xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision ad23a2db4cfc94c0ed1d58554479ce8d2e7e5768)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  * Notes for off-by-1 workaround:
109  * -----------------------------
110  *
111  *    SCSI READ_CAPACITY command returns the LBA number of the
112  *    last logical block, but sd once treated this number as
113  *    disks' capacity on x86 platform. And LBAs are addressed
114  *    based 0. So the last block was lost on x86 platform.
115  *
116  *    Now, we remove this workaround. In order for present sd
117  *    driver to work with disks which are labeled/partitioned
118  *    via previous sd, we add workaround as follows:
119  *
120  *    1) Locate backup EFI label: sd searches the next to last
121  *       block for legacy backup EFI label. If fails, it will
122  *       turn to the last block for backup EFI label;
123  *    2) Clear backup EFI label: sd first search the last block
124  *       for backup EFI label, and will search the next to last
125  *       block only if failed for the last block.
126  *    3) Calculate geometry: refer to sd_convert_geometry(), If
127  *       capacity increasing by 1 causes disks' capacity to cross
128  *       over the limits in table CHS_values, geometry info will
129  *       change. This will raise an issue: In case that primary
130  *       VTOC label is destroyed, format commandline can restore
131  *       it via backup VTOC labels. And format locates backup VTOC
132  *       labels by use of geometry from sd driver. So changing
133  *       geometry will prevent format from finding backup VTOC
134  *       labels. To eliminate this side effect for compatibility,
135  *       sd uses (capacity -1) to calculate geometry;
136  *    4) 1TB disks: some important data structures use 32-bit
137  *       signed long/int (for example, daddr_t), so that sd doesn't
138  *       support a disk with capacity larger than 1TB on 32-bit
139  *       platform. However, for exactly 1TB disk, it was treated as
140  *       (1T - 512)B in the past, and could have valid solaris
141  *       partitions. To workaround this, if an exactly 1TB disk has
142  *       solaris fdisk partition, it will be allowed to work with sd.
143  */
144 #if (defined(__fibre))
145 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
146 #else
147 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
148 #endif
149 
150 /*
151  * The name of the driver, established from the module name in _init.
152  */
153 static	char *sd_label			= NULL;
154 
155 /*
156  * Driver name is unfortunately prefixed on some driver.conf properties.
157  */
158 #if (defined(__fibre))
159 #define	sd_max_xfer_size		ssd_max_xfer_size
160 #define	sd_config_list			ssd_config_list
161 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
162 static	char *sd_config_list		= "ssd-config-list";
163 #else
164 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
165 static	char *sd_config_list		= "sd-config-list";
166 #endif
167 
168 /*
169  * Driver global variables
170  */
171 
172 #if (defined(__fibre))
173 /*
174  * These #defines are to avoid namespace collisions that occur because this
175  * code is currently used to compile two seperate driver modules: sd and ssd.
176  * All global variables need to be treated this way (even if declared static)
177  * in order to allow the debugger to resolve the names properly.
178  * It is anticipated that in the near future the ssd module will be obsoleted,
179  * at which time this namespace issue should go away.
180  */
181 #define	sd_state			ssd_state
182 #define	sd_io_time			ssd_io_time
183 #define	sd_failfast_enable		ssd_failfast_enable
184 #define	sd_ua_retry_count		ssd_ua_retry_count
185 #define	sd_report_pfa			ssd_report_pfa
186 #define	sd_max_throttle			ssd_max_throttle
187 #define	sd_min_throttle			ssd_min_throttle
188 #define	sd_rot_delay			ssd_rot_delay
189 
190 #define	sd_retry_on_reservation_conflict	\
191 					ssd_retry_on_reservation_conflict
192 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
193 #define	sd_resv_conflict_name		ssd_resv_conflict_name
194 
195 #define	sd_component_mask		ssd_component_mask
196 #define	sd_level_mask			ssd_level_mask
197 #define	sd_debug_un			ssd_debug_un
198 #define	sd_error_level			ssd_error_level
199 
200 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
201 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
202 
203 #define	sd_tr				ssd_tr
204 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
205 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
206 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
207 #define	sd_check_media_time		ssd_check_media_time
208 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
209 #define	sd_label_mutex			ssd_label_mutex
210 #define	sd_detach_mutex			ssd_detach_mutex
211 #define	sd_log_buf			ssd_log_buf
212 #define	sd_log_mutex			ssd_log_mutex
213 
214 #define	sd_disk_table			ssd_disk_table
215 #define	sd_disk_table_size		ssd_disk_table_size
216 #define	sd_sense_mutex			ssd_sense_mutex
217 #define	sd_cdbtab			ssd_cdbtab
218 
219 #define	sd_cb_ops			ssd_cb_ops
220 #define	sd_ops				ssd_ops
221 #define	sd_additional_codes		ssd_additional_codes
222 
223 #define	sd_minor_data			ssd_minor_data
224 #define	sd_minor_data_efi		ssd_minor_data_efi
225 
226 #define	sd_tq				ssd_tq
227 #define	sd_wmr_tq			ssd_wmr_tq
228 #define	sd_taskq_name			ssd_taskq_name
229 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
230 #define	sd_taskq_minalloc		ssd_taskq_minalloc
231 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
232 
233 #define	sd_dump_format_string		ssd_dump_format_string
234 
235 #define	sd_iostart_chain		ssd_iostart_chain
236 #define	sd_iodone_chain			ssd_iodone_chain
237 
238 #define	sd_pm_idletime			ssd_pm_idletime
239 
240 #define	sd_force_pm_supported		ssd_force_pm_supported
241 
242 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
243 
244 #endif
245 
246 
247 #ifdef	SDDEBUG
248 int	sd_force_pm_supported		= 0;
249 #endif	/* SDDEBUG */
250 
251 void *sd_state				= NULL;
252 int sd_io_time				= SD_IO_TIME;
253 int sd_failfast_enable			= 1;
254 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
255 int sd_report_pfa			= 1;
256 int sd_max_throttle			= SD_MAX_THROTTLE;
257 int sd_min_throttle			= SD_MIN_THROTTLE;
258 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
259 int sd_qfull_throttle_enable		= TRUE;
260 
261 int sd_retry_on_reservation_conflict	= 1;
262 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
263 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
264 
265 static int sd_dtype_optical_bind	= -1;
266 
267 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
268 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
269 
270 /*
271  * Global data for debug logging. To enable debug printing, sd_component_mask
272  * and sd_level_mask should be set to the desired bit patterns as outlined in
273  * sddef.h.
274  */
275 uint_t	sd_component_mask		= 0x0;
276 uint_t	sd_level_mask			= 0x0;
277 struct	sd_lun *sd_debug_un		= NULL;
278 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
279 
280 /* Note: these may go away in the future... */
281 static uint32_t	sd_xbuf_active_limit	= 512;
282 static uint32_t sd_xbuf_reserve_limit	= 16;
283 
284 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
285 
286 /*
287  * Timer value used to reset the throttle after it has been reduced
288  * (typically in response to TRAN_BUSY or STATUS_QFULL)
289  */
290 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
291 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
292 
293 /*
294  * Interval value associated with the media change scsi watch.
295  */
296 static int sd_check_media_time		= 3000000;
297 
298 /*
299  * Wait value used for in progress operations during a DDI_SUSPEND
300  */
301 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
302 
303 /*
304  * sd_label_mutex protects a static buffer used in the disk label
305  * component of the driver
306  */
307 static kmutex_t sd_label_mutex;
308 
309 /*
310  * sd_detach_mutex protects un_layer_count, un_detach_count, and
311  * un_opens_in_progress in the sd_lun structure.
312  */
313 static kmutex_t sd_detach_mutex;
314 
315 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
316 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
317 
318 /*
319  * Global buffer and mutex for debug logging
320  */
321 static char	sd_log_buf[1024];
322 static kmutex_t	sd_log_mutex;
323 
324 /*
325  * Structs and globals for recording attached lun information.
326  * This maintains a chain. Each node in the chain represents a SCSI controller.
327  * The structure records the number of luns attached to each target connected
328  * with the controller.
329  * For parallel scsi device only.
330  */
331 struct sd_scsi_hba_tgt_lun {
332 	struct sd_scsi_hba_tgt_lun	*next;
333 	dev_info_t			*pdip;
334 	int				nlun[NTARGETS_WIDE];
335 };
336 
337 /*
338  * Flag to indicate the lun is attached or detached
339  */
340 #define	SD_SCSI_LUN_ATTACH	0
341 #define	SD_SCSI_LUN_DETACH	1
342 
343 static kmutex_t	sd_scsi_target_lun_mutex;
344 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
345 
346 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
347     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
348 
349 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
350     sd_scsi_target_lun_head))
351 
352 /*
353  * "Smart" Probe Caching structs, globals, #defines, etc.
354  * For parallel scsi and non-self-identify device only.
355  */
356 
357 /*
358  * The following resources and routines are implemented to support
359  * "smart" probing, which caches the scsi_probe() results in an array,
360  * in order to help avoid long probe times.
361  */
362 struct sd_scsi_probe_cache {
363 	struct	sd_scsi_probe_cache	*next;
364 	dev_info_t	*pdip;
365 	int		cache[NTARGETS_WIDE];
366 };
367 
368 static kmutex_t	sd_scsi_probe_cache_mutex;
369 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
370 
371 /*
372  * Really we only need protection on the head of the linked list, but
373  * better safe than sorry.
374  */
375 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
376     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
377 
378 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
379     sd_scsi_probe_cache_head))
380 
381 
382 /*
383  * Vendor specific data name property declarations
384  */
385 
386 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
387 
388 static sd_tunables seagate_properties = {
389 	SEAGATE_THROTTLE_VALUE,
390 	0,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0
398 };
399 
400 
401 static sd_tunables fujitsu_properties = {
402 	FUJITSU_THROTTLE_VALUE,
403 	0,
404 	0,
405 	0,
406 	0,
407 	0,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables ibm_properties = {
414 	IBM_THROTTLE_VALUE,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0
423 };
424 
425 static sd_tunables purple_properties = {
426 	PURPLE_THROTTLE_VALUE,
427 	0,
428 	0,
429 	PURPLE_BUSY_RETRIES,
430 	PURPLE_RESET_RETRY_COUNT,
431 	PURPLE_RESERVE_RELEASE_TIME,
432 	0,
433 	0,
434 	0
435 };
436 
437 static sd_tunables sve_properties = {
438 	SVE_THROTTLE_VALUE,
439 	0,
440 	0,
441 	SVE_BUSY_RETRIES,
442 	SVE_RESET_RETRY_COUNT,
443 	SVE_RESERVE_RELEASE_TIME,
444 	SVE_MIN_THROTTLE_VALUE,
445 	SVE_DISKSORT_DISABLED_FLAG,
446 	0
447 };
448 
449 static sd_tunables maserati_properties = {
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0,
456 	0,
457 	MASERATI_DISKSORT_DISABLED_FLAG,
458 	MASERATI_LUN_RESET_ENABLED_FLAG
459 };
460 
461 static sd_tunables pirus_properties = {
462 	PIRUS_THROTTLE_VALUE,
463 	0,
464 	PIRUS_NRR_COUNT,
465 	PIRUS_BUSY_RETRIES,
466 	PIRUS_RESET_RETRY_COUNT,
467 	0,
468 	PIRUS_MIN_THROTTLE_VALUE,
469 	PIRUS_DISKSORT_DISABLED_FLAG,
470 	PIRUS_LUN_RESET_ENABLED_FLAG
471 };
472 
473 #endif
474 
475 #if (defined(__sparc) && !defined(__fibre)) || \
476 	(defined(__i386) || defined(__amd64))
477 
478 
479 static sd_tunables elite_properties = {
480 	ELITE_THROTTLE_VALUE,
481 	0,
482 	0,
483 	0,
484 	0,
485 	0,
486 	0,
487 	0,
488 	0
489 };
490 
491 static sd_tunables st31200n_properties = {
492 	ST31200N_THROTTLE_VALUE,
493 	0,
494 	0,
495 	0,
496 	0,
497 	0,
498 	0,
499 	0,
500 	0
501 };
502 
503 #endif /* Fibre or not */
504 
505 static sd_tunables lsi_properties_scsi = {
506 	LSI_THROTTLE_VALUE,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables symbios_properties = {
518 	SYMBIOS_THROTTLE_VALUE,
519 	0,
520 	SYMBIOS_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0
527 };
528 
529 static sd_tunables lsi_properties = {
530 	0,
531 	0,
532 	LSI_NOTREADY_RETRIES,
533 	0,
534 	0,
535 	0,
536 	0,
537 	0,
538 	0
539 };
540 
541 static sd_tunables lsi_oem_properties = {
542 	0,
543 	0,
544 	LSI_OEM_NOTREADY_RETRIES,
545 	0,
546 	0,
547 	0,
548 	0,
549 	0,
550 	0
551 };
552 
553 
554 
555 #if (defined(SD_PROP_TST))
556 
557 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
558 #define	SD_TST_THROTTLE_VAL	16
559 #define	SD_TST_NOTREADY_VAL	12
560 #define	SD_TST_BUSY_VAL		60
561 #define	SD_TST_RST_RETRY_VAL	36
562 #define	SD_TST_RSV_REL_TIME	60
563 
564 static sd_tunables tst_properties = {
565 	SD_TST_THROTTLE_VAL,
566 	SD_TST_CTYPE_VAL,
567 	SD_TST_NOTREADY_VAL,
568 	SD_TST_BUSY_VAL,
569 	SD_TST_RST_RETRY_VAL,
570 	SD_TST_RSV_REL_TIME,
571 	0,
572 	0,
573 	0
574 };
575 #endif
576 
577 /* This is similiar to the ANSI toupper implementation */
578 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
579 
580 /*
581  * Static Driver Configuration Table
582  *
583  * This is the table of disks which need throttle adjustment (or, perhaps
584  * something else as defined by the flags at a future time.)  device_id
585  * is a string consisting of concatenated vid (vendor), pid (product/model)
586  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
587  * the parts of the string are as defined by the sizes in the scsi_inquiry
588  * structure.  Device type is searched as far as the device_id string is
589  * defined.  Flags defines which values are to be set in the driver from the
590  * properties list.
591  *
592  * Entries below which begin and end with a "*" are a special case.
593  * These do not have a specific vendor, and the string which follows
594  * can appear anywhere in the 16 byte PID portion of the inquiry data.
595  *
596  * Entries below which begin and end with a " " (blank) are a special
597  * case. The comparison function will treat multiple consecutive blanks
598  * as equivalent to a single blank. For example, this causes a
599  * sd_disk_table entry of " NEC CDROM " to match a device's id string
600  * of  "NEC       CDROM".
601  *
602  * Note: The MD21 controller type has been obsoleted.
603  *	 ST318202F is a Legacy device
604  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
605  *	 made with an FC connection. The entries here are a legacy.
606  */
607 static sd_disk_config_t sd_disk_table[] = {
608 #if defined(__fibre) || defined(__i386) || defined(__amd64)
609 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
610 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
611 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
612 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
624 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
625 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
626 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
629 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
631 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
632 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
633 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
634 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
635 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
636 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
637 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
638 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
639 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
655 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
656 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
657 			SD_CONF_BSET_BSY_RETRY_COUNT|
658 			SD_CONF_BSET_RST_RETRIES|
659 			SD_CONF_BSET_RSV_REL_TIME,
660 		&purple_properties },
661 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_BSY_RETRY_COUNT|
663 		SD_CONF_BSET_RST_RETRIES|
664 		SD_CONF_BSET_RSV_REL_TIME|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED,
667 		&sve_properties },
668 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
669 			SD_CONF_BSET_BSY_RETRY_COUNT|
670 			SD_CONF_BSET_RST_RETRIES|
671 			SD_CONF_BSET_RSV_REL_TIME,
672 		&purple_properties },
673 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
674 		SD_CONF_BSET_LUN_RESET_ENABLED,
675 		&maserati_properties },
676 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
677 		SD_CONF_BSET_NRR_COUNT|
678 		SD_CONF_BSET_BSY_RETRY_COUNT|
679 		SD_CONF_BSET_RST_RETRIES|
680 		SD_CONF_BSET_MIN_THROTTLE|
681 		SD_CONF_BSET_DISKSORT_DISABLED|
682 		SD_CONF_BSET_LUN_RESET_ENABLED,
683 		&pirus_properties },
684 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
685 		SD_CONF_BSET_NRR_COUNT|
686 		SD_CONF_BSET_BSY_RETRY_COUNT|
687 		SD_CONF_BSET_RST_RETRIES|
688 		SD_CONF_BSET_MIN_THROTTLE|
689 		SD_CONF_BSET_DISKSORT_DISABLED|
690 		SD_CONF_BSET_LUN_RESET_ENABLED,
691 		&pirus_properties },
692 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
693 		SD_CONF_BSET_NRR_COUNT|
694 		SD_CONF_BSET_BSY_RETRY_COUNT|
695 		SD_CONF_BSET_RST_RETRIES|
696 		SD_CONF_BSET_MIN_THROTTLE|
697 		SD_CONF_BSET_DISKSORT_DISABLED|
698 		SD_CONF_BSET_LUN_RESET_ENABLED,
699 		&pirus_properties },
700 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
701 		SD_CONF_BSET_NRR_COUNT|
702 		SD_CONF_BSET_BSY_RETRY_COUNT|
703 		SD_CONF_BSET_RST_RETRIES|
704 		SD_CONF_BSET_MIN_THROTTLE|
705 		SD_CONF_BSET_DISKSORT_DISABLED|
706 		SD_CONF_BSET_LUN_RESET_ENABLED,
707 		&pirus_properties },
708 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
709 		SD_CONF_BSET_NRR_COUNT|
710 		SD_CONF_BSET_BSY_RETRY_COUNT|
711 		SD_CONF_BSET_RST_RETRIES|
712 		SD_CONF_BSET_MIN_THROTTLE|
713 		SD_CONF_BSET_DISKSORT_DISABLED|
714 		SD_CONF_BSET_LUN_RESET_ENABLED,
715 		&pirus_properties },
716 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
717 		SD_CONF_BSET_NRR_COUNT|
718 		SD_CONF_BSET_BSY_RETRY_COUNT|
719 		SD_CONF_BSET_RST_RETRIES|
720 		SD_CONF_BSET_MIN_THROTTLE|
721 		SD_CONF_BSET_DISKSORT_DISABLED|
722 		SD_CONF_BSET_LUN_RESET_ENABLED,
723 		&pirus_properties },
724 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
725 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
726 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
727 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
728 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
729 #endif /* fibre or NON-sparc platforms */
730 #if ((defined(__sparc) && !defined(__fibre)) ||\
731 	(defined(__i386) || defined(__amd64)))
732 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
733 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
734 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
735 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
736 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
737 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
738 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
739 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
740 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
741 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
742 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
743 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
744 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
745 	    &symbios_properties },
746 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
747 	    &lsi_properties_scsi },
748 #if defined(__i386) || defined(__amd64)
749 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
750 				    | SD_CONF_BSET_READSUB_BCD
751 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
752 				    | SD_CONF_BSET_NO_READ_HEADER
753 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
754 
755 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
756 				    | SD_CONF_BSET_READSUB_BCD
757 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
758 				    | SD_CONF_BSET_NO_READ_HEADER
759 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
760 #endif /* __i386 || __amd64 */
761 #endif /* sparc NON-fibre or NON-sparc platforms */
762 
763 #if (defined(SD_PROP_TST))
764 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
765 				| SD_CONF_BSET_CTYPE
766 				| SD_CONF_BSET_NRR_COUNT
767 				| SD_CONF_BSET_FAB_DEVID
768 				| SD_CONF_BSET_NOCACHE
769 				| SD_CONF_BSET_BSY_RETRY_COUNT
770 				| SD_CONF_BSET_PLAYMSF_BCD
771 				| SD_CONF_BSET_READSUB_BCD
772 				| SD_CONF_BSET_READ_TOC_TRK_BCD
773 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
774 				| SD_CONF_BSET_NO_READ_HEADER
775 				| SD_CONF_BSET_READ_CD_XD4
776 				| SD_CONF_BSET_RST_RETRIES
777 				| SD_CONF_BSET_RSV_REL_TIME
778 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
779 #endif
780 };
781 
782 static const int sd_disk_table_size =
783 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
784 
785 
786 /*
787  * Return codes of sd_uselabel().
788  */
789 #define	SD_LABEL_IS_VALID		0
790 #define	SD_LABEL_IS_INVALID		1
791 
792 #define	SD_INTERCONNECT_PARALLEL	0
793 #define	SD_INTERCONNECT_FABRIC		1
794 #define	SD_INTERCONNECT_FIBRE		2
795 #define	SD_INTERCONNECT_SSA		3
796 #define	SD_INTERCONNECT_SATA		4
797 #define	SD_IS_PARALLEL_SCSI(un)		\
798 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
799 #define	SD_IS_SERIAL(un)		\
800 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
801 
802 /*
803  * Definitions used by device id registration routines
804  */
805 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
806 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
807 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
808 #define	WD_NODE			7	/* the whole disk minor */
809 
810 static kmutex_t sd_sense_mutex = {0};
811 
812 /*
813  * Macros for updates of the driver state
814  */
815 #define	New_state(un, s)        \
816 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
817 #define	Restore_state(un)	\
818 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
819 
820 static struct sd_cdbinfo sd_cdbtab[] = {
821 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
822 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
823 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
824 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
825 };
826 
827 /*
828  * Specifies the number of seconds that must have elapsed since the last
829  * cmd. has completed for a device to be declared idle to the PM framework.
830  */
831 static int sd_pm_idletime = 1;
832 
833 /*
834  * Internal function prototypes
835  */
836 
837 #if (defined(__fibre))
838 /*
839  * These #defines are to avoid namespace collisions that occur because this
840  * code is currently used to compile two seperate driver modules: sd and ssd.
841  * All function names need to be treated this way (even if declared static)
842  * in order to allow the debugger to resolve the names properly.
843  * It is anticipated that in the near future the ssd module will be obsoleted,
844  * at which time this ugliness should go away.
845  */
846 #define	sd_log_trace			ssd_log_trace
847 #define	sd_log_info			ssd_log_info
848 #define	sd_log_err			ssd_log_err
849 #define	sdprobe				ssdprobe
850 #define	sdinfo				ssdinfo
851 #define	sd_prop_op			ssd_prop_op
852 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
853 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
854 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
855 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
856 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
857 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
858 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
859 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
860 #define	sd_spin_up_unit			ssd_spin_up_unit
861 #define	sd_enable_descr_sense		ssd_enable_descr_sense
862 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
863 #define	sd_set_mmc_caps			ssd_set_mmc_caps
864 #define	sd_read_unit_properties		ssd_read_unit_properties
865 #define	sd_process_sdconf_file		ssd_process_sdconf_file
866 #define	sd_process_sdconf_table		ssd_process_sdconf_table
867 #define	sd_sdconf_id_match		ssd_sdconf_id_match
868 #define	sd_blank_cmp			ssd_blank_cmp
869 #define	sd_chk_vers1_data		ssd_chk_vers1_data
870 #define	sd_set_vers1_properties		ssd_set_vers1_properties
871 #define	sd_validate_geometry		ssd_validate_geometry
872 
873 #if defined(_SUNOS_VTOC_16)
874 #define	sd_convert_geometry		ssd_convert_geometry
875 #endif
876 
877 #define	sd_resync_geom_caches		ssd_resync_geom_caches
878 #define	sd_read_fdisk			ssd_read_fdisk
879 #define	sd_get_physical_geometry	ssd_get_physical_geometry
880 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
881 #define	sd_update_block_info		ssd_update_block_info
882 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
883 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
884 #define	sd_validate_efi			ssd_validate_efi
885 #define	sd_use_efi			ssd_use_efi
886 #define	sd_uselabel			ssd_uselabel
887 #define	sd_build_default_label		ssd_build_default_label
888 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
889 #define	sd_inq_fill			ssd_inq_fill
890 #define	sd_register_devid		ssd_register_devid
891 #define	sd_get_devid_block		ssd_get_devid_block
892 #define	sd_get_devid			ssd_get_devid
893 #define	sd_create_devid			ssd_create_devid
894 #define	sd_write_deviceid		ssd_write_deviceid
895 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
896 #define	sd_setup_pm			ssd_setup_pm
897 #define	sd_create_pm_components		ssd_create_pm_components
898 #define	sd_ddi_suspend			ssd_ddi_suspend
899 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
900 #define	sd_ddi_resume			ssd_ddi_resume
901 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
902 #define	sdpower				ssdpower
903 #define	sdattach			ssdattach
904 #define	sddetach			ssddetach
905 #define	sd_unit_attach			ssd_unit_attach
906 #define	sd_unit_detach			ssd_unit_detach
907 #define	sd_set_unit_attributes		ssd_set_unit_attributes
908 #define	sd_create_minor_nodes		ssd_create_minor_nodes
909 #define	sd_create_errstats		ssd_create_errstats
910 #define	sd_set_errstats			ssd_set_errstats
911 #define	sd_set_pstats			ssd_set_pstats
912 #define	sddump				ssddump
913 #define	sd_scsi_poll			ssd_scsi_poll
914 #define	sd_send_polled_RQS		ssd_send_polled_RQS
915 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
916 #define	sd_init_event_callbacks		ssd_init_event_callbacks
917 #define	sd_event_callback		ssd_event_callback
918 #define	sd_cache_control		ssd_cache_control
919 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
920 #define	sd_make_device			ssd_make_device
921 #define	sdopen				ssdopen
922 #define	sdclose				ssdclose
923 #define	sd_ready_and_valid		ssd_ready_and_valid
924 #define	sdmin				ssdmin
925 #define	sdread				ssdread
926 #define	sdwrite				ssdwrite
927 #define	sdaread				ssdaread
928 #define	sdawrite			ssdawrite
929 #define	sdstrategy			ssdstrategy
930 #define	sdioctl				ssdioctl
931 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
932 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
933 #define	sd_checksum_iostart		ssd_checksum_iostart
934 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
935 #define	sd_pm_iostart			ssd_pm_iostart
936 #define	sd_core_iostart			ssd_core_iostart
937 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
938 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
939 #define	sd_checksum_iodone		ssd_checksum_iodone
940 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
941 #define	sd_pm_iodone			ssd_pm_iodone
942 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
943 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
944 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
945 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
946 #define	sd_buf_iodone			ssd_buf_iodone
947 #define	sd_uscsi_strategy		ssd_uscsi_strategy
948 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
949 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
950 #define	sd_uscsi_iodone			ssd_uscsi_iodone
951 #define	sd_xbuf_strategy		ssd_xbuf_strategy
952 #define	sd_xbuf_init			ssd_xbuf_init
953 #define	sd_pm_entry			ssd_pm_entry
954 #define	sd_pm_exit			ssd_pm_exit
955 
956 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
957 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
958 
959 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
960 #define	sdintr				ssdintr
961 #define	sd_start_cmds			ssd_start_cmds
962 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
963 #define	sd_bioclone_alloc		ssd_bioclone_alloc
964 #define	sd_bioclone_free		ssd_bioclone_free
965 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
966 #define	sd_shadow_buf_free		ssd_shadow_buf_free
967 #define	sd_print_transport_rejected_message	\
968 					ssd_print_transport_rejected_message
969 #define	sd_retry_command		ssd_retry_command
970 #define	sd_set_retry_bp			ssd_set_retry_bp
971 #define	sd_send_request_sense_command	ssd_send_request_sense_command
972 #define	sd_start_retry_command		ssd_start_retry_command
973 #define	sd_start_direct_priority_command	\
974 					ssd_start_direct_priority_command
975 #define	sd_return_failed_command	ssd_return_failed_command
976 #define	sd_return_failed_command_no_restart	\
977 					ssd_return_failed_command_no_restart
978 #define	sd_return_command		ssd_return_command
979 #define	sd_sync_with_callback		ssd_sync_with_callback
980 #define	sdrunout			ssdrunout
981 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
982 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
983 #define	sd_reduce_throttle		ssd_reduce_throttle
984 #define	sd_restore_throttle		ssd_restore_throttle
985 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
986 #define	sd_init_cdb_limits		ssd_init_cdb_limits
987 #define	sd_pkt_status_good		ssd_pkt_status_good
988 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
989 #define	sd_pkt_status_busy		ssd_pkt_status_busy
990 #define	sd_pkt_status_reservation_conflict	\
991 					ssd_pkt_status_reservation_conflict
992 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
993 #define	sd_handle_request_sense		ssd_handle_request_sense
994 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
995 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
996 #define	sd_validate_sense_data		ssd_validate_sense_data
997 #define	sd_decode_sense			ssd_decode_sense
998 #define	sd_print_sense_msg		ssd_print_sense_msg
999 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1000 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1001 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1002 #define	sd_sense_key_medium_or_hardware_error	\
1003 					ssd_sense_key_medium_or_hardware_error
1004 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1005 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1006 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1007 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1008 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1009 #define	sd_sense_key_default		ssd_sense_key_default
1010 #define	sd_print_retry_msg		ssd_print_retry_msg
1011 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1012 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1013 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1014 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1015 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1016 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1017 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1018 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1019 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1020 #define	sd_reset_target			ssd_reset_target
1021 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1022 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1023 #define	sd_taskq_create			ssd_taskq_create
1024 #define	sd_taskq_delete			ssd_taskq_delete
1025 #define	sd_media_change_task		ssd_media_change_task
1026 #define	sd_handle_mchange		ssd_handle_mchange
1027 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1028 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1029 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1030 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1031 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1032 					sd_send_scsi_feature_GET_CONFIGURATION
1033 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1034 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1035 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1036 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1037 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1038 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1039 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1040 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1041 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1042 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1043 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1044 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1045 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1046 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1047 #define	sd_alloc_rqs			ssd_alloc_rqs
1048 #define	sd_free_rqs			ssd_free_rqs
1049 #define	sd_dump_memory			ssd_dump_memory
1050 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
1051 #define	sd_get_media_info		ssd_get_media_info
1052 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1053 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1054 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1055 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1056 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1057 #define	sd_dkio_partition		ssd_dkio_partition
1058 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1059 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1060 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1061 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1062 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1063 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1064 #define	sd_write_label			ssd_write_label
1065 #define	sd_clear_vtoc			ssd_clear_vtoc
1066 #define	sd_clear_efi			ssd_clear_efi
1067 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1068 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1069 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1070 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1071 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1072 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1073 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1074 #define	sd_check_mhd			ssd_check_mhd
1075 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1076 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1077 #define	sd_sname			ssd_sname
1078 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1079 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1080 #define	sd_take_ownership		ssd_take_ownership
1081 #define	sd_reserve_release		ssd_reserve_release
1082 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1083 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1084 #define	sd_persistent_reservation_in_read_keys	\
1085 					ssd_persistent_reservation_in_read_keys
1086 #define	sd_persistent_reservation_in_read_resv	\
1087 					ssd_persistent_reservation_in_read_resv
1088 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1089 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1090 #define	sd_mhdioc_release		ssd_mhdioc_release
1091 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1092 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1093 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1094 #define	sr_change_blkmode		ssr_change_blkmode
1095 #define	sr_change_speed			ssr_change_speed
1096 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1097 #define	sr_pause_resume			ssr_pause_resume
1098 #define	sr_play_msf			ssr_play_msf
1099 #define	sr_play_trkind			ssr_play_trkind
1100 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1101 #define	sr_read_subchannel		ssr_read_subchannel
1102 #define	sr_read_tocentry		ssr_read_tocentry
1103 #define	sr_read_tochdr			ssr_read_tochdr
1104 #define	sr_read_cdda			ssr_read_cdda
1105 #define	sr_read_cdxa			ssr_read_cdxa
1106 #define	sr_read_mode1			ssr_read_mode1
1107 #define	sr_read_mode2			ssr_read_mode2
1108 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1109 #define	sr_sector_mode			ssr_sector_mode
1110 #define	sr_eject			ssr_eject
1111 #define	sr_ejected			ssr_ejected
1112 #define	sr_check_wp			ssr_check_wp
1113 #define	sd_check_media			ssd_check_media
1114 #define	sd_media_watch_cb		ssd_media_watch_cb
1115 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1116 #define	sr_volume_ctrl			ssr_volume_ctrl
1117 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1118 #define	sd_log_page_supported		ssd_log_page_supported
1119 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1120 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1121 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1122 #define	sd_range_lock			ssd_range_lock
1123 #define	sd_get_range			ssd_get_range
1124 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1125 #define	sd_range_unlock			ssd_range_unlock
1126 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1127 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1128 
1129 #define	sd_iostart_chain		ssd_iostart_chain
1130 #define	sd_iodone_chain			ssd_iodone_chain
1131 #define	sd_initpkt_map			ssd_initpkt_map
1132 #define	sd_destroypkt_map		ssd_destroypkt_map
1133 #define	sd_chain_type_map		ssd_chain_type_map
1134 #define	sd_chain_index_map		ssd_chain_index_map
1135 
1136 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1137 #define	sd_failfast_flushq		ssd_failfast_flushq
1138 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1139 
1140 #define	sd_is_lsi			ssd_is_lsi
1141 
1142 #endif	/* #if (defined(__fibre)) */
1143 
1144 
1145 int _init(void);
1146 int _fini(void);
1147 int _info(struct modinfo *modinfop);
1148 
1149 /*PRINTFLIKE3*/
1150 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1151 /*PRINTFLIKE3*/
1152 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1153 /*PRINTFLIKE3*/
1154 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1155 
1156 static int sdprobe(dev_info_t *devi);
1157 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1158     void **result);
1159 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1160     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1161 
1162 /*
1163  * Smart probe for parallel scsi
1164  */
1165 static void sd_scsi_probe_cache_init(void);
1166 static void sd_scsi_probe_cache_fini(void);
1167 static void sd_scsi_clear_probe_cache(void);
1168 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1169 
1170 /*
1171  * Attached luns on target for parallel scsi
1172  */
1173 static void sd_scsi_target_lun_init(void);
1174 static void sd_scsi_target_lun_fini(void);
1175 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1176 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1177 
1178 static int	sd_spin_up_unit(struct sd_lun *un);
1179 #ifdef _LP64
1180 static void	sd_enable_descr_sense(struct sd_lun *un);
1181 static void	sd_reenable_dsense_task(void *arg);
1182 #endif /* _LP64 */
1183 
1184 static void	sd_set_mmc_caps(struct sd_lun *un);
1185 
1186 static void sd_read_unit_properties(struct sd_lun *un);
1187 static int  sd_process_sdconf_file(struct sd_lun *un);
1188 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1189     int *data_list, sd_tunables *values);
1190 static void sd_process_sdconf_table(struct sd_lun *un);
1191 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1192 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1193 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1194 	int list_len, char *dataname_ptr);
1195 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1196     sd_tunables *prop_list);
1197 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1198 
1199 #if defined(_SUNOS_VTOC_16)
1200 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1201 #endif
1202 
1203 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1204 	int path_flag);
1205 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1206 	int path_flag);
1207 static void sd_get_physical_geometry(struct sd_lun *un,
1208 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1209 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1210 	int lbasize);
1211 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1212 static void sd_swap_efi_gpt(efi_gpt_t *);
1213 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1214 static int sd_validate_efi(efi_gpt_t *);
1215 static int sd_use_efi(struct sd_lun *, int);
1216 static void sd_build_default_label(struct sd_lun *un);
1217 
1218 #if defined(_FIRMWARE_NEEDS_FDISK)
1219 static int  sd_has_max_chs_vals(struct ipart *fdp);
1220 #endif
1221 static void sd_inq_fill(char *p, int l, char *s);
1222 
1223 
1224 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1225     int reservation_flag);
1226 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1227 static int  sd_get_devid(struct sd_lun *un);
1228 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1229 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1230 static int  sd_write_deviceid(struct sd_lun *un);
1231 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1232 static int  sd_check_vpd_page_support(struct sd_lun *un);
1233 
1234 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1235 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1236 
1237 static int  sd_ddi_suspend(dev_info_t *devi);
1238 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1239 static int  sd_ddi_resume(dev_info_t *devi);
1240 static int  sd_ddi_pm_resume(struct sd_lun *un);
1241 static int  sdpower(dev_info_t *devi, int component, int level);
1242 
1243 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1244 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1245 static int  sd_unit_attach(dev_info_t *devi);
1246 static int  sd_unit_detach(dev_info_t *devi);
1247 
1248 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1249 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1250 static void sd_create_errstats(struct sd_lun *un, int instance);
1251 static void sd_set_errstats(struct sd_lun *un);
1252 static void sd_set_pstats(struct sd_lun *un);
1253 
1254 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1255 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1256 static int  sd_send_polled_RQS(struct sd_lun *un);
1257 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1258 
1259 #if (defined(__fibre))
1260 /*
1261  * Event callbacks (photon)
1262  */
1263 static void sd_init_event_callbacks(struct sd_lun *un);
1264 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1265 #endif
1266 
1267 /*
1268  * Defines for sd_cache_control
1269  */
1270 
1271 #define	SD_CACHE_ENABLE		1
1272 #define	SD_CACHE_DISABLE	0
1273 #define	SD_CACHE_NOCHANGE	-1
1274 
1275 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1276 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1277 static dev_t sd_make_device(dev_info_t *devi);
1278 
1279 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1280 	uint64_t capacity);
1281 
1282 /*
1283  * Driver entry point functions.
1284  */
1285 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1286 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1287 static int  sd_ready_and_valid(struct sd_lun *un);
1288 
1289 static void sdmin(struct buf *bp);
1290 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1291 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1292 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1293 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1294 
1295 static int sdstrategy(struct buf *bp);
1296 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1297 
1298 /*
1299  * Function prototypes for layering functions in the iostart chain.
1300  */
1301 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1302 	struct buf *bp);
1303 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1304 	struct buf *bp);
1305 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1306 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1307 	struct buf *bp);
1308 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1309 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1310 
1311 /*
1312  * Function prototypes for layering functions in the iodone chain.
1313  */
1314 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1315 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1316 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1317 	struct buf *bp);
1318 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1319 	struct buf *bp);
1320 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1321 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1322 	struct buf *bp);
1323 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1324 
1325 /*
1326  * Prototypes for functions to support buf(9S) based IO.
1327  */
1328 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1329 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1330 static void sd_destroypkt_for_buf(struct buf *);
1331 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1332 	struct buf *bp, int flags,
1333 	int (*callback)(caddr_t), caddr_t callback_arg,
1334 	diskaddr_t lba, uint32_t blockcount);
1335 #if defined(__i386) || defined(__amd64)
1336 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1337 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1338 #endif /* defined(__i386) || defined(__amd64) */
1339 
1340 /*
1341  * Prototypes for functions to support USCSI IO.
1342  */
1343 static int sd_uscsi_strategy(struct buf *bp);
1344 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1345 static void sd_destroypkt_for_uscsi(struct buf *);
1346 
1347 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1348 	uchar_t chain_type, void *pktinfop);
1349 
1350 static int  sd_pm_entry(struct sd_lun *un);
1351 static void sd_pm_exit(struct sd_lun *un);
1352 
1353 static void sd_pm_idletimeout_handler(void *arg);
1354 
1355 /*
1356  * sd_core internal functions (used at the sd_core_io layer).
1357  */
1358 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1359 static void sdintr(struct scsi_pkt *pktp);
1360 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1361 
1362 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1363 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1364 	int path_flag);
1365 
1366 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1367 	daddr_t blkno, int (*func)(struct buf *));
1368 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1369 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1370 static void sd_bioclone_free(struct buf *bp);
1371 static void sd_shadow_buf_free(struct buf *bp);
1372 
1373 static void sd_print_transport_rejected_message(struct sd_lun *un,
1374 	struct sd_xbuf *xp, int code);
1375 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1376     void *arg, int code);
1377 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1378     void *arg, int code);
1379 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1380     void *arg, int code);
1381 
1382 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1383 	int retry_check_flag,
1384 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1385 		int c),
1386 	void *user_arg, int failure_code,  clock_t retry_delay,
1387 	void (*statp)(kstat_io_t *));
1388 
1389 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1390 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1391 
1392 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1393 	struct scsi_pkt *pktp);
1394 static void sd_start_retry_command(void *arg);
1395 static void sd_start_direct_priority_command(void *arg);
1396 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1397 	int errcode);
1398 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1399 	struct buf *bp, int errcode);
1400 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1401 static void sd_sync_with_callback(struct sd_lun *un);
1402 static int sdrunout(caddr_t arg);
1403 
1404 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1405 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1406 
1407 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1408 static void sd_restore_throttle(void *arg);
1409 
1410 static void sd_init_cdb_limits(struct sd_lun *un);
1411 
1412 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 
1415 /*
1416  * Error handling functions
1417  */
1418 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1419 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1420 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1421 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1422 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1423 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1424 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1428 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1429 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1430 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1431 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1432 	struct sd_xbuf *xp);
1433 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1434 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1435 
1436 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1437 	void *arg, int code);
1438 
1439 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1440 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1442 	uint8_t *sense_datap,
1443 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_sense_key_not_ready(struct sd_lun *un,
1445 	uint8_t *sense_datap,
1446 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1448 	uint8_t *sense_datap,
1449 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1451 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_unit_attention(struct sd_lun *un,
1453 	uint8_t *sense_datap,
1454 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1455 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1456 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1457 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1458 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1460 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1461 static void sd_sense_key_default(struct sd_lun *un,
1462 	uint8_t *sense_datap,
1463 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1464 
1465 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1466 	void *arg, int flag);
1467 
1468 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1469 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1471 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1472 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1473 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1474 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1475 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1476 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1477 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1478 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1479 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1480 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1481 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1483 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1484 
1485 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1486 
1487 static void sd_start_stop_unit_callback(void *arg);
1488 static void sd_start_stop_unit_task(void *arg);
1489 
1490 static void sd_taskq_create(void);
1491 static void sd_taskq_delete(void);
1492 static void sd_media_change_task(void *arg);
1493 
1494 static int sd_handle_mchange(struct sd_lun *un);
1495 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1496 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1497 	uint32_t *lbap, int path_flag);
1498 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1499 	uint32_t *lbap, int path_flag);
1500 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1501 	int path_flag);
1502 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1503 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1504 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1505 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1506 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1507 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1508 	uchar_t usr_cmd, uchar_t *usr_bufp);
1509 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1510 	struct dk_callback *dkc);
1511 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1512 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1513 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1514 	uchar_t *bufaddr, uint_t buflen);
1515 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1516 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1517 	uchar_t *bufaddr, uint_t buflen, char feature);
1518 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1519 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1520 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1521 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1522 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1523 	size_t buflen, daddr_t start_block, int path_flag);
1524 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1525 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1526 	path_flag)
1527 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1528 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1529 	path_flag)
1530 
1531 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1532 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1533 	uint16_t param_ptr, int path_flag);
1534 
1535 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1536 static void sd_free_rqs(struct sd_lun *un);
1537 
1538 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1539 	uchar_t *data, int len, int fmt);
1540 static void sd_panic_for_res_conflict(struct sd_lun *un);
1541 
1542 /*
1543  * Disk Ioctl Function Prototypes
1544  */
1545 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1546 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1547 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1548 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1549 	int geom_validated);
1550 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1551 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1552 	int geom_validated);
1553 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1554 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1555 	int geom_validated);
1556 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1557 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1558 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1559 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1560 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1561 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1562 static int sd_write_label(dev_t dev);
1563 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1564 static void sd_clear_vtoc(struct sd_lun *un);
1565 static void sd_clear_efi(struct sd_lun *un);
1566 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1567 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1568 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1569 static void sd_setup_default_geometry(struct sd_lun *un);
1570 #if defined(__i386) || defined(__amd64)
1571 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1572 #endif
1573 
1574 /*
1575  * Multi-host Ioctl Prototypes
1576  */
1577 static int sd_check_mhd(dev_t dev, int interval);
1578 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1579 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1580 static char *sd_sname(uchar_t status);
1581 static void sd_mhd_resvd_recover(void *arg);
1582 static void sd_resv_reclaim_thread();
1583 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1584 static int sd_reserve_release(dev_t dev, int cmd);
1585 static void sd_rmv_resv_reclaim_req(dev_t dev);
1586 static void sd_mhd_reset_notify_cb(caddr_t arg);
1587 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1588 	mhioc_inkeys_t *usrp, int flag);
1589 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1590 	mhioc_inresvs_t *usrp, int flag);
1591 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1592 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_release(dev_t dev);
1594 static int sd_mhdioc_register_devid(dev_t dev);
1595 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1596 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1597 
1598 /*
1599  * SCSI removable prototypes
1600  */
1601 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1602 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1603 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_pause_resume(dev_t dev, int mode);
1605 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1606 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1616 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1617 static int sr_eject(dev_t dev);
1618 static void sr_ejected(register struct sd_lun *un);
1619 static int sr_check_wp(dev_t dev);
1620 static int sd_check_media(dev_t dev, enum dkio_state state);
1621 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1622 static void sd_delayed_cv_broadcast(void *arg);
1623 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1624 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1625 
1626 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1627 
1628 /*
1629  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1630  */
1631 static void sd_check_for_writable_cd(struct sd_lun *un);
1632 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1633 static void sd_wm_cache_destructor(void *wm, void *un);
1634 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1635 	daddr_t endb, ushort_t typ);
1636 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1637 	daddr_t endb);
1638 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1639 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1640 static void sd_read_modify_write_task(void * arg);
1641 static int
1642 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1643 	struct buf **bpp);
1644 
1645 
1646 /*
1647  * Function prototypes for failfast support.
1648  */
1649 static void sd_failfast_flushq(struct sd_lun *un);
1650 static int sd_failfast_flushq_callback(struct buf *bp);
1651 
1652 /*
1653  * Function prototypes to check for lsi devices
1654  */
1655 static void sd_is_lsi(struct sd_lun *un);
1656 
1657 /*
1658  * Function prototypes for x86 support
1659  */
1660 #if defined(__i386) || defined(__amd64)
1661 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1662 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1663 #endif
1664 
1665 /*
1666  * Constants for failfast support:
1667  *
1668  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1669  * failfast processing being performed.
1670  *
1671  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1672  * failfast processing on all bufs with B_FAILFAST set.
1673  */
1674 
1675 #define	SD_FAILFAST_INACTIVE		0
1676 #define	SD_FAILFAST_ACTIVE		1
1677 
1678 /*
1679  * Bitmask to control behavior of buf(9S) flushes when a transition to
1680  * the failfast state occurs. Optional bits include:
1681  *
1682  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1683  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1684  * be flushed.
1685  *
1686  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1687  * driver, in addition to the regular wait queue. This includes the xbuf
1688  * queues. When clear, only the driver's wait queue will be flushed.
1689  */
1690 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1691 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1692 
1693 /*
1694  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1695  * to flush all queues within the driver.
1696  */
1697 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1698 
1699 
1700 /*
1701  * SD Testing Fault Injection
1702  */
1703 #ifdef SD_FAULT_INJECTION
1704 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1705 static void sd_faultinjection(struct scsi_pkt *pktp);
1706 static void sd_injection_log(char *buf, struct sd_lun *un);
1707 #endif
1708 
1709 /*
1710  * Device driver ops vector
1711  */
1712 static struct cb_ops sd_cb_ops = {
1713 	sdopen,			/* open */
1714 	sdclose,		/* close */
1715 	sdstrategy,		/* strategy */
1716 	nodev,			/* print */
1717 	sddump,			/* dump */
1718 	sdread,			/* read */
1719 	sdwrite,		/* write */
1720 	sdioctl,		/* ioctl */
1721 	nodev,			/* devmap */
1722 	nodev,			/* mmap */
1723 	nodev,			/* segmap */
1724 	nochpoll,		/* poll */
1725 	sd_prop_op,		/* cb_prop_op */
1726 	0,			/* streamtab  */
1727 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1728 	CB_REV,			/* cb_rev */
1729 	sdaread, 		/* async I/O read entry point */
1730 	sdawrite		/* async I/O write entry point */
1731 };
1732 
1733 static struct dev_ops sd_ops = {
1734 	DEVO_REV,		/* devo_rev, */
1735 	0,			/* refcnt  */
1736 	sdinfo,			/* info */
1737 	nulldev,		/* identify */
1738 	sdprobe,		/* probe */
1739 	sdattach,		/* attach */
1740 	sddetach,		/* detach */
1741 	nodev,			/* reset */
1742 	&sd_cb_ops,		/* driver operations */
1743 	NULL,			/* bus operations */
1744 	sdpower			/* power */
1745 };
1746 
1747 
1748 /*
1749  * This is the loadable module wrapper.
1750  */
1751 #include <sys/modctl.h>
1752 
1753 static struct modldrv modldrv = {
1754 	&mod_driverops,		/* Type of module. This one is a driver */
1755 	SD_MODULE_NAME,		/* Module name. */
1756 	&sd_ops			/* driver ops */
1757 };
1758 
1759 
1760 static struct modlinkage modlinkage = {
1761 	MODREV_1,
1762 	&modldrv,
1763 	NULL
1764 };
1765 
1766 
1767 static struct scsi_asq_key_strings sd_additional_codes[] = {
1768 	0x81, 0, "Logical Unit is Reserved",
1769 	0x85, 0, "Audio Address Not Valid",
1770 	0xb6, 0, "Media Load Mechanism Failed",
1771 	0xB9, 0, "Audio Play Operation Aborted",
1772 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1773 	0x53, 2, "Medium removal prevented",
1774 	0x6f, 0, "Authentication failed during key exchange",
1775 	0x6f, 1, "Key not present",
1776 	0x6f, 2, "Key not established",
1777 	0x6f, 3, "Read without proper authentication",
1778 	0x6f, 4, "Mismatched region to this logical unit",
1779 	0x6f, 5, "Region reset count error",
1780 	0xffff, 0x0, NULL
1781 };
1782 
1783 
1784 /*
1785  * Struct for passing printing information for sense data messages
1786  */
1787 struct sd_sense_info {
1788 	int	ssi_severity;
1789 	int	ssi_pfa_flag;
1790 };
1791 
1792 /*
1793  * Table of function pointers for iostart-side routines. Seperate "chains"
1794  * of layered function calls are formed by placing the function pointers
1795  * sequentially in the desired order. Functions are called according to an
1796  * incrementing table index ordering. The last function in each chain must
1797  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1798  * in the sd_iodone_chain[] array.
1799  *
1800  * Note: It may seem more natural to organize both the iostart and iodone
1801  * functions together, into an array of structures (or some similar
1802  * organization) with a common index, rather than two seperate arrays which
1803  * must be maintained in synchronization. The purpose of this division is
1804  * to achiece improved performance: individual arrays allows for more
1805  * effective cache line utilization on certain platforms.
1806  */
1807 
1808 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1809 
1810 
1811 static sd_chain_t sd_iostart_chain[] = {
1812 
1813 	/* Chain for buf IO for disk drive targets (PM enabled) */
1814 	sd_mapblockaddr_iostart,	/* Index: 0 */
1815 	sd_pm_iostart,			/* Index: 1 */
1816 	sd_core_iostart,		/* Index: 2 */
1817 
1818 	/* Chain for buf IO for disk drive targets (PM disabled) */
1819 	sd_mapblockaddr_iostart,	/* Index: 3 */
1820 	sd_core_iostart,		/* Index: 4 */
1821 
1822 	/* Chain for buf IO for removable-media targets (PM enabled) */
1823 	sd_mapblockaddr_iostart,	/* Index: 5 */
1824 	sd_mapblocksize_iostart,	/* Index: 6 */
1825 	sd_pm_iostart,			/* Index: 7 */
1826 	sd_core_iostart,		/* Index: 8 */
1827 
1828 	/* Chain for buf IO for removable-media targets (PM disabled) */
1829 	sd_mapblockaddr_iostart,	/* Index: 9 */
1830 	sd_mapblocksize_iostart,	/* Index: 10 */
1831 	sd_core_iostart,		/* Index: 11 */
1832 
1833 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1834 	sd_mapblockaddr_iostart,	/* Index: 12 */
1835 	sd_checksum_iostart,		/* Index: 13 */
1836 	sd_pm_iostart,			/* Index: 14 */
1837 	sd_core_iostart,		/* Index: 15 */
1838 
1839 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1840 	sd_mapblockaddr_iostart,	/* Index: 16 */
1841 	sd_checksum_iostart,		/* Index: 17 */
1842 	sd_core_iostart,		/* Index: 18 */
1843 
1844 	/* Chain for USCSI commands (all targets) */
1845 	sd_pm_iostart,			/* Index: 19 */
1846 	sd_core_iostart,		/* Index: 20 */
1847 
1848 	/* Chain for checksumming USCSI commands (all targets) */
1849 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1850 	sd_pm_iostart,			/* Index: 22 */
1851 	sd_core_iostart,		/* Index: 23 */
1852 
1853 	/* Chain for "direct" USCSI commands (all targets) */
1854 	sd_core_iostart,		/* Index: 24 */
1855 
1856 	/* Chain for "direct priority" USCSI commands (all targets) */
1857 	sd_core_iostart,		/* Index: 25 */
1858 };
1859 
1860 /*
1861  * Macros to locate the first function of each iostart chain in the
1862  * sd_iostart_chain[] array. These are located by the index in the array.
1863  */
1864 #define	SD_CHAIN_DISK_IOSTART			0
1865 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1866 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1867 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1868 #define	SD_CHAIN_CHKSUM_IOSTART			12
1869 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1870 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1871 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1872 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1873 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1874 
1875 
1876 /*
1877  * Table of function pointers for the iodone-side routines for the driver-
1878  * internal layering mechanism.  The calling sequence for iodone routines
1879  * uses a decrementing table index, so the last routine called in a chain
1880  * must be at the lowest array index location for that chain.  The last
1881  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1882  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1883  * of the functions in an iodone side chain must correspond to the ordering
1884  * of the iostart routines for that chain.  Note that there is no iodone
1885  * side routine that corresponds to sd_core_iostart(), so there is no
1886  * entry in the table for this.
1887  */
1888 
1889 static sd_chain_t sd_iodone_chain[] = {
1890 
1891 	/* Chain for buf IO for disk drive targets (PM enabled) */
1892 	sd_buf_iodone,			/* Index: 0 */
1893 	sd_mapblockaddr_iodone,		/* Index: 1 */
1894 	sd_pm_iodone,			/* Index: 2 */
1895 
1896 	/* Chain for buf IO for disk drive targets (PM disabled) */
1897 	sd_buf_iodone,			/* Index: 3 */
1898 	sd_mapblockaddr_iodone,		/* Index: 4 */
1899 
1900 	/* Chain for buf IO for removable-media targets (PM enabled) */
1901 	sd_buf_iodone,			/* Index: 5 */
1902 	sd_mapblockaddr_iodone,		/* Index: 6 */
1903 	sd_mapblocksize_iodone,		/* Index: 7 */
1904 	sd_pm_iodone,			/* Index: 8 */
1905 
1906 	/* Chain for buf IO for removable-media targets (PM disabled) */
1907 	sd_buf_iodone,			/* Index: 9 */
1908 	sd_mapblockaddr_iodone,		/* Index: 10 */
1909 	sd_mapblocksize_iodone,		/* Index: 11 */
1910 
1911 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1912 	sd_buf_iodone,			/* Index: 12 */
1913 	sd_mapblockaddr_iodone,		/* Index: 13 */
1914 	sd_checksum_iodone,		/* Index: 14 */
1915 	sd_pm_iodone,			/* Index: 15 */
1916 
1917 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1918 	sd_buf_iodone,			/* Index: 16 */
1919 	sd_mapblockaddr_iodone,		/* Index: 17 */
1920 	sd_checksum_iodone,		/* Index: 18 */
1921 
1922 	/* Chain for USCSI commands (non-checksum targets) */
1923 	sd_uscsi_iodone,		/* Index: 19 */
1924 	sd_pm_iodone,			/* Index: 20 */
1925 
1926 	/* Chain for USCSI commands (checksum targets) */
1927 	sd_uscsi_iodone,		/* Index: 21 */
1928 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1929 	sd_pm_iodone,			/* Index: 22 */
1930 
1931 	/* Chain for "direct" USCSI commands (all targets) */
1932 	sd_uscsi_iodone,		/* Index: 24 */
1933 
1934 	/* Chain for "direct priority" USCSI commands (all targets) */
1935 	sd_uscsi_iodone,		/* Index: 25 */
1936 };
1937 
1938 
1939 /*
1940  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1941  * each iodone-side chain. These are located by the array index, but as the
1942  * iodone side functions are called in a decrementing-index order, the
1943  * highest index number in each chain must be specified (as these correspond
1944  * to the first function in the iodone chain that will be called by the core
1945  * at IO completion time).
1946  */
1947 
1948 #define	SD_CHAIN_DISK_IODONE			2
1949 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1950 #define	SD_CHAIN_RMMEDIA_IODONE			8
1951 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1952 #define	SD_CHAIN_CHKSUM_IODONE			15
1953 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1954 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1955 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1956 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1957 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1958 
1959 
1960 
1961 
1962 /*
1963  * Array to map a layering chain index to the appropriate initpkt routine.
1964  * The redundant entries are present so that the index used for accessing
1965  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1966  * with this table as well.
1967  */
1968 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1969 
1970 static sd_initpkt_t	sd_initpkt_map[] = {
1971 
1972 	/* Chain for buf IO for disk drive targets (PM enabled) */
1973 	sd_initpkt_for_buf,		/* Index: 0 */
1974 	sd_initpkt_for_buf,		/* Index: 1 */
1975 	sd_initpkt_for_buf,		/* Index: 2 */
1976 
1977 	/* Chain for buf IO for disk drive targets (PM disabled) */
1978 	sd_initpkt_for_buf,		/* Index: 3 */
1979 	sd_initpkt_for_buf,		/* Index: 4 */
1980 
1981 	/* Chain for buf IO for removable-media targets (PM enabled) */
1982 	sd_initpkt_for_buf,		/* Index: 5 */
1983 	sd_initpkt_for_buf,		/* Index: 6 */
1984 	sd_initpkt_for_buf,		/* Index: 7 */
1985 	sd_initpkt_for_buf,		/* Index: 8 */
1986 
1987 	/* Chain for buf IO for removable-media targets (PM disabled) */
1988 	sd_initpkt_for_buf,		/* Index: 9 */
1989 	sd_initpkt_for_buf,		/* Index: 10 */
1990 	sd_initpkt_for_buf,		/* Index: 11 */
1991 
1992 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1993 	sd_initpkt_for_buf,		/* Index: 12 */
1994 	sd_initpkt_for_buf,		/* Index: 13 */
1995 	sd_initpkt_for_buf,		/* Index: 14 */
1996 	sd_initpkt_for_buf,		/* Index: 15 */
1997 
1998 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1999 	sd_initpkt_for_buf,		/* Index: 16 */
2000 	sd_initpkt_for_buf,		/* Index: 17 */
2001 	sd_initpkt_for_buf,		/* Index: 18 */
2002 
2003 	/* Chain for USCSI commands (non-checksum targets) */
2004 	sd_initpkt_for_uscsi,		/* Index: 19 */
2005 	sd_initpkt_for_uscsi,		/* Index: 20 */
2006 
2007 	/* Chain for USCSI commands (checksum targets) */
2008 	sd_initpkt_for_uscsi,		/* Index: 21 */
2009 	sd_initpkt_for_uscsi,		/* Index: 22 */
2010 	sd_initpkt_for_uscsi,		/* Index: 22 */
2011 
2012 	/* Chain for "direct" USCSI commands (all targets) */
2013 	sd_initpkt_for_uscsi,		/* Index: 24 */
2014 
2015 	/* Chain for "direct priority" USCSI commands (all targets) */
2016 	sd_initpkt_for_uscsi,		/* Index: 25 */
2017 
2018 };
2019 
2020 
2021 /*
2022  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2023  * The redundant entries are present so that the index used for accessing
2024  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2025  * with this table as well.
2026  */
2027 typedef void (*sd_destroypkt_t)(struct buf *);
2028 
2029 static sd_destroypkt_t	sd_destroypkt_map[] = {
2030 
2031 	/* Chain for buf IO for disk drive targets (PM enabled) */
2032 	sd_destroypkt_for_buf,		/* Index: 0 */
2033 	sd_destroypkt_for_buf,		/* Index: 1 */
2034 	sd_destroypkt_for_buf,		/* Index: 2 */
2035 
2036 	/* Chain for buf IO for disk drive targets (PM disabled) */
2037 	sd_destroypkt_for_buf,		/* Index: 3 */
2038 	sd_destroypkt_for_buf,		/* Index: 4 */
2039 
2040 	/* Chain for buf IO for removable-media targets (PM enabled) */
2041 	sd_destroypkt_for_buf,		/* Index: 5 */
2042 	sd_destroypkt_for_buf,		/* Index: 6 */
2043 	sd_destroypkt_for_buf,		/* Index: 7 */
2044 	sd_destroypkt_for_buf,		/* Index: 8 */
2045 
2046 	/* Chain for buf IO for removable-media targets (PM disabled) */
2047 	sd_destroypkt_for_buf,		/* Index: 9 */
2048 	sd_destroypkt_for_buf,		/* Index: 10 */
2049 	sd_destroypkt_for_buf,		/* Index: 11 */
2050 
2051 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2052 	sd_destroypkt_for_buf,		/* Index: 12 */
2053 	sd_destroypkt_for_buf,		/* Index: 13 */
2054 	sd_destroypkt_for_buf,		/* Index: 14 */
2055 	sd_destroypkt_for_buf,		/* Index: 15 */
2056 
2057 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2058 	sd_destroypkt_for_buf,		/* Index: 16 */
2059 	sd_destroypkt_for_buf,		/* Index: 17 */
2060 	sd_destroypkt_for_buf,		/* Index: 18 */
2061 
2062 	/* Chain for USCSI commands (non-checksum targets) */
2063 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2064 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2065 
2066 	/* Chain for USCSI commands (checksum targets) */
2067 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2068 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2069 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2070 
2071 	/* Chain for "direct" USCSI commands (all targets) */
2072 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2073 
2074 	/* Chain for "direct priority" USCSI commands (all targets) */
2075 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2076 
2077 };
2078 
2079 
2080 
2081 /*
2082  * Array to map a layering chain index to the appropriate chain "type".
2083  * The chain type indicates a specific property/usage of the chain.
2084  * The redundant entries are present so that the index used for accessing
2085  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2086  * with this table as well.
2087  */
2088 
2089 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2090 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2091 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2092 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2093 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2094 						/* (for error recovery) */
2095 
2096 static int sd_chain_type_map[] = {
2097 
2098 	/* Chain for buf IO for disk drive targets (PM enabled) */
2099 	SD_CHAIN_BUFIO,			/* Index: 0 */
2100 	SD_CHAIN_BUFIO,			/* Index: 1 */
2101 	SD_CHAIN_BUFIO,			/* Index: 2 */
2102 
2103 	/* Chain for buf IO for disk drive targets (PM disabled) */
2104 	SD_CHAIN_BUFIO,			/* Index: 3 */
2105 	SD_CHAIN_BUFIO,			/* Index: 4 */
2106 
2107 	/* Chain for buf IO for removable-media targets (PM enabled) */
2108 	SD_CHAIN_BUFIO,			/* Index: 5 */
2109 	SD_CHAIN_BUFIO,			/* Index: 6 */
2110 	SD_CHAIN_BUFIO,			/* Index: 7 */
2111 	SD_CHAIN_BUFIO,			/* Index: 8 */
2112 
2113 	/* Chain for buf IO for removable-media targets (PM disabled) */
2114 	SD_CHAIN_BUFIO,			/* Index: 9 */
2115 	SD_CHAIN_BUFIO,			/* Index: 10 */
2116 	SD_CHAIN_BUFIO,			/* Index: 11 */
2117 
2118 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2119 	SD_CHAIN_BUFIO,			/* Index: 12 */
2120 	SD_CHAIN_BUFIO,			/* Index: 13 */
2121 	SD_CHAIN_BUFIO,			/* Index: 14 */
2122 	SD_CHAIN_BUFIO,			/* Index: 15 */
2123 
2124 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2125 	SD_CHAIN_BUFIO,			/* Index: 16 */
2126 	SD_CHAIN_BUFIO,			/* Index: 17 */
2127 	SD_CHAIN_BUFIO,			/* Index: 18 */
2128 
2129 	/* Chain for USCSI commands (non-checksum targets) */
2130 	SD_CHAIN_USCSI,			/* Index: 19 */
2131 	SD_CHAIN_USCSI,			/* Index: 20 */
2132 
2133 	/* Chain for USCSI commands (checksum targets) */
2134 	SD_CHAIN_USCSI,			/* Index: 21 */
2135 	SD_CHAIN_USCSI,			/* Index: 22 */
2136 	SD_CHAIN_USCSI,			/* Index: 22 */
2137 
2138 	/* Chain for "direct" USCSI commands (all targets) */
2139 	SD_CHAIN_DIRECT,		/* Index: 24 */
2140 
2141 	/* Chain for "direct priority" USCSI commands (all targets) */
2142 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2143 };
2144 
2145 
2146 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2147 #define	SD_IS_BUFIO(xp)			\
2148 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2149 
2150 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2151 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2152 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2153 
2154 
2155 
2156 /*
2157  * Struct, array, and macros to map a specific chain to the appropriate
2158  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2159  *
2160  * The sd_chain_index_map[] array is used at attach time to set the various
2161  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2162  * chain to be used with the instance. This allows different instances to use
2163  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2164  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2165  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2166  * dynamically & without the use of locking; and (2) a layer may update the
2167  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2168  * to allow for deferred processing of an IO within the same chain from a
2169  * different execution context.
2170  */
2171 
2172 struct sd_chain_index {
2173 	int	sci_iostart_index;
2174 	int	sci_iodone_index;
2175 };
2176 
2177 static struct sd_chain_index	sd_chain_index_map[] = {
2178 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2179 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2180 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2181 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2182 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2183 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2184 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2185 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2186 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2187 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2188 };
2189 
2190 
2191 /*
2192  * The following are indexes into the sd_chain_index_map[] array.
2193  */
2194 
2195 /* un->un_buf_chain_type must be set to one of these */
2196 #define	SD_CHAIN_INFO_DISK		0
2197 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2198 #define	SD_CHAIN_INFO_RMMEDIA		2
2199 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2200 #define	SD_CHAIN_INFO_CHKSUM		4
2201 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2202 
2203 /* un->un_uscsi_chain_type must be set to one of these */
2204 #define	SD_CHAIN_INFO_USCSI_CMD		6
2205 /* USCSI with PM disabled is the same as DIRECT */
2206 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2207 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2208 
2209 /* un->un_direct_chain_type must be set to one of these */
2210 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2211 
2212 /* un->un_priority_chain_type must be set to one of these */
2213 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2214 
2215 /* size for devid inquiries */
2216 #define	MAX_INQUIRY_SIZE		0xF0
2217 
2218 /*
2219  * Macros used by functions to pass a given buf(9S) struct along to the
2220  * next function in the layering chain for further processing.
2221  *
2222  * In the following macros, passing more than three arguments to the called
2223  * routines causes the optimizer for the SPARC compiler to stop doing tail
2224  * call elimination which results in significant performance degradation.
2225  */
2226 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2227 	((*(sd_iostart_chain[index]))(index, un, bp))
2228 
2229 #define	SD_BEGIN_IODONE(index, un, bp)	\
2230 	((*(sd_iodone_chain[index]))(index, un, bp))
2231 
2232 #define	SD_NEXT_IOSTART(index, un, bp)				\
2233 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2234 
2235 #define	SD_NEXT_IODONE(index, un, bp)				\
2236 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2237 
2238 /*
2239  *    Function: _init
2240  *
2241  * Description: This is the driver _init(9E) entry point.
2242  *
2243  * Return Code: Returns the value from mod_install(9F) or
2244  *		ddi_soft_state_init(9F) as appropriate.
2245  *
2246  *     Context: Called when driver module loaded.
2247  */
2248 
2249 int
2250 _init(void)
2251 {
2252 	int	err;
2253 
2254 	/* establish driver name from module name */
2255 	sd_label = mod_modname(&modlinkage);
2256 
2257 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2258 		SD_MAXUNIT);
2259 
2260 	if (err != 0) {
2261 		return (err);
2262 	}
2263 
2264 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2265 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2266 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2267 
2268 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2269 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2270 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2271 
2272 	/*
2273 	 * it's ok to init here even for fibre device
2274 	 */
2275 	sd_scsi_probe_cache_init();
2276 
2277 	sd_scsi_target_lun_init();
2278 
2279 	/*
2280 	 * Creating taskq before mod_install ensures that all callers (threads)
2281 	 * that enter the module after a successfull mod_install encounter
2282 	 * a valid taskq.
2283 	 */
2284 	sd_taskq_create();
2285 
2286 	err = mod_install(&modlinkage);
2287 	if (err != 0) {
2288 		/* delete taskq if install fails */
2289 		sd_taskq_delete();
2290 
2291 		mutex_destroy(&sd_detach_mutex);
2292 		mutex_destroy(&sd_log_mutex);
2293 		mutex_destroy(&sd_label_mutex);
2294 
2295 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2296 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2297 		cv_destroy(&sd_tr.srq_inprocess_cv);
2298 
2299 		sd_scsi_probe_cache_fini();
2300 
2301 		sd_scsi_target_lun_fini();
2302 
2303 		ddi_soft_state_fini(&sd_state);
2304 		return (err);
2305 	}
2306 
2307 	return (err);
2308 }
2309 
2310 
2311 /*
2312  *    Function: _fini
2313  *
2314  * Description: This is the driver _fini(9E) entry point.
2315  *
2316  * Return Code: Returns the value from mod_remove(9F)
2317  *
2318  *     Context: Called when driver module is unloaded.
2319  */
2320 
2321 int
2322 _fini(void)
2323 {
2324 	int err;
2325 
2326 	if ((err = mod_remove(&modlinkage)) != 0) {
2327 		return (err);
2328 	}
2329 
2330 	sd_taskq_delete();
2331 
2332 	mutex_destroy(&sd_detach_mutex);
2333 	mutex_destroy(&sd_log_mutex);
2334 	mutex_destroy(&sd_label_mutex);
2335 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2336 
2337 	sd_scsi_probe_cache_fini();
2338 
2339 	sd_scsi_target_lun_fini();
2340 
2341 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2342 	cv_destroy(&sd_tr.srq_inprocess_cv);
2343 
2344 	ddi_soft_state_fini(&sd_state);
2345 
2346 	return (err);
2347 }
2348 
2349 
2350 /*
2351  *    Function: _info
2352  *
2353  * Description: This is the driver _info(9E) entry point.
2354  *
2355  *   Arguments: modinfop - pointer to the driver modinfo structure
2356  *
2357  * Return Code: Returns the value from mod_info(9F).
2358  *
2359  *     Context: Kernel thread context
2360  */
2361 
2362 int
2363 _info(struct modinfo *modinfop)
2364 {
2365 	return (mod_info(&modlinkage, modinfop));
2366 }
2367 
2368 
2369 /*
2370  * The following routines implement the driver message logging facility.
2371  * They provide component- and level- based debug output filtering.
2372  * Output may also be restricted to messages for a single instance by
2373  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2374  * to NULL, then messages for all instances are printed.
2375  *
2376  * These routines have been cloned from each other due to the language
2377  * constraints of macros and variable argument list processing.
2378  */
2379 
2380 
2381 /*
2382  *    Function: sd_log_err
2383  *
2384  * Description: This routine is called by the SD_ERROR macro for debug
2385  *		logging of error conditions.
2386  *
2387  *   Arguments: comp - driver component being logged
2388  *		dev  - pointer to driver info structure
2389  *		fmt  - error string and format to be logged
2390  */
2391 
2392 static void
2393 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2394 {
2395 	va_list		ap;
2396 	dev_info_t	*dev;
2397 
2398 	ASSERT(un != NULL);
2399 	dev = SD_DEVINFO(un);
2400 	ASSERT(dev != NULL);
2401 
2402 	/*
2403 	 * Filter messages based on the global component and level masks.
2404 	 * Also print if un matches the value of sd_debug_un, or if
2405 	 * sd_debug_un is set to NULL.
2406 	 */
2407 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2408 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #ifdef SD_FAULT_INJECTION
2417 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2418 	if (un->sd_injection_mask & comp) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		sd_injection_log(sd_log_buf, un);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #endif
2427 }
2428 
2429 
2430 /*
2431  *    Function: sd_log_info
2432  *
2433  * Description: This routine is called by the SD_INFO macro for debug
2434  *		logging of general purpose informational conditions.
2435  *
2436  *   Arguments: comp - driver component being logged
2437  *		dev  - pointer to driver info structure
2438  *		fmt  - info string and format to be logged
2439  */
2440 
2441 static void
2442 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2443 {
2444 	va_list		ap;
2445 	dev_info_t	*dev;
2446 
2447 	ASSERT(un != NULL);
2448 	dev = SD_DEVINFO(un);
2449 	ASSERT(dev != NULL);
2450 
2451 	/*
2452 	 * Filter messages based on the global component and level masks.
2453 	 * Also print if un matches the value of sd_debug_un, or if
2454 	 * sd_debug_un is set to NULL.
2455 	 */
2456 	if ((sd_component_mask & component) &&
2457 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2458 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2459 		mutex_enter(&sd_log_mutex);
2460 		va_start(ap, fmt);
2461 		(void) vsprintf(sd_log_buf, fmt, ap);
2462 		va_end(ap);
2463 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2464 		mutex_exit(&sd_log_mutex);
2465 	}
2466 #ifdef SD_FAULT_INJECTION
2467 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2468 	if (un->sd_injection_mask & component) {
2469 		mutex_enter(&sd_log_mutex);
2470 		va_start(ap, fmt);
2471 		(void) vsprintf(sd_log_buf, fmt, ap);
2472 		va_end(ap);
2473 		sd_injection_log(sd_log_buf, un);
2474 		mutex_exit(&sd_log_mutex);
2475 	}
2476 #endif
2477 }
2478 
2479 
2480 /*
2481  *    Function: sd_log_trace
2482  *
2483  * Description: This routine is called by the SD_TRACE macro for debug
2484  *		logging of trace conditions (i.e. function entry/exit).
2485  *
2486  *   Arguments: comp - driver component being logged
2487  *		dev  - pointer to driver info structure
2488  *		fmt  - trace string and format to be logged
2489  */
2490 
2491 static void
2492 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2493 {
2494 	va_list		ap;
2495 	dev_info_t	*dev;
2496 
2497 	ASSERT(un != NULL);
2498 	dev = SD_DEVINFO(un);
2499 	ASSERT(dev != NULL);
2500 
2501 	/*
2502 	 * Filter messages based on the global component and level masks.
2503 	 * Also print if un matches the value of sd_debug_un, or if
2504 	 * sd_debug_un is set to NULL.
2505 	 */
2506 	if ((sd_component_mask & component) &&
2507 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2508 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2509 		mutex_enter(&sd_log_mutex);
2510 		va_start(ap, fmt);
2511 		(void) vsprintf(sd_log_buf, fmt, ap);
2512 		va_end(ap);
2513 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2514 		mutex_exit(&sd_log_mutex);
2515 	}
2516 #ifdef SD_FAULT_INJECTION
2517 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2518 	if (un->sd_injection_mask & component) {
2519 		mutex_enter(&sd_log_mutex);
2520 		va_start(ap, fmt);
2521 		(void) vsprintf(sd_log_buf, fmt, ap);
2522 		va_end(ap);
2523 		sd_injection_log(sd_log_buf, un);
2524 		mutex_exit(&sd_log_mutex);
2525 	}
2526 #endif
2527 }
2528 
2529 
2530 /*
2531  *    Function: sdprobe
2532  *
2533  * Description: This is the driver probe(9e) entry point function.
2534  *
2535  *   Arguments: devi - opaque device info handle
2536  *
2537  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2538  *              DDI_PROBE_FAILURE: If the probe failed.
2539  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2540  *				   but may be present in the future.
2541  */
2542 
2543 static int
2544 sdprobe(dev_info_t *devi)
2545 {
2546 	struct scsi_device	*devp;
2547 	int			rval;
2548 	int			instance;
2549 
2550 	/*
2551 	 * if it wasn't for pln, sdprobe could actually be nulldev
2552 	 * in the "__fibre" case.
2553 	 */
2554 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2555 		return (DDI_PROBE_DONTCARE);
2556 	}
2557 
2558 	devp = ddi_get_driver_private(devi);
2559 
2560 	if (devp == NULL) {
2561 		/* Ooops... nexus driver is mis-configured... */
2562 		return (DDI_PROBE_FAILURE);
2563 	}
2564 
2565 	instance = ddi_get_instance(devi);
2566 
2567 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2568 		return (DDI_PROBE_PARTIAL);
2569 	}
2570 
2571 	/*
2572 	 * Call the SCSA utility probe routine to see if we actually
2573 	 * have a target at this SCSI nexus.
2574 	 */
2575 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2576 	case SCSIPROBE_EXISTS:
2577 		switch (devp->sd_inq->inq_dtype) {
2578 		case DTYPE_DIRECT:
2579 			rval = DDI_PROBE_SUCCESS;
2580 			break;
2581 		case DTYPE_RODIRECT:
2582 			/* CDs etc. Can be removable media */
2583 			rval = DDI_PROBE_SUCCESS;
2584 			break;
2585 		case DTYPE_OPTICAL:
2586 			/*
2587 			 * Rewritable optical driver HP115AA
2588 			 * Can also be removable media
2589 			 */
2590 
2591 			/*
2592 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2593 			 * pre solaris 9 sparc sd behavior is required
2594 			 *
2595 			 * If first time through and sd_dtype_optical_bind
2596 			 * has not been set in /etc/system check properties
2597 			 */
2598 
2599 			if (sd_dtype_optical_bind  < 0) {
2600 			    sd_dtype_optical_bind = ddi_prop_get_int
2601 				(DDI_DEV_T_ANY,	devi,	0,
2602 				"optical-device-bind",	1);
2603 			}
2604 
2605 			if (sd_dtype_optical_bind == 0) {
2606 				rval = DDI_PROBE_FAILURE;
2607 			} else {
2608 				rval = DDI_PROBE_SUCCESS;
2609 			}
2610 			break;
2611 
2612 		case DTYPE_NOTPRESENT:
2613 		default:
2614 			rval = DDI_PROBE_FAILURE;
2615 			break;
2616 		}
2617 		break;
2618 	default:
2619 		rval = DDI_PROBE_PARTIAL;
2620 		break;
2621 	}
2622 
2623 	/*
2624 	 * This routine checks for resource allocation prior to freeing,
2625 	 * so it will take care of the "smart probing" case where a
2626 	 * scsi_probe() may or may not have been issued and will *not*
2627 	 * free previously-freed resources.
2628 	 */
2629 	scsi_unprobe(devp);
2630 	return (rval);
2631 }
2632 
2633 
2634 /*
2635  *    Function: sdinfo
2636  *
2637  * Description: This is the driver getinfo(9e) entry point function.
2638  * 		Given the device number, return the devinfo pointer from
2639  *		the scsi_device structure or the instance number
2640  *		associated with the dev_t.
2641  *
2642  *   Arguments: dip     - pointer to device info structure
2643  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2644  *			  DDI_INFO_DEVT2INSTANCE)
2645  *		arg     - driver dev_t
2646  *		resultp - user buffer for request response
2647  *
2648  * Return Code: DDI_SUCCESS
2649  *              DDI_FAILURE
2650  */
2651 /* ARGSUSED */
2652 static int
2653 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2654 {
2655 	struct sd_lun	*un;
2656 	dev_t		dev;
2657 	int		instance;
2658 	int		error;
2659 
2660 	switch (infocmd) {
2661 	case DDI_INFO_DEVT2DEVINFO:
2662 		dev = (dev_t)arg;
2663 		instance = SDUNIT(dev);
2664 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2665 			return (DDI_FAILURE);
2666 		}
2667 		*result = (void *) SD_DEVINFO(un);
2668 		error = DDI_SUCCESS;
2669 		break;
2670 	case DDI_INFO_DEVT2INSTANCE:
2671 		dev = (dev_t)arg;
2672 		instance = SDUNIT(dev);
2673 		*result = (void *)(uintptr_t)instance;
2674 		error = DDI_SUCCESS;
2675 		break;
2676 	default:
2677 		error = DDI_FAILURE;
2678 	}
2679 	return (error);
2680 }
2681 
2682 /*
2683  *    Function: sd_prop_op
2684  *
2685  * Description: This is the driver prop_op(9e) entry point function.
2686  *		Return the number of blocks for the partition in question
2687  *		or forward the request to the property facilities.
2688  *
2689  *   Arguments: dev       - device number
2690  *		dip       - pointer to device info structure
2691  *		prop_op   - property operator
2692  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2693  *		name      - pointer to property name
2694  *		valuep    - pointer or address of the user buffer
2695  *		lengthp   - property length
2696  *
2697  * Return Code: DDI_PROP_SUCCESS
2698  *              DDI_PROP_NOT_FOUND
2699  *              DDI_PROP_UNDEFINED
2700  *              DDI_PROP_NO_MEMORY
2701  *              DDI_PROP_BUF_TOO_SMALL
2702  */
2703 
2704 static int
2705 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2706 	char *name, caddr_t valuep, int *lengthp)
2707 {
2708 	int		instance = ddi_get_instance(dip);
2709 	struct sd_lun	*un;
2710 	uint64_t	nblocks64;
2711 
2712 	/*
2713 	 * Our dynamic properties are all device specific and size oriented.
2714 	 * Requests issued under conditions where size is valid are passed
2715 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2716 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2717 	 */
2718 	un = ddi_get_soft_state(sd_state, instance);
2719 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2720 	    (un->un_f_geometry_is_valid == FALSE)) {
2721 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2722 		    name, valuep, lengthp));
2723 	} else {
2724 		/* get nblocks value */
2725 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2726 		mutex_enter(SD_MUTEX(un));
2727 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2728 		mutex_exit(SD_MUTEX(un));
2729 
2730 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2731 		    name, valuep, lengthp, nblocks64));
2732 	}
2733 }
2734 
2735 /*
2736  * The following functions are for smart probing:
2737  * sd_scsi_probe_cache_init()
2738  * sd_scsi_probe_cache_fini()
2739  * sd_scsi_clear_probe_cache()
2740  * sd_scsi_probe_with_cache()
2741  */
2742 
2743 /*
2744  *    Function: sd_scsi_probe_cache_init
2745  *
2746  * Description: Initializes the probe response cache mutex and head pointer.
2747  *
2748  *     Context: Kernel thread context
2749  */
2750 
2751 static void
2752 sd_scsi_probe_cache_init(void)
2753 {
2754 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2755 	sd_scsi_probe_cache_head = NULL;
2756 }
2757 
2758 
2759 /*
2760  *    Function: sd_scsi_probe_cache_fini
2761  *
2762  * Description: Frees all resources associated with the probe response cache.
2763  *
2764  *     Context: Kernel thread context
2765  */
2766 
2767 static void
2768 sd_scsi_probe_cache_fini(void)
2769 {
2770 	struct sd_scsi_probe_cache *cp;
2771 	struct sd_scsi_probe_cache *ncp;
2772 
2773 	/* Clean up our smart probing linked list */
2774 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2775 		ncp = cp->next;
2776 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2777 	}
2778 	sd_scsi_probe_cache_head = NULL;
2779 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2780 }
2781 
2782 
2783 /*
2784  *    Function: sd_scsi_clear_probe_cache
2785  *
2786  * Description: This routine clears the probe response cache. This is
2787  *		done when open() returns ENXIO so that when deferred
2788  *		attach is attempted (possibly after a device has been
2789  *		turned on) we will retry the probe. Since we don't know
2790  *		which target we failed to open, we just clear the
2791  *		entire cache.
2792  *
2793  *     Context: Kernel thread context
2794  */
2795 
2796 static void
2797 sd_scsi_clear_probe_cache(void)
2798 {
2799 	struct sd_scsi_probe_cache	*cp;
2800 	int				i;
2801 
2802 	mutex_enter(&sd_scsi_probe_cache_mutex);
2803 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2804 		/*
2805 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2806 		 * force probing to be performed the next time
2807 		 * sd_scsi_probe_with_cache is called.
2808 		 */
2809 		for (i = 0; i < NTARGETS_WIDE; i++) {
2810 			cp->cache[i] = SCSIPROBE_EXISTS;
2811 		}
2812 	}
2813 	mutex_exit(&sd_scsi_probe_cache_mutex);
2814 }
2815 
2816 
2817 /*
2818  *    Function: sd_scsi_probe_with_cache
2819  *
2820  * Description: This routine implements support for a scsi device probe
2821  *		with cache. The driver maintains a cache of the target
2822  *		responses to scsi probes. If we get no response from a
2823  *		target during a probe inquiry, we remember that, and we
2824  *		avoid additional calls to scsi_probe on non-zero LUNs
2825  *		on the same target until the cache is cleared. By doing
2826  *		so we avoid the 1/4 sec selection timeout for nonzero
2827  *		LUNs. lun0 of a target is always probed.
2828  *
2829  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2830  *              waitfunc - indicates what the allocator routines should
2831  *			   do when resources are not available. This value
2832  *			   is passed on to scsi_probe() when that routine
2833  *			   is called.
2834  *
2835  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2836  *		otherwise the value returned by scsi_probe(9F).
2837  *
2838  *     Context: Kernel thread context
2839  */
2840 
2841 static int
2842 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2843 {
2844 	struct sd_scsi_probe_cache	*cp;
2845 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2846 	int		lun, tgt;
2847 
2848 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2849 	    SCSI_ADDR_PROP_LUN, 0);
2850 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2851 	    SCSI_ADDR_PROP_TARGET, -1);
2852 
2853 	/* Make sure caching enabled and target in range */
2854 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2855 		/* do it the old way (no cache) */
2856 		return (scsi_probe(devp, waitfn));
2857 	}
2858 
2859 	mutex_enter(&sd_scsi_probe_cache_mutex);
2860 
2861 	/* Find the cache for this scsi bus instance */
2862 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2863 		if (cp->pdip == pdip) {
2864 			break;
2865 		}
2866 	}
2867 
2868 	/* If we can't find a cache for this pdip, create one */
2869 	if (cp == NULL) {
2870 		int i;
2871 
2872 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2873 		    KM_SLEEP);
2874 		cp->pdip = pdip;
2875 		cp->next = sd_scsi_probe_cache_head;
2876 		sd_scsi_probe_cache_head = cp;
2877 		for (i = 0; i < NTARGETS_WIDE; i++) {
2878 			cp->cache[i] = SCSIPROBE_EXISTS;
2879 		}
2880 	}
2881 
2882 	mutex_exit(&sd_scsi_probe_cache_mutex);
2883 
2884 	/* Recompute the cache for this target if LUN zero */
2885 	if (lun == 0) {
2886 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2887 	}
2888 
2889 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2890 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2891 		return (SCSIPROBE_NORESP);
2892 	}
2893 
2894 	/* Do the actual probe; save & return the result */
2895 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2896 }
2897 
2898 
2899 /*
2900  *    Function: sd_scsi_target_lun_init
2901  *
2902  * Description: Initializes the attached lun chain mutex and head pointer.
2903  *
2904  *     Context: Kernel thread context
2905  */
2906 
2907 static void
2908 sd_scsi_target_lun_init(void)
2909 {
2910 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2911 	sd_scsi_target_lun_head = NULL;
2912 }
2913 
2914 
2915 /*
2916  *    Function: sd_scsi_target_lun_fini
2917  *
2918  * Description: Frees all resources associated with the attached lun
2919  *              chain
2920  *
2921  *     Context: Kernel thread context
2922  */
2923 
2924 static void
2925 sd_scsi_target_lun_fini(void)
2926 {
2927 	struct sd_scsi_hba_tgt_lun	*cp;
2928 	struct sd_scsi_hba_tgt_lun	*ncp;
2929 
2930 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2931 		ncp = cp->next;
2932 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2933 	}
2934 	sd_scsi_target_lun_head = NULL;
2935 	mutex_destroy(&sd_scsi_target_lun_mutex);
2936 }
2937 
2938 
2939 /*
2940  *    Function: sd_scsi_get_target_lun_count
2941  *
2942  * Description: This routine will check in the attached lun chain to see
2943  * 		how many luns are attached on the required SCSI controller
2944  * 		and target. Currently, some capabilities like tagged queue
2945  *		are supported per target based by HBA. So all luns in a
2946  *		target have the same capabilities. Based on this assumption,
2947  * 		sd should only set these capabilities once per target. This
2948  *		function is called when sd needs to decide how many luns
2949  *		already attached on a target.
2950  *
2951  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2952  *			  controller device.
2953  *              target	- The target ID on the controller's SCSI bus.
2954  *
2955  * Return Code: The number of luns attached on the required target and
2956  *		controller.
2957  *		-1 if target ID is not in parallel SCSI scope or the given
2958  * 		dip is not in the chain.
2959  *
2960  *     Context: Kernel thread context
2961  */
2962 
2963 static int
2964 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2965 {
2966 	struct sd_scsi_hba_tgt_lun	*cp;
2967 
2968 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2969 		return (-1);
2970 	}
2971 
2972 	mutex_enter(&sd_scsi_target_lun_mutex);
2973 
2974 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2975 		if (cp->pdip == dip) {
2976 			break;
2977 		}
2978 	}
2979 
2980 	mutex_exit(&sd_scsi_target_lun_mutex);
2981 
2982 	if (cp == NULL) {
2983 		return (-1);
2984 	}
2985 
2986 	return (cp->nlun[target]);
2987 }
2988 
2989 
2990 /*
2991  *    Function: sd_scsi_update_lun_on_target
2992  *
2993  * Description: This routine is used to update the attached lun chain when a
2994  *		lun is attached or detached on a target.
2995  *
2996  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2997  *                        controller device.
2998  *              target  - The target ID on the controller's SCSI bus.
2999  *		flag	- Indicate the lun is attached or detached.
3000  *
3001  *     Context: Kernel thread context
3002  */
3003 
3004 static void
3005 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3006 {
3007 	struct sd_scsi_hba_tgt_lun	*cp;
3008 
3009 	mutex_enter(&sd_scsi_target_lun_mutex);
3010 
3011 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3012 		if (cp->pdip == dip) {
3013 			break;
3014 		}
3015 	}
3016 
3017 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3018 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3019 		    KM_SLEEP);
3020 		cp->pdip = dip;
3021 		cp->next = sd_scsi_target_lun_head;
3022 		sd_scsi_target_lun_head = cp;
3023 	}
3024 
3025 	mutex_exit(&sd_scsi_target_lun_mutex);
3026 
3027 	if (cp != NULL) {
3028 		if (flag == SD_SCSI_LUN_ATTACH) {
3029 			cp->nlun[target] ++;
3030 		} else {
3031 			cp->nlun[target] --;
3032 		}
3033 	}
3034 }
3035 
3036 
3037 /*
3038  *    Function: sd_spin_up_unit
3039  *
3040  * Description: Issues the following commands to spin-up the device:
3041  *		START STOP UNIT, and INQUIRY.
3042  *
3043  *   Arguments: un - driver soft state (unit) structure
3044  *
3045  * Return Code: 0 - success
3046  *		EIO - failure
3047  *		EACCES - reservation conflict
3048  *
3049  *     Context: Kernel thread context
3050  */
3051 
3052 static int
3053 sd_spin_up_unit(struct sd_lun *un)
3054 {
3055 	size_t	resid		= 0;
3056 	int	has_conflict	= FALSE;
3057 	uchar_t *bufaddr;
3058 
3059 	ASSERT(un != NULL);
3060 
3061 	/*
3062 	 * Send a throwaway START UNIT command.
3063 	 *
3064 	 * If we fail on this, we don't care presently what precisely
3065 	 * is wrong.  EMC's arrays will also fail this with a check
3066 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3067 	 * we don't want to fail the attach because it may become
3068 	 * "active" later.
3069 	 */
3070 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
3071 	    == EACCES)
3072 		has_conflict = TRUE;
3073 
3074 	/*
3075 	 * Send another INQUIRY command to the target. This is necessary for
3076 	 * non-removable media direct access devices because their INQUIRY data
3077 	 * may not be fully qualified until they are spun up (perhaps via the
3078 	 * START command above).  Note: This seems to be needed for some
3079 	 * legacy devices only.) The INQUIRY command should succeed even if a
3080 	 * Reservation Conflict is present.
3081 	 */
3082 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3083 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
3084 		kmem_free(bufaddr, SUN_INQSIZE);
3085 		return (EIO);
3086 	}
3087 
3088 	/*
3089 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3090 	 * Note that this routine does not return a failure here even if the
3091 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3092 	 */
3093 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3094 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3095 	}
3096 
3097 	kmem_free(bufaddr, SUN_INQSIZE);
3098 
3099 	/* If we hit a reservation conflict above, tell the caller. */
3100 	if (has_conflict == TRUE) {
3101 		return (EACCES);
3102 	}
3103 
3104 	return (0);
3105 }
3106 
3107 #ifdef _LP64
3108 /*
3109  *    Function: sd_enable_descr_sense
3110  *
3111  * Description: This routine attempts to select descriptor sense format
3112  *		using the Control mode page.  Devices that support 64 bit
3113  *		LBAs (for >2TB luns) should also implement descriptor
3114  *		sense data so we will call this function whenever we see
3115  *		a lun larger than 2TB.  If for some reason the device
3116  *		supports 64 bit LBAs but doesn't support descriptor sense
3117  *		presumably the mode select will fail.  Everything will
3118  *		continue to work normally except that we will not get
3119  *		complete sense data for commands that fail with an LBA
3120  *		larger than 32 bits.
3121  *
3122  *   Arguments: un - driver soft state (unit) structure
3123  *
3124  *     Context: Kernel thread context only
3125  */
3126 
3127 static void
3128 sd_enable_descr_sense(struct sd_lun *un)
3129 {
3130 	uchar_t			*header;
3131 	struct mode_control_scsi3 *ctrl_bufp;
3132 	size_t			buflen;
3133 	size_t			bd_len;
3134 
3135 	/*
3136 	 * Read MODE SENSE page 0xA, Control Mode Page
3137 	 */
3138 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3139 	    sizeof (struct mode_control_scsi3);
3140 	header = kmem_zalloc(buflen, KM_SLEEP);
3141 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3142 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3143 		SD_ERROR(SD_LOG_COMMON, un,
3144 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3145 		goto eds_exit;
3146 	}
3147 
3148 	/*
3149 	 * Determine size of Block Descriptors in order to locate
3150 	 * the mode page data. ATAPI devices return 0, SCSI devices
3151 	 * should return MODE_BLK_DESC_LENGTH.
3152 	 */
3153 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3154 
3155 	ctrl_bufp = (struct mode_control_scsi3 *)
3156 	    (header + MODE_HEADER_LENGTH + bd_len);
3157 
3158 	/*
3159 	 * Clear PS bit for MODE SELECT
3160 	 */
3161 	ctrl_bufp->mode_page.ps = 0;
3162 
3163 	/*
3164 	 * Set D_SENSE to enable descriptor sense format.
3165 	 */
3166 	ctrl_bufp->d_sense = 1;
3167 
3168 	/*
3169 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3170 	 */
3171 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3172 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3173 		SD_INFO(SD_LOG_COMMON, un,
3174 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3175 		goto eds_exit;
3176 	}
3177 
3178 eds_exit:
3179 	kmem_free(header, buflen);
3180 }
3181 
3182 /*
3183  *    Function: sd_reenable_dsense_task
3184  *
3185  * Description: Re-enable descriptor sense after device or bus reset
3186  *
3187  *     Context: Executes in a taskq() thread context
3188  */
3189 static void
3190 sd_reenable_dsense_task(void *arg)
3191 {
3192 	struct	sd_lun	*un = arg;
3193 
3194 	ASSERT(un != NULL);
3195 	sd_enable_descr_sense(un);
3196 }
3197 #endif /* _LP64 */
3198 
3199 /*
3200  *    Function: sd_set_mmc_caps
3201  *
3202  * Description: This routine determines if the device is MMC compliant and if
3203  *		the device supports CDDA via a mode sense of the CDVD
3204  *		capabilities mode page. Also checks if the device is a
3205  *		dvdram writable device.
3206  *
3207  *   Arguments: un - driver soft state (unit) structure
3208  *
3209  *     Context: Kernel thread context only
3210  */
3211 
3212 static void
3213 sd_set_mmc_caps(struct sd_lun *un)
3214 {
3215 	struct mode_header_grp2		*sense_mhp;
3216 	uchar_t				*sense_page;
3217 	caddr_t				buf;
3218 	int				bd_len;
3219 	int				status;
3220 	struct uscsi_cmd		com;
3221 	int				rtn;
3222 	uchar_t				*out_data_rw, *out_data_hd;
3223 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3224 
3225 	ASSERT(un != NULL);
3226 
3227 	/*
3228 	 * The flags which will be set in this function are - mmc compliant,
3229 	 * dvdram writable device, cdda support. Initialize them to FALSE
3230 	 * and if a capability is detected - it will be set to TRUE.
3231 	 */
3232 	un->un_f_mmc_cap = FALSE;
3233 	un->un_f_dvdram_writable_device = FALSE;
3234 	un->un_f_cfg_cdda = FALSE;
3235 
3236 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3237 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3238 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3239 
3240 	if (status != 0) {
3241 		/* command failed; just return */
3242 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3243 		return;
3244 	}
3245 	/*
3246 	 * If the mode sense request for the CDROM CAPABILITIES
3247 	 * page (0x2A) succeeds the device is assumed to be MMC.
3248 	 */
3249 	un->un_f_mmc_cap = TRUE;
3250 
3251 	/* Get to the page data */
3252 	sense_mhp = (struct mode_header_grp2 *)buf;
3253 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3254 	    sense_mhp->bdesc_length_lo;
3255 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3256 		/*
3257 		 * We did not get back the expected block descriptor
3258 		 * length so we cannot determine if the device supports
3259 		 * CDDA. However, we still indicate the device is MMC
3260 		 * according to the successful response to the page
3261 		 * 0x2A mode sense request.
3262 		 */
3263 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3264 		    "sd_set_mmc_caps: Mode Sense returned "
3265 		    "invalid block descriptor length\n");
3266 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3267 		return;
3268 	}
3269 
3270 	/* See if read CDDA is supported */
3271 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3272 	    bd_len);
3273 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3274 
3275 	/* See if writing DVD RAM is supported. */
3276 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3277 	if (un->un_f_dvdram_writable_device == TRUE) {
3278 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3279 		return;
3280 	}
3281 
3282 	/*
3283 	 * If the device presents DVD or CD capabilities in the mode
3284 	 * page, we can return here since a RRD will not have
3285 	 * these capabilities.
3286 	 */
3287 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3288 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3289 		return;
3290 	}
3291 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3292 
3293 	/*
3294 	 * If un->un_f_dvdram_writable_device is still FALSE,
3295 	 * check for a Removable Rigid Disk (RRD).  A RRD
3296 	 * device is identified by the features RANDOM_WRITABLE and
3297 	 * HARDWARE_DEFECT_MANAGEMENT.
3298 	 */
3299 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3300 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3301 
3302 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3303 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3304 	    RANDOM_WRITABLE);
3305 	if (rtn != 0) {
3306 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3307 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3308 		return;
3309 	}
3310 
3311 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3312 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3313 
3314 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3315 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3316 	    HARDWARE_DEFECT_MANAGEMENT);
3317 	if (rtn == 0) {
3318 		/*
3319 		 * We have good information, check for random writable
3320 		 * and hardware defect features.
3321 		 */
3322 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3323 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3324 			un->un_f_dvdram_writable_device = TRUE;
3325 		}
3326 	}
3327 
3328 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3329 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3330 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3331 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3332 }
3333 
3334 /*
3335  *    Function: sd_check_for_writable_cd
3336  *
3337  * Description: This routine determines if the media in the device is
3338  *		writable or not. It uses the get configuration command (0x46)
3339  *		to determine if the media is writable
3340  *
3341  *   Arguments: un - driver soft state (unit) structure
3342  *
3343  *     Context: Never called at interrupt context.
3344  */
3345 
3346 static void
3347 sd_check_for_writable_cd(struct sd_lun *un)
3348 {
3349 	struct uscsi_cmd		com;
3350 	uchar_t				*out_data;
3351 	uchar_t				*rqbuf;
3352 	int				rtn;
3353 	uchar_t				*out_data_rw, *out_data_hd;
3354 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3355 	struct mode_header_grp2		*sense_mhp;
3356 	uchar_t				*sense_page;
3357 	caddr_t				buf;
3358 	int				bd_len;
3359 	int				status;
3360 
3361 	ASSERT(un != NULL);
3362 	ASSERT(mutex_owned(SD_MUTEX(un)));
3363 
3364 	/*
3365 	 * Initialize the writable media to false, if configuration info.
3366 	 * tells us otherwise then only we will set it.
3367 	 */
3368 	un->un_f_mmc_writable_media = FALSE;
3369 	mutex_exit(SD_MUTEX(un));
3370 
3371 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3372 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3373 
3374 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3375 	    out_data, SD_PROFILE_HEADER_LEN);
3376 
3377 	mutex_enter(SD_MUTEX(un));
3378 	if (rtn == 0) {
3379 		/*
3380 		 * We have good information, check for writable DVD.
3381 		 */
3382 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3383 			un->un_f_mmc_writable_media = TRUE;
3384 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3385 			kmem_free(rqbuf, SENSE_LENGTH);
3386 			return;
3387 		}
3388 	}
3389 
3390 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3391 	kmem_free(rqbuf, SENSE_LENGTH);
3392 
3393 	/*
3394 	 * Determine if this is a RRD type device.
3395 	 */
3396 	mutex_exit(SD_MUTEX(un));
3397 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3398 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3399 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3400 	mutex_enter(SD_MUTEX(un));
3401 	if (status != 0) {
3402 		/* command failed; just return */
3403 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3404 		return;
3405 	}
3406 
3407 	/* Get to the page data */
3408 	sense_mhp = (struct mode_header_grp2 *)buf;
3409 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3410 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3411 		/*
3412 		 * We did not get back the expected block descriptor length so
3413 		 * we cannot check the mode page.
3414 		 */
3415 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3416 		    "sd_check_for_writable_cd: Mode Sense returned "
3417 		    "invalid block descriptor length\n");
3418 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3419 		return;
3420 	}
3421 
3422 	/*
3423 	 * If the device presents DVD or CD capabilities in the mode
3424 	 * page, we can return here since a RRD device will not have
3425 	 * these capabilities.
3426 	 */
3427 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3428 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3429 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3430 		return;
3431 	}
3432 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3433 
3434 	/*
3435 	 * If un->un_f_mmc_writable_media is still FALSE,
3436 	 * check for RRD type media.  A RRD device is identified
3437 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3438 	 */
3439 	mutex_exit(SD_MUTEX(un));
3440 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3441 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3442 
3443 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3444 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3445 	    RANDOM_WRITABLE);
3446 	if (rtn != 0) {
3447 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3448 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3449 		mutex_enter(SD_MUTEX(un));
3450 		return;
3451 	}
3452 
3453 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3454 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3455 
3456 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3457 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3458 	    HARDWARE_DEFECT_MANAGEMENT);
3459 	mutex_enter(SD_MUTEX(un));
3460 	if (rtn == 0) {
3461 		/*
3462 		 * We have good information, check for random writable
3463 		 * and hardware defect features as current.
3464 		 */
3465 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3466 		    (out_data_rw[10] & 0x1) &&
3467 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3468 		    (out_data_hd[10] & 0x1)) {
3469 			un->un_f_mmc_writable_media = TRUE;
3470 		}
3471 	}
3472 
3473 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3474 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3475 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3476 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3477 }
3478 
3479 /*
3480  *    Function: sd_read_unit_properties
3481  *
3482  * Description: The following implements a property lookup mechanism.
3483  *		Properties for particular disks (keyed on vendor, model
3484  *		and rev numbers) are sought in the sd.conf file via
3485  *		sd_process_sdconf_file(), and if not found there, are
3486  *		looked for in a list hardcoded in this driver via
3487  *		sd_process_sdconf_table() Once located the properties
3488  *		are used to update the driver unit structure.
3489  *
3490  *   Arguments: un - driver soft state (unit) structure
3491  */
3492 
3493 static void
3494 sd_read_unit_properties(struct sd_lun *un)
3495 {
3496 	/*
3497 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3498 	 * the "sd-config-list" property (from the sd.conf file) or if
3499 	 * there was not a match for the inquiry vid/pid. If this event
3500 	 * occurs the static driver configuration table is searched for
3501 	 * a match.
3502 	 */
3503 	ASSERT(un != NULL);
3504 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3505 		sd_process_sdconf_table(un);
3506 	}
3507 
3508 	/* check for LSI device */
3509 	sd_is_lsi(un);
3510 
3511 
3512 }
3513 
3514 
3515 /*
3516  *    Function: sd_process_sdconf_file
3517  *
3518  * Description: Use ddi_getlongprop to obtain the properties from the
3519  *		driver's config file (ie, sd.conf) and update the driver
3520  *		soft state structure accordingly.
3521  *
3522  *   Arguments: un - driver soft state (unit) structure
3523  *
3524  * Return Code: SD_SUCCESS - The properties were successfully set according
3525  *			     to the driver configuration file.
3526  *		SD_FAILURE - The driver config list was not obtained or
3527  *			     there was no vid/pid match. This indicates that
3528  *			     the static config table should be used.
3529  *
3530  * The config file has a property, "sd-config-list", which consists of
3531  * one or more duplets as follows:
3532  *
3533  *  sd-config-list=
3534  *	<duplet>,
3535  *	[<duplet>,]
3536  *	[<duplet>];
3537  *
3538  * The structure of each duplet is as follows:
3539  *
3540  *  <duplet>:= <vid+pid>,<data-property-name_list>
3541  *
3542  * The first entry of the duplet is the device ID string (the concatenated
3543  * vid & pid; not to be confused with a device_id).  This is defined in
3544  * the same way as in the sd_disk_table.
3545  *
3546  * The second part of the duplet is a string that identifies a
3547  * data-property-name-list. The data-property-name-list is defined as
3548  * follows:
3549  *
3550  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3551  *
3552  * The syntax of <data-property-name> depends on the <version> field.
3553  *
3554  * If version = SD_CONF_VERSION_1 we have the following syntax:
3555  *
3556  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3557  *
3558  * where the prop0 value will be used to set prop0 if bit0 set in the
3559  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3560  *
3561  */
3562 
3563 static int
3564 sd_process_sdconf_file(struct sd_lun *un)
3565 {
3566 	char	*config_list = NULL;
3567 	int	config_list_len;
3568 	int	len;
3569 	int	dupletlen = 0;
3570 	char	*vidptr;
3571 	int	vidlen;
3572 	char	*dnlist_ptr;
3573 	char	*dataname_ptr;
3574 	int	dnlist_len;
3575 	int	dataname_len;
3576 	int	*data_list;
3577 	int	data_list_len;
3578 	int	rval = SD_FAILURE;
3579 	int	i;
3580 
3581 	ASSERT(un != NULL);
3582 
3583 	/* Obtain the configuration list associated with the .conf file */
3584 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3585 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3586 	    != DDI_PROP_SUCCESS) {
3587 		return (SD_FAILURE);
3588 	}
3589 
3590 	/*
3591 	 * Compare vids in each duplet to the inquiry vid - if a match is
3592 	 * made, get the data value and update the soft state structure
3593 	 * accordingly.
3594 	 *
3595 	 * Note: This algorithm is complex and difficult to maintain. It should
3596 	 * be replaced with a more robust implementation.
3597 	 */
3598 	for (len = config_list_len, vidptr = config_list; len > 0;
3599 	    vidptr += dupletlen, len -= dupletlen) {
3600 		/*
3601 		 * Note: The assumption here is that each vid entry is on
3602 		 * a unique line from its associated duplet.
3603 		 */
3604 		vidlen = dupletlen = (int)strlen(vidptr);
3605 		if ((vidlen == 0) ||
3606 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3607 			dupletlen++;
3608 			continue;
3609 		}
3610 
3611 		/*
3612 		 * dnlist contains 1 or more blank separated
3613 		 * data-property-name entries
3614 		 */
3615 		dnlist_ptr = vidptr + vidlen + 1;
3616 		dnlist_len = (int)strlen(dnlist_ptr);
3617 		dupletlen += dnlist_len + 2;
3618 
3619 		/*
3620 		 * Set a pointer for the first data-property-name
3621 		 * entry in the list
3622 		 */
3623 		dataname_ptr = dnlist_ptr;
3624 		dataname_len = 0;
3625 
3626 		/*
3627 		 * Loop through all data-property-name entries in the
3628 		 * data-property-name-list setting the properties for each.
3629 		 */
3630 		while (dataname_len < dnlist_len) {
3631 			int version;
3632 
3633 			/*
3634 			 * Determine the length of the current
3635 			 * data-property-name entry by indexing until a
3636 			 * blank or NULL is encountered. When the space is
3637 			 * encountered reset it to a NULL for compliance
3638 			 * with ddi_getlongprop().
3639 			 */
3640 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3641 			    (dataname_ptr[i] != '\0')); i++) {
3642 				;
3643 			}
3644 
3645 			dataname_len += i;
3646 			/* If not null terminated, Make it so */
3647 			if (dataname_ptr[i] == ' ') {
3648 				dataname_ptr[i] = '\0';
3649 			}
3650 			dataname_len++;
3651 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3652 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3653 			    vidptr, dataname_ptr);
3654 
3655 			/* Get the data list */
3656 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3657 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3658 			    != DDI_PROP_SUCCESS) {
3659 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3660 				    "sd_process_sdconf_file: data property (%s)"
3661 				    " has no value\n", dataname_ptr);
3662 				dataname_ptr = dnlist_ptr + dataname_len;
3663 				continue;
3664 			}
3665 
3666 			version = data_list[0];
3667 
3668 			if (version == SD_CONF_VERSION_1) {
3669 				sd_tunables values;
3670 
3671 				/* Set the properties */
3672 				if (sd_chk_vers1_data(un, data_list[1],
3673 				    &data_list[2], data_list_len, dataname_ptr)
3674 				    == SD_SUCCESS) {
3675 					sd_get_tunables_from_conf(un,
3676 					    data_list[1], &data_list[2],
3677 					    &values);
3678 					sd_set_vers1_properties(un,
3679 					    data_list[1], &values);
3680 					rval = SD_SUCCESS;
3681 				} else {
3682 					rval = SD_FAILURE;
3683 				}
3684 			} else {
3685 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3686 				    "data property %s version 0x%x is invalid.",
3687 				    dataname_ptr, version);
3688 				rval = SD_FAILURE;
3689 			}
3690 			kmem_free(data_list, data_list_len);
3691 			dataname_ptr = dnlist_ptr + dataname_len;
3692 		}
3693 	}
3694 
3695 	/* free up the memory allocated by ddi_getlongprop */
3696 	if (config_list) {
3697 		kmem_free(config_list, config_list_len);
3698 	}
3699 
3700 	return (rval);
3701 }
3702 
3703 /*
3704  *    Function: sd_get_tunables_from_conf()
3705  *
3706  *
3707  *    This function reads the data list from the sd.conf file and pulls
3708  *    the values that can have numeric values as arguments and places
3709  *    the values in the apropriate sd_tunables member.
3710  *    Since the order of the data list members varies across platforms
3711  *    This function reads them from the data list in a platform specific
3712  *    order and places them into the correct sd_tunable member that is
3713  *    a consistant across all platforms.
3714  */
3715 static void
3716 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3717     sd_tunables *values)
3718 {
3719 	int i;
3720 	int mask;
3721 
3722 	bzero(values, sizeof (sd_tunables));
3723 
3724 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3725 
3726 		mask = 1 << i;
3727 		if (mask > flags) {
3728 			break;
3729 		}
3730 
3731 		switch (mask & flags) {
3732 		case 0:	/* This mask bit not set in flags */
3733 			continue;
3734 		case SD_CONF_BSET_THROTTLE:
3735 			values->sdt_throttle = data_list[i];
3736 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3737 			    "sd_get_tunables_from_conf: throttle = %d\n",
3738 			    values->sdt_throttle);
3739 			break;
3740 		case SD_CONF_BSET_CTYPE:
3741 			values->sdt_ctype = data_list[i];
3742 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3743 			    "sd_get_tunables_from_conf: ctype = %d\n",
3744 			    values->sdt_ctype);
3745 			break;
3746 		case SD_CONF_BSET_NRR_COUNT:
3747 			values->sdt_not_rdy_retries = data_list[i];
3748 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3749 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3750 			    values->sdt_not_rdy_retries);
3751 			break;
3752 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3753 			values->sdt_busy_retries = data_list[i];
3754 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3755 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3756 			    values->sdt_busy_retries);
3757 			break;
3758 		case SD_CONF_BSET_RST_RETRIES:
3759 			values->sdt_reset_retries = data_list[i];
3760 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3761 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3762 			    values->sdt_reset_retries);
3763 			break;
3764 		case SD_CONF_BSET_RSV_REL_TIME:
3765 			values->sdt_reserv_rel_time = data_list[i];
3766 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3767 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3768 			    values->sdt_reserv_rel_time);
3769 			break;
3770 		case SD_CONF_BSET_MIN_THROTTLE:
3771 			values->sdt_min_throttle = data_list[i];
3772 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3773 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3774 			    values->sdt_min_throttle);
3775 			break;
3776 		case SD_CONF_BSET_DISKSORT_DISABLED:
3777 			values->sdt_disk_sort_dis = data_list[i];
3778 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3779 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3780 			    values->sdt_disk_sort_dis);
3781 			break;
3782 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3783 			values->sdt_lun_reset_enable = data_list[i];
3784 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3785 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3786 			    "\n", values->sdt_lun_reset_enable);
3787 			break;
3788 		}
3789 	}
3790 }
3791 
3792 /*
3793  *    Function: sd_process_sdconf_table
3794  *
3795  * Description: Search the static configuration table for a match on the
3796  *		inquiry vid/pid and update the driver soft state structure
3797  *		according to the table property values for the device.
3798  *
3799  *		The form of a configuration table entry is:
3800  *		  <vid+pid>,<flags>,<property-data>
3801  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3802  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3803  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3804  *
3805  *   Arguments: un - driver soft state (unit) structure
3806  */
3807 
3808 static void
3809 sd_process_sdconf_table(struct sd_lun *un)
3810 {
3811 	char	*id = NULL;
3812 	int	table_index;
3813 	int	idlen;
3814 
3815 	ASSERT(un != NULL);
3816 	for (table_index = 0; table_index < sd_disk_table_size;
3817 	    table_index++) {
3818 		id = sd_disk_table[table_index].device_id;
3819 		idlen = strlen(id);
3820 		if (idlen == 0) {
3821 			continue;
3822 		}
3823 
3824 		/*
3825 		 * The static configuration table currently does not
3826 		 * implement version 10 properties. Additionally,
3827 		 * multiple data-property-name entries are not
3828 		 * implemented in the static configuration table.
3829 		 */
3830 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3831 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3832 			    "sd_process_sdconf_table: disk %s\n", id);
3833 			sd_set_vers1_properties(un,
3834 			    sd_disk_table[table_index].flags,
3835 			    sd_disk_table[table_index].properties);
3836 			break;
3837 		}
3838 	}
3839 }
3840 
3841 
3842 /*
3843  *    Function: sd_sdconf_id_match
3844  *
3845  * Description: This local function implements a case sensitive vid/pid
3846  *		comparison as well as the boundary cases of wild card and
3847  *		multiple blanks.
3848  *
3849  *		Note: An implicit assumption made here is that the scsi
3850  *		inquiry structure will always keep the vid, pid and
3851  *		revision strings in consecutive sequence, so they can be
3852  *		read as a single string. If this assumption is not the
3853  *		case, a separate string, to be used for the check, needs
3854  *		to be built with these strings concatenated.
3855  *
3856  *   Arguments: un - driver soft state (unit) structure
3857  *		id - table or config file vid/pid
3858  *		idlen  - length of the vid/pid (bytes)
3859  *
3860  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3861  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3862  */
3863 
3864 static int
3865 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3866 {
3867 	struct scsi_inquiry	*sd_inq;
3868 	int 			rval = SD_SUCCESS;
3869 
3870 	ASSERT(un != NULL);
3871 	sd_inq = un->un_sd->sd_inq;
3872 	ASSERT(id != NULL);
3873 
3874 	/*
3875 	 * We use the inq_vid as a pointer to a buffer containing the
3876 	 * vid and pid and use the entire vid/pid length of the table
3877 	 * entry for the comparison. This works because the inq_pid
3878 	 * data member follows inq_vid in the scsi_inquiry structure.
3879 	 */
3880 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3881 		/*
3882 		 * The user id string is compared to the inquiry vid/pid
3883 		 * using a case insensitive comparison and ignoring
3884 		 * multiple spaces.
3885 		 */
3886 		rval = sd_blank_cmp(un, id, idlen);
3887 		if (rval != SD_SUCCESS) {
3888 			/*
3889 			 * User id strings that start and end with a "*"
3890 			 * are a special case. These do not have a
3891 			 * specific vendor, and the product string can
3892 			 * appear anywhere in the 16 byte PID portion of
3893 			 * the inquiry data. This is a simple strstr()
3894 			 * type search for the user id in the inquiry data.
3895 			 */
3896 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3897 				char	*pidptr = &id[1];
3898 				int	i;
3899 				int	j;
3900 				int	pidstrlen = idlen - 2;
3901 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3902 				    pidstrlen;
3903 
3904 				if (j < 0) {
3905 					return (SD_FAILURE);
3906 				}
3907 				for (i = 0; i < j; i++) {
3908 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3909 					    pidptr, pidstrlen) == 0) {
3910 						rval = SD_SUCCESS;
3911 						break;
3912 					}
3913 				}
3914 			}
3915 		}
3916 	}
3917 	return (rval);
3918 }
3919 
3920 
3921 /*
3922  *    Function: sd_blank_cmp
3923  *
3924  * Description: If the id string starts and ends with a space, treat
3925  *		multiple consecutive spaces as equivalent to a single
3926  *		space. For example, this causes a sd_disk_table entry
3927  *		of " NEC CDROM " to match a device's id string of
3928  *		"NEC       CDROM".
3929  *
3930  *		Note: The success exit condition for this routine is if
3931  *		the pointer to the table entry is '\0' and the cnt of
3932  *		the inquiry length is zero. This will happen if the inquiry
3933  *		string returned by the device is padded with spaces to be
3934  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3935  *		SCSI spec states that the inquiry string is to be padded with
3936  *		spaces.
3937  *
3938  *   Arguments: un - driver soft state (unit) structure
3939  *		id - table or config file vid/pid
3940  *		idlen  - length of the vid/pid (bytes)
3941  *
3942  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3943  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3944  */
3945 
3946 static int
3947 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3948 {
3949 	char		*p1;
3950 	char		*p2;
3951 	int		cnt;
3952 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3953 	    sizeof (SD_INQUIRY(un)->inq_pid);
3954 
3955 	ASSERT(un != NULL);
3956 	p2 = un->un_sd->sd_inq->inq_vid;
3957 	ASSERT(id != NULL);
3958 	p1 = id;
3959 
3960 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3961 		/*
3962 		 * Note: string p1 is terminated by a NUL but string p2
3963 		 * isn't.  The end of p2 is determined by cnt.
3964 		 */
3965 		for (;;) {
3966 			/* skip over any extra blanks in both strings */
3967 			while ((*p1 != '\0') && (*p1 == ' ')) {
3968 				p1++;
3969 			}
3970 			while ((cnt != 0) && (*p2 == ' ')) {
3971 				p2++;
3972 				cnt--;
3973 			}
3974 
3975 			/* compare the two strings */
3976 			if ((cnt == 0) ||
3977 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3978 				break;
3979 			}
3980 			while ((cnt > 0) &&
3981 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3982 				p1++;
3983 				p2++;
3984 				cnt--;
3985 			}
3986 		}
3987 	}
3988 
3989 	/* return SD_SUCCESS if both strings match */
3990 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3991 }
3992 
3993 
3994 /*
3995  *    Function: sd_chk_vers1_data
3996  *
3997  * Description: Verify the version 1 device properties provided by the
3998  *		user via the configuration file
3999  *
4000  *   Arguments: un	     - driver soft state (unit) structure
4001  *		flags	     - integer mask indicating properties to be set
4002  *		prop_list    - integer list of property values
4003  *		list_len     - length of user provided data
4004  *
4005  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4006  *		SD_FAILURE - Indicates the user provided data is invalid
4007  */
4008 
4009 static int
4010 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4011     int list_len, char *dataname_ptr)
4012 {
4013 	int i;
4014 	int mask = 1;
4015 	int index = 0;
4016 
4017 	ASSERT(un != NULL);
4018 
4019 	/* Check for a NULL property name and list */
4020 	if (dataname_ptr == NULL) {
4021 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4022 		    "sd_chk_vers1_data: NULL data property name.");
4023 		return (SD_FAILURE);
4024 	}
4025 	if (prop_list == NULL) {
4026 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4027 		    "sd_chk_vers1_data: %s NULL data property list.",
4028 		    dataname_ptr);
4029 		return (SD_FAILURE);
4030 	}
4031 
4032 	/* Display a warning if undefined bits are set in the flags */
4033 	if (flags & ~SD_CONF_BIT_MASK) {
4034 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4035 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4036 		    "Properties not set.",
4037 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4038 		return (SD_FAILURE);
4039 	}
4040 
4041 	/*
4042 	 * Verify the length of the list by identifying the highest bit set
4043 	 * in the flags and validating that the property list has a length
4044 	 * up to the index of this bit.
4045 	 */
4046 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4047 		if (flags & mask) {
4048 			index++;
4049 		}
4050 		mask = 1 << i;
4051 	}
4052 	if ((list_len / sizeof (int)) < (index + 2)) {
4053 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4054 		    "sd_chk_vers1_data: "
4055 		    "Data property list %s size is incorrect. "
4056 		    "Properties not set.", dataname_ptr);
4057 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4058 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4059 		return (SD_FAILURE);
4060 	}
4061 	return (SD_SUCCESS);
4062 }
4063 
4064 
4065 /*
4066  *    Function: sd_set_vers1_properties
4067  *
4068  * Description: Set version 1 device properties based on a property list
4069  *		retrieved from the driver configuration file or static
4070  *		configuration table. Version 1 properties have the format:
4071  *
4072  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4073  *
4074  *		where the prop0 value will be used to set prop0 if bit0
4075  *		is set in the flags
4076  *
4077  *   Arguments: un	     - driver soft state (unit) structure
4078  *		flags	     - integer mask indicating properties to be set
4079  *		prop_list    - integer list of property values
4080  */
4081 
4082 static void
4083 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4084 {
4085 	ASSERT(un != NULL);
4086 
4087 	/*
4088 	 * Set the flag to indicate cache is to be disabled. An attempt
4089 	 * to disable the cache via sd_cache_control() will be made
4090 	 * later during attach once the basic initialization is complete.
