iodone,			/* Index: 0 */
1890 	sd_mapblockaddr_iodone,		/* Index: 1 */
1891 	sd_pm_iodone,			/* Index: 2 */
1892 
1893 	/* Chain for buf IO for disk drive targets (PM disabled) */
1894 	sd_buf_iodone,			/* Index: 3 */
1895 	sd_mapblockaddr_iodone,		/* Index: 4 */
1896 
1897 	/* Chain for buf IO for removable-media targets (PM enabled) */
1898 	sd_buf_iodone,			/* Index: 5 */
1899 	sd_mapblockaddr_iodone,		/* Index: 6 */
1900 	sd_mapblocksize_iodone,		/* Index: 7 */
1901 	sd_pm_iodone,			/* Index: 8 */
1902 
1903 	/* Chain for buf IO for removable-media targets (PM disabled) */
1904 	sd_buf_iodone,			/* Index: 9 */
1905 	sd_mapblockaddr_iodone,		/* Index: 10 */
1906 	sd_mapblocksize_iodone,		/* Index: 11 */
1907 
1908 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1909 	sd_buf_iodone,			/* Index: 12 */
1910 	sd_mapblockaddr_iodone,		/* Index: 13 */
1911 	sd_checksum_iodone,		/* Index: 14 */
1912 	sd_pm_iodone,			/* Index: 15 */
1913 
1914 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1915 	sd_buf_iodone,			/* Index: 16 */
1916 	sd_mapblockaddr_iodone,		/* Index: 17 */
1917 	sd_checksum_iodone,		/* Index: 18 */
1918 
1919 	/* Chain for USCSI commands (non-checksum targets) */
1920 	sd_uscsi_iodone,		/* Index: 19 */
1921 	sd_pm_iodone,			/* Index: 20 */
1922 
1923 	/* Chain for USCSI commands (checksum targets) */
1924 	sd_uscsi_iodone,		/* Index: 21 */
1925 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1926 	sd_pm_iodone,			/* Index: 22 */
1927 
1928 	/* Chain for "direct" USCSI commands (all targets) */
1929 	sd_uscsi_iodone,		/* Index: 24 */
1930 
1931 	/* Chain for "direct priority" USCSI commands (all targets) */
1932 	sd_uscsi_iodone,		/* Index: 25 */
1933 };
1934 
1935 
1936 /*
1937  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1938  * each iodone-side chain. These are located by the array index, but as the
1939  * iodone side functions are called in a decrementing-index order, the
1940  * highest index number in each chain must be specified (as these correspond
1941  * to the first function in the iodone chain that will be called by the core
1942  * at IO completion time).
1943  */
1944 
1945 #define	SD_CHAIN_DISK_IODONE			2
1946 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1947 #define	SD_CHAIN_RMMEDIA_IODONE			8
1948 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1949 #define	SD_CHAIN_CHKSUM_IODONE			15
1950 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1951 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1952 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1953 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1954 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1955 
1956 
1957 
1958 
1959 /*
1960  * Array to map a layering chain index to the appropriate initpkt routine.
1961  * The redundant entries are present so that the index used for accessing
1962  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1963  * with this table as well.
1964  */
1965 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1966 
1967 static sd_initpkt_t	sd_initpkt_map[] = {
1968 
1969 	/* Chain for buf IO for disk drive targets (PM enabled) */
1970 	sd_initpkt_for_buf,		/* Index: 0 */
1971 	sd_initpkt_for_buf,		/* Index: 1 */
1972 	sd_initpkt_for_buf,		/* Index: 2 */
1973 
1974 	/* Chain for buf IO for disk drive targets (PM disabled) */
1975 	sd_initpkt_for_buf,		/* Index: 3 */
1976 	sd_initpkt_for_buf,		/* Index: 4 */
1977 
1978 	/* Chain for buf IO for removable-media targets (PM enabled) */
1979 	sd_initpkt_for_buf,		/* Index: 5 */
1980 	sd_initpkt_for_buf,		/* Index: 6 */
1981 	sd_initpkt_for_buf,		/* Index: 7 */
1982 	sd_initpkt_for_buf,		/* Index: 8 */
1983 
1984 	/* Chain for buf IO for removable-media targets (PM disabled) */
1985 	sd_initpkt_for_buf,		/* Index: 9 */
1986 	sd_initpkt_for_buf,		/* Index: 10 */
1987 	sd_initpkt_for_buf,		/* Index: 11 */
1988 
1989 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1990 	sd_initpkt_for_buf,		/* Index: 12 */
1991 	sd_initpkt_for_buf,		/* Index: 13 */
1992 	sd_initpkt_for_buf,		/* Index: 14 */
1993 	sd_initpkt_for_buf,		/* Index: 15 */
1994 
1995 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1996 	sd_initpkt_for_buf,		/* Index: 16 */
1997 	sd_initpkt_for_buf,		/* Index: 17 */
1998 	sd_initpkt_for_buf,		/* Index: 18 */
1999 
2000 	/* Chain for USCSI commands (non-checksum targets) */
2001 	sd_initpkt_for_uscsi,		/* Index: 19 */
2002 	sd_initpkt_for_uscsi,		/* Index: 20 */
2003 
2004 	/* Chain for USCSI commands (checksum targets) */
2005 	sd_initpkt_for_uscsi,		/* Index: 21 */
2006 	sd_initpkt_for_uscsi,		/* Index: 22 */
2007 	sd_initpkt_for_uscsi,		/* Index: 22 */
2008 
2009 	/* Chain for "direct" USCSI commands (all targets) */
2010 	sd_initpkt_for_uscsi,		/* Index: 24 */
2011 
2012 	/* Chain for "direct priority" USCSI commands (all targets) */
2013 	sd_initpkt_for_uscsi,		/* Index: 25 */
2014 
2015 };
2016 
2017 
2018 /*
2019  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2020  * The redundant entries are present so that the index used for accessing
2021  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2022  * with this table as well.
2023  */
2024 typedef void (*sd_destroypkt_t)(struct buf *);
2025 
2026 static sd_destroypkt_t	sd_destroypkt_map[] = {
2027 
2028 	/* Chain for buf IO for disk drive targets (PM enabled) */
2029 	sd_destroypkt_for_buf,		/* Index: 0 */
2030 	sd_destroypkt_for_buf,		/* Index: 1 */
2031 	sd_destroypkt_for_buf,		/* Index: 2 */
2032 
2033 	/* Chain for buf IO for disk drive targets (PM disabled) */
2034 	sd_destroypkt_for_buf,		/* Index: 3 */
2035 	sd_destroypkt_for_buf,		/* Index: 4 */
2036 
2037 	/* Chain for buf IO for removable-media targets (PM enabled) */
2038 	sd_destroypkt_for_buf,		/* Index: 5 */
2039 	sd_destroypkt_for_buf,		/* Index: 6 */
2040 	sd_destroypkt_for_buf,		/* Index: 7 */
2041 	sd_destroypkt_for_buf,		/* Index: 8 */
2042 
2043 	/* Chain for buf IO for removable-media targets (PM disabled) */
2044 	sd_destroypkt_for_buf,		/* Index: 9 */
2045 	sd_destroypkt_for_buf,		/* Index: 10 */
2046 	sd_destroypkt_for_buf,		/* Index: 11 */
2047 
2048 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2049 	sd_destroypkt_for_buf,		/* Index: 12 */
2050 	sd_destroypkt_for_buf,		/* Index: 13 */
2051 	sd_destroypkt_for_buf,		/* Index: 14 */
2052 	sd_destroypkt_for_buf,		/* Index: 15 */
2053 
2054 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2055 	sd_destroypkt_for_buf,		/* Index: 16 */
2056 	sd_destroypkt_for_buf,		/* Index: 17 */
2057 	sd_destroypkt_for_buf,		/* Index: 18 */
2058 
2059 	/* Chain for USCSI commands (non-checksum targets) */
2060 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2061 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2062 
2063 	/* Chain for USCSI commands (checksum targets) */
2064 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2065 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2066 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2067 
2068 	/* Chain for "direct" USCSI commands (all targets) */
2069 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2070 
2071 	/* Chain for "direct priority" USCSI commands (all targets) */
2072 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2073 
2074 };
2075 
2076 
2077 
2078 /*
2079  * Array to map a layering chain index to the appropriate chain "type".
2080  * The chain type indicates a specific property/usage of the chain.
2081  * The redundant entries are present so that the index used for accessing
2082  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2083  * with this table as well.
2084  */
2085 
2086 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2087 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2088 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2089 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2090 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2091 						/* (for error recovery) */
2092 
2093 static int sd_chain_type_map[] = {
2094 
2095 	/* Chain for buf IO for disk drive targets (PM enabled) */
2096 	SD_CHAIN_BUFIO,			/* Index: 0 */
2097 	SD_CHAIN_BUFIO,			/* Index: 1 */
2098 	SD_CHAIN_BUFIO,			/* Index: 2 */
2099 
2100 	/* Chain for buf IO for disk drive targets (PM disabled) */
2101 	SD_CHAIN_BUFIO,			/* Index: 3 */
2102 	SD_CHAIN_BUFIO,			/* Index: 4 */
2103 
2104 	/* Chain for buf IO for removable-media targets (PM enabled) */
2105 	SD_CHAIN_BUFIO,			/* Index: 5 */
2106 	SD_CHAIN_BUFIO,			/* Index: 6 */
2107 	SD_CHAIN_BUFIO,			/* Index: 7 */
2108 	SD_CHAIN_BUFIO,			/* Index: 8 */
2109 
2110 	/* Chain for buf IO for removable-media targets (PM disabled) */
2111 	SD_CHAIN_BUFIO,			/* Index: 9 */
2112 	SD_CHAIN_BUFIO,			/* Index: 10 */
2113 	SD_CHAIN_BUFIO,			/* Index: 11 */
2114 
2115 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2116 	SD_CHAIN_BUFIO,			/* Index: 12 */
2117 	SD_CHAIN_BUFIO,			/* Index: 13 */
2118 	SD_CHAIN_BUFIO,			/* Index: 14 */
2119 	SD_CHAIN_BUFIO,			/* Index: 15 */
2120 
2121 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2122 	SD_CHAIN_BUFIO,			/* Index: 16 */
2123 	SD_CHAIN_BUFIO,			/* Index: 17 */
2124 	SD_CHAIN_BUFIO,			/* Index: 18 */
2125 
2126 	/* Chain for USCSI commands (non-checksum targets) */
2127 	SD_CHAIN_USCSI,			/* Index: 19 */
2128 	SD_CHAIN_USCSI,			/* Index: 20 */
2129 
2130 	/* Chain for USCSI commands (checksum targets) */
2131 	SD_CHAIN_USCSI,			/* Index: 21 */
2132 	SD_CHAIN_USCSI,			/* Index: 22 */
2133 	SD_CHAIN_USCSI,			/* Index: 22 */
2134 
2135 	/* Chain for "direct" USCSI commands (all targets) */
2136 	SD_CHAIN_DIRECT,		/* Index: 24 */
2137 
2138 	/* Chain for "direct priority" USCSI commands (all targets) */
2139 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2140 };
2141 
2142 
2143 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2144 #define	SD_IS_BUFIO(xp)			\
2145 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2146 
2147 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2148 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2149 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2150 
2151 
2152 
2153 /*
2154  * Struct, array, and macros to map a specific chain to the appropriate
2155  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2156  *
2157  * The sd_chain_index_map[] array is used at attach time to set the various
2158  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2159  * chain to be used with the instance. This allows different instances to use
2160  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2161  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2162  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2163  * dynamically & without the use of locking; and (2) a layer may update the
2164  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2165  * to allow for deferred processing of an IO within the same chain from a
2166  * different execution context.
2167  */
2168 
2169 struct sd_chain_index {
2170 	int	sci_iostart_index;
2171 	int	sci_iodone_index;
2172 };
2173 
2174 static struct sd_chain_index	sd_chain_index_map[] = {
2175 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2176 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2177 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2178 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2179 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2180 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2181 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2182 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2183 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2184 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2185 };
2186 
2187 
2188 /*
2189  * The following are indexes into the sd_chain_index_map[] array.
2190  */
2191 
2192 /* un->un_buf_chain_type must be set to one of these */
2193 #define	SD_CHAIN_INFO_DISK		0
2194 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2195 #define	SD_CHAIN_INFO_RMMEDIA		2
2196 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2197 #define	SD_CHAIN_INFO_CHKSUM		4
2198 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2199 
2200 /* un->un_uscsi_chain_type must be set to one of these */
2201 #define	SD_CHAIN_INFO_USCSI_CMD		6
2202 /* USCSI with PM disabled is the same as DIRECT */
2203 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2204 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2205 
2206 /* un->un_direct_chain_type must be set to one of these */
2207 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2208 
2209 /* un->un_priority_chain_type must be set to one of these */
2210 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2211 
2212 /* size for devid inquiries */
2213 #define	MAX_INQUIRY_SIZE		0xF0
2214 
2215 /*
2216  * Macros used by functions to pass a given buf(9S) struct along to the
2217  * next function in the layering chain for further processing.
2218  *
2219  * In the following macros, passing more than three arguments to the called
2220  * routines causes the optimizer for the SPARC compiler to stop doing tail
2221  * call elimination which results in significant performance degradation.
2222  */
2223 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2224 	((*(sd_iostart_chain[index]))(index, un, bp))
2225 
2226 #define	SD_BEGIN_IODONE(index, un, bp)	\
2227 	((*(sd_iodone_chain[index]))(index, un, bp))
2228 
2229 #define	SD_NEXT_IOSTART(index, un, bp)				\
2230 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2231 
2232 #define	SD_NEXT_IODONE(index, un, bp)				\
2233 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2234 
2235 /*
2236  *    Function: _init
2237  *
2238  * Description: This is the driver _init(9E) entry point.
2239  *
2240  * Return Code: Returns the value from mod_install(9F) or
2241  *		ddi_soft_state_init(9F) as appropriate.
2242  *
2243  *     Context: Called when driver module loaded.
2244  */
2245 
2246 int
2247 _init(void)
2248 {
2249 	int	err;
2250 
2251 	/* establish driver name from module name */
2252 	sd_label = mod_modname(&modlinkage);
2253 
2254 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2255 		SD_MAXUNIT);
2256 
2257 	if (err != 0) {
2258 		return (err);
2259 	}
2260 
2261 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2262 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2263 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2264 
2265 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2266 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2267 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2268 
2269 	/*
2270 	 * it's ok to init here even for fibre device
2271 	 */
2272 	sd_scsi_probe_cache_init();
2273 
2274 	sd_scsi_target_lun_init();
2275 
2276 	/*
2277 	 * Creating taskq before mod_install ensures that all callers (threads)
2278 	 * that enter the module after a successfull mod_install encounter
2279 	 * a valid taskq.
2280 	 */
2281 	sd_taskq_create();
2282 
2283 	err = mod_install(&modlinkage);
2284 	if (err != 0) {
2285 		/* delete taskq if install fails */
2286 		sd_taskq_delete();
2287 
2288 		mutex_destroy(&sd_detach_mutex);
2289 		mutex_destroy(&sd_log_mutex);
2290 		mutex_destroy(&sd_label_mutex);
2291 
2292 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2293 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2294 		cv_destroy(&sd_tr.srq_inprocess_cv);
2295 
2296 		sd_scsi_probe_cache_fini();
2297 
2298 		sd_scsi_target_lun_fini();
2299 
2300 		ddi_soft_state_fini(&sd_state);
2301 		return (err);
2302 	}
2303 
2304 	return (err);
2305 }
2306 
2307 
2308 /*
2309  *    Function: _fini
2310  *
2311  * Description: This is the driver _fini(9E) entry point.
2312  *
2313  * Return Code: Returns the value from mod_remove(9F)
2314  *
2315  *     Context: Called when driver module is unloaded.
2316  */
2317 
2318 int
2319 _fini(void)
2320 {
2321 	int err;
2322 
2323 	if ((err = mod_remove(&modlinkage)) != 0) {
2324 		return (err);
2325 	}
2326 
2327 	sd_taskq_delete();
2328 
2329 	mutex_destroy(&sd_detach_mutex);
2330 	mutex_destroy(&sd_log_mutex);
2331 	mutex_destroy(&sd_label_mutex);
2332 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2333 
2334 	sd_scsi_probe_cache_fini();
2335 
2336 	sd_scsi_target_lun_fini();
2337 
2338 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2339 	cv_destroy(&sd_tr.srq_inprocess_cv);
2340 
2341 	ddi_soft_state_fini(&sd_state);
2342 
2343 	return (err);
2344 }
2345 
2346 
2347 /*
2348  *    Function: _info
2349  *
2350  * Description: This is the driver _info(9E) entry point.
2351  *
2352  *   Arguments: modinfop - pointer to the driver modinfo structure
2353  *
2354  * Return Code: Returns the value from mod_info(9F).
2355  *
2356  *     Context: Kernel thread context
2357  */
2358 
2359 int
2360 _info(struct modinfo *modinfop)
2361 {
2362 	return (mod_info(&modlinkage, modinfop));
2363 }
2364 
2365 
2366 /*
2367  * The following routines implement the driver message logging facility.
2368  * They provide component- and level- based debug output filtering.
2369  * Output may also be restricted to messages for a single instance by
2370  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2371  * to NULL, then messages for all instances are printed.
2372  *
2373  * These routines have been cloned from each other due to the language
2374  * constraints of macros and variable argument list processing.
2375  */
2376 
2377 
2378 /*
2379  *    Function: sd_log_err
2380  *
2381  * Description: This routine is called by the SD_ERROR macro for debug
2382  *		logging of error conditions.
2383  *
2384  *   Arguments: comp - driver component being logged
2385  *		dev  - pointer to driver info structure
2386  *		fmt  - error string and format to be logged
2387  */
2388 
2389 static void
2390 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2391 {
2392 	va_list		ap;
2393 	dev_info_t	*dev;
2394 
2395 	ASSERT(un != NULL);
2396 	dev = SD_DEVINFO(un);
2397 	ASSERT(dev != NULL);
2398 
2399 	/*
2400 	 * Filter messages based on the global component and level masks.
2401 	 * Also print if un matches the value of sd_debug_un, or if
2402 	 * sd_debug_un is set to NULL.
2403 	 */
2404 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2405 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2406 		mutex_enter(&sd_log_mutex);
2407 		va_start(ap, fmt);
2408 		(void) vsprintf(sd_log_buf, fmt, ap);
2409 		va_end(ap);
2410 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2411 		mutex_exit(&sd_log_mutex);
2412 	}
2413 #ifdef SD_FAULT_INJECTION
2414 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2415 	if (un->sd_injection_mask & comp) {
2416 		mutex_enter(&sd_log_mutex);
2417 		va_start(ap, fmt);
2418 		(void) vsprintf(sd_log_buf, fmt, ap);
2419 		va_end(ap);
2420 		sd_injection_log(sd_log_buf, un);
2421 		mutex_exit(&sd_log_mutex);
2422 	}
2423 #endif
2424 }
2425 
2426 
2427 /*
2428  *    Function: sd_log_info
2429  *
2430  * Description: This routine is called by the SD_INFO macro for debug
2431  *		logging of general purpose informational conditions.
2432  *
2433  *   Arguments: comp - driver component being logged
2434  *		dev  - pointer to driver info structure
2435  *		fmt  - info string and format to be logged
2436  */
2437 
2438 static void
2439 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2440 {
2441 	va_list		ap;
2442 	dev_info_t	*dev;
2443 
2444 	ASSERT(un != NULL);
2445 	dev = SD_DEVINFO(un);
2446 	ASSERT(dev != NULL);
2447 
2448 	/*
2449 	 * Filter messages based on the global component and level masks.
2450 	 * Also print if un matches the value of sd_debug_un, or if
2451 	 * sd_debug_un is set to NULL.
2452 	 */
2453 	if ((sd_component_mask & component) &&
2454 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2455 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2456 		mutex_enter(&sd_log_mutex);
2457 		va_start(ap, fmt);
2458 		(void) vsprintf(sd_log_buf, fmt, ap);
2459 		va_end(ap);
2460 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2461 		mutex_exit(&sd_log_mutex);
2462 	}
2463 #ifdef SD_FAULT_INJECTION
2464 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2465 	if (un->sd_injection_mask & component) {
2466 		mutex_enter(&sd_log_mutex);
2467 		va_start(ap, fmt);
2468 		(void) vsprintf(sd_log_buf, fmt, ap);
2469 		va_end(ap);
2470 		sd_injection_log(sd_log_buf, un);
2471 		mutex_exit(&sd_log_mutex);
2472 	}
2473 #endif
2474 }
2475 
2476 
2477 /*
2478  *    Function: sd_log_trace
2479  *
2480  * Description: This routine is called by the SD_TRACE macro for debug
2481  *		logging of trace conditions (i.e. function entry/exit).
2482  *
2483  *   Arguments: comp - driver component being logged
2484  *		dev  - pointer to driver info structure
2485  *		fmt  - trace string and format to be logged
2486  */
2487 
2488 static void
2489 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2490 {
2491 	va_list		ap;
2492 	dev_info_t	*dev;
2493 
2494 	ASSERT(un != NULL);
2495 	dev = SD_DEVINFO(un);
2496 	ASSERT(dev != NULL);
2497 
2498 	/*
2499 	 * Filter messages based on the global component and level masks.
2500 	 * Also print if un matches the value of sd_debug_un, or if
2501 	 * sd_debug_un is set to NULL.
2502 	 */
2503 	if ((sd_component_mask & component) &&
2504 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2505 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2506 		mutex_enter(&sd_log_mutex);
2507 		va_start(ap, fmt);
2508 		(void) vsprintf(sd_log_buf, fmt, ap);
2509 		va_end(ap);
2510 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2511 		mutex_exit(&sd_log_mutex);
2512 	}
2513 #ifdef SD_FAULT_INJECTION
2514 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2515 	if (un->sd_injection_mask & component) {
2516 		mutex_enter(&sd_log_mutex);
2517 		va_start(ap, fmt);
2518 		(void) vsprintf(sd_log_buf, fmt, ap);
2519 		va_end(ap);
2520 		sd_injection_log(sd_log_buf, un);
2521 		mutex_exit(&sd_log_mutex);
2522 	}
2523 #endif
2524 }
2525 
2526 
2527 /*
2528  *    Function: sdprobe
2529  *
2530  * Description: This is the driver probe(9e) entry point function.
2531  *
2532  *   Arguments: devi - opaque device info handle
2533  *
2534  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2535  *              DDI_PROBE_FAILURE: If the probe failed.
2536  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2537  *				   but may be present in the future.
2538  */
2539 
2540 static int
2541 sdprobe(dev_info_t *devi)
2542 {
2543 	struct scsi_device	*devp;
2544 	int			rval;
2545 	int			instance;
2546 
2547 	/*
2548 	 * if it wasn't for pln, sdprobe could actually be nulldev
2549 	 * in the "__fibre" case.
2550 	 */
2551 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2552 		return (DDI_PROBE_DONTCARE);
2553 	}
2554 
2555 	devp = ddi_get_driver_private(devi);
2556 
2557 	if (devp == NULL) {
2558 		/* Ooops... nexus driver is mis-configured... */
2559 		return (DDI_PROBE_FAILURE);
2560 	}
2561 
2562 	instance = ddi_get_instance(devi);
2563 
2564 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2565 		return (DDI_PROBE_PARTIAL);
2566 	}
2567 
2568 	/*
2569 	 * Call the SCSA utility probe routine to see if we actually
2570 	 * have a target at this SCSI nexus.
2571 	 */
2572 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2573 	case SCSIPROBE_EXISTS:
2574 		switch (devp->sd_inq->inq_dtype) {
2575 		case DTYPE_DIRECT:
2576 			rval = DDI_PROBE_SUCCESS;
2577 			break;
2578 		case DTYPE_RODIRECT:
2579 			/* CDs etc. Can be removable media */
2580 			rval = DDI_PROBE_SUCCESS;
2581 			break;
2582 		case DTYPE_OPTICAL:
2583 			/*
2584 			 * Rewritable optical driver HP115AA
2585 			 * Can also be removable media
2586 			 */
2587 
2588 			/*
2589 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2590 			 * pre solaris 9 sparc sd behavior is required
2591 			 *
2592 			 * If first time through and sd_dtype_optical_bind
2593 			 * has not been set in /etc/system check properties
2594 			 */
2595 
2596 			if (sd_dtype_optical_bind  < 0) {
2597 			    sd_dtype_optical_bind = ddi_prop_get_int
2598 				(DDI_DEV_T_ANY,	devi,	0,
2599 				"optical-device-bind",	1);
2600 			}
2601 
2602 			if (sd_dtype_optical_bind == 0) {
2603 				rval = DDI_PROBE_FAILURE;
2604 			} else {
2605 				rval = DDI_PROBE_SUCCESS;
2606 			}
2607 			break;
2608 
2609 		case DTYPE_NOTPRESENT:
2610 		default:
2611 			rval = DDI_PROBE_FAILURE;
2612 			break;
2613 		}
2614 		break;
2615 	default:
2616 		rval = DDI_PROBE_PARTIAL;
2617 		break;
2618 	}
2619 
2620 	/*
2621 	 * This routine checks for resource allocation prior to freeing,
2622 	 * so it will take care of the "smart probing" case where a
2623 	 * scsi_probe() may or may not have been issued and will *not*
2624 	 * free previously-freed resources.
2625 	 */
2626 	scsi_unprobe(devp);
2627 	return (rval);
2628 }
2629 
2630 
2631 /*
2632  *    Function: sdinfo
2633  *
2634  * Description: This is the driver getinfo(9e) entry point function.
2635  * 		Given the device number, return the devinfo pointer from
2636  *		the scsi_device structure or the instance number
2637  *		associated with the dev_t.
2638  *
2639  *   Arguments: dip     - pointer to device info structure
2640  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2641  *			  DDI_INFO_DEVT2INSTANCE)
2642  *		arg     - driver dev_t
2643  *		resultp - user buffer for request response
2644  *
2645  * Return Code: DDI_SUCCESS
2646  *              DDI_FAILURE
2647  */
2648 /* ARGSUSED */
2649 static int
2650 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2651 {
2652 	struct sd_lun	*un;
2653 	dev_t		dev;
2654 	int		instance;
2655 	int		error;
2656 
2657 	switch (infocmd) {
2658 	case DDI_INFO_DEVT2DEVINFO:
2659 		dev = (dev_t)arg;
2660 		instance = SDUNIT(dev);
2661 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2662 			return (DDI_FAILURE);
2663 		}
2664 		*result = (void *) SD_DEVINFO(un);
2665 		error = DDI_SUCCESS;
2666 		break;
2667 	case DDI_INFO_DEVT2INSTANCE:
2668 		dev = (dev_t)arg;
2669 		instance = SDUNIT(dev);
2670 		*result = (void *)(uintptr_t)instance;
2671 		error = DDI_SUCCESS;
2672 		break;
2673 	default:
2674 		error = DDI_FAILURE;
2675 	}
2676 	return (error);
2677 }
2678 
2679 /*
2680  *    Function: sd_prop_op
2681  *
2682  * Description: This is the driver prop_op(9e) entry point function.
2683  *		Return the number of blocks for the partition in question
2684  *		or forward the request to the property facilities.
2685  *
2686  *   Arguments: dev       - device number
2687  *		dip       - pointer to device info structure
2688  *		prop_op   - property operator
2689  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2690  *		name      - pointer to property name
2691  *		valuep    - pointer or address of the user buffer
2692  *		lengthp   - property length
2693  *
2694  * Return Code: DDI_PROP_SUCCESS
2695  *              DDI_PROP_NOT_FOUND
2696  *              DDI_PROP_UNDEFINED
2697  *              DDI_PROP_NO_MEMORY
2698  *              DDI_PROP_BUF_TOO_SMALL
2699  */
2700 
2701 static int
2702 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2703 	char *name, caddr_t valuep, int *lengthp)
2704 {
2705 	int		instance = ddi_get_instance(dip);
2706 	struct sd_lun	*un;
2707 	uint64_t	nblocks64;
2708 
2709 	/*
2710 	 * Our dynamic properties are all device specific and size oriented.
2711 	 * Requests issued under conditions where size is valid are passed
2712 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2713 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2714 	 */
2715 	un = ddi_get_soft_state(sd_state, instance);
2716 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2717 	    (un->un_f_geometry_is_valid == FALSE)) {
2718 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2719 		    name, valuep, lengthp));
2720 	} else {
2721 		/* get nblocks value */
2722 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2723 		mutex_enter(SD_MUTEX(un));
2724 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2725 		mutex_exit(SD_MUTEX(un));
2726 
2727 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2728 		    name, valuep, lengthp, nblocks64));
2729 	}
2730 }
2731 
2732 /*
2733  * The following functions are for smart probing:
2734  * sd_scsi_probe_cache_init()
2735  * sd_scsi_probe_cache_fini()
2736  * sd_scsi_clear_probe_cache()
2737  * sd_scsi_probe_with_cache()
2738  */
2739 
2740 /*
2741  *    Function: sd_scsi_probe_cache_init
2742  *
2743  * Description: Initializes the probe response cache mutex and head pointer.
2744  *
2745  *     Context: Kernel thread context
2746  */
2747 
2748 static void
2749 sd_scsi_probe_cache_init(void)
2750 {
2751 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2752 	sd_scsi_probe_cache_head = NULL;
2753 }
2754 
2755 
2756 /*
2757  *    Function: sd_scsi_probe_cache_fini
2758  *
2759  * Description: Frees all resources associated with the probe response cache.
2760  *
2761  *     Context: Kernel thread context
2762  */
2763 
2764 static void
2765 sd_scsi_probe_cache_fini(void)
2766 {
2767 	struct sd_scsi_probe_cache *cp;
2768 	struct sd_scsi_probe_cache *ncp;
2769 
2770 	/* Clean up our smart probing linked list */
2771 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2772 		ncp = cp->next;
2773 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2774 	}
2775 	sd_scsi_probe_cache_head = NULL;
2776 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2777 }
2778 
2779 
2780 /*
2781  *    Function: sd_scsi_clear_probe_cache
2782  *
2783  * Description: This routine clears the probe response cache. This is
2784  *		done when open() returns ENXIO so that when deferred
2785  *		attach is attempted (possibly after a device has been
2786  *		turned on) we will retry the probe. Since we don't know
2787  *		which target we failed to open, we just clear the
2788  *		entire cache.
2789  *
2790  *     Context: Kernel thread context
2791  */
2792 
2793 static void
2794 sd_scsi_clear_probe_cache(void)
2795 {
2796 	struct sd_scsi_probe_cache	*cp;
2797 	int				i;
2798 
2799 	mutex_enter(&sd_scsi_probe_cache_mutex);
2800 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2801 		/*
2802 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2803 		 * force probing to be performed the next time
2804 		 * sd_scsi_probe_with_cache is called.
2805 		 */
2806 		for (i = 0; i < NTARGETS_WIDE; i++) {
2807 			cp->cache[i] = SCSIPROBE_EXISTS;
2808 		}
2809 	}
2810 	mutex_exit(&sd_scsi_probe_cache_mutex);
2811 }
2812 
2813 
2814 /*
2815  *    Function: sd_scsi_probe_with_cache
2816  *
2817  * Description: This routine implements support for a scsi device probe
2818  *		with cache. The driver maintains a cache of the target
2819  *		responses to scsi probes. If we get no response from a
2820  *		target during a probe inquiry, we remember that, and we
2821  *		avoid additional calls to scsi_probe on non-zero LUNs
2822  *		on the same target until the cache is cleared. By doing
2823  *		so we avoid the 1/4 sec selection timeout for nonzero
2824  *		LUNs. lun0 of a target is always probed.
2825  *
2826  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2827  *              waitfunc - indicates what the allocator routines should
2828  *			   do when resources are not available. This value
2829  *			   is passed on to scsi_probe() when that routine
2830  *			   is called.
2831  *
2832  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2833  *		otherwise the value returned by scsi_probe(9F).
2834  *
2835  *     Context: Kernel thread context
2836  */
2837 
2838 static int
2839 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2840 {
2841 	struct sd_scsi_probe_cache	*cp;
2842 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2843 	int		lun, tgt;
2844 
2845 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2846 	    SCSI_ADDR_PROP_LUN, 0);
2847 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2848 	    SCSI_ADDR_PROP_TARGET, -1);
2849 
2850 	/* Make sure caching enabled and target in range */
2851 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2852 		/* do it the old way (no cache) */
2853 		return (scsi_probe(devp, waitfn));
2854 	}
2855 
2856 	mutex_enter(&sd_scsi_probe_cache_mutex);
2857 
2858 	/* Find the cache for this scsi bus instance */
2859 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2860 		if (cp->pdip == pdip) {
2861 			break;
2862 		}
2863 	}
2864 
2865 	/* If we can't find a cache for this pdip, create one */
2866 	if (cp == NULL) {
2867 		int i;
2868 
2869 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2870 		    KM_SLEEP);
2871 		cp->pdip = pdip;
2872 		cp->next = sd_scsi_probe_cache_head;
2873 		sd_scsi_probe_cache_head = cp;
2874 		for (i = 0; i < NTARGETS_WIDE; i++) {
2875 			cp->cache[i] = SCSIPROBE_EXISTS;
2876 		}
2877 	}
2878 
2879 	mutex_exit(&sd_scsi_probe_cache_mutex);
2880 
2881 	/* Recompute the cache for this target if LUN zero */
2882 	if (lun == 0) {
2883 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2884 	}
2885 
2886 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2887 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2888 		return (SCSIPROBE_NORESP);
2889 	}
2890 
2891 	/* Do the actual probe; save & return the result */
2892 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2893 }
2894 
2895 
2896 /*
2897  *    Function: sd_scsi_target_lun_init
2898  *
2899  * Description: Initializes the attached lun chain mutex and head pointer.
2900  *
2901  *     Context: Kernel thread context
2902  */
2903 
2904 static void
2905 sd_scsi_target_lun_init(void)
2906 {
2907 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2908 	sd_scsi_target_lun_head = NULL;
2909 }
2910 
2911 
2912 /*
2913  *    Function: sd_scsi_target_lun_fini
2914  *
2915  * Description: Frees all resources associated with the attached lun
2916  *              chain
2917  *
2918  *     Context: Kernel thread context
2919  */
2920 
2921 static void
2922 sd_scsi_target_lun_fini(void)
2923 {
2924 	struct sd_scsi_hba_tgt_lun	*cp;
2925 	struct sd_scsi_hba_tgt_lun	*ncp;
2926 
2927 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2928 		ncp = cp->next;
2929 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2930 	}
2931 	sd_scsi_target_lun_head = NULL;
2932 	mutex_destroy(&sd_scsi_target_lun_mutex);
2933 }
2934 
2935 
2936 /*
2937  *    Function: sd_scsi_get_target_lun_count
2938  *
2939  * Description: This routine will check in the attached lun chain to see
2940  * 		how many luns are attached on the required SCSI controller
2941  * 		and target. Currently, some capabilities like tagged queue
2942  *		are supported per target based by HBA. So all luns in a
2943  *		target have the same capabilities. Based on this assumption,
2944  * 		sd should only set these capabilities once per target. This
2945  *		function is called when sd needs to decide how many luns
2946  *		already attached on a target.
2947  *
2948  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2949  *			  controller device.
2950  *              target	- The target ID on the controller's SCSI bus.
2951  *
2952  * Return Code: The number of luns attached on the required target and
2953  *		controller.
2954  *		-1 if target ID is not in parallel SCSI scope or the given
2955  * 		dip is not in the chain.
2956  *
2957  *     Context: Kernel thread context
2958  */
2959 
2960 static int
2961 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2962 {
2963 	struct sd_scsi_hba_tgt_lun	*cp;
2964 
2965 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2966 		return (-1);
2967 	}
2968 
2969 	mutex_enter(&sd_scsi_target_lun_mutex);
2970 
2971 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2972 		if (cp->pdip == dip) {
2973 			break;
2974 		}
2975 	}
2976 
2977 	mutex_exit(&sd_scsi_target_lun_mutex);
2978 
2979 	if (cp == NULL) {
2980 		return (-1);
2981 	}
2982 
2983 	return (cp->nlun[target]);
2984 }
2985 
2986 
2987 /*
2988  *    Function: sd_scsi_update_lun_on_target
2989  *
2990  * Description: This routine is used to update the attached lun chain when a
2991  *		lun is attached or detached on a target.
2992  *
2993  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2994  *                        controller device.
2995  *              target  - The target ID on the controller's SCSI bus.
2996  *		flag	- Indicate the lun is attached or detached.
2997  *
2998  *     Context: Kernel thread context
2999  */
3000 
3001 static void
3002 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3003 {
3004 	struct sd_scsi_hba_tgt_lun	*cp;
3005 
3006 	mutex_enter(&sd_scsi_target_lun_mutex);
3007 
3008 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3009 		if (cp->pdip == dip) {
3010 			break;
3011 		}
3012 	}
3013 
3014 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3015 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3016 		    KM_SLEEP);
3017 		cp->pdip = dip;
3018 		cp->next = sd_scsi_target_lun_head;
3019 		sd_scsi_target_lun_head = cp;
3020 	}
3021 
3022 	mutex_exit(&sd_scsi_target_lun_mutex);
3023 
3024 	if (cp != NULL) {
3025 		if (flag == SD_SCSI_LUN_ATTACH) {
3026 			cp->nlun[target] ++;
3027 		} else {
3028 			cp->nlun[target] --;
3029 		}
3030 	}
3031 }
3032 
3033 
3034 /*
3035  *    Function: sd_spin_up_unit
3036  *
3037  * Description: Issues the following commands to spin-up the device:
3038  *		START STOP UNIT, and INQUIRY.
3039  *
3040  *   Arguments: un - driver soft state (unit) structure
3041  *
3042  * Return Code: 0 - success
3043  *		EIO - failure
3044  *		EACCES - reservation conflict
3045  *
3046  *     Context: Kernel thread context
3047  */
3048 
3049 static int
3050 sd_spin_up_unit(struct sd_lun *un)
3051 {
3052 	size_t	resid		= 0;
3053 	int	has_conflict	= FALSE;
3054 	uchar_t *bufaddr;
3055 
3056 	ASSERT(un != NULL);
3057 
3058 	/*
3059 	 * Send a throwaway START UNIT command.
3060 	 *
3061 	 * If we fail on this, we don't care presently what precisely
3062 	 * is wrong.  EMC's arrays will also fail this with a check
3063 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3064 	 * we don't want to fail the attach because it may become
3065 	 * "active" later.
3066 	 */
3067 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
3068 	    == EACCES)
3069 		has_conflict = TRUE;
3070 
3071 	/*
3072 	 * Send another INQUIRY command to the target. This is necessary for
3073 	 * non-removable media direct access devices because their INQUIRY data
3074 	 * may not be fully qualified until they are spun up (perhaps via the
3075 	 * START command above).  Note: This seems to be needed for some
3076 	 * legacy devices only.) The INQUIRY command should succeed even if a
3077 	 * Reservation Conflict is present.
3078 	 */
3079 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3080 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
3081 		kmem_free(bufaddr, SUN_INQSIZE);
3082 		return (EIO);
3083 	}
3084 
3085 	/*
3086 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3087 	 * Note that this routine does not return a failure here even if the
3088 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3089 	 */
3090 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3091 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3092 	}
3093 
3094 	kmem_free(bufaddr, SUN_INQSIZE);
3095 
3096 	/* If we hit a reservation conflict above, tell the caller. */
3097 	if (has_conflict == TRUE) {
3098 		return (EACCES);
3099 	}
3100 
3101 	return (0);
3102 }
3103 
3104 #ifdef _LP64
3105 /*
3106  *    Function: sd_enable_descr_sense
3107  *
3108  * Description: This routine attempts to select descriptor sense format
3109  *		using the Control mode page.  Devices that support 64 bit
3110  *		LBAs (for >2TB luns) should also implement descriptor
3111  *		sense data so we will call this function whenever we see
3112  *		a lun larger than 2TB.  If for some reason the device
3113  *		supports 64 bit LBAs but doesn't support descriptor sense
3114  *		presumably the mode select will fail.  Everything will
3115  *		continue to work normally except that we will not get
3116  *		complete sense data for commands that fail with an LBA
3117  *		larger than 32 bits.
3118  *
3119  *   Arguments: un - driver soft state (unit) structure
3120  *
3121  *     Context: Kernel thread context only
3122  */
3123 
3124 static void
3125 sd_enable_descr_sense(struct sd_lun *un)
3126 {
3127 	uchar_t			*header;
3128 	struct mode_control_scsi3 *ctrl_bufp;
3129 	size_t			buflen;
3130 	size_t			bd_len;
3131 
3132 	/*
3133 	 * Read MODE SENSE page 0xA, Control Mode Page
3134 	 */
3135 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3136 	    sizeof (struct mode_control_scsi3);
3137 	header = kmem_zalloc(buflen, KM_SLEEP);
3138 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3139 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3140 		SD_ERROR(SD_LOG_COMMON, un,
3141 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3142 		goto eds_exit;
3143 	}
3144 
3145 	/*
3146 	 * Determine size of Block Descriptors in order to locate
3147 	 * the mode page data. ATAPI devices return 0, SCSI devices
3148 	 * should return MODE_BLK_DESC_LENGTH.
3149 	 */
3150 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3151 
3152 	ctrl_bufp = (struct mode_control_scsi3 *)
3153 	    (header + MODE_HEADER_LENGTH + bd_len);
3154 
3155 	/*
3156 	 * Clear PS bit for MODE SELECT
3157 	 */
3158 	ctrl_bufp->mode_page.ps = 0;
3159 
3160 	/*
3161 	 * Set D_SENSE to enable descriptor sense format.
3162 	 */
3163 	ctrl_bufp->d_sense = 1;
3164 
3165 	/*
3166 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3167 	 */
3168 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3169 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3170 		SD_INFO(SD_LOG_COMMON, un,
3171 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3172 		goto eds_exit;
3173 	}
3174 
3175 eds_exit:
3176 	kmem_free(header, buflen);
3177 }
3178 
3179 /*
3180  *    Function: sd_reenable_dsense_task
3181  *
3182  * Description: Re-enable descriptor sense after device or bus reset
3183  *
3184  *     Context: Executes in a taskq() thread context
3185  */
3186 static void
3187 sd_reenable_dsense_task(void *arg)
3188 {
3189 	struct	sd_lun	*un = arg;
3190 
3191 	ASSERT(un != NULL);
3192 	sd_enable_descr_sense(un);
3193 }
3194 #endif /* _LP64 */
3195 
3196 /*
3197  *    Function: sd_set_mmc_caps
3198  *
3199  * Description: This routine determines if the device is MMC compliant and if
3200  *		the device supports CDDA via a mode sense of the CDVD
3201  *		capabilities mode page. Also checks if the device is a
3202  *		dvdram writable device.
3203  *
3204  *   Arguments: un - driver soft state (unit) structure
3205  *
3206  *     Context: Kernel thread context only
3207  */
3208 
3209 static void
3210 sd_set_mmc_caps(struct sd_lun *un)
3211 {
3212 	struct mode_header_grp2		*sense_mhp;
3213 	uchar_t				*sense_page;
3214 	caddr_t				buf;
3215 	int				bd_len;
3216 	int				status;
3217 	struct uscsi_cmd		com;
3218 	int				rtn;
3219 	uchar_t				*out_data_rw, *out_data_hd;
3220 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3221 
3222 	ASSERT(un != NULL);
3223 
3224 	/*
3225 	 * The flags which will be set in this function are - mmc compliant,
3226 	 * dvdram writable device, cdda support. Initialize them to FALSE
3227 	 * and if a capability is detected - it will be set to TRUE.
3228 	 */
3229 	un->un_f_mmc_cap = FALSE;
3230 	un->un_f_dvdram_writable_device = FALSE;
3231 	un->un_f_cfg_cdda = FALSE;
3232 
3233 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3234 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3235 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3236 
3237 	if (status != 0) {
3238 		/* command failed; just return */
3239 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3240 		return;
3241 	}
3242 	/*
3243 	 * If the mode sense request for the CDROM CAPABILITIES
3244 	 * page (0x2A) succeeds the device is assumed to be MMC.
3245 	 */
3246 	un->un_f_mmc_cap = TRUE;
3247 
3248 	/* Get to the page data */
3249 	sense_mhp = (struct mode_header_grp2 *)buf;
3250 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3251 	    sense_mhp->bdesc_length_lo;
3252 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3253 		/*
3254 		 * We did not get back the expected block descriptor
3255 		 * length so we cannot determine if the device supports
3256 		 * CDDA. However, we still indicate the device is MMC
3257 		 * according to the successful response to the page
3258 		 * 0x2A mode sense request.
3259 		 */
3260 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3261 		    "sd_set_mmc_caps: Mode Sense returned "
3262 		    "invalid block descriptor length\n");
3263 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3264 		return;
3265 	}
3266 
3267 	/* See if read CDDA is supported */
3268 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3269 	    bd_len);
3270 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3271 
3272 	/* See if writing DVD RAM is supported. */
3273 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3274 	if (un->un_f_dvdram_writable_device == TRUE) {
3275 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3276 		return;
3277 	}
3278 
3279 	/*
3280 	 * If the device presents DVD or CD capabilities in the mode
3281 	 * page, we can return here since a RRD will not have
3282 	 * these capabilities.
3283 	 */
3284 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3285 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3286 		return;
3287 	}
3288 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3289 
3290 	/*
3291 	 * If un->un_f_dvdram_writable_device is still FALSE,
3292 	 * check for a Removable Rigid Disk (RRD).  A RRD
3293 	 * device is identified by the features RANDOM_WRITABLE and
3294 	 * HARDWARE_DEFECT_MANAGEMENT.
3295 	 */
3296 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3297 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3298 
3299 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3300 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3301 	    RANDOM_WRITABLE);
3302 	if (rtn != 0) {
3303 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3304 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3305 		return;
3306 	}
3307 
3308 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3309 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3310 
3311 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3312 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3313 	    HARDWARE_DEFECT_MANAGEMENT);
3314 	if (rtn == 0) {
3315 		/*
3316 		 * We have good information, check for random writable
3317 		 * and hardware defect features.
3318 		 */
3319 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3320 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3321 			un->un_f_dvdram_writable_device = TRUE;
3322 		}
3323 	}
3324 
3325 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3326 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3327 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3328 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3329 }
3330 
3331 /*
3332  *    Function: sd_check_for_writable_cd
3333  *
3334  * Description: This routine determines if the media in the device is
3335  *		writable or not. It uses the get configuration command (0x46)
3336  *		to determine if the media is writable
3337  *
3338  *   Arguments: un - driver soft state (unit) structure
3339  *
3340  *     Context: Never called at interrupt context.
3341  */
3342 
3343 static void
3344 sd_check_for_writable_cd(struct sd_lun *un)
3345 {
3346 	struct uscsi_cmd		com;
3347 	uchar_t				*out_data;
3348 	uchar_t				*rqbuf;
3349 	int				rtn;
3350 	uchar_t				*out_data_rw, *out_data_hd;
3351 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3352 	struct mode_header_grp2		*sense_mhp;
3353 	uchar_t				*sense_page;
3354 	caddr_t				buf;
3355 	int				bd_len;
3356 	int				status;
3357 
3358 	ASSERT(un != NULL);
3359 	ASSERT(mutex_owned(SD_MUTEX(un)));
3360 
3361 	/*
3362 	 * Initialize the writable media to false, if configuration info.
3363 	 * tells us otherwise then only we will set it.
3364 	 */
3365 	un->un_f_mmc_writable_media = FALSE;
3366 	mutex_exit(SD_MUTEX(un));
3367 
3368 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3369 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3370 
3371 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3372 	    out_data, SD_PROFILE_HEADER_LEN);
3373 
3374 	mutex_enter(SD_MUTEX(un));
3375 	if (rtn == 0) {
3376 		/*
3377 		 * We have good information, check for writable DVD.
3378 		 */
3379 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3380 			un->un_f_mmc_writable_media = TRUE;
3381 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3382 			kmem_free(rqbuf, SENSE_LENGTH);
3383 			return;
3384 		}
3385 	}
3386 
3387 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3388 	kmem_free(rqbuf, SENSE_LENGTH);
3389 
3390 	/*
3391 	 * Determine if this is a RRD type device.
3392 	 */
3393 	mutex_exit(SD_MUTEX(un));
3394 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3395 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3396 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3397 	mutex_enter(SD_MUTEX(un));
3398 	if (status != 0) {
3399 		/* command failed; just return */
3400 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3401 		return;
3402 	}
3403 
3404 	/* Get to the page data */
3405 	sense_mhp = (struct mode_header_grp2 *)buf;
3406 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3407 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3408 		/*
3409 		 * We did not get back the expected block descriptor length so
3410 		 * we cannot check the mode page.
3411 		 */
3412 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3413 		    "sd_check_for_writable_cd: Mode Sense returned "
3414 		    "invalid block descriptor length\n");
3415 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3416 		return;
3417 	}
3418 
3419 	/*
3420 	 * If the device presents DVD or CD capabilities in the mode
3421 	 * page, we can return here since a RRD device will not have
3422 	 * these capabilities.
3423 	 */
3424 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3425 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3426 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3427 		return;
3428 	}
3429 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3430 
3431 	/*
3432 	 * If un->un_f_mmc_writable_media is still FALSE,
3433 	 * check for RRD type media.  A RRD device is identified
3434 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3435 	 */
3436 	mutex_exit(SD_MUTEX(un));
3437 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3438 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3439 
3440 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3441 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3442 	    RANDOM_WRITABLE);
3443 	if (rtn != 0) {
3444 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3445 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3446 		mutex_enter(SD_MUTEX(un));
3447 		return;
3448 	}
3449 
3450 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3451 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3452 
3453 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3454 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3455 	    HARDWARE_DEFECT_MANAGEMENT);
3456 	mutex_enter(SD_MUTEX(un));
3457 	if (rtn == 0) {
3458 		/*
3459 		 * We have good information, check for random writable
3460 		 * and hardware defect features as current.
3461 		 */
3462 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3463 		    (out_data_rw[10] & 0x1) &&
3464 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3465 		    (out_data_hd[10] & 0x1)) {
3466 			un->un_f_mmc_writable_media = TRUE;
3467 		}
3468 	}
3469 
3470 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3471 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3472 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3473 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3474 }
3475 
3476 /*
3477  *    Function: sd_read_unit_properties
3478  *
3479  * Description: The following implements a property lookup mechanism.
3480  *		Properties for particular disks (keyed on vendor, model
3481  *		and rev numbers) are sought in the sd.conf file via
3482  *		sd_process_sdconf_file(), and if not found there, are
3483  *		looked for in a list hardcoded in this driver via
3484  *		sd_process_sdconf_table() Once located the properties
3485  *		are used to update the driver unit structure.
3486  *
3487  *   Arguments: un - driver soft state (unit) structure
3488  */
3489 
3490 static void
3491 sd_read_unit_properties(struct sd_lun *un)
3492 {
3493 	/*
3494 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3495 	 * the "sd-config-list" property (from the sd.conf file) or if
3496 	 * there was not a match for the inquiry vid/pid. If this event
3497 	 * occurs the static driver configuration table is searched for
3498 	 * a match.
3499 	 */
3500 	ASSERT(un != NULL);
3501 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3502 		sd_process_sdconf_table(un);
3503 	}
3504 
3505 	/* check for LSI device */
3506 	sd_is_lsi(un);
3507 
3508 
3509 }
3510 
3511 
3512 /*
3513  *    Function: sd_process_sdconf_file
3514  *
3515  * Description: Use ddi_getlongprop to obtain the properties from the
3516  *		driver's config file (ie, sd.conf) and update the driver
3517  *		soft state structure accordingly.
3518  *
3519  *   Arguments: un - driver soft state (unit) structure
3520  *
3521  * Return Code: SD_SUCCESS - The properties were successfully set according
3522  *			     to the driver configuration file.
3523  *		SD_FAILURE - The driver config list was not obtained or
3524  *			     there was no vid/pid match. This indicates that
3525  *			     the static config table should be used.
3526  *
3527  * The config file has a property, "sd-config-list", which consists of
3528  * one or more duplets as follows:
3529  *
3530  *  sd-config-list=
3531  *	<duplet>,
3532  *	[<duplet>,]
3533  *	[<duplet>];
3534  *
3535  * The structure of each duplet is as follows:
3536  *
3537  *  <duplet>:= <vid+pid>,<data-property-name_list>
3538  *
3539  * The first entry of the duplet is the device ID string (the concatenated
3540  * vid & pid; not to be confused with a device_id).  This is defined in
3541  * the same way as in the sd_disk_table.
3542  *
3543  * The second part of the duplet is a string that identifies a
3544  * data-property-name-list. The data-property-name-list is defined as
3545  * follows:
3546  *
3547  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3548  *
3549  * The syntax of <data-property-name> depends on the <version> field.
3550  *
3551  * If version = SD_CONF_VERSION_1 we have the following syntax:
3552  *
3553  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3554  *
3555  * where the prop0 value will be used to set prop0 if bit0 set in the
3556  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3557  *
3558  */
3559 
3560 static int
3561 sd_process_sdconf_file(struct sd_lun *un)
3562 {
3563 	char	*config_list = NULL;
3564 	int	config_list_len;
3565 	int	len;
3566 	int	dupletlen = 0;
3567 	char	*vidptr;
3568 	int	vidlen;
3569 	char	*dnlist_ptr;
3570 	char	*dataname_ptr;
3571 	int	dnlist_len;
3572 	int	dataname_len;
3573 	int	*data_list;
3574 	int	data_list_len;
3575 	int	rval = SD_FAILURE;
3576 	int	i;
3577 
3578 	ASSERT(un != NULL);
3579 
3580 	/* Obtain the configuration list associated with the .conf file */
3581 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3582 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3583 	    != DDI_PROP_SUCCESS) {
3584 		return (SD_FAILURE);
3585 	}
3586 
3587 	/*
3588 	 * Compare vids in each duplet to the inquiry vid - if a match is
3589 	 * made, get the data value and update the soft state structure
3590 	 * accordingly.
3591 	 *
3592 	 * Note: This algorithm is complex and difficult to maintain. It should
3593 	 * be replaced with a more robust implementation.
3594 	 */
3595 	for (len = config_list_len, vidptr = config_list; len > 0;
3596 	    vidptr += dupletlen, len -= dupletlen) {
3597 		/*
3598 		 * Note: The assumption here is that each vid entry is on
3599 		 * a unique line from its associated duplet.
3600 		 */
3601 		vidlen = dupletlen = (int)strlen(vidptr);
3602 		if ((vidlen == 0) ||
3603 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3604 			dupletlen++;
3605 			continue;
3606 		}
3607 
3608 		/*
3609 		 * dnlist contains 1 or more blank separated
3610 		 * data-property-name entries
3611 		 */
3612 		dnlist_ptr = vidptr + vidlen + 1;
3613 		dnlist_len = (int)strlen(dnlist_ptr);
3614 		dupletlen += dnlist_len + 2;
3615 
3616 		/*
3617 		 * Set a pointer for the first data-property-name
3618 		 * entry in the list
3619 		 */
3620 		dataname_ptr = dnlist_ptr;
3621 		dataname_len = 0;
3622 
3623 		/*
3624 		 * Loop through all data-property-name entries in the
3625 		 * data-property-name-list setting the properties for each.
3626 		 */
3627 		while (dataname_len < dnlist_len) {
3628 			int version;
3629 
3630 			/*
3631 			 * Determine the length of the current
3632 			 * data-property-name entry by indexing until a
3633 			 * blank or NULL is encountered. When the space is
3634 			 * encountered reset it to a NULL for compliance
3635 			 * with ddi_getlongprop().
3636 			 */
3637 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3638 			    (dataname_ptr[i] != '\0')); i++) {
3639 				;
3640 			}
3641 
3642 			dataname_len += i;
3643 			/* If not null terminated, Make it so */
3644 			if (dataname_ptr[i] == ' ') {
3645 				dataname_ptr[i] = '\0';
3646 			}
3647 			dataname_len++;
3648 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3649 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3650 			    vidptr, dataname_ptr);
3651 
3652 			/* Get the data list */
3653 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3654 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3655 			    != DDI_PROP_SUCCESS) {
3656 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3657 				    "sd_process_sdconf_file: data property (%s)"
3658 				    " has no value\n", dataname_ptr);
3659 				dataname_ptr = dnlist_ptr + dataname_len;
3660 				continue;
3661 			}
3662 
3663 			version = data_list[0];
3664 
3665 			if (version == SD_CONF_VERSION_1) {
3666 				sd_tunables values;
3667 
3668 				/* Set the properties */
3669 				if (sd_chk_vers1_data(un, data_list[1],
3670 				    &data_list[2], data_list_len, dataname_ptr)
3671 				    == SD_SUCCESS) {
3672 					sd_get_tunables_from_conf(un,
3673 					    data_list[1], &data_list[2],
3674 					    &values);
3675 					sd_set_vers1_properties(un,
3676 					    data_list[1], &values);
3677 					rval = SD_SUCCESS;
3678 				} else {
3679 					rval = SD_FAILURE;
3680 				}
3681 			} else {
3682 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3683 				    "data property %s version 0x%x is invalid.",
3684 				    dataname_ptr, version);
3685 				rval = SD_FAILURE;
3686 			}
3687 			kmem_free(data_list, data_list_len);
3688 			dataname_ptr = dnlist_ptr + dataname_len;
3689 		}
3690 	}
3691 
3692 	/* free up the memory allocated by ddi_getlongprop */
3693 	if (config_list) {
3694 		kmem_free(config_list, config_list_len);
3695 	}
3696 
3697 	return (rval);
3698 }
3699 
3700 /*
3701  *    Function: sd_get_tunables_from_conf()
3702  *
3703  *
3704  *    This function reads the data list from the sd.conf file and pulls
3705  *    the values that can have numeric values as arguments and places
3706  *    the values in the apropriate sd_tunables member.
3707  *    Since the order of the data list members varies across platforms
3708  *    This function reads them from the data list in a platform specific
3709  *    order and places them into the correct sd_tunable member that is
3710  *    a consistant across all platforms.
3711  */
3712 static void
3713 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3714     sd_tunables *values)
3715 {
3716 	int i;
3717 	int mask;
3718 
3719 	bzero(values, sizeof (sd_tunables));
3720 
3721 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3722 
3723 		mask = 1 << i;
3724 		if (mask > flags) {
3725 			break;
3726 		}
3727 
3728 		switch (mask & flags) {
3729 		case 0:	/* This mask bit not set in flags */
3730 			continue;
3731 		case SD_CONF_BSET_THROTTLE:
3732 			values->sdt_throttle = data_list[i];
3733 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3734 			    "sd_get_tunables_from_conf: throttle = %d\n",
3735 			    values->sdt_throttle);
3736 			break;
3737 		case SD_CONF_BSET_CTYPE:
3738 			values->sdt_ctype = data_list[i];
3739 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3740 			    "sd_get_tunables_from_conf: ctype = %d\n",
3741 			    values->sdt_ctype);
3742 			break;
3743 		case SD_CONF_BSET_NRR_COUNT:
3744 			values->sdt_not_rdy_retries = data_list[i];
3745 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3746 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3747 			    values->sdt_not_rdy_retries);
3748 			break;
3749 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3750 			values->sdt_busy_retries = data_list[i];
3751 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3752 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3753 			    values->sdt_busy_retries);
3754 			break;
3755 		case SD_CONF_BSET_RST_RETRIES:
3756 			values->sdt_reset_retries = data_list[i];
3757 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3758 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3759 			    values->sdt_reset_retries);
3760 			break;
3761 		case SD_CONF_BSET_RSV_REL_TIME:
3762 			values->sdt_reserv_rel_time = data_list[i];
3763 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3764 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3765 			    values->sdt_reserv_rel_time);
3766 			break;
3767 		case SD_CONF_BSET_MIN_THROTTLE:
3768 			values->sdt_min_throttle = data_list[i];
3769 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3770 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3771 			    values->sdt_min_throttle);
3772 			break;
3773 		case SD_CONF_BSET_DISKSORT_DISABLED:
3774 			values->sdt_disk_sort_dis = data_list[i];
3775 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3776 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3777 			    values->sdt_disk_sort_dis);
3778 			break;
3779 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3780 			values->sdt_lun_reset_enable = data_list[i];
3781 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3782 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3783 			    "\n", values->sdt_lun_reset_enable);
3784 			break;
3785 		}
3786 	}
3787 }
3788 
3789 /*
3790  *    Function: sd_process_sdconf_table
3791  *
3792  * Description: Search the static configuration table for a match on the
3793  *		inquiry vid/pid and update the driver soft state structure
3794  *		according to the table property values for the device.
3795  *
3796  *		The form of a configuration table entry is:
3797  *		  <vid+pid>,<flags>,<property-data>
3798  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3799  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3800  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3801  *
3802  *   Arguments: un - driver soft state (unit) structure
3803  */
3804 
3805 static void
3806 sd_process_sdconf_table(struct sd_lun *un)
3807 {
3808 	char	*id = NULL;
3809 	int	table_index;
3810 	int	idlen;
3811 
3812 	ASSERT(un != NULL);
3813 	for (table_index = 0; table_index < sd_disk_table_size;
3814 	    table_index++) {
3815 		id = sd_disk_table[table_index].device_id;
3816 		idlen = strlen(id);
3817 		if (idlen == 0) {
3818 			continue;
3819 		}
3820 
3821 		/*
3822 		 * The static configuration table currently does not
3823 		 * implement version 10 properties. Additionally,
3824 		 * multiple data-property-name entries are not
3825 		 * implemented in the static configuration table.
3826 		 */
3827 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3828 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3829 			    "sd_process_sdconf_table: disk %s\n", id);
3830 			sd_set_vers1_properties(un,
3831 			    sd_disk_table[table_index].flags,
3832 			    sd_disk_table[table_index].properties);
3833 			break;
3834 		}
3835 	}
3836 }
3837 
3838 
3839 /*
3840  *    Function: sd_sdconf_id_match
3841  *
3842  * Description: This local function implements a case sensitive vid/pid
3843  *		comparison as well as the boundary cases of wild card and
3844  *		multiple blanks.
3845  *
3846  *		Note: An implicit assumption made here is that the scsi
3847  *		inquiry structure will always keep the vid, pid and
3848  *		revision strings in consecutive sequence, so they can be
3849  *		read as a single string. If this assumption is not the
3850  *		case, a separate string, to be used for the check, needs
3851  *		to be built with these strings concatenated.
3852  *
3853  *   Arguments: un - driver soft state (unit) structure
3854  *		id - table or config file vid/pid
3855  *		idlen  - length of the vid/pid (bytes)
3856  *
3857  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3858  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3859  */
3860 
3861 static int
3862 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3863 {
3864 	struct scsi_inquiry	*sd_inq;
3865 	int 			rval = SD_SUCCESS;
3866 
3867 	ASSERT(un != NULL);
3868 	sd_inq = un->un_sd->sd_inq;
3869 	ASSERT(id != NULL);
3870 
3871 	/*
3872 	 * We use the inq_vid as a pointer to a buffer containing the
3873 	 * vid and pid and use the entire vid/pid length of the table
3874 	 * entry for the comparison. This works because the inq_pid
3875 	 * data member follows inq_vid in the scsi_inquiry structure.
3876 	 */
3877 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3878 		/*
3879 		 * The user id string is compared to the inquiry vid/pid
3880 		 * using a case insensitive comparison and ignoring
3881 		 * multiple spaces.
3882 		 */
3883 		rval = sd_blank_cmp(un, id, idlen);
3884 		if (rval != SD_SUCCESS) {
3885 			/*
3886 			 * User id strings that start and end with a "*"
3887 			 * are a special case. These do not have a
3888 			 * specific vendor, and the product string can
3889 			 * appear anywhere in the 16 byte PID portion of
3890 			 * the inquiry data. This is a simple strstr()
3891 			 * type search for the user id in the inquiry data.
3892 			 */
3893 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3894 				char	*pidptr = &id[1];
3895 				int	i;
3896 				int	j;
3897 				int	pidstrlen = idlen - 2;
3898 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3899 				    pidstrlen;
3900 
3901 				if (j < 0) {
3902 					return (SD_FAILURE);
3903 				}
3904 				for (i = 0; i < j; i++) {
3905 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3906 					    pidptr, pidstrlen) == 0) {
3907 						rval = SD_SUCCESS;
3908 						break;
3909 					}
3910 				}
3911 			}
3912 		}
3913 	}
3914 	return (rval);
3915 }
3916 
3917 
3918 /*
3919  *    Function: sd_blank_cmp
3920  *
3921  * Description: If the id string starts and ends with a space, treat
3922  *		multiple consecutive spaces as equivalent to a single
3923  *		space. For example, this causes a sd_disk_table entry
3924  *		of " NEC CDROM " to match a device's id string of
3925  *		"NEC       CDROM".
3926  *
3927  *		Note: The success exit condition for this routine is if
3928  *		the pointer to the table entry is '\0' and the cnt of
3929  *		the inquiry length is zero. This will happen if the inquiry
3930  *		string returned by the device is padded with spaces to be
3931  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3932  *		SCSI spec states that the inquiry string is to be padded with
3933  *		spaces.
3934  *
3935  *   Arguments: un - driver soft state (unit) structure
3936  *		id - table or config file vid/pid
3937  *		idlen  - length of the vid/pid (bytes)
3938  *
3939  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3940  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3941  */
3942 
3943 static int
3944 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3945 {
3946 	char		*p1;
3947 	char		*p2;
3948 	int		cnt;
3949 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3950 	    sizeof (SD_INQUIRY(un)->inq_pid);
3951 
3952 	ASSERT(un != NULL);
3953 	p2 = un->un_sd->sd_inq->inq_vid;
3954 	ASSERT(id != NULL);
3955 	p1 = id;
3956 
3957 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3958 		/*
3959 		 * Note: string p1 is terminated by a NUL but string p2
3960 		 * isn't.  The end of p2 is determined by cnt.
3961 		 */
3962 		for (;;) {
3963 			/* skip over any extra blanks in both strings */
3964 			while ((*p1 != '\0') && (*p1 == ' ')) {
3965 				p1++;
3966 			}
3967 			while ((cnt != 0) && (*p2 == ' ')) {
3968 				p2++;
3969 				cnt--;
3970 			}
3971 
3972 			/* compare the two strings */
3973 			if ((cnt == 0) ||
3974 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3975 				break;
3976 			}
3977 			while ((cnt > 0) &&
3978 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3979 				p1++;
3980 				p2++;
3981 				cnt--;
3982 			}
3983 		}
3984 	}
3985 
3986 	/* return SD_SUCCESS if both strings match */
3987 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3988 }
3989 
3990 
3991 /*
3992  *    Function: sd_chk_vers1_data
3993  *
3994  * Description: Verify the version 1 device properties provided by the
3995  *		user via the configuration file
3996  *
3997  *   Arguments: un	     - driver soft state (unit) structure
3998  *		flags	     - integer mask indicating properties to be set
3999  *		prop_list    - integer list of property values
4000  *		list_len     - length of user provided data
4001  *
4002  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4003  *		SD_FAILURE - Indicates the user provided data is invalid
4004  */
4005 
4006 static int
4007 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4008     int list_len, char *dataname_ptr)
4009 {
4010 	int i;
4011 	int mask = 1;
4012 	int index = 0;
4013 
4014 	ASSERT(un != NULL);
4015 
4016 	/* Check for a NULL property name and list */
4017 	if (dataname_ptr == NULL) {
4018 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4019 		    "sd_chk_vers1_data: NULL data property name.");
4020 		return (SD_FAILURE);
4021 	}
4022 	if (prop_list == NULL) {
4023 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4024 		    "sd_chk_vers1_data: %s NULL data property list.",
4025 		    dataname_ptr);
4026 		return (SD_FAILURE);
4027 	}
4028 
4029 	/* Display a warning if undefined bits are set in the flags */
4030 	if (flags & ~SD_CONF_BIT_MASK) {
4031 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4032 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4033 		    "Properties not set.",
4034 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4035 		return (SD_FAILURE);
4036 	}
4037 
4038 	/*
4039 	 * Verify the length of the list by identifying the highest bit set
4040 	 * in the flags and validating that the property list has a length
4041 	 * up to the index of this bit.
4042 	 */
4043 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4044 		if (flags & mask) {
4045 			index++;
4046 		}
4047 		mask = 1 << i;
4048 	}
4049 	if ((list_len / sizeof (int)) < (index + 2)) {
4050 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4051 		    "sd_chk_vers1_data: "
4052 		    "Data property list %s size is incorrect. "
4053 		    "Properties not set.", dataname_ptr);
4054 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4055 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4056 		return (SD_FAILURE);
4057 	}
4058 	return (SD_SUCCESS);
4059 }
4060 
4061 
4062 /*
4063  *    Function: sd_set_vers1_properties
4064  *
4065  * Description: Set version 1 device properties based on a property list
4066  *		retrieved from the driver configuration file or static
4067  *		configuration table. Version 1 properties have the format:
4068  *
4069  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4070  *
4071  *		where the prop0 value will be used to set prop0 if bit0
4072  *		is set in the flags
4073  *
4074  *   Arguments: un	     - driver soft state (unit) structure
4075  *		flags	     - integer mask indicating properties to be set
4076  *		prop_list    - integer list of property values
4077  */
4078 
4079 static void
4080 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4081 {
4082 	ASSERT(un != NULL);
4083 
4084 	/*
4085 	 * Set the flag to indicate cache is to be disabled. An attempt
4086 	 * to disable the cache via sd_cache_control() will be made
4087 	 * later during attach once the basic initialization is complete.
4088 	 */
4089 	if (flags & SD_CONF_BSET_NOCACHE) {
4090 		un->un_f_opt_disable_cache = TRUE;
4091 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4092 		    "sd_set_vers1_properties: caching disabled flag set\n");
4093 	}
4094 
4095 	/* CD-specific configuration parameters */
4096 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4097 		un->un_f_cfg_playmsf_bcd = TRUE;
4098 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4099 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4100 	}
4101 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4102 		un->un_f_cfg_readsub_bcd = TRUE;
4103 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4104 		    "sd_set_vers1_properties: readsub_bcd set\n");
4105 	}
4106 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4107 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4108 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4109 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4110 	}
4111 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4112 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4113 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4114 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4115 	}
4116 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4117 		un->un_f_cfg_no_read_header = TRUE;
4118 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4119 			    "sd_set_vers1_properties: no_read_header set\n");
4120 	}
4121 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4122 		un->un_f_cfg_read_cd_xd4 = TRUE;
4123 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4124 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4125 	}
4126 
4127 	/* Support for devices which do not have valid/unique serial numbers */
4128 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4129 		un->un_f_opt_fab_devid = TRUE;
4130 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4131 		    "sd_set_vers1_properties: fab_devid bit set\n");
4132 	}
4133 
4134 	/* Support for user throttle configuration */
4135 	if (flags & SD_CONF_BSET_THROTTLE) {
4136 		ASSERT(prop_list != NULL);
4137 		un->un_saved_throttle = un->un_throttle =
4138 		    prop_list->sdt_throttle;
4139 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4140 		    "sd_set_vers1_properties: throttle set to %d\n",
4141 		    prop_list->sdt_throttle);
4142 	}
4143 
4144 	/* Set the per disk retry count according to the conf file or table. */
4145 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4146 		ASSERT(prop_list != NULL);
4147 		if (prop_list->sdt_not_rdy_retries) {
4148 			un->un_notready_retry_count =
4149 				prop_list->sdt_not_rdy_retries;
4150 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4151 			    "sd_set_vers1_properties: not ready retry count"
4152 			    " set to %d\n", un->un_notready_retry_count);
4153 		}
4154 	}
4155 
4156 	/* The controller type is reported for generic disk driver ioctls */
4157 	if (flags & SD_CONF_BSET_CTYPE) {
4158 		ASSERT(prop_list != NULL);
4159 		switch (prop_list->sdt_ctype) {
4160 		case CTYPE_CDROM:
4161 			un->un_ctype = prop_list->sdt_ctype;
4162 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4163 			    "sd_set_vers1_properties: ctype set to "
4164 			    "CTYPE_CDROM\n");
4165 			break;
4166 		case CTYPE_CCS:
4167 			un->un_ctype = prop_list->sdt_ctype;
4168 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4169 				"sd_set_vers1_properties: ctype set to "
4170 				"CTYPE_CCS\n");
4171 			break;
4172 		case CTYPE_ROD:		/* RW optical */
4173 			un->un_ctype = prop_list->sdt_ctype;
4174 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4175 			    "sd_set_vers1_properties: ctype set to "
4176 			    "CTYPE_ROD\n");
4177 			break;
4178 		default:
4179 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4180 			    "sd_set_vers1_properties: Could not set "
4181 			    "invalid ctype value (%d)",
4182 			    prop_list->sdt_ctype);
4183 		}
4184 	}
4185 
4186 	/* Purple failover timeout */
4187 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4188 		ASSERT(prop_list != NULL);
4189 		un->un_busy_retry_count =
4190 			prop_list->sdt_busy_retries;
4191 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4192 		    "sd_set_vers1_properties: "
4193 		    "busy retry count set to %d\n",
4194 		    un->un_busy_retry_count);
4195 	}
4196 
4197 	/* Purple reset retry count */
4198 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4199 		ASSERT(prop_list != NULL);
4200 		un->un_reset_retry_count =
4201 			prop_list->sdt_reset_retries;
4202 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4203 		    "sd_set_vers1_properties: "
4204 		    "reset retry count set to %d\n",
4205 		    un->un_reset_retry_count);
4206 	}
4207 
4208 	/* Purple reservation release timeout */
4209 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4210 		ASSERT(prop_list != NULL);
4211 		un->un_reserve_release_time =
4212 			prop_list->sdt_reserv_rel_time;
4213 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4214 		    "sd_set_vers1_properties: "
4215 		    "reservation release timeout set to %d\n",
4216 		    un->un_reserve_release_time);
4217 	}
4218 
4219 	/*
4220 	 * Driver flag telling the driver to verify that no commands are pending
4221 	 * for a device before issuing a Test Unit Ready. This is a workaround
4222 	 * for a firmware bug in some Seagate eliteI drives.
4223 	 */
4224 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4225 		un->un_f_cfg_tur_check = TRUE;
4226 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4227 		    "sd_set_vers1_properties: tur queue check set\n");
4228 	}
4229 
4230 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4231 		un->un_min_throttle = prop_list->sdt_min_throttle;
4232 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4233 		    "sd_set_vers1_properties: min throttle set to %d\n",
4234 		    un->un_min_throttle);
4235 	}
4236 
4237 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4238 		un->un_f_disksort_disabled =
4239 		    (prop_list->sdt_disk_sort_dis != 0) ?
4240 		    TRUE : FALSE;
4241 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4242 		    "sd_set_vers1_properties: disksort disabled "
4243 		    "flag set to %d\n",
4244 		    prop_list->sdt_disk_sort_dis);
4245 	}
4246 
4247 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4248 		un->un_f_lun_reset_enabled =
4249 		    (prop_list->sdt_lun_reset_enable != 0) ?
4250 		    TRUE : FALSE;
4251 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4252 		    "sd_set_vers1_properties: lun reset enabled "
4253 		    "flag set to %d\n",
4254 		    prop_list->sdt_lun_reset_enable);
4255 	}
4256 
4257 	/*
4258 	 * Validate the throttle values.
4259 	 * If any of the numbers are invalid, set everything to defaults.
4260 	 */
4261 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4262 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4263 	    (un->un_min_throttle > un->un_throttle)) {
4264 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4265 		un->un_min_throttle = sd_min_throttle;
4266 	}
4267 }
4268 
4269 /*
4270  *   Function: sd_is_lsi()
4271  *
4272  *   Description: Check for lsi devices, step throught the static device
4273  *	table to match vid/pid.
4274  *
4275  *   Args: un - ptr to sd_lun
4276  *
4277  *   Notes:  When creating new LSI property, need to add the new LSI property
4278  *		to this function.
4279  */
4280 static void
4281 sd_is_lsi(struct sd_lun *un)
4282 {
4283 	char	*id = NULL;
4284 	int	table_index;
4285 	int	idlen;
4286 	void	*prop;
4287 
4288 	ASSERT(un != NULL);
4289 	for (table_index = 0; table_index < sd_disk_table_size;
4290 	    table_index++) {
4291 		id = sd_disk_table[table_index].device_id;
4292 		idlen = strlen(id);
4293 		if (idlen == 0) {
4294 			continue;
4295 		}
4296 
4297 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4298 			prop = sd_disk_table[table_index].properties;
4299 			if (prop == &lsi_properties ||
4300 			    prop == &lsi_oem_properties ||
4301 			    prop == &lsi_properties_scsi ||
4302 			    prop == &symbios_properties) {
4303 				un->un_f_cfg_is_lsi = TRUE;
4304 			}
4305 			break;
4306 		}
4307 	}
4308 }
4309 
4310 
4311 /*
4312  * The following routines support reading and interpretation of disk labels,
4313  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4314  * fdisk tables.
4315  */
4316 
4317 /*
4318  *    Function: sd_validate_geometry
4319  *
4320  * Description: Read the label from the disk (if present). Update the unit's
4321  *		geometry and vtoc information from the data in the label.
4322  *		Verify that the label is valid.
4323  *
4324  *   Arguments: un - driver soft state (unit) structure
4325  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4326  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4327  *			to use the USCSI "direct" chain and bypass the normal
4328  *			command waitq.
4329  *
4330  * Return Code: 0 - Successful completion
4331  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4332  *			  un->un_blockcount; or label on disk is corrupted
4333  *			  or unreadable.
4334  *		EACCES  - Reservation conflict at the device.
4335  *		ENOMEM  - Resource allocation error
4336  *		ENOTSUP - geometry not applicable
4337  *
4338  *     Context: Kernel thread only (can sleep).
4339  */
4340 
4341 static int
4342 sd_validate_geometry(struct sd_lun *un, int path_flag)
4343 {
4344 	static	char		labelstring[128];
4345 	static	char		buf[256];
4346 	char	*label		= NULL;
4347 	int	label_error = 0;
4348 	int	gvalid		= un->un_f_geometry_is_valid;
4349 	int	lbasize;
4350 	uint_t	capacity;
4351 	int	count;
4352 #if defined(__i386) || defined(__amd64)
4353 	int forced_under_1t = 0;
4354 #endif
4355 
4356 	ASSERT(un != NULL);
4357 	ASSERT(mutex_owned(SD_MUTEX(un)));
4358 
4359 	/*
4360 	 * If the required values are not valid, then try getting them
4361 	 * once via read capacity. If that fails, then fail this call.
4362 	 * This is necessary with the new mpxio failover behavior in
4363 	 * the T300 where we can get an attach for the inactive path
4364 	 * before the active path. The inactive path fails commands with
4365 	 * sense data of 02,04,88 which happens to the read capacity
4366 	 * before mpxio has had sufficient knowledge to know if it should
4367 	 * force a fail over or not. (Which it won't do at attach anyhow).
4368 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4369 	 * un_blockcount won't be valid.
4370 	 */
4371 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4372 	    (un->un_f_blockcount_is_valid != TRUE)) {
4373 		uint64_t	cap;
4374 		uint32_t	lbasz;
4375 		int		rval;
4376 
4377 		mutex_exit(SD_MUTEX(un));
4378 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4379 		    &lbasz, SD_PATH_DIRECT);
4380 		mutex_enter(SD_MUTEX(un));
4381 		if (rval == 0) {
4382 			/*
4383 			 * The following relies on
4384 			 * sd_send_scsi_READ_CAPACITY never
4385 			 * returning 0 for capacity and/or lbasize.
4386 			 */
4387 			sd_update_block_info(un, lbasz, cap);
4388 		}
4389 
4390 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4391 		    (un->un_f_blockcount_is_valid != TRUE)) {
4392 			return (EINVAL);
4393 		}
4394 	}
4395 
4396 	/*
4397 	 * Copy the lbasize and capacity so that if they're reset while we're
4398 	 * not holding the SD_MUTEX, we will continue to use valid values
4399 	 * after the SD_MUTEX is reacquired. (4119659)
4400 	 */
4401 	lbasize  = un->un_tgt_blocksize;
4402 	capacity = un->un_blockcount;
4403 
4404 #if defined(_SUNOS_VTOC_16)
4405 	/*
4406 	 * Set up the "whole disk" fdisk partition; this should always
4407 	 * exist, regardless of whether the disk contains an fdisk table
4408 	 * or vtoc.
4409 	 */
4410 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4411 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4412 #endif
4413 
4414 	/*
4415 	 * Refresh the logical and physical geometry caches.
4416 	 * (data from MODE SENSE format/rigid disk geometry pages,
4417 	 * and scsi_ifgetcap("geometry").
4418 	 */
4419 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4420 
4421 	label_error = sd_use_efi(un, path_flag);
4422 	if (label_error == 0) {
4423 		/* found a valid EFI label */
4424 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4425 			"sd_validate_geometry: found EFI label\n");
4426 		un->un_solaris_offset = 0;
4427 		un->un_solaris_size = capacity;
4428 		return (ENOTSUP);
4429 	}
4430 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4431 		if (label_error == ESRCH) {
4432 			/*
4433 			 * they've configured a LUN over 1TB, but used
4434 			 * format.dat to restrict format's view of the
4435 			 * capacity to be under 1TB
4436 			 */
4437 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4438 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4439 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4440 "size to be < 1TB or relabel the disk with an EFI label");
4441 #if defined(__i386) || defined(__amd64)
4442 			forced_under_1t = 1;
4443 #endif
4444 		} else {
4445 			/* unlabeled disk over 1TB */
4446 #if defined(__i386) || defined(__amd64)
4447 			/*
4448 			 * Refer to comments on off-by-1 at the head of the file
4449 			 * A 1TB disk was treated as (1T - 512)B in the past,
4450 			 * thus, it might have valid solaris partition. We
4451 			 * will return ENOTSUP later only if this disk has no
4452 			 * valid solaris partition.
4453 			 */
4454 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4455 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4456 			    un->un_f_has_removable_media ||
4457 			    un->un_f_is_hotpluggable)
4458 #endif
4459 				return (ENOTSUP);
4460 		}
4461 	}
4462 	label_error = 0;
4463 
4464 	/*
4465 	 * at this point it is either labeled with a VTOC or it is
4466 	 * under 1TB (<= 1TB actually for off-by-1)
4467 	 */
4468 	if (un->un_f_vtoc_label_supported) {
4469 		struct	dk_label *dkl;
4470 		offset_t dkl1;
4471 		offset_t label_addr, real_addr;
4472 		int	rval;
4473 		size_t	buffer_size;
4474 
4475 		/*
4476 		 * Note: This will set up un->un_solaris_size and
4477 		 * un->un_solaris_offset.
4478 		 */
4479 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4480 		case SD_CMD_RESERVATION_CONFLICT:
4481 			ASSERT(mutex_owned(SD_MUTEX(un)));
4482 			return (EACCES);
4483 		case SD_CMD_FAILURE:
4484 			ASSERT(mutex_owned(SD_MUTEX(un)));
4485 			return (ENOMEM);
4486 		}
4487 
4488 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4489 
4490 #if defined(__i386) || defined(__amd64)
4491 			/*
4492 			 * Refer to comments on off-by-1 at the head of the file
4493 			 * This is for 1TB disk only. Since that there is no
4494 			 * solaris partitions, return ENOTSUP as we do for
4495 			 * >1TB disk.
4496 			 */
4497 			if (un->un_blockcount > DK_MAX_BLOCKS)
4498 				return (ENOTSUP);
4499 #endif
4500 			/*
4501 			 * Found fdisk table but no Solaris partition entry,
4502 			 * so don't call sd_uselabel() and don't create
4503 			 * a default label.
4504 			 */
4505 			label_error = 0;
4506 			un->un_f_geometry_is_valid = TRUE;
4507 			goto no_solaris_partition;
4508 		}
4509 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4510 
4511 #if defined(__i386) || defined(__amd64)
4512 		/*
4513 		 * Refer to comments on off-by-1 at the head of the file
4514 		 * Now, this 1TB disk has valid solaris partition. It
4515 		 * must be created by previous sd driver, we have to
4516 		 * treat it as (1T-512)B.
4517 		 */
4518 		if ((un->un_blockcount > DK_MAX_BLOCKS) &&
4519 		    (forced_under_1t != 1)) {
4520 			un->un_f_capacity_adjusted = 1;
4521 			un->un_blockcount = DK_MAX_BLOCKS;
4522 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4523 
4524 			/*
4525 			 * Refer to sd_read_fdisk, when there is no
4526 			 * fdisk partition table, un_solaris_size is
4527 			 * set to disk's capacity. In this case, we
4528 			 * need to adjust it
4529 			 */
4530 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4531 				un->un_solaris_size = DK_MAX_BLOCKS;
4532 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4533 			    lbasize, path_flag);
4534 		}
4535 #endif
4536 
4537 		/*
4538 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4539 		 * blkno and save the index to beginning of dk_label
4540 		 */
4541 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4542 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4543 		    sizeof (struct dk_label));
4544 
4545 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4546 		    "label_addr: 0x%x allocation size: 0x%x\n",
4547 		    label_addr, buffer_size);
4548 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4549 		if (dkl == NULL) {
4550 			return (ENOMEM);
4551 		}
4552 
4553 		mutex_exit(SD_MUTEX(un));
4554 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4555 		    path_flag);
4556 		mutex_enter(SD_MUTEX(un));
4557 
4558 		switch (rval) {
4559 		case 0:
4560 			/*
4561 			 * sd_uselabel will establish that the geometry
4562 			 * is valid.
4563 			 * For sys_blocksize != tgt_blocksize, need
4564 			 * to index into the beginning of dk_label
4565 			 */
4566 			dkl1 = (daddr_t)dkl
4567 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4568 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4569 			    path_flag) != SD_LABEL_IS_VALID) {
4570 				label_error = EINVAL;
4571 			}
4572 			break;
4573 		case EACCES:
4574 			label_error = EACCES;
4575 			break;
4576 		default:
4577 			label_error = EINVAL;
4578 			break;
4579 		}
4580 
4581 		kmem_free(dkl, buffer_size);
4582 
4583 #if defined(_SUNOS_VTOC_8)
4584 		label = (char *)un->un_asciilabel;
4585 #elif defined(_SUNOS_VTOC_16)
4586 		label = (char *)un->un_vtoc.v_asciilabel;
4587 #else
4588 #error "No VTOC format defined."
4589 #endif
4590 	}
4591 
4592 	/*
4593 	 * If a valid label was not found, AND if no reservation conflict
4594 	 * was detected, then go ahead and create a default label (4069506).
4595 	 */
4596 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4597 		if (un->un_f_geometry_is_valid == FALSE) {
4598 			sd_build_default_label(un);
4599 		}
4600 		label_error = 0;
4601 	}
4602 
4603 no_solaris_partition:
4604 	if ((!un->un_f_has_removable_media ||
4605 	    (un->un_f_has_removable_media &&
4606 		un->un_mediastate == DKIO_EJECTED)) &&
4607 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4608 		/*
4609 		 * Print out a message indicating who and what we are.
4610 		 * We do this only when we happen to really validate the
4611 		 * geometry. We may call sd_validate_geometry() at other
4612 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4613 		 * don't want to print the label.
4614 		 * If the geometry is valid, print the label string,
4615 		 * else print vendor and product info, if available
4616 		 */
4617 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4618 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4619 		} else {
4620 			mutex_enter(&sd_label_mutex);
4621 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4622 			    labelstring);
4623 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4624 			    &labelstring[64]);
4625 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4626 			    labelstring, &labelstring[64]);
4627 			if (un->un_f_blockcount_is_valid == TRUE) {
4628 				(void) sprintf(&buf[strlen(buf)],
4629 				    ", %llu %u byte blocks\n",
4630 				    (longlong_t)un->un_blockcount,
4631 				    un->un_tgt_blocksize);
4632 			} else {
4633 				(void) sprintf(&buf[strlen(buf)],
4634 				    ", (unknown capacity)\n");
4635 			}
4636 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4637 			mutex_exit(&sd_label_mutex);
4638 		}
4639 	}
4640 
4641 #if defined(_SUNOS_VTOC_16)
4642 	/*
4643 	 * If we have valid geometry, set up the remaining fdisk partitions.
4644 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4645 	 * we set it to an entirely bogus value.
4646 	 */
4647 	for (count = 0; count < FD_NUMPART; count++) {
4648 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4649 		un->un_map[FDISK_P1 + count].dkl_nblk =
4650 		    un->un_fmap[count].fmap_nblk;
4651 
4652 		un->un_offset[FDISK_P1 + count] =
4653 		    un->un_fmap[count].fmap_start;
4654 	}
4655 #endif
4656 
4657 	for (count = 0; count < NDKMAP; count++) {
4658 #if defined(_SUNOS_VTOC_8)
4659 		struct dk_map *lp  = &un->un_map[count];
4660 		un->un_offset[count] =
4661 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4662 #elif defined(_SUNOS_VTOC_16)
4663 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4664 
4665 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4666 #else
4667 #error "No VTOC format defined."
4668 #endif
4669 	}
4670 
4671 	/*
4672 	 * For VTOC labeled disk, create and set the partition stats
4673 	 * at attach time, update the stats according to dynamic
4674 	 * partition changes during running time.
4675 	 */
4676 	if (label_error == 0 && un->un_f_pkstats_enabled) {
4677 		sd_set_pstats(un);
4678 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4679 		    "un:0x%p pstats created and set, or updated\n", un);
4680 	}
4681 
4682 	return (label_error);
4683 }
4684 
4685 
4686 #if defined(_SUNOS_VTOC_16)
4687 /*
4688  * Macro: MAX_BLKS
4689  *
4690  *	This macro is used for table entries where we need to have the largest
4691  *	possible sector value for that head & SPT (sectors per track)
4692  *	combination.  Other entries for some smaller disk sizes are set by
4693  *	convention to match those used by X86 BIOS usage.
4694  */
4695 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4696 
4697 /*
4698  *    Function: sd_convert_geometry
4699  *
4700  * Description: Convert physical geometry into a dk_geom structure. In
4701  *		other words, make sure we don't wrap 16-bit values.
4702  *		e.g. converting from geom_cache to dk_geom
4703  *
4704  *     Context: Kernel thread only
4705  */
4706 static void
4707 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4708 {
4709 	int i;
4710 	static const struct chs_values {
4711 		uint_t max_cap;		/* Max Capacity for this HS. */
4712 		uint_t nhead;		/* Heads to use. */
4713 		uint_t nsect;		/* SPT to use. */
4714 	} CHS_values[] = {
4715 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4716 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4717 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4718 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4719 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4720 	};
4721 
4722 	/* Unlabeled SCSI floppy device */
4723 	if (capacity <= 0x1000) {
4724 		un_g->dkg_nhead = 2;
4725 		un_g->dkg_ncyl = 80;
4726 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4727 		return;
4728 	}
4729 
4730 	/*
4731 	 * For all devices we calculate cylinders using the
4732 	 * heads and sectors we assign based on capacity of the
4733 	 * device.  The table is designed to be compatible with the
4734 	 * way other operating systems lay out fdisk tables for X86
4735 	 * and to insure that the cylinders never exceed 65535 to
4736 	 * prevent problems with X86 ioctls that report geometry.
4737 	 * We use SPT that are multiples of 63, since other OSes that
4738 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4739 	 * we make do by using multiples of 63 SPT.
4740 	 *
4741 	 * Note than capacities greater than or equal to 1TB will simply
4742 	 * get the largest geometry from the table. This should be okay
4743 	 * since disks this large shouldn't be using CHS values anyway.
4744 	 */
4745 	for (i = 0; CHS_values[i].max_cap < capacity &&
4746 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4747 		;
4748 
4749 	un_g->dkg_nhead = CHS_values[i].nhead;
4750 	un_g->dkg_nsect = CHS_values[i].nsect;
4751 }
4752 #endif
4753 
4754 
4755 /*
4756  *    Function: sd_resync_geom_caches
4757  *
4758  * Description: (Re)initialize both geometry caches: the virtual geometry
4759  *		information is extracted from the HBA (the "geometry"
4760  *		capability), and the physical geometry cache data is
4761  *		generated by issuing MODE SENSE commands.
4762  *
4763  *   Arguments: un - driver soft state (unit) structure
4764  *		capacity - disk capacity in #blocks
4765  *		lbasize - disk block size in bytes
4766  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4767  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4768  *			to use the USCSI "direct" chain and bypass the normal
4769  *			command waitq.
4770  *
4771  *     Context: Kernel thread only (can sleep).
4772  */
4773 
4774 static void
4775 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4776 	int path_flag)
4777 {
4778 	struct 	geom_cache 	pgeom;
4779 	struct 	geom_cache	*pgeom_p = &pgeom;
4780 	int 	spc;
4781 	unsigned short nhead;
4782 	unsigned short nsect;
4783 
4784 	ASSERT(un != NULL);
4785 	ASSERT(mutex_owned(SD_MUTEX(un)));
4786 
4787 	/*
4788 	 * Ask the controller for its logical geometry.
4789 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4790 	 * then the lgeom cache will be invalid.
4791 	 */
4792 	sd_get_virtual_geometry(un, capacity, lbasize);
4793 
4794 	/*
4795 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4796 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4797 	 */
4798 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4799 		/*
4800 		 * Note: Perhaps this needs to be more adaptive? The rationale
4801 		 * is that, if there's no HBA geometry from the HBA driver, any
4802 		 * guess is good, since this is the physical geometry. If MODE
4803 		 * SENSE fails this gives a max cylinder size for non-LBA access
4804 		 */
4805 		nhead = 255;
4806 		nsect = 63;
4807 	} else {
4808 		nhead = un->un_lgeom.g_nhead;
4809 		nsect = un->un_lgeom.g_nsect;
4810 	}
4811 
4812 	if (ISCD(un)) {
4813 		pgeom_p->g_nhead = 1;
4814 		pgeom_p->g_nsect = nsect * nhead;
4815 	} else {
4816 		pgeom_p->g_nhead = nhead;
4817 		pgeom_p->g_nsect = nsect;
4818 	}
4819 
4820 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4821 	pgeom_p->g_capacity = capacity;
4822 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4823 	pgeom_p->g_acyl = 0;
4824 
4825 	/*
4826 	 * Retrieve fresh geometry data from the hardware, stash it
4827 	 * here temporarily before we rebuild the incore label.
4828 	 *
4829 	 * We want to use the MODE SENSE commands to derive the
4830 	 * physical geometry of the device, but if either command
4831 	 * fails, the logical geometry is used as the fallback for
4832 	 * disk label geometry.
4833 	 */
4834 	mutex_exit(SD_MUTEX(un));
4835 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4836 	mutex_enter(SD_MUTEX(un));
4837 
4838 	/*
4839 	 * Now update the real copy while holding the mutex. This
4840 	 * way the global copy is never in an inconsistent state.
4841 	 */
4842 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4843 
4844 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4845 	    "(cached from lgeom)\n");
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4848 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4849 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4850 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4851 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4852 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4853 	    un->un_pgeom.g_rpm);
4854 }
4855 
4856 
4857 /*
4858  *    Function: sd_read_fdisk
4859  *
4860  * Description: utility routine to read the fdisk table.
4861  *
4862  *   Arguments: un - driver soft state (unit) structure
4863  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4864  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4865  *			to use the USCSI "direct" chain and bypass the normal
4866  *			command waitq.
4867  *
4868  * Return Code: SD_CMD_SUCCESS
4869  *		SD_CMD_FAILURE
4870  *
4871  *     Context: Kernel thread only (can sleep).
4872  */
4873 /* ARGSUSED */
4874 static int
4875 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4876 {
4877 #if defined(_NO_FDISK_PRESENT)
4878 
4879 	un->un_solaris_offset = 0;
4880 	un->un_solaris_size = capacity;
4881 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4882 	return (SD_CMD_SUCCESS);
4883 
4884 #elif defined(_FIRMWARE_NEEDS_FDISK)
4885 
4886 	struct ipart	*fdp;
4887 	struct mboot	*mbp;
4888 	struct ipart	fdisk[FD_NUMPART];
4889 	int		i;
4890 	char		sigbuf[2];
4891 	caddr_t		bufp;
4892 	int		uidx;
4893 	int		rval;
4894 	int		lba = 0;
4895 	uint_t		solaris_offset;	/* offset to solaris part. */
4896 	daddr_t		solaris_size;	/* size of solaris partition */
4897 	uint32_t	blocksize;
4898 
4899 	ASSERT(un != NULL);
4900 	ASSERT(mutex_owned(SD_MUTEX(un)));
4901 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4902 
4903 	blocksize = un->un_tgt_blocksize;
4904 
4905 	/*
4906 	 * Start off assuming no fdisk table
4907 	 */
4908 	solaris_offset = 0;
4909 	solaris_size   = capacity;
4910 
4911 	mutex_exit(SD_MUTEX(un));
4912 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4913 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4914 	mutex_enter(SD_MUTEX(un));
4915 
4916 	if (rval != 0) {
4917 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4918 		    "sd_read_fdisk: fdisk read err\n");
4919 		kmem_free(bufp, blocksize);
4920 		return (SD_CMD_FAILURE);
4921 	}
4922 
4923 	mbp = (struct mboot *)bufp;
4924 
4925 	/*
4926 	 * The fdisk table does not begin on a 4-byte boundary within the
4927 	 * master boot record, so we copy it to an aligned structure to avoid
4928 	 * alignment exceptions on some processors.
4929 	 */
4930 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4931 
4932 	/*
4933 	 * Check for lba support before verifying sig; sig might not be
4934 	 * there, say on a blank disk, but the max_chs mark may still
4935 	 * be present.
4936 	 *
4937 	 * Note: LBA support and BEFs are an x86-only concept but this
4938 	 * code should work OK on SPARC as well.
4939 	 */
4940 
4941 	/*
4942 	 * First, check for lba-access-ok on root node (or prom root node)
4943 	 * if present there, don't need to search fdisk table.
4944 	 */
4945 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4946 	    "lba-access-ok", 0) != 0) {
4947 		/* All drives do LBA; don't search fdisk table */
4948 		lba = 1;
4949 	} else {
4950 		/* Okay, look for mark in fdisk table */
4951 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4952 			/* accumulate "lba" value from all partitions */
4953 			lba = (lba || sd_has_max_chs_vals(fdp));
4954 		}
4955 	}
4956 
4957 	if (lba != 0) {
4958 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4959 
4960 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4961 		    "lba-access-ok", 0) == 0) {
4962 			/* not found; create it */
4963 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4964 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4965 			    DDI_PROP_SUCCESS) {
4966 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4967 				    "sd_read_fdisk: Can't create lba property "
4968 				    "for instance %d\n",
4969 				    ddi_get_instance(SD_DEVINFO(un)));
4970 			}
4971 		}
4972 	}
4973 
4974 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4975 
4976 	/*
4977 	 * Endian-independent signature check
4978 	 */
4979 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4980 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4981 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4982 		    "sd_read_fdisk: no fdisk\n");
4983 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4984 		rval = SD_CMD_SUCCESS;
4985 		goto done;
4986 	}
4987 
4988 #ifdef SDDEBUG
4989 	if (sd_level_mask & SD_LOGMASK_INFO) {
4990 		fdp = fdisk;
4991 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4992 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4993 		    "numsect         sysid       bootid\n");
4994 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4995 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4996 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4997 			    i, fdp->relsect, fdp->numsect,
4998 			    fdp->systid, fdp->bootid);
4999 		}
5000 	}
5001 #endif
5002 
5003 	/*
5004 	 * Try to find the unix partition
5005 	 */
5006 	uidx = -1;
5007 	solaris_offset = 0;
5008 	solaris_size   = 0;
5009 
5010 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
5011 		int	relsect;
5012 		int	numsect;
5013 
5014 		if (fdp->numsect == 0) {
5015 			un->un_fmap[i].fmap_start = 0;
5016 			un->un_fmap[i].fmap_nblk  = 0;
5017 			continue;
5018 		}
5019 
5020 		/*
5021 		 * Data in the fdisk table is little-endian.
5022 		 */
5023 		relsect = LE_32(fdp->relsect);
5024 		numsect = LE_32(fdp->numsect);
5025 
5026 		un->un_fmap[i].fmap_start = relsect;
5027 		un->un_fmap[i].fmap_nblk  = numsect;
5028 
5029 		if (fdp->systid != SUNIXOS &&
5030 		    fdp->systid != SUNIXOS2 &&
5031 		    fdp->systid != EFI_PMBR) {
5032 			continue;
5033 		}
5034 
5035 		/*
5036 		 * use the last active solaris partition id found
5037 		 * (there should only be 1 active partition id)
5038 		 *
5039 		 * if there are no active solaris partition id
5040 		 * then use the first inactive solaris partition id
5041 		 */
5042 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
5043 			uidx = i;
5044 			solaris_offset = relsect;
5045 			solaris_size   = numsect;
5046 		}
5047 	}
5048 
5049 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
5050 	    un->un_solaris_offset, un->un_solaris_size);
5051 
5052 	rval = SD_CMD_SUCCESS;
5053 
5054 done:
5055 
5056 	/*
5057 	 * Clear the VTOC info, only if the Solaris partition entry
5058 	 * has moved, changed size, been deleted, or if the size of
5059 	 * the partition is too small to even fit the label sector.
5060 	 */
5061 	if ((un->un_solaris_offset != solaris_offset) ||
5062 	    (un->un_solaris_size != solaris_size) ||
5063 	    solaris_size <= DK_LABEL_LOC) {
5064 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
5065 			solaris_offset, solaris_size);
5066 		bzero(&un->un_g, sizeof (struct dk_geom));
5067 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5068 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5069 		un->un_f_geometry_is_valid = FALSE;
5070 	}
5071 	un->un_solaris_offset = solaris_offset;
5072 	un->un_solaris_size = solaris_size;
5073 	kmem_free(bufp, blocksize);
5074 	return (rval);
5075 
5076 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
5077 #error "fdisk table presence undetermined for this platform."
5078 #endif	/* #if defined(_NO_FDISK_PRESENT) */
5079 }
5080 
5081 
5082 /*
5083  *    Function: sd_get_physical_geometry
5084  *
5085  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
5086  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
5087  *		target, and use this information to initialize the physical
5088  *		geometry cache specified by pgeom_p.
5089  *
5090  *		MODE SENSE is an optional command, so failure in this case
5091  *		does not necessarily denote an error. We want to use the
5092  *		MODE SENSE commands to derive the physical geometry of the
5093  *		device, but if either command fails, the logical geometry is
5094  *		used as the fallback for disk label geometry.
5095  *
5096  *		This requires that un->un_blockcount and un->un_tgt_blocksize
5097  *		have already been initialized for the current target and
5098  *		that the current values be passed as args so that we don't
5099  *		end up ever trying to use -1 as a valid value. This could
5100  *		happen if either value is reset while we're not holding
5101  *		the mutex.
5102  *
5103  *   Arguments: un - driver soft state (unit) structure
5104  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5105  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5106  *			to use the USCSI "direct" chain and bypass the normal
5107  *			command waitq.
5108  *
5109  *     Context: Kernel thread only (can sleep).
5110  */
5111 
5112 static void
5113 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
5114 	int capacity, int lbasize, int path_flag)
5115 {
5116 	struct	mode_format	*page3p;
5117 	struct	mode_geometry	*page4p;
5118 	struct	mode_header	*headerp;
5119 	int	sector_size;
5120 	int	nsect;
5121 	int	nhead;
5122 	int	ncyl;
5123 	int	intrlv;
5124 	int	spc;
5125 	int	modesense_capacity;
5126 	int	rpm;
5127 	int	bd_len;
5128 	int	mode_header_length;
5129 	uchar_t	*p3bufp;
5130 	uchar_t	*p4bufp;
5131 	int	cdbsize;
5132 
5133 	ASSERT(un != NULL);
5134 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
5135 
5136 	if (un->un_f_blockcount_is_valid != TRUE) {
5137 		return;
5138 	}
5139 
5140 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
5141 		return;
5142 	}
5143 
5144 	if (lbasize == 0) {
5145 		if (ISCD(un)) {
5146 			lbasize = 2048;
5147 		} else {
5148 			lbasize = un->un_sys_blocksize;
5149 		}
5150 	}
5151 	pgeom_p->g_secsize = (unsigned short)lbasize;
5152 
5153 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5154 
5155 	/*
5156 	 * Retrieve MODE SENSE page 3 - Format Device Page
5157 	 */
5158 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5159 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
5160 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
5161 	    != 0) {
5162 		SD_ERROR(SD_LOG_COMMON, un,
5163 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5164 		goto page3_exit;
5165 	}
5166 
5167 	/*
5168 	 * Determine size of Block Descriptors in order to locate the mode
5169 	 * page data.  ATAPI devices return 0, SCSI devices should return
5170 	 * MODE_BLK_DESC_LENGTH.
5171 	 */
5172 	headerp = (struct mode_header *)p3bufp;
5173 	if (un->un_f_cfg_is_atapi == TRUE) {
5174 		struct mode_header_grp2 *mhp =
5175 		    (struct mode_header_grp2 *)headerp;
5176 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5177 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5178 	} else {
5179 		mode_header_length = MODE_HEADER_LENGTH;
5180 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5181 	}
5182 
5183 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5184 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5185 		    "received unexpected bd_len of %d, page3\n", bd_len);
5186 		goto page3_exit;
5187 	}
5188 
5189 	page3p = (struct mode_format *)
5190 	    ((caddr_t)headerp + mode_header_length + bd_len);
5191 
5192 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5193 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5194 		    "mode sense pg3 code mismatch %d\n",
5195 		    page3p->mode_page.code);
5196 		goto page3_exit;
5197 	}
5198 
5199 	/*
5200 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5201 	 * complete successfully; otherwise, revert to the logical geometry.
5202 	 * So, we need to save everything in temporary variables.
5203 	 */
5204 	sector_size = BE_16(page3p->data_bytes_sect);
5205 
5206 	/*
5207 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5208 	 */
5209 	if (sector_size == 0) {
5210 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5211 	} else {
5212 		sector_size &= ~(un->un_sys_blocksize - 1);
5213 	}
5214 
5215 	nsect  = BE_16(page3p->sect_track);
5216 	intrlv = BE_16(page3p->interleave);
5217 
5218 	SD_INFO(SD_LOG_COMMON, un,
5219 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5220 	SD_INFO(SD_LOG_COMMON, un,
5221 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5222 	    page3p->mode_page.code, nsect, sector_size);
5223 	SD_INFO(SD_LOG_COMMON, un,
5224 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5225 	    BE_16(page3p->track_skew),
5226 	    BE_16(page3p->cylinder_skew));
5227 
5228 
5229 	/*
5230 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5231 	 */
5232 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5233 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5234 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5235 	    != 0) {
5236 		SD_ERROR(SD_LOG_COMMON, un,
5237 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5238 		goto page4_exit;
5239 	}
5240 
5241 	/*
5242 	 * Determine size of Block Descriptors in order to locate the mode
5243 	 * page data.  ATAPI devices return 0, SCSI devices should return
5244 	 * MODE_BLK_DESC_LENGTH.
5245 	 */
5246 	headerp = (struct mode_header *)p4bufp;
5247 	if (un->un_f_cfg_is_atapi == TRUE) {
5248 		struct mode_header_grp2 *mhp =
5249 		    (struct mode_header_grp2 *)headerp;
5250 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5251 	} else {
5252 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5253 	}
5254 
5255 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5256 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5257 		    "received unexpected bd_len of %d, page4\n", bd_len);
5258 		goto page4_exit;
5259 	}
5260 
5261 	page4p = (struct mode_geometry *)
5262 	    ((caddr_t)headerp + mode_header_length + bd_len);
5263 
5264 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5265 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5266 		    "mode sense pg4 code mismatch %d\n",
5267 		    page4p->mode_page.code);
5268 		goto page4_exit;
5269 	}
5270 
5271 	/*
5272 	 * Stash the data now, after we know that both commands completed.
5273 	 */
5274 
5275 	mutex_enter(SD_MUTEX(un));
5276 
5277 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5278 	spc   = nhead * nsect;
5279 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5280 	rpm   = BE_16(page4p->rpm);
5281 
5282 	modesense_capacity = spc * ncyl;
5283 
5284 	SD_INFO(SD_LOG_COMMON, un,
5285 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5286 	SD_INFO(SD_LOG_COMMON, un,
5287 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5288 	SD_INFO(SD_LOG_COMMON, un,
5289 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5290 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5291 	    (void *)pgeom_p, capacity);
5292 
5293 	/*
5294 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5295 	 * the product of C * H * S returned by MODE SENSE >= that returned
5296 	 * by read capacity. This is an idiosyncrasy of the original x86
5297 	 * disk subsystem.
5298 	 */
5299 	if (modesense_capacity >= capacity) {
5300 		SD_INFO(SD_LOG_COMMON, un,
5301 		    "sd_get_physical_geometry: adjusting acyl; "
5302 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5303 		    (modesense_capacity - capacity + spc - 1) / spc);
5304 		if (sector_size != 0) {
5305 			/* 1243403: NEC D38x7 drives don't support sec size */
5306 			pgeom_p->g_secsize = (unsigned short)sector_size;
5307 		}
5308 		pgeom_p->g_nsect    = (unsigned short)nsect;
5309 		pgeom_p->g_nhead    = (unsigned short)nhead;
5310 		pgeom_p->g_capacity = capacity;
5311 		pgeom_p->g_acyl	    =
5312 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5313 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5314 	}
5315 
5316 	pgeom_p->g_rpm    = (unsigned short)rpm;
5317 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5318 
5319 	SD_INFO(SD_LOG_COMMON, un,
5320 	    "sd_get_physical_geometry: mode sense geometry:\n");
5321 	SD_INFO(SD_LOG_COMMON, un,
5322 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5323 	    nsect, sector_size, intrlv);
5324 	SD_INFO(SD_LOG_COMMON, un,
5325 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5326 	    nhead, ncyl, rpm, modesense_capacity);
5327 	SD_INFO(SD_LOG_COMMON, un,
5328 	    "sd_get_physical_geometry: (cached)\n");
5329 	SD_INFO(SD_LOG_COMMON, un,
5330 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5331 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5332 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5333 	SD_INFO(SD_LOG_COMMON, un,
5334 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5335 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5336 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5337 
5338 	mutex_exit(SD_MUTEX(un));
5339 
5340 page4_exit:
5341 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5342 page3_exit:
5343 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5344 }
5345 
5346 
5347 /*
5348  *    Function: sd_get_virtual_geometry
5349  *
5350  * Description: Ask the controller to tell us about the target device.
5351  *
5352  *   Arguments: un - pointer to softstate
5353  *		capacity - disk capacity in #blocks
5354  *		lbasize - disk block size in bytes
5355  *
5356  *     Context: Kernel thread only
5357  */
5358 
5359 static void
5360 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5361 {
5362 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5363 	uint_t	geombuf;
5364 	int	spc;
5365 
5366 	ASSERT(un != NULL);
5367 	ASSERT(mutex_owned(SD_MUTEX(un)));
5368 
5369 	mutex_exit(SD_MUTEX(un));
5370 
5371 	/* Set sector size, and total number of sectors */
5372 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5373 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5374 
5375 	/* Let the HBA tell us its geometry */
5376 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5377 
5378 	mutex_enter(SD_MUTEX(un));
5379 
5380 	/* A value of -1 indicates an undefined "geometry" property */
5381 	if (geombuf == (-1)) {
5382 		return;
5383 	}
5384 
5385 	/* Initialize the logical geometry cache. */
5386 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5387 	lgeom_p->g_nsect   = geombuf & 0xffff;
5388 	lgeom_p->g_secsize = un->un_sys_blocksize;
5389 
5390 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5391 
5392 	/*
5393 	 * Note: The driver originally converted the capacity value from
5394 	 * target blocks to system blocks. However, the capacity value passed
5395 	 * to this routine is already in terms of system blocks (this scaling
5396 	 * is done when the READ CAPACITY command is issued and processed).
5397 	 * This 'error' may have gone undetected because the usage of g_ncyl
5398 	 * (which is based upon g_capacity) is very limited within the driver
5399 	 */
5400 	lgeom_p->g_capacity = capacity;
5401 
5402 	/*
5403 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5404 	 * hba may return zero values if the device has been removed.
5405 	 */
5406 	if (spc == 0) {
5407 		lgeom_p->g_ncyl = 0;
5408 	} else {
5409 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5410 	}
5411 	lgeom_p->g_acyl = 0;
5412 
5413 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5414 	SD_INFO(SD_LOG_COMMON, un,
5415 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5416 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5417 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5418 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5419 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5420 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5421 }
5422 
5423 
5424 /*
5425  *    Function: sd_update_block_info
5426  *
5427  * Description: Calculate a byte count to sector count bitshift value
5428  *		from sector size.
5429  *
5430  *   Arguments: un: unit struct.
5431  *		lbasize: new target sector size
5432  *		capacity: new target capacity, ie. block count
5433  *
5434  *     Context: Kernel thread context
5435  */
5436 
5437 static void
5438 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5439 {
5440 	if (lbasize != 0) {
5441 		un->un_tgt_blocksize = lbasize;
5442 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5443 	}
5444 
5445 	if (capacity != 0) {
5446 		un->un_blockcount		= capacity;
5447 		un->un_f_blockcount_is_valid	= TRUE;
5448 	}
5449 }
5450 
5451 
5452 static void
5453 sd_swap_efi_gpt(efi_gpt_t *e)
5454 {
5455 	_NOTE(ASSUMING_PROTECTED(*e))
5456 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5457 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5458 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5459 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5460 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5461 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5462 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5463 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5464 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5465 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5466 	e->efi_gpt_NumberOfPartitionEntries =
5467 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5468 	e->efi_gpt_SizeOfPartitionEntry =
5469 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5470 	e->efi_gpt_PartitionEntryArrayCRC32 =
5471 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5472 }
5473 
5474 static void
5475 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5476 {
5477 	int i;
5478 
5479 	_NOTE(ASSUMING_PROTECTED(*p))
5480 	for (i = 0; i < nparts; i++) {
5481 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5482 		    p[i].efi_gpe_PartitionTypeGUID);
5483 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5484 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5485 		/* PartitionAttrs */
5486 	}
5487 }
5488 
5489 static int
5490 sd_validate_efi(efi_gpt_t *labp)
5491 {
5492 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5493 		return (EINVAL);
5494 	/* at least 96 bytes in this version of the spec. */
5495 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5496 	    labp->efi_gpt_HeaderSize)
5497 		return (EINVAL);
5498 	/* this should be 128 bytes */
5499 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5500 		return (EINVAL);
5501 	return (0);
5502 }
5503 
5504 static int
5505 sd_use_efi(struct sd_lun *un, int path_flag)
5506 {
5507 	int		i;
5508 	int		rval = 0;
5509 	efi_gpe_t	*partitions;
5510 	uchar_t		*buf;
5511 	uint_t		lbasize;
5512 	uint64_t	cap = 0;
5513 	uint_t		nparts;
5514 	diskaddr_t	gpe_lba;
5515 	struct uuid	uuid_type_reserved = EFI_RESERVED;
5516 
5517 	ASSERT(mutex_owned(SD_MUTEX(un)));
5518 	lbasize = un->un_tgt_blocksize;
5519 	un->un_reserved = -1;
5520 
5521 	mutex_exit(SD_MUTEX(un));
5522 
5523 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5524 
5525 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5526 		rval = EINVAL;
5527 		goto done_err;
5528 	}
5529 
5530 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5531 	if (rval) {
5532 		goto done_err;
5533 	}
5534 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5535 		/* not ours */
5536 		rval = ESRCH;
5537 		goto done_err;
5538 	}
5539 
5540 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5541 	if (rval) {
5542 		goto done_err;
5543 	}
5544 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5545 
5546 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5547 		/*
5548 		 * Couldn't read the primary, try the backup.  Our
5549 		 * capacity at this point could be based on CHS, so
5550 		 * check what the device reports.
5551 		 */
5552 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5553 		    path_flag);
5554 		if (rval) {
5555 			goto done_err;
5556 		}
5557 
5558 		/*
5559 		 * The MMC standard allows READ CAPACITY to be
5560 		 * inaccurate by a bounded amount (in the interest of
5561 		 * response latency).  As a result, failed READs are
5562 		 * commonplace (due to the reading of metadata and not
5563 		 * data). Depending on the per-Vendor/drive Sense data,
5564 		 * the failed READ can cause many (unnecessary) retries.
5565 		 */
5566 
5567 		/*
5568 		 * Refer to comments related to off-by-1 at the
5569 		 * header of this file. Search the next to last
5570 		 * block for backup EFI label.
