1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * SCSI disk target driver. 29 */ 30 #include <sys/scsi/scsi.h> 31 #include <sys/dkbad.h> 32 #include <sys/dklabel.h> 33 #include <sys/dkio.h> 34 #include <sys/fdio.h> 35 #include <sys/cdio.h> 36 #include <sys/mhd.h> 37 #include <sys/vtoc.h> 38 #include <sys/dktp/fdisk.h> 39 #include <sys/kstat.h> 40 #include <sys/vtrace.h> 41 #include <sys/note.h> 42 #include <sys/thread.h> 43 #include <sys/proc.h> 44 #include <sys/efi_partition.h> 45 #include <sys/var.h> 46 #include <sys/aio_req.h> 47 48 #ifdef __lock_lint 49 #define _LP64 50 #define __amd64 51 #endif 52 53 #if (defined(__fibre)) 54 /* Note: is there a leadville version of the following? */ 55 #include <sys/fc4/fcal_linkapp.h> 56 #endif 57 #include <sys/taskq.h> 58 #include <sys/uuid.h> 59 #include <sys/byteorder.h> 60 #include <sys/sdt.h> 61 62 #include "sd_xbuf.h" 63 64 #include <sys/scsi/targets/sddef.h> 65 #include <sys/cmlb.h> 66 #include <sys/sysevent/eventdefs.h> 67 #include <sys/sysevent/dev.h> 68 69 #include <sys/fm/protocol.h> 70 71 /* 72 * Loadable module info. 73 */ 74 #if (defined(__fibre)) 75 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 76 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 77 #else /* !__fibre */ 78 #define SD_MODULE_NAME "SCSI Disk Driver" 79 char _depends_on[] = "misc/scsi misc/cmlb"; 80 #endif /* !__fibre */ 81 82 /* 83 * Define the interconnect type, to allow the driver to distinguish 84 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 85 * 86 * This is really for backward compatibility. In the future, the driver 87 * should actually check the "interconnect-type" property as reported by 88 * the HBA; however at present this property is not defined by all HBAs, 89 * so we will use this #define (1) to permit the driver to run in 90 * backward-compatibility mode; and (2) to print a notification message 91 * if an FC HBA does not support the "interconnect-type" property. The 92 * behavior of the driver will be to assume parallel SCSI behaviors unless 93 * the "interconnect-type" property is defined by the HBA **AND** has a 94 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 95 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 96 * Channel behaviors (as per the old ssd). (Note that the 97 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 98 * will result in the driver assuming parallel SCSI behaviors.) 99 * 100 * (see common/sys/scsi/impl/services.h) 101 * 102 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 103 * since some FC HBAs may already support that, and there is some code in 104 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 105 * default would confuse that code, and besides things should work fine 106 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 107 * "interconnect_type" property. 108 * 109 */ 110 #if (defined(__fibre)) 111 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 112 #else 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 114 #endif 115 116 /* 117 * The name of the driver, established from the module name in _init. 118 */ 119 static char *sd_label = NULL; 120 121 /* 122 * Driver name is unfortunately prefixed on some driver.conf properties. 123 */ 124 #if (defined(__fibre)) 125 #define sd_max_xfer_size ssd_max_xfer_size 126 #define sd_config_list ssd_config_list 127 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 128 static char *sd_config_list = "ssd-config-list"; 129 #else 130 static char *sd_max_xfer_size = "sd_max_xfer_size"; 131 static char *sd_config_list = "sd-config-list"; 132 #endif 133 134 /* 135 * Driver global variables 136 */ 137 138 #if (defined(__fibre)) 139 /* 140 * These #defines are to avoid namespace collisions that occur because this 141 * code is currently used to compile two separate driver modules: sd and ssd. 142 * All global variables need to be treated this way (even if declared static) 143 * in order to allow the debugger to resolve the names properly. 144 * It is anticipated that in the near future the ssd module will be obsoleted, 145 * at which time this namespace issue should go away. 146 */ 147 #define sd_state ssd_state 148 #define sd_io_time ssd_io_time 149 #define sd_failfast_enable ssd_failfast_enable 150 #define sd_ua_retry_count ssd_ua_retry_count 151 #define sd_report_pfa ssd_report_pfa 152 #define sd_max_throttle ssd_max_throttle 153 #define sd_min_throttle ssd_min_throttle 154 #define sd_rot_delay ssd_rot_delay 155 156 #define sd_retry_on_reservation_conflict \ 157 ssd_retry_on_reservation_conflict 158 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 159 #define sd_resv_conflict_name ssd_resv_conflict_name 160 161 #define sd_component_mask ssd_component_mask 162 #define sd_level_mask ssd_level_mask 163 #define sd_debug_un ssd_debug_un 164 #define sd_error_level ssd_error_level 165 166 #define sd_xbuf_active_limit ssd_xbuf_active_limit 167 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 168 169 #define sd_tr ssd_tr 170 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 171 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 172 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 173 #define sd_check_media_time ssd_check_media_time 174 #define sd_wait_cmds_complete ssd_wait_cmds_complete 175 #define sd_label_mutex ssd_label_mutex 176 #define sd_detach_mutex ssd_detach_mutex 177 #define sd_log_buf ssd_log_buf 178 #define sd_log_mutex ssd_log_mutex 179 180 #define sd_disk_table ssd_disk_table 181 #define sd_disk_table_size ssd_disk_table_size 182 #define sd_sense_mutex ssd_sense_mutex 183 #define sd_cdbtab ssd_cdbtab 184 185 #define sd_cb_ops ssd_cb_ops 186 #define sd_ops ssd_ops 187 #define sd_additional_codes ssd_additional_codes 188 #define sd_tgops ssd_tgops 189 190 #define sd_minor_data ssd_minor_data 191 #define sd_minor_data_efi ssd_minor_data_efi 192 193 #define sd_tq ssd_tq 194 #define sd_wmr_tq ssd_wmr_tq 195 #define sd_taskq_name ssd_taskq_name 196 #define sd_wmr_taskq_name ssd_wmr_taskq_name 197 #define sd_taskq_minalloc ssd_taskq_minalloc 198 #define sd_taskq_maxalloc ssd_taskq_maxalloc 199 200 #define sd_dump_format_string ssd_dump_format_string 201 202 #define sd_iostart_chain ssd_iostart_chain 203 #define sd_iodone_chain ssd_iodone_chain 204 205 #define sd_pm_idletime ssd_pm_idletime 206 207 #define sd_force_pm_supported