xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision 76716eaced8d7659d4594350eb3f343c31fe2806)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two seperate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 
187 #define	sd_minor_data			ssd_minor_data
188 #define	sd_minor_data_efi		ssd_minor_data_efi
189 
190 #define	sd_tq				ssd_tq
191 #define	sd_wmr_tq			ssd_wmr_tq
192 #define	sd_taskq_name			ssd_taskq_name
193 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
194 #define	sd_taskq_minalloc		ssd_taskq_minalloc
195 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
196 
197 #define	sd_dump_format_string		ssd_dump_format_string
198 
199 #define	sd_iostart_chain		ssd_iostart_chain
200 #define	sd_iodone_chain			ssd_iodone_chain
201 
202 #define	sd_pm_idletime			ssd_pm_idletime
203 
204 #define	sd_force_pm_supported		ssd_force_pm_supported
205 
206 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
207 
208 #endif
209 
210 
211 #ifdef	SDDEBUG
212 int	sd_force_pm_supported		= 0;
213 #endif	/* SDDEBUG */
214 
215 void *sd_state				= NULL;
216 int sd_io_time				= SD_IO_TIME;
217 int sd_failfast_enable			= 1;
218 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
219 int sd_report_pfa			= 1;
220 int sd_max_throttle			= SD_MAX_THROTTLE;
221 int sd_min_throttle			= SD_MIN_THROTTLE;
222 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
223 int sd_qfull_throttle_enable		= TRUE;
224 
225 int sd_retry_on_reservation_conflict	= 1;
226 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
227 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
228 
229 static int sd_dtype_optical_bind	= -1;
230 
231 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
232 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
233 
234 /*
235  * Global data for debug logging. To enable debug printing, sd_component_mask
236  * and sd_level_mask should be set to the desired bit patterns as outlined in
237  * sddef.h.
238  */
239 uint_t	sd_component_mask		= 0x0;
240 uint_t	sd_level_mask			= 0x0;
241 struct	sd_lun *sd_debug_un		= NULL;
242 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
243 
244 /* Note: these may go away in the future... */
245 static uint32_t	sd_xbuf_active_limit	= 512;
246 static uint32_t sd_xbuf_reserve_limit	= 16;
247 
248 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
249 
250 /*
251  * Timer value used to reset the throttle after it has been reduced
252  * (typically in response to TRAN_BUSY or STATUS_QFULL)
253  */
254 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
255 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
256 
257 /*
258  * Interval value associated with the media change scsi watch.
259  */
260 static int sd_check_media_time		= 3000000;
261 
262 /*
263  * Wait value used for in progress operations during a DDI_SUSPEND
264  */
265 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
266 
267 /*
268  * sd_label_mutex protects a static buffer used in the disk label
269  * component of the driver
270  */
271 static kmutex_t sd_label_mutex;
272 
273 /*
274  * sd_detach_mutex protects un_layer_count, un_detach_count, and
275  * un_opens_in_progress in the sd_lun structure.
276  */
277 static kmutex_t sd_detach_mutex;
278 
279 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
280 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
281 
282 /*
283  * Global buffer and mutex for debug logging
284  */
285 static char	sd_log_buf[1024];
286 static kmutex_t	sd_log_mutex;
287 
288 
289 /*
290  * "Smart" Probe Caching structs, globals, #defines, etc.
291  * For parallel scsi and non-self-identify device only.
292  */
293 
294 /*
295  * The following resources and routines are implemented to support
296  * "smart" probing, which caches the scsi_probe() results in an array,
297  * in order to help avoid long probe times.
298  */
299 struct sd_scsi_probe_cache {
300 	struct	sd_scsi_probe_cache	*next;
301 	dev_info_t	*pdip;
302 	int		cache[NTARGETS_WIDE];
303 };
304 
305 static kmutex_t	sd_scsi_probe_cache_mutex;
306 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
307 
308 /*
309  * Really we only need protection on the head of the linked list, but
310  * better safe than sorry.
311  */
312 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
313     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
314 
315 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
316     sd_scsi_probe_cache_head))
317 
318 
319 /*
320  * Vendor specific data name property declarations
321  */
322 
323 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
324 
325 static sd_tunables seagate_properties = {
326 	SEAGATE_THROTTLE_VALUE,
327 	0,
328 	0,
329 	0,
330 	0,
331 	0,
332 	0,
333 	0,
334 	0
335 };
336 
337 
338 static sd_tunables fujitsu_properties = {
339 	FUJITSU_THROTTLE_VALUE,
340 	0,
341 	0,
342 	0,
343 	0,
344 	0,
345 	0,
346 	0,
347 	0
348 };
349 
350 static sd_tunables ibm_properties = {
351 	IBM_THROTTLE_VALUE,
352 	0,
353 	0,
354 	0,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0
360 };
361 
362 static sd_tunables purple_properties = {
363 	PURPLE_THROTTLE_VALUE,
364 	0,
365 	0,
366 	PURPLE_BUSY_RETRIES,
367 	PURPLE_RESET_RETRY_COUNT,
368 	PURPLE_RESERVE_RELEASE_TIME,
369 	0,
370 	0,
371 	0
372 };
373 
374 static sd_tunables sve_properties = {
375 	SVE_THROTTLE_VALUE,
376 	0,
377 	0,
378 	SVE_BUSY_RETRIES,
379 	SVE_RESET_RETRY_COUNT,
380 	SVE_RESERVE_RELEASE_TIME,
381 	SVE_MIN_THROTTLE_VALUE,
382 	SVE_DISKSORT_DISABLED_FLAG,
383 	0
384 };
385 
386 static sd_tunables maserati_properties = {
387 	0,
388 	0,
389 	0,
390 	0,
391 	0,
392 	0,
393 	0,
394 	MASERATI_DISKSORT_DISABLED_FLAG,
395 	MASERATI_LUN_RESET_ENABLED_FLAG
396 };
397 
398 static sd_tunables pirus_properties = {
399 	PIRUS_THROTTLE_VALUE,
400 	0,
401 	PIRUS_NRR_COUNT,
402 	PIRUS_BUSY_RETRIES,
403 	PIRUS_RESET_RETRY_COUNT,
404 	0,
405 	PIRUS_MIN_THROTTLE_VALUE,
406 	PIRUS_DISKSORT_DISABLED_FLAG,
407 	PIRUS_LUN_RESET_ENABLED_FLAG
408 };
409 
410 #endif
411 
412 #if (defined(__sparc) && !defined(__fibre)) || \
413 	(defined(__i386) || defined(__amd64))
414 
415 
416 static sd_tunables elite_properties = {
417 	ELITE_THROTTLE_VALUE,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	0,
425 	0
426 };
427 
428 static sd_tunables st31200n_properties = {
429 	ST31200N_THROTTLE_VALUE,
430 	0,
431 	0,
432 	0,
433 	0,
434 	0,
435 	0,
436 	0,
437 	0
438 };
439 
440 #endif /* Fibre or not */
441 
442 static sd_tunables lsi_properties_scsi = {
443 	LSI_THROTTLE_VALUE,
444 	0,
445 	LSI_NOTREADY_RETRIES,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0
452 };
453 
454 static sd_tunables symbios_properties = {
455 	SYMBIOS_THROTTLE_VALUE,
456 	0,
457 	SYMBIOS_NOTREADY_RETRIES,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0
464 };
465 
466 static sd_tunables lsi_properties = {
467 	0,
468 	0,
469 	LSI_NOTREADY_RETRIES,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0
476 };
477 
478 static sd_tunables lsi_oem_properties = {
479 	0,
480 	0,
481 	LSI_OEM_NOTREADY_RETRIES,
482 	0,
483 	0,
484 	0,
485 	0,
486 	0,
487 	0
488 };
489 
490 
491 
492 #if (defined(SD_PROP_TST))
493 
494 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
495 #define	SD_TST_THROTTLE_VAL	16
496 #define	SD_TST_NOTREADY_VAL	12
497 #define	SD_TST_BUSY_VAL		60
498 #define	SD_TST_RST_RETRY_VAL	36
499 #define	SD_TST_RSV_REL_TIME	60
500 
501 static sd_tunables tst_properties = {
502 	SD_TST_THROTTLE_VAL,
503 	SD_TST_CTYPE_VAL,
504 	SD_TST_NOTREADY_VAL,
505 	SD_TST_BUSY_VAL,
506 	SD_TST_RST_RETRY_VAL,
507 	SD_TST_RSV_REL_TIME,
508 	0,
509 	0,
510 	0
511 };
512 #endif
513 
514 /* This is similiar to the ANSI toupper implementation */
515 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
516 
517 /*
518  * Static Driver Configuration Table
519  *
520  * This is the table of disks which need throttle adjustment (or, perhaps
521  * something else as defined by the flags at a future time.)  device_id
522  * is a string consisting of concatenated vid (vendor), pid (product/model)
523  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
524  * the parts of the string are as defined by the sizes in the scsi_inquiry
525  * structure.  Device type is searched as far as the device_id string is
526  * defined.  Flags defines which values are to be set in the driver from the
527  * properties list.
528  *
529  * Entries below which begin and end with a "*" are a special case.
530  * These do not have a specific vendor, and the string which follows
531  * can appear anywhere in the 16 byte PID portion of the inquiry data.
532  *
533  * Entries below which begin and end with a " " (blank) are a special
534  * case. The comparison function will treat multiple consecutive blanks
535  * as equivalent to a single blank. For example, this causes a
536  * sd_disk_table entry of " NEC CDROM " to match a device's id string
537  * of  "NEC       CDROM".
538  *
539  * Note: The MD21 controller type has been obsoleted.
540  *	 ST318202F is a Legacy device
541  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
542  *	 made with an FC connection. The entries here are a legacy.
543  */
544 static sd_disk_config_t sd_disk_table[] = {
545 #if defined(__fibre) || defined(__i386) || defined(__amd64)
546 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
550 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
556 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
557 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
558 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
559 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
560 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
561 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
562 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
563 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
564 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
565 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
566 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
567 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
568 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
569 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
570 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
571 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
572 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
573 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
576 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
577 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
578 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
582 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
583 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
584 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
585 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
586 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
587 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
588 			SD_CONF_BSET_BSY_RETRY_COUNT|
589 			SD_CONF_BSET_RST_RETRIES|
590 			SD_CONF_BSET_RSV_REL_TIME,
591 		&purple_properties },
592 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
593 		SD_CONF_BSET_BSY_RETRY_COUNT|
594 		SD_CONF_BSET_RST_RETRIES|
595 		SD_CONF_BSET_RSV_REL_TIME|
596 		SD_CONF_BSET_MIN_THROTTLE|
597 		SD_CONF_BSET_DISKSORT_DISABLED,
598 		&sve_properties },
599 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
600 			SD_CONF_BSET_BSY_RETRY_COUNT|
601 			SD_CONF_BSET_RST_RETRIES|
602 			SD_CONF_BSET_RSV_REL_TIME,
603 		&purple_properties },
604 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
605 		SD_CONF_BSET_LUN_RESET_ENABLED,
606 		&maserati_properties },
607 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
608 		SD_CONF_BSET_NRR_COUNT|
609 		SD_CONF_BSET_BSY_RETRY_COUNT|
610 		SD_CONF_BSET_RST_RETRIES|
611 		SD_CONF_BSET_MIN_THROTTLE|
612 		SD_CONF_BSET_DISKSORT_DISABLED|
613 		SD_CONF_BSET_LUN_RESET_ENABLED,
614 		&pirus_properties },
615 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
616 		SD_CONF_BSET_NRR_COUNT|
617 		SD_CONF_BSET_BSY_RETRY_COUNT|
618 		SD_CONF_BSET_RST_RETRIES|
619 		SD_CONF_BSET_MIN_THROTTLE|
620 		SD_CONF_BSET_DISKSORT_DISABLED|
621 		SD_CONF_BSET_LUN_RESET_ENABLED,
622 		&pirus_properties },
623 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
624 		SD_CONF_BSET_NRR_COUNT|
625 		SD_CONF_BSET_BSY_RETRY_COUNT|
626 		SD_CONF_BSET_RST_RETRIES|
627 		SD_CONF_BSET_MIN_THROTTLE|
628 		SD_CONF_BSET_DISKSORT_DISABLED|
629 		SD_CONF_BSET_LUN_RESET_ENABLED,
630 		&pirus_properties },
631 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
632 		SD_CONF_BSET_NRR_COUNT|
633 		SD_CONF_BSET_BSY_RETRY_COUNT|
634 		SD_CONF_BSET_RST_RETRIES|
635 		SD_CONF_BSET_MIN_THROTTLE|
636 		SD_CONF_BSET_DISKSORT_DISABLED|
637 		SD_CONF_BSET_LUN_RESET_ENABLED,
638 		&pirus_properties },
639 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
640 		SD_CONF_BSET_NRR_COUNT|
641 		SD_CONF_BSET_BSY_RETRY_COUNT|
642 		SD_CONF_BSET_RST_RETRIES|
643 		SD_CONF_BSET_MIN_THROTTLE|
644 		SD_CONF_BSET_DISKSORT_DISABLED|
645 		SD_CONF_BSET_LUN_RESET_ENABLED,
646 		&pirus_properties },
647 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
648 		SD_CONF_BSET_NRR_COUNT|
649 		SD_CONF_BSET_BSY_RETRY_COUNT|
650 		SD_CONF_BSET_RST_RETRIES|
651 		SD_CONF_BSET_MIN_THROTTLE|
652 		SD_CONF_BSET_DISKSORT_DISABLED|
653 		SD_CONF_BSET_LUN_RESET_ENABLED,
654 		&pirus_properties },
655 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
660 #endif /* fibre or NON-sparc platforms */
661 #if ((defined(__sparc) && !defined(__fibre)) ||\
662 	(defined(__i386) || defined(__amd64)))
663 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
664 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
665 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
666 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
667 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
668 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
669 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
670 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
671 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
672 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
673 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
674 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
675 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
676 	    &symbios_properties },
677 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
678 	    &lsi_properties_scsi },
679 #if defined(__i386) || defined(__amd64)
680 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
681 				    | SD_CONF_BSET_READSUB_BCD
682 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
683 				    | SD_CONF_BSET_NO_READ_HEADER
684 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
685 
686 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
687 				    | SD_CONF_BSET_READSUB_BCD
688 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
689 				    | SD_CONF_BSET_NO_READ_HEADER
690 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
691 #endif /* __i386 || __amd64 */
692 #endif /* sparc NON-fibre or NON-sparc platforms */
693 
694 #if (defined(SD_PROP_TST))
695 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
696 				| SD_CONF_BSET_CTYPE
697 				| SD_CONF_BSET_NRR_COUNT
698 				| SD_CONF_BSET_FAB_DEVID
699 				| SD_CONF_BSET_NOCACHE
700 				| SD_CONF_BSET_BSY_RETRY_COUNT
701 				| SD_CONF_BSET_PLAYMSF_BCD
702 				| SD_CONF_BSET_READSUB_BCD
703 				| SD_CONF_BSET_READ_TOC_TRK_BCD
704 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
705 				| SD_CONF_BSET_NO_READ_HEADER
706 				| SD_CONF_BSET_READ_CD_XD4
707 				| SD_CONF_BSET_RST_RETRIES
708 				| SD_CONF_BSET_RSV_REL_TIME
709 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
710 #endif
711 };
712 
713 static const int sd_disk_table_size =
714 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
715 
716 
717 /*
718  * Return codes of sd_uselabel().
719  */
720 #define	SD_LABEL_IS_VALID		0
721 #define	SD_LABEL_IS_INVALID		1
722 
723 #define	SD_INTERCONNECT_PARALLEL	0
724 #define	SD_INTERCONNECT_FABRIC		1
725 #define	SD_INTERCONNECT_FIBRE		2
726 #define	SD_INTERCONNECT_SSA		3
727 #define	SD_IS_PARALLEL_SCSI(un)		\
728 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
729 
730 /*
731  * Definitions used by device id registration routines
732  */
733 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
734 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
735 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
736 #define	WD_NODE			7	/* the whole disk minor */
737 
738 static kmutex_t sd_sense_mutex = {0};
739 
740 /*
741  * Macros for updates of the driver state
742  */
743 #define	New_state(un, s)        \
744 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
745 #define	Restore_state(un)	\
746 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
747 
748 static struct sd_cdbinfo sd_cdbtab[] = {
749 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
750 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
751 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
752 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
753 };
754 
755 /*
756  * Specifies the number of seconds that must have elapsed since the last
757  * cmd. has completed for a device to be declared idle to the PM framework.
758  */
759 static int sd_pm_idletime = 1;
760 
761 /*
762  * Internal function prototypes
763  */
764 
765 #if (defined(__fibre))
766 /*
767  * These #defines are to avoid namespace collisions that occur because this
768  * code is currently used to compile two seperate driver modules: sd and ssd.
769  * All function names need to be treated this way (even if declared static)
770  * in order to allow the debugger to resolve the names properly.
771  * It is anticipated that in the near future the ssd module will be obsoleted,
772  * at which time this ugliness should go away.
773  */
774 #define	sd_log_trace			ssd_log_trace
775 #define	sd_log_info			ssd_log_info
776 #define	sd_log_err			ssd_log_err
777 #define	sdprobe				ssdprobe
778 #define	sdinfo				ssdinfo
779 #define	sd_prop_op			ssd_prop_op
780 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
781 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
782 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
783 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
784 #define	sd_spin_up_unit			ssd_spin_up_unit
785 #define	sd_enable_descr_sense		ssd_enable_descr_sense
786 #define	sd_set_mmc_caps			ssd_set_mmc_caps
787 #define	sd_read_unit_properties		ssd_read_unit_properties
788 #define	sd_process_sdconf_file		ssd_process_sdconf_file
789 #define	sd_process_sdconf_table		ssd_process_sdconf_table
790 #define	sd_sdconf_id_match		ssd_sdconf_id_match
791 #define	sd_blank_cmp			ssd_blank_cmp
792 #define	sd_chk_vers1_data		ssd_chk_vers1_data
793 #define	sd_set_vers1_properties		ssd_set_vers1_properties
794 #define	sd_validate_geometry		ssd_validate_geometry
795 
796 #if defined(_SUNOS_VTOC_16)
797 #define	sd_convert_geometry		ssd_convert_geometry
798 #endif
799 
800 #define	sd_resync_geom_caches		ssd_resync_geom_caches
801 #define	sd_read_fdisk			ssd_read_fdisk
802 #define	sd_get_physical_geometry	ssd_get_physical_geometry
803 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
804 #define	sd_update_block_info		ssd_update_block_info
805 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
806 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
807 #define	sd_validate_efi			ssd_validate_efi
808 #define	sd_use_efi			ssd_use_efi
809 #define	sd_uselabel			ssd_uselabel
810 #define	sd_build_default_label		ssd_build_default_label
811 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
812 #define	sd_inq_fill			ssd_inq_fill
813 #define	sd_register_devid		ssd_register_devid
814 #define	sd_get_devid_block		ssd_get_devid_block
815 #define	sd_get_devid			ssd_get_devid
816 #define	sd_create_devid			ssd_create_devid
817 #define	sd_write_deviceid		ssd_write_deviceid
818 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
819 #define	sd_setup_pm			ssd_setup_pm
820 #define	sd_create_pm_components		ssd_create_pm_components
821 #define	sd_ddi_suspend			ssd_ddi_suspend
822 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
823 #define	sd_ddi_resume			ssd_ddi_resume
824 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
825 #define	sdpower				ssdpower
826 #define	sdattach			ssdattach
827 #define	sddetach			ssddetach
828 #define	sd_unit_attach			ssd_unit_attach
829 #define	sd_unit_detach			ssd_unit_detach
830 #define	sd_set_unit_attributes		ssd_set_unit_attributes
831 #define	sd_create_minor_nodes		ssd_create_minor_nodes
832 #define	sd_create_errstats		ssd_create_errstats
833 #define	sd_set_errstats			ssd_set_errstats
834 #define	sd_set_pstats			ssd_set_pstats
835 #define	sddump				ssddump
836 #define	sd_scsi_poll			ssd_scsi_poll
837 #define	sd_send_polled_RQS		ssd_send_polled_RQS
838 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
839 #define	sd_init_event_callbacks		ssd_init_event_callbacks
840 #define	sd_event_callback		ssd_event_callback
841 #define	sd_cache_control		ssd_cache_control
842 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
843 #define	sd_make_device			ssd_make_device
844 #define	sdopen				ssdopen
845 #define	sdclose				ssdclose
846 #define	sd_ready_and_valid		ssd_ready_and_valid
847 #define	sdmin				ssdmin
848 #define	sdread				ssdread
849 #define	sdwrite				ssdwrite
850 #define	sdaread				ssdaread
851 #define	sdawrite			ssdawrite
852 #define	sdstrategy			ssdstrategy
853 #define	sdioctl				ssdioctl
854 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
855 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
856 #define	sd_checksum_iostart		ssd_checksum_iostart
857 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
858 #define	sd_pm_iostart			ssd_pm_iostart
859 #define	sd_core_iostart			ssd_core_iostart
860 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
861 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
862 #define	sd_checksum_iodone		ssd_checksum_iodone
863 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
864 #define	sd_pm_iodone			ssd_pm_iodone
865 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
866 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
867 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
868 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
869 #define	sd_buf_iodone			ssd_buf_iodone
870 #define	sd_uscsi_strategy		ssd_uscsi_strategy
871 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
872 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
873 #define	sd_uscsi_iodone			ssd_uscsi_iodone
874 #define	sd_xbuf_strategy		ssd_xbuf_strategy
875 #define	sd_xbuf_init			ssd_xbuf_init
876 #define	sd_pm_entry			ssd_pm_entry
877 #define	sd_pm_exit			ssd_pm_exit
878 
879 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
880 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
881 
882 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
883 #define	sdintr				ssdintr
884 #define	sd_start_cmds			ssd_start_cmds
885 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
886 #define	sd_bioclone_alloc		ssd_bioclone_alloc
887 #define	sd_bioclone_free		ssd_bioclone_free
888 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
889 #define	sd_shadow_buf_free		ssd_shadow_buf_free
890 #define	sd_print_transport_rejected_message	\
891 					ssd_print_transport_rejected_message
892 #define	sd_retry_command		ssd_retry_command
893 #define	sd_set_retry_bp			ssd_set_retry_bp
894 #define	sd_send_request_sense_command	ssd_send_request_sense_command
895 #define	sd_start_retry_command		ssd_start_retry_command
896 #define	sd_start_direct_priority_command	\
897 					ssd_start_direct_priority_command
898 #define	sd_return_failed_command	ssd_return_failed_command
899 #define	sd_return_failed_command_no_restart	\
900 					ssd_return_failed_command_no_restart
901 #define	sd_return_command		ssd_return_command
902 #define	sd_sync_with_callback		ssd_sync_with_callback
903 #define	sdrunout			ssdrunout
904 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
905 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
906 #define	sd_reduce_throttle		ssd_reduce_throttle
907 #define	sd_restore_throttle		ssd_restore_throttle
908 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
909 #define	sd_init_cdb_limits		ssd_init_cdb_limits
910 #define	sd_pkt_status_good		ssd_pkt_status_good
911 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
912 #define	sd_pkt_status_busy		ssd_pkt_status_busy
913 #define	sd_pkt_status_reservation_conflict	\
914 					ssd_pkt_status_reservation_conflict
915 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
916 #define	sd_handle_request_sense		ssd_handle_request_sense
917 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
918 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
919 #define	sd_validate_sense_data		ssd_validate_sense_data
920 #define	sd_decode_sense			ssd_decode_sense
921 #define	sd_print_sense_msg		ssd_print_sense_msg
922 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
923 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
924 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
925 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
926 #define	sd_sense_key_medium_or_hardware_error	\
927 					ssd_sense_key_medium_or_hardware_error
928 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
929 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
930 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
931 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
932 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
933 #define	sd_sense_key_default		ssd_sense_key_default
934 #define	sd_print_retry_msg		ssd_print_retry_msg
935 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
936 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
937 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
938 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
939 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
940 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
941 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
942 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
943 #define	sd_pkt_reason_default		ssd_pkt_reason_default
944 #define	sd_reset_target			ssd_reset_target
945 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
946 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
947 #define	sd_taskq_create			ssd_taskq_create
948 #define	sd_taskq_delete			ssd_taskq_delete
949 #define	sd_media_change_task		ssd_media_change_task
950 #define	sd_handle_mchange		ssd_handle_mchange
951 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
952 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
953 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
954 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
955 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
956 					sd_send_scsi_feature_GET_CONFIGURATION
957 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
958 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
959 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
960 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
961 					ssd_send_scsi_PERSISTENT_RESERVE_IN
962 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
963 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
964 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
965 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
966 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
967 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
968 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
969 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
970 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
971 #define	sd_alloc_rqs			ssd_alloc_rqs
972 #define	sd_free_rqs			ssd_free_rqs
973 #define	sd_dump_memory			ssd_dump_memory
974 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
975 #define	sd_get_media_info		ssd_get_media_info
976 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
977 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
978 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
979 #define	sd_dkio_get_partition		ssd_dkio_get_partition
980 #define	sd_dkio_set_partition		ssd_dkio_set_partition
981 #define	sd_dkio_partition		ssd_dkio_partition
982 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
983 #define	sd_dkio_get_efi			ssd_dkio_get_efi
984 #define	sd_build_user_vtoc		ssd_build_user_vtoc
985 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
986 #define	sd_dkio_set_efi			ssd_dkio_set_efi
987 #define	sd_build_label_vtoc		ssd_build_label_vtoc
988 #define	sd_write_label			ssd_write_label
989 #define	sd_clear_vtoc			ssd_clear_vtoc
990 #define	sd_clear_efi			ssd_clear_efi
991 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
992 #define	sd_setup_next_xfer		ssd_setup_next_xfer
993 #define	sd_dkio_get_temp		ssd_dkio_get_temp
994 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
995 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
996 #define	sd_setup_default_geometry	ssd_setup_default_geometry
997 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
998 #define	sd_check_mhd			ssd_check_mhd
999 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1000 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1001 #define	sd_sname			ssd_sname
1002 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1003 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1004 #define	sd_take_ownership		ssd_take_ownership
1005 #define	sd_reserve_release		ssd_reserve_release
1006 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1007 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1008 #define	sd_persistent_reservation_in_read_keys	\
1009 					ssd_persistent_reservation_in_read_keys
1010 #define	sd_persistent_reservation_in_read_resv	\
1011 					ssd_persistent_reservation_in_read_resv
1012 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1013 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1014 #define	sd_mhdioc_release		ssd_mhdioc_release
1015 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1016 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1017 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1018 #define	sr_change_blkmode		ssr_change_blkmode
1019 #define	sr_change_speed			ssr_change_speed
1020 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1021 #define	sr_pause_resume			ssr_pause_resume
1022 #define	sr_play_msf			ssr_play_msf
1023 #define	sr_play_trkind			ssr_play_trkind
1024 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1025 #define	sr_read_subchannel		ssr_read_subchannel
1026 #define	sr_read_tocentry		ssr_read_tocentry
1027 #define	sr_read_tochdr			ssr_read_tochdr
1028 #define	sr_read_cdda			ssr_read_cdda
1029 #define	sr_read_cdxa			ssr_read_cdxa
1030 #define	sr_read_mode1			ssr_read_mode1
1031 #define	sr_read_mode2			ssr_read_mode2
1032 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1033 #define	sr_sector_mode			ssr_sector_mode
1034 #define	sr_eject			ssr_eject
1035 #define	sr_ejected			ssr_ejected
1036 #define	sr_check_wp			ssr_check_wp
1037 #define	sd_check_media			ssd_check_media
1038 #define	sd_media_watch_cb		ssd_media_watch_cb
1039 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1040 #define	sr_volume_ctrl			ssr_volume_ctrl
1041 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1042 #define	sd_log_page_supported		ssd_log_page_supported
1043 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1044 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1045 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1046 #define	sd_range_lock			ssd_range_lock
1047 #define	sd_get_range			ssd_get_range
1048 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1049 #define	sd_range_unlock			ssd_range_unlock
1050 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1051 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1052 
1053 #define	sd_iostart_chain		ssd_iostart_chain
1054 #define	sd_iodone_chain			ssd_iodone_chain
1055 #define	sd_initpkt_map			ssd_initpkt_map
1056 #define	sd_destroypkt_map		ssd_destroypkt_map
1057 #define	sd_chain_type_map		ssd_chain_type_map
1058 #define	sd_chain_index_map		ssd_chain_index_map
1059 
1060 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1061 #define	sd_failfast_flushq		ssd_failfast_flushq
1062 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1063 
1064 #define	sd_is_lsi			ssd_is_lsi
1065 
1066 #endif	/* #if (defined(__fibre)) */
1067 
1068 
1069 int _init(void);
1070 int _fini(void);
1071 int _info(struct modinfo *modinfop);
1072 
1073 /*PRINTFLIKE3*/
1074 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1075 /*PRINTFLIKE3*/
1076 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1077 /*PRINTFLIKE3*/
1078 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1079 
1080 static int sdprobe(dev_info_t *devi);
1081 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1082     void **result);
1083 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1084     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1085 
1086 /*
1087  * Smart probe for parallel scsi
1088  */
1089 static void sd_scsi_probe_cache_init(void);
1090 static void sd_scsi_probe_cache_fini(void);
1091 static void sd_scsi_clear_probe_cache(void);
1092 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1093 
1094 static int	sd_spin_up_unit(struct sd_lun *un);
1095 #ifdef _LP64
1096 static void	sd_enable_descr_sense(struct sd_lun *un);
1097 #endif /* _LP64 */
1098 static void	sd_set_mmc_caps(struct sd_lun *un);
1099 
1100 static void sd_read_unit_properties(struct sd_lun *un);
1101 static int  sd_process_sdconf_file(struct sd_lun *un);
1102 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1103     int *data_list, sd_tunables *values);
1104 static void sd_process_sdconf_table(struct sd_lun *un);
1105 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1106 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1107 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1108 	int list_len, char *dataname_ptr);
1109 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1110     sd_tunables *prop_list);
1111 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1112 
1113 #if defined(_SUNOS_VTOC_16)
1114 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1115 #endif
1116 
1117 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1118 	int path_flag);
1119 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1120 	int path_flag);
1121 static void sd_get_physical_geometry(struct sd_lun *un,
1122 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1123 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1124 	int lbasize);
1125 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1126 static void sd_swap_efi_gpt(efi_gpt_t *);
1127 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1128 static int sd_validate_efi(efi_gpt_t *);
1129 static int sd_use_efi(struct sd_lun *, int);
1130 static void sd_build_default_label(struct sd_lun *un);
1131 
1132 #if defined(_FIRMWARE_NEEDS_FDISK)
1133 static int  sd_has_max_chs_vals(struct ipart *fdp);
1134 #endif
1135 static void sd_inq_fill(char *p, int l, char *s);
1136 
1137 
1138 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1139     int reservation_flag);
1140 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1141 static int  sd_get_devid(struct sd_lun *un);
1142 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1143 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1144 static int  sd_write_deviceid(struct sd_lun *un);
1145 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1146 static int  sd_check_vpd_page_support(struct sd_lun *un);
1147 
1148 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1149 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1150 
1151 static int  sd_ddi_suspend(dev_info_t *devi);
1152 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1153 static int  sd_ddi_resume(dev_info_t *devi);
1154 static int  sd_ddi_pm_resume(struct sd_lun *un);
1155 static int  sdpower(dev_info_t *devi, int component, int level);
1156 
1157 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1158 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1159 static int  sd_unit_attach(dev_info_t *devi);
1160 static int  sd_unit_detach(dev_info_t *devi);
1161 
1162 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1163 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1164 static void sd_create_errstats(struct sd_lun *un, int instance);
1165 static void sd_set_errstats(struct sd_lun *un);
1166 static void sd_set_pstats(struct sd_lun *un);
1167 
1168 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1169 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1170 static int  sd_send_polled_RQS(struct sd_lun *un);
1171 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1172 
1173 #if (defined(__fibre))
1174 /*
1175  * Event callbacks (photon)
1176  */
1177 static void sd_init_event_callbacks(struct sd_lun *un);
1178 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1179 #endif
1180 
1181 /*
1182  * Defines for sd_cache_control
1183  */
1184 
1185 #define	SD_CACHE_ENABLE		1
1186 #define	SD_CACHE_DISABLE	0
1187 #define	SD_CACHE_NOCHANGE	-1
1188 
1189 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1190 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1191 static dev_t sd_make_device(dev_info_t *devi);
1192 
1193 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1194 	uint64_t capacity);
1195 
1196 /*
1197  * Driver entry point functions.
1198  */
1199 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1200 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1201 static int  sd_ready_and_valid(struct sd_lun *un);
1202 
1203 static void sdmin(struct buf *bp);
1204 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1205 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1206 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1207 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1208 
1209 static int sdstrategy(struct buf *bp);
1210 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1211 
1212 /*
1213  * Function prototypes for layering functions in the iostart chain.
1214  */
1215 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1218 	struct buf *bp);
1219 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1220 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1221 	struct buf *bp);
1222 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1223 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1224 
1225 /*
1226  * Function prototypes for layering functions in the iodone chain.
1227  */
1228 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1229 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1230 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1231 	struct buf *bp);
1232 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1233 	struct buf *bp);
1234 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1235 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1236 	struct buf *bp);
1237 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1238 
1239 /*
1240  * Prototypes for functions to support buf(9S) based IO.
1241  */
1242 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1243 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1244 static void sd_destroypkt_for_buf(struct buf *);
1245 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1246 	struct buf *bp, int flags,
1247 	int (*callback)(caddr_t), caddr_t callback_arg,
1248 	diskaddr_t lba, uint32_t blockcount);
1249 #if defined(__i386) || defined(__amd64)
1250 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1251 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1252 #endif /* defined(__i386) || defined(__amd64) */
1253 
1254 /*
1255  * Prototypes for functions to support USCSI IO.
1256  */
1257 static int sd_uscsi_strategy(struct buf *bp);
1258 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1259 static void sd_destroypkt_for_uscsi(struct buf *);
1260 
1261 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1262 	uchar_t chain_type, void *pktinfop);
1263 
1264 static int  sd_pm_entry(struct sd_lun *un);
1265 static void sd_pm_exit(struct sd_lun *un);
1266 
1267 static void sd_pm_idletimeout_handler(void *arg);
1268 
1269 /*
1270  * sd_core internal functions (used at the sd_core_io layer).
1271  */
1272 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1273 static void sdintr(struct scsi_pkt *pktp);
1274 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1275 
1276 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1277 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1278 	int path_flag);
1279 
1280 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1281 	daddr_t blkno, int (*func)(struct buf *));
1282 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1283 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1284 static void sd_bioclone_free(struct buf *bp);
1285 static void sd_shadow_buf_free(struct buf *bp);
1286 
1287 static void sd_print_transport_rejected_message(struct sd_lun *un,
1288 	struct sd_xbuf *xp, int code);
1289 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1290     void *arg, int code);
1291 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1292     void *arg, int code);
1293 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1294     void *arg, int code);
1295 
1296 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1297 	int retry_check_flag,
1298 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1299 		int c),
1300 	void *user_arg, int failure_code,  clock_t retry_delay,
1301 	void (*statp)(kstat_io_t *));
1302 
1303 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1304 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1305 
1306 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1307 	struct scsi_pkt *pktp);
1308 static void sd_start_retry_command(void *arg);
1309 static void sd_start_direct_priority_command(void *arg);
1310 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1311 	int errcode);
1312 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1313 	struct buf *bp, int errcode);
1314 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1315 static void sd_sync_with_callback(struct sd_lun *un);
1316 static int sdrunout(caddr_t arg);
1317 
1318 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1319 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1320 
1321 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1322 static void sd_restore_throttle(void *arg);
1323 
1324 static void sd_init_cdb_limits(struct sd_lun *un);
1325 
1326 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 
1329 /*
1330  * Error handling functions
1331  */
1332 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1337 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 
1341 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1342 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1344 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1346 	struct sd_xbuf *xp);
1347 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1348 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1349 
1350 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1351 	void *arg, int code);
1352 static diskaddr_t sd_extract_sense_info_descr(
1353 	struct scsi_descr_sense_hdr *sdsp);
1354 
1355 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1356 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1358 	uint8_t asc,
1359 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 static void sd_sense_key_not_ready(struct sd_lun *un,
1361 	uint8_t asc, uint8_t ascq,
1362 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1363 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1364 	int sense_key, uint8_t asc,
1365 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_sense_key_unit_attention(struct sd_lun *un,
1369 	uint8_t asc,
1370 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_sense_key_default(struct sd_lun *un,
1378 	int sense_key,
1379 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 
1381 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1382 	void *arg, int flag);
1383 
1384 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1385 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1389 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1390 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1391 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1392 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1393 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1394 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1395 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1396 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1397 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1398 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1399 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1400 
1401 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1402 
1403 static void sd_start_stop_unit_callback(void *arg);
1404 static void sd_start_stop_unit_task(void *arg);
1405 
1406 static void sd_taskq_create(void);
1407 static void sd_taskq_delete(void);
1408 static void sd_media_change_task(void *arg);
1409 
1410 static int sd_handle_mchange(struct sd_lun *un);
1411 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1412 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1413 	uint32_t *lbap, int path_flag);
1414 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1415 	uint32_t *lbap, int path_flag);
1416 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1417 	int path_flag);
1418 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1419 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1420 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1421 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1422 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1423 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1424 	uchar_t usr_cmd, uchar_t *usr_bufp);
1425 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1426 	struct dk_callback *dkc);
1427 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1428 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1429 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1430 	uchar_t *bufaddr, uint_t buflen);
1431 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1432 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1433 	uchar_t *bufaddr, uint_t buflen, char feature);
1434 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1435 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1436 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1437 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1438 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1439 	size_t buflen, daddr_t start_block, int path_flag);
1440 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1441 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1442 	path_flag)
1443 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1444 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1445 	path_flag)
1446 
1447 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1448 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1449 	uint16_t param_ptr, int path_flag);
1450 
1451 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1452 static void sd_free_rqs(struct sd_lun *un);
1453 
1454 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1455 	uchar_t *data, int len, int fmt);
1456 static void sd_panic_for_res_conflict(struct sd_lun *un);
1457 
1458 /*
1459  * Disk Ioctl Function Prototypes
1460  */
1461 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1462 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1463 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1464 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1465 	int geom_validated);
1466 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1467 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1468 	int geom_validated);
1469 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1470 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1471 	int geom_validated);
1472 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1473 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1474 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1475 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1476 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1477 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1478 static int sd_write_label(dev_t dev);
1479 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1480 static void sd_clear_vtoc(struct sd_lun *un);
1481 static void sd_clear_efi(struct sd_lun *un);
1482 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1483 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1484 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1485 static void sd_setup_default_geometry(struct sd_lun *un);
1486 #if defined(__i386) || defined(__amd64)
1487 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1488 #endif
1489 
1490 /*
1491  * Multi-host Ioctl Prototypes
1492  */
1493 static int sd_check_mhd(dev_t dev, int interval);
1494 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1495 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1496 static char *sd_sname(uchar_t status);
1497 static void sd_mhd_resvd_recover(void *arg);
1498 static void sd_resv_reclaim_thread();
1499 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1500 static int sd_reserve_release(dev_t dev, int cmd);
1501 static void sd_rmv_resv_reclaim_req(dev_t dev);
1502 static void sd_mhd_reset_notify_cb(caddr_t arg);
1503 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1504 	mhioc_inkeys_t *usrp, int flag);
1505 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1506 	mhioc_inresvs_t *usrp, int flag);
1507 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1508 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1509 static int sd_mhdioc_release(dev_t dev);
1510 static int sd_mhdioc_register_devid(dev_t dev);
1511 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1512 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1513 
1514 /*
1515  * SCSI removable prototypes
1516  */
1517 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1518 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1519 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1520 static int sr_pause_resume(dev_t dev, int mode);
1521 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1522 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1523 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1524 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1525 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1526 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1527 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1528 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1529 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1530 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1531 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1532 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1533 static int sr_eject(dev_t dev);
1534 static void sr_ejected(register struct sd_lun *un);
1535 static int sr_check_wp(dev_t dev);
1536 static int sd_check_media(dev_t dev, enum dkio_state state);
1537 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1538 static void sd_delayed_cv_broadcast(void *arg);
1539 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1540 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1541 
1542 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1543 
1544 /*
1545  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1546  */
1547 static void sd_check_for_writable_cd(struct sd_lun *un);
1548 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1549 static void sd_wm_cache_destructor(void *wm, void *un);
1550 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1551 	daddr_t endb, ushort_t typ);
1552 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1553 	daddr_t endb);
1554 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1555 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1556 static void sd_read_modify_write_task(void * arg);
1557 static int
1558 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1559 	struct buf **bpp);
1560 
1561 
1562 /*
1563  * Function prototypes for failfast support.
1564  */
1565 static void sd_failfast_flushq(struct sd_lun *un);
1566 static int sd_failfast_flushq_callback(struct buf *bp);
1567 
1568 /*
1569  * Function prototypes to check for lsi devices
1570  */
1571 static void sd_is_lsi(struct sd_lun *un);
1572 
1573 /*
1574  * Function prototypes for x86 support
1575  */
1576 #if defined(__i386) || defined(__amd64)
1577 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1578 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1579 #endif
1580 
1581 /*
1582  * Constants for failfast support:
1583  *
1584  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1585  * failfast processing being performed.
1586  *
1587  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1588  * failfast processing on all bufs with B_FAILFAST set.
1589  */
1590 
1591 #define	SD_FAILFAST_INACTIVE		0
1592 #define	SD_FAILFAST_ACTIVE		1
1593 
1594 /*
1595  * Bitmask to control behavior of buf(9S) flushes when a transition to
1596  * the failfast state occurs. Optional bits include:
1597  *
1598  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1599  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1600  * be flushed.
1601  *
1602  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1603  * driver, in addition to the regular wait queue. This includes the xbuf
1604  * queues. When clear, only the driver's wait queue will be flushed.
1605  */
1606 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1607 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1608 
1609 /*
1610  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1611  * to flush all queues within the driver.
1612  */
1613 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1614 
1615 
1616 /*
1617  * SD Testing Fault Injection
1618  */
1619 #ifdef SD_FAULT_INJECTION
1620 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1621 static void sd_faultinjection(struct scsi_pkt *pktp);
1622 static void sd_injection_log(char *buf, struct sd_lun *un);
1623 #endif
1624 
1625 /*
1626  * Device driver ops vector
1627  */
1628 static struct cb_ops sd_cb_ops = {
1629 	sdopen,			/* open */
1630 	sdclose,		/* close */
1631 	sdstrategy,		/* strategy */
1632 	nodev,			/* print */
1633 	sddump,			/* dump */
1634 	sdread,			/* read */
1635 	sdwrite,		/* write */
1636 	sdioctl,		/* ioctl */
1637 	nodev,			/* devmap */
1638 	nodev,			/* mmap */
1639 	nodev,			/* segmap */
1640 	nochpoll,		/* poll */
1641 	sd_prop_op,		/* cb_prop_op */
1642 	0,			/* streamtab  */
1643 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1644 	CB_REV,			/* cb_rev */
1645 	sdaread, 		/* async I/O read entry point */
1646 	sdawrite		/* async I/O write entry point */
1647 };
1648 
1649 static struct dev_ops sd_ops = {
1650 	DEVO_REV,		/* devo_rev, */
1651 	0,			/* refcnt  */
1652 	sdinfo,			/* info */
1653 	nulldev,		/* identify */
1654 	sdprobe,		/* probe */
1655 	sdattach,		/* attach */
1656 	sddetach,		/* detach */
1657 	nodev,			/* reset */
1658 	&sd_cb_ops,		/* driver operations */
1659 	NULL,			/* bus operations */
1660 	sdpower			/* power */
1661 };
1662 
1663 
1664 /*
1665  * This is the loadable module wrapper.
1666  */
1667 #include <sys/modctl.h>
1668 
1669 static struct modldrv modldrv = {
1670 	&mod_driverops,		/* Type of module. This one is a driver */
1671 	SD_MODULE_NAME,		/* Module name. */
1672 	&sd_ops			/* driver ops */
1673 };
1674 
1675 
1676 static struct modlinkage modlinkage = {
1677 	MODREV_1,
1678 	&modldrv,
1679 	NULL
1680 };
1681 
1682 
1683 static struct scsi_asq_key_strings sd_additional_codes[] = {
1684 	0x81, 0, "Logical Unit is Reserved",
1685 	0x85, 0, "Audio Address Not Valid",
1686 	0xb6, 0, "Media Load Mechanism Failed",
1687 	0xB9, 0, "Audio Play Operation Aborted",
1688 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1689 	0x53, 2, "Medium removal prevented",
1690 	0x6f, 0, "Authentication failed during key exchange",
1691 	0x6f, 1, "Key not present",
1692 	0x6f, 2, "Key not established",
1693 	0x6f, 3, "Read without proper authentication",
1694 	0x6f, 4, "Mismatched region to this logical unit",
1695 	0x6f, 5, "Region reset count error",
1696 	0xffff, 0x0, NULL
1697 };
1698 
1699 
1700 /*
1701  * Struct for passing printing information for sense data messages
1702  */
1703 struct sd_sense_info {
1704 	int	ssi_severity;
1705 	int	ssi_pfa_flag;
1706 };
1707 
1708 /*
1709  * Table of function pointers for iostart-side routines. Seperate "chains"
1710  * of layered function calls are formed by placing the function pointers
1711  * sequentially in the desired order. Functions are called according to an
1712  * incrementing table index ordering. The last function in each chain must
1713  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1714  * in the sd_iodone_chain[] array.
1715  *
1716  * Note: It may seem more natural to organize both the iostart and iodone
1717  * functions together, into an array of structures (or some similar
1718  * organization) with a common index, rather than two seperate arrays which
1719  * must be maintained in synchronization. The purpose of this division is
1720  * to achiece improved performance: individual arrays allows for more
1721  * effective cache line utilization on certain platforms.
1722  */
1723 
1724 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1725 
1726 
1727 static sd_chain_t sd_iostart_chain[] = {
1728 
1729 	/* Chain for buf IO for disk drive targets (PM enabled) */
1730 	sd_mapblockaddr_iostart,	/* Index: 0 */
1731 	sd_pm_iostart,			/* Index: 1 */
1732 	sd_core_iostart,		/* Index: 2 */
1733 
1734 	/* Chain for buf IO for disk drive targets (PM disabled) */
1735 	sd_mapblockaddr_iostart,	/* Index: 3 */
1736 	sd_core_iostart,		/* Index: 4 */
1737 
1738 	/* Chain for buf IO for removable-media targets (PM enabled) */
1739 	sd_mapblockaddr_iostart,	/* Index: 5 */
1740 	sd_mapblocksize_iostart,	/* Index: 6 */
1741 	sd_pm_iostart,			/* Index: 7 */
1742 	sd_core_iostart,		/* Index: 8 */
1743 
1744 	/* Chain for buf IO for removable-media targets (PM disabled) */
1745 	sd_mapblockaddr_iostart,	/* Index: 9 */
1746 	sd_mapblocksize_iostart,	/* Index: 10 */
1747 	sd_core_iostart,		/* Index: 11 */
1748 
1749 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1750 	sd_mapblockaddr_iostart,	/* Index: 12 */
1751 	sd_checksum_iostart,		/* Index: 13 */
1752 	sd_pm_iostart,			/* Index: 14 */
1753 	sd_core_iostart,		/* Index: 15 */
1754 
1755 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1756 	sd_mapblockaddr_iostart,	/* Index: 16 */
1757 	sd_checksum_iostart,		/* Index: 17 */
1758 	sd_core_iostart,		/* Index: 18 */
1759 
1760 	/* Chain for USCSI commands (all targets) */
1761 	sd_pm_iostart,			/* Index: 19 */
1762 	sd_core_iostart,		/* Index: 20 */
1763 
1764 	/* Chain for checksumming USCSI commands (all targets) */
1765 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1766 	sd_pm_iostart,			/* Index: 22 */
1767 	sd_core_iostart,		/* Index: 23 */
1768 
1769 	/* Chain for "direct" USCSI commands (all targets) */
1770 	sd_core_iostart,		/* Index: 24 */
1771 
1772 	/* Chain for "direct priority" USCSI commands (all targets) */
1773 	sd_core_iostart,		/* Index: 25 */
1774 };
1775 
1776 /*
1777  * Macros to locate the first function of each iostart chain in the
1778  * sd_iostart_chain[] array. These are located by the index in the array.
1779  */
1780 #define	SD_CHAIN_DISK_IOSTART			0
1781 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1782 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1783 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1784 #define	SD_CHAIN_CHKSUM_IOSTART			12
1785 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1786 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1787 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1788 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1789 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1790 
1791 
1792 /*
1793  * Table of function pointers for the iodone-side routines for the driver-
1794  * internal layering mechanism.  The calling sequence for iodone routines
1795  * uses a decrementing table index, so the last routine called in a chain
1796  * must be at the lowest array index location for that chain.  The last
1797  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1798  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1799  * of the functions in an iodone side chain must correspond to the ordering
1800  * of the iostart routines for that chain.  Note that there is no iodone
1801  * side routine that corresponds to sd_core_iostart(), so there is no
1802  * entry in the table for this.
1803  */
1804 
1805 static sd_chain_t sd_iodone_chain[] = {
1806 
1807 	/* Chain for buf IO for disk drive targets (PM enabled) */
1808 	sd_buf_iodone,			/* Index: 0 */
1809 	sd_mapblockaddr_iodone,		/* Index: 1 */
1810 	sd_pm_iodone,			/* Index: 2 */
1811 
1812 	/* Chain for buf IO for disk drive targets (PM disabled) */
1813 	sd_buf_iodone,			/* Index: 3 */
1814 	sd_mapblockaddr_iodone,		/* Index: 4 */
1815 
1816 	/* Chain for buf IO for removable-media targets (PM enabled) */
1817 	sd_buf_iodone,			/* Index: 5 */
1818 	sd_mapblockaddr_iodone,		/* Index: 6 */
1819 	sd_mapblocksize_iodone,		/* Index: 7 */
1820 	sd_pm_iodone,			/* Index: 8 */
1821 
1822 	/* Chain for buf IO for removable-media targets (PM disabled) */
1823 	sd_buf_iodone,			/* Index: 9 */
1824 	sd_mapblockaddr_iodone,		/* Index: 10 */
1825 	sd_mapblocksize_iodone,		/* Index: 11 */
1826 
1827 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1828 	sd_buf_iodone,			/* Index: 12 */
1829 	sd_mapblockaddr_iodone,		/* Index: 13 */
1830 	sd_checksum_iodone,		/* Index: 14 */
1831 	sd_pm_iodone,			/* Index: 15 */
1832 
1833 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1834 	sd_buf_iodone,			/* Index: 16 */
1835 	sd_mapblockaddr_iodone,		/* Index: 17 */
1836 	sd_checksum_iodone,		/* Index: 18 */
1837 
1838 	/* Chain for USCSI commands (non-checksum targets) */
1839 	sd_uscsi_iodone,		/* Index: 19 */
1840 	sd_pm_iodone,			/* Index: 20 */
1841 
1842 	/* Chain for USCSI commands (checksum targets) */
1843 	sd_uscsi_iodone,		/* Index: 21 */
1844 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1845 	sd_pm_iodone,			/* Index: 22 */
1846 
1847 	/* Chain for "direct" USCSI commands (all targets) */
1848 	sd_uscsi_iodone,		/* Index: 24 */
1849 
1850 	/* Chain for "direct priority" USCSI commands (all targets) */
1851 	sd_uscsi_iodone,		/* Index: 25 */
1852 };
1853 
1854 
1855 /*
1856  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1857  * each iodone-side chain. These are located by the array index, but as the
1858  * iodone side functions are called in a decrementing-index order, the
1859  * highest index number in each chain must be specified (as these correspond
1860  * to the first function in the iodone chain that will be called by the core
1861  * at IO completion time).
1862  */
1863 
1864 #define	SD_CHAIN_DISK_IODONE			2
1865 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1866 #define	SD_CHAIN_RMMEDIA_IODONE			8
1867 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1868 #define	SD_CHAIN_CHKSUM_IODONE			15
1869 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1870 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1871 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1872 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1873 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1874 
1875 
1876 
1877 
1878 /*
1879  * Array to map a layering chain index to the appropriate initpkt routine.
1880  * The redundant entries are present so that the index used for accessing
1881  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1882  * with this table as well.
1883  */
1884 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1885 
1886 static sd_initpkt_t	sd_initpkt_map[] = {
1887 
1888 	/* Chain for buf IO for disk drive targets (PM enabled) */
1889 	sd_initpkt_for_buf,		/* Index: 0 */
1890 	sd_initpkt_for_buf,		/* Index: 1 */
1891 	sd_initpkt_for_buf,		/* Index: 2 */
1892 
1893 	/* Chain for buf IO for disk drive targets (PM disabled) */
1894 	sd_initpkt_for_buf,		/* Index: 3 */
1895 	sd_initpkt_for_buf,		/* Index: 4 */
1896 
1897 	/* Chain for buf IO for removable-media targets (PM enabled) */
1898 	sd_initpkt_for_buf,		/* Index: 5 */
1899 	sd_initpkt_for_buf,		/* Index: 6 */
1900 	sd_initpkt_for_buf,		/* Index: 7 */
1901 	sd_initpkt_for_buf,		/* Index: 8 */
1902 
1903 	/* Chain for buf IO for removable-media targets (PM disabled) */
1904 	sd_initpkt_for_buf,		/* Index: 9 */
1905 	sd_initpkt_for_buf,		/* Index: 10 */
1906 	sd_initpkt_for_buf,		/* Index: 11 */
1907 
1908 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1909 	sd_initpkt_for_buf,		/* Index: 12 */
1910 	sd_initpkt_for_buf,		/* Index: 13 */
1911 	sd_initpkt_for_buf,		/* Index: 14 */
1912 	sd_initpkt_for_buf,		/* Index: 15 */
1913 
1914 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1915 	sd_initpkt_for_buf,		/* Index: 16 */
1916 	sd_initpkt_for_buf,		/* Index: 17 */
1917 	sd_initpkt_for_buf,		/* Index: 18 */
1918 
1919 	/* Chain for USCSI commands (non-checksum targets) */
1920 	sd_initpkt_for_uscsi,		/* Index: 19 */
1921 	sd_initpkt_for_uscsi,		/* Index: 20 */
1922 
1923 	/* Chain for USCSI commands (checksum targets) */
1924 	sd_initpkt_for_uscsi,		/* Index: 21 */
1925 	sd_initpkt_for_uscsi,		/* Index: 22 */
1926 	sd_initpkt_for_uscsi,		/* Index: 22 */
1927 
1928 	/* Chain for "direct" USCSI commands (all targets) */
1929 	sd_initpkt_for_uscsi,		/* Index: 24 */
1930 
1931 	/* Chain for "direct priority" USCSI commands (all targets) */
1932 	sd_initpkt_for_uscsi,		/* Index: 25 */
1933 
1934 };
1935 
1936 
1937 /*
1938  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1939  * The redundant entries are present so that the index used for accessing
1940  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1941  * with this table as well.
1942  */
1943 typedef void (*sd_destroypkt_t)(struct buf *);
1944 
1945 static sd_destroypkt_t	sd_destroypkt_map[] = {
1946 
1947 	/* Chain for buf IO for disk drive targets (PM enabled) */
1948 	sd_destroypkt_for_buf,		/* Index: 0 */
1949 	sd_destroypkt_for_buf,		/* Index: 1 */
1950 	sd_destroypkt_for_buf,		/* Index: 2 */
1951 
1952 	/* Chain for buf IO for disk drive targets (PM disabled) */
1953 	sd_destroypkt_for_buf,		/* Index: 3 */
1954 	sd_destroypkt_for_buf,		/* Index: 4 */
1955 
1956 	/* Chain for buf IO for removable-media targets (PM enabled) */
1957 	sd_destroypkt_for_buf,		/* Index: 5 */
1958 	sd_destroypkt_for_buf,		/* Index: 6 */
1959 	sd_destroypkt_for_buf,		/* Index: 7 */
1960 	sd_destroypkt_for_buf,		/* Index: 8 */
1961 
1962 	/* Chain for buf IO for removable-media targets (PM disabled) */
1963 	sd_destroypkt_for_buf,		/* Index: 9 */
1964 	sd_destroypkt_for_buf,		/* Index: 10 */
1965 	sd_destroypkt_for_buf,		/* Index: 11 */
1966 
1967 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1968 	sd_destroypkt_for_buf,		/* Index: 12 */
1969 	sd_destroypkt_for_buf,		/* Index: 13 */
1970 	sd_destroypkt_for_buf,		/* Index: 14 */
1971 	sd_destroypkt_for_buf,		/* Index: 15 */
1972 
1973 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1974 	sd_destroypkt_for_buf,		/* Index: 16 */
1975 	sd_destroypkt_for_buf,		/* Index: 17 */
1976 	sd_destroypkt_for_buf,		/* Index: 18 */
1977 
1978 	/* Chain for USCSI commands (non-checksum targets) */
1979 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1980 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1981 
1982 	/* Chain for USCSI commands (checksum targets) */
1983 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1984 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1985 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1986 
1987 	/* Chain for "direct" USCSI commands (all targets) */
1988 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1989 
1990 	/* Chain for "direct priority" USCSI commands (all targets) */
1991 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1992 
1993 };
1994 
1995 
1996 
1997 /*
1998  * Array to map a layering chain index to the appropriate chain "type".
1999  * The chain type indicates a specific property/usage of the chain.
2000  * The redundant entries are present so that the index used for accessing
2001  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2002  * with this table as well.
2003  */
2004 
2005 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2006 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2007 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2008 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2009 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2010 						/* (for error recovery) */
2011 
2012 static int sd_chain_type_map[] = {
2013 
2014 	/* Chain for buf IO for disk drive targets (PM enabled) */
2015 	SD_CHAIN_BUFIO,			/* Index: 0 */
2016 	SD_CHAIN_BUFIO,			/* Index: 1 */
2017 	SD_CHAIN_BUFIO,			/* Index: 2 */
2018 
2019 	/* Chain for buf IO for disk drive targets (PM disabled) */
2020 	SD_CHAIN_BUFIO,			/* Index: 3 */
2021 	SD_CHAIN_BUFIO,			/* Index: 4 */
2022 
2023 	/* Chain for buf IO for removable-media targets (PM enabled) */
2024 	SD_CHAIN_BUFIO,			/* Index: 5 */
2025 	SD_CHAIN_BUFIO,			/* Index: 6 */
2026 	SD_CHAIN_BUFIO,			/* Index: 7 */
2027 	SD_CHAIN_BUFIO,			/* Index: 8 */
2028 
2029 	/* Chain for buf IO for removable-media targets (PM disabled) */
2030 	SD_CHAIN_BUFIO,			/* Index: 9 */
2031 	SD_CHAIN_BUFIO,			/* Index: 10 */
2032 	SD_CHAIN_BUFIO,			/* Index: 11 */
2033 
2034 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2035 	SD_CHAIN_BUFIO,			/* Index: 12 */
2036 	SD_CHAIN_BUFIO,			/* Index: 13 */
2037 	SD_CHAIN_BUFIO,			/* Index: 14 */
2038 	SD_CHAIN_BUFIO,			/* Index: 15 */
2039 
2040 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2041 	SD_CHAIN_BUFIO,			/* Index: 16 */
2042 	SD_CHAIN_BUFIO,			/* Index: 17 */
2043 	SD_CHAIN_BUFIO,			/* Index: 18 */
2044 
2045 	/* Chain for USCSI commands (non-checksum targets) */
2046 	SD_CHAIN_USCSI,			/* Index: 19 */
2047 	SD_CHAIN_USCSI,			/* Index: 20 */
2048 
2049 	/* Chain for USCSI commands (checksum targets) */
2050 	SD_CHAIN_USCSI,			/* Index: 21 */
2051 	SD_CHAIN_USCSI,			/* Index: 22 */
2052 	SD_CHAIN_USCSI,			/* Index: 22 */
2053 
2054 	/* Chain for "direct" USCSI commands (all targets) */
2055 	SD_CHAIN_DIRECT,		/* Index: 24 */
2056 
2057 	/* Chain for "direct priority" USCSI commands (all targets) */
2058 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2059 };
2060 
2061 
2062 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2063 #define	SD_IS_BUFIO(xp)			\
2064 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2065 
2066 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2067 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2068 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2069 
2070 
2071 
2072 /*
2073  * Struct, array, and macros to map a specific chain to the appropriate
2074  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2075  *
2076  * The sd_chain_index_map[] array is used at attach time to set the various
2077  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2078  * chain to be used with the instance. This allows different instances to use
2079  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2080  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2081  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2082  * dynamically & without the use of locking; and (2) a layer may update the
2083  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2084  * to allow for deferred processing of an IO within the same chain from a
2085  * different execution context.
2086  */
2087 
2088 struct sd_chain_index {
2089 	int	sci_iostart_index;
2090 	int	sci_iodone_index;
2091 };
2092 
2093 static struct sd_chain_index	sd_chain_index_map[] = {
2094 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2095 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2096 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2097 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2098 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2099 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2100 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2101 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2102 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2103 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2104 };
2105 
2106 
2107 /*
2108  * The following are indexes into the sd_chain_index_map[] array.
2109  */
2110 
2111 /* un->un_buf_chain_type must be set to one of these */
2112 #define	SD_CHAIN_INFO_DISK		0
2113 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2114 #define	SD_CHAIN_INFO_RMMEDIA		2
2115 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2116 #define	SD_CHAIN_INFO_CHKSUM		4
2117 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2118 
2119 /* un->un_uscsi_chain_type must be set to one of these */
2120 #define	SD_CHAIN_INFO_USCSI_CMD		6
2121 /* USCSI with PM disabled is the same as DIRECT */
2122 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2123 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2124 
2125 /* un->un_direct_chain_type must be set to one of these */
2126 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2127 
2128 /* un->un_priority_chain_type must be set to one of these */
2129 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2130 
2131 /* size for devid inquiries */
2132 #define	MAX_INQUIRY_SIZE		0xF0
2133 
2134 /*
2135  * Macros used by functions to pass a given buf(9S) struct along to the
2136  * next function in the layering chain for further processing.
2137  *
2138  * In the following macros, passing more than three arguments to the called
2139  * routines causes the optimizer for the SPARC compiler to stop doing tail
2140  * call elimination which results in significant performance degradation.
2141  */
2142 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2143 	((*(sd_iostart_chain[index]))(index, un, bp))
2144 
2145 #define	SD_BEGIN_IODONE(index, un, bp)	\
2146 	((*(sd_iodone_chain[index]))(index, un, bp))
2147 
2148 #define	SD_NEXT_IOSTART(index, un, bp)				\
2149 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2150 
2151 #define	SD_NEXT_IODONE(index, un, bp)				\
2152 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2153 
2154 /*
2155  *    Function: _init
2156  *
2157  * Description: This is the driver _init(9E) entry point.
2158  *
2159  * Return Code: Returns the value from mod_install(9F) or
2160  *		ddi_soft_state_init(9F) as appropriate.
2161  *
2162  *     Context: Called when driver module loaded.
2163  */
2164 
2165 int
2166 _init(void)
2167 {
2168 	int	err;
2169 
2170 	/* establish driver name from module name */
2171 	sd_label = mod_modname(&modlinkage);
2172 
2173 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2174 		SD_MAXUNIT);
2175 
2176 	if (err != 0) {
2177 		return (err);
2178 	}
2179 
2180 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2181 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2182 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2183 
2184 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2185 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2186 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2187 
2188 	/*
2189 	 * it's ok to init here even for fibre device
2190 	 */
2191 	sd_scsi_probe_cache_init();
2192 
2193 	/*
2194 	 * Creating taskq before mod_install ensures that all callers (threads)
2195 	 * that enter the module after a successfull mod_install encounter
2196 	 * a valid taskq.
2197 	 */
2198 	sd_taskq_create();
2199 
2200 	err = mod_install(&modlinkage);
2201 	if (err != 0) {
2202 		/* delete taskq if install fails */
2203 		sd_taskq_delete();
2204 
2205 		mutex_destroy(&sd_detach_mutex);
2206 		mutex_destroy(&sd_log_mutex);
2207 		mutex_destroy(&sd_label_mutex);
2208 
2209 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2210 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2211 		cv_destroy(&sd_tr.srq_inprocess_cv);
2212 
2213 		sd_scsi_probe_cache_fini();
2214 
2215 		ddi_soft_state_fini(&sd_state);
2216 		return (err);
2217 	}
2218 
2219 	return (err);
2220 }
2221 
2222 
2223 /*
2224  *    Function: _fini
2225  *
2226  * Description: This is the driver _fini(9E) entry point.
2227  *
2228  * Return Code: Returns the value from mod_remove(9F)
2229  *
2230  *     Context: Called when driver module is unloaded.
2231  */
2232 
2233 int
2234 _fini(void)
2235 {
2236 	int err;
2237 
2238 	if ((err = mod_remove(&modlinkage)) != 0) {
2239 		return (err);
2240 	}
2241 
2242 	sd_taskq_delete();
2243 
2244 	mutex_destroy(&sd_detach_mutex);
2245 	mutex_destroy(&sd_log_mutex);
2246 	mutex_destroy(&sd_label_mutex);
2247 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2248 
2249 	sd_scsi_probe_cache_fini();
2250 
2251 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2252 	cv_destroy(&sd_tr.srq_inprocess_cv);
2253 
2254 	ddi_soft_state_fini(&sd_state);
2255 
2256 	return (err);
2257 }
2258 
2259 
2260 /*
2261  *    Function: _info
2262  *
2263  * Description: This is the driver _info(9E) entry point.
2264  *
2265  *   Arguments: modinfop - pointer to the driver modinfo structure
2266  *
2267  * Return Code: Returns the value from mod_info(9F).
2268  *
2269  *     Context: Kernel thread context
2270  */
2271 
2272 int
2273 _info(struct modinfo *modinfop)
2274 {
2275 	return (mod_info(&modlinkage, modinfop));
2276 }
2277 
2278 
2279 /*
2280  * The following routines implement the driver message logging facility.
2281  * They provide component- and level- based debug output filtering.
2282  * Output may also be restricted to messages for a single instance by
2283  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2284  * to NULL, then messages for all instances are printed.
2285  *
2286  * These routines have been cloned from each other due to the language
2287  * constraints of macros and variable argument list processing.
2288  */
2289 
2290 
2291 /*
2292  *    Function: sd_log_err
2293  *
2294  * Description: This routine is called by the SD_ERROR macro for debug
2295  *		logging of error conditions.
2296  *
2297  *   Arguments: comp - driver component being logged
2298  *		dev  - pointer to driver info structure
2299  *		fmt  - error string and format to be logged
2300  */
2301 
2302 static void
2303 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2304 {
2305 	va_list		ap;
2306 	dev_info_t	*dev;
2307 
2308 	ASSERT(un != NULL);
2309 	dev = SD_DEVINFO(un);
2310 	ASSERT(dev != NULL);
2311 
2312 	/*
2313 	 * Filter messages based on the global component and level masks.
2314 	 * Also print if un matches the value of sd_debug_un, or if
2315 	 * sd_debug_un is set to NULL.
2316 	 */
2317 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2318 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2319 		mutex_enter(&sd_log_mutex);
2320 		va_start(ap, fmt);
2321 		(void) vsprintf(sd_log_buf, fmt, ap);
2322 		va_end(ap);
2323 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2324 		mutex_exit(&sd_log_mutex);
2325 	}
2326 #ifdef SD_FAULT_INJECTION
2327 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2328 	if (un->sd_injection_mask & comp) {
2329 		mutex_enter(&sd_log_mutex);
2330 		va_start(ap, fmt);
2331 		(void) vsprintf(sd_log_buf, fmt, ap);
2332 		va_end(ap);
2333 		sd_injection_log(sd_log_buf, un);
2334 		mutex_exit(&sd_log_mutex);
2335 	}
2336 #endif
2337 }
2338 
2339 
2340 /*
2341  *    Function: sd_log_info
2342  *
2343  * Description: This routine is called by the SD_INFO macro for debug
2344  *		logging of general purpose informational conditions.
2345  *
2346  *   Arguments: comp - driver component being logged
2347  *		dev  - pointer to driver info structure
2348  *		fmt  - info string and format to be logged
2349  */
2350 
2351 static void
2352 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2353 {
2354 	va_list		ap;
2355 	dev_info_t	*dev;
2356 
2357 	ASSERT(un != NULL);
2358 	dev = SD_DEVINFO(un);
2359 	ASSERT(dev != NULL);
2360 
2361 	/*
2362 	 * Filter messages based on the global component and level masks.
2363 	 * Also print if un matches the value of sd_debug_un, or if
2364 	 * sd_debug_un is set to NULL.
2365 	 */
2366 	if ((sd_component_mask & component) &&
2367 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2368 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2369 		mutex_enter(&sd_log_mutex);
2370 		va_start(ap, fmt);
2371 		(void) vsprintf(sd_log_buf, fmt, ap);
2372 		va_end(ap);
2373 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2374 		mutex_exit(&sd_log_mutex);
2375 	}
2376 #ifdef SD_FAULT_INJECTION
2377 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2378 	if (un->sd_injection_mask & component) {
2379 		mutex_enter(&sd_log_mutex);
2380 		va_start(ap, fmt);
2381 		(void) vsprintf(sd_log_buf, fmt, ap);
2382 		va_end(ap);
2383 		sd_injection_log(sd_log_buf, un);
2384 		mutex_exit(&sd_log_mutex);
2385 	}
2386 #endif
2387 }
2388 
2389 
2390 /*
2391  *    Function: sd_log_trace
2392  *
2393  * Description: This routine is called by the SD_TRACE macro for debug
2394  *		logging of trace conditions (i.e. function entry/exit).
2395  *
2396  *   Arguments: comp - driver component being logged
2397  *		dev  - pointer to driver info structure
2398  *		fmt  - trace string and format to be logged
2399  */
2400 
2401 static void
2402 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2403 {
2404 	va_list		ap;
2405 	dev_info_t	*dev;
2406 
2407 	ASSERT(un != NULL);
2408 	dev = SD_DEVINFO(un);
2409 	ASSERT(dev != NULL);
2410 
2411 	/*
2412 	 * Filter messages based on the global component and level masks.
2413 	 * Also print if un matches the value of sd_debug_un, or if
2414 	 * sd_debug_un is set to NULL.
2415 	 */
2416 	if ((sd_component_mask & component) &&
2417 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2418 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #ifdef SD_FAULT_INJECTION
2427 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2428 	if (un->sd_injection_mask & component) {
2429 		mutex_enter(&sd_log_mutex);
2430 		va_start(ap, fmt);
2431 		(void) vsprintf(sd_log_buf, fmt, ap);
2432 		va_end(ap);
2433 		sd_injection_log(sd_log_buf, un);
2434 		mutex_exit(&sd_log_mutex);
2435 	}
2436 #endif
2437 }
2438 
2439 
2440 /*
2441  *    Function: sdprobe
2442  *
2443  * Description: This is the driver probe(9e) entry point function.
2444  *
2445  *   Arguments: devi - opaque device info handle
2446  *
2447  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2448  *              DDI_PROBE_FAILURE: If the probe failed.
2449  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2450  *				   but may be present in the future.
2451  */
2452 
2453 static int
2454 sdprobe(dev_info_t *devi)
2455 {
2456 	struct scsi_device	*devp;
2457 	int			rval;
2458 	int			instance;
2459 
2460 	/*
2461 	 * if it wasn't for pln, sdprobe could actually be nulldev
2462 	 * in the "__fibre" case.
2463 	 */
2464 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2465 		return (DDI_PROBE_DONTCARE);
2466 	}
2467 
2468 	devp = ddi_get_driver_private(devi);
2469 
2470 	if (devp == NULL) {
2471 		/* Ooops... nexus driver is mis-configured... */
2472 		return (DDI_PROBE_FAILURE);
2473 	}
2474 
2475 	instance = ddi_get_instance(devi);
2476 
2477 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2478 		return (DDI_PROBE_PARTIAL);
2479 	}
2480 
2481 	/*
2482 	 * Call the SCSA utility probe routine to see if we actually
2483 	 * have a target at this SCSI nexus.
2484 	 */
2485 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2486 	case SCSIPROBE_EXISTS:
2487 		switch (devp->sd_inq->inq_dtype) {
2488 		case DTYPE_DIRECT:
2489 			rval = DDI_PROBE_SUCCESS;
2490 			break;
2491 		case DTYPE_RODIRECT:
2492 			/* CDs etc. Can be removable media */
2493 			rval = DDI_PROBE_SUCCESS;
2494 			break;
2495 		case DTYPE_OPTICAL:
2496 			/*
2497 			 * Rewritable optical driver HP115AA
2498 			 * Can also be removable media
2499 			 */
2500 
2501 			/*
2502 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2503 			 * pre solaris 9 sparc sd behavior is required
2504 			 *
2505 			 * If first time through and sd_dtype_optical_bind
2506 			 * has not been set in /etc/system check properties
2507 			 */
2508 
2509 			if (sd_dtype_optical_bind  < 0) {
2510 			    sd_dtype_optical_bind = ddi_prop_get_int
2511 				(DDI_DEV_T_ANY,	devi,	0,
2512 				"optical-device-bind",	1);
2513 			}
2514 
2515 			if (sd_dtype_optical_bind == 0) {
2516 				rval = DDI_PROBE_FAILURE;
2517 			} else {
2518 				rval = DDI_PROBE_SUCCESS;
2519 			}
2520 			break;
2521 
2522 		case DTYPE_NOTPRESENT:
2523 		default:
2524 			rval = DDI_PROBE_FAILURE;
2525 			break;
2526 		}
2527 		break;
2528 	default:
2529 		rval = DDI_PROBE_PARTIAL;
2530 		break;
2531 	}
2532 
2533 	/*
2534 	 * This routine checks for resource allocation prior to freeing,
2535 	 * so it will take care of the "smart probing" case where a
2536 	 * scsi_probe() may or may not have been issued and will *not*
2537 	 * free previously-freed resources.
2538 	 */
2539 	scsi_unprobe(devp);
2540 	return (rval);
2541 }
2542 
2543 
2544 /*
2545  *    Function: sdinfo
2546  *
2547  * Description: This is the driver getinfo(9e) entry point function.
2548  * 		Given the device number, return the devinfo pointer from
2549  *		the scsi_device structure or the instance number
2550  *		associated with the dev_t.
2551  *
2552  *   Arguments: dip     - pointer to device info structure
2553  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2554  *			  DDI_INFO_DEVT2INSTANCE)
2555  *		arg     - driver dev_t
2556  *		resultp - user buffer for request response
2557  *
2558  * Return Code: DDI_SUCCESS
2559  *              DDI_FAILURE
2560  */
2561 /* ARGSUSED */
2562 static int
2563 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2564 {
2565 	struct sd_lun	*un;
2566 	dev_t		dev;
2567 	int		instance;
2568 	int		error;
2569 
2570 	switch (infocmd) {
2571 	case DDI_INFO_DEVT2DEVINFO:
2572 		dev = (dev_t)arg;
2573 		instance = SDUNIT(dev);
2574 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2575 			return (DDI_FAILURE);
2576 		}
2577 		*result = (void *) SD_DEVINFO(un);
2578 		error = DDI_SUCCESS;
2579 		break;
2580 	case DDI_INFO_DEVT2INSTANCE:
2581 		dev = (dev_t)arg;
2582 		instance = SDUNIT(dev);
2583 		*result = (void *)(uintptr_t)instance;
2584 		error = DDI_SUCCESS;
2585 		break;
2586 	default:
2587 		error = DDI_FAILURE;
2588 	}
2589 	return (error);
2590 }
2591 
2592 /*
2593  *    Function: sd_prop_op
2594  *
2595  * Description: This is the driver prop_op(9e) entry point function.
2596  *		Return the number of blocks for the partition in question
2597  *		or forward the request to the property facilities.
2598  *
2599  *   Arguments: dev       - device number
2600  *		dip       - pointer to device info structure
2601  *		prop_op   - property operator
2602  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2603  *		name      - pointer to property name
2604  *		valuep    - pointer or address of the user buffer
2605  *		lengthp   - property length
2606  *
2607  * Return Code: DDI_PROP_SUCCESS
2608  *              DDI_PROP_NOT_FOUND
2609  *              DDI_PROP_UNDEFINED
2610  *              DDI_PROP_NO_MEMORY
2611  *              DDI_PROP_BUF_TOO_SMALL
2612  */
2613 
2614 static int
2615 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2616 	char *name, caddr_t valuep, int *lengthp)
2617 {
2618 	int		instance = ddi_get_instance(dip);
2619 	struct sd_lun	*un;
2620 	uint64_t	nblocks64;
2621 
2622 	/*
2623 	 * Our dynamic properties are all device specific and size oriented.
2624 	 * Requests issued under conditions where size is valid are passed
2625 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2626 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2627 	 */
2628 	un = ddi_get_soft_state(sd_state, instance);
2629 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2630 	    (un->un_f_geometry_is_valid == FALSE)) {
2631 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2632 		    name, valuep, lengthp));
2633 	} else {
2634 		/* get nblocks value */
2635 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2636 		mutex_enter(SD_MUTEX(un));
2637 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2638 		mutex_exit(SD_MUTEX(un));
2639 
2640 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2641 		    name, valuep, lengthp, nblocks64));
2642 	}
2643 }
2644 
2645 /*
2646  * The following functions are for smart probing:
2647  * sd_scsi_probe_cache_init()
2648  * sd_scsi_probe_cache_fini()
2649  * sd_scsi_clear_probe_cache()
2650  * sd_scsi_probe_with_cache()
2651  */
2652 
2653 /*
2654  *    Function: sd_scsi_probe_cache_init
2655  *
2656  * Description: Initializes the probe response cache mutex and head pointer.
2657  *
2658  *     Context: Kernel thread context
2659  */
2660 
2661 static void
2662 sd_scsi_probe_cache_init(void)
2663 {
2664 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2665 	sd_scsi_probe_cache_head = NULL;
2666 }
2667 
2668 
2669 /*
2670  *    Function: sd_scsi_probe_cache_fini
2671  *
2672  * Description: Frees all resources associated with the probe response cache.
2673  *
2674  *     Context: Kernel thread context
2675  */
2676 
2677 static void
2678 sd_scsi_probe_cache_fini(void)
2679 {
2680 	struct sd_scsi_probe_cache *cp;
2681 	struct sd_scsi_probe_cache *ncp;
2682 
2683 	/* Clean up our smart probing linked list */
2684 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2685 		ncp = cp->next;
2686 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2687 	}
2688 	sd_scsi_probe_cache_head = NULL;
2689 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2690 }
2691 
2692 
2693 /*
2694  *    Function: sd_scsi_clear_probe_cache
2695  *
2696  * Description: This routine clears the probe response cache. This is
2697  *		done when open() returns ENXIO so that when deferred
2698  *		attach is attempted (possibly after a device has been
2699  *		turned on) we will retry the probe. Since we don't know
2700  *		which target we failed to open, we just clear the
2701  *		entire cache.
2702  *
2703  *     Context: Kernel thread context
2704  */
2705 
2706 static void
2707 sd_scsi_clear_probe_cache(void)
2708 {
2709 	struct sd_scsi_probe_cache	*cp;
2710 	int				i;
2711 
2712 	mutex_enter(&sd_scsi_probe_cache_mutex);
2713 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2714 		/*
2715 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2716 		 * force probing to be performed the next time
2717 		 * sd_scsi_probe_with_cache is called.
2718 		 */
2719 		for (i = 0; i < NTARGETS_WIDE; i++) {
2720 			cp->cache[i] = SCSIPROBE_EXISTS;
2721 		}
2722 	}
2723 	mutex_exit(&sd_scsi_probe_cache_mutex);
2724 }
2725 
2726 
2727 /*
2728  *    Function: sd_scsi_probe_with_cache
2729  *
2730  * Description: This routine implements support for a scsi device probe
2731  *		with cache. The driver maintains a cache of the target
2732  *		responses to scsi probes. If we get no response from a
2733  *		target during a probe inquiry, we remember that, and we
2734  *		avoid additional calls to scsi_probe on non-zero LUNs
2735  *		on the same target until the cache is cleared. By doing
2736  *		so we avoid the 1/4 sec selection timeout for nonzero
2737  *		LUNs. lun0 of a target is always probed.
2738  *
2739  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2740  *              waitfunc - indicates what the allocator routines should
2741  *			   do when resources are not available. This value
2742  *			   is passed on to scsi_probe() when that routine
2743  *			   is called.
2744  *
2745  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2746  *		otherwise the value returned by scsi_probe(9F).
2747  *
2748  *     Context: Kernel thread context
2749  */
2750 
2751 static int
2752 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2753 {
2754 	struct sd_scsi_probe_cache	*cp;
2755 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2756 	int		lun, tgt;
2757 
2758 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2759 	    SCSI_ADDR_PROP_LUN, 0);
2760 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2761 	    SCSI_ADDR_PROP_TARGET, -1);
2762 
2763 	/* Make sure caching enabled and target in range */
2764 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2765 		/* do it the old way (no cache) */
2766 		return (scsi_probe(devp, waitfn));
2767 	}
2768 
2769 	mutex_enter(&sd_scsi_probe_cache_mutex);
2770 
2771 	/* Find the cache for this scsi bus instance */
2772 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2773 		if (cp->pdip == pdip) {
2774 			break;
2775 		}
2776 	}
2777 
2778 	/* If we can't find a cache for this pdip, create one */
2779 	if (cp == NULL) {
2780 		int i;
2781 
2782 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2783 		    KM_SLEEP);
2784 		cp->pdip = pdip;
2785 		cp->next = sd_scsi_probe_cache_head;
2786 		sd_scsi_probe_cache_head = cp;
2787 		for (i = 0; i < NTARGETS_WIDE; i++) {
2788 			cp->cache[i] = SCSIPROBE_EXISTS;
2789 		}
2790 	}
2791 
2792 	mutex_exit(&sd_scsi_probe_cache_mutex);
2793 
2794 	/* Recompute the cache for this target if LUN zero */
2795 	if (lun == 0) {
2796 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2797 	}
2798 
2799 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2800 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2801 		return (SCSIPROBE_NORESP);
2802 	}
2803 
2804 	/* Do the actual probe; save & return the result */
2805 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2806 }
2807 
2808 
2809 /*
2810  *    Function: sd_spin_up_unit
2811  *
2812  * Description: Issues the following commands to spin-up the device:
2813  *		START STOP UNIT, and INQUIRY.
2814  *
2815  *   Arguments: un - driver soft state (unit) structure
2816  *
2817  * Return Code: 0 - success
2818  *		EIO - failure
2819  *		EACCES - reservation conflict
2820  *
2821  *     Context: Kernel thread context
2822  */
2823 
2824 static int
2825 sd_spin_up_unit(struct sd_lun *un)
2826 {
2827 	size_t	resid		= 0;
2828 	int	has_conflict	= FALSE;
2829 	uchar_t *bufaddr;
2830 
2831 	ASSERT(un != NULL);
2832 
2833 	/*
2834 	 * Send a throwaway START UNIT command.
2835 	 *
2836 	 * If we fail on this, we don't care presently what precisely
2837 	 * is wrong.  EMC's arrays will also fail this with a check
2838 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2839 	 * we don't want to fail the attach because it may become
2840 	 * "active" later.
2841 	 */
2842 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2843 	    == EACCES)
2844 		has_conflict = TRUE;
2845 
2846 	/*
2847 	 * Send another INQUIRY command to the target. This is necessary for
2848 	 * non-removable media direct access devices because their INQUIRY data
2849 	 * may not be fully qualified until they are spun up (perhaps via the
2850 	 * START command above).  Note: This seems to be needed for some
2851 	 * legacy devices only.) The INQUIRY command should succeed even if a
2852 	 * Reservation Conflict is present.
2853 	 */
2854 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2855 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2856 		kmem_free(bufaddr, SUN_INQSIZE);
2857 		return (EIO);
2858 	}
2859 
2860 	/*
2861 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2862 	 * Note that this routine does not return a failure here even if the
2863 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2864 	 */
2865 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2866 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2867 	}
2868 
2869 	kmem_free(bufaddr, SUN_INQSIZE);
2870 
2871 	/* If we hit a reservation conflict above, tell the caller. */
2872 	if (has_conflict == TRUE) {
2873 		return (EACCES);
2874 	}
2875 
2876 	return (0);
2877 }
2878 
2879 #ifdef _LP64
2880 /*
2881  *    Function: sd_enable_descr_sense
2882  *
2883  * Description: This routine attempts to select descriptor sense format
2884  *		using the Control mode page.  Devices that support 64 bit
2885  *		LBAs (for >2TB luns) should also implement descriptor
2886  *		sense data so we will call this function whenever we see
2887  *		a lun larger than 2TB.  If for some reason the device
2888  *		supports 64 bit LBAs but doesn't support descriptor sense
2889  *		presumably the mode select will fail.  Everything will
2890  *		continue to work normally except that we will not get
2891  *		complete sense data for commands that fail with an LBA
2892  *		larger than 32 bits.
2893  *
2894  *   Arguments: un - driver soft state (unit) structure
2895  *
2896  *     Context: Kernel thread context only
2897  */
2898 
2899 static void
2900 sd_enable_descr_sense(struct sd_lun *un)
2901 {
2902 	uchar_t			*header;
2903 	struct mode_control_scsi3 *ctrl_bufp;
2904 	size_t			buflen;
2905 	size_t			bd_len;
2906 
2907 	/*
2908 	 * Read MODE SENSE page 0xA, Control Mode Page
2909 	 */
2910 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2911 	    sizeof (struct mode_control_scsi3);
2912 	header = kmem_zalloc(buflen, KM_SLEEP);
2913 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2914 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2915 		SD_ERROR(SD_LOG_COMMON, un,
2916 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2917 		goto eds_exit;
2918 	}
2919 
2920 	/*
2921 	 * Determine size of Block Descriptors in order to locate
2922 	 * the mode page data. ATAPI devices return 0, SCSI devices
2923 	 * should return MODE_BLK_DESC_LENGTH.
2924 	 */
2925 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2926 
2927 	ctrl_bufp = (struct mode_control_scsi3 *)
2928 	    (header + MODE_HEADER_LENGTH + bd_len);
2929 
2930 	/*
2931 	 * Clear PS bit for MODE SELECT
2932 	 */
2933 	ctrl_bufp->mode_page.ps = 0;
2934 
2935 	/*
2936 	 * Set D_SENSE to enable descriptor sense format.
2937 	 */
2938 	ctrl_bufp->d_sense = 1;
2939 
2940 	/*
2941 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2942 	 */
2943 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2944 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2945 		SD_INFO(SD_LOG_COMMON, un,
2946 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2947 		goto eds_exit;
2948 	}
2949 
2950 eds_exit:
2951 	kmem_free(header, buflen);
2952 }
2953 #endif /* _LP64 */
2954 
2955 
2956 /*
2957  *    Function: sd_set_mmc_caps
2958  *
2959  * Description: This routine determines if the device is MMC compliant and if
2960  *		the device supports CDDA via a mode sense of the CDVD
2961  *		capabilities mode page. Also checks if the device is a
2962  *		dvdram writable device.
2963  *
2964  *   Arguments: un - driver soft state (unit) structure
2965  *
2966  *     Context: Kernel thread context only
2967  */
2968 
2969 static void
2970 sd_set_mmc_caps(struct sd_lun *un)
2971 {
2972 	struct mode_header_grp2		*sense_mhp;
2973 	uchar_t				*sense_page;
2974 	caddr_t				buf;
2975 	int				bd_len;
2976 	int				status;
2977 	struct uscsi_cmd		com;
2978 	int				rtn;
2979 	uchar_t				*out_data_rw, *out_data_hd;
2980 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2981 
2982 	ASSERT(un != NULL);
2983 
2984 	/*
2985 	 * The flags which will be set in this function are - mmc compliant,
2986 	 * dvdram writable device, cdda support. Initialize them to FALSE
2987 	 * and if a capability is detected - it will be set to TRUE.
2988 	 */
2989 	un->un_f_mmc_cap = FALSE;
2990 	un->un_f_dvdram_writable_device = FALSE;
2991 	un->un_f_cfg_cdda = FALSE;
2992 
2993 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2994 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2995 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2996 
2997 	if (status != 0) {
2998 		/* command failed; just return */
2999 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3000 		return;
3001 	}
3002 	/*
3003 	 * If the mode sense request for the CDROM CAPABILITIES
3004 	 * page (0x2A) succeeds the device is assumed to be MMC.
3005 	 */
3006 	un->un_f_mmc_cap = TRUE;
3007 
3008 	/* Get to the page data */
3009 	sense_mhp = (struct mode_header_grp2 *)buf;
3010 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3011 	    sense_mhp->bdesc_length_lo;
3012 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3013 		/*
3014 		 * We did not get back the expected block descriptor
3015 		 * length so we cannot determine if the device supports
3016 		 * CDDA. However, we still indicate the device is MMC
3017 		 * according to the successful response to the page
3018 		 * 0x2A mode sense request.
3019 		 */
3020 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3021 		    "sd_set_mmc_caps: Mode Sense returned "
3022 		    "invalid block descriptor length\n");
3023 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3024 		return;
3025 	}
3026 
3027 	/* See if read CDDA is supported */
3028 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3029 	    bd_len);
3030 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3031 
3032 	/* See if writing DVD RAM is supported. */
3033 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3034 	if (un->un_f_dvdram_writable_device == TRUE) {
3035 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3036 		return;
3037 	}
3038 
3039 	/*
3040 	 * If the device presents DVD or CD capabilities in the mode
3041 	 * page, we can return here since a RRD will not have
3042 	 * these capabilities.
3043 	 */
3044 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3045 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3046 		return;
3047 	}
3048 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3049 
3050 	/*
3051 	 * If un->un_f_dvdram_writable_device is still FALSE,
3052 	 * check for a Removable Rigid Disk (RRD).  A RRD
3053 	 * device is identified by the features RANDOM_WRITABLE and
3054 	 * HARDWARE_DEFECT_MANAGEMENT.
3055 	 */
3056 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3057 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3058 
3059 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3060 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3061 	    RANDOM_WRITABLE);
3062 	if (rtn != 0) {
3063 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3064 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3065 		return;
3066 	}
3067 
3068 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3069 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3070 
3071 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3072 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3073 	    HARDWARE_DEFECT_MANAGEMENT);
3074 	if (rtn == 0) {
3075 		/*
3076 		 * We have good information, check for random writable
3077 		 * and hardware defect features.
3078 		 */
3079 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3080 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3081 			un->un_f_dvdram_writable_device = TRUE;
3082 		}
3083 	}
3084 
3085 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3086 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3087 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3088 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3089 }
3090 
3091 /*
3092  *    Function: sd_check_for_writable_cd
3093  *
3094  * Description: This routine determines if the media in the device is
3095  *		writable or not. It uses the get configuration command (0x46)
3096  *		to determine if the media is writable
3097  *
3098  *   Arguments: un - driver soft state (unit) structure
3099  *
3100  *     Context: Never called at interrupt context.
3101  */
3102 
3103 static void
3104 sd_check_for_writable_cd(struct sd_lun *un)
3105 {
3106 	struct uscsi_cmd		com;
3107 	uchar_t				*out_data;
3108 	uchar_t				*rqbuf;
3109 	int				rtn;
3110 	uchar_t				*out_data_rw, *out_data_hd;
3111 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3112 	struct mode_header_grp2		*sense_mhp;
3113 	uchar_t				*sense_page;
3114 	caddr_t				buf;
3115 	int				bd_len;
3116 	int				status;
3117 
3118 	ASSERT(un != NULL);
3119 	ASSERT(mutex_owned(SD_MUTEX(un)));
3120 
3121 	/*
3122 	 * Initialize the writable media to false, if configuration info.
3123 	 * tells us otherwise then only we will set it.
3124 	 */
3125 	un->un_f_mmc_writable_media = FALSE;
3126 	mutex_exit(SD_MUTEX(un));
3127 
3128 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3129 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3130 
3131 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3132 	    out_data, SD_PROFILE_HEADER_LEN);
3133 
3134 	mutex_enter(SD_MUTEX(un));
3135 	if (rtn == 0) {
3136 		/*
3137 		 * We have good information, check for writable DVD.
3138 		 */
3139 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3140 			un->un_f_mmc_writable_media = TRUE;
3141 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3142 			kmem_free(rqbuf, SENSE_LENGTH);
3143 			return;
3144 		}
3145 	}
3146 
3147 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3148 	kmem_free(rqbuf, SENSE_LENGTH);
3149 
3150 	/*
3151 	 * Determine if this is a RRD type device.
3152 	 */
3153 	mutex_exit(SD_MUTEX(un));
3154 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3155 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3156 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3157 	mutex_enter(SD_MUTEX(un));
3158 	if (status != 0) {
3159 		/* command failed; just return */
3160 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3161 		return;
3162 	}
3163 
3164 	/* Get to the page data */
3165 	sense_mhp = (struct mode_header_grp2 *)buf;
3166 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3167 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3168 		/*
3169 		 * We did not get back the expected block descriptor length so
3170 		 * we cannot check the mode page.
3171 		 */
3172 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3173 		    "sd_check_for_writable_cd: Mode Sense returned "
3174 		    "invalid block descriptor length\n");
3175 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3176 		return;
3177 	}
3178 
3179 	/*
3180 	 * If the device presents DVD or CD capabilities in the mode
3181 	 * page, we can return here since a RRD device will not have
3182 	 * these capabilities.
3183 	 */
3184 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3185 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3186 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3187 		return;
3188 	}
3189 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3190 
3191 	/*
3192 	 * If un->un_f_mmc_writable_media is still FALSE,
3193 	 * check for RRD type media.  A RRD device is identified
3194 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3195 	 */
3196 	mutex_exit(SD_MUTEX(un));
3197 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3198 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3199 
3200 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3201 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3202 	    RANDOM_WRITABLE);
3203 	if (rtn != 0) {
3204 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3205 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3206 		mutex_enter(SD_MUTEX(un));
3207 		return;
3208 	}
3209 
3210 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3211 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3212 
3213 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3214 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3215 	    HARDWARE_DEFECT_MANAGEMENT);
3216 	mutex_enter(SD_MUTEX(un));
3217 	if (rtn == 0) {
3218 		/*
3219 		 * We have good information, check for random writable
3220 		 * and hardware defect features as current.
3221 		 */
3222 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3223 		    (out_data_rw[10] & 0x1) &&
3224 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3225 		    (out_data_hd[10] & 0x1)) {
3226 			un->un_f_mmc_writable_media = TRUE;
3227 		}
3228 	}
3229 
3230 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3231 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3232 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3233 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3234 }
3235 
3236 /*
3237  *    Function: sd_read_unit_properties
3238  *
3239  * Description: The following implements a property lookup mechanism.
3240  *		Properties for particular disks (keyed on vendor, model
3241  *		and rev numbers) are sought in the sd.conf file via
3242  *		sd_process_sdconf_file(), and if not found there, are
3243  *		looked for in a list hardcoded in this driver via
3244  *		sd_process_sdconf_table() Once located the properties
3245  *		are used to update the driver unit structure.
3246  *
3247  *   Arguments: un - driver soft state (unit) structure
3248  */
3249 
3250 static void
3251 sd_read_unit_properties(struct sd_lun *un)
3252 {
3253 	/*
3254 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3255 	 * the "sd-config-list" property (from the sd.conf file) or if
3256 	 * there was not a match for the inquiry vid/pid. If this event
3257 	 * occurs the static driver configuration table is searched for
3258 	 * a match.
3259 	 */
3260 	ASSERT(un != NULL);
3261 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3262 		sd_process_sdconf_table(un);
3263 	}
3264 
3265 	/* check for LSI device */
3266 	sd_is_lsi(un);
3267 
3268 
3269 }
3270 
3271 
3272 /*
3273  *    Function: sd_process_sdconf_file
3274  *
3275  * Description: Use ddi_getlongprop to obtain the properties from the
3276  *		driver's config file (ie, sd.conf) and update the driver
3277  *		soft state structure accordingly.
3278  *
3279  *   Arguments: un - driver soft state (unit) structure
3280  *
3281  * Return Code: SD_SUCCESS - The properties were successfully set according
3282  *			     to the driver configuration file.
3283  *		SD_FAILURE - The driver config list was not obtained or
3284  *			     there was no vid/pid match. This indicates that
3285  *			     the static config table should be used.
3286  *
3287  * The config file has a property, "sd-config-list", which consists of
3288  * one or more duplets as follows:
3289  *
3290  *  sd-config-list=
3291  *	<duplet>,
3292  *	[<duplet>,]
3293  *	[<duplet>];
3294  *
3295  * The structure of each duplet is as follows:
3296  *
3297  *  <duplet>:= <vid+pid>,<data-property-name_list>
3298  *
3299  * The first entry of the duplet is the device ID string (the concatenated
3300  * vid & pid; not to be confused with a device_id).  This is defined in
3301  * the same way as in the sd_disk_table.
3302  *
3303  * The second part of the duplet is a string that identifies a
3304  * data-property-name-list. The data-property-name-list is defined as
3305  * follows:
3306  *
3307  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3308  *
3309  * The syntax of <data-property-name> depends on the <version> field.
3310  *
3311  * If version = SD_CONF_VERSION_1 we have the following syntax:
3312  *
3313  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3314  *
3315  * where the prop0 value will be used to set prop0 if bit0 set in the
3316  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3317  *
3318  */
3319 
3320 static int
3321 sd_process_sdconf_file(struct sd_lun *un)
3322 {
3323 	char	*config_list = NULL;
3324 	int	config_list_len;
3325 	int	len;
3326 	int	dupletlen = 0;
3327 	char	*vidptr;
3328 	int	vidlen;
3329 	char	*dnlist_ptr;
3330 	char	*dataname_ptr;
3331 	int	dnlist_len;
3332 	int	dataname_len;
3333 	int	*data_list;
3334 	int	data_list_len;
3335 	int	rval = SD_FAILURE;
3336 	int	i;
3337 
3338 	ASSERT(un != NULL);
3339 
3340 	/* Obtain the configuration list associated with the .conf file */
3341 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3342 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3343 	    != DDI_PROP_SUCCESS) {
3344 		return (SD_FAILURE);
3345 	}
3346 
3347 	/*
3348 	 * Compare vids in each duplet to the inquiry vid - if a match is
3349 	 * made, get the data value and update the soft state structure
3350 	 * accordingly.
3351 	 *
3352 	 * Note: This algorithm is complex and difficult to maintain. It should
3353 	 * be replaced with a more robust implementation.
3354 	 */
3355 	for (len = config_list_len, vidptr = config_list; len > 0;
3356 	    vidptr += dupletlen, len -= dupletlen) {
3357 		/*
3358 		 * Note: The assumption here is that each vid entry is on
3359 		 * a unique line from its associated duplet.
3360 		 */
3361 		vidlen = dupletlen = (int)strlen(vidptr);
3362 		if ((vidlen == 0) ||
3363 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3364 			dupletlen++;
3365 			continue;
3366 		}
3367 
3368 		/*
3369 		 * dnlist contains 1 or more blank separated
3370 		 * data-property-name entries
3371 		 */
3372 		dnlist_ptr = vidptr + vidlen + 1;
3373 		dnlist_len = (int)strlen(dnlist_ptr);
3374 		dupletlen += dnlist_len + 2;
3375 
3376 		/*
3377 		 * Set a pointer for the first data-property-name
3378 		 * entry in the list
3379 		 */
3380 		dataname_ptr = dnlist_ptr;
3381 		dataname_len = 0;
3382 
3383 		/*
3384 		 * Loop through all data-property-name entries in the
3385 		 * data-property-name-list setting the properties for each.
3386 		 */
3387 		while (dataname_len < dnlist_len) {
3388 			int version;
3389 
3390 			/*
3391 			 * Determine the length of the current
3392 			 * data-property-name entry by indexing until a
3393 			 * blank or NULL is encountered. When the space is
3394 			 * encountered reset it to a NULL for compliance
3395 			 * with ddi_getlongprop().
3396 			 */
3397 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3398 			    (dataname_ptr[i] != '\0')); i++) {
3399 				;
3400 			}
3401 
3402 			dataname_len += i;
3403 			/* If not null terminated, Make it so */
3404 			if (dataname_ptr[i] == ' ') {
3405 				dataname_ptr[i] = '\0';
3406 			}
3407 			dataname_len++;
3408 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3409 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3410 			    vidptr, dataname_ptr);
3411 
3412 			/* Get the data list */
3413 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3414 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3415 			    != DDI_PROP_SUCCESS) {
3416 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3417 				    "sd_process_sdconf_file: data property (%s)"
3418 				    " has no value\n", dataname_ptr);
3419 				dataname_ptr = dnlist_ptr + dataname_len;
3420 				continue;
3421 			}
3422 
3423 			version = data_list[0];
3424 
3425 			if (version == SD_CONF_VERSION_1) {
3426 				sd_tunables values;
3427 
3428 				/* Set the properties */
3429 				if (sd_chk_vers1_data(un, data_list[1],
3430 				    &data_list[2], data_list_len, dataname_ptr)
3431 				    == SD_SUCCESS) {
3432 					sd_get_tunables_from_conf(un,
3433 					    data_list[1], &data_list[2],
3434 					    &values);
3435 					sd_set_vers1_properties(un,
3436 					    data_list[1], &values);
3437 					rval = SD_SUCCESS;
3438 				} else {
3439 					rval = SD_FAILURE;
3440 				}
3441 			} else {
3442 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3443 				    "data property %s version 0x%x is invalid.",
3444 				    dataname_ptr, version);
3445 				rval = SD_FAILURE;
3446 			}
3447 			kmem_free(data_list, data_list_len);
3448 			dataname_ptr = dnlist_ptr + dataname_len;
3449 		}
3450 	}
3451 
3452 	/* free up the memory allocated by ddi_getlongprop */
3453 	if (config_list) {
3454 		kmem_free(config_list, config_list_len);
3455 	}
3456 
3457 	return (rval);
3458 }
3459 
3460 /*
3461  *    Function: sd_get_tunables_from_conf()
3462  *
3463  *
3464  *    This function reads the data list from the sd.conf file and pulls
3465  *    the values that can have numeric values as arguments and places
3466  *    the values in the apropriate sd_tunables member.
3467  *    Since the order of the data list members varies across platforms
3468  *    This function reads them from the data list in a platform specific
3469  *    order and places them into the correct sd_tunable member that is
3470  *    a consistant across all platforms.
3471  */
3472 static void
3473 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3474     sd_tunables *values)
3475 {
3476 	int i;
3477 	int mask;
3478 
3479 	bzero(values, sizeof (sd_tunables));
3480 
3481 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3482 
3483 		mask = 1 << i;
3484 		if (mask > flags) {
3485 			break;
3486 		}
3487 
3488 		switch (mask & flags) {
3489 		case 0:	/* This mask bit not set in flags */
3490 			continue;
3491 		case SD_CONF_BSET_THROTTLE:
3492 			values->sdt_throttle = data_list[i];
3493 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3494 			    "sd_get_tunables_from_conf: throttle = %d\n",
3495 			    values->sdt_throttle);
3496 			break;
3497 		case SD_CONF_BSET_CTYPE:
3498 			values->sdt_ctype = data_list[i];
3499 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3500 			    "sd_get_tunables_from_conf: ctype = %d\n",
3501 			    values->sdt_ctype);
3502 			break;
3503 		case SD_CONF_BSET_NRR_COUNT:
3504 			values->sdt_not_rdy_retries = data_list[i];
3505 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3506 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3507 			    values->sdt_not_rdy_retries);
3508 			break;
3509 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3510 			values->sdt_busy_retries = data_list[i];
3511 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3512 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3513 			    values->sdt_busy_retries);
3514 			break;
3515 		case SD_CONF_BSET_RST_RETRIES:
3516 			values->sdt_reset_retries = data_list[i];
3517 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3518 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3519 			    values->sdt_reset_retries);
3520 			break;
3521 		case SD_CONF_BSET_RSV_REL_TIME:
3522 			values->sdt_reserv_rel_time = data_list[i];
3523 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3524 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3525 			    values->sdt_reserv_rel_time);
3526 			break;
3527 		case SD_CONF_BSET_MIN_THROTTLE:
3528 			values->sdt_min_throttle = data_list[i];
3529 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3530 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3531 			    values->sdt_min_throttle);
3532 			break;
3533 		case SD_CONF_BSET_DISKSORT_DISABLED:
3534 			values->sdt_disk_sort_dis = data_list[i];
3535 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3536 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3537 			    values->sdt_disk_sort_dis);
3538 			break;
3539 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3540 			values->sdt_lun_reset_enable = data_list[i];
3541 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3542 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3543 			    "\n", values->sdt_lun_reset_enable);
3544 			break;
3545 		}
3546 	}
3547 }
3548 
3549 /*
3550  *    Function: sd_process_sdconf_table
3551  *
3552  * Description: Search the static configuration table for a match on the
3553  *		inquiry vid/pid and update the driver soft state structure
3554  *		according to the table property values for the device.
3555  *
3556  *		The form of a configuration table entry is:
3557  *		  <vid+pid>,<flags>,<property-data>
3558  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3559  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3560  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3561  *
3562  *   Arguments: un - driver soft state (unit) structure
3563  */
3564 
3565 static void
3566 sd_process_sdconf_table(struct sd_lun *un)
3567 {
3568 	char	*id = NULL;
3569 	int	table_index;
3570 	int	idlen;
3571 
3572 	ASSERT(un != NULL);
3573 	for (table_index = 0; table_index < sd_disk_table_size;
3574 	    table_index++) {
3575 		id = sd_disk_table[table_index].device_id;
3576 		idlen = strlen(id);
3577 		if (idlen == 0) {
3578 			continue;
3579 		}
3580 
3581 		/*
3582 		 * The static configuration table currently does not
3583 		 * implement version 10 properties. Additionally,
3584 		 * multiple data-property-name entries are not
3585 		 * implemented in the static configuration table.
3586 		 */
3587 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3588 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3589 			    "sd_process_sdconf_table: disk %s\n", id);
3590 			sd_set_vers1_properties(un,
3591 			    sd_disk_table[table_index].flags,
3592 			    sd_disk_table[table_index].properties);
3593 			break;
3594 		}
3595 	}
3596 }
3597 
3598 
3599 /*
3600  *    Function: sd_sdconf_id_match
3601  *
3602  * Description: This local function implements a case sensitive vid/pid
3603  *		comparison as well as the boundary cases of wild card and
3604  *		multiple blanks.
3605  *
3606  *		Note: An implicit assumption made here is that the scsi
3607  *		inquiry structure will always keep the vid, pid and
3608  *		revision strings in consecutive sequence, so they can be
3609  *		read as a single string. If this assumption is not the
3610  *		case, a separate string, to be used for the check, needs
3611  *		to be built with these strings concatenated.
3612  *
3613  *   Arguments: un - driver soft state (unit) structure
3614  *		id - table or config file vid/pid
3615  *		idlen  - length of the vid/pid (bytes)
3616  *
3617  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3618  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3619  */
3620 
3621 static int
3622 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3623 {
3624 	struct scsi_inquiry	*sd_inq;
3625 	int 			rval = SD_SUCCESS;
3626 
3627 	ASSERT(un != NULL);
3628 	sd_inq = un->un_sd->sd_inq;
3629 	ASSERT(id != NULL);
3630 
3631 	/*
3632 	 * We use the inq_vid as a pointer to a buffer containing the
3633 	 * vid and pid and use the entire vid/pid length of the table
3634 	 * entry for the comparison. This works because the inq_pid
3635 	 * data member follows inq_vid in the scsi_inquiry structure.
3636 	 */
3637 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3638 		/*
3639 		 * The user id string is compared to the inquiry vid/pid
3640 		 * using a case insensitive comparison and ignoring
3641 		 * multiple spaces.
3642 		 */
3643 		rval = sd_blank_cmp(un, id, idlen);
3644 		if (rval != SD_SUCCESS) {
3645 			/*
3646 			 * User id strings that start and end with a "*"
3647 			 * are a special case. These do not have a
3648 			 * specific vendor, and the product string can
3649 			 * appear anywhere in the 16 byte PID portion of
3650 			 * the inquiry data. This is a simple strstr()
3651 			 * type search for the user id in the inquiry data.
3652 			 */
3653 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3654 				char	*pidptr = &id[1];
3655 				int	i;
3656 				int	j;
3657 				int	pidstrlen = idlen - 2;
3658 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3659 				    pidstrlen;
3660 
3661 				if (j < 0) {
3662 					return (SD_FAILURE);
3663 				}
3664 				for (i = 0; i < j; i++) {
3665 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3666 					    pidptr, pidstrlen) == 0) {
3667 						rval = SD_SUCCESS;
3668 						break;
3669 					}
3670 				}
3671 			}
3672 		}
3673 	}
3674 	return (rval);
3675 }
3676 
3677 
3678 /*
3679  *    Function: sd_blank_cmp
3680  *
3681  * Description: If the id string starts and ends with a space, treat
3682  *		multiple consecutive spaces as equivalent to a single
3683  *		space. For example, this causes a sd_disk_table entry
3684  *		of " NEC CDROM " to match a device's id string of
3685  *		"NEC       CDROM".
3686  *
3687  *		Note: The success exit condition for this routine is if
3688  *		the pointer to the table entry is '\0' and the cnt of
3689  *		the inquiry length is zero. This will happen if the inquiry
3690  *		string returned by the device is padded with spaces to be
3691  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3692  *		SCSI spec states that the inquiry string is to be padded with
3693  *		spaces.
3694  *
3695  *   Arguments: un - driver soft state (unit) structure
3696  *		id - table or config file vid/pid
3697  *		idlen  - length of the vid/pid (bytes)
3698  *
3699  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3700  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3701  */
3702 
3703 static int
3704 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3705 {
3706 	char		*p1;
3707 	char		*p2;
3708 	int		cnt;
3709 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3710 	    sizeof (SD_INQUIRY(un)->inq_pid);
3711 
3712 	ASSERT(un != NULL);
3713 	p2 = un->un_sd->sd_inq->inq_vid;
3714 	ASSERT(id != NULL);
3715 	p1 = id;
3716 
3717 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3718 		/*
3719 		 * Note: string p1 is terminated by a NUL but string p2
3720 		 * isn't.  The end of p2 is determined by cnt.
3721 		 */
3722 		for (;;) {
3723 			/* skip over any extra blanks in both strings */
3724 			while ((*p1 != '\0') && (*p1 == ' ')) {
3725 				p1++;
3726 			}
3727 			while ((cnt != 0) && (*p2 == ' ')) {
3728 				p2++;
3729 				cnt--;
3730 			}
3731 
3732 			/* compare the two strings */
3733 			if ((cnt == 0) ||
3734 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3735 				break;
3736 			}
3737 			while ((cnt > 0) &&
3738 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3739 				p1++;
3740 				p2++;
3741 				cnt--;
3742 			}
3743 		}
3744 	}
3745 
3746 	/* return SD_SUCCESS if both strings match */
3747 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3748 }
3749 
3750 
3751 /*
3752  *    Function: sd_chk_vers1_data
3753  *
3754  * Description: Verify the version 1 device properties provided by the
3755  *		user via the configuration file
3756  *
3757  *   Arguments: un	     - driver soft state (unit) structure
3758  *		flags	     - integer mask indicating properties to be set
3759  *		prop_list    - integer list of property values
3760  *		list_len     - length of user provided data
3761  *
3762  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3763  *		SD_FAILURE - Indicates the user provided data is invalid
3764  */
3765 
3766 static int
3767 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3768     int list_len, char *dataname_ptr)
3769 {
3770 	int i;
3771 	int mask = 1;
3772 	int index = 0;
3773 
3774 	ASSERT(un != NULL);
3775 
3776 	/* Check for a NULL property name and list */
3777 	if (dataname_ptr == NULL) {
3778 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3779 		    "sd_chk_vers1_data: NULL data property name.");
3780 		return (SD_FAILURE);
3781 	}
3782 	if (prop_list == NULL) {
3783 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3784 		    "sd_chk_vers1_data: %s NULL data property list.",
3785 		    dataname_ptr);
3786 		return (SD_FAILURE);
3787 	}
3788 
3789 	/* Display a warning if undefined bits are set in the flags */
3790 	if (flags & ~SD_CONF_BIT_MASK) {
3791 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3792 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3793 		    "Properties not set.",
3794 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3795 		return (SD_FAILURE);
3796 	}
3797 
3798 	/*
3799 	 * Verify the length of the list by identifying the highest bit set
3800 	 * in the flags and validating that the property list has a length
3801 	 * up to the index of this bit.
3802 	 */
3803 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3804 		if (flags & mask) {
3805 			index++;
3806 		}
3807 		mask = 1 << i;
3808 	}
3809 	if ((list_len / sizeof (int)) < (index + 2)) {
3810 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3811 		    "sd_chk_vers1_data: "
3812 		    "Data property list %s size is incorrect. "
3813 		    "Properties not set.", dataname_ptr);
3814 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3815 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3816 		return (SD_FAILURE);
3817 	}
3818 	return (SD_SUCCESS);
3819 }
3820 
3821 
3822 /*
3823  *    Function: sd_set_vers1_properties
3824  *
3825  * Description: Set version 1 device properties based on a property list
3826  *		retrieved from the driver configuration file or static
3827  *		configuration table. Version 1 properties have the format:
3828  *
3829  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3830  *
3831  *		where the prop0 value will be used to set prop0 if bit0
3832  *		is set in the flags
3833  *
3834  *   Arguments: un	     - driver soft state (unit) structure
3835  *		flags	     - integer mask indicating properties to be set
3836  *		prop_list    - integer list of property values
3837  */
3838 
3839 static void
3840 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3841 {
3842 	ASSERT(un != NULL);
3843 
3844 	/*
3845 	 * Set the flag to indicate cache is to be disabled. An attempt
3846 	 * to disable the cache via sd_cache_control() will be made
3847 	 * later during attach once the basic initialization is complete.
3848 	 */
3849 	if (flags & SD_CONF_BSET_NOCACHE) {
3850 		un->un_f_opt_disable_cache = TRUE;
3851 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3852 		    "sd_set_vers1_properties: caching disabled flag set\n");
3853 	}
3854 
3855 	/* CD-specific configuration parameters */
3856 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3857 		un->un_f_cfg_playmsf_bcd = TRUE;
3858 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3859 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3860 	}
3861 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3862 		un->un_f_cfg_readsub_bcd = TRUE;
3863 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3864 		    "sd_set_vers1_properties: readsub_bcd set\n");
3865 	}
3866 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3867 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3868 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3869 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3870 	}
3871 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3872 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3873 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3874 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3875 	}
3876 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3877 		un->un_f_cfg_no_read_header = TRUE;
3878 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3879 			    "sd_set_vers1_properties: no_read_header set\n");
3880 	}
3881 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3882 		un->un_f_cfg_read_cd_xd4 = TRUE;
3883 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3884 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3885 	}
3886 
3887 	/* Support for devices which do not have valid/unique serial numbers */
3888 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3889 		un->un_f_opt_fab_devid = TRUE;
3890 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3891 		    "sd_set_vers1_properties: fab_devid bit set\n");
3892 	}
3893 
3894 	/* Support for user throttle configuration */
3895 	if (flags & SD_CONF_BSET_THROTTLE) {
3896 		ASSERT(prop_list != NULL);
3897 		un->un_saved_throttle = un->un_throttle =
3898 		    prop_list->sdt_throttle;
3899 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3900 		    "sd_set_vers1_properties: throttle set to %d\n",
3901 		    prop_list->sdt_throttle);
3902 	}
3903 
3904 	/* Set the per disk retry count according to the conf file or table. */
3905 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3906 		ASSERT(prop_list != NULL);
3907 		if (prop_list->sdt_not_rdy_retries) {
3908 			un->un_notready_retry_count =
3909 				prop_list->sdt_not_rdy_retries;
3910 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3911 			    "sd_set_vers1_properties: not ready retry count"
3912 			    " set to %d\n", un->un_notready_retry_count);
3913 		}
3914 	}
3915 
3916 	/* The controller type is reported for generic disk driver ioctls */
3917 	if (flags & SD_CONF_BSET_CTYPE) {
3918 		ASSERT(prop_list != NULL);
3919 		switch (prop_list->sdt_ctype) {
3920 		case CTYPE_CDROM:
3921 			un->un_ctype = prop_list->sdt_ctype;
3922 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3923 			    "sd_set_vers1_properties: ctype set to "
3924 			    "CTYPE_CDROM\n");
3925 			break;
3926 		case CTYPE_CCS:
3927 			un->un_ctype = prop_list->sdt_ctype;
3928 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 				"sd_set_vers1_properties: ctype set to "
3930 				"CTYPE_CCS\n");
3931 			break;
3932 		case CTYPE_ROD:		/* RW optical */
3933 			un->un_ctype = prop_list->sdt_ctype;
3934 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3935 			    "sd_set_vers1_properties: ctype set to "
3936 			    "CTYPE_ROD\n");
3937 			break;
3938 		default:
3939 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3940 			    "sd_set_vers1_properties: Could not set "
3941 			    "invalid ctype value (%d)",
3942 			    prop_list->sdt_ctype);
3943 		}
3944 	}
3945 
3946 	/* Purple failover timeout */
3947 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3948 		ASSERT(prop_list != NULL);
3949 		un->un_busy_retry_count =
3950 			prop_list->sdt_busy_retries;
3951 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3952 		    "sd_set_vers1_properties: "
3953 		    "busy retry count set to %d\n",
3954 		    un->un_busy_retry_count);
3955 	}
3956 
3957 	/* Purple reset retry count */
3958 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3959 		ASSERT(prop_list != NULL);
3960 		un->un_reset_retry_count =
3961 			prop_list->sdt_reset_retries;
3962 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3963 		    "sd_set_vers1_properties: "
3964 		    "reset retry count set to %d\n",
3965 		    un->un_reset_retry_count);
3966 	}
3967 
3968 	/* Purple reservation release timeout */
3969 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3970 		ASSERT(prop_list != NULL);
3971 		un->un_reserve_release_time =
3972 			prop_list->sdt_reserv_rel_time;
3973 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3974 		    "sd_set_vers1_properties: "
3975 		    "reservation release timeout set to %d\n",
3976 		    un->un_reserve_release_time);
3977 	}
3978 
3979 	/*
3980 	 * Driver flag telling the driver to verify that no commands are pending
3981 	 * for a device before issuing a Test Unit Ready. This is a workaround
3982 	 * for a firmware bug in some Seagate eliteI drives.
3983 	 */
3984 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3985 		un->un_f_cfg_tur_check = TRUE;
3986 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3987 		    "sd_set_vers1_properties: tur queue check set\n");
3988 	}
3989 
3990 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3991 		un->un_min_throttle = prop_list->sdt_min_throttle;
3992 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3993 		    "sd_set_vers1_properties: min throttle set to %d\n",
3994 		    un->un_min_throttle);
3995 	}
3996 
3997 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3998 		un->un_f_disksort_disabled =
3999 		    (prop_list->sdt_disk_sort_dis != 0) ?
4000 		    TRUE : FALSE;
4001 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 		    "sd_set_vers1_properties: disksort disabled "
4003 		    "flag set to %d\n",
4004 		    prop_list->sdt_disk_sort_dis);
4005 	}
4006 
4007 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4008 		un->un_f_lun_reset_enabled =
4009 		    (prop_list->sdt_lun_reset_enable != 0) ?
4010 		    TRUE : FALSE;
4011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4012 		    "sd_set_vers1_properties: lun reset enabled "
4013 		    "flag set to %d\n",
4014 		    prop_list->sdt_lun_reset_enable);
4015 	}
4016 
4017 	/*
4018 	 * Validate the throttle values.
4019 	 * If any of the numbers are invalid, set everything to defaults.
4020 	 */
4021 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4022 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4023 	    (un->un_min_throttle > un->un_throttle)) {
4024 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4025 		un->un_min_throttle = sd_min_throttle;
4026 	}
4027 }
4028 
4029 /*
4030  *   Function: sd_is_lsi()
4031  *
4032  *   Description: Check for lsi devices, step throught the static device
4033  *	table to match vid/pid.
4034  *
4035  *   Args: un - ptr to sd_lun
4036  *
4037  *   Notes:  When creating new LSI property, need to add the new LSI property
4038  *		to this function.