5571 		 */
5572 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5573 		    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5574 			path_flag)) != 0) {
5575 				goto done_err;
5576 		}
5577 
5578 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5579 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5580 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5581 			    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5582 			    path_flag)) != 0) {
5583 					goto done_err;
5584 			}
5585 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5586 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5587 				goto done_err;
5588 		}
5589 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5590 		    "primary label corrupt; using backup\n");
5591 	}
5592 
5593 	if (cap == 0)
5594 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5595 		    path_flag);
5596 
5597 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5598 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5599 
5600 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5601 	    path_flag);
5602 	if (rval) {
5603 		goto done_err;
5604 	}
5605 	partitions = (efi_gpe_t *)buf;
5606 
5607 	if (nparts > MAXPART) {
5608 		nparts = MAXPART;
5609 	}
5610 	sd_swap_efi_gpe(nparts, partitions);
5611 
5612 	mutex_enter(SD_MUTEX(un));
5613 
5614 	/* Fill in partition table. */
5615 	for (i = 0; i < nparts; i++) {
5616 		if (partitions->efi_gpe_StartingLBA != 0 ||
5617 		    partitions->efi_gpe_EndingLBA != 0) {
5618 			un->un_map[i].dkl_cylno =
5619 			    partitions->efi_gpe_StartingLBA;
5620 			un->un_map[i].dkl_nblk =
5621 			    partitions->efi_gpe_EndingLBA -
5622 			    partitions->efi_gpe_StartingLBA + 1;
5623 			un->un_offset[i] =
5624 			    partitions->efi_gpe_StartingLBA;
5625 		}
5626 		if (un->un_reserved == -1) {
5627 			if (bcmp(&partitions->efi_gpe_PartitionTypeGUID,
5628 			    &uuid_type_reserved, sizeof (struct uuid)) == 0) {
5629 				un->un_reserved = i;
5630 			}
5631 		}
5632 		if (i == WD_NODE) {
5633 			/*
5634 			 * minor number 7 corresponds to the whole disk
5635 			 */
5636 			un->un_map[i].dkl_cylno = 0;
5637 			un->un_map[i].dkl_nblk = un->un_blockcount;
5638 			un->un_offset[i] = 0;
5639 		}
5640 		partitions++;
5641 	}
5642 	un->un_solaris_offset = 0;
5643 	un->un_solaris_size = cap;
5644 	un->un_f_geometry_is_valid = TRUE;
5645 
5646 	/* clear the vtoc label */
5647 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5648 
5649 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5650 
5651 	/*
5652 	 * For EFI labeled disk, create and set the partition stats
5653 	 * at attach time, update the stats according to dynamic
5654 	 * partition changes during running time.
5655 	 */
5656 	if (un->un_f_pkstats_enabled) {
5657 		sd_set_pstats(un);
5658 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_use_efi: "
5659 		    "un:0x%p pstats created and set, or updated\n", un);
5660 	}
5661 	return (0);
5662 
5663 done_err:
5664 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5665 	mutex_enter(SD_MUTEX(un));
5666 	/*
5667 	 * if we didn't find something that could look like a VTOC
5668 	 * and the disk is over 1TB, we know there isn't a valid label.
5669 	 * Otherwise let sd_uselabel decide what to do.  We only
5670 	 * want to invalidate this if we're certain the label isn't
5671 	 * valid because sd_prop_op will now fail, which in turn
5672 	 * causes things like opens and stats on the partition to fail.
5673 	 */
5674 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5675 		un->un_f_geometry_is_valid = FALSE;
5676 	}
5677 	return (rval);
5678 }
5679 
5680 
5681 /*
5682  *    Function: sd_uselabel
5683  *
5684  * Description: Validate the disk label and update the relevant data (geometry,
5685  *		partition, vtoc, and capacity data) in the sd_lun struct.
5686  *		Marks the geometry of the unit as being valid.
5687  *
5688  *   Arguments: un: unit struct.
5689  *		dk_label: disk label
5690  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5691  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5692  *			to use the USCSI "direct" chain and bypass the normal
5693  *			command waitq.
5694  *
5695  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5696  *		partition, vtoc, and capacity data are good.
5697  *
5698  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5699  *		label; or computed capacity does not jibe with capacity
5700  *		reported from the READ CAPACITY command.
5701  *
5702  *     Context: Kernel thread only (can sleep).
5703  */
5704 
5705 static int
5706 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5707 {
5708 	short	*sp;
5709 	short	sum;
5710 	short	count;
5711 	int	label_error = SD_LABEL_IS_VALID;
5712 	int	i;
5713 	int	capacity;
5714 	int	part_end;
5715 	int	track_capacity;
5716 	int	err;
5717 #if defined(_SUNOS_VTOC_16)
5718 	struct	dkl_partition	*vpartp;
5719 #endif
5720 	ASSERT(un != NULL);
5721 	ASSERT(mutex_owned(SD_MUTEX(un)));
5722 
5723 	/* Validate the magic number of the label. */
5724 	if (labp->dkl_magic != DKL_MAGIC) {
5725 #if defined(__sparc)
5726 		if ((un->un_state == SD_STATE_NORMAL) &&
5727 			un->un_f_vtoc_errlog_supported) {
5728 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5729 			    "Corrupt label; wrong magic number\n");
5730 		}
5731 #endif
5732 		return (SD_LABEL_IS_INVALID);
5733 	}
5734 
5735 	/* Validate the checksum of the label. */
5736 	sp  = (short *)labp;
5737 	sum = 0;
5738 	count = sizeof (struct dk_label) / sizeof (short);
5739 	while (count--)	 {
5740 		sum ^= *sp++;
5741 	}
5742 
5743 	if (sum != 0) {
5744 #if	defined(_SUNOS_VTOC_16)
5745 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5746 #elif defined(_SUNOS_VTOC_8)
5747 		if ((un->un_state == SD_STATE_NORMAL) &&
5748 		    un->un_f_vtoc_errlog_supported) {
5749 #endif
5750 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5751 			    "Corrupt label - label checksum failed\n");
5752 		}
5753 		return (SD_LABEL_IS_INVALID);
5754 	}
5755 
5756 
5757 	/*
5758 	 * Fill in geometry structure with data from label.
5759 	 */
5760 	bzero(&un->un_g, sizeof (struct dk_geom));
5761 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5762 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5763 	un->un_g.dkg_bcyl   = 0;
5764 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5765 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5766 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5767 
5768 #if defined(_SUNOS_VTOC_8)
5769 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5770 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5771 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5772 #endif
5773 #if defined(_SUNOS_VTOC_16)
5774 	un->un_dkg_skew = labp->dkl_skew;
5775 #endif
5776 
5777 #if defined(__i386) || defined(__amd64)
5778 	un->un_g.dkg_apc = labp->dkl_apc;
5779 #endif
5780 
5781 	/*
5782 	 * Currently we rely on the values in the label being accurate. If
5783 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5784 	 *
5785 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5786 	 * although this command is optional in SCSI-2.
5787 	 */
5788 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5789 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5790 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5791 
5792 	/*
5793 	 * The Read and Write reinstruct values may not be valid
5794 	 * for older disks.
5795 	 */
5796 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5797 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5798 
5799 	/* Fill in partition table. */
5800 #if defined(_SUNOS_VTOC_8)
5801 	for (i = 0; i < NDKMAP; i++) {
5802 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5803 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5804 	}
5805 #endif
5806 #if  defined(_SUNOS_VTOC_16)
5807 	vpartp		= labp->dkl_vtoc.v_part;
5808 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5809 
5810 	/* Prevent divide by zero */
5811 	if (track_capacity == 0) {
5812 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5813 		    "Corrupt label - zero nhead or nsect value\n");
5814 
5815 		return (SD_LABEL_IS_INVALID);
5816 	}
5817 
5818 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5819 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5820 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5821 	}
5822 #endif
5823 
5824 	/* Fill in VTOC Structure. */
5825 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5826 #if defined(_SUNOS_VTOC_8)
5827 	/*
5828 	 * The 8-slice vtoc does not include the ascii label; save it into
5829 	 * the device's soft state structure here.
5830 	 */
5831 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5832 #endif
5833 
5834 	/* Now look for a valid capacity. */
5835 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5836 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5837 
5838 	if (un->un_g.dkg_acyl) {
5839 #if defined(__i386) || defined(__amd64)
5840 		/* we may have > 1 alts cylinder */
5841 		capacity += (track_capacity * un->un_g.dkg_acyl);
5842 #else
5843 		capacity += track_capacity;
5844 #endif
5845 	}
5846 
5847 	/*
5848 	 * Force check here to ensure the computed capacity is valid.
5849 	 * If capacity is zero, it indicates an invalid label and
5850 	 * we should abort updating the relevant data then.
5851 	 */
5852 	if (capacity == 0) {
5853 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5854 		    "Corrupt label - no valid capacity could be retrieved\n");
5855 
5856 		return (SD_LABEL_IS_INVALID);
5857 	}
5858 
5859 	/* Mark the geometry as valid. */
5860 	un->un_f_geometry_is_valid = TRUE;
5861 
5862 	/*
5863 	 * At this point, un->un_blockcount should contain valid data from
5864 	 * the READ CAPACITY command.
5865 	 */
5866 	if (un->un_f_blockcount_is_valid != TRUE) {
5867 		/*
5868 		 * We have a situation where the target didn't give us a good
5869 		 * READ CAPACITY value, yet there appears to be a valid label.
5870 		 * In this case, we'll fake the capacity.
5871 		 */
5872 		un->un_blockcount = capacity;
5873 		un->un_f_blockcount_is_valid = TRUE;
5874 		goto done;
5875 	}
5876 
5877 
5878 	if ((capacity <= un->un_blockcount) ||
5879 	    (un->un_state != SD_STATE_NORMAL)) {
5880 #if defined(_SUNOS_VTOC_8)
5881 		/*
5882 		 * We can't let this happen on drives that are subdivided
5883 		 * into logical disks (i.e., that have an fdisk table).
5884 		 * The un_blockcount field should always hold the full media
5885 		 * size in sectors, period.  This code would overwrite
5886 		 * un_blockcount with the size of the Solaris fdisk partition.
5887 		 */
5888 		SD_ERROR(SD_LOG_COMMON, un,
5889 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5890 		    capacity, un->un_blockcount);
5891 		un->un_blockcount = capacity;
5892 		un->un_f_blockcount_is_valid = TRUE;
5893 #endif	/* defined(_SUNOS_VTOC_8) */
5894 		goto done;
5895 	}
5896 
5897 	if (ISCD(un)) {
5898 		/* For CDROMs, we trust that the data in the label is OK. */
5899 #if defined(_SUNOS_VTOC_8)
5900 		for (i = 0; i < NDKMAP; i++) {
5901 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5902 			    labp->dkl_map[i].dkl_cylno +
5903 			    labp->dkl_map[i].dkl_nblk  - 1;
5904 
5905 			if ((labp->dkl_map[i].dkl_nblk) &&
5906 			    (part_end > un->un_blockcount)) {
5907 				un->un_f_geometry_is_valid = FALSE;
5908 				break;
5909 			}
5910 		}
5911 #endif
5912 #if defined(_SUNOS_VTOC_16)
5913 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5914 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5915 			part_end = vpartp->p_start + vpartp->p_size;
5916 			if ((vpartp->p_size > 0) &&
5917 			    (part_end > un->un_blockcount)) {
5918 				un->un_f_geometry_is_valid = FALSE;
5919 				break;
5920 			}
5921 		}
5922 #endif
5923 	} else {
5924 		uint64_t t_capacity;
5925 		uint32_t t_lbasize;
5926 
5927 		mutex_exit(SD_MUTEX(un));
5928 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5929 		    path_flag);
5930 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5931 		mutex_enter(SD_MUTEX(un));
5932 
5933 		if (err == 0) {
5934 			sd_update_block_info(un, t_lbasize, t_capacity);
5935 		}
5936 
5937 		if (capacity > un->un_blockcount) {
5938 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5939 			    "Corrupt label - bad geometry\n");
5940 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5941 			    "Label says %u blocks; Drive says %llu blocks\n",
5942 			    capacity, (unsigned long long)un->un_blockcount);
5943 			un->un_f_geometry_is_valid = FALSE;
5944 			label_error = SD_LABEL_IS_INVALID;
5945 		}
5946 	}
5947 
5948 done:
5949 
5950 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5951 	SD_INFO(SD_LOG_COMMON, un,
5952 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5953 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5954 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5955 	SD_INFO(SD_LOG_COMMON, un,
5956 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5957 	    un->un_tgt_blocksize, un->un_blockcount,
5958 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5959 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5960 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5961 
5962 	ASSERT(mutex_owned(SD_MUTEX(un)));
5963 
5964 	return (label_error);
5965 }
5966 
5967 
5968 /*
5969  *    Function: sd_build_default_label
5970  *
5971  * Description: Generate a default label for those devices that do not have
5972  *		one, e.g., new media, removable cartridges, etc..
5973  *
5974  *     Context: Kernel thread only
5975  */
5976 
5977 static void
5978 sd_build_default_label(struct sd_lun *un)
5979 {
5980 #if defined(_SUNOS_VTOC_16)
5981 	uint_t	phys_spc;
5982 	uint_t	disksize;
5983 	struct	dk_geom un_g;
5984 	uint64_t capacity;
5985 #endif
5986 
5987 	ASSERT(un != NULL);
5988 	ASSERT(mutex_owned(SD_MUTEX(un)));
5989 
5990 #if defined(_SUNOS_VTOC_8)
5991 	/*
5992 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5993 	 * only. This may be a valid check for VTOC_16 as well.
5994 	 * Once we understand why there is this difference between SPARC and
5995 	 * x86 platform, we could remove this legacy check.
5996 	 */
5997 	ASSERT(un->un_f_default_vtoc_supported);
5998 #endif
5999 
6000 	bzero(&un->un_g, sizeof (struct dk_geom));
6001 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
6002 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
6003 
6004 #if defined(_SUNOS_VTOC_8)
6005 
6006 	/*
6007 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
6008 	 * But it is still necessary to set up various geometry information,
6009 	 * and we are doing this here.
6010 	 */
6011 
6012 	/*
6013 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
6014 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
6015 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
6016 	 * equal to C*H*S values.  This will cause some truncation of size due
6017 	 * to round off errors. For CD-ROMs, this truncation can have adverse
6018 	 * side effects, so returning ncyl and nhead as 1. The nsect will
6019 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
6020 	 */
6021 	if (ISCD(un)) {
6022 		/*
6023 		 * Preserve the old behavior for non-writable
6024 		 * medias. Since dkg_nsect is a ushort, it
6025 		 * will lose bits as cdroms have more than
6026 		 * 65536 sectors. So if we recalculate
6027 		 * capacity, it will become much shorter.
6028 		 * But the dkg_* information is not
6029 		 * used for CDROMs so it is OK. But for
6030 		 * Writable CDs we need this information
6031 		 * to be valid (for newfs say). So we
6032 		 * make nsect and nhead > 1 that way
6033 		 * nsect can still stay within ushort limit
6034 		 * without losing any bits.
6035 		 */
6036 		if (un->un_f_mmc_writable_media == TRUE) {
6037 			un->un_g.dkg_nhead = 64;
6038 			un->un_g.dkg_nsect = 32;
6039 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
6040 			un->un_blockcount = un->un_g.dkg_ncyl *
6041 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6042 		} else {
6043 			un->un_g.dkg_ncyl  = 1;
6044 			un->un_g.dkg_nhead = 1;
6045 			un->un_g.dkg_nsect = un->un_blockcount;
6046 		}
6047 	} else {
6048 		if (un->un_blockcount <= 0x1000) {
6049 			/* unlabeled SCSI floppy device */
6050 			un->un_g.dkg_nhead = 2;
6051 			un->un_g.dkg_ncyl = 80;
6052 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
6053 		} else if (un->un_blockcount <= 0x200000) {
6054 			un->un_g.dkg_nhead = 64;
6055 			un->un_g.dkg_nsect = 32;
6056 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
6057 		} else {
6058 			un->un_g.dkg_nhead = 255;
6059 			un->un_g.dkg_nsect = 63;
6060 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
6061 		}
6062 		un->un_blockcount =
6063 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6064 	}
6065 
6066 	un->un_g.dkg_acyl	= 0;
6067 	un->un_g.dkg_bcyl	= 0;
6068 	un->un_g.dkg_rpm	= 200;
6069 	un->un_asciilabel[0]	= '\0';
6070 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
6071 
6072 	un->un_map[0].dkl_cylno = 0;
6073 	un->un_map[0].dkl_nblk  = un->un_blockcount;
6074 	un->un_map[2].dkl_cylno = 0;
6075 	un->un_map[2].dkl_nblk  = un->un_blockcount;
6076 
6077 #elif defined(_SUNOS_VTOC_16)
6078 
6079 	if (un->un_solaris_size == 0) {
6080 		/*
6081 		 * Got fdisk table but no solaris entry therefore
6082 		 * don't create a default label
6083 		 */
6084 		un->un_f_geometry_is_valid = TRUE;
6085 		return;
6086 	}
6087 
6088 	/*
6089 	 * For CDs we continue to use the physical geometry to calculate
6090 	 * number of cylinders. All other devices must convert the
6091 	 * physical geometry (geom_cache) to values that will fit
6092 	 * in a dk_geom structure.
6093 	 */
6094 	if (ISCD(un)) {
6095 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
6096 	} else {
6097 		/* Convert physical geometry to disk geometry */
6098 		bzero(&un_g, sizeof (struct dk_geom));
6099 
6100 		/*
6101 		 * Refer to comments related to off-by-1 at the
6102 		 * header of this file.
6103 		 * Before caculating geometry, capacity should be
6104 		 * decreased by 1. That un_f_capacity_adjusted is
6105 		 * TRUE means that we are treating a 1TB disk as
6106 		 * (1T - 512)B. And the capacity of disks is already
6107 		 * decreased by 1.
6108 		 */
6109 		if (!un->un_f_capacity_adjusted &&
6110 		    !un->un_f_has_removable_media &&
6111 		    !un->un_f_is_hotpluggable &&
6112 			un->un_tgt_blocksize == un->un_sys_blocksize)
6113 			capacity = un->un_blockcount - 1;
6114 		else
6115 			capacity = un->un_blockcount;
6116 
6117 		sd_convert_geometry(capacity, &un_g);
6118 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
6119 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6120 	}
6121 
6122 	ASSERT(phys_spc != 0);
6123 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
6124 	un->un_g.dkg_acyl = DK_ACYL;
6125 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
6126 	disksize = un->un_g.dkg_ncyl * phys_spc;
6127 
6128 	if (ISCD(un)) {
6129 		/*
6130 		 * CD's don't use the "heads * sectors * cyls"-type of
6131 		 * geometry, but instead use the entire capacity of the media.
6132 		 */
6133 		disksize = un->un_solaris_size;
6134 		un->un_g.dkg_nhead = 1;
6135 		un->un_g.dkg_nsect = 1;
6136 		un->un_g.dkg_rpm =
6137 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
6138 
6139 		un->un_vtoc.v_part[0].p_start = 0;
6140 		un->un_vtoc.v_part[0].p_size  = disksize;
6141 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
6142 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
6143 
6144 		un->un_map[0].dkl_cylno = 0;
6145 		un->un_map[0].dkl_nblk  = disksize;
6146 		un->un_offset[0] = 0;
6147 
6148 	} else {
6149 		/*
6150 		 * Hard disks and removable media cartridges
6151 		 */
6152 		un->un_g.dkg_rpm =
6153 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
6154 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
6155 
6156 		/* Add boot slice */
6157 		un->un_vtoc.v_part[8].p_start = 0;
6158 		un->un_vtoc.v_part[8].p_size  = phys_spc;
6159 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
6160 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
6161 
6162 		un->un_map[8].dkl_cylno = 0;
6163 		un->un_map[8].dkl_nblk  = phys_spc;
6164 		un->un_offset[8] = 0;
6165 	}
6166 
6167 	un->un_g.dkg_apc = 0;
6168 	un->un_vtoc.v_nparts = V_NUMPAR;
6169 	un->un_vtoc.v_version = V_VERSION;
6170 
6171 	/* Add backup slice */
6172 	un->un_vtoc.v_part[2].p_start = 0;
6173 	un->un_vtoc.v_part[2].p_size  = disksize;
6174 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
6175 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
6176 
6177 	un->un_map[2].dkl_cylno = 0;
6178 	un->un_map[2].dkl_nblk  = disksize;
6179 	un->un_offset[2] = 0;
6180 
6181 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
6182 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
6183 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
6184 
6185 #else
6186 #error "No VTOC format defined."
6187 #endif
6188 
6189 	un->un_g.dkg_read_reinstruct  = 0;
6190 	un->un_g.dkg_write_reinstruct = 0;
6191 
6192 	un->un_g.dkg_intrlv = 1;
6193 
6194 	un->un_vtoc.v_sanity  = VTOC_SANE;
6195 
6196 	un->un_f_geometry_is_valid = TRUE;
6197 
6198 	SD_INFO(SD_LOG_COMMON, un,
6199 	    "sd_build_default_label: Default label created: "
6200 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
6201 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
6202 	    un->un_g.dkg_nsect, un->un_blockcount);
6203 }
6204 
6205 
6206 #if defined(_FIRMWARE_NEEDS_FDISK)
6207 /*
6208  * Max CHS values, as they are encoded into bytes, for 1022/254/63
6209  */
6210 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
6211 #define	LBA_MAX_CYL	(1022 & 0xFF)
6212 #define	LBA_MAX_HEAD	(254)
6213 
6214 
6215 /*
6216  *    Function: sd_has_max_chs_vals
6217  *
6218  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
6219  *
6220  *   Arguments: fdp - ptr to CHS info
6221  *
6222  * Return Code: True or false
6223  *
6224  *     Context: Any.
6225  */
6226 
6227 static int
6228 sd_has_max_chs_vals(struct ipart *fdp)
6229 {
6230 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6231 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6232 	    (fdp->begsect == LBA_MAX_SECT)	&&
6233 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6234 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6235 	    (fdp->endsect == LBA_MAX_SECT));
6236 }
6237 #endif
6238 
6239 
6240 /*
6241  *    Function: sd_inq_fill
6242  *
6243  * Description: Print a piece of inquiry data, cleaned up for non-printable
6244  *		characters and stopping at the first space character after
6245  *		the beginning of the passed string;
6246  *
6247  *   Arguments: p - source string
6248  *		l - maximum length to copy
6249  *		s - destination string
6250  *
6251  *     Context: Any.
6252  */
6253 
6254 static void
6255 sd_inq_fill(char *p, int l, char *s)
6256 {
6257 	unsigned i = 0;
6258 	char c;
6259 
6260 	while (i++ < l) {
6261 		if ((c = *p++) < ' ' || c >= 0x7F) {
6262 			c = '*';
6263 		} else if (i != 1 && c == ' ') {
6264 			break;
6265 		}
6266 		*s++ = c;
6267 	}
6268 	*s++ = 0;
6269 }
6270 
6271 
6272 /*
6273  *    Function: sd_register_devid
6274  *
6275  * Description: This routine will obtain the device id information from the
6276  *		target, obtain the serial number, and register the device
6277  *		id with the ddi framework.
6278  *
6279  *   Arguments: devi - the system's dev_info_t for the device.
6280  *		un - driver soft state (unit) structure
6281  *		reservation_flag - indicates if a reservation conflict
6282  *		occurred during attach
6283  *
6284  *     Context: Kernel Thread
6285  */
6286 static void
6287 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6288 {
6289 	int		rval		= 0;
6290 	uchar_t		*inq80		= NULL;
6291 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6292 	size_t		inq80_resid	= 0;
6293 	uchar_t		*inq83		= NULL;
6294 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6295 	size_t		inq83_resid	= 0;
6296 
6297 	ASSERT(un != NULL);
6298 	ASSERT(mutex_owned(SD_MUTEX(un)));
6299 	ASSERT((SD_DEVINFO(un)) == devi);
6300 
6301 	/*
6302 	 * This is the case of antiquated Sun disk drives that have the
6303 	 * FAB_DEVID property set in the disk_table.  These drives
6304 	 * manage the devid's by storing them in last 2 available sectors
6305 	 * on the drive and have them fabricated by the ddi layer by calling
6306 	 * ddi_devid_init and passing the DEVID_FAB flag.
6307 	 */
6308 	if (un->un_f_opt_fab_devid == TRUE) {
6309 		/*
6310 		 * Depending on EINVAL isn't reliable, since a reserved disk
6311 		 * may result in invalid geometry, so check to make sure a
6312 		 * reservation conflict did not occur during attach.
6313 		 */
6314 		if ((sd_get_devid(un) == EINVAL) &&
6315 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6316 			/*
6317 			 * The devid is invalid AND there is no reservation
6318 			 * conflict.  Fabricate a new devid.
6319 			 */
6320 			(void) sd_create_devid(un);
6321 		}
6322 
6323 		/* Register the devid if it exists */
6324 		if (un->un_devid != NULL) {
6325 			(void) ddi_devid_register(SD_DEVINFO(un),
6326 			    un->un_devid);
6327 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6328 			    "sd_register_devid: Devid Fabricated\n");
6329 		}
6330 		return;
6331 	}
6332 
6333 	/*
6334 	 * We check the availibility of the World Wide Name (0x83) and Unit
6335 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6336 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6337 	 * 0x83 is availible, that is the best choice.  Our next choice is
6338 	 * 0x80.  If neither are availible, we munge the devid from the device
6339 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6340 	 * to fabricate a devid for non-Sun qualified disks.
6341 	 */
6342 	if (sd_check_vpd_page_support(un) == 0) {
6343 		/* collect page 80 data if available */
6344 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6345 
6346 			mutex_exit(SD_MUTEX(un));
6347 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6348 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6349 			    0x01, 0x80, &inq80_resid);
6350 
6351 			if (rval != 0) {
6352 				kmem_free(inq80, inq80_len);
6353 				inq80 = NULL;
6354 				inq80_len = 0;
6355 			}
6356 			mutex_enter(SD_MUTEX(un));
6357 		}
6358 
6359 		/* collect page 83 data if available */
6360 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6361 			mutex_exit(SD_MUTEX(un));
6362 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6363 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6364 			    0x01, 0x83, &inq83_resid);
6365 
6366 			if (rval != 0) {
6367 				kmem_free(inq83, inq83_len);
6368 				inq83 = NULL;
6369 				inq83_len = 0;
6370 			}
6371 			mutex_enter(SD_MUTEX(un));
6372 		}
6373 	}
6374 
6375 	/* encode best devid possible based on data available */
6376 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6377 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6378 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6379 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6380 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6381 
6382 		/* devid successfully encoded, register devid */
6383 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6384 
6385 	} else {
6386 		/*
6387 		 * Unable to encode a devid based on data available.
6388 		 * This is not a Sun qualified disk.  Older Sun disk
6389 		 * drives that have the SD_FAB_DEVID property
6390 		 * set in the disk_table and non Sun qualified
6391 		 * disks are treated in the same manner.  These
6392 		 * drives manage the devid's by storing them in
6393 		 * last 2 available sectors on the drive and
6394 		 * have them fabricated by the ddi layer by
6395 		 * calling ddi_devid_init and passing the
6396 		 * DEVID_FAB flag.
6397 		 * Create a fabricate devid only if there's no
6398 		 * fabricate devid existed.
6399 		 */
6400 		if (sd_get_devid(un) == EINVAL) {
6401 			(void) sd_create_devid(un);
6402 		}
6403 		un->un_f_opt_fab_devid = TRUE;
6404 
6405 		/* Register the devid if it exists */
6406 		if (un->un_devid != NULL) {
6407 			(void) ddi_devid_register(SD_DEVINFO(un),
6408 			    un->un_devid);
6409 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6410 			    "sd_register_devid: devid fabricated using "
6411 			    "ddi framework\n");
6412 		}
6413 	}
6414 
6415 	/* clean up resources */
6416 	if (inq80 != NULL) {
6417 		kmem_free(inq80, inq80_len);
6418 	}
6419 	if (inq83 != NULL) {
6420 		kmem_free(inq83, inq83_len);
6421 	}
6422 }
6423 
6424 static daddr_t
6425 sd_get_devid_block(struct sd_lun *un)
6426 {
6427 	daddr_t			spc, blk, head, cyl;
6428 
6429 	if ((un->un_f_geometry_is_valid == FALSE) ||
6430 	    (un->un_solaris_size < DK_LABEL_LOC))
6431 		return (-1);
6432 
6433 	if (un->un_vtoc.v_sanity != VTOC_SANE) {
6434 		/* EFI labeled */
6435 		if (un->un_reserved != -1) {
6436 			blk = un->un_map[un->un_reserved].dkl_cylno;
6437 		} else {
6438 			return (-1);
6439 		}
6440 	} else {
6441 		/* SMI labeled */
6442 		/* this geometry doesn't allow us to write a devid */
6443 		if (un->un_g.dkg_acyl < 2) {
6444 			return (-1);
6445 		}
6446 
6447 		/*
6448 		 * Subtract 2 guarantees that the next to last cylinder
6449 		 * is used
6450 		 */
6451 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6452 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6453 		head = un->un_g.dkg_nhead - 1;
6454 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6455 		    (head * un->un_g.dkg_nsect) + 1;
6456 	}
6457 	return (blk);
6458 }
6459 
6460 /*
6461  *    Function: sd_get_devid
6462  *
6463  * Description: This routine will return 0 if a valid device id has been
6464  *		obtained from the target and stored in the soft state. If a
6465  *		valid device id has not been previously read and stored, a
6466  *		read attempt will be made.
6467  *
6468  *   Arguments: un - driver soft state (unit) structure
6469  *
6470  * Return Code: 0 if we successfully get the device id
6471  *
6472  *     Context: Kernel Thread
6473  */
6474 
6475 static int
6476 sd_get_devid(struct sd_lun *un)
6477 {
6478 	struct dk_devid		*dkdevid;
6479 	ddi_devid_t		tmpid;
6480 	uint_t			*ip;
6481 	size_t			sz;
6482 	daddr_t			blk;
6483 	int			status;
6484 	int			chksum;
6485 	int			i;
6486 	size_t			buffer_size;
6487 
6488 	ASSERT(un != NULL);
6489 	ASSERT(mutex_owned(SD_MUTEX(un)));
6490 
6491 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6492 	    un);
6493 
6494 	if (un->un_devid != NULL) {
6495 		return (0);
6496 	}
6497 
6498 	blk = sd_get_devid_block(un);
6499 	if (blk < 0)
6500 		return (EINVAL);
6501 
6502 	/*
6503 	 * Read and verify device id, stored in the reserved cylinders at the
6504 	 * end of the disk. Backup label is on the odd sectors of the last
6505 	 * track of the last cylinder. Device id will be on track of the next
6506 	 * to last cylinder.
6507 	 */
6508 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6509 	mutex_exit(SD_MUTEX(un));
6510 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6511 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6512 	    SD_PATH_DIRECT);
6513 	if (status != 0) {
6514 		goto error;
6515 	}
6516 
6517 	/* Validate the revision */
6518 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6519 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6520 		status = EINVAL;
6521 		goto error;
6522 	}
6523 
6524 	/* Calculate the checksum */
6525 	chksum = 0;
6526 	ip = (uint_t *)dkdevid;
6527 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6528 	    i++) {
6529 		chksum ^= ip[i];
6530 	}
6531 
6532 	/* Compare the checksums */
6533 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6534 		status = EINVAL;
6535 		goto error;
6536 	}
6537 
6538 	/* Validate the device id */
6539 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6540 		status = EINVAL;
6541 		goto error;
6542 	}
6543 
6544 	/*
6545 	 * Store the device id in the driver soft state
6546 	 */
6547 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6548 	tmpid = kmem_alloc(sz, KM_SLEEP);
6549 
6550 	mutex_enter(SD_MUTEX(un));
6551 
6552 	un->un_devid = tmpid;
6553 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6554 
6555 	kmem_free(dkdevid, buffer_size);
6556 
6557 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6558 
6559 	return (status);
6560 error:
6561 	mutex_enter(SD_MUTEX(un));
6562 	kmem_free(dkdevid, buffer_size);
6563 	return (status);
6564 }
6565 
6566 
6567 /*
6568  *    Function: sd_create_devid
6569  *
6570  * Description: This routine will fabricate the device id and write it
6571  *		to the disk.
6572  *
6573  *   Arguments: un - driver soft state (unit) structure
6574  *
6575  * Return Code: value of the fabricated device id
6576  *
6577  *     Context: Kernel Thread
6578  */
6579 
6580 static ddi_devid_t
6581 sd_create_devid(struct sd_lun *un)
6582 {
6583 	ASSERT(un != NULL);
6584 
6585 	/* Fabricate the devid */
6586 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6587 	    == DDI_FAILURE) {
6588 		return (NULL);
6589 	}
6590 
6591 	/* Write the devid to disk */
6592 	if (sd_write_deviceid(un) != 0) {
6593 		ddi_devid_free(un->un_devid);
6594 		un->un_devid = NULL;
6595 	}
6596 
6597 	return (un->un_devid);
6598 }
6599 
6600 
6601 /*
6602  *    Function: sd_write_deviceid
6603  *
6604  * Description: This routine will write the device id to the disk
6605  *		reserved sector.
6606  *
6607  *   Arguments: un - driver soft state (unit) structure
6608  *
6609  * Return Code: EINVAL
6610  *		value returned by sd_send_scsi_cmd
6611  *
6612  *     Context: Kernel Thread
6613  */
6614 
6615 static int
6616 sd_write_deviceid(struct sd_lun *un)
6617 {
6618 	struct dk_devid		*dkdevid;
6619 	daddr_t			blk;
6620 	uint_t			*ip, chksum;
6621 	int			status;
6622 	int			i;
6623 
6624 	ASSERT(mutex_owned(SD_MUTEX(un)));
6625 
6626 	blk = sd_get_devid_block(un);
6627 	if (blk < 0)
6628 		return (-1);
6629 	mutex_exit(SD_MUTEX(un));
6630 
6631 	/* Allocate the buffer */
6632 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6633 
6634 	/* Fill in the revision */
6635 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6636 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6637 
6638 	/* Copy in the device id */
6639 	mutex_enter(SD_MUTEX(un));
6640 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6641 	    ddi_devid_sizeof(un->un_devid));
6642 	mutex_exit(SD_MUTEX(un));
6643 
6644 	/* Calculate the checksum */
6645 	chksum = 0;
6646 	ip = (uint_t *)dkdevid;
6647 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6648 	    i++) {
6649 		chksum ^= ip[i];
6650 	}
6651 
6652 	/* Fill-in checksum */
6653 	DKD_FORMCHKSUM(chksum, dkdevid);
6654 
6655 	/* Write the reserved sector */
6656 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6657 	    SD_PATH_DIRECT);
6658 
6659 	kmem_free(dkdevid, un->un_sys_blocksize);
6660 
6661 	mutex_enter(SD_MUTEX(un));
6662 	return (status);
6663 }
6664 
6665 
6666 /*
6667  *    Function: sd_check_vpd_page_support
6668  *
6669  * Description: This routine sends an inquiry command with the EVPD bit set and
6670  *		a page code of 0x00 to the device. It is used to determine which
6671  *		vital product pages are availible to find the devid. We are
6672  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6673  *		device does not support that command.
6674  *
6675  *   Arguments: un  - driver soft state (unit) structure
6676  *
6677  * Return Code: 0 - success
6678  *		1 - check condition
6679  *
6680  *     Context: This routine can sleep.
6681  */
6682 
6683 static int
6684 sd_check_vpd_page_support(struct sd_lun *un)
6685 {
6686 	uchar_t	*page_list	= NULL;
6687 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6688 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6689 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6690 	int    	rval		= 0;
6691 	int	counter;
6692 
6693 	ASSERT(un != NULL);
6694 	ASSERT(mutex_owned(SD_MUTEX(un)));
6695 
6696 	mutex_exit(SD_MUTEX(un));
6697 
6698 	/*
6699 	 * We'll set the page length to the maximum to save figuring it out
6700 	 * with an additional call.
6701 	 */
6702 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6703 
6704 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6705 	    page_code, NULL);
6706 
6707 	mutex_enter(SD_MUTEX(un));
6708 
6709 	/*
6710 	 * Now we must validate that the device accepted the command, as some
6711 	 * drives do not support it.  If the drive does support it, we will
6712 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6713 	 * not, we return -1.
6714 	 */
6715 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6716 		/* Loop to find one of the 2 pages we need */
6717 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6718 
6719 		/*
6720 		 * Pages are returned in ascending order, and 0x83 is what we
6721 		 * are hoping for.
6722 		 */
6723 		while ((page_list[counter] <= 0x83) &&
6724 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6725 		    VPD_HEAD_OFFSET))) {
6726 			/*
6727 			 * Add 3 because page_list[3] is the number of
6728 			 * pages minus 3
6729 			 */
6730 
6731 			switch (page_list[counter]) {
6732 			case 0x00:
6733 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6734 				break;
6735 			case 0x80:
6736 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6737 				break;
6738 			case 0x81:
6739 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6740 				break;
6741 			case 0x82:
6742 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6743 				break;
6744 			case 0x83:
6745 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6746 				break;
6747 			}
6748 			counter++;
6749 		}
6750 
6751 	} else {
6752 		rval = -1;
6753 
6754 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6755 		    "sd_check_vpd_page_support: This drive does not implement "
6756 		    "VPD pages.\n");
6757 	}
6758 
6759 	kmem_free(page_list, page_length);
6760 
6761 	return (rval);
6762 }
6763 
6764 
6765 /*
6766  *    Function: sd_setup_pm
6767  *
6768  * Description: Initialize Power Management on the device
6769  *
6770  *     Context: Kernel Thread
6771  */
6772 
6773 static void
6774 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6775 {
6776 	uint_t	log_page_size;
6777 	uchar_t	*log_page_data;
6778 	int	rval;
6779 
6780 	/*
6781 	 * Since we are called from attach, holding a mutex for
6782 	 * un is unnecessary. Because some of the routines called
6783 	 * from here require SD_MUTEX to not be held, assert this
6784 	 * right up front.
6785 	 */
6786 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6787 	/*
6788 	 * Since the sd device does not have the 'reg' property,
6789 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6790 	 * The following code is to tell cpr that this device
6791 	 * DOES need to be suspended and resumed.
6792 	 */
6793 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6794 	    "pm-hardware-state", "needs-suspend-resume");
6795 
6796 	/*
6797 	 * This complies with the new power management framework
6798 	 * for certain desktop machines. Create the pm_components
6799 	 * property as a string array property.
6800 	 */
6801 	if (un->un_f_pm_supported) {
6802 		/*
6803 		 * not all devices have a motor, try it first.
6804 		 * some devices may return ILLEGAL REQUEST, some
6805 		 * will hang
6806 		 * The following START_STOP_UNIT is used to check if target
6807 		 * device has a motor.
6808 		 */
6809 		un->un_f_start_stop_supported = TRUE;
6810 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6811 		    SD_PATH_DIRECT) != 0) {
6812 			un->un_f_start_stop_supported = FALSE;
6813 		}
6814 
6815 		/*
6816 		 * create pm properties anyways otherwise the parent can't
6817 		 * go to sleep
6818 		 */
6819 		(void) sd_create_pm_components(devi, un);
6820 		un->un_f_pm_is_enabled = TRUE;
6821 		return;
6822 	}
6823 
6824 	if (!un->un_f_log_sense_supported) {
6825 		un->un_power_level = SD_SPINDLE_ON;
6826 		un->un_f_pm_is_enabled = FALSE;
6827 		return;
6828 	}
6829 
6830 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6831 
6832 #ifdef	SDDEBUG
6833 	if (sd_force_pm_supported) {
6834 		/* Force a successful result */
6835 		rval = 1;
6836 	}
6837 #endif
6838 
6839 	/*
6840 	 * If the start-stop cycle counter log page is not supported
6841 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6842 	 * then we should not create the pm_components property.
6843 	 */
6844 	if (rval == -1) {
6845 		/*
6846 		 * Error.
6847 		 * Reading log sense failed, most likely this is
6848 		 * an older drive that does not support log sense.
6849 		 * If this fails auto-pm is not supported.
6850 		 */
6851 		un->un_power_level = SD_SPINDLE_ON;
6852 		un->un_f_pm_is_enabled = FALSE;
6853 
6854 	} else if (rval == 0) {
6855 		/*
6856 		 * Page not found.
6857 		 * The start stop cycle counter is implemented as page
6858 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6859 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6860 		 */
6861 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6862 			/*
6863 			 * Page found, use this one.
6864 			 */
6865 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6866 			un->un_f_pm_is_enabled = TRUE;
6867 		} else {
6868 			/*
6869 			 * Error or page not found.
6870 			 * auto-pm is not supported for this device.
6871 			 */
6872 			un->un_power_level = SD_SPINDLE_ON;
6873 			un->un_f_pm_is_enabled = FALSE;
6874 		}
6875 	} else {
6876 		/*
6877 		 * Page found, use it.
6878 		 */
6879 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6880 		un->un_f_pm_is_enabled = TRUE;
6881 	}
6882 
6883 
6884 	if (un->un_f_pm_is_enabled == TRUE) {
6885 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6886 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6887 
6888 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6889 		    log_page_size, un->un_start_stop_cycle_page,
6890 		    0x01, 0, SD_PATH_DIRECT);
6891 #ifdef	SDDEBUG
6892 		if (sd_force_pm_supported) {
6893 			/* Force a successful result */
6894 			rval = 0;
6895 		}
6896 #endif
6897 
6898 		/*
6899 		 * If the Log sense for Page( Start/stop cycle counter page)
6900 		 * succeeds, then power managment is supported and we can
6901 		 * enable auto-pm.
6902 		 */
6903 		if (rval == 0)  {
6904 			(void) sd_create_pm_components(devi, un);
6905 		} else {
6906 			un->un_power_level = SD_SPINDLE_ON;
6907 			un->un_f_pm_is_enabled = FALSE;
6908 		}
6909 
6910 		kmem_free(log_page_data, log_page_size);
6911 	}
6912 }
6913 
6914 
6915 /*
6916  *    Function: sd_create_pm_components
6917  *
6918  * Description: Initialize PM property.
6919  *
6920  *     Context: Kernel thread context
6921  */
6922 
6923 static void
6924 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6925 {
6926 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6927 
6928 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6929 
6930 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6931 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6932 		/*
6933 		 * When components are initially created they are idle,
6934 		 * power up any non-removables.
6935 		 * Note: the return value of pm_raise_power can't be used
6936 		 * for determining if PM should be enabled for this device.
6937 		 * Even if you check the return values and remove this
6938 		 * property created above, the PM framework will not honor the
6939 		 * change after the first call to pm_raise_power. Hence,
6940 		 * removal of that property does not help if pm_raise_power
6941 		 * fails. In the case of removable media, the start/stop
6942 		 * will fail if the media is not present.
6943 		 */
6944 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6945 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6946 			mutex_enter(SD_MUTEX(un));
6947 			un->un_power_level = SD_SPINDLE_ON;
6948 			mutex_enter(&un->un_pm_mutex);
6949 			/* Set to on and not busy. */
6950 			un->un_pm_count = 0;
6951 		} else {
6952 			mutex_enter(SD_MUTEX(un));
6953 			un->un_power_level = SD_SPINDLE_OFF;
6954 			mutex_enter(&un->un_pm_mutex);
6955 			/* Set to off. */
6956 			un->un_pm_count = -1;
6957 		}
6958 		mutex_exit(&un->un_pm_mutex);
6959 		mutex_exit(SD_MUTEX(un));
6960 	} else {
6961 		un->un_power_level = SD_SPINDLE_ON;
6962 		un->un_f_pm_is_enabled = FALSE;
6963 	}
6964 }
6965 
6966 
6967 /*
6968  *    Function: sd_ddi_suspend
6969  *
6970  * Description: Performs system power-down operations. This includes
6971  *		setting the drive state to indicate its suspended so
6972  *		that no new commands will be accepted. Also, wait for
6973  *		all commands that are in transport or queued to a timer
6974  *		for retry to complete. All timeout threads are cancelled.
6975  *
6976  * Return Code: DDI_FAILURE or DDI_SUCCESS
6977  *
6978  *     Context: Kernel thread context
6979  */
6980 
6981 static int
6982 sd_ddi_suspend(dev_info_t *devi)
6983 {
6984 	struct	sd_lun	*un;
6985 	clock_t		wait_cmds_complete;
6986 
6987 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6988 	if (un == NULL) {
6989 		return (DDI_FAILURE);
6990 	}
6991 
6992 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6993 
6994 	mutex_enter(SD_MUTEX(un));
6995 
6996 	/* Return success if the device is already suspended. */
6997 	if (un->un_state == SD_STATE_SUSPENDED) {
6998 		mutex_exit(SD_MUTEX(un));
6999 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7000 		    "device already suspended, exiting\n");
7001 		return (DDI_SUCCESS);
7002 	}
7003 
7004 	/* Return failure if the device is being used by HA */
7005 	if (un->un_resvd_status &
7006 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
7007 		mutex_exit(SD_MUTEX(un));
7008 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7009 		    "device in use by HA, exiting\n");
7010 		return (DDI_FAILURE);
7011 	}
7012 
7013 	/*
7014 	 * Return failure if the device is in a resource wait
7015 	 * or power changing state.
7016 	 */
7017 	if ((un->un_state == SD_STATE_RWAIT) ||
7018 	    (un->un_state == SD_STATE_PM_CHANGING)) {
7019 		mutex_exit(SD_MUTEX(un));
7020 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7021 		    "device in resource wait state, exiting\n");
7022 		return (DDI_FAILURE);
7023 	}
7024 
7025 
7026 	un->un_save_state = un->un_last_state;
7027 	New_state(un, SD_STATE_SUSPENDED);
7028 
7029 	/*
7030 	 * Wait for all commands that are in transport or queued to a timer
7031 	 * for retry to complete.
7032 	 *
7033 	 * While waiting, no new commands will be accepted or sent because of
7034 	 * the new state we set above.
7035 	 *
7036 	 * Wait till current operation has completed. If we are in the resource
7037 	 * wait state (with an intr outstanding) then we need to wait till the
7038 	 * intr completes and starts the next cmd. We want to wait for
7039 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
7040 	 */
7041 	wait_cmds_complete = ddi_get_lbolt() +
7042 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
7043 
7044 	while (un->un_ncmds_in_transport != 0) {
7045 		/*
7046 		 * Fail if commands do not finish in the specified time.
7047 		 */
7048 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
7049 		    wait_cmds_complete) == -1) {
7050 			/*
7051 			 * Undo the state changes made above. Everything
7052 			 * must go back to it's original value.
7053 			 */
7054 			Restore_state(un);
7055 			un->un_last_state = un->un_save_state;
7056 			/* Wake up any threads that might be waiting. */
7057 			cv_broadcast(&un->un_suspend_cv);
7058 			mutex_exit(SD_MUTEX(un));
7059 			SD_ERROR(SD_LOG_IO_PM, un,
7060 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
7061 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
7062 			return (DDI_FAILURE);
7063 		}
7064 	}
7065 
7066 	/*
7067 	 * Cancel SCSI watch thread and timeouts, if any are active
7068 	 */
7069 
7070 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
7071 		opaque_t temp_token = un->un_swr_token;
7072 		mutex_exit(SD_MUTEX(un));
7073 		scsi_watch_suspend(temp_token);
7074 		mutex_enter(SD_MUTEX(un));
7075 	}
7076 
7077 	if (un->un_reset_throttle_timeid != NULL) {
7078 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7079 		un->un_reset_throttle_timeid = NULL;
7080 		mutex_exit(SD_MUTEX(un));
7081 		(void) untimeout(temp_id);
7082 		mutex_enter(SD_MUTEX(un));
7083 	}
7084 
7085 	if (un->un_dcvb_timeid != NULL) {
7086 		timeout_id_t temp_id = un->un_dcvb_timeid;
7087 		un->un_dcvb_timeid = NULL;
7088 		mutex_exit(SD_MUTEX(un));
7089 		(void) untimeout(temp_id);
7090 		mutex_enter(SD_MUTEX(un));
7091 	}
7092 
7093 	mutex_enter(&un->un_pm_mutex);
7094 	if (un->un_pm_timeid != NULL) {
7095 		timeout_id_t temp_id = un->un_pm_timeid;
7096 		un->un_pm_timeid = NULL;
7097 		mutex_exit(&un->un_pm_mutex);
7098 		mutex_exit(SD_MUTEX(un));
7099 		(void) untimeout(temp_id);
7100 		mutex_enter(SD_MUTEX(un));
7101 	} else {
7102 		mutex_exit(&un->un_pm_mutex);
7103 	}
7104 
7105 	if (un->un_retry_timeid != NULL) {
7106 		timeout_id_t temp_id = un->un_retry_timeid;
7107 		un->un_retry_timeid = NULL;
7108 		mutex_exit(SD_MUTEX(un));
7109 		(void) untimeout(temp_id);
7110 		mutex_enter(SD_MUTEX(un));
7111 	}
7112 
7113 	if (un->un_direct_priority_timeid != NULL) {
7114 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7115 		un->un_direct_priority_timeid = NULL;
7116 		mutex_exit(SD_MUTEX(un));
7117 		(void) untimeout(temp_id);
7118 		mutex_enter(SD_MUTEX(un));
7119 	}
7120 
7121 	if (un->un_f_is_fibre == TRUE) {
7122 		/*
7123 		 * Remove callbacks for insert and remove events
7124 		 */
7125 		if (un->un_insert_event != NULL) {
7126 			mutex_exit(SD_MUTEX(un));
7127 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
7128 			mutex_enter(SD_MUTEX(un));
7129 			un->un_insert_event = NULL;
7130 		}
7131 
7132 		if (un->un_remove_event != NULL) {
7133 			mutex_exit(SD_MUTEX(un));
7134 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
7135 			mutex_enter(SD_MUTEX(un));
7136 			un->un_remove_event = NULL;
7137 		}
7138 	}
7139 
7140 	mutex_exit(SD_MUTEX(un));
7141 
7142 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
7143 
7144 	return (DDI_SUCCESS);
7145 }
7146 
7147 
7148 /*
7149  *    Function: sd_ddi_pm_suspend
7150  *
7151  * Description: Set the drive state to low power.
7152  *		Someone else is required to actually change the drive
7153  *		power level.
7154  *
7155  *   Arguments: un - driver soft state (unit) structure
7156  *
7157  * Return Code: DDI_FAILURE or DDI_SUCCESS
7158  *
7159  *     Context: Kernel thread context
7160  */
7161 
7162 static int
7163 sd_ddi_pm_suspend(struct sd_lun *un)
7164 {
7165 	ASSERT(un != NULL);
7166 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
7167 
7168 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7169 	mutex_enter(SD_MUTEX(un));
7170 
7171 	/*
7172 	 * Exit if power management is not enabled for this device, or if
7173 	 * the device is being used by HA.
7174 	 */
7175 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
7176 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
7177 		mutex_exit(SD_MUTEX(un));
7178 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
7179 		return (DDI_SUCCESS);
7180 	}
7181 
7182 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
7183 	    un->un_ncmds_in_driver);
7184 
7185 	/*
7186 	 * See if the device is not busy, ie.:
7187 	 *    - we have no commands in the driver for this device
7188 	 *    - not waiting for resources
7189 	 */
7190 	if ((un->un_ncmds_in_driver == 0) &&
7191 	    (un->un_state != SD_STATE_RWAIT)) {
7192 		/*
7193 		 * The device is not busy, so it is OK to go to low power state.
7194 		 * Indicate low power, but rely on someone else to actually
7195 		 * change it.
7196 		 */
7197 		mutex_enter(&un->un_pm_mutex);
7198 		un->un_pm_count = -1;
7199 		mutex_exit(&un->un_pm_mutex);
7200 		un->un_power_level = SD_SPINDLE_OFF;
7201 	}
7202 
7203 	mutex_exit(SD_MUTEX(un));
7204 
7205 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
7206 
7207 	return (DDI_SUCCESS);
7208 }
7209 
7210 
7211 /*
7212  *    Function: sd_ddi_resume
7213  *
7214  * Description: Performs system power-up operations..
7215  *
7216  * Return Code: DDI_SUCCESS
7217  *		DDI_FAILURE
7218  *
7219  *     Context: Kernel thread context
7220  */
7221 
7222 static int
7223 sd_ddi_resume(dev_info_t *devi)
7224 {
7225 	struct	sd_lun	*un;
7226 
7227 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
7228 	if (un == NULL) {
7229 		return (DDI_FAILURE);
7230 	}
7231 
7232 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
7233 
7234 	mutex_enter(SD_MUTEX(un));
7235 	Restore_state(un);
7236 
7237 	/*
7238 	 * Restore the state which was saved to give the
7239 	 * the right state in un_last_state
7240 	 */
7241 	un->un_last_state = un->un_save_state;
7242 	/*
7243 	 * Note: throttle comes back at full.
7244 	 * Also note: this MUST be done before calling pm_raise_power
7245 	 * otherwise the system can get hung in biowait. The scenario where
7246 	 * this'll happen is under cpr suspend. Writing of the system
7247 	 * state goes through sddump, which writes 0 to un_throttle. If
7248 	 * writing the system state then fails, example if the partition is
7249 	 * too small, then cpr attempts a resume. If throttle isn't restored
7250 	 * from the saved value until after calling pm_raise_power then
7251 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7252 	 * in biowait.
7253 	 */
7254 	un->un_throttle = un->un_saved_throttle;
7255 
7256 	/*
7257 	 * The chance of failure is very rare as the only command done in power
7258 	 * entry point is START command when you transition from 0->1 or
7259 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7260 	 * which suspend was done. Ignore the return value as the resume should
7261 	 * not be failed. In the case of removable media the media need not be
7262 	 * inserted and hence there is a chance that raise power will fail with
7263 	 * media not present.
7264 	 */
7265 	if (un->un_f_attach_spinup) {
7266 		mutex_exit(SD_MUTEX(un));
7267 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7268 		mutex_enter(SD_MUTEX(un));
7269 	}
7270 
7271 	/*
7272 	 * Don't broadcast to the suspend cv and therefore possibly
7273 	 * start I/O until after power has been restored.
7274 	 */
7275 	cv_broadcast(&un->un_suspend_cv);
7276 	cv_broadcast(&un->un_state_cv);
7277 
7278 	/* restart thread */
7279 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7280 		scsi_watch_resume(un->un_swr_token);
7281 	}
7282 
7283 #if (defined(__fibre))
7284 	if (un->un_f_is_fibre == TRUE) {
7285 		/*
7286 		 * Add callbacks for insert and remove events
7287 		 */
7288 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7289 			sd_init_event_callbacks(un);
7290 		}
7291 	}
7292 #endif
7293 
7294 	/*
7295 	 * Transport any pending commands to the target.
7296 	 *
7297 	 * If this is a low-activity device commands in queue will have to wait
7298 	 * until new commands come in, which may take awhile. Also, we
7299 	 * specifically don't check un_ncmds_in_transport because we know that
7300 	 * there really are no commands in progress after the unit was
7301 	 * suspended and we could have reached the throttle level, been
7302 	 * suspended, and have no new commands coming in for awhile. Highly
7303 	 * unlikely, but so is the low-activity disk scenario.
7304 	 */
7305 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7306 
7307 	sd_start_cmds(un, NULL);
7308 	mutex_exit(SD_MUTEX(un));
7309 
7310 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7311 
7312 	return (DDI_SUCCESS);
7313 }
7314 
7315 
7316 /*
7317  *    Function: sd_ddi_pm_resume
7318  *
7319  * Description: Set the drive state to powered on.
7320  *		Someone else is required to actually change the drive
7321  *		power level.
7322  *
7323  *   Arguments: un - driver soft state (unit) structure
7324  *
7325  * Return Code: DDI_SUCCESS
7326  *
7327  *     Context: Kernel thread context
7328  */
7329 
7330 static int
7331 sd_ddi_pm_resume(struct sd_lun *un)
7332 {
7333 	ASSERT(un != NULL);
7334 
7335 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7336 	mutex_enter(SD_MUTEX(un));
7337 	un->un_power_level = SD_SPINDLE_ON;
7338 
7339 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7340 	mutex_enter(&un->un_pm_mutex);
7341 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7342 		un->un_pm_count++;
7343 		ASSERT(un->un_pm_count == 0);
7344 		/*
7345 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7346 		 * un_suspend_cv is for a system resume, not a power management
7347 		 * device resume. (4297749)
7348 		 *	 cv_broadcast(&un->un_suspend_cv);
7349 		 */
7350 	}
7351 	mutex_exit(&un->un_pm_mutex);
7352 	mutex_exit(SD_MUTEX(un));
7353 
7354 	return (DDI_SUCCESS);
7355 }
7356 
7357 
7358 /*
7359  *    Function: sd_pm_idletimeout_handler
7360  *
7361  * Description: A timer routine that's active only while a device is busy.
7362  *		The purpose is to extend slightly the pm framework's busy
7363  *		view of the device to prevent busy/idle thrashing for
7364  *		back-to-back commands. Do this by comparing the current time
7365  *		to the time at which the last command completed and when the
7366  *		difference is greater than sd_pm_idletime, call
7367  *		pm_idle_component. In addition to indicating idle to the pm
7368  *		framework, update the chain type to again use the internal pm
7369  *		layers of the driver.
7370  *
7371  *   Arguments: arg - driver soft state (unit) structure
7372  *
7373  *     Context: Executes in a timeout(9F) thread context
7374  */
7375 
7376 static void
7377 sd_pm_idletimeout_handler(void *arg)
7378 {
7379 	struct sd_lun *un = arg;
7380 
7381 	time_t	now;
7382 
7383 	mutex_enter(&sd_detach_mutex);
7384 	if (un->un_detach_count != 0) {
7385 		/* Abort if the instance is detaching */
7386 		mutex_exit(&sd_detach_mutex);
7387 		return;
7388 	}
7389 	mutex_exit(&sd_detach_mutex);
7390 
7391 	now = ddi_get_time();
7392 	/*
7393 	 * Grab both mutexes, in the proper order, since we're accessing
7394 	 * both PM and softstate variables.
7395 	 */
7396 	mutex_enter(SD_MUTEX(un));
7397 	mutex_enter(&un->un_pm_mutex);
7398 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7399 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7400 		/*
7401 		 * Update the chain types.
7402 		 * This takes affect on the next new command received.
7403 		 */
7404 		if (un->un_f_non_devbsize_supported) {
7405 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7406 		} else {
7407 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7408 		}
7409 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7410 
7411 		SD_TRACE(SD_LOG_IO_PM, un,
7412 		    "sd_pm_idletimeout_handler: idling device\n");
7413 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7414 		un->un_pm_idle_timeid = NULL;
7415 	} else {
7416 		un->un_pm_idle_timeid =
7417 			timeout(sd_pm_idletimeout_handler, un,
7418 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7419 	}
7420 	mutex_exit(&un->un_pm_mutex);
7421 	mutex_exit(SD_MUTEX(un));
7422 }
7423 
7424 
7425 /*
7426  *    Function: sd_pm_timeout_handler
7427  *
7428  * Description: Callback to tell framework we are idle.
7429  *
7430  *     Context: timeout(9f) thread context.
7431  */
7432 
7433 static void
7434 sd_pm_timeout_handler(void *arg)
7435 {
7436 	struct sd_lun *un = arg;
7437 
7438 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7439 	mutex_enter(&un->un_pm_mutex);
7440 	un->un_pm_timeid = NULL;
7441 	mutex_exit(&un->un_pm_mutex);
7442 }
7443 
7444 
7445 /*
7446  *    Function: sdpower
7447  *
7448  * Description: PM entry point.
7449  *
7450  * Return Code: DDI_SUCCESS
7451  *		DDI_FAILURE
7452  *
7453  *     Context: Kernel thread context
7454  */
7455 
7456 static int
7457 sdpower(dev_info_t *devi, int component, int level)
7458 {
7459 	struct sd_lun	*un;
7460 	int		instance;
7461 	int		rval = DDI_SUCCESS;
7462 	uint_t		i, log_page_size, maxcycles, ncycles;
7463 	uchar_t		*log_page_data;
7464 	int		log_sense_page;
7465 	int		medium_present;
7466 	time_t		intvlp;
7467 	dev_t		dev;
7468 	struct pm_trans_data	sd_pm_tran_data;
7469 	uchar_t		save_state;
7470 	int		sval;
7471 	uchar_t		state_before_pm;
7472 	int		got_semaphore_here;
7473 
7474 	instance = ddi_get_instance(devi);
7475 
7476 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7477 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7478 	    component != 0) {
7479 		return (DDI_FAILURE);
7480 	}
7481 
7482 	dev = sd_make_device(SD_DEVINFO(un));
7483 
7484 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7485 
7486 	/*
7487 	 * Must synchronize power down with close.
7488 	 * Attempt to decrement/acquire the open/close semaphore,
7489 	 * but do NOT wait on it. If it's not greater than zero,
7490 	 * ie. it can't be decremented without waiting, then
7491 	 * someone else, either open or close, already has it
7492 	 * and the try returns 0. Use that knowledge here to determine
7493 	 * if it's OK to change the device power level.
7494 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7495 	 * here.
7496 	 */
7497 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7498 
7499 	mutex_enter(SD_MUTEX(un));
7500 
7501 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7502 	    un->un_ncmds_in_driver);
7503 
7504 	/*
7505 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7506 	 * already being processed in the driver, or if the semaphore was
7507 	 * not gotten here it indicates an open or close is being processed.
7508 	 * At the same time somebody is requesting to go low power which
7509 	 * can't happen, therefore we need to return failure.
7510 	 */
7511 	if ((level == SD_SPINDLE_OFF) &&
7512 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7513 		mutex_exit(SD_MUTEX(un));
7514 
7515 		if (got_semaphore_here != 0) {
7516 			sema_v(&un->un_semoclose);
7517 		}
7518 		SD_TRACE(SD_LOG_IO_PM, un,
7519 		    "sdpower: exit, device has queued cmds.\n");
7520 		return (DDI_FAILURE);
7521 	}
7522 
7523 	/*
7524 	 * if it is OFFLINE that means the disk is completely dead
7525 	 * in our case we have to put the disk in on or off by sending commands
7526 	 * Of course that will fail anyway so return back here.
7527 	 *
7528 	 * Power changes to a device that's OFFLINE or SUSPENDED
7529 	 * are not allowed.
7530 	 */
7531 	if ((un->un_state == SD_STATE_OFFLINE) ||
7532 	    (un->un_state == SD_STATE_SUSPENDED)) {
7533 		mutex_exit(SD_MUTEX(un));
7534 
7535 		if (got_semaphore_here != 0) {
7536 			sema_v(&un->un_semoclose);
7537 		}
7538 		SD_TRACE(SD_LOG_IO_PM, un,
7539 		    "sdpower: exit, device is off-line.\n");
7540 		return (DDI_FAILURE);
7541 	}
7542 
7543 	/*
7544 	 * Change the device's state to indicate it's power level
7545 	 * is being changed. Do this to prevent a power off in the
7546 	 * middle of commands, which is especially bad on devices
7547 	 * that are really powered off instead of just spun down.
7548 	 */
7549 	state_before_pm = un->un_state;
7550 	un->un_state = SD_STATE_PM_CHANGING;
7551 
7552 	mutex_exit(SD_MUTEX(un));
7553 
7554 	/*
7555 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7556 	 * bypass the following checking, otherwise, check the log
7557 	 * sense information for this device
7558 	 */
7559 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7560 		/*
7561 		 * Get the log sense information to understand whether the
7562 		 * the powercycle counts have gone beyond the threshhold.
7563 		 */
7564 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7565 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7566 
7567 		mutex_enter(SD_MUTEX(un));
7568 		log_sense_page = un->un_start_stop_cycle_page;
7569 		mutex_exit(SD_MUTEX(un));
7570 
7571 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7572 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7573 #ifdef	SDDEBUG
7574 		if (sd_force_pm_supported) {
7575 			/* Force a successful result */
7576 			rval = 0;
7577 		}
7578 #endif
7579 		if (rval != 0) {
7580 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7581 			    "Log Sense Failed\n");
7582 			kmem_free(log_page_data, log_page_size);
7583 			/* Cannot support power management on those drives */
7584 
7585 			if (got_semaphore_here != 0) {
7586 				sema_v(&un->un_semoclose);
7587 			}
7588 			/*
7589 			 * On exit put the state back to it's original value
7590 			 * and broadcast to anyone waiting for the power
7591 			 * change completion.
7592 			 */
7593 			mutex_enter(SD_MUTEX(un));
7594 			un->un_state = state_before_pm;
7595 			cv_broadcast(&un->un_suspend_cv);
7596 			mutex_exit(SD_MUTEX(un));
7597 			SD_TRACE(SD_LOG_IO_PM, un,
7598 			    "sdpower: exit, Log Sense Failed.\n");
7599 			return (DDI_FAILURE);
7600 		}
7601 
7602 		/*
7603 		 * From the page data - Convert the essential information to
7604 		 * pm_trans_data
7605 		 */
7606 		maxcycles =
7607 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7608 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7609 
7610 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7611 
7612 		ncycles =
7613 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7614 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7615 
7616 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7617 
7618 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7619 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7620 			    log_page_data[8+i];
7621 		}
7622 
7623 		kmem_free(log_page_data, log_page_size);
7624 
7625 		/*
7626 		 * Call pm_trans_check routine to get the Ok from
7627 		 * the global policy
7628 		 */
7629 
7630 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7631 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7632 
7633 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7634 #ifdef	SDDEBUG
7635 		if (sd_force_pm_supported) {
7636 			/* Force a successful result */
7637 			rval = 1;
7638 		}
7639 #endif
7640 		switch (rval) {
7641 		case 0:
7642 			/*
7643 			 * Not Ok to Power cycle or error in parameters passed
7644 			 * Would have given the advised time to consider power
7645 			 * cycle. Based on the new intvlp parameter we are
7646 			 * supposed to pretend we are busy so that pm framework
7647 			 * will never call our power entry point. Because of
7648 			 * that install a timeout handler and wait for the
7649 			 * recommended time to elapse so that power management
7650 			 * can be effective again.
7651 			 *
7652 			 * To effect this behavior, call pm_busy_component to
7653 			 * indicate to the framework this device is busy.
7654 			 * By not adjusting un_pm_count the rest of PM in
7655 			 * the driver will function normally, and independant
7656 			 * of this but because the framework is told the device
7657 			 * is busy it won't attempt powering down until it gets
7658 			 * a matching idle. The timeout handler sends this.
7659 			 * Note: sd_pm_entry can't be called here to do this
7660 			 * because sdpower may have been called as a result
7661 			 * of a call to pm_raise_power from within sd_pm_entry.
7662 			 *
7663 			 * If a timeout handler is already active then
7664 			 * don't install another.
7665 			 */
7666 			mutex_enter(&un->un_pm_mutex);
7667 			if (un->un_pm_timeid == NULL) {
7668 				un->un_pm_timeid =
7669 				    timeout(sd_pm_timeout_handler,
7670 				    un, intvlp * drv_usectohz(1000000));
7671 				mutex_exit(&un->un_pm_mutex);
7672 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7673 			} else {
7674 				mutex_exit(&un->un_pm_mutex);
7675 			}
7676 			if (got_semaphore_here != 0) {
7677 				sema_v(&un->un_semoclose);
7678 			}
7679 			/*
7680 			 * On exit put the state back to it's original value
7681 			 * and broadcast to anyone waiting for the power
7682 			 * change completion.
7683 			 */
7684 			mutex_enter(SD_MUTEX(un));
7685 			un->un_state = state_before_pm;
7686 			cv_broadcast(&un->un_suspend_cv);
7687 			mutex_exit(SD_MUTEX(un));
7688 
7689 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7690 			    "trans check Failed, not ok to power cycle.\n");
7691 			return (DDI_FAILURE);
7692 
7693 		case -1:
7694 			if (got_semaphore_here != 0) {
7695 				sema_v(&un->un_semoclose);
7696 			}
7697 			/*
7698 			 * On exit put the state back to it's original value
7699 			 * and broadcast to anyone waiting for the power
7700 			 * change completion.
7701 			 */
7702 			mutex_enter(SD_MUTEX(un));
7703 			un->un_state = state_before_pm;
7704 			cv_broadcast(&un->un_suspend_cv);
7705 			mutex_exit(SD_MUTEX(un));
7706 			SD_TRACE(SD_LOG_IO_PM, un,
7707 			    "sdpower: exit, trans check command Failed.\n");
7708 			return (DDI_FAILURE);
7709 		}
7710 	}
7711 
7712 	if (level == SD_SPINDLE_OFF) {
7713 		/*
7714 		 * Save the last state... if the STOP FAILS we need it
7715 		 * for restoring
7716 		 */
7717 		mutex_enter(SD_MUTEX(un));
7718 		save_state = un->un_last_state;
7719 		/*
7720 		 * There must not be any cmds. getting processed
7721 		 * in the driver when we get here. Power to the
7722 		 * device is potentially going off.
7723 		 */
7724 		ASSERT(un->un_ncmds_in_driver == 0);
7725 		mutex_exit(SD_MUTEX(un));
7726 
7727 		/*
7728 		 * For now suspend the device completely before spindle is
7729 		 * turned off
7730 		 */
7731 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7732 			if (got_semaphore_here != 0) {
7733 				sema_v(&un->un_semoclose);
7734 			}
7735 			/*
7736 			 * On exit put the state back to it's original value
7737 			 * and broadcast to anyone waiting for the power
7738 			 * change completion.
7739 			 */
7740 			mutex_enter(SD_MUTEX(un));
7741 			un->un_state = state_before_pm;
7742 			cv_broadcast(&un->un_suspend_cv);
7743 			mutex_exit(SD_MUTEX(un));
7744 			SD_TRACE(SD_LOG_IO_PM, un,
7745 			    "sdpower: exit, PM suspend Failed.\n");
7746 			return (DDI_FAILURE);
7747 		}
7748 	}
7749 
7750 	/*
7751 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7752 	 * close, or strategy. Dump no long uses this routine, it uses it's
7753 	 * own code so it can be done in polled mode.
7754 	 */
7755 
7756 	medium_present = TRUE;
7757 
7758 	/*
7759 	 * When powering up, issue a TUR in case the device is at unit
7760 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7761 	 * a deadlock on un_pm_busy_cv will occur.
7762 	 */
7763 	if (level == SD_SPINDLE_ON) {
7764 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7765 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7766 	}
7767 
7768 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7769 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7770 
7771 	sval = sd_send_scsi_START_STOP_UNIT(un,
7772 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7773 	    SD_PATH_DIRECT);
7774 	/* Command failed, check for media present. */
7775 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7776 		medium_present = FALSE;
7777 	}
7778 
7779 	/*
7780 	 * The conditions of interest here are:
7781 	 *   if a spindle off with media present fails,
7782 	 *	then restore the state and return an error.
7783 	 *   else if a spindle on fails,
7784 	 *	then return an error (there's no state to restore).
7785 	 * In all other cases we setup for the new state
7786 	 * and return success.
7787 	 */
7788 	switch (level) {
7789 	case SD_SPINDLE_OFF:
7790 		if ((medium_present == TRUE) && (sval != 0)) {
7791 			/* The stop command from above failed */
7792 			rval = DDI_FAILURE;
7793 			/*
7794 			 * The stop command failed, and we have media
7795 			 * present. Put the level back by calling the
7796 			 * sd_pm_resume() and set the state back to
7797 			 * it's previous value.
7798 			 */
7799 			(void) sd_ddi_pm_resume(un);
7800 			mutex_enter(SD_MUTEX(un));
7801 			un->un_last_state = save_state;
7802 			mutex_exit(SD_MUTEX(un));
7803 			break;
7804 		}
7805 		/*
7806 		 * The stop command from above succeeded.
7807 		 */
7808 		if (un->un_f_monitor_media_state) {
7809 			/*
7810 			 * Terminate watch thread in case of removable media
7811 			 * devices going into low power state. This is as per
7812 			 * the requirements of pm framework, otherwise commands
7813 			 * will be generated for the device (through watch
7814 			 * thread), even when the device is in low power state.
7815 			 */
7816 			mutex_enter(SD_MUTEX(un));
7817 			un->un_f_watcht_stopped = FALSE;
7818 			if (un->un_swr_token != NULL) {
7819 				opaque_t temp_token = un->un_swr_token;
7820 				un->un_f_watcht_stopped = TRUE;
7821 				un->un_swr_token = NULL;
7822 				mutex_exit(SD_MUTEX(un));
7823 				(void) scsi_watch_request_terminate(temp_token,
7824 				    SCSI_WATCH_TERMINATE_WAIT);
7825 			} else {
7826 				mutex_exit(SD_MUTEX(un));
7827 			}
7828 		}
7829 		break;
7830 
7831 	default:	/* The level requested is spindle on... */
7832 		/*
7833 		 * Legacy behavior: return success on a failed spinup
7834 		 * if there is no media in the drive.
7835 		 * Do this by looking at medium_present here.
7836 		 */
7837 		if ((sval != 0) && medium_present) {
7838 			/* The start command from above failed */
7839 			rval = DDI_FAILURE;
7840 			break;
7841 		}
7842 		/*
7843 		 * The start command from above succeeded
7844 		 * Resume the devices now that we have
7845 		 * started the disks
7846 		 */
7847 		(void) sd_ddi_pm_resume(un);
7848 
7849 		/*
7850 		 * Resume the watch thread since it was suspended
7851 		 * when the device went into low power mode.
7852 		 */
7853 		if (un->un_f_monitor_media_state) {
7854 			mutex_enter(SD_MUTEX(un));
7855 			if (un->un_f_watcht_stopped == TRUE) {
7856 				opaque_t temp_token;
7857 
7858 				un->un_f_watcht_stopped = FALSE;
7859 				mutex_exit(SD_MUTEX(un));
7860 				temp_token = scsi_watch_request_submit(
7861 				    SD_SCSI_DEVP(un),
7862 				    sd_check_media_time,
7863 				    SENSE_LENGTH, sd_media_watch_cb,
7864 				    (caddr_t)dev);
7865 				mutex_enter(SD_MUTEX(un));
7866 				un->un_swr_token = temp_token;
7867 			}
7868 			mutex_exit(SD_MUTEX(un));
7869 		}
7870 	}
7871 	if (got_semaphore_here != 0) {
7872 		sema_v(&un->un_semoclose);
7873 	}
7874 	/*
7875 	 * On exit put the state back to it's original value
7876 	 * and broadcast to anyone waiting for the power
7877 	 * change completion.
7878 	 */
7879 	mutex_enter(SD_MUTEX(un));
7880 	un->un_state = state_before_pm;
7881 	cv_broadcast(&un->un_suspend_cv);
7882 	mutex_exit(SD_MUTEX(un));
7883 
7884 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7885 
7886 	return (rval);
7887 }
7888 
7889 
7890 
7891 /*
7892  *    Function: sdattach
7893  *
7894  * Description: Driver's attach(9e) entry point function.
7895  *
7896  *   Arguments: devi - opaque device info handle
7897  *		cmd  - attach  type
7898  *
7899  * Return Code: DDI_SUCCESS
7900  *		DDI_FAILURE
7901  *
7902  *     Context: Kernel thread context
7903  */
7904 
7905 static int
7906 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7907 {
7908 	switch (cmd) {
7909 	case DDI_ATTACH:
7910 		return (sd_unit_attach(devi));
7911 	case DDI_RESUME:
7912 		return (sd_ddi_resume(devi));
7913 	default:
7914 		break;
7915 	}
7916 	return (DDI_FAILURE);
7917 }
7918 
7919 
7920 /*
7921  *    Function: sddetach
7922  *
7923  * Description: Driver's detach(9E) entry point function.
7924  *
7925  *   Arguments: devi - opaque device info handle
7926  *		cmd  - detach  type
7927  *
7928  * Return Code: DDI_SUCCESS
7929  *		DDI_FAILURE
7930  *
7931  *     Context: Kernel thread context
7932  */
7933 
7934 static int
7935 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7936 {
7937 	switch (cmd) {
7938 	case DDI_DETACH:
7939 		return (sd_unit_detach(devi));
7940 	case DDI_SUSPEND:
7941 		return (sd_ddi_suspend(devi));
7942 	default:
7943 		break;
7944 	}
7945 	return (DDI_FAILURE);
7946 }
7947 
7948 
7949 /*
7950  *     Function: sd_sync_with_callback
7951  *
7952  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7953  *		 state while the callback routine is active.
7954  *
7955  *    Arguments: un: softstate structure for the instance
7956  *
7957  *	Context: Kernel thread context
7958  */
7959 
7960 static void
7961 sd_sync_with_callback(struct sd_lun *un)
7962 {
7963 	ASSERT(un != NULL);
7964 
7965 	mutex_enter(SD_MUTEX(un));
7966 
7967 	ASSERT(un->un_in_callback >= 0);
7968 
7969 	while (un->un_in_callback > 0) {
7970 		mutex_exit(SD_MUTEX(un));
7971 		delay(2);
7972 		mutex_enter(SD_MUTEX(un));
7973 	}
7974 
7975 	mutex_exit(SD_MUTEX(un));
7976 }
7977 
7978 /*
7979  *    Function: sd_unit_attach
7980  *
7981  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7982  *		the soft state structure for the device and performs
7983  *		all necessary structure and device initializations.
7984  *
7985  *   Arguments: devi: the system's dev_info_t for the device.
7986  *
7987  * Return Code: DDI_SUCCESS if attach is successful.
7988  *		DDI_FAILURE if any part of the attach fails.
7989  *
7990  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7991  *		Kernel thread context only.  Can sleep.
7992  */
7993 
7994 static int
7995 sd_unit_attach(dev_info_t *devi)
7996 {
7997 	struct	scsi_device	*devp;
7998 	struct	sd_lun		*un;
7999 	char			*variantp;
8000 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
8001 	int	instance;
8002 	int	rval;
8003 	int	wc_enabled;
8004 	int	tgt;
8005 	uint64_t	capacity;
8006 	uint_t		lbasize;
8007 	dev_info_t	*pdip = ddi_get_parent(devi);
8008 
8009 	/*
8010 	 * Retrieve the target driver's private data area. This was set
8011 	 * up by the HBA.
8012 	 */
8013 	devp = ddi_get_driver_private(devi);
8014 
8015 	/*
8016 	 * Retrieve the target ID of the device.
8017 	 */
8018 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8019 	    SCSI_ADDR_PROP_TARGET, -1);
8020 
8021 	/*
8022 	 * Since we have no idea what state things were left in by the last
8023 	 * user of the device, set up some 'default' settings, ie. turn 'em
8024 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
8025 	 * Do this before the scsi_probe, which sends an inquiry.
8026 	 * This is a fix for bug (4430280).
8027 	 * Of special importance is wide-xfer. The drive could have been left
8028 	 * in wide transfer mode by the last driver to communicate with it,
8029 	 * this includes us. If that's the case, and if the following is not
8030 	 * setup properly or we don't re-negotiate with the drive prior to
8031 	 * transferring data to/from the drive, it causes bus parity errors,
8032 	 * data overruns, and unexpected interrupts. This first occurred when
8033 	 * the fix for bug (4378686) was made.
8034 	 */
8035 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
8036 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
8037 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
8038 
8039 	/*
8040 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
8041 	 * on a target. Setting it per lun instance actually sets the
8042 	 * capability of this target, which affects those luns already
8043 	 * attached on the same target. So during attach, we can only disable
8044 	 * this capability only when no other lun has been attached on this
8045 	 * target. By doing this, we assume a target has the same tagged-qing
8046 	 * capability for every lun. The condition can be removed when HBA
8047 	 * is changed to support per lun based tagged-qing capability.
8048 	 */
8049 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8050 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
8051 	}
8052 
8053 	/*
8054 	 * Use scsi_probe() to issue an INQUIRY command to the device.
8055 	 * This call will allocate and fill in the scsi_inquiry structure
8056 	 * and point the sd_inq member of the scsi_device structure to it.
8057 	 * If the attach succeeds, then this memory will not be de-allocated
8058 	 * (via scsi_unprobe()) until the instance is detached.
8059 	 */
8060 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
8061 		goto probe_failed;
8062 	}
8063 
8064 	/*
8065 	 * Check the device type as specified in the inquiry data and
8066 	 * claim it if it is of a type that we support.
8067 	 */
8068 	switch (devp->sd_inq->inq_dtype) {
8069 	case DTYPE_DIRECT:
8070 		break;
8071 	case DTYPE_RODIRECT:
8072 		break;
8073 	case DTYPE_OPTICAL:
8074 		break;
8075 	case DTYPE_NOTPRESENT:
8076 	default:
8077 		/* Unsupported device type; fail the attach. */
8078 		goto probe_failed;
8079 	}
8080 
8081 	/*
8082 	 * Allocate the soft state structure for this unit.
8083 	 *
8084 	 * We rely upon this memory being set to all zeroes by
8085 	 * ddi_soft_state_zalloc().  We assume that any member of the
8086 	 * soft state structure that is not explicitly initialized by
8087 	 * this routine will have a value of zero.
8088 	 */
8089 	instance = ddi_get_instance(devp->sd_dev);
8090 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
8091 		goto probe_failed;
8092 	}
8093 
8094 	/*
8095 	 * Retrieve a pointer to the newly-allocated soft state.
8096 	 *
8097 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
8098 	 * was successful, unless something has gone horribly wrong and the
8099 	 * ddi's soft state internals are corrupt (in which case it is
8100 	 * probably better to halt here than just fail the attach....)
8101 	 */
8102 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
8103 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
8104 		    instance);
8105 		/*NOTREACHED*/
8106 	}
8107 
8108 	/*
8109 	 * Link the back ptr of the driver soft state to the scsi_device
8110 	 * struct for this lun.
8111 	 * Save a pointer to the softstate in the driver-private area of
8112 	 * the scsi_device struct.
8113 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
8114 	 * we first set un->un_sd below.
8115 	 */
8116 	un->un_sd = devp;
8117 	devp->sd_private = (opaque_t)un;
8118 
8119 	/*
8120 	 * The following must be after devp is stored in the soft state struct.
8121 	 */
8122 #ifdef SDDEBUG
8123 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8124 	    "%s_unit_attach: un:0x%p instance:%d\n",
8125 	    ddi_driver_name(devi), un, instance);
8126 #endif
8127 
8128 	/*
8129 	 * Set up the device type and node type (for the minor nodes).
8130 	 * By default we assume that the device can at least support the
8131 	 * Common Command Set. Call it a CD-ROM if it reports itself
8132 	 * as a RODIRECT device.
8133 	 */
8134 	switch (devp->sd_inq->inq_dtype) {
8135 	case DTYPE_RODIRECT:
8136 		un->un_node_type = DDI_NT_CD_CHAN;
8137 		un->un_ctype	 = CTYPE_CDROM;
8138 		break;
8139 	case DTYPE_OPTICAL:
8140 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8141 		un->un_ctype	 = CTYPE_ROD;
8142 		break;
8143 	default:
8144 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8145 		un->un_ctype	 = CTYPE_CCS;
8146 		break;
8147 	}
8148 
8149 	/*
8150 	 * Try to read the interconnect type from the HBA.
8151 	 *
8152 	 * Note: This driver is currently compiled as two binaries, a parallel
8153 	 * scsi version (sd) and a fibre channel version (ssd). All functional
8154 	 * differences are determined at compile time. In the future a single
8155 	 * binary will be provided and the inteconnect type will be used to
8156 	 * differentiate between fibre and parallel scsi behaviors. At that time
8157 	 * it will be necessary for all fibre channel HBAs to support this
8158 	 * property.
8159 	 *
8160 	 * set un_f_is_fiber to TRUE ( default fiber )
8161 	 */
8162 	un->un_f_is_fibre = TRUE;
8163 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
8164 	case INTERCONNECT_SSA:
8165 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
8166 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8167 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
8168 		break;
8169 	case INTERCONNECT_PARALLEL:
8170 		un->un_f_is_fibre = FALSE;
8171 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8172 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8173 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
8174 		break;
8175 	case INTERCONNECT_SATA:
8176 		un->un_f_is_fibre = FALSE;
8177 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
8178 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8179 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
8180 		break;
8181 	case INTERCONNECT_FIBRE:
8182 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
8183 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8184 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
8185 		break;
8186 	case INTERCONNECT_FABRIC:
8187 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
8188 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
8189 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8190 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
8191 		break;
8192 	default:
8193 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
8194 		/*
8195 		 * The HBA does not support the "interconnect-type" property
8196 		 * (or did not provide a recognized type).
8197 		 *
8198 		 * Note: This will be obsoleted when a single fibre channel
8199 		 * and parallel scsi driver is delivered. In the meantime the
8200 		 * interconnect type will be set to the platform default.If that
8201 		 * type is not parallel SCSI, it means that we should be
8202 		 * assuming "ssd" semantics. However, here this also means that
8203 		 * the FC HBA is not supporting the "interconnect-type" property
8204 		 * like we expect it to, so log this occurrence.
8205 		 */
8206 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
8207 		if (!SD_IS_PARALLEL_SCSI(un)) {
8208 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8209 			    "sd_unit_attach: un:0x%p Assuming "
8210 			    "INTERCONNECT_FIBRE\n", un);
8211 		} else {
8212 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8213 			    "sd_unit_attach: un:0x%p Assuming "
8214 			    "INTERCONNECT_PARALLEL\n", un);
8215 			un->un_f_is_fibre = FALSE;
8216 		}
8217 #else
8218 		/*
8219 		 * Note: This source will be implemented when a single fibre
8220 		 * channel and parallel scsi driver is delivered. The default
8221 		 * will be to assume that if a device does not support the
8222 		 * "interconnect-type" property it is a parallel SCSI HBA and
8223 		 * we will set the interconnect type for parallel scsi.
8224 		 */
8225 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8226 		un->un_f_is_fibre = FALSE;
8227 #endif
8228 		break;
8229 	}
8230 
8231 	if (un->un_f_is_fibre == TRUE) {
8232 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
8233 			SCSI_VERSION_3) {
8234 			switch (un->un_interconnect_type) {
8235 			case SD_INTERCONNECT_FIBRE:
8236 			case SD_INTERCONNECT_SSA:
8237 				un->un_node_type = DDI_NT_BLOCK_WWN;
8238 				break;
8239 			default:
8240 				break;
8241 			}
8242 		}
8243 	}
8244 
8245 	/*
8246 	 * Initialize the Request Sense command for the target
8247 	 */
8248 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
8249 		goto alloc_rqs_failed;
8250 	}
8251 
8252 	/*
8253 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
8254 	 * with seperate binary for sd and ssd.
8255 	 *
8256 	 * x86 has 1 binary, un_retry_count is set base on connection type.
8257 	 * The hardcoded values will go away when Sparc uses 1 binary
8258 	 * for sd and ssd.  This hardcoded values need to match
8259 	 * SD_RETRY_COUNT in sddef.h
8260 	 * The value used is base on interconnect type.
8261 	 * fibre = 3, parallel = 5
8262 	 */
8263 #if defined(__i386) || defined(__amd64)
8264 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8265 #else
8266 	un->un_retry_count = SD_RETRY_COUNT;
8267 #endif
8268 
8269 	/*
8270 	 * Set the per disk retry count to the default number of retries
8271 	 * for disks and CDROMs. This value can be overridden by the
8272 	 * disk property list or an entry in sd.conf.
8273 	 */
8274 	un->un_notready_retry_count =
8275 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8276 			: DISK_NOT_READY_RETRY_COUNT(un);
8277 
8278 	/*
8279 	 * Set the busy retry count to the default value of un_retry_count.
8280 	 * This can be overridden by entries in sd.conf or the device
8281 	 * config table.
8282 	 */
8283 	un->un_busy_retry_count = un->un_retry_count;
8284 
8285 	/*
8286 	 * Init the reset threshold for retries.  This number determines
8287 	 * how many retries must be performed before a reset can be issued
8288 	 * (for certain error conditions). This can be overridden by entries
8289 	 * in sd.conf or the device config table.
8290 	 */
8291 	un->un_reset_retry_count = (un->un_retry_count / 2);
8292 
8293 	/*
8294 	 * Set the victim_retry_count to the default un_retry_count
8295 	 */
8296 	un->un_victim_retry_count = (2 * un->un_retry_count);
8297 
8298 	/*
8299 	 * Set the reservation release timeout to the default value of
8300 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8301 	 * device config table.
8302 	 */
8303 	un->un_reserve_release_time = 5;
8304 
8305 	/*
8306 	 * Set up the default maximum transfer size. Note that this may
8307 	 * get updated later in the attach, when setting up default wide
8308 	 * operations for disks.
8309 	 */
8310 #if defined(__i386) || defined(__amd64)
8311 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8312 #else
8313 	un->un_max_xfer_size = (uint_t)maxphys;
8314 #endif
8315 
8316 	/*
8317 	 * Get "allow bus device reset" property (defaults to "enabled" if
8318 	 * the property was not defined). This is to disable bus resets for
8319 	 * certain kinds of error recovery. Note: In the future when a run-time
8320 	 * fibre check is available the soft state flag should default to
8321 	 * enabled.
8322 	 */
8323 	if (un->un_f_is_fibre == TRUE) {
8324 		un->un_f_allow_bus_device_reset = TRUE;
8325 	} else {
8326 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8327 			"allow-bus-device-reset", 1) != 0) {
8328 			un->un_f_allow_bus_device_reset = TRUE;
8329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8330 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8331 				un);
8332 		} else {
8333 			un->un_f_allow_bus_device_reset = FALSE;
8334 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8335 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8336 				un);
8337 		}
8338 	}
8339 
8340 	/*
8341 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8342 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8343 	 *
8344 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8345 	 * property. The new "variant" property with a value of "atapi" has been
8346 	 * introduced so that future 'variants' of standard SCSI behavior (like
8347 	 * atapi) could be specified by the underlying HBA drivers by supplying
8348 	 * a new value for the "variant" property, instead of having to define a
8349 	 * new property.
8350 	 */
8351 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8352 		un->un_f_cfg_is_atapi = TRUE;
8353 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8354 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8355 	}
8356 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8357 	    &variantp) == DDI_PROP_SUCCESS) {
8358 		if (strcmp(variantp, "atapi") == 0) {
8359 			un->un_f_cfg_is_atapi = TRUE;
8360 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8361 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8362 		}
8363 		ddi_prop_free(variantp);
8364 	}
8365 
8366 	un->un_cmd_timeout	= SD_IO_TIME;
8367 
8368 	/* Info on current states, statuses, etc. (Updated frequently) */
8369 	un->un_state		= SD_STATE_NORMAL;
8370 	un->un_last_state	= SD_STATE_NORMAL;
8371 
8372 	/* Control & status info for command throttling */
8373 	un->un_throttle		= sd_max_throttle;
8374 	un->un_saved_throttle	= sd_max_throttle;
8375 	un->un_min_throttle	= sd_min_throttle;
8376 
8377 	if (un->un_f_is_fibre == TRUE) {
8378 		un->un_f_use_adaptive_throttle = TRUE;
8379 	} else {
8380 		un->un_f_use_adaptive_throttle = FALSE;
8381 	}
8382 
8383 	/* Removable media support. */
8384 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8385 	un->un_mediastate		= DKIO_NONE;
8386 	un->un_specified_mediastate	= DKIO_NONE;
8387 
8388 	/* CVs for suspend/resume (PM or DR) */
8389 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8390 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8391 
8392 	/* Power management support. */
8393 	un->un_power_level = SD_SPINDLE_UNINIT;
8394 
8395 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8396 	un->un_f_wcc_inprog = 0;
8397 
8398 	/*
8399 	 * The open/close semaphore is used to serialize threads executing
8400 	 * in the driver's open & close entry point routines for a given
8401 	 * instance.
8402 	 */
8403 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8404 
8405 	/*
8406 	 * The conf file entry and softstate variable is a forceful override,
8407 	 * meaning a non-zero value must be entered to change the default.
8408 	 */
8409 	un->un_f_disksort_disabled = FALSE;
8410 
8411 	/*
8412 	 * Retrieve the properties from the static driver table or the driver
8413 	 * configuration file (.conf) for this unit and update the soft state
8414 	 * for the device as needed for the indicated properties.
8415 	 * Note: the property configuration needs to occur here as some of the
8416 	 * following routines may have dependancies on soft state flags set
8417 	 * as part of the driver property configuration.
8418 	 */
8419 	sd_read_unit_properties(un);
8420 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8421 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8422 
8423 	/*
8424 	 * Only if a device has "hotpluggable" property, it is
8425 	 * treated as hotpluggable device. Otherwise, it is
8426 	 * regarded as non-hotpluggable one.
8427 	 */
8428 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8429 	    -1) != -1) {
8430 		un->un_f_is_hotpluggable = TRUE;
8431 	}
8432 
8433 	/*
8434 	 * set unit's attributes(flags) according to "hotpluggable" and
8435 	 * RMB bit in INQUIRY data.
8436 	 */
8437 	sd_set_unit_attributes(un, devi);
8438 
8439 	/*
8440 	 * By default, we mark the capacity, lbasize, and geometry
8441 	 * as invalid. Only if we successfully read a valid capacity
8442 	 * will we update the un_blockcount and un_tgt_blocksize with the
8443 	 * valid values (the geometry will be validated later).
8444 	 */
8445 	un->un_f_blockcount_is_valid	= FALSE;
8446 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8447 	un->un_f_geometry_is_valid	= FALSE;
8448 
8449 	/*
8450 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8451 	 * otherwise.
8452 	 */
8453 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8454 	un->un_blockcount = 0;
8455 
8456 	/*
8457 	 * Set up the per-instance info needed to determine the correct
8458 	 * CDBs and other info for issuing commands to the target.
8459 	 */
8460 	sd_init_cdb_limits(un);
8461 
8462 	/*
8463 	 * Set up the IO chains to use, based upon the target type.
8464 	 */
8465 	if (un->un_f_non_devbsize_supported) {
8466 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8467 	} else {
8468 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8469 	}
8470 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8471 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8472 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8473 
8474 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8475 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8476 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8477 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8478 
8479 
8480 	if (ISCD(un)) {
8481 		un->un_additional_codes = sd_additional_codes;
8482 	} else {
8483 		un->un_additional_codes = NULL;
8484 	}
8485 
8486 	/*
8487 	 * Create the kstats here so they can be available for attach-time
8488 	 * routines that send commands to the unit (either polled or via
8489 	 * sd_send_scsi_cmd).
8490 	 *
8491 	 * Note: This is a critical sequence that needs to be maintained:
8492 	 *	1) Instantiate the kstats here, before any routines using the
8493 	 *	   iopath (i.e. sd_send_scsi_cmd).
8494 	 *	2) Instantiate and initialize the partition stats
8495 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
8496 	 *	   see detailed comments there.
8497 	 *	3) Initialize the error stats (sd_set_errstats), following
8498 	 *	   sd_validate_geometry(),sd_register_devid(),
8499 	 *	   and sd_cache_control().
8500 	 */
8501 
8502 	un->un_stats = kstat_create(sd_label, instance,
8503 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8504 	if (un->un_stats != NULL) {
8505 		un->un_stats->ks_lock = SD_MUTEX(un);
8506 		kstat_install(un->un_stats);
8507 	}
8508 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8509 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8510 
8511 	sd_create_errstats(un, instance);
8512 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8513 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8514 
8515 	/*
8516 	 * The following if/else code was relocated here from below as part
8517 	 * of the fix for bug (4430280). However with the default setup added
8518 	 * on entry to this routine, it's no longer absolutely necessary for
8519 	 * this to be before the call to sd_spin_up_unit.
8520 	 */
8521 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
8522 		/*
8523 		 * If SCSI-2 tagged queueing is supported by the target
8524 		 * and by the host adapter then we will enable it.
8525 		 */
8526 		un->un_tagflags = 0;
8527 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8528 		    (devp->sd_inq->inq_cmdque) &&
8529 		    (un->un_f_arq_enabled == TRUE)) {
8530 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8531 			    1, 1) == 1) {
8532 				un->un_tagflags = FLAG_STAG;
8533 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8534 				    "sd_unit_attach: un:0x%p tag queueing "
8535 				    "enabled\n", un);
8536 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8537 			    "untagged-qing", 0) == 1) {
8538 				un->un_f_opt_queueing = TRUE;
8539 				un->un_saved_throttle = un->un_throttle =
8540 				    min(un->un_throttle, 3);
8541 			} else {
8542 				un->un_f_opt_queueing = FALSE;
8543 				un->un_saved_throttle = un->un_throttle = 1;
8544 			}
8545 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8546 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8547 			/* The Host Adapter supports internal queueing. */
8548 			un->un_f_opt_queueing = TRUE;
8549 			un->un_saved_throttle = un->un_throttle =
8550 			    min(un->un_throttle, 3);
8551 		} else {
8552 			un->un_f_opt_queueing = FALSE;
8553 			un->un_saved_throttle = un->un_throttle = 1;
8554 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8555 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8556 		}
8557 
8558 		/*
8559 		 * Enable large transfers for SATA/SAS drives
8560 		 */
8561 		if (SD_IS_SERIAL(un)) {
8562 			un->un_max_xfer_size =
8563 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8564 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8565 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8566 			    "sd_unit_attach: un:0x%p max transfer "
8567 			    "size=0x%x\n", un, un->un_max_xfer_size);
8568 
8569 		}
8570 
8571 		/* Setup or tear down default wide operations for disks */
8572 
8573 		/*
8574 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8575 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8576 		 * system and be set to different values. In the future this
8577 		 * code may need to be updated when the ssd module is
8578 		 * obsoleted and removed from the system. (4299588)
8579 		 */
8580 		if (SD_IS_PARALLEL_SCSI(un) &&
8581 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8582 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8583 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8584 			    1, 1) == 1) {
8585 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8586 				    "sd_unit_attach: un:0x%p Wide Transfer "
8587 				    "enabled\n", un);
8588 			}
8589 
8590 			/*
8591 			 * If tagged queuing has also been enabled, then
8592 			 * enable large xfers
8593 			 */
8594 			if (un->un_saved_throttle == sd_max_throttle) {
8595 				un->un_max_xfer_size =
8596 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8597 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8598 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8599 				    "sd_unit_attach: un:0x%p max transfer "
8600 				    "size=0x%x\n", un, un->un_max_xfer_size);
8601 			}
8602 		} else {
8603 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8604 			    0, 1) == 1) {
8605 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8606 				    "sd_unit_attach: un:0x%p "
8607 				    "Wide Transfer disabled\n", un);
8608 			}
8609 		}
8610 	} else {
8611 		un->un_tagflags = FLAG_STAG;
8612 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8613 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8614 	}
8615 
8616 	/*
8617 	 * If this target supports LUN reset, try to enable it.
8618 	 */
8619 	if (un->un_f_lun_reset_enabled) {
8620 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8621 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8622 			    "un:0x%p lun_reset capability set\n", un);
8623 		} else {
8624 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8625 			    "un:0x%p lun-reset capability not set\n", un);
8626 		}
8627 	}
8628 
8629 	/*
8630 	 * At this point in the attach, we have enough info in the
8631 	 * soft state to be able to issue commands to the target.
8632 	 *
8633 	 * All command paths used below MUST issue their commands as
8634 	 * SD_PATH_DIRECT. This is important as intermediate layers
8635 	 * are not all initialized yet (such as PM).
8636 	 */
8637 
8638 	/*
8639 	 * Send a TEST UNIT READY command to the device. This should clear
8640 	 * any outstanding UNIT ATTENTION that may be present.
8641 	 *
8642 	 * Note: Don't check for success, just track if there is a reservation,
8643 	 * this is a throw away command to clear any unit attentions.
8644 	 *
8645 	 * Note: This MUST be the first command issued to the target during
8646 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8647 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8648 	 * with attempts at spinning up a device with no media.
8649 	 */
8650 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8651 		reservation_flag = SD_TARGET_IS_RESERVED;
8652 	}
8653 
8654 	/*
8655 	 * If the device is NOT a removable media device, attempt to spin
8656 	 * it up (using the START_STOP_UNIT command) and read its capacity
8657 	 * (using the READ CAPACITY command).  Note, however, that either
8658 	 * of these could fail and in some cases we would continue with
8659 	 * the attach despite the failure (see below).
8660 	 */
8661 	if (un->un_f_descr_format_supported) {
8662 		switch (sd_spin_up_unit(un)) {
8663 		case 0:
8664 			/*
8665 			 * Spin-up was successful; now try to read the
8666 			 * capacity.  If successful then save the results
8667 			 * and mark the capacity & lbasize as valid.
8668 			 */
8669 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8670 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8671 
8672 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8673 			    &lbasize, SD_PATH_DIRECT)) {
8674 			case 0: {
8675 				if (capacity > DK_MAX_BLOCKS) {
8676 #ifdef _LP64
8677 					if (capacity + 1 >
8678 					    SD_GROUP1_MAX_ADDRESS) {
8679 						/*
8680 						 * Enable descriptor format
8681 						 * sense data so that we can
8682 						 * get 64 bit sense data
8683 						 * fields.
8684 						 */
8685 						sd_enable_descr_sense(un);
8686 					}
8687 #else
8688 					/* 32-bit kernels can't handle this */
8689 					scsi_log(SD_DEVINFO(un),
8690 					    sd_label, CE_WARN,
8691 					    "disk has %llu blocks, which "
8692 					    "is too large for a 32-bit "
8693 					    "kernel", capacity);
8694 
8695 #if defined(__i386) || defined(__amd64)
8696 					/*
8697 					 * Refer to comments related to off-by-1
8698 					 * at the header of this file.
8699 					 * 1TB disk was treated as (1T - 512)B
8700 					 * in the past, so that it might has
8701 					 * valid VTOC and solaris partitions,
8702 					 * we have to allow it to continue to
8703 					 * work.
8704 					 */
8705 					if (capacity -1 > DK_MAX_BLOCKS)
8706 #endif
8707 					goto spinup_failed;
8708 #endif
8709 				}
8710 
8711 				/*
8712 				 * Here it's not necessary to check the case:
8713 				 * the capacity of the device is bigger than
8714 				 * what the max hba cdb can support. Because
8715 				 * sd_send_scsi_READ_CAPACITY will retrieve
8716 				 * the capacity by sending USCSI command, which
8717 				 * is constrained by the max hba cdb. Actually,
8718 				 * sd_send_scsi_READ_CAPACITY will return
8719 				 * EINVAL when using bigger cdb than required
8720 				 * cdb length. Will handle this case in
8721 				 * "case EINVAL".
8722 				 */
8723 
8724 				/*
8725 				 * The following relies on
8726 				 * sd_send_scsi_READ_CAPACITY never
8727 				 * returning 0 for capacity and/or lbasize.
8728 				 */
8729 				sd_update_block_info(un, lbasize, capacity);
8730 
8731 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8732 				    "sd_unit_attach: un:0x%p capacity = %ld "
8733 				    "blocks; lbasize= %ld.\n", un,
8734 				    un->un_blockcount, un->un_tgt_blocksize);
8735 
8736 				break;
8737 			}
8738 			case EINVAL:
8739 				/*
8740 				 * In the case where the max-cdb-length property
8741 				 * is smaller than the required CDB length for
8742 				 * a SCSI device, a target driver can fail to
8743 				 * attach to that device.
8744 				 */
8745 				scsi_log(SD_DEVINFO(un),
8746 				    sd_label, CE_WARN,
8747 				    "disk capacity is too large "
8748 				    "for current cdb length");
8749 				goto spinup_failed;
8750 			case EACCES:
8751 				/*
8752 				 * Should never get here if the spin-up
8753 				 * succeeded, but code it in anyway.
8754 				 * From here, just continue with the attach...
8755 				 */
8756 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8757 				    "sd_unit_attach: un:0x%p "
8758 				    "sd_send_scsi_READ_CAPACITY "
8759 				    "returned reservation conflict\n", un);
8760 				reservation_flag = SD_TARGET_IS_RESERVED;
8761 				break;
8762 			default:
8763 				/*
8764 				 * Likewise, should never get here if the
8765 				 * spin-up succeeded. Just continue with
8766 				 * the attach...
8767 				 */
8768 				break;
8769 			}
8770 			break;
8771 		case EACCES:
8772 			/*
8773 			 * Device is reserved by another host.  In this case
8774 			 * we could not spin it up or read the capacity, but
8775 			 * we continue with the attach anyway.
8776 			 */
8777 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8778 			    "sd_unit_attach: un:0x%p spin-up reservation "
8779 			    "conflict.\n", un);
8780 			reservation_flag = SD_TARGET_IS_RESERVED;
8781 			break;
8782 		default:
8783 			/* Fail the attach if the spin-up failed. */
8784 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8785 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8786 			goto spinup_failed;
8787 		}
8788 	}
8789 
8790 	/*
8791 	 * Check to see if this is a MMC drive
8792 	 */
8793 	if (ISCD(un)) {
8794 		sd_set_mmc_caps(un);
8795 	}
8796 
8797 	/*
8798 	 * Create the minor nodes for the device.
8799 	 * Note: If we want to support fdisk on both sparc and intel, this will
8800 	 * have to separate out the notion that VTOC8 is always sparc, and
8801 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8802 	 * type will have to be determined at run-time, and the fdisk
8803 	 * partitioning will have to have been read & set up before we
8804 	 * create the minor nodes. (any other inits (such as kstats) that
8805 	 * also ought to be done before creating the minor nodes?) (Doesn't
8806 	 * setting up the minor nodes kind of imply that we're ready to
8807 	 * handle an open from userland?)
8808 	 */
8809 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8810 		goto create_minor_nodes_failed;
8811 	}
8812 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8813 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8814 
8815 	/*
8816 	 * Add a zero-length attribute to tell the world we support
8817 	 * kernel ioctls (for layered drivers)
8818 	 */
8819 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8820 	    DDI_KERNEL_IOCTL, NULL, 0);
8821 
8822 	/*
8823 	 * Add a boolean property to tell the world we support
8824 	 * the B_FAILFAST flag (for layered drivers)
8825 	 */
8826 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8827 	    "ddi-failfast-supported", NULL, 0);
8828 
8829 	/*
8830 	 * Initialize power management
8831 	 */
8832 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8833 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8834 	sd_setup_pm(un, devi);
8835 	if (un->un_f_pm_is_enabled == FALSE) {
8836 		/*
8837 		 * For performance, point to a jump table that does
8838 		 * not include pm.
8839 		 * The direct and priority chains don't change with PM.
8840 		 *
8841 		 * Note: this is currently done based on individual device
8842 		 * capabilities. When an interface for determining system
8843 		 * power enabled state becomes available, or when additional
8844 		 * layers are added to the command chain, these values will
8845 		 * have to be re-evaluated for correctness.
8846 		 */
8847 		if (un->un_f_non_devbsize_supported) {
8848 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8849 		} else {
8850 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8851 		}
8852 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8853 	}
8854 
8855 	/*
8856 	 * This property is set to 0 by HA software to avoid retries
8857 	 * on a reserved disk. (The preferred property name is
8858 	 * "retry-on-reservation-conflict") (1189689)
8859 	 *
8860 	 * Note: The use of a global here can have unintended consequences. A
8861 	 * per instance variable is preferrable to match the capabilities of
8862 	 * different underlying hba's (4402600)
8863 	 */
8864 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8865 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8866 	    sd_retry_on_reservation_conflict);
8867 	if (sd_retry_on_reservation_conflict != 0) {
8868 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8869 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8870 		    sd_retry_on_reservation_conflict);
8871 	}
8872 
8873 	/* Set up options for QFULL handling. */
8874 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8875 	    "qfull-retries", -1)) != -1) {
8876 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8877 		    rval, 1);
8878 	}
8879 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8880 	    "qfull-retry-interval", -1)) != -1) {
8881 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8882 		    rval, 1);
8883 	}
8884 
8885 	/*
8886 	 * This just prints a message that announces the existence of the
8887 	 * device. The message is always printed in the system logfile, but
8888 	 * only appears on the console if the system is booted with the
8889 	 * -v (verbose) argument.
8890 	 */
8891 	ddi_report_dev(devi);
8892 
8893 	/*
8894 	 * The framework calls driver attach routines single-threaded
8895 	 * for a given instance.  However we still acquire SD_MUTEX here
8896 	 * because this required for calling the sd_validate_geometry()
8897 	 * and sd_register_devid() functions.
8898 	 */
8899 	mutex_enter(SD_MUTEX(un));
8900 	un->un_f_geometry_is_valid = FALSE;
8901 	un->un_mediastate = DKIO_NONE;
8902 	un->un_reserved = -1;
8903 
8904 	/*
8905 	 * Read and validate the device's geometry (ie, disk label)
8906 	 * A new unformatted drive will not have a valid geometry, but
8907 	 * the driver needs to successfully attach to this device so
8908 	 * the drive can be formatted via ioctls.
8909 	 */
8910 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8911 	    ENOTSUP)) &&
8912 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8913 		/*
8914 		 * We found a small disk with an EFI label on it;
8915 		 * we need to fix up the minor nodes accordingly.
8916 		 */
8917 		ddi_remove_minor_node(devi, "h");
8918 		ddi_remove_minor_node(devi, "h,raw");
8919 		(void) ddi_create_minor_node(devi, "wd",
8920 		    S_IFBLK,
8921 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8922 		    un->un_node_type, NULL);
8923 		(void) ddi_create_minor_node(devi, "wd,raw",
8924 		    S_IFCHR,
8925 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8926 		    un->un_node_type, NULL);
8927 	}
8928 #if defined(__i386) || defined(__amd64)
8929 	else if (un->un_f_capacity_adjusted == 1) {
8930 		/*
8931 		 * Refer to comments related to off-by-1 at the
8932 		 * header of this file.
8933 		 * Adjust minor node for 1TB disk.
8934 		 */
8935 		ddi_remove_minor_node(devi, "wd");
8936 		ddi_remove_minor_node(devi, "wd,raw");
8937 		(void) ddi_create_minor_node(devi, "h",
8938 		    S_IFBLK,
8939 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8940 		    un->un_node_type, NULL);
8941 		(void) ddi_create_minor_node(devi, "h,raw",
8942 		    S_IFCHR,
8943 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8944 		    un->un_node_type, NULL);
8945 	}
8946 #endif
8947 	/*
8948 	 * Read and initialize the devid for the unit.
8949 	 */
8950 	ASSERT(un->un_errstats != NULL);
8951 	if (un->un_f_devid_supported) {
8952 		sd_register_devid(un, devi, reservation_flag);
8953 	}
8954 	mutex_exit(SD_MUTEX(un));
8955 
8956 #if (defined(__fibre))
8957 	/*
8958 	 * Register callbacks for fibre only.  You can't do this soley
8959 	 * on the basis of the devid_type because this is hba specific.
8960 	 * We need to query our hba capabilities to find out whether to
8961 	 * register or not.
8962 	 */
8963 	if (un->un_f_is_fibre) {
8964 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8965 		sd_init_event_callbacks(un);
8966 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8967 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8968 	    }
8969 	}
8970 #endif
8971 
8972 	if (un->un_f_opt_disable_cache == TRUE) {
8973 		/*
8974 		 * Disable both read cache and write cache.  This is
8975 		 * the historic behavior of the keywords in the config file.
8976 		 */
8977 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8978 		    0) {
8979 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8980 			    "sd_unit_attach: un:0x%p Could not disable "
8981 			    "caching", un);
8982 			goto devid_failed;
8983 		}
8984 	}
8985 
8986 	/*
8987 	 * Check the value of the WCE bit now and
8988 	 * set un_f_write_cache_enabled accordingly.
8989 	 */
8990 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8991 	mutex_enter(SD_MUTEX(un));
8992 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8993 	mutex_exit(SD_MUTEX(un));
8994 
8995 	/*
8996 	 * Set the pstat and error stat values here, so data obtained during the
8997 	 * previous attach-time routines is available.
8998 	 *
8999 	 * Note: This is a critical sequence that needs to be maintained:
9000 	 *	1) Instantiate the kstats before any routines using the iopath
9001 	 *	   (i.e. sd_send_scsi_cmd).
9002 	 *	2) Instantiate and initialize the partition stats
9003 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
9004 	 *	   see detailed comments there.
9005 	 *	3) Initialize the error stats (sd_set_errstats), following
9006 	 *	   sd_validate_geometry(),sd_register_devid(),
9007 	 *	   and sd_cache_control().
9008 	 */
9009 	sd_set_errstats(un);
9010 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9011 	    "sd_unit_attach: un:0x%p errstats set\n", un);
9012 
9013 	/*
9014 	 * Find out what type of reservation this disk supports.
9015 	 */
9016 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
9017 	case 0:
9018 		/*
9019 		 * SCSI-3 reservations are supported.
9020 		 */
9021 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9022 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9023 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
9024 		break;
9025 	case ENOTSUP:
9026 		/*
9027 		 * The PERSISTENT RESERVE IN command would not be recognized by
9028 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
9029 		 */
9030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9031 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
9032 		un->un_reservation_type = SD_SCSI2_RESERVATION;
9033 		break;
9034 	default:
9035 		/*
9036 		 * default to SCSI-3 reservations
9037 		 */
9038 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9039 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
9040 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9041 		break;
9042 	}
9043 
9044 	/*
9045 	 * After successfully attaching an instance, we record the information
9046 	 * of how many luns have been attached on the relative target and
9047 	 * controller for parallel SCSI. This information is used when sd tries
9048 	 * to set the tagged queuing capability in HBA.
9049 	 */
9050 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9051 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
9052 	}
9053 
9054 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9055 	    "sd_unit_attach: un:0x%p exit success\n", un);
9056 
9057 	return (DDI_SUCCESS);
9058 
9059 	/*
9060 	 * An error occurred during the attach; clean up & return failure.
9061 	 */
9062 
9063 devid_failed:
9064 
9065 setup_pm_failed:
9066 	ddi_remove_minor_node(devi, NULL);
9067 
9068 create_minor_nodes_failed:
9069 	/*
9070 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9071 	 */
9072 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9073 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9074 
9075 	/*
9076 	 * Refer to the comments of setting tagged-qing in the beginning of
9077 	 * sd_unit_attach. We can only disable tagged queuing when there is
9078 	 * no lun attached on the target.
9079 	 */
9080 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
9081 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9082 	}
9083 
9084 	if (un->un_f_is_fibre == FALSE) {
9085 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9086 	}
9087 
9088 spinup_failed:
9089 
9090 	mutex_enter(SD_MUTEX(un));
9091 
9092 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
9093 	if (un->un_direct_priority_timeid != NULL) {
9094 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9095 		un->un_direct_priority_timeid = NULL;
9096 		mutex_exit(SD_MUTEX(un));
9097 		(void) untimeout(temp_id);
9098 		mutex_enter(SD_MUTEX(un));
9099 	}
9100 
9101 	/* Cancel any pending start/stop timeouts */
9102 	if (un->un_startstop_timeid != NULL) {
9103 		timeout_id_t temp_id = un->un_startstop_timeid;
9104 		un->un_startstop_timeid = NULL;
9105 		mutex_exit(SD_MUTEX(un));
9106 		(void) untimeout(temp_id);
9107 		mutex_enter(SD_MUTEX(un));
9108 	}
9109 
9110 	/* Cancel any pending reset-throttle timeouts */
9111 	if (un->un_reset_throttle_timeid != NULL) {
9112 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9113 		un->un_reset_throttle_timeid = NULL;
9114 		mutex_exit(SD_MUTEX(un));
9115 		(void) untimeout(temp_id);
9116 		mutex_enter(SD_MUTEX(un));
9117 	}
9118 
9119 	/* Cancel any pending retry timeouts */
9120 	if (un->un_retry_timeid != NULL) {
9121 		timeout_id_t temp_id = un->un_retry_timeid;
9122 		un->un_retry_timeid = NULL;
9123 		mutex_exit(SD_MUTEX(un));
9124 		(void) untimeout(temp_id);
9125 		mutex_enter(SD_MUTEX(un));
9126 	}
9127 
9128 	/* Cancel any pending delayed cv broadcast timeouts */
9129 	if (un->un_dcvb_timeid != NULL) {
9130 		timeout_id_t temp_id = un->un_dcvb_timeid;
9131 		un->un_dcvb_timeid = NULL;
9132 		mutex_exit(SD_MUTEX(un));
9133 		(void) untimeout(temp_id);
9134 		mutex_enter(SD_MUTEX(un));
9135 	}
9136 
9137 	mutex_exit(SD_MUTEX(un));
9138 
9139 	/* There should not be any in-progress I/O so ASSERT this check */
9140 	ASSERT(un->un_ncmds_in_transport == 0);
9141 	ASSERT(un->un_ncmds_in_driver == 0);
9142 
9143 	/* Do not free the softstate if the callback routine is active */
9144 	sd_sync_with_callback(un);
9145 
9146 	/*
9147 	 * Partition stats apparently are not used with removables. These would
9148 	 * not have been created during attach, so no need to clean them up...