ssd_force_pm_supported 208 209 #define sd_dtype_optical_bind ssd_dtype_optical_bind 210 211 #define sd_ssc_init ssd_ssc_init 212 #define sd_ssc_send ssd_ssc_send 213 #define sd_ssc_fini ssd_ssc_fini 214 #define sd_ssc_assessment ssd_ssc_assessment 215 #define sd_ssc_post ssd_ssc_post 216 #define sd_ssc_print ssd_ssc_print 217 #define sd_ssc_ereport_post ssd_ssc_ereport_post 218 #define sd_ssc_set_info ssd_ssc_set_info 219 #define sd_ssc_extract_info ssd_ssc_extract_info 220 221 #endif 222 223 #ifdef SDDEBUG 224 int sd_force_pm_supported = 0; 225 #endif /* SDDEBUG */ 226 227 void *sd_state = NULL; 228 int sd_io_time = SD_IO_TIME; 229 int sd_failfast_enable = 1; 230 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 231 int sd_report_pfa = 1; 232 int sd_max_throttle = SD_MAX_THROTTLE; 233 int sd_min_throttle = SD_MIN_THROTTLE; 234 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 235 int sd_qfull_throttle_enable = TRUE; 236 237 int sd_retry_on_reservation_conflict = 1; 238 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 240 241 static int sd_dtype_optical_bind = -1; 242 243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 244 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 245 246 /* 247 * Global data for debug logging. To enable debug printing, sd_component_mask 248 * and sd_level_mask should be set to the desired bit patterns as outlined in 249 * sddef.h. 250 */ 251 uint_t sd_component_mask = 0x0; 252 uint_t sd_level_mask = 0x0; 253 struct sd_lun *sd_debug_un = NULL; 254 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 255 256 /* Note: these may go away in the future... */ 257 static uint32_t sd_xbuf_active_limit = 512; 258 static uint32_t sd_xbuf_reserve_limit = 16; 259 260 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 261 262 /* 263 * Timer value used to reset the throttle after it has been reduced 264 * (typically in response to TRAN_BUSY or STATUS_QFULL) 265 */ 266 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 267 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 268 269 /* 270 * Interval value associated with the media change scsi watch. 271 */ 272 static int sd_check_media_time = 3000000; 273 274 /* 275 * Wait value used for in progress operations during a DDI_SUSPEND 276 */ 277 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 278 279 /* 280 * sd_label_mutex protects a static buffer used in the disk label 281 * component of the driver 282 */ 283 static kmutex_t sd_label_mutex; 284 285 /* 286 * sd_detach_mutex protects un_layer_count, un_detach_count, and 287 * un_opens_in_progress in the sd_lun structure. 288 */ 289 static kmutex_t sd_detach_mutex; 290 291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 292 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 293 294 /* 295 * Global buffer and mutex for debug logging 296 */ 297 static char sd_log_buf[1024]; 298 static kmutex_t sd_log_mutex; 299 300 /* 301 * Structs and globals for recording attached lun information. 302 * This maintains a chain. Each node in the chain represents a SCSI controller. 303 * The structure records the number of luns attached to each target connected 304 * with the controller. 305 * For parallel scsi device only. 306 */ 307 struct sd_scsi_hba_tgt_lun { 308 struct sd_scsi_hba_tgt_lun *next; 309 dev_info_t *pdip; 310 int nlun[NTARGETS_WIDE]; 311 }; 312 313 /* 314 * Flag to indicate the lun is attached or detached 315 */ 316 #define SD_SCSI_LUN_ATTACH 0 317 #define SD_SCSI_LUN_DETACH 1 318 319 static kmutex_t sd_scsi_target_lun_mutex; 320 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 321 322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 323 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 324 325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 326 sd_scsi_target_lun_head)) 327 328 /* 329 * "Smart" Probe Caching structs, globals, #defines, etc. 330 * For parallel scsi and non-self-identify device only. 331 */ 332 333 /* 334 * The following resources and routines are implemented to support 335 * "smart" probing, which caches the scsi_probe() results in an array, 336 * in order to help avoid long probe times. 337 */ 338 struct sd_scsi_probe_cache { 339 struct sd_scsi_probe_cache *next; 340 dev_info_t *pdip; 341 int cache[NTARGETS_WIDE]; 342 }; 343 344 static kmutex_t sd_scsi_probe_cache_mutex; 345 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 346 347 /* 348 * Really we only need protection on the head of the linked list, but 349 * better safe than sorry. 350 */ 351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 352 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 353 354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 355 sd_scsi_probe_cache_head)) 356 357 /* 358 * Power attribute table 359 */ 360 static sd_power_attr_ss sd_pwr_ss = { 361 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 362 {0, 100}, 363 {30, 0}, 364 {20000, 0} 365 }; 366 367 static sd_power_attr_pc sd_pwr_pc = { 368 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 369 "3=active", NULL }, 370 {0, 0, 0, 100}, 371 {90, 90, 20, 0}, 372 {15000, 15000, 1000, 0} 373 }; 374 375 /* 376 * Power level to power condition 377 */ 378 static int sd_pl2pc[] = { 379 SD_TARGET_START_VALID, 380 SD_TARGET_STANDBY, 381 SD_TARGET_IDLE, 382 SD_TARGET_ACTIVE 383 }; 384 385 /* 386 * Vendor specific data name property declarations 387 */ 388 389 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 390 391 static sd_tunables seagate_properties = { 392 SEAGATE_THROTTLE_VALUE, 393 0, 394 0, 395 0, 396 0, 397 0, 398 0, 399 0, 400 0 401 }; 402 403 404 static sd_tunables fujitsu_properties = { 405 FUJITSU_THROTTLE_VALUE, 406 0, 407 0, 408 0, 409 0, 410 0, 411 0, 412 0, 413 0 414 }; 415 416 static sd_tunables ibm_properties = { 417 IBM_THROTTLE_VALUE, 418 0, 419 0, 420 0, 421 0, 422 0, 423 0, 424 0, 425 0 426 }; 427 428 static sd_tunables purple_properties = { 429 PURPLE_THROTTLE_VALUE, 430 0, 431 0, 432 PURPLE_BUSY_RETRIES, 433 PURPLE_RESET_RETRY_COUNT, 434 PURPLE_RESERVE_RELEASE_TIME, 435 0, 436 0, 437 0 438 }; 439 440 static sd_tunables sve_properties = { 441 SVE_THROTTLE_VALUE, 442 0, 443 0, 444 SVE_BUSY_RETRIES, 445 SVE_RESET_RETRY_COUNT, 446 SVE_RESERVE_RELEASE_TIME, 447 SVE_MIN_THROTTLE_VALUE, 448 SVE_DISKSORT_DISABLED_FLAG, 449 0 450 }; 451 452 static sd_tunables