4039  */
4040 static void
4041 sd_is_lsi(struct sd_lun *un)
4042 {
4043 	char	*id = NULL;
4044 	int	table_index;
4045 	int	idlen;
4046 	void	*prop;
4047 
4048 	ASSERT(un != NULL);
4049 	for (table_index = 0; table_index < sd_disk_table_size;
4050 	    table_index++) {
4051 		id = sd_disk_table[table_index].device_id;
4052 		idlen = strlen(id);
4053 		if (idlen == 0) {
4054 			continue;
4055 		}
4056 
4057 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4058 			prop = sd_disk_table[table_index].properties;
4059 			if (prop == &lsi_properties ||
4060 			    prop == &lsi_oem_properties ||
4061 			    prop == &lsi_properties_scsi ||
4062 			    prop == &symbios_properties) {
4063 				un->un_f_cfg_is_lsi = TRUE;
4064 			}
4065 			break;
4066 		}
4067 	}
4068 }
4069 
4070 
4071 /*
4072  * The following routines support reading and interpretation of disk labels,
4073  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4074  * fdisk tables.
4075  */
4076 
4077 /*
4078  *    Function: sd_validate_geometry
4079  *
4080  * Description: Read the label from the disk (if present). Update the unit's
4081  *		geometry and vtoc information from the data in the label.
4082  *		Verify that the label is valid.
4083  *
4084  *   Arguments: un - driver soft state (unit) structure
4085  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4086  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4087  *			to use the USCSI "direct" chain and bypass the normal
4088  *			command waitq.
4089  *
4090  * Return Code: 0 - Successful completion
4091  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4092  *			  un->un_blockcount; or label on disk is corrupted
4093  *			  or unreadable.
4094  *		EACCES  - Reservation conflict at the device.
4095  *		ENOMEM  - Resource allocation error
4096  *		ENOTSUP - geometry not applicable
4097  *
4098  *     Context: Kernel thread only (can sleep).
4099  */
4100 
4101 static int
4102 sd_validate_geometry(struct sd_lun *un, int path_flag)
4103 {
4104 	static	char		labelstring[128];
4105 	static	char		buf[256];
4106 	char	*label		= NULL;
4107 	int	label_error	= 0;
4108 	int	gvalid		= un->un_f_geometry_is_valid;
4109 	int	lbasize;
4110 	uint_t	capacity;
4111 	int	count;
4112 
4113 	ASSERT(un != NULL);
4114 	ASSERT(mutex_owned(SD_MUTEX(un)));
4115 
4116 	/*
4117 	 * If the required values are not valid, then try getting them
4118 	 * once via read capacity. If that fails, then fail this call.
4119 	 * This is necessary with the new mpxio failover behavior in
4120 	 * the T300 where we can get an attach for the inactive path
4121 	 * before the active path. The inactive path fails commands with
4122 	 * sense data of 02,04,88 which happens to the read capacity
4123 	 * before mpxio has had sufficient knowledge to know if it should
4124 	 * force a fail over or not. (Which it won't do at attach anyhow).
4125 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4126 	 * un_blockcount won't be valid.
4127 	 */
4128 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4129 	    (un->un_f_blockcount_is_valid != TRUE)) {
4130 		uint64_t	cap;
4131 		uint32_t	lbasz;
4132 		int		rval;
4133 
4134 		mutex_exit(SD_MUTEX(un));
4135 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4136 		    &lbasz, SD_PATH_DIRECT);
4137 		mutex_enter(SD_MUTEX(un));
4138 		if (rval == 0) {
4139 			/*
4140 			 * The following relies on
4141 			 * sd_send_scsi_READ_CAPACITY never
4142 			 * returning 0 for capacity and/or lbasize.
4143 			 */
4144 			sd_update_block_info(un, lbasz, cap);
4145 		}
4146 
4147 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4148 		    (un->un_f_blockcount_is_valid != TRUE)) {
4149 			return (EINVAL);
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * Copy the lbasize and capacity so that if they're reset while we're
4155 	 * not holding the SD_MUTEX, we will continue to use valid values
4156 	 * after the SD_MUTEX is reacquired. (4119659)
4157 	 */
4158 	lbasize  = un->un_tgt_blocksize;
4159 	capacity = un->un_blockcount;
4160 
4161 #if defined(_SUNOS_VTOC_16)
4162 	/*
4163 	 * Set up the "whole disk" fdisk partition; this should always
4164 	 * exist, regardless of whether the disk contains an fdisk table
4165 	 * or vtoc.
4166 	 */
4167 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4168 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4169 #endif
4170 
4171 	/*
4172 	 * Refresh the logical and physical geometry caches.
4173 	 * (data from MODE SENSE format/rigid disk geometry pages,
4174 	 * and scsi_ifgetcap("geometry").
4175 	 */
4176 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4177 
4178 	label_error = sd_use_efi(un, path_flag);
4179 	if (label_error == 0) {
4180 		/* found a valid EFI label */
4181 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4182 			"sd_validate_geometry: found EFI label\n");
4183 		un->un_solaris_offset = 0;
4184 		un->un_solaris_size = capacity;
4185 		return (ENOTSUP);
4186 	}
4187 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4188 		if (label_error == ESRCH) {
4189 			/*
4190 			 * they've configured a LUN over 1TB, but used
4191 			 * format.dat to restrict format's view of the
4192 			 * capacity to be under 1TB
4193 			 */
4194 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4195 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4196 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4197 "size to be < 1TB or relabel the disk with an EFI label");
4198 		} else {
4199 			/* unlabeled disk over 1TB */
4200 			return (ENOTSUP);
4201 		}
4202 	}
4203 	label_error = 0;
4204 
4205 	/*
4206 	 * at this point it is either labeled with a VTOC or it is
4207 	 * under 1TB
4208 	 */
4209 	if (un->un_f_vtoc_label_supported) {
4210 		struct	dk_label *dkl;
4211 		offset_t dkl1;
4212 		offset_t label_addr, real_addr;
4213 		int	rval;
4214 		size_t	buffer_size;
4215 
4216 		/*
4217 		 * Note: This will set up un->un_solaris_size and
4218 		 * un->un_solaris_offset.
4219 		 */
4220 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4221 		case SD_CMD_RESERVATION_CONFLICT:
4222 			ASSERT(mutex_owned(SD_MUTEX(un)));
4223 			return (EACCES);
4224 		case SD_CMD_FAILURE:
4225 			ASSERT(mutex_owned(SD_MUTEX(un)));
4226 			return (ENOMEM);
4227 		}
4228 
4229 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4230 			/*
4231 			 * Found fdisk table but no Solaris partition entry,
4232 			 * so don't call sd_uselabel() and don't create
4233 			 * a default label.
4234 			 */
4235 			label_error = 0;
4236 			un->un_f_geometry_is_valid = TRUE;
4237 			goto no_solaris_partition;
4238 		}
4239 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4240 
4241 		/*
4242 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4243 		 * blkno and save the index to beginning of dk_label
4244 		 */
4245 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4246 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4247 		    sizeof (struct dk_label));
4248 
4249 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4250 		    "label_addr: 0x%x allocation size: 0x%x\n",
4251 		    label_addr, buffer_size);
4252 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4253 		if (dkl == NULL) {
4254 			return (ENOMEM);
4255 		}
4256 
4257 		mutex_exit(SD_MUTEX(un));
4258 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4259 		    path_flag);
4260 		mutex_enter(SD_MUTEX(un));
4261 
4262 		switch (rval) {
4263 		case 0:
4264 			/*
4265 			 * sd_uselabel will establish that the geometry
4266 			 * is valid.
4267 			 * For sys_blocksize != tgt_blocksize, need
4268 			 * to index into the beginning of dk_label
4269 			 */
4270 			dkl1 = (daddr_t)dkl
4271 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4272 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4273 			    path_flag) != SD_LABEL_IS_VALID) {
4274 				label_error = EINVAL;
4275 			}
4276 			break;
4277 		case EACCES:
4278 			label_error = EACCES;
4279 			break;
4280 		default:
4281 			label_error = EINVAL;
4282 			break;
4283 		}
4284 
4285 		kmem_free(dkl, buffer_size);
4286 
4287 #if defined(_SUNOS_VTOC_8)
4288 		label = (char *)un->un_asciilabel;
4289 #elif defined(_SUNOS_VTOC_16)
4290 		label = (char *)un->un_vtoc.v_asciilabel;
4291 #else
4292 #error "No VTOC format defined."
4293 #endif
4294 	}
4295 
4296 	/*
4297 	 * If a valid label was not found, AND if no reservation conflict
4298 	 * was detected, then go ahead and create a default label (4069506).
4299 	 */
4300 
4301 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4302 		if (un->un_f_geometry_is_valid == FALSE) {
4303 			sd_build_default_label(un);
4304 		}
4305 		label_error = 0;
4306 	}
4307 
4308 no_solaris_partition:
4309 	if ((!un->un_f_has_removable_media ||
4310 	    (un->un_f_has_removable_media &&
4311 		un->un_mediastate == DKIO_EJECTED)) &&
4312 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4313 		/*
4314 		 * Print out a message indicating who and what we are.
4315 		 * We do this only when we happen to really validate the
4316 		 * geometry. We may call sd_validate_geometry() at other
4317 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4318 		 * don't want to print the label.
4319 		 * If the geometry is valid, print the label string,
4320 		 * else print vendor and product info, if available
4321 		 */
4322 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4324 		} else {
4325 			mutex_enter(&sd_label_mutex);
4326 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4327 			    labelstring);
4328 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4329 			    &labelstring[64]);
4330 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4331 			    labelstring, &labelstring[64]);
4332 			if (un->un_f_blockcount_is_valid == TRUE) {
4333 				(void) sprintf(&buf[strlen(buf)],
4334 				    ", %llu %u byte blocks\n",
4335 				    (longlong_t)un->un_blockcount,
4336 				    un->un_tgt_blocksize);
4337 			} else {
4338 				(void) sprintf(&buf[strlen(buf)],
4339 				    ", (unknown capacity)\n");
4340 			}
4341 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4342 			mutex_exit(&sd_label_mutex);
4343 		}
4344 	}
4345 
4346 #if defined(_SUNOS_VTOC_16)
4347 	/*
4348 	 * If we have valid geometry, set up the remaining fdisk partitions.
4349 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4350 	 * we set it to an entirely bogus value.
4351 	 */
4352 	for (count = 0; count < FD_NUMPART; count++) {
4353 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4354 		un->un_map[FDISK_P1 + count].dkl_nblk =
4355 		    un->un_fmap[count].fmap_nblk;
4356 
4357 		un->un_offset[FDISK_P1 + count] =
4358 		    un->un_fmap[count].fmap_start;
4359 	}
4360 #endif
4361 
4362 	for (count = 0; count < NDKMAP; count++) {
4363 #if defined(_SUNOS_VTOC_8)
4364 		struct dk_map *lp  = &un->un_map[count];
4365 		un->un_offset[count] =
4366 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4367 #elif defined(_SUNOS_VTOC_16)
4368 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4369 
4370 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4371 #else
4372 #error "No VTOC format defined."
4373 #endif
4374 	}
4375 
4376 	return (label_error);
4377 }
4378 
4379 
4380 #if defined(_SUNOS_VTOC_16)
4381 /*
4382  * Macro: MAX_BLKS
4383  *
4384  *	This macro is used for table entries where we need to have the largest
4385  *	possible sector value for that head & SPT (sectors per track)
4386  *	combination.  Other entries for some smaller disk sizes are set by
4387  *	convention to match those used by X86 BIOS usage.
4388  */
4389 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4390 
4391 /*
4392  *    Function: sd_convert_geometry
4393  *
4394  * Description: Convert physical geometry into a dk_geom structure. In
4395  *		other words, make sure we don't wrap 16-bit values.
4396  *		e.g. converting from geom_cache to dk_geom
4397  *
4398  *     Context: Kernel thread only
4399  */
4400 static void
4401 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4402 {
4403 	int i;
4404 	static const struct chs_values {
4405 		uint_t max_cap;		/* Max Capacity for this HS. */
4406 		uint_t nhead;		/* Heads to use. */
4407 		uint_t nsect;		/* SPT to use. */
4408 	} CHS_values[] = {
4409 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4410 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4411 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4412 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4413 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4414 	};
4415 
4416 	/* Unlabeled SCSI floppy device */
4417 	if (capacity <= 0x1000) {
4418 		un_g->dkg_nhead = 2;
4419 		un_g->dkg_ncyl = 80;
4420 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4421 		return;
4422 	}
4423 
4424 	/*
4425 	 * For all devices we calculate cylinders using the
4426 	 * heads and sectors we assign based on capacity of the
4427 	 * device.  The table is designed to be compatible with the
4428 	 * way other operating systems lay out fdisk tables for X86
4429 	 * and to insure that the cylinders never exceed 65535 to
4430 	 * prevent problems with X86 ioctls that report geometry.
4431 	 * We use SPT that are multiples of 63, since other OSes that
4432 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4433 	 * we make do by using multiples of 63 SPT.
4434 	 *
4435 	 * Note than capacities greater than or equal to 1TB will simply
4436 	 * get the largest geometry from the table. This should be okay
4437 	 * since disks this large shouldn't be using CHS values anyway.
4438 	 */
4439 	for (i = 0; CHS_values[i].max_cap < capacity &&
4440 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4441 		;
4442 
4443 	un_g->dkg_nhead = CHS_values[i].nhead;
4444 	un_g->dkg_nsect = CHS_values[i].nsect;
4445 }
4446 #endif
4447 
4448 
4449 /*
4450  *    Function: sd_resync_geom_caches
4451  *
4452  * Description: (Re)initialize both geometry caches: the virtual geometry
4453  *		information is extracted from the HBA (the "geometry"
4454  *		capability), and the physical geometry cache data is
4455  *		generated by issuing MODE SENSE commands.
4456  *
4457  *   Arguments: un - driver soft state (unit) structure
4458  *		capacity - disk capacity in #blocks
4459  *		lbasize - disk block size in bytes
4460  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4461  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4462  *			to use the USCSI "direct" chain and bypass the normal
4463  *			command waitq.
4464  *
4465  *     Context: Kernel thread only (can sleep).
4466  */
4467 
4468 static void
4469 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4470 	int path_flag)
4471 {
4472 	struct 	geom_cache 	pgeom;
4473 	struct 	geom_cache	*pgeom_p = &pgeom;
4474 	int 	spc;
4475 	unsigned short nhead;
4476 	unsigned short nsect;
4477 
4478 	ASSERT(un != NULL);
4479 	ASSERT(mutex_owned(SD_MUTEX(un)));
4480 
4481 	/*
4482 	 * Ask the controller for its logical geometry.
4483 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4484 	 * then the lgeom cache will be invalid.
4485 	 */
4486 	sd_get_virtual_geometry(un, capacity, lbasize);
4487 
4488 	/*
4489 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4490 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4491 	 */
4492 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4493 		/*
4494 		 * Note: Perhaps this needs to be more adaptive? The rationale
4495 		 * is that, if there's no HBA geometry from the HBA driver, any
4496 		 * guess is good, since this is the physical geometry. If MODE
4497 		 * SENSE fails this gives a max cylinder size for non-LBA access
4498 		 */
4499 		nhead = 255;
4500 		nsect = 63;
4501 	} else {
4502 		nhead = un->un_lgeom.g_nhead;
4503 		nsect = un->un_lgeom.g_nsect;
4504 	}
4505 
4506 	if (ISCD(un)) {
4507 		pgeom_p->g_nhead = 1;
4508 		pgeom_p->g_nsect = nsect * nhead;
4509 	} else {
4510 		pgeom_p->g_nhead = nhead;
4511 		pgeom_p->g_nsect = nsect;
4512 	}
4513 
4514 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4515 	pgeom_p->g_capacity = capacity;
4516 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4517 	pgeom_p->g_acyl = 0;
4518 
4519 	/*
4520 	 * Retrieve fresh geometry data from the hardware, stash it
4521 	 * here temporarily before we rebuild the incore label.
4522 	 *
4523 	 * We want to use the MODE SENSE commands to derive the
4524 	 * physical geometry of the device, but if either command
4525 	 * fails, the logical geometry is used as the fallback for
4526 	 * disk label geometry.
4527 	 */
4528 	mutex_exit(SD_MUTEX(un));
4529 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4530 	mutex_enter(SD_MUTEX(un));
4531 
4532 	/*
4533 	 * Now update the real copy while holding the mutex. This
4534 	 * way the global copy is never in an inconsistent state.
4535 	 */
4536 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4537 
4538 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4539 	    "(cached from lgeom)\n");
4540 	SD_INFO(SD_LOG_COMMON, un,
4541 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4542 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4543 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4544 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4545 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4546 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4547 	    un->un_pgeom.g_rpm);
4548 }
4549 
4550 
4551 /*
4552  *    Function: sd_read_fdisk
4553  *
4554  * Description: utility routine to read the fdisk table.
4555  *
4556  *   Arguments: un - driver soft state (unit) structure
4557  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4558  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4559  *			to use the USCSI "direct" chain and bypass the normal
4560  *			command waitq.
4561  *
4562  * Return Code: SD_CMD_SUCCESS
4563  *		SD_CMD_FAILURE
4564  *
4565  *     Context: Kernel thread only (can sleep).
4566  */
4567 /* ARGSUSED */
4568 static int
4569 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4570 {
4571 #if defined(_NO_FDISK_PRESENT)
4572 
4573 	un->un_solaris_offset = 0;
4574 	un->un_solaris_size = capacity;
4575 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4576 	return (SD_CMD_SUCCESS);
4577 
4578 #elif defined(_FIRMWARE_NEEDS_FDISK)
4579 
4580 	struct ipart	*fdp;
4581 	struct mboot	*mbp;
4582 	struct ipart	fdisk[FD_NUMPART];
4583 	int		i;
4584 	char		sigbuf[2];
4585 	caddr_t		bufp;
4586 	int		uidx;
4587 	int		rval;
4588 	int		lba = 0;
4589 	uint_t		solaris_offset;	/* offset to solaris part. */
4590 	daddr_t		solaris_size;	/* size of solaris partition */
4591 	uint32_t	blocksize;
4592 
4593 	ASSERT(un != NULL);
4594 	ASSERT(mutex_owned(SD_MUTEX(un)));
4595 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4596 
4597 	blocksize = un->un_tgt_blocksize;
4598 
4599 	/*
4600 	 * Start off assuming no fdisk table
4601 	 */
4602 	solaris_offset = 0;
4603 	solaris_size   = capacity;
4604 
4605 	mutex_exit(SD_MUTEX(un));
4606 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4607 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4608 	mutex_enter(SD_MUTEX(un));
4609 
4610 	if (rval != 0) {
4611 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4612 		    "sd_read_fdisk: fdisk read err\n");
4613 		kmem_free(bufp, blocksize);
4614 		return (SD_CMD_FAILURE);
4615 	}
4616 
4617 	mbp = (struct mboot *)bufp;
4618 
4619 	/*
4620 	 * The fdisk table does not begin on a 4-byte boundary within the
4621 	 * master boot record, so we copy it to an aligned structure to avoid
4622 	 * alignment exceptions on some processors.
4623 	 */
4624 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4625 
4626 	/*
4627 	 * Check for lba support before verifying sig; sig might not be
4628 	 * there, say on a blank disk, but the max_chs mark may still
4629 	 * be present.
4630 	 *
4631 	 * Note: LBA support and BEFs are an x86-only concept but this
4632 	 * code should work OK on SPARC as well.
4633 	 */
4634 
4635 	/*
4636 	 * First, check for lba-access-ok on root node (or prom root node)
4637 	 * if present there, don't need to search fdisk table.
4638 	 */
4639 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4640 	    "lba-access-ok", 0) != 0) {
4641 		/* All drives do LBA; don't search fdisk table */
4642 		lba = 1;
4643 	} else {
4644 		/* Okay, look for mark in fdisk table */
4645 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4646 			/* accumulate "lba" value from all partitions */
4647 			lba = (lba || sd_has_max_chs_vals(fdp));
4648 		}
4649 	}
4650 
4651 	if (lba != 0) {
4652 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4653 
4654 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4655 		    "lba-access-ok", 0) == 0) {
4656 			/* not found; create it */
4657 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4658 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4659 			    DDI_PROP_SUCCESS) {
4660 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4661 				    "sd_read_fdisk: Can't create lba property "
4662 				    "for instance %d\n",
4663 				    ddi_get_instance(SD_DEVINFO(un)));
4664 			}
4665 		}
4666 	}
4667 
4668 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4669 
4670 	/*
4671 	 * Endian-independent signature check
4672 	 */
4673 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4674 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4675 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4676 		    "sd_read_fdisk: no fdisk\n");
4677 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4678 		rval = SD_CMD_SUCCESS;
4679 		goto done;
4680 	}
4681 
4682 #ifdef SDDEBUG
4683 	if (sd_level_mask & SD_LOGMASK_INFO) {
4684 		fdp = fdisk;
4685 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4686 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4687 		    "numsect         sysid       bootid\n");
4688 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4689 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4690 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4691 			    i, fdp->relsect, fdp->numsect,
4692 			    fdp->systid, fdp->bootid);
4693 		}
4694 	}
4695 #endif
4696 
4697 	/*
4698 	 * Try to find the unix partition
4699 	 */
4700 	uidx = -1;
4701 	solaris_offset = 0;
4702 	solaris_size   = 0;
4703 
4704 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4705 		int	relsect;
4706 		int	numsect;
4707 
4708 		if (fdp->numsect == 0) {
4709 			un->un_fmap[i].fmap_start = 0;
4710 			un->un_fmap[i].fmap_nblk  = 0;
4711 			continue;
4712 		}
4713 
4714 		/*
4715 		 * Data in the fdisk table is little-endian.
4716 		 */
4717 		relsect = LE_32(fdp->relsect);
4718 		numsect = LE_32(fdp->numsect);
4719 
4720 		un->un_fmap[i].fmap_start = relsect;
4721 		un->un_fmap[i].fmap_nblk  = numsect;
4722 
4723 		if (fdp->systid != SUNIXOS &&
4724 		    fdp->systid != SUNIXOS2 &&
4725 		    fdp->systid != EFI_PMBR) {
4726 			continue;
4727 		}
4728 
4729 		/*
4730 		 * use the last active solaris partition id found
4731 		 * (there should only be 1 active partition id)
4732 		 *
4733 		 * if there are no active solaris partition id
4734 		 * then use the first inactive solaris partition id
4735 		 */
4736 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4737 			uidx = i;
4738 			solaris_offset = relsect;
4739 			solaris_size   = numsect;
4740 		}
4741 	}
4742 
4743 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4744 	    un->un_solaris_offset, un->un_solaris_size);
4745 
4746 	rval = SD_CMD_SUCCESS;
4747 
4748 done:
4749 
4750 	/*
4751 	 * Clear the VTOC info, only if the Solaris partition entry
4752 	 * has moved, changed size, been deleted, or if the size of
4753 	 * the partition is too small to even fit the label sector.
4754 	 */
4755 	if ((un->un_solaris_offset != solaris_offset) ||
4756 	    (un->un_solaris_size != solaris_size) ||
4757 	    solaris_size <= DK_LABEL_LOC) {
4758 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4759 			solaris_offset, solaris_size);
4760 		bzero(&un->un_g, sizeof (struct dk_geom));
4761 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4762 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4763 		un->un_f_geometry_is_valid = FALSE;
4764 	}
4765 	un->un_solaris_offset = solaris_offset;
4766 	un->un_solaris_size = solaris_size;
4767 	kmem_free(bufp, blocksize);
4768 	return (rval);
4769 
4770 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4771 #error "fdisk table presence undetermined for this platform."
4772 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4773 }
4774 
4775 
4776 /*
4777  *    Function: sd_get_physical_geometry
4778  *
4779  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4780  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4781  *		target, and use this information to initialize the physical
4782  *		geometry cache specified by pgeom_p.
4783  *
4784  *		MODE SENSE is an optional command, so failure in this case
4785  *		does not necessarily denote an error. We want to use the
4786  *		MODE SENSE commands to derive the physical geometry of the
4787  *		device, but if either command fails, the logical geometry is
4788  *		used as the fallback for disk label geometry.
4789  *
4790  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4791  *		have already been initialized for the current target and
4792  *		that the current values be passed as args so that we don't
4793  *		end up ever trying to use -1 as a valid value. This could
4794  *		happen if either value is reset while we're not holding
4795  *		the mutex.
4796  *
4797  *   Arguments: un - driver soft state (unit) structure
4798  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4799  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4800  *			to use the USCSI "direct" chain and bypass the normal
4801  *			command waitq.
4802  *
4803  *     Context: Kernel thread only (can sleep).
4804  */
4805 
4806 static void
4807 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4808 	int capacity, int lbasize, int path_flag)
4809 {
4810 	struct	mode_format	*page3p;
4811 	struct	mode_geometry	*page4p;
4812 	struct	mode_header	*headerp;
4813 	int	sector_size;
4814 	int	nsect;
4815 	int	nhead;
4816 	int	ncyl;
4817 	int	intrlv;
4818 	int	spc;
4819 	int	modesense_capacity;
4820 	int	rpm;
4821 	int	bd_len;
4822 	int	mode_header_length;
4823 	uchar_t	*p3bufp;
4824 	uchar_t	*p4bufp;
4825 	int	cdbsize;
4826 
4827 	ASSERT(un != NULL);
4828 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4829 
4830 	if (un->un_f_blockcount_is_valid != TRUE) {
4831 		return;
4832 	}
4833 
4834 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4835 		return;
4836 	}
4837 
4838 	if (lbasize == 0) {
4839 		if (ISCD(un)) {
4840 			lbasize = 2048;
4841 		} else {
4842 			lbasize = un->un_sys_blocksize;
4843 		}
4844 	}
4845 	pgeom_p->g_secsize = (unsigned short)lbasize;
4846 
4847 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4848 
4849 	/*
4850 	 * Retrieve MODE SENSE page 3 - Format Device Page
4851 	 */
4852 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4853 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4854 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4855 	    != 0) {
4856 		SD_ERROR(SD_LOG_COMMON, un,
4857 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4858 		goto page3_exit;
4859 	}
4860 
4861 	/*
4862 	 * Determine size of Block Descriptors in order to locate the mode
4863 	 * page data.  ATAPI devices return 0, SCSI devices should return
4864 	 * MODE_BLK_DESC_LENGTH.
4865 	 */
4866 	headerp = (struct mode_header *)p3bufp;
4867 	if (un->un_f_cfg_is_atapi == TRUE) {
4868 		struct mode_header_grp2 *mhp =
4869 		    (struct mode_header_grp2 *)headerp;
4870 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4871 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4872 	} else {
4873 		mode_header_length = MODE_HEADER_LENGTH;
4874 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4875 	}
4876 
4877 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4878 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4879 		    "received unexpected bd_len of %d, page3\n", bd_len);
4880 		goto page3_exit;
4881 	}
4882 
4883 	page3p = (struct mode_format *)
4884 	    ((caddr_t)headerp + mode_header_length + bd_len);
4885 
4886 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4887 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4888 		    "mode sense pg3 code mismatch %d\n",
4889 		    page3p->mode_page.code);
4890 		goto page3_exit;
4891 	}
4892 
4893 	/*
4894 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4895 	 * complete successfully; otherwise, revert to the logical geometry.
4896 	 * So, we need to save everything in temporary variables.
4897 	 */
4898 	sector_size = BE_16(page3p->data_bytes_sect);
4899 
4900 	/*
4901 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4902 	 */
4903 	if (sector_size == 0) {
4904 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4905 	} else {
4906 		sector_size &= ~(un->un_sys_blocksize - 1);
4907 	}
4908 
4909 	nsect  = BE_16(page3p->sect_track);
4910 	intrlv = BE_16(page3p->interleave);
4911 
4912 	SD_INFO(SD_LOG_COMMON, un,
4913 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4914 	SD_INFO(SD_LOG_COMMON, un,
4915 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4916 	    page3p->mode_page.code, nsect, sector_size);
4917 	SD_INFO(SD_LOG_COMMON, un,
4918 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4919 	    BE_16(page3p->track_skew),
4920 	    BE_16(page3p->cylinder_skew));
4921 
4922 
4923 	/*
4924 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4925 	 */
4926 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4927 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4928 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4929 	    != 0) {
4930 		SD_ERROR(SD_LOG_COMMON, un,
4931 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4932 		goto page4_exit;
4933 	}
4934 
4935 	/*
4936 	 * Determine size of Block Descriptors in order to locate the mode
4937 	 * page data.  ATAPI devices return 0, SCSI devices should return
4938 	 * MODE_BLK_DESC_LENGTH.
4939 	 */
4940 	headerp = (struct mode_header *)p4bufp;
4941 	if (un->un_f_cfg_is_atapi == TRUE) {
4942 		struct mode_header_grp2 *mhp =
4943 		    (struct mode_header_grp2 *)headerp;
4944 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4945 	} else {
4946 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4947 	}
4948 
4949 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4950 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4951 		    "received unexpected bd_len of %d, page4\n", bd_len);
4952 		goto page4_exit;
4953 	}
4954 
4955 	page4p = (struct mode_geometry *)
4956 	    ((caddr_t)headerp + mode_header_length + bd_len);
4957 
4958 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4959 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4960 		    "mode sense pg4 code mismatch %d\n",
4961 		    page4p->mode_page.code);
4962 		goto page4_exit;
4963 	}
4964 
4965 	/*
4966 	 * Stash the data now, after we know that both commands completed.
4967 	 */
4968 
4969 	mutex_enter(SD_MUTEX(un));
4970 
4971 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4972 	spc   = nhead * nsect;
4973 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4974 	rpm   = BE_16(page4p->rpm);
4975 
4976 	modesense_capacity = spc * ncyl;
4977 
4978 	SD_INFO(SD_LOG_COMMON, un,
4979 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4980 	SD_INFO(SD_LOG_COMMON, un,
4981 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4982 	SD_INFO(SD_LOG_COMMON, un,
4983 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4984 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4985 	    (void *)pgeom_p, capacity);
4986 
4987 	/*
4988 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4989 	 * the product of C * H * S returned by MODE SENSE >= that returned
4990 	 * by read capacity. This is an idiosyncrasy of the original x86
4991 	 * disk subsystem.
4992 	 */
4993 	if (modesense_capacity >= capacity) {
4994 		SD_INFO(SD_LOG_COMMON, un,
4995 		    "sd_get_physical_geometry: adjusting acyl; "
4996 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4997 		    (modesense_capacity - capacity + spc - 1) / spc);
4998 		if (sector_size != 0) {
4999 			/* 1243403: NEC D38x7 drives don't support sec size */
5000 			pgeom_p->g_secsize = (unsigned short)sector_size;
5001 		}
5002 		pgeom_p->g_nsect    = (unsigned short)nsect;
5003 		pgeom_p->g_nhead    = (unsigned short)nhead;
5004 		pgeom_p->g_capacity = capacity;
5005 		pgeom_p->g_acyl	    =
5006 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5007 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5008 	}
5009 
5010 	pgeom_p->g_rpm    = (unsigned short)rpm;
5011 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5012 
5013 	SD_INFO(SD_LOG_COMMON, un,
5014 	    "sd_get_physical_geometry: mode sense geometry:\n");
5015 	SD_INFO(SD_LOG_COMMON, un,
5016 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5017 	    nsect, sector_size, intrlv);
5018 	SD_INFO(SD_LOG_COMMON, un,
5019 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5020 	    nhead, ncyl, rpm, modesense_capacity);
5021 	SD_INFO(SD_LOG_COMMON, un,
5022 	    "sd_get_physical_geometry: (cached)\n");
5023 	SD_INFO(SD_LOG_COMMON, un,
5024 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5025 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5026 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5027 	SD_INFO(SD_LOG_COMMON, un,
5028 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5029 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5030 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5031 
5032 	mutex_exit(SD_MUTEX(un));
5033 
5034 page4_exit:
5035 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5036 page3_exit:
5037 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5038 }
5039 
5040 
5041 /*
5042  *    Function: sd_get_virtual_geometry
5043  *
5044  * Description: Ask the controller to tell us about the target device.
5045  *
5046  *   Arguments: un - pointer to softstate
5047  *		capacity - disk capacity in #blocks
5048  *		lbasize - disk block size in bytes
5049  *
5050  *     Context: Kernel thread only
5051  */
5052 
5053 static void
5054 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5055 {
5056 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5057 	uint_t	geombuf;
5058 	int	spc;
5059 
5060 	ASSERT(un != NULL);
5061 	ASSERT(mutex_owned(SD_MUTEX(un)));
5062 
5063 	mutex_exit(SD_MUTEX(un));
5064 
5065 	/* Set sector size, and total number of sectors */
5066 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5067 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5068 
5069 	/* Let the HBA tell us its geometry */
5070 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5071 
5072 	mutex_enter(SD_MUTEX(un));
5073 
5074 	/* A value of -1 indicates an undefined "geometry" property */
5075 	if (geombuf == (-1)) {
5076 		return;
5077 	}
5078 
5079 	/* Initialize the logical geometry cache. */
5080 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5081 	lgeom_p->g_nsect   = geombuf & 0xffff;
5082 	lgeom_p->g_secsize = un->un_sys_blocksize;
5083 
5084 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5085 
5086 	/*
5087 	 * Note: The driver originally converted the capacity value from
5088 	 * target blocks to system blocks. However, the capacity value passed
5089 	 * to this routine is already in terms of system blocks (this scaling
5090 	 * is done when the READ CAPACITY command is issued and processed).
5091 	 * This 'error' may have gone undetected because the usage of g_ncyl
5092 	 * (which is based upon g_capacity) is very limited within the driver
5093 	 */
5094 	lgeom_p->g_capacity = capacity;
5095 
5096 	/*
5097 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5098 	 * hba may return zero values if the device has been removed.
5099 	 */
5100 	if (spc == 0) {
5101 		lgeom_p->g_ncyl = 0;
5102 	} else {
5103 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5104 	}
5105 	lgeom_p->g_acyl = 0;
5106 
5107 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5108 	SD_INFO(SD_LOG_COMMON, un,
5109 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5110 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5111 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5112 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5113 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5114 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5115 }
5116 
5117 
5118 /*
5119  *    Function: sd_update_block_info
5120  *
5121  * Description: Calculate a byte count to sector count bitshift value
5122  *		from sector size.
5123  *
5124  *   Arguments: un: unit struct.
5125  *		lbasize: new target sector size
5126  *		capacity: new target capacity, ie. block count
5127  *
5128  *     Context: Kernel thread context
5129  */
5130 
5131 static void
5132 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5133 {
5134 	if (lbasize != 0) {
5135 		un->un_tgt_blocksize = lbasize;
5136 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5137 	}
5138 
5139 	if (capacity != 0) {
5140 		un->un_blockcount		= capacity;
5141 		un->un_f_blockcount_is_valid	= TRUE;
5142 	}
5143 }
5144 
5145 
5146 static void
5147 sd_swap_efi_gpt(efi_gpt_t *e)
5148 {
5149 	_NOTE(ASSUMING_PROTECTED(*e))
5150 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5151 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5152 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5153 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5154 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5155 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5156 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5157 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5158 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5159 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5160 	e->efi_gpt_NumberOfPartitionEntries =
5161 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5162 	e->efi_gpt_SizeOfPartitionEntry =
5163 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5164 	e->efi_gpt_PartitionEntryArrayCRC32 =
5165 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5166 }
5167 
5168 static void
5169 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5170 {
5171 	int i;
5172 
5173 	_NOTE(ASSUMING_PROTECTED(*p))
5174 	for (i = 0; i < nparts; i++) {
5175 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5176 		    p[i].efi_gpe_PartitionTypeGUID);
5177 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5178 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5179 		/* PartitionAttrs */
5180 	}
5181 }
5182 
5183 static int
5184 sd_validate_efi(efi_gpt_t *labp)
5185 {
5186 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5187 		return (EINVAL);
5188 	/* at least 96 bytes in this version of the spec. */
5189 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5190 	    labp->efi_gpt_HeaderSize)
5191 		return (EINVAL);
5192 	/* this should be 128 bytes */
5193 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5194 		return (EINVAL);
5195 	return (0);
5196 }
5197 
5198 static int
5199 sd_use_efi(struct sd_lun *un, int path_flag)
5200 {
5201 	int		i;
5202 	int		rval = 0;
5203 	efi_gpe_t	*partitions;
5204 	uchar_t		*buf;
5205 	uint_t		lbasize;
5206 	uint64_t	cap;
5207 	uint_t		nparts;
5208 	diskaddr_t	gpe_lba;
5209 
5210 	ASSERT(mutex_owned(SD_MUTEX(un)));
5211 	lbasize = un->un_tgt_blocksize;
5212 
5213 	mutex_exit(SD_MUTEX(un));
5214 
5215 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5216 
5217 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5218 		rval = EINVAL;
5219 		goto done_err;
5220 	}
5221 
5222 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5223 	if (rval) {
5224 		goto done_err;
5225 	}
5226 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5227 		/* not ours */
5228 		rval = ESRCH;
5229 		goto done_err;
5230 	}
5231 
5232 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5233 	if (rval) {
5234 		goto done_err;
5235 	}
5236 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5237 
5238 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5239 		/*
5240 		 * Couldn't read the primary, try the backup.  Our
5241 		 * capacity at this point could be based on CHS, so
5242 		 * check what the device reports.
5243 		 */
5244 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5245 		    path_flag);
5246 		if (rval) {
5247 			goto done_err;
5248 		}
5249 
5250 		/*
5251 		 * The MMC standard allows READ CAPACITY to be
5252 		 * inaccurate by a bounded amount (in the interest of
5253 		 * response latency).  As a result, failed READs are
5254 		 * commonplace (due to the reading of metadata and not
5255 		 * data). Depending on the per-Vendor/drive Sense data,
5256 		 * the failed READ can cause many (unnecessary) retries.
5257 		 */
5258 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5259 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5260 			path_flag)) != 0) {
5261 				goto done_err;
5262 		}
5263 
5264 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5265 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5266 			goto done_err;
5267 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5268 		    "primary label corrupt; using backup\n");
5269 	}
5270 
5271 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5272 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5273 
5274 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5275 	    path_flag);
5276 	if (rval) {
5277 		goto done_err;
5278 	}
5279 	partitions = (efi_gpe_t *)buf;
5280 
5281 	if (nparts > MAXPART) {
5282 		nparts = MAXPART;
5283 	}
5284 	sd_swap_efi_gpe(nparts, partitions);
5285 
5286 	mutex_enter(SD_MUTEX(un));
5287 
5288 	/* Fill in partition table. */
5289 	for (i = 0; i < nparts; i++) {
5290 		if (partitions->efi_gpe_StartingLBA != 0 ||
5291 		    partitions->efi_gpe_EndingLBA != 0) {
5292 			un->un_map[i].dkl_cylno =
5293 			    partitions->efi_gpe_StartingLBA;
5294 			un->un_map[i].dkl_nblk =
5295 			    partitions->efi_gpe_EndingLBA -
5296 			    partitions->efi_gpe_StartingLBA + 1;
5297 			un->un_offset[i] =
5298 			    partitions->efi_gpe_StartingLBA;
5299 		}
5300 		if (i == WD_NODE) {
5301 			/*
5302 			 * minor number 7 corresponds to the whole disk
5303 			 */
5304 			un->un_map[i].dkl_cylno = 0;
5305 			un->un_map[i].dkl_nblk = un->un_blockcount;
5306 			un->un_offset[i] = 0;
5307 		}
5308 		partitions++;
5309 	}
5310 	un->un_solaris_offset = 0;
5311 	un->un_solaris_size = cap;
5312 	un->un_f_geometry_is_valid = TRUE;
5313 
5314 	/* clear the vtoc label */
5315 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5316 
5317 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5318 	return (0);
5319 
5320 done_err:
5321 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5322 	mutex_enter(SD_MUTEX(un));
5323 	/*
5324 	 * if we didn't find something that could look like a VTOC
5325 	 * and the disk is over 1TB, we know there isn't a valid label.
5326 	 * Otherwise let sd_uselabel decide what to do.  We only
5327 	 * want to invalidate this if we're certain the label isn't
5328 	 * valid because sd_prop_op will now fail, which in turn
5329 	 * causes things like opens and stats on the partition to fail.
5330 	 */
5331 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5332 		un->un_f_geometry_is_valid = FALSE;
5333 	}
5334 	return (rval);
5335 }
5336 
5337 
5338 /*
5339  *    Function: sd_uselabel
5340  *
5341  * Description: Validate the disk label and update the relevant data (geometry,
5342  *		partition, vtoc, and capacity data) in the sd_lun struct.
5343  *		Marks the geometry of the unit as being valid.
5344  *
5345  *   Arguments: un: unit struct.
5346  *		dk_label: disk label
5347  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5348  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5349  *			to use the USCSI "direct" chain and bypass the normal
5350  *			command waitq.
5351  *
5352  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5353  *		partition, vtoc, and capacity data are good.
5354  *
5355  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5356  *		label; or computed capacity does not jibe with capacity
5357  *		reported from the READ CAPACITY command.
5358  *
5359  *     Context: Kernel thread only (can sleep).
5360  */
5361 
5362 static int
5363 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5364 {
5365 	short	*sp;
5366 	short	sum;
5367 	short	count;
5368 	int	label_error = SD_LABEL_IS_VALID;
5369 	int	i;
5370 	int	capacity;
5371 	int	part_end;
5372 	int	track_capacity;
5373 	int	err;
5374 #if defined(_SUNOS_VTOC_16)
5375 	struct	dkl_partition	*vpartp;
5376 #endif
5377 	ASSERT(un != NULL);
5378 	ASSERT(mutex_owned(SD_MUTEX(un)));
5379 
5380 	/* Validate the magic number of the label. */
5381 	if (labp->dkl_magic != DKL_MAGIC) {
5382 #if defined(__sparc)
5383 		if ((un->un_state == SD_STATE_NORMAL) &&
5384 			un->un_f_vtoc_errlog_supported) {
5385 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5386 			    "Corrupt label; wrong magic number\n");
5387 		}
5388 #endif
5389 		return (SD_LABEL_IS_INVALID);
5390 	}
5391 
5392 	/* Validate the checksum of the label. */
5393 	sp  = (short *)labp;
5394 	sum = 0;
5395 	count = sizeof (struct dk_label) / sizeof (short);
5396 	while (count--)	 {
5397 		sum ^= *sp++;
5398 	}
5399 
5400 	if (sum != 0) {
5401 #if	defined(_SUNOS_VTOC_16)
5402 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5403 #elif defined(_SUNOS_VTOC_8)
5404 		if ((un->un_state == SD_STATE_NORMAL) &&
5405 		    un->un_f_vtoc_errlog_supported) {
5406 #endif
5407 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5408 			    "Corrupt label - label checksum failed\n");
5409 		}
5410 		return (SD_LABEL_IS_INVALID);
5411 	}
5412 
5413 
5414 	/*
5415 	 * Fill in geometry structure with data from label.
5416 	 */
5417 	bzero(&un->un_g, sizeof (struct dk_geom));
5418 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5419 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5420 	un->un_g.dkg_bcyl   = 0;
5421 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5422 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5423 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5424 
5425 #if defined(_SUNOS_VTOC_8)
5426 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5427 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5428 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5429 #endif
5430 #if defined(_SUNOS_VTOC_16)
5431 	un->un_dkg_skew = labp->dkl_skew;
5432 #endif
5433 
5434 #if defined(__i386) || defined(__amd64)
5435 	un->un_g.dkg_apc = labp->dkl_apc;
5436 #endif
5437 
5438 	/*
5439 	 * Currently we rely on the values in the label being accurate. If
5440 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5441 	 *
5442 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5443 	 * although this command is optional in SCSI-2.
5444 	 */
5445 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5446 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5447 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5448 
5449 	/*
5450 	 * The Read and Write reinstruct values may not be valid
5451 	 * for older disks.
5452 	 */
5453 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5454 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5455 
5456 	/* Fill in partition table. */
5457 #if defined(_SUNOS_VTOC_8)
5458 	for (i = 0; i < NDKMAP; i++) {
5459 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5460 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5461 	}
5462 #endif
5463 #if  defined(_SUNOS_VTOC_16)
5464 	vpartp		= labp->dkl_vtoc.v_part;
5465 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5466 
5467 	/* Prevent divide by zero */
5468 	if (track_capacity == 0) {
5469 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5470 		    "Corrupt label - zero nhead or nsect value\n");
5471 
5472 		return (SD_LABEL_IS_INVALID);
5473 	}
5474 
5475 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5476 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5477 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5478 	}
5479 #endif
5480 
5481 	/* Fill in VTOC Structure. */
5482 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5483 #if defined(_SUNOS_VTOC_8)
5484 	/*
5485 	 * The 8-slice vtoc does not include the ascii label; save it into
5486 	 * the device's soft state structure here.
5487 	 */
5488 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5489 #endif
5490 
5491 	/* Now look for a valid capacity. */
5492 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5493 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5494 
5495 	if (un->un_g.dkg_acyl) {
5496 #if defined(__i386) || defined(__amd64)
5497 		/* we may have > 1 alts cylinder */
5498 		capacity += (track_capacity * un->un_g.dkg_acyl);
5499 #else
5500 		capacity += track_capacity;
5501 #endif
5502 	}
5503 
5504 	/*
5505 	 * Force check here to ensure the computed capacity is valid.
5506 	 * If capacity is zero, it indicates an invalid label and
5507 	 * we should abort updating the relevant data then.
5508 	 */
5509 	if (capacity == 0) {
5510 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5511 		    "Corrupt label - no valid capacity could be retrieved\n");
5512 
5513 		return (SD_LABEL_IS_INVALID);
5514 	}
5515 
5516 	/* Mark the geometry as valid. */
5517 	un->un_f_geometry_is_valid = TRUE;
5518 
5519 	/*
5520 	 * At this point, un->un_blockcount should contain valid data from
5521 	 * the READ CAPACITY command.
5522 	 */
5523 	if (un->un_f_blockcount_is_valid != TRUE) {
5524 		/*
5525 		 * We have a situation where the target didn't give us a good
5526 		 * READ CAPACITY value, yet there appears to be a valid label.
5527 		 * In this case, we'll fake the capacity.
5528 		 */
5529 		un->un_blockcount = capacity;
5530 		un->un_f_blockcount_is_valid = TRUE;
5531 		goto done;
5532 	}
5533 
5534 
5535 	if ((capacity <= un->un_blockcount) ||
5536 	    (un->un_state != SD_STATE_NORMAL)) {
5537 #if defined(_SUNOS_VTOC_8)
5538 		/*
5539 		 * We can't let this happen on drives that are subdivided
5540 		 * into logical disks (i.e., that have an fdisk table).
5541 		 * The un_blockcount field should always hold the full media
5542 		 * size in sectors, period.  This code would overwrite
5543 		 * un_blockcount with the size of the Solaris fdisk partition.
5544 		 */
5545 		SD_ERROR(SD_LOG_COMMON, un,
5546 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5547 		    capacity, un->un_blockcount);
5548 		un->un_blockcount = capacity;
5549 		un->un_f_blockcount_is_valid = TRUE;
5550 #endif	/* defined(_SUNOS_VTOC_8) */
5551 		goto done;
5552 	}
5553 
5554 	if (ISCD(un)) {
5555 		/* For CDROMs, we trust that the data in the label is OK. */
5556 #if defined(_SUNOS_VTOC_8)
5557 		for (i = 0; i < NDKMAP; i++) {
5558 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5559 			    labp->dkl_map[i].dkl_cylno +
5560 			    labp->dkl_map[i].dkl_nblk  - 1;
5561 
5562 			if ((labp->dkl_map[i].dkl_nblk) &&
5563 			    (part_end > un->un_blockcount)) {
5564 				un->un_f_geometry_is_valid = FALSE;
5565 				break;
5566 			}
5567 		}
5568 #endif
5569 #if defined(_SUNOS_VTOC_16)
5570 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5571 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5572 			part_end = vpartp->p_start + vpartp->p_size;
5573 			if ((vpartp->p_size > 0) &&
5574 			    (part_end > un->un_blockcount)) {
5575 				un->un_f_geometry_is_valid = FALSE;
5576 				break;
5577 			}
5578 		}
5579 #endif
5580 	} else {
5581 		uint64_t t_capacity;
5582 		uint32_t t_lbasize;
5583 
5584 		mutex_exit(SD_MUTEX(un));
5585 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5586 		    path_flag);
5587 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5588 		mutex_enter(SD_MUTEX(un));
5589 
5590 		if (err == 0) {
5591 			sd_update_block_info(un, t_lbasize, t_capacity);
5592 		}
5593 
5594 		if (capacity > un->un_blockcount) {
5595 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5596 			    "Corrupt label - bad geometry\n");
5597 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5598 			    "Label says %u blocks; Drive says %llu blocks\n",
5599 			    capacity, (unsigned long long)un->un_blockcount);
5600 			un->un_f_geometry_is_valid = FALSE;
5601 			label_error = SD_LABEL_IS_INVALID;
5602 		}
5603 	}
5604 
5605 done:
5606 
5607 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5608 	SD_INFO(SD_LOG_COMMON, un,
5609 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5610 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5611 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5612 	SD_INFO(SD_LOG_COMMON, un,
5613 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5614 	    un->un_tgt_blocksize, un->un_blockcount,
5615 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5616 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5617 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5618 
5619 	ASSERT(mutex_owned(SD_MUTEX(un)));
5620 
5621 	return (label_error);
5622 }
5623 
5624 
5625 /*
5626  *    Function: sd_build_default_label
5627  *
5628  * Description: Generate a default label for those devices that do not have
5629  *		one, e.g., new media, removable cartridges, etc..
5630  *
5631  *     Context: Kernel thread only
5632  */
5633 
5634 static void
5635 sd_build_default_label(struct sd_lun *un)
5636 {
5637 #if defined(_SUNOS_VTOC_16)
5638 	uint_t	phys_spc;
5639 	uint_t	disksize;
5640 	struct	dk_geom un_g;
5641 #endif
5642 
5643 	ASSERT(un != NULL);
5644 	ASSERT(mutex_owned(SD_MUTEX(un)));
5645 
5646 #if defined(_SUNOS_VTOC_8)
5647 	/*
5648 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5649 	 * only. This may be a valid check for VTOC_16 as well.
5650 	 * Once we understand why there is this difference between SPARC and
5651 	 * x86 platform, we could remove this legacy check.
5652 	 */
5653 	ASSERT(un->un_f_default_vtoc_supported);
5654 #endif
5655 
5656 	bzero(&un->un_g, sizeof (struct dk_geom));
5657 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5658 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5659 
5660 #if defined(_SUNOS_VTOC_8)
5661 
5662 	/*
5663 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5664 	 * But it is still necessary to set up various geometry information,
5665 	 * and we are doing this here.
5666 	 */
5667 
5668 	/*
5669 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5670 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5671 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5672 	 * equal to C*H*S values.  This will cause some truncation of size due
5673 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5674 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5675 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5676 	 */
5677 	if (ISCD(un)) {
5678 		/*
5679 		 * Preserve the old behavior for non-writable
5680 		 * medias. Since dkg_nsect is a ushort, it
5681 		 * will lose bits as cdroms have more than
5682 		 * 65536 sectors. So if we recalculate
5683 		 * capacity, it will become much shorter.
5684 		 * But the dkg_* information is not
5685 		 * used for CDROMs so it is OK. But for
5686 		 * Writable CDs we need this information
5687 		 * to be valid (for newfs say). So we
5688 		 * make nsect and nhead > 1 that way
5689 		 * nsect can still stay within ushort limit
5690 		 * without losing any bits.
5691 		 */
5692 		if (un->un_f_mmc_writable_media == TRUE) {
5693 			un->un_g.dkg_nhead = 64;
5694 			un->un_g.dkg_nsect = 32;
5695 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5696 			un->un_blockcount = un->un_g.dkg_ncyl *
5697 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5698 		} else {
5699 			un->un_g.dkg_ncyl  = 1;
5700 			un->un_g.dkg_nhead = 1;
5701 			un->un_g.dkg_nsect = un->un_blockcount;
5702 		}
5703 	} else {
5704 		if (un->un_blockcount <= 0x1000) {
5705 			/* unlabeled SCSI floppy device */
5706 			un->un_g.dkg_nhead = 2;
5707 			un->un_g.dkg_ncyl = 80;
5708 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5709 		} else if (un->un_blockcount <= 0x200000) {
5710 			un->un_g.dkg_nhead = 64;
5711 			un->un_g.dkg_nsect = 32;
5712 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5713 		} else {
5714 			un->un_g.dkg_nhead = 255;
5715 			un->un_g.dkg_nsect = 63;
5716 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5717 		}
5718 		un->un_blockcount =
5719 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5720 	}
5721 
5722 	un->un_g.dkg_acyl	= 0;
5723 	un->un_g.dkg_bcyl	= 0;
5724 	un->un_g.dkg_rpm	= 200;
5725 	un->un_asciilabel[0]	= '\0';
5726 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5727 
5728 	un->un_map[0].dkl_cylno = 0;
5729 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5730 	un->un_map[2].dkl_cylno = 0;
5731 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5732 
5733 #elif defined(_SUNOS_VTOC_16)
5734 
5735 	if (un->un_solaris_size == 0) {
5736 		/*
5737 		 * Got fdisk table but no solaris entry therefore
5738 		 * don't create a default label
5739 		 */
5740 		un->un_f_geometry_is_valid = TRUE;
5741 		return;
5742 	}
5743 
5744 	/*
5745 	 * For CDs we continue to use the physical geometry to calculate
5746 	 * number of cylinders. All other devices must convert the
5747 	 * physical geometry (geom_cache) to values that will fit
5748 	 * in a dk_geom structure.
5749 	 */
5750 	if (ISCD(un)) {
5751 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5752 	} else {
5753 		/* Convert physical geometry to disk geometry */
5754 		bzero(&un_g, sizeof (struct dk_geom));
5755 		sd_convert_geometry(un->un_blockcount, &un_g);
5756 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5757 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5758 	}
5759 
5760 	ASSERT(phys_spc != 0);
5761 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5762 	un->un_g.dkg_acyl = DK_ACYL;
5763 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5764 	disksize = un->un_g.dkg_ncyl * phys_spc;
5765 
5766 	if (ISCD(un)) {
5767 		/*
5768 		 * CD's don't use the "heads * sectors * cyls"-type of
5769 		 * geometry, but instead use the entire capacity of the media.
5770 		 */
5771 		disksize = un->un_solaris_size;
5772 		un->un_g.dkg_nhead = 1;
5773 		un->un_g.dkg_nsect = 1;
5774 		un->un_g.dkg_rpm =
5775 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5776 
5777 		un->un_vtoc.v_part[0].p_start = 0;
5778 		un->un_vtoc.v_part[0].p_size  = disksize;
5779 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5780 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5781 
5782 		un->un_map[0].dkl_cylno = 0;
5783 		un->un_map[0].dkl_nblk  = disksize;
5784 		un->un_offset[0] = 0;
5785 
5786 	} else {
5787 		/*
5788 		 * Hard disks and removable media cartridges
5789 		 */
5790 		un->un_g.dkg_rpm =
5791 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5792 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5793 
5794 		/* Add boot slice */
5795 		un->un_vtoc.v_part[8].p_start = 0;
5796 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5797 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5798 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5799 
5800 		un->un_map[8].dkl_cylno = 0;
5801 		un->un_map[8].dkl_nblk  = phys_spc;
5802 		un->un_offset[8] = 0;
5803 	}
5804 
5805 	un->un_g.dkg_apc = 0;
5806 	un->un_vtoc.v_nparts = V_NUMPAR;
5807 
5808 	/* Add backup slice */
5809 	un->un_vtoc.v_part[2].p_start = 0;
5810 	un->un_vtoc.v_part[2].p_size  = disksize;
5811 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5812 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5813 
5814 	un->un_map[2].dkl_cylno = 0;
5815 	un->un_map[2].dkl_nblk  = disksize;
5816 	un->un_offset[2] = 0;
5817 
5818 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5819 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5820 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5821 
5822 #else
5823 #error "No VTOC format defined."
5824 #endif
5825 
5826 	un->un_g.dkg_read_reinstruct  = 0;
5827 	un->un_g.dkg_write_reinstruct = 0;
5828 
5829 	un->un_g.dkg_intrlv = 1;
5830 
5831 	un->un_vtoc.v_version = V_VERSION;
5832 	un->un_vtoc.v_sanity  = VTOC_SANE;
5833 
5834 	un->un_f_geometry_is_valid = TRUE;
5835 
5836 	SD_INFO(SD_LOG_COMMON, un,
5837 	    "sd_build_default_label: Default label created: "
5838 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5839 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5840 	    un->un_g.dkg_nsect, un->un_blockcount);
5841 }
5842 
5843 
5844 #if defined(_FIRMWARE_NEEDS_FDISK)
5845 /*
5846  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5847  */
5848 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5849 #define	LBA_MAX_CYL	(1022 & 0xFF)
5850 #define	LBA_MAX_HEAD	(254)
5851 
5852 
5853 /*
5854  *    Function: sd_has_max_chs_vals
5855  *
5856  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5857  *
5858  *   Arguments: fdp - ptr to CHS info
5859  *
5860  * Return Code: True or false
5861  *
5862  *     Context: Any.
5863  */
5864 
5865 static int
5866 sd_has_max_chs_vals(struct ipart *fdp)
5867 {
5868 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5869 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5870 	    (fdp->begsect == LBA_MAX_SECT)	&&
5871 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5872 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5873 	    (fdp->endsect == LBA_MAX_SECT));
5874 }
5875 #endif
5876 
5877 
5878 /*
5879  *    Function: sd_inq_fill
5880  *
5881  * Description: Print a piece of inquiry data, cleaned up for non-printable
5882  *		characters and stopping at the first space character after
5883  *		the beginning of the passed string;
5884  *
5885  *   Arguments: p - source string
5886  *		l - maximum length to copy
5887  *		s - destination string
5888  *
5889  *     Context: Any.
5890  */
5891 
5892 static void
5893 sd_inq_fill(char *p, int l, char *s)
5894 {
5895 	unsigned i = 0;
5896 	char c;
5897 
5898 	while (i++ < l) {
5899 		if ((c = *p++) < ' ' || c >= 0x7F) {
5900 			c = '*';
5901 		} else if (i != 1 && c == ' ') {
5902 			break;
5903 		}
5904 		*s++ = c;
5905 	}
5906 	*s++ = 0;
5907 }
5908 
5909 
5910 /*
5911  *    Function: sd_register_devid
5912  *
5913  * Description: This routine will obtain the device id information from the
5914  *		target, obtain the serial number, and register the device
5915  *		id with the ddi framework.
5916  *
5917  *   Arguments: devi - the system's dev_info_t for the device.
5918  *		un - driver soft state (unit) structure
5919  *		reservation_flag - indicates if a reservation conflict
5920  *		occurred during attach
5921  *
5922  *     Context: Kernel Thread
5923  */
5924 static void
5925 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5926 {
5927 	int		rval		= 0;
5928 	uchar_t		*inq80		= NULL;
5929 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5930 	size_t		inq80_resid	= 0;
5931 	uchar_t		*inq83		= NULL;
5932 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5933 	size_t		inq83_resid	= 0;
5934 
5935 	ASSERT(un != NULL);
5936 	ASSERT(mutex_owned(SD_MUTEX(un)));
5937 	ASSERT((SD_DEVINFO(un)) == devi);
5938 
5939 	/*
5940 	 * This is the case of antiquated Sun disk drives that have the
5941 	 * FAB_DEVID property set in the disk_table.  These drives
5942 	 * manage the devid's by storing them in last 2 available sectors
5943 	 * on the drive and have them fabricated by the ddi layer by calling
5944 	 * ddi_devid_init and passing the DEVID_FAB flag.
5945 	 */
5946 	if (un->un_f_opt_fab_devid == TRUE) {
5947 		/*
5948 		 * Depending on EINVAL isn't reliable, since a reserved disk
5949 		 * may result in invalid geometry, so check to make sure a
5950 		 * reservation conflict did not occur during attach.
5951 		 */
5952 		if ((sd_get_devid(un) == EINVAL) &&
5953 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5954 			/*
5955 			 * The devid is invalid AND there is no reservation
5956 			 * conflict.  Fabricate a new devid.
5957 			 */
5958 			(void) sd_create_devid(un);
5959 		}
5960 
5961 		/* Register the devid if it exists */
5962 		if (un->un_devid != NULL) {
5963 			(void) ddi_devid_register(SD_DEVINFO(un),
5964 			    un->un_devid);
5965 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5966 			    "sd_register_devid: Devid Fabricated\n");
5967 		}
5968 		return;
5969 	}
5970 
5971 	/*
5972 	 * We check the availibility of the World Wide Name (0x83) and Unit
5973 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5974 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5975 	 * 0x83 is availible, that is the best choice.  Our next choice is
5976 	 * 0x80.  If neither are availible, we munge the devid from the device
5977 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5978 	 * to fabricate a devid for non-Sun qualified disks.
5979 	 */
5980 	if (sd_check_vpd_page_support(un) == 0) {
5981 		/* collect page 80 data if available */
5982 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5983 
5984 			mutex_exit(SD_MUTEX(un));
5985 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5986 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5987 			    0x01, 0x80, &inq80_resid);
5988 
5989 			if (rval != 0) {
5990 				kmem_free(inq80, inq80_len);
5991 				inq80 = NULL;
5992 				inq80_len = 0;
5993 			}
5994 			mutex_enter(SD_MUTEX(un));
5995 		}
5996 
5997 		/* collect page 83 data if available */
5998 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5999 			mutex_exit(SD_MUTEX(un));
6000 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6001 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6002 			    0x01, 0x83, &inq83_resid);
6003 
6004 			if (rval != 0) {
6005 				kmem_free(inq83, inq83_len);
6006 				inq83 = NULL;
6007 				inq83_len = 0;
6008 			}
6009 			mutex_enter(SD_MUTEX(un));
6010 		}
6011 	}
6012 
6013 	/* encode best devid possible based on data available */
6014 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6015 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6016 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6017 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6018 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6019 
6020 		/* devid successfully encoded, register devid */
6021 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6022 
6023 	} else {
6024 		/*
6025 		 * Unable to encode a devid based on data available.
6026 		 * This is not a Sun qualified disk.  Older Sun disk
6027 		 * drives that have the SD_FAB_DEVID property
6028 		 * set in the disk_table and non Sun qualified
6029 		 * disks are treated in the same manner.  These
6030 		 * drives manage the devid's by storing them in
6031 		 * last 2 available sectors on the drive and
6032 		 * have them fabricated by the ddi layer by
6033 		 * calling ddi_devid_init and passing the
6034 		 * DEVID_FAB flag.
6035 		 * Create a fabricate devid only if there's no
6036 		 * fabricate devid existed.
6037 		 */
6038 		if (sd_get_devid(un) == EINVAL) {
6039 			(void) sd_create_devid(un);
6040 			un->un_f_opt_fab_devid = TRUE;
6041 		}
6042 
6043 		/* Register the devid if it exists */
6044 		if (un->un_devid != NULL) {
6045 			(void) ddi_devid_register(SD_DEVINFO(un),
6046 			    un->un_devid);
6047 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6048 			    "sd_register_devid: devid fabricated using "
6049 			    "ddi framework\n");
6050 		}
6051 	}
6052 
6053 	/* clean up resources */
6054 	if (inq80 != NULL) {
6055 		kmem_free(inq80, inq80_len);
6056 	}
6057 	if (inq83 != NULL) {
6058 		kmem_free(inq83, inq83_len);
6059 	}
6060 }
6061 
6062 static daddr_t
6063 sd_get_devid_block(struct sd_lun *un)
6064 {
6065 	daddr_t			spc, blk, head, cyl;
6066 
6067 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6068 		/* this geometry doesn't allow us to write a devid */
6069 		if (un->un_g.dkg_acyl < 2) {
6070 			return (-1);
6071 		}
6072 
6073 		/*
6074 		 * Subtract 2 guarantees that the next to last cylinder
6075 		 * is used
6076 		 */
6077 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6078 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6079 		head = un->un_g.dkg_nhead - 1;
6080 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6081 		    (head * un->un_g.dkg_nsect) + 1;
6082 	} else {
6083 		if (un->un_reserved != -1) {
6084 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6085 		} else {
6086 			return (-1);
6087 		}
6088 	}
6089 	return (blk);
6090 }
6091 
6092 /*
6093  *    Function: sd_get_devid
6094  *
6095  * Description: This routine will return 0 if a valid device id has been
6096  *		obtained from the target and stored in the soft state. If a
6097  *		valid device id has not been previously read and stored, a
6098  *		read attempt will be made.
6099  *
6100  *   Arguments: un - driver soft state (unit) structure
6101  *
6102  * Return Code: 0 if we successfully get the device id
6103  *
6104  *     Context: Kernel Thread
6105  */
6106 
6107 static int
6108 sd_get_devid(struct sd_lun *un)
6109 {
6110 	struct dk_devid		*dkdevid;
6111 	ddi_devid_t		tmpid;
6112 	uint_t			*ip;
6113 	size_t			sz;
6114 	daddr_t			blk;
6115 	int			status;
6116 	int			chksum;
6117 	int			i;
6118 	size_t			buffer_size;
6119 
6120 	ASSERT(un != NULL);
6121 	ASSERT(mutex_owned(SD_MUTEX(un)));
6122 
6123 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6124 	    un);
6125 
6126 	if (un->un_devid != NULL) {
6127 		return (0);
6128 	}
6129 
6130 	blk = sd_get_devid_block(un);
6131 	if (blk < 0)
6132 		return (EINVAL);
6133 
6134 	/*
6135 	 * Read and verify device id, stored in the reserved cylinders at the
6136 	 * end of the disk. Backup label is on the odd sectors of the last
6137 	 * track of the last cylinder. Device id will be on track of the next
6138 	 * to last cylinder.
6139 	 */
6140 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6141 	mutex_exit(SD_MUTEX(un));
6142 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6143 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6144 	    SD_PATH_DIRECT);
6145 	if (status != 0) {
6146 		goto error;
6147 	}
6148 
6149 	/* Validate the revision */
6150 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6151 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6152 		status = EINVAL;
6153 		goto error;
6154 	}
6155 
6156 	/* Calculate the checksum */
6157 	chksum = 0;
6158 	ip = (uint_t *)dkdevid;
6159 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6160 	    i++) {
6161 		chksum ^= ip[i];
6162 	}
6163 
6164 	/* Compare the checksums */
6165 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6166 		status = EINVAL;
6167 		goto error;
6168 	}
6169 
6170 	/* Validate the device id */
6171 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6172 		status = EINVAL;
6173 		goto error;
6174 	}
6175 
6176 	/*
6177 	 * Store the device id in the driver soft state
6178 	 */
6179 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6180 	tmpid = kmem_alloc(sz, KM_SLEEP);
6181 
6182 	mutex_enter(SD_MUTEX(un));
6183 
6184 	un->un_devid = tmpid;
6185 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6186 
6187 	kmem_free(dkdevid, buffer_size);
6188 
6189 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6190 
6191 	return (status);
6192 error:
6193 	mutex_enter(SD_MUTEX(un));
6194 	kmem_free(dkdevid, buffer_size);
6195 	return (status);
6196 }
6197 
6198 
6199 /*
6200  *    Function: sd_create_devid
6201  *
6202  * Description: This routine will fabricate the device id and write it
6203  *		to the disk.
6204  *
6205  *   Arguments: un - driver soft state (unit) structure
6206  *
6207  * Return Code: value of the fabricated device id
6208  *
6209  *     Context: Kernel Thread
6210  */
6211 
6212 static ddi_devid_t
6213 sd_create_devid(struct sd_lun *un)
6214 {
6215 	ASSERT(un != NULL);
6216 
6217 	/* Fabricate the devid */
6218 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6219 	    == DDI_FAILURE) {
6220 		return (NULL);
6221 	}
6222 
6223 	/* Write the devid to disk */
6224 	if (sd_write_deviceid(un) != 0) {
6225 		ddi_devid_free(un->un_devid);
6226 		un->un_devid = NULL;
6227 	}
6228 
6229 	return (un->un_devid);
6230 }
6231 
6232 
6233 /*
6234  *    Function: sd_write_deviceid
6235  *
6236  * Description: This routine will write the device id to the disk
6237  *		reserved sector.
6238  *
6239  *   Arguments: un - driver soft state (unit) structure
6240  *
6241  * Return Code: EINVAL
6242  *		value returned by sd_send_scsi_cmd
6243  *
6244  *     Context: Kernel Thread
6245  */
6246 
6247 static int
6248 sd_write_deviceid(struct sd_lun *un)
6249 {
6250 	struct dk_devid		*dkdevid;
6251 	daddr_t			blk;
6252 	uint_t			*ip, chksum;
6253 	int			status;
6254 	int			i;
6255 
6256 	ASSERT(mutex_owned(SD_MUTEX(un)));
6257 
6258 	blk = sd_get_devid_block(un);
6259 	if (blk < 0)
6260 		return (-1);
6261 	mutex_exit(SD_MUTEX(un));
6262 
6263 	/* Allocate the buffer */
6264 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6265 
6266 	/* Fill in the revision */
6267 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6268 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6269 
6270 	/* Copy in the device id */
6271 	mutex_enter(SD_MUTEX(un));
6272 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6273 	    ddi_devid_sizeof(un->un_devid));
6274 	mutex_exit(SD_MUTEX(un));
6275 
6276 	/* Calculate the checksum */
6277 	chksum = 0;
6278 	ip = (uint_t *)dkdevid;
6279 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6280 	    i++) {
6281 		chksum ^= ip[i];
6282 	}
6283 
6284 	/* Fill-in checksum */
6285 	DKD_FORMCHKSUM(chksum, dkdevid);
6286 
6287 	/* Write the reserved sector */
6288 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6289 	    SD_PATH_DIRECT);
6290 
6291 	kmem_free(dkdevid, un->un_sys_blocksize);
6292 
6293 	mutex_enter(SD_MUTEX(un));
6294 	return (status);
6295 }
6296 
6297 
6298 /*
6299  *    Function: sd_check_vpd_page_support
6300  *
6301  * Description: This routine sends an inquiry command with the EVPD bit set and
6302  *		a page code of 0x00 to the device. It is used to determine which
6303  *		vital product pages are availible to find the devid. We are
6304  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6305  *		device does not support that command.
6306  *
6307  *   Arguments: un  - driver soft state (unit) structure
6308  *
6309  * Return Code: 0 - success
6310  *		1 - check condition
6311  *
6312  *     Context: This routine can sleep.
6313  */
6314 
6315 static int
6316 sd_check_vpd_page_support(struct sd_lun *un)
6317 {
6318 	uchar_t	*page_list	= NULL;
6319 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6320 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6321 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6322 	int    	rval		= 0;
6323 	int	counter;
6324 
6325 	ASSERT(un != NULL);
6326 	ASSERT(mutex_owned(SD_MUTEX(un)));
6327 
6328 	mutex_exit(SD_MUTEX(un));
6329 
6330 	/*
6331 	 * We'll set the page length to the maximum to save figuring it out
6332 	 * with an additional call.
6333 	 */
6334 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6335 
6336 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6337 	    page_code, NULL);
6338 
6339 	mutex_enter(SD_MUTEX(un));
6340 
6341 	/*
6342 	 * Now we must validate that the device accepted the command, as some
6343 	 * drives do not support it.  If the drive does support it, we will
6344 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6345 	 * not, we return -1.
6346 	 */
6347 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6348 		/* Loop to find one of the 2 pages we need */
6349 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6350 
6351 		/*
6352 		 * Pages are returned in ascending order, and 0x83 is what we
6353 		 * are hoping for.
6354 		 */
6355 		while ((page_list[counter] <= 0x83) &&
6356 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6357 		    VPD_HEAD_OFFSET))) {
6358 			/*
6359 			 * Add 3 because page_list[3] is the number of
6360 			 * pages minus 3
6361 			 */
6362 
6363 			switch (page_list[counter]) {
6364 			case 0x00:
6365 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6366 				break;
6367 			case 0x80:
6368 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6369 				break;
6370 			case 0x81:
6371 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6372 				break;
6373 			case 0x82:
6374 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6375 				break;
6376 			case 0x83:
6377 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6378 				break;
6379 			}
6380 			counter++;
6381 		}
6382 
6383 	} else {
6384 		rval = -1;
6385 
6386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6387 		    "sd_check_vpd_page_support: This drive does not implement "
6388 		    "VPD pages.\n");
6389 	}
6390 
6391 	kmem_free(page_list, page_length);
6392 
6393 	return (rval);
6394 }
6395 
6396 
6397 /*
6398  *    Function: sd_setup_pm
6399  *
6400  * Description: Initialize Power Management on the device
6401  *
6402  *     Context: Kernel Thread
6403  */
6404 
6405 static void
6406 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6407 {
6408 	uint_t	log_page_size;
6409 	uchar_t	*log_page_data;
6410 	int	rval;
6411 
6412 	/*
6413 	 * Since we are called from attach, holding a mutex for
6414 	 * un is unnecessary. Because some of the routines called
6415 	 * from here require SD_MUTEX to not be held, assert this
6416 	 * right up front.
6417 	 */
6418 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6419 	/*
6420 	 * Since the sd device does not have the 'reg' property,
6421 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6422 	 * The following code is to tell cpr that this device
6423 	 * DOES need to be suspended and resumed.
6424 	 */
6425 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6426 	    "pm-hardware-state", "needs-suspend-resume");
6427 
6428 	/*
6429 	 * This complies with the new power management framework
6430 	 * for certain desktop machines. Create the pm_components
6431 	 * property as a string array property.
6432 	 */
6433 	if (un->un_f_pm_supported) {
6434 		/*
6435 		 * not all devices have a motor, try it first.
6436 		 * some devices may return ILLEGAL REQUEST, some
6437 		 * will hang
6438 		 * The following START_STOP_UNIT is used to check if target
6439 		 * device has a motor.
6440 		 */
6441 		un->un_f_start_stop_supported = TRUE;
6442 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6443 		    SD_PATH_DIRECT) != 0) {
6444 			un->un_f_start_stop_supported = FALSE;
6445 		}
6446 
6447 		/*
6448 		 * create pm properties anyways otherwise the parent can't
6449 		 * go to sleep
6450 		 */
6451 		(void) sd_create_pm_components(devi, un);
6452 		un->un_f_pm_is_enabled = TRUE;
6453 		return;
6454 	}
6455 
6456 	if (!un->un_f_log_sense_supported) {
6457 		un->un_power_level = SD_SPINDLE_ON;
6458 		un->un_f_pm_is_enabled = FALSE;
6459 		return;
6460 	}
6461 
6462 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6463 
6464 #ifdef	SDDEBUG
6465 	if (sd_force_pm_supported) {
6466 		/* Force a successful result */
6467 		rval = 1;
6468 	}
6469 #endif
6470 
6471 	/*
6472 	 * If the start-stop cycle counter log page is not supported
6473 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6474 	 * then we should not create the pm_components property.
6475 	 */
6476 	if (rval == -1) {
6477 		/*
6478 		 * Error.
6479 		 * Reading log sense failed, most likely this is
6480 		 * an older drive that does not support log sense.
6481 		 * If this fails auto-pm is not supported.
6482 		 */
6483 		un->un_power_level = SD_SPINDLE_ON;
6484 		un->un_f_pm_is_enabled = FALSE;
6485 
6486 	} else if (rval == 0) {
6487 		/*
6488 		 * Page not found.
6489 		 * The start stop cycle counter is implemented as page
6490 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6491 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6492 		 */
6493 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6494 			/*
6495 			 * Page found, use this one.
6496 			 */
6497 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6498 			un->un_f_pm_is_enabled = TRUE;
6499 		} else {
6500 			/*
6501 			 * Error or page not found.
6502 			 * auto-pm is not supported for this device.
6503 			 */
6504 			un->un_power_level = SD_SPINDLE_ON;
6505 			un->un_f_pm_is_enabled = FALSE;
6506 		}
6507 	} else {
6508 		/*
6509 		 * Page found, use it.
6510 		 */
6511 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6512 		un->un_f_pm_is_enabled = TRUE;
6513 	}
6514 
6515 
6516 	if (un->un_f_pm_is_enabled == TRUE) {
6517 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6518 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6519 
6520 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6521 		    log_page_size, un->un_start_stop_cycle_page,
6522 		    0x01, 0, SD_PATH_DIRECT);
6523 #ifdef	SDDEBUG
6524 		if (sd_force_pm_supported) {
6525 			/* Force a successful result */
6526 			rval = 0;
6527 		}
6528 #endif
6529 
6530 		/*
6531 		 * If the Log sense for Page( Start/stop cycle counter page)
6532 		 * succeeds, then power managment is supported and we can
6533 		 * enable auto-pm.
6534 		 */
6535 		if (rval == 0)  {
6536 			(void) sd_create_pm_components(devi, un);
6537 		} else {
6538 			un->un_power_level = SD_SPINDLE_ON;
6539 			un->un_f_pm_is_enabled = FALSE;
6540 		}
6541 
6542 		kmem_free(log_page_data, log_page_size);
6543 	}
6544 }
6545 
6546 
6547 /*
6548  *    Function: sd_create_pm_components
6549  *
6550  * Description: Initialize PM property.
6551  *
6552  *     Context: Kernel thread context
6553  */
6554 
6555 static void
6556 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6557 {
6558 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6559 
6560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6561 
6562 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6563 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6564 		/*
6565 		 * When components are initially created they are idle,
6566 		 * power up any non-removables.
6567 		 * Note: the return value of pm_raise_power can't be used
6568 		 * for determining if PM should be enabled for this device.
6569 		 * Even if you check the return values and remove this
6570 		 * property created above, the PM framework will not honor the
6571 		 * change after the first call to pm_raise_power. Hence,
6572 		 * removal of that property does not help if pm_raise_power
6573 		 * fails. In the case of removable media, the start/stop
6574 		 * will fail if the media is not present.
6575 		 */
6576 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6577 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6578 			mutex_enter(SD_MUTEX(un));
6579 			un->un_power_level = SD_SPINDLE_ON;
6580 			mutex_enter(&un->un_pm_mutex);
6581 			/* Set to on and not busy. */
6582 			un->un_pm_count = 0;
6583 		} else {
6584 			mutex_enter(SD_MUTEX(un));
6585 			un->un_power_level = SD_SPINDLE_OFF;
6586 			mutex_enter(&un->un_pm_mutex);
6587 			/* Set to off. */
6588 			un->un_pm_count = -1;
6589 		}
6590 		mutex_exit(&un->un_pm_mutex);
6591 		mutex_exit(SD_MUTEX(un));
6592 	} else {
6593 		un->un_power_level = SD_SPINDLE_ON;
6594 		un->un_f_pm_is_enabled = FALSE;
6595 	}
6596 }
6597 
6598 
6599 /*
6600  *    Function: sd_ddi_suspend
6601  *
6602  * Description: Performs system power-down operations. This includes
6603  *		setting the drive state to indicate its suspended so
6604  *		that no new commands will be accepted. Also, wait for
6605  *		all commands that are in transport or queued to a timer
6606  *		for retry to complete. All timeout threads are cancelled.
6607  *
6608  * Return Code: DDI_FAILURE or DDI_SUCCESS
6609  *
6610  *     Context: Kernel thread context
6611  */
6612 
6613 static int
6614 sd_ddi_suspend(dev_info_t *devi)
6615 {
6616 	struct	sd_lun	*un;
6617 	clock_t		wait_cmds_complete;
6618 
6619 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6620 	if (un == NULL) {
6621 		return (DDI_FAILURE);
6622 	}
6623 
6624 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6625 
6626 	mutex_enter(SD_MUTEX(un));
6627 
6628 	/* Return success if the device is already suspended. */
6629 	if (un->un_state == SD_STATE_SUSPENDED) {
6630 		mutex_exit(SD_MUTEX(un));
6631 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6632 		    "device already suspended, exiting\n");
6633 		return (DDI_SUCCESS);
6634 	}
6635 
6636 	/* Return failure if the device is being used by HA */
6637 	if (un->un_resvd_status &
6638 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6639 		mutex_exit(SD_MUTEX(un));
6640 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6641 		    "device in use by HA, exiting\n");
6642 		return (DDI_FAILURE);
6643 	}
6644 
6645 	/*
6646 	 * Return failure if the device is in a resource wait
6647 	 * or power changing state.
6648 	 */
6649 	if ((un->un_state == SD_STATE_RWAIT) ||
6650 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6651 		mutex_exit(SD_MUTEX(un));
6652 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6653 		    "device in resource wait state, exiting\n");
6654 		return (DDI_FAILURE);
6655 	}
6656 
6657 
6658 	un->un_save_state = un->un_last_state;
6659 	New_state(un, SD_STATE_SUSPENDED);
6660 
6661 	/*
6662 	 * Wait for all commands that are in transport or queued to a timer
6663 	 * for retry to complete.
6664 	 *
6665 	 * While waiting, no new commands will be accepted or sent because of
6666 	 * the new state we set above.
6667 	 *
6668 	 * Wait till current operation has completed. If we are in the resource
6669 	 * wait state (with an intr outstanding) then we need to wait till the
6670 	 * intr completes and starts the next cmd. We want to wait for
6671 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6672 	 */
6673 	wait_cmds_complete = ddi_get_lbolt() +
6674 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6675 
6676 	while (un->un_ncmds_in_transport != 0) {
6677 		/*
6678 		 * Fail if commands do not finish in the specified time.
6679 		 */
6680 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6681 		    wait_cmds_complete) == -1) {
6682 			/*
6683 			 * Undo the state changes made above. Everything
6684 			 * must go back to it's original value.
6685 			 */
6686 			Restore_state(un);
6687 			un->un_last_state = un->un_save_state;
6688 			/* Wake up any threads that might be waiting. */
6689 			cv_broadcast(&un->un_suspend_cv);
6690 			mutex_exit(SD_MUTEX(un));
6691 			SD_ERROR(SD_LOG_IO_PM, un,
6692 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6693 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6694 			return (DDI_FAILURE);
6695 		}
6696 	}
6697 
6698 	/*
6699 	 * Cancel SCSI watch thread and timeouts, if any are active
6700 	 */
6701 
6702 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6703 		opaque_t temp_token = un->un_swr_token;
6704 		mutex_exit(SD_MUTEX(un));
6705 		scsi_watch_suspend(temp_token);
6706 		mutex_enter(SD_MUTEX(un));
6707 	}
6708 
6709 	if (un->un_reset_throttle_timeid != NULL) {
6710 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6711 		un->un_reset_throttle_timeid = NULL;
6712 		mutex_exit(SD_MUTEX(un));
6713 		(void) untimeout(temp_id);
6714 		mutex_enter(SD_MUTEX(un));
6715 	}
6716 
6717 	if (un->un_dcvb_timeid != NULL) {
6718 		timeout_id_t temp_id = un->un_dcvb_timeid;
6719 		un->un_dcvb_timeid = NULL;
6720 		mutex_exit(SD_MUTEX(un));
6721 		(void) untimeout(temp_id);
6722 		mutex_enter(SD_MUTEX(un));
6723 	}
6724 
6725 	mutex_enter(&un->un_pm_mutex);
6726 	if (un->un_pm_timeid != NULL) {
6727 		timeout_id_t temp_id = un->un_pm_timeid;
6728 		un->un_pm_timeid = NULL;
6729 		mutex_exit(&un->un_pm_mutex);
6730 		mutex_exit(SD_MUTEX(un));
6731 		(void) untimeout(temp_id);
6732 		mutex_enter(SD_MUTEX(un));
6733 	} else {
6734 		mutex_exit(&un->un_pm_mutex);
6735 	}
6736 
6737 	if (un->un_retry_timeid != NULL) {
6738 		timeout_id_t temp_id = un->un_retry_timeid;
6739 		un->un_retry_timeid = NULL;
6740 		mutex_exit(SD_MUTEX(un));
6741 		(void) untimeout(temp_id);
6742 		mutex_enter(SD_MUTEX(un));
6743 	}
6744 
6745 	if (un->un_direct_priority_timeid != NULL) {
6746 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6747 		un->un_direct_priority_timeid = NULL;
6748 		mutex_exit(SD_MUTEX(un));
6749 		(void) untimeout(temp_id);
6750 		mutex_enter(SD_MUTEX(un));
6751 	}
6752 
6753 	if (un->un_f_is_fibre == TRUE) {
6754 		/*
6755 		 * Remove callbacks for insert and remove events
6756 		 */
6757 		if (un->un_insert_event != NULL) {
6758 			mutex_exit(SD_MUTEX(un));
6759 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6760 			mutex_enter(SD_MUTEX(un));
6761 			un->un_insert_event = NULL;
6762 		}
6763 
6764 		if (un->un_remove_event != NULL) {
6765 			mutex_exit(SD_MUTEX(un));
6766 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6767 			mutex_enter(SD_MUTEX(un));
6768 			un->un_remove_event = NULL;
6769 		}
6770 	}
6771 
6772 	mutex_exit(SD_MUTEX(un));
6773 
6774 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6775 
6776 	return (DDI_SUCCESS);
6777 }
6778 
6779 
6780 /*
6781  *    Function: sd_ddi_pm_suspend
6782  *
6783  * Description: Set the drive state to low power.
6784  *		Someone else is required to actually change the drive
6785  *		power level.
6786  *
6787  *   Arguments: un - driver soft state (unit) structure
6788  *
6789  * Return Code: DDI_FAILURE or DDI_SUCCESS
6790  *
6791  *     Context: Kernel thread context
6792  */
6793 
6794 static int
6795 sd_ddi_pm_suspend(struct sd_lun *un)
6796 {
6797 	ASSERT(un != NULL);
6798 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6799 
6800 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6801 	mutex_enter(SD_MUTEX(un));
6802 
6803 	/*
6804 	 * Exit if power management is not enabled for this device, or if
6805 	 * the device is being used by HA.
6806 	 */
6807 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6808 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6809 		mutex_exit(SD_MUTEX(un));
6810 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6811 		return (DDI_SUCCESS);
6812 	}
6813 
6814 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6815 	    un->un_ncmds_in_driver);
6816 
6817 	/*
6818 	 * See if the device is not busy, ie.:
6819 	 *    - we have no commands in the driver for this device
6820 	 *    - not waiting for resources
6821 	 */
6822 	if ((un->un_ncmds_in_driver == 0) &&
6823 	    (un->un_state != SD_STATE_RWAIT)) {
6824 		/*
6825 		 * The device is not busy, so it is OK to go to low power state.
6826 		 * Indicate low power, but rely on someone else to actually
6827 		 * change it.
6828 		 */
6829 		mutex_enter(&un->un_pm_mutex);
6830 		un->un_pm_count = -1;
6831 		mutex_exit(&un->un_pm_mutex);
6832 		un->un_power_level = SD_SPINDLE_OFF;
6833 	}
6834 
6835 	mutex_exit(SD_MUTEX(un));
6836 
6837 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6838 
6839 	return (DDI_SUCCESS);
6840 }
6841 
6842 
6843 /*
6844  *    Function: sd_ddi_resume
6845  *
6846  * Description: Performs system power-up operations..
6847  *
6848  * Return Code: DDI_SUCCESS
6849  *		DDI_FAILURE
6850  *
6851  *     Context: Kernel thread context
6852  */
6853 
6854 static int
6855 sd_ddi_resume(dev_info_t *devi)
6856 {
6857 	struct	sd_lun	*un;
6858 
6859 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6860 	if (un == NULL) {
6861 		return (DDI_FAILURE);
6862 	}
6863 
6864 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6865 
6866 	mutex_enter(SD_MUTEX(un));
6867 	Restore_state(un);
6868 
6869 	/*
6870 	 * Restore the state which was saved to give the
6871 	 * the right state in un_last_state
6872 	 */
6873 	un->un_last_state = un->un_save_state;
6874 	/*
6875 	 * Note: throttle comes back at full.
6876 	 * Also note: this MUST be done before calling pm_raise_power
6877 	 * otherwise the system can get hung in biowait. The scenario where
6878 	 * this'll happen is under cpr suspend. Writing of the system
6879 	 * state goes through sddump, which writes 0 to un_throttle. If
6880 	 * writing the system state then fails, example if the partition is
6881 	 * too small, then cpr attempts a resume. If throttle isn't restored
6882 	 * from the saved value until after calling pm_raise_power then
6883 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6884 	 * in biowait.
6885 	 */
6886 	un->un_throttle = un->un_saved_throttle;
6887 
6888 	/*
6889 	 * The chance of failure is very rare as the only command done in power
6890 	 * entry point is START command when you transition from 0->1 or
6891 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6892 	 * which suspend was done. Ignore the return value as the resume should
6893 	 * not be failed. In the case of removable media the media need not be
6894 	 * inserted and hence there is a chance that raise power will fail with
6895 	 * media not present.
6896 	 */
6897 	if (un->un_f_attach_spinup) {
6898 		mutex_exit(SD_MUTEX(un));
6899 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6900 		mutex_enter(SD_MUTEX(un));
6901 	}
6902 
6903 	/*
6904 	 * Don't broadcast to the suspend cv and therefore possibly
6905 	 * start I/O until after power has been restored.
6906 	 */
6907 	cv_broadcast(&un->un_suspend_cv);
6908 	cv_broadcast(&un->un_state_cv);
6909 
6910 	/* restart thread */
6911 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6912 		scsi_watch_resume(un->un_swr_token);
6913 	}
6914 
6915 #if (defined(__fibre))
6916 	if (un->un_f_is_fibre == TRUE) {
6917 		/*
6918 		 * Add callbacks for insert and remove events
6919 		 */
6920 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6921 			sd_init_event_callbacks(un);
6922 		}
6923 	}
6924 #endif
6925 
6926 	/*
6927 	 * Transport any pending commands to the target.
6928 	 *
6929 	 * If this is a low-activity device commands in queue will have to wait
6930 	 * until new commands come in, which may take awhile. Also, we
6931 	 * specifically don't check un_ncmds_in_transport because we know that
6932 	 * there really are no commands in progress after the unit was
6933 	 * suspended and we could have reached the throttle level, been
6934 	 * suspended, and have no new commands coming in for awhile. Highly
6935 	 * unlikely, but so is the low-activity disk scenario.
6936 	 */
6937 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6938 
6939 	sd_start_cmds(un, NULL);
6940 	mutex_exit(SD_MUTEX(un));
6941 
6942 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6943 
6944 	return (DDI_SUCCESS);
6945 }
6946 
6947 
6948 /*
6949  *    Function: sd_ddi_pm_resume
6950  *
6951  * Description: Set the drive state to powered on.
6952  *		Someone else is required to actually change the drive
6953  *		power level.
6954  *
6955  *   Arguments: un - driver soft state (unit) structure
6956  *
6957  * Return Code: DDI_SUCCESS
6958  *
6959  *     Context: Kernel thread context
6960  */
6961 
6962 static int
6963 sd_ddi_pm_resume(struct sd_lun *un)
6964 {
6965 	ASSERT(un != NULL);
6966 
6967 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6968 	mutex_enter(SD_MUTEX(un));
6969 	un->un_power_level = SD_SPINDLE_ON;
6970 
6971 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6972 	mutex_enter(&un->un_pm_mutex);
6973 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6974 		un->un_pm_count++;
6975 		ASSERT(un->un_pm_count == 0);
6976 		/*
6977 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6978 		 * un_suspend_cv is for a system resume, not a power management
6979 		 * device resume. (4297749)
6980 		 *	 cv_broadcast(&un->un_suspend_cv);
6981 		 */
6982 	}
6983 	mutex_exit(&un->un_pm_mutex);
6984 	mutex_exit(SD_MUTEX(un));
6985 
6986 	return (DDI_SUCCESS);
6987 }
6988 
6989 
6990 /*
6991  *    Function: sd_pm_idletimeout_handler
6992  *
6993  * Description: A timer routine that's active only while a device is busy.
6994  *		The purpose is to extend slightly the pm framework's busy
6995  *		view of the device to prevent busy/idle thrashing for
6996  *		back-to-back commands. Do this by comparing the current time
6997  *		to the time at which the last command completed and when the
6998  *		difference is greater than sd_pm_idletime, call
6999  *		pm_idle_component. In addition to indicating idle to the pm
7000  *		framework, update the chain type to again use the internal pm
7001  *		layers of the driver.
7002  *
7003  *   Arguments: arg - driver soft state (unit) structure
7004  *
7005  *     Context: Executes in a timeout(9F) thread context
7006  */
7007 
7008 static void
7009 sd_pm_idletimeout_handler(void *arg)
7010 {
7011 	struct sd_lun *un = arg;
7012 
7013 	time_t	now;
7014 
7015 	mutex_enter(&sd_detach_mutex);
7016 	if (un->un_detach_count != 0) {
7017 		/* Abort if the instance is detaching */
7018 		mutex_exit(&sd_detach_mutex);
7019 		return;
7020 	}
7021 	mutex_exit(&sd_detach_mutex);
7022 
7023 	now = ddi_get_time();
7024 	/*
7025 	 * Grab both mutexes, in the proper order, since we're accessing
7026 	 * both PM and softstate variables.
7027 	 */
7028 	mutex_enter(SD_MUTEX(un));
7029 	mutex_enter(&un->un_pm_mutex);
7030 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7031 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7032 		/*
7033 		 * Update the chain types.
7034 		 * This takes affect on the next new command received.
7035 		 */
7036 		if (un->un_f_non_devbsize_supported) {
7037 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7038 		} else {
7039 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7040 		}
7041 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7042 
7043 		SD_TRACE(SD_LOG_IO_PM, un,
7044 		    "sd_pm_idletimeout_handler: idling device\n");
7045 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7046 		un->un_pm_idle_timeid = NULL;
7047 	} else {
7048 		un->un_pm_idle_timeid =
7049 			timeout(sd_pm_idletimeout_handler, un,
7050 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7051 	}
7052 	mutex_exit(&un->un_pm_mutex);
7053 	mutex_exit(SD_MUTEX(un));
7054 }
7055 
7056 
7057 /*
7058  *    Function: sd_pm_timeout_handler
7059  *
7060  * Description: Callback to tell framework we are idle.
7061  *
7062  *     Context: timeout(9f) thread context.
7063  */
7064 
7065 static void
7066 sd_pm_timeout_handler(void *arg)
7067 {
7068 	struct sd_lun *un = arg;
7069 
7070 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7071 	mutex_enter(&un->un_pm_mutex);
7072 	un->un_pm_timeid = NULL;
7073 	mutex_exit(&un->un_pm_mutex);
7074 }
7075 
7076 
7077 /*
7078  *    Function: sdpower
7079  *
7080  * Description: PM entry point.
7081  *
7082  * Return Code: DDI_SUCCESS
7083  *		DDI_FAILURE
7084  *
7085  *     Context: Kernel thread context
7086  */
7087 
7088 static int
7089 sdpower(dev_info_t *devi, int component, int level)
7090 {
7091 	struct sd_lun	*un;
7092 	int		instance;
7093 	int		rval = DDI_SUCCESS;
7094 	uint_t		i, log_page_size, maxcycles, ncycles;
7095 	uchar_t		*log_page_data;
7096 	int		log_sense_page;
7097 	int		medium_present;
7098 	time_t		intvlp;
7099 	dev_t		dev;
7100 	struct pm_trans_data	sd_pm_tran_data;
7101 	uchar_t		save_state;
7102 	int		sval;
7103 	uchar_t		state_before_pm;
7104 	int		got_semaphore_here;
7105 
7106 	instance = ddi_get_instance(devi);
7107 
7108 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7109 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7110 	    component != 0) {
7111 		return (DDI_FAILURE);
7112 	}
7113 
7114 	dev = sd_make_device(SD_DEVINFO(un));
7115 
7116 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7117 
7118 	/*
7119 	 * Must synchronize power down with close.
7120 	 * Attempt to decrement/acquire the open/close semaphore,
7121 	 * but do NOT wait on it. If it's not greater than zero,
7122 	 * ie. it can't be decremented without waiting, then
7123 	 * someone else, either open or close, already has it
7124 	 * and the try returns 0. Use that knowledge here to determine
7125 	 * if it's OK to change the device power level.
7126 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7127 	 * here.
7128 	 */
7129 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7130 
7131 	mutex_enter(SD_MUTEX(un));
7132 
7133 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7134 	    un->un_ncmds_in_driver);
7135 
7136 	/*
7137 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7138 	 * already being processed in the driver, or if the semaphore was
7139 	 * not gotten here it indicates an open or close is being processed.
7140 	 * At the same time somebody is requesting to go low power which
7141 	 * can't happen, therefore we need to return failure.
7142 	 */
7143 	if ((level == SD_SPINDLE_OFF) &&
7144 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7145 		mutex_exit(SD_MUTEX(un));
7146 
7147 		if (got_semaphore_here != 0) {
7148 			sema_v(&un->un_semoclose);
7149 		}
7150 		SD_TRACE(SD_LOG_IO_PM, un,
7151 		    "sdpower: exit, device has queued cmds.\n");
7152 		return (DDI_FAILURE);
7153 	}
7154 
7155 	/*
7156 	 * if it is OFFLINE that means the disk is completely dead
7157 	 * in our case we have to put the disk in on or off by sending commands
7158 	 * Of course that will fail anyway so return back here.
7159 	 *
7160 	 * Power changes to a device that's OFFLINE or SUSPENDED
7161 	 * are not allowed.
7162 	 */
7163 	if ((un->un_state == SD_STATE_OFFLINE) ||
7164 	    (un->un_state == SD_STATE_SUSPENDED)) {
7165 		mutex_exit(SD_MUTEX(un));
7166 
7167 		if (got_semaphore_here != 0) {
7168 			sema_v(&un->un_semoclose);
7169 		}
7170 		SD_TRACE(SD_LOG_IO_PM, un,
7171 		    "sdpower: exit, device is off-line.\n");
7172 		return (DDI_FAILURE);
7173 	}
7174 
7175 	/*
7176 	 * Change the device's state to indicate it's power level
7177 	 * is being changed. Do this to prevent a power off in the
7178 	 * middle of commands, which is especially bad on devices
7179 	 * that are really powered off instead of just spun down.
7180 	 */
7181 	state_before_pm = un->un_state;
7182 	un->un_state = SD_STATE_PM_CHANGING;
7183 
7184 	mutex_exit(SD_MUTEX(un));
7185 
7186 	/*
7187 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7188 	 * bypass the following checking, otherwise, check the log
7189 	 * sense information for this device
7190 	 */
7191 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7192 		/*
7193 		 * Get the log sense information to understand whether the
7194 		 * the powercycle counts have gone beyond the threshhold.
7195 		 */
7196 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7197 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7198 
7199 		mutex_enter(SD_MUTEX(un));
7200 		log_sense_page = un->un_start_stop_cycle_page;
7201 		mutex_exit(SD_MUTEX(un));
7202 
7203 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7204 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7205 #ifdef	SDDEBUG
7206 		if (sd_force_pm_supported) {
7207 			/* Force a successful result */
7208 			rval = 0;
7209 		}
7210 #endif
7211 		if (rval != 0) {
7212 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7213 			    "Log Sense Failed\n");
7214 			kmem_free(log_page_data, log_page_size);
7215 			/* Cannot support power management on those drives */
7216 
7217 			if (got_semaphore_here != 0) {
7218 				sema_v(&un->un_semoclose);
7219 			}
7220 			/*
7221 			 * On exit put the state back to it's original value
7222 			 * and broadcast to anyone waiting for the power
7223 			 * change completion.
7224 			 */
7225 			mutex_enter(SD_MUTEX(un));
7226 			un->un_state = state_before_pm;
7227 			cv_broadcast(&un->un_suspend_cv);
7228 			mutex_exit(SD_MUTEX(un));
7229 			SD_TRACE(SD_LOG_IO_PM, un,
7230 			    "sdpower: exit, Log Sense Failed.\n");
7231 			return (DDI_FAILURE);
7232 		}
7233 
7234 		/*
7235 		 * From the page data - Convert the essential information to
7236 		 * pm_trans_data
7237 		 */
7238 		maxcycles =
7239 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7240 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7241 
7242 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7243 
7244 		ncycles =
7245 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7246 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7247 
7248 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7249 
7250 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7251 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7252 			    log_page_data[8+i];
7253 		}
7254 
7255 		kmem_free(log_page_data, log_page_size);
7256 
7257 		/*
7258 		 * Call pm_trans_check routine to get the Ok from
7259 		 * the global policy
7260 		 */
7261 
7262 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7263 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7264 
7265 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7266 #ifdef	SDDEBUG
7267 		if (sd_force_pm_supported) {
7268 			/* Force a successful result */
7269 			rval = 1;
7270 		}
7271 #endif
7272 		switch (rval) {
7273 		case 0:
7274 			/*
7275 			 * Not Ok to Power cycle or error in parameters passed
7276 			 * Would have given the advised time to consider power
7277 			 * cycle. Based on the new intvlp parameter we are
7278 			 * supposed to pretend we are busy so that pm framework
7279 			 * will never call our power entry point. Because of
7280 			 * that install a timeout handler and wait for the
7281 			 * recommended time to elapse so that power management
7282 			 * can be effective again.
7283 			 *
7284 			 * To effect this behavior, call pm_busy_component to
7285 			 * indicate to the framework this device is busy.
7286 			 * By not adjusting un_pm_count the rest of PM in
7287 			 * the driver will function normally, and independant
7288 			 * of this but because the framework is told the device
7289 			 * is busy it won't attempt powering down until it gets
7290 			 * a matching idle. The timeout handler sends this.
7291 			 * Note: sd_pm_entry can't be called here to do this
7292 			 * because sdpower may have been called as a result
7293 			 * of a call to pm_raise_power from within sd_pm_entry.
7294 			 *
7295 			 * If a timeout handler is already active then
7296 			 * don't install another.
7297 			 */
7298 			mutex_enter(&un->un_pm_mutex);
7299 			if (un->un_pm_timeid == NULL) {
7300 				un->un_pm_timeid =
7301 				    timeout(sd_pm_timeout_handler,
7302 				    un, intvlp * drv_usectohz(1000000));
7303 				mutex_exit(&un->un_pm_mutex);
7304 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7305 			} else {
7306 				mutex_exit(&un->un_pm_mutex);
7307 			}
7308 			if (got_semaphore_here != 0) {
7309 				sema_v(&un->un_semoclose);
7310 			}
7311 			/*
7312 			 * On exit put the state back to it's original value
7313 			 * and broadcast to anyone waiting for the power
7314 			 * change completion.
7315 			 */
7316 			mutex_enter(SD_MUTEX(un));
7317 			un->un_state = state_before_pm;
7318 			cv_broadcast(&un->un_suspend_cv);
7319 			mutex_exit(SD_MUTEX(un));
7320 
7321 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7322 			    "trans check Failed, not ok to power cycle.\n");
7323 			return (DDI_FAILURE);
7324 
7325 		case -1:
7326 			if (got_semaphore_here != 0) {
7327 				sema_v(&un->un_semoclose);
7328 			}
7329 			/*
7330 			 * On exit put the state back to it's original value
7331 			 * and broadcast to anyone waiting for the power
7332 			 * change completion.
7333 			 */
7334 			mutex_enter(SD_MUTEX(un));
7335 			un->un_state = state_before_pm;
7336 			cv_broadcast(&un->un_suspend_cv);
7337 			mutex_exit(SD_MUTEX(un));
7338 			SD_TRACE(SD_LOG_IO_PM, un,
7339 			    "sdpower: exit, trans check command Failed.\n");
7340 			return (DDI_FAILURE);
7341 		}
7342 	}
7343 
7344 	if (level == SD_SPINDLE_OFF) {
7345 		/*
7346 		 * Save the last state... if the STOP FAILS we need it
7347 		 * for restoring
7348 		 */
7349 		mutex_enter(SD_MUTEX(un));
7350 		save_state = un->un_last_state;
7351 		/*
7352 		 * There must not be any cmds. getting processed
7353 		 * in the driver when we get here. Power to the
7354 		 * device is potentially going off.
7355 		 */
7356 		ASSERT(un->un_ncmds_in_driver == 0);
7357 		mutex_exit(SD_MUTEX(un));
7358 
7359 		/*
7360 		 * For now suspend the device completely before spindle is
7361 		 * turned off
7362 		 */
7363 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7364 			if (got_semaphore_here != 0) {
7365 				sema_v(&un->un_semoclose);
7366 			}
7367 			/*
7368 			 * On exit put the state back to it's original value
7369 			 * and broadcast to anyone waiting for the power
7370 			 * change completion.
7371 			 */
7372 			mutex_enter(SD_MUTEX(un));
7373 			un->un_state = state_before_pm;
7374 			cv_broadcast(&un->un_suspend_cv);
7375 			mutex_exit(SD_MUTEX(un));
7376 			SD_TRACE(SD_LOG_IO_PM, un,
7377 			    "sdpower: exit, PM suspend Failed.\n");
7378 			return (DDI_FAILURE);
7379 		}
7380 	}
7381 
7382 	/*
7383 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7384 	 * close, or strategy. Dump no long uses this routine, it uses it's
7385 	 * own code so it can be done in polled mode.
7386 	 */
7387 
7388 	medium_present = TRUE;
7389 
7390 	/*
7391 	 * When powering up, issue a TUR in case the device is at unit
7392 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7393 	 * a deadlock on un_pm_busy_cv will occur.
7394 	 */
7395 	if (level == SD_SPINDLE_ON) {
7396 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7397 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7398 	}
7399 
7400 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7401 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7402 
7403 	sval = sd_send_scsi_START_STOP_UNIT(un,
7404 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7405 	    SD_PATH_DIRECT);
7406 	/* Command failed, check for media present. */
7407 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7408 		medium_present = FALSE;
7409 	}
7410 
7411 	/*
7412 	 * The conditions of interest here are:
7413 	 *   if a spindle off with media present fails,
7414 	 *	then restore the state and return an error.
7415 	 *   else if a spindle on fails,
7416 	 *	then return an error (there's no state to restore).
7417 	 * In all other cases we setup for the new state
7418 	 * and return success.
7419 	 */
7420 	switch (level) {
7421 	case SD_SPINDLE_OFF:
7422 		if ((medium_present == TRUE) && (sval != 0)) {
7423 			/* The stop command from above failed */
7424 			rval = DDI_FAILURE;
7425 			/*
7426 			 * The stop command failed, and we have media
7427 			 * present. Put the level back by calling the
7428 			 * sd_pm_resume() and set the state back to
7429 			 * it's previous value.
7430 			 */
7431 			(void) sd_ddi_pm_resume(un);
7432 			mutex_enter(SD_MUTEX(un));
7433 			un->un_last_state = save_state;
7434 			mutex_exit(SD_MUTEX(un));
7435 			break;
7436 		}
7437 		/*
7438 		 * The stop command from above succeeded.
7439 		 */
7440 		if (un->un_f_monitor_media_state) {
7441 			/*
7442 			 * Terminate watch thread in case of removable media
7443 			 * devices going into low power state. This is as per
7444 			 * the requirements of pm framework, otherwise commands
7445 			 * will be generated for the device (through watch
7446 			 * thread), even when the device is in low power state.
7447 			 */
7448 			mutex_enter(SD_MUTEX(un));
7449 			un->un_f_watcht_stopped = FALSE;
7450 			if (un->un_swr_token != NULL) {
7451 				opaque_t temp_token = un->un_swr_token;
7452 				un->un_f_watcht_stopped = TRUE;
7453 				un->un_swr_token = NULL;
7454 				mutex_exit(SD_MUTEX(un));
7455 				(void) scsi_watch_request_terminate(temp_token,
7456 				    SCSI_WATCH_TERMINATE_WAIT);
7457 			} else {
7458 				mutex_exit(SD_MUTEX(un));
7459 			}
7460 		}
7461 		break;
7462 
7463 	default:	/* The level requested is spindle on... */
7464 		/*
7465 		 * Legacy behavior: return success on a failed spinup
7466 		 * if there is no media in the drive.
7467 		 * Do this by looking at medium_present here.
7468 		 */
7469 		if ((sval != 0) && medium_present) {
7470 			/* The start command from above failed */
7471 			rval = DDI_FAILURE;
7472 			break;
7473 		}
7474 		/*
7475 		 * The start command from above succeeded
7476 		 * Resume the devices now that we have
7477 		 * started the disks
7478 		 */
7479 		(void) sd_ddi_pm_resume(un);
7480 
7481 		/*
7482 		 * Resume the watch thread since it was suspended
7483 		 * when the device went into low power mode.
7484 		 */
7485 		if (un->un_f_monitor_media_state) {
7486 			mutex_enter(SD_MUTEX(un));
7487 			if (un->un_f_watcht_stopped == TRUE) {
7488 				opaque_t temp_token;
7489 
7490 				un->un_f_watcht_stopped = FALSE;
7491 				mutex_exit(SD_MUTEX(un));
7492 				temp_token = scsi_watch_request_submit(
7493 				    SD_SCSI_DEVP(un),
7494 				    sd_check_media_time,
7495 				    SENSE_LENGTH, sd_media_watch_cb,
7496 				    (caddr_t)dev);
7497 				mutex_enter(SD_MUTEX(un));
7498 				un->un_swr_token = temp_token;
7499 			}
7500 			mutex_exit(SD_MUTEX(un));
7501 		}
7502 	}
7503 	if (got_semaphore_here != 0) {
7504 		sema_v(&un->un_semoclose);
7505 	}
7506 	/*
7507 	 * On exit put the state back to it's original value
7508 	 * and broadcast to anyone waiting for the power
7509 	 * change completion.
7510 	 */
7511 	mutex_enter(SD_MUTEX(un));
7512 	un->un_state = state_before_pm;
7513 	cv_broadcast(&un->un_suspend_cv);
7514 	mutex_exit(SD_MUTEX(un));
7515 
7516 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7517 
7518 	return (rval);
7519 }
7520 
7521 
7522 
7523 /*
7524  *    Function: sdattach
7525  *
7526  * Description: Driver's attach(9e) entry point function.
7527  *
7528  *   Arguments: devi - opaque device info handle
7529  *		cmd  - attach  type
7530  *
7531  * Return Code: DDI_SUCCESS
7532  *		DDI_FAILURE
7533  *
7534  *     Context: Kernel thread context
7535  */
7536 
7537 static int
7538 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7539 {
7540 	switch (cmd) {
7541 	case DDI_ATTACH:
7542 		return (sd_unit_attach(devi));
7543 	case DDI_RESUME:
7544 		return (sd_ddi_resume(devi));
7545 	default:
7546 		break;
7547 	}
7548 	return (DDI_FAILURE);
7549 }
7550 
7551 
7552 /*
7553  *    Function: sddetach
7554  *
7555  * Description: Driver's detach(9E) entry point function.
7556  *
7557  *   Arguments: devi - opaque device info handle
7558  *		cmd  - detach  type
7559  *
7560  * Return Code: DDI_SUCCESS
7561  *		DDI_FAILURE
7562  *
7563  *     Context: Kernel thread context
7564  */
7565 
7566 static int
7567 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7568 {
7569 	switch (cmd) {
7570 	case DDI_DETACH:
7571 		return (sd_unit_detach(devi));
7572 	case DDI_SUSPEND:
7573 		return (sd_ddi_suspend(devi));
7574 	default:
7575 		break;
7576 	}
7577 	return (DDI_FAILURE);
7578 }
7579 
7580 
7581 /*
7582  *     Function: sd_sync_with_callback
7583  *
7584  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7585  *		 state while the callback routine is active.
7586  *
7587  *    Arguments: un: softstate structure for the instance
7588  *
7589  *	Context: Kernel thread context
7590  */
7591 
7592 static void
7593 sd_sync_with_callback(struct sd_lun *un)
7594 {
7595 	ASSERT(un != NULL);
7596 
7597 	mutex_enter(SD_MUTEX(un));
7598 
7599 	ASSERT(un->un_in_callback >= 0);
7600 
7601 	while (un->un_in_callback > 0) {
7602 		mutex_exit(SD_MUTEX(un));
7603 		delay(2);
7604 		mutex_enter(SD_MUTEX(un));
7605 	}
7606 
7607 	mutex_exit(SD_MUTEX(un));
7608 }
7609 
7610 /*
7611  *    Function: sd_unit_attach
7612  *
7613  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7614  *		the soft state structure for the device and performs
7615  *		all necessary structure and device initializations.
7616  *
7617  *   Arguments: devi: the system's dev_info_t for the device.
7618  *
7619  * Return Code: DDI_SUCCESS if attach is successful.
7620  *		DDI_FAILURE if any part of the attach fails.
7621  *
7622  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7623  *		Kernel thread context only.  Can sleep.
7624  */
7625 
7626 static int
7627 sd_unit_attach(dev_info_t *devi)
7628 {
7629 	struct	scsi_device	*devp;
7630 	struct	sd_lun		*un;
7631 	char			*variantp;
7632 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7633 	int	instance;
7634 	int	rval;
7635 	int	wc_enabled;
7636 	uint64_t	capacity;
7637 	uint_t		lbasize;
7638 
7639 	/*
7640 	 * Retrieve the target driver's private data area. This was set
7641 	 * up by the HBA.
7642 	 */
7643 	devp = ddi_get_driver_private(devi);
7644 
7645 	/*
7646 	 * Since we have no idea what state things were left in by the last
7647 	 * user of the device, set up some 'default' settings, ie. turn 'em
7648 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7649 	 * Do this before the scsi_probe, which sends an inquiry.
7650 	 * This is a fix for bug (4430280).
7651 	 * Of special importance is wide-xfer. The drive could have been left
7652 	 * in wide transfer mode by the last driver to communicate with it,
7653 	 * this includes us. If that's the case, and if the following is not
7654 	 * setup properly or we don't re-negotiate with the drive prior to
7655 	 * transferring data to/from the drive, it causes bus parity errors,
7656 	 * data overruns, and unexpected interrupts. This first occurred when
7657 	 * the fix for bug (4378686) was made.
7658 	 */
7659 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7660 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7661 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7662 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7663 
7664 	/*
7665 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7666 	 * This call will allocate and fill in the scsi_inquiry structure
7667 	 * and point the sd_inq member of the scsi_device structure to it.
7668 	 * If the attach succeeds, then this memory will not be de-allocated
7669 	 * (via scsi_unprobe()) until the instance is detached.
7670 	 */
7671 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7672 		goto probe_failed;
7673 	}
7674 
7675 	/*
7676 	 * Check the device type as specified in the inquiry data and
7677 	 * claim it if it is of a type that we support.
7678 	 */
7679 	switch (devp->sd_inq->inq_dtype) {
7680 	case DTYPE_DIRECT:
7681 		break;
7682 	case DTYPE_RODIRECT:
7683 		break;
7684 	case DTYPE_OPTICAL:
7685 		break;
7686 	case DTYPE_NOTPRESENT:
7687 	default:
7688 		/* Unsupported device type; fail the attach. */
7689 		goto probe_failed;
7690 	}
7691 
7692 	/*
7693 	 * Allocate the soft state structure for this unit.
7694 	 *
7695 	 * We rely upon this memory being set to all zeroes by
7696 	 * ddi_soft_state_zalloc().  We assume that any member of the
7697 	 * soft state structure that is not explicitly initialized by
7698 	 * this routine will have a value of zero.
7699 	 */
7700 	instance = ddi_get_instance(devp->sd_dev);
7701 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7702 		goto probe_failed;
7703 	}
7704 
7705 	/*
7706 	 * Retrieve a pointer to the newly-allocated soft state.
7707 	 *
7708 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7709 	 * was successful, unless something has gone horribly wrong and the
7710 	 * ddi's soft state internals are corrupt (in which case it is
7711 	 * probably better to halt here than just fail the attach....)
7712 	 */
7713 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7714 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7715 		    instance);
7716 		/*NOTREACHED*/
7717 	}
7718 
7719 	/*
7720 	 * Link the back ptr of the driver soft state to the scsi_device
7721 	 * struct for this lun.
7722 	 * Save a pointer to the softstate in the driver-private area of
7723 	 * the scsi_device struct.
7724 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7725 	 * we first set un->un_sd below.
7726 	 */
7727 	un->un_sd = devp;
7728 	devp->sd_private = (opaque_t)un;
7729 
7730 	/*
7731 	 * The following must be after devp is stored in the soft state struct.
7732 	 */
7733 #ifdef SDDEBUG
7734 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7735 	    "%s_unit_attach: un:0x%p instance:%d\n",
7736 	    ddi_driver_name(devi), un, instance);
7737 #endif
7738 
7739 	/*
7740 	 * Set up the device type and node type (for the minor nodes).
7741 	 * By default we assume that the device can at least support the
7742 	 * Common Command Set. Call it a CD-ROM if it reports itself
7743 	 * as a RODIRECT device.
7744 	 */
7745 	switch (devp->sd_inq->inq_dtype) {
7746 	case DTYPE_RODIRECT:
7747 		un->un_node_type = DDI_NT_CD_CHAN;
7748 		un->un_ctype	 = CTYPE_CDROM;
7749 		break;
7750 	case DTYPE_OPTICAL:
7751 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7752 		un->un_ctype	 = CTYPE_ROD;
7753 		break;
7754 	default:
7755 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7756 		un->un_ctype	 = CTYPE_CCS;
7757 		break;
7758 	}
7759 
7760 	/*
7761 	 * Try to read the interconnect type from the HBA.
7762 	 *
7763 	 * Note: This driver is currently compiled as two binaries, a parallel
7764 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7765 	 * differences are determined at compile time. In the future a single
7766 	 * binary will be provided and the inteconnect type will be used to
7767 	 * differentiate between fibre and parallel scsi behaviors. At that time
7768 	 * it will be necessary for all fibre channel HBAs to support this
7769 	 * property.
7770 	 *
7771 	 * set un_f_is_fiber to TRUE ( default fiber )
7772 	 */
7773 	un->un_f_is_fibre = TRUE;
7774 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7775 	case INTERCONNECT_SSA:
7776 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7777 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7778 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7779 		break;
7780 	case INTERCONNECT_PARALLEL:
7781 		un->un_f_is_fibre = FALSE;
7782 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7783 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7784 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7785 		break;
7786 	case INTERCONNECT_FIBRE:
7787 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7788 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7789 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7790 		break;
7791 	case INTERCONNECT_FABRIC:
7792 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7793 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7794 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7795 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7796 		break;
7797 	default:
7798 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7799 		/*
7800 		 * The HBA does not support the "interconnect-type" property
7801 		 * (or did not provide a recognized type).
7802 		 *
7803 		 * Note: This will be obsoleted when a single fibre channel
7804 		 * and parallel scsi driver is delivered. In the meantime the
7805 		 * interconnect type will be set to the platform default.If that
7806 		 * type is not parallel SCSI, it means that we should be
7807 		 * assuming "ssd" semantics. However, here this also means that
7808 		 * the FC HBA is not supporting the "interconnect-type" property
7809 		 * like we expect it to, so log this occurrence.
7810 		 */
7811 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7812 		if (!SD_IS_PARALLEL_SCSI(un)) {
7813 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7814 			    "sd_unit_attach: un:0x%p Assuming "
7815 			    "INTERCONNECT_FIBRE\n", un);
7816 		} else {
7817 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7818 			    "sd_unit_attach: un:0x%p Assuming "
7819 			    "INTERCONNECT_PARALLEL\n", un);
7820 			un->un_f_is_fibre = FALSE;
7821 		}
7822 #else
7823 		/*
7824 		 * Note: This source will be implemented when a single fibre
7825 		 * channel and parallel scsi driver is delivered. The default
7826 		 * will be to assume that if a device does not support the
7827 		 * "interconnect-type" property it is a parallel SCSI HBA and
7828 		 * we will set the interconnect type for parallel scsi.
7829 		 */
7830 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7831 		un->un_f_is_fibre = FALSE;
7832 #endif
7833 		break;
7834 	}
7835 
7836 	if (un->un_f_is_fibre == TRUE) {
7837 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7838 			SCSI_VERSION_3) {
7839 			switch (un->un_interconnect_type) {
7840 			case SD_INTERCONNECT_FIBRE:
7841 			case SD_INTERCONNECT_SSA:
7842 				un->un_node_type = DDI_NT_BLOCK_WWN;
7843 				break;
7844 			default:
7845 				break;
7846 			}
7847 		}
7848 	}
7849 
7850 	/*
7851 	 * Initialize the Request Sense command for the target
7852 	 */
7853 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7854 		goto alloc_rqs_failed;
7855 	}
7856 
7857 	/*
7858 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7859 	 * with seperate binary for sd and ssd.