9149 	 */
9150 	if (un->un_stats != NULL) {
9151 		kstat_delete(un->un_stats);
9152 		un->un_stats = NULL;
9153 	}
9154 	if (un->un_errstats != NULL) {
9155 		kstat_delete(un->un_errstats);
9156 		un->un_errstats = NULL;
9157 	}
9158 
9159 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9160 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9161 
9162 	ddi_prop_remove_all(devi);
9163 	sema_destroy(&un->un_semoclose);
9164 	cv_destroy(&un->un_state_cv);
9165 
9166 getrbuf_failed:
9167 
9168 	sd_free_rqs(un);
9169 
9170 alloc_rqs_failed:
9171 
9172 	devp->sd_private = NULL;
9173 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
9174 
9175 get_softstate_failed:
9176 	/*
9177 	 * Note: the man pages are unclear as to whether or not doing a
9178 	 * ddi_soft_state_free(sd_state, instance) is the right way to
9179 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
9180 	 * ddi_get_soft_state() fails.  The implication seems to be
9181 	 * that the get_soft_state cannot fail if the zalloc succeeds.
9182 	 */
9183 	ddi_soft_state_free(sd_state, instance);
9184 
9185 probe_failed:
9186 	scsi_unprobe(devp);
9187 #ifdef SDDEBUG
9188 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
9189 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
9190 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
9191 		    (void *)un);
9192 	}
9193 #endif
9194 	return (DDI_FAILURE);
9195 }
9196 
9197 
9198 /*
9199  *    Function: sd_unit_detach
9200  *
9201  * Description: Performs DDI_DETACH processing for sddetach().
9202  *
9203  * Return Code: DDI_SUCCESS
9204  *		DDI_FAILURE
9205  *
9206  *     Context: Kernel thread context
9207  */
9208 
9209 static int
9210 sd_unit_detach(dev_info_t *devi)
9211 {
9212 	struct scsi_device	*devp;
9213 	struct sd_lun		*un;
9214 	int			i;
9215 	int			tgt;
9216 	dev_t			dev;
9217 	dev_info_t		*pdip = ddi_get_parent(devi);
9218 	int			instance = ddi_get_instance(devi);
9219 
9220 	mutex_enter(&sd_detach_mutex);
9221 
9222 	/*
9223 	 * Fail the detach for any of the following:
9224 	 *  - Unable to get the sd_lun struct for the instance
9225 	 *  - A layered driver has an outstanding open on the instance
9226 	 *  - Another thread is already detaching this instance
9227 	 *  - Another thread is currently performing an open
9228 	 */
9229 	devp = ddi_get_driver_private(devi);
9230 	if ((devp == NULL) ||
9231 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
9232 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
9233 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
9234 		mutex_exit(&sd_detach_mutex);
9235 		return (DDI_FAILURE);
9236 	}
9237 
9238 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
9239 
9240 	/*
9241 	 * Mark this instance as currently in a detach, to inhibit any
9242 	 * opens from a layered driver.
9243 	 */
9244 	un->un_detach_count++;
9245 	mutex_exit(&sd_detach_mutex);
9246 
9247 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
9248 	    SCSI_ADDR_PROP_TARGET, -1);
9249 
9250 	dev = sd_make_device(SD_DEVINFO(un));
9251 
9252 #ifndef lint
9253 	_NOTE(COMPETING_THREADS_NOW);
9254 #endif
9255 
9256 	mutex_enter(SD_MUTEX(un));
9257 
9258 	/*
9259 	 * Fail the detach if there are any outstanding layered
9260 	 * opens on this device.
9261 	 */
9262 	for (i = 0; i < NDKMAP; i++) {
9263 		if (un->un_ocmap.lyropen[i] != 0) {
9264 			goto err_notclosed;
9265 		}
9266 	}
9267 
9268 	/*
9269 	 * Verify there are NO outstanding commands issued to this device.
9270 	 * ie, un_ncmds_in_transport == 0.
9271 	 * It's possible to have outstanding commands through the physio
9272 	 * code path, even though everything's closed.
9273 	 */
9274 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
9275 	    (un->un_direct_priority_timeid != NULL) ||
9276 	    (un->un_state == SD_STATE_RWAIT)) {
9277 		mutex_exit(SD_MUTEX(un));
9278 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9279 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
9280 		goto err_stillbusy;
9281 	}
9282 
9283 	/*
9284 	 * If we have the device reserved, release the reservation.
9285 	 */
9286 	if ((un->un_resvd_status & SD_RESERVE) &&
9287 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
9288 		mutex_exit(SD_MUTEX(un));
9289 		/*
9290 		 * Note: sd_reserve_release sends a command to the device
9291 		 * via the sd_ioctlcmd() path, and can sleep.
9292 		 */
9293 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
9294 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9295 			    "sd_dr_detach: Cannot release reservation \n");
9296 		}
9297 	} else {
9298 		mutex_exit(SD_MUTEX(un));
9299 	}
9300 
9301 	/*
9302 	 * Untimeout any reserve recover, throttle reset, restart unit
9303 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9304 	 * from getting nulled by their callback functions.
9305 	 */
9306 	mutex_enter(SD_MUTEX(un));
9307 	if (un->un_resvd_timeid != NULL) {
9308 		timeout_id_t temp_id = un->un_resvd_timeid;
9309 		un->un_resvd_timeid = NULL;
9310 		mutex_exit(SD_MUTEX(un));
9311 		(void) untimeout(temp_id);
9312 		mutex_enter(SD_MUTEX(un));
9313 	}
9314 
9315 	if (un->un_reset_throttle_timeid != NULL) {
9316 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9317 		un->un_reset_throttle_timeid = NULL;
9318 		mutex_exit(SD_MUTEX(un));
9319 		(void) untimeout(temp_id);
9320 		mutex_enter(SD_MUTEX(un));
9321 	}
9322 
9323 	if (un->un_startstop_timeid != NULL) {
9324 		timeout_id_t temp_id = un->un_startstop_timeid;
9325 		un->un_startstop_timeid = NULL;
9326 		mutex_exit(SD_MUTEX(un));
9327 		(void) untimeout(temp_id);
9328 		mutex_enter(SD_MUTEX(un));
9329 	}
9330 
9331 	if (un->un_dcvb_timeid != NULL) {
9332 		timeout_id_t temp_id = un->un_dcvb_timeid;
9333 		un->un_dcvb_timeid = NULL;
9334 		mutex_exit(SD_MUTEX(un));
9335 		(void) untimeout(temp_id);
9336 	} else {
9337 		mutex_exit(SD_MUTEX(un));
9338 	}
9339 
9340 	/* Remove any pending reservation reclaim requests for this device */
9341 	sd_rmv_resv_reclaim_req(dev);
9342 
9343 	mutex_enter(SD_MUTEX(un));
9344 
9345 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9346 	if (un->un_direct_priority_timeid != NULL) {
9347 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9348 		un->un_direct_priority_timeid = NULL;
9349 		mutex_exit(SD_MUTEX(un));
9350 		(void) untimeout(temp_id);
9351 		mutex_enter(SD_MUTEX(un));
9352 	}
9353 
9354 	/* Cancel any active multi-host disk watch thread requests */
9355 	if (un->un_mhd_token != NULL) {
9356 		mutex_exit(SD_MUTEX(un));
9357 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9358 		if (scsi_watch_request_terminate(un->un_mhd_token,
9359 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9360 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9361 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9362 			/*
9363 			 * Note: We are returning here after having removed
9364 			 * some driver timeouts above. This is consistent with
9365 			 * the legacy implementation but perhaps the watch
9366 			 * terminate call should be made with the wait flag set.
9367 			 */
9368 			goto err_stillbusy;
9369 		}
9370 		mutex_enter(SD_MUTEX(un));
9371 		un->un_mhd_token = NULL;
9372 	}
9373 
9374 	if (un->un_swr_token != NULL) {
9375 		mutex_exit(SD_MUTEX(un));
9376 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9377 		if (scsi_watch_request_terminate(un->un_swr_token,
9378 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9379 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9380 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9381 			/*
9382 			 * Note: We are returning here after having removed
9383 			 * some driver timeouts above. This is consistent with
9384 			 * the legacy implementation but perhaps the watch
9385 			 * terminate call should be made with the wait flag set.
9386 			 */
9387 			goto err_stillbusy;
9388 		}
9389 		mutex_enter(SD_MUTEX(un));
9390 		un->un_swr_token = NULL;
9391 	}
9392 
9393 	mutex_exit(SD_MUTEX(un));
9394 
9395 	/*
9396 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9397 	 * if we have not registered one.
9398 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9399 	 */
9400 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9401 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9402 
9403 	/*
9404 	 * protect the timeout pointers from getting nulled by
9405 	 * their callback functions during the cancellation process.
9406 	 * In such a scenario untimeout can be invoked with a null value.
9407 	 */
9408 	_NOTE(NO_COMPETING_THREADS_NOW);
9409 
9410 	mutex_enter(&un->un_pm_mutex);
9411 	if (un->un_pm_idle_timeid != NULL) {
9412 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9413 		un->un_pm_idle_timeid = NULL;
9414 		mutex_exit(&un->un_pm_mutex);
9415 
9416 		/*
9417 		 * Timeout is active; cancel it.
9418 		 * Note that it'll never be active on a device
9419 		 * that does not support PM therefore we don't
9420 		 * have to check before calling pm_idle_component.
9421 		 */
9422 		(void) untimeout(temp_id);
9423 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9424 		mutex_enter(&un->un_pm_mutex);
9425 	}
9426 
9427 	/*
9428 	 * Check whether there is already a timeout scheduled for power
9429 	 * management. If yes then don't lower the power here, that's.
9430 	 * the timeout handler's job.
9431 	 */
9432 	if (un->un_pm_timeid != NULL) {
9433 		timeout_id_t temp_id = un->un_pm_timeid;
9434 		un->un_pm_timeid = NULL;
9435 		mutex_exit(&un->un_pm_mutex);
9436 		/*
9437 		 * Timeout is active; cancel it.
9438 		 * Note that it'll never be active on a device
9439 		 * that does not support PM therefore we don't
9440 		 * have to check before calling pm_idle_component.
9441 		 */
9442 		(void) untimeout(temp_id);
9443 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9444 
9445 	} else {
9446 		mutex_exit(&un->un_pm_mutex);
9447 		if ((un->un_f_pm_is_enabled == TRUE) &&
9448 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9449 		    DDI_SUCCESS)) {
9450 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9451 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9452 			/*
9453 			 * Fix for bug: 4297749, item # 13
9454 			 * The above test now includes a check to see if PM is
9455 			 * supported by this device before call
9456 			 * pm_lower_power().
9457 			 * Note, the following is not dead code. The call to
9458 			 * pm_lower_power above will generate a call back into
9459 			 * our sdpower routine which might result in a timeout
9460 			 * handler getting activated. Therefore the following
9461 			 * code is valid and necessary.
9462 			 */
9463 			mutex_enter(&un->un_pm_mutex);
9464 			if (un->un_pm_timeid != NULL) {
9465 				timeout_id_t temp_id = un->un_pm_timeid;
9466 				un->un_pm_timeid = NULL;
9467 				mutex_exit(&un->un_pm_mutex);
9468 				(void) untimeout(temp_id);
9469 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9470 			} else {
9471 				mutex_exit(&un->un_pm_mutex);
9472 			}
9473 		}
9474 	}
9475 
9476 	/*
9477 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9478 	 * Relocated here from above to be after the call to
9479 	 * pm_lower_power, which was getting errors.
9480 	 */
9481 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9482 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9483 
9484 	/*
9485 	 * Currently, tagged queuing is supported per target based by HBA.
9486 	 * Setting this per lun instance actually sets the capability of this
9487 	 * target in HBA, which affects those luns already attached on the
9488 	 * same target. So during detach, we can only disable this capability
9489 	 * only when this is the only lun left on this target. By doing
9490 	 * this, we assume a target has the same tagged queuing capability
9491 	 * for every lun. The condition can be removed when HBA is changed to
9492 	 * support per lun based tagged queuing capability.
9493 	 */
9494 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
9495 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9496 	}
9497 
9498 	if (un->un_f_is_fibre == FALSE) {
9499 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9500 	}
9501 
9502 	/*
9503 	 * Remove any event callbacks, fibre only
9504 	 */
9505 	if (un->un_f_is_fibre == TRUE) {
9506 		if ((un->un_insert_event != NULL) &&
9507 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9508 				DDI_SUCCESS)) {
9509 			/*
9510 			 * Note: We are returning here after having done
9511 			 * substantial cleanup above. This is consistent
9512 			 * with the legacy implementation but this may not
9513 			 * be the right thing to do.
9514 			 */
9515 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9516 				"sd_dr_detach: Cannot cancel insert event\n");
9517 			goto err_remove_event;
9518 		}
9519 		un->un_insert_event = NULL;
9520 
9521 		if ((un->un_remove_event != NULL) &&
9522 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9523 				DDI_SUCCESS)) {
9524 			/*
9525 			 * Note: We are returning here after having done
9526 			 * substantial cleanup above. This is consistent
9527 			 * with the legacy implementation but this may not
9528 			 * be the right thing to do.
9529 			 */
9530 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9531 				"sd_dr_detach: Cannot cancel remove event\n");
9532 			goto err_remove_event;
9533 		}
9534 		un->un_remove_event = NULL;
9535 	}
9536 
9537 	/* Do not free the softstate if the callback routine is active */
9538 	sd_sync_with_callback(un);
9539 
9540 	/*
9541 	 * Hold the detach mutex here, to make sure that no other threads ever
9542 	 * can access a (partially) freed soft state structure.
9543 	 */
9544 	mutex_enter(&sd_detach_mutex);
9545 
9546 	/*
9547 	 * Clean up the soft state struct.
9548 	 * Cleanup is done in reverse order of allocs/inits.
9549 	 * At this point there should be no competing threads anymore.
9550 	 */
9551 
9552 	/* Unregister and free device id. */
9553 	ddi_devid_unregister(devi);
9554 	if (un->un_devid) {
9555 		ddi_devid_free(un->un_devid);
9556 		un->un_devid = NULL;
9557 	}
9558 
9559 	/*
9560 	 * Destroy wmap cache if it exists.
9561 	 */
9562 	if (un->un_wm_cache != NULL) {
9563 		kmem_cache_destroy(un->un_wm_cache);
9564 		un->un_wm_cache = NULL;
9565 	}
9566 
9567 	/* Remove minor nodes */
9568 	ddi_remove_minor_node(devi, NULL);
9569 
9570 	/*
9571 	 * kstat cleanup is done in detach for all device types (4363169).
9572 	 * We do not want to fail detach if the device kstats are not deleted
9573 	 * since there is a confusion about the devo_refcnt for the device.
9574 	 * We just delete the kstats and let detach complete successfully.
9575 	 */
9576 	if (un->un_stats != NULL) {
9577 		kstat_delete(un->un_stats);
9578 		un->un_stats = NULL;
9579 	}
9580 	if (un->un_errstats != NULL) {
9581 		kstat_delete(un->un_errstats);
9582 		un->un_errstats = NULL;
9583 	}
9584 
9585 	/* Remove partition stats */
9586 	if (un->un_f_pkstats_enabled) {
9587 		for (i = 0; i < NSDMAP; i++) {
9588 			if (un->un_pstats[i] != NULL) {
9589 				kstat_delete(un->un_pstats[i]);
9590 				un->un_pstats[i] = NULL;
9591 			}
9592 		}
9593 	}
9594 
9595 	/* Remove xbuf registration */
9596 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9597 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9598 
9599 	/* Remove driver properties */
9600 	ddi_prop_remove_all(devi);
9601 
9602 	mutex_destroy(&un->un_pm_mutex);
9603 	cv_destroy(&un->un_pm_busy_cv);
9604 
9605 	cv_destroy(&un->un_wcc_cv);
9606 
9607 	/* Open/close semaphore */
9608 	sema_destroy(&un->un_semoclose);
9609 
9610 	/* Removable media condvar. */
9611 	cv_destroy(&un->un_state_cv);
9612 
9613 	/* Suspend/resume condvar. */
9614 	cv_destroy(&un->un_suspend_cv);
9615 	cv_destroy(&un->un_disk_busy_cv);
9616 
9617 	sd_free_rqs(un);
9618 
9619 	/* Free up soft state */
9620 	devp->sd_private = NULL;
9621 	bzero(un, sizeof (struct sd_lun));
9622 	ddi_soft_state_free(sd_state, instance);
9623 
9624 	mutex_exit(&sd_detach_mutex);
9625 
9626 	/* This frees up the INQUIRY data associated with the device. */
9627 	scsi_unprobe(devp);
9628 
9629 	/*
9630 	 * After successfully detaching an instance, we update the information
9631 	 * of how many luns have been attached in the relative target and
9632 	 * controller for parallel SCSI. This information is used when sd tries
9633 	 * to set the tagged queuing capability in HBA.
9634 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9635 	 * check if the device is parallel SCSI. However, we don't need to
9636 	 * check here because we've already checked during attach. No device
9637 	 * that is not parallel SCSI is in the chain.
9638 	 */
9639 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9640 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9641 	}
9642 
9643 	return (DDI_SUCCESS);
9644 
9645 err_notclosed:
9646 	mutex_exit(SD_MUTEX(un));
9647 
9648 err_stillbusy:
9649 	_NOTE(NO_COMPETING_THREADS_NOW);
9650 
9651 err_remove_event:
9652 	mutex_enter(&sd_detach_mutex);
9653 	un->un_detach_count--;
9654 	mutex_exit(&sd_detach_mutex);
9655 
9656 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9657 	return (DDI_FAILURE);
9658 }
9659 
9660 
9661 /*
9662  * Driver minor node structure and data table
9663  */
9664 struct driver_minor_data {
9665 	char	*name;
9666 	minor_t	minor;
9667 	int	type;
9668 };
9669 
9670 static struct driver_minor_data sd_minor_data[] = {
9671 	{"a", 0, S_IFBLK},
9672 	{"b", 1, S_IFBLK},
9673 	{"c", 2, S_IFBLK},
9674 	{"d", 3, S_IFBLK},
9675 	{"e", 4, S_IFBLK},
9676 	{"f", 5, S_IFBLK},
9677 	{"g", 6, S_IFBLK},
9678 	{"h", 7, S_IFBLK},
9679 #if defined(_SUNOS_VTOC_16)
9680 	{"i", 8, S_IFBLK},
9681 	{"j", 9, S_IFBLK},
9682 	{"k", 10, S_IFBLK},
9683 	{"l", 11, S_IFBLK},
9684 	{"m", 12, S_IFBLK},
9685 	{"n", 13, S_IFBLK},
9686 	{"o", 14, S_IFBLK},
9687 	{"p", 15, S_IFBLK},
9688 #endif			/* defined(_SUNOS_VTOC_16) */
9689 #if defined(_FIRMWARE_NEEDS_FDISK)
9690 	{"q", 16, S_IFBLK},
9691 	{"r", 17, S_IFBLK},
9692 	{"s", 18, S_IFBLK},
9693 	{"t", 19, S_IFBLK},
9694 	{"u", 20, S_IFBLK},
9695 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9696 	{"a,raw", 0, S_IFCHR},
9697 	{"b,raw", 1, S_IFCHR},
9698 	{"c,raw", 2, S_IFCHR},
9699 	{"d,raw", 3, S_IFCHR},
9700 	{"e,raw", 4, S_IFCHR},
9701 	{"f,raw", 5, S_IFCHR},
9702 	{"g,raw", 6, S_IFCHR},
9703 	{"h,raw", 7, S_IFCHR},
9704 #if defined(_SUNOS_VTOC_16)
9705 	{"i,raw", 8, S_IFCHR},
9706 	{"j,raw", 9, S_IFCHR},
9707 	{"k,raw", 10, S_IFCHR},
9708 	{"l,raw", 11, S_IFCHR},
9709 	{"m,raw", 12, S_IFCHR},
9710 	{"n,raw", 13, S_IFCHR},
9711 	{"o,raw", 14, S_IFCHR},
9712 	{"p,raw", 15, S_IFCHR},
9713 #endif			/* defined(_SUNOS_VTOC_16) */
9714 #if defined(_FIRMWARE_NEEDS_FDISK)
9715 	{"q,raw", 16, S_IFCHR},
9716 	{"r,raw", 17, S_IFCHR},
9717 	{"s,raw", 18, S_IFCHR},
9718 	{"t,raw", 19, S_IFCHR},
9719 	{"u,raw", 20, S_IFCHR},
9720 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9721 	{0}
9722 };
9723 
9724 static struct driver_minor_data sd_minor_data_efi[] = {
9725 	{"a", 0, S_IFBLK},
9726 	{"b", 1, S_IFBLK},
9727 	{"c", 2, S_IFBLK},
9728 	{"d", 3, S_IFBLK},
9729 	{"e", 4, S_IFBLK},
9730 	{"f", 5, S_IFBLK},
9731 	{"g", 6, S_IFBLK},
9732 	{"wd", 7, S_IFBLK},
9733 #if defined(_FIRMWARE_NEEDS_FDISK)
9734 	{"q", 16, S_IFBLK},
9735 	{"r", 17, S_IFBLK},
9736 	{"s", 18, S_IFBLK},
9737 	{"t", 19, S_IFBLK},
9738 	{"u", 20, S_IFBLK},
9739 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9740 	{"a,raw", 0, S_IFCHR},
9741 	{"b,raw", 1, S_IFCHR},
9742 	{"c,raw", 2, S_IFCHR},
9743 	{"d,raw", 3, S_IFCHR},
9744 	{"e,raw", 4, S_IFCHR},
9745 	{"f,raw", 5, S_IFCHR},
9746 	{"g,raw", 6, S_IFCHR},
9747 	{"wd,raw", 7, S_IFCHR},
9748 #if defined(_FIRMWARE_NEEDS_FDISK)
9749 	{"q,raw", 16, S_IFCHR},
9750 	{"r,raw", 17, S_IFCHR},
9751 	{"s,raw", 18, S_IFCHR},
9752 	{"t,raw", 19, S_IFCHR},
9753 	{"u,raw", 20, S_IFCHR},
9754 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9755 	{0}
9756 };
9757 
9758 
9759 /*
9760  *    Function: sd_create_minor_nodes
9761  *
9762  * Description: Create the minor device nodes for the instance.
9763  *
9764  *   Arguments: un - driver soft state (unit) structure
9765  *		devi - pointer to device info structure
9766  *
9767  * Return Code: DDI_SUCCESS
9768  *		DDI_FAILURE
9769  *
9770  *     Context: Kernel thread context
9771  */
9772 
9773 static int
9774 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9775 {
9776 	struct driver_minor_data	*dmdp;
9777 	struct scsi_device		*devp;
9778 	int				instance;
9779 	char				name[48];
9780 
9781 	ASSERT(un != NULL);
9782 	devp = ddi_get_driver_private(devi);
9783 	instance = ddi_get_instance(devp->sd_dev);
9784 
9785 	/*
9786 	 * Create all the minor nodes for this target.
9787 	 */
9788 	if (un->un_blockcount > DK_MAX_BLOCKS)
9789 		dmdp = sd_minor_data_efi;
9790 	else
9791 		dmdp = sd_minor_data;
9792 	while (dmdp->name != NULL) {
9793 
9794 		(void) sprintf(name, "%s", dmdp->name);
9795 
9796 		if (ddi_create_minor_node(devi, name, dmdp->type,
9797 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9798 		    un->un_node_type, NULL) == DDI_FAILURE) {
9799 			/*
9800 			 * Clean up any nodes that may have been created, in
9801 			 * case this fails in the middle of the loop.
9802 			 */
9803 			ddi_remove_minor_node(devi, NULL);
9804 			return (DDI_FAILURE);
9805 		}
9806 		dmdp++;
9807 	}
9808 
9809 	return (DDI_SUCCESS);
9810 }
9811 
9812 
9813 /*
9814  *    Function: sd_create_errstats
9815  *
9816  * Description: This routine instantiates the device error stats.
9817  *
9818  *		Note: During attach the stats are instantiated first so they are
9819  *		available for attach-time routines that utilize the driver
9820  *		iopath to send commands to the device. The stats are initialized
9821  *		separately so data obtained during some attach-time routines is
9822  *		available. (4362483)
9823  *
9824  *   Arguments: un - driver soft state (unit) structure
9825  *		instance - driver instance
9826  *
9827  *     Context: Kernel thread context
9828  */
9829 
9830 static void
9831 sd_create_errstats(struct sd_lun *un, int instance)
9832 {
9833 	struct	sd_errstats	*stp;
9834 	char	kstatmodule_err[KSTAT_STRLEN];
9835 	char	kstatname[KSTAT_STRLEN];
9836 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9837 
9838 	ASSERT(un != NULL);
9839 
9840 	if (un->un_errstats != NULL) {
9841 		return;
9842 	}
9843 
9844 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9845 	    "%serr", sd_label);
9846 	(void) snprintf(kstatname, sizeof (kstatname),
9847 	    "%s%d,err", sd_label, instance);
9848 
9849 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9850 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9851 
9852 	if (un->un_errstats == NULL) {
9853 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9854 		    "sd_create_errstats: Failed kstat_create\n");
9855 		return;
9856 	}
9857 
9858 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9859 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9860 	    KSTAT_DATA_UINT32);
9861 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9862 	    KSTAT_DATA_UINT32);
9863 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9864 	    KSTAT_DATA_UINT32);
9865 	kstat_named_init(&stp->sd_vid,		"Vendor",
9866 	    KSTAT_DATA_CHAR);
9867 	kstat_named_init(&stp->sd_pid,		"Product",
9868 	    KSTAT_DATA_CHAR);
9869 	kstat_named_init(&stp->sd_revision,	"Revision",
9870 	    KSTAT_DATA_CHAR);
9871 	kstat_named_init(&stp->sd_serial,	"Serial No",
9872 	    KSTAT_DATA_CHAR);
9873 	kstat_named_init(&stp->sd_capacity,	"Size",
9874 	    KSTAT_DATA_ULONGLONG);
9875 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9876 	    KSTAT_DATA_UINT32);
9877 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9878 	    KSTAT_DATA_UINT32);
9879 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9880 	    KSTAT_DATA_UINT32);
9881 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9882 	    KSTAT_DATA_UINT32);
9883 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9884 	    KSTAT_DATA_UINT32);
9885 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9886 	    KSTAT_DATA_UINT32);
9887 
9888 	un->un_errstats->ks_private = un;
9889 	un->un_errstats->ks_update  = nulldev;
9890 
9891 	kstat_install(un->un_errstats);
9892 }
9893 
9894 
9895 /*
9896  *    Function: sd_set_errstats
9897  *
9898  * Description: This routine sets the value of the vendor id, product id,
9899  *		revision, serial number, and capacity device error stats.
9900  *
9901  *		Note: During attach the stats are instantiated first so they are
9902  *		available for attach-time routines that utilize the driver
9903  *		iopath to send commands to the device. The stats are initialized
9904  *		separately so data obtained during some attach-time routines is
9905  *		available. (4362483)
9906  *
9907  *   Arguments: un - driver soft state (unit) structure
9908  *
9909  *     Context: Kernel thread context
9910  */
9911 
9912 static void
9913 sd_set_errstats(struct sd_lun *un)
9914 {
9915 	struct	sd_errstats	*stp;
9916 
9917 	ASSERT(un != NULL);
9918 	ASSERT(un->un_errstats != NULL);
9919 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9920 	ASSERT(stp != NULL);
9921 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9922 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9923 	(void) strncpy(stp->sd_revision.value.c,
9924 	    un->un_sd->sd_inq->inq_revision, 4);
9925 
9926 	/*
9927 	 * All the errstats are persistent across detach/attach,
9928 	 * so reset all the errstats here in case of the hot
9929 	 * replacement of disk drives, except for not changed
9930 	 * Sun qualified drives.
9931 	 */
9932 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9933 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9934 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9935 		stp->sd_softerrs.value.ui32 = 0;
9936 		stp->sd_harderrs.value.ui32 = 0;
9937 		stp->sd_transerrs.value.ui32 = 0;
9938 		stp->sd_rq_media_err.value.ui32 = 0;
9939 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9940 		stp->sd_rq_nodev_err.value.ui32 = 0;
9941 		stp->sd_rq_recov_err.value.ui32 = 0;
9942 		stp->sd_rq_illrq_err.value.ui32 = 0;
9943 		stp->sd_rq_pfa_err.value.ui32 = 0;
9944 	}
9945 
9946 	/*
9947 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9948 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9949 	 * (4376302))
9950 	 */
9951 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9952 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9953 		    sizeof (SD_INQUIRY(un)->inq_serial));
9954 	}
9955 
9956 	if (un->un_f_blockcount_is_valid != TRUE) {
9957 		/*
9958 		 * Set capacity error stat to 0 for no media. This ensures
9959 		 * a valid capacity is displayed in response to 'iostat -E'
9960 		 * when no media is present in the device.
9961 		 */
9962 		stp->sd_capacity.value.ui64 = 0;
9963 	} else {
9964 		/*
9965 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9966 		 * capacity.
9967 		 *
9968 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9969 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9970 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9971 		 */
9972 		stp->sd_capacity.value.ui64 = (uint64_t)
9973 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9974 	}
9975 }
9976 
9977 
9978 /*
9979  *    Function: sd_set_pstats
9980  *
9981  * Description: This routine instantiates and initializes the partition
9982  *              stats for each partition with more than zero blocks.
9983  *		(4363169)
9984  *
9985  *   Arguments: un - driver soft state (unit) structure
9986  *
9987  *     Context: Kernel thread context
9988  */
9989 
9990 static void
9991 sd_set_pstats(struct sd_lun *un)
9992 {
9993 	char	kstatname[KSTAT_STRLEN];
9994 	int	instance;
9995 	int	i;
9996 
9997 	ASSERT(un != NULL);
9998 
9999 	instance = ddi_get_instance(SD_DEVINFO(un));
10000 
10001 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
10002 	for (i = 0; i < NSDMAP; i++) {
10003 		if ((un->un_pstats[i] == NULL) &&
10004 		    (un->un_map[i].dkl_nblk != 0)) {
10005 			(void) snprintf(kstatname, sizeof (kstatname),
10006 			    "%s%d,%s", sd_label, instance,
10007 			    sd_minor_data[i].name);
10008 			un->un_pstats[i] = kstat_create(sd_label,
10009 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
10010 			    1, KSTAT_FLAG_PERSISTENT);
10011 			if (un->un_pstats[i] != NULL) {
10012 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
10013 				kstat_install(un->un_pstats[i]);
10014 			}
10015 		}
10016 	}
10017 }
10018 
10019 
10020 #if (defined(__fibre))
10021 /*
10022  *    Function: sd_init_event_callbacks
10023  *
10024  * Description: This routine initializes the insertion and removal event
10025  *		callbacks. (fibre only)
10026  *
10027  *   Arguments: un - driver soft state (unit) structure
10028  *
10029  *     Context: Kernel thread context
10030  */
10031 
10032 static void
10033 sd_init_event_callbacks(struct sd_lun *un)
10034 {
10035 	ASSERT(un != NULL);
10036 
10037 	if ((un->un_insert_event == NULL) &&
10038 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
10039 	    &un->un_insert_event) == DDI_SUCCESS)) {
10040 		/*
10041 		 * Add the callback for an insertion event
10042 		 */
10043 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10044 		    un->un_insert_event, sd_event_callback, (void *)un,
10045 		    &(un->un_insert_cb_id));
10046 	}
10047 
10048 	if ((un->un_remove_event == NULL) &&
10049 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
10050 	    &un->un_remove_event) == DDI_SUCCESS)) {
10051 		/*
10052 		 * Add the callback for a removal event
10053 		 */
10054 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10055 		    un->un_remove_event, sd_event_callback, (void *)un,
10056 		    &(un->un_remove_cb_id));
10057 	}
10058 }
10059 
10060 
10061 /*
10062  *    Function: sd_event_callback
10063  *
10064  * Description: This routine handles insert/remove events (photon). The
10065  *		state is changed to OFFLINE which can be used to supress
10066  *		error msgs. (fibre only)
10067  *
10068  *   Arguments: un - driver soft state (unit) structure
10069  *
10070  *     Context: Callout thread context
10071  */
10072 /* ARGSUSED */
10073 static void
10074 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
10075     void *bus_impldata)
10076 {
10077 	struct sd_lun *un = (struct sd_lun *)arg;
10078 
10079 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
10080 	if (event == un->un_insert_event) {
10081 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
10082 		mutex_enter(SD_MUTEX(un));
10083 		if (un->un_state == SD_STATE_OFFLINE) {
10084 			if (un->un_last_state != SD_STATE_SUSPENDED) {
10085 				un->un_state = un->un_last_state;
10086 			} else {
10087 				/*
10088 				 * We have gone through SUSPEND/RESUME while
10089 				 * we were offline. Restore the last state
10090 				 */
10091 				un->un_state = un->un_save_state;
10092 			}
10093 		}
10094 		mutex_exit(SD_MUTEX(un));
10095 
10096 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
10097 	} else if (event == un->un_remove_event) {
10098 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
10099 		mutex_enter(SD_MUTEX(un));
10100 		/*
10101 		 * We need to handle an event callback that occurs during
10102 		 * the suspend operation, since we don't prevent it.
10103 		 */
10104 		if (un->un_state != SD_STATE_OFFLINE) {
10105 			if (un->un_state != SD_STATE_SUSPENDED) {
10106 				New_state(un, SD_STATE_OFFLINE);
10107 			} else {
10108 				un->un_last_state = SD_STATE_OFFLINE;
10109 			}
10110 		}
10111 		mutex_exit(SD_MUTEX(un));
10112 	} else {
10113 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
10114 		    "!Unknown event\n");
10115 	}
10116 
10117 }
10118 #endif
10119 
10120 /*
10121  *    Function: sd_cache_control()
10122  *
10123  * Description: This routine is the driver entry point for setting
10124  *		read and write caching by modifying the WCE (write cache
10125  *		enable) and RCD (read cache disable) bits of mode
10126  *		page 8 (MODEPAGE_CACHING).
10127  *
10128  *   Arguments: un - driver soft state (unit) structure
10129  *		rcd_flag - flag for controlling the read cache
10130  *		wce_flag - flag for controlling the write cache
10131  *
10132  * Return Code: EIO
10133  *		code returned by sd_send_scsi_MODE_SENSE and
10134  *		sd_send_scsi_MODE_SELECT
10135  *
10136  *     Context: Kernel Thread
10137  */
10138 
10139 static int
10140 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
10141 {
10142 	struct mode_caching	*mode_caching_page;
10143 	uchar_t			*header;
10144 	size_t			buflen;
10145 	int			hdrlen;
10146 	int			bd_len;
10147 	int			rval = 0;
10148 	struct mode_header_grp2	*mhp;
10149 
10150 	ASSERT(un != NULL);
10151 
10152 	/*
10153 	 * Do a test unit ready, otherwise a mode sense may not work if this
10154 	 * is the first command sent to the device after boot.
10155 	 */
10156 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10157 
10158 	if (un->un_f_cfg_is_atapi == TRUE) {
10159 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10160 	} else {
10161 		hdrlen = MODE_HEADER_LENGTH;
10162 	}
10163 
10164 	/*
10165 	 * Allocate memory for the retrieved mode page and its headers.  Set
10166 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
10167 	 * we get all of the mode sense data otherwise, the mode select
10168 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
10169 	 */
10170 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
10171 		sizeof (struct mode_cache_scsi3);
10172 
10173 	header = kmem_zalloc(buflen, KM_SLEEP);
10174 
10175 	/* Get the information from the device. */
10176 	if (un->un_f_cfg_is_atapi == TRUE) {
10177 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10178 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10179 	} else {
10180 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10181 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10182 	}
10183 	if (rval != 0) {
10184 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10185 		    "sd_cache_control: Mode Sense Failed\n");
10186 		kmem_free(header, buflen);
10187 		return (rval);
10188 	}
10189 
10190 	/*
10191 	 * Determine size of Block Descriptors in order to locate
10192 	 * the mode page data. ATAPI devices return 0, SCSI devices
10193 	 * should return MODE_BLK_DESC_LENGTH.
10194 	 */
10195 	if (un->un_f_cfg_is_atapi == TRUE) {
10196 		mhp	= (struct mode_header_grp2 *)header;
10197 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10198 	} else {
10199 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10200 	}
10201 
10202 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10203 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10204 		    "sd_cache_control: Mode Sense returned invalid "
10205 		    "block descriptor length\n");
10206 		kmem_free(header, buflen);
10207 		return (EIO);
10208 	}
10209 
10210 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10211 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10212 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10213 		    " caching page code mismatch %d\n",
10214 		    mode_caching_page->mode_page.code);
10215 		kmem_free(header, buflen);
10216 		return (EIO);
10217 	}
10218 
10219 	/* Check the relevant bits on successful mode sense. */
10220 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
10221 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
10222 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
10223 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
10224 
10225 		size_t sbuflen;
10226 		uchar_t save_pg;
10227 
10228 		/*
10229 		 * Construct select buffer length based on the
10230 		 * length of the sense data returned.
10231 		 */
10232 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
10233 				sizeof (struct mode_page) +
10234 				(int)mode_caching_page->mode_page.length;
10235 
10236 		/*
10237 		 * Set the caching bits as requested.
10238 		 */
10239 		if (rcd_flag == SD_CACHE_ENABLE)
10240 			mode_caching_page->rcd = 0;
10241 		else if (rcd_flag == SD_CACHE_DISABLE)
10242 			mode_caching_page->rcd = 1;
10243 
10244 		if (wce_flag == SD_CACHE_ENABLE)
10245 			mode_caching_page->wce = 1;
10246 		else if (wce_flag == SD_CACHE_DISABLE)
10247 			mode_caching_page->wce = 0;
10248 
10249 		/*
10250 		 * Save the page if the mode sense says the
10251 		 * drive supports it.
10252 		 */
10253 		save_pg = mode_caching_page->mode_page.ps ?
10254 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
10255 
10256 		/* Clear reserved bits before mode select. */
10257 		mode_caching_page->mode_page.ps = 0;
10258 
10259 		/*
10260 		 * Clear out mode header for mode select.
10261 		 * The rest of the retrieved page will be reused.
10262 		 */
10263 		bzero(header, hdrlen);
10264 
10265 		if (un->un_f_cfg_is_atapi == TRUE) {
10266 			mhp = (struct mode_header_grp2 *)header;
10267 			mhp->bdesc_length_hi = bd_len >> 8;
10268 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
10269 		} else {
10270 			((struct mode_header *)header)->bdesc_length = bd_len;
10271 		}
10272 
10273 		/* Issue mode select to change the cache settings */
10274 		if (un->un_f_cfg_is_atapi == TRUE) {
10275 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
10276 			    sbuflen, save_pg, SD_PATH_DIRECT);
10277 		} else {
10278 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
10279 			    sbuflen, save_pg, SD_PATH_DIRECT);
10280 		}
10281 	}
10282 
10283 	kmem_free(header, buflen);
10284 	return (rval);
10285 }
10286 
10287 
10288 /*
10289  *    Function: sd_get_write_cache_enabled()
10290  *
10291  * Description: This routine is the driver entry point for determining if
10292  *		write caching is enabled.  It examines the WCE (write cache
10293  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
10294  *
10295  *   Arguments: un - driver soft state (unit) structure
10296  *   		is_enabled - pointer to int where write cache enabled state
10297  *   			is returned (non-zero -> write cache enabled)
10298  *
10299  *
10300  * Return Code: EIO
10301  *		code returned by sd_send_scsi_MODE_SENSE
10302  *
10303  *     Context: Kernel Thread
10304  *
10305  * NOTE: If ioctl is added to disable write cache, this sequence should
10306  * be followed so that no locking is required for accesses to
10307  * un->un_f_write_cache_enabled:
10308  * 	do mode select to clear wce
10309  * 	do synchronize cache to flush cache
10310  * 	set un->un_f_write_cache_enabled = FALSE
10311  *
10312  * Conversely, an ioctl to enable the write cache should be done
10313  * in this order:
10314  * 	set un->un_f_write_cache_enabled = TRUE
10315  * 	do mode select to set wce
10316  */
10317 
10318 static int
10319 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
10320 {
10321 	struct mode_caching	*mode_caching_page;
10322 	uchar_t			*header;
10323 	size_t			buflen;
10324 	int			hdrlen;
10325 	int			bd_len;
10326 	int			rval = 0;
10327 
10328 	ASSERT(un != NULL);
10329 	ASSERT(is_enabled != NULL);
10330 
10331 	/* in case of error, flag as enabled */
10332 	*is_enabled = TRUE;
10333 
10334 	/*
10335 	 * Do a test unit ready, otherwise a mode sense may not work if this
10336 	 * is the first command sent to the device after boot.
10337 	 */
10338 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10339 
10340 	if (un->un_f_cfg_is_atapi == TRUE) {
10341 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10342 	} else {
10343 		hdrlen = MODE_HEADER_LENGTH;
10344 	}
10345 
10346 	/*
10347 	 * Allocate memory for the retrieved mode page and its headers.  Set
10348 	 * a pointer to the page itself.
10349 	 */
10350 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
10351 	header = kmem_zalloc(buflen, KM_SLEEP);
10352 
10353 	/* Get the information from the device. */
10354 	if (un->un_f_cfg_is_atapi == TRUE) {
10355 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10356 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10357 	} else {
10358 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10359 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10360 	}
10361 	if (rval != 0) {
10362 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10363 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10364 		kmem_free(header, buflen);
10365 		return (rval);
10366 	}
10367 
10368 	/*
10369 	 * Determine size of Block Descriptors in order to locate
10370 	 * the mode page data. ATAPI devices return 0, SCSI devices
10371 	 * should return MODE_BLK_DESC_LENGTH.
10372 	 */
10373 	if (un->un_f_cfg_is_atapi == TRUE) {
10374 		struct mode_header_grp2	*mhp;
10375 		mhp	= (struct mode_header_grp2 *)header;
10376 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10377 	} else {
10378 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10379 	}
10380 
10381 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10382 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10383 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10384 		    "block descriptor length\n");
10385 		kmem_free(header, buflen);
10386 		return (EIO);
10387 	}
10388 
10389 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10390 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10391 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10392 		    " caching page code mismatch %d\n",
10393 		    mode_caching_page->mode_page.code);
10394 		kmem_free(header, buflen);
10395 		return (EIO);
10396 	}
10397 	*is_enabled = mode_caching_page->wce;
10398 
10399 	kmem_free(header, buflen);
10400 	return (0);
10401 }
10402 
10403 
10404 /*
10405  *    Function: sd_make_device
10406  *
10407  * Description: Utility routine to return the Solaris device number from
10408  *		the data in the device's dev_info structure.
10409  *
10410  * Return Code: The Solaris device number
10411  *
10412  *     Context: Any
10413  */
10414 
10415 static dev_t
10416 sd_make_device(dev_info_t *devi)
10417 {
10418 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10419 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10420 }
10421 
10422 
10423 /*
10424  *    Function: sd_pm_entry
10425  *
10426  * Description: Called at the start of a new command to manage power
10427  *		and busy status of a device. This includes determining whether
10428  *		the current power state of the device is sufficient for
10429  *		performing the command or whether it must be changed.
10430  *		The PM framework is notified appropriately.
10431  *		Only with a return status of DDI_SUCCESS will the
10432  *		component be busy to the framework.
10433  *
10434  *		All callers of sd_pm_entry must check the return status
10435  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10436  *		of DDI_FAILURE indicates the device failed to power up.
10437  *		In this case un_pm_count has been adjusted so the result
10438  *		on exit is still powered down, ie. count is less than 0.
10439  *		Calling sd_pm_exit with this count value hits an ASSERT.
10440  *
10441  * Return Code: DDI_SUCCESS or DDI_FAILURE
10442  *
10443  *     Context: Kernel thread context.
10444  */
10445 
10446 static int
10447 sd_pm_entry(struct sd_lun *un)
10448 {
10449 	int return_status = DDI_SUCCESS;
10450 
10451 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10452 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10453 
10454 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10455 
10456 	if (un->un_f_pm_is_enabled == FALSE) {
10457 		SD_TRACE(SD_LOG_IO_PM, un,
10458 		    "sd_pm_entry: exiting, PM not enabled\n");
10459 		return (return_status);
10460 	}
10461 
10462 	/*
10463 	 * Just increment a counter if PM is enabled. On the transition from
10464 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10465 	 * the count with each IO and mark the device as idle when the count
10466 	 * hits 0.
10467 	 *
10468 	 * If the count is less than 0 the device is powered down. If a powered
10469 	 * down device is successfully powered up then the count must be
10470 	 * incremented to reflect the power up. Note that it'll get incremented
10471 	 * a second time to become busy.
10472 	 *
10473 	 * Because the following has the potential to change the device state
10474 	 * and must release the un_pm_mutex to do so, only one thread can be
10475 	 * allowed through at a time.
10476 	 */
10477 
10478 	mutex_enter(&un->un_pm_mutex);
10479 	while (un->un_pm_busy == TRUE) {
10480 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10481 	}
10482 	un->un_pm_busy = TRUE;
10483 
10484 	if (un->un_pm_count < 1) {
10485 
10486 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10487 
10488 		/*
10489 		 * Indicate we are now busy so the framework won't attempt to
10490 		 * power down the device. This call will only fail if either
10491 		 * we passed a bad component number or the device has no
10492 		 * components. Neither of these should ever happen.
10493 		 */
10494 		mutex_exit(&un->un_pm_mutex);
10495 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10496 		ASSERT(return_status == DDI_SUCCESS);
10497 
10498 		mutex_enter(&un->un_pm_mutex);
10499 
10500 		if (un->un_pm_count < 0) {
10501 			mutex_exit(&un->un_pm_mutex);
10502 
10503 			SD_TRACE(SD_LOG_IO_PM, un,
10504 			    "sd_pm_entry: power up component\n");
10505 
10506 			/*
10507 			 * pm_raise_power will cause sdpower to be called
10508 			 * which brings the device power level to the
10509 			 * desired state, ON in this case. If successful,
10510 			 * un_pm_count and un_power_level will be updated
10511 			 * appropriately.
10512 			 */
10513 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10514 			    SD_SPINDLE_ON);
10515 
10516 			mutex_enter(&un->un_pm_mutex);
10517 
10518 			if (return_status != DDI_SUCCESS) {
10519 				/*
10520 				 * Power up failed.
10521 				 * Idle the device and adjust the count
10522 				 * so the result on exit is that we're
10523 				 * still powered down, ie. count is less than 0.
10524 				 */
10525 				SD_TRACE(SD_LOG_IO_PM, un,
10526 				    "sd_pm_entry: power up failed,"
10527 				    " idle the component\n");
10528 
10529 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10530 				un->un_pm_count--;
10531 			} else {
10532 				/*
10533 				 * Device is powered up, verify the
10534 				 * count is non-negative.
10535 				 * This is debug only.
10536 				 */
10537 				ASSERT(un->un_pm_count == 0);
10538 			}
10539 		}
10540 
10541 		if (return_status == DDI_SUCCESS) {
10542 			/*
10543 			 * For performance, now that the device has been tagged
10544 			 * as busy, and it's known to be powered up, update the
10545 			 * chain types to use jump tables that do not include
10546 			 * pm. This significantly lowers the overhead and
10547 			 * therefore improves performance.
10548 			 */
10549 
10550 			mutex_exit(&un->un_pm_mutex);
10551 			mutex_enter(SD_MUTEX(un));
10552 			SD_TRACE(SD_LOG_IO_PM, un,
10553 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10554 			    un->un_uscsi_chain_type);
10555 
10556 			if (un->un_f_non_devbsize_supported) {
10557 				un->un_buf_chain_type =
10558 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10559 			} else {
10560 				un->un_buf_chain_type =
10561 				    SD_CHAIN_INFO_DISK_NO_PM;
10562 			}
10563 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10564 
10565 			SD_TRACE(SD_LOG_IO_PM, un,
10566 			    "             changed  uscsi_chain_type to   %d\n",
10567 			    un->un_uscsi_chain_type);
10568 			mutex_exit(SD_MUTEX(un));
10569 			mutex_enter(&un->un_pm_mutex);
10570 
10571 			if (un->un_pm_idle_timeid == NULL) {
10572 				/* 300 ms. */
10573 				un->un_pm_idle_timeid =
10574 				    timeout(sd_pm_idletimeout_handler, un,
10575 				    (drv_usectohz((clock_t)300000)));
10576 				/*
10577 				 * Include an extra call to busy which keeps the
10578 				 * device busy with-respect-to the PM layer
10579 				 * until the timer fires, at which time it'll
10580 				 * get the extra idle call.
10581 				 */
10582 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10583 			}
10584 		}
10585 	}
10586 	un->un_pm_busy = FALSE;
10587 	/* Next... */
10588 	cv_signal(&un->un_pm_busy_cv);
10589 
10590 	un->un_pm_count++;
10591 
10592 	SD_TRACE(SD_LOG_IO_PM, un,
10593 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10594 
10595 	mutex_exit(&un->un_pm_mutex);
10596 
10597 	return (return_status);
10598 }
10599 
10600 
10601 /*
10602  *    Function: sd_pm_exit
10603  *
10604  * Description: Called at the completion of a command to manage busy
10605  *		status for the device. If the device becomes idle the
10606  *		PM framework is notified.
10607  *
10608  *     Context: Kernel thread context
10609  */
10610 
10611 static void
10612 sd_pm_exit(struct sd_lun *un)
10613 {
10614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10615 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10616 
10617 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10618 
10619 	/*
10620 	 * After attach the following flag is only read, so don't
10621 	 * take the penalty of acquiring a mutex for it.
10622 	 */
10623 	if (un->un_f_pm_is_enabled == TRUE) {
10624 
10625 		mutex_enter(&un->un_pm_mutex);
10626 		un->un_pm_count--;
10627 
10628 		SD_TRACE(SD_LOG_IO_PM, un,
10629 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10630 
10631 		ASSERT(un->un_pm_count >= 0);
10632 		if (un->un_pm_count == 0) {
10633 			mutex_exit(&un->un_pm_mutex);
10634 
10635 			SD_TRACE(SD_LOG_IO_PM, un,
10636 			    "sd_pm_exit: idle component\n");
10637 
10638 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10639 
10640 		} else {
10641 			mutex_exit(&un->un_pm_mutex);
10642 		}
10643 	}
10644 
10645 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10646 }
10647 
10648 
10649 /*
10650  *    Function: sdopen
10651  *
10652  * Description: Driver's open(9e) entry point function.
10653  *
10654  *   Arguments: dev_i   - pointer to device number
10655  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10656  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10657  *		cred_p  - user credential pointer
10658  *
10659  * Return Code: EINVAL
10660  *		ENXIO
10661  *		EIO
10662  *		EROFS
10663  *		EBUSY
10664  *
10665  *     Context: Kernel thread context
10666  */
10667 /* ARGSUSED */
10668 static int
10669 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10670 {
10671 	struct sd_lun	*un;
10672 	int		nodelay;
10673 	int		part;
10674 	uint64_t	partmask;
10675 	int		instance;
10676 	dev_t		dev;
10677 	int		rval = EIO;
10678 
10679 	/* Validate the open type */
10680 	if (otyp >= OTYPCNT) {
10681 		return (EINVAL);
10682 	}
10683 
10684 	dev = *dev_p;
10685 	instance = SDUNIT(dev);
10686 	mutex_enter(&sd_detach_mutex);
10687 
10688 	/*
10689 	 * Fail the open if there is no softstate for the instance, or
10690 	 * if another thread somewhere is trying to detach the instance.
10691 	 */
10692 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10693 	    (un->un_detach_count != 0)) {
10694 		mutex_exit(&sd_detach_mutex);
10695 		/*
10696 		 * The probe cache only needs to be cleared when open (9e) fails
10697 		 * with ENXIO (4238046).
10698 		 */
10699 		/*
10700 		 * un-conditionally clearing probe cache is ok with
10701 		 * separate sd/ssd binaries
10702 		 * x86 platform can be an issue with both parallel
10703 		 * and fibre in 1 binary
10704 		 */
10705 		sd_scsi_clear_probe_cache();
10706 		return (ENXIO);
10707 	}
10708 
10709 	/*
10710 	 * The un_layer_count is to prevent another thread in specfs from
10711 	 * trying to detach the instance, which can happen when we are
10712 	 * called from a higher-layer driver instead of thru specfs.
10713 	 * This will not be needed when DDI provides a layered driver
10714 	 * interface that allows specfs to know that an instance is in
10715 	 * use by a layered driver & should not be detached.
10716 	 *
10717 	 * Note: the semantics for layered driver opens are exactly one
10718 	 * close for every open.
10719 	 */
10720 	if (otyp == OTYP_LYR) {
10721 		un->un_layer_count++;
10722 	}
10723 
10724 	/*
10725 	 * Keep a count of the current # of opens in progress. This is because
10726 	 * some layered drivers try to call us as a regular open. This can
10727 	 * cause problems that we cannot prevent, however by keeping this count
10728 	 * we can at least keep our open and detach routines from racing against
10729 	 * each other under such conditions.
10730 	 */
10731 	un->un_opens_in_progress++;
10732 	mutex_exit(&sd_detach_mutex);
10733 
10734 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10735 	part	 = SDPART(dev);
10736 	partmask = 1 << part;
10737 
10738 	/*
10739 	 * We use a semaphore here in order to serialize
10740 	 * open and close requests on the device.
10741 	 */
10742 	sema_p(&un->un_semoclose);
10743 
10744 	mutex_enter(SD_MUTEX(un));
10745 
10746 	/*
10747 	 * All device accesses go thru sdstrategy() where we check
10748 	 * on suspend status but there could be a scsi_poll command,
10749 	 * which bypasses sdstrategy(), so we need to check pm
10750 	 * status.
10751 	 */
10752 
10753 	if (!nodelay) {
10754 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10755 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10756 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10757 		}
10758 
10759 		mutex_exit(SD_MUTEX(un));
10760 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10761 			rval = EIO;
10762 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10763 			    "sdopen: sd_pm_entry failed\n");
10764 			goto open_failed_with_pm;
10765 		}
10766 		mutex_enter(SD_MUTEX(un));
10767 	}
10768 
10769 	/* check for previous exclusive open */
10770 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10771 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10772 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10773 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10774 
10775 	if (un->un_exclopen & (partmask)) {
10776 		goto excl_open_fail;
10777 	}
10778 
10779 	if (flag & FEXCL) {
10780 		int i;
10781 		if (un->un_ocmap.lyropen[part]) {
10782 			goto excl_open_fail;
10783 		}
10784 		for (i = 0; i < (OTYPCNT - 1); i++) {
10785 			if (un->un_ocmap.regopen[i] & (partmask)) {
10786 				goto excl_open_fail;
10787 			}
10788 		}
10789 	}
10790 
10791 	/*
10792 	 * Check the write permission if this is a removable media device,
10793 	 * NDELAY has not been set, and writable permission is requested.
10794 	 *
10795 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10796 	 * attempt will fail with EIO as part of the I/O processing. This is a
10797 	 * more permissive implementation that allows the open to succeed and
10798 	 * WRITE attempts to fail when appropriate.
10799 	 */
10800 	if (un->un_f_chk_wp_open) {
10801 		if ((flag & FWRITE) && (!nodelay)) {
10802 			mutex_exit(SD_MUTEX(un));
10803 			/*
10804 			 * Defer the check for write permission on writable
10805 			 * DVD drive till sdstrategy and will not fail open even
10806 			 * if FWRITE is set as the device can be writable
10807 			 * depending upon the media and the media can change
10808 			 * after the call to open().
10809 			 */
10810 			if (un->un_f_dvdram_writable_device == FALSE) {
10811 				if (ISCD(un) || sr_check_wp(dev)) {
10812 				rval = EROFS;
10813 				mutex_enter(SD_MUTEX(un));
10814 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10815 				    "write to cd or write protected media\n");
10816 				goto open_fail;
10817 				}
10818 			}
10819 			mutex_enter(SD_MUTEX(un));
10820 		}
10821 	}
10822 
10823 	/*
10824 	 * If opening in NDELAY/NONBLOCK mode, just return.
10825 	 * Check if disk is ready and has a valid geometry later.
10826 	 */
10827 	if (!nodelay) {
10828 		mutex_exit(SD_MUTEX(un));
10829 		rval = sd_ready_and_valid(un);
10830 		mutex_enter(SD_MUTEX(un));
10831 		/*
10832 		 * Fail if device is not ready or if the number of disk
10833 		 * blocks is zero or negative for non CD devices.
10834 		 */
10835 		if ((rval != SD_READY_VALID) ||
10836 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10837 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10838 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10839 			    "device not ready or invalid disk block value\n");
10840 			goto open_fail;
10841 		}
10842 #if defined(__i386) || defined(__amd64)
10843 	} else {
10844 		uchar_t *cp;
10845 		/*
10846 		 * x86 requires special nodelay handling, so that p0 is
10847 		 * always defined and accessible.
10848 		 * Invalidate geometry only if device is not already open.
10849 		 */
10850 		cp = &un->un_ocmap.chkd[0];
10851 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10852 			if (*cp != (uchar_t)0) {
10853 			    break;
10854 			}
10855 			cp++;
10856 		}
10857 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10858 			un->un_f_geometry_is_valid = FALSE;
10859 		}
10860 
10861 #endif
10862 	}
10863 
10864 	if (otyp == OTYP_LYR) {
10865 		un->un_ocmap.lyropen[part]++;
10866 	} else {
10867 		un->un_ocmap.regopen[otyp] |= partmask;
10868 	}
10869 
10870 	/* Set up open and exclusive open flags */
10871 	if (flag & FEXCL) {
10872 		un->un_exclopen |= (partmask);
10873 	}
10874 
10875 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10876 	    "open of part %d type %d\n", part, otyp);
10877 
10878 	mutex_exit(SD_MUTEX(un));
10879 	if (!nodelay) {
10880 		sd_pm_exit(un);
10881 	}
10882 
10883 	sema_v(&un->un_semoclose);
10884 
10885 	mutex_enter(&sd_detach_mutex);
10886 	un->un_opens_in_progress--;
10887 	mutex_exit(&sd_detach_mutex);
10888 
10889 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10890 	return (DDI_SUCCESS);
10891 
10892 excl_open_fail:
10893 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10894 	rval = EBUSY;
10895 
10896 open_fail:
10897 	mutex_exit(SD_MUTEX(un));
10898 
10899 	/*
10900 	 * On a failed open we must exit the pm management.
10901 	 */
10902 	if (!nodelay) {
10903 		sd_pm_exit(un);
10904 	}
10905 open_failed_with_pm:
10906 	sema_v(&un->un_semoclose);
10907 
10908 	mutex_enter(&sd_detach_mutex);
10909 	un->un_opens_in_progress--;
10910 	if (otyp == OTYP_LYR) {
10911 		un->un_layer_count--;
10912 	}
10913 	mutex_exit(&sd_detach_mutex);
10914 
10915 	return (rval);
10916 }
10917 
10918 
10919 /*
10920  *    Function: sdclose
10921  *
10922  * Description: Driver's close(9e) entry point function.
10923  *
10924  *   Arguments: dev    - device number
10925  *		flag   - file status flag, informational only
10926  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10927  *		cred_p - user credential pointer
10928  *
10929  * Return Code: ENXIO
10930  *
10931  *     Context: Kernel thread context
10932  */
10933 /* ARGSUSED */
10934 static int
10935 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10936 {
10937 	struct sd_lun	*un;
10938 	uchar_t		*cp;
10939 	int		part;
10940 	int		nodelay;
10941 	int		rval = 0;
10942 
10943 	/* Validate the open type */
10944 	if (otyp >= OTYPCNT) {
10945 		return (ENXIO);
10946 	}
10947 
10948 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10949 		return (ENXIO);
10950 	}
10951 
10952 	part = SDPART(dev);
10953 	nodelay = flag & (FNDELAY | FNONBLOCK);
10954 
10955 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10956 	    "sdclose: close of part %d type %d\n", part, otyp);
10957 
10958 	/*
10959 	 * We use a semaphore here in order to serialize
10960 	 * open and close requests on the device.
10961 	 */
10962 	sema_p(&un->un_semoclose);
10963 
10964 	mutex_enter(SD_MUTEX(un));
10965 
10966 	/* Don't proceed if power is being changed. */
10967 	while (un->un_state == SD_STATE_PM_CHANGING) {
10968 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10969 	}
10970 
10971 	if (un->un_exclopen & (1 << part)) {
10972 		un->un_exclopen &= ~(1 << part);
10973 	}
10974 
10975 	/* Update the open partition map */
10976 	if (otyp == OTYP_LYR) {
10977 		un->un_ocmap.lyropen[part] -= 1;
10978 	} else {
10979 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10980 	}
10981 
10982 	cp = &un->un_ocmap.chkd[0];
10983 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10984 		if (*cp != NULL) {
10985 			break;
10986 		}
10987 		cp++;
10988 	}
10989 
10990 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10991 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10992 
10993 		/*
10994 		 * We avoid persistance upon the last close, and set
10995 		 * the throttle back to the maximum.
10996 		 */
10997 		un->un_throttle = un->un_saved_throttle;
10998 
10999 		if (un->un_state == SD_STATE_OFFLINE) {
11000 			if (un->un_f_is_fibre == FALSE) {
11001 				scsi_log(SD_DEVINFO(un), sd_label,
11002 					CE_WARN, "offline\n");
11003 			}
11004 			un->un_f_geometry_is_valid = FALSE;
11005 
11006 		} else {
11007 			/*
11008 			 * Flush any outstanding writes in NVRAM cache.
11009 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
11010 			 * cmd, it may not work for non-Pluto devices.
11011 			 * SYNCHRONIZE CACHE is not required for removables,
11012 			 * except DVD-RAM drives.
11013 			 *
11014 			 * Also note: because SYNCHRONIZE CACHE is currently
11015 			 * the only command issued here that requires the
11016 			 * drive be powered up, only do the power up before
11017 			 * sending the Sync Cache command. If additional
11018 			 * commands are added which require a powered up
11019 			 * drive, the following sequence may have to change.
11020 			 *
11021 			 * And finally, note that parallel SCSI on SPARC
11022 			 * only issues a Sync Cache to DVD-RAM, a newly
11023 			 * supported device.
11024 			 */
11025 #if defined(__i386) || defined(__amd64)
11026 			if (un->un_f_sync_cache_supported ||
11027 			    un->un_f_dvdram_writable_device == TRUE) {
11028 #else
11029 			if (un->un_f_dvdram_writable_device == TRUE) {
11030 #endif
11031 				mutex_exit(SD_MUTEX(un));
11032 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11033 					rval =
11034 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
11035 					    NULL);
11036 					/* ignore error if not supported */
11037 					if (rval == ENOTSUP) {
11038 						rval = 0;
11039 					} else if (rval != 0) {
11040 						rval = EIO;
11041 					}
11042 					sd_pm_exit(un);
11043 				} else {
11044 					rval = EIO;
11045 				}
11046 				mutex_enter(SD_MUTEX(un));
11047 			}
11048 
11049 			/*
11050 			 * For devices which supports DOOR_LOCK, send an ALLOW
11051 			 * MEDIA REMOVAL command, but don't get upset if it
11052 			 * fails. We need to raise the power of the drive before
11053 			 * we can call sd_send_scsi_DOORLOCK()
11054 			 */
11055 			if (un->un_f_doorlock_supported) {
11056 				mutex_exit(SD_MUTEX(un));
11057 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11058 					rval = sd_send_scsi_DOORLOCK(un,
11059 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
11060 
11061 					sd_pm_exit(un);
11062 					if (ISCD(un) && (rval != 0) &&
11063 					    (nodelay != 0)) {
11064 						rval = ENXIO;
11065 					}
11066 				} else {
11067 					rval = EIO;
11068 				}
11069 				mutex_enter(SD_MUTEX(un));
11070 			}
11071 
11072 			/*
11073 			 * If a device has removable media, invalidate all
11074 			 * parameters related to media, such as geometry,
11075 			 * blocksize, and blockcount.
11076 			 */
11077 			if (un->un_f_has_removable_media) {
11078 				sr_ejected(un);
11079 			}
11080 
11081 			/*
11082 			 * Destroy the cache (if it exists) which was
11083 			 * allocated for the write maps since this is
11084 			 * the last close for this media.
11085 			 */
11086 			if (un->un_wm_cache) {
11087 				/*
11088 				 * Check if there are pending commands.
11089 				 * and if there are give a warning and
11090 				 * do not destroy the cache.
11091 				 */
11092 				if (un->un_ncmds_in_driver > 0) {
11093 					scsi_log(SD_DEVINFO(un),
11094 					    sd_label, CE_WARN,
11095 					    "Unable to clean up memory "
11096 					    "because of pending I/O\n");
11097 				} else {
11098 					kmem_cache_destroy(
11099 					    un->un_wm_cache);
11100 					un->un_wm_cache = NULL;
11101 				}
11102 			}
11103 		}
11104 	}
11105 
11106 	mutex_exit(SD_MUTEX(un));
11107 	sema_v(&un->un_semoclose);
11108 
11109 	if (otyp == OTYP_LYR) {
11110 		mutex_enter(&sd_detach_mutex);
11111 		/*
11112 		 * The detach routine may run when the layer count
11113 		 * drops to zero.
11114 		 */
11115 		un->un_layer_count--;
11116 		mutex_exit(&sd_detach_mutex);
11117 	}
11118 
11119 	return (rval);
11120 }
11121 
11122 
11123 /*
11124  *    Function: sd_ready_and_valid
11125  *
11126  * Description: Test if device is ready and has a valid geometry.
11127  *
11128  *   Arguments: dev - device number
11129  *		un  - driver soft state (unit) structure
11130  *
11131  * Return Code: SD_READY_VALID		ready and valid label
11132  *		SD_READY_NOT_VALID	ready, geom ops never applicable
11133  *		SD_NOT_READY_VALID	not ready, no label
11134  *		SD_RESERVED_BY_OTHERS	reservation conflict
11135  *
11136  *     Context: Never called at interrupt context.
11137  */
11138 
11139 static int
11140 sd_ready_and_valid(struct sd_lun *un)
11141 {
11142 	struct sd_errstats	*stp;
11143 	uint64_t		capacity;
11144 	uint_t			lbasize;
11145 	int			rval = SD_READY_VALID;
11146 	char			name_str[48];
11147 
11148 	ASSERT(un != NULL);
11149 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11150 
11151 	mutex_enter(SD_MUTEX(un));
11152 	/*
11153 	 * If a device has removable media, we must check if media is
11154 	 * ready when checking if this device is ready and valid.
11155 	 */
11156 	if (un->un_f_has_removable_media) {
11157 		mutex_exit(SD_MUTEX(un));
11158 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
11159 			rval = SD_NOT_READY_VALID;
11160 			mutex_enter(SD_MUTEX(un));
11161 			goto done;
11162 		}
11163 
11164 		mutex_enter(SD_MUTEX(un));
11165 		if ((un->un_f_geometry_is_valid == FALSE) ||
11166 		    (un->un_f_blockcount_is_valid == FALSE) ||
11167 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
11168 
11169 			/* capacity has to be read every open. */
11170 			mutex_exit(SD_MUTEX(un));
11171 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
11172 			    &lbasize, SD_PATH_DIRECT) != 0) {
11173 				mutex_enter(SD_MUTEX(un));
11174 				un->un_f_geometry_is_valid = FALSE;
11175 				rval = SD_NOT_READY_VALID;
11176 				goto done;
11177 			} else {
11178 				mutex_enter(SD_MUTEX(un));
11179 				sd_update_block_info(un, lbasize, capacity);
11180 			}
11181 		}
11182 
11183 		/*
11184 		 * Check if the media in the device is writable or not.
11185 		 */
11186 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
11187 			sd_check_for_writable_cd(un);
11188 		}
11189 
11190 	} else {
11191 		/*
11192 		 * Do a test unit ready to clear any unit attention from non-cd
11193 		 * devices.
11194 		 */
11195 		mutex_exit(SD_MUTEX(un));
11196 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
11197 		mutex_enter(SD_MUTEX(un));
11198 	}
11199 
11200 
11201 	/*
11202 	 * If this is a non 512 block device, allocate space for
11203 	 * the wmap cache. This is being done here since every time
11204 	 * a media is changed this routine will be called and the
11205 	 * block size is a function of media rather than device.
11206 	 */
11207 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
11208 		if (!(un->un_wm_cache)) {
11209 			(void) snprintf(name_str, sizeof (name_str),
11210 			    "%s%d_cache",
11211 			    ddi_driver_name(SD_DEVINFO(un)),
11212 			    ddi_get_instance(SD_DEVINFO(un)));
11213 			un->un_wm_cache = kmem_cache_create(
11214 			    name_str, sizeof (struct sd_w_map),
11215 			    8, sd_wm_cache_constructor,
11216 			    sd_wm_cache_destructor, NULL,
11217 			    (void *)un, NULL, 0);
11218 			if (!(un->un_wm_cache)) {
11219 					rval = ENOMEM;
11220 					goto done;
11221 			}
11222 		}
11223 	}
11224 
11225 	if (un->un_state == SD_STATE_NORMAL) {
11226 		/*
11227 		 * If the target is not yet ready here (defined by a TUR
11228 		 * failure), invalidate the geometry and print an 'offline'
11229 		 * message. This is a legacy message, as the state of the
11230 		 * target is not actually changed to SD_STATE_OFFLINE.
11231 		 *
11232 		 * If the TUR fails for EACCES (Reservation Conflict),
11233 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
11234 		 * reservation conflict. If the TUR fails for other
11235 		 * reasons, SD_NOT_READY_VALID will be returned.
11236 		 */
11237 		int err;
11238 
11239 		mutex_exit(SD_MUTEX(un));
11240 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
11241 		mutex_enter(SD_MUTEX(un));
11242 
11243 		if (err != 0) {
11244 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11245 			    "offline or reservation conflict\n");
11246 			un->un_f_geometry_is_valid = FALSE;
11247 			if (err == EACCES) {
11248 				rval = SD_RESERVED_BY_OTHERS;
11249 			} else {
11250 				rval = SD_NOT_READY_VALID;
11251 			}
11252 			goto done;
11253 		}
11254 	}
11255 
11256 	if (un->un_f_format_in_progress == FALSE) {
11257 		/*
11258 		 * Note: sd_validate_geometry may return TRUE, but that does
11259 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
11260 		 */
11261 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
11262 		if (rval == ENOTSUP) {
11263 			if (un->un_f_geometry_is_valid == TRUE)
11264 				rval = 0;
11265 			else {
11266 				rval = SD_READY_NOT_VALID;
11267 				goto done;
11268 			}
11269 		}
11270 		if (rval != 0) {
11271 			/*
11272 			 * We don't check the validity of geometry for
11273 			 * CDROMs. Also we assume we have a good label
11274 			 * even if sd_validate_geometry returned ENOMEM.
11275 			 */
11276 			if (!ISCD(un) && rval != ENOMEM) {
11277 				rval = SD_NOT_READY_VALID;
11278 				goto done;
11279 			}
11280 		}
11281 	}
11282 
11283 	/*
11284 	 * If this device supports DOOR_LOCK command, try and send
11285 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
11286 	 * if it fails. For a CD, however, it is an error
11287 	 */
11288 	if (un->un_f_doorlock_supported) {
11289 		mutex_exit(SD_MUTEX(un));
11290 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
11291 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
11292 			rval = SD_NOT_READY_VALID;
11293 			mutex_enter(SD_MUTEX(un));
11294 			goto done;
11295 		}
11296 		mutex_enter(SD_MUTEX(un));
11297 	}
11298 
11299 	/* The state has changed, inform the media watch routines */
11300 	un->un_mediastate = DKIO_INSERTED;
11301 	cv_broadcast(&un->un_state_cv);
11302 	rval = SD_READY_VALID;
11303 
11304 done:
11305 
11306 	/*
11307 	 * Initialize the capacity kstat value, if no media previously
11308 	 * (capacity kstat is 0) and a media has been inserted
11309 	 * (un_blockcount > 0).
11310 	 */
11311 	if (un->un_errstats != NULL) {
11312 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
11313 		if ((stp->sd_capacity.value.ui64 == 0) &&
11314 		    (un->un_f_blockcount_is_valid == TRUE)) {
11315 			stp->sd_capacity.value.ui64 =
11316 			    (uint64_t)((uint64_t)un->un_blockcount *
11317 			    un->un_sys_blocksize);
11318 		}
11319 	}
11320 
11321 	mutex_exit(SD_MUTEX(un));
11322 	return (rval);
11323 }
11324 
11325 
11326 /*
11327  *    Function: sdmin
11328  *
11329  * Description: Routine to limit the size of a data transfer. Used in
11330  *		conjunction with physio(9F).
11331  *
11332  *   Arguments: bp - pointer to the indicated buf(9S) struct.
11333  *
11334  *     Context: Kernel thread context.
11335  */
11336 
11337 static void
11338 sdmin(struct buf *bp)
11339 {
11340 	struct sd_lun	*un;
11341 	int		instance;
11342 
11343 	instance = SDUNIT(bp->b_edev);
11344 
11345 	un = ddi_get_soft_state(sd_state, instance);
11346 	ASSERT(un != NULL);
11347 
11348 	if (bp->b_bcount > un->un_max_xfer_size) {
11349 		bp->b_bcount = un->un_max_xfer_size;
11350 	}
11351 }
11352 
11353 
11354 /*
11355  *    Function: sdread
11356  *
11357  * Description: Driver's read(9e) entry point function.
11358  *
11359  *   Arguments: dev   - device number
11360  *		uio   - structure pointer describing where data is to be stored
11361  *			in user's space
11362  *		cred_p  - user credential pointer
11363  *
11364  * Return Code: ENXIO
11365  *		EIO
11366  *		EINVAL
11367  *		value returned by physio
11368  *
11369  *     Context: Kernel thread context.
11370  */
11371 /* ARGSUSED */
11372 static int
11373 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11374 {
11375 	struct sd_lun	*un = NULL;
11376 	int		secmask;
11377 	int		err;
11378 
11379 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11380 		return (ENXIO);
11381 	}
11382 
11383 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11384 
11385 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11386 		mutex_enter(SD_MUTEX(un));
11387 		/*
11388 		 * Because the call to sd_ready_and_valid will issue I/O we
11389 		 * must wait here if either the device is suspended or
11390 		 * if it's power level is changing.
11391 		 */
11392 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11393 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11394 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11395 		}
11396 		un->un_ncmds_in_driver++;
11397 		mutex_exit(SD_MUTEX(un));
11398 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11399 			mutex_enter(SD_MUTEX(un));
11400 			un->un_ncmds_in_driver--;
11401 			ASSERT(un->un_ncmds_in_driver >= 0);
11402 			mutex_exit(SD_MUTEX(un));
11403 			return (EIO);
11404 		}
11405 		mutex_enter(SD_MUTEX(un));
11406 		un->un_ncmds_in_driver--;
11407 		ASSERT(un->un_ncmds_in_driver >= 0);
11408 		mutex_exit(SD_MUTEX(un));
11409 	}
11410 
11411 	/*
11412 	 * Read requests are restricted to multiples of the system block size.
11413 	 */
11414 	secmask = un->un_sys_blocksize - 1;
11415 
11416 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11417 		SD_ERROR(SD_LOG_READ_WRITE, un,
11418 		    "sdread: file offset not modulo %d\n",
11419 		    un->un_sys_blocksize);
11420 		err = EINVAL;
11421 	} else if (uio->uio_iov->iov_len & (secmask)) {
11422 		SD_ERROR(SD_LOG_READ_WRITE, un,
11423 		    "sdread: transfer length not modulo %d\n",
11424 		    un->un_sys_blocksize);
11425 		err = EINVAL;
11426 	} else {
11427 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11428 	}
11429 	return (err);
11430 }
11431 
11432 
11433 /*
11434  *    Function: sdwrite
11435  *
11436  * Description: Driver's write(9e) entry point function.
11437  *
11438  *   Arguments: dev   - device number
11439  *		uio   - structure pointer describing where data is stored in
11440  *			user's space
11441  *		cred_p  - user credential pointer
11442  *
11443  * Return Code: ENXIO
11444  *		EIO
11445  *		EINVAL
11446  *		value returned by physio
11447  *
11448  *     Context: Kernel thread context.
11449  */
11450 /* ARGSUSED */
11451 static int
11452 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11453 {
11454 	struct sd_lun	*un = NULL;
11455 	int		secmask;
11456 	int		err;
11457 
11458 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11459 		return (ENXIO);
11460 	}
11461 
11462 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11463 
11464 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11465 		mutex_enter(SD_MUTEX(un));
11466 		/*
11467 		 * Because the call to sd_ready_and_valid will issue I/O we
11468 		 * must wait here if either the device is suspended or
11469 		 * if it's power level is changing.
11470 		 */
11471 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11472 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11473 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11474 		}
11475 		un->un_ncmds_in_driver++;
11476 		mutex_exit(SD_MUTEX(un));
11477 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11478 			mutex_enter(SD_MUTEX(un));
11479 			un->un_ncmds_in_driver--;
11480 			ASSERT(un->un_ncmds_in_driver >= 0);
11481 			mutex_exit(SD_MUTEX(un));
11482 			return (EIO);
11483 		}
11484 		mutex_enter(SD_MUTEX(un));
11485 		un->un_ncmds_in_driver--;
11486 		ASSERT(un->un_ncmds_in_driver >= 0);
11487 		mutex_exit(SD_MUTEX(un));
11488 	}
11489 
11490 	/*
11491 	 * Write requests are restricted to multiples of the system block size.
11492 	 */
11493 	secmask = un->un_sys_blocksize - 1;
11494 
11495 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11496 		SD_ERROR(SD_LOG_READ_WRITE, un,
11497 		    "sdwrite: file offset not modulo %d\n",
11498 		    un->un_sys_blocksize);
11499 		err = EINVAL;
11500 	} else if (uio->uio_iov->iov_len & (secmask)) {
11501 		SD_ERROR(SD_LOG_READ_WRITE, un,
11502 		    "sdwrite: transfer length not modulo %d\n",
11503 		    un->un_sys_blocksize);
11504 		err = EINVAL;
11505 	} else {
11506 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11507 	}
11508 	return (err);
11509 }
11510 
11511 
11512 /*
11513  *    Function: sdaread
11514  *
11515  * Description: Driver's aread(9e) entry point function.
11516  *
11517  *   Arguments: dev   - device number
11518  *		aio   - structure pointer describing where data is to be stored
11519  *		cred_p  - user credential pointer
11520  *
11521  * Return Code: ENXIO
11522  *		EIO
11523  *		EINVAL
11524  *		value returned by aphysio
11525  *
11526  *     Context: Kernel thread context.
11527  */
11528 /* ARGSUSED */
11529 static int
11530 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11531 {
11532 	struct sd_lun	*un = NULL;
11533 	struct uio	*uio = aio->aio_uio;
11534 	int		secmask;
11535 	int		err;
11536 
11537 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11538 		return (ENXIO);
11539 	}
11540 
11541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11542 
11543 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11544 		mutex_enter(SD_MUTEX(un));
11545 		/*
11546 		 * Because the call to sd_ready_and_valid will issue I/O we
11547 		 * must wait here if either the device is suspended or
11548 		 * if it's power level is changing.
11549 		 */
11550 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11551 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11552 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11553 		}
11554 		un->un_ncmds_in_driver++;
11555 		mutex_exit(SD_MUTEX(un));
11556 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11557 			mutex_enter(SD_MUTEX(un));
11558 			un->un_ncmds_in_driver--;
11559 			ASSERT(un->un_ncmds_in_driver >= 0);
11560 			mutex_exit(SD_MUTEX(un));
11561 			return (EIO);
11562 		}
11563 		mutex_enter(SD_MUTEX(un));
11564 		un->un_ncmds_in_driver--;
11565 		ASSERT(un->un_ncmds_in_driver >= 0);
11566 		mutex_exit(SD_MUTEX(un));
11567 	}
11568 
11569 	/*
11570 	 * Read requests are restricted to multiples of the system block size.
11571 	 */
11572 	secmask = un->un_sys_blocksize - 1;
11573 
11574 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11575 		SD_ERROR(SD_LOG_READ_WRITE, un,
11576 		    "sdaread: file offset not modulo %d\n",
11577 		    un->un_sys_blocksize);
11578 		err = EINVAL;
11579 	} else if (uio->uio_iov->iov_len & (secmask)) {
11580 		SD_ERROR(SD_LOG_READ_WRITE, un,
11581 		    "sdaread: transfer length not modulo %d\n",
11582 		    un->un_sys_blocksize);
11583 		err = EINVAL;
11584 	} else {
11585 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11586 	}
11587 	return (err);
11588 }
11589 
11590 
11591 /*
11592  *    Function: sdawrite
11593  *
11594  * Description: Driver's awrite(9e) entry point function.
11595  *
11596  *   Arguments: dev   - device number
11597  *		aio   - structure pointer describing where data is stored
11598  *		cred_p  - user credential pointer
11599  *
11600  * Return Code: ENXIO
11601  *		EIO
11602  *		EINVAL
11603  *		value returned by aphysio
11604  *
11605  *     Context: Kernel thread context.
11606  */
11607 /* ARGSUSED */
11608 static int
11609 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11610 {
11611 	struct sd_lun	*un = NULL;
11612 	struct uio	*uio = aio->aio_uio;
11613 	int		secmask;
11614 	int		err;
11615 
11616 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11617 		return (ENXIO);
11618 	}
11619 
11620 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11621 
11622 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11623 		mutex_enter(SD_MUTEX(un));
11624 		/*
11625 		 * Because the call to sd_ready_and_valid will issue I/O we
11626 		 * must wait here if either the device is suspended or
11627 		 * if it's power level is changing.
11628 		 */
11629 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11630 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11631 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11632 		}
11633 		un->un_ncmds_in_driver++;
11634 		mutex_exit(SD_MUTEX(un));
11635 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11636 			mutex_enter(SD_MUTEX(un));
11637 			un->un_ncmds_in_driver--;
11638 			ASSERT(un->un_ncmds_in_driver >= 0);
11639 			mutex_exit(SD_MUTEX(un));
11640 			return (EIO);
11641 		}
11642 		mutex_enter(SD_MUTEX(un));
11643 		un->un_ncmds_in_driver--;
11644 		ASSERT(un->un_ncmds_in_driver >= 0);
11645 		mutex_exit(SD_MUTEX(un));
11646 	}
11647 
11648 	/*
11649 	 * Write requests are restricted to multiples of the system block size.
11650 	 */
11651 	secmask = un->un_sys_blocksize - 1;
11652 
11653 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11654 		SD_ERROR(SD_LOG_READ_WRITE, un,
11655 		    "sdawrite: file offset not modulo %d\n",
11656 		    un->un_sys_blocksize);
11657 		err = EINVAL;
11658 	} else if (uio->uio_iov->iov_len & (secmask)) {
11659 		SD_ERROR(SD_LOG_READ_WRITE, un,
11660 		    "sdawrite: transfer length not modulo %d\n",
11661 		    un->un_sys_blocksize);
11662 		err = EINVAL;
11663 	} else {
11664 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11665 	}
11666 	return (err);
11667 }
11668 
11669 
11670 
11671 
11672 
11673 /*
11674  * Driver IO processing follows the following sequence:
11675  *
11676  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11677  *         |                |                     ^
11678  *         v                v                     |
11679  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11680  *         |                |                     |                   |
11681  *         v                |                     |                   |
11682  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11683  *         |                |                     ^                   ^
11684  *         v                v                     |                   |
11685  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11686  *         |                |                     |                   |
11687  *     +---+                |                     +------------+      +-------+
11688  *     |                    |                                  |              |
11689  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11690  *     |                    v                                  |              |
11691  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11692  *     |                    |                                  ^              |
11693  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11694  *     |                    v                                  |              |
11695  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11696  *     |                    |                                  ^              |
11697  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11698  *     |                    v                                  |              |
11699  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11700  *     |                    |                                  ^              |
11701  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11702  *     |                    v                                  |              |
11703  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11704  *     |                    |                                  ^              |
11705  *     |                    |                                  |              |
11706  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11707  *                          |                           ^
11708  *                          v                           |
11709  *                   sd_core_iostart()                  |
11710  *                          |                           |
11711  *                          |                           +------>(*destroypkt)()
11712  *                          +-> sd_start_cmds() <-+     |           |
11713  *                          |                     |     |           v
11714  *                          |                     |     |  scsi_destroy_pkt(9F)
11715  *                          |                     |     |
11716  *                          +->(*initpkt)()       +- sdintr()
11717  *                          |  |                        |  |
11718  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11719  *                          |  +-> scsi_setup_cdb(9F)   |
11720  *                          |                           |
11721  *                          +--> scsi_transport(9F)     |
11722  *                                     |                |
11723  *                                     +----> SCSA ---->+
11724  *
11725  *
11726  * This code is based upon the following presumtions:
11727  *
11728  *   - iostart and iodone functions operate on buf(9S) structures. These
11729  *     functions perform the necessary operations on the buf(9S) and pass
11730  *     them along to the next function in the chain by using the macros
11731  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11732  *     (for iodone side functions).
11733  *
11734  *   - The iostart side functions may sleep. The iodone side functions
11735  *     are called under interrupt context and may NOT sleep. Therefore
11736  *     iodone side functions also may not call iostart side functions.
11737  *     (NOTE: iostart side functions should NOT sleep for memory, as
11738  *     this could result in deadlock.)
11739  *
11740  *   - An iostart side function may call its corresponding iodone side
11741  *     function directly (if necessary).
11742  *
11743  *   - In the event of an error, an iostart side function can return a buf(9S)
11744  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11745  *     b_error in the usual way of course).
11746  *
11747  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11748  *     requests to the iostart side functions.  The iostart side functions in
11749  *     this case would be called under the context of a taskq thread, so it's
11750  *     OK for them to block/sleep/spin in this case.
11751  *
11752  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11753  *     pass them along to the next function in the chain.  The corresponding
11754  *     iodone side functions must coalesce the "shadow" bufs and return
11755  *     the "original" buf to the next higher layer.
11756  *
11757  *   - The b_private field of the buf(9S) struct holds a pointer to
11758  *     an sd_xbuf struct, which contains information needed to
11759  *     construct the scsi_pkt for the command.
11760  *
11761  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11762  *     layer must acquire & release the SD_MUTEX(un) as needed.
11763  */
11764 
11765 
11766 /*
11767  * Create taskq for all targets in the system. This is created at
11768  * _init(9E) and destroyed at _fini(9E).
11769  *
11770  * Note: here we set the minalloc to a reasonably high number to ensure that
11771  * we will have an adequate supply of task entries available at interrupt time.
11772  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11773  * sd_create_taskq().  Since we do not want to sleep for allocations at
11774  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11775  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11776  * requests any one instant in time.
11777  */
11778 #define	SD_TASKQ_NUMTHREADS	8
11779 #define	SD_TASKQ_MINALLOC	256
11780 #define	SD_TASKQ_MAXALLOC	256
11781 
11782 static taskq_t	*sd_tq = NULL;
11783 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11784 
11785 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11786 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11787 
11788 /*
11789  * The following task queue is being created for the write part of
11790  * read-modify-write of non-512 block size devices.
11791  * Limit the number of threads to 1 for now. This number has been choosen
11792  * considering the fact that it applies only to dvd ram drives/MO drives
11793  * currently. Performance for which is not main criteria at this stage.
11794  * Note: It needs to be explored if we can use a single taskq in future
11795  */
11796 #define	SD_WMR_TASKQ_NUMTHREADS	1
11797 static taskq_t	*sd_wmr_tq = NULL;
11798 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11799 
11800 /*
11801  *    Function: sd_taskq_create
11802  *
11803  * Description: Create taskq thread(s) and preallocate task entries
11804  *
11805  * Return Code: Returns a pointer to the allocated taskq_t.
11806  *
11807  *     Context: Can sleep. Requires blockable context.
11808  *
11809  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11810  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11811  *		- taskq_create() will block for memory, also it will panic
11812  *		  if it cannot create the requested number of threads.
11813  *		- Currently taskq_create() creates threads that cannot be
11814  *		  swapped.
11815  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11816  *		  supply of taskq entries at interrupt time (ie, so that we
11817  *		  do not have to sleep for memory)
11818  */
11819 
11820 static void
11821 sd_taskq_create(void)
11822 {
11823 	char	taskq_name[TASKQ_NAMELEN];
11824 
11825 	ASSERT(sd_tq == NULL);
11826 	ASSERT(sd_wmr_tq == NULL);
11827 
11828 	(void) snprintf(taskq_name, sizeof (taskq_name),
11829 	    "%s_drv_taskq", sd_label);
11830 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11831 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11832 	    TASKQ_PREPOPULATE));
11833 
11834 	(void) snprintf(taskq_name, sizeof (taskq_name),
11835 	    "%s_rmw_taskq", sd_label);
11836 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11837 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11838 	    TASKQ_PREPOPULATE));
11839 }
11840 
11841 
11842 /*
11843  *    Function: sd_taskq_delete
11844  *
11845  * Description: Complementary cleanup routine for sd_taskq_create().
11846  *
11847  *     Context: Kernel thread context.
11848  */
11849 
11850 static void
11851 sd_taskq_delete(void)
11852 {
11853 	ASSERT(sd_tq != NULL);
11854 	ASSERT(sd_wmr_tq != NULL);
11855 	taskq_destroy(sd_tq);
11856 	taskq_destroy(sd_wmr_tq);
11857 	sd_tq = NULL;
11858 	sd_wmr_tq = NULL;
11859 }
11860 
11861 
11862 /*
11863  *    Function: sdstrategy
11864  *
11865  * Description: Driver's strategy (9E) entry point function.
11866  *
11867  *   Arguments: bp - pointer to buf(9S)
11868  *
11869  * Return Code: Always returns zero
11870  *
11871  *     Context: Kernel thread context.
11872  */
11873 
11874 static int
11875 sdstrategy(struct buf *bp)
11876 {
11877 	struct sd_lun *un;
11878 
11879 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11880 	if (un == NULL) {
11881 		bioerror(bp, EIO);
11882 		bp->b_resid = bp->b_bcount;
11883 		biodone(bp);
11884 		return (0);
11885 	}
11886 	/* As was done in the past, fail new cmds. if state is dumping. */
11887 	if (un->un_state == SD_STATE_DUMPING) {
11888 		bioerror(bp, ENXIO);
11889 		bp->b_resid = bp->b_bcount;
11890 		biodone(bp);
11891 		return (0);
11892 	}
11893 
11894 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11895 
11896 	/*
11897 	 * Commands may sneak in while we released the mutex in
11898 	 * DDI_SUSPEND, we should block new commands. However, old
11899 	 * commands that are still in the driver at this point should
11900 	 * still be allowed to drain.
11901 	 */
11902 	mutex_enter(SD_MUTEX(un));
11903 	/*
11904 	 * Must wait here if either the device is suspended or
11905 	 * if it's power level is changing.
11906 	 */
11907 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11908 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11909 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11910 	}
11911 
11912 	un->un_ncmds_in_driver++;
11913 
11914 	/*
11915 	 * atapi: Since we are running the CD for now in PIO mode we need to
11916 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11917 	 * the HBA's init_pkt routine.
11918 	 */
11919 	if (un->un_f_cfg_is_atapi == TRUE) {
11920 		mutex_exit(SD_MUTEX(un));
11921 		bp_mapin(bp);
11922 		mutex_enter(SD_MUTEX(un));
11923 	}
11924 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11925 	    un->un_ncmds_in_driver);
11926 
11927 	mutex_exit(SD_MUTEX(un));
11928 
11929 	/*
11930 	 * This will (eventually) allocate the sd_xbuf area and
11931 	 * call sd_xbuf_strategy().  We just want to return the
11932 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11933 	 * imized tail call which saves us a stack frame.
11934 	 */
11935 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11936 }
11937 
11938 
11939 /*
11940  *    Function: sd_xbuf_strategy
11941  *
11942  * Description: Function for initiating IO operations via the
11943  *		ddi_xbuf_qstrategy() mechanism.
11944  *
11945  *     Context: Kernel thread context.
11946  */
11947 
11948 static void
11949 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11950 {
11951 	struct sd_lun *un = arg;
11952 
11953 	ASSERT(bp != NULL);
11954 	ASSERT(xp != NULL);
11955 	ASSERT(un != NULL);
11956 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11957 
11958 	/*
11959 	 * Initialize the fields in the xbuf and save a pointer to the
11960 	 * xbuf in bp->b_private.
11961 	 */
11962 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11963 
11964 	/* Send the buf down the iostart chain */
11965 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11966 }
11967 
11968 
11969 /*
11970  *    Function: sd_xbuf_init
11971  *
11972  * Description: Prepare the given sd_xbuf struct for use.
11973  *
11974  *   Arguments: un - ptr to softstate
11975  *		bp - ptr to associated buf(9S)
11976  *		xp - ptr to associated sd_xbuf
11977  *		chain_type - IO chain type to use:
11978  *			SD_CHAIN_NULL
11979  *			SD_CHAIN_BUFIO
11980  *			SD_CHAIN_USCSI
11981  *			SD_CHAIN_DIRECT
11982  *			SD_CHAIN_DIRECT_PRIORITY
11983  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11984  *			initialization; may be NULL if none.
11985  *
11986  *     Context: Kernel thread context
11987  */
11988 
11989 static void
11990 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11991 	uchar_t chain_type, void *pktinfop)
11992 {
11993 	int index;
11994 
11995 	ASSERT(un != NULL);
11996 	ASSERT(bp != NULL);
11997 	ASSERT(xp != NULL);
11998 
11999 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
12000 	    bp, chain_type);
12001 
12002 	xp->xb_un	= un;
12003 	xp->xb_pktp	= NULL;
12004 	xp->xb_pktinfo	= pktinfop;
12005 	xp->xb_private	= bp->b_private;
12006 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
12007 
12008 	/*
12009 	 * Set up the iostart and iodone chain indexes in the xbuf, based
12010 	 * upon the specified chain type to use.
12011 	 */
12012 	switch (chain_type) {
12013 	case SD_CHAIN_NULL:
12014 		/*
12015 		 * Fall thru to just use the values for the buf type, even
12016 		 * tho for the NULL chain these values will never be used.
12017 		 */
12018 		/* FALLTHRU */
12019 	case SD_CHAIN_BUFIO:
12020 		index = un->un_buf_chain_type;
12021 		break;
12022 	case SD_CHAIN_USCSI:
12023 		index = un->un_uscsi_chain_type;
12024 		break;
12025 	case SD_CHAIN_DIRECT:
12026 		index = un->un_direct_chain_type;
12027 		break;
12028 	case SD_CHAIN_DIRECT_PRIORITY:
12029 		index = un->un_priority_chain_type;
12030 		break;
12031 	default:
12032 		/* We're really broken if we ever get here... */
12033 		panic("sd_xbuf_init: illegal chain type!");
12034 		/*NOTREACHED*/
12035 	}
12036 
12037 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
12038 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
12039 
12040 	/*
12041 	 * It might be a bit easier to simply bzero the entire xbuf above,
12042 	 * but it turns out that since we init a fair number of members anyway,
12043 	 * we save a fair number cycles by doing explicit assignment of zero.
12044 	 */
12045 	xp->xb_pkt_flags	= 0;
12046 	xp->xb_dma_resid	= 0;
12047 	xp->xb_retry_count	= 0;
12048 	xp->xb_victim_retry_count = 0;
12049 	xp->xb_ua_retry_count	= 0;
12050 	xp->xb_sense_bp		= NULL;
12051 	xp->xb_sense_status	= 0;
12052 	xp->xb_sense_state	= 0;
12053 	xp->xb_sense_resid	= 0;
12054 
12055 	bp->b_private	= xp;
12056 	bp->b_flags	&= ~(B_DONE | B_ERROR);
12057 	bp->b_resid	= 0;
12058 	bp->av_forw	= NULL;
12059 	bp->av_back	= NULL;
12060 	bioerror(bp, 0);
12061 
12062 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
12063 }
12064 
12065 
12066 /*
12067  *    Function: sd_uscsi_strategy
12068  *
12069  * Description: Wrapper for calling into the USCSI chain via physio(9F)
12070  *
12071  *   Arguments: bp - buf struct ptr
12072  *
12073  * Return Code: Always returns 0
12074  *
12075  *     Context: Kernel thread context
12076  */
12077 
12078 static int
12079 sd_uscsi_strategy(struct buf *bp)
12080 {
12081 	struct sd_lun		*un;
12082 	struct sd_uscsi_info	*uip;
12083 	struct sd_xbuf		*xp;
12084 	uchar_t			chain_type;
12085 
12086 	ASSERT(bp != NULL);
12087 
12088 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
12089 	if (un == NULL) {
12090 		bioerror(bp, EIO);
12091 		bp->b_resid = bp->b_bcount;
12092 		biodone(bp);
12093 		return (0);
12094 	}
12095 
12096 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12097 
12098 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
12099 
12100 	mutex_enter(SD_MUTEX(un));
12101 	/*
12102 	 * atapi: Since we are running the CD for now in PIO mode we need to
12103 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
12104 	 * the HBA's init_pkt routine.
12105 	 */
12106 	if (un->un_f_cfg_is_atapi == TRUE) {
12107 		mutex_exit(SD_MUTEX(un));
12108 		bp_mapin(bp);
12109 		mutex_enter(SD_MUTEX(un));
12110 	}
12111 	un->un_ncmds_in_driver++;
12112 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
12113 	    un->un_ncmds_in_driver);
12114 	mutex_exit(SD_MUTEX(un));
12115 
12116 	/*
12117 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
12118 	 */
12119 	ASSERT(bp->b_private != NULL);
12120 	uip = (struct sd_uscsi_info *)bp->b_private;
12121 
12122 	switch (uip->ui_flags) {
12123 	case SD_PATH_DIRECT:
12124 		chain_type = SD_CHAIN_DIRECT;
12125 		break;
12126 	case SD_PATH_DIRECT_PRIORITY:
12127 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
12128 		break;
12129 	default:
12130 		chain_type = SD_CHAIN_USCSI;
12131 		break;
12132 	}
12133 
12134 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12135 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
12136 
12137 	/* Use the index obtained within xbuf_init */
12138 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
12139 
12140 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
12141 
12142 	return (0);
12143 }
12144 
12145 
12146 /*
12147  * These routines perform raw i/o operations.
12148  */
12149 /*ARGSUSED*/
12150 static void
12151 sduscsimin(struct buf *bp)
12152 {
12153 	/*
12154 	 * do not break up because the CDB count would then
12155 	 * be incorrect and data underruns would result (incomplete
12156 	 * read/writes which would be retried and then failed, see
12157 	 * sdintr().
12158 	 */
12159 }
12160 
12161 
12162 
12163 /*
12164  *    Function: sd_send_scsi_cmd
12165  *
12166  * Description: Runs a USCSI command for user (when called thru sdioctl),
12167  *		or for the driver
12168  *
12169  *   Arguments: dev - the dev_t for the device
12170  *		incmd - ptr to a valid uscsi_cmd struct
12171  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
12172  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
12173  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
12174  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
12175  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
12176  *			to use the USCSI "direct" chain and bypass the normal
12177  *			command waitq.
12178  *
12179  * Return Code: 0 -  successful completion of the given command
12180  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
12181  *		ENXIO  - soft state not found for specified dev
12182  *		EINVAL
12183  *		EFAULT - copyin/copyout error
12184  *		return code of biowait(9F) or physio(9F):
12185  *			EIO - IO error, caller may check incmd->uscsi_status
12186  *			ENXIO
12187  *			EACCES - reservation conflict
12188  *
12189  *     Context: Waits for command to complete. Can sleep.
12190  */
12191 
12192 static int
12193 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
12194 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
12195 	int path_flag)
12196 {
12197 	struct sd_uscsi_info	*uip;
12198 	struct uscsi_cmd	*uscmd;
12199 	struct sd_lun	*un;
12200 	struct buf	*bp;
12201 	int	rval;
12202 	int	flags;
12203 
12204 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
12205 	if (un == NULL) {
12206 		return (ENXIO);
12207 	}
12208 
12209 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12210 
12211 #ifdef SDDEBUG
12212 	switch (dataspace) {
12213 	case UIO_USERSPACE:
12214 		SD_TRACE(SD_LOG_IO, un,
12215 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
12216 		break;
12217 	case UIO_SYSSPACE:
12218 		SD_TRACE(SD_LOG_IO, un,
12219 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
12220 		break;
12221 	default:
12222 		SD_TRACE(SD_LOG_IO, un,
12223 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
12224 		break;
12225 	}
12226 #endif
12227 
12228 	/*
12229 	 * Perform resets directly; no need to generate a command to do it.
12230 	 */
12231 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
12232 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
12233 		    RESET_ALL : RESET_TARGET;
12234 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
12235 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
12236 			/* Reset attempt was unsuccessful */
12237 			SD_TRACE(SD_LOG_IO, un,
12238 			    "sd_send_scsi_cmd: reset: failure\n");
12239 			return (EIO);
12240 		}
12241 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
12242 		return (0);
12243 	}
12244 
12245 	/* Perfunctory sanity check... */
12246 	if (incmd->uscsi_cdblen <= 0) {
12247 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12248 		    "invalid uscsi_cdblen, returning EINVAL\n");
12249 		return (EINVAL);
12250 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
12251 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12252 		    "unsupported uscsi_cdblen, returning EINVAL\n");
12253 		return (EINVAL);
12254 	}
12255 
12256 	/*
12257 	 * In order to not worry about where the uscsi structure came from
12258 	 * (or where the cdb it points to came from) we're going to make
12259 	 * kmem_alloc'd copies of them here. This will also allow reference
12260 	 * to the data they contain long after this process has gone to
12261 	 * sleep and its kernel stack has been unmapped, etc.
12262 	 *
12263 	 * First get some memory for the uscsi_cmd struct and copy the
12264 	 * contents of the given uscsi_cmd struct into it.
12265 	 */
12266 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
12267 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
12268 
12269 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
12270 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
12271 
12272 	/*
12273 	 * Now get some space for the CDB, and copy the given CDB into
12274 	 * it. Use ddi_copyin() in case the data is in user space.
12275 	 */
12276 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
12277 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
12278 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
12279 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
12280 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
12281 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
12282 		return (EFAULT);
12283 	}
12284 
12285 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
12286 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
12287 
12288 	bp = getrbuf(KM_SLEEP);
12289 
12290 	/*
12291 	 * Allocate an sd_uscsi_info struct and fill it with the info
12292 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12293 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12294 	 * since we allocate the buf here in this function, we do not
12295 	 * need to preserve the prior contents of b_private.
12296 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12297 	 */
12298 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
12299 	uip->ui_flags = path_flag;
12300 	uip->ui_cmdp  = uscmd;
12301 	bp->b_private = uip;
12302 
12303 	/*
12304 	 * Initialize Request Sense buffering, if requested.
12305 	 */
12306 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12307 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12308 		/*
12309 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
12310 		 * buffer, but we replace this with a kernel buffer that
12311 		 * we allocate to use with the sense data. The sense data
12312 		 * (if present) gets copied into this new buffer before the
12313 		 * command is completed.  Then we copy the sense data from
12314 		 * our allocated buf into the caller's buffer below. Note
12315 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
12316 		 * below to perform the copy back to the caller's buf.
12317 		 */
12318 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
12319 		if (rqbufspace == UIO_USERSPACE) {
12320 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
12321 			uscmd->uscsi_rqresid = SENSE_LENGTH;
12322 		} else {
12323 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
12324 			uscmd->uscsi_rqlen   = rlen;
12325 			uscmd->uscsi_rqresid = rlen;
12326 		}
12327 	} else {
12328 		uscmd->uscsi_rqbuf = NULL;
12329 		uscmd->uscsi_rqlen   = 0;
12330 		uscmd->uscsi_rqresid = 0;
12331 	}
12332 
12333 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
12334 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
12335 
12336 	if (un->un_f_is_fibre == FALSE) {
12337 		/*
12338 		 * Force asynchronous mode, if necessary.  Doing this here
12339 		 * has the unfortunate effect of running other queued
12340 		 * commands async also, but since the main purpose of this
12341 		 * capability is downloading new drive firmware, we can
12342 		 * probably live with it.
12343 		 */
12344 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
12345 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12346 				== 1) {
12347 				if (scsi_ifsetcap(SD_ADDRESS(un),
12348 					    "synchronous", 0, 1) == 1) {
12349 					SD_TRACE(SD_LOG_IO, un,
12350 					"sd_send_scsi_cmd: forced async ok\n");
12351 				} else {
12352 					SD_TRACE(SD_LOG_IO, un,
12353 					"sd_send_scsi_cmd:\
12354 					forced async failed\n");
12355 					rval = EINVAL;
12356 					goto done;
12357 				}
12358 			}
12359 		}
12360 
12361 		/*
12362 		 * Re-enable synchronous mode, if requested
12363 		 */
12364 		if (uscmd->uscsi_flags & USCSI_SYNC) {
12365 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12366 				== 0) {
12367 				int i = scsi_ifsetcap(SD_ADDRESS(un),
12368 						"synchronous", 1, 1);
12369 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12370 					"re-enabled sync %s\n",
12371 					(i == 1) ? "ok" : "failed");
12372 			}
12373 		}
12374 	}
12375 
12376 	/*
12377 	 * Commands sent with priority are intended for error recovery
12378 	 * situations, and do not have retries performed.
12379 	 */
12380 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12381 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12382 	}
12383 
12384 	/*
12385 	 * If we're going to do actual I/O, let physio do all the right things
12386 	 */
12387 	if (uscmd->uscsi_buflen != 0) {
12388 		struct iovec	aiov;
12389 		struct uio	auio;
12390 		struct uio	*uio = &auio;
12391 
12392 		bzero(&auio, sizeof (struct uio));
12393 		bzero(&aiov, sizeof (struct iovec));
12394 		aiov.iov_base = uscmd->uscsi_bufaddr;
12395 		aiov.iov_len  = uscmd->uscsi_buflen;
12396 		uio->uio_iov  = &aiov;
12397 
12398 		uio->uio_iovcnt  = 1;
12399 		uio->uio_resid   = uscmd->uscsi_buflen;
12400 		uio->uio_segflg  = dataspace;
12401 
12402 		/*
12403 		 * physio() will block here until the command completes....
12404 		 */
12405 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
12406 
12407 		rval = physio(sd_uscsi_strategy, bp, dev,
12408 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
12409 		    sduscsimin, uio);
12410 
12411 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12412 		    "returned from physio with 0x%x\n", rval);
12413 
12414 	} else {
12415 		/*
12416 		 * We have to mimic what physio would do here! Argh!
12417 		 */
12418 		bp->b_flags  = B_BUSY |
12419 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
12420 		bp->b_edev   = dev;
12421 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
12422 		bp->b_bcount = 0;
12423 		bp->b_blkno  = 0;
12424 
12425 		SD_TRACE(SD_LOG_IO, un,
12426 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
12427 
12428 		(void) sd_uscsi_strategy(bp);
12429 
12430 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
12431 
12432 		rval = biowait(bp);
12433 
12434 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12435 		    "returned from  biowait with 0x%x\n", rval);
12436 	}
12437 
12438 done:
12439 
12440 #ifdef SDDEBUG
12441 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12442 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12443 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12444 	if (uscmd->uscsi_bufaddr != NULL) {
12445 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12446 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12447 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12448 		if (dataspace == UIO_SYSSPACE) {
12449 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12450 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12451 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12452 		}
12453 	}
12454 #endif
12455 
12456 	/*
12457 	 * Get the status and residual to return to the caller.
12458 	 */
12459 	incmd->uscsi_status = uscmd->uscsi_status;
12460 	incmd->uscsi_resid  = uscmd->uscsi_resid;
12461 
12462 	/*
12463 	 * If the caller wants sense data, copy back whatever sense data
12464 	 * we may have gotten, and update the relevant rqsense info.
12465 	 */
12466 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12467 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12468 
12469 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
12470 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
12471 
12472 		/* Update the Request Sense status and resid */
12473 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
12474 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
12475 
12476 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12477 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
12478 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
12479 
12480 		/* Copy out the sense data for user processes */
12481 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
12482 			int flags =
12483 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
12484 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
12485 			    rqlen, flags) != 0) {
12486 				rval = EFAULT;
12487 			}
12488 			/*
12489 			 * Note: Can't touch incmd->uscsi_rqbuf so use
12490 			 * uscmd->uscsi_rqbuf instead. They're the same.
12491 			 */
12492 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12493 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
12494 			    incmd->uscsi_rqbuf, rqlen);
12495 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
12496 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
12497 		}
12498 	}
12499 
12500 	/*
12501 	 * Free allocated resources and return; mapout the buf in case it was
12502 	 * mapped in by a lower layer.
12503 	 */
12504 	bp_mapout(bp);
12505 	freerbuf(bp);
12506 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12507 	if (uscmd->uscsi_rqbuf != NULL) {
12508 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
12509 	}
12510 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
12511 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
12512 
12513 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
12514 
12515 	return (rval);
12516 }
12517 
12518 
12519 /*
12520  *    Function: sd_buf_iodone
12521  *
12522  * Description: Frees the sd_xbuf & returns the buf to its originator.
12523  *
12524  *     Context: May be called from interrupt context.
12525  */
12526 /* ARGSUSED */
12527 static void
12528 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12529 {
12530 	struct sd_xbuf *xp;
12531 
12532 	ASSERT(un != NULL);
12533 	ASSERT(bp != NULL);
12534 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12535 
12536 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12537 
12538 	xp = SD_GET_XBUF(bp);
12539 	ASSERT(xp != NULL);
12540 
12541 	mutex_enter(SD_MUTEX(un));
12542 
12543 	/*
12544 	 * Grab time when the cmd completed.
12545 	 * This is used for determining if the system has been
12546 	 * idle long enough to make it idle to the PM framework.
12547 	 * This is for lowering the overhead, and therefore improving
12548 	 * performance per I/O operation.
12549 	 */
12550 	un->un_pm_idle_time = ddi_get_time();
12551 
12552 	un->un_ncmds_in_driver--;
12553 	ASSERT(un->un_ncmds_in_driver >= 0);
12554 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12555 	    un->un_ncmds_in_driver);
12556 
12557 	mutex_exit(SD_MUTEX(un));
12558 
12559 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12560 	biodone(bp);				/* bp is gone after this */
12561 
12562 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12563 }
12564 
12565 
12566 /*
12567  *    Function: sd_uscsi_iodone
12568  *
12569  * Description: Frees the sd_xbuf & returns the buf to its originator.
12570  *
12571  *     Context: May be called from interrupt context.
12572  */
12573 /* ARGSUSED */
12574 static void
12575 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12576 {
12577 	struct sd_xbuf *xp;
12578 
12579 	ASSERT(un != NULL);
12580 	ASSERT(bp != NULL);
12581 
12582 	xp = SD_GET_XBUF(bp);
12583 	ASSERT(xp != NULL);
12584 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12585 
12586 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12587 
12588 	bp->b_private = xp->xb_private;
12589 
12590 	mutex_enter(SD_MUTEX(un));
12591 
12592 	/*
12593 	 * Grab time when the cmd completed.
12594 	 * This is used for determining if the system has been
12595 	 * idle long enough to make it idle to the PM framework.
12596 	 * This is for lowering the overhead, and therefore improving
12597 	 * performance per I/O operation.
12598 	 */
12599 	un->un_pm_idle_time = ddi_get_time();
12600 
12601 	un->un_ncmds_in_driver--;
12602 	ASSERT(un->un_ncmds_in_driver >= 0);
12603 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12604 	    un->un_ncmds_in_driver);
12605 
12606 	mutex_exit(SD_MUTEX(un));
12607 
12608 	kmem_free(xp, sizeof (struct sd_xbuf));
12609 	biodone(bp);
12610 
12611 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12612 }
12613 
12614 
12615 /*
12616  *    Function: sd_mapblockaddr_iostart
12617  *
12618  * Description: Verify request lies withing the partition limits for
12619  *		the indicated minor device.  Issue "overrun" buf if
12620  *		request would exceed partition range.  Converts
12621  *		partition-relative block address to absolute.
12622  *
12623  *     Context: Can sleep
12624  *
12625  *      Issues: This follows what the old code did, in terms of accessing
12626  *		some of the partition info in the unit struct without holding
12627  *		the mutext.  This is a general issue, if the partition info
12628  *		can be altered while IO is in progress... as soon as we send
12629  *		a buf, its partitioning can be invalid before it gets to the
12630  *		device.  Probably the right fix is to move partitioning out
12631  *		of the driver entirely.
12632  */
12633 
12634 static void
12635 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12636 {
12637 	daddr_t	nblocks;	/* #blocks in the given partition */
12638 	daddr_t	blocknum;	/* Block number specified by the buf */
12639 	size_t	requested_nblocks;
12640 	size_t	available_nblocks;
12641 	int	partition;
12642 	diskaddr_t	partition_offset;
12643 	struct sd_xbuf *xp;
12644 
12645 
12646 	ASSERT(un != NULL);
12647 	ASSERT(bp != NULL);
12648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12649 
12650 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12651 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12652 
12653 	xp = SD_GET_XBUF(bp);
12654 	ASSERT(xp != NULL);
12655 
12656 	/*
12657 	 * If the geometry is not indicated as valid, attempt to access
12658 	 * the unit & verify the geometry/label. This can be the case for
12659 	 * removable-media devices, of if the device was opened in
12660 	 * NDELAY/NONBLOCK mode.
12661 	 */
12662 	if ((un->un_f_geometry_is_valid != TRUE) &&
12663 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12664 		/*
12665 		 * For removable devices it is possible to start an I/O
12666 		 * without a media by opening the device in nodelay mode.
12667 		 * Also for writable CDs there can be many scenarios where
12668 		 * there is no geometry yet but volume manager is trying to
12669 		 * issue a read() just because it can see TOC on the CD. So
12670 		 * do not print a message for removables.
12671 		 */
12672 		if (!un->un_f_has_removable_media) {
12673 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12674 			    "i/o to invalid geometry\n");
12675 		}
12676 		bioerror(bp, EIO);
12677 		bp->b_resid = bp->b_bcount;
12678 		SD_BEGIN_IODONE(index, un, bp);
12679 		return;
12680 	}
12681 
12682 	partition = SDPART(bp->b_edev);
12683 
12684 	/* #blocks in partition */
12685 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12686 
12687 	/* Use of a local variable potentially improves performance slightly */
12688 	partition_offset = un->un_offset[partition];
12689 
12690 	/*
12691 	 * blocknum is the starting block number of the request. At this
12692 	 * point it is still relative to the start of the minor device.
12693 	 */
12694 	blocknum = xp->xb_blkno;
12695 
12696 	/*
12697 	 * Legacy: If the starting block number is one past the last block
12698 	 * in the partition, do not set B_ERROR in the buf.
12699 	 */
12700 	if (blocknum == nblocks)  {
12701 		goto error_exit;
12702 	}
12703 
12704 	/*
12705 	 * Confirm that the first block of the request lies within the
12706 	 * partition limits. Also the requested number of bytes must be
12707 	 * a multiple of the system block size.
12708 	 */
12709 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12710 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12711 		bp->b_flags |= B_ERROR;
12712 		goto error_exit;
12713 	}
12714 
12715 	/*
12716 	 * If the requsted # blocks exceeds the available # blocks, that
12717 	 * is an overrun of the partition.
12718 	 */
12719 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12720 	available_nblocks = (size_t)(nblocks - blocknum);
12721 	ASSERT(nblocks >= blocknum);
12722 
12723 	if (requested_nblocks > available_nblocks) {
12724 		/*
12725 		 * Allocate an "overrun" buf to allow the request to proceed
12726 		 * for the amount of space available in the partition. The
12727 		 * amount not transferred will be added into the b_resid
12728 		 * when the operation is complete. The overrun buf
12729 		 * replaces the original buf here, and the original buf
12730 		 * is saved inside the overrun buf, for later use.
12731 		 */
12732 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12733 		    (offset_t)(requested_nblocks - available_nblocks));
12734 		size_t count = bp->b_bcount - resid;
12735 		/*
12736 		 * Note: count is an unsigned entity thus it'll NEVER
12737 		 * be less than 0 so ASSERT the original values are
12738 		 * correct.