maserati_properties = { 453 0, 454 0, 455 0, 456 0, 457 0, 458 0, 459 0, 460 MASERATI_DISKSORT_DISABLED_FLAG, 461 MASERATI_LUN_RESET_ENABLED_FLAG 462 }; 463 464 static sd_tunables pirus_properties = { 465 PIRUS_THROTTLE_VALUE, 466 0, 467 PIRUS_NRR_COUNT, 468 PIRUS_BUSY_RETRIES, 469 PIRUS_RESET_RETRY_COUNT, 470 0, 471 PIRUS_MIN_THROTTLE_VALUE, 472 PIRUS_DISKSORT_DISABLED_FLAG, 473 PIRUS_LUN_RESET_ENABLED_FLAG 474 }; 475 476 #endif 477 478 #if (defined(__sparc) && !defined(__fibre)) || \ 479 (defined(__i386) || defined(__amd64)) 480 481 482 static sd_tunables elite_properties = { 483 ELITE_THROTTLE_VALUE, 484 0, 485 0, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 static sd_tunables st31200n_properties = { 495 ST31200N_THROTTLE_VALUE, 496 0, 497 0, 498 0, 499 0, 500 0, 501 0, 502 0, 503 0 504 }; 505 506 #endif /* Fibre or not */ 507 508 static sd_tunables lsi_properties_scsi = { 509 LSI_THROTTLE_VALUE, 510 0, 511 LSI_NOTREADY_RETRIES, 512 0, 513 0, 514 0, 515 0, 516 0, 517 0 518 }; 519 520 static sd_tunables symbios_properties = { 521 SYMBIOS_THROTTLE_VALUE, 522 0, 523 SYMBIOS_NOTREADY_RETRIES, 524 0, 525 0, 526 0, 527 0, 528 0, 529 0 530 }; 531 532 static sd_tunables lsi_properties = { 533 0, 534 0, 535 LSI_NOTREADY_RETRIES, 536 0, 537 0, 538 0, 539 0, 540 0, 541 0 542 }; 543 544 static sd_tunables lsi_oem_properties = { 545 0, 546 0, 547 LSI_OEM_NOTREADY_RETRIES, 548 0, 549 0, 550 0, 551 0, 552 0, 553 0, 554 1 555 }; 556 557 558 559 #if (defined(SD_PROP_TST)) 560 561 #define SD_TST_CTYPE_VAL CTYPE_CDROM 562 #define SD_TST_THROTTLE_VAL 16 563 #define SD_TST_NOTREADY_VAL 12 564 #define SD_TST_BUSY_VAL 60 565 #define SD_TST_RST_RETRY_VAL 36 566 #define SD_TST_RSV_REL_TIME 60 567 568 static sd_tunables tst_properties = { 569 SD_TST_THROTTLE_VAL, 570 SD_TST_CTYPE_VAL, 571 SD_TST_NOTREADY_VAL, 572 SD_TST_BUSY_VAL, 573 SD_TST_RST_RETRY_VAL, 574 SD_TST_RSV_REL_TIME, 575 0, 576 0, 577 0 578 }; 579 #endif 580 581 /* This is similar to the ANSI toupper implementation */ 582 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 583 584 /* 585 * Static Driver Configuration Table 586 * 587 * This is the table of disks which need throttle adjustment (or, perhaps 588 * something else as defined by the flags at a future time.) device_id 589 * is a string consisting of concatenated vid (vendor), pid (product/model) 590 * and revision strings as defined in the scsi_inquiry structure. Offsets of 591 * the parts of the string are as defined by the sizes in the scsi_inquiry 592 * structure. Device type is searched as far as the device_id string is 593 * defined. Flags defines which values are to be set in the driver from the 594 * properties list. 595 * 596 * Entries below which begin and end with a "*" are a special case. 597 * These do not have a specific vendor, and the string which follows 598 * can appear anywhere in the 16 byte PID portion of the inquiry data. 599 * 600 * Entries below which begin and end with a " " (blank) are a special 601 * case. The comparison function will treat multiple consecutive blanks 602 * as equivalent to a single blank. For example, this causes a 603 * sd_disk_table entry of " NEC CDROM " to match a device's id string 604 * of "NEC CDROM". 605 * 606 * Note: The MD21 controller type has been obsoleted. 607 * ST318202F is a Legacy device 608 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 609 * made with an FC connection. The entries here are a legacy. 610 */ 611 static sd_disk_config_t sd_disk_table[] = { 612 #if defined(__fibre) || defined(__i386) || defined(__amd64) 613 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 614 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 615 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 616 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 617 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 618 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 628 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 629 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 630 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 631 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 632 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 633 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 634 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 635 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 637 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 638 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 639 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 640 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 641 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 642 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 643 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 644 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 645 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 663 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 664 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 665 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 666 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 667 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 668 { "SUN T3", SD_CONF_BSET_THROTTLE | 669 SD_CONF_BSET_BSY_RETRY_COUNT| 670 SD_CONF_BSET_RST_RETRIES| 671 SD_CONF_BSET_RSV_REL_TIME, 672 &purple_properties }, 673 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 674 SD_CONF_BSET_BSY_RETRY_COUNT| 675 SD_CONF_BSET_RST_RETRIES| 676 SD_CONF_BSET_RSV_REL_TIME| 677 SD_CONF_BSET_MIN_THROTTLE| 678 SD_CONF_BSET_DISKSORT_DISABLED, 679 &sve_properties }, 680 { "SUN T4", SD_CONF_BSET_THROTTLE | 681 SD_CONF_BSET_BSY_RETRY_COUNT| 682 SD_CONF_BSET_RST_RETRIES| 683 SD_CONF_BSET_RSV_REL_TIME, 684 &purple_properties }, 685 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 686 SD_CONF_BSET_LUN_RESET_ENABLED, 687 &maserati_properties }, 688 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 689 SD_CONF_BSET_NRR_COUNT| 690 SD_CONF_BSET_BSY_RETRY_COUNT| 691 SD_CONF_BSET_RST_RETRIES| 692 SD_CONF_BSET_MIN_THROTTLE| 693 SD_CONF_BSET_DISKSORT_DISABLED| 694 SD_CONF_BSET_LUN_RESET_ENABLED, 695 &pirus_properties }, 696 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 697 SD_CONF_BSET_NRR_COUNT| 698 SD_CONF_BSET_BSY_RETRY_COUNT| 699 SD_CONF_BSET_RST_RETRIES| 700 SD_CONF_BSET_MIN_THROTTLE| 