7860 	 *
7861 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7862 	 * The hardcoded values will go away when Sparc uses 1 binary
7863 	 * for sd and ssd.  This hardcoded values need to match
7864 	 * SD_RETRY_COUNT in sddef.h
7865 	 * The value used is base on interconnect type.
7866 	 * fibre = 3, parallel = 5
7867 	 */
7868 #if defined(__i386) || defined(__amd64)
7869 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7870 #else
7871 	un->un_retry_count = SD_RETRY_COUNT;
7872 #endif
7873 
7874 	/*
7875 	 * Set the per disk retry count to the default number of retries
7876 	 * for disks and CDROMs. This value can be overridden by the
7877 	 * disk property list or an entry in sd.conf.
7878 	 */
7879 	un->un_notready_retry_count =
7880 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7881 			: DISK_NOT_READY_RETRY_COUNT(un);
7882 
7883 	/*
7884 	 * Set the busy retry count to the default value of un_retry_count.
7885 	 * This can be overridden by entries in sd.conf or the device
7886 	 * config table.
7887 	 */
7888 	un->un_busy_retry_count = un->un_retry_count;
7889 
7890 	/*
7891 	 * Init the reset threshold for retries.  This number determines
7892 	 * how many retries must be performed before a reset can be issued
7893 	 * (for certain error conditions). This can be overridden by entries
7894 	 * in sd.conf or the device config table.
7895 	 */
7896 	un->un_reset_retry_count = (un->un_retry_count / 2);
7897 
7898 	/*
7899 	 * Set the victim_retry_count to the default un_retry_count
7900 	 */
7901 	un->un_victim_retry_count = (2 * un->un_retry_count);
7902 
7903 	/*
7904 	 * Set the reservation release timeout to the default value of
7905 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7906 	 * device config table.
7907 	 */
7908 	un->un_reserve_release_time = 5;
7909 
7910 	/*
7911 	 * Set up the default maximum transfer size. Note that this may
7912 	 * get updated later in the attach, when setting up default wide
7913 	 * operations for disks.
7914 	 */
7915 #if defined(__i386) || defined(__amd64)
7916 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7917 #else
7918 	un->un_max_xfer_size = (uint_t)maxphys;
7919 #endif
7920 
7921 	/*
7922 	 * Get "allow bus device reset" property (defaults to "enabled" if
7923 	 * the property was not defined). This is to disable bus resets for
7924 	 * certain kinds of error recovery. Note: In the future when a run-time
7925 	 * fibre check is available the soft state flag should default to
7926 	 * enabled.
7927 	 */
7928 	if (un->un_f_is_fibre == TRUE) {
7929 		un->un_f_allow_bus_device_reset = TRUE;
7930 	} else {
7931 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7932 			"allow-bus-device-reset", 1) != 0) {
7933 			un->un_f_allow_bus_device_reset = TRUE;
7934 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7935 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7936 				un);
7937 		} else {
7938 			un->un_f_allow_bus_device_reset = FALSE;
7939 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7940 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7941 				un);
7942 		}
7943 	}
7944 
7945 	/*
7946 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7947 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7948 	 *
7949 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7950 	 * property. The new "variant" property with a value of "atapi" has been
7951 	 * introduced so that future 'variants' of standard SCSI behavior (like
7952 	 * atapi) could be specified by the underlying HBA drivers by supplying
7953 	 * a new value for the "variant" property, instead of having to define a
7954 	 * new property.
7955 	 */
7956 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7957 		un->un_f_cfg_is_atapi = TRUE;
7958 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7959 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7960 	}
7961 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7962 	    &variantp) == DDI_PROP_SUCCESS) {
7963 		if (strcmp(variantp, "atapi") == 0) {
7964 			un->un_f_cfg_is_atapi = TRUE;
7965 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7966 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7967 		}
7968 		ddi_prop_free(variantp);
7969 	}
7970 
7971 	un->un_cmd_timeout	= SD_IO_TIME;
7972 
7973 	/* Info on current states, statuses, etc. (Updated frequently) */
7974 	un->un_state		= SD_STATE_NORMAL;
7975 	un->un_last_state	= SD_STATE_NORMAL;
7976 
7977 	/* Control & status info for command throttling */
7978 	un->un_throttle		= sd_max_throttle;
7979 	un->un_saved_throttle	= sd_max_throttle;
7980 	un->un_min_throttle	= sd_min_throttle;
7981 
7982 	if (un->un_f_is_fibre == TRUE) {
7983 		un->un_f_use_adaptive_throttle = TRUE;
7984 	} else {
7985 		un->un_f_use_adaptive_throttle = FALSE;
7986 	}
7987 
7988 	/* Removable media support. */
7989 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7990 	un->un_mediastate		= DKIO_NONE;
7991 	un->un_specified_mediastate	= DKIO_NONE;
7992 
7993 	/* CVs for suspend/resume (PM or DR) */
7994 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7995 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7996 
7997 	/* Power management support. */
7998 	un->un_power_level = SD_SPINDLE_UNINIT;
7999 
8000 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8001 	un->un_f_wcc_inprog = 0;
8002 
8003 	/*
8004 	 * The open/close semaphore is used to serialize threads executing
8005 	 * in the driver's open & close entry point routines for a given
8006 	 * instance.
8007 	 */
8008 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8009 
8010 	/*
8011 	 * The conf file entry and softstate variable is a forceful override,
8012 	 * meaning a non-zero value must be entered to change the default.
8013 	 */
8014 	un->un_f_disksort_disabled = FALSE;
8015 
8016 	/*
8017 	 * Retrieve the properties from the static driver table or the driver
8018 	 * configuration file (.conf) for this unit and update the soft state
8019 	 * for the device as needed for the indicated properties.
8020 	 * Note: the property configuration needs to occur here as some of the
8021 	 * following routines may have dependancies on soft state flags set
8022 	 * as part of the driver property configuration.
8023 	 */
8024 	sd_read_unit_properties(un);
8025 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8026 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8027 
8028 	/*
8029 	 * Only if a device has "hotpluggable" property, it is
8030 	 * treated as hotpluggable device. Otherwise, it is
8031 	 * regarded as non-hotpluggable one.
8032 	 */
8033 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8034 	    -1) != -1) {
8035 		un->un_f_is_hotpluggable = TRUE;
8036 	}
8037 
8038 	/*
8039 	 * set unit's attributes(flags) according to "hotpluggable" and
8040 	 * RMB bit in INQUIRY data.
8041 	 */
8042 	sd_set_unit_attributes(un, devi);
8043 
8044 	/*
8045 	 * By default, we mark the capacity, lbasize, and geometry
8046 	 * as invalid. Only if we successfully read a valid capacity
8047 	 * will we update the un_blockcount and un_tgt_blocksize with the
8048 	 * valid values (the geometry will be validated later).
8049 	 */
8050 	un->un_f_blockcount_is_valid	= FALSE;
8051 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8052 	un->un_f_geometry_is_valid	= FALSE;
8053 
8054 	/*
8055 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8056 	 * otherwise.
8057 	 */
8058 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8059 	un->un_blockcount = 0;
8060 
8061 	/*
8062 	 * Set up the per-instance info needed to determine the correct
8063 	 * CDBs and other info for issuing commands to the target.
8064 	 */
8065 	sd_init_cdb_limits(un);
8066 
8067 	/*
8068 	 * Set up the IO chains to use, based upon the target type.
8069 	 */
8070 	if (un->un_f_non_devbsize_supported) {
8071 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8072 	} else {
8073 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8074 	}
8075 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8076 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8077 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8078 
8079 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8080 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8081 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8082 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8083 
8084 
8085 	if (ISCD(un)) {
8086 		un->un_additional_codes = sd_additional_codes;
8087 	} else {
8088 		un->un_additional_codes = NULL;
8089 	}
8090 
8091 	/*
8092 	 * Create the kstats here so they can be available for attach-time
8093 	 * routines that send commands to the unit (either polled or via
8094 	 * sd_send_scsi_cmd).
8095 	 *
8096 	 * Note: This is a critical sequence that needs to be maintained:
8097 	 *	1) Instantiate the kstats here, before any routines using the
8098 	 *	   iopath (i.e. sd_send_scsi_cmd).
8099 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8100 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8101 	 *	   sd_register_devid(), and sd_cache_control().
8102 	 */
8103 
8104 	un->un_stats = kstat_create(sd_label, instance,
8105 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8106 	if (un->un_stats != NULL) {
8107 		un->un_stats->ks_lock = SD_MUTEX(un);
8108 		kstat_install(un->un_stats);
8109 	}
8110 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8111 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8112 
8113 	sd_create_errstats(un, instance);
8114 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8115 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8116 
8117 	/*
8118 	 * The following if/else code was relocated here from below as part
8119 	 * of the fix for bug (4430280). However with the default setup added
8120 	 * on entry to this routine, it's no longer absolutely necessary for
8121 	 * this to be before the call to sd_spin_up_unit.
8122 	 */
8123 	if (SD_IS_PARALLEL_SCSI(un)) {
8124 		/*
8125 		 * If SCSI-2 tagged queueing is supported by the target
8126 		 * and by the host adapter then we will enable it.
8127 		 */
8128 		un->un_tagflags = 0;
8129 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8130 		    (devp->sd_inq->inq_cmdque) &&
8131 		    (un->un_f_arq_enabled == TRUE)) {
8132 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8133 			    1, 1) == 1) {
8134 				un->un_tagflags = FLAG_STAG;
8135 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8136 				    "sd_unit_attach: un:0x%p tag queueing "
8137 				    "enabled\n", un);
8138 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8139 			    "untagged-qing", 0) == 1) {
8140 				un->un_f_opt_queueing = TRUE;
8141 				un->un_saved_throttle = un->un_throttle =
8142 				    min(un->un_throttle, 3);
8143 			} else {
8144 				un->un_f_opt_queueing = FALSE;
8145 				un->un_saved_throttle = un->un_throttle = 1;
8146 			}
8147 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8148 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8149 			/* The Host Adapter supports internal queueing. */
8150 			un->un_f_opt_queueing = TRUE;
8151 			un->un_saved_throttle = un->un_throttle =
8152 			    min(un->un_throttle, 3);
8153 		} else {
8154 			un->un_f_opt_queueing = FALSE;
8155 			un->un_saved_throttle = un->un_throttle = 1;
8156 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8157 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8158 		}
8159 
8160 
8161 		/* Setup or tear down default wide operations for disks */
8162 
8163 		/*
8164 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8165 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8166 		 * system and be set to different values. In the future this
8167 		 * code may need to be updated when the ssd module is
8168 		 * obsoleted and removed from the system. (4299588)
8169 		 */
8170 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8171 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8172 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8173 			    1, 1) == 1) {
8174 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8175 				    "sd_unit_attach: un:0x%p Wide Transfer "
8176 				    "enabled\n", un);
8177 			}
8178 
8179 			/*
8180 			 * If tagged queuing has also been enabled, then
8181 			 * enable large xfers
8182 			 */
8183 			if (un->un_saved_throttle == sd_max_throttle) {
8184 				un->un_max_xfer_size =
8185 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8186 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8187 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8188 				    "sd_unit_attach: un:0x%p max transfer "
8189 				    "size=0x%x\n", un, un->un_max_xfer_size);
8190 			}
8191 		} else {
8192 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8193 			    0, 1) == 1) {
8194 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8195 				    "sd_unit_attach: un:0x%p "
8196 				    "Wide Transfer disabled\n", un);
8197 			}
8198 		}
8199 	} else {
8200 		un->un_tagflags = FLAG_STAG;
8201 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8202 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8203 	}
8204 
8205 	/*
8206 	 * If this target supports LUN reset, try to enable it.
8207 	 */
8208 	if (un->un_f_lun_reset_enabled) {
8209 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8210 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8211 			    "un:0x%p lun_reset capability set\n", un);
8212 		} else {
8213 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8214 			    "un:0x%p lun-reset capability not set\n", un);
8215 		}
8216 	}
8217 
8218 	/*
8219 	 * At this point in the attach, we have enough info in the
8220 	 * soft state to be able to issue commands to the target.
8221 	 *
8222 	 * All command paths used below MUST issue their commands as
8223 	 * SD_PATH_DIRECT. This is important as intermediate layers
8224 	 * are not all initialized yet (such as PM).
8225 	 */
8226 
8227 	/*
8228 	 * Send a TEST UNIT READY command to the device. This should clear
8229 	 * any outstanding UNIT ATTENTION that may be present.
8230 	 *
8231 	 * Note: Don't check for success, just track if there is a reservation,
8232 	 * this is a throw away command to clear any unit attentions.
8233 	 *
8234 	 * Note: This MUST be the first command issued to the target during
8235 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8236 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8237 	 * with attempts at spinning up a device with no media.
8238 	 */
8239 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8240 		reservation_flag = SD_TARGET_IS_RESERVED;
8241 	}
8242 
8243 	/*
8244 	 * If the device is NOT a removable media device, attempt to spin
8245 	 * it up (using the START_STOP_UNIT command) and read its capacity
8246 	 * (using the READ CAPACITY command).  Note, however, that either
8247 	 * of these could fail and in some cases we would continue with
8248 	 * the attach despite the failure (see below).
8249 	 */
8250 	if (un->un_f_descr_format_supported) {
8251 		switch (sd_spin_up_unit(un)) {
8252 		case 0:
8253 			/*
8254 			 * Spin-up was successful; now try to read the
8255 			 * capacity.  If successful then save the results
8256 			 * and mark the capacity & lbasize as valid.
8257 			 */
8258 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8259 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8260 
8261 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8262 			    &lbasize, SD_PATH_DIRECT)) {
8263 			case 0: {
8264 				if (capacity > DK_MAX_BLOCKS) {
8265 #ifdef _LP64
8266 					/*
8267 					 * Enable descriptor format sense data
8268 					 * so that we can get 64 bit sense
8269 					 * data fields.
8270 					 */
8271 					sd_enable_descr_sense(un);
8272 #else
8273 					/* 32-bit kernels can't handle this */
8274 					scsi_log(SD_DEVINFO(un),
8275 					    sd_label, CE_WARN,
8276 					    "disk has %llu blocks, which "
8277 					    "is too large for a 32-bit "
8278 					    "kernel", capacity);
8279 					goto spinup_failed;
8280 #endif
8281 				}
8282 
8283 				/*
8284 				 * Here it's not necessary to check the case:
8285 				 * the capacity of the device is bigger than
8286 				 * what the max hba cdb can support. Because
8287 				 * sd_send_scsi_READ_CAPACITY will retrieve
8288 				 * the capacity by sending USCSI command, which
8289 				 * is constrained by the max hba cdb. Actually,
8290 				 * sd_send_scsi_READ_CAPACITY will return
8291 				 * EINVAL when using bigger cdb than required
8292 				 * cdb length. Will handle this case in
8293 				 * "case EINVAL".
8294 				 */
8295 
8296 				/*
8297 				 * The following relies on
8298 				 * sd_send_scsi_READ_CAPACITY never
8299 				 * returning 0 for capacity and/or lbasize.
8300 				 */
8301 				sd_update_block_info(un, lbasize, capacity);
8302 
8303 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8304 				    "sd_unit_attach: un:0x%p capacity = %ld "
8305 				    "blocks; lbasize= %ld.\n", un,
8306 				    un->un_blockcount, un->un_tgt_blocksize);
8307 
8308 				break;
8309 			}
8310 			case EINVAL:
8311 				/*
8312 				 * In the case where the max-cdb-length property
8313 				 * is smaller than the required CDB length for
8314 				 * a SCSI device, a target driver can fail to
8315 				 * attach to that device.
8316 				 */
8317 				scsi_log(SD_DEVINFO(un),
8318 				    sd_label, CE_WARN,
8319 				    "disk capacity is too large "
8320 				    "for current cdb length");
8321 				goto spinup_failed;
8322 			case EACCES:
8323 				/*
8324 				 * Should never get here if the spin-up
8325 				 * succeeded, but code it in anyway.
8326 				 * From here, just continue with the attach...
8327 				 */
8328 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8329 				    "sd_unit_attach: un:0x%p "
8330 				    "sd_send_scsi_READ_CAPACITY "
8331 				    "returned reservation conflict\n", un);
8332 				reservation_flag = SD_TARGET_IS_RESERVED;
8333 				break;
8334 			default:
8335 				/*
8336 				 * Likewise, should never get here if the
8337 				 * spin-up succeeded. Just continue with
8338 				 * the attach...
8339 				 */
8340 				break;
8341 			}
8342 			break;
8343 		case EACCES:
8344 			/*
8345 			 * Device is reserved by another host.  In this case
8346 			 * we could not spin it up or read the capacity, but
8347 			 * we continue with the attach anyway.
8348 			 */
8349 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8350 			    "sd_unit_attach: un:0x%p spin-up reservation "
8351 			    "conflict.\n", un);
8352 			reservation_flag = SD_TARGET_IS_RESERVED;
8353 			break;
8354 		default:
8355 			/* Fail the attach if the spin-up failed. */
8356 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8357 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8358 			goto spinup_failed;
8359 		}
8360 	}
8361 
8362 	/*
8363 	 * Check to see if this is a MMC drive
8364 	 */
8365 	if (ISCD(un)) {
8366 		sd_set_mmc_caps(un);
8367 	}
8368 
8369 	/*
8370 	 * Create the minor nodes for the device.
8371 	 * Note: If we want to support fdisk on both sparc and intel, this will
8372 	 * have to separate out the notion that VTOC8 is always sparc, and
8373 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8374 	 * type will have to be determined at run-time, and the fdisk
8375 	 * partitioning will have to have been read & set up before we
8376 	 * create the minor nodes. (any other inits (such as kstats) that
8377 	 * also ought to be done before creating the minor nodes?) (Doesn't
8378 	 * setting up the minor nodes kind of imply that we're ready to
8379 	 * handle an open from userland?)
8380 	 */
8381 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8382 		goto create_minor_nodes_failed;
8383 	}
8384 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8385 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8386 
8387 	/*
8388 	 * Add a zero-length attribute to tell the world we support
8389 	 * kernel ioctls (for layered drivers)
8390 	 */
8391 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8392 	    DDI_KERNEL_IOCTL, NULL, 0);
8393 
8394 	/*
8395 	 * Add a boolean property to tell the world we support
8396 	 * the B_FAILFAST flag (for layered drivers)
8397 	 */
8398 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8399 	    "ddi-failfast-supported", NULL, 0);
8400 
8401 	/*
8402 	 * Initialize power management
8403 	 */
8404 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8405 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8406 	sd_setup_pm(un, devi);
8407 	if (un->un_f_pm_is_enabled == FALSE) {
8408 		/*
8409 		 * For performance, point to a jump table that does
8410 		 * not include pm.
8411 		 * The direct and priority chains don't change with PM.
8412 		 *
8413 		 * Note: this is currently done based on individual device
8414 		 * capabilities. When an interface for determining system
8415 		 * power enabled state becomes available, or when additional
8416 		 * layers are added to the command chain, these values will
8417 		 * have to be re-evaluated for correctness.
8418 		 */
8419 		if (un->un_f_non_devbsize_supported) {
8420 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8421 		} else {
8422 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8423 		}
8424 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8425 	}
8426 
8427 	/*
8428 	 * This property is set to 0 by HA software to avoid retries
8429 	 * on a reserved disk. (The preferred property name is
8430 	 * "retry-on-reservation-conflict") (1189689)
8431 	 *
8432 	 * Note: The use of a global here can have unintended consequences. A
8433 	 * per instance variable is preferrable to match the capabilities of
8434 	 * different underlying hba's (4402600)
8435 	 */
8436 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8437 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8438 	    sd_retry_on_reservation_conflict);
8439 	if (sd_retry_on_reservation_conflict != 0) {
8440 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8441 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8442 		    sd_retry_on_reservation_conflict);
8443 	}
8444 
8445 	/* Set up options for QFULL handling. */
8446 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8447 	    "qfull-retries", -1)) != -1) {
8448 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8449 		    rval, 1);
8450 	}
8451 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8452 	    "qfull-retry-interval", -1)) != -1) {
8453 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8454 		    rval, 1);
8455 	}
8456 
8457 	/*
8458 	 * This just prints a message that announces the existence of the
8459 	 * device. The message is always printed in the system logfile, but
8460 	 * only appears on the console if the system is booted with the
8461 	 * -v (verbose) argument.
8462 	 */
8463 	ddi_report_dev(devi);
8464 
8465 	/*
8466 	 * The framework calls driver attach routines single-threaded
8467 	 * for a given instance.  However we still acquire SD_MUTEX here
8468 	 * because this required for calling the sd_validate_geometry()
8469 	 * and sd_register_devid() functions.
8470 	 */
8471 	mutex_enter(SD_MUTEX(un));
8472 	un->un_f_geometry_is_valid = FALSE;
8473 	un->un_mediastate = DKIO_NONE;
8474 	un->un_reserved = -1;
8475 
8476 	/*
8477 	 * Read and validate the device's geometry (ie, disk label)
8478 	 * A new unformatted drive will not have a valid geometry, but
8479 	 * the driver needs to successfully attach to this device so
8480 	 * the drive can be formatted via ioctls.
8481 	 */
8482 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8483 	    ENOTSUP)) &&
8484 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8485 		/*
8486 		 * We found a small disk with an EFI label on it;
8487 		 * we need to fix up the minor nodes accordingly.
8488 		 */
8489 		ddi_remove_minor_node(devi, "h");
8490 		ddi_remove_minor_node(devi, "h,raw");
8491 		(void) ddi_create_minor_node(devi, "wd",
8492 		    S_IFBLK,
8493 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8494 		    un->un_node_type, NULL);
8495 		(void) ddi_create_minor_node(devi, "wd,raw",
8496 		    S_IFCHR,
8497 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8498 		    un->un_node_type, NULL);
8499 	}
8500 
8501 	/*
8502 	 * Read and initialize the devid for the unit.
8503 	 */
8504 	ASSERT(un->un_errstats != NULL);
8505 	if (un->un_f_devid_supported) {
8506 		sd_register_devid(un, devi, reservation_flag);
8507 	}
8508 	mutex_exit(SD_MUTEX(un));
8509 
8510 #if (defined(__fibre))
8511 	/*
8512 	 * Register callbacks for fibre only.  You can't do this soley
8513 	 * on the basis of the devid_type because this is hba specific.
8514 	 * We need to query our hba capabilities to find out whether to
8515 	 * register or not.
8516 	 */
8517 	if (un->un_f_is_fibre) {
8518 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8519 		sd_init_event_callbacks(un);
8520 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8521 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8522 	    }
8523 	}
8524 #endif
8525 
8526 	if (un->un_f_opt_disable_cache == TRUE) {
8527 		/*
8528 		 * Disable both read cache and write cache.  This is
8529 		 * the historic behavior of the keywords in the config file.
8530 		 */
8531 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8532 		    0) {
8533 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8534 			    "sd_unit_attach: un:0x%p Could not disable "
8535 			    "caching", un);
8536 			goto devid_failed;
8537 		}
8538 	}
8539 
8540 	/*
8541 	 * Check the value of the WCE bit now and
8542 	 * set un_f_write_cache_enabled accordingly.
8543 	 */
8544 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8545 	mutex_enter(SD_MUTEX(un));
8546 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8547 	mutex_exit(SD_MUTEX(un));
8548 
8549 	/*
8550 	 * Set the pstat and error stat values here, so data obtained during the
8551 	 * previous attach-time routines is available.
8552 	 *
8553 	 * Note: This is a critical sequence that needs to be maintained:
8554 	 *	1) Instantiate the kstats before any routines using the iopath
8555 	 *	   (i.e. sd_send_scsi_cmd).
8556 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8557 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8558 	 *	   sd_register_devid(), and sd_cache_control().
8559 	 */
8560 	if (un->un_f_pkstats_enabled) {
8561 		sd_set_pstats(un);
8562 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8563 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8564 	}
8565 
8566 	sd_set_errstats(un);
8567 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8568 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8569 
8570 	/*
8571 	 * Find out what type of reservation this disk supports.
8572 	 */
8573 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8574 	case 0:
8575 		/*
8576 		 * SCSI-3 reservations are supported.
8577 		 */
8578 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8579 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8580 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8581 		break;
8582 	case ENOTSUP:
8583 		/*
8584 		 * The PERSISTENT RESERVE IN command would not be recognized by
8585 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8586 		 */
8587 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8588 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8589 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8590 		break;
8591 	default:
8592 		/*
8593 		 * default to SCSI-3 reservations
8594 		 */
8595 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8596 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8597 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8598 		break;
8599 	}
8600 
8601 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8602 	    "sd_unit_attach: un:0x%p exit success\n", un);
8603 
8604 	return (DDI_SUCCESS);
8605 
8606 	/*
8607 	 * An error occurred during the attach; clean up & return failure.
8608 	 */
8609 
8610 devid_failed:
8611 
8612 setup_pm_failed:
8613 	ddi_remove_minor_node(devi, NULL);
8614 
8615 create_minor_nodes_failed:
8616 	/*
8617 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8618 	 */
8619 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8620 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8621 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8622 
8623 	if (un->un_f_is_fibre == FALSE) {
8624 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8625 	}
8626 
8627 spinup_failed:
8628 
8629 	mutex_enter(SD_MUTEX(un));
8630 
8631 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8632 	if (un->un_direct_priority_timeid != NULL) {
8633 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8634 		un->un_direct_priority_timeid = NULL;
8635 		mutex_exit(SD_MUTEX(un));
8636 		(void) untimeout(temp_id);
8637 		mutex_enter(SD_MUTEX(un));
8638 	}
8639 
8640 	/* Cancel any pending start/stop timeouts */
8641 	if (un->un_startstop_timeid != NULL) {
8642 		timeout_id_t temp_id = un->un_startstop_timeid;
8643 		un->un_startstop_timeid = NULL;
8644 		mutex_exit(SD_MUTEX(un));
8645 		(void) untimeout(temp_id);
8646 		mutex_enter(SD_MUTEX(un));
8647 	}
8648 
8649 	/* Cancel any pending reset-throttle timeouts */
8650 	if (un->un_reset_throttle_timeid != NULL) {
8651 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8652 		un->un_reset_throttle_timeid = NULL;
8653 		mutex_exit(SD_MUTEX(un));
8654 		(void) untimeout(temp_id);
8655 		mutex_enter(SD_MUTEX(un));
8656 	}
8657 
8658 	/* Cancel any pending retry timeouts */
8659 	if (un->un_retry_timeid != NULL) {
8660 		timeout_id_t temp_id = un->un_retry_timeid;
8661 		un->un_retry_timeid = NULL;
8662 		mutex_exit(SD_MUTEX(un));
8663 		(void) untimeout(temp_id);
8664 		mutex_enter(SD_MUTEX(un));
8665 	}
8666 
8667 	/* Cancel any pending delayed cv broadcast timeouts */
8668 	if (un->un_dcvb_timeid != NULL) {
8669 		timeout_id_t temp_id = un->un_dcvb_timeid;
8670 		un->un_dcvb_timeid = NULL;
8671 		mutex_exit(SD_MUTEX(un));
8672 		(void) untimeout(temp_id);
8673 		mutex_enter(SD_MUTEX(un));
8674 	}
8675 
8676 	mutex_exit(SD_MUTEX(un));
8677 
8678 	/* There should not be any in-progress I/O so ASSERT this check */
8679 	ASSERT(un->un_ncmds_in_transport == 0);
8680 	ASSERT(un->un_ncmds_in_driver == 0);
8681 
8682 	/* Do not free the softstate if the callback routine is active */
8683 	sd_sync_with_callback(un);
8684 
8685 	/*
8686 	 * Partition stats apparently are not used with removables. These would
8687 	 * not have been created during attach, so no need to clean them up...
8688 	 */
8689 	if (un->un_stats != NULL) {
8690 		kstat_delete(un->un_stats);
8691 		un->un_stats = NULL;
8692 	}
8693 	if (un->un_errstats != NULL) {
8694 		kstat_delete(un->un_errstats);
8695 		un->un_errstats = NULL;
8696 	}
8697 
8698 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8699 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8700 
8701 	ddi_prop_remove_all(devi);
8702 	sema_destroy(&un->un_semoclose);
8703 	cv_destroy(&un->un_state_cv);
8704 
8705 getrbuf_failed:
8706 
8707 	sd_free_rqs(un);
8708 
8709 alloc_rqs_failed:
8710 
8711 	devp->sd_private = NULL;
8712 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8713 
8714 get_softstate_failed:
8715 	/*
8716 	 * Note: the man pages are unclear as to whether or not doing a
8717 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8718 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8719 	 * ddi_get_soft_state() fails.  The implication seems to be
8720 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8721 	 */
8722 	ddi_soft_state_free(sd_state, instance);
8723 
8724 probe_failed:
8725 	scsi_unprobe(devp);
8726 #ifdef SDDEBUG
8727 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8728 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8729 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8730 		    (void *)un);
8731 	}
8732 #endif
8733 	return (DDI_FAILURE);
8734 }
8735 
8736 
8737 /*
8738  *    Function: sd_unit_detach
8739  *
8740  * Description: Performs DDI_DETACH processing for sddetach().
8741  *
8742  * Return Code: DDI_SUCCESS
8743  *		DDI_FAILURE
8744  *
8745  *     Context: Kernel thread context
8746  */
8747 
8748 static int
8749 sd_unit_detach(dev_info_t *devi)
8750 {
8751 	struct scsi_device	*devp;
8752 	struct sd_lun		*un;
8753 	int			i;
8754 	dev_t			dev;
8755 	int			instance = ddi_get_instance(devi);
8756 
8757 	mutex_enter(&sd_detach_mutex);
8758 
8759 	/*
8760 	 * Fail the detach for any of the following:
8761 	 *  - Unable to get the sd_lun struct for the instance
8762 	 *  - A layered driver has an outstanding open on the instance
8763 	 *  - Another thread is already detaching this instance
8764 	 *  - Another thread is currently performing an open
8765 	 */
8766 	devp = ddi_get_driver_private(devi);
8767 	if ((devp == NULL) ||
8768 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8769 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8770 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8771 		mutex_exit(&sd_detach_mutex);
8772 		return (DDI_FAILURE);
8773 	}
8774 
8775 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8776 
8777 	/*
8778 	 * Mark this instance as currently in a detach, to inhibit any
8779 	 * opens from a layered driver.
8780 	 */
8781 	un->un_detach_count++;
8782 	mutex_exit(&sd_detach_mutex);
8783 
8784 	dev = sd_make_device(SD_DEVINFO(un));
8785 
8786 	_NOTE(COMPETING_THREADS_NOW);
8787 
8788 	mutex_enter(SD_MUTEX(un));
8789 
8790 	/*
8791 	 * Fail the detach if there are any outstanding layered
8792 	 * opens on this device.
8793 	 */
8794 	for (i = 0; i < NDKMAP; i++) {
8795 		if (un->un_ocmap.lyropen[i] != 0) {
8796 			goto err_notclosed;
8797 		}
8798 	}
8799 
8800 	/*
8801 	 * Verify there are NO outstanding commands issued to this device.
8802 	 * ie, un_ncmds_in_transport == 0.
8803 	 * It's possible to have outstanding commands through the physio
8804 	 * code path, even though everything's closed.
8805 	 */
8806 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8807 	    (un->un_direct_priority_timeid != NULL) ||
8808 	    (un->un_state == SD_STATE_RWAIT)) {
8809 		mutex_exit(SD_MUTEX(un));
8810 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8811 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8812 		goto err_stillbusy;
8813 	}
8814 
8815 	/*
8816 	 * If we have the device reserved, release the reservation.
8817 	 */
8818 	if ((un->un_resvd_status & SD_RESERVE) &&
8819 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8820 		mutex_exit(SD_MUTEX(un));
8821 		/*
8822 		 * Note: sd_reserve_release sends a command to the device
8823 		 * via the sd_ioctlcmd() path, and can sleep.
8824 		 */
8825 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8826 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8827 			    "sd_dr_detach: Cannot release reservation \n");
8828 		}
8829 	} else {
8830 		mutex_exit(SD_MUTEX(un));
8831 	}
8832 
8833 	/*
8834 	 * Untimeout any reserve recover, throttle reset, restart unit
8835 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8836 	 * from getting nulled by their callback functions.
8837 	 */
8838 	mutex_enter(SD_MUTEX(un));
8839 	if (un->un_resvd_timeid != NULL) {
8840 		timeout_id_t temp_id = un->un_resvd_timeid;
8841 		un->un_resvd_timeid = NULL;
8842 		mutex_exit(SD_MUTEX(un));
8843 		(void) untimeout(temp_id);
8844 		mutex_enter(SD_MUTEX(un));
8845 	}
8846 
8847 	if (un->un_reset_throttle_timeid != NULL) {
8848 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8849 		un->un_reset_throttle_timeid = NULL;
8850 		mutex_exit(SD_MUTEX(un));
8851 		(void) untimeout(temp_id);
8852 		mutex_enter(SD_MUTEX(un));
8853 	}
8854 
8855 	if (un->un_startstop_timeid != NULL) {
8856 		timeout_id_t temp_id = un->un_startstop_timeid;
8857 		un->un_startstop_timeid = NULL;
8858 		mutex_exit(SD_MUTEX(un));
8859 		(void) untimeout(temp_id);
8860 		mutex_enter(SD_MUTEX(un));
8861 	}
8862 
8863 	if (un->un_dcvb_timeid != NULL) {
8864 		timeout_id_t temp_id = un->un_dcvb_timeid;
8865 		un->un_dcvb_timeid = NULL;
8866 		mutex_exit(SD_MUTEX(un));
8867 		(void) untimeout(temp_id);
8868 	} else {
8869 		mutex_exit(SD_MUTEX(un));
8870 	}
8871 
8872 	/* Remove any pending reservation reclaim requests for this device */
8873 	sd_rmv_resv_reclaim_req(dev);
8874 
8875 	mutex_enter(SD_MUTEX(un));
8876 
8877 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8878 	if (un->un_direct_priority_timeid != NULL) {
8879 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8880 		un->un_direct_priority_timeid = NULL;
8881 		mutex_exit(SD_MUTEX(un));
8882 		(void) untimeout(temp_id);
8883 		mutex_enter(SD_MUTEX(un));
8884 	}
8885 
8886 	/* Cancel any active multi-host disk watch thread requests */
8887 	if (un->un_mhd_token != NULL) {
8888 		mutex_exit(SD_MUTEX(un));
8889 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8890 		if (scsi_watch_request_terminate(un->un_mhd_token,
8891 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8892 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8893 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8894 			/*
8895 			 * Note: We are returning here after having removed
8896 			 * some driver timeouts above. This is consistent with
8897 			 * the legacy implementation but perhaps the watch
8898 			 * terminate call should be made with the wait flag set.
8899 			 */
8900 			goto err_stillbusy;
8901 		}
8902 		mutex_enter(SD_MUTEX(un));
8903 		un->un_mhd_token = NULL;
8904 	}
8905 
8906 	if (un->un_swr_token != NULL) {
8907 		mutex_exit(SD_MUTEX(un));
8908 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8909 		if (scsi_watch_request_terminate(un->un_swr_token,
8910 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8911 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8912 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8913 			/*
8914 			 * Note: We are returning here after having removed
8915 			 * some driver timeouts above. This is consistent with
8916 			 * the legacy implementation but perhaps the watch
8917 			 * terminate call should be made with the wait flag set.
8918 			 */
8919 			goto err_stillbusy;
8920 		}
8921 		mutex_enter(SD_MUTEX(un));
8922 		un->un_swr_token = NULL;
8923 	}
8924 
8925 	mutex_exit(SD_MUTEX(un));
8926 
8927 	/*
8928 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8929 	 * if we have not registered one.
8930 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8931 	 */
8932 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8933 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8934 
8935 	/*
8936 	 * protect the timeout pointers from getting nulled by
8937 	 * their callback functions during the cancellation process.
8938 	 * In such a scenario untimeout can be invoked with a null value.
8939 	 */
8940 	_NOTE(NO_COMPETING_THREADS_NOW);
8941 
8942 	mutex_enter(&un->un_pm_mutex);
8943 	if (un->un_pm_idle_timeid != NULL) {
8944 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8945 		un->un_pm_idle_timeid = NULL;
8946 		mutex_exit(&un->un_pm_mutex);
8947 
8948 		/*
8949 		 * Timeout is active; cancel it.
8950 		 * Note that it'll never be active on a device
8951 		 * that does not support PM therefore we don't
8952 		 * have to check before calling pm_idle_component.
8953 		 */
8954 		(void) untimeout(temp_id);
8955 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8956 		mutex_enter(&un->un_pm_mutex);
8957 	}
8958 
8959 	/*
8960 	 * Check whether there is already a timeout scheduled for power
8961 	 * management. If yes then don't lower the power here, that's.
8962 	 * the timeout handler's job.
8963 	 */
8964 	if (un->un_pm_timeid != NULL) {
8965 		timeout_id_t temp_id = un->un_pm_timeid;
8966 		un->un_pm_timeid = NULL;
8967 		mutex_exit(&un->un_pm_mutex);
8968 		/*
8969 		 * Timeout is active; cancel it.
8970 		 * Note that it'll never be active on a device
8971 		 * that does not support PM therefore we don't
8972 		 * have to check before calling pm_idle_component.
8973 		 */
8974 		(void) untimeout(temp_id);
8975 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8976 
8977 	} else {
8978 		mutex_exit(&un->un_pm_mutex);
8979 		if ((un->un_f_pm_is_enabled == TRUE) &&
8980 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8981 		    DDI_SUCCESS)) {
8982 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8983 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8984 			/*
8985 			 * Fix for bug: 4297749, item # 13
8986 			 * The above test now includes a check to see if PM is
8987 			 * supported by this device before call
8988 			 * pm_lower_power().
8989 			 * Note, the following is not dead code. The call to
8990 			 * pm_lower_power above will generate a call back into
8991 			 * our sdpower routine which might result in a timeout
8992 			 * handler getting activated. Therefore the following
8993 			 * code is valid and necessary.
8994 			 */
8995 			mutex_enter(&un->un_pm_mutex);
8996 			if (un->un_pm_timeid != NULL) {
8997 				timeout_id_t temp_id = un->un_pm_timeid;
8998 				un->un_pm_timeid = NULL;
8999 				mutex_exit(&un->un_pm_mutex);
9000 				(void) untimeout(temp_id);
9001 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9002 			} else {
9003 				mutex_exit(&un->un_pm_mutex);
9004 			}
9005 		}
9006 	}
9007 
9008 	/*
9009 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9010 	 * Relocated here from above to be after the call to
9011 	 * pm_lower_power, which was getting errors.
9012 	 */
9013 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9014 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9015 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9016 
9017 	if (un->un_f_is_fibre == FALSE) {
9018 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9019 	}
9020 
9021 	/*
9022 	 * Remove any event callbacks, fibre only
9023 	 */
9024 	if (un->un_f_is_fibre == TRUE) {
9025 		if ((un->un_insert_event != NULL) &&
9026 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9027 				DDI_SUCCESS)) {
9028 			/*
9029 			 * Note: We are returning here after having done
9030 			 * substantial cleanup above. This is consistent
9031 			 * with the legacy implementation but this may not
9032 			 * be the right thing to do.
9033 			 */
9034 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9035 				"sd_dr_detach: Cannot cancel insert event\n");
9036 			goto err_remove_event;
9037 		}
9038 		un->un_insert_event = NULL;
9039 
9040 		if ((un->un_remove_event != NULL) &&
9041 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9042 				DDI_SUCCESS)) {
9043 			/*
9044 			 * Note: We are returning here after having done
9045 			 * substantial cleanup above. This is consistent
9046 			 * with the legacy implementation but this may not
9047 			 * be the right thing to do.
9048 			 */
9049 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9050 				"sd_dr_detach: Cannot cancel remove event\n");
9051 			goto err_remove_event;
9052 		}
9053 		un->un_remove_event = NULL;
9054 	}
9055 
9056 	/* Do not free the softstate if the callback routine is active */
9057 	sd_sync_with_callback(un);
9058 
9059 	/*
9060 	 * Hold the detach mutex here, to make sure that no other threads ever
9061 	 * can access a (partially) freed soft state structure.
9062 	 */
9063 	mutex_enter(&sd_detach_mutex);
9064 
9065 	/*
9066 	 * Clean up the soft state struct.
9067 	 * Cleanup is done in reverse order of allocs/inits.
9068 	 * At this point there should be no competing threads anymore.
9069 	 */
9070 
9071 	/* Unregister and free device id. */
9072 	ddi_devid_unregister(devi);
9073 	if (un->un_devid) {
9074 		ddi_devid_free(un->un_devid);
9075 		un->un_devid = NULL;
9076 	}
9077 
9078 	/*
9079 	 * Destroy wmap cache if it exists.
9080 	 */
9081 	if (un->un_wm_cache != NULL) {
9082 		kmem_cache_destroy(un->un_wm_cache);
9083 		un->un_wm_cache = NULL;
9084 	}
9085 
9086 	/* Remove minor nodes */
9087 	ddi_remove_minor_node(devi, NULL);
9088 
9089 	/*
9090 	 * kstat cleanup is done in detach for all device types (4363169).
9091 	 * We do not want to fail detach if the device kstats are not deleted
9092 	 * since there is a confusion about the devo_refcnt for the device.
9093 	 * We just delete the kstats and let detach complete successfully.
9094 	 */
9095 	if (un->un_stats != NULL) {
9096 		kstat_delete(un->un_stats);
9097 		un->un_stats = NULL;
9098 	}
9099 	if (un->un_errstats != NULL) {
9100 		kstat_delete(un->un_errstats);
9101 		un->un_errstats = NULL;
9102 	}
9103 
9104 	/* Remove partition stats */
9105 	if (un->un_f_pkstats_enabled) {
9106 		for (i = 0; i < NSDMAP; i++) {
9107 			if (un->un_pstats[i] != NULL) {
9108 				kstat_delete(un->un_pstats[i]);
9109 				un->un_pstats[i] = NULL;
9110 			}
9111 		}
9112 	}
9113 
9114 	/* Remove xbuf registration */
9115 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9116 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9117 
9118 	/* Remove driver properties */
9119 	ddi_prop_remove_all(devi);
9120 
9121 	mutex_destroy(&un->un_pm_mutex);
9122 	cv_destroy(&un->un_pm_busy_cv);
9123 
9124 	cv_destroy(&un->un_wcc_cv);
9125 
9126 	/* Open/close semaphore */
9127 	sema_destroy(&un->un_semoclose);
9128 
9129 	/* Removable media condvar. */
9130 	cv_destroy(&un->un_state_cv);
9131 
9132 	/* Suspend/resume condvar. */
9133 	cv_destroy(&un->un_suspend_cv);
9134 	cv_destroy(&un->un_disk_busy_cv);
9135 
9136 	sd_free_rqs(un);
9137 
9138 	/* Free up soft state */
9139 	devp->sd_private = NULL;
9140 	bzero(un, sizeof (struct sd_lun));
9141 	ddi_soft_state_free(sd_state, instance);
9142 
9143 	mutex_exit(&sd_detach_mutex);
9144 
9145 	/* This frees up the INQUIRY data associated with the device. */
9146 	scsi_unprobe(devp);
9147 
9148 	return (DDI_SUCCESS);
9149 
9150 err_notclosed:
9151 	mutex_exit(SD_MUTEX(un));
9152 
9153 err_stillbusy:
9154 	_NOTE(NO_COMPETING_THREADS_NOW);
9155 
9156 err_remove_event:
9157 	mutex_enter(&sd_detach_mutex);
9158 	un->un_detach_count--;
9159 	mutex_exit(&sd_detach_mutex);
9160 
9161 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9162 	return (DDI_FAILURE);
9163 }
9164 
9165 
9166 /*
9167  * Driver minor node structure and data table
9168  */
9169 struct driver_minor_data {
9170 	char	*name;
9171 	minor_t	minor;
9172 	int	type;
9173 };
9174 
9175 static struct driver_minor_data sd_minor_data[] = {
9176 	{"a", 0, S_IFBLK},
9177 	{"b", 1, S_IFBLK},
9178 	{"c", 2, S_IFBLK},
9179 	{"d", 3, S_IFBLK},
9180 	{"e", 4, S_IFBLK},
9181 	{"f", 5, S_IFBLK},
9182 	{"g", 6, S_IFBLK},
9183 	{"h", 7, S_IFBLK},
9184 #if defined(_SUNOS_VTOC_16)
9185 	{"i", 8, S_IFBLK},
9186 	{"j", 9, S_IFBLK},
9187 	{"k", 10, S_IFBLK},
9188 	{"l", 11, S_IFBLK},
9189 	{"m", 12, S_IFBLK},
9190 	{"n", 13, S_IFBLK},
9191 	{"o", 14, S_IFBLK},
9192 	{"p", 15, S_IFBLK},
9193 #endif			/* defined(_SUNOS_VTOC_16) */
9194 #if defined(_FIRMWARE_NEEDS_FDISK)
9195 	{"q", 16, S_IFBLK},
9196 	{"r", 17, S_IFBLK},
9197 	{"s", 18, S_IFBLK},
9198 	{"t", 19, S_IFBLK},
9199 	{"u", 20, S_IFBLK},
9200 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9201 	{"a,raw", 0, S_IFCHR},
9202 	{"b,raw", 1, S_IFCHR},
9203 	{"c,raw", 2, S_IFCHR},
9204 	{"d,raw", 3, S_IFCHR},
9205 	{"e,raw", 4, S_IFCHR},
9206 	{"f,raw", 5, S_IFCHR},
9207 	{"g,raw", 6, S_IFCHR},
9208 	{"h,raw", 7, S_IFCHR},
9209 #if defined(_SUNOS_VTOC_16)
9210 	{"i,raw", 8, S_IFCHR},
9211 	{"j,raw", 9, S_IFCHR},
9212 	{"k,raw", 10, S_IFCHR},
9213 	{"l,raw", 11, S_IFCHR},
9214 	{"m,raw", 12, S_IFCHR},
9215 	{"n,raw", 13, S_IFCHR},
9216 	{"o,raw", 14, S_IFCHR},
9217 	{"p,raw", 15, S_IFCHR},
9218 #endif			/* defined(_SUNOS_VTOC_16) */
9219 #if defined(_FIRMWARE_NEEDS_FDISK)
9220 	{"q,raw", 16, S_IFCHR},
9221 	{"r,raw", 17, S_IFCHR},
9222 	{"s,raw", 18, S_IFCHR},
9223 	{"t,raw", 19, S_IFCHR},
9224 	{"u,raw", 20, S_IFCHR},
9225 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9226 	{0}
9227 };
9228 
9229 static struct driver_minor_data sd_minor_data_efi[] = {
9230 	{"a", 0, S_IFBLK},
9231 	{"b", 1, S_IFBLK},
9232 	{"c", 2, S_IFBLK},
9233 	{"d", 3, S_IFBLK},
9234 	{"e", 4, S_IFBLK},
9235 	{"f", 5, S_IFBLK},
9236 	{"g", 6, S_IFBLK},
9237 	{"wd", 7, S_IFBLK},
9238 #if defined(_FIRMWARE_NEEDS_FDISK)
9239 	{"q", 16, S_IFBLK},
9240 	{"r", 17, S_IFBLK},
9241 	{"s", 18, S_IFBLK},
9242 	{"t", 19, S_IFBLK},
9243 	{"u", 20, S_IFBLK},
9244 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9245 	{"a,raw", 0, S_IFCHR},
9246 	{"b,raw", 1, S_IFCHR},
9247 	{"c,raw", 2, S_IFCHR},
9248 	{"d,raw", 3, S_IFCHR},
9249 	{"e,raw", 4, S_IFCHR},
9250 	{"f,raw", 5, S_IFCHR},
9251 	{"g,raw", 6, S_IFCHR},
9252 	{"wd,raw", 7, S_IFCHR},
9253 #if defined(_FIRMWARE_NEEDS_FDISK)
9254 	{"q,raw", 16, S_IFCHR},
9255 	{"r,raw", 17, S_IFCHR},
9256 	{"s,raw", 18, S_IFCHR},
9257 	{"t,raw", 19, S_IFCHR},
9258 	{"u,raw", 20, S_IFCHR},
9259 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9260 	{0}
9261 };
9262 
9263 
9264 /*
9265  *    Function: sd_create_minor_nodes
9266  *
9267  * Description: Create the minor device nodes for the instance.
9268  *
9269  *   Arguments: un - driver soft state (unit) structure
9270  *		devi - pointer to device info structure
9271  *
9272  * Return Code: DDI_SUCCESS
9273  *		DDI_FAILURE
9274  *
9275  *     Context: Kernel thread context
9276  */
9277 
9278 static int
9279 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9280 {
9281 	struct driver_minor_data	*dmdp;
9282 	struct scsi_device		*devp;
9283 	int				instance;
9284 	char				name[48];
9285 
9286 	ASSERT(un != NULL);
9287 	devp = ddi_get_driver_private(devi);
9288 	instance = ddi_get_instance(devp->sd_dev);
9289 
9290 	/*
9291 	 * Create all the minor nodes for this target.
9292 	 */
9293 	if (un->un_blockcount > DK_MAX_BLOCKS)
9294 		dmdp = sd_minor_data_efi;
9295 	else
9296 		dmdp = sd_minor_data;
9297 	while (dmdp->name != NULL) {
9298 
9299 		(void) sprintf(name, "%s", dmdp->name);
9300 
9301 		if (ddi_create_minor_node(devi, name, dmdp->type,
9302 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9303 		    un->un_node_type, NULL) == DDI_FAILURE) {
9304 			/*
9305 			 * Clean up any nodes that may have been created, in
9306 			 * case this fails in the middle of the loop.
9307 			 */
9308 			ddi_remove_minor_node(devi, NULL);
9309 			return (DDI_FAILURE);
9310 		}
9311 		dmdp++;
9312 	}
9313 
9314 	return (DDI_SUCCESS);
9315 }
9316 
9317 
9318 /*
9319  *    Function: sd_create_errstats
9320  *
9321  * Description: This routine instantiates the device error stats.
9322  *
9323  *		Note: During attach the stats are instantiated first so they are
9324  *		available for attach-time routines that utilize the driver
9325  *		iopath to send commands to the device. The stats are initialized
9326  *		separately so data obtained during some attach-time routines is
9327  *		available. (4362483)
9328  *
9329  *   Arguments: un - driver soft state (unit) structure
9330  *		instance - driver instance
9331  *
9332  *     Context: Kernel thread context
9333  */
9334 
9335 static void
9336 sd_create_errstats(struct sd_lun *un, int instance)
9337 {
9338 	struct	sd_errstats	*stp;
9339 	char	kstatmodule_err[KSTAT_STRLEN];
9340 	char	kstatname[KSTAT_STRLEN];
9341 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9342 
9343 	ASSERT(un != NULL);
9344 
9345 	if (un->un_errstats != NULL) {
9346 		return;
9347 	}
9348 
9349 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9350 	    "%serr", sd_label);
9351 	(void) snprintf(kstatname, sizeof (kstatname),
9352 	    "%s%d,err", sd_label, instance);
9353 
9354 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9355 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9356 
9357 	if (un->un_errstats == NULL) {
9358 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9359 		    "sd_create_errstats: Failed kstat_create\n");
9360 		return;
9361 	}
9362 
9363 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9364 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9365 	    KSTAT_DATA_UINT32);
9366 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9367 	    KSTAT_DATA_UINT32);
9368 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9369 	    KSTAT_DATA_UINT32);
9370 	kstat_named_init(&stp->sd_vid,		"Vendor",
9371 	    KSTAT_DATA_CHAR);
9372 	kstat_named_init(&stp->sd_pid,		"Product",
9373 	    KSTAT_DATA_CHAR);
9374 	kstat_named_init(&stp->sd_revision,	"Revision",
9375 	    KSTAT_DATA_CHAR);
9376 	kstat_named_init(&stp->sd_serial,	"Serial No",
9377 	    KSTAT_DATA_CHAR);
9378 	kstat_named_init(&stp->sd_capacity,	"Size",
9379 	    KSTAT_DATA_ULONGLONG);
9380 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9381 	    KSTAT_DATA_UINT32);
9382 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9383 	    KSTAT_DATA_UINT32);
9384 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9385 	    KSTAT_DATA_UINT32);
9386 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9387 	    KSTAT_DATA_UINT32);
9388 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9389 	    KSTAT_DATA_UINT32);
9390 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9391 	    KSTAT_DATA_UINT32);
9392 
9393 	un->un_errstats->ks_private = un;
9394 	un->un_errstats->ks_update  = nulldev;
9395 
9396 	kstat_install(un->un_errstats);
9397 }
9398 
9399 
9400 /*
9401  *    Function: sd_set_errstats
9402  *
9403  * Description: This routine sets the value of the vendor id, product id,
9404  *		revision, serial number, and capacity device error stats.
9405  *
9406  *		Note: During attach the stats are instantiated first so they are
9407  *		available for attach-time routines that utilize the driver
9408  *		iopath to send commands to the device. The stats are initialized
9409  *		separately so data obtained during some attach-time routines is
9410  *		available. (4362483)
9411  *
9412  *   Arguments: un - driver soft state (unit) structure
9413  *
9414  *     Context: Kernel thread context
9415  */
9416 
9417 static void
9418 sd_set_errstats(struct sd_lun *un)
9419 {
9420 	struct	sd_errstats	*stp;
9421 
9422 	ASSERT(un != NULL);
9423 	ASSERT(un->un_errstats != NULL);
9424 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9425 	ASSERT(stp != NULL);
9426 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9427 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9428 	(void) strncpy(stp->sd_revision.value.c,
9429 	    un->un_sd->sd_inq->inq_revision, 4);
9430 
9431 	/*
9432 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9433 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9434 	 * (4376302))
9435 	 */
9436 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9437 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9438 		    sizeof (SD_INQUIRY(un)->inq_serial));
9439 	}
9440 
9441 	if (un->un_f_blockcount_is_valid != TRUE) {
9442 		/*
9443 		 * Set capacity error stat to 0 for no media. This ensures
9444 		 * a valid capacity is displayed in response to 'iostat -E'
9445 		 * when no media is present in the device.
9446 		 */
9447 		stp->sd_capacity.value.ui64 = 0;
9448 	} else {
9449 		/*
9450 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9451 		 * capacity.
9452 		 *
9453 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9454 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9455 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9456 		 */
9457 		stp->sd_capacity.value.ui64 = (uint64_t)
9458 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9459 	}
9460 }
9461 
9462 
9463 /*
9464  *    Function: sd_set_pstats
9465  *
9466  * Description: This routine instantiates and initializes the partition
9467  *              stats for each partition with more than zero blocks.
9468  *		(4363169)
9469  *
9470  *   Arguments: un - driver soft state (unit) structure
9471  *
9472  *     Context: Kernel thread context
9473  */
9474 
9475 static void
9476 sd_set_pstats(struct sd_lun *un)
9477 {
9478 	char	kstatname[KSTAT_STRLEN];
9479 	int	instance;
9480 	int	i;
9481 
9482 	ASSERT(un != NULL);
9483 
9484 	instance = ddi_get_instance(SD_DEVINFO(un));
9485 
9486 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9487 	for (i = 0; i < NSDMAP; i++) {
9488 		if ((un->un_pstats[i] == NULL) &&
9489 		    (un->un_map[i].dkl_nblk != 0)) {
9490 			(void) snprintf(kstatname, sizeof (kstatname),
9491 			    "%s%d,%s", sd_label, instance,
9492 			    sd_minor_data[i].name);
9493 			un->un_pstats[i] = kstat_create(sd_label,
9494 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9495 			    1, KSTAT_FLAG_PERSISTENT);
9496 			if (un->un_pstats[i] != NULL) {
9497 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9498 				kstat_install(un->un_pstats[i]);
9499 			}
9500 		}
9501 	}
9502 }
9503 
9504 
9505 #if (defined(__fibre))
9506 /*
9507  *    Function: sd_init_event_callbacks
9508  *
9509  * Description: This routine initializes the insertion and removal event
9510  *		callbacks. (fibre only)
9511  *
9512  *   Arguments: un - driver soft state (unit) structure
9513  *
9514  *     Context: Kernel thread context
9515  */
9516 
9517 static void
9518 sd_init_event_callbacks(struct sd_lun *un)
9519 {
9520 	ASSERT(un != NULL);
9521 
9522 	if ((un->un_insert_event == NULL) &&
9523 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9524 	    &un->un_insert_event) == DDI_SUCCESS)) {
9525 		/*
9526 		 * Add the callback for an insertion event
9527 		 */
9528 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9529 		    un->un_insert_event, sd_event_callback, (void *)un,
9530 		    &(un->un_insert_cb_id));
9531 	}
9532 
9533 	if ((un->un_remove_event == NULL) &&
9534 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9535 	    &un->un_remove_event) == DDI_SUCCESS)) {
9536 		/*
9537 		 * Add the callback for a removal event
9538 		 */
9539 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9540 		    un->un_remove_event, sd_event_callback, (void *)un,
9541 		    &(un->un_remove_cb_id));
9542 	}
9543 }
9544 
9545 
9546 /*
9547  *    Function: sd_event_callback
9548  *
9549  * Description: This routine handles insert/remove events (photon). The
9550  *		state is changed to OFFLINE which can be used to supress
9551  *		error msgs. (fibre only)
9552  *
9553  *   Arguments: un - driver soft state (unit) structure
9554  *
9555  *     Context: Callout thread context
9556  */
9557 /* ARGSUSED */
9558 static void
9559 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9560     void *bus_impldata)
9561 {
9562 	struct sd_lun *un = (struct sd_lun *)arg;
9563 
9564 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9565 	if (event == un->un_insert_event) {
9566 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9567 		mutex_enter(SD_MUTEX(un));
9568 		if (un->un_state == SD_STATE_OFFLINE) {
9569 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9570 				un->un_state = un->un_last_state;
9571 			} else {
9572 				/*
9573 				 * We have gone through SUSPEND/RESUME while
9574 				 * we were offline. Restore the last state
9575 				 */
9576 				un->un_state = un->un_save_state;
9577 			}
9578 		}
9579 		mutex_exit(SD_MUTEX(un));
9580 
9581 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9582 	} else if (event == un->un_remove_event) {
9583 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9584 		mutex_enter(SD_MUTEX(un));
9585 		/*
9586 		 * We need to handle an event callback that occurs during
9587 		 * the suspend operation, since we don't prevent it.
9588 		 */
9589 		if (un->un_state != SD_STATE_OFFLINE) {
9590 			if (un->un_state != SD_STATE_SUSPENDED) {
9591 				New_state(un, SD_STATE_OFFLINE);
9592 			} else {
9593 				un->un_last_state = SD_STATE_OFFLINE;
9594 			}
9595 		}
9596 		mutex_exit(SD_MUTEX(un));
9597 	} else {
9598 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9599 		    "!Unknown event\n");
9600 	}
9601 
9602 }
9603 #endif
9604 
9605 /*
9606  *    Function: sd_cache_control()
9607  *
9608  * Description: This routine is the driver entry point for setting
9609  *		read and write caching by modifying the WCE (write cache
9610  *		enable) and RCD (read cache disable) bits of mode
9611  *		page 8 (MODEPAGE_CACHING).
9612  *
9613  *   Arguments: un - driver soft state (unit) structure
9614  *		rcd_flag - flag for controlling the read cache
9615  *		wce_flag - flag for controlling the write cache
9616  *
9617  * Return Code: EIO
9618  *		code returned by sd_send_scsi_MODE_SENSE and
9619  *		sd_send_scsi_MODE_SELECT
9620  *
9621  *     Context: Kernel Thread
9622  */
9623 
9624 static int
9625 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
9626 {
9627 	struct mode_caching	*mode_caching_page;
9628 	uchar_t			*header;
9629 	size_t			buflen;
9630 	int			hdrlen;
9631 	int			bd_len;
9632 	int			rval = 0;
9633 	struct mode_header_grp2	*mhp;
9634 
9635 	ASSERT(un != NULL);
9636 
9637 	/*
9638 	 * Do a test unit ready, otherwise a mode sense may not work if this
9639 	 * is the first command sent to the device after boot.
9640 	 */
9641 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9642 
9643 	if (un->un_f_cfg_is_atapi == TRUE) {
9644 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9645 	} else {
9646 		hdrlen = MODE_HEADER_LENGTH;
9647 	}
9648 
9649 	/*
9650 	 * Allocate memory for the retrieved mode page and its headers.  Set
9651 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9652 	 * we get all of the mode sense data otherwise, the mode select
9653 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9654 	 */
9655 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9656 		sizeof (struct mode_cache_scsi3);
9657 
9658 	header = kmem_zalloc(buflen, KM_SLEEP);
9659 
9660 	/* Get the information from the device. */
9661 	if (un->un_f_cfg_is_atapi == TRUE) {
9662 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9663 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9664 	} else {
9665 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9666 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9667 	}
9668 	if (rval != 0) {
9669 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9670 		    "sd_cache_control: Mode Sense Failed\n");
9671 		kmem_free(header, buflen);
9672 		return (rval);
9673 	}
9674 
9675 	/*
9676 	 * Determine size of Block Descriptors in order to locate
9677 	 * the mode page data. ATAPI devices return 0, SCSI devices
9678 	 * should return MODE_BLK_DESC_LENGTH.
9679 	 */
9680 	if (un->un_f_cfg_is_atapi == TRUE) {
9681 		mhp	= (struct mode_header_grp2 *)header;
9682 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9683 	} else {
9684 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9685 	}
9686 
9687 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9688 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9689 		    "sd_cache_control: Mode Sense returned invalid "
9690 		    "block descriptor length\n");
9691 		kmem_free(header, buflen);
9692 		return (EIO);
9693 	}
9694 
9695 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9696 
9697 	/* Check the relevant bits on successful mode sense. */
9698 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9699 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9700 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9701 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9702 
9703 		size_t sbuflen;
9704 		uchar_t save_pg;
9705 
9706 		/*
9707 		 * Construct select buffer length based on the
9708 		 * length of the sense data returned.
9709 		 */
9710 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
9711 				sizeof (struct mode_page) +
9712 				(int)mode_caching_page->mode_page.length;
9713 
9714 		/*
9715 		 * Set the caching bits as requested.
9716 		 */
9717 		if (rcd_flag == SD_CACHE_ENABLE)
9718 			mode_caching_page->rcd = 0;
9719 		else if (rcd_flag == SD_CACHE_DISABLE)
9720 			mode_caching_page->rcd = 1;
9721 
9722 		if (wce_flag == SD_CACHE_ENABLE)
9723 			mode_caching_page->wce = 1;
9724 		else if (wce_flag == SD_CACHE_DISABLE)
9725 			mode_caching_page->wce = 0;
9726 
9727 		/*
9728 		 * Save the page if the mode sense says the
9729 		 * drive supports it.
9730 		 */
9731 		save_pg = mode_caching_page->mode_page.ps ?
9732 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9733 
9734 		/* Clear reserved bits before mode select. */
9735 		mode_caching_page->mode_page.ps = 0;
9736 
9737 		/*
9738 		 * Clear out mode header for mode select.
9739 		 * The rest of the retrieved page will be reused.
9740 		 */
9741 		bzero(header, hdrlen);
9742 
9743 		if (un->un_f_cfg_is_atapi == TRUE) {
9744 			mhp = (struct mode_header_grp2 *)header;
9745 			mhp->bdesc_length_hi = bd_len >> 8;
9746 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9747 		} else {
9748 			((struct mode_header *)header)->bdesc_length = bd_len;
9749 		}
9750 
9751 		/* Issue mode select to change the cache settings */
9752 		if (un->un_f_cfg_is_atapi == TRUE) {
9753 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9754 			    sbuflen, save_pg, SD_PATH_DIRECT);
9755 		} else {
9756 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9757 			    sbuflen, save_pg, SD_PATH_DIRECT);
9758 		}
9759 	}
9760 
9761 	kmem_free(header, buflen);
9762 	return (rval);
9763 }
9764 
9765 
9766 /*
9767  *    Function: sd_get_write_cache_enabled()
9768  *
9769  * Description: This routine is the driver entry point for determining if
9770  *		write caching is enabled.  It examines the WCE (write cache
9771  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9772  *
9773  *   Arguments: un - driver soft state (unit) structure
9774  *   		is_enabled - pointer to int where write cache enabled state
9775  *   			is returned (non-zero -> write cache enabled)
9776  *
9777  *
9778  * Return Code: EIO
9779  *		code returned by sd_send_scsi_MODE_SENSE
9780  *
9781  *     Context: Kernel Thread
9782  *
9783  * NOTE: If ioctl is added to disable write cache, this sequence should
9784  * be followed so that no locking is required for accesses to
9785  * un->un_f_write_cache_enabled:
9786  * 	do mode select to clear wce
9787  * 	do synchronize cache to flush cache
9788  * 	set un->un_f_write_cache_enabled = FALSE
9789  *
9790  * Conversely, an ioctl to enable the write cache should be done
9791  * in this order:
9792  * 	set un->un_f_write_cache_enabled = TRUE
9793  * 	do mode select to set wce
9794  */
9795 
9796 static int
9797 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
9798 {
9799 	struct mode_caching	*mode_caching_page;
9800 	uchar_t			*header;
9801 	size_t			buflen;
9802 	int			hdrlen;
9803 	int			bd_len;
9804 	int			rval = 0;
9805 
9806 	ASSERT(un != NULL);
9807 	ASSERT(is_enabled != NULL);
9808 
9809 	/* in case of error, flag as enabled */
9810 	*is_enabled = TRUE;
9811 
9812 	/*
9813 	 * Do a test unit ready, otherwise a mode sense may not work if this
9814 	 * is the first command sent to the device after boot.
9815 	 */
9816 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9817 
9818 	if (un->un_f_cfg_is_atapi == TRUE) {
9819 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9820 	} else {
9821 		hdrlen = MODE_HEADER_LENGTH;
9822 	}
9823 
9824 	/*
9825 	 * Allocate memory for the retrieved mode page and its headers.  Set
9826 	 * a pointer to the page itself.
9827 	 */
9828 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9829 	header = kmem_zalloc(buflen, KM_SLEEP);
9830 
9831 	/* Get the information from the device. */
9832 	if (un->un_f_cfg_is_atapi == TRUE) {
9833 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9834 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9835 	} else {
9836 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9837 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9838 	}
9839 	if (rval != 0) {
9840 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9841 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9842 		kmem_free(header, buflen);
9843 		return (rval);
9844 	}
9845 
9846 	/*
9847 	 * Determine size of Block Descriptors in order to locate
9848 	 * the mode page data. ATAPI devices return 0, SCSI devices
9849 	 * should return MODE_BLK_DESC_LENGTH.
9850 	 */
9851 	if (un->un_f_cfg_is_atapi == TRUE) {
9852 		struct mode_header_grp2	*mhp;
9853 		mhp	= (struct mode_header_grp2 *)header;
9854 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9855 	} else {
9856 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9857 	}
9858 
9859 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9860 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9861 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9862 		    "block descriptor length\n");
9863 		kmem_free(header, buflen);
9864 		return (EIO);
9865 	}
9866 
9867 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9868 	*is_enabled = mode_caching_page->wce;
9869 
9870 	kmem_free(header, buflen);
9871 	return (0);
9872 }
9873 
9874 
9875 /*
9876  *    Function: sd_make_device
9877  *
9878  * Description: Utility routine to return the Solaris device number from
9879  *		the data in the device's dev_info structure.
9880  *
9881  * Return Code: The Solaris device number
9882  *
9883  *     Context: Any
9884  */
9885 
9886 static dev_t
9887 sd_make_device(dev_info_t *devi)
9888 {
9889 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9890 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9891 }
9892 
9893 
9894 /*
9895  *    Function: sd_pm_entry
9896  *
9897  * Description: Called at the start of a new command to manage power
9898  *		and busy status of a device. This includes determining whether
9899  *		the current power state of the device is sufficient for
9900  *		performing the command or whether it must be changed.
9901  *		The PM framework is notified appropriately.
9902  *		Only with a return status of DDI_SUCCESS will the
9903  *		component be busy to the framework.
9904  *
9905  *		All callers of sd_pm_entry must check the return status
9906  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9907  *		of DDI_FAILURE indicates the device failed to power up.
9908  *		In this case un_pm_count has been adjusted so the result
9909  *		on exit is still powered down, ie. count is less than 0.
9910  *		Calling sd_pm_exit with this count value hits an ASSERT.
9911  *
9912  * Return Code: DDI_SUCCESS or DDI_FAILURE
9913  *
9914  *     Context: Kernel thread context.
9915  */
9916 
9917 static int
9918 sd_pm_entry(struct sd_lun *un)
9919 {
9920 	int return_status = DDI_SUCCESS;
9921 
9922 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9923 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9924 
9925 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9926 
9927 	if (un->un_f_pm_is_enabled == FALSE) {
9928 		SD_TRACE(SD_LOG_IO_PM, un,
9929 		    "sd_pm_entry: exiting, PM not enabled\n");
9930 		return (return_status);
9931 	}
9932 
9933 	/*
9934 	 * Just increment a counter if PM is enabled. On the transition from
9935 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9936 	 * the count with each IO and mark the device as idle when the count
9937 	 * hits 0.
9938 	 *
9939 	 * If the count is less than 0 the device is powered down. If a powered
9940 	 * down device is successfully powered up then the count must be
9941 	 * incremented to reflect the power up. Note that it'll get incremented
9942 	 * a second time to become busy.
9943 	 *
9944 	 * Because the following has the potential to change the device state
9945 	 * and must release the un_pm_mutex to do so, only one thread can be
9946 	 * allowed through at a time.
9947 	 */
9948 
9949 	mutex_enter(&un->un_pm_mutex);
9950 	while (un->un_pm_busy == TRUE) {
9951 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9952 	}
9953 	un->un_pm_busy = TRUE;
9954 
9955 	if (un->un_pm_count < 1) {
9956 
9957 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9958 
9959 		/*
9960 		 * Indicate we are now busy so the framework won't attempt to
9961 		 * power down the device. This call will only fail if either
9962 		 * we passed a bad component number or the device has no
9963 		 * components. Neither of these should ever happen.
9964 		 */
9965 		mutex_exit(&un->un_pm_mutex);
9966 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9967 		ASSERT(return_status == DDI_SUCCESS);
9968 
9969 		mutex_enter(&un->un_pm_mutex);
9970 
9971 		if (un->un_pm_count < 0) {
9972 			mutex_exit(&un->un_pm_mutex);
9973 
9974 			SD_TRACE(SD_LOG_IO_PM, un,
9975 			    "sd_pm_entry: power up component\n");
9976 
9977 			/*
9978 			 * pm_raise_power will cause sdpower to be called
9979 			 * which brings the device power level to the
9980 			 * desired state, ON in this case. If successful,
9981 			 * un_pm_count and un_power_level will be updated
9982 			 * appropriately.
9983 			 */
9984 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9985 			    SD_SPINDLE_ON);
9986 
9987 			mutex_enter(&un->un_pm_mutex);
9988 
9989 			if (return_status != DDI_SUCCESS) {
9990 				/*
9991 				 * Power up failed.
9992 				 * Idle the device and adjust the count
9993 				 * so the result on exit is that we're
9994 				 * still powered down, ie. count is less than 0.
9995 				 */
9996 				SD_TRACE(SD_LOG_IO_PM, un,
9997 				    "sd_pm_entry: power up failed,"
9998 				    " idle the component\n");
9999 
10000 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10001 				un->un_pm_count--;
10002 			} else {
10003 				/*
10004 				 * Device is powered up, verify the
10005 				 * count is non-negative.
10006 				 * This is debug only.
10007 				 */
10008 				ASSERT(un->un_pm_count == 0);
10009 			}
10010 		}
10011 
10012 		if (return_status == DDI_SUCCESS) {
10013 			/*
10014 			 * For performance, now that the device has been tagged
10015 			 * as busy, and it's known to be powered up, update the
10016 			 * chain types to use jump tables that do not include
10017 			 * pm. This significantly lowers the overhead and
10018 			 * therefore improves performance.
10019 			 */
10020 
10021 			mutex_exit(&un->un_pm_mutex);
10022 			mutex_enter(SD_MUTEX(un));
10023 			SD_TRACE(SD_LOG_IO_PM, un,
10024 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10025 			    un->un_uscsi_chain_type);
10026 
10027 			if (un->un_f_non_devbsize_supported) {
10028 				un->un_buf_chain_type =
10029 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10030 			} else {
10031 				un->un_buf_chain_type =
10032 				    SD_CHAIN_INFO_DISK_NO_PM;
10033 			}
10034 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10035 
10036 			SD_TRACE(SD_LOG_IO_PM, un,
10037 			    "             changed  uscsi_chain_type to   %d\n",
10038 			    un->un_uscsi_chain_type);
10039 			mutex_exit(SD_MUTEX(un));
10040 			mutex_enter(&un->un_pm_mutex);
10041 
10042 			if (un->un_pm_idle_timeid == NULL) {
10043 				/* 300 ms. */
10044 				un->un_pm_idle_timeid =
10045 				    timeout(sd_pm_idletimeout_handler, un,
10046 				    (drv_usectohz((clock_t)300000)));
10047 				/*
10048 				 * Include an extra call to busy which keeps the
10049 				 * device busy with-respect-to the PM layer
10050 				 * until the timer fires, at which time it'll
10051 				 * get the extra idle call.
10052 				 */
10053 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10054 			}
10055 		}
10056 	}
10057 	un->un_pm_busy = FALSE;
10058 	/* Next... */
10059 	cv_signal(&un->un_pm_busy_cv);
10060 
10061 	un->un_pm_count++;
10062 
10063 	SD_TRACE(SD_LOG_IO_PM, un,
10064 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10065 
10066 	mutex_exit(&un->un_pm_mutex);
10067 
10068 	return (return_status);
10069 }
10070 
10071 
10072 /*
10073  *    Function: sd_pm_exit
10074  *
10075  * Description: Called at the completion of a command to manage busy
10076  *		status for the device. If the device becomes idle the
10077  *		PM framework is notified.
10078  *
10079  *     Context: Kernel thread context
10080  */
10081 
10082 static void
10083 sd_pm_exit(struct sd_lun *un)
10084 {
10085 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10086 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10087 
10088 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10089 
10090 	/*
10091 	 * After attach the following flag is only read, so don't
10092 	 * take the penalty of acquiring a mutex for it.
10093 	 */
10094 	if (un->un_f_pm_is_enabled == TRUE) {
10095 
10096 		mutex_enter(&un->un_pm_mutex);
10097 		un->un_pm_count--;
10098 
10099 		SD_TRACE(SD_LOG_IO_PM, un,
10100 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10101 
10102 		ASSERT(un->un_pm_count >= 0);
10103 		if (un->un_pm_count == 0) {
10104 			mutex_exit(&un->un_pm_mutex);
10105 
10106 			SD_TRACE(SD_LOG_IO_PM, un,
10107 			    "sd_pm_exit: idle component\n");
10108 
10109 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10110 
10111 		} else {
10112 			mutex_exit(&un->un_pm_mutex);
10113 		}
10114 	}
10115 
10116 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10117 }
10118 
10119 
10120 /*
10121  *    Function: sdopen
10122  *
10123  * Description: Driver's open(9e) entry point function.
10124  *
10125  *   Arguments: dev_i   - pointer to device number
10126  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10127  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10128  *		cred_p  - user credential pointer
10129  *
10130  * Return Code: EINVAL
10131  *		ENXIO
10132  *		EIO
10133  *		EROFS
10134  *		EBUSY
10135  *
10136  *     Context: Kernel thread context
10137  */
10138 /* ARGSUSED */
10139 static int
10140 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10141 {
10142 	struct sd_lun	*un;
10143 	int		nodelay;
10144 	int		part;
10145 	uint64_t	partmask;
10146 	int		instance;
10147 	dev_t		dev;
10148 	int		rval = EIO;
10149 
10150 	/* Validate the open type */
10151 	if (otyp >= OTYPCNT) {
10152 		return (EINVAL);
10153 	}
10154 
10155 	dev = *dev_p;
10156 	instance = SDUNIT(dev);
10157 	mutex_enter(&sd_detach_mutex);
10158 
10159 	/*
10160 	 * Fail the open if there is no softstate for the instance, or
10161 	 * if another thread somewhere is trying to detach the instance.
10162 	 */
10163 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10164 	    (un->un_detach_count != 0)) {
10165 		mutex_exit(&sd_detach_mutex);
10166 		/*
10167 		 * The probe cache only needs to be cleared when open (9e) fails
10168 		 * with ENXIO (4238046).
10169 		 */
10170 		/*
10171 		 * un-conditionally clearing probe cache is ok with
10172 		 * separate sd/ssd binaries
10173 		 * x86 platform can be an issue with both parallel
10174 		 * and fibre in 1 binary
10175 		 */
10176 		sd_scsi_clear_probe_cache();
10177 		return (ENXIO);
10178 	}
10179 
10180 	/*
10181 	 * The un_layer_count is to prevent another thread in specfs from
10182 	 * trying to detach the instance, which can happen when we are
10183 	 * called from a higher-layer driver instead of thru specfs.
10184 	 * This will not be needed when DDI provides a layered driver
10185 	 * interface that allows specfs to know that an instance is in
10186 	 * use by a layered driver & should not be detached.
10187 	 *
10188 	 * Note: the semantics for layered driver opens are exactly one
10189 	 * close for every open.
10190 	 */
10191 	if (otyp == OTYP_LYR) {
10192 		un->un_layer_count++;
10193 	}
10194 
10195 	/*
10196 	 * Keep a count of the current # of opens in progress. This is because
10197 	 * some layered drivers try to call us as a regular open. This can
10198 	 * cause problems that we cannot prevent, however by keeping this count
10199 	 * we can at least keep our open and detach routines from racing against
10200 	 * each other under such conditions.
10201 	 */
10202 	un->un_opens_in_progress++;
10203 	mutex_exit(&sd_detach_mutex);
10204 
10205 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10206 	part	 = SDPART(dev);
10207 	partmask = 1 << part;
10208 
10209 	/*
10210 	 * We use a semaphore here in order to serialize
10211 	 * open and close requests on the device.
10212 	 */
10213 	sema_p(&un->un_semoclose);
10214 
10215 	mutex_enter(SD_MUTEX(un));
10216 
10217 	/*
10218 	 * All device accesses go thru sdstrategy() where we check
10219 	 * on suspend status but there could be a scsi_poll command,
10220 	 * which bypasses sdstrategy(), so we need to check pm
10221 	 * status.
10222 	 */
10223 
10224 	if (!nodelay) {
10225 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10226 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10227 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10228 		}
10229 
10230 		mutex_exit(SD_MUTEX(un));
10231 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10232 			rval = EIO;
10233 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10234 			    "sdopen: sd_pm_entry failed\n");
10235 			goto open_failed_with_pm;
10236 		}
10237 		mutex_enter(SD_MUTEX(un));
10238 	}
10239 
10240 	/* check for previous exclusive open */
10241 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10242 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10243 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10244 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10245 
10246 	if (un->un_exclopen & (partmask)) {
10247 		goto excl_open_fail;
10248 	}
10249 
10250 	if (flag & FEXCL) {
10251 		int i;
10252 		if (un->un_ocmap.lyropen[part]) {
10253 			goto excl_open_fail;
10254 		}
10255 		for (i = 0; i < (OTYPCNT - 1); i++) {
10256 			if (un->un_ocmap.regopen[i] & (partmask)) {
10257 				goto excl_open_fail;
10258 			}
10259 		}
10260 	}
10261 
10262 	/*
10263 	 * Check the write permission if this is a removable media device,
10264 	 * NDELAY has not been set, and writable permission is requested.
10265 	 *
10266 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10267 	 * attempt will fail with EIO as part of the I/O processing. This is a
10268 	 * more permissive implementation that allows the open to succeed and
10269 	 * WRITE attempts to fail when appropriate.
10270 	 */
10271 	if (un->un_f_chk_wp_open) {
10272 		if ((flag & FWRITE) && (!nodelay)) {
10273 			mutex_exit(SD_MUTEX(un));
10274 			/*
10275 			 * Defer the check for write permission on writable
10276 			 * DVD drive till sdstrategy and will not fail open even
10277 			 * if FWRITE is set as the device can be writable
10278 			 * depending upon the media and the media can change
10279 			 * after the call to open().
10280 			 */
10281 			if (un->un_f_dvdram_writable_device == FALSE) {
10282 				if (ISCD(un) || sr_check_wp(dev)) {
10283 				rval = EROFS;
10284 				mutex_enter(SD_MUTEX(un));
10285 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10286 				    "write to cd or write protected media\n");
10287 				goto open_fail;
10288 				}
10289 			}
10290 			mutex_enter(SD_MUTEX(un));
10291 		}
10292 	}
10293 
10294 	/*
10295 	 * If opening in NDELAY/NONBLOCK mode, just return.
10296 	 * Check if disk is ready and has a valid geometry later.
10297 	 */
10298 	if (!nodelay) {
10299 		mutex_exit(SD_MUTEX(un));
10300 		rval = sd_ready_and_valid(un);
10301 		mutex_enter(SD_MUTEX(un));
10302 		/*
10303 		 * Fail if device is not ready or if the number of disk
10304 		 * blocks is zero or negative for non CD devices.
10305 		 */
10306 		if ((rval != SD_READY_VALID) ||
10307 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10308 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10309 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10310 			    "device not ready or invalid disk block value\n");
10311 			goto open_fail;
10312 		}
10313 #if defined(__i386) || defined(__amd64)
10314 	} else {
10315 		uchar_t *cp;
10316 		/*
10317 		 * x86 requires special nodelay handling, so that p0 is
10318 		 * always defined and accessible.
10319 		 * Invalidate geometry only if device is not already open.
10320 		 */
10321 		cp = &un->un_ocmap.chkd[0];
10322 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10323 			if (*cp != (uchar_t)0) {
10324 			    break;
10325 			}
10326 			cp++;
10327 		}
10328 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10329 			un->un_f_geometry_is_valid = FALSE;
10330 		}
10331 
10332 #endif
10333 	}
10334 
10335 	if (otyp == OTYP_LYR) {
10336 		un->un_ocmap.lyropen[part]++;
10337 	} else {
10338 		un->un_ocmap.regopen[otyp] |= partmask;
10339 	}
10340 
10341 	/* Set up open and exclusive open flags */
10342 	if (flag & FEXCL) {
10343 		un->un_exclopen |= (partmask);
10344 	}
10345 
10346 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10347 	    "open of part %d type %d\n", part, otyp);
10348 
10349 	mutex_exit(SD_MUTEX(un));
10350 	if (!nodelay) {
10351 		sd_pm_exit(un);
10352 	}
10353 
10354 	sema_v(&un->un_semoclose);
10355 
10356 	mutex_enter(&sd_detach_mutex);
10357 	un->un_opens_in_progress--;
10358 	mutex_exit(&sd_detach_mutex);
10359 
10360 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10361 	return (DDI_SUCCESS);
10362 
10363 excl_open_fail:
10364 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10365 	rval = EBUSY;
10366 
10367 open_fail:
10368 	mutex_exit(SD_MUTEX(un));
10369 
10370 	/*
10371 	 * On a failed open we must exit the pm management.
10372 	 */
10373 	if (!nodelay) {
10374 		sd_pm_exit(un);
10375 	}
10376 open_failed_with_pm:
10377 	sema_v(&un->un_semoclose);
10378 
10379 	mutex_enter(&sd_detach_mutex);
10380 	un->un_opens_in_progress--;
10381 	if (otyp == OTYP_LYR) {
10382 		un->un_layer_count--;
10383 	}
10384 	mutex_exit(&sd_detach_mutex);
10385 
10386 	return (rval);
10387 }
10388 
10389 
10390 /*
10391  *    Function: sdclose
10392  *
10393  * Description: Driver's close(9e) entry point function.
10394  *
10395  *   Arguments: dev    - device number
10396  *		flag   - file status flag, informational only
10397  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10398  *		cred_p - user credential pointer
10399  *
10400  * Return Code: ENXIO
10401  *
10402  *     Context: Kernel thread context
10403  */
10404 /* ARGSUSED */
10405 static int
10406 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10407 {
10408 	struct sd_lun	*un;
10409 	uchar_t		*cp;
10410 	int		part;
10411 	int		nodelay;
10412 	int		rval = 0;
10413 
10414 	/* Validate the open type */
10415 	if (otyp >= OTYPCNT) {
10416 		return (ENXIO);
10417 	}
10418 
10419 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10420 		return (ENXIO);
10421 	}
10422 
10423 	part = SDPART(dev);
10424 	nodelay = flag & (FNDELAY | FNONBLOCK);
10425 
10426 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10427 	    "sdclose: close of part %d type %d\n", part, otyp);
10428 
10429 	/*
10430 	 * We use a semaphore here in order to serialize
10431 	 * open and close requests on the device.
10432 	 */
10433 	sema_p(&un->un_semoclose);
10434 
10435 	mutex_enter(SD_MUTEX(un));
10436 
10437 	/* Don't proceed if power is being changed. */
10438 	while (un->un_state == SD_STATE_PM_CHANGING) {
10439 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10440 	}
10441 
10442 	if (un->un_exclopen & (1 << part)) {
10443 		un->un_exclopen &= ~(1 << part);
10444 	}
10445 
10446 	/* Update the open partition map */
10447 	if (otyp == OTYP_LYR) {
10448 		un->un_ocmap.lyropen[part] -= 1;
10449 	} else {
10450 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10451 	}
10452 
10453 	cp = &un->un_ocmap.chkd[0];
10454 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10455 		if (*cp != NULL) {
10456 			break;
10457 		}
10458 		cp++;
10459 	}
10460 
10461 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10462 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10463 
10464 		/*
10465 		 * We avoid persistance upon the last close, and set
10466 		 * the throttle back to the maximum.
10467 		 */
10468 		un->un_throttle = un->un_saved_throttle;
10469 
10470 		if (un->un_state == SD_STATE_OFFLINE) {
10471 			if (un->un_f_is_fibre == FALSE) {
10472 				scsi_log(SD_DEVINFO(un), sd_label,
10473 					CE_WARN, "offline\n");
10474 			}
10475 			un->un_f_geometry_is_valid = FALSE;
10476 
10477 		} else {
10478 			/*
10479 			 * Flush any outstanding writes in NVRAM cache.
10480 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10481 			 * cmd, it may not work for non-Pluto devices.
10482 			 * SYNCHRONIZE CACHE is not required for removables,
10483 			 * except DVD-RAM drives.
10484 			 *
10485 			 * Also note: because SYNCHRONIZE CACHE is currently
10486 			 * the only command issued here that requires the
10487 			 * drive be powered up, only do the power up before
10488 			 * sending the Sync Cache command. If additional
10489 			 * commands are added which require a powered up
10490 			 * drive, the following sequence may have to change.
10491 			 *
10492 			 * And finally, note that parallel SCSI on SPARC
10493 			 * only issues a Sync Cache to DVD-RAM, a newly
10494 			 * supported device.
10495 			 */
10496 #if defined(__i386) || defined(__amd64)
10497 			if (un->un_f_sync_cache_supported ||
10498 			    un->un_f_dvdram_writable_device == TRUE) {
10499 #else
10500 			if (un->un_f_dvdram_writable_device == TRUE) {
10501 #endif
10502 				mutex_exit(SD_MUTEX(un));
10503 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10504 					rval =
10505 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10506 					    NULL);
10507 					/* ignore error if not supported */
10508 					if (rval == ENOTSUP) {
10509 						rval = 0;
10510 					} else if (rval != 0) {
10511 						rval = EIO;
10512 					}
10513 					sd_pm_exit(un);
10514 				} else {
10515 					rval = EIO;
10516 				}
10517 				mutex_enter(SD_MUTEX(un));
10518 			}
10519 
10520 			/*
10521 			 * For devices which supports DOOR_LOCK, send an ALLOW
10522 			 * MEDIA REMOVAL command, but don't get upset if it
10523 			 * fails. We need to raise the power of the drive before
10524 			 * we can call sd_send_scsi_DOORLOCK()
10525 			 */
10526 			if (un->un_f_doorlock_supported) {
10527 				mutex_exit(SD_MUTEX(un));
10528 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10529 					rval = sd_send_scsi_DOORLOCK(un,
10530 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10531 
10532 					sd_pm_exit(un);
10533 					if (ISCD(un) && (rval != 0) &&
10534 					    (nodelay != 0)) {
10535 						rval = ENXIO;
10536 					}
10537 				} else {
10538 					rval = EIO;
10539 				}
10540 				mutex_enter(SD_MUTEX(un));
10541 			}
10542 
10543 			/*
10544 			 * If a device has removable media, invalidate all
10545 			 * parameters related to media, such as geometry,
10546 			 * blocksize, and blockcount.
10547 			 */
10548 			if (un->un_f_has_removable_media) {
10549 				sr_ejected(un);
10550 			}
10551 
10552 			/*
10553 			 * Destroy the cache (if it exists) which was
10554 			 * allocated for the write maps since this is
10555 			 * the last close for this media.
10556 			 */
10557 			if (un->un_wm_cache) {
10558 				/*
10559 				 * Check if there are pending commands.
10560 				 * and if there are give a warning and
10561 				 * do not destroy the cache.
10562 				 */
10563 				if (un->un_ncmds_in_driver > 0) {
10564 					scsi_log(SD_DEVINFO(un),
10565 					    sd_label, CE_WARN,
10566 					    "Unable to clean up memory "
10567 					    "because of pending I/O\n");
10568 				} else {
10569 					kmem_cache_destroy(
10570 					    un->un_wm_cache);
10571 					un->un_wm_cache = NULL;
10572 				}
10573 			}
10574 		}
10575 	}
10576 
10577 	mutex_exit(SD_MUTEX(un));
10578 	sema_v(&un->un_semoclose);
10579 
10580 	if (otyp == OTYP_LYR) {
10581 		mutex_enter(&sd_detach_mutex);
10582 		/*
10583 		 * The detach routine may run when the layer count
10584 		 * drops to zero.
10585 		 */
10586 		un->un_layer_count--;
10587 		mutex_exit(&sd_detach_mutex);
10588 	}
10589 
10590 	return (rval);
10591 }
10592 
10593 
10594 /*
10595  *    Function: sd_ready_and_valid
10596  *
10597  * Description: Test if device is ready and has a valid geometry.
10598  *
10599  *   Arguments: dev - device number
10600  *		un  - driver soft state (unit) structure
10601  *
10602  * Return Code: SD_READY_VALID		ready and valid label
10603  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10604  *		SD_NOT_READY_VALID	not ready, no label
10605  *
10606  *     Context: Never called at interrupt context.
10607  */
10608 
10609 static int
10610 sd_ready_and_valid(struct sd_lun *un)
10611 {
10612 	struct sd_errstats	*stp;
10613 	uint64_t		capacity;
10614 	uint_t			lbasize;
10615 	int			rval = SD_READY_VALID;
10616 	char			name_str[48];
10617 
10618 	ASSERT(un != NULL);
10619 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10620 
10621 	mutex_enter(SD_MUTEX(un));
10622 	/*
10623 	 * If a device has removable media, we must check if media is
10624 	 * ready when checking if this device is ready and valid.
10625 	 */
10626 	if (un->un_f_has_removable_media) {
10627 		mutex_exit(SD_MUTEX(un));
10628 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10629 			rval = SD_NOT_READY_VALID;
10630 			mutex_enter(SD_MUTEX(un));
10631 			goto done;
10632 		}
10633 
10634 		mutex_enter(SD_MUTEX(un));
10635 		if ((un->un_f_geometry_is_valid == FALSE) ||
10636 		    (un->un_f_blockcount_is_valid == FALSE) ||
10637 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10638 
10639 			/* capacity has to be read every open. */
10640 			mutex_exit(SD_MUTEX(un));
10641 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10642 			    &lbasize, SD_PATH_DIRECT) != 0) {
10643 				mutex_enter(SD_MUTEX(un));
10644 				un->un_f_geometry_is_valid = FALSE;
10645 				rval = SD_NOT_READY_VALID;
10646 				goto done;
10647 			} else {
10648 				mutex_enter(SD_MUTEX(un));
10649 				sd_update_block_info(un, lbasize, capacity);
10650 			}
10651 		}
10652 
10653 		/*
10654 		 * Check if the media in the device is writable or not.
10655 		 */
10656 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10657 			sd_check_for_writable_cd(un);
10658 		}
10659 
10660 	} else {
10661 		/*
10662 		 * Do a test unit ready to clear any unit attention from non-cd
10663 		 * devices.
10664 		 */
10665 		mutex_exit(SD_MUTEX(un));
10666 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10667 		mutex_enter(SD_MUTEX(un));
10668 	}
10669 
10670 
10671 	/*
10672 	 * If this is a non 512 block device, allocate space for
10673 	 * the wmap cache. This is being done here since every time
10674 	 * a media is changed this routine will be called and the
10675 	 * block size is a function of media rather than device.
10676 	 */
10677 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10678 		if (!(un->un_wm_cache)) {
10679 			(void) snprintf(name_str, sizeof (name_str),
10680 			    "%s%d_cache",
10681 			    ddi_driver_name(SD_DEVINFO(un)),
10682 			    ddi_get_instance(SD_DEVINFO(un)));
10683 			un->un_wm_cache = kmem_cache_create(
10684 			    name_str, sizeof (struct sd_w_map),
10685 			    8, sd_wm_cache_constructor,
10686 			    sd_wm_cache_destructor, NULL,
10687 			    (void *)un, NULL, 0);
10688 			if (!(un->un_wm_cache)) {
10689 					rval = ENOMEM;
10690 					goto done;
10691 			}
10692 		}
10693 	}
10694 
10695 	if (un->un_state == SD_STATE_NORMAL) {
10696 		/*
10697 		 * If the target is not yet ready here (defined by a TUR
10698 		 * failure), invalidate the geometry and print an 'offline'
10699 		 * message. This is a legacy message, as the state of the
10700 		 * target is not actually changed to SD_STATE_OFFLINE.
10701 		 *
10702 		 * If the TUR fails for EACCES (Reservation Conflict), it
10703 		 * means there actually is nothing wrong with the target that
10704 		 * would require invalidating the geometry, so continue in
10705 		 * that case as if the TUR was successful.
10706 		 */
10707 		int err;
10708 
10709 		mutex_exit(SD_MUTEX(un));
10710 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10711 		mutex_enter(SD_MUTEX(un));
10712 
10713 		if ((err != 0) && (err != EACCES)) {
10714 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10715 			    "offline\n");
10716 			un->un_f_geometry_is_valid = FALSE;
10717 			rval = SD_NOT_READY_VALID;
10718 			goto done;
10719 		}
10720 	}
10721 
10722 	if (un->un_f_format_in_progress == FALSE) {
10723 		/*
10724 		 * Note: sd_validate_geometry may return TRUE, but that does
10725 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10726 		 */
10727 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10728 		if (rval == ENOTSUP) {
10729 			if (un->un_f_geometry_is_valid == TRUE)
10730 				rval = 0;
10731 			else {
10732 				rval = SD_READY_NOT_VALID;
10733 				goto done;
10734 			}
10735 		}
10736 		if (rval != 0) {
10737 			/*
10738 			 * We don't check the validity of geometry for
10739 			 * CDROMs. Also we assume we have a good label
10740 			 * even if sd_validate_geometry returned ENOMEM.
10741 			 */
10742 			if (!ISCD(un) && rval != ENOMEM) {
10743 				rval = SD_NOT_READY_VALID;
10744 				goto done;
10745 			}
10746 		}
10747 	}
10748 
10749 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10750 	/*
10751 	 * check to see if this disk is write protected, if it is and we have
10752 	 * not set read-only, then fail
10753 	 */
10754 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10755 		New_state(un, SD_STATE_CLOSED);
10756 		goto done;
10757 	}
10758 #endif
10759 
10760 	/*
10761 	 * If this device supports DOOR_LOCK command, try and send
10762 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10763 	 * if it fails. For a CD, however, it is an error
10764 	 */
10765 	if (un->un_f_doorlock_supported) {
10766 		mutex_exit(SD_MUTEX(un));
10767 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10768 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10769 			rval = SD_NOT_READY_VALID;
10770 			mutex_enter(SD_MUTEX(un));
10771 			goto done;
10772 		}
10773 		mutex_enter(SD_MUTEX(un));
10774 	}
10775 
10776 	/* The state has changed, inform the media watch routines */
10777 	un->un_mediastate = DKIO_INSERTED;
10778 	cv_broadcast(&un->un_state_cv);
10779 	rval = SD_READY_VALID;
10780 
10781 done:
10782 
10783 	/*
10784 	 * Initialize the capacity kstat value, if no media previously
10785 	 * (capacity kstat is 0) and a media has been inserted
10786 	 * (un_blockcount > 0).
10787 	 */
10788 	if (un->un_errstats != NULL) {
10789 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10790 		if ((stp->sd_capacity.value.ui64 == 0) &&
10791 		    (un->un_f_blockcount_is_valid == TRUE)) {
10792 			stp->sd_capacity.value.ui64 =
10793 			    (uint64_t)((uint64_t)un->un_blockcount *
10794 			    un->un_sys_blocksize);
10795 		}
10796 	}
10797 
10798 	mutex_exit(SD_MUTEX(un));
10799 	return (rval);
10800 }
10801 
10802 
10803 /*
10804  *    Function: sdmin
10805  *
10806  * Description: Routine to limit the size of a data transfer. Used in
10807  *		conjunction with physio(9F).
10808  *
10809  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10810  *
10811  *     Context: Kernel thread context.
10812  */
10813 
10814 static void
10815 sdmin(struct buf *bp)
10816 {
10817 	struct sd_lun	*un;
10818 	int		instance;
10819 
10820 	instance = SDUNIT(bp->b_edev);
10821 
10822 	un = ddi_get_soft_state(sd_state, instance);
10823 	ASSERT(un != NULL);
10824 
10825 	if (bp->b_bcount > un->un_max_xfer_size) {
10826 		bp->b_bcount = un->un_max_xfer_size;
10827 	}
10828 }
10829 
10830 
10831 /*
10832  *    Function: sdread
10833  *
10834  * Description: Driver's read(9e) entry point function.
10835  *
10836  *   Arguments: dev   - device number
10837  *		uio   - structure pointer describing where data is to be stored
10838  *			in user's space
10839  *		cred_p  - user credential pointer
10840  *
10841  * Return Code: ENXIO
10842  *		EIO
10843  *		EINVAL
10844  *		value returned by physio
10845  *
10846  *     Context: Kernel thread context.
10847  */
10848 /* ARGSUSED */
10849 static int
10850 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10851 {
10852 	struct sd_lun	*un = NULL;
10853 	int		secmask;
10854 	int		err;
10855 
10856 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10857 		return (ENXIO);
10858 	}
10859 
10860 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10861 
10862 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10863 		mutex_enter(SD_MUTEX(un));
10864 		/*
10865 		 * Because the call to sd_ready_and_valid will issue I/O we
10866 		 * must wait here if either the device is suspended or
10867 		 * if it's power level is changing.
10868 		 */
10869 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10870 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10871 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10872 		}
10873 		un->un_ncmds_in_driver++;
10874 		mutex_exit(SD_MUTEX(un));
10875 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10876 			mutex_enter(SD_MUTEX(un));
10877 			un->un_ncmds_in_driver--;
10878 			ASSERT(un->un_ncmds_in_driver >= 0);
10879 			mutex_exit(SD_MUTEX(un));
10880 			return (EIO);
10881 		}
10882 		mutex_enter(SD_MUTEX(un));
10883 		un->un_ncmds_in_driver--;
10884 		ASSERT(un->un_ncmds_in_driver >= 0);
10885 		mutex_exit(SD_MUTEX(un));
10886 	}
10887 
10888 	/*
10889 	 * Read requests are restricted to multiples of the system block size.
10890 	 */
10891 	secmask = un->un_sys_blocksize - 1;
10892 
10893 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10894 		SD_ERROR(SD_LOG_READ_WRITE, un,
10895 		    "sdread: file offset not modulo %d\n",
10896 		    un->un_sys_blocksize);
10897 		err = EINVAL;
10898 	} else if (uio->uio_iov->iov_len & (secmask)) {
10899 		SD_ERROR(SD_LOG_READ_WRITE, un,
10900 		    "sdread: transfer length not modulo %d\n",
10901 		    un->un_sys_blocksize);
10902 		err = EINVAL;
10903 	} else {
10904 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10905 	}
10906 	return (err);
10907 }
10908 
10909 
10910 /*
10911  *    Function: sdwrite
10912  *
10913  * Description: Driver's write(9e) entry point function.
10914  *
10915  *   Arguments: dev   - device number
10916  *		uio   - structure pointer describing where data is stored in
10917  *			user's space
10918  *		cred_p  - user credential pointer
10919  *
10920  * Return Code: ENXIO
10921  *		EIO
10922  *		EINVAL
10923  *		value returned by physio
10924  *
10925  *     Context: Kernel thread context.
10926  */
10927 /* ARGSUSED */
10928 static int
10929 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10930 {
10931 	struct sd_lun	*un = NULL;
10932 	int		secmask;
10933 	int		err;
10934 
10935 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10936 		return (ENXIO);
10937 	}
10938 
10939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10940 
10941 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10942 		mutex_enter(SD_MUTEX(un));
10943 		/*
10944 		 * Because the call to sd_ready_and_valid will issue I/O we
10945 		 * must wait here if either the device is suspended or
10946 		 * if it's power level is changing.
10947 		 */
10948 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10949 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10950 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10951 		}
10952 		un->un_ncmds_in_driver++;
10953 		mutex_exit(SD_MUTEX(un));
10954 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10955 			mutex_enter(SD_MUTEX(un));
10956 			un->un_ncmds_in_driver--;
10957 			ASSERT(un->un_ncmds_in_driver >= 0);
10958 			mutex_exit(SD_MUTEX(un));
10959 			return (EIO);
10960 		}
10961 		mutex_enter(SD_MUTEX(un));
10962 		un->un_ncmds_in_driver--;
10963 		ASSERT(un->un_ncmds_in_driver >= 0);
10964 		mutex_exit(SD_MUTEX(un));
10965 	}
10966 
10967 	/*
10968 	 * Write requests are restricted to multiples of the system block size.
10969 	 */
10970 	secmask = un->un_sys_blocksize - 1;
10971 
10972 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10973 		SD_ERROR(SD_LOG_READ_WRITE, un,
10974 		    "sdwrite: file offset not modulo %d\n",
10975 		    un->un_sys_blocksize);
10976 		err = EINVAL;
10977 	} else if (uio->uio_iov->iov_len & (secmask)) {
10978 		SD_ERROR(SD_LOG_READ_WRITE, un,
10979 		    "sdwrite: transfer length not modulo %d\n",
10980 		    un->un_sys_blocksize);
10981 		err = EINVAL;
10982 	} else {
10983 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10984 	}
10985 	return (err);
10986 }
10987 
10988 
10989 /*
10990  *    Function: sdaread
10991  *
10992  * Description: Driver's aread(9e) entry point function.
10993  *
10994  *   Arguments: dev   - device number
10995  *		aio   - structure pointer describing where data is to be stored
10996  *		cred_p  - user credential pointer
10997  *
10998  * Return Code: ENXIO
10999  *		EIO
11000  *		EINVAL
11001  *		value returned by aphysio
11002  *
11003  *     Context: Kernel thread context.
11004  */
11005 /* ARGSUSED */
11006 static int
11007 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11008 {
11009 	struct sd_lun	*un = NULL;
11010 	struct uio	*uio = aio->aio_uio;
11011 	int		secmask;
11012 	int		err;
11013 
11014 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11015 		return (ENXIO);
11016 	}
11017 
11018 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11019 
11020 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11021 		mutex_enter(SD_MUTEX(un));
11022 		/*
11023 		 * Because the call to sd_ready_and_valid will issue I/O we
11024 		 * must wait here if either the device is suspended or
11025 		 * if it's power level is changing.
11026 		 */
11027 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11028 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11029 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11030 		}
11031 		un->un_ncmds_in_driver++;
11032 		mutex_exit(SD_MUTEX(un));
11033 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11034 			mutex_enter(SD_MUTEX(un));
11035 			un->un_ncmds_in_driver--;
11036 			ASSERT(un->un_ncmds_in_driver >= 0);
11037 			mutex_exit(SD_MUTEX(un));
11038 			return (EIO);
11039 		}
11040 		mutex_enter(SD_MUTEX(un));
11041 		un->un_ncmds_in_driver--;
11042 		ASSERT(un->un_ncmds_in_driver >= 0);
11043 		mutex_exit(SD_MUTEX(un));
11044 	}
11045 
11046 	/*
11047 	 * Read requests are restricted to multiples of the system block size.
11048 	 */
11049 	secmask = un->un_sys_blocksize - 1;
11050 
11051 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11052 		SD_ERROR(SD_LOG_READ_WRITE, un,
11053 		    "sdaread: file offset not modulo %d\n",
11054 		    un->un_sys_blocksize);
11055 		err = EINVAL;
11056 	} else if (uio->uio_iov->iov_len & (secmask)) {
11057 		SD_ERROR(SD_LOG_READ_WRITE, un,
11058 		    "sdaread: transfer length not modulo %d\n",
11059 		    un->un_sys_blocksize);
11060 		err = EINVAL;
11061 	} else {
11062 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11063 	}
11064 	return (err);
11065 }
11066 
11067 
11068 /*
11069  *    Function: sdawrite
11070  *
11071  * Description: Driver's awrite(9e) entry point function.
11072  *
11073  *   Arguments: dev   - device number
11074  *		aio   - structure pointer describing where data is stored
11075  *		cred_p  - user credential pointer
11076  *
11077  * Return Code: ENXIO
11078  *		EIO
11079  *		EINVAL
11080  *		value returned by aphysio
11081  *
11082  *     Context: Kernel thread context.
11083  */
11084 /* ARGSUSED */
11085 static int
11086 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11087 {
11088 	struct sd_lun	*un = NULL;
11089 	struct uio	*uio = aio->aio_uio;
11090 	int		secmask;
11091 	int		err;
11092 
11093 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11094 		return (ENXIO);
11095 	}
11096 
11097 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11098 
11099 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11100 		mutex_enter(SD_MUTEX(un));
11101 		/*
11102 		 * Because the call to sd_ready_and_valid will issue I/O we
11103 		 * must wait here if either the device is suspended or
11104 		 * if it's power level is changing.
11105 		 */
11106 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11107 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11108 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11109 		}
11110 		un->un_ncmds_in_driver++;
11111 		mutex_exit(SD_MUTEX(un));
11112 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11113 			mutex_enter(SD_MUTEX(un));
11114 			un->un_ncmds_in_driver--;
11115 			ASSERT(un->un_ncmds_in_driver >= 0);
11116 			mutex_exit(SD_MUTEX(un));
11117 			return (EIO);
11118 		}
11119 		mutex_enter(SD_MUTEX(un));
11120 		un->un_ncmds_in_driver--;
11121 		ASSERT(un->un_ncmds_in_driver >= 0);
11122 		mutex_exit(SD_MUTEX(un));
11123 	}
11124 
11125 	/*
11126 	 * Write requests are restricted to multiples of the system block size.
11127 	 */
11128 	secmask = un->un_sys_blocksize - 1;
11129 
11130 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11131 		SD_ERROR(SD_LOG_READ_WRITE, un,
11132 		    "sdawrite: file offset not modulo %d\n",
11133 		    un->un_sys_blocksize);
11134 		err = EINVAL;
11135 	} else if (uio->uio_iov->iov_len & (secmask)) {
11136 		SD_ERROR(SD_LOG_READ_WRITE, un,
11137 		    "sdawrite: transfer length not modulo %d\n",
11138 		    un->un_sys_blocksize);
11139 		err = EINVAL;
11140 	} else {
11141 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11142 	}
11143 	return (err);
11144 }
11145 
11146 
11147 
11148 
11149 
11150 /*
11151  * Driver IO processing follows the following sequence:
11152  *
11153  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11154  *         |                |                     ^
11155  *         v                v                     |
11156  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11157  *         |                |                     |                   |
11158  *         v                |                     |                   |
11159  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11160  *         |                |                     ^                   ^
11161  *         v                v                     |                   |
11162  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11163  *         |                |                     |                   |
11164  *     +---+                |                     +------------+      +-------+
11165  *     |                    |                                  |              |
11166  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11167  *     |                    v                                  |              |
11168  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11169  *     |                    |                                  ^              |
11170  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11171  *     |                    v                                  |              |
11172  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11173  *     |                    |                                  ^              |
11174  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11175  *     |                    v                                  |              |
11176  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11177  *     |                    |                                  ^              |
11178  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11179  *     |                    v                                  |              |
11180  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11181  *     |                    |                                  ^              |
11182  *     |                    |                                  |              |
11183  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11184  *                          |                           ^
11185  *                          v                           |
11186  *                   sd_core_iostart()                  |
11187  *                          |                           |
11188  *                          |                           +------>(*destroypkt)()
11189  *                          +-> sd_start_cmds() <-+     |           |
11190  *                          |                     |     |           v
11191  *                          |                     |     |  scsi_destroy_pkt(9F)
11192  *                          |                     |     |
11193  *                          +->(*initpkt)()       +- sdintr()
11194  *                          |  |                        |  |
11195  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11196  *                          |  +-> scsi_setup_cdb(9F)   |
11197  *                          |                           |
11198  *                          +--> scsi_transport(9F)     |
11199  *                                     |                |
11200  *                                     +----> SCSA ---->+
11201  *
11202  *
11203  * This code is based upon the following presumtions:
11204  *
11205  *   - iostart and iodone functions operate on buf(9S) structures. These
11206  *     functions perform the necessary operations on the buf(9S) and pass
11207  *     them along to the next function in the chain by using the macros
11208  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11209  *     (for iodone side functions).
11210  *
11211  *   - The iostart side functions may sleep. The iodone side functions
11212  *     are called under interrupt context and may NOT sleep. Therefore
11213  *     iodone side functions also may not call iostart side functions.
11214  *     (NOTE: iostart side functions should NOT sleep for memory, as
11215  *     this could result in deadlock.)
11216  *
11217  *   - An iostart side function may call its corresponding iodone side
11218  *     function directly (if necessary).
11219  *
11220  *   - In the event of an error, an iostart side function can return a buf(9S)
11221  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11222  *     b_error in the usual way of course).
11223  *
11224  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11225  *     requests to the iostart side functions.  The iostart side functions in
11226  *     this case would be called under the context of a taskq thread, so it's
11227  *     OK for them to block/sleep/spin in this case.
11228  *
11229  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11230  *     pass them along to the next function in the chain.  The corresponding
11231  *     iodone side functions must coalesce the "shadow" bufs and return
11232  *     the "original" buf to the next higher layer.
11233  *
11234  *   - The b_private field of the buf(9S) struct holds a pointer to
11235  *     an sd_xbuf struct, which contains information needed to
11236  *     construct the scsi_pkt for the command.
11237  *
11238  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11239  *     layer must acquire & release the SD_MUTEX(un) as needed.
11240  */
11241 
11242 
11243 /*
11244  * Create taskq for all targets in the system. This is created at
11245  * _init(9E) and destroyed at _fini(9E).
11246  *
11247  * Note: here we set the minalloc to a reasonably high number to ensure that
11248  * we will have an adequate supply of task entries available at interrupt time.
11249  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11250  * sd_create_taskq().  Since we do not want to sleep for allocations at
11251  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11252  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11253  * requests any one instant in time.
11254  */
11255 #define	SD_TASKQ_NUMTHREADS	8
11256 #define	SD_TASKQ_MINALLOC	256
11257 #define	SD_TASKQ_MAXALLOC	256
11258 
11259 static taskq_t	*sd_tq = NULL;
11260 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11261 
11262 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11263 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11264 
11265 /*
11266  * The following task queue is being created for the write part of
11267  * read-modify-write of non-512 block size devices.
11268  * Limit the number of threads to 1 for now. This number has been choosen
11269  * considering the fact that it applies only to dvd ram drives/MO drives
11270  * currently. Performance for which is not main criteria at this stage.
11271  * Note: It needs to be explored if we can use a single taskq in future
11272  */
11273 #define	SD_WMR_TASKQ_NUMTHREADS	1
11274 static taskq_t	*sd_wmr_tq = NULL;
11275 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11276 
11277 /*
11278  *    Function: sd_taskq_create
11279  *
11280  * Description: Create taskq thread(s) and preallocate task entries
11281  *
11282  * Return Code: Returns a pointer to the allocated taskq_t.
11283  *
11284  *     Context: Can sleep. Requires blockable context.
11285  *
11286  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11287  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11288  *		- taskq_create() will block for memory, also it will panic
11289  *		  if it cannot create the requested number of threads.
11290  *		- Currently taskq_create() creates threads that cannot be
11291  *		  swapped.
11292  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11293  *		  supply of taskq entries at interrupt time (ie, so that we
11294  *		  do not have to sleep for memory)
11295  */
11296 
11297 static void
11298 sd_taskq_create(void)
11299 {
11300 	char	taskq_name[TASKQ_NAMELEN];
11301 
11302 	ASSERT(sd_tq == NULL);
11303 	ASSERT(sd_wmr_tq == NULL);
11304 
11305 	(void) snprintf(taskq_name, sizeof (taskq_name),
11306 	    "%s_drv_taskq", sd_label);
11307 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11308 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11309 	    TASKQ_PREPOPULATE));
11310 
11311 	(void) snprintf(taskq_name, sizeof (taskq_name),
11312 	    "%s_rmw_taskq", sd_label);
11313 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11314 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11315 	    TASKQ_PREPOPULATE));
11316 }
11317 
11318 
11319 /*
11320  *    Function: sd_taskq_delete
11321  *
11322  * Description: Complementary cleanup routine for sd_taskq_create().
11323  *
11324  *     Context: Kernel thread context.
11325  */
11326 
11327 static void
11328 sd_taskq_delete(void)
11329 {
11330 	ASSERT(sd_tq != NULL);
11331 	ASSERT(sd_wmr_tq != NULL);
11332 	taskq_destroy(sd_tq);
11333 	taskq_destroy(sd_wmr_tq);
11334 	sd_tq = NULL;
11335 	sd_wmr_tq = NULL;
11336 }
11337 
11338 
11339 /*
11340  *    Function: sdstrategy
11341  *
11342  * Description: Driver's strategy (9E) entry point function.
11343  *
11344  *   Arguments: bp - pointer to buf(9S)
11345  *
11346  * Return Code: Always returns zero
11347  *
11348  *     Context: Kernel thread context.
11349  */
11350 
11351 static int
11352 sdstrategy(struct buf *bp)
11353 {
11354 	struct sd_lun *un;
11355 
11356 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11357 	if (un == NULL) {
11358 		bioerror(bp, EIO);
11359 		bp->b_resid = bp->b_bcount;
11360 		biodone(bp);
11361 		return (0);
11362 	}
11363 	/* As was done in the past, fail new cmds. if state is dumping. */
11364 	if (un->un_state == SD_STATE_DUMPING) {
11365 		bioerror(bp, ENXIO);
11366 		bp->b_resid = bp->b_bcount;
11367 		biodone(bp);
11368 		return (0);
11369 	}
11370 
11371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11372 
11373 	/*
11374 	 * Commands may sneak in while we released the mutex in
11375 	 * DDI_SUSPEND, we should block new commands. However, old
11376 	 * commands that are still in the driver at this point should
11377 	 * still be allowed to drain.
11378 	 */
11379 	mutex_enter(SD_MUTEX(un));
11380 	/*
11381 	 * Must wait here if either the device is suspended or
11382 	 * if it's power level is changing.
11383 	 */
11384 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11385 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11386 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11387 	}
11388 
11389 	un->un_ncmds_in_driver++;
11390 
11391 	/*
11392 	 * atapi: Since we are running the CD for now in PIO mode we need to
11393 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11394 	 * the HBA's init_pkt routine.
11395 	 */
11396 	if (un->un_f_cfg_is_atapi == TRUE) {
11397 		mutex_exit(SD_MUTEX(un));
11398 		bp_mapin(bp);
11399 		mutex_enter(SD_MUTEX(un));
11400 	}
11401 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11402 	    un->un_ncmds_in_driver);
11403 
11404 	mutex_exit(SD_MUTEX(un));
11405 
11406 	/*
11407 	 * This will (eventually) allocate the sd_xbuf area and
11408 	 * call sd_xbuf_strategy().  We just want to return the
11409 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11410 	 * imized tail call which saves us a stack frame.
11411 	 */
11412 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11413 }
11414 
11415 
11416 /*
11417  *    Function: sd_xbuf_strategy
11418  *
11419  * Description: Function for initiating IO operations via the
11420  *		ddi_xbuf_qstrategy() mechanism.
11421  *
11422  *     Context: Kernel thread context.
11423  */
11424 
11425 static void
11426 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11427 {
11428 	struct sd_lun *un = arg;
11429 
11430 	ASSERT(bp != NULL);
11431 	ASSERT(xp != NULL);
11432 	ASSERT(un != NULL);
11433 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11434 
11435 	/*
11436 	 * Initialize the fields in the xbuf and save a pointer to the
11437 	 * xbuf in bp->b_private.
11438 	 */
11439 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11440 
11441 	/* Send the buf down the iostart chain */
11442 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11443 }
11444 
11445 
11446 /*
11447  *    Function: sd_xbuf_init
11448  *
11449  * Description: Prepare the given sd_xbuf struct for use.
11450  *
11451  *   Arguments: un - ptr to softstate
11452  *		bp - ptr to associated buf(9S)
11453  *		xp - ptr to associated sd_xbuf
11454  *		chain_type - IO chain type to use:
11455  *			SD_CHAIN_NULL
11456  *			SD_CHAIN_BUFIO
11457  *			SD_CHAIN_USCSI
11458  *			SD_CHAIN_DIRECT
11459  *			SD_CHAIN_DIRECT_PRIORITY
11460  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11461  *			initialization; may be NULL if none.
11462  *
11463  *     Context: Kernel thread context
11464  */
11465 
11466 static void
11467 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11468 	uchar_t chain_type, void *pktinfop)
11469 {
11470 	int index;
11471 
11472 	ASSERT(un != NULL);
11473 	ASSERT(bp != NULL);
11474 	ASSERT(xp != NULL);
11475 
11476 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11477 	    bp, chain_type);
11478 
11479 	xp->xb_un	= un;
11480 	xp->xb_pktp	= NULL;
11481 	xp->xb_pktinfo	= pktinfop;
11482 	xp->xb_private	= bp->b_private;
11483 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11484 
11485 	/*
11486 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11487 	 * upon the specified chain type to use.
11488 	 */
11489 	switch (chain_type) {
11490 	case SD_CHAIN_NULL:
11491 		/*
11492 		 * Fall thru to just use the values for the buf type, even
11493 		 * tho for the NULL chain these values will never be used.
11494 		 */
11495 		/* FALLTHRU */
11496 	case SD_CHAIN_BUFIO:
11497 		index = un->un_buf_chain_type;
11498 		break;
11499 	case SD_CHAIN_USCSI:
11500 		index = un->un_uscsi_chain_type;
11501 		break;
11502 	case SD_CHAIN_DIRECT:
11503 		index = un->un_direct_chain_type;
11504 		break;
11505 	case SD_CHAIN_DIRECT_PRIORITY:
11506 		index = un->un_priority_chain_type;
11507 		break;
11508 	default:
11509 		/* We're really broken if we ever get here... */
11510 		panic("sd_xbuf_init: illegal chain type!");
11511 		/*NOTREACHED*/
11512 	}
11513 
11514 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11515 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11516 
11517 	/*
11518 	 * It might be a bit easier to simply bzero the entire xbuf above,
11519 	 * but it turns out that since we init a fair number of members anyway,
11520 	 * we save a fair number cycles by doing explicit assignment of zero.