12739 		 */
12740 		ASSERT(bp->b_bcount >= resid);
12741 
12742 		bp = sd_bioclone_alloc(bp, count, blocknum,
12743 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12744 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12745 		ASSERT(xp != NULL);
12746 	}
12747 
12748 	/* At this point there should be no residual for this buf. */
12749 	ASSERT(bp->b_resid == 0);
12750 
12751 	/* Convert the block number to an absolute address. */
12752 	xp->xb_blkno += partition_offset;
12753 
12754 	SD_NEXT_IOSTART(index, un, bp);
12755 
12756 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12757 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12758 
12759 	return;
12760 
12761 error_exit:
12762 	bp->b_resid = bp->b_bcount;
12763 	SD_BEGIN_IODONE(index, un, bp);
12764 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12765 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12766 }
12767 
12768 
12769 /*
12770  *    Function: sd_mapblockaddr_iodone
12771  *
12772  * Description: Completion-side processing for partition management.
12773  *
12774  *     Context: May be called under interrupt context
12775  */
12776 
12777 static void
12778 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12779 {
12780 	/* int	partition; */	/* Not used, see below. */
12781 	ASSERT(un != NULL);
12782 	ASSERT(bp != NULL);
12783 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12784 
12785 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12786 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12787 
12788 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12789 		/*
12790 		 * We have an "overrun" buf to deal with...
12791 		 */
12792 		struct sd_xbuf	*xp;
12793 		struct buf	*obp;	/* ptr to the original buf */
12794 
12795 		xp = SD_GET_XBUF(bp);
12796 		ASSERT(xp != NULL);
12797 
12798 		/* Retrieve the pointer to the original buf */
12799 		obp = (struct buf *)xp->xb_private;
12800 		ASSERT(obp != NULL);
12801 
12802 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12803 		bioerror(obp, bp->b_error);
12804 
12805 		sd_bioclone_free(bp);
12806 
12807 		/*
12808 		 * Get back the original buf.
12809 		 * Note that since the restoration of xb_blkno below
12810 		 * was removed, the sd_xbuf is not needed.
12811 		 */
12812 		bp = obp;
12813 		/*
12814 		 * xp = SD_GET_XBUF(bp);
12815 		 * ASSERT(xp != NULL);
12816 		 */
12817 	}
12818 
12819 	/*
12820 	 * Convert sd->xb_blkno back to a minor-device relative value.
12821 	 * Note: this has been commented out, as it is not needed in the
12822 	 * current implementation of the driver (ie, since this function
12823 	 * is at the top of the layering chains, so the info will be
12824 	 * discarded) and it is in the "hot" IO path.
12825 	 *
12826 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12827 	 * xp->xb_blkno -= un->un_offset[partition];
12828 	 */
12829 
12830 	SD_NEXT_IODONE(index, un, bp);
12831 
12832 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12833 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12834 }
12835 
12836 
12837 /*
12838  *    Function: sd_mapblocksize_iostart
12839  *
12840  * Description: Convert between system block size (un->un_sys_blocksize)
12841  *		and target block size (un->un_tgt_blocksize).
12842  *
12843  *     Context: Can sleep to allocate resources.
12844  *
12845  * Assumptions: A higher layer has already performed any partition validation,
12846  *		and converted the xp->xb_blkno to an absolute value relative
12847  *		to the start of the device.
12848  *
12849  *		It is also assumed that the higher layer has implemented
12850  *		an "overrun" mechanism for the case where the request would
12851  *		read/write beyond the end of a partition.  In this case we
12852  *		assume (and ASSERT) that bp->b_resid == 0.
12853  *
12854  *		Note: The implementation for this routine assumes the target
12855  *		block size remains constant between allocation and transport.
12856  */
12857 
12858 static void
12859 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12860 {
12861 	struct sd_mapblocksize_info	*bsp;
12862 	struct sd_xbuf			*xp;
12863 	offset_t first_byte;
12864 	daddr_t	start_block, end_block;
12865 	daddr_t	request_bytes;
12866 	ushort_t is_aligned = FALSE;
12867 
12868 	ASSERT(un != NULL);
12869 	ASSERT(bp != NULL);
12870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12871 	ASSERT(bp->b_resid == 0);
12872 
12873 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12874 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12875 
12876 	/*
12877 	 * For a non-writable CD, a write request is an error
12878 	 */
12879 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12880 	    (un->un_f_mmc_writable_media == FALSE)) {
12881 		bioerror(bp, EIO);
12882 		bp->b_resid = bp->b_bcount;
12883 		SD_BEGIN_IODONE(index, un, bp);
12884 		return;
12885 	}
12886 
12887 	/*
12888 	 * We do not need a shadow buf if the device is using
12889 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12890 	 * In this case there is no layer-private data block allocated.
12891 	 */
12892 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12893 	    (bp->b_bcount == 0)) {
12894 		goto done;
12895 	}
12896 
12897 #if defined(__i386) || defined(__amd64)
12898 	/* We do not support non-block-aligned transfers for ROD devices */
12899 	ASSERT(!ISROD(un));
12900 #endif
12901 
12902 	xp = SD_GET_XBUF(bp);
12903 	ASSERT(xp != NULL);
12904 
12905 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12906 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12907 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12908 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12909 	    "request start block:0x%x\n", xp->xb_blkno);
12910 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12911 	    "request len:0x%x\n", bp->b_bcount);
12912 
12913 	/*
12914 	 * Allocate the layer-private data area for the mapblocksize layer.
12915 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12916 	 * struct to store the pointer to their layer-private data block, but
12917 	 * each layer also has the responsibility of restoring the prior
12918 	 * contents of xb_private before returning the buf/xbuf to the
12919 	 * higher layer that sent it.
12920 	 *
12921 	 * Here we save the prior contents of xp->xb_private into the
12922 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12923 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12924 	 * the layer-private area and returning the buf/xbuf to the layer
12925 	 * that sent it.
12926 	 *
12927 	 * Note that here we use kmem_zalloc for the allocation as there are
12928 	 * parts of the mapblocksize code that expect certain fields to be
12929 	 * zero unless explicitly set to a required value.
12930 	 */
12931 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12932 	bsp->mbs_oprivate = xp->xb_private;
12933 	xp->xb_private = bsp;
12934 
12935 	/*
12936 	 * This treats the data on the disk (target) as an array of bytes.
12937 	 * first_byte is the byte offset, from the beginning of the device,
12938 	 * to the location of the request. This is converted from a
12939 	 * un->un_sys_blocksize block address to a byte offset, and then back
12940 	 * to a block address based upon a un->un_tgt_blocksize block size.
12941 	 *
12942 	 * xp->xb_blkno should be absolute upon entry into this function,
12943 	 * but, but it is based upon partitions that use the "system"
12944 	 * block size. It must be adjusted to reflect the block size of
12945 	 * the target.
12946 	 *
12947 	 * Note that end_block is actually the block that follows the last
12948 	 * block of the request, but that's what is needed for the computation.
12949 	 */
12950 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12951 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12952 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12953 	    un->un_tgt_blocksize;
12954 
12955 	/* request_bytes is rounded up to a multiple of the target block size */
12956 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12957 
12958 	/*
12959 	 * See if the starting address of the request and the request
12960 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12961 	 * then we do not need to allocate a shadow buf to handle the request.
12962 	 */
12963 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12964 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12965 		is_aligned = TRUE;
12966 	}
12967 
12968 	if ((bp->b_flags & B_READ) == 0) {
12969 		/*
12970 		 * Lock the range for a write operation. An aligned request is
12971 		 * considered a simple write; otherwise the request must be a
12972 		 * read-modify-write.
12973 		 */
12974 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12975 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12976 	}
12977 
12978 	/*
12979 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12980 	 * where the READ command is generated for a read-modify-write. (The
12981 	 * write phase is deferred until after the read completes.)
12982 	 */
12983 	if (is_aligned == FALSE) {
12984 
12985 		struct sd_mapblocksize_info	*shadow_bsp;
12986 		struct sd_xbuf	*shadow_xp;
12987 		struct buf	*shadow_bp;
12988 
12989 		/*
12990 		 * Allocate the shadow buf and it associated xbuf. Note that
12991 		 * after this call the xb_blkno value in both the original
12992 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12993 		 * same: absolute relative to the start of the device, and
12994 		 * adjusted for the target block size. The b_blkno in the
12995 		 * shadow buf will also be set to this value. We should never
12996 		 * change b_blkno in the original bp however.
12997 		 *
12998 		 * Note also that the shadow buf will always need to be a
12999 		 * READ command, regardless of whether the incoming command
13000 		 * is a READ or a WRITE.
13001 		 */
13002 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13003 		    xp->xb_blkno,
13004 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13005 
13006 		shadow_xp = SD_GET_XBUF(shadow_bp);
13007 
13008 		/*
13009 		 * Allocate the layer-private data for the shadow buf.
13010 		 * (No need to preserve xb_private in the shadow xbuf.)
13011 		 */
13012 		shadow_xp->xb_private = shadow_bsp =
13013 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13014 
13015 		/*
13016 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13017 		 * to figure out where the start of the user data is (based upon
13018 		 * the system block size) in the data returned by the READ
13019 		 * command (which will be based upon the target blocksize). Note
13020 		 * that this is only really used if the request is unaligned.
13021 		 */
13022 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
13023 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13024 		ASSERT((bsp->mbs_copy_offset >= 0) &&
13025 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13026 
13027 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13028 
13029 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13030 
13031 		/* Transfer the wmap (if any) to the shadow buf */
13032 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13033 		bsp->mbs_wmp = NULL;
13034 
13035 		/*
13036 		 * The shadow buf goes on from here in place of the
13037 		 * original buf.
13038 		 */
13039 		shadow_bsp->mbs_orig_bp = bp;
13040 		bp = shadow_bp;
13041 	}
13042 
13043 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13044 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13045 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13046 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13047 	    request_bytes);
13048 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13049 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13050 
13051 done:
13052 	SD_NEXT_IOSTART(index, un, bp);
13053 
13054 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13055 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13056 }
13057 
13058 
13059 /*
13060  *    Function: sd_mapblocksize_iodone
13061  *
13062  * Description: Completion side processing for block-size mapping.
13063  *
13064  *     Context: May be called under interrupt context
13065  */
13066 
13067 static void
13068 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13069 {
13070 	struct sd_mapblocksize_info	*bsp;
13071 	struct sd_xbuf	*xp;
13072 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13073 	struct buf	*orig_bp;	/* ptr to the original buf */
13074 	offset_t	shadow_end;
13075 	offset_t	request_end;
13076 	offset_t	shadow_start;
13077 	ssize_t		copy_offset;
13078 	size_t		copy_length;
13079 	size_t		shortfall;
13080 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13081 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13082 
13083 	ASSERT(un != NULL);
13084 	ASSERT(bp != NULL);
13085 
13086 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13087 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13088 
13089 	/*
13090 	 * There is no shadow buf or layer-private data if the target is
13091 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13092 	 */
13093 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
13094 	    (bp->b_bcount == 0)) {
13095 		goto exit;
13096 	}
13097 
13098 	xp = SD_GET_XBUF(bp);
13099 	ASSERT(xp != NULL);
13100 
13101 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13102 	bsp = xp->xb_private;
13103 
13104 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13105 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13106 
13107 	if (is_write) {
13108 		/*
13109 		 * For a WRITE request we must free up the block range that
13110 		 * we have locked up.  This holds regardless of whether this is
13111 		 * an aligned write request or a read-modify-write request.
13112 		 */
13113 		sd_range_unlock(un, bsp->mbs_wmp);
13114 		bsp->mbs_wmp = NULL;
13115 	}
13116 
13117 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13118 		/*
13119 		 * An aligned read or write command will have no shadow buf;
13120 		 * there is not much else to do with it.
13121 		 */
13122 		goto done;
13123 	}
13124 
13125 	orig_bp = bsp->mbs_orig_bp;
13126 	ASSERT(orig_bp != NULL);
13127 	orig_xp = SD_GET_XBUF(orig_bp);
13128 	ASSERT(orig_xp != NULL);
13129 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13130 
13131 	if (!is_write && has_wmap) {
13132 		/*
13133 		 * A READ with a wmap means this is the READ phase of a
13134 		 * read-modify-write. If an error occurred on the READ then
13135 		 * we do not proceed with the WRITE phase or copy any data.
13136 		 * Just release the write maps and return with an error.
13137 		 */
13138 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13139 			orig_bp->b_resid = orig_bp->b_bcount;
13140 			bioerror(orig_bp, bp->b_error);
13141 			sd_range_unlock(un, bsp->mbs_wmp);
13142 			goto freebuf_done;
13143 		}
13144 	}
13145 
13146 	/*
13147 	 * Here is where we set up to copy the data from the shadow buf
13148 	 * into the space associated with the original buf.
13149 	 *
13150 	 * To deal with the conversion between block sizes, these
13151 	 * computations treat the data as an array of bytes, with the
13152 	 * first byte (byte 0) corresponding to the first byte in the
13153 	 * first block on the disk.
13154 	 */
13155 
13156 	/*
13157 	 * shadow_start and shadow_len indicate the location and size of
13158 	 * the data returned with the shadow IO request.
13159 	 */
13160 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13161 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13162 
13163 	/*
13164 	 * copy_offset gives the offset (in bytes) from the start of the first
13165 	 * block of the READ request to the beginning of the data.  We retrieve
13166 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13167 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13168 	 * data to be copied (in bytes).
13169 	 */
13170 	copy_offset  = bsp->mbs_copy_offset;
13171 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
13172 	copy_length  = orig_bp->b_bcount;
13173 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13174 
13175 	/*
13176 	 * Set up the resid and error fields of orig_bp as appropriate.
13177 	 */
13178 	if (shadow_end >= request_end) {
13179 		/* We got all the requested data; set resid to zero */
13180 		orig_bp->b_resid = 0;
13181 	} else {
13182 		/*
13183 		 * We failed to get enough data to fully satisfy the original
13184 		 * request. Just copy back whatever data we got and set
13185 		 * up the residual and error code as required.
13186 		 *
13187 		 * 'shortfall' is the amount by which the data received with the
13188 		 * shadow buf has "fallen short" of the requested amount.
13189 		 */
13190 		shortfall = (size_t)(request_end - shadow_end);
13191 
13192 		if (shortfall > orig_bp->b_bcount) {
13193 			/*
13194 			 * We did not get enough data to even partially
13195 			 * fulfill the original request.  The residual is
13196 			 * equal to the amount requested.
13197 			 */
13198 			orig_bp->b_resid = orig_bp->b_bcount;
13199 		} else {
13200 			/*
13201 			 * We did not get all the data that we requested
13202 			 * from the device, but we will try to return what
13203 			 * portion we did get.
13204 			 */
13205 			orig_bp->b_resid = shortfall;
13206 		}
13207 		ASSERT(copy_length >= orig_bp->b_resid);
13208 		copy_length  -= orig_bp->b_resid;
13209 	}
13210 
13211 	/* Propagate the error code from the shadow buf to the original buf */
13212 	bioerror(orig_bp, bp->b_error);
13213 
13214 	if (is_write) {
13215 		goto freebuf_done;	/* No data copying for a WRITE */
13216 	}
13217 
13218 	if (has_wmap) {
13219 		/*
13220 		 * This is a READ command from the READ phase of a
13221 		 * read-modify-write request. We have to copy the data given
13222 		 * by the user OVER the data returned by the READ command,
13223 		 * then convert the command from a READ to a WRITE and send
13224 		 * it back to the target.
13225 		 */
13226 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13227 		    copy_length);
13228 
13229 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13230 
13231 		/*
13232 		 * Dispatch the WRITE command to the taskq thread, which
13233 		 * will in turn send the command to the target. When the
13234 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13235 		 * will get called again as part of the iodone chain
13236 		 * processing for it. Note that we will still be dealing
13237 		 * with the shadow buf at that point.
13238 		 */
13239 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13240 		    KM_NOSLEEP) != 0) {
13241 			/*
13242 			 * Dispatch was successful so we are done. Return
13243 			 * without going any higher up the iodone chain. Do
13244 			 * not free up any layer-private data until after the
13245 			 * WRITE completes.
13246 			 */
13247 			return;
13248 		}
13249 
13250 		/*
13251 		 * Dispatch of the WRITE command failed; set up the error
13252 		 * condition and send this IO back up the iodone chain.
13253 		 */
13254 		bioerror(orig_bp, EIO);
13255 		orig_bp->b_resid = orig_bp->b_bcount;
13256 
13257 	} else {
13258 		/*
13259 		 * This is a regular READ request (ie, not a RMW). Copy the
13260 		 * data from the shadow buf into the original buf. The
13261 		 * copy_offset compensates for any "misalignment" between the
13262 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13263 		 * original buf (with its un->un_sys_blocksize blocks).
13264 		 */
13265 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13266 		    copy_length);
13267 	}
13268 
13269 freebuf_done:
13270 
13271 	/*
13272 	 * At this point we still have both the shadow buf AND the original
13273 	 * buf to deal with, as well as the layer-private data area in each.
13274 	 * Local variables are as follows:
13275 	 *
13276 	 * bp -- points to shadow buf
13277 	 * xp -- points to xbuf of shadow buf
13278 	 * bsp -- points to layer-private data area of shadow buf
13279 	 * orig_bp -- points to original buf
13280 	 *
13281 	 * First free the shadow buf and its associated xbuf, then free the
13282 	 * layer-private data area from the shadow buf. There is no need to
13283 	 * restore xb_private in the shadow xbuf.
13284 	 */
13285 	sd_shadow_buf_free(bp);
13286 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13287 
13288 	/*
13289 	 * Now update the local variables to point to the original buf, xbuf,
13290 	 * and layer-private area.
13291 	 */
13292 	bp = orig_bp;
13293 	xp = SD_GET_XBUF(bp);
13294 	ASSERT(xp != NULL);
13295 	ASSERT(xp == orig_xp);
13296 	bsp = xp->xb_private;
13297 	ASSERT(bsp != NULL);
13298 
13299 done:
13300 	/*
13301 	 * Restore xb_private to whatever it was set to by the next higher
13302 	 * layer in the chain, then free the layer-private data area.
13303 	 */
13304 	xp->xb_private = bsp->mbs_oprivate;
13305 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13306 
13307 exit:
13308 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13309 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13310 
13311 	SD_NEXT_IODONE(index, un, bp);
13312 }
13313 
13314 
13315 /*
13316  *    Function: sd_checksum_iostart
13317  *
13318  * Description: A stub function for a layer that's currently not used.
13319  *		For now just a placeholder.
13320  *
13321  *     Context: Kernel thread context
13322  */
13323 
13324 static void
13325 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13326 {
13327 	ASSERT(un != NULL);
13328 	ASSERT(bp != NULL);
13329 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13330 	SD_NEXT_IOSTART(index, un, bp);
13331 }
13332 
13333 
13334 /*
13335  *    Function: sd_checksum_iodone
13336  *
13337  * Description: A stub function for a layer that's currently not used.
13338  *		For now just a placeholder.
13339  *
13340  *     Context: May be called under interrupt context
13341  */
13342 
13343 static void
13344 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13345 {
13346 	ASSERT(un != NULL);
13347 	ASSERT(bp != NULL);
13348 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13349 	SD_NEXT_IODONE(index, un, bp);
13350 }
13351 
13352 
13353 /*
13354  *    Function: sd_checksum_uscsi_iostart
13355  *
13356  * Description: A stub function for a layer that's currently not used.
13357  *		For now just a placeholder.
13358  *
13359  *     Context: Kernel thread context
13360  */
13361 
13362 static void
13363 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13364 {
13365 	ASSERT(un != NULL);
13366 	ASSERT(bp != NULL);
13367 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13368 	SD_NEXT_IOSTART(index, un, bp);
13369 }
13370 
13371 
13372 /*
13373  *    Function: sd_checksum_uscsi_iodone
13374  *
13375  * Description: A stub function for a layer that's currently not used.
13376  *		For now just a placeholder.
13377  *
13378  *     Context: May be called under interrupt context
13379  */
13380 
13381 static void
13382 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13383 {
13384 	ASSERT(un != NULL);
13385 	ASSERT(bp != NULL);
13386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13387 	SD_NEXT_IODONE(index, un, bp);
13388 }
13389 
13390 
13391 /*
13392  *    Function: sd_pm_iostart
13393  *
13394  * Description: iostart-side routine for Power mangement.
13395  *
13396  *     Context: Kernel thread context
13397  */
13398 
13399 static void
13400 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13401 {
13402 	ASSERT(un != NULL);
13403 	ASSERT(bp != NULL);
13404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13405 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13406 
13407 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13408 
13409 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13410 		/*
13411 		 * Set up to return the failed buf back up the 'iodone'
13412 		 * side of the calling chain.
13413 		 */
13414 		bioerror(bp, EIO);
13415 		bp->b_resid = bp->b_bcount;
13416 
13417 		SD_BEGIN_IODONE(index, un, bp);
13418 
13419 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13420 		return;
13421 	}
13422 
13423 	SD_NEXT_IOSTART(index, un, bp);
13424 
13425 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13426 }
13427 
13428 
13429 /*
13430  *    Function: sd_pm_iodone
13431  *
13432  * Description: iodone-side routine for power mangement.
13433  *
13434  *     Context: may be called from interrupt context
13435  */
13436 
13437 static void
13438 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13439 {
13440 	ASSERT(un != NULL);
13441 	ASSERT(bp != NULL);
13442 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13443 
13444 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13445 
13446 	/*
13447 	 * After attach the following flag is only read, so don't
13448 	 * take the penalty of acquiring a mutex for it.
13449 	 */
13450 	if (un->un_f_pm_is_enabled == TRUE) {
13451 		sd_pm_exit(un);
13452 	}
13453 
13454 	SD_NEXT_IODONE(index, un, bp);
13455 
13456 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13457 }
13458 
13459 
13460 /*
13461  *    Function: sd_core_iostart
13462  *
13463  * Description: Primary driver function for enqueuing buf(9S) structs from
13464  *		the system and initiating IO to the target device
13465  *
13466  *     Context: Kernel thread context. Can sleep.
13467  *
13468  * Assumptions:  - The given xp->xb_blkno is absolute
13469  *		   (ie, relative to the start of the device).
13470  *		 - The IO is to be done using the native blocksize of
13471  *		   the device, as specified in un->un_tgt_blocksize.
13472  */
13473 /* ARGSUSED */
13474 static void
13475 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13476 {
13477 	struct sd_xbuf *xp;
13478 
13479 	ASSERT(un != NULL);
13480 	ASSERT(bp != NULL);
13481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13482 	ASSERT(bp->b_resid == 0);
13483 
13484 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13485 
13486 	xp = SD_GET_XBUF(bp);
13487 	ASSERT(xp != NULL);
13488 
13489 	mutex_enter(SD_MUTEX(un));
13490 
13491 	/*
13492 	 * If we are currently in the failfast state, fail any new IO
13493 	 * that has B_FAILFAST set, then return.
13494 	 */
13495 	if ((bp->b_flags & B_FAILFAST) &&
13496 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13497 		mutex_exit(SD_MUTEX(un));
13498 		bioerror(bp, EIO);
13499 		bp->b_resid = bp->b_bcount;
13500 		SD_BEGIN_IODONE(index, un, bp);
13501 		return;
13502 	}
13503 
13504 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13505 		/*
13506 		 * Priority command -- transport it immediately.
13507 		 *
13508 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13509 		 * because all direct priority commands should be associated
13510 		 * with error recovery actions which we don't want to retry.
13511 		 */
13512 		sd_start_cmds(un, bp);
13513 	} else {
13514 		/*
13515 		 * Normal command -- add it to the wait queue, then start
13516 		 * transporting commands from the wait queue.
13517 		 */
13518 		sd_add_buf_to_waitq(un, bp);
13519 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13520 		sd_start_cmds(un, NULL);
13521 	}
13522 
13523 	mutex_exit(SD_MUTEX(un));
13524 
13525 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13526 }
13527 
13528 
13529 /*
13530  *    Function: sd_init_cdb_limits
13531  *
13532  * Description: This is to handle scsi_pkt initialization differences
13533  *		between the driver platforms.
13534  *
13535  *		Legacy behaviors:
13536  *
13537  *		If the block number or the sector count exceeds the
13538  *		capabilities of a Group 0 command, shift over to a
13539  *		Group 1 command. We don't blindly use Group 1
13540  *		commands because a) some drives (CDC Wren IVs) get a
13541  *		bit confused, and b) there is probably a fair amount
13542  *		of speed difference for a target to receive and decode
13543  *		a 10 byte command instead of a 6 byte command.
13544  *
13545  *		The xfer time difference of 6 vs 10 byte CDBs is
13546  *		still significant so this code is still worthwhile.
13547  *		10 byte CDBs are very inefficient with the fas HBA driver
13548  *		and older disks. Each CDB byte took 1 usec with some
13549  *		popular disks.
13550  *
13551  *     Context: Must be called at attach time
13552  */
13553 
13554 static void
13555 sd_init_cdb_limits(struct sd_lun *un)
13556 {
13557 	int hba_cdb_limit;
13558 
13559 	/*
13560 	 * Use CDB_GROUP1 commands for most devices except for
13561 	 * parallel SCSI fixed drives in which case we get better
13562 	 * performance using CDB_GROUP0 commands (where applicable).
13563 	 */
13564 	un->un_mincdb = SD_CDB_GROUP1;
13565 #if !defined(__fibre)
13566 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13567 	    !un->un_f_has_removable_media) {
13568 		un->un_mincdb = SD_CDB_GROUP0;
13569 	}
13570 #endif
13571 
13572 	/*
13573 	 * Try to read the max-cdb-length supported by HBA.
13574 	 */
13575 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13576 	if (0 >= un->un_max_hba_cdb) {
13577 		un->un_max_hba_cdb = CDB_GROUP4;
13578 		hba_cdb_limit = SD_CDB_GROUP4;
13579 	} else if (0 < un->un_max_hba_cdb &&
13580 	    un->un_max_hba_cdb < CDB_GROUP1) {
13581 		hba_cdb_limit = SD_CDB_GROUP0;
13582 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13583 	    un->un_max_hba_cdb < CDB_GROUP5) {
13584 		hba_cdb_limit = SD_CDB_GROUP1;
13585 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13586 	    un->un_max_hba_cdb < CDB_GROUP4) {
13587 		hba_cdb_limit = SD_CDB_GROUP5;
13588 	} else {
13589 		hba_cdb_limit = SD_CDB_GROUP4;
13590 	}
13591 
13592 	/*
13593 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13594 	 * commands for fixed disks unless we are building for a 32 bit
13595 	 * kernel.
13596 	 */
13597 #ifdef _LP64
13598 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13599 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13600 #else
13601 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13602 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13603 #endif
13604 
13605 	/*
13606 	 * x86 systems require the PKT_DMA_PARTIAL flag
13607 	 */
13608 #if defined(__x86)
13609 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13610 #else
13611 	un->un_pkt_flags = 0;
13612 #endif
13613 
13614 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13615 	    ? sizeof (struct scsi_arq_status) : 1);
13616 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13617 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13618 }
13619 
13620 
13621 /*
13622  *    Function: sd_initpkt_for_buf
13623  *
13624  * Description: Allocate and initialize for transport a scsi_pkt struct,
13625  *		based upon the info specified in the given buf struct.
13626  *
13627  *		Assumes the xb_blkno in the request is absolute (ie,
13628  *		relative to the start of the device (NOT partition!).
13629  *		Also assumes that the request is using the native block
13630  *		size of the device (as returned by the READ CAPACITY
13631  *		command).
13632  *
13633  * Return Code: SD_PKT_ALLOC_SUCCESS
13634  *		SD_PKT_ALLOC_FAILURE
13635  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13636  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13637  *
13638  *     Context: Kernel thread and may be called from software interrupt context
13639  *		as part of a sdrunout callback. This function may not block or
13640  *		call routines that block
13641  */
13642 
13643 static int
13644 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13645 {
13646 	struct sd_xbuf	*xp;
13647 	struct scsi_pkt *pktp = NULL;
13648 	struct sd_lun	*un;
13649 	size_t		blockcount;
13650 	daddr_t		startblock;
13651 	int		rval;
13652 	int		cmd_flags;
13653 
13654 	ASSERT(bp != NULL);
13655 	ASSERT(pktpp != NULL);
13656 	xp = SD_GET_XBUF(bp);
13657 	ASSERT(xp != NULL);
13658 	un = SD_GET_UN(bp);
13659 	ASSERT(un != NULL);
13660 	ASSERT(mutex_owned(SD_MUTEX(un)));
13661 	ASSERT(bp->b_resid == 0);
13662 
13663 	SD_TRACE(SD_LOG_IO_CORE, un,
13664 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13665 
13666 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13667 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13668 		/*
13669 		 * Already have a scsi_pkt -- just need DMA resources.
13670 		 * We must recompute the CDB in case the mapping returns
13671 		 * a nonzero pkt_resid.
13672 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13673 		 * that is being retried, the unmap/remap of the DMA resouces
13674 		 * will result in the entire transfer starting over again
13675 		 * from the very first block.
13676 		 */
13677 		ASSERT(xp->xb_pktp != NULL);
13678 		pktp = xp->xb_pktp;
13679 	} else {
13680 		pktp = NULL;
13681 	}
13682 #endif /* __i386 || __amd64 */
13683 
13684 	startblock = xp->xb_blkno;	/* Absolute block num. */
13685 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13686 
13687 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13688 
13689 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13690 
13691 #else
13692 
13693 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13694 
13695 #endif
13696 
13697 	/*
13698 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13699 	 * call scsi_init_pkt, and build the CDB.
13700 	 */
13701 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13702 	    cmd_flags, sdrunout, (caddr_t)un,
13703 	    startblock, blockcount);
13704 
13705 	if (rval == 0) {
13706 		/*
13707 		 * Success.
13708 		 *
13709 		 * If partial DMA is being used and required for this transfer.
13710 		 * set it up here.
13711 		 */
13712 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13713 		    (pktp->pkt_resid != 0)) {
13714 
13715 			/*
13716 			 * Save the CDB length and pkt_resid for the
13717 			 * next xfer
13718 			 */
13719 			xp->xb_dma_resid = pktp->pkt_resid;
13720 
13721 			/* rezero resid */
13722 			pktp->pkt_resid = 0;
13723 
13724 		} else {
13725 			xp->xb_dma_resid = 0;
13726 		}
13727 
13728 		pktp->pkt_flags = un->un_tagflags;
13729 		pktp->pkt_time  = un->un_cmd_timeout;
13730 		pktp->pkt_comp  = sdintr;
13731 
13732 		pktp->pkt_private = bp;
13733 		*pktpp = pktp;
13734 
13735 		SD_TRACE(SD_LOG_IO_CORE, un,
13736 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13737 
13738 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13739 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13740 #endif
13741 
13742 		return (SD_PKT_ALLOC_SUCCESS);
13743 
13744 	}
13745 
13746 	/*
13747 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13748 	 * from sd_setup_rw_pkt.
13749 	 */
13750 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13751 
13752 	if (rval == SD_PKT_ALLOC_FAILURE) {
13753 		*pktpp = NULL;
13754 		/*
13755 		 * Set the driver state to RWAIT to indicate the driver
13756 		 * is waiting on resource allocations. The driver will not
13757 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13758 		 */
13759 		New_state(un, SD_STATE_RWAIT);
13760 
13761 		SD_ERROR(SD_LOG_IO_CORE, un,
13762 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13763 
13764 		if ((bp->b_flags & B_ERROR) != 0) {
13765 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13766 		}
13767 		return (SD_PKT_ALLOC_FAILURE);
13768 	} else {
13769 		/*
13770 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13771 		 *
13772 		 * This should never happen.  Maybe someone messed with the
13773 		 * kernel's minphys?
13774 		 */
13775 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13776 		    "Request rejected: too large for CDB: "
13777 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13778 		SD_ERROR(SD_LOG_IO_CORE, un,
13779 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13780 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13781 
13782 	}
13783 }
13784 
13785 
13786 /*
13787  *    Function: sd_destroypkt_for_buf
13788  *
13789  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13790  *
13791  *     Context: Kernel thread or interrupt context
13792  */
13793 
13794 static void
13795 sd_destroypkt_for_buf(struct buf *bp)
13796 {
13797 	ASSERT(bp != NULL);
13798 	ASSERT(SD_GET_UN(bp) != NULL);
13799 
13800 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13801 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13802 
13803 	ASSERT(SD_GET_PKTP(bp) != NULL);
13804 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13805 
13806 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13807 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13808 }
13809 
13810 /*
13811  *    Function: sd_setup_rw_pkt
13812  *
13813  * Description: Determines appropriate CDB group for the requested LBA
13814  *		and transfer length, calls scsi_init_pkt, and builds
13815  *		the CDB.  Do not use for partial DMA transfers except
13816  *		for the initial transfer since the CDB size must
13817  *		remain constant.
13818  *
13819  *     Context: Kernel thread and may be called from software interrupt
13820  *		context as part of a sdrunout callback. This function may not
13821  *		block or call routines that block
13822  */
13823 
13824 
13825 int
13826 sd_setup_rw_pkt(struct sd_lun *un,
13827     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13828     int (*callback)(caddr_t), caddr_t callback_arg,
13829     diskaddr_t lba, uint32_t blockcount)
13830 {
13831 	struct scsi_pkt *return_pktp;
13832 	union scsi_cdb *cdbp;
13833 	struct sd_cdbinfo *cp = NULL;
13834 	int i;
13835 
13836 	/*
13837 	 * See which size CDB to use, based upon the request.
13838 	 */
13839 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13840 
13841 		/*
13842 		 * Check lba and block count against sd_cdbtab limits.
13843 		 * In the partial DMA case, we have to use the same size
13844 		 * CDB for all the transfers.  Check lba + blockcount
13845 		 * against the max LBA so we know that segment of the
13846 		 * transfer can use the CDB we select.
13847 		 */
13848 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13849 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13850 
13851 			/*
13852 			 * The command will fit into the CDB type
13853 			 * specified by sd_cdbtab[i].
13854 			 */
13855 			cp = sd_cdbtab + i;
13856 
13857 			/*
13858 			 * Call scsi_init_pkt so we can fill in the
13859 			 * CDB.
13860 			 */
13861 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13862 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13863 			    flags, callback, callback_arg);
13864 
13865 			if (return_pktp != NULL) {
13866 
13867 				/*
13868 				 * Return new value of pkt
13869 				 */
13870 				*pktpp = return_pktp;
13871 
13872 				/*
13873 				 * To be safe, zero the CDB insuring there is
13874 				 * no leftover data from a previous command.
13875 				 */
13876 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13877 
13878 				/*
13879 				 * Handle partial DMA mapping
13880 				 */
13881 				if (return_pktp->pkt_resid != 0) {
13882 
13883 					/*
13884 					 * Not going to xfer as many blocks as
13885 					 * originally expected
13886 					 */
13887 					blockcount -=
13888 					    SD_BYTES2TGTBLOCKS(un,
13889 						return_pktp->pkt_resid);
13890 				}
13891 
13892 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13893 
13894 				/*
13895 				 * Set command byte based on the CDB
13896 				 * type we matched.
13897 				 */
13898 				cdbp->scc_cmd = cp->sc_grpmask |
13899 				    ((bp->b_flags & B_READ) ?
13900 					SCMD_READ : SCMD_WRITE);
13901 
13902 				SD_FILL_SCSI1_LUN(un, return_pktp);
13903 
13904 				/*
13905 				 * Fill in LBA and length
13906 				 */
13907 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13908 				    (cp->sc_grpcode == CDB_GROUP4) ||
13909 				    (cp->sc_grpcode == CDB_GROUP0) ||
13910 				    (cp->sc_grpcode == CDB_GROUP5));
13911 
13912 				if (cp->sc_grpcode == CDB_GROUP1) {
13913 					FORMG1ADDR(cdbp, lba);
13914 					FORMG1COUNT(cdbp, blockcount);
13915 					return (0);
13916 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13917 					FORMG4LONGADDR(cdbp, lba);
13918 					FORMG4COUNT(cdbp, blockcount);
13919 					return (0);
13920 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13921 					FORMG0ADDR(cdbp, lba);
13922 					FORMG0COUNT(cdbp, blockcount);
13923 					return (0);
13924 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13925 					FORMG5ADDR(cdbp, lba);
13926 					FORMG5COUNT(cdbp, blockcount);
13927 					return (0);
13928 				}
13929 
13930 				/*
13931 				 * It should be impossible to not match one
13932 				 * of the CDB types above, so we should never
13933 				 * reach this point.  Set the CDB command byte
13934 				 * to test-unit-ready to avoid writing
13935 				 * to somewhere we don't intend.
13936 				 */
13937 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13938 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13939 			} else {
13940 				/*
13941 				 * Couldn't get scsi_pkt
13942 				 */
13943 				return (SD_PKT_ALLOC_FAILURE);
13944 			}
13945 		}
13946 	}
13947 
13948 	/*
13949 	 * None of the available CDB types were suitable.  This really
13950 	 * should never happen:  on a 64 bit system we support
13951 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13952 	 * and on a 32 bit system we will refuse to bind to a device
13953 	 * larger than 2TB so addresses will never be larger than 32 bits.
13954 	 */
13955 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13956 }
13957 
13958 #if defined(__i386) || defined(__amd64)
13959 /*
13960  *    Function: sd_setup_next_rw_pkt
13961  *
13962  * Description: Setup packet for partial DMA transfers, except for the
13963  * 		initial transfer.  sd_setup_rw_pkt should be used for
13964  *		the initial transfer.
13965  *
13966  *     Context: Kernel thread and may be called from interrupt context.
13967  */
13968 
13969 int
13970 sd_setup_next_rw_pkt(struct sd_lun *un,
13971     struct scsi_pkt *pktp, struct buf *bp,
13972     diskaddr_t lba, uint32_t blockcount)
13973 {
13974 	uchar_t com;
13975 	union scsi_cdb *cdbp;
13976 	uchar_t cdb_group_id;
13977 
13978 	ASSERT(pktp != NULL);
13979 	ASSERT(pktp->pkt_cdbp != NULL);
13980 
13981 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13982 	com = cdbp->scc_cmd;
13983 	cdb_group_id = CDB_GROUPID(com);
13984 
13985 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13986 	    (cdb_group_id == CDB_GROUPID_1) ||
13987 	    (cdb_group_id == CDB_GROUPID_4) ||
13988 	    (cdb_group_id == CDB_GROUPID_5));
13989 
13990 	/*
13991 	 * Move pkt to the next portion of the xfer.
13992 	 * func is NULL_FUNC so we do not have to release
13993 	 * the disk mutex here.
13994 	 */
13995 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13996 	    NULL_FUNC, NULL) == pktp) {
13997 		/* Success.  Handle partial DMA */
13998 		if (pktp->pkt_resid != 0) {
13999 			blockcount -=
14000 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14001 		}
14002 
14003 		cdbp->scc_cmd = com;
14004 		SD_FILL_SCSI1_LUN(un, pktp);
14005 		if (cdb_group_id == CDB_GROUPID_1) {
14006 			FORMG1ADDR(cdbp, lba);
14007 			FORMG1COUNT(cdbp, blockcount);
14008 			return (0);
14009 		} else if (cdb_group_id == CDB_GROUPID_4) {
14010 			FORMG4LONGADDR(cdbp, lba);
14011 			FORMG4COUNT(cdbp, blockcount);
14012 			return (0);
14013 		} else if (cdb_group_id == CDB_GROUPID_0) {
14014 			FORMG0ADDR(cdbp, lba);
14015 			FORMG0COUNT(cdbp, blockcount);
14016 			return (0);
14017 		} else if (cdb_group_id == CDB_GROUPID_5) {
14018 			FORMG5ADDR(cdbp, lba);
14019 			FORMG5COUNT(cdbp, blockcount);
14020 			return (0);
14021 		}
14022 
14023 		/* Unreachable */
14024 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14025 	}
14026 
14027 	/*
14028 	 * Error setting up next portion of cmd transfer.
14029 	 * Something is definitely very wrong and this
14030 	 * should not happen.
14031 	 */
14032 	return (SD_PKT_ALLOC_FAILURE);
14033 }
14034 #endif /* defined(__i386) || defined(__amd64) */
14035 
14036 /*
14037  *    Function: sd_initpkt_for_uscsi
14038  *
14039  * Description: Allocate and initialize for transport a scsi_pkt struct,
14040  *		based upon the info specified in the given uscsi_cmd struct.
14041  *
14042  * Return Code: SD_PKT_ALLOC_SUCCESS
14043  *		SD_PKT_ALLOC_FAILURE
14044  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14045  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14046  *
14047  *     Context: Kernel thread and may be called from software interrupt context
14048  *		as part of a sdrunout callback. This function may not block or
14049  *		call routines that block
14050  */
14051 
14052 static int
14053 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14054 {
14055 	struct uscsi_cmd *uscmd;
14056 	struct sd_xbuf	*xp;
14057 	struct scsi_pkt	*pktp;
14058 	struct sd_lun	*un;
14059 	uint32_t	flags = 0;
14060 
14061 	ASSERT(bp != NULL);
14062 	ASSERT(pktpp != NULL);
14063 	xp = SD_GET_XBUF(bp);
14064 	ASSERT(xp != NULL);
14065 	un = SD_GET_UN(bp);
14066 	ASSERT(un != NULL);
14067 	ASSERT(mutex_owned(SD_MUTEX(un)));
14068 
14069 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14070 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14071 	ASSERT(uscmd != NULL);
14072 
14073 	SD_TRACE(SD_LOG_IO_CORE, un,
14074 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14075 
14076 	/*
14077 	 * Allocate the scsi_pkt for the command.
14078 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14079 	 *	 during scsi_init_pkt time and will continue to use the
14080 	 *	 same path as long as the same scsi_pkt is used without
14081 	 *	 intervening scsi_dma_free(). Since uscsi command does
14082 	 *	 not call scsi_dmafree() before retry failed command, it
14083 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14084 	 *	 set such that scsi_vhci can use other available path for
14085 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14086 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14087 	 */
14088 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14089 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14090 	    sizeof (struct scsi_arq_status), 0,
14091 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14092 	    sdrunout, (caddr_t)un);
14093 
14094 	if (pktp == NULL) {
14095 		*pktpp = NULL;
14096 		/*
14097 		 * Set the driver state to RWAIT to indicate the driver
14098 		 * is waiting on resource allocations. The driver will not
14099 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14100 		 */
14101 		New_state(un, SD_STATE_RWAIT);
14102 
14103 		SD_ERROR(SD_LOG_IO_CORE, un,
14104 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14105 
14106 		if ((bp->b_flags & B_ERROR) != 0) {
14107 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14108 		}
14109 		return (SD_PKT_ALLOC_FAILURE);
14110 	}
14111 
14112 	/*
14113 	 * We do not do DMA breakup for USCSI commands, so return failure
14114 	 * here if all the needed DMA resources were not allocated.
14115 	 */
14116 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14117 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14118 		scsi_destroy_pkt(pktp);
14119 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14120 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14121 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14122 	}
14123 
14124 	/* Init the cdb from the given uscsi struct */
14125 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14126 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14127 
14128 	SD_FILL_SCSI1_LUN(un, pktp);
14129 
14130 	/*
14131 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14132 	 * for listing of the supported flags.
14133 	 */
14134 
14135 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14136 		flags |= FLAG_SILENT;
14137 	}
14138 
14139 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14140 		flags |= FLAG_DIAGNOSE;
14141 	}
14142 
14143 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14144 		flags |= FLAG_ISOLATE;
14145 	}
14146 
14147 	if (un->un_f_is_fibre == FALSE) {
14148 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14149 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14150 		}
14151 	}
14152 
14153 	/*
14154 	 * Set the pkt flags here so we save time later.
14155 	 * Note: These flags are NOT in the uscsi man page!!!
14156 	 */
14157 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14158 		flags |= FLAG_HEAD;
14159 	}
14160 
14161 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14162 		flags |= FLAG_NOINTR;
14163 	}
14164 
14165 	/*
14166 	 * For tagged queueing, things get a bit complicated.
14167 	 * Check first for head of queue and last for ordered queue.
14168 	 * If neither head nor order, use the default driver tag flags.
14169 	 */
14170 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14171 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14172 			flags |= FLAG_HTAG;
14173 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14174 			flags |= FLAG_OTAG;
14175 		} else {
14176 			flags |= un->un_tagflags & FLAG_TAGMASK;
14177 		}
14178 	}
14179 
14180 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14181 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14182 	}
14183 
14184 	pktp->pkt_flags = flags;
14185 
14186 	/* Copy the caller's CDB into the pkt... */
14187 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14188 
14189 	if (uscmd->uscsi_timeout == 0) {
14190 		pktp->pkt_time = un->un_uscsi_timeout;
14191 	} else {
14192 		pktp->pkt_time = uscmd->uscsi_timeout;
14193 	}
14194 
14195 	/* need it later to identify USCSI request in sdintr */
14196 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14197 
14198 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14199 
14200 	pktp->pkt_private = bp;
14201 	pktp->pkt_comp = sdintr;
14202 	*pktpp = pktp;
14203 
14204 	SD_TRACE(SD_LOG_IO_CORE, un,
14205 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14206 
14207 	return (SD_PKT_ALLOC_SUCCESS);
14208 }
14209 
14210 
14211 /*
14212  *    Function: sd_destroypkt_for_uscsi
14213  *
14214  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14215  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14216  *		struct.
14217  *
14218  *     Context: May be called under interrupt context
14219  */
14220 
14221 static void
14222 sd_destroypkt_for_uscsi(struct buf *bp)
14223 {
14224 	struct uscsi_cmd *uscmd;
14225 	struct sd_xbuf	*xp;
14226 	struct scsi_pkt	*pktp;
14227 	struct sd_lun	*un;
14228 
14229 	ASSERT(bp != NULL);
14230 	xp = SD_GET_XBUF(bp);
14231 	ASSERT(xp != NULL);
14232 	un = SD_GET_UN(bp);
14233 	ASSERT(un != NULL);
14234 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14235 	pktp = SD_GET_PKTP(bp);
14236 	ASSERT(pktp != NULL);
14237 
14238 	SD_TRACE(SD_LOG_IO_CORE, un,
14239 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14240 
14241 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14242 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14243 	ASSERT(uscmd != NULL);
14244 
14245 	/* Save the status and the residual into the uscsi_cmd struct */
14246 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14247 	uscmd->uscsi_resid  = bp->b_resid;
14248 
14249 	/*
14250 	 * If enabled, copy any saved sense data into the area specified
14251 	 * by the uscsi command.
14252 	 */
14253 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14254 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14255 		/*
14256 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14257 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14258 		 */
14259 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14260 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14261 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
14262 	}
14263 
14264 	/* We are done with the scsi_pkt; free it now */
14265 	ASSERT(SD_GET_PKTP(bp) != NULL);
14266 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14267 
14268 	SD_TRACE(SD_LOG_IO_CORE, un,
14269 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14270 }
14271 
14272 
14273 /*
14274  *    Function: sd_bioclone_alloc
14275  *
14276  * Description: Allocate a buf(9S) and init it as per the given buf
14277  *		and the various arguments.  The associated sd_xbuf
14278  *		struct is (nearly) duplicated.  The struct buf *bp
14279  *		argument is saved in new_xp->xb_private.
14280  *
14281  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14282  *		datalen - size of data area for the shadow bp
14283  *		blkno - starting LBA
14284  *		func - function pointer for b_iodone in the shadow buf. (May
14285  *			be NULL if none.)
14286  *
14287  * Return Code: Pointer to allocates buf(9S) struct
14288  *
14289  *     Context: Can sleep.
14290  */
14291 
14292 static struct buf *
14293 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14294 	daddr_t blkno, int (*func)(struct buf *))
14295 {
14296 	struct	sd_lun	*un;
14297 	struct	sd_xbuf	*xp;
14298 	struct	sd_xbuf	*new_xp;
14299 	struct	buf	*new_bp;
14300 
14301 	ASSERT(bp != NULL);
14302 	xp = SD_GET_XBUF(bp);
14303 	ASSERT(xp != NULL);
14304 	un = SD_GET_UN(bp);
14305 	ASSERT(un != NULL);
14306 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14307 
14308 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14309 	    NULL, KM_SLEEP);
14310 
14311 	new_bp->b_lblkno	= blkno;
14312 
14313 	/*
14314 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14315 	 * original xbuf into it.
14316 	 */
14317 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14318 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14319 
14320 	/*
14321 	 * The given bp is automatically saved in the xb_private member
14322 	 * of the new xbuf.  Callers are allowed to depend on this.
14323 	 */
14324 	new_xp->xb_private = bp;
14325 
14326 	new_bp->b_private  = new_xp;
14327 
14328 	return (new_bp);
14329 }
14330 
14331 /*
14332  *    Function: sd_shadow_buf_alloc
14333  *
14334  * Description: Allocate a buf(9S) and init it as per the given buf
14335  *		and the various arguments.  The associated sd_xbuf
14336  *		struct is (nearly) duplicated.  The struct buf *bp
14337  *		argument is saved in new_xp->xb_private.
14338  *
14339  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14340  *		datalen - size of data area for the shadow bp
14341  *		bflags - B_READ or B_WRITE (pseudo flag)
14342  *		blkno - starting LBA
14343  *		func - function pointer for b_iodone in the shadow buf. (May
14344  *			be NULL if none.)
14345  *
14346  * Return Code: Pointer to allocates buf(9S) struct
14347  *
14348  *     Context: Can sleep.
14349  */
14350 
14351 static struct buf *
14352 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14353 	daddr_t blkno, int (*func)(struct buf *))
14354 {
14355 	struct	sd_lun	*un;
14356 	struct	sd_xbuf	*xp;
14357 	struct	sd_xbuf	*new_xp;
14358 	struct	buf	*new_bp;
14359 
14360 	ASSERT(bp != NULL);
14361 	xp = SD_GET_XBUF(bp);
14362 	ASSERT(xp != NULL);
14363 	un = SD_GET_UN(bp);
14364 	ASSERT(un != NULL);
14365 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14366 
14367 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14368 		bp_mapin(bp);
14369 	}
14370 
14371 	bflags &= (B_READ | B_WRITE);
14372 #if defined(__i386) || defined(__amd64)
14373 	new_bp = getrbuf(KM_SLEEP);
14374 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14375 	new_bp->b_bcount = datalen;
14376 	new_bp->b_flags = bflags |
14377 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14378 #else
14379 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14380 	    datalen, bflags, SLEEP_FUNC, NULL);
14381 #endif
14382 	new_bp->av_forw	= NULL;
14383 	new_bp->av_back	= NULL;
14384 	new_bp->b_dev	= bp->b_dev;
14385 	new_bp->b_blkno	= blkno;
14386 	new_bp->b_iodone = func;
14387 	new_bp->b_edev	= bp->b_edev;
14388 	new_bp->b_resid	= 0;
14389 
14390 	/* We need to preserve the B_FAILFAST flag */
14391 	if (bp->b_flags & B_FAILFAST) {
14392 		new_bp->b_flags |= B_FAILFAST;
14393 	}
14394 
14395 	/*
14396 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14397 	 * original xbuf into it.
14398 	 */
14399 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14400 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14401 
14402 	/* Need later to copy data between the shadow buf & original buf! */
14403 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14404 
14405 	/*
14406 	 * The given bp is automatically saved in the xb_private member
14407 	 * of the new xbuf.  Callers are allowed to depend on this.
14408 	 */
14409 	new_xp->xb_private = bp;
14410 
14411 	new_bp->b_private  = new_xp;
14412 
14413 	return (new_bp);
14414 }
14415 
14416 /*
14417  *    Function: sd_bioclone_free
14418  *
14419  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14420  *		in the larger than partition operation.
14421  *
14422  *     Context: May be called under interrupt context
14423  */
14424 
14425 static void
14426 sd_bioclone_free(struct buf *bp)
14427 {
14428 	struct sd_xbuf	*xp;
14429 
14430 	ASSERT(bp != NULL);
14431 	xp = SD_GET_XBUF(bp);
14432 	ASSERT(xp != NULL);
14433 
14434 	/*
14435 	 * Call bp_mapout() before freeing the buf,  in case a lower
14436 	 * layer or HBA  had done a bp_mapin().  we must do this here
14437 	 * as we are the "originator" of the shadow buf.
14438 	 */
14439 	bp_mapout(bp);
14440 
14441 	/*
14442 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14443 	 * never gets confused by a stale value in this field. (Just a little
14444 	 * extra defensiveness here.)
14445 	 */
14446 	bp->b_iodone = NULL;
14447 
14448 	freerbuf(bp);
14449 
14450 	kmem_free(xp, sizeof (struct sd_xbuf));
14451 }
14452 
14453 /*
14454  *    Function: sd_shadow_buf_free
14455  *
14456  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14457  *
14458  *     Context: May be called under interrupt context
14459  */
14460 
14461 static void
14462 sd_shadow_buf_free(struct buf *bp)
14463 {
14464 	struct sd_xbuf	*xp;
14465 
14466 	ASSERT(bp != NULL);
14467 	xp = SD_GET_XBUF(bp);
14468 	ASSERT(xp != NULL);
14469 
14470 #if defined(__sparc)
14471 	/*
14472 	 * Call bp_mapout() before freeing the buf,  in case a lower
14473 	 * layer or HBA  had done a bp_mapin().  we must do this here
14474 	 * as we are the "originator" of the shadow buf.
14475 	 */
14476 	bp_mapout(bp);
14477 #endif
14478 
14479 	/*
14480 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14481 	 * never gets confused by a stale value in this field. (Just a little
14482 	 * extra defensiveness here.)
14483 	 */
14484 	bp->b_iodone = NULL;
14485 
14486 #if defined(__i386) || defined(__amd64)
14487 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14488 	freerbuf(bp);
14489 #else
14490 	scsi_free_consistent_buf(bp);
14491 #endif
14492 
14493 	kmem_free(xp, sizeof (struct sd_xbuf));
14494 }
14495 
14496 
14497 /*
14498  *    Function: sd_print_transport_rejected_message
14499  *
14500  * Description: This implements the ludicrously complex rules for printing
14501  *		a "transport rejected" message.  This is to address the
14502  *		specific problem of having a flood of this error message
14503  *		produced when a failover occurs.
14504  *
14505  *     Context: Any.
14506  */
14507 
14508 static void
14509 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14510 	int code)
14511 {
14512 	ASSERT(un != NULL);
14513 	ASSERT(mutex_owned(SD_MUTEX(un)));
14514 	ASSERT(xp != NULL);
14515 
14516 	/*
14517 	 * Print the "transport rejected" message under the following
14518 	 * conditions:
14519 	 *
14520 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14521 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14522 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14523 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14524 	 *   scsi_transport(9F) (which indicates that the target might have
14525 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14526 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14527 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14528 	 *   from scsi_transport().
14529 	 *
14530 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14531 	 * the preceeding cases in order for the message to be printed.
14532 	 */
14533 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14534 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14535 		    (code != TRAN_FATAL_ERROR) ||
14536 		    (un->un_tran_fatal_count == 1)) {
14537 			switch (code) {
14538 			case TRAN_BADPKT:
14539 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14540 				    "transport rejected bad packet\n");
14541 				break;
14542 			case TRAN_FATAL_ERROR:
14543 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14544 				    "transport rejected fatal error\n");
14545 				break;
14546 			default:
14547 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14548 				    "transport rejected (%d)\n", code);
14549 				break;
14550 			}
14551 		}
14552 	}
14553 }
14554 
14555 
14556 /*
14557  *    Function: sd_add_buf_to_waitq
14558  *
14559  * Description: Add the given buf(9S) struct to the wait queue for the
14560  *		instance.  If sorting is enabled, then the buf is added
14561  *		to the queue via an elevator sort algorithm (a la
14562  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14563  *		If sorting is not enabled, then the buf is just added
14564  *		to the end of the wait queue.
14565  *
14566  * Return Code: void
14567  *
14568  *     Context: Does not sleep/block, therefore technically can be called
14569  *		from any context.  However if sorting is enabled then the
14570  *		execution time is indeterminate, and may take long if
14571  *		the wait queue grows large.
14572  */
14573 
14574 static void
14575 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14576 {
14577 	struct buf *ap;
14578 
14579 	ASSERT(bp != NULL);
14580 	ASSERT(un != NULL);
14581 	ASSERT(mutex_owned(SD_MUTEX(un)));
14582 
14583 	/* If the queue is empty, add the buf as the only entry & return. */
14584 	if (un->un_waitq_headp == NULL) {
14585 		ASSERT(un->un_waitq_tailp == NULL);
14586 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14587 		bp->av_forw = NULL;
14588 		return;
14589 	}
14590 
14591 	ASSERT(un->un_waitq_tailp != NULL);
14592 
14593 	/*
14594 	 * If sorting is disabled, just add the buf to the tail end of
14595 	 * the wait queue and return.
14596 	 */
14597 	if (un->un_f_disksort_disabled) {
14598 		un->un_waitq_tailp->av_forw = bp;
14599 		un->un_waitq_tailp = bp;
14600 		bp->av_forw = NULL;
14601 		return;
14602 	}
14603 
14604 	/*
14605 	 * Sort thru the list of requests currently on the wait queue
14606 	 * and add the new buf request at the appropriate position.
14607 	 *
14608 	 * The un->un_waitq_headp is an activity chain pointer on which
14609 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14610 	 * first queue holds those requests which are positioned after
14611 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14612 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14613 	 * Thus we implement a one way scan, retracting after reaching
14614 	 * the end of the drive to the first request on the second
14615 	 * queue, at which time it becomes the first queue.
14616 	 * A one-way scan is natural because of the way UNIX read-ahead
14617 	 * blocks are allocated.
14618 	 *
14619 	 * If we lie after the first request, then we must locate the
14620 	 * second request list and add ourselves to it.
14621 	 */
14622 	ap = un->un_waitq_headp;
14623 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14624 		while (ap->av_forw != NULL) {
14625 			/*
14626 			 * Look for an "inversion" in the (normally
14627 			 * ascending) block numbers. This indicates
14628 			 * the start of the second request list.
14629 			 */
14630 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14631 				/*
14632 				 * Search the second request list for the
14633 				 * first request at a larger block number.
14634 				 * We go before that; however if there is
14635 				 * no such request, we go at the end.
14636 				 */
14637 				do {
14638 					if (SD_GET_BLKNO(bp) <
14639 					    SD_GET_BLKNO(ap->av_forw)) {
14640 						goto insert;
14641 					}
14642 					ap = ap->av_forw;
14643 				} while (ap->av_forw != NULL);
14644 				goto insert;		/* after last */
14645 			}
14646 			ap = ap->av_forw;
14647 		}
14648 
14649 		/*
14650 		 * No inversions... we will go after the last, and
14651 		 * be the first request in the second request list.
14652 		 */
14653 		goto insert;
14654 	}
14655 
14656 	/*
14657 	 * Request is at/after the current request...
14658 	 * sort in the first request list.
14659 	 */
14660 	while (ap->av_forw != NULL) {
14661 		/*
14662 		 * We want to go after the current request (1) if
14663 		 * there is an inversion after it (i.e. it is the end
14664 		 * of the first request list), or (2) if the next
14665 		 * request is a larger block no. than our request.
14666 		 */
14667 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14668 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14669 			goto insert;
14670 		}
14671 		ap = ap->av_forw;
14672 	}
14673 
14674 	/*
14675 	 * Neither a second list nor a larger request, therefore
14676 	 * we go at the end of the first list (which is the same
14677 	 * as the end of the whole schebang).
14678 	 */
14679 insert:
14680 	bp->av_forw = ap->av_forw;
14681 	ap->av_forw = bp;
14682 
14683 	/*
14684 	 * If we inserted onto the tail end of the waitq, make sure the
14685 	 * tail pointer is updated.
14686 	 */
14687 	if (ap == un->un_waitq_tailp) {
14688 		un->un_waitq_tailp = bp;
14689 	}
14690 }
14691 
14692 
14693 /*
14694  *    Function: sd_start_cmds
14695  *
14696  * Description: Remove and transport cmds from the driver queues.
14697  *
14698  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14699  *
14700  *		immed_bp - ptr to a buf to be transported immediately. Only
14701  *		the immed_bp is transported; bufs on the waitq are not
14702  *		processed and the un_retry_bp is not checked.  If immed_bp is
14703  *		NULL, then normal queue processing is performed.
14704  *
14705  *     Context: May be called from kernel thread context, interrupt context,
14706  *		or runout callback context. This function may not block or
14707  *		call routines that block.
14708  */
14709 
14710 static void
14711 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14712 {
14713 	struct	sd_xbuf	*xp;
14714 	struct	buf	*bp;
14715 	void	(*statp)(kstat_io_t *);
14716 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14717 	void	(*saved_statp)(kstat_io_t *);
14718 #endif
14719 	int	rval;
14720 
14721 	ASSERT(un != NULL);
14722 	ASSERT(mutex_owned(SD_MUTEX(un)));
14723 	ASSERT(un->un_ncmds_in_transport >= 0);
14724 	ASSERT(un->un_throttle >= 0);
14725 
14726 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14727 
14728 	do {
14729 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14730 		saved_statp = NULL;
14731 #endif
14732 
14733 		/*
14734 		 * If we are syncing or dumping, fail the command to
14735 		 * avoid recursively calling back into scsi_transport().
14736 		 * The dump I/O itself uses a separate code path so this
14737 		 * only prevents non-dump I/O from being sent while dumping.
14738 		 * File system sync takes place before dumping begins.
14739 		 * During panic, filesystem I/O is allowed provided
14740 		 * un_in_callback is <= 1.  This is to prevent recursion
14741 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14742 		 * sd_start_cmds and so on.  See panic.c for more information
14743 		 * about the states the system can be in during panic.
14744 		 */
14745 		if ((un->un_state == SD_STATE_DUMPING) ||
14746 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14747 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14748 			    "sd_start_cmds: panicking\n");
14749 			goto exit;
14750 		}
14751 
14752 		if ((bp = immed_bp) != NULL) {
14753 			/*
14754 			 * We have a bp that must be transported immediately.
14755 			 * It's OK to transport the immed_bp here without doing
14756 			 * the throttle limit check because the immed_bp is
14757 			 * always used in a retry/recovery case. This means
14758 			 * that we know we are not at the throttle limit by
14759 			 * virtue of the fact that to get here we must have
14760 			 * already gotten a command back via sdintr(). This also
14761 			 * relies on (1) the command on un_retry_bp preventing
14762 			 * further commands from the waitq from being issued;
14763 			 * and (2) the code in sd_retry_command checking the
14764 			 * throttle limit before issuing a delayed or immediate
14765 			 * retry. This holds even if the throttle limit is
14766 			 * currently ratcheted down from its maximum value.
14767 			 */
14768 			statp = kstat_runq_enter;
14769 			if (bp == un->un_retry_bp) {
14770 				ASSERT((un->un_retry_statp == NULL) ||
14771 				    (un->un_retry_statp == kstat_waitq_enter) ||
14772 				    (un->un_retry_statp ==
14773 				    kstat_runq_back_to_waitq));
14774 				/*
14775 				 * If the waitq kstat was incremented when
14776 				 * sd_set_retry_bp() queued this bp for a retry,
14777 				 * then we must set up statp so that the waitq
14778 				 * count will get decremented correctly below.
14779 				 * Also we must clear un->un_retry_statp to
14780 				 * ensure that we do not act on a stale value
14781 				 * in this field.
14782 				 */
14783 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14784 				    (un->un_retry_statp ==
14785 				    kstat_runq_back_to_waitq)) {
14786 					statp = kstat_waitq_to_runq;
14787 				}
14788 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14789 				saved_statp = un->un_retry_statp;
14790 #endif
14791 				un->un_retry_statp = NULL;
14792 
14793 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14794 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14795 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14796 				    un, un->un_retry_bp, un->un_throttle,
14797 				    un->un_ncmds_in_transport);
14798 			} else {
14799 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14800 				    "processing priority bp:0x%p\n", bp);
14801 			}
14802 
14803 		} else if ((bp = un->un_waitq_headp) != NULL) {
14804 			/*
14805 			 * A command on the waitq is ready to go, but do not
14806 			 * send it if:
14807 			 *
14808 			 * (1) the throttle limit has been reached, or
14809 			 * (2) a retry is pending, or
14810 			 * (3) a START_STOP_UNIT callback pending, or
14811 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14812 			 *	command is pending.
14813 			 *
14814 			 * For all of these conditions, IO processing will
14815 			 * restart after the condition is cleared.
14816 			 */
14817 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14818 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14819 				    "sd_start_cmds: exiting, "
14820 				    "throttle limit reached!\n");
14821 				goto exit;
14822 			}
14823 			if (un->un_retry_bp != NULL) {
14824 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14825 				    "sd_start_cmds: exiting, retry pending!\n");
14826 				goto exit;
14827 			}
14828 			if (un->un_startstop_timeid != NULL) {
14829 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14830 				    "sd_start_cmds: exiting, "
14831 				    "START_STOP pending!\n");
14832 				goto exit;
14833 			}
14834 			if (un->un_direct_priority_timeid != NULL) {
14835 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14836 				    "sd_start_cmds: exiting, "
14837 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14838 				goto exit;
14839 			}
14840 
14841 			/* Dequeue the command */
14842 			un->un_waitq_headp = bp->av_forw;
14843 			if (un->un_waitq_headp == NULL) {
14844 				un->un_waitq_tailp = NULL;
14845 			}
14846 			bp->av_forw = NULL;
14847 			statp = kstat_waitq_to_runq;
14848 			SD_TRACE(SD_LOG_IO_CORE, un,
14849 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14850 
14851 		} else {
14852 			/* No work to do so bail out now */
14853 			SD_TRACE(SD_LOG_IO_CORE, un,
14854 			    "sd_start_cmds: no more work, exiting!\n");
14855 			goto exit;
14856 		}
14857 
14858 		/*
14859 		 * Reset the state to normal. This is the mechanism by which
14860 		 * the state transitions from either SD_STATE_RWAIT or
14861 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14862 		 * If state is SD_STATE_PM_CHANGING then this command is
14863 		 * part of the device power control and the state must
14864 		 * not be put back to normal. Doing so would would
14865 		 * allow new commands to proceed when they shouldn't,
14866 		 * the device may be going off.
14867 		 */
14868 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14869 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14870 			New_state(un, SD_STATE_NORMAL);
14871 		    }
14872 
14873 		xp = SD_GET_XBUF(bp);
14874 		ASSERT(xp != NULL);
14875 
14876 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14877 		/*
14878 		 * Allocate the scsi_pkt if we need one, or attach DMA
14879 		 * resources if we have a scsi_pkt that needs them. The
14880 		 * latter should only occur for commands that are being
14881 		 * retried.
14882 		 */
14883 		if ((xp->xb_pktp == NULL) ||
14884 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14885 #else
14886 		if (xp->xb_pktp == NULL) {
14887 #endif
14888 			/*
14889 			 * There is no scsi_pkt allocated for this buf. Call
14890 			 * the initpkt function to allocate & init one.
14891 			 *
14892 			 * The scsi_init_pkt runout callback functionality is
14893 			 * implemented as follows:
14894 			 *
14895 			 * 1) The initpkt function always calls
14896 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14897 			 *    callback routine.
14898 			 * 2) A successful packet allocation is initialized and
14899 			 *    the I/O is transported.
14900 			 * 3) The I/O associated with an allocation resource
14901 			 *    failure is left on its queue to be retried via
14902 			 *    runout or the next I/O.
14903 			 * 4) The I/O associated with a DMA error is removed
14904 			 *    from the queue and failed with EIO. Processing of
14905 			 *    the transport queues is also halted to be
14906 			 *    restarted via runout or the next I/O.
14907 			 * 5) The I/O associated with a CDB size or packet
14908 			 *    size error is removed from the queue and failed
14909 			 *    with EIO. Processing of the transport queues is
14910 			 *    continued.
14911 			 *
14912 			 * Note: there is no interface for canceling a runout
14913 			 * callback. To prevent the driver from detaching or
14914 			 * suspending while a runout is pending the driver
14915 			 * state is set to SD_STATE_RWAIT
14916 			 *
14917 			 * Note: using the scsi_init_pkt callback facility can
14918 			 * result in an I/O request persisting at the head of
14919 			 * the list which cannot be satisfied even after
14920 			 * multiple retries. In the future the driver may
14921 			 * implement some kind of maximum runout count before
14922 			 * failing an I/O.
14923 			 *
14924 			 * Note: the use of funcp below may seem superfluous,
14925 			 * but it helps warlock figure out the correct
14926 			 * initpkt function calls (see [s]sd.wlcmd).
14927 			 */
14928 			struct scsi_pkt	*pktp;
14929 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14930 
14931 			ASSERT(bp != un->un_rqs_bp);
14932 
14933 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14934 			switch ((*funcp)(bp, &pktp)) {
14935 			case  SD_PKT_ALLOC_SUCCESS:
14936 				xp->xb_pktp = pktp;
14937 				SD_TRACE(SD_LOG_IO_CORE, un,
14938 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14939 				    pktp);
14940 				goto got_pkt;
14941 
14942 			case SD_PKT_ALLOC_FAILURE:
14943 				/*
14944 				 * Temporary (hopefully) resource depletion.
14945 				 * Since retries and RQS commands always have a
14946 				 * scsi_pkt allocated, these cases should never
14947 				 * get here. So the only cases this needs to
14948 				 * handle is a bp from the waitq (which we put
14949 				 * back onto the waitq for sdrunout), or a bp
14950 				 * sent as an immed_bp (which we just fail).
14951 				 */
14952 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14953 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14954 
14955 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14956 
14957 				if (bp == immed_bp) {
14958 					/*
14959 					 * If SD_XB_DMA_FREED is clear, then
14960 					 * this is a failure to allocate a
14961 					 * scsi_pkt, and we must fail the
14962 					 * command.
14963 					 */
14964 					if ((xp->xb_pkt_flags &
14965 					    SD_XB_DMA_FREED) == 0) {
14966 						break;
14967 					}
14968 
14969 					/*
14970 					 * If this immediate command is NOT our
14971 					 * un_retry_bp, then we must fail it.
14972 					 */
14973 					if (bp != un->un_retry_bp) {
14974 						break;
14975 					}
14976 
14977 					/*
14978 					 * We get here if this cmd is our
14979 					 * un_retry_bp that was DMAFREED, but
14980 					 * scsi_init_pkt() failed to reallocate
14981 					 * DMA resources when we attempted to
14982 					 * retry it. This can happen when an
14983 					 * mpxio failover is in progress, but
14984 					 * we don't want to just fail the
14985 					 * command in this case.
14986 					 *
14987 					 * Use timeout(9F) to restart it after
14988 					 * a 100ms delay.  We don't want to
14989 					 * let sdrunout() restart it, because
14990 					 * sdrunout() is just supposed to start
14991 					 * commands that are sitting on the
14992 					 * wait queue.  The un_retry_bp stays
14993 					 * set until the command completes, but
14994 					 * sdrunout can be called many times
14995 					 * before that happens.  Since sdrunout
14996 					 * cannot tell if the un_retry_bp is
14997 					 * already in the transport, it could
14998 					 * end up calling scsi_transport() for
14999 					 * the un_retry_bp multiple times.
15000 					 *
15001 					 * Also: don't schedule the callback
15002 					 * if some other callback is already
15003 					 * pending.
15004 					 */
15005 					if (un->un_retry_statp == NULL) {
15006 						/*
15007 						 * restore the kstat pointer to
15008 						 * keep kstat counts coherent
15009 						 * when we do retry the command.
15010 						 */
15011 						un->un_retry_statp =
15012 						    saved_statp;
15013 					}
15014 
15015 					if ((un->un_startstop_timeid == NULL) &&
15016 					    (un->un_retry_timeid == NULL) &&
15017 					    (un->un_direct_priority_timeid ==
15018 					    NULL)) {
15019 
15020 						un->un_retry_timeid =
15021 						    timeout(
15022 						    sd_start_retry_command,
15023 						    un, SD_RESTART_TIMEOUT);
15024 					}
15025 					goto exit;
15026 				}
15027 
15028 #else
15029 				if (bp == immed_bp) {
15030 					break;	/* Just fail the command */
15031 				}
15032 #endif
15033 
15034 				/* Add the buf back to the head of the waitq */
15035 				bp->av_forw = un->un_waitq_headp;
15036 				un->un_waitq_headp = bp;
15037 				if (un->un_waitq_tailp == NULL) {
15038 					un->un_waitq_tailp = bp;
15039 				}
15040 				goto exit;
15041 
15042 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15043 				/*
15044 				 * HBA DMA resource failure. Fail the command
15045 				 * and continue processing of the queues.
15046 				 */
15047 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15048 				    "sd_start_cmds: "
15049 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15050 				break;
15051 
15052 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15053 				/*
15054 				 * Note:x86: Partial DMA mapping not supported
15055 				 * for USCSI commands, and all the needed DMA
15056 				 * resources were not allocated.
15057 				 */
15058 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15059 				    "sd_start_cmds: "
15060 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15061 				break;
15062 
15063 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15064 				/*
15065 				 * Note:x86: Request cannot fit into CDB based
15066 				 * on lba and len.
15067 				 */
15068 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15069 				    "sd_start_cmds: "
15070 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15071 				break;
15072 
15073 			default:
15074 				/* Should NEVER get here! */
15075 				panic("scsi_initpkt error");
15076 				/*NOTREACHED*/
15077 			}
15078 
15079 			/*
15080 			 * Fatal error in allocating a scsi_pkt for this buf.
15081 			 * Update kstats & return the buf with an error code.
15082 			 * We must use sd_return_failed_command_no_restart() to
15083 			 * avoid a recursive call back into sd_start_cmds().
15084 			 * However this also means that we must keep processing
15085 			 * the waitq here in order to avoid stalling.
15086 			 */
15087 			if (statp == kstat_waitq_to_runq) {
15088 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15089 			}
15090 			sd_return_failed_command_no_restart(un, bp, EIO);
15091 			if (bp == immed_bp) {
15092 				/* immed_bp is gone by now, so clear this */
15093 				immed_bp = NULL;
15094 			}
15095 			continue;
15096 		}
15097 got_pkt:
15098 		if (bp == immed_bp) {
15099 			/* goto the head of the class.... */
15100 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15101 		}
15102 
15103 		un->un_ncmds_in_transport++;
15104 		SD_UPDATE_KSTATS(un, statp, bp);
15105 
15106 		/*
15107 		 * Call scsi_transport() to send the command to the target.
15108 		 * According to SCSA architecture, we must drop the mutex here
15109 		 * before calling scsi_transport() in order to avoid deadlock.
15110 		 * Note that the scsi_pkt's completion routine can be executed
15111 		 * (from interrupt context) even before the call to
15112 		 * scsi_transport() returns.
15113 		 */
15114 		SD_TRACE(SD_LOG_IO_CORE, un,
15115 		    "sd_start_cmds: calling scsi_transport()\n");
15116 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15117 
15118 		mutex_exit(SD_MUTEX(un));
15119 		rval = scsi_transport(xp->xb_pktp);
15120 		mutex_enter(SD_MUTEX(un));
15121 
15122 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15123 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15124 
15125 		switch (rval) {
15126 		case TRAN_ACCEPT:
15127 			/* Clear this with every pkt accepted by the HBA */
15128 			un->un_tran_fatal_count = 0;
15129 			break;	/* Success; try the next cmd (if any) */
15130 
15131 		case TRAN_BUSY:
15132 			un->un_ncmds_in_transport--;
15133 			ASSERT(un->un_ncmds_in_transport >= 0);
15134 
15135 			/*
15136 			 * Don't retry request sense, the sense data
15137 			 * is lost when another request is sent.
15138 			 * Free up the rqs buf and retry
15139 			 * the original failed cmd.  Update kstat.
15140 			 */
15141 			if (bp == un->un_rqs_bp) {
15142 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15143 				bp = sd_mark_rqs_idle(un, xp);
15144 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15145 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
15146 					kstat_waitq_enter);
15147 				goto exit;
15148 			}
15149 
15150 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15151 			/*
15152 			 * Free the DMA resources for the  scsi_pkt. This will
15153 			 * allow mpxio to select another path the next time
15154 			 * we call scsi_transport() with this scsi_pkt.
15155 			 * See sdintr() for the rationalization behind this.
15156 			 */
15157 			if ((un->un_f_is_fibre == TRUE) &&
15158 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15159 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15160 				scsi_dmafree(xp->xb_pktp);
15161 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15162 			}
15163 #endif
15164 
15165 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15166 				/*
15167 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15168 				 * are for error recovery situations. These do
15169 				 * not use the normal command waitq, so if they
15170 				 * get a TRAN_BUSY we cannot put them back onto
15171 				 * the waitq for later retry. One possible
15172 				 * problem is that there could already be some
15173 				 * other command on un_retry_bp that is waiting
15174 				 * for this one to complete, so we would be
15175 				 * deadlocked if we put this command back onto
15176 				 * the waitq for later retry (since un_retry_bp
15177 				 * must complete before the driver gets back to
15178 				 * commands on the waitq).
15179 				 *
15180 				 * To avoid deadlock we must schedule a callback
15181 				 * that will restart this command after a set
15182 				 * interval.  This should keep retrying for as
15183 				 * long as the underlying transport keeps
15184 				 * returning TRAN_BUSY (just like for other
15185 				 * commands).  Use the same timeout interval as
15186 				 * for the ordinary TRAN_BUSY retry.
15187 				 */
15188 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15189 				    "sd_start_cmds: scsi_transport() returned "
15190 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15191 
15192 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15193 				un->un_direct_priority_timeid =
15194 				    timeout(sd_start_direct_priority_command,
15195 				    bp, SD_BSY_TIMEOUT / 500);
15196 
15197 				goto exit;
15198 			}
15199 
15200 			/*
15201 			 * For TRAN_BUSY, we want to reduce the throttle value,
15202 			 * unless we are retrying a command.
15203 			 */
15204 			if (bp != un->un_retry_bp) {
15205 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15206 			}
15207 
15208 			/*
15209 			 * Set up the bp to be tried again 10 ms later.
15210 			 * Note:x86: Is there a timeout value in the sd_lun
15211 			 * for this condition?
15212 			 */
15213 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
15214 				kstat_runq_back_to_waitq);
15215 			goto exit;
15216 
15217 		case TRAN_FATAL_ERROR:
15218 			un->un_tran_fatal_count++;
15219 			/* FALLTHRU */
15220 
15221 		case TRAN_BADPKT:
15222 		default:
15223 			un->un_ncmds_in_transport--;
15224 			ASSERT(un->un_ncmds_in_transport >= 0);
15225 
15226 			/*
15227 			 * If this is our REQUEST SENSE command with a
15228 			 * transport error, we must get back the pointers
15229 			 * to the original buf, and mark the REQUEST
15230 			 * SENSE command as "available".
15231 			 */
15232 			if (bp == un->un_rqs_bp) {
15233 				bp = sd_mark_rqs_idle(un, xp);
15234 				xp = SD_GET_XBUF(bp);
15235 			} else {
15236 				/*
15237 				 * Legacy behavior: do not update transport
15238 				 * error count for request sense commands.
15239 				 */
15240 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15241 			}
15242 
15243 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15244 			sd_print_transport_rejected_message(un, xp, rval);
15245 
15246 			/*
15247 			 * We must use sd_return_failed_command_no_restart() to
15248 			 * avoid a recursive call back into sd_start_cmds().
15249 			 * However this also means that we must keep processing
15250 			 * the waitq here in order to avoid stalling.
15251 			 */
15252 			sd_return_failed_command_no_restart(un, bp, EIO);
15253 
15254 			/*
15255 			 * Notify any threads waiting in sd_ddi_suspend() that
15256 			 * a command completion has occurred.
15257 			 */
15258 			if (un->un_state == SD_STATE_SUSPENDED) {
15259 				cv_broadcast(&un->un_disk_busy_cv);
15260 			}
15261 
15262 			if (bp == immed_bp) {
15263 				/* immed_bp is gone by now, so clear this */
15264 				immed_bp = NULL;
15265 			}
15266 			break;
15267 		}
15268 
15269 	} while (immed_bp == NULL);
15270 
15271 exit:
15272 	ASSERT(mutex_owned(SD_MUTEX(un)));
15273 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15274 }
15275 
15276 
15277 /*
15278  *    Function: sd_return_command
15279  *
15280  * Description: Returns a command to its originator (with or without an
15281  *		error).  Also starts commands waiting to be transported
15282  *		to the target.
15283  *
15284  *     Context: May be called from interrupt, kernel, or timeout context
15285  */
15286 
15287 static void
15288 sd_return_command(struct sd_lun *un, struct buf *bp)
15289 {
15290 	struct sd_xbuf *xp;
15291 #if defined(__i386) || defined(__amd64)
15292 	struct scsi_pkt *pktp;
15293 #endif
15294 
15295 	ASSERT(bp != NULL);
15296 	ASSERT(un != NULL);
15297 	ASSERT(mutex_owned(SD_MUTEX(un)));
15298 	ASSERT(bp != un->un_rqs_bp);
15299 	xp = SD_GET_XBUF(bp);
15300 	ASSERT(xp != NULL);
15301 
15302 #if defined(__i386) || defined(__amd64)
15303 	pktp = SD_GET_PKTP(bp);
15304 #endif
15305 
15306 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15307 
15308 #if defined(__i386) || defined(__amd64)
15309 	/*
15310 	 * Note:x86: check for the "sdrestart failed" case.
15311 	 */
15312 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15313 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15314 		(xp->xb_pktp->pkt_resid == 0)) {
15315 
15316 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15317 			/*
15318 			 * Successfully set up next portion of cmd
15319 			 * transfer, try sending it
15320 			 */
15321 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15322 			    NULL, NULL, 0, (clock_t)0, NULL);
15323 			sd_start_cmds(un, NULL);
15324 			return;	/* Note:x86: need a return here? */
15325 		}
15326 	}
15327 #endif
15328 
15329 	/*
15330 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15331 	 * can happen if upon being re-tried the failfast bp either
15332 	 * succeeded or encountered another error (possibly even a different
15333 	 * error than the one that precipitated the failfast state, but in
15334 	 * that case it would have had to exhaust retries as well). Regardless,
15335 	 * this should not occur whenever the instance is in the active
15336 	 * failfast state.
15337 	 */
15338 	if (bp == un->un_failfast_bp) {
15339 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15340 		un->un_failfast_bp = NULL;
15341 	}
15342 
15343 	/*
15344 	 * Clear the failfast state upon successful completion of ANY cmd.
15345 	 */
15346 	if (bp->b_error == 0) {
15347 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15348 	}
15349 
15350 	/*
15351 	 * This is used if the command was retried one or more times. Show that
15352 	 * we are done with it, and allow processing of the waitq to resume.
15353 	 */
15354 	if (bp == un->un_retry_bp) {
15355 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15356 		    "sd_return_command: un:0x%p: "
15357 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15358 		un->un_retry_bp = NULL;
15359 		un->un_retry_statp = NULL;
15360 	}
15361 
15362 	SD_UPDATE_RDWR_STATS(un, bp);
15363 	SD_UPDATE_PARTITION_STATS(un, bp);
15364 
15365 	switch (un->un_state) {
15366 	case SD_STATE_SUSPENDED:
15367 		/*
15368 		 * Notify any threads waiting in sd_ddi_suspend() that
15369 		 * a command completion has occurred.
15370 		 */
15371 		cv_broadcast(&un->un_disk_busy_cv);
15372 		break;
15373 	default:
15374 		sd_start_cmds(un, NULL);
15375 		break;
15376 	}
15377 
15378 	/* Return this command up the iodone chain to its originator. */
15379 	mutex_exit(SD_MUTEX(un));
15380 
15381 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15382 	xp->xb_pktp = NULL;
15383 
15384 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15385 
15386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15387 	mutex_enter(SD_MUTEX(un));
15388 
15389 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15390 }
15391 
15392 
15393 /*
15394  *    Function: sd_return_failed_command
15395  *
15396  * Description: Command completion when an error occurred.
15397  *
15398  *     Context: May be called from interrupt context
15399  */
15400 
15401 static void
15402 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15403 {
15404 	ASSERT(bp != NULL);
15405 	ASSERT(un != NULL);
15406 	ASSERT(mutex_owned(SD_MUTEX(un)));
15407 
15408 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15409 	    "sd_return_failed_command: entry\n");
15410 
15411 	/*
15412 	 * b_resid could already be nonzero due to a partial data
15413 	 * transfer, so do not change it here.
15414 	 */
15415 	SD_BIOERROR(bp, errcode);
15416 
15417 	sd_return_command(un, bp);
15418 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15419 	    "sd_return_failed_command: exit\n");
15420 }
15421 
15422 
15423 /*
15424  *    Function: sd_return_failed_command_no_restart
15425  *
15426  * Description: Same as sd_return_failed_command, but ensures that no
15427  *		call back into sd_start_cmds will be issued.
15428  *
15429  *     Context: May be called from interrupt context
15430  */
15431 
15432 static void
15433 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15434 	int errcode)
15435 {
15436 	struct sd_xbuf *xp;
15437 
15438 	ASSERT(bp != NULL);
15439 	ASSERT(un != NULL);
15440 	ASSERT(mutex_owned(SD_MUTEX(un)));
15441 	xp = SD_GET_XBUF(bp);
15442 	ASSERT(xp != NULL);
15443 	ASSERT(errcode != 0);
15444 
15445 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15446 	    "sd_return_failed_command_no_restart: entry\n");
15447 
15448 	/*
15449 	 * b_resid could already be nonzero due to a partial data
15450 	 * transfer, so do not change it here.
15451 	 */
15452 	SD_BIOERROR(bp, errcode);
15453 
15454 	/*
15455 	 * If this is the failfast bp, clear it. This can happen if the
15456 	 * failfast bp encounterd a fatal error when we attempted to
15457 	 * re-try it (such as a scsi_transport(9F) failure).  However
15458 	 * we should NOT be in an active failfast state if the failfast
15459 	 * bp is not NULL.
15460 	 */
15461 	if (bp == un->un_failfast_bp) {
15462 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15463 		un->un_failfast_bp = NULL;
15464 	}
15465 
15466 	if (bp == un->un_retry_bp) {
15467 		/*
15468 		 * This command was retried one or more times. Show that we are
15469 		 * done with it, and allow processing of the waitq to resume.
15470 		 */
15471 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15472 		    "sd_return_failed_command_no_restart: "
15473 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15474 		un->un_retry_bp = NULL;
15475 		un->un_retry_statp = NULL;
15476 	}
15477 
15478 	SD_UPDATE_RDWR_STATS(un, bp);
15479 	SD_UPDATE_PARTITION_STATS(un, bp);
15480 
15481 	mutex_exit(SD_MUTEX(un));
15482 
15483 	if (xp->xb_pktp != NULL) {
15484 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15485 		xp->xb_pktp = NULL;
15486 	}
15487 
15488 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15489 
15490 	mutex_enter(SD_MUTEX(un));
15491 
15492 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15493 	    "sd_return_failed_command_no_restart: exit\n");
15494 }
15495 
15496 
15497 /*
15498  *    Function: sd_retry_command
15499  *
15500  * Description: queue up a command for retry, or (optionally) fail it
15501  *		if retry counts are exhausted.
15502  *
15503  *   Arguments: un - Pointer to the sd_lun struct for the target.
15504  *
15505  *		bp - Pointer to the buf for the command to be retried.
15506  *
15507  *		retry_check_flag - Flag to see which (if any) of the retry
15508  *		   counts should be decremented/checked. If the indicated
15509  *		   retry count is exhausted, then the command will not be
15510  *		   retried; it will be failed instead. This should use a
15511  *		   value equal to one of the following:
15512  *
15513  *			SD_RETRIES_NOCHECK
15514  *			SD_RESD_RETRIES_STANDARD
15515  *			SD_RETRIES_VICTIM
15516  *
15517  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15518  *		   if the check should be made to see of FLAG_ISOLATE is set
15519  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15520  *		   not retried, it is simply failed.
15521  *
15522  *		user_funcp - Ptr to function to call before dispatching the
15523  *		   command. May be NULL if no action needs to be performed.
15524  *		   (Primarily intended for printing messages.)
15525  *
15526  *		user_arg - Optional argument to be passed along to
15527  *		   the user_funcp call.
15528  *
15529  *		failure_code - errno return code to set in the bp if the
15530  *		   command is going to be failed.
15531  *
15532  *		retry_delay - Retry delay interval in (clock_t) units. May
15533  *		   be zero which indicates that the retry should be retried
15534  *		   immediately (ie, without an intervening delay).
15535  *
15536  *		statp - Ptr to kstat function to be updated if the command
15537  *		   is queued for a delayed retry. May be NULL if no kstat
15538  *		   update is desired.
15539  *
15540  *     Context: May be called from interupt context.
15541  */
15542 
15543 static void
15544 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15545 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15546 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15547 	void (*statp)(kstat_io_t *))
15548 {
15549 	struct sd_xbuf	*xp;
15550 	struct scsi_pkt	*pktp;
15551 
15552 	ASSERT(un != NULL);
15553 	ASSERT(mutex_owned(SD_MUTEX(un)));
15554 	ASSERT(bp != NULL);
15555 	xp = SD_GET_XBUF(bp);
15556 	ASSERT(xp != NULL);
15557 	pktp = SD_GET_PKTP(bp);
15558 	ASSERT(pktp != NULL);
15559 
15560 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15561 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15562 
15563 	/*
15564 	 * If we are syncing or dumping, fail the command to avoid
15565 	 * recursively calling back into scsi_transport().
15566 	 */
15567 	if (ddi_in_panic()) {
15568 		goto fail_command_no_log;
15569 	}
15570 
15571 	/*
15572 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15573 	 * log an error and fail the command.
15574 	 */
15575 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15576 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15577 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15578 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15579 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15580 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15581 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15582 		goto fail_command;
15583 	}
15584 
15585 	/*
15586 	 * If we are suspended, then put the command onto head of the
15587 	 * wait queue since we don't want to start more commands.
15588 	 */
15589 	switch (un->un_state) {
15590 	case SD_STATE_SUSPENDED:
15591 	case SD_STATE_DUMPING:
15592 		bp->av_forw = un->un_waitq_headp;
15593 		un->un_waitq_headp = bp;
15594 		if (un->un_waitq_tailp == NULL) {
15595 			un->un_waitq_tailp = bp;
15596 		}
15597 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15598 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15599 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15600 		return;
15601 	default:
15602 		break;
15603 	}
15604 
15605 	/*
15606 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15607 	 * is set; if it is then we do not want to retry the command.
15608 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15609 	 */
15610 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15611 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15612 			goto fail_command;
15613 		}
15614 	}
15615 
15616 
15617 	/*
15618 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15619 	 * command timeout or a selection timeout has occurred. This means
15620 	 * that we were unable to establish an kind of communication with
15621 	 * the target, and subsequent retries and/or commands are likely
15622 	 * to encounter similar results and take a long time to complete.
15623 	 *
15624 	 * If this is a failfast error condition, we need to update the
15625 	 * failfast state, even if this bp does not have B_FAILFAST set.
15626 	 */
15627 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15628 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15629 			ASSERT(un->un_failfast_bp == NULL);
15630 			/*
15631 			 * If we are already in the active failfast state, and
15632 			 * another failfast error condition has been detected,
15633 			 * then fail this command if it has B_FAILFAST set.
15634 			 * If B_FAILFAST is clear, then maintain the legacy
15635 			 * behavior of retrying heroically, even tho this will
15636 			 * take a lot more time to fail the command.
15637 			 */
15638 			if (bp->b_flags & B_FAILFAST) {
15639 				goto fail_command;
15640 			}
15641 		} else {
15642 			/*
15643 			 * We're not in the active failfast state, but we
15644 			 * have a failfast error condition, so we must begin
15645 			 * transition to the next state. We do this regardless
15646 			 * of whether or not this bp has B_FAILFAST set.
15647 			 */
15648 			if (un->un_failfast_bp == NULL) {
15649 				/*
15650 				 * This is the first bp to meet a failfast
15651 				 * condition so save it on un_failfast_bp &
15652 				 * do normal retry processing. Do not enter
15653 				 * active failfast state yet. This marks
15654 				 * entry into the "failfast pending" state.
15655 				 */
15656 				un->un_failfast_bp = bp;
15657 
15658 			} else if (un->un_failfast_bp == bp) {
15659 				/*
15660 				 * This is the second time *this* bp has
15661 				 * encountered a failfast error condition,
15662 				 * so enter active failfast state & flush
15663 				 * queues as appropriate.
15664 				 */
15665 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15666 				un->un_failfast_bp = NULL;
15667 				sd_failfast_flushq(un);
15668 
15669 				/*
15670 				 * Fail this bp now if B_FAILFAST set;
15671 				 * otherwise continue with retries. (It would
15672 				 * be pretty ironic if this bp succeeded on a
15673 				 * subsequent retry after we just flushed all
15674 				 * the queues).
15675 				 */
15676 				if (bp->b_flags & B_FAILFAST) {
15677 					goto fail_command;
15678 				}
15679 
15680 #if !defined(lint) && !defined(__lint)
15681 			} else {
15682 				/*
15683 				 * If neither of the preceeding conditionals
15684 				 * was true, it means that there is some
15685 				 * *other* bp that has met an inital failfast
15686 				 * condition and is currently either being
15687 				 * retried or is waiting to be retried. In
15688 				 * that case we should perform normal retry
15689 				 * processing on *this* bp, since there is a
15690 				 * chance that the current failfast condition
15691 				 * is transient and recoverable. If that does
15692 				 * not turn out to be the case, then retries
15693 				 * will be cleared when the wait queue is
15694 				 * flushed anyway.
15695 				 */
15696 #endif
15697 			}
15698 		}
15699 	} else {
15700 		/*
15701 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15702 		 * likely were able to at least establish some level of
15703 		 * communication with the target and subsequent commands
15704 		 * and/or retries are likely to get through to the target,
15705 		 * In this case we want to be aggressive about clearing
15706 		 * the failfast state. Note that this does not affect
15707 		 * the "failfast pending" condition.
15708 		 */
15709 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15710 	}
15711 
15712 
15713 	/*
15714 	 * Check the specified retry count to see if we can still do
15715 	 * any retries with this pkt before we should fail it.
15716 	 */
15717 	switch (retry_check_flag & SD_RETRIES_MASK) {
15718 	case SD_RETRIES_VICTIM:
15719 		/*
15720 		 * Check the victim retry count. If exhausted, then fall
15721 		 * thru & check against the standard retry count.
15722 		 */
15723 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15724 			/* Increment count & proceed with the retry */
15725 			xp->xb_victim_retry_count++;
15726 			break;
15727 		}
15728 		/* Victim retries exhausted, fall back to std. retries... */
15729 		/* FALLTHRU */
15730 
15731 	case SD_RETRIES_STANDARD:
15732 		if (xp->xb_retry_count >= un->un_retry_count) {
15733 			/* Retries exhausted, fail the command */
15734 			SD_TRACE(SD_LOG_IO_CORE, un,
15735 			    "sd_retry_command: retries exhausted!\n");
15736 			/*
15737 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15738 			 * commands with nonzero pkt_resid.
15739 			 */
15740 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15741 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15742 			    (pktp->pkt_resid != 0)) {
15743 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15744 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15745 					SD_UPDATE_B_RESID(bp, pktp);
15746 				}
15747 			}
15748 			goto fail_command;
15749 		}
15750 		xp->xb_retry_count++;
15751 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15752 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15753 		break;
15754 
15755 	case SD_RETRIES_UA:
15756 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15757 			/* Retries exhausted, fail the command */
15758 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15759 			    "Unit Attention retries exhausted. "
15760 			    "Check the target.\n");
15761 			goto fail_command;
15762 		}
15763 		xp->xb_ua_retry_count++;
15764 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15765 		    "sd_retry_command: retry count:%d\n",
15766 			xp->xb_ua_retry_count);
15767 		break;
15768 
15769 	case SD_RETRIES_BUSY:
15770 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15771 			/* Retries exhausted, fail the command */
15772 			SD_TRACE(SD_LOG_IO_CORE, un,
15773 			    "sd_retry_command: retries exhausted!\n");
15774 			goto fail_command;
15775 		}
15776 		xp->xb_retry_count++;
15777 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15778 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15779 		break;
15780 
15781 	case SD_RETRIES_NOCHECK:
15782 	default:
15783 		/* No retry count to check. Just proceed with the retry */
15784 		break;
15785 	}
15786 
15787 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15788 
15789 	/*
15790 	 * If we were given a zero timeout, we must attempt to retry the
15791 	 * command immediately (ie, without a delay).
15792 	 */
15793 	if (retry_delay == 0) {
15794 		/*
15795 		 * Check some limiting conditions to see if we can actually
15796 		 * do the immediate retry.  If we cannot, then we must
15797 		 * fall back to queueing up a delayed retry.
15798 		 */
15799 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15800 			/*
15801 			 * We are at the throttle limit for the target,
15802 			 * fall back to delayed retry.
15803 			 */
15804 			retry_delay = SD_BSY_TIMEOUT;
15805 			statp = kstat_waitq_enter;
15806 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15807 			    "sd_retry_command: immed. retry hit "
15808 			    "throttle!\n");
15809 		} else {
15810 			/*
15811 			 * We're clear to proceed with the immediate retry.
15812 			 * First call the user-provided function (if any)
15813 			 */
15814 			if (user_funcp != NULL) {
15815 				(*user_funcp)(un, bp, user_arg,
15816 				    SD_IMMEDIATE_RETRY_ISSUED);
15817 #ifdef __lock_lint
15818 				sd_print_incomplete_msg(un, bp, user_arg,
15819 				    SD_IMMEDIATE_RETRY_ISSUED);
15820 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15821 				    SD_IMMEDIATE_RETRY_ISSUED);
15822 				sd_print_sense_failed_msg(un, bp, user_arg,
15823 				    SD_IMMEDIATE_RETRY_ISSUED);
15824 #endif
15825 			}
15826 
15827 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15828 			    "sd_retry_command: issuing immediate retry\n");
15829 
15830 			/*
15831 			 * Call sd_start_cmds() to transport the command to
15832 			 * the target.
15833 			 */
15834 			sd_start_cmds(un, bp);
15835 
15836 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15837 			    "sd_retry_command exit\n");
15838 			return;
15839 		}
15840 	}
15841 
15842 	/*
15843 	 * Set up to retry the command after a delay.
15844 	 * First call the user-provided function (if any)
15845 	 */
15846 	if (user_funcp != NULL) {
15847 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15848 	}
15849 
15850 	sd_set_retry_bp(un, bp, retry_delay, statp);
15851 
15852 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15853 	return;
15854 
15855 fail_command:
15856 
15857 	if (user_funcp != NULL) {
15858 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15859 	}
15860 
15861 fail_command_no_log:
15862 
15863 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15864 	    "sd_retry_command: returning failed command\n");
15865 
15866 	sd_return_failed_command(un, bp, failure_code);
15867 
15868 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15869 }
15870 
15871 
15872 /*
15873  *    Function: sd_set_retry_bp
15874  *
15875  * Description: Set up the given bp for retry.
15876  *
15877  *   Arguments: un - ptr to associated softstate
15878  *		bp - ptr to buf(9S) for the command
15879  *		retry_delay - time interval before issuing retry (may be 0)
15880  *		statp - optional pointer to kstat function
15881  *
15882  *     Context: May be called under interrupt context
15883  */
15884 
15885 static void
15886 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15887 	void (*statp)(kstat_io_t *))
15888 {
15889 	ASSERT(un != NULL);
15890 	ASSERT(mutex_owned(SD_MUTEX(un)));
15891 	ASSERT(bp != NULL);
15892 
15893 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15894 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15895 
15896 	/*
15897 	 * Indicate that the command is being retried. This will not allow any
15898 	 * other commands on the wait queue to be transported to the target
15899 	 * until this command has been completed (success or failure). The
15900 	 * "retry command" is not transported to the target until the given
15901 	 * time delay expires, unless the user specified a 0 retry_delay.
15902 	 *
15903 	 * Note: the timeout(9F) callback routine is what actually calls
15904 	 * sd_start_cmds() to transport the command, with the exception of a
15905 	 * zero retry_delay. The only current implementor of a zero retry delay
15906 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15907 	 */
15908 	if (un->un_retry_bp == NULL) {
15909 		ASSERT(un->un_retry_statp == NULL);
15910 		un->un_retry_bp = bp;
15911 
15912 		/*
15913 		 * If the user has not specified a delay the command should
15914 		 * be queued and no timeout should be scheduled.
15915 		 */
15916 		if (retry_delay == 0) {
15917 			/*
15918 			 * Save the kstat pointer that will be used in the
15919 			 * call to SD_UPDATE_KSTATS() below, so that
15920 			 * sd_start_cmds() can correctly decrement the waitq
15921 			 * count when it is time to transport this command.
15922 			 */
15923 			un->un_retry_statp = statp;
15924 			goto done;
15925 		}
15926 	}
15927 
15928 	if (un->un_retry_bp == bp) {
15929 		/*
15930 		 * Save the kstat pointer that will be used in the call to
15931 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15932 		 * correctly decrement the waitq count when it is time to
15933 		 * transport this command.
15934 		 */
15935 		un->un_retry_statp = statp;
15936 
15937 		/*
15938 		 * Schedule a timeout if:
15939 		 *   1) The user has specified a delay.
15940 		 *   2) There is not a START_STOP_UNIT callback pending.
15941 		 *
15942 		 * If no delay has been specified, then it is up to the caller
15943 		 * to ensure that IO processing continues without stalling.
15944 		 * Effectively, this means that the caller will issue the
15945 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15946 		 * callback does this after the START STOP UNIT command has
15947 		 * completed. In either of these cases we should not schedule
15948 		 * a timeout callback here.  Also don't schedule the timeout if
15949 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15950 		 */
15951 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15952 		    (un->un_direct_priority_timeid == NULL)) {
15953 			un->un_retry_timeid =
15954 			    timeout(sd_start_retry_command, un, retry_delay);
15955 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15956 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15957 			    " bp:0x%p un_retry_timeid:0x%p\n",
15958 			    un, bp, un->un_retry_timeid);
15959 		}
15960 	} else {
15961 		/*
15962 		 * We only get in here if there is already another command
15963 		 * waiting to be retried.  In this case, we just put the
15964 		 * given command onto the wait queue, so it can be transported
15965 		 * after the current retry command has completed.
15966 		 *
15967 		 * Also we have to make sure that if the command at the head
15968 		 * of the wait queue is the un_failfast_bp, that we do not
15969 		 * put ahead of it any other commands that are to be retried.
15970 		 */
15971 		if ((un->un_failfast_bp != NULL) &&
15972 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15973 			/*
15974 			 * Enqueue this command AFTER the first command on
15975 			 * the wait queue (which is also un_failfast_bp).
15976 			 */
15977 			bp->av_forw = un->un_waitq_headp->av_forw;
15978 			un->un_waitq_headp->av_forw = bp;
15979 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15980 				un->un_waitq_tailp = bp;
15981 			}
15982 		} else {
15983 			/* Enqueue this command at the head of the waitq. */
15984 			bp->av_forw = un->un_waitq_headp;
15985 			un->un_waitq_headp = bp;
15986 			if (un->un_waitq_tailp == NULL) {
15987 				un->un_waitq_tailp = bp;
15988 			}
15989 		}
15990 
15991 		if (statp == NULL) {
15992 			statp = kstat_waitq_enter;
15993 		}
15994 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15995 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15996 	}
15997 
15998 done:
15999 	if (statp != NULL) {
16000 		SD_UPDATE_KSTATS(un, statp, bp);
16001 	}
16002 
16003 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16004 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16005 }
16006 
16007 
16008 /*
16009  *    Function: sd_start_retry_command
16010  *
16011  * Description: Start the command that has been waiting on the target's
16012  *		retry queue.  Called from timeout(9F) context after the
16013  *		retry delay interval has expired.
16014  *
16015  *   Arguments: arg - pointer to associated softstate for the device.
16016  *
16017  *     Context: timeout(9F) thread context.  May not sleep.
16018  */
16019 
16020 static void
16021 sd_start_retry_command(void *arg)
16022 {
16023 	struct sd_lun *un = arg;
16024 
16025 	ASSERT(un != NULL);
16026 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16027 
16028 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16029 	    "sd_start_retry_command: entry\n");
16030 
16031 	mutex_enter(SD_MUTEX(un));
16032 
16033 	un->un_retry_timeid = NULL;
16034 
16035 	if (un->un_retry_bp != NULL) {
16036 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16037 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16038 		    un, un->un_retry_bp);
16039 		sd_start_cmds(un, un->un_retry_bp);
16040 	}
16041 
16042 	mutex_exit(SD_MUTEX(un));
16043 
16044 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16045 	    "sd_start_retry_command: exit\n");
16046 }
16047 
16048 
16049 /*
16050  *    Function: sd_start_direct_priority_command
16051  *
16052  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16053  *		received TRAN_BUSY when we called scsi_transport() to send it
16054  *		to the underlying HBA. This function is called from timeout(9F)
16055  *		context after the delay interval has expired.
16056  *
16057  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16058  *
16059  *     Context: timeout(9F) thread context.  May not sleep.
16060  */
16061 
16062 static void
16063 sd_start_direct_priority_command(void *arg)
16064 {
16065 	struct buf	*priority_bp = arg;
16066 	struct sd_lun	*un;
16067 
16068 	ASSERT(priority_bp != NULL);
16069 	un = SD_GET_UN(priority_bp);
16070 	ASSERT(un != NULL);
16071 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16072 
16073 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16074 	    "sd_start_direct_priority_command: entry\n");
16075 
16076 	mutex_enter(SD_MUTEX(un));
16077 	un->un_direct_priority_timeid = NULL;
16078 	sd_start_cmds(un, priority_bp);
16079 	mutex_exit(SD_MUTEX(un));
16080 
16081 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16082 	    "sd_start_direct_priority_command: exit\n");
16083 }
16084 
16085 
16086 /*
16087  *    Function: sd_send_request_sense_command
16088  *
16089  * Description: Sends a REQUEST SENSE command to the target
16090  *
16091  *     Context: May be called from interrupt context.
16092  */
16093 
16094 static void
16095 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16096 	struct scsi_pkt *pktp)
16097 {
16098 	ASSERT(bp != NULL);
16099 	ASSERT(un != NULL);
16100 	ASSERT(mutex_owned(SD_MUTEX(un)));
16101 
16102 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16103 	    "entry: buf:0x%p\n", bp);
16104 
16105 	/*
16106 	 * If we are syncing or dumping, then fail the command to avoid a
16107 	 * recursive callback into scsi_transport(). Also fail the command
16108 	 * if we are suspended (legacy behavior).
16109 	 */
16110 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16111 	    (un->un_state == SD_STATE_DUMPING)) {
16112 		sd_return_failed_command(un, bp, EIO);
16113 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16114 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16115 		return;
16116 	}
16117 
16118 	/*
16119 	 * Retry the failed command and don't issue the request sense if:
16120 	 *    1) the sense buf is busy
16121 	 *    2) we have 1 or more outstanding commands on the target
16122 	 *    (the sense data will be cleared or invalidated any way)
16123 	 *
16124 	 * Note: There could be an issue with not checking a retry limit here,
16125 	 * the problem is determining which retry limit to check.
16126 	 */
16127 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16128 		/* Don't retry if the command is flagged as non-retryable */
16129 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16130 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16131 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
16132 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16133 			    "sd_send_request_sense_command: "
16134 			    "at full throttle, retrying exit\n");
16135 		} else {
16136 			sd_return_failed_command(un, bp, EIO);
16137 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16138 			    "sd_send_request_sense_command: "
16139 			    "at full throttle, non-retryable exit\n");
16140 		}
16141 		return;
16142 	}
16143 
16144 	sd_mark_rqs_busy(un, bp);
16145 	sd_start_cmds(un, un->un_rqs_bp);
16146 
16147 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16148 	    "sd_send_request_sense_command: exit\n");
16149 }
16150 
16151 
16152 /*
16153  *    Function: sd_mark_rqs_busy
16154  *
16155  * Description: Indicate that the request sense bp for this instance is
16156  *		in use.
16157  *
16158  *     Context: May be called under interrupt context
16159  */
16160 
16161 static void
16162 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16163 {
16164 	struct sd_xbuf	*sense_xp;
16165 
16166 	ASSERT(un != NULL);
16167 	ASSERT(bp != NULL);
16168 	ASSERT(mutex_owned(SD_MUTEX(un)));
16169 	ASSERT(un->un_sense_isbusy == 0);
16170 
16171 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16172 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16173 
16174 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16175 	ASSERT(sense_xp != NULL);
16176 
16177 	SD_INFO(SD_LOG_IO, un,
16178 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16179 
16180 	ASSERT(sense_xp->xb_pktp != NULL);
16181 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16182 	    == (FLAG_SENSING | FLAG_HEAD));
16183 
16184 	un->un_sense_isbusy = 1;
16185 	un->un_rqs_bp->b_resid = 0;
16186 	sense_xp->xb_pktp->pkt_resid  = 0;
16187 	sense_xp->xb_pktp->pkt_reason = 0;
16188 
16189 	/* So we can get back the bp at interrupt time! */
16190 	sense_xp->xb_sense_bp = bp;
16191 
16192 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16193 
16194 	/*
16195 	 * Mark this buf as awaiting sense data. (This is already set in
16196 	 * the pkt_flags for the RQS packet.)
16197 	 */
16198 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16199 
16200 	sense_xp->xb_retry_count	= 0;
16201 	sense_xp->xb_victim_retry_count = 0;
16202 	sense_xp->xb_ua_retry_count	= 0;
16203 	sense_xp->xb_dma_resid  = 0;
16204 
16205 	/* Clean up the fields for auto-request sense */
16206 	sense_xp->xb_sense_status = 0;
16207 	sense_xp->xb_sense_state  = 0;
16208 	sense_xp->xb_sense_resid  = 0;
16209 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16210 
16211 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16212 }
16213 
16214 
16215 /*
16216  *    Function: sd_mark_rqs_idle
16217  *
16218  * Description: SD_MUTEX must be held continuously through this routine
16219  *		to prevent reuse of the rqs struct before the caller can
16220  *		complete it's processing.
16221  *
16222  * Return Code: Pointer to the RQS buf
16223  *
16224  *     Context: May be called under interrupt context
16225  */
16226 
16227 static struct buf *
16228 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16229 {
16230 	struct buf *bp;
16231 	ASSERT(un != NULL);
16232 	ASSERT(sense_xp != NULL);
16233 	ASSERT(mutex_owned(SD_MUTEX(un)));
16234 	ASSERT(un->un_sense_isbusy != 0);
16235 
16236 	un->un_sense_isbusy = 0;
16237 	bp = sense_xp->xb_sense_bp;
16238 	sense_xp->xb_sense_bp = NULL;
16239 
16240 	/* This pkt is no longer interested in getting sense data */
16241 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16242 
16243 	return (bp);
16244 }
16245 
16246 
16247 
16248 /*
16249  *    Function: sd_alloc_rqs
16250  *
16251  * Description: Set up the unit to receive auto request sense data
16252  *
16253  * Return Code: DDI_SUCCESS or DDI_FAILURE
16254  *
16255  *     Context: Called under attach(9E) context
16256  */
16257 
16258 static int
16259 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16260 {
16261 	struct sd_xbuf *xp;
16262 
16263 	ASSERT(un != NULL);
16264 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16265 	ASSERT(un->un_rqs_bp == NULL);
16266 	ASSERT(un->un_rqs_pktp == NULL);
16267 
16268 	/*
16269 	 * First allocate the required buf and scsi_pkt structs, then set up
16270 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16271 	 */
16272 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16273 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16274 	if (un->un_rqs_bp == NULL) {
16275 		return (DDI_FAILURE);
16276 	}
16277 
16278 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16279 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16280 
16281 	if (un->un_rqs_pktp == NULL) {
16282 		sd_free_rqs(un);
16283 		return (DDI_FAILURE);
16284 	}
16285 
16286 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16287 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16288 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
16289 
16290 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16291 
16292 	/* Set up the other needed members in the ARQ scsi_pkt. */
16293 	un->un_rqs_pktp->pkt_comp   = sdintr;
16294 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16295 	un->un_rqs_pktp->pkt_flags |=
16296 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16297 
16298 	/*
16299 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16300 	 * provide any intpkt, destroypkt routines as we take care of
16301 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16302 	 */
16303 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16304 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16305 	xp->xb_pktp = un->un_rqs_pktp;
16306 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16307 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16308 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16309 
16310 	/*
16311 	 * Save the pointer to the request sense private bp so it can
16312 	 * be retrieved in sdintr.
16313 	 */
16314 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16315 	ASSERT(un->un_rqs_bp->b_private == xp);
16316 
16317 	/*
16318 	 * See if the HBA supports auto-request sense for the specified
16319 	 * target/lun. If it does, then try to enable it (if not already
16320 	 * enabled).
16321 	 *
16322 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16323 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16324 	 * return success.  However, in both of these cases ARQ is always
16325 	 * enabled and scsi_ifgetcap will always return true. The best approach
16326 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16327 	 *
16328 	 * The 3rd case is the HBA (adp) always return enabled on
16329 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16330 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16331 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16332 	 */
16333 
16334 	if (un->un_f_is_fibre == TRUE) {
16335 		un->un_f_arq_enabled = TRUE;
16336 	} else {
16337 #if defined(__i386) || defined(__amd64)
16338 		/*
16339 		 * Circumvent the Adaptec bug, remove this code when
16340 		 * the bug is fixed
16341 		 */
16342 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16343 #endif
16344 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16345 		case 0:
16346 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16347 				"sd_alloc_rqs: HBA supports ARQ\n");
16348 			/*
16349 			 * ARQ is supported by this HBA but currently is not
16350 			 * enabled. Attempt to enable it and if successful then
16351 			 * mark this instance as ARQ enabled.
16352 			 */
16353 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16354 				== 1) {
16355 				/* Successfully enabled ARQ in the HBA */
16356 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16357 					"sd_alloc_rqs: ARQ enabled\n");
16358 				un->un_f_arq_enabled = TRUE;
16359 			} else {
16360 				/* Could not enable ARQ in the HBA */
16361 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16362 				"sd_alloc_rqs: failed ARQ enable\n");
16363 				un->un_f_arq_enabled = FALSE;
16364 			}
16365 			break;
16366 		case 1:
16367 			/*
16368 			 * ARQ is supported by this HBA and is already enabled.
16369 			 * Just mark ARQ as enabled for this instance.
16370 			 */
16371 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16372 				"sd_alloc_rqs: ARQ already enabled\n");
16373 			un->un_f_arq_enabled = TRUE;
16374 			break;
16375 		default:
16376 			/*
16377 			 * ARQ is not supported by this HBA; disable it for this
16378 			 * instance.
16379 			 */
16380 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16381 				"sd_alloc_rqs: HBA does not support ARQ\n");
16382 			un->un_f_arq_enabled = FALSE;
16383 			break;
16384 		}
16385 	}
16386 
16387 	return (DDI_SUCCESS);
16388 }
16389 
16390 
16391 /*
16392  *    Function: sd_free_rqs
16393  *
16394  * Description: Cleanup for the pre-instance RQS command.
16395  *
16396  *     Context: Kernel thread context
16397  */
16398 
16399 static void
16400 sd_free_rqs(struct sd_lun *un)
16401 {
16402 	ASSERT(un != NULL);
16403 
16404 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16405 
16406 	/*
16407 	 * If consistent memory is bound to a scsi_pkt, the pkt
16408 	 * has to be destroyed *before* freeing the consistent memory.
16409 	 * Don't change the sequence of this operations.
16410 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16411 	 * after it was freed in scsi_free_consistent_buf().
16412 	 */
16413 	if (un->un_rqs_pktp != NULL) {
16414 		scsi_destroy_pkt(un->un_rqs_pktp);
16415 		un->un_rqs_pktp = NULL;
16416 	}
16417 
16418 	if (un->un_rqs_bp != NULL) {
16419 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16420 		scsi_free_consistent_buf(un->un_rqs_bp);
16421 		un->un_rqs_bp = NULL;
16422 	}
16423 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16424 }
16425 
16426 
16427 
16428 /*
16429  *    Function: sd_reduce_throttle
16430  *
16431  * Description: Reduces the maximun # of outstanding commands on a
16432  *		target to the current number of outstanding commands.
16433  *		Queues a tiemout(9F) callback to restore the limit
16434  *		after a specified interval has elapsed.
16435  *		Typically used when we get a TRAN_BUSY return code
16436  *		back from scsi_transport().