4091 	 */
4092 	if (flags & SD_CONF_BSET_NOCACHE) {
4093 		un->un_f_opt_disable_cache = TRUE;
4094 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4095 		    "sd_set_vers1_properties: caching disabled flag set\n");
4096 	}
4097 
4098 	/* CD-specific configuration parameters */
4099 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4100 		un->un_f_cfg_playmsf_bcd = TRUE;
4101 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4102 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4103 	}
4104 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4105 		un->un_f_cfg_readsub_bcd = TRUE;
4106 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4107 		    "sd_set_vers1_properties: readsub_bcd set\n");
4108 	}
4109 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4110 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4111 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4112 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4113 	}
4114 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4115 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4116 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4117 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4118 	}
4119 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4120 		un->un_f_cfg_no_read_header = TRUE;
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4122 			    "sd_set_vers1_properties: no_read_header set\n");
4123 	}
4124 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4125 		un->un_f_cfg_read_cd_xd4 = TRUE;
4126 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4127 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4128 	}
4129 
4130 	/* Support for devices which do not have valid/unique serial numbers */
4131 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4132 		un->un_f_opt_fab_devid = TRUE;
4133 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4134 		    "sd_set_vers1_properties: fab_devid bit set\n");
4135 	}
4136 
4137 	/* Support for user throttle configuration */
4138 	if (flags & SD_CONF_BSET_THROTTLE) {
4139 		ASSERT(prop_list != NULL);
4140 		un->un_saved_throttle = un->un_throttle =
4141 		    prop_list->sdt_throttle;
4142 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4143 		    "sd_set_vers1_properties: throttle set to %d\n",
4144 		    prop_list->sdt_throttle);
4145 	}
4146 
4147 	/* Set the per disk retry count according to the conf file or table. */
4148 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4149 		ASSERT(prop_list != NULL);
4150 		if (prop_list->sdt_not_rdy_retries) {
4151 			un->un_notready_retry_count =
4152 				prop_list->sdt_not_rdy_retries;
4153 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154 			    "sd_set_vers1_properties: not ready retry count"
4155 			    " set to %d\n", un->un_notready_retry_count);
4156 		}
4157 	}
4158 
4159 	/* The controller type is reported for generic disk driver ioctls */
4160 	if (flags & SD_CONF_BSET_CTYPE) {
4161 		ASSERT(prop_list != NULL);
4162 		switch (prop_list->sdt_ctype) {
4163 		case CTYPE_CDROM:
4164 			un->un_ctype = prop_list->sdt_ctype;
4165 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4166 			    "sd_set_vers1_properties: ctype set to "
4167 			    "CTYPE_CDROM\n");
4168 			break;
4169 		case CTYPE_CCS:
4170 			un->un_ctype = prop_list->sdt_ctype;
4171 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4172 				"sd_set_vers1_properties: ctype set to "
4173 				"CTYPE_CCS\n");
4174 			break;
4175 		case CTYPE_ROD:		/* RW optical */
4176 			un->un_ctype = prop_list->sdt_ctype;
4177 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4178 			    "sd_set_vers1_properties: ctype set to "
4179 			    "CTYPE_ROD\n");
4180 			break;
4181 		default:
4182 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4183 			    "sd_set_vers1_properties: Could not set "
4184 			    "invalid ctype value (%d)",
4185 			    prop_list->sdt_ctype);
4186 		}
4187 	}
4188 
4189 	/* Purple failover timeout */
4190 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4191 		ASSERT(prop_list != NULL);
4192 		un->un_busy_retry_count =
4193 			prop_list->sdt_busy_retries;
4194 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4195 		    "sd_set_vers1_properties: "
4196 		    "busy retry count set to %d\n",
4197 		    un->un_busy_retry_count);
4198 	}
4199 
4200 	/* Purple reset retry count */
4201 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4202 		ASSERT(prop_list != NULL);
4203 		un->un_reset_retry_count =
4204 			prop_list->sdt_reset_retries;
4205 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4206 		    "sd_set_vers1_properties: "
4207 		    "reset retry count set to %d\n",
4208 		    un->un_reset_retry_count);
4209 	}
4210 
4211 	/* Purple reservation release timeout */
4212 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4213 		ASSERT(prop_list != NULL);
4214 		un->un_reserve_release_time =
4215 			prop_list->sdt_reserv_rel_time;
4216 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4217 		    "sd_set_vers1_properties: "
4218 		    "reservation release timeout set to %d\n",
4219 		    un->un_reserve_release_time);
4220 	}
4221 
4222 	/*
4223 	 * Driver flag telling the driver to verify that no commands are pending
4224 	 * for a device before issuing a Test Unit Ready. This is a workaround
4225 	 * for a firmware bug in some Seagate eliteI drives.
4226 	 */
4227 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4228 		un->un_f_cfg_tur_check = TRUE;
4229 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4230 		    "sd_set_vers1_properties: tur queue check set\n");
4231 	}
4232 
4233 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4234 		un->un_min_throttle = prop_list->sdt_min_throttle;
4235 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4236 		    "sd_set_vers1_properties: min throttle set to %d\n",
4237 		    un->un_min_throttle);
4238 	}
4239 
4240 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4241 		un->un_f_disksort_disabled =
4242 		    (prop_list->sdt_disk_sort_dis != 0) ?
4243 		    TRUE : FALSE;
4244 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4245 		    "sd_set_vers1_properties: disksort disabled "
4246 		    "flag set to %d\n",
4247 		    prop_list->sdt_disk_sort_dis);
4248 	}
4249 
4250 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4251 		un->un_f_lun_reset_enabled =
4252 		    (prop_list->sdt_lun_reset_enable != 0) ?
4253 		    TRUE : FALSE;
4254 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4255 		    "sd_set_vers1_properties: lun reset enabled "
4256 		    "flag set to %d\n",
4257 		    prop_list->sdt_lun_reset_enable);
4258 	}
4259 
4260 	/*
4261 	 * Validate the throttle values.
4262 	 * If any of the numbers are invalid, set everything to defaults.
4263 	 */
4264 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4265 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4266 	    (un->un_min_throttle > un->un_throttle)) {
4267 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4268 		un->un_min_throttle = sd_min_throttle;
4269 	}
4270 }
4271 
4272 /*
4273  *   Function: sd_is_lsi()
4274  *
4275  *   Description: Check for lsi devices, step throught the static device
4276  *	table to match vid/pid.
4277  *
4278  *   Args: un - ptr to sd_lun
4279  *
4280  *   Notes:  When creating new LSI property, need to add the new LSI property
4281  *		to this function.
4282  */
4283 static void
4284 sd_is_lsi(struct sd_lun *un)
4285 {
4286 	char	*id = NULL;
4287 	int	table_index;
4288 	int	idlen;
4289 	void	*prop;
4290 
4291 	ASSERT(un != NULL);
4292 	for (table_index = 0; table_index < sd_disk_table_size;
4293 	    table_index++) {
4294 		id = sd_disk_table[table_index].device_id;
4295 		idlen = strlen(id);
4296 		if (idlen == 0) {
4297 			continue;
4298 		}
4299 
4300 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4301 			prop = sd_disk_table[table_index].properties;
4302 			if (prop == &lsi_properties ||
4303 			    prop == &lsi_oem_properties ||
4304 			    prop == &lsi_properties_scsi ||
4305 			    prop == &symbios_properties) {
4306 				un->un_f_cfg_is_lsi = TRUE;
4307 			}
4308 			break;
4309 		}
4310 	}
4311 }
4312 
4313 
4314 /*
4315  * The following routines support reading and interpretation of disk labels,
4316  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4317  * fdisk tables.
4318  */
4319 
4320 /*
4321  *    Function: sd_validate_geometry
4322  *
4323  * Description: Read the label from the disk (if present). Update the unit's
4324  *		geometry and vtoc information from the data in the label.
4325  *		Verify that the label is valid.
4326  *
4327  *   Arguments: un - driver soft state (unit) structure
4328  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4329  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4330  *			to use the USCSI "direct" chain and bypass the normal
4331  *			command waitq.
4332  *
4333  * Return Code: 0 - Successful completion
4334  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4335  *			  un->un_blockcount; or label on disk is corrupted
4336  *			  or unreadable.
4337  *		EACCES  - Reservation conflict at the device.
4338  *		ENOMEM  - Resource allocation error
4339  *		ENOTSUP - geometry not applicable
4340  *
4341  *     Context: Kernel thread only (can sleep).
4342  */
4343 
4344 static int
4345 sd_validate_geometry(struct sd_lun *un, int path_flag)
4346 {
4347 	static	char		labelstring[128];
4348 	static	char		buf[256];
4349 	char	*label		= NULL;
4350 	int	label_error = 0;
4351 	int	gvalid		= un->un_f_geometry_is_valid;
4352 	int	lbasize;
4353 	uint_t	capacity;
4354 	int	count;
4355 #if defined(__i386) || defined(__amd64)
4356 	int forced_under_1t = 0;
4357 #endif
4358 
4359 	ASSERT(un != NULL);
4360 	ASSERT(mutex_owned(SD_MUTEX(un)));
4361 
4362 	/*
4363 	 * If the required values are not valid, then try getting them
4364 	 * once via read capacity. If that fails, then fail this call.
4365 	 * This is necessary with the new mpxio failover behavior in
4366 	 * the T300 where we can get an attach for the inactive path
4367 	 * before the active path. The inactive path fails commands with
4368 	 * sense data of 02,04,88 which happens to the read capacity
4369 	 * before mpxio has had sufficient knowledge to know if it should
4370 	 * force a fail over or not. (Which it won't do at attach anyhow).
4371 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4372 	 * un_blockcount won't be valid.
4373 	 */
4374 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4375 	    (un->un_f_blockcount_is_valid != TRUE)) {
4376 		uint64_t	cap;
4377 		uint32_t	lbasz;
4378 		int		rval;
4379 
4380 		mutex_exit(SD_MUTEX(un));
4381 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4382 		    &lbasz, SD_PATH_DIRECT);
4383 		mutex_enter(SD_MUTEX(un));
4384 		if (rval == 0) {
4385 			/*
4386 			 * The following relies on
4387 			 * sd_send_scsi_READ_CAPACITY never
4388 			 * returning 0 for capacity and/or lbasize.
4389 			 */
4390 			sd_update_block_info(un, lbasz, cap);
4391 		}
4392 
4393 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4394 		    (un->un_f_blockcount_is_valid != TRUE)) {
4395 			return (EINVAL);
4396 		}
4397 	}
4398 
4399 	/*
4400 	 * Copy the lbasize and capacity so that if they're reset while we're
4401 	 * not holding the SD_MUTEX, we will continue to use valid values
4402 	 * after the SD_MUTEX is reacquired. (4119659)
4403 	 */
4404 	lbasize  = un->un_tgt_blocksize;
4405 	capacity = un->un_blockcount;
4406 
4407 #if defined(_SUNOS_VTOC_16)
4408 	/*
4409 	 * Set up the "whole disk" fdisk partition; this should always
4410 	 * exist, regardless of whether the disk contains an fdisk table
4411 	 * or vtoc.
4412 	 */
4413 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4414 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4415 #endif
4416 
4417 	/*
4418 	 * Refresh the logical and physical geometry caches.
4419 	 * (data from MODE SENSE format/rigid disk geometry pages,
4420 	 * and scsi_ifgetcap("geometry").
4421 	 */
4422 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4423 
4424 	label_error = sd_use_efi(un, path_flag);
4425 	if (label_error == 0) {
4426 		/* found a valid EFI label */
4427 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4428 			"sd_validate_geometry: found EFI label\n");
4429 		un->un_solaris_offset = 0;
4430 		un->un_solaris_size = capacity;
4431 		return (ENOTSUP);
4432 	}
4433 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4434 		if (label_error == ESRCH) {
4435 			/*
4436 			 * they've configured a LUN over 1TB, but used
4437 			 * format.dat to restrict format's view of the
4438 			 * capacity to be under 1TB
4439 			 */
4440 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4441 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4442 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4443 "size to be < 1TB or relabel the disk with an EFI label");
4444 #if defined(__i386) || defined(__amd64)
4445 			forced_under_1t = 1;
4446 #endif
4447 		} else {
4448 			/* unlabeled disk over 1TB */
4449 #if defined(__i386) || defined(__amd64)
4450 			/*
4451 			 * Refer to comments on off-by-1 at the head of the file
4452 			 * A 1TB disk was treated as (1T - 512)B in the past,
4453 			 * thus, it might have valid solaris partition. We
4454 			 * will return ENOTSUP later only if this disk has no
4455 			 * valid solaris partition.
4456 			 */
4457 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4458 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4459 			    un->un_f_has_removable_media ||
4460 			    un->un_f_is_hotpluggable)
4461 #endif
4462 				return (ENOTSUP);
4463 		}
4464 	}
4465 	label_error = 0;
4466 
4467 	/*
4468 	 * at this point it is either labeled with a VTOC or it is
4469 	 * under 1TB (<= 1TB actually for off-by-1)
4470 	 */
4471 	if (un->un_f_vtoc_label_supported) {
4472 		struct	dk_label *dkl;
4473 		offset_t dkl1;
4474 		offset_t label_addr, real_addr;
4475 		int	rval;
4476 		size_t	buffer_size;
4477 
4478 		/*
4479 		 * Note: This will set up un->un_solaris_size and
4480 		 * un->un_solaris_offset.
4481 		 */
4482 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4483 		case SD_CMD_RESERVATION_CONFLICT:
4484 			ASSERT(mutex_owned(SD_MUTEX(un)));
4485 			return (EACCES);
4486 		case SD_CMD_FAILURE:
4487 			ASSERT(mutex_owned(SD_MUTEX(un)));
4488 			return (ENOMEM);
4489 		}
4490 
4491 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4492 
4493 #if defined(__i386) || defined(__amd64)
4494 			/*
4495 			 * Refer to comments on off-by-1 at the head of the file
4496 			 * This is for 1TB disk only. Since that there is no
4497 			 * solaris partitions, return ENOTSUP as we do for
4498 			 * >1TB disk.
4499 			 */
4500 			if (un->un_blockcount > DK_MAX_BLOCKS)
4501 				return (ENOTSUP);
4502 #endif
4503 			/*
4504 			 * Found fdisk table but no Solaris partition entry,
4505 			 * so don't call sd_uselabel() and don't create
4506 			 * a default label.
4507 			 */
4508 			label_error = 0;
4509 			un->un_f_geometry_is_valid = TRUE;
4510 			goto no_solaris_partition;
4511 		}
4512 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4513 
4514 #if defined(__i386) || defined(__amd64)
4515 		/*
4516 		 * Refer to comments on off-by-1 at the head of the file
4517 		 * Now, this 1TB disk has valid solaris partition. It
4518 		 * must be created by previous sd driver, we have to
4519 		 * treat it as (1T-512)B.
4520 		 */
4521 		if ((un->un_blockcount > DK_MAX_BLOCKS) &&
4522 		    (forced_under_1t != 1)) {
4523 			un->un_f_capacity_adjusted = 1;
4524 			un->un_blockcount = DK_MAX_BLOCKS;
4525 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4526 
4527 			/*
4528 			 * Refer to sd_read_fdisk, when there is no
4529 			 * fdisk partition table, un_solaris_size is
4530 			 * set to disk's capacity. In this case, we
4531 			 * need to adjust it
4532 			 */
4533 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4534 				un->un_solaris_size = DK_MAX_BLOCKS;
4535 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4536 			    lbasize, path_flag);
4537 		}
4538 #endif
4539 
4540 		/*
4541 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4542 		 * blkno and save the index to beginning of dk_label
4543 		 */
4544 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4545 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4546 		    sizeof (struct dk_label));
4547 
4548 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4549 		    "label_addr: 0x%x allocation size: 0x%x\n",
4550 		    label_addr, buffer_size);
4551 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4552 		if (dkl == NULL) {
4553 			return (ENOMEM);
4554 		}
4555 
4556 		mutex_exit(SD_MUTEX(un));
4557 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4558 		    path_flag);
4559 		mutex_enter(SD_MUTEX(un));
4560 
4561 		switch (rval) {
4562 		case 0:
4563 			/*
4564 			 * sd_uselabel will establish that the geometry
4565 			 * is valid.
4566 			 * For sys_blocksize != tgt_blocksize, need
4567 			 * to index into the beginning of dk_label
4568 			 */
4569 			dkl1 = (daddr_t)dkl
4570 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4571 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4572 			    path_flag) != SD_LABEL_IS_VALID) {
4573 				label_error = EINVAL;
4574 			}
4575 			break;
4576 		case EACCES:
4577 			label_error = EACCES;
4578 			break;
4579 		default:
4580 			label_error = EINVAL;
4581 			break;
4582 		}
4583 
4584 		kmem_free(dkl, buffer_size);
4585 
4586 #if defined(_SUNOS_VTOC_8)
4587 		label = (char *)un->un_asciilabel;
4588 #elif defined(_SUNOS_VTOC_16)
4589 		label = (char *)un->un_vtoc.v_asciilabel;
4590 #else
4591 #error "No VTOC format defined."
4592 #endif
4593 	}
4594 
4595 	/*
4596 	 * If a valid label was not found, AND if no reservation conflict
4597 	 * was detected, then go ahead and create a default label (4069506).
4598 	 */
4599 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4600 		if (un->un_f_geometry_is_valid == FALSE) {
4601 			sd_build_default_label(un);
4602 		}
4603 		label_error = 0;
4604 	}
4605 
4606 no_solaris_partition:
4607 	if ((!un->un_f_has_removable_media ||
4608 	    (un->un_f_has_removable_media &&
4609 		un->un_mediastate == DKIO_EJECTED)) &&
4610 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4611 		/*
4612 		 * Print out a message indicating who and what we are.
4613 		 * We do this only when we happen to really validate the
4614 		 * geometry. We may call sd_validate_geometry() at other
4615 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4616 		 * don't want to print the label.
4617 		 * If the geometry is valid, print the label string,
4618 		 * else print vendor and product info, if available
4619 		 */
4620 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4621 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4622 		} else {
4623 			mutex_enter(&sd_label_mutex);
4624 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4625 			    labelstring);
4626 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4627 			    &labelstring[64]);
4628 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4629 			    labelstring, &labelstring[64]);
4630 			if (un->un_f_blockcount_is_valid == TRUE) {
4631 				(void) sprintf(&buf[strlen(buf)],
4632 				    ", %llu %u byte blocks\n",
4633 				    (longlong_t)un->un_blockcount,
4634 				    un->un_tgt_blocksize);
4635 			} else {
4636 				(void) sprintf(&buf[strlen(buf)],
4637 				    ", (unknown capacity)\n");
4638 			}
4639 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4640 			mutex_exit(&sd_label_mutex);
4641 		}
4642 	}
4643 
4644 #if defined(_SUNOS_VTOC_16)
4645 	/*
4646 	 * If we have valid geometry, set up the remaining fdisk partitions.
4647 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4648 	 * we set it to an entirely bogus value.
4649 	 */
4650 	for (count = 0; count < FD_NUMPART; count++) {
4651 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4652 		un->un_map[FDISK_P1 + count].dkl_nblk =
4653 		    un->un_fmap[count].fmap_nblk;
4654 
4655 		un->un_offset[FDISK_P1 + count] =
4656 		    un->un_fmap[count].fmap_start;
4657 	}
4658 #endif
4659 
4660 	for (count = 0; count < NDKMAP; count++) {
4661 #if defined(_SUNOS_VTOC_8)
4662 		struct dk_map *lp  = &un->un_map[count];
4663 		un->un_offset[count] =
4664 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4665 #elif defined(_SUNOS_VTOC_16)
4666 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4667 
4668 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4669 #else
4670 #error "No VTOC format defined."
4671 #endif
4672 	}
4673 
4674 	/*
4675 	 * For VTOC labeled disk, create and set the partition stats
4676 	 * at attach time, update the stats according to dynamic
4677 	 * partition changes during running time.
4678 	 */
4679 	if (label_error == 0 && un->un_f_pkstats_enabled) {
4680 		sd_set_pstats(un);
4681 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4682 		    "un:0x%p pstats created and set, or updated\n", un);
4683 	}
4684 
4685 	return (label_error);
4686 }
4687 
4688 
4689 #if defined(_SUNOS_VTOC_16)
4690 /*
4691  * Macro: MAX_BLKS
4692  *
4693  *	This macro is used for table entries where we need to have the largest
4694  *	possible sector value for that head & SPT (sectors per track)
4695  *	combination.  Other entries for some smaller disk sizes are set by
4696  *	convention to match those used by X86 BIOS usage.
4697  */
4698 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4699 
4700 /*
4701  *    Function: sd_convert_geometry
4702  *
4703  * Description: Convert physical geometry into a dk_geom structure. In
4704  *		other words, make sure we don't wrap 16-bit values.
4705  *		e.g. converting from geom_cache to dk_geom
4706  *
4707  *     Context: Kernel thread only
4708  */
4709 static void
4710 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4711 {
4712 	int i;
4713 	static const struct chs_values {
4714 		uint_t max_cap;		/* Max Capacity for this HS. */
4715 		uint_t nhead;		/* Heads to use. */
4716 		uint_t nsect;		/* SPT to use. */
4717 	} CHS_values[] = {
4718 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4719 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4720 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4721 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4722 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4723 	};
4724 
4725 	/* Unlabeled SCSI floppy device */
4726 	if (capacity <= 0x1000) {
4727 		un_g->dkg_nhead = 2;
4728 		un_g->dkg_ncyl = 80;
4729 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4730 		return;
4731 	}
4732 
4733 	/*
4734 	 * For all devices we calculate cylinders using the
4735 	 * heads and sectors we assign based on capacity of the
4736 	 * device.  The table is designed to be compatible with the
4737 	 * way other operating systems lay out fdisk tables for X86
4738 	 * and to insure that the cylinders never exceed 65535 to
4739 	 * prevent problems with X86 ioctls that report geometry.
4740 	 * We use SPT that are multiples of 63, since other OSes that
4741 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4742 	 * we make do by using multiples of 63 SPT.
4743 	 *
4744 	 * Note than capacities greater than or equal to 1TB will simply
4745 	 * get the largest geometry from the table. This should be okay
4746 	 * since disks this large shouldn't be using CHS values anyway.
4747 	 */
4748 	for (i = 0; CHS_values[i].max_cap < capacity &&
4749 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4750 		;
4751 
4752 	un_g->dkg_nhead = CHS_values[i].nhead;
4753 	un_g->dkg_nsect = CHS_values[i].nsect;
4754 }
4755 #endif
4756 
4757 
4758 /*
4759  *    Function: sd_resync_geom_caches
4760  *
4761  * Description: (Re)initialize both geometry caches: the virtual geometry
4762  *		information is extracted from the HBA (the "geometry"
4763  *		capability), and the physical geometry cache data is
4764  *		generated by issuing MODE SENSE commands.
4765  *
4766  *   Arguments: un - driver soft state (unit) structure
4767  *		capacity - disk capacity in #blocks
4768  *		lbasize - disk block size in bytes
4769  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4770  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4771  *			to use the USCSI "direct" chain and bypass the normal
4772  *			command waitq.
4773  *
4774  *     Context: Kernel thread only (can sleep).
4775  */
4776 
4777 static void
4778 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4779 	int path_flag)
4780 {
4781 	struct 	geom_cache 	pgeom;
4782 	struct 	geom_cache	*pgeom_p = &pgeom;
4783 	int 	spc;
4784 	unsigned short nhead;
4785 	unsigned short nsect;
4786 
4787 	ASSERT(un != NULL);
4788 	ASSERT(mutex_owned(SD_MUTEX(un)));
4789 
4790 	/*
4791 	 * Ask the controller for its logical geometry.
4792 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4793 	 * then the lgeom cache will be invalid.
4794 	 */
4795 	sd_get_virtual_geometry(un, capacity, lbasize);
4796 
4797 	/*
4798 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4799 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4800 	 */
4801 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4802 		/*
4803 		 * Note: Perhaps this needs to be more adaptive? The rationale
4804 		 * is that, if there's no HBA geometry from the HBA driver, any
4805 		 * guess is good, since this is the physical geometry. If MODE
4806 		 * SENSE fails this gives a max cylinder size for non-LBA access
4807 		 */
4808 		nhead = 255;
4809 		nsect = 63;
4810 	} else {
4811 		nhead = un->un_lgeom.g_nhead;
4812 		nsect = un->un_lgeom.g_nsect;
4813 	}
4814 
4815 	if (ISCD(un)) {
4816 		pgeom_p->g_nhead = 1;
4817 		pgeom_p->g_nsect = nsect * nhead;
4818 	} else {
4819 		pgeom_p->g_nhead = nhead;
4820 		pgeom_p->g_nsect = nsect;
4821 	}
4822 
4823 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4824 	pgeom_p->g_capacity = capacity;
4825 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4826 	pgeom_p->g_acyl = 0;
4827 
4828 	/*
4829 	 * Retrieve fresh geometry data from the hardware, stash it
4830 	 * here temporarily before we rebuild the incore label.
4831 	 *
4832 	 * We want to use the MODE SENSE commands to derive the
4833 	 * physical geometry of the device, but if either command
4834 	 * fails, the logical geometry is used as the fallback for
4835 	 * disk label geometry.
4836 	 */
4837 	mutex_exit(SD_MUTEX(un));
4838 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4839 	mutex_enter(SD_MUTEX(un));
4840 
4841 	/*
4842 	 * Now update the real copy while holding the mutex. This
4843 	 * way the global copy is never in an inconsistent state.
4844 	 */
4845 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4846 
4847 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4848 	    "(cached from lgeom)\n");
4849 	SD_INFO(SD_LOG_COMMON, un,
4850 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4851 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4852 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4853 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4854 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4855 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4856 	    un->un_pgeom.g_rpm);
4857 }
4858 
4859 
4860 /*
4861  *    Function: sd_read_fdisk
4862  *
4863  * Description: utility routine to read the fdisk table.
4864  *
4865  *   Arguments: un - driver soft state (unit) structure
4866  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4867  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4868  *			to use the USCSI "direct" chain and bypass the normal
4869  *			command waitq.
4870  *
4871  * Return Code: SD_CMD_SUCCESS
4872  *		SD_CMD_FAILURE
4873  *
4874  *     Context: Kernel thread only (can sleep).
4875  */
4876 /* ARGSUSED */
4877 static int
4878 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4879 {
4880 #if defined(_NO_FDISK_PRESENT)
4881 
4882 	un->un_solaris_offset = 0;
4883 	un->un_solaris_size = capacity;
4884 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4885 	return (SD_CMD_SUCCESS);
4886 
4887 #elif defined(_FIRMWARE_NEEDS_FDISK)
4888 
4889 	struct ipart	*fdp;
4890 	struct mboot	*mbp;
4891 	struct ipart	fdisk[FD_NUMPART];
4892 	int		i;
4893 	char		sigbuf[2];
4894 	caddr_t		bufp;
4895 	int		uidx;
4896 	int		rval;
4897 	int		lba = 0;
4898 	uint_t		solaris_offset;	/* offset to solaris part. */
4899 	daddr_t		solaris_size;	/* size of solaris partition */
4900 	uint32_t	blocksize;
4901 
4902 	ASSERT(un != NULL);
4903 	ASSERT(mutex_owned(SD_MUTEX(un)));
4904 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4905 
4906 	blocksize = un->un_tgt_blocksize;
4907 
4908 	/*
4909 	 * Start off assuming no fdisk table
4910 	 */
4911 	solaris_offset = 0;
4912 	solaris_size   = capacity;
4913 
4914 	mutex_exit(SD_MUTEX(un));
4915 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4916 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4917 	mutex_enter(SD_MUTEX(un));
4918 
4919 	if (rval != 0) {
4920 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4921 		    "sd_read_fdisk: fdisk read err\n");
4922 		kmem_free(bufp, blocksize);
4923 		return (SD_CMD_FAILURE);
4924 	}
4925 
4926 	mbp = (struct mboot *)bufp;
4927 
4928 	/*
4929 	 * The fdisk table does not begin on a 4-byte boundary within the
4930 	 * master boot record, so we copy it to an aligned structure to avoid
4931 	 * alignment exceptions on some processors.
4932 	 */
4933 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4934 
4935 	/*
4936 	 * Check for lba support before verifying sig; sig might not be
4937 	 * there, say on a blank disk, but the max_chs mark may still
4938 	 * be present.
4939 	 *
4940 	 * Note: LBA support and BEFs are an x86-only concept but this
4941 	 * code should work OK on SPARC as well.
4942 	 */
4943 
4944 	/*
4945 	 * First, check for lba-access-ok on root node (or prom root node)
4946 	 * if present there, don't need to search fdisk table.
4947 	 */
4948 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4949 	    "lba-access-ok", 0) != 0) {
4950 		/* All drives do LBA; don't search fdisk table */
4951 		lba = 1;
4952 	} else {
4953 		/* Okay, look for mark in fdisk table */
4954 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4955 			/* accumulate "lba" value from all partitions */
4956 			lba = (lba || sd_has_max_chs_vals(fdp));
4957 		}
4958 	}
4959 
4960 	if (lba != 0) {
4961 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4962 
4963 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4964 		    "lba-access-ok", 0) == 0) {
4965 			/* not found; create it */
4966 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4967 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4968 			    DDI_PROP_SUCCESS) {
4969 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4970 				    "sd_read_fdisk: Can't create lba property "
4971 				    "for instance %d\n",
4972 				    ddi_get_instance(SD_DEVINFO(un)));
4973 			}
4974 		}
4975 	}
4976 
4977 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4978 
4979 	/*
4980 	 * Endian-independent signature check
4981 	 */
4982 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4983 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4984 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4985 		    "sd_read_fdisk: no fdisk\n");
4986 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4987 		rval = SD_CMD_SUCCESS;
4988 		goto done;
4989 	}
4990 
4991 #ifdef SDDEBUG
4992 	if (sd_level_mask & SD_LOGMASK_INFO) {
4993 		fdp = fdisk;
4994 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4995 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4996 		    "numsect         sysid       bootid\n");
4997 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4998 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4999 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
5000 			    i, fdp->relsect, fdp->numsect,
5001 			    fdp->systid, fdp->bootid);
5002 		}
5003 	}
5004 #endif
5005 
5006 	/*
5007 	 * Try to find the unix partition
5008 	 */
5009 	uidx = -1;
5010 	solaris_offset = 0;
5011 	solaris_size   = 0;
5012 
5013 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
5014 		int	relsect;
5015 		int	numsect;
5016 
5017 		if (fdp->numsect == 0) {
5018 			un->un_fmap[i].fmap_start = 0;
5019 			un->un_fmap[i].fmap_nblk  = 0;
5020 			continue;
5021 		}
5022 
5023 		/*
5024 		 * Data in the fdisk table is little-endian.
5025 		 */
5026 		relsect = LE_32(fdp->relsect);
5027 		numsect = LE_32(fdp->numsect);
5028 
5029 		un->un_fmap[i].fmap_start = relsect;
5030 		un->un_fmap[i].fmap_nblk  = numsect;
5031 
5032 		if (fdp->systid != SUNIXOS &&
5033 		    fdp->systid != SUNIXOS2 &&
5034 		    fdp->systid != EFI_PMBR) {
5035 			continue;
5036 		}
5037 
5038 		/*
5039 		 * use the last active solaris partition id found
5040 		 * (there should only be 1 active partition id)
5041 		 *
5042 		 * if there are no active solaris partition id
5043 		 * then use the first inactive solaris partition id
5044 		 */
5045 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
5046 			uidx = i;
5047 			solaris_offset = relsect;
5048 			solaris_size   = numsect;
5049 		}
5050 	}
5051 
5052 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
5053 	    un->un_solaris_offset, un->un_solaris_size);
5054 
5055 	rval = SD_CMD_SUCCESS;
5056 
5057 done:
5058 
5059 	/*
5060 	 * Clear the VTOC info, only if the Solaris partition entry
5061 	 * has moved, changed size, been deleted, or if the size of
5062 	 * the partition is too small to even fit the label sector.
5063 	 */
5064 	if ((un->un_solaris_offset != solaris_offset) ||
5065 	    (un->un_solaris_size != solaris_size) ||
5066 	    solaris_size <= DK_LABEL_LOC) {
5067 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
5068 			solaris_offset, solaris_size);
5069 		bzero(&un->un_g, sizeof (struct dk_geom));
5070 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5071 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5072 		un->un_f_geometry_is_valid = FALSE;
5073 	}
5074 	un->un_solaris_offset = solaris_offset;
5075 	un->un_solaris_size = solaris_size;
5076 	kmem_free(bufp, blocksize);
5077 	return (rval);
5078 
5079 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
5080 #error "fdisk table presence undetermined for this platform."
5081 #endif	/* #if defined(_NO_FDISK_PRESENT) */
5082 }
5083 
5084 
5085 /*
5086  *    Function: sd_get_physical_geometry
5087  *
5088  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
5089  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
5090  *		target, and use this information to initialize the physical
5091  *		geometry cache specified by pgeom_p.
5092  *
5093  *		MODE SENSE is an optional command, so failure in this case
5094  *		does not necessarily denote an error. We want to use the
5095  *		MODE SENSE commands to derive the physical geometry of the
5096  *		device, but if either command fails, the logical geometry is
5097  *		used as the fallback for disk label geometry.
5098  *
5099  *		This requires that un->un_blockcount and un->un_tgt_blocksize
5100  *		have already been initialized for the current target and
5101  *		that the current values be passed as args so that we don't
5102  *		end up ever trying to use -1 as a valid value. This could
5103  *		happen if either value is reset while we're not holding
5104  *		the mutex.
5105  *
5106  *   Arguments: un - driver soft state (unit) structure
5107  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5108  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5109  *			to use the USCSI "direct" chain and bypass the normal
5110  *			command waitq.
5111  *
5112  *     Context: Kernel thread only (can sleep).
5113  */
5114 
5115 static void
5116 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
5117 	int capacity, int lbasize, int path_flag)
5118 {
5119 	struct	mode_format	*page3p;
5120 	struct	mode_geometry	*page4p;
5121 	struct	mode_header	*headerp;
5122 	int	sector_size;
5123 	int	nsect;
5124 	int	nhead;
5125 	int	ncyl;
5126 	int	intrlv;
5127 	int	spc;
5128 	int	modesense_capacity;
5129 	int	rpm;
5130 	int	bd_len;
5131 	int	mode_header_length;
5132 	uchar_t	*p3bufp;
5133 	uchar_t	*p4bufp;
5134 	int	cdbsize;
5135 
5136 	ASSERT(un != NULL);
5137 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
5138 
5139 	if (un->un_f_blockcount_is_valid != TRUE) {
5140 		return;
5141 	}
5142 
5143 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
5144 		return;
5145 	}
5146 
5147 	if (lbasize == 0) {
5148 		if (ISCD(un)) {
5149 			lbasize = 2048;
5150 		} else {
5151 			lbasize = un->un_sys_blocksize;
5152 		}
5153 	}
5154 	pgeom_p->g_secsize = (unsigned short)lbasize;
5155 
5156 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5157 
5158 	/*
5159 	 * Retrieve MODE SENSE page 3 - Format Device Page
5160 	 */
5161 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5162 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
5163 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
5164 	    != 0) {
5165 		SD_ERROR(SD_LOG_COMMON, un,
5166 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5167 		goto page3_exit;
5168 	}
5169 
5170 	/*
5171 	 * Determine size of Block Descriptors in order to locate the mode
5172 	 * page data.  ATAPI devices return 0, SCSI devices should return
5173 	 * MODE_BLK_DESC_LENGTH.
5174 	 */
5175 	headerp = (struct mode_header *)p3bufp;
5176 	if (un->un_f_cfg_is_atapi == TRUE) {
5177 		struct mode_header_grp2 *mhp =
5178 		    (struct mode_header_grp2 *)headerp;
5179 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5180 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5181 	} else {
5182 		mode_header_length = MODE_HEADER_LENGTH;
5183 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5184 	}
5185 
5186 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5187 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5188 		    "received unexpected bd_len of %d, page3\n", bd_len);
5189 		goto page3_exit;
5190 	}
5191 
5192 	page3p = (struct mode_format *)
5193 	    ((caddr_t)headerp + mode_header_length + bd_len);
5194 
5195 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5196 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5197 		    "mode sense pg3 code mismatch %d\n",
5198 		    page3p->mode_page.code);
5199 		goto page3_exit;
5200 	}
5201 
5202 	/*
5203 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5204 	 * complete successfully; otherwise, revert to the logical geometry.
5205 	 * So, we need to save everything in temporary variables.
5206 	 */
5207 	sector_size = BE_16(page3p->data_bytes_sect);
5208 
5209 	/*
5210 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5211 	 */
5212 	if (sector_size == 0) {
5213 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5214 	} else {
5215 		sector_size &= ~(un->un_sys_blocksize - 1);
5216 	}
5217 
5218 	nsect  = BE_16(page3p->sect_track);
5219 	intrlv = BE_16(page3p->interleave);
5220 
5221 	SD_INFO(SD_LOG_COMMON, un,
5222 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5223 	SD_INFO(SD_LOG_COMMON, un,
5224 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5225 	    page3p->mode_page.code, nsect, sector_size);
5226 	SD_INFO(SD_LOG_COMMON, un,
5227 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5228 	    BE_16(page3p->track_skew),
5229 	    BE_16(page3p->cylinder_skew));
5230 
5231 
5232 	/*
5233 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5234 	 */
5235 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5236 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5237 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5238 	    != 0) {
5239 		SD_ERROR(SD_LOG_COMMON, un,
5240 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5241 		goto page4_exit;
5242 	}
5243 
5244 	/*
5245 	 * Determine size of Block Descriptors in order to locate the mode
5246 	 * page data.  ATAPI devices return 0, SCSI devices should return
5247 	 * MODE_BLK_DESC_LENGTH.
5248 	 */
5249 	headerp = (struct mode_header *)p4bufp;
5250 	if (un->un_f_cfg_is_atapi == TRUE) {
5251 		struct mode_header_grp2 *mhp =
5252 		    (struct mode_header_grp2 *)headerp;
5253 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5254 	} else {
5255 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5256 	}
5257 
5258 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5259 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5260 		    "received unexpected bd_len of %d, page4\n", bd_len);
5261 		goto page4_exit;
5262 	}
5263 
5264 	page4p = (struct mode_geometry *)
5265 	    ((caddr_t)headerp + mode_header_length + bd_len);
5266 
5267 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5268 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5269 		    "mode sense pg4 code mismatch %d\n",
5270 		    page4p->mode_page.code);
5271 		goto page4_exit;
5272 	}
5273 
5274 	/*
5275 	 * Stash the data now, after we know that both commands completed.
5276 	 */
5277 
5278 	mutex_enter(SD_MUTEX(un));
5279 
5280 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5281 	spc   = nhead * nsect;
5282 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5283 	rpm   = BE_16(page4p->rpm);
5284 
5285 	modesense_capacity = spc * ncyl;
5286 
5287 	SD_INFO(SD_LOG_COMMON, un,
5288 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5289 	SD_INFO(SD_LOG_COMMON, un,
5290 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5291 	SD_INFO(SD_LOG_COMMON, un,
5292 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5293 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5294 	    (void *)pgeom_p, capacity);
5295 
5296 	/*
5297 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5298 	 * the product of C * H * S returned by MODE SENSE >= that returned
5299 	 * by read capacity. This is an idiosyncrasy of the original x86
5300 	 * disk subsystem.
5301 	 */
5302 	if (modesense_capacity >= capacity) {
5303 		SD_INFO(SD_LOG_COMMON, un,
5304 		    "sd_get_physical_geometry: adjusting acyl; "
5305 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5306 		    (modesense_capacity - capacity + spc - 1) / spc);
5307 		if (sector_size != 0) {
5308 			/* 1243403: NEC D38x7 drives don't support sec size */
5309 			pgeom_p->g_secsize = (unsigned short)sector_size;
5310 		}
5311 		pgeom_p->g_nsect    = (unsigned short)nsect;
5312 		pgeom_p->g_nhead    = (unsigned short)nhead;
5313 		pgeom_p->g_capacity = capacity;
5314 		pgeom_p->g_acyl	    =
5315 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5316 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5317 	}
5318 
5319 	pgeom_p->g_rpm    = (unsigned short)rpm;
5320 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5321 
5322 	SD_INFO(SD_LOG_COMMON, un,
5323 	    "sd_get_physical_geometry: mode sense geometry:\n");
5324 	SD_INFO(SD_LOG_COMMON, un,
5325 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5326 	    nsect, sector_size, intrlv);
5327 	SD_INFO(SD_LOG_COMMON, un,
5328 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5329 	    nhead, ncyl, rpm, modesense_capacity);
5330 	SD_INFO(SD_LOG_COMMON, un,
5331 	    "sd_get_physical_geometry: (cached)\n");
5332 	SD_INFO(SD_LOG_COMMON, un,
5333 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5334 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5335 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5336 	SD_INFO(SD_LOG_COMMON, un,
5337 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5338 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5339 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5340 
5341 	mutex_exit(SD_MUTEX(un));
5342 
5343 page4_exit:
5344 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5345 page3_exit:
5346 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5347 }
5348 
5349 
5350 /*
5351  *    Function: sd_get_virtual_geometry
5352  *
5353  * Description: Ask the controller to tell us about the target device.
5354  *
5355  *   Arguments: un - pointer to softstate
5356  *		capacity - disk capacity in #blocks
5357  *		lbasize - disk block size in bytes
5358  *
5359  *     Context: Kernel thread only
5360  */
5361 
5362 static void
5363 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5364 {
5365 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5366 	uint_t	geombuf;
5367 	int	spc;
5368 
5369 	ASSERT(un != NULL);
5370 	ASSERT(mutex_owned(SD_MUTEX(un)));
5371 
5372 	mutex_exit(SD_MUTEX(un));
5373 
5374 	/* Set sector size, and total number of sectors */
5375 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5376 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5377 
5378 	/* Let the HBA tell us its geometry */
5379 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5380 
5381 	mutex_enter(SD_MUTEX(un));
5382 
5383 	/* A value of -1 indicates an undefined "geometry" property */
5384 	if (geombuf == (-1)) {
5385 		return;
5386 	}
5387 
5388 	/* Initialize the logical geometry cache. */
5389 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5390 	lgeom_p->g_nsect   = geombuf & 0xffff;
5391 	lgeom_p->g_secsize = un->un_sys_blocksize;
5392 
5393 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5394 
5395 	/*
5396 	 * Note: The driver originally converted the capacity value from
5397 	 * target blocks to system blocks. However, the capacity value passed
5398 	 * to this routine is already in terms of system blocks (this scaling
5399 	 * is done when the READ CAPACITY command is issued and processed).
5400 	 * This 'error' may have gone undetected because the usage of g_ncyl
5401 	 * (which is based upon g_capacity) is very limited within the driver
5402 	 */
5403 	lgeom_p->g_capacity = capacity;
5404 
5405 	/*
5406 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5407 	 * hba may return zero values if the device has been removed.
5408 	 */
5409 	if (spc == 0) {
5410 		lgeom_p->g_ncyl = 0;
5411 	} else {
5412 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5413 	}
5414 	lgeom_p->g_acyl = 0;
5415 
5416 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5417 	SD_INFO(SD_LOG_COMMON, un,
5418 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5419 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5420 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5421 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5422 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5423 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5424 }
5425 
5426 
5427 /*
5428  *    Function: sd_update_block_info
5429  *
5430  * Description: Calculate a byte count to sector count bitshift value
5431  *		from sector size.
5432  *
5433  *   Arguments: un: unit struct.
5434  *		lbasize: new target sector size
5435  *		capacity: new target capacity, ie. block count
5436  *
5437  *     Context: Kernel thread context
5438  */
5439 
5440 static void
5441 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5442 {
5443 	if (lbasize != 0) {
5444 		un->un_tgt_blocksize = lbasize;
5445 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5446 	}
5447 
5448 	if (capacity != 0) {
5449 		un->un_blockcount		= capacity;
5450 		un->un_f_blockcount_is_valid	= TRUE;
5451 	}
5452 }
5453 
5454 
5455 static void
5456 sd_swap_efi_gpt(efi_gpt_t *e)
5457 {
5458 	_NOTE(ASSUMING_PROTECTED(*e))
5459 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5460 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5461 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5462 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5463 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5464 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5465 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5466 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5467 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5468 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5469 	e->efi_gpt_NumberOfPartitionEntries =
5470 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5471 	e->efi_gpt_SizeOfPartitionEntry =
5472 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5473 	e->efi_gpt_PartitionEntryArrayCRC32 =
5474 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5475 }
5476 
5477 static void
5478 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5479 {
5480 	int i;
5481 
5482 	_NOTE(ASSUMING_PROTECTED(*p))
5483 	for (i = 0; i < nparts; i++) {
5484 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5485 		    p[i].efi_gpe_PartitionTypeGUID);
5486 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5487 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5488 		/* PartitionAttrs */
5489 	}
5490 }
5491 
5492 static int
5493 sd_validate_efi(efi_gpt_t *labp)
5494 {
5495 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5496 		return (EINVAL);
5497 	/* at least 96 bytes in this version of the spec. */
5498 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5499 	    labp->efi_gpt_HeaderSize)
5500 		return (EINVAL);
5501 	/* this should be 128 bytes */
5502 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5503 		return (EINVAL);
5504 	return (0);
5505 }
5506 
5507 static int
5508 sd_use_efi(struct sd_lun *un, int path_flag)
5509 {
5510 	int		i;
5511 	int		rval = 0;
5512 	efi_gpe_t	*partitions;
5513 	uchar_t		*buf;
5514 	uint_t		lbasize;
5515 	uint64_t	cap = 0;
5516 	uint_t		nparts;
5517 	diskaddr_t	gpe_lba;
5518 	struct uuid	uuid_type_reserved = EFI_RESERVED;
5519 
5520 	ASSERT(mutex_owned(SD_MUTEX(un)));
5521 	lbasize = un->un_tgt_blocksize;
5522 	un->un_reserved = -1;
5523 
5524 	mutex_exit(SD_MUTEX(un));
5525 
5526 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5527 
5528 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5529 		rval = EINVAL;
5530 		goto done_err;
5531 	}
5532 
5533 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5534 	if (rval) {
5535 		goto done_err;
5536 	}
5537 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5538 		/* not ours */
5539 		rval = ESRCH;
5540 		goto done_err;
5541 	}
5542 
5543 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5544 	if (rval) {
5545 		goto done_err;
5546 	}
5547 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5548 
5549 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5550 		/*
5551 		 * Couldn't read the primary, try the backup.  Our
5552 		 * capacity at this point could be based on CHS, so
5553 		 * check what the device reports.
5554 		 */
5555 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5556 		    path_flag);
5557 		if (rval) {
5558 			goto done_err;
5559 		}
5560 
5561 		/*
5562 		 * The MMC standard allows READ CAPACITY to be
5563 		 * inaccurate by a bounded amount (in the interest of
5564 		 * response latency).  As a result, failed READs are
5565 		 * commonplace (due to the reading of metadata and not
5566 		 * data). Depending on the per-Vendor/drive Sense data,
5567 		 * the failed READ can cause many (unnecessary) retries.
5568 		 */
5569 
5570 		/*
5571 		 * Refer to comments related to off-by-1 at the
5572 		 * header of this file. Search the next to last
5573 		 * block for backup EFI label.
5574 		 */
5575 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5576 		    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5577 			path_flag)) != 0) {
5578 				goto done_err;
5579 		}
5580 
5581 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5582 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5583 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5584 			    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5585 			    path_flag)) != 0) {
5586 					goto done_err;
5587 			}
5588 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5589 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5590 				goto done_err;
5591 		}
5592 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5593 		    "primary label corrupt; using backup\n");
5594 	}
5595 
5596 	if (cap == 0)
5597 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5598 		    path_flag);
5599 
5600 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5601 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5602 
5603 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5604 	    path_flag);
5605 	if (rval) {
5606 		goto done_err;
5607 	}
5608 	partitions = (efi_gpe_t *)buf;
5609 
5610 	if (nparts > MAXPART) {
5611 		nparts = MAXPART;
5612 	}
5613 	sd_swap_efi_gpe(nparts, partitions);
5614 
5615 	mutex_enter(SD_MUTEX(un));
5616 
5617 	/* Fill in partition table. */
5618 	for (i = 0; i < nparts; i++) {
5619 		if (partitions->efi_gpe_StartingLBA != 0 ||
5620 		    partitions->efi_gpe_EndingLBA != 0) {
5621 			un->un_map[i].dkl_cylno =
5622 			    partitions->efi_gpe_StartingLBA;
5623 			un->un_map[i].dkl_nblk =
5624 			    partitions->efi_gpe_EndingLBA -
5625 			    partitions->efi_gpe_StartingLBA + 1;
5626 			un->un_offset[i] =
5627 			    partitions->efi_gpe_StartingLBA;
5628 		}
5629 		if (un->un_reserved == -1) {
5630 			if (bcmp(&partitions->efi_gpe_PartitionTypeGUID,
5631 			    &uuid_type_reserved, sizeof (struct uuid)) == 0) {
5632 				un->un_reserved = i;
5633 			}
5634 		}
5635 		if (i == WD_NODE) {
5636 			/*
5637 			 * minor number 7 corresponds to the whole disk
5638 			 */
5639 			un->un_map[i].dkl_cylno = 0;
5640 			un->un_map[i].dkl_nblk = un->un_blockcount;
5641 			un->un_offset[i] = 0;
5642 		}
5643 		partitions++;
5644 	}
5645 	un->un_solaris_offset = 0;
5646 	un->un_solaris_size = cap;
5647 	un->un_f_geometry_is_valid = TRUE;
5648 
5649 	/* clear the vtoc label */
5650 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5651 
5652 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5653 
5654 	/*
5655 	 * For EFI labeled disk, create and set the partition stats
5656 	 * at attach time, update the stats according to dynamic
5657 	 * partition changes during running time.
5658 	 */
5659 	if (un->un_f_pkstats_enabled) {
5660 		sd_set_pstats(un);
5661 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_use_efi: "
5662 		    "un:0x%p pstats created and set, or updated\n", un);
5663 	}
5664 	return (0);
5665 
5666 done_err:
5667 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5668 	mutex_enter(SD_MUTEX(un));
5669 	/*
5670 	 * if we didn't find something that could look like a VTOC
5671 	 * and the disk is over 1TB, we know there isn't a valid label.
5672 	 * Otherwise let sd_uselabel decide what to do.  We only
5673 	 * want to invalidate this if we're certain the label isn't
5674 	 * valid because sd_prop_op will now fail, which in turn
5675 	 * causes things like opens and stats on the partition to fail.
5676 	 */
5677 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5678 		un->un_f_geometry_is_valid = FALSE;
5679 	}
5680 	return (rval);
5681 }
5682 
5683 
5684 /*
5685  *    Function: sd_uselabel
5686  *
5687  * Description: Validate the disk label and update the relevant data (geometry,
5688  *		partition, vtoc, and capacity data) in the sd_lun struct.
5689  *		Marks the geometry of the unit as being valid.
5690  *
5691  *   Arguments: un: unit struct.
5692  *		dk_label: disk label
5693  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5694  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5695  *			to use the USCSI "direct" chain and bypass the normal
5696  *			command waitq.
5697  *
5698  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5699  *		partition, vtoc, and capacity data are good.
5700  *
5701  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5702  *		label; or computed capacity does not jibe with capacity
5703  *		reported from the READ CAPACITY command.
5704  *
5705  *     Context: Kernel thread only (can sleep).
5706  */
5707 
5708 static int
5709 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5710 {
5711 	short	*sp;
5712 	short	sum;
5713 	short	count;
5714 	int	label_error = SD_LABEL_IS_VALID;
5715 	int	i;
5716 	int	capacity;
5717 	int	part_end;
5718 	int	track_capacity;
5719 	int	err;
5720 #if defined(_SUNOS_VTOC_16)
5721 	struct	dkl_partition	*vpartp;
5722 #endif
5723 	ASSERT(un != NULL);
5724 	ASSERT(mutex_owned(SD_MUTEX(un)));
5725 
5726 	/* Validate the magic number of the label. */
5727 	if (labp->dkl_magic != DKL_MAGIC) {
5728 #if defined(__sparc)
5729 		if ((un->un_state == SD_STATE_NORMAL) &&
5730 			un->un_f_vtoc_errlog_supported) {
5731 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5732 			    "Corrupt label; wrong magic number\n");
5733 		}
5734 #endif
5735 		return (SD_LABEL_IS_INVALID);
5736 	}
5737 
5738 	/* Validate the checksum of the label. */
5739 	sp  = (short *)labp;
5740 	sum = 0;
5741 	count = sizeof (struct dk_label) / sizeof (short);
5742 	while (count--)	 {
5743 		sum ^= *sp++;
5744 	}
5745 
5746 	if (sum != 0) {
5747 #if	defined(_SUNOS_VTOC_16)
5748 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5749 #elif defined(_SUNOS_VTOC_8)
5750 		if ((un->un_state == SD_STATE_NORMAL) &&
5751 		    un->un_f_vtoc_errlog_supported) {
5752 #endif
5753 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5754 			    "Corrupt label - label checksum failed\n");
5755 		}
5756 		return (SD_LABEL_IS_INVALID);
5757 	}
5758 
5759 
5760 	/*
5761 	 * Fill in geometry structure with data from label.
5762 	 */
5763 	bzero(&un->un_g, sizeof (struct dk_geom));
5764 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5765 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5766 	un->un_g.dkg_bcyl   = 0;
5767 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5768 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5769 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5770 
5771 #if defined(_SUNOS_VTOC_8)
5772 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5773 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5774 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5775 #endif
5776 #if defined(_SUNOS_VTOC_16)
5777 	un->un_dkg_skew = labp->dkl_skew;
5778 #endif
5779 
5780 #if defined(__i386) || defined(__amd64)
5781 	un->un_g.dkg_apc = labp->dkl_apc;
5782 #endif
5783 
5784 	/*
5785 	 * Currently we rely on the values in the label being accurate. If
5786 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5787 	 *
5788 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5789 	 * although this command is optional in SCSI-2.
5790 	 */
5791 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5792 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5793 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5794 
5795 	/*
5796 	 * The Read and Write reinstruct values may not be valid
5797 	 * for older disks.
5798 	 */
5799 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5800 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5801 
5802 	/* Fill in partition table. */
5803 #if defined(_SUNOS_VTOC_8)
5804 	for (i = 0; i < NDKMAP; i++) {
5805 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5806 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5807 	}
5808 #endif
5809 #if  defined(_SUNOS_VTOC_16)
5810 	vpartp		= labp->dkl_vtoc.v_part;
5811 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5812 
5813 	/* Prevent divide by zero */
5814 	if (track_capacity == 0) {
5815 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5816 		    "Corrupt label - zero nhead or nsect value\n");
5817 
5818 		return (SD_LABEL_IS_INVALID);
5819 	}
5820 
5821 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5822 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5823 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5824 	}
5825 #endif
5826 
5827 	/* Fill in VTOC Structure. */
5828 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5829 #if defined(_SUNOS_VTOC_8)
5830 	/*
5831 	 * The 8-slice vtoc does not include the ascii label; save it into
5832 	 * the device's soft state structure here.
5833 	 */
5834 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5835 #endif
5836 
5837 	/* Now look for a valid capacity. */
5838 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5839 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5840 
5841 	if (un->un_g.dkg_acyl) {
5842 #if defined(__i386) || defined(__amd64)
5843 		/* we may have > 1 alts cylinder */
5844 		capacity += (track_capacity * un->un_g.dkg_acyl);
5845 #else
5846 		capacity += track_capacity;
5847 #endif
5848 	}
5849 
5850 	/*
5851 	 * Force check here to ensure the computed capacity is valid.
5852 	 * If capacity is zero, it indicates an invalid label and
5853 	 * we should abort updating the relevant data then.
5854 	 */
5855 	if (capacity == 0) {
5856 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5857 		    "Corrupt label - no valid capacity could be retrieved\n");
5858 
5859 		return (SD_LABEL_IS_INVALID);
5860 	}
5861 
5862 	/* Mark the geometry as valid. */
5863 	un->un_f_geometry_is_valid = TRUE;
5864 
5865 	/*
5866 	 * At this point, un->un_blockcount should contain valid data from
5867 	 * the READ CAPACITY command.
5868 	 */
5869 	if (un->un_f_blockcount_is_valid != TRUE) {
5870 		/*
5871 		 * We have a situation where the target didn't give us a good
5872 		 * READ CAPACITY value, yet there appears to be a valid label.
5873 		 * In this case, we'll fake the capacity.
5874 		 */
5875 		un->un_blockcount = capacity;
5876 		un->un_f_blockcount_is_valid = TRUE;
5877 		goto done;
5878 	}
5879 
5880 
5881 	if ((capacity <= un->un_blockcount) ||
5882 	    (un->un_state != SD_STATE_NORMAL)) {
5883 #if defined(_SUNOS_VTOC_8)
5884 		/*
5885 		 * We can't let this happen on drives that are subdivided
5886 		 * into logical disks (i.e., that have an fdisk table).
5887 		 * The un_blockcount field should always hold the full media
5888 		 * size in sectors, period.  This code would overwrite
5889 		 * un_blockcount with the size of the Solaris fdisk partition.
5890 		 */
5891 		SD_ERROR(SD_LOG_COMMON, un,
5892 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5893 		    capacity, un->un_blockcount);
5894 		un->un_blockcount = capacity;
5895 		un->un_f_blockcount_is_valid = TRUE;
5896 #endif	/* defined(_SUNOS_VTOC_8) */
5897 		goto done;
5898 	}
5899 
5900 	if (ISCD(un)) {
5901 		/* For CDROMs, we trust that the data in the label is OK. */
5902 #if defined(_SUNOS_VTOC_8)
5903 		for (i = 0; i < NDKMAP; i++) {
5904 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5905 			    labp->dkl_map[i].dkl_cylno +
5906 			    labp->dkl_map[i].dkl_nblk  - 1;
5907 
5908 			if ((labp->dkl_map[i].dkl_nblk) &&
5909 			    (part_end > un->un_blockcount)) {
5910 				un->un_f_geometry_is_valid = FALSE;
5911 				break;
5912 			}
5913 		}
5914 #endif
5915 #if defined(_SUNOS_VTOC_16)
5916 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5917 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5918 			part_end = vpartp->p_start + vpartp->p_size;
5919 			if ((vpartp->p_size > 0) &&
5920 			    (part_end > un->un_blockcount)) {
5921 				un->un_f_geometry_is_valid = FALSE;
5922 				break;
5923 			}
5924 		}
5925 #endif
5926 	} else {
5927 		uint64_t t_capacity;
5928 		uint32_t t_lbasize;
5929 
5930 		mutex_exit(SD_MUTEX(un));
5931 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5932 		    path_flag);
5933 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5934 		mutex_enter(SD_MUTEX(un));
5935 
5936 		if (err == 0) {
5937 			sd_update_block_info(un, t_lbasize, t_capacity);
5938 		}
5939 
5940 		if (capacity > un->un_blockcount) {
5941 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5942 			    "Corrupt label - bad geometry\n");
5943 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5944 			    "Label says %u blocks; Drive says %llu blocks\n",
5945 			    capacity, (unsigned long long)un->un_blockcount);
5946 			un->un_f_geometry_is_valid = FALSE;
5947 			label_error = SD_LABEL_IS_INVALID;
5948 		}
5949 	}
5950 
5951 done:
5952 
5953 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5954 	SD_INFO(SD_LOG_COMMON, un,
5955 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5956 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5957 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5958 	SD_INFO(SD_LOG_COMMON, un,
5959 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5960 	    un->un_tgt_blocksize, un->un_blockcount,
5961 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5962 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5963 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5964 
5965 	ASSERT(mutex_owned(SD_MUTEX(un)));
5966 
5967 	return (label_error);
5968 }
5969 
5970 
5971 /*
5972  *    Function: sd_build_default_label
5973  *
5974  * Description: Generate a default label for those devices that do not have
5975  *		one, e.g., new media, removable cartridges, etc..
5976  *
5977  *     Context: Kernel thread only
5978  */
5979 
5980 static void
5981 sd_build_default_label(struct sd_lun *un)
5982 {
5983 #if defined(_SUNOS_VTOC_16)
5984 	uint_t	phys_spc;
5985 	uint_t	disksize;
5986 	struct	dk_geom un_g;
5987 	uint64_t capacity;
5988 #endif
5989 
5990 	ASSERT(un != NULL);
5991 	ASSERT(mutex_owned(SD_MUTEX(un)));
5992 
5993 #if defined(_SUNOS_VTOC_8)
5994 	/*
5995 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5996 	 * only. This may be a valid check for VTOC_16 as well.
5997 	 * Once we understand why there is this difference between SPARC and
5998 	 * x86 platform, we could remove this legacy check.
5999 	 */
6000 	ASSERT(un->un_f_default_vtoc_supported);
6001 #endif
6002 
6003 	bzero(&un->un_g, sizeof (struct dk_geom));
6004 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
6005 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
6006 
6007 #if defined(_SUNOS_VTOC_8)
6008 
6009 	/*
6010 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
6011 	 * But it is still necessary to set up various geometry information,
6012 	 * and we are doing this here.
6013 	 */
6014 
6015 	/*
6016 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
6017 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
6018 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
6019 	 * equal to C*H*S values.  This will cause some truncation of size due
6020 	 * to round off errors. For CD-ROMs, this truncation can have adverse
6021 	 * side effects, so returning ncyl and nhead as 1. The nsect will
6022 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
6023 	 */
6024 	if (ISCD(un)) {
6025 		/*
6026 		 * Preserve the old behavior for non-writable
6027 		 * medias. Since dkg_nsect is a ushort, it
6028 		 * will lose bits as cdroms have more than
6029 		 * 65536 sectors. So if we recalculate
6030 		 * capacity, it will become much shorter.
6031 		 * But the dkg_* information is not
6032 		 * used for CDROMs so it is OK. But for
6033 		 * Writable CDs we need this information
6034 		 * to be valid (for newfs say). So we
6035 		 * make nsect and nhead > 1 that way
6036 		 * nsect can still stay within ushort limit
6037 		 * without losing any bits.
6038 		 */
6039 		if (un->un_f_mmc_writable_media == TRUE) {
6040 			un->un_g.dkg_nhead = 64;
6041 			un->un_g.dkg_nsect = 32;
6042 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
6043 			un->un_blockcount = un->un_g.dkg_ncyl *
6044 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6045 		} else {
6046 			un->un_g.dkg_ncyl  = 1;
6047 			un->un_g.dkg_nhead = 1;
6048 			un->un_g.dkg_nsect = un->un_blockcount;
6049 		}
6050 	} else {
6051 		if (un->un_blockcount <= 0x1000) {
6052 			/* unlabeled SCSI floppy device */
6053 			un->un_g.dkg_nhead = 2;
6054 			un->un_g.dkg_ncyl = 80;
6055 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
6056 		} else if (un->un_blockcount <= 0x200000) {
6057 			un->un_g.dkg_nhead = 64;
6058 			un->un_g.dkg_nsect = 32;
6059 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
6060 		} else {
6061 			un->un_g.dkg_nhead = 255;
6062 			un->un_g.dkg_nsect = 63;
6063 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
6064 		}
6065 		un->un_blockcount =
6066 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6067 	}
6068 
6069 	un->un_g.dkg_acyl	= 0;
6070 	un->un_g.dkg_bcyl	= 0;
6071 	un->un_g.dkg_rpm	= 200;
6072 	un->un_asciilabel[0]	= '\0';
6073 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
6074 
6075 	un->un_map[0].dkl_cylno = 0;
6076 	un->un_map[0].dkl_nblk  = un->un_blockcount;
6077 	un->un_map[2].dkl_cylno = 0;
6078 	un->un_map[2].dkl_nblk  = un->un_blockcount;
6079 
6080 #elif defined(_SUNOS_VTOC_16)
6081 
6082 	if (un->un_solaris_size == 0) {
6083 		/*
6084 		 * Got fdisk table but no solaris entry therefore
6085 		 * don't create a default label
6086 		 */
6087 		un->un_f_geometry_is_valid = TRUE;
6088 		return;
6089 	}
6090 
6091 	/*
6092 	 * For CDs we continue to use the physical geometry to calculate
6093 	 * number of cylinders. All other devices must convert the
6094 	 * physical geometry (geom_cache) to values that will fit
6095 	 * in a dk_geom structure.
6096 	 */
6097 	if (ISCD(un)) {
6098 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
6099 	} else {
6100 		/* Convert physical geometry to disk geometry */
6101 		bzero(&un_g, sizeof (struct dk_geom));
6102 
6103 		/*
6104 		 * Refer to comments related to off-by-1 at the
6105 		 * header of this file.
6106 		 * Before caculating geometry, capacity should be
6107 		 * decreased by 1. That un_f_capacity_adjusted is
6108 		 * TRUE means that we are treating a 1TB disk as
6109 		 * (1T - 512)B. And the capacity of disks is already
6110 		 * decreased by 1.
6111 		 */
6112 		if (!un->un_f_capacity_adjusted &&
6113 		    !un->un_f_has_removable_media &&
6114 		    !un->un_f_is_hotpluggable &&
6115 			un->un_tgt_blocksize == un->un_sys_blocksize)
6116 			capacity = un->un_blockcount - 1;
6117 		else
6118 			capacity = un->un_blockcount;
6119 
6120 		sd_convert_geometry(capacity, &un_g);
6121 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
6122 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6123 	}
6124 
6125 	ASSERT(phys_spc != 0);
6126 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
6127 	un->un_g.dkg_acyl = DK_ACYL;
6128 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
6129 	disksize = un->un_g.dkg_ncyl * phys_spc;
6130 
6131 	if (ISCD(un)) {
6132 		/*
6133 		 * CD's don't use the "heads * sectors * cyls"-type of
6134 		 * geometry, but instead use the entire capacity of the media.
6135 		 */
6136 		disksize = un->un_solaris_size;
6137 		un->un_g.dkg_nhead = 1;
6138 		un->un_g.dkg_nsect = 1;
6139 		un->un_g.dkg_rpm =
6140 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
6141 
6142 		un->un_vtoc.v_part[0].p_start = 0;
6143 		un->un_vtoc.v_part[0].p_size  = disksize;
6144 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
6145 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
6146 
6147 		un->un_map[0].dkl_cylno = 0;
6148 		un->un_map[0].dkl_nblk  = disksize;
6149 		un->un_offset[0] = 0;
6150 
6151 	} else {
6152 		/*
6153 		 * Hard disks and removable media cartridges
6154 		 */
6155 		un->un_g.dkg_rpm =
6156 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
6157 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
6158 
6159 		/* Add boot slice */
6160 		un->un_vtoc.v_part[8].p_start = 0;
6161 		un->un_vtoc.v_part[8].p_size  = phys_spc;
6162 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
6163 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
6164 
6165 		un->un_map[8].dkl_cylno = 0;
6166 		un->un_map[8].dkl_nblk  = phys_spc;
6167 		un->un_offset[8] = 0;
6168 	}
6169 
6170 	un->un_g.dkg_apc = 0;
6171 	un->un_vtoc.v_nparts = V_NUMPAR;
6172 	un->un_vtoc.v_version = V_VERSION;
6173 
6174 	/* Add backup slice */
6175 	un->un_vtoc.v_part[2].p_start = 0;
6176 	un->un_vtoc.v_part[2].p_size  = disksize;
6177 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
6178 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
6179 
6180 	un->un_map[2].dkl_cylno = 0;
6181 	un->un_map[2].dkl_nblk  = disksize;
6182 	un->un_offset[2] = 0;
6183 
6184 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
6185 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
6186 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
6187 
6188 #else
6189 #error "No VTOC format defined."
6190 #endif
6191 
6192 	un->un_g.dkg_read_reinstruct  = 0;
6193 	un->un_g.dkg_write_reinstruct = 0;
6194 
6195 	un->un_g.dkg_intrlv = 1;
6196 
6197 	un->un_vtoc.v_sanity  = VTOC_SANE;
6198 
6199 	un->un_f_geometry_is_valid = TRUE;
6200 
6201 	SD_INFO(SD_LOG_COMMON, un,
6202 	    "sd_build_default_label: Default label created: "
6203 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
6204 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
6205 	    un->un_g.dkg_nsect, un->un_blockcount);
6206 }
6207 
6208 
6209 #if defined(_FIRMWARE_NEEDS_FDISK)
6210 /*
6211  * Max CHS values, as they are encoded into bytes, for 1022/254/63
6212  */
6213 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
6214 #define	LBA_MAX_CYL	(1022 & 0xFF)
6215 #define	LBA_MAX_HEAD	(254)
6216 
6217 
6218 /*
6219  *    Function: sd_has_max_chs_vals
6220  *
6221  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
6222  *
6223  *   Arguments: fdp - ptr to CHS info
6224  *
6225  * Return Code: True or false
6226  *
6227  *     Context: Any.
6228  */
6229 
6230 static int
6231 sd_has_max_chs_vals(struct ipart *fdp)
6232 {
6233 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6234 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6235 	    (fdp->begsect == LBA_MAX_SECT)	&&
6236 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6237 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6238 	    (fdp->endsect == LBA_MAX_SECT));
6239 }
6240 #endif
6241 
6242 
6243 /*
6244  *    Function: sd_inq_fill
6245  *
6246  * Description: Print a piece of inquiry data, cleaned up for non-printable
6247  *		characters and stopping at the first space character after
6248  *		the beginning of the passed string;
6249  *
6250  *   Arguments: p - source string
6251  *		l - maximum length to copy
6252  *		s - destination string
6253  *
6254  *     Context: Any.
6255  */
6256 
6257 static void
6258 sd_inq_fill(char *p, int l, char *s)
6259 {
6260 	unsigned i = 0;
6261 	char c;
6262 
6263 	while (i++ < l) {
6264 		if ((c = *p++) < ' ' || c >= 0x7F) {
6265 			c = '*';
6266 		} else if (i != 1 && c == ' ') {
6267 			break;
6268 		}
6269 		*s++ = c;
6270 	}
6271 	*s++ = 0;
6272 }
6273 
6274 
6275 /*
6276  *    Function: sd_register_devid
6277  *
6278  * Description: This routine will obtain the device id information from the
6279  *		target, obtain the serial number, and register the device
6280  *		id with the ddi framework.
6281  *
6282  *   Arguments: devi - the system's dev_info_t for the device.
6283  *		un - driver soft state (unit) structure
6284  *		reservation_flag - indicates if a reservation conflict
6285  *		occurred during attach
6286  *
6287  *     Context: Kernel Thread
6288  */
6289 static void
6290 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6291 {
6292 	int		rval		= 0;
6293 	uchar_t		*inq80		= NULL;
6294 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6295 	size_t		inq80_resid	= 0;
6296 	uchar_t		*inq83		= NULL;
6297 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6298 	size_t		inq83_resid	= 0;
6299 
6300 	ASSERT(un != NULL);
6301 	ASSERT(mutex_owned(SD_MUTEX(un)));
6302 	ASSERT((SD_DEVINFO(un)) == devi);
6303 
6304 	/*
6305 	 * This is the case of antiquated Sun disk drives that have the
6306 	 * FAB_DEVID property set in the disk_table.  These drives
6307 	 * manage the devid's by storing them in last 2 available sectors
6308 	 * on the drive and have them fabricated by the ddi layer by calling
6309 	 * ddi_devid_init and passing the DEVID_FAB flag.
6310 	 */
6311 	if (un->un_f_opt_fab_devid == TRUE) {
6312 		/*
6313 		 * Depending on EINVAL isn't reliable, since a reserved disk
6314 		 * may result in invalid geometry, so check to make sure a
6315 		 * reservation conflict did not occur during attach.
6316 		 */
6317 		if ((sd_get_devid(un) == EINVAL) &&
6318 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6319 			/*
6320 			 * The devid is invalid AND there is no reservation
6321 			 * conflict.  Fabricate a new devid.
6322 			 */
6323 			(void) sd_create_devid(un);
6324 		}
6325 
6326 		/* Register the devid if it exists */
6327 		if (un->un_devid != NULL) {
6328 			(void) ddi_devid_register(SD_DEVINFO(un),
6329 			    un->un_devid);
6330 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6331 			    "sd_register_devid: Devid Fabricated\n");
6332 		}
6333 		return;
6334 	}
6335 
6336 	/*
6337 	 * We check the availibility of the World Wide Name (0x83) and Unit
6338 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6339 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6340 	 * 0x83 is availible, that is the best choice.  Our next choice is
6341 	 * 0x80.  If neither are availible, we munge the devid from the device
6342 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6343 	 * to fabricate a devid for non-Sun qualified disks.
6344 	 */
6345 	if (sd_check_vpd_page_support(un) == 0) {
6346 		/* collect page 80 data if available */
6347 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6348 
6349 			mutex_exit(SD_MUTEX(un));
6350 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6351 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6352 			    0x01, 0x80, &inq80_resid);
6353 
6354 			if (rval != 0) {
6355 				kmem_free(inq80, inq80_len);
6356 				inq80 = NULL;
6357 				inq80_len = 0;
6358 			}
6359 			mutex_enter(SD_MUTEX(un));
6360 		}
6361 
6362 		/* collect page 83 data if available */
6363 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6364 			mutex_exit(SD_MUTEX(un));
6365 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6366 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6367 			    0x01, 0x83, &inq83_resid);
6368 
6369 			if (rval != 0) {
6370 				kmem_free(inq83, inq83_len);
6371 				inq83 = NULL;
6372 				inq83_len = 0;
6373 			}
6374 			mutex_enter(SD_MUTEX(un));
6375 		}
6376 	}
6377 
6378 	/* encode best devid possible based on data available */
6379 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6380 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6381 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6382 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6383 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6384 
6385 		/* devid successfully encoded, register devid */
6386 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6387 
6388 	} else {
6389 		/*
6390 		 * Unable to encode a devid based on data available.
6391 		 * This is not a Sun qualified disk.  Older Sun disk
6392 		 * drives that have the SD_FAB_DEVID property
6393 		 * set in the disk_table and non Sun qualified
6394 		 * disks are treated in the same manner.  These
6395 		 * drives manage the devid's by storing them in
6396 		 * last 2 available sectors on the drive and
6397 		 * have them fabricated by the ddi layer by
6398 		 * calling ddi_devid_init and passing the
6399 		 * DEVID_FAB flag.
6400 		 * Create a fabricate devid only if there's no
6401 		 * fabricate devid existed.
6402 		 */
6403 		if (sd_get_devid(un) == EINVAL) {
6404 			(void) sd_create_devid(un);
6405 		}
6406 		un->un_f_opt_fab_devid = TRUE;
6407 
6408 		/* Register the devid if it exists */
6409 		if (un->un_devid != NULL) {
6410 			(void) ddi_devid_register(SD_DEVINFO(un),
6411 			    un->un_devid);
6412 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6413 			    "sd_register_devid: devid fabricated using "
6414 			    "ddi framework\n");
6415 		}
6416 	}
6417 
6418 	/* clean up resources */
6419 	if (inq80 != NULL) {
6420 		kmem_free(inq80, inq80_len);
6421 	}
6422 	if (inq83 != NULL) {
6423 		kmem_free(inq83, inq83_len);
6424 	}
6425 }
6426 
6427 static daddr_t
6428 sd_get_devid_block(struct sd_lun *un)
6429 {
6430 	daddr_t			spc, blk, head, cyl;
6431 
6432 	if ((un->un_f_geometry_is_valid == FALSE) ||
6433 	    (un->un_solaris_size < DK_LABEL_LOC))
6434 		return (-1);
6435 
6436 	if (un->un_vtoc.v_sanity != VTOC_SANE) {
6437 		/* EFI labeled */
6438 		if (un->un_reserved != -1) {
6439 			blk = un->un_map[un->un_reserved].dkl_cylno;
6440 		} else {
6441 			return (-1);
6442 		}
6443 	} else {
6444 		/* SMI labeled */
6445 		/* this geometry doesn't allow us to write a devid */
6446 		if (un->un_g.dkg_acyl < 2) {
6447 			return (-1);
6448 		}
6449 
6450 		/*
6451 		 * Subtract 2 guarantees that the next to last cylinder
6452 		 * is used
6453 		 */
6454 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6455 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6456 		head = un->un_g.dkg_nhead - 1;
6457 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6458 		    (head * un->un_g.dkg_nsect) + 1;
6459 	}
6460 	return (blk);
6461 }
6462 
6463 /*
6464  *    Function: sd_get_devid
6465  *
6466  * Description: This routine will return 0 if a valid device id has been
6467  *		obtained from the target and stored in the soft state. If a
6468  *		valid device id has not been previously read and stored, a
6469  *		read attempt will be made.
6470  *
6471  *   Arguments: un - driver soft state (unit) structure
6472  *
6473  * Return Code: 0 if we successfully get the device id
6474  *
6475  *     Context: Kernel Thread
6476  */
6477 
6478 static int
6479 sd_get_devid(struct sd_lun *un)
6480 {
6481 	struct dk_devid		*dkdevid;
6482 	ddi_devid_t		tmpid;
6483 	uint_t			*ip;
6484 	size_t			sz;
6485 	daddr_t			blk;
6486 	int			status;
6487 	int			chksum;
6488 	int			i;
6489 	size_t			buffer_size;
6490 
6491 	ASSERT(un != NULL);
6492 	ASSERT(mutex_owned(SD_MUTEX(un)));
6493 
6494 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6495 	    un);
6496 
6497 	if (un->un_devid != NULL) {
6498 		return (0);
6499 	}
6500 
6501 	blk = sd_get_devid_block(un);
6502 	if (blk < 0)
6503 		return (EINVAL);
6504 
6505 	/*
6506 	 * Read and verify device id, stored in the reserved cylinders at the
6507 	 * end of the disk. Backup label is on the odd sectors of the last
6508 	 * track of the last cylinder. Device id will be on track of the next
6509 	 * to last cylinder.
6510 	 */
6511 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6512 	mutex_exit(SD_MUTEX(un));
6513 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6514 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6515 	    SD_PATH_DIRECT);
6516 	if (status != 0) {
6517 		goto error;
6518 	}
6519 
6520 	/* Validate the revision */
6521 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6522 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6523 		status = EINVAL;
6524 		goto error;
6525 	}
6526 
6527 	/* Calculate the checksum */
6528 	chksum = 0;
6529 	ip = (uint_t *)dkdevid;
6530 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6531 	    i++) {
6532 		chksum ^= ip[i];
6533 	}
6534 
6535 	/* Compare the checksums */
6536 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6537 		status = EINVAL;
6538 		goto error;
6539 	}
6540 
6541 	/* Validate the device id */
6542 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6543 		status = EINVAL;
6544 		goto error;
6545 	}
6546 
6547 	/*
6548 	 * Store the device id in the driver soft state
6549 	 */
6550 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6551 	tmpid = kmem_alloc(sz, KM_SLEEP);
6552 
6553 	mutex_enter(SD_MUTEX(un));
6554 
6555 	un->un_devid = tmpid;
6556 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6557 
6558 	kmem_free(dkdevid, buffer_size);
6559 
6560 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6561 
6562 	return (status);
6563 error:
6564 	mutex_enter(SD_MUTEX(un));
6565 	kmem_free(dkdevid, buffer_size);
6566 	return (status);
6567 }
6568 
6569 
6570 /*
6571  *    Function: sd_create_devid
6572  *
6573  * Description: This routine will fabricate the device id and write it
6574  *		to the disk.
6575  *
6576  *   Arguments: un - driver soft state (unit) structure
6577  *
6578  * Return Code: value of the fabricated device id
6579  *
6580  *     Context: Kernel Thread
6581  */
6582 
6583 static ddi_devid_t
6584 sd_create_devid(struct sd_lun *un)
6585 {
6586 	ASSERT(un != NULL);
6587 
6588 	/* Fabricate the devid */
6589 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6590 	    == DDI_FAILURE) {
6591 		return (NULL);
6592 	}
6593 
6594 	/* Write the devid to disk */
6595 	if (sd_write_deviceid(un) != 0) {
6596 		ddi_devid_free(un->un_devid);
6597 		un->un_devid = NULL;
6598 	}
6599 
6600 	return (un->un_devid);
6601 }
6602 
6603 
6604 /*
6605  *    Function: sd_write_deviceid
6606  *
6607  * Description: This routine will write the device id to the disk
6608  *		reserved sector.
6609  *
6610  *   Arguments: un - driver soft state (unit) structure
6611  *
6612  * Return Code: EINVAL
6613  *		value returned by sd_send_scsi_cmd
6614  *
6615  *     Context: Kernel Thread
6616  */
6617 
6618 static int
6619 sd_write_deviceid(struct sd_lun *un)
6620 {
6621 	struct dk_devid		*dkdevid;
6622 	daddr_t			blk;
6623 	uint_t			*ip, chksum;
6624 	int			status;
6625 	int			i;
6626 
6627 	ASSERT(mutex_owned(SD_MUTEX(un)));
6628 
6629 	blk = sd_get_devid_block(un);
6630 	if (blk < 0)
6631 		return (-1);
6632 	mutex_exit(SD_MUTEX(un));
6633 
6634 	/* Allocate the buffer */
6635 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6636 
6637 	/* Fill in the revision */
6638 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6639 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6640 
6641 	/* Copy in the device id */
6642 	mutex_enter(SD_MUTEX(un));
6643 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6644 	    ddi_devid_sizeof(un->un_devid));
6645 	mutex_exit(SD_MUTEX(un));
6646 
6647 	/* Calculate the checksum */
6648 	chksum = 0;
6649 	ip = (uint_t *)dkdevid;
6650 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6651 	    i++) {
6652 		chksum ^= ip[i];
6653 	}
6654 
6655 	/* Fill-in checksum */
6656 	DKD_FORMCHKSUM(chksum, dkdevid);
6657 
6658 	/* Write the reserved sector */
6659 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6660 	    SD_PATH_DIRECT);
6661 
6662 	kmem_free(dkdevid, un->un_sys_blocksize);
6663 
6664 	mutex_enter(SD_MUTEX(un));
6665 	return (status);
6666 }
6667 
6668 
6669 /*
6670  *    Function: sd_check_vpd_page_support
6671  *
6672  * Description: This routine sends an inquiry command with the EVPD bit set and
6673  *		a page code of 0x00 to the device. It is used to determine which
6674  *		vital product pages are availible to find the devid. We are
6675  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6676  *		device does not support that command.
6677  *
6678  *   Arguments: un  - driver soft state (unit) structure
6679  *
6680  * Return Code: 0 - success
6681  *		1 - check condition
6682  *
6683  *     Context: This routine can sleep.
6684  */
6685 
6686 static int
6687 sd_check_vpd_page_support(struct sd_lun *un)
6688 {
6689 	uchar_t	*page_list	= NULL;
6690 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6691 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6692 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6693 	int    	rval		= 0;
6694 	int	counter;
6695 
6696 	ASSERT(un != NULL);
6697 	ASSERT(mutex_owned(SD_MUTEX(un)));
6698 
6699 	mutex_exit(SD_MUTEX(un));
6700 
6701 	/*
6702 	 * We'll set the page length to the maximum to save figuring it out
6703 	 * with an additional call.
6704 	 */
6705 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6706 
6707 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6708 	    page_code, NULL);
6709 
6710 	mutex_enter(SD_MUTEX(un));
6711 
6712 	/*
6713 	 * Now we must validate that the device accepted the command, as some
6714 	 * drives do not support it.  If the drive does support it, we will
6715 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6716 	 * not, we return -1.
6717 	 */
6718 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6719 		/* Loop to find one of the 2 pages we need */
6720 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6721 
6722 		/*
6723 		 * Pages are returned in ascending order, and 0x83 is what we
6724 		 * are hoping for.
6725 		 */
6726 		while ((page_list[counter] <= 0x83) &&
6727 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6728 		    VPD_HEAD_OFFSET))) {
6729 			/*
6730 			 * Add 3 because page_list[3] is the number of
6731 			 * pages minus 3
6732 			 */
6733 
6734 			switch (page_list[counter]) {
6735 			case 0x00:
6736 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6737 				break;
6738 			case 0x80:
6739 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6740 				break;
6741 			case 0x81:
6742 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6743 				break;
6744 			case 0x82:
6745 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6746 				break;
6747 			case 0x83:
6748 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6749 				break;
6750 			}
6751 			counter++;
6752 		}
6753 
6754 	} else {
6755 		rval = -1;
6756 
6757 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6758 		    "sd_check_vpd_page_support: This drive does not implement "
6759 		    "VPD pages.\n");
6760 	}
6761 
6762 	kmem_free(page_list, page_length);
6763 
6764 	return (rval);
6765 }
6766 
6767 
6768 /*
6769  *    Function: sd_setup_pm
6770  *
6771  * Description: Initialize Power Management on the device
6772  *
6773  *     Context: Kernel Thread
6774  */
6775 
6776 static void
6777 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6778 {
6779 	uint_t	log_page_size;
6780 	uchar_t	*log_page_data;
6781 	int	rval;
6782 
6783 	/*
6784 	 * Since we are called from attach, holding a mutex for
6785 	 * un is unnecessary. Because some of the routines called
6786 	 * from here require SD_MUTEX to not be held, assert this
6787 	 * right up front.
6788 	 */
6789 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6790 	/*
6791 	 * Since the sd device does not have the 'reg' property,
6792 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6793 	 * The following code is to tell cpr that this device
6794 	 * DOES need to be suspended and resumed.
6795 	 */
6796 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6797 	    "pm-hardware-state", "needs-suspend-resume");
6798 
6799 	/*
6800 	 * This complies with the new power management framework
6801 	 * for certain desktop machines. Create the pm_components
6802 	 * property as a string array property.
6803 	 */
6804 	if (un->un_f_pm_supported) {
6805 		/*
6806 		 * not all devices have a motor, try it first.
6807 		 * some devices may return ILLEGAL REQUEST, some
6808 		 * will hang
6809 		 * The following START_STOP_UNIT is used to check if target
6810 		 * device has a motor.
6811 		 */
6812 		un->un_f_start_stop_supported = TRUE;
6813 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6814 		    SD_PATH_DIRECT) != 0) {
6815 			un->un_f_start_stop_supported = FALSE;
6816 		}
6817 
6818 		/*
6819 		 * create pm properties anyways otherwise the parent can't
6820 		 * go to sleep
6821 		 */
6822 		(void) sd_create_pm_components(devi, un);
6823 		un->un_f_pm_is_enabled = TRUE;
6824 		return;
6825 	}
6826 
6827 	if (!un->un_f_log_sense_supported) {
6828 		un->un_power_level = SD_SPINDLE_ON;
6829 		un->un_f_pm_is_enabled = FALSE;
6830 		return;
6831 	}
6832 
6833 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6834 
6835 #ifdef	SDDEBUG
6836 	if (sd_force_pm_supported) {
6837 		/* Force a successful result */
6838 		rval = 1;
6839 	}
6840 #endif
6841 
6842 	/*
6843 	 * If the start-stop cycle counter log page is not supported
6844 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6845 	 * then we should not create the pm_components property.
6846 	 */
6847 	if (rval == -1) {
6848 		/*
6849 		 * Error.
6850 		 * Reading log sense failed, most likely this is
6851 		 * an older drive that does not support log sense.
6852 		 * If this fails auto-pm is not supported.
6853 		 */
6854 		un->un_power_level = SD_SPINDLE_ON;
6855 		un->un_f_pm_is_enabled = FALSE;
6856 
6857 	} else if (rval == 0) {
6858 		/*
6859 		 * Page not found.
6860 		 * The start stop cycle counter is implemented as page
6861 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6862 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6863 		 */
6864 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6865 			/*
6866 			 * Page found, use this one.
6867 			 */
6868 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6869 			un->un_f_pm_is_enabled = TRUE;
6870 		} else {
6871 			/*
6872 			 * Error or page not found.
6873 			 * auto-pm is not supported for this device.
6874 			 */
6875 			un->un_power_level = SD_SPINDLE_ON;
6876 			un->un_f_pm_is_enabled = FALSE;
6877 		}
6878 	} else {
6879 		/*
6880 		 * Page found, use it.
6881 		 */
6882 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6883 		un->un_f_pm_is_enabled = TRUE;
6884 	}
6885 
6886 
6887 	if (un->un_f_pm_is_enabled == TRUE) {
6888 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6889 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6890 
6891 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6892 		    log_page_size, un->un_start_stop_cycle_page,
6893 		    0x01, 0, SD_PATH_DIRECT);
6894 #ifdef	SDDEBUG
6895 		if (sd_force_pm_supported) {
6896 			/* Force a successful result */
6897 			rval = 0;
6898 		}
6899 #endif
6900 
6901 		/*
6902 		 * If the Log sense for Page( Start/stop cycle counter page)
6903 		 * succeeds, then power managment is supported and we can
6904 		 * enable auto-pm.
6905 		 */
6906 		if (rval == 0)  {
6907 			(void) sd_create_pm_components(devi, un);
6908 		} else {
6909 			un->un_power_level = SD_SPINDLE_ON;
6910 			un->un_f_pm_is_enabled = FALSE;
6911 		}
6912 
6913 		kmem_free(log_page_data, log_page_size);
6914 	}
6915 }
6916 
6917 
6918 /*
6919  *    Function: sd_create_pm_components
6920  *
6921  * Description: Initialize PM property.
6922  *
6923  *     Context: Kernel thread context
6924  */
6925 
6926 static void
6927 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6928 {
6929 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6930 
6931 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6932 
6933 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6934 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6935 		/*
6936 		 * When components are initially created they are idle,
6937 		 * power up any non-removables.
6938 		 * Note: the return value of pm_raise_power can't be used
6939 		 * for determining if PM should be enabled for this device.
6940 		 * Even if you check the return values and remove this
6941 		 * property created above, the PM framework will not honor the
6942 		 * change after the first call to pm_raise_power. Hence,
6943 		 * removal of that property does not help if pm_raise_power
6944 		 * fails. In the case of removable media, the start/stop
6945 		 * will fail if the media is not present.
6946 		 */
6947 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6948 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6949 			mutex_enter(SD_MUTEX(un));
6950 			un->un_power_level = SD_SPINDLE_ON;
6951 			mutex_enter(&un->un_pm_mutex);
6952 			/* Set to on and not busy. */
6953 			un->un_pm_count = 0;
6954 		} else {
6955 			mutex_enter(SD_MUTEX(un));
6956 			un->un_power_level = SD_SPINDLE_OFF;
6957 			mutex_enter(&un->un_pm_mutex);
6958 			/* Set to off. */
6959 			un->un_pm_count = -1;
6960 		}
6961 		mutex_exit(&un->un_pm_mutex);
6962 		mutex_exit(SD_MUTEX(un));
6963 	} else {
6964 		un->un_power_level = SD_SPINDLE_ON;
6965 		un->un_f_pm_is_enabled = FALSE;
6966 	}
6967 }
6968 
6969 
6970 /*
6971  *    Function: sd_ddi_suspend
6972  *
6973  * Description: Performs system power-down operations. This includes
6974  *		setting the drive state to indicate its suspended so
6975  *		that no new commands will be accepted. Also, wait for
6976  *		all commands that are in transport or queued to a timer
6977  *		for retry to complete. All timeout threads are cancelled.
6978  *
6979  * Return Code: DDI_FAILURE or DDI_SUCCESS
6980  *
6981  *     Context: Kernel thread context
6982  */
6983 
6984 static int
6985 sd_ddi_suspend(dev_info_t *devi)
6986 {
6987 	struct	sd_lun	*un;
6988 	clock_t		wait_cmds_complete;
6989 
6990 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6991 	if (un == NULL) {
6992 		return (DDI_FAILURE);
6993 	}
6994 
6995 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6996 
6997 	mutex_enter(SD_MUTEX(un));
6998 
6999 	/* Return success if the device is already suspended. */
7000 	if (un->un_state == SD_STATE_SUSPENDED) {
7001 		mutex_exit(SD_MUTEX(un));
7002 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7003 		    "device already suspended, exiting\n");
7004 		return (DDI_SUCCESS);
7005 	}
7006 
7007 	/* Return failure if the device is being used by HA */
7008 	if (un->un_resvd_status &
7009 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
7010 		mutex_exit(SD_MUTEX(un));
7011 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7012 		    "device in use by HA, exiting\n");
7013 		return (DDI_FAILURE);
7014 	}
7015 
7016 	/*
7017 	 * Return failure if the device is in a resource wait
7018 	 * or power changing state.
7019 	 */
7020 	if ((un->un_state == SD_STATE_RWAIT) ||
7021 	    (un->un_state == SD_STATE_PM_CHANGING)) {
7022 		mutex_exit(SD_MUTEX(un));
7023 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7024 		    "device in resource wait state, exiting\n");
7025 		return (DDI_FAILURE);
7026 	}
7027 
7028 
7029 	un->un_save_state = un->un_last_state;
7030 	New_state(un, SD_STATE_SUSPENDED);
7031 
7032 	/*
7033 	 * Wait for all commands that are in transport or queued to a timer
7034 	 * for retry to complete.
7035 	 *
7036 	 * While waiting, no new commands will be accepted or sent because of
7037 	 * the new state we set above.
7038 	 *
7039 	 * Wait till current operation has completed. If we are in the resource
7040 	 * wait state (with an intr outstanding) then we need to wait till the
7041 	 * intr completes and starts the next cmd. We want to wait for
7042 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
7043 	 */
7044 	wait_cmds_complete = ddi_get_lbolt() +
7045 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
7046 
7047 	while (un->un_ncmds_in_transport != 0) {
7048 		/*
7049 		 * Fail if commands do not finish in the specified time.
7050 		 */
7051 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
7052 		    wait_cmds_complete) == -1) {
7053 			/*
7054 			 * Undo the state changes made above. Everything
7055 			 * must go back to it's original value.
7056 			 */
7057 			Restore_state(un);
7058 			un->un_last_state = un->un_save_state;
7059 			/* Wake up any threads that might be waiting. */
7060 			cv_broadcast(&un->un_suspend_cv);
7061 			mutex_exit(SD_MUTEX(un));
7062 			SD_ERROR(SD_LOG_IO_PM, un,
7063 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
7064 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
7065 			return (DDI_FAILURE);
7066 		}
7067 	}
7068 
7069 	/*
7070 	 * Cancel SCSI watch thread and timeouts, if any are active
7071 	 */
7072 
7073 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
7074 		opaque_t temp_token = un->un_swr_token;
7075 		mutex_exit(SD_MUTEX(un));
7076 		scsi_watch_suspend(temp_token);
7077 		mutex_enter(SD_MUTEX(un));
7078 	}
7079 
7080 	if (un->un_reset_throttle_timeid != NULL) {
7081 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7082 		un->un_reset_throttle_timeid = NULL;
7083 		mutex_exit(SD_MUTEX(un));
7084 		(void) untimeout(temp_id);
7085 		mutex_enter(SD_MUTEX(un));
7086 	}
7087 
7088 	if (un->un_dcvb_timeid != NULL) {
7089 		timeout_id_t temp_id = un->un_dcvb_timeid;
7090 		un->un_dcvb_timeid = NULL;
7091 		mutex_exit(SD_MUTEX(un));
7092 		(void) untimeout(temp_id);
7093 		mutex_enter(SD_MUTEX(un));
7094 	}
7095 
7096 	mutex_enter(&un->un_pm_mutex);
7097 	if (un->un_pm_timeid != NULL) {
7098 		timeout_id_t temp_id = un->un_pm_timeid;
7099 		un->un_pm_timeid = NULL;
7100 		mutex_exit(&un->un_pm_mutex);
7101 		mutex_exit(SD_MUTEX(un));
7102 		(void) untimeout(temp_id);
7103 		mutex_enter(SD_MUTEX(un));
7104 	} else {
7105 		mutex_exit(&un->un_pm_mutex);
7106 	}
7107 
7108 	if (un->un_retry_timeid != NULL) {
7109 		timeout_id_t temp_id = un->un_retry_timeid;
7110 		un->un_retry_timeid = NULL;
7111 		mutex_exit(SD_MUTEX(un));
7112 		(void) untimeout(temp_id);
7113 		mutex_enter(SD_MUTEX(un));
7114 	}
7115 
7116 	if (un->un_direct_priority_timeid != NULL) {
7117 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7118 		un->un_direct_priority_timeid = NULL;
7119 		mutex_exit(SD_MUTEX(un));
7120 		(void) untimeout(temp_id);
7121 		mutex_enter(SD_MUTEX(un));
7122 	}
7123 
7124 	if (un->un_f_is_fibre == TRUE) {
7125 		/*
7126 		 * Remove callbacks for insert and remove events
7127 		 */
7128 		if (un->un_insert_event != NULL) {
7129 			mutex_exit(SD_MUTEX(un));
7130 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
7131 			mutex_enter(SD_MUTEX(un));
7132 			un->un_insert_event = NULL;
7133 		}
7134 
7135 		if (un->un_remove_event != NULL) {
7136 			mutex_exit(SD_MUTEX(un));
7137 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
7138 			mutex_enter(SD_MUTEX(un));
7139 			un->un_remove_event = NULL;
7140 		}
7141 	}
7142 
7143 	mutex_exit(SD_MUTEX(un));
7144 
7145 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
7146 
7147 	return (DDI_SUCCESS);
7148 }
7149 
7150 
7151 /*
7152  *    Function: sd_ddi_pm_suspend
7153  *
7154  * Description: Set the drive state to low power.
7155  *		Someone else is required to actually change the drive
7156  *		power level.
7157  *
7158  *   Arguments: un - driver soft state (unit) structure
7159  *
7160  * Return Code: DDI_FAILURE or DDI_SUCCESS
7161  *
7162  *     Context: Kernel thread context
7163  */
7164 
7165 static int
7166 sd_ddi_pm_suspend(struct sd_lun *un)
7167 {
7168 	ASSERT(un != NULL);
7169 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
7170 
7171 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7172 	mutex_enter(SD_MUTEX(un));
7173 
7174 	/*
7175 	 * Exit if power management is not enabled for this device, or if
7176 	 * the device is being used by HA.
7177 	 */
7178 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
7179 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
7180 		mutex_exit(SD_MUTEX(un));
7181 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
7182 		return (DDI_SUCCESS);
7183 	}
7184 
7185 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
7186 	    un->un_ncmds_in_driver);
7187 
7188 	/*
7189 	 * See if the device is not busy, ie.:
7190 	 *    - we have no commands in the driver for this device
7191 	 *    - not waiting for resources
7192 	 */
7193 	if ((un->un_ncmds_in_driver == 0) &&
7194 	    (un->un_state != SD_STATE_RWAIT)) {
7195 		/*
7196 		 * The device is not busy, so it is OK to go to low power state.
7197 		 * Indicate low power, but rely on someone else to actually
7198 		 * change it.
7199 		 */
7200 		mutex_enter(&un->un_pm_mutex);
7201 		un->un_pm_count = -1;
7202 		mutex_exit(&un->un_pm_mutex);
7203 		un->un_power_level = SD_SPINDLE_OFF;
7204 	}
7205 
7206 	mutex_exit(SD_MUTEX(un));
7207 
7208 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
7209 
7210 	return (DDI_SUCCESS);
7211 }
7212 
7213 
7214 /*
7215  *    Function: sd_ddi_resume
7216  *
7217  * Description: Performs system power-up operations..
7218  *
7219  * Return Code: DDI_SUCCESS
7220  *		DDI_FAILURE
7221  *
7222  *     Context: Kernel thread context
7223  */
7224 
7225 static int
7226 sd_ddi_resume(dev_info_t *devi)
7227 {
7228 	struct	sd_lun	*un;
7229 
7230 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
7231 	if (un == NULL) {
7232 		return (DDI_FAILURE);
7233 	}
7234 
7235 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
7236 
7237 	mutex_enter(SD_MUTEX(un));
7238 	Restore_state(un);
7239 
7240 	/*
7241 	 * Restore the state which was saved to give the
7242 	 * the right state in un_last_state
7243 	 */
7244 	un->un_last_state = un->un_save_state;
7245 	/*
7246 	 * Note: throttle comes back at full.
7247 	 * Also note: this MUST be done before calling pm_raise_power
7248 	 * otherwise the system can get hung in biowait. The scenario where
7249 	 * this'll happen is under cpr suspend. Writing of the system
7250 	 * state goes through sddump, which writes 0 to un_throttle. If
7251 	 * writing the system state then fails, example if the partition is
7252 	 * too small, then cpr attempts a resume. If throttle isn't restored
7253 	 * from the saved value until after calling pm_raise_power then
7254 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7255 	 * in biowait.
7256 	 */
7257 	un->un_throttle = un->un_saved_throttle;
7258 
7259 	/*
7260 	 * The chance of failure is very rare as the only command done in power
7261 	 * entry point is START command when you transition from 0->1 or
7262 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7263 	 * which suspend was done. Ignore the return value as the resume should
7264 	 * not be failed. In the case of removable media the media need not be
7265 	 * inserted and hence there is a chance that raise power will fail with
7266 	 * media not present.
7267 	 */
7268 	if (un->un_f_attach_spinup) {
7269 		mutex_exit(SD_MUTEX(un));
7270 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7271 		mutex_enter(SD_MUTEX(un));
7272 	}
7273 
7274 	/*
7275 	 * Don't broadcast to the suspend cv and therefore possibly
7276 	 * start I/O until after power has been restored.
7277 	 */
7278 	cv_broadcast(&un->un_suspend_cv);
7279 	cv_broadcast(&un->un_state_cv);
7280 
7281 	/* restart thread */
7282 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7283 		scsi_watch_resume(un->un_swr_token);
7284 	}
7285 
7286 #if (defined(__fibre))
7287 	if (un->un_f_is_fibre == TRUE) {
7288 		/*
7289 		 * Add callbacks for insert and remove events
7290 		 */
7291 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7292 			sd_init_event_callbacks(un);
7293 		}
7294 	}
7295 #endif
7296 
7297 	/*
7298 	 * Transport any pending commands to the target.
7299 	 *
7300 	 * If this is a low-activity device commands in queue will have to wait
7301 	 * until new commands come in, which may take awhile. Also, we
7302 	 * specifically don't check un_ncmds_in_transport because we know that
7303 	 * there really are no commands in progress after the unit was
7304 	 * suspended and we could have reached the throttle level, been
7305 	 * suspended, and have no new commands coming in for awhile. Highly
7306 	 * unlikely, but so is the low-activity disk scenario.
7307 	 */
7308 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7309 
7310 	sd_start_cmds(un, NULL);
7311 	mutex_exit(SD_MUTEX(un));
7312 
7313 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7314 
7315 	return (DDI_SUCCESS);
7316 }
7317 
7318 
7319 /*
7320  *    Function: sd_ddi_pm_resume
7321  *
7322  * Description: Set the drive state to powered on.
7323  *		Someone else is required to actually change the drive
7324  *		power level.
7325  *
7326  *   Arguments: un - driver soft state (unit) structure
7327  *
7328  * Return Code: DDI_SUCCESS
7329  *
7330  *     Context: Kernel thread context
7331  */
7332 
7333 static int
7334 sd_ddi_pm_resume(struct sd_lun *un)
7335 {
7336 	ASSERT(un != NULL);
7337 
7338 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7339 	mutex_enter(SD_MUTEX(un));
7340 	un->un_power_level = SD_SPINDLE_ON;
7341 
7342 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7343 	mutex_enter(&un->un_pm_mutex);
7344 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7345 		un->un_pm_count++;
7346 		ASSERT(un->un_pm_count == 0);
7347 		/*
7348 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7349 		 * un_suspend_cv is for a system resume, not a power management
7350 		 * device resume. (4297749)
7351 		 *	 cv_broadcast(&un->un_suspend_cv);
7352 		 */
7353 	}
7354 	mutex_exit(&un->un_pm_mutex);
7355 	mutex_exit(SD_MUTEX(un));
7356 
7357 	return (DDI_SUCCESS);
7358 }
7359 
7360 
7361 /*
7362  *    Function: sd_pm_idletimeout_handler
7363  *
7364  * Description: A timer routine that's active only while a device is busy.
7365  *		The purpose is to extend slightly the pm framework's busy
7366  *		view of the device to prevent busy/idle thrashing for
7367  *		back-to-back commands. Do this by comparing the current time
7368  *		to the time at which the last command completed and when the
7369  *		difference is greater than sd_pm_idletime, call
7370  *		pm_idle_component. In addition to indicating idle to the pm
7371  *		framework, update the chain type to again use the internal pm
7372  *		layers of the driver.
7373  *
7374  *   Arguments: arg - driver soft state (unit) structure
7375  *
7376  *     Context: Executes in a timeout(9F) thread context
7377  */
7378 
7379 static void
7380 sd_pm_idletimeout_handler(void *arg)
7381 {
7382 	struct sd_lun *un = arg;
7383 
7384 	time_t	now;
7385 
7386 	mutex_enter(&sd_detach_mutex);
7387 	if (un->un_detach_count != 0) {
7388 		/* Abort if the instance is detaching */
7389 		mutex_exit(&sd_detach_mutex);
7390 		return;
7391 	}
7392 	mutex_exit(&sd_detach_mutex);
7393 
7394 	now = ddi_get_time();
7395 	/*
7396 	 * Grab both mutexes, in the proper order, since we're accessing
7397 	 * both PM and softstate variables.
7398 	 */
7399 	mutex_enter(SD_MUTEX(un));
7400 	mutex_enter(&un->un_pm_mutex);
7401 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7402 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7403 		/*
7404 		 * Update the chain types.
7405 		 * This takes affect on the next new command received.
7406 		 */
7407 		if (un->un_f_non_devbsize_supported) {
7408 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7409 		} else {
7410 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7411 		}
7412 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7413 
7414 		SD_TRACE(SD_LOG_IO_PM, un,
7415 		    "sd_pm_idletimeout_handler: idling device\n");
7416 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7417 		un->un_pm_idle_timeid = NULL;
7418 	} else {
7419 		un->un_pm_idle_timeid =
7420 			timeout(sd_pm_idletimeout_handler, un,
7421 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7422 	}
7423 	mutex_exit(&un->un_pm_mutex);
7424 	mutex_exit(SD_MUTEX(un));
7425 }
7426 
7427 
7428 /*
7429  *    Function: sd_pm_timeout_handler
7430  *
7431  * Description: Callback to tell framework we are idle.
7432  *
7433  *     Context: timeout(9f) thread context.
7434  */
7435 
7436 static void
7437 sd_pm_timeout_handler(void *arg)
7438 {
7439 	struct sd_lun *un = arg;
7440 
7441 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7442 	mutex_enter(&un->un_pm_mutex);
7443 	un->un_pm_timeid = NULL;
7444 	mutex_exit(&un->un_pm_mutex);
7445 }
7446 
7447 
7448 /*
7449  *    Function: sdpower
7450  *
7451  * Description: PM entry point.
7452  *
7453  * Return Code: DDI_SUCCESS
7454  *		DDI_FAILURE
7455  *
7456  *     Context: Kernel thread context
7457  */
7458 
7459 static int
7460 sdpower(dev_info_t *devi, int component, int level)
7461 {
7462 	struct sd_lun	*un;
7463 	int		instance;
7464 	int		rval = DDI_SUCCESS;
7465 	uint_t		i, log_page_size, maxcycles, ncycles;
7466 	uchar_t		*log_page_data;
7467 	int		log_sense_page;
7468 	int		medium_present;
7469 	time_t		intvlp;
7470 	dev_t		dev;
7471 	struct pm_trans_data	sd_pm_tran_data;
7472 	uchar_t		save_state;
7473 	int		sval;
7474 	uchar_t		state_before_pm;
7475 	int		got_semaphore_here;
7476 
7477 	instance = ddi_get_instance(devi);
7478 
7479 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7480 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7481 	    component != 0) {
7482 		return (DDI_FAILURE);
7483 	}
7484 
7485 	dev = sd_make_device(SD_DEVINFO(un));
7486 
7487 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7488 
7489 	/*
7490 	 * Must synchronize power down with close.
7491 	 * Attempt to decrement/acquire the open/close semaphore,
7492 	 * but do NOT wait on it. If it's not greater than zero,
7493 	 * ie. it can't be decremented without waiting, then
7494 	 * someone else, either open or close, already has it
7495 	 * and the try returns 0. Use that knowledge here to determine
7496 	 * if it's OK to change the device power level.
7497 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7498 	 * here.
7499 	 */
7500 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7501 
7502 	mutex_enter(SD_MUTEX(un));
7503 
7504 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7505 	    un->un_ncmds_in_driver);
7506 
7507 	/*
7508 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7509 	 * already being processed in the driver, or if the semaphore was
7510 	 * not gotten here it indicates an open or close is being processed.
7511 	 * At the same time somebody is requesting to go low power which
7512 	 * can't happen, therefore we need to return failure.
7513 	 */
7514 	if ((level == SD_SPINDLE_OFF) &&
7515 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7516 		mutex_exit(SD_MUTEX(un));
7517 
7518 		if (got_semaphore_here != 0) {
7519 			sema_v(&un->un_semoclose);
7520 		}
7521 		SD_TRACE(SD_LOG_IO_PM, un,
7522 		    "sdpower: exit, device has queued cmds.\n");
7523 		return (DDI_FAILURE);
7524 	}
7525 
7526 	/*
7527 	 * if it is OFFLINE that means the disk is completely dead
7528 	 * in our case we have to put the disk in on or off by sending commands
7529 	 * Of course that will fail anyway so return back here.
7530 	 *
7531 	 * Power changes to a device that's OFFLINE or SUSPENDED
7532 	 * are not allowed.
7533 	 */
7534 	if ((un->un_state == SD_STATE_OFFLINE) ||
7535 	    (un->un_state == SD_STATE_SUSPENDED)) {
7536 		mutex_exit(SD_MUTEX(un));
7537 
7538 		if (got_semaphore_here != 0) {
7539 			sema_v(&un->un_semoclose);
7540 		}
7541 		SD_TRACE(SD_LOG_IO_PM, un,
7542 		    "sdpower: exit, device is off-line.\n");
7543 		return (DDI_FAILURE);
7544 	}
7545 
7546 	/*
7547 	 * Change the device's state to indicate it's power level
7548 	 * is being changed. Do this to prevent a power off in the
7549 	 * middle of commands, which is especially bad on devices
7550 	 * that are really powered off instead of just spun down.
7551 	 */
7552 	state_before_pm = un->un_state;
7553 	un->un_state = SD_STATE_PM_CHANGING;
7554 
7555 	mutex_exit(SD_MUTEX(un));
7556 
7557 	/*
7558 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7559 	 * bypass the following checking, otherwise, check the log
7560 	 * sense information for this device
7561 	 */
7562 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7563 		/*
7564 		 * Get the log sense information to understand whether the
7565 		 * the powercycle counts have gone beyond the threshhold.
7566 		 */
7567 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7568 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7569 
7570 		mutex_enter(SD_MUTEX(un));
7571 		log_sense_page = un->un_start_stop_cycle_page;
7572 		mutex_exit(SD_MUTEX(un));
7573 
7574 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7575 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7576 #ifdef	SDDEBUG
7577 		if (sd_force_pm_supported) {
7578 			/* Force a successful result */
7579 			rval = 0;
7580 		}
7581 #endif
7582 		if (rval != 0) {
7583 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7584 			    "Log Sense Failed\n");
7585 			kmem_free(log_page_data, log_page_size);
7586 			/* Cannot support power management on those drives */
7587 
7588 			if (got_semaphore_here != 0) {
7589 				sema_v(&un->un_semoclose);
7590 			}
7591 			/*
7592 			 * On exit put the state back to it's original value
7593 			 * and broadcast to anyone waiting for the power
7594 			 * change completion.
7595 			 */
7596 			mutex_enter(SD_MUTEX(un));
7597 			un->un_state = state_before_pm;
7598 			cv_broadcast(&un->un_suspend_cv);
7599 			mutex_exit(SD_MUTEX(un));
7600 			SD_TRACE(SD_LOG_IO_PM, un,
7601 			    "sdpower: exit, Log Sense Failed.\n");
7602 			return (DDI_FAILURE);
7603 		}
7604 
7605 		/*
7606 		 * From the page data - Convert the essential information to
7607 		 * pm_trans_data
7608 		 */
7609 		maxcycles =
7610 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7611 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7612 
7613 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7614 
7615 		ncycles =
7616 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7617 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7618 
7619 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7620 
7621 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7622 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7623 			    log_page_data[8+i];
7624 		}
7625 
7626 		kmem_free(log_page_data, log_page_size);
7627 
7628 		/*
7629 		 * Call pm_trans_check routine to get the Ok from
7630 		 * the global policy
7631 		 */
7632 
7633 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7634 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7635 
7636 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7637 #ifdef	SDDEBUG
7638 		if (sd_force_pm_supported) {
7639 			/* Force a successful result */
7640 			rval = 1;
7641 		}
7642 #endif
7643 		switch (rval) {
7644 		case 0:
7645 			/*
7646 			 * Not Ok to Power cycle or error in parameters passed
7647 			 * Would have given the advised time to consider power
7648 			 * cycle. Based on the new intvlp parameter we are
7649 			 * supposed to pretend we are busy so that pm framework
7650 			 * will never call our power entry point. Because of
7651 			 * that install a timeout handler and wait for the
7652 			 * recommended time to elapse so that power management
7653 			 * can be effective again.
7654 			 *
7655 			 * To effect this behavior, call pm_busy_component to
7656 			 * indicate to the framework this device is busy.
7657 			 * By not adjusting un_pm_count the rest of PM in
7658 			 * the driver will function normally, and independant
7659 			 * of this but because the framework is told the device
7660 			 * is busy it won't attempt powering down until it gets
7661 			 * a matching idle. The timeout handler sends this.
7662 			 * Note: sd_pm_entry can't be called here to do this
7663 			 * because sdpower may have been called as a result
7664 			 * of a call to pm_raise_power from within sd_pm_entry.
7665 			 *
7666 			 * If a timeout handler is already active then
7667 			 * don't install another.
7668 			 */
7669 			mutex_enter(&un->un_pm_mutex);
7670 			if (un->un_pm_timeid == NULL) {
7671 				un->un_pm_timeid =
7672 				    timeout(sd_pm_timeout_handler,
7673 				    un, intvlp * drv_usectohz(1000000));
7674 				mutex_exit(&un->un_pm_mutex);
7675 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7676 			} else {
7677 				mutex_exit(&un->un_pm_mutex);
7678 			}
7679 			if (got_semaphore_here != 0) {
7680 				sema_v(&un->un_semoclose);
7681 			}
7682 			/*
7683 			 * On exit put the state back to it's original value
7684 			 * and broadcast to anyone waiting for the power
7685 			 * change completion.
7686 			 */
7687 			mutex_enter(SD_MUTEX(un));
7688 			un->un_state = state_before_pm;
7689 			cv_broadcast(&un->un_suspend_cv);
7690 			mutex_exit(SD_MUTEX(un));
7691 
7692 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7693 			    "trans check Failed, not ok to power cycle.\n");
7694 			return (DDI_FAILURE);
7695 
7696 		case -1:
7697 			if (got_semaphore_here != 0) {
7698 				sema_v(&un->un_semoclose);
7699 			}
7700 			/*
7701 			 * On exit put the state back to it's original value
7702 			 * and broadcast to anyone waiting for the power
7703 			 * change completion.
7704 			 */
7705 			mutex_enter(SD_MUTEX(un));
7706 			un->un_state = state_before_pm;
7707 			cv_broadcast(&un->un_suspend_cv);
7708 			mutex_exit(SD_MUTEX(un));
7709 			SD_TRACE(SD_LOG_IO_PM, un,
7710 			    "sdpower: exit, trans check command Failed.\n");
7711 			return (DDI_FAILURE);
7712 		}
7713 	}
7714 
7715 	if (level == SD_SPINDLE_OFF) {
7716 		/*
7717 		 * Save the last state... if the STOP FAILS we need it
7718 		 * for restoring
7719 		 */
7720 		mutex_enter(SD_MUTEX(un));
7721 		save_state = un->un_last_state;
7722 		/*
7723 		 * There must not be any cmds. getting processed
7724 		 * in the driver when we get here. Power to the
7725 		 * device is potentially going off.
7726 		 */
7727 		ASSERT(un->un_ncmds_in_driver == 0);
7728 		mutex_exit(SD_MUTEX(un));
7729 
7730 		/*
7731 		 * For now suspend the device completely before spindle is
7732 		 * turned off
7733 		 */
7734 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7735 			if (got_semaphore_here != 0) {
7736 				sema_v(&un->un_semoclose);
7737 			}
7738 			/*
7739 			 * On exit put the state back to it's original value
7740 			 * and broadcast to anyone waiting for the power
7741 			 * change completion.
7742 			 */
7743 			mutex_enter(SD_MUTEX(un));
7744 			un->un_state = state_before_pm;
7745 			cv_broadcast(&un->un_suspend_cv);
7746 			mutex_exit(SD_MUTEX(un));
7747 			SD_TRACE(SD_LOG_IO_PM, un,
7748 			    "sdpower: exit, PM suspend Failed.\n");
7749 			return (DDI_FAILURE);
7750 		}
7751 	}
7752 
7753 	/*
7754 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7755 	 * close, or strategy. Dump no long uses this routine, it uses it's
7756 	 * own code so it can be done in polled mode.
7757 	 */
7758 
7759 	medium_present = TRUE;
7760 
7761 	/*
7762 	 * When powering up, issue a TUR in case the device is at unit
7763 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7764 	 * a deadlock on un_pm_busy_cv will occur.
7765 	 */
7766 	if (level == SD_SPINDLE_ON) {
7767 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7768 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7769 	}
7770 
7771 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7772 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7773 
7774 	sval = sd_send_scsi_START_STOP_UNIT(un,
7775 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7776 	    SD_PATH_DIRECT);
7777 	/* Command failed, check for media present. */
7778 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7779 		medium_present = FALSE;
7780 	}
7781 
7782 	/*
7783 	 * The conditions of interest here are:
7784 	 *   if a spindle off with media present fails,
7785 	 *	then restore the state and return an error.
7786 	 *   else if a spindle on fails,
7787 	 *	then return an error (there's no state to restore).
7788 	 * In all other cases we setup for the new state
7789 	 * and return success.
7790 	 */
7791 	switch (level) {
7792 	case SD_SPINDLE_OFF:
7793 		if ((medium_present == TRUE) && (sval != 0)) {
7794 			/* The stop command from above failed */
7795 			rval = DDI_FAILURE;
7796 			/*
7797 			 * The stop command failed, and we have media
7798 			 * present. Put the level back by calling the
7799 			 * sd_pm_resume() and set the state back to
7800 			 * it's previous value.
7801 			 */
7802 			(void) sd_ddi_pm_resume(un);
7803 			mutex_enter(SD_MUTEX(un));
7804 			un->un_last_state = save_state;
7805 			mutex_exit(SD_MUTEX(un));
7806 			break;
7807 		}
7808 		/*
7809 		 * The stop command from above succeeded.
7810 		 */
7811 		if (un->un_f_monitor_media_state) {
7812 			/*
7813 			 * Terminate watch thread in case of removable media
7814 			 * devices going into low power state. This is as per
7815 			 * the requirements of pm framework, otherwise commands
7816 			 * will be generated for the device (through watch
7817 			 * thread), even when the device is in low power state.
7818 			 */
7819 			mutex_enter(SD_MUTEX(un));
7820 			un->un_f_watcht_stopped = FALSE;
7821 			if (un->un_swr_token != NULL) {
7822 				opaque_t temp_token = un->un_swr_token;
7823 				un->un_f_watcht_stopped = TRUE;
7824 				un->un_swr_token = NULL;
7825 				mutex_exit(SD_MUTEX(un));
7826 				(void) scsi_watch_request_terminate(temp_token,
7827 				    SCSI_WATCH_TERMINATE_WAIT);
7828 			} else {
7829 				mutex_exit(SD_MUTEX(un));
7830 			}
7831 		}
7832 		break;
7833 
7834 	default:	/* The level requested is spindle on... */
7835 		/*
7836 		 * Legacy behavior: return success on a failed spinup
7837 		 * if there is no media in the drive.
7838 		 * Do this by looking at medium_present here.
7839 		 */
7840 		if ((sval != 0) && medium_present) {
7841 			/* The start command from above failed */
7842 			rval = DDI_FAILURE;
7843 			break;
7844 		}
7845 		/*
7846 		 * The start command from above succeeded
7847 		 * Resume the devices now that we have
7848 		 * started the disks
7849 		 */
7850 		(void) sd_ddi_pm_resume(un);
7851 
7852 		/*
7853 		 * Resume the watch thread since it was suspended
7854 		 * when the device went into low power mode.
7855 		 */
7856 		if (un->un_f_monitor_media_state) {
7857 			mutex_enter(SD_MUTEX(un));
7858 			if (un->un_f_watcht_stopped == TRUE) {
7859 				opaque_t temp_token;
7860 
7861 				un->un_f_watcht_stopped = FALSE;
7862 				mutex_exit(SD_MUTEX(un));
7863 				temp_token = scsi_watch_request_submit(
7864 				    SD_SCSI_DEVP(un),
7865 				    sd_check_media_time,
7866 				    SENSE_LENGTH, sd_media_watch_cb,
7867 				    (caddr_t)dev);
7868 				mutex_enter(SD_MUTEX(un));
7869 				un->un_swr_token = temp_token;
7870 			}
7871 			mutex_exit(SD_MUTEX(un));
7872 		}
7873 	}
7874 	if (got_semaphore_here != 0) {
7875 		sema_v(&un->un_semoclose);
7876 	}
7877 	/*
7878 	 * On exit put the state back to it's original value
7879 	 * and broadcast to anyone waiting for the power
7880 	 * change completion.
7881 	 */
7882 	mutex_enter(SD_MUTEX(un));
7883 	un->un_state = state_before_pm;
7884 	cv_broadcast(&un->un_suspend_cv);
7885 	mutex_exit(SD_MUTEX(un));
7886 
7887 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7888 
7889 	return (rval);
7890 }
7891 
7892 
7893 
7894 /*
7895  *    Function: sdattach
7896  *
7897  * Description: Driver's attach(9e) entry point function.
7898  *
7899  *   Arguments: devi - opaque device info handle
7900  *		cmd  - attach  type
7901  *
7902  * Return Code: DDI_SUCCESS
7903  *		DDI_FAILURE
7904  *
7905  *     Context: Kernel thread context
7906  */
7907 
7908 static int
7909 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7910 {
7911 	switch (cmd) {
7912 	case DDI_ATTACH:
7913 		return (sd_unit_attach(devi));
7914 	case DDI_RESUME:
7915 		return (sd_ddi_resume(devi));
7916 	default:
7917 		break;
7918 	}
7919 	return (DDI_FAILURE);
7920 }
7921 
7922 
7923 /*
7924  *    Function: sddetach
7925  *
7926  * Description: Driver's detach(9E) entry point function.
7927  *
7928  *   Arguments: devi - opaque device info handle
7929  *		cmd  - detach  type
7930  *
7931  * Return Code: DDI_SUCCESS
7932  *		DDI_FAILURE
7933  *
7934  *     Context: Kernel thread context
7935  */
7936 
7937 static int
7938 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7939 {
7940 	switch (cmd) {
7941 	case DDI_DETACH:
7942 		return (sd_unit_detach(devi));
7943 	case DDI_SUSPEND:
7944 		return (sd_ddi_suspend(devi));
7945 	default:
7946 		break;
7947 	}
7948 	return (DDI_FAILURE);
7949 }
7950 
7951 
7952 /*
7953  *     Function: sd_sync_with_callback
7954  *
7955  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7956  *		 state while the callback routine is active.