11521 	 */
11522 	xp->xb_pkt_flags	= 0;
11523 	xp->xb_dma_resid	= 0;
11524 	xp->xb_retry_count	= 0;
11525 	xp->xb_victim_retry_count = 0;
11526 	xp->xb_ua_retry_count	= 0;
11527 	xp->xb_sense_bp		= NULL;
11528 	xp->xb_sense_status	= 0;
11529 	xp->xb_sense_state	= 0;
11530 	xp->xb_sense_resid	= 0;
11531 
11532 	bp->b_private	= xp;
11533 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11534 	bp->b_resid	= 0;
11535 	bp->av_forw	= NULL;
11536 	bp->av_back	= NULL;
11537 	bioerror(bp, 0);
11538 
11539 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11540 }
11541 
11542 
11543 /*
11544  *    Function: sd_uscsi_strategy
11545  *
11546  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11547  *
11548  *   Arguments: bp - buf struct ptr
11549  *
11550  * Return Code: Always returns 0
11551  *
11552  *     Context: Kernel thread context
11553  */
11554 
11555 static int
11556 sd_uscsi_strategy(struct buf *bp)
11557 {
11558 	struct sd_lun		*un;
11559 	struct sd_uscsi_info	*uip;
11560 	struct sd_xbuf		*xp;
11561 	uchar_t			chain_type;
11562 
11563 	ASSERT(bp != NULL);
11564 
11565 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11566 	if (un == NULL) {
11567 		bioerror(bp, EIO);
11568 		bp->b_resid = bp->b_bcount;
11569 		biodone(bp);
11570 		return (0);
11571 	}
11572 
11573 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11574 
11575 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11576 
11577 	mutex_enter(SD_MUTEX(un));
11578 	/*
11579 	 * atapi: Since we are running the CD for now in PIO mode we need to
11580 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11581 	 * the HBA's init_pkt routine.
11582 	 */
11583 	if (un->un_f_cfg_is_atapi == TRUE) {
11584 		mutex_exit(SD_MUTEX(un));
11585 		bp_mapin(bp);
11586 		mutex_enter(SD_MUTEX(un));
11587 	}
11588 	un->un_ncmds_in_driver++;
11589 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11590 	    un->un_ncmds_in_driver);
11591 	mutex_exit(SD_MUTEX(un));
11592 
11593 	/*
11594 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11595 	 */
11596 	ASSERT(bp->b_private != NULL);
11597 	uip = (struct sd_uscsi_info *)bp->b_private;
11598 
11599 	switch (uip->ui_flags) {
11600 	case SD_PATH_DIRECT:
11601 		chain_type = SD_CHAIN_DIRECT;
11602 		break;
11603 	case SD_PATH_DIRECT_PRIORITY:
11604 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11605 		break;
11606 	default:
11607 		chain_type = SD_CHAIN_USCSI;
11608 		break;
11609 	}
11610 
11611 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11612 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11613 
11614 	/* Use the index obtained within xbuf_init */
11615 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11616 
11617 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11618 
11619 	return (0);
11620 }
11621 
11622 
11623 /*
11624  * These routines perform raw i/o operations.
11625  */
11626 /*ARGSUSED*/
11627 static void
11628 sduscsimin(struct buf *bp)
11629 {
11630 	/*
11631 	 * do not break up because the CDB count would then
11632 	 * be incorrect and data underruns would result (incomplete
11633 	 * read/writes which would be retried and then failed, see
11634 	 * sdintr().
11635 	 */
11636 }
11637 
11638 
11639 
11640 /*
11641  *    Function: sd_send_scsi_cmd
11642  *
11643  * Description: Runs a USCSI command for user (when called thru sdioctl),
11644  *		or for the driver
11645  *
11646  *   Arguments: dev - the dev_t for the device
11647  *		incmd - ptr to a valid uscsi_cmd struct
11648  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11649  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11650  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11651  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11652  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11653  *			to use the USCSI "direct" chain and bypass the normal
11654  *			command waitq.
11655  *
11656  * Return Code: 0 -  successful completion of the given command
11657  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11658  *		ENXIO  - soft state not found for specified dev
11659  *		EINVAL
11660  *		EFAULT - copyin/copyout error
11661  *		return code of biowait(9F) or physio(9F):
11662  *			EIO - IO error, caller may check incmd->uscsi_status
11663  *			ENXIO
11664  *			EACCES - reservation conflict
11665  *
11666  *     Context: Waits for command to complete. Can sleep.
11667  */
11668 
11669 static int
11670 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11671 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11672 	int path_flag)
11673 {
11674 	struct sd_uscsi_info	*uip;
11675 	struct uscsi_cmd	*uscmd;
11676 	struct sd_lun	*un;
11677 	struct buf	*bp;
11678 	int	rval;
11679 	int	flags;
11680 
11681 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11682 	if (un == NULL) {
11683 		return (ENXIO);
11684 	}
11685 
11686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11687 
11688 #ifdef SDDEBUG
11689 	switch (dataspace) {
11690 	case UIO_USERSPACE:
11691 		SD_TRACE(SD_LOG_IO, un,
11692 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11693 		break;
11694 	case UIO_SYSSPACE:
11695 		SD_TRACE(SD_LOG_IO, un,
11696 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11697 		break;
11698 	default:
11699 		SD_TRACE(SD_LOG_IO, un,
11700 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11701 		break;
11702 	}
11703 #endif
11704 
11705 	/*
11706 	 * Perform resets directly; no need to generate a command to do it.
11707 	 */
11708 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11709 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11710 		    RESET_ALL : RESET_TARGET;
11711 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11712 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11713 			/* Reset attempt was unsuccessful */
11714 			SD_TRACE(SD_LOG_IO, un,
11715 			    "sd_send_scsi_cmd: reset: failure\n");
11716 			return (EIO);
11717 		}
11718 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11719 		return (0);
11720 	}
11721 
11722 	/* Perfunctory sanity check... */
11723 	if (incmd->uscsi_cdblen <= 0) {
11724 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11725 		    "invalid uscsi_cdblen, returning EINVAL\n");
11726 		return (EINVAL);
11727 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
11728 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11729 		    "unsupported uscsi_cdblen, returning EINVAL\n");
11730 		return (EINVAL);
11731 	}
11732 
11733 	/*
11734 	 * In order to not worry about where the uscsi structure came from
11735 	 * (or where the cdb it points to came from) we're going to make
11736 	 * kmem_alloc'd copies of them here. This will also allow reference
11737 	 * to the data they contain long after this process has gone to
11738 	 * sleep and its kernel stack has been unmapped, etc.
11739 	 *
11740 	 * First get some memory for the uscsi_cmd struct and copy the
11741 	 * contents of the given uscsi_cmd struct into it.
11742 	 */
11743 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11744 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11745 
11746 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11747 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11748 
11749 	/*
11750 	 * Now get some space for the CDB, and copy the given CDB into
11751 	 * it. Use ddi_copyin() in case the data is in user space.
11752 	 */
11753 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11754 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11755 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11756 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11757 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11758 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11759 		return (EFAULT);
11760 	}
11761 
11762 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11763 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11764 
11765 	bp = getrbuf(KM_SLEEP);
11766 
11767 	/*
11768 	 * Allocate an sd_uscsi_info struct and fill it with the info
11769 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11770 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11771 	 * since we allocate the buf here in this function, we do not
11772 	 * need to preserve the prior contents of b_private.
11773 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11774 	 */
11775 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11776 	uip->ui_flags = path_flag;
11777 	uip->ui_cmdp  = uscmd;
11778 	bp->b_private = uip;
11779 
11780 	/*
11781 	 * Initialize Request Sense buffering, if requested.
11782 	 */
11783 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11784 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11785 		/*
11786 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11787 		 * buffer, but we replace this with a kernel buffer that
11788 		 * we allocate to use with the sense data. The sense data
11789 		 * (if present) gets copied into this new buffer before the
11790 		 * command is completed.  Then we copy the sense data from
11791 		 * our allocated buf into the caller's buffer below. Note
11792 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11793 		 * below to perform the copy back to the caller's buf.
11794 		 */
11795 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11796 		if (rqbufspace == UIO_USERSPACE) {
11797 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11798 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11799 		} else {
11800 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11801 			uscmd->uscsi_rqlen   = rlen;
11802 			uscmd->uscsi_rqresid = rlen;
11803 		}
11804 	} else {
11805 		uscmd->uscsi_rqbuf = NULL;
11806 		uscmd->uscsi_rqlen   = 0;
11807 		uscmd->uscsi_rqresid = 0;
11808 	}
11809 
11810 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11811 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11812 
11813 	if (un->un_f_is_fibre == FALSE) {
11814 		/*
11815 		 * Force asynchronous mode, if necessary.  Doing this here
11816 		 * has the unfortunate effect of running other queued
11817 		 * commands async also, but since the main purpose of this
11818 		 * capability is downloading new drive firmware, we can
11819 		 * probably live with it.
11820 		 */
11821 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11822 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11823 				== 1) {
11824 				if (scsi_ifsetcap(SD_ADDRESS(un),
11825 					    "synchronous", 0, 1) == 1) {
11826 					SD_TRACE(SD_LOG_IO, un,
11827 					"sd_send_scsi_cmd: forced async ok\n");
11828 				} else {
11829 					SD_TRACE(SD_LOG_IO, un,
11830 					"sd_send_scsi_cmd:\
11831 					forced async failed\n");
11832 					rval = EINVAL;
11833 					goto done;
11834 				}
11835 			}
11836 		}
11837 
11838 		/*
11839 		 * Re-enable synchronous mode, if requested
11840 		 */
11841 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11842 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11843 				== 0) {
11844 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11845 						"synchronous", 1, 1);
11846 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11847 					"re-enabled sync %s\n",
11848 					(i == 1) ? "ok" : "failed");
11849 			}
11850 		}
11851 	}
11852 
11853 	/*
11854 	 * Commands sent with priority are intended for error recovery
11855 	 * situations, and do not have retries performed.
11856 	 */
11857 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11858 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11859 	}
11860 
11861 	/*
11862 	 * If we're going to do actual I/O, let physio do all the right things
11863 	 */
11864 	if (uscmd->uscsi_buflen != 0) {
11865 		struct iovec	aiov;
11866 		struct uio	auio;
11867 		struct uio	*uio = &auio;
11868 
11869 		bzero(&auio, sizeof (struct uio));
11870 		bzero(&aiov, sizeof (struct iovec));
11871 		aiov.iov_base = uscmd->uscsi_bufaddr;
11872 		aiov.iov_len  = uscmd->uscsi_buflen;
11873 		uio->uio_iov  = &aiov;
11874 
11875 		uio->uio_iovcnt  = 1;
11876 		uio->uio_resid   = uscmd->uscsi_buflen;
11877 		uio->uio_segflg  = dataspace;
11878 
11879 		/*
11880 		 * physio() will block here until the command completes....
11881 		 */
11882 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11883 
11884 		rval = physio(sd_uscsi_strategy, bp, dev,
11885 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11886 		    sduscsimin, uio);
11887 
11888 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11889 		    "returned from physio with 0x%x\n", rval);
11890 
11891 	} else {
11892 		/*
11893 		 * We have to mimic what physio would do here! Argh!
11894 		 */
11895 		bp->b_flags  = B_BUSY |
11896 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11897 		bp->b_edev   = dev;
11898 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11899 		bp->b_bcount = 0;
11900 		bp->b_blkno  = 0;
11901 
11902 		SD_TRACE(SD_LOG_IO, un,
11903 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11904 
11905 		(void) sd_uscsi_strategy(bp);
11906 
11907 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11908 
11909 		rval = biowait(bp);
11910 
11911 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11912 		    "returned from  biowait with 0x%x\n", rval);
11913 	}
11914 
11915 done:
11916 
11917 #ifdef SDDEBUG
11918 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11919 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11920 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11921 	if (uscmd->uscsi_bufaddr != NULL) {
11922 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11923 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11924 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11925 		if (dataspace == UIO_SYSSPACE) {
11926 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11927 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11928 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11929 		}
11930 	}
11931 #endif
11932 
11933 	/*
11934 	 * Get the status and residual to return to the caller.
11935 	 */
11936 	incmd->uscsi_status = uscmd->uscsi_status;
11937 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11938 
11939 	/*
11940 	 * If the caller wants sense data, copy back whatever sense data
11941 	 * we may have gotten, and update the relevant rqsense info.
11942 	 */
11943 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11944 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11945 
11946 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11947 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11948 
11949 		/* Update the Request Sense status and resid */
11950 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11951 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11952 
11953 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11954 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11955 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11956 
11957 		/* Copy out the sense data for user processes */
11958 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11959 			int flags =
11960 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11961 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11962 			    rqlen, flags) != 0) {
11963 				rval = EFAULT;
11964 			}
11965 			/*
11966 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11967 			 * uscmd->uscsi_rqbuf instead. They're the same.
11968 			 */
11969 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11970 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11971 			    incmd->uscsi_rqbuf, rqlen);
11972 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11973 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11974 		}
11975 	}
11976 
11977 	/*
11978 	 * Free allocated resources and return; mapout the buf in case it was
11979 	 * mapped in by a lower layer.
11980 	 */
11981 	bp_mapout(bp);
11982 	freerbuf(bp);
11983 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11984 	if (uscmd->uscsi_rqbuf != NULL) {
11985 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11986 	}
11987 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11988 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11989 
11990 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11991 
11992 	return (rval);
11993 }
11994 
11995 
11996 /*
11997  *    Function: sd_buf_iodone
11998  *
11999  * Description: Frees the sd_xbuf & returns the buf to its originator.
12000  *
12001  *     Context: May be called from interrupt context.
12002  */
12003 /* ARGSUSED */
12004 static void
12005 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12006 {
12007 	struct sd_xbuf *xp;
12008 
12009 	ASSERT(un != NULL);
12010 	ASSERT(bp != NULL);
12011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12012 
12013 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12014 
12015 	xp = SD_GET_XBUF(bp);
12016 	ASSERT(xp != NULL);
12017 
12018 	mutex_enter(SD_MUTEX(un));
12019 
12020 	/*
12021 	 * Grab time when the cmd completed.
12022 	 * This is used for determining if the system has been
12023 	 * idle long enough to make it idle to the PM framework.
12024 	 * This is for lowering the overhead, and therefore improving
12025 	 * performance per I/O operation.
12026 	 */
12027 	un->un_pm_idle_time = ddi_get_time();
12028 
12029 	un->un_ncmds_in_driver--;
12030 	ASSERT(un->un_ncmds_in_driver >= 0);
12031 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12032 	    un->un_ncmds_in_driver);
12033 
12034 	mutex_exit(SD_MUTEX(un));
12035 
12036 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12037 	biodone(bp);				/* bp is gone after this */
12038 
12039 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12040 }
12041 
12042 
12043 /*
12044  *    Function: sd_uscsi_iodone
12045  *
12046  * Description: Frees the sd_xbuf & returns the buf to its originator.
12047  *
12048  *     Context: May be called from interrupt context.
12049  */
12050 /* ARGSUSED */
12051 static void
12052 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12053 {
12054 	struct sd_xbuf *xp;
12055 
12056 	ASSERT(un != NULL);
12057 	ASSERT(bp != NULL);
12058 
12059 	xp = SD_GET_XBUF(bp);
12060 	ASSERT(xp != NULL);
12061 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12062 
12063 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12064 
12065 	bp->b_private = xp->xb_private;
12066 
12067 	mutex_enter(SD_MUTEX(un));
12068 
12069 	/*
12070 	 * Grab time when the cmd completed.
12071 	 * This is used for determining if the system has been
12072 	 * idle long enough to make it idle to the PM framework.
12073 	 * This is for lowering the overhead, and therefore improving
12074 	 * performance per I/O operation.
12075 	 */
12076 	un->un_pm_idle_time = ddi_get_time();
12077 
12078 	un->un_ncmds_in_driver--;
12079 	ASSERT(un->un_ncmds_in_driver >= 0);
12080 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12081 	    un->un_ncmds_in_driver);
12082 
12083 	mutex_exit(SD_MUTEX(un));
12084 
12085 	kmem_free(xp, sizeof (struct sd_xbuf));
12086 	biodone(bp);
12087 
12088 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12089 }
12090 
12091 
12092 /*
12093  *    Function: sd_mapblockaddr_iostart
12094  *
12095  * Description: Verify request lies withing the partition limits for
12096  *		the indicated minor device.  Issue "overrun" buf if
12097  *		request would exceed partition range.  Converts
12098  *		partition-relative block address to absolute.
12099  *
12100  *     Context: Can sleep
12101  *
12102  *      Issues: This follows what the old code did, in terms of accessing
12103  *		some of the partition info in the unit struct without holding
12104  *		the mutext.  This is a general issue, if the partition info
12105  *		can be altered while IO is in progress... as soon as we send
12106  *		a buf, its partitioning can be invalid before it gets to the
12107  *		device.  Probably the right fix is to move partitioning out
12108  *		of the driver entirely.
12109  */
12110 
12111 static void
12112 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12113 {
12114 	daddr_t	nblocks;	/* #blocks in the given partition */
12115 	daddr_t	blocknum;	/* Block number specified by the buf */
12116 	size_t	requested_nblocks;
12117 	size_t	available_nblocks;
12118 	int	partition;
12119 	diskaddr_t	partition_offset;
12120 	struct sd_xbuf *xp;
12121 
12122 
12123 	ASSERT(un != NULL);
12124 	ASSERT(bp != NULL);
12125 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12126 
12127 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12128 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12129 
12130 	xp = SD_GET_XBUF(bp);
12131 	ASSERT(xp != NULL);
12132 
12133 	/*
12134 	 * If the geometry is not indicated as valid, attempt to access
12135 	 * the unit & verify the geometry/label. This can be the case for
12136 	 * removable-media devices, of if the device was opened in
12137 	 * NDELAY/NONBLOCK mode.
12138 	 */
12139 	if ((un->un_f_geometry_is_valid != TRUE) &&
12140 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12141 		/*
12142 		 * For removable devices it is possible to start an I/O
12143 		 * without a media by opening the device in nodelay mode.
12144 		 * Also for writable CDs there can be many scenarios where
12145 		 * there is no geometry yet but volume manager is trying to
12146 		 * issue a read() just because it can see TOC on the CD. So
12147 		 * do not print a message for removables.
12148 		 */
12149 		if (!un->un_f_has_removable_media) {
12150 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12151 			    "i/o to invalid geometry\n");
12152 		}
12153 		bioerror(bp, EIO);
12154 		bp->b_resid = bp->b_bcount;
12155 		SD_BEGIN_IODONE(index, un, bp);
12156 		return;
12157 	}
12158 
12159 	partition = SDPART(bp->b_edev);
12160 
12161 	/* #blocks in partition */
12162 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12163 
12164 	/* Use of a local variable potentially improves performance slightly */
12165 	partition_offset = un->un_offset[partition];
12166 
12167 	/*
12168 	 * blocknum is the starting block number of the request. At this
12169 	 * point it is still relative to the start of the minor device.
12170 	 */
12171 	blocknum = xp->xb_blkno;
12172 
12173 	/*
12174 	 * Legacy: If the starting block number is one past the last block
12175 	 * in the partition, do not set B_ERROR in the buf.
12176 	 */
12177 	if (blocknum == nblocks)  {
12178 		goto error_exit;
12179 	}
12180 
12181 	/*
12182 	 * Confirm that the first block of the request lies within the
12183 	 * partition limits. Also the requested number of bytes must be
12184 	 * a multiple of the system block size.
12185 	 */
12186 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12187 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12188 		bp->b_flags |= B_ERROR;
12189 		goto error_exit;
12190 	}
12191 
12192 	/*
12193 	 * If the requsted # blocks exceeds the available # blocks, that
12194 	 * is an overrun of the partition.
12195 	 */
12196 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12197 	available_nblocks = (size_t)(nblocks - blocknum);
12198 	ASSERT(nblocks >= blocknum);
12199 
12200 	if (requested_nblocks > available_nblocks) {
12201 		/*
12202 		 * Allocate an "overrun" buf to allow the request to proceed
12203 		 * for the amount of space available in the partition. The
12204 		 * amount not transferred will be added into the b_resid
12205 		 * when the operation is complete. The overrun buf
12206 		 * replaces the original buf here, and the original buf
12207 		 * is saved inside the overrun buf, for later use.
12208 		 */
12209 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12210 		    (offset_t)(requested_nblocks - available_nblocks));
12211 		size_t count = bp->b_bcount - resid;
12212 		/*
12213 		 * Note: count is an unsigned entity thus it'll NEVER
12214 		 * be less than 0 so ASSERT the original values are
12215 		 * correct.
12216 		 */
12217 		ASSERT(bp->b_bcount >= resid);
12218 
12219 		bp = sd_bioclone_alloc(bp, count, blocknum,
12220 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12221 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12222 		ASSERT(xp != NULL);
12223 	}
12224 
12225 	/* At this point there should be no residual for this buf. */
12226 	ASSERT(bp->b_resid == 0);
12227 
12228 	/* Convert the block number to an absolute address. */
12229 	xp->xb_blkno += partition_offset;
12230 
12231 	SD_NEXT_IOSTART(index, un, bp);
12232 
12233 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12234 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12235 
12236 	return;
12237 
12238 error_exit:
12239 	bp->b_resid = bp->b_bcount;
12240 	SD_BEGIN_IODONE(index, un, bp);
12241 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12242 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12243 }
12244 
12245 
12246 /*
12247  *    Function: sd_mapblockaddr_iodone
12248  *
12249  * Description: Completion-side processing for partition management.
12250  *
12251  *     Context: May be called under interrupt context
12252  */
12253 
12254 static void
12255 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12256 {
12257 	/* int	partition; */	/* Not used, see below. */
12258 	ASSERT(un != NULL);
12259 	ASSERT(bp != NULL);
12260 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12261 
12262 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12263 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12264 
12265 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12266 		/*
12267 		 * We have an "overrun" buf to deal with...
12268 		 */
12269 		struct sd_xbuf	*xp;
12270 		struct buf	*obp;	/* ptr to the original buf */
12271 
12272 		xp = SD_GET_XBUF(bp);
12273 		ASSERT(xp != NULL);
12274 
12275 		/* Retrieve the pointer to the original buf */
12276 		obp = (struct buf *)xp->xb_private;
12277 		ASSERT(obp != NULL);
12278 
12279 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12280 		bioerror(obp, bp->b_error);
12281 
12282 		sd_bioclone_free(bp);
12283 
12284 		/*
12285 		 * Get back the original buf.
12286 		 * Note that since the restoration of xb_blkno below
12287 		 * was removed, the sd_xbuf is not needed.
12288 		 */
12289 		bp = obp;
12290 		/*
12291 		 * xp = SD_GET_XBUF(bp);
12292 		 * ASSERT(xp != NULL);
12293 		 */
12294 	}
12295 
12296 	/*
12297 	 * Convert sd->xb_blkno back to a minor-device relative value.
12298 	 * Note: this has been commented out, as it is not needed in the
12299 	 * current implementation of the driver (ie, since this function
12300 	 * is at the top of the layering chains, so the info will be
12301 	 * discarded) and it is in the "hot" IO path.
12302 	 *
12303 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12304 	 * xp->xb_blkno -= un->un_offset[partition];
12305 	 */
12306 
12307 	SD_NEXT_IODONE(index, un, bp);
12308 
12309 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12310 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12311 }
12312 
12313 
12314 /*
12315  *    Function: sd_mapblocksize_iostart
12316  *
12317  * Description: Convert between system block size (un->un_sys_blocksize)
12318  *		and target block size (un->un_tgt_blocksize).
12319  *
12320  *     Context: Can sleep to allocate resources.
12321  *
12322  * Assumptions: A higher layer has already performed any partition validation,
12323  *		and converted the xp->xb_blkno to an absolute value relative
12324  *		to the start of the device.
12325  *
12326  *		It is also assumed that the higher layer has implemented
12327  *		an "overrun" mechanism for the case where the request would
12328  *		read/write beyond the end of a partition.  In this case we
12329  *		assume (and ASSERT) that bp->b_resid == 0.
12330  *
12331  *		Note: The implementation for this routine assumes the target
12332  *		block size remains constant between allocation and transport.
12333  */
12334 
12335 static void
12336 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12337 {
12338 	struct sd_mapblocksize_info	*bsp;
12339 	struct sd_xbuf			*xp;
12340 	offset_t first_byte;
12341 	daddr_t	start_block, end_block;
12342 	daddr_t	request_bytes;
12343 	ushort_t is_aligned = FALSE;
12344 
12345 	ASSERT(un != NULL);
12346 	ASSERT(bp != NULL);
12347 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12348 	ASSERT(bp->b_resid == 0);
12349 
12350 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12351 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12352 
12353 	/*
12354 	 * For a non-writable CD, a write request is an error
12355 	 */
12356 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12357 	    (un->un_f_mmc_writable_media == FALSE)) {
12358 		bioerror(bp, EIO);
12359 		bp->b_resid = bp->b_bcount;
12360 		SD_BEGIN_IODONE(index, un, bp);
12361 		return;
12362 	}
12363 
12364 	/*
12365 	 * We do not need a shadow buf if the device is using
12366 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12367 	 * In this case there is no layer-private data block allocated.
12368 	 */
12369 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12370 	    (bp->b_bcount == 0)) {
12371 		goto done;
12372 	}
12373 
12374 #if defined(__i386) || defined(__amd64)
12375 	/* We do not support non-block-aligned transfers for ROD devices */
12376 	ASSERT(!ISROD(un));
12377 #endif
12378 
12379 	xp = SD_GET_XBUF(bp);
12380 	ASSERT(xp != NULL);
12381 
12382 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12383 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12384 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12385 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12386 	    "request start block:0x%x\n", xp->xb_blkno);
12387 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12388 	    "request len:0x%x\n", bp->b_bcount);
12389 
12390 	/*
12391 	 * Allocate the layer-private data area for the mapblocksize layer.
12392 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12393 	 * struct to store the pointer to their layer-private data block, but
12394 	 * each layer also has the responsibility of restoring the prior
12395 	 * contents of xb_private before returning the buf/xbuf to the
12396 	 * higher layer that sent it.
12397 	 *
12398 	 * Here we save the prior contents of xp->xb_private into the
12399 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12400 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12401 	 * the layer-private area and returning the buf/xbuf to the layer
12402 	 * that sent it.
12403 	 *
12404 	 * Note that here we use kmem_zalloc for the allocation as there are
12405 	 * parts of the mapblocksize code that expect certain fields to be
12406 	 * zero unless explicitly set to a required value.
12407 	 */
12408 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12409 	bsp->mbs_oprivate = xp->xb_private;
12410 	xp->xb_private = bsp;
12411 
12412 	/*
12413 	 * This treats the data on the disk (target) as an array of bytes.
12414 	 * first_byte is the byte offset, from the beginning of the device,
12415 	 * to the location of the request. This is converted from a
12416 	 * un->un_sys_blocksize block address to a byte offset, and then back
12417 	 * to a block address based upon a un->un_tgt_blocksize block size.
12418 	 *
12419 	 * xp->xb_blkno should be absolute upon entry into this function,
12420 	 * but, but it is based upon partitions that use the "system"
12421 	 * block size. It must be adjusted to reflect the block size of
12422 	 * the target.
12423 	 *
12424 	 * Note that end_block is actually the block that follows the last
12425 	 * block of the request, but that's what is needed for the computation.
12426 	 */
12427 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12428 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12429 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12430 	    un->un_tgt_blocksize;
12431 
12432 	/* request_bytes is rounded up to a multiple of the target block size */
12433 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12434 
12435 	/*
12436 	 * See if the starting address of the request and the request
12437 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12438 	 * then we do not need to allocate a shadow buf to handle the request.
12439 	 */
12440 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12441 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12442 		is_aligned = TRUE;
12443 	}
12444 
12445 	if ((bp->b_flags & B_READ) == 0) {
12446 		/*
12447 		 * Lock the range for a write operation. An aligned request is
12448 		 * considered a simple write; otherwise the request must be a
12449 		 * read-modify-write.
12450 		 */
12451 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12452 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12453 	}
12454 
12455 	/*
12456 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12457 	 * where the READ command is generated for a read-modify-write. (The
12458 	 * write phase is deferred until after the read completes.)
12459 	 */
12460 	if (is_aligned == FALSE) {
12461 
12462 		struct sd_mapblocksize_info	*shadow_bsp;
12463 		struct sd_xbuf	*shadow_xp;
12464 		struct buf	*shadow_bp;
12465 
12466 		/*
12467 		 * Allocate the shadow buf and it associated xbuf. Note that
12468 		 * after this call the xb_blkno value in both the original
12469 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12470 		 * same: absolute relative to the start of the device, and
12471 		 * adjusted for the target block size. The b_blkno in the
12472 		 * shadow buf will also be set to this value. We should never
12473 		 * change b_blkno in the original bp however.
12474 		 *
12475 		 * Note also that the shadow buf will always need to be a
12476 		 * READ command, regardless of whether the incoming command
12477 		 * is a READ or a WRITE.
12478 		 */
12479 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12480 		    xp->xb_blkno,
12481 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12482 
12483 		shadow_xp = SD_GET_XBUF(shadow_bp);
12484 
12485 		/*
12486 		 * Allocate the layer-private data for the shadow buf.
12487 		 * (No need to preserve xb_private in the shadow xbuf.)
12488 		 */
12489 		shadow_xp->xb_private = shadow_bsp =
12490 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12491 
12492 		/*
12493 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12494 		 * to figure out where the start of the user data is (based upon
12495 		 * the system block size) in the data returned by the READ
12496 		 * command (which will be based upon the target blocksize). Note
12497 		 * that this is only really used if the request is unaligned.
12498 		 */
12499 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12500 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12501 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12502 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12503 
12504 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12505 
12506 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12507 
12508 		/* Transfer the wmap (if any) to the shadow buf */
12509 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12510 		bsp->mbs_wmp = NULL;
12511 
12512 		/*
12513 		 * The shadow buf goes on from here in place of the
12514 		 * original buf.
12515 		 */
12516 		shadow_bsp->mbs_orig_bp = bp;
12517 		bp = shadow_bp;
12518 	}
12519 
12520 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12521 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12522 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12523 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12524 	    request_bytes);
12525 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12526 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12527 
12528 done:
12529 	SD_NEXT_IOSTART(index, un, bp);
12530 
12531 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12532 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12533 }
12534 
12535 
12536 /*
12537  *    Function: sd_mapblocksize_iodone
12538  *
12539  * Description: Completion side processing for block-size mapping.
12540  *
12541  *     Context: May be called under interrupt context
12542  */
12543 
12544 static void
12545 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12546 {
12547 	struct sd_mapblocksize_info	*bsp;
12548 	struct sd_xbuf	*xp;
12549 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12550 	struct buf	*orig_bp;	/* ptr to the original buf */
12551 	offset_t	shadow_end;
12552 	offset_t	request_end;
12553 	offset_t	shadow_start;
12554 	ssize_t		copy_offset;
12555 	size_t		copy_length;
12556 	size_t		shortfall;
12557 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12558 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12559 
12560 	ASSERT(un != NULL);
12561 	ASSERT(bp != NULL);
12562 
12563 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12564 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12565 
12566 	/*
12567 	 * There is no shadow buf or layer-private data if the target is
12568 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12569 	 */
12570 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12571 	    (bp->b_bcount == 0)) {
12572 		goto exit;
12573 	}
12574 
12575 	xp = SD_GET_XBUF(bp);
12576 	ASSERT(xp != NULL);
12577 
12578 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12579 	bsp = xp->xb_private;
12580 
12581 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12582 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12583 
12584 	if (is_write) {
12585 		/*
12586 		 * For a WRITE request we must free up the block range that
12587 		 * we have locked up.  This holds regardless of whether this is
12588 		 * an aligned write request or a read-modify-write request.
12589 		 */
12590 		sd_range_unlock(un, bsp->mbs_wmp);
12591 		bsp->mbs_wmp = NULL;
12592 	}
12593 
12594 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12595 		/*
12596 		 * An aligned read or write command will have no shadow buf;
12597 		 * there is not much else to do with it.
12598 		 */
12599 		goto done;
12600 	}
12601 
12602 	orig_bp = bsp->mbs_orig_bp;
12603 	ASSERT(orig_bp != NULL);
12604 	orig_xp = SD_GET_XBUF(orig_bp);
12605 	ASSERT(orig_xp != NULL);
12606 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12607 
12608 	if (!is_write && has_wmap) {
12609 		/*
12610 		 * A READ with a wmap means this is the READ phase of a
12611 		 * read-modify-write. If an error occurred on the READ then
12612 		 * we do not proceed with the WRITE phase or copy any data.
12613 		 * Just release the write maps and return with an error.
12614 		 */
12615 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12616 			orig_bp->b_resid = orig_bp->b_bcount;
12617 			bioerror(orig_bp, bp->b_error);
12618 			sd_range_unlock(un, bsp->mbs_wmp);
12619 			goto freebuf_done;
12620 		}
12621 	}
12622 
12623 	/*
12624 	 * Here is where we set up to copy the data from the shadow buf
12625 	 * into the space associated with the original buf.
12626 	 *
12627 	 * To deal with the conversion between block sizes, these
12628 	 * computations treat the data as an array of bytes, with the
12629 	 * first byte (byte 0) corresponding to the first byte in the
12630 	 * first block on the disk.
12631 	 */
12632 
12633 	/*
12634 	 * shadow_start and shadow_len indicate the location and size of
12635 	 * the data returned with the shadow IO request.
12636 	 */
12637 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12638 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12639 
12640 	/*
12641 	 * copy_offset gives the offset (in bytes) from the start of the first
12642 	 * block of the READ request to the beginning of the data.  We retrieve
12643 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12644 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12645 	 * data to be copied (in bytes).
12646 	 */
12647 	copy_offset  = bsp->mbs_copy_offset;
12648 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12649 	copy_length  = orig_bp->b_bcount;
12650 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12651 
12652 	/*
12653 	 * Set up the resid and error fields of orig_bp as appropriate.
12654 	 */
12655 	if (shadow_end >= request_end) {
12656 		/* We got all the requested data; set resid to zero */
12657 		orig_bp->b_resid = 0;
12658 	} else {
12659 		/*
12660 		 * We failed to get enough data to fully satisfy the original
12661 		 * request. Just copy back whatever data we got and set
12662 		 * up the residual and error code as required.
12663 		 *
12664 		 * 'shortfall' is the amount by which the data received with the
12665 		 * shadow buf has "fallen short" of the requested amount.
12666 		 */
12667 		shortfall = (size_t)(request_end - shadow_end);
12668 
12669 		if (shortfall > orig_bp->b_bcount) {
12670 			/*
12671 			 * We did not get enough data to even partially
12672 			 * fulfill the original request.  The residual is
12673 			 * equal to the amount requested.
12674 			 */
12675 			orig_bp->b_resid = orig_bp->b_bcount;
12676 		} else {
12677 			/*
12678 			 * We did not get all the data that we requested
12679 			 * from the device, but we will try to return what
12680 			 * portion we did get.
12681 			 */
12682 			orig_bp->b_resid = shortfall;
12683 		}
12684 		ASSERT(copy_length >= orig_bp->b_resid);
12685 		copy_length  -= orig_bp->b_resid;
12686 	}
12687 
12688 	/* Propagate the error code from the shadow buf to the original buf */
12689 	bioerror(orig_bp, bp->b_error);
12690 
12691 	if (is_write) {
12692 		goto freebuf_done;	/* No data copying for a WRITE */
12693 	}
12694 
12695 	if (has_wmap) {
12696 		/*
12697 		 * This is a READ command from the READ phase of a
12698 		 * read-modify-write request. We have to copy the data given
12699 		 * by the user OVER the data returned by the READ command,
12700 		 * then convert the command from a READ to a WRITE and send
12701 		 * it back to the target.
12702 		 */
12703 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12704 		    copy_length);
12705 
12706 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12707 
12708 		/*
12709 		 * Dispatch the WRITE command to the taskq thread, which
12710 		 * will in turn send the command to the target. When the
12711 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12712 		 * will get called again as part of the iodone chain
12713 		 * processing for it. Note that we will still be dealing
12714 		 * with the shadow buf at that point.
12715 		 */
12716 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12717 		    KM_NOSLEEP) != 0) {
12718 			/*
12719 			 * Dispatch was successful so we are done. Return
12720 			 * without going any higher up the iodone chain. Do
12721 			 * not free up any layer-private data until after the
12722 			 * WRITE completes.
12723 			 */
12724 			return;
12725 		}
12726 
12727 		/*
12728 		 * Dispatch of the WRITE command failed; set up the error
12729 		 * condition and send this IO back up the iodone chain.
12730 		 */
12731 		bioerror(orig_bp, EIO);
12732 		orig_bp->b_resid = orig_bp->b_bcount;
12733 
12734 	} else {
12735 		/*
12736 		 * This is a regular READ request (ie, not a RMW). Copy the
12737 		 * data from the shadow buf into the original buf. The
12738 		 * copy_offset compensates for any "misalignment" between the
12739 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12740 		 * original buf (with its un->un_sys_blocksize blocks).
12741 		 */
12742 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12743 		    copy_length);
12744 	}
12745 
12746 freebuf_done:
12747 
12748 	/*
12749 	 * At this point we still have both the shadow buf AND the original
12750 	 * buf to deal with, as well as the layer-private data area in each.
12751 	 * Local variables are as follows:
12752 	 *
12753 	 * bp -- points to shadow buf
12754 	 * xp -- points to xbuf of shadow buf
12755 	 * bsp -- points to layer-private data area of shadow buf
12756 	 * orig_bp -- points to original buf
12757 	 *
12758 	 * First free the shadow buf and its associated xbuf, then free the
12759 	 * layer-private data area from the shadow buf. There is no need to
12760 	 * restore xb_private in the shadow xbuf.
12761 	 */
12762 	sd_shadow_buf_free(bp);
12763 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12764 
12765 	/*
12766 	 * Now update the local variables to point to the original buf, xbuf,
12767 	 * and layer-private area.
12768 	 */
12769 	bp = orig_bp;
12770 	xp = SD_GET_XBUF(bp);
12771 	ASSERT(xp != NULL);
12772 	ASSERT(xp == orig_xp);
12773 	bsp = xp->xb_private;
12774 	ASSERT(bsp != NULL);
12775 
12776 done:
12777 	/*
12778 	 * Restore xb_private to whatever it was set to by the next higher
12779 	 * layer in the chain, then free the layer-private data area.
12780 	 */
12781 	xp->xb_private = bsp->mbs_oprivate;
12782 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12783 
12784 exit:
12785 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12786 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12787 
12788 	SD_NEXT_IODONE(index, un, bp);
12789 }
12790 
12791 
12792 /*
12793  *    Function: sd_checksum_iostart
12794  *
12795  * Description: A stub function for a layer that's currently not used.
12796  *		For now just a placeholder.
12797  *
12798  *     Context: Kernel thread context
12799  */
12800 
12801 static void
12802 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12803 {
12804 	ASSERT(un != NULL);
12805 	ASSERT(bp != NULL);
12806 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12807 	SD_NEXT_IOSTART(index, un, bp);
12808 }
12809 
12810 
12811 /*
12812  *    Function: sd_checksum_iodone
12813  *
12814  * Description: A stub function for a layer that's currently not used.
12815  *		For now just a placeholder.
12816  *
12817  *     Context: May be called under interrupt context
12818  */
12819 
12820 static void
12821 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12822 {
12823 	ASSERT(un != NULL);
12824 	ASSERT(bp != NULL);
12825 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12826 	SD_NEXT_IODONE(index, un, bp);
12827 }
12828 
12829 
12830 /*
12831  *    Function: sd_checksum_uscsi_iostart
12832  *
12833  * Description: A stub function for a layer that's currently not used.
12834  *		For now just a placeholder.
12835  *
12836  *     Context: Kernel thread context
12837  */
12838 
12839 static void
12840 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12841 {
12842 	ASSERT(un != NULL);
12843 	ASSERT(bp != NULL);
12844 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12845 	SD_NEXT_IOSTART(index, un, bp);
12846 }
12847 
12848 
12849 /*
12850  *    Function: sd_checksum_uscsi_iodone
12851  *
12852  * Description: A stub function for a layer that's currently not used.
12853  *		For now just a placeholder.
12854  *
12855  *     Context: May be called under interrupt context
12856  */
12857 
12858 static void
12859 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12860 {
12861 	ASSERT(un != NULL);
12862 	ASSERT(bp != NULL);
12863 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12864 	SD_NEXT_IODONE(index, un, bp);
12865 }
12866 
12867 
12868 /*
12869  *    Function: sd_pm_iostart
12870  *
12871  * Description: iostart-side routine for Power mangement.
12872  *
12873  *     Context: Kernel thread context
12874  */
12875 
12876 static void
12877 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12878 {
12879 	ASSERT(un != NULL);
12880 	ASSERT(bp != NULL);
12881 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12882 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12883 
12884 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12885 
12886 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12887 		/*
12888 		 * Set up to return the failed buf back up the 'iodone'
12889 		 * side of the calling chain.
12890 		 */
12891 		bioerror(bp, EIO);
12892 		bp->b_resid = bp->b_bcount;
12893 
12894 		SD_BEGIN_IODONE(index, un, bp);
12895 
12896 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12897 		return;
12898 	}
12899 
12900 	SD_NEXT_IOSTART(index, un, bp);
12901 
12902 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12903 }
12904 
12905 
12906 /*
12907  *    Function: sd_pm_iodone
12908  *
12909  * Description: iodone-side routine for power mangement.
12910  *
12911  *     Context: may be called from interrupt context
12912  */
12913 
12914 static void
12915 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12916 {
12917 	ASSERT(un != NULL);
12918 	ASSERT(bp != NULL);
12919 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12920 
12921 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12922 
12923 	/*
12924 	 * After attach the following flag is only read, so don't
12925 	 * take the penalty of acquiring a mutex for it.
12926 	 */
12927 	if (un->un_f_pm_is_enabled == TRUE) {
12928 		sd_pm_exit(un);
12929 	}
12930 
12931 	SD_NEXT_IODONE(index, un, bp);
12932 
12933 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12934 }
12935 
12936 
12937 /*
12938  *    Function: sd_core_iostart
12939  *
12940  * Description: Primary driver function for enqueuing buf(9S) structs from
12941  *		the system and initiating IO to the target device
12942  *
12943  *     Context: Kernel thread context. Can sleep.
12944  *
12945  * Assumptions:  - The given xp->xb_blkno is absolute
12946  *		   (ie, relative to the start of the device).
12947  *		 - The IO is to be done using the native blocksize of
12948  *		   the device, as specified in un->un_tgt_blocksize.
12949  */
12950 /* ARGSUSED */
12951 static void
12952 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12953 {
12954 	struct sd_xbuf *xp;
12955 
12956 	ASSERT(un != NULL);
12957 	ASSERT(bp != NULL);
12958 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12959 	ASSERT(bp->b_resid == 0);
12960 
12961 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12962 
12963 	xp = SD_GET_XBUF(bp);
12964 	ASSERT(xp != NULL);
12965 
12966 	mutex_enter(SD_MUTEX(un));
12967 
12968 	/*
12969 	 * If we are currently in the failfast state, fail any new IO
12970 	 * that has B_FAILFAST set, then return.
12971 	 */
12972 	if ((bp->b_flags & B_FAILFAST) &&
12973 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12974 		mutex_exit(SD_MUTEX(un));
12975 		bioerror(bp, EIO);
12976 		bp->b_resid = bp->b_bcount;
12977 		SD_BEGIN_IODONE(index, un, bp);
12978 		return;
12979 	}
12980 
12981 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12982 		/*
12983 		 * Priority command -- transport it immediately.
12984 		 *
12985 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12986 		 * because all direct priority commands should be associated
12987 		 * with error recovery actions which we don't want to retry.
12988 		 */
12989 		sd_start_cmds(un, bp);
12990 	} else {
12991 		/*
12992 		 * Normal command -- add it to the wait queue, then start
12993 		 * transporting commands from the wait queue.
12994 		 */
12995 		sd_add_buf_to_waitq(un, bp);
12996 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12997 		sd_start_cmds(un, NULL);
12998 	}
12999 
13000 	mutex_exit(SD_MUTEX(un));
13001 
13002 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13003 }
13004 
13005 
13006 /*
13007  *    Function: sd_init_cdb_limits
13008  *
13009  * Description: This is to handle scsi_pkt initialization differences
13010  *		between the driver platforms.
13011  *
13012  *		Legacy behaviors:
13013  *
13014  *		If the block number or the sector count exceeds the
13015  *		capabilities of a Group 0 command, shift over to a
13016  *		Group 1 command. We don't blindly use Group 1
13017  *		commands because a) some drives (CDC Wren IVs) get a
13018  *		bit confused, and b) there is probably a fair amount
13019  *		of speed difference for a target to receive and decode
13020  *		a 10 byte command instead of a 6 byte command.
13021  *
13022  *		The xfer time difference of 6 vs 10 byte CDBs is
13023  *		still significant so this code is still worthwhile.
13024  *		10 byte CDBs are very inefficient with the fas HBA driver
13025  *		and older disks. Each CDB byte took 1 usec with some
13026  *		popular disks.
13027  *
13028  *     Context: Must be called at attach time
13029  */
13030 
13031 static void
13032 sd_init_cdb_limits(struct sd_lun *un)
13033 {
13034 	int hba_cdb_limit;
13035 
13036 	/*
13037 	 * Use CDB_GROUP1 commands for most devices except for
13038 	 * parallel SCSI fixed drives in which case we get better
13039 	 * performance using CDB_GROUP0 commands (where applicable).
13040 	 */
13041 	un->un_mincdb = SD_CDB_GROUP1;
13042 #if !defined(__fibre)
13043 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13044 	    !un->un_f_has_removable_media) {
13045 		un->un_mincdb = SD_CDB_GROUP0;
13046 	}
13047 #endif
13048 
13049 	/*
13050 	 * Try to read the max-cdb-length supported by HBA.
13051 	 */
13052 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13053 	if (0 >= un->un_max_hba_cdb) {
13054 		un->un_max_hba_cdb = CDB_GROUP4;
13055 		hba_cdb_limit = SD_CDB_GROUP4;
13056 	} else if (0 < un->un_max_hba_cdb &&
13057 	    un->un_max_hba_cdb < CDB_GROUP1) {
13058 		hba_cdb_limit = SD_CDB_GROUP0;
13059 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13060 	    un->un_max_hba_cdb < CDB_GROUP5) {
13061 		hba_cdb_limit = SD_CDB_GROUP1;
13062 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13063 	    un->un_max_hba_cdb < CDB_GROUP4) {
13064 		hba_cdb_limit = SD_CDB_GROUP5;
13065 	} else {
13066 		hba_cdb_limit = SD_CDB_GROUP4;
13067 	}
13068 
13069 	/*
13070 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13071 	 * commands for fixed disks unless we are building for a 32 bit
13072 	 * kernel.
13073 	 */
13074 #ifdef _LP64
13075 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13076 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13077 #else
13078 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13079 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13080 #endif
13081 
13082 	/*
13083 	 * x86 systems require the PKT_DMA_PARTIAL flag
13084 	 */
13085 #if defined(__x86)
13086 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13087 #else
13088 	un->un_pkt_flags = 0;
13089 #endif
13090 
13091 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13092 	    ? sizeof (struct scsi_arq_status) : 1);
13093 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13094 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13095 }
13096 
13097 
13098 /*
13099  *    Function: sd_initpkt_for_buf
13100  *
13101  * Description: Allocate and initialize for transport a scsi_pkt struct,
13102  *		based upon the info specified in the given buf struct.
13103  *
13104  *		Assumes the xb_blkno in the request is absolute (ie,
13105  *		relative to the start of the device (NOT partition!).
13106  *		Also assumes that the request is using the native block
13107  *		size of the device (as returned by the READ CAPACITY
13108  *		command).
13109  *
13110  * Return Code: SD_PKT_ALLOC_SUCCESS
13111  *		SD_PKT_ALLOC_FAILURE
13112  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13113  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13114  *
13115  *     Context: Kernel thread and may be called from software interrupt context
13116  *		as part of a sdrunout callback. This function may not block or
13117  *		call routines that block
13118  */
13119 
13120 static int
13121 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13122 {
13123 	struct sd_xbuf	*xp;
13124 	struct scsi_pkt *pktp = NULL;
13125 	struct sd_lun	*un;
13126 	size_t		blockcount;
13127 	daddr_t		startblock;
13128 	int		rval;
13129 	int		cmd_flags;
13130 
13131 	ASSERT(bp != NULL);
13132 	ASSERT(pktpp != NULL);
13133 	xp = SD_GET_XBUF(bp);
13134 	ASSERT(xp != NULL);
13135 	un = SD_GET_UN(bp);
13136 	ASSERT(un != NULL);
13137 	ASSERT(mutex_owned(SD_MUTEX(un)));
13138 	ASSERT(bp->b_resid == 0);
13139 
13140 	SD_TRACE(SD_LOG_IO_CORE, un,
13141 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13142 
13143 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13144 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13145 		/*
13146 		 * Already have a scsi_pkt -- just need DMA resources.
13147 		 * We must recompute the CDB in case the mapping returns
13148 		 * a nonzero pkt_resid.
13149 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13150 		 * that is being retried, the unmap/remap of the DMA resouces
13151 		 * will result in the entire transfer starting over again
13152 		 * from the very first block.
13153 		 */
13154 		ASSERT(xp->xb_pktp != NULL);
13155 		pktp = xp->xb_pktp;
13156 	} else {
13157 		pktp = NULL;
13158 	}
13159 #endif /* __i386 || __amd64 */
13160 
13161 	startblock = xp->xb_blkno;	/* Absolute block num. */
13162 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13163 
13164 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13165 
13166 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13167 
13168 #else
13169 
13170 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13171 
13172 #endif
13173 
13174 	/*
13175 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13176 	 * call scsi_init_pkt, and build the CDB.
13177 	 */
13178 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13179 	    cmd_flags, sdrunout, (caddr_t)un,
13180 	    startblock, blockcount);
13181 
13182 	if (rval == 0) {
13183 		/*
13184 		 * Success.
13185 		 *
13186 		 * If partial DMA is being used and required for this transfer.
13187 		 * set it up here.
13188 		 */
13189 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13190 		    (pktp->pkt_resid != 0)) {
13191 
13192 			/*
13193 			 * Save the CDB length and pkt_resid for the
13194 			 * next xfer
13195 			 */
13196 			xp->xb_dma_resid = pktp->pkt_resid;
13197 
13198 			/* rezero resid */
13199 			pktp->pkt_resid = 0;
13200 
13201 		} else {
13202 			xp->xb_dma_resid = 0;
13203 		}
13204 
13205 		pktp->pkt_flags = un->un_tagflags;
13206 		pktp->pkt_time  = un->un_cmd_timeout;
13207 		pktp->pkt_comp  = sdintr;
13208 
13209 		pktp->pkt_private = bp;
13210 		*pktpp = pktp;
13211 
13212 		SD_TRACE(SD_LOG_IO_CORE, un,
13213 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13214 
13215 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13216 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13217 #endif
13218 
13219 		return (SD_PKT_ALLOC_SUCCESS);
13220 
13221 	}
13222 
13223 	/*
13224 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13225 	 * from sd_setup_rw_pkt.
13226 	 */
13227 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13228 
13229 	if (rval == SD_PKT_ALLOC_FAILURE) {
13230 		*pktpp = NULL;
13231 		/*
13232 		 * Set the driver state to RWAIT to indicate the driver
13233 		 * is waiting on resource allocations. The driver will not
13234 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13235 		 */
13236 		New_state(un, SD_STATE_RWAIT);
13237 
13238 		SD_ERROR(SD_LOG_IO_CORE, un,
13239 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13240 
13241 		if ((bp->b_flags & B_ERROR) != 0) {
13242 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13243 		}
13244 		return (SD_PKT_ALLOC_FAILURE);
13245 	} else {
13246 		/*
13247 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13248 		 *
13249 		 * This should never happen.  Maybe someone messed with the
13250 		 * kernel's minphys?
13251 		 */
13252 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13253 		    "Request rejected: too large for CDB: "
13254 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13255 		SD_ERROR(SD_LOG_IO_CORE, un,
13256 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13257 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13258 
13259 	}
13260 }
13261 
13262 
13263 /*
13264  *    Function: sd_destroypkt_for_buf
13265  *
13266  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13267  *
13268  *     Context: Kernel thread or interrupt context
13269  */
13270 
13271 static void
13272 sd_destroypkt_for_buf(struct buf *bp)
13273 {
13274 	ASSERT(bp != NULL);
13275 	ASSERT(SD_GET_UN(bp) != NULL);
13276 
13277 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13278 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13279 
13280 	ASSERT(SD_GET_PKTP(bp) != NULL);
13281 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13282 
13283 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13284 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13285 }
13286 
13287 /*
13288  *    Function: sd_setup_rw_pkt
13289  *
13290  * Description: Determines appropriate CDB group for the requested LBA
13291  *		and transfer length, calls scsi_init_pkt, and builds
13292  *		the CDB.  Do not use for partial DMA transfers except
13293  *		for the initial transfer since the CDB size must
13294  *		remain constant.
13295  *
13296  *     Context: Kernel thread and may be called from software interrupt
13297  *		context as part of a sdrunout callback. This function may not
13298  *		block or call routines that block
13299  */
13300 
13301 
13302 int
13303 sd_setup_rw_pkt(struct sd_lun *un,
13304     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13305     int (*callback)(caddr_t), caddr_t callback_arg,
13306     diskaddr_t lba, uint32_t blockcount)
13307 {
13308 	struct scsi_pkt *return_pktp;
13309 	union scsi_cdb *cdbp;
13310 	struct sd_cdbinfo *cp = NULL;
13311 	int i;
13312 
13313 	/*
13314 	 * See which size CDB to use, based upon the request.
13315 	 */
13316 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13317 
13318 		/*
13319 		 * Check lba and block count against sd_cdbtab limits.
13320 		 * In the partial DMA case, we have to use the same size
13321 		 * CDB for all the transfers.  Check lba + blockcount
13322 		 * against the max LBA so we know that segment of the
13323 		 * transfer can use the CDB we select.
13324 		 */
13325 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13326 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13327 
13328 			/*
13329 			 * The command will fit into the CDB type
13330 			 * specified by sd_cdbtab[i].
13331 			 */
13332 			cp = sd_cdbtab + i;
13333 
13334 			/*
13335 			 * Call scsi_init_pkt so we can fill in the
13336 			 * CDB.
13337 			 */
13338 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13339 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13340 			    flags, callback, callback_arg);
13341 
13342 			if (return_pktp != NULL) {
13343 
13344 				/*
13345 				 * Return new value of pkt
13346 				 */
13347 				*pktpp = return_pktp;
13348 
13349 				/*
13350 				 * To be safe, zero the CDB insuring there is
13351 				 * no leftover data from a previous command.
13352 				 */
13353 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13354 
13355 				/*
13356 				 * Handle partial DMA mapping
13357 				 */
13358 				if (return_pktp->pkt_resid != 0) {
13359 
13360 					/*
13361 					 * Not going to xfer as many blocks as
13362 					 * originally expected
13363 					 */
13364 					blockcount -=
13365 					    SD_BYTES2TGTBLOCKS(un,
13366 						return_pktp->pkt_resid);
13367 				}
13368 
13369 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13370 
13371 				/*
13372 				 * Set command byte based on the CDB
13373 				 * type we matched.
13374 				 */
13375 				cdbp->scc_cmd = cp->sc_grpmask |
13376 				    ((bp->b_flags & B_READ) ?
13377 					SCMD_READ : SCMD_WRITE);
13378 
13379 				SD_FILL_SCSI1_LUN(un, return_pktp);
13380 
13381 				/*
13382 				 * Fill in LBA and length
13383 				 */
13384 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13385 				    (cp->sc_grpcode == CDB_GROUP4) ||
13386 				    (cp->sc_grpcode == CDB_GROUP0) ||
13387 				    (cp->sc_grpcode == CDB_GROUP5));
13388 
13389 				if (cp->sc_grpcode == CDB_GROUP1) {
13390 					FORMG1ADDR(cdbp, lba);
13391 					FORMG1COUNT(cdbp, blockcount);
13392 					return (0);
13393 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13394 					FORMG4LONGADDR(cdbp, lba);
13395 					FORMG4COUNT(cdbp, blockcount);
13396 					return (0);
13397 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13398 					FORMG0ADDR(cdbp, lba);
13399 					FORMG0COUNT(cdbp, blockcount);
13400 					return (0);
13401 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13402 					FORMG5ADDR(cdbp, lba);
13403 					FORMG5COUNT(cdbp, blockcount);
13404 					return (0);
13405 				}
13406 
13407 				/*
13408 				 * It should be impossible to not match one
13409 				 * of the CDB types above, so we should never
13410 				 * reach this point.  Set the CDB command byte
13411 				 * to test-unit-ready to avoid writing
13412 				 * to somewhere we don't intend.
13413 				 */
13414 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13415 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13416 			} else {
13417 				/*
13418 				 * Couldn't get scsi_pkt
13419 				 */
13420 				return (SD_PKT_ALLOC_FAILURE);
13421 			}
13422 		}
13423 	}
13424 
13425 	/*
13426 	 * None of the available CDB types were suitable.  This really
13427 	 * should never happen:  on a 64 bit system we support
13428 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13429 	 * and on a 32 bit system we will refuse to bind to a device
13430 	 * larger than 2TB so addresses will never be larger than 32 bits.
13431 	 */
13432 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13433 }
13434 
13435 #if defined(__i386) || defined(__amd64)
13436 /*
13437  *    Function: sd_setup_next_rw_pkt
13438  *
13439  * Description: Setup packet for partial DMA transfers, except for the
13440  * 		initial transfer.  sd_setup_rw_pkt should be used for
13441  *		the initial transfer.
13442  *
13443  *     Context: Kernel thread and may be called from interrupt context.
13444  */
13445 
13446 int
13447 sd_setup_next_rw_pkt(struct sd_lun *un,
13448     struct scsi_pkt *pktp, struct buf *bp,
13449     diskaddr_t lba, uint32_t blockcount)
13450 {
13451 	uchar_t com;
13452 	union scsi_cdb *cdbp;
13453 	uchar_t cdb_group_id;
13454 
13455 	ASSERT(pktp != NULL);
13456 	ASSERT(pktp->pkt_cdbp != NULL);
13457 
13458 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13459 	com = cdbp->scc_cmd;
13460 	cdb_group_id = CDB_GROUPID(com);
13461 
13462 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13463 	    (cdb_group_id == CDB_GROUPID_1) ||
13464 	    (cdb_group_id == CDB_GROUPID_4) ||
13465 	    (cdb_group_id == CDB_GROUPID_5));
13466 
13467 	/*
13468 	 * Move pkt to the next portion of the xfer.
13469 	 * func is NULL_FUNC so we do not have to release
13470 	 * the disk mutex here.
13471 	 */
13472 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13473 	    NULL_FUNC, NULL) == pktp) {
13474 		/* Success.  Handle partial DMA */
13475 		if (pktp->pkt_resid != 0) {
13476 			blockcount -=
13477 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13478 		}
13479 
13480 		cdbp->scc_cmd = com;
13481 		SD_FILL_SCSI1_LUN(un, pktp);
13482 		if (cdb_group_id == CDB_GROUPID_1) {
13483 			FORMG1ADDR(cdbp, lba);
13484 			FORMG1COUNT(cdbp, blockcount);
13485 			return (0);
13486 		} else if (cdb_group_id == CDB_GROUPID_4) {
13487 			FORMG4LONGADDR(cdbp, lba);
13488 			FORMG4COUNT(cdbp, blockcount);
13489 			return (0);
13490 		} else if (cdb_group_id == CDB_GROUPID_0) {
13491 			FORMG0ADDR(cdbp, lba);
13492 			FORMG0COUNT(cdbp, blockcount);
13493 			return (0);
13494 		} else if (cdb_group_id == CDB_GROUPID_5) {
13495 			FORMG5ADDR(cdbp, lba);
13496 			FORMG5COUNT(cdbp, blockcount);
13497 			return (0);
13498 		}
13499 
13500 		/* Unreachable */
13501 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13502 	}
13503 
13504 	/*
13505 	 * Error setting up next portion of cmd transfer.
13506 	 * Something is definitely very wrong and this
13507 	 * should not happen.
13508 	 */
13509 	return (SD_PKT_ALLOC_FAILURE);
13510 }
13511 #endif /* defined(__i386) || defined(__amd64) */
13512 
13513 /*
13514  *    Function: sd_initpkt_for_uscsi
13515  *
13516  * Description: Allocate and initialize for transport a scsi_pkt struct,
13517  *		based upon the info specified in the given uscsi_cmd struct.
13518  *
13519  * Return Code: SD_PKT_ALLOC_SUCCESS
13520  *		SD_PKT_ALLOC_FAILURE
13521  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13522  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13523  *
13524  *     Context: Kernel thread and may be called from software interrupt context
13525  *		as part of a sdrunout callback. This function may not block or
13526  *		call routines that block
13527  */
13528 
13529 static int
13530 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13531 {
13532 	struct uscsi_cmd *uscmd;
13533 	struct sd_xbuf	*xp;
13534 	struct scsi_pkt	*pktp;
13535 	struct sd_lun	*un;
13536 	uint32_t	flags = 0;
13537 
13538 	ASSERT(bp != NULL);
13539 	ASSERT(pktpp != NULL);
13540 	xp = SD_GET_XBUF(bp);
13541 	ASSERT(xp != NULL);
13542 	un = SD_GET_UN(bp);
13543 	ASSERT(un != NULL);
13544 	ASSERT(mutex_owned(SD_MUTEX(un)));
13545 
13546 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13547 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13548 	ASSERT(uscmd != NULL);
13549 
13550 	SD_TRACE(SD_LOG_IO_CORE, un,
13551 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13552 
13553 	/*
13554 	 * Allocate the scsi_pkt for the command.
13555 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13556 	 *	 during scsi_init_pkt time and will continue to use the
13557 	 *	 same path as long as the same scsi_pkt is used without
13558 	 *	 intervening scsi_dma_free(). Since uscsi command does
13559 	 *	 not call scsi_dmafree() before retry failed command, it
13560 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13561 	 *	 set such that scsi_vhci can use other available path for
13562 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13563 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13564 	 */
13565 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13566 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13567 	    sizeof (struct scsi_arq_status), 0,
13568 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13569 	    sdrunout, (caddr_t)un);
13570 
13571 	if (pktp == NULL) {
13572 		*pktpp = NULL;
13573 		/*
13574 		 * Set the driver state to RWAIT to indicate the driver
13575 		 * is waiting on resource allocations. The driver will not
13576 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13577 		 */
13578 		New_state(un, SD_STATE_RWAIT);
13579 
13580 		SD_ERROR(SD_LOG_IO_CORE, un,
13581 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13582 
13583 		if ((bp->b_flags & B_ERROR) != 0) {
13584 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13585 		}
13586 		return (SD_PKT_ALLOC_FAILURE);
13587 	}
13588 
13589 	/*
13590 	 * We do not do DMA breakup for USCSI commands, so return failure
13591 	 * here if all the needed DMA resources were not allocated.
13592 	 */
13593 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13594 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13595 		scsi_destroy_pkt(pktp);
13596 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13597 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13598 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13599 	}
13600 
13601 	/* Init the cdb from the given uscsi struct */
13602 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13603 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13604 
13605 	SD_FILL_SCSI1_LUN(un, pktp);
13606 
13607 	/*
13608 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13609 	 * for listing of the supported flags.
13610 	 */
13611 
13612 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13613 		flags |= FLAG_SILENT;
13614 	}
13615 
13616 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13617 		flags |= FLAG_DIAGNOSE;
13618 	}
13619 
13620 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13621 		flags |= FLAG_ISOLATE;
13622 	}
13623 
13624 	if (un->un_f_is_fibre == FALSE) {
13625 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13626 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13627 		}
13628 	}
13629 
13630 	/*
13631 	 * Set the pkt flags here so we save time later.
13632 	 * Note: These flags are NOT in the uscsi man page!!!
13633 	 */
13634 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13635 		flags |= FLAG_HEAD;
13636 	}
13637 
13638 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13639 		flags |= FLAG_NOINTR;
13640 	}
13641 
13642 	/*
13643 	 * For tagged queueing, things get a bit complicated.
13644 	 * Check first for head of queue and last for ordered queue.
13645 	 * If neither head nor order, use the default driver tag flags.
13646 	 */
13647 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13648 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13649 			flags |= FLAG_HTAG;
13650 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13651 			flags |= FLAG_OTAG;
13652 		} else {
13653 			flags |= un->un_tagflags & FLAG_TAGMASK;
13654 		}
13655 	}
13656 
13657 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13658 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13659 	}
13660 
13661 	pktp->pkt_flags = flags;
13662 
13663 	/* Copy the caller's CDB into the pkt... */
13664 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13665 
13666 	if (uscmd->uscsi_timeout == 0) {
13667 		pktp->pkt_time = un->un_uscsi_timeout;
13668 	} else {
13669 		pktp->pkt_time = uscmd->uscsi_timeout;
13670 	}
13671 
13672 	/* need it later to identify USCSI request in sdintr */
13673 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13674 
13675 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13676 
13677 	pktp->pkt_private = bp;
13678 	pktp->pkt_comp = sdintr;
13679 	*pktpp = pktp;
13680 
13681 	SD_TRACE(SD_LOG_IO_CORE, un,
13682 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13683 
13684 	return (SD_PKT_ALLOC_SUCCESS);
13685 }
13686 
13687 
13688 /*
13689  *    Function: sd_destroypkt_for_uscsi
13690  *
13691  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13692  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13693  *		struct.
13694  *
13695  *     Context: May be called under interrupt context
13696  */
13697 
13698 static void
13699 sd_destroypkt_for_uscsi(struct buf *bp)
13700 {
13701 	struct uscsi_cmd *uscmd;
13702 	struct sd_xbuf	*xp;
13703 	struct scsi_pkt	*pktp;
13704 	struct sd_lun	*un;
13705 
13706 	ASSERT(bp != NULL);
13707 	xp = SD_GET_XBUF(bp);
13708 	ASSERT(xp != NULL);
13709 	un = SD_GET_UN(bp);
13710 	ASSERT(un != NULL);
13711 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13712 	pktp = SD_GET_PKTP(bp);
13713 	ASSERT(pktp != NULL);
13714 
13715 	SD_TRACE(SD_LOG_IO_CORE, un,
13716 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13717 
13718 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13719 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13720 	ASSERT(uscmd != NULL);
13721 
13722 	/* Save the status and the residual into the uscsi_cmd struct */
13723 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13724 	uscmd->uscsi_resid  = bp->b_resid;
13725 
13726 	/*
13727 	 * If enabled, copy any saved sense data into the area specified
13728 	 * by the uscsi command.
13729 	 */
13730 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13731 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13732 		/*
13733 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13734 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13735 		 */
13736 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13737 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13738 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13739 	}
13740 
13741 	/* We are done with the scsi_pkt; free it now */
13742 	ASSERT(SD_GET_PKTP(bp) != NULL);
13743 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13744 
13745 	SD_TRACE(SD_LOG_IO_CORE, un,
13746 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13747 }
13748 
13749 
13750 /*
13751  *    Function: sd_bioclone_alloc
13752  *
13753  * Description: Allocate a buf(9S) and init it as per the given buf
13754  *		and the various arguments.  The associated sd_xbuf
13755  *		struct is (nearly) duplicated.  The struct buf *bp
13756  *		argument is saved in new_xp->xb_private.
13757  *
13758  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13759  *		datalen - size of data area for the shadow bp
13760  *		blkno - starting LBA
13761  *		func - function pointer for b_iodone in the shadow buf. (May
13762  *			be NULL if none.)
13763  *
13764  * Return Code: Pointer to allocates buf(9S) struct
13765  *
13766  *     Context: Can sleep.
13767  */
13768 
13769 static struct buf *
13770 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13771 	daddr_t blkno, int (*func)(struct buf *))
13772 {
13773 	struct	sd_lun	*un;
13774 	struct	sd_xbuf	*xp;
13775 	struct	sd_xbuf	*new_xp;
13776 	struct	buf	*new_bp;
13777 
13778 	ASSERT(bp != NULL);
13779 	xp = SD_GET_XBUF(bp);
13780 	ASSERT(xp != NULL);
13781 	un = SD_GET_UN(bp);
13782 	ASSERT(un != NULL);
13783 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13784 
13785 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13786 	    NULL, KM_SLEEP);
13787 
13788 	new_bp->b_lblkno	= blkno;
13789 
13790 	/*
13791 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13792 	 * original xbuf into it.
13793 	 */
13794 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13795 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13796 
13797 	/*
13798 	 * The given bp is automatically saved in the xb_private member
13799 	 * of the new xbuf.  Callers are allowed to depend on this.
13800 	 */
13801 	new_xp->xb_private = bp;
13802 
13803 	new_bp->b_private  = new_xp;
13804 
13805 	return (new_bp);
13806 }
13807 
13808 /*
13809  *    Function: sd_shadow_buf_alloc
13810  *
13811  * Description: Allocate a buf(9S) and init it as per the given buf
13812  *		and the various arguments.  The associated sd_xbuf
13813  *		struct is (nearly) duplicated.  The struct buf *bp
13814  *		argument is saved in new_xp->xb_private.
13815  *
13816  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13817  *		datalen - size of data area for the shadow bp
13818  *		bflags - B_READ or B_WRITE (pseudo flag)
13819  *		blkno - starting LBA
13820  *		func - function pointer for b_iodone in the shadow buf. (May
13821  *			be NULL if none.)
13822  *
13823  * Return Code: Pointer to allocates buf(9S) struct
13824  *
13825  *     Context: Can sleep.
13826  */
13827 
13828 static struct buf *
13829 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13830 	daddr_t blkno, int (*func)(struct buf *))
13831 {
13832 	struct	sd_lun	*un;
13833 	struct	sd_xbuf	*xp;
13834 	struct	sd_xbuf	*new_xp;
13835 	struct	buf	*new_bp;
13836 
13837 	ASSERT(bp != NULL);
13838 	xp = SD_GET_XBUF(bp);
13839 	ASSERT(xp != NULL);
13840 	un = SD_GET_UN(bp);
13841 	ASSERT(un != NULL);
13842 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13843 
13844 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13845 		bp_mapin(bp);
13846 	}
13847 
13848 	bflags &= (B_READ | B_WRITE);
13849 #if defined(__i386) || defined(__amd64)
13850 	new_bp = getrbuf(KM_SLEEP);
13851 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13852 	new_bp->b_bcount = datalen;
13853 	new_bp->b_flags = bflags |
13854 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13855 #else
13856 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13857 	    datalen, bflags, SLEEP_FUNC, NULL);
13858 #endif
13859 	new_bp->av_forw	= NULL;
13860 	new_bp->av_back	= NULL;
13861 	new_bp->b_dev	= bp->b_dev;
13862 	new_bp->b_blkno	= blkno;
13863 	new_bp->b_iodone = func;
13864 	new_bp->b_edev	= bp->b_edev;
13865 	new_bp->b_resid	= 0;
13866 
13867 	/* We need to preserve the B_FAILFAST flag */
13868 	if (bp->b_flags & B_FAILFAST) {
13869 		new_bp->b_flags |= B_FAILFAST;
13870 	}
13871 
13872 	/*
13873 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13874 	 * original xbuf into it.
13875 	 */
13876 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13877 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13878 
13879 	/* Need later to copy data between the shadow buf & original buf! */
13880 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13881 
13882 	/*
13883 	 * The given bp is automatically saved in the xb_private member
13884 	 * of the new xbuf.  Callers are allowed to depend on this.
13885 	 */
13886 	new_xp->xb_private = bp;
13887 
13888 	new_bp->b_private  = new_xp;
13889 
13890 	return (new_bp);
13891 }
13892 
13893 /*
13894  *    Function: sd_bioclone_free
13895  *
13896  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13897  *		in the larger than partition operation.
13898  *
13899  *     Context: May be called under interrupt context
13900  */
13901 
13902 static void
13903 sd_bioclone_free(struct buf *bp)
13904 {
13905 	struct sd_xbuf	*xp;
13906 
13907 	ASSERT(bp != NULL);
13908 	xp = SD_GET_XBUF(bp);
13909 	ASSERT(xp != NULL);
13910 
13911 	/*
13912 	 * Call bp_mapout() before freeing the buf,  in case a lower
13913 	 * layer or HBA  had done a bp_mapin().  we must do this here
13914 	 * as we are the "originator" of the shadow buf.
13915 	 */
13916 	bp_mapout(bp);
13917 
13918 	/*
13919 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13920 	 * never gets confused by a stale value in this field. (Just a little
13921 	 * extra defensiveness here.)
13922 	 */
13923 	bp->b_iodone = NULL;
13924 
13925 	freerbuf(bp);
13926 
13927 	kmem_free(xp, sizeof (struct sd_xbuf));
13928 }
13929 
13930 /*
13931  *    Function: sd_shadow_buf_free
13932  *
13933  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13934  *
13935  *     Context: May be called under interrupt context
13936  */
13937 
13938 static void
13939 sd_shadow_buf_free(struct buf *bp)
13940 {
13941 	struct sd_xbuf	*xp;
13942 
13943 	ASSERT(bp != NULL);
13944 	xp = SD_GET_XBUF(bp);
13945 	ASSERT(xp != NULL);
13946 
13947 #if defined(__sparc)
13948 	/*
13949 	 * Call bp_mapout() before freeing the buf,  in case a lower
13950 	 * layer or HBA  had done a bp_mapin().  we must do this here
13951 	 * as we are the "originator" of the shadow buf.
13952 	 */
13953 	bp_mapout(bp);
13954 #endif
13955 
13956 	/*
13957 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13958 	 * never gets confused by a stale value in this field. (Just a little
13959 	 * extra defensiveness here.)
13960 	 */
13961 	bp->b_iodone = NULL;
13962 
13963 #if defined(__i386) || defined(__amd64)
13964 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13965 	freerbuf(bp);
13966 #else
13967 	scsi_free_consistent_buf(bp);
13968 #endif
13969 
13970 	kmem_free(xp, sizeof (struct sd_xbuf));
13971 }
13972 
13973 
13974 /*
13975  *    Function: sd_print_transport_rejected_message
13976  *
13977  * Description: This implements the ludicrously complex rules for printing
13978  *		a "transport rejected" message.  This is to address the
13979  *		specific problem of having a flood of this error message
13980  *		produced when a failover occurs.
13981  *
13982  *     Context: Any.
13983  */
13984 
13985 static void
13986 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13987 	int code)
13988 {
13989 	ASSERT(un != NULL);
13990 	ASSERT(mutex_owned(SD_MUTEX(un)));
13991 	ASSERT(xp != NULL);
13992 
13993 	/*
13994 	 * Print the "transport rejected" message under the following
13995 	 * conditions:
13996 	 *
13997 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13998 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13999 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14000 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14001 	 *   scsi_transport(9F) (which indicates that the target might have
14002 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14003 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14004 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14005 	 *   from scsi_transport().
14006 	 *
14007 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14008 	 * the preceeding cases in order for the message to be printed.
14009 	 */
14010 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14011 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14012 		    (code != TRAN_FATAL_ERROR) ||
14013 		    (un->un_tran_fatal_count == 1)) {
14014 			switch (code) {
14015 			case TRAN_BADPKT:
14016 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14017 				    "transport rejected bad packet\n");
14018 				break;
14019 			case TRAN_FATAL_ERROR:
14020 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14021 				    "transport rejected fatal error\n");
14022 				break;
14023 			default:
14024 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14025 				    "transport rejected (%d)\n", code);
14026 				break;
14027 			}
14028 		}
14029 	}
14030 }
14031 
14032 
14033 /*
14034  *    Function: sd_add_buf_to_waitq
14035  *
14036  * Description: Add the given buf(9S) struct to the wait queue for the
14037  *		instance.  If sorting is enabled, then the buf is added
14038  *		to the queue via an elevator sort algorithm (a la
14039  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14040  *		If sorting is not enabled, then the buf is just added
14041  *		to the end of the wait queue.
14042  *
14043  * Return Code: void
14044  *
14045  *     Context: Does not sleep/block, therefore technically can be called
14046  *		from any context.  However if sorting is enabled then the
14047  *		execution time is indeterminate, and may take long if
14048  *		the wait queue grows large.
14049  */
14050 
14051 static void
14052 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14053 {
14054 	struct buf *ap;
14055 
14056 	ASSERT(bp != NULL);
14057 	ASSERT(un != NULL);
14058 	ASSERT(mutex_owned(SD_MUTEX(un)));
14059 
14060 	/* If the queue is empty, add the buf as the only entry & return. */
14061 	if (un->un_waitq_headp == NULL) {
14062 		ASSERT(un->un_waitq_tailp == NULL);
14063 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14064 		bp->av_forw = NULL;
14065 		return;
14066 	}
14067 
14068 	ASSERT(un->un_waitq_tailp != NULL);
14069 
14070 	/*
14071 	 * If sorting is disabled, just add the buf to the tail end of
14072 	 * the wait queue and return.
14073 	 */
14074 	if (un->un_f_disksort_disabled) {
14075 		un->un_waitq_tailp->av_forw = bp;
14076 		un->un_waitq_tailp = bp;
14077 		bp->av_forw = NULL;
14078 		return;
14079 	}
14080 
14081 	/*
14082 	 * Sort thru the list of requests currently on the wait queue
14083 	 * and add the new buf request at the appropriate position.
14084 	 *
14085 	 * The un->un_waitq_headp is an activity chain pointer on which
14086 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14087 	 * first queue holds those requests which are positioned after
14088 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14089 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14090 	 * Thus we implement a one way scan, retracting after reaching
14091 	 * the end of the drive to the first request on the second
14092 	 * queue, at which time it becomes the first queue.
14093 	 * A one-way scan is natural because of the way UNIX read-ahead
14094 	 * blocks are allocated.
14095 	 *
14096 	 * If we lie after the first request, then we must locate the
14097 	 * second request list and add ourselves to it.
14098 	 */
14099 	ap = un->un_waitq_headp;
14100 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14101 		while (ap->av_forw != NULL) {
14102 			/*
14103 			 * Look for an "inversion" in the (normally
14104 			 * ascending) block numbers. This indicates
14105 			 * the start of the second request list.
14106 			 */
14107 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14108 				/*
14109 				 * Search the second request list for the
14110 				 * first request at a larger block number.
14111 				 * We go before that; however if there is
14112 				 * no such request, we go at the end.
14113 				 */
14114 				do {
14115 					if (SD_GET_BLKNO(bp) <
14116 					    SD_GET_BLKNO(ap->av_forw)) {
14117 						goto insert;
14118 					}
14119 					ap = ap->av_forw;
14120 				} while (ap->av_forw != NULL);
14121 				goto insert;		/* after last */
14122 			}
14123 			ap = ap->av_forw;
14124 		}
14125 
14126 		/*
14127 		 * No inversions... we will go after the last, and
14128 		 * be the first request in the second request list.
14129 		 */
14130 		goto insert;
14131 	}
14132 
14133 	/*
14134 	 * Request is at/after the current request...
14135 	 * sort in the first request list.
14136 	 */
14137 	while (ap->av_forw != NULL) {
14138 		/*
14139 		 * We want to go after the current request (1) if
14140 		 * there is an inversion after it (i.e. it is the end
14141 		 * of the first request list), or (2) if the next
14142 		 * request is a larger block no. than our request.
14143 		 */
14144 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14145 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14146 			goto insert;
14147 		}
14148 		ap = ap->av_forw;
14149 	}
14150 
14151 	/*
14152 	 * Neither a second list nor a larger request, therefore
14153 	 * we go at the end of the first list (which is the same
14154 	 * as the end of the whole schebang).
14155 	 */
14156 insert:
14157 	bp->av_forw = ap->av_forw;
14158 	ap->av_forw = bp;
14159 
14160 	/*
14161 	 * If we inserted onto the tail end of the waitq, make sure the
14162 	 * tail pointer is updated.
14163 	 */
14164 	if (ap == un->un_waitq_tailp) {
14165 		un->un_waitq_tailp = bp;
14166 	}
14167 }
14168 
14169 
14170 /*
14171  *    Function: sd_start_cmds
14172  *
14173  * Description: Remove and transport cmds from the driver queues.
14174  *
14175  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14176  *
14177  *		immed_bp - ptr to a buf to be transported immediately. Only
14178  *		the immed_bp is transported; bufs on the waitq are not
14179  *		processed and the un_retry_bp is not checked.  If immed_bp is
14180  *		NULL, then normal queue processing is performed.
14181  *
14182  *     Context: May be called from kernel thread context, interrupt context,
14183  *		or runout callback context. This function may not block or
14184  *		call routines that block.
14185  */
14186 
14187 static void
14188 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14189 {
14190 	struct	sd_xbuf	*xp;
14191 	struct	buf	*bp;
14192 	void	(*statp)(kstat_io_t *);
14193 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14194 	void	(*saved_statp)(kstat_io_t *);
14195 #endif
14196 	int	rval;
14197 
14198 	ASSERT(un != NULL);
14199 	ASSERT(mutex_owned(SD_MUTEX(un)));
14200 	ASSERT(un->un_ncmds_in_transport >= 0);
14201 	ASSERT(un->un_throttle >= 0);
14202 
14203 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14204 
14205 	do {
14206 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14207 		saved_statp = NULL;
14208 #endif
14209 
14210 		/*
14211 		 * If we are syncing or dumping, fail the command to
14212 		 * avoid recursively calling back into scsi_transport().
14213 		 * The dump I/O itself uses a separate code path so this
14214 		 * only prevents non-dump I/O from being sent while dumping.
14215 		 * File system sync takes place before dumping begins.
14216 		 * During panic, filesystem I/O is allowed provided
14217 		 * un_in_callback is <= 1.  This is to prevent recursion
14218 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14219 		 * sd_start_cmds and so on.  See panic.c for more information
14220 		 * about the states the system can be in during panic.
14221 		 */
14222 		if ((un->un_state == SD_STATE_DUMPING) ||
14223 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14224 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14225 			    "sd_start_cmds: panicking\n");
14226 			goto exit;
14227 		}
14228 
14229 		if ((bp = immed_bp) != NULL) {
14230 			/*
14231 			 * We have a bp that must be transported immediately.
14232 			 * It's OK to transport the immed_bp here without doing
14233 			 * the throttle limit check because the immed_bp is
14234 			 * always used in a retry/recovery case. This means
14235 			 * that we know we are not at the throttle limit by
14236 			 * virtue of the fact that to get here we must have
14237 			 * already gotten a command back via sdintr(). This also
14238 			 * relies on (1) the command on un_retry_bp preventing
14239 			 * further commands from the waitq from being issued;
14240 			 * and (2) the code in sd_retry_command checking the
14241 			 * throttle limit before issuing a delayed or immediate
14242 			 * retry. This holds even if the throttle limit is
14243 			 * currently ratcheted down from its maximum value.
14244 			 */
14245 			statp = kstat_runq_enter;
14246 			if (bp == un->un_retry_bp) {
14247 				ASSERT((un->un_retry_statp == NULL) ||
14248 				    (un->un_retry_statp == kstat_waitq_enter) ||
14249 				    (un->un_retry_statp ==
14250 				    kstat_runq_back_to_waitq));
14251 				/*
14252 				 * If the waitq kstat was incremented when
14253 				 * sd_set_retry_bp() queued this bp for a retry,
14254 				 * then we must set up statp so that the waitq
14255 				 * count will get decremented correctly below.
14256 				 * Also we must clear un->un_retry_statp to
14257 				 * ensure that we do not act on a stale value
14258 				 * in this field.
14259 				 */
14260 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14261 				    (un->un_retry_statp ==
14262 				    kstat_runq_back_to_waitq)) {
14263 					statp = kstat_waitq_to_runq;
14264 				}
14265 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14266 				saved_statp = un->un_retry_statp;
14267 #endif
14268 				un->un_retry_statp = NULL;
14269 
14270 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14271 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14272 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14273 				    un, un->un_retry_bp, un->un_throttle,
14274 				    un->un_ncmds_in_transport);
14275 			} else {
14276 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14277 				    "processing priority bp:0x%p\n", bp);
14278 			}
14279 
14280 		} else if ((bp = un->un_waitq_headp) != NULL) {
14281 			/*
14282 			 * A command on the waitq is ready to go, but do not
14283 			 * send it if:
14284 			 *
14285 			 * (1) the throttle limit has been reached, or
14286 			 * (2) a retry is pending, or
14287 			 * (3) a START_STOP_UNIT callback pending, or
14288 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14289 			 *	command is pending.
14290 			 *
14291 			 * For all of these conditions, IO processing will
14292 			 * restart after the condition is cleared.
14293 			 */
14294 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14295 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14296 				    "sd_start_cmds: exiting, "
14297 				    "throttle limit reached!\n");
14298 				goto exit;
14299 			}
14300 			if (un->un_retry_bp != NULL) {
14301 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14302 				    "sd_start_cmds: exiting, retry pending!\n");
14303 				goto exit;
14304 			}
14305 			if (un->un_startstop_timeid != NULL) {
14306 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14307 				    "sd_start_cmds: exiting, "
14308 				    "START_STOP pending!\n");
14309 				goto exit;
14310 			}
14311 			if (un->un_direct_priority_timeid != NULL) {
14312 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14313 				    "sd_start_cmds: exiting, "
14314 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14315 				goto exit;
14316 			}
14317 
14318 			/* Dequeue the command */
14319 			un->un_waitq_headp = bp->av_forw;
14320 			if (un->un_waitq_headp == NULL) {
14321 				un->un_waitq_tailp = NULL;
14322 			}
14323 			bp->av_forw = NULL;
14324 			statp = kstat_waitq_to_runq;
14325 			SD_TRACE(SD_LOG_IO_CORE, un,
14326 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14327 
14328 		} else {
14329 			/* No work to do so bail out now */
14330 			SD_TRACE(SD_LOG_IO_CORE, un,
14331 			    "sd_start_cmds: no more work, exiting!\n");
14332 			goto exit;
14333 		}
14334 
14335 		/*
14336 		 * Reset the state to normal. This is the mechanism by which
14337 		 * the state transitions from either SD_STATE_RWAIT or
14338 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14339 		 * If state is SD_STATE_PM_CHANGING then this command is
14340 		 * part of the device power control and the state must
14341 		 * not be put back to normal. Doing so would would
14342 		 * allow new commands to proceed when they shouldn't,
14343 		 * the device may be going off.
14344 		 */
14345 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14346 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14347 			New_state(un, SD_STATE_NORMAL);
14348 		    }
14349 
14350 		xp = SD_GET_XBUF(bp);
14351 		ASSERT(xp != NULL);
14352 
14353 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14354 		/*
14355 		 * Allocate the scsi_pkt if we need one, or attach DMA
14356 		 * resources if we have a scsi_pkt that needs them. The
14357 		 * latter should only occur for commands that are being
14358 		 * retried.
14359 		 */
14360 		if ((xp->xb_pktp == NULL) ||
14361 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14362 #else
14363 		if (xp->xb_pktp == NULL) {
14364 #endif
14365 			/*
14366 			 * There is no scsi_pkt allocated for this buf. Call
14367 			 * the initpkt function to allocate & init one.
14368 			 *
14369 			 * The scsi_init_pkt runout callback functionality is
14370 			 * implemented as follows:
14371 			 *
14372 			 * 1) The initpkt function always calls
14373 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14374 			 *    callback routine.
14375 			 * 2) A successful packet allocation is initialized and
14376 			 *    the I/O is transported.
14377 			 * 3) The I/O associated with an allocation resource
14378 			 *    failure is left on its queue to be retried via
14379 			 *    runout or the next I/O.
14380 			 * 4) The I/O associated with a DMA error is removed
14381 			 *    from the queue and failed with EIO. Processing of
14382 			 *    the transport queues is also halted to be
14383 			 *    restarted via runout or the next I/O.
14384 			 * 5) The I/O associated with a CDB size or packet
14385 			 *    size error is removed from the queue and failed
14386 			 *    with EIO. Processing of the transport queues is
14387 			 *    continued.
14388 			 *
14389 			 * Note: there is no interface for canceling a runout
14390 			 * callback. To prevent the driver from detaching or
14391 			 * suspending while a runout is pending the driver
14392 			 * state is set to SD_STATE_RWAIT
14393 			 *
14394 			 * Note: using the scsi_init_pkt callback facility can
14395 			 * result in an I/O request persisting at the head of
14396 			 * the list which cannot be satisfied even after
14397 			 * multiple retries. In the future the driver may
14398 			 * implement some kind of maximum runout count before
14399 			 * failing an I/O.
14400 			 *
14401 			 * Note: the use of funcp below may seem superfluous,
14402 			 * but it helps warlock figure out the correct
14403 			 * initpkt function calls (see [s]sd.wlcmd).
14404 			 */
14405 			struct scsi_pkt	*pktp;
14406 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14407 
14408 			ASSERT(bp != un->un_rqs_bp);
14409 
14410 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14411 			switch ((*funcp)(bp, &pktp)) {
14412 			case  SD_PKT_ALLOC_SUCCESS:
14413 				xp->xb_pktp = pktp;
14414 				SD_TRACE(SD_LOG_IO_CORE, un,
14415 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14416 				    pktp);
14417 				goto got_pkt;
14418 
14419 			case SD_PKT_ALLOC_FAILURE:
14420 				/*
14421 				 * Temporary (hopefully) resource depletion.
14422 				 * Since retries and RQS commands always have a
14423 				 * scsi_pkt allocated, these cases should never
14424 				 * get here. So the only cases this needs to
14425 				 * handle is a bp from the waitq (which we put
14426 				 * back onto the waitq for sdrunout), or a bp
14427 				 * sent as an immed_bp (which we just fail).
14428 				 */
14429 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14430 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14431 
14432 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14433 
14434 				if (bp == immed_bp) {
14435 					/*
14436 					 * If SD_XB_DMA_FREED is clear, then
14437 					 * this is a failure to allocate a
14438 					 * scsi_pkt, and we must fail the
14439 					 * command.
14440 					 */
14441 					if ((xp->xb_pkt_flags &
14442 					    SD_XB_DMA_FREED) == 0) {
14443 						break;
14444 					}
14445 
14446 					/*
14447 					 * If this immediate command is NOT our
14448 					 * un_retry_bp, then we must fail it.
14449 					 */
14450 					if (bp != un->un_retry_bp) {
14451 						break;
14452 					}
14453 
14454 					/*
14455 					 * We get here if this cmd is our
14456 					 * un_retry_bp that was DMAFREED, but
14457 					 * scsi_init_pkt() failed to reallocate
14458 					 * DMA resources when we attempted to
14459 					 * retry it. This can happen when an
14460 					 * mpxio failover is in progress, but
14461 					 * we don't want to just fail the
14462 					 * command in this case.
14463 					 *
14464 					 * Use timeout(9F) to restart it after
14465 					 * a 100ms delay.  We don't want to
14466 					 * let sdrunout() restart it, because
14467 					 * sdrunout() is just supposed to start
14468 					 * commands that are sitting on the
14469 					 * wait queue.  The un_retry_bp stays
14470 					 * set until the command completes, but
14471 					 * sdrunout can be called many times
14472 					 * before that happens.  Since sdrunout
14473 					 * cannot tell if the un_retry_bp is
14474 					 * already in the transport, it could
14475 					 * end up calling scsi_transport() for
14476 					 * the un_retry_bp multiple times.
14477 					 *
14478 					 * Also: don't schedule the callback
14479 					 * if some other callback is already
14480 					 * pending.
14481 					 */
14482 					if (un->un_retry_statp == NULL) {
14483 						/*
14484 						 * restore the kstat pointer to
14485 						 * keep kstat counts coherent
14486 						 * when we do retry the command.
14487 						 */
14488 						un->un_retry_statp =
14489 						    saved_statp;
14490 					}
14491 
14492 					if ((un->un_startstop_timeid == NULL) &&
14493 					    (un->un_retry_timeid == NULL) &&
14494 					    (un->un_direct_priority_timeid ==
14495 					    NULL)) {
14496 
14497 						un->un_retry_timeid =
14498 						    timeout(
14499 						    sd_start_retry_command,
14500 						    un, SD_RESTART_TIMEOUT);
14501 					}
14502 					goto exit;
14503 				}
14504 
14505 #else
14506 				if (bp == immed_bp) {
14507 					break;	/* Just fail the command */
14508 				}
14509 #endif
14510 
14511 				/* Add the buf back to the head of the waitq */
14512 				bp->av_forw = un->un_waitq_headp;
14513 				un->un_waitq_headp = bp;
14514 				if (un->un_waitq_tailp == NULL) {
14515 					un->un_waitq_tailp = bp;
14516 				}
14517 				goto exit;
14518 
14519 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14520 				/*
14521 				 * HBA DMA resource failure. Fail the command
14522 				 * and continue processing of the queues.
14523 				 */
14524 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14525 				    "sd_start_cmds: "
14526 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14527 				break;
14528 
14529 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14530 				/*
14531 				 * Note:x86: Partial DMA mapping not supported
14532 				 * for USCSI commands, and all the needed DMA
14533 				 * resources were not allocated.
14534 				 */
14535 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14536 				    "sd_start_cmds: "
14537 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14538 				break;
14539 
14540 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14541 				/*
14542 				 * Note:x86: Request cannot fit into CDB based
14543 				 * on lba and len.
14544 				 */
14545 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14546 				    "sd_start_cmds: "
14547 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14548 				break;
14549 
14550 			default:
14551 				/* Should NEVER get here! */
14552 				panic("scsi_initpkt error");
14553 				/*NOTREACHED*/
14554 			}
14555 
14556 			/*
14557 			 * Fatal error in allocating a scsi_pkt for this buf.
14558 			 * Update kstats & return the buf with an error code.
14559 			 * We must use sd_return_failed_command_no_restart() to
14560 			 * avoid a recursive call back into sd_start_cmds().
14561 			 * However this also means that we must keep processing
14562 			 * the waitq here in order to avoid stalling.
14563 			 */
14564 			if (statp == kstat_waitq_to_runq) {
14565 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14566 			}
14567 			sd_return_failed_command_no_restart(un, bp, EIO);
14568 			if (bp == immed_bp) {
14569 				/* immed_bp is gone by now, so clear this */
14570 				immed_bp = NULL;
14571 			}
14572 			continue;
14573 		}
14574 got_pkt:
14575 		if (bp == immed_bp) {
14576 			/* goto the head of the class.... */
14577 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14578 		}
14579 
14580 		un->un_ncmds_in_transport++;
14581 		SD_UPDATE_KSTATS(un, statp, bp);
14582 
14583 		/*
14584 		 * Call scsi_transport() to send the command to the target.
14585 		 * According to SCSA architecture, we must drop the mutex here
14586 		 * before calling scsi_transport() in order to avoid deadlock.
14587 		 * Note that the scsi_pkt's completion routine can be executed
14588 		 * (from interrupt context) even before the call to
14589 		 * scsi_transport() returns.
14590 		 */
14591 		SD_TRACE(SD_LOG_IO_CORE, un,
14592 		    "sd_start_cmds: calling scsi_transport()\n");
14593 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14594 
14595 		mutex_exit(SD_MUTEX(un));
14596 		rval = scsi_transport(xp->xb_pktp);
14597 		mutex_enter(SD_MUTEX(un));
14598 
14599 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14600 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14601 
14602 		switch (rval) {
14603 		case TRAN_ACCEPT:
14604 			/* Clear this with every pkt accepted by the HBA */
14605 			un->un_tran_fatal_count = 0;
14606 			break;	/* Success; try the next cmd (if any) */
14607 
14608 		case TRAN_BUSY:
14609 			un->un_ncmds_in_transport--;
14610 			ASSERT(un->un_ncmds_in_transport >= 0);
14611 
14612 			/*
14613 			 * Don't retry request sense, the sense data
14614 			 * is lost when another request is sent.
14615 			 * Free up the rqs buf and retry
14616 			 * the original failed cmd.  Update kstat.
14617 			 */
14618 			if (bp == un->un_rqs_bp) {
14619 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14620 				bp = sd_mark_rqs_idle(un, xp);
14621 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14622 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14623 					kstat_waitq_enter);
14624 				goto exit;
14625 			}
14626 
14627 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14628 			/*
14629 			 * Free the DMA resources for the  scsi_pkt. This will
14630 			 * allow mpxio to select another path the next time
14631 			 * we call scsi_transport() with this scsi_pkt.
14632 			 * See sdintr() for the rationalization behind this.
14633 			 */
14634 			if ((un->un_f_is_fibre == TRUE) &&
14635 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14636 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14637 				scsi_dmafree(xp->xb_pktp);
14638 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14639 			}
14640 #endif
14641 
14642 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14643 				/*
14644 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14645 				 * are for error recovery situations. These do
14646 				 * not use the normal command waitq, so if they
14647 				 * get a TRAN_BUSY we cannot put them back onto
14648 				 * the waitq for later retry. One possible
14649 				 * problem is that there could already be some
14650 				 * other command on un_retry_bp that is waiting
14651 				 * for this one to complete, so we would be
14652 				 * deadlocked if we put this command back onto
14653 				 * the waitq for later retry (since un_retry_bp
14654 				 * must complete before the driver gets back to
14655 				 * commands on the waitq).
14656 				 *
14657 				 * To avoid deadlock we must schedule a callback
14658 				 * that will restart this command after a set
14659 				 * interval.  This should keep retrying for as
14660 				 * long as the underlying transport keeps
14661 				 * returning TRAN_BUSY (just like for other
14662 				 * commands).  Use the same timeout interval as
14663 				 * for the ordinary TRAN_BUSY retry.
14664 				 */
14665 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14666 				    "sd_start_cmds: scsi_transport() returned "
14667 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14668 
14669 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14670 				un->un_direct_priority_timeid =
14671 				    timeout(sd_start_direct_priority_command,
14672 				    bp, SD_BSY_TIMEOUT / 500);
14673 
14674 				goto exit;
14675 			}
14676 
14677 			/*
14678 			 * For TRAN_BUSY, we want to reduce the throttle value,
14679 			 * unless we are retrying a command.
14680 			 */
14681 			if (bp != un->un_retry_bp) {
14682 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14683 			}
14684 
14685 			/*
14686 			 * Set up the bp to be tried again 10 ms later.
14687 			 * Note:x86: Is there a timeout value in the sd_lun
14688 			 * for this condition?
14689 			 */
14690 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14691 				kstat_runq_back_to_waitq);
14692 			goto exit;
14693 
14694 		case TRAN_FATAL_ERROR:
14695 			un->un_tran_fatal_count++;
14696 			/* FALLTHRU */
14697 
14698 		case TRAN_BADPKT:
14699 		default:
14700 			un->un_ncmds_in_transport--;
14701 			ASSERT(un->un_ncmds_in_transport >= 0);
14702 
14703 			/*
14704 			 * If this is our REQUEST SENSE command with a
14705 			 * transport error, we must get back the pointers
14706 			 * to the original buf, and mark the REQUEST
14707 			 * SENSE command as "available".
14708 			 */
14709 			if (bp == un->un_rqs_bp) {
14710 				bp = sd_mark_rqs_idle(un, xp);
14711 				xp = SD_GET_XBUF(bp);
14712 			} else {
14713 				/*
14714 				 * Legacy behavior: do not update transport
14715 				 * error count for request sense commands.
14716 				 */
14717 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14718 			}
14719 
14720 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14721 			sd_print_transport_rejected_message(un, xp, rval);
14722 
14723 			/*
14724 			 * We must use sd_return_failed_command_no_restart() to
14725 			 * avoid a recursive call back into sd_start_cmds().
14726 			 * However this also means that we must keep processing
14727 			 * the waitq here in order to avoid stalling.
14728 			 */
14729 			sd_return_failed_command_no_restart(un, bp, EIO);
14730 
14731 			/*
14732 			 * Notify any threads waiting in sd_ddi_suspend() that
14733 			 * a command completion has occurred.
14734 			 */
14735 			if (un->un_state == SD_STATE_SUSPENDED) {
14736 				cv_broadcast(&un->un_disk_busy_cv);
14737 			}
14738 
14739 			if (bp == immed_bp) {
14740 				/* immed_bp is gone by now, so clear this */
14741 				immed_bp = NULL;
14742 			}
14743 			break;
14744 		}
14745 
14746 	} while (immed_bp == NULL);
14747 
14748 exit:
14749 	ASSERT(mutex_owned(SD_MUTEX(un)));
14750 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14751 }
14752 
14753 
14754 /*
14755  *    Function: sd_return_command
14756  *
14757  * Description: Returns a command to its originator (with or without an
14758  *		error).  Also starts commands waiting to be transported
14759  *		to the target.
14760  *
14761  *     Context: May be called from interrupt, kernel, or timeout context
14762  */
14763 
14764 static void
14765 sd_return_command(struct sd_lun *un, struct buf *bp)
14766 {
14767 	struct sd_xbuf *xp;
14768 #if defined(__i386) || defined(__amd64)
14769 	struct scsi_pkt *pktp;
14770 #endif
14771 
14772 	ASSERT(bp != NULL);
14773 	ASSERT(un != NULL);
14774 	ASSERT(mutex_owned(SD_MUTEX(un)));
14775 	ASSERT(bp != un->un_rqs_bp);
14776 	xp = SD_GET_XBUF(bp);
14777 	ASSERT(xp != NULL);
14778 
14779 #if defined(__i386) || defined(__amd64)
14780 	pktp = SD_GET_PKTP(bp);
14781 #endif
14782 
14783 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14784 
14785 #if defined(__i386) || defined(__amd64)
14786 	/*
14787 	 * Note:x86: check for the "sdrestart failed" case.
14788 	 */
14789 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14790 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14791 		(xp->xb_pktp->pkt_resid == 0)) {
14792 
14793 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14794 			/*
14795 			 * Successfully set up next portion of cmd
14796 			 * transfer, try sending it
14797 			 */
14798 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14799 			    NULL, NULL, 0, (clock_t)0, NULL);
14800 			sd_start_cmds(un, NULL);
14801 			return;	/* Note:x86: need a return here? */
14802 		}
14803 	}
14804 #endif
14805 
14806 	/*
14807 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14808 	 * can happen if upon being re-tried the failfast bp either
14809 	 * succeeded or encountered another error (possibly even a different
14810 	 * error than the one that precipitated the failfast state, but in
14811 	 * that case it would have had to exhaust retries as well). Regardless,
14812 	 * this should not occur whenever the instance is in the active
14813 	 * failfast state.
14814 	 */
14815 	if (bp == un->un_failfast_bp) {
14816 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14817 		un->un_failfast_bp = NULL;
14818 	}
14819 
14820 	/*
14821 	 * Clear the failfast state upon successful completion of ANY cmd.
14822 	 */
14823 	if (bp->b_error == 0) {
14824 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14825 	}
14826 
14827 	/*
14828 	 * This is used if the command was retried one or more times. Show that
14829 	 * we are done with it, and allow processing of the waitq to resume.
14830 	 */
14831 	if (bp == un->un_retry_bp) {
14832 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14833 		    "sd_return_command: un:0x%p: "
14834 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14835 		un->un_retry_bp = NULL;
14836 		un->un_retry_statp = NULL;
14837 	}
14838 
14839 	SD_UPDATE_RDWR_STATS(un, bp);
14840 	SD_UPDATE_PARTITION_STATS(un, bp);
14841 
14842 	switch (un->un_state) {
14843 	case SD_STATE_SUSPENDED:
14844 		/*
14845 		 * Notify any threads waiting in sd_ddi_suspend() that
14846 		 * a command completion has occurred.
14847 		 */
14848 		cv_broadcast(&un->un_disk_busy_cv);
14849 		break;
14850 	default:
14851 		sd_start_cmds(un, NULL);
14852 		break;
14853 	}
14854 
14855 	/* Return this command up the iodone chain to its originator. */
14856 	mutex_exit(SD_MUTEX(un));
14857 
14858 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14859 	xp->xb_pktp = NULL;
14860 
14861 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14862 
14863 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14864 	mutex_enter(SD_MUTEX(un));
14865 
14866 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14867 }
14868 
14869 
14870 /*
14871  *    Function: sd_return_failed_command
14872  *
14873  * Description: Command completion when an error occurred.
14874  *
14875  *     Context: May be called from interrupt context
14876  */
14877 
14878 static void
14879 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14880 {
14881 	ASSERT(bp != NULL);
14882 	ASSERT(un != NULL);
14883 	ASSERT(mutex_owned(SD_MUTEX(un)));
14884 
14885 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14886 	    "sd_return_failed_command: entry\n");
14887 
14888 	/*
14889 	 * b_resid could already be nonzero due to a partial data
14890 	 * transfer, so do not change it here.
14891 	 */
14892 	SD_BIOERROR(bp, errcode);
14893 
14894 	sd_return_command(un, bp);
14895 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14896 	    "sd_return_failed_command: exit\n");
14897 }
14898 
14899 
14900 /*
14901  *    Function: sd_return_failed_command_no_restart
14902  *
14903  * Description: Same as sd_return_failed_command, but ensures that no
14904  *		call back into sd_start_cmds will be issued.
14905  *
14906  *     Context: May be called from interrupt context
14907  */
14908 
14909 static void
14910 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14911 	int errcode)
14912 {
14913 	struct sd_xbuf *xp;
14914 
14915 	ASSERT(bp != NULL);
14916 	ASSERT(un != NULL);
14917 	ASSERT(mutex_owned(SD_MUTEX(un)));
14918 	xp = SD_GET_XBUF(bp);
14919 	ASSERT(xp != NULL);
14920 	ASSERT(errcode != 0);
14921 
14922 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14923 	    "sd_return_failed_command_no_restart: entry\n");
14924 
14925 	/*
14926 	 * b_resid could already be nonzero due to a partial data
14927 	 * transfer, so do not change it here.
14928 	 */
14929 	SD_BIOERROR(bp, errcode);
14930 
14931 	/*
14932 	 * If this is the failfast bp, clear it. This can happen if the
14933 	 * failfast bp encounterd a fatal error when we attempted to
14934 	 * re-try it (such as a scsi_transport(9F) failure).  However
14935 	 * we should NOT be in an active failfast state if the failfast
14936 	 * bp is not NULL.
14937 	 */
14938 	if (bp == un->un_failfast_bp) {
14939 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14940 		un->un_failfast_bp = NULL;
14941 	}
14942 
14943 	if (bp == un->un_retry_bp) {
14944 		/*
14945 		 * This command was retried one or more times. Show that we are
14946 		 * done with it, and allow processing of the waitq to resume.
14947 		 */
14948 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14949 		    "sd_return_failed_command_no_restart: "
14950 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14951 		un->un_retry_bp = NULL;
14952 		un->un_retry_statp = NULL;
14953 	}
14954 
14955 	SD_UPDATE_RDWR_STATS(un, bp);
14956 	SD_UPDATE_PARTITION_STATS(un, bp);
14957 
14958 	mutex_exit(SD_MUTEX(un));
14959 
14960 	if (xp->xb_pktp != NULL) {
14961 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14962 		xp->xb_pktp = NULL;
14963 	}
14964 
14965 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14966 
14967 	mutex_enter(SD_MUTEX(un));
14968 
14969 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14970 	    "sd_return_failed_command_no_restart: exit\n");
14971 }
14972 
14973 
14974 /*
14975  *    Function: sd_retry_command
14976  *
14977  * Description: queue up a command for retry, or (optionally) fail it
14978  *		if retry counts are exhausted.
14979  *
14980  *   Arguments: un - Pointer to the sd_lun struct for the target.
14981  *
14982  *		bp - Pointer to the buf for the command to be retried.
14983  *
14984  *		retry_check_flag - Flag to see which (if any) of the retry
14985  *		   counts should be decremented/checked. If the indicated
14986  *		   retry count is exhausted, then the command will not be
14987  *		   retried; it will be failed instead. This should use a
14988  *		   value equal to one of the following:
14989  *
14990  *			SD_RETRIES_NOCHECK
14991  *			SD_RESD_RETRIES_STANDARD
14992  *			SD_RETRIES_VICTIM
14993  *
14994  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14995  *		   if the check should be made to see of FLAG_ISOLATE is set
14996  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14997  *		   not retried, it is simply failed.
14998  *
14999  *		user_funcp - Ptr to function to call before dispatching the
15000  *		   command. May be NULL if no action needs to be performed.
15001  *		   (Primarily intended for printing messages.)
15002  *
15003  *		user_arg - Optional argument to be passed along to
15004  *		   the user_funcp call.
15005  *
15006  *		failure_code - errno return code to set in the bp if the
15007  *		   command is going to be failed.
15008  *
15009  *		retry_delay - Retry delay interval in (clock_t) units. May
15010  *		   be zero which indicates that the retry should be retried
15011  *		   immediately (ie, without an intervening delay).
15012  *
15013  *		statp - Ptr to kstat function to be updated if the command
15014  *		   is queued for a delayed retry. May be NULL if no kstat
15015  *		   update is desired.
15016  *
15017  *     Context: May be called from interupt context.
15018  */
15019 
15020 static void
15021 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15022 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15023 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15024 	void (*statp)(kstat_io_t *))
15025 {
15026 	struct sd_xbuf	*xp;
15027 	struct scsi_pkt	*pktp;
15028 
15029 	ASSERT(un != NULL);
15030 	ASSERT(mutex_owned(SD_MUTEX(un)));
15031 	ASSERT(bp != NULL);
15032 	xp = SD_GET_XBUF(bp);
15033 	ASSERT(xp != NULL);
15034 	pktp = SD_GET_PKTP(bp);
15035 	ASSERT(pktp != NULL);
15036 
15037 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15038 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15039 
15040 	/*
15041 	 * If we are syncing or dumping, fail the command to avoid
15042 	 * recursively calling back into scsi_transport().
15043 	 */
15044 	if (ddi_in_panic()) {
15045 		goto fail_command_no_log;
15046 	}
15047 
15048 	/*
15049 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15050 	 * log an error and fail the command.
15051 	 */
15052 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15053 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15054 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15055 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15056 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15057 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15058 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15059 		goto fail_command;
15060 	}
15061 
15062 	/*
15063 	 * If we are suspended, then put the command onto head of the
15064 	 * wait queue since we don't want to start more commands.
15065 	 */
15066 	switch (un->un_state) {
15067 	case SD_STATE_SUSPENDED:
15068 	case SD_STATE_DUMPING:
15069 		bp->av_forw = un->un_waitq_headp;
15070 		un->un_waitq_headp = bp;
15071 		if (un->un_waitq_tailp == NULL) {
15072 			un->un_waitq_tailp = bp;
15073 		}
15074 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15075 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15076 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15077 		return;
15078 	default:
15079 		break;
15080 	}
15081 
15082 	/*
15083 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15084 	 * is set; if it is then we do not want to retry the command.
15085 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15086 	 */
15087 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15088 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15089 			goto fail_command;
15090 		}
15091 	}
15092 
15093 
15094 	/*
15095 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15096 	 * command timeout or a selection timeout has occurred. This means
15097 	 * that we were unable to establish an kind of communication with
15098 	 * the target, and subsequent retries and/or commands are likely
15099 	 * to encounter similar results and take a long time to complete.
15100 	 *
15101 	 * If this is a failfast error condition, we need to update the
15102 	 * failfast state, even if this bp does not have B_FAILFAST set.
15103 	 */
15104 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15105 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15106 			ASSERT(un->un_failfast_bp == NULL);
15107 			/*
15108 			 * If we are already in the active failfast state, and
15109 			 * another failfast error condition has been detected,
15110 			 * then fail this command if it has B_FAILFAST set.
15111 			 * If B_FAILFAST is clear, then maintain the legacy
15112 			 * behavior of retrying heroically, even tho this will
15113 			 * take a lot more time to fail the command.
15114 			 */
15115 			if (bp->b_flags & B_FAILFAST) {
15116 				goto fail_command;
15117 			}
15118 		} else {
15119 			/*
15120 			 * We're not in the active failfast state, but we
15121 			 * have a failfast error condition, so we must begin
15122 			 * transition to the next state. We do this regardless
15123 			 * of whether or not this bp has B_FAILFAST set.
15124 			 */
15125 			if (un->un_failfast_bp == NULL) {
15126 				/*
15127 				 * This is the first bp to meet a failfast
15128 				 * condition so save it on un_failfast_bp &
15129 				 * do normal retry processing. Do not enter
15130 				 * active failfast state yet. This marks
15131 				 * entry into the "failfast pending" state.
15132 				 */
15133 				un->un_failfast_bp = bp;
15134 
15135 			} else if (un->un_failfast_bp == bp) {
15136 				/*
15137 				 * This is the second time *this* bp has
15138 				 * encountered a failfast error condition,
15139 				 * so enter active failfast state & flush
15140 				 * queues as appropriate.
15141 				 */
15142 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15143 				un->un_failfast_bp = NULL;
15144 				sd_failfast_flushq(un);
15145 
15146 				/*
15147 				 * Fail this bp now if B_FAILFAST set;
15148 				 * otherwise continue with retries. (It would
15149 				 * be pretty ironic if this bp succeeded on a
15150 				 * subsequent retry after we just flushed all
15151 				 * the queues).
15152 				 */
15153 				if (bp->b_flags & B_FAILFAST) {
15154 					goto fail_command;
15155 				}
15156 
15157 #if !defined(lint) && !defined(__lint)
15158 			} else {
15159 				/*
15160 				 * If neither of the preceeding conditionals
15161 				 * was true, it means that there is some
15162 				 * *other* bp that has met an inital failfast
15163 				 * condition and is currently either being
15164 				 * retried or is waiting to be retried. In
15165 				 * that case we should perform normal retry
15166 				 * processing on *this* bp, since there is a
15167 				 * chance that the current failfast condition
15168 				 * is transient and recoverable. If that does
15169 				 * not turn out to be the case, then retries
15170 				 * will be cleared when the wait queue is
15171 				 * flushed anyway.
15172 				 */
15173 #endif
15174 			}
15175 		}
15176 	} else {
15177 		/*
15178 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15179 		 * likely were able to at least establish some level of
15180 		 * communication with the target and subsequent commands
15181 		 * and/or retries are likely to get through to the target,
15182 		 * In this case we want to be aggressive about clearing
15183 		 * the failfast state. Note that this does not affect
15184 		 * the "failfast pending" condition.
15185 		 */
15186 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15187 	}
15188 
15189 
15190 	/*
15191 	 * Check the specified retry count to see if we can still do
15192 	 * any retries with this pkt before we should fail it.
15193 	 */
15194 	switch (retry_check_flag & SD_RETRIES_MASK) {
15195 	case SD_RETRIES_VICTIM:
15196 		/*
15197 		 * Check the victim retry count. If exhausted, then fall
15198 		 * thru & check against the standard retry count.
15199 		 */
15200 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15201 			/* Increment count & proceed with the retry */
15202 			xp->xb_victim_retry_count++;
15203 			break;
15204 		}
15205 		/* Victim retries exhausted, fall back to std. retries... */
15206 		/* FALLTHRU */
15207 
15208 	case SD_RETRIES_STANDARD:
15209 		if (xp->xb_retry_count >= un->un_retry_count) {
15210 			/* Retries exhausted, fail the command */
15211 			SD_TRACE(SD_LOG_IO_CORE, un,
15212 			    "sd_retry_command: retries exhausted!\n");
15213 			/*
15214 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15215 			 * commands with nonzero pkt_resid.
15216 			 */
15217 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15218 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15219 			    (pktp->pkt_resid != 0)) {
15220 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15221 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15222 					SD_UPDATE_B_RESID(bp, pktp);
15223 				}
15224 			}
15225 			goto fail_command;
15226 		}
15227 		xp->xb_retry_count++;
15228 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15229 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15230 		break;
15231 
15232 	case SD_RETRIES_UA:
15233 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15234 			/* Retries exhausted, fail the command */
15235 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15236 			    "Unit Attention retries exhausted. "
15237 			    "Check the target.\n");
15238 			goto fail_command;
15239 		}
15240 		xp->xb_ua_retry_count++;
15241 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15242 		    "sd_retry_command: retry count:%d\n",
15243 			xp->xb_ua_retry_count);
15244 		break;
15245 
15246 	case SD_RETRIES_BUSY:
15247 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15248 			/* Retries exhausted, fail the command */
15249 			SD_TRACE(SD_LOG_IO_CORE, un,
15250 			    "sd_retry_command: retries exhausted!\n");
15251 			goto fail_command;
15252 		}
15253 		xp->xb_retry_count++;
15254 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15255 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15256 		break;
15257 
15258 	case SD_RETRIES_NOCHECK:
15259 	default:
15260 		/* No retry count to check. Just proceed with the retry */
15261 		break;
15262 	}
15263 
15264 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15265 
15266 	/*
15267 	 * If we were given a zero timeout, we must attempt to retry the
15268 	 * command immediately (ie, without a delay).
15269 	 */
15270 	if (retry_delay == 0) {
15271 		/*
15272 		 * Check some limiting conditions to see if we can actually
15273 		 * do the immediate retry.  If we cannot, then we must
15274 		 * fall back to queueing up a delayed retry.
15275 		 */
15276 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15277 			/*
15278 			 * We are at the throttle limit for the target,
15279 			 * fall back to delayed retry.
15280 			 */
15281 			retry_delay = SD_BSY_TIMEOUT;
15282 			statp = kstat_waitq_enter;
15283 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15284 			    "sd_retry_command: immed. retry hit "
15285 			    "throttle!\n");
15286 		} else {
15287 			/*
15288 			 * We're clear to proceed with the immediate retry.
15289 			 * First call the user-provided function (if any)
15290 			 */
15291 			if (user_funcp != NULL) {
15292 				(*user_funcp)(un, bp, user_arg,
15293 				    SD_IMMEDIATE_RETRY_ISSUED);
15294 #ifdef __lock_lint
15295 				sd_print_incomplete_msg(un, bp, user_arg,
15296 				    SD_IMMEDIATE_RETRY_ISSUED);
15297 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15298 				    SD_IMMEDIATE_RETRY_ISSUED);
15299 				sd_print_sense_failed_msg(un, bp, user_arg,
15300 				    SD_IMMEDIATE_RETRY_ISSUED);
15301 #endif
15302 			}
15303 
15304 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15305 			    "sd_retry_command: issuing immediate retry\n");
15306 
15307 			/*
15308 			 * Call sd_start_cmds() to transport the command to
15309 			 * the target.
15310 			 */
15311 			sd_start_cmds(un, bp);
15312 
15313 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15314 			    "sd_retry_command exit\n");
15315 			return;
15316 		}
15317 	}
15318 
15319 	/*
15320 	 * Set up to retry the command after a delay.
15321 	 * First call the user-provided function (if any)
15322 	 */
15323 	if (user_funcp != NULL) {
15324 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15325 	}
15326 
15327 	sd_set_retry_bp(un, bp, retry_delay, statp);
15328 
15329 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15330 	return;
15331 
15332 fail_command:
15333 
15334 	if (user_funcp != NULL) {
15335 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15336 	}
15337 
15338 fail_command_no_log:
15339 
15340 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15341 	    "sd_retry_command: returning failed command\n");
15342 
15343 	sd_return_failed_command(un, bp, failure_code);
15344 
15345 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15346 }
15347 
15348 
15349 /*
15350  *    Function: sd_set_retry_bp
15351  *
15352  * Description: Set up the given bp for retry.
15353  *
15354  *   Arguments: un - ptr to associated softstate
15355  *		bp - ptr to buf(9S) for the command
15356  *		retry_delay - time interval before issuing retry (may be 0)
15357  *		statp - optional pointer to kstat function
15358  *
15359  *     Context: May be called under interrupt context
15360  */
15361 
15362 static void
15363 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15364 	void (*statp)(kstat_io_t *))
15365 {
15366 	ASSERT(un != NULL);
15367 	ASSERT(mutex_owned(SD_MUTEX(un)));
15368 	ASSERT(bp != NULL);
15369 
15370 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15371 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15372 
15373 	/*
15374 	 * Indicate that the command is being retried. This will not allow any
15375 	 * other commands on the wait queue to be transported to the target
15376 	 * until this command has been completed (success or failure). The
15377 	 * "retry command" is not transported to the target until the given
15378 	 * time delay expires, unless the user specified a 0 retry_delay.
15379 	 *
15380 	 * Note: the timeout(9F) callback routine is what actually calls
15381 	 * sd_start_cmds() to transport the command, with the exception of a
15382 	 * zero retry_delay. The only current implementor of a zero retry delay
15383 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15384 	 */
15385 	if (un->un_retry_bp == NULL) {
15386 		ASSERT(un->un_retry_statp == NULL);
15387 		un->un_retry_bp = bp;
15388 
15389 		/*
15390 		 * If the user has not specified a delay the command should
15391 		 * be queued and no timeout should be scheduled.
15392 		 */
15393 		if (retry_delay == 0) {
15394 			/*
15395 			 * Save the kstat pointer that will be used in the
15396 			 * call to SD_UPDATE_KSTATS() below, so that
15397 			 * sd_start_cmds() can correctly decrement the waitq
15398 			 * count when it is time to transport this command.