16437  *
16438  *   Arguments: un - ptr to the sd_lun softstate struct
16439  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16440  *
16441  *     Context: May be called from interrupt context
16442  */
16443 
16444 static void
16445 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16446 {
16447 	ASSERT(un != NULL);
16448 	ASSERT(mutex_owned(SD_MUTEX(un)));
16449 	ASSERT(un->un_ncmds_in_transport >= 0);
16450 
16451 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16452 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16453 	    un, un->un_throttle, un->un_ncmds_in_transport);
16454 
16455 	if (un->un_throttle > 1) {
16456 		if (un->un_f_use_adaptive_throttle == TRUE) {
16457 			switch (throttle_type) {
16458 			case SD_THROTTLE_TRAN_BUSY:
16459 				if (un->un_busy_throttle == 0) {
16460 					un->un_busy_throttle = un->un_throttle;
16461 				}
16462 				break;
16463 			case SD_THROTTLE_QFULL:
16464 				un->un_busy_throttle = 0;
16465 				break;
16466 			default:
16467 				ASSERT(FALSE);
16468 			}
16469 
16470 			if (un->un_ncmds_in_transport > 0) {
16471 			    un->un_throttle = un->un_ncmds_in_transport;
16472 			}
16473 
16474 		} else {
16475 			if (un->un_ncmds_in_transport == 0) {
16476 				un->un_throttle = 1;
16477 			} else {
16478 				un->un_throttle = un->un_ncmds_in_transport;
16479 			}
16480 		}
16481 	}
16482 
16483 	/* Reschedule the timeout if none is currently active */
16484 	if (un->un_reset_throttle_timeid == NULL) {
16485 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16486 		    un, SD_THROTTLE_RESET_INTERVAL);
16487 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16488 		    "sd_reduce_throttle: timeout scheduled!\n");
16489 	}
16490 
16491 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16492 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16493 }
16494 
16495 
16496 
16497 /*
16498  *    Function: sd_restore_throttle
16499  *
16500  * Description: Callback function for timeout(9F).  Resets the current
16501  *		value of un->un_throttle to its default.
16502  *
16503  *   Arguments: arg - pointer to associated softstate for the device.
16504  *
16505  *     Context: May be called from interrupt context
16506  */
16507 
16508 static void
16509 sd_restore_throttle(void *arg)
16510 {
16511 	struct sd_lun	*un = arg;
16512 
16513 	ASSERT(un != NULL);
16514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16515 
16516 	mutex_enter(SD_MUTEX(un));
16517 
16518 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16519 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16520 
16521 	un->un_reset_throttle_timeid = NULL;
16522 
16523 	if (un->un_f_use_adaptive_throttle == TRUE) {
16524 		/*
16525 		 * If un_busy_throttle is nonzero, then it contains the
16526 		 * value that un_throttle was when we got a TRAN_BUSY back
16527 		 * from scsi_transport(). We want to revert back to this
16528 		 * value.
16529 		 *
16530 		 * In the QFULL case, the throttle limit will incrementally
16531 		 * increase until it reaches max throttle.
16532 		 */
16533 		if (un->un_busy_throttle > 0) {
16534 			un->un_throttle = un->un_busy_throttle;
16535 			un->un_busy_throttle = 0;
16536 		} else {
16537 			/*
16538 			 * increase throttle by 10% open gate slowly, schedule
16539 			 * another restore if saved throttle has not been
16540 			 * reached
16541 			 */
16542 			short throttle;
16543 			if (sd_qfull_throttle_enable) {
16544 				throttle = un->un_throttle +
16545 				    max((un->un_throttle / 10), 1);
16546 				un->un_throttle =
16547 				    (throttle < un->un_saved_throttle) ?
16548 				    throttle : un->un_saved_throttle;
16549 				if (un->un_throttle < un->un_saved_throttle) {
16550 				    un->un_reset_throttle_timeid =
16551 					timeout(sd_restore_throttle,
16552 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16553 				}
16554 			}
16555 		}
16556 
16557 		/*
16558 		 * If un_throttle has fallen below the low-water mark, we
16559 		 * restore the maximum value here (and allow it to ratchet
16560 		 * down again if necessary).
16561 		 */
16562 		if (un->un_throttle < un->un_min_throttle) {
16563 			un->un_throttle = un->un_saved_throttle;
16564 		}
16565 	} else {
16566 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16567 		    "restoring limit from 0x%x to 0x%x\n",
16568 		    un->un_throttle, un->un_saved_throttle);
16569 		un->un_throttle = un->un_saved_throttle;
16570 	}
16571 
16572 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16573 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16574 
16575 	sd_start_cmds(un, NULL);
16576 
16577 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16578 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16579 	    un, un->un_throttle);
16580 
16581 	mutex_exit(SD_MUTEX(un));
16582 
16583 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16584 }
16585 
16586 /*
16587  *    Function: sdrunout
16588  *
16589  * Description: Callback routine for scsi_init_pkt when a resource allocation
16590  *		fails.
16591  *
16592  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16593  *		soft state instance.
16594  *
16595  * Return Code: The scsi_init_pkt routine allows for the callback function to
16596  *		return a 0 indicating the callback should be rescheduled or a 1
16597  *		indicating not to reschedule. This routine always returns 1
16598  *		because the driver always provides a callback function to
16599  *		scsi_init_pkt. This results in a callback always being scheduled
16600  *		(via the scsi_init_pkt callback implementation) if a resource
16601  *		failure occurs.
16602  *
16603  *     Context: This callback function may not block or call routines that block
16604  *
16605  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16606  *		request persisting at the head of the list which cannot be
16607  *		satisfied even after multiple retries. In the future the driver
16608  *		may implement some time of maximum runout count before failing
16609  *		an I/O.
16610  */
16611 
16612 static int
16613 sdrunout(caddr_t arg)
16614 {
16615 	struct sd_lun	*un = (struct sd_lun *)arg;
16616 
16617 	ASSERT(un != NULL);
16618 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16619 
16620 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16621 
16622 	mutex_enter(SD_MUTEX(un));
16623 	sd_start_cmds(un, NULL);
16624 	mutex_exit(SD_MUTEX(un));
16625 	/*
16626 	 * This callback routine always returns 1 (i.e. do not reschedule)
16627 	 * because we always specify sdrunout as the callback handler for
16628 	 * scsi_init_pkt inside the call to sd_start_cmds.
16629 	 */
16630 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16631 	return (1);
16632 }
16633 
16634 
16635 /*
16636  *    Function: sdintr
16637  *
16638  * Description: Completion callback routine for scsi_pkt(9S) structs
16639  *		sent to the HBA driver via scsi_transport(9F).
16640  *
16641  *     Context: Interrupt context
16642  */
16643 
16644 static void
16645 sdintr(struct scsi_pkt *pktp)
16646 {
16647 	struct buf	*bp;
16648 	struct sd_xbuf	*xp;
16649 	struct sd_lun	*un;
16650 
16651 	ASSERT(pktp != NULL);
16652 	bp = (struct buf *)pktp->pkt_private;
16653 	ASSERT(bp != NULL);
16654 	xp = SD_GET_XBUF(bp);
16655 	ASSERT(xp != NULL);
16656 	ASSERT(xp->xb_pktp != NULL);
16657 	un = SD_GET_UN(bp);
16658 	ASSERT(un != NULL);
16659 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16660 
16661 #ifdef SD_FAULT_INJECTION
16662 
16663 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16664 	/* SD FaultInjection */
16665 	sd_faultinjection(pktp);
16666 
16667 #endif /* SD_FAULT_INJECTION */
16668 
16669 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16670 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16671 
16672 	mutex_enter(SD_MUTEX(un));
16673 
16674 	/* Reduce the count of the #commands currently in transport */
16675 	un->un_ncmds_in_transport--;
16676 	ASSERT(un->un_ncmds_in_transport >= 0);
16677 
16678 	/* Increment counter to indicate that the callback routine is active */
16679 	un->un_in_callback++;
16680 
16681 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16682 
16683 #ifdef	SDDEBUG
16684 	if (bp == un->un_retry_bp) {
16685 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16686 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16687 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16688 	}
16689 #endif
16690 
16691 	/*
16692 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16693 	 */
16694 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16695 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16696 			    "Device is gone\n");
16697 		sd_return_failed_command(un, bp, EIO);
16698 		goto exit;
16699 	}
16700 
16701 	/*
16702 	 * First see if the pkt has auto-request sense data with it....
16703 	 * Look at the packet state first so we don't take a performance
16704 	 * hit looking at the arq enabled flag unless absolutely necessary.
16705 	 */
16706 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16707 	    (un->un_f_arq_enabled == TRUE)) {
16708 		/*
16709 		 * The HBA did an auto request sense for this command so check
16710 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16711 		 * driver command that should not be retried.
16712 		 */
16713 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16714 			/*
16715 			 * Save the relevant sense info into the xp for the
16716 			 * original cmd.
16717 			 */
16718 			struct scsi_arq_status *asp;
16719 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16720 			xp->xb_sense_status =
16721 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16722 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16723 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16724 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16725 			    min(sizeof (struct scsi_extended_sense),
16726 			    SENSE_LENGTH));
16727 
16728 			/* fail the command */
16729 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16730 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16731 			sd_return_failed_command(un, bp, EIO);
16732 			goto exit;
16733 		}
16734 
16735 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16736 		/*
16737 		 * We want to either retry or fail this command, so free
16738 		 * the DMA resources here.  If we retry the command then
16739 		 * the DMA resources will be reallocated in sd_start_cmds().
16740 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16741 		 * causes the *entire* transfer to start over again from the
16742 		 * beginning of the request, even for PARTIAL chunks that
16743 		 * have already transferred successfully.
16744 		 */
16745 		if ((un->un_f_is_fibre == TRUE) &&
16746 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16747 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16748 			scsi_dmafree(pktp);
16749 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16750 		}
16751 #endif
16752 
16753 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16754 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16755 
16756 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16757 		goto exit;
16758 	}
16759 
16760 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16761 	if (pktp->pkt_flags & FLAG_SENSING)  {
16762 		/* This pktp is from the unit's REQUEST_SENSE command */
16763 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16764 		    "sdintr: sd_handle_request_sense\n");
16765 		sd_handle_request_sense(un, bp, xp, pktp);
16766 		goto exit;
16767 	}
16768 
16769 	/*
16770 	 * Check to see if the command successfully completed as requested;
16771 	 * this is the most common case (and also the hot performance path).
16772 	 *
16773 	 * Requirements for successful completion are:
16774 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16775 	 * In addition:
16776 	 * - A residual of zero indicates successful completion no matter what
16777 	 *   the command is.
16778 	 * - If the residual is not zero and the command is not a read or
16779 	 *   write, then it's still defined as successful completion. In other
16780 	 *   words, if the command is a read or write the residual must be
16781 	 *   zero for successful completion.
16782 	 * - If the residual is not zero and the command is a read or
16783 	 *   write, and it's a USCSICMD, then it's still defined as
16784 	 *   successful completion.
16785 	 */
16786 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16787 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16788 
16789 		/*
16790 		 * Since this command is returned with a good status, we
16791 		 * can reset the count for Sonoma failover.
16792 		 */
16793 		un->un_sonoma_failure_count = 0;
16794 
16795 		/*
16796 		 * Return all USCSI commands on good status
16797 		 */
16798 		if (pktp->pkt_resid == 0) {
16799 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16800 			    "sdintr: returning command for resid == 0\n");
16801 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16802 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16803 			SD_UPDATE_B_RESID(bp, pktp);
16804 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16805 			    "sdintr: returning command for resid != 0\n");
16806 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16807 			SD_UPDATE_B_RESID(bp, pktp);
16808 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16809 				"sdintr: returning uscsi command\n");
16810 		} else {
16811 			goto not_successful;
16812 		}
16813 		sd_return_command(un, bp);
16814 
16815 		/*
16816 		 * Decrement counter to indicate that the callback routine
16817 		 * is done.
16818 		 */
16819 		un->un_in_callback--;
16820 		ASSERT(un->un_in_callback >= 0);
16821 		mutex_exit(SD_MUTEX(un));
16822 
16823 		return;
16824 	}
16825 
16826 not_successful:
16827 
16828 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16829 	/*
16830 	 * The following is based upon knowledge of the underlying transport
16831 	 * and its use of DMA resources.  This code should be removed when
16832 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16833 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16834 	 * and sd_start_cmds().
16835 	 *
16836 	 * Free any DMA resources associated with this command if there
16837 	 * is a chance it could be retried or enqueued for later retry.
16838 	 * If we keep the DMA binding then mpxio cannot reissue the
16839 	 * command on another path whenever a path failure occurs.
16840 	 *
16841 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16842 	 * causes the *entire* transfer to start over again from the
16843 	 * beginning of the request, even for PARTIAL chunks that
16844 	 * have already transferred successfully.
16845 	 *
16846 	 * This is only done for non-uscsi commands (and also skipped for the
16847 	 * driver's internal RQS command). Also just do this for Fibre Channel
16848 	 * devices as these are the only ones that support mpxio.
16849 	 */
16850 	if ((un->un_f_is_fibre == TRUE) &&
16851 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16852 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16853 		scsi_dmafree(pktp);
16854 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16855 	}
16856 #endif
16857 
16858 	/*
16859 	 * The command did not successfully complete as requested so check
16860 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16861 	 * driver command that should not be retried so just return. If
16862 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16863 	 */
16864 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16865 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16866 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16867 		/*
16868 		 * Issue a request sense if a check condition caused the error
16869 		 * (we handle the auto request sense case above), otherwise
16870 		 * just fail the command.
16871 		 */
16872 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16873 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16874 			sd_send_request_sense_command(un, bp, pktp);
16875 		} else {
16876 			sd_return_failed_command(un, bp, EIO);
16877 		}
16878 		goto exit;
16879 	}
16880 
16881 	/*
16882 	 * The command did not successfully complete as requested so process
16883 	 * the error, retry, and/or attempt recovery.
16884 	 */
16885 	switch (pktp->pkt_reason) {
16886 	case CMD_CMPLT:
16887 		switch (SD_GET_PKT_STATUS(pktp)) {
16888 		case STATUS_GOOD:
16889 			/*
16890 			 * The command completed successfully with a non-zero
16891 			 * residual
16892 			 */
16893 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16894 			    "sdintr: STATUS_GOOD \n");
16895 			sd_pkt_status_good(un, bp, xp, pktp);
16896 			break;
16897 
16898 		case STATUS_CHECK:
16899 		case STATUS_TERMINATED:
16900 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16901 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16902 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16903 			break;
16904 
16905 		case STATUS_BUSY:
16906 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16907 			    "sdintr: STATUS_BUSY\n");
16908 			sd_pkt_status_busy(un, bp, xp, pktp);
16909 			break;
16910 
16911 		case STATUS_RESERVATION_CONFLICT:
16912 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16913 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16914 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16915 			break;
16916 
16917 		case STATUS_QFULL:
16918 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16919 			    "sdintr: STATUS_QFULL\n");
16920 			sd_pkt_status_qfull(un, bp, xp, pktp);
16921 			break;
16922 
16923 		case STATUS_MET:
16924 		case STATUS_INTERMEDIATE:
16925 		case STATUS_SCSI2:
16926 		case STATUS_INTERMEDIATE_MET:
16927 		case STATUS_ACA_ACTIVE:
16928 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16929 			    "Unexpected SCSI status received: 0x%x\n",
16930 			    SD_GET_PKT_STATUS(pktp));
16931 			sd_return_failed_command(un, bp, EIO);
16932 			break;
16933 
16934 		default:
16935 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16936 			    "Invalid SCSI status received: 0x%x\n",
16937 			    SD_GET_PKT_STATUS(pktp));
16938 			sd_return_failed_command(un, bp, EIO);
16939 			break;
16940 
16941 		}
16942 		break;
16943 
16944 	case CMD_INCOMPLETE:
16945 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16946 		    "sdintr:  CMD_INCOMPLETE\n");
16947 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16948 		break;
16949 	case CMD_TRAN_ERR:
16950 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16951 		    "sdintr: CMD_TRAN_ERR\n");
16952 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16953 		break;
16954 	case CMD_RESET:
16955 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16956 		    "sdintr: CMD_RESET \n");
16957 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16958 		break;
16959 	case CMD_ABORTED:
16960 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16961 		    "sdintr: CMD_ABORTED \n");
16962 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16963 		break;
16964 	case CMD_TIMEOUT:
16965 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16966 		    "sdintr: CMD_TIMEOUT\n");
16967 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16968 		break;
16969 	case CMD_UNX_BUS_FREE:
16970 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16971 		    "sdintr: CMD_UNX_BUS_FREE \n");
16972 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16973 		break;
16974 	case CMD_TAG_REJECT:
16975 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16976 		    "sdintr: CMD_TAG_REJECT\n");
16977 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16978 		break;
16979 	default:
16980 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16981 		    "sdintr: default\n");
16982 		sd_pkt_reason_default(un, bp, xp, pktp);
16983 		break;
16984 	}
16985 
16986 exit:
16987 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16988 
16989 	/* Decrement counter to indicate that the callback routine is done. */
16990 	un->un_in_callback--;
16991 	ASSERT(un->un_in_callback >= 0);
16992 
16993 	/*
16994 	 * At this point, the pkt has been dispatched, ie, it is either
16995 	 * being re-tried or has been returned to its caller and should
16996 	 * not be referenced.
16997 	 */
16998 
16999 	mutex_exit(SD_MUTEX(un));
17000 }
17001 
17002 
17003 /*
17004  *    Function: sd_print_incomplete_msg
17005  *
17006  * Description: Prints the error message for a CMD_INCOMPLETE error.
17007  *
17008  *   Arguments: un - ptr to associated softstate for the device.
17009  *		bp - ptr to the buf(9S) for the command.
17010  *		arg - message string ptr
17011  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17012  *			or SD_NO_RETRY_ISSUED.
17013  *
17014  *     Context: May be called under interrupt context
17015  */
17016 
17017 static void
17018 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17019 {
17020 	struct scsi_pkt	*pktp;
17021 	char	*msgp;
17022 	char	*cmdp = arg;
17023 
17024 	ASSERT(un != NULL);
17025 	ASSERT(mutex_owned(SD_MUTEX(un)));
17026 	ASSERT(bp != NULL);
17027 	ASSERT(arg != NULL);
17028 	pktp = SD_GET_PKTP(bp);
17029 	ASSERT(pktp != NULL);
17030 
17031 	switch (code) {
17032 	case SD_DELAYED_RETRY_ISSUED:
17033 	case SD_IMMEDIATE_RETRY_ISSUED:
17034 		msgp = "retrying";
17035 		break;
17036 	case SD_NO_RETRY_ISSUED:
17037 	default:
17038 		msgp = "giving up";
17039 		break;
17040 	}
17041 
17042 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17043 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17044 		    "incomplete %s- %s\n", cmdp, msgp);
17045 	}
17046 }
17047 
17048 
17049 
17050 /*
17051  *    Function: sd_pkt_status_good
17052  *
17053  * Description: Processing for a STATUS_GOOD code in pkt_status.
17054  *
17055  *     Context: May be called under interrupt context
17056  */
17057 
17058 static void
17059 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17060 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17061 {
17062 	char	*cmdp;
17063 
17064 	ASSERT(un != NULL);
17065 	ASSERT(mutex_owned(SD_MUTEX(un)));
17066 	ASSERT(bp != NULL);
17067 	ASSERT(xp != NULL);
17068 	ASSERT(pktp != NULL);
17069 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17070 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17071 	ASSERT(pktp->pkt_resid != 0);
17072 
17073 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17074 
17075 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17076 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17077 	case SCMD_READ:
17078 		cmdp = "read";
17079 		break;
17080 	case SCMD_WRITE:
17081 		cmdp = "write";
17082 		break;
17083 	default:
17084 		SD_UPDATE_B_RESID(bp, pktp);
17085 		sd_return_command(un, bp);
17086 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17087 		return;
17088 	}
17089 
17090 	/*
17091 	 * See if we can retry the read/write, preferrably immediately.
17092 	 * If retries are exhaused, then sd_retry_command() will update
17093 	 * the b_resid count.
17094 	 */
17095 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17096 	    cmdp, EIO, (clock_t)0, NULL);
17097 
17098 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17099 }
17100 
17101 
17102 
17103 
17104 
17105 /*
17106  *    Function: sd_handle_request_sense
17107  *
17108  * Description: Processing for non-auto Request Sense command.
17109  *
17110  *   Arguments: un - ptr to associated softstate
17111  *		sense_bp - ptr to buf(9S) for the RQS command
17112  *		sense_xp - ptr to the sd_xbuf for the RQS command
17113  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17114  *
17115  *     Context: May be called under interrupt context
17116  */
17117 
17118 static void
17119 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17120 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17121 {
17122 	struct buf	*cmd_bp;	/* buf for the original command */
17123 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17124 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17125 
17126 	ASSERT(un != NULL);
17127 	ASSERT(mutex_owned(SD_MUTEX(un)));
17128 	ASSERT(sense_bp != NULL);
17129 	ASSERT(sense_xp != NULL);
17130 	ASSERT(sense_pktp != NULL);
17131 
17132 	/*
17133 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17134 	 * RQS command and not the original command.
17135 	 */
17136 	ASSERT(sense_pktp == un->un_rqs_pktp);
17137 	ASSERT(sense_bp   == un->un_rqs_bp);
17138 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17139 	    (FLAG_SENSING | FLAG_HEAD));
17140 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17141 	    FLAG_SENSING) == FLAG_SENSING);
17142 
17143 	/* These are the bp, xp, and pktp for the original command */
17144 	cmd_bp = sense_xp->xb_sense_bp;
17145 	cmd_xp = SD_GET_XBUF(cmd_bp);
17146 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17147 
17148 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17149 		/*
17150 		 * The REQUEST SENSE command failed.  Release the REQUEST
17151 		 * SENSE command for re-use, get back the bp for the original
17152 		 * command, and attempt to re-try the original command if
17153 		 * FLAG_DIAGNOSE is not set in the original packet.
17154 		 */
17155 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17156 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17157 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17158 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17159 			    NULL, NULL, EIO, (clock_t)0, NULL);
17160 			return;
17161 		}
17162 	}
17163 
17164 	/*
17165 	 * Save the relevant sense info into the xp for the original cmd.
17166 	 *
17167 	 * Note: if the request sense failed the state info will be zero
17168 	 * as set in sd_mark_rqs_busy()
17169 	 */
17170 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17171 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17172 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
17173 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
17174 
17175 	/*
17176 	 *  Free up the RQS command....
17177 	 *  NOTE:
17178 	 *	Must do this BEFORE calling sd_validate_sense_data!
17179 	 *	sd_validate_sense_data may return the original command in
17180 	 *	which case the pkt will be freed and the flags can no
17181 	 *	longer be touched.
17182 	 *	SD_MUTEX is held through this process until the command
17183 	 *	is dispatched based upon the sense data, so there are
17184 	 *	no race conditions.
17185 	 */
17186 	(void) sd_mark_rqs_idle(un, sense_xp);
17187 
17188 	/*
17189 	 * For a retryable command see if we have valid sense data, if so then
17190 	 * turn it over to sd_decode_sense() to figure out the right course of
17191 	 * action. Just fail a non-retryable command.
17192 	 */
17193 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17194 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
17195 		    SD_SENSE_DATA_IS_VALID) {
17196 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17197 		}
17198 	} else {
17199 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17200 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17201 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17202 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17203 		sd_return_failed_command(un, cmd_bp, EIO);
17204 	}
17205 }
17206 
17207 
17208 
17209 
17210 /*
17211  *    Function: sd_handle_auto_request_sense
17212  *
17213  * Description: Processing for auto-request sense information.
17214  *
17215  *   Arguments: un - ptr to associated softstate
17216  *		bp - ptr to buf(9S) for the command
17217  *		xp - ptr to the sd_xbuf for the command
17218  *		pktp - ptr to the scsi_pkt(9S) for the command
17219  *
17220  *     Context: May be called under interrupt context
17221  */
17222 
17223 static void
17224 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17225 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17226 {
17227 	struct scsi_arq_status *asp;
17228 
17229 	ASSERT(un != NULL);
17230 	ASSERT(mutex_owned(SD_MUTEX(un)));
17231 	ASSERT(bp != NULL);
17232 	ASSERT(xp != NULL);
17233 	ASSERT(pktp != NULL);
17234 	ASSERT(pktp != un->un_rqs_pktp);
17235 	ASSERT(bp   != un->un_rqs_bp);
17236 
17237 	/*
17238 	 * For auto-request sense, we get a scsi_arq_status back from
17239 	 * the HBA, with the sense data in the sts_sensedata member.
17240 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17241 	 */
17242 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17243 
17244 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17245 		/*
17246 		 * The auto REQUEST SENSE failed; see if we can re-try
17247 		 * the original command.
17248 		 */
17249 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17250 		    "auto request sense failed (reason=%s)\n",
17251 		    scsi_rname(asp->sts_rqpkt_reason));
17252 
17253 		sd_reset_target(un, pktp);
17254 
17255 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17256 		    NULL, NULL, EIO, (clock_t)0, NULL);
17257 		return;
17258 	}
17259 
17260 	/* Save the relevant sense info into the xp for the original cmd. */
17261 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17262 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17263 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17264 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17265 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
17266 
17267 	/*
17268 	 * See if we have valid sense data, if so then turn it over to
17269 	 * sd_decode_sense() to figure out the right course of action.
17270 	 */
17271 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
17272 		sd_decode_sense(un, bp, xp, pktp);
17273 	}
17274 }
17275 
17276 
17277 /*
17278  *    Function: sd_print_sense_failed_msg
17279  *
17280  * Description: Print log message when RQS has failed.
17281  *
17282  *   Arguments: un - ptr to associated softstate
17283  *		bp - ptr to buf(9S) for the command
17284  *		arg - generic message string ptr
17285  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17286  *			or SD_NO_RETRY_ISSUED
17287  *
17288  *     Context: May be called from interrupt context
17289  */
17290 
17291 static void
17292 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17293 	int code)
17294 {
17295 	char	*msgp = arg;
17296 
17297 	ASSERT(un != NULL);
17298 	ASSERT(mutex_owned(SD_MUTEX(un)));
17299 	ASSERT(bp != NULL);
17300 
17301 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17302 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17303 	}
17304 }
17305 
17306 
17307 /*
17308  *    Function: sd_validate_sense_data
17309  *
17310  * Description: Check the given sense data for validity.
17311  *		If the sense data is not valid, the command will
17312  *		be either failed or retried!
17313  *
17314  * Return Code: SD_SENSE_DATA_IS_INVALID
17315  *		SD_SENSE_DATA_IS_VALID
17316  *
17317  *     Context: May be called from interrupt context
17318  */
17319 
17320 static int
17321 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
17322 {
17323 	struct scsi_extended_sense *esp;
17324 	struct	scsi_pkt *pktp;
17325 	size_t	actual_len;
17326 	char	*msgp = NULL;
17327 
17328 	ASSERT(un != NULL);
17329 	ASSERT(mutex_owned(SD_MUTEX(un)));
17330 	ASSERT(bp != NULL);
17331 	ASSERT(bp != un->un_rqs_bp);
17332 	ASSERT(xp != NULL);
17333 
17334 	pktp = SD_GET_PKTP(bp);
17335 	ASSERT(pktp != NULL);
17336 
17337 	/*
17338 	 * Check the status of the RQS command (auto or manual).
17339 	 */
17340 	switch (xp->xb_sense_status & STATUS_MASK) {
17341 	case STATUS_GOOD:
17342 		break;
17343 
17344 	case STATUS_RESERVATION_CONFLICT:
17345 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17346 		return (SD_SENSE_DATA_IS_INVALID);
17347 
17348 	case STATUS_BUSY:
17349 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17350 		    "Busy Status on REQUEST SENSE\n");
17351 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17352 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17353 		return (SD_SENSE_DATA_IS_INVALID);
17354 
17355 	case STATUS_QFULL:
17356 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17357 		    "QFULL Status on REQUEST SENSE\n");
17358 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17359 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17360 		return (SD_SENSE_DATA_IS_INVALID);
17361 
17362 	case STATUS_CHECK:
17363 	case STATUS_TERMINATED:
17364 		msgp = "Check Condition on REQUEST SENSE\n";
17365 		goto sense_failed;
17366 
17367 	default:
17368 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17369 		goto sense_failed;
17370 	}
17371 
17372 	/*
17373 	 * See if we got the minimum required amount of sense data.
17374 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17375 	 * or less.
17376 	 */
17377 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17378 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17379 	    (actual_len == 0)) {
17380 		msgp = "Request Sense couldn't get sense data\n";
17381 		goto sense_failed;
17382 	}
17383 
17384 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17385 		msgp = "Not enough sense information\n";
17386 		goto sense_failed;
17387 	}
17388 
17389 	/*
17390 	 * We require the extended sense data
17391 	 */
17392 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17393 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17394 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17395 			static char tmp[8];
17396 			static char buf[148];
17397 			char *p = (char *)(xp->xb_sense_data);
17398 			int i;
17399 
17400 			mutex_enter(&sd_sense_mutex);
17401 			(void) strcpy(buf, "undecodable sense information:");
17402 			for (i = 0; i < actual_len; i++) {
17403 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17404 				(void) strcpy(&buf[strlen(buf)], tmp);
17405 			}
17406 			i = strlen(buf);
17407 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17408 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17409 			mutex_exit(&sd_sense_mutex);
17410 		}
17411 		/* Note: Legacy behavior, fail the command with no retry */
17412 		sd_return_failed_command(un, bp, EIO);
17413 		return (SD_SENSE_DATA_IS_INVALID);
17414 	}
17415 
17416 	/*
17417 	 * Check that es_code is valid (es_class concatenated with es_code
17418 	 * make up the "response code" field.  es_class will always be 7, so
17419 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17420 	 * format.
17421 	 */
17422 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17423 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17424 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17425 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17426 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17427 		goto sense_failed;
17428 	}
17429 
17430 	return (SD_SENSE_DATA_IS_VALID);
17431 
17432 sense_failed:
17433 	/*
17434 	 * If the request sense failed (for whatever reason), attempt
17435 	 * to retry the original command.
17436 	 */
17437 #if defined(__i386) || defined(__amd64)
17438 	/*
17439 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17440 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17441 	 * for both SCSI/FC.
17442 	 * The SD_RETRY_DELAY value need to be adjusted here
17443 	 * when SD_RETRY_DELAY change in sddef.h
17444 	 */
17445 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17446 	    sd_print_sense_failed_msg, msgp, EIO,
17447 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17448 #else
17449 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17450 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17451 #endif
17452 
17453 	return (SD_SENSE_DATA_IS_INVALID);
17454 }
17455 
17456 
17457 
17458 /*
17459  *    Function: sd_decode_sense
17460  *
17461  * Description: Take recovery action(s) when SCSI Sense Data is received.
17462  *
17463  *     Context: Interrupt context.
17464  */
17465 
17466 static void
17467 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17468 	struct scsi_pkt *pktp)
17469 {
17470 	uint8_t sense_key;
17471 
17472 	ASSERT(un != NULL);
17473 	ASSERT(mutex_owned(SD_MUTEX(un)));
17474 	ASSERT(bp != NULL);
17475 	ASSERT(bp != un->un_rqs_bp);
17476 	ASSERT(xp != NULL);
17477 	ASSERT(pktp != NULL);
17478 
17479 	sense_key = scsi_sense_key(xp->xb_sense_data);
17480 
17481 	switch (sense_key) {
17482 	case KEY_NO_SENSE:
17483 		sd_sense_key_no_sense(un, bp, xp, pktp);
17484 		break;
17485 	case KEY_RECOVERABLE_ERROR:
17486 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17487 		    bp, xp, pktp);
17488 		break;
17489 	case KEY_NOT_READY:
17490 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17491 		    bp, xp, pktp);
17492 		break;
17493 	case KEY_MEDIUM_ERROR:
17494 	case KEY_HARDWARE_ERROR:
17495 		sd_sense_key_medium_or_hardware_error(un,
17496 		    xp->xb_sense_data, bp, xp, pktp);
17497 		break;
17498 	case KEY_ILLEGAL_REQUEST:
17499 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17500 		break;
17501 	case KEY_UNIT_ATTENTION:
17502 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17503 		    bp, xp, pktp);
17504 		break;
17505 	case KEY_WRITE_PROTECT:
17506 	case KEY_VOLUME_OVERFLOW:
17507 	case KEY_MISCOMPARE:
17508 		sd_sense_key_fail_command(un, bp, xp, pktp);
17509 		break;
17510 	case KEY_BLANK_CHECK:
17511 		sd_sense_key_blank_check(un, bp, xp, pktp);
17512 		break;
17513 	case KEY_ABORTED_COMMAND:
17514 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17515 		break;
17516 	case KEY_VENDOR_UNIQUE:
17517 	case KEY_COPY_ABORTED:
17518 	case KEY_EQUAL:
17519 	case KEY_RESERVED:
17520 	default:
17521 		sd_sense_key_default(un, xp->xb_sense_data,
17522 		    bp, xp, pktp);
17523 		break;
17524 	}
17525 }
17526 
17527 
17528 /*
17529  *    Function: sd_dump_memory
17530  *
17531  * Description: Debug logging routine to print the contents of a user provided
17532  *		buffer. The output of the buffer is broken up into 256 byte
17533  *		segments due to a size constraint of the scsi_log.
17534  *		implementation.
17535  *
17536  *   Arguments: un - ptr to softstate
17537  *		comp - component mask
17538  *		title - "title" string to preceed data when printed
17539  *		data - ptr to data block to be printed
17540  *		len - size of data block to be printed
17541  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17542  *
17543  *     Context: May be called from interrupt context
17544  */
17545 
17546 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17547 
17548 static char *sd_dump_format_string[] = {
17549 		" 0x%02x",
17550 		" %c"
17551 };
17552 
17553 static void
17554 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17555     int len, int fmt)
17556 {
17557 	int	i, j;
17558 	int	avail_count;
17559 	int	start_offset;
17560 	int	end_offset;
17561 	size_t	entry_len;
17562 	char	*bufp;
17563 	char	*local_buf;
17564 	char	*format_string;
17565 
17566 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17567 
17568 	/*
17569 	 * In the debug version of the driver, this function is called from a
17570 	 * number of places which are NOPs in the release driver.
17571 	 * The debug driver therefore has additional methods of filtering
17572 	 * debug output.
17573 	 */
17574 #ifdef SDDEBUG
17575 	/*
17576 	 * In the debug version of the driver we can reduce the amount of debug
17577 	 * messages by setting sd_error_level to something other than
17578 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17579 	 * sd_component_mask.
17580 	 */
17581 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17582 	    (sd_error_level != SCSI_ERR_ALL)) {
17583 		return;
17584 	}
17585 	if (((sd_component_mask & comp) == 0) ||
17586 	    (sd_error_level != SCSI_ERR_ALL)) {
17587 		return;
17588 	}
17589 #else
17590 	if (sd_error_level != SCSI_ERR_ALL) {
17591 		return;
17592 	}
17593 #endif
17594 
17595 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17596 	bufp = local_buf;
17597 	/*
17598 	 * Available length is the length of local_buf[], minus the
17599 	 * length of the title string, minus one for the ":", minus
17600 	 * one for the newline, minus one for the NULL terminator.
17601 	 * This gives the #bytes available for holding the printed
17602 	 * values from the given data buffer.
17603 	 */
17604 	if (fmt == SD_LOG_HEX) {
17605 		format_string = sd_dump_format_string[0];
17606 	} else /* SD_LOG_CHAR */ {
17607 		format_string = sd_dump_format_string[1];
17608 	}
17609 	/*
17610 	 * Available count is the number of elements from the given
17611 	 * data buffer that we can fit into the available length.
17612 	 * This is based upon the size of the format string used.
17613 	 * Make one entry and find it's size.
17614 	 */
17615 	(void) sprintf(bufp, format_string, data[0]);
17616 	entry_len = strlen(bufp);
17617 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17618 
17619 	j = 0;
17620 	while (j < len) {
17621 		bufp = local_buf;
17622 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17623 		start_offset = j;
17624 
17625 		end_offset = start_offset + avail_count;
17626 
17627 		(void) sprintf(bufp, "%s:", title);
17628 		bufp += strlen(bufp);
17629 		for (i = start_offset; ((i < end_offset) && (j < len));
17630 		    i++, j++) {
17631 			(void) sprintf(bufp, format_string, data[i]);
17632 			bufp += entry_len;
17633 		}
17634 		(void) sprintf(bufp, "\n");
17635 
17636 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17637 	}
17638 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17639 }
17640 
17641 /*
17642  *    Function: sd_print_sense_msg
17643  *
17644  * Description: Log a message based upon the given sense data.
17645  *
17646  *   Arguments: un - ptr to associated softstate
17647  *		bp - ptr to buf(9S) for the command
17648  *		arg - ptr to associate sd_sense_info struct
17649  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17650  *			or SD_NO_RETRY_ISSUED
17651  *
17652  *     Context: May be called from interrupt context
17653  */
17654 
17655 static void
17656 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17657 {
17658 	struct sd_xbuf	*xp;
17659 	struct scsi_pkt	*pktp;
17660 	uint8_t *sensep;
17661 	daddr_t request_blkno;
17662 	diskaddr_t err_blkno;
17663 	int severity;
17664 	int pfa_flag;
17665 	extern struct scsi_key_strings scsi_cmds[];
17666 
17667 	ASSERT(un != NULL);
17668 	ASSERT(mutex_owned(SD_MUTEX(un)));
17669 	ASSERT(bp != NULL);
17670 	xp = SD_GET_XBUF(bp);
17671 	ASSERT(xp != NULL);
17672 	pktp = SD_GET_PKTP(bp);
17673 	ASSERT(pktp != NULL);
17674 	ASSERT(arg != NULL);
17675 
17676 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17677 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17678 
17679 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17680 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17681 		severity = SCSI_ERR_RETRYABLE;
17682 	}
17683 
17684 	/* Use absolute block number for the request block number */
17685 	request_blkno = xp->xb_blkno;
17686 
17687 	/*
17688 	 * Now try to get the error block number from the sense data
17689 	 */
17690 	sensep = xp->xb_sense_data;
17691 
17692 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17693 		(uint64_t *)&err_blkno)) {
17694 		/*
17695 		 * We retrieved the error block number from the information
17696 		 * portion of the sense data.
17697 		 *
17698 		 * For USCSI commands we are better off using the error
17699 		 * block no. as the requested block no. (This is the best
17700 		 * we can estimate.)
17701 		 */
17702 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17703 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17704 			request_blkno = err_blkno;
17705 		}
17706 	} else {
17707 		/*
17708 		 * Without the es_valid bit set (for fixed format) or an
17709 		 * information descriptor (for descriptor format) we cannot
17710 		 * be certain of the error blkno, so just use the
17711 		 * request_blkno.
17712 		 */
17713 		err_blkno = (diskaddr_t)request_blkno;
17714 	}
17715 
17716 	/*
17717 	 * The following will log the buffer contents for the release driver
17718 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17719 	 * level is set to verbose.
17720 	 */
17721 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17722 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17723 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17724 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17725 
17726 	if (pfa_flag == FALSE) {
17727 		/* This is normally only set for USCSI */
17728 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17729 			return;
17730 		}
17731 
17732 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17733 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17734 		    (severity < sd_error_level))) {
17735 			return;
17736 		}
17737 	}
17738 
17739 	/*
17740 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17741 	 */
17742 	if ((SD_IS_LSI(un)) &&
17743 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17744 	    (scsi_sense_asc(sensep) == 0x94) &&
17745 	    (scsi_sense_ascq(sensep) == 0x01)) {
17746 		un->un_sonoma_failure_count++;
17747 		if (un->un_sonoma_failure_count > 1) {
17748 			return;
17749 		}
17750 	}
17751 
17752 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17753 	    request_blkno, err_blkno, scsi_cmds,
17754 	    (struct scsi_extended_sense *)sensep,
17755 	    un->un_additional_codes, NULL);
17756 }
17757 
17758 /*
17759  *    Function: sd_sense_key_no_sense
17760  *
17761  * Description: Recovery action when sense data was not received.
17762  *
17763  *     Context: May be called from interrupt context
17764  */
17765 
17766 static void
17767 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17768 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17769 {
17770 	struct sd_sense_info	si;
17771 
17772 	ASSERT(un != NULL);
17773 	ASSERT(mutex_owned(SD_MUTEX(un)));
17774 	ASSERT(bp != NULL);
17775 	ASSERT(xp != NULL);
17776 	ASSERT(pktp != NULL);
17777 
17778 	si.ssi_severity = SCSI_ERR_FATAL;
17779 	si.ssi_pfa_flag = FALSE;
17780 
17781 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17782 
17783 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17784 		&si, EIO, (clock_t)0, NULL);
17785 }
17786 
17787 
17788 /*
17789  *    Function: sd_sense_key_recoverable_error
17790  *
17791  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17792  *
17793  *     Context: May be called from interrupt context
17794  */
17795 
17796 static void
17797 sd_sense_key_recoverable_error(struct sd_lun *un,
17798 	uint8_t *sense_datap,
17799 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17800 {
17801 	struct sd_sense_info	si;
17802 	uint8_t asc = scsi_sense_asc(sense_datap);
17803 
17804 	ASSERT(un != NULL);
17805 	ASSERT(mutex_owned(SD_MUTEX(un)));
17806 	ASSERT(bp != NULL);
17807 	ASSERT(xp != NULL);
17808 	ASSERT(pktp != NULL);
17809 
17810 	/*
17811 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17812 	 */
17813 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17814 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17815 		si.ssi_severity = SCSI_ERR_INFO;
17816 		si.ssi_pfa_flag = TRUE;
17817 	} else {
17818 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17819 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17820 		si.ssi_severity = SCSI_ERR_RECOVERED;
17821 		si.ssi_pfa_flag = FALSE;
17822 	}
17823 
17824 	if (pktp->pkt_resid == 0) {
17825 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17826 		sd_return_command(un, bp);
17827 		return;
17828 	}
17829 
17830 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17831 	    &si, EIO, (clock_t)0, NULL);
17832 }
17833 
17834 
17835 
17836 
17837 /*
17838  *    Function: sd_sense_key_not_ready
17839  *
17840  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17841  *
17842  *     Context: May be called from interrupt context
17843  */
17844 
17845 static void
17846 sd_sense_key_not_ready(struct sd_lun *un,
17847 	uint8_t *sense_datap,
17848 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17849 {
17850 	struct sd_sense_info	si;
17851 	uint8_t asc = scsi_sense_asc(sense_datap);
17852 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17853 
17854 	ASSERT(un != NULL);
17855 	ASSERT(mutex_owned(SD_MUTEX(un)));
17856 	ASSERT(bp != NULL);
17857 	ASSERT(xp != NULL);
17858 	ASSERT(pktp != NULL);
17859 
17860 	si.ssi_severity = SCSI_ERR_FATAL;
17861 	si.ssi_pfa_flag = FALSE;
17862 
17863 	/*
17864 	 * Update error stats after first NOT READY error. Disks may have
17865 	 * been powered down and may need to be restarted.  For CDROMs,
17866 	 * report NOT READY errors only if media is present.
17867 	 */
17868 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17869 	    (xp->xb_retry_count > 0)) {
17870 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17871 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17872 	}
17873 
17874 	/*
17875 	 * Just fail if the "not ready" retry limit has been reached.
17876 	 */
17877 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17878 		/* Special check for error message printing for removables. */
17879 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17880 		    (ascq >= 0x04)) {
17881 			si.ssi_severity = SCSI_ERR_ALL;
17882 		}
17883 		goto fail_command;
17884 	}
17885 
17886 	/*
17887 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17888 	 * what to do.
17889 	 */
17890 	switch (asc) {
17891 	case 0x04:	/* LOGICAL UNIT NOT READY */
17892 		/*
17893 		 * disk drives that don't spin up result in a very long delay
17894 		 * in format without warning messages. We will log a message
17895 		 * if the error level is set to verbose.
17896 		 */
17897 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17898 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17899 			    "logical unit not ready, resetting disk\n");
17900 		}
17901 
17902 		/*
17903 		 * There are different requirements for CDROMs and disks for
17904 		 * the number of retries.  If a CD-ROM is giving this, it is
17905 		 * probably reading TOC and is in the process of getting
17906 		 * ready, so we should keep on trying for a long time to make
17907 		 * sure that all types of media are taken in account (for
17908 		 * some media the drive takes a long time to read TOC).  For
17909 		 * disks we do not want to retry this too many times as this
17910 		 * can cause a long hang in format when the drive refuses to
17911 		 * spin up (a very common failure).
17912 		 */
17913 		switch (ascq) {
17914 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17915 			/*
17916 			 * Disk drives frequently refuse to spin up which
17917 			 * results in a very long hang in format without
17918 			 * warning messages.
17919 			 *
17920 			 * Note: This code preserves the legacy behavior of
17921 			 * comparing xb_retry_count against zero for fibre
17922 			 * channel targets instead of comparing against the
17923 			 * un_reset_retry_count value.  The reason for this
17924 			 * discrepancy has been so utterly lost beneath the
17925 			 * Sands of Time that even Indiana Jones could not
17926 			 * find it.
17927 			 */
17928 			if (un->un_f_is_fibre == TRUE) {
17929 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17930 					(xp->xb_retry_count > 0)) &&
17931 					(un->un_startstop_timeid == NULL)) {
17932 					scsi_log(SD_DEVINFO(un), sd_label,
17933 					CE_WARN, "logical unit not ready, "
17934 					"resetting disk\n");
17935 					sd_reset_target(un, pktp);
17936 				}
17937 			} else {
17938 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17939 					(xp->xb_retry_count >
17940 					un->un_reset_retry_count)) &&
17941 					(un->un_startstop_timeid == NULL)) {
17942 					scsi_log(SD_DEVINFO(un), sd_label,
17943 					CE_WARN, "logical unit not ready, "
17944 					"resetting disk\n");
17945 					sd_reset_target(un, pktp);
17946 				}
17947 			}
17948 			break;
17949 
17950 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17951 			/*
17952 			 * If the target is in the process of becoming
17953 			 * ready, just proceed with the retry. This can
17954 			 * happen with CD-ROMs that take a long time to
17955 			 * read TOC after a power cycle or reset.
17956 			 */
17957 			goto do_retry;
17958 
17959 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17960 			break;
17961 
17962 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17963 			/*
17964 			 * Retries cannot help here so just fail right away.
17965 			 */
17966 			goto fail_command;
17967 
17968 		case 0x88:
17969 			/*
17970 			 * Vendor-unique code for T3/T4: it indicates a
17971 			 * path problem in a mutipathed config, but as far as
17972 			 * the target driver is concerned it equates to a fatal
17973 			 * error, so we should just fail the command right away
17974 			 * (without printing anything to the console). If this
17975 			 * is not a T3/T4, fall thru to the default recovery
17976 			 * action.
17977 			 * T3/T4 is FC only, don't need to check is_fibre
17978 			 */
17979 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17980 				sd_return_failed_command(un, bp, EIO);
17981 				return;
17982 			}
17983 			/* FALLTHRU */
17984 
17985 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17986 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17987 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17988 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17989 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17990 		default:    /* Possible future codes in SCSI spec? */
17991 			/*
17992 			 * For removable-media devices, do not retry if
17993 			 * ASCQ > 2 as these result mostly from USCSI commands
17994 			 * on MMC devices issued to check status of an
17995 			 * operation initiated in immediate mode.  Also for
17996 			 * ASCQ >= 4 do not print console messages as these
17997 			 * mainly represent a user-initiated operation
17998 			 * instead of a system failure.
17999 			 */
18000 			if (un->un_f_has_removable_media) {
18001 				si.ssi_severity = SCSI_ERR_ALL;
18002 				goto fail_command;
18003 			}
18004 			break;
18005 		}
18006 
18007 		/*
18008 		 * As part of our recovery attempt for the NOT READY
18009 		 * condition, we issue a START STOP UNIT command. However
18010 		 * we want to wait for a short delay before attempting this
18011 		 * as there may still be more commands coming back from the
18012 		 * target with the check condition. To do this we use
18013 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18014 		 * the delay interval expires. (sd_start_stop_unit_callback()
18015 		 * dispatches sd_start_stop_unit_task(), which will issue
18016 		 * the actual START STOP UNIT command. The delay interval
18017 		 * is one-half of the delay that we will use to retry the
18018 		 * command that generated the NOT READY condition.
18019 		 *
18020 		 * Note that we could just dispatch sd_start_stop_unit_task()
18021 		 * from here and allow it to sleep for the delay interval,
18022 		 * but then we would be tying up the taskq thread
18023 		 * uncesessarily for the duration of the delay.
18024 		 *
18025 		 * Do not issue the START STOP UNIT if the current command
18026 		 * is already a START STOP UNIT.
18027 		 */
18028 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18029 			break;
18030 		}
18031 
18032 		/*
18033 		 * Do not schedule the timeout if one is already pending.
18034 		 */
18035 		if (un->un_startstop_timeid != NULL) {
18036 			SD_INFO(SD_LOG_ERROR, un,
18037 			    "sd_sense_key_not_ready: restart already issued to"
18038 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18039 			    ddi_get_instance(SD_DEVINFO(un)));
18040 			break;
18041 		}
18042 
18043 		/*
18044 		 * Schedule the START STOP UNIT command, then queue the command
18045 		 * for a retry.
18046 		 *
18047 		 * Note: A timeout is not scheduled for this retry because we
18048 		 * want the retry to be serial with the START_STOP_UNIT. The
18049 		 * retry will be started when the START_STOP_UNIT is completed
18050 		 * in sd_start_stop_unit_task.
18051 		 */
18052 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18053 		    un, SD_BSY_TIMEOUT / 2);
18054 		xp->xb_retry_count++;
18055 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18056 		return;
18057 
18058 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18059 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18060 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18061 			    "unit does not respond to selection\n");
18062 		}
18063 		break;
18064 
18065 	case 0x3A:	/* MEDIUM NOT PRESENT */
18066 		if (sd_error_level >= SCSI_ERR_FATAL) {
18067 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18068 			    "Caddy not inserted in drive\n");
18069 		}
18070 
18071 		sr_ejected(un);
18072 		un->un_mediastate = DKIO_EJECTED;
18073 		/* The state has changed, inform the media watch routines */
18074 		cv_broadcast(&un->un_state_cv);
18075 		/* Just fail if no media is present in the drive. */
18076 		goto fail_command;
18077 
18078 	default:
18079 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18080 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18081 			    "Unit not Ready. Additional sense code 0x%x\n",
18082 			    asc);
18083 		}
18084 		break;
18085 	}
18086 
18087 do_retry:
18088 
18089 	/*
18090 	 * Retry the command, as some targets may report NOT READY for
18091 	 * several seconds after being reset.
18092 	 */
18093 	xp->xb_retry_count++;
18094 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18095 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18096 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
18097 
18098 	return;
18099 
18100 fail_command:
18101 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18102 	sd_return_failed_command(un, bp, EIO);
18103 }
18104 
18105 
18106 
18107 /*
18108  *    Function: sd_sense_key_medium_or_hardware_error
18109  *
18110  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18111  *		sense key.
18112  *
18113  *     Context: May be called from interrupt context
18114  */
18115 
18116 static void
18117 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18118 	uint8_t *sense_datap,
18119 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18120 {
18121 	struct sd_sense_info	si;
18122 	uint8_t sense_key = scsi_sense_key(sense_datap);
18123 	uint8_t asc = scsi_sense_asc(sense_datap);
18124 
18125 	ASSERT(un != NULL);
18126 	ASSERT(mutex_owned(SD_MUTEX(un)));
18127 	ASSERT(bp != NULL);
18128 	ASSERT(xp != NULL);
18129 	ASSERT(pktp != NULL);
18130 
18131 	si.ssi_severity = SCSI_ERR_FATAL;
18132 	si.ssi_pfa_flag = FALSE;
18133 
18134 	if (sense_key == KEY_MEDIUM_ERROR) {
18135 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18136 	}
18137 
18138 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18139 
18140 	if ((un->un_reset_retry_count != 0) &&
18141 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18142 		mutex_exit(SD_MUTEX(un));
18143 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18144 		if (un->un_f_allow_bus_device_reset == TRUE) {
18145 
18146 			boolean_t try_resetting_target = B_TRUE;
18147 
18148 			/*
18149 			 * We need to be able to handle specific ASC when we are
18150 			 * handling a KEY_HARDWARE_ERROR. In particular
18151 			 * taking the default action of resetting the target may
18152 			 * not be the appropriate way to attempt recovery.
18153 			 * Resetting a target because of a single LUN failure
18154 			 * victimizes all LUNs on that target.
18155 			 *
18156 			 * This is true for the LSI arrays, if an LSI
18157 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18158 			 * should trust it.
18159 			 */
18160 
18161 			if (sense_key == KEY_HARDWARE_ERROR) {
18162 				switch (asc) {
18163 				case 0x84:
18164 					if (SD_IS_LSI(un)) {
18165 						try_resetting_target = B_FALSE;
18166 					}
18167 					break;
18168 				default:
18169 					break;
18170 				}
18171 			}
18172 
18173 			if (try_resetting_target == B_TRUE) {
18174 				int reset_retval = 0;
18175 				if (un->un_f_lun_reset_enabled == TRUE) {
18176 					SD_TRACE(SD_LOG_IO_CORE, un,
18177 					    "sd_sense_key_medium_or_hardware_"
18178 					    "error: issuing RESET_LUN\n");
18179 					reset_retval =
18180 					    scsi_reset(SD_ADDRESS(un),
18181 					    RESET_LUN);
18182 				}
18183 				if (reset_retval == 0) {
18184 					SD_TRACE(SD_LOG_IO_CORE, un,
18185 					    "sd_sense_key_medium_or_hardware_"
18186 					    "error: issuing RESET_TARGET\n");
18187 					(void) scsi_reset(SD_ADDRESS(un),
18188 					    RESET_TARGET);
18189 				}
18190 			}
18191 		}
18192 		mutex_enter(SD_MUTEX(un));
18193 	}
18194 
18195 	/*
18196 	 * This really ought to be a fatal error, but we will retry anyway
18197 	 * as some drives report this as a spurious error.
18198 	 */
18199 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18200 	    &si, EIO, (clock_t)0, NULL);
18201 }
18202 
18203 
18204 
18205 /*
18206  *    Function: sd_sense_key_illegal_request
18207  *
18208  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18209  *
18210  *     Context: May be called from interrupt context
18211  */
18212 
18213 static void
18214 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18215 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18216 {
18217 	struct sd_sense_info	si;
18218 
18219 	ASSERT(un != NULL);
18220 	ASSERT(mutex_owned(SD_MUTEX(un)));
18221 	ASSERT(bp != NULL);
18222 	ASSERT(xp != NULL);
18223 	ASSERT(pktp != NULL);
18224 
18225 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18226 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18227 
18228 	si.ssi_severity = SCSI_ERR_INFO;
18229 	si.ssi_pfa_flag = FALSE;
18230 
18231 	/* Pointless to retry if the target thinks it's an illegal request */
18232 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18233 	sd_return_failed_command(un, bp, EIO);
18234 }
18235 
18236 
18237 
18238 
18239 /*
18240  *    Function: sd_sense_key_unit_attention
18241  *
18242  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18243  *
18244  *     Context: May be called from interrupt context
18245  */
18246 
18247 static void
18248 sd_sense_key_unit_attention(struct sd_lun *un,
18249 	uint8_t *sense_datap,
18250 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18251 {
18252 	/*
18253 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18254 	 * like Sonoma can return UNIT ATTENTION close to a minute
18255 	 * under certain conditions.
18256 	 */
18257 	int	retry_check_flag = SD_RETRIES_UA;
18258 	boolean_t	kstat_updated = B_FALSE;
18259 	struct	sd_sense_info		si;
18260 	uint8_t asc = scsi_sense_asc(sense_datap);
18261 
18262 	ASSERT(un != NULL);
18263 	ASSERT(mutex_owned(SD_MUTEX(un)));
18264 	ASSERT(bp != NULL);
18265 	ASSERT(xp != NULL);
18266 	ASSERT(pktp != NULL);
18267 
18268 	si.ssi_severity = SCSI_ERR_INFO;
18269 	si.ssi_pfa_flag = FALSE;
18270 
18271 
18272 	switch (asc) {
18273 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18274 		if (sd_report_pfa != 0) {
18275 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18276 			si.ssi_pfa_flag = TRUE;
18277 			retry_check_flag = SD_RETRIES_STANDARD;
18278 			goto do_retry;
18279 		}
18280 
18281 		break;
18282 
18283 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18284 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18285 			un->un_resvd_status |=
18286 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18287 		}
18288 #ifdef _LP64
18289 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18290 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18291 			    un, KM_NOSLEEP) == 0) {
18292 				/*
18293 				 * If we can't dispatch the task we'll just
18294 				 * live without descriptor sense.  We can
18295 				 * try again on the next "unit attention"
18296 				 */
18297 				SD_ERROR(SD_LOG_ERROR, un,
18298 				    "sd_sense_key_unit_attention: "
18299 				    "Could not dispatch "
18300 				    "sd_reenable_dsense_task\n");
18301 			}
18302 		}
18303 #endif /* _LP64 */
18304 		/* FALLTHRU */
18305 
18306 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18307 		if (!un->un_f_has_removable_media) {
18308 			break;
18309 		}
18310 
18311 		/*
18312 		 * When we get a unit attention from a removable-media device,
18313 		 * it may be in a state that will take a long time to recover
18314 		 * (e.g., from a reset).  Since we are executing in interrupt
18315 		 * context here, we cannot wait around for the device to come
18316 		 * back. So hand this command off to sd_media_change_task()
18317 		 * for deferred processing under taskq thread context. (Note
18318 		 * that the command still may be failed if a problem is
18319 		 * encountered at a later time.)
18320 		 */
18321 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18322 		    KM_NOSLEEP) == 0) {
18323 			/*
18324 			 * Cannot dispatch the request so fail the command.
18325 			 */
18326 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18327 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18328 			si.ssi_severity = SCSI_ERR_FATAL;
18329 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18330 			sd_return_failed_command(un, bp, EIO);
18331 		}
18332 
18333 		/*
18334 		 * If failed to dispatch sd_media_change_task(), we already
18335 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18336 		 * we should update kstat later if it encounters an error. So,
18337 		 * we update kstat_updated flag here.
18338 		 */
18339 		kstat_updated = B_TRUE;
18340 
18341 		/*
18342 		 * Either the command has been successfully dispatched to a
18343 		 * task Q for retrying, or the dispatch failed. In either case
18344 		 * do NOT retry again by calling sd_retry_command. This sets up
18345 		 * two retries of the same command and when one completes and
18346 		 * frees the resources the other will access freed memory,
18347 		 * a bad thing.
18348 		 */
18349 		return;
18350 
18351 	default:
18352 		break;
18353 	}
18354 
18355 	/*
18356 	 * Update kstat if we haven't done that.
18357 	 */
18358 	if (!kstat_updated) {
18359 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18360 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18361 	}
18362 
18363 do_retry:
18364 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18365 	    EIO, SD_UA_RETRY_DELAY, NULL);
18366 }
18367 
18368 
18369 
18370 /*
18371  *    Function: sd_sense_key_fail_command
18372  *
18373  * Description: Use to fail a command when we don't like the sense key that
18374  *		was returned.
18375  *
18376  *     Context: May be called from interrupt context
18377  */
18378 
18379 static void
18380 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18381 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18382 {
18383 	struct sd_sense_info	si;
18384 
18385 	ASSERT(un != NULL);
18386 	ASSERT(mutex_owned(SD_MUTEX(un)));
18387 	ASSERT(bp != NULL);
18388 	ASSERT(xp != NULL);
18389 	ASSERT(pktp != NULL);
18390 
18391 	si.ssi_severity = SCSI_ERR_FATAL;
18392 	si.ssi_pfa_flag = FALSE;
18393 
18394 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18395 	sd_return_failed_command(un, bp, EIO);
18396 }
18397 
18398 
18399 
18400 /*
18401  *    Function: sd_sense_key_blank_check
18402  *
18403  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18404  *		Has no monetary connotation.
18405  *
18406  *     Context: May be called from interrupt context
18407  */
18408 
18409 static void
18410 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18411 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18412 {
18413 	struct sd_sense_info	si;
18414 
18415 	ASSERT(un != NULL);
18416 	ASSERT(mutex_owned(SD_MUTEX(un)));
18417 	ASSERT(bp != NULL);
18418 	ASSERT(xp != NULL);
18419 	ASSERT(pktp != NULL);
18420 
18421 	/*
18422 	 * Blank check is not fatal for removable devices, therefore
18423 	 * it does not require a console message.
18424 	 */
18425 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18426 	    SCSI_ERR_FATAL;
18427 	si.ssi_pfa_flag = FALSE;
18428 
18429 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18430 	sd_return_failed_command(un, bp, EIO);
18431 }
18432 
18433 
18434 
18435 
18436 /*
18437  *    Function: sd_sense_key_aborted_command
18438  *
18439  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18440  *
18441  *     Context: May be called from interrupt context
18442  */
18443 
18444 static void
18445 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18446 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18447 {
18448 	struct sd_sense_info	si;
18449 
18450 	ASSERT(un != NULL);
18451 	ASSERT(mutex_owned(SD_MUTEX(un)));
18452 	ASSERT(bp != NULL);
18453 	ASSERT(xp != NULL);
18454 	ASSERT(pktp != NULL);
18455 
18456 	si.ssi_severity = SCSI_ERR_FATAL;
18457 	si.ssi_pfa_flag = FALSE;
18458 
18459 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18460 
18461 	/*
18462 	 * This really ought to be a fatal error, but we will retry anyway
18463 	 * as some drives report this as a spurious error.
18464 	 */
18465 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18466 	    &si, EIO, (clock_t)0, NULL);
18467 }
18468 
18469 
18470 
18471 /*
18472  *    Function: sd_sense_key_default
18473  *
18474  * Description: Default recovery action for several SCSI sense keys (basically
18475  *		attempts a retry).
18476  *
18477  *     Context: May be called from interrupt context
18478  */
18479 
18480 static void
18481 sd_sense_key_default(struct sd_lun *un,
18482 	uint8_t *sense_datap,
18483 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18484 {
18485 	struct sd_sense_info	si;
18486 	uint8_t sense_key = scsi_sense_key(sense_datap);
18487 
18488 	ASSERT(un != NULL);
18489 	ASSERT(mutex_owned(SD_MUTEX(un)));
18490 	ASSERT(bp != NULL);
18491 	ASSERT(xp != NULL);
18492 	ASSERT(pktp != NULL);
18493 
18494 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18495 
18496 	/*
18497 	 * Undecoded sense key.	Attempt retries and hope that will fix
18498 	 * the problem.  Otherwise, we're dead.
18499 	 */
18500 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18501 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18502 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18503 	}
18504 
18505 	si.ssi_severity = SCSI_ERR_FATAL;
18506 	si.ssi_pfa_flag = FALSE;
18507 
18508 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18509 	    &si, EIO, (clock_t)0, NULL);
18510 }
18511 
18512 
18513 
18514 /*
18515  *    Function: sd_print_retry_msg
18516  *
18517  * Description: Print a message indicating the retry action being taken.
18518  *
18519  *   Arguments: un - ptr to associated softstate
18520  *		bp - ptr to buf(9S) for the command
18521  *		arg - not used.
18522  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18523  *			or SD_NO_RETRY_ISSUED
18524  *
18525  *     Context: May be called from interrupt context
18526  */
18527 /* ARGSUSED */
18528 static void
18529 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18530 {
18531 	struct sd_xbuf	*xp;
18532 	struct scsi_pkt *pktp;
18533 	char *reasonp;
18534 	char *msgp;
18535 
18536 	ASSERT(un != NULL);
18537 	ASSERT(mutex_owned(SD_MUTEX(un)));
18538 	ASSERT(bp != NULL);
18539 	pktp = SD_GET_PKTP(bp);
18540 	ASSERT(pktp != NULL);
18541 	xp = SD_GET_XBUF(bp);
18542 	ASSERT(xp != NULL);
18543 
18544 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18545 	mutex_enter(&un->un_pm_mutex);
18546 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18547 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18548 	    (pktp->pkt_flags & FLAG_SILENT)) {
18549 		mutex_exit(&un->un_pm_mutex);
18550 		goto update_pkt_reason;
18551 	}
18552 	mutex_exit(&un->un_pm_mutex);
18553 
18554 	/*
18555 	 * Suppress messages if they are all the same pkt_reason; with
18556 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18557 	 * If we are in panic, then suppress the retry messages.
18558 	 */
18559 	switch (flag) {
18560 	case SD_NO_RETRY_ISSUED:
18561 		msgp = "giving up";
18562 		break;
18563 	case SD_IMMEDIATE_RETRY_ISSUED:
18564 	case SD_DELAYED_RETRY_ISSUED:
18565 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18566 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18567 		    (sd_error_level != SCSI_ERR_ALL))) {
18568 			return;
18569 		}
18570 		msgp = "retrying command";
18571 		break;
18572 	default:
18573 		goto update_pkt_reason;
18574 	}
18575 
18576 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18577 	    scsi_rname(pktp->pkt_reason));
18578 
18579 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18580 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18581 
18582 update_pkt_reason:
18583 	/*
18584 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18585 	 * This is to prevent multiple console messages for the same failure
18586 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18587 	 * when the command is retried successfully because there still may be
18588 	 * more commands coming back with the same value of pktp->pkt_reason.
18589 	 */
18590 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18591 		un->un_last_pkt_reason = pktp->pkt_reason;
18592 	}
18593 }
18594 
18595 
18596 /*
18597  *    Function: sd_print_cmd_incomplete_msg
18598  *
18599  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18600  *
18601  *   Arguments: un - ptr to associated softstate
18602  *		bp - ptr to buf(9S) for the command
18603  *		arg - passed to sd_print_retry_msg()
18604  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18605  *			or SD_NO_RETRY_ISSUED
18606  *
18607  *     Context: May be called from interrupt context
18608  */
18609 
18610 static void
18611 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18612 	int code)
18613 {
18614 	dev_info_t	*dip;
18615 
18616 	ASSERT(un != NULL);
18617 	ASSERT(mutex_owned(SD_MUTEX(un)));
18618 	ASSERT(bp != NULL);
18619 
18620 	switch (code) {
18621 	case SD_NO_RETRY_ISSUED:
18622 		/* Command was failed. Someone turned off this target? */
18623 		if (un->un_state != SD_STATE_OFFLINE) {
18624 			/*
18625 			 * Suppress message if we are detaching and
18626 			 * device has been disconnected
18627 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18628 			 * private interface and not part of the DDI
18629 			 */
18630 			dip = un->un_sd->sd_dev;
18631 			if (!(DEVI_IS_DETACHING(dip) &&
18632 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18633 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18634 				"disk not responding to selection\n");
18635 			}
18636 			New_state(un, SD_STATE_OFFLINE);
18637 		}
18638 		break;
18639 
18640 	case SD_DELAYED_RETRY_ISSUED:
18641 	case SD_IMMEDIATE_RETRY_ISSUED:
18642 	default:
18643 		/* Command was successfully queued for retry */
18644 		sd_print_retry_msg(un, bp, arg, code);
18645 		break;
18646 	}
18647 }
18648 
18649 
18650 /*
18651  *    Function: sd_pkt_reason_cmd_incomplete
18652  *
18653  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18654  *
18655  *     Context: May be called from interrupt context
18656  */
18657 
18658 static void
18659 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18660 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18661 {
18662 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18663 
18664 	ASSERT(un != NULL);
18665 	ASSERT(mutex_owned(SD_MUTEX(un)));
18666 	ASSERT(bp != NULL);
18667 	ASSERT(xp != NULL);
18668 	ASSERT(pktp != NULL);
18669 
18670 	/* Do not do a reset if selection did not complete */
18671 	/* Note: Should this not just check the bit? */
18672 	if (pktp->pkt_state != STATE_GOT_BUS) {
18673 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18674 		sd_reset_target(un, pktp);
18675 	}
18676 
18677 	/*
18678 	 * If the target was not successfully selected, then set
18679 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18680 	 * with the target, and further retries and/or commands are
18681 	 * likely to take a long time.
18682 	 */
18683 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18684 		flag |= SD_RETRIES_FAILFAST;
18685 	}
18686 
18687 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18688 
18689 	sd_retry_command(un, bp, flag,
18690 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18691 }
18692 
18693 
18694 
18695 /*
18696  *    Function: sd_pkt_reason_cmd_tran_err
18697  *
18698  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18699  *
18700  *     Context: May be called from interrupt context
18701  */
18702 
18703 static void
18704 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18705 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18706 {
18707 	ASSERT(un != NULL);
18708 	ASSERT(mutex_owned(SD_MUTEX(un)));
18709 	ASSERT(bp != NULL);
18710 	ASSERT(xp != NULL);
18711 	ASSERT(pktp != NULL);
18712 
18713 	/*
18714 	 * Do not reset if we got a parity error, or if
18715 	 * selection did not complete.
18716 	 */
18717 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18718 	/* Note: Should this not just check the bit for pkt_state? */
18719 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18720 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18721 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18722 		sd_reset_target(un, pktp);
18723 	}
18724 
18725 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18726 
18727 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18728 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18729 }
18730 
18731 
18732 
18733 /*
18734  *    Function: sd_pkt_reason_cmd_reset
18735  *
18736  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18737  *
18738  *     Context: May be called from interrupt context
18739  */
18740 
18741 static void
18742 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18743 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18744 {
18745 	ASSERT(un != NULL);
18746 	ASSERT(mutex_owned(SD_MUTEX(un)));
18747 	ASSERT(bp != NULL);
18748 	ASSERT(xp != NULL);
18749 	ASSERT(pktp != NULL);
18750 
18751 	/* The target may still be running the command, so try to reset. */
18752 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18753 	sd_reset_target(un, pktp);
18754 
18755 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18756 
18757 	/*
18758 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18759 	 * reset because another target on this bus caused it. The target
18760 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18761 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18762 	 */
18763 
18764 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18765 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18766 }
18767 
18768 
18769 
18770 
18771 /*
18772  *    Function: sd_pkt_reason_cmd_aborted
18773  *
18774  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18775  *
18776  *     Context: May be called from interrupt context
18777  */
18778 
18779 static void
18780 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18781 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18782 {
18783 	ASSERT(un != NULL);
18784 	ASSERT(mutex_owned(SD_MUTEX(un)));
18785 	ASSERT(bp != NULL);
18786 	ASSERT(xp != NULL);
18787 	ASSERT(pktp != NULL);
18788 
18789 	/* The target may still be running the command, so try to reset. */
18790 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18791 	sd_reset_target(un, pktp);
18792 
18793 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18794 
18795 	/*
18796 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18797 	 * aborted because another target on this bus caused it. The target
18798 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18799 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18800 	 */
18801 
18802 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18803 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18804 }
18805 
18806 
18807 
18808 /*
18809  *    Function: sd_pkt_reason_cmd_timeout
18810  *
18811  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18812  *
18813  *     Context: May be called from interrupt context
18814  */
18815 
18816 static void
18817 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18818 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18819 {
18820 	ASSERT(un != NULL);
18821 	ASSERT(mutex_owned(SD_MUTEX(un)));
18822 	ASSERT(bp != NULL);
18823 	ASSERT(xp != NULL);
18824 	ASSERT(pktp != NULL);
18825 
18826 
18827 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18828 	sd_reset_target(un, pktp);
18829 
18830 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18831 
18832 	/*
18833 	 * A command timeout indicates that we could not establish
18834 	 * communication with the target, so set SD_RETRIES_FAILFAST
18835 	 * as further retries/commands are likely to take a long time.
18836 	 */
18837 	sd_retry_command(un, bp,
18838 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18839 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18840 }
18841 
18842 
18843 
18844 /*
18845  *    Function: sd_pkt_reason_cmd_unx_bus_free
18846  *
18847  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18848  *
18849  *     Context: May be called from interrupt context
18850  */
18851 
18852 static void
18853 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18854 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18855 {
18856 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18857 
18858 	ASSERT(un != NULL);
18859 	ASSERT(mutex_owned(SD_MUTEX(un)));
18860 	ASSERT(bp != NULL);
18861 	ASSERT(xp != NULL);
18862 	ASSERT(pktp != NULL);
18863 
18864 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18865 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18866 
18867 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18868 	    sd_print_retry_msg : NULL;
18869 
18870 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18871 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18872 }
18873 
18874 
18875 /*
18876  *    Function: sd_pkt_reason_cmd_tag_reject
18877  *
18878  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18879  *
18880  *     Context: May be called from interrupt context
18881  */
18882 
18883 static void
18884 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18885 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18886 {
18887 	ASSERT(un != NULL);
18888 	ASSERT(mutex_owned(SD_MUTEX(un)));
18889 	ASSERT(bp != NULL);
18890 	ASSERT(xp != NULL);
18891 	ASSERT(pktp != NULL);
18892 
18893 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18894 	pktp->pkt_flags = 0;
18895 	un->un_tagflags = 0;
18896 	if (un->un_f_opt_queueing == TRUE) {
18897 		un->un_throttle = min(un->un_throttle, 3);
18898 	} else {
18899 		un->un_throttle = 1;
18900 	}
18901 	mutex_exit(SD_MUTEX(un));
18902 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18903 	mutex_enter(SD_MUTEX(un));
18904 
18905 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18906 
18907 	/* Legacy behavior not to check retry counts here. */
18908 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18909 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18910 }
18911 
18912 
18913 /*
18914  *    Function: sd_pkt_reason_default
18915  *
18916  * Description: Default recovery actions for SCSA pkt_reason values that
18917  *		do not have more explicit recovery actions.
18918  *
18919  *     Context: May be called from interrupt context
18920  */
18921 
18922 static void
18923 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18924 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18925 {
18926 	ASSERT(un != NULL);
18927 	ASSERT(mutex_owned(SD_MUTEX(un)));
18928 	ASSERT(bp != NULL);
18929 	ASSERT(xp != NULL);
18930 	ASSERT(pktp != NULL);
18931 
18932 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18933 	sd_reset_target(un, pktp);
18934 
18935 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18936 
18937 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18938 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18939 }
18940 
18941 
18942 
18943 /*
18944  *    Function: sd_pkt_status_check_condition
18945  *
18946  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18947  *
18948  *     Context: May be called from interrupt context
18949  */
18950 
18951 static void
18952 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18953 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18954 {
18955 	ASSERT(un != NULL);
18956 	ASSERT(mutex_owned(SD_MUTEX(un)));
18957 	ASSERT(bp != NULL);
18958 	ASSERT(xp != NULL);
18959 	ASSERT(pktp != NULL);
18960 
18961 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18962 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18963 
18964 	/*
18965 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18966 	 * command will be retried after the request sense). Otherwise, retry
18967 	 * the command. Note: we are issuing the request sense even though the
18968 	 * retry limit may have been reached for the failed command.
18969 	 */
18970 	if (un->un_f_arq_enabled == FALSE) {
18971 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18972 		    "no ARQ, sending request sense command\n");
18973 		sd_send_request_sense_command(un, bp, pktp);
18974 	} else {
18975 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18976 		    "ARQ,retrying request sense command\n");
18977 #if defined(__i386) || defined(__amd64)
18978 		/*
18979 		 * The SD_RETRY_DELAY value need to be adjusted here
18980 		 * when SD_RETRY_DELAY change in sddef.h
18981 		 */
18982 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18983 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18984 			NULL);
18985 #else
18986 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18987 		    EIO, SD_RETRY_DELAY, NULL);
18988 #endif
18989 	}
18990 
18991 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18992 }
18993 
18994 
18995 /*
18996  *    Function: sd_pkt_status_busy
18997  *
18998  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18999  *
19000  *     Context: May be called from interrupt context
19001  */
19002 
19003 static void
19004 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19005 	struct scsi_pkt *pktp)
19006 {
19007 	ASSERT(un != NULL);
19008 	ASSERT(mutex_owned(SD_MUTEX(un)));
19009 	ASSERT(bp != NULL);
19010 	ASSERT(xp != NULL);
19011 	ASSERT(pktp != NULL);
19012 
19013 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19014 	    "sd_pkt_status_busy: entry\n");
19015 
19016 	/* If retries are exhausted, just fail the command. */
19017 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19018 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19019 		    "device busy too long\n");
19020 		sd_return_failed_command(un, bp, EIO);
19021 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19022 		    "sd_pkt_status_busy: exit\n");
19023 		return;
19024 	}
19025 	xp->xb_retry_count++;
19026 
19027 	/*
19028 	 * Try to reset the target. However, we do not want to perform
19029 	 * more than one reset if the device continues to fail. The reset
19030 	 * will be performed when the retry count reaches the reset
19031 	 * threshold.  This threshold should be set such that at least
19032 	 * one retry is issued before the reset is performed.
19033 	 */
19034 	if (xp->xb_retry_count ==
19035 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19036 		int rval = 0;
19037 		mutex_exit(SD_MUTEX(un));
19038 		if (un->un_f_allow_bus_device_reset == TRUE) {
19039 			/*
19040 			 * First try to reset the LUN; if we cannot then
19041 			 * try to reset the target.
19042 			 */
19043 			if (un->un_f_lun_reset_enabled == TRUE) {
19044 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19045 				    "sd_pkt_status_busy: RESET_LUN\n");
19046 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19047 			}
19048 			if (rval == 0) {
19049 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19050 				    "sd_pkt_status_busy: RESET_TARGET\n");
19051 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19052 			}
19053 		}
19054 		if (rval == 0) {
19055 			/*
19056 			 * If the RESET_LUN and/or RESET_TARGET failed,
19057 			 * try RESET_ALL
19058 			 */
19059 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19060 			    "sd_pkt_status_busy: RESET_ALL\n");
19061 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19062 		}
19063 		mutex_enter(SD_MUTEX(un));
19064 		if (rval == 0) {
19065 			/*
19066 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19067 			 * At this point we give up & fail the command.
19068 			 */
19069 			sd_return_failed_command(un, bp, EIO);
19070 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19071 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19072 			return;
19073 		}
19074 	}
19075 
19076 	/*
19077 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19078 	 * we have already checked the retry counts above.
19079 	 */
19080 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19081 	    EIO, SD_BSY_TIMEOUT, NULL);
19082 
19083 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19084 	    "sd_pkt_status_busy: exit\n");
19085 }
19086 
19087 
19088 /*
19089  *    Function: sd_pkt_status_reservation_conflict
19090  *
19091  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19092  *		command status.
19093  *
19094  *     Context: May be called from interrupt context
19095  */
19096 
19097 static void
19098 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19099 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19100 {
19101 	ASSERT(un != NULL);
19102 	ASSERT(mutex_owned(SD_MUTEX(un)));
19103 	ASSERT(bp != NULL);
19104 	ASSERT(xp != NULL);
19105 	ASSERT(pktp != NULL);
19106 
19107 	/*
19108 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19109 	 * conflict could be due to various reasons like incorrect keys, not
19110 	 * registered or not reserved etc. So, we return EACCES to the caller.
19111 	 */
19112 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19113 		int cmd = SD_GET_PKT_OPCODE(pktp);
19114 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19115 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19116 			sd_return_failed_command(un, bp, EACCES);
19117 			return;
19118 		}
19119 	}
19120 
19121 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19122 
19123 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19124 		if (sd_failfast_enable != 0) {
19125 			/* By definition, we must panic here.... */
19126 			sd_panic_for_res_conflict(un);
19127 			/*NOTREACHED*/
19128 		}
19129 		SD_ERROR(SD_LOG_IO, un,
19130 		    "sd_handle_resv_conflict: Disk Reserved\n");
19131 		sd_return_failed_command(un, bp, EACCES);
19132 		return;
19133 	}
19134 
19135 	/*
19136 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19137 	 * property is set (default is 1). Retries will not succeed
19138 	 * on a disk reserved by another initiator. HA systems
19139 	 * may reset this via sd.conf to avoid these retries.
19140 	 *
19141 	 * Note: The legacy return code for this failure is EIO, however EACCES
19142 	 * seems more appropriate for a reservation conflict.
19143 	 */
19144 	if (sd_retry_on_reservation_conflict == 0) {
19145 		SD_ERROR(SD_LOG_IO, un,
19146 		    "sd_handle_resv_conflict: Device Reserved\n");
19147 		sd_return_failed_command(un, bp, EIO);
19148 		return;
19149 	}
19150 
19151 	/*
19152 	 * Retry the command if we can.
19153 	 *
19154 	 * Note: The legacy return code for this failure is EIO, however EACCES
19155 	 * seems more appropriate for a reservation conflict.
19156 	 */
19157 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19158 	    (clock_t)2, NULL);
19159 }
19160 
19161 
19162 
19163 /*
19164  *    Function: sd_pkt_status_qfull
19165  *
19166  * Description: Handle a QUEUE FULL condition from the target.  This can
19167  *		occur if the HBA does not handle the queue full condition.
19168  *		(Basically this means third-party HBAs as Sun HBAs will
19169  *		handle the queue full condition.)  Note that if there are
19170  *		some commands already in the transport, then the queue full
19171  *		has occurred because the queue for this nexus is actually
19172  *		full. If there are no commands in the transport, then the
19173  *		queue full is resulting from some other initiator or lun
19174  *		consuming all the resources at the target.
19175  *
19176  *     Context: May be called from interrupt context
19177  */
19178 
19179 static void
19180 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19181 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19182 {
19183 	ASSERT(un != NULL);
19184 	ASSERT(mutex_owned(SD_MUTEX(un)));
19185 	ASSERT(bp != NULL);
19186 	ASSERT(xp != NULL);
19187 	ASSERT(pktp != NULL);
19188 
19189 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19190 	    "sd_pkt_status_qfull: entry\n");
19191 
19192 	/*
19193 	 * Just lower the QFULL throttle and retry the command.  Note that
19194 	 * we do not limit the number of retries here.
19195 	 */
19196 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19197 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19198 	    SD_RESTART_TIMEOUT, NULL);
19199 
19200 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19201 	    "sd_pkt_status_qfull: exit\n");
19202 }
19203 
19204 
19205 /*
19206  *    Function: sd_reset_target
19207  *
19208  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19209  *		RESET_TARGET, or RESET_ALL.
19210  *
19211  *     Context: May be called under interrupt context.
19212  */
19213 
19214 static void
19215 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19216 {
19217 	int rval = 0;
19218 
19219 	ASSERT(un != NULL);
19220 	ASSERT(mutex_owned(SD_MUTEX(un)));
19221 	ASSERT(pktp != NULL);
19222 
19223 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19224 
19225 	/*
19226 	 * No need to reset if the transport layer has already done so.
19227 	 */
19228 	if ((pktp->pkt_statistics &
19229 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19230 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19231 		    "sd_reset_target: no reset\n");
19232 		return;
19233 	}
19234 
19235 	mutex_exit(SD_MUTEX(un));
19236 
19237 	if (un->un_f_allow_bus_device_reset == TRUE) {
19238 		if (un->un_f_lun_reset_enabled == TRUE) {
19239 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19240 			    "sd_reset_target: RESET_LUN\n");
19241 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19242 		}
19243 		if (rval == 0) {
19244 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19245 			    "sd_reset_target: RESET_TARGET\n");
19246 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19247 		}
19248 	}
19249 
19250 	if (rval == 0) {
19251 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19252 		    "sd_reset_target: RESET_ALL\n");
19253 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19254 	}
19255 
19256 	mutex_enter(SD_MUTEX(un));
19257 
19258 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19259 }
19260 
19261 
19262 /*
19263  *    Function: sd_media_change_task
19264  *
19265  * Description: Recovery action for CDROM to become available.
19266  *
19267  *     Context: Executes in a taskq() thread context
19268  */
19269 
19270 static void
19271 sd_media_change_task(void *arg)
19272 {
19273 	struct	scsi_pkt	*pktp = arg;
19274 	struct	sd_lun		*un;
19275 	struct	buf		*bp;
19276 	struct	sd_xbuf		*xp;
19277 	int	err		= 0;
19278 	int	retry_count	= 0;
19279 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19280 	struct	sd_sense_info	si;
19281 
19282 	ASSERT(pktp != NULL);
19283 	bp = (struct buf *)pktp->pkt_private;
19284 	ASSERT(bp != NULL);
19285 	xp = SD_GET_XBUF(bp);
19286 	ASSERT(xp != NULL);
19287 	un = SD_GET_UN(bp);
19288 	ASSERT(un != NULL);
19289 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19290 	ASSERT(un->un_f_monitor_media_state);
19291 
19292 	si.ssi_severity = SCSI_ERR_INFO;
19293 	si.ssi_pfa_flag = FALSE;
19294 
19295 	/*
19296 	 * When a reset is issued on a CDROM, it takes a long time to
19297 	 * recover. First few attempts to read capacity and other things
19298 	 * related to handling unit attention fail (with a ASC 0x4 and
19299 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19300 	 * to limit the retries in other cases of genuine failures like
19301 	 * no media in drive.
19302 	 */
19303 	while (retry_count++ < retry_limit) {
19304 		if ((err = sd_handle_mchange(un)) == 0) {
19305 			break;
19306 		}
19307 		if (err == EAGAIN) {
19308 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19309 		}
19310 		/* Sleep for 0.5 sec. & try again */
19311 		delay(drv_usectohz(500000));
19312 	}
19313 
19314 	/*
19315 	 * Dispatch (retry or fail) the original command here,
19316 	 * along with appropriate console messages....
19317 	 *
19318 	 * Must grab the mutex before calling sd_retry_command,
19319 	 * sd_print_sense_msg and sd_return_failed_command.
19320 	 */
19321 	mutex_enter(SD_MUTEX(un));
19322 	if (err != SD_CMD_SUCCESS) {
19323 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19324 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19325 		si.ssi_severity = SCSI_ERR_FATAL;
19326 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19327 		sd_return_failed_command(un, bp, EIO);
19328 	} else {
19329 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19330 		    &si, EIO, (clock_t)0, NULL);
19331 	}
19332 	mutex_exit(SD_MUTEX(un));
19333 }
19334 
19335 
19336 
19337 /*
19338  *    Function: sd_handle_mchange
19339  *
19340  * Description: Perform geometry validation & other recovery when CDROM
19341  *		has been removed from drive.
19342  *
19343  * Return Code: 0 for success
19344  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19345  *		sd_send_scsi_READ_CAPACITY()
19346  *
19347  *     Context: Executes in a taskq() thread context
19348  */
19349 
19350 static int
19351 sd_handle_mchange(struct sd_lun *un)
19352 {
19353 	uint64_t	capacity;
19354 	uint32_t	lbasize;
19355 	int		rval;
19356 
19357 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19358 	ASSERT(un->un_f_monitor_media_state);
19359 
19360 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
19361 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
19362 		return (rval);
19363 	}
19364 
19365 	mutex_enter(SD_MUTEX(un));
19366 	sd_update_block_info(un, lbasize, capacity);
19367 
19368 	if (un->un_errstats != NULL) {
19369 		struct	sd_errstats *stp =
19370 		    (struct sd_errstats *)un->un_errstats->ks_data;
19371 		stp->sd_capacity.value.ui64 = (uint64_t)
19372 		    ((uint64_t)un->un_blockcount *
19373 		    (uint64_t)un->un_tgt_blocksize);
19374 	}
19375 
19376 	/*
19377 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19378 	 * valid geometry.
19379 	 */
19380 	un->un_f_geometry_is_valid = FALSE;
19381 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19382 	if (un->un_f_geometry_is_valid == FALSE) {
19383 		mutex_exit(SD_MUTEX(un));
19384 		return (EIO);
19385 	}
19386 
19387 	mutex_exit(SD_MUTEX(un));
19388 
19389 	/*
19390 	 * Try to lock the door
19391 	 */
19392 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19393 	    SD_PATH_DIRECT_PRIORITY));
19394 }
19395 
19396 
19397 /*
19398  *    Function: sd_send_scsi_DOORLOCK
19399  *
19400  * Description: Issue the scsi DOOR LOCK command
19401  *
19402  *   Arguments: un    - pointer to driver soft state (unit) structure for
19403  *			this target.
19404  *		flag  - SD_REMOVAL_ALLOW
19405  *			SD_REMOVAL_PREVENT
19406  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19407  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19408  *			to use the USCSI "direct" chain and bypass the normal
19409  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19410  *			command is issued as part of an error recovery action.
19411  *
19412  * Return Code: 0   - Success
19413  *		errno return code from sd_send_scsi_cmd()
19414  *
19415  *     Context: Can sleep.
19416  */
19417 
19418 static int
19419 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19420 {
19421 	union scsi_cdb		cdb;
19422 	struct uscsi_cmd	ucmd_buf;
19423 	struct scsi_extended_sense	sense_buf;
19424 	int			status;
19425 
19426 	ASSERT(un != NULL);
19427 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19428 
19429 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19430 
19431 	/* already determined doorlock is not supported, fake success */
19432 	if (un->un_f_doorlock_supported == FALSE) {
19433 		return (0);
19434 	}
19435 
19436 	bzero(&cdb, sizeof (cdb));
19437 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19438 
19439 	cdb.scc_cmd = SCMD_DOORLOCK;
19440 	cdb.cdb_opaque[4] = (uchar_t)flag;
19441 
19442 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19443 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19444 	ucmd_buf.uscsi_bufaddr	= NULL;
19445 	ucmd_buf.uscsi_buflen	= 0;
19446 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19447 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19448 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19449 	ucmd_buf.uscsi_timeout	= 15;
19450 
19451 	SD_TRACE(SD_LOG_IO, un,
19452 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19453 
19454 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19455 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19456 
19457 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19458 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19459 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19460 		/* fake success and skip subsequent doorlock commands */
19461 		un->un_f_doorlock_supported = FALSE;
19462 		return (0);
19463 	}
19464 
19465 	return (status);
19466 }
19467 
19468 /*
19469  *    Function: sd_send_scsi_READ_CAPACITY
19470  *
19471  * Description: This routine uses the scsi READ CAPACITY command to determine
19472  *		the device capacity in number of blocks and the device native
19473  *		block size. If this function returns a failure, then the
19474  *		values in *capp and *lbap are undefined.  If the capacity
19475  *		returned is 0xffffffff then the lun is too large for a
19476  *		normal READ CAPACITY command and the results of a
19477  *		READ CAPACITY 16 will be used instead.
19478  *
19479  *   Arguments: un   - ptr to soft state struct for the target
19480  *		capp - ptr to unsigned 64-bit variable to receive the
19481  *			capacity value from the command.
19482  *		lbap - ptr to unsigned 32-bit varaible to receive the
19483  *			block size value from the command
19484  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19485  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19486  *			to use the USCSI "direct" chain and bypass the normal
19487  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19488  *			command is issued as part of an error recovery action.
19489  *
19490  * Return Code: 0   - Success
19491  *		EIO - IO error
19492  *		EACCES - Reservation conflict detected
19493  *		EAGAIN - Device is becoming ready
19494  *		errno return code from sd_send_scsi_cmd()
19495  *
19496  *     Context: Can sleep.  Blocks until command completes.
19497  */
19498 
19499 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19500 
19501 static int
19502 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19503 	int path_flag)
19504 {
19505 	struct	scsi_extended_sense	sense_buf;
19506 	struct	uscsi_cmd	ucmd_buf;
19507 	union	scsi_cdb	cdb;
19508 	uint32_t		*capacity_buf;
19509 	uint64_t		capacity;
19510 	uint32_t		lbasize;
19511 	int			status;
19512 
19513 	ASSERT(un != NULL);
19514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19515 	ASSERT(capp != NULL);
19516 	ASSERT(lbap != NULL);
19517 
19518 	SD_TRACE(SD_LOG_IO, un,
19519 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19520 
19521 	/*
19522 	 * First send a READ_CAPACITY command to the target.
19523 	 * (This command is mandatory under SCSI-2.)
19524 	 *
19525 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19526 	 * Medium Indicator bit is cleared.  The address field must be
19527 	 * zero if the PMI bit is zero.
19528 	 */
19529 	bzero(&cdb, sizeof (cdb));
19530 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19531 
19532 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19533 
19534 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19535 
19536 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19537 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19538 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19539 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19540 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19541 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19542 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19543 	ucmd_buf.uscsi_timeout	= 60;
19544 
19545 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19546 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19547 
19548 	switch (status) {
19549 	case 0:
19550 		/* Return failure if we did not get valid capacity data. */
19551 		if (ucmd_buf.uscsi_resid != 0) {
19552 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19553 			return (EIO);
19554 		}
19555 
19556 		/*
19557 		 * Read capacity and block size from the READ CAPACITY 10 data.
19558 		 * This data may be adjusted later due to device specific
19559 		 * issues.
19560 		 *
19561 		 * According to the SCSI spec, the READ CAPACITY 10
19562 		 * command returns the following:
19563 		 *
19564 		 *  bytes 0-3: Maximum logical block address available.
19565 		 *		(MSB in byte:0 & LSB in byte:3)
19566 		 *
19567 		 *  bytes 4-7: Block length in bytes
19568 		 *		(MSB in byte:4 & LSB in byte:7)
19569 		 *
19570 		 */
19571 		capacity = BE_32(capacity_buf[0]);
19572 		lbasize = BE_32(capacity_buf[1]);
19573 
19574 		/*
19575 		 * Done with capacity_buf
19576 		 */
19577 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19578 
19579 		/*
19580 		 * if the reported capacity is set to all 0xf's, then
19581 		 * this disk is too large and requires SBC-2 commands.
19582 		 * Reissue the request using READ CAPACITY 16.
19583 		 */
19584 		if (capacity == 0xffffffff) {
19585 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19586 			    &lbasize, path_flag);
19587 			if (status != 0) {
19588 				return (status);
19589 			}
19590 		}
19591 		break;	/* Success! */
19592 	case EIO:
19593 		switch (ucmd_buf.uscsi_status) {
19594 		case STATUS_RESERVATION_CONFLICT:
19595 			status = EACCES;
19596 			break;
19597 		case STATUS_CHECK:
19598 			/*
19599 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19600 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19601 			 */
19602 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19603 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19604 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19605 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19606 				return (EAGAIN);
19607 			}
19608 			break;
19609 		default:
19610 			break;
19611 		}
19612 		/* FALLTHRU */
19613 	default:
19614 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19615 		return (status);
19616 	}
19617 
19618 	/*
19619 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19620 	 * (2352 and 0 are common) so for these devices always force the value
19621 	 * to 2048 as required by the ATAPI specs.
19622 	 */
19623 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19624 		lbasize = 2048;
19625 	}
19626 
19627 	/*
19628 	 * Get the maximum LBA value from the READ CAPACITY data.
19629 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19630 	 * was cleared when issuing the command. This means that the LBA
19631 	 * returned from the device is the LBA of the last logical block
19632 	 * on the logical unit.  The actual logical block count will be
19633 	 * this value plus one.
19634 	 *
19635 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19636 	 * so scale the capacity value to reflect this.
19637 	 */
19638 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19639 
19640 #if defined(__i386) || defined(__amd64)
19641 	/*
19642 	 * Refer to comments related to off-by-1 at the
19643 	 * header of this file.
19644 	 * Treat 1TB disk as (1T - 512)B.
19645 	 */
19646 	if (un->un_f_capacity_adjusted == 1)
19647 	    capacity = DK_MAX_BLOCKS;
19648 #endif
19649 
19650 	/*
19651 	 * Copy the values from the READ CAPACITY command into the space
19652 	 * provided by the caller.
19653 	 */
19654 	*capp = capacity;
19655 	*lbap = lbasize;
19656 
19657 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19658 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19659 
19660 	/*
19661 	 * Both the lbasize and capacity from the device must be nonzero,
19662 	 * otherwise we assume that the values are not valid and return
19663 	 * failure to the caller. (4203735)
19664 	 */
19665 	if ((capacity == 0) || (lbasize == 0)) {
19666 		return (EIO);
19667 	}
19668 
19669 	return (0);
19670 }
19671 
19672 /*
19673  *    Function: sd_send_scsi_READ_CAPACITY_16
19674  *
19675  * Description: This routine uses the scsi READ CAPACITY 16 command to
19676  *		determine the device capacity in number of blocks and the
19677  *		device native block size.  If this function returns a failure,
19678  *		then the values in *capp and *lbap are undefined.
19679  *		This routine should always be called by
19680  *		sd_send_scsi_READ_CAPACITY which will appy any device
19681  *		specific adjustments to capacity and lbasize.
19682  *
19683  *   Arguments: un   - ptr to soft state struct for the target
19684  *		capp - ptr to unsigned 64-bit variable to receive the
19685  *			capacity value from the command.
19686  *		lbap - ptr to unsigned 32-bit varaible to receive the
19687  *			block size value from the command
19688  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19689  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19690  *			to use the USCSI "direct" chain and bypass the normal
19691  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19692  *			this command is issued as part of an error recovery
19693  *			action.
19694  *
19695  * Return Code: 0   - Success
19696  *		EIO - IO error
19697  *		EACCES - Reservation conflict detected
19698  *		EAGAIN - Device is becoming ready
19699  *		errno return code from sd_send_scsi_cmd()
19700  *
19701  *     Context: Can sleep.  Blocks until command completes.
19702  */
19703 
19704 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19705 
19706 static int
19707 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19708 	uint32_t *lbap, int path_flag)
19709 {
19710 	struct	scsi_extended_sense	sense_buf;
19711 	struct	uscsi_cmd	ucmd_buf;
19712 	union	scsi_cdb	cdb;
19713 	uint64_t		*capacity16_buf;
19714 	uint64_t		capacity;
19715 	uint32_t		lbasize;
19716 	int			status;
19717 
19718 	ASSERT(un != NULL);
19719 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19720 	ASSERT(capp != NULL);
19721 	ASSERT(lbap != NULL);
19722 
19723 	SD_TRACE(SD_LOG_IO, un,
19724 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19725 
19726 	/*
19727 	 * First send a READ_CAPACITY_16 command to the target.
19728 	 *
19729 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19730 	 * Medium Indicator bit is cleared.  The address field must be
19731 	 * zero if the PMI bit is zero.
19732 	 */
19733 	bzero(&cdb, sizeof (cdb));
19734 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19735 
19736 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19737 
19738 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19739 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19740 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19741 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19742 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19743 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19744 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19745 	ucmd_buf.uscsi_timeout	= 60;
19746 
19747 	/*
19748 	 * Read Capacity (16) is a Service Action In command.  One
19749 	 * command byte (0x9E) is overloaded for multiple operations,
19750 	 * with the second CDB byte specifying the desired operation
19751 	 */
19752 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19753 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19754 
19755 	/*
19756 	 * Fill in allocation length field
19757 	 */
19758 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19759 
19760 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19761 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19762 
19763 	switch (status) {
19764 	case 0:
19765 		/* Return failure if we did not get valid capacity data. */
19766 		if (ucmd_buf.uscsi_resid > 20) {
19767 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19768 			return (EIO);
19769 		}
19770 
19771 		/*
19772 		 * Read capacity and block size from the READ CAPACITY 10 data.
19773 		 * This data may be adjusted later due to device specific
19774 		 * issues.
19775 		 *
19776 		 * According to the SCSI spec, the READ CAPACITY 10
19777 		 * command returns the following:
19778 		 *
19779 		 *  bytes 0-7: Maximum logical block address available.
19780 		 *		(MSB in byte:0 & LSB in byte:7)
19781 		 *
19782 		 *  bytes 8-11: Block length in bytes
19783 		 *		(MSB in byte:8 & LSB in byte:11)
19784 		 *
19785 		 */
19786 		capacity = BE_64(capacity16_buf[0]);
19787 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19788 
19789 		/*
19790 		 * Done with capacity16_buf
19791 		 */
19792 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19793 
19794 		/*
19795 		 * if the reported capacity is set to all 0xf's, then
19796 		 * this disk is too large.  This could only happen with
19797 		 * a device that supports LBAs larger than 64 bits which
19798 		 * are not defined by any current T10 standards.
19799 		 */
19800 		if (capacity == 0xffffffffffffffff) {
19801 			return (EIO);
19802 		}
19803 		break;	/* Success! */
19804 	case EIO:
19805 		switch (ucmd_buf.uscsi_status) {
19806 		case STATUS_RESERVATION_CONFLICT:
19807 			status = EACCES;
19808 			break;
19809 		case STATUS_CHECK:
19810 			/*
19811 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19812 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19813 			 */
19814 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19815 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19816 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19817 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19818 				return (EAGAIN);
19819 			}
19820 			break;
19821 		default:
19822 			break;
19823 		}
19824 		/* FALLTHRU */
19825 	default:
19826 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19827 		return (status);
19828 	}
19829 
19830 	*capp = capacity;
19831 	*lbap = lbasize;
19832 
19833 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19834 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19835 
19836 	return (0);
19837 }
19838 
19839 
19840 /*
19841  *    Function: sd_send_scsi_START_STOP_UNIT
19842  *
19843  * Description: Issue a scsi START STOP UNIT command to the target.
19844  *
19845  *   Arguments: un    - pointer to driver soft state (unit) structure for
19846  *			this target.
19847  *		flag  - SD_TARGET_START
19848  *			SD_TARGET_STOP
19849  *			SD_TARGET_EJECT
19850  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19851  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19852  *			to use the USCSI "direct" chain and bypass the normal
19853  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19854  *			command is issued as part of an error recovery action.
19855  *
19856  * Return Code: 0   - Success
19857  *		EIO - IO error
19858  *		EACCES - Reservation conflict detected
19859  *		ENXIO  - Not Ready, medium not present
19860  *		errno return code from sd_send_scsi_cmd()
19861  *
19862  *     Context: Can sleep.
19863  */
19864 
19865 static int
19866 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19867 {
19868 	struct	scsi_extended_sense	sense_buf;
19869 	union scsi_cdb		cdb;
19870 	struct uscsi_cmd	ucmd_buf;
19871 	int			status;
19872 
19873 	ASSERT(un != NULL);
19874 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19875 
19876 	SD_TRACE(SD_LOG_IO, un,
19877 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19878 
19879 	if (un->un_f_check_start_stop &&
19880 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19881 	    (un->un_f_start_stop_supported != TRUE)) {
19882 		return (0);
19883 	}
19884 
19885 	bzero(&cdb, sizeof (cdb));
19886 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19887 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19888 
19889 	cdb.scc_cmd = SCMD_START_STOP;
19890 	cdb.cdb_opaque[4] = (uchar_t)flag;
19891 
19892 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19893 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19894 	ucmd_buf.uscsi_bufaddr	= NULL;
19895 	ucmd_buf.uscsi_buflen	= 0;
19896 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19897 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19898 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19899 	ucmd_buf.uscsi_timeout	= 200;
19900 
19901 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19902 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19903 
19904 	switch (status) {
19905 	case 0:
19906 		break;	/* Success! */
19907 	case EIO:
19908 		switch (ucmd_buf.uscsi_status) {
19909 		case STATUS_RESERVATION_CONFLICT:
19910 			status = EACCES;
19911 			break;
19912 		case STATUS_CHECK:
19913 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19914 				switch (scsi_sense_key(
19915 						(uint8_t *)&sense_buf)) {
19916 				case KEY_ILLEGAL_REQUEST:
19917 					status = ENOTSUP;
19918 					break;
19919 				case KEY_NOT_READY:
19920 					if (scsi_sense_asc(
19921 						    (uint8_t *)&sense_buf)
19922 					    == 0x3A) {
19923 						status = ENXIO;
19924 					}
19925 					break;
19926 				default:
19927 					break;
19928 				}
19929 			}
19930 			break;
19931 		default:
19932 			break;
19933 		}
19934 		break;
19935 	default:
19936 		break;
19937 	}
19938 
19939 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19940 
19941 	return (status);
19942 }
19943 
19944 
19945 /*
19946  *    Function: sd_start_stop_unit_callback
19947  *
19948  * Description: timeout(9F) callback to begin recovery process for a
19949  *		device that has spun down.
19950  *
19951  *   Arguments: arg - pointer to associated softstate struct.
19952  *
19953  *     Context: Executes in a timeout(9F) thread context
19954  */
19955 
19956 static void
19957 sd_start_stop_unit_callback(void *arg)
19958 {
19959 	struct sd_lun	*un = arg;
19960 	ASSERT(un != NULL);
19961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19962 
19963 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19964 
19965 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19966 }
19967 
19968 
19969 /*
19970  *    Function: sd_start_stop_unit_task
19971  *
19972  * Description: Recovery procedure when a drive is spun down.
19973  *
19974  *   Arguments: arg - pointer to associated softstate struct.
19975  *
19976  *     Context: Executes in a taskq() thread context
19977  */
19978 
19979 static void
19980 sd_start_stop_unit_task(void *arg)
19981 {
19982 	struct sd_lun	*un = arg;
19983 
19984 	ASSERT(un != NULL);
19985 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19986 
19987 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19988 
19989 	/*
19990 	 * Some unformatted drives report not ready error, no need to
19991 	 * restart if format has been initiated.
19992 	 */
19993 	mutex_enter(SD_MUTEX(un));
19994 	if (un->un_f_format_in_progress == TRUE) {
19995 		mutex_exit(SD_MUTEX(un));
19996 		return;
19997 	}
19998 	mutex_exit(SD_MUTEX(un));
19999 
20000 	/*
20001 	 * When a START STOP command is issued from here, it is part of a
20002 	 * failure recovery operation and must be issued before any other
20003 	 * commands, including any pending retries. Thus it must be sent
20004 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20005 	 * succeeds or not, we will start I/O after the attempt.
20006 	 */
20007 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20008 	    SD_PATH_DIRECT_PRIORITY);
20009 
20010 	/*
20011 	 * The above call blocks until the START_STOP_UNIT command completes.
20012 	 * Now that it has completed, we must re-try the original IO that
20013 	 * received the NOT READY condition in the first place. There are
20014 	 * three possible conditions here:
20015 	 *
20016 	 *  (1) The original IO is on un_retry_bp.
20017 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20018 	 *	is NULL.
20019 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20020 	 *	points to some other, unrelated bp.
20021 	 *
20022 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20023 	 * as the argument. If un_retry_bp is NULL, this will initiate
20024 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20025 	 * then this will process the bp on un_retry_bp. That may or may not
20026 	 * be the original IO, but that does not matter: the important thing
20027 	 * is to keep the IO processing going at this point.
20028 	 *
20029 	 * Note: This is a very specific error recovery sequence associated
20030 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20031 	 * serialize the I/O with completion of the spin-up.
20032 	 */
20033 	mutex_enter(SD_MUTEX(un));
20034 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20035 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20036 	    un, un->un_retry_bp);
20037 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20038 	sd_start_cmds(un, un->un_retry_bp);
20039 	mutex_exit(SD_MUTEX(un));
20040 
20041 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20042 }
20043 
20044 
20045 /*
20046  *    Function: sd_send_scsi_INQUIRY
20047  *
20048  * Description: Issue the scsi INQUIRY command.
20049  *
20050  *   Arguments: un
20051  *		bufaddr
20052  *		buflen
20053  *		evpd
20054  *		page_code
20055  *		page_length
20056  *
20057  * Return Code: 0   - Success
20058  *		errno return code from sd_send_scsi_cmd()
20059  *
20060  *     Context: Can sleep. Does not return until command is completed.
20061  */
20062 
20063 static int
20064 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
20065 	uchar_t evpd, uchar_t page_code, size_t *residp)
20066 {
20067 	union scsi_cdb		cdb;
20068 	struct uscsi_cmd	ucmd_buf;
20069 	int			status;
20070 
20071 	ASSERT(un != NULL);
20072 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20073 	ASSERT(bufaddr != NULL);
20074 
20075 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20076 
20077 	bzero(&cdb, sizeof (cdb));
20078 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20079 	bzero(bufaddr, buflen);
20080 
20081 	cdb.scc_cmd = SCMD_INQUIRY;
20082 	cdb.cdb_opaque[1] = evpd;
20083 	cdb.cdb_opaque[2] = page_code;
20084 	FORMG0COUNT(&cdb, buflen);
20085 
20086 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20087 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20088 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20089 	ucmd_buf.uscsi_buflen	= buflen;
20090 	ucmd_buf.uscsi_rqbuf	= NULL;
20091 	ucmd_buf.uscsi_rqlen	= 0;
20092 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20093 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20094 
20095 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20096 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
20097 
20098 	if ((status == 0) && (residp != NULL)) {
20099 		*residp = ucmd_buf.uscsi_resid;
20100 	}
20101 
20102 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20103 
20104 	return (status);
20105 }
20106 
20107 
20108 /*
20109  *    Function: sd_send_scsi_TEST_UNIT_READY
20110  *
20111  * Description: Issue the scsi TEST UNIT READY command.
20112  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20113  *		prevent retrying failed commands. Use this when the intent
20114  *		is either to check for device readiness, to clear a Unit
20115  *		Attention, or to clear any outstanding sense data.
20116  *		However under specific conditions the expected behavior
20117  *		is for retries to bring a device ready, so use the flag
20118  *		with caution.
20119  *
20120  *   Arguments: un
20121  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20122  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20123  *			0: dont check for media present, do retries on cmd.
20124  *
20125  * Return Code: 0   - Success
20126  *		EIO - IO error
20127  *		EACCES - Reservation conflict detected
20128  *		ENXIO  - Not Ready, medium not present
20129  *		errno return code from sd_send_scsi_cmd()
20130  *
20131  *     Context: Can sleep. Does not return until command is completed.
20132  */
20133 
20134 static int
20135 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
20136 {
20137 	struct	scsi_extended_sense	sense_buf;
20138 	union scsi_cdb		cdb;
20139 	struct uscsi_cmd	ucmd_buf;
20140 	int			status;
20141 
20142 	ASSERT(un != NULL);
20143 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20144 
20145 	SD_TRACE(SD_LOG_IO, un,
20146 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20147 
20148 	/*
20149 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20150 	 * timeouts when they receive a TUR and the queue is not empty. Check
20151 	 * the configuration flag set during attach (indicating the drive has
20152 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20153 	 * TUR. If there are
20154 	 * pending commands return success, this is a bit arbitrary but is ok
20155 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20156 	 * configurations.
20157 	 */
20158 	if (un->un_f_cfg_tur_check == TRUE) {
20159 		mutex_enter(SD_MUTEX(un));
20160 		if (un->un_ncmds_in_transport != 0) {
20161 			mutex_exit(SD_MUTEX(un));
20162 			return (0);
20163 		}
20164 		mutex_exit(SD_MUTEX(un));
20165 	}
20166 
20167 	bzero(&cdb, sizeof (cdb));
20168 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20169 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20170 
20171 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20172 
20173 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20174 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20175 	ucmd_buf.uscsi_bufaddr	= NULL;
20176 	ucmd_buf.uscsi_buflen	= 0;
20177 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20178 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20179 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20180 
20181 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20182 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20183 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20184 	}
20185 	ucmd_buf.uscsi_timeout	= 60;
20186 
20187 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20188 	    UIO_SYSSPACE, UIO_SYSSPACE,
20189 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
20190 
20191 	switch (status) {
20192 	case 0:
20193 		break;	/* Success! */
20194 	case EIO:
20195 		switch (ucmd_buf.uscsi_status) {
20196 		case STATUS_RESERVATION_CONFLICT:
20197 			status = EACCES;
20198 			break;
20199 		case STATUS_CHECK:
20200 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20201 				break;
20202 			}
20203 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20204 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20205 				KEY_NOT_READY) &&
20206 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20207 				status = ENXIO;
20208 			}
20209 			break;
20210 		default:
20211 			break;
20212 		}
20213 		break;
20214 	default:
20215 		break;
20216 	}
20217 
20218 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20219 
20220 	return (status);
20221 }
20222 
20223 
20224 /*
20225  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20226  *
20227  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20228  *
20229  *   Arguments: un
20230  *
20231  * Return Code: 0   - Success
20232  *		EACCES
20233  *		ENOTSUP
20234  *		errno return code from sd_send_scsi_cmd()
20235  *
20236  *     Context: Can sleep. Does not return until command is completed.
20237  */
20238 
20239 static int
20240 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
20241 	uint16_t data_len, uchar_t *data_bufp)
20242 {
20243 	struct scsi_extended_sense	sense_buf;
20244 	union scsi_cdb		cdb;
20245 	struct uscsi_cmd	ucmd_buf;
20246 	int			status;
20247 	int			no_caller_buf = FALSE;
20248 
20249 	ASSERT(un != NULL);
20250 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20251 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20252 
20253 	SD_TRACE(SD_LOG_IO, un,
20254 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20255 
20256 	bzero(&cdb, sizeof (cdb));
20257 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20258 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20259 	if (data_bufp == NULL) {
20260 		/* Allocate a default buf if the caller did not give one */
20261 		ASSERT(data_len == 0);
20262 		data_len  = MHIOC_RESV_KEY_SIZE;
20263 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20264 		no_caller_buf = TRUE;
20265 	}
20266 
20267 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20268 	cdb.cdb_opaque[1] = usr_cmd;
20269 	FORMG1COUNT(&cdb, data_len);
20270 
20271 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20272 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20273 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20274 	ucmd_buf.uscsi_buflen	= data_len;
20275 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20276 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20277 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20278 	ucmd_buf.uscsi_timeout	= 60;
20279 
20280 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20281 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20282 
20283 	switch (status) {
20284 	case 0:
20285 		break;	/* Success! */
20286 	case EIO:
20287 		switch (ucmd_buf.uscsi_status) {
20288 		case STATUS_RESERVATION_CONFLICT:
20289 			status = EACCES;
20290 			break;
20291 		case STATUS_CHECK:
20292 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20293 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20294 				KEY_ILLEGAL_REQUEST)) {
20295 				status = ENOTSUP;
20296 			}
20297 			break;
20298 		default:
20299 			break;
20300 		}
20301 		break;
20302 	default:
20303 		break;
20304 	}
20305 
20306 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20307 
20308 	if (no_caller_buf == TRUE) {
20309 		kmem_free(data_bufp, data_len);
20310 	}
20311 
20312 	return (status);
20313 }
20314 
20315 
20316 /*
20317  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20318  *
20319  * Description: This routine is the driver entry point for handling CD-ROM
20320  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20321  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20322  *		device.
20323  *
20324  *   Arguments: un  -   Pointer to soft state struct for the target.
20325  *		usr_cmd SCSI-3 reservation facility command (one of
20326  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20327  *			SD_SCSI3_PREEMPTANDABORT)
20328  *		usr_bufp - user provided pointer register, reserve descriptor or
20329  *			preempt and abort structure (mhioc_register_t,
20330  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20331  *
20332  * Return Code: 0   - Success
20333  *		EACCES
20334  *		ENOTSUP
20335  *		errno return code from sd_send_scsi_cmd()
20336  *
20337  *     Context: Can sleep. Does not return until command is completed.
20338  */
20339 
20340 static int
20341 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
20342 	uchar_t	*usr_bufp)
20343 {
20344 	struct scsi_extended_sense	sense_buf;
20345 	union scsi_cdb		cdb;
20346 	struct uscsi_cmd	ucmd_buf;
20347 	int			status;
20348 	uchar_t			data_len = sizeof (sd_prout_t);
20349 	sd_prout_t		*prp;
20350 
20351 	ASSERT(un != NULL);
20352 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20353 	ASSERT(data_len == 24);	/* required by scsi spec */
20354 
20355 	SD_TRACE(SD_LOG_IO, un,
20356 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20357 
20358 	if (usr_bufp == NULL) {
20359 		return (EINVAL);
20360 	}
20361 
20362 	bzero(&cdb, sizeof (cdb));
20363 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20364 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20365 	prp = kmem_zalloc(data_len, KM_SLEEP);
20366 
20367 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20368 	cdb.cdb_opaque[1] = usr_cmd;
20369 	FORMG1COUNT(&cdb, data_len);
20370 
20371 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20372 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20373 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20374 	ucmd_buf.uscsi_buflen	= data_len;
20375 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20376 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20377 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20378 	ucmd_buf.uscsi_timeout	= 60;
20379 
20380 	switch (usr_cmd) {
20381 	case SD_SCSI3_REGISTER: {
20382 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20383 
20384 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20385 		bcopy(ptr->newkey.key, prp->service_key,
20386 		    MHIOC_RESV_KEY_SIZE);
20387 		prp->aptpl = ptr->aptpl;
20388 		break;
20389 	}
20390 	case SD_SCSI3_RESERVE:
20391 	case SD_SCSI3_RELEASE: {
20392 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20393 
20394 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20395 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20396 		cdb.cdb_opaque[2] = ptr->type;
20397 		break;
20398 	}
20399 	case SD_SCSI3_PREEMPTANDABORT: {
20400 		mhioc_preemptandabort_t *ptr =
20401 		    (mhioc_preemptandabort_t *)usr_bufp;
20402 
20403 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20404 		bcopy(ptr->victim_key.key, prp->service_key,
20405 		    MHIOC_RESV_KEY_SIZE);
20406 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20407 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20408 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20409 		break;
20410 	}
20411 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20412 	{
20413 		mhioc_registerandignorekey_t *ptr;
20414 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20415 		bcopy(ptr->newkey.key,
20416 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20417 		prp->aptpl = ptr->aptpl;
20418 		break;
20419 	}
20420 	default:
20421 		ASSERT(FALSE);
20422 		break;
20423 	}
20424 
20425 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20426 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20427 
20428 	switch (status) {
20429 	case 0:
20430 		break;	/* Success! */
20431 	case EIO:
20432 		switch (ucmd_buf.uscsi_status) {
20433 		case STATUS_RESERVATION_CONFLICT:
20434 			status = EACCES;
20435 			break;
20436 		case STATUS_CHECK:
20437 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20438 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20439 				KEY_ILLEGAL_REQUEST)) {
20440 				status = ENOTSUP;
20441 			}
20442 			break;
20443 		default:
20444 			break;
20445 		}
20446 		break;
20447 	default:
20448 		break;
20449 	}
20450 
20451 	kmem_free(prp, data_len);
20452 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20453 	return (status);
20454 }
20455 
20456 
20457 /*
20458  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20459  *
20460  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20461  *
20462  *   Arguments: un - pointer to the target's soft state struct
20463  *
20464  * Return Code: 0 - success
20465  *		errno-type error code
20466  *
20467  *     Context: kernel thread context only.