701 SD_CONF_BSET_DISKSORT_DISABLED| 702 SD_CONF_BSET_LUN_RESET_ENABLED, 703 &pirus_properties }, 704 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 705 SD_CONF_BSET_NRR_COUNT| 706 SD_CONF_BSET_BSY_RETRY_COUNT| 707 SD_CONF_BSET_RST_RETRIES| 708 SD_CONF_BSET_MIN_THROTTLE| 709 SD_CONF_BSET_DISKSORT_DISABLED| 710 SD_CONF_BSET_LUN_RESET_ENABLED, 711 &pirus_properties }, 712 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 713 SD_CONF_BSET_NRR_COUNT| 714 SD_CONF_BSET_BSY_RETRY_COUNT| 715 SD_CONF_BSET_RST_RETRIES| 716 SD_CONF_BSET_MIN_THROTTLE| 717 SD_CONF_BSET_DISKSORT_DISABLED| 718 SD_CONF_BSET_LUN_RESET_ENABLED, 719 &pirus_properties }, 720 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 721 SD_CONF_BSET_NRR_COUNT| 722 SD_CONF_BSET_BSY_RETRY_COUNT| 723 SD_CONF_BSET_RST_RETRIES| 724 SD_CONF_BSET_MIN_THROTTLE| 725 SD_CONF_BSET_DISKSORT_DISABLED| 726 SD_CONF_BSET_LUN_RESET_ENABLED, 727 &pirus_properties }, 728 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 729 SD_CONF_BSET_NRR_COUNT| 730 SD_CONF_BSET_BSY_RETRY_COUNT| 731 SD_CONF_BSET_RST_RETRIES| 732 SD_CONF_BSET_MIN_THROTTLE| 733 SD_CONF_BSET_DISKSORT_DISABLED| 734 SD_CONF_BSET_LUN_RESET_ENABLED, 735 &pirus_properties }, 736 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 737 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 738 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 739 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 740 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 741 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 742 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 743 #endif /* fibre or NON-sparc platforms */ 744 #if ((defined(__sparc) && !defined(__fibre)) ||\ 745 (defined(__i386) || defined(__amd64))) 746 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 747 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 748 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 749 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 750 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 751 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 752 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 753 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 754 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 755 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 756 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 757 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 758 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 759 &symbios_properties }, 760 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 761 &lsi_properties_scsi }, 762 #if defined(__i386) || defined(__amd64) 763 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 764 | SD_CONF_BSET_READSUB_BCD 765 | SD_CONF_BSET_READ_TOC_ADDR_BCD 766 | SD_CONF_BSET_NO_READ_HEADER 767 | SD_CONF_BSET_READ_CD_XD4), NULL }, 768 769 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 770 | SD_CONF_BSET_READSUB_BCD 771 | SD_CONF_BSET_READ_TOC_ADDR_BCD 772 | SD_CONF_BSET_NO_READ_HEADER 773 | SD_CONF_BSET_READ_CD_XD4), NULL }, 774 #endif /* __i386 || __amd64 */ 775 #endif /* sparc NON-fibre or NON-sparc platforms */ 776 777 #if (defined(SD_PROP_TST)) 778 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 779 | SD_CONF_BSET_CTYPE 780 | SD_CONF_BSET_NRR_COUNT 781 | SD_CONF_BSET_FAB_DEVID 782 | SD_CONF_BSET_NOCACHE 783 | SD_CONF_BSET_BSY_RETRY_COUNT 784 | SD_CONF_BSET_PLAYMSF_BCD 785 | SD_CONF_BSET_READSUB_BCD 786 | SD_CONF_BSET_READ_TOC_TRK_BCD 787 | SD_CONF_BSET_READ_TOC_ADDR_BCD 788 | SD_CONF_BSET_NO_READ_HEADER 789 | SD_CONF_BSET_READ_CD_XD4 790 | SD_CONF_BSET_RST_RETRIES 791 | SD_CONF_BSET_RSV_REL_TIME 792 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 793 #endif 794 }; 795 796 static const int sd_disk_table_size = 797 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 798 799 800 801 #define SD_INTERCONNECT_PARALLEL 0 802 #define SD_INTERCONNECT_FABRIC 1 803 #define SD_INTERCONNECT_FIBRE 2 804 #define SD_INTERCONNECT_SSA 3 805 #define SD_INTERCONNECT_SATA 4 806 #define SD_INTERCONNECT_SAS 5 807 808 #define SD_IS_PARALLEL_SCSI(un) \ 809 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 810 #define SD_IS_SERIAL(un) \ 811 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 812 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 813 814 /* 815 * Definitions used by device id registration routines 816 */ 817 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 818 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 819 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 820 821 static kmutex_t sd_sense_mutex = {0}; 822 823 /* 824 * Macros for updates of the driver state 825 */ 826 #define New_state(un, s) \ 827 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 828 #define Restore_state(un) \ 829 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 830 831 static struct sd_cdbinfo sd_cdbtab[] = { 832 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 833 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 834 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 835 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 836 }; 837 838 /* 839 * Specifies the number of seconds that must have elapsed since the last 840 * cmd. has completed for a device to be declared idle to the PM framework. 841 */ 842 static int sd_pm_idletime = 1; 843 844 /* 845 * Internal function prototypes 846 */ 847 848 #if (defined(__fibre)) 849 /* 850 * These #defines are to avoid namespace collisions that occur because this 851 * code is currently used to compile two separate driver modules: sd and ssd. 852 * All function names need to be treated this way (even if declared static) 853 * in order to allow the debugger to resolve the names properly. 