7957  *
7958  *    Arguments: un: softstate structure for the instance
7959  *
7960  *	Context: Kernel thread context
7961  */
7962 
7963 static void
7964 sd_sync_with_callback(struct sd_lun *un)
7965 {
7966 	ASSERT(un != NULL);
7967 
7968 	mutex_enter(SD_MUTEX(un));
7969 
7970 	ASSERT(un->un_in_callback >= 0);
7971 
7972 	while (un->un_in_callback > 0) {
7973 		mutex_exit(SD_MUTEX(un));
7974 		delay(2);
7975 		mutex_enter(SD_MUTEX(un));
7976 	}
7977 
7978 	mutex_exit(SD_MUTEX(un));
7979 }
7980 
7981 /*
7982  *    Function: sd_unit_attach
7983  *
7984  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7985  *		the soft state structure for the device and performs
7986  *		all necessary structure and device initializations.
7987  *
7988  *   Arguments: devi: the system's dev_info_t for the device.
7989  *
7990  * Return Code: DDI_SUCCESS if attach is successful.
7991  *		DDI_FAILURE if any part of the attach fails.
7992  *
7993  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7994  *		Kernel thread context only.  Can sleep.
7995  */
7996 
7997 static int
7998 sd_unit_attach(dev_info_t *devi)
7999 {
8000 	struct	scsi_device	*devp;
8001 	struct	sd_lun		*un;
8002 	char			*variantp;
8003 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
8004 	int	instance;
8005 	int	rval;
8006 	int	wc_enabled;
8007 	int	tgt;
8008 	uint64_t	capacity;
8009 	uint_t		lbasize;
8010 	dev_info_t	*pdip = ddi_get_parent(devi);
8011 
8012 	/*
8013 	 * Retrieve the target driver's private data area. This was set
8014 	 * up by the HBA.
8015 	 */
8016 	devp = ddi_get_driver_private(devi);
8017 
8018 	/*
8019 	 * Retrieve the target ID of the device.
8020 	 */
8021 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8022 	    SCSI_ADDR_PROP_TARGET, -1);
8023 
8024 	/*
8025 	 * Since we have no idea what state things were left in by the last
8026 	 * user of the device, set up some 'default' settings, ie. turn 'em
8027 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
8028 	 * Do this before the scsi_probe, which sends an inquiry.
8029 	 * This is a fix for bug (4430280).
8030 	 * Of special importance is wide-xfer. The drive could have been left
8031 	 * in wide transfer mode by the last driver to communicate with it,
8032 	 * this includes us. If that's the case, and if the following is not
8033 	 * setup properly or we don't re-negotiate with the drive prior to
8034 	 * transferring data to/from the drive, it causes bus parity errors,
8035 	 * data overruns, and unexpected interrupts. This first occurred when
8036 	 * the fix for bug (4378686) was made.
8037 	 */
8038 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
8039 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
8040 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
8041 
8042 	/*
8043 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
8044 	 * on a target. Setting it per lun instance actually sets the
8045 	 * capability of this target, which affects those luns already
8046 	 * attached on the same target. So during attach, we can only disable
8047 	 * this capability only when no other lun has been attached on this
8048 	 * target. By doing this, we assume a target has the same tagged-qing
8049 	 * capability for every lun. The condition can be removed when HBA
8050 	 * is changed to support per lun based tagged-qing capability.
8051 	 */
8052 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8053 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
8054 	}
8055 
8056 	/*
8057 	 * Use scsi_probe() to issue an INQUIRY command to the device.
8058 	 * This call will allocate and fill in the scsi_inquiry structure
8059 	 * and point the sd_inq member of the scsi_device structure to it.
8060 	 * If the attach succeeds, then this memory will not be de-allocated
8061 	 * (via scsi_unprobe()) until the instance is detached.
8062 	 */
8063 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
8064 		goto probe_failed;
8065 	}
8066 
8067 	/*
8068 	 * Check the device type as specified in the inquiry data and
8069 	 * claim it if it is of a type that we support.
8070 	 */
8071 	switch (devp->sd_inq->inq_dtype) {
8072 	case DTYPE_DIRECT:
8073 		break;
8074 	case DTYPE_RODIRECT:
8075 		break;
8076 	case DTYPE_OPTICAL:
8077 		break;
8078 	case DTYPE_NOTPRESENT:
8079 	default:
8080 		/* Unsupported device type; fail the attach. */
8081 		goto probe_failed;
8082 	}
8083 
8084 	/*
8085 	 * Allocate the soft state structure for this unit.
8086 	 *
8087 	 * We rely upon this memory being set to all zeroes by
8088 	 * ddi_soft_state_zalloc().  We assume that any member of the
8089 	 * soft state structure that is not explicitly initialized by
8090 	 * this routine will have a value of zero.
8091 	 */
8092 	instance = ddi_get_instance(devp->sd_dev);
8093 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
8094 		goto probe_failed;
8095 	}
8096 
8097 	/*
8098 	 * Retrieve a pointer to the newly-allocated soft state.
8099 	 *
8100 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
8101 	 * was successful, unless something has gone horribly wrong and the
8102 	 * ddi's soft state internals are corrupt (in which case it is
8103 	 * probably better to halt here than just fail the attach....)
8104 	 */
8105 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
8106 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
8107 		    instance);
8108 		/*NOTREACHED*/
8109 	}
8110 
8111 	/*
8112 	 * Link the back ptr of the driver soft state to the scsi_device
8113 	 * struct for this lun.
8114 	 * Save a pointer to the softstate in the driver-private area of
8115 	 * the scsi_device struct.
8116 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
8117 	 * we first set un->un_sd below.
8118 	 */
8119 	un->un_sd = devp;
8120 	devp->sd_private = (opaque_t)un;
8121 
8122 	/*
8123 	 * The following must be after devp is stored in the soft state struct.
8124 	 */
8125 #ifdef SDDEBUG
8126 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8127 	    "%s_unit_attach: un:0x%p instance:%d\n",
8128 	    ddi_driver_name(devi), un, instance);
8129 #endif
8130 
8131 	/*
8132 	 * Set up the device type and node type (for the minor nodes).
8133 	 * By default we assume that the device can at least support the
8134 	 * Common Command Set. Call it a CD-ROM if it reports itself
8135 	 * as a RODIRECT device.
8136 	 */
8137 	switch (devp->sd_inq->inq_dtype) {
8138 	case DTYPE_RODIRECT:
8139 		un->un_node_type = DDI_NT_CD_CHAN;
8140 		un->un_ctype	 = CTYPE_CDROM;
8141 		break;
8142 	case DTYPE_OPTICAL:
8143 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8144 		un->un_ctype	 = CTYPE_ROD;
8145 		break;
8146 	default:
8147 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8148 		un->un_ctype	 = CTYPE_CCS;
8149 		break;
8150 	}
8151 
8152 	/*
8153 	 * Try to read the interconnect type from the HBA.
8154 	 *
8155 	 * Note: This driver is currently compiled as two binaries, a parallel
8156 	 * scsi version (sd) and a fibre channel version (ssd). All functional
8157 	 * differences are determined at compile time. In the future a single
8158 	 * binary will be provided and the inteconnect type will be used to
8159 	 * differentiate between fibre and parallel scsi behaviors. At that time
8160 	 * it will be necessary for all fibre channel HBAs to support this
8161 	 * property.
8162 	 *
8163 	 * set un_f_is_fiber to TRUE ( default fiber )
8164 	 */
8165 	un->un_f_is_fibre = TRUE;
8166 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
8167 	case INTERCONNECT_SSA:
8168 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
8169 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8170 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
8171 		break;
8172 	case INTERCONNECT_PARALLEL:
8173 		un->un_f_is_fibre = FALSE;
8174 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8175 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8176 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
8177 		break;
8178 	case INTERCONNECT_SATA:
8179 		un->un_f_is_fibre = FALSE;
8180 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
8181 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8182 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
8183 		break;
8184 	case INTERCONNECT_FIBRE:
8185 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
8186 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8187 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
8188 		break;
8189 	case INTERCONNECT_FABRIC:
8190 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
8191 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
8192 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8193 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
8194 		break;
8195 	default:
8196 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
8197 		/*
8198 		 * The HBA does not support the "interconnect-type" property
8199 		 * (or did not provide a recognized type).
8200 		 *
8201 		 * Note: This will be obsoleted when a single fibre channel
8202 		 * and parallel scsi driver is delivered. In the meantime the
8203 		 * interconnect type will be set to the platform default.If that
8204 		 * type is not parallel SCSI, it means that we should be
8205 		 * assuming "ssd" semantics. However, here this also means that
8206 		 * the FC HBA is not supporting the "interconnect-type" property
8207 		 * like we expect it to, so log this occurrence.
8208 		 */
8209 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
8210 		if (!SD_IS_PARALLEL_SCSI(un)) {
8211 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8212 			    "sd_unit_attach: un:0x%p Assuming "
8213 			    "INTERCONNECT_FIBRE\n", un);
8214 		} else {
8215 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8216 			    "sd_unit_attach: un:0x%p Assuming "
8217 			    "INTERCONNECT_PARALLEL\n", un);
8218 			un->un_f_is_fibre = FALSE;
8219 		}
8220 #else
8221 		/*
8222 		 * Note: This source will be implemented when a single fibre
8223 		 * channel and parallel scsi driver is delivered. The default
8224 		 * will be to assume that if a device does not support the
8225 		 * "interconnect-type" property it is a parallel SCSI HBA and
8226 		 * we will set the interconnect type for parallel scsi.
8227 		 */
8228 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8229 		un->un_f_is_fibre = FALSE;
8230 #endif
8231 		break;
8232 	}
8233 
8234 	if (un->un_f_is_fibre == TRUE) {
8235 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
8236 			SCSI_VERSION_3) {
8237 			switch (un->un_interconnect_type) {
8238 			case SD_INTERCONNECT_FIBRE:
8239 			case SD_INTERCONNECT_SSA:
8240 				un->un_node_type = DDI_NT_BLOCK_WWN;
8241 				break;
8242 			default:
8243 				break;
8244 			}
8245 		}
8246 	}
8247 
8248 	/*
8249 	 * Initialize the Request Sense command for the target
8250 	 */
8251 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
8252 		goto alloc_rqs_failed;
8253 	}
8254 
8255 	/*
8256 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
8257 	 * with seperate binary for sd and ssd.
8258 	 *
8259 	 * x86 has 1 binary, un_retry_count is set base on connection type.
8260 	 * The hardcoded values will go away when Sparc uses 1 binary
8261 	 * for sd and ssd.  This hardcoded values need to match
8262 	 * SD_RETRY_COUNT in sddef.h
8263 	 * The value used is base on interconnect type.
8264 	 * fibre = 3, parallel = 5
8265 	 */
8266 #if defined(__i386) || defined(__amd64)
8267 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8268 #else
8269 	un->un_retry_count = SD_RETRY_COUNT;
8270 #endif
8271 
8272 	/*
8273 	 * Set the per disk retry count to the default number of retries
8274 	 * for disks and CDROMs. This value can be overridden by the
8275 	 * disk property list or an entry in sd.conf.
8276 	 */
8277 	un->un_notready_retry_count =
8278 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8279 			: DISK_NOT_READY_RETRY_COUNT(un);
8280 
8281 	/*
8282 	 * Set the busy retry count to the default value of un_retry_count.
8283 	 * This can be overridden by entries in sd.conf or the device
8284 	 * config table.
8285 	 */
8286 	un->un_busy_retry_count = un->un_retry_count;
8287 
8288 	/*
8289 	 * Init the reset threshold for retries.  This number determines
8290 	 * how many retries must be performed before a reset can be issued
8291 	 * (for certain error conditions). This can be overridden by entries
8292 	 * in sd.conf or the device config table.
8293 	 */
8294 	un->un_reset_retry_count = (un->un_retry_count / 2);
8295 
8296 	/*
8297 	 * Set the victim_retry_count to the default un_retry_count
8298 	 */
8299 	un->un_victim_retry_count = (2 * un->un_retry_count);
8300 
8301 	/*
8302 	 * Set the reservation release timeout to the default value of
8303 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8304 	 * device config table.
8305 	 */
8306 	un->un_reserve_release_time = 5;
8307 
8308 	/*
8309 	 * Set up the default maximum transfer size. Note that this may
8310 	 * get updated later in the attach, when setting up default wide
8311 	 * operations for disks.
8312 	 */
8313 #if defined(__i386) || defined(__amd64)
8314 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8315 #else
8316 	un->un_max_xfer_size = (uint_t)maxphys;
8317 #endif
8318 
8319 	/*
8320 	 * Get "allow bus device reset" property (defaults to "enabled" if
8321 	 * the property was not defined). This is to disable bus resets for
8322 	 * certain kinds of error recovery. Note: In the future when a run-time
8323 	 * fibre check is available the soft state flag should default to
8324 	 * enabled.
8325 	 */
8326 	if (un->un_f_is_fibre == TRUE) {
8327 		un->un_f_allow_bus_device_reset = TRUE;
8328 	} else {
8329 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8330 			"allow-bus-device-reset", 1) != 0) {
8331 			un->un_f_allow_bus_device_reset = TRUE;
8332 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8333 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8334 				un);
8335 		} else {
8336 			un->un_f_allow_bus_device_reset = FALSE;
8337 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8338 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8339 				un);
8340 		}
8341 	}
8342 
8343 	/*
8344 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8345 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8346 	 *
8347 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8348 	 * property. The new "variant" property with a value of "atapi" has been
8349 	 * introduced so that future 'variants' of standard SCSI behavior (like
8350 	 * atapi) could be specified by the underlying HBA drivers by supplying
8351 	 * a new value for the "variant" property, instead of having to define a
8352 	 * new property.
8353 	 */
8354 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8355 		un->un_f_cfg_is_atapi = TRUE;
8356 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8357 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8358 	}
8359 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8360 	    &variantp) == DDI_PROP_SUCCESS) {
8361 		if (strcmp(variantp, "atapi") == 0) {
8362 			un->un_f_cfg_is_atapi = TRUE;
8363 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8364 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8365 		}
8366 		ddi_prop_free(variantp);
8367 	}
8368 
8369 	un->un_cmd_timeout	= SD_IO_TIME;
8370 
8371 	/* Info on current states, statuses, etc. (Updated frequently) */
8372 	un->un_state		= SD_STATE_NORMAL;
8373 	un->un_last_state	= SD_STATE_NORMAL;
8374 
8375 	/* Control & status info for command throttling */
8376 	un->un_throttle		= sd_max_throttle;
8377 	un->un_saved_throttle	= sd_max_throttle;
8378 	un->un_min_throttle	= sd_min_throttle;
8379 
8380 	if (un->un_f_is_fibre == TRUE) {
8381 		un->un_f_use_adaptive_throttle = TRUE;
8382 	} else {
8383 		un->un_f_use_adaptive_throttle = FALSE;
8384 	}
8385 
8386 	/* Removable media support. */
8387 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8388 	un->un_mediastate		= DKIO_NONE;
8389 	un->un_specified_mediastate	= DKIO_NONE;
8390 
8391 	/* CVs for suspend/resume (PM or DR) */
8392 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8393 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8394 
8395 	/* Power management support. */
8396 	un->un_power_level = SD_SPINDLE_UNINIT;
8397 
8398 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8399 	un->un_f_wcc_inprog = 0;
8400 
8401 	/*
8402 	 * The open/close semaphore is used to serialize threads executing
8403 	 * in the driver's open & close entry point routines for a given
8404 	 * instance.
8405 	 */
8406 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8407 
8408 	/*
8409 	 * The conf file entry and softstate variable is a forceful override,
8410 	 * meaning a non-zero value must be entered to change the default.
8411 	 */
8412 	un->un_f_disksort_disabled = FALSE;
8413 
8414 	/*
8415 	 * Retrieve the properties from the static driver table or the driver
8416 	 * configuration file (.conf) for this unit and update the soft state
8417 	 * for the device as needed for the indicated properties.
8418 	 * Note: the property configuration needs to occur here as some of the
8419 	 * following routines may have dependancies on soft state flags set
8420 	 * as part of the driver property configuration.
8421 	 */
8422 	sd_read_unit_properties(un);
8423 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8424 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8425 
8426 	/*
8427 	 * Only if a device has "hotpluggable" property, it is
8428 	 * treated as hotpluggable device. Otherwise, it is
8429 	 * regarded as non-hotpluggable one.
8430 	 */
8431 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8432 	    -1) != -1) {
8433 		un->un_f_is_hotpluggable = TRUE;
8434 	}
8435 
8436 	/*
8437 	 * set unit's attributes(flags) according to "hotpluggable" and
8438 	 * RMB bit in INQUIRY data.
8439 	 */
8440 	sd_set_unit_attributes(un, devi);
8441 
8442 	/*
8443 	 * By default, we mark the capacity, lbasize, and geometry
8444 	 * as invalid. Only if we successfully read a valid capacity
8445 	 * will we update the un_blockcount and un_tgt_blocksize with the
8446 	 * valid values (the geometry will be validated later).
8447 	 */
8448 	un->un_f_blockcount_is_valid	= FALSE;
8449 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8450 	un->un_f_geometry_is_valid	= FALSE;
8451 
8452 	/*
8453 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8454 	 * otherwise.
8455 	 */
8456 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8457 	un->un_blockcount = 0;
8458 
8459 	/*
8460 	 * Set up the per-instance info needed to determine the correct
8461 	 * CDBs and other info for issuing commands to the target.
8462 	 */
8463 	sd_init_cdb_limits(un);
8464 
8465 	/*
8466 	 * Set up the IO chains to use, based upon the target type.
8467 	 */
8468 	if (un->un_f_non_devbsize_supported) {
8469 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8470 	} else {
8471 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8472 	}
8473 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8474 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8475 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8476 
8477 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8478 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8479 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8480 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8481 
8482 
8483 	if (ISCD(un)) {
8484 		un->un_additional_codes = sd_additional_codes;
8485 	} else {
8486 		un->un_additional_codes = NULL;
8487 	}
8488 
8489 	/*
8490 	 * Create the kstats here so they can be available for attach-time
8491 	 * routines that send commands to the unit (either polled or via
8492 	 * sd_send_scsi_cmd).
8493 	 *
8494 	 * Note: This is a critical sequence that needs to be maintained:
8495 	 *	1) Instantiate the kstats here, before any routines using the
8496 	 *	   iopath (i.e. sd_send_scsi_cmd).
8497 	 *	2) Instantiate and initialize the partition stats
8498 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
8499 	 *	   see detailed comments there.
8500 	 *	3) Initialize the error stats (sd_set_errstats), following
8501 	 *	   sd_validate_geometry(),sd_register_devid(),
8502 	 *	   and sd_cache_control().
8503 	 */
8504 
8505 	un->un_stats = kstat_create(sd_label, instance,
8506 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8507 	if (un->un_stats != NULL) {
8508 		un->un_stats->ks_lock = SD_MUTEX(un);
8509 		kstat_install(un->un_stats);
8510 	}
8511 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8512 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8513 
8514 	sd_create_errstats(un, instance);
8515 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8516 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8517 
8518 	/*
8519 	 * The following if/else code was relocated here from below as part
8520 	 * of the fix for bug (4430280). However with the default setup added
8521 	 * on entry to this routine, it's no longer absolutely necessary for
8522 	 * this to be before the call to sd_spin_up_unit.
8523 	 */
8524 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
8525 		/*
8526 		 * If SCSI-2 tagged queueing is supported by the target
8527 		 * and by the host adapter then we will enable it.
8528 		 */
8529 		un->un_tagflags = 0;
8530 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8531 		    (devp->sd_inq->inq_cmdque) &&
8532 		    (un->un_f_arq_enabled == TRUE)) {
8533 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8534 			    1, 1) == 1) {
8535 				un->un_tagflags = FLAG_STAG;
8536 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8537 				    "sd_unit_attach: un:0x%p tag queueing "
8538 				    "enabled\n", un);
8539 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8540 			    "untagged-qing", 0) == 1) {
8541 				un->un_f_opt_queueing = TRUE;
8542 				un->un_saved_throttle = un->un_throttle =
8543 				    min(un->un_throttle, 3);
8544 			} else {
8545 				un->un_f_opt_queueing = FALSE;
8546 				un->un_saved_throttle = un->un_throttle = 1;
8547 			}
8548 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8549 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8550 			/* The Host Adapter supports internal queueing. */
8551 			un->un_f_opt_queueing = TRUE;
8552 			un->un_saved_throttle = un->un_throttle =
8553 			    min(un->un_throttle, 3);
8554 		} else {
8555 			un->un_f_opt_queueing = FALSE;
8556 			un->un_saved_throttle = un->un_throttle = 1;
8557 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8558 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8559 		}
8560 
8561 		/*
8562 		 * Enable large transfers for SATA/SAS drives
8563 		 */
8564 		if (SD_IS_SERIAL(un)) {
8565 			un->un_max_xfer_size =
8566 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8567 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8568 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8569 			    "sd_unit_attach: un:0x%p max transfer "
8570 			    "size=0x%x\n", un, un->un_max_xfer_size);
8571 
8572 		}
8573 
8574 		/* Setup or tear down default wide operations for disks */
8575 
8576 		/*
8577 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8578 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8579 		 * system and be set to different values. In the future this
8580 		 * code may need to be updated when the ssd module is
8581 		 * obsoleted and removed from the system. (4299588)
8582 		 */
8583 		if (SD_IS_PARALLEL_SCSI(un) &&
8584 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8585 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8586 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8587 			    1, 1) == 1) {
8588 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8589 				    "sd_unit_attach: un:0x%p Wide Transfer "
8590 				    "enabled\n", un);
8591 			}
8592 
8593 			/*
8594 			 * If tagged queuing has also been enabled, then
8595 			 * enable large xfers
8596 			 */
8597 			if (un->un_saved_throttle == sd_max_throttle) {
8598 				un->un_max_xfer_size =
8599 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8600 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8601 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8602 				    "sd_unit_attach: un:0x%p max transfer "
8603 				    "size=0x%x\n", un, un->un_max_xfer_size);
8604 			}
8605 		} else {
8606 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8607 			    0, 1) == 1) {
8608 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8609 				    "sd_unit_attach: un:0x%p "
8610 				    "Wide Transfer disabled\n", un);
8611 			}
8612 		}
8613 	} else {
8614 		un->un_tagflags = FLAG_STAG;
8615 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8616 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8617 	}
8618 
8619 	/*
8620 	 * If this target supports LUN reset, try to enable it.
8621 	 */
8622 	if (un->un_f_lun_reset_enabled) {
8623 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8624 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8625 			    "un:0x%p lun_reset capability set\n", un);
8626 		} else {
8627 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8628 			    "un:0x%p lun-reset capability not set\n", un);
8629 		}
8630 	}
8631 
8632 	/*
8633 	 * At this point in the attach, we have enough info in the
8634 	 * soft state to be able to issue commands to the target.
8635 	 *
8636 	 * All command paths used below MUST issue their commands as
8637 	 * SD_PATH_DIRECT. This is important as intermediate layers
8638 	 * are not all initialized yet (such as PM).
8639 	 */
8640 
8641 	/*
8642 	 * Send a TEST UNIT READY command to the device. This should clear
8643 	 * any outstanding UNIT ATTENTION that may be present.
8644 	 *
8645 	 * Note: Don't check for success, just track if there is a reservation,
8646 	 * this is a throw away command to clear any unit attentions.
8647 	 *
8648 	 * Note: This MUST be the first command issued to the target during
8649 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8650 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8651 	 * with attempts at spinning up a device with no media.
8652 	 */
8653 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8654 		reservation_flag = SD_TARGET_IS_RESERVED;
8655 	}
8656 
8657 	/*
8658 	 * If the device is NOT a removable media device, attempt to spin
8659 	 * it up (using the START_STOP_UNIT command) and read its capacity
8660 	 * (using the READ CAPACITY command).  Note, however, that either
8661 	 * of these could fail and in some cases we would continue with
8662 	 * the attach despite the failure (see below).
8663 	 */
8664 	if (un->un_f_descr_format_supported) {
8665 		switch (sd_spin_up_unit(un)) {
8666 		case 0:
8667 			/*
8668 			 * Spin-up was successful; now try to read the
8669 			 * capacity.  If successful then save the results
8670 			 * and mark the capacity & lbasize as valid.
8671 			 */
8672 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8673 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8674 
8675 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8676 			    &lbasize, SD_PATH_DIRECT)) {
8677 			case 0: {
8678 				if (capacity > DK_MAX_BLOCKS) {
8679 #ifdef _LP64
8680 					if (capacity + 1 >
8681 					    SD_GROUP1_MAX_ADDRESS) {
8682 						/*
8683 						 * Enable descriptor format
8684 						 * sense data so that we can
8685 						 * get 64 bit sense data
8686 						 * fields.
8687 						 */
8688 						sd_enable_descr_sense(un);
8689 					}
8690 #else
8691 					/* 32-bit kernels can't handle this */
8692 					scsi_log(SD_DEVINFO(un),
8693 					    sd_label, CE_WARN,
8694 					    "disk has %llu blocks, which "
8695 					    "is too large for a 32-bit "
8696 					    "kernel", capacity);
8697 
8698 #if defined(__i386) || defined(__amd64)
8699 					/*
8700 					 * Refer to comments related to off-by-1
8701 					 * at the header of this file.
8702 					 * 1TB disk was treated as (1T - 512)B
8703 					 * in the past, so that it might has
8704 					 * valid VTOC and solaris partitions,
8705 					 * we have to allow it to continue to
8706 					 * work.
8707 					 */
8708 					if (capacity -1 > DK_MAX_BLOCKS)
8709 #endif
8710 					goto spinup_failed;
8711 #endif
8712 				}
8713 
8714 				/*
8715 				 * Here it's not necessary to check the case:
8716 				 * the capacity of the device is bigger than
8717 				 * what the max hba cdb can support. Because
8718 				 * sd_send_scsi_READ_CAPACITY will retrieve
8719 				 * the capacity by sending USCSI command, which
8720 				 * is constrained by the max hba cdb. Actually,
8721 				 * sd_send_scsi_READ_CAPACITY will return
8722 				 * EINVAL when using bigger cdb than required
8723 				 * cdb length. Will handle this case in
8724 				 * "case EINVAL".
8725 				 */
8726 
8727 				/*
8728 				 * The following relies on
8729 				 * sd_send_scsi_READ_CAPACITY never
8730 				 * returning 0 for capacity and/or lbasize.
8731 				 */
8732 				sd_update_block_info(un, lbasize, capacity);
8733 
8734 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8735 				    "sd_unit_attach: un:0x%p capacity = %ld "
8736 				    "blocks; lbasize= %ld.\n", un,
8737 				    un->un_blockcount, un->un_tgt_blocksize);
8738 
8739 				break;
8740 			}
8741 			case EINVAL:
8742 				/*
8743 				 * In the case where the max-cdb-length property
8744 				 * is smaller than the required CDB length for
8745 				 * a SCSI device, a target driver can fail to
8746 				 * attach to that device.
8747 				 */
8748 				scsi_log(SD_DEVINFO(un),
8749 				    sd_label, CE_WARN,
8750 				    "disk capacity is too large "
8751 				    "for current cdb length");
8752 				goto spinup_failed;
8753 			case EACCES:
8754 				/*
8755 				 * Should never get here if the spin-up
8756 				 * succeeded, but code it in anyway.
8757 				 * From here, just continue with the attach...
8758 				 */
8759 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8760 				    "sd_unit_attach: un:0x%p "
8761 				    "sd_send_scsi_READ_CAPACITY "
8762 				    "returned reservation conflict\n", un);
8763 				reservation_flag = SD_TARGET_IS_RESERVED;
8764 				break;
8765 			default:
8766 				/*
8767 				 * Likewise, should never get here if the
8768 				 * spin-up succeeded. Just continue with
8769 				 * the attach...
8770 				 */
8771 				break;
8772 			}
8773 			break;
8774 		case EACCES:
8775 			/*
8776 			 * Device is reserved by another host.  In this case
8777 			 * we could not spin it up or read the capacity, but
8778 			 * we continue with the attach anyway.
8779 			 */
8780 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8781 			    "sd_unit_attach: un:0x%p spin-up reservation "
8782 			    "conflict.\n", un);
8783 			reservation_flag = SD_TARGET_IS_RESERVED;
8784 			break;
8785 		default:
8786 			/* Fail the attach if the spin-up failed. */
8787 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8788 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8789 			goto spinup_failed;
8790 		}
8791 	}
8792 
8793 	/*
8794 	 * Check to see if this is a MMC drive
8795 	 */
8796 	if (ISCD(un)) {
8797 		sd_set_mmc_caps(un);
8798 	}
8799 
8800 	/*
8801 	 * Create the minor nodes for the device.
8802 	 * Note: If we want to support fdisk on both sparc and intel, this will
8803 	 * have to separate out the notion that VTOC8 is always sparc, and
8804 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8805 	 * type will have to be determined at run-time, and the fdisk
8806 	 * partitioning will have to have been read & set up before we
8807 	 * create the minor nodes. (any other inits (such as kstats) that
8808 	 * also ought to be done before creating the minor nodes?) (Doesn't
8809 	 * setting up the minor nodes kind of imply that we're ready to
8810 	 * handle an open from userland?)
8811 	 */
8812 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8813 		goto create_minor_nodes_failed;
8814 	}
8815 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8816 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8817 
8818 	/*
8819 	 * Add a zero-length attribute to tell the world we support
8820 	 * kernel ioctls (for layered drivers)
8821 	 */
8822 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8823 	    DDI_KERNEL_IOCTL, NULL, 0);
8824 
8825 	/*
8826 	 * Add a boolean property to tell the world we support
8827 	 * the B_FAILFAST flag (for layered drivers)
8828 	 */
8829 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8830 	    "ddi-failfast-supported", NULL, 0);
8831 
8832 	/*
8833 	 * Initialize power management
8834 	 */
8835 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8836 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8837 	sd_setup_pm(un, devi);
8838 	if (un->un_f_pm_is_enabled == FALSE) {
8839 		/*
8840 		 * For performance, point to a jump table that does
8841 		 * not include pm.
8842 		 * The direct and priority chains don't change with PM.
8843 		 *
8844 		 * Note: this is currently done based on individual device
8845 		 * capabilities. When an interface for determining system
8846 		 * power enabled state becomes available, or when additional
8847 		 * layers are added to the command chain, these values will
8848 		 * have to be re-evaluated for correctness.
8849 		 */
8850 		if (un->un_f_non_devbsize_supported) {
8851 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8852 		} else {
8853 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8854 		}
8855 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8856 	}
8857 
8858 	/*
8859 	 * This property is set to 0 by HA software to avoid retries
8860 	 * on a reserved disk. (The preferred property name is
8861 	 * "retry-on-reservation-conflict") (1189689)
8862 	 *
8863 	 * Note: The use of a global here can have unintended consequences. A
8864 	 * per instance variable is preferrable to match the capabilities of
8865 	 * different underlying hba's (4402600)
8866 	 */
8867 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8868 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8869 	    sd_retry_on_reservation_conflict);
8870 	if (sd_retry_on_reservation_conflict != 0) {
8871 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8872 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8873 		    sd_retry_on_reservation_conflict);
8874 	}
8875 
8876 	/* Set up options for QFULL handling. */
8877 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8878 	    "qfull-retries", -1)) != -1) {
8879 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8880 		    rval, 1);
8881 	}
8882 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8883 	    "qfull-retry-interval", -1)) != -1) {
8884 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8885 		    rval, 1);
8886 	}
8887 
8888 	/*
8889 	 * This just prints a message that announces the existence of the
8890 	 * device. The message is always printed in the system logfile, but
8891 	 * only appears on the console if the system is booted with the
8892 	 * -v (verbose) argument.
8893 	 */
8894 	ddi_report_dev(devi);
8895 
8896 	/*
8897 	 * The framework calls driver attach routines single-threaded
8898 	 * for a given instance.  However we still acquire SD_MUTEX here
8899 	 * because this required for calling the sd_validate_geometry()
8900 	 * and sd_register_devid() functions.
8901 	 */
8902 	mutex_enter(SD_MUTEX(un));
8903 	un->un_f_geometry_is_valid = FALSE;
8904 	un->un_mediastate = DKIO_NONE;
8905 	un->un_reserved = -1;
8906 
8907 	/*
8908 	 * Read and validate the device's geometry (ie, disk label)
8909 	 * A new unformatted drive will not have a valid geometry, but
8910 	 * the driver needs to successfully attach to this device so
8911 	 * the drive can be formatted via ioctls.
8912 	 */
8913 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8914 	    ENOTSUP)) &&
8915 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8916 		/*
8917 		 * We found a small disk with an EFI label on it;
8918 		 * we need to fix up the minor nodes accordingly.
8919 		 */
8920 		ddi_remove_minor_node(devi, "h");
8921 		ddi_remove_minor_node(devi, "h,raw");
8922 		(void) ddi_create_minor_node(devi, "wd",
8923 		    S_IFBLK,
8924 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8925 		    un->un_node_type, NULL);
8926 		(void) ddi_create_minor_node(devi, "wd,raw",
8927 		    S_IFCHR,
8928 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8929 		    un->un_node_type, NULL);
8930 	}
8931 #if defined(__i386) || defined(__amd64)
8932 	else if (un->un_f_capacity_adjusted == 1) {
8933 		/*
8934 		 * Refer to comments related to off-by-1 at the
8935 		 * header of this file.
8936 		 * Adjust minor node for 1TB disk.
8937 		 */
8938 		ddi_remove_minor_node(devi, "wd");
8939 		ddi_remove_minor_node(devi, "wd,raw");
8940 		(void) ddi_create_minor_node(devi, "h",
8941 		    S_IFBLK,
8942 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8943 		    un->un_node_type, NULL);
8944 		(void) ddi_create_minor_node(devi, "h,raw",
8945 		    S_IFCHR,
8946 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8947 		    un->un_node_type, NULL);
8948 	}
8949 #endif
8950 	/*
8951 	 * Read and initialize the devid for the unit.
8952 	 */
8953 	ASSERT(un->un_errstats != NULL);
8954 	if (un->un_f_devid_supported) {
8955 		sd_register_devid(un, devi, reservation_flag);
8956 	}
8957 	mutex_exit(SD_MUTEX(un));
8958 
8959 #if (defined(__fibre))
8960 	/*
8961 	 * Register callbacks for fibre only.  You can't do this soley
8962 	 * on the basis of the devid_type because this is hba specific.
8963 	 * We need to query our hba capabilities to find out whether to
8964 	 * register or not.
8965 	 */
8966 	if (un->un_f_is_fibre) {
8967 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8968 		sd_init_event_callbacks(un);
8969 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8970 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8971 	    }
8972 	}
8973 #endif
8974 
8975 	if (un->un_f_opt_disable_cache == TRUE) {
8976 		/*
8977 		 * Disable both read cache and write cache.  This is
8978 		 * the historic behavior of the keywords in the config file.
8979 		 */
8980 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8981 		    0) {
8982 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8983 			    "sd_unit_attach: un:0x%p Could not disable "
8984 			    "caching", un);
8985 			goto devid_failed;
8986 		}
8987 	}
8988 
8989 	/*
8990 	 * Check the value of the WCE bit now and
8991 	 * set un_f_write_cache_enabled accordingly.
8992 	 */
8993 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8994 	mutex_enter(SD_MUTEX(un));
8995 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8996 	mutex_exit(SD_MUTEX(un));
8997 
8998 	/*
8999 	 * Set the pstat and error stat values here, so data obtained during the
9000 	 * previous attach-time routines is available.
9001 	 *
9002 	 * Note: This is a critical sequence that needs to be maintained:
9003 	 *	1) Instantiate the kstats before any routines using the iopath
9004 	 *	   (i.e. sd_send_scsi_cmd).
9005 	 *	2) Instantiate and initialize the partition stats
9006 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
9007 	 *	   see detailed comments there.
9008 	 *	3) Initialize the error stats (sd_set_errstats), following
9009 	 *	   sd_validate_geometry(),sd_register_devid(),
9010 	 *	   and sd_cache_control().
9011 	 */
9012 	sd_set_errstats(un);
9013 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9014 	    "sd_unit_attach: un:0x%p errstats set\n", un);
9015 
9016 	/*
9017 	 * Find out what type of reservation this disk supports.
9018 	 */
9019 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
9020 	case 0:
9021 		/*
9022 		 * SCSI-3 reservations are supported.
9023 		 */
9024 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9025 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9026 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
9027 		break;
9028 	case ENOTSUP:
9029 		/*
9030 		 * The PERSISTENT RESERVE IN command would not be recognized by
9031 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
9032 		 */
9033 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9034 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
9035 		un->un_reservation_type = SD_SCSI2_RESERVATION;
9036 		break;
9037 	default:
9038 		/*
9039 		 * default to SCSI-3 reservations
9040 		 */
9041 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9042 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
9043 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9044 		break;
9045 	}
9046 
9047 	/*
9048 	 * After successfully attaching an instance, we record the information
9049 	 * of how many luns have been attached on the relative target and
9050 	 * controller for parallel SCSI. This information is used when sd tries
9051 	 * to set the tagged queuing capability in HBA.
9052 	 */
9053 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9054 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
9055 	}
9056 
9057 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9058 	    "sd_unit_attach: un:0x%p exit success\n", un);
9059 
9060 	return (DDI_SUCCESS);
9061 
9062 	/*
9063 	 * An error occurred during the attach; clean up & return failure.
9064 	 */
9065 
9066 devid_failed:
9067 
9068 setup_pm_failed:
9069 	ddi_remove_minor_node(devi, NULL);
9070 
9071 create_minor_nodes_failed:
9072 	/*
9073 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9074 	 */
9075 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9076 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9077 
9078 	/*
9079 	 * Refer to the comments of setting tagged-qing in the beginning of
9080 	 * sd_unit_attach. We can only disable tagged queuing when there is
9081 	 * no lun attached on the target.
9082 	 */
9083 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
9084 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9085 	}
9086 
9087 	if (un->un_f_is_fibre == FALSE) {
9088 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9089 	}
9090 
9091 spinup_failed:
9092 
9093 	mutex_enter(SD_MUTEX(un));
9094 
9095 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
9096 	if (un->un_direct_priority_timeid != NULL) {
9097 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9098 		un->un_direct_priority_timeid = NULL;
9099 		mutex_exit(SD_MUTEX(un));
9100 		(void) untimeout(temp_id);
9101 		mutex_enter(SD_MUTEX(un));
9102 	}
9103 
9104 	/* Cancel any pending start/stop timeouts */
9105 	if (un->un_startstop_timeid != NULL) {
9106 		timeout_id_t temp_id = un->un_startstop_timeid;
9107 		un->un_startstop_timeid = NULL;
9108 		mutex_exit(SD_MUTEX(un));
9109 		(void) untimeout(temp_id);
9110 		mutex_enter(SD_MUTEX(un));
9111 	}
9112 
9113 	/* Cancel any pending reset-throttle timeouts */
9114 	if (un->un_reset_throttle_timeid != NULL) {
9115 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9116 		un->un_reset_throttle_timeid = NULL;
9117 		mutex_exit(SD_MUTEX(un));
9118 		(void) untimeout(temp_id);
9119 		mutex_enter(SD_MUTEX(un));
9120 	}
9121 
9122 	/* Cancel any pending retry timeouts */
9123 	if (un->un_retry_timeid != NULL) {
9124 		timeout_id_t temp_id = un->un_retry_timeid;
9125 		un->un_retry_timeid = NULL;
9126 		mutex_exit(SD_MUTEX(un));
9127 		(void) untimeout(temp_id);
9128 		mutex_enter(SD_MUTEX(un));
9129 	}
9130 
9131 	/* Cancel any pending delayed cv broadcast timeouts */
9132 	if (un->un_dcvb_timeid != NULL) {
9133 		timeout_id_t temp_id = un->un_dcvb_timeid;
9134 		un->un_dcvb_timeid = NULL;
9135 		mutex_exit(SD_MUTEX(un));
9136 		(void) untimeout(temp_id);
9137 		mutex_enter(SD_MUTEX(un));
9138 	}
9139 
9140 	mutex_exit(SD_MUTEX(un));
9141 
9142 	/* There should not be any in-progress I/O so ASSERT this check */
9143 	ASSERT(un->un_ncmds_in_transport == 0);
9144 	ASSERT(un->un_ncmds_in_driver == 0);
9145 
9146 	/* Do not free the softstate if the callback routine is active */
9147 	sd_sync_with_callback(un);
9148 
9149 	/*
9150 	 * Partition stats apparently are not used with removables. These would
9151 	 * not have been created during attach, so no need to clean them up...
9152 	 */
9153 	if (un->un_stats != NULL) {
9154 		kstat_delete(un->un_stats);
9155 		un->un_stats = NULL;
9156 	}
9157 	if (un->un_errstats != NULL) {
9158 		kstat_delete(un->un_errstats);
9159 		un->un_errstats = NULL;
9160 	}
9161 
9162 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9163 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9164 
9165 	ddi_prop_remove_all(devi);
9166 	sema_destroy(&un->un_semoclose);
9167 	cv_destroy(&un->un_state_cv);
9168 
9169 getrbuf_failed:
9170 
9171 	sd_free_rqs(un);
9172 
9173 alloc_rqs_failed:
9174 
9175 	devp->sd_private = NULL;
9176 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
9177 
9178 get_softstate_failed:
9179 	/*
9180 	 * Note: the man pages are unclear as to whether or not doing a
9181 	 * ddi_soft_state_free(sd_state, instance) is the right way to
9182 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
9183 	 * ddi_get_soft_state() fails.  The implication seems to be
9184 	 * that the get_soft_state cannot fail if the zalloc succeeds.
9185 	 */
9186 	ddi_soft_state_free(sd_state, instance);
9187 
9188 probe_failed:
9189 	scsi_unprobe(devp);
9190 #ifdef SDDEBUG
9191 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
9192 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
9193 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
9194 		    (void *)un);
9195 	}
9196 #endif
9197 	return (DDI_FAILURE);
9198 }
9199 
9200 
9201 /*
9202  *    Function: sd_unit_detach
9203  *
9204  * Description: Performs DDI_DETACH processing for sddetach().
9205  *
9206  * Return Code: DDI_SUCCESS
9207  *		DDI_FAILURE
9208  *
9209  *     Context: Kernel thread context
9210  */
9211 
9212 static int
9213 sd_unit_detach(dev_info_t *devi)
9214 {
9215 	struct scsi_device	*devp;
9216 	struct sd_lun		*un;
9217 	int			i;
9218 	int			tgt;
9219 	dev_t			dev;
9220 	dev_info_t		*pdip = ddi_get_parent(devi);
9221 	int			instance = ddi_get_instance(devi);
9222 
9223 	mutex_enter(&sd_detach_mutex);
9224 
9225 	/*
9226 	 * Fail the detach for any of the following:
9227 	 *  - Unable to get the sd_lun struct for the instance
9228 	 *  - A layered driver has an outstanding open on the instance
9229 	 *  - Another thread is already detaching this instance
9230 	 *  - Another thread is currently performing an open
9231 	 */
9232 	devp = ddi_get_driver_private(devi);
9233 	if ((devp == NULL) ||
9234 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
9235 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
9236 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
9237 		mutex_exit(&sd_detach_mutex);
9238 		return (DDI_FAILURE);
9239 	}
9240 
9241 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
9242 
9243 	/*
9244 	 * Mark this instance as currently in a detach, to inhibit any
9245 	 * opens from a layered driver.
9246 	 */
9247 	un->un_detach_count++;
9248 	mutex_exit(&sd_detach_mutex);
9249 
9250 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
9251 	    SCSI_ADDR_PROP_TARGET, -1);
9252 
9253 	dev = sd_make_device(SD_DEVINFO(un));
9254 
9255 #ifndef lint
9256 	_NOTE(COMPETING_THREADS_NOW);
9257 #endif
9258 
9259 	mutex_enter(SD_MUTEX(un));
9260 
9261 	/*
9262 	 * Fail the detach if there are any outstanding layered
9263 	 * opens on this device.
9264 	 */
9265 	for (i = 0; i < NDKMAP; i++) {
9266 		if (un->un_ocmap.lyropen[i] != 0) {
9267 			goto err_notclosed;
9268 		}
9269 	}
9270 
9271 	/*
9272 	 * Verify there are NO outstanding commands issued to this device.
9273 	 * ie, un_ncmds_in_transport == 0.
9274 	 * It's possible to have outstanding commands through the physio
9275 	 * code path, even though everything's closed.
9276 	 */
9277 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
9278 	    (un->un_direct_priority_timeid != NULL) ||
9279 	    (un->un_state == SD_STATE_RWAIT)) {
9280 		mutex_exit(SD_MUTEX(un));
9281 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9282 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
9283 		goto err_stillbusy;
9284 	}
9285 
9286 	/*
9287 	 * If we have the device reserved, release the reservation.
9288 	 */
9289 	if ((un->un_resvd_status & SD_RESERVE) &&
9290 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
9291 		mutex_exit(SD_MUTEX(un));
9292 		/*
9293 		 * Note: sd_reserve_release sends a command to the device
9294 		 * via the sd_ioctlcmd() path, and can sleep.
9295 		 */
9296 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
9297 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9298 			    "sd_dr_detach: Cannot release reservation \n");
9299 		}
9300 	} else {
9301 		mutex_exit(SD_MUTEX(un));
9302 	}
9303 
9304 	/*
9305 	 * Untimeout any reserve recover, throttle reset, restart unit
9306 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9307 	 * from getting nulled by their callback functions.
9308 	 */
9309 	mutex_enter(SD_MUTEX(un));
9310 	if (un->un_resvd_timeid != NULL) {
9311 		timeout_id_t temp_id = un->un_resvd_timeid;
9312 		un->un_resvd_timeid = NULL;
9313 		mutex_exit(SD_MUTEX(un));
9314 		(void) untimeout(temp_id);
9315 		mutex_enter(SD_MUTEX(un));
9316 	}
9317 
9318 	if (un->un_reset_throttle_timeid != NULL) {
9319 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9320 		un->un_reset_throttle_timeid = NULL;
9321 		mutex_exit(SD_MUTEX(un));
9322 		(void) untimeout(temp_id);
9323 		mutex_enter(SD_MUTEX(un));
9324 	}
9325 
9326 	if (un->un_startstop_timeid != NULL) {
9327 		timeout_id_t temp_id = un->un_startstop_timeid;
9328 		un->un_startstop_timeid = NULL;
9329 		mutex_exit(SD_MUTEX(un));
9330 		(void) untimeout(temp_id);
9331 		mutex_enter(SD_MUTEX(un));
9332 	}
9333 
9334 	if (un->un_dcvb_timeid != NULL) {
9335 		timeout_id_t temp_id = un->un_dcvb_timeid;
9336 		un->un_dcvb_timeid = NULL;
9337 		mutex_exit(SD_MUTEX(un));
9338 		(void) untimeout(temp_id);
9339 	} else {
9340 		mutex_exit(SD_MUTEX(un));
9341 	}
9342 
9343 	/* Remove any pending reservation reclaim requests for this device */
9344 	sd_rmv_resv_reclaim_req(dev);
9345 
9346 	mutex_enter(SD_MUTEX(un));
9347 
9348 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9349 	if (un->un_direct_priority_timeid != NULL) {
9350 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9351 		un->un_direct_priority_timeid = NULL;
9352 		mutex_exit(SD_MUTEX(un));
9353 		(void) untimeout(temp_id);
9354 		mutex_enter(SD_MUTEX(un));
9355 	}
9356 
9357 	/* Cancel any active multi-host disk watch thread requests */
9358 	if (un->un_mhd_token != NULL) {
9359 		mutex_exit(SD_MUTEX(un));
9360 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9361 		if (scsi_watch_request_terminate(un->un_mhd_token,
9362 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9363 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9364 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9365 			/*
9366 			 * Note: We are returning here after having removed
9367 			 * some driver timeouts above. This is consistent with
9368 			 * the legacy implementation but perhaps the watch
9369 			 * terminate call should be made with the wait flag set.
9370 			 */
9371 			goto err_stillbusy;
9372 		}
9373 		mutex_enter(SD_MUTEX(un));
9374 		un->un_mhd_token = NULL;
9375 	}
9376 
9377 	if (un->un_swr_token != NULL) {
9378 		mutex_exit(SD_MUTEX(un));
9379 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9380 		if (scsi_watch_request_terminate(un->un_swr_token,
9381 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9382 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9383 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9384 			/*
9385 			 * Note: We are returning here after having removed
9386 			 * some driver timeouts above. This is consistent with
9387 			 * the legacy implementation but perhaps the watch
9388 			 * terminate call should be made with the wait flag set.
9389 			 */
9390 			goto err_stillbusy;
9391 		}
9392 		mutex_enter(SD_MUTEX(un));
9393 		un->un_swr_token = NULL;
9394 	}
9395 
9396 	mutex_exit(SD_MUTEX(un));
9397 
9398 	/*
9399 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9400 	 * if we have not registered one.
9401 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9402 	 */
9403 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9404 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9405 
9406 	/*
9407 	 * protect the timeout pointers from getting nulled by
9408 	 * their callback functions during the cancellation process.
9409 	 * In such a scenario untimeout can be invoked with a null value.
9410 	 */
9411 	_NOTE(NO_COMPETING_THREADS_NOW);
9412 
9413 	mutex_enter(&un->un_pm_mutex);
9414 	if (un->un_pm_idle_timeid != NULL) {
9415 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9416 		un->un_pm_idle_timeid = NULL;
9417 		mutex_exit(&un->un_pm_mutex);
9418 
9419 		/*
9420 		 * Timeout is active; cancel it.
9421 		 * Note that it'll never be active on a device
9422 		 * that does not support PM therefore we don't
9423 		 * have to check before calling pm_idle_component.
9424 		 */
9425 		(void) untimeout(temp_id);
9426 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9427 		mutex_enter(&un->un_pm_mutex);
9428 	}
9429 
9430 	/*
9431 	 * Check whether there is already a timeout scheduled for power
9432 	 * management. If yes then don't lower the power here, that's.
9433 	 * the timeout handler's job.
9434 	 */
9435 	if (un->un_pm_timeid != NULL) {
9436 		timeout_id_t temp_id = un->un_pm_timeid;
9437 		un->un_pm_timeid = NULL;
9438 		mutex_exit(&un->un_pm_mutex);
9439 		/*
9440 		 * Timeout is active; cancel it.
9441 		 * Note that it'll never be active on a device
9442 		 * that does not support PM therefore we don't
9443 		 * have to check before calling pm_idle_component.
9444 		 */
9445 		(void) untimeout(temp_id);
9446 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9447 
9448 	} else {
9449 		mutex_exit(&un->un_pm_mutex);
9450 		if ((un->un_f_pm_is_enabled == TRUE) &&
9451 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9452 		    DDI_SUCCESS)) {
9453 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9454 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9455 			/*
9456 			 * Fix for bug: 4297749, item # 13
9457 			 * The above test now includes a check to see if PM is
9458 			 * supported by this device before call
9459 			 * pm_lower_power().
9460 			 * Note, the following is not dead code. The call to
9461 			 * pm_lower_power above will generate a call back into
9462 			 * our sdpower routine which might result in a timeout
9463 			 * handler getting activated. Therefore the following
9464 			 * code is valid and necessary.
9465 			 */
9466 			mutex_enter(&un->un_pm_mutex);
9467 			if (un->un_pm_timeid != NULL) {
9468 				timeout_id_t temp_id = un->un_pm_timeid;
9469 				un->un_pm_timeid = NULL;
9470 				mutex_exit(&un->un_pm_mutex);
9471 				(void) untimeout(temp_id);
9472 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9473 			} else {
9474 				mutex_exit(&un->un_pm_mutex);
9475 			}
9476 		}
9477 	}
9478 
9479 	/*
9480 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9481 	 * Relocated here from above to be after the call to
9482 	 * pm_lower_power, which was getting errors.
9483 	 */
9484 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9485 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9486 
9487 	/*
9488 	 * Currently, tagged queuing is supported per target based by HBA.
9489 	 * Setting this per lun instance actually sets the capability of this
9490 	 * target in HBA, which affects those luns already attached on the
9491 	 * same target. So during detach, we can only disable this capability
9492 	 * only when this is the only lun left on this target. By doing
9493 	 * this, we assume a target has the same tagged queuing capability
9494 	 * for every lun. The condition can be removed when HBA is changed to
9495 	 * support per lun based tagged queuing capability.
9496 	 */
9497 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
9498 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9499 	}
9500 
9501 	if (un->un_f_is_fibre == FALSE) {
9502 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9503 	}
9504 
9505 	/*
9506 	 * Remove any event callbacks, fibre only
9507 	 */
9508 	if (un->un_f_is_fibre == TRUE) {
9509 		if ((un->un_insert_event != NULL) &&
9510 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9511 				DDI_SUCCESS)) {
9512 			/*
9513 			 * Note: We are returning here after having done
9514 			 * substantial cleanup above. This is consistent
9515 			 * with the legacy implementation but this may not
9516 			 * be the right thing to do.
9517 			 */
9518 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9519 				"sd_dr_detach: Cannot cancel insert event\n");
9520 			goto err_remove_event;
9521 		}
9522 		un->un_insert_event = NULL;
9523 
9524 		if ((un->un_remove_event != NULL) &&
9525 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9526 				DDI_SUCCESS)) {
9527 			/*
9528 			 * Note: We are returning here after having done
9529 			 * substantial cleanup above. This is consistent
9530 			 * with the legacy implementation but this may not
9531 			 * be the right thing to do.
9532 			 */
9533 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9534 				"sd_dr_detach: Cannot cancel remove event\n");
9535 			goto err_remove_event;
9536 		}
9537 		un->un_remove_event = NULL;
9538 	}
9539 
9540 	/* Do not free the softstate if the callback routine is active */
9541 	sd_sync_with_callback(un);
9542 
9543 	/*
9544 	 * Hold the detach mutex here, to make sure that no other threads ever
9545 	 * can access a (partially) freed soft state structure.
9546 	 */
9547 	mutex_enter(&sd_detach_mutex);
9548 
9549 	/*
9550 	 * Clean up the soft state struct.
9551 	 * Cleanup is done in reverse order of allocs/inits.
9552 	 * At this point there should be no competing threads anymore.
9553 	 */
9554 
9555 	/* Unregister and free device id. */
9556 	ddi_devid_unregister(devi);
9557 	if (un->un_devid) {
9558 		ddi_devid_free(un->un_devid);
9559 		un->un_devid = NULL;
9560 	}
9561 
9562 	/*
9563 	 * Destroy wmap cache if it exists.
9564 	 */
9565 	if (un->un_wm_cache != NULL) {
9566 		kmem_cache_destroy(un->un_wm_cache);
9567 		un->un_wm_cache = NULL;
9568 	}
9569 
9570 	/* Remove minor nodes */
9571 	ddi_remove_minor_node(devi, NULL);
9572 
9573 	/*
9574 	 * kstat cleanup is done in detach for all device types (4363169).
9575 	 * We do not want to fail detach if the device kstats are not deleted
9576 	 * since there is a confusion about the devo_refcnt for the device.
9577 	 * We just delete the kstats and let detach complete successfully.
9578 	 */
9579 	if (un->un_stats != NULL) {
9580 		kstat_delete(un->un_stats);
9581 		un->un_stats = NULL;
9582 	}
9583 	if (un->un_errstats != NULL) {
9584 		kstat_delete(un->un_errstats);
9585 		un->un_errstats = NULL;
9586 	}
9587 
9588 	/* Remove partition stats */
9589 	if (un->un_f_pkstats_enabled) {
9590 		for (i = 0; i < NSDMAP; i++) {
9591 			if (un->un_pstats[i] != NULL) {
9592 				kstat_delete(un->un_pstats[i]);
9593 				un->un_pstats[i] = NULL;
9594 			}
9595 		}
9596 	}
9597 
9598 	/* Remove xbuf registration */
9599 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9600 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9601 
9602 	/* Remove driver properties */
9603 	ddi_prop_remove_all(devi);
9604 
9605 	mutex_destroy(&un->un_pm_mutex);
9606 	cv_destroy(&un->un_pm_busy_cv);
9607 
9608 	cv_destroy(&un->un_wcc_cv);
9609 
9610 	/* Open/close semaphore */
9611 	sema_destroy(&un->un_semoclose);
9612 
9613 	/* Removable media condvar. */
9614 	cv_destroy(&un->un_state_cv);
9615 
9616 	/* Suspend/resume condvar. */
9617 	cv_destroy(&un->un_suspend_cv);
9618 	cv_destroy(&un->un_disk_busy_cv);
9619 
9620 	sd_free_rqs(un);
9621 
9622 	/* Free up soft state */
9623 	devp->sd_private = NULL;
9624 	bzero(un, sizeof (struct sd_lun));
9625 	ddi_soft_state_free(sd_state, instance);
9626 
9627 	mutex_exit(&sd_detach_mutex);
9628 
9629 	/* This frees up the INQUIRY data associated with the device. */
9630 	scsi_unprobe(devp);
9631 
9632 	/*
9633 	 * After successfully detaching an instance, we update the information
9634 	 * of how many luns have been attached in the relative target and
9635 	 * controller for parallel SCSI. This information is used when sd tries
9636 	 * to set the tagged queuing capability in HBA.
9637 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9638 	 * check if the device is parallel SCSI. However, we don't need to
9639 	 * check here because we've already checked during attach. No device
9640 	 * that is not parallel SCSI is in the chain.
9641 	 */
9642 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9643 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9644 	}
9645 
9646 	return (DDI_SUCCESS);
9647 
9648 err_notclosed:
9649 	mutex_exit(SD_MUTEX(un));
9650 
9651 err_stillbusy:
9652 	_NOTE(NO_COMPETING_THREADS_NOW);
9653 
9654 err_remove_event:
9655 	mutex_enter(&sd_detach_mutex);
9656 	un->un_detach_count--;
9657 	mutex_exit(&sd_detach_mutex);
9658 
9659 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9660 	return (DDI_FAILURE);
9661 }
9662 
9663 
9664 /*
9665  * Driver minor node structure and data table
9666  */
9667 struct driver_minor_data {
9668 	char	*name;
9669 	minor_t	minor;
9670 	int	type;
9671 };
9672 
9673 static struct driver_minor_data sd_minor_data[] = {
9674 	{"a", 0, S_IFBLK},
9675 	{"b", 1, S_IFBLK},
9676 	{"c", 2, S_IFBLK},
9677 	{"d", 3, S_IFBLK},
9678 	{"e", 4, S_IFBLK},
9679 	{"f", 5, S_IFBLK},
9680 	{"g", 6, S_IFBLK},
9681 	{"h", 7, S_IFBLK},
9682 #if defined(_SUNOS_VTOC_16)
9683 	{"i", 8, S_IFBLK},
9684 	{"j", 9, S_IFBLK},
9685 	{"k", 10, S_IFBLK},
9686 	{"l", 11, S_IFBLK},
9687 	{"m", 12, S_IFBLK},
9688 	{"n", 13, S_IFBLK},
9689 	{"o", 14, S_IFBLK},
9690 	{"p", 15, S_IFBLK},
9691 #endif			/* defined(_SUNOS_VTOC_16) */
9692 #if defined(_FIRMWARE_NEEDS_FDISK)
9693 	{"q", 16, S_IFBLK},
9694 	{"r", 17, S_IFBLK},
9695 	{"s", 18, S_IFBLK},
9696 	{"t", 19, S_IFBLK},
9697 	{"u", 20, S_IFBLK},
9698 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9699 	{"a,raw", 0, S_IFCHR},
9700 	{"b,raw", 1, S_IFCHR},
9701 	{"c,raw", 2, S_IFCHR},
9702 	{"d,raw", 3, S_IFCHR},
9703 	{"e,raw", 4, S_IFCHR},
9704 	{"f,raw", 5, S_IFCHR},
9705 	{"g,raw", 6, S_IFCHR},
9706 	{"h,raw", 7, S_IFCHR},
9707 #if defined(_SUNOS_VTOC_16)
9708 	{"i,raw", 8, S_IFCHR},
9709 	{"j,raw", 9, S_IFCHR},
9710 	{"k,raw", 10, S_IFCHR},
9711 	{"l,raw", 11, S_IFCHR},
9712 	{"m,raw", 12, S_IFCHR},
9713 	{"n,raw", 13, S_IFCHR},
9714 	{"o,raw", 14, S_IFCHR},
9715 	{"p,raw", 15, S_IFCHR},
9716 #endif			/* defined(_SUNOS_VTOC_16) */
9717 #if defined(_FIRMWARE_NEEDS_FDISK)
9718 	{"q,raw", 16, S_IFCHR},
9719 	{"r,raw", 17, S_IFCHR},
9720 	{"s,raw", 18, S_IFCHR},
9721 	{"t,raw", 19, S_IFCHR},
9722 	{"u,raw", 20, S_IFCHR},
9723 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9724 	{0}
9725 };
9726 
9727 static struct driver_minor_data sd_minor_data_efi[] = {
9728 	{"a", 0, S_IFBLK},
9729 	{"b", 1, S_IFBLK},
9730 	{"c", 2, S_IFBLK},
9731 	{"d", 3, S_IFBLK},
9732 	{"e", 4, S_IFBLK},
9733 	{"f", 5, S_IFBLK},
9734 	{"g", 6, S_IFBLK},
9735 	{"wd", 7, S_IFBLK},
9736 #if defined(_FIRMWARE_NEEDS_FDISK)
9737 	{"q", 16, S_IFBLK},
9738 	{"r", 17, S_IFBLK},
9739 	{"s", 18, S_IFBLK},
9740 	{"t", 19, S_IFBLK},
9741 	{"u", 20, S_IFBLK},
9742 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9743 	{"a,raw", 0, S_IFCHR},
9744 	{"b,raw", 1, S_IFCHR},
9745 	{"c,raw", 2, S_IFCHR},
9746 	{"d,raw", 3, S_IFCHR},
9747 	{"e,raw", 4, S_IFCHR},
9748 	{"f,raw", 5, S_IFCHR},
9749 	{"g,raw", 6, S_IFCHR},
9750 	{"wd,raw", 7, S_IFCHR},
9751 #if defined(_FIRMWARE_NEEDS_FDISK)
9752 	{"q,raw", 16, S_IFCHR},
9753 	{"r,raw", 17, S_IFCHR},
9754 	{"s,raw", 18, S_IFCHR},
9755 	{"t,raw", 19, S_IFCHR},
9756 	{"u,raw", 20, S_IFCHR},
9757 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9758 	{0}
9759 };
9760 
9761 
9762 /*
9763  *    Function: sd_create_minor_nodes
9764  *
9765  * Description: Create the minor device nodes for the instance.
9766  *
9767  *   Arguments: un - driver soft state (unit) structure
9768  *		devi - pointer to device info structure
9769  *
9770  * Return Code: DDI_SUCCESS
9771  *		DDI_FAILURE
9772  *
9773  *     Context: Kernel thread context
9774  */
9775 
9776 static int
9777 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9778 {
9779 	struct driver_minor_data	*dmdp;
9780 	struct scsi_device		*devp;
9781 	int				instance;
9782 	char				name[48];
9783 
9784 	ASSERT(un != NULL);
9785 	devp = ddi_get_driver_private(devi);
9786 	instance = ddi_get_instance(devp->sd_dev);
9787 
9788 	/*
9789 	 * Create all the minor nodes for this target.
9790 	 */
9791 	if (un->un_blockcount > DK_MAX_BLOCKS)
9792 		dmdp = sd_minor_data_efi;
9793 	else
9794 		dmdp = sd_minor_data;
9795 	while (dmdp->name != NULL) {
9796 
9797 		(void) sprintf(name, "%s", dmdp->name);
9798 
9799 		if (ddi_create_minor_node(devi, name, dmdp->type,
9800 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9801 		    un->un_node_type, NULL) == DDI_FAILURE) {
9802 			/*
9803 			 * Clean up any nodes that may have been created, in
9804 			 * case this fails in the middle of the loop.
9805 			 */
9806 			ddi_remove_minor_node(devi, NULL);
9807 			return (DDI_FAILURE);
9808 		}
9809 		dmdp++;
9810 	}
9811 
9812 	return (DDI_SUCCESS);
9813 }
9814 
9815 
9816 /*
9817  *    Function: sd_create_errstats
9818  *
9819  * Description: This routine instantiates the device error stats.
9820  *
9821  *		Note: During attach the stats are instantiated first so they are
9822  *		available for attach-time routines that utilize the driver
9823  *		iopath to send commands to the device. The stats are initialized
9824  *		separately so data obtained during some attach-time routines is
9825  *		available. (4362483)
9826  *
9827  *   Arguments: un - driver soft state (unit) structure
9828  *		instance - driver instance
9829  *
9830  *     Context: Kernel thread context
9831  */
9832 
9833 static void
9834 sd_create_errstats(struct sd_lun *un, int instance)
9835 {
9836 	struct	sd_errstats	*stp;
9837 	char	kstatmodule_err[KSTAT_STRLEN];
9838 	char	kstatname[KSTAT_STRLEN];
9839 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9840 
9841 	ASSERT(un != NULL);
9842 
9843 	if (un->un_errstats != NULL) {
9844 		return;
9845 	}
9846 
9847 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9848 	    "%serr", sd_label);
9849 	(void) snprintf(kstatname, sizeof (kstatname),
9850 	    "%s%d,err", sd_label, instance);
9851 
9852 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9853 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9854 
9855 	if (un->un_errstats == NULL) {
9856 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9857 		    "sd_create_errstats: Failed kstat_create\n");
9858 		return;
9859 	}
9860 
9861 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9862 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9863 	    KSTAT_DATA_UINT32);
9864 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9865 	    KSTAT_DATA_UINT32);
9866 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9867 	    KSTAT_DATA_UINT32);
9868 	kstat_named_init(&stp->sd_vid,		"Vendor",
9869 	    KSTAT_DATA_CHAR);
9870 	kstat_named_init(&stp->sd_pid,		"Product",
9871 	    KSTAT_DATA_CHAR);
9872 	kstat_named_init(&stp->sd_revision,	"Revision",
9873 	    KSTAT_DATA_CHAR);
9874 	kstat_named_init(&stp->sd_serial,	"Serial No",
9875 	    KSTAT_DATA_CHAR);
9876 	kstat_named_init(&stp->sd_capacity,	"Size",
9877 	    KSTAT_DATA_ULONGLONG);
9878 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9879 	    KSTAT_DATA_UINT32);
9880 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9881 	    KSTAT_DATA_UINT32);
9882 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9883 	    KSTAT_DATA_UINT32);
9884 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9885 	    KSTAT_DATA_UINT32);
9886 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9887 	    KSTAT_DATA_UINT32);
9888 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9889 	    KSTAT_DATA_UINT32);
9890 
9891 	un->un_errstats->ks_private = un;
9892 	un->un_errstats->ks_update  = nulldev;
9893 
9894 	kstat_install(un->un_errstats);
9895 }
9896 
9897 
9898 /*
9899  *    Function: sd_set_errstats
9900  *
9901  * Description: This routine sets the value of the vendor id, product id,
9902  *		revision, serial number, and capacity device error stats.
9903  *
9904  *		Note: During attach the stats are instantiated first so they are
9905  *		available for attach-time routines that utilize the driver
9906  *		iopath to send commands to the device. The stats are initialized
9907  *		separately so data obtained during some attach-time routines is
9908  *		available. (4362483)
9909  *
9910  *   Arguments: un - driver soft state (unit) structure
9911  *
9912  *     Context: Kernel thread context
9913  */
9914 
9915 static void
9916 sd_set_errstats(struct sd_lun *un)
9917 {
9918 	struct	sd_errstats	*stp;
9919 
9920 	ASSERT(un != NULL);
9921 	ASSERT(un->un_errstats != NULL);
9922 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9923 	ASSERT(stp != NULL);
9924 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9925 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9926 	(void) strncpy(stp->sd_revision.value.c,
9927 	    un->un_sd->sd_inq->inq_revision, 4);
9928 
9929 	/*
9930 	 * All the errstats are persistent across detach/attach,
9931 	 * so reset all the errstats here in case of the hot
9932 	 * replacement of disk drives, except for not changed
9933 	 * Sun qualified drives.
9934 	 */
9935 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9936 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9937 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9938 		stp->sd_softerrs.value.ui32 = 0;
9939 		stp->sd_harderrs.value.ui32 = 0;
9940 		stp->sd_transerrs.value.ui32 = 0;
9941 		stp->sd_rq_media_err.value.ui32 = 0;
9942 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9943 		stp->sd_rq_nodev_err.value.ui32 = 0;
9944 		stp->sd_rq_recov_err.value.ui32 = 0;
9945 		stp->sd_rq_illrq_err.value.ui32 = 0;
9946 		stp->sd_rq_pfa_err.value.ui32 = 0;
9947 	}
9948 
9949 	/*
9950 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9951 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9952 	 * (4376302))
9953 	 */
9954 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9955 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9956 		    sizeof (SD_INQUIRY(un)->inq_serial));
9957 	}
9958 
9959 	if (un->un_f_blockcount_is_valid != TRUE) {
9960 		/*
9961 		 * Set capacity error stat to 0 for no media. This ensures
9962 		 * a valid capacity is displayed in response to 'iostat -E'
9963 		 * when no media is present in the device.
9964 		 */
9965 		stp->sd_capacity.value.ui64 = 0;
9966 	} else {
9967 		/*
9968 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9969 		 * capacity.
9970 		 *
9971 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9972 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9973 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9974 		 */
9975 		stp->sd_capacity.value.ui64 = (uint64_t)
9976 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9977 	}
9978 }
9979 
9980 
9981 /*
9982  *    Function: sd_set_pstats
9983  *
9984  * Description: This routine instantiates and initializes the partition
9985  *              stats for each partition with more than zero blocks.
9986  *		(4363169)
9987  *
9988  *   Arguments: un - driver soft state (unit) structure
9989  *
9990  *     Context: Kernel thread context
9991  */
9992 
9993 static void
9994 sd_set_pstats(struct sd_lun *un)
9995 {
9996 	char	kstatname[KSTAT_STRLEN];
9997 	int	instance;
9998 	int	i;
9999 
10000 	ASSERT(un != NULL);
10001 
10002 	instance = ddi_get_instance(SD_DEVINFO(un));
10003 
10004 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
10005 	for (i = 0; i < NSDMAP; i++) {
10006 		if ((un->un_pstats[i] == NULL) &&
10007 		    (un->un_map[i].dkl_nblk != 0)) {
10008 			(void) snprintf(kstatname, sizeof (kstatname),
10009 			    "%s%d,%s", sd_label, instance,
10010 			    sd_minor_data[i].name);
10011 			un->un_pstats[i] = kstat_create(sd_label,
10012 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
10013 			    1, KSTAT_FLAG_PERSISTENT);
10014 			if (un->un_pstats[i] != NULL) {
10015 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
10016 				kstat_install(un->un_pstats[i]);
10017 			}
10018 		}
10019 	}
10020 }
10021 
10022 
10023 #if (defined(__fibre))
10024 /*
10025  *    Function: sd_init_event_callbacks
10026  *
10027  * Description: This routine initializes the insertion and removal event
10028  *		callbacks. (fibre only)
10029  *
10030  *   Arguments: un - driver soft state (unit) structure
10031  *
10032  *     Context: Kernel thread context
10033  */
10034 
10035 static void
10036 sd_init_event_callbacks(struct sd_lun *un)
10037 {
10038 	ASSERT(un != NULL);
10039 
10040 	if ((un->un_insert_event == NULL) &&
10041 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
10042 	    &un->un_insert_event) == DDI_SUCCESS)) {
10043 		/*
10044 		 * Add the callback for an insertion event
10045 		 */
10046 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10047 		    un->un_insert_event, sd_event_callback, (void *)un,
10048 		    &(un->un_insert_cb_id));
10049 	}
10050 
10051 	if ((un->un_remove_event == NULL) &&
10052 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
10053 	    &un->un_remove_event) == DDI_SUCCESS)) {
10054 		/*
10055 		 * Add the callback for a removal event
10056 		 */
10057 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10058 		    un->un_remove_event, sd_event_callback, (void *)un,
10059 		    &(un->un_remove_cb_id));
10060 	}
10061 }
10062 
10063 
10064 /*
10065  *    Function: sd_event_callback
10066  *
10067  * Description: This routine handles insert/remove events (photon). The
10068  *		state is changed to OFFLINE which can be used to supress
10069  *		error msgs. (fibre only)
10070  *
10071  *   Arguments: un - driver soft state (unit) structure
10072  *
10073  *     Context: Callout thread context
10074  */
10075 /* ARGSUSED */
10076 static void
10077 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
10078     void *bus_impldata)
10079 {
10080 	struct sd_lun *un = (struct sd_lun *)arg;
10081 
10082 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
10083 	if (event == un->un_insert_event) {
10084 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
10085 		mutex_enter(SD_MUTEX(un));
10086 		if (un->un_state == SD_STATE_OFFLINE) {
10087 			if (un->un_last_state != SD_STATE_SUSPENDED) {
10088 				un->un_state = un->un_last_state;
10089 			} else {
10090 				/*
10091 				 * We have gone through SUSPEND/RESUME while
10092 				 * we were offline. Restore the last state
10093 				 */
10094 				un->un_state = un->un_save_state;
10095 			}
10096 		}
10097 		mutex_exit(SD_MUTEX(un));
10098 
10099 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
10100 	} else if (event == un->un_remove_event) {
10101 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
10102 		mutex_enter(SD_MUTEX(un));
10103 		/*
10104 		 * We need to handle an event callback that occurs during
10105 		 * the suspend operation, since we don't prevent it.
10106 		 */
10107 		if (un->un_state != SD_STATE_OFFLINE) {
10108 			if (un->un_state != SD_STATE_SUSPENDED) {
10109 				New_state(un, SD_STATE_OFFLINE);
10110 			} else {
10111 				un->un_last_state = SD_STATE_OFFLINE;
10112 			}
10113 		}
10114 		mutex_exit(SD_MUTEX(un));
10115 	} else {
10116 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
10117 		    "!Unknown event\n");
10118 	}
10119 
10120 }
10121 #endif
10122 
10123 /*
10124  *    Function: sd_cache_control()
10125  *
10126  * Description: This routine is the driver entry point for setting
10127  *		read and write caching by modifying the WCE (write cache
10128  *		enable) and RCD (read cache disable) bits of mode
10129  *		page 8 (MODEPAGE_CACHING).
10130  *
10131  *   Arguments: un - driver soft state (unit) structure
10132  *		rcd_flag - flag for controlling the read cache
10133  *		wce_flag - flag for controlling the write cache
10134  *
10135  * Return Code: EIO
10136  *		code returned by sd_send_scsi_MODE_SENSE and
10137  *		sd_send_scsi_MODE_SELECT
10138  *
10139  *     Context: Kernel Thread
10140  */
10141 
10142 static int
10143 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
10144 {
10145 	struct mode_caching	*mode_caching_page;
10146 	uchar_t			*header;
10147 	size_t			buflen;
10148 	int			hdrlen;
10149 	int			bd_len;
10150 	int			rval = 0;
10151 	struct mode_header_grp2	*mhp;
10152 
10153 	ASSERT(un != NULL);
10154 
10155 	/*
10156 	 * Do a test unit ready, otherwise a mode sense may not work if this
10157 	 * is the first command sent to the device after boot.
10158 	 */
10159 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10160 
10161 	if (un->un_f_cfg_is_atapi == TRUE) {
10162 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10163 	} else {
10164 		hdrlen = MODE_HEADER_LENGTH;
10165 	}
10166 
10167 	/*
10168 	 * Allocate memory for the retrieved mode page and its headers.  Set
10169 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
10170 	 * we get all of the mode sense data otherwise, the mode select
10171 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
10172 	 */
10173 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
10174 		sizeof (struct mode_cache_scsi3);
10175 
10176 	header = kmem_zalloc(buflen, KM_SLEEP);
10177 
10178 	/* Get the information from the device. */
10179 	if (un->un_f_cfg_is_atapi == TRUE) {
10180 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10181 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10182 	} else {
10183 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10184 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10185 	}
10186 	if (rval != 0) {
10187 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10188 		    "sd_cache_control: Mode Sense Failed\n");
10189 		kmem_free(header, buflen);
10190 		return (rval);
10191 	}
10192 
10193 	/*
10194 	 * Determine size of Block Descriptors in order to locate
10195 	 * the mode page data. ATAPI devices return 0, SCSI devices
10196 	 * should return MODE_BLK_DESC_LENGTH.
10197 	 */
10198 	if (un->un_f_cfg_is_atapi == TRUE) {
10199 		mhp	= (struct mode_header_grp2 *)header;
10200 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10201 	} else {
10202 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10203 	}
10204 
10205 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10206 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10207 		    "sd_cache_control: Mode Sense returned invalid "
10208 		    "block descriptor length\n");
10209 		kmem_free(header, buflen);
10210 		return (EIO);
10211 	}
10212 
10213 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10214 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10215 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10216 		    " caching page code mismatch %d\n",
10217 		    mode_caching_page->mode_page.code);
10218 		kmem_free(header, buflen);
10219 		return (EIO);
10220 	}
10221 
10222 	/* Check the relevant bits on successful mode sense. */
10223 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
10224 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
10225 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
10226 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
10227 
10228 		size_t sbuflen;
10229 		uchar_t save_pg;
10230 
10231 		/*
10232 		 * Construct select buffer length based on the
10233 		 * length of the sense data returned.
10234 		 */
10235 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
10236 				sizeof (struct mode_page) +
10237 				(int)mode_caching_page->mode_page.length;
10238 
10239 		/*
10240 		 * Set the caching bits as requested.
10241 		 */
10242 		if (rcd_flag == SD_CACHE_ENABLE)
10243 			mode_caching_page->rcd = 0;
10244 		else if (rcd_flag == SD_CACHE_DISABLE)
10245 			mode_caching_page->rcd = 1;
10246 
10247 		if (wce_flag == SD_CACHE_ENABLE)
10248 			mode_caching_page->wce = 1;
10249 		else if (wce_flag == SD_CACHE_DISABLE)
10250 			mode_caching_page->wce = 0;
10251 
10252 		/*
10253 		 * Save the page if the mode sense says the
10254 		 * drive supports it.
10255 		 */
10256 		save_pg = mode_caching_page->mode_page.ps ?
10257 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
10258 
10259 		/* Clear reserved bits before mode select. */
10260 		mode_caching_page->mode_page.ps = 0;
10261 
10262 		/*
10263 		 * Clear out mode header for mode select.
10264 		 * The rest of the retrieved page will be reused.
10265 		 */
10266 		bzero(header, hdrlen);
10267 
10268 		if (un->un_f_cfg_is_atapi == TRUE) {
10269 			mhp = (struct mode_header_grp2 *)header;
10270 			mhp->bdesc_length_hi = bd_len >> 8;
10271 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
10272 		} else {
10273 			((struct mode_header *)header)->bdesc_length = bd_len;
10274 		}
10275 
10276 		/* Issue mode select to change the cache settings */
10277 		if (un->un_f_cfg_is_atapi == TRUE) {
10278 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
10279 			    sbuflen, save_pg, SD_PATH_DIRECT);
10280 		} else {
10281 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
10282 			    sbuflen, save_pg, SD_PATH_DIRECT);
10283 		}
10284 	}
10285 
10286 	kmem_free(header, buflen);
10287 	return (rval);
10288 }
10289 
10290 
10291 /*
10292  *    Function: sd_get_write_cache_enabled()
10293  *
10294  * Description: This routine is the driver entry point for determining if
10295  *		write caching is enabled.  It examines the WCE (write cache
10296  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
10297  *
10298  *   Arguments: un - driver soft state (unit) structure
10299  *   		is_enabled - pointer to int where write cache enabled state
10300  *   			is returned (non-zero -> write cache enabled)
10301  *
10302  *
10303  * Return Code: EIO
10304  *		code returned by sd_send_scsi_MODE_SENSE
10305  *
10306  *     Context: Kernel Thread
10307  *
10308  * NOTE: If ioctl is added to disable write cache, this sequence should
10309  * be followed so that no locking is required for accesses to
10310  * un->un_f_write_cache_enabled:
10311  * 	do mode select to clear wce
10312  * 	do synchronize cache to flush cache
10313  * 	set un->un_f_write_cache_enabled = FALSE
10314  *
10315  * Conversely, an ioctl to enable the write cache should be done
10316  * in this order:
10317  * 	set un->un_f_write_cache_enabled = TRUE
10318  * 	do mode select to set wce
10319  */
10320 
10321 static int
10322 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
10323 {
10324 	struct mode_caching	*mode_caching_page;
10325 	uchar_t			*header;
10326 	size_t			buflen;
10327 	int			hdrlen;
10328 	int			bd_len;
10329 	int			rval = 0;
10330 
10331 	ASSERT(un != NULL);
10332 	ASSERT(is_enabled != NULL);
10333 
10334 	/* in case of error, flag as enabled */
10335 	*is_enabled = TRUE;
10336 
10337 	/*
10338 	 * Do a test unit ready, otherwise a mode sense may not work if this
10339 	 * is the first command sent to the device after boot.
10340 	 */
10341 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10342 
10343 	if (un->un_f_cfg_is_atapi == TRUE) {
10344 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10345 	} else {
10346 		hdrlen = MODE_HEADER_LENGTH;
10347 	}
10348 
10349 	/*
10350 	 * Allocate memory for the retrieved mode page and its headers.  Set
10351 	 * a pointer to the page itself.
10352 	 */
10353 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
10354 	header = kmem_zalloc(buflen, KM_SLEEP);
10355 
10356 	/* Get the information from the device. */
10357 	if (un->un_f_cfg_is_atapi == TRUE) {
10358 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10359 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10360 	} else {
10361 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10362 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10363 	}
10364 	if (rval != 0) {
10365 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10366 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10367 		kmem_free(header, buflen);
10368 		return (rval);
10369 	}
10370 
10371 	/*
10372 	 * Determine size of Block Descriptors in order to locate
10373 	 * the mode page data. ATAPI devices return 0, SCSI devices
10374 	 * should return MODE_BLK_DESC_LENGTH.
10375 	 */
10376 	if (un->un_f_cfg_is_atapi == TRUE) {
10377 		struct mode_header_grp2	*mhp;
10378 		mhp	= (struct mode_header_grp2 *)header;
10379 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10380 	} else {
10381 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10382 	}
10383 
10384 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10385 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10386 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10387 		    "block descriptor length\n");
10388 		kmem_free(header, buflen);
10389 		return (EIO);
10390 	}
10391 
10392 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10393 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10394 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10395 		    " caching page code mismatch %d\n",
10396 		    mode_caching_page->mode_page.code);
10397 		kmem_free(header, buflen);
10398 		return (EIO);
10399 	}
10400 	*is_enabled = mode_caching_page->wce;
10401 
10402 	kmem_free(header, buflen);
10403 	return (0);
10404 }
10405 
10406 
10407 /*
10408  *    Function: sd_make_device
10409  *
10410  * Description: Utility routine to return the Solaris device number from
10411  *		the data in the device's dev_info structure.
10412  *
10413  * Return Code: The Solaris device number
10414  *
10415  *     Context: Any
10416  */
10417 
10418 static dev_t
10419 sd_make_device(dev_info_t *devi)
10420 {
10421 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10422 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10423 }
10424 
10425 
10426 /*
10427  *    Function: sd_pm_entry
10428  *
10429  * Description: Called at the start of a new command to manage power
10430  *		and busy status of a device. This includes determining whether
10431  *		the current power state of the device is sufficient for
10432  *		performing the command or whether it must be changed.
10433  *		The PM framework is notified appropriately.
10434  *		Only with a return status of DDI_SUCCESS will the
10435  *		component be busy to the framework.
10436  *
10437  *		All callers of sd_pm_entry must check the return status
10438  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10439  *		of DDI_FAILURE indicates the device failed to power up.
10440  *		In this case un_pm_count has been adjusted so the result
10441  *		on exit is still powered down, ie. count is less than 0.
10442  *		Calling sd_pm_exit with this count value hits an ASSERT.
10443  *
10444  * Return Code: DDI_SUCCESS or DDI_FAILURE
10445  *
10446  *     Context: Kernel thread context.
10447  */
10448 
10449 static int
10450 sd_pm_entry(struct sd_lun *un)
10451 {
10452 	int return_status = DDI_SUCCESS;
10453 
10454 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10455 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10456 
10457 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10458 
10459 	if (un->un_f_pm_is_enabled == FALSE) {
10460 		SD_TRACE(SD_LOG_IO_PM, un,
10461 		    "sd_pm_entry: exiting, PM not enabled\n");
10462 		return (return_status);
10463 	}
10464 
10465 	/*
10466 	 * Just increment a counter if PM is enabled. On the transition from
10467 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10468 	 * the count with each IO and mark the device as idle when the count
10469 	 * hits 0.
10470 	 *
10471 	 * If the count is less than 0 the device is powered down. If a powered
10472 	 * down device is successfully powered up then the count must be
10473 	 * incremented to reflect the power up. Note that it'll get incremented
10474 	 * a second time to become busy.
10475 	 *
10476 	 * Because the following has the potential to change the device state
10477 	 * and must release the un_pm_mutex to do so, only one thread can be
10478 	 * allowed through at a time.
10479 	 */
10480 
10481 	mutex_enter(&un->un_pm_mutex);
10482 	while (un->un_pm_busy == TRUE) {
10483 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10484 	}
10485 	un->un_pm_busy = TRUE;
10486 
10487 	if (un->un_pm_count < 1) {
10488 
10489 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10490 
10491 		/*
10492 		 * Indicate we are now busy so the framework won't attempt to
10493 		 * power down the device. This call will only fail if either
10494 		 * we passed a bad component number or the device has no
10495 		 * components. Neither of these should ever happen.
10496 		 */
10497 		mutex_exit(&un->un_pm_mutex);
10498 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10499 		ASSERT(return_status == DDI_SUCCESS);
10500 
10501 		mutex_enter(&un->un_pm_mutex);
10502 
10503 		if (un->un_pm_count < 0) {
10504 			mutex_exit(&un->un_pm_mutex);
10505 
10506 			SD_TRACE(SD_LOG_IO_PM, un,
10507 			    "sd_pm_entry: power up component\n");
10508 
10509 			/*
10510 			 * pm_raise_power will cause sdpower to be called
10511 			 * which brings the device power level to the
10512 			 * desired state, ON in this case. If successful,
10513 			 * un_pm_count and un_power_level will be updated
10514 			 * appropriately.
10515 			 */
10516 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10517 			    SD_SPINDLE_ON);
10518 
10519 			mutex_enter(&un->un_pm_mutex);
10520 
10521 			if (return_status != DDI_SUCCESS) {
10522 				/*
10523 				 * Power up failed.
10524 				 * Idle the device and adjust the count
10525 				 * so the result on exit is that we're
10526 				 * still powered down, ie. count is less than 0.
10527 				 */
10528 				SD_TRACE(SD_LOG_IO_PM, un,
10529 				    "sd_pm_entry: power up failed,"
10530 				    " idle the component\n");
10531 
10532 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10533 				un->un_pm_count--;
10534 			} else {
10535 				/*
10536 				 * Device is powered up, verify the
10537 				 * count is non-negative.
10538 				 * This is debug only.
10539 				 */
10540 				ASSERT(un->un_pm_count == 0);
10541 			}
10542 		}
10543 
10544 		if (return_status == DDI_SUCCESS) {
10545 			/*
10546 			 * For performance, now that the device has been tagged
10547 			 * as busy, and it's known to be powered up, update the
10548 			 * chain types to use jump tables that do not include
10549 			 * pm. This significantly lowers the overhead and
10550 			 * therefore improves performance.
10551 			 */
10552 
10553 			mutex_exit(&un->un_pm_mutex);
10554 			mutex_enter(SD_MUTEX(un));
10555 			SD_TRACE(SD_LOG_IO_PM, un,
10556 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10557 			    un->un_uscsi_chain_type);
10558 
10559 			if (un->un_f_non_devbsize_supported) {
10560 				un->un_buf_chain_type =
10561 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10562 			} else {
10563 				un->un_buf_chain_type =
10564 				    SD_CHAIN_INFO_DISK_NO_PM;
10565 			}
10566 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10567 
10568 			SD_TRACE(SD_LOG_IO_PM, un,
10569 			    "             changed  uscsi_chain_type to   %d\n",
10570 			    un->un_uscsi_chain_type);
10571 			mutex_exit(SD_MUTEX(un));
10572 			mutex_enter(&un->un_pm_mutex);
10573 
10574 			if (un->un_pm_idle_timeid == NULL) {
10575 				/* 300 ms. */
10576 				un->un_pm_idle_timeid =
10577 				    timeout(sd_pm_idletimeout_handler, un,
10578 				    (drv_usectohz((clock_t)300000)));
10579 				/*
10580 				 * Include an extra call to busy which keeps the
10581 				 * device busy with-respect-to the PM layer
10582 				 * until the timer fires, at which time it'll
10583 				 * get the extra idle call.
10584 				 */
10585 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10586 			}
10587 		}
10588 	}
10589 	un->un_pm_busy = FALSE;
10590 	/* Next... */
10591 	cv_signal(&un->un_pm_busy_cv);
10592 
10593 	un->un_pm_count++;
10594 
10595 	SD_TRACE(SD_LOG_IO_PM, un,
10596 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10597 
10598 	mutex_exit(&un->un_pm_mutex);
10599 
10600 	return (return_status);
10601 }
10602 
10603 
10604 /*
10605  *    Function: sd_pm_exit
10606  *
10607  * Description: Called at the completion of a command to manage busy
10608  *		status for the device. If the device becomes idle the
10609  *		PM framework is notified.
10610  *
10611  *     Context: Kernel thread context
10612  */
10613 
10614 static void
10615 sd_pm_exit(struct sd_lun *un)
10616 {
10617 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10618 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10619 
10620 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10621 
10622 	/*
10623 	 * After attach the following flag is only read, so don't
10624 	 * take the penalty of acquiring a mutex for it.
10625 	 */
10626 	if (un->un_f_pm_is_enabled == TRUE) {
10627 
10628 		mutex_enter(&un->un_pm_mutex);
10629 		un->un_pm_count--;
10630 
10631 		SD_TRACE(SD_LOG_IO_PM, un,
10632 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10633 
10634 		ASSERT(un->un_pm_count >= 0);
10635 		if (un->un_pm_count == 0) {
10636 			mutex_exit(&un->un_pm_mutex);
10637 
10638 			SD_TRACE(SD_LOG_IO_PM, un,
10639 			    "sd_pm_exit: idle component\n");
10640 
10641 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10642 
10643 		} else {
10644 			mutex_exit(&un->un_pm_mutex);
10645 		}
10646 	}
10647 
10648 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10649 }
10650 
10651 
10652 /*
10653  *    Function: sdopen
10654  *
10655  * Description: Driver's open(9e) entry point function.
10656  *
10657  *   Arguments: dev_i   - pointer to device number
10658  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10659  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10660  *		cred_p  - user credential pointer
10661  *
10662  * Return Code: EINVAL
10663  *		ENXIO
10664  *		EIO
10665  *		EROFS
10666  *		EBUSY
10667  *
10668  *     Context: Kernel thread context
10669  */
10670 /* ARGSUSED */
10671 static int
10672 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10673 {
10674 	struct sd_lun	*un;
10675 	int		nodelay;
10676 	int		part;
10677 	uint64_t	partmask;
10678 	int		instance;
10679 	dev_t		dev;
10680 	int		rval = EIO;
10681 
10682 	/* Validate the open type */
10683 	if (otyp >= OTYPCNT) {
10684 		return (EINVAL);
10685 	}
10686 
10687 	dev = *dev_p;
10688 	instance = SDUNIT(dev);
10689 	mutex_enter(&sd_detach_mutex);
10690 
10691 	/*
10692 	 * Fail the open if there is no softstate for the instance, or
10693 	 * if another thread somewhere is trying to detach the instance.
10694 	 */
10695 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10696 	    (un->un_detach_count != 0)) {
10697 		mutex_exit(&sd_detach_mutex);
10698 		/*
10699 		 * The probe cache only needs to be cleared when open (9e) fails
10700 		 * with ENXIO (4238046).
10701 		 */
10702 		/*
10703 		 * un-conditionally clearing probe cache is ok with
10704 		 * separate sd/ssd binaries
10705 		 * x86 platform can be an issue with both parallel
10706 		 * and fibre in 1 binary
10707 		 */
10708 		sd_scsi_clear_probe_cache();
10709 		return (ENXIO);
10710 	}
10711 
10712 	/*
10713 	 * The un_layer_count is to prevent another thread in specfs from
10714 	 * trying to detach the instance, which can happen when we are
10715 	 * called from a higher-layer driver instead of thru specfs.
10716 	 * This will not be needed when DDI provides a layered driver
10717 	 * interface that allows specfs to know that an instance is in
10718 	 * use by a layered driver & should not be detached.
10719 	 *
10720 	 * Note: the semantics for layered driver opens are exactly one
10721 	 * close for every open.
10722 	 */
10723 	if (otyp == OTYP_LYR) {
10724 		un->un_layer_count++;
10725 	}
10726 
10727 	/*
10728 	 * Keep a count of the current # of opens in progress. This is because
10729 	 * some layered drivers try to call us as a regular open. This can
10730 	 * cause problems that we cannot prevent, however by keeping this count
10731 	 * we can at least keep our open and detach routines from racing against
10732 	 * each other under such conditions.
10733 	 */
10734 	un->un_opens_in_progress++;
10735 	mutex_exit(&sd_detach_mutex);
10736 
10737 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10738 	part	 = SDPART(dev);
10739 	partmask = 1 << part;
10740 
10741 	/*
10742 	 * We use a semaphore here in order to serialize
10743 	 * open and close requests on the device.
10744 	 */
10745 	sema_p(&un->un_semoclose);
10746 
10747 	mutex_enter(SD_MUTEX(un));
10748 
10749 	/*
10750 	 * All device accesses go thru sdstrategy() where we check
10751 	 * on suspend status but there could be a scsi_poll command,
10752 	 * which bypasses sdstrategy(), so we need to check pm
10753 	 * status.
10754 	 */
10755 
10756 	if (!nodelay) {
10757 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10758 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10759 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10760 		}
10761 
10762 		mutex_exit(SD_MUTEX(un));
10763 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10764 			rval = EIO;
10765 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10766 			    "sdopen: sd_pm_entry failed\n");
10767 			goto open_failed_with_pm;
10768 		}
10769 		mutex_enter(SD_MUTEX(un));
10770 	}
10771 
10772 	/* check for previous exclusive open */
10773 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10774 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10775 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10776 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10777 
10778 	if (un->un_exclopen & (partmask)) {
10779 		goto excl_open_fail;
10780 	}
10781 
10782 	if (flag & FEXCL) {
10783 		int i;
10784 		if (un->un_ocmap.lyropen[part]) {
10785 			goto excl_open_fail;
10786 		}
10787 		for (i = 0; i < (OTYPCNT - 1); i++) {
10788 			if (un->un_ocmap.regopen[i] & (partmask)) {
10789 				goto excl_open_fail;
10790 			}
10791 		}
10792 	}
10793 
10794 	/*
10795 	 * Check the write permission if this is a removable media device,
10796 	 * NDELAY has not been set, and writable permission is requested.
10797 	 *
10798 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10799 	 * attempt will fail with EIO as part of the I/O processing. This is a
10800 	 * more permissive implementation that allows the open to succeed and
10801 	 * WRITE attempts to fail when appropriate.
10802 	 */
10803 	if (un->un_f_chk_wp_open) {
10804 		if ((flag & FWRITE) && (!nodelay)) {
10805 			mutex_exit(SD_MUTEX(un));
10806 			/*
10807 			 * Defer the check for write permission on writable
10808 			 * DVD drive till sdstrategy and will not fail open even
10809 			 * if FWRITE is set as the device can be writable
10810 			 * depending upon the media and the media can change
10811 			 * after the call to open().
10812 			 */
10813 			if (un->un_f_dvdram_writable_device == FALSE) {
10814 				if (ISCD(un) || sr_check_wp(dev)) {
10815 				rval = EROFS;
10816 				mutex_enter(SD_MUTEX(un));
10817 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10818 				    "write to cd or write protected media\n");
10819 				goto open_fail;
10820 				}
10821 			}
10822 			mutex_enter(SD_MUTEX(un));
10823 		}
10824 	}
10825 
10826 	/*
10827 	 * If opening in NDELAY/NONBLOCK mode, just return.
10828 	 * Check if disk is ready and has a valid geometry later.
10829 	 */
10830 	if (!nodelay) {
10831 		mutex_exit(SD_MUTEX(un));
10832 		rval = sd_ready_and_valid(un);
10833 		mutex_enter(SD_MUTEX(un));
10834 		/*
10835 		 * Fail if device is not ready or if the number of disk
10836 		 * blocks is zero or negative for non CD devices.
10837 		 */
10838 		if ((rval != SD_READY_VALID) ||
10839 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10840 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10841 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10842 			    "device not ready or invalid disk block value\n");
10843 			goto open_fail;
10844 		}
10845 #if defined(__i386) || defined(__amd64)
10846 	} else {
10847 		uchar_t *cp;
10848 		/*
10849 		 * x86 requires special nodelay handling, so that p0 is
10850 		 * always defined and accessible.
10851 		 * Invalidate geometry only if device is not already open.
10852 		 */
10853 		cp = &un->un_ocmap.chkd[0];
10854 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10855 			if (*cp != (uchar_t)0) {
10856 			    break;
10857 			}
10858 			cp++;
10859 		}
10860 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10861 			un->un_f_geometry_is_valid = FALSE;
10862 		}
10863 
10864 #endif
10865 	}
10866 
10867 	if (otyp == OTYP_LYR) {
10868 		un->un_ocmap.lyropen[part]++;
10869 	} else {
10870 		un->un_ocmap.regopen[otyp] |= partmask;
10871 	}
10872 
10873 	/* Set up open and exclusive open flags */
10874 	if (flag & FEXCL) {
10875 		un->un_exclopen |= (partmask);
10876 	}
10877 
10878 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10879 	    "open of part %d type %d\n", part, otyp);
10880 
10881 	mutex_exit(SD_MUTEX(un));
10882 	if (!nodelay) {
10883 		sd_pm_exit(un);
10884 	}
10885 
10886 	sema_v(&un->un_semoclose);
10887 
10888 	mutex_enter(&sd_detach_mutex);
10889 	un->un_opens_in_progress--;
10890 	mutex_exit(&sd_detach_mutex);
10891 
10892 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10893 	return (DDI_SUCCESS);
10894 
10895 excl_open_fail:
10896 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10897 	rval = EBUSY;
10898 
10899 open_fail:
10900 	mutex_exit(SD_MUTEX(un));
10901 
10902 	/*
10903 	 * On a failed open we must exit the pm management.
10904 	 */
10905 	if (!nodelay) {
10906 		sd_pm_exit(un);
10907 	}
10908 open_failed_with_pm:
10909 	sema_v(&un->un_semoclose);
10910 
10911 	mutex_enter(&sd_detach_mutex);
10912 	un->un_opens_in_progress--;
10913 	if (otyp == OTYP_LYR) {
10914 		un->un_layer_count--;
10915 	}
10916 	mutex_exit(&sd_detach_mutex);
10917 
10918 	return (rval);
10919 }
10920 
10921 
10922 /*
10923  *    Function: sdclose
10924  *
10925  * Description: Driver's close(9e) entry point function.
10926  *
10927  *   Arguments: dev    - device number
10928  *		flag   - file status flag, informational only
10929  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10930  *		cred_p - user credential pointer
10931  *
10932  * Return Code: ENXIO
10933  *
10934  *     Context: Kernel thread context
10935  */
10936 /* ARGSUSED */
10937 static int
10938 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10939 {
10940 	struct sd_lun	*un;
10941 	uchar_t		*cp;
10942 	int		part;
10943 	int		nodelay;
10944 	int		rval = 0;
10945 
10946 	/* Validate the open type */
10947 	if (otyp >= OTYPCNT) {
10948 		return (ENXIO);
10949 	}
10950 
10951 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10952 		return (ENXIO);
10953 	}
10954 
10955 	part = SDPART(dev);
10956 	nodelay = flag & (FNDELAY | FNONBLOCK);
10957 
10958 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10959 	    "sdclose: close of part %d type %d\n", part, otyp);
10960 
10961 	/*
10962 	 * We use a semaphore here in order to serialize
10963 	 * open and close requests on the device.
10964 	 */
10965 	sema_p(&un->un_semoclose);
10966 
10967 	mutex_enter(SD_MUTEX(un));
10968 
10969 	/* Don't proceed if power is being changed. */
10970 	while (un->un_state == SD_STATE_PM_CHANGING) {
10971 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10972 	}
10973 
10974 	if (un->un_exclopen & (1 << part)) {
10975 		un->un_exclopen &= ~(1 << part);
10976 	}
10977 
10978 	/* Update the open partition map */
10979 	if (otyp == OTYP_LYR) {
10980 		un->un_ocmap.lyropen[part] -= 1;
10981 	} else {
10982 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10983 	}
10984 
10985 	cp = &un->un_ocmap.chkd[0];
10986 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10987 		if (*cp != NULL) {
10988 			break;
10989 		}
10990 		cp++;
10991 	}
10992 
10993 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10994 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10995 
10996 		/*
10997 		 * We avoid persistance upon the last close, and set
10998 		 * the throttle back to the maximum.
10999 		 */
11000 		un->un_throttle = un->un_saved_throttle;
11001 
11002 		if (un->un_state == SD_STATE_OFFLINE) {
11003 			if (un->un_f_is_fibre == FALSE) {
11004 				scsi_log(SD_DEVINFO(un), sd_label,
11005 					CE_WARN, "offline\n");
11006 			}
11007 			un->un_f_geometry_is_valid = FALSE;
11008 
11009 		} else {
11010 			/*
11011 			 * Flush any outstanding writes in NVRAM cache.
11012 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
11013 			 * cmd, it may not work for non-Pluto devices.
11014 			 * SYNCHRONIZE CACHE is not required for removables,
11015 			 * except DVD-RAM drives.
11016 			 *
11017 			 * Also note: because SYNCHRONIZE CACHE is currently
11018 			 * the only command issued here that requires the
11019 			 * drive be powered up, only do the power up before
11020 			 * sending the Sync Cache command. If additional
11021 			 * commands are added which require a powered up
11022 			 * drive, the following sequence may have to change.
11023 			 *
11024 			 * And finally, note that parallel SCSI on SPARC
11025 			 * only issues a Sync Cache to DVD-RAM, a newly
11026 			 * supported device.
11027 			 */
11028 #if defined(__i386) || defined(__amd64)
11029 			if (un->un_f_sync_cache_supported ||
11030 			    un->un_f_dvdram_writable_device == TRUE) {
11031 #else
11032 			if (un->un_f_dvdram_writable_device == TRUE) {
11033 #endif
11034 				mutex_exit(SD_MUTEX(un));
11035 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11036 					rval =
11037 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
11038 					    NULL);
11039 					/* ignore error if not supported */
11040 					if (rval == ENOTSUP) {
11041 						rval = 0;
11042 					} else if (rval != 0) {
11043 						rval = EIO;
11044 					}
11045 					sd_pm_exit(un);
11046 				} else {
11047 					rval = EIO;
11048 				}
11049 				mutex_enter(SD_MUTEX(un));
11050 			}
11051 
11052 			/*
11053 			 * For devices which supports DOOR_LOCK, send an ALLOW
11054 			 * MEDIA REMOVAL command, but don't get upset if it
11055 			 * fails. We need to raise the power of the drive before
11056 			 * we can call sd_send_scsi_DOORLOCK()
11057 			 */
11058 			if (un->un_f_doorlock_supported) {
11059 				mutex_exit(SD_MUTEX(un));
11060 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11061 					rval = sd_send_scsi_DOORLOCK(un,
11062 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
11063 
11064 					sd_pm_exit(un);
11065 					if (ISCD(un) && (rval != 0) &&
11066 					    (nodelay != 0)) {
11067 						rval = ENXIO;
11068 					}
11069 				} else {
11070 					rval = EIO;
11071 				}
11072 				mutex_enter(SD_MUTEX(un));
11073 			}
11074 
11075 			/*
11076 			 * If a device has removable media, invalidate all
11077 			 * parameters related to media, such as geometry,
11078 			 * blocksize, and blockcount.
11079 			 */
11080 			if (un->un_f_has_removable_media) {
11081 				sr_ejected(un);
11082 			}
11083 
11084 			/*
11085 			 * Destroy the cache (if it exists) which was
11086 			 * allocated for the write maps since this is
11087 			 * the last close for this media.
11088 			 */
11089 			if (un->un_wm_cache) {
11090 				/*
11091 				 * Check if there are pending commands.
11092 				 * and if there are give a warning and
11093 				 * do not destroy the cache.
11094 				 */
11095 				if (un->un_ncmds_in_driver > 0) {
11096 					scsi_log(SD_DEVINFO(un),
11097 					    sd_label, CE_WARN,
11098 					    "Unable to clean up memory "
11099 					    "because of pending I/O\n");
11100 				} else {
11101 					kmem_cache_destroy(
11102 					    un->un_wm_cache);
11103 					un->un_wm_cache = NULL;
11104 				}
11105 			}
11106 		}
11107 	}
11108 
11109 	mutex_exit(SD_MUTEX(un));
11110 	sema_v(&un->un_semoclose);
11111 
11112 	if (otyp == OTYP_LYR) {
11113 		mutex_enter(&sd_detach_mutex);
11114 		/*
11115 		 * The detach routine may run when the layer count
11116 		 * drops to zero.
11117 		 */
11118 		un->un_layer_count--;
11119 		mutex_exit(&sd_detach_mutex);
11120 	}
11121 
11122 	return (rval);
11123 }
11124 
11125 
11126 /*
11127  *    Function: sd_ready_and_valid
11128  *
11129  * Description: Test if device is ready and has a valid geometry.
11130  *
11131  *   Arguments: dev - device number
11132  *		un  - driver soft state (unit) structure
11133  *
11134  * Return Code: SD_READY_VALID		ready and valid label
11135  *		SD_READY_NOT_VALID	ready, geom ops never applicable
11136  *		SD_NOT_READY_VALID	not ready, no label
11137  *		SD_RESERVED_BY_OTHERS	reservation conflict
11138  *
11139  *     Context: Never called at interrupt context.
11140  */
11141 
11142 static int
11143 sd_ready_and_valid(struct sd_lun *un)
11144 {
11145 	struct sd_errstats	*stp;
11146 	uint64_t		capacity;
11147 	uint_t			lbasize;
11148 	int			rval = SD_READY_VALID;
11149 	char			name_str[48];
11150 
11151 	ASSERT(un != NULL);
11152 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11153 
11154 	mutex_enter(SD_MUTEX(un));
11155 	/*
11156 	 * If a device has removable media, we must check if media is
11157 	 * ready when checking if this device is ready and valid.
11158 	 */
11159 	if (un->un_f_has_removable_media) {
11160 		mutex_exit(SD_MUTEX(un));
11161 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
11162 			rval = SD_NOT_READY_VALID;
11163 			mutex_enter(SD_MUTEX(un));
11164 			goto done;
11165 		}
11166 
11167 		mutex_enter(SD_MUTEX(un));
11168 		if ((un->un_f_geometry_is_valid == FALSE) ||
11169 		    (un->un_f_blockcount_is_valid == FALSE) ||
11170 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
11171 
11172 			/* capacity has to be read every open. */
11173 			mutex_exit(SD_MUTEX(un));
11174 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
11175 			    &lbasize, SD_PATH_DIRECT) != 0) {
11176 				mutex_enter(SD_MUTEX(un));
11177 				un->un_f_geometry_is_valid = FALSE;
11178 				rval = SD_NOT_READY_VALID;
11179 				goto done;
11180 			} else {
11181 				mutex_enter(SD_MUTEX(un));
11182 				sd_update_block_info(un, lbasize, capacity);
11183 			}
11184 		}
11185 
11186 		/*
11187 		 * Check if the media in the device is writable or not.
11188 		 */
11189 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
11190 			sd_check_for_writable_cd(un);
11191 		}
11192 
11193 	} else {
11194 		/*
11195 		 * Do a test unit ready to clear any unit attention from non-cd
11196 		 * devices.
11197 		 */
11198 		mutex_exit(SD_MUTEX(un));
11199 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
11200 		mutex_enter(SD_MUTEX(un));
11201 	}
11202 
11203 
11204 	/*
11205 	 * If this is a non 512 block device, allocate space for
11206 	 * the wmap cache. This is being done here since every time
11207 	 * a media is changed this routine will be called and the
11208 	 * block size is a function of media rather than device.
11209 	 */
11210 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
11211 		if (!(un->un_wm_cache)) {
11212 			(void) snprintf(name_str, sizeof (name_str),
11213 			    "%s%d_cache",
11214 			    ddi_driver_name(SD_DEVINFO(un)),
11215 			    ddi_get_instance(SD_DEVINFO(un)));
11216 			un->un_wm_cache = kmem_cache_create(
11217 			    name_str, sizeof (struct sd_w_map),
11218 			    8, sd_wm_cache_constructor,
11219 			    sd_wm_cache_destructor, NULL,
11220 			    (void *)un, NULL, 0);
11221 			if (!(un->un_wm_cache)) {
11222 					rval = ENOMEM;
11223 					goto done;
11224 			}
11225 		}
11226 	}
11227 
11228 	if (un->un_state == SD_STATE_NORMAL) {
11229 		/*
11230 		 * If the target is not yet ready here (defined by a TUR
11231 		 * failure), invalidate the geometry and print an 'offline'
11232 		 * message. This is a legacy message, as the state of the
11233 		 * target is not actually changed to SD_STATE_OFFLINE.
11234 		 *
11235 		 * If the TUR fails for EACCES (Reservation Conflict),
11236 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
11237 		 * reservation conflict. If the TUR fails for other
11238 		 * reasons, SD_NOT_READY_VALID will be returned.
11239 		 */
11240 		int err;
11241 
11242 		mutex_exit(SD_MUTEX(un));
11243 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
11244 		mutex_enter(SD_MUTEX(un));
11245 
11246 		if (err != 0) {
11247 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11248 			    "offline or reservation conflict\n");
11249 			un->un_f_geometry_is_valid = FALSE;
11250 			if (err == EACCES) {
11251 				rval = SD_RESERVED_BY_OTHERS;
11252 			} else {
11253 				rval = SD_NOT_READY_VALID;
11254 			}
11255 			goto done;
11256 		}
11257 	}
11258 
11259 	if (un->un_f_format_in_progress == FALSE) {
11260 		/*
11261 		 * Note: sd_validate_geometry may return TRUE, but that does
11262 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
11263 		 */
11264 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
11265 		if (rval == ENOTSUP) {
11266 			if (un->un_f_geometry_is_valid == TRUE)
11267 				rval = 0;
11268 			else {
11269 				rval = SD_READY_NOT_VALID;
11270 				goto done;
11271 			}
11272 		}
11273 		if (rval != 0) {
11274 			/*
11275 			 * We don't check the validity of geometry for
11276 			 * CDROMs. Also we assume we have a good label
11277 			 * even if sd_validate_geometry returned ENOMEM.
11278 			 */
11279 			if (!ISCD(un) && rval != ENOMEM) {
11280 				rval = SD_NOT_READY_VALID;
11281 				goto done;
11282 			}
11283 		}
11284 	}
11285 
11286 	/*
11287 	 * If this device supports DOOR_LOCK command, try and send
11288 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
11289 	 * if it fails. For a CD, however, it is an error
11290 	 */
11291 	if (un->un_f_doorlock_supported) {
11292 		mutex_exit(SD_MUTEX(un));
11293 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
11294 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
11295 			rval = SD_NOT_READY_VALID;
11296 			mutex_enter(SD_MUTEX(un));
11297 			goto done;
11298 		}
11299 		mutex_enter(SD_MUTEX(un));
11300 	}
11301 
11302 	/* The state has changed, inform the media watch routines */
11303 	un->un_mediastate = DKIO_INSERTED;
11304 	cv_broadcast(&un->un_state_cv);
11305 	rval = SD_READY_VALID;
11306 
11307 done:
11308 
11309 	/*
11310 	 * Initialize the capacity kstat value, if no media previously
11311 	 * (capacity kstat is 0) and a media has been inserted
11312 	 * (un_blockcount > 0).
11313 	 */
11314 	if (un->un_errstats != NULL) {
11315 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
11316 		if ((stp->sd_capacity.value.ui64 == 0) &&
11317 		    (un->un_f_blockcount_is_valid == TRUE)) {
11318 			stp->sd_capacity.value.ui64 =
11319 			    (uint64_t)((uint64_t)un->un_blockcount *
11320 			    un->un_sys_blocksize);
11321 		}
11322 	}
11323 
11324 	mutex_exit(SD_MUTEX(un));
11325 	return (rval);
11326 }
11327 
11328 
11329 /*
11330  *    Function: sdmin
11331  *
11332  * Description: Routine to limit the size of a data transfer. Used in
11333  *		conjunction with physio(9F).
11334  *
11335  *   Arguments: bp - pointer to the indicated buf(9S) struct.
11336  *
11337  *     Context: Kernel thread context.
11338  */
11339 
11340 static void
11341 sdmin(struct buf *bp)
11342 {
11343 	struct sd_lun	*un;
11344 	int		instance;
11345 
11346 	instance = SDUNIT(bp->b_edev);
11347 
11348 	un = ddi_get_soft_state(sd_state, instance);
11349 	ASSERT(un != NULL);
11350 
11351 	if (bp->b_bcount > un->un_max_xfer_size) {
11352 		bp->b_bcount = un->un_max_xfer_size;
11353 	}
11354 }
11355 
11356 
11357 /*
11358  *    Function: sdread
11359  *
11360  * Description: Driver's read(9e) entry point function.
11361  *
11362  *   Arguments: dev   - device number
11363  *		uio   - structure pointer describing where data is to be stored
11364  *			in user's space
11365  *		cred_p  - user credential pointer
11366  *
11367  * Return Code: ENXIO
11368  *		EIO
11369  *		EINVAL
11370  *		value returned by physio
11371  *
11372  *     Context: Kernel thread context.
11373  */
11374 /* ARGSUSED */
11375 static int
11376 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11377 {
11378 	struct sd_lun	*un = NULL;
11379 	int		secmask;
11380 	int		err;
11381 
11382 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11383 		return (ENXIO);
11384 	}
11385 
11386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11387 
11388 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11389 		mutex_enter(SD_MUTEX(un));
11390 		/*
11391 		 * Because the call to sd_ready_and_valid will issue I/O we
11392 		 * must wait here if either the device is suspended or
11393 		 * if it's power level is changing.
11394 		 */
11395 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11396 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11397 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11398 		}
11399 		un->un_ncmds_in_driver++;
11400 		mutex_exit(SD_MUTEX(un));
11401 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11402 			mutex_enter(SD_MUTEX(un));
11403 			un->un_ncmds_in_driver--;
11404 			ASSERT(un->un_ncmds_in_driver >= 0);
11405 			mutex_exit(SD_MUTEX(un));
11406 			return (EIO);
11407 		}
11408 		mutex_enter(SD_MUTEX(un));
11409 		un->un_ncmds_in_driver--;
11410 		ASSERT(un->un_ncmds_in_driver >= 0);
11411 		mutex_exit(SD_MUTEX(un));
11412 	}
11413 
11414 	/*
11415 	 * Read requests are restricted to multiples of the system block size.
11416 	 */
11417 	secmask = un->un_sys_blocksize - 1;
11418 
11419 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11420 		SD_ERROR(SD_LOG_READ_WRITE, un,
11421 		    "sdread: file offset not modulo %d\n",
11422 		    un->un_sys_blocksize);
11423 		err = EINVAL;
11424 	} else if (uio->uio_iov->iov_len & (secmask)) {
11425 		SD_ERROR(SD_LOG_READ_WRITE, un,
11426 		    "sdread: transfer length not modulo %d\n",
11427 		    un->un_sys_blocksize);
11428 		err = EINVAL;
11429 	} else {
11430 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11431 	}
11432 	return (err);
11433 }
11434 
11435 
11436 /*
11437  *    Function: sdwrite
11438  *
11439  * Description: Driver's write(9e) entry point function.
11440  *
11441  *   Arguments: dev   - device number
11442  *		uio   - structure pointer describing where data is stored in
11443  *			user's space
11444  *		cred_p  - user credential pointer
11445  *
11446  * Return Code: ENXIO
11447  *		EIO
11448  *		EINVAL
11449  *		value returned by physio
11450  *
11451  *     Context: Kernel thread context.
11452  */
11453 /* ARGSUSED */
11454 static int
11455 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11456 {
11457 	struct sd_lun	*un = NULL;
11458 	int		secmask;
11459 	int		err;
11460 
11461 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11462 		return (ENXIO);
11463 	}
11464 
11465 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11466 
11467 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11468 		mutex_enter(SD_MUTEX(un));
11469 		/*
11470 		 * Because the call to sd_ready_and_valid will issue I/O we
11471 		 * must wait here if either the device is suspended or
11472 		 * if it's power level is changing.
11473 		 */
11474 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11475 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11476 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11477 		}
11478 		un->un_ncmds_in_driver++;
11479 		mutex_exit(SD_MUTEX(un));
11480 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11481 			mutex_enter(SD_MUTEX(un));
11482 			un->un_ncmds_in_driver--;
11483 			ASSERT(un->un_ncmds_in_driver >= 0);
11484 			mutex_exit(SD_MUTEX(un));
11485 			return (EIO);
11486 		}
11487 		mutex_enter(SD_MUTEX(un));
11488 		un->un_ncmds_in_driver--;
11489 		ASSERT(un->un_ncmds_in_driver >= 0);
11490 		mutex_exit(SD_MUTEX(un));
11491 	}
11492 
11493 	/*
11494 	 * Write requests are restricted to multiples of the system block size.
11495 	 */
11496 	secmask = un->un_sys_blocksize - 1;
11497 
11498 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11499 		SD_ERROR(SD_LOG_READ_WRITE, un,
11500 		    "sdwrite: file offset not modulo %d\n",
11501 		    un->un_sys_blocksize);
11502 		err = EINVAL;
11503 	} else if (uio->uio_iov->iov_len & (secmask)) {
11504 		SD_ERROR(SD_LOG_READ_WRITE, un,
11505 		    "sdwrite: transfer length not modulo %d\n",
11506 		    un->un_sys_blocksize);
11507 		err = EINVAL;
11508 	} else {
11509 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11510 	}
11511 	return (err);
11512 }
11513 
11514 
11515 /*
11516  *    Function: sdaread
11517  *
11518  * Description: Driver's aread(9e) entry point function.
11519  *
11520  *   Arguments: dev   - device number
11521  *		aio   - structure pointer describing where data is to be stored
11522  *		cred_p  - user credential pointer
11523  *
11524  * Return Code: ENXIO
11525  *		EIO
11526  *		EINVAL
11527  *		value returned by aphysio
11528  *
11529  *     Context: Kernel thread context.
11530  */
11531 /* ARGSUSED */
11532 static int
11533 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11534 {
11535 	struct sd_lun	*un = NULL;
11536 	struct uio	*uio = aio->aio_uio;
11537 	int		secmask;
11538 	int		err;
11539 
11540 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11541 		return (ENXIO);
11542 	}
11543 
11544 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11545 
11546 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11547 		mutex_enter(SD_MUTEX(un));
11548 		/*
11549 		 * Because the call to sd_ready_and_valid will issue I/O we
11550 		 * must wait here if either the device is suspended or
11551 		 * if it's power level is changing.
11552 		 */
11553 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11554 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11555 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11556 		}
11557 		un->un_ncmds_in_driver++;
11558 		mutex_exit(SD_MUTEX(un));
11559 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11560 			mutex_enter(SD_MUTEX(un));
11561 			un->un_ncmds_in_driver--;
11562 			ASSERT(un->un_ncmds_in_driver >= 0);
11563 			mutex_exit(SD_MUTEX(un));
11564 			return (EIO);
11565 		}
11566 		mutex_enter(SD_MUTEX(un));
11567 		un->un_ncmds_in_driver--;
11568 		ASSERT(un->un_ncmds_in_driver >= 0);
11569 		mutex_exit(SD_MUTEX(un));
11570 	}
11571 
11572 	/*
11573 	 * Read requests are restricted to multiples of the system block size.
11574 	 */
11575 	secmask = un->un_sys_blocksize - 1;
11576 
11577 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11578 		SD_ERROR(SD_LOG_READ_WRITE, un,
11579 		    "sdaread: file offset not modulo %d\n",
11580 		    un->un_sys_blocksize);
11581 		err = EINVAL;
11582 	} else if (uio->uio_iov->iov_len & (secmask)) {
11583 		SD_ERROR(SD_LOG_READ_WRITE, un,
11584 		    "sdaread: transfer length not modulo %d\n",
11585 		    un->un_sys_blocksize);
11586 		err = EINVAL;
11587 	} else {
11588 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11589 	}
11590 	return (err);
11591 }
11592 
11593 
11594 /*
11595  *    Function: sdawrite
11596  *
11597  * Description: Driver's awrite(9e) entry point function.
11598  *
11599  *   Arguments: dev   - device number
11600  *		aio   - structure pointer describing where data is stored
11601  *		cred_p  - user credential pointer
11602  *
11603  * Return Code: ENXIO
11604  *		EIO
11605  *		EINVAL
11606  *		value returned by aphysio
11607  *
11608  *     Context: Kernel thread context.
11609  */
11610 /* ARGSUSED */
11611 static int
11612 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11613 {
11614 	struct sd_lun	*un = NULL;
11615 	struct uio	*uio = aio->aio_uio;
11616 	int		secmask;
11617 	int		err;
11618 
11619 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11620 		return (ENXIO);
11621 	}
11622 
11623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11624 
11625 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11626 		mutex_enter(SD_MUTEX(un));
11627 		/*
11628 		 * Because the call to sd_ready_and_valid will issue I/O we
11629 		 * must wait here if either the device is suspended or
11630 		 * if it's power level is changing.
11631 		 */
11632 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11633 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11634 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11635 		}
11636 		un->un_ncmds_in_driver++;
11637 		mutex_exit(SD_MUTEX(un));
11638 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11639 			mutex_enter(SD_MUTEX(un));
11640 			un->un_ncmds_in_driver--;
11641 			ASSERT(un->un_ncmds_in_driver >= 0);
11642 			mutex_exit(SD_MUTEX(un));
11643 			return (EIO);
11644 		}
11645 		mutex_enter(SD_MUTEX(un));
11646 		un->un_ncmds_in_driver--;
11647 		ASSERT(un->un_ncmds_in_driver >= 0);
11648 		mutex_exit(SD_MUTEX(un));
11649 	}
11650 
11651 	/*
11652 	 * Write requests are restricted to multiples of the system block size.