20468  */
20469 
20470 static int
20471 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20472 {
20473 	struct sd_uscsi_info	*uip;
20474 	struct uscsi_cmd	*uscmd;
20475 	union scsi_cdb		*cdb;
20476 	struct buf		*bp;
20477 	int			rval = 0;
20478 
20479 	SD_TRACE(SD_LOG_IO, un,
20480 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20481 
20482 	ASSERT(un != NULL);
20483 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20484 
20485 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20486 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20487 
20488 	/*
20489 	 * First get some memory for the uscsi_cmd struct and cdb
20490 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20491 	 */
20492 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20493 	uscmd->uscsi_cdblen = CDB_GROUP1;
20494 	uscmd->uscsi_cdb = (caddr_t)cdb;
20495 	uscmd->uscsi_bufaddr = NULL;
20496 	uscmd->uscsi_buflen = 0;
20497 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20498 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20499 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20500 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20501 	uscmd->uscsi_timeout = sd_io_time;
20502 
20503 	/*
20504 	 * Allocate an sd_uscsi_info struct and fill it with the info
20505 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20506 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20507 	 * since we allocate the buf here in this function, we do not
20508 	 * need to preserve the prior contents of b_private.
20509 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20510 	 */
20511 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20512 	uip->ui_flags = SD_PATH_DIRECT;
20513 	uip->ui_cmdp  = uscmd;
20514 
20515 	bp = getrbuf(KM_SLEEP);
20516 	bp->b_private = uip;
20517 
20518 	/*
20519 	 * Setup buffer to carry uscsi request.
20520 	 */
20521 	bp->b_flags  = B_BUSY;
20522 	bp->b_bcount = 0;
20523 	bp->b_blkno  = 0;
20524 
20525 	if (dkc != NULL) {
20526 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20527 		uip->ui_dkc = *dkc;
20528 	}
20529 
20530 	bp->b_edev = SD_GET_DEV(un);
20531 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20532 
20533 	(void) sd_uscsi_strategy(bp);
20534 
20535 	/*
20536 	 * If synchronous request, wait for completion
20537 	 * If async just return and let b_iodone callback
20538 	 * cleanup.
20539 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20540 	 * but it was also incremented in sd_uscsi_strategy(), so
20541 	 * we should be ok.
20542 	 */
20543 	if (dkc == NULL) {
20544 		(void) biowait(bp);
20545 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20546 	}
20547 
20548 	return (rval);
20549 }
20550 
20551 
20552 static int
20553 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20554 {
20555 	struct sd_uscsi_info *uip;
20556 	struct uscsi_cmd *uscmd;
20557 	uint8_t *sense_buf;
20558 	struct sd_lun *un;
20559 	int status;
20560 
20561 	uip = (struct sd_uscsi_info *)(bp->b_private);
20562 	ASSERT(uip != NULL);
20563 
20564 	uscmd = uip->ui_cmdp;
20565 	ASSERT(uscmd != NULL);
20566 
20567 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20568 	ASSERT(sense_buf != NULL);
20569 
20570 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20571 	ASSERT(un != NULL);
20572 
20573 	status = geterror(bp);
20574 	switch (status) {
20575 	case 0:
20576 		break;	/* Success! */
20577 	case EIO:
20578 		switch (uscmd->uscsi_status) {
20579 		case STATUS_RESERVATION_CONFLICT:
20580 			/* Ignore reservation conflict */
20581 			status = 0;
20582 			goto done;
20583 
20584 		case STATUS_CHECK:
20585 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20586 			    (scsi_sense_key(sense_buf) ==
20587 				KEY_ILLEGAL_REQUEST)) {
20588 				/* Ignore Illegal Request error */
20589 				mutex_enter(SD_MUTEX(un));
20590 				un->un_f_sync_cache_supported = FALSE;
20591 				mutex_exit(SD_MUTEX(un));
20592 				status = ENOTSUP;
20593 				goto done;
20594 			}
20595 			break;
20596 		default:
20597 			break;
20598 		}
20599 		/* FALLTHRU */
20600 	default:
20601 		/*
20602 		 * Don't log an error message if this device
20603 		 * has removable media.
20604 		 */
20605 		if (!un->un_f_has_removable_media) {
20606 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20607 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20608 		}
20609 		break;
20610 	}
20611 
20612 done:
20613 	if (uip->ui_dkc.dkc_callback != NULL) {
20614 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20615 	}
20616 
20617 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20618 	freerbuf(bp);
20619 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20620 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20621 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20622 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20623 
20624 	return (status);
20625 }
20626 
20627 
20628 /*
20629  *    Function: sd_send_scsi_GET_CONFIGURATION
20630  *
20631  * Description: Issues the get configuration command to the device.
20632  *		Called from sd_check_for_writable_cd & sd_get_media_info
20633  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20634  *   Arguments: un
20635  *		ucmdbuf
20636  *		rqbuf
20637  *		rqbuflen
20638  *		bufaddr
20639  *		buflen
20640  *
20641  * Return Code: 0   - Success
20642  *		errno return code from sd_send_scsi_cmd()
20643  *
20644  *     Context: Can sleep. Does not return until command is completed.
20645  *
20646  */
20647 
20648 static int
20649 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20650 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20651 {
20652 	char	cdb[CDB_GROUP1];
20653 	int	status;
20654 
20655 	ASSERT(un != NULL);
20656 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20657 	ASSERT(bufaddr != NULL);
20658 	ASSERT(ucmdbuf != NULL);
20659 	ASSERT(rqbuf != NULL);
20660 
20661 	SD_TRACE(SD_LOG_IO, un,
20662 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20663 
20664 	bzero(cdb, sizeof (cdb));
20665 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20666 	bzero(rqbuf, rqbuflen);
20667 	bzero(bufaddr, buflen);
20668 
20669 	/*
20670 	 * Set up cdb field for the get configuration command.
20671 	 */
20672 	cdb[0] = SCMD_GET_CONFIGURATION;
20673 	cdb[1] = 0x02;  /* Requested Type */
20674 	cdb[8] = SD_PROFILE_HEADER_LEN;
20675 	ucmdbuf->uscsi_cdb = cdb;
20676 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20677 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20678 	ucmdbuf->uscsi_buflen = buflen;
20679 	ucmdbuf->uscsi_timeout = sd_io_time;
20680 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20681 	ucmdbuf->uscsi_rqlen = rqbuflen;
20682 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20683 
20684 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20685 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20686 
20687 	switch (status) {
20688 	case 0:
20689 		break;  /* Success! */
20690 	case EIO:
20691 		switch (ucmdbuf->uscsi_status) {
20692 		case STATUS_RESERVATION_CONFLICT:
20693 			status = EACCES;
20694 			break;
20695 		default:
20696 			break;
20697 		}
20698 		break;
20699 	default:
20700 		break;
20701 	}
20702 
20703 	if (status == 0) {
20704 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20705 		    "sd_send_scsi_GET_CONFIGURATION: data",
20706 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20707 	}
20708 
20709 	SD_TRACE(SD_LOG_IO, un,
20710 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20711 
20712 	return (status);
20713 }
20714 
20715 /*
20716  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20717  *
20718  * Description: Issues the get configuration command to the device to
20719  *              retrieve a specfic feature. Called from
20720  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20721  *   Arguments: un
20722  *              ucmdbuf
20723  *              rqbuf
20724  *              rqbuflen
20725  *              bufaddr
20726  *              buflen
20727  *		feature
20728  *
20729  * Return Code: 0   - Success
20730  *              errno return code from sd_send_scsi_cmd()
20731  *
20732  *     Context: Can sleep. Does not return until command is completed.
20733  *
20734  */
20735 static int
20736 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20737 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20738 	uchar_t *bufaddr, uint_t buflen, char feature)
20739 {
20740 	char    cdb[CDB_GROUP1];
20741 	int	status;
20742 
20743 	ASSERT(un != NULL);
20744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20745 	ASSERT(bufaddr != NULL);
20746 	ASSERT(ucmdbuf != NULL);
20747 	ASSERT(rqbuf != NULL);
20748 
20749 	SD_TRACE(SD_LOG_IO, un,
20750 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20751 
20752 	bzero(cdb, sizeof (cdb));
20753 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20754 	bzero(rqbuf, rqbuflen);
20755 	bzero(bufaddr, buflen);
20756 
20757 	/*
20758 	 * Set up cdb field for the get configuration command.
20759 	 */
20760 	cdb[0] = SCMD_GET_CONFIGURATION;
20761 	cdb[1] = 0x02;  /* Requested Type */
20762 	cdb[3] = feature;
20763 	cdb[8] = buflen;
20764 	ucmdbuf->uscsi_cdb = cdb;
20765 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20766 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20767 	ucmdbuf->uscsi_buflen = buflen;
20768 	ucmdbuf->uscsi_timeout = sd_io_time;
20769 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20770 	ucmdbuf->uscsi_rqlen = rqbuflen;
20771 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20772 
20773 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20774 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20775 
20776 	switch (status) {
20777 	case 0:
20778 		break;  /* Success! */
20779 	case EIO:
20780 		switch (ucmdbuf->uscsi_status) {
20781 		case STATUS_RESERVATION_CONFLICT:
20782 			status = EACCES;
20783 			break;
20784 		default:
20785 			break;
20786 		}
20787 		break;
20788 	default:
20789 		break;
20790 	}
20791 
20792 	if (status == 0) {
20793 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20794 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20795 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20796 	}
20797 
20798 	SD_TRACE(SD_LOG_IO, un,
20799 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20800 
20801 	return (status);
20802 }
20803 
20804 
20805 /*
20806  *    Function: sd_send_scsi_MODE_SENSE
20807  *
20808  * Description: Utility function for issuing a scsi MODE SENSE command.
20809  *		Note: This routine uses a consistent implementation for Group0,
20810  *		Group1, and Group2 commands across all platforms. ATAPI devices
20811  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20812  *
20813  *   Arguments: un - pointer to the softstate struct for the target.
20814  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20815  *			  CDB_GROUP[1|2] (10 byte).
20816  *		bufaddr - buffer for page data retrieved from the target.
20817  *		buflen - size of page to be retrieved.
20818  *		page_code - page code of data to be retrieved from the target.
20819  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20820  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20821  *			to use the USCSI "direct" chain and bypass the normal
20822  *			command waitq.
20823  *
20824  * Return Code: 0   - Success
20825  *		errno return code from sd_send_scsi_cmd()
20826  *
20827  *     Context: Can sleep. Does not return until command is completed.
20828  */
20829 
20830 static int
20831 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20832 	size_t buflen,  uchar_t page_code, int path_flag)
20833 {
20834 	struct	scsi_extended_sense	sense_buf;
20835 	union scsi_cdb		cdb;
20836 	struct uscsi_cmd	ucmd_buf;
20837 	int			status;
20838 	int			headlen;
20839 
20840 	ASSERT(un != NULL);
20841 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20842 	ASSERT(bufaddr != NULL);
20843 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20844 	    (cdbsize == CDB_GROUP2));
20845 
20846 	SD_TRACE(SD_LOG_IO, un,
20847 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20848 
20849 	bzero(&cdb, sizeof (cdb));
20850 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20851 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20852 	bzero(bufaddr, buflen);
20853 
20854 	if (cdbsize == CDB_GROUP0) {
20855 		cdb.scc_cmd = SCMD_MODE_SENSE;
20856 		cdb.cdb_opaque[2] = page_code;
20857 		FORMG0COUNT(&cdb, buflen);
20858 		headlen = MODE_HEADER_LENGTH;
20859 	} else {
20860 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20861 		cdb.cdb_opaque[2] = page_code;
20862 		FORMG1COUNT(&cdb, buflen);
20863 		headlen = MODE_HEADER_LENGTH_GRP2;
20864 	}
20865 
20866 	ASSERT(headlen <= buflen);
20867 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20868 
20869 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20870 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20871 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20872 	ucmd_buf.uscsi_buflen	= buflen;
20873 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20874 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20875 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20876 	ucmd_buf.uscsi_timeout	= 60;
20877 
20878 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20879 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20880 
20881 	switch (status) {
20882 	case 0:
20883 		/*
20884 		 * sr_check_wp() uses 0x3f page code and check the header of
20885 		 * mode page to determine if target device is write-protected.
20886 		 * But some USB devices return 0 bytes for 0x3f page code. For
20887 		 * this case, make sure that mode page header is returned at
20888 		 * least.
20889 		 */
20890 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20891 			status = EIO;
20892 		break;	/* Success! */
20893 	case EIO:
20894 		switch (ucmd_buf.uscsi_status) {
20895 		case STATUS_RESERVATION_CONFLICT:
20896 			status = EACCES;
20897 			break;
20898 		default:
20899 			break;
20900 		}
20901 		break;
20902 	default:
20903 		break;
20904 	}
20905 
20906 	if (status == 0) {
20907 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20908 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20909 	}
20910 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20911 
20912 	return (status);
20913 }
20914 
20915 
20916 /*
20917  *    Function: sd_send_scsi_MODE_SELECT
20918  *
20919  * Description: Utility function for issuing a scsi MODE SELECT command.
20920  *		Note: This routine uses a consistent implementation for Group0,
20921  *		Group1, and Group2 commands across all platforms. ATAPI devices
20922  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20923  *
20924  *   Arguments: un - pointer to the softstate struct for the target.
20925  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20926  *			  CDB_GROUP[1|2] (10 byte).
20927  *		bufaddr - buffer for page data retrieved from the target.
20928  *		buflen - size of page to be retrieved.
20929  *		save_page - boolean to determin if SP bit should be set.
20930  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20931  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20932  *			to use the USCSI "direct" chain and bypass the normal
20933  *			command waitq.
20934  *
20935  * Return Code: 0   - Success
20936  *		errno return code from sd_send_scsi_cmd()
20937  *
20938  *     Context: Can sleep. Does not return until command is completed.
20939  */
20940 
20941 static int
20942 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20943 	size_t buflen,  uchar_t save_page, int path_flag)
20944 {
20945 	struct	scsi_extended_sense	sense_buf;
20946 	union scsi_cdb		cdb;
20947 	struct uscsi_cmd	ucmd_buf;
20948 	int			status;
20949 
20950 	ASSERT(un != NULL);
20951 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20952 	ASSERT(bufaddr != NULL);
20953 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20954 	    (cdbsize == CDB_GROUP2));
20955 
20956 	SD_TRACE(SD_LOG_IO, un,
20957 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20958 
20959 	bzero(&cdb, sizeof (cdb));
20960 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20961 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20962 
20963 	/* Set the PF bit for many third party drives */
20964 	cdb.cdb_opaque[1] = 0x10;
20965 
20966 	/* Set the savepage(SP) bit if given */
20967 	if (save_page == SD_SAVE_PAGE) {
20968 		cdb.cdb_opaque[1] |= 0x01;
20969 	}
20970 
20971 	if (cdbsize == CDB_GROUP0) {
20972 		cdb.scc_cmd = SCMD_MODE_SELECT;
20973 		FORMG0COUNT(&cdb, buflen);
20974 	} else {
20975 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20976 		FORMG1COUNT(&cdb, buflen);
20977 	}
20978 
20979 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20980 
20981 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20982 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20983 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20984 	ucmd_buf.uscsi_buflen	= buflen;
20985 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20986 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20987 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20988 	ucmd_buf.uscsi_timeout	= 60;
20989 
20990 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20991 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20992 
20993 	switch (status) {
20994 	case 0:
20995 		break;	/* Success! */
20996 	case EIO:
20997 		switch (ucmd_buf.uscsi_status) {
20998 		case STATUS_RESERVATION_CONFLICT:
20999 			status = EACCES;
21000 			break;
21001 		default:
21002 			break;
21003 		}
21004 		break;
21005 	default:
21006 		break;
21007 	}
21008 
21009 	if (status == 0) {
21010 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21011 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21012 	}
21013 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21014 
21015 	return (status);
21016 }
21017 
21018 
21019 /*
21020  *    Function: sd_send_scsi_RDWR
21021  *
21022  * Description: Issue a scsi READ or WRITE command with the given parameters.
21023  *
21024  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21025  *		cmd:	 SCMD_READ or SCMD_WRITE
21026  *		bufaddr: Address of caller's buffer to receive the RDWR data
21027  *		buflen:  Length of caller's buffer receive the RDWR data.
21028  *		start_block: Block number for the start of the RDWR operation.
21029  *			 (Assumes target-native block size.)
21030  *		residp:  Pointer to variable to receive the redisual of the
21031  *			 RDWR operation (may be NULL of no residual requested).
21032  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21033  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21034  *			to use the USCSI "direct" chain and bypass the normal
21035  *			command waitq.
21036  *
21037  * Return Code: 0   - Success
21038  *		errno return code from sd_send_scsi_cmd()
21039  *
21040  *     Context: Can sleep. Does not return until command is completed.
21041  */
21042 
21043 static int
21044 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
21045 	size_t buflen, daddr_t start_block, int path_flag)
21046 {
21047 	struct	scsi_extended_sense	sense_buf;
21048 	union scsi_cdb		cdb;
21049 	struct uscsi_cmd	ucmd_buf;
21050 	uint32_t		block_count;
21051 	int			status;
21052 	int			cdbsize;
21053 	uchar_t			flag;
21054 
21055 	ASSERT(un != NULL);
21056 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21057 	ASSERT(bufaddr != NULL);
21058 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21059 
21060 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21061 
21062 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21063 		return (EINVAL);
21064 	}
21065 
21066 	mutex_enter(SD_MUTEX(un));
21067 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21068 	mutex_exit(SD_MUTEX(un));
21069 
21070 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21071 
21072 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21073 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21074 	    bufaddr, buflen, start_block, block_count);
21075 
21076 	bzero(&cdb, sizeof (cdb));
21077 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21078 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21079 
21080 	/* Compute CDB size to use */
21081 	if (start_block > 0xffffffff)
21082 		cdbsize = CDB_GROUP4;
21083 	else if ((start_block & 0xFFE00000) ||
21084 	    (un->un_f_cfg_is_atapi == TRUE))
21085 		cdbsize = CDB_GROUP1;
21086 	else
21087 		cdbsize = CDB_GROUP0;
21088 
21089 	switch (cdbsize) {
21090 	case CDB_GROUP0:	/* 6-byte CDBs */
21091 		cdb.scc_cmd = cmd;
21092 		FORMG0ADDR(&cdb, start_block);
21093 		FORMG0COUNT(&cdb, block_count);
21094 		break;
21095 	case CDB_GROUP1:	/* 10-byte CDBs */
21096 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21097 		FORMG1ADDR(&cdb, start_block);
21098 		FORMG1COUNT(&cdb, block_count);
21099 		break;
21100 	case CDB_GROUP4:	/* 16-byte CDBs */
21101 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21102 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21103 		FORMG4COUNT(&cdb, block_count);
21104 		break;
21105 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21106 	default:
21107 		/* All others reserved */
21108 		return (EINVAL);
21109 	}
21110 
21111 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21112 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21113 
21114 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21115 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21116 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21117 	ucmd_buf.uscsi_buflen	= buflen;
21118 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21119 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21120 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21121 	ucmd_buf.uscsi_timeout	= 60;
21122 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21123 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21124 	switch (status) {
21125 	case 0:
21126 		break;	/* Success! */
21127 	case EIO:
21128 		switch (ucmd_buf.uscsi_status) {
21129 		case STATUS_RESERVATION_CONFLICT:
21130 			status = EACCES;
21131 			break;
21132 		default:
21133 			break;
21134 		}
21135 		break;
21136 	default:
21137 		break;
21138 	}
21139 
21140 	if (status == 0) {
21141 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21142 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21143 	}
21144 
21145 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21146 
21147 	return (status);
21148 }
21149 
21150 
21151 /*
21152  *    Function: sd_send_scsi_LOG_SENSE
21153  *
21154  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21155  *
21156  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21157  *
21158  * Return Code: 0   - Success
21159  *		errno return code from sd_send_scsi_cmd()
21160  *
21161  *     Context: Can sleep. Does not return until command is completed.
21162  */
21163 
21164 static int
21165 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
21166 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21167 	int path_flag)
21168 
21169 {
21170 	struct	scsi_extended_sense	sense_buf;
21171 	union scsi_cdb		cdb;
21172 	struct uscsi_cmd	ucmd_buf;
21173 	int			status;
21174 
21175 	ASSERT(un != NULL);
21176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21177 
21178 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21179 
21180 	bzero(&cdb, sizeof (cdb));
21181 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21182 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21183 
21184 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21185 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21186 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21187 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21188 	FORMG1COUNT(&cdb, buflen);
21189 
21190 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21191 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21192 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21193 	ucmd_buf.uscsi_buflen	= buflen;
21194 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21195 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21196 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21197 	ucmd_buf.uscsi_timeout	= 60;
21198 
21199 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21200 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21201 
21202 	switch (status) {
21203 	case 0:
21204 		break;
21205 	case EIO:
21206 		switch (ucmd_buf.uscsi_status) {
21207 		case STATUS_RESERVATION_CONFLICT:
21208 			status = EACCES;
21209 			break;
21210 		case STATUS_CHECK:
21211 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21212 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21213 				KEY_ILLEGAL_REQUEST) &&
21214 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21215 				/*
21216 				 * ASC 0x24: INVALID FIELD IN CDB
21217 				 */
21218 				switch (page_code) {
21219 				case START_STOP_CYCLE_PAGE:
21220 					/*
21221 					 * The start stop cycle counter is
21222 					 * implemented as page 0x31 in earlier
21223 					 * generation disks. In new generation
21224 					 * disks the start stop cycle counter is
21225 					 * implemented as page 0xE. To properly
21226 					 * handle this case if an attempt for
21227 					 * log page 0xE is made and fails we
21228 					 * will try again using page 0x31.
21229 					 *
21230 					 * Network storage BU committed to
21231 					 * maintain the page 0x31 for this
21232 					 * purpose and will not have any other
21233 					 * page implemented with page code 0x31
21234 					 * until all disks transition to the
21235 					 * standard page.
21236 					 */
21237 					mutex_enter(SD_MUTEX(un));
21238 					un->un_start_stop_cycle_page =
21239 					    START_STOP_CYCLE_VU_PAGE;
21240 					cdb.cdb_opaque[2] =
21241 					    (char)(page_control << 6) |
21242 					    un->un_start_stop_cycle_page;
21243 					mutex_exit(SD_MUTEX(un));
21244 					status = sd_send_scsi_cmd(
21245 					    SD_GET_DEV(un), &ucmd_buf,
21246 					    UIO_SYSSPACE, UIO_SYSSPACE,
21247 					    UIO_SYSSPACE, path_flag);
21248 
21249 					break;
21250 				case TEMPERATURE_PAGE:
21251 					status = ENOTTY;
21252 					break;
21253 				default:
21254 					break;
21255 				}
21256 			}
21257 			break;
21258 		default:
21259 			break;
21260 		}
21261 		break;
21262 	default:
21263 		break;
21264 	}
21265 
21266 	if (status == 0) {
21267 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21268 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21269 	}
21270 
21271 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21272 
21273 	return (status);
21274 }
21275 
21276 
21277 /*
21278  *    Function: sdioctl
21279  *
21280  * Description: Driver's ioctl(9e) entry point function.
21281  *
21282  *   Arguments: dev     - device number
21283  *		cmd     - ioctl operation to be performed
21284  *		arg     - user argument, contains data to be set or reference
21285  *			  parameter for get
21286  *		flag    - bit flag, indicating open settings, 32/64 bit type
21287  *		cred_p  - user credential pointer
21288  *		rval_p  - calling process return value (OPT)
21289  *
21290  * Return Code: EINVAL
21291  *		ENOTTY
21292  *		ENXIO
21293  *		EIO
21294  *		EFAULT
21295  *		ENOTSUP
21296  *		EPERM
21297  *
21298  *     Context: Called from the device switch at normal priority.
21299  */
21300 
21301 static int
21302 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21303 {
21304 	struct sd_lun	*un = NULL;
21305 	int		geom_validated = FALSE;
21306 	int		err = 0;
21307 	int		i = 0;
21308 	cred_t		*cr;
21309 
21310 	/*
21311 	 * All device accesses go thru sdstrategy where we check on suspend
21312 	 * status
21313 	 */
21314 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21315 		return (ENXIO);
21316 	}
21317 
21318 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21319 
21320 	/*
21321 	 * Moved this wait from sd_uscsi_strategy to here for
21322 	 * reasons of deadlock prevention. Internal driver commands,
21323 	 * specifically those to change a devices power level, result
21324 	 * in a call to sd_uscsi_strategy.
21325 	 */
21326 	mutex_enter(SD_MUTEX(un));
21327 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21328 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21329 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21330 	}
21331 	/*
21332 	 * Twiddling the counter here protects commands from now
21333 	 * through to the top of sd_uscsi_strategy. Without the
21334 	 * counter inc. a power down, for example, could get in
21335 	 * after the above check for state is made and before
21336 	 * execution gets to the top of sd_uscsi_strategy.
21337 	 * That would cause problems.
21338 	 */
21339 	un->un_ncmds_in_driver++;
21340 
21341 	if ((un->un_f_geometry_is_valid == FALSE) &&
21342 	    (flag & (FNDELAY | FNONBLOCK))) {
21343 		switch (cmd) {
21344 		case CDROMPAUSE:
21345 		case CDROMRESUME:
21346 		case CDROMPLAYMSF:
21347 		case CDROMPLAYTRKIND:
21348 		case CDROMREADTOCHDR:
21349 		case CDROMREADTOCENTRY:
21350 		case CDROMSTOP:
21351 		case CDROMSTART:
21352 		case CDROMVOLCTRL:
21353 		case CDROMSUBCHNL:
21354 		case CDROMREADMODE2:
21355 		case CDROMREADMODE1:
21356 		case CDROMREADOFFSET:
21357 		case CDROMSBLKMODE:
21358 		case CDROMGBLKMODE:
21359 		case CDROMGDRVSPEED:
21360 		case CDROMSDRVSPEED:
21361 		case CDROMCDDA:
21362 		case CDROMCDXA:
21363 		case CDROMSUBCODE:
21364 			if (!ISCD(un)) {
21365 				un->un_ncmds_in_driver--;
21366 				ASSERT(un->un_ncmds_in_driver >= 0);
21367 				mutex_exit(SD_MUTEX(un));
21368 				return (ENOTTY);
21369 			}
21370 			break;
21371 		case FDEJECT:
21372 		case DKIOCEJECT:
21373 		case CDROMEJECT:
21374 			if (!un->un_f_eject_media_supported) {
21375 				un->un_ncmds_in_driver--;
21376 				ASSERT(un->un_ncmds_in_driver >= 0);
21377 				mutex_exit(SD_MUTEX(un));
21378 				return (ENOTTY);
21379 			}
21380 			break;
21381 		case DKIOCSVTOC:
21382 		case DKIOCSETEFI:
21383 		case DKIOCSMBOOT:
21384 		case DKIOCFLUSHWRITECACHE:
21385 			mutex_exit(SD_MUTEX(un));
21386 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21387 			if (err != 0) {
21388 				mutex_enter(SD_MUTEX(un));
21389 				un->un_ncmds_in_driver--;
21390 				ASSERT(un->un_ncmds_in_driver >= 0);
21391 				mutex_exit(SD_MUTEX(un));
21392 				return (EIO);
21393 			}
21394 			mutex_enter(SD_MUTEX(un));
21395 			/* FALLTHROUGH */
21396 		case DKIOCREMOVABLE:
21397 		case DKIOCHOTPLUGGABLE:
21398 		case DKIOCINFO:
21399 		case DKIOCGMEDIAINFO:
21400 		case MHIOCENFAILFAST:
21401 		case MHIOCSTATUS:
21402 		case MHIOCTKOWN:
21403 		case MHIOCRELEASE:
21404 		case MHIOCGRP_INKEYS:
21405 		case MHIOCGRP_INRESV:
21406 		case MHIOCGRP_REGISTER:
21407 		case MHIOCGRP_RESERVE:
21408 		case MHIOCGRP_PREEMPTANDABORT:
21409 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21410 		case CDROMCLOSETRAY:
21411 		case USCSICMD:
21412 			goto skip_ready_valid;
21413 		default:
21414 			break;
21415 		}
21416 
21417 		mutex_exit(SD_MUTEX(un));
21418 		err = sd_ready_and_valid(un);
21419 		mutex_enter(SD_MUTEX(un));
21420 		if (err == SD_READY_NOT_VALID) {
21421 			switch (cmd) {
21422 			case DKIOCGAPART:
21423 			case DKIOCGGEOM:
21424 			case DKIOCSGEOM:
21425 			case DKIOCGVTOC:
21426 			case DKIOCSVTOC:
21427 			case DKIOCSAPART:
21428 			case DKIOCG_PHYGEOM:
21429 			case DKIOCG_VIRTGEOM:
21430 				err = ENOTSUP;
21431 				un->un_ncmds_in_driver--;
21432 				ASSERT(un->un_ncmds_in_driver >= 0);
21433 				mutex_exit(SD_MUTEX(un));
21434 				return (err);
21435 			}
21436 		}
21437 		if (err != SD_READY_VALID) {
21438 			switch (cmd) {
21439 			case DKIOCSTATE:
21440 			case CDROMGDRVSPEED:
21441 			case CDROMSDRVSPEED:
21442 			case FDEJECT:	/* for eject command */
21443 			case DKIOCEJECT:
21444 			case CDROMEJECT:
21445 			case DKIOCGETEFI:
21446 			case DKIOCSGEOM:
21447 			case DKIOCREMOVABLE:
21448 			case DKIOCHOTPLUGGABLE:
21449 			case DKIOCSAPART:
21450 			case DKIOCSETEFI:
21451 				break;
21452 			default:
21453 				if (un->un_f_has_removable_media) {
21454 					err = ENXIO;
21455 				} else {
21456 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21457 					if (err == SD_RESERVED_BY_OTHERS) {
21458 						err = EACCES;
21459 					} else {
21460 						err = EIO;
21461 					}
21462 				}
21463 				un->un_ncmds_in_driver--;
21464 				ASSERT(un->un_ncmds_in_driver >= 0);
21465 				mutex_exit(SD_MUTEX(un));
21466 				return (err);
21467 			}
21468 		}
21469 		geom_validated = TRUE;
21470 	}
21471 	if ((un->un_f_geometry_is_valid == TRUE) &&
21472 	    (un->un_solaris_size > 0)) {
21473 		/*
21474 		 * the "geometry_is_valid" flag could be true if we
21475 		 * have an fdisk table but no Solaris partition
21476 		 */
21477 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21478 			/* it is EFI, so return ENOTSUP for these */
21479 			switch (cmd) {
21480 			case DKIOCGAPART:
21481 			case DKIOCGGEOM:
21482 			case DKIOCGVTOC:
21483 			case DKIOCSVTOC:
21484 			case DKIOCSAPART:
21485 				err = ENOTSUP;
21486 				un->un_ncmds_in_driver--;
21487 				ASSERT(un->un_ncmds_in_driver >= 0);
21488 				mutex_exit(SD_MUTEX(un));
21489 				return (err);
21490 			}
21491 		}
21492 	}
21493 
21494 skip_ready_valid:
21495 	mutex_exit(SD_MUTEX(un));
21496 
21497 	switch (cmd) {
21498 	case DKIOCINFO:
21499 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21500 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21501 		break;
21502 
21503 	case DKIOCGMEDIAINFO:
21504 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21505 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21506 		break;
21507 
21508 	case DKIOCGGEOM:
21509 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21510 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21511 		    geom_validated);
21512 		break;
21513 
21514 	case DKIOCSGEOM:
21515 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21516 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21517 		break;
21518 
21519 	case DKIOCGAPART:
21520 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21521 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21522 		    geom_validated);
21523 		break;
21524 
21525 	case DKIOCSAPART:
21526 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21527 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21528 		break;
21529 
21530 	case DKIOCGVTOC:
21531 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21532 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21533 		    geom_validated);
21534 		break;
21535 
21536 	case DKIOCGETEFI:
21537 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21538 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21539 		break;
21540 
21541 	case DKIOCPARTITION:
21542 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21543 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21544 		break;
21545 
21546 	case DKIOCSVTOC:
21547 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21548 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21549 		break;
21550 
21551 	case DKIOCSETEFI:
21552 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21553 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21554 		break;
21555 
21556 	case DKIOCGMBOOT:
21557 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21558 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21559 		break;
21560 
21561 	case DKIOCSMBOOT:
21562 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21563 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21564 		break;
21565 
21566 	case DKIOCLOCK:
21567 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21568 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21569 		    SD_PATH_STANDARD);
21570 		break;
21571 
21572 	case DKIOCUNLOCK:
21573 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21574 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21575 		    SD_PATH_STANDARD);
21576 		break;
21577 
21578 	case DKIOCSTATE: {
21579 		enum dkio_state		state;
21580 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21581 
21582 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21583 			err = EFAULT;
21584 		} else {
21585 			err = sd_check_media(dev, state);
21586 			if (err == 0) {
21587 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21588 				    sizeof (int), flag) != 0)
21589 					err = EFAULT;
21590 			}
21591 		}
21592 		break;
21593 	}
21594 
21595 	case DKIOCREMOVABLE:
21596 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21597 		i = un->un_f_has_removable_media ? 1 : 0;
21598 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21599 			err = EFAULT;
21600 		} else {
21601 			err = 0;
21602 		}
21603 		break;
21604 
21605 	case DKIOCHOTPLUGGABLE:
21606 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21607 		i = un->un_f_is_hotpluggable ? 1 : 0;
21608 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21609 			err = EFAULT;
21610 		} else {
21611 			err = 0;
21612 		}
21613 		break;
21614 
21615 	case DKIOCGTEMPERATURE:
21616 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21617 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21618 		break;
21619 
21620 	case MHIOCENFAILFAST:
21621 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21622 		if ((err = drv_priv(cred_p)) == 0) {
21623 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21624 		}
21625 		break;
21626 
21627 	case MHIOCTKOWN:
21628 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21629 		if ((err = drv_priv(cred_p)) == 0) {
21630 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21631 		}
21632 		break;
21633 
21634 	case MHIOCRELEASE:
21635 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21636 		if ((err = drv_priv(cred_p)) == 0) {
21637 			err = sd_mhdioc_release(dev);
21638 		}
21639 		break;
21640 
21641 	case MHIOCSTATUS:
21642 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21643 		if ((err = drv_priv(cred_p)) == 0) {
21644 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21645 			case 0:
21646 				err = 0;
21647 				break;
21648 			case EACCES:
21649 				*rval_p = 1;
21650 				err = 0;
21651 				break;
21652 			default:
21653 				err = EIO;
21654 				break;
21655 			}
21656 		}
21657 		break;
21658 
21659 	case MHIOCQRESERVE:
21660 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21661 		if ((err = drv_priv(cred_p)) == 0) {
21662 			err = sd_reserve_release(dev, SD_RESERVE);
21663 		}
21664 		break;
21665 
21666 	case MHIOCREREGISTERDEVID:
21667 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21668 		if (drv_priv(cred_p) == EPERM) {
21669 			err = EPERM;
21670 		} else if (!un->un_f_devid_supported) {
21671 			err = ENOTTY;
21672 		} else {
21673 			err = sd_mhdioc_register_devid(dev);
21674 		}
21675 		break;
21676 
21677 	case MHIOCGRP_INKEYS:
21678 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21679 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21680 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21681 				err = ENOTSUP;
21682 			} else {
21683 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21684 				    flag);
21685 			}
21686 		}
21687 		break;
21688 
21689 	case MHIOCGRP_INRESV:
21690 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21691 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21692 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21693 				err = ENOTSUP;
21694 			} else {
21695 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21696 			}
21697 		}
21698 		break;
21699 
21700 	case MHIOCGRP_REGISTER:
21701 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21702 		if ((err = drv_priv(cred_p)) != EPERM) {
21703 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21704 				err = ENOTSUP;
21705 			} else if (arg != NULL) {
21706 				mhioc_register_t reg;
21707 				if (ddi_copyin((void *)arg, &reg,
21708 				    sizeof (mhioc_register_t), flag) != 0) {
21709 					err = EFAULT;
21710 				} else {
21711 					err =
21712 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21713 					    un, SD_SCSI3_REGISTER,
21714 					    (uchar_t *)&reg);
21715 				}
21716 			}
21717 		}
21718 		break;
21719 
21720 	case MHIOCGRP_RESERVE:
21721 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21722 		if ((err = drv_priv(cred_p)) != EPERM) {
21723 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21724 				err = ENOTSUP;
21725 			} else if (arg != NULL) {
21726 				mhioc_resv_desc_t resv_desc;
21727 				if (ddi_copyin((void *)arg, &resv_desc,
21728 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21729 					err = EFAULT;
21730 				} else {
21731 					err =
21732 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21733 					    un, SD_SCSI3_RESERVE,
21734 					    (uchar_t *)&resv_desc);
21735 				}
21736 			}
21737 		}
21738 		break;
21739 
21740 	case MHIOCGRP_PREEMPTANDABORT:
21741 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21742 		if ((err = drv_priv(cred_p)) != EPERM) {
21743 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21744 				err = ENOTSUP;
21745 			} else if (arg != NULL) {
21746 				mhioc_preemptandabort_t preempt_abort;
21747 				if (ddi_copyin((void *)arg, &preempt_abort,
21748 				    sizeof (mhioc_preemptandabort_t),
21749 				    flag) != 0) {
21750 					err = EFAULT;
21751 				} else {
21752 					err =
21753 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21754 					    un, SD_SCSI3_PREEMPTANDABORT,
21755 					    (uchar_t *)&preempt_abort);
21756 				}
21757 			}
21758 		}
21759 		break;
21760 
21761 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21762 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21763 		if ((err = drv_priv(cred_p)) != EPERM) {
21764 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21765 				err = ENOTSUP;
21766 			} else if (arg != NULL) {
21767 				mhioc_registerandignorekey_t r_and_i;
21768 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21769 				    sizeof (mhioc_registerandignorekey_t),
21770 				    flag) != 0) {
21771 					err = EFAULT;
21772 				} else {
21773 					err =
21774 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21775 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21776 					    (uchar_t *)&r_and_i);
21777 				}
21778 			}
21779 		}
21780 		break;
21781 
21782 	case USCSICMD:
21783 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21784 		cr = ddi_get_cred();
21785 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21786 			err = EPERM;
21787 		} else {
21788 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21789 		}
21790 		break;
21791 
21792 	case CDROMPAUSE:
21793 	case CDROMRESUME:
21794 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21795 		if (!ISCD(un)) {
21796 			err = ENOTTY;
21797 		} else {
21798 			err = sr_pause_resume(dev, cmd);
21799 		}
21800 		break;
21801 
21802 	case CDROMPLAYMSF:
21803 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21804 		if (!ISCD(un)) {
21805 			err = ENOTTY;
21806 		} else {
21807 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21808 		}
21809 		break;
21810 
21811 	case CDROMPLAYTRKIND:
21812 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21813 #if defined(__i386) || defined(__amd64)
21814 		/*
21815 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21816 		 */
21817 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21818 #else
21819 		if (!ISCD(un)) {
21820 #endif
21821 			err = ENOTTY;
21822 		} else {
21823 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21824 		}
21825 		break;
21826 
21827 	case CDROMREADTOCHDR:
21828 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21829 		if (!ISCD(un)) {
21830 			err = ENOTTY;
21831 		} else {
21832 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21833 		}
21834 		break;
21835 
21836 	case CDROMREADTOCENTRY:
21837 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21838 		if (!ISCD(un)) {
21839 			err = ENOTTY;
21840 		} else {
21841 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21842 		}
21843 		break;
21844 
21845 	case CDROMSTOP:
21846 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21847 		if (!ISCD(un)) {
21848 			err = ENOTTY;
21849 		} else {
21850 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21851 			    SD_PATH_STANDARD);
21852 		}
21853 		break;
21854 
21855 	case CDROMSTART:
21856 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21857 		if (!ISCD(un)) {
21858 			err = ENOTTY;
21859 		} else {
21860 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21861 			    SD_PATH_STANDARD);
21862 		}
21863 		break;
21864 
21865 	case CDROMCLOSETRAY:
21866 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21867 		if (!ISCD(un)) {
21868 			err = ENOTTY;
21869 		} else {
21870 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21871 			    SD_PATH_STANDARD);
21872 		}
21873 		break;
21874 
21875 	case FDEJECT:	/* for eject command */
21876 	case DKIOCEJECT:
21877 	case CDROMEJECT:
21878 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21879 		if (!un->un_f_eject_media_supported) {
21880 			err = ENOTTY;
21881 		} else {
21882 			err = sr_eject(dev);
21883 		}
21884 		break;
21885 
21886 	case CDROMVOLCTRL:
21887 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21888 		if (!ISCD(un)) {
21889 			err = ENOTTY;
21890 		} else {
21891 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21892 		}
21893 		break;
21894 
21895 	case CDROMSUBCHNL:
21896 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21897 		if (!ISCD(un)) {
21898 			err = ENOTTY;
21899 		} else {
21900 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21901 		}
21902 		break;
21903 
21904 	case CDROMREADMODE2:
21905 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21906 		if (!ISCD(un)) {
21907 			err = ENOTTY;
21908 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21909 			/*
21910 			 * If the drive supports READ CD, use that instead of
21911 			 * switching the LBA size via a MODE SELECT
21912 			 * Block Descriptor
21913 			 */
21914 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21915 		} else {
21916 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21917 		}
21918 		break;
21919 
21920 	case CDROMREADMODE1:
21921 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21922 		if (!ISCD(un)) {
21923 			err = ENOTTY;
21924 		} else {
21925 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21926 		}
21927 		break;
21928 
21929 	case CDROMREADOFFSET:
21930 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21931 		if (!ISCD(un)) {
21932 			err = ENOTTY;
21933 		} else {
21934 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21935 			    flag);
21936 		}
21937 		break;
21938 
21939 	case CDROMSBLKMODE:
21940 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21941 		/*
21942 		 * There is no means of changing block size in case of atapi
21943 		 * drives, thus return ENOTTY if drive type is atapi
21944 		 */
21945 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21946 			err = ENOTTY;
21947 		} else if (un->un_f_mmc_cap == TRUE) {
21948 
21949 			/*
21950 			 * MMC Devices do not support changing the
21951 			 * logical block size
21952 			 *
21953 			 * Note: EINVAL is being returned instead of ENOTTY to
21954 			 * maintain consistancy with the original mmc
21955 			 * driver update.
21956 			 */
21957 			err = EINVAL;
21958 		} else {
21959 			mutex_enter(SD_MUTEX(un));
21960 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21961 			    (un->un_ncmds_in_transport > 0)) {
21962 				mutex_exit(SD_MUTEX(un));
21963 				err = EINVAL;
21964 			} else {
21965 				mutex_exit(SD_MUTEX(un));
21966 				err = sr_change_blkmode(dev, cmd, arg, flag);
21967 			}
21968 		}
21969 		break;
21970 
21971 	case CDROMGBLKMODE:
21972 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21973 		if (!ISCD(un)) {
21974 			err = ENOTTY;
21975 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21976 		    (un->un_f_blockcount_is_valid != FALSE)) {
21977 			/*
21978 			 * Drive is an ATAPI drive so return target block
21979 			 * size for ATAPI drives since we cannot change the
21980 			 * blocksize on ATAPI drives. Used primarily to detect
21981 			 * if an ATAPI cdrom is present.
21982 			 */
21983 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21984 			    sizeof (int), flag) != 0) {
21985 				err = EFAULT;
21986 			} else {
21987 				err = 0;
21988 			}
21989 
21990 		} else {
21991 			/*
21992 			 * Drive supports changing block sizes via a Mode
21993 			 * Select.
21994 			 */
21995 			err = sr_change_blkmode(dev, cmd, arg, flag);
21996 		}
21997 		break;
21998 
21999 	case CDROMGDRVSPEED:
22000 	case CDROMSDRVSPEED:
22001 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22002 		if (!ISCD(un)) {
22003 			err = ENOTTY;
22004 		} else if (un->un_f_mmc_cap == TRUE) {
22005 			/*
22006 			 * Note: In the future the driver implementation
22007 			 * for getting and
22008 			 * setting cd speed should entail:
22009 			 * 1) If non-mmc try the Toshiba mode page
22010 			 *    (sr_change_speed)
22011 			 * 2) If mmc but no support for Real Time Streaming try
22012 			 *    the SET CD SPEED (0xBB) command
22013 			 *   (sr_atapi_change_speed)
22014 			 * 3) If mmc and support for Real Time Streaming
22015 			 *    try the GET PERFORMANCE and SET STREAMING
22016 			 *    commands (not yet implemented, 4380808)
22017 			 */
22018 			/*
22019 			 * As per recent MMC spec, CD-ROM speed is variable
22020 			 * and changes with LBA. Since there is no such
22021 			 * things as drive speed now, fail this ioctl.
22022 			 *
22023 			 * Note: EINVAL is returned for consistancy of original
22024 			 * implementation which included support for getting
22025 			 * the drive speed of mmc devices but not setting
22026 			 * the drive speed. Thus EINVAL would be returned
22027 			 * if a set request was made for an mmc device.
22028 			 * We no longer support get or set speed for
22029 			 * mmc but need to remain consistant with regard
22030 			 * to the error code returned.
22031 			 */
22032 			err = EINVAL;
22033 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22034 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22035 		} else {
22036 			err = sr_change_speed(dev, cmd, arg, flag);
22037 		}
22038 		break;
22039 
22040 	case CDROMCDDA:
22041 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22042 		if (!ISCD(un)) {
22043 			err = ENOTTY;
22044 		} else {
22045 			err = sr_read_cdda(dev, (void *)arg, flag);
22046 		}
22047 		break;
22048 
22049 	case CDROMCDXA:
22050 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22051 		if (!ISCD(un)) {
22052 			err = ENOTTY;
22053 		} else {
22054 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22055 		}
22056 		break;
22057 
22058 	case CDROMSUBCODE:
22059 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22060 		if (!ISCD(un)) {
22061 			err = ENOTTY;
22062 		} else {
22063 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22064 		}
22065 		break;
22066 
22067 	case DKIOCPARTINFO: {
22068 		/*
22069 		 * Return parameters describing the selected disk slice.
22070 		 * Note: this ioctl is for the intel platform only
22071 		 */
22072 #if defined(__i386) || defined(__amd64)
22073 		int part;
22074 
22075 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22076 		part = SDPART(dev);
22077 
22078 		/* don't check un_solaris_size for pN */
22079 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
22080 			err = EIO;
22081 		} else {
22082 			struct part_info p;
22083 
22084 			p.p_start = (daddr_t)un->un_offset[part];
22085 			p.p_length = (int)un->un_map[part].dkl_nblk;
22086 #ifdef _MULTI_DATAMODEL
22087 			switch (ddi_model_convert_from(flag & FMODELS)) {
22088 			case DDI_MODEL_ILP32:
22089 			{
22090 				struct part_info32 p32;
22091 
22092 				p32.p_start = (daddr32_t)p.p_start;
22093 				p32.p_length = p.p_length;
22094 				if (ddi_copyout(&p32, (void *)arg,
22095 				    sizeof (p32), flag))
22096 					err = EFAULT;
22097 				break;
22098 			}
22099 
22100 			case DDI_MODEL_NONE:
22101 			{
22102 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
22103 				    flag))
22104 					err = EFAULT;
22105 				break;
22106 			}
22107 			}
22108 #else /* ! _MULTI_DATAMODEL */
22109 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
22110 				err = EFAULT;
22111 #endif /* _MULTI_DATAMODEL */
22112 		}
22113 #else
22114 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22115 		err = ENOTTY;
22116 #endif
22117 		break;
22118 	}
22119 
22120 	case DKIOCG_PHYGEOM: {
22121 		/* Return the driver's notion of the media physical geometry */
22122 #if defined(__i386) || defined(__amd64)
22123 		uint64_t	capacity;
22124 		struct dk_geom	disk_geom;
22125 		struct dk_geom	*dkgp = &disk_geom;
22126 
22127 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22128 		mutex_enter(SD_MUTEX(un));
22129 
22130 		if (un->un_g.dkg_nhead != 0 &&
22131 		    un->un_g.dkg_nsect != 0) {
22132 			/*
22133 			 * We succeeded in getting a geometry, but
22134 			 * right now it is being reported as just the
22135 			 * Solaris fdisk partition, just like for
22136 			 * DKIOCGGEOM. We need to change that to be
22137 			 * correct for the entire disk now.
22138 			 */
22139 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
22140 			dkgp->dkg_acyl = 0;
22141 			dkgp->dkg_ncyl = un->un_blockcount /
22142 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22143 		} else {
22144 			bzero(dkgp, sizeof (struct dk_geom));
22145 			/*
22146 			 * This disk does not have a Solaris VTOC
22147 			 * so we must present a physical geometry
22148 			 * that will remain consistent regardless
22149 			 * of how the disk is used. This will ensure
22150 			 * that the geometry does not change regardless
22151 			 * of the fdisk partition type (ie. EFI, FAT32,
22152 			 * Solaris, etc).
22153 			 */
22154 			if (ISCD(un)) {
22155 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
22156 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
22157 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
22158 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
22159 			} else {
22160 				/*
22161 				 * Invalid un_blockcount can generate invalid
22162 				 * dk_geom and may result in division by zero
22163 				 * system failure. Should make sure blockcount
22164 				 * is valid before using it here.
22165 				 */
22166 				if (un->un_f_blockcount_is_valid == FALSE) {
22167 					mutex_exit(SD_MUTEX(un));
22168 					err = EIO;
22169 
22170 					break;
22171 				}
22172 
22173 				/*
22174 				 * Refer to comments related to off-by-1 at the
22175 				 * header of this file
22176 				 */
22177 				if (!un->un_f_capacity_adjusted &&
22178 					!un->un_f_has_removable_media &&
22179 				    !un->un_f_is_hotpluggable &&
22180 					(un->un_tgt_blocksize ==
22181 					un->un_sys_blocksize))
22182 					capacity = un->un_blockcount - 1;
22183 				else
22184 					capacity = un->un_blockcount;
22185 
22186 				sd_convert_geometry(capacity, dkgp);
22187 				dkgp->dkg_acyl = 0;
22188 				dkgp->dkg_ncyl = capacity /
22189 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22190 			}
22191 		}
22192 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
22193 
22194 		if (ddi_copyout(dkgp, (void *)arg,
22195 		    sizeof (struct dk_geom), flag)) {
22196 			mutex_exit(SD_MUTEX(un));
22197 			err = EFAULT;
22198 		} else {
22199 			mutex_exit(SD_MUTEX(un));
22200 			err = 0;
22201 		}
22202 #else
22203 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22204 		err = ENOTTY;
22205 #endif
22206 		break;
22207 	}
22208 
22209 	case DKIOCG_VIRTGEOM: {
22210 		/* Return the driver's notion of the media's logical geometry */
22211 #if defined(__i386) || defined(__amd64)
22212 		struct dk_geom	disk_geom;
22213 		struct dk_geom	*dkgp = &disk_geom;
22214 
22215 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22216 		mutex_enter(SD_MUTEX(un));
22217 		/*
22218 		 * If there is no HBA geometry available, or
22219 		 * if the HBA returned us something that doesn't
22220 		 * really fit into an Int 13/function 8 geometry
22221 		 * result, just fail the ioctl.  See PSARC 1998/313.
22222 		 */
22223 		if (un->un_lgeom.g_nhead == 0 ||
22224 		    un->un_lgeom.g_nsect == 0 ||
22225 		    un->un_lgeom.g_ncyl > 1024) {
22226 			mutex_exit(SD_MUTEX(un));
22227 			err = EINVAL;
22228 		} else {
22229 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
22230 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
22231 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
22232 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
22233 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
22234 
22235 			if (ddi_copyout(dkgp, (void *)arg,
22236 			    sizeof (struct dk_geom), flag)) {
22237 				mutex_exit(SD_MUTEX(un));
22238 				err = EFAULT;
22239 			} else {
22240 				mutex_exit(SD_MUTEX(un));
22241 				err = 0;
22242 			}
22243 		}
22244 #else
22245 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22246 		err = ENOTTY;
22247 #endif
22248 		break;
22249 	}
22250 #ifdef SDDEBUG
22251 /* RESET/ABORTS testing ioctls */
22252 	case DKIOCRESET: {
22253 		int	reset_level;
22254 
22255 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22256 			err = EFAULT;
22257 		} else {
22258 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22259 			    "reset_level = 0x%lx\n", reset_level);
22260 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22261 				err = 0;
22262 			} else {
22263 				err = EIO;
22264 			}
22265 		}
22266 		break;
22267 	}
22268 
22269 	case DKIOCABORT:
22270 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22271 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22272 			err = 0;
22273 		} else {
22274 			err = EIO;
22275 		}
22276 		break;
22277 #endif
22278 
22279 #ifdef SD_FAULT_INJECTION
22280 /* SDIOC FaultInjection testing ioctls */
22281 	case SDIOCSTART:
22282 	case SDIOCSTOP:
22283 	case SDIOCINSERTPKT:
22284 	case SDIOCINSERTXB:
22285 	case SDIOCINSERTUN:
22286 	case SDIOCINSERTARQ:
22287 	case SDIOCPUSH:
22288 	case SDIOCRETRIEVE:
22289 	case SDIOCRUN:
22290 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22291 		    "SDIOC detected cmd:0x%X:\n", cmd);
22292 		/* call error generator */
22293 		sd_faultinjection_ioctl(cmd, arg, un);
22294 		err = 0;
22295 		break;
22296 
22297 #endif /* SD_FAULT_INJECTION */
22298 
22299 	case DKIOCFLUSHWRITECACHE:
22300 		{
22301 			struct dk_callback *dkc = (struct dk_callback *)arg;
22302 
22303 			mutex_enter(SD_MUTEX(un));
22304 			if (!un->un_f_sync_cache_supported ||
22305 			    !un->un_f_write_cache_enabled) {
22306 				err = un->un_f_sync_cache_supported ?
22307 					0 : ENOTSUP;
22308 				mutex_exit(SD_MUTEX(un));
22309 				if ((flag & FKIOCTL) && dkc != NULL &&
22310 				    dkc->dkc_callback != NULL) {
22311 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22312 					    err);
22313 					/*
22314 					 * Did callback and reported error.
22315 					 * Since we did a callback, ioctl
22316 					 * should return 0.
22317 					 */
22318 					err = 0;
22319 				}
22320 				break;
22321 			}
22322 			mutex_exit(SD_MUTEX(un));
22323 
22324 			if ((flag & FKIOCTL) && dkc != NULL &&
22325 			    dkc->dkc_callback != NULL) {
22326 				/* async SYNC CACHE request */
22327 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22328 			} else {
22329 				/* synchronous SYNC CACHE request */
22330 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22331 			}
22332 		}
22333 		break;
22334 
22335 	case DKIOCGETWCE: {
22336 
22337 		int wce;
22338 
22339 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
22340 			break;
22341 		}
22342 
22343 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22344 			err = EFAULT;
22345 		}
22346 		break;
22347 	}
22348 
22349 	case DKIOCSETWCE: {
22350 
22351 		int wce, sync_supported;
22352 
22353 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22354 			err = EFAULT;
22355 			break;
22356 		}
22357 
22358 		/*
22359 		 * Synchronize multiple threads trying to enable
22360 		 * or disable the cache via the un_f_wcc_cv
22361 		 * condition variable.
22362 		 */
22363 		mutex_enter(SD_MUTEX(un));
22364 
22365 		/*
22366 		 * Don't allow the cache to be enabled if the
22367 		 * config file has it disabled.
22368 		 */
22369 		if (un->un_f_opt_disable_cache && wce) {
22370 			mutex_exit(SD_MUTEX(un));
22371 			err = EINVAL;
22372 			break;
22373 		}
22374 
22375 		/*
22376 		 * Wait for write cache change in progress
22377 		 * bit to be clear before proceeding.
22378 		 */
22379 		while (un->un_f_wcc_inprog)
22380 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22381 
22382 		un->un_f_wcc_inprog = 1;
22383 
22384 		if (un->un_f_write_cache_enabled && wce == 0) {
22385 			/*
22386 			 * Disable the write cache.  Don't clear
22387 			 * un_f_write_cache_enabled until after
22388 			 * the mode select and flush are complete.
22389 			 */
22390 			sync_supported = un->un_f_sync_cache_supported;
22391 			mutex_exit(SD_MUTEX(un));
22392 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22393 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22394 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22395 			}
22396 
22397 			mutex_enter(SD_MUTEX(un));
22398 			if (err == 0) {
22399 				un->un_f_write_cache_enabled = 0;
22400 			}
22401 
22402 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22403 			/*
22404 			 * Set un_f_write_cache_enabled first, so there is
22405 			 * no window where the cache is enabled, but the
22406 			 * bit says it isn't.
22407 			 */
22408 			un->un_f_write_cache_enabled = 1;
22409 			mutex_exit(SD_MUTEX(un));
22410 
22411 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22412 				SD_CACHE_ENABLE);
22413 
22414 			mutex_enter(SD_MUTEX(un));
22415 
22416 			if (err) {
22417 				un->un_f_write_cache_enabled = 0;
22418 			}
22419 		}
22420 
22421 		un->un_f_wcc_inprog = 0;
22422 		cv_broadcast(&un->un_wcc_cv);
22423 		mutex_exit(SD_MUTEX(un));
22424 		break;
22425 	}
22426 
22427 	default:
22428 		err = ENOTTY;
22429 		break;
22430 	}
22431 	mutex_enter(SD_MUTEX(un));
22432 	un->un_ncmds_in_driver--;
22433 	ASSERT(un->un_ncmds_in_driver >= 0);
22434 	mutex_exit(SD_MUTEX(un));
22435 
22436 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22437 	return (err);
22438 }
22439 
22440 
22441 /*
22442  *    Function: sd_uscsi_ioctl
22443  *
22444  * Description: This routine is the driver entry point for handling USCSI ioctl
22445  *		requests (USCSICMD).
22446  *
22447  *   Arguments: dev	- the device number
22448  *		arg	- user provided scsi command
22449  *		flag	- this argument is a pass through to ddi_copyxxx()
22450  *			  directly from the mode argument of ioctl().
22451  *
22452  * Return Code: code returned by sd_send_scsi_cmd
22453  *		ENXIO
22454  *		EFAULT
22455  *		EAGAIN
22456  */
22457 
22458 static int
22459 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22460 {
22461 #ifdef _MULTI_DATAMODEL
22462 	/*
22463 	 * For use when a 32 bit app makes a call into a
22464 	 * 64 bit ioctl
22465 	 */
22466 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22467 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22468 	model_t			model;
22469 #endif /* _MULTI_DATAMODEL */
22470 	struct uscsi_cmd	*scmd = NULL;
22471 	struct sd_lun		*un = NULL;
22472 	enum uio_seg		uioseg;
22473 	char			cdb[CDB_GROUP0];
22474 	int			rval = 0;
22475 
22476 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22477 		return (ENXIO);
22478 	}
22479 
22480 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22481 
22482 	scmd = (struct uscsi_cmd *)
22483 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22484 
22485 #ifdef _MULTI_DATAMODEL
22486 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22487 	case DDI_MODEL_ILP32:
22488 	{
22489 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22490 			rval = EFAULT;
22491 			goto done;
22492 		}
22493 		/*
22494 		 * Convert the ILP32 uscsi data from the
22495 		 * application to LP64 for internal use.
22496 		 */
22497 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22498 		break;
22499 	}
22500 	case DDI_MODEL_NONE:
22501 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22502 			rval = EFAULT;
22503 			goto done;
22504 		}
22505 		break;
22506 	}
22507 #else /* ! _MULTI_DATAMODEL */
22508 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22509 		rval = EFAULT;
22510 		goto done;
22511 	}
22512 #endif /* _MULTI_DATAMODEL */
22513 
22514 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22515 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22516 	if (un->un_f_format_in_progress == TRUE) {
22517 		rval = EAGAIN;
22518 		goto done;
22519 	}
22520 
22521 	/*
22522 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22523 	 * we will have a valid cdb[0] to test.
22524 	 */
22525 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22526 	    (cdb[0] == SCMD_FORMAT)) {
22527 		SD_TRACE(SD_LOG_IOCTL, un,
22528 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22529 		mutex_enter(SD_MUTEX(un));
22530 		un->un_f_format_in_progress = TRUE;
22531 		mutex_exit(SD_MUTEX(un));
22532 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22533 		    SD_PATH_STANDARD);
22534 		mutex_enter(SD_MUTEX(un));
22535 		un->un_f_format_in_progress = FALSE;
22536 		mutex_exit(SD_MUTEX(un));
22537 	} else {
22538 		SD_TRACE(SD_LOG_IOCTL, un,
22539 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22540 		/*
22541 		 * It's OK to fall into here even if the ddi_copyin()
22542 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22543 		 * does this same copyin and will return the EFAULT
22544 		 * if it fails.
22545 		 */
22546 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22547 		    SD_PATH_STANDARD);
22548 	}
22549 #ifdef _MULTI_DATAMODEL
22550 	switch (model) {
22551 	case DDI_MODEL_ILP32:
22552 		/*
22553 		 * Convert back to ILP32 before copyout to the
22554 		 * application
22555 		 */
22556 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22557 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22558 			if (rval != 0) {
22559 				rval = EFAULT;
22560 			}
22561 		}
22562 		break;
22563 	case DDI_MODEL_NONE:
22564 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22565 			if (rval != 0) {
22566 				rval = EFAULT;
22567 			}
22568 		}
22569 		break;
22570 	}
22571 #else /* ! _MULTI_DATAMODE */
22572 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22573 		if (rval != 0) {
22574 			rval = EFAULT;
22575 		}
22576 	}
22577 #endif /* _MULTI_DATAMODE */
22578 done:
22579 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22580 
22581 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22582 
22583 	return (rval);
22584 }
22585 
22586 
22587 /*
22588  *    Function: sd_dkio_ctrl_info
22589  *
22590  * Description: This routine is the driver entry point for handling controller
22591  *		information ioctl requests (DKIOCINFO).
22592  *
22593  *   Arguments: dev  - the device number
22594  *		arg  - pointer to user provided dk_cinfo structure
22595  *		       specifying the controller type and attributes.
22596  *		flag - this argument is a pass through to ddi_copyxxx()
22597  *		       directly from the mode argument of ioctl().
22598  *
22599  * Return Code: 0
22600  *		EFAULT
22601  *		ENXIO
22602  */
22603 
22604 static int
22605 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22606 {
22607 	struct sd_lun	*un = NULL;
22608 	struct dk_cinfo	*info;
22609 	dev_info_t	*pdip;
22610 	int		lun, tgt;
22611 
22612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22613 		return (ENXIO);
22614 	}
22615 
22616 	info = (struct dk_cinfo *)
22617 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22618 
22619 	switch (un->un_ctype) {
22620 	case CTYPE_CDROM:
22621 		info->dki_ctype = DKC_CDROM;
22622 		break;
22623 	default:
22624 		info->dki_ctype = DKC_SCSI_CCS;
22625 		break;
22626 	}
22627 	pdip = ddi_get_parent(SD_DEVINFO(un));
22628 	info->dki_cnum = ddi_get_instance(pdip);
22629 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22630 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22631 	} else {
22632 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22633 		    DK_DEVLEN - 1);
22634 	}
22635 
22636 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22637 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22638 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22639 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22640 
22641 	/* Unit Information */
22642 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22643 	info->dki_slave = ((tgt << 3) | lun);
22644 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22645 	    DK_DEVLEN - 1);
22646 	info->dki_flags = DKI_FMTVOL;
22647 	info->dki_partition = SDPART(dev);
22648 
22649 	/* Max Transfer size of this device in blocks */
22650 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22651 	info->dki_addr = 0;
22652 	info->dki_space = 0;
22653 	info->dki_prio = 0;
22654 	info->dki_vec = 0;
22655 
22656 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22657 		kmem_free(info, sizeof (struct dk_cinfo));
22658 		return (EFAULT);
22659 	} else {
22660 		kmem_free(info, sizeof (struct dk_cinfo));
22661 		return (0);
22662 	}
22663 }
22664 
22665 
22666 /*
22667  *    Function: sd_get_media_info
22668  *
22669  * Description: This routine is the driver entry point for handling ioctl
22670  *		requests for the media type or command set profile used by the
22671  *		drive to operate on the media (DKIOCGMEDIAINFO).
22672  *
22673  *   Arguments: dev	- the device number
22674  *		arg	- pointer to user provided dk_minfo structure
22675  *			  specifying the media type, logical block size and
22676  *			  drive capacity.
22677  *		flag	- this argument is a pass through to ddi_copyxxx()
22678  *			  directly from the mode argument of ioctl().
22679  *
22680  * Return Code: 0
22681  *		EACCESS
22682  *		EFAULT
22683  *		ENXIO
22684  *		EIO
22685  */
22686 
22687 static int
22688 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22689 {
22690 	struct sd_lun		*un = NULL;
22691 	struct uscsi_cmd	com;
22692 	struct scsi_inquiry	*sinq;
22693 	struct dk_minfo		media_info;
22694 	u_longlong_t		media_capacity;
22695 	uint64_t		capacity;
22696 	uint_t			lbasize;
22697 	uchar_t			*out_data;
22698 	uchar_t			*rqbuf;
22699 	int			rval = 0;
22700 	int			rtn;
22701 
22702 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22703 	    (un->un_state == SD_STATE_OFFLINE)) {
22704 		return (ENXIO);
22705 	}
22706 
22707 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22708 
22709 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22710 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22711 
22712 	/* Issue a TUR to determine if the drive is ready with media present */
22713 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22714 	if (rval == ENXIO) {
22715 		goto done;
22716 	}
22717 
22718 	/* Now get configuration data */
22719 	if (ISCD(un)) {
22720 		media_info.dki_media_type = DK_CDROM;
22721 
22722 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22723 		if (un->un_f_mmc_cap == TRUE) {
22724 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22725 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22726 
22727 			if (rtn) {
22728 				/*
22729 				 * Failed for other than an illegal request
22730 				 * or command not supported
22731 				 */
22732 				if ((com.uscsi_status == STATUS_CHECK) &&
22733 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22734 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22735 					    (rqbuf[12] != 0x20)) {
22736 						rval = EIO;
22737 						goto done;
22738 					}
22739 				}
22740 			} else {
22741 				/*
22742 				 * The GET CONFIGURATION command succeeded
22743 				 * so set the media type according to the
22744 				 * returned data
22745 				 */
22746 				media_info.dki_media_type = out_data[6];
22747 				media_info.dki_media_type <<= 8;
22748 				media_info.dki_media_type |= out_data[7];
22749 			}
22750 		}
22751 	} else {
22752 		/*
22753 		 * The profile list is not available, so we attempt to identify
22754 		 * the media type based on the inquiry data
22755 		 */
22756 		sinq = un->un_sd->sd_inq;
22757 		if (sinq->inq_qual == 0) {
22758 			/* This is a direct access device */
22759 			media_info.dki_media_type = DK_FIXED_DISK;
22760 
22761 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22762 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22763 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22764 					media_info.dki_media_type = DK_ZIP;
22765 				} else if (
22766 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22767 					media_info.dki_media_type = DK_JAZ;
22768 				}
22769 			}
22770 		} else {
22771 			/* Not a CD or direct access so return unknown media */
22772 			media_info.dki_media_type = DK_UNKNOWN;
22773 		}
22774 	}
22775 
22776 	/* Now read the capacity so we can provide the lbasize and capacity */
22777 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22778 	    SD_PATH_DIRECT)) {
22779 	case 0:
22780 		break;
22781 	case EACCES:
22782 		rval = EACCES;
22783 		goto done;
22784 	default:
22785 		rval = EIO;
22786 		goto done;
22787 	}
22788 
22789 	media_info.dki_lbsize = lbasize;
22790 	media_capacity = capacity;
22791 
22792 	/*
22793 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22794 	 * un->un_sys_blocksize chunks. So we need to convert it into
22795 	 * cap.lbasize chunks.
22796 	 */
22797 	media_capacity *= un->un_sys_blocksize;
22798 	media_capacity /= lbasize;
22799 	media_info.dki_capacity = media_capacity;
22800 
22801 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22802 		rval = EFAULT;
22803 		/* Put goto. Anybody might add some code below in future */
22804 		goto done;
22805 	}
22806 done:
22807 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22808 	kmem_free(rqbuf, SENSE_LENGTH);
22809 	return (rval);
22810 }
22811 
22812 
22813 /*
22814  *    Function: sd_dkio_get_geometry
22815  *
22816  * Description: This routine is the driver entry point for handling user
22817  *		requests to get the device geometry (DKIOCGGEOM).
22818  *
22819  *   Arguments: dev  - the device number
22820  *		arg  - pointer to user provided dk_geom structure specifying
22821  *			the controller's notion of the current geometry.
22822  *		flag - this argument is a pass through to ddi_copyxxx()
22823  *		       directly from the mode argument of ioctl().
22824  *		geom_validated - flag indicating if the device geometry has been
22825  *				 previously validated in the sdioctl routine.
22826  *
22827  * Return Code: 0
22828  *		EFAULT
22829  *		ENXIO
22830  *		EIO
22831  */
22832 
22833 static int
22834 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22835 {
22836 	struct sd_lun	*un = NULL;
22837 	struct dk_geom	*tmp_geom = NULL;
22838 	int		rval = 0;
22839 
22840 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22841 		return (ENXIO);
22842 	}
22843 
22844 	if (geom_validated == FALSE) {
22845 		/*
22846 		 * sd_validate_geometry does not spin a disk up
22847 		 * if it was spun down. We need to make sure it
22848 		 * is ready.
22849 		 */
22850 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22851 			return (rval);
22852 		}
22853 		mutex_enter(SD_MUTEX(un));
22854 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22855 		mutex_exit(SD_MUTEX(un));
22856 	}
22857 	if (rval)
22858 		return (rval);
22859 
22860 	/*
22861 	 * It is possible that un_solaris_size is 0(uninitialized)
22862 	 * after sd_unit_attach. Reservation conflict may cause the
22863 	 * above situation. Thus, the zero check of un_solaris_size
22864 	 * should occur after the sd_validate_geometry() call.
22865 	 */
22866 #if defined(__i386) || defined(__amd64)
22867 	if (un->un_solaris_size == 0) {
22868 		return (EIO);
22869 	}
22870 #endif
22871 
22872 	/*
22873 	 * Make a local copy of the soft state geometry to avoid some potential
22874 	 * race conditions associated with holding the mutex and updating the
22875 	 * write_reinstruct value
22876 	 */
22877 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22878 	mutex_enter(SD_MUTEX(un));
22879 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22880 	mutex_exit(SD_MUTEX(un));
22881 
22882 	if (tmp_geom->dkg_write_reinstruct == 0) {
22883 		tmp_geom->dkg_write_reinstruct =
22884 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22885 		    sd_rot_delay) / (int)60000);
22886 	}
22887 
22888 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22889 	    flag);
22890 	if (rval != 0) {
22891 		rval = EFAULT;
22892 	}
22893 
22894 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22895 	return (rval);
22896 
22897 }
22898 
22899 
22900 /*
22901  *    Function: sd_dkio_set_geometry
22902  *
22903  * Description: This routine is the driver entry point for handling user
22904  *		requests to set the device geometry (DKIOCSGEOM). The actual
22905  *		device geometry is not updated, just the driver "notion" of it.
22906  *
22907  *   Arguments: dev  - the device number
22908  *		arg  - pointer to user provided dk_geom structure used to set
22909  *			the controller's notion of the current geometry.
22910  *		flag - this argument is a pass through to ddi_copyxxx()
22911  *		       directly from the mode argument of ioctl().
22912  *
22913  * Return Code: 0
22914  *		EFAULT
22915  *		ENXIO
22916  *		EIO
22917  */
22918 
22919 static int
22920 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22921 {
22922 	struct sd_lun	*un = NULL;
22923 	struct dk_geom	*tmp_geom;
22924 	struct dk_map	*lp;
22925 	int		rval = 0;
22926 	int		i;
22927 
22928 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22929 		return (ENXIO);
22930 	}
22931 
22932 	/*
22933 	 * Make sure there is no reservation conflict on the lun.
22934 	 */
22935 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22936 		return (EACCES);
22937 	}
22938 
22939 #if defined(__i386) || defined(__amd64)
22940 	if (un->un_solaris_size == 0) {
22941 		return (EIO);
22942 	}
22943 #endif
22944 
22945 	/*
22946 	 * We need to copy the user specified geometry into local
22947 	 * storage and then update the softstate. We don't want to hold
22948 	 * the mutex and copyin directly from the user to the soft state
22949 	 */
22950 	tmp_geom = (struct dk_geom *)
22951 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22952 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22953 	if (rval != 0) {
22954 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22955 		return (EFAULT);
22956 	}
22957 
22958 	mutex_enter(SD_MUTEX(un));
22959 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22960 	for (i = 0; i < NDKMAP; i++) {
22961 		lp  = &un->un_map[i];
22962 		un->un_offset[i] =
22963 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22964 #if defined(__i386) || defined(__amd64)
22965 		un->un_offset[i] += un->un_solaris_offset;
22966 #endif
22967 	}
22968 	un->un_f_geometry_is_valid = FALSE;
22969 	mutex_exit(SD_MUTEX(un));
22970 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22971 
22972 	return (rval);
22973 }
22974 
22975 
22976 /*
22977  *    Function: sd_dkio_get_partition
22978  *
22979  * Description: This routine is the driver entry point for handling user
22980  *		requests to get the partition table (DKIOCGAPART).
22981  *
22982  *   Arguments: dev  - the device number
22983  *		arg  - pointer to user provided dk_allmap structure specifying
22984  *			the controller's notion of the current partition table.
22985  *		flag - this argument is a pass through to ddi_copyxxx()
22986  *		       directly from the mode argument of ioctl().
22987  *		geom_validated - flag indicating if the device geometry has been
22988  *				 previously validated in the sdioctl routine.
22989  *
22990  * Return Code: 0
22991  *		EFAULT
22992  *		ENXIO
22993  *		EIO
22994  */
22995 
22996 static int
22997 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22998 {
22999 	struct sd_lun	*un = NULL;
23000 	int		rval = 0;
23001 	int		size;
23002 
23003 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23004 		return (ENXIO);
23005 	}
23006 
23007 	/*
23008 	 * Make sure the geometry is valid before getting the partition
23009 	 * information.
23010 	 */
23011 	mutex_enter(SD_MUTEX(un));
23012 	if (geom_validated == FALSE) {
23013 		/*
23014 		 * sd_validate_geometry does not spin a disk up
23015 		 * if it was spun down. We need to make sure it
23016 		 * is ready before validating the geometry.
23017 		 */
23018 		mutex_exit(SD_MUTEX(un));
23019 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23020 			return (rval);
23021 		}
23022 		mutex_enter(SD_MUTEX(un));
23023 
23024 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23025 			mutex_exit(SD_MUTEX(un));
23026 			return (rval);
23027 		}
23028 	}
23029 	mutex_exit(SD_MUTEX(un));
23030 
23031 	/*
23032 	 * It is possible that un_solaris_size is 0(uninitialized)
23033 	 * after sd_unit_attach. Reservation conflict may cause the
23034 	 * above situation. Thus, the zero check of un_solaris_size
23035 	 * should occur after the sd_validate_geometry() call.
23036 	 */
23037 #if defined(__i386) || defined(__amd64)
23038 	if (un->un_solaris_size == 0) {
23039 		return (EIO);
23040 	}
23041 #endif
23042 
23043 #ifdef _MULTI_DATAMODEL
23044 	switch (ddi_model_convert_from(flag & FMODELS)) {
23045 	case DDI_MODEL_ILP32: {
23046 		struct dk_map32 dk_map32[NDKMAP];
23047 		int		i;
23048 
23049 		for (i = 0; i < NDKMAP; i++) {
23050 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
23051 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23052 		}
23053 		size = NDKMAP * sizeof (struct dk_map32);
23054 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
23055 		if (rval != 0) {
23056 			rval = EFAULT;
23057 		}
23058 		break;
23059 	}
23060 	case DDI_MODEL_NONE:
23061 		size = NDKMAP * sizeof (struct dk_map);
23062 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23063 		if (rval != 0) {
23064 			rval = EFAULT;
23065 		}
23066 		break;
23067 	}
23068 #else /* ! _MULTI_DATAMODEL */
23069 	size = NDKMAP * sizeof (struct dk_map);
23070 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23071 	if (rval != 0) {
23072 		rval = EFAULT;
23073 	}
23074 #endif /* _MULTI_DATAMODEL */
23075 	return (rval);
23076 }
23077 
23078 
23079 /*
23080  *    Function: sd_dkio_set_partition
23081  *
23082  * Description: This routine is the driver entry point for handling user
23083  *		requests to set the partition table (DKIOCSAPART). The actual
23084  *		device partition is not updated.
23085  *
23086  *   Arguments: dev  - the device number
23087  *		arg  - pointer to user provided dk_allmap structure used to set
23088  *			the controller's notion of the partition table.
23089  *		flag - this argument is a pass through to ddi_copyxxx()
23090  *		       directly from the mode argument of ioctl().
23091  *
23092  * Return Code: 0
23093  *		EINVAL
23094  *		EFAULT
23095  *		ENXIO
23096  *		EIO
23097  */
23098 
23099 static int
23100 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
23101 {
23102 	struct sd_lun	*un = NULL;
23103 	struct dk_map	dk_map[NDKMAP];
23104 	struct dk_map	*lp;
23105 	int		rval = 0;
23106 	int		size;
23107 	int		i;
23108 #if defined(_SUNOS_VTOC_16)
23109 	struct dkl_partition	*vp;
23110 #endif
23111 
23112 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23113 		return (ENXIO);
23114 	}
23115 
23116 	/*
23117 	 * Set the map for all logical partitions.  We lock
23118 	 * the priority just to make sure an interrupt doesn't
23119 	 * come in while the map is half updated.
23120 	 */
23121 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
23122 	mutex_enter(SD_MUTEX(un));
23123 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23124 		mutex_exit(SD_MUTEX(un));
23125 		return (ENOTSUP);
23126 	}
23127 	mutex_exit(SD_MUTEX(un));
23128 
23129 	/*
23130 	 * Make sure there is no reservation conflict on the lun.
23131 	 */
23132 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
23133 		return (EACCES);
23134 	}
23135 
23136 #if defined(__i386) || defined(__amd64)
23137 	if (un->un_solaris_size == 0) {
23138 		return (EIO);
23139 	}
23140 #endif
23141 
23142 #ifdef _MULTI_DATAMODEL
23143 	switch (ddi_model_convert_from(flag & FMODELS)) {
23144 	case DDI_MODEL_ILP32: {
23145 		struct dk_map32 dk_map32[NDKMAP];
23146 
23147 		size = NDKMAP * sizeof (struct dk_map32);
23148 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
23149 		if (rval != 0) {
23150 			return (EFAULT);
23151 		}
23152 		for (i = 0; i < NDKMAP; i++) {
23153 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
23154 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
23155 		}
23156 		break;
23157 	}
23158 	case DDI_MODEL_NONE:
23159 		size = NDKMAP * sizeof (struct dk_map);
23160 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
23161 		if (rval != 0) {
23162 			return (EFAULT);
23163 		}
23164 		break;
23165 	}
23166 #else /* ! _MULTI_DATAMODEL */
23167 	size = NDKMAP * sizeof (struct dk_map);
23168 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
23169 	if (rval != 0) {
23170 		return (EFAULT);
23171 	}
23172 #endif /* _MULTI_DATAMODEL */
23173 
23174 	mutex_enter(SD_MUTEX(un));
23175 	/* Note: The size used in this bcopy is set based upon the data model */
23176 	bcopy(dk_map, un->un_map, size);
23177 #if defined(_SUNOS_VTOC_16)
23178 	vp = (struct dkl_partition *)&(un->un_vtoc);
23179 #endif	/* defined(_SUNOS_VTOC_16) */
23180 	for (i = 0; i < NDKMAP; i++) {
23181 		lp  = &un->un_map[i];
23182 		un->un_offset[i] =
23183 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23184 #if defined(_SUNOS_VTOC_16)
23185 		vp->p_start = un->un_offset[i];
23186 		vp->p_size = lp->dkl_nblk;
23187 		vp++;
23188 #endif	/* defined(_SUNOS_VTOC_16) */
23189 #if defined(__i386) || defined(__amd64)
23190 		un->un_offset[i] += un->un_solaris_offset;
23191 #endif
23192 	}
23193 	mutex_exit(SD_MUTEX(un));
23194 	return (rval);
23195 }
23196 
23197 
23198 /*
23199  *    Function: sd_dkio_get_vtoc
23200  *
23201  * Description: This routine is the driver entry point for handling user
23202  *		requests to get the current volume table of contents
23203  *		(DKIOCGVTOC).
23204  *
23205  *   Arguments: dev  - the device number
23206  *		arg  - pointer to user provided vtoc structure specifying
23207  *			the current vtoc.
23208  *		flag - this argument is a pass through to ddi_copyxxx()
23209  *		       directly from the mode argument of ioctl().
23210  *		geom_validated - flag indicating if the device geometry has been
23211  *				 previously validated in the sdioctl routine.
23212  *
23213  * Return Code: 0
23214  *		EFAULT
23215  *		ENXIO
23216  *		EIO
23217  */
23218 
23219 static int
23220 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
23221 {
23222 	struct sd_lun	*un = NULL;
23223 #if defined(_SUNOS_VTOC_8)
23224 	struct vtoc	user_vtoc;
23225 #endif	/* defined(_SUNOS_VTOC_8) */
23226 	int		rval = 0;
23227 
23228 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23229 		return (ENXIO);
23230 	}
23231 
23232 	mutex_enter(SD_MUTEX(un));
23233 	if (geom_validated == FALSE) {
23234 		/*
23235 		 * sd_validate_geometry does not spin a disk up
23236 		 * if it was spun down. We need to make sure it
23237 		 * is ready.
23238 		 */
23239 		mutex_exit(SD_MUTEX(un));
23240 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23241 			return (rval);
23242 		}
23243 		mutex_enter(SD_MUTEX(un));
23244 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23245 			mutex_exit(SD_MUTEX(un));
23246 			return (rval);
23247 		}
23248 	}
23249 
23250 #if defined(_SUNOS_VTOC_8)
23251 	sd_build_user_vtoc(un, &user_vtoc);
23252 	mutex_exit(SD_MUTEX(un));
23253 
23254 #ifdef _MULTI_DATAMODEL
23255 	switch (ddi_model_convert_from(flag & FMODELS)) {
23256 	case DDI_MODEL_ILP32: {
23257 		struct vtoc32 user_vtoc32;
23258 
23259 		vtoctovtoc32(user_vtoc, user_vtoc32);
23260 		if (ddi_copyout(&user_vtoc32, (void *)arg,
23261 		    sizeof (struct vtoc32), flag)) {
23262 			return (EFAULT);
23263 		}
23264 		break;
23265 	}
23266 
23267 	case DDI_MODEL_NONE:
23268 		if (ddi_copyout(&user_vtoc, (void *)arg,
23269 		    sizeof (struct vtoc), flag)) {
23270 			return (EFAULT);
23271 		}
23272 		break;
23273 	}
23274 #else /* ! _MULTI_DATAMODEL */
23275 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
23276 		return (EFAULT);
23277 	}
23278 #endif /* _MULTI_DATAMODEL */
23279 
23280 #elif defined(_SUNOS_VTOC_16)
23281 	mutex_exit(SD_MUTEX(un));
23282 
23283 #ifdef _MULTI_DATAMODEL
23284 	/*
23285 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
23286 	 * 32-bit to maintain compatibility with existing on-disk
23287 	 * structures.  Thus, we need to convert the structure when copying
23288 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
23289 	 * program.  If the target is a 32-bit program, then no conversion
23290 	 * is necessary.
23291 	 */
23292 	/* LINTED: logical expression always true: op "||" */
23293 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
23294 	switch (ddi_model_convert_from(flag & FMODELS)) {
23295 	case DDI_MODEL_ILP32:
23296 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
23297 		    sizeof (un->un_vtoc), flag)) {
23298 			return (EFAULT);
23299 		}
23300 		break;
23301 
23302 	case DDI_MODEL_NONE: {
23303 		struct vtoc user_vtoc;
23304 
23305 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
23306 		if (ddi_copyout(&user_vtoc, (void *)arg,
23307 		    sizeof (struct vtoc), flag)) {
23308 			return (EFAULT);
23309 		}
23310 		break;
23311 	}
23312 	}
23313 #else /* ! _MULTI_DATAMODEL */
23314 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
23315 	    flag)) {
23316 		return (EFAULT);
23317 	}
23318 #endif /* _MULTI_DATAMODEL */
23319 #else
23320 #error "No VTOC format defined."
23321 #endif
23322 
23323 	return (rval);
23324 }
23325 
23326 static int
23327 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
23328 {
23329 	struct sd_lun	*un = NULL;
23330 	dk_efi_t	user_efi;
23331 	int		rval = 0;
23332 	void		*buffer;
23333 
23334 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23335 		return (ENXIO);
23336 
23337 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23338 		return (EFAULT);
23339 
23340 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23341 
23342 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23343 	    (user_efi.dki_length > un->un_max_xfer_size))
23344 		return (EINVAL);
23345 
23346 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23347 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
23348 	    user_efi.dki_lba, SD_PATH_DIRECT);
23349 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
23350 	    user_efi.dki_length, flag) != 0)
23351 		rval = EFAULT;
23352 
23353 	kmem_free(buffer, user_efi.dki_length);
23354 	return (rval);
23355 }
23356 
23357 /*
23358  *    Function: sd_build_user_vtoc
23359  *
23360  * Description: This routine populates a pass by reference variable with the
23361  *		current volume table of contents.
23362  *
23363  *   Arguments: un - driver soft state (unit) structure
23364  *		user_vtoc - pointer to vtoc structure to be populated
23365  */
23366 
23367 static void
23368 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23369 {
23370 	struct dk_map2		*lpart;
23371 	struct dk_map		*lmap;
23372 	struct partition	*vpart;
23373 	int			nblks;
23374 	int			i;
23375 
23376 	ASSERT(mutex_owned(SD_MUTEX(un)));
23377 
23378 	/*
23379 	 * Return vtoc structure fields in the provided VTOC area, addressed
23380 	 * by *vtoc.
23381 	 */
23382 	bzero(user_vtoc, sizeof (struct vtoc));
23383 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23384 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23385 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23386 	user_vtoc->v_sanity	= VTOC_SANE;
23387 	user_vtoc->v_version	= un->un_vtoc.v_version;
23388 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23389 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23390 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23391 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23392 	    sizeof (un->un_vtoc.v_reserved));
23393 	/*
23394 	 * Convert partitioning information.
23395 	 *
23396 	 * Note the conversion from starting cylinder number
23397 	 * to starting sector number.
23398 	 */
23399 	lmap = un->un_map;
23400 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23401 	vpart = user_vtoc->v_part;
23402 
23403 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23404 
23405 	for (i = 0; i < V_NUMPAR; i++) {
23406 		vpart->p_tag	= lpart->p_tag;
23407 		vpart->p_flag	= lpart->p_flag;
23408 		vpart->p_start	= lmap->dkl_cylno * nblks;
23409 		vpart->p_size	= lmap->dkl_nblk;
23410 		lmap++;
23411 		lpart++;
23412 		vpart++;
23413 
23414 		/* (4364927) */
23415 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23416 	}
23417 
23418 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23419 }
23420 
23421 static int
23422 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23423 {
23424 	struct sd_lun		*un = NULL;
23425 	struct partition64	p64;
23426 	int			rval = 0;
23427 	uint_t			nparts;
23428 	efi_gpe_t		*partitions;
23429 	efi_gpt_t		*buffer;
23430 	diskaddr_t		gpe_lba;
23431 
23432 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23433 		return (ENXIO);
23434 	}
23435 
23436 	if (ddi_copyin((const void *)arg, &p64,
23437 	    sizeof (struct partition64), flag)) {
23438 		return (EFAULT);
23439 	}
23440 
23441 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23442 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23443 		1, SD_PATH_DIRECT);
23444 	if (rval != 0)
23445 		goto done_error;
23446 
23447 	sd_swap_efi_gpt(buffer);
23448 
23449 	if ((rval = sd_validate_efi(buffer)) != 0)
23450 		goto done_error;
23451 
23452 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23453 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23454 	if (p64.p_partno > nparts) {
23455 		/* couldn't find it */
23456 		rval = ESRCH;
23457 		goto done_error;
23458 	}
23459 	/*
23460 	 * if we're dealing with a partition that's out of the normal
23461 	 * 16K block, adjust accordingly
23462 	 */
23463 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23464 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23465 			gpe_lba, SD_PATH_DIRECT);
23466 	if (rval) {
23467 		goto done_error;
23468 	}
23469 	partitions = (efi_gpe_t *)buffer;
23470 
23471 	sd_swap_efi_gpe(nparts, partitions);
23472 
23473 	partitions += p64.p_partno;
23474 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23475 	    sizeof (struct uuid));
23476 	p64.p_start = partitions->efi_gpe_StartingLBA;
23477 	p64.p_size = partitions->efi_gpe_EndingLBA -
23478 			p64.p_start + 1;
23479 
23480 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23481 		rval = EFAULT;
23482 
23483 done_error:
23484 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23485 	return (rval);
23486 }
23487 
23488 
23489 /*
23490  *    Function: sd_dkio_set_vtoc
23491  *
23492  * Description: This routine is the driver entry point for handling user
23493  *		requests to set the current volume table of contents
23494  *		(DKIOCSVTOC).
23495  *
23496  *   Arguments: dev  - the device number
23497  *		arg  - pointer to user provided vtoc structure used to set the
23498  *			current vtoc.
23499  *		flag - this argument is a pass through to ddi_copyxxx()
23500  *		       directly from the mode argument of ioctl().
23501  *
23502  * Return Code: 0
23503  *		EFAULT
23504  *		ENXIO
23505  *		EINVAL
23506  *		ENOTSUP
23507  */
23508 
23509 static int
23510 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23511 {
23512 	struct sd_lun	*un = NULL;
23513 	struct vtoc	user_vtoc;
23514 	int		rval = 0;
23515 
23516 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23517 		return (ENXIO);
23518 	}
23519 
23520 #if defined(__i386) || defined(__amd64)
23521 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23522 		return (EINVAL);
23523 	}
23524 #endif
23525 
23526 #ifdef _MULTI_DATAMODEL
23527 	switch (ddi_model_convert_from(flag & FMODELS)) {
23528 	case DDI_MODEL_ILP32: {
23529 		struct vtoc32 user_vtoc32;
23530 
23531 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23532 		    sizeof (struct vtoc32), flag)) {
23533 			return (EFAULT);
23534 		}
23535 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23536 		break;
23537 	}
23538 
23539 	case DDI_MODEL_NONE:
23540 		if (ddi_copyin((const void *)arg, &user_vtoc,
23541 		    sizeof (struct vtoc), flag)) {
23542 			return (EFAULT);
23543 		}
23544 		break;
23545 	}
23546 #else /* ! _MULTI_DATAMODEL */
23547 	if (ddi_copyin((const void *)arg, &user_vtoc,
23548 	    sizeof (struct vtoc), flag)) {
23549 		return (EFAULT);
23550 	}
23551 #endif /* _MULTI_DATAMODEL */
23552 
23553 	mutex_enter(SD_MUTEX(un));
23554 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23555 		mutex_exit(SD_MUTEX(un));
23556 		return (ENOTSUP);
23557 	}
23558 	if (un->un_g.dkg_ncyl == 0) {
23559 		mutex_exit(SD_MUTEX(un));
23560 		return (EINVAL);
23561 	}
23562 
23563 	mutex_exit(SD_MUTEX(un));
23564 	sd_clear_efi(un);
23565 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23566 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23567 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23568 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23569 	    un->un_node_type, NULL);
23570 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23571 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23572 	    un->un_node_type, NULL);
23573 	mutex_enter(SD_MUTEX(un));
23574 
23575 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23576 		if ((rval = sd_write_label(dev)) == 0) {
23577 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23578 			    != 0) {
23579 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23580 				    "sd_dkio_set_vtoc: "
23581 				    "Failed validate geometry\n");
23582 			}
23583 		}
23584 	}
23585 
23586 	/*
23587 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23588 	 * devid anyway, what can it hurt? Also preserve the device id by
23589 	 * writing to the disk acyl for the case where a devid has been
23590 	 * fabricated.
23591 	 */
23592 	if (un->un_f_devid_supported &&
23593 	    (un->un_f_opt_fab_devid == TRUE)) {
23594 		if (un->un_devid == NULL) {
23595 			sd_register_devid(un, SD_DEVINFO(un),
23596 			    SD_TARGET_IS_UNRESERVED);
23597 		} else {
23598 			/*
23599 			 * The device id for this disk has been
23600 			 * fabricated. Fabricated device id's are
23601 			 * managed by storing them in the last 2
23602 			 * available sectors on the drive. The device
23603 			 * id must be preserved by writing it back out
23604 			 * to this location.
23605 			 */
23606 			if (sd_write_deviceid(un) != 0) {
23607 				ddi_devid_free(un->un_devid);
23608 				un->un_devid = NULL;
23609 			}
23610 		}
23611 	}
23612 	mutex_exit(SD_MUTEX(un));
23613 	return (rval);
23614 }
23615 
23616 
23617 /*
23618  *    Function: sd_build_label_vtoc
23619  *
23620  * Description: This routine updates the driver soft state current volume table
23621  *		of contents based on a user specified vtoc.
23622  *
23623  *   Arguments: un - driver soft state (unit) structure
23624  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23625  *			    to update the driver soft state.
23626  *
23627  * Return Code: 0
23628  *		EINVAL
23629  */
23630 
23631 static int
23632 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23633 {
23634 	struct dk_map		*lmap;
23635 	struct partition	*vpart;
23636 	int			nblks;
23637 #if defined(_SUNOS_VTOC_8)
23638 	int			ncyl;
23639 	struct dk_map2		*lpart;
23640 #endif	/* defined(_SUNOS_VTOC_8) */
23641 	int			i;
23642 
23643 	ASSERT(mutex_owned(SD_MUTEX(un)));
23644 
23645 	/* Sanity-check the vtoc */
23646 	if (user_vtoc->v_sanity != VTOC_SANE ||
23647 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23648 	    user_vtoc->v_nparts != V_NUMPAR) {
23649 		return (EINVAL);
23650 	}
23651 
23652 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23653 	if (nblks == 0) {
23654 		return (EINVAL);
23655 	}
23656 
23657 #if defined(_SUNOS_VTOC_8)
23658 	vpart = user_vtoc->v_part;
23659 	for (i = 0; i < V_NUMPAR; i++) {
23660 		if ((vpart->p_start % nblks) != 0) {
23661 			return (EINVAL);
23662 		}
23663 		ncyl = vpart->p_start / nblks;
23664 		ncyl += vpart->p_size / nblks;
23665 		if ((vpart->p_size % nblks) != 0) {
23666 			ncyl++;
23667 		}
23668 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23669 			return (EINVAL);
23670 		}
23671 		vpart++;
23672 	}
23673 #endif	/* defined(_SUNOS_VTOC_8) */
23674 
23675 	/* Put appropriate vtoc structure fields into the disk label */
23676 #if defined(_SUNOS_VTOC_16)
23677 	/*
23678 	 * The vtoc is always a 32bit data structure to maintain the
23679 	 * on-disk format. Convert "in place" instead of bcopying it.
23680 	 */
23681 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23682 
23683 	/*
23684 	 * in the 16-slice vtoc, starting sectors are expressed in
23685 	 * numbers *relative* to the start of the Solaris fdisk partition.
23686 	 */
23687 	lmap = un->un_map;
23688 	vpart = user_vtoc->v_part;
23689 
23690 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23691 		lmap->dkl_cylno = vpart->p_start / nblks;
23692 		lmap->dkl_nblk = vpart->p_size;
23693 	}
23694 
23695 #elif defined(_SUNOS_VTOC_8)
23696 
23697 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23698 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23699 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23700 
23701 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23702 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23703 
23704 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23705 
23706 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23707 
23708 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23709 	    sizeof (un->un_vtoc.v_reserved));
23710 
23711 	/*
23712 	 * Note the conversion from starting sector number
23713 	 * to starting cylinder number.
23714 	 * Return error if division results in a remainder.
23715 	 */
23716 	lmap = un->un_map;
23717 	lpart = un->un_vtoc.v_part;
23718 	vpart = user_vtoc->v_part;
23719 
23720 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23721 		lpart->p_tag  = vpart->p_tag;
23722 		lpart->p_flag = vpart->p_flag;
23723 		lmap->dkl_cylno = vpart->p_start / nblks;
23724 		lmap->dkl_nblk = vpart->p_size;
23725 
23726 		lmap++;
23727 		lpart++;
23728 		vpart++;
23729 
23730 		/* (4387723) */
23731 #ifdef _LP64
23732 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23733 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23734 		} else {
23735 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23736 		}
23737 #else
23738 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23739 #endif
23740 	}
23741 
23742 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23743 #else
23744 #error "No VTOC format defined."
23745 #endif
23746 	return (0);
23747 }
23748 
23749 /*
23750  *    Function: sd_clear_efi
23751  *
23752  * Description: This routine clears all EFI labels.
23753  *
23754  *   Arguments: un - driver soft state (unit) structure
23755  *
23756  * Return Code: void
23757  */
23758 
23759 static void
23760 sd_clear_efi(struct sd_lun *un)
23761 {
23762 	efi_gpt_t	*gpt;
23763 	uint_t		lbasize;
23764 	uint64_t	cap;
23765 	int rval;
23766 
23767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23768 
23769 	mutex_enter(SD_MUTEX(un));
23770 	un->un_reserved = -1;
23771 	mutex_exit(SD_MUTEX(un));
23772 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23773 
23774 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23775 		goto done;
23776 	}
23777 
23778 	sd_swap_efi_gpt(gpt);
23779 	rval = sd_validate_efi(gpt);
23780 	if (rval == 0) {
23781 		/* clear primary */
23782 		bzero(gpt, sizeof (efi_gpt_t));
23783 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23784 			SD_PATH_DIRECT))) {
23785 			SD_INFO(SD_LOG_IO_PARTITION, un,
23786 				"sd_clear_efi: clear primary label failed\n");
23787 		}
23788 	}
23789 	/* the backup */
23790 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23791 	    SD_PATH_DIRECT);
23792 	if (rval) {
23793 		goto done;
23794 	}
23795 	/*
23796 	 * The MMC standard allows READ CAPACITY to be
23797 	 * inaccurate by a bounded amount (in the interest of
23798 	 * response latency).  As a result, failed READs are
23799 	 * commonplace (due to the reading of metadata and not
23800 	 * data). Depending on the per-Vendor/drive Sense data,
23801 	 * the failed READ can cause many (unnecessary) retries.
23802 	 */
23803 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23804 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23805 		SD_PATH_DIRECT)) != 0) {
23806 		goto done;
23807 	}
23808 	sd_swap_efi_gpt(gpt);
23809 	rval = sd_validate_efi(gpt);
23810 	if (rval == 0) {
23811 		/* clear backup */
23812 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23813 			cap-1);
23814 		bzero(gpt, sizeof (efi_gpt_t));
23815 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23816 		    cap-1, SD_PATH_DIRECT))) {
23817 			SD_INFO(SD_LOG_IO_PARTITION, un,
23818 				"sd_clear_efi: clear backup label failed\n");
23819 		}
23820 	} else {
23821 		/*
23822 		 * Refer to comments related to off-by-1 at the
23823 		 * header of this file
23824 		 */
23825 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23826 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23827 			SD_PATH_DIRECT)) != 0) {
23828 			goto done;
23829 		}
23830 		sd_swap_efi_gpt(gpt);
23831 		rval = sd_validate_efi(gpt);
23832 		if (rval == 0) {
23833 			/* clear legacy backup EFI label */
23834 			SD_TRACE(SD_LOG_IOCTL, un,
23835 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23836 			bzero(gpt, sizeof (efi_gpt_t));
23837 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23838 			    cap-2, SD_PATH_DIRECT))) {
23839 				SD_INFO(SD_LOG_IO_PARTITION,
23840 				    un, "sd_clear_efi: "
23841 				    " clear legacy backup label failed\n");
23842 			}
23843 		}
23844 	}
23845 
23846 done:
23847 	kmem_free(gpt, sizeof (efi_gpt_t));
23848 }
23849 
23850 /*
23851  *    Function: sd_set_vtoc
23852  *
23853  * Description: This routine writes data to the appropriate positions
23854  *
23855  *   Arguments: un - driver soft state (unit) structure
23856  *              dkl  - the data to be written
23857  *
23858  * Return: void
23859  */
23860 
23861 static int
23862 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23863 {
23864 	void			*shadow_buf;
23865 	uint_t			label_addr;
23866 	int			sec;
23867 	int			blk;
23868 	int			head;
23869 	int			cyl;
23870 	int			rval;
23871 
23872 #if defined(__i386) || defined(__amd64)
23873 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23874 #else
23875 	/* Write the primary label at block 0 of the solaris partition. */
23876 	label_addr = 0;
23877 #endif
23878 
23879 	if (NOT_DEVBSIZE(un)) {
23880 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23881 		/*
23882 		 * Read the target's first block.
23883 		 */
23884 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23885 		    un->un_tgt_blocksize, label_addr,
23886 		    SD_PATH_STANDARD)) != 0) {
23887 			goto exit;
23888 		}
23889 		/*
23890 		 * Copy the contents of the label into the shadow buffer
23891 		 * which is of the size of target block size.
23892 		 */
23893 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23894 	}
23895 
23896 	/* Write the primary label */
23897 	if (NOT_DEVBSIZE(un)) {
23898 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23899 		    label_addr, SD_PATH_STANDARD);
23900 	} else {
23901 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23902 		    label_addr, SD_PATH_STANDARD);
23903 	}
23904 	if (rval != 0) {
23905 		return (rval);
23906 	}
23907 
23908 	/*
23909 	 * Calculate where the backup labels go.  They are always on
23910 	 * the last alternate cylinder, but some older drives put them
23911 	 * on head 2 instead of the last head.	They are always on the
23912 	 * first 5 odd sectors of the appropriate track.
23913 	 *
23914 	 * We have no choice at this point, but to believe that the
23915 	 * disk label is valid.	 Use the geometry of the disk
23916 	 * as described in the label.
23917 	 */
23918 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23919 	head = dkl->dkl_nhead - 1;
23920 
23921 	/*
23922 	 * Write and verify the backup labels. Make sure we don't try to
23923 	 * write past the last cylinder.
23924 	 */
23925 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23926 		blk = (daddr_t)(
23927 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23928 		    (head * dkl->dkl_nsect) + sec);
23929 #if defined(__i386) || defined(__amd64)
23930 		blk += un->un_solaris_offset;
23931 #endif
23932 		if (NOT_DEVBSIZE(un)) {
23933 			uint64_t	tblk;
23934 			/*
23935 			 * Need to read the block first for read modify write.
23936 			 */
23937 			tblk = (uint64_t)blk;
23938 			blk = (int)((tblk * un->un_sys_blocksize) /
23939 			    un->un_tgt_blocksize);
23940 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23941 			    un->un_tgt_blocksize, blk,
23942 			    SD_PATH_STANDARD)) != 0) {
23943 				goto exit;
23944 			}
23945 			/*
23946 			 * Modify the shadow buffer with the label.
23947 			 */
23948 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23949 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23950 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23951 		} else {
23952 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23953 			    blk, SD_PATH_STANDARD);
23954 			SD_INFO(SD_LOG_IO_PARTITION, un,
23955 			"sd_set_vtoc: wrote backup label %d\n", blk);
23956 		}
23957 		if (rval != 0) {
23958 			goto exit;
23959 		}
23960 	}
23961 exit:
23962 	if (NOT_DEVBSIZE(un)) {
23963 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23964 	}
23965 	return (rval);
23966 }
23967 
23968 /*
23969  *    Function: sd_clear_vtoc
23970  *
23971  * Description: This routine clears out the VTOC labels.
23972  *
23973  *   Arguments: un - driver soft state (unit) structure
23974  *
23975  * Return: void
23976  */
23977 
23978 static void
23979 sd_clear_vtoc(struct sd_lun *un)
23980 {
23981 	struct dk_label		*dkl;
23982 
23983 	mutex_exit(SD_MUTEX(un));
23984 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23985 	mutex_enter(SD_MUTEX(un));
23986 	/*
23987 	 * sd_set_vtoc uses these fields in order to figure out
23988 	 * where to overwrite the backup labels
23989 	 */
23990 	dkl->dkl_apc    = un->un_g.dkg_apc;
23991 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23992 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23993 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23994 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23995 	mutex_exit(SD_MUTEX(un));
23996 	(void) sd_set_vtoc(un, dkl);
23997 	kmem_free(dkl, sizeof (struct dk_label));
23998 
23999 	mutex_enter(SD_MUTEX(un));
24000 }
24001 
24002 /*
24003  *    Function: sd_write_label
24004  *
24005  * Description: This routine will validate and write the driver soft state vtoc
24006  *		contents to the device.
24007  *
24008  *   Arguments: dev - the device number
24009  *
24010  * Return Code: the code returned by sd_send_scsi_cmd()
24011  *		0
24012  *		EINVAL
24013  *		ENXIO
24014  *		ENOMEM
24015  */
24016 
24017 static int
24018 sd_write_label(dev_t dev)
24019 {
24020 	struct sd_lun		*un;
24021 	struct dk_label		*dkl;
24022 	short			sum;
24023 	short			*sp;
24024 	int			i;
24025 	int			rval;
24026 
24027 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24028 	    (un->un_state == SD_STATE_OFFLINE)) {
24029 		return (ENXIO);
24030 	}
24031 	ASSERT(mutex_owned(SD_MUTEX(un)));
24032 	mutex_exit(SD_MUTEX(un));
24033 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
24034 	mutex_enter(SD_MUTEX(un));
24035 
24036 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
24037 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
24038 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
24039 	dkl->dkl_apc	= un->un_g.dkg_apc;
24040 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
24041 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
24042 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
24043 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
24044 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
24045 
24046 #if defined(_SUNOS_VTOC_8)
24047 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
24048 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
24049 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
24050 	for (i = 0; i < NDKMAP; i++) {
24051 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
24052 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
24053 	}
24054 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
24055 #elif defined(_SUNOS_VTOC_16)
24056 	dkl->dkl_skew	= un->un_dkg_skew;
24057 #else
24058 #error "No VTOC format defined."
24059 #endif
24060 
24061 	dkl->dkl_magic			= DKL_MAGIC;
24062 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
24063 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
24064 
24065 	/* Construct checksum for the new disk label */
24066 	sum = 0;
24067 	sp = (short *)dkl;
24068 	i = sizeof (struct dk_label) / sizeof (short);
24069 	while (i--) {
24070 		sum ^= *sp++;
24071 	}
24072 	dkl->dkl_cksum = sum;
24073 
24074 	mutex_exit(SD_MUTEX(un));
24075 
24076 	rval = sd_set_vtoc(un, dkl);
24077 exit:
24078 	kmem_free(dkl, sizeof (struct dk_label));
24079 	mutex_enter(SD_MUTEX(un));
24080 	return (rval);
24081 }
24082 
24083 static int
24084 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
24085 {
24086 	struct sd_lun	*un = NULL;
24087 	dk_efi_t	user_efi;
24088 	int		rval = 0;
24089 	void		*buffer;
24090 	int		valid_efi;
24091 
24092 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
24093 		return (ENXIO);
24094 
24095 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
24096 		return (EFAULT);
24097 
24098 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
24099 
24100 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
24101 	    (user_efi.dki_length > un->un_max_xfer_size))
24102 		return (EINVAL);
24103 
24104 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
24105 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
24106 		rval = EFAULT;
24107 	} else {
24108 		/*
24109 		 * let's clear the vtoc labels and clear the softstate
24110 		 * vtoc.
24111 		 */
24112 		mutex_enter(SD_MUTEX(un));
24113 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
24114 			SD_TRACE(SD_LOG_IO_PARTITION, un,
24115 				"sd_dkio_set_efi: CLEAR VTOC\n");
24116 			sd_clear_vtoc(un);
24117 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24118 			mutex_exit(SD_MUTEX(un));
24119 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
24120 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
24121 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
24122 			    S_IFBLK,
24123 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24124 			    un->un_node_type, NULL);
24125 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
24126 			    S_IFCHR,
24127 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24128 			    un->un_node_type, NULL);
24129 		} else
24130 			mutex_exit(SD_MUTEX(un));
24131 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
24132 		    user_efi.dki_lba, SD_PATH_DIRECT);
24133 		if (rval == 0) {
24134 			mutex_enter(SD_MUTEX(un));
24135 
24136 			/*
24137 			 * Set the un_reserved for valid efi label.
24138 			 * Function clear_efi in fdisk and efi_write in
24139 			 * libefi both change efi label on disk in 3 steps
24140 			 * 1. Change primary gpt and gpe
24141 			 * 2. Change backup gpe
24142 			 * 3. Change backup gpt, which is one block
24143 			 * We only reread the efi label after the 3rd step,
24144 			 * or there will be warning "primary label corrupt".
24145 			 */
24146 			if (user_efi.dki_length == un->un_tgt_blocksize) {
24147 				un->un_f_geometry_is_valid = FALSE;
24148 				valid_efi = sd_use_efi(un, SD_PATH_DIRECT);
24149 				if ((valid_efi == 0) &&
24150 				    un->un_f_devid_supported &&
24151 				    (un->un_f_opt_fab_devid == TRUE)) {
24152 					if (un->un_devid == NULL) {
24153 						sd_register_devid(un,
24154 						    SD_DEVINFO(un),
24155 						    SD_TARGET_IS_UNRESERVED);
24156 					} else {
24157 						/*
24158 						 * The device id for this disk
24159 						 * has been fabricated. The
24160 						 * device id must be preserved
24161 						 * by writing it back out to
24162 						 * disk.
24163 						 */
24164 						if (sd_write_deviceid(un)
24165 						    != 0) {
24166 							ddi_devid_free(
24167 							    un->un_devid);
24168 							un->un_devid = NULL;
24169 						}
24170 					}
24171 				}
24172 			}
24173 
24174 			mutex_exit(SD_MUTEX(un));
24175 		}
24176 	}
24177 	kmem_free(buffer, user_efi.dki_length);
24178 	return (rval);
24179 }
24180 
24181 /*
24182  *    Function: sd_dkio_get_mboot
24183  *
24184  * Description: This routine is the driver entry point for handling user
24185  *		requests to get the current device mboot (DKIOCGMBOOT)
24186  *
24187  *   Arguments: dev  - the device number
24188  *		arg  - pointer to user provided mboot structure specifying
24189  *			the current mboot.
24190  *		flag - this argument is a pass through to ddi_copyxxx()
24191  *		       directly from the mode argument of ioctl().
24192  *
24193  * Return Code: 0
24194  *		EINVAL
24195  *		EFAULT
24196  *		ENXIO
24197  */
24198 
24199 static int
24200 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
24201 {
24202 	struct sd_lun	*un;
24203 	struct mboot	*mboot;
24204 	int		rval;
24205 	size_t		buffer_size;
24206 
24207 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24208 	    (un->un_state == SD_STATE_OFFLINE)) {
24209 		return (ENXIO);
24210 	}
24211 
24212 	if (!un->un_f_mboot_supported || arg == NULL) {
24213 		return (EINVAL);
24214 	}
24215 
24216 	/*
24217 	 * Read the mboot block, located at absolute block 0 on the target.
24218 	 */
24219 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
24220 
24221 	SD_TRACE(SD_LOG_IO_PARTITION, un,
24222 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
24223 
24224 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
24225 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
24226 	    SD_PATH_STANDARD)) == 0) {
24227 		if (ddi_copyout(mboot, (void *)arg,
24228 		    sizeof (struct mboot), flag) != 0) {
24229 			rval = EFAULT;
24230 		}
24231 	}
24232 	kmem_free(mboot, buffer_size);
24233 	return (rval);
24234 }
24235 
24236 
24237 /*
24238  *    Function: sd_dkio_set_mboot
24239  *
24240  * Description: This routine is the driver entry point for handling user
24241  *		requests to validate and set the device master boot
24242  *		(DKIOCSMBOOT).
24243  *
24244  *   Arguments: dev  - the device number
24245  *		arg  - pointer to user provided mboot structure used to set the
24246  *			master boot.
24247  *		flag - this argument is a pass through to ddi_copyxxx()
24248  *		       directly from the mode argument of ioctl().
24249  *
24250  * Return Code: 0
24251  *		EINVAL
24252  *		EFAULT
24253  *		ENXIO
24254  */
24255 
24256 static int
24257 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
24258 {
24259 	struct sd_lun	*un = NULL;
24260 	struct mboot	*mboot = NULL;
24261 	int		rval;
24262 	ushort_t	magic;
24263 
24264 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24265 		return (ENXIO);
24266 	}
24267 
24268 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24269 
24270 	if (!un->un_f_mboot_supported) {
24271 		return (EINVAL);
24272 	}
24273 
24274 	if (arg == NULL) {
24275 		return (EINVAL);
24276 	}
24277 
24278 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
24279 
24280 	if (ddi_copyin((const void *)arg, mboot,
24281 	    sizeof (struct mboot), flag) != 0) {
24282 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24283 		return (EFAULT);
24284 	}
24285 
24286 	/* Is this really a master boot record? */
24287 	magic = LE_16(mboot->signature);
24288 	if (magic != MBB_MAGIC) {
24289 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24290 		return (EINVAL);
24291 	}
24292 
24293 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
24294 	    SD_PATH_STANDARD);
24295 
24296 	mutex_enter(SD_MUTEX(un));
24297 #if defined(__i386) || defined(__amd64)
24298 	if (rval == 0) {
24299 		/*
24300 		 * mboot has been written successfully.
24301 		 * update the fdisk and vtoc tables in memory
24302 		 */
24303 		rval = sd_update_fdisk_and_vtoc(un);
24304 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
24305 			mutex_exit(SD_MUTEX(un));
24306 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24307 			return (rval);
24308 		}
24309 	}
24310 
24311 #ifdef __lock_lint
24312 	sd_setup_default_geometry(un);
24313 #endif
24314 
24315 #else
24316 	if (rval == 0) {
24317 		/*
24318 		 * mboot has been written successfully.
24319 		 * set up the default geometry and VTOC
24320 		 */
24321 		if (un->un_blockcount <= DK_MAX_BLOCKS)
24322 			sd_setup_default_geometry(un);
24323 	}
24324 #endif
24325 	mutex_exit(SD_MUTEX(un));
24326 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24327 	return (rval);
24328 }
24329 
24330 
24331 /*
24332  *    Function: sd_setup_default_geometry
24333  *
24334  * Description: This local utility routine sets the default geometry as part of
24335  *		setting the device mboot.
24336  *
24337  *   Arguments: un - driver soft state (unit) structure
24338  *
24339  * Note: This may be redundant with sd_build_default_label.