854 * It is anticipated that in the near future the ssd module will be obsoleted, 855 * at which time this ugliness should go away. 856 */ 857 #define sd_log_trace ssd_log_trace 858 #define sd_log_info ssd_log_info 859 #define sd_log_err ssd_log_err 860 #define sdprobe ssdprobe 861 #define sdinfo ssdinfo 862 #define sd_prop_op ssd_prop_op 863 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 864 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 865 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 866 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 867 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 868 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 869 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 870 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 871 #define sd_spin_up_unit ssd_spin_up_unit 872 #define sd_enable_descr_sense ssd_enable_descr_sense 873 #define sd_reenable_dsense_task ssd_reenable_dsense_task 874 #define sd_set_mmc_caps ssd_set_mmc_caps 875 #define sd_read_unit_properties ssd_read_unit_properties 876 #define sd_process_sdconf_file ssd_process_sdconf_file 877 #define sd_process_sdconf_table ssd_process_sdconf_table 878 #define sd_sdconf_id_match ssd_sdconf_id_match 879 #define sd_blank_cmp ssd_blank_cmp 880 #define sd_chk_vers1_data ssd_chk_vers1_data 881 #define sd_set_vers1_properties ssd_set_vers1_properties 882 #define sd_check_solid_state ssd_check_solid_state 883 884 #define sd_get_physical_geometry ssd_get_physical_geometry 885 #define sd_get_virtual_geometry ssd_get_virtual_geometry 886 #define sd_update_block_info ssd_update_block_info 887 #define sd_register_devid ssd_register_devid 888 #define sd_get_devid ssd_get_devid 889 #define sd_create_devid ssd_create_devid 890 #define sd_write_deviceid ssd_write_deviceid 891 #define sd_check_vpd_page_support ssd_check_vpd_page_support 892 #define sd_setup_pm ssd_setup_pm 893 #define sd_create_pm_components ssd_create_pm_components 894 #define sd_ddi_suspend ssd_ddi_suspend 895 #define sd_ddi_resume ssd_ddi_resume 896 #define sd_pm_state_change ssd_pm_state_change 897 #define sdpower ssdpower 898 #define sdattach ssdattach 899 #define sddetach ssddetach 900 #define sd_unit_attach ssd_unit_attach 901 #define sd_unit_detach ssd_unit_detach 902 #define sd_set_unit_attributes ssd_set_unit_attributes 903 #define sd_create_errstats ssd_create_errstats 904 #define sd_set_errstats ssd_set_errstats 905 #define sd_set_pstats ssd_set_pstats 906 #define sddump ssddump 907 #define sd_scsi_poll ssd_scsi_poll 908 #define sd_send_polled_RQS ssd_send_polled_RQS 909 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 910 #define sd_init_event_callbacks ssd_init_event_callbacks 911 #define sd_event_callback ssd_event_callback 912 #define sd_cache_control ssd_cache_control 913 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 914 #define sd_get_nv_sup ssd_get_nv_sup 915 #define sd_make_device ssd_make_device 916 #define sdopen ssdopen 917 #define sdclose ssdclose 918 #define sd_ready_and_valid ssd_ready_and_valid 919 #define sdmin ssdmin 920 #define sdread ssdread 921 #define sdwrite ssdwrite 922 #define sdaread ssdaread 923 #define sdawrite ssdawrite 924 #define sdstrategy ssdstrategy 925 #define sdioctl ssdioctl 926 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 927 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 928 #define sd_checksum_iostart ssd_checksum_iostart 929 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 930 #define sd_pm_iostart ssd_pm_iostart 931 #define sd_core_iostart ssd_core_iostart 932 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 933 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 934 #define sd_checksum_iodone ssd_checksum_iodone 935 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 936 #define sd_pm_iodone ssd_pm_iodone 937 #define sd_initpkt_for_buf ssd_initpkt_for_buf 938 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 939 #define sd_setup_rw_pkt ssd_setup_rw_pkt 940 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 941 #define sd_buf_iodone ssd_buf_iodone 942 #define sd_uscsi_strategy ssd_uscsi_strategy 943 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 944 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 945 #define sd_uscsi_iodone ssd_uscsi_iodone 946 #define sd_xbuf_strategy ssd_xbuf_strategy 947 #define sd_xbuf_init ssd_xbuf_init 948 #define sd_pm_entry ssd_pm_entry 949 #define sd_pm_exit ssd_pm_exit 950 951 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 952 #define sd_pm_timeout_handler ssd_pm_timeout_handler 953 954 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 955 #define sdintr ssdintr 956 #define sd_start_cmds ssd_start_cmds 957 #define sd_send_scsi_cmd ssd_send_scsi_cmd 958 #define sd_bioclone_alloc ssd_bioclone_alloc 959 #define sd_bioclone_free ssd_bioclone_free 960 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 961 #define sd_shadow_buf_free ssd_shadow_buf_free 962 #define sd_print_transport_rejected_message \ 963 ssd_print_transport_rejected_message 964 #define sd_retry_command ssd_retry_command 965 #define sd_set_retry_bp ssd_set_retry_bp 966 #define sd_send_request_sense_command ssd_send_request_sense_command 967 #define sd_start_retry_command ssd_start_retry_command 968 #define sd_start_direct_priority_command \ 969 ssd_start_direct_priority_command 970 #define sd_return_failed_command ssd_return_failed_command 971 #define sd_return_failed_command_no_restart \ 972 ssd_return_failed_command_no_restart 973 #define sd_return_command ssd_return_command 974 #define sd_sync_with_callback ssd_sync_with_callback 975 #define sdrunout ssdrunout 976 #define sd_mark_rqs_busy ssd_mark_rqs_busy 977 #define sd_mark_rqs_idle ssd_mark_rqs_idle 978 #define sd_reduce_throttle ssd_reduce_throttle 979 #define sd_restore_throttle ssd_restore_throttle 980 #define sd_print_incomplete_msg ssd_print_incomplete_msg 981 #define sd_init_cdb_limits ssd_init_cdb_limits 982 #define sd_pkt_status_good ssd_pkt_status_good 983 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 984 #define sd_pkt_status_busy ssd_pkt_status_busy 985 #define sd_pkt_status_reservation_conflict \ 986 ssd_pkt_status_reservation_conflict 987 #define sd_pkt_status_qfull ssd_pkt_status_qfull 988 #define sd_handle_request_sense ssd_handle_request_sense 989 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 990 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 991 #define sd_validate_sense_data ssd_validate_sense_data 992 #define sd_decode_sense ssd_decode_sense 993 #define sd_print_sense_msg ssd_print_sense_msg 994 #define sd_sense_key_no_sense ssd_sense_key_no_sense 995 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 996 #define sd_sense_key_not_ready ssd_sense_key_not_ready 997 #define sd_sense_key_medium_or_hardware_error \ 998 ssd_sense_key_medium_or_hardware_error 999 