11653 	 */
11654 	secmask = un->un_sys_blocksize - 1;
11655 
11656 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11657 		SD_ERROR(SD_LOG_READ_WRITE, un,
11658 		    "sdawrite: file offset not modulo %d\n",
11659 		    un->un_sys_blocksize);
11660 		err = EINVAL;
11661 	} else if (uio->uio_iov->iov_len & (secmask)) {
11662 		SD_ERROR(SD_LOG_READ_WRITE, un,
11663 		    "sdawrite: transfer length not modulo %d\n",
11664 		    un->un_sys_blocksize);
11665 		err = EINVAL;
11666 	} else {
11667 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11668 	}
11669 	return (err);
11670 }
11671 
11672 
11673 
11674 
11675 
11676 /*
11677  * Driver IO processing follows the following sequence:
11678  *
11679  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11680  *         |                |                     ^
11681  *         v                v                     |
11682  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11683  *         |                |                     |                   |
11684  *         v                |                     |                   |
11685  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11686  *         |                |                     ^                   ^
11687  *         v                v                     |                   |
11688  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11689  *         |                |                     |                   |
11690  *     +---+                |                     +------------+      +-------+
11691  *     |                    |                                  |              |
11692  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11693  *     |                    v                                  |              |
11694  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11695  *     |                    |                                  ^              |
11696  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11697  *     |                    v                                  |              |
11698  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11699  *     |                    |                                  ^              |
11700  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11701  *     |                    v                                  |              |
11702  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11703  *     |                    |                                  ^              |
11704  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11705  *     |                    v                                  |              |
11706  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11707  *     |                    |                                  ^              |
11708  *     |                    |                                  |              |
11709  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11710  *                          |                           ^
11711  *                          v                           |
11712  *                   sd_core_iostart()                  |
11713  *                          |                           |
11714  *                          |                           +------>(*destroypkt)()
11715  *                          +-> sd_start_cmds() <-+     |           |
11716  *                          |                     |     |           v
11717  *                          |                     |     |  scsi_destroy_pkt(9F)
11718  *                          |                     |     |
11719  *                          +->(*initpkt)()       +- sdintr()
11720  *                          |  |                        |  |
11721  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11722  *                          |  +-> scsi_setup_cdb(9F)   |
11723  *                          |                           |
11724  *                          +--> scsi_transport(9F)     |
11725  *                                     |                |
11726  *                                     +----> SCSA ---->+
11727  *
11728  *
11729  * This code is based upon the following presumtions:
11730  *
11731  *   - iostart and iodone functions operate on buf(9S) structures. These
11732  *     functions perform the necessary operations on the buf(9S) and pass
11733  *     them along to the next function in the chain by using the macros
11734  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11735  *     (for iodone side functions).
11736  *
11737  *   - The iostart side functions may sleep. The iodone side functions
11738  *     are called under interrupt context and may NOT sleep. Therefore
11739  *     iodone side functions also may not call iostart side functions.
11740  *     (NOTE: iostart side functions should NOT sleep for memory, as
11741  *     this could result in deadlock.)
11742  *
11743  *   - An iostart side function may call its corresponding iodone side
11744  *     function directly (if necessary).
11745  *
11746  *   - In the event of an error, an iostart side function can return a buf(9S)
11747  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11748  *     b_error in the usual way of course).
11749  *
11750  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11751  *     requests to the iostart side functions.  The iostart side functions in
11752  *     this case would be called under the context of a taskq thread, so it's
11753  *     OK for them to block/sleep/spin in this case.
11754  *
11755  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11756  *     pass them along to the next function in the chain.  The corresponding
11757  *     iodone side functions must coalesce the "shadow" bufs and return
11758  *     the "original" buf to the next higher layer.
11759  *
11760  *   - The b_private field of the buf(9S) struct holds a pointer to
11761  *     an sd_xbuf struct, which contains information needed to
11762  *     construct the scsi_pkt for the command.
11763  *
11764  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11765  *     layer must acquire & release the SD_MUTEX(un) as needed.
11766  */
11767 
11768 
11769 /*
11770  * Create taskq for all targets in the system. This is created at
11771  * _init(9E) and destroyed at _fini(9E).
11772  *
11773  * Note: here we set the minalloc to a reasonably high number to ensure that
11774  * we will have an adequate supply of task entries available at interrupt time.
11775  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11776  * sd_create_taskq().  Since we do not want to sleep for allocations at
11777  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11778  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11779  * requests any one instant in time.
11780  */
11781 #define	SD_TASKQ_NUMTHREADS	8
11782 #define	SD_TASKQ_MINALLOC	256
11783 #define	SD_TASKQ_MAXALLOC	256
11784 
11785 static taskq_t	*sd_tq = NULL;
11786 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11787 
11788 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11789 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11790 
11791 /*
11792  * The following task queue is being created for the write part of
11793  * read-modify-write of non-512 block size devices.
11794  * Limit the number of threads to 1 for now. This number has been choosen
11795  * considering the fact that it applies only to dvd ram drives/MO drives
11796  * currently. Performance for which is not main criteria at this stage.
11797  * Note: It needs to be explored if we can use a single taskq in future
11798  */
11799 #define	SD_WMR_TASKQ_NUMTHREADS	1
11800 static taskq_t	*sd_wmr_tq = NULL;
11801 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11802 
11803 /*
11804  *    Function: sd_taskq_create
11805  *
11806  * Description: Create taskq thread(s) and preallocate task entries
11807  *
11808  * Return Code: Returns a pointer to the allocated taskq_t.
11809  *
11810  *     Context: Can sleep. Requires blockable context.
11811  *
11812  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11813  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11814  *		- taskq_create() will block for memory, also it will panic
11815  *		  if it cannot create the requested number of threads.
11816  *		- Currently taskq_create() creates threads that cannot be
11817  *		  swapped.
11818  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11819  *		  supply of taskq entries at interrupt time (ie, so that we
11820  *		  do not have to sleep for memory)
11821  */
11822 
11823 static void
11824 sd_taskq_create(void)
11825 {
11826 	char	taskq_name[TASKQ_NAMELEN];
11827 
11828 	ASSERT(sd_tq == NULL);
11829 	ASSERT(sd_wmr_tq == NULL);
11830 
11831 	(void) snprintf(taskq_name, sizeof (taskq_name),
11832 	    "%s_drv_taskq", sd_label);
11833 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11834 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11835 	    TASKQ_PREPOPULATE));
11836 
11837 	(void) snprintf(taskq_name, sizeof (taskq_name),
11838 	    "%s_rmw_taskq", sd_label);
11839 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11840 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11841 	    TASKQ_PREPOPULATE));
11842 }
11843 
11844 
11845 /*
11846  *    Function: sd_taskq_delete
11847  *
11848  * Description: Complementary cleanup routine for sd_taskq_create().
11849  *
11850  *     Context: Kernel thread context.
11851  */
11852 
11853 static void
11854 sd_taskq_delete(void)
11855 {
11856 	ASSERT(sd_tq != NULL);
11857 	ASSERT(sd_wmr_tq != NULL);
11858 	taskq_destroy(sd_tq);
11859 	taskq_destroy(sd_wmr_tq);
11860 	sd_tq = NULL;
11861 	sd_wmr_tq = NULL;
11862 }
11863 
11864 
11865 /*
11866  *    Function: sdstrategy
11867  *
11868  * Description: Driver's strategy (9E) entry point function.
11869  *
11870  *   Arguments: bp - pointer to buf(9S)
11871  *
11872  * Return Code: Always returns zero
11873  *
11874  *     Context: Kernel thread context.
11875  */
11876 
11877 static int
11878 sdstrategy(struct buf *bp)
11879 {
11880 	struct sd_lun *un;
11881 
11882 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11883 	if (un == NULL) {
11884 		bioerror(bp, EIO);
11885 		bp->b_resid = bp->b_bcount;
11886 		biodone(bp);
11887 		return (0);
11888 	}
11889 	/* As was done in the past, fail new cmds. if state is dumping. */
11890 	if (un->un_state == SD_STATE_DUMPING) {
11891 		bioerror(bp, ENXIO);
11892 		bp->b_resid = bp->b_bcount;
11893 		biodone(bp);
11894 		return (0);
11895 	}
11896 
11897 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11898 
11899 	/*
11900 	 * Commands may sneak in while we released the mutex in
11901 	 * DDI_SUSPEND, we should block new commands. However, old
11902 	 * commands that are still in the driver at this point should
11903 	 * still be allowed to drain.
11904 	 */
11905 	mutex_enter(SD_MUTEX(un));
11906 	/*
11907 	 * Must wait here if either the device is suspended or
11908 	 * if it's power level is changing.
11909 	 */
11910 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11911 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11912 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11913 	}
11914 
11915 	un->un_ncmds_in_driver++;
11916 
11917 	/*
11918 	 * atapi: Since we are running the CD for now in PIO mode we need to
11919 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11920 	 * the HBA's init_pkt routine.
11921 	 */
11922 	if (un->un_f_cfg_is_atapi == TRUE) {
11923 		mutex_exit(SD_MUTEX(un));
11924 		bp_mapin(bp);
11925 		mutex_enter(SD_MUTEX(un));
11926 	}
11927 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11928 	    un->un_ncmds_in_driver);
11929 
11930 	mutex_exit(SD_MUTEX(un));
11931 
11932 	/*
11933 	 * This will (eventually) allocate the sd_xbuf area and
11934 	 * call sd_xbuf_strategy().  We just want to return the
11935 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11936 	 * imized tail call which saves us a stack frame.
11937 	 */
11938 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11939 }
11940 
11941 
11942 /*
11943  *    Function: sd_xbuf_strategy
11944  *
11945  * Description: Function for initiating IO operations via the
11946  *		ddi_xbuf_qstrategy() mechanism.
11947  *
11948  *     Context: Kernel thread context.
11949  */
11950 
11951 static void
11952 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11953 {
11954 	struct sd_lun *un = arg;
11955 
11956 	ASSERT(bp != NULL);
11957 	ASSERT(xp != NULL);
11958 	ASSERT(un != NULL);
11959 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11960 
11961 	/*
11962 	 * Initialize the fields in the xbuf and save a pointer to the
11963 	 * xbuf in bp->b_private.
11964 	 */
11965 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11966 
11967 	/* Send the buf down the iostart chain */
11968 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11969 }
11970 
11971 
11972 /*
11973  *    Function: sd_xbuf_init
11974  *
11975  * Description: Prepare the given sd_xbuf struct for use.
11976  *
11977  *   Arguments: un - ptr to softstate
11978  *		bp - ptr to associated buf(9S)
11979  *		xp - ptr to associated sd_xbuf
11980  *		chain_type - IO chain type to use:
11981  *			SD_CHAIN_NULL
11982  *			SD_CHAIN_BUFIO
11983  *			SD_CHAIN_USCSI
11984  *			SD_CHAIN_DIRECT
11985  *			SD_CHAIN_DIRECT_PRIORITY
11986  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11987  *			initialization; may be NULL if none.
11988  *
11989  *     Context: Kernel thread context
11990  */
11991 
11992 static void
11993 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11994 	uchar_t chain_type, void *pktinfop)
11995 {
11996 	int index;
11997 
11998 	ASSERT(un != NULL);
11999 	ASSERT(bp != NULL);
12000 	ASSERT(xp != NULL);
12001 
12002 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
12003 	    bp, chain_type);
12004 
12005 	xp->xb_un	= un;
12006 	xp->xb_pktp	= NULL;
12007 	xp->xb_pktinfo	= pktinfop;
12008 	xp->xb_private	= bp->b_private;
12009 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
12010 
12011 	/*
12012 	 * Set up the iostart and iodone chain indexes in the xbuf, based
12013 	 * upon the specified chain type to use.
12014 	 */
12015 	switch (chain_type) {
12016 	case SD_CHAIN_NULL:
12017 		/*
12018 		 * Fall thru to just use the values for the buf type, even
12019 		 * tho for the NULL chain these values will never be used.
12020 		 */
12021 		/* FALLTHRU */
12022 	case SD_CHAIN_BUFIO:
12023 		index = un->un_buf_chain_type;
12024 		break;
12025 	case SD_CHAIN_USCSI:
12026 		index = un->un_uscsi_chain_type;
12027 		break;
12028 	case SD_CHAIN_DIRECT:
12029 		index = un->un_direct_chain_type;
12030 		break;
12031 	case SD_CHAIN_DIRECT_PRIORITY:
12032 		index = un->un_priority_chain_type;
12033 		break;
12034 	default:
12035 		/* We're really broken if we ever get here... */
12036 		panic("sd_xbuf_init: illegal chain type!");
12037 		/*NOTREACHED*/
12038 	}
12039 
12040 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
12041 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
12042 
12043 	/*
12044 	 * It might be a bit easier to simply bzero the entire xbuf above,
12045 	 * but it turns out that since we init a fair number of members anyway,
12046 	 * we save a fair number cycles by doing explicit assignment of zero.
12047 	 */
12048 	xp->xb_pkt_flags	= 0;
12049 	xp->xb_dma_resid	= 0;
12050 	xp->xb_retry_count	= 0;
12051 	xp->xb_victim_retry_count = 0;
12052 	xp->xb_ua_retry_count	= 0;
12053 	xp->xb_sense_bp		= NULL;
12054 	xp->xb_sense_status	= 0;
12055 	xp->xb_sense_state	= 0;
12056 	xp->xb_sense_resid	= 0;
12057 
12058 	bp->b_private	= xp;
12059 	bp->b_flags	&= ~(B_DONE | B_ERROR);
12060 	bp->b_resid	= 0;
12061 	bp->av_forw	= NULL;
12062 	bp->av_back	= NULL;
12063 	bioerror(bp, 0);
12064 
12065 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
12066 }
12067 
12068 
12069 /*
12070  *    Function: sd_uscsi_strategy
12071  *
12072  * Description: Wrapper for calling into the USCSI chain via physio(9F)
12073  *
12074  *   Arguments: bp - buf struct ptr
12075  *
12076  * Return Code: Always returns 0
12077  *
12078  *     Context: Kernel thread context
12079  */
12080 
12081 static int
12082 sd_uscsi_strategy(struct buf *bp)
12083 {
12084 	struct sd_lun		*un;
12085 	struct sd_uscsi_info	*uip;
12086 	struct sd_xbuf		*xp;
12087 	uchar_t			chain_type;
12088 
12089 	ASSERT(bp != NULL);
12090 
12091 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
12092 	if (un == NULL) {
12093 		bioerror(bp, EIO);
12094 		bp->b_resid = bp->b_bcount;
12095 		biodone(bp);
12096 		return (0);
12097 	}
12098 
12099 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12100 
12101 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
12102 
12103 	mutex_enter(SD_MUTEX(un));
12104 	/*
12105 	 * atapi: Since we are running the CD for now in PIO mode we need to
12106 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
12107 	 * the HBA's init_pkt routine.
12108 	 */
12109 	if (un->un_f_cfg_is_atapi == TRUE) {
12110 		mutex_exit(SD_MUTEX(un));
12111 		bp_mapin(bp);
12112 		mutex_enter(SD_MUTEX(un));
12113 	}
12114 	un->un_ncmds_in_driver++;
12115 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
12116 	    un->un_ncmds_in_driver);
12117 	mutex_exit(SD_MUTEX(un));
12118 
12119 	/*
12120 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
12121 	 */
12122 	ASSERT(bp->b_private != NULL);
12123 	uip = (struct sd_uscsi_info *)bp->b_private;
12124 
12125 	switch (uip->ui_flags) {
12126 	case SD_PATH_DIRECT:
12127 		chain_type = SD_CHAIN_DIRECT;
12128 		break;
12129 	case SD_PATH_DIRECT_PRIORITY:
12130 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
12131 		break;
12132 	default:
12133 		chain_type = SD_CHAIN_USCSI;
12134 		break;
12135 	}
12136 
12137 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12138 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
12139 
12140 	/* Use the index obtained within xbuf_init */
12141 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
12142 
12143 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
12144 
12145 	return (0);
12146 }
12147 
12148 
12149 /*
12150  * These routines perform raw i/o operations.
12151  */
12152 /*ARGSUSED*/
12153 static void
12154 sduscsimin(struct buf *bp)
12155 {
12156 	/*
12157 	 * do not break up because the CDB count would then
12158 	 * be incorrect and data underruns would result (incomplete
12159 	 * read/writes which would be retried and then failed, see
12160 	 * sdintr().
12161 	 */
12162 }
12163 
12164 
12165 
12166 /*
12167  *    Function: sd_send_scsi_cmd
12168  *
12169  * Description: Runs a USCSI command for user (when called thru sdioctl),
12170  *		or for the driver
12171  *
12172  *   Arguments: dev - the dev_t for the device
12173  *		incmd - ptr to a valid uscsi_cmd struct
12174  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
12175  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
12176  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
12177  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
12178  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
12179  *			to use the USCSI "direct" chain and bypass the normal
12180  *			command waitq.
12181  *
12182  * Return Code: 0 -  successful completion of the given command
12183  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
12184  *		ENXIO  - soft state not found for specified dev
12185  *		EINVAL
12186  *		EFAULT - copyin/copyout error
12187  *		return code of biowait(9F) or physio(9F):
12188  *			EIO - IO error, caller may check incmd->uscsi_status
12189  *			ENXIO
12190  *			EACCES - reservation conflict
12191  *
12192  *     Context: Waits for command to complete. Can sleep.
12193  */
12194 
12195 static int
12196 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
12197 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
12198 	int path_flag)
12199 {
12200 	struct sd_uscsi_info	*uip;
12201 	struct uscsi_cmd	*uscmd;
12202 	struct sd_lun	*un;
12203 	struct buf	*bp;
12204 	int	rval;
12205 	int	flags;
12206 
12207 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
12208 	if (un == NULL) {
12209 		return (ENXIO);
12210 	}
12211 
12212 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12213 
12214 #ifdef SDDEBUG
12215 	switch (dataspace) {
12216 	case UIO_USERSPACE:
12217 		SD_TRACE(SD_LOG_IO, un,
12218 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
12219 		break;
12220 	case UIO_SYSSPACE:
12221 		SD_TRACE(SD_LOG_IO, un,
12222 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
12223 		break;
12224 	default:
12225 		SD_TRACE(SD_LOG_IO, un,
12226 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
12227 		break;
12228 	}
12229 #endif
12230 
12231 	/*
12232 	 * Perform resets directly; no need to generate a command to do it.
12233 	 */
12234 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
12235 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
12236 		    RESET_ALL : RESET_TARGET;
12237 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
12238 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
12239 			/* Reset attempt was unsuccessful */
12240 			SD_TRACE(SD_LOG_IO, un,
12241 			    "sd_send_scsi_cmd: reset: failure\n");
12242 			return (EIO);
12243 		}
12244 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
12245 		return (0);
12246 	}
12247 
12248 	/* Perfunctory sanity check... */
12249 	if (incmd->uscsi_cdblen <= 0) {
12250 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12251 		    "invalid uscsi_cdblen, returning EINVAL\n");
12252 		return (EINVAL);
12253 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
12254 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12255 		    "unsupported uscsi_cdblen, returning EINVAL\n");
12256 		return (EINVAL);
12257 	}
12258 
12259 	/*
12260 	 * In order to not worry about where the uscsi structure came from
12261 	 * (or where the cdb it points to came from) we're going to make
12262 	 * kmem_alloc'd copies of them here. This will also allow reference
12263 	 * to the data they contain long after this process has gone to
12264 	 * sleep and its kernel stack has been unmapped, etc.
12265 	 *
12266 	 * First get some memory for the uscsi_cmd struct and copy the
12267 	 * contents of the given uscsi_cmd struct into it.
12268 	 */
12269 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
12270 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
12271 
12272 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
12273 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
12274 
12275 	/*
12276 	 * Now get some space for the CDB, and copy the given CDB into
12277 	 * it. Use ddi_copyin() in case the data is in user space.
12278 	 */
12279 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
12280 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
12281 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
12282 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
12283 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
12284 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
12285 		return (EFAULT);
12286 	}
12287 
12288 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
12289 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
12290 
12291 	bp = getrbuf(KM_SLEEP);
12292 
12293 	/*
12294 	 * Allocate an sd_uscsi_info struct and fill it with the info
12295 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12296 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12297 	 * since we allocate the buf here in this function, we do not
12298 	 * need to preserve the prior contents of b_private.
12299 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12300 	 */
12301 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
12302 	uip->ui_flags = path_flag;
12303 	uip->ui_cmdp  = uscmd;
12304 	bp->b_private = uip;
12305 
12306 	/*
12307 	 * Initialize Request Sense buffering, if requested.
12308 	 */
12309 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12310 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12311 		/*
12312 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
12313 		 * buffer, but we replace this with a kernel buffer that
12314 		 * we allocate to use with the sense data. The sense data
12315 		 * (if present) gets copied into this new buffer before the
12316 		 * command is completed.  Then we copy the sense data from
12317 		 * our allocated buf into the caller's buffer below. Note
12318 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
12319 		 * below to perform the copy back to the caller's buf.
12320 		 */
12321 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
12322 		if (rqbufspace == UIO_USERSPACE) {
12323 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
12324 			uscmd->uscsi_rqresid = SENSE_LENGTH;
12325 		} else {
12326 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
12327 			uscmd->uscsi_rqlen   = rlen;
12328 			uscmd->uscsi_rqresid = rlen;
12329 		}
12330 	} else {
12331 		uscmd->uscsi_rqbuf = NULL;
12332 		uscmd->uscsi_rqlen   = 0;
12333 		uscmd->uscsi_rqresid = 0;
12334 	}
12335 
12336 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
12337 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
12338 
12339 	if (un->un_f_is_fibre == FALSE) {
12340 		/*
12341 		 * Force asynchronous mode, if necessary.  Doing this here
12342 		 * has the unfortunate effect of running other queued
12343 		 * commands async also, but since the main purpose of this
12344 		 * capability is downloading new drive firmware, we can
12345 		 * probably live with it.
12346 		 */
12347 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
12348 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12349 				== 1) {
12350 				if (scsi_ifsetcap(SD_ADDRESS(un),
12351 					    "synchronous", 0, 1) == 1) {
12352 					SD_TRACE(SD_LOG_IO, un,
12353 					"sd_send_scsi_cmd: forced async ok\n");
12354 				} else {
12355 					SD_TRACE(SD_LOG_IO, un,
12356 					"sd_send_scsi_cmd:\
12357 					forced async failed\n");
12358 					rval = EINVAL;
12359 					goto done;
12360 				}
12361 			}
12362 		}
12363 
12364 		/*
12365 		 * Re-enable synchronous mode, if requested
12366 		 */
12367 		if (uscmd->uscsi_flags & USCSI_SYNC) {
12368 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12369 				== 0) {
12370 				int i = scsi_ifsetcap(SD_ADDRESS(un),
12371 						"synchronous", 1, 1);
12372 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12373 					"re-enabled sync %s\n",
12374 					(i == 1) ? "ok" : "failed");
12375 			}
12376 		}
12377 	}
12378 
12379 	/*
12380 	 * Commands sent with priority are intended for error recovery
12381 	 * situations, and do not have retries performed.
12382 	 */
12383 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12384 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12385 	}
12386 
12387 	/*
12388 	 * If we're going to do actual I/O, let physio do all the right things
12389 	 */
12390 	if (uscmd->uscsi_buflen != 0) {
12391 		struct iovec	aiov;
12392 		struct uio	auio;
12393 		struct uio	*uio = &auio;
12394 
12395 		bzero(&auio, sizeof (struct uio));
12396 		bzero(&aiov, sizeof (struct iovec));
12397 		aiov.iov_base = uscmd->uscsi_bufaddr;
12398 		aiov.iov_len  = uscmd->uscsi_buflen;
12399 		uio->uio_iov  = &aiov;
12400 
12401 		uio->uio_iovcnt  = 1;
12402 		uio->uio_resid   = uscmd->uscsi_buflen;
12403 		uio->uio_segflg  = dataspace;
12404 
12405 		/*
12406 		 * physio() will block here until the command completes....
12407 		 */
12408 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
12409 
12410 		rval = physio(sd_uscsi_strategy, bp, dev,
12411 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
12412 		    sduscsimin, uio);
12413 
12414 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12415 		    "returned from physio with 0x%x\n", rval);
12416 
12417 	} else {
12418 		/*
12419 		 * We have to mimic what physio would do here! Argh!
12420 		 */
12421 		bp->b_flags  = B_BUSY |
12422 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
12423 		bp->b_edev   = dev;
12424 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
12425 		bp->b_bcount = 0;
12426 		bp->b_blkno  = 0;
12427 
12428 		SD_TRACE(SD_LOG_IO, un,
12429 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
12430 
12431 		(void) sd_uscsi_strategy(bp);
12432 
12433 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
12434 
12435 		rval = biowait(bp);
12436 
12437 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12438 		    "returned from  biowait with 0x%x\n", rval);
12439 	}
12440 
12441 done:
12442 
12443 #ifdef SDDEBUG
12444 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12445 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12446 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12447 	if (uscmd->uscsi_bufaddr != NULL) {
12448 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12449 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12450 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12451 		if (dataspace == UIO_SYSSPACE) {
12452 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12453 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12454 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12455 		}
12456 	}
12457 #endif
12458 
12459 	/*
12460 	 * Get the status and residual to return to the caller.
12461 	 */
12462 	incmd->uscsi_status = uscmd->uscsi_status;
12463 	incmd->uscsi_resid  = uscmd->uscsi_resid;
12464 
12465 	/*
12466 	 * If the caller wants sense data, copy back whatever sense data
12467 	 * we may have gotten, and update the relevant rqsense info.
12468 	 */
12469 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12470 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12471 
12472 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
12473 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
12474 
12475 		/* Update the Request Sense status and resid */
12476 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
12477 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
12478 
12479 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12480 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
12481 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
12482 
12483 		/* Copy out the sense data for user processes */
12484 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
12485 			int flags =
12486 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
12487 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
12488 			    rqlen, flags) != 0) {
12489 				rval = EFAULT;
12490 			}
12491 			/*
12492 			 * Note: Can't touch incmd->uscsi_rqbuf so use
12493 			 * uscmd->uscsi_rqbuf instead. They're the same.
12494 			 */
12495 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12496 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
12497 			    incmd->uscsi_rqbuf, rqlen);
12498 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
12499 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
12500 		}
12501 	}
12502 
12503 	/*
12504 	 * Free allocated resources and return; mapout the buf in case it was
12505 	 * mapped in by a lower layer.
12506 	 */
12507 	bp_mapout(bp);
12508 	freerbuf(bp);
12509 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12510 	if (uscmd->uscsi_rqbuf != NULL) {
12511 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
12512 	}
12513 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
12514 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
12515 
12516 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
12517 
12518 	return (rval);
12519 }
12520 
12521 
12522 /*
12523  *    Function: sd_buf_iodone
12524  *
12525  * Description: Frees the sd_xbuf & returns the buf to its originator.
12526  *
12527  *     Context: May be called from interrupt context.
12528  */
12529 /* ARGSUSED */
12530 static void
12531 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12532 {
12533 	struct sd_xbuf *xp;
12534 
12535 	ASSERT(un != NULL);
12536 	ASSERT(bp != NULL);
12537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12538 
12539 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12540 
12541 	xp = SD_GET_XBUF(bp);
12542 	ASSERT(xp != NULL);
12543 
12544 	mutex_enter(SD_MUTEX(un));
12545 
12546 	/*
12547 	 * Grab time when the cmd completed.
12548 	 * This is used for determining if the system has been
12549 	 * idle long enough to make it idle to the PM framework.
12550 	 * This is for lowering the overhead, and therefore improving
12551 	 * performance per I/O operation.
12552 	 */
12553 	un->un_pm_idle_time = ddi_get_time();
12554 
12555 	un->un_ncmds_in_driver--;
12556 	ASSERT(un->un_ncmds_in_driver >= 0);
12557 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12558 	    un->un_ncmds_in_driver);
12559 
12560 	mutex_exit(SD_MUTEX(un));
12561 
12562 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12563 	biodone(bp);				/* bp is gone after this */
12564 
12565 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12566 }
12567 
12568 
12569 /*
12570  *    Function: sd_uscsi_iodone
12571  *
12572  * Description: Frees the sd_xbuf & returns the buf to its originator.
12573  *
12574  *     Context: May be called from interrupt context.
12575  */
12576 /* ARGSUSED */
12577 static void
12578 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12579 {
12580 	struct sd_xbuf *xp;
12581 
12582 	ASSERT(un != NULL);
12583 	ASSERT(bp != NULL);
12584 
12585 	xp = SD_GET_XBUF(bp);
12586 	ASSERT(xp != NULL);
12587 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12588 
12589 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12590 
12591 	bp->b_private = xp->xb_private;
12592 
12593 	mutex_enter(SD_MUTEX(un));
12594 
12595 	/*
12596 	 * Grab time when the cmd completed.
12597 	 * This is used for determining if the system has been
12598 	 * idle long enough to make it idle to the PM framework.
12599 	 * This is for lowering the overhead, and therefore improving
12600 	 * performance per I/O operation.
12601 	 */
12602 	un->un_pm_idle_time = ddi_get_time();
12603 
12604 	un->un_ncmds_in_driver--;
12605 	ASSERT(un->un_ncmds_in_driver >= 0);
12606 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12607 	    un->un_ncmds_in_driver);
12608 
12609 	mutex_exit(SD_MUTEX(un));
12610 
12611 	kmem_free(xp, sizeof (struct sd_xbuf));
12612 	biodone(bp);
12613 
12614 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12615 }
12616 
12617 
12618 /*
12619  *    Function: sd_mapblockaddr_iostart
12620  *
12621  * Description: Verify request lies withing the partition limits for
12622  *		the indicated minor device.  Issue "overrun" buf if
12623  *		request would exceed partition range.  Converts
12624  *		partition-relative block address to absolute.
12625  *
12626  *     Context: Can sleep
12627  *
12628  *      Issues: This follows what the old code did, in terms of accessing
12629  *		some of the partition info in the unit struct without holding
12630  *		the mutext.  This is a general issue, if the partition info
12631  *		can be altered while IO is in progress... as soon as we send
12632  *		a buf, its partitioning can be invalid before it gets to the
12633  *		device.  Probably the right fix is to move partitioning out
12634  *		of the driver entirely.
12635  */
12636 
12637 static void
12638 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12639 {
12640 	daddr_t	nblocks;	/* #blocks in the given partition */
12641 	daddr_t	blocknum;	/* Block number specified by the buf */
12642 	size_t	requested_nblocks;
12643 	size_t	available_nblocks;
12644 	int	partition;
12645 	diskaddr_t	partition_offset;
12646 	struct sd_xbuf *xp;
12647 
12648 
12649 	ASSERT(un != NULL);
12650 	ASSERT(bp != NULL);
12651 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12652 
12653 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12654 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12655 
12656 	xp = SD_GET_XBUF(bp);
12657 	ASSERT(xp != NULL);
12658 
12659 	/*
12660 	 * If the geometry is not indicated as valid, attempt to access
12661 	 * the unit & verify the geometry/label. This can be the case for
12662 	 * removable-media devices, of if the device was opened in
12663 	 * NDELAY/NONBLOCK mode.
12664 	 */
12665 	if ((un->un_f_geometry_is_valid != TRUE) &&
12666 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12667 		/*
12668 		 * For removable devices it is possible to start an I/O
12669 		 * without a media by opening the device in nodelay mode.
12670 		 * Also for writable CDs there can be many scenarios where
12671 		 * there is no geometry yet but volume manager is trying to
12672 		 * issue a read() just because it can see TOC on the CD. So
12673 		 * do not print a message for removables.
12674 		 */
12675 		if (!un->un_f_has_removable_media) {
12676 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12677 			    "i/o to invalid geometry\n");
12678 		}
12679 		bioerror(bp, EIO);
12680 		bp->b_resid = bp->b_bcount;
12681 		SD_BEGIN_IODONE(index, un, bp);
12682 		return;
12683 	}
12684 
12685 	partition = SDPART(bp->b_edev);
12686 
12687 	/* #blocks in partition */
12688 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12689 
12690 	/* Use of a local variable potentially improves performance slightly */
12691 	partition_offset = un->un_offset[partition];
12692 
12693 	/*
12694 	 * blocknum is the starting block number of the request. At this
12695 	 * point it is still relative to the start of the minor device.
12696 	 */
12697 	blocknum = xp->xb_blkno;
12698 
12699 	/*
12700 	 * Legacy: If the starting block number is one past the last block
12701 	 * in the partition, do not set B_ERROR in the buf.
12702 	 */
12703 	if (blocknum == nblocks)  {
12704 		goto error_exit;
12705 	}
12706 
12707 	/*
12708 	 * Confirm that the first block of the request lies within the
12709 	 * partition limits. Also the requested number of bytes must be
12710 	 * a multiple of the system block size.
12711 	 */
12712 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12713 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12714 		bp->b_flags |= B_ERROR;
12715 		goto error_exit;
12716 	}
12717 
12718 	/*
12719 	 * If the requsted # blocks exceeds the available # blocks, that
12720 	 * is an overrun of the partition.
12721 	 */
12722 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12723 	available_nblocks = (size_t)(nblocks - blocknum);
12724 	ASSERT(nblocks >= blocknum);
12725 
12726 	if (requested_nblocks > available_nblocks) {
12727 		/*
12728 		 * Allocate an "overrun" buf to allow the request to proceed
12729 		 * for the amount of space available in the partition. The
12730 		 * amount not transferred will be added into the b_resid
12731 		 * when the operation is complete. The overrun buf
12732 		 * replaces the original buf here, and the original buf
12733 		 * is saved inside the overrun buf, for later use.
12734 		 */
12735 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12736 		    (offset_t)(requested_nblocks - available_nblocks));
12737 		size_t count = bp->b_bcount - resid;
12738 		/*
12739 		 * Note: count is an unsigned entity thus it'll NEVER
12740 		 * be less than 0 so ASSERT the original values are
12741 		 * correct.
12742 		 */
12743 		ASSERT(bp->b_bcount >= resid);
12744 
12745 		bp = sd_bioclone_alloc(bp, count, blocknum,
12746 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12747 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12748 		ASSERT(xp != NULL);
12749 	}
12750 
12751 	/* At this point there should be no residual for this buf. */
12752 	ASSERT(bp->b_resid == 0);
12753 
12754 	/* Convert the block number to an absolute address. */
12755 	xp->xb_blkno += partition_offset;
12756 
12757 	SD_NEXT_IOSTART(index, un, bp);
12758 
12759 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12760 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12761 
12762 	return;
12763 
12764 error_exit:
12765 	bp->b_resid = bp->b_bcount;
12766 	SD_BEGIN_IODONE(index, un, bp);
12767 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12768 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12769 }
12770 
12771 
12772 /*
12773  *    Function: sd_mapblockaddr_iodone
12774  *
12775  * Description: Completion-side processing for partition management.
12776  *
12777  *     Context: May be called under interrupt context
12778  */
12779 
12780 static void
12781 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12782 {
12783 	/* int	partition; */	/* Not used, see below. */
12784 	ASSERT(un != NULL);
12785 	ASSERT(bp != NULL);
12786 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12787 
12788 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12789 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12790 
12791 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12792 		/*
12793 		 * We have an "overrun" buf to deal with...
12794 		 */
12795 		struct sd_xbuf	*xp;
12796 		struct buf	*obp;	/* ptr to the original buf */
12797 
12798 		xp = SD_GET_XBUF(bp);
12799 		ASSERT(xp != NULL);
12800 
12801 		/* Retrieve the pointer to the original buf */
12802 		obp = (struct buf *)xp->xb_private;
12803 		ASSERT(obp != NULL);
12804 
12805 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12806 		bioerror(obp, bp->b_error);
12807 
12808 		sd_bioclone_free(bp);
12809 
12810 		/*
12811 		 * Get back the original buf.
12812 		 * Note that since the restoration of xb_blkno below
12813 		 * was removed, the sd_xbuf is not needed.
12814 		 */
12815 		bp = obp;
12816 		/*
12817 		 * xp = SD_GET_XBUF(bp);
12818 		 * ASSERT(xp != NULL);
12819 		 */
12820 	}
12821 
12822 	/*
12823 	 * Convert sd->xb_blkno back to a minor-device relative value.
12824 	 * Note: this has been commented out, as it is not needed in the
12825 	 * current implementation of the driver (ie, since this function
12826 	 * is at the top of the layering chains, so the info will be
12827 	 * discarded) and it is in the "hot" IO path.
12828 	 *
12829 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12830 	 * xp->xb_blkno -= un->un_offset[partition];
12831 	 */
12832 
12833 	SD_NEXT_IODONE(index, un, bp);
12834 
12835 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12836 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12837 }
12838 
12839 
12840 /*
12841  *    Function: sd_mapblocksize_iostart
12842  *
12843  * Description: Convert between system block size (un->un_sys_blocksize)
12844  *		and target block size (un->un_tgt_blocksize).
12845  *
12846  *     Context: Can sleep to allocate resources.
12847  *
12848  * Assumptions: A higher layer has already performed any partition validation,
12849  *		and converted the xp->xb_blkno to an absolute value relative
12850  *		to the start of the device.
12851  *
12852  *		It is also assumed that the higher layer has implemented
12853  *		an "overrun" mechanism for the case where the request would
12854  *		read/write beyond the end of a partition.  In this case we
12855  *		assume (and ASSERT) that bp->b_resid == 0.
12856  *
12857  *		Note: The implementation for this routine assumes the target
12858  *		block size remains constant between allocation and transport.
12859  */
12860 
12861 static void
12862 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12863 {
12864 	struct sd_mapblocksize_info	*bsp;
12865 	struct sd_xbuf			*xp;
12866 	offset_t first_byte;
12867 	daddr_t	start_block, end_block;
12868 	daddr_t	request_bytes;
12869 	ushort_t is_aligned = FALSE;
12870 
12871 	ASSERT(un != NULL);
12872 	ASSERT(bp != NULL);
12873 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12874 	ASSERT(bp->b_resid == 0);
12875 
12876 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12877 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12878 
12879 	/*
12880 	 * For a non-writable CD, a write request is an error
12881 	 */
12882 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12883 	    (un->un_f_mmc_writable_media == FALSE)) {
12884 		bioerror(bp, EIO);
12885 		bp->b_resid = bp->b_bcount;
12886 		SD_BEGIN_IODONE(index, un, bp);
12887 		return;
12888 	}
12889 
12890 	/*
12891 	 * We do not need a shadow buf if the device is using
12892 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12893 	 * In this case there is no layer-private data block allocated.
12894 	 */
12895 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12896 	    (bp->b_bcount == 0)) {
12897 		goto done;
12898 	}
12899 
12900 #if defined(__i386) || defined(__amd64)
12901 	/* We do not support non-block-aligned transfers for ROD devices */
12902 	ASSERT(!ISROD(un));
12903 #endif
12904 
12905 	xp = SD_GET_XBUF(bp);
12906 	ASSERT(xp != NULL);
12907 
12908 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12909 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12910 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12911 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12912 	    "request start block:0x%x\n", xp->xb_blkno);
12913 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12914 	    "request len:0x%x\n", bp->b_bcount);
12915 
12916 	/*
12917 	 * Allocate the layer-private data area for the mapblocksize layer.
12918 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12919 	 * struct to store the pointer to their layer-private data block, but
12920 	 * each layer also has the responsibility of restoring the prior
12921 	 * contents of xb_private before returning the buf/xbuf to the
12922 	 * higher layer that sent it.
12923 	 *
12924 	 * Here we save the prior contents of xp->xb_private into the
12925 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12926 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12927 	 * the layer-private area and returning the buf/xbuf to the layer
12928 	 * that sent it.
12929 	 *
12930 	 * Note that here we use kmem_zalloc for the allocation as there are
12931 	 * parts of the mapblocksize code that expect certain fields to be
12932 	 * zero unless explicitly set to a required value.
12933 	 */
12934 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12935 	bsp->mbs_oprivate = xp->xb_private;
12936 	xp->xb_private = bsp;
12937 
12938 	/*
12939 	 * This treats the data on the disk (target) as an array of bytes.
12940 	 * first_byte is the byte offset, from the beginning of the device,
12941 	 * to the location of the request. This is converted from a
12942 	 * un->un_sys_blocksize block address to a byte offset, and then back
12943 	 * to a block address based upon a un->un_tgt_blocksize block size.
12944 	 *
12945 	 * xp->xb_blkno should be absolute upon entry into this function,
12946 	 * but, but it is based upon partitions that use the "system"
12947 	 * block size. It must be adjusted to reflect the block size of
12948 	 * the target.
12949 	 *
12950 	 * Note that end_block is actually the block that follows the last
12951 	 * block of the request, but that's what is needed for the computation.
12952 	 */
12953 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12954 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12955 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12956 	    un->un_tgt_blocksize;
12957 
12958 	/* request_bytes is rounded up to a multiple of the target block size */
12959 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12960 
12961 	/*
12962 	 * See if the starting address of the request and the request
12963 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12964 	 * then we do not need to allocate a shadow buf to handle the request.
12965 	 */
12966 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12967 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12968 		is_aligned = TRUE;
12969 	}
12970 
12971 	if ((bp->b_flags & B_READ) == 0) {
12972 		/*
12973 		 * Lock the range for a write operation. An aligned request is
12974 		 * considered a simple write; otherwise the request must be a
12975 		 * read-modify-write.
12976 		 */
12977 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12978 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12979 	}
12980 
12981 	/*
12982 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12983 	 * where the READ command is generated for a read-modify-write. (The
12984 	 * write phase is deferred until after the read completes.)
12985 	 */
12986 	if (is_aligned == FALSE) {
12987 
12988 		struct sd_mapblocksize_info	*shadow_bsp;
12989 		struct sd_xbuf	*shadow_xp;
12990 		struct buf	*shadow_bp;
12991 
12992 		/*
12993 		 * Allocate the shadow buf and it associated xbuf. Note that
12994 		 * after this call the xb_blkno value in both the original
12995 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12996 		 * same: absolute relative to the start of the device, and
12997 		 * adjusted for the target block size. The b_blkno in the
12998 		 * shadow buf will also be set to this value. We should never
12999 		 * change b_blkno in the original bp however.
13000 		 *
13001 		 * Note also that the shadow buf will always need to be a
13002 		 * READ command, regardless of whether the incoming command
13003 		 * is a READ or a WRITE.
13004 		 */
13005 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13006 		    xp->xb_blkno,
13007 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13008 
13009 		shadow_xp = SD_GET_XBUF(shadow_bp);
13010 
13011 		/*
13012 		 * Allocate the layer-private data for the shadow buf.
13013 		 * (No need to preserve xb_private in the shadow xbuf.)
13014 		 */
13015 		shadow_xp->xb_private = shadow_bsp =
13016 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13017 
13018 		/*
13019 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13020 		 * to figure out where the start of the user data is (based upon
13021 		 * the system block size) in the data returned by the READ
13022 		 * command (which will be based upon the target blocksize). Note
13023 		 * that this is only really used if the request is unaligned.
13024 		 */
13025 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
13026 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13027 		ASSERT((bsp->mbs_copy_offset >= 0) &&
13028 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13029 
13030 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13031 
13032 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13033 
13034 		/* Transfer the wmap (if any) to the shadow buf */
13035 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13036 		bsp->mbs_wmp = NULL;
13037 
13038 		/*
13039 		 * The shadow buf goes on from here in place of the
13040 		 * original buf.
13041 		 */
13042 		shadow_bsp->mbs_orig_bp = bp;
13043 		bp = shadow_bp;
13044 	}
13045 
13046 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13047 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13048 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13049 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13050 	    request_bytes);
13051 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13052 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13053 
13054 done:
13055 	SD_NEXT_IOSTART(index, un, bp);
13056 
13057 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13058 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13059 }
13060 
13061 
13062 /*
13063  *    Function: sd_mapblocksize_iodone
13064  *
13065  * Description: Completion side processing for block-size mapping.
13066  *
13067  *     Context: May be called under interrupt context
13068  */
13069 
13070 static void
13071 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13072 {
13073 	struct sd_mapblocksize_info	*bsp;
13074 	struct sd_xbuf	*xp;
13075 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13076 	struct buf	*orig_bp;	/* ptr to the original buf */
13077 	offset_t	shadow_end;
13078 	offset_t	request_end;
13079 	offset_t	shadow_start;
13080 	ssize_t		copy_offset;
13081 	size_t		copy_length;
13082 	size_t		shortfall;
13083 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13084 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13085 
13086 	ASSERT(un != NULL);
13087 	ASSERT(bp != NULL);
13088 
13089 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13090 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13091 
13092 	/*
13093 	 * There is no shadow buf or layer-private data if the target is
13094 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13095 	 */
13096 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
13097 	    (bp->b_bcount == 0)) {
13098 		goto exit;
13099 	}
13100 
13101 	xp = SD_GET_XBUF(bp);
13102 	ASSERT(xp != NULL);
13103 
13104 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13105 	bsp = xp->xb_private;
13106 
13107 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13108 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13109 
13110 	if (is_write) {
13111 		/*
13112 		 * For a WRITE request we must free up the block range that
13113 		 * we have locked up.  This holds regardless of whether this is
13114 		 * an aligned write request or a read-modify-write request.
13115 		 */
13116 		sd_range_unlock(un, bsp->mbs_wmp);
13117 		bsp->mbs_wmp = NULL;
13118 	}
13119 
13120 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13121 		/*
13122 		 * An aligned read or write command will have no shadow buf;
13123 		 * there is not much else to do with it.
13124 		 */
13125 		goto done;
13126 	}
13127 
13128 	orig_bp = bsp->mbs_orig_bp;
13129 	ASSERT(orig_bp != NULL);
13130 	orig_xp = SD_GET_XBUF(orig_bp);
13131 	ASSERT(orig_xp != NULL);
13132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13133 
13134 	if (!is_write && has_wmap) {
13135 		/*
13136 		 * A READ with a wmap means this is the READ phase of a
13137 		 * read-modify-write. If an error occurred on the READ then
13138 		 * we do not proceed with the WRITE phase or copy any data.
13139 		 * Just release the write maps and return with an error.
13140 		 */
13141 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13142 			orig_bp->b_resid = orig_bp->b_bcount;
13143 			bioerror(orig_bp, bp->b_error);
13144 			sd_range_unlock(un, bsp->mbs_wmp);
13145 			goto freebuf_done;
13146 		}
13147 	}
13148 
13149 	/*
13150 	 * Here is where we set up to copy the data from the shadow buf
13151 	 * into the space associated with the original buf.
13152 	 *
13153 	 * To deal with the conversion between block sizes, these
13154 	 * computations treat the data as an array of bytes, with the
13155 	 * first byte (byte 0) corresponding to the first byte in the
13156 	 * first block on the disk.
13157 	 */
13158 
13159 	/*
13160 	 * shadow_start and shadow_len indicate the location and size of
13161 	 * the data returned with the shadow IO request.
13162 	 */
13163 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13164 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13165 
13166 	/*
13167 	 * copy_offset gives the offset (in bytes) from the start of the first
13168 	 * block of the READ request to the beginning of the data.  We retrieve
13169 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13170 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13171 	 * data to be copied (in bytes).
13172 	 */
13173 	copy_offset  = bsp->mbs_copy_offset;
13174 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
13175 	copy_length  = orig_bp->b_bcount;
13176 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13177 
13178 	/*
13179 	 * Set up the resid and error fields of orig_bp as appropriate.
13180 	 */
13181 	if (shadow_end >= request_end) {
13182 		/* We got all the requested data; set resid to zero */
13183 		orig_bp->b_resid = 0;
13184 	} else {
13185 		/*
13186 		 * We failed to get enough data to fully satisfy the original
13187 		 * request. Just copy back whatever data we got and set
13188 		 * up the residual and error code as required.
13189 		 *
13190 		 * 'shortfall' is the amount by which the data received with the
13191 		 * shadow buf has "fallen short" of the requested amount.
13192 		 */
13193 		shortfall = (size_t)(request_end - shadow_end);
13194 
13195 		if (shortfall > orig_bp->b_bcount) {
13196 			/*
13197 			 * We did not get enough data to even partially
13198 			 * fulfill the original request.  The residual is
13199 			 * equal to the amount requested.
13200 			 */
13201 			orig_bp->b_resid = orig_bp->b_bcount;
13202 		} else {
13203 			/*
13204 			 * We did not get all the data that we requested
13205 			 * from the device, but we will try to return what
13206 			 * portion we did get.
13207 			 */
13208 			orig_bp->b_resid = shortfall;
13209 		}
13210 		ASSERT(copy_length >= orig_bp->b_resid);
13211 		copy_length  -= orig_bp->b_resid;
13212 	}
13213 
13214 	/* Propagate the error code from the shadow buf to the original buf */
13215 	bioerror(orig_bp, bp->b_error);
13216 
13217 	if (is_write) {
13218 		goto freebuf_done;	/* No data copying for a WRITE */
13219 	}
13220 
13221 	if (has_wmap) {
13222 		/*
13223 		 * This is a READ command from the READ phase of a
13224 		 * read-modify-write request. We have to copy the data given
13225 		 * by the user OVER the data returned by the READ command,
13226 		 * then convert the command from a READ to a WRITE and send
13227 		 * it back to the target.
13228 		 */
13229 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13230 		    copy_length);
13231 
13232 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13233 
13234 		/*
13235 		 * Dispatch the WRITE command to the taskq thread, which
13236 		 * will in turn send the command to the target. When the
13237 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13238 		 * will get called again as part of the iodone chain
13239 		 * processing for it. Note that we will still be dealing
13240 		 * with the shadow buf at that point.
13241 		 */
13242 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13243 		    KM_NOSLEEP) != 0) {
13244 			/*
13245 			 * Dispatch was successful so we are done. Return
13246 			 * without going any higher up the iodone chain. Do
13247 			 * not free up any layer-private data until after the
13248 			 * WRITE completes.
13249 			 */
13250 			return;
13251 		}
13252 
13253 		/*
13254 		 * Dispatch of the WRITE command failed; set up the error
13255 		 * condition and send this IO back up the iodone chain.
13256 		 */
13257 		bioerror(orig_bp, EIO);
13258 		orig_bp->b_resid = orig_bp->b_bcount;
13259 
13260 	} else {
13261 		/*
13262 		 * This is a regular READ request (ie, not a RMW). Copy the
13263 		 * data from the shadow buf into the original buf. The
13264 		 * copy_offset compensates for any "misalignment" between the
13265 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13266 		 * original buf (with its un->un_sys_blocksize blocks).
13267 		 */
13268 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13269 		    copy_length);
13270 	}
13271 
13272 freebuf_done:
13273 
13274 	/*
13275 	 * At this point we still have both the shadow buf AND the original
13276 	 * buf to deal with, as well as the layer-private data area in each.
13277 	 * Local variables are as follows:
13278 	 *
13279 	 * bp -- points to shadow buf
13280 	 * xp -- points to xbuf of shadow buf
13281 	 * bsp -- points to layer-private data area of shadow buf
13282 	 * orig_bp -- points to original buf
13283 	 *
13284 	 * First free the shadow buf and its associated xbuf, then free the
13285 	 * layer-private data area from the shadow buf. There is no need to
13286 	 * restore xb_private in the shadow xbuf.
13287 	 */
13288 	sd_shadow_buf_free(bp);
13289 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13290 
13291 	/*
13292 	 * Now update the local variables to point to the original buf, xbuf,
13293 	 * and layer-private area.
13294 	 */
13295 	bp = orig_bp;
13296 	xp = SD_GET_XBUF(bp);
13297 	ASSERT(xp != NULL);
13298 	ASSERT(xp == orig_xp);
13299 	bsp = xp->xb_private;
13300 	ASSERT(bsp != NULL);
13301 
13302 done:
13303 	/*
13304 	 * Restore xb_private to whatever it was set to by the next higher
13305 	 * layer in the chain, then free the layer-private data area.
13306 	 */
13307 	xp->xb_private = bsp->mbs_oprivate;
13308 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13309 
13310 exit:
13311 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13312 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13313 
13314 	SD_NEXT_IODONE(index, un, bp);
13315 }
13316 
13317 
13318 /*
13319  *    Function: sd_checksum_iostart
13320  *
13321  * Description: A stub function for a layer that's currently not used.
13322  *		For now just a placeholder.
13323  *
13324  *     Context: Kernel thread context
13325  */
13326 
13327 static void
13328 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13329 {
13330 	ASSERT(un != NULL);
13331 	ASSERT(bp != NULL);
13332 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13333 	SD_NEXT_IOSTART(index, un, bp);
13334 }
13335 
13336 
13337 /*
13338  *    Function: sd_checksum_iodone
13339  *
13340  * Description: A stub function for a layer that's currently not used.
13341  *		For now just a placeholder.
13342  *
13343  *     Context: May be called under interrupt context
13344  */
13345 
13346 static void
13347 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13348 {
13349 	ASSERT(un != NULL);
13350 	ASSERT(bp != NULL);
13351 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13352 	SD_NEXT_IODONE(index, un, bp);
13353 }
13354 
13355 
13356 /*
13357  *    Function: sd_checksum_uscsi_iostart
13358  *
13359  * Description: A stub function for a layer that's currently not used.
13360  *		For now just a placeholder.
13361  *
13362  *     Context: Kernel thread context
13363  */
13364 
13365 static void
13366 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13367 {
13368 	ASSERT(un != NULL);
13369 	ASSERT(bp != NULL);
13370 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13371 	SD_NEXT_IOSTART(index, un, bp);
13372 }
13373 
13374 
13375 /*
13376  *    Function: sd_checksum_uscsi_iodone
13377  *
13378  * Description: A stub function for a layer that's currently not used.
13379  *		For now just a placeholder.
13380  *
13381  *     Context: May be called under interrupt context
13382  */
13383 
13384 static void
13385 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13386 {
13387 	ASSERT(un != NULL);
13388 	ASSERT(bp != NULL);
13389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13390 	SD_NEXT_IODONE(index, un, bp);
13391 }
13392 
13393 
13394 /*
13395  *    Function: sd_pm_iostart
13396  *
13397  * Description: iostart-side routine for Power mangement.
13398  *
13399  *     Context: Kernel thread context
13400  */
13401 
13402 static void
13403 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13404 {
13405 	ASSERT(un != NULL);
13406 	ASSERT(bp != NULL);
13407 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13408 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13409 
13410 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13411 
13412 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13413 		/*
13414 		 * Set up to return the failed buf back up the 'iodone'
13415 		 * side of the calling chain.
13416 		 */
13417 		bioerror(bp, EIO);
13418 		bp->b_resid = bp->b_bcount;
13419 
13420 		SD_BEGIN_IODONE(index, un, bp);
13421 
13422 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13423 		return;
13424 	}
13425 
13426 	SD_NEXT_IOSTART(index, un, bp);
13427 
13428 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13429 }
13430 
13431 
13432 /*
13433  *    Function: sd_pm_iodone
13434  *
13435  * Description: iodone-side routine for power mangement.
13436  *
13437  *     Context: may be called from interrupt context
13438  */
13439 
13440 static void
13441 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13442 {
13443 	ASSERT(un != NULL);
13444 	ASSERT(bp != NULL);
13445 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13446 
13447 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13448 
13449 	/*
13450 	 * After attach the following flag is only read, so don't
13451 	 * take the penalty of acquiring a mutex for it.
13452 	 */
13453 	if (un->un_f_pm_is_enabled == TRUE) {
13454 		sd_pm_exit(un);
13455 	}
13456 
13457 	SD_NEXT_IODONE(index, un, bp);
13458 
13459 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13460 }
13461 
13462 
13463 /*
13464  *    Function: sd_core_iostart
13465  *
13466  * Description: Primary driver function for enqueuing buf(9S) structs from
13467  *		the system and initiating IO to the target device
13468  *
13469  *     Context: Kernel thread context. Can sleep.
13470  *
13471  * Assumptions:  - The given xp->xb_blkno is absolute
13472  *		   (ie, relative to the start of the device).
13473  *		 - The IO is to be done using the native blocksize of
13474  *		   the device, as specified in un->un_tgt_blocksize.
13475  */
13476 /* ARGSUSED */
13477 static void
13478 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13479 {
13480 	struct sd_xbuf *xp;
13481 
13482 	ASSERT(un != NULL);
13483 	ASSERT(bp != NULL);
13484 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13485 	ASSERT(bp->b_resid == 0);
13486 
13487 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13488 
13489 	xp = SD_GET_XBUF(bp);
13490 	ASSERT(xp != NULL);
13491 
13492 	mutex_enter(SD_MUTEX(un));
13493 
13494 	/*
13495 	 * If we are currently in the failfast state, fail any new IO
13496 	 * that has B_FAILFAST set, then return.
13497 	 */
13498 	if ((bp->b_flags & B_FAILFAST) &&
13499 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13500 		mutex_exit(SD_MUTEX(un));
13501 		bioerror(bp, EIO);
13502 		bp->b_resid = bp->b_bcount;
13503 		SD_BEGIN_IODONE(index, un, bp);
13504 		return;
13505 	}
13506 
13507 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13508 		/*
13509 		 * Priority command -- transport it immediately.
13510 		 *
13511 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13512 		 * because all direct priority commands should be associated
13513 		 * with error recovery actions which we don't want to retry.
13514 		 */
13515 		sd_start_cmds(un, bp);
13516 	} else {
13517 		/*
13518 		 * Normal command -- add it to the wait queue, then start
13519 		 * transporting commands from the wait queue.
13520 		 */
13521 		sd_add_buf_to_waitq(un, bp);
13522 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13523 		sd_start_cmds(un, NULL);
13524 	}
13525 
13526 	mutex_exit(SD_MUTEX(un));
13527 
13528 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13529 }
13530 
13531 
13532 /*
13533  *    Function: sd_init_cdb_limits
13534  *
13535  * Description: This is to handle scsi_pkt initialization differences
13536  *		between the driver platforms.
13537  *
13538  *		Legacy behaviors:
13539  *
13540  *		If the block number or the sector count exceeds the
13541  *		capabilities of a Group 0 command, shift over to a
13542  *		Group 1 command. We don't blindly use Group 1
13543  *		commands because a) some drives (CDC Wren IVs) get a
13544  *		bit confused, and b) there is probably a fair amount
13545  *		of speed difference for a target to receive and decode
13546  *		a 10 byte command instead of a 6 byte command.
13547  *
13548  *		The xfer time difference of 6 vs 10 byte CDBs is
13549  *		still significant so this code is still worthwhile.
13550  *		10 byte CDBs are very inefficient with the fas HBA driver
13551  *		and older disks. Each CDB byte took 1 usec with some
13552  *		popular disks.
13553  *
13554  *     Context: Must be called at attach time
13555  */
13556 
13557 static void
13558 sd_init_cdb_limits(struct sd_lun *un)
13559 {
13560 	int hba_cdb_limit;
13561 
13562 	/*
13563 	 * Use CDB_GROUP1 commands for most devices except for
13564 	 * parallel SCSI fixed drives in which case we get better
13565 	 * performance using CDB_GROUP0 commands (where applicable).
13566 	 */
13567 	un->un_mincdb = SD_CDB_GROUP1;
13568 #if !defined(__fibre)
13569 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13570 	    !un->un_f_has_removable_media) {
13571 		un->un_mincdb = SD_CDB_GROUP0;
13572 	}
13573 #endif
13574 
13575 	/*
13576 	 * Try to read the max-cdb-length supported by HBA.
13577 	 */
13578 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13579 	if (0 >= un->un_max_hba_cdb) {
13580 		un->un_max_hba_cdb = CDB_GROUP4;
13581 		hba_cdb_limit = SD_CDB_GROUP4;
13582 	} else if (0 < un->un_max_hba_cdb &&
13583 	    un->un_max_hba_cdb < CDB_GROUP1) {
13584 		hba_cdb_limit = SD_CDB_GROUP0;
13585 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13586 	    un->un_max_hba_cdb < CDB_GROUP5) {
13587 		hba_cdb_limit = SD_CDB_GROUP1;
13588 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13589 	    un->un_max_hba_cdb < CDB_GROUP4) {
13590 		hba_cdb_limit = SD_CDB_GROUP5;
13591 	} else {
13592 		hba_cdb_limit = SD_CDB_GROUP4;
13593 	}
13594 
13595 	/*
13596 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13597 	 * commands for fixed disks unless we are building for a 32 bit
13598 	 * kernel.
13599 	 */
13600 #ifdef _LP64
13601 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13602 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13603 #else
13604 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13605 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13606 #endif
13607 
13608 	/*
13609 	 * x86 systems require the PKT_DMA_PARTIAL flag
13610 	 */
13611 #if defined(__x86)
13612 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13613 #else
13614 	un->un_pkt_flags = 0;
13615 #endif
13616 
13617 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13618 	    ? sizeof (struct scsi_arq_status) : 1);
13619 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13620 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13621 }
13622 
13623 
13624 /*
13625  *    Function: sd_initpkt_for_buf
13626  *
13627  * Description: Allocate and initialize for transport a scsi_pkt struct,
13628  *		based upon the info specified in the given buf struct.
13629  *
13630  *		Assumes the xb_blkno in the request is absolute (ie,
13631  *		relative to the start of the device (NOT partition!).
13632  *		Also assumes that the request is using the native block
13633  *		size of the device (as returned by the READ CAPACITY
13634  *		command).
13635  *
13636  * Return Code: SD_PKT_ALLOC_SUCCESS
13637  *		SD_PKT_ALLOC_FAILURE
13638  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13639  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13640  *
13641  *     Context: Kernel thread and may be called from software interrupt context
13642  *		as part of a sdrunout callback. This function may not block or
13643  *		call routines that block
13644  */
13645 
13646 static int
13647 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13648 {
13649 	struct sd_xbuf	*xp;
13650 	struct scsi_pkt *pktp = NULL;
13651 	struct sd_lun	*un;
13652 	size_t		blockcount;
13653 	daddr_t		startblock;
13654 	int		rval;
13655 	int		cmd_flags;
13656 
13657 	ASSERT(bp != NULL);
13658 	ASSERT(pktpp != NULL);
13659 	xp = SD_GET_XBUF(bp);
13660 	ASSERT(xp != NULL);
13661 	un = SD_GET_UN(bp);
13662 	ASSERT(un != NULL);
13663 	ASSERT(mutex_owned(SD_MUTEX(un)));
13664 	ASSERT(bp->b_resid == 0);
13665 
13666 	SD_TRACE(SD_LOG_IO_CORE, un,
13667 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13668 
13669 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13670 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13671 		/*
13672 		 * Already have a scsi_pkt -- just need DMA resources.
13673 		 * We must recompute the CDB in case the mapping returns
13674 		 * a nonzero pkt_resid.
13675 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13676 		 * that is being retried, the unmap/remap of the DMA resouces
13677 		 * will result in the entire transfer starting over again
13678 		 * from the very first block.
13679 		 */
13680 		ASSERT(xp->xb_pktp != NULL);
13681 		pktp = xp->xb_pktp;
13682 	} else {
13683 		pktp = NULL;
13684 	}
13685 #endif /* __i386 || __amd64 */
13686 
13687 	startblock = xp->xb_blkno;	/* Absolute block num. */
13688 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13689 
13690 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13691 
13692 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13693 
13694 #else
13695 
13696 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13697 
13698 #endif
13699 
13700 	/*
13701 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13702 	 * call scsi_init_pkt, and build the CDB.
13703 	 */
13704 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13705 	    cmd_flags, sdrunout, (caddr_t)un,
13706 	    startblock, blockcount);
13707 
13708 	if (rval == 0) {
13709 		/*
13710 		 * Success.
13711 		 *
13712 		 * If partial DMA is being used and required for this transfer.
13713 		 * set it up here.
13714 		 */
13715 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13716 		    (pktp->pkt_resid != 0)) {
13717 
13718 			/*
13719 			 * Save the CDB length and pkt_resid for the
13720 			 * next xfer
13721 			 */
13722 			xp->xb_dma_resid = pktp->pkt_resid;
13723 
13724 			/* rezero resid */
13725 			pktp->pkt_resid = 0;
13726 
13727 		} else {
13728 			xp->xb_dma_resid = 0;
13729 		}
13730 
13731 		pktp->pkt_flags = un->un_tagflags;
13732 		pktp->pkt_time  = un->un_cmd_timeout;
13733 		pktp->pkt_comp  = sdintr;
13734 
13735 		pktp->pkt_private = bp;
13736 		*pktpp = pktp;
13737 
13738 		SD_TRACE(SD_LOG_IO_CORE, un,
13739 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13740 
13741 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13742 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13743 #endif
13744 
13745 		return (SD_PKT_ALLOC_SUCCESS);
13746 
13747 	}
13748 
13749 	/*
13750 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13751 	 * from sd_setup_rw_pkt.
13752 	 */
13753 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13754 
13755 	if (rval == SD_PKT_ALLOC_FAILURE) {
13756 		*pktpp = NULL;
13757 		/*
13758 		 * Set the driver state to RWAIT to indicate the driver
13759 		 * is waiting on resource allocations. The driver will not
13760 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13761 		 */
13762 		New_state(un, SD_STATE_RWAIT);
13763 
13764 		SD_ERROR(SD_LOG_IO_CORE, un,
13765 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13766 
13767 		if ((bp->b_flags & B_ERROR) != 0) {
13768 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13769 		}
13770 		return (SD_PKT_ALLOC_FAILURE);
13771 	} else {
13772 		/*
13773 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13774 		 *
13775 		 * This should never happen.  Maybe someone messed with the
13776 		 * kernel's minphys?
13777 		 */
13778 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13779 		    "Request rejected: too large for CDB: "
13780 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13781 		SD_ERROR(SD_LOG_IO_CORE, un,
13782 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13783 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13784 
13785 	}
13786 }
13787 
13788 
13789 /*
13790  *    Function: sd_destroypkt_for_buf
13791  *
13792  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13793  *
13794  *     Context: Kernel thread or interrupt context
13795  */
13796 
13797 static void
13798 sd_destroypkt_for_buf(struct buf *bp)
13799 {
13800 	ASSERT(bp != NULL);
13801 	ASSERT(SD_GET_UN(bp) != NULL);
13802 
13803 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13804 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13805 
13806 	ASSERT(SD_GET_PKTP(bp) != NULL);
13807 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13808 
13809 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13810 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13811 }
13812 
13813 /*
13814  *    Function: sd_setup_rw_pkt
13815  *
13816  * Description: Determines appropriate CDB group for the requested LBA
13817  *		and transfer length, calls scsi_init_pkt, and builds
13818  *		the CDB.  Do not use for partial DMA transfers except
13819  *		for the initial transfer since the CDB size must
13820  *		remain constant.
13821  *
13822  *     Context: Kernel thread and may be called from software interrupt
13823  *		context as part of a sdrunout callback. This function may not
13824  *		block or call routines that block
13825  */
13826 
13827 
13828 int
13829 sd_setup_rw_pkt(struct sd_lun *un,
13830     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13831     int (*callback)(caddr_t), caddr_t callback_arg,
13832     diskaddr_t lba, uint32_t blockcount)
13833 {
13834 	struct scsi_pkt *return_pktp;
13835 	union scsi_cdb *cdbp;
13836 	struct sd_cdbinfo *cp = NULL;
13837 	int i;
13838 
13839 	/*
13840 	 * See which size CDB to use, based upon the request.
13841 	 */
13842 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13843 
13844 		/*
13845 		 * Check lba and block count against sd_cdbtab limits.
13846 		 * In the partial DMA case, we have to use the same size
13847 		 * CDB for all the transfers.  Check lba + blockcount
13848 		 * against the max LBA so we know that segment of the
13849 		 * transfer can use the CDB we select.
13850 		 */
13851 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13852 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13853 
13854 			/*
13855 			 * The command will fit into the CDB type
13856 			 * specified by sd_cdbtab[i].
13857 			 */
13858 			cp = sd_cdbtab + i;
13859 
13860 			/*
13861 			 * Call scsi_init_pkt so we can fill in the
13862 			 * CDB.
13863 			 */
13864 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13865 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13866 			    flags, callback, callback_arg);
13867 
13868 			if (return_pktp != NULL) {
13869 
13870 				/*
13871 				 * Return new value of pkt
13872 				 */
13873 				*pktpp = return_pktp;
13874 
13875 				/*
13876 				 * To be safe, zero the CDB insuring there is
13877 				 * no leftover data from a previous command.
13878 				 */
13879 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13880 
13881 				/*
13882 				 * Handle partial DMA mapping
13883 				 */
13884 				if (return_pktp->pkt_resid != 0) {
13885 
13886 					/*
13887 					 * Not going to xfer as many blocks as
13888 					 * originally expected
13889 					 */
13890 					blockcount -=
13891 					    SD_BYTES2TGTBLOCKS(un,
13892 						return_pktp->pkt_resid);
13893 				}
13894 
13895 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13896 
13897 				/*
13898 				 * Set command byte based on the CDB
13899 				 * type we matched.
13900 				 */
13901 				cdbp->scc_cmd = cp->sc_grpmask |
13902 				    ((bp->b_flags & B_READ) ?
13903 					SCMD_READ : SCMD_WRITE);
13904 
13905 				SD_FILL_SCSI1_LUN(un, return_pktp);
13906 
13907 				/*
13908 				 * Fill in LBA and length
13909 				 */
13910 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13911 				    (cp->sc_grpcode == CDB_GROUP4) ||
13912 				    (cp->sc_grpcode == CDB_GROUP0) ||
13913 				    (cp->sc_grpcode == CDB_GROUP5));
13914 
13915 				if (cp->sc_grpcode == CDB_GROUP1) {
13916 					FORMG1ADDR(cdbp, lba);
13917 					FORMG1COUNT(cdbp, blockcount);
13918 					return (0);
13919 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13920 					FORMG4LONGADDR(cdbp, lba);
13921 					FORMG4COUNT(cdbp, blockcount);
13922 					return (0);
13923 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13924 					FORMG0ADDR(cdbp, lba);
13925 					FORMG0COUNT(cdbp, blockcount);
13926 					return (0);
13927 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13928 					FORMG5ADDR(cdbp, lba);
13929 					FORMG5COUNT(cdbp, blockcount);
13930 					return (0);
13931 				}
13932 
13933 				/*
13934 				 * It should be impossible to not match one
13935 				 * of the CDB types above, so we should never
13936 				 * reach this point.  Set the CDB command byte
13937 				 * to test-unit-ready to avoid writing
13938 				 * to somewhere we don't intend.
13939 				 */
13940 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13941 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13942 			} else {
13943 				/*
13944 				 * Couldn't get scsi_pkt
13945 				 */
13946 				return (SD_PKT_ALLOC_FAILURE);
13947 			}
13948 		}
13949 	}
13950 
13951 	/*
13952 	 * None of the available CDB types were suitable.  This really
13953 	 * should never happen:  on a 64 bit system we support
13954 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13955 	 * and on a 32 bit system we will refuse to bind to a device
13956 	 * larger than 2TB so addresses will never be larger than 32 bits.
13957 	 */
13958 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13959 }
13960 
13961 #if defined(__i386) || defined(__amd64)
13962 /*
13963  *    Function: sd_setup_next_rw_pkt
13964  *
13965  * Description: Setup packet for partial DMA transfers, except for the
13966  * 		initial transfer.  sd_setup_rw_pkt should be used for
13967  *		the initial transfer.
13968  *
13969  *     Context: Kernel thread and may be called from interrupt context.
13970  */
13971 
13972 int
13973 sd_setup_next_rw_pkt(struct sd_lun *un,
13974     struct scsi_pkt *pktp, struct buf *bp,
13975     diskaddr_t lba, uint32_t blockcount)
13976 {
13977 	uchar_t com;
13978 	union scsi_cdb *cdbp;
13979 	uchar_t cdb_group_id;
13980 
13981 	ASSERT(pktp != NULL);
13982 	ASSERT(pktp->pkt_cdbp != NULL);
13983 
13984 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13985 	com = cdbp->scc_cmd;
13986 	cdb_group_id = CDB_GROUPID(com);
13987 
13988 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13989 	    (cdb_group_id == CDB_GROUPID_1) ||
13990 	    (cdb_group_id == CDB_GROUPID_4) ||
13991 	    (cdb_group_id == CDB_GROUPID_5));
13992 
13993 	/*
13994 	 * Move pkt to the next portion of the xfer.
13995 	 * func is NULL_FUNC so we do not have to release
13996 	 * the disk mutex here.
13997 	 */
13998 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13999 	    NULL_FUNC, NULL) == pktp) {
14000 		/* Success.  Handle partial DMA */
14001 		if (pktp->pkt_resid != 0) {
14002 			blockcount -=
14003 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14004 		}
14005 
14006 		cdbp->scc_cmd = com;
14007 		SD_FILL_SCSI1_LUN(un, pktp);
14008 		if (cdb_group_id == CDB_GROUPID_1) {
14009 			FORMG1ADDR(cdbp, lba);
14010 			FORMG1COUNT(cdbp, blockcount);
14011 			return (0);
14012 		} else if (cdb_group_id == CDB_GROUPID_4) {
14013 			FORMG4LONGADDR(cdbp, lba);
14014 			FORMG4COUNT(cdbp, blockcount);
14015 			return (0);
14016 		} else if (cdb_group_id == CDB_GROUPID_0) {
14017 			FORMG0ADDR(cdbp, lba);
14018 			FORMG0COUNT(cdbp, blockcount);
14019 			return (0);
14020 		} else if (cdb_group_id == CDB_GROUPID_5) {
14021 			FORMG5ADDR(cdbp, lba);
14022 			FORMG5COUNT(cdbp, blockcount);
14023 			return (0);
14024 		}
14025 
14026 		/* Unreachable */
14027 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14028 	}
14029 
14030 	/*
14031 	 * Error setting up next portion of cmd transfer.
14032 	 * Something is definitely very wrong and this
14033 	 * should not happen.
14034 	 */
14035 	return (SD_PKT_ALLOC_FAILURE);
14036 }
14037 #endif /* defined(__i386) || defined(__amd64) */
14038 
14039 /*
14040  *    Function: sd_initpkt_for_uscsi
14041  *
14042  * Description: Allocate and initialize for transport a scsi_pkt struct,
14043  *		based upon the info specified in the given uscsi_cmd struct.
14044  *
14045  * Return Code: SD_PKT_ALLOC_SUCCESS
14046  *		SD_PKT_ALLOC_FAILURE
14047  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14048  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14049  *
14050  *     Context: Kernel thread and may be called from software interrupt context
14051  *		as part of a sdrunout callback. This function may not block or
14052  *		call routines that block
14053  */
14054 
14055 static int
14056 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14057 {
14058 	struct uscsi_cmd *uscmd;
14059 	struct sd_xbuf	*xp;
14060 	struct scsi_pkt	*pktp;
14061 	struct sd_lun	*un;
14062 	uint32_t	flags = 0;
14063 
14064 	ASSERT(bp != NULL);
14065 	ASSERT(pktpp != NULL);
14066 	xp = SD_GET_XBUF(bp);
14067 	ASSERT(xp != NULL);
14068 	un = SD_GET_UN(bp);
14069 	ASSERT(un != NULL);
14070 	ASSERT(mutex_owned(SD_MUTEX(un)));
14071 
14072 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14073 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14074 	ASSERT(uscmd != NULL);
14075 
14076 	SD_TRACE(SD_LOG_IO_CORE, un,
14077 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14078 
14079 	/*
14080 	 * Allocate the scsi_pkt for the command.
14081 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14082 	 *	 during scsi_init_pkt time and will continue to use the
14083 	 *	 same path as long as the same scsi_pkt is used without
14084 	 *	 intervening scsi_dma_free(). Since uscsi command does
14085 	 *	 not call scsi_dmafree() before retry failed command, it
14086 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14087 	 *	 set such that scsi_vhci can use other available path for
14088 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14089 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14090 	 */
14091 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14092 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14093 	    sizeof (struct scsi_arq_status), 0,
14094 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14095 	    sdrunout, (caddr_t)un);
14096 
14097 	if (pktp == NULL) {
14098 		*pktpp = NULL;
14099 		/*
14100 		 * Set the driver state to RWAIT to indicate the driver
14101 		 * is waiting on resource allocations. The driver will not
14102 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14103 		 */
14104 		New_state(un, SD_STATE_RWAIT);
14105 
14106 		SD_ERROR(SD_LOG_IO_CORE, un,
14107 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14108 
14109 		if ((bp->b_flags & B_ERROR) != 0) {
14110 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14111 		}
14112 		return (SD_PKT_ALLOC_FAILURE);
14113 	}
14114 
14115 	/*
14116 	 * We do not do DMA breakup for USCSI commands, so return failure
14117 	 * here if all the needed DMA resources were not allocated.
14118 	 */
14119 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14120 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14121 		scsi_destroy_pkt(pktp);
14122 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14123 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14124 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14125 	}
14126 
14127 	/* Init the cdb from the given uscsi struct */
14128 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14129 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14130 
14131 	SD_FILL_SCSI1_LUN(un, pktp);
14132 
14133 	/*
14134 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14135 	 * for listing of the supported flags.
14136 	 */
14137 
14138 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14139 		flags |= FLAG_SILENT;
14140 	}
14141 
14142 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14143 		flags |= FLAG_DIAGNOSE;
14144 	}
14145 
14146 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14147 		flags |= FLAG_ISOLATE;
14148 	}
14149 
14150 	if (un->un_f_is_fibre == FALSE) {
14151 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14152 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14153 		}
14154 	}
14155 
14156 	/*
14157 	 * Set the pkt flags here so we save time later.
14158 	 * Note: These flags are NOT in the uscsi man page!!!
14159 	 */
14160 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14161 		flags |= FLAG_HEAD;
14162 	}
14163 
14164 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14165 		flags |= FLAG_NOINTR;
14166 	}
14167 
14168 	/*
14169 	 * For tagged queueing, things get a bit complicated.
14170 	 * Check first for head of queue and last for ordered queue.
14171 	 * If neither head nor order, use the default driver tag flags.
14172 	 */
14173 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14174 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14175 			flags |= FLAG_HTAG;
14176 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14177 			flags |= FLAG_OTAG;
14178 		} else {
14179 			flags |= un->un_tagflags & FLAG_TAGMASK;
14180 		}
14181 	}
14182 
14183 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14184 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14185 	}
14186 
14187 	pktp->pkt_flags = flags;
14188 
14189 	/* Copy the caller's CDB into the pkt... */
14190 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14191 
14192 	if (uscmd->uscsi_timeout == 0) {
14193 		pktp->pkt_time = un->un_uscsi_timeout;
14194 	} else {
14195 		pktp->pkt_time = uscmd->uscsi_timeout;
14196 	}
14197 
14198 	/* need it later to identify USCSI request in sdintr */
14199 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14200 
14201 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14202 
14203 	pktp->pkt_private = bp;
14204 	pktp->pkt_comp = sdintr;
14205 	*pktpp = pktp;
14206 
14207 	SD_TRACE(SD_LOG_IO_CORE, un,
14208 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14209 
14210 	return (SD_PKT_ALLOC_SUCCESS);
14211 }
14212 
14213 
14214 /*
14215  *    Function: sd_destroypkt_for_uscsi
14216  *
14217  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14218  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14219  *		struct.
14220  *
14221  *     Context: May be called under interrupt context
14222  */
14223 
14224 static void
14225 sd_destroypkt_for_uscsi(struct buf *bp)
14226 {
14227 	struct uscsi_cmd *uscmd;
14228 	struct sd_xbuf	*xp;
14229 	struct scsi_pkt	*pktp;
14230 	struct sd_lun	*un;
14231 
14232 	ASSERT(bp != NULL);
14233 	xp = SD_GET_XBUF(bp);
14234 	ASSERT(xp != NULL);
14235 	un = SD_GET_UN(bp);
14236 	ASSERT(un != NULL);
14237 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14238 	pktp = SD_GET_PKTP(bp);
14239 	ASSERT(pktp != NULL);
14240 
14241 	SD_TRACE(SD_LOG_IO_CORE, un,
14242 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14243 
14244 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14245 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14246 	ASSERT(uscmd != NULL);
14247 
14248 	/* Save the status and the residual into the uscsi_cmd struct */
14249 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14250 	uscmd->uscsi_resid  = bp->b_resid;
14251 
14252 	/*
14253 	 * If enabled, copy any saved sense data into the area specified
14254 	 * by the uscsi command.
14255 	 */
14256 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14257 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14258 		/*
14259 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14260 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14261 		 */
14262 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14263 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14264 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
14265 	}
14266 
14267 	/* We are done with the scsi_pkt; free it now */
14268 	ASSERT(SD_GET_PKTP(bp) != NULL);
14269 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14270 
14271 	SD_TRACE(SD_LOG_IO_CORE, un,
14272 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14273 }
14274 
14275 
14276 /*
14277  *    Function: sd_bioclone_alloc
14278  *
14279  * Description: Allocate a buf(9S) and init it as per the given buf
14280  *		and the various arguments.  The associated sd_xbuf
14281  *		struct is (nearly) duplicated.  The struct buf *bp
14282  *		argument is saved in new_xp->xb_private.
14283  *
14284  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14285  *		datalen - size of data area for the shadow bp
14286  *		blkno - starting LBA
14287  *		func - function pointer for b_iodone in the shadow buf. (May
14288  *			be NULL if none.)
14289  *
14290  * Return Code: Pointer to allocates buf(9S) struct
14291  *
14292  *     Context: Can sleep.
14293  */
14294 
14295 static struct buf *
14296 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14297 	daddr_t blkno, int (*func)(struct buf *))
14298 {
14299 	struct	sd_lun	*un;
14300 	struct	sd_xbuf	*xp;
14301 	struct	sd_xbuf	*new_xp;
14302 	struct	buf	*new_bp;
14303 
14304 	ASSERT(bp != NULL);
14305 	xp = SD_GET_XBUF(bp);
14306 	ASSERT(xp != NULL);
14307 	un = SD_GET_UN(bp);
14308 	ASSERT(un != NULL);
14309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14310 
14311 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14312 	    NULL, KM_SLEEP);
14313 
14314 	new_bp->b_lblkno	= blkno;
14315 
14316 	/*
14317 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14318 	 * original xbuf into it.
14319 	 */
14320 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14321 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14322 
14323 	/*
14324 	 * The given bp is automatically saved in the xb_private member
14325 	 * of the new xbuf.  Callers are allowed to depend on this.
14326 	 */
14327 	new_xp->xb_private = bp;
14328 
14329 	new_bp->b_private  = new_xp;
14330 
14331 	return (new_bp);
14332 }
14333 
14334 /*
14335  *    Function: sd_shadow_buf_alloc
14336  *
14337  * Description: Allocate a buf(9S) and init it as per the given buf
14338  *		and the various arguments.  The associated sd_xbuf
14339  *		struct is (nearly) duplicated.  The struct buf *bp
14340  *		argument is saved in new_xp->xb_private.
14341  *
14342  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14343  *		datalen - size of data area for the shadow bp
14344  *		bflags - B_READ or B_WRITE (pseudo flag)
14345  *		blkno - starting LBA
14346  *		func - function pointer for b_iodone in the shadow buf. (May
14347  *			be NULL if none.)
14348  *
14349  * Return Code: Pointer to allocates buf(9S) struct
14350  *
14351  *     Context: Can sleep.
14352  */
14353 
14354 static struct buf *
14355 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14356 	daddr_t blkno, int (*func)(struct buf *))
14357 {
14358 	struct	sd_lun	*un;
14359 	struct	sd_xbuf	*xp;
14360 	struct	sd_xbuf	*new_xp;
14361 	struct	buf	*new_bp;
14362 
14363 	ASSERT(bp != NULL);
14364 	xp = SD_GET_XBUF(bp);
14365 	ASSERT(xp != NULL);
14366 	un = SD_GET_UN(bp);
14367 	ASSERT(un != NULL);
14368 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14369 
14370 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14371 		bp_mapin(bp);
14372 	}
14373 
14374 	bflags &= (B_READ | B_WRITE);
14375 #if defined(__i386) || defined(__amd64)
14376 	new_bp = getrbuf(KM_SLEEP);
14377 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14378 	new_bp->b_bcount = datalen;
14379 	new_bp->b_flags = bflags |
14380 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14381 #else
14382 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14383 	    datalen, bflags, SLEEP_FUNC, NULL);
14384 #endif
14385 	new_bp->av_forw	= NULL;
14386 	new_bp->av_back	= NULL;
14387 	new_bp->b_dev	= bp->b_dev;
14388 	new_bp->b_blkno	= blkno;
14389 	new_bp->b_iodone = func;
14390 	new_bp->b_edev	= bp->b_edev;
14391 	new_bp->b_resid	= 0;
14392 
14393 	/* We need to preserve the B_FAILFAST flag */
14394 	if (bp->b_flags & B_FAILFAST) {
14395 		new_bp->b_flags |= B_FAILFAST;
14396 	}
14397 
14398 	/*
14399 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14400 	 * original xbuf into it.
14401 	 */
14402 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14403 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14404 
14405 	/* Need later to copy data between the shadow buf & original buf! */
14406 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14407 
14408 	/*
14409 	 * The given bp is automatically saved in the xb_private member
14410 	 * of the new xbuf.  Callers are allowed to depend on this.
14411 	 */
14412 	new_xp->xb_private = bp;
14413 
14414 	new_bp->b_private  = new_xp;
14415 
14416 	return (new_bp);
14417 }
14418 
14419 /*
14420  *    Function: sd_bioclone_free
14421  *
14422  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14423  *		in the larger than partition operation.
14424  *
14425  *     Context: May be called under interrupt context
14426  */
14427 
14428 static void
14429 sd_bioclone_free(struct buf *bp)
14430 {
14431 	struct sd_xbuf	*xp;
14432 
14433 	ASSERT(bp != NULL);
14434 	xp = SD_GET_XBUF(bp);
14435 	ASSERT(xp != NULL);
14436 
14437 	/*
14438 	 * Call bp_mapout() before freeing the buf,  in case a lower
14439 	 * layer or HBA  had done a bp_mapin().  we must do this here
14440 	 * as we are the "originator" of the shadow buf.
14441 	 */
14442 	bp_mapout(bp);
14443 
14444 	/*
14445 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14446 	 * never gets confused by a stale value in this field. (Just a little
14447 	 * extra defensiveness here.)
14448 	 */
14449 	bp->b_iodone = NULL;
14450 
14451 	freerbuf(bp);
14452 
14453 	kmem_free(xp, sizeof (struct sd_xbuf));
14454 }
14455 
14456 /*
14457  *    Function: sd_shadow_buf_free
14458  *
14459  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14460  *
14461  *     Context: May be called under interrupt context
14462  */
14463 
14464 static void
14465 sd_shadow_buf_free(struct buf *bp)
14466 {
14467 	struct sd_xbuf	*xp;
14468 
14469 	ASSERT(bp != NULL);
14470 	xp = SD_GET_XBUF(bp);
14471 	ASSERT(xp != NULL);
14472 
14473 #if defined(__sparc)
14474 	/*
14475 	 * Call bp_mapout() before freeing the buf,  in case a lower
14476 	 * layer or HBA  had done a bp_mapin().  we must do this here
14477 	 * as we are the "originator" of the shadow buf.
14478 	 */
14479 	bp_mapout(bp);
14480 #endif
14481 
14482 	/*
14483 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14484 	 * never gets confused by a stale value in this field. (Just a little
14485 	 * extra defensiveness here.)
14486 	 */
14487 	bp->b_iodone = NULL;
14488 
14489 #if defined(__i386) || defined(__amd64)
14490 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14491 	freerbuf(bp);
14492 #else
14493 	scsi_free_consistent_buf(bp);
14494 #endif
14495 
14496 	kmem_free(xp, sizeof (struct sd_xbuf));
14497 }
14498 
14499 
14500 /*
14501  *    Function: sd_print_transport_rejected_message
14502  *
14503  * Description: This implements the ludicrously complex rules for printing
14504  *		a "transport rejected" message.  This is to address the
14505  *		specific problem of having a flood of this error message
14506  *		produced when a failover occurs.
14507  *
14508  *     Context: Any.
14509  */
14510 
14511 static void
14512 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14513 	int code)
14514 {
14515 	ASSERT(un != NULL);
14516 	ASSERT(mutex_owned(SD_MUTEX(un)));
14517 	ASSERT(xp != NULL);
14518 
14519 	/*
14520 	 * Print the "transport rejected" message under the following
14521 	 * conditions:
14522 	 *
14523 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14524 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14525 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14526 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14527 	 *   scsi_transport(9F) (which indicates that the target might have
14528 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14529 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14530 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14531 	 *   from scsi_transport().
14532 	 *
14533 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14534 	 * the preceeding cases in order for the message to be printed.
14535 	 */
14536 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14537 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14538 		    (code != TRAN_FATAL_ERROR) ||
14539 		    (un->un_tran_fatal_count == 1)) {
14540 			switch (code) {
14541 			case TRAN_BADPKT:
14542 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14543 				    "transport rejected bad packet\n");
14544 				break;
14545 			case TRAN_FATAL_ERROR:
14546 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14547 				    "transport rejected fatal error\n");
14548 				break;
14549 			default:
14550 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14551 				    "transport rejected (%d)\n", code);
14552 				break;
14553 			}
14554 		}
14555 	}
14556 }
14557 
14558 
14559 /*
14560  *    Function: sd_add_buf_to_waitq
14561  *
14562  * Description: Add the given buf(9S) struct to the wait queue for the
14563  *		instance.  If sorting is enabled, then the buf is added
14564  *		to the queue via an elevator sort algorithm (a la
14565  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14566  *		If sorting is not enabled, then the buf is just added
14567  *		to the end of the wait queue.
14568  *
14569  * Return Code: void
14570  *
14571  *     Context: Does not sleep/block, therefore technically can be called
14572  *		from any context.  However if sorting is enabled then the
14573  *		execution time is indeterminate, and may take long if
14574  *		the wait queue grows large.
14575  */
14576 
14577 static void
14578 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14579 {
14580 	struct buf *ap;
14581 
14582 	ASSERT(bp != NULL);
14583 	ASSERT(un != NULL);
14584 	ASSERT(mutex_owned(SD_MUTEX(un)));
14585 
14586 	/* If the queue is empty, add the buf as the only entry & return. */
14587 	if (un->un_waitq_headp == NULL) {
14588 		ASSERT(un->un_waitq_tailp == NULL);
14589 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14590 		bp->av_forw = NULL;
14591 		return;
14592 	}
14593 
14594 	ASSERT(un->un_waitq_tailp != NULL);
14595 
14596 	/*
14597 	 * If sorting is disabled, just add the buf to the tail end of
14598 	 * the wait queue and return.
14599 	 */
14600 	if (un->un_f_disksort_disabled) {
14601 		un->un_waitq_tailp->av_forw = bp;
14602 		un->un_waitq_tailp = bp;
14603 		bp->av_forw = NULL;
14604 		return;
14605 	}
14606 
14607 	/*
14608 	 * Sort thru the list of requests currently on the wait queue
14609 	 * and add the new buf request at the appropriate position.
14610 	 *
14611 	 * The un->un_waitq_headp is an activity chain pointer on which
14612 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14613 	 * first queue holds those requests which are positioned after
14614 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14615 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14616 	 * Thus we implement a one way scan, retracting after reaching
14617 	 * the end of the drive to the first request on the second
14618 	 * queue, at which time it becomes the first queue.
14619 	 * A one-way scan is natural because of the way UNIX read-ahead
14620 	 * blocks are allocated.
14621 	 *
14622 	 * If we lie after the first request, then we must locate the
14623 	 * second request list and add ourselves to it.
14624 	 */
14625 	ap = un->un_waitq_headp;
14626 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14627 		while (ap->av_forw != NULL) {
14628 			/*
14629 			 * Look for an "inversion" in the (normally
14630 			 * ascending) block numbers. This indicates
14631 			 * the start of the second request list.
14632 			 */
14633 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14634 				/*
14635 				 * Search the second request list for the
14636 				 * first request at a larger block number.
14637 				 * We go before that; however if there is
14638 				 * no such request, we go at the end.
14639 				 */
14640 				do {
14641 					if (SD_GET_BLKNO(bp) <
14642 					    SD_GET_BLKNO(ap->av_forw)) {
14643 						goto insert;
14644 					}
14645 					ap = ap->av_forw;
14646 				} while (ap->av_forw != NULL);
14647 				goto insert;		/* after last */
14648 			}
14649 			ap = ap->av_forw;
14650 		}
14651 
14652 		/*
14653 		 * No inversions... we will go after the last, and
14654 		 * be the first request in the second request list.
14655 		 */
14656 		goto insert;
14657 	}
14658 
14659 	/*
14660 	 * Request is at/after the current request...
14661 	 * sort in the first request list.
14662 	 */
14663 	while (ap->av_forw != NULL) {
14664 		/*
14665 		 * We want to go after the current request (1) if
14666 		 * there is an inversion after it (i.e. it is the end
14667 		 * of the first request list), or (2) if the next
14668 		 * request is a larger block no. than our request.
14669 		 */
14670 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14671 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14672 			goto insert;
14673 		}
14674 		ap = ap->av_forw;
14675 	}
14676 
14677 	/*
14678 	 * Neither a second list nor a larger request, therefore
14679 	 * we go at the end of the first list (which is the same
14680 	 * as the end of the whole schebang).
14681 	 */
14682 insert:
14683 	bp->av_forw = ap->av_forw;
14684 	ap->av_forw = bp;
14685 
14686 	/*
14687 	 * If we inserted onto the tail end of the waitq, make sure the
14688 	 * tail pointer is updated.
14689 	 */
14690 	if (ap == un->un_waitq_tailp) {
14691 		un->un_waitq_tailp = bp;
14692 	}
14693 }
14694 
14695 
14696 /*
14697  *    Function: sd_start_cmds
14698  *
14699  * Description: Remove and transport cmds from the driver queues.
14700  *
14701  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14702  *
14703  *		immed_bp - ptr to a buf to be transported immediately. Only
14704  *		the immed_bp is transported; bufs on the waitq are not
14705  *		processed and the un_retry_bp is not checked.  If immed_bp is
14706  *		NULL, then normal queue processing is performed.
14707  *
14708  *     Context: May be called from kernel thread context, interrupt context,
14709  *		or runout callback context. This function may not block or
14710  *		call routines that block.
14711  */
14712 
14713 static void
14714 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14715 {
14716 	struct	sd_xbuf	*xp;
14717 	struct	buf	*bp;
14718 	void	(*statp)(kstat_io_t *);
14719 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14720 	void	(*saved_statp)(kstat_io_t *);
14721 #endif
14722 	int	rval;
14723 
14724 	ASSERT(un != NULL);
14725 	ASSERT(mutex_owned(SD_MUTEX(un)));
14726 	ASSERT(un->un_ncmds_in_transport >= 0);
14727 	ASSERT(un->un_throttle >= 0);
14728 
14729 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14730 
14731 	do {
14732 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14733 		saved_statp = NULL;
14734 #endif
14735 
14736 		/*
14737 		 * If we are syncing or dumping, fail the command to
14738 		 * avoid recursively calling back into scsi_transport().
14739 		 * The dump I/O itself uses a separate code path so this
14740 		 * only prevents non-dump I/O from being sent while dumping.
14741 		 * File system sync takes place before dumping begins.
14742 		 * During panic, filesystem I/O is allowed provided
14743 		 * un_in_callback is <= 1.  This is to prevent recursion
14744 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14745 		 * sd_start_cmds and so on.  See panic.c for more information
14746 		 * about the states the system can be in during panic.
14747 		 */
14748 		if ((un->un_state == SD_STATE_DUMPING) ||
14749 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14750 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14751 			    "sd_start_cmds: panicking\n");
14752 			goto exit;
14753 		}
14754 
14755 		if ((bp = immed_bp) != NULL) {
14756 			/*
14757 			 * We have a bp that must be transported immediately.
14758 			 * It's OK to transport the immed_bp here without doing
14759 			 * the throttle limit check because the immed_bp is
14760 			 * always used in a retry/recovery case. This means
14761 			 * that we know we are not at the throttle limit by
14762 			 * virtue of the fact that to get here we must have
14763 			 * already gotten a command back via sdintr(). This also
14764 			 * relies on (1) the command on un_retry_bp preventing
14765 			 * further commands from the waitq from being issued;
14766 			 * and (2) the code in sd_retry_command checking the
14767 			 * throttle limit before issuing a delayed or immediate
14768 			 * retry. This holds even if the throttle limit is
14769 			 * currently ratcheted down from its maximum value.
14770 			 */
14771 			statp = kstat_runq_enter;
14772 			if (bp == un->un_retry_bp) {
14773 				ASSERT((un->un_retry_statp == NULL) ||
14774 				    (un->un_retry_statp == kstat_waitq_enter) ||
14775 				    (un->un_retry_statp ==
14776 				    kstat_runq_back_to_waitq));
14777 				/*
14778 				 * If the waitq kstat was incremented when
14779 				 * sd_set_retry_bp() queued this bp for a retry,
14780 				 * then we must set up statp so that the waitq
14781 				 * count will get decremented correctly below.
14782 				 * Also we must clear un->un_retry_statp to
14783 				 * ensure that we do not act on a stale value
14784 				 * in this field.
14785 				 */
14786 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14787 				    (un->un_retry_statp ==
14788 				    kstat_runq_back_to_waitq)) {
14789 					statp = kstat_waitq_to_runq;
14790 				}
14791 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14792 				saved_statp = un->un_retry_statp;
14793 #endif
14794 				un->un_retry_statp = NULL;
14795 
14796 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14797 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14798 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14799 				    un, un->un_retry_bp, un->un_throttle,
14800 				    un->un_ncmds_in_transport);
14801 			} else {
14802 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14803 				    "processing priority bp:0x%p\n", bp);
14804 			}
14805 
14806 		} else if ((bp = un->un_waitq_headp) != NULL) {
14807 			/*
14808 			 * A command on the waitq is ready to go, but do not
14809 			 * send it if:
14810 			 *
14811 			 * (1) the throttle limit has been reached, or
14812 			 * (2) a retry is pending, or
14813 			 * (3) a START_STOP_UNIT callback pending, or
14814 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14815 			 *	command is pending.
14816 			 *
14817 			 * For all of these conditions, IO processing will
14818 			 * restart after the condition is cleared.
14819 			 */
14820 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14821 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14822 				    "sd_start_cmds: exiting, "
14823 				    "throttle limit reached!\n");
14824 				goto exit;
14825 			}
14826 			if (un->un_retry_bp != NULL) {
14827 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14828 				    "sd_start_cmds: exiting, retry pending!\n");
14829 				goto exit;
14830 			}
14831 			if (un->un_startstop_timeid != NULL) {
14832 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14833 				    "sd_start_cmds: exiting, "
14834 				    "START_STOP pending!\n");
14835 				goto exit;
14836 			}
14837 			if (un->un_direct_priority_timeid != NULL) {
14838 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14839 				    "sd_start_cmds: exiting, "
14840 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14841 				goto exit;
14842 			}
14843 
14844 			/* Dequeue the command */
14845 			un->un_waitq_headp = bp->av_forw;
14846 			if (un->un_waitq_headp == NULL) {
14847 				un->un_waitq_tailp = NULL;
14848 			}
14849 			bp->av_forw = NULL;
14850 			statp = kstat_waitq_to_runq;
14851 			SD_TRACE(SD_LOG_IO_CORE, un,
14852 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14853 
14854 		} else {
14855 			/* No work to do so bail out now */
14856 			SD_TRACE(SD_LOG_IO_CORE, un,
14857 			    "sd_start_cmds: no more work, exiting!\n");
14858 			goto exit;
14859 		}
14860 
14861 		/*
14862 		 * Reset the state to normal. This is the mechanism by which
14863 		 * the state transitions from either SD_STATE_RWAIT or
14864 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14865 		 * If state is SD_STATE_PM_CHANGING then this command is
14866 		 * part of the device power control and the state must
14867 		 * not be put back to normal. Doing so would would
14868 		 * allow new commands to proceed when they shouldn't,
14869 		 * the device may be going off.
14870 		 */
14871 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14872 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14873 			New_state(un, SD_STATE_NORMAL);
14874 		    }
14875 
14876 		xp = SD_GET_XBUF(bp);
14877 		ASSERT(xp != NULL);
14878 
14879 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14880 		/*
14881 		 * Allocate the scsi_pkt if we need one, or attach DMA
14882 		 * resources if we have a scsi_pkt that needs them. The
14883 		 * latter should only occur for commands that are being
14884 		 * retried.
14885 		 */
14886 		if ((xp->xb_pktp == NULL) ||
14887 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14888 #else
14889 		if (xp->xb_pktp == NULL) {
14890 #endif
14891 			/*
14892 			 * There is no scsi_pkt allocated for this buf. Call
14893 			 * the initpkt function to allocate & init one.
14894 			 *
14895 			 * The scsi_init_pkt runout callback functionality is
14896 			 * implemented as follows:
14897 			 *
14898 			 * 1) The initpkt function always calls
14899 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14900 			 *    callback routine.
14901 			 * 2) A successful packet allocation is initialized and
14902 			 *    the I/O is transported.
14903 			 * 3) The I/O associated with an allocation resource
14904 			 *    failure is left on its queue to be retried via
14905 			 *    runout or the next I/O.
14906 			 * 4) The I/O associated with a DMA error is removed
14907 			 *    from the queue and failed with EIO. Processing of
14908 			 *    the transport queues is also halted to be
14909 			 *    restarted via runout or the next I/O.
14910 			 * 5) The I/O associated with a CDB size or packet
14911 			 *    size error is removed from the queue and failed
14912 			 *    with EIO. Processing of the transport queues is
14913 			 *    continued.
14914 			 *
14915 			 * Note: there is no interface for canceling a runout
14916 			 * callback. To prevent the driver from detaching or
14917 			 * suspending while a runout is pending the driver
14918 			 * state is set to SD_STATE_RWAIT
14919 			 *
14920 			 * Note: using the scsi_init_pkt callback facility can
14921 			 * result in an I/O request persisting at the head of
14922 			 * the list which cannot be satisfied even after
14923 			 * multiple retries. In the future the driver may
14924 			 * implement some kind of maximum runout count before
14925 			 * failing an I/O.
14926 			 *
14927 			 * Note: the use of funcp below may seem superfluous,
14928 			 * but it helps warlock figure out the correct
14929 			 * initpkt function calls (see [s]sd.wlcmd).
14930 			 */
14931 			struct scsi_pkt	*pktp;
14932 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14933 
14934 			ASSERT(bp != un->un_rqs_bp);
14935 
14936 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14937 			switch ((*funcp)(bp, &pktp)) {
14938 			case  SD_PKT_ALLOC_SUCCESS:
14939 				xp->xb_pktp = pktp;
14940 				SD_TRACE(SD_LOG_IO_CORE, un,
14941 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14942 				    pktp);
14943 				goto got_pkt;
14944 
14945 			case SD_PKT_ALLOC_FAILURE:
14946 				/*
14947 				 * Temporary (hopefully) resource depletion.
14948 				 * Since retries and RQS commands always have a
14949 				 * scsi_pkt allocated, these cases should never
14950 				 * get here. So the only cases this needs to
14951 				 * handle is a bp from the waitq (which we put
14952 				 * back onto the waitq for sdrunout), or a bp
14953 				 * sent as an immed_bp (which we just fail).
14954 				 */
14955 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14956 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14957 
14958 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14959 
14960 				if (bp == immed_bp) {
14961 					/*
14962 					 * If SD_XB_DMA_FREED is clear, then
14963 					 * this is a failure to allocate a
14964 					 * scsi_pkt, and we must fail the
14965 					 * command.
14966 					 */
14967 					if ((xp->xb_pkt_flags &
14968 					    SD_XB_DMA_FREED) == 0) {
14969 						break;
14970 					}
14971 
14972 					/*
14973 					 * If this immediate command is NOT our
14974 					 * un_retry_bp, then we must fail it.
14975 					 */
14976 					if (bp != un->un_retry_bp) {
14977 						break;
14978 					}
14979 
14980 					/*
14981 					 * We get here if this cmd is our
14982 					 * un_retry_bp that was DMAFREED, but
14983 					 * scsi_init_pkt() failed to reallocate
14984 					 * DMA resources when we attempted to
14985 					 * retry it. This can happen when an
14986 					 * mpxio failover is in progress, but
14987 					 * we don't want to just fail the
14988 					 * command in this case.
14989 					 *
14990 					 * Use timeout(9F) to restart it after
14991 					 * a 100ms delay.  We don't want to
14992 					 * let sdrunout() restart it, because
14993 					 * sdrunout() is just supposed to start
14994 					 * commands that are sitting on the
14995 					 * wait queue.  The un_retry_bp stays
14996 					 * set until the command completes, but
14997 					 * sdrunout can be called many times
14998 					 * before that happens.  Since sdrunout
14999 					 * cannot tell if the un_retry_bp is
15000 					 * already in the transport, it could
15001 					 * end up calling scsi_transport() for
15002 					 * the un_retry_bp multiple times.
15003 					 *
15004 					 * Also: don't schedule the callback
15005 					 * if some other callback is already
15006 					 * pending.
15007 					 */
15008 					if (un->un_retry_statp == NULL) {
15009 						/*
15010 						 * restore the kstat pointer to
15011 						 * keep kstat counts coherent
15012 						 * when we do retry the command.
15013 						 */
15014 						un->un_retry_statp =
15015 						    saved_statp;
15016 					}
15017 
15018 					if ((un->un_startstop_timeid == NULL) &&
15019 					    (un->un_retry_timeid == NULL) &&
15020 					    (un->un_direct_priority_timeid ==
15021 					    NULL)) {
15022 
15023 						un->un_retry_timeid =
15024 						    timeout(
15025 						    sd_start_retry_command,
15026 						    un, SD_RESTART_TIMEOUT);
15027 					}
15028 					goto exit;
15029 				}
15030 
15031 #else
15032 				if (bp == immed_bp) {
15033 					break;	/* Just fail the command */
15034 				}
15035 #endif
15036 
15037 				/* Add the buf back to the head of the waitq */
15038 				bp->av_forw = un->un_waitq_headp;
15039 				un->un_waitq_headp = bp;
15040 				if (un->un_waitq_tailp == NULL) {
15041 					un->un_waitq_tailp = bp;
15042 				}
15043 				goto exit;
15044 
15045 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15046 				/*
15047 				 * HBA DMA resource failure. Fail the command
15048 				 * and continue processing of the queues.
15049 				 */
15050 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15051 				    "sd_start_cmds: "
15052 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15053 				break;
15054 
15055 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15056 				/*
15057 				 * Note:x86: Partial DMA mapping not supported
15058 				 * for USCSI commands, and all the needed DMA
15059 				 * resources were not allocated.
15060 				 */
15061 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15062 				    "sd_start_cmds: "
15063 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15064 				break;
15065 
15066 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15067 				/*
15068 				 * Note:x86: Request cannot fit into CDB based
15069 				 * on lba and len.
15070 				 */
15071 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15072 				    "sd_start_cmds: "
15073 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15074 				break;
15075 
15076 			default:
15077 				/* Should NEVER get here! */
15078 				panic("scsi_initpkt error");
15079 				/*NOTREACHED*/
15080 			}
15081 
15082 			/*
15083 			 * Fatal error in allocating a scsi_pkt for this buf.
15084 			 * Update kstats & return the buf with an error code.
15085 			 * We must use sd_return_failed_command_no_restart() to
15086 			 * avoid a recursive call back into sd_start_cmds().
15087 			 * However this also means that we must keep processing
15088 			 * the waitq here in order to avoid stalling.
15089 			 */
15090 			if (statp == kstat_waitq_to_runq) {
15091 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15092 			}
15093 			sd_return_failed_command_no_restart(un, bp, EIO);
15094 			if (bp == immed_bp) {
15095 				/* immed_bp is gone by now, so clear this */
15096 				immed_bp = NULL;
15097 			}
15098 			continue;
15099 		}
15100 got_pkt:
15101 		if (bp == immed_bp) {
15102 			/* goto the head of the class.... */
15103 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15104 		}
15105 
15106 		un->un_ncmds_in_transport++;
15107 		SD_UPDATE_KSTATS(un, statp, bp);
15108 
15109 		/*
15110 		 * Call scsi_transport() to send the command to the target.
15111 		 * According to SCSA architecture, we must drop the mutex here
15112 		 * before calling scsi_transport() in order to avoid deadlock.
15113 		 * Note that the scsi_pkt's completion routine can be executed
15114 		 * (from interrupt context) even before the call to
15115 		 * scsi_transport() returns.
15116 		 */
15117 		SD_TRACE(SD_LOG_IO_CORE, un,
15118 		    "sd_start_cmds: calling scsi_transport()\n");
15119 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15120 
15121 		mutex_exit(SD_MUTEX(un));
15122 		rval = scsi_transport(xp->xb_pktp);
15123 		mutex_enter(SD_MUTEX(un));
15124 
15125 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15126 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15127 
15128 		switch (rval) {
15129 		case TRAN_ACCEPT:
15130 			/* Clear this with every pkt accepted by the HBA */
15131 			un->un_tran_fatal_count = 0;
15132 			break;	/* Success; try the next cmd (if any) */
15133 
15134 		case TRAN_BUSY:
15135 			un->un_ncmds_in_transport--;
15136 			ASSERT(un->un_ncmds_in_transport >= 0);
15137 
15138 			/*
15139 			 * Don't retry request sense, the sense data
15140 			 * is lost when another request is sent.
15141 			 * Free up the rqs buf and retry
15142 			 * the original failed cmd.  Update kstat.
15143 			 */
15144 			if (bp == un->un_rqs_bp) {
15145 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15146 				bp = sd_mark_rqs_idle(un, xp);
15147 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15148 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
15149 					kstat_waitq_enter);
15150 				goto exit;
15151 			}
15152 
15153 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15154 			/*
15155 			 * Free the DMA resources for the  scsi_pkt. This will
15156 			 * allow mpxio to select another path the next time
15157 			 * we call scsi_transport() with this scsi_pkt.
15158 			 * See sdintr() for the rationalization behind this.
15159 			 */
15160 			if ((un->un_f_is_fibre == TRUE) &&
15161 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15162 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15163 				scsi_dmafree(xp->xb_pktp);
15164 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15165 			}
15166 #endif
15167 
15168 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15169 				/*
15170 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15171 				 * are for error recovery situations. These do
15172 				 * not use the normal command waitq, so if they
15173 				 * get a TRAN_BUSY we cannot put them back onto
15174 				 * the waitq for later retry. One possible
15175 				 * problem is that there could already be some
15176 				 * other command on un_retry_bp that is waiting
15177 				 * for this one to complete, so we would be
15178 				 * deadlocked if we put this command back onto
15179 				 * the waitq for later retry (since un_retry_bp
15180 				 * must complete before the driver gets back to
15181 				 * commands on the waitq).
15182 				 *
15183 				 * To avoid deadlock we must schedule a callback
15184 				 * that will restart this command after a set
15185 				 * interval.  This should keep retrying for as
15186 				 * long as the underlying transport keeps
15187 				 * returning TRAN_BUSY (just like for other
15188 				 * commands).  Use the same timeout interval as
15189 				 * for the ordinary TRAN_BUSY retry.
15190 				 */
15191 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15192 				    "sd_start_cmds: scsi_transport() returned "
15193 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15194 
15195 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15196 				un->un_direct_priority_timeid =
15197 				    timeout(sd_start_direct_priority_command,
15198 				    bp, SD_BSY_TIMEOUT / 500);
15199 
15200 				goto exit;
15201 			}
15202 
15203 			/*
15204 			 * For TRAN_BUSY, we want to reduce the throttle value,
15205 			 * unless we are retrying a command.
15206 			 */
15207 			if (bp != un->un_retry_bp) {
15208 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15209 			}
15210 
15211 			/*
15212 			 * Set up the bp to be tried again 10 ms later.
15213 			 * Note:x86: Is there a timeout value in the sd_lun
15214 			 * for this condition?
15215 			 */
15216 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
15217 				kstat_runq_back_to_waitq);
15218 			goto exit;
15219 
15220 		case TRAN_FATAL_ERROR:
15221 			un->un_tran_fatal_count++;
15222 			/* FALLTHRU */
15223 
15224 		case TRAN_BADPKT:
15225 		default:
15226 			un->un_ncmds_in_transport--;
15227 			ASSERT(un->un_ncmds_in_transport >= 0);
15228 
15229 			/*
15230 			 * If this is our REQUEST SENSE command with a
15231 			 * transport error, we must get back the pointers
15232 			 * to the original buf, and mark the REQUEST
15233 			 * SENSE command as "available".
15234 			 */
15235 			if (bp == un->un_rqs_bp) {
15236 				bp = sd_mark_rqs_idle(un, xp);
15237 				xp = SD_GET_XBUF(bp);
15238 			} else {
15239 				/*
15240 				 * Legacy behavior: do not update transport
15241 				 * error count for request sense commands.
15242 				 */
15243 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15244 			}
15245 
15246 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15247 			sd_print_transport_rejected_message(un, xp, rval);
15248 
15249 			/*
15250 			 * We must use sd_return_failed_command_no_restart() to
15251 			 * avoid a recursive call back into sd_start_cmds().
15252 			 * However this also means that we must keep processing
15253 			 * the waitq here in order to avoid stalling.
15254 			 */
15255 			sd_return_failed_command_no_restart(un, bp, EIO);
15256 
15257 			/*
15258 			 * Notify any threads waiting in sd_ddi_suspend() that
15259 			 * a command completion has occurred.
15260 			 */
15261 			if (un->un_state == SD_STATE_SUSPENDED) {
15262 				cv_broadcast(&un->un_disk_busy_cv);
15263 			}
15264 
15265 			if (bp == immed_bp) {
15266 				/* immed_bp is gone by now, so clear this */
15267 				immed_bp = NULL;
15268 			}
15269 			break;
15270 		}
15271 
15272 	} while (immed_bp == NULL);
15273 
15274 exit:
15275 	ASSERT(mutex_owned(SD_MUTEX(un)));
15276 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15277 }
15278 
15279 
15280 /*
15281  *    Function: sd_return_command
15282  *
15283  * Description: Returns a command to its originator (with or without an
15284  *		error).  Also starts commands waiting to be transported
15285  *		to the target.
15286  *
15287  *     Context: May be called from interrupt, kernel, or timeout context
15288  */
15289 
15290 static void
15291 sd_return_command(struct sd_lun *un, struct buf *bp)
15292 {
15293 	struct sd_xbuf *xp;
15294 #if defined(__i386) || defined(__amd64)
15295 	struct scsi_pkt *pktp;
15296 #endif
15297 
15298 	ASSERT(bp != NULL);
15299 	ASSERT(un != NULL);
15300 	ASSERT(mutex_owned(SD_MUTEX(un)));
15301 	ASSERT(bp != un->un_rqs_bp);
15302 	xp = SD_GET_XBUF(bp);
15303 	ASSERT(xp != NULL);
15304 
15305 #if defined(__i386) || defined(__amd64)
15306 	pktp = SD_GET_PKTP(bp);
15307 #endif
15308 
15309 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15310 
15311 #if defined(__i386) || defined(__amd64)
15312 	/*
15313 	 * Note:x86: check for the "sdrestart failed" case.
15314 	 */
15315 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15316 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15317 		(xp->xb_pktp->pkt_resid == 0)) {
15318 
15319 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15320 			/*
15321 			 * Successfully set up next portion of cmd
15322 			 * transfer, try sending it
15323 			 */
15324 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15325 			    NULL, NULL, 0, (clock_t)0, NULL);
15326 			sd_start_cmds(un, NULL);
15327 			return;	/* Note:x86: need a return here? */
15328 		}
15329 	}
15330 #endif
15331 
15332 	/*
15333 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15334 	 * can happen if upon being re-tried the failfast bp either
15335 	 * succeeded or encountered another error (possibly even a different
15336 	 * error than the one that precipitated the failfast state, but in
15337 	 * that case it would have had to exhaust retries as well). Regardless,
15338 	 * this should not occur whenever the instance is in the active
15339 	 * failfast state.
15340 	 */
15341 	if (bp == un->un_failfast_bp) {
15342 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15343 		un->un_failfast_bp = NULL;
15344 	}
15345 
15346 	/*
15347 	 * Clear the failfast state upon successful completion of ANY cmd.
15348 	 */
15349 	if (bp->b_error == 0) {
15350 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15351 	}
15352 
15353 	/*
15354 	 * This is used if the command was retried one or more times. Show that
15355 	 * we are done with it, and allow processing of the waitq to resume.
15356 	 */
15357 	if (bp == un->un_retry_bp) {
15358 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15359 		    "sd_return_command: un:0x%p: "
15360 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15361 		un->un_retry_bp = NULL;
15362 		un->un_retry_statp = NULL;
15363 	}
15364 
15365 	SD_UPDATE_RDWR_STATS(un, bp);
15366 	SD_UPDATE_PARTITION_STATS(un, bp);
15367 
15368 	switch (un->un_state) {
15369 	case SD_STATE_SUSPENDED:
15370 		/*
15371 		 * Notify any threads waiting in sd_ddi_suspend() that
15372 		 * a command completion has occurred.
15373 		 */
15374 		cv_broadcast(&un->un_disk_busy_cv);
15375 		break;
15376 	default:
15377 		sd_start_cmds(un, NULL);
15378 		break;
15379 	}
15380 
15381 	/* Return this command up the iodone chain to its originator. */
15382 	mutex_exit(SD_MUTEX(un));
15383 
15384 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15385 	xp->xb_pktp = NULL;
15386 
15387 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15388 
15389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15390 	mutex_enter(SD_MUTEX(un));
15391 
15392 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15393 }
15394 
15395 
15396 /*
15397  *    Function: sd_return_failed_command
15398  *
15399  * Description: Command completion when an error occurred.
15400  *
15401  *     Context: May be called from interrupt context
15402  */
15403 
15404 static void
15405 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15406 {
15407 	ASSERT(bp != NULL);
15408 	ASSERT(un != NULL);
15409 	ASSERT(mutex_owned(SD_MUTEX(un)));
15410 
15411 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15412 	    "sd_return_failed_command: entry\n");
15413 
15414 	/*
15415 	 * b_resid could already be nonzero due to a partial data
15416 	 * transfer, so do not change it here.
15417 	 */
15418 	SD_BIOERROR(bp, errcode);
15419 
15420 	sd_return_command(un, bp);
15421 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15422 	    "sd_return_failed_command: exit\n");
15423 }
15424 
15425 
15426 /*
15427  *    Function: sd_return_failed_command_no_restart
15428  *
15429  * Description: Same as sd_return_failed_command, but ensures that no
15430  *		call back into sd_start_cmds will be issued.
15431  *
15432  *     Context: May be called from interrupt context
15433  */
15434 
15435 static void
15436 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15437 	int errcode)
15438 {
15439 	struct sd_xbuf *xp;
15440 
15441 	ASSERT(bp != NULL);
15442 	ASSERT(un != NULL);
15443 	ASSERT(mutex_owned(SD_MUTEX(un)));
15444 	xp = SD_GET_XBUF(bp);
15445 	ASSERT(xp != NULL);
15446 	ASSERT(errcode != 0);
15447 
15448 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15449 	    "sd_return_failed_command_no_restart: entry\n");
15450 
15451 	/*
15452 	 * b_resid could already be nonzero due to a partial data
15453 	 * transfer, so do not change it here.
15454 	 */
15455 	SD_BIOERROR(bp, errcode);
15456 
15457 	/*
15458 	 * If this is the failfast bp, clear it. This can happen if the
15459 	 * failfast bp encounterd a fatal error when we attempted to
15460 	 * re-try it (such as a scsi_transport(9F) failure).  However
15461 	 * we should NOT be in an active failfast state if the failfast
15462 	 * bp is not NULL.
15463 	 */
15464 	if (bp == un->un_failfast_bp) {
15465 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15466 		un->un_failfast_bp = NULL;
15467 	}
15468 
15469 	if (bp == un->un_retry_bp) {
15470 		/*
15471 		 * This command was retried one or more times. Show that we are
15472 		 * done with it, and allow processing of the waitq to resume.
15473 		 */
15474 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15475 		    "sd_return_failed_command_no_restart: "
15476 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15477 		un->un_retry_bp = NULL;
15478 		un->un_retry_statp = NULL;
15479 	}
15480 
15481 	SD_UPDATE_RDWR_STATS(un, bp);
15482 	SD_UPDATE_PARTITION_STATS(un, bp);
15483 
15484 	mutex_exit(SD_MUTEX(un));
15485 
15486 	if (xp->xb_pktp != NULL) {
15487 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15488 		xp->xb_pktp = NULL;
15489 	}
15490 
15491 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15492 
15493 	mutex_enter(SD_MUTEX(un));
15494 
15495 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15496 	    "sd_return_failed_command_no_restart: exit\n");
15497 }
15498 
15499 
15500 /*
15501  *    Function: sd_retry_command
15502  *
15503  * Description: queue up a command for retry, or (optionally) fail it
15504  *		if retry counts are exhausted.
15505  *
15506  *   Arguments: un - Pointer to the sd_lun struct for the target.
15507  *
15508  *		bp - Pointer to the buf for the command to be retried.
15509  *
15510  *		retry_check_flag - Flag to see which (if any) of the retry
15511  *		   counts should be decremented/checked. If the indicated
15512  *		   retry count is exhausted, then the command will not be
15513  *		   retried; it will be failed instead. This should use a
15514  *		   value equal to one of the following:
15515  *
15516  *			SD_RETRIES_NOCHECK
15517  *			SD_RESD_RETRIES_STANDARD
15518  *			SD_RETRIES_VICTIM
15519  *
15520  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15521  *		   if the check should be made to see of FLAG_ISOLATE is set
15522  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15523  *		   not retried, it is simply failed.
15524  *
15525  *		user_funcp - Ptr to function to call before dispatching the
15526  *		   command. May be NULL if no action needs to be performed.
15527  *		   (Primarily intended for printing messages.)
15528  *
15529  *		user_arg - Optional argument to be passed along to
15530  *		   the user_funcp call.
15531  *
15532  *		failure_code - errno return code to set in the bp if the
15533  *		   command is going to be failed.
15534  *
15535  *		retry_delay - Retry delay interval in (clock_t) units. May
15536  *		   be zero which indicates that the retry should be retried
15537  *		   immediately (ie, without an intervening delay).
15538  *
15539  *		statp - Ptr to kstat function to be updated if the command
15540  *		   is queued for a delayed retry. May be NULL if no kstat
15541  *		   update is desired.
15542  *
15543  *     Context: May be called from interupt context.
15544  */
15545 
15546 static void
15547 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15548 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15549 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15550 	void (*statp)(kstat_io_t *))
15551 {
15552 	struct sd_xbuf	*xp;
15553 	struct scsi_pkt	*pktp;
15554 
15555 	ASSERT(un != NULL);
15556 	ASSERT(mutex_owned(SD_MUTEX(un)));
15557 	ASSERT(bp != NULL);
15558 	xp = SD_GET_XBUF(bp);
15559 	ASSERT(xp != NULL);
15560 	pktp = SD_GET_PKTP(bp);
15561 	ASSERT(pktp != NULL);
15562 
15563 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15564 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15565 
15566 	/*
15567 	 * If we are syncing or dumping, fail the command to avoid
15568 	 * recursively calling back into scsi_transport().
15569 	 */
15570 	if (ddi_in_panic()) {
15571 		goto fail_command_no_log;
15572 	}
15573 
15574 	/*
15575 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15576 	 * log an error and fail the command.
15577 	 */
15578 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15579 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15580 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15581 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15582 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15583 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15584 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15585 		goto fail_command;
15586 	}
15587 
15588 	/*
15589 	 * If we are suspended, then put the command onto head of the
15590 	 * wait queue since we don't want to start more commands.