15399 			 */
15400 			un->un_retry_statp = statp;
15401 			goto done;
15402 		}
15403 	}
15404 
15405 	if (un->un_retry_bp == bp) {
15406 		/*
15407 		 * Save the kstat pointer that will be used in the call to
15408 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15409 		 * correctly decrement the waitq count when it is time to
15410 		 * transport this command.
15411 		 */
15412 		un->un_retry_statp = statp;
15413 
15414 		/*
15415 		 * Schedule a timeout if:
15416 		 *   1) The user has specified a delay.
15417 		 *   2) There is not a START_STOP_UNIT callback pending.
15418 		 *
15419 		 * If no delay has been specified, then it is up to the caller
15420 		 * to ensure that IO processing continues without stalling.
15421 		 * Effectively, this means that the caller will issue the
15422 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15423 		 * callback does this after the START STOP UNIT command has
15424 		 * completed. In either of these cases we should not schedule
15425 		 * a timeout callback here.  Also don't schedule the timeout if
15426 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15427 		 */
15428 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15429 		    (un->un_direct_priority_timeid == NULL)) {
15430 			un->un_retry_timeid =
15431 			    timeout(sd_start_retry_command, un, retry_delay);
15432 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15433 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15434 			    " bp:0x%p un_retry_timeid:0x%p\n",
15435 			    un, bp, un->un_retry_timeid);
15436 		}
15437 	} else {
15438 		/*
15439 		 * We only get in here if there is already another command
15440 		 * waiting to be retried.  In this case, we just put the
15441 		 * given command onto the wait queue, so it can be transported
15442 		 * after the current retry command has completed.
15443 		 *
15444 		 * Also we have to make sure that if the command at the head
15445 		 * of the wait queue is the un_failfast_bp, that we do not
15446 		 * put ahead of it any other commands that are to be retried.
15447 		 */
15448 		if ((un->un_failfast_bp != NULL) &&
15449 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15450 			/*
15451 			 * Enqueue this command AFTER the first command on
15452 			 * the wait queue (which is also un_failfast_bp).
15453 			 */
15454 			bp->av_forw = un->un_waitq_headp->av_forw;
15455 			un->un_waitq_headp->av_forw = bp;
15456 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15457 				un->un_waitq_tailp = bp;
15458 			}
15459 		} else {
15460 			/* Enqueue this command at the head of the waitq. */
15461 			bp->av_forw = un->un_waitq_headp;
15462 			un->un_waitq_headp = bp;
15463 			if (un->un_waitq_tailp == NULL) {
15464 				un->un_waitq_tailp = bp;
15465 			}
15466 		}
15467 
15468 		if (statp == NULL) {
15469 			statp = kstat_waitq_enter;
15470 		}
15471 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15472 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15473 	}
15474 
15475 done:
15476 	if (statp != NULL) {
15477 		SD_UPDATE_KSTATS(un, statp, bp);
15478 	}
15479 
15480 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15481 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15482 }
15483 
15484 
15485 /*
15486  *    Function: sd_start_retry_command
15487  *
15488  * Description: Start the command that has been waiting on the target's
15489  *		retry queue.  Called from timeout(9F) context after the
15490  *		retry delay interval has expired.
15491  *
15492  *   Arguments: arg - pointer to associated softstate for the device.
15493  *
15494  *     Context: timeout(9F) thread context.  May not sleep.
15495  */
15496 
15497 static void
15498 sd_start_retry_command(void *arg)
15499 {
15500 	struct sd_lun *un = arg;
15501 
15502 	ASSERT(un != NULL);
15503 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15504 
15505 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15506 	    "sd_start_retry_command: entry\n");
15507 
15508 	mutex_enter(SD_MUTEX(un));
15509 
15510 	un->un_retry_timeid = NULL;
15511 
15512 	if (un->un_retry_bp != NULL) {
15513 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15514 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15515 		    un, un->un_retry_bp);
15516 		sd_start_cmds(un, un->un_retry_bp);
15517 	}
15518 
15519 	mutex_exit(SD_MUTEX(un));
15520 
15521 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15522 	    "sd_start_retry_command: exit\n");
15523 }
15524 
15525 
15526 /*
15527  *    Function: sd_start_direct_priority_command
15528  *
15529  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15530  *		received TRAN_BUSY when we called scsi_transport() to send it
15531  *		to the underlying HBA. This function is called from timeout(9F)
15532  *		context after the delay interval has expired.
15533  *
15534  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15535  *
15536  *     Context: timeout(9F) thread context.  May not sleep.
15537  */
15538 
15539 static void
15540 sd_start_direct_priority_command(void *arg)
15541 {
15542 	struct buf	*priority_bp = arg;
15543 	struct sd_lun	*un;
15544 
15545 	ASSERT(priority_bp != NULL);
15546 	un = SD_GET_UN(priority_bp);
15547 	ASSERT(un != NULL);
15548 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15549 
15550 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15551 	    "sd_start_direct_priority_command: entry\n");
15552 
15553 	mutex_enter(SD_MUTEX(un));
15554 	un->un_direct_priority_timeid = NULL;
15555 	sd_start_cmds(un, priority_bp);
15556 	mutex_exit(SD_MUTEX(un));
15557 
15558 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15559 	    "sd_start_direct_priority_command: exit\n");
15560 }
15561 
15562 
15563 /*
15564  *    Function: sd_send_request_sense_command
15565  *
15566  * Description: Sends a REQUEST SENSE command to the target
15567  *
15568  *     Context: May be called from interrupt context.
15569  */
15570 
15571 static void
15572 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15573 	struct scsi_pkt *pktp)
15574 {
15575 	ASSERT(bp != NULL);
15576 	ASSERT(un != NULL);
15577 	ASSERT(mutex_owned(SD_MUTEX(un)));
15578 
15579 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15580 	    "entry: buf:0x%p\n", bp);
15581 
15582 	/*
15583 	 * If we are syncing or dumping, then fail the command to avoid a
15584 	 * recursive callback into scsi_transport(). Also fail the command
15585 	 * if we are suspended (legacy behavior).
15586 	 */
15587 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15588 	    (un->un_state == SD_STATE_DUMPING)) {
15589 		sd_return_failed_command(un, bp, EIO);
15590 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15591 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15592 		return;
15593 	}
15594 
15595 	/*
15596 	 * Retry the failed command and don't issue the request sense if:
15597 	 *    1) the sense buf is busy
15598 	 *    2) we have 1 or more outstanding commands on the target
15599 	 *    (the sense data will be cleared or invalidated any way)
15600 	 *
15601 	 * Note: There could be an issue with not checking a retry limit here,
15602 	 * the problem is determining which retry limit to check.
15603 	 */
15604 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15605 		/* Don't retry if the command is flagged as non-retryable */
15606 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15607 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15608 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15609 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15610 			    "sd_send_request_sense_command: "
15611 			    "at full throttle, retrying exit\n");
15612 		} else {
15613 			sd_return_failed_command(un, bp, EIO);
15614 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15615 			    "sd_send_request_sense_command: "
15616 			    "at full throttle, non-retryable exit\n");
15617 		}
15618 		return;
15619 	}
15620 
15621 	sd_mark_rqs_busy(un, bp);
15622 	sd_start_cmds(un, un->un_rqs_bp);
15623 
15624 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15625 	    "sd_send_request_sense_command: exit\n");
15626 }
15627 
15628 
15629 /*
15630  *    Function: sd_mark_rqs_busy
15631  *
15632  * Description: Indicate that the request sense bp for this instance is
15633  *		in use.
15634  *
15635  *     Context: May be called under interrupt context
15636  */
15637 
15638 static void
15639 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15640 {
15641 	struct sd_xbuf	*sense_xp;
15642 
15643 	ASSERT(un != NULL);
15644 	ASSERT(bp != NULL);
15645 	ASSERT(mutex_owned(SD_MUTEX(un)));
15646 	ASSERT(un->un_sense_isbusy == 0);
15647 
15648 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15649 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15650 
15651 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15652 	ASSERT(sense_xp != NULL);
15653 
15654 	SD_INFO(SD_LOG_IO, un,
15655 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15656 
15657 	ASSERT(sense_xp->xb_pktp != NULL);
15658 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15659 	    == (FLAG_SENSING | FLAG_HEAD));
15660 
15661 	un->un_sense_isbusy = 1;
15662 	un->un_rqs_bp->b_resid = 0;
15663 	sense_xp->xb_pktp->pkt_resid  = 0;
15664 	sense_xp->xb_pktp->pkt_reason = 0;
15665 
15666 	/* So we can get back the bp at interrupt time! */
15667 	sense_xp->xb_sense_bp = bp;
15668 
15669 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15670 
15671 	/*
15672 	 * Mark this buf as awaiting sense data. (This is already set in
15673 	 * the pkt_flags for the RQS packet.)
15674 	 */
15675 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15676 
15677 	sense_xp->xb_retry_count	= 0;
15678 	sense_xp->xb_victim_retry_count = 0;
15679 	sense_xp->xb_ua_retry_count	= 0;
15680 	sense_xp->xb_dma_resid  = 0;
15681 
15682 	/* Clean up the fields for auto-request sense */
15683 	sense_xp->xb_sense_status = 0;
15684 	sense_xp->xb_sense_state  = 0;
15685 	sense_xp->xb_sense_resid  = 0;
15686 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15687 
15688 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15689 }
15690 
15691 
15692 /*
15693  *    Function: sd_mark_rqs_idle
15694  *
15695  * Description: SD_MUTEX must be held continuously through this routine
15696  *		to prevent reuse of the rqs struct before the caller can
15697  *		complete it's processing.
15698  *
15699  * Return Code: Pointer to the RQS buf
15700  *
15701  *     Context: May be called under interrupt context
15702  */
15703 
15704 static struct buf *
15705 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15706 {
15707 	struct buf *bp;
15708 	ASSERT(un != NULL);
15709 	ASSERT(sense_xp != NULL);
15710 	ASSERT(mutex_owned(SD_MUTEX(un)));
15711 	ASSERT(un->un_sense_isbusy != 0);
15712 
15713 	un->un_sense_isbusy = 0;
15714 	bp = sense_xp->xb_sense_bp;
15715 	sense_xp->xb_sense_bp = NULL;
15716 
15717 	/* This pkt is no longer interested in getting sense data */
15718 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15719 
15720 	return (bp);
15721 }
15722 
15723 
15724 
15725 /*
15726  *    Function: sd_alloc_rqs
15727  *
15728  * Description: Set up the unit to receive auto request sense data
15729  *
15730  * Return Code: DDI_SUCCESS or DDI_FAILURE
15731  *
15732  *     Context: Called under attach(9E) context
15733  */
15734 
15735 static int
15736 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15737 {
15738 	struct sd_xbuf *xp;
15739 
15740 	ASSERT(un != NULL);
15741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15742 	ASSERT(un->un_rqs_bp == NULL);
15743 	ASSERT(un->un_rqs_pktp == NULL);
15744 
15745 	/*
15746 	 * First allocate the required buf and scsi_pkt structs, then set up
15747 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15748 	 */
15749 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15750 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15751 	if (un->un_rqs_bp == NULL) {
15752 		return (DDI_FAILURE);
15753 	}
15754 
15755 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15756 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15757 
15758 	if (un->un_rqs_pktp == NULL) {
15759 		sd_free_rqs(un);
15760 		return (DDI_FAILURE);
15761 	}
15762 
15763 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15764 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15765 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15766 
15767 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15768 
15769 	/* Set up the other needed members in the ARQ scsi_pkt. */
15770 	un->un_rqs_pktp->pkt_comp   = sdintr;
15771 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15772 	un->un_rqs_pktp->pkt_flags |=
15773 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15774 
15775 	/*
15776 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15777 	 * provide any intpkt, destroypkt routines as we take care of
15778 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15779 	 */
15780 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15781 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15782 	xp->xb_pktp = un->un_rqs_pktp;
15783 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15784 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15785 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15786 
15787 	/*
15788 	 * Save the pointer to the request sense private bp so it can
15789 	 * be retrieved in sdintr.
15790 	 */
15791 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15792 	ASSERT(un->un_rqs_bp->b_private == xp);
15793 
15794 	/*
15795 	 * See if the HBA supports auto-request sense for the specified
15796 	 * target/lun. If it does, then try to enable it (if not already
15797 	 * enabled).
15798 	 *
15799 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15800 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15801 	 * return success.  However, in both of these cases ARQ is always
15802 	 * enabled and scsi_ifgetcap will always return true. The best approach
15803 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15804 	 *
15805 	 * The 3rd case is the HBA (adp) always return enabled on
15806 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15807 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15808 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15809 	 */
15810 
15811 	if (un->un_f_is_fibre == TRUE) {
15812 		un->un_f_arq_enabled = TRUE;
15813 	} else {
15814 #if defined(__i386) || defined(__amd64)
15815 		/*
15816 		 * Circumvent the Adaptec bug, remove this code when
15817 		 * the bug is fixed
15818 		 */
15819 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15820 #endif
15821 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15822 		case 0:
15823 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15824 				"sd_alloc_rqs: HBA supports ARQ\n");
15825 			/*
15826 			 * ARQ is supported by this HBA but currently is not
15827 			 * enabled. Attempt to enable it and if successful then
15828 			 * mark this instance as ARQ enabled.
15829 			 */
15830 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15831 				== 1) {
15832 				/* Successfully enabled ARQ in the HBA */
15833 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15834 					"sd_alloc_rqs: ARQ enabled\n");
15835 				un->un_f_arq_enabled = TRUE;
15836 			} else {
15837 				/* Could not enable ARQ in the HBA */
15838 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15839 				"sd_alloc_rqs: failed ARQ enable\n");
15840 				un->un_f_arq_enabled = FALSE;
15841 			}
15842 			break;
15843 		case 1:
15844 			/*
15845 			 * ARQ is supported by this HBA and is already enabled.
15846 			 * Just mark ARQ as enabled for this instance.
15847 			 */
15848 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15849 				"sd_alloc_rqs: ARQ already enabled\n");
15850 			un->un_f_arq_enabled = TRUE;
15851 			break;
15852 		default:
15853 			/*
15854 			 * ARQ is not supported by this HBA; disable it for this
15855 			 * instance.
15856 			 */
15857 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15858 				"sd_alloc_rqs: HBA does not support ARQ\n");
15859 			un->un_f_arq_enabled = FALSE;
15860 			break;
15861 		}
15862 	}
15863 
15864 	return (DDI_SUCCESS);
15865 }
15866 
15867 
15868 /*
15869  *    Function: sd_free_rqs
15870  *
15871  * Description: Cleanup for the pre-instance RQS command.
15872  *
15873  *     Context: Kernel thread context
15874  */
15875 
15876 static void
15877 sd_free_rqs(struct sd_lun *un)
15878 {
15879 	ASSERT(un != NULL);
15880 
15881 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15882 
15883 	/*
15884 	 * If consistent memory is bound to a scsi_pkt, the pkt
15885 	 * has to be destroyed *before* freeing the consistent memory.
15886 	 * Don't change the sequence of this operations.
15887 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15888 	 * after it was freed in scsi_free_consistent_buf().
15889 	 */
15890 	if (un->un_rqs_pktp != NULL) {
15891 		scsi_destroy_pkt(un->un_rqs_pktp);
15892 		un->un_rqs_pktp = NULL;
15893 	}
15894 
15895 	if (un->un_rqs_bp != NULL) {
15896 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15897 		scsi_free_consistent_buf(un->un_rqs_bp);
15898 		un->un_rqs_bp = NULL;
15899 	}
15900 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15901 }
15902 
15903 
15904 
15905 /*
15906  *    Function: sd_reduce_throttle
15907  *
15908  * Description: Reduces the maximun # of outstanding commands on a
15909  *		target to the current number of outstanding commands.
15910  *		Queues a tiemout(9F) callback to restore the limit
15911  *		after a specified interval has elapsed.
15912  *		Typically used when we get a TRAN_BUSY return code
15913  *		back from scsi_transport().
15914  *
15915  *   Arguments: un - ptr to the sd_lun softstate struct
15916  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15917  *
15918  *     Context: May be called from interrupt context
15919  */
15920 
15921 static void
15922 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15923 {
15924 	ASSERT(un != NULL);
15925 	ASSERT(mutex_owned(SD_MUTEX(un)));
15926 	ASSERT(un->un_ncmds_in_transport >= 0);
15927 
15928 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15929 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15930 	    un, un->un_throttle, un->un_ncmds_in_transport);
15931 
15932 	if (un->un_throttle > 1) {
15933 		if (un->un_f_use_adaptive_throttle == TRUE) {
15934 			switch (throttle_type) {
15935 			case SD_THROTTLE_TRAN_BUSY:
15936 				if (un->un_busy_throttle == 0) {
15937 					un->un_busy_throttle = un->un_throttle;
15938 				}
15939 				break;
15940 			case SD_THROTTLE_QFULL:
15941 				un->un_busy_throttle = 0;
15942 				break;
15943 			default:
15944 				ASSERT(FALSE);
15945 			}
15946 
15947 			if (un->un_ncmds_in_transport > 0) {
15948 			    un->un_throttle = un->un_ncmds_in_transport;
15949 			}
15950 
15951 		} else {
15952 			if (un->un_ncmds_in_transport == 0) {
15953 				un->un_throttle = 1;
15954 			} else {
15955 				un->un_throttle = un->un_ncmds_in_transport;
15956 			}
15957 		}
15958 	}
15959 
15960 	/* Reschedule the timeout if none is currently active */
15961 	if (un->un_reset_throttle_timeid == NULL) {
15962 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15963 		    un, SD_THROTTLE_RESET_INTERVAL);
15964 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15965 		    "sd_reduce_throttle: timeout scheduled!\n");
15966 	}
15967 
15968 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15969 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15970 }
15971 
15972 
15973 
15974 /*
15975  *    Function: sd_restore_throttle
15976  *
15977  * Description: Callback function for timeout(9F).  Resets the current
15978  *		value of un->un_throttle to its default.
15979  *
15980  *   Arguments: arg - pointer to associated softstate for the device.
15981  *
15982  *     Context: May be called from interrupt context
15983  */
15984 
15985 static void
15986 sd_restore_throttle(void *arg)
15987 {
15988 	struct sd_lun	*un = arg;
15989 
15990 	ASSERT(un != NULL);
15991 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15992 
15993 	mutex_enter(SD_MUTEX(un));
15994 
15995 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15996 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15997 
15998 	un->un_reset_throttle_timeid = NULL;
15999 
16000 	if (un->un_f_use_adaptive_throttle == TRUE) {
16001 		/*
16002 		 * If un_busy_throttle is nonzero, then it contains the
16003 		 * value that un_throttle was when we got a TRAN_BUSY back
16004 		 * from scsi_transport(). We want to revert back to this
16005 		 * value.
16006 		 *
16007 		 * In the QFULL case, the throttle limit will incrementally
16008 		 * increase until it reaches max throttle.
16009 		 */
16010 		if (un->un_busy_throttle > 0) {
16011 			un->un_throttle = un->un_busy_throttle;
16012 			un->un_busy_throttle = 0;
16013 		} else {
16014 			/*
16015 			 * increase throttle by 10% open gate slowly, schedule
16016 			 * another restore if saved throttle has not been
16017 			 * reached
16018 			 */
16019 			short throttle;
16020 			if (sd_qfull_throttle_enable) {
16021 				throttle = un->un_throttle +
16022 				    max((un->un_throttle / 10), 1);
16023 				un->un_throttle =
16024 				    (throttle < un->un_saved_throttle) ?
16025 				    throttle : un->un_saved_throttle;
16026 				if (un->un_throttle < un->un_saved_throttle) {
16027 				    un->un_reset_throttle_timeid =
16028 					timeout(sd_restore_throttle,
16029 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16030 				}
16031 			}
16032 		}
16033 
16034 		/*
16035 		 * If un_throttle has fallen below the low-water mark, we
16036 		 * restore the maximum value here (and allow it to ratchet
16037 		 * down again if necessary).
16038 		 */
16039 		if (un->un_throttle < un->un_min_throttle) {
16040 			un->un_throttle = un->un_saved_throttle;
16041 		}
16042 	} else {
16043 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16044 		    "restoring limit from 0x%x to 0x%x\n",
16045 		    un->un_throttle, un->un_saved_throttle);
16046 		un->un_throttle = un->un_saved_throttle;
16047 	}
16048 
16049 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16050 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16051 
16052 	sd_start_cmds(un, NULL);
16053 
16054 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16055 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16056 	    un, un->un_throttle);
16057 
16058 	mutex_exit(SD_MUTEX(un));
16059 
16060 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16061 }
16062 
16063 /*
16064  *    Function: sdrunout
16065  *
16066  * Description: Callback routine for scsi_init_pkt when a resource allocation
16067  *		fails.
16068  *
16069  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16070  *		soft state instance.
16071  *
16072  * Return Code: The scsi_init_pkt routine allows for the callback function to
16073  *		return a 0 indicating the callback should be rescheduled or a 1
16074  *		indicating not to reschedule. This routine always returns 1
16075  *		because the driver always provides a callback function to
16076  *		scsi_init_pkt. This results in a callback always being scheduled
16077  *		(via the scsi_init_pkt callback implementation) if a resource
16078  *		failure occurs.
16079  *
16080  *     Context: This callback function may not block or call routines that block
16081  *
16082  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16083  *		request persisting at the head of the list which cannot be
16084  *		satisfied even after multiple retries. In the future the driver
16085  *		may implement some time of maximum runout count before failing
16086  *		an I/O.
16087  */
16088 
16089 static int
16090 sdrunout(caddr_t arg)
16091 {
16092 	struct sd_lun	*un = (struct sd_lun *)arg;
16093 
16094 	ASSERT(un != NULL);
16095 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16096 
16097 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16098 
16099 	mutex_enter(SD_MUTEX(un));
16100 	sd_start_cmds(un, NULL);
16101 	mutex_exit(SD_MUTEX(un));
16102 	/*
16103 	 * This callback routine always returns 1 (i.e. do not reschedule)
16104 	 * because we always specify sdrunout as the callback handler for
16105 	 * scsi_init_pkt inside the call to sd_start_cmds.
16106 	 */
16107 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16108 	return (1);
16109 }
16110 
16111 
16112 /*
16113  *    Function: sdintr
16114  *
16115  * Description: Completion callback routine for scsi_pkt(9S) structs
16116  *		sent to the HBA driver via scsi_transport(9F).
16117  *
16118  *     Context: Interrupt context
16119  */
16120 
16121 static void
16122 sdintr(struct scsi_pkt *pktp)
16123 {
16124 	struct buf	*bp;
16125 	struct sd_xbuf	*xp;
16126 	struct sd_lun	*un;
16127 
16128 	ASSERT(pktp != NULL);
16129 	bp = (struct buf *)pktp->pkt_private;
16130 	ASSERT(bp != NULL);
16131 	xp = SD_GET_XBUF(bp);
16132 	ASSERT(xp != NULL);
16133 	ASSERT(xp->xb_pktp != NULL);
16134 	un = SD_GET_UN(bp);
16135 	ASSERT(un != NULL);
16136 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16137 
16138 #ifdef SD_FAULT_INJECTION
16139 
16140 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16141 	/* SD FaultInjection */
16142 	sd_faultinjection(pktp);
16143 
16144 #endif /* SD_FAULT_INJECTION */
16145 
16146 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16147 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16148 
16149 	mutex_enter(SD_MUTEX(un));
16150 
16151 	/* Reduce the count of the #commands currently in transport */
16152 	un->un_ncmds_in_transport--;
16153 	ASSERT(un->un_ncmds_in_transport >= 0);
16154 
16155 	/* Increment counter to indicate that the callback routine is active */
16156 	un->un_in_callback++;
16157 
16158 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16159 
16160 #ifdef	SDDEBUG
16161 	if (bp == un->un_retry_bp) {
16162 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16163 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16164 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16165 	}
16166 #endif
16167 
16168 	/*
16169 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16170 	 */
16171 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16172 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16173 			    "Device is gone\n");
16174 		sd_return_failed_command(un, bp, EIO);
16175 		goto exit;
16176 	}
16177 
16178 	/*
16179 	 * First see if the pkt has auto-request sense data with it....
16180 	 * Look at the packet state first so we don't take a performance
16181 	 * hit looking at the arq enabled flag unless absolutely necessary.
16182 	 */
16183 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16184 	    (un->un_f_arq_enabled == TRUE)) {
16185 		/*
16186 		 * The HBA did an auto request sense for this command so check
16187 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16188 		 * driver command that should not be retried.
16189 		 */
16190 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16191 			/*
16192 			 * Save the relevant sense info into the xp for the
16193 			 * original cmd.
16194 			 */
16195 			struct scsi_arq_status *asp;
16196 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16197 			xp->xb_sense_status =
16198 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16199 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16200 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16201 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16202 			    min(sizeof (struct scsi_extended_sense),
16203 			    SENSE_LENGTH));
16204 
16205 			/* fail the command */
16206 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16207 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16208 			sd_return_failed_command(un, bp, EIO);
16209 			goto exit;
16210 		}
16211 
16212 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16213 		/*
16214 		 * We want to either retry or fail this command, so free
16215 		 * the DMA resources here.  If we retry the command then
16216 		 * the DMA resources will be reallocated in sd_start_cmds().
16217 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16218 		 * causes the *entire* transfer to start over again from the
16219 		 * beginning of the request, even for PARTIAL chunks that
16220 		 * have already transferred successfully.
16221 		 */
16222 		if ((un->un_f_is_fibre == TRUE) &&
16223 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16224 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16225 			scsi_dmafree(pktp);
16226 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16227 		}
16228 #endif
16229 
16230 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16231 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16232 
16233 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16234 		goto exit;
16235 	}
16236 
16237 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16238 	if (pktp->pkt_flags & FLAG_SENSING)  {
16239 		/* This pktp is from the unit's REQUEST_SENSE command */
16240 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16241 		    "sdintr: sd_handle_request_sense\n");
16242 		sd_handle_request_sense(un, bp, xp, pktp);
16243 		goto exit;
16244 	}
16245 
16246 	/*
16247 	 * Check to see if the command successfully completed as requested;
16248 	 * this is the most common case (and also the hot performance path).
16249 	 *
16250 	 * Requirements for successful completion are:
16251 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16252 	 * In addition:
16253 	 * - A residual of zero indicates successful completion no matter what
16254 	 *   the command is.
16255 	 * - If the residual is not zero and the command is not a read or
16256 	 *   write, then it's still defined as successful completion. In other
16257 	 *   words, if the command is a read or write the residual must be
16258 	 *   zero for successful completion.
16259 	 * - If the residual is not zero and the command is a read or
16260 	 *   write, and it's a USCSICMD, then it's still defined as
16261 	 *   successful completion.
16262 	 */
16263 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16264 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16265 
16266 		/*
16267 		 * Since this command is returned with a good status, we
16268 		 * can reset the count for Sonoma failover.
16269 		 */
16270 		un->un_sonoma_failure_count = 0;
16271 
16272 		/*
16273 		 * Return all USCSI commands on good status
16274 		 */
16275 		if (pktp->pkt_resid == 0) {
16276 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16277 			    "sdintr: returning command for resid == 0\n");
16278 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16279 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16280 			SD_UPDATE_B_RESID(bp, pktp);
16281 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16282 			    "sdintr: returning command for resid != 0\n");
16283 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16284 			SD_UPDATE_B_RESID(bp, pktp);
16285 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16286 				"sdintr: returning uscsi command\n");
16287 		} else {
16288 			goto not_successful;
16289 		}
16290 		sd_return_command(un, bp);
16291 
16292 		/*
16293 		 * Decrement counter to indicate that the callback routine
16294 		 * is done.
16295 		 */
16296 		un->un_in_callback--;
16297 		ASSERT(un->un_in_callback >= 0);
16298 		mutex_exit(SD_MUTEX(un));
16299 
16300 		return;
16301 	}
16302 
16303 not_successful:
16304 
16305 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16306 	/*
16307 	 * The following is based upon knowledge of the underlying transport
16308 	 * and its use of DMA resources.  This code should be removed when
16309 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16310 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16311 	 * and sd_start_cmds().
16312 	 *
16313 	 * Free any DMA resources associated with this command if there
16314 	 * is a chance it could be retried or enqueued for later retry.
16315 	 * If we keep the DMA binding then mpxio cannot reissue the
16316 	 * command on another path whenever a path failure occurs.
16317 	 *
16318 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16319 	 * causes the *entire* transfer to start over again from the
16320 	 * beginning of the request, even for PARTIAL chunks that
16321 	 * have already transferred successfully.
16322 	 *
16323 	 * This is only done for non-uscsi commands (and also skipped for the
16324 	 * driver's internal RQS command). Also just do this for Fibre Channel
16325 	 * devices as these are the only ones that support mpxio.
16326 	 */
16327 	if ((un->un_f_is_fibre == TRUE) &&
16328 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16329 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16330 		scsi_dmafree(pktp);
16331 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16332 	}
16333 #endif
16334 
16335 	/*
16336 	 * The command did not successfully complete as requested so check
16337 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16338 	 * driver command that should not be retried so just return. If
16339 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16340 	 */
16341 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16342 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16343 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16344 		/*
16345 		 * Issue a request sense if a check condition caused the error
16346 		 * (we handle the auto request sense case above), otherwise
16347 		 * just fail the command.
16348 		 */
16349 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16350 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16351 			sd_send_request_sense_command(un, bp, pktp);
16352 		} else {
16353 			sd_return_failed_command(un, bp, EIO);
16354 		}
16355 		goto exit;
16356 	}
16357 
16358 	/*
16359 	 * The command did not successfully complete as requested so process
16360 	 * the error, retry, and/or attempt recovery.
16361 	 */
16362 	switch (pktp->pkt_reason) {
16363 	case CMD_CMPLT:
16364 		switch (SD_GET_PKT_STATUS(pktp)) {
16365 		case STATUS_GOOD:
16366 			/*
16367 			 * The command completed successfully with a non-zero
16368 			 * residual
16369 			 */
16370 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16371 			    "sdintr: STATUS_GOOD \n");
16372 			sd_pkt_status_good(un, bp, xp, pktp);
16373 			break;
16374 
16375 		case STATUS_CHECK:
16376 		case STATUS_TERMINATED:
16377 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16378 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16379 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16380 			break;
16381 
16382 		case STATUS_BUSY:
16383 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16384 			    "sdintr: STATUS_BUSY\n");
16385 			sd_pkt_status_busy(un, bp, xp, pktp);
16386 			break;
16387 
16388 		case STATUS_RESERVATION_CONFLICT:
16389 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16390 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16391 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16392 			break;
16393 
16394 		case STATUS_QFULL:
16395 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16396 			    "sdintr: STATUS_QFULL\n");
16397 			sd_pkt_status_qfull(un, bp, xp, pktp);
16398 			break;
16399 
16400 		case STATUS_MET:
16401 		case STATUS_INTERMEDIATE:
16402 		case STATUS_SCSI2:
16403 		case STATUS_INTERMEDIATE_MET:
16404 		case STATUS_ACA_ACTIVE:
16405 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16406 			    "Unexpected SCSI status received: 0x%x\n",
16407 			    SD_GET_PKT_STATUS(pktp));
16408 			sd_return_failed_command(un, bp, EIO);
16409 			break;
16410 
16411 		default:
16412 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16413 			    "Invalid SCSI status received: 0x%x\n",
16414 			    SD_GET_PKT_STATUS(pktp));
16415 			sd_return_failed_command(un, bp, EIO);
16416 			break;
16417 
16418 		}
16419 		break;
16420 
16421 	case CMD_INCOMPLETE:
16422 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16423 		    "sdintr:  CMD_INCOMPLETE\n");
16424 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16425 		break;
16426 	case CMD_TRAN_ERR:
16427 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16428 		    "sdintr: CMD_TRAN_ERR\n");
16429 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16430 		break;
16431 	case CMD_RESET:
16432 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16433 		    "sdintr: CMD_RESET \n");
16434 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16435 		break;
16436 	case CMD_ABORTED:
16437 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16438 		    "sdintr: CMD_ABORTED \n");
16439 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16440 		break;
16441 	case CMD_TIMEOUT:
16442 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16443 		    "sdintr: CMD_TIMEOUT\n");
16444 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16445 		break;
16446 	case CMD_UNX_BUS_FREE:
16447 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16448 		    "sdintr: CMD_UNX_BUS_FREE \n");
16449 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16450 		break;
16451 	case CMD_TAG_REJECT:
16452 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16453 		    "sdintr: CMD_TAG_REJECT\n");
16454 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16455 		break;
16456 	default:
16457 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16458 		    "sdintr: default\n");
16459 		sd_pkt_reason_default(un, bp, xp, pktp);
16460 		break;
16461 	}
16462 
16463 exit:
16464 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16465 
16466 	/* Decrement counter to indicate that the callback routine is done. */
16467 	un->un_in_callback--;
16468 	ASSERT(un->un_in_callback >= 0);
16469 
16470 	/*
16471 	 * At this point, the pkt has been dispatched, ie, it is either
16472 	 * being re-tried or has been returned to its caller and should
16473 	 * not be referenced.
16474 	 */
16475 
16476 	mutex_exit(SD_MUTEX(un));
16477 }
16478 
16479 
16480 /*
16481  *    Function: sd_print_incomplete_msg
16482  *
16483  * Description: Prints the error message for a CMD_INCOMPLETE error.
16484  *
16485  *   Arguments: un - ptr to associated softstate for the device.
16486  *		bp - ptr to the buf(9S) for the command.
16487  *		arg - message string ptr
16488  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16489  *			or SD_NO_RETRY_ISSUED.
16490  *
16491  *     Context: May be called under interrupt context
16492  */
16493 
16494 static void
16495 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16496 {
16497 	struct scsi_pkt	*pktp;
16498 	char	*msgp;
16499 	char	*cmdp = arg;
16500 
16501 	ASSERT(un != NULL);
16502 	ASSERT(mutex_owned(SD_MUTEX(un)));
16503 	ASSERT(bp != NULL);
16504 	ASSERT(arg != NULL);
16505 	pktp = SD_GET_PKTP(bp);
16506 	ASSERT(pktp != NULL);
16507 
16508 	switch (code) {
16509 	case SD_DELAYED_RETRY_ISSUED:
16510 	case SD_IMMEDIATE_RETRY_ISSUED:
16511 		msgp = "retrying";
16512 		break;
16513 	case SD_NO_RETRY_ISSUED:
16514 	default:
16515 		msgp = "giving up";
16516 		break;
16517 	}
16518 
16519 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16520 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16521 		    "incomplete %s- %s\n", cmdp, msgp);
16522 	}
16523 }
16524 
16525 
16526 
16527 /*
16528  *    Function: sd_pkt_status_good
16529  *
16530  * Description: Processing for a STATUS_GOOD code in pkt_status.
16531  *
16532  *     Context: May be called under interrupt context
16533  */
16534 
16535 static void
16536 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16537 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16538 {
16539 	char	*cmdp;
16540 
16541 	ASSERT(un != NULL);
16542 	ASSERT(mutex_owned(SD_MUTEX(un)));
16543 	ASSERT(bp != NULL);
16544 	ASSERT(xp != NULL);
16545 	ASSERT(pktp != NULL);
16546 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16547 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16548 	ASSERT(pktp->pkt_resid != 0);
16549 
16550 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16551 
16552 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16553 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16554 	case SCMD_READ:
16555 		cmdp = "read";
16556 		break;
16557 	case SCMD_WRITE:
16558 		cmdp = "write";
16559 		break;
16560 	default:
16561 		SD_UPDATE_B_RESID(bp, pktp);
16562 		sd_return_command(un, bp);
16563 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16564 		return;
16565 	}
16566 
16567 	/*
16568 	 * See if we can retry the read/write, preferrably immediately.
16569 	 * If retries are exhaused, then sd_retry_command() will update
16570 	 * the b_resid count.
16571 	 */
16572 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16573 	    cmdp, EIO, (clock_t)0, NULL);
16574 
16575 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16576 }
16577 
16578 
16579 
16580 
16581 
16582 /*
16583  *    Function: sd_handle_request_sense
16584  *
16585  * Description: Processing for non-auto Request Sense command.
16586  *
16587  *   Arguments: un - ptr to associated softstate
16588  *		sense_bp - ptr to buf(9S) for the RQS command
16589  *		sense_xp - ptr to the sd_xbuf for the RQS command
16590  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16591  *
16592  *     Context: May be called under interrupt context
16593  */
16594 
16595 static void
16596 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16597 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16598 {
16599 	struct buf	*cmd_bp;	/* buf for the original command */
16600 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16601 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16602 
16603 	ASSERT(un != NULL);
16604 	ASSERT(mutex_owned(SD_MUTEX(un)));
16605 	ASSERT(sense_bp != NULL);
16606 	ASSERT(sense_xp != NULL);
16607 	ASSERT(sense_pktp != NULL);
16608 
16609 	/*
16610 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16611 	 * RQS command and not the original command.
16612 	 */
16613 	ASSERT(sense_pktp == un->un_rqs_pktp);
16614 	ASSERT(sense_bp   == un->un_rqs_bp);
16615 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16616 	    (FLAG_SENSING | FLAG_HEAD));
16617 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16618 	    FLAG_SENSING) == FLAG_SENSING);
16619 
16620 	/* These are the bp, xp, and pktp for the original command */
16621 	cmd_bp = sense_xp->xb_sense_bp;
16622 	cmd_xp = SD_GET_XBUF(cmd_bp);
16623 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16624 
16625 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16626 		/*
16627 		 * The REQUEST SENSE command failed.  Release the REQUEST
16628 		 * SENSE command for re-use, get back the bp for the original
16629 		 * command, and attempt to re-try the original command if
16630 		 * FLAG_DIAGNOSE is not set in the original packet.
16631 		 */
16632 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16633 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16634 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16635 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16636 			    NULL, NULL, EIO, (clock_t)0, NULL);
16637 			return;
16638 		}
16639 	}
16640 
16641 	/*
16642 	 * Save the relevant sense info into the xp for the original cmd.
16643 	 *
16644 	 * Note: if the request sense failed the state info will be zero
16645 	 * as set in sd_mark_rqs_busy()
16646 	 */
16647 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16648 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16649 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16650 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16651 
16652 	/*
16653 	 *  Free up the RQS command....
16654 	 *  NOTE:
16655 	 *	Must do this BEFORE calling sd_validate_sense_data!
16656 	 *	sd_validate_sense_data may return the original command in
16657 	 *	which case the pkt will be freed and the flags can no
16658 	 *	longer be touched.
16659 	 *	SD_MUTEX is held through this process until the command
16660 	 *	is dispatched based upon the sense data, so there are
16661 	 *	no race conditions.
16662 	 */
16663 	(void) sd_mark_rqs_idle(un, sense_xp);
16664 
16665 	/*
16666 	 * For a retryable command see if we have valid sense data, if so then
16667 	 * turn it over to sd_decode_sense() to figure out the right course of
16668 	 * action. Just fail a non-retryable command.
16669 	 */
16670 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16671 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16672 		    SD_SENSE_DATA_IS_VALID) {
16673 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16674 		}
16675 	} else {
16676 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16677 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16678 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16679 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16680 		sd_return_failed_command(un, cmd_bp, EIO);
16681 	}
16682 }
16683 
16684 
16685 
16686 
16687 /*
16688  *    Function: sd_handle_auto_request_sense
16689  *
16690  * Description: Processing for auto-request sense information.
16691  *
16692  *   Arguments: un - ptr to associated softstate
16693  *		bp - ptr to buf(9S) for the command
16694  *		xp - ptr to the sd_xbuf for the command
16695  *		pktp - ptr to the scsi_pkt(9S) for the command
16696  *
16697  *     Context: May be called under interrupt context
16698  */
16699 
16700 static void
16701 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16702 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16703 {
16704 	struct scsi_arq_status *asp;
16705 
16706 	ASSERT(un != NULL);
16707 	ASSERT(mutex_owned(SD_MUTEX(un)));
16708 	ASSERT(bp != NULL);
16709 	ASSERT(xp != NULL);
16710 	ASSERT(pktp != NULL);
16711 	ASSERT(pktp != un->un_rqs_pktp);
16712 	ASSERT(bp   != un->un_rqs_bp);
16713 
16714 	/*
16715 	 * For auto-request sense, we get a scsi_arq_status back from
16716 	 * the HBA, with the sense data in the sts_sensedata member.
16717 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16718 	 */
16719 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16720 
16721 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16722 		/*
16723 		 * The auto REQUEST SENSE failed; see if we can re-try
16724 		 * the original command.
16725 		 */
16726 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16727 		    "auto request sense failed (reason=%s)\n",
16728 		    scsi_rname(asp->sts_rqpkt_reason));
16729 
16730 		sd_reset_target(un, pktp);
16731 
16732 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16733 		    NULL, NULL, EIO, (clock_t)0, NULL);
16734 		return;
16735 	}
16736 
16737 	/* Save the relevant sense info into the xp for the original cmd. */
16738 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16739 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16740 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16741 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16742 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16743 
16744 	/*
16745 	 * See if we have valid sense data, if so then turn it over to
16746 	 * sd_decode_sense() to figure out the right course of action.
16747 	 */
16748 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16749 		sd_decode_sense(un, bp, xp, pktp);
16750 	}
16751 }
16752 
16753 
16754 /*
16755  *    Function: sd_print_sense_failed_msg
16756  *
16757  * Description: Print log message when RQS has failed.
16758  *
16759  *   Arguments: un - ptr to associated softstate
16760  *		bp - ptr to buf(9S) for the command
16761  *		arg - generic message string ptr
16762  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16763  *			or SD_NO_RETRY_ISSUED
16764  *
16765  *     Context: May be called from interrupt context
16766  */
16767 
16768 static void
16769 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16770 	int code)
16771 {
16772 	char	*msgp = arg;
16773 
16774 	ASSERT(un != NULL);
16775 	ASSERT(mutex_owned(SD_MUTEX(un)));
16776 	ASSERT(bp != NULL);
16777 
16778 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16779 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16780 	}
16781 }
16782 
16783 
16784 /*
16785  *    Function: sd_validate_sense_data
16786  *
16787  * Description: Check the given sense data for validity.
16788  *		If the sense data is not valid, the command will
16789  *		be either failed or retried!
16790  *
16791  * Return Code: SD_SENSE_DATA_IS_INVALID
16792  *		SD_SENSE_DATA_IS_VALID
16793  *
16794  *     Context: May be called from interrupt context
16795  */
16796 
16797 static int
16798 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16799 {
16800 	struct scsi_extended_sense *esp;
16801 	struct	scsi_pkt *pktp;
16802 	size_t	actual_len;
16803 	char	*msgp = NULL;
16804 
16805 	ASSERT(un != NULL);
16806 	ASSERT(mutex_owned(SD_MUTEX(un)));
16807 	ASSERT(bp != NULL);
16808 	ASSERT(bp != un->un_rqs_bp);
16809 	ASSERT(xp != NULL);
16810 
16811 	pktp = SD_GET_PKTP(bp);
16812 	ASSERT(pktp != NULL);
16813 
16814 	/*
16815 	 * Check the status of the RQS command (auto or manual).
16816 	 */
16817 	switch (xp->xb_sense_status & STATUS_MASK) {
16818 	case STATUS_GOOD:
16819 		break;
16820 
16821 	case STATUS_RESERVATION_CONFLICT:
16822 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16823 		return (SD_SENSE_DATA_IS_INVALID);
16824 
16825 	case STATUS_BUSY:
16826 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16827 		    "Busy Status on REQUEST SENSE\n");
16828 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16829 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16830 		return (SD_SENSE_DATA_IS_INVALID);
16831 
16832 	case STATUS_QFULL:
16833 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16834 		    "QFULL Status on REQUEST SENSE\n");
16835 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16836 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16837 		return (SD_SENSE_DATA_IS_INVALID);
16838 
16839 	case STATUS_CHECK:
16840 	case STATUS_TERMINATED:
16841 		msgp = "Check Condition on REQUEST SENSE\n";
16842 		goto sense_failed;
16843 
16844 	default:
16845 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16846 		goto sense_failed;
16847 	}
16848 
16849 	/*
16850 	 * See if we got the minimum required amount of sense data.
16851 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16852 	 * or less.
16853 	 */
16854 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16855 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16856 	    (actual_len == 0)) {
16857 		msgp = "Request Sense couldn't get sense data\n";
16858 		goto sense_failed;
16859 	}
16860 
16861 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16862 		msgp = "Not enough sense information\n";
16863 		goto sense_failed;
16864 	}
16865 
16866 	/*
16867 	 * We require the extended sense data
16868 	 */
16869 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16870 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16871 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16872 			static char tmp[8];
16873 			static char buf[148];
16874 			char *p = (char *)(xp->xb_sense_data);
16875 			int i;
16876 
16877 			mutex_enter(&sd_sense_mutex);
16878 			(void) strcpy(buf, "undecodable sense information:");
16879 			for (i = 0; i < actual_len; i++) {
16880 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16881 				(void) strcpy(&buf[strlen(buf)], tmp);
16882 			}
16883 			i = strlen(buf);
16884 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16885 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16886 			mutex_exit(&sd_sense_mutex);
16887 		}
16888 		/* Note: Legacy behavior, fail the command with no retry */
16889 		sd_return_failed_command(un, bp, EIO);
16890 		return (SD_SENSE_DATA_IS_INVALID);
16891 	}
16892 
16893 	/*
16894 	 * Check that es_code is valid (es_class concatenated with es_code
16895 	 * make up the "response code" field.  es_class will always be 7, so
16896 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16897 	 * format.
16898 	 */
16899 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16900 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16901 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16902 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16903 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16904 		goto sense_failed;
16905 	}
16906 
16907 	return (SD_SENSE_DATA_IS_VALID);
16908 
16909 sense_failed:
16910 	/*
16911 	 * If the request sense failed (for whatever reason), attempt
16912 	 * to retry the original command.
16913 	 */
16914 #if defined(__i386) || defined(__amd64)
16915 	/*
16916 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16917 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16918 	 * for both SCSI/FC.
16919 	 * The SD_RETRY_DELAY value need to be adjusted here
16920 	 * when SD_RETRY_DELAY change in sddef.h
16921 	 */
16922 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16923 	    sd_print_sense_failed_msg, msgp, EIO,
16924 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16925 #else
16926 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16927 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16928 #endif
16929 
16930 	return (SD_SENSE_DATA_IS_INVALID);
16931 }
16932 
16933 
16934 
16935 /*
16936  *    Function: sd_decode_sense
16937  *
16938  * Description: Take recovery action(s) when SCSI Sense Data is received.
16939  *
16940  *     Context: Interrupt context.
16941  */
16942 
16943 static void
16944 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16945 	struct scsi_pkt *pktp)
16946 {
16947 	struct scsi_extended_sense *esp;
16948 	struct scsi_descr_sense_hdr *sdsp;
16949 	uint8_t asc, ascq, sense_key;
16950 
16951 	ASSERT(un != NULL);
16952 	ASSERT(mutex_owned(SD_MUTEX(un)));
16953 	ASSERT(bp != NULL);
16954 	ASSERT(bp != un->un_rqs_bp);
16955 	ASSERT(xp != NULL);
16956 	ASSERT(pktp != NULL);
16957 
16958 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16959 
16960 	switch (esp->es_code) {
16961 	case CODE_FMT_DESCR_CURRENT:
16962 	case CODE_FMT_DESCR_DEFERRED:
16963 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16964 		sense_key = sdsp->ds_key;
16965 		asc = sdsp->ds_add_code;
16966 		ascq = sdsp->ds_qual_code;
16967 		break;
16968 	case CODE_FMT_VENDOR_SPECIFIC:
16969 	case CODE_FMT_FIXED_CURRENT:
16970 	case CODE_FMT_FIXED_DEFERRED:
16971 	default:
16972 		sense_key = esp->es_key;
16973 		asc = esp->es_add_code;
16974 		ascq = esp->es_qual_code;
16975 		break;
16976 	}
16977 
16978 	switch (sense_key) {
16979 	case KEY_NO_SENSE:
16980 		sd_sense_key_no_sense(un, bp, xp, pktp);
16981 		break;
16982 	case KEY_RECOVERABLE_ERROR:
16983 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16984 		break;
16985 	case KEY_NOT_READY:
16986 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16987 		break;
16988 	case KEY_MEDIUM_ERROR:
16989 	case KEY_HARDWARE_ERROR:
16990 		sd_sense_key_medium_or_hardware_error(un,
16991 		    sense_key, asc, bp, xp, pktp);
16992 		break;
16993 	case KEY_ILLEGAL_REQUEST:
16994 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16995 		break;
16996 	case KEY_UNIT_ATTENTION:
16997 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16998 		break;
16999 	case KEY_WRITE_PROTECT:
17000 	case KEY_VOLUME_OVERFLOW:
17001 	case KEY_MISCOMPARE:
17002 		sd_sense_key_fail_command(un, bp, xp, pktp);
17003 		break;
17004 	case KEY_BLANK_CHECK:
17005 		sd_sense_key_blank_check(un, bp, xp, pktp);
17006 		break;
17007 	case KEY_ABORTED_COMMAND:
17008 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17009 		break;
17010 	case KEY_VENDOR_UNIQUE:
17011 	case KEY_COPY_ABORTED:
17012 	case KEY_EQUAL:
17013 	case KEY_RESERVED:
17014 	default:
17015 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
17016 		break;
17017 	}
17018 }
17019 
17020 
17021 /*
17022  *    Function: sd_dump_memory
17023  *
17024  * Description: Debug logging routine to print the contents of a user provided
17025  *		buffer. The output of the buffer is broken up into 256 byte
17026  *		segments due to a size constraint of the scsi_log.
17027  *		implementation.
17028  *
17029  *   Arguments: un - ptr to softstate
17030  *		comp - component mask
17031  *		title - "title" string to preceed data when printed
17032  *		data - ptr to data block to be printed
17033  *		len - size of data block to be printed
17034  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17035  *
17036  *     Context: May be called from interrupt context
17037  */
17038 
17039 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17040 
17041 static char *sd_dump_format_string[] = {
17042 		" 0x%02x",
17043 		" %c"
17044 };
17045 
17046 static void
17047 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17048     int len, int fmt)
17049 {
17050 	int	i, j;
17051 	int	avail_count;
17052 	int	start_offset;
17053 	int	end_offset;
17054 	size_t	entry_len;
17055 	char	*bufp;
17056 	char	*local_buf;
17057 	char	*format_string;
17058 
17059 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17060 
17061 	/*
17062 	 * In the debug version of the driver, this function is called from a
17063 	 * number of places which are NOPs in the release driver.
17064 	 * The debug driver therefore has additional methods of filtering
17065 	 * debug output.
17066 	 */
17067 #ifdef SDDEBUG
17068 	/*
17069 	 * In the debug version of the driver we can reduce the amount of debug
17070 	 * messages by setting sd_error_level to something other than
17071 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17072 	 * sd_component_mask.
17073 	 */
17074 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17075 	    (sd_error_level != SCSI_ERR_ALL)) {
17076 		return;
17077 	}
17078 	if (((sd_component_mask & comp) == 0) ||
17079 	    (sd_error_level != SCSI_ERR_ALL)) {
17080 		return;
17081 	}
17082 #else
17083 	if (sd_error_level != SCSI_ERR_ALL) {
17084 		return;
17085 	}
17086 #endif
17087 
17088 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17089 	bufp = local_buf;
17090 	/*
17091 	 * Available length is the length of local_buf[], minus the
17092 	 * length of the title string, minus one for the ":", minus
17093 	 * one for the newline, minus one for the NULL terminator.
17094 	 * This gives the #bytes available for holding the printed
17095 	 * values from the given data buffer.
17096 	 */
17097 	if (fmt == SD_LOG_HEX) {
17098 		format_string = sd_dump_format_string[0];
17099 	} else /* SD_LOG_CHAR */ {
17100 		format_string = sd_dump_format_string[1];
17101 	}
17102 	/*
17103 	 * Available count is the number of elements from the given
17104 	 * data buffer that we can fit into the available length.
17105 	 * This is based upon the size of the format string used.
17106 	 * Make one entry and find it's size.
17107 	 */
17108 	(void) sprintf(bufp, format_string, data[0]);
17109 	entry_len = strlen(bufp);
17110 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17111 
17112 	j = 0;
17113 	while (j < len) {
17114 		bufp = local_buf;
17115 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17116 		start_offset = j;
17117 
17118 		end_offset = start_offset + avail_count;
17119 
17120 		(void) sprintf(bufp, "%s:", title);
17121 		bufp += strlen(bufp);
17122 		for (i = start_offset; ((i < end_offset) && (j < len));
17123 		    i++, j++) {
17124 			(void) sprintf(bufp, format_string, data[i]);
17125 			bufp += entry_len;
17126 		}
17127 		(void) sprintf(bufp, "\n");
17128 
17129 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17130 	}
17131 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17132 }
17133 
17134 /*
17135  *    Function: sd_print_sense_msg
17136  *
17137  * Description: Log a message based upon the given sense data.
17138  *
17139  *   Arguments: un - ptr to associated softstate
17140  *		bp - ptr to buf(9S) for the command
17141  *		arg - ptr to associate sd_sense_info struct
17142  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17143  *			or SD_NO_RETRY_ISSUED
17144  *
17145  *     Context: May be called from interrupt context
17146  */
17147 
17148 static void
17149 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17150 {
17151 	struct sd_xbuf	*xp;
17152 	struct scsi_pkt	*pktp;
17153 	struct scsi_extended_sense *sensep;
17154 	daddr_t request_blkno;
17155 	diskaddr_t err_blkno;
17156 	int severity;
17157 	int pfa_flag;
17158 	int fixed_format = TRUE;
17159 	extern struct scsi_key_strings scsi_cmds[];
17160 
17161 	ASSERT(un != NULL);
17162 	ASSERT(mutex_owned(SD_MUTEX(un)));
17163 	ASSERT(bp != NULL);
17164 	xp = SD_GET_XBUF(bp);
17165 	ASSERT(xp != NULL);
17166 	pktp = SD_GET_PKTP(bp);
17167 	ASSERT(pktp != NULL);
17168 	ASSERT(arg != NULL);
17169 
17170 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17171 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17172 
17173 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17174 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17175 		severity = SCSI_ERR_RETRYABLE;
17176 	}
17177 
17178 	/* Use absolute block number for the request block number */
17179 	request_blkno = xp->xb_blkno;
17180 
17181 	/*
17182 	 * Now try to get the error block number from the sense data
17183 	 */
17184 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
17185 	switch (sensep->es_code) {
17186 	case CODE_FMT_DESCR_CURRENT:
17187 	case CODE_FMT_DESCR_DEFERRED:
17188 		err_blkno =
17189 		    sd_extract_sense_info_descr(
17190 			(struct scsi_descr_sense_hdr *)sensep);
17191 		fixed_format = FALSE;
17192 		break;
17193 	case CODE_FMT_FIXED_CURRENT:
17194 	case CODE_FMT_FIXED_DEFERRED:
17195 	case CODE_FMT_VENDOR_SPECIFIC:
17196 	default:
17197 		/*
17198 		 * With the es_valid bit set, we assume that the error
17199 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
17200 		 * greater than 0xffffffff then the target *should* have used
17201 		 * a descriptor sense format (or it shouldn't have set
17202 		 * the es_valid bit), and we may as well ignore the
17203 		 * 32-bit value.
17204 		 */
17205 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
17206 			err_blkno = (diskaddr_t)
17207 			    ((sensep->es_info_1 << 24) |
17208 			    (sensep->es_info_2 << 16) |
17209 			    (sensep->es_info_3 << 8)  |
17210 			    (sensep->es_info_4));
17211 		} else {
17212 			err_blkno = (diskaddr_t)-1;
17213 		}
17214 		break;
17215 	}
17216 
17217 	if (err_blkno == (diskaddr_t)-1) {
17218 		/*
17219 		 * Without the es_valid bit set (for fixed format) or an
17220 		 * information descriptor (for descriptor format) we cannot
17221 		 * be certain of the error blkno, so just use the
17222 		 * request_blkno.
17223 		 */
17224 		err_blkno = (diskaddr_t)request_blkno;
17225 	} else {
17226 		/*
17227 		 * We retrieved the error block number from the information
17228 		 * portion of the sense data.
17229 		 *
17230 		 * For USCSI commands we are better off using the error
17231 		 * block no. as the requested block no. (This is the best
17232 		 * we can estimate.)
17233 		 */
17234 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17235 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17236 			request_blkno = err_blkno;
17237 		}
17238 	}
17239 
17240 	/*
17241 	 * The following will log the buffer contents for the release driver
17242 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17243 	 * level is set to verbose.
17244 	 */
17245 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17246 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17247 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17248 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17249 
17250 	if (pfa_flag == FALSE) {
17251 		/* This is normally only set for USCSI */
17252 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17253 			return;
17254 		}
17255 
17256 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17257 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17258 		    (severity < sd_error_level))) {
17259 			return;
17260 		}
17261 	}
17262 
17263 	/*
17264 	 * If the data is fixed format then check for Sonoma Failover,
17265 	 * and keep a count of how many failed I/O's.  We should not have
17266 	 * to worry about Sonoma returning descriptor format sense data,
17267 	 * and asc/ascq are in a different location in descriptor format.
17268 	 */
17269 	if (fixed_format &&
17270 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17271 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17272 		un->un_sonoma_failure_count++;
17273 		if (un->un_sonoma_failure_count > 1) {
17274 			return;
17275 		}
17276 	}
17277 
17278 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17279 	    request_blkno, err_blkno, scsi_cmds, sensep,
17280 	    un->un_additional_codes, NULL);
17281 }
17282 
17283 /*
17284  *    Function: sd_extract_sense_info_descr
17285  *
17286  * Description: Retrieve "information" field from descriptor format
17287  *              sense data.  Iterates through each sense descriptor
17288  *              looking for the information descriptor and returns
17289  *              the information field from that descriptor.
17290  *
17291  *     Context: May be called from interrupt context
17292  */
17293 
17294 static diskaddr_t
17295 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17296 {
17297 	diskaddr_t result;
17298 	uint8_t *descr_offset;
17299 	int valid_sense_length;
17300 	struct scsi_information_sense_descr *isd;
17301 
17302 	/*
17303 	 * Initialize result to -1 indicating there is no information
17304 	 * descriptor
17305 	 */
17306 	result = (diskaddr_t)-1;
17307 
17308 	/*
17309 	 * The first descriptor will immediately follow the header
17310 	 */
17311 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17312 
17313 	/*
17314 	 * Calculate the amount of valid sense data
17315 	 */
17316 	valid_sense_length =
17317 	    min((sizeof (struct scsi_descr_sense_hdr) +
17318 	    sdsp->ds_addl_sense_length),
17319 	    SENSE_LENGTH);
17320 
17321 	/*
17322 	 * Iterate through the list of descriptors, stopping when we
17323 	 * run out of sense data
17324 	 */
17325 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17326 	    (uint8_t *)sdsp + valid_sense_length) {
17327 		/*
17328 		 * Check if this is an information descriptor.  We can
17329 		 * use the scsi_information_sense_descr structure as a
17330 		 * template sense the first two fields are always the
17331 		 * same
17332 		 */
17333 		isd = (struct scsi_information_sense_descr *)descr_offset;
17334 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17335 			/*
17336 			 * Found an information descriptor.  Copy the
17337 			 * information field.  There will only be one
17338 			 * information descriptor so we can stop looking.
17339 			 */
17340 			result =
17341 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17342 				((diskaddr_t)isd->isd_information[1] << 48) |
17343 				((diskaddr_t)isd->isd_information[2] << 40) |
17344 				((diskaddr_t)isd->isd_information[3] << 32) |
17345 				((diskaddr_t)isd->isd_information[4] << 24) |
17346 				((diskaddr_t)isd->isd_information[5] << 16) |
17347 				((diskaddr_t)isd->isd_information[6] << 8)  |
17348 				((diskaddr_t)isd->isd_information[7]));
17349 			break;
17350 		}
17351 
17352 		/*
17353 		 * Get pointer to the next descriptor.  The "additional
17354 		 * length" field holds the length of the descriptor except
17355 		 * for the "type" and "additional length" fields, so
17356 		 * we need to add 2 to get the total length.
17357 		 */
17358 		descr_offset += (isd->isd_addl_length + 2);
17359 	}
17360 
17361 	return (result);
17362 }
17363 
17364 /*
17365  *    Function: sd_sense_key_no_sense
17366  *
17367  * Description: Recovery action when sense data was not received.
17368  *
17369  *     Context: May be called from interrupt context
17370  */
17371 
17372 static void
17373 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17374 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17375 {
17376 	struct sd_sense_info	si;
17377 
17378 	ASSERT(un != NULL);
17379 	ASSERT(mutex_owned(SD_MUTEX(un)));
17380 	ASSERT(bp != NULL);
17381 	ASSERT(xp != NULL);
17382 	ASSERT(pktp != NULL);
17383 
17384 	si.ssi_severity = SCSI_ERR_FATAL;
17385 	si.ssi_pfa_flag = FALSE;
17386 
17387 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17388 
17389 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17390 		&si, EIO, (clock_t)0, NULL);
17391 }
17392 
17393 
17394 /*
17395  *    Function: sd_sense_key_recoverable_error
17396  *
17397  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17398  *
17399  *     Context: May be called from interrupt context
17400  */
17401 
17402 static void
17403 sd_sense_key_recoverable_error(struct sd_lun *un,
17404 	uint8_t asc,
17405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17406 {
17407 	struct sd_sense_info	si;
17408 
17409 	ASSERT(un != NULL);
17410 	ASSERT(mutex_owned(SD_MUTEX(un)));
17411 	ASSERT(bp != NULL);
17412 	ASSERT(xp != NULL);
17413 	ASSERT(pktp != NULL);
17414 
17415 	/*
17416 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17417 	 */
17418 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17419 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17420 		si.ssi_severity = SCSI_ERR_INFO;
17421 		si.ssi_pfa_flag = TRUE;
17422 	} else {
17423 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17424 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17425 		si.ssi_severity = SCSI_ERR_RECOVERED;
17426 		si.ssi_pfa_flag = FALSE;
17427 	}
17428 
17429 	if (pktp->pkt_resid == 0) {
17430 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17431 		sd_return_command(un, bp);
17432 		return;
17433 	}
17434 
17435 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17436 	    &si, EIO, (clock_t)0, NULL);
17437 }
17438 
17439 
17440 
17441 
17442 /*
17443  *    Function: sd_sense_key_not_ready
17444  *
17445  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17446  *
17447  *     Context: May be called from interrupt context
17448  */
17449 
17450 static void
17451 sd_sense_key_not_ready(struct sd_lun *un,
17452 	uint8_t asc, uint8_t ascq,
17453 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17454 {
17455 	struct sd_sense_info	si;
17456 
17457 	ASSERT(un != NULL);
17458 	ASSERT(mutex_owned(SD_MUTEX(un)));
17459 	ASSERT(bp != NULL);
17460 	ASSERT(xp != NULL);
17461 	ASSERT(pktp != NULL);
17462 
17463 	si.ssi_severity = SCSI_ERR_FATAL;
17464 	si.ssi_pfa_flag = FALSE;
17465 
17466 	/*
17467 	 * Update error stats after first NOT READY error. Disks may have
17468 	 * been powered down and may need to be restarted.  For CDROMs,
17469 	 * report NOT READY errors only if media is present.
17470 	 */
17471 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17472 	    (xp->xb_retry_count > 0)) {
17473 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17474 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17475 	}
17476 
17477 	/*
17478 	 * Just fail if the "not ready" retry limit has been reached.
17479 	 */
17480 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17481 		/* Special check for error message printing for removables. */
17482 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17483 		    (ascq >= 0x04)) {
17484 			si.ssi_severity = SCSI_ERR_ALL;
17485 		}
17486 		goto fail_command;
17487 	}
17488 
17489 	/*
17490 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17491 	 * what to do.
17492 	 */
17493 	switch (asc) {
17494 	case 0x04:	/* LOGICAL UNIT NOT READY */
17495 		/*
17496 		 * disk drives that don't spin up result in a very long delay
17497 		 * in format without warning messages. We will log a message
17498 		 * if the error level is set to verbose.
17499 		 */
17500 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17501 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17502 			    "logical unit not ready, resetting disk\n");
17503 		}
17504 
17505 		/*
17506 		 * There are different requirements for CDROMs and disks for
17507 		 * the number of retries.  If a CD-ROM is giving this, it is
17508 		 * probably reading TOC and is in the process of getting
17509 		 * ready, so we should keep on trying for a long time to make
17510 		 * sure that all types of media are taken in account (for
17511 		 * some media the drive takes a long time to read TOC).  For
17512 		 * disks we do not want to retry this too many times as this
17513 		 * can cause a long hang in format when the drive refuses to
17514 		 * spin up (a very common failure).
17515 		 */
17516 		switch (ascq) {
17517 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17518 			/*
17519 			 * Disk drives frequently refuse to spin up which
17520 			 * results in a very long hang in format without
17521 			 * warning messages.
17522 			 *
17523 			 * Note: This code preserves the legacy behavior of
17524 			 * comparing xb_retry_count against zero for fibre
17525 			 * channel targets instead of comparing against the
17526 			 * un_reset_retry_count value.  The reason for this
17527 			 * discrepancy has been so utterly lost beneath the
17528 			 * Sands of Time that even Indiana Jones could not
17529 			 * find it.
17530 			 */
17531 			if (un->un_f_is_fibre == TRUE) {
17532 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17533 					(xp->xb_retry_count > 0)) &&
17534 					(un->un_startstop_timeid == NULL)) {
17535 					scsi_log(SD_DEVINFO(un), sd_label,
17536 					CE_WARN, "logical unit not ready, "
17537 					"resetting disk\n");
17538 					sd_reset_target(un, pktp);
17539 				}
17540 			} else {
17541 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17542 					(xp->xb_retry_count >
17543 					un->un_reset_retry_count)) &&
17544 					(un->un_startstop_timeid == NULL)) {
17545 					scsi_log(SD_DEVINFO(un), sd_label,
17546 					CE_WARN, "logical unit not ready, "
17547 					"resetting disk\n");
17548 					sd_reset_target(un, pktp);
17549 				}
17550 			}
17551 			break;
17552 
17553 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17554 			/*
17555 			 * If the target is in the process of becoming
17556 			 * ready, just proceed with the retry. This can
17557 			 * happen with CD-ROMs that take a long time to
17558 			 * read TOC after a power cycle or reset.
17559 			 */
17560 			goto do_retry;
17561 
17562 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17563 			break;
17564 
17565 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17566 			/*
17567 			 * Retries cannot help here so just fail right away.
17568 			 */
17569 			goto fail_command;
17570 
17571 		case 0x88:
17572 			/*
17573 			 * Vendor-unique code for T3/T4: it indicates a
17574 			 * path problem in a mutipathed config, but as far as
17575 			 * the target driver is concerned it equates to a fatal
17576 			 * error, so we should just fail the command right away
17577 			 * (without printing anything to the console). If this
17578 			 * is not a T3/T4, fall thru to the default recovery
17579 			 * action.
17580 			 * T3/T4 is FC only, don't need to check is_fibre
17581 			 */
17582 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17583 				sd_return_failed_command(un, bp, EIO);
17584 				return;
17585 			}
17586 			/* FALLTHRU */
17587 
17588 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17589 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17590 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17591 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17592 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17593 		default:    /* Possible future codes in SCSI spec? */
17594 			/*
17595 			 * For removable-media devices, do not retry if
17596 			 * ASCQ > 2 as these result mostly from USCSI commands
17597 			 * on MMC devices issued to check status of an
17598 			 * operation initiated in immediate mode.  Also for
17599 			 * ASCQ >= 4 do not print console messages as these
17600 			 * mainly represent a user-initiated operation
17601 			 * instead of a system failure.
17602 			 */
17603 			if (un->un_f_has_removable_media) {
17604 				si.ssi_severity = SCSI_ERR_ALL;
17605 				goto fail_command;
17606 			}
17607 			break;
17608 		}
17609 
17610 		/*
17611 		 * As part of our recovery attempt for the NOT READY
17612 		 * condition, we issue a START STOP UNIT command. However
17613 		 * we want to wait for a short delay before attempting this
17614 		 * as there may still be more commands coming back from the
17615 		 * target with the check condition. To do this we use
17616 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17617 		 * the delay interval expires. (sd_start_stop_unit_callback()
17618 		 * dispatches sd_start_stop_unit_task(), which will issue
17619 		 * the actual START STOP UNIT command. The delay interval
17620 		 * is one-half of the delay that we will use to retry the
17621 		 * command that generated the NOT READY condition.
17622 		 *
17623 		 * Note that we could just dispatch sd_start_stop_unit_task()
17624 		 * from here and allow it to sleep for the delay interval,
17625 		 * but then we would be tying up the taskq thread
17626 		 * uncesessarily for the duration of the delay.
17627 		 *
17628 		 * Do not issue the START STOP UNIT if the current command
17629 		 * is already a START STOP UNIT.
17630 		 */
17631 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17632 			break;
17633 		}
17634 
17635 		/*
17636 		 * Do not schedule the timeout if one is already pending.
17637 		 */
17638 		if (un->un_startstop_timeid != NULL) {
17639 			SD_INFO(SD_LOG_ERROR, un,
17640 			    "sd_sense_key_not_ready: restart already issued to"
17641 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17642 			    ddi_get_instance(SD_DEVINFO(un)));
17643 			break;
17644 		}
17645 
17646 		/*
17647 		 * Schedule the START STOP UNIT command, then queue the command
17648 		 * for a retry.
17649 		 *
17650 		 * Note: A timeout is not scheduled for this retry because we
17651 		 * want the retry to be serial with the START_STOP_UNIT. The
17652 		 * retry will be started when the START_STOP_UNIT is completed
17653 		 * in sd_start_stop_unit_task.
17654 		 */
17655 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17656 		    un, SD_BSY_TIMEOUT / 2);
17657 		xp->xb_retry_count++;
17658 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17659 		return;
17660 
17661 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17662 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17663 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17664 			    "unit does not respond to selection\n");
17665 		}
17666 		break;
17667 
17668 	case 0x3A:	/* MEDIUM NOT PRESENT */
17669 		if (sd_error_level >= SCSI_ERR_FATAL) {
17670 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17671 			    "Caddy not inserted in drive\n");
17672 		}
17673 
17674 		sr_ejected(un);
17675 		un->un_mediastate = DKIO_EJECTED;
17676 		/* The state has changed, inform the media watch routines */
17677 		cv_broadcast(&un->un_state_cv);
17678 		/* Just fail if no media is present in the drive. */
17679 		goto fail_command;
17680 
17681 	default:
17682 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17683 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17684 			    "Unit not Ready. Additional sense code 0x%x\n",
17685 			    asc);
17686 		}
17687 		break;
17688 	}
17689 
17690 do_retry:
17691 
17692 	/*
17693 	 * Retry the command, as some targets may report NOT READY for
17694 	 * several seconds after being reset.
17695 	 */
17696 	xp->xb_retry_count++;
17697 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17698 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17699 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17700 
17701 	return;
17702 
17703 fail_command:
17704 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17705 	sd_return_failed_command(un, bp, EIO);
17706 }
17707 
17708 
17709 
17710 /*
17711  *    Function: sd_sense_key_medium_or_hardware_error
17712  *
17713  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17714  *		sense key.
17715  *
17716  *     Context: May be called from interrupt context
17717  */
17718 
17719 static void
17720 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17721 	int sense_key, uint8_t asc,
17722 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17723 {
17724 	struct sd_sense_info	si;
17725 
17726 	ASSERT(un != NULL);
17727 	ASSERT(mutex_owned(SD_MUTEX(un)));
17728 	ASSERT(bp != NULL);
17729 	ASSERT(xp != NULL);
17730 	ASSERT(pktp != NULL);
17731 
17732 	si.ssi_severity = SCSI_ERR_FATAL;
17733 	si.ssi_pfa_flag = FALSE;
17734 
17735 	if (sense_key == KEY_MEDIUM_ERROR) {
17736 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17737 	}
17738 
17739 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17740 
17741 	if ((un->un_reset_retry_count != 0) &&
17742 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17743 		mutex_exit(SD_MUTEX(un));
17744 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17745 		if (un->un_f_allow_bus_device_reset == TRUE) {
17746 
17747 			boolean_t try_resetting_target = B_TRUE;
17748 
17749 			/*
17750 			 * We need to be able to handle specific ASC when we are
17751 			 * handling a KEY_HARDWARE_ERROR. In particular
17752 			 * taking the default action of resetting the target may
17753 			 * not be the appropriate way to attempt recovery.
17754 			 * Resetting a target because of a single LUN failure
17755 			 * victimizes all LUNs on that target.
17756 			 *
17757 			 * This is true for the LSI arrays, if an LSI
17758 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17759 			 * should trust it.
17760 			 */
17761 
17762 			if (sense_key == KEY_HARDWARE_ERROR) {
17763 				switch (asc) {
17764 				case 0x84:
17765 					if (SD_IS_LSI(un)) {
17766 						try_resetting_target = B_FALSE;
17767 					}
17768 					break;
17769 				default:
17770 					break;
17771 				}
17772 			}
17773 
17774 			if (try_resetting_target == B_TRUE) {
17775 				int reset_retval = 0;
17776 				if (un->un_f_lun_reset_enabled == TRUE) {
17777 					SD_TRACE(SD_LOG_IO_CORE, un,
17778 					    "sd_sense_key_medium_or_hardware_"
17779 					    "error: issuing RESET_LUN\n");
17780 					reset_retval =
17781 					    scsi_reset(SD_ADDRESS(un),
17782 					    RESET_LUN);
17783 				}
17784 				if (reset_retval == 0) {
17785 					SD_TRACE(SD_LOG_IO_CORE, un,
17786 					    "sd_sense_key_medium_or_hardware_"
17787 					    "error: issuing RESET_TARGET\n");
17788 					(void) scsi_reset(SD_ADDRESS(un),
17789 					    RESET_TARGET);
17790 				}
17791 			}
17792 		}
17793 		mutex_enter(SD_MUTEX(un));
17794 	}
17795 
17796 	/*
17797 	 * This really ought to be a fatal error, but we will retry anyway
17798 	 * as some drives report this as a spurious error.
17799 	 */
17800 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17801 	    &si, EIO, (clock_t)0, NULL);
17802 }
17803 
17804 
17805 
17806 /*
17807  *    Function: sd_sense_key_illegal_request
17808  *
17809  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17810  *
17811  *     Context: May be called from interrupt context
17812  */
17813 
17814 static void
17815 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17816 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17817 {
17818 	struct sd_sense_info	si;
17819 
17820 	ASSERT(un != NULL);
17821 	ASSERT(mutex_owned(SD_MUTEX(un)));
17822 	ASSERT(bp != NULL);
17823 	ASSERT(xp != NULL);
17824 	ASSERT(pktp != NULL);
17825 
17826 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17827 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17828 
17829 	si.ssi_severity = SCSI_ERR_INFO;
17830 	si.ssi_pfa_flag = FALSE;
17831 
17832 	/* Pointless to retry if the target thinks it's an illegal request */
17833 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17834 	sd_return_failed_command(un, bp, EIO);
17835 }
17836 
17837 
17838 
17839 
17840 /*
17841  *    Function: sd_sense_key_unit_attention
17842  *
17843  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17844  *
17845  *     Context: May be called from interrupt context
17846  */
17847 
17848 static void
17849 sd_sense_key_unit_attention(struct sd_lun *un,
17850 	uint8_t asc,
17851 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17852 {
17853 	/*
17854 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17855 	 * like Sonoma can return UNIT ATTENTION close to a minute
17856 	 * under certain conditions.
17857 	 */
17858 	int	retry_check_flag = SD_RETRIES_UA;
17859 	boolean_t	kstat_updated = B_FALSE;
17860 	struct	sd_sense_info		si;
17861 
17862 	ASSERT(un != NULL);
17863 	ASSERT(mutex_owned(SD_MUTEX(un)));
17864 	ASSERT(bp != NULL);
17865 	ASSERT(xp != NULL);
17866 	ASSERT(pktp != NULL);
17867 
17868 	si.ssi_severity = SCSI_ERR_INFO;
17869 	si.ssi_pfa_flag = FALSE;
17870 
17871 
17872 	switch (asc) {
17873 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17874 		if (sd_report_pfa != 0) {
17875 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17876 			si.ssi_pfa_flag = TRUE;
17877 			retry_check_flag = SD_RETRIES_STANDARD;
17878 			goto do_retry;
17879 		}
17880 		break;
17881 
17882 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17883 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17884 			un->un_resvd_status |=
17885 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17886 		}
17887 		/* FALLTHRU */
17888 
17889 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17890 		if (!un->un_f_has_removable_media) {
17891 			break;
17892 		}
17893 
17894 		/*
17895 		 * When we get a unit attention from a removable-media device,
17896 		 * it may be in a state that will take a long time to recover
17897 		 * (e.g., from a reset).  Since we are executing in interrupt
17898 		 * context here, we cannot wait around for the device to come
17899 		 * back. So hand this command off to sd_media_change_task()
17900 		 * for deferred processing under taskq thread context. (Note
17901 		 * that the command still may be failed if a problem is
17902 		 * encountered at a later time.)
17903 		 */
17904 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17905 		    KM_NOSLEEP) == 0) {
17906 			/*
17907 			 * Cannot dispatch the request so fail the command.
17908 			 */
17909 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17910 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17911 			si.ssi_severity = SCSI_ERR_FATAL;
17912 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17913 			sd_return_failed_command(un, bp, EIO);
17914 		}
17915 
17916 		/*
17917 		 * If failed to dispatch sd_media_change_task(), we already
17918 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17919 		 * we should update kstat later if it encounters an error. So,
17920 		 * we update kstat_updated flag here.
17921 		 */
17922 		kstat_updated = B_TRUE;
17923 
17924 		/*
17925 		 * Either the command has been successfully dispatched to a
17926 		 * task Q for retrying, or the dispatch failed. In either case
17927 		 * do NOT retry again by calling sd_retry_command. This sets up
17928 		 * two retries of the same command and when one completes and
17929 		 * frees the resources the other will access freed memory,
17930 		 * a bad thing.
17931 		 */
17932 		return;
17933 
17934 	default:
17935 		break;
17936 	}
17937 
17938 	/*
17939 	 * Update kstat if we haven't done that.
17940 	 */
17941 	if (!kstat_updated) {
17942 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17943 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17944 	}
17945 
17946 do_retry:
17947 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17948 	    EIO, SD_UA_RETRY_DELAY, NULL);
17949 }
17950 
17951 
17952 
17953 /*
17954  *    Function: sd_sense_key_fail_command
17955  *
17956  * Description: Use to fail a command when we don't like the sense key that
17957  *		was returned.
17958  *
17959  *     Context: May be called from interrupt context
17960  */
17961 
17962 static void
17963 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17964 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17965 {
17966 	struct sd_sense_info	si;
17967 
17968 	ASSERT(un != NULL);
17969 	ASSERT(mutex_owned(SD_MUTEX(un)));
17970 	ASSERT(bp != NULL);
17971 	ASSERT(xp != NULL);
17972 	ASSERT(pktp != NULL);
17973 
17974 	si.ssi_severity = SCSI_ERR_FATAL;
17975 	si.ssi_pfa_flag = FALSE;
17976 
17977 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17978 	sd_return_failed_command(un, bp, EIO);
17979 }
17980 
17981 
17982 
17983 /*
17984  *    Function: sd_sense_key_blank_check
17985  *
17986  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17987  *		Has no monetary connotation.
17988  *
17989  *     Context: May be called from interrupt context
17990  */
17991 
17992 static void
17993 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17994 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17995 {
17996 	struct sd_sense_info	si;
17997 
17998 	ASSERT(un != NULL);
17999 	ASSERT(mutex_owned(SD_MUTEX(un)));
18000 	ASSERT(bp != NULL);
18001 	ASSERT(xp != NULL);
18002 	ASSERT(pktp != NULL);
18003 
18004 	/*
18005 	 * Blank check is not fatal for removable devices, therefore
18006 	 * it does not require a console message.
18007 	 */
18008 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18009 	    SCSI_ERR_FATAL;
18010 	si.ssi_pfa_flag = FALSE;
18011 
18012 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18013 	sd_return_failed_command(un, bp, EIO);
18014 }
18015 
18016 
18017 
18018 
18019 /*
18020  *    Function: sd_sense_key_aborted_command
18021  *
18022  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18023  *
18024  *     Context: May be called from interrupt context
18025  */
18026 
18027 static void
18028 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18029 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18030 {
18031 	struct sd_sense_info	si;
18032 
18033 	ASSERT(un != NULL);
18034 	ASSERT(mutex_owned(SD_MUTEX(un)));
18035 	ASSERT(bp != NULL);
18036 	ASSERT(xp != NULL);
18037 	ASSERT(pktp != NULL);
18038 
18039 	si.ssi_severity = SCSI_ERR_FATAL;
18040 	si.ssi_pfa_flag = FALSE;
18041 
18042 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18043 
18044 	/*
18045 	 * This really ought to be a fatal error, but we will retry anyway
18046 	 * as some drives report this as a spurious error.
18047 	 */
18048 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18049 	    &si, EIO, (clock_t)0, NULL);
18050 }
18051 
18052 
18053 
18054 /*
18055  *    Function: sd_sense_key_default
18056  *
18057  * Description: Default recovery action for several SCSI sense keys (basically
18058  *		attempts a retry).
18059  *
18060  *     Context: May be called from interrupt context
18061  */
18062 
18063 static void
18064 sd_sense_key_default(struct sd_lun *un,
18065 	int sense_key,
18066 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18067 {
18068 	struct sd_sense_info	si;
18069 
18070 	ASSERT(un != NULL);
18071 	ASSERT(mutex_owned(SD_MUTEX(un)));
18072 	ASSERT(bp != NULL);
18073 	ASSERT(xp != NULL);
18074 	ASSERT(pktp != NULL);
18075 
18076 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18077 
18078 	/*
18079 	 * Undecoded sense key.	Attempt retries and hope that will fix
18080 	 * the problem.  Otherwise, we're dead.
18081 	 */
18082 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18083 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18084 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18085 	}
18086 
18087 	si.ssi_severity = SCSI_ERR_FATAL;
18088 	si.ssi_pfa_flag = FALSE;
18089 
18090 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18091 	    &si, EIO, (clock_t)0, NULL);
18092 }
18093 
18094 
18095 
18096 /*
18097  *    Function: sd_print_retry_msg
18098  *
18099  * Description: Print a message indicating the retry action being taken.
18100  *
18101  *   Arguments: un - ptr to associated softstate
18102  *		bp - ptr to buf(9S) for the command
18103  *		arg - not used.
18104  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18105  *			or SD_NO_RETRY_ISSUED
18106  *
18107  *     Context: May be called from interrupt context
18108  */
18109 /* ARGSUSED */
18110 static void
18111 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18112 {
18113 	struct sd_xbuf	*xp;
18114 	struct scsi_pkt *pktp;
18115 	char *reasonp;
18116 	char *msgp;
18117 
18118 	ASSERT(un != NULL);
18119 	ASSERT(mutex_owned(SD_MUTEX(un)));
18120 	ASSERT(bp != NULL);
18121 	pktp = SD_GET_PKTP(bp);
18122 	ASSERT(pktp != NULL);
18123 	xp = SD_GET_XBUF(bp);
18124 	ASSERT(xp != NULL);
18125 
18126 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18127 	mutex_enter(&un->un_pm_mutex);
18128 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18129 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18130 	    (pktp->pkt_flags & FLAG_SILENT)) {
18131 		mutex_exit(&un->un_pm_mutex);
18132 		goto update_pkt_reason;
18133 	}
18134 	mutex_exit(&un->un_pm_mutex);
18135 
18136 	/*
18137 	 * Suppress messages if they are all the same pkt_reason; with
18138 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18139 	 * If we are in panic, then suppress the retry messages.
18140 	 */
18141 	switch (flag) {
18142 	case SD_NO_RETRY_ISSUED:
18143 		msgp = "giving up";
18144 		break;
18145 	case SD_IMMEDIATE_RETRY_ISSUED:
18146 	case SD_DELAYED_RETRY_ISSUED:
18147 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18148 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18149 		    (sd_error_level != SCSI_ERR_ALL))) {
18150 			return;
18151 		}
18152 		msgp = "retrying command";
18153 		break;
18154 	default:
18155 		goto update_pkt_reason;
18156 	}
18157 
18158 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18159 	    scsi_rname(pktp->pkt_reason));
18160 
18161 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18162 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18163 
18164 update_pkt_reason:
18165 	/*
18166 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18167 	 * This is to prevent multiple console messages for the same failure
18168 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18169 	 * when the command is retried successfully because there still may be
18170 	 * more commands coming back with the same value of pktp->pkt_reason.
18171 	 */
18172 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18173 		un->un_last_pkt_reason = pktp->pkt_reason;
18174 	}
18175 }
18176 
18177 
18178 /*
18179  *    Function: sd_print_cmd_incomplete_msg
18180  *
18181  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18182  *
18183  *   Arguments: un - ptr to associated softstate
18184  *		bp - ptr to buf(9S) for the command
18185  *		arg - passed to sd_print_retry_msg()
18186  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18187  *			or SD_NO_RETRY_ISSUED
18188  *
18189  *     Context: May be called from interrupt context
18190  */
18191 
18192 static void
18193 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18194 	int code)
18195 {
18196 	dev_info_t	*dip;
18197 
18198 	ASSERT(un != NULL);
18199 	ASSERT(mutex_owned(SD_MUTEX(un)));
18200 	ASSERT(bp != NULL);
18201 
18202 	switch (code) {
18203 	case SD_NO_RETRY_ISSUED:
18204 		/* Command was failed. Someone turned off this target? */
18205 		if (un->un_state != SD_STATE_OFFLINE) {
18206 			/*
18207 			 * Suppress message if we are detaching and
18208 			 * device has been disconnected
18209 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18210 			 * private interface and not part of the DDI
18211 			 */
18212 			dip = un->un_sd->sd_dev;
18213 			if (!(DEVI_IS_DETACHING(dip) &&
18214 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18215 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18216 				"disk not responding to selection\n");
18217 			}
18218 			New_state(un, SD_STATE_OFFLINE);
18219 		}
18220 		break;
18221 
18222 	case SD_DELAYED_RETRY_ISSUED:
18223 	case SD_IMMEDIATE_RETRY_ISSUED:
18224 	default:
18225 		/* Command was successfully queued for retry */
18226 		sd_print_retry_msg(un, bp, arg, code);
18227 		break;
18228 	}
18229 }
18230 
18231 
18232 /*
18233  *    Function: sd_pkt_reason_cmd_incomplete
18234  *
18235  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18236  *
18237  *     Context: May be called from interrupt context
18238  */
18239 
18240 static void
18241 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18242 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18243 {
18244 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18245 
18246 	ASSERT(un != NULL);
18247 	ASSERT(mutex_owned(SD_MUTEX(un)));
18248 	ASSERT(bp != NULL);
18249 	ASSERT(xp != NULL);
18250 	ASSERT(pktp != NULL);
18251 
18252 	/* Do not do a reset if selection did not complete */
18253 	/* Note: Should this not just check the bit? */
18254 	if (pktp->pkt_state != STATE_GOT_BUS) {
18255 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18256 		sd_reset_target(un, pktp);
18257 	}
18258 
18259 	/*
18260 	 * If the target was not successfully selected, then set
18261 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18262 	 * with the target, and further retries and/or commands are
18263 	 * likely to take a long time.
18264 	 */
18265 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18266 		flag |= SD_RETRIES_FAILFAST;
18267 	}
18268 
18269 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18270 
18271 	sd_retry_command(un, bp, flag,
18272 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18273 }
18274 
18275 
18276 
18277 /*
18278  *    Function: sd_pkt_reason_cmd_tran_err
18279  *
18280  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18281  *
18282  *     Context: May be called from interrupt context
18283  */
18284 
18285 static void
18286 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18287 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18288 {
18289 	ASSERT(un != NULL);
18290 	ASSERT(mutex_owned(SD_MUTEX(un)));
18291 	ASSERT(bp != NULL);
18292 	ASSERT(xp != NULL);
18293 	ASSERT(pktp != NULL);
18294 
18295 	/*
18296 	 * Do not reset if we got a parity error, or if
18297 	 * selection did not complete.
18298 	 */
18299 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18300 	/* Note: Should this not just check the bit for pkt_state? */
18301 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18302 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18303 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18304 		sd_reset_target(un, pktp);
18305 	}
18306 
18307 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18308 
18309 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18310 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18311 }
18312 
18313 
18314 
18315 /*
18316  *    Function: sd_pkt_reason_cmd_reset
18317  *
18318  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18319  *
18320  *     Context: May be called from interrupt context
18321  */
18322 
18323 static void
18324 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18325 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18326 {
18327 	ASSERT(un != NULL);
18328 	ASSERT(mutex_owned(SD_MUTEX(un)));
18329 	ASSERT(bp != NULL);
18330 	ASSERT(xp != NULL);
18331 	ASSERT(pktp != NULL);
18332 
18333 	/* The target may still be running the command, so try to reset. */
18334 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18335 	sd_reset_target(un, pktp);
18336 
18337 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18338 
18339 	/*
18340 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18341 	 * reset because another target on this bus caused it. The target
18342 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18343 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18344 	 */
18345 
18346 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18347 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18348 }
18349 
18350 
18351 
18352 
18353 /*
18354  *    Function: sd_pkt_reason_cmd_aborted
18355  *
18356  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18357  *
18358  *     Context: May be called from interrupt context
18359  */
18360 
18361 static void
18362 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18363 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18364 {
18365 	ASSERT(un != NULL);
18366 	ASSERT(mutex_owned(SD_MUTEX(un)));
18367 	ASSERT(bp != NULL);
18368 	ASSERT(xp != NULL);
18369 	ASSERT(pktp != NULL);
18370 
18371 	/* The target may still be running the command, so try to reset. */
18372 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18373 	sd_reset_target(un, pktp);
18374 
18375 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18376 
18377 	/*
18378 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18379 	 * aborted because another target on this bus caused it. The target
18380 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18381 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18382 	 */
18383 
18384 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18385 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18386 }
18387 
18388 
18389 
18390 /*
18391  *    Function: sd_pkt_reason_cmd_timeout
18392  *
18393  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18394  *
18395  *     Context: May be called from interrupt context
18396  */
18397 
18398 static void
18399 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18400 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18401 {
18402 	ASSERT(un != NULL);
18403 	ASSERT(mutex_owned(SD_MUTEX(un)));
18404 	ASSERT(bp != NULL);
18405 	ASSERT(xp != NULL);
18406 	ASSERT(pktp != NULL);
18407 
18408 
18409 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18410 	sd_reset_target(un, pktp);
18411 
18412 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18413 
18414 	/*
18415 	 * A command timeout indicates that we could not establish
18416 	 * communication with the target, so set SD_RETRIES_FAILFAST
18417 	 * as further retries/commands are likely to take a long time.
18418 	 */
18419 	sd_retry_command(un, bp,
18420 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18421 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18422 }
18423 
18424 
18425 
18426 /*
18427  *    Function: sd_pkt_reason_cmd_unx_bus_free
18428  *
18429  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18430  *
18431  *     Context: May be called from interrupt context
18432  */
18433 
18434 static void
18435 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18436 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18437 {
18438 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18439 
18440 	ASSERT(un != NULL);
18441 	ASSERT(mutex_owned(SD_MUTEX(un)));
18442 	ASSERT(bp != NULL);
18443 	ASSERT(xp != NULL);
18444 	ASSERT(pktp != NULL);
18445 
18446 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18447 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18448 
18449 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18450 	    sd_print_retry_msg : NULL;
18451 
18452 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18453 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18454 }
18455 
18456 
18457 /*
18458  *    Function: sd_pkt_reason_cmd_tag_reject
18459  *
18460  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18461  *
18462  *     Context: May be called from interrupt context
18463  */
18464 
18465 static void
18466 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18467 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18468 {
18469 	ASSERT(un != NULL);
18470 	ASSERT(mutex_owned(SD_MUTEX(un)));
18471 	ASSERT(bp != NULL);
18472 	ASSERT(xp != NULL);
18473 	ASSERT(pktp != NULL);
18474 
18475 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18476 	pktp->pkt_flags = 0;
18477 	un->un_tagflags = 0;
18478 	if (un->un_f_opt_queueing == TRUE) {
18479 		un->un_throttle = min(un->un_throttle, 3);
18480 	} else {
18481 		un->un_throttle = 1;
18482 	}
18483 	mutex_exit(SD_MUTEX(un));
18484 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18485 	mutex_enter(SD_MUTEX(un));
18486 
18487 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18488 
18489 	/* Legacy behavior not to check retry counts here. */
18490 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18491 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18492 }
18493 
18494 
18495 /*
18496  *    Function: sd_pkt_reason_default
18497  *
18498  * Description: Default recovery actions for SCSA pkt_reason values that
18499  *		do not have more explicit recovery actions.
18500  *
18501  *     Context: May be called from interrupt context
18502  */
18503 
18504 static void
18505 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18506 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18507 {
18508 	ASSERT(un != NULL);
18509 	ASSERT(mutex_owned(SD_MUTEX(un)));
18510 	ASSERT(bp != NULL);
18511 	ASSERT(xp != NULL);
18512 	ASSERT(pktp != NULL);
18513 
18514 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18515 	sd_reset_target(un, pktp);
18516 
18517 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18518 
18519 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18520 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18521 }
18522 
18523 
18524 
18525 /*
18526  *    Function: sd_pkt_status_check_condition
18527  *
18528  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18529  *
18530  *     Context: May be called from interrupt context
18531  */
18532 
18533 static void
18534 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18535 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18536 {
18537 	ASSERT(un != NULL);
18538 	ASSERT(mutex_owned(SD_MUTEX(un)));
18539 	ASSERT(bp != NULL);
18540 	ASSERT(xp != NULL);
18541 	ASSERT(pktp != NULL);
18542 
18543 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18544 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18545 
18546 	/*
18547 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18548 	 * command will be retried after the request sense). Otherwise, retry
18549 	 * the command. Note: we are issuing the request sense even though the
18550 	 * retry limit may have been reached for the failed command.
18551 	 */
18552 	if (un->un_f_arq_enabled == FALSE) {
18553 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18554 		    "no ARQ, sending request sense command\n");
18555 		sd_send_request_sense_command(un, bp, pktp);
18556 	} else {
18557 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18558 		    "ARQ,retrying request sense command\n");
18559 #if defined(__i386) || defined(__amd64)
18560 		/*
18561 		 * The SD_RETRY_DELAY value need to be adjusted here
18562 		 * when SD_RETRY_DELAY change in sddef.h
18563 		 */
18564 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18565 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18566 			NULL);
18567 #else
18568 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18569 		    EIO, SD_RETRY_DELAY, NULL);
18570 #endif
18571 	}
18572 
18573 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18574 }
18575 
18576 
18577 /*
18578  *    Function: sd_pkt_status_busy
18579  *
18580  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18581  *
18582  *     Context: May be called from interrupt context
18583  */
18584 
18585 static void
18586 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18587 	struct scsi_pkt *pktp)
18588 {
18589 	ASSERT(un != NULL);
18590 	ASSERT(mutex_owned(SD_MUTEX(un)));
18591 	ASSERT(bp != NULL);
18592 	ASSERT(xp != NULL);
18593 	ASSERT(pktp != NULL);
18594 
18595 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18596 	    "sd_pkt_status_busy: entry\n");
18597 
18598 	/* If retries are exhausted, just fail the command. */
18599 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18600 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18601 		    "device busy too long\n");
18602 		sd_return_failed_command(un, bp, EIO);
18603 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18604 		    "sd_pkt_status_busy: exit\n");
18605 		return;
18606 	}
18607 	xp->xb_retry_count++;
18608 
18609 	/*
18610 	 * Try to reset the target. However, we do not want to perform
18611 	 * more than one reset if the device continues to fail. The reset
18612 	 * will be performed when the retry count reaches the reset
18613 	 * threshold.  This threshold should be set such that at least
18614 	 * one retry is issued before the reset is performed.
18615 	 */
18616 	if (xp->xb_retry_count ==
18617 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18618 		int rval = 0;
18619 		mutex_exit(SD_MUTEX(un));
18620 		if (un->un_f_allow_bus_device_reset == TRUE) {
18621 			/*
18622 			 * First try to reset the LUN; if we cannot then
18623 			 * try to reset the target.
18624 			 */
18625 			if (un->un_f_lun_reset_enabled == TRUE) {
18626 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18627 				    "sd_pkt_status_busy: RESET_LUN\n");
18628 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18629 			}
18630 			if (rval == 0) {
18631 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18632 				    "sd_pkt_status_busy: RESET_TARGET\n");
18633 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18634 			}
18635 		}
18636 		if (rval == 0) {
18637 			/*
18638 			 * If the RESET_LUN and/or RESET_TARGET failed,
18639 			 * try RESET_ALL
18640 			 */
18641 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18642 			    "sd_pkt_status_busy: RESET_ALL\n");
18643 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18644 		}
18645 		mutex_enter(SD_MUTEX(un));
18646 		if (rval == 0) {
18647 			/*
18648 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18649 			 * At this point we give up & fail the command.
18650 			 */
18651 			sd_return_failed_command(un, bp, EIO);
18652 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18653 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18654 			return;
18655 		}
18656 	}
18657 
18658 	/*
18659 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18660 	 * we have already checked the retry counts above.
18661 	 */
18662 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18663 	    EIO, SD_BSY_TIMEOUT, NULL);
18664 
18665 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18666 	    "sd_pkt_status_busy: exit\n");
18667 }
18668 
18669 
18670 /*
18671  *    Function: sd_pkt_status_reservation_conflict
18672  *
18673  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18674  *		command status.
18675  *
18676  *     Context: May be called from interrupt context
18677  */
18678 
18679 static void
18680 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18681 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18682 {
18683 	ASSERT(un != NULL);
18684 	ASSERT(mutex_owned(SD_MUTEX(un)));
18685 	ASSERT(bp != NULL);
18686 	ASSERT(xp != NULL);
18687 	ASSERT(pktp != NULL);
18688 
18689 	/*
18690 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18691 	 * conflict could be due to various reasons like incorrect keys, not
18692 	 * registered or not reserved etc. So, we return EACCES to the caller.
18693 	 */
18694 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18695 		int cmd = SD_GET_PKT_OPCODE(pktp);
18696 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18697 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18698 			sd_return_failed_command(un, bp, EACCES);
18699 			return;
18700 		}
18701 	}
18702 
18703 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18704 
18705 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18706 		if (sd_failfast_enable != 0) {
18707 			/* By definition, we must panic here.... */
18708 			sd_panic_for_res_conflict(un);
18709 			/*NOTREACHED*/
18710 		}
18711 		SD_ERROR(SD_LOG_IO, un,
18712 		    "sd_handle_resv_conflict: Disk Reserved\n");
18713 		sd_return_failed_command(un, bp, EACCES);
18714 		return;
18715 	}
18716 
18717 	/*
18718 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18719 	 * property is set (default is 1). Retries will not succeed
18720 	 * on a disk reserved by another initiator. HA systems
18721 	 * may reset this via sd.conf to avoid these retries.
18722 	 *
18723 	 * Note: The legacy return code for this failure is EIO, however EACCES
18724 	 * seems more appropriate for a reservation conflict.
18725 	 */
18726 	if (sd_retry_on_reservation_conflict == 0) {
18727 		SD_ERROR(SD_LOG_IO, un,
18728 		    "sd_handle_resv_conflict: Device Reserved\n");
18729 		sd_return_failed_command(un, bp, EIO);
18730 		return;
18731 	}
18732 
18733 	/*
18734 	 * Retry the command if we can.
18735 	 *
18736 	 * Note: The legacy return code for this failure is EIO, however EACCES
18737 	 * seems more appropriate for a reservation conflict.
18738 	 */
18739 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18740 	    (clock_t)2, NULL);
18741 }
18742 
18743 
18744 
18745 /*
18746  *    Function: sd_pkt_status_qfull
18747  *
18748  * Description: Handle a QUEUE FULL condition from the target.  This can
18749  *		occur if the HBA does not handle the queue full condition.
18750  *		(Basically this means third-party HBAs as Sun HBAs will
18751  *		handle the queue full condition.)  Note that if there are
18752  *		some commands already in the transport, then the queue full
18753  *		has occurred because the queue for this nexus is actually
18754  *		full. If there are no commands in the transport, then the
18755  *		queue full is resulting from some other initiator or lun
18756  *		consuming all the resources at the target.
18757  *
18758  *     Context: May be called from interrupt context
18759  */
18760 
18761 static void
18762 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18763 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18764 {
18765 	ASSERT(un != NULL);
18766 	ASSERT(mutex_owned(SD_MUTEX(un)));
18767 	ASSERT(bp != NULL);
18768 	ASSERT(xp != NULL);
18769 	ASSERT(pktp != NULL);
18770 
18771 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18772 	    "sd_pkt_status_qfull: entry\n");
18773 
18774 	/*
18775 	 * Just lower the QFULL throttle and retry the command.  Note that
18776 	 * we do not limit the number of retries here.
18777 	 */
18778 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18779 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18780 	    SD_RESTART_TIMEOUT, NULL);
18781 
18782 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18783 	    "sd_pkt_status_qfull: exit\n");
18784 }
18785 
18786 
18787 /*
18788  *    Function: sd_reset_target
18789  *
18790  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18791  *		RESET_TARGET, or RESET_ALL.
18792  *
18793  *     Context: May be called under interrupt context.
18794  */
18795 
18796 static void
18797 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18798 {
18799 	int rval = 0;
18800 
18801 	ASSERT(un != NULL);
18802 	ASSERT(mutex_owned(SD_MUTEX(un)));
18803 	ASSERT(pktp != NULL);
18804 
18805 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18806 
18807 	/*
18808 	 * No need to reset if the transport layer has already done so.
18809 	 */
18810 	if ((pktp->pkt_statistics &
18811 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18812 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18813 		    "sd_reset_target: no reset\n");
18814 		return;
18815 	}
18816 
18817 	mutex_exit(SD_MUTEX(un));
18818 
18819 	if (un->un_f_allow_bus_device_reset == TRUE) {
18820 		if (un->un_f_lun_reset_enabled == TRUE) {
18821 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18822 			    "sd_reset_target: RESET_LUN\n");
18823 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18824 		}
18825 		if (rval == 0) {
18826 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18827 			    "sd_reset_target: RESET_TARGET\n");
18828 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18829 		}
18830 	}
18831 
18832 	if (rval == 0) {
18833 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18834 		    "sd_reset_target: RESET_ALL\n");
18835 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18836 	}
18837 
18838 	mutex_enter(SD_MUTEX(un));
18839 
18840 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18841 }
18842 
18843 
18844 /*
18845  *    Function: sd_media_change_task
18846  *
18847  * Description: Recovery action for CDROM to become available.
18848  *
18849  *     Context: Executes in a taskq() thread context
18850  */
18851 
18852 static void
18853 sd_media_change_task(void *arg)
18854 {
18855 	struct	scsi_pkt	*pktp = arg;
18856 	struct	sd_lun		*un;
18857 	struct	buf		*bp;
18858 	struct	sd_xbuf		*xp;
18859 	int	err		= 0;
18860 	int	retry_count	= 0;
18861 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18862 	struct	sd_sense_info	si;
18863 
18864 	ASSERT(pktp != NULL);
18865 	bp = (struct buf *)pktp->pkt_private;
18866 	ASSERT(bp != NULL);
18867 	xp = SD_GET_XBUF(bp);
18868 	ASSERT(xp != NULL);
18869 	un = SD_GET_UN(bp);
18870 	ASSERT(un != NULL);
18871 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18872 	ASSERT(un->un_f_monitor_media_state);
18873 
18874 	si.ssi_severity = SCSI_ERR_INFO;
18875 	si.ssi_pfa_flag = FALSE;
18876 
18877 	/*
18878 	 * When a reset is issued on a CDROM, it takes a long time to
18879 	 * recover. First few attempts to read capacity and other things
18880 	 * related to handling unit attention fail (with a ASC 0x4 and
18881 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18882 	 * to limit the retries in other cases of genuine failures like
18883 	 * no media in drive.
18884 	 */
18885 	while (retry_count++ < retry_limit) {
18886 		if ((err = sd_handle_mchange(un)) == 0) {
18887 			break;
18888 		}
18889 		if (err == EAGAIN) {
18890 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18891 		}
18892 		/* Sleep for 0.5 sec. & try again */
18893 		delay(drv_usectohz(500000));
18894 	}
18895 
18896 	/*
18897 	 * Dispatch (retry or fail) the original command here,
18898 	 * along with appropriate console messages....
18899 	 *
18900 	 * Must grab the mutex before calling sd_retry_command,
18901 	 * sd_print_sense_msg and sd_return_failed_command.
18902 	 */
18903 	mutex_enter(SD_MUTEX(un));
18904 	if (err != SD_CMD_SUCCESS) {
18905 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18906 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18907 		si.ssi_severity = SCSI_ERR_FATAL;
18908 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18909 		sd_return_failed_command(un, bp, EIO);
18910 	} else {
18911 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18912 		    &si, EIO, (clock_t)0, NULL);
18913 	}
18914 	mutex_exit(SD_MUTEX(un));
18915 }
18916 
18917 
18918 
18919 /*
18920  *    Function: sd_handle_mchange
18921  *
18922  * Description: Perform geometry validation & other recovery when CDROM
18923  *		has been removed from drive.
18924  *
18925  * Return Code: 0 for success
18926  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18927  *		sd_send_scsi_READ_CAPACITY()
18928  *
18929  *     Context: Executes in a taskq() thread context
18930  */
18931 
18932 static int
18933 sd_handle_mchange(struct sd_lun *un)
18934 {
18935 	uint64_t	capacity;
18936 	uint32_t	lbasize;
18937 	int		rval;
18938 
18939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18940 	ASSERT(un->un_f_monitor_media_state);
18941 
18942 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18943 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18944 		return (rval);
18945 	}
18946 
18947 	mutex_enter(SD_MUTEX(un));
18948 	sd_update_block_info(un, lbasize, capacity);
18949 
18950 	if (un->un_errstats != NULL) {
18951 		struct	sd_errstats *stp =
18952 		    (struct sd_errstats *)un->un_errstats->ks_data;
18953 		stp->sd_capacity.value.ui64 = (uint64_t)
18954 		    ((uint64_t)un->un_blockcount *
18955 		    (uint64_t)un->un_tgt_blocksize);
18956 	}
18957 
18958 	/*
18959 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18960 	 * valid geometry.
18961 	 */
18962 	un->un_f_geometry_is_valid = FALSE;
18963 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18964 	if (un->un_f_geometry_is_valid == FALSE) {
18965 		mutex_exit(SD_MUTEX(un));
18966 		return (EIO);
18967 	}
18968 
18969 	mutex_exit(SD_MUTEX(un));
18970 
18971 	/*
18972 	 * Try to lock the door
18973 	 */
18974 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18975 	    SD_PATH_DIRECT_PRIORITY));
18976 }
18977 
18978 
18979 /*
18980  *    Function: sd_send_scsi_DOORLOCK
18981  *
18982  * Description: Issue the scsi DOOR LOCK command
18983  *
18984  *   Arguments: un    - pointer to driver soft state (unit) structure for
18985  *			this target.
18986  *		flag  - SD_REMOVAL_ALLOW
18987  *			SD_REMOVAL_PREVENT
18988  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18989  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18990  *			to use the USCSI "direct" chain and bypass the normal
18991  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18992  *			command is issued as part of an error recovery action.
18993  *
18994  * Return Code: 0   - Success
18995  *		errno return code from sd_send_scsi_cmd()
18996  *
18997  *     Context: Can sleep.
18998  */
18999 
19000 static int
19001 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19002 {
19003 	union scsi_cdb		cdb;
19004 	struct uscsi_cmd	ucmd_buf;
19005 	struct scsi_extended_sense	sense_buf;
19006 	int			status;
19007 
19008 	ASSERT(un != NULL);
19009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19010 
19011 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19012 
19013 	/* already determined doorlock is not supported, fake success */
19014 	if (un->un_f_doorlock_supported == FALSE) {
19015 		return (0);
19016 	}
19017 
19018 	bzero(&cdb, sizeof (cdb));
19019 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19020 
19021 	cdb.scc_cmd = SCMD_DOORLOCK;
19022 	cdb.cdb_opaque[4] = (uchar_t)flag;
19023 
19024 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19025 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19026 	ucmd_buf.uscsi_bufaddr	= NULL;
19027 	ucmd_buf.uscsi_buflen	= 0;
19028 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19029 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19030 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19031 	ucmd_buf.uscsi_timeout	= 15;
19032 
19033 	SD_TRACE(SD_LOG_IO, un,
19034 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19035 
19036 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19037 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19038 
19039 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19040 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19041 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19042 		/* fake success and skip subsequent doorlock commands */
19043 		un->un_f_doorlock_supported = FALSE;
19044 		return (0);
19045 	}
19046 
19047 	return (status);
19048 }
19049 
19050 /*
19051  *    Function: sd_send_scsi_READ_CAPACITY
19052  *
19053  * Description: This routine uses the scsi READ CAPACITY command to determine
19054  *		the device capacity in number of blocks and the device native
19055  *		block size. If this function returns a failure, then the
19056  *		values in *capp and *lbap are undefined.  If the capacity
19057  *		returned is 0xffffffff then the lun is too large for a
19058  *		normal READ CAPACITY command and the results of a
19059  *		READ CAPACITY 16 will be used instead.
19060  *
19061  *   Arguments: un   - ptr to soft state struct for the target
19062  *		capp - ptr to unsigned 64-bit variable to receive the
19063  *			capacity value from the command.
19064  *		lbap - ptr to unsigned 32-bit varaible to receive the
19065  *			block size value from the command
19066  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19067  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19068  *			to use the USCSI "direct" chain and bypass the normal
19069  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19070  *			command is issued as part of an error recovery action.
19071  *
19072  * Return Code: 0   - Success
19073  *		EIO - IO error
19074  *		EACCES - Reservation conflict detected
19075  *		EAGAIN - Device is becoming ready
19076  *		errno return code from sd_send_scsi_cmd()
19077  *
19078  *     Context: Can sleep.  Blocks until command completes.
19079  */
19080 
19081 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19082 
19083 static int
19084 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19085 	int path_flag)
19086 {
19087 	struct	scsi_extended_sense	sense_buf;
19088 	struct	uscsi_cmd	ucmd_buf;
19089 	union	scsi_cdb	cdb;
19090 	uint32_t		*capacity_buf;
19091 	uint64_t		capacity;
19092 	uint32_t		lbasize;
19093 	int			status;
19094 
19095 	ASSERT(un != NULL);
19096 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19097 	ASSERT(capp != NULL);
19098 	ASSERT(lbap != NULL);
19099 
19100 	SD_TRACE(SD_LOG_IO, un,
19101 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19102 
19103 	/*
19104 	 * First send a READ_CAPACITY command to the target.
19105 	 * (This command is mandatory under SCSI-2.)
19106 	 *
19107 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19108 	 * Medium Indicator bit is cleared.  The address field must be
19109 	 * zero if the PMI bit is zero.
19110 	 */
19111 	bzero(&cdb, sizeof (cdb));
19112 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19113 
19114 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19115 
19116 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19117 
19118 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19119 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19120 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19121 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19122 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19123 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19124 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19125 	ucmd_buf.uscsi_timeout	= 60;
19126 
19127 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19128 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19129 
19130 	switch (status) {
19131 	case 0:
19132 		/* Return failure if we did not get valid capacity data. */
19133 		if (ucmd_buf.uscsi_resid != 0) {
19134 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19135 			return (EIO);
19136 		}
19137 
19138 		/*
19139 		 * Read capacity and block size from the READ CAPACITY 10 data.
19140 		 * This data may be adjusted later due to device specific
19141 		 * issues.
19142 		 *
19143 		 * According to the SCSI spec, the READ CAPACITY 10
19144 		 * command returns the following:
19145 		 *
19146 		 *  bytes 0-3: Maximum logical block address available.
19147 		 *		(MSB in byte:0 & LSB in byte:3)
19148 		 *
19149 		 *  bytes 4-7: Block length in bytes
19150 		 *		(MSB in byte:4 & LSB in byte:7)
19151 		 *
19152 		 */
19153 		capacity = BE_32(capacity_buf[0]);
19154 		lbasize = BE_32(capacity_buf[1]);
19155 
19156 		/*
19157 		 * Done with capacity_buf
19158 		 */
19159 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19160 
19161 		/*
19162 		 * if the reported capacity is set to all 0xf's, then
19163 		 * this disk is too large and requires SBC-2 commands.
19164 		 * Reissue the request using READ CAPACITY 16.
19165 		 */
19166 		if (capacity == 0xffffffff) {
19167 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19168 			    &lbasize, path_flag);
19169 			if (status != 0) {
19170 				return (status);
19171 			}
19172 		}
19173 		break;	/* Success! */
19174 	case EIO:
19175 		switch (ucmd_buf.uscsi_status) {
19176 		case STATUS_RESERVATION_CONFLICT:
19177 			status = EACCES;
19178 			break;
19179 		case STATUS_CHECK:
19180 			/*
19181 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19182 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19183 			 */
19184 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19185 			    (sense_buf.es_add_code  == 0x04) &&
19186 			    (sense_buf.es_qual_code == 0x01)) {
19187 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19188 				return (EAGAIN);
19189 			}
19190 			break;
19191 		default:
19192 			break;
19193 		}
19194 		/* FALLTHRU */
19195 	default:
19196 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19197 		return (status);
19198 	}
19199 
19200 	/*
19201 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19202 	 * (2352 and 0 are common) so for these devices always force the value
19203 	 * to 2048 as required by the ATAPI specs.
19204 	 */
19205 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19206 		lbasize = 2048;
19207 	}
19208 
19209 	/*
19210 	 * Get the maximum LBA value from the READ CAPACITY data.
19211 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19212 	 * was cleared when issuing the command. This means that the LBA
19213 	 * returned from the device is the LBA of the last logical block
19214 	 * on the logical unit.  The actual logical block count will be
19215 	 * this value plus one.
19216 	 *
19217 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19218 	 * so scale the capacity value to reflect this.
19219 	 */
19220 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19221 
19222 #if defined(__i386) || defined(__amd64)
19223 	/*
19224 	 * On x86, compensate for off-by-1 error (number of sectors on
19225 	 * media)  (1175930)
19226 	 */
19227 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
19228 	    (lbasize == un->un_sys_blocksize)) {
19229 		capacity -= 1;
19230 	}
19231 #endif
19232 
19233 	/*
19234 	 * Copy the values from the READ CAPACITY command into the space
19235 	 * provided by the caller.
19236 	 */
19237 	*capp = capacity;
19238 	*lbap = lbasize;
19239 
19240 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19241 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19242 
19243 	/*
19244 	 * Both the lbasize and capacity from the device must be nonzero,
19245 	 * otherwise we assume that the values are not valid and return
19246 	 * failure to the caller. (4203735)
19247 	 */
19248 	if ((capacity == 0) || (lbasize == 0)) {
19249 		return (EIO);
19250 	}
19251 
19252 	return (0);
19253 }
19254 
19255 /*
19256  *    Function: sd_send_scsi_READ_CAPACITY_16
19257  *
19258  * Description: This routine uses the scsi READ CAPACITY 16 command to
19259  *		determine the device capacity in number of blocks and the
19260  *		device native block size.  If this function returns a failure,
19261  *		then the values in *capp and *lbap are undefined.
19262  *		This routine should always be called by
19263  *		sd_send_scsi_READ_CAPACITY which will appy any device
19264  *		specific adjustments to capacity and lbasize.
19265  *
19266  *   Arguments: un   - ptr to soft state struct for the target
19267  *		capp - ptr to unsigned 64-bit variable to receive the
19268  *			capacity value from the command.
19269  *		lbap - ptr to unsigned 32-bit varaible to receive the
19270  *			block size value from the command
19271  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19272  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19273  *			to use the USCSI "direct" chain and bypass the normal
19274  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19275  *			this command is issued as part of an error recovery
19276  *			action.
19277  *
19278  * Return Code: 0   - Success
19279  *		EIO - IO error
19280  *		EACCES - Reservation conflict detected
19281  *		EAGAIN - Device is becoming ready
19282  *		errno return code from sd_send_scsi_cmd()
19283  *
19284  *     Context: Can sleep.  Blocks until command completes.
19285  */
19286 
19287 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19288 
19289 static int
19290 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19291 	uint32_t *lbap, int path_flag)
19292 {
19293 	struct	scsi_extended_sense	sense_buf;
19294 	struct	uscsi_cmd	ucmd_buf;
19295 	union	scsi_cdb	cdb;
19296 	uint64_t		*capacity16_buf;
19297 	uint64_t		capacity;
19298 	uint32_t		lbasize;
19299 	int			status;
19300 
19301 	ASSERT(un != NULL);
19302 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19303 	ASSERT(capp != NULL);
19304 	ASSERT(lbap != NULL);
19305 
19306 	SD_TRACE(SD_LOG_IO, un,
19307 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19308 
19309 	/*
19310 	 * First send a READ_CAPACITY_16 command to the target.
19311 	 *
19312 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19313 	 * Medium Indicator bit is cleared.  The address field must be
19314 	 * zero if the PMI bit is zero.
19315 	 */
19316 	bzero(&cdb, sizeof (cdb));
19317 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19318 
19319 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19320 
19321 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19322 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19323 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19324 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19325 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19326 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19327 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19328 	ucmd_buf.uscsi_timeout	= 60;
19329 
19330 	/*
19331 	 * Read Capacity (16) is a Service Action In command.  One
19332 	 * command byte (0x9E) is overloaded for multiple operations,
19333 	 * with the second CDB byte specifying the desired operation
19334 	 */
19335 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19336 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19337 
19338 	/*
19339 	 * Fill in allocation length field
19340 	 */
19341 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19342 
19343 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19344 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19345 
19346 	switch (status) {
19347 	case 0:
19348 		/* Return failure if we did not get valid capacity data. */
19349 		if (ucmd_buf.uscsi_resid > 20) {
19350 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19351 			return (EIO);
19352 		}
19353 
19354 		/*
19355 		 * Read capacity and block size from the READ CAPACITY 10 data.
19356 		 * This data may be adjusted later due to device specific
19357 		 * issues.
19358 		 *
19359 		 * According to the SCSI spec, the READ CAPACITY 10
19360 		 * command returns the following:
19361 		 *
19362 		 *  bytes 0-7: Maximum logical block address available.
19363 		 *		(MSB in byte:0 & LSB in byte:7)
19364 		 *
19365 		 *  bytes 8-11: Block length in bytes
19366 		 *		(MSB in byte:8 & LSB in byte:11)
19367 		 *
19368 		 */
19369 		capacity = BE_64(capacity16_buf[0]);
19370 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19371 
19372 		/*
19373 		 * Done with capacity16_buf
19374 		 */
19375 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19376 
19377 		/*
19378 		 * if the reported capacity is set to all 0xf's, then
19379 		 * this disk is too large.  This could only happen with
19380 		 * a device that supports LBAs larger than 64 bits which
19381 		 * are not defined by any current T10 standards.
19382 		 */
19383 		if (capacity == 0xffffffffffffffff) {
19384 			return (EIO);
19385 		}
19386 		break;	/* Success! */
19387 	case EIO:
19388 		switch (ucmd_buf.uscsi_status) {
19389 		case STATUS_RESERVATION_CONFLICT:
19390 			status = EACCES;
19391 			break;
19392 		case STATUS_CHECK:
19393 			/*
19394 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19395 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19396 			 */
19397 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19398 			    (sense_buf.es_add_code  == 0x04) &&
19399 			    (sense_buf.es_qual_code == 0x01)) {
19400 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19401 				return (EAGAIN);
19402 			}
19403 			break;
19404 		default:
19405 			break;
19406 		}
19407 		/* FALLTHRU */
19408 	default:
19409 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19410 		return (status);
19411 	}
19412 
19413 	*capp = capacity;
19414 	*lbap = lbasize;
19415 
19416 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19417 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19418 
19419 	return (0);
19420 }
19421 
19422 
19423 /*
19424  *    Function: sd_send_scsi_START_STOP_UNIT
19425  *
19426  * Description: Issue a scsi START STOP UNIT command to the target.
19427  *
19428  *   Arguments: un    - pointer to driver soft state (unit) structure for
19429  *			this target.