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1000 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1001 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1002 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1003 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1004 #define sd_sense_key_default ssd_sense_key_default 1005 #define sd_print_retry_msg ssd_print_retry_msg 1006 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1007 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1008 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1009 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1010 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1011 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1012 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1013 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1014 #define sd_pkt_reason_default ssd_pkt_reason_default 1015 #define sd_reset_target ssd_reset_target 1016 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1017 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1018 #define sd_taskq_create ssd_taskq_create 1019 #define sd_taskq_delete ssd_taskq_delete 1020 #define sd_target_change_task ssd_target_change_task 1021 #define sd_log_dev_status_event ssd_log_dev_status_event 1022 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1023 #define sd_log_eject_request_event ssd_log_eject_request_event 1024 #define sd_media_change_task ssd_media_change_task 1025 #define sd_handle_mchange ssd_handle_mchange 1026 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1027 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1028 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1029 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1030 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1031 sd_send_scsi_feature_GET_CONFIGURATION 1032 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1033 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1034 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1035 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1036 ssd_send_scsi_PERSISTENT_RESERVE_IN 1037 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1038 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1039 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1040 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1041 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1042 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1043 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1044 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1045 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1046 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION \ 1047 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 1048 #define sd_gesn_media_data_valid ssd_gesn_media_data_valid 1049 #define sd_alloc_rqs ssd_alloc_rqs 1050 #define sd_free_rqs ssd_free_rqs 1051 #define sd_dump_memory ssd_dump_memory 1052 #define sd_get_media_info ssd_get_media_info 1053 #define sd_get_media_info_ext ssd_get_media_info_ext 1054 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1055 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1056 #define sd_strtok_r ssd_strtok_r 1057 #define sd_set_properties ssd_set_properties 1058 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1059 #define sd_setup_next_xfer ssd_setup_next_xfer 1060 #define sd_dkio_get_temp ssd_dkio_get_temp 1061 #define sd_check_mhd ssd_check_mhd 1062 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1063 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1064 #define sd_sname ssd_sname 1065 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1066 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1067 #define sd_take_ownership ssd_take_ownership 1068 #define sd_reserve_release ssd_reserve_release 1069 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1070 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1071 #define sd_persistent_reservation_in_read_keys \ 1072 ssd_persistent_reservation_in_read_keys 1073 #define sd_persistent_reservation_in_read_resv \ 1074 ssd_persistent_reservation_in_read_resv 1075 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1076 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1077 #define sd_mhdioc_release ssd_mhdioc_release 1078 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1079 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1080 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1081 #define sr_change_blkmode ssr_change_blkmode 1082 #define sr_change_speed ssr_change_speed 1083 #define sr_atapi_change_speed ssr_atapi_change_speed 1084 #define sr_pause_resume ssr_pause_resume 1085 #define sr_play_msf ssr_play_msf 1086 #define sr_play_trkind ssr_play_trkind 1087 #define sr_read_all_subcodes ssr_read_all_subcodes 1088 #define sr_read_subchannel ssr_read_subchannel 1089 #define sr_read_tocentry ssr_read_tocentry 1090 #define sr_read_tochdr ssr_read_tochdr 1091 #define sr_read_cdda ssr_read_cdda 1092 #define sr_read_cdxa ssr_read_cdxa 1093 #define sr_read_mode1 ssr_read_mode1 1094 #define sr_read_mode2 ssr_read_mode2 1095 #define sr_read_cd_mode2 ssr_read_cd_mode2 1096 #define sr_sector_mode ssr_sector_mode 1097 #define sr_eject ssr_eject 1098 #define sr_ejected ssr_ejected 1099 #define sr_check_wp ssr_check_wp 1100 #define sd_watch_request_submit ssd_watch_request_submit 1101 #define sd_check_media ssd_check_media 1102 #define sd_media_watch_cb ssd_media_watch_cb 1103 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1104 #define sr_volume_ctrl ssr_volume_ctrl 1105 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1106 #define sd_log_page_supported ssd_log_page_supported 1107 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1108 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1109 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1110 #define sd_range_lock ssd_range_lock 1111 #define sd_get_range ssd_get_range 1112 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1113 #define sd_range_unlock ssd_range_unlock 1114 #define sd_read_modify_write_task ssd_read_modify_write_task 1115 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1116 1117 #define sd_iostart_chain ssd_iostart_chain 1118 #define sd_iodone_chain ssd_iodone_chain 1119 #define sd_initpkt_map ssd_initpkt_map 