15591 	 */
15592 	switch (un->un_state) {
15593 	case SD_STATE_SUSPENDED:
15594 	case SD_STATE_DUMPING:
15595 		bp->av_forw = un->un_waitq_headp;
15596 		un->un_waitq_headp = bp;
15597 		if (un->un_waitq_tailp == NULL) {
15598 			un->un_waitq_tailp = bp;
15599 		}
15600 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15601 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15602 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15603 		return;
15604 	default:
15605 		break;
15606 	}
15607 
15608 	/*
15609 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15610 	 * is set; if it is then we do not want to retry the command.
15611 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15612 	 */
15613 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15614 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15615 			goto fail_command;
15616 		}
15617 	}
15618 
15619 
15620 	/*
15621 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15622 	 * command timeout or a selection timeout has occurred. This means
15623 	 * that we were unable to establish an kind of communication with
15624 	 * the target, and subsequent retries and/or commands are likely
15625 	 * to encounter similar results and take a long time to complete.
15626 	 *
15627 	 * If this is a failfast error condition, we need to update the
15628 	 * failfast state, even if this bp does not have B_FAILFAST set.
15629 	 */
15630 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15631 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15632 			ASSERT(un->un_failfast_bp == NULL);
15633 			/*
15634 			 * If we are already in the active failfast state, and
15635 			 * another failfast error condition has been detected,
15636 			 * then fail this command if it has B_FAILFAST set.
15637 			 * If B_FAILFAST is clear, then maintain the legacy
15638 			 * behavior of retrying heroically, even tho this will
15639 			 * take a lot more time to fail the command.
15640 			 */
15641 			if (bp->b_flags & B_FAILFAST) {
15642 				goto fail_command;
15643 			}
15644 		} else {
15645 			/*
15646 			 * We're not in the active failfast state, but we
15647 			 * have a failfast error condition, so we must begin
15648 			 * transition to the next state. We do this regardless
15649 			 * of whether or not this bp has B_FAILFAST set.
15650 			 */
15651 			if (un->un_failfast_bp == NULL) {
15652 				/*
15653 				 * This is the first bp to meet a failfast
15654 				 * condition so save it on un_failfast_bp &
15655 				 * do normal retry processing. Do not enter
15656 				 * active failfast state yet. This marks
15657 				 * entry into the "failfast pending" state.
15658 				 */
15659 				un->un_failfast_bp = bp;
15660 
15661 			} else if (un->un_failfast_bp == bp) {
15662 				/*
15663 				 * This is the second time *this* bp has
15664 				 * encountered a failfast error condition,
15665 				 * so enter active failfast state & flush
15666 				 * queues as appropriate.
15667 				 */
15668 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15669 				un->un_failfast_bp = NULL;
15670 				sd_failfast_flushq(un);
15671 
15672 				/*
15673 				 * Fail this bp now if B_FAILFAST set;
15674 				 * otherwise continue with retries. (It would
15675 				 * be pretty ironic if this bp succeeded on a
15676 				 * subsequent retry after we just flushed all
15677 				 * the queues).
15678 				 */
15679 				if (bp->b_flags & B_FAILFAST) {
15680 					goto fail_command;
15681 				}
15682 
15683 #if !defined(lint) && !defined(__lint)
15684 			} else {
15685 				/*
15686 				 * If neither of the preceeding conditionals
15687 				 * was true, it means that there is some
15688 				 * *other* bp that has met an inital failfast
15689 				 * condition and is currently either being
15690 				 * retried or is waiting to be retried. In
15691 				 * that case we should perform normal retry
15692 				 * processing on *this* bp, since there is a
15693 				 * chance that the current failfast condition
15694 				 * is transient and recoverable. If that does
15695 				 * not turn out to be the case, then retries
15696 				 * will be cleared when the wait queue is
15697 				 * flushed anyway.
15698 				 */
15699 #endif
15700 			}
15701 		}
15702 	} else {
15703 		/*
15704 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15705 		 * likely were able to at least establish some level of
15706 		 * communication with the target and subsequent commands
15707 		 * and/or retries are likely to get through to the target,
15708 		 * In this case we want to be aggressive about clearing
15709 		 * the failfast state. Note that this does not affect
15710 		 * the "failfast pending" condition.
15711 		 */
15712 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15713 	}
15714 
15715 
15716 	/*
15717 	 * Check the specified retry count to see if we can still do
15718 	 * any retries with this pkt before we should fail it.
15719 	 */
15720 	switch (retry_check_flag & SD_RETRIES_MASK) {
15721 	case SD_RETRIES_VICTIM:
15722 		/*
15723 		 * Check the victim retry count. If exhausted, then fall
15724 		 * thru & check against the standard retry count.
15725 		 */
15726 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15727 			/* Increment count & proceed with the retry */
15728 			xp->xb_victim_retry_count++;
15729 			break;
15730 		}
15731 		/* Victim retries exhausted, fall back to std. retries... */
15732 		/* FALLTHRU */
15733 
15734 	case SD_RETRIES_STANDARD:
15735 		if (xp->xb_retry_count >= un->un_retry_count) {
15736 			/* Retries exhausted, fail the command */
15737 			SD_TRACE(SD_LOG_IO_CORE, un,
15738 			    "sd_retry_command: retries exhausted!\n");
15739 			/*
15740 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15741 			 * commands with nonzero pkt_resid.
15742 			 */
15743 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15744 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15745 			    (pktp->pkt_resid != 0)) {
15746 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15747 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15748 					SD_UPDATE_B_RESID(bp, pktp);
15749 				}
15750 			}
15751 			goto fail_command;
15752 		}
15753 		xp->xb_retry_count++;
15754 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15755 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15756 		break;
15757 
15758 	case SD_RETRIES_UA:
15759 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15760 			/* Retries exhausted, fail the command */
15761 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15762 			    "Unit Attention retries exhausted. "
15763 			    "Check the target.\n");
15764 			goto fail_command;
15765 		}
15766 		xp->xb_ua_retry_count++;
15767 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15768 		    "sd_retry_command: retry count:%d\n",
15769 			xp->xb_ua_retry_count);
15770 		break;
15771 
15772 	case SD_RETRIES_BUSY:
15773 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15774 			/* Retries exhausted, fail the command */
15775 			SD_TRACE(SD_LOG_IO_CORE, un,
15776 			    "sd_retry_command: retries exhausted!\n");
15777 			goto fail_command;
15778 		}
15779 		xp->xb_retry_count++;
15780 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15781 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15782 		break;
15783 
15784 	case SD_RETRIES_NOCHECK:
15785 	default:
15786 		/* No retry count to check. Just proceed with the retry */
15787 		break;
15788 	}
15789 
15790 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15791 
15792 	/*
15793 	 * If we were given a zero timeout, we must attempt to retry the
15794 	 * command immediately (ie, without a delay).
15795 	 */
15796 	if (retry_delay == 0) {
15797 		/*
15798 		 * Check some limiting conditions to see if we can actually
15799 		 * do the immediate retry.  If we cannot, then we must
15800 		 * fall back to queueing up a delayed retry.
15801 		 */
15802 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15803 			/*
15804 			 * We are at the throttle limit for the target,
15805 			 * fall back to delayed retry.
15806 			 */
15807 			retry_delay = SD_BSY_TIMEOUT;
15808 			statp = kstat_waitq_enter;
15809 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15810 			    "sd_retry_command: immed. retry hit "
15811 			    "throttle!\n");
15812 		} else {
15813 			/*
15814 			 * We're clear to proceed with the immediate retry.
15815 			 * First call the user-provided function (if any)
15816 			 */
15817 			if (user_funcp != NULL) {
15818 				(*user_funcp)(un, bp, user_arg,
15819 				    SD_IMMEDIATE_RETRY_ISSUED);
15820 #ifdef __lock_lint
15821 				sd_print_incomplete_msg(un, bp, user_arg,
15822 				    SD_IMMEDIATE_RETRY_ISSUED);
15823 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15824 				    SD_IMMEDIATE_RETRY_ISSUED);
15825 				sd_print_sense_failed_msg(un, bp, user_arg,
15826 				    SD_IMMEDIATE_RETRY_ISSUED);
15827 #endif
15828 			}
15829 
15830 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15831 			    "sd_retry_command: issuing immediate retry\n");
15832 
15833 			/*
15834 			 * Call sd_start_cmds() to transport the command to
15835 			 * the target.
15836 			 */
15837 			sd_start_cmds(un, bp);
15838 
15839 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15840 			    "sd_retry_command exit\n");
15841 			return;
15842 		}
15843 	}
15844 
15845 	/*
15846 	 * Set up to retry the command after a delay.
15847 	 * First call the user-provided function (if any)
15848 	 */
15849 	if (user_funcp != NULL) {
15850 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15851 	}
15852 
15853 	sd_set_retry_bp(un, bp, retry_delay, statp);
15854 
15855 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15856 	return;
15857 
15858 fail_command:
15859 
15860 	if (user_funcp != NULL) {
15861 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15862 	}
15863 
15864 fail_command_no_log:
15865 
15866 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15867 	    "sd_retry_command: returning failed command\n");
15868 
15869 	sd_return_failed_command(un, bp, failure_code);
15870 
15871 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15872 }
15873 
15874 
15875 /*
15876  *    Function: sd_set_retry_bp
15877  *
15878  * Description: Set up the given bp for retry.
15879  *
15880  *   Arguments: un - ptr to associated softstate
15881  *		bp - ptr to buf(9S) for the command
15882  *		retry_delay - time interval before issuing retry (may be 0)
15883  *		statp - optional pointer to kstat function
15884  *
15885  *     Context: May be called under interrupt context
15886  */
15887 
15888 static void
15889 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15890 	void (*statp)(kstat_io_t *))
15891 {
15892 	ASSERT(un != NULL);
15893 	ASSERT(mutex_owned(SD_MUTEX(un)));
15894 	ASSERT(bp != NULL);
15895 
15896 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15897 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15898 
15899 	/*
15900 	 * Indicate that the command is being retried. This will not allow any
15901 	 * other commands on the wait queue to be transported to the target
15902 	 * until this command has been completed (success or failure). The
15903 	 * "retry command" is not transported to the target until the given
15904 	 * time delay expires, unless the user specified a 0 retry_delay.
15905 	 *
15906 	 * Note: the timeout(9F) callback routine is what actually calls
15907 	 * sd_start_cmds() to transport the command, with the exception of a
15908 	 * zero retry_delay. The only current implementor of a zero retry delay
15909 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15910 	 */
15911 	if (un->un_retry_bp == NULL) {
15912 		ASSERT(un->un_retry_statp == NULL);
15913 		un->un_retry_bp = bp;
15914 
15915 		/*
15916 		 * If the user has not specified a delay the command should
15917 		 * be queued and no timeout should be scheduled.
15918 		 */
15919 		if (retry_delay == 0) {
15920 			/*
15921 			 * Save the kstat pointer that will be used in the
15922 			 * call to SD_UPDATE_KSTATS() below, so that
15923 			 * sd_start_cmds() can correctly decrement the waitq
15924 			 * count when it is time to transport this command.
15925 			 */
15926 			un->un_retry_statp = statp;
15927 			goto done;
15928 		}
15929 	}
15930 
15931 	if (un->un_retry_bp == bp) {
15932 		/*
15933 		 * Save the kstat pointer that will be used in the call to
15934 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15935 		 * correctly decrement the waitq count when it is time to
15936 		 * transport this command.
15937 		 */
15938 		un->un_retry_statp = statp;
15939 
15940 		/*
15941 		 * Schedule a timeout if:
15942 		 *   1) The user has specified a delay.
15943 		 *   2) There is not a START_STOP_UNIT callback pending.
15944 		 *
15945 		 * If no delay has been specified, then it is up to the caller
15946 		 * to ensure that IO processing continues without stalling.
15947 		 * Effectively, this means that the caller will issue the
15948 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15949 		 * callback does this after the START STOP UNIT command has
15950 		 * completed. In either of these cases we should not schedule
15951 		 * a timeout callback here.  Also don't schedule the timeout if
15952 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15953 		 */
15954 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15955 		    (un->un_direct_priority_timeid == NULL)) {
15956 			un->un_retry_timeid =
15957 			    timeout(sd_start_retry_command, un, retry_delay);
15958 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15959 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15960 			    " bp:0x%p un_retry_timeid:0x%p\n",
15961 			    un, bp, un->un_retry_timeid);
15962 		}
15963 	} else {
15964 		/*
15965 		 * We only get in here if there is already another command
15966 		 * waiting to be retried.  In this case, we just put the
15967 		 * given command onto the wait queue, so it can be transported
15968 		 * after the current retry command has completed.
15969 		 *
15970 		 * Also we have to make sure that if the command at the head
15971 		 * of the wait queue is the un_failfast_bp, that we do not
15972 		 * put ahead of it any other commands that are to be retried.
15973 		 */
15974 		if ((un->un_failfast_bp != NULL) &&
15975 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15976 			/*
15977 			 * Enqueue this command AFTER the first command on
15978 			 * the wait queue (which is also un_failfast_bp).
15979 			 */
15980 			bp->av_forw = un->un_waitq_headp->av_forw;
15981 			un->un_waitq_headp->av_forw = bp;
15982 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15983 				un->un_waitq_tailp = bp;
15984 			}
15985 		} else {
15986 			/* Enqueue this command at the head of the waitq. */
15987 			bp->av_forw = un->un_waitq_headp;
15988 			un->un_waitq_headp = bp;
15989 			if (un->un_waitq_tailp == NULL) {
15990 				un->un_waitq_tailp = bp;
15991 			}
15992 		}
15993 
15994 		if (statp == NULL) {
15995 			statp = kstat_waitq_enter;
15996 		}
15997 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15998 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15999 	}
16000 
16001 done:
16002 	if (statp != NULL) {
16003 		SD_UPDATE_KSTATS(un, statp, bp);
16004 	}
16005 
16006 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16007 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16008 }
16009 
16010 
16011 /*
16012  *    Function: sd_start_retry_command
16013  *
16014  * Description: Start the command that has been waiting on the target's
16015  *		retry queue.  Called from timeout(9F) context after the
16016  *		retry delay interval has expired.
16017  *
16018  *   Arguments: arg - pointer to associated softstate for the device.
16019  *
16020  *     Context: timeout(9F) thread context.  May not sleep.
16021  */
16022 
16023 static void
16024 sd_start_retry_command(void *arg)
16025 {
16026 	struct sd_lun *un = arg;
16027 
16028 	ASSERT(un != NULL);
16029 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16030 
16031 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16032 	    "sd_start_retry_command: entry\n");
16033 
16034 	mutex_enter(SD_MUTEX(un));
16035 
16036 	un->un_retry_timeid = NULL;
16037 
16038 	if (un->un_retry_bp != NULL) {
16039 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16040 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16041 		    un, un->un_retry_bp);
16042 		sd_start_cmds(un, un->un_retry_bp);
16043 	}
16044 
16045 	mutex_exit(SD_MUTEX(un));
16046 
16047 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16048 	    "sd_start_retry_command: exit\n");
16049 }
16050 
16051 
16052 /*
16053  *    Function: sd_start_direct_priority_command
16054  *
16055  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16056  *		received TRAN_BUSY when we called scsi_transport() to send it
16057  *		to the underlying HBA. This function is called from timeout(9F)
16058  *		context after the delay interval has expired.
16059  *
16060  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16061  *
16062  *     Context: timeout(9F) thread context.  May not sleep.
16063  */
16064 
16065 static void
16066 sd_start_direct_priority_command(void *arg)
16067 {
16068 	struct buf	*priority_bp = arg;
16069 	struct sd_lun	*un;
16070 
16071 	ASSERT(priority_bp != NULL);
16072 	un = SD_GET_UN(priority_bp);
16073 	ASSERT(un != NULL);
16074 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16075 
16076 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16077 	    "sd_start_direct_priority_command: entry\n");
16078 
16079 	mutex_enter(SD_MUTEX(un));
16080 	un->un_direct_priority_timeid = NULL;
16081 	sd_start_cmds(un, priority_bp);
16082 	mutex_exit(SD_MUTEX(un));
16083 
16084 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16085 	    "sd_start_direct_priority_command: exit\n");
16086 }
16087 
16088 
16089 /*
16090  *    Function: sd_send_request_sense_command
16091  *
16092  * Description: Sends a REQUEST SENSE command to the target
16093  *
16094  *     Context: May be called from interrupt context.
16095  */
16096 
16097 static void
16098 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16099 	struct scsi_pkt *pktp)
16100 {
16101 	ASSERT(bp != NULL);
16102 	ASSERT(un != NULL);
16103 	ASSERT(mutex_owned(SD_MUTEX(un)));
16104 
16105 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16106 	    "entry: buf:0x%p\n", bp);
16107 
16108 	/*
16109 	 * If we are syncing or dumping, then fail the command to avoid a
16110 	 * recursive callback into scsi_transport(). Also fail the command
16111 	 * if we are suspended (legacy behavior).
16112 	 */
16113 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16114 	    (un->un_state == SD_STATE_DUMPING)) {
16115 		sd_return_failed_command(un, bp, EIO);
16116 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16117 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16118 		return;
16119 	}
16120 
16121 	/*
16122 	 * Retry the failed command and don't issue the request sense if:
16123 	 *    1) the sense buf is busy
16124 	 *    2) we have 1 or more outstanding commands on the target
16125 	 *    (the sense data will be cleared or invalidated any way)
16126 	 *
16127 	 * Note: There could be an issue with not checking a retry limit here,
16128 	 * the problem is determining which retry limit to check.
16129 	 */
16130 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16131 		/* Don't retry if the command is flagged as non-retryable */
16132 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16133 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16134 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
16135 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16136 			    "sd_send_request_sense_command: "
16137 			    "at full throttle, retrying exit\n");
16138 		} else {
16139 			sd_return_failed_command(un, bp, EIO);
16140 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16141 			    "sd_send_request_sense_command: "
16142 			    "at full throttle, non-retryable exit\n");
16143 		}
16144 		return;
16145 	}
16146 
16147 	sd_mark_rqs_busy(un, bp);
16148 	sd_start_cmds(un, un->un_rqs_bp);
16149 
16150 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16151 	    "sd_send_request_sense_command: exit\n");
16152 }
16153 
16154 
16155 /*
16156  *    Function: sd_mark_rqs_busy
16157  *
16158  * Description: Indicate that the request sense bp for this instance is
16159  *		in use.
16160  *
16161  *     Context: May be called under interrupt context
16162  */
16163 
16164 static void
16165 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16166 {
16167 	struct sd_xbuf	*sense_xp;
16168 
16169 	ASSERT(un != NULL);
16170 	ASSERT(bp != NULL);
16171 	ASSERT(mutex_owned(SD_MUTEX(un)));
16172 	ASSERT(un->un_sense_isbusy == 0);
16173 
16174 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16175 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16176 
16177 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16178 	ASSERT(sense_xp != NULL);
16179 
16180 	SD_INFO(SD_LOG_IO, un,
16181 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16182 
16183 	ASSERT(sense_xp->xb_pktp != NULL);
16184 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16185 	    == (FLAG_SENSING | FLAG_HEAD));
16186 
16187 	un->un_sense_isbusy = 1;
16188 	un->un_rqs_bp->b_resid = 0;
16189 	sense_xp->xb_pktp->pkt_resid  = 0;
16190 	sense_xp->xb_pktp->pkt_reason = 0;
16191 
16192 	/* So we can get back the bp at interrupt time! */
16193 	sense_xp->xb_sense_bp = bp;
16194 
16195 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16196 
16197 	/*
16198 	 * Mark this buf as awaiting sense data. (This is already set in
16199 	 * the pkt_flags for the RQS packet.)
16200 	 */
16201 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16202 
16203 	sense_xp->xb_retry_count	= 0;
16204 	sense_xp->xb_victim_retry_count = 0;
16205 	sense_xp->xb_ua_retry_count	= 0;
16206 	sense_xp->xb_dma_resid  = 0;
16207 
16208 	/* Clean up the fields for auto-request sense */
16209 	sense_xp->xb_sense_status = 0;
16210 	sense_xp->xb_sense_state  = 0;
16211 	sense_xp->xb_sense_resid  = 0;
16212 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16213 
16214 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16215 }
16216 
16217 
16218 /*
16219  *    Function: sd_mark_rqs_idle
16220  *
16221  * Description: SD_MUTEX must be held continuously through this routine
16222  *		to prevent reuse of the rqs struct before the caller can
16223  *		complete it's processing.
16224  *
16225  * Return Code: Pointer to the RQS buf
16226  *
16227  *     Context: May be called under interrupt context
16228  */
16229 
16230 static struct buf *
16231 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16232 {
16233 	struct buf *bp;
16234 	ASSERT(un != NULL);
16235 	ASSERT(sense_xp != NULL);
16236 	ASSERT(mutex_owned(SD_MUTEX(un)));
16237 	ASSERT(un->un_sense_isbusy != 0);
16238 
16239 	un->un_sense_isbusy = 0;
16240 	bp = sense_xp->xb_sense_bp;
16241 	sense_xp->xb_sense_bp = NULL;
16242 
16243 	/* This pkt is no longer interested in getting sense data */
16244 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16245 
16246 	return (bp);
16247 }
16248 
16249 
16250 
16251 /*
16252  *    Function: sd_alloc_rqs
16253  *
16254  * Description: Set up the unit to receive auto request sense data
16255  *
16256  * Return Code: DDI_SUCCESS or DDI_FAILURE
16257  *
16258  *     Context: Called under attach(9E) context
16259  */
16260 
16261 static int
16262 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16263 {
16264 	struct sd_xbuf *xp;
16265 
16266 	ASSERT(un != NULL);
16267 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16268 	ASSERT(un->un_rqs_bp == NULL);
16269 	ASSERT(un->un_rqs_pktp == NULL);
16270 
16271 	/*
16272 	 * First allocate the required buf and scsi_pkt structs, then set up
16273 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16274 	 */
16275 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16276 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16277 	if (un->un_rqs_bp == NULL) {
16278 		return (DDI_FAILURE);
16279 	}
16280 
16281 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16282 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16283 
16284 	if (un->un_rqs_pktp == NULL) {
16285 		sd_free_rqs(un);
16286 		return (DDI_FAILURE);
16287 	}
16288 
16289 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16290 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16291 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
16292 
16293 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16294 
16295 	/* Set up the other needed members in the ARQ scsi_pkt. */
16296 	un->un_rqs_pktp->pkt_comp   = sdintr;
16297 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16298 	un->un_rqs_pktp->pkt_flags |=
16299 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16300 
16301 	/*
16302 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16303 	 * provide any intpkt, destroypkt routines as we take care of
16304 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16305 	 */
16306 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16307 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16308 	xp->xb_pktp = un->un_rqs_pktp;
16309 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16310 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16311 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16312 
16313 	/*
16314 	 * Save the pointer to the request sense private bp so it can
16315 	 * be retrieved in sdintr.
16316 	 */
16317 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16318 	ASSERT(un->un_rqs_bp->b_private == xp);
16319 
16320 	/*
16321 	 * See if the HBA supports auto-request sense for the specified
16322 	 * target/lun. If it does, then try to enable it (if not already
16323 	 * enabled).
16324 	 *
16325 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16326 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16327 	 * return success.  However, in both of these cases ARQ is always
16328 	 * enabled and scsi_ifgetcap will always return true. The best approach
16329 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16330 	 *
16331 	 * The 3rd case is the HBA (adp) always return enabled on
16332 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16333 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16334 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16335 	 */
16336 
16337 	if (un->un_f_is_fibre == TRUE) {
16338 		un->un_f_arq_enabled = TRUE;
16339 	} else {
16340 #if defined(__i386) || defined(__amd64)
16341 		/*
16342 		 * Circumvent the Adaptec bug, remove this code when
16343 		 * the bug is fixed
16344 		 */
16345 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16346 #endif
16347 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16348 		case 0:
16349 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16350 				"sd_alloc_rqs: HBA supports ARQ\n");
16351 			/*
16352 			 * ARQ is supported by this HBA but currently is not
16353 			 * enabled. Attempt to enable it and if successful then
16354 			 * mark this instance as ARQ enabled.
16355 			 */
16356 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16357 				== 1) {
16358 				/* Successfully enabled ARQ in the HBA */
16359 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16360 					"sd_alloc_rqs: ARQ enabled\n");
16361 				un->un_f_arq_enabled = TRUE;
16362 			} else {
16363 				/* Could not enable ARQ in the HBA */
16364 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16365 				"sd_alloc_rqs: failed ARQ enable\n");
16366 				un->un_f_arq_enabled = FALSE;
16367 			}
16368 			break;
16369 		case 1:
16370 			/*
16371 			 * ARQ is supported by this HBA and is already enabled.
16372 			 * Just mark ARQ as enabled for this instance.
16373 			 */
16374 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16375 				"sd_alloc_rqs: ARQ already enabled\n");
16376 			un->un_f_arq_enabled = TRUE;
16377 			break;
16378 		default:
16379 			/*
16380 			 * ARQ is not supported by this HBA; disable it for this
16381 			 * instance.
16382 			 */
16383 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16384 				"sd_alloc_rqs: HBA does not support ARQ\n");
16385 			un->un_f_arq_enabled = FALSE;
16386 			break;
16387 		}
16388 	}
16389 
16390 	return (DDI_SUCCESS);
16391 }
16392 
16393 
16394 /*
16395  *    Function: sd_free_rqs
16396  *
16397  * Description: Cleanup for the pre-instance RQS command.
16398  *
16399  *     Context: Kernel thread context
16400  */
16401 
16402 static void
16403 sd_free_rqs(struct sd_lun *un)
16404 {
16405 	ASSERT(un != NULL);
16406 
16407 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16408 
16409 	/*
16410 	 * If consistent memory is bound to a scsi_pkt, the pkt
16411 	 * has to be destroyed *before* freeing the consistent memory.
16412 	 * Don't change the sequence of this operations.
16413 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16414 	 * after it was freed in scsi_free_consistent_buf().
16415 	 */
16416 	if (un->un_rqs_pktp != NULL) {
16417 		scsi_destroy_pkt(un->un_rqs_pktp);
16418 		un->un_rqs_pktp = NULL;
16419 	}
16420 
16421 	if (un->un_rqs_bp != NULL) {
16422 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16423 		scsi_free_consistent_buf(un->un_rqs_bp);
16424 		un->un_rqs_bp = NULL;
16425 	}
16426 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16427 }
16428 
16429 
16430 
16431 /*
16432  *    Function: sd_reduce_throttle
16433  *
16434  * Description: Reduces the maximun # of outstanding commands on a
16435  *		target to the current number of outstanding commands.
16436  *		Queues a tiemout(9F) callback to restore the limit
16437  *		after a specified interval has elapsed.
16438  *		Typically used when we get a TRAN_BUSY return code
16439  *		back from scsi_transport().
16440  *
16441  *   Arguments: un - ptr to the sd_lun softstate struct
16442  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16443  *
16444  *     Context: May be called from interrupt context
16445  */
16446 
16447 static void
16448 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16449 {
16450 	ASSERT(un != NULL);
16451 	ASSERT(mutex_owned(SD_MUTEX(un)));
16452 	ASSERT(un->un_ncmds_in_transport >= 0);
16453 
16454 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16455 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16456 	    un, un->un_throttle, un->un_ncmds_in_transport);
16457 
16458 	if (un->un_throttle > 1) {
16459 		if (un->un_f_use_adaptive_throttle == TRUE) {
16460 			switch (throttle_type) {
16461 			case SD_THROTTLE_TRAN_BUSY:
16462 				if (un->un_busy_throttle == 0) {
16463 					un->un_busy_throttle = un->un_throttle;
16464 				}
16465 				break;
16466 			case SD_THROTTLE_QFULL:
16467 				un->un_busy_throttle = 0;
16468 				break;
16469 			default:
16470 				ASSERT(FALSE);
16471 			}
16472 
16473 			if (un->un_ncmds_in_transport > 0) {
16474 			    un->un_throttle = un->un_ncmds_in_transport;
16475 			}
16476 
16477 		} else {
16478 			if (un->un_ncmds_in_transport == 0) {
16479 				un->un_throttle = 1;
16480 			} else {
16481 				un->un_throttle = un->un_ncmds_in_transport;
16482 			}
16483 		}
16484 	}
16485 
16486 	/* Reschedule the timeout if none is currently active */
16487 	if (un->un_reset_throttle_timeid == NULL) {
16488 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16489 		    un, SD_THROTTLE_RESET_INTERVAL);
16490 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16491 		    "sd_reduce_throttle: timeout scheduled!\n");
16492 	}
16493 
16494 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16495 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16496 }
16497 
16498 
16499 
16500 /*
16501  *    Function: sd_restore_throttle
16502  *
16503  * Description: Callback function for timeout(9F).  Resets the current
16504  *		value of un->un_throttle to its default.
16505  *
16506  *   Arguments: arg - pointer to associated softstate for the device.
16507  *
16508  *     Context: May be called from interrupt context
16509  */
16510 
16511 static void
16512 sd_restore_throttle(void *arg)
16513 {
16514 	struct sd_lun	*un = arg;
16515 
16516 	ASSERT(un != NULL);
16517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16518 
16519 	mutex_enter(SD_MUTEX(un));
16520 
16521 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16522 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16523 
16524 	un->un_reset_throttle_timeid = NULL;
16525 
16526 	if (un->un_f_use_adaptive_throttle == TRUE) {
16527 		/*
16528 		 * If un_busy_throttle is nonzero, then it contains the
16529 		 * value that un_throttle was when we got a TRAN_BUSY back
16530 		 * from scsi_transport(). We want to revert back to this
16531 		 * value.
16532 		 *
16533 		 * In the QFULL case, the throttle limit will incrementally
16534 		 * increase until it reaches max throttle.
16535 		 */
16536 		if (un->un_busy_throttle > 0) {
16537 			un->un_throttle = un->un_busy_throttle;
16538 			un->un_busy_throttle = 0;
16539 		} else {
16540 			/*
16541 			 * increase throttle by 10% open gate slowly, schedule
16542 			 * another restore if saved throttle has not been
16543 			 * reached
16544 			 */
16545 			short throttle;
16546 			if (sd_qfull_throttle_enable) {
16547 				throttle = un->un_throttle +
16548 				    max((un->un_throttle / 10), 1);
16549 				un->un_throttle =
16550 				    (throttle < un->un_saved_throttle) ?
16551 				    throttle : un->un_saved_throttle;
16552 				if (un->un_throttle < un->un_saved_throttle) {
16553 				    un->un_reset_throttle_timeid =
16554 					timeout(sd_restore_throttle,
16555 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16556 				}
16557 			}
16558 		}
16559 
16560 		/*
16561 		 * If un_throttle has fallen below the low-water mark, we
16562 		 * restore the maximum value here (and allow it to ratchet
16563 		 * down again if necessary).
16564 		 */
16565 		if (un->un_throttle < un->un_min_throttle) {
16566 			un->un_throttle = un->un_saved_throttle;
16567 		}
16568 	} else {
16569 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16570 		    "restoring limit from 0x%x to 0x%x\n",
16571 		    un->un_throttle, un->un_saved_throttle);
16572 		un->un_throttle = un->un_saved_throttle;
16573 	}
16574 
16575 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16576 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16577 
16578 	sd_start_cmds(un, NULL);
16579 
16580 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16581 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16582 	    un, un->un_throttle);
16583 
16584 	mutex_exit(SD_MUTEX(un));
16585 
16586 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16587 }
16588 
16589 /*
16590  *    Function: sdrunout
16591  *
16592  * Description: Callback routine for scsi_init_pkt when a resource allocation
16593  *		fails.
16594  *
16595  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16596  *		soft state instance.
16597  *
16598  * Return Code: The scsi_init_pkt routine allows for the callback function to
16599  *		return a 0 indicating the callback should be rescheduled or a 1
16600  *		indicating not to reschedule. This routine always returns 1
16601  *		because the driver always provides a callback function to
16602  *		scsi_init_pkt. This results in a callback always being scheduled
16603  *		(via the scsi_init_pkt callback implementation) if a resource
16604  *		failure occurs.
16605  *
16606  *     Context: This callback function may not block or call routines that block
16607  *
16608  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16609  *		request persisting at the head of the list which cannot be
16610  *		satisfied even after multiple retries. In the future the driver
16611  *		may implement some time of maximum runout count before failing
16612  *		an I/O.
16613  */
16614 
16615 static int
16616 sdrunout(caddr_t arg)
16617 {
16618 	struct sd_lun	*un = (struct sd_lun *)arg;
16619 
16620 	ASSERT(un != NULL);
16621 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16622 
16623 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16624 
16625 	mutex_enter(SD_MUTEX(un));
16626 	sd_start_cmds(un, NULL);
16627 	mutex_exit(SD_MUTEX(un));
16628 	/*
16629 	 * This callback routine always returns 1 (i.e. do not reschedule)
16630 	 * because we always specify sdrunout as the callback handler for
16631 	 * scsi_init_pkt inside the call to sd_start_cmds.
16632 	 */
16633 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16634 	return (1);
16635 }
16636 
16637 
16638 /*
16639  *    Function: sdintr
16640  *
16641  * Description: Completion callback routine for scsi_pkt(9S) structs
16642  *		sent to the HBA driver via scsi_transport(9F).
16643  *
16644  *     Context: Interrupt context
16645  */
16646 
16647 static void
16648 sdintr(struct scsi_pkt *pktp)
16649 {
16650 	struct buf	*bp;
16651 	struct sd_xbuf	*xp;
16652 	struct sd_lun	*un;
16653 
16654 	ASSERT(pktp != NULL);
16655 	bp = (struct buf *)pktp->pkt_private;
16656 	ASSERT(bp != NULL);
16657 	xp = SD_GET_XBUF(bp);
16658 	ASSERT(xp != NULL);
16659 	ASSERT(xp->xb_pktp != NULL);
16660 	un = SD_GET_UN(bp);
16661 	ASSERT(un != NULL);
16662 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16663 
16664 #ifdef SD_FAULT_INJECTION
16665 
16666 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16667 	/* SD FaultInjection */
16668 	sd_faultinjection(pktp);
16669 
16670 #endif /* SD_FAULT_INJECTION */
16671 
16672 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16673 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16674 
16675 	mutex_enter(SD_MUTEX(un));
16676 
16677 	/* Reduce the count of the #commands currently in transport */
16678 	un->un_ncmds_in_transport--;
16679 	ASSERT(un->un_ncmds_in_transport >= 0);
16680 
16681 	/* Increment counter to indicate that the callback routine is active */
16682 	un->un_in_callback++;
16683 
16684 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16685 
16686 #ifdef	SDDEBUG
16687 	if (bp == un->un_retry_bp) {
16688 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16689 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16690 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16691 	}
16692 #endif
16693 
16694 	/*
16695 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16696 	 */
16697 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16698 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16699 			    "Device is gone\n");
16700 		sd_return_failed_command(un, bp, EIO);
16701 		goto exit;
16702 	}
16703 
16704 	/*
16705 	 * First see if the pkt has auto-request sense data with it....
16706 	 * Look at the packet state first so we don't take a performance
16707 	 * hit looking at the arq enabled flag unless absolutely necessary.
16708 	 */
16709 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16710 	    (un->un_f_arq_enabled == TRUE)) {
16711 		/*
16712 		 * The HBA did an auto request sense for this command so check
16713 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16714 		 * driver command that should not be retried.
16715 		 */
16716 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16717 			/*
16718 			 * Save the relevant sense info into the xp for the
16719 			 * original cmd.
16720 			 */
16721 			struct scsi_arq_status *asp;
16722 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16723 			xp->xb_sense_status =
16724 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16725 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16726 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16727 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16728 			    min(sizeof (struct scsi_extended_sense),
16729 			    SENSE_LENGTH));
16730 
16731 			/* fail the command */
16732 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16733 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16734 			sd_return_failed_command(un, bp, EIO);
16735 			goto exit;
16736 		}
16737 
16738 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16739 		/*
16740 		 * We want to either retry or fail this command, so free
16741 		 * the DMA resources here.  If we retry the command then
16742 		 * the DMA resources will be reallocated in sd_start_cmds().
16743 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16744 		 * causes the *entire* transfer to start over again from the
16745 		 * beginning of the request, even for PARTIAL chunks that
16746 		 * have already transferred successfully.
16747 		 */
16748 		if ((un->un_f_is_fibre == TRUE) &&
16749 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16750 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16751 			scsi_dmafree(pktp);
16752 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16753 		}
16754 #endif
16755 
16756 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16757 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16758 
16759 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16760 		goto exit;
16761 	}
16762 
16763 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16764 	if (pktp->pkt_flags & FLAG_SENSING)  {
16765 		/* This pktp is from the unit's REQUEST_SENSE command */
16766 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16767 		    "sdintr: sd_handle_request_sense\n");
16768 		sd_handle_request_sense(un, bp, xp, pktp);
16769 		goto exit;
16770 	}
16771 
16772 	/*
16773 	 * Check to see if the command successfully completed as requested;
16774 	 * this is the most common case (and also the hot performance path).
16775 	 *
16776 	 * Requirements for successful completion are:
16777 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16778 	 * In addition:
16779 	 * - A residual of zero indicates successful completion no matter what
16780 	 *   the command is.
16781 	 * - If the residual is not zero and the command is not a read or
16782 	 *   write, then it's still defined as successful completion. In other
16783 	 *   words, if the command is a read or write the residual must be
16784 	 *   zero for successful completion.
16785 	 * - If the residual is not zero and the command is a read or
16786 	 *   write, and it's a USCSICMD, then it's still defined as
16787 	 *   successful completion.
16788 	 */
16789 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16790 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16791 
16792 		/*
16793 		 * Since this command is returned with a good status, we
16794 		 * can reset the count for Sonoma failover.
16795 		 */
16796 		un->un_sonoma_failure_count = 0;
16797 
16798 		/*
16799 		 * Return all USCSI commands on good status
16800 		 */
16801 		if (pktp->pkt_resid == 0) {
16802 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16803 			    "sdintr: returning command for resid == 0\n");
16804 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16805 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16806 			SD_UPDATE_B_RESID(bp, pktp);
16807 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16808 			    "sdintr: returning command for resid != 0\n");
16809 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16810 			SD_UPDATE_B_RESID(bp, pktp);
16811 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16812 				"sdintr: returning uscsi command\n");
16813 		} else {
16814 			goto not_successful;
16815 		}
16816 		sd_return_command(un, bp);
16817 
16818 		/*
16819 		 * Decrement counter to indicate that the callback routine
16820 		 * is done.
16821 		 */
16822 		un->un_in_callback--;
16823 		ASSERT(un->un_in_callback >= 0);
16824 		mutex_exit(SD_MUTEX(un));
16825 
16826 		return;
16827 	}
16828 
16829 not_successful:
16830 
16831 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16832 	/*
16833 	 * The following is based upon knowledge of the underlying transport
16834 	 * and its use of DMA resources.  This code should be removed when
16835 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16836 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16837 	 * and sd_start_cmds().
16838 	 *
16839 	 * Free any DMA resources associated with this command if there
16840 	 * is a chance it could be retried or enqueued for later retry.
16841 	 * If we keep the DMA binding then mpxio cannot reissue the
16842 	 * command on another path whenever a path failure occurs.
16843 	 *
16844 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16845 	 * causes the *entire* transfer to start over again from the
16846 	 * beginning of the request, even for PARTIAL chunks that
16847 	 * have already transferred successfully.
16848 	 *
16849 	 * This is only done for non-uscsi commands (and also skipped for the
16850 	 * driver's internal RQS command). Also just do this for Fibre Channel
16851 	 * devices as these are the only ones that support mpxio.
16852 	 */
16853 	if ((un->un_f_is_fibre == TRUE) &&
16854 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16855 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16856 		scsi_dmafree(pktp);
16857 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16858 	}
16859 #endif
16860 
16861 	/*
16862 	 * The command did not successfully complete as requested so check
16863 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16864 	 * driver command that should not be retried so just return. If
16865 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16866 	 */
16867 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16868 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16869 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16870 		/*
16871 		 * Issue a request sense if a check condition caused the error
16872 		 * (we handle the auto request sense case above), otherwise
16873 		 * just fail the command.
16874 		 */
16875 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16876 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16877 			sd_send_request_sense_command(un, bp, pktp);
16878 		} else {
16879 			sd_return_failed_command(un, bp, EIO);
16880 		}
16881 		goto exit;
16882 	}
16883 
16884 	/*
16885 	 * The command did not successfully complete as requested so process
16886 	 * the error, retry, and/or attempt recovery.
16887 	 */
16888 	switch (pktp->pkt_reason) {
16889 	case CMD_CMPLT:
16890 		switch (SD_GET_PKT_STATUS(pktp)) {
16891 		case STATUS_GOOD:
16892 			/*
16893 			 * The command completed successfully with a non-zero
16894 			 * residual
16895 			 */
16896 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16897 			    "sdintr: STATUS_GOOD \n");
16898 			sd_pkt_status_good(un, bp, xp, pktp);
16899 			break;
16900 
16901 		case STATUS_CHECK:
16902 		case STATUS_TERMINATED:
16903 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16904 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16905 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16906 			break;
16907 
16908 		case STATUS_BUSY:
16909 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16910 			    "sdintr: STATUS_BUSY\n");
16911 			sd_pkt_status_busy(un, bp, xp, pktp);
16912 			break;
16913 
16914 		case STATUS_RESERVATION_CONFLICT:
16915 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16916 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16917 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16918 			break;
16919 
16920 		case STATUS_QFULL:
16921 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16922 			    "sdintr: STATUS_QFULL\n");
16923 			sd_pkt_status_qfull(un, bp, xp, pktp);
16924 			break;
16925 
16926 		case STATUS_MET:
16927 		case STATUS_INTERMEDIATE:
16928 		case STATUS_SCSI2:
16929 		case STATUS_INTERMEDIATE_MET:
16930 		case STATUS_ACA_ACTIVE:
16931 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16932 			    "Unexpected SCSI status received: 0x%x\n",
16933 			    SD_GET_PKT_STATUS(pktp));
16934 			sd_return_failed_command(un, bp, EIO);
16935 			break;
16936 
16937 		default:
16938 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16939 			    "Invalid SCSI status received: 0x%x\n",
16940 			    SD_GET_PKT_STATUS(pktp));
16941 			sd_return_failed_command(un, bp, EIO);
16942 			break;
16943 
16944 		}
16945 		break;
16946 
16947 	case CMD_INCOMPLETE:
16948 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16949 		    "sdintr:  CMD_INCOMPLETE\n");
16950 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16951 		break;
16952 	case CMD_TRAN_ERR:
16953 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16954 		    "sdintr: CMD_TRAN_ERR\n");
16955 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16956 		break;
16957 	case CMD_RESET:
16958 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16959 		    "sdintr: CMD_RESET \n");
16960 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16961 		break;
16962 	case CMD_ABORTED:
16963 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16964 		    "sdintr: CMD_ABORTED \n");
16965 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16966 		break;
16967 	case CMD_TIMEOUT:
16968 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16969 		    "sdintr: CMD_TIMEOUT\n");
16970 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16971 		break;
16972 	case CMD_UNX_BUS_FREE:
16973 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16974 		    "sdintr: CMD_UNX_BUS_FREE \n");
16975 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16976 		break;
16977 	case CMD_TAG_REJECT:
16978 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16979 		    "sdintr: CMD_TAG_REJECT\n");
16980 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16981 		break;
16982 	default:
16983 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16984 		    "sdintr: default\n");
16985 		sd_pkt_reason_default(un, bp, xp, pktp);
16986 		break;
16987 	}
16988 
16989 exit:
16990 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16991 
16992 	/* Decrement counter to indicate that the callback routine is done. */
16993 	un->un_in_callback--;
16994 	ASSERT(un->un_in_callback >= 0);
16995 
16996 	/*
16997 	 * At this point, the pkt has been dispatched, ie, it is either
16998 	 * being re-tried or has been returned to its caller and should
16999 	 * not be referenced.
17000 	 */
17001 
17002 	mutex_exit(SD_MUTEX(un));
17003 }
17004 
17005 
17006 /*
17007  *    Function: sd_print_incomplete_msg
17008  *
17009  * Description: Prints the error message for a CMD_INCOMPLETE error.
17010  *
17011  *   Arguments: un - ptr to associated softstate for the device.
17012  *		bp - ptr to the buf(9S) for the command.
17013  *		arg - message string ptr
17014  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17015  *			or SD_NO_RETRY_ISSUED.
17016  *
17017  *     Context: May be called under interrupt context
17018  */
17019 
17020 static void
17021 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17022 {
17023 	struct scsi_pkt	*pktp;
17024 	char	*msgp;
17025 	char	*cmdp = arg;
17026 
17027 	ASSERT(un != NULL);
17028 	ASSERT(mutex_owned(SD_MUTEX(un)));
17029 	ASSERT(bp != NULL);
17030 	ASSERT(arg != NULL);
17031 	pktp = SD_GET_PKTP(bp);
17032 	ASSERT(pktp != NULL);
17033 
17034 	switch (code) {
17035 	case SD_DELAYED_RETRY_ISSUED:
17036 	case SD_IMMEDIATE_RETRY_ISSUED:
17037 		msgp = "retrying";
17038 		break;
17039 	case SD_NO_RETRY_ISSUED:
17040 	default:
17041 		msgp = "giving up";
17042 		break;
17043 	}
17044 
17045 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17046 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17047 		    "incomplete %s- %s\n", cmdp, msgp);
17048 	}
17049 }
17050 
17051 
17052 
17053 /*
17054  *    Function: sd_pkt_status_good
17055  *
17056  * Description: Processing for a STATUS_GOOD code in pkt_status.
17057  *
17058  *     Context: May be called under interrupt context
17059  */
17060 
17061 static void
17062 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17063 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17064 {
17065 	char	*cmdp;
17066 
17067 	ASSERT(un != NULL);
17068 	ASSERT(mutex_owned(SD_MUTEX(un)));
17069 	ASSERT(bp != NULL);
17070 	ASSERT(xp != NULL);
17071 	ASSERT(pktp != NULL);
17072 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17073 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17074 	ASSERT(pktp->pkt_resid != 0);
17075 
17076 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17077 
17078 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17079 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17080 	case SCMD_READ:
17081 		cmdp = "read";
17082 		break;
17083 	case SCMD_WRITE:
17084 		cmdp = "write";
17085 		break;
17086 	default:
17087 		SD_UPDATE_B_RESID(bp, pktp);
17088 		sd_return_command(un, bp);
17089 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17090 		return;
17091 	}
17092 
17093 	/*
17094 	 * See if we can retry the read/write, preferrably immediately.
17095 	 * If retries are exhaused, then sd_retry_command() will update
17096 	 * the b_resid count.
17097 	 */
17098 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17099 	    cmdp, EIO, (clock_t)0, NULL);
17100 
17101 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17102 }
17103 
17104 
17105 
17106 
17107 
17108 /*
17109  *    Function: sd_handle_request_sense
17110  *
17111  * Description: Processing for non-auto Request Sense command.
17112  *
17113  *   Arguments: un - ptr to associated softstate
17114  *		sense_bp - ptr to buf(9S) for the RQS command
17115  *		sense_xp - ptr to the sd_xbuf for the RQS command
17116  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17117  *
17118  *     Context: May be called under interrupt context
17119  */
17120 
17121 static void
17122 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17123 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17124 {
17125 	struct buf	*cmd_bp;	/* buf for the original command */
17126 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17127 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17128 
17129 	ASSERT(un != NULL);
17130 	ASSERT(mutex_owned(SD_MUTEX(un)));
17131 	ASSERT(sense_bp != NULL);
17132 	ASSERT(sense_xp != NULL);
17133 	ASSERT(sense_pktp != NULL);
17134 
17135 	/*
17136 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17137 	 * RQS command and not the original command.
17138 	 */
17139 	ASSERT(sense_pktp == un->un_rqs_pktp);
17140 	ASSERT(sense_bp   == un->un_rqs_bp);
17141 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17142 	    (FLAG_SENSING | FLAG_HEAD));
17143 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17144 	    FLAG_SENSING) == FLAG_SENSING);
17145 
17146 	/* These are the bp, xp, and pktp for the original command */
17147 	cmd_bp = sense_xp->xb_sense_bp;
17148 	cmd_xp = SD_GET_XBUF(cmd_bp);
17149 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17150 
17151 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17152 		/*
17153 		 * The REQUEST SENSE command failed.  Release the REQUEST
17154 		 * SENSE command for re-use, get back the bp for the original
17155 		 * command, and attempt to re-try the original command if
17156 		 * FLAG_DIAGNOSE is not set in the original packet.
17157 		 */
17158 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17159 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17160 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17161 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17162 			    NULL, NULL, EIO, (clock_t)0, NULL);
17163 			return;
17164 		}
17165 	}
17166 
17167 	/*
17168 	 * Save the relevant sense info into the xp for the original cmd.
17169 	 *
17170 	 * Note: if the request sense failed the state info will be zero
17171 	 * as set in sd_mark_rqs_busy()
17172 	 */
17173 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17174 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17175 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
17176 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
17177 
17178 	/*
17179 	 *  Free up the RQS command....
17180 	 *  NOTE:
17181 	 *	Must do this BEFORE calling sd_validate_sense_data!
17182 	 *	sd_validate_sense_data may return the original command in
17183 	 *	which case the pkt will be freed and the flags can no
17184 	 *	longer be touched.
17185 	 *	SD_MUTEX is held through this process until the command
17186 	 *	is dispatched based upon the sense data, so there are
17187 	 *	no race conditions.
17188 	 */
17189 	(void) sd_mark_rqs_idle(un, sense_xp);
17190 
17191 	/*
17192 	 * For a retryable command see if we have valid sense data, if so then
17193 	 * turn it over to sd_decode_sense() to figure out the right course of
17194 	 * action. Just fail a non-retryable command.
17195 	 */
17196 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17197 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
17198 		    SD_SENSE_DATA_IS_VALID) {
17199 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17200 		}
17201 	} else {
17202 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17203 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17204 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17205 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17206 		sd_return_failed_command(un, cmd_bp, EIO);
17207 	}
17208 }
17209 
17210 
17211 
17212 
17213 /*
17214  *    Function: sd_handle_auto_request_sense
17215  *
17216  * Description: Processing for auto-request sense information.
17217  *
17218  *   Arguments: un - ptr to associated softstate
17219  *		bp - ptr to buf(9S) for the command
17220  *		xp - ptr to the sd_xbuf for the command
17221  *		pktp - ptr to the scsi_pkt(9S) for the command
17222  *
17223  *     Context: May be called under interrupt context
17224  */
17225 
17226 static void
17227 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17228 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17229 {
17230 	struct scsi_arq_status *asp;
17231 
17232 	ASSERT(un != NULL);
17233 	ASSERT(mutex_owned(SD_MUTEX(un)));
17234 	ASSERT(bp != NULL);
17235 	ASSERT(xp != NULL);
17236 	ASSERT(pktp != NULL);
17237 	ASSERT(pktp != un->un_rqs_pktp);
17238 	ASSERT(bp   != un->un_rqs_bp);
17239 
17240 	/*
17241 	 * For auto-request sense, we get a scsi_arq_status back from
17242 	 * the HBA, with the sense data in the sts_sensedata member.
17243 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17244 	 */
17245 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17246 
17247 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17248 		/*
17249 		 * The auto REQUEST SENSE failed; see if we can re-try
17250 		 * the original command.
17251 		 */
17252 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17253 		    "auto request sense failed (reason=%s)\n",
17254 		    scsi_rname(asp->sts_rqpkt_reason));
17255 
17256 		sd_reset_target(un, pktp);
17257 
17258 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17259 		    NULL, NULL, EIO, (clock_t)0, NULL);
17260 		return;
17261 	}
17262 
17263 	/* Save the relevant sense info into the xp for the original cmd. */
17264 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17265 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17266 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17267 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17268 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
17269 
17270 	/*
17271 	 * See if we have valid sense data, if so then turn it over to
17272 	 * sd_decode_sense() to figure out the right course of action.
17273 	 */
17274 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
17275 		sd_decode_sense(un, bp, xp, pktp);
17276 	}
17277 }
17278 
17279 
17280 /*
17281  *    Function: sd_print_sense_failed_msg
17282  *
17283  * Description: Print log message when RQS has failed.
17284  *
17285  *   Arguments: un - ptr to associated softstate
17286  *		bp - ptr to buf(9S) for the command
17287  *		arg - generic message string ptr
17288  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17289  *			or SD_NO_RETRY_ISSUED
17290  *
17291  *     Context: May be called from interrupt context
17292  */
17293 
17294 static void
17295 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17296 	int code)
17297 {
17298 	char	*msgp = arg;
17299 
17300 	ASSERT(un != NULL);
17301 	ASSERT(mutex_owned(SD_MUTEX(un)));
17302 	ASSERT(bp != NULL);
17303 
17304 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17305 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17306 	}
17307 }
17308 
17309 
17310 /*
17311  *    Function: sd_validate_sense_data
17312  *
17313  * Description: Check the given sense data for validity.
17314  *		If the sense data is not valid, the command will
17315  *		be either failed or retried!
17316  *
17317  * Return Code: SD_SENSE_DATA_IS_INVALID
17318  *		SD_SENSE_DATA_IS_VALID
17319  *
17320  *     Context: May be called from interrupt context
17321  */
17322 
17323 static int
17324 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
17325 {
17326 	struct scsi_extended_sense *esp;
17327 	struct	scsi_pkt *pktp;
17328 	size_t	actual_len;
17329 	char	*msgp = NULL;
17330 
17331 	ASSERT(un != NULL);
17332 	ASSERT(mutex_owned(SD_MUTEX(un)));
17333 	ASSERT(bp != NULL);
17334 	ASSERT(bp != un->un_rqs_bp);
17335 	ASSERT(xp != NULL);
17336 
17337 	pktp = SD_GET_PKTP(bp);
17338 	ASSERT(pktp != NULL);
17339 
17340 	/*
17341 	 * Check the status of the RQS command (auto or manual).
17342 	 */
17343 	switch (xp->xb_sense_status & STATUS_MASK) {
17344 	case STATUS_GOOD:
17345 		break;
17346 
17347 	case STATUS_RESERVATION_CONFLICT:
17348 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17349 		return (SD_SENSE_DATA_IS_INVALID);
17350 
17351 	case STATUS_BUSY:
17352 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17353 		    "Busy Status on REQUEST SENSE\n");
17354 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17355 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17356 		return (SD_SENSE_DATA_IS_INVALID);
17357 
17358 	case STATUS_QFULL:
17359 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17360 		    "QFULL Status on REQUEST SENSE\n");
17361 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17362 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17363 		return (SD_SENSE_DATA_IS_INVALID);
17364 
17365 	case STATUS_CHECK:
17366 	case STATUS_TERMINATED:
17367 		msgp = "Check Condition on REQUEST SENSE\n";
17368 		goto sense_failed;
17369 
17370 	default:
17371 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17372 		goto sense_failed;
17373 	}
17374 
17375 	/*
17376 	 * See if we got the minimum required amount of sense data.
17377 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17378 	 * or less.
17379 	 */
17380 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17381 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17382 	    (actual_len == 0)) {
17383 		msgp = "Request Sense couldn't get sense data\n";
17384 		goto sense_failed;
17385 	}
17386 
17387 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17388 		msgp = "Not enough sense information\n";
17389 		goto sense_failed;
17390 	}
17391 
17392 	/*
17393 	 * We require the extended sense data
17394 	 */
17395 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17396 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17397 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17398 			static char tmp[8];
17399 			static char buf[148];
17400 			char *p = (char *)(xp->xb_sense_data);
17401 			int i;
17402 
17403 			mutex_enter(&sd_sense_mutex);
17404 			(void) strcpy(buf, "undecodable sense information:");
17405 			for (i = 0; i < actual_len; i++) {
17406 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17407 				(void) strcpy(&buf[strlen(buf)], tmp);
17408 			}
17409 			i = strlen(buf);
17410 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17411 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17412 			mutex_exit(&sd_sense_mutex);
17413 		}
17414 		/* Note: Legacy behavior, fail the command with no retry */
17415 		sd_return_failed_command(un, bp, EIO);
17416 		return (SD_SENSE_DATA_IS_INVALID);
17417 	}
17418 
17419 	/*
17420 	 * Check that es_code is valid (es_class concatenated with es_code
17421 	 * make up the "response code" field.  es_class will always be 7, so
17422 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17423 	 * format.
17424 	 */
17425 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17426 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17427 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17428 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17429 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17430 		goto sense_failed;
17431 	}
17432 
17433 	return (SD_SENSE_DATA_IS_VALID);
17434 
17435 sense_failed:
17436 	/*
17437 	 * If the request sense failed (for whatever reason), attempt
17438 	 * to retry the original command.
17439 	 */
17440 #if defined(__i386) || defined(__amd64)
17441 	/*
17442 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17443 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17444 	 * for both SCSI/FC.
17445 	 * The SD_RETRY_DELAY value need to be adjusted here
17446 	 * when SD_RETRY_DELAY change in sddef.h
17447 	 */
17448 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17449 	    sd_print_sense_failed_msg, msgp, EIO,
17450 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17451 #else
17452 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17453 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17454 #endif
17455 
17456 	return (SD_SENSE_DATA_IS_INVALID);
17457 }
17458 
17459 
17460 
17461 /*
17462  *    Function: sd_decode_sense
17463  *
17464  * Description: Take recovery action(s) when SCSI Sense Data is received.
17465  *
17466  *     Context: Interrupt context.
17467  */
17468 
17469 static void
17470 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17471 	struct scsi_pkt *pktp)
17472 {
17473 	uint8_t sense_key;
17474 
17475 	ASSERT(un != NULL);
17476 	ASSERT(mutex_owned(SD_MUTEX(un)));
17477 	ASSERT(bp != NULL);
17478 	ASSERT(bp != un->un_rqs_bp);
17479 	ASSERT(xp != NULL);
17480 	ASSERT(pktp != NULL);
17481 
17482 	sense_key = scsi_sense_key(xp->xb_sense_data);
17483 
17484 	switch (sense_key) {
17485 	case KEY_NO_SENSE:
17486 		sd_sense_key_no_sense(un, bp, xp, pktp);
17487 		break;
17488 	case KEY_RECOVERABLE_ERROR:
17489 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17490 		    bp, xp, pktp);
17491 		break;
17492 	case KEY_NOT_READY:
17493 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17494 		    bp, xp, pktp);
17495 		break;
17496 	case KEY_MEDIUM_ERROR:
17497 	case KEY_HARDWARE_ERROR:
17498 		sd_sense_key_medium_or_hardware_error(un,
17499 		    xp->xb_sense_data, bp, xp, pktp);
17500 		break;
17501 	case KEY_ILLEGAL_REQUEST:
17502 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17503 		break;
17504 	case KEY_UNIT_ATTENTION:
17505 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17506 		    bp, xp, pktp);
17507 		break;
17508 	case KEY_WRITE_PROTECT:
17509 	case KEY_VOLUME_OVERFLOW:
17510 	case KEY_MISCOMPARE:
17511 		sd_sense_key_fail_command(un, bp, xp, pktp);
17512 		break;
17513 	case KEY_BLANK_CHECK:
17514 		sd_sense_key_blank_check(un, bp, xp, pktp);
17515 		break;
17516 	case KEY_ABORTED_COMMAND:
17517 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17518 		break;
17519 	case KEY_VENDOR_UNIQUE:
17520 	case KEY_COPY_ABORTED:
17521 	case KEY_EQUAL:
17522 	case KEY_RESERVED:
17523 	default:
17524 		sd_sense_key_default(un, xp->xb_sense_data,
17525 		    bp, xp, pktp);
17526 		break;
17527 	}
17528 }
17529 
17530 
17531 /*
17532  *    Function: sd_dump_memory
17533  *
17534  * Description: Debug logging routine to print the contents of a user provided
17535  *		buffer. The output of the buffer is broken up into 256 byte
17536  *		segments due to a size constraint of the scsi_log.
17537  *		implementation.
17538  *
17539  *   Arguments: un - ptr to softstate
17540  *		comp - component mask
17541  *		title - "title" string to preceed data when printed
17542  *		data - ptr to data block to be printed
17543  *		len - size of data block to be printed
17544  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17545  *
17546  *     Context: May be called from interrupt context
17547  */
17548 
17549 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17550 
17551 static char *sd_dump_format_string[] = {
17552 		" 0x%02x",
17553 		" %c"
17554 };
17555 
17556 static void
17557 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17558     int len, int fmt)
17559 {
17560 	int	i, j;
17561 	int	avail_count;
17562 	int	start_offset;
17563 	int	end_offset;
17564 	size_t	entry_len;
17565 	char	*bufp;
17566 	char	*local_buf;
17567 	char	*format_string;
17568 
17569 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17570 
17571 	/*
17572 	 * In the debug version of the driver, this function is called from a
17573 	 * number of places which are NOPs in the release driver.
17574 	 * The debug driver therefore has additional methods of filtering
17575 	 * debug output.
17576 	 */
17577 #ifdef SDDEBUG
17578 	/*
17579 	 * In the debug version of the driver we can reduce the amount of debug
17580 	 * messages by setting sd_error_level to something other than
17581 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17582 	 * sd_component_mask.
17583 	 */
17584 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17585 	    (sd_error_level != SCSI_ERR_ALL)) {
17586 		return;
17587 	}
17588 	if (((sd_component_mask & comp) == 0) ||
17589 	    (sd_error_level != SCSI_ERR_ALL)) {
17590 		return;
17591 	}
17592 #else
17593 	if (sd_error_level != SCSI_ERR_ALL) {
17594 		return;
17595 	}
17596 #endif
17597 
17598 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17599 	bufp = local_buf;
17600 	/*
17601 	 * Available length is the length of local_buf[], minus the
17602 	 * length of the title string, minus one for the ":", minus
17603 	 * one for the newline, minus one for the NULL terminator.
17604 	 * This gives the #bytes available for holding the printed
17605 	 * values from the given data buffer.
17606 	 */
17607 	if (fmt == SD_LOG_HEX) {
17608 		format_string = sd_dump_format_string[0];
17609 	} else /* SD_LOG_CHAR */ {
17610 		format_string = sd_dump_format_string[1];
17611 	}
17612 	/*
17613 	 * Available count is the number of elements from the given
17614 	 * data buffer that we can fit into the available length.
17615 	 * This is based upon the size of the format string used.
17616 	 * Make one entry and find it's size.
17617 	 */
17618 	(void) sprintf(bufp, format_string, data[0]);
17619 	entry_len = strlen(bufp);
17620 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17621 
17622 	j = 0;
17623 	while (j < len) {
17624 		bufp = local_buf;
17625 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17626 		start_offset = j;
17627 
17628 		end_offset = start_offset + avail_count;
17629 
17630 		(void) sprintf(bufp, "%s:", title);
17631 		bufp += strlen(bufp);
17632 		for (i = start_offset; ((i < end_offset) && (j < len));
17633 		    i++, j++) {
17634 			(void) sprintf(bufp, format_string, data[i]);
17635 			bufp += entry_len;
17636 		}
17637 		(void) sprintf(bufp, "\n");
17638 
17639 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17640 	}
17641 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17642 }
17643 
17644 /*
17645  *    Function: sd_print_sense_msg
17646  *
17647  * Description: Log a message based upon the given sense data.
17648  *
17649  *   Arguments: un - ptr to associated softstate
17650  *		bp - ptr to buf(9S) for the command
17651  *		arg - ptr to associate sd_sense_info struct
17652  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17653  *			or SD_NO_RETRY_ISSUED
17654  *
17655  *     Context: May be called from interrupt context
17656  */
17657 
17658 static void
17659 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17660 {
17661 	struct sd_xbuf	*xp;
17662 	struct scsi_pkt	*pktp;
17663 	uint8_t *sensep;
17664 	daddr_t request_blkno;
17665 	diskaddr_t err_blkno;
17666 	int severity;
17667 	int pfa_flag;
17668 	extern struct scsi_key_strings scsi_cmds[];
17669 
17670 	ASSERT(un != NULL);
17671 	ASSERT(mutex_owned(SD_MUTEX(un)));
17672 	ASSERT(bp != NULL);
17673 	xp = SD_GET_XBUF(bp);
17674 	ASSERT(xp != NULL);
17675 	pktp = SD_GET_PKTP(bp);
17676 	ASSERT(pktp != NULL);
17677 	ASSERT(arg != NULL);
17678 
17679 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17680 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17681 
17682 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17683 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17684 		severity = SCSI_ERR_RETRYABLE;
17685 	}
17686 
17687 	/* Use absolute block number for the request block number */
17688 	request_blkno = xp->xb_blkno;
17689 
17690 	/*
17691 	 * Now try to get the error block number from the sense data
17692 	 */
17693 	sensep = xp->xb_sense_data;
17694 
17695 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17696 		(uint64_t *)&err_blkno)) {
17697 		/*
17698 		 * We retrieved the error block number from the information
17699 		 * portion of the sense data.
17700 		 *
17701 		 * For USCSI commands we are better off using the error
17702 		 * block no. as the requested block no. (This is the best
17703 		 * we can estimate.)
17704 		 */
17705 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17706 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17707 			request_blkno = err_blkno;
17708 		}
17709 	} else {
17710 		/*
17711 		 * Without the es_valid bit set (for fixed format) or an
17712 		 * information descriptor (for descriptor format) we cannot
17713 		 * be certain of the error blkno, so just use the
17714 		 * request_blkno.
17715 		 */
17716 		err_blkno = (diskaddr_t)request_blkno;
17717 	}
17718 
17719 	/*
17720 	 * The following will log the buffer contents for the release driver
17721 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17722 	 * level is set to verbose.
17723 	 */
17724 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17725 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17726 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17727 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17728 
17729 	if (pfa_flag == FALSE) {
17730 		/* This is normally only set for USCSI */
17731 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17732 			return;
17733 		}
17734 
17735 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17736 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17737 		    (severity < sd_error_level))) {
17738 			return;
17739 		}
17740 	}
17741 
17742 	/*
17743 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17744 	 */
17745 	if ((SD_IS_LSI(un)) &&
17746 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17747 	    (scsi_sense_asc(sensep) == 0x94) &&
17748 	    (scsi_sense_ascq(sensep) == 0x01)) {
17749 		un->un_sonoma_failure_count++;
17750 		if (un->un_sonoma_failure_count > 1) {
17751 			return;
17752 		}
17753 	}
17754 
17755 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17756 	    request_blkno, err_blkno, scsi_cmds,
17757 	    (struct scsi_extended_sense *)sensep,
17758 	    un->un_additional_codes, NULL);
17759 }
17760 
17761 /*
17762  *    Function: sd_sense_key_no_sense
17763  *
17764  * Description: Recovery action when sense data was not received.
17765  *
17766  *     Context: May be called from interrupt context
17767  */
17768 
17769 static void
17770 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17771 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17772 {
17773 	struct sd_sense_info	si;
17774 
17775 	ASSERT(un != NULL);
17776 	ASSERT(mutex_owned(SD_MUTEX(un)));
17777 	ASSERT(bp != NULL);
17778 	ASSERT(xp != NULL);
17779 	ASSERT(pktp != NULL);
17780 
17781 	si.ssi_severity = SCSI_ERR_FATAL;
17782 	si.ssi_pfa_flag = FALSE;
17783 
17784 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17785 
17786 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17787 		&si, EIO, (clock_t)0, NULL);
17788 }
17789 
17790 
17791 /*
17792  *    Function: sd_sense_key_recoverable_error
17793  *
17794  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17795  *
17796  *     Context: May be called from interrupt context
17797  */
17798 
17799 static void
17800 sd_sense_key_recoverable_error(struct sd_lun *un,
17801 	uint8_t *sense_datap,
17802 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17803 {
17804 	struct sd_sense_info	si;
17805 	uint8_t asc = scsi_sense_asc(sense_datap);
17806 
17807 	ASSERT(un != NULL);
17808 	ASSERT(mutex_owned(SD_MUTEX(un)));
17809 	ASSERT(bp != NULL);
17810 	ASSERT(xp != NULL);
17811 	ASSERT(pktp != NULL);
17812 
17813 	/*
17814 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17815 	 */
17816 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17817 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17818 		si.ssi_severity = SCSI_ERR_INFO;
17819 		si.ssi_pfa_flag = TRUE;
17820 	} else {
17821 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17822 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17823 		si.ssi_severity = SCSI_ERR_RECOVERED;
17824 		si.ssi_pfa_flag = FALSE;
17825 	}
17826 
17827 	if (pktp->pkt_resid == 0) {
17828 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17829 		sd_return_command(un, bp);
17830 		return;
17831 	}
17832 
17833 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17834 	    &si, EIO, (clock_t)0, NULL);
17835 }
17836 
17837 
17838 
17839 
17840 /*
17841  *    Function: sd_sense_key_not_ready
17842  *
17843  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17844  *
17845  *     Context: May be called from interrupt context
17846  */
17847 
17848 static void
17849 sd_sense_key_not_ready(struct sd_lun *un,
17850 	uint8_t *sense_datap,
17851 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17852 {
17853 	struct sd_sense_info	si;
17854 	uint8_t asc = scsi_sense_asc(sense_datap);
17855 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17856 
17857 	ASSERT(un != NULL);
17858 	ASSERT(mutex_owned(SD_MUTEX(un)));
17859 	ASSERT(bp != NULL);
17860 	ASSERT(xp != NULL);
17861 	ASSERT(pktp != NULL);
17862 
17863 	si.ssi_severity = SCSI_ERR_FATAL;
17864 	si.ssi_pfa_flag = FALSE;
17865 
17866 	/*
17867 	 * Update error stats after first NOT READY error. Disks may have
17868 	 * been powered down and may need to be restarted.  For CDROMs,
17869 	 * report NOT READY errors only if media is present.
17870 	 */
17871 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17872 	    (xp->xb_retry_count > 0)) {
17873 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17874 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17875 	}
17876 
17877 	/*
17878 	 * Just fail if the "not ready" retry limit has been reached.
17879 	 */
17880 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17881 		/* Special check for error message printing for removables. */
17882 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17883 		    (ascq >= 0x04)) {
17884 			si.ssi_severity = SCSI_ERR_ALL;
17885 		}
17886 		goto fail_command;
17887 	}
17888 
17889 	/*
17890 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17891 	 * what to do.
17892 	 */
17893 	switch (asc) {
17894 	case 0x04:	/* LOGICAL UNIT NOT READY */
17895 		/*
17896 		 * disk drives that don't spin up result in a very long delay
17897 		 * in format without warning messages. We will log a message
17898 		 * if the error level is set to verbose.
17899 		 */
17900 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17901 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17902 			    "logical unit not ready, resetting disk\n");
17903 		}
17904 
17905 		/*
17906 		 * There are different requirements for CDROMs and disks for
17907 		 * the number of retries.  If a CD-ROM is giving this, it is
17908 		 * probably reading TOC and is in the process of getting
17909 		 * ready, so we should keep on trying for a long time to make
17910 		 * sure that all types of media are taken in account (for
17911 		 * some media the drive takes a long time to read TOC).  For
17912 		 * disks we do not want to retry this too many times as this
17913 		 * can cause a long hang in format when the drive refuses to
17914 		 * spin up (a very common failure).
17915 		 */
17916 		switch (ascq) {
17917 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17918 			/*
17919 			 * Disk drives frequently refuse to spin up which
17920 			 * results in a very long hang in format without
17921 			 * warning messages.
17922 			 *
17923 			 * Note: This code preserves the legacy behavior of
17924 			 * comparing xb_retry_count against zero for fibre
17925 			 * channel targets instead of comparing against the
17926 			 * un_reset_retry_count value.  The reason for this
17927 			 * discrepancy has been so utterly lost beneath the
17928 			 * Sands of Time that even Indiana Jones could not
17929 			 * find it.
17930 			 */
17931 			if (un->un_f_is_fibre == TRUE) {
17932 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17933 					(xp->xb_retry_count > 0)) &&
17934 					(un->un_startstop_timeid == NULL)) {
17935 					scsi_log(SD_DEVINFO(un), sd_label,
17936 					CE_WARN, "logical unit not ready, "
17937 					"resetting disk\n");
17938 					sd_reset_target(un, pktp);
17939 				}
17940 			} else {
17941 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17942 					(xp->xb_retry_count >
17943 					un->un_reset_retry_count)) &&
17944 					(un->un_startstop_timeid == NULL)) {
17945 					scsi_log(SD_DEVINFO(un), sd_label,
17946 					CE_WARN, "logical unit not ready, "
17947 					"resetting disk\n");
17948 					sd_reset_target(un, pktp);
17949 				}
17950 			}
17951 			break;
17952 
17953 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17954 			/*
17955 			 * If the target is in the process of becoming
17956 			 * ready, just proceed with the retry. This can
17957 			 * happen with CD-ROMs that take a long time to
17958 			 * read TOC after a power cycle or reset.
17959 			 */
17960 			goto do_retry;
17961 
17962 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17963 			break;
17964 
17965 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17966 			/*
17967 			 * Retries cannot help here so just fail right away.
17968 			 */
17969 			goto fail_command;
17970 
17971 		case 0x88:
17972 			/*
17973 			 * Vendor-unique code for T3/T4: it indicates a
17974 			 * path problem in a mutipathed config, but as far as
17975 			 * the target driver is concerned it equates to a fatal
17976 			 * error, so we should just fail the command right away
17977 			 * (without printing anything to the console). If this
17978 			 * is not a T3/T4, fall thru to the default recovery
17979 			 * action.
17980 			 * T3/T4 is FC only, don't need to check is_fibre
17981 			 */
17982 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17983 				sd_return_failed_command(un, bp, EIO);
17984 				return;
17985 			}
17986 			/* FALLTHRU */
17987 
17988 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17989 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17990 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17991 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17992 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17993 		default:    /* Possible future codes in SCSI spec? */
17994 			/*
17995 			 * For removable-media devices, do not retry if
17996 			 * ASCQ > 2 as these result mostly from USCSI commands
17997 			 * on MMC devices issued to check status of an
17998 			 * operation initiated in immediate mode.  Also for
17999 			 * ASCQ >= 4 do not print console messages as these
18000 			 * mainly represent a user-initiated operation
18001 			 * instead of a system failure.
18002 			 */
18003 			if (un->un_f_has_removable_media) {
18004 				si.ssi_severity = SCSI_ERR_ALL;
18005 				goto fail_command;
18006 			}
18007 			break;
18008 		}
18009 
18010 		/*
18011 		 * As part of our recovery attempt for the NOT READY
18012 		 * condition, we issue a START STOP UNIT command. However
18013 		 * we want to wait for a short delay before attempting this
18014 		 * as there may still be more commands coming back from the
18015 		 * target with the check condition. To do this we use
18016 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18017 		 * the delay interval expires. (sd_start_stop_unit_callback()
18018 		 * dispatches sd_start_stop_unit_task(), which will issue
18019 		 * the actual START STOP UNIT command. The delay interval
18020 		 * is one-half of the delay that we will use to retry the
18021 		 * command that generated the NOT READY condition.
18022 		 *
18023 		 * Note that we could just dispatch sd_start_stop_unit_task()
18024 		 * from here and allow it to sleep for the delay interval,
18025 		 * but then we would be tying up the taskq thread
18026 		 * uncesessarily for the duration of the delay.
18027 		 *
18028 		 * Do not issue the START STOP UNIT if the current command
18029 		 * is already a START STOP UNIT.
18030 		 */
18031 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18032 			break;
18033 		}
18034 
18035 		/*
18036 		 * Do not schedule the timeout if one is already pending.
18037 		 */
18038 		if (un->un_startstop_timeid != NULL) {
18039 			SD_INFO(SD_LOG_ERROR, un,
18040 			    "sd_sense_key_not_ready: restart already issued to"
18041 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18042 			    ddi_get_instance(SD_DEVINFO(un)));
18043 			break;
18044 		}
18045 
18046 		/*
18047 		 * Schedule the START STOP UNIT command, then queue the command
18048 		 * for a retry.
18049 		 *
18050 		 * Note: A timeout is not scheduled for this retry because we
18051 		 * want the retry to be serial with the START_STOP_UNIT. The
18052 		 * retry will be started when the START_STOP_UNIT is completed
18053 		 * in sd_start_stop_unit_task.
18054 		 */
18055 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18056 		    un, SD_BSY_TIMEOUT / 2);
18057 		xp->xb_retry_count++;
18058 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18059 		return;
18060 
18061 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18062 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18063 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18064 			    "unit does not respond to selection\n");
18065 		}
18066 		break;
18067 
18068 	case 0x3A:	/* MEDIUM NOT PRESENT */
18069 		if (sd_error_level >= SCSI_ERR_FATAL) {
18070 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18071 			    "Caddy not inserted in drive\n");
18072 		}
18073 
18074 		sr_ejected(un);
18075 		un->un_mediastate = DKIO_EJECTED;
18076 		/* The state has changed, inform the media watch routines */
18077 		cv_broadcast(&un->un_state_cv);
18078 		/* Just fail if no media is present in the drive. */
18079 		goto fail_command;
18080 
18081 	default:
18082 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18083 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18084 			    "Unit not Ready. Additional sense code 0x%x\n",
18085 			    asc);
18086 		}
18087 		break;
18088 	}
18089 
18090 do_retry:
18091 
18092 	/*
18093 	 * Retry the command, as some targets may report NOT READY for
18094 	 * several seconds after being reset.
18095 	 */
18096 	xp->xb_retry_count++;
18097 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18098 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18099 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
18100 
18101 	return;
18102 
18103 fail_command:
18104 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18105 	sd_return_failed_command(un, bp, EIO);
18106 }
18107 
18108 
18109 
18110 /*
18111  *    Function: sd_sense_key_medium_or_hardware_error
18112  *
18113  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18114  *		sense key.
18115  *
18116  *     Context: May be called from interrupt context
18117  */
18118 
18119 static void
18120 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18121 	uint8_t *sense_datap,
18122 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18123 {
18124 	struct sd_sense_info	si;
18125 	uint8_t sense_key = scsi_sense_key(sense_datap);
18126 	uint8_t asc = scsi_sense_asc(sense_datap);
18127 
18128 	ASSERT(un != NULL);
18129 	ASSERT(mutex_owned(SD_MUTEX(un)));
18130 	ASSERT(bp != NULL);
18131 	ASSERT(xp != NULL);
18132 	ASSERT(pktp != NULL);
18133 
18134 	si.ssi_severity = SCSI_ERR_FATAL;
18135 	si.ssi_pfa_flag = FALSE;
18136 
18137 	if (sense_key == KEY_MEDIUM_ERROR) {
18138 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18139 	}
18140 
18141 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18142 
18143 	if ((un->un_reset_retry_count != 0) &&
18144 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18145 		mutex_exit(SD_MUTEX(un));
18146 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18147 		if (un->un_f_allow_bus_device_reset == TRUE) {
18148 
18149 			boolean_t try_resetting_target = B_TRUE;
18150 
18151 			/*
18152 			 * We need to be able to handle specific ASC when we are
18153 			 * handling a KEY_HARDWARE_ERROR. In particular
18154 			 * taking the default action of resetting the target may
18155 			 * not be the appropriate way to attempt recovery.
18156 			 * Resetting a target because of a single LUN failure
18157 			 * victimizes all LUNs on that target.
18158 			 *
18159 			 * This is true for the LSI arrays, if an LSI
18160 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18161 			 * should trust it.
18162 			 */
18163 
18164 			if (sense_key == KEY_HARDWARE_ERROR) {
18165 				switch (asc) {
18166 				case 0x84:
18167 					if (SD_IS_LSI(un)) {
18168 						try_resetting_target = B_FALSE;
18169 					}
18170 					break;
18171 				default:
18172 					break;
18173 				}
18174 			}
18175 
18176 			if (try_resetting_target == B_TRUE) {
18177 				int reset_retval = 0;
18178 				if (un->un_f_lun_reset_enabled == TRUE) {
18179 					SD_TRACE(SD_LOG_IO_CORE, un,
18180 					    "sd_sense_key_medium_or_hardware_"
18181 					    "error: issuing RESET_LUN\n");
18182 					reset_retval =
18183 					    scsi_reset(SD_ADDRESS(un),
18184 					    RESET_LUN);
18185 				}
18186 				if (reset_retval == 0) {
18187 					SD_TRACE(SD_LOG_IO_CORE, un,
18188 					    "sd_sense_key_medium_or_hardware_"
18189 					    "error: issuing RESET_TARGET\n");
18190 					(void) scsi_reset(SD_ADDRESS(un),
18191 					    RESET_TARGET);
18192 				}
18193 			}
18194 		}
18195 		mutex_enter(SD_MUTEX(un));
18196 	}
18197 
18198 	/*
18199 	 * This really ought to be a fatal error, but we will retry anyway
18200 	 * as some drives report this as a spurious error.
18201 	 */
18202 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18203 	    &si, EIO, (clock_t)0, NULL);
18204 }
18205 
18206 
18207 
18208 /*
18209  *    Function: sd_sense_key_illegal_request
18210  *
18211  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18212  *
18213  *     Context: May be called from interrupt context
18214  */
18215 
18216 static void
18217 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18218 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18219 {
18220 	struct sd_sense_info	si;
18221 
18222 	ASSERT(un != NULL);
18223 	ASSERT(mutex_owned(SD_MUTEX(un)));
18224 	ASSERT(bp != NULL);
18225 	ASSERT(xp != NULL);
18226 	ASSERT(pktp != NULL);
18227 
18228 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18229 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18230 
18231 	si.ssi_severity = SCSI_ERR_INFO;
18232 	si.ssi_pfa_flag = FALSE;
18233 
18234 	/* Pointless to retry if the target thinks it's an illegal request */
18235 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18236 	sd_return_failed_command(un, bp, EIO);
18237 }
18238 
18239 
18240 
18241 
18242 /*
18243  *    Function: sd_sense_key_unit_attention
18244  *
18245  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18246  *
18247  *     Context: May be called from interrupt context
18248  */
18249 
18250 static void
18251 sd_sense_key_unit_attention(struct sd_lun *un,
18252 	uint8_t *sense_datap,
18253 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18254 {
18255 	/*
18256 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18257 	 * like Sonoma can return UNIT ATTENTION close to a minute
18258 	 * under certain conditions.
18259 	 */
18260 	int	retry_check_flag = SD_RETRIES_UA;
18261 	boolean_t	kstat_updated = B_FALSE;
18262 	struct	sd_sense_info		si;
18263 	uint8_t asc = scsi_sense_asc(sense_datap);
18264 
18265 	ASSERT(un != NULL);
18266 	ASSERT(mutex_owned(SD_MUTEX(un)));
18267 	ASSERT(bp != NULL);
18268 	ASSERT(xp != NULL);
18269 	ASSERT(pktp != NULL);
18270 
18271 	si.ssi_severity = SCSI_ERR_INFO;
18272 	si.ssi_pfa_flag = FALSE;
18273 
18274 
18275 	switch (asc) {
18276 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18277 		if (sd_report_pfa != 0) {
18278 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18279 			si.ssi_pfa_flag = TRUE;
18280 			retry_check_flag = SD_RETRIES_STANDARD;
18281 			goto do_retry;
18282 		}
18283 
18284 		break;
18285 
18286 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18287 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18288 			un->un_resvd_status |=
18289 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18290 		}
18291 #ifdef _LP64
18292 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18293 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18294 			    un, KM_NOSLEEP) == 0) {
18295 				/*
18296 				 * If we can't dispatch the task we'll just
18297 				 * live without descriptor sense.  We can
18298 				 * try again on the next "unit attention"
18299 				 */
18300 				SD_ERROR(SD_LOG_ERROR, un,
18301 				    "sd_sense_key_unit_attention: "
18302 				    "Could not dispatch "
18303 				    "sd_reenable_dsense_task\n");
18304 			}
18305 		}
18306 #endif /* _LP64 */
18307 		/* FALLTHRU */
18308 
18309 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18310 		if (!un->un_f_has_removable_media) {
18311 			break;
18312 		}
18313 
18314 		/*
18315 		 * When we get a unit attention from a removable-media device,
18316 		 * it may be in a state that will take a long time to recover
18317 		 * (e.g., from a reset).  Since we are executing in interrupt
18318 		 * context here, we cannot wait around for the device to come
18319 		 * back. So hand this command off to sd_media_change_task()
18320 		 * for deferred processing under taskq thread context. (Note
18321 		 * that the command still may be failed if a problem is
18322 		 * encountered at a later time.)
18323 		 */
18324 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18325 		    KM_NOSLEEP) == 0) {
18326 			/*
18327 			 * Cannot dispatch the request so fail the command.
18328 			 */
18329 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18330 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18331 			si.ssi_severity = SCSI_ERR_FATAL;
18332 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18333 			sd_return_failed_command(un, bp, EIO);
18334 		}
18335 
18336 		/*
18337 		 * If failed to dispatch sd_media_change_task(), we already
18338 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18339 		 * we should update kstat later if it encounters an error. So,
18340 		 * we update kstat_updated flag here.
18341 		 */
18342 		kstat_updated = B_TRUE;
18343 
18344 		/*
18345 		 * Either the command has been successfully dispatched to a
18346 		 * task Q for retrying, or the dispatch failed. In either case
18347 		 * do NOT retry again by calling sd_retry_command. This sets up
18348 		 * two retries of the same command and when one completes and
18349 		 * frees the resources the other will access freed memory,
18350 		 * a bad thing.
18351 		 */
18352 		return;
18353 
18354 	default:
18355 		break;
18356 	}
18357 
18358 	/*
18359 	 * Update kstat if we haven't done that.
18360 	 */
18361 	if (!kstat_updated) {
18362 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18363 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18364 	}
18365 
18366 do_retry:
18367 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18368 	    EIO, SD_UA_RETRY_DELAY, NULL);
18369 }
18370 
18371 
18372 
18373 /*
18374  *    Function: sd_sense_key_fail_command
18375  *
18376  * Description: Use to fail a command when we don't like the sense key that
18377  *		was returned.
18378  *
18379  *     Context: May be called from interrupt context
18380  */
18381 
18382 static void
18383 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18384 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18385 {
18386 	struct sd_sense_info	si;
18387 
18388 	ASSERT(un != NULL);
18389 	ASSERT(mutex_owned(SD_MUTEX(un)));
18390 	ASSERT(bp != NULL);
18391 	ASSERT(xp != NULL);
18392 	ASSERT(pktp != NULL);
18393 
18394 	si.ssi_severity = SCSI_ERR_FATAL;
18395 	si.ssi_pfa_flag = FALSE;
18396 
18397 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18398 	sd_return_failed_command(un, bp, EIO);
18399 }
18400 
18401 
18402 
18403 /*
18404  *    Function: sd_sense_key_blank_check
18405  *
18406  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18407  *		Has no monetary connotation.
18408  *
18409  *     Context: May be called from interrupt context
18410  */
18411 
18412 static void
18413 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18414 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18415 {
18416 	struct sd_sense_info	si;
18417 
18418 	ASSERT(un != NULL);
18419 	ASSERT(mutex_owned(SD_MUTEX(un)));
18420 	ASSERT(bp != NULL);
18421 	ASSERT(xp != NULL);
18422 	ASSERT(pktp != NULL);
18423 
18424 	/*
18425 	 * Blank check is not fatal for removable devices, therefore
18426 	 * it does not require a console message.
18427 	 */
18428 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18429 	    SCSI_ERR_FATAL;
18430 	si.ssi_pfa_flag = FALSE;
18431 
18432 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18433 	sd_return_failed_command(un, bp, EIO);
18434 }
18435 
18436 
18437 
18438 
18439 /*
18440  *    Function: sd_sense_key_aborted_command
18441  *
18442  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18443  *
18444  *     Context: May be called from interrupt context
18445  */
18446 
18447 static void
18448 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18449 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18450 {
18451 	struct sd_sense_info	si;
18452 
18453 	ASSERT(un != NULL);
18454 	ASSERT(mutex_owned(SD_MUTEX(un)));
18455 	ASSERT(bp != NULL);
18456 	ASSERT(xp != NULL);
18457 	ASSERT(pktp != NULL);
18458 
18459 	si.ssi_severity = SCSI_ERR_FATAL;
18460 	si.ssi_pfa_flag = FALSE;
18461 
18462 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18463 
18464 	/*
18465 	 * This really ought to be a fatal error, but we will retry anyway
18466 	 * as some drives report this as a spurious error.
18467 	 */
18468 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18469 	    &si, EIO, (clock_t)0, NULL);
18470 }
18471 
18472 
18473 
18474 /*
18475  *    Function: sd_sense_key_default
18476  *
18477  * Description: Default recovery action for several SCSI sense keys (basically
18478  *		attempts a retry).
18479  *
18480  *     Context: May be called from interrupt context
18481  */
18482 
18483 static void
18484 sd_sense_key_default(struct sd_lun *un,
18485 	uint8_t *sense_datap,
18486 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18487 {
18488 	struct sd_sense_info	si;
18489 	uint8_t sense_key = scsi_sense_key(sense_datap);
18490 
18491 	ASSERT(un != NULL);
18492 	ASSERT(mutex_owned(SD_MUTEX(un)));
18493 	ASSERT(bp != NULL);
18494 	ASSERT(xp != NULL);
18495 	ASSERT(pktp != NULL);
18496 
18497 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18498 
18499 	/*
18500 	 * Undecoded sense key.	Attempt retries and hope that will fix
18501 	 * the problem.  Otherwise, we're dead.
18502 	 */
18503 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18504 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18505 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18506 	}
18507 
18508 	si.ssi_severity = SCSI_ERR_FATAL;
18509 	si.ssi_pfa_flag = FALSE;
18510 
18511 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18512 	    &si, EIO, (clock_t)0, NULL);
18513 }
18514 
18515 
18516 
18517 /*
18518  *    Function: sd_print_retry_msg
18519  *
18520  * Description: Print a message indicating the retry action being taken.
18521  *
18522  *   Arguments: un - ptr to associated softstate
18523  *		bp - ptr to buf(9S) for the command
18524  *		arg - not used.
18525  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18526  *			or SD_NO_RETRY_ISSUED
18527  *
18528  *     Context: May be called from interrupt context
18529  */
18530 /* ARGSUSED */
18531 static void
18532 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18533 {
18534 	struct sd_xbuf	*xp;
18535 	struct scsi_pkt *pktp;
18536 	char *reasonp;
18537 	char *msgp;
18538 
18539 	ASSERT(un != NULL);
18540 	ASSERT(mutex_owned(SD_MUTEX(un)));
18541 	ASSERT(bp != NULL);
18542 	pktp = SD_GET_PKTP(bp);
18543 	ASSERT(pktp != NULL);
18544 	xp = SD_GET_XBUF(bp);
18545 	ASSERT(xp != NULL);
18546 
18547 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18548 	mutex_enter(&un->un_pm_mutex);
18549 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18550 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18551 	    (pktp->pkt_flags & FLAG_SILENT)) {
18552 		mutex_exit(&un->un_pm_mutex);
18553 		goto update_pkt_reason;
18554 	}
18555 	mutex_exit(&un->un_pm_mutex);
18556 
18557 	/*
18558 	 * Suppress messages if they are all the same pkt_reason; with
18559 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18560 	 * If we are in panic, then suppress the retry messages.
18561 	 */
18562 	switch (flag) {
18563 	case SD_NO_RETRY_ISSUED:
18564 		msgp = "giving up";
18565 		break;
18566 	case SD_IMMEDIATE_RETRY_ISSUED:
18567 	case SD_DELAYED_RETRY_ISSUED:
18568 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18569 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18570 		    (sd_error_level != SCSI_ERR_ALL))) {
18571 			return;
18572 		}
18573 		msgp = "retrying command";
18574 		break;
18575 	default:
18576 		goto update_pkt_reason;
18577 	}
18578 
18579 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18580 	    scsi_rname(pktp->pkt_reason));
18581 
18582 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18583 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18584 
18585 update_pkt_reason:
18586 	/*
18587 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18588 	 * This is to prevent multiple console messages for the same failure
18589 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18590 	 * when the command is retried successfully because there still may be
18591 	 * more commands coming back with the same value of pktp->pkt_reason.
18592 	 */
18593 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18594 		un->un_last_pkt_reason = pktp->pkt_reason;
18595 	}
18596 }
18597 
18598 
18599 /*
18600  *    Function: sd_print_cmd_incomplete_msg
18601  *
18602  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18603  *
18604  *   Arguments: un - ptr to associated softstate
18605  *		bp - ptr to buf(9S) for the command
18606  *		arg - passed to sd_print_retry_msg()
18607  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18608  *			or SD_NO_RETRY_ISSUED
18609  *
18610  *     Context: May be called from interrupt context
18611  */
18612 
18613 static void
18614 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18615 	int code)
18616 {
18617 	dev_info_t	*dip;
18618 
18619 	ASSERT(un != NULL);
18620 	ASSERT(mutex_owned(SD_MUTEX(un)));
18621 	ASSERT(bp != NULL);
18622 
18623 	switch (code) {
18624 	case SD_NO_RETRY_ISSUED:
18625 		/* Command was failed. Someone turned off this target? */
18626 		if (un->un_state != SD_STATE_OFFLINE) {
18627 			/*
18628 			 * Suppress message if we are detaching and
18629 			 * device has been disconnected
18630 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18631 			 * private interface and not part of the DDI
18632 			 */
18633 			dip = un->un_sd->sd_dev;
18634 			if (!(DEVI_IS_DETACHING(dip) &&
18635 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18636 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18637 				"disk not responding to selection\n");
18638 			}
18639 			New_state(un, SD_STATE_OFFLINE);
18640 		}
18641 		break;
18642 
18643 	case SD_DELAYED_RETRY_ISSUED:
18644 	case SD_IMMEDIATE_RETRY_ISSUED:
18645 	default:
18646 		/* Command was successfully queued for retry */
18647 		sd_print_retry_msg(un, bp, arg, code);
18648 		break;
18649 	}
18650 }
18651 
18652 
18653 /*
18654  *    Function: sd_pkt_reason_cmd_incomplete
18655  *
18656  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18657  *
18658  *     Context: May be called from interrupt context
18659  */
18660 
18661 static void
18662 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18663 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18664 {
18665 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18666 
18667 	ASSERT(un != NULL);
18668 	ASSERT(mutex_owned(SD_MUTEX(un)));
18669 	ASSERT(bp != NULL);
18670 	ASSERT(xp != NULL);
18671 	ASSERT(pktp != NULL);
18672 
18673 	/* Do not do a reset if selection did not complete */
18674 	/* Note: Should this not just check the bit? */
18675 	if (pktp->pkt_state != STATE_GOT_BUS) {
18676 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18677 		sd_reset_target(un, pktp);
18678 	}
18679 
18680 	/*
18681 	 * If the target was not successfully selected, then set
18682 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18683 	 * with the target, and further retries and/or commands are
18684 	 * likely to take a long time.
18685 	 */
18686 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18687 		flag |= SD_RETRIES_FAILFAST;
18688 	}
18689 
18690 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18691 
18692 	sd_retry_command(un, bp, flag,
18693 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18694 }
18695 
18696 
18697 
18698 /*
18699  *    Function: sd_pkt_reason_cmd_tran_err
18700  *
18701  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18702  *
18703  *     Context: May be called from interrupt context
18704  */
18705 
18706 static void
18707 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18708 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18709 {
18710 	ASSERT(un != NULL);
18711 	ASSERT(mutex_owned(SD_MUTEX(un)));
18712 	ASSERT(bp != NULL);
18713 	ASSERT(xp != NULL);
18714 	ASSERT(pktp != NULL);
18715 
18716 	/*
18717 	 * Do not reset if we got a parity error, or if
18718 	 * selection did not complete.
18719 	 */
18720 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18721 	/* Note: Should this not just check the bit for pkt_state? */
18722 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18723 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18724 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18725 		sd_reset_target(un, pktp);
18726 	}
18727 
18728 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18729 
18730 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18731 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18732 }
18733 
18734 
18735 
18736 /*
18737  *    Function: sd_pkt_reason_cmd_reset
18738  *
18739  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18740  *
18741  *     Context: May be called from interrupt context
18742  */
18743 
18744 static void
18745 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18746 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18747 {
18748 	ASSERT(un != NULL);
18749 	ASSERT(mutex_owned(SD_MUTEX(un)));
18750 	ASSERT(bp != NULL);
18751 	ASSERT(xp != NULL);
18752 	ASSERT(pktp != NULL);
18753 
18754 	/* The target may still be running the command, so try to reset. */
18755 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18756 	sd_reset_target(un, pktp);
18757 
18758 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18759 
18760 	/*
18761 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18762 	 * reset because another target on this bus caused it. The target
18763 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18764 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18765 	 */
18766 
18767 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18768 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18769 }
18770 
18771 
18772 
18773 
18774 /*
18775  *    Function: sd_pkt_reason_cmd_aborted
18776  *
18777  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18778  *
18779  *     Context: May be called from interrupt context
18780  */
18781 
18782 static void
18783 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18784 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18785 {
18786 	ASSERT(un != NULL);
18787 	ASSERT(mutex_owned(SD_MUTEX(un)));
18788 	ASSERT(bp != NULL);
18789 	ASSERT(xp != NULL);
18790 	ASSERT(pktp != NULL);
18791 
18792 	/* The target may still be running the command, so try to reset. */
18793 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18794 	sd_reset_target(un, pktp);
18795 
18796 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18797 
18798 	/*
18799 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18800 	 * aborted because another target on this bus caused it. The target
18801 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18802 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18803 	 */
18804 
18805 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18806 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18807 }
18808 
18809 
18810 
18811 /*
18812  *    Function: sd_pkt_reason_cmd_timeout
18813  *
18814  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18815  *
18816  *     Context: May be called from interrupt context
18817  */
18818 
18819 static void
18820 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18821 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18822 {
18823 	ASSERT(un != NULL);
18824 	ASSERT(mutex_owned(SD_MUTEX(un)));
18825 	ASSERT(bp != NULL);
18826 	ASSERT(xp != NULL);
18827 	ASSERT(pktp != NULL);
18828 
18829 
18830 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18831 	sd_reset_target(un, pktp);
18832 
18833 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18834 
18835 	/*
18836 	 * A command timeout indicates that we could not establish
18837 	 * communication with the target, so set SD_RETRIES_FAILFAST
18838 	 * as further retries/commands are likely to take a long time.
18839 	 */
18840 	sd_retry_command(un, bp,
18841 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18842 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18843 }
18844 
18845 
18846 
18847 /*
18848  *    Function: sd_pkt_reason_cmd_unx_bus_free
18849  *
18850  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18851  *
18852  *     Context: May be called from interrupt context
18853  */
18854 
18855 static void
18856 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18857 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18858 {
18859 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18860 
18861 	ASSERT(un != NULL);
18862 	ASSERT(mutex_owned(SD_MUTEX(un)));
18863 	ASSERT(bp != NULL);
18864 	ASSERT(xp != NULL);
18865 	ASSERT(pktp != NULL);
18866 
18867 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18868 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18869 
18870 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18871 	    sd_print_retry_msg : NULL;
18872 
18873 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18874 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18875 }
18876 
18877 
18878 /*
18879  *    Function: sd_pkt_reason_cmd_tag_reject
18880  *
18881  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18882  *
18883  *     Context: May be called from interrupt context
18884  */
18885 
18886 static void
18887 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18888 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18889 {
18890 	ASSERT(un != NULL);
18891 	ASSERT(mutex_owned(SD_MUTEX(un)));
18892 	ASSERT(bp != NULL);
18893 	ASSERT(xp != NULL);
18894 	ASSERT(pktp != NULL);
18895 
18896 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18897 	pktp->pkt_flags = 0;
18898 	un->un_tagflags = 0;
18899 	if (un->un_f_opt_queueing == TRUE) {
18900 		un->un_throttle = min(un->un_throttle, 3);
18901 	} else {
18902 		un->un_throttle = 1;
18903 	}
18904 	mutex_exit(SD_MUTEX(un));
18905 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18906 	mutex_enter(SD_MUTEX(un));
18907 
18908 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18909 
18910 	/* Legacy behavior not to check retry counts here. */
18911 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18912 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18913 }
18914 
18915 
18916 /*
18917  *    Function: sd_pkt_reason_default
18918  *
18919  * Description: Default recovery actions for SCSA pkt_reason values that
18920  *		do not have more explicit recovery actions.
18921  *
18922  *     Context: May be called from interrupt context
18923  */
18924 
18925 static void
18926 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18927 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18928 {
18929 	ASSERT(un != NULL);
18930 	ASSERT(mutex_owned(SD_MUTEX(un)));
18931 	ASSERT(bp != NULL);
18932 	ASSERT(xp != NULL);
18933 	ASSERT(pktp != NULL);
18934 
18935 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18936 	sd_reset_target(un, pktp);
18937 
18938 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18939 
18940 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18941 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18942 }
18943 
18944 
18945 
18946 /*
18947  *    Function: sd_pkt_status_check_condition
18948  *
18949  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18950  *
18951  *     Context: May be called from interrupt context
18952  */
18953 
18954 static void
18955 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18956 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18957 {
18958 	ASSERT(un != NULL);
18959 	ASSERT(mutex_owned(SD_MUTEX(un)));
18960 	ASSERT(bp != NULL);
18961 	ASSERT(xp != NULL);
18962 	ASSERT(pktp != NULL);
18963 
18964 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18965 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18966 
18967 	/*
18968 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18969 	 * command will be retried after the request sense). Otherwise, retry
18970 	 * the command. Note: we are issuing the request sense even though the
18971 	 * retry limit may have been reached for the failed command.
18972 	 */
18973 	if (un->un_f_arq_enabled == FALSE) {
18974 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18975 		    "no ARQ, sending request sense command\n");
18976 		sd_send_request_sense_command(un, bp, pktp);
18977 	} else {
18978 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18979 		    "ARQ,retrying request sense command\n");
18980 #if defined(__i386) || defined(__amd64)
18981 		/*
18982 		 * The SD_RETRY_DELAY value need to be adjusted here
18983 		 * when SD_RETRY_DELAY change in sddef.h
18984 		 */
18985 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18986 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18987 			NULL);
18988 #else
18989 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18990 		    EIO, SD_RETRY_DELAY, NULL);
18991 #endif
18992 	}
18993 
18994 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18995 }
18996 
18997 
18998 /*
18999  *    Function: sd_pkt_status_busy
19000  *
19001  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19002  *
19003  *     Context: May be called from interrupt context
19004  */
19005 
19006 static void
19007 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19008 	struct scsi_pkt *pktp)
19009 {
19010 	ASSERT(un != NULL);
19011 	ASSERT(mutex_owned(SD_MUTEX(un)));
19012 	ASSERT(bp != NULL);
19013 	ASSERT(xp != NULL);
19014 	ASSERT(pktp != NULL);
19015 
19016 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19017 	    "sd_pkt_status_busy: entry\n");
19018 
19019 	/* If retries are exhausted, just fail the command. */
19020 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19021 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19022 		    "device busy too long\n");
19023 		sd_return_failed_command(un, bp, EIO);
19024 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19025 		    "sd_pkt_status_busy: exit\n");
19026 		return;
19027 	}
19028 	xp->xb_retry_count++;
19029 
19030 	/*
19031 	 * Try to reset the target. However, we do not want to perform
19032 	 * more than one reset if the device continues to fail. The reset
19033 	 * will be performed when the retry count reaches the reset
19034 	 * threshold.  This threshold should be set such that at least
19035 	 * one retry is issued before the reset is performed.
19036 	 */
19037 	if (xp->xb_retry_count ==
19038 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19039 		int rval = 0;
19040 		mutex_exit(SD_MUTEX(un));
19041 		if (un->un_f_allow_bus_device_reset == TRUE) {
19042 			/*
19043 			 * First try to reset the LUN; if we cannot then
19044 			 * try to reset the target.
19045 			 */
19046 			if (un->un_f_lun_reset_enabled == TRUE) {
19047 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19048 				    "sd_pkt_status_busy: RESET_LUN\n");
19049 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19050 			}
19051 			if (rval == 0) {
19052 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19053 				    "sd_pkt_status_busy: RESET_TARGET\n");
19054 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19055 			}
19056 		}
19057 		if (rval == 0) {
19058 			/*
19059 			 * If the RESET_LUN and/or RESET_TARGET failed,
19060 			 * try RESET_ALL
19061 			 */
19062 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19063 			    "sd_pkt_status_busy: RESET_ALL\n");
19064 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19065 		}
19066 		mutex_enter(SD_MUTEX(un));
19067 		if (rval == 0) {
19068 			/*
19069 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19070 			 * At this point we give up & fail the command.
19071 			 */
19072 			sd_return_failed_command(un, bp, EIO);
19073 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19074 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19075 			return;
19076 		}
19077 	}
19078 
19079 	/*
19080 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19081 	 * we have already checked the retry counts above.
19082 	 */
19083 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19084 	    EIO, SD_BSY_TIMEOUT, NULL);
19085 
19086 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19087 	    "sd_pkt_status_busy: exit\n");
19088 }
19089 
19090 
19091 /*
19092  *    Function: sd_pkt_status_reservation_conflict
19093  *
19094  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19095  *		command status.
19096  *
19097  *     Context: May be called from interrupt context
19098  */
19099 
19100 static void
19101 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19102 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19103 {
19104 	ASSERT(un != NULL);
19105 	ASSERT(mutex_owned(SD_MUTEX(un)));
19106 	ASSERT(bp != NULL);
19107 	ASSERT(xp != NULL);
19108 	ASSERT(pktp != NULL);
19109 
19110 	/*
19111 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19112 	 * conflict could be due to various reasons like incorrect keys, not
19113 	 * registered or not reserved etc. So, we return EACCES to the caller.
19114 	 */
19115 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19116 		int cmd = SD_GET_PKT_OPCODE(pktp);
19117 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19118 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19119 			sd_return_failed_command(un, bp, EACCES);
19120 			return;
19121 		}
19122 	}
19123 
19124 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19125 
19126 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19127 		if (sd_failfast_enable != 0) {
19128 			/* By definition, we must panic here.... */
19129 			sd_panic_for_res_conflict(un);
19130 			/*NOTREACHED*/
19131 		}
19132 		SD_ERROR(SD_LOG_IO, un,
19133 		    "sd_handle_resv_conflict: Disk Reserved\n");
19134 		sd_return_failed_command(un, bp, EACCES);
19135 		return;
19136 	}
19137 
19138 	/*
19139 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19140 	 * property is set (default is 1). Retries will not succeed
19141 	 * on a disk reserved by another initiator. HA systems
19142 	 * may reset this via sd.conf to avoid these retries.
19143 	 *
19144 	 * Note: The legacy return code for this failure is EIO, however EACCES
19145 	 * seems more appropriate for a reservation conflict.
19146 	 */
19147 	if (sd_retry_on_reservation_conflict == 0) {
19148 		SD_ERROR(SD_LOG_IO, un,
19149 		    "sd_handle_resv_conflict: Device Reserved\n");
19150 		sd_return_failed_command(un, bp, EIO);
19151 		return;
19152 	}
19153 
19154 	/*
19155 	 * Retry the command if we can.
19156 	 *
19157 	 * Note: The legacy return code for this failure is EIO, however EACCES
19158 	 * seems more appropriate for a reservation conflict.
19159 	 */
19160 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19161 	    (clock_t)2, NULL);
19162 }
19163 
19164 
19165 
19166 /*
19167  *    Function: sd_pkt_status_qfull
19168  *
19169  * Description: Handle a QUEUE FULL condition from the target.  This can
19170  *		occur if the HBA does not handle the queue full condition.
19171  *		(Basically this means third-party HBAs as Sun HBAs will
19172  *		handle the queue full condition.)  Note that if there are
19173  *		some commands already in the transport, then the queue full
19174  *		has occurred because the queue for this nexus is actually
19175  *		full. If there are no commands in the transport, then the
19176  *		queue full is resulting from some other initiator or lun
19177  *		consuming all the resources at the target.
19178  *
19179  *     Context: May be called from interrupt context
19180  */
19181 
19182 static void
19183 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19184 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19185 {
19186 	ASSERT(un != NULL);
19187 	ASSERT(mutex_owned(SD_MUTEX(un)));
19188 	ASSERT(bp != NULL);
19189 	ASSERT(xp != NULL);
19190 	ASSERT(pktp != NULL);
19191 
19192 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19193 	    "sd_pkt_status_qfull: entry\n");
19194 
19195 	/*
19196 	 * Just lower the QFULL throttle and retry the command.  Note that
19197 	 * we do not limit the number of retries here.
19198 	 */
19199 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19200 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19201 	    SD_RESTART_TIMEOUT, NULL);
19202 
19203 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19204 	    "sd_pkt_status_qfull: exit\n");
19205 }
19206 
19207 
19208 /*
19209  *    Function: sd_reset_target
19210  *
19211  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19212  *		RESET_TARGET, or RESET_ALL.
19213  *
19214  *     Context: May be called under interrupt context.
19215  */
19216 
19217 static void
19218 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19219 {
19220 	int rval = 0;
19221 
19222 	ASSERT(un != NULL);
19223 	ASSERT(mutex_owned(SD_MUTEX(un)));
19224 	ASSERT(pktp != NULL);
19225 
19226 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19227 
19228 	/*
19229 	 * No need to reset if the transport layer has already done so.
19230 	 */
19231 	if ((pktp->pkt_statistics &
19232 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19233 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19234 		    "sd_reset_target: no reset\n");
19235 		return;
19236 	}
19237 
19238 	mutex_exit(SD_MUTEX(un));
19239 
19240 	if (un->un_f_allow_bus_device_reset == TRUE) {
19241 		if (un->un_f_lun_reset_enabled == TRUE) {
19242 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19243 			    "sd_reset_target: RESET_LUN\n");
19244 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19245 		}
19246 		if (rval == 0) {
19247 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19248 			    "sd_reset_target: RESET_TARGET\n");
19249 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19250 		}
19251 	}
19252 
19253 	if (rval == 0) {
19254 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19255 		    "sd_reset_target: RESET_ALL\n");
19256 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19257 	}
19258 
19259 	mutex_enter(SD_MUTEX(un));
19260 
19261 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19262 }
19263 
19264 
19265 /*
19266  *    Function: sd_media_change_task
19267  *
19268  * Description: Recovery action for CDROM to become available.
19269  *
19270  *     Context: Executes in a taskq() thread context
19271  */
19272 
19273 static void
19274 sd_media_change_task(void *arg)
19275 {
19276 	struct	scsi_pkt	*pktp = arg;
19277 	struct	sd_lun		*un;
19278 	struct	buf		*bp;
19279 	struct	sd_xbuf		*xp;
19280 	int	err		= 0;
19281 	int	retry_count	= 0;
19282 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19283 	struct	sd_sense_info	si;
19284 
19285 	ASSERT(pktp != NULL);
19286 	bp = (struct buf *)pktp->pkt_private;
19287 	ASSERT(bp != NULL);
19288 	xp = SD_GET_XBUF(bp);
19289 	ASSERT(xp != NULL);
19290 	un = SD_GET_UN(bp);
19291 	ASSERT(un != NULL);
19292 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19293 	ASSERT(un->un_f_monitor_media_state);
19294 
19295 	si.ssi_severity = SCSI_ERR_INFO;
19296 	si.ssi_pfa_flag = FALSE;
19297 
19298 	/*
19299 	 * When a reset is issued on a CDROM, it takes a long time to
19300 	 * recover. First few attempts to read capacity and other things
19301 	 * related to handling unit attention fail (with a ASC 0x4 and
19302 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19303 	 * to limit the retries in other cases of genuine failures like
19304 	 * no media in drive.
19305 	 */
19306 	while (retry_count++ < retry_limit) {
19307 		if ((err = sd_handle_mchange(un)) == 0) {
19308 			break;
19309 		}
19310 		if (err == EAGAIN) {
19311 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19312 		}
19313 		/* Sleep for 0.5 sec. & try again */
19314 		delay(drv_usectohz(500000));
19315 	}
19316 
19317 	/*
19318 	 * Dispatch (retry or fail) the original command here,
19319 	 * along with appropriate console messages....
19320 	 *
19321 	 * Must grab the mutex before calling sd_retry_command,
19322 	 * sd_print_sense_msg and sd_return_failed_command.
19323 	 */
19324 	mutex_enter(SD_MUTEX(un));
19325 	if (err != SD_CMD_SUCCESS) {
19326 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19327 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19328 		si.ssi_severity = SCSI_ERR_FATAL;
19329 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19330 		sd_return_failed_command(un, bp, EIO);
19331 	} else {
19332 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19333 		    &si, EIO, (clock_t)0, NULL);
19334 	}
19335 	mutex_exit(SD_MUTEX(un));
19336 }
19337 
19338 
19339 
19340 /*
19341  *    Function: sd_handle_mchange
19342  *
19343  * Description: Perform geometry validation & other recovery when CDROM
19344  *		has been removed from drive.
19345  *
19346  * Return Code: 0 for success
19347  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19348  *		sd_send_scsi_READ_CAPACITY()
19349  *
19350  *     Context: Executes in a taskq() thread context
19351  */
19352 
19353 static int
19354 sd_handle_mchange(struct sd_lun *un)
19355 {
19356 	uint64_t	capacity;
19357 	uint32_t	lbasize;
19358 	int		rval;
19359 
19360 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19361 	ASSERT(un->un_f_monitor_media_state);
19362 
19363 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
19364 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
19365 		return (rval);
19366 	}
19367 
19368 	mutex_enter(SD_MUTEX(un));
19369 	sd_update_block_info(un, lbasize, capacity);
19370 
19371 	if (un->un_errstats != NULL) {
19372 		struct	sd_errstats *stp =
19373 		    (struct sd_errstats *)un->un_errstats->ks_data;
19374 		stp->sd_capacity.value.ui64 = (uint64_t)
19375 		    ((uint64_t)un->un_blockcount *
19376 		    (uint64_t)un->un_tgt_blocksize);
19377 	}
19378 
19379 	/*
19380 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19381 	 * valid geometry.
19382 	 */
19383 	un->un_f_geometry_is_valid = FALSE;
19384 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19385 	if (un->un_f_geometry_is_valid == FALSE) {
19386 		mutex_exit(SD_MUTEX(un));
19387 		return (EIO);
19388 	}
19389 
19390 	mutex_exit(SD_MUTEX(un));
19391 
19392 	/*
19393 	 * Try to lock the door
19394 	 */
19395 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19396 	    SD_PATH_DIRECT_PRIORITY));
19397 }
19398 
19399 
19400 /*
19401  *    Function: sd_send_scsi_DOORLOCK
19402  *
19403  * Description: Issue the scsi DOOR LOCK command
19404  *
19405  *   Arguments: un    - pointer to driver soft state (unit) structure for
19406  *			this target.
19407  *		flag  - SD_REMOVAL_ALLOW
19408  *			SD_REMOVAL_PREVENT
19409  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19410  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19411  *			to use the USCSI "direct" chain and bypass the normal
19412  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19413  *			command is issued as part of an error recovery action.
19414  *
19415  * Return Code: 0   - Success
19416  *		errno return code from sd_send_scsi_cmd()
19417  *
19418  *     Context: Can sleep.
19419  */
19420 
19421 static int
19422 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19423 {
19424 	union scsi_cdb		cdb;
19425 	struct uscsi_cmd	ucmd_buf;
19426 	struct scsi_extended_sense	sense_buf;
19427 	int			status;
19428 
19429 	ASSERT(un != NULL);
19430 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19431 
19432 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19433 
19434 	/* already determined doorlock is not supported, fake success */
19435 	if (un->un_f_doorlock_supported == FALSE) {
19436 		return (0);
19437 	}
19438 
19439 	bzero(&cdb, sizeof (cdb));
19440 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19441 
19442 	cdb.scc_cmd = SCMD_DOORLOCK;
19443 	cdb.cdb_opaque[4] = (uchar_t)flag;
19444 
19445 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19446 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19447 	ucmd_buf.uscsi_bufaddr	= NULL;
19448 	ucmd_buf.uscsi_buflen	= 0;
19449 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19450 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19451 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19452 	ucmd_buf.uscsi_timeout	= 15;
19453 
19454 	SD_TRACE(SD_LOG_IO, un,
19455 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19456 
19457 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19458 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19459 
19460 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19461 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19462 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19463 		/* fake success and skip subsequent doorlock commands */
19464 		un->un_f_doorlock_supported = FALSE;
19465 		return (0);
19466 	}
19467 
19468 	return (status);
19469 }
19470 
19471 /*
19472  *    Function: sd_send_scsi_READ_CAPACITY
19473  *
19474  * Description: This routine uses the scsi READ CAPACITY command to determine
19475  *		the device capacity in number of blocks and the device native
19476  *		block size. If this function returns a failure, then the
19477  *		values in *capp and *lbap are undefined.  If the capacity
19478  *		returned is 0xffffffff then the lun is too large for a
19479  *		normal READ CAPACITY command and the results of a
19480  *		READ CAPACITY 16 will be used instead.
19481  *
19482  *   Arguments: un   - ptr to soft state struct for the target
19483  *		capp - ptr to unsigned 64-bit variable to receive the
19484  *			capacity value from the command.
19485  *		lbap - ptr to unsigned 32-bit varaible to receive the
19486  *			block size value from the command
19487  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19488  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19489  *			to use the USCSI "direct" chain and bypass the normal
19490  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19491  *			command is issued as part of an error recovery action.
19492  *
19493  * Return Code: 0   - Success
19494  *		EIO - IO error
19495  *		EACCES - Reservation conflict detected
19496  *		EAGAIN - Device is becoming ready
19497  *		errno return code from sd_send_scsi_cmd()
19498  *
19499  *     Context: Can sleep.  Blocks until command completes.
19500  */
19501 
19502 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19503 
19504 static int
19505 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19506 	int path_flag)
19507 {
19508 	struct	scsi_extended_sense	sense_buf;
19509 	struct	uscsi_cmd	ucmd_buf;
19510 	union	scsi_cdb	cdb;
19511 	uint32_t		*capacity_buf;
19512 	uint64_t		capacity;
19513 	uint32_t		lbasize;
19514 	int			status;
19515 
19516 	ASSERT(un != NULL);
19517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19518 	ASSERT(capp != NULL);
19519 	ASSERT(lbap != NULL);
19520 
19521 	SD_TRACE(SD_LOG_IO, un,
19522 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19523 
19524 	/*
19525 	 * First send a READ_CAPACITY command to the target.
19526 	 * (This command is mandatory under SCSI-2.)
19527 	 *
19528 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19529 	 * Medium Indicator bit is cleared.  The address field must be
19530 	 * zero if the PMI bit is zero.
19531 	 */
19532 	bzero(&cdb, sizeof (cdb));
19533 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19534 
19535 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19536 
19537 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19538 
19539 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19540 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19541 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19542 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19543 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19544 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19545 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19546 	ucmd_buf.uscsi_timeout	= 60;
19547 
19548 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19549 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19550 
19551 	switch (status) {
19552 	case 0:
19553 		/* Return failure if we did not get valid capacity data. */
19554 		if (ucmd_buf.uscsi_resid != 0) {
19555 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19556 			return (EIO);
19557 		}
19558 
19559 		/*
19560 		 * Read capacity and block size from the READ CAPACITY 10 data.
19561 		 * This data may be adjusted later due to device specific
19562 		 * issues.
19563 		 *
19564 		 * According to the SCSI spec, the READ CAPACITY 10
19565 		 * command returns the following:
19566 		 *
19567 		 *  bytes 0-3: Maximum logical block address available.
19568 		 *		(MSB in byte:0 & LSB in byte:3)
19569 		 *
19570 		 *  bytes 4-7: Block length in bytes
19571 		 *		(MSB in byte:4 & LSB in byte:7)
19572 		 *
19573 		 */
19574 		capacity = BE_32(capacity_buf[0]);
19575 		lbasize = BE_32(capacity_buf[1]);
19576 
19577 		/*
19578 		 * Done with capacity_buf
19579 		 */
19580 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19581 
19582 		/*
19583 		 * if the reported capacity is set to all 0xf's, then
19584 		 * this disk is too large and requires SBC-2 commands.
19585 		 * Reissue the request using READ CAPACITY 16.
19586 		 */
19587 		if (capacity == 0xffffffff) {
19588 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19589 			    &lbasize, path_flag);
19590 			if (status != 0) {
19591 				return (status);
19592 			}
19593 		}
19594 		break;	/* Success! */
19595 	case EIO:
19596 		switch (ucmd_buf.uscsi_status) {
19597 		case STATUS_RESERVATION_CONFLICT:
19598 			status = EACCES;
19599 			break;
19600 		case STATUS_CHECK:
19601 			/*
19602 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19603 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19604 			 */
19605 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19606 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19607 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19608 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19609 				return (EAGAIN);
19610 			}
19611 			break;
19612 		default:
19613 			break;
19614 		}
19615 		/* FALLTHRU */
19616 	default:
19617 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19618 		return (status);
19619 	}
19620 
19621 	/*
19622 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19623 	 * (2352 and 0 are common) so for these devices always force the value
19624 	 * to 2048 as required by the ATAPI specs.
19625 	 */
19626 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19627 		lbasize = 2048;
19628 	}
19629 
19630 	/*
19631 	 * Get the maximum LBA value from the READ CAPACITY data.
19632 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19633 	 * was cleared when issuing the command. This means that the LBA
19634 	 * returned from the device is the LBA of the last logical block
19635 	 * on the logical unit.  The actual logical block count will be
19636 	 * this value plus one.
19637 	 *
19638 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19639 	 * so scale the capacity value to reflect this.
19640 	 */
19641 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19642 
19643 #if defined(__i386) || defined(__amd64)
19644 	/*
19645 	 * Refer to comments related to off-by-1 at the
19646 	 * header of this file.
19647 	 * Treat 1TB disk as (1T - 512)B.
19648 	 */
19649 	if (un->un_f_capacity_adjusted == 1)
19650 	    capacity = DK_MAX_BLOCKS;
19651 #endif
19652 
19653 	/*
19654 	 * Copy the values from the READ CAPACITY command into the space
19655 	 * provided by the caller.
19656 	 */
19657 	*capp = capacity;
19658 	*lbap = lbasize;
19659 
19660 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19661 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19662 
19663 	/*
19664 	 * Both the lbasize and capacity from the device must be nonzero,
19665 	 * otherwise we assume that the values are not valid and return
19666 	 * failure to the caller. (4203735)
19667 	 */
19668 	if ((capacity == 0) || (lbasize == 0)) {
19669 		return (EIO);
19670 	}
19671 
19672 	return (0);
19673 }
19674 
19675 /*
19676  *    Function: sd_send_scsi_READ_CAPACITY_16
19677  *
19678  * Description: This routine uses the scsi READ CAPACITY 16 command to
19679  *		determine the device capacity in number of blocks and the
19680  *		device native block size.  If this function returns a failure,
19681  *		then the values in *capp and *lbap are undefined.
19682  *		This routine should always be called by
19683  *		sd_send_scsi_READ_CAPACITY which will appy any device
19684  *		specific adjustments to capacity and lbasize.
19685  *
19686  *   Arguments: un   - ptr to soft state struct for the target
19687  *		capp - ptr to unsigned 64-bit variable to receive the
19688  *			capacity value from the command.
19689  *		lbap - ptr to unsigned 32-bit varaible to receive the
19690  *			block size value from the command
19691  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19692  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19693  *			to use the USCSI "direct" chain and bypass the normal
19694  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19695  *			this command is issued as part of an error recovery
19696  *			action.