19430  *		flag  - SD_TARGET_START
19431  *			SD_TARGET_STOP
19432  *			SD_TARGET_EJECT
19433  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19434  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19435  *			to use the USCSI "direct" chain and bypass the normal
19436  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19437  *			command is issued as part of an error recovery action.
19438  *
19439  * Return Code: 0   - Success
19440  *		EIO - IO error
19441  *		EACCES - Reservation conflict detected
19442  *		ENXIO  - Not Ready, medium not present
19443  *		errno return code from sd_send_scsi_cmd()
19444  *
19445  *     Context: Can sleep.
19446  */
19447 
19448 static int
19449 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19450 {
19451 	struct	scsi_extended_sense	sense_buf;
19452 	union scsi_cdb		cdb;
19453 	struct uscsi_cmd	ucmd_buf;
19454 	int			status;
19455 
19456 	ASSERT(un != NULL);
19457 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19458 
19459 	SD_TRACE(SD_LOG_IO, un,
19460 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19461 
19462 	if (un->un_f_check_start_stop &&
19463 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19464 	    (un->un_f_start_stop_supported != TRUE)) {
19465 		return (0);
19466 	}
19467 
19468 	bzero(&cdb, sizeof (cdb));
19469 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19470 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19471 
19472 	cdb.scc_cmd = SCMD_START_STOP;
19473 	cdb.cdb_opaque[4] = (uchar_t)flag;
19474 
19475 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19476 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19477 	ucmd_buf.uscsi_bufaddr	= NULL;
19478 	ucmd_buf.uscsi_buflen	= 0;
19479 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19480 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19481 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19482 	ucmd_buf.uscsi_timeout	= 200;
19483 
19484 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19485 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19486 
19487 	switch (status) {
19488 	case 0:
19489 		break;	/* Success! */
19490 	case EIO:
19491 		switch (ucmd_buf.uscsi_status) {
19492 		case STATUS_RESERVATION_CONFLICT:
19493 			status = EACCES;
19494 			break;
19495 		case STATUS_CHECK:
19496 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19497 				switch (sense_buf.es_key) {
19498 				case KEY_ILLEGAL_REQUEST:
19499 					status = ENOTSUP;
19500 					break;
19501 				case KEY_NOT_READY:
19502 					if (sense_buf.es_add_code == 0x3A) {
19503 						status = ENXIO;
19504 					}
19505 					break;
19506 				default:
19507 					break;
19508 				}
19509 			}
19510 			break;
19511 		default:
19512 			break;
19513 		}
19514 		break;
19515 	default:
19516 		break;
19517 	}
19518 
19519 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19520 
19521 	return (status);
19522 }
19523 
19524 
19525 /*
19526  *    Function: sd_start_stop_unit_callback
19527  *
19528  * Description: timeout(9F) callback to begin recovery process for a
19529  *		device that has spun down.
19530  *
19531  *   Arguments: arg - pointer to associated softstate struct.
19532  *
19533  *     Context: Executes in a timeout(9F) thread context
19534  */
19535 
19536 static void
19537 sd_start_stop_unit_callback(void *arg)
19538 {
19539 	struct sd_lun	*un = arg;
19540 	ASSERT(un != NULL);
19541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19542 
19543 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19544 
19545 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19546 }
19547 
19548 
19549 /*
19550  *    Function: sd_start_stop_unit_task
19551  *
19552  * Description: Recovery procedure when a drive is spun down.
19553  *
19554  *   Arguments: arg - pointer to associated softstate struct.
19555  *
19556  *     Context: Executes in a taskq() thread context
19557  */
19558 
19559 static void
19560 sd_start_stop_unit_task(void *arg)
19561 {
19562 	struct sd_lun	*un = arg;
19563 
19564 	ASSERT(un != NULL);
19565 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19566 
19567 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19568 
19569 	/*
19570 	 * Some unformatted drives report not ready error, no need to
19571 	 * restart if format has been initiated.
19572 	 */
19573 	mutex_enter(SD_MUTEX(un));
19574 	if (un->un_f_format_in_progress == TRUE) {
19575 		mutex_exit(SD_MUTEX(un));
19576 		return;
19577 	}
19578 	mutex_exit(SD_MUTEX(un));
19579 
19580 	/*
19581 	 * When a START STOP command is issued from here, it is part of a
19582 	 * failure recovery operation and must be issued before any other
19583 	 * commands, including any pending retries. Thus it must be sent
19584 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19585 	 * succeeds or not, we will start I/O after the attempt.
19586 	 */
19587 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19588 	    SD_PATH_DIRECT_PRIORITY);
19589 
19590 	/*
19591 	 * The above call blocks until the START_STOP_UNIT command completes.
19592 	 * Now that it has completed, we must re-try the original IO that
19593 	 * received the NOT READY condition in the first place. There are
19594 	 * three possible conditions here:
19595 	 *
19596 	 *  (1) The original IO is on un_retry_bp.
19597 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19598 	 *	is NULL.
19599 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19600 	 *	points to some other, unrelated bp.
19601 	 *
19602 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19603 	 * as the argument. If un_retry_bp is NULL, this will initiate
19604 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19605 	 * then this will process the bp on un_retry_bp. That may or may not
19606 	 * be the original IO, but that does not matter: the important thing
19607 	 * is to keep the IO processing going at this point.
19608 	 *
19609 	 * Note: This is a very specific error recovery sequence associated
19610 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19611 	 * serialize the I/O with completion of the spin-up.
19612 	 */
19613 	mutex_enter(SD_MUTEX(un));
19614 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19615 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19616 	    un, un->un_retry_bp);
19617 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19618 	sd_start_cmds(un, un->un_retry_bp);
19619 	mutex_exit(SD_MUTEX(un));
19620 
19621 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19622 }
19623 
19624 
19625 /*
19626  *    Function: sd_send_scsi_INQUIRY
19627  *
19628  * Description: Issue the scsi INQUIRY command.
19629  *
19630  *   Arguments: un
19631  *		bufaddr
19632  *		buflen
19633  *		evpd
19634  *		page_code
19635  *		page_length
19636  *
19637  * Return Code: 0   - Success
19638  *		errno return code from sd_send_scsi_cmd()
19639  *
19640  *     Context: Can sleep. Does not return until command is completed.
19641  */
19642 
19643 static int
19644 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19645 	uchar_t evpd, uchar_t page_code, size_t *residp)
19646 {
19647 	union scsi_cdb		cdb;
19648 	struct uscsi_cmd	ucmd_buf;
19649 	int			status;
19650 
19651 	ASSERT(un != NULL);
19652 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19653 	ASSERT(bufaddr != NULL);
19654 
19655 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19656 
19657 	bzero(&cdb, sizeof (cdb));
19658 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19659 	bzero(bufaddr, buflen);
19660 
19661 	cdb.scc_cmd = SCMD_INQUIRY;
19662 	cdb.cdb_opaque[1] = evpd;
19663 	cdb.cdb_opaque[2] = page_code;
19664 	FORMG0COUNT(&cdb, buflen);
19665 
19666 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19667 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19668 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19669 	ucmd_buf.uscsi_buflen	= buflen;
19670 	ucmd_buf.uscsi_rqbuf	= NULL;
19671 	ucmd_buf.uscsi_rqlen	= 0;
19672 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19673 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19674 
19675 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19676 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19677 
19678 	if ((status == 0) && (residp != NULL)) {
19679 		*residp = ucmd_buf.uscsi_resid;
19680 	}
19681 
19682 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19683 
19684 	return (status);
19685 }
19686 
19687 
19688 /*
19689  *    Function: sd_send_scsi_TEST_UNIT_READY
19690  *
19691  * Description: Issue the scsi TEST UNIT READY command.
19692  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19693  *		prevent retrying failed commands. Use this when the intent
19694  *		is either to check for device readiness, to clear a Unit
19695  *		Attention, or to clear any outstanding sense data.
19696  *		However under specific conditions the expected behavior
19697  *		is for retries to bring a device ready, so use the flag
19698  *		with caution.
19699  *
19700  *   Arguments: un
19701  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19702  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19703  *			0: dont check for media present, do retries on cmd.
19704  *
19705  * Return Code: 0   - Success
19706  *		EIO - IO error
19707  *		EACCES - Reservation conflict detected
19708  *		ENXIO  - Not Ready, medium not present
19709  *		errno return code from sd_send_scsi_cmd()
19710  *
19711  *     Context: Can sleep. Does not return until command is completed.
19712  */
19713 
19714 static int
19715 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19716 {
19717 	struct	scsi_extended_sense	sense_buf;
19718 	union scsi_cdb		cdb;
19719 	struct uscsi_cmd	ucmd_buf;
19720 	int			status;
19721 
19722 	ASSERT(un != NULL);
19723 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19724 
19725 	SD_TRACE(SD_LOG_IO, un,
19726 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19727 
19728 	/*
19729 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19730 	 * timeouts when they receive a TUR and the queue is not empty. Check
19731 	 * the configuration flag set during attach (indicating the drive has
19732 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19733 	 * TUR. If there are
19734 	 * pending commands return success, this is a bit arbitrary but is ok
19735 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19736 	 * configurations.
19737 	 */
19738 	if (un->un_f_cfg_tur_check == TRUE) {
19739 		mutex_enter(SD_MUTEX(un));
19740 		if (un->un_ncmds_in_transport != 0) {
19741 			mutex_exit(SD_MUTEX(un));
19742 			return (0);
19743 		}
19744 		mutex_exit(SD_MUTEX(un));
19745 	}
19746 
19747 	bzero(&cdb, sizeof (cdb));
19748 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19749 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19750 
19751 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19752 
19753 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19754 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19755 	ucmd_buf.uscsi_bufaddr	= NULL;
19756 	ucmd_buf.uscsi_buflen	= 0;
19757 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19758 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19759 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19760 
19761 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19762 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19763 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19764 	}
19765 	ucmd_buf.uscsi_timeout	= 60;
19766 
19767 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19768 	    UIO_SYSSPACE, UIO_SYSSPACE,
19769 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19770 
19771 	switch (status) {
19772 	case 0:
19773 		break;	/* Success! */
19774 	case EIO:
19775 		switch (ucmd_buf.uscsi_status) {
19776 		case STATUS_RESERVATION_CONFLICT:
19777 			status = EACCES;
19778 			break;
19779 		case STATUS_CHECK:
19780 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19781 				break;
19782 			}
19783 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19784 			    (sense_buf.es_key == KEY_NOT_READY) &&
19785 			    (sense_buf.es_add_code == 0x3A)) {
19786 				status = ENXIO;
19787 			}
19788 			break;
19789 		default:
19790 			break;
19791 		}
19792 		break;
19793 	default:
19794 		break;
19795 	}
19796 
19797 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19798 
19799 	return (status);
19800 }
19801 
19802 
19803 /*
19804  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19805  *
19806  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19807  *
19808  *   Arguments: un
19809  *
19810  * Return Code: 0   - Success
19811  *		EACCES
19812  *		ENOTSUP
19813  *		errno return code from sd_send_scsi_cmd()
19814  *
19815  *     Context: Can sleep. Does not return until command is completed.
19816  */
19817 
19818 static int
19819 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19820 	uint16_t data_len, uchar_t *data_bufp)
19821 {
19822 	struct scsi_extended_sense	sense_buf;
19823 	union scsi_cdb		cdb;
19824 	struct uscsi_cmd	ucmd_buf;
19825 	int			status;
19826 	int			no_caller_buf = FALSE;
19827 
19828 	ASSERT(un != NULL);
19829 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19830 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19831 
19832 	SD_TRACE(SD_LOG_IO, un,
19833 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19834 
19835 	bzero(&cdb, sizeof (cdb));
19836 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19837 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19838 	if (data_bufp == NULL) {
19839 		/* Allocate a default buf if the caller did not give one */
19840 		ASSERT(data_len == 0);
19841 		data_len  = MHIOC_RESV_KEY_SIZE;
19842 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19843 		no_caller_buf = TRUE;
19844 	}
19845 
19846 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19847 	cdb.cdb_opaque[1] = usr_cmd;
19848 	FORMG1COUNT(&cdb, data_len);
19849 
19850 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19851 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19852 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19853 	ucmd_buf.uscsi_buflen	= data_len;
19854 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19855 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19856 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19857 	ucmd_buf.uscsi_timeout	= 60;
19858 
19859 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19860 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19861 
19862 	switch (status) {
19863 	case 0:
19864 		break;	/* Success! */
19865 	case EIO:
19866 		switch (ucmd_buf.uscsi_status) {
19867 		case STATUS_RESERVATION_CONFLICT:
19868 			status = EACCES;
19869 			break;
19870 		case STATUS_CHECK:
19871 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19872 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19873 				status = ENOTSUP;
19874 			}
19875 			break;
19876 		default:
19877 			break;
19878 		}
19879 		break;
19880 	default:
19881 		break;
19882 	}
19883 
19884 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19885 
19886 	if (no_caller_buf == TRUE) {
19887 		kmem_free(data_bufp, data_len);
19888 	}
19889 
19890 	return (status);
19891 }
19892 
19893 
19894 /*
19895  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19896  *
19897  * Description: This routine is the driver entry point for handling CD-ROM
19898  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19899  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19900  *		device.
19901  *
19902  *   Arguments: un  -   Pointer to soft state struct for the target.
19903  *		usr_cmd SCSI-3 reservation facility command (one of
19904  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19905  *			SD_SCSI3_PREEMPTANDABORT)
19906  *		usr_bufp - user provided pointer register, reserve descriptor or
19907  *			preempt and abort structure (mhioc_register_t,
19908  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19909  *
19910  * Return Code: 0   - Success
19911  *		EACCES
19912  *		ENOTSUP
19913  *		errno return code from sd_send_scsi_cmd()
19914  *
19915  *     Context: Can sleep. Does not return until command is completed.
19916  */
19917 
19918 static int
19919 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19920 	uchar_t	*usr_bufp)
19921 {
19922 	struct scsi_extended_sense	sense_buf;
19923 	union scsi_cdb		cdb;
19924 	struct uscsi_cmd	ucmd_buf;
19925 	int			status;
19926 	uchar_t			data_len = sizeof (sd_prout_t);
19927 	sd_prout_t		*prp;
19928 
19929 	ASSERT(un != NULL);
19930 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19931 	ASSERT(data_len == 24);	/* required by scsi spec */
19932 
19933 	SD_TRACE(SD_LOG_IO, un,
19934 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19935 
19936 	if (usr_bufp == NULL) {
19937 		return (EINVAL);
19938 	}
19939 
19940 	bzero(&cdb, sizeof (cdb));
19941 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19942 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19943 	prp = kmem_zalloc(data_len, KM_SLEEP);
19944 
19945 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19946 	cdb.cdb_opaque[1] = usr_cmd;
19947 	FORMG1COUNT(&cdb, data_len);
19948 
19949 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19950 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19951 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19952 	ucmd_buf.uscsi_buflen	= data_len;
19953 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19954 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19955 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19956 	ucmd_buf.uscsi_timeout	= 60;
19957 
19958 	switch (usr_cmd) {
19959 	case SD_SCSI3_REGISTER: {
19960 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19961 
19962 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19963 		bcopy(ptr->newkey.key, prp->service_key,
19964 		    MHIOC_RESV_KEY_SIZE);
19965 		prp->aptpl = ptr->aptpl;
19966 		break;
19967 	}
19968 	case SD_SCSI3_RESERVE:
19969 	case SD_SCSI3_RELEASE: {
19970 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19971 
19972 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19973 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19974 		cdb.cdb_opaque[2] = ptr->type;
19975 		break;
19976 	}
19977 	case SD_SCSI3_PREEMPTANDABORT: {
19978 		mhioc_preemptandabort_t *ptr =
19979 		    (mhioc_preemptandabort_t *)usr_bufp;
19980 
19981 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19982 		bcopy(ptr->victim_key.key, prp->service_key,
19983 		    MHIOC_RESV_KEY_SIZE);
19984 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19985 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19986 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19987 		break;
19988 	}
19989 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19990 	{
19991 		mhioc_registerandignorekey_t *ptr;
19992 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19993 		bcopy(ptr->newkey.key,
19994 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19995 		prp->aptpl = ptr->aptpl;
19996 		break;
19997 	}
19998 	default:
19999 		ASSERT(FALSE);
20000 		break;
20001 	}
20002 
20003 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20004 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20005 
20006 	switch (status) {
20007 	case 0:
20008 		break;	/* Success! */
20009 	case EIO:
20010 		switch (ucmd_buf.uscsi_status) {
20011 		case STATUS_RESERVATION_CONFLICT:
20012 			status = EACCES;
20013 			break;
20014 		case STATUS_CHECK:
20015 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20016 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
20017 				status = ENOTSUP;
20018 			}
20019 			break;
20020 		default:
20021 			break;
20022 		}
20023 		break;
20024 	default:
20025 		break;
20026 	}
20027 
20028 	kmem_free(prp, data_len);
20029 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20030 	return (status);
20031 }
20032 
20033 
20034 /*
20035  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20036  *
20037  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20038  *
20039  *   Arguments: un - pointer to the target's soft state struct
20040  *
20041  * Return Code: 0 - success
20042  *		errno-type error code
20043  *
20044  *     Context: kernel thread context only.
20045  */
20046 
20047 static int
20048 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20049 {
20050 	struct sd_uscsi_info	*uip;
20051 	struct uscsi_cmd	*uscmd;
20052 	union scsi_cdb		*cdb;
20053 	struct buf		*bp;
20054 	int			rval = 0;
20055 
20056 	SD_TRACE(SD_LOG_IO, un,
20057 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20058 
20059 	ASSERT(un != NULL);
20060 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20061 
20062 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20063 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20064 
20065 	/*
20066 	 * First get some memory for the uscsi_cmd struct and cdb
20067 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20068 	 */
20069 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20070 	uscmd->uscsi_cdblen = CDB_GROUP1;
20071 	uscmd->uscsi_cdb = (caddr_t)cdb;
20072 	uscmd->uscsi_bufaddr = NULL;
20073 	uscmd->uscsi_buflen = 0;
20074 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20075 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20076 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20077 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20078 	uscmd->uscsi_timeout = sd_io_time;
20079 
20080 	/*
20081 	 * Allocate an sd_uscsi_info struct and fill it with the info
20082 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20083 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20084 	 * since we allocate the buf here in this function, we do not
20085 	 * need to preserve the prior contents of b_private.
20086 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20087 	 */
20088 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20089 	uip->ui_flags = SD_PATH_DIRECT;
20090 	uip->ui_cmdp  = uscmd;
20091 
20092 	bp = getrbuf(KM_SLEEP);
20093 	bp->b_private = uip;
20094 
20095 	/*
20096 	 * Setup buffer to carry uscsi request.
20097 	 */
20098 	bp->b_flags  = B_BUSY;
20099 	bp->b_bcount = 0;
20100 	bp->b_blkno  = 0;
20101 
20102 	if (dkc != NULL) {
20103 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20104 		uip->ui_dkc = *dkc;
20105 	}
20106 
20107 	bp->b_edev = SD_GET_DEV(un);
20108 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20109 
20110 	(void) sd_uscsi_strategy(bp);
20111 
20112 	/*
20113 	 * If synchronous request, wait for completion
20114 	 * If async just return and let b_iodone callback
20115 	 * cleanup.
20116 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20117 	 * but it was also incremented in sd_uscsi_strategy(), so
20118 	 * we should be ok.
20119 	 */
20120 	if (dkc == NULL) {
20121 		(void) biowait(bp);
20122 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20123 	}
20124 
20125 	return (rval);
20126 }
20127 
20128 
20129 static int
20130 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20131 {
20132 	struct sd_uscsi_info *uip;
20133 	struct uscsi_cmd *uscmd;
20134 	struct scsi_extended_sense *sense_buf;
20135 	struct sd_lun *un;
20136 	int status;
20137 
20138 	uip = (struct sd_uscsi_info *)(bp->b_private);
20139 	ASSERT(uip != NULL);
20140 
20141 	uscmd = uip->ui_cmdp;
20142 	ASSERT(uscmd != NULL);
20143 
20144 	sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf;
20145 	ASSERT(sense_buf != NULL);
20146 
20147 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20148 	ASSERT(un != NULL);
20149 
20150 	status = geterror(bp);
20151 	switch (status) {
20152 	case 0:
20153 		break;	/* Success! */
20154 	case EIO:
20155 		switch (uscmd->uscsi_status) {
20156 		case STATUS_RESERVATION_CONFLICT:
20157 			/* Ignore reservation conflict */
20158 			status = 0;
20159 			goto done;
20160 
20161 		case STATUS_CHECK:
20162 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20163 			    (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) {
20164 				/* Ignore Illegal Request error */
20165 				mutex_enter(SD_MUTEX(un));
20166 				un->un_f_sync_cache_supported = FALSE;
20167 				mutex_exit(SD_MUTEX(un));
20168 				status = ENOTSUP;
20169 				goto done;
20170 			}
20171 			break;
20172 		default:
20173 			break;
20174 		}
20175 		/* FALLTHRU */
20176 	default:
20177 		/* Ignore error if the media is not present */
20178 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
20179 			status = 0;
20180 			goto done;
20181 		}
20182 		/* If we reach this, we had an error */
20183 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20184 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20185 		break;
20186 	}
20187 
20188 done:
20189 	if (uip->ui_dkc.dkc_callback != NULL) {
20190 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20191 	}
20192 
20193 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20194 	freerbuf(bp);
20195 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20196 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20197 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20198 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20199 
20200 	return (status);
20201 }
20202 
20203 
20204 /*
20205  *    Function: sd_send_scsi_GET_CONFIGURATION
20206  *
20207  * Description: Issues the get configuration command to the device.
20208  *		Called from sd_check_for_writable_cd & sd_get_media_info
20209  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20210  *   Arguments: un
20211  *		ucmdbuf
20212  *		rqbuf
20213  *		rqbuflen
20214  *		bufaddr
20215  *		buflen
20216  *
20217  * Return Code: 0   - Success
20218  *		errno return code from sd_send_scsi_cmd()
20219  *
20220  *     Context: Can sleep. Does not return until command is completed.
20221  *
20222  */
20223 
20224 static int
20225 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20226 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20227 {
20228 	char	cdb[CDB_GROUP1];
20229 	int	status;
20230 
20231 	ASSERT(un != NULL);
20232 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20233 	ASSERT(bufaddr != NULL);
20234 	ASSERT(ucmdbuf != NULL);
20235 	ASSERT(rqbuf != NULL);
20236 
20237 	SD_TRACE(SD_LOG_IO, un,
20238 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20239 
20240 	bzero(cdb, sizeof (cdb));
20241 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20242 	bzero(rqbuf, rqbuflen);
20243 	bzero(bufaddr, buflen);
20244 
20245 	/*
20246 	 * Set up cdb field for the get configuration command.
20247 	 */
20248 	cdb[0] = SCMD_GET_CONFIGURATION;
20249 	cdb[1] = 0x02;  /* Requested Type */
20250 	cdb[8] = SD_PROFILE_HEADER_LEN;
20251 	ucmdbuf->uscsi_cdb = cdb;
20252 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20253 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20254 	ucmdbuf->uscsi_buflen = buflen;
20255 	ucmdbuf->uscsi_timeout = sd_io_time;
20256 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20257 	ucmdbuf->uscsi_rqlen = rqbuflen;
20258 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20259 
20260 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20261 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20262 
20263 	switch (status) {
20264 	case 0:
20265 		break;  /* Success! */
20266 	case EIO:
20267 		switch (ucmdbuf->uscsi_status) {
20268 		case STATUS_RESERVATION_CONFLICT:
20269 			status = EACCES;
20270 			break;
20271 		default:
20272 			break;
20273 		}
20274 		break;
20275 	default:
20276 		break;
20277 	}
20278 
20279 	if (status == 0) {
20280 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20281 		    "sd_send_scsi_GET_CONFIGURATION: data",
20282 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20283 	}
20284 
20285 	SD_TRACE(SD_LOG_IO, un,
20286 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20287 
20288 	return (status);
20289 }
20290 
20291 /*
20292  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20293  *
20294  * Description: Issues the get configuration command to the device to
20295  *              retrieve a specfic feature. Called from
20296  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20297  *   Arguments: un
20298  *              ucmdbuf
20299  *              rqbuf
20300  *              rqbuflen
20301  *              bufaddr
20302  *              buflen
20303  *		feature
20304  *
20305  * Return Code: 0   - Success
20306  *              errno return code from sd_send_scsi_cmd()
20307  *
20308  *     Context: Can sleep. Does not return until command is completed.
20309  *
20310  */
20311 static int
20312 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20313 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20314 	uchar_t *bufaddr, uint_t buflen, char feature)
20315 {
20316 	char    cdb[CDB_GROUP1];
20317 	int	status;
20318 
20319 	ASSERT(un != NULL);
20320 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20321 	ASSERT(bufaddr != NULL);
20322 	ASSERT(ucmdbuf != NULL);
20323 	ASSERT(rqbuf != NULL);
20324 
20325 	SD_TRACE(SD_LOG_IO, un,
20326 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20327 
20328 	bzero(cdb, sizeof (cdb));
20329 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20330 	bzero(rqbuf, rqbuflen);
20331 	bzero(bufaddr, buflen);
20332 
20333 	/*
20334 	 * Set up cdb field for the get configuration command.
20335 	 */
20336 	cdb[0] = SCMD_GET_CONFIGURATION;
20337 	cdb[1] = 0x02;  /* Requested Type */
20338 	cdb[3] = feature;
20339 	cdb[8] = buflen;
20340 	ucmdbuf->uscsi_cdb = cdb;
20341 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20342 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20343 	ucmdbuf->uscsi_buflen = buflen;
20344 	ucmdbuf->uscsi_timeout = sd_io_time;
20345 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20346 	ucmdbuf->uscsi_rqlen = rqbuflen;
20347 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20348 
20349 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20350 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20351 
20352 	switch (status) {
20353 	case 0:
20354 		break;  /* Success! */
20355 	case EIO:
20356 		switch (ucmdbuf->uscsi_status) {
20357 		case STATUS_RESERVATION_CONFLICT:
20358 			status = EACCES;
20359 			break;
20360 		default:
20361 			break;
20362 		}
20363 		break;
20364 	default:
20365 		break;
20366 	}
20367 
20368 	if (status == 0) {
20369 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20370 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20371 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20372 	}
20373 
20374 	SD_TRACE(SD_LOG_IO, un,
20375 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20376 
20377 	return (status);
20378 }
20379 
20380 
20381 /*
20382  *    Function: sd_send_scsi_MODE_SENSE
20383  *
20384  * Description: Utility function for issuing a scsi MODE SENSE command.
20385  *		Note: This routine uses a consistent implementation for Group0,
20386  *		Group1, and Group2 commands across all platforms. ATAPI devices
20387  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20388  *
20389  *   Arguments: un - pointer to the softstate struct for the target.
20390  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20391  *			  CDB_GROUP[1|2] (10 byte).
20392  *		bufaddr - buffer for page data retrieved from the target.
20393  *		buflen - size of page to be retrieved.
20394  *		page_code - page code of data to be retrieved from the target.
20395  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20396  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20397  *			to use the USCSI "direct" chain and bypass the normal
20398  *			command waitq.
20399  *
20400  * Return Code: 0   - Success
20401  *		errno return code from sd_send_scsi_cmd()
20402  *
20403  *     Context: Can sleep. Does not return until command is completed.
20404  */
20405 
20406 static int
20407 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20408 	size_t buflen,  uchar_t page_code, int path_flag)
20409 {
20410 	struct	scsi_extended_sense	sense_buf;
20411 	union scsi_cdb		cdb;
20412 	struct uscsi_cmd	ucmd_buf;
20413 	int			status;
20414 
20415 	ASSERT(un != NULL);
20416 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20417 	ASSERT(bufaddr != NULL);
20418 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20419 	    (cdbsize == CDB_GROUP2));
20420 
20421 	SD_TRACE(SD_LOG_IO, un,
20422 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20423 
20424 	bzero(&cdb, sizeof (cdb));
20425 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20426 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20427 	bzero(bufaddr, buflen);
20428 
20429 	if (cdbsize == CDB_GROUP0) {
20430 		cdb.scc_cmd = SCMD_MODE_SENSE;
20431 		cdb.cdb_opaque[2] = page_code;
20432 		FORMG0COUNT(&cdb, buflen);
20433 	} else {
20434 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20435 		cdb.cdb_opaque[2] = page_code;
20436 		FORMG1COUNT(&cdb, buflen);
20437 	}
20438 
20439 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20440 
20441 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20442 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20443 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20444 	ucmd_buf.uscsi_buflen	= buflen;
20445 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20446 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20447 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20448 	ucmd_buf.uscsi_timeout	= 60;
20449 
20450 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20451 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20452 
20453 	switch (status) {
20454 	case 0:
20455 		break;	/* Success! */
20456 	case EIO:
20457 		switch (ucmd_buf.uscsi_status) {
20458 		case STATUS_RESERVATION_CONFLICT:
20459 			status = EACCES;
20460 			break;
20461 		default:
20462 			break;
20463 		}
20464 		break;
20465 	default:
20466 		break;
20467 	}
20468 
20469 	if (status == 0) {
20470 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20471 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20472 	}
20473 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20474 
20475 	return (status);
20476 }
20477 
20478 
20479 /*
20480  *    Function: sd_send_scsi_MODE_SELECT
20481  *
20482  * Description: Utility function for issuing a scsi MODE SELECT command.
20483  *		Note: This routine uses a consistent implementation for Group0,
20484  *		Group1, and Group2 commands across all platforms. ATAPI devices
20485  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20486  *
20487  *   Arguments: un - pointer to the softstate struct for the target.
20488  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20489  *			  CDB_GROUP[1|2] (10 byte).
20490  *		bufaddr - buffer for page data retrieved from the target.
20491  *		buflen - size of page to be retrieved.
20492  *		save_page - boolean to determin if SP bit should be set.
20493  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20494  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20495  *			to use the USCSI "direct" chain and bypass the normal
20496  *			command waitq.
20497  *
20498  * Return Code: 0   - Success
20499  *		errno return code from sd_send_scsi_cmd()
20500  *
20501  *     Context: Can sleep. Does not return until command is completed.
20502  */
20503 
20504 static int
20505 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20506 	size_t buflen,  uchar_t save_page, int path_flag)
20507 {
20508 	struct	scsi_extended_sense	sense_buf;
20509 	union scsi_cdb		cdb;
20510 	struct uscsi_cmd	ucmd_buf;
20511 	int			status;
20512 
20513 	ASSERT(un != NULL);
20514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20515 	ASSERT(bufaddr != NULL);
20516 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20517 	    (cdbsize == CDB_GROUP2));
20518 
20519 	SD_TRACE(SD_LOG_IO, un,
20520 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20521 
20522 	bzero(&cdb, sizeof (cdb));
20523 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20524 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20525 
20526 	/* Set the PF bit for many third party drives */
20527 	cdb.cdb_opaque[1] = 0x10;
20528 
20529 	/* Set the savepage(SP) bit if given */
20530 	if (save_page == SD_SAVE_PAGE) {
20531 		cdb.cdb_opaque[1] |= 0x01;
20532 	}
20533 
20534 	if (cdbsize == CDB_GROUP0) {
20535 		cdb.scc_cmd = SCMD_MODE_SELECT;
20536 		FORMG0COUNT(&cdb, buflen);
20537 	} else {
20538 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20539 		FORMG1COUNT(&cdb, buflen);
20540 	}
20541 
20542 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20543 
20544 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20545 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20546 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20547 	ucmd_buf.uscsi_buflen	= buflen;
20548 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20549 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20550 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20551 	ucmd_buf.uscsi_timeout	= 60;
20552 
20553 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20554 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20555 
20556 	switch (status) {
20557 	case 0:
20558 		break;	/* Success! */
20559 	case EIO:
20560 		switch (ucmd_buf.uscsi_status) {
20561 		case STATUS_RESERVATION_CONFLICT:
20562 			status = EACCES;
20563 			break;
20564 		default:
20565 			break;
20566 		}
20567 		break;
20568 	default:
20569 		break;
20570 	}
20571 
20572 	if (status == 0) {
20573 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20574 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20575 	}
20576 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20577 
20578 	return (status);
20579 }
20580 
20581 
20582 /*
20583  *    Function: sd_send_scsi_RDWR
20584  *
20585  * Description: Issue a scsi READ or WRITE command with the given parameters.
20586  *
20587  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20588  *		cmd:	 SCMD_READ or SCMD_WRITE
20589  *		bufaddr: Address of caller's buffer to receive the RDWR data
20590  *		buflen:  Length of caller's buffer receive the RDWR data.
20591  *		start_block: Block number for the start of the RDWR operation.
20592  *			 (Assumes target-native block size.)
20593  *		residp:  Pointer to variable to receive the redisual of the
20594  *			 RDWR operation (may be NULL of no residual requested).
20595  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20596  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20597  *			to use the USCSI "direct" chain and bypass the normal
20598  *			command waitq.
20599  *
20600  * Return Code: 0   - Success
20601  *		errno return code from sd_send_scsi_cmd()
20602  *
20603  *     Context: Can sleep. Does not return until command is completed.
20604  */
20605 
20606 static int
20607 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20608 	size_t buflen, daddr_t start_block, int path_flag)
20609 {
20610 	struct	scsi_extended_sense	sense_buf;
20611 	union scsi_cdb		cdb;
20612 	struct uscsi_cmd	ucmd_buf;
20613 	uint32_t		block_count;
20614 	int			status;
20615 	int			cdbsize;
20616 	uchar_t			flag;
20617 
20618 	ASSERT(un != NULL);
20619 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20620 	ASSERT(bufaddr != NULL);
20621 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20622 
20623 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20624 
20625 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20626 		return (EINVAL);
20627 	}
20628 
20629 	mutex_enter(SD_MUTEX(un));
20630 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20631 	mutex_exit(SD_MUTEX(un));
20632 
20633 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20634 
20635 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20636 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20637 	    bufaddr, buflen, start_block, block_count);
20638 
20639 	bzero(&cdb, sizeof (cdb));
20640 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20641 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20642 
20643 	/* Compute CDB size to use */
20644 	if (start_block > 0xffffffff)
20645 		cdbsize = CDB_GROUP4;
20646 	else if ((start_block & 0xFFE00000) ||
20647 	    (un->un_f_cfg_is_atapi == TRUE))
20648 		cdbsize = CDB_GROUP1;
20649 	else
20650 		cdbsize = CDB_GROUP0;
20651 
20652 	switch (cdbsize) {
20653 	case CDB_GROUP0:	/* 6-byte CDBs */
20654 		cdb.scc_cmd = cmd;
20655 		FORMG0ADDR(&cdb, start_block);
20656 		FORMG0COUNT(&cdb, block_count);
20657 		break;
20658 	case CDB_GROUP1:	/* 10-byte CDBs */
20659 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20660 		FORMG1ADDR(&cdb, start_block);
20661 		FORMG1COUNT(&cdb, block_count);
20662 		break;
20663 	case CDB_GROUP4:	/* 16-byte CDBs */
20664 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20665 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20666 		FORMG4COUNT(&cdb, block_count);
20667 		break;
20668 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20669 	default:
20670 		/* All others reserved */
20671 		return (EINVAL);
20672 	}
20673 
20674 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20675 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20676 
20677 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20678 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20679 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20680 	ucmd_buf.uscsi_buflen	= buflen;
20681 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20682 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20683 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20684 	ucmd_buf.uscsi_timeout	= 60;
20685 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20686 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20687 	switch (status) {
20688 	case 0:
20689 		break;	/* Success! */
20690 	case EIO:
20691 		switch (ucmd_buf.uscsi_status) {
20692 		case STATUS_RESERVATION_CONFLICT:
20693 			status = EACCES;
20694 			break;
20695 		default:
20696 			break;
20697 		}
20698 		break;
20699 	default:
20700 		break;
20701 	}
20702 
20703 	if (status == 0) {
20704 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20705 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20706 	}
20707 
20708 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20709 
20710 	return (status);
20711 }
20712 
20713 
20714 /*
20715  *    Function: sd_send_scsi_LOG_SENSE
20716  *
20717  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20718  *
20719  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20720  *
20721  * Return Code: 0   - Success
20722  *		errno return code from sd_send_scsi_cmd()
20723  *
20724  *     Context: Can sleep. Does not return until command is completed.
20725  */
20726 
20727 static int
20728 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20729 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20730 	int path_flag)
20731 
20732 {
20733 	struct	scsi_extended_sense	sense_buf;
20734 	union scsi_cdb		cdb;
20735 	struct uscsi_cmd	ucmd_buf;
20736 	int			status;
20737 
20738 	ASSERT(un != NULL);
20739 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20740 
20741 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20742 
20743 	bzero(&cdb, sizeof (cdb));
20744 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20745 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20746 
20747 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20748 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20749 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20750 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20751 	FORMG1COUNT(&cdb, buflen);
20752 
20753 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20754 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20755 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20756 	ucmd_buf.uscsi_buflen	= buflen;
20757 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20758 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20759 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20760 	ucmd_buf.uscsi_timeout	= 60;
20761 
20762 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20763 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20764 
20765 	switch (status) {
20766 	case 0:
20767 		break;
20768 	case EIO:
20769 		switch (ucmd_buf.uscsi_status) {
20770 		case STATUS_RESERVATION_CONFLICT:
20771 			status = EACCES;
20772 			break;
20773 		case STATUS_CHECK:
20774 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20775 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20776 			    (sense_buf.es_add_code == 0x24)) {
20777 				/*
20778 				 * ASC 0x24: INVALID FIELD IN CDB
20779 				 */
20780 				switch (page_code) {
20781 				case START_STOP_CYCLE_PAGE:
20782 					/*
20783 					 * The start stop cycle counter is
20784 					 * implemented as page 0x31 in earlier
20785 					 * generation disks. In new generation
20786 					 * disks the start stop cycle counter is
20787 					 * implemented as page 0xE. To properly
20788 					 * handle this case if an attempt for
20789 					 * log page 0xE is made and fails we
20790 					 * will try again using page 0x31.
20791 					 *
20792 					 * Network storage BU committed to
20793 					 * maintain the page 0x31 for this
20794 					 * purpose and will not have any other
20795 					 * page implemented with page code 0x31
20796 					 * until all disks transition to the
20797 					 * standard page.
20798 					 */
20799 					mutex_enter(SD_MUTEX(un));
20800 					un->un_start_stop_cycle_page =
20801 					    START_STOP_CYCLE_VU_PAGE;
20802 					cdb.cdb_opaque[2] =
20803 					    (char)(page_control << 6) |
20804 					    un->un_start_stop_cycle_page;
20805 					mutex_exit(SD_MUTEX(un));
20806 					status = sd_send_scsi_cmd(
20807 					    SD_GET_DEV(un), &ucmd_buf,
20808 					    UIO_SYSSPACE, UIO_SYSSPACE,
20809 					    UIO_SYSSPACE, path_flag);
20810 
20811 					break;
20812 				case TEMPERATURE_PAGE:
20813 					status = ENOTTY;
20814 					break;
20815 				default:
20816 					break;
20817 				}
20818 			}
20819 			break;
20820 		default:
20821 			break;
20822 		}
20823 		break;
20824 	default:
20825 		break;
20826 	}
20827 
20828 	if (status == 0) {
20829 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20830 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20831 	}
20832 
20833 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20834 
20835 	return (status);
20836 }
20837 
20838 
20839 /*
20840  *    Function: sdioctl
20841  *
20842  * Description: Driver's ioctl(9e) entry point function.
20843  *
20844  *   Arguments: dev     - device number
20845  *		cmd     - ioctl operation to be performed
20846  *		arg     - user argument, contains data to be set or reference
20847  *			  parameter for get
20848  *		flag    - bit flag, indicating open settings, 32/64 bit type
20849  *		cred_p  - user credential pointer
20850  *		rval_p  - calling process return value (OPT)
20851  *
20852  * Return Code: EINVAL
20853  *		ENOTTY
20854  *		ENXIO
20855  *		EIO
20856  *		EFAULT
20857  *		ENOTSUP
20858  *		EPERM
20859  *
20860  *     Context: Called from the device switch at normal priority.
20861  */
20862 
20863 static int
20864 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20865 {
20866 	struct sd_lun	*un = NULL;
20867 	int		geom_validated = FALSE;
20868 	int		err = 0;
20869 	int		i = 0;
20870 	cred_t		*cr;
20871 
20872 	/*
20873 	 * All device accesses go thru sdstrategy where we check on suspend
20874 	 * status
20875 	 */
20876 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20877 		return (ENXIO);
20878 	}
20879 
20880 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20881 
20882 	/*
20883 	 * Moved this wait from sd_uscsi_strategy to here for
20884 	 * reasons of deadlock prevention. Internal driver commands,
20885 	 * specifically those to change a devices power level, result
20886 	 * in a call to sd_uscsi_strategy.
20887 	 */
20888 	mutex_enter(SD_MUTEX(un));
20889 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20890 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20891 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20892 	}
20893 	/*
20894 	 * Twiddling the counter here protects commands from now
20895 	 * through to the top of sd_uscsi_strategy. Without the
20896 	 * counter inc. a power down, for example, could get in
20897 	 * after the above check for state is made and before
20898 	 * execution gets to the top of sd_uscsi_strategy.
20899 	 * That would cause problems.
20900 	 */
20901 	un->un_ncmds_in_driver++;
20902 
20903 	if ((un->un_f_geometry_is_valid == FALSE) &&
20904 	    (flag & (FNDELAY | FNONBLOCK))) {
20905 		switch (cmd) {
20906 		case CDROMPAUSE:
20907 		case CDROMRESUME:
20908 		case CDROMPLAYMSF:
20909 		case CDROMPLAYTRKIND:
20910 		case CDROMREADTOCHDR:
20911 		case CDROMREADTOCENTRY:
20912 		case CDROMSTOP:
20913 		case CDROMSTART:
20914 		case CDROMVOLCTRL:
20915 		case CDROMSUBCHNL:
20916 		case CDROMREADMODE2:
20917 		case CDROMREADMODE1:
20918 		case CDROMREADOFFSET:
20919 		case CDROMSBLKMODE:
20920 		case CDROMGBLKMODE:
20921 		case CDROMGDRVSPEED:
20922 		case CDROMSDRVSPEED:
20923 		case CDROMCDDA:
20924 		case CDROMCDXA:
20925 		case CDROMSUBCODE:
20926 			if (!ISCD(un)) {
20927 				un->un_ncmds_in_driver--;
20928 				ASSERT(un->un_ncmds_in_driver >= 0);
20929 				mutex_exit(SD_MUTEX(un));
20930 				return (ENOTTY);
20931 			}
20932 			break;
20933 		case FDEJECT:
20934 		case DKIOCEJECT:
20935 		case CDROMEJECT:
20936 			if (!un->un_f_eject_media_supported) {
20937 				un->un_ncmds_in_driver--;
20938 				ASSERT(un->un_ncmds_in_driver >= 0);
20939 				mutex_exit(SD_MUTEX(un));
20940 				return (ENOTTY);
20941 			}
20942 			break;
20943 		case DKIOCSVTOC:
20944 		case DKIOCSETEFI:
20945 		case DKIOCSMBOOT:
20946 		case DKIOCFLUSHWRITECACHE:
20947 			mutex_exit(SD_MUTEX(un));
20948 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20949 			if (err != 0) {
20950 				mutex_enter(SD_MUTEX(un));
20951 				un->un_ncmds_in_driver--;
20952 				ASSERT(un->un_ncmds_in_driver >= 0);
20953 				mutex_exit(SD_MUTEX(un));
20954 				return (EIO);
20955 			}
20956 			mutex_enter(SD_MUTEX(un));
20957 			/* FALLTHROUGH */
20958 		case DKIOCREMOVABLE:
20959 		case DKIOCHOTPLUGGABLE:
20960 		case DKIOCINFO:
20961 		case DKIOCGMEDIAINFO:
20962 		case MHIOCENFAILFAST:
20963 		case MHIOCSTATUS:
20964 		case MHIOCTKOWN:
20965 		case MHIOCRELEASE:
20966 		case MHIOCGRP_INKEYS:
20967 		case MHIOCGRP_INRESV:
20968 		case MHIOCGRP_REGISTER:
20969 		case MHIOCGRP_RESERVE:
20970 		case MHIOCGRP_PREEMPTANDABORT:
20971 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20972 		case CDROMCLOSETRAY:
20973 		case USCSICMD:
20974 			goto skip_ready_valid;
20975 		default:
20976 			break;
20977 		}
20978 
20979 		mutex_exit(SD_MUTEX(un));
20980 		err = sd_ready_and_valid(un);
20981 		mutex_enter(SD_MUTEX(un));
20982 		if (err == SD_READY_NOT_VALID) {
20983 			switch (cmd) {
20984 			case DKIOCGAPART:
20985 			case DKIOCGGEOM:
20986 			case DKIOCSGEOM:
20987 			case DKIOCGVTOC:
20988 			case DKIOCSVTOC:
20989 			case DKIOCSAPART:
20990 			case DKIOCG_PHYGEOM:
20991 			case DKIOCG_VIRTGEOM:
20992 				err = ENOTSUP;
20993 				un->un_ncmds_in_driver--;
20994 				ASSERT(un->un_ncmds_in_driver >= 0);
20995 				mutex_exit(SD_MUTEX(un));
20996 				return (err);
20997 			}
20998 		}
20999 		if (err != SD_READY_VALID) {
21000 			switch (cmd) {
21001 			case DKIOCSTATE:
21002 			case CDROMGDRVSPEED:
21003 			case CDROMSDRVSPEED:
21004 			case FDEJECT:	/* for eject command */
21005 			case DKIOCEJECT:
21006 			case CDROMEJECT:
21007 			case DKIOCGETEFI:
21008 			case DKIOCSGEOM:
21009 			case DKIOCREMOVABLE:
21010 			case DKIOCHOTPLUGGABLE:
21011 			case DKIOCSAPART:
21012 			case DKIOCSETEFI:
21013 				break;
21014 			default:
21015 				if (un->un_f_has_removable_media) {
21016 					err = ENXIO;
21017 				} else {
21018 					/* Do not map EACCES to EIO */
21019 					if (err != EACCES)
21020 						err = EIO;
21021 				}
21022 				un->un_ncmds_in_driver--;
21023 				ASSERT(un->un_ncmds_in_driver >= 0);
21024 				mutex_exit(SD_MUTEX(un));
21025 				return (err);
21026 			}
21027 		}
21028 		geom_validated = TRUE;
21029 	}
21030 	if ((un->un_f_geometry_is_valid == TRUE) &&
21031 	    (un->un_solaris_size > 0)) {
21032 		/*
21033 		 * the "geometry_is_valid" flag could be true if we
21034 		 * have an fdisk table but no Solaris partition
21035 		 */
21036 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21037 			/* it is EFI, so return ENOTSUP for these */
21038 			switch (cmd) {
21039 			case DKIOCGAPART:
21040 			case DKIOCGGEOM:
21041 			case DKIOCGVTOC:
21042 			case DKIOCSVTOC:
21043 			case DKIOCSAPART:
21044 				err = ENOTSUP;
21045 				un->un_ncmds_in_driver--;
21046 				ASSERT(un->un_ncmds_in_driver >= 0);
21047 				mutex_exit(SD_MUTEX(un));
21048 				return (err);
21049 			}
21050 		}
21051 	}
21052 
21053 skip_ready_valid:
21054 	mutex_exit(SD_MUTEX(un));
21055 
21056 	switch (cmd) {
21057 	case DKIOCINFO:
21058 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21059 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21060 		break;
21061 
21062 	case DKIOCGMEDIAINFO:
21063 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21064 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21065 		break;
21066 
21067 	case DKIOCGGEOM:
21068 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21069 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21070 		    geom_validated);
21071 		break;
21072 
21073 	case DKIOCSGEOM:
21074 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21075 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21076 		break;
21077 
21078 	case DKIOCGAPART:
21079 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21080 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21081 		    geom_validated);
21082 		break;
21083 
21084 	case DKIOCSAPART:
21085 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21086 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21087 		break;
21088 
21089 	case DKIOCGVTOC:
21090 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21091 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21092 		    geom_validated);
21093 		break;
21094 
21095 	case DKIOCGETEFI:
21096 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21097 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21098 		break;
21099 
21100 	case DKIOCPARTITION:
21101 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21102 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21103 		break;
21104 
21105 	case DKIOCSVTOC:
21106 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21107 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21108 		break;
21109 
21110 	case DKIOCSETEFI:
21111 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21112 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21113 		break;
21114 
21115 	case DKIOCGMBOOT:
21116 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21117 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21118 		break;
21119 
21120 	case DKIOCSMBOOT:
21121 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21122 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21123 		break;
21124 
21125 	case DKIOCLOCK:
21126 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21127 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21128 		    SD_PATH_STANDARD);
21129 		break;
21130 
21131 	case DKIOCUNLOCK:
21132 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21133 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21134 		    SD_PATH_STANDARD);
21135 		break;
21136 
21137 	case DKIOCSTATE: {
21138 		enum dkio_state		state;
21139 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21140 
21141 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21142 			err = EFAULT;
21143 		} else {
21144 			err = sd_check_media(dev, state);
21145 			if (err == 0) {
21146 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21147 				    sizeof (int), flag) != 0)
21148 					err = EFAULT;
21149 			}
21150 		}
21151 		break;
21152 	}
21153 
21154 	case DKIOCREMOVABLE:
21155 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21156 		/*
21157 		 * At present, vold only does automount for removable-media
21158 		 * devices, in order not to break current applications, we
21159 		 * still let hopluggable devices pretend to be removable media
21160 		 * devices for vold. In the near future, once vold is EOL'ed,
21161 		 * we should remove this workaround.
21162 		 */
21163 		if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) {
21164 			i = 1;
21165 		} else {
21166 			i = 0;
21167 		}
21168 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21169 			err = EFAULT;
21170 		} else {
21171 			err = 0;
21172 		}
21173 		break;
21174 
21175 	case DKIOCHOTPLUGGABLE:
21176 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21177 		if (un->un_f_is_hotpluggable) {
21178 			i = 1;
21179 		} else {
21180 			i = 0;
21181 		}
21182 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21183 			err = EFAULT;
21184 		} else {
21185 			err = 0;
21186 		}
21187 		break;
21188 
21189 	case DKIOCGTEMPERATURE:
21190 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21191 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21192 		break;
21193 
21194 	case MHIOCENFAILFAST:
21195 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21196 		if ((err = drv_priv(cred_p)) == 0) {
21197 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21198 		}
21199 		break;
21200 
21201 	case MHIOCTKOWN:
21202 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21203 		if ((err = drv_priv(cred_p)) == 0) {
21204 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21205 		}
21206 		break;
21207 
21208 	case MHIOCRELEASE:
21209 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21210 		if ((err = drv_priv(cred_p)) == 0) {
21211 			err = sd_mhdioc_release(dev);
21212 		}
21213 		break;
21214 
21215 	case MHIOCSTATUS:
21216 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21217 		if ((err = drv_priv(cred_p)) == 0) {
21218 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21219 			case 0:
21220 				err = 0;
21221 				break;
21222 			case EACCES:
21223 				*rval_p = 1;
21224 				err = 0;
21225 				break;
21226 			default:
21227 				err = EIO;
21228 				break;
21229 			}
21230 		}
21231 		break;
21232 
21233 	case MHIOCQRESERVE:
21234 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21235 		if ((err = drv_priv(cred_p)) == 0) {
21236 			err = sd_reserve_release(dev, SD_RESERVE);
21237 		}
21238 		break;
21239 
21240 	case MHIOCREREGISTERDEVID:
21241 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21242 		if (drv_priv(cred_p) == EPERM) {
21243 			err = EPERM;
21244 		} else if (!un->un_f_devid_supported) {
21245 			err = ENOTTY;
21246 		} else {
21247 			err = sd_mhdioc_register_devid(dev);
21248 		}
21249 		break;
21250 
21251 	case MHIOCGRP_INKEYS:
21252 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21253 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21254 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21255 				err = ENOTSUP;
21256 			} else {
21257 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21258 				    flag);
21259 			}
21260 		}
21261 		break;
21262 
21263 	case MHIOCGRP_INRESV:
21264 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21265 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21266 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21267 				err = ENOTSUP;
21268 			} else {
21269 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21270 			}
21271 		}
21272 		break;
21273 
21274 	case MHIOCGRP_REGISTER:
21275 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21276 		if ((err = drv_priv(cred_p)) != EPERM) {
21277 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21278 				err = ENOTSUP;
21279 			} else if (arg != NULL) {
21280 				mhioc_register_t reg;
21281 				if (ddi_copyin((void *)arg, &reg,
21282 				    sizeof (mhioc_register_t), flag) != 0) {
21283 					err = EFAULT;
21284 				} else {
21285 					err =
21286 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21287 					    un, SD_SCSI3_REGISTER,
21288 					    (uchar_t *)&reg);
21289 				}
21290 			}
21291 		}
21292 		break;
21293 
21294 	case MHIOCGRP_RESERVE:
21295 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21296 		if ((err = drv_priv(cred_p)) != EPERM) {
21297 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21298 				err = ENOTSUP;
21299 			} else if (arg != NULL) {
21300 				mhioc_resv_desc_t resv_desc;
21301 				if (ddi_copyin((void *)arg, &resv_desc,
21302 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21303 					err = EFAULT;
21304 				} else {
21305 					err =
21306 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21307 					    un, SD_SCSI3_RESERVE,
21308 					    (uchar_t *)&resv_desc);
21309 				}
21310 			}
21311 		}
21312 		break;
21313 
21314 	case MHIOCGRP_PREEMPTANDABORT:
21315 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21316 		if ((err = drv_priv(cred_p)) != EPERM) {
21317 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21318 				err = ENOTSUP;
21319 			} else if (arg != NULL) {
21320 				mhioc_preemptandabort_t preempt_abort;
21321 				if (ddi_copyin((void *)arg, &preempt_abort,
21322 				    sizeof (mhioc_preemptandabort_t),
21323 				    flag) != 0) {
21324 					err = EFAULT;
21325 				} else {
21326 					err =
21327 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21328 					    un, SD_SCSI3_PREEMPTANDABORT,
21329 					    (uchar_t *)&preempt_abort);
21330 				}
21331 			}
21332 		}
21333 		break;
21334 
21335 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21336 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21337 		if ((err = drv_priv(cred_p)) != EPERM) {
21338 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21339 				err = ENOTSUP;
21340 			} else if (arg != NULL) {
21341 				mhioc_registerandignorekey_t r_and_i;
21342 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21343 				    sizeof (mhioc_registerandignorekey_t),
21344 				    flag) != 0) {
21345 					err = EFAULT;
21346 				} else {
21347 					err =
21348 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21349 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21350 					    (uchar_t *)&r_and_i);
21351 				}
21352 			}
21353 		}
21354 		break;
21355 
21356 	case USCSICMD:
21357 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21358 		cr = ddi_get_cred();
21359 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21360 			err = EPERM;
21361 		} else {
21362 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21363 		}
21364 		break;
21365 
21366 	case CDROMPAUSE:
21367 	case CDROMRESUME:
21368 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21369 		if (!ISCD(un)) {
21370 			err = ENOTTY;
21371 		} else {
21372 			err = sr_pause_resume(dev, cmd);
21373 		}
21374 		break;
21375 
21376 	case CDROMPLAYMSF:
21377 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21378 		if (!ISCD(un)) {
21379 			err = ENOTTY;
21380 		} else {
21381 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21382 		}
21383 		break;
21384 
21385 	case CDROMPLAYTRKIND:
21386 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21387 #if defined(__i386) || defined(__amd64)
21388 		/*
21389 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21390 		 */
21391 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21392 #else
21393 		if (!ISCD(un)) {
21394 #endif
21395 			err = ENOTTY;
21396 		} else {
21397 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21398 		}
21399 		break;
21400 
21401 	case CDROMREADTOCHDR:
21402 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21403 		if (!ISCD(un)) {
21404 			err = ENOTTY;
21405 		} else {
21406 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21407 		}
21408 		break;
21409 
21410 	case CDROMREADTOCENTRY:
21411 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21412 		if (!ISCD(un)) {
21413 			err = ENOTTY;
21414 		} else {
21415 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21416 		}
21417 		break;
21418 
21419 	case CDROMSTOP:
21420 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21421 		if (!ISCD(un)) {
21422 			err = ENOTTY;
21423 		} else {
21424 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21425 			    SD_PATH_STANDARD);
21426 		}
21427 		break;
21428 
21429 	case CDROMSTART:
21430 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21431 		if (!ISCD(un)) {
21432 			err = ENOTTY;
21433 		} else {
21434 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21435 			    SD_PATH_STANDARD);
21436 		}
21437 		break;
21438 
21439 	case CDROMCLOSETRAY:
21440 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21441 		if (!ISCD(un)) {
21442 			err = ENOTTY;
21443 		} else {
21444 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21445 			    SD_PATH_STANDARD);
21446 		}
21447 		break;
21448 
21449 	case FDEJECT:	/* for eject command */
21450 	case DKIOCEJECT:
21451 	case CDROMEJECT:
21452 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21453 		if (!un->un_f_eject_media_supported) {
21454 			err = ENOTTY;
21455 		} else {
21456 			err = sr_eject(dev);
21457 		}
21458 		break;
21459 
21460 	case CDROMVOLCTRL:
21461 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21462 		if (!ISCD(un)) {
21463 			err = ENOTTY;
21464 		} else {
21465 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21466 		}
21467 		break;
21468 
21469 	case CDROMSUBCHNL:
21470 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21471 		if (!ISCD(un)) {
21472 			err = ENOTTY;
21473 		} else {
21474 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21475 		}
21476 		break;
21477 
21478 	case CDROMREADMODE2:
21479 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21480 		if (!ISCD(un)) {
21481 			err = ENOTTY;
21482 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21483 			/*
21484 			 * If the drive supports READ CD, use that instead of
21485 			 * switching the LBA size via a MODE SELECT
21486 			 * Block Descriptor
21487 			 */
21488 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21489 		} else {
21490 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21491 		}
21492 		break;
21493 
21494 	case CDROMREADMODE1:
21495 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21496 		if (!ISCD(un)) {
21497 			err = ENOTTY;
21498 		} else {
21499 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21500 		}
21501 		break;
21502 
21503 	case CDROMREADOFFSET:
21504 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21505 		if (!ISCD(un)) {
21506 			err = ENOTTY;
21507 		} else {
21508 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21509 			    flag);
21510 		}
21511 		break;
21512 
21513 	case CDROMSBLKMODE:
21514 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21515 		/*
21516 		 * There is no means of changing block size in case of atapi
21517 		 * drives, thus return ENOTTY if drive type is atapi
21518 		 */
21519 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21520 			err = ENOTTY;
21521 		} else if (un->un_f_mmc_cap == TRUE) {
21522 
21523 			/*
21524 			 * MMC Devices do not support changing the
21525 			 * logical block size
21526 			 *
21527 			 * Note: EINVAL is being returned instead of ENOTTY to
21528 			 * maintain consistancy with the original mmc
21529 			 * driver update.
21530 			 */
21531 			err = EINVAL;
21532 		} else {
21533 			mutex_enter(SD_MUTEX(un));
21534 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21535 			    (un->un_ncmds_in_transport > 0)) {
21536 				mutex_exit(SD_MUTEX(un));
21537 				err = EINVAL;
21538 			} else {
21539 				mutex_exit(SD_MUTEX(un));
21540 				err = sr_change_blkmode(dev, cmd, arg, flag);
21541 			}
21542 		}
21543 		break;
21544 
21545 	case CDROMGBLKMODE:
21546 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21547 		if (!ISCD(un)) {
21548 			err = ENOTTY;
21549 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21550 		    (un->un_f_blockcount_is_valid != FALSE)) {
21551 			/*
21552 			 * Drive is an ATAPI drive so return target block
21553 			 * size for ATAPI drives since we cannot change the
21554 			 * blocksize on ATAPI drives. Used primarily to detect
21555 			 * if an ATAPI cdrom is present.
21556 			 */
21557 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21558 			    sizeof (int), flag) != 0) {
21559 				err = EFAULT;
21560 			} else {
21561 				err = 0;
21562 			}
21563 
21564 		} else {
21565 			/*
21566 			 * Drive supports changing block sizes via a Mode
21567 			 * Select.
21568 			 */
21569 			err = sr_change_blkmode(dev, cmd, arg, flag);
21570 		}
21571 		break;
21572 
21573 	case CDROMGDRVSPEED:
21574 	case CDROMSDRVSPEED:
21575 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21576 		if (!ISCD(un)) {
21577 			err = ENOTTY;
21578 		} else if (un->un_f_mmc_cap == TRUE) {
21579 			/*
21580 			 * Note: In the future the driver implementation
21581 			 * for getting and
21582 			 * setting cd speed should entail:
21583 			 * 1) If non-mmc try the Toshiba mode page
21584 			 *    (sr_change_speed)
21585 			 * 2) If mmc but no support for Real Time Streaming try
21586 			 *    the SET CD SPEED (0xBB) command
21587 			 *   (sr_atapi_change_speed)
21588 			 * 3) If mmc and support for Real Time Streaming
21589 			 *    try the GET PERFORMANCE and SET STREAMING
21590 			 *    commands (not yet implemented, 4380808)
21591 			 */
21592 			/*
21593 			 * As per recent MMC spec, CD-ROM speed is variable
21594 			 * and changes with LBA. Since there is no such
21595 			 * things as drive speed now, fail this ioctl.
21596 			 *
21597 			 * Note: EINVAL is returned for consistancy of original
21598 			 * implementation which included support for getting
21599 			 * the drive speed of mmc devices but not setting
21600 			 * the drive speed. Thus EINVAL would be returned
21601 			 * if a set request was made for an mmc device.
21602 			 * We no longer support get or set speed for
21603 			 * mmc but need to remain consistant with regard
21604 			 * to the error code returned.
21605 			 */
21606 			err = EINVAL;
21607 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21608 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21609 		} else {
21610 			err = sr_change_speed(dev, cmd, arg, flag);
21611 		}
21612 		break;
21613 
21614 	case CDROMCDDA:
21615 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21616 		if (!ISCD(un)) {
21617 			err = ENOTTY;
21618 		} else {
21619 			err = sr_read_cdda(dev, (void *)arg, flag);
21620 		}
21621 		break;
21622 
21623 	case CDROMCDXA:
21624 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21625 		if (!ISCD(un)) {
21626 			err = ENOTTY;
21627 		} else {
21628 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21629 		}
21630 		break;
21631 
21632 	case CDROMSUBCODE:
21633 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21634 		if (!ISCD(un)) {
21635 			err = ENOTTY;
21636 		} else {
21637 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21638 		}
21639 		break;
21640 
21641 	case DKIOCPARTINFO: {
21642 		/*
21643 		 * Return parameters describing the selected disk slice.
21644 		 * Note: this ioctl is for the intel platform only
21645 		 */
21646 #if defined(__i386) || defined(__amd64)
21647 		int part;
21648 
21649 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21650 		part = SDPART(dev);
21651 
21652 		/* don't check un_solaris_size for pN */
21653 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21654 			err = EIO;
21655 		} else {
21656 			struct part_info p;
21657 
21658 			p.p_start = (daddr_t)un->un_offset[part];
21659 			p.p_length = (int)un->un_map[part].dkl_nblk;
21660 #ifdef _MULTI_DATAMODEL
21661 			switch (ddi_model_convert_from(flag & FMODELS)) {
21662 			case DDI_MODEL_ILP32:
21663 			{
21664 				struct part_info32 p32;
21665 
21666 				p32.p_start = (daddr32_t)p.p_start;
21667 				p32.p_length = p.p_length;
21668 				if (ddi_copyout(&p32, (void *)arg,
21669 				    sizeof (p32), flag))
21670 					err = EFAULT;
21671 				break;
21672 			}
21673 
21674 			case DDI_MODEL_NONE:
21675 			{
21676 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21677 				    flag))
21678 					err = EFAULT;
21679 				break;
21680 			}
21681 			}
21682 #else /* ! _MULTI_DATAMODEL */
21683 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21684 				err = EFAULT;
21685 #endif /* _MULTI_DATAMODEL */
21686 		}
21687 #else
21688 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21689 		err = ENOTTY;
21690 #endif
21691 		break;
21692 	}
21693 
21694 	case DKIOCG_PHYGEOM: {
21695 		/* Return the driver's notion of the media physical geometry */
21696 #if defined(__i386) || defined(__amd64)
21697 		struct dk_geom	disk_geom;
21698 		struct dk_geom	*dkgp = &disk_geom;
21699 
21700 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21701 		mutex_enter(SD_MUTEX(un));
21702 
21703 		if (un->un_g.dkg_nhead != 0 &&
21704 		    un->un_g.dkg_nsect != 0) {
21705 			/*
21706 			 * We succeeded in getting a geometry, but
21707 			 * right now it is being reported as just the
21708 			 * Solaris fdisk partition, just like for
21709 			 * DKIOCGGEOM. We need to change that to be
21710 			 * correct for the entire disk now.
21711 			 */
21712 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21713 			dkgp->dkg_acyl = 0;
21714 			dkgp->dkg_ncyl = un->un_blockcount /
21715 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21716 		} else {
21717 			bzero(dkgp, sizeof (struct dk_geom));
21718 			/*
21719 			 * This disk does not have a Solaris VTOC
21720 			 * so we must present a physical geometry
21721 			 * that will remain consistent regardless
21722 			 * of how the disk is used. This will ensure
21723 			 * that the geometry does not change regardless
21724 			 * of the fdisk partition type (ie. EFI, FAT32,
21725 			 * Solaris, etc).
21726 			 */
21727 			if (ISCD(un)) {
21728 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21729 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21730 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21731 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21732 			} else {
21733 				/*
21734 				 * Invalid un_blockcount can generate invalid
21735 				 * dk_geom and may result in division by zero
21736 				 * system failure. Should make sure blockcount
21737 				 * is valid before using it here.
21738 				 */
21739 				if (un->un_f_blockcount_is_valid == FALSE) {
21740 					mutex_exit(SD_MUTEX(un));
21741 					err = EIO;
21742 
21743 					break;
21744 				}
21745 				sd_convert_geometry(un->un_blockcount, dkgp);
21746 				dkgp->dkg_acyl = 0;
21747 				dkgp->dkg_ncyl = un->un_blockcount /
21748 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21749 			}
21750 		}
21751 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21752 
21753 		if (ddi_copyout(dkgp, (void *)arg,
21754 		    sizeof (struct dk_geom), flag)) {
21755 			mutex_exit(SD_MUTEX(un));
21756 			err = EFAULT;
21757 		} else {
21758 			mutex_exit(SD_MUTEX(un));
21759 			err = 0;
21760 		}
21761 #else
21762 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21763 		err = ENOTTY;
21764 #endif
21765 		break;
21766 	}
21767 
21768 	case DKIOCG_VIRTGEOM: {
21769 		/* Return the driver's notion of the media's logical geometry */
21770 #if defined(__i386) || defined(__amd64)
21771 		struct dk_geom	disk_geom;
21772 		struct dk_geom	*dkgp = &disk_geom;
21773 
21774 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21775 		mutex_enter(SD_MUTEX(un));
21776 		/*
21777 		 * If there is no HBA geometry available, or
21778 		 * if the HBA returned us something that doesn't
21779 		 * really fit into an Int 13/function 8 geometry
21780 		 * result, just fail the ioctl.  See PSARC 1998/313.
21781 		 */
21782 		if (un->un_lgeom.g_nhead == 0 ||
21783 		    un->un_lgeom.g_nsect == 0 ||
21784 		    un->un_lgeom.g_ncyl > 1024) {
21785 			mutex_exit(SD_MUTEX(un));
21786 			err = EINVAL;
21787 		} else {
21788 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21789 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21790 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21791 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21792 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21793 
21794 			if (ddi_copyout(dkgp, (void *)arg,
21795 			    sizeof (struct dk_geom), flag)) {
21796 				mutex_exit(SD_MUTEX(un));
21797 				err = EFAULT;
21798 			} else {
21799 				mutex_exit(SD_MUTEX(un));
21800 				err = 0;
21801 			}
21802 		}
21803 #else
21804 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21805 		err = ENOTTY;
21806 #endif
21807 		break;
21808 	}
21809 #ifdef SDDEBUG
21810 /* RESET/ABORTS testing ioctls */
21811 	case DKIOCRESET: {
21812 		int	reset_level;
21813 
21814 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21815 			err = EFAULT;
21816 		} else {
21817 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21818 			    "reset_level = 0x%lx\n", reset_level);
21819 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21820 				err = 0;
21821 			} else {
21822 				err = EIO;
21823 			}
21824 		}
21825 		break;
21826 	}
21827 
21828 	case DKIOCABORT:
21829 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21830 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21831 			err = 0;
21832 		} else {
21833 			err = EIO;
21834 		}
21835 		break;
21836 #endif
21837 
21838 #ifdef SD_FAULT_INJECTION
21839 /* SDIOC FaultInjection testing ioctls */
21840 	case SDIOCSTART:
21841 	case SDIOCSTOP:
21842 	case SDIOCINSERTPKT:
21843 	case SDIOCINSERTXB:
21844 	case SDIOCINSERTUN:
21845 	case SDIOCINSERTARQ:
21846 	case SDIOCPUSH:
21847 	case SDIOCRETRIEVE:
21848 	case SDIOCRUN:
21849 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21850 		    "SDIOC detected cmd:0x%X:\n", cmd);
21851 		/* call error generator */
21852 		sd_faultinjection_ioctl(cmd, arg, un);
21853 		err = 0;
21854 		break;
21855 
21856 #endif /* SD_FAULT_INJECTION */
21857 
21858 	case DKIOCFLUSHWRITECACHE:
21859 		{
21860 			struct dk_callback *dkc = (struct dk_callback *)arg;
21861 
21862 			mutex_enter(SD_MUTEX(un));
21863 			if (!un->un_f_sync_cache_supported ||
21864 			    !un->un_f_write_cache_enabled) {
21865 				err = un->un_f_sync_cache_supported ?
21866 					0 : ENOTSUP;
21867 				mutex_exit(SD_MUTEX(un));
21868 				if ((flag & FKIOCTL) && dkc != NULL &&
21869 				    dkc->dkc_callback != NULL) {
21870 					(*dkc->dkc_callback)(dkc->dkc_cookie,
21871 					    err);
21872 					/*
21873 					 * Did callback and reported error.
21874 					 * Since we did a callback, ioctl
21875 					 * should return 0.
21876 					 */
21877 					err = 0;
21878 				}
21879 				break;
21880 			}
21881 			mutex_exit(SD_MUTEX(un));
21882 
21883 			if ((flag & FKIOCTL) && dkc != NULL &&
21884 			    dkc->dkc_callback != NULL) {
21885 				/* async SYNC CACHE request */
21886 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
21887 			} else {
21888 				/* synchronous SYNC CACHE request */
21889 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21890 			}
21891 		}
21892 		break;
21893 
21894 	case DKIOCGETWCE: {
21895 
21896 		int wce;
21897 
21898 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
21899 			break;
21900 		}
21901 
21902 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
21903 			err = EFAULT;
21904 		}
21905 		break;
21906 	}
21907 
21908 	case DKIOCSETWCE: {
21909 
21910 		int wce, sync_supported;
21911 
21912 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
21913 			err = EFAULT;
21914 			break;
21915 		}
21916 
21917 		/*
21918 		 * Synchronize multiple threads trying to enable
21919 		 * or disable the cache via the un_f_wcc_cv
21920 		 * condition variable.
21921 		 */
21922 		mutex_enter(SD_MUTEX(un));
21923 
21924 		/*
21925 		 * Don't allow the cache to be enabled if the
21926 		 * config file has it disabled.
21927 		 */
21928 		if (un->un_f_opt_disable_cache && wce) {
21929 			mutex_exit(SD_MUTEX(un));
21930 			err = EINVAL;
21931 			break;
21932 		}
21933 
21934 		/*
21935 		 * Wait for write cache change in progress
21936 		 * bit to be clear before proceeding.
21937 		 */
21938 		while (un->un_f_wcc_inprog)
21939 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
21940 
21941 		un->un_f_wcc_inprog = 1;
21942 
21943 		if (un->un_f_write_cache_enabled && wce == 0) {
21944 			/*
21945 			 * Disable the write cache.  Don't clear
21946 			 * un_f_write_cache_enabled until after
21947 			 * the mode select and flush are complete.
21948 			 */
21949 			sync_supported = un->un_f_sync_cache_supported;
21950 			mutex_exit(SD_MUTEX(un));
21951 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
21952 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
21953 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21954 			}
21955 
21956 			mutex_enter(SD_MUTEX(un));
21957 			if (err == 0) {
21958 				un->un_f_write_cache_enabled = 0;
21959 			}
21960 
21961 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
21962 			/*
21963 			 * Set un_f_write_cache_enabled first, so there is
21964 			 * no window where the cache is enabled, but the
21965 			 * bit says it isn't.
21966 			 */
21967 			un->un_f_write_cache_enabled = 1;
21968 			mutex_exit(SD_MUTEX(un));
21969 
21970 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
21971 				SD_CACHE_ENABLE);
21972 
21973 			mutex_enter(SD_MUTEX(un));
21974 
21975 			if (err) {
21976 				un->un_f_write_cache_enabled = 0;
21977 			}
21978 		}
21979 
21980 		un->un_f_wcc_inprog = 0;
21981 		cv_broadcast(&un->un_wcc_cv);
21982 		mutex_exit(SD_MUTEX(un));
21983 		break;
21984 	}
21985 
21986 	default:
21987 		err = ENOTTY;
21988 		break;
21989 	}
21990 	mutex_enter(SD_MUTEX(un));
21991 	un->un_ncmds_in_driver--;
21992 	ASSERT(un->un_ncmds_in_driver >= 0);
21993 	mutex_exit(SD_MUTEX(un));
21994 
21995 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21996 	return (err);
21997 }
21998 
21999 
22000 /*
22001  *    Function: sd_uscsi_ioctl
22002  *
22003  * Description: This routine is the driver entry point for handling USCSI ioctl
22004  *		requests (USCSICMD).
22005  *
22006  *   Arguments: dev	- the device number
22007  *		arg	- user provided scsi command
22008  *		flag	- this argument is a pass through to ddi_copyxxx()
22009  *			  directly from the mode argument of ioctl().
22010  *
22011  * Return Code: code returned by sd_send_scsi_cmd
22012  *		ENXIO
22013  *		EFAULT
22014  *		EAGAIN
22015  */
22016 
22017 static int
22018 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22019 {
22020 #ifdef _MULTI_DATAMODEL
22021 	/*
22022 	 * For use when a 32 bit app makes a call into a
22023 	 * 64 bit ioctl
22024 	 */
22025 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22026 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22027 	model_t			model;
22028 #endif /* _MULTI_DATAMODEL */
22029 	struct uscsi_cmd	*scmd = NULL;
22030 	struct sd_lun		*un = NULL;
22031 	enum uio_seg		uioseg;
22032 	char			cdb[CDB_GROUP0];
22033 	int			rval = 0;
22034 
22035 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22036 		return (ENXIO);
22037 	}
22038 
22039 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22040 
22041 	scmd = (struct uscsi_cmd *)
22042 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22043 
22044 #ifdef _MULTI_DATAMODEL
22045 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22046 	case DDI_MODEL_ILP32:
22047 	{
22048 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22049 			rval = EFAULT;
22050 			goto done;
22051 		}
22052 		/*
22053 		 * Convert the ILP32 uscsi data from the
22054 		 * application to LP64 for internal use.
22055 		 */
22056 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22057 		break;
22058 	}
22059 	case DDI_MODEL_NONE:
22060 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22061 			rval = EFAULT;
22062 			goto done;
22063 		}
22064 		break;
22065 	}
22066 #else /* ! _MULTI_DATAMODEL */
22067 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22068 		rval = EFAULT;
22069 		goto done;
22070 	}
22071 #endif /* _MULTI_DATAMODEL */
22072 
22073 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22074 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22075 	if (un->un_f_format_in_progress == TRUE) {
22076 		rval = EAGAIN;
22077 		goto done;
22078 	}
22079 
22080 	/*
22081 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22082 	 * we will have a valid cdb[0] to test.
22083 	 */
22084 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22085 	    (cdb[0] == SCMD_FORMAT)) {
22086 		SD_TRACE(SD_LOG_IOCTL, un,
22087 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22088 		mutex_enter(SD_MUTEX(un));
22089 		un->un_f_format_in_progress = TRUE;
22090 		mutex_exit(SD_MUTEX(un));
22091 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22092 		    SD_PATH_STANDARD);
22093 		mutex_enter(SD_MUTEX(un));
22094 		un->un_f_format_in_progress = FALSE;
22095 		mutex_exit(SD_MUTEX(un));
22096 	} else {
22097 		SD_TRACE(SD_LOG_IOCTL, un,
22098 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22099 		/*
22100 		 * It's OK to fall into here even if the ddi_copyin()
22101 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22102 		 * does this same copyin and will return the EFAULT
22103 		 * if it fails.
22104 		 */
22105 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22106 		    SD_PATH_STANDARD);
22107 	}
22108 #ifdef _MULTI_DATAMODEL
22109 	switch (model) {
22110 	case DDI_MODEL_ILP32:
22111 		/*
22112 		 * Convert back to ILP32 before copyout to the
22113 		 * application
22114 		 */
22115 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22116 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22117 			if (rval != 0) {
22118 				rval = EFAULT;
22119 			}
22120 		}
22121 		break;
22122 	case DDI_MODEL_NONE:
22123 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22124 			if (rval != 0) {
22125 				rval = EFAULT;
22126 			}
22127 		}
22128 		break;
22129 	}
22130 #else /* ! _MULTI_DATAMODE */
22131 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22132 		if (rval != 0) {
22133 			rval = EFAULT;
22134 		}
22135 	}
22136 #endif /* _MULTI_DATAMODE */
22137 done:
22138 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22139 
22140 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22141 
22142 	return (rval);
22143 }
22144 
22145 
22146 /*
22147  *    Function: sd_dkio_ctrl_info
22148  *
22149  * Description: This routine is the driver entry point for handling controller
22150  *		information ioctl requests (DKIOCINFO).
22151  *
22152  *   Arguments: dev  - the device number
22153  *		arg  - pointer to user provided dk_cinfo structure
22154  *		       specifying the controller type and attributes.
22155  *		flag - this argument is a pass through to ddi_copyxxx()
22156  *		       directly from the mode argument of ioctl().
22157  *
22158  * Return Code: 0
22159  *		EFAULT
22160  *		ENXIO
22161  */
22162 
22163 static int
22164 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22165 {
22166 	struct sd_lun	*un = NULL;
22167 	struct dk_cinfo	*info;
22168 	dev_info_t	*pdip;
22169 	int		lun, tgt;
22170 
22171 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22172 		return (ENXIO);
22173 	}
22174 
22175 	info = (struct dk_cinfo *)
22176 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22177 
22178 	switch (un->un_ctype) {
22179 	case CTYPE_CDROM:
22180 		info->dki_ctype = DKC_CDROM;
22181 		break;
22182 	default:
22183 		info->dki_ctype = DKC_SCSI_CCS;
22184 		break;
22185 	}
22186 	pdip = ddi_get_parent(SD_DEVINFO(un));
22187 	info->dki_cnum = ddi_get_instance(pdip);
22188 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22189 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22190 	} else {
22191 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22192 		    DK_DEVLEN - 1);
22193 	}
22194 
22195 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22196 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22197 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22198 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22199 
22200 	/* Unit Information */
22201 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22202 	info->dki_slave = ((tgt << 3) | lun);
22203 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22204 	    DK_DEVLEN - 1);
22205 	info->dki_flags = DKI_FMTVOL;
22206 	info->dki_partition = SDPART(dev);
22207 
22208 	/* Max Transfer size of this device in blocks */
22209 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22210 	info->dki_addr = 0;
22211 	info->dki_space = 0;
22212 	info->dki_prio = 0;
22213 	info->dki_vec = 0;
22214 
22215 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22216 		kmem_free(info, sizeof (struct dk_cinfo));
22217 		return (EFAULT);
22218 	} else {
22219 		kmem_free(info, sizeof (struct dk_cinfo));
22220 		return (0);
22221 	}
22222 }
22223 
22224 
22225 /*
22226  *    Function: sd_get_media_info
22227  *
22228  * Description: This routine is the driver entry point for handling ioctl
22229  *		requests for the media type or command set profile used by the
22230  *		drive to operate on the media (DKIOCGMEDIAINFO).
22231  *
22232  *   Arguments: dev	- the device number
22233  *		arg	- pointer to user provided dk_minfo structure
22234  *			  specifying the media type, logical block size and
22235  *			  drive capacity.
22236  *		flag	- this argument is a pass through to ddi_copyxxx()
22237  *			  directly from the mode argument of ioctl().
22238  *
22239  * Return Code: 0
22240  *		EACCESS
22241  *		EFAULT
22242  *		ENXIO
22243  *		EIO
22244  */
22245 
22246 static int
22247 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22248 {
22249 	struct sd_lun		*un = NULL;
22250 	struct uscsi_cmd	com;
22251 	struct scsi_inquiry	*sinq;
22252 	struct dk_minfo		media_info;
22253 	u_longlong_t		media_capacity;
22254 	uint64_t		capacity;
22255 	uint_t			lbasize;
22256 	uchar_t			*out_data;
22257 	uchar_t			*rqbuf;
22258 	int			rval = 0;
22259 	int			rtn;
22260 
22261 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22262 	    (un->un_state == SD_STATE_OFFLINE)) {
22263 		return (ENXIO);
22264 	}
22265 
22266 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22267 
22268 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22269 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22270 
22271 	/* Issue a TUR to determine if the drive is ready with media present */
22272 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22273 	if (rval == ENXIO) {
22274 		goto done;
22275 	}
22276 
22277 	/* Now get configuration data */
22278 	if (ISCD(un)) {
22279 		media_info.dki_media_type = DK_CDROM;
22280 
22281 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22282 		if (un->un_f_mmc_cap == TRUE) {
22283 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22284 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22285 
22286 			if (rtn) {
22287 				/*
22288 				 * Failed for other than an illegal request
22289 				 * or command not supported
22290 				 */
22291 				if ((com.uscsi_status == STATUS_CHECK) &&
22292 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22293 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22294 					    (rqbuf[12] != 0x20)) {
22295 						rval = EIO;
22296 						goto done;
22297 					}
22298 				}
22299 			} else {
22300 				/*
22301 				 * The GET CONFIGURATION command succeeded
22302 				 * so set the media type according to the
22303 				 * returned data
22304 				 */
22305 				media_info.dki_media_type = out_data[6];
22306 				media_info.dki_media_type <<= 8;
22307 				media_info.dki_media_type |= out_data[7];
22308 			}
22309 		}
22310 	} else {
22311 		/*
22312 		 * The profile list is not available, so we attempt to identify
22313 		 * the media type based on the inquiry data
22314 		 */
22315 		sinq = un->un_sd->sd_inq;
22316 		if (sinq->inq_qual == 0) {
22317 			/* This is a direct access device */
22318 			media_info.dki_media_type = DK_FIXED_DISK;
22319 
22320 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22321 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22322 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22323 					media_info.dki_media_type = DK_ZIP;
22324 				} else if (
22325 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22326 					media_info.dki_media_type = DK_JAZ;
22327 				}
22328 			}
22329 		} else {
22330 			/* Not a CD or direct access so return unknown media */
22331 			media_info.dki_media_type = DK_UNKNOWN;
22332 		}
22333 	}
22334 
22335 	/* Now read the capacity so we can provide the lbasize and capacity */
22336 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22337 	    SD_PATH_DIRECT)) {
22338 	case 0:
22339 		break;
22340 	case EACCES:
22341 		rval = EACCES;
22342 		goto done;
22343 	default:
22344 		rval = EIO;
22345 		goto done;
22346 	}
22347 
22348 	media_info.dki_lbsize = lbasize;
22349 	media_capacity = capacity;
22350 
22351 	/*
22352 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22353 	 * un->un_sys_blocksize chunks. So we need to convert it into
22354 	 * cap.lbasize chunks.
22355 	 */
22356 	media_capacity *= un->un_sys_blocksize;
22357 	media_capacity /= lbasize;
22358 	media_info.dki_capacity = media_capacity;
22359 
22360 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22361 		rval = EFAULT;
22362 		/* Put goto. Anybody might add some code below in future */
22363 		goto done;
22364 	}
22365 done:
22366 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22367 	kmem_free(rqbuf, SENSE_LENGTH);
22368 	return (rval);
22369 }
22370 
22371 
22372 /*
22373  *    Function: sd_dkio_get_geometry
22374  *
22375  * Description: This routine is the driver entry point for handling user
22376  *		requests to get the device geometry (DKIOCGGEOM).
22377  *
22378  *   Arguments: dev  - the device number
22379  *		arg  - pointer to user provided dk_geom structure specifying
22380  *			the controller's notion of the current geometry.
22381  *		flag - this argument is a pass through to ddi_copyxxx()
22382  *		       directly from the mode argument of ioctl().
22383  *		geom_validated - flag indicating if the device geometry has been
22384  *				 previously validated in the sdioctl routine.
22385  *
22386  * Return Code: 0
22387  *		EFAULT
22388  *		ENXIO
22389  *		EIO
22390  */
22391 
22392 static int
22393 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22394 {
22395 	struct sd_lun	*un = NULL;
22396 	struct dk_geom	*tmp_geom = NULL;
22397 	int		rval = 0;
22398 
22399 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22400 		return (ENXIO);
22401 	}
22402 
22403 	if (geom_validated == FALSE) {
22404 		/*
22405 		 * sd_validate_geometry does not spin a disk up
22406 		 * if it was spun down. We need to make sure it
22407 		 * is ready.
22408 		 */
22409 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22410 			return (rval);
22411 		}
22412 		mutex_enter(SD_MUTEX(un));
22413 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22414 		mutex_exit(SD_MUTEX(un));
22415 	}
22416 	if (rval)
22417 		return (rval);
22418 
22419 	/*
22420 	 * It is possible that un_solaris_size is 0(uninitialized)
22421 	 * after sd_unit_attach. Reservation conflict may cause the
22422 	 * above situation. Thus, the zero check of un_solaris_size
22423 	 * should occur after the sd_validate_geometry() call.
22424 	 */
22425 #if defined(__i386) || defined(__amd64)
22426 	if (un->un_solaris_size == 0) {
22427 		return (EIO);
22428 	}
22429 #endif
22430 
22431 	/*
22432 	 * Make a local copy of the soft state geometry to avoid some potential
22433 	 * race conditions associated with holding the mutex and updating the
22434 	 * write_reinstruct value
22435 	 */
22436 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22437 	mutex_enter(SD_MUTEX(un));
22438 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22439 	mutex_exit(SD_MUTEX(un));
22440 
22441 	if (tmp_geom->dkg_write_reinstruct == 0) {
22442 		tmp_geom->dkg_write_reinstruct =
22443 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22444 		    sd_rot_delay) / (int)60000);
22445 	}
22446 
22447 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22448 	    flag);
22449 	if (rval != 0) {
22450 		rval = EFAULT;
22451 	}
22452 
22453 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22454 	return (rval);
22455 
22456 }
22457 
22458 
22459 /*
22460  *    Function: sd_dkio_set_geometry
22461  *
22462  * Description: This routine is the driver entry point for handling user
22463  *		requests to set the device geometry (DKIOCSGEOM). The actual
22464  *		device geometry is not updated, just the driver "notion" of it.
22465  *
22466  *   Arguments: dev  - the device number
22467  *		arg  - pointer to user provided dk_geom structure used to set
22468  *			the controller's notion of the current geometry.
22469  *		flag - this argument is a pass through to ddi_copyxxx()
22470  *		       directly from the mode argument of ioctl().
22471  *
22472  * Return Code: 0
22473  *		EFAULT
22474  *		ENXIO
22475  *		EIO
22476  */
22477 
22478 static int
22479 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22480 {
22481 	struct sd_lun	*un = NULL;
22482 	struct dk_geom	*tmp_geom;
22483 	struct dk_map	*lp;
22484 	int		rval = 0;
22485 	int		i;
22486 
22487 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22488 		return (ENXIO);
22489 	}
22490 
22491 	/*
22492 	 * Make sure there is no reservation conflict on the lun.
22493 	 */
22494 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22495 		return (EACCES);
22496 	}
22497 
22498 #if defined(__i386) || defined(__amd64)
22499 	if (un->un_solaris_size == 0) {
22500 		return (EIO);
22501 	}
22502 #endif
22503 
22504 	/*
22505 	 * We need to copy the user specified geometry into local
22506 	 * storage and then update the softstate. We don't want to hold
22507 	 * the mutex and copyin directly from the user to the soft state
22508 	 */
22509 	tmp_geom = (struct dk_geom *)
22510 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22511 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22512 	if (rval != 0) {
22513 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22514 		return (EFAULT);
22515 	}
22516 
22517 	mutex_enter(SD_MUTEX(un));
22518 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22519 	for (i = 0; i < NDKMAP; i++) {
22520 		lp  = &un->un_map[i];
22521 		un->un_offset[i] =
22522 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22523 #if defined(__i386) || defined(__amd64)
22524 		un->un_offset[i] += un->un_solaris_offset;
22525 #endif
22526 	}
22527 	un->un_f_geometry_is_valid = FALSE;
22528 	mutex_exit(SD_MUTEX(un));
22529 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22530 
22531 	return (rval);
22532 }
22533 
22534 
22535 /*
22536  *    Function: sd_dkio_get_partition
22537  *
22538  * Description: This routine is the driver entry point for handling user
22539  *		requests to get the partition table (DKIOCGAPART).
22540  *
22541  *   Arguments: dev  - the device number
22542  *		arg  - pointer to user provided dk_allmap structure specifying
22543  *			the controller's notion of the current partition table.
22544  *		flag - this argument is a pass through to ddi_copyxxx()
22545  *		       directly from the mode argument of ioctl().
22546  *		geom_validated - flag indicating if the device geometry has been
22547  *				 previously validated in the sdioctl routine.
22548  *
22549  * Return Code: 0
22550  *		EFAULT
22551  *		ENXIO
22552  *		EIO
22553  */
22554 
22555 static int
22556 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22557 {
22558 	struct sd_lun	*un = NULL;
22559 	int		rval = 0;
22560 	int		size;
22561 
22562 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22563 		return (ENXIO);
22564 	}
22565 
22566 	/*
22567 	 * Make sure the geometry is valid before getting the partition
22568 	 * information.
22569 	 */
22570 	mutex_enter(SD_MUTEX(un));
22571 	if (geom_validated == FALSE) {
22572 		/*
22573 		 * sd_validate_geometry does not spin a disk up
22574 		 * if it was spun down. We need to make sure it
22575 		 * is ready before validating the geometry.
22576 		 */
22577 		mutex_exit(SD_MUTEX(un));
22578 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22579 			return (rval);
22580 		}
22581 		mutex_enter(SD_MUTEX(un));
22582 
22583 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22584 			mutex_exit(SD_MUTEX(un));
22585 			return (rval);
22586 		}
22587 	}
22588 	mutex_exit(SD_MUTEX(un));
22589 
22590 	/*
22591 	 * It is possible that un_solaris_size is 0(uninitialized)
22592 	 * after sd_unit_attach. Reservation conflict may cause the
22593 	 * above situation. Thus, the zero check of un_solaris_size
22594 	 * should occur after the sd_validate_geometry() call.
22595 	 */
22596 #if defined(__i386) || defined(__amd64)
22597 	if (un->un_solaris_size == 0) {
22598 		return (EIO);
22599 	}
22600 #endif
22601 
22602 #ifdef _MULTI_DATAMODEL
22603 	switch (ddi_model_convert_from(flag & FMODELS)) {
22604 	case DDI_MODEL_ILP32: {
22605 		struct dk_map32 dk_map32[NDKMAP];
22606 		int		i;
22607 
22608 		for (i = 0; i < NDKMAP; i++) {
22609 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22610 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22611 		}
22612 		size = NDKMAP * sizeof (struct dk_map32);
22613 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22614 		if (rval != 0) {
22615 			rval = EFAULT;
22616 		}
22617 		break;
22618 	}
22619 	case DDI_MODEL_NONE:
22620 		size = NDKMAP * sizeof (struct dk_map);
22621 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22622 		if (rval != 0) {
22623 			rval = EFAULT;
22624 		}
22625 		break;
22626 	}
22627 #else /* ! _MULTI_DATAMODEL */
22628 	size = NDKMAP * sizeof (struct dk_map);
22629 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22630 	if (rval != 0) {
22631 		rval = EFAULT;
22632 	}
22633 #endif /* _MULTI_DATAMODEL */
22634 	return (rval);
22635 }
22636 
22637 
22638 /*
22639  *    Function: sd_dkio_set_partition
22640  *
22641  * Description: This routine is the driver entry point for handling user
22642  *		requests to set the partition table (DKIOCSAPART). The actual
22643  *		device partition is not updated.
22644  *
22645  *   Arguments: dev  - the device number
22646  *		arg  - pointer to user provided dk_allmap structure used to set
22647  *			the controller's notion of the partition table.
22648  *		flag - this argument is a pass through to ddi_copyxxx()
22649  *		       directly from the mode argument of ioctl().
22650  *
22651  * Return Code: 0
22652  *		EINVAL
22653  *		EFAULT
22654  *		ENXIO
22655  *		EIO
22656  */
22657 
22658 static int
22659 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22660 {
22661 	struct sd_lun	*un = NULL;
22662 	struct dk_map	dk_map[NDKMAP];
22663 	struct dk_map	*lp;
22664 	int		rval = 0;
22665 	int		size;
22666 	int		i;
22667 #if defined(_SUNOS_VTOC_16)
22668 	struct dkl_partition	*vp;
22669 #endif
22670 
22671 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22672 		return (ENXIO);
22673 	}
22674 
22675 	/*
22676 	 * Set the map for all logical partitions.  We lock
22677 	 * the priority just to make sure an interrupt doesn't
22678 	 * come in while the map is half updated.
22679 	 */
22680 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22681 	mutex_enter(SD_MUTEX(un));
22682 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22683 		mutex_exit(SD_MUTEX(un));
22684 		return (ENOTSUP);
22685 	}
22686 	mutex_exit(SD_MUTEX(un));
22687 
22688 	/*
22689 	 * Make sure there is no reservation conflict on the lun.
22690 	 */
22691 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22692 		return (EACCES);
22693 	}
22694 
22695 #if defined(__i386) || defined(__amd64)
22696 	if (un->un_solaris_size == 0) {
22697 		return (EIO);
22698 	}
22699 #endif
22700 
22701 #ifdef _MULTI_DATAMODEL
22702 	switch (ddi_model_convert_from(flag & FMODELS)) {
22703 	case DDI_MODEL_ILP32: {
22704 		struct dk_map32 dk_map32[NDKMAP];
22705 
22706 		size = NDKMAP * sizeof (struct dk_map32);
22707 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22708 		if (rval != 0) {
22709 			return (EFAULT);
22710 		}
22711 		for (i = 0; i < NDKMAP; i++) {
22712 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22713 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22714 		}
22715 		break;
22716 	}
22717 	case DDI_MODEL_NONE:
22718 		size = NDKMAP * sizeof (struct dk_map);
22719 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22720 		if (rval != 0) {
22721 			return (EFAULT);
22722 		}
22723 		break;
22724 	}
22725 #else /* ! _MULTI_DATAMODEL */
22726 	size = NDKMAP * sizeof (struct dk_map);
22727 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22728 	if (rval != 0) {
22729 		return (EFAULT);
22730 	}
22731 #endif /* _MULTI_DATAMODEL */
22732 
22733 	mutex_enter(SD_MUTEX(un));
22734 	/* Note: The size used in this bcopy is set based upon the data model */
22735 	bcopy(dk_map, un->un_map, size);
22736 #if defined(_SUNOS_VTOC_16)
22737 	vp = (struct dkl_partition *)&(un->un_vtoc);
22738 #endif	/* defined(_SUNOS_VTOC_16) */
22739 	for (i = 0; i < NDKMAP; i++) {
22740 		lp  = &un->un_map[i];
22741 		un->un_offset[i] =
22742 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22743 #if defined(_SUNOS_VTOC_16)
22744 		vp->p_start = un->un_offset[i];
22745 		vp->p_size = lp->dkl_nblk;
22746 		vp++;
22747 #endif	/* defined(_SUNOS_VTOC_16) */
22748 #if defined(__i386) || defined(__amd64)
22749 		un->un_offset[i] += un->un_solaris_offset;
22750 #endif
22751 	}
22752 	mutex_exit(SD_MUTEX(un));
22753 	return (rval);
22754 }
22755 
22756 
22757 /*
22758  *    Function: sd_dkio_get_vtoc
22759  *
22760  * Description: This routine is the driver entry point for handling user
22761  *		requests to get the current volume table of contents
22762  *		(DKIOCGVTOC).
22763  *
22764  *   Arguments: dev  - the device number
22765  *		arg  - pointer to user provided vtoc structure specifying
22766  *			the current vtoc.
22767  *		flag - this argument is a pass through to ddi_copyxxx()
22768  *		       directly from the mode argument of ioctl().
22769  *		geom_validated - flag indicating if the device geometry has been
22770  *				 previously validated in the sdioctl routine.
22771  *
22772  * Return Code: 0
22773  *		EFAULT
22774  *		ENXIO
22775  *		EIO
22776  */
22777 
22778 static int
22779 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22780 {
22781 	struct sd_lun	*un = NULL;
22782 #if defined(_SUNOS_VTOC_8)
22783 	struct vtoc	user_vtoc;
22784 #endif	/* defined(_SUNOS_VTOC_8) */
22785 	int		rval = 0;
22786 
22787 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22788 		return (ENXIO);
22789 	}
22790 
22791 	mutex_enter(SD_MUTEX(un));
22792 	if (geom_validated == FALSE) {
22793 		/*
22794 		 * sd_validate_geometry does not spin a disk up
22795 		 * if it was spun down. We need to make sure it
22796 		 * is ready.
22797 		 */
22798 		mutex_exit(SD_MUTEX(un));
22799 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22800 			return (rval);
22801 		}
22802 		mutex_enter(SD_MUTEX(un));
22803 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22804 			mutex_exit(SD_MUTEX(un));
22805 			return (rval);
22806 		}
22807 	}
22808 
22809 #if defined(_SUNOS_VTOC_8)
22810 	sd_build_user_vtoc(un, &user_vtoc);
22811 	mutex_exit(SD_MUTEX(un));
22812 
22813 #ifdef _MULTI_DATAMODEL
22814 	switch (ddi_model_convert_from(flag & FMODELS)) {
22815 	case DDI_MODEL_ILP32: {
22816 		struct vtoc32 user_vtoc32;
22817 
22818 		vtoctovtoc32(user_vtoc, user_vtoc32);
22819 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22820 		    sizeof (struct vtoc32), flag)) {
22821 			return (EFAULT);
22822 		}
22823 		break;
22824 	}
22825 
22826 	case DDI_MODEL_NONE:
22827 		if (ddi_copyout(&user_vtoc, (void *)arg,
22828 		    sizeof (struct vtoc), flag)) {
22829 			return (EFAULT);
22830 		}
22831 		break;
22832 	}
22833 #else /* ! _MULTI_DATAMODEL */
22834 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22835 		return (EFAULT);
22836 	}
22837 #endif /* _MULTI_DATAMODEL */
22838 
22839 #elif defined(_SUNOS_VTOC_16)
22840 	mutex_exit(SD_MUTEX(un));
22841 
22842 #ifdef _MULTI_DATAMODEL
22843 	/*
22844 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22845 	 * 32-bit to maintain compatibility with existing on-disk
22846 	 * structures.  Thus, we need to convert the structure when copying
22847 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22848 	 * program.  If the target is a 32-bit program, then no conversion
22849 	 * is necessary.
22850 	 */
22851 	/* LINTED: logical expression always true: op "||" */
22852 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22853 	switch (ddi_model_convert_from(flag & FMODELS)) {
22854 	case DDI_MODEL_ILP32:
22855 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22856 		    sizeof (un->un_vtoc), flag)) {
22857 			return (EFAULT);
22858 		}
22859 		break;
22860 
22861 	case DDI_MODEL_NONE: {
22862 		struct vtoc user_vtoc;
22863 
22864 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22865 		if (ddi_copyout(&user_vtoc, (void *)arg,
22866 		    sizeof (struct vtoc), flag)) {
22867 			return (EFAULT);
22868 		}
22869 		break;
22870 	}
22871 	}
22872 #else /* ! _MULTI_DATAMODEL */
22873 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22874 	    flag)) {
22875 		return (EFAULT);
22876 	}
22877 #endif /* _MULTI_DATAMODEL */
22878 #else
22879 #error "No VTOC format defined."
22880 #endif
22881 
22882 	return (rval);
22883 }
22884 
22885 static int
22886 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22887 {
22888 	struct sd_lun	*un = NULL;
22889 	dk_efi_t	user_efi;
22890 	int		rval = 0;
22891 	void		*buffer;
22892 
22893 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22894 		return (ENXIO);
22895 
22896 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22897 		return (EFAULT);
22898 
22899 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22900 
22901 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22902 	    (user_efi.dki_length > un->un_max_xfer_size))
22903 		return (EINVAL);
22904 
22905 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22906 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22907 	    user_efi.dki_lba, SD_PATH_DIRECT);
22908 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22909 	    user_efi.dki_length, flag) != 0)
22910 		rval = EFAULT;
22911 
22912 	kmem_free(buffer, user_efi.dki_length);
22913 	return (rval);
22914 }
22915 
22916 /*
22917  *    Function: sd_build_user_vtoc
22918  *
22919  * Description: This routine populates a pass by reference variable with the
22920  *		current volume table of contents.
22921  *
22922  *   Arguments: un - driver soft state (unit) structure
22923  *		user_vtoc - pointer to vtoc structure to be populated
22924  */
22925 
22926 static void
22927 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22928 {
22929 	struct dk_map2		*lpart;
22930 	struct dk_map		*lmap;
22931 	struct partition	*vpart;
22932 	int			nblks;
22933 	int			i;
22934 
22935 	ASSERT(mutex_owned(SD_MUTEX(un)));
22936 
22937 	/*
22938 	 * Return vtoc structure fields in the provided VTOC area, addressed
22939 	 * by *vtoc.
22940 	 */
22941 	bzero(user_vtoc, sizeof (struct vtoc));
22942 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22943 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22944 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22945 	user_vtoc->v_sanity	= VTOC_SANE;
22946 	user_vtoc->v_version	= un->un_vtoc.v_version;
22947 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22948 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22949 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22950 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22951 	    sizeof (un->un_vtoc.v_reserved));
22952 	/*
22953 	 * Convert partitioning information.
22954 	 *
22955 	 * Note the conversion from starting cylinder number
22956 	 * to starting sector number.
22957 	 */
22958 	lmap = un->un_map;
22959 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22960 	vpart = user_vtoc->v_part;
22961 
22962 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22963 
22964 	for (i = 0; i < V_NUMPAR; i++) {
22965 		vpart->p_tag	= lpart->p_tag;
22966 		vpart->p_flag	= lpart->p_flag;
22967 		vpart->p_start	= lmap->dkl_cylno * nblks;
22968 		vpart->p_size	= lmap->dkl_nblk;
22969 		lmap++;
22970 		lpart++;
22971 		vpart++;
22972 
22973 		/* (4364927) */
22974 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22975 	}
22976 
22977 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22978 }
22979 
22980 static int
22981 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22982 {
22983 	struct sd_lun		*un = NULL;
22984 	struct partition64	p64;
22985 	int			rval = 0;
22986 	uint_t			nparts;
22987 	efi_gpe_t		*partitions;
22988 	efi_gpt_t		*buffer;
22989 	diskaddr_t		gpe_lba;
22990 
22991 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22992 		return (ENXIO);
22993 	}
22994 
22995 	if (ddi_copyin((const void *)arg, &p64,
22996 	    sizeof (struct partition64), flag)) {
22997 		return (EFAULT);
22998 	}
22999 
23000 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23001 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23002 		1, SD_PATH_DIRECT);
23003 	if (rval != 0)
23004 		goto done_error;
23005 
23006 	sd_swap_efi_gpt(buffer);
23007 
23008 	if ((rval = sd_validate_efi(buffer)) != 0)
23009 		goto done_error;
23010 
23011 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23012 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23013 	if (p64.p_partno > nparts) {
23014 		/* couldn't find it */
23015 		rval = ESRCH;
23016 		goto done_error;
23017 	}
23018 	/*
23019 	 * if we're dealing with a partition that's out of the normal
23020 	 * 16K block, adjust accordingly
23021 	 */
23022 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23023 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23024 			gpe_lba, SD_PATH_DIRECT);
23025 	if (rval) {
23026 		goto done_error;
23027 	}
23028 	partitions = (efi_gpe_t *)buffer;
23029 
23030 	sd_swap_efi_gpe(nparts, partitions);
23031 
23032 	partitions += p64.p_partno;
23033 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23034 	    sizeof (struct uuid));
23035 	p64.p_start = partitions->efi_gpe_StartingLBA;
23036 	p64.p_size = partitions->efi_gpe_EndingLBA -
23037 			p64.p_start + 1;
23038 
23039 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23040 		rval = EFAULT;
23041 
23042 done_error:
23043 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23044 	return (rval);
23045 }
23046 
23047 
23048 /*
23049  *    Function: sd_dkio_set_vtoc
23050  *
23051  * Description: This routine is the driver entry point for handling user
23052  *		requests to set the current volume table of contents
23053  *		(DKIOCSVTOC).
23054  *
23055  *   Arguments: dev  - the device number
23056  *		arg  - pointer to user provided vtoc structure used to set the
23057  *			current vtoc.
23058  *		flag - this argument is a pass through to ddi_copyxxx()
23059  *		       directly from the mode argument of ioctl().
23060  *
23061  * Return Code: 0
23062  *		EFAULT
23063  *		ENXIO
23064  *		EINVAL
23065  *		ENOTSUP
23066  */
23067 
23068 static int
23069 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23070 {
23071 	struct sd_lun	*un = NULL;
23072 	struct vtoc	user_vtoc;
23073 	int		rval = 0;
23074 
23075 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23076 		return (ENXIO);
23077 	}
23078 
23079 #if defined(__i386) || defined(__amd64)
23080 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23081 		return (EINVAL);
23082 	}
23083 #endif
23084 
23085 #ifdef _MULTI_DATAMODEL
23086 	switch (ddi_model_convert_from(flag & FMODELS)) {
23087 	case DDI_MODEL_ILP32: {
23088 		struct vtoc32 user_vtoc32;
23089 
23090 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23091 		    sizeof (struct vtoc32), flag)) {
23092 			return (EFAULT);
23093 		}
23094 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23095 		break;
23096 	}
23097 
23098 	case DDI_MODEL_NONE:
23099 		if (ddi_copyin((const void *)arg, &user_vtoc,
23100 		    sizeof (struct vtoc), flag)) {
23101 			return (EFAULT);
23102 		}
23103 		break;
23104 	}
23105 #else /* ! _MULTI_DATAMODEL */
23106 	if (ddi_copyin((const void *)arg, &user_vtoc,
23107 	    sizeof (struct vtoc), flag)) {
23108 		return (EFAULT);
23109 	}
23110 #endif /* _MULTI_DATAMODEL */
23111 
23112 	mutex_enter(SD_MUTEX(un));
23113 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23114 		mutex_exit(SD_MUTEX(un));
23115 		return (ENOTSUP);
23116 	}
23117 	if (un->un_g.dkg_ncyl == 0) {
23118 		mutex_exit(SD_MUTEX(un));
23119 		return (EINVAL);
23120 	}
23121 
23122 	mutex_exit(SD_MUTEX(un));
23123 	sd_clear_efi(un);
23124 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23125 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23126 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23127 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23128 	    un->un_node_type, NULL);
23129 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23130 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23131 	    un->un_node_type, NULL);
23132 	mutex_enter(SD_MUTEX(un));
23133 
23134 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23135 		if ((rval = sd_write_label(dev)) == 0) {
23136 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23137 			    != 0) {
23138 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23139 				    "sd_dkio_set_vtoc: "
23140 				    "Failed validate geometry\n");
23141 			}
23142 		}
23143 	}
23144 
23145 	/*
23146 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23147 	 * devid anyway, what can it hurt? Also preserve the device id by
23148 	 * writing to the disk acyl for the case where a devid has been
23149 	 * fabricated.
23150 	 */
23151 	if (un->un_f_devid_supported &&
23152 	    (un->un_f_opt_fab_devid == TRUE)) {
23153 		if (un->un_devid == NULL) {
23154 			sd_register_devid(un, SD_DEVINFO(un),
23155 			    SD_TARGET_IS_UNRESERVED);
23156 		} else {
23157 			/*
23158 			 * The device id for this disk has been
23159 			 * fabricated. Fabricated device id's are
23160 			 * managed by storing them in the last 2
23161 			 * available sectors on the drive. The device
23162 			 * id must be preserved by writing it back out
23163 			 * to this location.
23164 			 */
23165 			if (sd_write_deviceid(un) != 0) {
23166 				ddi_devid_free(un->un_devid);
23167 				un->un_devid = NULL;
23168 			}
23169 		}
23170 	}
23171 	mutex_exit(SD_MUTEX(un));
23172 	return (rval);
23173 }
23174 
23175 
23176 /*
23177  *    Function: sd_build_label_vtoc
23178  *
23179  * Description: This routine updates the driver soft state current volume table
23180  *		of contents based on a user specified vtoc.
23181  *
23182  *   Arguments: un - driver soft state (unit) structure
23183  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23184  *			    to update the driver soft state.
23185  *
23186  * Return Code: 0
23187  *		EINVAL
23188  */
23189 
23190 static int
23191 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23192 {
23193 	struct dk_map		*lmap;
23194 	struct partition	*vpart;
23195 	int			nblks;
23196 #if defined(_SUNOS_VTOC_8)
23197 	int			ncyl;
23198 	struct dk_map2		*lpart;
23199 #endif	/* defined(_SUNOS_VTOC_8) */
23200 	int			i;
23201 
23202 	ASSERT(mutex_owned(SD_MUTEX(un)));
23203 
23204 	/* Sanity-check the vtoc */
23205 	if (user_vtoc->v_sanity != VTOC_SANE ||
23206 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23207 	    user_vtoc->v_nparts != V_NUMPAR) {
23208 		return (EINVAL);
23209 	}
23210 
23211 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23212 	if (nblks == 0) {
23213 		return (EINVAL);
23214 	}
23215 
23216 #if defined(_SUNOS_VTOC_8)
23217 	vpart = user_vtoc->v_part;
23218 	for (i = 0; i < V_NUMPAR; i++) {
23219 		if ((vpart->p_start % nblks) != 0) {
23220 			return (EINVAL);
23221 		}
23222 		ncyl = vpart->p_start / nblks;
23223 		ncyl += vpart->p_size / nblks;
23224 		if ((vpart->p_size % nblks) != 0) {
23225 			ncyl++;
23226 		}
23227 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23228 			return (EINVAL);
23229 		}
23230 		vpart++;
23231 	}
23232 #endif	/* defined(_SUNOS_VTOC_8) */
23233 
23234 	/* Put appropriate vtoc structure fields into the disk label */
23235 #if defined(_SUNOS_VTOC_16)
23236 	/*
23237 	 * The vtoc is always a 32bit data structure to maintain the
23238 	 * on-disk format. Convert "in place" instead of bcopying it.
23239 	 */
23240 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23241 
23242 	/*
23243 	 * in the 16-slice vtoc, starting sectors are expressed in
23244 	 * numbers *relative* to the start of the Solaris fdisk partition.
23245 	 */
23246 	lmap = un->un_map;
23247 	vpart = user_vtoc->v_part;
23248 
23249 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23250 		lmap->dkl_cylno = vpart->p_start / nblks;
23251 		lmap->dkl_nblk = vpart->p_size;
23252 	}
23253 
23254 #elif defined(_SUNOS_VTOC_8)
23255 
23256 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23257 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23258 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23259 
23260 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23261 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23262 
23263 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23264 
23265 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23266 
23267 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23268 	    sizeof (un->un_vtoc.v_reserved));
23269 
23270 	/*
23271 	 * Note the conversion from starting sector number
23272 	 * to starting cylinder number.
23273 	 * Return error if division results in a remainder.
23274 	 */
23275 	lmap = un->un_map;
23276 	lpart = un->un_vtoc.v_part;
23277 	vpart = user_vtoc->v_part;
23278 
23279 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23280 		lpart->p_tag  = vpart->p_tag;
23281 		lpart->p_flag = vpart->p_flag;
23282 		lmap->dkl_cylno = vpart->p_start / nblks;
23283 		lmap->dkl_nblk = vpart->p_size;
23284 
23285 		lmap++;
23286 		lpart++;
23287 		vpart++;
23288 
23289 		/* (4387723) */
23290 #ifdef _LP64
23291 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23292 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23293 		} else {
23294 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23295 		}
23296 #else
23297 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23298 #endif
23299 	}
23300 
23301 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23302 #else
23303 #error "No VTOC format defined."
23304 #endif
23305 	return (0);
23306 }
23307 
23308 /*
23309  *    Function: sd_clear_efi
23310  *
23311  * Description: This routine clears all EFI labels.
23312  *
23313  *   Arguments: un - driver soft state (unit) structure
23314  *
23315  * Return Code: void
23316  */
23317 
23318 static void
23319 sd_clear_efi(struct sd_lun *un)
23320 {
23321 	efi_gpt_t	*gpt;
23322 	uint_t		lbasize;
23323 	uint64_t	cap;
23324 	int rval;
23325 
23326 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23327 
23328 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23329 
23330 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23331 		goto done;
23332 	}
23333 
23334 	sd_swap_efi_gpt(gpt);
23335 	rval = sd_validate_efi(gpt);
23336 	if (rval == 0) {
23337 		/* clear primary */
23338 		bzero(gpt, sizeof (efi_gpt_t));
23339 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23340 			SD_PATH_DIRECT))) {
23341 			SD_INFO(SD_LOG_IO_PARTITION, un,
23342 				"sd_clear_efi: clear primary label failed\n");
23343 		}
23344 	}
23345 	/* the backup */
23346 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23347 	    SD_PATH_DIRECT);
23348 	if (rval) {
23349 		goto done;
23350 	}
23351 	/*
23352 	 * The MMC standard allows READ CAPACITY to be
23353 	 * inaccurate by a bounded amount (in the interest of
23354 	 * response latency).  As a result, failed READs are
23355 	 * commonplace (due to the reading of metadata and not
23356 	 * data). Depending on the per-Vendor/drive Sense data,
23357 	 * the failed READ can cause many (unnecessary) retries.
23358 	 */
23359 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23360 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23361 		SD_PATH_DIRECT)) != 0) {
23362 		goto done;
23363 	}
23364 	sd_swap_efi_gpt(gpt);
23365 	rval = sd_validate_efi(gpt);
23366 	if (rval == 0) {
23367 		/* clear backup */
23368 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23369 			cap-1);
23370 		bzero(gpt, sizeof (efi_gpt_t));
23371 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23372 		    cap-1, SD_PATH_DIRECT))) {
23373 			SD_INFO(SD_LOG_IO_PARTITION, un,
23374 				"sd_clear_efi: clear backup label failed\n");
23375 		}
23376 	}
23377 
23378 done:
23379 	kmem_free(gpt, sizeof (efi_gpt_t));
23380 }
23381 
23382 /*
23383  *    Function: sd_set_vtoc
23384  *
23385  * Description: This routine writes data to the appropriate positions
23386  *
23387  *   Arguments: un - driver soft state (unit) structure
23388  *              dkl  - the data to be written
23389  *
23390  * Return: void
23391  */
23392 
23393 static int
23394 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23395 {
23396 	void			*shadow_buf;
23397 	uint_t			label_addr;
23398 	int			sec;
23399 	int			blk;
23400 	int			head;
23401 	int			cyl;
23402 	int			rval;
23403 
23404 #if defined(__i386) || defined(__amd64)
23405 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23406 #else
23407 	/* Write the primary label at block 0 of the solaris partition. */
23408 	label_addr = 0;
23409 #endif
23410 
23411 	if (NOT_DEVBSIZE(un)) {
23412 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23413 		/*
23414 		 * Read the target's first block.
23415 		 */
23416 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23417 		    un->un_tgt_blocksize, label_addr,
23418 		    SD_PATH_STANDARD)) != 0) {
23419 			goto exit;
23420 		}
23421 		/*
23422 		 * Copy the contents of the label into the shadow buffer
23423 		 * which is of the size of target block size.
23424 		 */
23425 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23426 	}
23427 
23428 	/* Write the primary label */
23429 	if (NOT_DEVBSIZE(un)) {
23430 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23431 		    label_addr, SD_PATH_STANDARD);
23432 	} else {
23433 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23434 		    label_addr, SD_PATH_STANDARD);
23435 	}
23436 	if (rval != 0) {
23437 		return (rval);
23438 	}
23439 
23440 	/*
23441 	 * Calculate where the backup labels go.  They are always on
23442 	 * the last alternate cylinder, but some older drives put them
23443 	 * on head 2 instead of the last head.	They are always on the
23444 	 * first 5 odd sectors of the appropriate track.
23445 	 *
23446 	 * We have no choice at this point, but to believe that the
23447 	 * disk label is valid.	 Use the geometry of the disk
23448 	 * as described in the label.
23449 	 */
23450 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23451 	head = dkl->dkl_nhead - 1;
23452 
23453 	/*
23454 	 * Write and verify the backup labels. Make sure we don't try to
23455 	 * write past the last cylinder.
23456 	 */
23457 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23458 		blk = (daddr_t)(
23459 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23460 		    (head * dkl->dkl_nsect) + sec);
23461 #if defined(__i386) || defined(__amd64)
23462 		blk += un->un_solaris_offset;
23463 #endif
23464 		if (NOT_DEVBSIZE(un)) {
23465 			uint64_t	tblk;
23466 			/*
23467 			 * Need to read the block first for read modify write.
23468 			 */
23469 			tblk = (uint64_t)blk;
23470 			blk = (int)((tblk * un->un_sys_blocksize) /
23471 			    un->un_tgt_blocksize);
23472 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23473 			    un->un_tgt_blocksize, blk,
23474 			    SD_PATH_STANDARD)) != 0) {
23475 				goto exit;
23476 			}
23477 			/*
23478 			 * Modify the shadow buffer with the label.
23479 			 */
23480 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23481 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23482 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23483 		} else {
23484 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23485 			    blk, SD_PATH_STANDARD);
23486 			SD_INFO(SD_LOG_IO_PARTITION, un,
23487 			"sd_set_vtoc: wrote backup label %d\n", blk);
23488 		}
23489 		if (rval != 0) {
23490 			goto exit;
23491 		}
23492 	}
23493 exit:
23494 	if (NOT_DEVBSIZE(un)) {
23495 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23496 	}
23497 	return (rval);
23498 }
23499 
23500 /*
23501  *    Function: sd_clear_vtoc
23502  *
23503  * Description: This routine clears out the VTOC labels.
23504  *
23505  *   Arguments: un - driver soft state (unit) structure
23506  *
23507  * Return: void
23508  */
23509 
23510 static void
23511 sd_clear_vtoc(struct sd_lun *un)
23512 {
23513 	struct dk_label		*dkl;
23514 
23515 	mutex_exit(SD_MUTEX(un));
23516 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23517 	mutex_enter(SD_MUTEX(un));
23518 	/*
23519 	 * sd_set_vtoc uses these fields in order to figure out
23520 	 * where to overwrite the backup labels
23521 	 */
23522 	dkl->dkl_apc    = un->un_g.dkg_apc;
23523 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23524 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23525 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23526 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23527 	mutex_exit(SD_MUTEX(un));
23528 	(void) sd_set_vtoc(un, dkl);
23529 	kmem_free(dkl, sizeof (struct dk_label));
23530 
23531 	mutex_enter(SD_MUTEX(un));
23532 }
23533 
23534 /*
23535  *    Function: sd_write_label
23536  *
23537  * Description: This routine will validate and write the driver soft state vtoc
23538  *		contents to the device.