1120 #define sd_destroypkt_map ssd_destroypkt_map 1121 #define sd_chain_type_map ssd_chain_type_map 1122 #define sd_chain_index_map ssd_chain_index_map 1123 1124 #define sd_failfast_flushctl ssd_failfast_flushctl 1125 #define sd_failfast_flushq ssd_failfast_flushq 1126 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1127 1128 #define sd_is_lsi ssd_is_lsi 1129 #define sd_tg_rdwr ssd_tg_rdwr 1130 #define sd_tg_getinfo ssd_tg_getinfo 1131 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1132 1133 #endif /* #if (defined(__fibre)) */ 1134 1135 1136 int _init(void); 1137 int _fini(void); 1138 int _info(struct modinfo *modinfop); 1139 1140 /*PRINTFLIKE3*/ 1141 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1142 /*PRINTFLIKE3*/ 1143 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1144 /*PRINTFLIKE3*/ 1145 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1146 1147 static int sdprobe(dev_info_t *devi); 1148 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1149 void **result); 1150 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1151 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1152 1153 /* 1154 * Smart probe for parallel scsi 1155 */ 1156 static void sd_scsi_probe_cache_init(void); 1157 static void sd_scsi_probe_cache_fini(void); 1158 static void sd_scsi_clear_probe_cache(void); 1159 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1160 1161 /* 1162 * Attached luns on target for parallel scsi 1163 */ 1164 static void sd_scsi_target_lun_init(void); 1165 static void sd_scsi_target_lun_fini(void); 1166 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1167 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1168 1169 static int sd_spin_up_unit(sd_ssc_t *ssc); 1170 1171 /* 1172 * Using sd_ssc_init to establish sd_ssc_t struct 1173 * Using sd_ssc_send to send uscsi internal command 1174 * Using sd_ssc_fini to free sd_ssc_t struct 1175 */ 1176 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1177 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1178 int flag, enum uio_seg dataspace, int path_flag); 1179 static void sd_ssc_fini(sd_ssc_t *ssc); 1180 1181 /* 1182 * Using sd_ssc_assessment to set correct type-of-assessment 1183 * Using sd_ssc_post to post ereport & system log 1184 * sd_ssc_post will call sd_ssc_print to print system log 1185 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1186 */ 1187 static void sd_ssc_assessment(sd_ssc_t *ssc, 1188 enum sd_type_assessment tp_assess); 1189 1190 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1191 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1192 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1193 enum sd_driver_assessment drv_assess); 1194 1195 /* 1196 * Using sd_ssc_set_info to mark an un-decodable-data error. 1197 * Using sd_ssc_extract_info to transfer information from internal 1198 * data structures to sd_ssc_t. 1199 */ 1200 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1201 const char *fmt, ...); 1202 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1203 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1204 1205 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1206 enum uio_seg dataspace, int path_flag); 1207 1208 #ifdef _LP64 1209 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1210 static void sd_reenable_dsense_task(void *arg); 1211 #endif /* _LP64 */ 1212 1213 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1214 1215 static void sd_read_unit_properties(struct sd_lun *un); 1216 static int sd_process_sdconf_file(struct sd_lun *un); 1217 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1218 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1219 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1220 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1221 int *data_list, sd_tunables *values); 1222 static void sd_process_sdconf_table(struct sd_lun *un); 1223 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1224 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1225 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1226 int list_len, char *dataname_ptr); 1227 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1228 sd_tunables *prop_list); 1229 1230 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1231 int reservation_flag); 1232 static int sd_get_devid(sd_ssc_t *ssc); 1233 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1234 static int sd_write_deviceid(sd_ssc_t *ssc); 1235 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1236 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1237 1238 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1239 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1240 1241 static int sd_ddi_suspend(dev_info_t *devi); 1242 static int sd_ddi_resume(dev_info_t *devi); 1243 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1244 static int sdpower(dev_info_t *devi, int component, int level); 1245 1246 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1247 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1248 static int sd_unit_attach(dev_info_t *devi); 1249 static int sd_unit_detach(dev_info_t *devi); 1250 1251 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1252 static void sd_create_errstats(struct sd_lun *un, int instance); 1253 static void sd_set_errstats(struct sd_lun *un); 1254 static void sd_set_pstats(struct sd_lun *un); 1255 1256 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1257 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1258 static int sd_send_polled_RQS(struct sd_lun *un); 1259 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1260 1261 #if (defined(__fibre)) 1262 /* 1263 * Event callbacks (photon) 1264 */ 1265 static void sd_init_event_callbacks(struct sd_lun *un); 1266 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1267 #endif 1268 1269 /* 1270 * Defines for sd_cache_control 1271 */ 1272 1273 #define SD_CACHE_ENABLE 1 1274 #define SD_CACHE_DISABLE 0 1275 #define SD_CACHE_NOCHANGE -1 1276 1277 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1278 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1279 static void sd_get_nv_sup(sd_ssc_t *ssc); 1280 static dev_t sd_make_device(dev_info_t *devi); 1281 static void sd_check_solid_state(sd_ssc_t *ssc); 1282 1283 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1284 uint64_t capacity); 1285 1286 /* 1287 * Driver entry point functions. 