24340  */
24341 
24342 static void
24343 sd_setup_default_geometry(struct sd_lun *un)
24344 {
24345 	/* zero out the soft state geometry and partition table. */
24346 	bzero(&un->un_g, sizeof (struct dk_geom));
24347 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24348 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
24349 	un->un_asciilabel[0] = '\0';
24350 
24351 	/*
24352 	 * For the rpm, we use the minimum for the disk.
24353 	 * For the head, cyl and number of sector per track,
24354 	 * if the capacity <= 1GB, head = 64, sect = 32.
24355 	 * else head = 255, sect 63
24356 	 * Note: the capacity should be equal to C*H*S values.
24357 	 * This will cause some truncation of size due to
24358 	 * round off errors. For CD-ROMs, this truncation can
24359 	 * have adverse side effects, so returning ncyl and
24360 	 * nhead as 1. The nsect will overflow for most of
24361 	 * CD-ROMs as nsect is of type ushort.
24362 	 */
24363 	if (ISCD(un)) {
24364 		un->un_g.dkg_ncyl = 1;
24365 		un->un_g.dkg_nhead = 1;
24366 		un->un_g.dkg_nsect = un->un_blockcount;
24367 	} else {
24368 		if (un->un_blockcount <= 0x1000) {
24369 			/* Needed for unlabeled SCSI floppies. */
24370 			un->un_g.dkg_nhead = 2;
24371 			un->un_g.dkg_ncyl = 80;
24372 			un->un_g.dkg_pcyl = 80;
24373 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24374 		} else if (un->un_blockcount <= 0x200000) {
24375 			un->un_g.dkg_nhead = 64;
24376 			un->un_g.dkg_nsect = 32;
24377 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24378 		} else {
24379 			un->un_g.dkg_nhead = 255;
24380 			un->un_g.dkg_nsect = 63;
24381 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24382 		}
24383 		un->un_blockcount = un->un_g.dkg_ncyl *
24384 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24385 	}
24386 	un->un_g.dkg_acyl = 0;
24387 	un->un_g.dkg_bcyl = 0;
24388 	un->un_g.dkg_intrlv = 1;
24389 	un->un_g.dkg_rpm = 200;
24390 	un->un_g.dkg_read_reinstruct = 0;
24391 	un->un_g.dkg_write_reinstruct = 0;
24392 	if (un->un_g.dkg_pcyl == 0) {
24393 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24394 	}
24395 
24396 	un->un_map['a'-'a'].dkl_cylno = 0;
24397 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24398 	un->un_map['c'-'a'].dkl_cylno = 0;
24399 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24400 	un->un_f_geometry_is_valid = FALSE;
24401 }
24402 
24403 
24404 #if defined(__i386) || defined(__amd64)
24405 /*
24406  *    Function: sd_update_fdisk_and_vtoc
24407  *
24408  * Description: This local utility routine updates the device fdisk and vtoc
24409  *		as part of setting the device mboot.
24410  *
24411  *   Arguments: un - driver soft state (unit) structure
24412  *
24413  * Return Code: 0 for success or errno-type return code.
24414  *
24415  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24416  *		these did exist seperately in x86 sd.c!!!
24417  */
24418 
24419 static int
24420 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24421 {
24422 	static char	labelstring[128];
24423 	static char	buf[256];
24424 	char		*label = 0;
24425 	int		count;
24426 	int		label_rc = 0;
24427 	int		gvalid = un->un_f_geometry_is_valid;
24428 	int		fdisk_rval;
24429 	int		lbasize;
24430 	int		capacity;
24431 
24432 	ASSERT(mutex_owned(SD_MUTEX(un)));
24433 
24434 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24435 		return (EINVAL);
24436 	}
24437 
24438 	if (un->un_f_blockcount_is_valid == FALSE) {
24439 		return (EINVAL);
24440 	}
24441 
24442 #if defined(_SUNOS_VTOC_16)
24443 	/*
24444 	 * Set up the "whole disk" fdisk partition; this should always
24445 	 * exist, regardless of whether the disk contains an fdisk table
24446 	 * or vtoc.
24447 	 */
24448 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24449 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24450 #endif	/* defined(_SUNOS_VTOC_16) */
24451 
24452 	/*
24453 	 * copy the lbasize and capacity so that if they're
24454 	 * reset while we're not holding the SD_MUTEX(un), we will
24455 	 * continue to use valid values after the SD_MUTEX(un) is
24456 	 * reacquired.
24457 	 */
24458 	lbasize  = un->un_tgt_blocksize;
24459 	capacity = un->un_blockcount;
24460 
24461 	/*
24462 	 * refresh the logical and physical geometry caches.
24463 	 * (data from mode sense format/rigid disk geometry pages,
24464 	 * and scsi_ifgetcap("geometry").
24465 	 */
24466 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24467 
24468 	/*
24469 	 * Only DIRECT ACCESS devices will have Sun labels.
24470 	 * CD's supposedly have a Sun label, too
24471 	 */
24472 	if (un->un_f_vtoc_label_supported) {
24473 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24474 		    SD_PATH_DIRECT);
24475 		if (fdisk_rval == SD_CMD_FAILURE) {
24476 			ASSERT(mutex_owned(SD_MUTEX(un)));
24477 			return (EIO);
24478 		}
24479 
24480 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24481 			ASSERT(mutex_owned(SD_MUTEX(un)));
24482 			return (EACCES);
24483 		}
24484 
24485 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24486 			/*
24487 			 * Found fdisk table but no Solaris partition entry,
24488 			 * so don't call sd_uselabel() and don't create
24489 			 * a default label.
24490 			 */
24491 			label_rc = 0;
24492 			un->un_f_geometry_is_valid = TRUE;
24493 			goto no_solaris_partition;
24494 		}
24495 
24496 #if defined(_SUNOS_VTOC_8)
24497 		label = (char *)un->un_asciilabel;
24498 #elif defined(_SUNOS_VTOC_16)
24499 		label = (char *)un->un_vtoc.v_asciilabel;
24500 #else
24501 #error "No VTOC format defined."
24502 #endif
24503 	} else if (capacity < 0) {
24504 		ASSERT(mutex_owned(SD_MUTEX(un)));
24505 		return (EINVAL);
24506 	}
24507 
24508 	/*
24509 	 * For Removable media We reach here if we have found a
24510 	 * SOLARIS PARTITION.
24511 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24512 	 * PARTITION has changed from the previous one, hence we will setup a
24513 	 * default VTOC in this case.
24514 	 */
24515 	if (un->un_f_geometry_is_valid == FALSE) {
24516 		sd_build_default_label(un);
24517 		label_rc = 0;
24518 	}
24519 
24520 no_solaris_partition:
24521 	if ((!un->un_f_has_removable_media ||
24522 	    (un->un_f_has_removable_media &&
24523 	    un->un_mediastate == DKIO_EJECTED)) &&
24524 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24525 		/*
24526 		 * Print out a message indicating who and what we are.
24527 		 * We do this only when we happen to really validate the
24528 		 * geometry. We may call sd_validate_geometry() at other
24529 		 * times, ioctl()'s like Get VTOC in which case we
24530 		 * don't want to print the label.
24531 		 * If the geometry is valid, print the label string,
24532 		 * else print vendor and product info, if available
24533 		 */
24534 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24535 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24536 		} else {
24537 			mutex_enter(&sd_label_mutex);
24538 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24539 			    labelstring);
24540 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24541 			    &labelstring[64]);
24542 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24543 			    labelstring, &labelstring[64]);
24544 			if (un->un_f_blockcount_is_valid == TRUE) {
24545 				(void) sprintf(&buf[strlen(buf)],
24546 				    ", %" PRIu64 " %u byte blocks\n",
24547 				    un->un_blockcount,
24548 				    un->un_tgt_blocksize);
24549 			} else {
24550 				(void) sprintf(&buf[strlen(buf)],
24551 				    ", (unknown capacity)\n");
24552 			}
24553 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24554 			mutex_exit(&sd_label_mutex);
24555 		}
24556 	}
24557 
24558 #if defined(_SUNOS_VTOC_16)
24559 	/*
24560 	 * If we have valid geometry, set up the remaining fdisk partitions.
24561 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24562 	 * we set it to an entirely bogus value.
24563 	 */
24564 	for (count = 0; count < FD_NUMPART; count++) {
24565 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24566 		un->un_map[FDISK_P1 + count].dkl_nblk =
24567 		    un->un_fmap[count].fmap_nblk;
24568 		un->un_offset[FDISK_P1 + count] =
24569 		    un->un_fmap[count].fmap_start;
24570 	}
24571 #endif
24572 
24573 	for (count = 0; count < NDKMAP; count++) {
24574 #if defined(_SUNOS_VTOC_8)
24575 		struct dk_map *lp  = &un->un_map[count];
24576 		un->un_offset[count] =
24577 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24578 #elif defined(_SUNOS_VTOC_16)
24579 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24580 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24581 #else
24582 #error "No VTOC format defined."
24583 #endif
24584 	}
24585 
24586 	ASSERT(mutex_owned(SD_MUTEX(un)));
24587 	return (label_rc);
24588 }
24589 #endif
24590 
24591 
24592 /*
24593  *    Function: sd_check_media
24594  *
24595  * Description: This utility routine implements the functionality for the
24596  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24597  *		driver state changes from that specified by the user
24598  *		(inserted or ejected). For example, if the user specifies
24599  *		DKIO_EJECTED and the current media state is inserted this
24600  *		routine will immediately return DKIO_INSERTED. However, if the
24601  *		current media state is not inserted the user thread will be
24602  *		blocked until the drive state changes. If DKIO_NONE is specified
24603  *		the user thread will block until a drive state change occurs.
24604  *
24605  *   Arguments: dev  - the device number
24606  *		state  - user pointer to a dkio_state, updated with the current
24607  *			drive state at return.
24608  *
24609  * Return Code: ENXIO
24610  *		EIO
24611  *		EAGAIN
24612  *		EINTR
24613  */
24614 
24615 static int
24616 sd_check_media(dev_t dev, enum dkio_state state)
24617 {
24618 	struct sd_lun		*un = NULL;
24619 	enum dkio_state		prev_state;
24620 	opaque_t		token = NULL;
24621 	int			rval = 0;
24622 
24623 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24624 		return (ENXIO);
24625 	}
24626 
24627 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24628 
24629 	mutex_enter(SD_MUTEX(un));
24630 
24631 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24632 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24633 
24634 	prev_state = un->un_mediastate;
24635 
24636 	/* is there anything to do? */
24637 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24638 		/*
24639 		 * submit the request to the scsi_watch service;
24640 		 * scsi_media_watch_cb() does the real work
24641 		 */
24642 		mutex_exit(SD_MUTEX(un));
24643 
24644 		/*
24645 		 * This change handles the case where a scsi watch request is
24646 		 * added to a device that is powered down. To accomplish this
24647 		 * we power up the device before adding the scsi watch request,
24648 		 * since the scsi watch sends a TUR directly to the device
24649 		 * which the device cannot handle if it is powered down.
24650 		 */
24651 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24652 			mutex_enter(SD_MUTEX(un));
24653 			goto done;
24654 		}
24655 
24656 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24657 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24658 		    (caddr_t)dev);
24659 
24660 		sd_pm_exit(un);
24661 
24662 		mutex_enter(SD_MUTEX(un));
24663 		if (token == NULL) {
24664 			rval = EAGAIN;
24665 			goto done;
24666 		}
24667 
24668 		/*
24669 		 * This is a special case IOCTL that doesn't return
24670 		 * until the media state changes. Routine sdpower
24671 		 * knows about and handles this so don't count it
24672 		 * as an active cmd in the driver, which would
24673 		 * keep the device busy to the pm framework.
24674 		 * If the count isn't decremented the device can't
24675 		 * be powered down.
24676 		 */
24677 		un->un_ncmds_in_driver--;
24678 		ASSERT(un->un_ncmds_in_driver >= 0);
24679 
24680 		/*
24681 		 * if a prior request had been made, this will be the same
24682 		 * token, as scsi_watch was designed that way.
24683 		 */
24684 		un->un_swr_token = token;
24685 		un->un_specified_mediastate = state;
24686 
24687 		/*
24688 		 * now wait for media change
24689 		 * we will not be signalled unless mediastate == state but it is
24690 		 * still better to test for this condition, since there is a
24691 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24692 		 */
24693 		SD_TRACE(SD_LOG_COMMON, un,
24694 		    "sd_check_media: waiting for media state change\n");
24695 		while (un->un_mediastate == state) {
24696 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24697 				SD_TRACE(SD_LOG_COMMON, un,
24698 				    "sd_check_media: waiting for media state "
24699 				    "was interrupted\n");
24700 				un->un_ncmds_in_driver++;
24701 				rval = EINTR;
24702 				goto done;
24703 			}
24704 			SD_TRACE(SD_LOG_COMMON, un,
24705 			    "sd_check_media: received signal, state=%x\n",
24706 			    un->un_mediastate);
24707 		}
24708 		/*
24709 		 * Inc the counter to indicate the device once again
24710 		 * has an active outstanding cmd.
24711 		 */
24712 		un->un_ncmds_in_driver++;
24713 	}
24714 
24715 	/* invalidate geometry */
24716 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24717 		sr_ejected(un);
24718 	}
24719 
24720 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24721 		uint64_t	capacity;
24722 		uint_t		lbasize;
24723 
24724 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24725 		mutex_exit(SD_MUTEX(un));
24726 		/*
24727 		 * Since the following routines use SD_PATH_DIRECT, we must
24728 		 * call PM directly before the upcoming disk accesses. This
24729 		 * may cause the disk to be power/spin up.
24730 		 */
24731 
24732 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24733 			rval = sd_send_scsi_READ_CAPACITY(un,
24734 			    &capacity,
24735 			    &lbasize, SD_PATH_DIRECT);
24736 			if (rval != 0) {
24737 				sd_pm_exit(un);
24738 				mutex_enter(SD_MUTEX(un));
24739 				goto done;
24740 			}
24741 		} else {
24742 			rval = EIO;
24743 			mutex_enter(SD_MUTEX(un));
24744 			goto done;
24745 		}
24746 		mutex_enter(SD_MUTEX(un));
24747 
24748 		sd_update_block_info(un, lbasize, capacity);
24749 
24750 		un->un_f_geometry_is_valid	= FALSE;
24751 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24752 
24753 		mutex_exit(SD_MUTEX(un));
24754 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24755 		    SD_PATH_DIRECT);
24756 		sd_pm_exit(un);
24757 
24758 		mutex_enter(SD_MUTEX(un));
24759 	}
24760 done:
24761 	un->un_f_watcht_stopped = FALSE;
24762 	if (un->un_swr_token) {
24763 		/*
24764 		 * Use of this local token and the mutex ensures that we avoid
24765 		 * some race conditions associated with terminating the
24766 		 * scsi watch.
24767 		 */
24768 		token = un->un_swr_token;
24769 		un->un_swr_token = (opaque_t)NULL;
24770 		mutex_exit(SD_MUTEX(un));
24771 		(void) scsi_watch_request_terminate(token,
24772 		    SCSI_WATCH_TERMINATE_WAIT);
24773 		mutex_enter(SD_MUTEX(un));
24774 	}
24775 
24776 	/*
24777 	 * Update the capacity kstat value, if no media previously
24778 	 * (capacity kstat is 0) and a media has been inserted
24779 	 * (un_f_blockcount_is_valid == TRUE)
24780 	 */
24781 	if (un->un_errstats) {
24782 		struct sd_errstats	*stp = NULL;
24783 
24784 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24785 		if ((stp->sd_capacity.value.ui64 == 0) &&
24786 		    (un->un_f_blockcount_is_valid == TRUE)) {
24787 			stp->sd_capacity.value.ui64 =
24788 			    (uint64_t)((uint64_t)un->un_blockcount *
24789 			    un->un_sys_blocksize);
24790 		}
24791 	}
24792 	mutex_exit(SD_MUTEX(un));
24793 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24794 	return (rval);
24795 }
24796 
24797 
24798 /*
24799  *    Function: sd_delayed_cv_broadcast
24800  *
24801  * Description: Delayed cv_broadcast to allow for target to recover from media
24802  *		insertion.
24803  *
24804  *   Arguments: arg - driver soft state (unit) structure
24805  */
24806 
24807 static void
24808 sd_delayed_cv_broadcast(void *arg)
24809 {
24810 	struct sd_lun *un = arg;
24811 
24812 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24813 
24814 	mutex_enter(SD_MUTEX(un));
24815 	un->un_dcvb_timeid = NULL;
24816 	cv_broadcast(&un->un_state_cv);
24817 	mutex_exit(SD_MUTEX(un));
24818 }
24819 
24820 
24821 /*
24822  *    Function: sd_media_watch_cb
24823  *
24824  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24825  *		routine processes the TUR sense data and updates the driver
24826  *		state if a transition has occurred. The user thread
24827  *		(sd_check_media) is then signalled.
24828  *
24829  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24830  *			among multiple watches that share this callback function
24831  *		resultp - scsi watch facility result packet containing scsi
24832  *			  packet, status byte and sense data
24833  *
24834  * Return Code: 0 for success, -1 for failure
24835  */
24836 
24837 static int
24838 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24839 {
24840 	struct sd_lun			*un;
24841 	struct scsi_status		*statusp = resultp->statusp;
24842 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24843 	enum dkio_state			state = DKIO_NONE;
24844 	dev_t				dev = (dev_t)arg;
24845 	uchar_t				actual_sense_length;
24846 	uint8_t				skey, asc, ascq;
24847 
24848 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24849 		return (-1);
24850 	}
24851 	actual_sense_length = resultp->actual_sense_length;
24852 
24853 	mutex_enter(SD_MUTEX(un));
24854 	SD_TRACE(SD_LOG_COMMON, un,
24855 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24856 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24857 
24858 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24859 		un->un_mediastate = DKIO_DEV_GONE;
24860 		cv_broadcast(&un->un_state_cv);
24861 		mutex_exit(SD_MUTEX(un));
24862 
24863 		return (0);
24864 	}
24865 
24866 	/*
24867 	 * If there was a check condition then sensep points to valid sense data
24868 	 * If status was not a check condition but a reservation or busy status
24869 	 * then the new state is DKIO_NONE
24870 	 */
24871 	if (sensep != NULL) {
24872 		skey = scsi_sense_key(sensep);
24873 		asc = scsi_sense_asc(sensep);
24874 		ascq = scsi_sense_ascq(sensep);
24875 
24876 		SD_INFO(SD_LOG_COMMON, un,
24877 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24878 		    skey, asc, ascq);
24879 		/* This routine only uses up to 13 bytes of sense data. */
24880 		if (actual_sense_length >= 13) {
24881 			if (skey == KEY_UNIT_ATTENTION) {
24882 				if (asc == 0x28) {
24883 					state = DKIO_INSERTED;
24884 				}
24885 			} else {
24886 				/*
24887 				 * if 02/04/02  means that the host
24888 				 * should send start command. Explicitly
24889 				 * leave the media state as is
24890 				 * (inserted) as the media is inserted
24891 				 * and host has stopped device for PM
24892 				 * reasons. Upon next true read/write
24893 				 * to this media will bring the
24894 				 * device to the right state good for
24895 				 * media access.
24896 				 */
24897 				if ((skey == KEY_NOT_READY) &&
24898 				    (asc == 0x3a)) {
24899 					state = DKIO_EJECTED;
24900 				}
24901 
24902 				/*
24903 				 * If the drivge is busy with an operation
24904 				 * or long write, keep the media in an
24905 				 * inserted state.
24906 				 */
24907 
24908 				if ((skey == KEY_NOT_READY) &&
24909 				    (asc == 0x04) &&
24910 				    ((ascq == 0x02) ||
24911 				    (ascq == 0x07) ||
24912 				    (ascq == 0x08))) {
24913 					state = DKIO_INSERTED;
24914 				}
24915 			}
24916 		}
24917 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24918 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24919 		state = DKIO_INSERTED;
24920 	}
24921 
24922 	SD_TRACE(SD_LOG_COMMON, un,
24923 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24924 	    state, un->un_specified_mediastate);
24925 
24926 	/*
24927 	 * now signal the waiting thread if this is *not* the specified state;
24928 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24929 	 * to recover
24930 	 */
24931 	if (state != un->un_specified_mediastate) {
24932 		un->un_mediastate = state;
24933 		if (state == DKIO_INSERTED) {
24934 			/*
24935 			 * delay the signal to give the drive a chance
24936 			 * to do what it apparently needs to do
24937 			 */
24938 			SD_TRACE(SD_LOG_COMMON, un,
24939 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24940 			if (un->un_dcvb_timeid == NULL) {
24941 				un->un_dcvb_timeid =
24942 				    timeout(sd_delayed_cv_broadcast, un,
24943 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24944 			}
24945 		} else {
24946 			SD_TRACE(SD_LOG_COMMON, un,
24947 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24948 			cv_broadcast(&un->un_state_cv);
24949 		}
24950 	}
24951 	mutex_exit(SD_MUTEX(un));
24952 	return (0);
24953 }
24954 
24955 
24956 /*
24957  *    Function: sd_dkio_get_temp
24958  *
24959  * Description: This routine is the driver entry point for handling ioctl
24960  *		requests to get the disk temperature.
24961  *
24962  *   Arguments: dev  - the device number
24963  *		arg  - pointer to user provided dk_temperature structure.
24964  *		flag - this argument is a pass through to ddi_copyxxx()
24965  *		       directly from the mode argument of ioctl().
24966  *
24967  * Return Code: 0
24968  *		EFAULT
24969  *		ENXIO
24970  *		EAGAIN
24971  */
24972 
24973 static int
24974 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24975 {
24976 	struct sd_lun		*un = NULL;
24977 	struct dk_temperature	*dktemp = NULL;
24978 	uchar_t			*temperature_page;
24979 	int			rval = 0;
24980 	int			path_flag = SD_PATH_STANDARD;
24981 
24982 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24983 		return (ENXIO);
24984 	}
24985 
24986 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24987 
24988 	/* copyin the disk temp argument to get the user flags */
24989 	if (ddi_copyin((void *)arg, dktemp,
24990 	    sizeof (struct dk_temperature), flag) != 0) {
24991 		rval = EFAULT;
24992 		goto done;
24993 	}
24994 
24995 	/* Initialize the temperature to invalid. */
24996 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24997 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24998 
24999 	/*
25000 	 * Note: Investigate removing the "bypass pm" semantic.
25001 	 * Can we just bypass PM always?
25002 	 */
25003 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
25004 		path_flag = SD_PATH_DIRECT;
25005 		ASSERT(!mutex_owned(&un->un_pm_mutex));
25006 		mutex_enter(&un->un_pm_mutex);
25007 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25008 			/*
25009 			 * If DKT_BYPASS_PM is set, and the drive happens to be
25010 			 * in low power mode, we can not wake it up, Need to
25011 			 * return EAGAIN.
25012 			 */
25013 			mutex_exit(&un->un_pm_mutex);
25014 			rval = EAGAIN;
25015 			goto done;
25016 		} else {
25017 			/*
25018 			 * Indicate to PM the device is busy. This is required
25019 			 * to avoid a race - i.e. the ioctl is issuing a
25020 			 * command and the pm framework brings down the device
25021 			 * to low power mode (possible power cut-off on some
25022 			 * platforms).
25023 			 */
25024 			mutex_exit(&un->un_pm_mutex);
25025 			if (sd_pm_entry(un) != DDI_SUCCESS) {
25026 				rval = EAGAIN;
25027 				goto done;
25028 			}
25029 		}
25030 	}
25031 
25032 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
25033 
25034 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
25035 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
25036 		goto done2;
25037 	}
25038 
25039 	/*
25040 	 * For the current temperature verify that the parameter length is 0x02
25041 	 * and the parameter code is 0x00
25042 	 */
25043 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
25044 	    (temperature_page[5] == 0x00)) {
25045 		if (temperature_page[9] == 0xFF) {
25046 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
25047 		} else {
25048 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
25049 		}
25050 	}
25051 
25052 	/*
25053 	 * For the reference temperature verify that the parameter
25054 	 * length is 0x02 and the parameter code is 0x01
25055 	 */
25056 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
25057 	    (temperature_page[11] == 0x01)) {
25058 		if (temperature_page[15] == 0xFF) {
25059 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
25060 		} else {
25061 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
25062 		}
25063 	}
25064 
25065 	/* Do the copyout regardless of the temperature commands status. */
25066 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
25067 	    flag) != 0) {
25068 		rval = EFAULT;
25069 	}
25070 
25071 done2:
25072 	if (path_flag == SD_PATH_DIRECT) {
25073 		sd_pm_exit(un);
25074 	}
25075 
25076 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
25077 done:
25078 	if (dktemp != NULL) {
25079 		kmem_free(dktemp, sizeof (struct dk_temperature));
25080 	}
25081 
25082 	return (rval);
25083 }
25084 
25085 
25086 /*
25087  *    Function: sd_log_page_supported
25088  *
25089  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
25090  *		supported log pages.
25091  *
25092  *   Arguments: un -
25093  *		log_page -
25094  *
25095  * Return Code: -1 - on error (log sense is optional and may not be supported).
25096  *		0  - log page not found.
25097  *  		1  - log page found.
25098  */
25099 
25100 static int
25101 sd_log_page_supported(struct sd_lun *un, int log_page)
25102 {
25103 	uchar_t *log_page_data;
25104 	int	i;
25105 	int	match = 0;
25106 	int	log_size;
25107 
25108 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
25109 
25110 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
25111 	    SD_PATH_DIRECT) != 0) {
25112 		SD_ERROR(SD_LOG_COMMON, un,
25113 		    "sd_log_page_supported: failed log page retrieval\n");
25114 		kmem_free(log_page_data, 0xFF);
25115 		return (-1);
25116 	}
25117 	log_size = log_page_data[3];
25118 
25119 	/*
25120 	 * The list of supported log pages start from the fourth byte. Check
25121 	 * until we run out of log pages or a match is found.
25122 	 */
25123 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
25124 		if (log_page_data[i] == log_page) {
25125 			match++;
25126 		}
25127 	}
25128 	kmem_free(log_page_data, 0xFF);
25129 	return (match);
25130 }
25131 
25132 
25133 /*
25134  *    Function: sd_mhdioc_failfast
25135  *
25136  * Description: This routine is the driver entry point for handling ioctl
25137  *		requests to enable/disable the multihost failfast option.
25138  *		(MHIOCENFAILFAST)
25139  *
25140  *   Arguments: dev	- the device number
25141  *		arg	- user specified probing interval.
25142  *		flag	- this argument is a pass through to ddi_copyxxx()
25143  *			  directly from the mode argument of ioctl().
25144  *
25145  * Return Code: 0
25146  *		EFAULT
25147  *		ENXIO
25148  */
25149 
25150 static int
25151 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
25152 {
25153 	struct sd_lun	*un = NULL;
25154 	int		mh_time;
25155 	int		rval = 0;
25156 
25157 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25158 		return (ENXIO);
25159 	}
25160 
25161 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
25162 		return (EFAULT);
25163 
25164 	if (mh_time) {
25165 		mutex_enter(SD_MUTEX(un));
25166 		un->un_resvd_status |= SD_FAILFAST;
25167 		mutex_exit(SD_MUTEX(un));
25168 		/*
25169 		 * If mh_time is INT_MAX, then this ioctl is being used for
25170 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
25171 		 */
25172 		if (mh_time != INT_MAX) {
25173 			rval = sd_check_mhd(dev, mh_time);
25174 		}
25175 	} else {
25176 		(void) sd_check_mhd(dev, 0);
25177 		mutex_enter(SD_MUTEX(un));
25178 		un->un_resvd_status &= ~SD_FAILFAST;
25179 		mutex_exit(SD_MUTEX(un));
25180 	}
25181 	return (rval);
25182 }
25183 
25184 
25185 /*
25186  *    Function: sd_mhdioc_takeown
25187  *
25188  * Description: This routine is the driver entry point for handling ioctl
25189  *		requests to forcefully acquire exclusive access rights to the
25190  *		multihost disk (MHIOCTKOWN).
25191  *
25192  *   Arguments: dev	- the device number
25193  *		arg	- user provided structure specifying the delay
25194  *			  parameters in milliseconds
25195  *		flag	- this argument is a pass through to ddi_copyxxx()
25196  *			  directly from the mode argument of ioctl().
25197  *
25198  * Return Code: 0
25199  *		EFAULT
25200  *		ENXIO
25201  */
25202 
25203 static int
25204 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
25205 {
25206 	struct sd_lun		*un = NULL;
25207 	struct mhioctkown	*tkown = NULL;
25208 	int			rval = 0;
25209 
25210 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25211 		return (ENXIO);
25212 	}
25213 
25214 	if (arg != NULL) {
25215 		tkown = (struct mhioctkown *)
25216 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
25217 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
25218 		if (rval != 0) {
25219 			rval = EFAULT;
25220 			goto error;
25221 		}
25222 	}
25223 
25224 	rval = sd_take_ownership(dev, tkown);
25225 	mutex_enter(SD_MUTEX(un));
25226 	if (rval == 0) {
25227 		un->un_resvd_status |= SD_RESERVE;
25228 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
25229 			sd_reinstate_resv_delay =
25230 			    tkown->reinstate_resv_delay * 1000;
25231 		} else {
25232 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
25233 		}
25234 		/*
25235 		 * Give the scsi_watch routine interval set by
25236 		 * the MHIOCENFAILFAST ioctl precedence here.
25237 		 */
25238 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
25239 			mutex_exit(SD_MUTEX(un));
25240 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
25241 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
25242 			    "sd_mhdioc_takeown : %d\n",
25243 			    sd_reinstate_resv_delay);
25244 		} else {
25245 			mutex_exit(SD_MUTEX(un));
25246 		}
25247 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
25248 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25249 	} else {
25250 		un->un_resvd_status &= ~SD_RESERVE;
25251 		mutex_exit(SD_MUTEX(un));
25252 	}
25253 
25254 error:
25255 	if (tkown != NULL) {
25256 		kmem_free(tkown, sizeof (struct mhioctkown));
25257 	}
25258 	return (rval);
25259 }
25260 
25261 
25262 /*
25263  *    Function: sd_mhdioc_release
25264  *
25265  * Description: This routine is the driver entry point for handling ioctl
25266  *		requests to release exclusive access rights to the multihost
25267  *		disk (MHIOCRELEASE).
25268  *
25269  *   Arguments: dev	- the device number
25270  *
25271  * Return Code: 0
25272  *		ENXIO
25273  */
25274 
25275 static int
25276 sd_mhdioc_release(dev_t dev)
25277 {
25278 	struct sd_lun		*un = NULL;
25279 	timeout_id_t		resvd_timeid_save;
25280 	int			resvd_status_save;
25281 	int			rval = 0;
25282 
25283 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25284 		return (ENXIO);
25285 	}
25286 
25287 	mutex_enter(SD_MUTEX(un));
25288 	resvd_status_save = un->un_resvd_status;
25289 	un->un_resvd_status &=
25290 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
25291 	if (un->un_resvd_timeid) {
25292 		resvd_timeid_save = un->un_resvd_timeid;
25293 		un->un_resvd_timeid = NULL;
25294 		mutex_exit(SD_MUTEX(un));
25295 		(void) untimeout(resvd_timeid_save);
25296 	} else {
25297 		mutex_exit(SD_MUTEX(un));
25298 	}
25299 
25300 	/*
25301 	 * destroy any pending timeout thread that may be attempting to
25302 	 * reinstate reservation on this device.
25303 	 */
25304 	sd_rmv_resv_reclaim_req(dev);
25305 
25306 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
25307 		mutex_enter(SD_MUTEX(un));
25308 		if ((un->un_mhd_token) &&
25309 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
25310 			mutex_exit(SD_MUTEX(un));
25311 			(void) sd_check_mhd(dev, 0);
25312 		} else {
25313 			mutex_exit(SD_MUTEX(un));
25314 		}
25315 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
25316 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25317 	} else {
25318 		/*
25319 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
25320 		 */
25321 		mutex_enter(SD_MUTEX(un));
25322 		un->un_resvd_status = resvd_status_save;
25323 		mutex_exit(SD_MUTEX(un));
25324 	}
25325 	return (rval);
25326 }
25327 
25328 
25329 /*
25330  *    Function: sd_mhdioc_register_devid
25331  *
25332  * Description: This routine is the driver entry point for handling ioctl
25333  *		requests to register the device id (MHIOCREREGISTERDEVID).
25334  *
25335  *		Note: The implementation for this ioctl has been updated to
25336  *		be consistent with the original PSARC case (1999/357)
25337  *		(4375899, 4241671, 4220005)
25338  *
25339  *   Arguments: dev	- the device number
25340  *
25341  * Return Code: 0
25342  *		ENXIO
25343  */
25344 
25345 static int
25346 sd_mhdioc_register_devid(dev_t dev)
25347 {
25348 	struct sd_lun	*un = NULL;
25349 	int		rval = 0;
25350 
25351 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25352 		return (ENXIO);
25353 	}
25354 
25355 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25356 
25357 	mutex_enter(SD_MUTEX(un));
25358 
25359 	/* If a devid already exists, de-register it */
25360 	if (un->un_devid != NULL) {
25361 		ddi_devid_unregister(SD_DEVINFO(un));
25362 		/*
25363 		 * After unregister devid, needs to free devid memory
25364 		 */
25365 		ddi_devid_free(un->un_devid);
25366 		un->un_devid = NULL;
25367 	}
25368 
25369 	/* Check for reservation conflict */
25370 	mutex_exit(SD_MUTEX(un));
25371 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
25372 	mutex_enter(SD_MUTEX(un));
25373 
25374 	switch (rval) {
25375 	case 0:
25376 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25377 		break;
25378 	case EACCES:
25379 		break;
25380 	default:
25381 		rval = EIO;
25382 	}
25383 
25384 	mutex_exit(SD_MUTEX(un));
25385 	return (rval);
25386 }
25387 
25388 
25389 /*
25390  *    Function: sd_mhdioc_inkeys
25391  *
25392  * Description: This routine is the driver entry point for handling ioctl
25393  *		requests to issue the SCSI-3 Persistent In Read Keys command
25394  *		to the device (MHIOCGRP_INKEYS).
25395  *
25396  *   Arguments: dev	- the device number
25397  *		arg	- user provided in_keys structure
25398  *		flag	- this argument is a pass through to ddi_copyxxx()
25399  *			  directly from the mode argument of ioctl().
25400  *
25401  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25402  *		ENXIO
25403  *		EFAULT
25404  */
25405 
25406 static int
25407 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25408 {
25409 	struct sd_lun		*un;
25410 	mhioc_inkeys_t		inkeys;
25411 	int			rval = 0;
25412 
25413 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25414 		return (ENXIO);
25415 	}
25416 
25417 #ifdef _MULTI_DATAMODEL
25418 	switch (ddi_model_convert_from(flag & FMODELS)) {
25419 	case DDI_MODEL_ILP32: {
25420 		struct mhioc_inkeys32	inkeys32;
25421 
25422 		if (ddi_copyin(arg, &inkeys32,
25423 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25424 			return (EFAULT);
25425 		}
25426 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25427 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25428 		    &inkeys, flag)) != 0) {
25429 			return (rval);
25430 		}
25431 		inkeys32.generation = inkeys.generation;
25432 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25433 		    flag) != 0) {
25434 			return (EFAULT);
25435 		}
25436 		break;
25437 	}
25438 	case DDI_MODEL_NONE:
25439 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25440 		    flag) != 0) {
25441 			return (EFAULT);
25442 		}
25443 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25444 		    &inkeys, flag)) != 0) {
25445 			return (rval);
25446 		}
25447 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25448 		    flag) != 0) {
25449 			return (EFAULT);
25450 		}
25451 		break;
25452 	}
25453 
25454 #else /* ! _MULTI_DATAMODEL */
25455 
25456 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25457 		return (EFAULT);
25458 	}
25459 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25460 	if (rval != 0) {
25461 		return (rval);
25462 	}
25463 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25464 		return (EFAULT);
25465 	}
25466 
25467 #endif /* _MULTI_DATAMODEL */
25468 
25469 	return (rval);
25470 }
25471 
25472 
25473 /*
25474  *    Function: sd_mhdioc_inresv
25475  *
25476  * Description: This routine is the driver entry point for handling ioctl
25477  *		requests to issue the SCSI-3 Persistent In Read Reservations
25478  *		command to the device (MHIOCGRP_INKEYS).
25479  *
25480  *   Arguments: dev	- the device number
25481  *		arg	- user provided in_resv structure
25482  *		flag	- this argument is a pass through to ddi_copyxxx()
25483  *			  directly from the mode argument of ioctl().
25484  *
25485  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25486  *		ENXIO
25487  *		EFAULT
25488  */
25489 
25490 static int
25491 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25492 {
25493 	struct sd_lun		*un;
25494 	mhioc_inresvs_t		inresvs;
25495 	int			rval = 0;
25496 
25497 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25498 		return (ENXIO);
25499 	}
25500 
25501 #ifdef _MULTI_DATAMODEL
25502 
25503 	switch (ddi_model_convert_from(flag & FMODELS)) {
25504 	case DDI_MODEL_ILP32: {
25505 		struct mhioc_inresvs32	inresvs32;
25506 
25507 		if (ddi_copyin(arg, &inresvs32,
25508 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25509 			return (EFAULT);
25510 		}
25511 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25512 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25513 		    &inresvs, flag)) != 0) {
25514 			return (rval);
25515 		}
25516 		inresvs32.generation = inresvs.generation;
25517 		if (ddi_copyout(&inresvs32, arg,
25518 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25519 			return (EFAULT);
25520 		}
25521 		break;
25522 	}
25523 	case DDI_MODEL_NONE:
25524 		if (ddi_copyin(arg, &inresvs,
25525 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25526 			return (EFAULT);
25527 		}
25528 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25529 		    &inresvs, flag)) != 0) {
25530 			return (rval);
25531 		}
25532 		if (ddi_copyout(&inresvs, arg,
25533 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25534 			return (EFAULT);
25535 		}
25536 		break;
25537 	}
25538 
25539 #else /* ! _MULTI_DATAMODEL */
25540 
25541 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25542 		return (EFAULT);
25543 	}
25544 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25545 	if (rval != 0) {
25546 		return (rval);
25547 	}
25548 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25549 		return (EFAULT);
25550 	}
25551 
25552 #endif /* ! _MULTI_DATAMODEL */
25553 
25554 	return (rval);
25555 }
25556 
25557 
25558 /*
25559  * The following routines support the clustering functionality described below
25560  * and implement lost reservation reclaim functionality.
25561  *
25562  * Clustering
25563  * ----------
25564  * The clustering code uses two different, independent forms of SCSI
25565  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25566  * Persistent Group Reservations. For any particular disk, it will use either
25567  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25568  *
25569  * SCSI-2
25570  * The cluster software takes ownership of a multi-hosted disk by issuing the
25571  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25572  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25573  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25574  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25575  * meaning of failfast is that if the driver (on this host) ever encounters the
25576  * scsi error return code RESERVATION_CONFLICT from the device, it should
25577  * immediately panic the host. The motivation for this ioctl is that if this
25578  * host does encounter reservation conflict, the underlying cause is that some
25579  * other host of the cluster has decided that this host is no longer in the
25580  * cluster and has seized control of the disks for itself. Since this host is no
25581  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25582  * does two things:
25583  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25584  *      error to panic the host
25585  *      (b) it sets up a periodic timer to test whether this host still has
25586  *      "access" (in that no other host has reserved the device):  if the
25587  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25588  *      purpose of that periodic timer is to handle scenarios where the host is
25589  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25590  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25591  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25592  * the device itself.
25593  *
25594  * SCSI-3 PGR
25595  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25596  * facility is supported through the shared multihost disk ioctls
25597  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25598  * MHIOCGRP_PREEMPTANDABORT)
25599  *
25600  * Reservation Reclaim:
25601  * --------------------
25602  * To support the lost reservation reclaim operations this driver creates a
25603  * single thread to handle reinstating reservations on all devices that have
25604  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25605  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25606  * and the reservation reclaim thread loops through the requests to regain the
25607  * lost reservations.
25608  */
25609 
25610 /*
25611  *    Function: sd_check_mhd()
25612  *
25613  * Description: This function sets up and submits a scsi watch request or
25614  *		terminates an existing watch request. This routine is used in
25615  *		support of reservation reclaim.
25616  *
25617  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25618  *			 among multiple watches that share the callback function
25619  *		interval - the number of microseconds specifying the watch
25620  *			   interval for issuing TEST UNIT READY commands. If
25621  *			   set to 0 the watch should be terminated. If the
25622  *			   interval is set to 0 and if the device is required
25623  *			   to hold reservation while disabling failfast, the
25624  *			   watch is restarted with an interval of
25625  *			   reinstate_resv_delay.
25626  *
25627  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25628  *		ENXIO      - Indicates an invalid device was specified
25629  *		EAGAIN     - Unable to submit the scsi watch request
25630  */
25631 
25632 static int
25633 sd_check_mhd(dev_t dev, int interval)
25634 {
25635 	struct sd_lun	*un;
25636 	opaque_t	token;
25637 
25638 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25639 		return (ENXIO);
25640 	}
25641 
25642 	/* is this a watch termination request? */
25643 	if (interval == 0) {
25644 		mutex_enter(SD_MUTEX(un));
25645 		/* if there is an existing watch task then terminate it */
25646 		if (un->un_mhd_token) {
25647 			token = un->un_mhd_token;
25648 			un->un_mhd_token = NULL;
25649 			mutex_exit(SD_MUTEX(un));
25650 			(void) scsi_watch_request_terminate(token,
25651 			    SCSI_WATCH_TERMINATE_WAIT);
25652 			mutex_enter(SD_MUTEX(un));
25653 		} else {
25654 			mutex_exit(SD_MUTEX(un));
25655 			/*
25656 			 * Note: If we return here we don't check for the
25657 			 * failfast case. This is the original legacy
25658 			 * implementation but perhaps we should be checking
25659 			 * the failfast case.
25660 			 */
25661 			return (0);
25662 		}
25663 		/*
25664 		 * If the device is required to hold reservation while
25665 		 * disabling failfast, we need to restart the scsi_watch
25666 		 * routine with an interval of reinstate_resv_delay.
25667 		 */
25668 		if (un->un_resvd_status & SD_RESERVE) {
25669 			interval = sd_reinstate_resv_delay/1000;
25670 		} else {
25671 			/* no failfast so bail */
25672 			mutex_exit(SD_MUTEX(un));
25673 			return (0);
25674 		}
25675 		mutex_exit(SD_MUTEX(un));
25676 	}
25677 
25678 	/*
25679 	 * adjust minimum time interval to 1 second,
25680 	 * and convert from msecs to usecs
25681 	 */
25682 	if (interval > 0 && interval < 1000) {
25683 		interval = 1000;
25684 	}
25685 	interval *= 1000;
25686 
25687 	/*
25688 	 * submit the request to the scsi_watch service
25689 	 */
25690 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25691 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25692 	if (token == NULL) {
25693 		return (EAGAIN);
25694 	}
25695 
25696 	/*
25697 	 * save token for termination later on
25698 	 */
25699 	mutex_enter(SD_MUTEX(un));
25700 	un->un_mhd_token = token;
25701 	mutex_exit(SD_MUTEX(un));
25702 	return (0);
25703 }
25704 
25705 
25706 /*
25707  *    Function: sd_mhd_watch_cb()
25708  *
25709  * Description: This function is the call back function used by the scsi watch
25710  *		facility. The scsi watch facility sends the "Test Unit Ready"
25711  *		and processes the status. If applicable (i.e. a "Unit Attention"
25712  *		status and automatic "Request Sense" not used) the scsi watch
25713  *		facility will send a "Request Sense" and retrieve the sense data
25714  *		to be passed to this callback function. In either case the
25715  *		automatic "Request Sense" or the facility submitting one, this
25716  *		callback is passed the status and sense data.
25717  *
25718  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25719  *			among multiple watches that share this callback function
25720  *		resultp - scsi watch facility result packet containing scsi
25721  *			  packet, status byte and sense data
25722  *
25723  * Return Code: 0 - continue the watch task
25724  *		non-zero - terminate the watch task
25725  */
25726 
25727 static int
25728 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25729 {
25730 	struct sd_lun			*un;
25731 	struct scsi_status		*statusp;
25732 	uint8_t				*sensep;
25733 	struct scsi_pkt			*pkt;
25734 	uchar_t				actual_sense_length;
25735 	dev_t  				dev = (dev_t)arg;
25736 
25737 	ASSERT(resultp != NULL);
25738 	statusp			= resultp->statusp;
25739 	sensep			= (uint8_t *)resultp->sensep;
25740 	pkt			= resultp->pkt;
25741 	actual_sense_length	= resultp->actual_sense_length;
25742 
25743 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25744 		return (ENXIO);
25745 	}
25746 
25747 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25748 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25749 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25750 
25751 	/* Begin processing of the status and/or sense data */
25752 	if (pkt->pkt_reason != CMD_CMPLT) {
25753 		/* Handle the incomplete packet */
25754 		sd_mhd_watch_incomplete(un, pkt);
25755 		return (0);
25756 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25757 		if (*((unsigned char *)statusp)
25758 		    == STATUS_RESERVATION_CONFLICT) {
25759 			/*
25760 			 * Handle a reservation conflict by panicking if
25761 			 * configured for failfast or by logging the conflict
25762 			 * and updating the reservation status
25763 			 */
25764 			mutex_enter(SD_MUTEX(un));
25765 			if ((un->un_resvd_status & SD_FAILFAST) &&
25766 			    (sd_failfast_enable)) {
25767 				sd_panic_for_res_conflict(un);
25768 				/*NOTREACHED*/
25769 			}
25770 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25771 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25772 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25773 			mutex_exit(SD_MUTEX(un));
25774 		}
25775 	}
25776 
25777 	if (sensep != NULL) {
25778 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25779 			mutex_enter(SD_MUTEX(un));
25780 			if ((scsi_sense_asc(sensep) ==
25781 			    SD_SCSI_RESET_SENSE_CODE) &&
25782 			    (un->un_resvd_status & SD_RESERVE)) {
25783 				/*
25784 				 * The additional sense code indicates a power
25785 				 * on or bus device reset has occurred; update
25786 				 * the reservation status.
25787 				 */
25788 				un->un_resvd_status |=
25789 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25790 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25791 				    "sd_mhd_watch_cb: Lost Reservation\n");
25792 			}
25793 		} else {
25794 			return (0);
25795 		}
25796 	} else {
25797 		mutex_enter(SD_MUTEX(un));
25798 	}
25799 
25800 	if ((un->un_resvd_status & SD_RESERVE) &&
25801 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25802 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25803 			/*
25804 			 * A reset occurred in between the last probe and this
25805 			 * one so if a timeout is pending cancel it.
25806 			 */
25807 			if (un->un_resvd_timeid) {
25808 				timeout_id_t temp_id = un->un_resvd_timeid;
25809 				un->un_resvd_timeid = NULL;
25810 				mutex_exit(SD_MUTEX(un));
25811 				(void) untimeout(temp_id);
25812 				mutex_enter(SD_MUTEX(un));
25813 			}
25814 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25815 		}
25816 		if (un->un_resvd_timeid == 0) {
25817 			/* Schedule a timeout to handle the lost reservation */
25818 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25819 			    (void *)dev,
25820 			    drv_usectohz(sd_reinstate_resv_delay));
25821 		}
25822 	}
25823 	mutex_exit(SD_MUTEX(un));
25824 	return (0);
25825 }
25826 
25827 
25828 /*
25829  *    Function: sd_mhd_watch_incomplete()
25830  *
25831  * Description: This function is used to find out why a scsi pkt sent by the
25832  *		scsi watch facility was not completed. Under some scenarios this
25833  *		routine will return. Otherwise it will send a bus reset to see
25834  *		if the drive is still online.
25835  *
25836  *   Arguments: un  - driver soft state (unit) structure
25837  *		pkt - incomplete scsi pkt
25838  */
25839 
25840 static void
25841 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25842 {
25843 	int	be_chatty;
25844 	int	perr;
25845 
25846 	ASSERT(pkt != NULL);
25847 	ASSERT(un != NULL);
25848 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25849 	perr		= (pkt->pkt_statistics & STAT_PERR);
25850 
25851 	mutex_enter(SD_MUTEX(un));
25852 	if (un->un_state == SD_STATE_DUMPING) {
25853 		mutex_exit(SD_MUTEX(un));
25854 		return;
25855 	}
25856 
25857 	switch (pkt->pkt_reason) {
25858 	case CMD_UNX_BUS_FREE:
25859 		/*
25860 		 * If we had a parity error that caused the target to drop BSY*,
25861 		 * don't be chatty about it.
25862 		 */
25863 		if (perr && be_chatty) {
25864 			be_chatty = 0;
25865 		}
25866 		break;
25867 	case CMD_TAG_REJECT:
25868 		/*
25869 		 * The SCSI-2 spec states that a tag reject will be sent by the
25870 		 * target if tagged queuing is not supported. A tag reject may
25871 		 * also be sent during certain initialization periods or to
25872 		 * control internal resources. For the latter case the target
25873 		 * may also return Queue Full.
25874 		 *
25875 		 * If this driver receives a tag reject from a target that is
25876 		 * going through an init period or controlling internal
25877 		 * resources tagged queuing will be disabled. This is a less
25878 		 * than optimal behavior but the driver is unable to determine
25879 		 * the target state and assumes tagged queueing is not supported
25880 		 */
25881 		pkt->pkt_flags = 0;
25882 		un->un_tagflags = 0;
25883 
25884 		if (un->un_f_opt_queueing == TRUE) {
25885 			un->un_throttle = min(un->un_throttle, 3);
25886 		} else {
25887 			un->un_throttle = 1;
25888 		}
25889 		mutex_exit(SD_MUTEX(un));
25890 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25891 		mutex_enter(SD_MUTEX(un));
25892 		break;
25893 	case CMD_INCOMPLETE:
25894 		/*
25895 		 * The transport stopped with an abnormal state, fallthrough and
25896 		 * reset the target and/or bus unless selection did not complete
25897 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25898 		 * go through a target/bus reset
25899 		 */
25900 		if (pkt->pkt_state == STATE_GOT_BUS) {
25901 			break;
25902 		}
25903 		/*FALLTHROUGH*/
25904 
25905 	case CMD_TIMEOUT:
25906 	default:
25907 		/*
25908 		 * The lun may still be running the command, so a lun reset
25909 		 * should be attempted. If the lun reset fails or cannot be
25910 		 * issued, than try a target reset. Lastly try a bus reset.
25911 		 */
25912 		if ((pkt->pkt_statistics &
25913 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25914 			int reset_retval = 0;
25915 			mutex_exit(SD_MUTEX(un));
25916 			if (un->un_f_allow_bus_device_reset == TRUE) {
25917 				if (un->un_f_lun_reset_enabled == TRUE) {
25918 					reset_retval =
25919 					    scsi_reset(SD_ADDRESS(un),
25920 					    RESET_LUN);
25921 				}
25922 				if (reset_retval == 0) {
25923 					reset_retval =
25924 					    scsi_reset(SD_ADDRESS(un),
25925 					    RESET_TARGET);
25926 				}
25927 			}
25928 			if (reset_retval == 0) {
25929 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25930 			}
25931 			mutex_enter(SD_MUTEX(un));
25932 		}
25933 		break;
25934 	}
25935 
25936 	/* A device/bus reset has occurred; update the reservation status. */
25937 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25938 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25939 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25940 			un->un_resvd_status |=
25941 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25942 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25943 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25944 		}
25945 	}
25946 
25947 	/*
25948 	 * The disk has been turned off; Update the device state.
25949 	 *
25950 	 * Note: Should we be offlining the disk here?
25951 	 */
25952 	if (pkt->pkt_state == STATE_GOT_BUS) {
25953 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25954 		    "Disk not responding to selection\n");
25955 		if (un->un_state != SD_STATE_OFFLINE) {
25956 			New_state(un, SD_STATE_OFFLINE);
25957 		}
25958 	} else if (be_chatty) {
25959 		/*
25960 		 * suppress messages if they are all the same pkt reason;
25961 		 * with TQ, many (up to 256) are returned with the same
25962 		 * pkt_reason
25963 		 */
25964 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25965 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25966 			    "sd_mhd_watch_incomplete: "
25967 			    "SCSI transport failed: reason '%s'\n",
25968 			    scsi_rname(pkt->pkt_reason));
25969 		}
25970 	}
25971 	un->un_last_pkt_reason = pkt->pkt_reason;
25972 	mutex_exit(SD_MUTEX(un));
25973 }
25974 
25975 
25976 /*
25977  *    Function: sd_sname()
25978  *
25979  * Description: This is a simple little routine to return a string containing
25980  *		a printable description of command status byte for use in
25981  *		logging.
25982  *
25983  *   Arguments: status - pointer to a status byte
25984  *
25985  * Return Code: char * - string containing status description.
25986  */
25987 
25988 static char *
25989 sd_sname(uchar_t status)
25990 {
25991 	switch (status & STATUS_MASK) {
25992 	case STATUS_GOOD:
25993 		return ("good status");
25994 	case STATUS_CHECK:
25995 		return ("check condition");
25996 	case STATUS_MET:
25997 		return ("condition met");
25998 	case STATUS_BUSY:
25999 		return ("busy");
26000 	case STATUS_INTERMEDIATE:
26001 		return ("intermediate");
26002 	case STATUS_INTERMEDIATE_MET:
26003 		return ("intermediate - condition met");
26004 	case STATUS_RESERVATION_CONFLICT:
26005 		return ("reservation_conflict");
26006 	case STATUS_TERMINATED:
26007 		return ("command terminated");
26008 	case STATUS_QFULL:
26009 		return ("queue full");
26010 	default:
26011 		return ("<unknown status>");
26012 	}
26013 }
26014 
26015 
26016 /*
26017  *    Function: sd_mhd_resvd_recover()
26018  *
26019  * Description: This function adds a reservation entry to the
26020  *		sd_resv_reclaim_request list and signals the reservation
26021  *		reclaim thread that there is work pending. If the reservation
26022  *		reclaim thread has not been previously created this function
26023  *		will kick it off.
26024  *
26025  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
26026  *			among multiple watches that share this callback function
26027  *
26028  *     Context: This routine is called by timeout() and is run in interrupt
26029  *		context. It must not sleep or call other functions which may
26030  *		sleep.
26031  */
26032 
26033 static void
26034 sd_mhd_resvd_recover(void *arg)
26035 {
26036 	dev_t			dev = (dev_t)arg;
26037 	struct sd_lun		*un;
26038 	struct sd_thr_request	*sd_treq = NULL;
26039 	struct sd_thr_request	*sd_cur = NULL;
26040 	struct sd_thr_request	*sd_prev = NULL;
26041 	int			already_there = 0;
26042 
26043 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26044 		return;
26045 	}
26046 
26047 	mutex_enter(SD_MUTEX(un));
26048 	un->un_resvd_timeid = NULL;
26049 	if (un->un_resvd_status & SD_WANT_RESERVE) {
26050 		/*
26051 		 * There was a reset so don't issue the reserve, allow the
26052 		 * sd_mhd_watch_cb callback function to notice this and
26053 		 * reschedule the timeout for reservation.
26054 		 */
26055 		mutex_exit(SD_MUTEX(un));
26056 		return;
26057 	}
26058 	mutex_exit(SD_MUTEX(un));
26059 
26060 	/*
26061 	 * Add this device to the sd_resv_reclaim_request list and the
26062 	 * sd_resv_reclaim_thread should take care of the rest.
26063 	 *
26064 	 * Note: We can't sleep in this context so if the memory allocation
26065 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
26066 	 * reschedule the timeout for reservation.  (4378460)
26067 	 */
26068 	sd_treq = (struct sd_thr_request *)
26069 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
26070 	if (sd_treq == NULL) {
26071 		return;
26072 	}
26073 
26074 	sd_treq->sd_thr_req_next = NULL;
26075 	sd_treq->dev = dev;
26076 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26077 	if (sd_tr.srq_thr_req_head == NULL) {
26078 		sd_tr.srq_thr_req_head = sd_treq;
26079 	} else {
26080 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
26081 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
26082 			if (sd_cur->dev == dev) {
26083 				/*
26084 				 * already in Queue so don't log
26085 				 * another request for the device
26086 				 */
26087 				already_there = 1;
26088 				break;
26089 			}
26090 			sd_prev = sd_cur;
26091 		}
26092 		if (!already_there) {
26093 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
26094 			    "logging request for %lx\n", dev);
26095 			sd_prev->sd_thr_req_next = sd_treq;
26096 		} else {
26097 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
26098 		}
26099 	}
26100 
26101 	/*
26102 	 * Create a kernel thread to do the reservation reclaim and free up this
26103 	 * thread. We cannot block this thread while we go away to do the
26104 	 * reservation reclaim
26105 	 */
26106 	if (sd_tr.srq_resv_reclaim_thread == NULL)
26107 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
26108 		    sd_resv_reclaim_thread, NULL,
26109 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
26110 
26111 	/* Tell the reservation reclaim thread that it has work to do */
26112 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
26113 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26114 }
26115 
26116 /*
26117  *    Function: sd_resv_reclaim_thread()
26118  *
26119  * Description: This function implements the reservation reclaim operations
26120  *
26121  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
26122  *		      among multiple watches that share this callback function
26123  */
26124 
26125 static void
26126 sd_resv_reclaim_thread()
26127 {
26128 	struct sd_lun		*un;
26129 	struct sd_thr_request	*sd_mhreq;
26130 
26131 	/* Wait for work */
26132 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26133 	if (sd_tr.srq_thr_req_head == NULL) {
26134 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
26135 		    &sd_tr.srq_resv_reclaim_mutex);
26136 	}
26137 
26138 	/* Loop while we have work */
26139 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
26140 		un = ddi_get_soft_state(sd_state,
26141 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
26142 		if (un == NULL) {
26143 			/*
26144 			 * softstate structure is NULL so just
26145 			 * dequeue the request and continue
26146 			 */
26147 			sd_tr.srq_thr_req_head =
26148 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26149 			kmem_free(sd_tr.srq_thr_cur_req,
26150 			    sizeof (struct sd_thr_request));
26151 			continue;
26152 		}
26153 
26154 		/* dequeue the request */
26155 		sd_mhreq = sd_tr.srq_thr_cur_req;
26156 		sd_tr.srq_thr_req_head =
26157 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26158 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26159 
26160 		/*
26161 		 * Reclaim reservation only if SD_RESERVE is still set. There
26162 		 * may have been a call to MHIOCRELEASE before we got here.
26163 		 */
26164 		mutex_enter(SD_MUTEX(un));
26165 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26166 			/*
26167 			 * Note: The SD_LOST_RESERVE flag is cleared before
26168 			 * reclaiming the reservation. If this is done after the
26169 			 * call to sd_reserve_release a reservation loss in the
26170 			 * window between pkt completion of reserve cmd and
26171 			 * mutex_enter below may not be recognized
26172 			 */
26173 			un->un_resvd_status &= ~SD_LOST_RESERVE;
26174 			mutex_exit(SD_MUTEX(un));
26175 
26176 			if (sd_reserve_release(sd_mhreq->dev,
26177 			    SD_RESERVE) == 0) {
26178 				mutex_enter(SD_MUTEX(un));
26179 				un->un_resvd_status |= SD_RESERVE;
26180 				mutex_exit(SD_MUTEX(un));
26181 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26182 				    "sd_resv_reclaim_thread: "
26183 				    "Reservation Recovered\n");
26184 			} else {
26185 				mutex_enter(SD_MUTEX(un));
26186 				un->un_resvd_status |= SD_LOST_RESERVE;
26187 				mutex_exit(SD_MUTEX(un));
26188 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26189 				    "sd_resv_reclaim_thread: Failed "
26190 				    "Reservation Recovery\n");
26191 			}
26192 		} else {
26193 			mutex_exit(SD_MUTEX(un));
26194 		}
26195 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26196 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
26197 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26198 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
26199 		/*
26200 		 * wakeup the destroy thread if anyone is waiting on
26201 		 * us to complete.
26202 		 */
26203 		cv_signal(&sd_tr.srq_inprocess_cv);
26204 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
26205 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
26206 	}
26207 
26208 	/*
26209 	 * cleanup the sd_tr structure now that this thread will not exist
26210 	 */
26211 	ASSERT(sd_tr.srq_thr_req_head == NULL);
26212 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
26213 	sd_tr.srq_resv_reclaim_thread = NULL;
26214 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26215 	thread_exit();
26216 }
26217 
26218 
26219 /*
26220  *    Function: sd_rmv_resv_reclaim_req()
26221  *
26222  * Description: This function removes any pending reservation reclaim requests
26223  *		for the specified device.
26224  *
26225  *   Arguments: dev - the device 'dev_t'
26226  */
26227 
26228 static void
26229 sd_rmv_resv_reclaim_req(dev_t dev)
26230 {
26231 	struct sd_thr_request *sd_mhreq;
26232 	struct sd_thr_request *sd_prev;
26233 
26234 	/* Remove a reservation reclaim request from the list */
26235 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26236 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
26237 		/*
26238 		 * We are attempting to reinstate reservation for
26239 		 * this device. We wait for sd_reserve_release()
26240 		 * to return before we return.
26241 		 */
26242 		cv_wait(&sd_tr.srq_inprocess_cv,
26243 		    &sd_tr.srq_resv_reclaim_mutex);
26244 	} else {
26245 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
26246 		if (sd_mhreq && sd_mhreq->dev == dev) {
26247 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
26248 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26249 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26250 			return;
26251 		}
26252 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
26253 			if (sd_mhreq && sd_mhreq->dev == dev) {
26254 				break;
26255 			}
26256 			sd_prev = sd_mhreq;
26257 		}
26258 		if (sd_mhreq != NULL) {
26259 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
26260 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26261 		}
26262 	}
26263 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26264 }
26265 
26266 
26267 /*
26268  *    Function: sd_mhd_reset_notify_cb()
26269  *
26270  * Description: This is a call back function for scsi_reset_notify. This
26271  *		function updates the softstate reserved status and logs the
26272  *		reset. The driver scsi watch facility callback function
26273  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
26274  *		will reclaim the reservation.
26275  *
26276  *   Arguments: arg  - driver soft state (unit) structure
26277  */
26278 
26279 static void
26280 sd_mhd_reset_notify_cb(caddr_t arg)
26281 {
26282 	struct sd_lun *un = (struct sd_lun *)arg;
26283 
26284 	mutex_enter(SD_MUTEX(un));
26285 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26286 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
26287 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26288 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
26289 	}
26290 	mutex_exit(SD_MUTEX(un));
26291 }
26292 
26293 
26294 /*
26295  *    Function: sd_take_ownership()
26296  *
26297  * Description: This routine implements an algorithm to achieve a stable
26298  *		reservation on disks which don't implement priority reserve,
26299  *		and makes sure that other host lose re-reservation attempts.
26300  *		This algorithm contains of a loop that keeps issuing the RESERVE
26301  *		for some period of time (min_ownership_delay, default 6 seconds)
26302  *		During that loop, it looks to see if there has been a bus device
26303  *		reset or bus reset (both of which cause an existing reservation
26304  *		to be lost). If the reservation is lost issue RESERVE until a
26305  *		period of min_ownership_delay with no resets has gone by, or
26306  *		until max_ownership_delay has expired. This loop ensures that
26307  *		the host really did manage to reserve the device, in spite of
26308  *		resets. The looping for min_ownership_delay (default six
26309  *		seconds) is important to early generation clustering products,
26310  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
26311  *		MHIOCENFAILFAST periodic timer of two seconds. By having
26312  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
26313  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
26314  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
26315  *		have already noticed, via the MHIOCENFAILFAST polling, that it
26316  *		no longer "owns" the disk and will have panicked itself.  Thus,
26317  *		the host issuing the MHIOCTKOWN is assured (with timing
26318  *		dependencies) that by the time it actually starts to use the
26319  *		disk for real work, the old owner is no longer accessing it.
26320  *
26321  *		min_ownership_delay is the minimum amount of time for which the
26322  *		disk must be reserved continuously devoid of resets before the
26323  *		MHIOCTKOWN ioctl will return success.
26324  *
26325  *		max_ownership_delay indicates the amount of time by which the
26326  *		take ownership should succeed or timeout with an error.
26327  *
26328  *   Arguments: dev - the device 'dev_t'
26329  *		*p  - struct containing timing info.
26330  *
26331  * Return Code: 0 for success or error code
26332  */
26333 
26334 static int
26335 sd_take_ownership(dev_t dev, struct mhioctkown *p)
26336 {
26337 	struct sd_lun	*un;
26338 	int		rval;
26339 	int		err;
26340 	int		reservation_count   = 0;
26341 	int		min_ownership_delay =  6000000; /* in usec */
26342 	int		max_ownership_delay = 30000000; /* in usec */
26343 	clock_t		start_time;	/* starting time of this algorithm */
26344 	clock_t		end_time;	/* time limit for giving up */
26345 	clock_t		ownership_time;	/* time limit for stable ownership */
26346 	clock_t		current_time;
26347 	clock_t		previous_current_time;
26348 
26349 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26350 		return (ENXIO);
26351 	}
26352 
26353 	/*
26354 	 * Attempt a device reservation. A priority reservation is requested.
26355 	 */
26356 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
26357 	    != SD_SUCCESS) {
26358 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26359 		    "sd_take_ownership: return(1)=%d\n", rval);
26360 		return (rval);
26361 	}
26362 
26363 	/* Update the softstate reserved status to indicate the reservation */
26364 	mutex_enter(SD_MUTEX(un));
26365 	un->un_resvd_status |= SD_RESERVE;
26366 	un->un_resvd_status &=
26367 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
26368 	mutex_exit(SD_MUTEX(un));
26369 
26370 	if (p != NULL) {
26371 		if (p->min_ownership_delay != 0) {
26372 			min_ownership_delay = p->min_ownership_delay * 1000;
26373 		}
26374 		if (p->max_ownership_delay != 0) {
26375 			max_ownership_delay = p->max_ownership_delay * 1000;
26376 		}
26377 	}
26378 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26379 	    "sd_take_ownership: min, max delays: %d, %d\n",
26380 	    min_ownership_delay, max_ownership_delay);
26381 
26382 	start_time = ddi_get_lbolt();
26383 	current_time	= start_time;
26384 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26385 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26386 
26387 	while (current_time - end_time < 0) {
26388 		delay(drv_usectohz(500000));
26389 
26390 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26391 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26392 				mutex_enter(SD_MUTEX(un));
26393 				rval = (un->un_resvd_status &
26394 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26395 				mutex_exit(SD_MUTEX(un));
26396 				break;
26397 			}
26398 		}
26399 		previous_current_time = current_time;
26400 		current_time = ddi_get_lbolt();
26401 		mutex_enter(SD_MUTEX(un));
26402 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26403 			ownership_time = ddi_get_lbolt() +
26404 			    drv_usectohz(min_ownership_delay);
26405 			reservation_count = 0;
26406 		} else {
26407 			reservation_count++;
26408 		}
26409 		un->un_resvd_status |= SD_RESERVE;
26410 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26411 		mutex_exit(SD_MUTEX(un));
26412 
26413 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26414 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26415 		    "reservation=%s\n", (current_time - previous_current_time),
26416 		    reservation_count ? "ok" : "reclaimed");
26417 
26418 		if (current_time - ownership_time >= 0 &&
26419 		    reservation_count >= 4) {
26420 			rval = 0; /* Achieved a stable ownership */
26421 			break;
26422 		}
26423 		if (current_time - end_time >= 0) {
26424 			rval = EACCES; /* No ownership in max possible time */
26425 			break;
26426 		}
26427 	}
26428 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26429 	    "sd_take_ownership: return(2)=%d\n", rval);
26430 	return (rval);
26431 }
26432 
26433 
26434 /*
26435  *    Function: sd_reserve_release()
26436  *
26437  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26438  *		PRIORITY RESERVE commands based on a user specified command type
26439  *
26440  *   Arguments: dev - the device 'dev_t'
26441  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26442  *		      SD_RESERVE, SD_RELEASE
26443  *
26444  * Return Code: 0 or Error Code
26445  */
26446 
26447 static int
26448 sd_reserve_release(dev_t dev, int cmd)
26449 {
26450 	struct uscsi_cmd	*com = NULL;
26451 	struct sd_lun		*un = NULL;
26452 	char			cdb[CDB_GROUP0];
26453 	int			rval;
26454 
26455 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26456 	    (cmd == SD_PRIORITY_RESERVE));
26457 
26458 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26459 		return (ENXIO);
26460 	}
26461 
26462 	/* instantiate and initialize the command and cdb */
26463 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26464 	bzero(cdb, CDB_GROUP0);
26465 	com->uscsi_flags   = USCSI_SILENT;
26466 	com->uscsi_timeout = un->un_reserve_release_time;
26467 	com->uscsi_cdblen  = CDB_GROUP0;
26468 	com->uscsi_cdb	   = cdb;
26469 	if (cmd == SD_RELEASE) {
26470 		cdb[0] = SCMD_RELEASE;
26471 	} else {
26472 		cdb[0] = SCMD_RESERVE;
26473 	}
26474 
26475 	/* Send the command. */
26476 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26477 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26478 
26479 	/*
26480 	 * "break" a reservation that is held by another host, by issuing a
26481 	 * reset if priority reserve is desired, and we could not get the
26482 	 * device.
26483 	 */
26484 	if ((cmd == SD_PRIORITY_RESERVE) &&
26485 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26486 		/*
26487 		 * First try to reset the LUN. If we cannot, then try a target
26488 		 * reset, followed by a bus reset if the target reset fails.
26489 		 */
26490 		int reset_retval = 0;
26491 		if (un->un_f_lun_reset_enabled == TRUE) {
26492 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26493 		}
26494 		if (reset_retval == 0) {
26495 			/* The LUN reset either failed or was not issued */
26496 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26497 		}
26498 		if ((reset_retval == 0) &&
26499 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26500 			rval = EIO;
26501 			kmem_free(com, sizeof (*com));
26502 			return (rval);
26503 		}
26504 
26505 		bzero(com, sizeof (struct uscsi_cmd));
26506 		com->uscsi_flags   = USCSI_SILENT;
26507 		com->uscsi_cdb	   = cdb;
26508 		com->uscsi_cdblen  = CDB_GROUP0;
26509 		com->uscsi_timeout = 5;
26510 
26511 		/*
26512 		 * Reissue the last reserve command, this time without request
26513 		 * sense.  Assume that it is just a regular reserve command.
26514 		 */
26515 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26516 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26517 	}
26518 
26519 	/* Return an error if still getting a reservation conflict. */
26520 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26521 		rval = EACCES;
26522 	}
26523 
26524 	kmem_free(com, sizeof (*com));
26525 	return (rval);
26526 }
26527 
26528 
26529 #define	SD_NDUMP_RETRIES	12
26530 /*
26531  *	System Crash Dump routine
26532  */
26533 
26534 static int
26535 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26536 {
26537 	int		instance;
26538 	int		partition;
26539 	int		i;
26540 	int		err;
26541 	struct sd_lun	*un;
26542 	struct dk_map	*lp;
26543 	struct scsi_pkt *wr_pktp;
26544 	struct buf	*wr_bp;
26545 	struct buf	wr_buf;
26546 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26547 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26548 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26549 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26550 	size_t		io_start_offset;
26551 	int		doing_rmw = FALSE;
26552 	int		rval;
26553 #if defined(__i386) || defined(__amd64)
26554 	ssize_t dma_resid;
26555 	daddr_t oblkno;
26556 #endif
26557 
26558 	instance = SDUNIT(dev);
26559 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26560 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26561 		return (ENXIO);
26562 	}
26563 
26564 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26565 
26566 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26567 
26568 	partition = SDPART(dev);
26569 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26570 
26571 	/* Validate blocks to dump at against partition size. */
26572 	lp = &un->un_map[partition];
26573 	if ((blkno + nblk) > lp->dkl_nblk) {
26574 		SD_TRACE(SD_LOG_DUMP, un,
26575 		    "sddump: dump range larger than partition: "
26576 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26577 		    blkno, nblk, lp->dkl_nblk);
26578 		return (EINVAL);
26579 	}
26580 
26581 	mutex_enter(&un->un_pm_mutex);
26582 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26583 		struct scsi_pkt *start_pktp;
26584 
26585 		mutex_exit(&un->un_pm_mutex);
26586 
26587 		/*
26588 		 * use pm framework to power on HBA 1st
26589 		 */
26590 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26591 
26592 		/*
26593 		 * Dump no long uses sdpower to power on a device, it's
26594 		 * in-line here so it can be done in polled mode.
26595 		 */
26596 
26597 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26598 
26599 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26600 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26601 
26602 		if (start_pktp == NULL) {
26603 			/* We were not given a SCSI packet, fail. */
26604 			return (EIO);
26605 		}
26606 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26607 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26608 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26609 		start_pktp->pkt_flags = FLAG_NOINTR;
26610 
26611 		mutex_enter(SD_MUTEX(un));
26612 		SD_FILL_SCSI1_LUN(un, start_pktp);
26613 		mutex_exit(SD_MUTEX(un));
26614 		/*
26615 		 * Scsi_poll returns 0 (success) if the command completes and
26616 		 * the status block is STATUS_GOOD.
26617 		 */
26618 		if (sd_scsi_poll(un, start_pktp) != 0) {
26619 			scsi_destroy_pkt(start_pktp);
26620 			return (EIO);
26621 		}
26622 		scsi_destroy_pkt(start_pktp);
26623 		(void) sd_ddi_pm_resume(un);
26624 	} else {
26625 		mutex_exit(&un->un_pm_mutex);
26626 	}
26627 
26628 	mutex_enter(SD_MUTEX(un));
26629 	un->un_throttle = 0;
26630 
26631 	/*
26632 	 * The first time through, reset the specific target device.
26633 	 * However, when cpr calls sddump we know that sd is in a
26634 	 * a good state so no bus reset is required.
26635 	 * Clear sense data via Request Sense cmd.
26636 	 * In sddump we don't care about allow_bus_device_reset anymore
26637 	 */
26638 
26639 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26640 	    (un->un_state != SD_STATE_DUMPING)) {
26641 
26642 		New_state(un, SD_STATE_DUMPING);
26643 
26644 		if (un->un_f_is_fibre == FALSE) {
26645 			mutex_exit(SD_MUTEX(un));
26646 			/*
26647 			 * Attempt a bus reset for parallel scsi.
26648 			 *
26649 			 * Note: A bus reset is required because on some host
26650 			 * systems (i.e. E420R) a bus device reset is
26651 			 * insufficient to reset the state of the target.
26652 			 *
26653 			 * Note: Don't issue the reset for fibre-channel,
26654 			 * because this tends to hang the bus (loop) for
26655 			 * too long while everyone is logging out and in
26656 			 * and the deadman timer for dumping will fire
26657 			 * before the dump is complete.
26658 			 */
26659 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26660 				mutex_enter(SD_MUTEX(un));
26661 				Restore_state(un);
26662 				mutex_exit(SD_MUTEX(un));
26663 				return (EIO);
26664 			}
26665 
26666 			/* Delay to give the device some recovery time. */
26667 			drv_usecwait(10000);
26668 
26669 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26670 				SD_INFO(SD_LOG_DUMP, un,
26671 					"sddump: sd_send_polled_RQS failed\n");
26672 			}
26673 			mutex_enter(SD_MUTEX(un));
26674 		}
26675 	}
26676 
26677 	/*
26678 	 * Convert the partition-relative block number to a
26679 	 * disk physical block number.
26680 	 */
26681 	blkno += un->un_offset[partition];
26682 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26683 
26684 
26685 	/*
26686 	 * Check if the device has a non-512 block size.
26687 	 */
26688 	wr_bp = NULL;
26689 	if (NOT_DEVBSIZE(un)) {
26690 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26691 		tgt_byte_count = nblk * un->un_sys_blocksize;
26692 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26693 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26694 			doing_rmw = TRUE;
26695 			/*
26696 			 * Calculate the block number and number of block
26697 			 * in terms of the media block size.
26698 			 */
26699 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26700 			tgt_nblk =
26701 			    ((tgt_byte_offset + tgt_byte_count +
26702 				(un->un_tgt_blocksize - 1)) /
26703 				un->un_tgt_blocksize) - tgt_blkno;
26704 
26705 			/*
26706 			 * Invoke the routine which is going to do read part
26707 			 * of read-modify-write.
26708 			 * Note that this routine returns a pointer to
26709 			 * a valid bp in wr_bp.
26710 			 */
26711 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26712 			    &wr_bp);
26713 			if (err) {
26714 				mutex_exit(SD_MUTEX(un));
26715 				return (err);
26716 			}
26717 			/*
26718 			 * Offset is being calculated as -
26719 			 * (original block # * system block size) -
26720 			 * (new block # * target block size)
26721 			 */
26722 			io_start_offset =
26723 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26724 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26725 
26726 			ASSERT((io_start_offset >= 0) &&
26727 			    (io_start_offset < un->un_tgt_blocksize));
26728 			/*
26729 			 * Do the modify portion of read modify write.
26730 			 */
26731 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26732 			    (size_t)nblk * un->un_sys_blocksize);
26733 		} else {
26734 			doing_rmw = FALSE;
26735 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26736 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26737 		}
26738 
26739 		/* Convert blkno and nblk to target blocks */
26740 		blkno = tgt_blkno;
26741 		nblk = tgt_nblk;
26742 	} else {
26743 		wr_bp = &wr_buf;
26744 		bzero(wr_bp, sizeof (struct buf));
26745 		wr_bp->b_flags		= B_BUSY;
26746 		wr_bp->b_un.b_addr	= addr;
26747 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26748 		wr_bp->b_resid		= 0;
26749 	}
26750 
26751 	mutex_exit(SD_MUTEX(un));
26752 
26753 	/*
26754 	 * Obtain a SCSI packet for the write command.
26755 	 * It should be safe to call the allocator here without
26756 	 * worrying about being locked for DVMA mapping because
26757 	 * the address we're passed is already a DVMA mapping
26758 	 *
26759 	 * We are also not going to worry about semaphore ownership
26760 	 * in the dump buffer. Dumping is single threaded at present.
26761 	 */
26762 
26763 	wr_pktp = NULL;
26764 
26765 #if defined(__i386) || defined(__amd64)
26766 	dma_resid = wr_bp->b_bcount;
26767 	oblkno = blkno;
26768 	while (dma_resid != 0) {
26769 #endif
26770 
26771 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26772 		wr_bp->b_flags &= ~B_ERROR;
26773 
26774 #if defined(__i386) || defined(__amd64)
26775 		blkno = oblkno +
26776 			((wr_bp->b_bcount - dma_resid) /
26777 			    un->un_tgt_blocksize);
26778 		nblk = dma_resid / un->un_tgt_blocksize;
26779 
26780 		if (wr_pktp) {
26781 			/* Partial DMA transfers after initial transfer */
26782 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26783 			    blkno, nblk);
26784 		} else {
26785 			/* Initial transfer */
26786 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26787 			    un->un_pkt_flags, NULL_FUNC, NULL,
26788 			    blkno, nblk);
26789 		}
26790 #else
26791 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26792 		    0, NULL_FUNC, NULL, blkno, nblk);
26793 #endif
26794 
26795 		if (rval == 0) {
26796 			/* We were given a SCSI packet, continue. */
26797 			break;
26798 		}
26799 
26800 		if (i == 0) {
26801 			if (wr_bp->b_flags & B_ERROR) {
26802 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26803 				    "no resources for dumping; "
26804 				    "error code: 0x%x, retrying",
26805 				    geterror(wr_bp));
26806 			} else {
26807 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26808 				    "no resources for dumping; retrying");
26809 			}
26810 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26811 			if (wr_bp->b_flags & B_ERROR) {
26812 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26813 				    "no resources for dumping; error code: "
26814 				    "0x%x, retrying\n", geterror(wr_bp));
26815 			}
26816 		} else {
26817 			if (wr_bp->b_flags & B_ERROR) {
26818 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26819 				    "no resources for dumping; "
26820 				    "error code: 0x%x, retries failed, "
26821 				    "giving up.\n", geterror(wr_bp));
26822 			} else {
26823 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26824 				    "no resources for dumping; "
26825 				    "retries failed, giving up.\n");
26826 			}
26827 			mutex_enter(SD_MUTEX(un));
26828 			Restore_state(un);
26829 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26830 				mutex_exit(SD_MUTEX(un));
26831 				scsi_free_consistent_buf(wr_bp);
26832 			} else {
26833 				mutex_exit(SD_MUTEX(un));
26834 			}
26835 			return (EIO);
26836 		}
26837 		drv_usecwait(10000);
26838 	}
26839 
26840 #if defined(__i386) || defined(__amd64)
26841 	/*
26842 	 * save the resid from PARTIAL_DMA
26843 	 */
26844 	dma_resid = wr_pktp->pkt_resid;
26845 	if (dma_resid != 0)
26846 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26847 	wr_pktp->pkt_resid = 0;
26848 #endif
26849 
26850 	/* SunBug 1222170 */
26851 	wr_pktp->pkt_flags = FLAG_NOINTR;
26852 
26853 	err = EIO;
26854 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26855 
26856 		/*
26857 		 * Scsi_poll returns 0 (success) if the command completes and
26858 		 * the status block is STATUS_GOOD.  We should only check
26859 		 * errors if this condition is not true.  Even then we should
26860 		 * send our own request sense packet only if we have a check
26861 		 * condition and auto request sense has not been performed by
26862 		 * the hba.
26863 		 */
26864 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26865 
26866 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26867 		    (wr_pktp->pkt_resid == 0)) {
26868 			err = SD_SUCCESS;
26869 			break;
26870 		}
26871 
26872 		/*
26873 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26874 		 */
26875 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26876 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26877 			    "Device is gone\n");
26878 			break;
26879 		}
26880 
26881 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26882 			SD_INFO(SD_LOG_DUMP, un,
26883 			    "sddump: write failed with CHECK, try # %d\n", i);
26884 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26885 				(void) sd_send_polled_RQS(un);
26886 			}
26887 
26888 			continue;
26889 		}
26890 
26891 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26892 			int reset_retval = 0;
26893 
26894 			SD_INFO(SD_LOG_DUMP, un,
26895 			    "sddump: write failed with BUSY, try # %d\n", i);
26896 
26897 			if (un->un_f_lun_reset_enabled == TRUE) {
26898 				reset_retval = scsi_reset(SD_ADDRESS(un),
26899 				    RESET_LUN);
26900 			}
26901 			if (reset_retval == 0) {
26902 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26903 			}
26904 			(void) sd_send_polled_RQS(un);
26905 
26906 		} else {
26907 			SD_INFO(SD_LOG_DUMP, un,
26908 			    "sddump: write failed with 0x%x, try # %d\n",
26909 			    SD_GET_PKT_STATUS(wr_pktp), i);
26910 			mutex_enter(SD_MUTEX(un));
26911 			sd_reset_target(un, wr_pktp);
26912 			mutex_exit(SD_MUTEX(un));
26913 		}
26914 
26915 		/*
26916 		 * If we are not getting anywhere with lun/target resets,
26917 		 * let's reset the bus.
26918 		 */
26919 		if (i == SD_NDUMP_RETRIES/2) {
26920 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26921 			(void) sd_send_polled_RQS(un);
26922 		}
26923 
26924 	}
26925 #if defined(__i386) || defined(__amd64)
26926 	}	/* dma_resid */
26927 #endif
26928 
26929 	scsi_destroy_pkt(wr_pktp);
26930 	mutex_enter(SD_MUTEX(un));
26931 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26932 		mutex_exit(SD_MUTEX(un));
26933 		scsi_free_consistent_buf(wr_bp);
26934 	} else {
26935 		mutex_exit(SD_MUTEX(un));
26936 	}
26937 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26938 	return (err);
26939 }
26940 
26941 /*
26942  *    Function: sd_scsi_poll()
26943  *
26944  * Description: This is a wrapper for the scsi_poll call.
26945  *
26946  *   Arguments: sd_lun - The unit structure
26947  *              scsi_pkt - The scsi packet being sent to the device.
26948  *
26949  * Return Code: 0 - Command completed successfully with good status
26950  *             -1 - Command failed.  This could indicate a check condition
26951  *                  or other status value requiring recovery action.
26952  *
26953  */
26954 
26955 static int
26956 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26957 {
26958 	int status;
26959 
26960 	ASSERT(un != NULL);
26961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26962 	ASSERT(pktp != NULL);
26963 
26964 	status = SD_SUCCESS;
26965 
26966 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26967 		pktp->pkt_flags |= un->un_tagflags;
26968 		pktp->pkt_flags &= ~FLAG_NODISCON;
26969 	}
26970 
26971 	status = sd_ddi_scsi_poll(pktp);
26972 	/*
26973 	 * Scsi_poll returns 0 (success) if the command completes and the
26974 	 * status block is STATUS_GOOD.  We should only check errors if this
26975 	 * condition is not true.  Even then we should send our own request
26976 	 * sense packet only if we have a check condition and auto
26977 	 * request sense has not been performed by the hba.
26978 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26979 	 */
26980 	if ((status != SD_SUCCESS) &&
26981 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26982 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26983 	    (pktp->pkt_reason != CMD_DEV_GONE))
26984 		(void) sd_send_polled_RQS(un);
26985 
26986 	return (status);
26987 }
26988 
26989 /*
26990  *    Function: sd_send_polled_RQS()
26991  *
26992  * Description: This sends the request sense command to a device.
26993  *
26994  *   Arguments: sd_lun - The unit structure
26995  *
26996  * Return Code: 0 - Command completed successfully with good status
26997  *             -1 - Command failed.
26998  *
26999  */
27000 
27001 static int
27002 sd_send_polled_RQS(struct sd_lun *un)
27003 {
27004 	int	ret_val;
27005 	struct	scsi_pkt	*rqs_pktp;
27006 	struct	buf		*rqs_bp;
27007 
27008 	ASSERT(un != NULL);
27009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
27010 
27011 	ret_val = SD_SUCCESS;
27012 
27013 	rqs_pktp = un->un_rqs_pktp;
27014 	rqs_bp	 = un->un_rqs_bp;
27015 
27016 	mutex_enter(SD_MUTEX(un));
27017 
27018 	if (un->un_sense_isbusy) {
27019 		ret_val = SD_FAILURE;
27020 		mutex_exit(SD_MUTEX(un));
27021 		return (ret_val);
27022 	}
27023 
27024 	/*
27025 	 * If the request sense buffer (and packet) is not in use,
27026 	 * let's set the un_sense_isbusy and send our packet
27027 	 */
27028 	un->un_sense_isbusy 	= 1;
27029 	rqs_pktp->pkt_resid  	= 0;
27030 	rqs_pktp->pkt_reason 	= 0;
27031 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
27032 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
27033 
27034 	mutex_exit(SD_MUTEX(un));
27035 
27036 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
27037 	    " 0x%p\n", rqs_bp->b_un.b_addr);
27038 
27039 	/*
27040 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
27041 	 * axle - it has a call into us!
27042 	 */
27043 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
27044 		SD_INFO(SD_LOG_COMMON, un,
27045 		    "sd_send_polled_RQS: RQS failed\n");
27046 	}
27047 
27048 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
27049 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
27050 
27051 	mutex_enter(SD_MUTEX(un));
27052 	un->un_sense_isbusy = 0;
27053 	mutex_exit(SD_MUTEX(un));
27054 
27055 	return (ret_val);
27056 }
27057 
27058 /*
27059  * Defines needed for localized version of the scsi_poll routine.
27060  */
27061 #define	SD_CSEC		10000			/* usecs */
27062 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
27063 
27064 
27065 /*
27066  *    Function: sd_ddi_scsi_poll()
27067  *
27068  * Description: Localized version of the scsi_poll routine.  The purpose is to
27069  *		send a scsi_pkt to a device as a polled command.  This version
27070  *		is to ensure more robust handling of transport errors.
27071  *		Specifically this routine cures not ready, coming ready
27072  *		transition for power up and reset of sonoma's.  This can take
27073  *		up to 45 seconds for power-on and 20 seconds for reset of a
27074  * 		sonoma lun.
27075  *
27076  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
27077  *
27078  * Return Code: 0 - Command completed successfully with good status
27079  *             -1 - Command failed.
27080  *
27081  */
27082 
27083 static int
27084 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
27085 {
27086 	int busy_count;
27087 	int timeout;
27088 	int rval = SD_FAILURE;
27089 	int savef;
27090 	uint8_t *sensep;
27091 	long savet;
27092 	void (*savec)();
27093 	/*
27094 	 * The following is defined in machdep.c and is used in determining if
27095 	 * the scsi transport system will do polled I/O instead of interrupt
27096 	 * I/O when called from xx_dump().
27097 	 */
27098 	extern int do_polled_io;
27099 
27100 	/*
27101 	 * save old flags in pkt, to restore at end
27102 	 */
27103 	savef = pkt->pkt_flags;
27104 	savec = pkt->pkt_comp;
27105 	savet = pkt->pkt_time;
27106 
27107 	pkt->pkt_flags |= FLAG_NOINTR;
27108 
27109 	/*
27110 	 * XXX there is nothing in the SCSA spec that states that we should not
27111 	 * do a callback for polled cmds; however, removing this will break sd
27112 	 * and probably other target drivers
27113 	 */
27114 	pkt->pkt_comp = NULL;
27115 
27116 	/*
27117 	 * we don't like a polled command without timeout.
27118 	 * 60 seconds seems long enough.
27119 	 */
27120 	if (pkt->pkt_time == 0) {
27121 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
27122 	}
27123 
27124 	/*
27125 	 * Send polled cmd.
27126 	 *
27127 	 * We do some error recovery for various errors.  Tran_busy,
27128 	 * queue full, and non-dispatched commands are retried every 10 msec.
27129 	 * as they are typically transient failures.  Busy status and Not
27130 	 * Ready are retried every second as this status takes a while to
27131 	 * change.  Unit attention is retried for pkt_time (60) times
27132 	 * with no delay.
27133 	 */
27134 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
27135 
27136 	for (busy_count = 0; busy_count < timeout; busy_count++) {
27137 		int rc;
27138 		int poll_delay;
27139 
27140 		/*
27141 		 * Initialize pkt status variables.
27142 		 */
27143 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
27144 
27145 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
27146 			if (rc != TRAN_BUSY) {
27147 				/* Transport failed - give up. */
27148 				break;
27149 			} else {
27150 				/* Transport busy - try again. */
27151 				poll_delay = 1 * SD_CSEC; /* 10 msec */
27152 			}
27153 		} else {
27154 			/*
27155 			 * Transport accepted - check pkt status.
27156 			 */
27157 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
27158 			if (pkt->pkt_reason == CMD_CMPLT &&
27159 			    rc == STATUS_CHECK &&
27160 			    pkt->pkt_state & STATE_ARQ_DONE) {
27161 				struct scsi_arq_status *arqstat =
27162 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
27163 
27164 				sensep = (uint8_t *)&arqstat->sts_sensedata;
27165 			} else {
27166 				sensep = NULL;
27167 			}
27168 
27169 			if ((pkt->pkt_reason == CMD_CMPLT) &&
27170 			    (rc == STATUS_GOOD)) {
27171 				/* No error - we're done */
27172 				rval = SD_SUCCESS;
27173 				break;
27174 
27175 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
27176 				/* Lost connection - give up */
27177 				break;
27178 
27179 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
27180 			    (pkt->pkt_state == 0)) {
27181 				/* Pkt not dispatched - try again. */
27182 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27183 
27184 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27185 			    (rc == STATUS_QFULL)) {
27186 				/* Queue full - try again. */
27187 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27188 
27189 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27190 			    (rc == STATUS_BUSY)) {
27191 				/* Busy - try again. */
27192 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27193 				busy_count += (SD_SEC_TO_CSEC - 1);
27194 
27195 			} else if ((sensep != NULL) &&
27196 			    (scsi_sense_key(sensep) ==
27197 				KEY_UNIT_ATTENTION)) {
27198 				/* Unit Attention - try again */
27199 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
27200 				continue;
27201 
27202 			} else if ((sensep != NULL) &&
27203 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
27204 			    (scsi_sense_asc(sensep) == 0x04) &&
27205 			    (scsi_sense_ascq(sensep) == 0x01)) {
27206 				/* Not ready -> ready - try again. */
27207 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27208 				busy_count += (SD_SEC_TO_CSEC - 1);
27209 
27210 			} else {
27211 				/* BAD status - give up. */
27212 				break;
27213 			}
27214 		}
27215 
27216 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
27217 		    !do_polled_io) {
27218 			delay(drv_usectohz(poll_delay));
27219 		} else {
27220 			/* we busy wait during cpr_dump or interrupt threads */
27221 			drv_usecwait(poll_delay);
27222 		}
27223 	}
27224 
27225 	pkt->pkt_flags = savef;
27226 	pkt->pkt_comp = savec;
27227 	pkt->pkt_time = savet;
27228 	return (rval);
27229 }
27230 
27231 
27232 /*
27233  *    Function: sd_persistent_reservation_in_read_keys
27234  *
27235  * Description: This routine is the driver entry point for handling CD-ROM
27236  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
27237  *		by sending the SCSI-3 PRIN commands to the device.
27238  *		Processes the read keys command response by copying the
27239  *		reservation key information into the user provided buffer.
27240  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
27241  *
27242  *   Arguments: un   -  Pointer to soft state struct for the target.
27243  *		usrp -	user provided pointer to multihost Persistent In Read
27244  *			Keys structure (mhioc_inkeys_t)
27245  *		flag -	this argument is a pass through to ddi_copyxxx()
27246  *			directly from the mode argument of ioctl().
27247  *
27248  * Return Code: 0   - Success
27249  *		EACCES
27250  *		ENOTSUP
27251  *		errno return code from sd_send_scsi_cmd()
27252  *
27253  *     Context: Can sleep. Does not return until command is completed.
27254  */
27255 
27256 static int
27257 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
27258     mhioc_inkeys_t *usrp, int flag)
27259 {
27260 #ifdef _MULTI_DATAMODEL
27261 	struct mhioc_key_list32	li32;
27262 #endif
27263 	sd_prin_readkeys_t	*in;
27264 	mhioc_inkeys_t		*ptr;
27265 	mhioc_key_list_t	li;
27266 	uchar_t			*data_bufp;
27267 	int 			data_len;
27268 	int			rval;
27269 	size_t			copysz;
27270 
27271 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
27272 		return (EINVAL);
27273 	}
27274 	bzero(&li, sizeof (mhioc_key_list_t));
27275 
27276 	/*
27277 	 * Get the listsize from user
27278 	 */
27279 #ifdef _MULTI_DATAMODEL
27280 
27281 	switch (ddi_model_convert_from(flag & FMODELS)) {
27282 	case DDI_MODEL_ILP32:
27283 		copysz = sizeof (struct mhioc_key_list32);
27284 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
27285 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27286 			    "sd_persistent_reservation_in_read_keys: "
27287 			    "failed ddi_copyin: mhioc_key_list32_t\n");
27288 			rval = EFAULT;
27289 			goto done;
27290 		}
27291 		li.listsize = li32.listsize;
27292 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
27293 		break;
27294 
27295 	case DDI_MODEL_NONE:
27296 		copysz = sizeof (mhioc_key_list_t);
27297 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27298 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27299 			    "sd_persistent_reservation_in_read_keys: "
27300 			    "failed ddi_copyin: mhioc_key_list_t\n");
27301 			rval = EFAULT;
27302 			goto done;
27303 		}
27304 		break;
27305 	}
27306 
27307 #else /* ! _MULTI_DATAMODEL */
27308 	copysz = sizeof (mhioc_key_list_t);
27309 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27310 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27311 		    "sd_persistent_reservation_in_read_keys: "
27312 		    "failed ddi_copyin: mhioc_key_list_t\n");
27313 		rval = EFAULT;
27314 		goto done;
27315 	}
27316 #endif
27317 
27318 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
27319 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
27320 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27321 
27322 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
27323 	    data_len, data_bufp)) != 0) {
27324 		goto done;
27325 	}
27326 	in = (sd_prin_readkeys_t *)data_bufp;
27327 	ptr->generation = BE_32(in->generation);
27328 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
27329 
27330 	/*
27331 	 * Return the min(listsize, listlen) keys
27332 	 */
27333 #ifdef _MULTI_DATAMODEL
27334 
27335 	switch (ddi_model_convert_from(flag & FMODELS)) {
27336 	case DDI_MODEL_ILP32:
27337 		li32.listlen = li.listlen;
27338 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
27339 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27340 			    "sd_persistent_reservation_in_read_keys: "
27341 			    "failed ddi_copyout: mhioc_key_list32_t\n");
27342 			rval = EFAULT;
27343 			goto done;
27344 		}
27345 		break;
27346 
27347 	case DDI_MODEL_NONE:
27348 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27349 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27350 			    "sd_persistent_reservation_in_read_keys: "
27351 			    "failed ddi_copyout: mhioc_key_list_t\n");
27352 			rval = EFAULT;
27353 			goto done;
27354 		}
27355 		break;
27356 	}
27357 
27358 #else /* ! _MULTI_DATAMODEL */
27359 
27360 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27361 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27362 		    "sd_persistent_reservation_in_read_keys: "
27363 		    "failed ddi_copyout: mhioc_key_list_t\n");
27364 		rval = EFAULT;
27365 		goto done;
27366 	}
27367 
27368 #endif /* _MULTI_DATAMODEL */
27369 
27370 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
27371 	    li.listsize * MHIOC_RESV_KEY_SIZE);
27372 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27373 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27374 		    "sd_persistent_reservation_in_read_keys: "
27375 		    "failed ddi_copyout: keylist\n");
27376 		rval = EFAULT;
27377 	}
27378 done:
27379 	kmem_free(data_bufp, data_len);
27380 	return (rval);
27381 }
27382 
27383 
27384 /*
27385  *    Function: sd_persistent_reservation_in_read_resv
27386  *
27387  * Description: This routine is the driver entry point for handling CD-ROM
27388  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27389  *		by sending the SCSI-3 PRIN commands to the device.
27390  *		Process the read persistent reservations command response by
27391  *		copying the reservation information into the user provided
27392  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27393  *
27394  *   Arguments: un   -  Pointer to soft state struct for the target.
27395  *		usrp -	user provided pointer to multihost Persistent In Read
27396  *			Keys structure (mhioc_inkeys_t)
27397  *		flag -	this argument is a pass through to ddi_copyxxx()
27398  *			directly from the mode argument of ioctl().
27399  *
27400  * Return Code: 0   - Success
27401  *		EACCES
27402  *		ENOTSUP
27403  *		errno return code from sd_send_scsi_cmd()
27404  *
27405  *     Context: Can sleep. Does not return until command is completed.
27406  */
27407 
27408 static int
27409 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27410     mhioc_inresvs_t *usrp, int flag)
27411 {
27412 #ifdef _MULTI_DATAMODEL
27413 	struct mhioc_resv_desc_list32 resvlist32;
27414 #endif
27415 	sd_prin_readresv_t	*in;
27416 	mhioc_inresvs_t		*ptr;
27417 	sd_readresv_desc_t	*readresv_ptr;
27418 	mhioc_resv_desc_list_t	resvlist;
27419 	mhioc_resv_desc_t 	resvdesc;
27420 	uchar_t			*data_bufp;
27421 	int 			data_len;
27422 	int			rval;
27423 	int			i;
27424 	size_t			copysz;
27425 	mhioc_resv_desc_t	*bufp;
27426 
27427 	if ((ptr = usrp) == NULL) {
27428 		return (EINVAL);
27429 	}
27430 
27431 	/*
27432 	 * Get the listsize from user
27433 	 */
27434 #ifdef _MULTI_DATAMODEL
27435 	switch (ddi_model_convert_from(flag & FMODELS)) {
27436 	case DDI_MODEL_ILP32:
27437 		copysz = sizeof (struct mhioc_resv_desc_list32);
27438 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27439 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27440 			    "sd_persistent_reservation_in_read_resv: "
27441 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27442 			rval = EFAULT;
27443 			goto done;
27444 		}
27445 		resvlist.listsize = resvlist32.listsize;
27446 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27447 		break;
27448 
27449 	case DDI_MODEL_NONE:
27450 		copysz = sizeof (mhioc_resv_desc_list_t);
27451 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27452 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27453 			    "sd_persistent_reservation_in_read_resv: "
27454 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27455 			rval = EFAULT;
27456 			goto done;
27457 		}
27458 		break;
27459 	}
27460 #else /* ! _MULTI_DATAMODEL */
27461 	copysz = sizeof (mhioc_resv_desc_list_t);
27462 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27463 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27464 		    "sd_persistent_reservation_in_read_resv: "
27465 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27466 		rval = EFAULT;
27467 		goto done;
27468 	}
27469 #endif /* ! _MULTI_DATAMODEL */
27470 
27471 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27472 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27473 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27474 
27475 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27476 	    data_len, data_bufp)) != 0) {
27477 		goto done;
27478 	}
27479 	in = (sd_prin_readresv_t *)data_bufp;
27480 	ptr->generation = BE_32(in->generation);
27481 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27482 
27483 	/*
27484 	 * Return the min(listsize, listlen( keys
27485 	 */
27486 #ifdef _MULTI_DATAMODEL
27487 
27488 	switch (ddi_model_convert_from(flag & FMODELS)) {
27489 	case DDI_MODEL_ILP32:
27490 		resvlist32.listlen = resvlist.listlen;
27491 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27492 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27493 			    "sd_persistent_reservation_in_read_resv: "
27494 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27495 			rval = EFAULT;
27496 			goto done;
27497 		}
27498 		break;
27499 
27500 	case DDI_MODEL_NONE:
27501 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27502 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27503 			    "sd_persistent_reservation_in_read_resv: "
27504 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27505 			rval = EFAULT;
27506 			goto done;
27507 		}
27508 		break;
27509 	}
27510 
27511 #else /* ! _MULTI_DATAMODEL */
27512 
27513 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27514 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27515 		    "sd_persistent_reservation_in_read_resv: "
27516 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27517 		rval = EFAULT;
27518 		goto done;
27519 	}
27520 
27521 #endif /* ! _MULTI_DATAMODEL */
27522 
27523 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27524 	bufp = resvlist.list;
27525 	copysz = sizeof (mhioc_resv_desc_t);
27526 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27527 	    i++, readresv_ptr++, bufp++) {
27528 
27529 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27530 		    MHIOC_RESV_KEY_SIZE);
27531 		resvdesc.type  = readresv_ptr->type;
27532 		resvdesc.scope = readresv_ptr->scope;
27533 		resvdesc.scope_specific_addr =
27534 		    BE_32(readresv_ptr->scope_specific_addr);
27535 
27536 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27537 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27538 			    "sd_persistent_reservation_in_read_resv: "
27539 			    "failed ddi_copyout: resvlist\n");
27540 			rval = EFAULT;
27541 			goto done;
27542 		}
27543 	}
27544 done:
27545 	kmem_free(data_bufp, data_len);
27546 	return (rval);
27547 }
27548 
27549 
27550 /*
27551  *    Function: sr_change_blkmode()
27552  *
27553  * Description: This routine is the driver entry point for handling CD-ROM
27554  *		block mode ioctl requests. Support for returning and changing
27555  *		the current block size in use by the device is implemented. The
27556  *		LBA size is changed via a MODE SELECT Block Descriptor.
27557  *
27558  *		This routine issues a mode sense with an allocation length of
27559  *		12 bytes for the mode page header and a single block descriptor.
27560  *
27561  *   Arguments: dev - the device 'dev_t'
27562  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27563  *		      CDROMSBLKMODE (set)
27564  *		data - current block size or requested block size
27565  *		flag - this argument is a pass through to ddi_copyxxx() directly
27566  *		       from the mode argument of ioctl().
27567  *
27568  * Return Code: the code returned by sd_send_scsi_cmd()
27569  *		EINVAL if invalid arguments are provided
27570  *		EFAULT if ddi_copyxxx() fails
27571  *		ENXIO if fail ddi_get_soft_state
27572  *		EIO if invalid mode sense block descriptor length
27573  *
27574  */
27575 
27576 static int
27577 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27578 {
27579 	struct sd_lun			*un = NULL;
27580 	struct mode_header		*sense_mhp, *select_mhp;
27581 	struct block_descriptor		*sense_desc, *select_desc;
27582 	int				current_bsize;
27583 	int				rval = EINVAL;
27584 	uchar_t				*sense = NULL;
27585 	uchar_t				*select = NULL;
27586 
27587 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27588 
27589 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27590 		return (ENXIO);
27591 	}
27592 
27593 	/*
27594 	 * The block length is changed via the Mode Select block descriptor, the
27595 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27596 	 * required as part of this routine. Therefore the mode sense allocation
27597 	 * length is specified to be the length of a mode page header and a
27598 	 * block descriptor.
27599 	 */
27600 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27601 
27602 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27603 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27604 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27605 		    "sr_change_blkmode: Mode Sense Failed\n");
27606 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27607 		return (rval);
27608 	}
27609 
27610 	/* Check the block descriptor len to handle only 1 block descriptor */
27611 	sense_mhp = (struct mode_header *)sense;
27612 	if ((sense_mhp->bdesc_length == 0) ||
27613 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27614 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27615 		    "sr_change_blkmode: Mode Sense returned invalid block"
27616 		    " descriptor length\n");
27617 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27618 		return (EIO);
27619 	}
27620 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27621 	current_bsize = ((sense_desc->blksize_hi << 16) |
27622 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27623 
27624 	/* Process command */
27625 	switch (cmd) {
27626 	case CDROMGBLKMODE:
27627 		/* Return the block size obtained during the mode sense */
27628 		if (ddi_copyout(&current_bsize, (void *)data,
27629 		    sizeof (int), flag) != 0)
27630 			rval = EFAULT;
27631 		break;
27632 	case CDROMSBLKMODE:
27633 		/* Validate the requested block size */
27634 		switch (data) {
27635 		case CDROM_BLK_512:
27636 		case CDROM_BLK_1024:
27637 		case CDROM_BLK_2048:
27638 		case CDROM_BLK_2056:
27639 		case CDROM_BLK_2336:
27640 		case CDROM_BLK_2340:
27641 		case CDROM_BLK_2352:
27642 		case CDROM_BLK_2368:
27643 		case CDROM_BLK_2448:
27644 		case CDROM_BLK_2646:
27645 		case CDROM_BLK_2647:
27646 			break;
27647 		default:
27648 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27649 			    "sr_change_blkmode: "
27650 			    "Block Size '%ld' Not Supported\n", data);
27651 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27652 			return (EINVAL);
27653 		}
27654 
27655 		/*
27656 		 * The current block size matches the requested block size so
27657 		 * there is no need to send the mode select to change the size
27658 		 */
27659 		if (current_bsize == data) {
27660 			break;
27661 		}
27662 
27663 		/* Build the select data for the requested block size */
27664 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27665 		select_mhp = (struct mode_header *)select;
27666 		select_desc =
27667 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27668 		/*
27669 		 * The LBA size is changed via the block descriptor, so the
27670 		 * descriptor is built according to the user data
27671 		 */
27672 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27673 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27674 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27675 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27676 
27677 		/* Send the mode select for the requested block size */
27678 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27679 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27680 		    SD_PATH_STANDARD)) != 0) {
27681 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27682 			    "sr_change_blkmode: Mode Select Failed\n");
27683 			/*
27684 			 * The mode select failed for the requested block size,
27685 			 * so reset the data for the original block size and
27686 			 * send it to the target. The error is indicated by the
27687 			 * return value for the failed mode select.
27688 			 */
27689 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27690 			select_desc->blksize_mid = sense_desc->blksize_mid;
27691 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27692 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27693 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27694 			    SD_PATH_STANDARD);
27695 		} else {
27696 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27697 			mutex_enter(SD_MUTEX(un));
27698 			sd_update_block_info(un, (uint32_t)data, 0);
27699 
27700 			mutex_exit(SD_MUTEX(un));
27701 		}
27702 		break;
27703 	default:
27704 		/* should not reach here, but check anyway */
27705 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27706 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27707 		rval = EINVAL;
27708 		break;
27709 	}
27710 
27711 	if (select) {
27712 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27713 	}
27714 	if (sense) {
27715 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27716 	}
27717 	return (rval);
27718 }
27719 
27720 
27721 /*
27722  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27723  * implement driver support for getting and setting the CD speed. The command
27724  * set used will be based on the device type. If the device has not been
27725  * identified as MMC the Toshiba vendor specific mode page will be used. If
27726  * the device is MMC but does not support the Real Time Streaming feature
27727  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27728  * be used to read the speed.
27729  */
27730 
27731 /*
27732  *    Function: sr_change_speed()
27733  *
27734  * Description: This routine is the driver entry point for handling CD-ROM
27735  *		drive speed ioctl requests for devices supporting the Toshiba
27736  *		vendor specific drive speed mode page. Support for returning
27737  *		and changing the current drive speed in use by the device is
27738  *		implemented.
27739  *
27740  *   Arguments: dev - the device 'dev_t'
27741  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27742  *		      CDROMSDRVSPEED (set)
27743  *		data - current drive speed or requested drive speed
27744  *		flag - this argument is a pass through to ddi_copyxxx() directly
27745  *		       from the mode argument of ioctl().
27746  *
27747  * Return Code: the code returned by sd_send_scsi_cmd()
27748  *		EINVAL if invalid arguments are provided
27749  *		EFAULT if ddi_copyxxx() fails
27750  *		ENXIO if fail ddi_get_soft_state
27751  *		EIO if invalid mode sense block descriptor length
27752  */
27753 
27754 static int
27755 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27756 {
27757 	struct sd_lun			*un = NULL;
27758 	struct mode_header		*sense_mhp, *select_mhp;
27759 	struct mode_speed		*sense_page, *select_page;
27760 	int				current_speed;
27761 	int				rval = EINVAL;
27762 	int				bd_len;
27763 	uchar_t				*sense = NULL;
27764 	uchar_t				*select = NULL;
27765 
27766 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27767 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27768 		return (ENXIO);
27769 	}
27770 
27771 	/*
27772 	 * Note: The drive speed is being modified here according to a Toshiba
27773 	 * vendor specific mode page (0x31).
27774 	 */
27775 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27776 
27777 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27778 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27779 		SD_PATH_STANDARD)) != 0) {
27780 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27781 		    "sr_change_speed: Mode Sense Failed\n");
27782 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27783 		return (rval);
27784 	}
27785 	sense_mhp  = (struct mode_header *)sense;
27786 
27787 	/* Check the block descriptor len to handle only 1 block descriptor */
27788 	bd_len = sense_mhp->bdesc_length;
27789 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27790 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27791 		    "sr_change_speed: Mode Sense returned invalid block "
27792 		    "descriptor length\n");
27793 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27794 		return (EIO);
27795 	}
27796 
27797 	sense_page = (struct mode_speed *)
27798 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27799 	current_speed = sense_page->speed;
27800 
27801 	/* Process command */
27802 	switch (cmd) {
27803 	case CDROMGDRVSPEED:
27804 		/* Return the drive speed obtained during the mode sense */
27805 		if (current_speed == 0x2) {
27806 			current_speed = CDROM_TWELVE_SPEED;
27807 		}
27808 		if (ddi_copyout(&current_speed, (void *)data,
27809 		    sizeof (int), flag) != 0) {
27810 			rval = EFAULT;
27811 		}
27812 		break;
27813 	case CDROMSDRVSPEED:
27814 		/* Validate the requested drive speed */
27815 		switch ((uchar_t)data) {
27816 		case CDROM_TWELVE_SPEED:
27817 			data = 0x2;
27818 			/*FALLTHROUGH*/
27819 		case CDROM_NORMAL_SPEED:
27820 		case CDROM_DOUBLE_SPEED:
27821 		case CDROM_QUAD_SPEED:
27822 		case CDROM_MAXIMUM_SPEED:
27823 			break;
27824 		default:
27825 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27826 			    "sr_change_speed: "
27827 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27828 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27829 			return (EINVAL);
27830 		}
27831 
27832 		/*
27833 		 * The current drive speed matches the requested drive speed so
27834 		 * there is no need to send the mode select to change the speed
27835 		 */
27836 		if (current_speed == data) {
27837 			break;
27838 		}
27839 
27840 		/* Build the select data for the requested drive speed */
27841 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27842 		select_mhp = (struct mode_header *)select;
27843 		select_mhp->bdesc_length = 0;
27844 		select_page =
27845 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27846 		select_page =
27847 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27848 		select_page->mode_page.code = CDROM_MODE_SPEED;
27849 		select_page->mode_page.length = 2;
27850 		select_page->speed = (uchar_t)data;
27851 
27852 		/* Send the mode select for the requested block size */
27853 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27854 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27855 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27856 			/*
27857 			 * The mode select failed for the requested drive speed,
27858 			 * so reset the data for the original drive speed and
27859 			 * send it to the target. The error is indicated by the
27860 			 * return value for the failed mode select.
27861 			 */
27862 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27863 			    "sr_drive_speed: Mode Select Failed\n");
27864 			select_page->speed = sense_page->speed;
27865 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27866 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27867 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27868 		}
27869 		break;
27870 	default:
27871 		/* should not reach here, but check anyway */
27872 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27873 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27874 		rval = EINVAL;
27875 		break;
27876 	}
27877 
27878 	if (select) {
27879 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27880 	}
27881 	if (sense) {
27882 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27883 	}
27884 
27885 	return (rval);
27886 }
27887 
27888 
27889 /*
27890  *    Function: sr_atapi_change_speed()
27891  *
27892  * Description: This routine is the driver entry point for handling CD-ROM
27893  *		drive speed ioctl requests for MMC devices that do not support
27894  *		the Real Time Streaming feature (0x107).
27895  *
27896  *		Note: This routine will use the SET SPEED command which may not
27897  *		be supported by all devices.
27898  *
27899  *   Arguments: dev- the device 'dev_t'
27900  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27901  *		     CDROMSDRVSPEED (set)
27902  *		data- current drive speed or requested drive speed
27903  *		flag- this argument is a pass through to ddi_copyxxx() directly
27904  *		      from the mode argument of ioctl().
27905  *
27906  * Return Code: the code returned by sd_send_scsi_cmd()
27907  *		EINVAL if invalid arguments are provided
27908  *		EFAULT if ddi_copyxxx() fails
27909  *		ENXIO if fail ddi_get_soft_state
27910  *		EIO if invalid mode sense block descriptor length
27911  */
27912 
27913 static int
27914 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27915 {
27916 	struct sd_lun			*un;
27917 	struct uscsi_cmd		*com = NULL;
27918 	struct mode_header_grp2		*sense_mhp;
27919 	uchar_t				*sense_page;
27920 	uchar_t				*sense = NULL;
27921 	char				cdb[CDB_GROUP5];
27922 	int				bd_len;
27923 	int				current_speed = 0;
27924 	int				max_speed = 0;
27925 	int				rval;
27926 
27927 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27928 
27929 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27930 		return (ENXIO);
27931 	}
27932 
27933 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27934 
27935 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27936 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27937 	    SD_PATH_STANDARD)) != 0) {
27938 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27939 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27940 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27941 		return (rval);
27942 	}
27943 
27944 	/* Check the block descriptor len to handle only 1 block descriptor */
27945 	sense_mhp = (struct mode_header_grp2 *)sense;
27946 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27947 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27948 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27949 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27950 		    "block descriptor length\n");
27951 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27952 		return (EIO);
27953 	}
27954 
27955 	/* Calculate the current and maximum drive speeds */
27956 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27957 	current_speed = (sense_page[14] << 8) | sense_page[15];
27958 	max_speed = (sense_page[8] << 8) | sense_page[9];
27959 
27960 	/* Process the command */
27961 	switch (cmd) {
27962 	case CDROMGDRVSPEED:
27963 		current_speed /= SD_SPEED_1X;
27964 		if (ddi_copyout(&current_speed, (void *)data,
27965 		    sizeof (int), flag) != 0)
27966 			rval = EFAULT;
27967 		break;
27968 	case CDROMSDRVSPEED:
27969 		/* Convert the speed code to KB/sec */
27970 		switch ((uchar_t)data) {
27971 		case CDROM_NORMAL_SPEED:
27972 			current_speed = SD_SPEED_1X;
27973 			break;
27974 		case CDROM_DOUBLE_SPEED:
27975 			current_speed = 2 * SD_SPEED_1X;
27976 			break;
27977 		case CDROM_QUAD_SPEED:
27978 			current_speed = 4 * SD_SPEED_1X;
27979 			break;
27980 		case CDROM_TWELVE_SPEED:
27981 			current_speed = 12 * SD_SPEED_1X;
27982 			break;
27983 		case CDROM_MAXIMUM_SPEED:
27984 			current_speed = 0xffff;
27985 			break;
27986 		default:
27987 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27988 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27989 			    (uchar_t)data);
27990 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27991 			return (EINVAL);
27992 		}
27993 
27994 		/* Check the request against the drive's max speed. */
27995 		if (current_speed != 0xffff) {
27996 			if (current_speed > max_speed) {
27997 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27998 				return (EINVAL);
27999 			}
28000 		}
28001 
28002 		/*
28003 		 * Build and send the SET SPEED command
28004 		 *
28005 		 * Note: The SET SPEED (0xBB) command used in this routine is
28006 		 * obsolete per the SCSI MMC spec but still supported in the
28007 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28008 		 * therefore the command is still implemented in this routine.