23539  *
23540  *   Arguments: dev - the device number
23541  *
23542  * Return Code: the code returned by sd_send_scsi_cmd()
23543  *		0
23544  *		EINVAL
23545  *		ENXIO
23546  *		ENOMEM
23547  */
23548 
23549 static int
23550 sd_write_label(dev_t dev)
23551 {
23552 	struct sd_lun		*un;
23553 	struct dk_label		*dkl;
23554 	short			sum;
23555 	short			*sp;
23556 	int			i;
23557 	int			rval;
23558 
23559 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23560 	    (un->un_state == SD_STATE_OFFLINE)) {
23561 		return (ENXIO);
23562 	}
23563 	ASSERT(mutex_owned(SD_MUTEX(un)));
23564 	mutex_exit(SD_MUTEX(un));
23565 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23566 	mutex_enter(SD_MUTEX(un));
23567 
23568 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23569 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23570 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23571 	dkl->dkl_apc	= un->un_g.dkg_apc;
23572 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23573 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23574 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23575 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23576 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23577 
23578 #if defined(_SUNOS_VTOC_8)
23579 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23580 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23581 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23582 	for (i = 0; i < NDKMAP; i++) {
23583 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23584 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23585 	}
23586 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23587 #elif defined(_SUNOS_VTOC_16)
23588 	dkl->dkl_skew	= un->un_dkg_skew;
23589 #else
23590 #error "No VTOC format defined."
23591 #endif
23592 
23593 	dkl->dkl_magic			= DKL_MAGIC;
23594 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23595 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23596 
23597 	/* Construct checksum for the new disk label */
23598 	sum = 0;
23599 	sp = (short *)dkl;
23600 	i = sizeof (struct dk_label) / sizeof (short);
23601 	while (i--) {
23602 		sum ^= *sp++;
23603 	}
23604 	dkl->dkl_cksum = sum;
23605 
23606 	mutex_exit(SD_MUTEX(un));
23607 
23608 	rval = sd_set_vtoc(un, dkl);
23609 exit:
23610 	kmem_free(dkl, sizeof (struct dk_label));
23611 	mutex_enter(SD_MUTEX(un));
23612 	return (rval);
23613 }
23614 
23615 static int
23616 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23617 {
23618 	struct sd_lun	*un = NULL;
23619 	dk_efi_t	user_efi;
23620 	int		rval = 0;
23621 	void		*buffer;
23622 
23623 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23624 		return (ENXIO);
23625 
23626 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23627 		return (EFAULT);
23628 
23629 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23630 
23631 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23632 	    (user_efi.dki_length > un->un_max_xfer_size))
23633 		return (EINVAL);
23634 
23635 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23636 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23637 		rval = EFAULT;
23638 	} else {
23639 		/*
23640 		 * let's clear the vtoc labels and clear the softstate
23641 		 * vtoc.
23642 		 */
23643 		mutex_enter(SD_MUTEX(un));
23644 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23645 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23646 				"sd_dkio_set_efi: CLEAR VTOC\n");
23647 			sd_clear_vtoc(un);
23648 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23649 			mutex_exit(SD_MUTEX(un));
23650 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23651 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23652 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23653 			    S_IFBLK,
23654 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23655 			    un->un_node_type, NULL);
23656 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23657 			    S_IFCHR,
23658 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23659 			    un->un_node_type, NULL);
23660 		} else
23661 			mutex_exit(SD_MUTEX(un));
23662 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23663 		    user_efi.dki_lba, SD_PATH_DIRECT);
23664 		if (rval == 0) {
23665 			mutex_enter(SD_MUTEX(un));
23666 			un->un_f_geometry_is_valid = FALSE;
23667 			mutex_exit(SD_MUTEX(un));
23668 		}
23669 	}
23670 	kmem_free(buffer, user_efi.dki_length);
23671 	return (rval);
23672 }
23673 
23674 /*
23675  *    Function: sd_dkio_get_mboot
23676  *
23677  * Description: This routine is the driver entry point for handling user
23678  *		requests to get the current device mboot (DKIOCGMBOOT)
23679  *
23680  *   Arguments: dev  - the device number
23681  *		arg  - pointer to user provided mboot structure specifying
23682  *			the current mboot.
23683  *		flag - this argument is a pass through to ddi_copyxxx()
23684  *		       directly from the mode argument of ioctl().
23685  *
23686  * Return Code: 0
23687  *		EINVAL
23688  *		EFAULT
23689  *		ENXIO
23690  */
23691 
23692 static int
23693 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23694 {
23695 	struct sd_lun	*un;
23696 	struct mboot	*mboot;
23697 	int		rval;
23698 	size_t		buffer_size;
23699 
23700 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23701 	    (un->un_state == SD_STATE_OFFLINE)) {
23702 		return (ENXIO);
23703 	}
23704 
23705 	if (!un->un_f_mboot_supported || arg == NULL) {
23706 		return (EINVAL);
23707 	}
23708 
23709 	/*
23710 	 * Read the mboot block, located at absolute block 0 on the target.
23711 	 */
23712 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23713 
23714 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23715 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23716 
23717 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23718 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23719 	    SD_PATH_STANDARD)) == 0) {
23720 		if (ddi_copyout(mboot, (void *)arg,
23721 		    sizeof (struct mboot), flag) != 0) {
23722 			rval = EFAULT;
23723 		}
23724 	}
23725 	kmem_free(mboot, buffer_size);
23726 	return (rval);
23727 }
23728 
23729 
23730 /*
23731  *    Function: sd_dkio_set_mboot
23732  *
23733  * Description: This routine is the driver entry point for handling user
23734  *		requests to validate and set the device master boot
23735  *		(DKIOCSMBOOT).
23736  *
23737  *   Arguments: dev  - the device number
23738  *		arg  - pointer to user provided mboot structure used to set the
23739  *			master boot.
23740  *		flag - this argument is a pass through to ddi_copyxxx()
23741  *		       directly from the mode argument of ioctl().
23742  *
23743  * Return Code: 0
23744  *		EINVAL
23745  *		EFAULT
23746  *		ENXIO
23747  */
23748 
23749 static int
23750 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23751 {
23752 	struct sd_lun	*un = NULL;
23753 	struct mboot	*mboot = NULL;
23754 	int		rval;
23755 	ushort_t	magic;
23756 
23757 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23758 		return (ENXIO);
23759 	}
23760 
23761 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23762 
23763 	if (!un->un_f_mboot_supported) {
23764 		return (EINVAL);
23765 	}
23766 
23767 	if (arg == NULL) {
23768 		return (EINVAL);
23769 	}
23770 
23771 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23772 
23773 	if (ddi_copyin((const void *)arg, mboot,
23774 	    sizeof (struct mboot), flag) != 0) {
23775 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23776 		return (EFAULT);
23777 	}
23778 
23779 	/* Is this really a master boot record? */
23780 	magic = LE_16(mboot->signature);
23781 	if (magic != MBB_MAGIC) {
23782 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23783 		return (EINVAL);
23784 	}
23785 
23786 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23787 	    SD_PATH_STANDARD);
23788 
23789 	mutex_enter(SD_MUTEX(un));
23790 #if defined(__i386) || defined(__amd64)
23791 	if (rval == 0) {
23792 		/*
23793 		 * mboot has been written successfully.
23794 		 * update the fdisk and vtoc tables in memory
23795 		 */
23796 		rval = sd_update_fdisk_and_vtoc(un);
23797 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23798 			mutex_exit(SD_MUTEX(un));
23799 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23800 			return (rval);
23801 		}
23802 	}
23803 
23804 	/*
23805 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23806 	 * Also preserve the device id by writing to the disk acyl for the case
23807 	 * where a devid has been fabricated.
23808 	 */
23809 	if (un->un_f_devid_supported && un->un_f_opt_fab_devid) {
23810 		if (un->un_devid == NULL) {
23811 			sd_register_devid(un, SD_DEVINFO(un),
23812 			    SD_TARGET_IS_UNRESERVED);
23813 		} else {
23814 			/*
23815 			 * The device id for this disk has been
23816 			 * fabricated. Fabricated device id's are
23817 			 * managed by storing them in the last 2
23818 			 * available sectors on the drive. The device
23819 			 * id must be preserved by writing it back out
23820 			 * to this location.
23821 			 */
23822 			if (sd_write_deviceid(un) != 0) {
23823 				ddi_devid_free(un->un_devid);
23824 				un->un_devid = NULL;
23825 			}
23826 		}
23827 	}
23828 
23829 #ifdef __lock_lint
23830 	sd_setup_default_geometry(un);
23831 #endif
23832 
23833 #else
23834 	if (rval == 0) {
23835 		/*
23836 		 * mboot has been written successfully.
23837 		 * set up the default geometry and VTOC
23838 		 */
23839 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23840 			sd_setup_default_geometry(un);
23841 	}
23842 #endif
23843 	mutex_exit(SD_MUTEX(un));
23844 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23845 	return (rval);
23846 }
23847 
23848 
23849 /*
23850  *    Function: sd_setup_default_geometry
23851  *
23852  * Description: This local utility routine sets the default geometry as part of
23853  *		setting the device mboot.
23854  *
23855  *   Arguments: un - driver soft state (unit) structure
23856  *
23857  * Note: This may be redundant with sd_build_default_label.
23858  */
23859 
23860 static void
23861 sd_setup_default_geometry(struct sd_lun *un)
23862 {
23863 	/* zero out the soft state geometry and partition table. */
23864 	bzero(&un->un_g, sizeof (struct dk_geom));
23865 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23866 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23867 	un->un_asciilabel[0] = '\0';
23868 
23869 	/*
23870 	 * For the rpm, we use the minimum for the disk.
23871 	 * For the head, cyl and number of sector per track,
23872 	 * if the capacity <= 1GB, head = 64, sect = 32.
23873 	 * else head = 255, sect 63
23874 	 * Note: the capacity should be equal to C*H*S values.
23875 	 * This will cause some truncation of size due to
23876 	 * round off errors. For CD-ROMs, this truncation can
23877 	 * have adverse side effects, so returning ncyl and
23878 	 * nhead as 1. The nsect will overflow for most of
23879 	 * CD-ROMs as nsect is of type ushort.
23880 	 */
23881 	if (ISCD(un)) {
23882 		un->un_g.dkg_ncyl = 1;
23883 		un->un_g.dkg_nhead = 1;
23884 		un->un_g.dkg_nsect = un->un_blockcount;
23885 	} else {
23886 		if (un->un_blockcount <= 0x1000) {
23887 			/* Needed for unlabeled SCSI floppies. */
23888 			un->un_g.dkg_nhead = 2;
23889 			un->un_g.dkg_ncyl = 80;
23890 			un->un_g.dkg_pcyl = 80;
23891 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23892 		} else if (un->un_blockcount <= 0x200000) {
23893 			un->un_g.dkg_nhead = 64;
23894 			un->un_g.dkg_nsect = 32;
23895 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23896 		} else {
23897 			un->un_g.dkg_nhead = 255;
23898 			un->un_g.dkg_nsect = 63;
23899 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23900 		}
23901 		un->un_blockcount = un->un_g.dkg_ncyl *
23902 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23903 	}
23904 	un->un_g.dkg_acyl = 0;
23905 	un->un_g.dkg_bcyl = 0;
23906 	un->un_g.dkg_intrlv = 1;
23907 	un->un_g.dkg_rpm = 200;
23908 	un->un_g.dkg_read_reinstruct = 0;
23909 	un->un_g.dkg_write_reinstruct = 0;
23910 	if (un->un_g.dkg_pcyl == 0) {
23911 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23912 	}
23913 
23914 	un->un_map['a'-'a'].dkl_cylno = 0;
23915 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23916 	un->un_map['c'-'a'].dkl_cylno = 0;
23917 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23918 	un->un_f_geometry_is_valid = FALSE;
23919 }
23920 
23921 
23922 #if defined(__i386) || defined(__amd64)
23923 /*
23924  *    Function: sd_update_fdisk_and_vtoc
23925  *
23926  * Description: This local utility routine updates the device fdisk and vtoc
23927  *		as part of setting the device mboot.
23928  *
23929  *   Arguments: un - driver soft state (unit) structure
23930  *
23931  * Return Code: 0 for success or errno-type return code.
23932  *
23933  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23934  *		these did exist seperately in x86 sd.c!!!
23935  */
23936 
23937 static int
23938 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23939 {
23940 	static char	labelstring[128];
23941 	static char	buf[256];
23942 	char		*label = 0;
23943 	int		count;
23944 	int		label_rc = 0;
23945 	int		gvalid = un->un_f_geometry_is_valid;
23946 	int		fdisk_rval;
23947 	int		lbasize;
23948 	int		capacity;
23949 
23950 	ASSERT(mutex_owned(SD_MUTEX(un)));
23951 
23952 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23953 		return (EINVAL);
23954 	}
23955 
23956 	if (un->un_f_blockcount_is_valid == FALSE) {
23957 		return (EINVAL);
23958 	}
23959 
23960 #if defined(_SUNOS_VTOC_16)
23961 	/*
23962 	 * Set up the "whole disk" fdisk partition; this should always
23963 	 * exist, regardless of whether the disk contains an fdisk table
23964 	 * or vtoc.
23965 	 */
23966 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23967 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23968 #endif	/* defined(_SUNOS_VTOC_16) */
23969 
23970 	/*
23971 	 * copy the lbasize and capacity so that if they're
23972 	 * reset while we're not holding the SD_MUTEX(un), we will
23973 	 * continue to use valid values after the SD_MUTEX(un) is
23974 	 * reacquired.
23975 	 */
23976 	lbasize  = un->un_tgt_blocksize;
23977 	capacity = un->un_blockcount;
23978 
23979 	/*
23980 	 * refresh the logical and physical geometry caches.
23981 	 * (data from mode sense format/rigid disk geometry pages,
23982 	 * and scsi_ifgetcap("geometry").
23983 	 */
23984 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23985 
23986 	/*
23987 	 * Only DIRECT ACCESS devices will have Sun labels.
23988 	 * CD's supposedly have a Sun label, too
23989 	 */
23990 	if (un->un_f_vtoc_label_supported) {
23991 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23992 		    SD_PATH_DIRECT);
23993 		if (fdisk_rval == SD_CMD_FAILURE) {
23994 			ASSERT(mutex_owned(SD_MUTEX(un)));
23995 			return (EIO);
23996 		}
23997 
23998 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23999 			ASSERT(mutex_owned(SD_MUTEX(un)));
24000 			return (EACCES);
24001 		}
24002 
24003 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24004 			/*
24005 			 * Found fdisk table but no Solaris partition entry,
24006 			 * so don't call sd_uselabel() and don't create
24007 			 * a default label.
24008 			 */
24009 			label_rc = 0;
24010 			un->un_f_geometry_is_valid = TRUE;
24011 			goto no_solaris_partition;
24012 		}
24013 
24014 #if defined(_SUNOS_VTOC_8)
24015 		label = (char *)un->un_asciilabel;
24016 #elif defined(_SUNOS_VTOC_16)
24017 		label = (char *)un->un_vtoc.v_asciilabel;
24018 #else
24019 #error "No VTOC format defined."
24020 #endif
24021 	} else if (capacity < 0) {
24022 		ASSERT(mutex_owned(SD_MUTEX(un)));
24023 		return (EINVAL);
24024 	}
24025 
24026 	/*
24027 	 * For Removable media We reach here if we have found a
24028 	 * SOLARIS PARTITION.
24029 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24030 	 * PARTITION has changed from the previous one, hence we will setup a
24031 	 * default VTOC in this case.
24032 	 */
24033 	if (un->un_f_geometry_is_valid == FALSE) {
24034 		sd_build_default_label(un);
24035 		label_rc = 0;
24036 	}
24037 
24038 no_solaris_partition:
24039 	if ((!un->un_f_has_removable_media ||
24040 	    (un->un_f_has_removable_media &&
24041 	    un->un_mediastate == DKIO_EJECTED)) &&
24042 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24043 		/*
24044 		 * Print out a message indicating who and what we are.
24045 		 * We do this only when we happen to really validate the
24046 		 * geometry. We may call sd_validate_geometry() at other
24047 		 * times, ioctl()'s like Get VTOC in which case we
24048 		 * don't want to print the label.
24049 		 * If the geometry is valid, print the label string,
24050 		 * else print vendor and product info, if available
24051 		 */
24052 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24053 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24054 		} else {
24055 			mutex_enter(&sd_label_mutex);
24056 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24057 			    labelstring);
24058 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24059 			    &labelstring[64]);
24060 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24061 			    labelstring, &labelstring[64]);
24062 			if (un->un_f_blockcount_is_valid == TRUE) {
24063 				(void) sprintf(&buf[strlen(buf)],
24064 				    ", %" PRIu64 " %u byte blocks\n",
24065 				    un->un_blockcount,
24066 				    un->un_tgt_blocksize);
24067 			} else {
24068 				(void) sprintf(&buf[strlen(buf)],
24069 				    ", (unknown capacity)\n");
24070 			}
24071 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24072 			mutex_exit(&sd_label_mutex);
24073 		}
24074 	}
24075 
24076 #if defined(_SUNOS_VTOC_16)
24077 	/*
24078 	 * If we have valid geometry, set up the remaining fdisk partitions.
24079 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24080 	 * we set it to an entirely bogus value.
24081 	 */
24082 	for (count = 0; count < FD_NUMPART; count++) {
24083 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24084 		un->un_map[FDISK_P1 + count].dkl_nblk =
24085 		    un->un_fmap[count].fmap_nblk;
24086 		un->un_offset[FDISK_P1 + count] =
24087 		    un->un_fmap[count].fmap_start;
24088 	}
24089 #endif
24090 
24091 	for (count = 0; count < NDKMAP; count++) {
24092 #if defined(_SUNOS_VTOC_8)
24093 		struct dk_map *lp  = &un->un_map[count];
24094 		un->un_offset[count] =
24095 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24096 #elif defined(_SUNOS_VTOC_16)
24097 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24098 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24099 #else
24100 #error "No VTOC format defined."
24101 #endif
24102 	}
24103 
24104 	ASSERT(mutex_owned(SD_MUTEX(un)));
24105 	return (label_rc);
24106 }
24107 #endif
24108 
24109 
24110 /*
24111  *    Function: sd_check_media
24112  *
24113  * Description: This utility routine implements the functionality for the
24114  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24115  *		driver state changes from that specified by the user
24116  *		(inserted or ejected). For example, if the user specifies
24117  *		DKIO_EJECTED and the current media state is inserted this
24118  *		routine will immediately return DKIO_INSERTED. However, if the
24119  *		current media state is not inserted the user thread will be
24120  *		blocked until the drive state changes. If DKIO_NONE is specified
24121  *		the user thread will block until a drive state change occurs.
24122  *
24123  *   Arguments: dev  - the device number
24124  *		state  - user pointer to a dkio_state, updated with the current
24125  *			drive state at return.
24126  *
24127  * Return Code: ENXIO
24128  *		EIO
24129  *		EAGAIN
24130  *		EINTR
24131  */
24132 
24133 static int
24134 sd_check_media(dev_t dev, enum dkio_state state)
24135 {
24136 	struct sd_lun		*un = NULL;
24137 	enum dkio_state		prev_state;
24138 	opaque_t		token = NULL;
24139 	int			rval = 0;
24140 
24141 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24142 		return (ENXIO);
24143 	}
24144 
24145 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24146 
24147 	mutex_enter(SD_MUTEX(un));
24148 
24149 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24150 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24151 
24152 	prev_state = un->un_mediastate;
24153 
24154 	/* is there anything to do? */
24155 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24156 		/*
24157 		 * submit the request to the scsi_watch service;
24158 		 * scsi_media_watch_cb() does the real work
24159 		 */
24160 		mutex_exit(SD_MUTEX(un));
24161 
24162 		/*
24163 		 * This change handles the case where a scsi watch request is
24164 		 * added to a device that is powered down. To accomplish this
24165 		 * we power up the device before adding the scsi watch request,
24166 		 * since the scsi watch sends a TUR directly to the device
24167 		 * which the device cannot handle if it is powered down.
24168 		 */
24169 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24170 			mutex_enter(SD_MUTEX(un));
24171 			goto done;
24172 		}
24173 
24174 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24175 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24176 		    (caddr_t)dev);
24177 
24178 		sd_pm_exit(un);
24179 
24180 		mutex_enter(SD_MUTEX(un));
24181 		if (token == NULL) {
24182 			rval = EAGAIN;
24183 			goto done;
24184 		}
24185 
24186 		/*
24187 		 * This is a special case IOCTL that doesn't return
24188 		 * until the media state changes. Routine sdpower
24189 		 * knows about and handles this so don't count it
24190 		 * as an active cmd in the driver, which would
24191 		 * keep the device busy to the pm framework.
24192 		 * If the count isn't decremented the device can't
24193 		 * be powered down.
24194 		 */
24195 		un->un_ncmds_in_driver--;
24196 		ASSERT(un->un_ncmds_in_driver >= 0);
24197 
24198 		/*
24199 		 * if a prior request had been made, this will be the same
24200 		 * token, as scsi_watch was designed that way.
24201 		 */
24202 		un->un_swr_token = token;
24203 		un->un_specified_mediastate = state;
24204 
24205 		/*
24206 		 * now wait for media change
24207 		 * we will not be signalled unless mediastate == state but it is
24208 		 * still better to test for this condition, since there is a
24209 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24210 		 */
24211 		SD_TRACE(SD_LOG_COMMON, un,
24212 		    "sd_check_media: waiting for media state change\n");
24213 		while (un->un_mediastate == state) {
24214 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24215 				SD_TRACE(SD_LOG_COMMON, un,
24216 				    "sd_check_media: waiting for media state "
24217 				    "was interrupted\n");
24218 				un->un_ncmds_in_driver++;
24219 				rval = EINTR;
24220 				goto done;
24221 			}
24222 			SD_TRACE(SD_LOG_COMMON, un,
24223 			    "sd_check_media: received signal, state=%x\n",
24224 			    un->un_mediastate);
24225 		}
24226 		/*
24227 		 * Inc the counter to indicate the device once again
24228 		 * has an active outstanding cmd.
24229 		 */
24230 		un->un_ncmds_in_driver++;
24231 	}
24232 
24233 	/* invalidate geometry */
24234 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24235 		sr_ejected(un);
24236 	}
24237 
24238 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24239 		uint64_t	capacity;
24240 		uint_t		lbasize;
24241 
24242 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24243 		mutex_exit(SD_MUTEX(un));
24244 		/*
24245 		 * Since the following routines use SD_PATH_DIRECT, we must
24246 		 * call PM directly before the upcoming disk accesses. This
24247 		 * may cause the disk to be power/spin up.
24248 		 */
24249 
24250 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24251 			rval = sd_send_scsi_READ_CAPACITY(un,
24252 			    &capacity,
24253 			    &lbasize, SD_PATH_DIRECT);
24254 			if (rval != 0) {
24255 				sd_pm_exit(un);
24256 				mutex_enter(SD_MUTEX(un));
24257 				goto done;
24258 			}
24259 		} else {
24260 			rval = EIO;
24261 			mutex_enter(SD_MUTEX(un));
24262 			goto done;
24263 		}
24264 		mutex_enter(SD_MUTEX(un));
24265 
24266 		sd_update_block_info(un, lbasize, capacity);
24267 
24268 		un->un_f_geometry_is_valid	= FALSE;
24269 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24270 
24271 		mutex_exit(SD_MUTEX(un));
24272 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24273 		    SD_PATH_DIRECT);
24274 		sd_pm_exit(un);
24275 
24276 		mutex_enter(SD_MUTEX(un));
24277 	}
24278 done:
24279 	un->un_f_watcht_stopped = FALSE;
24280 	if (un->un_swr_token) {
24281 		/*
24282 		 * Use of this local token and the mutex ensures that we avoid
24283 		 * some race conditions associated with terminating the
24284 		 * scsi watch.
24285 		 */
24286 		token = un->un_swr_token;
24287 		un->un_swr_token = (opaque_t)NULL;
24288 		mutex_exit(SD_MUTEX(un));
24289 		(void) scsi_watch_request_terminate(token,
24290 		    SCSI_WATCH_TERMINATE_WAIT);
24291 		mutex_enter(SD_MUTEX(un));
24292 	}
24293 
24294 	/*
24295 	 * Update the capacity kstat value, if no media previously
24296 	 * (capacity kstat is 0) and a media has been inserted
24297 	 * (un_f_blockcount_is_valid == TRUE)
24298 	 */
24299 	if (un->un_errstats) {
24300 		struct sd_errstats	*stp = NULL;
24301 
24302 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24303 		if ((stp->sd_capacity.value.ui64 == 0) &&
24304 		    (un->un_f_blockcount_is_valid == TRUE)) {
24305 			stp->sd_capacity.value.ui64 =
24306 			    (uint64_t)((uint64_t)un->un_blockcount *
24307 			    un->un_sys_blocksize);
24308 		}
24309 	}
24310 	mutex_exit(SD_MUTEX(un));
24311 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24312 	return (rval);
24313 }
24314 
24315 
24316 /*
24317  *    Function: sd_delayed_cv_broadcast
24318  *
24319  * Description: Delayed cv_broadcast to allow for target to recover from media
24320  *		insertion.
24321  *
24322  *   Arguments: arg - driver soft state (unit) structure
24323  */
24324 
24325 static void
24326 sd_delayed_cv_broadcast(void *arg)
24327 {
24328 	struct sd_lun *un = arg;
24329 
24330 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24331 
24332 	mutex_enter(SD_MUTEX(un));
24333 	un->un_dcvb_timeid = NULL;
24334 	cv_broadcast(&un->un_state_cv);
24335 	mutex_exit(SD_MUTEX(un));
24336 }
24337 
24338 
24339 /*
24340  *    Function: sd_media_watch_cb
24341  *
24342  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24343  *		routine processes the TUR sense data and updates the driver
24344  *		state if a transition has occurred. The user thread
24345  *		(sd_check_media) is then signalled.
24346  *
24347  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24348  *			among multiple watches that share this callback function
24349  *		resultp - scsi watch facility result packet containing scsi
24350  *			  packet, status byte and sense data
24351  *
24352  * Return Code: 0 for success, -1 for failure
24353  */
24354 
24355 static int
24356 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24357 {
24358 	struct sd_lun			*un;
24359 	struct scsi_status		*statusp = resultp->statusp;
24360 	struct scsi_extended_sense	*sensep = resultp->sensep;
24361 	enum dkio_state			state = DKIO_NONE;
24362 	dev_t				dev = (dev_t)arg;
24363 	uchar_t				actual_sense_length;
24364 
24365 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24366 		return (-1);
24367 	}
24368 	actual_sense_length = resultp->actual_sense_length;
24369 
24370 	mutex_enter(SD_MUTEX(un));
24371 	SD_TRACE(SD_LOG_COMMON, un,
24372 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24373 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24374 
24375 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24376 		un->un_mediastate = DKIO_DEV_GONE;
24377 		cv_broadcast(&un->un_state_cv);
24378 		mutex_exit(SD_MUTEX(un));
24379 
24380 		return (0);
24381 	}
24382 
24383 	/*
24384 	 * If there was a check condition then sensep points to valid sense data
24385 	 * If status was not a check condition but a reservation or busy status
24386 	 * then the new state is DKIO_NONE
24387 	 */
24388 	if (sensep != NULL) {
24389 		SD_INFO(SD_LOG_COMMON, un,
24390 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24391 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
24392 		/* This routine only uses up to 13 bytes of sense data. */
24393 		if (actual_sense_length >= 13) {
24394 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
24395 				if (sensep->es_add_code == 0x28) {
24396 					state = DKIO_INSERTED;
24397 				}
24398 			} else {
24399 				/*
24400 				 * if 02/04/02  means that the host
24401 				 * should send start command. Explicitly
24402 				 * leave the media state as is
24403 				 * (inserted) as the media is inserted
24404 				 * and host has stopped device for PM
24405 				 * reasons. Upon next true read/write
24406 				 * to this media will bring the
24407 				 * device to the right state good for
24408 				 * media access.
24409 				 */
24410 				if ((sensep->es_key == KEY_NOT_READY) &&
24411 				    (sensep->es_add_code == 0x3a)) {
24412 					state = DKIO_EJECTED;
24413 				}
24414 
24415 				/*
24416 				 * If the drivge is busy with an operation
24417 				 * or long write, keep the media in an
24418 				 * inserted state.
24419 				 */
24420 
24421 				if ((sensep->es_key == KEY_NOT_READY) &&
24422 				    (sensep->es_add_code == 0x04) &&
24423 				    ((sensep->es_qual_code == 0x02) ||
24424 				    (sensep->es_qual_code == 0x07) ||
24425 				    (sensep->es_qual_code == 0x08))) {
24426 					state = DKIO_INSERTED;
24427 				}
24428 			}
24429 		}
24430 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24431 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24432 		state = DKIO_INSERTED;
24433 	}
24434 
24435 	SD_TRACE(SD_LOG_COMMON, un,
24436 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24437 	    state, un->un_specified_mediastate);
24438 
24439 	/*
24440 	 * now signal the waiting thread if this is *not* the specified state;
24441 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24442 	 * to recover
24443 	 */
24444 	if (state != un->un_specified_mediastate) {
24445 		un->un_mediastate = state;
24446 		if (state == DKIO_INSERTED) {
24447 			/*
24448 			 * delay the signal to give the drive a chance
24449 			 * to do what it apparently needs to do
24450 			 */
24451 			SD_TRACE(SD_LOG_COMMON, un,
24452 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24453 			if (un->un_dcvb_timeid == NULL) {
24454 				un->un_dcvb_timeid =
24455 				    timeout(sd_delayed_cv_broadcast, un,
24456 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24457 			}
24458 		} else {
24459 			SD_TRACE(SD_LOG_COMMON, un,
24460 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24461 			cv_broadcast(&un->un_state_cv);
24462 		}
24463 	}
24464 	mutex_exit(SD_MUTEX(un));
24465 	return (0);
24466 }
24467 
24468 
24469 /*
24470  *    Function: sd_dkio_get_temp
24471  *
24472  * Description: This routine is the driver entry point for handling ioctl
24473  *		requests to get the disk temperature.
24474  *
24475  *   Arguments: dev  - the device number
24476  *		arg  - pointer to user provided dk_temperature structure.
24477  *		flag - this argument is a pass through to ddi_copyxxx()
24478  *		       directly from the mode argument of ioctl().
24479  *
24480  * Return Code: 0
24481  *		EFAULT
24482  *		ENXIO
24483  *		EAGAIN
24484  */
24485 
24486 static int
24487 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24488 {
24489 	struct sd_lun		*un = NULL;
24490 	struct dk_temperature	*dktemp = NULL;
24491 	uchar_t			*temperature_page;
24492 	int			rval = 0;
24493 	int			path_flag = SD_PATH_STANDARD;
24494 
24495 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24496 		return (ENXIO);
24497 	}
24498 
24499 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24500 
24501 	/* copyin the disk temp argument to get the user flags */
24502 	if (ddi_copyin((void *)arg, dktemp,
24503 	    sizeof (struct dk_temperature), flag) != 0) {
24504 		rval = EFAULT;
24505 		goto done;
24506 	}
24507 
24508 	/* Initialize the temperature to invalid. */
24509 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24510 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24511 
24512 	/*
24513 	 * Note: Investigate removing the "bypass pm" semantic.
24514 	 * Can we just bypass PM always?
24515 	 */
24516 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24517 		path_flag = SD_PATH_DIRECT;
24518 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24519 		mutex_enter(&un->un_pm_mutex);
24520 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24521 			/*
24522 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24523 			 * in low power mode, we can not wake it up, Need to
24524 			 * return EAGAIN.
24525 			 */
24526 			mutex_exit(&un->un_pm_mutex);
24527 			rval = EAGAIN;
24528 			goto done;
24529 		} else {
24530 			/*
24531 			 * Indicate to PM the device is busy. This is required
24532 			 * to avoid a race - i.e. the ioctl is issuing a
24533 			 * command and the pm framework brings down the device
24534 			 * to low power mode (possible power cut-off on some
24535 			 * platforms).
24536 			 */
24537 			mutex_exit(&un->un_pm_mutex);
24538 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24539 				rval = EAGAIN;
24540 				goto done;
24541 			}
24542 		}
24543 	}
24544 
24545 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24546 
24547 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24548 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24549 		goto done2;
24550 	}
24551 
24552 	/*
24553 	 * For the current temperature verify that the parameter length is 0x02
24554 	 * and the parameter code is 0x00
24555 	 */
24556 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24557 	    (temperature_page[5] == 0x00)) {
24558 		if (temperature_page[9] == 0xFF) {
24559 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24560 		} else {
24561 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24562 		}
24563 	}
24564 
24565 	/*
24566 	 * For the reference temperature verify that the parameter
24567 	 * length is 0x02 and the parameter code is 0x01
24568 	 */
24569 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24570 	    (temperature_page[11] == 0x01)) {
24571 		if (temperature_page[15] == 0xFF) {
24572 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24573 		} else {
24574 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24575 		}
24576 	}
24577 
24578 	/* Do the copyout regardless of the temperature commands status. */
24579 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24580 	    flag) != 0) {
24581 		rval = EFAULT;
24582 	}
24583 
24584 done2:
24585 	if (path_flag == SD_PATH_DIRECT) {
24586 		sd_pm_exit(un);
24587 	}
24588 
24589 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24590 done:
24591 	if (dktemp != NULL) {
24592 		kmem_free(dktemp, sizeof (struct dk_temperature));
24593 	}
24594 
24595 	return (rval);
24596 }
24597 
24598 
24599 /*
24600  *    Function: sd_log_page_supported
24601  *
24602  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24603  *		supported log pages.
24604  *
24605  *   Arguments: un -
24606  *		log_page -
24607  *
24608  * Return Code: -1 - on error (log sense is optional and may not be supported).
24609  *		0  - log page not found.
24610  *  		1  - log page found.
24611  */
24612 
24613 static int
24614 sd_log_page_supported(struct sd_lun *un, int log_page)
24615 {
24616 	uchar_t *log_page_data;
24617 	int	i;
24618 	int	match = 0;
24619 	int	log_size;
24620 
24621 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24622 
24623 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24624 	    SD_PATH_DIRECT) != 0) {
24625 		SD_ERROR(SD_LOG_COMMON, un,
24626 		    "sd_log_page_supported: failed log page retrieval\n");
24627 		kmem_free(log_page_data, 0xFF);
24628 		return (-1);
24629 	}
24630 	log_size = log_page_data[3];
24631 
24632 	/*
24633 	 * The list of supported log pages start from the fourth byte. Check
24634 	 * until we run out of log pages or a match is found.
24635 	 */
24636 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24637 		if (log_page_data[i] == log_page) {
24638 			match++;
24639 		}
24640 	}
24641 	kmem_free(log_page_data, 0xFF);
24642 	return (match);
24643 }
24644 
24645 
24646 /*
24647  *    Function: sd_mhdioc_failfast
24648  *
24649  * Description: This routine is the driver entry point for handling ioctl
24650  *		requests to enable/disable the multihost failfast option.
24651  *		(MHIOCENFAILFAST)
24652  *
24653  *   Arguments: dev	- the device number
24654  *		arg	- user specified probing interval.
24655  *		flag	- this argument is a pass through to ddi_copyxxx()
24656  *			  directly from the mode argument of ioctl().
24657  *
24658  * Return Code: 0
24659  *		EFAULT
24660  *		ENXIO
24661  */
24662 
24663 static int
24664 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24665 {
24666 	struct sd_lun	*un = NULL;
24667 	int		mh_time;
24668 	int		rval = 0;
24669 
24670 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24671 		return (ENXIO);
24672 	}
24673 
24674 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24675 		return (EFAULT);
24676 
24677 	if (mh_time) {
24678 		mutex_enter(SD_MUTEX(un));
24679 		un->un_resvd_status |= SD_FAILFAST;
24680 		mutex_exit(SD_MUTEX(un));
24681 		/*
24682 		 * If mh_time is INT_MAX, then this ioctl is being used for
24683 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24684 		 */
24685 		if (mh_time != INT_MAX) {
24686 			rval = sd_check_mhd(dev, mh_time);
24687 		}
24688 	} else {
24689 		(void) sd_check_mhd(dev, 0);
24690 		mutex_enter(SD_MUTEX(un));
24691 		un->un_resvd_status &= ~SD_FAILFAST;
24692 		mutex_exit(SD_MUTEX(un));
24693 	}
24694 	return (rval);
24695 }
24696 
24697 
24698 /*
24699  *    Function: sd_mhdioc_takeown
24700  *
24701  * Description: This routine is the driver entry point for handling ioctl
24702  *		requests to forcefully acquire exclusive access rights to the
24703  *		multihost disk (MHIOCTKOWN).
24704  *
24705  *   Arguments: dev	- the device number
24706  *		arg	- user provided structure specifying the delay
24707  *			  parameters in milliseconds
24708  *		flag	- this argument is a pass through to ddi_copyxxx()
24709  *			  directly from the mode argument of ioctl().
24710  *
24711  * Return Code: 0
24712  *		EFAULT
24713  *		ENXIO
24714  */
24715 
24716 static int
24717 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24718 {
24719 	struct sd_lun		*un = NULL;
24720 	struct mhioctkown	*tkown = NULL;
24721 	int			rval = 0;
24722 
24723 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24724 		return (ENXIO);
24725 	}
24726 
24727 	if (arg != NULL) {
24728 		tkown = (struct mhioctkown *)
24729 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24730 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24731 		if (rval != 0) {
24732 			rval = EFAULT;
24733 			goto error;
24734 		}
24735 	}
24736 
24737 	rval = sd_take_ownership(dev, tkown);
24738 	mutex_enter(SD_MUTEX(un));
24739 	if (rval == 0) {
24740 		un->un_resvd_status |= SD_RESERVE;
24741 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24742 			sd_reinstate_resv_delay =
24743 			    tkown->reinstate_resv_delay * 1000;
24744 		} else {
24745 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24746 		}
24747 		/*
24748 		 * Give the scsi_watch routine interval set by
24749 		 * the MHIOCENFAILFAST ioctl precedence here.
24750 		 */
24751 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24752 			mutex_exit(SD_MUTEX(un));
24753 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24754 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24755 			    "sd_mhdioc_takeown : %d\n",
24756 			    sd_reinstate_resv_delay);
24757 		} else {
24758 			mutex_exit(SD_MUTEX(un));
24759 		}
24760 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24761 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24762 	} else {
24763 		un->un_resvd_status &= ~SD_RESERVE;
24764 		mutex_exit(SD_MUTEX(un));
24765 	}
24766 
24767 error:
24768 	if (tkown != NULL) {
24769 		kmem_free(tkown, sizeof (struct mhioctkown));
24770 	}
24771 	return (rval);
24772 }
24773 
24774 
24775 /*
24776  *    Function: sd_mhdioc_release
24777  *
24778  * Description: This routine is the driver entry point for handling ioctl
24779  *		requests to release exclusive access rights to the multihost
24780  *		disk (MHIOCRELEASE).
24781  *
24782  *   Arguments: dev	- the device number
24783  *
24784  * Return Code: 0
24785  *		ENXIO
24786  */
24787 
24788 static int
24789 sd_mhdioc_release(dev_t dev)
24790 {
24791 	struct sd_lun		*un = NULL;
24792 	timeout_id_t		resvd_timeid_save;
24793 	int			resvd_status_save;
24794 	int			rval = 0;
24795 
24796 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24797 		return (ENXIO);
24798 	}
24799 
24800 	mutex_enter(SD_MUTEX(un));
24801 	resvd_status_save = un->un_resvd_status;
24802 	un->un_resvd_status &=
24803 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24804 	if (un->un_resvd_timeid) {
24805 		resvd_timeid_save = un->un_resvd_timeid;
24806 		un->un_resvd_timeid = NULL;
24807 		mutex_exit(SD_MUTEX(un));
24808 		(void) untimeout(resvd_timeid_save);
24809 	} else {
24810 		mutex_exit(SD_MUTEX(un));
24811 	}
24812 
24813 	/*
24814 	 * destroy any pending timeout thread that may be attempting to
24815 	 * reinstate reservation on this device.
24816 	 */
24817 	sd_rmv_resv_reclaim_req(dev);
24818 
24819 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24820 		mutex_enter(SD_MUTEX(un));
24821 		if ((un->un_mhd_token) &&
24822 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24823 			mutex_exit(SD_MUTEX(un));
24824 			(void) sd_check_mhd(dev, 0);
24825 		} else {
24826 			mutex_exit(SD_MUTEX(un));
24827 		}
24828 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24829 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24830 	} else {
24831 		/*
24832 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24833 		 */
24834 		mutex_enter(SD_MUTEX(un));
24835 		un->un_resvd_status = resvd_status_save;
24836 		mutex_exit(SD_MUTEX(un));
24837 	}
24838 	return (rval);
24839 }
24840 
24841 
24842 /*
24843  *    Function: sd_mhdioc_register_devid
24844  *
24845  * Description: This routine is the driver entry point for handling ioctl
24846  *		requests to register the device id (MHIOCREREGISTERDEVID).
24847  *
24848  *		Note: The implementation for this ioctl has been updated to
24849  *		be consistent with the original PSARC case (1999/357)
24850  *		(4375899, 4241671, 4220005)
24851  *
24852  *   Arguments: dev	- the device number
24853  *
24854  * Return Code: 0
24855  *		ENXIO
24856  */
24857 
24858 static int
24859 sd_mhdioc_register_devid(dev_t dev)
24860 {
24861 	struct sd_lun	*un = NULL;
24862 	int		rval = 0;
24863 
24864 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24865 		return (ENXIO);
24866 	}
24867 
24868 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24869 
24870 	mutex_enter(SD_MUTEX(un));
24871 
24872 	/* If a devid already exists, de-register it */
24873 	if (un->un_devid != NULL) {
24874 		ddi_devid_unregister(SD_DEVINFO(un));
24875 		/*
24876 		 * After unregister devid, needs to free devid memory
24877 		 */
24878 		ddi_devid_free(un->un_devid);
24879 		un->un_devid = NULL;
24880 	}
24881 
24882 	/* Check for reservation conflict */
24883 	mutex_exit(SD_MUTEX(un));
24884 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24885 	mutex_enter(SD_MUTEX(un));
24886 
24887 	switch (rval) {
24888 	case 0:
24889 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24890 		break;
24891 	case EACCES:
24892 		break;
24893 	default:
24894 		rval = EIO;
24895 	}
24896 
24897 	mutex_exit(SD_MUTEX(un));
24898 	return (rval);
24899 }
24900 
24901 
24902 /*
24903  *    Function: sd_mhdioc_inkeys
24904  *
24905  * Description: This routine is the driver entry point for handling ioctl
24906  *		requests to issue the SCSI-3 Persistent In Read Keys command
24907  *		to the device (MHIOCGRP_INKEYS).
24908  *
24909  *   Arguments: dev	- the device number
24910  *		arg	- user provided in_keys structure
24911  *		flag	- this argument is a pass through to ddi_copyxxx()
24912  *			  directly from the mode argument of ioctl().
24913  *
24914  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24915  *		ENXIO
24916  *		EFAULT
24917  */
24918 
24919 static int
24920 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24921 {
24922 	struct sd_lun		*un;
24923 	mhioc_inkeys_t		inkeys;
24924 	int			rval = 0;
24925 
24926 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24927 		return (ENXIO);
24928 	}
24929 
24930 #ifdef _MULTI_DATAMODEL
24931 	switch (ddi_model_convert_from(flag & FMODELS)) {
24932 	case DDI_MODEL_ILP32: {
24933 		struct mhioc_inkeys32	inkeys32;
24934 
24935 		if (ddi_copyin(arg, &inkeys32,
24936 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24937 			return (EFAULT);
24938 		}
24939 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24940 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24941 		    &inkeys, flag)) != 0) {
24942 			return (rval);
24943 		}
24944 		inkeys32.generation = inkeys.generation;
24945 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24946 		    flag) != 0) {
24947 			return (EFAULT);
24948 		}
24949 		break;
24950 	}
24951 	case DDI_MODEL_NONE:
24952 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24953 		    flag) != 0) {
24954 			return (EFAULT);
24955 		}
24956 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24957 		    &inkeys, flag)) != 0) {
24958 			return (rval);
24959 		}
24960 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24961 		    flag) != 0) {
24962 			return (EFAULT);
24963 		}
24964 		break;
24965 	}
24966 
24967 #else /* ! _MULTI_DATAMODEL */
24968 
24969 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24970 		return (EFAULT);
24971 	}
24972 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24973 	if (rval != 0) {
24974 		return (rval);
24975 	}
24976 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24977 		return (EFAULT);
24978 	}
24979 
24980 #endif /* _MULTI_DATAMODEL */
24981 
24982 	return (rval);
24983 }
24984 
24985 
24986 /*
24987  *    Function: sd_mhdioc_inresv
24988  *
24989  * Description: This routine is the driver entry point for handling ioctl
24990  *		requests to issue the SCSI-3 Persistent In Read Reservations
24991  *		command to the device (MHIOCGRP_INKEYS).
24992  *
24993  *   Arguments: dev	- the device number
24994  *		arg	- user provided in_resv structure
24995  *		flag	- this argument is a pass through to ddi_copyxxx()
24996  *			  directly from the mode argument of ioctl().
24997  *
24998  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24999  *		ENXIO
25000  *		EFAULT
25001  */
25002 
25003 static int
25004 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25005 {
25006 	struct sd_lun		*un;
25007 	mhioc_inresvs_t		inresvs;
25008 	int			rval = 0;
25009 
25010 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25011 		return (ENXIO);
25012 	}
25013 
25014 #ifdef _MULTI_DATAMODEL
25015 
25016 	switch (ddi_model_convert_from(flag & FMODELS)) {
25017 	case DDI_MODEL_ILP32: {
25018 		struct mhioc_inresvs32	inresvs32;
25019 
25020 		if (ddi_copyin(arg, &inresvs32,
25021 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25022 			return (EFAULT);
25023 		}
25024 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25025 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25026 		    &inresvs, flag)) != 0) {
25027 			return (rval);
25028 		}
25029 		inresvs32.generation = inresvs.generation;
25030 		if (ddi_copyout(&inresvs32, arg,
25031 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25032 			return (EFAULT);
25033 		}
25034 		break;
25035 	}
25036 	case DDI_MODEL_NONE:
25037 		if (ddi_copyin(arg, &inresvs,
25038 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25039 			return (EFAULT);
25040 		}
25041 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25042 		    &inresvs, flag)) != 0) {
25043 			return (rval);
25044 		}
25045 		if (ddi_copyout(&inresvs, arg,
25046 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25047 			return (EFAULT);
25048 		}
25049 		break;
25050 	}
25051 
25052 #else /* ! _MULTI_DATAMODEL */
25053 
25054 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25055 		return (EFAULT);
25056 	}
25057 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25058 	if (rval != 0) {
25059 		return (rval);
25060 	}
25061 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25062 		return (EFAULT);
25063 	}
25064 
25065 #endif /* ! _MULTI_DATAMODEL */
25066 
25067 	return (rval);
25068 }
25069 
25070 
25071 /*
25072  * The following routines support the clustering functionality described below
25073  * and implement lost reservation reclaim functionality.
25074  *
25075  * Clustering
25076  * ----------
25077  * The clustering code uses two different, independent forms of SCSI
25078  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25079  * Persistent Group Reservations. For any particular disk, it will use either
25080  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25081  *
25082  * SCSI-2
25083  * The cluster software takes ownership of a multi-hosted disk by issuing the
25084  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25085  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25086  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25087  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25088  * meaning of failfast is that if the driver (on this host) ever encounters the
25089  * scsi error return code RESERVATION_CONFLICT from the device, it should
25090  * immediately panic the host. The motivation for this ioctl is that if this
25091  * host does encounter reservation conflict, the underlying cause is that some
25092  * other host of the cluster has decided that this host is no longer in the
25093  * cluster and has seized control of the disks for itself. Since this host is no
25094  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25095  * does two things:
25096  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25097  *      error to panic the host
25098  *      (b) it sets up a periodic timer to test whether this host still has
25099  *      "access" (in that no other host has reserved the device):  if the
25100  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25101  *      purpose of that periodic timer is to handle scenarios where the host is
25102  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25103  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25104  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25105  * the device itself.
25106  *
25107  * SCSI-3 PGR
25108  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25109  * facility is supported through the shared multihost disk ioctls
25110  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25111  * MHIOCGRP_PREEMPTANDABORT)
25112  *
25113  * Reservation Reclaim:
25114  * --------------------
25115  * To support the lost reservation reclaim operations this driver creates a
25116  * single thread to handle reinstating reservations on all devices that have
25117  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25118  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25119  * and the reservation reclaim thread loops through the requests to regain the
25120  * lost reservations.
25121  */
25122 
25123 /*
25124  *    Function: sd_check_mhd()
25125  *
25126  * Description: This function sets up and submits a scsi watch request or
25127  *		terminates an existing watch request. This routine is used in
25128  *		support of reservation reclaim.
25129  *
25130  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25131  *			 among multiple watches that share the callback function
25132  *		interval - the number of microseconds specifying the watch
25133  *			   interval for issuing TEST UNIT READY commands. If
25134  *			   set to 0 the watch should be terminated. If the
25135  *			   interval is set to 0 and if the device is required
25136  *			   to hold reservation while disabling failfast, the
25137  *			   watch is restarted with an interval of
25138  *			   reinstate_resv_delay.
25139  *
25140  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25141  *		ENXIO      - Indicates an invalid device was specified
25142  *		EAGAIN     - Unable to submit the scsi watch request
25143  */
25144 
25145 static int
25146 sd_check_mhd(dev_t dev, int interval)
25147 {
25148 	struct sd_lun	*un;
25149 	opaque_t	token;
25150 
25151 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25152 		return (ENXIO);
25153 	}
25154 
25155 	/* is this a watch termination request? */
25156 	if (interval == 0) {
25157 		mutex_enter(SD_MUTEX(un));
25158 		/* if there is an existing watch task then terminate it */
25159 		if (un->un_mhd_token) {
25160 			token = un->un_mhd_token;
25161 			un->un_mhd_token = NULL;
25162 			mutex_exit(SD_MUTEX(un));
25163 			(void) scsi_watch_request_terminate(token,
25164 			    SCSI_WATCH_TERMINATE_WAIT);
25165 			mutex_enter(SD_MUTEX(un));
25166 		} else {
25167 			mutex_exit(SD_MUTEX(un));
25168 			/*
25169 			 * Note: If we return here we don't check for the
25170 			 * failfast case. This is the original legacy
25171 			 * implementation but perhaps we should be checking
25172 			 * the failfast case.
25173 			 */
25174 			return (0);
25175 		}
25176 		/*
25177 		 * If the device is required to hold reservation while
25178 		 * disabling failfast, we need to restart the scsi_watch
25179 		 * routine with an interval of reinstate_resv_delay.
25180 		 */
25181 		if (un->un_resvd_status & SD_RESERVE) {
25182 			interval = sd_reinstate_resv_delay/1000;
25183 		} else {
25184 			/* no failfast so bail */
25185 			mutex_exit(SD_MUTEX(un));
25186 			return (0);
25187 		}
25188 		mutex_exit(SD_MUTEX(un));
25189 	}
25190 
25191 	/*
25192 	 * adjust minimum time interval to 1 second,
25193 	 * and convert from msecs to usecs
25194 	 */
25195 	if (interval > 0 && interval < 1000) {
25196 		interval = 1000;
25197 	}
25198 	interval *= 1000;
25199 
25200 	/*
25201 	 * submit the request to the scsi_watch service
25202 	 */
25203 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25204 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25205 	if (token == NULL) {
25206 		return (EAGAIN);
25207 	}
25208 
25209 	/*
25210 	 * save token for termination later on
25211 	 */
25212 	mutex_enter(SD_MUTEX(un));
25213 	un->un_mhd_token = token;
25214 	mutex_exit(SD_MUTEX(un));
25215 	return (0);
25216 }
25217 
25218 
25219 /*
25220  *    Function: sd_mhd_watch_cb()
25221  *
25222  * Description: This function is the call back function used by the scsi watch
25223  *		facility. The scsi watch facility sends the "Test Unit Ready"
25224  *		and processes the status. If applicable (i.e. a "Unit Attention"
25225  *		status and automatic "Request Sense" not used) the scsi watch
25226  *		facility will send a "Request Sense" and retrieve the sense data
25227  *		to be passed to this callback function. In either case the
25228  *		automatic "Request Sense" or the facility submitting one, this
25229  *		callback is passed the status and sense data.
25230  *
25231  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25232  *			among multiple watches that share this callback function
25233  *		resultp - scsi watch facility result packet containing scsi
25234  *			  packet, status byte and sense data
25235  *
25236  * Return Code: 0 - continue the watch task
25237  *		non-zero - terminate the watch task
25238  */
25239 
25240 static int
25241 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25242 {
25243 	struct sd_lun			*un;
25244 	struct scsi_status		*statusp;
25245 	struct scsi_extended_sense	*sensep;
25246 	struct scsi_pkt			*pkt;
25247 	uchar_t				actual_sense_length;
25248 	dev_t  				dev = (dev_t)arg;
25249 
25250 	ASSERT(resultp != NULL);
25251 	statusp			= resultp->statusp;
25252 	sensep			= resultp->sensep;
25253 	pkt			= resultp->pkt;
25254 	actual_sense_length	= resultp->actual_sense_length;
25255 
25256 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25257 		return (ENXIO);
25258 	}
25259 
25260 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25261 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25262 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25263 
25264 	/* Begin processing of the status and/or sense data */
25265 	if (pkt->pkt_reason != CMD_CMPLT) {
25266 		/* Handle the incomplete packet */
25267 		sd_mhd_watch_incomplete(un, pkt);
25268 		return (0);
25269 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25270 		if (*((unsigned char *)statusp)
25271 		    == STATUS_RESERVATION_CONFLICT) {
25272 			/*
25273 			 * Handle a reservation conflict by panicking if
25274 			 * configured for failfast or by logging the conflict
25275 			 * and updating the reservation status
25276 			 */
25277 			mutex_enter(SD_MUTEX(un));
25278 			if ((un->un_resvd_status & SD_FAILFAST) &&
25279 			    (sd_failfast_enable)) {
25280 				sd_panic_for_res_conflict(un);
25281 				/*NOTREACHED*/
25282 			}
25283 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25284 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25285 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25286 			mutex_exit(SD_MUTEX(un));
25287 		}
25288 	}
25289 
25290 	if (sensep != NULL) {
25291 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25292 			mutex_enter(SD_MUTEX(un));
25293 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
25294 			    (un->un_resvd_status & SD_RESERVE)) {
25295 				/*
25296 				 * The additional sense code indicates a power
25297 				 * on or bus device reset has occurred; update
25298 				 * the reservation status.
25299 				 */
25300 				un->un_resvd_status |=
25301 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25302 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25303 				    "sd_mhd_watch_cb: Lost Reservation\n");
25304 			}
25305 		} else {
25306 			return (0);
25307 		}
25308 	} else {
25309 		mutex_enter(SD_MUTEX(un));
25310 	}
25311 
25312 	if ((un->un_resvd_status & SD_RESERVE) &&
25313 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25314 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25315 			/*
25316 			 * A reset occurred in between the last probe and this
25317 			 * one so if a timeout is pending cancel it.
25318 			 */
25319 			if (un->un_resvd_timeid) {
25320 				timeout_id_t temp_id = un->un_resvd_timeid;
25321 				un->un_resvd_timeid = NULL;
25322 				mutex_exit(SD_MUTEX(un));
25323 				(void) untimeout(temp_id);
25324 				mutex_enter(SD_MUTEX(un));
25325 			}
25326 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25327 		}
25328 		if (un->un_resvd_timeid == 0) {
25329 			/* Schedule a timeout to handle the lost reservation */
25330 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25331 			    (void *)dev,
25332 			    drv_usectohz(sd_reinstate_resv_delay));
25333 		}
25334 	}
25335 	mutex_exit(SD_MUTEX(un));
25336 	return (0);
25337 }
25338 
25339 
25340 /*
25341  *    Function: sd_mhd_watch_incomplete()
25342  *
25343  * Description: This function is used to find out why a scsi pkt sent by the
25344  *		scsi watch facility was not completed. Under some scenarios this
25345  *		routine will return. Otherwise it will send a bus reset to see
25346  *		if the drive is still online.
25347  *
25348  *   Arguments: un  - driver soft state (unit) structure
25349  *		pkt - incomplete scsi pkt
25350  */
25351 
25352 static void
25353 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25354 {
25355 	int	be_chatty;
25356 	int	perr;
25357 
25358 	ASSERT(pkt != NULL);
25359 	ASSERT(un != NULL);
25360 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25361 	perr		= (pkt->pkt_statistics & STAT_PERR);
25362 
25363 	mutex_enter(SD_MUTEX(un));
25364 	if (un->un_state == SD_STATE_DUMPING) {
25365 		mutex_exit(SD_MUTEX(un));
25366 		return;
25367 	}
25368 
25369 	switch (pkt->pkt_reason) {
25370 	case CMD_UNX_BUS_FREE:
25371 		/*
25372 		 * If we had a parity error that caused the target to drop BSY*,
25373 		 * don't be chatty about it.
25374 		 */
25375 		if (perr && be_chatty) {
25376 			be_chatty = 0;
25377 		}
25378 		break;
25379 	case CMD_TAG_REJECT:
25380 		/*
25381 		 * The SCSI-2 spec states that a tag reject will be sent by the
25382 		 * target if tagged queuing is not supported. A tag reject may
25383 		 * also be sent during certain initialization periods or to
25384 		 * control internal resources. For the latter case the target
25385 		 * may also return Queue Full.
25386 		 *
25387 		 * If this driver receives a tag reject from a target that is
25388 		 * going through an init period or controlling internal
25389 		 * resources tagged queuing will be disabled. This is a less
25390 		 * than optimal behavior but the driver is unable to determine
25391 		 * the target state and assumes tagged queueing is not supported
25392 		 */
25393 		pkt->pkt_flags = 0;
25394 		un->un_tagflags = 0;
25395 
25396 		if (un->un_f_opt_queueing == TRUE) {
25397 			un->un_throttle = min(un->un_throttle, 3);
25398 		} else {
25399 			un->un_throttle = 1;
25400 		}
25401 		mutex_exit(SD_MUTEX(un));
25402 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25403 		mutex_enter(SD_MUTEX(un));
25404 		break;
25405 	case CMD_INCOMPLETE:
25406 		/*
25407 		 * The transport stopped with an abnormal state, fallthrough and
25408 		 * reset the target and/or bus unless selection did not complete
25409 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25410 		 * go through a target/bus reset
25411 		 */
25412 		if (pkt->pkt_state == STATE_GOT_BUS) {
25413 			break;
25414 		}
25415 		/*FALLTHROUGH*/
25416 
25417 	case CMD_TIMEOUT:
25418 	default:
25419 		/*
25420 		 * The lun may still be running the command, so a lun reset
25421 		 * should be attempted. If the lun reset fails or cannot be
25422 		 * issued, than try a target reset. Lastly try a bus reset.
25423 		 */
25424 		if ((pkt->pkt_statistics &
25425 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25426 			int reset_retval = 0;
25427 			mutex_exit(SD_MUTEX(un));
25428 			if (un->un_f_allow_bus_device_reset == TRUE) {
25429 				if (un->un_f_lun_reset_enabled == TRUE) {
25430 					reset_retval =
25431 					    scsi_reset(SD_ADDRESS(un),
25432 					    RESET_LUN);
25433 				}
25434 				if (reset_retval == 0) {
25435 					reset_retval =
25436 					    scsi_reset(SD_ADDRESS(un),
25437 					    RESET_TARGET);
25438 				}
25439 			}
25440 			if (reset_retval == 0) {
25441 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25442 			}
25443 			mutex_enter(SD_MUTEX(un));
25444 		}
25445 		break;
25446 	}
25447 
25448 	/* A device/bus reset has occurred; update the reservation status. */
25449 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25450 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25451 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25452 			un->un_resvd_status |=
25453 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25454 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25455 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25456 		}
25457 	}
25458 
25459 	/*
25460 	 * The disk has been turned off; Update the device state.
25461 	 *
25462 	 * Note: Should we be offlining the disk here?
25463 	 */
25464 	if (pkt->pkt_state == STATE_GOT_BUS) {
25465 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25466 		    "Disk not responding to selection\n");
25467 		if (un->un_state != SD_STATE_OFFLINE) {
25468 			New_state(un, SD_STATE_OFFLINE);
25469 		}
25470 	} else if (be_chatty) {
25471 		/*
25472 		 * suppress messages if they are all the same pkt reason;
25473 		 * with TQ, many (up to 256) are returned with the same
25474 		 * pkt_reason
25475 		 */
25476 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25477 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25478 			    "sd_mhd_watch_incomplete: "
25479 			    "SCSI transport failed: reason '%s'\n",
25480 			    scsi_rname(pkt->pkt_reason));
25481 		}
25482 	}
25483 	un->un_last_pkt_reason = pkt->pkt_reason;
25484 	mutex_exit(SD_MUTEX(un));
25485 }
25486 
25487 
25488 /*
25489  *    Function: sd_sname()
25490  *
25491  * Description: This is a simple little routine to return a string containing
25492  *		a printable description of command status byte for use in
25493  *		logging.
25494  *
25495  *   Arguments: status - pointer to a status byte
25496  *
25497  * Return Code: char * - string containing status description.
25498  */
25499 
25500 static char *
25501 sd_sname(uchar_t status)
25502 {
25503 	switch (status & STATUS_MASK) {
25504 	case STATUS_GOOD:
25505 		return ("good status");
25506 	case STATUS_CHECK:
25507 		return ("check condition");
25508 	case STATUS_MET:
25509 		return ("condition met");
25510 	case STATUS_BUSY:
25511 		return ("busy");
25512 	case STATUS_INTERMEDIATE:
25513 		return ("intermediate");
25514 	case STATUS_INTERMEDIATE_MET:
25515 		return ("intermediate - condition met");
25516 	case STATUS_RESERVATION_CONFLICT:
25517 		return ("reservation_conflict");
25518 	case STATUS_TERMINATED:
25519 		return ("command terminated");
25520 	case STATUS_QFULL:
25521 		return ("queue full");
25522 	default:
25523 		return ("<unknown status>");
25524 	}
25525 }
25526 
25527 
25528 /*
25529  *    Function: sd_mhd_resvd_recover()
25530  *
25531  * Description: This function adds a reservation entry to the
25532  *		sd_resv_reclaim_request list and signals the reservation
25533  *		reclaim thread that there is work pending. If the reservation
25534  *		reclaim thread has not been previously created this function
25535  *		will kick it off.
25536  *
25537  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25538  *			among multiple watches that share this callback function
25539  *
25540  *     Context: This routine is called by timeout() and is run in interrupt
25541  *		context. It must not sleep or call other functions which may
25542  *		sleep.
25543  */
25544 
25545 static void
25546 sd_mhd_resvd_recover(void *arg)
25547 {
25548 	dev_t			dev = (dev_t)arg;
25549 	struct sd_lun		*un;
25550 	struct sd_thr_request	*sd_treq = NULL;
25551 	struct sd_thr_request	*sd_cur = NULL;
25552 	struct sd_thr_request	*sd_prev = NULL;
25553 	int			already_there = 0;
25554 
25555 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25556 		return;
25557 	}
25558 
25559 	mutex_enter(SD_MUTEX(un));
25560 	un->un_resvd_timeid = NULL;
25561 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25562 		/*
25563 		 * There was a reset so don't issue the reserve, allow the
25564 		 * sd_mhd_watch_cb callback function to notice this and
25565 		 * reschedule the timeout for reservation.
25566 		 */
25567 		mutex_exit(SD_MUTEX(un));
25568 		return;
25569 	}
25570 	mutex_exit(SD_MUTEX(un));
25571 
25572 	/*
25573 	 * Add this device to the sd_resv_reclaim_request list and the
25574 	 * sd_resv_reclaim_thread should take care of the rest.
25575 	 *
25576 	 * Note: We can't sleep in this context so if the memory allocation
25577 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25578 	 * reschedule the timeout for reservation.  (4378460)
25579 	 */
25580 	sd_treq = (struct sd_thr_request *)
25581 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25582 	if (sd_treq == NULL) {
25583 		return;
25584 	}
25585 
25586 	sd_treq->sd_thr_req_next = NULL;
25587 	sd_treq->dev = dev;
25588 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25589 	if (sd_tr.srq_thr_req_head == NULL) {
25590 		sd_tr.srq_thr_req_head = sd_treq;
25591 	} else {
25592 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25593 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25594 			if (sd_cur->dev == dev) {
25595 				/*
25596 				 * already in Queue so don't log
25597 				 * another request for the device
25598 				 */
25599 				already_there = 1;
25600 				break;
25601 			}
25602 			sd_prev = sd_cur;
25603 		}
25604 		if (!already_there) {
25605 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25606 			    "logging request for %lx\n", dev);
25607 			sd_prev->sd_thr_req_next = sd_treq;
25608 		} else {
25609 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25610 		}
25611 	}
25612 
25613 	/*
25614 	 * Create a kernel thread to do the reservation reclaim and free up this
25615 	 * thread. We cannot block this thread while we go away to do the
25616 	 * reservation reclaim
25617 	 */
25618 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25619 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25620 		    sd_resv_reclaim_thread, NULL,
25621 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25622 
25623 	/* Tell the reservation reclaim thread that it has work to do */
25624 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25625 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25626 }
25627 
25628 /*
25629  *    Function: sd_resv_reclaim_thread()
25630  *
25631  * Description: This function implements the reservation reclaim operations
25632  *
25633  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25634  *		      among multiple watches that share this callback function
25635  */
25636 
25637 static void
25638 sd_resv_reclaim_thread()
25639 {
25640 	struct sd_lun		*un;
25641 	struct sd_thr_request	*sd_mhreq;
25642 
25643 	/* Wait for work */
25644 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25645 	if (sd_tr.srq_thr_req_head == NULL) {
25646 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25647 		    &sd_tr.srq_resv_reclaim_mutex);
25648 	}
25649 
25650 	/* Loop while we have work */
25651 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25652 		un = ddi_get_soft_state(sd_state,
25653 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25654 		if (un == NULL) {
25655 			/*
25656 			 * softstate structure is NULL so just
25657 			 * dequeue the request and continue
25658 			 */
25659 			sd_tr.srq_thr_req_head =
25660 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25661 			kmem_free(sd_tr.srq_thr_cur_req,
25662 			    sizeof (struct sd_thr_request));
25663 			continue;
25664 		}
25665 
25666 		/* dequeue the request */
25667 		sd_mhreq = sd_tr.srq_thr_cur_req;
25668 		sd_tr.srq_thr_req_head =
25669 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25670 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25671 
25672 		/*
25673 		 * Reclaim reservation only if SD_RESERVE is still set. There
25674 		 * may have been a call to MHIOCRELEASE before we got here.
25675 		 */
25676 		mutex_enter(SD_MUTEX(un));
25677 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25678 			/*
25679 			 * Note: The SD_LOST_RESERVE flag is cleared before
25680 			 * reclaiming the reservation. If this is done after the
25681 			 * call to sd_reserve_release a reservation loss in the
25682 			 * window between pkt completion of reserve cmd and
25683 			 * mutex_enter below may not be recognized
25684 			 */
25685 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25686 			mutex_exit(SD_MUTEX(un));
25687 
25688 			if (sd_reserve_release(sd_mhreq->dev,
25689 			    SD_RESERVE) == 0) {
25690 				mutex_enter(SD_MUTEX(un));
25691 				un->un_resvd_status |= SD_RESERVE;
25692 				mutex_exit(SD_MUTEX(un));
25693 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25694 				    "sd_resv_reclaim_thread: "
25695 				    "Reservation Recovered\n");
25696 			} else {
25697 				mutex_enter(SD_MUTEX(un));
25698 				un->un_resvd_status |= SD_LOST_RESERVE;
25699 				mutex_exit(SD_MUTEX(un));
25700 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25701 				    "sd_resv_reclaim_thread: Failed "
25702 				    "Reservation Recovery\n");
25703 			}
25704 		} else {
25705 			mutex_exit(SD_MUTEX(un));
25706 		}
25707 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25708 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25709 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25710 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25711 		/*
25712 		 * wakeup the destroy thread if anyone is waiting on
25713 		 * us to complete.
25714 		 */
25715 		cv_signal(&sd_tr.srq_inprocess_cv);
25716 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25717 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25718 	}
25719 
25720 	/*
25721 	 * cleanup the sd_tr structure now that this thread will not exist
25722 	 */
25723 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25724 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25725 	sd_tr.srq_resv_reclaim_thread = NULL;
25726 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25727 	thread_exit();
25728 }
25729 
25730 
25731 /*
25732  *    Function: sd_rmv_resv_reclaim_req()
25733  *
25734  * Description: This function removes any pending reservation reclaim requests
25735  *		for the specified device.
25736  *
25737  *   Arguments: dev - the device 'dev_t'
25738  */
25739 
25740 static void
25741 sd_rmv_resv_reclaim_req(dev_t dev)
25742 {
25743 	struct sd_thr_request *sd_mhreq;
25744 	struct sd_thr_request *sd_prev;
25745 
25746 	/* Remove a reservation reclaim request from the list */
25747 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25748 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25749 		/*
25750 		 * We are attempting to reinstate reservation for
25751 		 * this device. We wait for sd_reserve_release()
25752 		 * to return before we return.
25753 		 */
25754 		cv_wait(&sd_tr.srq_inprocess_cv,
25755 		    &sd_tr.srq_resv_reclaim_mutex);
25756 	} else {
25757 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25758 		if (sd_mhreq && sd_mhreq->dev == dev) {
25759 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25760 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25761 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25762 			return;
25763 		}
25764 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25765 			if (sd_mhreq && sd_mhreq->dev == dev) {
25766 				break;
25767 			}
25768 			sd_prev = sd_mhreq;
25769 		}
25770 		if (sd_mhreq != NULL) {
25771 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25772 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25773 		}
25774 	}
25775 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25776 }
25777 
25778 
25779 /*
25780  *    Function: sd_mhd_reset_notify_cb()
25781  *
25782  * Description: This is a call back function for scsi_reset_notify. This
25783  *		function updates the softstate reserved status and logs the
25784  *		reset. The driver scsi watch facility callback function
25785  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25786  *		will reclaim the reservation.
25787  *
25788  *   Arguments: arg  - driver soft state (unit) structure
25789  */
25790 
25791 static void
25792 sd_mhd_reset_notify_cb(caddr_t arg)
25793 {
25794 	struct sd_lun *un = (struct sd_lun *)arg;
25795 
25796 	mutex_enter(SD_MUTEX(un));
25797 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25798 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25799 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25800 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25801 	}
25802 	mutex_exit(SD_MUTEX(un));
25803 }
25804 
25805 
25806 /*
25807  *    Function: sd_take_ownership()
25808  *
25809  * Description: This routine implements an algorithm to achieve a stable
25810  *		reservation on disks which don't implement priority reserve,
25811  *		and makes sure that other host lose re-reservation attempts.
25812  *		This algorithm contains of a loop that keeps issuing the RESERVE
25813  *		for some period of time (min_ownership_delay, default 6 seconds)
25814  *		During that loop, it looks to see if there has been a bus device
25815  *		reset or bus reset (both of which cause an existing reservation
25816  *		to be lost). If the reservation is lost issue RESERVE until a
25817  *		period of min_ownership_delay with no resets has gone by, or
25818  *		until max_ownership_delay has expired. This loop ensures that
25819  *		the host really did manage to reserve the device, in spite of
25820  *		resets. The looping for min_ownership_delay (default six
25821  *		seconds) is important to early generation clustering products,
25822  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25823  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25824  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25825  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25826  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25827  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25828  *		no longer "owns" the disk and will have panicked itself.  Thus,
25829  *		the host issuing the MHIOCTKOWN is assured (with timing
25830  *		dependencies) that by the time it actually starts to use the
25831  *		disk for real work, the old owner is no longer accessing it.
25832  *
25833  *		min_ownership_delay is the minimum amount of time for which the
25834  *		disk must be reserved continuously devoid of resets before the
25835  *		MHIOCTKOWN ioctl will return success.
25836  *
25837  *		max_ownership_delay indicates the amount of time by which the
25838  *		take ownership should succeed or timeout with an error.
25839  *
25840  *   Arguments: dev - the device 'dev_t'
25841  *		*p  - struct containing timing info.
25842  *
25843  * Return Code: 0 for success or error code
25844  */
25845 
25846 static int
25847 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25848 {
25849 	struct sd_lun	*un;
25850 	int		rval;
25851 	int		err;
25852 	int		reservation_count   = 0;
25853 	int		min_ownership_delay =  6000000; /* in usec */
25854 	int		max_ownership_delay = 30000000; /* in usec */
25855 	clock_t		start_time;	/* starting time of this algorithm */
25856 	clock_t		end_time;	/* time limit for giving up */
25857 	clock_t		ownership_time;	/* time limit for stable ownership */
25858 	clock_t		current_time;
25859 	clock_t		previous_current_time;
25860 
25861 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25862 		return (ENXIO);
25863 	}
25864 
25865 	/*
25866 	 * Attempt a device reservation. A priority reservation is requested.
25867 	 */
25868 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25869 	    != SD_SUCCESS) {
25870 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25871 		    "sd_take_ownership: return(1)=%d\n", rval);
25872 		return (rval);
25873 	}
25874 
25875 	/* Update the softstate reserved status to indicate the reservation */
25876 	mutex_enter(SD_MUTEX(un));
25877 	un->un_resvd_status |= SD_RESERVE;
25878 	un->un_resvd_status &=
25879 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25880 	mutex_exit(SD_MUTEX(un));
25881 
25882 	if (p != NULL) {
25883 		if (p->min_ownership_delay != 0) {
25884 			min_ownership_delay = p->min_ownership_delay * 1000;
25885 		}
25886 		if (p->max_ownership_delay != 0) {
25887 			max_ownership_delay = p->max_ownership_delay * 1000;
25888 		}
25889 	}
25890 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25891 	    "sd_take_ownership: min, max delays: %d, %d\n",
25892 	    min_ownership_delay, max_ownership_delay);
25893 
25894 	start_time = ddi_get_lbolt();
25895 	current_time	= start_time;
25896 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25897 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25898 
25899 	while (current_time - end_time < 0) {
25900 		delay(drv_usectohz(500000));
25901 
25902 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25903 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25904 				mutex_enter(SD_MUTEX(un));
25905 				rval = (un->un_resvd_status &
25906 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25907 				mutex_exit(SD_MUTEX(un));
25908 				break;
25909 			}
25910 		}
25911 		previous_current_time = current_time;
25912 		current_time = ddi_get_lbolt();
25913 		mutex_enter(SD_MUTEX(un));
25914 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25915 			ownership_time = ddi_get_lbolt() +
25916 			    drv_usectohz(min_ownership_delay);
25917 			reservation_count = 0;
25918 		} else {
25919 			reservation_count++;
25920 		}
25921 		un->un_resvd_status |= SD_RESERVE;
25922 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25923 		mutex_exit(SD_MUTEX(un));
25924 
25925 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25926 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25927 		    "reservation=%s\n", (current_time - previous_current_time),
25928 		    reservation_count ? "ok" : "reclaimed");
25929 
25930 		if (current_time - ownership_time >= 0 &&
25931 		    reservation_count >= 4) {
25932 			rval = 0; /* Achieved a stable ownership */
25933 			break;
25934 		}
25935 		if (current_time - end_time >= 0) {
25936 			rval = EACCES; /* No ownership in max possible time */
25937 			break;
25938 		}
25939 	}
25940 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25941 	    "sd_take_ownership: return(2)=%d\n", rval);
25942 	return (rval);
25943 }
25944 
25945 
25946 /*
25947  *    Function: sd_reserve_release()
25948  *
25949  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25950  *		PRIORITY RESERVE commands based on a user specified command type
25951  *
25952  *   Arguments: dev - the device 'dev_t'
25953  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25954  *		      SD_RESERVE, SD_RELEASE
25955  *
25956  * Return Code: 0 or Error Code
25957  */
25958 
25959 static int
25960 sd_reserve_release(dev_t dev, int cmd)
25961 {
25962 	struct uscsi_cmd	*com = NULL;
25963 	struct sd_lun		*un = NULL;
25964 	char			cdb[CDB_GROUP0];
25965 	int			rval;
25966 
25967 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25968 	    (cmd == SD_PRIORITY_RESERVE));
25969 
25970 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25971 		return (ENXIO);
25972 	}
25973 
25974 	/* instantiate and initialize the command and cdb */
25975 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25976 	bzero(cdb, CDB_GROUP0);
25977 	com->uscsi_flags   = USCSI_SILENT;
25978 	com->uscsi_timeout = un->un_reserve_release_time;
25979 	com->uscsi_cdblen  = CDB_GROUP0;
25980 	com->uscsi_cdb	   = cdb;
25981 	if (cmd == SD_RELEASE) {
25982 		cdb[0] = SCMD_RELEASE;
25983 	} else {
25984 		cdb[0] = SCMD_RESERVE;
25985 	}
25986 
25987 	/* Send the command. */
25988 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25989 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25990 
25991 	/*
25992 	 * "break" a reservation that is held by another host, by issuing a
25993 	 * reset if priority reserve is desired, and we could not get the
25994 	 * device.
25995 	 */
25996 	if ((cmd == SD_PRIORITY_RESERVE) &&
25997 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25998 		/*
25999 		 * First try to reset the LUN. If we cannot, then try a target
26000 		 * reset, followed by a bus reset if the target reset fails.
26001 		 */
26002 		int reset_retval = 0;
26003 		if (un->un_f_lun_reset_enabled == TRUE) {
26004 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26005 		}
26006 		if (reset_retval == 0) {
26007 			/* The LUN reset either failed or was not issued */
26008 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26009 		}
26010 		if ((reset_retval == 0) &&
26011 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26012 			rval = EIO;
26013 			kmem_free(com, sizeof (*com));
26014 			return (rval);
26015 		}
26016 
26017 		bzero(com, sizeof (struct uscsi_cmd));
26018 		com->uscsi_flags   = USCSI_SILENT;
26019 		com->uscsi_cdb	   = cdb;
26020 		com->uscsi_cdblen  = CDB_GROUP0;
26021 		com->uscsi_timeout = 5;
26022 
26023 		/*
26024 		 * Reissue the last reserve command, this time without request
26025 		 * sense.  Assume that it is just a regular reserve command.
26026 		 */
26027 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26028 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26029 	}
26030 
26031 	/* Return an error if still getting a reservation conflict. */
26032 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26033 		rval = EACCES;
26034 	}
26035 
26036 	kmem_free(com, sizeof (*com));
26037 	return (rval);
26038 }
26039 
26040 
26041 #define	SD_NDUMP_RETRIES	12
26042 /*
26043  *	System Crash Dump routine
26044  */
26045 
26046 static int
26047 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26048 {
26049 	int		instance;
26050 	int		partition;
26051 	int		i;
26052 	int		err;
26053 	struct sd_lun	*un;
26054 	struct dk_map	*lp;
26055 	struct scsi_pkt *wr_pktp;
26056 	struct buf	*wr_bp;
26057 	struct buf	wr_buf;
26058 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26059 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26060 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26061 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26062 	size_t		io_start_offset;
26063 	int		doing_rmw = FALSE;
26064 	int		rval;
26065 #if defined(__i386) || defined(__amd64)
26066 	ssize_t dma_resid;
26067 	daddr_t oblkno;
26068 #endif
26069 
26070 	instance = SDUNIT(dev);
26071 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26072 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26073 		return (ENXIO);
26074 	}
26075 
26076 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26077 
26078 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26079 
26080 	partition = SDPART(dev);
26081 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26082 
26083 	/* Validate blocks to dump at against partition size. */
26084 	lp = &un->un_map[partition];
26085 	if ((blkno + nblk) > lp->dkl_nblk) {
26086 		SD_TRACE(SD_LOG_DUMP, un,
26087 		    "sddump: dump range larger than partition: "
26088 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26089 		    blkno, nblk, lp->dkl_nblk);
26090 		return (EINVAL);
26091 	}
26092 
26093 	mutex_enter(&un->un_pm_mutex);
26094 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26095 		struct scsi_pkt *start_pktp;
26096 
26097 		mutex_exit(&un->un_pm_mutex);
26098 
26099 		/*
26100 		 * use pm framework to power on HBA 1st
26101 		 */
26102 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26103 
26104 		/*
26105 		 * Dump no long uses sdpower to power on a device, it's
26106 		 * in-line here so it can be done in polled mode.
26107 		 */
26108 
26109 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26110 
26111 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26112 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26113 
26114 		if (start_pktp == NULL) {
26115 			/* We were not given a SCSI packet, fail. */
26116 			return (EIO);
26117 		}
26118 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26119 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26120 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26121 		start_pktp->pkt_flags = FLAG_NOINTR;
26122 
26123 		mutex_enter(SD_MUTEX(un));
26124 		SD_FILL_SCSI1_LUN(un, start_pktp);
26125 		mutex_exit(SD_MUTEX(un));
26126 		/*
26127 		 * Scsi_poll returns 0 (success) if the command completes and
26128 		 * the status block is STATUS_GOOD.
26129 		 */
26130 		if (sd_scsi_poll(un, start_pktp) != 0) {
26131 			scsi_destroy_pkt(start_pktp);
26132 			return (EIO);
26133 		}
26134 		scsi_destroy_pkt(start_pktp);
26135 		(void) sd_ddi_pm_resume(un);
26136 	} else {
26137 		mutex_exit(&un->un_pm_mutex);
26138 	}
26139 
26140 	mutex_enter(SD_MUTEX(un));
26141 	un->un_throttle = 0;
26142 
26143 	/*
26144 	 * The first time through, reset the specific target device.
26145 	 * However, when cpr calls sddump we know that sd is in a
26146 	 * a good state so no bus reset is required.
26147 	 * Clear sense data via Request Sense cmd.
26148 	 * In sddump we don't care about allow_bus_device_reset anymore
26149 	 */
26150 
26151 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26152 	    (un->un_state != SD_STATE_DUMPING)) {
26153 
26154 		New_state(un, SD_STATE_DUMPING);
26155 
26156 		if (un->un_f_is_fibre == FALSE) {
26157 			mutex_exit(SD_MUTEX(un));
26158 			/*
26159 			 * Attempt a bus reset for parallel scsi.
26160 			 *
26161 			 * Note: A bus reset is required because on some host
26162 			 * systems (i.e. E420R) a bus device reset is
26163 			 * insufficient to reset the state of the target.
26164 			 *
26165 			 * Note: Don't issue the reset for fibre-channel,
26166 			 * because this tends to hang the bus (loop) for
26167 			 * too long while everyone is logging out and in
26168 			 * and the deadman timer for dumping will fire
26169 			 * before the dump is complete.
26170 			 */
26171 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26172 				mutex_enter(SD_MUTEX(un));
26173 				Restore_state(un);
26174 				mutex_exit(SD_MUTEX(un));
26175 				return (EIO);
26176 			}
26177 
26178 			/* Delay to give the device some recovery time. */
26179 			drv_usecwait(10000);
26180 
26181 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26182 				SD_INFO(SD_LOG_DUMP, un,
26183 					"sddump: sd_send_polled_RQS failed\n");
26184 			}
26185 			mutex_enter(SD_MUTEX(un));
26186 		}
26187 	}
26188 
26189 	/*
26190 	 * Convert the partition-relative block number to a
26191 	 * disk physical block number.
26192 	 */
26193 	blkno += un->un_offset[partition];
26194 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26195 
26196 
26197 	/*
26198 	 * Check if the device has a non-512 block size.
26199 	 */
26200 	wr_bp = NULL;
26201 	if (NOT_DEVBSIZE(un)) {
26202 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26203 		tgt_byte_count = nblk * un->un_sys_blocksize;
26204 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26205 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26206 			doing_rmw = TRUE;
26207 			/*
26208 			 * Calculate the block number and number of block
26209 			 * in terms of the media block size.
26210 			 */
26211 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26212 			tgt_nblk =
26213 			    ((tgt_byte_offset + tgt_byte_count +
26214 				(un->un_tgt_blocksize - 1)) /
26215 				un->un_tgt_blocksize) - tgt_blkno;
26216 
26217 			/*
26218 			 * Invoke the routine which is going to do read part
26219 			 * of read-modify-write.
26220 			 * Note that this routine returns a pointer to
26221 			 * a valid bp in wr_bp.
26222 			 */
26223 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26224 			    &wr_bp);
26225 			if (err) {
26226 				mutex_exit(SD_MUTEX(un));
26227 				return (err);
26228 			}
26229 			/*
26230 			 * Offset is being calculated as -
26231 			 * (original block # * system block size) -
26232 			 * (new block # * target block size)
26233 			 */
26234 			io_start_offset =
26235 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26236 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26237 
26238 			ASSERT((io_start_offset >= 0) &&
26239 			    (io_start_offset < un->un_tgt_blocksize));
26240 			/*
26241 			 * Do the modify portion of read modify write.
26242 			 */
26243 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26244 			    (size_t)nblk * un->un_sys_blocksize);
26245 		} else {
26246 			doing_rmw = FALSE;
26247 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26248 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26249 		}
26250 
26251 		/* Convert blkno and nblk to target blocks */
26252 		blkno = tgt_blkno;
26253 		nblk = tgt_nblk;
26254 	} else {
26255 		wr_bp = &wr_buf;
26256 		bzero(wr_bp, sizeof (struct buf));
26257 		wr_bp->b_flags		= B_BUSY;
26258 		wr_bp->b_un.b_addr	= addr;
26259 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26260 		wr_bp->b_resid		= 0;
26261 	}
26262 
26263 	mutex_exit(SD_MUTEX(un));
26264 
26265 	/*
26266 	 * Obtain a SCSI packet for the write command.
26267 	 * It should be safe to call the allocator here without
26268 	 * worrying about being locked for DVMA mapping because
26269 	 * the address we're passed is already a DVMA mapping
26270 	 *
26271 	 * We are also not going to worry about semaphore ownership
26272 	 * in the dump buffer. Dumping is single threaded at present.
26273 	 */
26274 
26275 	wr_pktp = NULL;
26276 
26277 #if defined(__i386) || defined(__amd64)
26278 	dma_resid = wr_bp->b_bcount;
26279 	oblkno = blkno;
26280 	while (dma_resid != 0) {
26281 #endif
26282 
26283 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26284 		wr_bp->b_flags &= ~B_ERROR;
26285 
26286 #if defined(__i386) || defined(__amd64)
26287 		blkno = oblkno +
26288 			((wr_bp->b_bcount - dma_resid) /
26289 			    un->un_tgt_blocksize);
26290 		nblk = dma_resid / un->un_tgt_blocksize;
26291 
26292 		if (wr_pktp) {
26293 			/* Partial DMA transfers after initial transfer */
26294 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26295 			    blkno, nblk);
26296 		} else {
26297 			/* Initial transfer */
26298 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26299 			    un->un_pkt_flags, NULL_FUNC, NULL,
26300 			    blkno, nblk);
26301 		}
26302 #else
26303 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26304 		    0, NULL_FUNC, NULL, blkno, nblk);
26305 #endif
26306 
26307 		if (rval == 0) {
26308 			/* We were given a SCSI packet, continue. */
26309 			break;
26310 		}
26311 
26312 		if (i == 0) {
26313 			if (wr_bp->b_flags & B_ERROR) {
26314 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26315 				    "no resources for dumping; "
26316 				    "error code: 0x%x, retrying",
26317 				    geterror(wr_bp));
26318 			} else {
26319 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26320 				    "no resources for dumping; retrying");
26321 			}
26322 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26323 			if (wr_bp->b_flags & B_ERROR) {
26324 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26325 				    "no resources for dumping; error code: "
26326 				    "0x%x, retrying\n", geterror(wr_bp));
26327 			}
26328 		} else {
26329 			if (wr_bp->b_flags & B_ERROR) {
26330 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26331 				    "no resources for dumping; "
26332 				    "error code: 0x%x, retries failed, "
26333 				    "giving up.\n", geterror(wr_bp));
26334 			} else {
26335 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26336 				    "no resources for dumping; "
26337 				    "retries failed, giving up.\n");
26338 			}
26339 			mutex_enter(SD_MUTEX(un));
26340 			Restore_state(un);
26341 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26342 				mutex_exit(SD_MUTEX(un));
26343 				scsi_free_consistent_buf(wr_bp);
26344 			} else {
26345 				mutex_exit(SD_MUTEX(un));
26346 			}
26347 			return (EIO);
26348 		}
26349 		drv_usecwait(10000);
26350 	}
26351 
26352 #if defined(__i386) || defined(__amd64)
26353 	/*
26354 	 * save the resid from PARTIAL_DMA
26355 	 */
26356 	dma_resid = wr_pktp->pkt_resid;
26357 	if (dma_resid != 0)
26358 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26359 	wr_pktp->pkt_resid = 0;
26360 #endif
26361 
26362 	/* SunBug 1222170 */
26363 	wr_pktp->pkt_flags = FLAG_NOINTR;
26364 
26365 	err = EIO;
26366 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26367 
26368 		/*
26369 		 * Scsi_poll returns 0 (success) if the command completes and
26370 		 * the status block is STATUS_GOOD.  We should only check
26371 		 * errors if this condition is not true.  Even then we should
26372 		 * send our own request sense packet only if we have a check
26373 		 * condition and auto request sense has not been performed by
26374 		 * the hba.
26375 		 */
26376 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26377 
26378 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26379 		    (wr_pktp->pkt_resid == 0)) {
26380 			err = SD_SUCCESS;
26381 			break;
26382 		}
26383 
26384 		/*
26385 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26386 		 */
26387 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26388 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26389 			    "Device is gone\n");
26390 			break;
26391 		}
26392 
26393 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26394 			SD_INFO(SD_LOG_DUMP, un,
26395 			    "sddump: write failed with CHECK, try # %d\n", i);
26396 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26397 				(void) sd_send_polled_RQS(un);
26398 			}
26399 
26400 			continue;
26401 		}
26402 
26403 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26404 			int reset_retval = 0;
26405 
26406 			SD_INFO(SD_LOG_DUMP, un,
26407 			    "sddump: write failed with BUSY, try # %d\n", i);
26408 
26409 			if (un->un_f_lun_reset_enabled == TRUE) {
26410 				reset_retval = scsi_reset(SD_ADDRESS(un),
26411 				    RESET_LUN);
26412 			}
26413 			if (reset_retval == 0) {
26414 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26415 			}
26416 			(void) sd_send_polled_RQS(un);
26417 
26418 		} else {
26419 			SD_INFO(SD_LOG_DUMP, un,
26420 			    "sddump: write failed with 0x%x, try # %d\n",
26421 			    SD_GET_PKT_STATUS(wr_pktp), i);
26422 			mutex_enter(SD_MUTEX(un));
26423 			sd_reset_target(un, wr_pktp);
26424 			mutex_exit(SD_MUTEX(un));
26425 		}
26426 
26427 		/*
26428 		 * If we are not getting anywhere with lun/target resets,
26429 		 * let's reset the bus.
26430 		 */
26431 		if (i == SD_NDUMP_RETRIES/2) {
26432 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26433 			(void) sd_send_polled_RQS(un);
26434 		}
26435 
26436 	}
26437 #if defined(__i386) || defined(__amd64)
26438 	}	/* dma_resid */
26439 #endif
26440 
26441 	scsi_destroy_pkt(wr_pktp);
26442 	mutex_enter(SD_MUTEX(un));
26443 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26444 		mutex_exit(SD_MUTEX(un));
26445 		scsi_free_consistent_buf(wr_bp);
26446 	} else {
26447 		mutex_exit(SD_MUTEX(un));
26448 	}
26449 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26450 	return (err);
26451 }
26452 
26453 /*
26454  *    Function: sd_scsi_poll()
26455  *
26456  * Description: This is a wrapper for the scsi_poll call.
26457  *
26458  *   Arguments: sd_lun - The unit structure
26459  *              scsi_pkt - The scsi packet being sent to the device.
26460  *
26461  * Return Code: 0 - Command completed successfully with good status
26462  *             -1 - Command failed.  This could indicate a check condition
26463  *                  or other status value requiring recovery action.
26464  *
26465  */
26466 
26467 static int
26468 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26469 {
26470 	int status;
26471 
26472 	ASSERT(un != NULL);
26473 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26474 	ASSERT(pktp != NULL);
26475 
26476 	status = SD_SUCCESS;
26477 
26478 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26479 		pktp->pkt_flags |= un->un_tagflags;
26480 		pktp->pkt_flags &= ~FLAG_NODISCON;
26481 	}
26482 
26483 	status = sd_ddi_scsi_poll(pktp);
26484 	/*
26485 	 * Scsi_poll returns 0 (success) if the command completes and the
26486 	 * status block is STATUS_GOOD.  We should only check errors if this
26487 	 * condition is not true.  Even then we should send our own request
26488 	 * sense packet only if we have a check condition and auto
26489 	 * request sense has not been performed by the hba.
26490 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26491 	 */
26492 	if ((status != SD_SUCCESS) &&
26493 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26494 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26495 	    (pktp->pkt_reason != CMD_DEV_GONE))
26496 		(void) sd_send_polled_RQS(un);
26497 
26498 	return (status);
26499 }
26500 
26501 /*
26502  *    Function: sd_send_polled_RQS()
26503  *
26504  * Description: This sends the request sense command to a device.
26505  *
26506  *   Arguments: sd_lun - The unit structure
26507  *
26508  * Return Code: 0 - Command completed successfully with good status
26509  *             -1 - Command failed.
26510  *
26511  */
26512 
26513 static int
26514 sd_send_polled_RQS(struct sd_lun *un)
26515 {
26516 	int	ret_val;
26517 	struct	scsi_pkt	*rqs_pktp;
26518 	struct	buf		*rqs_bp;
26519 
26520 	ASSERT(un != NULL);
26521 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26522 
26523 	ret_val = SD_SUCCESS;
26524 
26525 	rqs_pktp = un->un_rqs_pktp;
26526 	rqs_bp	 = un->un_rqs_bp;
26527 
26528 	mutex_enter(SD_MUTEX(un));
26529 
26530 	if (un->un_sense_isbusy) {
26531 		ret_val = SD_FAILURE;
26532 		mutex_exit(SD_MUTEX(un));
26533 		return (ret_val);
26534 	}
26535 
26536 	/*
26537 	 * If the request sense buffer (and packet) is not in use,
26538 	 * let's set the un_sense_isbusy and send our packet
26539 	 */
26540 	un->un_sense_isbusy 	= 1;
26541 	rqs_pktp->pkt_resid  	= 0;
26542 	rqs_pktp->pkt_reason 	= 0;
26543 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26544 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26545 
26546 	mutex_exit(SD_MUTEX(un));
26547 
26548 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26549 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26550 
26551 	/*
26552 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26553 	 * axle - it has a call into us!
26554 	 */
26555 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26556 		SD_INFO(SD_LOG_COMMON, un,
26557 		    "sd_send_polled_RQS: RQS failed\n");
26558 	}
26559 
26560 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26561 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26562 
26563 	mutex_enter(SD_MUTEX(un));
26564 	un->un_sense_isbusy = 0;
26565 	mutex_exit(SD_MUTEX(un));
26566 
26567 	return (ret_val);
26568 }
26569 
26570 /*
26571  * Defines needed for localized version of the scsi_poll routine.
26572  */
26573 #define	SD_CSEC		10000			/* usecs */
26574 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26575 
26576 
26577 /*
26578  *    Function: sd_ddi_scsi_poll()
26579  *
26580  * Description: Localized version of the scsi_poll routine.  The purpose is to
26581  *		send a scsi_pkt to a device as a polled command.  This version
26582  *		is to ensure more robust handling of transport errors.
26583  *		Specifically this routine cures not ready, coming ready
26584  *		transition for power up and reset of sonoma's.  This can take
26585  *		up to 45 seconds for power-on and 20 seconds for reset of a
26586  * 		sonoma lun.
26587  *
26588  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26589  *
26590  * Return Code: 0 - Command completed successfully with good status
26591  *             -1 - Command failed.
26592  *
26593  */
26594 
26595 static int
26596 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26597 {
26598 	int busy_count;
26599 	int timeout;
26600 	int rval = SD_FAILURE;
26601 	int savef;
26602 	struct scsi_extended_sense *sensep;
26603 	long savet;
26604 	void (*savec)();
26605 	/*
26606 	 * The following is defined in machdep.c and is used in determining if
26607 	 * the scsi transport system will do polled I/O instead of interrupt
26608 	 * I/O when called from xx_dump().
26609 	 */
26610 	extern int do_polled_io;
26611 
26612 	/*
26613 	 * save old flags in pkt, to restore at end
26614 	 */
26615 	savef = pkt->pkt_flags;
26616 	savec = pkt->pkt_comp;
26617 	savet = pkt->pkt_time;
26618 
26619 	pkt->pkt_flags |= FLAG_NOINTR;
26620 
26621 	/*
26622 	 * XXX there is nothing in the SCSA spec that states that we should not
26623 	 * do a callback for polled cmds; however, removing this will break sd
26624 	 * and probably other target drivers
26625 	 */
26626 	pkt->pkt_comp = NULL;
26627 
26628 	/*
26629 	 * we don't like a polled command without timeout.
26630 	 * 60 seconds seems long enough.
26631 	 */
26632 	if (pkt->pkt_time == 0) {
26633 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26634 	}
26635 
26636 	/*
26637 	 * Send polled cmd.
26638 	 *
26639 	 * We do some error recovery for various errors.  Tran_busy,
26640 	 * queue full, and non-dispatched commands are retried every 10 msec.
26641 	 * as they are typically transient failures.  Busy status and Not
26642 	 * Ready are retried every second as this status takes a while to
26643 	 * change.  Unit attention is retried for pkt_time (60) times
26644 	 * with no delay.
26645 	 */
26646 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26647 
26648 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26649 		int rc;
26650 		int poll_delay;
26651 
26652 		/*
26653 		 * Initialize pkt status variables.
26654 		 */
26655 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26656 
26657 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26658 			if (rc != TRAN_BUSY) {
26659 				/* Transport failed - give up. */
26660 				break;
26661 			} else {
26662 				/* Transport busy - try again. */
26663 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26664 			}
26665 		} else {
26666 			/*
26667 			 * Transport accepted - check pkt status.
26668 			 */
26669 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26670 			if (pkt->pkt_reason == CMD_CMPLT &&
26671 			    rc == STATUS_CHECK &&
26672 			    pkt->pkt_state & STATE_ARQ_DONE) {
26673 				struct scsi_arq_status *arqstat =
26674 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26675 
26676 				sensep = &arqstat->sts_sensedata;
26677 			} else {
26678 				sensep = NULL;
26679 			}
26680 
26681 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26682 			    (rc == STATUS_GOOD)) {
26683 				/* No error - we're done */
26684 				rval = SD_SUCCESS;
26685 				break;
26686 
26687 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26688 				/* Lost connection - give up */
26689 				break;
26690 
26691 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26692 			    (pkt->pkt_state == 0)) {
26693 				/* Pkt not dispatched - try again. */
26694 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26695 
26696 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26697 			    (rc == STATUS_QFULL)) {
26698 				/* Queue full - try again. */
26699 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26700 
26701 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26702 			    (rc == STATUS_BUSY)) {
26703 				/* Busy - try again. */
26704 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26705 				busy_count += (SD_SEC_TO_CSEC - 1);
26706 
26707 			} else if ((sensep != NULL) &&
26708 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26709 				/* Unit Attention - try again */
26710 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26711 				continue;
26712 
26713 			} else if ((sensep != NULL) &&
26714 			    (sensep->es_key == KEY_NOT_READY) &&
26715 			    (sensep->es_add_code == 0x04) &&
26716 			    (sensep->es_qual_code == 0x01)) {
26717 				/* Not ready -> ready - try again. */
26718 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26719 				busy_count += (SD_SEC_TO_CSEC - 1);
26720 
26721 			} else {
26722 				/* BAD status - give up. */
26723 				break;
26724 			}
26725 		}
26726 
26727 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26728 		    !do_polled_io) {
26729 			delay(drv_usectohz(poll_delay));
26730 		} else {
26731 			/* we busy wait during cpr_dump or interrupt threads */
26732 			drv_usecwait(poll_delay);
26733 		}
26734 	}
26735 
26736 	pkt->pkt_flags = savef;
26737 	pkt->pkt_comp = savec;
26738 	pkt->pkt_time = savet;
26739 	return (rval);
26740 }
26741 
26742 
26743 /*
26744  *    Function: sd_persistent_reservation_in_read_keys
26745  *
26746  * Description: This routine is the driver entry point for handling CD-ROM
26747  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26748  *		by sending the SCSI-3 PRIN commands to the device.
26749  *		Processes the read keys command response by copying the
26750  *		reservation key information into the user provided buffer.
26751  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26752  *
26753  *   Arguments: un   -  Pointer to soft state struct for the target.
26754  *		usrp -	user provided pointer to multihost Persistent In Read
26755  *			Keys structure (mhioc_inkeys_t)
26756  *		flag -	this argument is a pass through to ddi_copyxxx()
26757  *			directly from the mode argument of ioctl().
26758  *
26759  * Return Code: 0   - Success
26760  *		EACCES
26761  *		ENOTSUP
26762  *		errno return code from sd_send_scsi_cmd()
26763  *
26764  *     Context: Can sleep. Does not return until command is completed.
26765  */
26766 
26767 static int
26768 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26769     mhioc_inkeys_t *usrp, int flag)
26770 {
26771 #ifdef _MULTI_DATAMODEL
26772 	struct mhioc_key_list32	li32;
26773 #endif
26774 	sd_prin_readkeys_t	*in;
26775 	mhioc_inkeys_t		*ptr;
26776 	mhioc_key_list_t	li;
26777 	uchar_t			*data_bufp;
26778 	int 			data_len;
26779 	int			rval;
26780 	size_t			copysz;
26781 
26782 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26783 		return (EINVAL);
26784 	}
26785 	bzero(&li, sizeof (mhioc_key_list_t));
26786 
26787 	/*
26788 	 * Get the listsize from user
26789 	 */
26790 #ifdef _MULTI_DATAMODEL
26791 
26792 	switch (ddi_model_convert_from(flag & FMODELS)) {
26793 	case DDI_MODEL_ILP32:
26794 		copysz = sizeof (struct mhioc_key_list32);
26795 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26796 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26797 			    "sd_persistent_reservation_in_read_keys: "
26798 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26799 			rval = EFAULT;
26800 			goto done;
26801 		}
26802 		li.listsize = li32.listsize;
26803 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26804 		break;
26805 
26806 	case DDI_MODEL_NONE:
26807 		copysz = sizeof (mhioc_key_list_t);
26808 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26809 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26810 			    "sd_persistent_reservation_in_read_keys: "
26811 			    "failed ddi_copyin: mhioc_key_list_t\n");
26812 			rval = EFAULT;
26813 			goto done;
26814 		}
26815 		break;
26816 	}
26817 
26818 #else /* ! _MULTI_DATAMODEL */
26819 	copysz = sizeof (mhioc_key_list_t);
26820 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26821 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26822 		    "sd_persistent_reservation_in_read_keys: "
26823 		    "failed ddi_copyin: mhioc_key_list_t\n");
26824 		rval = EFAULT;
26825 		goto done;
26826 	}
26827 #endif
26828 
26829 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26830 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26831 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26832 
26833 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26834 	    data_len, data_bufp)) != 0) {
26835 		goto done;
26836 	}
26837 	in = (sd_prin_readkeys_t *)data_bufp;
26838 	ptr->generation = BE_32(in->generation);
26839 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26840 
26841 	/*
26842 	 * Return the min(listsize, listlen) keys
26843 	 */
26844 #ifdef _MULTI_DATAMODEL
26845 
26846 	switch (ddi_model_convert_from(flag & FMODELS)) {
26847 	case DDI_MODEL_ILP32:
26848 		li32.listlen = li.listlen;
26849 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26850 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26851 			    "sd_persistent_reservation_in_read_keys: "
26852 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26853 			rval = EFAULT;
26854 			goto done;
26855 		}
26856 		break;
26857 
26858 	case DDI_MODEL_NONE:
26859 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26860 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26861 			    "sd_persistent_reservation_in_read_keys: "
26862 			    "failed ddi_copyout: mhioc_key_list_t\n");
26863 			rval = EFAULT;
26864 			goto done;
26865 		}
26866 		break;
26867 	}
26868 
26869 #else /* ! _MULTI_DATAMODEL */
26870 
26871 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26872 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26873 		    "sd_persistent_reservation_in_read_keys: "
26874 		    "failed ddi_copyout: mhioc_key_list_t\n");
26875 		rval = EFAULT;
26876 		goto done;
26877 	}
26878 
26879 #endif /* _MULTI_DATAMODEL */
26880 
26881 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26882 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26883 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26884 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26885 		    "sd_persistent_reservation_in_read_keys: "
26886 		    "failed ddi_copyout: keylist\n");
26887 		rval = EFAULT;
26888 	}
26889 done:
26890 	kmem_free(data_bufp, data_len);
26891 	return (rval);
26892 }
26893 
26894 
26895 /*
26896  *    Function: sd_persistent_reservation_in_read_resv
26897  *
26898  * Description: This routine is the driver entry point for handling CD-ROM
26899  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26900  *		by sending the SCSI-3 PRIN commands to the device.
26901  *		Process the read persistent reservations command response by
26902  *		copying the reservation information into the user provided
26903  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26904  *
26905  *   Arguments: un   -  Pointer to soft state struct for the target.
26906  *		usrp -	user provided pointer to multihost Persistent In Read
26907  *			Keys structure (mhioc_inkeys_t)
26908  *		flag -	this argument is a pass through to ddi_copyxxx()
26909  *			directly from the mode argument of ioctl().
26910  *
26911  * Return Code: 0   - Success
26912  *		EACCES
26913  *		ENOTSUP
26914  *		errno return code from sd_send_scsi_cmd()
26915  *
26916  *     Context: Can sleep. Does not return until command is completed.
26917  */
26918 
26919 static int
26920 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26921     mhioc_inresvs_t *usrp, int flag)
26922 {
26923 #ifdef _MULTI_DATAMODEL
26924 	struct mhioc_resv_desc_list32 resvlist32;
26925 #endif
26926 	sd_prin_readresv_t	*in;
26927 	mhioc_inresvs_t		*ptr;
26928 	sd_readresv_desc_t	*readresv_ptr;
26929 	mhioc_resv_desc_list_t	resvlist;
26930 	mhioc_resv_desc_t 	resvdesc;
26931 	uchar_t			*data_bufp;
26932 	int 			data_len;
26933 	int			rval;
26934 	int			i;
26935 	size_t			copysz;
26936 	mhioc_resv_desc_t	*bufp;
26937 
26938 	if ((ptr = usrp) == NULL) {
26939 		return (EINVAL);
26940 	}
26941 
26942 	/*
26943 	 * Get the listsize from user
26944 	 */
26945 #ifdef _MULTI_DATAMODEL
26946 	switch (ddi_model_convert_from(flag & FMODELS)) {
26947 	case DDI_MODEL_ILP32:
26948 		copysz = sizeof (struct mhioc_resv_desc_list32);
26949 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26950 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26951 			    "sd_persistent_reservation_in_read_resv: "
26952 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26953 			rval = EFAULT;
26954 			goto done;
26955 		}
26956 		resvlist.listsize = resvlist32.listsize;
26957 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26958 		break;
26959 
26960 	case DDI_MODEL_NONE:
26961 		copysz = sizeof (mhioc_resv_desc_list_t);
26962 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26963 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26964 			    "sd_persistent_reservation_in_read_resv: "
26965 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26966 			rval = EFAULT;
26967 			goto done;
26968 		}
26969 		break;
26970 	}
26971 #else /* ! _MULTI_DATAMODEL */
26972 	copysz = sizeof (mhioc_resv_desc_list_t);
26973 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26974 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26975 		    "sd_persistent_reservation_in_read_resv: "
26976 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26977 		rval = EFAULT;
26978 		goto done;
26979 	}
26980 #endif /* ! _MULTI_DATAMODEL */
26981 
26982 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26983 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26984 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26985 
26986 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26987 	    data_len, data_bufp)) != 0) {
26988 		goto done;
26989 	}
26990 	in = (sd_prin_readresv_t *)data_bufp;
26991 	ptr->generation = BE_32(in->generation);
26992 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26993 
26994 	/*
26995 	 * Return the min(listsize, listlen( keys
26996 	 */
26997 #ifdef _MULTI_DATAMODEL
26998 
26999 	switch (ddi_model_convert_from(flag & FMODELS)) {
27000 	case DDI_MODEL_ILP32:
27001 		resvlist32.listlen = resvlist.listlen;
27002 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27003 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27004 			    "sd_persistent_reservation_in_read_resv: "
27005 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27006 			rval = EFAULT;
27007 			goto done;
27008 		}
27009 		break;
27010 
27011 	case DDI_MODEL_NONE:
27012 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27013 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27014 			    "sd_persistent_reservation_in_read_resv: "
27015 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27016 			rval = EFAULT;
27017 			goto done;
27018 		}
27019 		break;
27020 	}
27021 
27022 #else /* ! _MULTI_DATAMODEL */
27023 
27024 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27025 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27026 		    "sd_persistent_reservation_in_read_resv: "
27027 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27028 		rval = EFAULT;
27029 		goto done;
27030 	}
27031 
27032 #endif /* ! _MULTI_DATAMODEL */
27033 
27034 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27035 	bufp = resvlist.list;
27036 	copysz = sizeof (mhioc_resv_desc_t);
27037 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27038 	    i++, readresv_ptr++, bufp++) {
27039 
27040 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27041 		    MHIOC_RESV_KEY_SIZE);
27042 		resvdesc.type  = readresv_ptr->type;
27043 		resvdesc.scope = readresv_ptr->scope;
27044 		resvdesc.scope_specific_addr =
27045 		    BE_32(readresv_ptr->scope_specific_addr);
27046 
27047 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27048 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27049 			    "sd_persistent_reservation_in_read_resv: "
27050 			    "failed ddi_copyout: resvlist\n");
27051 			rval = EFAULT;
27052 			goto done;
27053 		}
27054 	}
27055 done:
27056 	kmem_free(data_bufp, data_len);
27057 	return (rval);
27058 }
27059 
27060 
27061 /*
27062  *    Function: sr_change_blkmode()
27063  *
27064  * Description: This routine is the driver entry point for handling CD-ROM
27065  *		block mode ioctl requests. Support for returning and changing
27066  *		the current block size in use by the device is implemented. The
27067  *		LBA size is changed via a MODE SELECT Block Descriptor.
27068  *
27069  *		This routine issues a mode sense with an allocation length of
27070  *		12 bytes for the mode page header and a single block descriptor.
27071  *
27072  *   Arguments: dev - the device 'dev_t'
27073  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27074  *		      CDROMSBLKMODE (set)
27075  *		data - current block size or requested block size
27076  *		flag - this argument is a pass through to ddi_copyxxx() directly
27077  *		       from the mode argument of ioctl().
27078  *
27079  * Return Code: the code returned by sd_send_scsi_cmd()
27080  *		EINVAL if invalid arguments are provided
27081  *		EFAULT if ddi_copyxxx() fails
27082  *		ENXIO if fail ddi_get_soft_state
27083  *		EIO if invalid mode sense block descriptor length
27084  *
27085  */
27086 
27087 static int
27088 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27089 {
27090 	struct sd_lun			*un = NULL;
27091 	struct mode_header		*sense_mhp, *select_mhp;
27092 	struct block_descriptor		*sense_desc, *select_desc;
27093 	int				current_bsize;
27094 	int				rval = EINVAL;
27095 	uchar_t				*sense = NULL;
27096 	uchar_t				*select = NULL;
27097 
27098 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27099 
27100 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27101 		return (ENXIO);
27102 	}
27103 
27104 	/*
27105 	 * The block length is changed via the Mode Select block descriptor, the
27106 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27107 	 * required as part of this routine. Therefore the mode sense allocation
27108 	 * length is specified to be the length of a mode page header and a
27109 	 * block descriptor.
27110 	 */
27111 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27112 
27113 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27114 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27115 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27116 		    "sr_change_blkmode: Mode Sense Failed\n");
27117 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27118 		return (rval);
27119 	}
27120 
27121 	/* Check the block descriptor len to handle only 1 block descriptor */
27122 	sense_mhp = (struct mode_header *)sense;
27123 	if ((sense_mhp->bdesc_length == 0) ||
27124 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27125 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27126 		    "sr_change_blkmode: Mode Sense returned invalid block"
27127 		    " descriptor length\n");
27128 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27129 		return (EIO);
27130 	}
27131 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27132 	current_bsize = ((sense_desc->blksize_hi << 16) |
27133 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27134 
27135 	/* Process command */
27136 	switch (cmd) {
27137 	case CDROMGBLKMODE:
27138 		/* Return the block size obtained during the mode sense */
27139 		if (ddi_copyout(&current_bsize, (void *)data,
27140 		    sizeof (int), flag) != 0)
27141 			rval = EFAULT;
27142 		break;
27143 	case CDROMSBLKMODE:
27144 		/* Validate the requested block size */
27145 		switch (data) {
27146 		case CDROM_BLK_512:
27147 		case CDROM_BLK_1024:
27148 		case CDROM_BLK_2048:
27149 		case CDROM_BLK_2056:
27150 		case CDROM_BLK_2336:
27151 		case CDROM_BLK_2340:
27152 		case CDROM_BLK_2352:
27153 		case CDROM_BLK_2368:
27154 		case CDROM_BLK_2448:
27155 		case CDROM_BLK_2646:
27156 		case CDROM_BLK_2647:
27157 			break;
27158 		default:
27159 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27160 			    "sr_change_blkmode: "
27161 			    "Block Size '%ld' Not Supported\n", data);
27162 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27163 			return (EINVAL);
27164 		}
27165 
27166 		/*
27167 		 * The current block size matches the requested block size so
27168 		 * there is no need to send the mode select to change the size
27169 		 */
27170 		if (current_bsize == data) {
27171 			break;
27172 		}
27173 
27174 		/* Build the select data for the requested block size */
27175 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27176 		select_mhp = (struct mode_header *)select;
27177 		select_desc =
27178 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27179 		/*
27180 		 * The LBA size is changed via the block descriptor, so the
27181 		 * descriptor is built according to the user data
27182 		 */
27183 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27184 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27185 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27186 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27187 
27188 		/* Send the mode select for the requested block size */
27189 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27190 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27191 		    SD_PATH_STANDARD)) != 0) {
27192 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27193 			    "sr_change_blkmode: Mode Select Failed\n");
27194 			/*
27195 			 * The mode select failed for the requested block size,
27196 			 * so reset the data for the original block size and
27197 			 * send it to the target. The error is indicated by the
27198 			 * return value for the failed mode select.
27199 			 */
27200 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27201 			select_desc->blksize_mid = sense_desc->blksize_mid;
27202 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27203 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27204 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27205 			    SD_PATH_STANDARD);
27206 		} else {
27207 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27208 			mutex_enter(SD_MUTEX(un));
27209 			sd_update_block_info(un, (uint32_t)data, 0);
27210 
27211 			mutex_exit(SD_MUTEX(un));
27212 		}
27213 		break;
27214 	default:
27215 		/* should not reach here, but check anyway */
27216 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27217 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27218 		rval = EINVAL;
27219 		break;
27220 	}
27221 
27222 	if (select) {
27223 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27224 	}
27225 	if (sense) {
27226 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27227 	}
27228 	return (rval);
27229 }
27230 
27231 
27232 /*
27233  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27234  * implement driver support for getting and setting the CD speed. The command
27235  * set used will be based on the device type. If the device has not been
27236  * identified as MMC the Toshiba vendor specific mode page will be used. If
27237  * the device is MMC but does not support the Real Time Streaming feature
27238  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27239  * be used to read the speed.
27240  */
27241 
27242 /*
27243  *    Function: sr_change_speed()
27244  *
27245  * Description: This routine is the driver entry point for handling CD-ROM
27246  *		drive speed ioctl requests for devices supporting the Toshiba
27247  *		vendor specific drive speed mode page. Support for returning
27248  *		and changing the current drive speed in use by the device is
27249  *		implemented.
27250  *
27251  *   Arguments: dev - the device 'dev_t'
27252  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27253  *		      CDROMSDRVSPEED (set)
27254  *		data - current drive speed or requested drive speed
27255  *		flag - this argument is a pass through to ddi_copyxxx() directly
27256  *		       from the mode argument of ioctl().
27257  *
27258  * Return Code: the code returned by sd_send_scsi_cmd()
27259  *		EINVAL if invalid arguments are provided
27260  *		EFAULT if ddi_copyxxx() fails
27261  *		ENXIO if fail ddi_get_soft_state
27262  *		EIO if invalid mode sense block descriptor length
27263  */
27264 
27265 static int
27266 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27267 {
27268 	struct sd_lun			*un = NULL;
27269 	struct mode_header		*sense_mhp, *select_mhp;
27270 	struct mode_speed		*sense_page, *select_page;
27271 	int				current_speed;
27272 	int				rval = EINVAL;
27273 	int				bd_len;
27274 	uchar_t				*sense = NULL;
27275 	uchar_t				*select = NULL;
27276 
27277 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27278 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27279 		return (ENXIO);
27280 	}
27281 
27282 	/*
27283 	 * Note: The drive speed is being modified here according to a Toshiba
27284 	 * vendor specific mode page (0x31).
27285 	 */
27286 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27287 
27288 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27289 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27290 	    SD_PATH_STANDARD)) != 0) {
27291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27292 		    "sr_change_speed: Mode Sense Failed\n");
27293 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27294 		return (rval);
27295 	}
27296 	sense_mhp  = (struct mode_header *)sense;
27297 
27298 	/* Check the block descriptor len to handle only 1 block descriptor */
27299 	bd_len = sense_mhp->bdesc_length;
27300 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27301 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27302 		    "sr_change_speed: Mode Sense returned invalid block "
27303 		    "descriptor length\n");
27304 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27305 		return (EIO);
27306 	}
27307 
27308 	sense_page = (struct mode_speed *)
27309 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27310 	current_speed = sense_page->speed;
27311 
27312 	/* Process command */
27313 	switch (cmd) {
27314 	case CDROMGDRVSPEED:
27315 		/* Return the drive speed obtained during the mode sense */
27316 		if (current_speed == 0x2) {
27317 			current_speed = CDROM_TWELVE_SPEED;
27318 		}
27319 		if (ddi_copyout(&current_speed, (void *)data,
27320 		    sizeof (int), flag) != 0) {
27321 			rval = EFAULT;
27322 		}
27323 		break;
27324 	case CDROMSDRVSPEED:
27325 		/* Validate the requested drive speed */
27326 		switch ((uchar_t)data) {
27327 		case CDROM_TWELVE_SPEED:
27328 			data = 0x2;
27329 			/*FALLTHROUGH*/
27330 		case CDROM_NORMAL_SPEED:
27331 		case CDROM_DOUBLE_SPEED:
27332 		case CDROM_QUAD_SPEED:
27333 		case CDROM_MAXIMUM_SPEED:
27334 			break;
27335 		default:
27336 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27337 			    "sr_change_speed: "
27338 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27339 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27340 			return (EINVAL);
27341 		}
27342 
27343 		/*
27344 		 * The current drive speed matches the requested drive speed so
27345 		 * there is no need to send the mode select to change the speed
27346 		 */
27347 		if (current_speed == data) {
27348 			break;
27349 		}
27350 
27351 		/* Build the select data for the requested drive speed */
27352 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27353 		select_mhp = (struct mode_header *)select;
27354 		select_mhp->bdesc_length = 0;
27355 		select_page =
27356 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27357 		select_page =
27358 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27359 		select_page->mode_page.code = CDROM_MODE_SPEED;
27360 		select_page->mode_page.length = 2;
27361 		select_page->speed = (uchar_t)data;
27362 
27363 		/* Send the mode select for the requested block size */
27364 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27365 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27366 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27367 			/*
27368 			 * The mode select failed for the requested drive speed,
27369 			 * so reset the data for the original drive speed and
27370 			 * send it to the target. The error is indicated by the
27371 			 * return value for the failed mode select.
27372 			 */
27373 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27374 			    "sr_drive_speed: Mode Select Failed\n");
27375 			select_page->speed = sense_page->speed;
27376 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27377 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27378 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27379 		}
27380 		break;
27381 	default:
27382 		/* should not reach here, but check anyway */
27383 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27384 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27385 		rval = EINVAL;
27386 		break;
27387 	}
27388 
27389 	if (select) {
27390 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27391 	}
27392 	if (sense) {
27393 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27394 	}
27395 
27396 	return (rval);
27397 }
27398 
27399 
27400 /*
27401  *    Function: sr_atapi_change_speed()
27402  *
27403  * Description: This routine is the driver entry point for handling CD-ROM
27404  *		drive speed ioctl requests for MMC devices that do not support
27405  *		the Real Time Streaming feature (0x107).