19697  *
19698  * Return Code: 0   - Success
19699  *		EIO - IO error
19700  *		EACCES - Reservation conflict detected
19701  *		EAGAIN - Device is becoming ready
19702  *		errno return code from sd_send_scsi_cmd()
19703  *
19704  *     Context: Can sleep.  Blocks until command completes.
19705  */
19706 
19707 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19708 
19709 static int
19710 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19711 	uint32_t *lbap, int path_flag)
19712 {
19713 	struct	scsi_extended_sense	sense_buf;
19714 	struct	uscsi_cmd	ucmd_buf;
19715 	union	scsi_cdb	cdb;
19716 	uint64_t		*capacity16_buf;
19717 	uint64_t		capacity;
19718 	uint32_t		lbasize;
19719 	int			status;
19720 
19721 	ASSERT(un != NULL);
19722 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19723 	ASSERT(capp != NULL);
19724 	ASSERT(lbap != NULL);
19725 
19726 	SD_TRACE(SD_LOG_IO, un,
19727 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19728 
19729 	/*
19730 	 * First send a READ_CAPACITY_16 command to the target.
19731 	 *
19732 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19733 	 * Medium Indicator bit is cleared.  The address field must be
19734 	 * zero if the PMI bit is zero.
19735 	 */
19736 	bzero(&cdb, sizeof (cdb));
19737 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19738 
19739 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19740 
19741 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19742 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19743 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19744 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19745 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19746 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19747 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19748 	ucmd_buf.uscsi_timeout	= 60;
19749 
19750 	/*
19751 	 * Read Capacity (16) is a Service Action In command.  One
19752 	 * command byte (0x9E) is overloaded for multiple operations,
19753 	 * with the second CDB byte specifying the desired operation
19754 	 */
19755 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19756 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19757 
19758 	/*
19759 	 * Fill in allocation length field
19760 	 */
19761 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19762 
19763 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19764 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19765 
19766 	switch (status) {
19767 	case 0:
19768 		/* Return failure if we did not get valid capacity data. */
19769 		if (ucmd_buf.uscsi_resid > 20) {
19770 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19771 			return (EIO);
19772 		}
19773 
19774 		/*
19775 		 * Read capacity and block size from the READ CAPACITY 10 data.
19776 		 * This data may be adjusted later due to device specific
19777 		 * issues.
19778 		 *
19779 		 * According to the SCSI spec, the READ CAPACITY 10
19780 		 * command returns the following:
19781 		 *
19782 		 *  bytes 0-7: Maximum logical block address available.
19783 		 *		(MSB in byte:0 & LSB in byte:7)
19784 		 *
19785 		 *  bytes 8-11: Block length in bytes
19786 		 *		(MSB in byte:8 & LSB in byte:11)
19787 		 *
19788 		 */
19789 		capacity = BE_64(capacity16_buf[0]);
19790 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19791 
19792 		/*
19793 		 * Done with capacity16_buf
19794 		 */
19795 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19796 
19797 		/*
19798 		 * if the reported capacity is set to all 0xf's, then
19799 		 * this disk is too large.  This could only happen with
19800 		 * a device that supports LBAs larger than 64 bits which
19801 		 * are not defined by any current T10 standards.
19802 		 */
19803 		if (capacity == 0xffffffffffffffff) {
19804 			return (EIO);
19805 		}
19806 		break;	/* Success! */
19807 	case EIO:
19808 		switch (ucmd_buf.uscsi_status) {
19809 		case STATUS_RESERVATION_CONFLICT:
19810 			status = EACCES;
19811 			break;
19812 		case STATUS_CHECK:
19813 			/*
19814 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19815 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19816 			 */
19817 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19818 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19819 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19820 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19821 				return (EAGAIN);
19822 			}
19823 			break;
19824 		default:
19825 			break;
19826 		}
19827 		/* FALLTHRU */
19828 	default:
19829 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19830 		return (status);
19831 	}
19832 
19833 	*capp = capacity;
19834 	*lbap = lbasize;
19835 
19836 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19837 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19838 
19839 	return (0);
19840 }
19841 
19842 
19843 /*
19844  *    Function: sd_send_scsi_START_STOP_UNIT
19845  *
19846  * Description: Issue a scsi START STOP UNIT command to the target.
19847  *
19848  *   Arguments: un    - pointer to driver soft state (unit) structure for
19849  *			this target.
19850  *		flag  - SD_TARGET_START
19851  *			SD_TARGET_STOP
19852  *			SD_TARGET_EJECT
19853  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19854  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19855  *			to use the USCSI "direct" chain and bypass the normal
19856  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19857  *			command is issued as part of an error recovery action.
19858  *
19859  * Return Code: 0   - Success
19860  *		EIO - IO error
19861  *		EACCES - Reservation conflict detected
19862  *		ENXIO  - Not Ready, medium not present
19863  *		errno return code from sd_send_scsi_cmd()
19864  *
19865  *     Context: Can sleep.
19866  */
19867 
19868 static int
19869 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19870 {
19871 	struct	scsi_extended_sense	sense_buf;
19872 	union scsi_cdb		cdb;
19873 	struct uscsi_cmd	ucmd_buf;
19874 	int			status;
19875 
19876 	ASSERT(un != NULL);
19877 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19878 
19879 	SD_TRACE(SD_LOG_IO, un,
19880 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19881 
19882 	if (un->un_f_check_start_stop &&
19883 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19884 	    (un->un_f_start_stop_supported != TRUE)) {
19885 		return (0);
19886 	}
19887 
19888 	bzero(&cdb, sizeof (cdb));
19889 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19890 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19891 
19892 	cdb.scc_cmd = SCMD_START_STOP;
19893 	cdb.cdb_opaque[4] = (uchar_t)flag;
19894 
19895 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19896 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19897 	ucmd_buf.uscsi_bufaddr	= NULL;
19898 	ucmd_buf.uscsi_buflen	= 0;
19899 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19900 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19901 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19902 	ucmd_buf.uscsi_timeout	= 200;
19903 
19904 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19905 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19906 
19907 	switch (status) {
19908 	case 0:
19909 		break;	/* Success! */
19910 	case EIO:
19911 		switch (ucmd_buf.uscsi_status) {
19912 		case STATUS_RESERVATION_CONFLICT:
19913 			status = EACCES;
19914 			break;
19915 		case STATUS_CHECK:
19916 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19917 				switch (scsi_sense_key(
19918 						(uint8_t *)&sense_buf)) {
19919 				case KEY_ILLEGAL_REQUEST:
19920 					status = ENOTSUP;
19921 					break;
19922 				case KEY_NOT_READY:
19923 					if (scsi_sense_asc(
19924 						    (uint8_t *)&sense_buf)
19925 					    == 0x3A) {
19926 						status = ENXIO;
19927 					}
19928 					break;
19929 				default:
19930 					break;
19931 				}
19932 			}
19933 			break;
19934 		default:
19935 			break;
19936 		}
19937 		break;
19938 	default:
19939 		break;
19940 	}
19941 
19942 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19943 
19944 	return (status);
19945 }
19946 
19947 
19948 /*
19949  *    Function: sd_start_stop_unit_callback
19950  *
19951  * Description: timeout(9F) callback to begin recovery process for a
19952  *		device that has spun down.
19953  *
19954  *   Arguments: arg - pointer to associated softstate struct.
19955  *
19956  *     Context: Executes in a timeout(9F) thread context
19957  */
19958 
19959 static void
19960 sd_start_stop_unit_callback(void *arg)
19961 {
19962 	struct sd_lun	*un = arg;
19963 	ASSERT(un != NULL);
19964 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19965 
19966 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19967 
19968 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19969 }
19970 
19971 
19972 /*
19973  *    Function: sd_start_stop_unit_task
19974  *
19975  * Description: Recovery procedure when a drive is spun down.
19976  *
19977  *   Arguments: arg - pointer to associated softstate struct.
19978  *
19979  *     Context: Executes in a taskq() thread context
19980  */
19981 
19982 static void
19983 sd_start_stop_unit_task(void *arg)
19984 {
19985 	struct sd_lun	*un = arg;
19986 
19987 	ASSERT(un != NULL);
19988 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19989 
19990 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19991 
19992 	/*
19993 	 * Some unformatted drives report not ready error, no need to
19994 	 * restart if format has been initiated.
19995 	 */
19996 	mutex_enter(SD_MUTEX(un));
19997 	if (un->un_f_format_in_progress == TRUE) {
19998 		mutex_exit(SD_MUTEX(un));
19999 		return;
20000 	}
20001 	mutex_exit(SD_MUTEX(un));
20002 
20003 	/*
20004 	 * When a START STOP command is issued from here, it is part of a
20005 	 * failure recovery operation and must be issued before any other
20006 	 * commands, including any pending retries. Thus it must be sent
20007 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20008 	 * succeeds or not, we will start I/O after the attempt.
20009 	 */
20010 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20011 	    SD_PATH_DIRECT_PRIORITY);
20012 
20013 	/*
20014 	 * The above call blocks until the START_STOP_UNIT command completes.
20015 	 * Now that it has completed, we must re-try the original IO that
20016 	 * received the NOT READY condition in the first place. There are
20017 	 * three possible conditions here:
20018 	 *
20019 	 *  (1) The original IO is on un_retry_bp.
20020 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20021 	 *	is NULL.
20022 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20023 	 *	points to some other, unrelated bp.
20024 	 *
20025 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20026 	 * as the argument. If un_retry_bp is NULL, this will initiate
20027 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20028 	 * then this will process the bp on un_retry_bp. That may or may not
20029 	 * be the original IO, but that does not matter: the important thing
20030 	 * is to keep the IO processing going at this point.
20031 	 *
20032 	 * Note: This is a very specific error recovery sequence associated
20033 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20034 	 * serialize the I/O with completion of the spin-up.
20035 	 */
20036 	mutex_enter(SD_MUTEX(un));
20037 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20038 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20039 	    un, un->un_retry_bp);
20040 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20041 	sd_start_cmds(un, un->un_retry_bp);
20042 	mutex_exit(SD_MUTEX(un));
20043 
20044 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20045 }
20046 
20047 
20048 /*
20049  *    Function: sd_send_scsi_INQUIRY
20050  *
20051  * Description: Issue the scsi INQUIRY command.
20052  *
20053  *   Arguments: un
20054  *		bufaddr
20055  *		buflen
20056  *		evpd
20057  *		page_code
20058  *		page_length
20059  *
20060  * Return Code: 0   - Success
20061  *		errno return code from sd_send_scsi_cmd()
20062  *
20063  *     Context: Can sleep. Does not return until command is completed.
20064  */
20065 
20066 static int
20067 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
20068 	uchar_t evpd, uchar_t page_code, size_t *residp)
20069 {
20070 	union scsi_cdb		cdb;
20071 	struct uscsi_cmd	ucmd_buf;
20072 	int			status;
20073 
20074 	ASSERT(un != NULL);
20075 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20076 	ASSERT(bufaddr != NULL);
20077 
20078 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20079 
20080 	bzero(&cdb, sizeof (cdb));
20081 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20082 	bzero(bufaddr, buflen);
20083 
20084 	cdb.scc_cmd = SCMD_INQUIRY;
20085 	cdb.cdb_opaque[1] = evpd;
20086 	cdb.cdb_opaque[2] = page_code;
20087 	FORMG0COUNT(&cdb, buflen);
20088 
20089 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20090 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20091 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20092 	ucmd_buf.uscsi_buflen	= buflen;
20093 	ucmd_buf.uscsi_rqbuf	= NULL;
20094 	ucmd_buf.uscsi_rqlen	= 0;
20095 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20096 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20097 
20098 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20099 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
20100 
20101 	if ((status == 0) && (residp != NULL)) {
20102 		*residp = ucmd_buf.uscsi_resid;
20103 	}
20104 
20105 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20106 
20107 	return (status);
20108 }
20109 
20110 
20111 /*
20112  *    Function: sd_send_scsi_TEST_UNIT_READY
20113  *
20114  * Description: Issue the scsi TEST UNIT READY command.
20115  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20116  *		prevent retrying failed commands. Use this when the intent
20117  *		is either to check for device readiness, to clear a Unit
20118  *		Attention, or to clear any outstanding sense data.
20119  *		However under specific conditions the expected behavior
20120  *		is for retries to bring a device ready, so use the flag
20121  *		with caution.
20122  *
20123  *   Arguments: un
20124  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20125  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20126  *			0: dont check for media present, do retries on cmd.
20127  *
20128  * Return Code: 0   - Success
20129  *		EIO - IO error
20130  *		EACCES - Reservation conflict detected
20131  *		ENXIO  - Not Ready, medium not present
20132  *		errno return code from sd_send_scsi_cmd()
20133  *
20134  *     Context: Can sleep. Does not return until command is completed.
20135  */
20136 
20137 static int
20138 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
20139 {
20140 	struct	scsi_extended_sense	sense_buf;
20141 	union scsi_cdb		cdb;
20142 	struct uscsi_cmd	ucmd_buf;
20143 	int			status;
20144 
20145 	ASSERT(un != NULL);
20146 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20147 
20148 	SD_TRACE(SD_LOG_IO, un,
20149 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20150 
20151 	/*
20152 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20153 	 * timeouts when they receive a TUR and the queue is not empty. Check
20154 	 * the configuration flag set during attach (indicating the drive has
20155 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20156 	 * TUR. If there are
20157 	 * pending commands return success, this is a bit arbitrary but is ok
20158 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20159 	 * configurations.
20160 	 */
20161 	if (un->un_f_cfg_tur_check == TRUE) {
20162 		mutex_enter(SD_MUTEX(un));
20163 		if (un->un_ncmds_in_transport != 0) {
20164 			mutex_exit(SD_MUTEX(un));
20165 			return (0);
20166 		}
20167 		mutex_exit(SD_MUTEX(un));
20168 	}
20169 
20170 	bzero(&cdb, sizeof (cdb));
20171 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20172 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20173 
20174 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20175 
20176 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20177 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20178 	ucmd_buf.uscsi_bufaddr	= NULL;
20179 	ucmd_buf.uscsi_buflen	= 0;
20180 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20181 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20182 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20183 
20184 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20185 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20186 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20187 	}
20188 	ucmd_buf.uscsi_timeout	= 60;
20189 
20190 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20191 	    UIO_SYSSPACE, UIO_SYSSPACE,
20192 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
20193 
20194 	switch (status) {
20195 	case 0:
20196 		break;	/* Success! */
20197 	case EIO:
20198 		switch (ucmd_buf.uscsi_status) {
20199 		case STATUS_RESERVATION_CONFLICT:
20200 			status = EACCES;
20201 			break;
20202 		case STATUS_CHECK:
20203 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20204 				break;
20205 			}
20206 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20207 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20208 				KEY_NOT_READY) &&
20209 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20210 				status = ENXIO;
20211 			}
20212 			break;
20213 		default:
20214 			break;
20215 		}
20216 		break;
20217 	default:
20218 		break;
20219 	}
20220 
20221 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20222 
20223 	return (status);
20224 }
20225 
20226 
20227 /*
20228  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20229  *
20230  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20231  *
20232  *   Arguments: un
20233  *
20234  * Return Code: 0   - Success
20235  *		EACCES
20236  *		ENOTSUP
20237  *		errno return code from sd_send_scsi_cmd()
20238  *
20239  *     Context: Can sleep. Does not return until command is completed.
20240  */
20241 
20242 static int
20243 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
20244 	uint16_t data_len, uchar_t *data_bufp)
20245 {
20246 	struct scsi_extended_sense	sense_buf;
20247 	union scsi_cdb		cdb;
20248 	struct uscsi_cmd	ucmd_buf;
20249 	int			status;
20250 	int			no_caller_buf = FALSE;
20251 
20252 	ASSERT(un != NULL);
20253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20254 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20255 
20256 	SD_TRACE(SD_LOG_IO, un,
20257 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20258 
20259 	bzero(&cdb, sizeof (cdb));
20260 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20261 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20262 	if (data_bufp == NULL) {
20263 		/* Allocate a default buf if the caller did not give one */
20264 		ASSERT(data_len == 0);
20265 		data_len  = MHIOC_RESV_KEY_SIZE;
20266 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20267 		no_caller_buf = TRUE;
20268 	}
20269 
20270 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20271 	cdb.cdb_opaque[1] = usr_cmd;
20272 	FORMG1COUNT(&cdb, data_len);
20273 
20274 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20275 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20276 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20277 	ucmd_buf.uscsi_buflen	= data_len;
20278 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20279 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20280 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20281 	ucmd_buf.uscsi_timeout	= 60;
20282 
20283 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20284 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20285 
20286 	switch (status) {
20287 	case 0:
20288 		break;	/* Success! */
20289 	case EIO:
20290 		switch (ucmd_buf.uscsi_status) {
20291 		case STATUS_RESERVATION_CONFLICT:
20292 			status = EACCES;
20293 			break;
20294 		case STATUS_CHECK:
20295 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20296 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20297 				KEY_ILLEGAL_REQUEST)) {
20298 				status = ENOTSUP;
20299 			}
20300 			break;
20301 		default:
20302 			break;
20303 		}
20304 		break;
20305 	default:
20306 		break;
20307 	}
20308 
20309 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20310 
20311 	if (no_caller_buf == TRUE) {
20312 		kmem_free(data_bufp, data_len);
20313 	}
20314 
20315 	return (status);
20316 }
20317 
20318 
20319 /*
20320  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20321  *
20322  * Description: This routine is the driver entry point for handling CD-ROM
20323  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20324  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20325  *		device.
20326  *
20327  *   Arguments: un  -   Pointer to soft state struct for the target.
20328  *		usr_cmd SCSI-3 reservation facility command (one of
20329  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20330  *			SD_SCSI3_PREEMPTANDABORT)
20331  *		usr_bufp - user provided pointer register, reserve descriptor or
20332  *			preempt and abort structure (mhioc_register_t,
20333  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20334  *
20335  * Return Code: 0   - Success
20336  *		EACCES
20337  *		ENOTSUP
20338  *		errno return code from sd_send_scsi_cmd()
20339  *
20340  *     Context: Can sleep. Does not return until command is completed.
20341  */
20342 
20343 static int
20344 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
20345 	uchar_t	*usr_bufp)
20346 {
20347 	struct scsi_extended_sense	sense_buf;
20348 	union scsi_cdb		cdb;
20349 	struct uscsi_cmd	ucmd_buf;
20350 	int			status;
20351 	uchar_t			data_len = sizeof (sd_prout_t);
20352 	sd_prout_t		*prp;
20353 
20354 	ASSERT(un != NULL);
20355 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20356 	ASSERT(data_len == 24);	/* required by scsi spec */
20357 
20358 	SD_TRACE(SD_LOG_IO, un,
20359 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20360 
20361 	if (usr_bufp == NULL) {
20362 		return (EINVAL);
20363 	}
20364 
20365 	bzero(&cdb, sizeof (cdb));
20366 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20367 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20368 	prp = kmem_zalloc(data_len, KM_SLEEP);
20369 
20370 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20371 	cdb.cdb_opaque[1] = usr_cmd;
20372 	FORMG1COUNT(&cdb, data_len);
20373 
20374 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20375 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20376 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20377 	ucmd_buf.uscsi_buflen	= data_len;
20378 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20379 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20380 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20381 	ucmd_buf.uscsi_timeout	= 60;
20382 
20383 	switch (usr_cmd) {
20384 	case SD_SCSI3_REGISTER: {
20385 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20386 
20387 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20388 		bcopy(ptr->newkey.key, prp->service_key,
20389 		    MHIOC_RESV_KEY_SIZE);
20390 		prp->aptpl = ptr->aptpl;
20391 		break;
20392 	}
20393 	case SD_SCSI3_RESERVE:
20394 	case SD_SCSI3_RELEASE: {
20395 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20396 
20397 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20398 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20399 		cdb.cdb_opaque[2] = ptr->type;
20400 		break;
20401 	}
20402 	case SD_SCSI3_PREEMPTANDABORT: {
20403 		mhioc_preemptandabort_t *ptr =
20404 		    (mhioc_preemptandabort_t *)usr_bufp;
20405 
20406 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20407 		bcopy(ptr->victim_key.key, prp->service_key,
20408 		    MHIOC_RESV_KEY_SIZE);
20409 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20410 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20411 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20412 		break;
20413 	}
20414 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20415 	{
20416 		mhioc_registerandignorekey_t *ptr;
20417 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20418 		bcopy(ptr->newkey.key,
20419 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20420 		prp->aptpl = ptr->aptpl;
20421 		break;
20422 	}
20423 	default:
20424 		ASSERT(FALSE);
20425 		break;
20426 	}
20427 
20428 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20429 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20430 
20431 	switch (status) {
20432 	case 0:
20433 		break;	/* Success! */
20434 	case EIO:
20435 		switch (ucmd_buf.uscsi_status) {
20436 		case STATUS_RESERVATION_CONFLICT:
20437 			status = EACCES;
20438 			break;
20439 		case STATUS_CHECK:
20440 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20441 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20442 				KEY_ILLEGAL_REQUEST)) {
20443 				status = ENOTSUP;
20444 			}
20445 			break;
20446 		default:
20447 			break;
20448 		}
20449 		break;
20450 	default:
20451 		break;
20452 	}
20453 
20454 	kmem_free(prp, data_len);
20455 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20456 	return (status);
20457 }
20458 
20459 
20460 /*
20461  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20462  *
20463  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20464  *
20465  *   Arguments: un - pointer to the target's soft state struct
20466  *
20467  * Return Code: 0 - success
20468  *		errno-type error code
20469  *
20470  *     Context: kernel thread context only.
20471  */
20472 
20473 static int
20474 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20475 {
20476 	struct sd_uscsi_info	*uip;
20477 	struct uscsi_cmd	*uscmd;
20478 	union scsi_cdb		*cdb;
20479 	struct buf		*bp;
20480 	int			rval = 0;
20481 
20482 	SD_TRACE(SD_LOG_IO, un,
20483 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20484 
20485 	ASSERT(un != NULL);
20486 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20487 
20488 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20489 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20490 
20491 	/*
20492 	 * First get some memory for the uscsi_cmd struct and cdb
20493 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20494 	 */
20495 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20496 	uscmd->uscsi_cdblen = CDB_GROUP1;
20497 	uscmd->uscsi_cdb = (caddr_t)cdb;
20498 	uscmd->uscsi_bufaddr = NULL;
20499 	uscmd->uscsi_buflen = 0;
20500 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20501 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20502 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20503 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20504 	uscmd->uscsi_timeout = sd_io_time;
20505 
20506 	/*
20507 	 * Allocate an sd_uscsi_info struct and fill it with the info
20508 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20509 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20510 	 * since we allocate the buf here in this function, we do not
20511 	 * need to preserve the prior contents of b_private.
20512 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20513 	 */
20514 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20515 	uip->ui_flags = SD_PATH_DIRECT;
20516 	uip->ui_cmdp  = uscmd;
20517 
20518 	bp = getrbuf(KM_SLEEP);
20519 	bp->b_private = uip;
20520 
20521 	/*
20522 	 * Setup buffer to carry uscsi request.
20523 	 */
20524 	bp->b_flags  = B_BUSY;
20525 	bp->b_bcount = 0;
20526 	bp->b_blkno  = 0;
20527 
20528 	if (dkc != NULL) {
20529 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20530 		uip->ui_dkc = *dkc;
20531 	}
20532 
20533 	bp->b_edev = SD_GET_DEV(un);
20534 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20535 
20536 	(void) sd_uscsi_strategy(bp);
20537 
20538 	/*
20539 	 * If synchronous request, wait for completion
20540 	 * If async just return and let b_iodone callback
20541 	 * cleanup.
20542 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20543 	 * but it was also incremented in sd_uscsi_strategy(), so
20544 	 * we should be ok.
20545 	 */
20546 	if (dkc == NULL) {
20547 		(void) biowait(bp);
20548 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20549 	}
20550 
20551 	return (rval);
20552 }
20553 
20554 
20555 static int
20556 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20557 {
20558 	struct sd_uscsi_info *uip;
20559 	struct uscsi_cmd *uscmd;
20560 	uint8_t *sense_buf;
20561 	struct sd_lun *un;
20562 	int status;
20563 
20564 	uip = (struct sd_uscsi_info *)(bp->b_private);
20565 	ASSERT(uip != NULL);
20566 
20567 	uscmd = uip->ui_cmdp;
20568 	ASSERT(uscmd != NULL);
20569 
20570 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20571 	ASSERT(sense_buf != NULL);
20572 
20573 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20574 	ASSERT(un != NULL);
20575 
20576 	status = geterror(bp);
20577 	switch (status) {
20578 	case 0:
20579 		break;	/* Success! */
20580 	case EIO:
20581 		switch (uscmd->uscsi_status) {
20582 		case STATUS_RESERVATION_CONFLICT:
20583 			/* Ignore reservation conflict */
20584 			status = 0;
20585 			goto done;
20586 
20587 		case STATUS_CHECK:
20588 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20589 			    (scsi_sense_key(sense_buf) ==
20590 				KEY_ILLEGAL_REQUEST)) {
20591 				/* Ignore Illegal Request error */
20592 				mutex_enter(SD_MUTEX(un));
20593 				un->un_f_sync_cache_supported = FALSE;
20594 				mutex_exit(SD_MUTEX(un));
20595 				status = ENOTSUP;
20596 				goto done;
20597 			}
20598 			break;
20599 		default:
20600 			break;
20601 		}
20602 		/* FALLTHRU */
20603 	default:
20604 		/*
20605 		 * Don't log an error message if this device
20606 		 * has removable media.
20607 		 */
20608 		if (!un->un_f_has_removable_media) {
20609 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20610 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20611 		}
20612 		break;
20613 	}
20614 
20615 done:
20616 	if (uip->ui_dkc.dkc_callback != NULL) {
20617 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20618 	}
20619 
20620 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20621 	freerbuf(bp);
20622 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20623 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20624 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20625 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20626 
20627 	return (status);
20628 }
20629 
20630 
20631 /*
20632  *    Function: sd_send_scsi_GET_CONFIGURATION
20633  *
20634  * Description: Issues the get configuration command to the device.
20635  *		Called from sd_check_for_writable_cd & sd_get_media_info
20636  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20637  *   Arguments: un
20638  *		ucmdbuf
20639  *		rqbuf
20640  *		rqbuflen
20641  *		bufaddr
20642  *		buflen
20643  *
20644  * Return Code: 0   - Success
20645  *		errno return code from sd_send_scsi_cmd()
20646  *
20647  *     Context: Can sleep. Does not return until command is completed.
20648  *
20649  */
20650 
20651 static int
20652 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20653 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20654 {
20655 	char	cdb[CDB_GROUP1];
20656 	int	status;
20657 
20658 	ASSERT(un != NULL);
20659 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20660 	ASSERT(bufaddr != NULL);
20661 	ASSERT(ucmdbuf != NULL);
20662 	ASSERT(rqbuf != NULL);
20663 
20664 	SD_TRACE(SD_LOG_IO, un,
20665 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20666 
20667 	bzero(cdb, sizeof (cdb));
20668 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20669 	bzero(rqbuf, rqbuflen);
20670 	bzero(bufaddr, buflen);
20671 
20672 	/*
20673 	 * Set up cdb field for the get configuration command.
20674 	 */
20675 	cdb[0] = SCMD_GET_CONFIGURATION;
20676 	cdb[1] = 0x02;  /* Requested Type */
20677 	cdb[8] = SD_PROFILE_HEADER_LEN;
20678 	ucmdbuf->uscsi_cdb = cdb;
20679 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20680 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20681 	ucmdbuf->uscsi_buflen = buflen;
20682 	ucmdbuf->uscsi_timeout = sd_io_time;
20683 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20684 	ucmdbuf->uscsi_rqlen = rqbuflen;
20685 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20686 
20687 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20688 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20689 
20690 	switch (status) {
20691 	case 0:
20692 		break;  /* Success! */
20693 	case EIO:
20694 		switch (ucmdbuf->uscsi_status) {
20695 		case STATUS_RESERVATION_CONFLICT:
20696 			status = EACCES;
20697 			break;
20698 		default:
20699 			break;
20700 		}
20701 		break;
20702 	default:
20703 		break;
20704 	}
20705 
20706 	if (status == 0) {
20707 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20708 		    "sd_send_scsi_GET_CONFIGURATION: data",
20709 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20710 	}
20711 
20712 	SD_TRACE(SD_LOG_IO, un,
20713 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20714 
20715 	return (status);
20716 }
20717 
20718 /*
20719  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20720  *
20721  * Description: Issues the get configuration command to the device to
20722  *              retrieve a specfic feature. Called from
20723  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20724  *   Arguments: un
20725  *              ucmdbuf
20726  *              rqbuf
20727  *              rqbuflen
20728  *              bufaddr
20729  *              buflen
20730  *		feature
20731  *
20732  * Return Code: 0   - Success
20733  *              errno return code from sd_send_scsi_cmd()
20734  *
20735  *     Context: Can sleep. Does not return until command is completed.
20736  *
20737  */
20738 static int
20739 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20740 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20741 	uchar_t *bufaddr, uint_t buflen, char feature)
20742 {
20743 	char    cdb[CDB_GROUP1];
20744 	int	status;
20745 
20746 	ASSERT(un != NULL);
20747 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20748 	ASSERT(bufaddr != NULL);
20749 	ASSERT(ucmdbuf != NULL);
20750 	ASSERT(rqbuf != NULL);
20751 
20752 	SD_TRACE(SD_LOG_IO, un,
20753 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20754 
20755 	bzero(cdb, sizeof (cdb));
20756 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20757 	bzero(rqbuf, rqbuflen);
20758 	bzero(bufaddr, buflen);
20759 
20760 	/*
20761 	 * Set up cdb field for the get configuration command.
20762 	 */
20763 	cdb[0] = SCMD_GET_CONFIGURATION;
20764 	cdb[1] = 0x02;  /* Requested Type */
20765 	cdb[3] = feature;
20766 	cdb[8] = buflen;
20767 	ucmdbuf->uscsi_cdb = cdb;
20768 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20769 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20770 	ucmdbuf->uscsi_buflen = buflen;
20771 	ucmdbuf->uscsi_timeout = sd_io_time;
20772 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20773 	ucmdbuf->uscsi_rqlen = rqbuflen;
20774 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20775 
20776 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20777 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20778 
20779 	switch (status) {
20780 	case 0:
20781 		break;  /* Success! */
20782 	case EIO:
20783 		switch (ucmdbuf->uscsi_status) {
20784 		case STATUS_RESERVATION_CONFLICT:
20785 			status = EACCES;
20786 			break;
20787 		default:
20788 			break;
20789 		}
20790 		break;
20791 	default:
20792 		break;
20793 	}
20794 
20795 	if (status == 0) {
20796 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20797 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20798 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20799 	}
20800 
20801 	SD_TRACE(SD_LOG_IO, un,
20802 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20803 
20804 	return (status);
20805 }
20806 
20807 
20808 /*
20809  *    Function: sd_send_scsi_MODE_SENSE
20810  *
20811  * Description: Utility function for issuing a scsi MODE SENSE command.
20812  *		Note: This routine uses a consistent implementation for Group0,
20813  *		Group1, and Group2 commands across all platforms. ATAPI devices
20814  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20815  *
20816  *   Arguments: un - pointer to the softstate struct for the target.
20817  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20818  *			  CDB_GROUP[1|2] (10 byte).
20819  *		bufaddr - buffer for page data retrieved from the target.
20820  *		buflen - size of page to be retrieved.
20821  *		page_code - page code of data to be retrieved from the target.
20822  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20823  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20824  *			to use the USCSI "direct" chain and bypass the normal
20825  *			command waitq.
20826  *
20827  * Return Code: 0   - Success
20828  *		errno return code from sd_send_scsi_cmd()
20829  *
20830  *     Context: Can sleep. Does not return until command is completed.
20831  */
20832 
20833 static int
20834 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20835 	size_t buflen,  uchar_t page_code, int path_flag)
20836 {
20837 	struct	scsi_extended_sense	sense_buf;
20838 	union scsi_cdb		cdb;
20839 	struct uscsi_cmd	ucmd_buf;
20840 	int			status;
20841 	int			headlen;
20842 
20843 	ASSERT(un != NULL);
20844 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20845 	ASSERT(bufaddr != NULL);
20846 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20847 	    (cdbsize == CDB_GROUP2));
20848 
20849 	SD_TRACE(SD_LOG_IO, un,
20850 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20851 
20852 	bzero(&cdb, sizeof (cdb));
20853 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20854 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20855 	bzero(bufaddr, buflen);
20856 
20857 	if (cdbsize == CDB_GROUP0) {
20858 		cdb.scc_cmd = SCMD_MODE_SENSE;
20859 		cdb.cdb_opaque[2] = page_code;
20860 		FORMG0COUNT(&cdb, buflen);
20861 		headlen = MODE_HEADER_LENGTH;
20862 	} else {
20863 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20864 		cdb.cdb_opaque[2] = page_code;
20865 		FORMG1COUNT(&cdb, buflen);
20866 		headlen = MODE_HEADER_LENGTH_GRP2;
20867 	}
20868 
20869 	ASSERT(headlen <= buflen);
20870 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20871 
20872 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20873 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20874 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20875 	ucmd_buf.uscsi_buflen	= buflen;
20876 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20877 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20878 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20879 	ucmd_buf.uscsi_timeout	= 60;
20880 
20881 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20882 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20883 
20884 	switch (status) {
20885 	case 0:
20886 		/*
20887 		 * sr_check_wp() uses 0x3f page code and check the header of
20888 		 * mode page to determine if target device is write-protected.
20889 		 * But some USB devices return 0 bytes for 0x3f page code. For
20890 		 * this case, make sure that mode page header is returned at
20891 		 * least.
20892 		 */
20893 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20894 			status = EIO;
20895 		break;	/* Success! */
20896 	case EIO:
20897 		switch (ucmd_buf.uscsi_status) {
20898 		case STATUS_RESERVATION_CONFLICT:
20899 			status = EACCES;
20900 			break;
20901 		default:
20902 			break;
20903 		}
20904 		break;
20905 	default:
20906 		break;
20907 	}
20908 
20909 	if (status == 0) {
20910 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20911 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20912 	}
20913 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20914 
20915 	return (status);
20916 }
20917 
20918 
20919 /*
20920  *    Function: sd_send_scsi_MODE_SELECT
20921  *
20922  * Description: Utility function for issuing a scsi MODE SELECT command.
20923  *		Note: This routine uses a consistent implementation for Group0,
20924  *		Group1, and Group2 commands across all platforms. ATAPI devices
20925  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20926  *
20927  *   Arguments: un - pointer to the softstate struct for the target.
20928  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20929  *			  CDB_GROUP[1|2] (10 byte).
20930  *		bufaddr - buffer for page data retrieved from the target.
20931  *		buflen - size of page to be retrieved.
20932  *		save_page - boolean to determin if SP bit should be set.
20933  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20934  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20935  *			to use the USCSI "direct" chain and bypass the normal
20936  *			command waitq.
20937  *
20938  * Return Code: 0   - Success
20939  *		errno return code from sd_send_scsi_cmd()
20940  *
20941  *     Context: Can sleep. Does not return until command is completed.
20942  */
20943 
20944 static int
20945 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20946 	size_t buflen,  uchar_t save_page, int path_flag)
20947 {
20948 	struct	scsi_extended_sense	sense_buf;
20949 	union scsi_cdb		cdb;
20950 	struct uscsi_cmd	ucmd_buf;
20951 	int			status;
20952 
20953 	ASSERT(un != NULL);
20954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20955 	ASSERT(bufaddr != NULL);
20956 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20957 	    (cdbsize == CDB_GROUP2));
20958 
20959 	SD_TRACE(SD_LOG_IO, un,
20960 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20961 
20962 	bzero(&cdb, sizeof (cdb));
20963 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20964 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20965 
20966 	/* Set the PF bit for many third party drives */
20967 	cdb.cdb_opaque[1] = 0x10;
20968 
20969 	/* Set the savepage(SP) bit if given */
20970 	if (save_page == SD_SAVE_PAGE) {
20971 		cdb.cdb_opaque[1] |= 0x01;
20972 	}
20973 
20974 	if (cdbsize == CDB_GROUP0) {
20975 		cdb.scc_cmd = SCMD_MODE_SELECT;
20976 		FORMG0COUNT(&cdb, buflen);
20977 	} else {
20978 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20979 		FORMG1COUNT(&cdb, buflen);
20980 	}
20981 
20982 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20983 
20984 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20985 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20986 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20987 	ucmd_buf.uscsi_buflen	= buflen;
20988 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20989 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20990 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20991 	ucmd_buf.uscsi_timeout	= 60;
20992 
20993 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20994 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20995 
20996 	switch (status) {
20997 	case 0:
20998 		break;	/* Success! */
20999 	case EIO:
21000 		switch (ucmd_buf.uscsi_status) {
21001 		case STATUS_RESERVATION_CONFLICT:
21002 			status = EACCES;
21003 			break;
21004 		default:
21005 			break;
21006 		}
21007 		break;
21008 	default:
21009 		break;
21010 	}
21011 
21012 	if (status == 0) {
21013 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21014 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21015 	}
21016 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21017 
21018 	return (status);
21019 }
21020 
21021 
21022 /*
21023  *    Function: sd_send_scsi_RDWR
21024  *
21025  * Description: Issue a scsi READ or WRITE command with the given parameters.
21026  *
21027  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21028  *		cmd:	 SCMD_READ or SCMD_WRITE
21029  *		bufaddr: Address of caller's buffer to receive the RDWR data
21030  *		buflen:  Length of caller's buffer receive the RDWR data.
21031  *		start_block: Block number for the start of the RDWR operation.
21032  *			 (Assumes target-native block size.)
21033  *		residp:  Pointer to variable to receive the redisual of the
21034  *			 RDWR operation (may be NULL of no residual requested).
21035  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21036  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21037  *			to use the USCSI "direct" chain and bypass the normal
21038  *			command waitq.
21039  *
21040  * Return Code: 0   - Success
21041  *		errno return code from sd_send_scsi_cmd()
21042  *
21043  *     Context: Can sleep. Does not return until command is completed.
21044  */
21045 
21046 static int
21047 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
21048 	size_t buflen, daddr_t start_block, int path_flag)
21049 {
21050 	struct	scsi_extended_sense	sense_buf;
21051 	union scsi_cdb		cdb;
21052 	struct uscsi_cmd	ucmd_buf;
21053 	uint32_t		block_count;
21054 	int			status;
21055 	int			cdbsize;
21056 	uchar_t			flag;
21057 
21058 	ASSERT(un != NULL);
21059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21060 	ASSERT(bufaddr != NULL);
21061 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21062 
21063 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21064 
21065 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21066 		return (EINVAL);
21067 	}
21068 
21069 	mutex_enter(SD_MUTEX(un));
21070 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21071 	mutex_exit(SD_MUTEX(un));
21072 
21073 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21074 
21075 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21076 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21077 	    bufaddr, buflen, start_block, block_count);
21078 
21079 	bzero(&cdb, sizeof (cdb));
21080 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21081 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21082 
21083 	/* Compute CDB size to use */
21084 	if (start_block > 0xffffffff)
21085 		cdbsize = CDB_GROUP4;
21086 	else if ((start_block & 0xFFE00000) ||
21087 	    (un->un_f_cfg_is_atapi == TRUE))
21088 		cdbsize = CDB_GROUP1;
21089 	else
21090 		cdbsize = CDB_GROUP0;
21091 
21092 	switch (cdbsize) {
21093 	case CDB_GROUP0:	/* 6-byte CDBs */
21094 		cdb.scc_cmd = cmd;
21095 		FORMG0ADDR(&cdb, start_block);
21096 		FORMG0COUNT(&cdb, block_count);
21097 		break;
21098 	case CDB_GROUP1:	/* 10-byte CDBs */
21099 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21100 		FORMG1ADDR(&cdb, start_block);
21101 		FORMG1COUNT(&cdb, block_count);
21102 		break;
21103 	case CDB_GROUP4:	/* 16-byte CDBs */
21104 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21105 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21106 		FORMG4COUNT(&cdb, block_count);
21107 		break;
21108 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21109 	default:
21110 		/* All others reserved */
21111 		return (EINVAL);
21112 	}
21113 
21114 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21115 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21116 
21117 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21118 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21119 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21120 	ucmd_buf.uscsi_buflen	= buflen;
21121 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21122 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21123 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21124 	ucmd_buf.uscsi_timeout	= 60;
21125 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21126 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21127 	switch (status) {
21128 	case 0:
21129 		break;	/* Success! */
21130 	case EIO:
21131 		switch (ucmd_buf.uscsi_status) {
21132 		case STATUS_RESERVATION_CONFLICT:
21133 			status = EACCES;
21134 			break;
21135 		default:
21136 			break;
21137 		}
21138 		break;
21139 	default:
21140 		break;
21141 	}
21142 
21143 	if (status == 0) {
21144 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21145 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21146 	}
21147 
21148 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21149 
21150 	return (status);
21151 }
21152 
21153 
21154 /*
21155  *    Function: sd_send_scsi_LOG_SENSE
21156  *
21157  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21158  *
21159  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21160  *
21161  * Return Code: 0   - Success
21162  *		errno return code from sd_send_scsi_cmd()
21163  *
21164  *     Context: Can sleep. Does not return until command is completed.
21165  */
21166 
21167 static int
21168 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
21169 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21170 	int path_flag)
21171 
21172 {
21173 	struct	scsi_extended_sense	sense_buf;
21174 	union scsi_cdb		cdb;
21175 	struct uscsi_cmd	ucmd_buf;
21176 	int			status;
21177 
21178 	ASSERT(un != NULL);
21179 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21180 
21181 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21182 
21183 	bzero(&cdb, sizeof (cdb));
21184 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21185 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21186 
21187 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21188 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21189 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21190 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21191 	FORMG1COUNT(&cdb, buflen);
21192 
21193 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21194 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21195 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21196 	ucmd_buf.uscsi_buflen	= buflen;
21197 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21198 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21199 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21200 	ucmd_buf.uscsi_timeout	= 60;
21201 
21202 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21203 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21204 
21205 	switch (status) {
21206 	case 0:
21207 		break;
21208 	case EIO:
21209 		switch (ucmd_buf.uscsi_status) {
21210 		case STATUS_RESERVATION_CONFLICT:
21211 			status = EACCES;
21212 			break;
21213 		case STATUS_CHECK:
21214 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21215 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21216 				KEY_ILLEGAL_REQUEST) &&
21217 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21218 				/*
21219 				 * ASC 0x24: INVALID FIELD IN CDB
21220 				 */
21221 				switch (page_code) {
21222 				case START_STOP_CYCLE_PAGE:
21223 					/*
21224 					 * The start stop cycle counter is
21225 					 * implemented as page 0x31 in earlier
21226 					 * generation disks. In new generation
21227 					 * disks the start stop cycle counter is
21228 					 * implemented as page 0xE. To properly
21229 					 * handle this case if an attempt for
21230 					 * log page 0xE is made and fails we
21231 					 * will try again using page 0x31.
21232 					 *
21233 					 * Network storage BU committed to
21234 					 * maintain the page 0x31 for this
21235 					 * purpose and will not have any other
21236 					 * page implemented with page code 0x31
21237 					 * until all disks transition to the
21238 					 * standard page.
21239 					 */
21240 					mutex_enter(SD_MUTEX(un));
21241 					un->un_start_stop_cycle_page =
21242 					    START_STOP_CYCLE_VU_PAGE;
21243 					cdb.cdb_opaque[2] =
21244 					    (char)(page_control << 6) |
21245 					    un->un_start_stop_cycle_page;
21246 					mutex_exit(SD_MUTEX(un));
21247 					status = sd_send_scsi_cmd(
21248 					    SD_GET_DEV(un), &ucmd_buf,
21249 					    UIO_SYSSPACE, UIO_SYSSPACE,
21250 					    UIO_SYSSPACE, path_flag);
21251 
21252 					break;
21253 				case TEMPERATURE_PAGE:
21254 					status = ENOTTY;
21255 					break;
21256 				default:
21257 					break;
21258 				}
21259 			}
21260 			break;
21261 		default:
21262 			break;
21263 		}
21264 		break;
21265 	default:
21266 		break;
21267 	}
21268 
21269 	if (status == 0) {
21270 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21271 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21272 	}
21273 
21274 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21275 
21276 	return (status);
21277 }
21278 
21279 
21280 /*
21281  *    Function: sdioctl
21282  *
21283  * Description: Driver's ioctl(9e) entry point function.
21284  *
21285  *   Arguments: dev     - device number
21286  *		cmd     - ioctl operation to be performed
21287  *		arg     - user argument, contains data to be set or reference
21288  *			  parameter for get
21289  *		flag    - bit flag, indicating open settings, 32/64 bit type
21290  *		cred_p  - user credential pointer
21291  *		rval_p  - calling process return value (OPT)
21292  *
21293  * Return Code: EINVAL
21294  *		ENOTTY
21295  *		ENXIO
21296  *		EIO
21297  *		EFAULT
21298  *		ENOTSUP
21299  *		EPERM
21300  *
21301  *     Context: Called from the device switch at normal priority.
21302  */
21303 
21304 static int
21305 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21306 {
21307 	struct sd_lun	*un = NULL;
21308 	int		geom_validated = FALSE;
21309 	int		err = 0;
21310 	int		i = 0;
21311 	cred_t		*cr;
21312 
21313 	/*
21314 	 * All device accesses go thru sdstrategy where we check on suspend
21315 	 * status
21316 	 */
21317 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21318 		return (ENXIO);
21319 	}
21320 
21321 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21322 
21323 	/*
21324 	 * Moved this wait from sd_uscsi_strategy to here for
21325 	 * reasons of deadlock prevention. Internal driver commands,
21326 	 * specifically those to change a devices power level, result
21327 	 * in a call to sd_uscsi_strategy.
21328 	 */
21329 	mutex_enter(SD_MUTEX(un));
21330 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21331 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21332 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21333 	}
21334 	/*
21335 	 * Twiddling the counter here protects commands from now
21336 	 * through to the top of sd_uscsi_strategy. Without the
21337 	 * counter inc. a power down, for example, could get in
21338 	 * after the above check for state is made and before
21339 	 * execution gets to the top of sd_uscsi_strategy.
21340 	 * That would cause problems.
21341 	 */
21342 	un->un_ncmds_in_driver++;
21343 
21344 	if ((un->un_f_geometry_is_valid == FALSE) &&
21345 	    (flag & (FNDELAY | FNONBLOCK))) {
21346 		switch (cmd) {
21347 		case CDROMPAUSE:
21348 		case CDROMRESUME:
21349 		case CDROMPLAYMSF:
21350 		case CDROMPLAYTRKIND:
21351 		case CDROMREADTOCHDR:
21352 		case CDROMREADTOCENTRY:
21353 		case CDROMSTOP:
21354 		case CDROMSTART:
21355 		case CDROMVOLCTRL:
21356 		case CDROMSUBCHNL:
21357 		case CDROMREADMODE2:
21358 		case CDROMREADMODE1:
21359 		case CDROMREADOFFSET:
21360 		case CDROMSBLKMODE:
21361 		case CDROMGBLKMODE:
21362 		case CDROMGDRVSPEED:
21363 		case CDROMSDRVSPEED:
21364 		case CDROMCDDA:
21365 		case CDROMCDXA:
21366 		case CDROMSUBCODE:
21367 			if (!ISCD(un)) {
21368 				un->un_ncmds_in_driver--;
21369 				ASSERT(un->un_ncmds_in_driver >= 0);
21370 				mutex_exit(SD_MUTEX(un));
21371 				return (ENOTTY);
21372 			}
21373 			break;
21374 		case FDEJECT:
21375 		case DKIOCEJECT:
21376 		case CDROMEJECT:
21377 			if (!un->un_f_eject_media_supported) {
21378 				un->un_ncmds_in_driver--;
21379 				ASSERT(un->un_ncmds_in_driver >= 0);
21380 				mutex_exit(SD_MUTEX(un));
21381 				return (ENOTTY);
21382 			}
21383 			break;
21384 		case DKIOCSVTOC:
21385 		case DKIOCSETEFI:
21386 		case DKIOCSMBOOT:
21387 		case DKIOCFLUSHWRITECACHE:
21388 			mutex_exit(SD_MUTEX(un));
21389 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21390 			if (err != 0) {
21391 				mutex_enter(SD_MUTEX(un));
21392 				un->un_ncmds_in_driver--;
21393 				ASSERT(un->un_ncmds_in_driver >= 0);
21394 				mutex_exit(SD_MUTEX(un));
21395 				return (EIO);
21396 			}
21397 			mutex_enter(SD_MUTEX(un));
21398 			/* FALLTHROUGH */
21399 		case DKIOCREMOVABLE:
21400 		case DKIOCHOTPLUGGABLE:
21401 		case DKIOCINFO:
21402 		case DKIOCGMEDIAINFO:
21403 		case MHIOCENFAILFAST:
21404 		case MHIOCSTATUS:
21405 		case MHIOCTKOWN:
21406 		case MHIOCRELEASE:
21407 		case MHIOCGRP_INKEYS:
21408 		case MHIOCGRP_INRESV:
21409 		case MHIOCGRP_REGISTER:
21410 		case MHIOCGRP_RESERVE:
21411 		case MHIOCGRP_PREEMPTANDABORT:
21412 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21413 		case CDROMCLOSETRAY:
21414 		case USCSICMD:
21415 			goto skip_ready_valid;
21416 		default:
21417 			break;
21418 		}
21419 
21420 		mutex_exit(SD_MUTEX(un));
21421 		err = sd_ready_and_valid(un);
21422 		mutex_enter(SD_MUTEX(un));
21423 		if (err == SD_READY_NOT_VALID) {
21424 			switch (cmd) {
21425 			case DKIOCGAPART:
21426 			case DKIOCGGEOM:
21427 			case DKIOCSGEOM:
21428 			case DKIOCGVTOC:
21429 			case DKIOCSVTOC:
21430 			case DKIOCSAPART:
21431 			case DKIOCG_PHYGEOM:
21432 			case DKIOCG_VIRTGEOM:
21433 				err = ENOTSUP;
21434 				un->un_ncmds_in_driver--;
21435 				ASSERT(un->un_ncmds_in_driver >= 0);
21436 				mutex_exit(SD_MUTEX(un));
21437 				return (err);
21438 			}
21439 		}
21440 		if (err != SD_READY_VALID) {
21441 			switch (cmd) {
21442 			case DKIOCSTATE:
21443 			case CDROMGDRVSPEED:
21444 			case CDROMSDRVSPEED:
21445 			case FDEJECT:	/* for eject command */
21446 			case DKIOCEJECT:
21447 			case CDROMEJECT:
21448 			case DKIOCGETEFI:
21449 			case DKIOCSGEOM:
21450 			case DKIOCREMOVABLE:
21451 			case DKIOCHOTPLUGGABLE:
21452 			case DKIOCSAPART:
21453 			case DKIOCSETEFI:
21454 				break;
21455 			default:
21456 				if (un->un_f_has_removable_media) {
21457 					err = ENXIO;
21458 				} else {
21459 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21460 					if (err == SD_RESERVED_BY_OTHERS) {
21461 						err = EACCES;
21462 					} else {
21463 						err = EIO;
21464 					}
21465 				}
21466 				un->un_ncmds_in_driver--;
21467 				ASSERT(un->un_ncmds_in_driver >= 0);
21468 				mutex_exit(SD_MUTEX(un));
21469 				return (err);
21470 			}
21471 		}
21472 		geom_validated = TRUE;
21473 	}
21474 	if ((un->un_f_geometry_is_valid == TRUE) &&
21475 	    (un->un_solaris_size > 0)) {
21476 		/*
21477 		 * the "geometry_is_valid" flag could be true if we
21478 		 * have an fdisk table but no Solaris partition
21479 		 */
21480 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21481 			/* it is EFI, so return ENOTSUP for these */
21482 			switch (cmd) {
21483 			case DKIOCGAPART:
21484 			case DKIOCGGEOM:
21485 			case DKIOCGVTOC:
21486 			case DKIOCSVTOC:
21487 			case DKIOCSAPART:
21488 				err = ENOTSUP;
21489 				un->un_ncmds_in_driver--;
21490 				ASSERT(un->un_ncmds_in_driver >= 0);
21491 				mutex_exit(SD_MUTEX(un));
21492 				return (err);
21493 			}
21494 		}
21495 	}
21496 
21497 skip_ready_valid:
21498 	mutex_exit(SD_MUTEX(un));
21499 
21500 	switch (cmd) {
21501 	case DKIOCINFO:
21502 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21503 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21504 		break;
21505 
21506 	case DKIOCGMEDIAINFO:
21507 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21508 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21509 		break;
21510 
21511 	case DKIOCGGEOM:
21512 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21513 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21514 		    geom_validated);
21515 		break;
21516 
21517 	case DKIOCSGEOM:
21518 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21519 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21520 		break;
21521 
21522 	case DKIOCGAPART:
21523 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21524 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21525 		    geom_validated);
21526 		break;
21527 
21528 	case DKIOCSAPART:
21529 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21530 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21531 		break;
21532 
21533 	case DKIOCGVTOC:
21534 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21535 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21536 		    geom_validated);
21537 		break;
21538 
21539 	case DKIOCGETEFI:
21540 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21541 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21542 		break;
21543 
21544 	case DKIOCPARTITION:
21545 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21546 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21547 		break;
21548 
21549 	case DKIOCSVTOC:
21550 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21551 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21552 		break;
21553 
21554 	case DKIOCSETEFI:
21555 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21556 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21557 		break;
21558 
21559 	case DKIOCGMBOOT:
21560 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21561 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21562 		break;
21563 
21564 	case DKIOCSMBOOT:
21565 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21566 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21567 		break;
21568 
21569 	case DKIOCLOCK:
21570 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21571 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21572 		    SD_PATH_STANDARD);
21573 		break;
21574 
21575 	case DKIOCUNLOCK:
21576 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21577 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21578 		    SD_PATH_STANDARD);
21579 		break;
21580 
21581 	case DKIOCSTATE: {
21582 		enum dkio_state		state;
21583 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21584 
21585 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21586 			err = EFAULT;
21587 		} else {
21588 			err = sd_check_media(dev, state);
21589 			if (err == 0) {
21590 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21591 				    sizeof (int), flag) != 0)
21592 					err = EFAULT;
21593 			}
21594 		}
21595 		break;
21596 	}
21597 
21598 	case DKIOCREMOVABLE:
21599 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21600 		i = un->un_f_has_removable_media ? 1 : 0;
21601 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21602 			err = EFAULT;
21603 		} else {
21604 			err = 0;
21605 		}
21606 		break;
21607 
21608 	case DKIOCHOTPLUGGABLE:
21609 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21610 		i = un->un_f_is_hotpluggable ? 1 : 0;
21611 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21612 			err = EFAULT;
21613 		} else {
21614 			err = 0;
21615 		}
21616 		break;
21617 
21618 	case DKIOCGTEMPERATURE:
21619 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21620 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21621 		break;
21622 
21623 	case MHIOCENFAILFAST:
21624 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21625 		if ((err = drv_priv(cred_p)) == 0) {
21626 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21627 		}
21628 		break;
21629 
21630 	case MHIOCTKOWN:
21631 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21632 		if ((err = drv_priv(cred_p)) == 0) {
21633 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21634 		}
21635 		break;
21636 
21637 	case MHIOCRELEASE:
21638 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21639 		if ((err = drv_priv(cred_p)) == 0) {
21640 			err = sd_mhdioc_release(dev);
21641 		}
21642 		break;
21643 
21644 	case MHIOCSTATUS:
21645 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21646 		if ((err = drv_priv(cred_p)) == 0) {
21647 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21648 			case 0:
21649 				err = 0;
21650 				break;
21651 			case EACCES:
21652 				*rval_p = 1;
21653 				err = 0;
21654 				break;
21655 			default:
21656 				err = EIO;
21657 				break;
21658 			}
21659 		}
21660 		break;
21661 
21662 	case MHIOCQRESERVE:
21663 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21664 		if ((err = drv_priv(cred_p)) == 0) {
21665 			err = sd_reserve_release(dev, SD_RESERVE);
21666 		}
21667 		break;
21668 
21669 	case MHIOCREREGISTERDEVID:
21670 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21671 		if (drv_priv(cred_p) == EPERM) {
21672 			err = EPERM;
21673 		} else if (!un->un_f_devid_supported) {
21674 			err = ENOTTY;
21675 		} else {
21676 			err = sd_mhdioc_register_devid(dev);
21677 		}
21678 		break;
21679 
21680 	case MHIOCGRP_INKEYS:
21681 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21682 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21683 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21684 				err = ENOTSUP;
21685 			} else {
21686 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21687 				    flag);
21688 			}
21689 		}
21690 		break;
21691 
21692 	case MHIOCGRP_INRESV:
21693 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21694 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21695 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21696 				err = ENOTSUP;
21697 			} else {
21698 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21699 			}
21700 		}
21701 		break;
21702 
21703 	case MHIOCGRP_REGISTER:
21704 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21705 		if ((err = drv_priv(cred_p)) != EPERM) {
21706 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21707 				err = ENOTSUP;
21708 			} else if (arg != NULL) {
21709 				mhioc_register_t reg;
21710 				if (ddi_copyin((void *)arg, &reg,
21711 				    sizeof (mhioc_register_t), flag) != 0) {
21712 					err = EFAULT;
21713 				} else {
21714 					err =
21715 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21716 					    un, SD_SCSI3_REGISTER,
21717 					    (uchar_t *)&reg);
21718 				}
21719 			}
21720 		}
21721 		break;
21722 
21723 	case MHIOCGRP_RESERVE:
21724 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21725 		if ((err = drv_priv(cred_p)) != EPERM) {
21726 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21727 				err = ENOTSUP;
21728 			} else if (arg != NULL) {
21729 				mhioc_resv_desc_t resv_desc;
21730 				if (ddi_copyin((void *)arg, &resv_desc,
21731 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21732 					err = EFAULT;
21733 				} else {
21734 					err =
21735 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21736 					    un, SD_SCSI3_RESERVE,
21737 					    (uchar_t *)&resv_desc);
21738 				}
21739 			}
21740 		}
21741 		break;
21742 
21743 	case MHIOCGRP_PREEMPTANDABORT:
21744 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21745 		if ((err = drv_priv(cred_p)) != EPERM) {
21746 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21747 				err = ENOTSUP;
21748 			} else if (arg != NULL) {
21749 				mhioc_preemptandabort_t preempt_abort;
21750 				if (ddi_copyin((void *)arg, &preempt_abort,
21751 				    sizeof (mhioc_preemptandabort_t),
21752 				    flag) != 0) {
21753 					err = EFAULT;
21754 				} else {
21755 					err =
21756 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21757 					    un, SD_SCSI3_PREEMPTANDABORT,
21758 					    (uchar_t *)&preempt_abort);
21759 				}
21760 			}
21761 		}
21762 		break;
21763 
21764 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21765 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21766 		if ((err = drv_priv(cred_p)) != EPERM) {
21767 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21768 				err = ENOTSUP;
21769 			} else if (arg != NULL) {
21770 				mhioc_registerandignorekey_t r_and_i;
21771 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21772 				    sizeof (mhioc_registerandignorekey_t),
21773 				    flag) != 0) {
21774 					err = EFAULT;
21775 				} else {
21776 					err =
21777 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21778 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21779 					    (uchar_t *)&r_and_i);
21780 				}
21781 			}
21782 		}
21783 		break;
21784 
21785 	case USCSICMD:
21786 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21787 		cr = ddi_get_cred();
21788 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21789 			err = EPERM;
21790 		} else {
21791 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21792 		}
21793 		break;
21794 
21795 	case CDROMPAUSE:
21796 	case CDROMRESUME:
21797 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21798 		if (!ISCD(un)) {
21799 			err = ENOTTY;
21800 		} else {
21801 			err = sr_pause_resume(dev, cmd);
21802 		}
21803 		break;
21804 
21805 	case CDROMPLAYMSF:
21806 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21807 		if (!ISCD(un)) {
21808 			err = ENOTTY;
21809 		} else {
21810 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21811 		}
21812 		break;
21813 
21814 	case CDROMPLAYTRKIND:
21815 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21816 #if defined(__i386) || defined(__amd64)
21817 		/*
21818 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21819 		 */
21820 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21821 #else
21822 		if (!ISCD(un)) {
21823 #endif
21824 			err = ENOTTY;
21825 		} else {
21826 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21827 		}
21828 		break;
21829 
21830 	case CDROMREADTOCHDR:
21831 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21832 		if (!ISCD(un)) {
21833 			err = ENOTTY;
21834 		} else {
21835 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21836 		}
21837 		break;
21838 
21839 	case CDROMREADTOCENTRY:
21840 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21841 		if (!ISCD(un)) {
21842 			err = ENOTTY;
21843 		} else {
21844 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21845 		}
21846 		break;
21847 
21848 	case CDROMSTOP:
21849 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21850 		if (!ISCD(un)) {
21851 			err = ENOTTY;
21852 		} else {
21853 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21854 			    SD_PATH_STANDARD);
21855 		}
21856 		break;
21857 
21858 	case CDROMSTART:
21859 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21860 		if (!ISCD(un)) {
21861 			err = ENOTTY;
21862 		} else {
21863 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21864 			    SD_PATH_STANDARD);
21865 		}
21866 		break;
21867 
21868 	case CDROMCLOSETRAY:
21869 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21870 		if (!ISCD(un)) {
21871 			err = ENOTTY;
21872 		} else {
21873 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21874 			    SD_PATH_STANDARD);
21875 		}
21876 		break;
21877 
21878 	case FDEJECT:	/* for eject command */
21879 	case DKIOCEJECT:
21880 	case CDROMEJECT:
21881 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21882 		if (!un->un_f_eject_media_supported) {
21883 			err = ENOTTY;
21884 		} else {
21885 			err = sr_eject(dev);
21886 		}
21887 		break;
21888 
21889 	case CDROMVOLCTRL:
21890 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21891 		if (!ISCD(un)) {
21892 			err = ENOTTY;
21893 		} else {
21894 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21895 		}
21896 		break;
21897 
21898 	case CDROMSUBCHNL:
21899 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21900 		if (!ISCD(un)) {
21901 			err = ENOTTY;
21902 		} else {
21903 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21904 		}
21905 		break;
21906 
21907 	case CDROMREADMODE2:
21908 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21909 		if (!ISCD(un)) {
21910 			err = ENOTTY;
21911 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21912 			/*
21913 			 * If the drive supports READ CD, use that instead of
21914 			 * switching the LBA size via a MODE SELECT
21915 			 * Block Descriptor
21916 			 */
21917 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21918 		} else {
21919 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21920 		}
21921 		break;
21922 
21923 	case CDROMREADMODE1:
21924 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21925 		if (!ISCD(un)) {
21926 			err = ENOTTY;
21927 		} else {
21928 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21929 		}
21930 		break;
21931 
21932 	case CDROMREADOFFSET:
21933 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21934 		if (!ISCD(un)) {
21935 			err = ENOTTY;
21936 		} else {
21937 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21938 			    flag);
21939 		}
21940 		break;
21941 
21942 	case CDROMSBLKMODE:
21943 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21944 		/*
21945 		 * There is no means of changing block size in case of atapi
21946 		 * drives, thus return ENOTTY if drive type is atapi
21947 		 */
21948 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21949 			err = ENOTTY;
21950 		} else if (un->un_f_mmc_cap == TRUE) {
21951 
21952 			/*
21953 			 * MMC Devices do not support changing the
21954 			 * logical block size
21955 			 *
21956 			 * Note: EINVAL is being returned instead of ENOTTY to
21957 			 * maintain consistancy with the original mmc
21958 			 * driver update.
21959 			 */
21960 			err = EINVAL;
21961 		} else {
21962 			mutex_enter(SD_MUTEX(un));
21963 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21964 			    (un->un_ncmds_in_transport > 0)) {
21965 				mutex_exit(SD_MUTEX(un));
21966 				err = EINVAL;
21967 			} else {
21968 				mutex_exit(SD_MUTEX(un));
21969 				err = sr_change_blkmode(dev, cmd, arg, flag);
21970 			}
21971 		}
21972 		break;
21973 
21974 	case CDROMGBLKMODE:
21975 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21976 		if (!ISCD(un)) {
21977 			err = ENOTTY;
21978 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21979 		    (un->un_f_blockcount_is_valid != FALSE)) {
21980 			/*
21981 			 * Drive is an ATAPI drive so return target block
21982 			 * size for ATAPI drives since we cannot change the
21983 			 * blocksize on ATAPI drives. Used primarily to detect
21984 			 * if an ATAPI cdrom is present.
21985 			 */
21986 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21987 			    sizeof (int), flag) != 0) {
21988 				err = EFAULT;
21989 			} else {
21990 				err = 0;
21991 			}
21992 
21993 		} else {
21994 			/*
21995 			 * Drive supports changing block sizes via a Mode
21996 			 * Select.
21997 			 */
21998 			err = sr_change_blkmode(dev, cmd, arg, flag);
21999 		}
22000 		break;
22001 
22002 	case CDROMGDRVSPEED:
22003 	case CDROMSDRVSPEED:
22004 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22005 		if (!ISCD(un)) {
22006 			err = ENOTTY;
22007 		} else if (un->un_f_mmc_cap == TRUE) {
22008 			/*
22009 			 * Note: In the future the driver implementation
22010 			 * for getting and
22011 			 * setting cd speed should entail:
22012 			 * 1) If non-mmc try the Toshiba mode page
22013 			 *    (sr_change_speed)
22014 			 * 2) If mmc but no support for Real Time Streaming try
22015 			 *    the SET CD SPEED (0xBB) command
22016 			 *   (sr_atapi_change_speed)
22017 			 * 3) If mmc and support for Real Time Streaming
22018 			 *    try the GET PERFORMANCE and SET STREAMING
22019 			 *    commands (not yet implemented, 4380808)
22020 			 */
22021 			/*
22022 			 * As per recent MMC spec, CD-ROM speed is variable
22023 			 * and changes with LBA. Since there is no such
22024 			 * things as drive speed now, fail this ioctl.
22025 			 *
22026 			 * Note: EINVAL is returned for consistancy of original
22027 			 * implementation which included support for getting
22028 			 * the drive speed of mmc devices but not setting
22029 			 * the drive speed. Thus EINVAL would be returned
22030 			 * if a set request was made for an mmc device.
22031 			 * We no longer support get or set speed for
22032 			 * mmc but need to remain consistant with regard
22033 			 * to the error code returned.
22034 			 */
22035 			err = EINVAL;
22036 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22037 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22038 		} else {
22039 			err = sr_change_speed(dev, cmd, arg, flag);
22040 		}
22041 		break;
22042 
22043 	case CDROMCDDA:
22044 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22045 		if (!ISCD(un)) {
22046 			err = ENOTTY;
22047 		} else {
22048 			err = sr_read_cdda(dev, (void *)arg, flag);
22049 		}
22050 		break;
22051 
22052 	case CDROMCDXA:
22053 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22054 		if (!ISCD(un)) {
22055 			err = ENOTTY;
22056 		} else {
22057 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22058 		}
22059 		break;
22060 
22061 	case CDROMSUBCODE:
22062 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22063 		if (!ISCD(un)) {
22064 			err = ENOTTY;
22065 		} else {
22066 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22067 		}
22068 		break;
22069 
22070 	case DKIOCPARTINFO: {
22071 		/*
22072 		 * Return parameters describing the selected disk slice.
22073 		 * Note: this ioctl is for the intel platform only
22074 		 */
22075 #if defined(__i386) || defined(__amd64)
22076 		int part;
22077 
22078 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22079 		part = SDPART(dev);
22080 
22081 		/* don't check un_solaris_size for pN */
22082 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
22083 			err = EIO;
22084 		} else {
22085 			struct part_info p;
22086 
22087 			p.p_start = (daddr_t)un->un_offset[part];
22088 			p.p_length = (int)un->un_map[part].dkl_nblk;
22089 #ifdef _MULTI_DATAMODEL
22090 			switch (ddi_model_convert_from(flag & FMODELS)) {
22091 			case DDI_MODEL_ILP32:
22092 			{
22093 				struct part_info32 p32;
22094 
22095 				p32.p_start = (daddr32_t)p.p_start;
22096 				p32.p_length = p.p_length;
22097 				if (ddi_copyout(&p32, (void *)arg,
22098 				    sizeof (p32), flag))
22099 					err = EFAULT;
22100 				break;
22101 			}
22102 
22103 			case DDI_MODEL_NONE:
22104 			{
22105 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
22106 				    flag))
22107 					err = EFAULT;
22108 				break;
22109 			}
22110 			}
22111 #else /* ! _MULTI_DATAMODEL */
22112 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
22113 				err = EFAULT;
22114 #endif /* _MULTI_DATAMODEL */
22115 		}
22116 #else
22117 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22118 		err = ENOTTY;
22119 #endif
22120 		break;
22121 	}
22122 
22123 	case DKIOCG_PHYGEOM: {
22124 		/* Return the driver's notion of the media physical geometry */
22125 #if defined(__i386) || defined(__amd64)
22126 		uint64_t	capacity;
22127 		struct dk_geom	disk_geom;
22128 		struct dk_geom	*dkgp = &disk_geom;
22129 
22130 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22131 		mutex_enter(SD_MUTEX(un));
22132 
22133 		if (un->un_g.dkg_nhead != 0 &&
22134 		    un->un_g.dkg_nsect != 0) {
22135 			/*
22136 			 * We succeeded in getting a geometry, but
22137 			 * right now it is being reported as just the
22138 			 * Solaris fdisk partition, just like for
22139 			 * DKIOCGGEOM. We need to change that to be
22140 			 * correct for the entire disk now.
22141 			 */
22142 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
22143 			dkgp->dkg_acyl = 0;
22144 			dkgp->dkg_ncyl = un->un_blockcount /
22145 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22146 		} else {
22147 			bzero(dkgp, sizeof (struct dk_geom));
22148 			/*
22149 			 * This disk does not have a Solaris VTOC
22150 			 * so we must present a physical geometry
22151 			 * that will remain consistent regardless
22152 			 * of how the disk is used. This will ensure
22153 			 * that the geometry does not change regardless
22154 			 * of the fdisk partition type (ie. EFI, FAT32,
22155 			 * Solaris, etc).
22156 			 */
22157 			if (ISCD(un)) {
22158 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
22159 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
22160 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
22161 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
22162 			} else {
22163 				/*
22164 				 * Invalid un_blockcount can generate invalid
22165 				 * dk_geom and may result in division by zero
22166 				 * system failure. Should make sure blockcount
22167 				 * is valid before using it here.
22168 				 */
22169 				if (un->un_f_blockcount_is_valid == FALSE) {
22170 					mutex_exit(SD_MUTEX(un));
22171 					err = EIO;
22172 
22173 					break;
22174 				}
22175 
22176 				/*
22177 				 * Refer to comments related to off-by-1 at the
22178 				 * header of this file
22179 				 */
22180 				if (!un->un_f_capacity_adjusted &&
22181 					!un->un_f_has_removable_media &&
22182 				    !un->un_f_is_hotpluggable &&
22183 					(un->un_tgt_blocksize ==
22184 					un->un_sys_blocksize))
22185 					capacity = un->un_blockcount - 1;
22186 				else
22187 					capacity = un->un_blockcount;
22188 
22189 				sd_convert_geometry(capacity, dkgp);
22190 				dkgp->dkg_acyl = 0;
22191 				dkgp->dkg_ncyl = capacity /
22192 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22193 			}
22194 		}
22195 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
22196 
22197 		if (ddi_copyout(dkgp, (void *)arg,
22198 		    sizeof (struct dk_geom), flag)) {
22199 			mutex_exit(SD_MUTEX(un));
22200 			err = EFAULT;
22201 		} else {
22202 			mutex_exit(SD_MUTEX(un));
22203 			err = 0;
22204 		}
22205 #else
22206 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22207 		err = ENOTTY;
22208 #endif
22209 		break;
22210 	}
22211 
22212 	case DKIOCG_VIRTGEOM: {
22213 		/* Return the driver's notion of the media's logical geometry */
22214 #if defined(__i386) || defined(__amd64)
22215 		struct dk_geom	disk_geom;
22216 		struct dk_geom	*dkgp = &disk_geom;
22217 
22218 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22219 		mutex_enter(SD_MUTEX(un));
22220 		/*
22221 		 * If there is no HBA geometry available, or
22222 		 * if the HBA returned us something that doesn't
22223 		 * really fit into an Int 13/function 8 geometry
22224 		 * result, just fail the ioctl.  See PSARC 1998/313.
22225 		 */
22226 		if (un->un_lgeom.g_nhead == 0 ||
22227 		    un->un_lgeom.g_nsect == 0 ||
22228 		    un->un_lgeom.g_ncyl > 1024) {
22229 			mutex_exit(SD_MUTEX(un));
22230 			err = EINVAL;
22231 		} else {
22232 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
22233 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
22234 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
22235 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
22236 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
22237 
22238 			if (ddi_copyout(dkgp, (void *)arg,
22239 			    sizeof (struct dk_geom), flag)) {
22240 				mutex_exit(SD_MUTEX(un));
22241 				err = EFAULT;
22242 			} else {
22243 				mutex_exit(SD_MUTEX(un));
22244 				err = 0;
22245 			}
22246 		}
22247 #else
22248 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22249 		err = ENOTTY;
22250 #endif
22251 		break;
22252 	}
22253 #ifdef SDDEBUG
22254 /* RESET/ABORTS testing ioctls */
22255 	case DKIOCRESET: {
22256 		int	reset_level;
22257 
22258 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22259 			err = EFAULT;
22260 		} else {
22261 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22262 			    "reset_level = 0x%lx\n", reset_level);
22263 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22264 				err = 0;
22265 			} else {
22266 				err = EIO;
22267 			}
22268 		}
22269 		break;
22270 	}
22271 
22272 	case DKIOCABORT:
22273 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22274 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22275 			err = 0;
22276 		} else {
22277 			err = EIO;
22278 		}
22279 		break;
22280 #endif
22281 
22282 #ifdef SD_FAULT_INJECTION
22283 /* SDIOC FaultInjection testing ioctls */
22284 	case SDIOCSTART:
22285 	case SDIOCSTOP:
22286 	case SDIOCINSERTPKT:
22287 	case SDIOCINSERTXB:
22288 	case SDIOCINSERTUN:
22289 	case SDIOCINSERTARQ:
22290 	case SDIOCPUSH:
22291 	case SDIOCRETRIEVE:
22292 	case SDIOCRUN:
22293 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22294 		    "SDIOC detected cmd:0x%X:\n", cmd);
22295 		/* call error generator */
22296 		sd_faultinjection_ioctl(cmd, arg, un);
22297 		err = 0;
22298 		break;
22299 
22300 #endif /* SD_FAULT_INJECTION */
22301 
22302 	case DKIOCFLUSHWRITECACHE:
22303 		{
22304 			struct dk_callback *dkc = (struct dk_callback *)arg;
22305 
22306 			mutex_enter(SD_MUTEX(un));
22307 			if (!un->un_f_sync_cache_supported ||
22308 			    !un->un_f_write_cache_enabled) {
22309 				err = un->un_f_sync_cache_supported ?
22310 					0 : ENOTSUP;
22311 				mutex_exit(SD_MUTEX(un));
22312 				if ((flag & FKIOCTL) && dkc != NULL &&
22313 				    dkc->dkc_callback != NULL) {
22314 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22315 					    err);
22316 					/*
22317 					 * Did callback and reported error.
22318 					 * Since we did a callback, ioctl
22319 					 * should return 0.
22320 					 */
22321 					err = 0;
22322 				}
22323 				break;
22324 			}
22325 			mutex_exit(SD_MUTEX(un));
22326 
22327 			if ((flag & FKIOCTL) && dkc != NULL &&
22328 			    dkc->dkc_callback != NULL) {
22329 				/* async SYNC CACHE request */
22330 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22331 			} else {
22332 				/* synchronous SYNC CACHE request */
22333 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22334 			}
22335 		}
22336 		break;
22337 
22338 	case DKIOCGETWCE: {
22339 
22340 		int wce;
22341 
22342 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
22343 			break;
22344 		}
22345 
22346 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22347 			err = EFAULT;
22348 		}
22349 		break;
22350 	}
22351 
22352 	case DKIOCSETWCE: {
22353 
22354 		int wce, sync_supported;
22355 
22356 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22357 			err = EFAULT;
22358 			break;
22359 		}
22360 
22361 		/*
22362 		 * Synchronize multiple threads trying to enable
22363 		 * or disable the cache via the un_f_wcc_cv
22364 		 * condition variable.
22365 		 */
22366 		mutex_enter(SD_MUTEX(un));
22367 
22368 		/*
22369 		 * Don't allow the cache to be enabled if the
22370 		 * config file has it disabled.
22371 		 */
22372 		if (un->un_f_opt_disable_cache && wce) {
22373 			mutex_exit(SD_MUTEX(un));
22374 			err = EINVAL;
22375 			break;
22376 		}
22377 
22378 		/*
22379 		 * Wait for write cache change in progress
22380 		 * bit to be clear before proceeding.
22381 		 */
22382 		while (un->un_f_wcc_inprog)
22383 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22384 
22385 		un->un_f_wcc_inprog = 1;
22386 
22387 		if (un->un_f_write_cache_enabled && wce == 0) {
22388 			/*
22389 			 * Disable the write cache.  Don't clear
22390 			 * un_f_write_cache_enabled until after
22391 			 * the mode select and flush are complete.
22392 			 */
22393 			sync_supported = un->un_f_sync_cache_supported;
22394 			mutex_exit(SD_MUTEX(un));
22395 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22396 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22397 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22398 			}
22399 
22400 			mutex_enter(SD_MUTEX(un));
22401 			if (err == 0) {
22402 				un->un_f_write_cache_enabled = 0;
22403 			}
22404 
22405 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22406 			/*
22407 			 * Set un_f_write_cache_enabled first, so there is
22408 			 * no window where the cache is enabled, but the
22409 			 * bit says it isn't.
22410 			 */
22411 			un->un_f_write_cache_enabled = 1;
22412 			mutex_exit(SD_MUTEX(un));
22413 
22414 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22415 				SD_CACHE_ENABLE);
22416 
22417 			mutex_enter(SD_MUTEX(un));
22418 
22419 			if (err) {
22420 				un->un_f_write_cache_enabled = 0;
22421 			}
22422 		}
22423 
22424 		un->un_f_wcc_inprog = 0;
22425 		cv_broadcast(&un->un_wcc_cv);
22426 		mutex_exit(SD_MUTEX(un));
22427 		break;
22428 	}
22429 
22430 	default:
22431 		err = ENOTTY;
22432 		break;
22433 	}
22434 	mutex_enter(SD_MUTEX(un));
22435 	un->un_ncmds_in_driver--;
22436 	ASSERT(un->un_ncmds_in_driver >= 0);
22437 	mutex_exit(SD_MUTEX(un));
22438 
22439 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22440 	return (err);
22441 }
22442 
22443 
22444 /*
22445  *    Function: sd_uscsi_ioctl
22446  *
22447  * Description: This routine is the driver entry point for handling USCSI ioctl
22448  *		requests (USCSICMD).
22449  *
22450  *   Arguments: dev	- the device number
22451  *		arg	- user provided scsi command
22452  *		flag	- this argument is a pass through to ddi_copyxxx()
22453  *			  directly from the mode argument of ioctl().
22454  *
22455  * Return Code: code returned by sd_send_scsi_cmd
22456  *		ENXIO
22457  *		EFAULT
22458  *		EAGAIN
22459  */
22460 
22461 static int
22462 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22463 {
22464 #ifdef _MULTI_DATAMODEL
22465 	/*
22466 	 * For use when a 32 bit app makes a call into a
22467 	 * 64 bit ioctl
22468 	 */
22469 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22470 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22471 	model_t			model;
22472 #endif /* _MULTI_DATAMODEL */
22473 	struct uscsi_cmd	*scmd = NULL;
22474 	struct sd_lun		*un = NULL;
22475 	enum uio_seg		uioseg;
22476 	char			cdb[CDB_GROUP0];
22477 	int			rval = 0;
22478 
22479 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22480 		return (ENXIO);
22481 	}
22482 
22483 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22484 
22485 	scmd = (struct uscsi_cmd *)
22486 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22487 
22488 #ifdef _MULTI_DATAMODEL
22489 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22490 	case DDI_MODEL_ILP32:
22491 	{
22492 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22493 			rval = EFAULT;
22494 			goto done;
22495 		}
22496 		/*
22497 		 * Convert the ILP32 uscsi data from the
22498 		 * application to LP64 for internal use.
22499 		 */
22500 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22501 		break;
22502 	}
22503 	case DDI_MODEL_NONE:
22504 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22505 			rval = EFAULT;
22506 			goto done;
22507 		}
22508 		break;
22509 	}
22510 #else /* ! _MULTI_DATAMODEL */
22511 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22512 		rval = EFAULT;
22513 		goto done;
22514 	}
22515 #endif /* _MULTI_DATAMODEL */
22516 
22517 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22518 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22519 	if (un->un_f_format_in_progress == TRUE) {
22520 		rval = EAGAIN;
22521 		goto done;
22522 	}
22523 
22524 	/*
22525 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22526 	 * we will have a valid cdb[0] to test.
22527 	 */
22528 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22529 	    (cdb[0] == SCMD_FORMAT)) {
22530 		SD_TRACE(SD_LOG_IOCTL, un,
22531 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22532 		mutex_enter(SD_MUTEX(un));
22533 		un->un_f_format_in_progress = TRUE;
22534 		mutex_exit(SD_MUTEX(un));
22535 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22536 		    SD_PATH_STANDARD);
22537 		mutex_enter(SD_MUTEX(un));
22538 		un->un_f_format_in_progress = FALSE;
22539 		mutex_exit(SD_MUTEX(un));
22540 	} else {
22541 		SD_TRACE(SD_LOG_IOCTL, un,
22542 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22543 		/*
22544 		 * It's OK to fall into here even if the ddi_copyin()
22545 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22546 		 * does this same copyin and will return the EFAULT
22547 		 * if it fails.
22548 		 */
22549 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22550 		    SD_PATH_STANDARD);
22551 	}
22552 #ifdef _MULTI_DATAMODEL
22553 	switch (model) {
22554 	case DDI_MODEL_ILP32:
22555 		/*
22556 		 * Convert back to ILP32 before copyout to the
22557 		 * application
22558 		 */
22559 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22560 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22561 			if (rval != 0) {
22562 				rval = EFAULT;
22563 			}
22564 		}
22565 		break;
22566 	case DDI_MODEL_NONE:
22567 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22568 			if (rval != 0) {
22569 				rval = EFAULT;
22570 			}
22571 		}
22572 		break;
22573 	}
22574 #else /* ! _MULTI_DATAMODE */
22575 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22576 		if (rval != 0) {
22577 			rval = EFAULT;
22578 		}
22579 	}
22580 #endif /* _MULTI_DATAMODE */
22581 done:
22582 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22583 
22584 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22585 
22586 	return (rval);
22587 }
22588 
22589 
22590 /*
22591  *    Function: sd_dkio_ctrl_info
22592  *
22593  * Description: This routine is the driver entry point for handling controller
22594  *		information ioctl requests (DKIOCINFO).
22595  *
22596  *   Arguments: dev  - the device number
22597  *		arg  - pointer to user provided dk_cinfo structure
22598  *		       specifying the controller type and attributes.
22599  *		flag - this argument is a pass through to ddi_copyxxx()
22600  *		       directly from the mode argument of ioctl().
22601  *
22602  * Return Code: 0
22603  *		EFAULT
22604  *		ENXIO
22605  */
22606 
22607 static int
22608 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22609 {
22610 	struct sd_lun	*un = NULL;
22611 	struct dk_cinfo	*info;
22612 	dev_info_t	*pdip;
22613 	int		lun, tgt;
22614 
22615 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22616 		return (ENXIO);
22617 	}
22618 
22619 	info = (struct dk_cinfo *)
22620 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22621 
22622 	switch (un->un_ctype) {
22623 	case CTYPE_CDROM:
22624 		info->dki_ctype = DKC_CDROM;
22625 		break;
22626 	default:
22627 		info->dki_ctype = DKC_SCSI_CCS;
22628 		break;
22629 	}
22630 	pdip = ddi_get_parent(SD_DEVINFO(un));
22631 	info->dki_cnum = ddi_get_instance(pdip);
22632 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22633 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22634 	} else {
22635 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22636 		    DK_DEVLEN - 1);
22637 	}
22638 
22639 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22640 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22641 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22642 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22643 
22644 	/* Unit Information */
22645 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22646 	info->dki_slave = ((tgt << 3) | lun);
22647 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22648 	    DK_DEVLEN - 1);
22649 	info->dki_flags = DKI_FMTVOL;
22650 	info->dki_partition = SDPART(dev);
22651 
22652 	/* Max Transfer size of this device in blocks */
22653 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22654 	info->dki_addr = 0;
22655 	info->dki_space = 0;
22656 	info->dki_prio = 0;
22657 	info->dki_vec = 0;
22658 
22659 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22660 		kmem_free(info, sizeof (struct dk_cinfo));
22661 		return (EFAULT);
22662 	} else {
22663 		kmem_free(info, sizeof (struct dk_cinfo));
22664 		return (0);
22665 	}
22666 }
22667 
22668 
22669 /*
22670  *    Function: sd_get_media_info
22671  *
22672  * Description: This routine is the driver entry point for handling ioctl
22673  *		requests for the media type or command set profile used by the
22674  *		drive to operate on the media (DKIOCGMEDIAINFO).
22675  *
22676  *   Arguments: dev	- the device number
22677  *		arg	- pointer to user provided dk_minfo structure
22678  *			  specifying the media type, logical block size and
22679  *			  drive capacity.
22680  *		flag	- this argument is a pass through to ddi_copyxxx()
22681  *			  directly from the mode argument of ioctl().
22682  *
22683  * Return Code: 0
22684  *		EACCESS
22685  *		EFAULT
22686  *		ENXIO
22687  *		EIO
22688  */
22689 
22690 static int
22691 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22692 {
22693 	struct sd_lun		*un = NULL;
22694 	struct uscsi_cmd	com;
22695 	struct scsi_inquiry	*sinq;
22696 	struct dk_minfo		media_info;
22697 	u_longlong_t		media_capacity;
22698 	uint64_t		capacity;
22699 	uint_t			lbasize;
22700 	uchar_t			*out_data;
22701 	uchar_t			*rqbuf;
22702 	int			rval = 0;
22703 	int			rtn;
22704 
22705 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22706 	    (un->un_state == SD_STATE_OFFLINE)) {
22707 		return (ENXIO);
22708 	}
22709 
22710 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22711 
22712 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22713 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22714 
22715 	/* Issue a TUR to determine if the drive is ready with media present */
22716 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22717 	if (rval == ENXIO) {
22718 		goto done;
22719 	}
22720 
22721 	/* Now get configuration data */
22722 	if (ISCD(un)) {
22723 		media_info.dki_media_type = DK_CDROM;
22724 
22725 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22726 		if (un->un_f_mmc_cap == TRUE) {
22727 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22728 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22729 
22730 			if (rtn) {
22731 				/*
22732 				 * Failed for other than an illegal request
22733 				 * or command not supported
22734 				 */
22735 				if ((com.uscsi_status == STATUS_CHECK) &&
22736 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22737 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22738 					    (rqbuf[12] != 0x20)) {
22739 						rval = EIO;
22740 						goto done;
22741 					}
22742 				}
22743 			} else {
22744 				/*
22745 				 * The GET CONFIGURATION command succeeded
22746 				 * so set the media type according to the
22747 				 * returned data
22748 				 */
22749 				media_info.dki_media_type = out_data[6];
22750 				media_info.dki_media_type <<= 8;
22751 				media_info.dki_media_type |= out_data[7];
22752 			}
22753 		}
22754 	} else {
22755 		/*
22756 		 * The profile list is not available, so we attempt to identify
22757 		 * the media type based on the inquiry data
22758 		 */
22759 		sinq = un->un_sd->sd_inq;
22760 		if (sinq->inq_qual == 0) {
22761 			/* This is a direct access device */
22762 			media_info.dki_media_type = DK_FIXED_DISK;
22763 
22764 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22765 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22766 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22767 					media_info.dki_media_type = DK_ZIP;
22768 				} else if (
22769 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22770 					media_info.dki_media_type = DK_JAZ;
22771 				}
22772 			}
22773 		} else {
22774 			/* Not a CD or direct access so return unknown media */
22775 			media_info.dki_media_type = DK_UNKNOWN;
22776 		}
22777 	}
22778 
22779 	/* Now read the capacity so we can provide the lbasize and capacity */
22780 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22781 	    SD_PATH_DIRECT)) {
22782 	case 0:
22783 		break;
22784 	case EACCES:
22785 		rval = EACCES;
22786 		goto done;
22787 	default:
22788 		rval = EIO;
22789 		goto done;
22790 	}
22791 
22792 	media_info.dki_lbsize = lbasize;
22793 	media_capacity = capacity;
22794 
22795 	/*
22796 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22797 	 * un->un_sys_blocksize chunks. So we need to convert it into
22798 	 * cap.lbasize chunks.
22799 	 */
22800 	media_capacity *= un->un_sys_blocksize;
22801 	media_capacity /= lbasize;
22802 	media_info.dki_capacity = media_capacity;
22803 
22804 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22805 		rval = EFAULT;
22806 		/* Put goto. Anybody might add some code below in future */
22807 		goto done;
22808 	}
22809 done:
22810 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22811 	kmem_free(rqbuf, SENSE_LENGTH);
22812 	return (rval);
22813 }
22814 
22815 
22816 /*
22817  *    Function: sd_dkio_get_geometry
22818  *
22819  * Description: This routine is the driver entry point for handling user
22820  *		requests to get the device geometry (DKIOCGGEOM).
22821  *
22822  *   Arguments: dev  - the device number
22823  *		arg  - pointer to user provided dk_geom structure specifying
22824  *			the controller's notion of the current geometry.
22825  *		flag - this argument is a pass through to ddi_copyxxx()
22826  *		       directly from the mode argument of ioctl().
22827  *		geom_validated - flag indicating if the device geometry has been
22828  *				 previously validated in the sdioctl routine.
22829  *
22830  * Return Code: 0
22831  *		EFAULT
22832  *		ENXIO
22833  *		EIO
22834  */
22835 
22836 static int
22837 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22838 {
22839 	struct sd_lun	*un = NULL;
22840 	struct dk_geom	*tmp_geom = NULL;
22841 	int		rval = 0;
22842 
22843 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22844 		return (ENXIO);
22845 	}
22846 
22847 	if (geom_validated == FALSE) {
22848 		/*
22849 		 * sd_validate_geometry does not spin a disk up
22850 		 * if it was spun down. We need to make sure it
22851 		 * is ready.
22852 		 */
22853 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22854 			return (rval);
22855 		}
22856 		mutex_enter(SD_MUTEX(un));
22857 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22858 		mutex_exit(SD_MUTEX(un));
22859 	}
22860 	if (rval)
22861 		return (rval);
22862 
22863 	/*
22864 	 * It is possible that un_solaris_size is 0(uninitialized)
22865 	 * after sd_unit_attach. Reservation conflict may cause the
22866 	 * above situation. Thus, the zero check of un_solaris_size
22867 	 * should occur after the sd_validate_geometry() call.
22868 	 */
22869 #if defined(__i386) || defined(__amd64)
22870 	if (un->un_solaris_size == 0) {
22871 		return (EIO);
22872 	}
22873 #endif
22874 
22875 	/*
22876 	 * Make a local copy of the soft state geometry to avoid some potential
22877 	 * race conditions associated with holding the mutex and updating the
22878 	 * write_reinstruct value
22879 	 */
22880 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22881 	mutex_enter(SD_MUTEX(un));
22882 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22883 	mutex_exit(SD_MUTEX(un));
22884 
22885 	if (tmp_geom->dkg_write_reinstruct == 0) {
22886 		tmp_geom->dkg_write_reinstruct =
22887 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22888 		    sd_rot_delay) / (int)60000);
22889 	}
22890 
22891 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22892 	    flag);
22893 	if (rval != 0) {
22894 		rval = EFAULT;
22895 	}
22896 
22897 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22898 	return (rval);
22899 
22900 }
22901 
22902 
22903 /*
22904  *    Function: sd_dkio_set_geometry
22905  *
22906  * Description: This routine is the driver entry point for handling user
22907  *		requests to set the device geometry (DKIOCSGEOM). The actual
22908  *		device geometry is not updated, just the driver "notion" of it.
22909  *
22910  *   Arguments: dev  - the device number
22911  *		arg  - pointer to user provided dk_geom structure used to set
22912  *			the controller's notion of the current geometry.
22913  *		flag - this argument is a pass through to ddi_copyxxx()
22914  *		       directly from the mode argument of ioctl().
22915  *
22916  * Return Code: 0
22917  *		EFAULT
22918  *		ENXIO
22919  *		EIO
22920  */
22921 
22922 static int
22923 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22924 {
22925 	struct sd_lun	*un = NULL;
22926 	struct dk_geom	*tmp_geom;
22927 	struct dk_map	*lp;
22928 	int		rval = 0;
22929 	int		i;
22930 
22931 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22932 		return (ENXIO);
22933 	}
22934 
22935 	/*
22936 	 * Make sure there is no reservation conflict on the lun.
22937 	 */
22938 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22939 		return (EACCES);
22940 	}
22941 
22942 #if defined(__i386) || defined(__amd64)
22943 	if (un->un_solaris_size == 0) {
22944 		return (EIO);
22945 	}
22946 #endif
22947 
22948 	/*
22949 	 * We need to copy the user specified geometry into local
22950 	 * storage and then update the softstate. We don't want to hold
22951 	 * the mutex and copyin directly from the user to the soft state
22952 	 */
22953 	tmp_geom = (struct dk_geom *)
22954 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22955 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22956 	if (rval != 0) {
22957 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22958 		return (EFAULT);
22959 	}
22960 
22961 	mutex_enter(SD_MUTEX(un));
22962 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22963 	for (i = 0; i < NDKMAP; i++) {
22964 		lp  = &un->un_map[i];
22965 		un->un_offset[i] =
22966 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22967 #if defined(__i386) || defined(__amd64)
22968 		un->un_offset[i] += un->un_solaris_offset;
22969 #endif
22970 	}
22971 	un->un_f_geometry_is_valid = FALSE;
22972 	mutex_exit(SD_MUTEX(un));
22973 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22974 
22975 	return (rval);
22976 }
22977 
22978 
22979 /*
22980  *    Function: sd_dkio_get_partition
22981  *
22982  * Description: This routine is the driver entry point for handling user
22983  *		requests to get the partition table (DKIOCGAPART).
22984  *
22985  *   Arguments: dev  - the device number
22986  *		arg  - pointer to user provided dk_allmap structure specifying
22987  *			the controller's notion of the current partition table.
22988  *		flag - this argument is a pass through to ddi_copyxxx()
22989  *		       directly from the mode argument of ioctl().
22990  *		geom_validated - flag indicating if the device geometry has been
22991  *				 previously validated in the sdioctl routine.
22992  *
22993  * Return Code: 0
22994  *		EFAULT
22995  *		ENXIO
22996  *		EIO
22997  */
22998 
22999 static int
23000 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
23001 {
23002 	struct sd_lun	*un = NULL;
23003 	int		rval = 0;
23004 	int		size;
23005 
23006 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23007 		return (ENXIO);
23008 	}
23009 
23010 	/*
23011 	 * Make sure the geometry is valid before getting the partition
23012 	 * information.
23013 	 */
23014 	mutex_enter(SD_MUTEX(un));
23015 	if (geom_validated == FALSE) {
23016 		/*
23017 		 * sd_validate_geometry does not spin a disk up
23018 		 * if it was spun down. We need to make sure it
23019 		 * is ready before validating the geometry.
23020 		 */
23021 		mutex_exit(SD_MUTEX(un));
23022 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23023 			return (rval);
23024 		}
23025 		mutex_enter(SD_MUTEX(un));
23026 
23027 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23028 			mutex_exit(SD_MUTEX(un));
23029 			return (rval);
23030 		}
23031 	}
23032 	mutex_exit(SD_MUTEX(un));
23033 
23034 	/*
23035 	 * It is possible that un_solaris_size is 0(uninitialized)
23036 	 * after sd_unit_attach. Reservation conflict may cause the
23037 	 * above situation. Thus, the zero check of un_solaris_size
23038 	 * should occur after the sd_validate_geometry() call.
23039 	 */
23040 #if defined(__i386) || defined(__amd64)
23041 	if (un->un_solaris_size == 0) {
23042 		return (EIO);
23043 	}
23044 #endif
23045 
23046 #ifdef _MULTI_DATAMODEL
23047 	switch (ddi_model_convert_from(flag & FMODELS)) {
23048 	case DDI_MODEL_ILP32: {
23049 		struct dk_map32 dk_map32[NDKMAP];
23050 		int		i;
23051 
23052 		for (i = 0; i < NDKMAP; i++) {
23053 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
23054 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23055 		}
23056 		size = NDKMAP * sizeof (struct dk_map32);
23057 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
23058 		if (rval != 0) {
23059 			rval = EFAULT;
23060 		}
23061 		break;
23062 	}
23063 	case DDI_MODEL_NONE:
23064 		size = NDKMAP * sizeof (struct dk_map);
23065 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23066 		if (rval != 0) {
23067 			rval = EFAULT;
23068 		}
23069 		break;
23070 	}
23071 #else /* ! _MULTI_DATAMODEL */
23072 	size = NDKMAP * sizeof (struct dk_map);
23073 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23074 	if (rval != 0) {
23075 		rval = EFAULT;
23076 	}
23077 #endif /* _MULTI_DATAMODEL */
23078 	return (rval);
23079 }
23080 
23081 
23082 /*
23083  *    Function: sd_dkio_set_partition
23084  *
23085  * Description: This routine is the driver entry point for handling user
23086  *		requests to set the partition table (DKIOCSAPART). The actual
23087  *		device partition is not updated.
23088  *
23089  *   Arguments: dev  - the device number
23090  *		arg  - pointer to user provided dk_allmap structure used to set
23091  *			the controller's notion of the partition table.
23092  *		flag - this argument is a pass through to ddi_copyxxx()
23093  *		       directly from the mode argument of ioctl().
23094  *
23095  * Return Code: 0
23096  *		EINVAL
23097  *		EFAULT
23098  *		ENXIO
23099  *		EIO
23100  */
23101 
23102 static int
23103 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
23104 {
23105 	struct sd_lun	*un = NULL;
23106 	struct dk_map	dk_map[NDKMAP];
23107 	struct dk_map	*lp;
23108 	int		rval = 0;
23109 	int		size;
23110 	int		i;
23111 #if defined(_SUNOS_VTOC_16)
23112 	struct dkl_partition	*vp;
23113 #endif
23114 
23115 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23116 		return (ENXIO);
23117 	}
23118 
23119 	/*
23120 	 * Set the map for all logical partitions.  We lock
23121 	 * the priority just to make sure an interrupt doesn't
23122 	 * come in while the map is half updated.
23123 	 */
23124 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
23125 	mutex_enter(SD_MUTEX(un));
23126 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23127 		mutex_exit(SD_MUTEX(un));
23128 		return (ENOTSUP);
23129 	}
23130 	mutex_exit(SD_MUTEX(un));
23131 
23132 	/*
23133 	 * Make sure there is no reservation conflict on the lun.
23134 	 */
23135 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
23136 		return (EACCES);
23137 	}
23138 
23139 #if defined(__i386) || defined(__amd64)
23140 	if (un->un_solaris_size == 0) {
23141 		return (EIO);
23142 	}
23143 #endif
23144 
23145 #ifdef _MULTI_DATAMODEL
23146 	switch (ddi_model_convert_from(flag & FMODELS)) {
23147 	case DDI_MODEL_ILP32: {
23148 		struct dk_map32 dk_map32[NDKMAP];
23149 
23150 		size = NDKMAP * sizeof (struct dk_map32);
23151 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
23152 		if (rval != 0) {
23153 			return (EFAULT);
23154 		}
23155 		for (i = 0; i < NDKMAP; i++) {
23156 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
23157 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
23158 		}
23159 		break;
23160 	}
23161 	case DDI_MODEL_NONE:
23162 		size = NDKMAP * sizeof (struct dk_map);
23163 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
23164 		if (rval != 0) {
23165 			return (EFAULT);
23166 		}
23167 		break;
23168 	}
23169 #else /* ! _MULTI_DATAMODEL */
23170 	size = NDKMAP * sizeof (struct dk_map);
23171 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
23172 	if (rval != 0) {
23173 		return (EFAULT);
23174 	}
23175 #endif /* _MULTI_DATAMODEL */
23176 
23177 	mutex_enter(SD_MUTEX(un));
23178 	/* Note: The size used in this bcopy is set based upon the data model */
23179 	bcopy(dk_map, un->un_map, size);
23180 #if defined(_SUNOS_VTOC_16)
23181 	vp = (struct dkl_partition *)&(un->un_vtoc);
23182 #endif	/* defined(_SUNOS_VTOC_16) */
23183 	for (i = 0; i < NDKMAP; i++) {
23184 		lp  = &un->un_map[i];
23185 		un->un_offset[i] =
23186 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23187 #if defined(_SUNOS_VTOC_16)
23188 		vp->p_start = un->un_offset[i];
23189 		vp->p_size = lp->dkl_nblk;
23190 		vp++;
23191 #endif	/* defined(_SUNOS_VTOC_16) */
23192 #if defined(__i386) || defined(__amd64)
23193 		un->un_offset[i] += un->un_solaris_offset;
23194 #endif
23195 	}
23196 	mutex_exit(SD_MUTEX(un));
23197 	return (rval);
23198 }
23199 
23200 
23201 /*
23202  *    Function: sd_dkio_get_vtoc
23203  *
23204  * Description: This routine is the driver entry point for handling user
23205  *		requests to get the current volume table of contents
23206  *		(DKIOCGVTOC).
23207  *
23208  *   Arguments: dev  - the device number
23209  *		arg  - pointer to user provided vtoc structure specifying
23210  *			the current vtoc.
23211  *		flag - this argument is a pass through to ddi_copyxxx()
23212  *		       directly from the mode argument of ioctl().
23213  *		geom_validated - flag indicating if the device geometry has been
23214  *				 previously validated in the sdioctl routine.
23215  *
23216  * Return Code: 0
23217  *		EFAULT
23218  *		ENXIO
23219  *		EIO
23220  */
23221 
23222 static int
23223 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
23224 {
23225 	struct sd_lun	*un = NULL;
23226 #if defined(_SUNOS_VTOC_8)
23227 	struct vtoc	user_vtoc;
23228 #endif	/* defined(_SUNOS_VTOC_8) */
23229 	int		rval = 0;
23230 
23231 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23232 		return (ENXIO);
23233 	}
23234 
23235 	mutex_enter(SD_MUTEX(un));
23236 	if (geom_validated == FALSE) {
23237 		/*
23238 		 * sd_validate_geometry does not spin a disk up
23239 		 * if it was spun down. We need to make sure it
23240 		 * is ready.
23241 		 */
23242 		mutex_exit(SD_MUTEX(un));
23243 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23244 			return (rval);
23245 		}
23246 		mutex_enter(SD_MUTEX(un));
23247 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23248 			mutex_exit(SD_MUTEX(un));
23249 			return (rval);
23250 		}
23251 	}
23252 
23253 #if defined(_SUNOS_VTOC_8)
23254 	sd_build_user_vtoc(un, &user_vtoc);
23255 	mutex_exit(SD_MUTEX(un));
23256 
23257 #ifdef _MULTI_DATAMODEL
23258 	switch (ddi_model_convert_from(flag & FMODELS)) {
23259 	case DDI_MODEL_ILP32: {
23260 		struct vtoc32 user_vtoc32;
23261 
23262 		vtoctovtoc32(user_vtoc, user_vtoc32);
23263 		if (ddi_copyout(&user_vtoc32, (void *)arg,
23264 		    sizeof (struct vtoc32), flag)) {
23265 			return (EFAULT);
23266 		}
23267 		break;
23268 	}
23269 
23270 	case DDI_MODEL_NONE:
23271 		if (ddi_copyout(&user_vtoc, (void *)arg,
23272 		    sizeof (struct vtoc), flag)) {
23273 			return (EFAULT);
23274 		}
23275 		break;
23276 	}
23277 #else /* ! _MULTI_DATAMODEL */
23278 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
23279 		return (EFAULT);
23280 	}
23281 #endif /* _MULTI_DATAMODEL */
23282 
23283 #elif defined(_SUNOS_VTOC_16)
23284 	mutex_exit(SD_MUTEX(un));
23285 
23286 #ifdef _MULTI_DATAMODEL
23287 	/*
23288 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
23289 	 * 32-bit to maintain compatibility with existing on-disk
23290 	 * structures.  Thus, we need to convert the structure when copying
23291 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
23292 	 * program.  If the target is a 32-bit program, then no conversion
23293 	 * is necessary.
23294 	 */
23295 	/* LINTED: logical expression always true: op "||" */
23296 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
23297 	switch (ddi_model_convert_from(flag & FMODELS)) {
23298 	case DDI_MODEL_ILP32:
23299 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
23300 		    sizeof (un->un_vtoc), flag)) {
23301 			return (EFAULT);
23302 		}
23303 		break;
23304 
23305 	case DDI_MODEL_NONE: {
23306 		struct vtoc user_vtoc;
23307 
23308 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
23309 		if (ddi_copyout(&user_vtoc, (void *)arg,
23310 		    sizeof (struct vtoc), flag)) {
23311 			return (EFAULT);
23312 		}
23313 		break;
23314 	}
23315 	}
23316 #else /* ! _MULTI_DATAMODEL */
23317 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
23318 	    flag)) {
23319 		return (EFAULT);
23320 	}
23321 #endif /* _MULTI_DATAMODEL */
23322 #else
23323 #error "No VTOC format defined."
23324 #endif
23325 
23326 	return (rval);
23327 }
23328 
23329 static int
23330 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
23331 {
23332 	struct sd_lun	*un = NULL;
23333 	dk_efi_t	user_efi;
23334 	int		rval = 0;
23335 	void		*buffer;
23336 
23337 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23338 		return (ENXIO);
23339 
23340 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23341 		return (EFAULT);
23342 
23343 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23344 
23345 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23346 	    (user_efi.dki_length > un->un_max_xfer_size))
23347 		return (EINVAL);
23348 
23349 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23350 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
23351 	    user_efi.dki_lba, SD_PATH_DIRECT);
23352 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
23353 	    user_efi.dki_length, flag) != 0)
23354 		rval = EFAULT;
23355 
23356 	kmem_free(buffer, user_efi.dki_length);
23357 	return (rval);
23358 }
23359 
23360 #if defined(_SUNOS_VTOC_8)
23361 /*
23362  *    Function: sd_build_user_vtoc
23363  *
23364  * Description: This routine populates a pass by reference variable with the
23365  *		current volume table of contents.
23366  *
23367  *   Arguments: un - driver soft state (unit) structure
23368  *		user_vtoc - pointer to vtoc structure to be populated
23369  */
23370 
23371 static void
23372 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23373 {
23374 	struct dk_map2		*lpart;
23375 	struct dk_map		*lmap;
23376 	struct partition	*vpart;
23377 	int			nblks;
23378 	int			i;
23379 
23380 	ASSERT(mutex_owned(SD_MUTEX(un)));
23381 
23382 	/*
23383 	 * Return vtoc structure fields in the provided VTOC area, addressed
23384 	 * by *vtoc.
23385 	 */
23386 	bzero(user_vtoc, sizeof (struct vtoc));
23387 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23388 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23389 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23390 	user_vtoc->v_sanity	= VTOC_SANE;
23391 	user_vtoc->v_version	= un->un_vtoc.v_version;
23392 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23393 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23394 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23395 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23396 	    sizeof (un->un_vtoc.v_reserved));
23397 	/*
23398 	 * Convert partitioning information.
23399 	 *
23400 	 * Note the conversion from starting cylinder number
23401 	 * to starting sector number.
23402 	 */
23403 	lmap = un->un_map;
23404 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23405 	vpart = user_vtoc->v_part;
23406 
23407 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23408 
23409 	for (i = 0; i < V_NUMPAR; i++) {
23410 		vpart->p_tag	= lpart->p_tag;
23411 		vpart->p_flag	= lpart->p_flag;
23412 		vpart->p_start	= lmap->dkl_cylno * nblks;
23413 		vpart->p_size	= lmap->dkl_nblk;
23414 		lmap++;
23415 		lpart++;
23416 		vpart++;
23417 
23418 		/* (4364927) */
23419 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23420 	}
23421 
23422 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23423 }
23424 #endif
23425 
23426 static int
23427 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23428 {
23429 	struct sd_lun		*un = NULL;
23430 	struct partition64	p64;
23431 	int			rval = 0;
23432 	uint_t			nparts;
23433 	efi_gpe_t		*partitions;
23434 	efi_gpt_t		*buffer;
23435 	diskaddr_t		gpe_lba;
23436 
23437 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23438 		return (ENXIO);
23439 	}
23440 
23441 	if (ddi_copyin((const void *)arg, &p64,
23442 	    sizeof (struct partition64), flag)) {
23443 		return (EFAULT);
23444 	}
23445 
23446 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23447 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23448 		1, SD_PATH_DIRECT);
23449 	if (rval != 0)
23450 		goto done_error;
23451 
23452 	sd_swap_efi_gpt(buffer);
23453 
23454 	if ((rval = sd_validate_efi(buffer)) != 0)
23455 		goto done_error;
23456 
23457 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23458 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23459 	if (p64.p_partno > nparts) {
23460 		/* couldn't find it */
23461 		rval = ESRCH;
23462 		goto done_error;
23463 	}
23464 	/*
23465 	 * if we're dealing with a partition that's out of the normal
23466 	 * 16K block, adjust accordingly
23467 	 */
23468 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23469 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23470 			gpe_lba, SD_PATH_DIRECT);
23471 	if (rval) {
23472 		goto done_error;
23473 	}
23474 	partitions = (efi_gpe_t *)buffer;
23475 
23476 	sd_swap_efi_gpe(nparts, partitions);
23477 
23478 	partitions += p64.p_partno;
23479 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23480 	    sizeof (struct uuid));
23481 	p64.p_start = partitions->efi_gpe_StartingLBA;
23482 	p64.p_size = partitions->efi_gpe_EndingLBA -
23483 			p64.p_start + 1;
23484 
23485 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23486 		rval = EFAULT;
23487 
23488 done_error:
23489 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23490 	return (rval);
23491 }
23492 
23493 
23494 /*
23495  *    Function: sd_dkio_set_vtoc
23496  *
23497  * Description: This routine is the driver entry point for handling user
23498  *		requests to set the current volume table of contents
23499  *		(DKIOCSVTOC).
23500  *
23501  *   Arguments: dev  - the device number
23502  *		arg  - pointer to user provided vtoc structure used to set the
23503  *			current vtoc.
23504  *		flag - this argument is a pass through to ddi_copyxxx()
23505  *		       directly from the mode argument of ioctl().
23506  *
23507  * Return Code: 0
23508  *		EFAULT
23509  *		ENXIO
23510  *		EINVAL
23511  *		ENOTSUP
23512  */
23513 
23514 static int
23515 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23516 {
23517 	struct sd_lun	*un = NULL;
23518 	struct vtoc	user_vtoc;
23519 	int		rval = 0;
23520 
23521 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23522 		return (ENXIO);
23523 	}
23524 
23525 #if defined(__i386) || defined(__amd64)
23526 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23527 		return (EINVAL);
23528 	}
23529 #endif
23530 
23531 #ifdef _MULTI_DATAMODEL
23532 	switch (ddi_model_convert_from(flag & FMODELS)) {
23533 	case DDI_MODEL_ILP32: {
23534 		struct vtoc32 user_vtoc32;
23535 
23536 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23537 		    sizeof (struct vtoc32), flag)) {
23538 			return (EFAULT);
23539 		}
23540 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23541 		break;
23542 	}
23543 
23544 	case DDI_MODEL_NONE:
23545 		if (ddi_copyin((const void *)arg, &user_vtoc,
23546 		    sizeof (struct vtoc), flag)) {
23547 			return (EFAULT);
23548 		}
23549 		break;
23550 	}
23551 #else /* ! _MULTI_DATAMODEL */
23552 	if (ddi_copyin((const void *)arg, &user_vtoc,
23553 	    sizeof (struct vtoc), flag)) {
23554 		return (EFAULT);
23555 	}
23556 #endif /* _MULTI_DATAMODEL */
23557 
23558 	mutex_enter(SD_MUTEX(un));
23559 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23560 		mutex_exit(SD_MUTEX(un));
23561 		return (ENOTSUP);
23562 	}
23563 	if (un->un_g.dkg_ncyl == 0) {
23564 		mutex_exit(SD_MUTEX(un));
23565 		return (EINVAL);
23566 	}
23567 
23568 	mutex_exit(SD_MUTEX(un));
23569 	sd_clear_efi(un);
23570 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23571 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23572 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23573 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23574 	    un->un_node_type, NULL);
23575 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23576 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23577 	    un->un_node_type, NULL);
23578 	mutex_enter(SD_MUTEX(un));
23579 
23580 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23581 		if ((rval = sd_write_label(dev)) == 0) {
23582 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23583 			    != 0) {
23584 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23585 				    "sd_dkio_set_vtoc: "
23586 				    "Failed validate geometry\n");
23587 			}
23588 		}
23589 	}
23590 
23591 	/*
23592 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23593 	 * devid anyway, what can it hurt? Also preserve the device id by
23594 	 * writing to the disk acyl for the case where a devid has been
23595 	 * fabricated.
23596 	 */
23597 	if (un->un_f_devid_supported &&
23598 	    (un->un_f_opt_fab_devid == TRUE)) {
23599 		if (un->un_devid == NULL) {
23600 			sd_register_devid(un, SD_DEVINFO(un),
23601 			    SD_TARGET_IS_UNRESERVED);
23602 		} else {
23603 			/*
23604 			 * The device id for this disk has been
23605 			 * fabricated. Fabricated device id's are
23606 			 * managed by storing them in the last 2
23607 			 * available sectors on the drive. The device
23608 			 * id must be preserved by writing it back out
23609 			 * to this location.
23610 			 */
23611 			if (sd_write_deviceid(un) != 0) {
23612 				ddi_devid_free(un->un_devid);
23613 				un->un_devid = NULL;
23614 			}
23615 		}
23616 	}
23617 	mutex_exit(SD_MUTEX(un));
23618 	return (rval);
23619 }
23620 
23621 
23622 /*
23623  *    Function: sd_build_label_vtoc
23624  *
23625  * Description: This routine updates the driver soft state current volume table
23626  *		of contents based on a user specified vtoc.
23627  *
23628  *   Arguments: un - driver soft state (unit) structure
23629  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23630  *			    to update the driver soft state.
23631  *
23632  * Return Code: 0
23633  *		EINVAL
23634  */
23635 
23636 static int
23637 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23638 {
23639 	struct dk_map		*lmap;
23640 	struct partition	*vpart;
23641 	int			nblks;
23642 #if defined(_SUNOS_VTOC_8)
23643 	int			ncyl;
23644 	struct dk_map2		*lpart;
23645 #endif	/* defined(_SUNOS_VTOC_8) */
23646 	int			i;
23647 
23648 	ASSERT(mutex_owned(SD_MUTEX(un)));
23649 
23650 	/* Sanity-check the vtoc */
23651 	if (user_vtoc->v_sanity != VTOC_SANE ||
23652 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23653 	    user_vtoc->v_nparts != V_NUMPAR) {
23654 		return (EINVAL);
23655 	}
23656 
23657 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23658 	if (nblks == 0) {
23659 		return (EINVAL);
23660 	}
23661 
23662 #if defined(_SUNOS_VTOC_8)
23663 	vpart = user_vtoc->v_part;
23664 	for (i = 0; i < V_NUMPAR; i++) {
23665 		if ((vpart->p_start % nblks) != 0) {
23666 			return (EINVAL);
23667 		}
23668 		ncyl = vpart->p_start / nblks;
23669 		ncyl += vpart->p_size / nblks;
23670 		if ((vpart->p_size % nblks) != 0) {
23671 			ncyl++;
23672 		}
23673 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23674 			return (EINVAL);
23675 		}
23676 		vpart++;
23677 	}
23678 #endif	/* defined(_SUNOS_VTOC_8) */
23679 
23680 	/* Put appropriate vtoc structure fields into the disk label */
23681 #if defined(_SUNOS_VTOC_16)
23682 	/*
23683 	 * The vtoc is always a 32bit data structure to maintain the
23684 	 * on-disk format. Convert "in place" instead of bcopying it.
23685 	 */
23686 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23687 
23688 	/*
23689 	 * in the 16-slice vtoc, starting sectors are expressed in
23690 	 * numbers *relative* to the start of the Solaris fdisk partition.
23691 	 */
23692 	lmap = un->un_map;
23693 	vpart = user_vtoc->v_part;
23694 
23695 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23696 		lmap->dkl_cylno = vpart->p_start / nblks;
23697 		lmap->dkl_nblk = vpart->p_size;
23698 	}
23699 
23700 #elif defined(_SUNOS_VTOC_8)
23701 
23702 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23703 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23704 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23705 
23706 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23707 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23708 
23709 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23710 
23711 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23712 
23713 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23714 	    sizeof (un->un_vtoc.v_reserved));
23715 
23716 	/*
23717 	 * Note the conversion from starting sector number
23718 	 * to starting cylinder number.
23719 	 * Return error if division results in a remainder.
23720 	 */
23721 	lmap = un->un_map;
23722 	lpart = un->un_vtoc.v_part;
23723 	vpart = user_vtoc->v_part;
23724 
23725 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23726 		lpart->p_tag  = vpart->p_tag;
23727 		lpart->p_flag = vpart->p_flag;
23728 		lmap->dkl_cylno = vpart->p_start / nblks;
23729 		lmap->dkl_nblk = vpart->p_size;
23730 
23731 		lmap++;
23732 		lpart++;
23733 		vpart++;
23734 
23735 		/* (4387723) */
23736 #ifdef _LP64
23737 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23738 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23739 		} else {
23740 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23741 		}
23742 #else
23743 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23744 #endif
23745 	}
23746 
23747 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23748 #else
23749 #error "No VTOC format defined."
23750 #endif
23751 	return (0);
23752 }
23753 
23754 /*
23755  *    Function: sd_clear_efi
23756  *
23757  * Description: This routine clears all EFI labels.
23758  *
23759  *   Arguments: un - driver soft state (unit) structure
23760  *
23761  * Return Code: void
23762  */
23763 
23764 static void
23765 sd_clear_efi(struct sd_lun *un)
23766 {
23767 	efi_gpt_t	*gpt;
23768 	uint_t		lbasize;
23769 	uint64_t	cap;
23770 	int rval;
23771 
23772 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23773 
23774 	mutex_enter(SD_MUTEX(un));
23775 	un->un_reserved = -1;
23776 	mutex_exit(SD_MUTEX(un));
23777 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23778 
23779 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23780 		goto done;
23781 	}
23782 
23783 	sd_swap_efi_gpt(gpt);
23784 	rval = sd_validate_efi(gpt);
23785 	if (rval == 0) {
23786 		/* clear primary */
23787 		bzero(gpt, sizeof (efi_gpt_t));
23788 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23789 			SD_PATH_DIRECT))) {
23790 			SD_INFO(SD_LOG_IO_PARTITION, un,
23791 				"sd_clear_efi: clear primary label failed\n");
23792 		}
23793 	}
23794 	/* the backup */
23795 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23796 	    SD_PATH_DIRECT);
23797 	if (rval) {
23798 		goto done;
23799 	}
23800 	/*
23801 	 * The MMC standard allows READ CAPACITY to be
23802 	 * inaccurate by a bounded amount (in the interest of
23803 	 * response latency).  As a result, failed READs are
23804 	 * commonplace (due to the reading of metadata and not
23805 	 * data). Depending on the per-Vendor/drive Sense data,
23806 	 * the failed READ can cause many (unnecessary) retries.
23807 	 */
23808 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23809 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23810 		SD_PATH_DIRECT)) != 0) {
23811 		goto done;
23812 	}
23813 	sd_swap_efi_gpt(gpt);
23814 	rval = sd_validate_efi(gpt);
23815 	if (rval == 0) {
23816 		/* clear backup */
23817 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23818 			cap-1);
23819 		bzero(gpt, sizeof (efi_gpt_t));
23820 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23821 		    cap-1, SD_PATH_DIRECT))) {
23822 			SD_INFO(SD_LOG_IO_PARTITION, un,
23823 				"sd_clear_efi: clear backup label failed\n");
23824 		}
23825 	} else {
23826 		/*
23827 		 * Refer to comments related to off-by-1 at the
23828 		 * header of this file
23829 		 */
23830 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23831 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23832 			SD_PATH_DIRECT)) != 0) {
23833 			goto done;
23834 		}
23835 		sd_swap_efi_gpt(gpt);
23836 		rval = sd_validate_efi(gpt);
23837 		if (rval == 0) {
23838 			/* clear legacy backup EFI label */
23839 			SD_TRACE(SD_LOG_IOCTL, un,
23840 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23841 			bzero(gpt, sizeof (efi_gpt_t));
23842 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23843 			    cap-2, SD_PATH_DIRECT))) {
23844 				SD_INFO(SD_LOG_IO_PARTITION,
23845 				    un, "sd_clear_efi: "
23846 				    " clear legacy backup label failed\n");
23847 			}
23848 		}
23849 	}
23850 
23851 done:
23852 	kmem_free(gpt, sizeof (efi_gpt_t));
23853 }
23854 
23855 /*
23856  *    Function: sd_set_vtoc
23857  *
23858  * Description: This routine writes data to the appropriate positions
23859  *
23860  *   Arguments: un - driver soft state (unit) structure
23861  *              dkl  - the data to be written
23862  *
23863  * Return: void
23864  */
23865 
23866 static int
23867 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23868 {
23869 	void			*shadow_buf;
23870 	uint_t			label_addr;
23871 	int			sec;
23872 	int			blk;
23873 	int			head;
23874 	int			cyl;
23875 	int			rval;
23876 
23877 #if defined(__i386) || defined(__amd64)
23878 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23879 #else
23880 	/* Write the primary label at block 0 of the solaris partition. */
23881 	label_addr = 0;
23882 #endif
23883 
23884 	if (NOT_DEVBSIZE(un)) {
23885 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23886 		/*
23887 		 * Read the target's first block.
23888 		 */
23889 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23890 		    un->un_tgt_blocksize, label_addr,
23891 		    SD_PATH_STANDARD)) != 0) {
23892 			goto exit;
23893 		}
23894 		/*
23895 		 * Copy the contents of the label into the shadow buffer
23896 		 * which is of the size of target block size.