28009 		 */
28010 		bzero(cdb, sizeof (cdb));
28011 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
28012 		cdb[2] = (uchar_t)(current_speed >> 8);
28013 		cdb[3] = (uchar_t)current_speed;
28014 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28015 		com->uscsi_cdb	   = (caddr_t)cdb;
28016 		com->uscsi_cdblen  = CDB_GROUP5;
28017 		com->uscsi_bufaddr = NULL;
28018 		com->uscsi_buflen  = 0;
28019 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
28020 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
28021 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28022 		break;
28023 	default:
28024 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28025 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
28026 		rval = EINVAL;
28027 	}
28028 
28029 	if (sense) {
28030 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
28031 	}
28032 	if (com) {
28033 		kmem_free(com, sizeof (*com));
28034 	}
28035 	return (rval);
28036 }
28037 
28038 
28039 /*
28040  *    Function: sr_pause_resume()
28041  *
28042  * Description: This routine is the driver entry point for handling CD-ROM
28043  *		pause/resume ioctl requests. This only affects the audio play
28044  *		operation.
28045  *
28046  *   Arguments: dev - the device 'dev_t'
28047  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
28048  *		      for setting the resume bit of the cdb.
28049  *
28050  * Return Code: the code returned by sd_send_scsi_cmd()
28051  *		EINVAL if invalid mode specified
28052  *
28053  */
28054 
28055 static int
28056 sr_pause_resume(dev_t dev, int cmd)
28057 {
28058 	struct sd_lun		*un;
28059 	struct uscsi_cmd	*com;
28060 	char			cdb[CDB_GROUP1];
28061 	int			rval;
28062 
28063 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28064 		return (ENXIO);
28065 	}
28066 
28067 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28068 	bzero(cdb, CDB_GROUP1);
28069 	cdb[0] = SCMD_PAUSE_RESUME;
28070 	switch (cmd) {
28071 	case CDROMRESUME:
28072 		cdb[8] = 1;
28073 		break;
28074 	case CDROMPAUSE:
28075 		cdb[8] = 0;
28076 		break;
28077 	default:
28078 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
28079 		    " Command '%x' Not Supported\n", cmd);
28080 		rval = EINVAL;
28081 		goto done;
28082 	}
28083 
28084 	com->uscsi_cdb    = cdb;
28085 	com->uscsi_cdblen = CDB_GROUP1;
28086 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28087 
28088 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28089 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28090 
28091 done:
28092 	kmem_free(com, sizeof (*com));
28093 	return (rval);
28094 }
28095 
28096 
28097 /*
28098  *    Function: sr_play_msf()
28099  *
28100  * Description: This routine is the driver entry point for handling CD-ROM
28101  *		ioctl requests to output the audio signals at the specified
28102  *		starting address and continue the audio play until the specified
28103  *		ending address (CDROMPLAYMSF) The address is in Minute Second
28104  *		Frame (MSF) format.
28105  *
28106  *   Arguments: dev	- the device 'dev_t'
28107  *		data	- pointer to user provided audio msf structure,
28108  *		          specifying start/end addresses.
28109  *		flag	- this argument is a pass through to ddi_copyxxx()
28110  *		          directly from the mode argument of ioctl().
28111  *
28112  * Return Code: the code returned by sd_send_scsi_cmd()
28113  *		EFAULT if ddi_copyxxx() fails
28114  *		ENXIO if fail ddi_get_soft_state
28115  *		EINVAL if data pointer is NULL
28116  */
28117 
28118 static int
28119 sr_play_msf(dev_t dev, caddr_t data, int flag)
28120 {
28121 	struct sd_lun		*un;
28122 	struct uscsi_cmd	*com;
28123 	struct cdrom_msf	msf_struct;
28124 	struct cdrom_msf	*msf = &msf_struct;
28125 	char			cdb[CDB_GROUP1];
28126 	int			rval;
28127 
28128 	if (data == NULL) {
28129 		return (EINVAL);
28130 	}
28131 
28132 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28133 		return (ENXIO);
28134 	}
28135 
28136 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
28137 		return (EFAULT);
28138 	}
28139 
28140 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28141 	bzero(cdb, CDB_GROUP1);
28142 	cdb[0] = SCMD_PLAYAUDIO_MSF;
28143 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
28144 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
28145 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
28146 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
28147 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
28148 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
28149 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
28150 	} else {
28151 		cdb[3] = msf->cdmsf_min0;
28152 		cdb[4] = msf->cdmsf_sec0;
28153 		cdb[5] = msf->cdmsf_frame0;
28154 		cdb[6] = msf->cdmsf_min1;
28155 		cdb[7] = msf->cdmsf_sec1;
28156 		cdb[8] = msf->cdmsf_frame1;
28157 	}
28158 	com->uscsi_cdb    = cdb;
28159 	com->uscsi_cdblen = CDB_GROUP1;
28160 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28161 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28162 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28163 	kmem_free(com, sizeof (*com));
28164 	return (rval);
28165 }
28166 
28167 
28168 /*
28169  *    Function: sr_play_trkind()
28170  *
28171  * Description: This routine is the driver entry point for handling CD-ROM
28172  *		ioctl requests to output the audio signals at the specified
28173  *		starting address and continue the audio play until the specified
28174  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
28175  *		format.
28176  *
28177  *   Arguments: dev	- the device 'dev_t'
28178  *		data	- pointer to user provided audio track/index structure,
28179  *		          specifying start/end addresses.
28180  *		flag	- this argument is a pass through to ddi_copyxxx()
28181  *		          directly from the mode argument of ioctl().
28182  *
28183  * Return Code: the code returned by sd_send_scsi_cmd()
28184  *		EFAULT if ddi_copyxxx() fails
28185  *		ENXIO if fail ddi_get_soft_state
28186  *		EINVAL if data pointer is NULL
28187  */
28188 
28189 static int
28190 sr_play_trkind(dev_t dev, caddr_t data, int flag)
28191 {
28192 	struct cdrom_ti		ti_struct;
28193 	struct cdrom_ti		*ti = &ti_struct;
28194 	struct uscsi_cmd	*com = NULL;
28195 	char			cdb[CDB_GROUP1];
28196 	int			rval;
28197 
28198 	if (data == NULL) {
28199 		return (EINVAL);
28200 	}
28201 
28202 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
28203 		return (EFAULT);
28204 	}
28205 
28206 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28207 	bzero(cdb, CDB_GROUP1);
28208 	cdb[0] = SCMD_PLAYAUDIO_TI;
28209 	cdb[4] = ti->cdti_trk0;
28210 	cdb[5] = ti->cdti_ind0;
28211 	cdb[7] = ti->cdti_trk1;
28212 	cdb[8] = ti->cdti_ind1;
28213 	com->uscsi_cdb    = cdb;
28214 	com->uscsi_cdblen = CDB_GROUP1;
28215 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28216 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28217 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28218 	kmem_free(com, sizeof (*com));
28219 	return (rval);
28220 }
28221 
28222 
28223 /*
28224  *    Function: sr_read_all_subcodes()
28225  *
28226  * Description: This routine is the driver entry point for handling CD-ROM
28227  *		ioctl requests to return raw subcode data while the target is
28228  *		playing audio (CDROMSUBCODE).
28229  *
28230  *   Arguments: dev	- the device 'dev_t'
28231  *		data	- pointer to user provided cdrom subcode structure,
28232  *		          specifying the transfer length and address.
28233  *		flag	- this argument is a pass through to ddi_copyxxx()
28234  *		          directly from the mode argument of ioctl().
28235  *
28236  * Return Code: the code returned by sd_send_scsi_cmd()
28237  *		EFAULT if ddi_copyxxx() fails
28238  *		ENXIO if fail ddi_get_soft_state
28239  *		EINVAL if data pointer is NULL
28240  */
28241 
28242 static int
28243 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
28244 {
28245 	struct sd_lun		*un = NULL;
28246 	struct uscsi_cmd	*com = NULL;
28247 	struct cdrom_subcode	*subcode = NULL;
28248 	int			rval;
28249 	size_t			buflen;
28250 	char			cdb[CDB_GROUP5];
28251 
28252 #ifdef _MULTI_DATAMODEL
28253 	/* To support ILP32 applications in an LP64 world */
28254 	struct cdrom_subcode32		cdrom_subcode32;
28255 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
28256 #endif
28257 	if (data == NULL) {
28258 		return (EINVAL);
28259 	}
28260 
28261 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28262 		return (ENXIO);
28263 	}
28264 
28265 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
28266 
28267 #ifdef _MULTI_DATAMODEL
28268 	switch (ddi_model_convert_from(flag & FMODELS)) {
28269 	case DDI_MODEL_ILP32:
28270 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
28271 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28272 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28273 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28274 			return (EFAULT);
28275 		}
28276 		/* Convert the ILP32 uscsi data from the application to LP64 */
28277 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
28278 		break;
28279 	case DDI_MODEL_NONE:
28280 		if (ddi_copyin(data, subcode,
28281 		    sizeof (struct cdrom_subcode), flag)) {
28282 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28283 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28284 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28285 			return (EFAULT);
28286 		}
28287 		break;
28288 	}
28289 #else /* ! _MULTI_DATAMODEL */
28290 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
28291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28292 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
28293 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28294 		return (EFAULT);
28295 	}
28296 #endif /* _MULTI_DATAMODEL */
28297 
28298 	/*
28299 	 * Since MMC-2 expects max 3 bytes for length, check if the
28300 	 * length input is greater than 3 bytes
28301 	 */
28302 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
28303 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28304 		    "sr_read_all_subcodes: "
28305 		    "cdrom transfer length too large: %d (limit %d)\n",
28306 		    subcode->cdsc_length, 0xFFFFFF);
28307 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28308 		return (EINVAL);
28309 	}
28310 
28311 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
28312 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28313 	bzero(cdb, CDB_GROUP5);
28314 
28315 	if (un->un_f_mmc_cap == TRUE) {
28316 		cdb[0] = (char)SCMD_READ_CD;
28317 		cdb[2] = (char)0xff;
28318 		cdb[3] = (char)0xff;
28319 		cdb[4] = (char)0xff;
28320 		cdb[5] = (char)0xff;
28321 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28322 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28323 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
28324 		cdb[10] = 1;
28325 	} else {
28326 		/*
28327 		 * Note: A vendor specific command (0xDF) is being used her to
28328 		 * request a read of all subcodes.
28329 		 */
28330 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
28331 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
28332 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28333 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28334 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
28335 	}
28336 	com->uscsi_cdb	   = cdb;
28337 	com->uscsi_cdblen  = CDB_GROUP5;
28338 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
28339 	com->uscsi_buflen  = buflen;
28340 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28341 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28342 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28343 	kmem_free(subcode, sizeof (struct cdrom_subcode));
28344 	kmem_free(com, sizeof (*com));
28345 	return (rval);
28346 }
28347 
28348 
28349 /*
28350  *    Function: sr_read_subchannel()
28351  *
28352  * Description: This routine is the driver entry point for handling CD-ROM
28353  *		ioctl requests to return the Q sub-channel data of the CD
28354  *		current position block. (CDROMSUBCHNL) The data includes the
28355  *		track number, index number, absolute CD-ROM address (LBA or MSF
28356  *		format per the user) , track relative CD-ROM address (LBA or MSF
28357  *		format per the user), control data and audio status.
28358  *
28359  *   Arguments: dev	- the device 'dev_t'
28360  *		data	- pointer to user provided cdrom sub-channel structure
28361  *		flag	- this argument is a pass through to ddi_copyxxx()
28362  *		          directly from the mode argument of ioctl().
28363  *
28364  * Return Code: the code returned by sd_send_scsi_cmd()
28365  *		EFAULT if ddi_copyxxx() fails
28366  *		ENXIO if fail ddi_get_soft_state
28367  *		EINVAL if data pointer is NULL
28368  */
28369 
28370 static int
28371 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
28372 {
28373 	struct sd_lun		*un;
28374 	struct uscsi_cmd	*com;
28375 	struct cdrom_subchnl	subchanel;
28376 	struct cdrom_subchnl	*subchnl = &subchanel;
28377 	char			cdb[CDB_GROUP1];
28378 	caddr_t			buffer;
28379 	int			rval;
28380 
28381 	if (data == NULL) {
28382 		return (EINVAL);
28383 	}
28384 
28385 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28386 	    (un->un_state == SD_STATE_OFFLINE)) {
28387 		return (ENXIO);
28388 	}
28389 
28390 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28391 		return (EFAULT);
28392 	}
28393 
28394 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28395 	bzero(cdb, CDB_GROUP1);
28396 	cdb[0] = SCMD_READ_SUBCHANNEL;
28397 	/* Set the MSF bit based on the user requested address format */
28398 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28399 	/*
28400 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28401 	 * returned
28402 	 */
28403 	cdb[2] = 0x40;
28404 	/*
28405 	 * Set byte 3 to specify the return data format. A value of 0x01
28406 	 * indicates that the CD-ROM current position should be returned.
28407 	 */
28408 	cdb[3] = 0x01;
28409 	cdb[8] = 0x10;
28410 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28411 	com->uscsi_cdb	   = cdb;
28412 	com->uscsi_cdblen  = CDB_GROUP1;
28413 	com->uscsi_bufaddr = buffer;
28414 	com->uscsi_buflen  = 16;
28415 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28416 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28417 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28418 	if (rval != 0) {
28419 		kmem_free(buffer, 16);
28420 		kmem_free(com, sizeof (*com));
28421 		return (rval);
28422 	}
28423 
28424 	/* Process the returned Q sub-channel data */
28425 	subchnl->cdsc_audiostatus = buffer[1];
28426 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28427 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28428 	subchnl->cdsc_trk	= buffer[6];
28429 	subchnl->cdsc_ind	= buffer[7];
28430 	if (subchnl->cdsc_format & CDROM_LBA) {
28431 		subchnl->cdsc_absaddr.lba =
28432 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28433 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28434 		subchnl->cdsc_reladdr.lba =
28435 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28436 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28437 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28438 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28439 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28440 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28441 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28442 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28443 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28444 	} else {
28445 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28446 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28447 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28448 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28449 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28450 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28451 	}
28452 	kmem_free(buffer, 16);
28453 	kmem_free(com, sizeof (*com));
28454 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28455 	    != 0) {
28456 		return (EFAULT);
28457 	}
28458 	return (rval);
28459 }
28460 
28461 
28462 /*
28463  *    Function: sr_read_tocentry()
28464  *
28465  * Description: This routine is the driver entry point for handling CD-ROM
28466  *		ioctl requests to read from the Table of Contents (TOC)
28467  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28468  *		fields, the starting address (LBA or MSF format per the user)
28469  *		and the data mode if the user specified track is a data track.
28470  *
28471  *		Note: The READ HEADER (0x44) command used in this routine is
28472  *		obsolete per the SCSI MMC spec but still supported in the
28473  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28474  *		therefore the command is still implemented in this routine.
28475  *
28476  *   Arguments: dev	- the device 'dev_t'
28477  *		data	- pointer to user provided toc entry structure,
28478  *			  specifying the track # and the address format
28479  *			  (LBA or MSF).
28480  *		flag	- this argument is a pass through to ddi_copyxxx()
28481  *		          directly from the mode argument of ioctl().
28482  *
28483  * Return Code: the code returned by sd_send_scsi_cmd()
28484  *		EFAULT if ddi_copyxxx() fails
28485  *		ENXIO if fail ddi_get_soft_state
28486  *		EINVAL if data pointer is NULL
28487  */
28488 
28489 static int
28490 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28491 {
28492 	struct sd_lun		*un = NULL;
28493 	struct uscsi_cmd	*com;
28494 	struct cdrom_tocentry	toc_entry;
28495 	struct cdrom_tocentry	*entry = &toc_entry;
28496 	caddr_t			buffer;
28497 	int			rval;
28498 	char			cdb[CDB_GROUP1];
28499 
28500 	if (data == NULL) {
28501 		return (EINVAL);
28502 	}
28503 
28504 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28505 	    (un->un_state == SD_STATE_OFFLINE)) {
28506 		return (ENXIO);
28507 	}
28508 
28509 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28510 		return (EFAULT);
28511 	}
28512 
28513 	/* Validate the requested track and address format */
28514 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28515 		return (EINVAL);
28516 	}
28517 
28518 	if (entry->cdte_track == 0) {
28519 		return (EINVAL);
28520 	}
28521 
28522 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28523 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28524 	bzero(cdb, CDB_GROUP1);
28525 
28526 	cdb[0] = SCMD_READ_TOC;
28527 	/* Set the MSF bit based on the user requested address format  */
28528 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28529 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28530 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28531 	} else {
28532 		cdb[6] = entry->cdte_track;
28533 	}
28534 
28535 	/*
28536 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28537 	 * (4 byte TOC response header + 8 byte track descriptor)
28538 	 */
28539 	cdb[8] = 12;
28540 	com->uscsi_cdb	   = cdb;
28541 	com->uscsi_cdblen  = CDB_GROUP1;
28542 	com->uscsi_bufaddr = buffer;
28543 	com->uscsi_buflen  = 0x0C;
28544 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28545 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28546 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28547 	if (rval != 0) {
28548 		kmem_free(buffer, 12);
28549 		kmem_free(com, sizeof (*com));
28550 		return (rval);
28551 	}
28552 
28553 	/* Process the toc entry */
28554 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28555 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28556 	if (entry->cdte_format & CDROM_LBA) {
28557 		entry->cdte_addr.lba =
28558 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28559 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28560 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28561 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28562 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28563 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28564 		/*
28565 		 * Send a READ TOC command using the LBA address format to get
28566 		 * the LBA for the track requested so it can be used in the
28567 		 * READ HEADER request
28568 		 *
28569 		 * Note: The MSF bit of the READ HEADER command specifies the
28570 		 * output format. The block address specified in that command
28571 		 * must be in LBA format.
28572 		 */
28573 		cdb[1] = 0;
28574 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28575 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28576 		if (rval != 0) {
28577 			kmem_free(buffer, 12);
28578 			kmem_free(com, sizeof (*com));
28579 			return (rval);
28580 		}
28581 	} else {
28582 		entry->cdte_addr.msf.minute	= buffer[9];
28583 		entry->cdte_addr.msf.second	= buffer[10];
28584 		entry->cdte_addr.msf.frame	= buffer[11];
28585 		/*
28586 		 * Send a READ TOC command using the LBA address format to get
28587 		 * the LBA for the track requested so it can be used in the
28588 		 * READ HEADER request
28589 		 *
28590 		 * Note: The MSF bit of the READ HEADER command specifies the
28591 		 * output format. The block address specified in that command
28592 		 * must be in LBA format.
28593 		 */
28594 		cdb[1] = 0;
28595 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28596 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28597 		if (rval != 0) {
28598 			kmem_free(buffer, 12);
28599 			kmem_free(com, sizeof (*com));
28600 			return (rval);
28601 		}
28602 	}
28603 
28604 	/*
28605 	 * Build and send the READ HEADER command to determine the data mode of
28606 	 * the user specified track.
28607 	 */
28608 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28609 	    (entry->cdte_track != CDROM_LEADOUT)) {
28610 		bzero(cdb, CDB_GROUP1);
28611 		cdb[0] = SCMD_READ_HEADER;
28612 		cdb[2] = buffer[8];
28613 		cdb[3] = buffer[9];
28614 		cdb[4] = buffer[10];
28615 		cdb[5] = buffer[11];
28616 		cdb[8] = 0x08;
28617 		com->uscsi_buflen = 0x08;
28618 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28619 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28620 		if (rval == 0) {
28621 			entry->cdte_datamode = buffer[0];
28622 		} else {
28623 			/*
28624 			 * READ HEADER command failed, since this is
28625 			 * obsoleted in one spec, its better to return
28626 			 * -1 for an invlid track so that we can still
28627 			 * recieve the rest of the TOC data.
28628 			 */
28629 			entry->cdte_datamode = (uchar_t)-1;
28630 		}
28631 	} else {
28632 		entry->cdte_datamode = (uchar_t)-1;
28633 	}
28634 
28635 	kmem_free(buffer, 12);
28636 	kmem_free(com, sizeof (*com));
28637 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28638 		return (EFAULT);
28639 
28640 	return (rval);
28641 }
28642 
28643 
28644 /*
28645  *    Function: sr_read_tochdr()
28646  *
28647  * Description: This routine is the driver entry point for handling CD-ROM
28648  * 		ioctl requests to read the Table of Contents (TOC) header
28649  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28650  *		and ending track numbers
28651  *
28652  *   Arguments: dev	- the device 'dev_t'
28653  *		data	- pointer to user provided toc header structure,
28654  *			  specifying the starting and ending track numbers.
28655  *		flag	- this argument is a pass through to ddi_copyxxx()
28656  *			  directly from the mode argument of ioctl().
28657  *
28658  * Return Code: the code returned by sd_send_scsi_cmd()
28659  *		EFAULT if ddi_copyxxx() fails
28660  *		ENXIO if fail ddi_get_soft_state
28661  *		EINVAL if data pointer is NULL
28662  */
28663 
28664 static int
28665 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28666 {
28667 	struct sd_lun		*un;
28668 	struct uscsi_cmd	*com;
28669 	struct cdrom_tochdr	toc_header;
28670 	struct cdrom_tochdr	*hdr = &toc_header;
28671 	char			cdb[CDB_GROUP1];
28672 	int			rval;
28673 	caddr_t			buffer;
28674 
28675 	if (data == NULL) {
28676 		return (EINVAL);
28677 	}
28678 
28679 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28680 	    (un->un_state == SD_STATE_OFFLINE)) {
28681 		return (ENXIO);
28682 	}
28683 
28684 	buffer = kmem_zalloc(4, KM_SLEEP);
28685 	bzero(cdb, CDB_GROUP1);
28686 	cdb[0] = SCMD_READ_TOC;
28687 	/*
28688 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28689 	 * that the TOC header should be returned
28690 	 */
28691 	cdb[6] = 0x00;
28692 	/*
28693 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28694 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28695 	 */
28696 	cdb[8] = 0x04;
28697 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28698 	com->uscsi_cdb	   = cdb;
28699 	com->uscsi_cdblen  = CDB_GROUP1;
28700 	com->uscsi_bufaddr = buffer;
28701 	com->uscsi_buflen  = 0x04;
28702 	com->uscsi_timeout = 300;
28703 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28704 
28705 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28706 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28707 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28708 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28709 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28710 	} else {
28711 		hdr->cdth_trk0 = buffer[2];
28712 		hdr->cdth_trk1 = buffer[3];
28713 	}
28714 	kmem_free(buffer, 4);
28715 	kmem_free(com, sizeof (*com));
28716 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28717 		return (EFAULT);
28718 	}
28719 	return (rval);
28720 }
28721 
28722 
28723 /*
28724  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28725  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28726  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28727  * digital audio and extended architecture digital audio. These modes are
28728  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28729  * MMC specs.
28730  *
28731  * In addition to support for the various data formats these routines also
28732  * include support for devices that implement only the direct access READ
28733  * commands (0x08, 0x28), devices that implement the READ_CD commands
28734  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28735  * READ CDXA commands (0xD8, 0xDB)
28736  */
28737 
28738 /*
28739  *    Function: sr_read_mode1()
28740  *
28741  * Description: This routine is the driver entry point for handling CD-ROM
28742  *		ioctl read mode1 requests (CDROMREADMODE1).
28743  *
28744  *   Arguments: dev	- the device 'dev_t'
28745  *		data	- pointer to user provided cd read structure specifying
28746  *			  the lba buffer address and length.
28747  *		flag	- this argument is a pass through to ddi_copyxxx()
28748  *			  directly from the mode argument of ioctl().
28749  *
28750  * Return Code: the code returned by sd_send_scsi_cmd()
28751  *		EFAULT if ddi_copyxxx() fails
28752  *		ENXIO if fail ddi_get_soft_state
28753  *		EINVAL if data pointer is NULL
28754  */
28755 
28756 static int
28757 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28758 {
28759 	struct sd_lun		*un;
28760 	struct cdrom_read	mode1_struct;
28761 	struct cdrom_read	*mode1 = &mode1_struct;
28762 	int			rval;
28763 #ifdef _MULTI_DATAMODEL
28764 	/* To support ILP32 applications in an LP64 world */
28765 	struct cdrom_read32	cdrom_read32;
28766 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28767 #endif /* _MULTI_DATAMODEL */
28768 
28769 	if (data == NULL) {
28770 		return (EINVAL);
28771 	}
28772 
28773 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28774 	    (un->un_state == SD_STATE_OFFLINE)) {
28775 		return (ENXIO);
28776 	}
28777 
28778 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28779 	    "sd_read_mode1: entry: un:0x%p\n", un);
28780 
28781 #ifdef _MULTI_DATAMODEL
28782 	switch (ddi_model_convert_from(flag & FMODELS)) {
28783 	case DDI_MODEL_ILP32:
28784 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28785 			return (EFAULT);
28786 		}
28787 		/* Convert the ILP32 uscsi data from the application to LP64 */
28788 		cdrom_read32tocdrom_read(cdrd32, mode1);
28789 		break;
28790 	case DDI_MODEL_NONE:
28791 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28792 			return (EFAULT);
28793 		}
28794 	}
28795 #else /* ! _MULTI_DATAMODEL */
28796 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28797 		return (EFAULT);
28798 	}
28799 #endif /* _MULTI_DATAMODEL */
28800 
28801 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28802 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28803 
28804 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28805 	    "sd_read_mode1: exit: un:0x%p\n", un);
28806 
28807 	return (rval);
28808 }
28809 
28810 
28811 /*
28812  *    Function: sr_read_cd_mode2()
28813  *
28814  * Description: This routine is the driver entry point for handling CD-ROM
28815  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28816  *		support the READ CD (0xBE) command or the 1st generation
28817  *		READ CD (0xD4) command.
28818  *
28819  *   Arguments: dev	- the device 'dev_t'
28820  *		data	- pointer to user provided cd read structure specifying
28821  *			  the lba buffer address and length.
28822  *		flag	- this argument is a pass through to ddi_copyxxx()
28823  *			  directly from the mode argument of ioctl().
28824  *
28825  * Return Code: the code returned by sd_send_scsi_cmd()
28826  *		EFAULT if ddi_copyxxx() fails
28827  *		ENXIO if fail ddi_get_soft_state
28828  *		EINVAL if data pointer is NULL
28829  */
28830 
28831 static int
28832 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28833 {
28834 	struct sd_lun		*un;
28835 	struct uscsi_cmd	*com;
28836 	struct cdrom_read	mode2_struct;
28837 	struct cdrom_read	*mode2 = &mode2_struct;
28838 	uchar_t			cdb[CDB_GROUP5];
28839 	int			nblocks;
28840 	int			rval;
28841 #ifdef _MULTI_DATAMODEL
28842 	/*  To support ILP32 applications in an LP64 world */
28843 	struct cdrom_read32	cdrom_read32;
28844 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28845 #endif /* _MULTI_DATAMODEL */
28846 
28847 	if (data == NULL) {
28848 		return (EINVAL);
28849 	}
28850 
28851 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28852 	    (un->un_state == SD_STATE_OFFLINE)) {
28853 		return (ENXIO);
28854 	}
28855 
28856 #ifdef _MULTI_DATAMODEL
28857 	switch (ddi_model_convert_from(flag & FMODELS)) {
28858 	case DDI_MODEL_ILP32:
28859 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28860 			return (EFAULT);
28861 		}
28862 		/* Convert the ILP32 uscsi data from the application to LP64 */
28863 		cdrom_read32tocdrom_read(cdrd32, mode2);
28864 		break;
28865 	case DDI_MODEL_NONE:
28866 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28867 			return (EFAULT);
28868 		}
28869 		break;
28870 	}
28871 
28872 #else /* ! _MULTI_DATAMODEL */
28873 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28874 		return (EFAULT);
28875 	}
28876 #endif /* _MULTI_DATAMODEL */
28877 
28878 	bzero(cdb, sizeof (cdb));
28879 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28880 		/* Read command supported by 1st generation atapi drives */
28881 		cdb[0] = SCMD_READ_CDD4;
28882 	} else {
28883 		/* Universal CD Access Command */
28884 		cdb[0] = SCMD_READ_CD;
28885 	}
28886 
28887 	/*
28888 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28889 	 */
28890 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28891 
28892 	/* set the start address */
28893 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28894 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28895 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28896 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28897 
28898 	/* set the transfer length */
28899 	nblocks = mode2->cdread_buflen / 2336;
28900 	cdb[6] = (uchar_t)(nblocks >> 16);
28901 	cdb[7] = (uchar_t)(nblocks >> 8);
28902 	cdb[8] = (uchar_t)nblocks;
28903 
28904 	/* set the filter bits */
28905 	cdb[9] = CDROM_READ_CD_USERDATA;
28906 
28907 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28908 	com->uscsi_cdb = (caddr_t)cdb;
28909 	com->uscsi_cdblen = sizeof (cdb);
28910 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28911 	com->uscsi_buflen = mode2->cdread_buflen;
28912 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28913 
28914 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28915 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28916 	kmem_free(com, sizeof (*com));
28917 	return (rval);
28918 }
28919 
28920 
28921 /*
28922  *    Function: sr_read_mode2()
28923  *
28924  * Description: This routine is the driver entry point for handling CD-ROM
28925  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28926  *		do not support the READ CD (0xBE) command.
28927  *
28928  *   Arguments: dev	- the device 'dev_t'
28929  *		data	- pointer to user provided cd read structure specifying
28930  *			  the lba buffer address and length.
28931  *		flag	- this argument is a pass through to ddi_copyxxx()
28932  *			  directly from the mode argument of ioctl().
28933  *
28934  * Return Code: the code returned by sd_send_scsi_cmd()
28935  *		EFAULT if ddi_copyxxx() fails
28936  *		ENXIO if fail ddi_get_soft_state
28937  *		EINVAL if data pointer is NULL
28938  *		EIO if fail to reset block size
28939  *		EAGAIN if commands are in progress in the driver
28940  */
28941 
28942 static int
28943 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28944 {
28945 	struct sd_lun		*un;
28946 	struct cdrom_read	mode2_struct;
28947 	struct cdrom_read	*mode2 = &mode2_struct;
28948 	int			rval;
28949 	uint32_t		restore_blksize;
28950 	struct uscsi_cmd	*com;
28951 	uchar_t			cdb[CDB_GROUP0];
28952 	int			nblocks;
28953 
28954 #ifdef _MULTI_DATAMODEL
28955 	/* To support ILP32 applications in an LP64 world */
28956 	struct cdrom_read32	cdrom_read32;
28957 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28958 #endif /* _MULTI_DATAMODEL */
28959 
28960 	if (data == NULL) {
28961 		return (EINVAL);
28962 	}
28963 
28964 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28965 	    (un->un_state == SD_STATE_OFFLINE)) {
28966 		return (ENXIO);
28967 	}
28968 
28969 	/*
28970 	 * Because this routine will update the device and driver block size
28971 	 * being used we want to make sure there are no commands in progress.
28972 	 * If commands are in progress the user will have to try again.
28973 	 *
28974 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28975 	 * in sdioctl to protect commands from sdioctl through to the top of
28976 	 * sd_uscsi_strategy. See sdioctl for details.
28977 	 */
28978 	mutex_enter(SD_MUTEX(un));
28979 	if (un->un_ncmds_in_driver != 1) {
28980 		mutex_exit(SD_MUTEX(un));
28981 		return (EAGAIN);
28982 	}
28983 	mutex_exit(SD_MUTEX(un));
28984 
28985 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28986 	    "sd_read_mode2: entry: un:0x%p\n", un);
28987 
28988 #ifdef _MULTI_DATAMODEL
28989 	switch (ddi_model_convert_from(flag & FMODELS)) {
28990 	case DDI_MODEL_ILP32:
28991 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28992 			return (EFAULT);
28993 		}
28994 		/* Convert the ILP32 uscsi data from the application to LP64 */
28995 		cdrom_read32tocdrom_read(cdrd32, mode2);
28996 		break;
28997 	case DDI_MODEL_NONE:
28998 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28999 			return (EFAULT);
29000 		}
29001 		break;
29002 	}
29003 #else /* ! _MULTI_DATAMODEL */
29004 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
29005 		return (EFAULT);
29006 	}
29007 #endif /* _MULTI_DATAMODEL */
29008 
29009 	/* Store the current target block size for restoration later */
29010 	restore_blksize = un->un_tgt_blocksize;
29011 
29012 	/* Change the device and soft state target block size to 2336 */
29013 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
29014 		rval = EIO;
29015 		goto done;
29016 	}
29017 
29018 
29019 	bzero(cdb, sizeof (cdb));
29020 
29021 	/* set READ operation */
29022 	cdb[0] = SCMD_READ;
29023 
29024 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
29025 	mode2->cdread_lba >>= 2;
29026 
29027 	/* set the start address */
29028 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
29029 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
29030 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
29031 
29032 	/* set the transfer length */
29033 	nblocks = mode2->cdread_buflen / 2336;
29034 	cdb[4] = (uchar_t)nblocks & 0xFF;
29035 
29036 	/* build command */
29037 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29038 	com->uscsi_cdb = (caddr_t)cdb;
29039 	com->uscsi_cdblen = sizeof (cdb);
29040 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
29041 	com->uscsi_buflen = mode2->cdread_buflen;
29042 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29043 
29044 	/*
29045 	 * Issue SCSI command with user space address for read buffer.
29046 	 *
29047 	 * This sends the command through main channel in the driver.
29048 	 *
29049 	 * Since this is accessed via an IOCTL call, we go through the
29050 	 * standard path, so that if the device was powered down, then
29051 	 * it would be 'awakened' to handle the command.
29052 	 */
29053 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29054 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29055 
29056 	kmem_free(com, sizeof (*com));
29057 
29058 	/* Restore the device and soft state target block size */
29059 	if (sr_sector_mode(dev, restore_blksize) != 0) {
29060 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29061 		    "can't do switch back to mode 1\n");
29062 		/*
29063 		 * If sd_send_scsi_READ succeeded we still need to report
29064 		 * an error because we failed to reset the block size
29065 		 */
29066 		if (rval == 0) {
29067 			rval = EIO;
29068 		}
29069 	}
29070 
29071 done:
29072 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
29073 	    "sd_read_mode2: exit: un:0x%p\n", un);
29074 
29075 	return (rval);
29076 }
29077 
29078 
29079 /*
29080  *    Function: sr_sector_mode()
29081  *
29082  * Description: This utility function is used by sr_read_mode2 to set the target
29083  *		block size based on the user specified size. This is a legacy
29084  *		implementation based upon a vendor specific mode page
29085  *
29086  *   Arguments: dev	- the device 'dev_t'
29087  *		data	- flag indicating if block size is being set to 2336 or
29088  *			  512.
29089  *
29090  * Return Code: the code returned by sd_send_scsi_cmd()
29091  *		EFAULT if ddi_copyxxx() fails
29092  *		ENXIO if fail ddi_get_soft_state
29093  *		EINVAL if data pointer is NULL
29094  */
29095 
29096 static int
29097 sr_sector_mode(dev_t dev, uint32_t blksize)
29098 {
29099 	struct sd_lun	*un;
29100 	uchar_t		*sense;
29101 	uchar_t		*select;
29102 	int		rval;
29103 
29104 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29105 	    (un->un_state == SD_STATE_OFFLINE)) {
29106 		return (ENXIO);
29107 	}
29108 
29109 	sense = kmem_zalloc(20, KM_SLEEP);
29110 
29111 	/* Note: This is a vendor specific mode page (0x81) */
29112 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
29113 	    SD_PATH_STANDARD)) != 0) {
29114 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29115 		    "sr_sector_mode: Mode Sense failed\n");
29116 		kmem_free(sense, 20);
29117 		return (rval);
29118 	}
29119 	select = kmem_zalloc(20, KM_SLEEP);
29120 	select[3] = 0x08;
29121 	select[10] = ((blksize >> 8) & 0xff);
29122 	select[11] = (blksize & 0xff);
29123 	select[12] = 0x01;
29124 	select[13] = 0x06;
29125 	select[14] = sense[14];
29126 	select[15] = sense[15];
29127 	if (blksize == SD_MODE2_BLKSIZE) {
29128 		select[14] |= 0x01;
29129 	}
29130 
29131 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
29132 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
29133 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29134 		    "sr_sector_mode: Mode Select failed\n");
29135 	} else {
29136 		/*
29137 		 * Only update the softstate block size if we successfully
29138 		 * changed the device block mode.
29139 		 */
29140 		mutex_enter(SD_MUTEX(un));
29141 		sd_update_block_info(un, blksize, 0);
29142 		mutex_exit(SD_MUTEX(un));
29143 	}
29144 	kmem_free(sense, 20);
29145 	kmem_free(select, 20);
29146 	return (rval);
29147 }
29148 
29149 
29150 /*
29151  *    Function: sr_read_cdda()
29152  *
29153  * Description: This routine is the driver entry point for handling CD-ROM
29154  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
29155  *		the target supports CDDA these requests are handled via a vendor
29156  *		specific command (0xD8) If the target does not support CDDA
29157  *		these requests are handled via the READ CD command (0xBE).
29158  *
29159  *   Arguments: dev	- the device 'dev_t'
29160  *		data	- pointer to user provided CD-DA structure specifying
29161  *			  the track starting address, transfer length, and
29162  *			  subcode options.
29163  *		flag	- this argument is a pass through to ddi_copyxxx()
29164  *			  directly from the mode argument of ioctl().
29165  *
29166  * Return Code: the code returned by sd_send_scsi_cmd()
29167  *		EFAULT if ddi_copyxxx() fails
29168  *		ENXIO if fail ddi_get_soft_state
29169  *		EINVAL if invalid arguments are provided
29170  *		ENOTTY
29171  */
29172 
29173 static int
29174 sr_read_cdda(dev_t dev, caddr_t data, int flag)
29175 {
29176 	struct sd_lun			*un;
29177 	struct uscsi_cmd		*com;
29178 	struct cdrom_cdda		*cdda;
29179 	int				rval;
29180 	size_t				buflen;
29181 	char				cdb[CDB_GROUP5];
29182 
29183 #ifdef _MULTI_DATAMODEL
29184 	/* To support ILP32 applications in an LP64 world */
29185 	struct cdrom_cdda32	cdrom_cdda32;
29186 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
29187 #endif /* _MULTI_DATAMODEL */
29188 
29189 	if (data == NULL) {
29190 		return (EINVAL);
29191 	}
29192 
29193 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29194 		return (ENXIO);
29195 	}
29196 
29197 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
29198 
29199 #ifdef _MULTI_DATAMODEL
29200 	switch (ddi_model_convert_from(flag & FMODELS)) {
29201 	case DDI_MODEL_ILP32:
29202 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
29203 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29204 			    "sr_read_cdda: ddi_copyin Failed\n");
29205 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29206 			return (EFAULT);
29207 		}
29208 		/* Convert the ILP32 uscsi data from the application to LP64 */
29209 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
29210 		break;
29211 	case DDI_MODEL_NONE:
29212 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29213 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29214 			    "sr_read_cdda: ddi_copyin Failed\n");
29215 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29216 			return (EFAULT);
29217 		}
29218 		break;
29219 	}
29220 #else /* ! _MULTI_DATAMODEL */
29221 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29222 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29223 		    "sr_read_cdda: ddi_copyin Failed\n");
29224 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29225 		return (EFAULT);
29226 	}
29227 #endif /* _MULTI_DATAMODEL */
29228 
29229 	/*
29230 	 * Since MMC-2 expects max 3 bytes for length, check if the
29231 	 * length input is greater than 3 bytes
29232 	 */
29233 	if ((cdda->cdda_length & 0xFF000000) != 0) {
29234 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
29235 		    "cdrom transfer length too large: %d (limit %d)\n",
29236 		    cdda->cdda_length, 0xFFFFFF);
29237 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29238 		return (EINVAL);
29239 	}
29240 
29241 	switch (cdda->cdda_subcode) {
29242 	case CDROM_DA_NO_SUBCODE:
29243 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
29244 		break;
29245 	case CDROM_DA_SUBQ:
29246 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
29247 		break;
29248 	case CDROM_DA_ALL_SUBCODE:
29249 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
29250 		break;
29251 	case CDROM_DA_SUBCODE_ONLY:
29252 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
29253 		break;
29254 	default:
29255 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29256 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
29257 		    cdda->cdda_subcode);
29258 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29259 		return (EINVAL);
29260 	}
29261 
29262 	/* Build and send the command */
29263 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29264 	bzero(cdb, CDB_GROUP5);
29265 
29266 	if (un->un_f_cfg_cdda == TRUE) {
29267 		cdb[0] = (char)SCMD_READ_CD;
29268 		cdb[1] = 0x04;
29269 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29270 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29271 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29272 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29273 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29274 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29275 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
29276 		cdb[9] = 0x10;
29277 		switch (cdda->cdda_subcode) {
29278 		case CDROM_DA_NO_SUBCODE :
29279 			cdb[10] = 0x0;
29280 			break;
29281 		case CDROM_DA_SUBQ :
29282 			cdb[10] = 0x2;
29283 			break;
29284 		case CDROM_DA_ALL_SUBCODE :
29285 			cdb[10] = 0x1;
29286 			break;
29287 		case CDROM_DA_SUBCODE_ONLY :
29288 			/* FALLTHROUGH */
29289 		default :
29290 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29291 			kmem_free(com, sizeof (*com));
29292 			return (ENOTTY);
29293 		}
29294 	} else {
29295 		cdb[0] = (char)SCMD_READ_CDDA;
29296 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29297 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29298 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29299 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29300 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
29301 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29302 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29303 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
29304 		cdb[10] = cdda->cdda_subcode;
29305 	}
29306 
29307 	com->uscsi_cdb = cdb;
29308 	com->uscsi_cdblen = CDB_GROUP5;
29309 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
29310 	com->uscsi_buflen = buflen;
29311 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29312 
29313 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29314 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29315 
29316 	kmem_free(cdda, sizeof (struct cdrom_cdda));
29317 	kmem_free(com, sizeof (*com));
29318 	return (rval);
29319 }
29320 
29321 
29322 /*
29323  *    Function: sr_read_cdxa()
29324  *
29325  * Description: This routine is the driver entry point for handling CD-ROM
29326  *		ioctl requests to return CD-XA (Extended Architecture) data.
29327  *		(CDROMCDXA).
29328  *
29329  *   Arguments: dev	- the device 'dev_t'
29330  *		data	- pointer to user provided CD-XA structure specifying
29331  *			  the data starting address, transfer length, and format
29332  *		flag	- this argument is a pass through to ddi_copyxxx()
29333  *			  directly from the mode argument of ioctl().
29334  *
29335  * Return Code: the code returned by sd_send_scsi_cmd()
29336  *		EFAULT if ddi_copyxxx() fails
29337  *		ENXIO if fail ddi_get_soft_state
29338  *		EINVAL if data pointer is NULL
29339  */
29340 
29341 static int
29342 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
29343 {
29344 	struct sd_lun		*un;
29345 	struct uscsi_cmd	*com;
29346 	struct cdrom_cdxa	*cdxa;
29347 	int			rval;
29348 	size_t			buflen;
29349 	char			cdb[CDB_GROUP5];
29350 	uchar_t			read_flags;
29351 
29352 #ifdef _MULTI_DATAMODEL
29353 	/* To support ILP32 applications in an LP64 world */
29354 	struct cdrom_cdxa32		cdrom_cdxa32;
29355 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
29356 #endif /* _MULTI_DATAMODEL */
29357 
29358 	if (data == NULL) {
29359 		return (EINVAL);
29360 	}
29361 
29362 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29363 		return (ENXIO);
29364 	}
29365 
29366 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
29367 
29368 #ifdef _MULTI_DATAMODEL
29369 	switch (ddi_model_convert_from(flag & FMODELS)) {
29370 	case DDI_MODEL_ILP32:
29371 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
29372 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29373 			return (EFAULT);
29374 		}
29375 		/*
29376 		 * Convert the ILP32 uscsi data from the
29377 		 * application to LP64 for internal use.
29378 		 */
29379 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29380 		break;
29381 	case DDI_MODEL_NONE:
29382 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29383 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29384 			return (EFAULT);
29385 		}
29386 		break;
29387 	}
29388 #else /* ! _MULTI_DATAMODEL */
29389 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29390 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29391 		return (EFAULT);
29392 	}
29393 #endif /* _MULTI_DATAMODEL */
29394 
29395 	/*
29396 	 * Since MMC-2 expects max 3 bytes for length, check if the
29397 	 * length input is greater than 3 bytes
29398 	 */
29399 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29400 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29401 		    "cdrom transfer length too large: %d (limit %d)\n",
29402 		    cdxa->cdxa_length, 0xFFFFFF);
29403 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29404 		return (EINVAL);
29405 	}
29406 
29407 	switch (cdxa->cdxa_format) {
29408 	case CDROM_XA_DATA:
29409 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29410 		read_flags = 0x10;
29411 		break;
29412 	case CDROM_XA_SECTOR_DATA:
29413 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29414 		read_flags = 0xf8;
29415 		break;
29416 	case CDROM_XA_DATA_W_ERROR:
29417 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29418 		read_flags = 0xfc;
29419 		break;
29420 	default:
29421 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29422 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29423 		    cdxa->cdxa_format);
29424 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29425 		return (EINVAL);
29426 	}
29427 
29428 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29429 	bzero(cdb, CDB_GROUP5);
29430 	if (un->un_f_mmc_cap == TRUE) {
29431 		cdb[0] = (char)SCMD_READ_CD;
29432 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29433 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29434 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29435 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29436 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29437 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29438 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29439 		cdb[9] = (char)read_flags;
29440 	} else {
29441 		/*
29442 		 * Note: A vendor specific command (0xDB) is being used her to
29443 		 * request a read of all subcodes.
29444 		 */
29445 		cdb[0] = (char)SCMD_READ_CDXA;
29446 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29447 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29448 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29449 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29450 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29451 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29452 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29453 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29454 		cdb[10] = cdxa->cdxa_format;
29455 	}
29456 	com->uscsi_cdb	   = cdb;
29457 	com->uscsi_cdblen  = CDB_GROUP5;
29458 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29459 	com->uscsi_buflen  = buflen;
29460 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29461 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29462 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29463 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29464 	kmem_free(com, sizeof (*com));
29465 	return (rval);
29466 }
29467 
29468 
29469 /*
29470  *    Function: sr_eject()
29471  *
29472  * Description: This routine is the driver entry point for handling CD-ROM
29473  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29474  *
29475  *   Arguments: dev	- the device 'dev_t'
29476  *
29477  * Return Code: the code returned by sd_send_scsi_cmd()
29478  */
29479 
29480 static int
29481 sr_eject(dev_t dev)
29482 {
29483 	struct sd_lun	*un;
29484 	int		rval;
29485 
29486 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29487 	    (un->un_state == SD_STATE_OFFLINE)) {
29488 		return (ENXIO);
29489 	}
29490 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29491 	    SD_PATH_STANDARD)) != 0) {
29492 		return (rval);
29493 	}
29494 
29495 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29496 	    SD_PATH_STANDARD);
29497 
29498 	if (rval == 0) {
29499 		mutex_enter(SD_MUTEX(un));
29500 		sr_ejected(un);
29501 		un->un_mediastate = DKIO_EJECTED;
29502 		cv_broadcast(&un->un_state_cv);
29503 		mutex_exit(SD_MUTEX(un));
29504 	}
29505 	return (rval);
29506 }
29507 
29508 
29509 /*
29510  *    Function: sr_ejected()
29511  *
29512  * Description: This routine updates the soft state structure to invalidate the
29513  *		geometry information after the media has been ejected or a
29514  *		media eject has been detected.
29515  *
29516  *   Arguments: un - driver soft state (unit) structure
29517  */
29518 
29519 static void
29520 sr_ejected(struct sd_lun *un)
29521 {
29522 	struct sd_errstats *stp;
29523 
29524 	ASSERT(un != NULL);
29525 	ASSERT(mutex_owned(SD_MUTEX(un)));
29526 
29527 	un->un_f_blockcount_is_valid	= FALSE;
29528 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29529 	un->un_f_geometry_is_valid	= FALSE;
29530 
29531 	if (un->un_errstats != NULL) {
29532 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29533 		stp->sd_capacity.value.ui64 = 0;
29534 	}
29535 }
29536 
29537 
29538 /*
29539  *    Function: sr_check_wp()
29540  *
29541  * Description: This routine checks the write protection of a removable
29542  *      media disk and hotpluggable devices via the write protect bit of
29543  *      the Mode Page Header device specific field. Some devices choke
29544  *      on unsupported mode page. In order to workaround this issue,
29545  *      this routine has been implemented to use 0x3f mode page(request
29546  *      for all pages) for all device types.
29547  *
29548  *   Arguments: dev		- the device 'dev_t'
29549  *
29550  * Return Code: int indicating if the device is write protected (1) or not (0)
29551  *
29552  *     Context: Kernel thread.
29553  *
29554  */
29555 
29556 static int
29557 sr_check_wp(dev_t dev)
29558 {
29559 	struct sd_lun	*un;
29560 	uchar_t		device_specific;
29561 	uchar_t		*sense;
29562 	int		hdrlen;
29563 	int		rval = FALSE;
29564 
29565 	/*
29566 	 * Note: The return codes for this routine should be reworked to
29567 	 * properly handle the case of a NULL softstate.
29568 	 */
29569 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29570 		return (FALSE);
29571 	}
29572 
29573 	if (un->un_f_cfg_is_atapi == TRUE) {
29574 		/*
29575 		 * The mode page contents are not required; set the allocation
29576 		 * length for the mode page header only
29577 		 */
29578 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29579 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29580 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29581 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29582 			goto err_exit;
29583 		device_specific =
29584 		    ((struct mode_header_grp2 *)sense)->device_specific;
29585 	} else {
29586 		hdrlen = MODE_HEADER_LENGTH;
29587 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29588 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29589 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29590 			goto err_exit;
29591 		device_specific =
29592 		    ((struct mode_header *)sense)->device_specific;
29593 	}
29594 
29595 	/*
29596 	 * Write protect mode sense failed; not all disks
29597 	 * understand this query. Return FALSE assuming that
29598 	 * these devices are not writable.
29599 	 */
29600 	if (device_specific & WRITE_PROTECT) {
29601 		rval = TRUE;
29602 	}
29603 
29604 err_exit:
29605 	kmem_free(sense, hdrlen);
29606 	return (rval);
29607 }
29608 
29609 /*
29610  *    Function: sr_volume_ctrl()
29611  *
29612  * Description: This routine is the driver entry point for handling CD-ROM
29613  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29614  *
29615  *   Arguments: dev	- the device 'dev_t'
29616  *		data	- pointer to user audio volume control structure
29617  *		flag	- this argument is a pass through to ddi_copyxxx()
29618  *			  directly from the mode argument of ioctl().
29619  *
29620  * Return Code: the code returned by sd_send_scsi_cmd()
29621  *		EFAULT if ddi_copyxxx() fails
29622  *		ENXIO if fail ddi_get_soft_state
29623  *		EINVAL if data pointer is NULL
29624  *
29625  */
29626 
29627 static int
29628 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29629 {
29630 	struct sd_lun		*un;
29631 	struct cdrom_volctrl    volume;
29632 	struct cdrom_volctrl    *vol = &volume;
29633 	uchar_t			*sense_page;
29634 	uchar_t			*select_page;
29635 	uchar_t			*sense;
29636 	uchar_t			*select;
29637 	int			sense_buflen;
29638 	int			select_buflen;
29639 	int			rval;
29640 
29641 	if (data == NULL) {
29642 		return (EINVAL);
29643 	}
29644 
29645 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29646 	    (un->un_state == SD_STATE_OFFLINE)) {
29647 		return (ENXIO);
29648 	}
29649 
29650 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29651 		return (EFAULT);
29652 	}
29653 
29654 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29655 		struct mode_header_grp2		*sense_mhp;
29656 		struct mode_header_grp2		*select_mhp;
29657 		int				bd_len;
29658 
29659 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29660 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29661 		    MODEPAGE_AUDIO_CTRL_LEN;
29662 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29663 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29664 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29665 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29666 		    SD_PATH_STANDARD)) != 0) {
29667 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29668 			    "sr_volume_ctrl: Mode Sense Failed\n");
29669 			kmem_free(sense, sense_buflen);
29670 			kmem_free(select, select_buflen);
29671 			return (rval);
29672 		}
29673 		sense_mhp = (struct mode_header_grp2 *)sense;
29674 		select_mhp = (struct mode_header_grp2 *)select;
29675 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29676 		    sense_mhp->bdesc_length_lo;
29677 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29678 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29679 			    "sr_volume_ctrl: Mode Sense returned invalid "
29680 			    "block descriptor length\n");
29681 			kmem_free(sense, sense_buflen);
29682 			kmem_free(select, select_buflen);
29683 			return (EIO);
29684 		}
29685 		sense_page = (uchar_t *)
29686 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29687 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29688 		select_mhp->length_msb = 0;
29689 		select_mhp->length_lsb = 0;
29690 		select_mhp->bdesc_length_hi = 0;
29691 		select_mhp->bdesc_length_lo = 0;
29692 	} else {
29693 		struct mode_header		*sense_mhp, *select_mhp;
29694 
29695 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29696 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29697 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29698 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29699 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29700 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29701 		    SD_PATH_STANDARD)) != 0) {
29702 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29703 			    "sr_volume_ctrl: Mode Sense Failed\n");
29704 			kmem_free(sense, sense_buflen);
29705 			kmem_free(select, select_buflen);
29706 			return (rval);
29707 		}
29708 		sense_mhp  = (struct mode_header *)sense;
29709 		select_mhp = (struct mode_header *)select;
29710 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29711 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29712 			    "sr_volume_ctrl: Mode Sense returned invalid "
29713 			    "block descriptor length\n");
29714 			kmem_free(sense, sense_buflen);
29715 			kmem_free(select, select_buflen);
29716 			return (EIO);
29717 		}
29718 		sense_page = (uchar_t *)
29719 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29720 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29721 		select_mhp->length = 0;
29722 		select_mhp->bdesc_length = 0;
29723 	}
29724 	/*
29725 	 * Note: An audio control data structure could be created and overlayed
29726 	 * on the following in place of the array indexing method implemented.
29727 	 */
29728 
29729 	/* Build the select data for the user volume data */
29730 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29731 	select_page[1] = 0xE;
29732 	/* Set the immediate bit */
29733 	select_page[2] = 0x04;
29734 	/* Zero out reserved fields */
29735 	select_page[3] = 0x00;
29736 	select_page[4] = 0x00;
29737 	/* Return sense data for fields not to be modified */
29738 	select_page[5] = sense_page[5];
29739 	select_page[6] = sense_page[6];
29740 	select_page[7] = sense_page[7];
29741 	/* Set the user specified volume levels for channel 0 and 1 */
29742 	select_page[8] = 0x01;
29743 	select_page[9] = vol->channel0;
29744 	select_page[10] = 0x02;
29745 	select_page[11] = vol->channel1;
29746 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29747 	select_page[12] = sense_page[12];
29748 	select_page[13] = sense_page[13];
29749 	select_page[14] = sense_page[14];
29750 	select_page[15] = sense_page[15];
29751 
29752 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29753 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29754 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29755 	} else {
29756 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29757 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29758 	}
29759 
29760 	kmem_free(sense, sense_buflen);
29761 	kmem_free(select, select_buflen);
29762 	return (rval);
29763 }
29764 
29765 
29766 /*
29767  *    Function: sr_read_sony_session_offset()
29768  *
29769  * Description: This routine is the driver entry point for handling CD-ROM
29770  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29771  *		The address of the first track in the last session of a
29772  *		multi-session CD-ROM is returned
29773  *
29774  *		Note: This routine uses a vendor specific key value in the
29775  *		command control field without implementing any vendor check here
29776  *		or in the ioctl routine.
29777  *
29778  *   Arguments: dev	- the device 'dev_t'
29779  *		data	- pointer to an int to hold the requested address
29780  *		flag	- this argument is a pass through to ddi_copyxxx()
29781  *			  directly from the mode argument of ioctl().
29782  *
29783  * Return Code: the code returned by sd_send_scsi_cmd()
29784  *		EFAULT if ddi_copyxxx() fails
29785  *		ENXIO if fail ddi_get_soft_state
29786  *		EINVAL if data pointer is NULL
29787  */
29788 
29789 static int
29790 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29791 {
29792 	struct sd_lun		*un;
29793 	struct uscsi_cmd	*com;
29794 	caddr_t			buffer;
29795 	char			cdb[CDB_GROUP1];
29796 	int			session_offset = 0;
29797 	int			rval;
29798 
29799 	if (data == NULL) {
29800 		return (EINVAL);
29801 	}
29802 
29803 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29804 	    (un->un_state == SD_STATE_OFFLINE)) {
29805 		return (ENXIO);
29806 	}
29807 
29808 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29809 	bzero(cdb, CDB_GROUP1);
29810 	cdb[0] = SCMD_READ_TOC;
29811 	/*
29812 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29813 	 * (4 byte TOC response header + 8 byte response data)
29814 	 */
29815 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29816 	/* Byte 9 is the control byte. A vendor specific value is used */
29817 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29818 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29819 	com->uscsi_cdb = cdb;
29820 	com->uscsi_cdblen = CDB_GROUP1;
29821 	com->uscsi_bufaddr = buffer;
29822 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29823 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29824 
29825 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29826 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29827 	if (rval != 0) {
29828 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29829 		kmem_free(com, sizeof (*com));
29830 		return (rval);
29831 	}
29832 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29833 		session_offset =
29834 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29835 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29836 		/*
29837 		 * Offset returned offset in current lbasize block's. Convert to
29838 		 * 2k block's to return to the user
29839 		 */
29840 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29841 			session_offset >>= 2;
29842 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29843 			session_offset >>= 1;
29844 		}
29845 	}
29846 
29847 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29848 		rval = EFAULT;
29849 	}
29850 
29851 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29852 	kmem_free(com, sizeof (*com));
29853 	return (rval);
29854 }
29855 
29856 
29857 /*
29858  *    Function: sd_wm_cache_constructor()
29859  *
29860  * Description: Cache Constructor for the wmap cache for the read/modify/write
29861  * 		devices.
29862  *
29863  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29864  *		un	- sd_lun structure for the device.
29865  *		flag	- the km flags passed to constructor
29866  *
29867  * Return Code: 0 on success.
29868  *		-1 on failure.
29869  */
29870 
29871 /*ARGSUSED*/
29872 static int
29873 sd_wm_cache_constructor(void *wm, void *un, int flags)
29874 {
29875 	bzero(wm, sizeof (struct sd_w_map));
29876 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29877 	return (0);
29878 }
29879 
29880 
29881 /*
29882  *    Function: sd_wm_cache_destructor()
29883  *
29884  * Description: Cache destructor for the wmap cache for the read/modify/write
29885  * 		devices.
29886  *
29887  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29888  *		un	- sd_lun structure for the device.
29889  */
29890 /*ARGSUSED*/
29891 static void
29892 sd_wm_cache_destructor(void *wm, void *un)
29893 {
29894 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29895 }
29896 
29897 
29898 /*
29899  *    Function: sd_range_lock()
29900  *
29901  * Description: Lock the range of blocks specified as parameter to ensure
29902  *		that read, modify write is atomic and no other i/o writes
29903  *		to the same location. The range is specified in terms
29904  *		of start and end blocks. Block numbers are the actual
29905  *		media block numbers and not system.
29906  *
29907  *   Arguments: un	- sd_lun structure for the device.
29908  *		startb - The starting block number
29909  *		endb - The end block number
29910  *		typ - type of i/o - simple/read_modify_write
29911  *
29912  * Return Code: wm  - pointer to the wmap structure.
29913  *
29914  *     Context: This routine can sleep.
29915  */
29916 
29917 static struct sd_w_map *
29918 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29919 {
29920 	struct sd_w_map *wmp = NULL;
29921 	struct sd_w_map *sl_wmp = NULL;
29922 	struct sd_w_map *tmp_wmp;
29923 	wm_state state = SD_WM_CHK_LIST;
29924 
29925 
29926 	ASSERT(un != NULL);
29927 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29928 
29929 	mutex_enter(SD_MUTEX(un));
29930 
29931 	while (state != SD_WM_DONE) {
29932 
29933 		switch (state) {
29934 		case SD_WM_CHK_LIST:
29935 			/*
29936 			 * This is the starting state. Check the wmap list
29937 			 * to see if the range is currently available.
29938 			 */
29939 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29940 				/*
29941 				 * If this is a simple write and no rmw
29942 				 * i/o is pending then try to lock the
29943 				 * range as the range should be available.
29944 				 */
29945 				state = SD_WM_LOCK_RANGE;
29946 			} else {
29947 				tmp_wmp = sd_get_range(un, startb, endb);
29948 				if (tmp_wmp != NULL) {
29949 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29950 						/*
29951 						 * Should not keep onlist wmps
29952 						 * while waiting this macro
29953 						 * will also do wmp = NULL;
29954 						 */
29955 						FREE_ONLIST_WMAP(un, wmp);
29956 					}
29957 					/*
29958 					 * sl_wmp is the wmap on which wait
29959 					 * is done, since the tmp_wmp points
29960 					 * to the inuse wmap, set sl_wmp to
29961 					 * tmp_wmp and change the state to sleep
29962 					 */
29963 					sl_wmp = tmp_wmp;
29964 					state = SD_WM_WAIT_MAP;
29965 				} else {
29966 					state = SD_WM_LOCK_RANGE;
29967 				}
29968 
29969 			}
29970 			break;
29971 
29972 		case SD_WM_LOCK_RANGE:
29973 			ASSERT(un->un_wm_cache);
29974 			/*
29975 			 * The range need to be locked, try to get a wmap.
29976 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29977 			 * if possible as we will have to release the sd mutex
29978 			 * if we have to sleep.
29979 			 */
29980 			if (wmp == NULL)
29981 				wmp = kmem_cache_alloc(un->un_wm_cache,
29982 				    KM_NOSLEEP);
29983 			if (wmp == NULL) {
29984 				mutex_exit(SD_MUTEX(un));
29985 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29986 				    (sd_lun::un_wm_cache))
29987 				wmp = kmem_cache_alloc(un->un_wm_cache,
29988 				    KM_SLEEP);
29989 				mutex_enter(SD_MUTEX(un));
29990 				/*
29991 				 * we released the mutex so recheck and go to
29992 				 * check list state.
29993 				 */
29994 				state = SD_WM_CHK_LIST;
29995 			} else {
29996 				/*
29997 				 * We exit out of state machine since we
29998 				 * have the wmap. Do the housekeeping first.
29999 				 * place the wmap on the wmap list if it is not
30000 				 * on it already and then set the state to done.
30001 				 */
30002 				wmp->wm_start = startb;
30003 				wmp->wm_end = endb;
30004 				wmp->wm_flags = typ | SD_WM_BUSY;
30005 				if (typ & SD_WTYPE_RMW) {
30006 					un->un_rmw_count++;
30007 				}
30008 				/*
30009 				 * If not already on the list then link
30010 				 */
30011 				if (!ONLIST(un, wmp)) {
30012 					wmp->wm_next = un->un_wm;
30013 					wmp->wm_prev = NULL;
30014 					if (wmp->wm_next)
30015 						wmp->wm_next->wm_prev = wmp;
30016 					un->un_wm = wmp;
30017 				}
30018 				state = SD_WM_DONE;
30019 			}
30020 			break;
30021 
30022 		case SD_WM_WAIT_MAP:
30023 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
30024 			/*
30025 			 * Wait is done on sl_wmp, which is set in the
30026 			 * check_list state.
30027 			 */
30028 			sl_wmp->wm_wanted_count++;
30029 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
30030 			sl_wmp->wm_wanted_count--;
30031 			/*
30032 			 * We can reuse the memory from the completed sl_wmp
30033 			 * lock range for our new lock, but only if noone is
30034 			 * waiting for it.
30035 			 */
30036 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
30037 			if (sl_wmp->wm_wanted_count == 0) {
30038 				if (wmp != NULL)
30039 					CHK_N_FREEWMP(un, wmp);
30040 				wmp = sl_wmp;
30041 			}
30042 			sl_wmp = NULL;
30043 			/*
30044 			 * After waking up, need to recheck for availability of
30045 			 * range.
30046 			 */
30047 			state = SD_WM_CHK_LIST;
30048 			break;
30049 
30050 		default:
30051 			panic("sd_range_lock: "
30052 			    "Unknown state %d in sd_range_lock", state);
30053 			/*NOTREACHED*/
30054 		} /* switch(state) */
30055 
30056 	} /* while(state != SD_WM_DONE) */
30057 
30058 	mutex_exit(SD_MUTEX(un));
30059 
30060 	ASSERT(wmp != NULL);
30061 
30062 	return (wmp);
30063 }
30064 
30065 
30066 /*
30067  *    Function: sd_get_range()
30068  *
30069  * Description: Find if there any overlapping I/O to this one
30070  *		Returns the write-map of 1st such I/O, NULL otherwise.
30071  *
30072  *   Arguments: un	- sd_lun structure for the device.
30073  *		startb - The starting block number
30074  *		endb - The end block number
30075  *
30076  * Return Code: wm  - pointer to the wmap structure.
30077  */
30078 
30079 static struct sd_w_map *
30080 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
30081 {
30082 	struct sd_w_map *wmp;
30083 
30084 	ASSERT(un != NULL);
30085 
30086 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
30087 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
30088 			continue;
30089 		}
30090 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
30091 			break;
30092 		}
30093 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
30094 			break;
30095 		}
30096 	}
30097 
30098 	return (wmp);
30099 }
30100 
30101 
30102 /*
30103  *    Function: sd_free_inlist_wmap()
30104  *
30105  * Description: Unlink and free a write map struct.
30106  *
30107  *   Arguments: un      - sd_lun structure for the device.
30108  *		wmp	- sd_w_map which needs to be unlinked.
30109  */
30110 
30111 static void
30112 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
30113 {
30114 	ASSERT(un != NULL);
30115 
30116 	if (un->un_wm == wmp) {
30117 		un->un_wm = wmp->wm_next;
30118 	} else {
30119 		wmp->wm_prev->wm_next = wmp->wm_next;
30120 	}
30121 
30122 	if (wmp->wm_next) {
30123 		wmp->wm_next->wm_prev = wmp->wm_prev;
30124 	}
30125 
30126 	wmp->wm_next = wmp->wm_prev = NULL;
30127 
30128 	kmem_cache_free(un->un_wm_cache, wmp);
30129 }
30130 
30131 
30132 /*
30133  *    Function: sd_range_unlock()
30134  *
30135  * Description: Unlock the range locked by wm.
30136  *		Free write map if nobody else is waiting on it.
30137  *
30138  *   Arguments: un      - sd_lun structure for the device.
30139  *              wmp     - sd_w_map which needs to be unlinked.
30140  */
30141 
30142 static void
30143 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
30144 {
30145 	ASSERT(un != NULL);
30146 	ASSERT(wm != NULL);
30147 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30148 
30149 	mutex_enter(SD_MUTEX(un));
30150 
30151 	if (wm->wm_flags & SD_WTYPE_RMW) {
30152 		un->un_rmw_count--;
30153 	}
30154 
30155 	if (wm->wm_wanted_count) {
30156 		wm->wm_flags = 0;
30157 		/*
30158 		 * Broadcast that the wmap is available now.
30159 		 */
30160 		cv_broadcast(&wm->wm_avail);
30161 	} else {
30162 		/*
30163 		 * If no one is waiting on the map, it should be free'ed.
30164 		 */
30165 		sd_free_inlist_wmap(un, wm);
30166 	}
30167 
30168 	mutex_exit(SD_MUTEX(un));
30169 }
30170 
30171 
30172 /*
30173  *    Function: sd_read_modify_write_task
30174  *
30175  * Description: Called from a taskq thread to initiate the write phase of
30176  *		a read-modify-write request.  This is used for targets where
30177  *		un->un_sys_blocksize != un->un_tgt_blocksize.
30178  *
30179  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
30180  *
30181  *     Context: Called under taskq thread context.
30182  */
30183 
30184 static void
30185 sd_read_modify_write_task(void *arg)
30186 {
30187 	struct sd_mapblocksize_info	*bsp;
30188 	struct buf	*bp;
30189 	struct sd_xbuf	*xp;
30190 	struct sd_lun	*un;
30191 
30192 	bp = arg;	/* The bp is given in arg */
30193 	ASSERT(bp != NULL);
30194 
30195 	/* Get the pointer to the layer-private data struct */
30196 	xp = SD_GET_XBUF(bp);
30197 	ASSERT(xp != NULL);
30198 	bsp = xp->xb_private;
30199 	ASSERT(bsp != NULL);
30200 
30201 	un = SD_GET_UN(bp);
30202 	ASSERT(un != NULL);
30203 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30204 
30205 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30206 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
30207 
30208 	/*
30209 	 * This is the write phase of a read-modify-write request, called
30210 	 * under the context of a taskq thread in response to the completion
30211 	 * of the read portion of the rmw request completing under interrupt
30212 	 * context. The write request must be sent from here down the iostart
30213 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
30214 	 * we use the layer index saved in the layer-private data area.
30215 	 */
30216 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
30217 
30218 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30219 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
30220 }
30221 
30222 
30223 /*
30224  *    Function: sddump_do_read_of_rmw()
30225  *
30226  * Description: This routine will be called from sddump, If sddump is called
30227  *		with an I/O which not aligned on device blocksize boundary
30228  *		then the write has to be converted to read-modify-write.
30229  *		Do the read part here in order to keep sddump simple.
30230  *		Note - That the sd_mutex is held across the call to this
30231  *		routine.
30232  *
30233  *   Arguments: un	- sd_lun
30234  *		blkno	- block number in terms of media block size.
30235  *		nblk	- number of blocks.
30236  *		bpp	- pointer to pointer to the buf structure. On return
30237  *			from this function, *bpp points to the valid buffer
30238  *			to which the write has to be done.
30239  *
30240  * Return Code: 0 for success or errno-type return code
30241  */
30242 
30243 static int
30244 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
30245 	struct buf **bpp)
30246 {
30247 	int err;
30248 	int i;
30249 	int rval;
30250 	struct buf *bp;
30251 	struct scsi_pkt *pkt = NULL;
30252 	uint32_t target_blocksize;
30253 
30254 	ASSERT(un != NULL);
30255 	ASSERT(mutex_owned(SD_MUTEX(un)));
30256 
30257 	target_blocksize = un->un_tgt_blocksize;
30258 
30259 	mutex_exit(SD_MUTEX(un));
30260 
30261 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
30262 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
30263 	if (bp == NULL) {
30264 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30265 		    "no resources for dumping; giving up");
30266 		err = ENOMEM;
30267 		goto done;
30268 	}
30269 
30270 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
30271 	    blkno, nblk);
30272 	if (rval != 0) {
30273 		scsi_free_consistent_buf(bp);
30274 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30275 		    "no resources for dumping; giving up");
30276 		err = ENOMEM;
30277 		goto done;
30278 	}
30279 
30280 	pkt->pkt_flags |= FLAG_NOINTR;
30281 
30282 	err = EIO;
30283 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
30284 
30285 		/*
30286 		 * Scsi_poll returns 0 (success) if the command completes and
30287 		 * the status block is STATUS_GOOD.  We should only check
30288 		 * errors if this condition is not true.  Even then we should
30289 		 * send our own request sense packet only if we have a check
30290 		 * condition and auto request sense has not been performed by
30291 		 * the hba.
30292 		 */
30293 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
30294 
30295 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
30296 			err = 0;
30297 			break;
30298 		}
30299 
30300 		/*
30301 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
30302 		 * no need to read RQS data.
30303 		 */
30304 		if (pkt->pkt_reason == CMD_DEV_GONE) {
30305 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30306 			    "Device is gone\n");
30307 			break;
30308 		}
30309 
30310 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
30311 			SD_INFO(SD_LOG_DUMP, un,
30312 			    "sddump: read failed with CHECK, try # %d\n", i);
30313 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
30314 				(void) sd_send_polled_RQS(un);
30315 			}
30316 
30317 			continue;
30318 		}
30319 
30320 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
30321 			int reset_retval = 0;
30322 
30323 			SD_INFO(SD_LOG_DUMP, un,
30324 			    "sddump: read failed with BUSY, try # %d\n", i);
30325 
30326 			if (un->un_f_lun_reset_enabled == TRUE) {
30327 				reset_retval = scsi_reset(SD_ADDRESS(un),
30328 				    RESET_LUN);
30329 			}
30330 			if (reset_retval == 0) {
30331 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
30332 			}
30333 			(void) sd_send_polled_RQS(un);
30334 
30335 		} else {
30336 			SD_INFO(SD_LOG_DUMP, un,
30337 			    "sddump: read failed with 0x%x, try # %d\n",
30338 			    SD_GET_PKT_STATUS(pkt), i);
30339 			mutex_enter(SD_MUTEX(un));
30340 			sd_reset_target(un, pkt);
30341 			mutex_exit(SD_MUTEX(un));
30342 		}
30343 
30344 		/*
30345 		 * If we are not getting anywhere with lun/target resets,
30346 		 * let's reset the bus.
30347 		 */
30348 		if (i > SD_NDUMP_RETRIES/2) {
30349 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
30350 			(void) sd_send_polled_RQS(un);
30351 		}
30352 
30353 	}
30354 	scsi_destroy_pkt(pkt);
30355 
30356 	if (err != 0) {
30357 		scsi_free_consistent_buf(bp);
30358 		*bpp = NULL;
30359 	} else {
30360 		*bpp = bp;
30361 	}
30362 
30363 done:
30364 	mutex_enter(SD_MUTEX(un));
30365 	return (err);
30366 }
30367 
30368 
30369 /*
30370  *    Function: sd_failfast_flushq
30371  *
30372  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30373  *		in b_flags and move them onto the failfast queue, then kick
30374  *		off a thread to return all bp's on the failfast queue to
30375  *		their owners with an error set.
30376  *
30377  *   Arguments: un - pointer to the soft state struct for the instance.
30378  *
30379  *     Context: may execute in interrupt context.
30380  */
30381 
30382 static void
30383 sd_failfast_flushq(struct sd_lun *un)
30384 {
30385 	struct buf *bp;
30386 	struct buf *next_waitq_bp;
30387 	struct buf *prev_waitq_bp = NULL;
30388 
30389 	ASSERT(un != NULL);
30390 	ASSERT(mutex_owned(SD_MUTEX(un)));
30391 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30392 	ASSERT(un->un_failfast_bp == NULL);
30393 
30394 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30395 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30396 
30397 	/*
30398 	 * Check if we should flush all bufs when entering failfast state, or
30399 	 * just those with B_FAILFAST set.
30400 	 */
30401 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30402 		/*
30403 		 * Move *all* bp's on the wait queue to the failfast flush
30404 		 * queue, including those that do NOT have B_FAILFAST set.
30405 		 */
30406 		if (un->un_failfast_headp == NULL) {
30407 			ASSERT(un->un_failfast_tailp == NULL);
30408 			un->un_failfast_headp = un->un_waitq_headp;
30409 		} else {
30410 			ASSERT(un->un_failfast_tailp != NULL);
30411 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30412 		}
30413 
30414 		un->un_failfast_tailp = un->un_waitq_tailp;
30415 
30416 		/* update kstat for each bp moved out of the waitq */
30417 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30418 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30419 		}
30420 
30421 		/* empty the waitq */
30422 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30423 
30424 	} else {
30425 		/*
30426 		 * Go thru the wait queue, pick off all entries with
30427 		 * B_FAILFAST set, and move these onto the failfast queue.
30428 		 */
30429 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30430 			/*
30431 			 * Save the pointer to the next bp on the wait queue,
30432 			 * so we get to it on the next iteration of this loop.
30433 			 */
30434 			next_waitq_bp = bp->av_forw;
30435 
30436 			/*
30437 			 * If this bp from the wait queue does NOT have
30438 			 * B_FAILFAST set, just move on to the next element
30439 			 * in the wait queue. Note, this is the only place
30440 			 * where it is correct to set prev_waitq_bp.
30441 			 */
30442 			if ((bp->b_flags & B_FAILFAST) == 0) {
30443 				prev_waitq_bp = bp;
30444 				continue;
30445 			}
30446 
30447 			/*
30448 			 * Remove the bp from the wait queue.
30449 			 */
30450 			if (bp == un->un_waitq_headp) {
30451 				/* The bp is the first element of the waitq. */
30452 				un->un_waitq_headp = next_waitq_bp;
30453 				if (un->un_waitq_headp == NULL) {
30454 					/* The wait queue is now empty */
30455 					un->un_waitq_tailp = NULL;
30456 				}
30457 			} else {
30458 				/*
30459 				 * The bp is either somewhere in the middle
30460 				 * or at the end of the wait queue.
30461 				 */
30462 				ASSERT(un->un_waitq_headp != NULL);
30463 				ASSERT(prev_waitq_bp != NULL);
30464 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30465 				    == 0);
30466 				if (bp == un->un_waitq_tailp) {
30467 					/* bp is the last entry on the waitq. */
30468 					ASSERT(next_waitq_bp == NULL);
30469 					un->un_waitq_tailp = prev_waitq_bp;
30470 				}
30471 				prev_waitq_bp->av_forw = next_waitq_bp;
30472 			}
30473 			bp->av_forw = NULL;
30474 
30475 			/*
30476 			 * update kstat since the bp is moved out of
30477 			 * the waitq
30478 			 */
30479 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30480 
30481 			/*
30482 			 * Now put the bp onto the failfast queue.
30483 			 */
30484 			if (un->un_failfast_headp == NULL) {
30485 				/* failfast queue is currently empty */
30486 				ASSERT(un->un_failfast_tailp == NULL);
30487 				un->un_failfast_headp =
30488 				    un->un_failfast_tailp = bp;
30489 			} else {
30490 				/* Add the bp to the end of the failfast q */
30491 				ASSERT(un->un_failfast_tailp != NULL);
30492 				ASSERT(un->un_failfast_tailp->b_flags &
30493 				    B_FAILFAST);
30494 				un->un_failfast_tailp->av_forw = bp;
30495 				un->un_failfast_tailp = bp;
30496 			}
30497 		}
30498 	}
30499 
30500 	/*
30501 	 * Now return all bp's on the failfast queue to their owners.
30502 	 */
30503 	while ((bp = un->un_failfast_headp) != NULL) {
30504 
30505 		un->un_failfast_headp = bp->av_forw;
30506 		if (un->un_failfast_headp == NULL) {
30507 			un->un_failfast_tailp = NULL;
30508 		}
30509 
30510 		/*
30511 		 * We want to return the bp with a failure error code, but
30512 		 * we do not want a call to sd_start_cmds() to occur here,
30513 		 * so use sd_return_failed_command_no_restart() instead of
30514 		 * sd_return_failed_command().
30515 		 */
30516 		sd_return_failed_command_no_restart(un, bp, EIO);
30517 	}
30518 
30519 	/* Flush the xbuf queues if required. */
30520 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30521 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30522 	}
30523 
30524 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30525 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30526 }
30527 
30528 
30529 /*
30530  *    Function: sd_failfast_flushq_callback
30531  *
30532  * Description: Return TRUE if the given bp meets the criteria for failfast
30533  *		flushing. Used with ddi_xbuf_flushq(9F).
30534  *
30535  *   Arguments: bp - ptr to buf struct to be examined.
30536  *
30537  *     Context: Any
30538  */
30539 
30540 static int
30541 sd_failfast_flushq_callback(struct buf *bp)
30542 {
30543 	/*
30544 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30545 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30546 	 */
30547 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30548 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30549 }
30550 
30551 
30552 
30553 #if defined(__i386) || defined(__amd64)
30554 /*
30555  * Function: sd_setup_next_xfer
30556  *
30557  * Description: Prepare next I/O operation using DMA_PARTIAL
30558  *
30559  */
30560 
30561 static int
30562 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30563     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30564 {
30565 	ssize_t	num_blks_not_xfered;
30566 	daddr_t	strt_blk_num;
30567 	ssize_t	bytes_not_xfered;
30568 	int	rval;
30569 
30570 	ASSERT(pkt->pkt_resid == 0);
30571 
30572 	/*
30573 	 * Calculate next block number and amount to be transferred.
30574 	 *
30575 	 * How much data NOT transfered to the HBA yet.
30576 	 */
30577 	bytes_not_xfered = xp->xb_dma_resid;
30578 
30579 	/*
30580 	 * figure how many blocks NOT transfered to the HBA yet.
30581 	 */
30582 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30583 
30584 	/*
30585 	 * set starting block number to the end of what WAS transfered.
30586 	 */
30587 	strt_blk_num = xp->xb_blkno +
30588 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30589 
30590 	/*
30591 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30592 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30593 	 * the disk mutex here.
30594 	 */
30595 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30596 	    strt_blk_num, num_blks_not_xfered);
30597 
30598 	if (rval == 0) {
30599 
30600 		/*
30601 		 * Success.
30602 		 *
30603 		 * Adjust things if there are still more blocks to be
30604 		 * transfered.
30605 		 */
30606 		xp->xb_dma_resid = pkt->pkt_resid;
30607 		pkt->pkt_resid = 0;
30608 
30609 		return (1);
30610 	}
30611 
30612 	/*
30613 	 * There's really only one possible return value from
30614 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30615 	 * returns NULL.
30616 	 */
30617 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30618 
30619 	bp->b_resid = bp->b_bcount;
30620 	bp->b_flags |= B_ERROR;
30621 
30622 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30623 	    "Error setting up next portion of DMA transfer\n");
30624 
30625 	return (0);
30626 }
30627 #endif
30628 
30629 /*
30630  *    Function: sd_panic_for_res_conflict
30631  *
30632  * Description: Call panic with a string formated with "Reservation Conflict"
30633  *		and a human readable identifier indicating the SD instance
30634  *		that experienced the reservation conflict.
30635  *
30636  *   Arguments: un - pointer to the soft state struct for the instance.
30637  *
30638  *     Context: may execute in interrupt context.
30639  */
30640 
30641 #define	SD_RESV_CONFLICT_FMT_LEN 40
30642 void
30643 sd_panic_for_res_conflict(struct sd_lun *un)
30644 {
30645 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30646 	char path_str[MAXPATHLEN];
30647 
30648 	(void) snprintf(panic_str, sizeof (panic_str),
30649 	    "Reservation Conflict\nDisk: %s",
30650 	    ddi_pathname(SD_DEVINFO(un), path_str));
30651 
30652 	panic(panic_str);
30653 }
30654 
30655 /*
30656  * Note: The following sd_faultinjection_ioctl( ) routines implement
30657  * driver support for handling fault injection for error analysis
30658  * causing faults in multiple layers of the driver.
30659  *
30660  */
30661 
30662 #ifdef SD_FAULT_INJECTION
30663 static uint_t   sd_fault_injection_on = 0;
30664 
30665 /*
30666  *    Function: sd_faultinjection_ioctl()
30667  *
30668  * Description: This routine is the driver entry point for handling
30669  *              faultinjection ioctls to inject errors into the
30670  *              layer model
30671  *
30672  *   Arguments: cmd	- the ioctl cmd recieved
30673  *		arg	- the arguments from user and returns
30674  */
30675 
30676 static void
30677 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30678 
30679 	uint_t i;
30680 	uint_t rval;
30681 
30682 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30683 
30684 	mutex_enter(SD_MUTEX(un));
30685 
30686 	switch (cmd) {
30687 	case SDIOCRUN:
30688 		/* Allow pushed faults to be injected */
30689 		SD_INFO(SD_LOG_SDTEST, un,
30690 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30691 
30692 		sd_fault_injection_on = 1;
30693 
30694 		SD_INFO(SD_LOG_IOERR, un,
30695 		    "sd_faultinjection_ioctl: run finished\n");
30696 		break;
30697 
30698 	case SDIOCSTART:
30699 		/* Start Injection Session */
30700 		SD_INFO(SD_LOG_SDTEST, un,
30701 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30702 
30703 		sd_fault_injection_on = 0;
30704 		un->sd_injection_mask = 0xFFFFFFFF;
30705 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30706 			un->sd_fi_fifo_pkt[i] = NULL;
30707 			un->sd_fi_fifo_xb[i] = NULL;
30708 			un->sd_fi_fifo_un[i] = NULL;
30709 			un->sd_fi_fifo_arq[i] = NULL;
30710 		}
30711 		un->sd_fi_fifo_start = 0;
30712 		un->sd_fi_fifo_end = 0;
30713 
30714 		mutex_enter(&(un->un_fi_mutex));
30715 		un->sd_fi_log[0] = '\0';
30716 		un->sd_fi_buf_len = 0;
30717 		mutex_exit(&(un->un_fi_mutex));
30718 
30719 		SD_INFO(SD_LOG_IOERR, un,
30720 		    "sd_faultinjection_ioctl: start finished\n");
30721 		break;
30722 
30723 	case SDIOCSTOP:
30724 		/* Stop Injection Session */
30725 		SD_INFO(SD_LOG_SDTEST, un,
30726 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30727 		sd_fault_injection_on = 0;
30728 		un->sd_injection_mask = 0x0;
30729 
30730 		/* Empty stray or unuseds structs from fifo */
30731 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30732 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30733 				kmem_free(un->sd_fi_fifo_pkt[i],
30734 				    sizeof (struct sd_fi_pkt));
30735 			}
30736 			if (un->sd_fi_fifo_xb[i] != NULL) {
30737 				kmem_free(un->sd_fi_fifo_xb[i],
30738 				    sizeof (struct sd_fi_xb));
30739 			}
30740 			if (un->sd_fi_fifo_un[i] != NULL) {
30741 				kmem_free(un->sd_fi_fifo_un[i],
30742 				    sizeof (struct sd_fi_un));
30743 			}
30744 			if (un->sd_fi_fifo_arq[i] != NULL) {
30745 				kmem_free(un->sd_fi_fifo_arq[i],
30746 				    sizeof (struct sd_fi_arq));
30747 			}
30748 			un->sd_fi_fifo_pkt[i] = NULL;
30749 			un->sd_fi_fifo_un[i] = NULL;
30750 			un->sd_fi_fifo_xb[i] = NULL;
30751 			un->sd_fi_fifo_arq[i] = NULL;
30752 		}
30753 		un->sd_fi_fifo_start = 0;
30754 		un->sd_fi_fifo_end = 0;
30755 
30756 		SD_INFO(SD_LOG_IOERR, un,
30757 		    "sd_faultinjection_ioctl: stop finished\n");
30758 		break;
30759 
30760 	case SDIOCINSERTPKT:
30761 		/* Store a packet struct to be pushed onto fifo */
30762 		SD_INFO(SD_LOG_SDTEST, un,
30763 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30764 
30765 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30766 
30767 		sd_fault_injection_on = 0;
30768 
30769 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30770 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30771 			kmem_free(un->sd_fi_fifo_pkt[i],
30772 			    sizeof (struct sd_fi_pkt));
30773 		}
30774 		if (arg != NULL) {
30775 			un->sd_fi_fifo_pkt[i] =
30776 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30777 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30778 				/* Alloc failed don't store anything */
30779 				break;
30780 			}
30781 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30782 			    sizeof (struct sd_fi_pkt), 0);
30783 			if (rval == -1) {
30784 				kmem_free(un->sd_fi_fifo_pkt[i],
30785 				    sizeof (struct sd_fi_pkt));
30786 				un->sd_fi_fifo_pkt[i] = NULL;
30787 			}
30788 		} else {
30789 			SD_INFO(SD_LOG_IOERR, un,
30790 			    "sd_faultinjection_ioctl: pkt null\n");
30791 		}
30792 		break;
30793 
30794 	case SDIOCINSERTXB:
30795 		/* Store a xb struct to be pushed onto fifo */
30796 		SD_INFO(SD_LOG_SDTEST, un,
30797 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30798 
30799 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30800 
30801 		sd_fault_injection_on = 0;
30802 
30803 		if (un->sd_fi_fifo_xb[i] != NULL) {
30804 			kmem_free(un->sd_fi_fifo_xb[i],
30805 			    sizeof (struct sd_fi_xb));
30806 			un->sd_fi_fifo_xb[i] = NULL;
30807 		}
30808 		if (arg != NULL) {
30809 			un->sd_fi_fifo_xb[i] =
30810 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30811 			if (un->sd_fi_fifo_xb[i] == NULL) {
30812 				/* Alloc failed don't store anything */
30813 				break;
30814 			}
30815 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30816 			    sizeof (struct sd_fi_xb), 0);
30817 
30818 			if (rval == -1) {
30819 				kmem_free(un->sd_fi_fifo_xb[i],
30820 				    sizeof (struct sd_fi_xb));
30821 				un->sd_fi_fifo_xb[i] = NULL;
30822 			}
30823 		} else {
30824 			SD_INFO(SD_LOG_IOERR, un,
30825 			    "sd_faultinjection_ioctl: xb null\n");
30826 		}
30827 		break;
30828 
30829 	case SDIOCINSERTUN:
30830 		/* Store a un struct to be pushed onto fifo */
30831 		SD_INFO(SD_LOG_SDTEST, un,
30832 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30833 
30834 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30835 
30836 		sd_fault_injection_on = 0;
30837 
30838 		if (un->sd_fi_fifo_un[i] != NULL) {
30839 			kmem_free(un->sd_fi_fifo_un[i],
30840 			    sizeof (struct sd_fi_un));
30841 			un->sd_fi_fifo_un[i] = NULL;
30842 		}
30843 		if (arg != NULL) {
30844 			un->sd_fi_fifo_un[i] =
30845 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30846 			if (un->sd_fi_fifo_un[i] == NULL) {
30847 				/* Alloc failed don't store anything */
30848 				break;
30849 			}
30850 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30851 			    sizeof (struct sd_fi_un), 0);
30852 			if (rval == -1) {
30853 				kmem_free(un->sd_fi_fifo_un[i],
30854 				    sizeof (struct sd_fi_un));
30855 				un->sd_fi_fifo_un[i] = NULL;
30856 			}
30857 
30858 		} else {
30859 			SD_INFO(SD_LOG_IOERR, un,
30860 			    "sd_faultinjection_ioctl: un null\n");
30861 		}
30862 
30863 		break;
30864 
30865 	case SDIOCINSERTARQ:
30866 		/* Store a arq struct to be pushed onto fifo */
30867 		SD_INFO(SD_LOG_SDTEST, un,
30868 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30869 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30870 
30871 		sd_fault_injection_on = 0;
30872 
30873 		if (un->sd_fi_fifo_arq[i] != NULL) {
30874 			kmem_free(un->sd_fi_fifo_arq[i],
30875 			    sizeof (struct sd_fi_arq));
30876 			un->sd_fi_fifo_arq[i] = NULL;
30877 		}
30878 		if (arg != NULL) {
30879 			un->sd_fi_fifo_arq[i] =
30880 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30881 			if (un->sd_fi_fifo_arq[i] == NULL) {
30882 				/* Alloc failed don't store anything */
30883 				break;
30884 			}
30885 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30886 			    sizeof (struct sd_fi_arq), 0);
30887 			if (rval == -1) {
30888 				kmem_free(un->sd_fi_fifo_arq[i],
30889 				    sizeof (struct sd_fi_arq));
30890 				un->sd_fi_fifo_arq[i] = NULL;
30891 			}
30892 
30893 		} else {
30894 			SD_INFO(SD_LOG_IOERR, un,
30895 			    "sd_faultinjection_ioctl: arq null\n");
30896 		}
30897 
30898 		break;
30899 
30900 	case SDIOCPUSH:
30901 		/* Push stored xb, pkt, un, and arq onto fifo */
30902 		sd_fault_injection_on = 0;
30903 
30904 		if (arg != NULL) {
30905 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30906 			if (rval != -1 &&
30907 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30908 				un->sd_fi_fifo_end += i;
30909 			}
30910 		} else {
30911 			SD_INFO(SD_LOG_IOERR, un,
30912 			    "sd_faultinjection_ioctl: push arg null\n");
30913 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30914 				un->sd_fi_fifo_end++;
30915 			}
30916 		}
30917 		SD_INFO(SD_LOG_IOERR, un,
30918 		    "sd_faultinjection_ioctl: push to end=%d\n",
30919 		    un->sd_fi_fifo_end);
30920 		break;
30921 
30922 	case SDIOCRETRIEVE:
30923 		/* Return buffer of log from Injection session */
30924 		SD_INFO(SD_LOG_SDTEST, un,
30925 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30926 
30927 		sd_fault_injection_on = 0;
30928 
30929 		mutex_enter(&(un->un_fi_mutex));
30930 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30931 		    un->sd_fi_buf_len+1, 0);
30932 		mutex_exit(&(un->un_fi_mutex));
30933 
30934 		if (rval == -1) {
30935 			/*
30936 			 * arg is possibly invalid setting
30937 			 * it to NULL for return
30938 			 */
30939 			arg = NULL;
30940 		}
30941 		break;
30942 	}
30943 
30944 	mutex_exit(SD_MUTEX(un));
30945 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30946 			    " exit\n");
30947 }
30948 
30949 
30950 /*
30951  *    Function: sd_injection_log()
30952  *
30953  * Description: This routine adds buff to the already existing injection log
30954  *              for retrieval via faultinjection_ioctl for use in fault
30955  *              detection and recovery
30956  *
30957  *   Arguments: buf - the string to add to the log
30958  */
30959 
30960 static void
30961 sd_injection_log(char *buf, struct sd_lun *un)
30962 {
30963 	uint_t len;
30964 
30965 	ASSERT(un != NULL);
30966 	ASSERT(buf != NULL);
30967 
30968 	mutex_enter(&(un->un_fi_mutex));
30969 
30970 	len = min(strlen(buf), 255);
30971 	/* Add logged value to Injection log to be returned later */
30972 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30973 		uint_t	offset = strlen((char *)un->sd_fi_log);
30974 		char *destp = (char *)un->sd_fi_log + offset;
30975 		int i;
30976 		for (i = 0; i < len; i++) {
30977 			*destp++ = *buf++;
30978 		}
30979 		un->sd_fi_buf_len += len;
30980 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30981 	}
30982 
30983 	mutex_exit(&(un->un_fi_mutex));
30984 }
30985 
30986 
30987 /*
30988  *    Function: sd_faultinjection()
30989  *
30990  * Description: This routine takes the pkt and changes its
30991  *		content based on error injection scenerio.
30992  *
30993  *   Arguments: pktp	- packet to be changed
30994  */
30995 
30996 static void
30997 sd_faultinjection(struct scsi_pkt *pktp)
30998 {
30999 	uint_t i;
31000 	struct sd_fi_pkt *fi_pkt;
31001 	struct sd_fi_xb *fi_xb;
31002 	struct sd_fi_un *fi_un;
31003 	struct sd_fi_arq *fi_arq;
31004 	struct buf *bp;
31005 	struct sd_xbuf *xb;
31006 	struct sd_lun *un;
31007 
31008 	ASSERT(pktp != NULL);
31009 
31010 	/* pull bp xb and un from pktp */
31011 	bp = (struct buf *)pktp->pkt_private;
31012 	xb = SD_GET_XBUF(bp);
31013 	un = SD_GET_UN(bp);
31014 
31015 	ASSERT(un != NULL);
31016 
31017 	mutex_enter(SD_MUTEX(un));
31018 
31019 	SD_TRACE(SD_LOG_SDTEST, un,
31020 	    "sd_faultinjection: entry Injection from sdintr\n");
31021 
31022 	/* if injection is off return */
31023 	if (sd_fault_injection_on == 0 ||
31024 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
31025 		mutex_exit(SD_MUTEX(un));
31026 		return;
31027 	}
31028 
31029 
31030 	/* take next set off fifo */
31031 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
31032 
31033 	fi_pkt = un->sd_fi_fifo_pkt[i];
31034 	fi_xb = un->sd_fi_fifo_xb[i];
31035 	fi_un = un->sd_fi_fifo_un[i];
31036 	fi_arq = un->sd_fi_fifo_arq[i];
31037 
31038 
31039 	/* set variables accordingly */
31040 	/* set pkt if it was on fifo */
31041 	if (fi_pkt != NULL) {
31042 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
31043 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
31044 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
31045 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
31046 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
31047 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
31048 
31049 	}
31050 
31051 	/* set xb if it was on fifo */
31052 	if (fi_xb != NULL) {
31053 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
31054 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
31055 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
31056 		SD_CONDSET(xb, xb, xb_victim_retry_count,
31057 		    "xb_victim_retry_count");
31058 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
31059 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
31060 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
31061 
31062 		/* copy in block data from sense */
31063 		if (fi_xb->xb_sense_data[0] != -1) {
31064 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
31065 			    SENSE_LENGTH);
31066 		}
31067 
31068 		/* copy in extended sense codes */
31069 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
31070 		    "es_code");
31071 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
31072 		    "es_key");
31073 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
31074 		    "es_add_code");
31075 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
31076 		    es_qual_code, "es_qual_code");
31077 	}
31078 
31079 	/* set un if it was on fifo */
31080 	if (fi_un != NULL) {
31081 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
31082 		SD_CONDSET(un, un, un_ctype, "un_ctype");
31083 		SD_CONDSET(un, un, un_reset_retry_count,
31084 		    "un_reset_retry_count");
31085 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
31086 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
31087 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
31088 		SD_CONDSET(un, un, un_f_geometry_is_valid,
31089 		    "un_f_geometry_is_valid");
31090 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
31091 		    "un_f_allow_bus_device_reset");
31092 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
31093 
31094 	}
31095 
31096 	/* copy in auto request sense if it was on fifo */
31097 	if (fi_arq != NULL) {
31098 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
31099 	}
31100 
31101 	/* free structs */
31102 	if (un->sd_fi_fifo_pkt[i] != NULL) {
31103 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
31104 	}
31105 	if (un->sd_fi_fifo_xb[i] != NULL) {
31106 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
31107 	}
31108 	if (un->sd_fi_fifo_un[i] != NULL) {
31109 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
31110 	}
31111 	if (un->sd_fi_fifo_arq[i] != NULL) {
31112 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
31113 	}
31114 
31115 	/*
31116 	 * kmem_free does not gurantee to set to NULL
31117 	 * since we uses these to determine if we set
31118 	 * values or not lets confirm they are always
31119 	 * NULL after free
31120 	 */
31121 	un->sd_fi_fifo_pkt[i] = NULL;
31122 	un->sd_fi_fifo_un[i] = NULL;
31123 	un->sd_fi_fifo_xb[i] = NULL;
31124 	un->sd_fi_fifo_arq[i] = NULL;
31125 
31126 	un->sd_fi_fifo_start++;
31127 
31128 	mutex_exit(SD_MUTEX(un));
31129 
31130 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
31131 }
31132 
31133 #endif /* SD_FAULT_INJECTION */
31134 
31135 /*
31136  * This routine is invoked in sd_unit_attach(). Before calling it, the
31137  * properties in conf file should be processed already, and "hotpluggable"
31138  * property was processed also.
31139  *
31140  * The sd driver distinguishes 3 different type of devices: removable media,
31141  * non-removable media, and hotpluggable. Below the differences are defined:
31142  *
31143  * 1. Device ID
31144  *
31145  *     The device ID of a device is used to identify this device. Refer to
31146  *     ddi_devid_register(9F).
31147  *
31148  *     For a non-removable media disk device which can provide 0x80 or 0x83
31149  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
31150  *     device ID is created to identify this device. For other non-removable
31151  *     media devices, a default device ID is created only if this device has
31152  *     at least 2 alter cylinders. Otherwise, this device has no devid.
31153  *
31154  *     -------------------------------------------------------
31155  *     removable media   hotpluggable  | Can Have Device ID
31156  *     -------------------------------------------------------
31157  *         false             false     |     Yes
31158  *         false             true      |     Yes
31159  *         true                x       |     No
31160  *     ------------------------------------------------------
31161  *
31162  *
31163  * 2. SCSI group 4 commands
31164  *
31165  *     In SCSI specs, only some commands in group 4 command set can use
31166  *     8-byte addresses that can be used to access >2TB storage spaces.
31167  *     Other commands have no such capability. Without supporting group4,
31168  *     it is impossible to make full use of storage spaces of a disk with
31169  *     capacity larger than 2TB.
31170  *
31171  *     -----------------------------------------------
31172  *     removable media   hotpluggable   LP64  |  Group
31173  *     -----------------------------------------------
31174  *           false          false       false |   1
31175  *           false          false       true  |   4
31176  *           false          true        false |   1
31177  *           false          true        true  |   4
31178  *           true             x           x   |   5
31179  *     -----------------------------------------------
31180  *
31181  *
31182  * 3. Check for VTOC Label
31183  *
31184  *     If a direct-access disk has no EFI label, sd will check if it has a
31185  *     valid VTOC label. Now, sd also does that check for removable media
31186  *     and hotpluggable devices.
31187  *
31188  *     --------------------------------------------------------------
31189  *     Direct-Access   removable media    hotpluggable |  Check Label
31190  *     -------------------------------------------------------------
31191  *         false          false           false        |   No
31192  *         false          false           true         |   No
31193  *         false          true            false        |   Yes
31194  *         false          true            true         |   Yes
31195  *         true            x                x          |   Yes
31196  *     --------------------------------------------------------------
31197  *
31198  *
31199  * 4. Building default VTOC label
31200  *
31201  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
31202  *     If those devices have no valid VTOC label, sd(7d) will attempt to
31203  *     create default VTOC for them. Currently sd creates default VTOC label
31204  *     for all devices on x86 platform (VTOC_16), but only for removable
31205  *     media devices on SPARC (VTOC_8).
31206  *
31207  *     -----------------------------------------------------------
31208  *       removable media hotpluggable platform   |   Default Label
31209  *     -----------------------------------------------------------
31210  *             false          false    sparc     |     No
31211  *             false          true      x86      |     Yes
31212  *             false          true     sparc     |     Yes
31213  *             true             x        x       |     Yes
31214  *     ----------------------------------------------------------
31215  *
31216  *
31217  * 5. Supported blocksizes of target devices
31218  *
31219  *     Sd supports non-512-byte blocksize for removable media devices only.
31220  *     For other devices, only 512-byte blocksize is supported. This may be
31221  *     changed in near future because some RAID devices require non-512-byte
31222  *     blocksize
31223  *
31224  *     -----------------------------------------------------------
31225  *     removable media    hotpluggable    | non-512-byte blocksize
31226  *     -----------------------------------------------------------
31227  *           false          false         |   No
31228  *           false          true          |   No
31229  *           true             x           |   Yes
31230  *     -----------------------------------------------------------
31231  *
31232  *
31233  * 6. Automatic mount & unmount
31234  *
31235  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
31236  *     if a device is removable media device. It return 1 for removable media
31237  *     devices, and 0 for others.
31238  *
31239  *     The automatic mounting subsystem should distinguish between the types
31240  *     of devices and apply automounting policies to each.
31241  *
31242  *
31243  * 7. fdisk partition management
31244  *
31245  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
31246  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
31247  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
31248  *     fdisk partitions on both x86 and SPARC platform.
31249  *
31250  *     -----------------------------------------------------------
31251  *       platform   removable media  USB/1394  |  fdisk supported
31252  *     -----------------------------------------------------------
31253  *        x86         X               X        |       true
31254  *     ------------------------------------------------------------
31255  *        sparc       X               X        |       false
31256  *     ------------------------------------------------------------
31257  *
31258  *
31259  * 8. MBOOT/MBR
31260  *
31261  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
31262  *     read/write mboot for removable media devices on sparc platform.
31263  *
31264  *     -----------------------------------------------------------
31265  *       platform   removable media  USB/1394  |  mboot supported
31266  *     -----------------------------------------------------------
31267  *        x86         X               X        |       true
31268  *     ------------------------------------------------------------
31269  *        sparc      false           false     |       false
31270  *        sparc      false           true      |       true
31271  *        sparc      true            false     |       true
31272  *        sparc      true            true      |       true
31273  *     ------------------------------------------------------------
31274  *
31275  *
31276  * 9.  error handling during opening device
31277  *
31278  *     If failed to open a disk device, an errno is returned. For some kinds
31279  *     of errors, different errno is returned depending on if this device is
31280  *     a removable media device. This brings USB/1394 hard disks in line with
31281  *     expected hard disk behavior. It is not expected that this breaks any
31282  *     application.
31283  *
31284  *     ------------------------------------------------------
31285  *       removable media    hotpluggable   |  errno
31286  *     ------------------------------------------------------
31287  *             false          false        |   EIO
31288  *             false          true         |   EIO
31289  *             true             x          |   ENXIO
31290  *     ------------------------------------------------------
31291  *
31292  *
31293  * 11. ioctls: DKIOCEJECT, CDROMEJECT
31294  *
31295  *     These IOCTLs are applicable only to removable media devices.
31296  *
31297  *     -----------------------------------------------------------
31298  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
31299  *     -----------------------------------------------------------
31300  *             false          false        |     No
31301  *             false          true         |     No
31302  *             true            x           |     Yes
31303  *     -----------------------------------------------------------
31304  *
31305  *
31306  * 12. Kstats for partitions
31307  *
31308  *     sd creates partition kstat for non-removable media devices. USB and
31309  *     Firewire hard disks now have partition kstats
31310  *
31311  *      ------------------------------------------------------
31312  *       removable media    hotplugable    |   kstat
31313  *      ------------------------------------------------------
31314  *             false          false        |    Yes
31315  *             false          true         |    Yes
31316  *             true             x          |    No
31317  *       ------------------------------------------------------
31318  *
31319  *
31320  * 13. Removable media & hotpluggable properties
31321  *
31322  *     Sd driver creates a "removable-media" property for removable media
31323  *     devices. Parent nexus drivers create a "hotpluggable" property if
31324  *     it supports hotplugging.
31325  *
31326  *     ---------------------------------------------------------------------
31327  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
31328  *     ---------------------------------------------------------------------
31329  *       false            false       |    No                   No
31330  *       false            true        |    No                   Yes
31331  *       true             false       |    Yes                  No
31332  *       true             true        |    Yes                  Yes
31333  *     ---------------------------------------------------------------------
31334  *
31335  *
31336  * 14. Power Management
31337  *
31338  *     sd only power manages removable media devices or devices that support
31339  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
31340  *
31341  *     A parent nexus that supports hotplugging can also set "pm-capable"
31342  *     if the disk can be power managed.
31343  *
31344  *     ------------------------------------------------------------
31345  *       removable media hotpluggable pm-capable  |   power manage
31346  *     ------------------------------------------------------------
31347  *             false          false     false     |     No
31348  *             false          false     true      |     Yes
31349  *             false          true      false     |     No
31350  *             false          true      true      |     Yes
31351  *             true             x        x        |     Yes
31352  *     ------------------------------------------------------------
31353  *
31354  *      USB and firewire hard disks can now be power managed independently
31355  *      of the framebuffer
31356  *
31357  *
31358  * 15. Support for USB disks with capacity larger than 1TB
31359  *
31360  *     Currently, sd doesn't permit a fixed disk device with capacity
31361  *     larger than 1TB to be used in a 32-bit operating system environment.
31362  *     However, sd doesn't do that for removable media devices. Instead, it
31363  *     assumes that removable media devices cannot have a capacity larger
31364  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31365  *     supported, which can cause some unexpected results.
31366  *
31367  *     ---------------------------------------------------------------------
31368  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31369  *     ---------------------------------------------------------------------
31370  *             false          false  |   true         |     no
31371  *             false          true   |   true         |     no
31372  *             true           false  |   true         |     Yes
31373  *             true           true   |   true         |     Yes
31374  *     ---------------------------------------------------------------------
31375  *
31376  *
31377  * 16. Check write-protection at open time
31378  *
31379  *     When a removable media device is being opened for writing without NDELAY
31380  *     flag, sd will check if this device is writable. If attempting to open
31381  *     without NDELAY flag a write-protected device, this operation will abort.
31382  *
31383  *     ------------------------------------------------------------
31384  *       removable media    USB/1394   |   WP Check
31385  *     ------------------------------------------------------------
31386  *             false          false    |     No
31387  *             false          true     |     No
31388  *             true           false    |     Yes
31389  *             true           true     |     Yes
31390  *     ------------------------------------------------------------
31391  *
31392  *
31393  * 17. syslog when corrupted VTOC is encountered
31394  *
31395  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31396  *      for fixed SCSI disks.
31397  *     ------------------------------------------------------------
31398  *       removable media    USB/1394   |   print syslog
31399  *     ------------------------------------------------------------
31400  *             false          false    |     Yes
31401  *             false          true     |     No
31402  *             true           false    |     No
31403  *             true           true     |     No
31404  *     ------------------------------------------------------------
31405  */
31406 static void
31407 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31408 {
31409 	int	pm_capable_prop;
31410 
31411 	ASSERT(un->un_sd);
31412 	ASSERT(un->un_sd->sd_inq);
31413 
31414 #if defined(_SUNOS_VTOC_16)
31415 	/*
31416 	 * For VTOC_16 devices, the default label will be created for all
31417 	 * devices. (see sd_build_default_label)
31418 	 */
31419 	un->un_f_default_vtoc_supported = TRUE;
31420 #endif
31421 
31422 	if (un->un_sd->sd_inq->inq_rmb) {
31423 		/*
31424 		 * The media of this device is removable. And for this kind
31425 		 * of devices, it is possible to change medium after opening
31426 		 * devices. Thus we should support this operation.
31427 		 */
31428 		un->un_f_has_removable_media = TRUE;
31429 
31430 #if defined(_SUNOS_VTOC_8)
31431 		/*
31432 		 * Note: currently, for VTOC_8 devices, default label is
31433 		 * created for removable and hotpluggable devices only.
31434 		 */
31435 		un->un_f_default_vtoc_supported = TRUE;
31436 #endif
31437 		/*
31438 		 * support non-512-byte blocksize of removable media devices
31439 		 */
31440 		un->un_f_non_devbsize_supported = TRUE;
31441 
31442 		/*
31443 		 * Assume that all removable media devices support DOOR_LOCK
31444 		 */
31445 		un->un_f_doorlock_supported = TRUE;
31446 
31447 		/*
31448 		 * For a removable media device, it is possible to be opened
31449 		 * with NDELAY flag when there is no media in drive, in this
31450 		 * case we don't care if device is writable. But if without
31451 		 * NDELAY flag, we need to check if media is write-protected.
31452 		 */
31453 		un->un_f_chk_wp_open = TRUE;
31454 
31455 		/*
31456 		 * need to start a SCSI watch thread to monitor media state,
31457 		 * when media is being inserted or ejected, notify syseventd.
31458 		 */
31459 		un->un_f_monitor_media_state = TRUE;
31460 
31461 		/*
31462 		 * Some devices don't support START_STOP_UNIT command.
31463 		 * Therefore, we'd better check if a device supports it
31464 		 * before sending it.
31465 		 */
31466 		un->un_f_check_start_stop = TRUE;
31467 
31468 		/*
31469 		 * support eject media ioctl:
31470 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31471 		 */
31472 		un->un_f_eject_media_supported = TRUE;
31473 
31474 		/*
31475 		 * Because many removable-media devices don't support
31476 		 * LOG_SENSE, we couldn't use this command to check if
31477 		 * a removable media device support power-management.
31478 		 * We assume that they support power-management via
31479 		 * START_STOP_UNIT command and can be spun up and down
31480 		 * without limitations.
31481 		 */
31482 		un->un_f_pm_supported = TRUE;
31483 
31484 		/*
31485 		 * Need to create a zero length (Boolean) property
31486 		 * removable-media for the removable media devices.
31487 		 * Note that the return value of the property is not being
31488 		 * checked, since if unable to create the property
31489 		 * then do not want the attach to fail altogether. Consistent
31490 		 * with other property creation in attach.
31491 		 */
31492 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31493 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31494 
31495 	} else {
31496 		/*
31497 		 * create device ID for device
31498 		 */
31499 		un->un_f_devid_supported = TRUE;
31500 
31501 		/*
31502 		 * Spin up non-removable-media devices once it is attached
31503 		 */
31504 		un->un_f_attach_spinup = TRUE;
31505 
31506 		/*
31507 		 * According to SCSI specification, Sense data has two kinds of
31508 		 * format: fixed format, and descriptor format. At present, we
31509 		 * don't support descriptor format sense data for removable
31510 		 * media.
31511 		 */
31512 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31513 			un->un_f_descr_format_supported = TRUE;
31514 		}
31515 
31516 		/*
31517 		 * kstats are created only for non-removable media devices.
31518 		 *
31519 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31520 		 * default is 1, so they are enabled by default.
31521 		 */
31522 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31523 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31524 			"enable-partition-kstats", 1));
31525 
31526 		/*
31527 		 * Check if HBA has set the "pm-capable" property.
31528 		 * If "pm-capable" exists and is non-zero then we can
31529 		 * power manage the device without checking the start/stop
31530 		 * cycle count log sense page.
31531 		 *
31532 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31533 		 * then we should not power manage the device.
31534 		 *
31535 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31536 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31537 		 * sd will check the start/stop cycle count log sense page
31538 		 * and power manage the device if the cycle count limit has
31539 		 * not been exceeded.
31540 		 */
31541 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31542 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31543 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31544 			un->un_f_log_sense_supported = TRUE;
31545 		} else {
31546 			/*
31547 			 * pm-capable property exists.
31548 			 *
31549 			 * Convert "TRUE" values for pm_capable_prop to
31550 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31551 			 * later. "TRUE" values are any values except
31552 			 * SD_PM_CAPABLE_FALSE (0) and
31553 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31554 			 */
31555 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31556 				un->un_f_log_sense_supported = FALSE;
31557 			} else {
31558 				un->un_f_pm_supported = TRUE;
31559 			}
31560 
31561 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31562 			    "sd_unit_attach: un:0x%p pm-capable "
31563 			    "property set to %d.\n", un, un->un_f_pm_supported);
31564 		}
31565 	}
31566 
31567 	if (un->un_f_is_hotpluggable) {
31568 #if defined(_SUNOS_VTOC_8)
31569 		/*
31570 		 * Note: currently, for VTOC_8 devices, default label is
31571 		 * created for removable and hotpluggable devices only.
31572 		 */
31573 		un->un_f_default_vtoc_supported = TRUE;
31574 #endif
31575 
31576 		/*
31577 		 * Have to watch hotpluggable devices as well, since
31578 		 * that's the only way for userland applications to
31579 		 * detect hot removal while device is busy/mounted.
31580 		 */
31581 		un->un_f_monitor_media_state = TRUE;
31582 
31583 		un->un_f_check_start_stop = TRUE;
31584 
31585 	}
31586 
31587 	/*
31588 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31589 	 * labels.
31590 	 */
31591 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31592 	    (un->un_sd->sd_inq->inq_rmb)) {
31593 		/*
31594 		 * Direct access devices have disk label
31595 		 */
31596 		un->un_f_vtoc_label_supported = TRUE;
31597 	}
31598 
31599 	/*
31600 	 * Fdisk partitions are supported for all direct access devices on
31601 	 * x86 platform, and just for removable media and hotpluggable
31602 	 * devices on SPARC platform. Later, we will set the following flag
31603 	 * to FALSE if current device is not removable media or hotpluggable
31604 	 * device and if sd works on SAPRC platform.
31605 	 */
31606 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31607 		un->un_f_mboot_supported = TRUE;
31608 	}
31609 
31610 	if (!un->un_f_is_hotpluggable &&
31611 	    !un->un_sd->sd_inq->inq_rmb) {
31612 
31613 #if defined(_SUNOS_VTOC_8)
31614 		/*
31615 		 * Don't support fdisk on fixed disk
31616 		 */
31617 		un->un_f_mboot_supported = FALSE;
31618 #endif
31619 
31620 		/*
31621 		 * Fixed disk support SYNC CACHE
31622 		 */
31623 		un->un_f_sync_cache_supported = TRUE;
31624 
31625 		/*
31626 		 * For fixed disk, if its VTOC is not valid, we will write
31627 		 * errlog into system log
31628 		 */
31629 		if (un->un_f_vtoc_label_supported)
31630 			un->un_f_vtoc_errlog_supported = TRUE;
31631 	}
31632 }
31633