27406  *
27407  *		Note: This routine will use the SET SPEED command which may not
27408  *		be supported by all devices.
27409  *
27410  *   Arguments: dev- the device 'dev_t'
27411  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27412  *		     CDROMSDRVSPEED (set)
27413  *		data- current drive speed or requested drive speed
27414  *		flag- this argument is a pass through to ddi_copyxxx() directly
27415  *		      from the mode argument of ioctl().
27416  *
27417  * Return Code: the code returned by sd_send_scsi_cmd()
27418  *		EINVAL if invalid arguments are provided
27419  *		EFAULT if ddi_copyxxx() fails
27420  *		ENXIO if fail ddi_get_soft_state
27421  *		EIO if invalid mode sense block descriptor length
27422  */
27423 
27424 static int
27425 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27426 {
27427 	struct sd_lun			*un;
27428 	struct uscsi_cmd		*com = NULL;
27429 	struct mode_header_grp2		*sense_mhp;
27430 	uchar_t				*sense_page;
27431 	uchar_t				*sense = NULL;
27432 	char				cdb[CDB_GROUP5];
27433 	int				bd_len;
27434 	int				current_speed = 0;
27435 	int				max_speed = 0;
27436 	int				rval;
27437 
27438 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27439 
27440 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27441 		return (ENXIO);
27442 	}
27443 
27444 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27445 
27446 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27447 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27448 	    SD_PATH_STANDARD)) != 0) {
27449 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27450 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27451 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27452 		return (rval);
27453 	}
27454 
27455 	/* Check the block descriptor len to handle only 1 block descriptor */
27456 	sense_mhp = (struct mode_header_grp2 *)sense;
27457 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27458 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27459 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27460 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27461 		    "block descriptor length\n");
27462 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27463 		return (EIO);
27464 	}
27465 
27466 	/* Calculate the current and maximum drive speeds */
27467 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27468 	current_speed = (sense_page[14] << 8) | sense_page[15];
27469 	max_speed = (sense_page[8] << 8) | sense_page[9];
27470 
27471 	/* Process the command */
27472 	switch (cmd) {
27473 	case CDROMGDRVSPEED:
27474 		current_speed /= SD_SPEED_1X;
27475 		if (ddi_copyout(&current_speed, (void *)data,
27476 		    sizeof (int), flag) != 0)
27477 			rval = EFAULT;
27478 		break;
27479 	case CDROMSDRVSPEED:
27480 		/* Convert the speed code to KB/sec */
27481 		switch ((uchar_t)data) {
27482 		case CDROM_NORMAL_SPEED:
27483 			current_speed = SD_SPEED_1X;
27484 			break;
27485 		case CDROM_DOUBLE_SPEED:
27486 			current_speed = 2 * SD_SPEED_1X;
27487 			break;
27488 		case CDROM_QUAD_SPEED:
27489 			current_speed = 4 * SD_SPEED_1X;
27490 			break;
27491 		case CDROM_TWELVE_SPEED:
27492 			current_speed = 12 * SD_SPEED_1X;
27493 			break;
27494 		case CDROM_MAXIMUM_SPEED:
27495 			current_speed = 0xffff;
27496 			break;
27497 		default:
27498 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27499 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27500 			    (uchar_t)data);
27501 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27502 			return (EINVAL);
27503 		}
27504 
27505 		/* Check the request against the drive's max speed. */
27506 		if (current_speed != 0xffff) {
27507 			if (current_speed > max_speed) {
27508 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27509 				return (EINVAL);
27510 			}
27511 		}
27512 
27513 		/*
27514 		 * Build and send the SET SPEED command
27515 		 *
27516 		 * Note: The SET SPEED (0xBB) command used in this routine is
27517 		 * obsolete per the SCSI MMC spec but still supported in the
27518 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27519 		 * therefore the command is still implemented in this routine.
27520 		 */
27521 		bzero(cdb, sizeof (cdb));
27522 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27523 		cdb[2] = (uchar_t)(current_speed >> 8);
27524 		cdb[3] = (uchar_t)current_speed;
27525 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27526 		com->uscsi_cdb	   = (caddr_t)cdb;
27527 		com->uscsi_cdblen  = CDB_GROUP5;
27528 		com->uscsi_bufaddr = NULL;
27529 		com->uscsi_buflen  = 0;
27530 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27531 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27532 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27533 		break;
27534 	default:
27535 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27536 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27537 		rval = EINVAL;
27538 	}
27539 
27540 	if (sense) {
27541 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27542 	}
27543 	if (com) {
27544 		kmem_free(com, sizeof (*com));
27545 	}
27546 	return (rval);
27547 }
27548 
27549 
27550 /*
27551  *    Function: sr_pause_resume()
27552  *
27553  * Description: This routine is the driver entry point for handling CD-ROM
27554  *		pause/resume ioctl requests. This only affects the audio play
27555  *		operation.
27556  *
27557  *   Arguments: dev - the device 'dev_t'
27558  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27559  *		      for setting the resume bit of the cdb.
27560  *
27561  * Return Code: the code returned by sd_send_scsi_cmd()
27562  *		EINVAL if invalid mode specified
27563  *
27564  */
27565 
27566 static int
27567 sr_pause_resume(dev_t dev, int cmd)
27568 {
27569 	struct sd_lun		*un;
27570 	struct uscsi_cmd	*com;
27571 	char			cdb[CDB_GROUP1];
27572 	int			rval;
27573 
27574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27575 		return (ENXIO);
27576 	}
27577 
27578 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27579 	bzero(cdb, CDB_GROUP1);
27580 	cdb[0] = SCMD_PAUSE_RESUME;
27581 	switch (cmd) {
27582 	case CDROMRESUME:
27583 		cdb[8] = 1;
27584 		break;
27585 	case CDROMPAUSE:
27586 		cdb[8] = 0;
27587 		break;
27588 	default:
27589 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27590 		    " Command '%x' Not Supported\n", cmd);
27591 		rval = EINVAL;
27592 		goto done;
27593 	}
27594 
27595 	com->uscsi_cdb    = cdb;
27596 	com->uscsi_cdblen = CDB_GROUP1;
27597 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27598 
27599 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27600 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27601 
27602 done:
27603 	kmem_free(com, sizeof (*com));
27604 	return (rval);
27605 }
27606 
27607 
27608 /*
27609  *    Function: sr_play_msf()
27610  *
27611  * Description: This routine is the driver entry point for handling CD-ROM
27612  *		ioctl requests to output the audio signals at the specified
27613  *		starting address and continue the audio play until the specified
27614  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27615  *		Frame (MSF) format.
27616  *
27617  *   Arguments: dev	- the device 'dev_t'
27618  *		data	- pointer to user provided audio msf structure,
27619  *		          specifying start/end addresses.
27620  *		flag	- this argument is a pass through to ddi_copyxxx()
27621  *		          directly from the mode argument of ioctl().
27622  *
27623  * Return Code: the code returned by sd_send_scsi_cmd()
27624  *		EFAULT if ddi_copyxxx() fails
27625  *		ENXIO if fail ddi_get_soft_state
27626  *		EINVAL if data pointer is NULL
27627  */
27628 
27629 static int
27630 sr_play_msf(dev_t dev, caddr_t data, int flag)
27631 {
27632 	struct sd_lun		*un;
27633 	struct uscsi_cmd	*com;
27634 	struct cdrom_msf	msf_struct;
27635 	struct cdrom_msf	*msf = &msf_struct;
27636 	char			cdb[CDB_GROUP1];
27637 	int			rval;
27638 
27639 	if (data == NULL) {
27640 		return (EINVAL);
27641 	}
27642 
27643 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27644 		return (ENXIO);
27645 	}
27646 
27647 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27648 		return (EFAULT);
27649 	}
27650 
27651 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27652 	bzero(cdb, CDB_GROUP1);
27653 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27654 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27655 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27656 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27657 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27658 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27659 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27660 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27661 	} else {
27662 		cdb[3] = msf->cdmsf_min0;
27663 		cdb[4] = msf->cdmsf_sec0;
27664 		cdb[5] = msf->cdmsf_frame0;
27665 		cdb[6] = msf->cdmsf_min1;
27666 		cdb[7] = msf->cdmsf_sec1;
27667 		cdb[8] = msf->cdmsf_frame1;
27668 	}
27669 	com->uscsi_cdb    = cdb;
27670 	com->uscsi_cdblen = CDB_GROUP1;
27671 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27672 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27673 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27674 	kmem_free(com, sizeof (*com));
27675 	return (rval);
27676 }
27677 
27678 
27679 /*
27680  *    Function: sr_play_trkind()
27681  *
27682  * Description: This routine is the driver entry point for handling CD-ROM
27683  *		ioctl requests to output the audio signals at the specified
27684  *		starting address and continue the audio play until the specified
27685  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27686  *		format.
27687  *
27688  *   Arguments: dev	- the device 'dev_t'
27689  *		data	- pointer to user provided audio track/index structure,
27690  *		          specifying start/end addresses.
27691  *		flag	- this argument is a pass through to ddi_copyxxx()
27692  *		          directly from the mode argument of ioctl().
27693  *
27694  * Return Code: the code returned by sd_send_scsi_cmd()
27695  *		EFAULT if ddi_copyxxx() fails
27696  *		ENXIO if fail ddi_get_soft_state
27697  *		EINVAL if data pointer is NULL
27698  */
27699 
27700 static int
27701 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27702 {
27703 	struct cdrom_ti		ti_struct;
27704 	struct cdrom_ti		*ti = &ti_struct;
27705 	struct uscsi_cmd	*com = NULL;
27706 	char			cdb[CDB_GROUP1];
27707 	int			rval;
27708 
27709 	if (data == NULL) {
27710 		return (EINVAL);
27711 	}
27712 
27713 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27714 		return (EFAULT);
27715 	}
27716 
27717 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27718 	bzero(cdb, CDB_GROUP1);
27719 	cdb[0] = SCMD_PLAYAUDIO_TI;
27720 	cdb[4] = ti->cdti_trk0;
27721 	cdb[5] = ti->cdti_ind0;
27722 	cdb[7] = ti->cdti_trk1;
27723 	cdb[8] = ti->cdti_ind1;
27724 	com->uscsi_cdb    = cdb;
27725 	com->uscsi_cdblen = CDB_GROUP1;
27726 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27727 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27728 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27729 	kmem_free(com, sizeof (*com));
27730 	return (rval);
27731 }
27732 
27733 
27734 /*
27735  *    Function: sr_read_all_subcodes()
27736  *
27737  * Description: This routine is the driver entry point for handling CD-ROM
27738  *		ioctl requests to return raw subcode data while the target is
27739  *		playing audio (CDROMSUBCODE).
27740  *
27741  *   Arguments: dev	- the device 'dev_t'
27742  *		data	- pointer to user provided cdrom subcode structure,
27743  *		          specifying the transfer length and address.
27744  *		flag	- this argument is a pass through to ddi_copyxxx()
27745  *		          directly from the mode argument of ioctl().
27746  *
27747  * Return Code: the code returned by sd_send_scsi_cmd()
27748  *		EFAULT if ddi_copyxxx() fails
27749  *		ENXIO if fail ddi_get_soft_state
27750  *		EINVAL if data pointer is NULL
27751  */
27752 
27753 static int
27754 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27755 {
27756 	struct sd_lun		*un = NULL;
27757 	struct uscsi_cmd	*com = NULL;
27758 	struct cdrom_subcode	*subcode = NULL;
27759 	int			rval;
27760 	size_t			buflen;
27761 	char			cdb[CDB_GROUP5];
27762 
27763 #ifdef _MULTI_DATAMODEL
27764 	/* To support ILP32 applications in an LP64 world */
27765 	struct cdrom_subcode32		cdrom_subcode32;
27766 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27767 #endif
27768 	if (data == NULL) {
27769 		return (EINVAL);
27770 	}
27771 
27772 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27773 		return (ENXIO);
27774 	}
27775 
27776 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27777 
27778 #ifdef _MULTI_DATAMODEL
27779 	switch (ddi_model_convert_from(flag & FMODELS)) {
27780 	case DDI_MODEL_ILP32:
27781 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27782 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27783 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27784 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27785 			return (EFAULT);
27786 		}
27787 		/* Convert the ILP32 uscsi data from the application to LP64 */
27788 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27789 		break;
27790 	case DDI_MODEL_NONE:
27791 		if (ddi_copyin(data, subcode,
27792 		    sizeof (struct cdrom_subcode), flag)) {
27793 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27794 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27795 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27796 			return (EFAULT);
27797 		}
27798 		break;
27799 	}
27800 #else /* ! _MULTI_DATAMODEL */
27801 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27802 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27803 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27804 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27805 		return (EFAULT);
27806 	}
27807 #endif /* _MULTI_DATAMODEL */
27808 
27809 	/*
27810 	 * Since MMC-2 expects max 3 bytes for length, check if the
27811 	 * length input is greater than 3 bytes
27812 	 */
27813 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27814 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27815 		    "sr_read_all_subcodes: "
27816 		    "cdrom transfer length too large: %d (limit %d)\n",
27817 		    subcode->cdsc_length, 0xFFFFFF);
27818 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27819 		return (EINVAL);
27820 	}
27821 
27822 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27823 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27824 	bzero(cdb, CDB_GROUP5);
27825 
27826 	if (un->un_f_mmc_cap == TRUE) {
27827 		cdb[0] = (char)SCMD_READ_CD;
27828 		cdb[2] = (char)0xff;
27829 		cdb[3] = (char)0xff;
27830 		cdb[4] = (char)0xff;
27831 		cdb[5] = (char)0xff;
27832 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27833 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27834 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27835 		cdb[10] = 1;
27836 	} else {
27837 		/*
27838 		 * Note: A vendor specific command (0xDF) is being used her to
27839 		 * request a read of all subcodes.
27840 		 */
27841 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27842 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27843 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27844 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27845 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27846 	}
27847 	com->uscsi_cdb	   = cdb;
27848 	com->uscsi_cdblen  = CDB_GROUP5;
27849 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27850 	com->uscsi_buflen  = buflen;
27851 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27852 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27853 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27854 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27855 	kmem_free(com, sizeof (*com));
27856 	return (rval);
27857 }
27858 
27859 
27860 /*
27861  *    Function: sr_read_subchannel()
27862  *
27863  * Description: This routine is the driver entry point for handling CD-ROM
27864  *		ioctl requests to return the Q sub-channel data of the CD
27865  *		current position block. (CDROMSUBCHNL) The data includes the
27866  *		track number, index number, absolute CD-ROM address (LBA or MSF
27867  *		format per the user) , track relative CD-ROM address (LBA or MSF
27868  *		format per the user), control data and audio status.
27869  *
27870  *   Arguments: dev	- the device 'dev_t'
27871  *		data	- pointer to user provided cdrom sub-channel structure
27872  *		flag	- this argument is a pass through to ddi_copyxxx()
27873  *		          directly from the mode argument of ioctl().
27874  *
27875  * Return Code: the code returned by sd_send_scsi_cmd()
27876  *		EFAULT if ddi_copyxxx() fails
27877  *		ENXIO if fail ddi_get_soft_state
27878  *		EINVAL if data pointer is NULL
27879  */
27880 
27881 static int
27882 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27883 {
27884 	struct sd_lun		*un;
27885 	struct uscsi_cmd	*com;
27886 	struct cdrom_subchnl	subchanel;
27887 	struct cdrom_subchnl	*subchnl = &subchanel;
27888 	char			cdb[CDB_GROUP1];
27889 	caddr_t			buffer;
27890 	int			rval;
27891 
27892 	if (data == NULL) {
27893 		return (EINVAL);
27894 	}
27895 
27896 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27897 	    (un->un_state == SD_STATE_OFFLINE)) {
27898 		return (ENXIO);
27899 	}
27900 
27901 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27902 		return (EFAULT);
27903 	}
27904 
27905 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27906 	bzero(cdb, CDB_GROUP1);
27907 	cdb[0] = SCMD_READ_SUBCHANNEL;
27908 	/* Set the MSF bit based on the user requested address format */
27909 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27910 	/*
27911 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27912 	 * returned
27913 	 */
27914 	cdb[2] = 0x40;
27915 	/*
27916 	 * Set byte 3 to specify the return data format. A value of 0x01
27917 	 * indicates that the CD-ROM current position should be returned.
27918 	 */
27919 	cdb[3] = 0x01;
27920 	cdb[8] = 0x10;
27921 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27922 	com->uscsi_cdb	   = cdb;
27923 	com->uscsi_cdblen  = CDB_GROUP1;
27924 	com->uscsi_bufaddr = buffer;
27925 	com->uscsi_buflen  = 16;
27926 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27927 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27928 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27929 	if (rval != 0) {
27930 		kmem_free(buffer, 16);
27931 		kmem_free(com, sizeof (*com));
27932 		return (rval);
27933 	}
27934 
27935 	/* Process the returned Q sub-channel data */
27936 	subchnl->cdsc_audiostatus = buffer[1];
27937 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27938 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27939 	subchnl->cdsc_trk	= buffer[6];
27940 	subchnl->cdsc_ind	= buffer[7];
27941 	if (subchnl->cdsc_format & CDROM_LBA) {
27942 		subchnl->cdsc_absaddr.lba =
27943 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27944 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27945 		subchnl->cdsc_reladdr.lba =
27946 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27947 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27948 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27949 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27950 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27951 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27952 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27953 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27954 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27955 	} else {
27956 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27957 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27958 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27959 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27960 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27961 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27962 	}
27963 	kmem_free(buffer, 16);
27964 	kmem_free(com, sizeof (*com));
27965 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27966 	    != 0) {
27967 		return (EFAULT);
27968 	}
27969 	return (rval);
27970 }
27971 
27972 
27973 /*
27974  *    Function: sr_read_tocentry()
27975  *
27976  * Description: This routine is the driver entry point for handling CD-ROM
27977  *		ioctl requests to read from the Table of Contents (TOC)
27978  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27979  *		fields, the starting address (LBA or MSF format per the user)
27980  *		and the data mode if the user specified track is a data track.
27981  *
27982  *		Note: The READ HEADER (0x44) command used in this routine is
27983  *		obsolete per the SCSI MMC spec but still supported in the
27984  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27985  *		therefore the command is still implemented in this routine.
27986  *
27987  *   Arguments: dev	- the device 'dev_t'
27988  *		data	- pointer to user provided toc entry structure,
27989  *			  specifying the track # and the address format
27990  *			  (LBA or MSF).
27991  *		flag	- this argument is a pass through to ddi_copyxxx()
27992  *		          directly from the mode argument of ioctl().
27993  *
27994  * Return Code: the code returned by sd_send_scsi_cmd()
27995  *		EFAULT if ddi_copyxxx() fails
27996  *		ENXIO if fail ddi_get_soft_state
27997  *		EINVAL if data pointer is NULL
27998  */
27999 
28000 static int
28001 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28002 {
28003 	struct sd_lun		*un = NULL;
28004 	struct uscsi_cmd	*com;
28005 	struct cdrom_tocentry	toc_entry;
28006 	struct cdrom_tocentry	*entry = &toc_entry;
28007 	caddr_t			buffer;
28008 	int			rval;
28009 	char			cdb[CDB_GROUP1];
28010 
28011 	if (data == NULL) {
28012 		return (EINVAL);
28013 	}
28014 
28015 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28016 	    (un->un_state == SD_STATE_OFFLINE)) {
28017 		return (ENXIO);
28018 	}
28019 
28020 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28021 		return (EFAULT);
28022 	}
28023 
28024 	/* Validate the requested track and address format */
28025 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28026 		return (EINVAL);
28027 	}
28028 
28029 	if (entry->cdte_track == 0) {
28030 		return (EINVAL);
28031 	}
28032 
28033 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28034 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28035 	bzero(cdb, CDB_GROUP1);
28036 
28037 	cdb[0] = SCMD_READ_TOC;
28038 	/* Set the MSF bit based on the user requested address format  */
28039 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28040 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28041 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28042 	} else {
28043 		cdb[6] = entry->cdte_track;
28044 	}
28045 
28046 	/*
28047 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28048 	 * (4 byte TOC response header + 8 byte track descriptor)
28049 	 */
28050 	cdb[8] = 12;
28051 	com->uscsi_cdb	   = cdb;
28052 	com->uscsi_cdblen  = CDB_GROUP1;
28053 	com->uscsi_bufaddr = buffer;
28054 	com->uscsi_buflen  = 0x0C;
28055 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28056 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28057 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28058 	if (rval != 0) {
28059 		kmem_free(buffer, 12);
28060 		kmem_free(com, sizeof (*com));
28061 		return (rval);
28062 	}
28063 
28064 	/* Process the toc entry */
28065 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28066 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28067 	if (entry->cdte_format & CDROM_LBA) {
28068 		entry->cdte_addr.lba =
28069 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28070 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28071 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28072 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28073 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28074 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28075 		/*
28076 		 * Send a READ TOC command using the LBA address format to get
28077 		 * the LBA for the track requested so it can be used in the
28078 		 * READ HEADER request
28079 		 *
28080 		 * Note: The MSF bit of the READ HEADER command specifies the
28081 		 * output format. The block address specified in that command
28082 		 * must be in LBA format.
28083 		 */
28084 		cdb[1] = 0;
28085 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28086 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28087 		if (rval != 0) {
28088 			kmem_free(buffer, 12);
28089 			kmem_free(com, sizeof (*com));
28090 			return (rval);
28091 		}
28092 	} else {
28093 		entry->cdte_addr.msf.minute	= buffer[9];
28094 		entry->cdte_addr.msf.second	= buffer[10];
28095 		entry->cdte_addr.msf.frame	= buffer[11];
28096 		/*
28097 		 * Send a READ TOC command using the LBA address format to get
28098 		 * the LBA for the track requested so it can be used in the
28099 		 * READ HEADER request
28100 		 *
28101 		 * Note: The MSF bit of the READ HEADER command specifies the
28102 		 * output format. The block address specified in that command
28103 		 * must be in LBA format.
28104 		 */
28105 		cdb[1] = 0;
28106 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28107 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28108 		if (rval != 0) {
28109 			kmem_free(buffer, 12);
28110 			kmem_free(com, sizeof (*com));
28111 			return (rval);
28112 		}
28113 	}
28114 
28115 	/*
28116 	 * Build and send the READ HEADER command to determine the data mode of
28117 	 * the user specified track.
28118 	 */
28119 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28120 	    (entry->cdte_track != CDROM_LEADOUT)) {
28121 		bzero(cdb, CDB_GROUP1);
28122 		cdb[0] = SCMD_READ_HEADER;
28123 		cdb[2] = buffer[8];
28124 		cdb[3] = buffer[9];
28125 		cdb[4] = buffer[10];
28126 		cdb[5] = buffer[11];
28127 		cdb[8] = 0x08;
28128 		com->uscsi_buflen = 0x08;
28129 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28130 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28131 		if (rval == 0) {
28132 			entry->cdte_datamode = buffer[0];
28133 		} else {
28134 			/*
28135 			 * READ HEADER command failed, since this is
28136 			 * obsoleted in one spec, its better to return
28137 			 * -1 for an invlid track so that we can still
28138 			 * recieve the rest of the TOC data.
28139 			 */
28140 			entry->cdte_datamode = (uchar_t)-1;
28141 		}
28142 	} else {
28143 		entry->cdte_datamode = (uchar_t)-1;
28144 	}
28145 
28146 	kmem_free(buffer, 12);
28147 	kmem_free(com, sizeof (*com));
28148 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28149 		return (EFAULT);
28150 
28151 	return (rval);
28152 }
28153 
28154 
28155 /*
28156  *    Function: sr_read_tochdr()
28157  *
28158  * Description: This routine is the driver entry point for handling CD-ROM
28159  * 		ioctl requests to read the Table of Contents (TOC) header
28160  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28161  *		and ending track numbers
28162  *
28163  *   Arguments: dev	- the device 'dev_t'
28164  *		data	- pointer to user provided toc header structure,
28165  *			  specifying the starting and ending track numbers.
28166  *		flag	- this argument is a pass through to ddi_copyxxx()
28167  *			  directly from the mode argument of ioctl().
28168  *
28169  * Return Code: the code returned by sd_send_scsi_cmd()
28170  *		EFAULT if ddi_copyxxx() fails
28171  *		ENXIO if fail ddi_get_soft_state
28172  *		EINVAL if data pointer is NULL
28173  */
28174 
28175 static int
28176 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28177 {
28178 	struct sd_lun		*un;
28179 	struct uscsi_cmd	*com;
28180 	struct cdrom_tochdr	toc_header;
28181 	struct cdrom_tochdr	*hdr = &toc_header;
28182 	char			cdb[CDB_GROUP1];
28183 	int			rval;
28184 	caddr_t			buffer;
28185 
28186 	if (data == NULL) {
28187 		return (EINVAL);
28188 	}
28189 
28190 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28191 	    (un->un_state == SD_STATE_OFFLINE)) {
28192 		return (ENXIO);
28193 	}
28194 
28195 	buffer = kmem_zalloc(4, KM_SLEEP);
28196 	bzero(cdb, CDB_GROUP1);
28197 	cdb[0] = SCMD_READ_TOC;
28198 	/*
28199 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28200 	 * that the TOC header should be returned
28201 	 */
28202 	cdb[6] = 0x00;
28203 	/*
28204 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28205 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28206 	 */
28207 	cdb[8] = 0x04;
28208 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28209 	com->uscsi_cdb	   = cdb;
28210 	com->uscsi_cdblen  = CDB_GROUP1;
28211 	com->uscsi_bufaddr = buffer;
28212 	com->uscsi_buflen  = 0x04;
28213 	com->uscsi_timeout = 300;
28214 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28215 
28216 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28217 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28218 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28219 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28220 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28221 	} else {
28222 		hdr->cdth_trk0 = buffer[2];
28223 		hdr->cdth_trk1 = buffer[3];
28224 	}
28225 	kmem_free(buffer, 4);
28226 	kmem_free(com, sizeof (*com));
28227 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28228 		return (EFAULT);
28229 	}
28230 	return (rval);
28231 }
28232 
28233 
28234 /*
28235  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28236  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28237  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28238  * digital audio and extended architecture digital audio. These modes are
28239  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28240  * MMC specs.
28241  *
28242  * In addition to support for the various data formats these routines also
28243  * include support for devices that implement only the direct access READ
28244  * commands (0x08, 0x28), devices that implement the READ_CD commands
28245  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28246  * READ CDXA commands (0xD8, 0xDB)
28247  */
28248 
28249 /*
28250  *    Function: sr_read_mode1()
28251  *
28252  * Description: This routine is the driver entry point for handling CD-ROM
28253  *		ioctl read mode1 requests (CDROMREADMODE1).
28254  *
28255  *   Arguments: dev	- the device 'dev_t'
28256  *		data	- pointer to user provided cd read structure specifying
28257  *			  the lba buffer address and length.
28258  *		flag	- this argument is a pass through to ddi_copyxxx()
28259  *			  directly from the mode argument of ioctl().
28260  *
28261  * Return Code: the code returned by sd_send_scsi_cmd()
28262  *		EFAULT if ddi_copyxxx() fails
28263  *		ENXIO if fail ddi_get_soft_state
28264  *		EINVAL if data pointer is NULL
28265  */
28266 
28267 static int
28268 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28269 {
28270 	struct sd_lun		*un;
28271 	struct cdrom_read	mode1_struct;
28272 	struct cdrom_read	*mode1 = &mode1_struct;
28273 	int			rval;
28274 #ifdef _MULTI_DATAMODEL
28275 	/* To support ILP32 applications in an LP64 world */
28276 	struct cdrom_read32	cdrom_read32;
28277 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28278 #endif /* _MULTI_DATAMODEL */
28279 
28280 	if (data == NULL) {
28281 		return (EINVAL);
28282 	}
28283 
28284 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28285 	    (un->un_state == SD_STATE_OFFLINE)) {
28286 		return (ENXIO);
28287 	}
28288 
28289 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28290 	    "sd_read_mode1: entry: un:0x%p\n", un);
28291 
28292 #ifdef _MULTI_DATAMODEL
28293 	switch (ddi_model_convert_from(flag & FMODELS)) {
28294 	case DDI_MODEL_ILP32:
28295 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28296 			return (EFAULT);
28297 		}
28298 		/* Convert the ILP32 uscsi data from the application to LP64 */
28299 		cdrom_read32tocdrom_read(cdrd32, mode1);
28300 		break;
28301 	case DDI_MODEL_NONE:
28302 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28303 			return (EFAULT);
28304 		}
28305 	}
28306 #else /* ! _MULTI_DATAMODEL */
28307 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28308 		return (EFAULT);
28309 	}
28310 #endif /* _MULTI_DATAMODEL */
28311 
28312 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28313 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28314 
28315 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28316 	    "sd_read_mode1: exit: un:0x%p\n", un);
28317 
28318 	return (rval);
28319 }
28320 
28321 
28322 /*
28323  *    Function: sr_read_cd_mode2()
28324  *
28325  * Description: This routine is the driver entry point for handling CD-ROM
28326  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28327  *		support the READ CD (0xBE) command or the 1st generation
28328  *		READ CD (0xD4) command.
28329  *
28330  *   Arguments: dev	- the device 'dev_t'
28331  *		data	- pointer to user provided cd read structure specifying
28332  *			  the lba buffer address and length.
28333  *		flag	- this argument is a pass through to ddi_copyxxx()
28334  *			  directly from the mode argument of ioctl().
28335  *
28336  * Return Code: the code returned by sd_send_scsi_cmd()
28337  *		EFAULT if ddi_copyxxx() fails
28338  *		ENXIO if fail ddi_get_soft_state
28339  *		EINVAL if data pointer is NULL
28340  */
28341 
28342 static int
28343 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28344 {
28345 	struct sd_lun		*un;
28346 	struct uscsi_cmd	*com;
28347 	struct cdrom_read	mode2_struct;
28348 	struct cdrom_read	*mode2 = &mode2_struct;
28349 	uchar_t			cdb[CDB_GROUP5];
28350 	int			nblocks;
28351 	int			rval;
28352 #ifdef _MULTI_DATAMODEL
28353 	/*  To support ILP32 applications in an LP64 world */
28354 	struct cdrom_read32	cdrom_read32;
28355 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28356 #endif /* _MULTI_DATAMODEL */
28357 
28358 	if (data == NULL) {
28359 		return (EINVAL);
28360 	}
28361 
28362 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28363 	    (un->un_state == SD_STATE_OFFLINE)) {
28364 		return (ENXIO);
28365 	}
28366 
28367 #ifdef _MULTI_DATAMODEL
28368 	switch (ddi_model_convert_from(flag & FMODELS)) {
28369 	case DDI_MODEL_ILP32:
28370 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28371 			return (EFAULT);
28372 		}
28373 		/* Convert the ILP32 uscsi data from the application to LP64 */
28374 		cdrom_read32tocdrom_read(cdrd32, mode2);
28375 		break;
28376 	case DDI_MODEL_NONE:
28377 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28378 			return (EFAULT);
28379 		}
28380 		break;
28381 	}
28382 
28383 #else /* ! _MULTI_DATAMODEL */
28384 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28385 		return (EFAULT);
28386 	}
28387 #endif /* _MULTI_DATAMODEL */
28388 
28389 	bzero(cdb, sizeof (cdb));
28390 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28391 		/* Read command supported by 1st generation atapi drives */
28392 		cdb[0] = SCMD_READ_CDD4;
28393 	} else {
28394 		/* Universal CD Access Command */
28395 		cdb[0] = SCMD_READ_CD;
28396 	}
28397 
28398 	/*
28399 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28400 	 */
28401 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28402 
28403 	/* set the start address */
28404 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28405 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28406 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28407 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28408 
28409 	/* set the transfer length */
28410 	nblocks = mode2->cdread_buflen / 2336;
28411 	cdb[6] = (uchar_t)(nblocks >> 16);
28412 	cdb[7] = (uchar_t)(nblocks >> 8);
28413 	cdb[8] = (uchar_t)nblocks;
28414 
28415 	/* set the filter bits */
28416 	cdb[9] = CDROM_READ_CD_USERDATA;
28417 
28418 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28419 	com->uscsi_cdb = (caddr_t)cdb;
28420 	com->uscsi_cdblen = sizeof (cdb);
28421 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28422 	com->uscsi_buflen = mode2->cdread_buflen;
28423 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28424 
28425 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28426 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28427 	kmem_free(com, sizeof (*com));
28428 	return (rval);
28429 }
28430 
28431 
28432 /*
28433  *    Function: sr_read_mode2()
28434  *
28435  * Description: This routine is the driver entry point for handling CD-ROM
28436  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28437  *		do not support the READ CD (0xBE) command.
28438  *
28439  *   Arguments: dev	- the device 'dev_t'
28440  *		data	- pointer to user provided cd read structure specifying
28441  *			  the lba buffer address and length.
28442  *		flag	- this argument is a pass through to ddi_copyxxx()
28443  *			  directly from the mode argument of ioctl().
28444  *
28445  * Return Code: the code returned by sd_send_scsi_cmd()
28446  *		EFAULT if ddi_copyxxx() fails
28447  *		ENXIO if fail ddi_get_soft_state
28448  *		EINVAL if data pointer is NULL
28449  *		EIO if fail to reset block size
28450  *		EAGAIN if commands are in progress in the driver
28451  */
28452 
28453 static int
28454 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28455 {
28456 	struct sd_lun		*un;
28457 	struct cdrom_read	mode2_struct;
28458 	struct cdrom_read	*mode2 = &mode2_struct;
28459 	int			rval;
28460 	uint32_t		restore_blksize;
28461 	struct uscsi_cmd	*com;
28462 	uchar_t			cdb[CDB_GROUP0];
28463 	int			nblocks;
28464 
28465 #ifdef _MULTI_DATAMODEL
28466 	/* To support ILP32 applications in an LP64 world */
28467 	struct cdrom_read32	cdrom_read32;
28468 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28469 #endif /* _MULTI_DATAMODEL */
28470 
28471 	if (data == NULL) {
28472 		return (EINVAL);
28473 	}
28474 
28475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28476 	    (un->un_state == SD_STATE_OFFLINE)) {
28477 		return (ENXIO);
28478 	}
28479 
28480 	/*
28481 	 * Because this routine will update the device and driver block size
28482 	 * being used we want to make sure there are no commands in progress.
28483 	 * If commands are in progress the user will have to try again.
28484 	 *
28485 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28486 	 * in sdioctl to protect commands from sdioctl through to the top of
28487 	 * sd_uscsi_strategy. See sdioctl for details.
28488 	 */
28489 	mutex_enter(SD_MUTEX(un));
28490 	if (un->un_ncmds_in_driver != 1) {
28491 		mutex_exit(SD_MUTEX(un));
28492 		return (EAGAIN);
28493 	}
28494 	mutex_exit(SD_MUTEX(un));
28495 
28496 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28497 	    "sd_read_mode2: entry: un:0x%p\n", un);
28498 
28499 #ifdef _MULTI_DATAMODEL
28500 	switch (ddi_model_convert_from(flag & FMODELS)) {
28501 	case DDI_MODEL_ILP32:
28502 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28503 			return (EFAULT);
28504 		}
28505 		/* Convert the ILP32 uscsi data from the application to LP64 */
28506 		cdrom_read32tocdrom_read(cdrd32, mode2);
28507 		break;
28508 	case DDI_MODEL_NONE:
28509 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28510 			return (EFAULT);
28511 		}
28512 		break;
28513 	}
28514 #else /* ! _MULTI_DATAMODEL */
28515 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28516 		return (EFAULT);
28517 	}
28518 #endif /* _MULTI_DATAMODEL */
28519 
28520 	/* Store the current target block size for restoration later */
28521 	restore_blksize = un->un_tgt_blocksize;
28522 
28523 	/* Change the device and soft state target block size to 2336 */
28524 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28525 		rval = EIO;
28526 		goto done;
28527 	}
28528 
28529 
28530 	bzero(cdb, sizeof (cdb));
28531 
28532 	/* set READ operation */
28533 	cdb[0] = SCMD_READ;
28534 
28535 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28536 	mode2->cdread_lba >>= 2;
28537 
28538 	/* set the start address */
28539 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28540 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28541 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28542 
28543 	/* set the transfer length */
28544 	nblocks = mode2->cdread_buflen / 2336;
28545 	cdb[4] = (uchar_t)nblocks & 0xFF;
28546 
28547 	/* build command */
28548 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28549 	com->uscsi_cdb = (caddr_t)cdb;
28550 	com->uscsi_cdblen = sizeof (cdb);
28551 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28552 	com->uscsi_buflen = mode2->cdread_buflen;
28553 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28554 
28555 	/*
28556 	 * Issue SCSI command with user space address for read buffer.
28557 	 *
28558 	 * This sends the command through main channel in the driver.
28559 	 *
28560 	 * Since this is accessed via an IOCTL call, we go through the
28561 	 * standard path, so that if the device was powered down, then
28562 	 * it would be 'awakened' to handle the command.
28563 	 */
28564 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28565 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28566 
28567 	kmem_free(com, sizeof (*com));
28568 
28569 	/* Restore the device and soft state target block size */
28570 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28571 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28572 		    "can't do switch back to mode 1\n");
28573 		/*
28574 		 * If sd_send_scsi_READ succeeded we still need to report
28575 		 * an error because we failed to reset the block size
28576 		 */
28577 		if (rval == 0) {
28578 			rval = EIO;
28579 		}
28580 	}
28581 
28582 done:
28583 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28584 	    "sd_read_mode2: exit: un:0x%p\n", un);
28585 
28586 	return (rval);
28587 }
28588 
28589 
28590 /*
28591  *    Function: sr_sector_mode()
28592  *
28593  * Description: This utility function is used by sr_read_mode2 to set the target
28594  *		block size based on the user specified size. This is a legacy
28595  *		implementation based upon a vendor specific mode page
28596  *
28597  *   Arguments: dev	- the device 'dev_t'
28598  *		data	- flag indicating if block size is being set to 2336 or
28599  *			  512.
28600  *
28601  * Return Code: the code returned by sd_send_scsi_cmd()
28602  *		EFAULT if ddi_copyxxx() fails
28603  *		ENXIO if fail ddi_get_soft_state
28604  *		EINVAL if data pointer is NULL
28605  */
28606 
28607 static int
28608 sr_sector_mode(dev_t dev, uint32_t blksize)
28609 {
28610 	struct sd_lun	*un;
28611 	uchar_t		*sense;
28612 	uchar_t		*select;
28613 	int		rval;
28614 
28615 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28616 	    (un->un_state == SD_STATE_OFFLINE)) {
28617 		return (ENXIO);
28618 	}
28619 
28620 	sense = kmem_zalloc(20, KM_SLEEP);
28621 
28622 	/* Note: This is a vendor specific mode page (0x81) */
28623 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28624 	    SD_PATH_STANDARD)) != 0) {
28625 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28626 		    "sr_sector_mode: Mode Sense failed\n");
28627 		kmem_free(sense, 20);
28628 		return (rval);
28629 	}
28630 	select = kmem_zalloc(20, KM_SLEEP);
28631 	select[3] = 0x08;
28632 	select[10] = ((blksize >> 8) & 0xff);
28633 	select[11] = (blksize & 0xff);
28634 	select[12] = 0x01;
28635 	select[13] = 0x06;
28636 	select[14] = sense[14];
28637 	select[15] = sense[15];
28638 	if (blksize == SD_MODE2_BLKSIZE) {
28639 		select[14] |= 0x01;
28640 	}
28641 
28642 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28643 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28644 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28645 		    "sr_sector_mode: Mode Select failed\n");
28646 	} else {
28647 		/*
28648 		 * Only update the softstate block size if we successfully
28649 		 * changed the device block mode.
28650 		 */
28651 		mutex_enter(SD_MUTEX(un));
28652 		sd_update_block_info(un, blksize, 0);
28653 		mutex_exit(SD_MUTEX(un));
28654 	}
28655 	kmem_free(sense, 20);
28656 	kmem_free(select, 20);
28657 	return (rval);
28658 }
28659 
28660 
28661 /*
28662  *    Function: sr_read_cdda()
28663  *
28664  * Description: This routine is the driver entry point for handling CD-ROM
28665  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28666  *		the target supports CDDA these requests are handled via a vendor
28667  *		specific command (0xD8) If the target does not support CDDA
28668  *		these requests are handled via the READ CD command (0xBE).
28669  *
28670  *   Arguments: dev	- the device 'dev_t'
28671  *		data	- pointer to user provided CD-DA structure specifying
28672  *			  the track starting address, transfer length, and
28673  *			  subcode options.
28674  *		flag	- this argument is a pass through to ddi_copyxxx()
28675  *			  directly from the mode argument of ioctl().
28676  *
28677  * Return Code: the code returned by sd_send_scsi_cmd()
28678  *		EFAULT if ddi_copyxxx() fails
28679  *		ENXIO if fail ddi_get_soft_state
28680  *		EINVAL if invalid arguments are provided
28681  *		ENOTTY
28682  */
28683 
28684 static int
28685 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28686 {
28687 	struct sd_lun			*un;
28688 	struct uscsi_cmd		*com;
28689 	struct cdrom_cdda		*cdda;
28690 	int				rval;
28691 	size_t				buflen;
28692 	char				cdb[CDB_GROUP5];
28693 
28694 #ifdef _MULTI_DATAMODEL
28695 	/* To support ILP32 applications in an LP64 world */
28696 	struct cdrom_cdda32	cdrom_cdda32;
28697 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28698 #endif /* _MULTI_DATAMODEL */
28699 
28700 	if (data == NULL) {
28701 		return (EINVAL);
28702 	}
28703 
28704 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28705 		return (ENXIO);
28706 	}
28707 
28708 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28709 
28710 #ifdef _MULTI_DATAMODEL
28711 	switch (ddi_model_convert_from(flag & FMODELS)) {
28712 	case DDI_MODEL_ILP32:
28713 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28714 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28715 			    "sr_read_cdda: ddi_copyin Failed\n");
28716 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28717 			return (EFAULT);
28718 		}
28719 		/* Convert the ILP32 uscsi data from the application to LP64 */
28720 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28721 		break;
28722 	case DDI_MODEL_NONE:
28723 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28724 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28725 			    "sr_read_cdda: ddi_copyin Failed\n");
28726 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28727 			return (EFAULT);
28728 		}
28729 		break;
28730 	}
28731 #else /* ! _MULTI_DATAMODEL */
28732 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28733 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28734 		    "sr_read_cdda: ddi_copyin Failed\n");
28735 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28736 		return (EFAULT);
28737 	}
28738 #endif /* _MULTI_DATAMODEL */
28739 
28740 	/*
28741 	 * Since MMC-2 expects max 3 bytes for length, check if the
28742 	 * length input is greater than 3 bytes
28743 	 */
28744 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28745 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28746 		    "cdrom transfer length too large: %d (limit %d)\n",
28747 		    cdda->cdda_length, 0xFFFFFF);
28748 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28749 		return (EINVAL);
28750 	}
28751 
28752 	switch (cdda->cdda_subcode) {
28753 	case CDROM_DA_NO_SUBCODE:
28754 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28755 		break;
28756 	case CDROM_DA_SUBQ:
28757 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28758 		break;
28759 	case CDROM_DA_ALL_SUBCODE:
28760 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28761 		break;
28762 	case CDROM_DA_SUBCODE_ONLY:
28763 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28764 		break;
28765 	default:
28766 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28767 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28768 		    cdda->cdda_subcode);
28769 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28770 		return (EINVAL);
28771 	}
28772 
28773 	/* Build and send the command */
28774 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28775 	bzero(cdb, CDB_GROUP5);
28776 
28777 	if (un->un_f_cfg_cdda == TRUE) {
28778 		cdb[0] = (char)SCMD_READ_CD;
28779 		cdb[1] = 0x04;
28780 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28781 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28782 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28783 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28784 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28785 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28786 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28787 		cdb[9] = 0x10;
28788 		switch (cdda->cdda_subcode) {
28789 		case CDROM_DA_NO_SUBCODE :
28790 			cdb[10] = 0x0;
28791 			break;
28792 		case CDROM_DA_SUBQ :
28793 			cdb[10] = 0x2;
28794 			break;
28795 		case CDROM_DA_ALL_SUBCODE :
28796 			cdb[10] = 0x1;
28797 			break;
28798 		case CDROM_DA_SUBCODE_ONLY :
28799 			/* FALLTHROUGH */
28800 		default :
28801 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28802 			kmem_free(com, sizeof (*com));
28803 			return (ENOTTY);
28804 		}
28805 	} else {
28806 		cdb[0] = (char)SCMD_READ_CDDA;
28807 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28808 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28809 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28810 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28811 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28812 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28813 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28814 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28815 		cdb[10] = cdda->cdda_subcode;
28816 	}
28817 
28818 	com->uscsi_cdb = cdb;
28819 	com->uscsi_cdblen = CDB_GROUP5;
28820 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28821 	com->uscsi_buflen = buflen;
28822 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28823 
28824 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28825 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28826 
28827 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28828 	kmem_free(com, sizeof (*com));
28829 	return (rval);
28830 }
28831 
28832 
28833 /*
28834  *    Function: sr_read_cdxa()
28835  *
28836  * Description: This routine is the driver entry point for handling CD-ROM
28837  *		ioctl requests to return CD-XA (Extended Architecture) data.
28838  *		(CDROMCDXA).
28839  *
28840  *   Arguments: dev	- the device 'dev_t'
28841  *		data	- pointer to user provided CD-XA structure specifying
28842  *			  the data starting address, transfer length, and format
28843  *		flag	- this argument is a pass through to ddi_copyxxx()
28844  *			  directly from the mode argument of ioctl().
28845  *
28846  * Return Code: the code returned by sd_send_scsi_cmd()
28847  *		EFAULT if ddi_copyxxx() fails
28848  *		ENXIO if fail ddi_get_soft_state
28849  *		EINVAL if data pointer is NULL
28850  */
28851 
28852 static int
28853 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28854 {
28855 	struct sd_lun		*un;
28856 	struct uscsi_cmd	*com;
28857 	struct cdrom_cdxa	*cdxa;
28858 	int			rval;
28859 	size_t			buflen;
28860 	char			cdb[CDB_GROUP5];
28861 	uchar_t			read_flags;
28862 
28863 #ifdef _MULTI_DATAMODEL
28864 	/* To support ILP32 applications in an LP64 world */
28865 	struct cdrom_cdxa32		cdrom_cdxa32;
28866 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28867 #endif /* _MULTI_DATAMODEL */
28868 
28869 	if (data == NULL) {
28870 		return (EINVAL);
28871 	}
28872 
28873 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28874 		return (ENXIO);
28875 	}
28876 
28877 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28878 
28879 #ifdef _MULTI_DATAMODEL
28880 	switch (ddi_model_convert_from(flag & FMODELS)) {
28881 	case DDI_MODEL_ILP32:
28882 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28883 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28884 			return (EFAULT);
28885 		}
28886 		/*
28887 		 * Convert the ILP32 uscsi data from the
28888 		 * application to LP64 for internal use.
28889 		 */
28890 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28891 		break;
28892 	case DDI_MODEL_NONE:
28893 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28894 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28895 			return (EFAULT);
28896 		}
28897 		break;
28898 	}
28899 #else /* ! _MULTI_DATAMODEL */
28900 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28901 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28902 		return (EFAULT);
28903 	}
28904 #endif /* _MULTI_DATAMODEL */
28905 
28906 	/*
28907 	 * Since MMC-2 expects max 3 bytes for length, check if the
28908 	 * length input is greater than 3 bytes
28909 	 */
28910 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28911 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28912 		    "cdrom transfer length too large: %d (limit %d)\n",
28913 		    cdxa->cdxa_length, 0xFFFFFF);
28914 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28915 		return (EINVAL);
28916 	}
28917 
28918 	switch (cdxa->cdxa_format) {
28919 	case CDROM_XA_DATA:
28920 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28921 		read_flags = 0x10;
28922 		break;
28923 	case CDROM_XA_SECTOR_DATA:
28924 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28925 		read_flags = 0xf8;
28926 		break;
28927 	case CDROM_XA_DATA_W_ERROR:
28928 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28929 		read_flags = 0xfc;
28930 		break;
28931 	default:
28932 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28933 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28934 		    cdxa->cdxa_format);
28935 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28936 		return (EINVAL);
28937 	}
28938 
28939 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28940 	bzero(cdb, CDB_GROUP5);
28941 	if (un->un_f_mmc_cap == TRUE) {
28942 		cdb[0] = (char)SCMD_READ_CD;
28943 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28944 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28945 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28946 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28947 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28948 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28949 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28950 		cdb[9] = (char)read_flags;
28951 	} else {
28952 		/*
28953 		 * Note: A vendor specific command (0xDB) is being used her to
28954 		 * request a read of all subcodes.
28955 		 */
28956 		cdb[0] = (char)SCMD_READ_CDXA;
28957 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28958 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28959 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28960 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28961 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28962 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28963 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28964 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28965 		cdb[10] = cdxa->cdxa_format;
28966 	}
28967 	com->uscsi_cdb	   = cdb;
28968 	com->uscsi_cdblen  = CDB_GROUP5;
28969 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28970 	com->uscsi_buflen  = buflen;
28971 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28972 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28973 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28974 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28975 	kmem_free(com, sizeof (*com));
28976 	return (rval);
28977 }
28978 
28979 
28980 /*
28981  *    Function: sr_eject()
28982  *
28983  * Description: This routine is the driver entry point for handling CD-ROM
28984  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28985  *
28986  *   Arguments: dev	- the device 'dev_t'
28987  *
28988  * Return Code: the code returned by sd_send_scsi_cmd()
28989  */
28990 
28991 static int
28992 sr_eject(dev_t dev)
28993 {
28994 	struct sd_lun	*un;
28995 	int		rval;
28996 
28997 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28998 	    (un->un_state == SD_STATE_OFFLINE)) {
28999 		return (ENXIO);
29000 	}
29001 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29002 	    SD_PATH_STANDARD)) != 0) {
29003 		return (rval);
29004 	}
29005 
29006 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29007 	    SD_PATH_STANDARD);
29008 
29009 	if (rval == 0) {
29010 		mutex_enter(SD_MUTEX(un));
29011 		sr_ejected(un);
29012 		un->un_mediastate = DKIO_EJECTED;
29013 		cv_broadcast(&un->un_state_cv);
29014 		mutex_exit(SD_MUTEX(un));
29015 	}
29016 	return (rval);
29017 }
29018 
29019 
29020 /*
29021  *    Function: sr_ejected()
29022  *
29023  * Description: This routine updates the soft state structure to invalidate the
29024  *		geometry information after the media has been ejected or a
29025  *		media eject has been detected.
29026  *
29027  *   Arguments: un - driver soft state (unit) structure
29028  */
29029 
29030 static void
29031 sr_ejected(struct sd_lun *un)
29032 {
29033 	struct sd_errstats *stp;
29034 
29035 	ASSERT(un != NULL);
29036 	ASSERT(mutex_owned(SD_MUTEX(un)));
29037 
29038 	un->un_f_blockcount_is_valid	= FALSE;
29039 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29040 	un->un_f_geometry_is_valid	= FALSE;
29041 
29042 	if (un->un_errstats != NULL) {
29043 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29044 		stp->sd_capacity.value.ui64 = 0;
29045 	}
29046 }
29047 
29048 
29049 /*
29050  *    Function: sr_check_wp()
29051  *
29052  * Description: This routine checks the write protection of a removable media
29053  *		disk via the write protect bit of the Mode Page Header device
29054  *		specific field.  This routine has been implemented to use the
29055  *		error recovery mode page for all device types.
29056  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
29057  *
29058  *   Arguments: dev		- the device 'dev_t'
29059  *
29060  * Return Code: int indicating if the device is write protected (1) or not (0)
29061  *
29062  *     Context: Kernel thread.
29063  *
29064  */
29065 
29066 static int
29067 sr_check_wp(dev_t dev)
29068 {
29069 	struct sd_lun	*un;
29070 	uchar_t		device_specific;
29071 	uchar_t		*sense;
29072 	int		hdrlen;
29073 	int		rval;
29074 	int		retry_flag = FALSE;
29075 
29076 	/*
29077 	 * Note: The return codes for this routine should be reworked to
29078 	 * properly handle the case of a NULL softstate.
29079 	 */
29080 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29081 		return (FALSE);
29082 	}
29083 
29084 	if (un->un_f_cfg_is_atapi == TRUE) {
29085 		retry_flag = TRUE;
29086 	}
29087 
29088 retry:
29089 	if (un->un_f_cfg_is_atapi == TRUE) {
29090 		/*
29091 		 * The mode page contents are not required; set the allocation
29092 		 * length for the mode page header only
29093 		 */
29094 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29095 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29096 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29097 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
29098 		device_specific =
29099 		    ((struct mode_header_grp2 *)sense)->device_specific;
29100 	} else {
29101 		hdrlen = MODE_HEADER_LENGTH;
29102 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29103 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29104 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
29105 		device_specific =
29106 		    ((struct mode_header *)sense)->device_specific;
29107 	}
29108 
29109 	if (rval != 0) {
29110 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
29111 			/*
29112 			 * For an Atapi Zip drive, observed the drive
29113 			 * reporting check condition for the first attempt.
29114 			 * Sense data indicating power on or bus device/reset.
29115 			 * Hence in case of failure need to try at least once
29116 			 * for Atapi devices.
29117 			 */
29118 			retry_flag = FALSE;
29119 			kmem_free(sense, hdrlen);
29120 			goto retry;
29121 		} else {
29122 			/*
29123 			 * Write protect mode sense failed; not all disks
29124 			 * understand this query. Return FALSE assuming that
29125 			 * these devices are not writable.
29126 			 */
29127 			rval = FALSE;
29128 		}
29129 	} else {
29130 		if (device_specific & WRITE_PROTECT) {
29131 			rval = TRUE;
29132 		} else {
29133 			rval = FALSE;
29134 		}
29135 	}
29136 	kmem_free(sense, hdrlen);
29137 	return (rval);
29138 }
29139 
29140 
29141 /*
29142  *    Function: sr_volume_ctrl()
29143  *
29144  * Description: This routine is the driver entry point for handling CD-ROM
29145  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29146  *
29147  *   Arguments: dev	- the device 'dev_t'
29148  *		data	- pointer to user audio volume control structure
29149  *		flag	- this argument is a pass through to ddi_copyxxx()
29150  *			  directly from the mode argument of ioctl().
29151  *
29152  * Return Code: the code returned by sd_send_scsi_cmd()
29153  *		EFAULT if ddi_copyxxx() fails
29154  *		ENXIO if fail ddi_get_soft_state
29155  *		EINVAL if data pointer is NULL
29156  *
29157  */
29158 
29159 static int
29160 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29161 {
29162 	struct sd_lun		*un;
29163 	struct cdrom_volctrl    volume;
29164 	struct cdrom_volctrl    *vol = &volume;
29165 	uchar_t			*sense_page;
29166 	uchar_t			*select_page;
29167 	uchar_t			*sense;
29168 	uchar_t			*select;
29169 	int			sense_buflen;
29170 	int			select_buflen;
29171 	int			rval;
29172 
29173 	if (data == NULL) {
29174 		return (EINVAL);
29175 	}
29176 
29177 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29178 	    (un->un_state == SD_STATE_OFFLINE)) {
29179 		return (ENXIO);
29180 	}
29181 
29182 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29183 		return (EFAULT);
29184 	}
29185 
29186 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29187 		struct mode_header_grp2		*sense_mhp;
29188 		struct mode_header_grp2		*select_mhp;
29189 		int				bd_len;
29190 
29191 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29192 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29193 		    MODEPAGE_AUDIO_CTRL_LEN;
29194 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29195 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29196 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29197 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29198 		    SD_PATH_STANDARD)) != 0) {
29199 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29200 			    "sr_volume_ctrl: Mode Sense Failed\n");
29201 			kmem_free(sense, sense_buflen);
29202 			kmem_free(select, select_buflen);
29203 			return (rval);
29204 		}
29205 		sense_mhp = (struct mode_header_grp2 *)sense;
29206 		select_mhp = (struct mode_header_grp2 *)select;
29207 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29208 		    sense_mhp->bdesc_length_lo;
29209 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29210 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29211 			    "sr_volume_ctrl: Mode Sense returned invalid "
29212 			    "block descriptor length\n");
29213 			kmem_free(sense, sense_buflen);
29214 			kmem_free(select, select_buflen);
29215 			return (EIO);
29216 		}
29217 		sense_page = (uchar_t *)
29218 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29219 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29220 		select_mhp->length_msb = 0;
29221 		select_mhp->length_lsb = 0;
29222 		select_mhp->bdesc_length_hi = 0;
29223 		select_mhp->bdesc_length_lo = 0;
29224 	} else {
29225 		struct mode_header		*sense_mhp, *select_mhp;
29226 
29227 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29228 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29229 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29230 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29231 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29232 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29233 		    SD_PATH_STANDARD)) != 0) {
29234 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29235 			    "sr_volume_ctrl: Mode Sense Failed\n");
29236 			kmem_free(sense, sense_buflen);
29237 			kmem_free(select, select_buflen);
29238 			return (rval);
29239 		}
29240 		sense_mhp  = (struct mode_header *)sense;
29241 		select_mhp = (struct mode_header *)select;
29242 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29243 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29244 			    "sr_volume_ctrl: Mode Sense returned invalid "
29245 			    "block descriptor length\n");
29246 			kmem_free(sense, sense_buflen);
29247 			kmem_free(select, select_buflen);
29248 			return (EIO);
29249 		}
29250 		sense_page = (uchar_t *)
29251 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29252 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29253 		select_mhp->length = 0;
29254 		select_mhp->bdesc_length = 0;
29255 	}
29256 	/*
29257 	 * Note: An audio control data structure could be created and overlayed
29258 	 * on the following in place of the array indexing method implemented.
29259 	 */
29260 
29261 	/* Build the select data for the user volume data */
29262 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29263 	select_page[1] = 0xE;
29264 	/* Set the immediate bit */
29265 	select_page[2] = 0x04;
29266 	/* Zero out reserved fields */
29267 	select_page[3] = 0x00;
29268 	select_page[4] = 0x00;
29269 	/* Return sense data for fields not to be modified */
29270 	select_page[5] = sense_page[5];
29271 	select_page[6] = sense_page[6];
29272 	select_page[7] = sense_page[7];
29273 	/* Set the user specified volume levels for channel 0 and 1 */
29274 	select_page[8] = 0x01;
29275 	select_page[9] = vol->channel0;
29276 	select_page[10] = 0x02;
29277 	select_page[11] = vol->channel1;
29278 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29279 	select_page[12] = sense_page[12];
29280 	select_page[13] = sense_page[13];
29281 	select_page[14] = sense_page[14];
29282 	select_page[15] = sense_page[15];
29283 
29284 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29285 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29286 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29287 	} else {
29288 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29289 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29290 	}
29291 
29292 	kmem_free(sense, sense_buflen);
29293 	kmem_free(select, select_buflen);
29294 	return (rval);
29295 }
29296 
29297 
29298 /*
29299  *    Function: sr_read_sony_session_offset()
29300  *
29301  * Description: This routine is the driver entry point for handling CD-ROM
29302  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29303  *		The address of the first track in the last session of a
29304  *		multi-session CD-ROM is returned
29305  *
29306  *		Note: This routine uses a vendor specific key value in the
29307  *		command control field without implementing any vendor check here
29308  *		or in the ioctl routine.
29309  *
29310  *   Arguments: dev	- the device 'dev_t'
29311  *		data	- pointer to an int to hold the requested address
29312  *		flag	- this argument is a pass through to ddi_copyxxx()
29313  *			  directly from the mode argument of ioctl().
29314  *
29315  * Return Code: the code returned by sd_send_scsi_cmd()
29316  *		EFAULT if ddi_copyxxx() fails
29317  *		ENXIO if fail ddi_get_soft_state
29318  *		EINVAL if data pointer is NULL
29319  */
29320 
29321 static int
29322 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29323 {
29324 	struct sd_lun		*un;
29325 	struct uscsi_cmd	*com;
29326 	caddr_t			buffer;
29327 	char			cdb[CDB_GROUP1];
29328 	int			session_offset = 0;
29329 	int			rval;
29330 
29331 	if (data == NULL) {
29332 		return (EINVAL);
29333 	}
29334 
29335 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29336 	    (un->un_state == SD_STATE_OFFLINE)) {
29337 		return (ENXIO);
29338 	}
29339 
29340 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29341 	bzero(cdb, CDB_GROUP1);
29342 	cdb[0] = SCMD_READ_TOC;
29343 	/*
29344 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29345 	 * (4 byte TOC response header + 8 byte response data)
29346 	 */
29347 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29348 	/* Byte 9 is the control byte. A vendor specific value is used */
29349 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29350 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29351 	com->uscsi_cdb = cdb;
29352 	com->uscsi_cdblen = CDB_GROUP1;
29353 	com->uscsi_bufaddr = buffer;
29354 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29355 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29356 
29357 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29358 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29359 	if (rval != 0) {
29360 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29361 		kmem_free(com, sizeof (*com));
29362 		return (rval);
29363 	}
29364 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29365 		session_offset =
29366 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29367 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29368 		/*
29369 		 * Offset returned offset in current lbasize block's. Convert to
29370 		 * 2k block's to return to the user
29371 		 */
29372 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29373 			session_offset >>= 2;
29374 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29375 			session_offset >>= 1;
29376 		}
29377 	}
29378 
29379 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29380 		rval = EFAULT;
29381 	}
29382 
29383 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29384 	kmem_free(com, sizeof (*com));
29385 	return (rval);
29386 }
29387 
29388 
29389 /*
29390  *    Function: sd_wm_cache_constructor()
29391  *
29392  * Description: Cache Constructor for the wmap cache for the read/modify/write
29393  * 		devices.
29394  *
29395  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29396  *		un	- sd_lun structure for the device.
29397  *		flag	- the km flags passed to constructor
29398  *
29399  * Return Code: 0 on success.
29400  *		-1 on failure.
29401  */
29402 
29403 /*ARGSUSED*/
29404 static int
29405 sd_wm_cache_constructor(void *wm, void *un, int flags)
29406 {
29407 	bzero(wm, sizeof (struct sd_w_map));
29408 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29409 	return (0);
29410 }
29411 
29412 
29413 /*
29414  *    Function: sd_wm_cache_destructor()
29415  *
29416  * Description: Cache destructor for the wmap cache for the read/modify/write
29417  * 		devices.
29418  *
29419  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29420  *		un	- sd_lun structure for the device.
29421  */
29422 /*ARGSUSED*/
29423 static void
29424 sd_wm_cache_destructor(void *wm, void *un)
29425 {
29426 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29427 }
29428 
29429 
29430 /*
29431  *    Function: sd_range_lock()
29432  *
29433  * Description: Lock the range of blocks specified as parameter to ensure
29434  *		that read, modify write is atomic and no other i/o writes
29435  *		to the same location. The range is specified in terms
29436  *		of start and end blocks. Block numbers are the actual
29437  *		media block numbers and not system.
29438  *
29439  *   Arguments: un	- sd_lun structure for the device.
29440  *		startb - The starting block number
29441  *		endb - The end block number
29442  *		typ - type of i/o - simple/read_modify_write
29443  *
29444  * Return Code: wm  - pointer to the wmap structure.
29445  *
29446  *     Context: This routine can sleep.
29447  */
29448 
29449 static struct sd_w_map *
29450 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29451 {
29452 	struct sd_w_map *wmp = NULL;
29453 	struct sd_w_map *sl_wmp = NULL;
29454 	struct sd_w_map *tmp_wmp;
29455 	wm_state state = SD_WM_CHK_LIST;
29456 
29457 
29458 	ASSERT(un != NULL);
29459 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29460 
29461 	mutex_enter(SD_MUTEX(un));
29462 
29463 	while (state != SD_WM_DONE) {
29464 
29465 		switch (state) {
29466 		case SD_WM_CHK_LIST:
29467 			/*
29468 			 * This is the starting state. Check the wmap list
29469 			 * to see if the range is currently available.
29470 			 */
29471 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29472 				/*
29473 				 * If this is a simple write and no rmw
29474 				 * i/o is pending then try to lock the
29475 				 * range as the range should be available.
29476 				 */
29477 				state = SD_WM_LOCK_RANGE;
29478 			} else {
29479 				tmp_wmp = sd_get_range(un, startb, endb);
29480 				if (tmp_wmp != NULL) {
29481 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29482 						/*
29483 						 * Should not keep onlist wmps
29484 						 * while waiting this macro
29485 						 * will also do wmp = NULL;
29486 						 */
29487 						FREE_ONLIST_WMAP(un, wmp);
29488 					}
29489 					/*
29490 					 * sl_wmp is the wmap on which wait
29491 					 * is done, since the tmp_wmp points
29492 					 * to the inuse wmap, set sl_wmp to
29493 					 * tmp_wmp and change the state to sleep
29494 					 */
29495 					sl_wmp = tmp_wmp;
29496 					state = SD_WM_WAIT_MAP;
29497 				} else {
29498 					state = SD_WM_LOCK_RANGE;
29499 				}
29500 
29501 			}
29502 			break;
29503 
29504 		case SD_WM_LOCK_RANGE:
29505 			ASSERT(un->un_wm_cache);
29506 			/*
29507 			 * The range need to be locked, try to get a wmap.
29508 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29509 			 * if possible as we will have to release the sd mutex
29510 			 * if we have to sleep.
29511 			 */
29512 			if (wmp == NULL)
29513 				wmp = kmem_cache_alloc(un->un_wm_cache,
29514 				    KM_NOSLEEP);
29515 			if (wmp == NULL) {
29516 				mutex_exit(SD_MUTEX(un));
29517 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29518 				    (sd_lun::un_wm_cache))
29519 				wmp = kmem_cache_alloc(un->un_wm_cache,
29520 				    KM_SLEEP);
29521 				mutex_enter(SD_MUTEX(un));
29522 				/*
29523 				 * we released the mutex so recheck and go to
29524 				 * check list state.
29525 				 */
29526 				state = SD_WM_CHK_LIST;
29527 			} else {
29528 				/*
29529 				 * We exit out of state machine since we
29530 				 * have the wmap. Do the housekeeping first.
29531 				 * place the wmap on the wmap list if it is not
29532 				 * on it already and then set the state to done.
29533 				 */
29534 				wmp->wm_start = startb;
29535 				wmp->wm_end = endb;
29536 				wmp->wm_flags = typ | SD_WM_BUSY;
29537 				if (typ & SD_WTYPE_RMW) {
29538 					un->un_rmw_count++;
29539 				}
29540 				/*
29541 				 * If not already on the list then link
29542 				 */
29543 				if (!ONLIST(un, wmp)) {
29544 					wmp->wm_next = un->un_wm;
29545 					wmp->wm_prev = NULL;
29546 					if (wmp->wm_next)
29547 						wmp->wm_next->wm_prev = wmp;
29548 					un->un_wm = wmp;
29549 				}
29550 				state = SD_WM_DONE;
29551 			}
29552 			break;
29553 
29554 		case SD_WM_WAIT_MAP:
29555 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29556 			/*
29557 			 * Wait is done on sl_wmp, which is set in the
29558 			 * check_list state.
29559 			 */
29560 			sl_wmp->wm_wanted_count++;
29561 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29562 			sl_wmp->wm_wanted_count--;
29563 			/*
29564 			 * We can reuse the memory from the completed sl_wmp
29565 			 * lock range for our new lock, but only if noone is
29566 			 * waiting for it.
29567 			 */
29568 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29569 			if (sl_wmp->wm_wanted_count == 0) {
29570 				if (wmp != NULL)
29571 					CHK_N_FREEWMP(un, wmp);
29572 				wmp = sl_wmp;
29573 			}
29574 			sl_wmp = NULL;
29575 			/*
29576 			 * After waking up, need to recheck for availability of
29577 			 * range.
29578 			 */
29579 			state = SD_WM_CHK_LIST;
29580 			break;
29581 
29582 		default:
29583 			panic("sd_range_lock: "
29584 			    "Unknown state %d in sd_range_lock", state);
29585 			/*NOTREACHED*/
29586 		} /* switch(state) */
29587 
29588 	} /* while(state != SD_WM_DONE) */
29589 
29590 	mutex_exit(SD_MUTEX(un));
29591 
29592 	ASSERT(wmp != NULL);
29593 
29594 	return (wmp);
29595 }
29596 
29597 
29598 /*
29599  *    Function: sd_get_range()
29600  *
29601  * Description: Find if there any overlapping I/O to this one
29602  *		Returns the write-map of 1st such I/O, NULL otherwise.
29603  *
29604  *   Arguments: un	- sd_lun structure for the device.
29605  *		startb - The starting block number
29606  *		endb - The end block number
29607  *
29608  * Return Code: wm  - pointer to the wmap structure.
29609  */
29610 
29611 static struct sd_w_map *
29612 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29613 {
29614 	struct sd_w_map *wmp;
29615 
29616 	ASSERT(un != NULL);
29617 
29618 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29619 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29620 			continue;
29621 		}
29622 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29623 			break;
29624 		}
29625 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29626 			break;
29627 		}
29628 	}
29629 
29630 	return (wmp);
29631 }
29632 
29633 
29634 /*
29635  *    Function: sd_free_inlist_wmap()
29636  *
29637  * Description: Unlink and free a write map struct.
29638  *
29639  *   Arguments: un      - sd_lun structure for the device.
29640  *		wmp	- sd_w_map which needs to be unlinked.
29641  */
29642 
29643 static void
29644 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29645 {
29646 	ASSERT(un != NULL);
29647 
29648 	if (un->un_wm == wmp) {
29649 		un->un_wm = wmp->wm_next;
29650 	} else {
29651 		wmp->wm_prev->wm_next = wmp->wm_next;
29652 	}
29653 
29654 	if (wmp->wm_next) {
29655 		wmp->wm_next->wm_prev = wmp->wm_prev;
29656 	}
29657 
29658 	wmp->wm_next = wmp->wm_prev = NULL;
29659 
29660 	kmem_cache_free(un->un_wm_cache, wmp);
29661 }
29662 
29663 
29664 /*
29665  *    Function: sd_range_unlock()
29666  *
29667  * Description: Unlock the range locked by wm.
29668  *		Free write map if nobody else is waiting on it.
29669  *
29670  *   Arguments: un      - sd_lun structure for the device.
29671  *              wmp     - sd_w_map which needs to be unlinked.
29672  */
29673 
29674 static void
29675 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29676 {
29677 	ASSERT(un != NULL);
29678 	ASSERT(wm != NULL);
29679 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29680 
29681 	mutex_enter(SD_MUTEX(un));
29682 
29683 	if (wm->wm_flags & SD_WTYPE_RMW) {
29684 		un->un_rmw_count--;
29685 	}
29686 
29687 	if (wm->wm_wanted_count) {
29688 		wm->wm_flags = 0;
29689 		/*
29690 		 * Broadcast that the wmap is available now.
29691 		 */
29692 		cv_broadcast(&wm->wm_avail);
29693 	} else {
29694 		/*
29695 		 * If no one is waiting on the map, it should be free'ed.
29696 		 */
29697 		sd_free_inlist_wmap(un, wm);
29698 	}
29699 
29700 	mutex_exit(SD_MUTEX(un));
29701 }
29702 
29703 
29704 /*
29705  *    Function: sd_read_modify_write_task
29706  *
29707  * Description: Called from a taskq thread to initiate the write phase of
29708  *		a read-modify-write request.  This is used for targets where
29709  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29710  *
29711  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29712  *
29713  *     Context: Called under taskq thread context.
29714  */
29715 
29716 static void
29717 sd_read_modify_write_task(void *arg)
29718 {
29719 	struct sd_mapblocksize_info	*bsp;
29720 	struct buf	*bp;
29721 	struct sd_xbuf	*xp;
29722 	struct sd_lun	*un;
29723 
29724 	bp = arg;	/* The bp is given in arg */
29725 	ASSERT(bp != NULL);
29726 
29727 	/* Get the pointer to the layer-private data struct */
29728 	xp = SD_GET_XBUF(bp);
29729 	ASSERT(xp != NULL);
29730 	bsp = xp->xb_private;
29731 	ASSERT(bsp != NULL);
29732 
29733 	un = SD_GET_UN(bp);
29734 	ASSERT(un != NULL);
29735 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29736 
29737 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29738 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29739 
29740 	/*
29741 	 * This is the write phase of a read-modify-write request, called
29742 	 * under the context of a taskq thread in response to the completion
29743 	 * of the read portion of the rmw request completing under interrupt
29744 	 * context. The write request must be sent from here down the iostart
29745 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29746 	 * we use the layer index saved in the layer-private data area.
29747 	 */
29748 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29749 
29750 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29751 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29752 }
29753 
29754 
29755 /*
29756  *    Function: sddump_do_read_of_rmw()
29757  *
29758  * Description: This routine will be called from sddump, If sddump is called
29759  *		with an I/O which not aligned on device blocksize boundary
29760  *		then the write has to be converted to read-modify-write.
29761  *		Do the read part here in order to keep sddump simple.
29762  *		Note - That the sd_mutex is held across the call to this
29763  *		routine.
29764  *
29765  *   Arguments: un	- sd_lun
29766  *		blkno	- block number in terms of media block size.
29767  *		nblk	- number of blocks.
29768  *		bpp	- pointer to pointer to the buf structure. On return
29769  *			from this function, *bpp points to the valid buffer
29770  *			to which the write has to be done.
29771  *
29772  * Return Code: 0 for success or errno-type return code
29773  */
29774 
29775 static int
29776 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29777 	struct buf **bpp)
29778 {
29779 	int err;
29780 	int i;
29781 	int rval;
29782 	struct buf *bp;
29783 	struct scsi_pkt *pkt = NULL;
29784 	uint32_t target_blocksize;
29785 
29786 	ASSERT(un != NULL);
29787 	ASSERT(mutex_owned(SD_MUTEX(un)));
29788 
29789 	target_blocksize = un->un_tgt_blocksize;
29790 
29791 	mutex_exit(SD_MUTEX(un));
29792 
29793 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29794 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29795 	if (bp == NULL) {
29796 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29797 		    "no resources for dumping; giving up");
29798 		err = ENOMEM;
29799 		goto done;
29800 	}
29801 
29802 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29803 	    blkno, nblk);
29804 	if (rval != 0) {
29805 		scsi_free_consistent_buf(bp);
29806 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29807 		    "no resources for dumping; giving up");
29808 		err = ENOMEM;
29809 		goto done;
29810 	}
29811 
29812 	pkt->pkt_flags |= FLAG_NOINTR;
29813 
29814 	err = EIO;
29815 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29816 
29817 		/*
29818 		 * Scsi_poll returns 0 (success) if the command completes and
29819 		 * the status block is STATUS_GOOD.  We should only check
29820 		 * errors if this condition is not true.  Even then we should
29821 		 * send our own request sense packet only if we have a check
29822 		 * condition and auto request sense has not been performed by
29823 		 * the hba.
29824 		 */
29825 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29826 
29827 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29828 			err = 0;
29829 			break;
29830 		}
29831 
29832 		/*
29833 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29834 		 * no need to read RQS data.
29835 		 */
29836 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29837 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29838 			    "Device is gone\n");
29839 			break;
29840 		}
29841 
29842 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29843 			SD_INFO(SD_LOG_DUMP, un,
29844 			    "sddump: read failed with CHECK, try # %d\n", i);
29845 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29846 				(void) sd_send_polled_RQS(un);
29847 			}
29848 
29849 			continue;
29850 		}
29851 
29852 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29853 			int reset_retval = 0;
29854 
29855 			SD_INFO(SD_LOG_DUMP, un,
29856 			    "sddump: read failed with BUSY, try # %d\n", i);
29857 
29858 			if (un->un_f_lun_reset_enabled == TRUE) {
29859 				reset_retval = scsi_reset(SD_ADDRESS(un),
29860 				    RESET_LUN);
29861 			}
29862 			if (reset_retval == 0) {
29863 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29864 			}
29865 			(void) sd_send_polled_RQS(un);
29866 
29867 		} else {
29868 			SD_INFO(SD_LOG_DUMP, un,
29869 			    "sddump: read failed with 0x%x, try # %d\n",
29870 			    SD_GET_PKT_STATUS(pkt), i);
29871 			mutex_enter(SD_MUTEX(un));
29872 			sd_reset_target(un, pkt);
29873 			mutex_exit(SD_MUTEX(un));
29874 		}
29875 
29876 		/*
29877 		 * If we are not getting anywhere with lun/target resets,
29878 		 * let's reset the bus.
29879 		 */
29880 		if (i > SD_NDUMP_RETRIES/2) {
29881 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29882 			(void) sd_send_polled_RQS(un);
29883 		}
29884 
29885 	}
29886 	scsi_destroy_pkt(pkt);
29887 
29888 	if (err != 0) {
29889 		scsi_free_consistent_buf(bp);
29890 		*bpp = NULL;
29891 	} else {
29892 		*bpp = bp;
29893 	}
29894 
29895 done:
29896 	mutex_enter(SD_MUTEX(un));
29897 	return (err);
29898 }
29899 
29900 
29901 /*
29902  *    Function: sd_failfast_flushq
29903  *
29904  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29905  *		in b_flags and move them onto the failfast queue, then kick
29906  *		off a thread to return all bp's on the failfast queue to
29907  *		their owners with an error set.
29908  *
29909  *   Arguments: un - pointer to the soft state struct for the instance.
29910  *
29911  *     Context: may execute in interrupt context.
29912  */
29913 
29914 static void
29915 sd_failfast_flushq(struct sd_lun *un)
29916 {
29917 	struct buf *bp;
29918 	struct buf *next_waitq_bp;
29919 	struct buf *prev_waitq_bp = NULL;
29920 
29921 	ASSERT(un != NULL);
29922 	ASSERT(mutex_owned(SD_MUTEX(un)));
29923 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29924 	ASSERT(un->un_failfast_bp == NULL);
29925 
29926 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29927 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29928 
29929 	/*
29930 	 * Check if we should flush all bufs when entering failfast state, or
29931 	 * just those with B_FAILFAST set.
29932 	 */
29933 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29934 		/*
29935 		 * Move *all* bp's on the wait queue to the failfast flush
29936 		 * queue, including those that do NOT have B_FAILFAST set.
29937 		 */
29938 		if (un->un_failfast_headp == NULL) {
29939 			ASSERT(un->un_failfast_tailp == NULL);
29940 			un->un_failfast_headp = un->un_waitq_headp;
29941 		} else {
29942 			ASSERT(un->un_failfast_tailp != NULL);
29943 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29944 		}
29945 
29946 		un->un_failfast_tailp = un->un_waitq_tailp;
29947 
29948 		/* update kstat for each bp moved out of the waitq */
29949 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29950 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29951 		}
29952 
29953 		/* empty the waitq */
29954 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29955 
29956 	} else {
29957 		/*
29958 		 * Go thru the wait queue, pick off all entries with
29959 		 * B_FAILFAST set, and move these onto the failfast queue.
29960 		 */
29961 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29962 			/*
29963 			 * Save the pointer to the next bp on the wait queue,
29964 			 * so we get to it on the next iteration of this loop.
29965 			 */
29966 			next_waitq_bp = bp->av_forw;
29967 
29968 			/*
29969 			 * If this bp from the wait queue does NOT have
29970 			 * B_FAILFAST set, just move on to the next element
29971 			 * in the wait queue. Note, this is the only place
29972 			 * where it is correct to set prev_waitq_bp.
29973 			 */
29974 			if ((bp->b_flags & B_FAILFAST) == 0) {
29975 				prev_waitq_bp = bp;
29976 				continue;
29977 			}
29978 
29979 			/*
29980 			 * Remove the bp from the wait queue.
29981 			 */
29982 			if (bp == un->un_waitq_headp) {
29983 				/* The bp is the first element of the waitq. */
29984 				un->un_waitq_headp = next_waitq_bp;
29985 				if (un->un_waitq_headp == NULL) {
29986 					/* The wait queue is now empty */
29987 					un->un_waitq_tailp = NULL;
29988 				}
29989 			} else {
29990 				/*
29991 				 * The bp is either somewhere in the middle
29992 				 * or at the end of the wait queue.
29993 				 */
29994 				ASSERT(un->un_waitq_headp != NULL);
29995 				ASSERT(prev_waitq_bp != NULL);
29996 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29997 				    == 0);
29998 				if (bp == un->un_waitq_tailp) {
29999 					/* bp is the last entry on the waitq. */
30000 					ASSERT(next_waitq_bp == NULL);
30001 					un->un_waitq_tailp = prev_waitq_bp;
30002 				}
30003 				prev_waitq_bp->av_forw = next_waitq_bp;
30004 			}
30005 			bp->av_forw = NULL;
30006 
30007 			/*
30008 			 * update kstat since the bp is moved out of
30009 			 * the waitq
30010 			 */
30011 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30012 
30013 			/*
30014 			 * Now put the bp onto the failfast queue.
30015 			 */
30016 			if (un->un_failfast_headp == NULL) {
30017 				/* failfast queue is currently empty */
30018 				ASSERT(un->un_failfast_tailp == NULL);
30019 				un->un_failfast_headp =
30020 				    un->un_failfast_tailp = bp;
30021 			} else {
30022 				/* Add the bp to the end of the failfast q */
30023 				ASSERT(un->un_failfast_tailp != NULL);
30024 				ASSERT(un->un_failfast_tailp->b_flags &
30025 				    B_FAILFAST);
30026 				un->un_failfast_tailp->av_forw = bp;
30027 				un->un_failfast_tailp = bp;
30028 			}
30029 		}
30030 	}
30031 
30032 	/*
30033 	 * Now return all bp's on the failfast queue to their owners.
30034 	 */
30035 	while ((bp = un->un_failfast_headp) != NULL) {
30036 
30037 		un->un_failfast_headp = bp->av_forw;
30038 		if (un->un_failfast_headp == NULL) {
30039 			un->un_failfast_tailp = NULL;
30040 		}
30041 
30042 		/*
30043 		 * We want to return the bp with a failure error code, but
30044 		 * we do not want a call to sd_start_cmds() to occur here,
30045 		 * so use sd_return_failed_command_no_restart() instead of
30046 		 * sd_return_failed_command().
30047 		 */
30048 		sd_return_failed_command_no_restart(un, bp, EIO);
30049 	}
30050 
30051 	/* Flush the xbuf queues if required. */
30052 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30053 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30054 	}
30055 
30056 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30057 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30058 }
30059 
30060 
30061 /*
30062  *    Function: sd_failfast_flushq_callback
30063  *
30064  * Description: Return TRUE if the given bp meets the criteria for failfast
30065  *		flushing. Used with ddi_xbuf_flushq(9F).
30066  *
30067  *   Arguments: bp - ptr to buf struct to be examined.
30068  *
30069  *     Context: Any
30070  */
30071 
30072 static int
30073 sd_failfast_flushq_callback(struct buf *bp)
30074 {
30075 	/*
30076 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30077 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30078 	 */
30079 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30080 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30081 }
30082 
30083 
30084 
30085 #if defined(__i386) || defined(__amd64)
30086 /*
30087  * Function: sd_setup_next_xfer
30088  *
30089  * Description: Prepare next I/O operation using DMA_PARTIAL
30090  *
30091  */
30092 
30093 static int
30094 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30095     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30096 {
30097 	ssize_t	num_blks_not_xfered;
30098 	daddr_t	strt_blk_num;
30099 	ssize_t	bytes_not_xfered;
30100 	int	rval;
30101 
30102 	ASSERT(pkt->pkt_resid == 0);
30103 
30104 	/*
30105 	 * Calculate next block number and amount to be transferred.
30106 	 *
30107 	 * How much data NOT transfered to the HBA yet.
30108 	 */
30109 	bytes_not_xfered = xp->xb_dma_resid;
30110 
30111 	/*
30112 	 * figure how many blocks NOT transfered to the HBA yet.
30113 	 */
30114 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30115 
30116 	/*
30117 	 * set starting block number to the end of what WAS transfered.
30118 	 */
30119 	strt_blk_num = xp->xb_blkno +
30120 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30121 
30122 	/*
30123 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30124 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30125 	 * the disk mutex here.
30126 	 */
30127 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30128 	    strt_blk_num, num_blks_not_xfered);
30129 
30130 	if (rval == 0) {
30131 
30132 		/*
30133 		 * Success.
30134 		 *
30135 		 * Adjust things if there are still more blocks to be
30136 		 * transfered.
30137 		 */
30138 		xp->xb_dma_resid = pkt->pkt_resid;
30139 		pkt->pkt_resid = 0;
30140 
30141 		return (1);
30142 	}
30143 
30144 	/*
30145 	 * There's really only one possible return value from
30146 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30147 	 * returns NULL.
30148 	 */
30149 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30150 
30151 	bp->b_resid = bp->b_bcount;
30152 	bp->b_flags |= B_ERROR;
30153 
30154 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30155 	    "Error setting up next portion of DMA transfer\n");
30156 
30157 	return (0);
30158 }
30159 #endif
30160 
30161 /*
30162  *    Function: sd_panic_for_res_conflict
30163  *
30164  * Description: Call panic with a string formated with "Reservation Conflict"
30165  *		and a human readable identifier indicating the SD instance
30166  *		that experienced the reservation conflict.
30167  *
30168  *   Arguments: un - pointer to the soft state struct for the instance.
30169  *
30170  *     Context: may execute in interrupt context.
30171  */
30172 
30173 #define	SD_RESV_CONFLICT_FMT_LEN 40
30174 void
30175 sd_panic_for_res_conflict(struct sd_lun *un)
30176 {
30177 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30178 	char path_str[MAXPATHLEN];
30179 
30180 	(void) snprintf(panic_str, sizeof (panic_str),
30181 	    "Reservation Conflict\nDisk: %s",
30182 	    ddi_pathname(SD_DEVINFO(un), path_str));
30183 
30184 	panic(panic_str);
30185 }
30186 
30187 /*
30188  * Note: The following sd_faultinjection_ioctl( ) routines implement
30189  * driver support for handling fault injection for error analysis
30190  * causing faults in multiple layers of the driver.
30191  *
30192  */
30193 
30194 #ifdef SD_FAULT_INJECTION
30195 static uint_t   sd_fault_injection_on = 0;
30196 
30197 /*
30198  *    Function: sd_faultinjection_ioctl()
30199  *
30200  * Description: This routine is the driver entry point for handling
30201  *              faultinjection ioctls to inject errors into the
30202  *              layer model
30203  *
30204  *   Arguments: cmd	- the ioctl cmd recieved
30205  *		arg	- the arguments from user and returns
30206  */
30207 
30208 static void
30209 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30210 
30211 	uint_t i;
30212 	uint_t rval;
30213 
30214 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30215 
30216 	mutex_enter(SD_MUTEX(un));
30217 
30218 	switch (cmd) {
30219 	case SDIOCRUN:
30220 		/* Allow pushed faults to be injected */
30221 		SD_INFO(SD_LOG_SDTEST, un,
30222 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30223 
30224 		sd_fault_injection_on = 1;
30225 
30226 		SD_INFO(SD_LOG_IOERR, un,
30227 		    "sd_faultinjection_ioctl: run finished\n");
30228 		break;
30229 
30230 	case SDIOCSTART:
30231 		/* Start Injection Session */
30232 		SD_INFO(SD_LOG_SDTEST, un,
30233 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30234 
30235 		sd_fault_injection_on = 0;
30236 		un->sd_injection_mask = 0xFFFFFFFF;
30237 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30238 			un->sd_fi_fifo_pkt[i] = NULL;
30239 			un->sd_fi_fifo_xb[i] = NULL;
30240 			un->sd_fi_fifo_un[i] = NULL;
30241 			un->sd_fi_fifo_arq[i] = NULL;
30242 		}
30243 		un->sd_fi_fifo_start = 0;
30244 		un->sd_fi_fifo_end = 0;
30245 
30246 		mutex_enter(&(un->un_fi_mutex));
30247 		un->sd_fi_log[0] = '\0';
30248 		un->sd_fi_buf_len = 0;
30249 		mutex_exit(&(un->un_fi_mutex));
30250 
30251 		SD_INFO(SD_LOG_IOERR, un,
30252 		    "sd_faultinjection_ioctl: start finished\n");
30253 		break;
30254 
30255 	case SDIOCSTOP:
30256 		/* Stop Injection Session */
30257 		SD_INFO(SD_LOG_SDTEST, un,
30258 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30259 		sd_fault_injection_on = 0;
30260 		un->sd_injection_mask = 0x0;
30261 
30262 		/* Empty stray or unuseds structs from fifo */
30263 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30264 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30265 				kmem_free(un->sd_fi_fifo_pkt[i],
30266 				    sizeof (struct sd_fi_pkt));
30267 			}
30268 			if (un->sd_fi_fifo_xb[i] != NULL) {
30269 				kmem_free(un->sd_fi_fifo_xb[i],
30270 				    sizeof (struct sd_fi_xb));
30271 			}
30272 			if (un->sd_fi_fifo_un[i] != NULL) {
30273 				kmem_free(un->sd_fi_fifo_un[i],
30274 				    sizeof (struct sd_fi_un));
30275 			}
30276 			if (un->sd_fi_fifo_arq[i] != NULL) {
30277 				kmem_free(un->sd_fi_fifo_arq[i],
30278 				    sizeof (struct sd_fi_arq));
30279 			}
30280 			un->sd_fi_fifo_pkt[i] = NULL;
30281 			un->sd_fi_fifo_un[i] = NULL;
30282 			un->sd_fi_fifo_xb[i] = NULL;
30283 			un->sd_fi_fifo_arq[i] = NULL;
30284 		}
30285 		un->sd_fi_fifo_start = 0;
30286 		un->sd_fi_fifo_end = 0;
30287 
30288 		SD_INFO(SD_LOG_IOERR, un,
30289 		    "sd_faultinjection_ioctl: stop finished\n");
30290 		break;
30291 
30292 	case SDIOCINSERTPKT:
30293 		/* Store a packet struct to be pushed onto fifo */
30294 		SD_INFO(SD_LOG_SDTEST, un,
30295 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30296 
30297 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30298 
30299 		sd_fault_injection_on = 0;
30300 
30301 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30302 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30303 			kmem_free(un->sd_fi_fifo_pkt[i],
30304 			    sizeof (struct sd_fi_pkt));
30305 		}
30306 		if (arg != NULL) {
30307 			un->sd_fi_fifo_pkt[i] =
30308 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30309 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30310 				/* Alloc failed don't store anything */
30311 				break;
30312 			}
30313 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30314 			    sizeof (struct sd_fi_pkt), 0);
30315 			if (rval == -1) {
30316 				kmem_free(un->sd_fi_fifo_pkt[i],
30317 				    sizeof (struct sd_fi_pkt));
30318 				un->sd_fi_fifo_pkt[i] = NULL;
30319 			}
30320 		} else {
30321 			SD_INFO(SD_LOG_IOERR, un,
30322 			    "sd_faultinjection_ioctl: pkt null\n");
30323 		}
30324 		break;
30325 
30326 	case SDIOCINSERTXB:
30327 		/* Store a xb struct to be pushed onto fifo */
30328 		SD_INFO(SD_LOG_SDTEST, un,
30329 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30330 
30331 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30332 
30333 		sd_fault_injection_on = 0;
30334 
30335 		if (un->sd_fi_fifo_xb[i] != NULL) {
30336 			kmem_free(un->sd_fi_fifo_xb[i],
30337 			    sizeof (struct sd_fi_xb));
30338 			un->sd_fi_fifo_xb[i] = NULL;
30339 		}
30340 		if (arg != NULL) {
30341 			un->sd_fi_fifo_xb[i] =
30342 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30343 			if (un->sd_fi_fifo_xb[i] == NULL) {
30344 				/* Alloc failed don't store anything */
30345 				break;
30346 			}
30347 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30348 			    sizeof (struct sd_fi_xb), 0);
30349 
30350 			if (rval == -1) {
30351 				kmem_free(un->sd_fi_fifo_xb[i],
30352 				    sizeof (struct sd_fi_xb));
30353 				un->sd_fi_fifo_xb[i] = NULL;
30354 			}
30355 		} else {
30356 			SD_INFO(SD_LOG_IOERR, un,
30357 			    "sd_faultinjection_ioctl: xb null\n");
30358 		}
30359 		break;
30360 
30361 	case SDIOCINSERTUN:
30362 		/* Store a un struct to be pushed onto fifo */
30363 		SD_INFO(SD_LOG_SDTEST, un,
30364 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30365 
30366 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30367 
30368 		sd_fault_injection_on = 0;
30369 
30370 		if (un->sd_fi_fifo_un[i] != NULL) {
30371 			kmem_free(un->sd_fi_fifo_un[i],
30372 			    sizeof (struct sd_fi_un));
30373 			un->sd_fi_fifo_un[i] = NULL;
30374 		}
30375 		if (arg != NULL) {
30376 			un->sd_fi_fifo_un[i] =
30377 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30378 			if (un->sd_fi_fifo_un[i] == NULL) {
30379 				/* Alloc failed don't store anything */
30380 				break;
30381 			}
30382 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30383 			    sizeof (struct sd_fi_un), 0);
30384 			if (rval == -1) {
30385 				kmem_free(un->sd_fi_fifo_un[i],
30386 				    sizeof (struct sd_fi_un));
30387 				un->sd_fi_fifo_un[i] = NULL;
30388 			}
30389 
30390 		} else {
30391 			SD_INFO(SD_LOG_IOERR, un,
30392 			    "sd_faultinjection_ioctl: un null\n");
30393 		}
30394 
30395 		break;
30396 
30397 	case SDIOCINSERTARQ:
30398 		/* Store a arq struct to be pushed onto fifo */
30399 		SD_INFO(SD_LOG_SDTEST, un,
30400 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30401 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30402 
30403 		sd_fault_injection_on = 0;
30404 
30405 		if (un->sd_fi_fifo_arq[i] != NULL) {
30406 			kmem_free(un->sd_fi_fifo_arq[i],
30407 			    sizeof (struct sd_fi_arq));
30408 			un->sd_fi_fifo_arq[i] = NULL;
30409 		}
30410 		if (arg != NULL) {
30411 			un->sd_fi_fifo_arq[i] =
30412 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30413 			if (un->sd_fi_fifo_arq[i] == NULL) {
30414 				/* Alloc failed don't store anything */
30415 				break;
30416 			}
30417 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30418 			    sizeof (struct sd_fi_arq), 0);
30419 			if (rval == -1) {
30420 				kmem_free(un->sd_fi_fifo_arq[i],
30421 				    sizeof (struct sd_fi_arq));
30422 				un->sd_fi_fifo_arq[i] = NULL;
30423 			}
30424 
30425 		} else {
30426 			SD_INFO(SD_LOG_IOERR, un,
30427 			    "sd_faultinjection_ioctl: arq null\n");
30428 		}
30429 
30430 		break;
30431 
30432 	case SDIOCPUSH:
30433 		/* Push stored xb, pkt, un, and arq onto fifo */
30434 		sd_fault_injection_on = 0;
30435 
30436 		if (arg != NULL) {
30437 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30438 			if (rval != -1 &&
30439 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30440 				un->sd_fi_fifo_end += i;
30441 			}
30442 		} else {
30443 			SD_INFO(SD_LOG_IOERR, un,
30444 			    "sd_faultinjection_ioctl: push arg null\n");
30445 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30446 				un->sd_fi_fifo_end++;
30447 			}
30448 		}
30449 		SD_INFO(SD_LOG_IOERR, un,
30450 		    "sd_faultinjection_ioctl: push to end=%d\n",
30451 		    un->sd_fi_fifo_end);
30452 		break;
30453 
30454 	case SDIOCRETRIEVE:
30455 		/* Return buffer of log from Injection session */
30456 		SD_INFO(SD_LOG_SDTEST, un,
30457 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30458 
30459 		sd_fault_injection_on = 0;
30460 
30461 		mutex_enter(&(un->un_fi_mutex));
30462 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30463 		    un->sd_fi_buf_len+1, 0);
30464 		mutex_exit(&(un->un_fi_mutex));
30465 
30466 		if (rval == -1) {
30467 			/*
30468 			 * arg is possibly invalid setting
30469 			 * it to NULL for return
30470 			 */
30471 			arg = NULL;
30472 		}
30473 		break;
30474 	}
30475 
30476 	mutex_exit(SD_MUTEX(un));
30477 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30478 			    " exit\n");
30479 }
30480 
30481 
30482 /*
30483  *    Function: sd_injection_log()
30484  *
30485  * Description: This routine adds buff to the already existing injection log
30486  *              for retrieval via faultinjection_ioctl for use in fault
30487  *              detection and recovery
30488  *
30489  *   Arguments: buf - the string to add to the log
30490  */
30491 
30492 static void
30493 sd_injection_log(char *buf, struct sd_lun *un)
30494 {
30495 	uint_t len;
30496 
30497 	ASSERT(un != NULL);
30498 	ASSERT(buf != NULL);
30499 
30500 	mutex_enter(&(un->un_fi_mutex));
30501 
30502 	len = min(strlen(buf), 255);
30503 	/* Add logged value to Injection log to be returned later */
30504 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30505 		uint_t	offset = strlen((char *)un->sd_fi_log);
30506 		char *destp = (char *)un->sd_fi_log + offset;
30507 		int i;
30508 		for (i = 0; i < len; i++) {
30509 			*destp++ = *buf++;
30510 		}
30511 		un->sd_fi_buf_len += len;
30512 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30513 	}
30514 
30515 	mutex_exit(&(un->un_fi_mutex));
30516 }
30517 
30518 
30519 /*
30520  *    Function: sd_faultinjection()
30521  *
30522  * Description: This routine takes the pkt and changes its
30523  *		content based on error injection scenerio.
30524  *
30525  *   Arguments: pktp	- packet to be changed
30526  */
30527 
30528 static void
30529 sd_faultinjection(struct scsi_pkt *pktp)
30530 {
30531 	uint_t i;
30532 	struct sd_fi_pkt *fi_pkt;
30533 	struct sd_fi_xb *fi_xb;
30534 	struct sd_fi_un *fi_un;
30535 	struct sd_fi_arq *fi_arq;
30536 	struct buf *bp;
30537 	struct sd_xbuf *xb;
30538 	struct sd_lun *un;
30539 
30540 	ASSERT(pktp != NULL);
30541 
30542 	/* pull bp xb and un from pktp */
30543 	bp = (struct buf *)pktp->pkt_private;
30544 	xb = SD_GET_XBUF(bp);
30545 	un = SD_GET_UN(bp);
30546 
30547 	ASSERT(un != NULL);
30548 
30549 	mutex_enter(SD_MUTEX(un));
30550 
30551 	SD_TRACE(SD_LOG_SDTEST, un,
30552 	    "sd_faultinjection: entry Injection from sdintr\n");
30553 
30554 	/* if injection is off return */
30555 	if (sd_fault_injection_on == 0 ||
30556 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30557 		mutex_exit(SD_MUTEX(un));
30558 		return;
30559 	}
30560 
30561 
30562 	/* take next set off fifo */
30563 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30564 
30565 	fi_pkt = un->sd_fi_fifo_pkt[i];
30566 	fi_xb = un->sd_fi_fifo_xb[i];
30567 	fi_un = un->sd_fi_fifo_un[i];
30568 	fi_arq = un->sd_fi_fifo_arq[i];
30569 
30570 
30571 	/* set variables accordingly */
30572 	/* set pkt if it was on fifo */
30573 	if (fi_pkt != NULL) {
30574 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30575 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30576 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30577 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30578 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30579 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30580 
30581 	}
30582 
30583 	/* set xb if it was on fifo */
30584 	if (fi_xb != NULL) {
30585 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30586 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30587 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30588 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30589 		    "xb_victim_retry_count");
30590 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30591 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30592 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30593 
30594 		/* copy in block data from sense */
30595 		if (fi_xb->xb_sense_data[0] != -1) {
30596 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30597 			    SENSE_LENGTH);
30598 		}
30599 
30600 		/* copy in extended sense codes */
30601 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30602 		    "es_code");
30603 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30604 		    "es_key");
30605 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30606 		    "es_add_code");
30607 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30608 		    es_qual_code, "es_qual_code");
30609 	}
30610 
30611 	/* set un if it was on fifo */
30612 	if (fi_un != NULL) {
30613 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30614 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30615 		SD_CONDSET(un, un, un_reset_retry_count,
30616 		    "un_reset_retry_count");
30617 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30618 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30619 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30620 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30621 		    "un_f_geometry_is_valid");
30622 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30623 		    "un_f_allow_bus_device_reset");
30624 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30625 
30626 	}
30627 
30628 	/* copy in auto request sense if it was on fifo */
30629 	if (fi_arq != NULL) {
30630 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30631 	}
30632 
30633 	/* free structs */
30634 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30635 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30636 	}
30637 	if (un->sd_fi_fifo_xb[i] != NULL) {
30638 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30639 	}
30640 	if (un->sd_fi_fifo_un[i] != NULL) {
30641 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30642 	}
30643 	if (un->sd_fi_fifo_arq[i] != NULL) {
30644 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30645 	}
30646 
30647 	/*
30648 	 * kmem_free does not gurantee to set to NULL
30649 	 * since we uses these to determine if we set
30650 	 * values or not lets confirm they are always
30651 	 * NULL after free
30652 	 */
30653 	un->sd_fi_fifo_pkt[i] = NULL;
30654 	un->sd_fi_fifo_un[i] = NULL;
30655 	un->sd_fi_fifo_xb[i] = NULL;
30656 	un->sd_fi_fifo_arq[i] = NULL;
30657 
30658 	un->sd_fi_fifo_start++;
30659 
30660 	mutex_exit(SD_MUTEX(un));
30661 
30662 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30663 }
30664 
30665 #endif /* SD_FAULT_INJECTION */
30666 
30667 /*
30668  * This routine is invoked in sd_unit_attach(). Before calling it, the
30669  * properties in conf file should be processed already, and "hotpluggable"
30670  * property was processed also.
30671  *
30672  * The sd driver distinguishes 3 different type of devices: removable media,
30673  * non-removable media, and hotpluggable. Below the differences are defined:
30674  *
30675  * 1. Device ID
30676  *
30677  *     The device ID of a device is used to identify this device. Refer to
30678  *     ddi_devid_register(9F).
30679  *
30680  *     For a non-removable media disk device which can provide 0x80 or 0x83
30681  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30682  *     device ID is created to identify this device. For other non-removable
30683  *     media devices, a default device ID is created only if this device has
30684  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30685  *
30686  *     -------------------------------------------------------
30687  *     removable media   hotpluggable  | Can Have Device ID
30688  *     -------------------------------------------------------
30689  *         false             false     |     Yes
30690  *         false             true      |     Yes
30691  *         true                x       |     No
30692  *     ------------------------------------------------------
30693  *
30694  *
30695  * 2. SCSI group 4 commands
30696  *
30697  *     In SCSI specs, only some commands in group 4 command set can use
30698  *     8-byte addresses that can be used to access >2TB storage spaces.
30699  *     Other commands have no such capability. Without supporting group4,
30700  *     it is impossible to make full use of storage spaces of a disk with
30701  *     capacity larger than 2TB.
30702  *
30703  *     -----------------------------------------------
30704  *     removable media   hotpluggable   LP64  |  Group
30705  *     -----------------------------------------------
30706  *           false          false       false |   1
30707  *           false          false       true  |   4
30708  *           false          true        false |   1
30709  *           false          true        true  |   4
30710  *           true             x           x   |   5
30711  *     -----------------------------------------------
30712  *
30713  *
30714  * 3. Check for VTOC Label
30715  *
30716  *     If a direct-access disk has no EFI label, sd will check if it has a
30717  *     valid VTOC label. Now, sd also does that check for removable media
30718  *     and hotpluggable devices.
30719  *
30720  *     --------------------------------------------------------------
30721  *     Direct-Access   removable media    hotpluggable |  Check Label
30722  *     -------------------------------------------------------------
30723  *         false          false           false        |   No
30724  *         false          false           true         |   No
30725  *         false          true            false        |   Yes
30726  *         false          true            true         |   Yes
30727  *         true            x                x          |   Yes
30728  *     --------------------------------------------------------------
30729  *
30730  *
30731  * 4. Building default VTOC label
30732  *
30733  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30734  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30735  *     create default VTOC for them. Currently sd creates default VTOC label
30736  *     for all devices on x86 platform (VTOC_16), but only for removable
30737  *     media devices on SPARC (VTOC_8).
30738  *
30739  *     -----------------------------------------------------------
30740  *       removable media hotpluggable platform   |   Default Label
30741  *     -----------------------------------------------------------
30742  *             false          false    sparc     |     No
30743  *             false          true      x86      |     Yes
30744  *             false          true     sparc     |     Yes
30745  *             true             x        x       |     Yes
30746  *     ----------------------------------------------------------
30747  *
30748  *
30749  * 5. Supported blocksizes of target devices
30750  *
30751  *     Sd supports non-512-byte blocksize for removable media devices only.
30752  *     For other devices, only 512-byte blocksize is supported. This may be
30753  *     changed in near future because some RAID devices require non-512-byte
30754  *     blocksize
30755  *
30756  *     -----------------------------------------------------------
30757  *     removable media    hotpluggable    | non-512-byte blocksize
30758  *     -----------------------------------------------------------
30759  *           false          false         |   No
30760  *           false          true          |   No
30761  *           true             x           |   Yes
30762  *     -----------------------------------------------------------
30763  *
30764  *
30765  * 6. Automatic mount & unmount (i.e. vold)
30766  *
30767  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30768  *     if a device is removable media device. It return 1 for removable media
30769  *     devices, and 0 for others.
30770  *
30771  *     Vold treats a device as removable one only if DKIOREMOVABLE returns 1.
30772  *     And it does automounting only for removable media devices. In order to
30773  *     preserve users' experience and let vold continue to do automounting for
30774  *     USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk
30775  *     devices.
30776  *
30777  *      ------------------------------------------------------
30778  *       removable media    hotpluggable   |  automatic mount
30779  *      ------------------------------------------------------
30780  *             false          false        |   No
30781  *             false          true         |   Yes
30782  *             true             x          |   Yes
30783  *      ------------------------------------------------------
30784  *
30785  *
30786  * 7. fdisk partition management
30787  *
30788  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30789  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30790  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30791  *     fdisk partitions on both x86 and SPARC platform.
30792  *
30793  *     -----------------------------------------------------------
30794  *       platform   removable media  USB/1394  |  fdisk supported
30795  *     -----------------------------------------------------------
30796  *        x86         X               X        |       true
30797  *     ------------------------------------------------------------
30798  *        sparc       X               X        |       false
30799  *     ------------------------------------------------------------
30800  *
30801  *
30802  * 8. MBOOT/MBR
30803  *
30804  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30805  *     read/write mboot for removable media devices on sparc platform.
30806  *
30807  *     -----------------------------------------------------------
30808  *       platform   removable media  USB/1394  |  mboot supported
30809  *     -----------------------------------------------------------
30810  *        x86         X               X        |       true
30811  *     ------------------------------------------------------------
30812  *        sparc      false           false     |       false
30813  *        sparc      false           true      |       true
30814  *        sparc      true            false     |       true
30815  *        sparc      true            true      |       true
30816  *     ------------------------------------------------------------
30817  *
30818  *
30819  * 9.  error handling during opening device
30820  *
30821  *     If failed to open a disk device, an errno is returned. For some kinds
30822  *     of errors, different errno is returned depending on if this device is
30823  *     a removable media device. This brings USB/1394 hard disks in line with
30824  *     expected hard disk behavior. It is not expected that this breaks any
30825  *     application.
30826  *
30827  *     ------------------------------------------------------
30828  *       removable media    hotpluggable   |  errno
30829  *     ------------------------------------------------------
30830  *             false          false        |   EIO
30831  *             false          true         |   EIO
30832  *             true             x          |   ENXIO
30833  *     ------------------------------------------------------
30834  *
30835  *
30836  * 10. off-by-1 workaround (bug 1175930, and 4996920) (x86 only)
30837  *
30838  *     [ this is a bit of very ugly history, soon to be removed ]
30839  *
30840  *     SCSI READ_CAPACITY command returns the last valid logical block number
30841  *     which starts from 0. So real capacity is larger than the returned
30842  *     value by 1. However, because scdk.c (which was EOL'ed) directly used
30843  *     the logical block number as capacity of disk devices, off-by-1 work-
30844  *     around was applied. This workaround causes fixed SCSI disk to loss a
30845  *     sector on x86 platform, and precludes exchanging fixed hard disks
30846  *     between sparc and x86.
30847  *
30848  *     ------------------------------------------------------
30849  *       removable media    hotplug        |   Off-by-1 works
30850  *     -------------------------------------------------------
30851  *             false          false        |     Yes
30852  *             false          true         |     No
30853  *             true           false        |     No
30854  *             true           true         |     No
30855  *     ------------------------------------------------------
30856  *
30857  *
30858  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30859  *
30860  *     These IOCTLs are applicable only to removable media devices.
30861  *
30862  *     -----------------------------------------------------------
30863  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30864  *     -----------------------------------------------------------
30865  *             false          false        |     No
30866  *             false          true         |     No
30867  *             true            x           |     Yes
30868  *     -----------------------------------------------------------
30869  *
30870  *
30871  * 12. Kstats for partitions
30872  *
30873  *     sd creates partition kstat for non-removable media devices. USB and
30874  *     Firewire hard disks now have partition kstats
30875  *
30876  *      ------------------------------------------------------
30877  *       removable media    hotplugable    |   kstat
30878  *      ------------------------------------------------------
30879  *             false          false        |    Yes
30880  *             false          true         |    Yes
30881  *             true             x          |    No
30882  *       ------------------------------------------------------
30883  *
30884  *
30885  * 13. Removable media & hotpluggable properties
30886  *
30887  *     Sd driver creates a "removable-media" property for removable media
30888  *     devices. Parent nexus drivers create a "hotpluggable" property if
30889  *     it supports hotplugging.
30890  *
30891  *     ---------------------------------------------------------------------
30892  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30893  *     ---------------------------------------------------------------------
30894  *       false            false       |    No                   No
30895  *       false            true        |    No                   Yes
30896  *       true             false       |    Yes                  No
30897  *       true             true        |    Yes                  Yes
30898  *     ---------------------------------------------------------------------
30899  *
30900  *
30901  * 14. Power Management
30902  *
30903  *     sd only power manages removable media devices or devices that support
30904  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30905  *
30906  *     A parent nexus that supports hotplugging can also set "pm-capable"
30907  *     if the disk can be power managed.
30908  *
30909  *     ------------------------------------------------------------
30910  *       removable media hotpluggable pm-capable  |   power manage
30911  *     ------------------------------------------------------------
30912  *             false          false     false     |     No
30913  *             false          false     true      |     Yes
30914  *             false          true      false     |     No
30915  *             false          true      true      |     Yes
30916  *             true             x        x        |     Yes
30917  *     ------------------------------------------------------------
30918  *
30919  *      USB and firewire hard disks can now be power managed independently
30920  *      of the framebuffer
30921  *
30922  *
30923  * 15. Support for USB disks with capacity larger than 1TB
30924  *
30925  *     Currently, sd doesn't permit a fixed disk device with capacity
30926  *     larger than 1TB to be used in a 32-bit operating system environment.
30927  *     However, sd doesn't do that for removable media devices. Instead, it
30928  *     assumes that removable media devices cannot have a capacity larger
30929  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30930  *     supported, which can cause some unexpected results.
30931  *
30932  *     ---------------------------------------------------------------------
30933  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30934  *     ---------------------------------------------------------------------
30935  *             false          false  |   true         |     no
30936  *             false          true   |   true         |     no
30937  *             true           false  |   true         |     Yes
30938  *             true           true   |   true         |     Yes
30939  *     ---------------------------------------------------------------------
30940  *
30941  *
30942  * 16. Check write-protection at open time
30943  *
30944  *     When a removable media device is being opened for writing without NDELAY
30945  *     flag, sd will check if this device is writable. If attempting to open
30946  *     without NDELAY flag a write-protected device, this operation will abort.
30947  *
30948  *     ------------------------------------------------------------
30949  *       removable media    USB/1394   |   WP Check
30950  *     ------------------------------------------------------------
30951  *             false          false    |     No
30952  *             false          true     |     No
30953  *             true           false    |     Yes
30954  *             true           true     |     Yes
30955  *     ------------------------------------------------------------
30956  *
30957  *
30958  * 17. syslog when corrupted VTOC is encountered
30959  *
30960  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30961  *      for fixed SCSI disks.
30962  *     ------------------------------------------------------------
30963  *       removable media    USB/1394   |   print syslog
30964  *     ------------------------------------------------------------
30965  *             false          false    |     Yes
30966  *             false          true     |     No
30967  *             true           false    |     No
30968  *             true           true     |     No
30969  *     ------------------------------------------------------------
30970  */
30971 static void
30972 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30973 {
30974 	int	pm_capable_prop;
30975 
30976 	ASSERT(un->un_sd);
30977 	ASSERT(un->un_sd->sd_inq);
30978 
30979 #if defined(_SUNOS_VTOC_16)
30980 	/*
30981 	 * For VTOC_16 devices, the default label will be created for all
30982 	 * devices. (see sd_build_default_label)
30983 	 */
30984 	un->un_f_default_vtoc_supported = TRUE;
30985 #endif
30986 
30987 	if (un->un_sd->sd_inq->inq_rmb) {
30988 		/*
30989 		 * The media of this device is removable. And for this kind
30990 		 * of devices, it is possible to change medium after openning
30991 		 * devices. Thus we should support this operation.
30992 		 */
30993 		un->un_f_has_removable_media = TRUE;
30994 
30995 #if defined(_SUNOS_VTOC_8)
30996 		/*
30997 		 * Note: currently, for VTOC_8 devices, default label is
30998 		 * created for removable and hotpluggable devices only.
30999 		 */
31000 		un->un_f_default_vtoc_supported = TRUE;
31001 #endif
31002 		/*
31003 		 * support non-512-byte blocksize of removable media devices
31004 		 */
31005 		un->un_f_non_devbsize_supported = TRUE;
31006 
31007 		/*
31008 		 * Assume that all removable media devices support DOOR_LOCK
31009 		 */
31010 		un->un_f_doorlock_supported = TRUE;
31011 
31012 		/*
31013 		 * For a removable media device, it is possible to be opened
31014 		 * with NDELAY flag when there is no media in drive, in this
31015 		 * case we don't care if device is writable. But if without
31016 		 * NDELAY flag, we need to check if media is write-protected.
31017 		 */
31018 		un->un_f_chk_wp_open = TRUE;
31019 
31020 		/*
31021 		 * need to start a SCSI watch thread to monitor media state,
31022 		 * when media is being inserted or ejected, notify syseventd.
31023 		 */
31024 		un->un_f_monitor_media_state = TRUE;
31025 
31026 		/*
31027 		 * Some devices don't support START_STOP_UNIT command.
31028 		 * Therefore, we'd better check if a device supports it
31029 		 * before sending it.
31030 		 */
31031 		un->un_f_check_start_stop = TRUE;
31032 
31033 		/*
31034 		 * support eject media ioctl:
31035 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31036 		 */
31037 		un->un_f_eject_media_supported = TRUE;
31038 
31039 		/*
31040 		 * Because many removable-media devices don't support
31041 		 * LOG_SENSE, we couldn't use this command to check if
31042 		 * a removable media device support power-management.
31043 		 * We assume that they support power-management via
31044 		 * START_STOP_UNIT command and can be spun up and down
31045 		 * without limitations.
31046 		 */
31047 		un->un_f_pm_supported = TRUE;
31048 
31049 		/*
31050 		 * Need to create a zero length (Boolean) property
31051 		 * removable-media for the removable media devices.
31052 		 * Note that the return value of the property is not being
31053 		 * checked, since if unable to create the property
31054 		 * then do not want the attach to fail altogether. Consistent
31055 		 * with other property creation in attach.
31056 		 */
31057 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31058 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31059 
31060 	} else {
31061 		/*
31062 		 * create device ID for device
31063 		 */
31064 		un->un_f_devid_supported = TRUE;
31065 
31066 		/*
31067 		 * Spin up non-removable-media devices once it is attached
31068 		 */
31069 		un->un_f_attach_spinup = TRUE;
31070 
31071 		/*
31072 		 * According to SCSI specification, Sense data has two kinds of
31073 		 * format: fixed format, and descriptor format. At present, we
31074 		 * don't support descriptor format sense data for removable
31075 		 * media.
31076 		 */
31077 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31078 			un->un_f_descr_format_supported = TRUE;
31079 		}
31080 
31081 		/*
31082 		 * kstats are created only for non-removable media devices.
31083 		 *
31084 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31085 		 * default is 1, so they are enabled by default.
31086 		 */
31087 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31088 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31089 			"enable-partition-kstats", 1));
31090 
31091 		/*
31092 		 * Check if HBA has set the "pm-capable" property.
31093 		 * If "pm-capable" exists and is non-zero then we can
31094 		 * power manage the device without checking the start/stop
31095 		 * cycle count log sense page.
31096 		 *
31097 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31098 		 * then we should not power manage the device.
31099 		 *
31100 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31101 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31102 		 * sd will check the start/stop cycle count log sense page
31103 		 * and power manage the device if the cycle count limit has
31104 		 * not been exceeded.
31105 		 */
31106 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31107 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31108 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31109 			un->un_f_log_sense_supported = TRUE;
31110 		} else {
31111 			/*
31112 			 * pm-capable property exists.
31113 			 *
31114 			 * Convert "TRUE" values for pm_capable_prop to
31115 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31116 			 * later. "TRUE" values are any values except
31117 			 * SD_PM_CAPABLE_FALSE (0) and
31118 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31119 			 */
31120 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31121 				un->un_f_log_sense_supported = FALSE;
31122 			} else {
31123 				un->un_f_pm_supported = TRUE;
31124 			}
31125 
31126 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31127 			    "sd_unit_attach: un:0x%p pm-capable "
31128 			    "property set to %d.\n", un, un->un_f_pm_supported);
31129 		}
31130 	}
31131 
31132 	if (un->un_f_is_hotpluggable) {
31133 #if defined(_SUNOS_VTOC_8)
31134 		/*
31135 		 * Note: currently, for VTOC_8 devices, default label is
31136 		 * created for removable and hotpluggable devices only.
31137 		 */
31138 		un->un_f_default_vtoc_supported = TRUE;
31139 #endif
31140 
31141 		/*
31142 		 * Temporarily, let hotpluggable devices pretend to be
31143 		 * removable-media devices for vold.
31144 		 */
31145 		un->un_f_monitor_media_state = TRUE;
31146 
31147 		un->un_f_check_start_stop = TRUE;
31148 
31149 	}
31150 
31151 	/*
31152 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31153 	 * labels.
31154 	 */
31155 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31156 	    (un->un_sd->sd_inq->inq_rmb)) {
31157 		/*
31158 		 * Direct access devices have disk label
31159 		 */
31160 		un->un_f_vtoc_label_supported = TRUE;
31161 	}
31162 
31163 	/*
31164 	 * Fdisk partitions are supported for all direct access devices on
31165 	 * x86 platform, and just for removable media and hotpluggable
31166 	 * devices on SPARC platform. Later, we will set the following flag
31167 	 * to FALSE if current device is not removable media or hotpluggable
31168 	 * device and if sd works on SAPRC platform.
31169 	 */
31170 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31171 		un->un_f_mboot_supported = TRUE;
31172 	}
31173 
31174 	if (!un->un_f_is_hotpluggable &&
31175 	    !un->un_sd->sd_inq->inq_rmb) {
31176 
31177 #if defined(_SUNOS_VTOC_8)
31178 		/*
31179 		 * Don't support fdisk on fixed disk
31180 		 */
31181 		un->un_f_mboot_supported = FALSE;
31182 #endif
31183 
31184 		/*
31185 		 * Fixed disk support SYNC CACHE
31186 		 */
31187 		un->un_f_sync_cache_supported = TRUE;
31188 
31189 		/*
31190 		 * For fixed disk, if its VTOC is not valid, we will write
31191 		 * errlog into system log
31192 		 */
31193 		if (un->un_f_vtoc_label_supported)
31194 			un->un_f_vtoc_errlog_supported = TRUE;
31195 	}
31196 }
31197