23897 		 */
23898 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23899 	}
23900 
23901 	/* Write the primary label */
23902 	if (NOT_DEVBSIZE(un)) {
23903 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23904 		    label_addr, SD_PATH_STANDARD);
23905 	} else {
23906 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23907 		    label_addr, SD_PATH_STANDARD);
23908 	}
23909 	if (rval != 0) {
23910 		return (rval);
23911 	}
23912 
23913 	/*
23914 	 * Calculate where the backup labels go.  They are always on
23915 	 * the last alternate cylinder, but some older drives put them
23916 	 * on head 2 instead of the last head.	They are always on the
23917 	 * first 5 odd sectors of the appropriate track.
23918 	 *
23919 	 * We have no choice at this point, but to believe that the
23920 	 * disk label is valid.	 Use the geometry of the disk
23921 	 * as described in the label.
23922 	 */
23923 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23924 	head = dkl->dkl_nhead - 1;
23925 
23926 	/*
23927 	 * Write and verify the backup labels. Make sure we don't try to
23928 	 * write past the last cylinder.
23929 	 */
23930 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23931 		blk = (daddr_t)(
23932 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23933 		    (head * dkl->dkl_nsect) + sec);
23934 #if defined(__i386) || defined(__amd64)
23935 		blk += un->un_solaris_offset;
23936 #endif
23937 		if (NOT_DEVBSIZE(un)) {
23938 			uint64_t	tblk;
23939 			/*
23940 			 * Need to read the block first for read modify write.
23941 			 */
23942 			tblk = (uint64_t)blk;
23943 			blk = (int)((tblk * un->un_sys_blocksize) /
23944 			    un->un_tgt_blocksize);
23945 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23946 			    un->un_tgt_blocksize, blk,
23947 			    SD_PATH_STANDARD)) != 0) {
23948 				goto exit;
23949 			}
23950 			/*
23951 			 * Modify the shadow buffer with the label.
23952 			 */
23953 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23954 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23955 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23956 		} else {
23957 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23958 			    blk, SD_PATH_STANDARD);
23959 			SD_INFO(SD_LOG_IO_PARTITION, un,
23960 			"sd_set_vtoc: wrote backup label %d\n", blk);
23961 		}
23962 		if (rval != 0) {
23963 			goto exit;
23964 		}
23965 	}
23966 exit:
23967 	if (NOT_DEVBSIZE(un)) {
23968 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23969 	}
23970 	return (rval);
23971 }
23972 
23973 /*
23974  *    Function: sd_clear_vtoc
23975  *
23976  * Description: This routine clears out the VTOC labels.
23977  *
23978  *   Arguments: un - driver soft state (unit) structure
23979  *
23980  * Return: void
23981  */
23982 
23983 static void
23984 sd_clear_vtoc(struct sd_lun *un)
23985 {
23986 	struct dk_label		*dkl;
23987 
23988 	mutex_exit(SD_MUTEX(un));
23989 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23990 	mutex_enter(SD_MUTEX(un));
23991 	/*
23992 	 * sd_set_vtoc uses these fields in order to figure out
23993 	 * where to overwrite the backup labels
23994 	 */
23995 	dkl->dkl_apc    = un->un_g.dkg_apc;
23996 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23997 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23998 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23999 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
24000 	mutex_exit(SD_MUTEX(un));
24001 	(void) sd_set_vtoc(un, dkl);
24002 	kmem_free(dkl, sizeof (struct dk_label));
24003 
24004 	mutex_enter(SD_MUTEX(un));
24005 }
24006 
24007 /*
24008  *    Function: sd_write_label
24009  *
24010  * Description: This routine will validate and write the driver soft state vtoc
24011  *		contents to the device.
24012  *
24013  *   Arguments: dev - the device number
24014  *
24015  * Return Code: the code returned by sd_send_scsi_cmd()
24016  *		0
24017  *		EINVAL
24018  *		ENXIO
24019  *		ENOMEM
24020  */
24021 
24022 static int
24023 sd_write_label(dev_t dev)
24024 {
24025 	struct sd_lun		*un;
24026 	struct dk_label		*dkl;
24027 	short			sum;
24028 	short			*sp;
24029 	int			i;
24030 	int			rval;
24031 
24032 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24033 	    (un->un_state == SD_STATE_OFFLINE)) {
24034 		return (ENXIO);
24035 	}
24036 	ASSERT(mutex_owned(SD_MUTEX(un)));
24037 	mutex_exit(SD_MUTEX(un));
24038 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
24039 	mutex_enter(SD_MUTEX(un));
24040 
24041 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
24042 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
24043 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
24044 	dkl->dkl_apc	= un->un_g.dkg_apc;
24045 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
24046 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
24047 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
24048 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
24049 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
24050 
24051 #if defined(_SUNOS_VTOC_8)
24052 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
24053 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
24054 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
24055 	for (i = 0; i < NDKMAP; i++) {
24056 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
24057 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
24058 	}
24059 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
24060 #elif defined(_SUNOS_VTOC_16)
24061 	dkl->dkl_skew	= un->un_dkg_skew;
24062 #else
24063 #error "No VTOC format defined."
24064 #endif
24065 
24066 	dkl->dkl_magic			= DKL_MAGIC;
24067 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
24068 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
24069 
24070 	/* Construct checksum for the new disk label */
24071 	sum = 0;
24072 	sp = (short *)dkl;
24073 	i = sizeof (struct dk_label) / sizeof (short);
24074 	while (i--) {
24075 		sum ^= *sp++;
24076 	}
24077 	dkl->dkl_cksum = sum;
24078 
24079 	mutex_exit(SD_MUTEX(un));
24080 
24081 	rval = sd_set_vtoc(un, dkl);
24082 exit:
24083 	kmem_free(dkl, sizeof (struct dk_label));
24084 	mutex_enter(SD_MUTEX(un));
24085 	return (rval);
24086 }
24087 
24088 static int
24089 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
24090 {
24091 	struct sd_lun	*un = NULL;
24092 	dk_efi_t	user_efi;
24093 	int		rval = 0;
24094 	void		*buffer;
24095 	int		valid_efi;
24096 
24097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
24098 		return (ENXIO);
24099 
24100 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
24101 		return (EFAULT);
24102 
24103 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
24104 
24105 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
24106 	    (user_efi.dki_length > un->un_max_xfer_size))
24107 		return (EINVAL);
24108 
24109 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
24110 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
24111 		rval = EFAULT;
24112 	} else {
24113 		/*
24114 		 * let's clear the vtoc labels and clear the softstate
24115 		 * vtoc.
24116 		 */
24117 		mutex_enter(SD_MUTEX(un));
24118 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
24119 			SD_TRACE(SD_LOG_IO_PARTITION, un,
24120 				"sd_dkio_set_efi: CLEAR VTOC\n");
24121 			sd_clear_vtoc(un);
24122 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24123 			mutex_exit(SD_MUTEX(un));
24124 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
24125 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
24126 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
24127 			    S_IFBLK,
24128 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24129 			    un->un_node_type, NULL);
24130 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
24131 			    S_IFCHR,
24132 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24133 			    un->un_node_type, NULL);
24134 		} else
24135 			mutex_exit(SD_MUTEX(un));
24136 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
24137 		    user_efi.dki_lba, SD_PATH_DIRECT);
24138 		if (rval == 0) {
24139 			mutex_enter(SD_MUTEX(un));
24140 
24141 			/*
24142 			 * Set the un_reserved for valid efi label.
24143 			 * Function clear_efi in fdisk and efi_write in
24144 			 * libefi both change efi label on disk in 3 steps
24145 			 * 1. Change primary gpt and gpe
24146 			 * 2. Change backup gpe
24147 			 * 3. Change backup gpt, which is one block
24148 			 * We only reread the efi label after the 3rd step,
24149 			 * or there will be warning "primary label corrupt".
24150 			 */
24151 			if (user_efi.dki_length == un->un_tgt_blocksize) {
24152 				un->un_f_geometry_is_valid = FALSE;
24153 				valid_efi = sd_use_efi(un, SD_PATH_DIRECT);
24154 				if ((valid_efi == 0) &&
24155 				    un->un_f_devid_supported &&
24156 				    (un->un_f_opt_fab_devid == TRUE)) {
24157 					if (un->un_devid == NULL) {
24158 						sd_register_devid(un,
24159 						    SD_DEVINFO(un),
24160 						    SD_TARGET_IS_UNRESERVED);
24161 					} else {
24162 						/*
24163 						 * The device id for this disk
24164 						 * has been fabricated. The
24165 						 * device id must be preserved
24166 						 * by writing it back out to
24167 						 * disk.
24168 						 */
24169 						if (sd_write_deviceid(un)
24170 						    != 0) {
24171 							ddi_devid_free(
24172 							    un->un_devid);
24173 							un->un_devid = NULL;
24174 						}
24175 					}
24176 				}
24177 			}
24178 
24179 			mutex_exit(SD_MUTEX(un));
24180 		}
24181 	}
24182 	kmem_free(buffer, user_efi.dki_length);
24183 	return (rval);
24184 }
24185 
24186 /*
24187  *    Function: sd_dkio_get_mboot
24188  *
24189  * Description: This routine is the driver entry point for handling user
24190  *		requests to get the current device mboot (DKIOCGMBOOT)
24191  *
24192  *   Arguments: dev  - the device number
24193  *		arg  - pointer to user provided mboot structure specifying
24194  *			the current mboot.
24195  *		flag - this argument is a pass through to ddi_copyxxx()
24196  *		       directly from the mode argument of ioctl().
24197  *
24198  * Return Code: 0
24199  *		EINVAL
24200  *		EFAULT
24201  *		ENXIO
24202  */
24203 
24204 static int
24205 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
24206 {
24207 	struct sd_lun	*un;
24208 	struct mboot	*mboot;
24209 	int		rval;
24210 	size_t		buffer_size;
24211 
24212 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24213 	    (un->un_state == SD_STATE_OFFLINE)) {
24214 		return (ENXIO);
24215 	}
24216 
24217 	if (!un->un_f_mboot_supported || arg == NULL) {
24218 		return (EINVAL);
24219 	}
24220 
24221 	/*
24222 	 * Read the mboot block, located at absolute block 0 on the target.
24223 	 */
24224 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
24225 
24226 	SD_TRACE(SD_LOG_IO_PARTITION, un,
24227 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
24228 
24229 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
24230 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
24231 	    SD_PATH_STANDARD)) == 0) {
24232 		if (ddi_copyout(mboot, (void *)arg,
24233 		    sizeof (struct mboot), flag) != 0) {
24234 			rval = EFAULT;
24235 		}
24236 	}
24237 	kmem_free(mboot, buffer_size);
24238 	return (rval);
24239 }
24240 
24241 
24242 /*
24243  *    Function: sd_dkio_set_mboot
24244  *
24245  * Description: This routine is the driver entry point for handling user
24246  *		requests to validate and set the device master boot
24247  *		(DKIOCSMBOOT).
24248  *
24249  *   Arguments: dev  - the device number
24250  *		arg  - pointer to user provided mboot structure used to set the
24251  *			master boot.
24252  *		flag - this argument is a pass through to ddi_copyxxx()
24253  *		       directly from the mode argument of ioctl().
24254  *
24255  * Return Code: 0
24256  *		EINVAL
24257  *		EFAULT
24258  *		ENXIO
24259  */
24260 
24261 static int
24262 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
24263 {
24264 	struct sd_lun	*un = NULL;
24265 	struct mboot	*mboot = NULL;
24266 	int		rval;
24267 	ushort_t	magic;
24268 
24269 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24270 		return (ENXIO);
24271 	}
24272 
24273 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24274 
24275 	if (!un->un_f_mboot_supported) {
24276 		return (EINVAL);
24277 	}
24278 
24279 	if (arg == NULL) {
24280 		return (EINVAL);
24281 	}
24282 
24283 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
24284 
24285 	if (ddi_copyin((const void *)arg, mboot,
24286 	    sizeof (struct mboot), flag) != 0) {
24287 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24288 		return (EFAULT);
24289 	}
24290 
24291 	/* Is this really a master boot record? */
24292 	magic = LE_16(mboot->signature);
24293 	if (magic != MBB_MAGIC) {
24294 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24295 		return (EINVAL);
24296 	}
24297 
24298 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
24299 	    SD_PATH_STANDARD);
24300 
24301 	mutex_enter(SD_MUTEX(un));
24302 #if defined(__i386) || defined(__amd64)
24303 	if (rval == 0) {
24304 		/*
24305 		 * mboot has been written successfully.
24306 		 * update the fdisk and vtoc tables in memory
24307 		 */
24308 		rval = sd_update_fdisk_and_vtoc(un);
24309 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
24310 			mutex_exit(SD_MUTEX(un));
24311 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24312 			return (rval);
24313 		}
24314 	}
24315 
24316 #ifdef __lock_lint
24317 	sd_setup_default_geometry(un);
24318 #endif
24319 
24320 #else
24321 	if (rval == 0) {
24322 		/*
24323 		 * mboot has been written successfully.
24324 		 * set up the default geometry and VTOC
24325 		 */
24326 		if (un->un_blockcount <= DK_MAX_BLOCKS)
24327 			sd_setup_default_geometry(un);
24328 	}
24329 #endif
24330 	mutex_exit(SD_MUTEX(un));
24331 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24332 	return (rval);
24333 }
24334 
24335 
24336 /*
24337  *    Function: sd_setup_default_geometry
24338  *
24339  * Description: This local utility routine sets the default geometry as part of
24340  *		setting the device mboot.
24341  *
24342  *   Arguments: un - driver soft state (unit) structure
24343  *
24344  * Note: This may be redundant with sd_build_default_label.
24345  */
24346 
24347 static void
24348 sd_setup_default_geometry(struct sd_lun *un)
24349 {
24350 	/* zero out the soft state geometry and partition table. */
24351 	bzero(&un->un_g, sizeof (struct dk_geom));
24352 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24353 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
24354 	un->un_asciilabel[0] = '\0';
24355 
24356 	/*
24357 	 * For the rpm, we use the minimum for the disk.
24358 	 * For the head, cyl and number of sector per track,
24359 	 * if the capacity <= 1GB, head = 64, sect = 32.
24360 	 * else head = 255, sect 63
24361 	 * Note: the capacity should be equal to C*H*S values.
24362 	 * This will cause some truncation of size due to
24363 	 * round off errors. For CD-ROMs, this truncation can
24364 	 * have adverse side effects, so returning ncyl and
24365 	 * nhead as 1. The nsect will overflow for most of
24366 	 * CD-ROMs as nsect is of type ushort.
24367 	 */
24368 	if (ISCD(un)) {
24369 		un->un_g.dkg_ncyl = 1;
24370 		un->un_g.dkg_nhead = 1;
24371 		un->un_g.dkg_nsect = un->un_blockcount;
24372 	} else {
24373 		if (un->un_blockcount <= 0x1000) {
24374 			/* Needed for unlabeled SCSI floppies. */
24375 			un->un_g.dkg_nhead = 2;
24376 			un->un_g.dkg_ncyl = 80;
24377 			un->un_g.dkg_pcyl = 80;
24378 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24379 		} else if (un->un_blockcount <= 0x200000) {
24380 			un->un_g.dkg_nhead = 64;
24381 			un->un_g.dkg_nsect = 32;
24382 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24383 		} else {
24384 			un->un_g.dkg_nhead = 255;
24385 			un->un_g.dkg_nsect = 63;
24386 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24387 		}
24388 		un->un_blockcount = un->un_g.dkg_ncyl *
24389 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24390 	}
24391 	un->un_g.dkg_acyl = 0;
24392 	un->un_g.dkg_bcyl = 0;
24393 	un->un_g.dkg_intrlv = 1;
24394 	un->un_g.dkg_rpm = 200;
24395 	un->un_g.dkg_read_reinstruct = 0;
24396 	un->un_g.dkg_write_reinstruct = 0;
24397 	if (un->un_g.dkg_pcyl == 0) {
24398 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24399 	}
24400 
24401 	un->un_map['a'-'a'].dkl_cylno = 0;
24402 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24403 	un->un_map['c'-'a'].dkl_cylno = 0;
24404 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24405 	un->un_f_geometry_is_valid = FALSE;
24406 }
24407 
24408 
24409 #if defined(__i386) || defined(__amd64)
24410 /*
24411  *    Function: sd_update_fdisk_and_vtoc
24412  *
24413  * Description: This local utility routine updates the device fdisk and vtoc
24414  *		as part of setting the device mboot.
24415  *
24416  *   Arguments: un - driver soft state (unit) structure
24417  *
24418  * Return Code: 0 for success or errno-type return code.
24419  *
24420  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24421  *		these did exist seperately in x86 sd.c!!!
24422  */
24423 
24424 static int
24425 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24426 {
24427 	static char	labelstring[128];
24428 	static char	buf[256];
24429 	char		*label = 0;
24430 	int		count;
24431 	int		label_rc = 0;
24432 	int		gvalid = un->un_f_geometry_is_valid;
24433 	int		fdisk_rval;
24434 	int		lbasize;
24435 	int		capacity;
24436 
24437 	ASSERT(mutex_owned(SD_MUTEX(un)));
24438 
24439 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24440 		return (EINVAL);
24441 	}
24442 
24443 	if (un->un_f_blockcount_is_valid == FALSE) {
24444 		return (EINVAL);
24445 	}
24446 
24447 #if defined(_SUNOS_VTOC_16)
24448 	/*
24449 	 * Set up the "whole disk" fdisk partition; this should always
24450 	 * exist, regardless of whether the disk contains an fdisk table
24451 	 * or vtoc.
24452 	 */
24453 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24454 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24455 #endif	/* defined(_SUNOS_VTOC_16) */
24456 
24457 	/*
24458 	 * copy the lbasize and capacity so that if they're
24459 	 * reset while we're not holding the SD_MUTEX(un), we will
24460 	 * continue to use valid values after the SD_MUTEX(un) is
24461 	 * reacquired.
24462 	 */
24463 	lbasize  = un->un_tgt_blocksize;
24464 	capacity = un->un_blockcount;
24465 
24466 	/*
24467 	 * refresh the logical and physical geometry caches.
24468 	 * (data from mode sense format/rigid disk geometry pages,
24469 	 * and scsi_ifgetcap("geometry").
24470 	 */
24471 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24472 
24473 	/*
24474 	 * Only DIRECT ACCESS devices will have Sun labels.
24475 	 * CD's supposedly have a Sun label, too
24476 	 */
24477 	if (un->un_f_vtoc_label_supported) {
24478 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24479 		    SD_PATH_DIRECT);
24480 		if (fdisk_rval == SD_CMD_FAILURE) {
24481 			ASSERT(mutex_owned(SD_MUTEX(un)));
24482 			return (EIO);
24483 		}
24484 
24485 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24486 			ASSERT(mutex_owned(SD_MUTEX(un)));
24487 			return (EACCES);
24488 		}
24489 
24490 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24491 			/*
24492 			 * Found fdisk table but no Solaris partition entry,
24493 			 * so don't call sd_uselabel() and don't create
24494 			 * a default label.
24495 			 */
24496 			label_rc = 0;
24497 			un->un_f_geometry_is_valid = TRUE;
24498 			goto no_solaris_partition;
24499 		}
24500 
24501 #if defined(_SUNOS_VTOC_8)
24502 		label = (char *)un->un_asciilabel;
24503 #elif defined(_SUNOS_VTOC_16)
24504 		label = (char *)un->un_vtoc.v_asciilabel;
24505 #else
24506 #error "No VTOC format defined."
24507 #endif
24508 	} else if (capacity < 0) {
24509 		ASSERT(mutex_owned(SD_MUTEX(un)));
24510 		return (EINVAL);
24511 	}
24512 
24513 	/*
24514 	 * For Removable media We reach here if we have found a
24515 	 * SOLARIS PARTITION.
24516 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24517 	 * PARTITION has changed from the previous one, hence we will setup a
24518 	 * default VTOC in this case.
24519 	 */
24520 	if (un->un_f_geometry_is_valid == FALSE) {
24521 		sd_build_default_label(un);
24522 		label_rc = 0;
24523 	}
24524 
24525 no_solaris_partition:
24526 	if ((!un->un_f_has_removable_media ||
24527 	    (un->un_f_has_removable_media &&
24528 	    un->un_mediastate == DKIO_EJECTED)) &&
24529 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24530 		/*
24531 		 * Print out a message indicating who and what we are.
24532 		 * We do this only when we happen to really validate the
24533 		 * geometry. We may call sd_validate_geometry() at other
24534 		 * times, ioctl()'s like Get VTOC in which case we
24535 		 * don't want to print the label.
24536 		 * If the geometry is valid, print the label string,
24537 		 * else print vendor and product info, if available
24538 		 */
24539 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24540 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24541 		} else {
24542 			mutex_enter(&sd_label_mutex);
24543 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24544 			    labelstring);
24545 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24546 			    &labelstring[64]);
24547 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24548 			    labelstring, &labelstring[64]);
24549 			if (un->un_f_blockcount_is_valid == TRUE) {
24550 				(void) sprintf(&buf[strlen(buf)],
24551 				    ", %" PRIu64 " %u byte blocks\n",
24552 				    un->un_blockcount,
24553 				    un->un_tgt_blocksize);
24554 			} else {
24555 				(void) sprintf(&buf[strlen(buf)],
24556 				    ", (unknown capacity)\n");
24557 			}
24558 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24559 			mutex_exit(&sd_label_mutex);
24560 		}
24561 	}
24562 
24563 #if defined(_SUNOS_VTOC_16)
24564 	/*
24565 	 * If we have valid geometry, set up the remaining fdisk partitions.
24566 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24567 	 * we set it to an entirely bogus value.
24568 	 */
24569 	for (count = 0; count < FD_NUMPART; count++) {
24570 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24571 		un->un_map[FDISK_P1 + count].dkl_nblk =
24572 		    un->un_fmap[count].fmap_nblk;
24573 		un->un_offset[FDISK_P1 + count] =
24574 		    un->un_fmap[count].fmap_start;
24575 	}
24576 #endif
24577 
24578 	for (count = 0; count < NDKMAP; count++) {
24579 #if defined(_SUNOS_VTOC_8)
24580 		struct dk_map *lp  = &un->un_map[count];
24581 		un->un_offset[count] =
24582 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24583 #elif defined(_SUNOS_VTOC_16)
24584 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24585 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24586 #else
24587 #error "No VTOC format defined."
24588 #endif
24589 	}
24590 
24591 	ASSERT(mutex_owned(SD_MUTEX(un)));
24592 	return (label_rc);
24593 }
24594 #endif
24595 
24596 
24597 /*
24598  *    Function: sd_check_media
24599  *
24600  * Description: This utility routine implements the functionality for the
24601  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24602  *		driver state changes from that specified by the user
24603  *		(inserted or ejected). For example, if the user specifies
24604  *		DKIO_EJECTED and the current media state is inserted this
24605  *		routine will immediately return DKIO_INSERTED. However, if the
24606  *		current media state is not inserted the user thread will be
24607  *		blocked until the drive state changes. If DKIO_NONE is specified
24608  *		the user thread will block until a drive state change occurs.
24609  *
24610  *   Arguments: dev  - the device number
24611  *		state  - user pointer to a dkio_state, updated with the current
24612  *			drive state at return.
24613  *
24614  * Return Code: ENXIO
24615  *		EIO
24616  *		EAGAIN
24617  *		EINTR
24618  */
24619 
24620 static int
24621 sd_check_media(dev_t dev, enum dkio_state state)
24622 {
24623 	struct sd_lun		*un = NULL;
24624 	enum dkio_state		prev_state;
24625 	opaque_t		token = NULL;
24626 	int			rval = 0;
24627 
24628 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24629 		return (ENXIO);
24630 	}
24631 
24632 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24633 
24634 	mutex_enter(SD_MUTEX(un));
24635 
24636 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24637 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24638 
24639 	prev_state = un->un_mediastate;
24640 
24641 	/* is there anything to do? */
24642 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24643 		/*
24644 		 * submit the request to the scsi_watch service;
24645 		 * scsi_media_watch_cb() does the real work
24646 		 */
24647 		mutex_exit(SD_MUTEX(un));
24648 
24649 		/*
24650 		 * This change handles the case where a scsi watch request is
24651 		 * added to a device that is powered down. To accomplish this
24652 		 * we power up the device before adding the scsi watch request,
24653 		 * since the scsi watch sends a TUR directly to the device
24654 		 * which the device cannot handle if it is powered down.
24655 		 */
24656 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24657 			mutex_enter(SD_MUTEX(un));
24658 			goto done;
24659 		}
24660 
24661 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24662 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24663 		    (caddr_t)dev);
24664 
24665 		sd_pm_exit(un);
24666 
24667 		mutex_enter(SD_MUTEX(un));
24668 		if (token == NULL) {
24669 			rval = EAGAIN;
24670 			goto done;
24671 		}
24672 
24673 		/*
24674 		 * This is a special case IOCTL that doesn't return
24675 		 * until the media state changes. Routine sdpower
24676 		 * knows about and handles this so don't count it
24677 		 * as an active cmd in the driver, which would
24678 		 * keep the device busy to the pm framework.
24679 		 * If the count isn't decremented the device can't
24680 		 * be powered down.
24681 		 */
24682 		un->un_ncmds_in_driver--;
24683 		ASSERT(un->un_ncmds_in_driver >= 0);
24684 
24685 		/*
24686 		 * if a prior request had been made, this will be the same
24687 		 * token, as scsi_watch was designed that way.
24688 		 */
24689 		un->un_swr_token = token;
24690 		un->un_specified_mediastate = state;
24691 
24692 		/*
24693 		 * now wait for media change
24694 		 * we will not be signalled unless mediastate == state but it is
24695 		 * still better to test for this condition, since there is a
24696 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24697 		 */
24698 		SD_TRACE(SD_LOG_COMMON, un,
24699 		    "sd_check_media: waiting for media state change\n");
24700 		while (un->un_mediastate == state) {
24701 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24702 				SD_TRACE(SD_LOG_COMMON, un,
24703 				    "sd_check_media: waiting for media state "
24704 				    "was interrupted\n");
24705 				un->un_ncmds_in_driver++;
24706 				rval = EINTR;
24707 				goto done;
24708 			}
24709 			SD_TRACE(SD_LOG_COMMON, un,
24710 			    "sd_check_media: received signal, state=%x\n",
24711 			    un->un_mediastate);
24712 		}
24713 		/*
24714 		 * Inc the counter to indicate the device once again
24715 		 * has an active outstanding cmd.
24716 		 */
24717 		un->un_ncmds_in_driver++;
24718 	}
24719 
24720 	/* invalidate geometry */
24721 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24722 		sr_ejected(un);
24723 	}
24724 
24725 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24726 		uint64_t	capacity;
24727 		uint_t		lbasize;
24728 
24729 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24730 		mutex_exit(SD_MUTEX(un));
24731 		/*
24732 		 * Since the following routines use SD_PATH_DIRECT, we must
24733 		 * call PM directly before the upcoming disk accesses. This
24734 		 * may cause the disk to be power/spin up.
24735 		 */
24736 
24737 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24738 			rval = sd_send_scsi_READ_CAPACITY(un,
24739 			    &capacity,
24740 			    &lbasize, SD_PATH_DIRECT);
24741 			if (rval != 0) {
24742 				sd_pm_exit(un);
24743 				mutex_enter(SD_MUTEX(un));
24744 				goto done;
24745 			}
24746 		} else {
24747 			rval = EIO;
24748 			mutex_enter(SD_MUTEX(un));
24749 			goto done;
24750 		}
24751 		mutex_enter(SD_MUTEX(un));
24752 
24753 		sd_update_block_info(un, lbasize, capacity);
24754 
24755 		un->un_f_geometry_is_valid	= FALSE;
24756 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24757 
24758 		mutex_exit(SD_MUTEX(un));
24759 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24760 		    SD_PATH_DIRECT);
24761 		sd_pm_exit(un);
24762 
24763 		mutex_enter(SD_MUTEX(un));
24764 	}
24765 done:
24766 	un->un_f_watcht_stopped = FALSE;
24767 	if (un->un_swr_token) {
24768 		/*
24769 		 * Use of this local token and the mutex ensures that we avoid
24770 		 * some race conditions associated with terminating the
24771 		 * scsi watch.
24772 		 */
24773 		token = un->un_swr_token;
24774 		un->un_swr_token = (opaque_t)NULL;
24775 		mutex_exit(SD_MUTEX(un));
24776 		(void) scsi_watch_request_terminate(token,
24777 		    SCSI_WATCH_TERMINATE_WAIT);
24778 		mutex_enter(SD_MUTEX(un));
24779 	}
24780 
24781 	/*
24782 	 * Update the capacity kstat value, if no media previously
24783 	 * (capacity kstat is 0) and a media has been inserted
24784 	 * (un_f_blockcount_is_valid == TRUE)
24785 	 */
24786 	if (un->un_errstats) {
24787 		struct sd_errstats	*stp = NULL;
24788 
24789 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24790 		if ((stp->sd_capacity.value.ui64 == 0) &&
24791 		    (un->un_f_blockcount_is_valid == TRUE)) {
24792 			stp->sd_capacity.value.ui64 =
24793 			    (uint64_t)((uint64_t)un->un_blockcount *
24794 			    un->un_sys_blocksize);
24795 		}
24796 	}
24797 	mutex_exit(SD_MUTEX(un));
24798 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24799 	return (rval);
24800 }
24801 
24802 
24803 /*
24804  *    Function: sd_delayed_cv_broadcast
24805  *
24806  * Description: Delayed cv_broadcast to allow for target to recover from media
24807  *		insertion.
24808  *
24809  *   Arguments: arg - driver soft state (unit) structure
24810  */
24811 
24812 static void
24813 sd_delayed_cv_broadcast(void *arg)
24814 {
24815 	struct sd_lun *un = arg;
24816 
24817 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24818 
24819 	mutex_enter(SD_MUTEX(un));
24820 	un->un_dcvb_timeid = NULL;
24821 	cv_broadcast(&un->un_state_cv);
24822 	mutex_exit(SD_MUTEX(un));
24823 }
24824 
24825 
24826 /*
24827  *    Function: sd_media_watch_cb
24828  *
24829  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24830  *		routine processes the TUR sense data and updates the driver
24831  *		state if a transition has occurred. The user thread
24832  *		(sd_check_media) is then signalled.
24833  *
24834  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24835  *			among multiple watches that share this callback function
24836  *		resultp - scsi watch facility result packet containing scsi
24837  *			  packet, status byte and sense data
24838  *
24839  * Return Code: 0 for success, -1 for failure
24840  */
24841 
24842 static int
24843 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24844 {
24845 	struct sd_lun			*un;
24846 	struct scsi_status		*statusp = resultp->statusp;
24847 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24848 	enum dkio_state			state = DKIO_NONE;
24849 	dev_t				dev = (dev_t)arg;
24850 	uchar_t				actual_sense_length;
24851 	uint8_t				skey, asc, ascq;
24852 
24853 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24854 		return (-1);
24855 	}
24856 	actual_sense_length = resultp->actual_sense_length;
24857 
24858 	mutex_enter(SD_MUTEX(un));
24859 	SD_TRACE(SD_LOG_COMMON, un,
24860 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24861 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24862 
24863 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24864 		un->un_mediastate = DKIO_DEV_GONE;
24865 		cv_broadcast(&un->un_state_cv);
24866 		mutex_exit(SD_MUTEX(un));
24867 
24868 		return (0);
24869 	}
24870 
24871 	/*
24872 	 * If there was a check condition then sensep points to valid sense data
24873 	 * If status was not a check condition but a reservation or busy status
24874 	 * then the new state is DKIO_NONE
24875 	 */
24876 	if (sensep != NULL) {
24877 		skey = scsi_sense_key(sensep);
24878 		asc = scsi_sense_asc(sensep);
24879 		ascq = scsi_sense_ascq(sensep);
24880 
24881 		SD_INFO(SD_LOG_COMMON, un,
24882 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24883 		    skey, asc, ascq);
24884 		/* This routine only uses up to 13 bytes of sense data. */
24885 		if (actual_sense_length >= 13) {
24886 			if (skey == KEY_UNIT_ATTENTION) {
24887 				if (asc == 0x28) {
24888 					state = DKIO_INSERTED;
24889 				}
24890 			} else {
24891 				/*
24892 				 * if 02/04/02  means that the host
24893 				 * should send start command. Explicitly
24894 				 * leave the media state as is
24895 				 * (inserted) as the media is inserted
24896 				 * and host has stopped device for PM
24897 				 * reasons. Upon next true read/write
24898 				 * to this media will bring the
24899 				 * device to the right state good for
24900 				 * media access.
24901 				 */
24902 				if ((skey == KEY_NOT_READY) &&
24903 				    (asc == 0x3a)) {
24904 					state = DKIO_EJECTED;
24905 				}
24906 
24907 				/*
24908 				 * If the drivge is busy with an operation
24909 				 * or long write, keep the media in an
24910 				 * inserted state.
24911 				 */
24912 
24913 				if ((skey == KEY_NOT_READY) &&
24914 				    (asc == 0x04) &&
24915 				    ((ascq == 0x02) ||
24916 				    (ascq == 0x07) ||
24917 				    (ascq == 0x08))) {
24918 					state = DKIO_INSERTED;
24919 				}
24920 			}
24921 		}
24922 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24923 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24924 		state = DKIO_INSERTED;
24925 	}
24926 
24927 	SD_TRACE(SD_LOG_COMMON, un,
24928 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24929 	    state, un->un_specified_mediastate);
24930 
24931 	/*
24932 	 * now signal the waiting thread if this is *not* the specified state;
24933 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24934 	 * to recover
24935 	 */
24936 	if (state != un->un_specified_mediastate) {
24937 		un->un_mediastate = state;
24938 		if (state == DKIO_INSERTED) {
24939 			/*
24940 			 * delay the signal to give the drive a chance
24941 			 * to do what it apparently needs to do
24942 			 */
24943 			SD_TRACE(SD_LOG_COMMON, un,
24944 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24945 			if (un->un_dcvb_timeid == NULL) {
24946 				un->un_dcvb_timeid =
24947 				    timeout(sd_delayed_cv_broadcast, un,
24948 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24949 			}
24950 		} else {
24951 			SD_TRACE(SD_LOG_COMMON, un,
24952 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24953 			cv_broadcast(&un->un_state_cv);
24954 		}
24955 	}
24956 	mutex_exit(SD_MUTEX(un));
24957 	return (0);
24958 }
24959 
24960 
24961 /*
24962  *    Function: sd_dkio_get_temp
24963  *
24964  * Description: This routine is the driver entry point for handling ioctl
24965  *		requests to get the disk temperature.
24966  *
24967  *   Arguments: dev  - the device number
24968  *		arg  - pointer to user provided dk_temperature structure.
24969  *		flag - this argument is a pass through to ddi_copyxxx()
24970  *		       directly from the mode argument of ioctl().
24971  *
24972  * Return Code: 0
24973  *		EFAULT
24974  *		ENXIO
24975  *		EAGAIN
24976  */
24977 
24978 static int
24979 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24980 {
24981 	struct sd_lun		*un = NULL;
24982 	struct dk_temperature	*dktemp = NULL;
24983 	uchar_t			*temperature_page;
24984 	int			rval = 0;
24985 	int			path_flag = SD_PATH_STANDARD;
24986 
24987 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24988 		return (ENXIO);
24989 	}
24990 
24991 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24992 
24993 	/* copyin the disk temp argument to get the user flags */
24994 	if (ddi_copyin((void *)arg, dktemp,
24995 	    sizeof (struct dk_temperature), flag) != 0) {
24996 		rval = EFAULT;
24997 		goto done;
24998 	}
24999 
25000 	/* Initialize the temperature to invalid. */
25001 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
25002 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
25003 
25004 	/*
25005 	 * Note: Investigate removing the "bypass pm" semantic.
25006 	 * Can we just bypass PM always?
25007 	 */
25008 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
25009 		path_flag = SD_PATH_DIRECT;
25010 		ASSERT(!mutex_owned(&un->un_pm_mutex));
25011 		mutex_enter(&un->un_pm_mutex);
25012 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25013 			/*
25014 			 * If DKT_BYPASS_PM is set, and the drive happens to be
25015 			 * in low power mode, we can not wake it up, Need to
25016 			 * return EAGAIN.
25017 			 */
25018 			mutex_exit(&un->un_pm_mutex);
25019 			rval = EAGAIN;
25020 			goto done;
25021 		} else {
25022 			/*
25023 			 * Indicate to PM the device is busy. This is required
25024 			 * to avoid a race - i.e. the ioctl is issuing a
25025 			 * command and the pm framework brings down the device
25026 			 * to low power mode (possible power cut-off on some
25027 			 * platforms).
25028 			 */
25029 			mutex_exit(&un->un_pm_mutex);
25030 			if (sd_pm_entry(un) != DDI_SUCCESS) {
25031 				rval = EAGAIN;
25032 				goto done;
25033 			}
25034 		}
25035 	}
25036 
25037 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
25038 
25039 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
25040 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
25041 		goto done2;
25042 	}
25043 
25044 	/*
25045 	 * For the current temperature verify that the parameter length is 0x02
25046 	 * and the parameter code is 0x00
25047 	 */
25048 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
25049 	    (temperature_page[5] == 0x00)) {
25050 		if (temperature_page[9] == 0xFF) {
25051 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
25052 		} else {
25053 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
25054 		}
25055 	}
25056 
25057 	/*
25058 	 * For the reference temperature verify that the parameter
25059 	 * length is 0x02 and the parameter code is 0x01
25060 	 */
25061 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
25062 	    (temperature_page[11] == 0x01)) {
25063 		if (temperature_page[15] == 0xFF) {
25064 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
25065 		} else {
25066 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
25067 		}
25068 	}
25069 
25070 	/* Do the copyout regardless of the temperature commands status. */
25071 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
25072 	    flag) != 0) {
25073 		rval = EFAULT;
25074 	}
25075 
25076 done2:
25077 	if (path_flag == SD_PATH_DIRECT) {
25078 		sd_pm_exit(un);
25079 	}
25080 
25081 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
25082 done:
25083 	if (dktemp != NULL) {
25084 		kmem_free(dktemp, sizeof (struct dk_temperature));
25085 	}
25086 
25087 	return (rval);
25088 }
25089 
25090 
25091 /*
25092  *    Function: sd_log_page_supported
25093  *
25094  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
25095  *		supported log pages.
25096  *
25097  *   Arguments: un -
25098  *		log_page -
25099  *
25100  * Return Code: -1 - on error (log sense is optional and may not be supported).
25101  *		0  - log page not found.
25102  *  		1  - log page found.
25103  */
25104 
25105 static int
25106 sd_log_page_supported(struct sd_lun *un, int log_page)
25107 {
25108 	uchar_t *log_page_data;
25109 	int	i;
25110 	int	match = 0;
25111 	int	log_size;
25112 
25113 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
25114 
25115 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
25116 	    SD_PATH_DIRECT) != 0) {
25117 		SD_ERROR(SD_LOG_COMMON, un,
25118 		    "sd_log_page_supported: failed log page retrieval\n");
25119 		kmem_free(log_page_data, 0xFF);
25120 		return (-1);
25121 	}
25122 	log_size = log_page_data[3];
25123 
25124 	/*
25125 	 * The list of supported log pages start from the fourth byte. Check
25126 	 * until we run out of log pages or a match is found.
25127 	 */
25128 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
25129 		if (log_page_data[i] == log_page) {
25130 			match++;
25131 		}
25132 	}
25133 	kmem_free(log_page_data, 0xFF);
25134 	return (match);
25135 }
25136 
25137 
25138 /*
25139  *    Function: sd_mhdioc_failfast
25140  *
25141  * Description: This routine is the driver entry point for handling ioctl
25142  *		requests to enable/disable the multihost failfast option.
25143  *		(MHIOCENFAILFAST)
25144  *
25145  *   Arguments: dev	- the device number
25146  *		arg	- user specified probing interval.
25147  *		flag	- this argument is a pass through to ddi_copyxxx()
25148  *			  directly from the mode argument of ioctl().
25149  *
25150  * Return Code: 0
25151  *		EFAULT
25152  *		ENXIO
25153  */
25154 
25155 static int
25156 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
25157 {
25158 	struct sd_lun	*un = NULL;
25159 	int		mh_time;
25160 	int		rval = 0;
25161 
25162 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25163 		return (ENXIO);
25164 	}
25165 
25166 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
25167 		return (EFAULT);
25168 
25169 	if (mh_time) {
25170 		mutex_enter(SD_MUTEX(un));
25171 		un->un_resvd_status |= SD_FAILFAST;
25172 		mutex_exit(SD_MUTEX(un));
25173 		/*
25174 		 * If mh_time is INT_MAX, then this ioctl is being used for
25175 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
25176 		 */
25177 		if (mh_time != INT_MAX) {
25178 			rval = sd_check_mhd(dev, mh_time);
25179 		}
25180 	} else {
25181 		(void) sd_check_mhd(dev, 0);
25182 		mutex_enter(SD_MUTEX(un));
25183 		un->un_resvd_status &= ~SD_FAILFAST;
25184 		mutex_exit(SD_MUTEX(un));
25185 	}
25186 	return (rval);
25187 }
25188 
25189 
25190 /*
25191  *    Function: sd_mhdioc_takeown
25192  *
25193  * Description: This routine is the driver entry point for handling ioctl
25194  *		requests to forcefully acquire exclusive access rights to the
25195  *		multihost disk (MHIOCTKOWN).
25196  *
25197  *   Arguments: dev	- the device number
25198  *		arg	- user provided structure specifying the delay
25199  *			  parameters in milliseconds
25200  *		flag	- this argument is a pass through to ddi_copyxxx()
25201  *			  directly from the mode argument of ioctl().
25202  *
25203  * Return Code: 0
25204  *		EFAULT
25205  *		ENXIO
25206  */
25207 
25208 static int
25209 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
25210 {
25211 	struct sd_lun		*un = NULL;
25212 	struct mhioctkown	*tkown = NULL;
25213 	int			rval = 0;
25214 
25215 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25216 		return (ENXIO);
25217 	}
25218 
25219 	if (arg != NULL) {
25220 		tkown = (struct mhioctkown *)
25221 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
25222 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
25223 		if (rval != 0) {
25224 			rval = EFAULT;
25225 			goto error;
25226 		}
25227 	}
25228 
25229 	rval = sd_take_ownership(dev, tkown);
25230 	mutex_enter(SD_MUTEX(un));
25231 	if (rval == 0) {
25232 		un->un_resvd_status |= SD_RESERVE;
25233 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
25234 			sd_reinstate_resv_delay =
25235 			    tkown->reinstate_resv_delay * 1000;
25236 		} else {
25237 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
25238 		}
25239 		/*
25240 		 * Give the scsi_watch routine interval set by
25241 		 * the MHIOCENFAILFAST ioctl precedence here.
25242 		 */
25243 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
25244 			mutex_exit(SD_MUTEX(un));
25245 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
25246 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
25247 			    "sd_mhdioc_takeown : %d\n",
25248 			    sd_reinstate_resv_delay);
25249 		} else {
25250 			mutex_exit(SD_MUTEX(un));
25251 		}
25252 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
25253 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25254 	} else {
25255 		un->un_resvd_status &= ~SD_RESERVE;
25256 		mutex_exit(SD_MUTEX(un));
25257 	}
25258 
25259 error:
25260 	if (tkown != NULL) {
25261 		kmem_free(tkown, sizeof (struct mhioctkown));
25262 	}
25263 	return (rval);
25264 }
25265 
25266 
25267 /*
25268  *    Function: sd_mhdioc_release
25269  *
25270  * Description: This routine is the driver entry point for handling ioctl
25271  *		requests to release exclusive access rights to the multihost
25272  *		disk (MHIOCRELEASE).
25273  *
25274  *   Arguments: dev	- the device number
25275  *
25276  * Return Code: 0
25277  *		ENXIO
25278  */
25279 
25280 static int
25281 sd_mhdioc_release(dev_t dev)
25282 {
25283 	struct sd_lun		*un = NULL;
25284 	timeout_id_t		resvd_timeid_save;
25285 	int			resvd_status_save;
25286 	int			rval = 0;
25287 
25288 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25289 		return (ENXIO);
25290 	}
25291 
25292 	mutex_enter(SD_MUTEX(un));
25293 	resvd_status_save = un->un_resvd_status;
25294 	un->un_resvd_status &=
25295 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
25296 	if (un->un_resvd_timeid) {
25297 		resvd_timeid_save = un->un_resvd_timeid;
25298 		un->un_resvd_timeid = NULL;
25299 		mutex_exit(SD_MUTEX(un));
25300 		(void) untimeout(resvd_timeid_save);
25301 	} else {
25302 		mutex_exit(SD_MUTEX(un));
25303 	}
25304 
25305 	/*
25306 	 * destroy any pending timeout thread that may be attempting to
25307 	 * reinstate reservation on this device.
25308 	 */
25309 	sd_rmv_resv_reclaim_req(dev);
25310 
25311 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
25312 		mutex_enter(SD_MUTEX(un));
25313 		if ((un->un_mhd_token) &&
25314 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
25315 			mutex_exit(SD_MUTEX(un));
25316 			(void) sd_check_mhd(dev, 0);
25317 		} else {
25318 			mutex_exit(SD_MUTEX(un));
25319 		}
25320 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
25321 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25322 	} else {
25323 		/*
25324 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
25325 		 */
25326 		mutex_enter(SD_MUTEX(un));
25327 		un->un_resvd_status = resvd_status_save;
25328 		mutex_exit(SD_MUTEX(un));
25329 	}
25330 	return (rval);
25331 }
25332 
25333 
25334 /*
25335  *    Function: sd_mhdioc_register_devid
25336  *
25337  * Description: This routine is the driver entry point for handling ioctl
25338  *		requests to register the device id (MHIOCREREGISTERDEVID).
25339  *
25340  *		Note: The implementation for this ioctl has been updated to
25341  *		be consistent with the original PSARC case (1999/357)
25342  *		(4375899, 4241671, 4220005)
25343  *
25344  *   Arguments: dev	- the device number
25345  *
25346  * Return Code: 0
25347  *		ENXIO
25348  */
25349 
25350 static int
25351 sd_mhdioc_register_devid(dev_t dev)
25352 {
25353 	struct sd_lun	*un = NULL;
25354 	int		rval = 0;
25355 
25356 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25357 		return (ENXIO);
25358 	}
25359 
25360 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25361 
25362 	mutex_enter(SD_MUTEX(un));
25363 
25364 	/* If a devid already exists, de-register it */
25365 	if (un->un_devid != NULL) {
25366 		ddi_devid_unregister(SD_DEVINFO(un));
25367 		/*
25368 		 * After unregister devid, needs to free devid memory
25369 		 */
25370 		ddi_devid_free(un->un_devid);
25371 		un->un_devid = NULL;
25372 	}
25373 
25374 	/* Check for reservation conflict */
25375 	mutex_exit(SD_MUTEX(un));
25376 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
25377 	mutex_enter(SD_MUTEX(un));
25378 
25379 	switch (rval) {
25380 	case 0:
25381 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25382 		break;
25383 	case EACCES:
25384 		break;
25385 	default:
25386 		rval = EIO;
25387 	}
25388 
25389 	mutex_exit(SD_MUTEX(un));
25390 	return (rval);
25391 }
25392 
25393 
25394 /*
25395  *    Function: sd_mhdioc_inkeys
25396  *
25397  * Description: This routine is the driver entry point for handling ioctl
25398  *		requests to issue the SCSI-3 Persistent In Read Keys command
25399  *		to the device (MHIOCGRP_INKEYS).
25400  *
25401  *   Arguments: dev	- the device number
25402  *		arg	- user provided in_keys structure
25403  *		flag	- this argument is a pass through to ddi_copyxxx()
25404  *			  directly from the mode argument of ioctl().
25405  *
25406  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25407  *		ENXIO
25408  *		EFAULT
25409  */
25410 
25411 static int
25412 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25413 {
25414 	struct sd_lun		*un;
25415 	mhioc_inkeys_t		inkeys;
25416 	int			rval = 0;
25417 
25418 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25419 		return (ENXIO);
25420 	}
25421 
25422 #ifdef _MULTI_DATAMODEL
25423 	switch (ddi_model_convert_from(flag & FMODELS)) {
25424 	case DDI_MODEL_ILP32: {
25425 		struct mhioc_inkeys32	inkeys32;
25426 
25427 		if (ddi_copyin(arg, &inkeys32,
25428 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25429 			return (EFAULT);
25430 		}
25431 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25432 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25433 		    &inkeys, flag)) != 0) {
25434 			return (rval);
25435 		}
25436 		inkeys32.generation = inkeys.generation;
25437 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25438 		    flag) != 0) {
25439 			return (EFAULT);
25440 		}
25441 		break;
25442 	}
25443 	case DDI_MODEL_NONE:
25444 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25445 		    flag) != 0) {
25446 			return (EFAULT);
25447 		}
25448 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25449 		    &inkeys, flag)) != 0) {
25450 			return (rval);
25451 		}
25452 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25453 		    flag) != 0) {
25454 			return (EFAULT);
25455 		}
25456 		break;
25457 	}
25458 
25459 #else /* ! _MULTI_DATAMODEL */
25460 
25461 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25462 		return (EFAULT);
25463 	}
25464 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25465 	if (rval != 0) {
25466 		return (rval);
25467 	}
25468 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25469 		return (EFAULT);
25470 	}
25471 
25472 #endif /* _MULTI_DATAMODEL */
25473 
25474 	return (rval);
25475 }
25476 
25477 
25478 /*
25479  *    Function: sd_mhdioc_inresv
25480  *
25481  * Description: This routine is the driver entry point for handling ioctl
25482  *		requests to issue the SCSI-3 Persistent In Read Reservations
25483  *		command to the device (MHIOCGRP_INKEYS).
25484  *
25485  *   Arguments: dev	- the device number
25486  *		arg	- user provided in_resv structure
25487  *		flag	- this argument is a pass through to ddi_copyxxx()
25488  *			  directly from the mode argument of ioctl().
25489  *
25490  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25491  *		ENXIO
25492  *		EFAULT
25493  */
25494 
25495 static int
25496 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25497 {
25498 	struct sd_lun		*un;
25499 	mhioc_inresvs_t		inresvs;
25500 	int			rval = 0;
25501 
25502 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25503 		return (ENXIO);
25504 	}
25505 
25506 #ifdef _MULTI_DATAMODEL
25507 
25508 	switch (ddi_model_convert_from(flag & FMODELS)) {
25509 	case DDI_MODEL_ILP32: {
25510 		struct mhioc_inresvs32	inresvs32;
25511 
25512 		if (ddi_copyin(arg, &inresvs32,
25513 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25514 			return (EFAULT);
25515 		}
25516 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25517 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25518 		    &inresvs, flag)) != 0) {
25519 			return (rval);
25520 		}
25521 		inresvs32.generation = inresvs.generation;
25522 		if (ddi_copyout(&inresvs32, arg,
25523 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25524 			return (EFAULT);
25525 		}
25526 		break;
25527 	}
25528 	case DDI_MODEL_NONE:
25529 		if (ddi_copyin(arg, &inresvs,
25530 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25531 			return (EFAULT);
25532 		}
25533 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25534 		    &inresvs, flag)) != 0) {
25535 			return (rval);
25536 		}
25537 		if (ddi_copyout(&inresvs, arg,
25538 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25539 			return (EFAULT);
25540 		}
25541 		break;
25542 	}
25543 
25544 #else /* ! _MULTI_DATAMODEL */
25545 
25546 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25547 		return (EFAULT);
25548 	}
25549 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25550 	if (rval != 0) {
25551 		return (rval);
25552 	}
25553 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25554 		return (EFAULT);
25555 	}
25556 
25557 #endif /* ! _MULTI_DATAMODEL */
25558 
25559 	return (rval);
25560 }
25561 
25562 
25563 /*
25564  * The following routines support the clustering functionality described below
25565  * and implement lost reservation reclaim functionality.
25566  *
25567  * Clustering
25568  * ----------
25569  * The clustering code uses two different, independent forms of SCSI
25570  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25571  * Persistent Group Reservations. For any particular disk, it will use either
25572  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25573  *
25574  * SCSI-2
25575  * The cluster software takes ownership of a multi-hosted disk by issuing the
25576  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25577  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25578  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25579  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25580  * meaning of failfast is that if the driver (on this host) ever encounters the
25581  * scsi error return code RESERVATION_CONFLICT from the device, it should
25582  * immediately panic the host. The motivation for this ioctl is that if this
25583  * host does encounter reservation conflict, the underlying cause is that some
25584  * other host of the cluster has decided that this host is no longer in the
25585  * cluster and has seized control of the disks for itself. Since this host is no
25586  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25587  * does two things:
25588  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25589  *      error to panic the host
25590  *      (b) it sets up a periodic timer to test whether this host still has
25591  *      "access" (in that no other host has reserved the device):  if the
25592  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25593  *      purpose of that periodic timer is to handle scenarios where the host is
25594  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25595  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25596  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25597  * the device itself.
25598  *
25599  * SCSI-3 PGR
25600  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25601  * facility is supported through the shared multihost disk ioctls
25602  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25603  * MHIOCGRP_PREEMPTANDABORT)
25604  *
25605  * Reservation Reclaim:
25606  * --------------------
25607  * To support the lost reservation reclaim operations this driver creates a
25608  * single thread to handle reinstating reservations on all devices that have
25609  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25610  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25611  * and the reservation reclaim thread loops through the requests to regain the
25612  * lost reservations.
25613  */
25614 
25615 /*
25616  *    Function: sd_check_mhd()
25617  *
25618  * Description: This function sets up and submits a scsi watch request or
25619  *		terminates an existing watch request. This routine is used in
25620  *		support of reservation reclaim.
25621  *
25622  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25623  *			 among multiple watches that share the callback function
25624  *		interval - the number of microseconds specifying the watch
25625  *			   interval for issuing TEST UNIT READY commands. If
25626  *			   set to 0 the watch should be terminated. If the
25627  *			   interval is set to 0 and if the device is required
25628  *			   to hold reservation while disabling failfast, the
25629  *			   watch is restarted with an interval of
25630  *			   reinstate_resv_delay.
25631  *
25632  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25633  *		ENXIO      - Indicates an invalid device was specified
25634  *		EAGAIN     - Unable to submit the scsi watch request
25635  */
25636 
25637 static int
25638 sd_check_mhd(dev_t dev, int interval)
25639 {
25640 	struct sd_lun	*un;
25641 	opaque_t	token;
25642 
25643 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25644 		return (ENXIO);
25645 	}
25646 
25647 	/* is this a watch termination request? */
25648 	if (interval == 0) {
25649 		mutex_enter(SD_MUTEX(un));
25650 		/* if there is an existing watch task then terminate it */
25651 		if (un->un_mhd_token) {
25652 			token = un->un_mhd_token;
25653 			un->un_mhd_token = NULL;
25654 			mutex_exit(SD_MUTEX(un));
25655 			(void) scsi_watch_request_terminate(token,
25656 			    SCSI_WATCH_TERMINATE_WAIT);
25657 			mutex_enter(SD_MUTEX(un));
25658 		} else {
25659 			mutex_exit(SD_MUTEX(un));
25660 			/*
25661 			 * Note: If we return here we don't check for the
25662 			 * failfast case. This is the original legacy
25663 			 * implementation but perhaps we should be checking
25664 			 * the failfast case.
25665 			 */
25666 			return (0);
25667 		}
25668 		/*
25669 		 * If the device is required to hold reservation while
25670 		 * disabling failfast, we need to restart the scsi_watch
25671 		 * routine with an interval of reinstate_resv_delay.
25672 		 */
25673 		if (un->un_resvd_status & SD_RESERVE) {
25674 			interval = sd_reinstate_resv_delay/1000;
25675 		} else {
25676 			/* no failfast so bail */
25677 			mutex_exit(SD_MUTEX(un));
25678 			return (0);
25679 		}
25680 		mutex_exit(SD_MUTEX(un));
25681 	}
25682 
25683 	/*
25684 	 * adjust minimum time interval to 1 second,
25685 	 * and convert from msecs to usecs
25686 	 */
25687 	if (interval > 0 && interval < 1000) {
25688 		interval = 1000;
25689 	}
25690 	interval *= 1000;
25691 
25692 	/*
25693 	 * submit the request to the scsi_watch service
25694 	 */
25695 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25696 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25697 	if (token == NULL) {
25698 		return (EAGAIN);
25699 	}
25700 
25701 	/*
25702 	 * save token for termination later on
25703 	 */
25704 	mutex_enter(SD_MUTEX(un));
25705 	un->un_mhd_token = token;
25706 	mutex_exit(SD_MUTEX(un));
25707 	return (0);
25708 }
25709 
25710 
25711 /*
25712  *    Function: sd_mhd_watch_cb()
25713  *
25714  * Description: This function is the call back function used by the scsi watch
25715  *		facility. The scsi watch facility sends the "Test Unit Ready"
25716  *		and processes the status. If applicable (i.e. a "Unit Attention"
25717  *		status and automatic "Request Sense" not used) the scsi watch
25718  *		facility will send a "Request Sense" and retrieve the sense data
25719  *		to be passed to this callback function. In either case the
25720  *		automatic "Request Sense" or the facility submitting one, this
25721  *		callback is passed the status and sense data.
25722  *
25723  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25724  *			among multiple watches that share this callback function
25725  *		resultp - scsi watch facility result packet containing scsi
25726  *			  packet, status byte and sense data
25727  *
25728  * Return Code: 0 - continue the watch task
25729  *		non-zero - terminate the watch task
25730  */
25731 
25732 static int
25733 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25734 {
25735 	struct sd_lun			*un;
25736 	struct scsi_status		*statusp;
25737 	uint8_t				*sensep;
25738 	struct scsi_pkt			*pkt;
25739 	uchar_t				actual_sense_length;
25740 	dev_t  				dev = (dev_t)arg;
25741 
25742 	ASSERT(resultp != NULL);
25743 	statusp			= resultp->statusp;
25744 	sensep			= (uint8_t *)resultp->sensep;
25745 	pkt			= resultp->pkt;
25746 	actual_sense_length	= resultp->actual_sense_length;
25747 
25748 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25749 		return (ENXIO);
25750 	}
25751 
25752 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25753 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25754 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25755 
25756 	/* Begin processing of the status and/or sense data */
25757 	if (pkt->pkt_reason != CMD_CMPLT) {
25758 		/* Handle the incomplete packet */
25759 		sd_mhd_watch_incomplete(un, pkt);
25760 		return (0);
25761 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25762 		if (*((unsigned char *)statusp)
25763 		    == STATUS_RESERVATION_CONFLICT) {
25764 			/*
25765 			 * Handle a reservation conflict by panicking if
25766 			 * configured for failfast or by logging the conflict
25767 			 * and updating the reservation status
25768 			 */
25769 			mutex_enter(SD_MUTEX(un));
25770 			if ((un->un_resvd_status & SD_FAILFAST) &&
25771 			    (sd_failfast_enable)) {
25772 				sd_panic_for_res_conflict(un);
25773 				/*NOTREACHED*/
25774 			}
25775 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25776 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25777 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25778 			mutex_exit(SD_MUTEX(un));
25779 		}
25780 	}
25781 
25782 	if (sensep != NULL) {
25783 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25784 			mutex_enter(SD_MUTEX(un));
25785 			if ((scsi_sense_asc(sensep) ==
25786 			    SD_SCSI_RESET_SENSE_CODE) &&
25787 			    (un->un_resvd_status & SD_RESERVE)) {
25788 				/*
25789 				 * The additional sense code indicates a power
25790 				 * on or bus device reset has occurred; update
25791 				 * the reservation status.
25792 				 */
25793 				un->un_resvd_status |=
25794 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25795 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25796 				    "sd_mhd_watch_cb: Lost Reservation\n");
25797 			}
25798 		} else {
25799 			return (0);
25800 		}
25801 	} else {
25802 		mutex_enter(SD_MUTEX(un));
25803 	}
25804 
25805 	if ((un->un_resvd_status & SD_RESERVE) &&
25806 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25807 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25808 			/*
25809 			 * A reset occurred in between the last probe and this
25810 			 * one so if a timeout is pending cancel it.
25811 			 */
25812 			if (un->un_resvd_timeid) {
25813 				timeout_id_t temp_id = un->un_resvd_timeid;
25814 				un->un_resvd_timeid = NULL;
25815 				mutex_exit(SD_MUTEX(un));
25816 				(void) untimeout(temp_id);
25817 				mutex_enter(SD_MUTEX(un));
25818 			}
25819 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25820 		}
25821 		if (un->un_resvd_timeid == 0) {
25822 			/* Schedule a timeout to handle the lost reservation */
25823 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25824 			    (void *)dev,
25825 			    drv_usectohz(sd_reinstate_resv_delay));
25826 		}
25827 	}
25828 	mutex_exit(SD_MUTEX(un));
25829 	return (0);
25830 }
25831 
25832 
25833 /*
25834  *    Function: sd_mhd_watch_incomplete()
25835  *
25836  * Description: This function is used to find out why a scsi pkt sent by the
25837  *		scsi watch facility was not completed. Under some scenarios this
25838  *		routine will return. Otherwise it will send a bus reset to see
25839  *		if the drive is still online.
25840  *
25841  *   Arguments: un  - driver soft state (unit) structure
25842  *		pkt - incomplete scsi pkt
25843  */
25844 
25845 static void
25846 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25847 {
25848 	int	be_chatty;
25849 	int	perr;
25850 
25851 	ASSERT(pkt != NULL);
25852 	ASSERT(un != NULL);
25853 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25854 	perr		= (pkt->pkt_statistics & STAT_PERR);
25855 
25856 	mutex_enter(SD_MUTEX(un));
25857 	if (un->un_state == SD_STATE_DUMPING) {
25858 		mutex_exit(SD_MUTEX(un));
25859 		return;
25860 	}
25861 
25862 	switch (pkt->pkt_reason) {
25863 	case CMD_UNX_BUS_FREE:
25864 		/*
25865 		 * If we had a parity error that caused the target to drop BSY*,
25866 		 * don't be chatty about it.
25867 		 */
25868 		if (perr && be_chatty) {
25869 			be_chatty = 0;
25870 		}
25871 		break;
25872 	case CMD_TAG_REJECT:
25873 		/*
25874 		 * The SCSI-2 spec states that a tag reject will be sent by the
25875 		 * target if tagged queuing is not supported. A tag reject may
25876 		 * also be sent during certain initialization periods or to
25877 		 * control internal resources. For the latter case the target
25878 		 * may also return Queue Full.
25879 		 *
25880 		 * If this driver receives a tag reject from a target that is
25881 		 * going through an init period or controlling internal
25882 		 * resources tagged queuing will be disabled. This is a less
25883 		 * than optimal behavior but the driver is unable to determine
25884 		 * the target state and assumes tagged queueing is not supported
25885 		 */
25886 		pkt->pkt_flags = 0;
25887 		un->un_tagflags = 0;
25888 
25889 		if (un->un_f_opt_queueing == TRUE) {
25890 			un->un_throttle = min(un->un_throttle, 3);
25891 		} else {
25892 			un->un_throttle = 1;
25893 		}
25894 		mutex_exit(SD_MUTEX(un));
25895 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25896 		mutex_enter(SD_MUTEX(un));
25897 		break;
25898 	case CMD_INCOMPLETE:
25899 		/*
25900 		 * The transport stopped with an abnormal state, fallthrough and
25901 		 * reset the target and/or bus unless selection did not complete
25902 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25903 		 * go through a target/bus reset
25904 		 */
25905 		if (pkt->pkt_state == STATE_GOT_BUS) {
25906 			break;
25907 		}
25908 		/*FALLTHROUGH*/
25909 
25910 	case CMD_TIMEOUT:
25911 	default:
25912 		/*
25913 		 * The lun may still be running the command, so a lun reset
25914 		 * should be attempted. If the lun reset fails or cannot be
25915 		 * issued, than try a target reset. Lastly try a bus reset.
25916 		 */
25917 		if ((pkt->pkt_statistics &
25918 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25919 			int reset_retval = 0;
25920 			mutex_exit(SD_MUTEX(un));
25921 			if (un->un_f_allow_bus_device_reset == TRUE) {
25922 				if (un->un_f_lun_reset_enabled == TRUE) {
25923 					reset_retval =
25924 					    scsi_reset(SD_ADDRESS(un),
25925 					    RESET_LUN);
25926 				}
25927 				if (reset_retval == 0) {
25928 					reset_retval =
25929 					    scsi_reset(SD_ADDRESS(un),
25930 					    RESET_TARGET);
25931 				}
25932 			}
25933 			if (reset_retval == 0) {
25934 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25935 			}
25936 			mutex_enter(SD_MUTEX(un));
25937 		}
25938 		break;
25939 	}
25940 
25941 	/* A device/bus reset has occurred; update the reservation status. */
25942 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25943 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25944 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25945 			un->un_resvd_status |=
25946 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25947 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25948 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25949 		}
25950 	}
25951 
25952 	/*
25953 	 * The disk has been turned off; Update the device state.
25954 	 *
25955 	 * Note: Should we be offlining the disk here?
25956 	 */
25957 	if (pkt->pkt_state == STATE_GOT_BUS) {
25958 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25959 		    "Disk not responding to selection\n");
25960 		if (un->un_state != SD_STATE_OFFLINE) {
25961 			New_state(un, SD_STATE_OFFLINE);
25962 		}
25963 	} else if (be_chatty) {
25964 		/*
25965 		 * suppress messages if they are all the same pkt reason;
25966 		 * with TQ, many (up to 256) are returned with the same
25967 		 * pkt_reason
25968 		 */
25969 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25970 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25971 			    "sd_mhd_watch_incomplete: "
25972 			    "SCSI transport failed: reason '%s'\n",
25973 			    scsi_rname(pkt->pkt_reason));
25974 		}
25975 	}
25976 	un->un_last_pkt_reason = pkt->pkt_reason;
25977 	mutex_exit(SD_MUTEX(un));
25978 }
25979 
25980 
25981 /*
25982  *    Function: sd_sname()
25983  *
25984  * Description: This is a simple little routine to return a string containing
25985  *		a printable description of command status byte for use in
25986  *		logging.
25987  *
25988  *   Arguments: status - pointer to a status byte
25989  *
25990  * Return Code: char * - string containing status description.
25991  */
25992 
25993 static char *
25994 sd_sname(uchar_t status)
25995 {
25996 	switch (status & STATUS_MASK) {
25997 	case STATUS_GOOD:
25998 		return ("good status");
25999 	case STATUS_CHECK:
26000 		return ("check condition");
26001 	case STATUS_MET:
26002 		return ("condition met");
26003 	case STATUS_BUSY:
26004 		return ("busy");
26005 	case STATUS_INTERMEDIATE:
26006 		return ("intermediate");
26007 	case STATUS_INTERMEDIATE_MET:
26008 		return ("intermediate - condition met");
26009 	case STATUS_RESERVATION_CONFLICT:
26010 		return ("reservation_conflict");
26011 	case STATUS_TERMINATED:
26012 		return ("command terminated");
26013 	case STATUS_QFULL:
26014 		return ("queue full");
26015 	default:
26016 		return ("<unknown status>");
26017 	}
26018 }
26019 
26020 
26021 /*
26022  *    Function: sd_mhd_resvd_recover()
26023  *
26024  * Description: This function adds a reservation entry to the
26025  *		sd_resv_reclaim_request list and signals the reservation
26026  *		reclaim thread that there is work pending. If the reservation
26027  *		reclaim thread has not been previously created this function
26028  *		will kick it off.
26029  *
26030  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
26031  *			among multiple watches that share this callback function
26032  *
26033  *     Context: This routine is called by timeout() and is run in interrupt
26034  *		context. It must not sleep or call other functions which may
26035  *		sleep.
26036  */
26037 
26038 static void
26039 sd_mhd_resvd_recover(void *arg)
26040 {
26041 	dev_t			dev = (dev_t)arg;
26042 	struct sd_lun		*un;
26043 	struct sd_thr_request	*sd_treq = NULL;
26044 	struct sd_thr_request	*sd_cur = NULL;
26045 	struct sd_thr_request	*sd_prev = NULL;
26046 	int			already_there = 0;
26047 
26048 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26049 		return;
26050 	}
26051 
26052 	mutex_enter(SD_MUTEX(un));
26053 	un->un_resvd_timeid = NULL;
26054 	if (un->un_resvd_status & SD_WANT_RESERVE) {
26055 		/*
26056 		 * There was a reset so don't issue the reserve, allow the
26057 		 * sd_mhd_watch_cb callback function to notice this and
26058 		 * reschedule the timeout for reservation.
26059 		 */
26060 		mutex_exit(SD_MUTEX(un));
26061 		return;
26062 	}
26063 	mutex_exit(SD_MUTEX(un));
26064 
26065 	/*
26066 	 * Add this device to the sd_resv_reclaim_request list and the
26067 	 * sd_resv_reclaim_thread should take care of the rest.
26068 	 *
26069 	 * Note: We can't sleep in this context so if the memory allocation
26070 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
26071 	 * reschedule the timeout for reservation.  (4378460)
26072 	 */
26073 	sd_treq = (struct sd_thr_request *)
26074 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
26075 	if (sd_treq == NULL) {
26076 		return;
26077 	}
26078 
26079 	sd_treq->sd_thr_req_next = NULL;
26080 	sd_treq->dev = dev;
26081 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26082 	if (sd_tr.srq_thr_req_head == NULL) {
26083 		sd_tr.srq_thr_req_head = sd_treq;
26084 	} else {
26085 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
26086 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
26087 			if (sd_cur->dev == dev) {
26088 				/*
26089 				 * already in Queue so don't log
26090 				 * another request for the device
26091 				 */
26092 				already_there = 1;
26093 				break;
26094 			}
26095 			sd_prev = sd_cur;
26096 		}
26097 		if (!already_there) {
26098 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
26099 			    "logging request for %lx\n", dev);
26100 			sd_prev->sd_thr_req_next = sd_treq;
26101 		} else {
26102 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
26103 		}
26104 	}
26105 
26106 	/*
26107 	 * Create a kernel thread to do the reservation reclaim and free up this
26108 	 * thread. We cannot block this thread while we go away to do the
26109 	 * reservation reclaim
26110 	 */
26111 	if (sd_tr.srq_resv_reclaim_thread == NULL)
26112 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
26113 		    sd_resv_reclaim_thread, NULL,
26114 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
26115 
26116 	/* Tell the reservation reclaim thread that it has work to do */
26117 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
26118 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26119 }
26120 
26121 /*
26122  *    Function: sd_resv_reclaim_thread()
26123  *
26124  * Description: This function implements the reservation reclaim operations
26125  *
26126  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
26127  *		      among multiple watches that share this callback function
26128  */
26129 
26130 static void
26131 sd_resv_reclaim_thread()
26132 {
26133 	struct sd_lun		*un;
26134 	struct sd_thr_request	*sd_mhreq;
26135 
26136 	/* Wait for work */
26137 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26138 	if (sd_tr.srq_thr_req_head == NULL) {
26139 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
26140 		    &sd_tr.srq_resv_reclaim_mutex);
26141 	}
26142 
26143 	/* Loop while we have work */
26144 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
26145 		un = ddi_get_soft_state(sd_state,
26146 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
26147 		if (un == NULL) {
26148 			/*
26149 			 * softstate structure is NULL so just
26150 			 * dequeue the request and continue
26151 			 */
26152 			sd_tr.srq_thr_req_head =
26153 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26154 			kmem_free(sd_tr.srq_thr_cur_req,
26155 			    sizeof (struct sd_thr_request));
26156 			continue;
26157 		}
26158 
26159 		/* dequeue the request */
26160 		sd_mhreq = sd_tr.srq_thr_cur_req;
26161 		sd_tr.srq_thr_req_head =
26162 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26163 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26164 
26165 		/*
26166 		 * Reclaim reservation only if SD_RESERVE is still set. There
26167 		 * may have been a call to MHIOCRELEASE before we got here.
26168 		 */
26169 		mutex_enter(SD_MUTEX(un));
26170 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26171 			/*
26172 			 * Note: The SD_LOST_RESERVE flag is cleared before
26173 			 * reclaiming the reservation. If this is done after the
26174 			 * call to sd_reserve_release a reservation loss in the
26175 			 * window between pkt completion of reserve cmd and
26176 			 * mutex_enter below may not be recognized
26177 			 */
26178 			un->un_resvd_status &= ~SD_LOST_RESERVE;
26179 			mutex_exit(SD_MUTEX(un));
26180 
26181 			if (sd_reserve_release(sd_mhreq->dev,
26182 			    SD_RESERVE) == 0) {
26183 				mutex_enter(SD_MUTEX(un));
26184 				un->un_resvd_status |= SD_RESERVE;
26185 				mutex_exit(SD_MUTEX(un));
26186 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26187 				    "sd_resv_reclaim_thread: "
26188 				    "Reservation Recovered\n");
26189 			} else {
26190 				mutex_enter(SD_MUTEX(un));
26191 				un->un_resvd_status |= SD_LOST_RESERVE;
26192 				mutex_exit(SD_MUTEX(un));
26193 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26194 				    "sd_resv_reclaim_thread: Failed "
26195 				    "Reservation Recovery\n");
26196 			}
26197 		} else {
26198 			mutex_exit(SD_MUTEX(un));
26199 		}
26200 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26201 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
26202 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26203 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
26204 		/*
26205 		 * wakeup the destroy thread if anyone is waiting on
26206 		 * us to complete.
26207 		 */
26208 		cv_signal(&sd_tr.srq_inprocess_cv);
26209 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
26210 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
26211 	}
26212 
26213 	/*
26214 	 * cleanup the sd_tr structure now that this thread will not exist
26215 	 */
26216 	ASSERT(sd_tr.srq_thr_req_head == NULL);
26217 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
26218 	sd_tr.srq_resv_reclaim_thread = NULL;
26219 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26220 	thread_exit();
26221 }
26222 
26223 
26224 /*
26225  *    Function: sd_rmv_resv_reclaim_req()
26226  *
26227  * Description: This function removes any pending reservation reclaim requests
26228  *		for the specified device.
26229  *
26230  *   Arguments: dev - the device 'dev_t'
26231  */
26232 
26233 static void
26234 sd_rmv_resv_reclaim_req(dev_t dev)
26235 {
26236 	struct sd_thr_request *sd_mhreq;
26237 	struct sd_thr_request *sd_prev;
26238 
26239 	/* Remove a reservation reclaim request from the list */
26240 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26241 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
26242 		/*
26243 		 * We are attempting to reinstate reservation for
26244 		 * this device. We wait for sd_reserve_release()
26245 		 * to return before we return.
26246 		 */
26247 		cv_wait(&sd_tr.srq_inprocess_cv,
26248 		    &sd_tr.srq_resv_reclaim_mutex);
26249 	} else {
26250 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
26251 		if (sd_mhreq && sd_mhreq->dev == dev) {
26252 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
26253 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26254 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26255 			return;
26256 		}
26257 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
26258 			if (sd_mhreq && sd_mhreq->dev == dev) {
26259 				break;
26260 			}
26261 			sd_prev = sd_mhreq;
26262 		}
26263 		if (sd_mhreq != NULL) {
26264 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
26265 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26266 		}
26267 	}
26268 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26269 }
26270 
26271 
26272 /*
26273  *    Function: sd_mhd_reset_notify_cb()
26274  *
26275  * Description: This is a call back function for scsi_reset_notify. This
26276  *		function updates the softstate reserved status and logs the
26277  *		reset. The driver scsi watch facility callback function
26278  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
26279  *		will reclaim the reservation.
26280  *
26281  *   Arguments: arg  - driver soft state (unit) structure
26282  */
26283 
26284 static void
26285 sd_mhd_reset_notify_cb(caddr_t arg)
26286 {
26287 	struct sd_lun *un = (struct sd_lun *)arg;
26288 
26289 	mutex_enter(SD_MUTEX(un));
26290 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26291 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
26292 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26293 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
26294 	}
26295 	mutex_exit(SD_MUTEX(un));
26296 }
26297 
26298 
26299 /*
26300  *    Function: sd_take_ownership()
26301  *
26302  * Description: This routine implements an algorithm to achieve a stable
26303  *		reservation on disks which don't implement priority reserve,
26304  *		and makes sure that other host lose re-reservation attempts.
26305  *		This algorithm contains of a loop that keeps issuing the RESERVE
26306  *		for some period of time (min_ownership_delay, default 6 seconds)
26307  *		During that loop, it looks to see if there has been a bus device
26308  *		reset or bus reset (both of which cause an existing reservation
26309  *		to be lost). If the reservation is lost issue RESERVE until a
26310  *		period of min_ownership_delay with no resets has gone by, or
26311  *		until max_ownership_delay has expired. This loop ensures that
26312  *		the host really did manage to reserve the device, in spite of
26313  *		resets. The looping for min_ownership_delay (default six
26314  *		seconds) is important to early generation clustering products,
26315  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
26316  *		MHIOCENFAILFAST periodic timer of two seconds. By having
26317  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
26318  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
26319  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
26320  *		have already noticed, via the MHIOCENFAILFAST polling, that it
26321  *		no longer "owns" the disk and will have panicked itself.  Thus,
26322  *		the host issuing the MHIOCTKOWN is assured (with timing
26323  *		dependencies) that by the time it actually starts to use the
26324  *		disk for real work, the old owner is no longer accessing it.
26325  *
26326  *		min_ownership_delay is the minimum amount of time for which the
26327  *		disk must be reserved continuously devoid of resets before the
26328  *		MHIOCTKOWN ioctl will return success.
26329  *
26330  *		max_ownership_delay indicates the amount of time by which the
26331  *		take ownership should succeed or timeout with an error.
26332  *
26333  *   Arguments: dev - the device 'dev_t'
26334  *		*p  - struct containing timing info.
26335  *
26336  * Return Code: 0 for success or error code
26337  */
26338 
26339 static int
26340 sd_take_ownership(dev_t dev, struct mhioctkown *p)
26341 {
26342 	struct sd_lun	*un;
26343 	int		rval;
26344 	int		err;
26345 	int		reservation_count   = 0;
26346 	int		min_ownership_delay =  6000000; /* in usec */
26347 	int		max_ownership_delay = 30000000; /* in usec */
26348 	clock_t		start_time;	/* starting time of this algorithm */
26349 	clock_t		end_time;	/* time limit for giving up */
26350 	clock_t		ownership_time;	/* time limit for stable ownership */
26351 	clock_t		current_time;
26352 	clock_t		previous_current_time;
26353 
26354 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26355 		return (ENXIO);
26356 	}
26357 
26358 	/*
26359 	 * Attempt a device reservation. A priority reservation is requested.
26360 	 */
26361 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
26362 	    != SD_SUCCESS) {
26363 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26364 		    "sd_take_ownership: return(1)=%d\n", rval);
26365 		return (rval);
26366 	}
26367 
26368 	/* Update the softstate reserved status to indicate the reservation */
26369 	mutex_enter(SD_MUTEX(un));
26370 	un->un_resvd_status |= SD_RESERVE;
26371 	un->un_resvd_status &=
26372 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
26373 	mutex_exit(SD_MUTEX(un));
26374 
26375 	if (p != NULL) {
26376 		if (p->min_ownership_delay != 0) {
26377 			min_ownership_delay = p->min_ownership_delay * 1000;
26378 		}
26379 		if (p->max_ownership_delay != 0) {
26380 			max_ownership_delay = p->max_ownership_delay * 1000;
26381 		}
26382 	}
26383 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26384 	    "sd_take_ownership: min, max delays: %d, %d\n",
26385 	    min_ownership_delay, max_ownership_delay);
26386 
26387 	start_time = ddi_get_lbolt();
26388 	current_time	= start_time;
26389 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26390 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26391 
26392 	while (current_time - end_time < 0) {
26393 		delay(drv_usectohz(500000));
26394 
26395 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26396 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26397 				mutex_enter(SD_MUTEX(un));
26398 				rval = (un->un_resvd_status &
26399 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26400 				mutex_exit(SD_MUTEX(un));
26401 				break;
26402 			}
26403 		}
26404 		previous_current_time = current_time;
26405 		current_time = ddi_get_lbolt();
26406 		mutex_enter(SD_MUTEX(un));
26407 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26408 			ownership_time = ddi_get_lbolt() +
26409 			    drv_usectohz(min_ownership_delay);
26410 			reservation_count = 0;
26411 		} else {
26412 			reservation_count++;
26413 		}
26414 		un->un_resvd_status |= SD_RESERVE;
26415 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26416 		mutex_exit(SD_MUTEX(un));
26417 
26418 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26419 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26420 		    "reservation=%s\n", (current_time - previous_current_time),
26421 		    reservation_count ? "ok" : "reclaimed");
26422 
26423 		if (current_time - ownership_time >= 0 &&
26424 		    reservation_count >= 4) {
26425 			rval = 0; /* Achieved a stable ownership */
26426 			break;
26427 		}
26428 		if (current_time - end_time >= 0) {
26429 			rval = EACCES; /* No ownership in max possible time */
26430 			break;
26431 		}
26432 	}
26433 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26434 	    "sd_take_ownership: return(2)=%d\n", rval);
26435 	return (rval);
26436 }
26437 
26438 
26439 /*
26440  *    Function: sd_reserve_release()
26441  *
26442  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26443  *		PRIORITY RESERVE commands based on a user specified command type
26444  *
26445  *   Arguments: dev - the device 'dev_t'
26446  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26447  *		      SD_RESERVE, SD_RELEASE
26448  *
26449  * Return Code: 0 or Error Code
26450  */
26451 
26452 static int
26453 sd_reserve_release(dev_t dev, int cmd)
26454 {
26455 	struct uscsi_cmd	*com = NULL;
26456 	struct sd_lun		*un = NULL;
26457 	char			cdb[CDB_GROUP0];
26458 	int			rval;
26459 
26460 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26461 	    (cmd == SD_PRIORITY_RESERVE));
26462 
26463 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26464 		return (ENXIO);
26465 	}
26466 
26467 	/* instantiate and initialize the command and cdb */
26468 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26469 	bzero(cdb, CDB_GROUP0);
26470 	com->uscsi_flags   = USCSI_SILENT;
26471 	com->uscsi_timeout = un->un_reserve_release_time;
26472 	com->uscsi_cdblen  = CDB_GROUP0;
26473 	com->uscsi_cdb	   = cdb;
26474 	if (cmd == SD_RELEASE) {
26475 		cdb[0] = SCMD_RELEASE;
26476 	} else {
26477 		cdb[0] = SCMD_RESERVE;
26478 	}
26479 
26480 	/* Send the command. */
26481 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26482 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26483 
26484 	/*
26485 	 * "break" a reservation that is held by another host, by issuing a
26486 	 * reset if priority reserve is desired, and we could not get the
26487 	 * device.
26488 	 */
26489 	if ((cmd == SD_PRIORITY_RESERVE) &&
26490 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26491 		/*
26492 		 * First try to reset the LUN. If we cannot, then try a target
26493 		 * reset, followed by a bus reset if the target reset fails.
26494 		 */
26495 		int reset_retval = 0;
26496 		if (un->un_f_lun_reset_enabled == TRUE) {
26497 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26498 		}
26499 		if (reset_retval == 0) {
26500 			/* The LUN reset either failed or was not issued */
26501 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26502 		}
26503 		if ((reset_retval == 0) &&
26504 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26505 			rval = EIO;
26506 			kmem_free(com, sizeof (*com));
26507 			return (rval);
26508 		}
26509 
26510 		bzero(com, sizeof (struct uscsi_cmd));
26511 		com->uscsi_flags   = USCSI_SILENT;
26512 		com->uscsi_cdb	   = cdb;
26513 		com->uscsi_cdblen  = CDB_GROUP0;
26514 		com->uscsi_timeout = 5;
26515 
26516 		/*
26517 		 * Reissue the last reserve command, this time without request
26518 		 * sense.  Assume that it is just a regular reserve command.
26519 		 */
26520 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26521 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26522 	}
26523 
26524 	/* Return an error if still getting a reservation conflict. */
26525 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26526 		rval = EACCES;
26527 	}
26528 
26529 	kmem_free(com, sizeof (*com));
26530 	return (rval);
26531 }
26532 
26533 
26534 #define	SD_NDUMP_RETRIES	12
26535 /*
26536  *	System Crash Dump routine
26537  */
26538 
26539 static int
26540 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26541 {
26542 	int		instance;
26543 	int		partition;
26544 	int		i;
26545 	int		err;
26546 	struct sd_lun	*un;
26547 	struct dk_map	*lp;
26548 	struct scsi_pkt *wr_pktp;
26549 	struct buf	*wr_bp;
26550 	struct buf	wr_buf;
26551 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26552 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26553 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26554 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26555 	size_t		io_start_offset;
26556 	int		doing_rmw = FALSE;
26557 	int		rval;
26558 #if defined(__i386) || defined(__amd64)
26559 	ssize_t dma_resid;
26560 	daddr_t oblkno;
26561 #endif
26562 
26563 	instance = SDUNIT(dev);
26564 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26565 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26566 		return (ENXIO);
26567 	}
26568 
26569 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26570 
26571 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26572 
26573 	partition = SDPART(dev);
26574 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26575 
26576 	/* Validate blocks to dump at against partition size. */
26577 	lp = &un->un_map[partition];
26578 	if ((blkno + nblk) > lp->dkl_nblk) {
26579 		SD_TRACE(SD_LOG_DUMP, un,
26580 		    "sddump: dump range larger than partition: "
26581 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26582 		    blkno, nblk, lp->dkl_nblk);
26583 		return (EINVAL);
26584 	}
26585 
26586 	mutex_enter(&un->un_pm_mutex);
26587 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26588 		struct scsi_pkt *start_pktp;
26589 
26590 		mutex_exit(&un->un_pm_mutex);
26591 
26592 		/*
26593 		 * use pm framework to power on HBA 1st
26594 		 */
26595 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26596 
26597 		/*
26598 		 * Dump no long uses sdpower to power on a device, it's
26599 		 * in-line here so it can be done in polled mode.
26600 		 */
26601 
26602 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26603 
26604 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26605 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26606 
26607 		if (start_pktp == NULL) {
26608 			/* We were not given a SCSI packet, fail. */
26609 			return (EIO);
26610 		}
26611 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26612 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26613 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26614 		start_pktp->pkt_flags = FLAG_NOINTR;
26615 
26616 		mutex_enter(SD_MUTEX(un));
26617 		SD_FILL_SCSI1_LUN(un, start_pktp);
26618 		mutex_exit(SD_MUTEX(un));
26619 		/*
26620 		 * Scsi_poll returns 0 (success) if the command completes and
26621 		 * the status block is STATUS_GOOD.
26622 		 */
26623 		if (sd_scsi_poll(un, start_pktp) != 0) {
26624 			scsi_destroy_pkt(start_pktp);
26625 			return (EIO);
26626 		}
26627 		scsi_destroy_pkt(start_pktp);
26628 		(void) sd_ddi_pm_resume(un);
26629 	} else {
26630 		mutex_exit(&un->un_pm_mutex);
26631 	}
26632 
26633 	mutex_enter(SD_MUTEX(un));
26634 	un->un_throttle = 0;
26635 
26636 	/*
26637 	 * The first time through, reset the specific target device.
26638 	 * However, when cpr calls sddump we know that sd is in a
26639 	 * a good state so no bus reset is required.
26640 	 * Clear sense data via Request Sense cmd.
26641 	 * In sddump we don't care about allow_bus_device_reset anymore
26642 	 */
26643 
26644 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26645 	    (un->un_state != SD_STATE_DUMPING)) {
26646 
26647 		New_state(un, SD_STATE_DUMPING);
26648 
26649 		if (un->un_f_is_fibre == FALSE) {
26650 			mutex_exit(SD_MUTEX(un));
26651 			/*
26652 			 * Attempt a bus reset for parallel scsi.
26653 			 *
26654 			 * Note: A bus reset is required because on some host
26655 			 * systems (i.e. E420R) a bus device reset is
26656 			 * insufficient to reset the state of the target.
26657 			 *
26658 			 * Note: Don't issue the reset for fibre-channel,
26659 			 * because this tends to hang the bus (loop) for
26660 			 * too long while everyone is logging out and in
26661 			 * and the deadman timer for dumping will fire
26662 			 * before the dump is complete.
26663 			 */
26664 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26665 				mutex_enter(SD_MUTEX(un));
26666 				Restore_state(un);
26667 				mutex_exit(SD_MUTEX(un));
26668 				return (EIO);
26669 			}
26670 
26671 			/* Delay to give the device some recovery time. */
26672 			drv_usecwait(10000);
26673 
26674 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26675 				SD_INFO(SD_LOG_DUMP, un,
26676 					"sddump: sd_send_polled_RQS failed\n");
26677 			}
26678 			mutex_enter(SD_MUTEX(un));
26679 		}
26680 	}
26681 
26682 	/*
26683 	 * Convert the partition-relative block number to a
26684 	 * disk physical block number.
26685 	 */
26686 	blkno += un->un_offset[partition];
26687 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26688 
26689 
26690 	/*
26691 	 * Check if the device has a non-512 block size.
26692 	 */
26693 	wr_bp = NULL;
26694 	if (NOT_DEVBSIZE(un)) {
26695 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26696 		tgt_byte_count = nblk * un->un_sys_blocksize;
26697 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26698 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26699 			doing_rmw = TRUE;
26700 			/*
26701 			 * Calculate the block number and number of block
26702 			 * in terms of the media block size.
26703 			 */
26704 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26705 			tgt_nblk =
26706 			    ((tgt_byte_offset + tgt_byte_count +
26707 				(un->un_tgt_blocksize - 1)) /
26708 				un->un_tgt_blocksize) - tgt_blkno;
26709 
26710 			/*
26711 			 * Invoke the routine which is going to do read part
26712 			 * of read-modify-write.
26713 			 * Note that this routine returns a pointer to
26714 			 * a valid bp in wr_bp.
26715 			 */
26716 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26717 			    &wr_bp);
26718 			if (err) {
26719 				mutex_exit(SD_MUTEX(un));
26720 				return (err);
26721 			}
26722 			/*
26723 			 * Offset is being calculated as -
26724 			 * (original block # * system block size) -
26725 			 * (new block # * target block size)
26726 			 */
26727 			io_start_offset =
26728 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26729 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26730 
26731 			ASSERT((io_start_offset >= 0) &&
26732 			    (io_start_offset < un->un_tgt_blocksize));
26733 			/*
26734 			 * Do the modify portion of read modify write.
26735 			 */
26736 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26737 			    (size_t)nblk * un->un_sys_blocksize);
26738 		} else {
26739 			doing_rmw = FALSE;
26740 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26741 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26742 		}
26743 
26744 		/* Convert blkno and nblk to target blocks */
26745 		blkno = tgt_blkno;
26746 		nblk = tgt_nblk;
26747 	} else {
26748 		wr_bp = &wr_buf;
26749 		bzero(wr_bp, sizeof (struct buf));
26750 		wr_bp->b_flags		= B_BUSY;
26751 		wr_bp->b_un.b_addr	= addr;
26752 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26753 		wr_bp->b_resid		= 0;
26754 	}
26755 
26756 	mutex_exit(SD_MUTEX(un));
26757 
26758 	/*
26759 	 * Obtain a SCSI packet for the write command.
26760 	 * It should be safe to call the allocator here without
26761 	 * worrying about being locked for DVMA mapping because
26762 	 * the address we're passed is already a DVMA mapping
26763 	 *
26764 	 * We are also not going to worry about semaphore ownership
26765 	 * in the dump buffer. Dumping is single threaded at present.
26766 	 */
26767 
26768 	wr_pktp = NULL;
26769 
26770 #if defined(__i386) || defined(__amd64)
26771 	dma_resid = wr_bp->b_bcount;
26772 	oblkno = blkno;
26773 	while (dma_resid != 0) {
26774 #endif
26775 
26776 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26777 		wr_bp->b_flags &= ~B_ERROR;
26778 
26779 #if defined(__i386) || defined(__amd64)
26780 		blkno = oblkno +
26781 			((wr_bp->b_bcount - dma_resid) /
26782 			    un->un_tgt_blocksize);
26783 		nblk = dma_resid / un->un_tgt_blocksize;
26784 
26785 		if (wr_pktp) {
26786 			/* Partial DMA transfers after initial transfer */
26787 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26788 			    blkno, nblk);
26789 		} else {
26790 			/* Initial transfer */
26791 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26792 			    un->un_pkt_flags, NULL_FUNC, NULL,
26793 			    blkno, nblk);
26794 		}
26795 #else
26796 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26797 		    0, NULL_FUNC, NULL, blkno, nblk);
26798 #endif
26799 
26800 		if (rval == 0) {
26801 			/* We were given a SCSI packet, continue. */
26802 			break;
26803 		}
26804 
26805 		if (i == 0) {
26806 			if (wr_bp->b_flags & B_ERROR) {
26807 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26808 				    "no resources for dumping; "
26809 				    "error code: 0x%x, retrying",
26810 				    geterror(wr_bp));
26811 			} else {
26812 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26813 				    "no resources for dumping; retrying");
26814 			}
26815 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26816 			if (wr_bp->b_flags & B_ERROR) {
26817 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26818 				    "no resources for dumping; error code: "
26819 				    "0x%x, retrying\n", geterror(wr_bp));
26820 			}
26821 		} else {
26822 			if (wr_bp->b_flags & B_ERROR) {
26823 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26824 				    "no resources for dumping; "
26825 				    "error code: 0x%x, retries failed, "
26826 				    "giving up.\n", geterror(wr_bp));
26827 			} else {
26828 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26829 				    "no resources for dumping; "
26830 				    "retries failed, giving up.\n");
26831 			}
26832 			mutex_enter(SD_MUTEX(un));
26833 			Restore_state(un);
26834 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26835 				mutex_exit(SD_MUTEX(un));
26836 				scsi_free_consistent_buf(wr_bp);
26837 			} else {
26838 				mutex_exit(SD_MUTEX(un));
26839 			}
26840 			return (EIO);
26841 		}
26842 		drv_usecwait(10000);
26843 	}
26844 
26845 #if defined(__i386) || defined(__amd64)
26846 	/*
26847 	 * save the resid from PARTIAL_DMA
26848 	 */
26849 	dma_resid = wr_pktp->pkt_resid;
26850 	if (dma_resid != 0)
26851 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26852 	wr_pktp->pkt_resid = 0;
26853 #endif
26854 
26855 	/* SunBug 1222170 */
26856 	wr_pktp->pkt_flags = FLAG_NOINTR;
26857 
26858 	err = EIO;
26859 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26860 
26861 		/*
26862 		 * Scsi_poll returns 0 (success) if the command completes and
26863 		 * the status block is STATUS_GOOD.  We should only check
26864 		 * errors if this condition is not true.  Even then we should
26865 		 * send our own request sense packet only if we have a check
26866 		 * condition and auto request sense has not been performed by
26867 		 * the hba.
26868 		 */
26869 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26870 
26871 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26872 		    (wr_pktp->pkt_resid == 0)) {
26873 			err = SD_SUCCESS;
26874 			break;
26875 		}
26876 
26877 		/*
26878 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26879 		 */
26880 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26881 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26882 			    "Device is gone\n");
26883 			break;
26884 		}
26885 
26886 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26887 			SD_INFO(SD_LOG_DUMP, un,
26888 			    "sddump: write failed with CHECK, try # %d\n", i);
26889 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26890 				(void) sd_send_polled_RQS(un);
26891 			}
26892 
26893 			continue;
26894 		}
26895 
26896 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26897 			int reset_retval = 0;
26898 
26899 			SD_INFO(SD_LOG_DUMP, un,
26900 			    "sddump: write failed with BUSY, try # %d\n", i);
26901 
26902 			if (un->un_f_lun_reset_enabled == TRUE) {
26903 				reset_retval = scsi_reset(SD_ADDRESS(un),
26904 				    RESET_LUN);
26905 			}
26906 			if (reset_retval == 0) {
26907 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26908 			}
26909 			(void) sd_send_polled_RQS(un);
26910 
26911 		} else {
26912 			SD_INFO(SD_LOG_DUMP, un,
26913 			    "sddump: write failed with 0x%x, try # %d\n",
26914 			    SD_GET_PKT_STATUS(wr_pktp), i);
26915 			mutex_enter(SD_MUTEX(un));
26916 			sd_reset_target(un, wr_pktp);
26917 			mutex_exit(SD_MUTEX(un));
26918 		}
26919 
26920 		/*
26921 		 * If we are not getting anywhere with lun/target resets,
26922 		 * let's reset the bus.
26923 		 */
26924 		if (i == SD_NDUMP_RETRIES/2) {
26925 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26926 			(void) sd_send_polled_RQS(un);
26927 		}
26928 
26929 	}
26930 #if defined(__i386) || defined(__amd64)
26931 	}	/* dma_resid */
26932 #endif
26933 
26934 	scsi_destroy_pkt(wr_pktp);
26935 	mutex_enter(SD_MUTEX(un));
26936 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26937 		mutex_exit(SD_MUTEX(un));
26938 		scsi_free_consistent_buf(wr_bp);
26939 	} else {
26940 		mutex_exit(SD_MUTEX(un));
26941 	}
26942 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26943 	return (err);
26944 }
26945 
26946 /*
26947  *    Function: sd_scsi_poll()
26948  *
26949  * Description: This is a wrapper for the scsi_poll call.
26950  *
26951  *   Arguments: sd_lun - The unit structure
26952  *              scsi_pkt - The scsi packet being sent to the device.
26953  *
26954  * Return Code: 0 - Command completed successfully with good status
26955  *             -1 - Command failed.  This could indicate a check condition
26956  *                  or other status value requiring recovery action.
26957  *
26958  */
26959 
26960 static int
26961 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26962 {
26963 	int status;
26964 
26965 	ASSERT(un != NULL);
26966 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26967 	ASSERT(pktp != NULL);
26968 
26969 	status = SD_SUCCESS;
26970 
26971 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26972 		pktp->pkt_flags |= un->un_tagflags;
26973 		pktp->pkt_flags &= ~FLAG_NODISCON;
26974 	}
26975 
26976 	status = sd_ddi_scsi_poll(pktp);
26977 	/*
26978 	 * Scsi_poll returns 0 (success) if the command completes and the
26979 	 * status block is STATUS_GOOD.  We should only check errors if this
26980 	 * condition is not true.  Even then we should send our own request
26981 	 * sense packet only if we have a check condition and auto
26982 	 * request sense has not been performed by the hba.
26983 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26984 	 */
26985 	if ((status != SD_SUCCESS) &&
26986 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26987 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26988 	    (pktp->pkt_reason != CMD_DEV_GONE))
26989 		(void) sd_send_polled_RQS(un);
26990 
26991 	return (status);
26992 }
26993 
26994 /*
26995  *    Function: sd_send_polled_RQS()
26996  *
26997  * Description: This sends the request sense command to a device.
26998  *
26999  *   Arguments: sd_lun - The unit structure
27000  *
27001  * Return Code: 0 - Command completed successfully with good status
27002  *             -1 - Command failed.
27003  *
27004  */
27005 
27006 static int
27007 sd_send_polled_RQS(struct sd_lun *un)
27008 {
27009 	int	ret_val;
27010 	struct	scsi_pkt	*rqs_pktp;
27011 	struct	buf		*rqs_bp;
27012 
27013 	ASSERT(un != NULL);
27014 	ASSERT(!mutex_owned(SD_MUTEX(un)));
27015 
27016 	ret_val = SD_SUCCESS;
27017 
27018 	rqs_pktp = un->un_rqs_pktp;
27019 	rqs_bp	 = un->un_rqs_bp;
27020 
27021 	mutex_enter(SD_MUTEX(un));
27022 
27023 	if (un->un_sense_isbusy) {
27024 		ret_val = SD_FAILURE;
27025 		mutex_exit(SD_MUTEX(un));
27026 		return (ret_val);
27027 	}
27028 
27029 	/*
27030 	 * If the request sense buffer (and packet) is not in use,
27031 	 * let's set the un_sense_isbusy and send our packet
27032 	 */
27033 	un->un_sense_isbusy 	= 1;
27034 	rqs_pktp->pkt_resid  	= 0;
27035 	rqs_pktp->pkt_reason 	= 0;
27036 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
27037 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
27038 
27039 	mutex_exit(SD_MUTEX(un));
27040 
27041 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
27042 	    " 0x%p\n", rqs_bp->b_un.b_addr);
27043 
27044 	/*
27045 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
27046 	 * axle - it has a call into us!
27047 	 */
27048 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
27049 		SD_INFO(SD_LOG_COMMON, un,
27050 		    "sd_send_polled_RQS: RQS failed\n");
27051 	}
27052 
27053 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
27054 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
27055 
27056 	mutex_enter(SD_MUTEX(un));
27057 	un->un_sense_isbusy = 0;
27058 	mutex_exit(SD_MUTEX(un));
27059 
27060 	return (ret_val);
27061 }
27062 
27063 /*
27064  * Defines needed for localized version of the scsi_poll routine.
27065  */
27066 #define	SD_CSEC		10000			/* usecs */
27067 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
27068 
27069 
27070 /*
27071  *    Function: sd_ddi_scsi_poll()
27072  *
27073  * Description: Localized version of the scsi_poll routine.  The purpose is to
27074  *		send a scsi_pkt to a device as a polled command.  This version
27075  *		is to ensure more robust handling of transport errors.
27076  *		Specifically this routine cures not ready, coming ready
27077  *		transition for power up and reset of sonoma's.  This can take
27078  *		up to 45 seconds for power-on and 20 seconds for reset of a
27079  * 		sonoma lun.
27080  *
27081  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
27082  *
27083  * Return Code: 0 - Command completed successfully with good status
27084  *             -1 - Command failed.
27085  *
27086  */
27087 
27088 static int
27089 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
27090 {
27091 	int busy_count;
27092 	int timeout;
27093 	int rval = SD_FAILURE;
27094 	int savef;
27095 	uint8_t *sensep;
27096 	long savet;
27097 	void (*savec)();
27098 	/*
27099 	 * The following is defined in machdep.c and is used in determining if
27100 	 * the scsi transport system will do polled I/O instead of interrupt
27101 	 * I/O when called from xx_dump().
27102 	 */
27103 	extern int do_polled_io;
27104 
27105 	/*
27106 	 * save old flags in pkt, to restore at end
27107 	 */
27108 	savef = pkt->pkt_flags;
27109 	savec = pkt->pkt_comp;
27110 	savet = pkt->pkt_time;
27111 
27112 	pkt->pkt_flags |= FLAG_NOINTR;
27113 
27114 	/*
27115 	 * XXX there is nothing in the SCSA spec that states that we should not
27116 	 * do a callback for polled cmds; however, removing this will break sd
27117 	 * and probably other target drivers
27118 	 */
27119 	pkt->pkt_comp = NULL;
27120 
27121 	/*
27122 	 * we don't like a polled command without timeout.
27123 	 * 60 seconds seems long enough.
27124 	 */
27125 	if (pkt->pkt_time == 0) {
27126 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
27127 	}
27128 
27129 	/*
27130 	 * Send polled cmd.
27131 	 *
27132 	 * We do some error recovery for various errors.  Tran_busy,
27133 	 * queue full, and non-dispatched commands are retried every 10 msec.
27134 	 * as they are typically transient failures.  Busy status and Not
27135 	 * Ready are retried every second as this status takes a while to
27136 	 * change.  Unit attention is retried for pkt_time (60) times
27137 	 * with no delay.
27138 	 */
27139 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
27140 
27141 	for (busy_count = 0; busy_count < timeout; busy_count++) {
27142 		int rc;
27143 		int poll_delay;
27144 
27145 		/*
27146 		 * Initialize pkt status variables.
27147 		 */
27148 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
27149 
27150 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
27151 			if (rc != TRAN_BUSY) {
27152 				/* Transport failed - give up. */
27153 				break;
27154 			} else {
27155 				/* Transport busy - try again. */
27156 				poll_delay = 1 * SD_CSEC; /* 10 msec */
27157 			}
27158 		} else {
27159 			/*
27160 			 * Transport accepted - check pkt status.
27161 			 */
27162 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
27163 			if (pkt->pkt_reason == CMD_CMPLT &&
27164 			    rc == STATUS_CHECK &&
27165 			    pkt->pkt_state & STATE_ARQ_DONE) {
27166 				struct scsi_arq_status *arqstat =
27167 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
27168 
27169 				sensep = (uint8_t *)&arqstat->sts_sensedata;
27170 			} else {
27171 				sensep = NULL;
27172 			}
27173 
27174 			if ((pkt->pkt_reason == CMD_CMPLT) &&
27175 			    (rc == STATUS_GOOD)) {
27176 				/* No error - we're done */
27177 				rval = SD_SUCCESS;
27178 				break;
27179 
27180 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
27181 				/* Lost connection - give up */
27182 				break;
27183 
27184 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
27185 			    (pkt->pkt_state == 0)) {
27186 				/* Pkt not dispatched - try again. */
27187 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27188 
27189 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27190 			    (rc == STATUS_QFULL)) {
27191 				/* Queue full - try again. */
27192 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27193 
27194 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27195 			    (rc == STATUS_BUSY)) {
27196 				/* Busy - try again. */
27197 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27198 				busy_count += (SD_SEC_TO_CSEC - 1);
27199 
27200 			} else if ((sensep != NULL) &&
27201 			    (scsi_sense_key(sensep) ==
27202 				KEY_UNIT_ATTENTION)) {
27203 				/* Unit Attention - try again */
27204 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
27205 				continue;
27206 
27207 			} else if ((sensep != NULL) &&
27208 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
27209 			    (scsi_sense_asc(sensep) == 0x04) &&
27210 			    (scsi_sense_ascq(sensep) == 0x01)) {
27211 				/* Not ready -> ready - try again. */
27212 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27213 				busy_count += (SD_SEC_TO_CSEC - 1);
27214 
27215 			} else {
27216 				/* BAD status - give up. */
27217 				break;
27218 			}
27219 		}
27220 
27221 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
27222 		    !do_polled_io) {
27223 			delay(drv_usectohz(poll_delay));
27224 		} else {
27225 			/* we busy wait during cpr_dump or interrupt threads */
27226 			drv_usecwait(poll_delay);
27227 		}
27228 	}
27229 
27230 	pkt->pkt_flags = savef;
27231 	pkt->pkt_comp = savec;
27232 	pkt->pkt_time = savet;
27233 	return (rval);
27234 }
27235 
27236 
27237 /*
27238  *    Function: sd_persistent_reservation_in_read_keys
27239  *
27240  * Description: This routine is the driver entry point for handling CD-ROM
27241  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
27242  *		by sending the SCSI-3 PRIN commands to the device.
27243  *		Processes the read keys command response by copying the
27244  *		reservation key information into the user provided buffer.
27245  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
27246  *
27247  *   Arguments: un   -  Pointer to soft state struct for the target.
27248  *		usrp -	user provided pointer to multihost Persistent In Read
27249  *			Keys structure (mhioc_inkeys_t)
27250  *		flag -	this argument is a pass through to ddi_copyxxx()
27251  *			directly from the mode argument of ioctl().
27252  *
27253  * Return Code: 0   - Success
27254  *		EACCES
27255  *		ENOTSUP
27256  *		errno return code from sd_send_scsi_cmd()
27257  *
27258  *     Context: Can sleep. Does not return until command is completed.
27259  */
27260 
27261 static int
27262 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
27263     mhioc_inkeys_t *usrp, int flag)
27264 {
27265 #ifdef _MULTI_DATAMODEL
27266 	struct mhioc_key_list32	li32;
27267 #endif
27268 	sd_prin_readkeys_t	*in;
27269 	mhioc_inkeys_t		*ptr;
27270 	mhioc_key_list_t	li;
27271 	uchar_t			*data_bufp;
27272 	int 			data_len;
27273 	int			rval;
27274 	size_t			copysz;
27275 
27276 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
27277 		return (EINVAL);
27278 	}
27279 	bzero(&li, sizeof (mhioc_key_list_t));
27280 
27281 	/*
27282 	 * Get the listsize from user
27283 	 */
27284 #ifdef _MULTI_DATAMODEL
27285 
27286 	switch (ddi_model_convert_from(flag & FMODELS)) {
27287 	case DDI_MODEL_ILP32:
27288 		copysz = sizeof (struct mhioc_key_list32);
27289 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
27290 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27291 			    "sd_persistent_reservation_in_read_keys: "
27292 			    "failed ddi_copyin: mhioc_key_list32_t\n");
27293 			rval = EFAULT;
27294 			goto done;
27295 		}
27296 		li.listsize = li32.listsize;
27297 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
27298 		break;
27299 
27300 	case DDI_MODEL_NONE:
27301 		copysz = sizeof (mhioc_key_list_t);
27302 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27303 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27304 			    "sd_persistent_reservation_in_read_keys: "
27305 			    "failed ddi_copyin: mhioc_key_list_t\n");
27306 			rval = EFAULT;
27307 			goto done;
27308 		}
27309 		break;
27310 	}
27311 
27312 #else /* ! _MULTI_DATAMODEL */
27313 	copysz = sizeof (mhioc_key_list_t);
27314 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27315 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27316 		    "sd_persistent_reservation_in_read_keys: "
27317 		    "failed ddi_copyin: mhioc_key_list_t\n");
27318 		rval = EFAULT;
27319 		goto done;
27320 	}
27321 #endif
27322 
27323 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
27324 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
27325 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27326 
27327 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
27328 	    data_len, data_bufp)) != 0) {
27329 		goto done;
27330 	}
27331 	in = (sd_prin_readkeys_t *)data_bufp;
27332 	ptr->generation = BE_32(in->generation);
27333 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
27334 
27335 	/*
27336 	 * Return the min(listsize, listlen) keys
27337 	 */
27338 #ifdef _MULTI_DATAMODEL
27339 
27340 	switch (ddi_model_convert_from(flag & FMODELS)) {
27341 	case DDI_MODEL_ILP32:
27342 		li32.listlen = li.listlen;
27343 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
27344 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27345 			    "sd_persistent_reservation_in_read_keys: "
27346 			    "failed ddi_copyout: mhioc_key_list32_t\n");
27347 			rval = EFAULT;
27348 			goto done;
27349 		}
27350 		break;
27351 
27352 	case DDI_MODEL_NONE:
27353 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27354 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27355 			    "sd_persistent_reservation_in_read_keys: "
27356 			    "failed ddi_copyout: mhioc_key_list_t\n");
27357 			rval = EFAULT;
27358 			goto done;
27359 		}
27360 		break;
27361 	}
27362 
27363 #else /* ! _MULTI_DATAMODEL */
27364 
27365 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27366 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27367 		    "sd_persistent_reservation_in_read_keys: "
27368 		    "failed ddi_copyout: mhioc_key_list_t\n");
27369 		rval = EFAULT;
27370 		goto done;
27371 	}
27372 
27373 #endif /* _MULTI_DATAMODEL */
27374 
27375 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
27376 	    li.listsize * MHIOC_RESV_KEY_SIZE);
27377 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27378 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27379 		    "sd_persistent_reservation_in_read_keys: "
27380 		    "failed ddi_copyout: keylist\n");
27381 		rval = EFAULT;
27382 	}
27383 done:
27384 	kmem_free(data_bufp, data_len);
27385 	return (rval);
27386 }
27387 
27388 
27389 /*
27390  *    Function: sd_persistent_reservation_in_read_resv
27391  *
27392  * Description: This routine is the driver entry point for handling CD-ROM
27393  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27394  *		by sending the SCSI-3 PRIN commands to the device.
27395  *		Process the read persistent reservations command response by
27396  *		copying the reservation information into the user provided
27397  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27398  *
27399  *   Arguments: un   -  Pointer to soft state struct for the target.
27400  *		usrp -	user provided pointer to multihost Persistent In Read
27401  *			Keys structure (mhioc_inkeys_t)
27402  *		flag -	this argument is a pass through to ddi_copyxxx()
27403  *			directly from the mode argument of ioctl().
27404  *
27405  * Return Code: 0   - Success
27406  *		EACCES
27407  *		ENOTSUP
27408  *		errno return code from sd_send_scsi_cmd()
27409  *
27410  *     Context: Can sleep. Does not return until command is completed.
27411  */
27412 
27413 static int
27414 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27415     mhioc_inresvs_t *usrp, int flag)
27416 {
27417 #ifdef _MULTI_DATAMODEL
27418 	struct mhioc_resv_desc_list32 resvlist32;
27419 #endif
27420 	sd_prin_readresv_t	*in;
27421 	mhioc_inresvs_t		*ptr;
27422 	sd_readresv_desc_t	*readresv_ptr;
27423 	mhioc_resv_desc_list_t	resvlist;
27424 	mhioc_resv_desc_t 	resvdesc;
27425 	uchar_t			*data_bufp;
27426 	int 			data_len;
27427 	int			rval;
27428 	int			i;
27429 	size_t			copysz;
27430 	mhioc_resv_desc_t	*bufp;
27431 
27432 	if ((ptr = usrp) == NULL) {
27433 		return (EINVAL);
27434 	}
27435 
27436 	/*
27437 	 * Get the listsize from user
27438 	 */
27439 #ifdef _MULTI_DATAMODEL
27440 	switch (ddi_model_convert_from(flag & FMODELS)) {
27441 	case DDI_MODEL_ILP32:
27442 		copysz = sizeof (struct mhioc_resv_desc_list32);
27443 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27444 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27445 			    "sd_persistent_reservation_in_read_resv: "
27446 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27447 			rval = EFAULT;
27448 			goto done;
27449 		}
27450 		resvlist.listsize = resvlist32.listsize;
27451 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27452 		break;
27453 
27454 	case DDI_MODEL_NONE:
27455 		copysz = sizeof (mhioc_resv_desc_list_t);
27456 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27457 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27458 			    "sd_persistent_reservation_in_read_resv: "
27459 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27460 			rval = EFAULT;
27461 			goto done;
27462 		}
27463 		break;
27464 	}
27465 #else /* ! _MULTI_DATAMODEL */
27466 	copysz = sizeof (mhioc_resv_desc_list_t);
27467 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27468 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27469 		    "sd_persistent_reservation_in_read_resv: "
27470 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27471 		rval = EFAULT;
27472 		goto done;
27473 	}
27474 #endif /* ! _MULTI_DATAMODEL */
27475 
27476 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27477 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27478 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27479 
27480 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27481 	    data_len, data_bufp)) != 0) {
27482 		goto done;
27483 	}
27484 	in = (sd_prin_readresv_t *)data_bufp;
27485 	ptr->generation = BE_32(in->generation);
27486 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27487 
27488 	/*
27489 	 * Return the min(listsize, listlen( keys
27490 	 */
27491 #ifdef _MULTI_DATAMODEL
27492 
27493 	switch (ddi_model_convert_from(flag & FMODELS)) {
27494 	case DDI_MODEL_ILP32:
27495 		resvlist32.listlen = resvlist.listlen;
27496 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27497 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27498 			    "sd_persistent_reservation_in_read_resv: "
27499 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27500 			rval = EFAULT;
27501 			goto done;
27502 		}
27503 		break;
27504 
27505 	case DDI_MODEL_NONE:
27506 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27507 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27508 			    "sd_persistent_reservation_in_read_resv: "
27509 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27510 			rval = EFAULT;
27511 			goto done;
27512 		}
27513 		break;
27514 	}
27515 
27516 #else /* ! _MULTI_DATAMODEL */
27517 
27518 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27519 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27520 		    "sd_persistent_reservation_in_read_resv: "
27521 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27522 		rval = EFAULT;
27523 		goto done;
27524 	}
27525 
27526 #endif /* ! _MULTI_DATAMODEL */
27527 
27528 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27529 	bufp = resvlist.list;
27530 	copysz = sizeof (mhioc_resv_desc_t);
27531 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27532 	    i++, readresv_ptr++, bufp++) {
27533 
27534 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27535 		    MHIOC_RESV_KEY_SIZE);
27536 		resvdesc.type  = readresv_ptr->type;
27537 		resvdesc.scope = readresv_ptr->scope;
27538 		resvdesc.scope_specific_addr =
27539 		    BE_32(readresv_ptr->scope_specific_addr);
27540 
27541 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27542 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27543 			    "sd_persistent_reservation_in_read_resv: "
27544 			    "failed ddi_copyout: resvlist\n");
27545 			rval = EFAULT;
27546 			goto done;
27547 		}
27548 	}
27549 done:
27550 	kmem_free(data_bufp, data_len);
27551 	return (rval);
27552 }
27553 
27554 
27555 /*
27556  *    Function: sr_change_blkmode()
27557  *
27558  * Description: This routine is the driver entry point for handling CD-ROM
27559  *		block mode ioctl requests. Support for returning and changing
27560  *		the current block size in use by the device is implemented. The
27561  *		LBA size is changed via a MODE SELECT Block Descriptor.
27562  *
27563  *		This routine issues a mode sense with an allocation length of
27564  *		12 bytes for the mode page header and a single block descriptor.
27565  *
27566  *   Arguments: dev - the device 'dev_t'
27567  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27568  *		      CDROMSBLKMODE (set)
27569  *		data - current block size or requested block size
27570  *		flag - this argument is a pass through to ddi_copyxxx() directly
27571  *		       from the mode argument of ioctl().
27572  *
27573  * Return Code: the code returned by sd_send_scsi_cmd()
27574  *		EINVAL if invalid arguments are provided
27575  *		EFAULT if ddi_copyxxx() fails
27576  *		ENXIO if fail ddi_get_soft_state
27577  *		EIO if invalid mode sense block descriptor length
27578  *
27579  */
27580 
27581 static int
27582 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27583 {
27584 	struct sd_lun			*un = NULL;
27585 	struct mode_header		*sense_mhp, *select_mhp;
27586 	struct block_descriptor		*sense_desc, *select_desc;
27587 	int				current_bsize;
27588 	int				rval = EINVAL;
27589 	uchar_t				*sense = NULL;
27590 	uchar_t				*select = NULL;
27591 
27592 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27593 
27594 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27595 		return (ENXIO);
27596 	}
27597 
27598 	/*
27599 	 * The block length is changed via the Mode Select block descriptor, the
27600 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27601 	 * required as part of this routine. Therefore the mode sense allocation
27602 	 * length is specified to be the length of a mode page header and a
27603 	 * block descriptor.
27604 	 */
27605 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27606 
27607 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27608 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27609 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27610 		    "sr_change_blkmode: Mode Sense Failed\n");
27611 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27612 		return (rval);
27613 	}
27614 
27615 	/* Check the block descriptor len to handle only 1 block descriptor */
27616 	sense_mhp = (struct mode_header *)sense;
27617 	if ((sense_mhp->bdesc_length == 0) ||
27618 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27619 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27620 		    "sr_change_blkmode: Mode Sense returned invalid block"
27621 		    " descriptor length\n");
27622 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27623 		return (EIO);
27624 	}
27625 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27626 	current_bsize = ((sense_desc->blksize_hi << 16) |
27627 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27628 
27629 	/* Process command */
27630 	switch (cmd) {
27631 	case CDROMGBLKMODE:
27632 		/* Return the block size obtained during the mode sense */
27633 		if (ddi_copyout(&current_bsize, (void *)data,
27634 		    sizeof (int), flag) != 0)
27635 			rval = EFAULT;
27636 		break;
27637 	case CDROMSBLKMODE:
27638 		/* Validate the requested block size */
27639 		switch (data) {
27640 		case CDROM_BLK_512:
27641 		case CDROM_BLK_1024:
27642 		case CDROM_BLK_2048:
27643 		case CDROM_BLK_2056:
27644 		case CDROM_BLK_2336:
27645 		case CDROM_BLK_2340:
27646 		case CDROM_BLK_2352:
27647 		case CDROM_BLK_2368:
27648 		case CDROM_BLK_2448:
27649 		case CDROM_BLK_2646:
27650 		case CDROM_BLK_2647:
27651 			break;
27652 		default:
27653 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27654 			    "sr_change_blkmode: "
27655 			    "Block Size '%ld' Not Supported\n", data);
27656 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27657 			return (EINVAL);
27658 		}
27659 
27660 		/*
27661 		 * The current block size matches the requested block size so
27662 		 * there is no need to send the mode select to change the size
27663 		 */
27664 		if (current_bsize == data) {
27665 			break;
27666 		}
27667 
27668 		/* Build the select data for the requested block size */
27669 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27670 		select_mhp = (struct mode_header *)select;
27671 		select_desc =
27672 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27673 		/*
27674 		 * The LBA size is changed via the block descriptor, so the
27675 		 * descriptor is built according to the user data
27676 		 */
27677 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27678 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27679 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27680 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27681 
27682 		/* Send the mode select for the requested block size */
27683 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27684 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27685 		    SD_PATH_STANDARD)) != 0) {
27686 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27687 			    "sr_change_blkmode: Mode Select Failed\n");
27688 			/*
27689 			 * The mode select failed for the requested block size,
27690 			 * so reset the data for the original block size and
27691 			 * send it to the target. The error is indicated by the
27692 			 * return value for the failed mode select.
27693 			 */
27694 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27695 			select_desc->blksize_mid = sense_desc->blksize_mid;
27696 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27697 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27698 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27699 			    SD_PATH_STANDARD);
27700 		} else {
27701 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27702 			mutex_enter(SD_MUTEX(un));
27703 			sd_update_block_info(un, (uint32_t)data, 0);
27704 
27705 			mutex_exit(SD_MUTEX(un));
27706 		}
27707 		break;
27708 	default:
27709 		/* should not reach here, but check anyway */
27710 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27711 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27712 		rval = EINVAL;
27713 		break;
27714 	}
27715 
27716 	if (select) {
27717 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27718 	}
27719 	if (sense) {
27720 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27721 	}
27722 	return (rval);
27723 }
27724 
27725 
27726 /*
27727  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27728  * implement driver support for getting and setting the CD speed. The command
27729  * set used will be based on the device type. If the device has not been
27730  * identified as MMC the Toshiba vendor specific mode page will be used. If
27731  * the device is MMC but does not support the Real Time Streaming feature
27732  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27733  * be used to read the speed.
27734  */
27735 
27736 /*
27737  *    Function: sr_change_speed()
27738  *
27739  * Description: This routine is the driver entry point for handling CD-ROM
27740  *		drive speed ioctl requests for devices supporting the Toshiba
27741  *		vendor specific drive speed mode page. Support for returning
27742  *		and changing the current drive speed in use by the device is
27743  *		implemented.
27744  *
27745  *   Arguments: dev - the device 'dev_t'
27746  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27747  *		      CDROMSDRVSPEED (set)
27748  *		data - current drive speed or requested drive speed
27749  *		flag - this argument is a pass through to ddi_copyxxx() directly
27750  *		       from the mode argument of ioctl().
27751  *
27752  * Return Code: the code returned by sd_send_scsi_cmd()
27753  *		EINVAL if invalid arguments are provided
27754  *		EFAULT if ddi_copyxxx() fails
27755  *		ENXIO if fail ddi_get_soft_state
27756  *		EIO if invalid mode sense block descriptor length
27757  */
27758 
27759 static int
27760 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27761 {
27762 	struct sd_lun			*un = NULL;
27763 	struct mode_header		*sense_mhp, *select_mhp;
27764 	struct mode_speed		*sense_page, *select_page;
27765 	int				current_speed;
27766 	int				rval = EINVAL;
27767 	int				bd_len;
27768 	uchar_t				*sense = NULL;
27769 	uchar_t				*select = NULL;
27770 
27771 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27772 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27773 		return (ENXIO);
27774 	}
27775 
27776 	/*
27777 	 * Note: The drive speed is being modified here according to a Toshiba
27778 	 * vendor specific mode page (0x31).
27779 	 */
27780 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27781 
27782 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27783 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27784 		SD_PATH_STANDARD)) != 0) {
27785 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27786 		    "sr_change_speed: Mode Sense Failed\n");
27787 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27788 		return (rval);
27789 	}
27790 	sense_mhp  = (struct mode_header *)sense;
27791 
27792 	/* Check the block descriptor len to handle only 1 block descriptor */
27793 	bd_len = sense_mhp->bdesc_length;
27794 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27795 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27796 		    "sr_change_speed: Mode Sense returned invalid block "
27797 		    "descriptor length\n");
27798 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27799 		return (EIO);
27800 	}
27801 
27802 	sense_page = (struct mode_speed *)
27803 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27804 	current_speed = sense_page->speed;
27805 
27806 	/* Process command */
27807 	switch (cmd) {
27808 	case CDROMGDRVSPEED:
27809 		/* Return the drive speed obtained during the mode sense */
27810 		if (current_speed == 0x2) {
27811 			current_speed = CDROM_TWELVE_SPEED;
27812 		}
27813 		if (ddi_copyout(&current_speed, (void *)data,
27814 		    sizeof (int), flag) != 0) {
27815 			rval = EFAULT;
27816 		}
27817 		break;
27818 	case CDROMSDRVSPEED:
27819 		/* Validate the requested drive speed */
27820 		switch ((uchar_t)data) {
27821 		case CDROM_TWELVE_SPEED:
27822 			data = 0x2;
27823 			/*FALLTHROUGH*/
27824 		case CDROM_NORMAL_SPEED:
27825 		case CDROM_DOUBLE_SPEED:
27826 		case CDROM_QUAD_SPEED:
27827 		case CDROM_MAXIMUM_SPEED:
27828 			break;
27829 		default:
27830 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27831 			    "sr_change_speed: "
27832 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27833 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27834 			return (EINVAL);
27835 		}
27836 
27837 		/*
27838 		 * The current drive speed matches the requested drive speed so
27839 		 * there is no need to send the mode select to change the speed
27840 		 */
27841 		if (current_speed == data) {
27842 			break;
27843 		}
27844 
27845 		/* Build the select data for the requested drive speed */
27846 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27847 		select_mhp = (struct mode_header *)select;
27848 		select_mhp->bdesc_length = 0;
27849 		select_page =
27850 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27851 		select_page =
27852 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27853 		select_page->mode_page.code = CDROM_MODE_SPEED;
27854 		select_page->mode_page.length = 2;
27855 		select_page->speed = (uchar_t)data;
27856 
27857 		/* Send the mode select for the requested block size */
27858 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27859 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27860 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27861 			/*
27862 			 * The mode select failed for the requested drive speed,
27863 			 * so reset the data for the original drive speed and
27864 			 * send it to the target. The error is indicated by the
27865 			 * return value for the failed mode select.
27866 			 */
27867 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27868 			    "sr_drive_speed: Mode Select Failed\n");
27869 			select_page->speed = sense_page->speed;
27870 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27871 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27872 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27873 		}
27874 		break;
27875 	default:
27876 		/* should not reach here, but check anyway */
27877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27878 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27879 		rval = EINVAL;
27880 		break;
27881 	}
27882 
27883 	if (select) {
27884 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27885 	}
27886 	if (sense) {
27887 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27888 	}
27889 
27890 	return (rval);
27891 }
27892 
27893 
27894 /*
27895  *    Function: sr_atapi_change_speed()
27896  *
27897  * Description: This routine is the driver entry point for handling CD-ROM
27898  *		drive speed ioctl requests for MMC devices that do not support
27899  *		the Real Time Streaming feature (0x107).
27900  *
27901  *		Note: This routine will use the SET SPEED command which may not
27902  *		be supported by all devices.
27903  *
27904  *   Arguments: dev- the device 'dev_t'
27905  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27906  *		     CDROMSDRVSPEED (set)
27907  *		data- current drive speed or requested drive speed
27908  *		flag- this argument is a pass through to ddi_copyxxx() directly
27909  *		      from the mode argument of ioctl().
27910  *
27911  * Return Code: the code returned by sd_send_scsi_cmd()
27912  *		EINVAL if invalid arguments are provided
27913  *		EFAULT if ddi_copyxxx() fails
27914  *		ENXIO if fail ddi_get_soft_state
27915  *		EIO if invalid mode sense block descriptor length
27916  */
27917 
27918 static int
27919 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27920 {
27921 	struct sd_lun			*un;
27922 	struct uscsi_cmd		*com = NULL;
27923 	struct mode_header_grp2		*sense_mhp;
27924 	uchar_t				*sense_page;
27925 	uchar_t				*sense = NULL;
27926 	char				cdb[CDB_GROUP5];
27927 	int				bd_len;
27928 	int				current_speed = 0;
27929 	int				max_speed = 0;
27930 	int				rval;
27931 
27932 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27933 
27934 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27935 		return (ENXIO);
27936 	}
27937 
27938 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27939 
27940 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27941 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27942 	    SD_PATH_STANDARD)) != 0) {
27943 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27944 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27945 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27946 		return (rval);
27947 	}
27948 
27949 	/* Check the block descriptor len to handle only 1 block descriptor */
27950 	sense_mhp = (struct mode_header_grp2 *)sense;
27951 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27952 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27953 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27954 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27955 		    "block descriptor length\n");
27956 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27957 		return (EIO);
27958 	}
27959 
27960 	/* Calculate the current and maximum drive speeds */
27961 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27962 	current_speed = (sense_page[14] << 8) | sense_page[15];
27963 	max_speed = (sense_page[8] << 8) | sense_page[9];
27964 
27965 	/* Process the command */
27966 	switch (cmd) {
27967 	case CDROMGDRVSPEED:
27968 		current_speed /= SD_SPEED_1X;
27969 		if (ddi_copyout(&current_speed, (void *)data,
27970 		    sizeof (int), flag) != 0)
27971 			rval = EFAULT;
27972 		break;
27973 	case CDROMSDRVSPEED:
27974 		/* Convert the speed code to KB/sec */
27975 		switch ((uchar_t)data) {
27976 		case CDROM_NORMAL_SPEED:
27977 			current_speed = SD_SPEED_1X;
27978 			break;
27979 		case CDROM_DOUBLE_SPEED:
27980 			current_speed = 2 * SD_SPEED_1X;
27981 			break;
27982 		case CDROM_QUAD_SPEED:
27983 			current_speed = 4 * SD_SPEED_1X;
27984 			break;
27985 		case CDROM_TWELVE_SPEED:
27986 			current_speed = 12 * SD_SPEED_1X;
27987 			break;
27988 		case CDROM_MAXIMUM_SPEED:
27989 			current_speed = 0xffff;
27990 			break;
27991 		default:
27992 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27993 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27994 			    (uchar_t)data);
27995 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27996 			return (EINVAL);
27997 		}
27998 
27999 		/* Check the request against the drive's max speed. */
28000 		if (current_speed != 0xffff) {
28001 			if (current_speed > max_speed) {
28002 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
28003 				return (EINVAL);
28004 			}
28005 		}
28006 
28007 		/*
28008 		 * Build and send the SET SPEED command
28009 		 *
28010 		 * Note: The SET SPEED (0xBB) command used in this routine is
28011 		 * obsolete per the SCSI MMC spec but still supported in the
28012 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28013 		 * therefore the command is still implemented in this routine.
28014 		 */
28015 		bzero(cdb, sizeof (cdb));
28016 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
28017 		cdb[2] = (uchar_t)(current_speed >> 8);
28018 		cdb[3] = (uchar_t)current_speed;
28019 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28020 		com->uscsi_cdb	   = (caddr_t)cdb;
28021 		com->uscsi_cdblen  = CDB_GROUP5;
28022 		com->uscsi_bufaddr = NULL;
28023 		com->uscsi_buflen  = 0;
28024 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
28025 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
28026 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28027 		break;
28028 	default:
28029 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28030 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
28031 		rval = EINVAL;
28032 	}
28033 
28034 	if (sense) {
28035 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
28036 	}
28037 	if (com) {
28038 		kmem_free(com, sizeof (*com));
28039 	}
28040 	return (rval);
28041 }
28042 
28043 
28044 /*
28045  *    Function: sr_pause_resume()
28046  *
28047  * Description: This routine is the driver entry point for handling CD-ROM
28048  *		pause/resume ioctl requests. This only affects the audio play
28049  *		operation.
28050  *
28051  *   Arguments: dev - the device 'dev_t'
28052  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
28053  *		      for setting the resume bit of the cdb.
28054  *
28055  * Return Code: the code returned by sd_send_scsi_cmd()
28056  *		EINVAL if invalid mode specified
28057  *
28058  */
28059 
28060 static int
28061 sr_pause_resume(dev_t dev, int cmd)
28062 {
28063 	struct sd_lun		*un;
28064 	struct uscsi_cmd	*com;
28065 	char			cdb[CDB_GROUP1];
28066 	int			rval;
28067 
28068 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28069 		return (ENXIO);
28070 	}
28071 
28072 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28073 	bzero(cdb, CDB_GROUP1);
28074 	cdb[0] = SCMD_PAUSE_RESUME;
28075 	switch (cmd) {
28076 	case CDROMRESUME:
28077 		cdb[8] = 1;
28078 		break;
28079 	case CDROMPAUSE:
28080 		cdb[8] = 0;
28081 		break;
28082 	default:
28083 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
28084 		    " Command '%x' Not Supported\n", cmd);
28085 		rval = EINVAL;
28086 		goto done;
28087 	}
28088 
28089 	com->uscsi_cdb    = cdb;
28090 	com->uscsi_cdblen = CDB_GROUP1;
28091 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28092 
28093 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28094 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28095 
28096 done:
28097 	kmem_free(com, sizeof (*com));
28098 	return (rval);
28099 }
28100 
28101 
28102 /*
28103  *    Function: sr_play_msf()
28104  *
28105  * Description: This routine is the driver entry point for handling CD-ROM
28106  *		ioctl requests to output the audio signals at the specified
28107  *		starting address and continue the audio play until the specified
28108  *		ending address (CDROMPLAYMSF) The address is in Minute Second
28109  *		Frame (MSF) format.
28110  *
28111  *   Arguments: dev	- the device 'dev_t'
28112  *		data	- pointer to user provided audio msf structure,
28113  *		          specifying start/end addresses.
28114  *		flag	- this argument is a pass through to ddi_copyxxx()
28115  *		          directly from the mode argument of ioctl().
28116  *
28117  * Return Code: the code returned by sd_send_scsi_cmd()
28118  *		EFAULT if ddi_copyxxx() fails
28119  *		ENXIO if fail ddi_get_soft_state
28120  *		EINVAL if data pointer is NULL
28121  */
28122 
28123 static int
28124 sr_play_msf(dev_t dev, caddr_t data, int flag)
28125 {
28126 	struct sd_lun		*un;
28127 	struct uscsi_cmd	*com;
28128 	struct cdrom_msf	msf_struct;
28129 	struct cdrom_msf	*msf = &msf_struct;
28130 	char			cdb[CDB_GROUP1];
28131 	int			rval;
28132 
28133 	if (data == NULL) {
28134 		return (EINVAL);
28135 	}
28136 
28137 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28138 		return (ENXIO);
28139 	}
28140 
28141 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
28142 		return (EFAULT);
28143 	}
28144 
28145 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28146 	bzero(cdb, CDB_GROUP1);
28147 	cdb[0] = SCMD_PLAYAUDIO_MSF;
28148 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
28149 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
28150 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
28151 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
28152 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
28153 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
28154 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
28155 	} else {
28156 		cdb[3] = msf->cdmsf_min0;
28157 		cdb[4] = msf->cdmsf_sec0;
28158 		cdb[5] = msf->cdmsf_frame0;
28159 		cdb[6] = msf->cdmsf_min1;
28160 		cdb[7] = msf->cdmsf_sec1;
28161 		cdb[8] = msf->cdmsf_frame1;
28162 	}
28163 	com->uscsi_cdb    = cdb;
28164 	com->uscsi_cdblen = CDB_GROUP1;
28165 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28166 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28167 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28168 	kmem_free(com, sizeof (*com));
28169 	return (rval);
28170 }
28171 
28172 
28173 /*
28174  *    Function: sr_play_trkind()
28175  *
28176  * Description: This routine is the driver entry point for handling CD-ROM
28177  *		ioctl requests to output the audio signals at the specified
28178  *		starting address and continue the audio play until the specified
28179  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
28180  *		format.
28181  *
28182  *   Arguments: dev	- the device 'dev_t'
28183  *		data	- pointer to user provided audio track/index structure,
28184  *		          specifying start/end addresses.
28185  *		flag	- this argument is a pass through to ddi_copyxxx()
28186  *		          directly from the mode argument of ioctl().
28187  *
28188  * Return Code: the code returned by sd_send_scsi_cmd()
28189  *		EFAULT if ddi_copyxxx() fails
28190  *		ENXIO if fail ddi_get_soft_state
28191  *		EINVAL if data pointer is NULL
28192  */
28193 
28194 static int
28195 sr_play_trkind(dev_t dev, caddr_t data, int flag)
28196 {
28197 	struct cdrom_ti		ti_struct;
28198 	struct cdrom_ti		*ti = &ti_struct;
28199 	struct uscsi_cmd	*com = NULL;
28200 	char			cdb[CDB_GROUP1];
28201 	int			rval;
28202 
28203 	if (data == NULL) {
28204 		return (EINVAL);
28205 	}
28206 
28207 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
28208 		return (EFAULT);
28209 	}
28210 
28211 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28212 	bzero(cdb, CDB_GROUP1);
28213 	cdb[0] = SCMD_PLAYAUDIO_TI;
28214 	cdb[4] = ti->cdti_trk0;
28215 	cdb[5] = ti->cdti_ind0;
28216 	cdb[7] = ti->cdti_trk1;
28217 	cdb[8] = ti->cdti_ind1;
28218 	com->uscsi_cdb    = cdb;
28219 	com->uscsi_cdblen = CDB_GROUP1;
28220 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28221 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28222 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28223 	kmem_free(com, sizeof (*com));
28224 	return (rval);
28225 }
28226 
28227 
28228 /*
28229  *    Function: sr_read_all_subcodes()
28230  *
28231  * Description: This routine is the driver entry point for handling CD-ROM
28232  *		ioctl requests to return raw subcode data while the target is
28233  *		playing audio (CDROMSUBCODE).
28234  *
28235  *   Arguments: dev	- the device 'dev_t'
28236  *		data	- pointer to user provided cdrom subcode structure,
28237  *		          specifying the transfer length and address.
28238  *		flag	- this argument is a pass through to ddi_copyxxx()
28239  *		          directly from the mode argument of ioctl().
28240  *
28241  * Return Code: the code returned by sd_send_scsi_cmd()
28242  *		EFAULT if ddi_copyxxx() fails
28243  *		ENXIO if fail ddi_get_soft_state
28244  *		EINVAL if data pointer is NULL
28245  */
28246 
28247 static int
28248 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
28249 {
28250 	struct sd_lun		*un = NULL;
28251 	struct uscsi_cmd	*com = NULL;
28252 	struct cdrom_subcode	*subcode = NULL;
28253 	int			rval;
28254 	size_t			buflen;
28255 	char			cdb[CDB_GROUP5];
28256 
28257 #ifdef _MULTI_DATAMODEL
28258 	/* To support ILP32 applications in an LP64 world */
28259 	struct cdrom_subcode32		cdrom_subcode32;
28260 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
28261 #endif
28262 	if (data == NULL) {
28263 		return (EINVAL);
28264 	}
28265 
28266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28267 		return (ENXIO);
28268 	}
28269 
28270 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
28271 
28272 #ifdef _MULTI_DATAMODEL
28273 	switch (ddi_model_convert_from(flag & FMODELS)) {
28274 	case DDI_MODEL_ILP32:
28275 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
28276 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28277 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28278 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28279 			return (EFAULT);
28280 		}
28281 		/* Convert the ILP32 uscsi data from the application to LP64 */
28282 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
28283 		break;
28284 	case DDI_MODEL_NONE:
28285 		if (ddi_copyin(data, subcode,
28286 		    sizeof (struct cdrom_subcode), flag)) {
28287 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28288 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28289 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28290 			return (EFAULT);
28291 		}
28292 		break;
28293 	}
28294 #else /* ! _MULTI_DATAMODEL */
28295 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
28296 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28297 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
28298 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28299 		return (EFAULT);
28300 	}
28301 #endif /* _MULTI_DATAMODEL */
28302 
28303 	/*
28304 	 * Since MMC-2 expects max 3 bytes for length, check if the
28305 	 * length input is greater than 3 bytes
28306 	 */
28307 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
28308 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28309 		    "sr_read_all_subcodes: "
28310 		    "cdrom transfer length too large: %d (limit %d)\n",
28311 		    subcode->cdsc_length, 0xFFFFFF);
28312 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28313 		return (EINVAL);
28314 	}
28315 
28316 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
28317 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28318 	bzero(cdb, CDB_GROUP5);
28319 
28320 	if (un->un_f_mmc_cap == TRUE) {
28321 		cdb[0] = (char)SCMD_READ_CD;
28322 		cdb[2] = (char)0xff;
28323 		cdb[3] = (char)0xff;
28324 		cdb[4] = (char)0xff;
28325 		cdb[5] = (char)0xff;
28326 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28327 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28328 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
28329 		cdb[10] = 1;
28330 	} else {
28331 		/*
28332 		 * Note: A vendor specific command (0xDF) is being used her to
28333 		 * request a read of all subcodes.
28334 		 */
28335 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
28336 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
28337 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28338 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28339 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
28340 	}
28341 	com->uscsi_cdb	   = cdb;
28342 	com->uscsi_cdblen  = CDB_GROUP5;
28343 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
28344 	com->uscsi_buflen  = buflen;
28345 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28346 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28347 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28348 	kmem_free(subcode, sizeof (struct cdrom_subcode));
28349 	kmem_free(com, sizeof (*com));
28350 	return (rval);
28351 }
28352 
28353 
28354 /*
28355  *    Function: sr_read_subchannel()
28356  *
28357  * Description: This routine is the driver entry point for handling CD-ROM
28358  *		ioctl requests to return the Q sub-channel data of the CD
28359  *		current position block. (CDROMSUBCHNL) The data includes the
28360  *		track number, index number, absolute CD-ROM address (LBA or MSF
28361  *		format per the user) , track relative CD-ROM address (LBA or MSF
28362  *		format per the user), control data and audio status.
28363  *
28364  *   Arguments: dev	- the device 'dev_t'
28365  *		data	- pointer to user provided cdrom sub-channel structure
28366  *		flag	- this argument is a pass through to ddi_copyxxx()
28367  *		          directly from the mode argument of ioctl().
28368  *
28369  * Return Code: the code returned by sd_send_scsi_cmd()
28370  *		EFAULT if ddi_copyxxx() fails
28371  *		ENXIO if fail ddi_get_soft_state
28372  *		EINVAL if data pointer is NULL
28373  */
28374 
28375 static int
28376 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
28377 {
28378 	struct sd_lun		*un;
28379 	struct uscsi_cmd	*com;
28380 	struct cdrom_subchnl	subchanel;
28381 	struct cdrom_subchnl	*subchnl = &subchanel;
28382 	char			cdb[CDB_GROUP1];
28383 	caddr_t			buffer;
28384 	int			rval;
28385 
28386 	if (data == NULL) {
28387 		return (EINVAL);
28388 	}
28389 
28390 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28391 	    (un->un_state == SD_STATE_OFFLINE)) {
28392 		return (ENXIO);
28393 	}
28394 
28395 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28396 		return (EFAULT);
28397 	}
28398 
28399 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28400 	bzero(cdb, CDB_GROUP1);
28401 	cdb[0] = SCMD_READ_SUBCHANNEL;
28402 	/* Set the MSF bit based on the user requested address format */
28403 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28404 	/*
28405 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28406 	 * returned
28407 	 */
28408 	cdb[2] = 0x40;
28409 	/*
28410 	 * Set byte 3 to specify the return data format. A value of 0x01
28411 	 * indicates that the CD-ROM current position should be returned.
28412 	 */
28413 	cdb[3] = 0x01;
28414 	cdb[8] = 0x10;
28415 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28416 	com->uscsi_cdb	   = cdb;
28417 	com->uscsi_cdblen  = CDB_GROUP1;
28418 	com->uscsi_bufaddr = buffer;
28419 	com->uscsi_buflen  = 16;
28420 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28421 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28422 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28423 	if (rval != 0) {
28424 		kmem_free(buffer, 16);
28425 		kmem_free(com, sizeof (*com));
28426 		return (rval);
28427 	}
28428 
28429 	/* Process the returned Q sub-channel data */
28430 	subchnl->cdsc_audiostatus = buffer[1];
28431 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28432 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28433 	subchnl->cdsc_trk	= buffer[6];
28434 	subchnl->cdsc_ind	= buffer[7];
28435 	if (subchnl->cdsc_format & CDROM_LBA) {
28436 		subchnl->cdsc_absaddr.lba =
28437 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28438 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28439 		subchnl->cdsc_reladdr.lba =
28440 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28441 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28442 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28443 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28444 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28445 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28446 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28447 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28448 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28449 	} else {
28450 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28451 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28452 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28453 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28454 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28455 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28456 	}
28457 	kmem_free(buffer, 16);
28458 	kmem_free(com, sizeof (*com));
28459 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28460 	    != 0) {
28461 		return (EFAULT);
28462 	}
28463 	return (rval);
28464 }
28465 
28466 
28467 /*
28468  *    Function: sr_read_tocentry()
28469  *
28470  * Description: This routine is the driver entry point for handling CD-ROM
28471  *		ioctl requests to read from the Table of Contents (TOC)
28472  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28473  *		fields, the starting address (LBA or MSF format per the user)
28474  *		and the data mode if the user specified track is a data track.
28475  *
28476  *		Note: The READ HEADER (0x44) command used in this routine is
28477  *		obsolete per the SCSI MMC spec but still supported in the
28478  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28479  *		therefore the command is still implemented in this routine.
28480  *
28481  *   Arguments: dev	- the device 'dev_t'
28482  *		data	- pointer to user provided toc entry structure,
28483  *			  specifying the track # and the address format
28484  *			  (LBA or MSF).
28485  *		flag	- this argument is a pass through to ddi_copyxxx()
28486  *		          directly from the mode argument of ioctl().
28487  *
28488  * Return Code: the code returned by sd_send_scsi_cmd()
28489  *		EFAULT if ddi_copyxxx() fails
28490  *		ENXIO if fail ddi_get_soft_state
28491  *		EINVAL if data pointer is NULL
28492  */
28493 
28494 static int
28495 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28496 {
28497 	struct sd_lun		*un = NULL;
28498 	struct uscsi_cmd	*com;
28499 	struct cdrom_tocentry	toc_entry;
28500 	struct cdrom_tocentry	*entry = &toc_entry;
28501 	caddr_t			buffer;
28502 	int			rval;
28503 	char			cdb[CDB_GROUP1];
28504 
28505 	if (data == NULL) {
28506 		return (EINVAL);
28507 	}
28508 
28509 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28510 	    (un->un_state == SD_STATE_OFFLINE)) {
28511 		return (ENXIO);
28512 	}
28513 
28514 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28515 		return (EFAULT);
28516 	}
28517 
28518 	/* Validate the requested track and address format */
28519 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28520 		return (EINVAL);
28521 	}
28522 
28523 	if (entry->cdte_track == 0) {
28524 		return (EINVAL);
28525 	}
28526 
28527 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28528 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28529 	bzero(cdb, CDB_GROUP1);
28530 
28531 	cdb[0] = SCMD_READ_TOC;
28532 	/* Set the MSF bit based on the user requested address format  */
28533 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28534 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28535 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28536 	} else {
28537 		cdb[6] = entry->cdte_track;
28538 	}
28539 
28540 	/*
28541 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28542 	 * (4 byte TOC response header + 8 byte track descriptor)
28543 	 */
28544 	cdb[8] = 12;
28545 	com->uscsi_cdb	   = cdb;
28546 	com->uscsi_cdblen  = CDB_GROUP1;
28547 	com->uscsi_bufaddr = buffer;
28548 	com->uscsi_buflen  = 0x0C;
28549 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28550 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28551 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28552 	if (rval != 0) {
28553 		kmem_free(buffer, 12);
28554 		kmem_free(com, sizeof (*com));
28555 		return (rval);
28556 	}
28557 
28558 	/* Process the toc entry */
28559 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28560 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28561 	if (entry->cdte_format & CDROM_LBA) {
28562 		entry->cdte_addr.lba =
28563 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28564 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28565 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28566 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28567 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28568 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28569 		/*
28570 		 * Send a READ TOC command using the LBA address format to get
28571 		 * the LBA for the track requested so it can be used in the
28572 		 * READ HEADER request
28573 		 *
28574 		 * Note: The MSF bit of the READ HEADER command specifies the
28575 		 * output format. The block address specified in that command
28576 		 * must be in LBA format.
28577 		 */
28578 		cdb[1] = 0;
28579 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28580 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28581 		if (rval != 0) {
28582 			kmem_free(buffer, 12);
28583 			kmem_free(com, sizeof (*com));
28584 			return (rval);
28585 		}
28586 	} else {
28587 		entry->cdte_addr.msf.minute	= buffer[9];
28588 		entry->cdte_addr.msf.second	= buffer[10];
28589 		entry->cdte_addr.msf.frame	= buffer[11];
28590 		/*
28591 		 * Send a READ TOC command using the LBA address format to get
28592 		 * the LBA for the track requested so it can be used in the
28593 		 * READ HEADER request
28594 		 *
28595 		 * Note: The MSF bit of the READ HEADER command specifies the
28596 		 * output format. The block address specified in that command
28597 		 * must be in LBA format.
28598 		 */
28599 		cdb[1] = 0;
28600 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28601 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28602 		if (rval != 0) {
28603 			kmem_free(buffer, 12);
28604 			kmem_free(com, sizeof (*com));
28605 			return (rval);
28606 		}
28607 	}
28608 
28609 	/*
28610 	 * Build and send the READ HEADER command to determine the data mode of
28611 	 * the user specified track.
28612 	 */
28613 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28614 	    (entry->cdte_track != CDROM_LEADOUT)) {
28615 		bzero(cdb, CDB_GROUP1);
28616 		cdb[0] = SCMD_READ_HEADER;
28617 		cdb[2] = buffer[8];
28618 		cdb[3] = buffer[9];
28619 		cdb[4] = buffer[10];
28620 		cdb[5] = buffer[11];
28621 		cdb[8] = 0x08;
28622 		com->uscsi_buflen = 0x08;
28623 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28624 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28625 		if (rval == 0) {
28626 			entry->cdte_datamode = buffer[0];
28627 		} else {
28628 			/*
28629 			 * READ HEADER command failed, since this is
28630 			 * obsoleted in one spec, its better to return
28631 			 * -1 for an invlid track so that we can still
28632 			 * recieve the rest of the TOC data.
28633 			 */
28634 			entry->cdte_datamode = (uchar_t)-1;
28635 		}
28636 	} else {
28637 		entry->cdte_datamode = (uchar_t)-1;
28638 	}
28639 
28640 	kmem_free(buffer, 12);
28641 	kmem_free(com, sizeof (*com));
28642 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28643 		return (EFAULT);
28644 
28645 	return (rval);
28646 }
28647 
28648 
28649 /*
28650  *    Function: sr_read_tochdr()
28651  *
28652  * Description: This routine is the driver entry point for handling CD-ROM
28653  * 		ioctl requests to read the Table of Contents (TOC) header
28654  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28655  *		and ending track numbers
28656  *
28657  *   Arguments: dev	- the device 'dev_t'
28658  *		data	- pointer to user provided toc header structure,
28659  *			  specifying the starting and ending track numbers.
28660  *		flag	- this argument is a pass through to ddi_copyxxx()
28661  *			  directly from the mode argument of ioctl().
28662  *
28663  * Return Code: the code returned by sd_send_scsi_cmd()
28664  *		EFAULT if ddi_copyxxx() fails
28665  *		ENXIO if fail ddi_get_soft_state
28666  *		EINVAL if data pointer is NULL
28667  */
28668 
28669 static int
28670 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28671 {
28672 	struct sd_lun		*un;
28673 	struct uscsi_cmd	*com;
28674 	struct cdrom_tochdr	toc_header;
28675 	struct cdrom_tochdr	*hdr = &toc_header;
28676 	char			cdb[CDB_GROUP1];
28677 	int			rval;
28678 	caddr_t			buffer;
28679 
28680 	if (data == NULL) {
28681 		return (EINVAL);
28682 	}
28683 
28684 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28685 	    (un->un_state == SD_STATE_OFFLINE)) {
28686 		return (ENXIO);
28687 	}
28688 
28689 	buffer = kmem_zalloc(4, KM_SLEEP);
28690 	bzero(cdb, CDB_GROUP1);
28691 	cdb[0] = SCMD_READ_TOC;
28692 	/*
28693 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28694 	 * that the TOC header should be returned
28695 	 */
28696 	cdb[6] = 0x00;
28697 	/*
28698 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28699 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28700 	 */
28701 	cdb[8] = 0x04;
28702 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28703 	com->uscsi_cdb	   = cdb;
28704 	com->uscsi_cdblen  = CDB_GROUP1;
28705 	com->uscsi_bufaddr = buffer;
28706 	com->uscsi_buflen  = 0x04;
28707 	com->uscsi_timeout = 300;
28708 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28709 
28710 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28711 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28712 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28713 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28714 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28715 	} else {
28716 		hdr->cdth_trk0 = buffer[2];
28717 		hdr->cdth_trk1 = buffer[3];
28718 	}
28719 	kmem_free(buffer, 4);
28720 	kmem_free(com, sizeof (*com));
28721 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28722 		return (EFAULT);
28723 	}
28724 	return (rval);
28725 }
28726 
28727 
28728 /*
28729  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28730  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28731  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28732  * digital audio and extended architecture digital audio. These modes are
28733  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28734  * MMC specs.
28735  *
28736  * In addition to support for the various data formats these routines also
28737  * include support for devices that implement only the direct access READ
28738  * commands (0x08, 0x28), devices that implement the READ_CD commands
28739  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28740  * READ CDXA commands (0xD8, 0xDB)
28741  */
28742 
28743 /*
28744  *    Function: sr_read_mode1()
28745  *
28746  * Description: This routine is the driver entry point for handling CD-ROM
28747  *		ioctl read mode1 requests (CDROMREADMODE1).
28748  *
28749  *   Arguments: dev	- the device 'dev_t'
28750  *		data	- pointer to user provided cd read structure specifying
28751  *			  the lba buffer address and length.
28752  *		flag	- this argument is a pass through to ddi_copyxxx()
28753  *			  directly from the mode argument of ioctl().
28754  *
28755  * Return Code: the code returned by sd_send_scsi_cmd()
28756  *		EFAULT if ddi_copyxxx() fails
28757  *		ENXIO if fail ddi_get_soft_state
28758  *		EINVAL if data pointer is NULL
28759  */
28760 
28761 static int
28762 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28763 {
28764 	struct sd_lun		*un;
28765 	struct cdrom_read	mode1_struct;
28766 	struct cdrom_read	*mode1 = &mode1_struct;
28767 	int			rval;
28768 #ifdef _MULTI_DATAMODEL
28769 	/* To support ILP32 applications in an LP64 world */
28770 	struct cdrom_read32	cdrom_read32;
28771 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28772 #endif /* _MULTI_DATAMODEL */
28773 
28774 	if (data == NULL) {
28775 		return (EINVAL);
28776 	}
28777 
28778 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28779 	    (un->un_state == SD_STATE_OFFLINE)) {
28780 		return (ENXIO);
28781 	}
28782 
28783 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28784 	    "sd_read_mode1: entry: un:0x%p\n", un);
28785 
28786 #ifdef _MULTI_DATAMODEL
28787 	switch (ddi_model_convert_from(flag & FMODELS)) {
28788 	case DDI_MODEL_ILP32:
28789 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28790 			return (EFAULT);
28791 		}
28792 		/* Convert the ILP32 uscsi data from the application to LP64 */
28793 		cdrom_read32tocdrom_read(cdrd32, mode1);
28794 		break;
28795 	case DDI_MODEL_NONE:
28796 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28797 			return (EFAULT);
28798 		}
28799 	}
28800 #else /* ! _MULTI_DATAMODEL */
28801 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28802 		return (EFAULT);
28803 	}
28804 #endif /* _MULTI_DATAMODEL */
28805 
28806 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28807 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28808 
28809 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28810 	    "sd_read_mode1: exit: un:0x%p\n", un);
28811 
28812 	return (rval);
28813 }
28814 
28815 
28816 /*
28817  *    Function: sr_read_cd_mode2()
28818  *
28819  * Description: This routine is the driver entry point for handling CD-ROM
28820  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28821  *		support the READ CD (0xBE) command or the 1st generation
28822  *		READ CD (0xD4) command.
28823  *
28824  *   Arguments: dev	- the device 'dev_t'
28825  *		data	- pointer to user provided cd read structure specifying
28826  *			  the lba buffer address and length.
28827  *		flag	- this argument is a pass through to ddi_copyxxx()
28828  *			  directly from the mode argument of ioctl().
28829  *
28830  * Return Code: the code returned by sd_send_scsi_cmd()
28831  *		EFAULT if ddi_copyxxx() fails
28832  *		ENXIO if fail ddi_get_soft_state
28833  *		EINVAL if data pointer is NULL
28834  */
28835 
28836 static int
28837 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28838 {
28839 	struct sd_lun		*un;
28840 	struct uscsi_cmd	*com;
28841 	struct cdrom_read	mode2_struct;
28842 	struct cdrom_read	*mode2 = &mode2_struct;
28843 	uchar_t			cdb[CDB_GROUP5];
28844 	int			nblocks;
28845 	int			rval;
28846 #ifdef _MULTI_DATAMODEL
28847 	/*  To support ILP32 applications in an LP64 world */
28848 	struct cdrom_read32	cdrom_read32;
28849 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28850 #endif /* _MULTI_DATAMODEL */
28851 
28852 	if (data == NULL) {
28853 		return (EINVAL);
28854 	}
28855 
28856 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28857 	    (un->un_state == SD_STATE_OFFLINE)) {
28858 		return (ENXIO);
28859 	}
28860 
28861 #ifdef _MULTI_DATAMODEL
28862 	switch (ddi_model_convert_from(flag & FMODELS)) {
28863 	case DDI_MODEL_ILP32:
28864 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28865 			return (EFAULT);
28866 		}
28867 		/* Convert the ILP32 uscsi data from the application to LP64 */
28868 		cdrom_read32tocdrom_read(cdrd32, mode2);
28869 		break;
28870 	case DDI_MODEL_NONE:
28871 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28872 			return (EFAULT);
28873 		}
28874 		break;
28875 	}
28876 
28877 #else /* ! _MULTI_DATAMODEL */
28878 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28879 		return (EFAULT);
28880 	}
28881 #endif /* _MULTI_DATAMODEL */
28882 
28883 	bzero(cdb, sizeof (cdb));
28884 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28885 		/* Read command supported by 1st generation atapi drives */
28886 		cdb[0] = SCMD_READ_CDD4;
28887 	} else {
28888 		/* Universal CD Access Command */
28889 		cdb[0] = SCMD_READ_CD;
28890 	}
28891 
28892 	/*
28893 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28894 	 */
28895 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28896 
28897 	/* set the start address */
28898 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28899 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28900 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28901 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28902 
28903 	/* set the transfer length */
28904 	nblocks = mode2->cdread_buflen / 2336;
28905 	cdb[6] = (uchar_t)(nblocks >> 16);
28906 	cdb[7] = (uchar_t)(nblocks >> 8);
28907 	cdb[8] = (uchar_t)nblocks;
28908 
28909 	/* set the filter bits */
28910 	cdb[9] = CDROM_READ_CD_USERDATA;
28911 
28912 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28913 	com->uscsi_cdb = (caddr_t)cdb;
28914 	com->uscsi_cdblen = sizeof (cdb);
28915 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28916 	com->uscsi_buflen = mode2->cdread_buflen;
28917 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28918 
28919 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28920 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28921 	kmem_free(com, sizeof (*com));
28922 	return (rval);
28923 }
28924 
28925 
28926 /*
28927  *    Function: sr_read_mode2()
28928  *
28929  * Description: This routine is the driver entry point for handling CD-ROM
28930  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28931  *		do not support the READ CD (0xBE) command.
28932  *
28933  *   Arguments: dev	- the device 'dev_t'
28934  *		data	- pointer to user provided cd read structure specifying
28935  *			  the lba buffer address and length.
28936  *		flag	- this argument is a pass through to ddi_copyxxx()
28937  *			  directly from the mode argument of ioctl().
28938  *
28939  * Return Code: the code returned by sd_send_scsi_cmd()
28940  *		EFAULT if ddi_copyxxx() fails
28941  *		ENXIO if fail ddi_get_soft_state
28942  *		EINVAL if data pointer is NULL
28943  *		EIO if fail to reset block size
28944  *		EAGAIN if commands are in progress in the driver
28945  */
28946 
28947 static int
28948 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28949 {
28950 	struct sd_lun		*un;
28951 	struct cdrom_read	mode2_struct;
28952 	struct cdrom_read	*mode2 = &mode2_struct;
28953 	int			rval;
28954 	uint32_t		restore_blksize;
28955 	struct uscsi_cmd	*com;
28956 	uchar_t			cdb[CDB_GROUP0];
28957 	int			nblocks;
28958 
28959 #ifdef _MULTI_DATAMODEL
28960 	/* To support ILP32 applications in an LP64 world */
28961 	struct cdrom_read32	cdrom_read32;
28962 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28963 #endif /* _MULTI_DATAMODEL */
28964 
28965 	if (data == NULL) {
28966 		return (EINVAL);
28967 	}
28968 
28969 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28970 	    (un->un_state == SD_STATE_OFFLINE)) {
28971 		return (ENXIO);
28972 	}
28973 
28974 	/*
28975 	 * Because this routine will update the device and driver block size
28976 	 * being used we want to make sure there are no commands in progress.
28977 	 * If commands are in progress the user will have to try again.
28978 	 *
28979 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28980 	 * in sdioctl to protect commands from sdioctl through to the top of
28981 	 * sd_uscsi_strategy. See sdioctl for details.
28982 	 */
28983 	mutex_enter(SD_MUTEX(un));
28984 	if (un->un_ncmds_in_driver != 1) {
28985 		mutex_exit(SD_MUTEX(un));
28986 		return (EAGAIN);
28987 	}
28988 	mutex_exit(SD_MUTEX(un));
28989 
28990 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28991 	    "sd_read_mode2: entry: un:0x%p\n", un);
28992 
28993 #ifdef _MULTI_DATAMODEL
28994 	switch (ddi_model_convert_from(flag & FMODELS)) {
28995 	case DDI_MODEL_ILP32:
28996 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28997 			return (EFAULT);
28998 		}
28999 		/* Convert the ILP32 uscsi data from the application to LP64 */
29000 		cdrom_read32tocdrom_read(cdrd32, mode2);
29001 		break;
29002 	case DDI_MODEL_NONE:
29003 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
29004 			return (EFAULT);
29005 		}
29006 		break;
29007 	}
29008 #else /* ! _MULTI_DATAMODEL */
29009 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
29010 		return (EFAULT);
29011 	}
29012 #endif /* _MULTI_DATAMODEL */
29013 
29014 	/* Store the current target block size for restoration later */
29015 	restore_blksize = un->un_tgt_blocksize;
29016 
29017 	/* Change the device and soft state target block size to 2336 */
29018 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
29019 		rval = EIO;
29020 		goto done;
29021 	}
29022 
29023 
29024 	bzero(cdb, sizeof (cdb));
29025 
29026 	/* set READ operation */
29027 	cdb[0] = SCMD_READ;
29028 
29029 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
29030 	mode2->cdread_lba >>= 2;
29031 
29032 	/* set the start address */
29033 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
29034 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
29035 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
29036 
29037 	/* set the transfer length */
29038 	nblocks = mode2->cdread_buflen / 2336;
29039 	cdb[4] = (uchar_t)nblocks & 0xFF;
29040 
29041 	/* build command */
29042 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29043 	com->uscsi_cdb = (caddr_t)cdb;
29044 	com->uscsi_cdblen = sizeof (cdb);
29045 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
29046 	com->uscsi_buflen = mode2->cdread_buflen;
29047 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29048 
29049 	/*
29050 	 * Issue SCSI command with user space address for read buffer.
29051 	 *
29052 	 * This sends the command through main channel in the driver.
29053 	 *
29054 	 * Since this is accessed via an IOCTL call, we go through the
29055 	 * standard path, so that if the device was powered down, then
29056 	 * it would be 'awakened' to handle the command.
29057 	 */
29058 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29059 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29060 
29061 	kmem_free(com, sizeof (*com));
29062 
29063 	/* Restore the device and soft state target block size */
29064 	if (sr_sector_mode(dev, restore_blksize) != 0) {
29065 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29066 		    "can't do switch back to mode 1\n");
29067 		/*
29068 		 * If sd_send_scsi_READ succeeded we still need to report
29069 		 * an error because we failed to reset the block size
29070 		 */
29071 		if (rval == 0) {
29072 			rval = EIO;
29073 		}
29074 	}
29075 
29076 done:
29077 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
29078 	    "sd_read_mode2: exit: un:0x%p\n", un);
29079 
29080 	return (rval);
29081 }
29082 
29083 
29084 /*
29085  *    Function: sr_sector_mode()
29086  *
29087  * Description: This utility function is used by sr_read_mode2 to set the target
29088  *		block size based on the user specified size. This is a legacy
29089  *		implementation based upon a vendor specific mode page
29090  *
29091  *   Arguments: dev	- the device 'dev_t'
29092  *		data	- flag indicating if block size is being set to 2336 or
29093  *			  512.
29094  *
29095  * Return Code: the code returned by sd_send_scsi_cmd()
29096  *		EFAULT if ddi_copyxxx() fails
29097  *		ENXIO if fail ddi_get_soft_state
29098  *		EINVAL if data pointer is NULL
29099  */
29100 
29101 static int
29102 sr_sector_mode(dev_t dev, uint32_t blksize)
29103 {
29104 	struct sd_lun	*un;
29105 	uchar_t		*sense;
29106 	uchar_t		*select;
29107 	int		rval;
29108 
29109 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29110 	    (un->un_state == SD_STATE_OFFLINE)) {
29111 		return (ENXIO);
29112 	}
29113 
29114 	sense = kmem_zalloc(20, KM_SLEEP);
29115 
29116 	/* Note: This is a vendor specific mode page (0x81) */
29117 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
29118 	    SD_PATH_STANDARD)) != 0) {
29119 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29120 		    "sr_sector_mode: Mode Sense failed\n");
29121 		kmem_free(sense, 20);
29122 		return (rval);
29123 	}
29124 	select = kmem_zalloc(20, KM_SLEEP);
29125 	select[3] = 0x08;
29126 	select[10] = ((blksize >> 8) & 0xff);
29127 	select[11] = (blksize & 0xff);
29128 	select[12] = 0x01;
29129 	select[13] = 0x06;
29130 	select[14] = sense[14];
29131 	select[15] = sense[15];
29132 	if (blksize == SD_MODE2_BLKSIZE) {
29133 		select[14] |= 0x01;
29134 	}
29135 
29136 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
29137 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
29138 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29139 		    "sr_sector_mode: Mode Select failed\n");
29140 	} else {
29141 		/*
29142 		 * Only update the softstate block size if we successfully
29143 		 * changed the device block mode.
29144 		 */
29145 		mutex_enter(SD_MUTEX(un));
29146 		sd_update_block_info(un, blksize, 0);
29147 		mutex_exit(SD_MUTEX(un));
29148 	}
29149 	kmem_free(sense, 20);
29150 	kmem_free(select, 20);
29151 	return (rval);
29152 }
29153 
29154 
29155 /*
29156  *    Function: sr_read_cdda()
29157  *
29158  * Description: This routine is the driver entry point for handling CD-ROM
29159  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
29160  *		the target supports CDDA these requests are handled via a vendor
29161  *		specific command (0xD8) If the target does not support CDDA
29162  *		these requests are handled via the READ CD command (0xBE).
29163  *
29164  *   Arguments: dev	- the device 'dev_t'
29165  *		data	- pointer to user provided CD-DA structure specifying
29166  *			  the track starting address, transfer length, and
29167  *			  subcode options.
29168  *		flag	- this argument is a pass through to ddi_copyxxx()
29169  *			  directly from the mode argument of ioctl().
29170  *
29171  * Return Code: the code returned by sd_send_scsi_cmd()
29172  *		EFAULT if ddi_copyxxx() fails
29173  *		ENXIO if fail ddi_get_soft_state
29174  *		EINVAL if invalid arguments are provided
29175  *		ENOTTY
29176  */
29177 
29178 static int
29179 sr_read_cdda(dev_t dev, caddr_t data, int flag)
29180 {
29181 	struct sd_lun			*un;
29182 	struct uscsi_cmd		*com;
29183 	struct cdrom_cdda		*cdda;
29184 	int				rval;
29185 	size_t				buflen;
29186 	char				cdb[CDB_GROUP5];
29187 
29188 #ifdef _MULTI_DATAMODEL
29189 	/* To support ILP32 applications in an LP64 world */
29190 	struct cdrom_cdda32	cdrom_cdda32;
29191 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
29192 #endif /* _MULTI_DATAMODEL */
29193 
29194 	if (data == NULL) {
29195 		return (EINVAL);
29196 	}
29197 
29198 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29199 		return (ENXIO);
29200 	}
29201 
29202 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
29203 
29204 #ifdef _MULTI_DATAMODEL
29205 	switch (ddi_model_convert_from(flag & FMODELS)) {
29206 	case DDI_MODEL_ILP32:
29207 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
29208 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29209 			    "sr_read_cdda: ddi_copyin Failed\n");
29210 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29211 			return (EFAULT);
29212 		}
29213 		/* Convert the ILP32 uscsi data from the application to LP64 */
29214 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
29215 		break;
29216 	case DDI_MODEL_NONE:
29217 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29218 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29219 			    "sr_read_cdda: ddi_copyin Failed\n");
29220 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29221 			return (EFAULT);
29222 		}
29223 		break;
29224 	}
29225 #else /* ! _MULTI_DATAMODEL */
29226 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29227 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29228 		    "sr_read_cdda: ddi_copyin Failed\n");
29229 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29230 		return (EFAULT);
29231 	}
29232 #endif /* _MULTI_DATAMODEL */
29233 
29234 	/*
29235 	 * Since MMC-2 expects max 3 bytes for length, check if the
29236 	 * length input is greater than 3 bytes
29237 	 */
29238 	if ((cdda->cdda_length & 0xFF000000) != 0) {
29239 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
29240 		    "cdrom transfer length too large: %d (limit %d)\n",
29241 		    cdda->cdda_length, 0xFFFFFF);
29242 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29243 		return (EINVAL);
29244 	}
29245 
29246 	switch (cdda->cdda_subcode) {
29247 	case CDROM_DA_NO_SUBCODE:
29248 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
29249 		break;
29250 	case CDROM_DA_SUBQ:
29251 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
29252 		break;
29253 	case CDROM_DA_ALL_SUBCODE:
29254 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
29255 		break;
29256 	case CDROM_DA_SUBCODE_ONLY:
29257 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
29258 		break;
29259 	default:
29260 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29261 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
29262 		    cdda->cdda_subcode);
29263 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29264 		return (EINVAL);
29265 	}
29266 
29267 	/* Build and send the command */
29268 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29269 	bzero(cdb, CDB_GROUP5);
29270 
29271 	if (un->un_f_cfg_cdda == TRUE) {
29272 		cdb[0] = (char)SCMD_READ_CD;
29273 		cdb[1] = 0x04;
29274 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29275 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29276 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29277 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29278 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29279 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29280 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
29281 		cdb[9] = 0x10;
29282 		switch (cdda->cdda_subcode) {
29283 		case CDROM_DA_NO_SUBCODE :
29284 			cdb[10] = 0x0;
29285 			break;
29286 		case CDROM_DA_SUBQ :
29287 			cdb[10] = 0x2;
29288 			break;
29289 		case CDROM_DA_ALL_SUBCODE :
29290 			cdb[10] = 0x1;
29291 			break;
29292 		case CDROM_DA_SUBCODE_ONLY :
29293 			/* FALLTHROUGH */
29294 		default :
29295 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29296 			kmem_free(com, sizeof (*com));
29297 			return (ENOTTY);
29298 		}
29299 	} else {
29300 		cdb[0] = (char)SCMD_READ_CDDA;
29301 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29302 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29303 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29304 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29305 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
29306 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29307 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29308 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
29309 		cdb[10] = cdda->cdda_subcode;
29310 	}
29311 
29312 	com->uscsi_cdb = cdb;
29313 	com->uscsi_cdblen = CDB_GROUP5;
29314 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
29315 	com->uscsi_buflen = buflen;
29316 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29317 
29318 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29319 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29320 
29321 	kmem_free(cdda, sizeof (struct cdrom_cdda));
29322 	kmem_free(com, sizeof (*com));
29323 	return (rval);
29324 }
29325 
29326 
29327 /*
29328  *    Function: sr_read_cdxa()
29329  *
29330  * Description: This routine is the driver entry point for handling CD-ROM
29331  *		ioctl requests to return CD-XA (Extended Architecture) data.
29332  *		(CDROMCDXA).
29333  *
29334  *   Arguments: dev	- the device 'dev_t'
29335  *		data	- pointer to user provided CD-XA structure specifying
29336  *			  the data starting address, transfer length, and format
29337  *		flag	- this argument is a pass through to ddi_copyxxx()
29338  *			  directly from the mode argument of ioctl().
29339  *
29340  * Return Code: the code returned by sd_send_scsi_cmd()
29341  *		EFAULT if ddi_copyxxx() fails
29342  *		ENXIO if fail ddi_get_soft_state
29343  *		EINVAL if data pointer is NULL
29344  */
29345 
29346 static int
29347 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
29348 {
29349 	struct sd_lun		*un;
29350 	struct uscsi_cmd	*com;
29351 	struct cdrom_cdxa	*cdxa;
29352 	int			rval;
29353 	size_t			buflen;
29354 	char			cdb[CDB_GROUP5];
29355 	uchar_t			read_flags;
29356 
29357 #ifdef _MULTI_DATAMODEL
29358 	/* To support ILP32 applications in an LP64 world */
29359 	struct cdrom_cdxa32		cdrom_cdxa32;
29360 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
29361 #endif /* _MULTI_DATAMODEL */
29362 
29363 	if (data == NULL) {
29364 		return (EINVAL);
29365 	}
29366 
29367 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29368 		return (ENXIO);
29369 	}
29370 
29371 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
29372 
29373 #ifdef _MULTI_DATAMODEL
29374 	switch (ddi_model_convert_from(flag & FMODELS)) {
29375 	case DDI_MODEL_ILP32:
29376 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
29377 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29378 			return (EFAULT);
29379 		}
29380 		/*
29381 		 * Convert the ILP32 uscsi data from the
29382 		 * application to LP64 for internal use.
29383 		 */
29384 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29385 		break;
29386 	case DDI_MODEL_NONE:
29387 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29388 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29389 			return (EFAULT);
29390 		}
29391 		break;
29392 	}
29393 #else /* ! _MULTI_DATAMODEL */
29394 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29395 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29396 		return (EFAULT);
29397 	}
29398 #endif /* _MULTI_DATAMODEL */
29399 
29400 	/*
29401 	 * Since MMC-2 expects max 3 bytes for length, check if the
29402 	 * length input is greater than 3 bytes
29403 	 */
29404 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29405 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29406 		    "cdrom transfer length too large: %d (limit %d)\n",
29407 		    cdxa->cdxa_length, 0xFFFFFF);
29408 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29409 		return (EINVAL);
29410 	}
29411 
29412 	switch (cdxa->cdxa_format) {
29413 	case CDROM_XA_DATA:
29414 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29415 		read_flags = 0x10;
29416 		break;
29417 	case CDROM_XA_SECTOR_DATA:
29418 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29419 		read_flags = 0xf8;
29420 		break;
29421 	case CDROM_XA_DATA_W_ERROR:
29422 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29423 		read_flags = 0xfc;
29424 		break;
29425 	default:
29426 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29427 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29428 		    cdxa->cdxa_format);
29429 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29430 		return (EINVAL);
29431 	}
29432 
29433 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29434 	bzero(cdb, CDB_GROUP5);
29435 	if (un->un_f_mmc_cap == TRUE) {
29436 		cdb[0] = (char)SCMD_READ_CD;
29437 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29438 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29439 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29440 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29441 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29442 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29443 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29444 		cdb[9] = (char)read_flags;
29445 	} else {
29446 		/*
29447 		 * Note: A vendor specific command (0xDB) is being used her to
29448 		 * request a read of all subcodes.
29449 		 */
29450 		cdb[0] = (char)SCMD_READ_CDXA;
29451 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29452 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29453 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29454 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29455 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29456 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29457 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29458 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29459 		cdb[10] = cdxa->cdxa_format;
29460 	}
29461 	com->uscsi_cdb	   = cdb;
29462 	com->uscsi_cdblen  = CDB_GROUP5;
29463 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29464 	com->uscsi_buflen  = buflen;
29465 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29466 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29467 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29468 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29469 	kmem_free(com, sizeof (*com));
29470 	return (rval);
29471 }
29472 
29473 
29474 /*
29475  *    Function: sr_eject()
29476  *
29477  * Description: This routine is the driver entry point for handling CD-ROM
29478  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29479  *
29480  *   Arguments: dev	- the device 'dev_t'
29481  *
29482  * Return Code: the code returned by sd_send_scsi_cmd()
29483  */
29484 
29485 static int
29486 sr_eject(dev_t dev)
29487 {
29488 	struct sd_lun	*un;
29489 	int		rval;
29490 
29491 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29492 	    (un->un_state == SD_STATE_OFFLINE)) {
29493 		return (ENXIO);
29494 	}
29495 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29496 	    SD_PATH_STANDARD)) != 0) {
29497 		return (rval);
29498 	}
29499 
29500 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29501 	    SD_PATH_STANDARD);
29502 
29503 	if (rval == 0) {
29504 		mutex_enter(SD_MUTEX(un));
29505 		sr_ejected(un);
29506 		un->un_mediastate = DKIO_EJECTED;
29507 		cv_broadcast(&un->un_state_cv);
29508 		mutex_exit(SD_MUTEX(un));
29509 	}
29510 	return (rval);
29511 }
29512 
29513 
29514 /*
29515  *    Function: sr_ejected()
29516  *
29517  * Description: This routine updates the soft state structure to invalidate the
29518  *		geometry information after the media has been ejected or a
29519  *		media eject has been detected.
29520  *
29521  *   Arguments: un - driver soft state (unit) structure
29522  */
29523 
29524 static void
29525 sr_ejected(struct sd_lun *un)
29526 {
29527 	struct sd_errstats *stp;
29528 
29529 	ASSERT(un != NULL);
29530 	ASSERT(mutex_owned(SD_MUTEX(un)));
29531 
29532 	un->un_f_blockcount_is_valid	= FALSE;
29533 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29534 	un->un_f_geometry_is_valid	= FALSE;
29535 
29536 	if (un->un_errstats != NULL) {
29537 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29538 		stp->sd_capacity.value.ui64 = 0;
29539 	}
29540 }
29541 
29542 
29543 /*
29544  *    Function: sr_check_wp()
29545  *
29546  * Description: This routine checks the write protection of a removable
29547  *      media disk and hotpluggable devices via the write protect bit of
29548  *      the Mode Page Header device specific field. Some devices choke
29549  *      on unsupported mode page. In order to workaround this issue,
29550  *      this routine has been implemented to use 0x3f mode page(request
29551  *      for all pages) for all device types.
29552  *
29553  *   Arguments: dev		- the device 'dev_t'
29554  *
29555  * Return Code: int indicating if the device is write protected (1) or not (0)
29556  *
29557  *     Context: Kernel thread.
29558  *
29559  */
29560 
29561 static int
29562 sr_check_wp(dev_t dev)
29563 {
29564 	struct sd_lun	*un;
29565 	uchar_t		device_specific;
29566 	uchar_t		*sense;
29567 	int		hdrlen;
29568 	int		rval = FALSE;
29569 
29570 	/*
29571 	 * Note: The return codes for this routine should be reworked to
29572 	 * properly handle the case of a NULL softstate.
29573 	 */
29574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29575 		return (FALSE);
29576 	}
29577 
29578 	if (un->un_f_cfg_is_atapi == TRUE) {
29579 		/*
29580 		 * The mode page contents are not required; set the allocation
29581 		 * length for the mode page header only
29582 		 */
29583 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29584 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29585 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29586 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29587 			goto err_exit;
29588 		device_specific =
29589 		    ((struct mode_header_grp2 *)sense)->device_specific;
29590 	} else {
29591 		hdrlen = MODE_HEADER_LENGTH;
29592 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29593 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29594 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29595 			goto err_exit;
29596 		device_specific =
29597 		    ((struct mode_header *)sense)->device_specific;
29598 	}
29599 
29600 	/*
29601 	 * Write protect mode sense failed; not all disks
29602 	 * understand this query. Return FALSE assuming that
29603 	 * these devices are not writable.
29604 	 */
29605 	if (device_specific & WRITE_PROTECT) {
29606 		rval = TRUE;
29607 	}
29608 
29609 err_exit:
29610 	kmem_free(sense, hdrlen);
29611 	return (rval);
29612 }
29613 
29614 /*
29615  *    Function: sr_volume_ctrl()
29616  *
29617  * Description: This routine is the driver entry point for handling CD-ROM
29618  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29619  *
29620  *   Arguments: dev	- the device 'dev_t'
29621  *		data	- pointer to user audio volume control structure
29622  *		flag	- this argument is a pass through to ddi_copyxxx()
29623  *			  directly from the mode argument of ioctl().
29624  *
29625  * Return Code: the code returned by sd_send_scsi_cmd()
29626  *		EFAULT if ddi_copyxxx() fails
29627  *		ENXIO if fail ddi_get_soft_state
29628  *		EINVAL if data pointer is NULL
29629  *
29630  */
29631 
29632 static int
29633 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29634 {
29635 	struct sd_lun		*un;
29636 	struct cdrom_volctrl    volume;
29637 	struct cdrom_volctrl    *vol = &volume;
29638 	uchar_t			*sense_page;
29639 	uchar_t			*select_page;
29640 	uchar_t			*sense;
29641 	uchar_t			*select;
29642 	int			sense_buflen;
29643 	int			select_buflen;
29644 	int			rval;
29645 
29646 	if (data == NULL) {
29647 		return (EINVAL);
29648 	}
29649 
29650 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29651 	    (un->un_state == SD_STATE_OFFLINE)) {
29652 		return (ENXIO);
29653 	}
29654 
29655 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29656 		return (EFAULT);
29657 	}
29658 
29659 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29660 		struct mode_header_grp2		*sense_mhp;
29661 		struct mode_header_grp2		*select_mhp;
29662 		int				bd_len;
29663 
29664 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29665 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29666 		    MODEPAGE_AUDIO_CTRL_LEN;
29667 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29668 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29669 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29670 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29671 		    SD_PATH_STANDARD)) != 0) {
29672 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29673 			    "sr_volume_ctrl: Mode Sense Failed\n");
29674 			kmem_free(sense, sense_buflen);
29675 			kmem_free(select, select_buflen);
29676 			return (rval);
29677 		}
29678 		sense_mhp = (struct mode_header_grp2 *)sense;
29679 		select_mhp = (struct mode_header_grp2 *)select;
29680 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29681 		    sense_mhp->bdesc_length_lo;
29682 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29683 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29684 			    "sr_volume_ctrl: Mode Sense returned invalid "
29685 			    "block descriptor length\n");
29686 			kmem_free(sense, sense_buflen);
29687 			kmem_free(select, select_buflen);
29688 			return (EIO);
29689 		}
29690 		sense_page = (uchar_t *)
29691 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29692 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29693 		select_mhp->length_msb = 0;
29694 		select_mhp->length_lsb = 0;
29695 		select_mhp->bdesc_length_hi = 0;
29696 		select_mhp->bdesc_length_lo = 0;
29697 	} else {
29698 		struct mode_header		*sense_mhp, *select_mhp;
29699 
29700 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29701 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29702 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29703 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29704 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29705 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29706 		    SD_PATH_STANDARD)) != 0) {
29707 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29708 			    "sr_volume_ctrl: Mode Sense Failed\n");
29709 			kmem_free(sense, sense_buflen);
29710 			kmem_free(select, select_buflen);
29711 			return (rval);
29712 		}
29713 		sense_mhp  = (struct mode_header *)sense;
29714 		select_mhp = (struct mode_header *)select;
29715 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29716 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29717 			    "sr_volume_ctrl: Mode Sense returned invalid "
29718 			    "block descriptor length\n");
29719 			kmem_free(sense, sense_buflen);
29720 			kmem_free(select, select_buflen);
29721 			return (EIO);
29722 		}
29723 		sense_page = (uchar_t *)
29724 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29725 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29726 		select_mhp->length = 0;
29727 		select_mhp->bdesc_length = 0;
29728 	}
29729 	/*
29730 	 * Note: An audio control data structure could be created and overlayed
29731 	 * on the following in place of the array indexing method implemented.
29732 	 */
29733 
29734 	/* Build the select data for the user volume data */
29735 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29736 	select_page[1] = 0xE;
29737 	/* Set the immediate bit */
29738 	select_page[2] = 0x04;
29739 	/* Zero out reserved fields */
29740 	select_page[3] = 0x00;
29741 	select_page[4] = 0x00;
29742 	/* Return sense data for fields not to be modified */
29743 	select_page[5] = sense_page[5];
29744 	select_page[6] = sense_page[6];
29745 	select_page[7] = sense_page[7];
29746 	/* Set the user specified volume levels for channel 0 and 1 */
29747 	select_page[8] = 0x01;
29748 	select_page[9] = vol->channel0;
29749 	select_page[10] = 0x02;
29750 	select_page[11] = vol->channel1;
29751 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29752 	select_page[12] = sense_page[12];
29753 	select_page[13] = sense_page[13];
29754 	select_page[14] = sense_page[14];
29755 	select_page[15] = sense_page[15];
29756 
29757 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29758 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29759 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29760 	} else {
29761 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29762 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29763 	}
29764 
29765 	kmem_free(sense, sense_buflen);
29766 	kmem_free(select, select_buflen);
29767 	return (rval);
29768 }
29769 
29770 
29771 /*
29772  *    Function: sr_read_sony_session_offset()
29773  *
29774  * Description: This routine is the driver entry point for handling CD-ROM
29775  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29776  *		The address of the first track in the last session of a
29777  *		multi-session CD-ROM is returned
29778  *
29779  *		Note: This routine uses a vendor specific key value in the
29780  *		command control field without implementing any vendor check here
29781  *		or in the ioctl routine.
29782  *
29783  *   Arguments: dev	- the device 'dev_t'
29784  *		data	- pointer to an int to hold the requested address
29785  *		flag	- this argument is a pass through to ddi_copyxxx()
29786  *			  directly from the mode argument of ioctl().
29787  *
29788  * Return Code: the code returned by sd_send_scsi_cmd()
29789  *		EFAULT if ddi_copyxxx() fails
29790  *		ENXIO if fail ddi_get_soft_state
29791  *		EINVAL if data pointer is NULL
29792  */
29793 
29794 static int
29795 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29796 {
29797 	struct sd_lun		*un;
29798 	struct uscsi_cmd	*com;
29799 	caddr_t			buffer;
29800 	char			cdb[CDB_GROUP1];
29801 	int			session_offset = 0;
29802 	int			rval;
29803 
29804 	if (data == NULL) {
29805 		return (EINVAL);
29806 	}
29807 
29808 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29809 	    (un->un_state == SD_STATE_OFFLINE)) {
29810 		return (ENXIO);
29811 	}
29812 
29813 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29814 	bzero(cdb, CDB_GROUP1);
29815 	cdb[0] = SCMD_READ_TOC;
29816 	/*
29817 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29818 	 * (4 byte TOC response header + 8 byte response data)
29819 	 */
29820 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29821 	/* Byte 9 is the control byte. A vendor specific value is used */
29822 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29823 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29824 	com->uscsi_cdb = cdb;
29825 	com->uscsi_cdblen = CDB_GROUP1;
29826 	com->uscsi_bufaddr = buffer;
29827 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29828 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29829 
29830 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29831 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29832 	if (rval != 0) {
29833 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29834 		kmem_free(com, sizeof (*com));
29835 		return (rval);
29836 	}
29837 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29838 		session_offset =
29839 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29840 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29841 		/*
29842 		 * Offset returned offset in current lbasize block's. Convert to
29843 		 * 2k block's to return to the user
29844 		 */
29845 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29846 			session_offset >>= 2;
29847 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29848 			session_offset >>= 1;
29849 		}
29850 	}
29851 
29852 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29853 		rval = EFAULT;
29854 	}
29855 
29856 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29857 	kmem_free(com, sizeof (*com));
29858 	return (rval);
29859 }
29860 
29861 
29862 /*
29863  *    Function: sd_wm_cache_constructor()
29864  *
29865  * Description: Cache Constructor for the wmap cache for the read/modify/write
29866  * 		devices.
29867  *
29868  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29869  *		un	- sd_lun structure for the device.
29870  *		flag	- the km flags passed to constructor
29871  *
29872  * Return Code: 0 on success.
29873  *		-1 on failure.
29874  */
29875 
29876 /*ARGSUSED*/
29877 static int
29878 sd_wm_cache_constructor(void *wm, void *un, int flags)
29879 {
29880 	bzero(wm, sizeof (struct sd_w_map));
29881 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29882 	return (0);
29883 }
29884 
29885 
29886 /*
29887  *    Function: sd_wm_cache_destructor()
29888  *
29889  * Description: Cache destructor for the wmap cache for the read/modify/write
29890  * 		devices.
29891  *
29892  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29893  *		un	- sd_lun structure for the device.
29894  */
29895 /*ARGSUSED*/
29896 static void
29897 sd_wm_cache_destructor(void *wm, void *un)
29898 {
29899 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29900 }
29901 
29902 
29903 /*
29904  *    Function: sd_range_lock()
29905  *
29906  * Description: Lock the range of blocks specified as parameter to ensure
29907  *		that read, modify write is atomic and no other i/o writes
29908  *		to the same location. The range is specified in terms
29909  *		of start and end blocks. Block numbers are the actual
29910  *		media block numbers and not system.
29911  *
29912  *   Arguments: un	- sd_lun structure for the device.
29913  *		startb - The starting block number
29914  *		endb - The end block number
29915  *		typ - type of i/o - simple/read_modify_write
29916  *
29917  * Return Code: wm  - pointer to the wmap structure.
29918  *
29919  *     Context: This routine can sleep.
29920  */
29921 
29922 static struct sd_w_map *
29923 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29924 {
29925 	struct sd_w_map *wmp = NULL;
29926 	struct sd_w_map *sl_wmp = NULL;
29927 	struct sd_w_map *tmp_wmp;
29928 	wm_state state = SD_WM_CHK_LIST;
29929 
29930 
29931 	ASSERT(un != NULL);
29932 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29933 
29934 	mutex_enter(SD_MUTEX(un));
29935 
29936 	while (state != SD_WM_DONE) {
29937 
29938 		switch (state) {
29939 		case SD_WM_CHK_LIST:
29940 			/*
29941 			 * This is the starting state. Check the wmap list
29942 			 * to see if the range is currently available.
29943 			 */
29944 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29945 				/*
29946 				 * If this is a simple write and no rmw
29947 				 * i/o is pending then try to lock the
29948 				 * range as the range should be available.
29949 				 */
29950 				state = SD_WM_LOCK_RANGE;
29951 			} else {
29952 				tmp_wmp = sd_get_range(un, startb, endb);
29953 				if (tmp_wmp != NULL) {
29954 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29955 						/*
29956 						 * Should not keep onlist wmps
29957 						 * while waiting this macro
29958 						 * will also do wmp = NULL;
29959 						 */
29960 						FREE_ONLIST_WMAP(un, wmp);
29961 					}
29962 					/*
29963 					 * sl_wmp is the wmap on which wait
29964 					 * is done, since the tmp_wmp points
29965 					 * to the inuse wmap, set sl_wmp to
29966 					 * tmp_wmp and change the state to sleep
29967 					 */
29968 					sl_wmp = tmp_wmp;
29969 					state = SD_WM_WAIT_MAP;
29970 				} else {
29971 					state = SD_WM_LOCK_RANGE;
29972 				}
29973 
29974 			}
29975 			break;
29976 
29977 		case SD_WM_LOCK_RANGE:
29978 			ASSERT(un->un_wm_cache);
29979 			/*
29980 			 * The range need to be locked, try to get a wmap.
29981 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29982 			 * if possible as we will have to release the sd mutex
29983 			 * if we have to sleep.
29984 			 */
29985 			if (wmp == NULL)
29986 				wmp = kmem_cache_alloc(un->un_wm_cache,
29987 				    KM_NOSLEEP);
29988 			if (wmp == NULL) {
29989 				mutex_exit(SD_MUTEX(un));
29990 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29991 				    (sd_lun::un_wm_cache))
29992 				wmp = kmem_cache_alloc(un->un_wm_cache,
29993 				    KM_SLEEP);
29994 				mutex_enter(SD_MUTEX(un));
29995 				/*
29996 				 * we released the mutex so recheck and go to
29997 				 * check list state.
29998 				 */
29999 				state = SD_WM_CHK_LIST;
30000 			} else {
30001 				/*
30002 				 * We exit out of state machine since we
30003 				 * have the wmap. Do the housekeeping first.
30004 				 * place the wmap on the wmap list if it is not
30005 				 * on it already and then set the state to done.
30006 				 */
30007 				wmp->wm_start = startb;
30008 				wmp->wm_end = endb;
30009 				wmp->wm_flags = typ | SD_WM_BUSY;
30010 				if (typ & SD_WTYPE_RMW) {
30011 					un->un_rmw_count++;
30012 				}
30013 				/*
30014 				 * If not already on the list then link
30015 				 */
30016 				if (!ONLIST(un, wmp)) {
30017 					wmp->wm_next = un->un_wm;
30018 					wmp->wm_prev = NULL;
30019 					if (wmp->wm_next)
30020 						wmp->wm_next->wm_prev = wmp;
30021 					un->un_wm = wmp;
30022 				}
30023 				state = SD_WM_DONE;
30024 			}
30025 			break;
30026 
30027 		case SD_WM_WAIT_MAP:
30028 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
30029 			/*
30030 			 * Wait is done on sl_wmp, which is set in the
30031 			 * check_list state.
30032 			 */
30033 			sl_wmp->wm_wanted_count++;
30034 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
30035 			sl_wmp->wm_wanted_count--;
30036 			/*
30037 			 * We can reuse the memory from the completed sl_wmp
30038 			 * lock range for our new lock, but only if noone is
30039 			 * waiting for it.
30040 			 */
30041 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
30042 			if (sl_wmp->wm_wanted_count == 0) {
30043 				if (wmp != NULL)
30044 					CHK_N_FREEWMP(un, wmp);
30045 				wmp = sl_wmp;
30046 			}
30047 			sl_wmp = NULL;
30048 			/*
30049 			 * After waking up, need to recheck for availability of
30050 			 * range.
30051 			 */
30052 			state = SD_WM_CHK_LIST;
30053 			break;
30054 
30055 		default:
30056 			panic("sd_range_lock: "
30057 			    "Unknown state %d in sd_range_lock", state);
30058 			/*NOTREACHED*/
30059 		} /* switch(state) */
30060 
30061 	} /* while(state != SD_WM_DONE) */
30062 
30063 	mutex_exit(SD_MUTEX(un));
30064 
30065 	ASSERT(wmp != NULL);
30066 
30067 	return (wmp);
30068 }
30069 
30070 
30071 /*
30072  *    Function: sd_get_range()
30073  *
30074  * Description: Find if there any overlapping I/O to this one
30075  *		Returns the write-map of 1st such I/O, NULL otherwise.
30076  *
30077  *   Arguments: un	- sd_lun structure for the device.
30078  *		startb - The starting block number
30079  *		endb - The end block number
30080  *
30081  * Return Code: wm  - pointer to the wmap structure.
30082  */
30083 
30084 static struct sd_w_map *
30085 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
30086 {
30087 	struct sd_w_map *wmp;
30088 
30089 	ASSERT(un != NULL);
30090 
30091 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
30092 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
30093 			continue;
30094 		}
30095 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
30096 			break;
30097 		}
30098 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
30099 			break;
30100 		}
30101 	}
30102 
30103 	return (wmp);
30104 }
30105 
30106 
30107 /*
30108  *    Function: sd_free_inlist_wmap()
30109  *
30110  * Description: Unlink and free a write map struct.
30111  *
30112  *   Arguments: un      - sd_lun structure for the device.
30113  *		wmp	- sd_w_map which needs to be unlinked.
30114  */
30115 
30116 static void
30117 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
30118 {
30119 	ASSERT(un != NULL);
30120 
30121 	if (un->un_wm == wmp) {
30122 		un->un_wm = wmp->wm_next;
30123 	} else {
30124 		wmp->wm_prev->wm_next = wmp->wm_next;
30125 	}
30126 
30127 	if (wmp->wm_next) {
30128 		wmp->wm_next->wm_prev = wmp->wm_prev;
30129 	}
30130 
30131 	wmp->wm_next = wmp->wm_prev = NULL;
30132 
30133 	kmem_cache_free(un->un_wm_cache, wmp);
30134 }
30135 
30136 
30137 /*
30138  *    Function: sd_range_unlock()
30139  *
30140  * Description: Unlock the range locked by wm.
30141  *		Free write map if nobody else is waiting on it.
30142  *
30143  *   Arguments: un      - sd_lun structure for the device.
30144  *              wmp     - sd_w_map which needs to be unlinked.
30145  */
30146 
30147 static void
30148 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
30149 {
30150 	ASSERT(un != NULL);
30151 	ASSERT(wm != NULL);
30152 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30153 
30154 	mutex_enter(SD_MUTEX(un));
30155 
30156 	if (wm->wm_flags & SD_WTYPE_RMW) {
30157 		un->un_rmw_count--;
30158 	}
30159 
30160 	if (wm->wm_wanted_count) {
30161 		wm->wm_flags = 0;
30162 		/*
30163 		 * Broadcast that the wmap is available now.
30164 		 */
30165 		cv_broadcast(&wm->wm_avail);
30166 	} else {
30167 		/*
30168 		 * If no one is waiting on the map, it should be free'ed.
30169 		 */
30170 		sd_free_inlist_wmap(un, wm);
30171 	}
30172 
30173 	mutex_exit(SD_MUTEX(un));
30174 }
30175 
30176 
30177 /*
30178  *    Function: sd_read_modify_write_task
30179  *
30180  * Description: Called from a taskq thread to initiate the write phase of
30181  *		a read-modify-write request.  This is used for targets where
30182  *		un->un_sys_blocksize != un->un_tgt_blocksize.
30183  *
30184  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
30185  *
30186  *     Context: Called under taskq thread context.
30187  */
30188 
30189 static void
30190 sd_read_modify_write_task(void *arg)
30191 {
30192 	struct sd_mapblocksize_info	*bsp;
30193 	struct buf	*bp;
30194 	struct sd_xbuf	*xp;
30195 	struct sd_lun	*un;
30196 
30197 	bp = arg;	/* The bp is given in arg */
30198 	ASSERT(bp != NULL);
30199 
30200 	/* Get the pointer to the layer-private data struct */
30201 	xp = SD_GET_XBUF(bp);
30202 	ASSERT(xp != NULL);
30203 	bsp = xp->xb_private;
30204 	ASSERT(bsp != NULL);
30205 
30206 	un = SD_GET_UN(bp);
30207 	ASSERT(un != NULL);
30208 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30209 
30210 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30211 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
30212 
30213 	/*
30214 	 * This is the write phase of a read-modify-write request, called
30215 	 * under the context of a taskq thread in response to the completion
30216 	 * of the read portion of the rmw request completing under interrupt
30217 	 * context. The write request must be sent from here down the iostart
30218 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
30219 	 * we use the layer index saved in the layer-private data area.
30220 	 */
30221 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
30222 
30223 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30224 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
30225 }
30226 
30227 
30228 /*
30229  *    Function: sddump_do_read_of_rmw()
30230  *
30231  * Description: This routine will be called from sddump, If sddump is called
30232  *		with an I/O which not aligned on device blocksize boundary
30233  *		then the write has to be converted to read-modify-write.
30234  *		Do the read part here in order to keep sddump simple.
30235  *		Note - That the sd_mutex is held across the call to this
30236  *		routine.
30237  *
30238  *   Arguments: un	- sd_lun
30239  *		blkno	- block number in terms of media block size.
30240  *		nblk	- number of blocks.
30241  *		bpp	- pointer to pointer to the buf structure. On return
30242  *			from this function, *bpp points to the valid buffer
30243  *			to which the write has to be done.
30244  *
30245  * Return Code: 0 for success or errno-type return code
30246  */
30247 
30248 static int
30249 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
30250 	struct buf **bpp)
30251 {
30252 	int err;
30253 	int i;
30254 	int rval;
30255 	struct buf *bp;
30256 	struct scsi_pkt *pkt = NULL;
30257 	uint32_t target_blocksize;
30258 
30259 	ASSERT(un != NULL);
30260 	ASSERT(mutex_owned(SD_MUTEX(un)));
30261 
30262 	target_blocksize = un->un_tgt_blocksize;
30263 
30264 	mutex_exit(SD_MUTEX(un));
30265 
30266 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
30267 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
30268 	if (bp == NULL) {
30269 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30270 		    "no resources for dumping; giving up");
30271 		err = ENOMEM;
30272 		goto done;
30273 	}
30274 
30275 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
30276 	    blkno, nblk);
30277 	if (rval != 0) {
30278 		scsi_free_consistent_buf(bp);
30279 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30280 		    "no resources for dumping; giving up");
30281 		err = ENOMEM;
30282 		goto done;
30283 	}
30284 
30285 	pkt->pkt_flags |= FLAG_NOINTR;
30286 
30287 	err = EIO;
30288 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
30289 
30290 		/*
30291 		 * Scsi_poll returns 0 (success) if the command completes and
30292 		 * the status block is STATUS_GOOD.  We should only check
30293 		 * errors if this condition is not true.  Even then we should
30294 		 * send our own request sense packet only if we have a check
30295 		 * condition and auto request sense has not been performed by
30296 		 * the hba.
30297 		 */
30298 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
30299 
30300 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
30301 			err = 0;
30302 			break;
30303 		}
30304 
30305 		/*
30306 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
30307 		 * no need to read RQS data.
30308 		 */
30309 		if (pkt->pkt_reason == CMD_DEV_GONE) {
30310 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30311 			    "Device is gone\n");
30312 			break;
30313 		}
30314 
30315 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
30316 			SD_INFO(SD_LOG_DUMP, un,
30317 			    "sddump: read failed with CHECK, try # %d\n", i);
30318 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
30319 				(void) sd_send_polled_RQS(un);
30320 			}
30321 
30322 			continue;
30323 		}
30324 
30325 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
30326 			int reset_retval = 0;
30327 
30328 			SD_INFO(SD_LOG_DUMP, un,
30329 			    "sddump: read failed with BUSY, try # %d\n", i);
30330 
30331 			if (un->un_f_lun_reset_enabled == TRUE) {
30332 				reset_retval = scsi_reset(SD_ADDRESS(un),
30333 				    RESET_LUN);
30334 			}
30335 			if (reset_retval == 0) {
30336 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
30337 			}
30338 			(void) sd_send_polled_RQS(un);
30339 
30340 		} else {
30341 			SD_INFO(SD_LOG_DUMP, un,
30342 			    "sddump: read failed with 0x%x, try # %d\n",
30343 			    SD_GET_PKT_STATUS(pkt), i);
30344 			mutex_enter(SD_MUTEX(un));
30345 			sd_reset_target(un, pkt);
30346 			mutex_exit(SD_MUTEX(un));
30347 		}
30348 
30349 		/*
30350 		 * If we are not getting anywhere with lun/target resets,
30351 		 * let's reset the bus.
30352 		 */
30353 		if (i > SD_NDUMP_RETRIES/2) {
30354 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
30355 			(void) sd_send_polled_RQS(un);
30356 		}
30357 
30358 	}
30359 	scsi_destroy_pkt(pkt);
30360 
30361 	if (err != 0) {
30362 		scsi_free_consistent_buf(bp);
30363 		*bpp = NULL;
30364 	} else {
30365 		*bpp = bp;
30366 	}
30367 
30368 done:
30369 	mutex_enter(SD_MUTEX(un));
30370 	return (err);
30371 }
30372 
30373 
30374 /*
30375  *    Function: sd_failfast_flushq
30376  *
30377  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30378  *		in b_flags and move them onto the failfast queue, then kick
30379  *		off a thread to return all bp's on the failfast queue to
30380  *		their owners with an error set.
30381  *
30382  *   Arguments: un - pointer to the soft state struct for the instance.
30383  *
30384  *     Context: may execute in interrupt context.
30385  */
30386 
30387 static void
30388 sd_failfast_flushq(struct sd_lun *un)
30389 {
30390 	struct buf *bp;
30391 	struct buf *next_waitq_bp;
30392 	struct buf *prev_waitq_bp = NULL;
30393 
30394 	ASSERT(un != NULL);
30395 	ASSERT(mutex_owned(SD_MUTEX(un)));
30396 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30397 	ASSERT(un->un_failfast_bp == NULL);
30398 
30399 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30400 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30401 
30402 	/*
30403 	 * Check if we should flush all bufs when entering failfast state, or
30404 	 * just those with B_FAILFAST set.
30405 	 */
30406 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30407 		/*
30408 		 * Move *all* bp's on the wait queue to the failfast flush
30409 		 * queue, including those that do NOT have B_FAILFAST set.
30410 		 */
30411 		if (un->un_failfast_headp == NULL) {
30412 			ASSERT(un->un_failfast_tailp == NULL);
30413 			un->un_failfast_headp = un->un_waitq_headp;
30414 		} else {
30415 			ASSERT(un->un_failfast_tailp != NULL);
30416 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30417 		}
30418 
30419 		un->un_failfast_tailp = un->un_waitq_tailp;
30420 
30421 		/* update kstat for each bp moved out of the waitq */
30422 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30423 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30424 		}
30425 
30426 		/* empty the waitq */
30427 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30428 
30429 	} else {
30430 		/*
30431 		 * Go thru the wait queue, pick off all entries with
30432 		 * B_FAILFAST set, and move these onto the failfast queue.
30433 		 */
30434 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30435 			/*
30436 			 * Save the pointer to the next bp on the wait queue,
30437 			 * so we get to it on the next iteration of this loop.
30438 			 */
30439 			next_waitq_bp = bp->av_forw;
30440 
30441 			/*
30442 			 * If this bp from the wait queue does NOT have
30443 			 * B_FAILFAST set, just move on to the next element
30444 			 * in the wait queue. Note, this is the only place
30445 			 * where it is correct to set prev_waitq_bp.
30446 			 */
30447 			if ((bp->b_flags & B_FAILFAST) == 0) {
30448 				prev_waitq_bp = bp;
30449 				continue;
30450 			}
30451 
30452 			/*
30453 			 * Remove the bp from the wait queue.
30454 			 */
30455 			if (bp == un->un_waitq_headp) {
30456 				/* The bp is the first element of the waitq. */
30457 				un->un_waitq_headp = next_waitq_bp;
30458 				if (un->un_waitq_headp == NULL) {
30459 					/* The wait queue is now empty */
30460 					un->un_waitq_tailp = NULL;
30461 				}
30462 			} else {
30463 				/*
30464 				 * The bp is either somewhere in the middle
30465 				 * or at the end of the wait queue.
30466 				 */
30467 				ASSERT(un->un_waitq_headp != NULL);
30468 				ASSERT(prev_waitq_bp != NULL);
30469 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30470 				    == 0);
30471 				if (bp == un->un_waitq_tailp) {
30472 					/* bp is the last entry on the waitq. */
30473 					ASSERT(next_waitq_bp == NULL);
30474 					un->un_waitq_tailp = prev_waitq_bp;
30475 				}
30476 				prev_waitq_bp->av_forw = next_waitq_bp;
30477 			}
30478 			bp->av_forw = NULL;
30479 
30480 			/*
30481 			 * update kstat since the bp is moved out of
30482 			 * the waitq
30483 			 */
30484 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30485 
30486 			/*
30487 			 * Now put the bp onto the failfast queue.
30488 			 */
30489 			if (un->un_failfast_headp == NULL) {
30490 				/* failfast queue is currently empty */
30491 				ASSERT(un->un_failfast_tailp == NULL);
30492 				un->un_failfast_headp =
30493 				    un->un_failfast_tailp = bp;
30494 			} else {
30495 				/* Add the bp to the end of the failfast q */
30496 				ASSERT(un->un_failfast_tailp != NULL);
30497 				ASSERT(un->un_failfast_tailp->b_flags &
30498 				    B_FAILFAST);
30499 				un->un_failfast_tailp->av_forw = bp;
30500 				un->un_failfast_tailp = bp;
30501 			}
30502 		}
30503 	}
30504 
30505 	/*
30506 	 * Now return all bp's on the failfast queue to their owners.
30507 	 */
30508 	while ((bp = un->un_failfast_headp) != NULL) {
30509 
30510 		un->un_failfast_headp = bp->av_forw;
30511 		if (un->un_failfast_headp == NULL) {
30512 			un->un_failfast_tailp = NULL;
30513 		}
30514 
30515 		/*
30516 		 * We want to return the bp with a failure error code, but
30517 		 * we do not want a call to sd_start_cmds() to occur here,
30518 		 * so use sd_return_failed_command_no_restart() instead of
30519 		 * sd_return_failed_command().
30520 		 */
30521 		sd_return_failed_command_no_restart(un, bp, EIO);
30522 	}
30523 
30524 	/* Flush the xbuf queues if required. */
30525 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30526 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30527 	}
30528 
30529 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30530 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30531 }
30532 
30533 
30534 /*
30535  *    Function: sd_failfast_flushq_callback
30536  *
30537  * Description: Return TRUE if the given bp meets the criteria for failfast
30538  *		flushing. Used with ddi_xbuf_flushq(9F).
30539  *
30540  *   Arguments: bp - ptr to buf struct to be examined.
30541  *
30542  *     Context: Any
30543  */
30544 
30545 static int
30546 sd_failfast_flushq_callback(struct buf *bp)
30547 {
30548 	/*
30549 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30550 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30551 	 */
30552 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30553 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30554 }
30555 
30556 
30557 
30558 #if defined(__i386) || defined(__amd64)
30559 /*
30560  * Function: sd_setup_next_xfer
30561  *
30562  * Description: Prepare next I/O operation using DMA_PARTIAL
30563  *
30564  */
30565 
30566 static int
30567 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30568     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30569 {
30570 	ssize_t	num_blks_not_xfered;
30571 	daddr_t	strt_blk_num;
30572 	ssize_t	bytes_not_xfered;
30573 	int	rval;
30574 
30575 	ASSERT(pkt->pkt_resid == 0);
30576 
30577 	/*
30578 	 * Calculate next block number and amount to be transferred.
30579 	 *
30580 	 * How much data NOT transfered to the HBA yet.
30581 	 */
30582 	bytes_not_xfered = xp->xb_dma_resid;
30583 
30584 	/*
30585 	 * figure how many blocks NOT transfered to the HBA yet.
30586 	 */
30587 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30588 
30589 	/*
30590 	 * set starting block number to the end of what WAS transfered.
30591 	 */
30592 	strt_blk_num = xp->xb_blkno +
30593 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30594 
30595 	/*
30596 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30597 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30598 	 * the disk mutex here.
30599 	 */
30600 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30601 	    strt_blk_num, num_blks_not_xfered);
30602 
30603 	if (rval == 0) {
30604 
30605 		/*
30606 		 * Success.
30607 		 *
30608 		 * Adjust things if there are still more blocks to be
30609 		 * transfered.
30610 		 */
30611 		xp->xb_dma_resid = pkt->pkt_resid;
30612 		pkt->pkt_resid = 0;
30613 
30614 		return (1);
30615 	}
30616 
30617 	/*
30618 	 * There's really only one possible return value from
30619 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30620 	 * returns NULL.
30621 	 */
30622 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30623 
30624 	bp->b_resid = bp->b_bcount;
30625 	bp->b_flags |= B_ERROR;
30626 
30627 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30628 	    "Error setting up next portion of DMA transfer\n");
30629 
30630 	return (0);
30631 }
30632 #endif
30633 
30634 /*
30635  *    Function: sd_panic_for_res_conflict
30636  *
30637  * Description: Call panic with a string formated with "Reservation Conflict"
30638  *		and a human readable identifier indicating the SD instance
30639  *		that experienced the reservation conflict.
30640  *
30641  *   Arguments: un - pointer to the soft state struct for the instance.
30642  *
30643  *     Context: may execute in interrupt context.
30644  */
30645 
30646 #define	SD_RESV_CONFLICT_FMT_LEN 40
30647 void
30648 sd_panic_for_res_conflict(struct sd_lun *un)
30649 {
30650 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30651 	char path_str[MAXPATHLEN];
30652 
30653 	(void) snprintf(panic_str, sizeof (panic_str),
30654 	    "Reservation Conflict\nDisk: %s",
30655 	    ddi_pathname(SD_DEVINFO(un), path_str));
30656 
30657 	panic(panic_str);
30658 }
30659 
30660 /*
30661  * Note: The following sd_faultinjection_ioctl( ) routines implement
30662  * driver support for handling fault injection for error analysis
30663  * causing faults in multiple layers of the driver.
30664  *
30665  */
30666 
30667 #ifdef SD_FAULT_INJECTION
30668 static uint_t   sd_fault_injection_on = 0;
30669 
30670 /*
30671  *    Function: sd_faultinjection_ioctl()
30672  *
30673  * Description: This routine is the driver entry point for handling
30674  *              faultinjection ioctls to inject errors into the
30675  *              layer model
30676  *
30677  *   Arguments: cmd	- the ioctl cmd recieved
30678  *		arg	- the arguments from user and returns
30679  */
30680 
30681 static void
30682 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30683 
30684 	uint_t i;
30685 	uint_t rval;
30686 
30687 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30688 
30689 	mutex_enter(SD_MUTEX(un));
30690 
30691 	switch (cmd) {
30692 	case SDIOCRUN:
30693 		/* Allow pushed faults to be injected */
30694 		SD_INFO(SD_LOG_SDTEST, un,
30695 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30696 
30697 		sd_fault_injection_on = 1;
30698 
30699 		SD_INFO(SD_LOG_IOERR, un,
30700 		    "sd_faultinjection_ioctl: run finished\n");
30701 		break;
30702 
30703 	case SDIOCSTART:
30704 		/* Start Injection Session */
30705 		SD_INFO(SD_LOG_SDTEST, un,
30706 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30707 
30708 		sd_fault_injection_on = 0;
30709 		un->sd_injection_mask = 0xFFFFFFFF;
30710 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30711 			un->sd_fi_fifo_pkt[i] = NULL;
30712 			un->sd_fi_fifo_xb[i] = NULL;
30713 			un->sd_fi_fifo_un[i] = NULL;
30714 			un->sd_fi_fifo_arq[i] = NULL;
30715 		}
30716 		un->sd_fi_fifo_start = 0;
30717 		un->sd_fi_fifo_end = 0;
30718 
30719 		mutex_enter(&(un->un_fi_mutex));
30720 		un->sd_fi_log[0] = '\0';
30721 		un->sd_fi_buf_len = 0;
30722 		mutex_exit(&(un->un_fi_mutex));
30723 
30724 		SD_INFO(SD_LOG_IOERR, un,
30725 		    "sd_faultinjection_ioctl: start finished\n");
30726 		break;
30727 
30728 	case SDIOCSTOP:
30729 		/* Stop Injection Session */
30730 		SD_INFO(SD_LOG_SDTEST, un,
30731 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30732 		sd_fault_injection_on = 0;
30733 		un->sd_injection_mask = 0x0;
30734 
30735 		/* Empty stray or unuseds structs from fifo */
30736 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30737 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30738 				kmem_free(un->sd_fi_fifo_pkt[i],
30739 				    sizeof (struct sd_fi_pkt));
30740 			}
30741 			if (un->sd_fi_fifo_xb[i] != NULL) {
30742 				kmem_free(un->sd_fi_fifo_xb[i],
30743 				    sizeof (struct sd_fi_xb));
30744 			}
30745 			if (un->sd_fi_fifo_un[i] != NULL) {
30746 				kmem_free(un->sd_fi_fifo_un[i],
30747 				    sizeof (struct sd_fi_un));
30748 			}
30749 			if (un->sd_fi_fifo_arq[i] != NULL) {
30750 				kmem_free(un->sd_fi_fifo_arq[i],
30751 				    sizeof (struct sd_fi_arq));
30752 			}
30753 			un->sd_fi_fifo_pkt[i] = NULL;
30754 			un->sd_fi_fifo_un[i] = NULL;
30755 			un->sd_fi_fifo_xb[i] = NULL;
30756 			un->sd_fi_fifo_arq[i] = NULL;
30757 		}
30758 		un->sd_fi_fifo_start = 0;
30759 		un->sd_fi_fifo_end = 0;
30760 
30761 		SD_INFO(SD_LOG_IOERR, un,
30762 		    "sd_faultinjection_ioctl: stop finished\n");
30763 		break;
30764 
30765 	case SDIOCINSERTPKT:
30766 		/* Store a packet struct to be pushed onto fifo */
30767 		SD_INFO(SD_LOG_SDTEST, un,
30768 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30769 
30770 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30771 
30772 		sd_fault_injection_on = 0;
30773 
30774 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30775 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30776 			kmem_free(un->sd_fi_fifo_pkt[i],
30777 			    sizeof (struct sd_fi_pkt));
30778 		}
30779 		if (arg != NULL) {
30780 			un->sd_fi_fifo_pkt[i] =
30781 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30782 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30783 				/* Alloc failed don't store anything */
30784 				break;
30785 			}
30786 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30787 			    sizeof (struct sd_fi_pkt), 0);
30788 			if (rval == -1) {
30789 				kmem_free(un->sd_fi_fifo_pkt[i],
30790 				    sizeof (struct sd_fi_pkt));
30791 				un->sd_fi_fifo_pkt[i] = NULL;
30792 			}
30793 		} else {
30794 			SD_INFO(SD_LOG_IOERR, un,
30795 			    "sd_faultinjection_ioctl: pkt null\n");
30796 		}
30797 		break;
30798 
30799 	case SDIOCINSERTXB:
30800 		/* Store a xb struct to be pushed onto fifo */
30801 		SD_INFO(SD_LOG_SDTEST, un,
30802 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30803 
30804 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30805 
30806 		sd_fault_injection_on = 0;
30807 
30808 		if (un->sd_fi_fifo_xb[i] != NULL) {
30809 			kmem_free(un->sd_fi_fifo_xb[i],
30810 			    sizeof (struct sd_fi_xb));
30811 			un->sd_fi_fifo_xb[i] = NULL;
30812 		}
30813 		if (arg != NULL) {
30814 			un->sd_fi_fifo_xb[i] =
30815 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30816 			if (un->sd_fi_fifo_xb[i] == NULL) {
30817 				/* Alloc failed don't store anything */
30818 				break;
30819 			}
30820 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30821 			    sizeof (struct sd_fi_xb), 0);
30822 
30823 			if (rval == -1) {
30824 				kmem_free(un->sd_fi_fifo_xb[i],
30825 				    sizeof (struct sd_fi_xb));
30826 				un->sd_fi_fifo_xb[i] = NULL;
30827 			}
30828 		} else {
30829 			SD_INFO(SD_LOG_IOERR, un,
30830 			    "sd_faultinjection_ioctl: xb null\n");
30831 		}
30832 		break;
30833 
30834 	case SDIOCINSERTUN:
30835 		/* Store a un struct to be pushed onto fifo */
30836 		SD_INFO(SD_LOG_SDTEST, un,
30837 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30838 
30839 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30840 
30841 		sd_fault_injection_on = 0;
30842 
30843 		if (un->sd_fi_fifo_un[i] != NULL) {
30844 			kmem_free(un->sd_fi_fifo_un[i],
30845 			    sizeof (struct sd_fi_un));
30846 			un->sd_fi_fifo_un[i] = NULL;
30847 		}
30848 		if (arg != NULL) {
30849 			un->sd_fi_fifo_un[i] =
30850 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30851 			if (un->sd_fi_fifo_un[i] == NULL) {
30852 				/* Alloc failed don't store anything */
30853 				break;
30854 			}
30855 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30856 			    sizeof (struct sd_fi_un), 0);
30857 			if (rval == -1) {
30858 				kmem_free(un->sd_fi_fifo_un[i],
30859 				    sizeof (struct sd_fi_un));
30860 				un->sd_fi_fifo_un[i] = NULL;
30861 			}
30862 
30863 		} else {
30864 			SD_INFO(SD_LOG_IOERR, un,
30865 			    "sd_faultinjection_ioctl: un null\n");
30866 		}
30867 
30868 		break;
30869 
30870 	case SDIOCINSERTARQ:
30871 		/* Store a arq struct to be pushed onto fifo */
30872 		SD_INFO(SD_LOG_SDTEST, un,
30873 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30874 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30875 
30876 		sd_fault_injection_on = 0;
30877 
30878 		if (un->sd_fi_fifo_arq[i] != NULL) {
30879 			kmem_free(un->sd_fi_fifo_arq[i],
30880 			    sizeof (struct sd_fi_arq));
30881 			un->sd_fi_fifo_arq[i] = NULL;
30882 		}
30883 		if (arg != NULL) {
30884 			un->sd_fi_fifo_arq[i] =
30885 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30886 			if (un->sd_fi_fifo_arq[i] == NULL) {
30887 				/* Alloc failed don't store anything */
30888 				break;
30889 			}
30890 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30891 			    sizeof (struct sd_fi_arq), 0);
30892 			if (rval == -1) {
30893 				kmem_free(un->sd_fi_fifo_arq[i],
30894 				    sizeof (struct sd_fi_arq));
30895 				un->sd_fi_fifo_arq[i] = NULL;
30896 			}
30897 
30898 		} else {
30899 			SD_INFO(SD_LOG_IOERR, un,
30900 			    "sd_faultinjection_ioctl: arq null\n");
30901 		}
30902 
30903 		break;
30904 
30905 	case SDIOCPUSH:
30906 		/* Push stored xb, pkt, un, and arq onto fifo */
30907 		sd_fault_injection_on = 0;
30908 
30909 		if (arg != NULL) {
30910 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30911 			if (rval != -1 &&
30912 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30913 				un->sd_fi_fifo_end += i;
30914 			}
30915 		} else {
30916 			SD_INFO(SD_LOG_IOERR, un,
30917 			    "sd_faultinjection_ioctl: push arg null\n");
30918 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30919 				un->sd_fi_fifo_end++;
30920 			}
30921 		}
30922 		SD_INFO(SD_LOG_IOERR, un,
30923 		    "sd_faultinjection_ioctl: push to end=%d\n",
30924 		    un->sd_fi_fifo_end);
30925 		break;
30926 
30927 	case SDIOCRETRIEVE:
30928 		/* Return buffer of log from Injection session */
30929 		SD_INFO(SD_LOG_SDTEST, un,
30930 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30931 
30932 		sd_fault_injection_on = 0;
30933 
30934 		mutex_enter(&(un->un_fi_mutex));
30935 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30936 		    un->sd_fi_buf_len+1, 0);
30937 		mutex_exit(&(un->un_fi_mutex));
30938 
30939 		if (rval == -1) {
30940 			/*
30941 			 * arg is possibly invalid setting
30942 			 * it to NULL for return
30943 			 */
30944 			arg = NULL;
30945 		}
30946 		break;
30947 	}
30948 
30949 	mutex_exit(SD_MUTEX(un));
30950 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30951 			    " exit\n");
30952 }
30953 
30954 
30955 /*
30956  *    Function: sd_injection_log()
30957  *
30958  * Description: This routine adds buff to the already existing injection log
30959  *              for retrieval via faultinjection_ioctl for use in fault
30960  *              detection and recovery
30961  *
30962  *   Arguments: buf - the string to add to the log
30963  */
30964 
30965 static void
30966 sd_injection_log(char *buf, struct sd_lun *un)
30967 {
30968 	uint_t len;
30969 
30970 	ASSERT(un != NULL);
30971 	ASSERT(buf != NULL);
30972 
30973 	mutex_enter(&(un->un_fi_mutex));
30974 
30975 	len = min(strlen(buf), 255);
30976 	/* Add logged value to Injection log to be returned later */
30977 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30978 		uint_t	offset = strlen((char *)un->sd_fi_log);
30979 		char *destp = (char *)un->sd_fi_log + offset;
30980 		int i;
30981 		for (i = 0; i < len; i++) {
30982 			*destp++ = *buf++;
30983 		}
30984 		un->sd_fi_buf_len += len;
30985 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30986 	}
30987 
30988 	mutex_exit(&(un->un_fi_mutex));
30989 }
30990 
30991 
30992 /*
30993  *    Function: sd_faultinjection()
30994  *
30995  * Description: This routine takes the pkt and changes its
30996  *		content based on error injection scenerio.
30997  *
30998  *   Arguments: pktp	- packet to be changed
30999  */
31000 
31001 static void
31002 sd_faultinjection(struct scsi_pkt *pktp)
31003 {
31004 	uint_t i;
31005 	struct sd_fi_pkt *fi_pkt;
31006 	struct sd_fi_xb *fi_xb;
31007 	struct sd_fi_un *fi_un;
31008 	struct sd_fi_arq *fi_arq;
31009 	struct buf *bp;
31010 	struct sd_xbuf *xb;
31011 	struct sd_lun *un;
31012 
31013 	ASSERT(pktp != NULL);
31014 
31015 	/* pull bp xb and un from pktp */
31016 	bp = (struct buf *)pktp->pkt_private;
31017 	xb = SD_GET_XBUF(bp);
31018 	un = SD_GET_UN(bp);
31019 
31020 	ASSERT(un != NULL);
31021 
31022 	mutex_enter(SD_MUTEX(un));
31023 
31024 	SD_TRACE(SD_LOG_SDTEST, un,
31025 	    "sd_faultinjection: entry Injection from sdintr\n");
31026 
31027 	/* if injection is off return */
31028 	if (sd_fault_injection_on == 0 ||
31029 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
31030 		mutex_exit(SD_MUTEX(un));
31031 		return;
31032 	}
31033 
31034 
31035 	/* take next set off fifo */
31036 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
31037 
31038 	fi_pkt = un->sd_fi_fifo_pkt[i];
31039 	fi_xb = un->sd_fi_fifo_xb[i];
31040 	fi_un = un->sd_fi_fifo_un[i];
31041 	fi_arq = un->sd_fi_fifo_arq[i];
31042 
31043 
31044 	/* set variables accordingly */
31045 	/* set pkt if it was on fifo */
31046 	if (fi_pkt != NULL) {
31047 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
31048 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
31049 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
31050 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
31051 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
31052 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
31053 
31054 	}
31055 
31056 	/* set xb if it was on fifo */
31057 	if (fi_xb != NULL) {
31058 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
31059 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
31060 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
31061 		SD_CONDSET(xb, xb, xb_victim_retry_count,
31062 		    "xb_victim_retry_count");
31063 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
31064 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
31065 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
31066 
31067 		/* copy in block data from sense */
31068 		if (fi_xb->xb_sense_data[0] != -1) {
31069 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
31070 			    SENSE_LENGTH);
31071 		}
31072 
31073 		/* copy in extended sense codes */
31074 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
31075 		    "es_code");
31076 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
31077 		    "es_key");
31078 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
31079 		    "es_add_code");
31080 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
31081 		    es_qual_code, "es_qual_code");
31082 	}
31083 
31084 	/* set un if it was on fifo */
31085 	if (fi_un != NULL) {
31086 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
31087 		SD_CONDSET(un, un, un_ctype, "un_ctype");
31088 		SD_CONDSET(un, un, un_reset_retry_count,
31089 		    "un_reset_retry_count");
31090 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
31091 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
31092 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
31093 		SD_CONDSET(un, un, un_f_geometry_is_valid,
31094 		    "un_f_geometry_is_valid");
31095 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
31096 		    "un_f_allow_bus_device_reset");
31097 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
31098 
31099 	}
31100 
31101 	/* copy in auto request sense if it was on fifo */
31102 	if (fi_arq != NULL) {
31103 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
31104 	}
31105 
31106 	/* free structs */
31107 	if (un->sd_fi_fifo_pkt[i] != NULL) {
31108 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
31109 	}
31110 	if (un->sd_fi_fifo_xb[i] != NULL) {
31111 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
31112 	}
31113 	if (un->sd_fi_fifo_un[i] != NULL) {
31114 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
31115 	}
31116 	if (un->sd_fi_fifo_arq[i] != NULL) {
31117 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
31118 	}
31119 
31120 	/*
31121 	 * kmem_free does not gurantee to set to NULL
31122 	 * since we uses these to determine if we set
31123 	 * values or not lets confirm they are always
31124 	 * NULL after free
31125 	 */
31126 	un->sd_fi_fifo_pkt[i] = NULL;
31127 	un->sd_fi_fifo_un[i] = NULL;
31128 	un->sd_fi_fifo_xb[i] = NULL;
31129 	un->sd_fi_fifo_arq[i] = NULL;
31130 
31131 	un->sd_fi_fifo_start++;
31132 
31133 	mutex_exit(SD_MUTEX(un));
31134 
31135 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
31136 }
31137 
31138 #endif /* SD_FAULT_INJECTION */
31139 
31140 /*
31141  * This routine is invoked in sd_unit_attach(). Before calling it, the
31142  * properties in conf file should be processed already, and "hotpluggable"
31143  * property was processed also.
31144  *
31145  * The sd driver distinguishes 3 different type of devices: removable media,
31146  * non-removable media, and hotpluggable. Below the differences are defined:
31147  *
31148  * 1. Device ID
31149  *
31150  *     The device ID of a device is used to identify this device. Refer to
31151  *     ddi_devid_register(9F).
31152  *
31153  *     For a non-removable media disk device which can provide 0x80 or 0x83
31154  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
31155  *     device ID is created to identify this device. For other non-removable
31156  *     media devices, a default device ID is created only if this device has
31157  *     at least 2 alter cylinders. Otherwise, this device has no devid.
31158  *
31159  *     -------------------------------------------------------
31160  *     removable media   hotpluggable  | Can Have Device ID
31161  *     -------------------------------------------------------
31162  *         false             false     |     Yes
31163  *         false             true      |     Yes
31164  *         true                x       |     No
31165  *     ------------------------------------------------------
31166  *
31167  *
31168  * 2. SCSI group 4 commands
31169  *
31170  *     In SCSI specs, only some commands in group 4 command set can use
31171  *     8-byte addresses that can be used to access >2TB storage spaces.
31172  *     Other commands have no such capability. Without supporting group4,
31173  *     it is impossible to make full use of storage spaces of a disk with
31174  *     capacity larger than 2TB.
31175  *
31176  *     -----------------------------------------------
31177  *     removable media   hotpluggable   LP64  |  Group
31178  *     -----------------------------------------------
31179  *           false          false       false |   1
31180  *           false          false       true  |   4
31181  *           false          true        false |   1
31182  *           false          true        true  |   4
31183  *           true             x           x   |   5
31184  *     -----------------------------------------------
31185  *
31186  *
31187  * 3. Check for VTOC Label
31188  *
31189  *     If a direct-access disk has no EFI label, sd will check if it has a
31190  *     valid VTOC label. Now, sd also does that check for removable media
31191  *     and hotpluggable devices.
31192  *
31193  *     --------------------------------------------------------------
31194  *     Direct-Access   removable media    hotpluggable |  Check Label
31195  *     -------------------------------------------------------------
31196  *         false          false           false        |   No
31197  *         false          false           true         |   No
31198  *         false          true            false        |   Yes
31199  *         false          true            true         |   Yes
31200  *         true            x                x          |   Yes
31201  *     --------------------------------------------------------------
31202  *
31203  *
31204  * 4. Building default VTOC label
31205  *
31206  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
31207  *     If those devices have no valid VTOC label, sd(7d) will attempt to
31208  *     create default VTOC for them. Currently sd creates default VTOC label
31209  *     for all devices on x86 platform (VTOC_16), but only for removable
31210  *     media devices on SPARC (VTOC_8).
31211  *
31212  *     -----------------------------------------------------------
31213  *       removable media hotpluggable platform   |   Default Label
31214  *     -----------------------------------------------------------
31215  *             false          false    sparc     |     No
31216  *             false          true      x86      |     Yes
31217  *             false          true     sparc     |     Yes
31218  *             true             x        x       |     Yes
31219  *     ----------------------------------------------------------
31220  *
31221  *
31222  * 5. Supported blocksizes of target devices
31223  *
31224  *     Sd supports non-512-byte blocksize for removable media devices only.
31225  *     For other devices, only 512-byte blocksize is supported. This may be
31226  *     changed in near future because some RAID devices require non-512-byte
31227  *     blocksize
31228  *
31229  *     -----------------------------------------------------------
31230  *     removable media    hotpluggable    | non-512-byte blocksize
31231  *     -----------------------------------------------------------
31232  *           false          false         |   No
31233  *           false          true          |   No
31234  *           true             x           |   Yes
31235  *     -----------------------------------------------------------
31236  *
31237  *
31238  * 6. Automatic mount & unmount
31239  *
31240  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
31241  *     if a device is removable media device. It return 1 for removable media
31242  *     devices, and 0 for others.
31243  *
31244  *     The automatic mounting subsystem should distinguish between the types
31245  *     of devices and apply automounting policies to each.
31246  *
31247  *
31248  * 7. fdisk partition management
31249  *
31250  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
31251  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
31252  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
31253  *     fdisk partitions on both x86 and SPARC platform.
31254  *
31255  *     -----------------------------------------------------------
31256  *       platform   removable media  USB/1394  |  fdisk supported
31257  *     -----------------------------------------------------------
31258  *        x86         X               X        |       true
31259  *     ------------------------------------------------------------
31260  *        sparc       X               X        |       false
31261  *     ------------------------------------------------------------
31262  *
31263  *
31264  * 8. MBOOT/MBR
31265  *
31266  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
31267  *     read/write mboot for removable media devices on sparc platform.
31268  *
31269  *     -----------------------------------------------------------
31270  *       platform   removable media  USB/1394  |  mboot supported
31271  *     -----------------------------------------------------------
31272  *        x86         X               X        |       true
31273  *     ------------------------------------------------------------
31274  *        sparc      false           false     |       false
31275  *        sparc      false           true      |       true
31276  *        sparc      true            false     |       true
31277  *        sparc      true            true      |       true
31278  *     ------------------------------------------------------------
31279  *
31280  *
31281  * 9.  error handling during opening device
31282  *
31283  *     If failed to open a disk device, an errno is returned. For some kinds
31284  *     of errors, different errno is returned depending on if this device is
31285  *     a removable media device. This brings USB/1394 hard disks in line with
31286  *     expected hard disk behavior. It is not expected that this breaks any
31287  *     application.
31288  *
31289  *     ------------------------------------------------------
31290  *       removable media    hotpluggable   |  errno
31291  *     ------------------------------------------------------
31292  *             false          false        |   EIO
31293  *             false          true         |   EIO
31294  *             true             x          |   ENXIO
31295  *     ------------------------------------------------------
31296  *
31297  *
31298  * 11. ioctls: DKIOCEJECT, CDROMEJECT
31299  *
31300  *     These IOCTLs are applicable only to removable media devices.
31301  *
31302  *     -----------------------------------------------------------
31303  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
31304  *     -----------------------------------------------------------
31305  *             false          false        |     No
31306  *             false          true         |     No
31307  *             true            x           |     Yes
31308  *     -----------------------------------------------------------
31309  *
31310  *
31311  * 12. Kstats for partitions
31312  *
31313  *     sd creates partition kstat for non-removable media devices. USB and
31314  *     Firewire hard disks now have partition kstats
31315  *
31316  *      ------------------------------------------------------
31317  *       removable media    hotplugable    |   kstat
31318  *      ------------------------------------------------------
31319  *             false          false        |    Yes
31320  *             false          true         |    Yes
31321  *             true             x          |    No
31322  *       ------------------------------------------------------
31323  *
31324  *
31325  * 13. Removable media & hotpluggable properties
31326  *
31327  *     Sd driver creates a "removable-media" property for removable media
31328  *     devices. Parent nexus drivers create a "hotpluggable" property if
31329  *     it supports hotplugging.
31330  *
31331  *     ---------------------------------------------------------------------
31332  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
31333  *     ---------------------------------------------------------------------
31334  *       false            false       |    No                   No
31335  *       false            true        |    No                   Yes
31336  *       true             false       |    Yes                  No
31337  *       true             true        |    Yes                  Yes
31338  *     ---------------------------------------------------------------------
31339  *
31340  *
31341  * 14. Power Management
31342  *
31343  *     sd only power manages removable media devices or devices that support
31344  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
31345  *
31346  *     A parent nexus that supports hotplugging can also set "pm-capable"
31347  *     if the disk can be power managed.
31348  *
31349  *     ------------------------------------------------------------
31350  *       removable media hotpluggable pm-capable  |   power manage
31351  *     ------------------------------------------------------------
31352  *             false          false     false     |     No
31353  *             false          false     true      |     Yes
31354  *             false          true      false     |     No
31355  *             false          true      true      |     Yes
31356  *             true             x        x        |     Yes
31357  *     ------------------------------------------------------------
31358  *
31359  *      USB and firewire hard disks can now be power managed independently
31360  *      of the framebuffer
31361  *
31362  *
31363  * 15. Support for USB disks with capacity larger than 1TB
31364  *
31365  *     Currently, sd doesn't permit a fixed disk device with capacity
31366  *     larger than 1TB to be used in a 32-bit operating system environment.
31367  *     However, sd doesn't do that for removable media devices. Instead, it
31368  *     assumes that removable media devices cannot have a capacity larger
31369  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31370  *     supported, which can cause some unexpected results.
31371  *
31372  *     ---------------------------------------------------------------------
31373  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31374  *     ---------------------------------------------------------------------
31375  *             false          false  |   true         |     no
31376  *             false          true   |   true         |     no
31377  *             true           false  |   true         |     Yes
31378  *             true           true   |   true         |     Yes
31379  *     ---------------------------------------------------------------------
31380  *
31381  *
31382  * 16. Check write-protection at open time
31383  *
31384  *     When a removable media device is being opened for writing without NDELAY
31385  *     flag, sd will check if this device is writable. If attempting to open
31386  *     without NDELAY flag a write-protected device, this operation will abort.
31387  *
31388  *     ------------------------------------------------------------
31389  *       removable media    USB/1394   |   WP Check
31390  *     ------------------------------------------------------------
31391  *             false          false    |     No
31392  *             false          true     |     No
31393  *             true           false    |     Yes
31394  *             true           true     |     Yes
31395  *     ------------------------------------------------------------
31396  *
31397  *
31398  * 17. syslog when corrupted VTOC is encountered
31399  *
31400  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31401  *      for fixed SCSI disks.
31402  *     ------------------------------------------------------------
31403  *       removable media    USB/1394   |   print syslog
31404  *     ------------------------------------------------------------
31405  *             false          false    |     Yes
31406  *             false          true     |     No
31407  *             true           false    |     No
31408  *             true           true     |     No
31409  *     ------------------------------------------------------------
31410  */
31411 static void
31412 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31413 {
31414 	int	pm_capable_prop;
31415 
31416 	ASSERT(un->un_sd);
31417 	ASSERT(un->un_sd->sd_inq);
31418 
31419 #if defined(_SUNOS_VTOC_16)
31420 	/*
31421 	 * For VTOC_16 devices, the default label will be created for all
31422 	 * devices. (see sd_build_default_label)
31423 	 */
31424 	un->un_f_default_vtoc_supported = TRUE;
31425 #endif
31426 
31427 	/*
31428 	 * Enable SYNC CACHE support for all devices.
31429 	 */
31430 	un->un_f_sync_cache_supported = TRUE;
31431 
31432 	if (un->un_sd->sd_inq->inq_rmb) {
31433 		/*
31434 		 * The media of this device is removable. And for this kind
31435 		 * of devices, it is possible to change medium after opening
31436 		 * devices. Thus we should support this operation.
31437 		 */
31438 		un->un_f_has_removable_media = TRUE;
31439 
31440 #if defined(_SUNOS_VTOC_8)
31441 		/*
31442 		 * Note: currently, for VTOC_8 devices, default label is
31443 		 * created for removable and hotpluggable devices only.
31444 		 */
31445 		un->un_f_default_vtoc_supported = TRUE;
31446 #endif
31447 		/*
31448 		 * support non-512-byte blocksize of removable media devices
31449 		 */
31450 		un->un_f_non_devbsize_supported = TRUE;
31451 
31452 		/*
31453 		 * Assume that all removable media devices support DOOR_LOCK
31454 		 */
31455 		un->un_f_doorlock_supported = TRUE;
31456 
31457 		/*
31458 		 * For a removable media device, it is possible to be opened
31459 		 * with NDELAY flag when there is no media in drive, in this
31460 		 * case we don't care if device is writable. But if without
31461 		 * NDELAY flag, we need to check if media is write-protected.
31462 		 */
31463 		un->un_f_chk_wp_open = TRUE;
31464 
31465 		/*
31466 		 * need to start a SCSI watch thread to monitor media state,
31467 		 * when media is being inserted or ejected, notify syseventd.
31468 		 */
31469 		un->un_f_monitor_media_state = TRUE;
31470 
31471 		/*
31472 		 * Some devices don't support START_STOP_UNIT command.
31473 		 * Therefore, we'd better check if a device supports it
31474 		 * before sending it.
31475 		 */
31476 		un->un_f_check_start_stop = TRUE;
31477 
31478 		/*
31479 		 * support eject media ioctl:
31480 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31481 		 */
31482 		un->un_f_eject_media_supported = TRUE;
31483 
31484 		/*
31485 		 * Because many removable-media devices don't support
31486 		 * LOG_SENSE, we couldn't use this command to check if
31487 		 * a removable media device support power-management.
31488 		 * We assume that they support power-management via
31489 		 * START_STOP_UNIT command and can be spun up and down
31490 		 * without limitations.
31491 		 */
31492 		un->un_f_pm_supported = TRUE;
31493 
31494 		/*
31495 		 * Need to create a zero length (Boolean) property
31496 		 * removable-media for the removable media devices.
31497 		 * Note that the return value of the property is not being
31498 		 * checked, since if unable to create the property
31499 		 * then do not want the attach to fail altogether. Consistent
31500 		 * with other property creation in attach.
31501 		 */
31502 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31503 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31504 
31505 	} else {
31506 		/*
31507 		 * create device ID for device
31508 		 */
31509 		un->un_f_devid_supported = TRUE;
31510 
31511 		/*
31512 		 * Spin up non-removable-media devices once it is attached
31513 		 */
31514 		un->un_f_attach_spinup = TRUE;
31515 
31516 		/*
31517 		 * According to SCSI specification, Sense data has two kinds of
31518 		 * format: fixed format, and descriptor format. At present, we
31519 		 * don't support descriptor format sense data for removable
31520 		 * media.
31521 		 */
31522 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31523 			un->un_f_descr_format_supported = TRUE;
31524 		}
31525 
31526 		/*
31527 		 * kstats are created only for non-removable media devices.
31528 		 *
31529 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31530 		 * default is 1, so they are enabled by default.
31531 		 */
31532 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31533 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31534 			"enable-partition-kstats", 1));
31535 
31536 		/*
31537 		 * Check if HBA has set the "pm-capable" property.
31538 		 * If "pm-capable" exists and is non-zero then we can
31539 		 * power manage the device without checking the start/stop
31540 		 * cycle count log sense page.
31541 		 *
31542 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31543 		 * then we should not power manage the device.
31544 		 *
31545 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31546 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31547 		 * sd will check the start/stop cycle count log sense page
31548 		 * and power manage the device if the cycle count limit has
31549 		 * not been exceeded.
31550 		 */
31551 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31552 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31553 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31554 			un->un_f_log_sense_supported = TRUE;
31555 		} else {
31556 			/*
31557 			 * pm-capable property exists.
31558 			 *
31559 			 * Convert "TRUE" values for pm_capable_prop to
31560 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31561 			 * later. "TRUE" values are any values except
31562 			 * SD_PM_CAPABLE_FALSE (0) and
31563 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31564 			 */
31565 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31566 				un->un_f_log_sense_supported = FALSE;
31567 			} else {
31568 				un->un_f_pm_supported = TRUE;
31569 			}
31570 
31571 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31572 			    "sd_unit_attach: un:0x%p pm-capable "
31573 			    "property set to %d.\n", un, un->un_f_pm_supported);
31574 		}
31575 	}
31576 
31577 	if (un->un_f_is_hotpluggable) {
31578 #if defined(_SUNOS_VTOC_8)
31579 		/*
31580 		 * Note: currently, for VTOC_8 devices, default label is
31581 		 * created for removable and hotpluggable devices only.
31582 		 */
31583 		un->un_f_default_vtoc_supported = TRUE;
31584 #endif
31585 
31586 		/*
31587 		 * Have to watch hotpluggable devices as well, since
31588 		 * that's the only way for userland applications to
31589 		 * detect hot removal while device is busy/mounted.
31590 		 */
31591 		un->un_f_monitor_media_state = TRUE;
31592 
31593 		un->un_f_check_start_stop = TRUE;
31594 
31595 	}
31596 
31597 	/*
31598 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31599 	 * labels.
31600 	 */
31601 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31602 	    (un->un_sd->sd_inq->inq_rmb)) {
31603 		/*
31604 		 * Direct access devices have disk label
31605 		 */
31606 		un->un_f_vtoc_label_supported = TRUE;
31607 	}
31608 
31609 	/*
31610 	 * Fdisk partitions are supported for all direct access devices on
31611 	 * x86 platform, and just for removable media and hotpluggable
31612 	 * devices on SPARC platform. Later, we will set the following flag
31613 	 * to FALSE if current device is not removable media or hotpluggable
31614 	 * device and if sd works on SAPRC platform.
31615 	 */
31616 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31617 		un->un_f_mboot_supported = TRUE;
31618 	}
31619 
31620 	if (!un->un_f_is_hotpluggable &&
31621 	    !un->un_sd->sd_inq->inq_rmb) {
31622 
31623 #if defined(_SUNOS_VTOC_8)
31624 		/*
31625 		 * Don't support fdisk on fixed disk
31626 		 */
31627 		un->un_f_mboot_supported = FALSE;
31628 #endif
31629 
31630 		/*
31631 		 * For fixed disk, if its VTOC is not valid, we will write
31632 		 * errlog into system log
31633 		 */
31634 		if (un->un_f_vtoc_label_supported)
31635 			un->un_f_vtoc_errlog_supported = TRUE;
31636 	}
31637 }
31638