1288 */ 1289 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1290 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1291 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1292 1293 static void sdmin(struct buf *bp); 1294 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1295 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1296 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1297 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1298 1299 static int sdstrategy(struct buf *bp); 1300 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1301 1302 /* 1303 * Function prototypes for layering functions in the iostart chain. 1304 */ 1305 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1306 struct buf *bp); 1307 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1308 struct buf *bp); 1309 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1310 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1311 struct buf *bp); 1312 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1313 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1314 1315 /* 1316 * Function prototypes for layering functions in the iodone chain. 1317 */ 1318 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1319 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1320 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1321 struct buf *bp); 1322 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1323 struct buf *bp); 1324 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1325 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1326 struct buf *bp); 1327 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1328 1329 /* 1330 * Prototypes for functions to support buf(9S) based IO. 1331 */ 1332 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1333 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1334 static void sd_destroypkt_for_buf(struct buf *); 1335 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1336 struct buf *bp, int flags, 1337 int (*callback)(caddr_t), caddr_t callback_arg, 1338 diskaddr_t lba, uint32_t blockcount); 1339 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1340 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1341 1342 /* 1343 * Prototypes for functions to support USCSI IO. 1344 */ 1345 static int sd_uscsi_strategy(struct buf *bp); 1346 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1347 static void sd_destroypkt_for_uscsi(struct buf *); 1348 1349 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1350 uchar_t chain_type, void *pktinfop); 1351 1352 static int sd_pm_entry(struct sd_lun *un); 1353 static void sd_pm_exit(struct sd_lun *un); 1354 1355 static void sd_pm_idletimeout_handler(void *arg); 1356 1357 /* 1358 * sd_core internal functions (used at the sd_core_io layer). 1359 */ 1360 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1361 static void sdintr(struct scsi_pkt *pktp); 1362 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1363 1364 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1365 enum uio_seg dataspace, int path_flag); 1366 1367 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1368 daddr_t blkno, int (*func)(struct buf *)); 1369 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1370 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1371 static void sd_bioclone_free(struct buf *bp); 1372 static void sd_shadow_buf_free(struct buf *bp); 1373 1374 static void sd_print_transport_rejected_message(struct sd_lun *un, 1375 struct sd_xbuf *xp, int code); 1376 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1377 void *arg, int code); 1378 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1379 void *arg, int code); 1380 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1381 void *arg, int code); 1382 1383 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1384 int retry_check_flag, 1385 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1386 int c), 1387 void *user_arg, int failure_code, clock_t retry_delay, 1388 void (*statp)(kstat_io_t *)); 1389 1390 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1391 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1392 1393 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1394 struct scsi_pkt *pktp); 1395 static void sd_start_retry_command(void *arg); 1396 static void sd_start_direct_priority_command(void *arg); 1397 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1398 int errcode); 1399 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1400 struct buf *bp, int errcode); 1401 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1402 static void sd_sync_with_callback(struct sd_lun *un); 1403 static int sdrunout(caddr_t arg); 1404 1405 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1406 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1407 1408 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1409 static void sd_restore_throttle(void *arg); 1410 1411 static void sd_init_cdb_limits(struct sd_lun *un); 1412 1413 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1414 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1415 1416 /* 1417 * Error handling functions 1418 */ 1419 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1420 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1421 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1422 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1423 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1424 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1425 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1426 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1427 1428 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1429 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1430 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1433 struct sd_xbuf *xp, size_t actual_len); 1434 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1435 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1436 1437 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1438 void *arg, int code); 1439 1440 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1441 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1443 uint8_t *sense_datap, 1444 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1445 static void sd_sense_key_not_ready(struct sd_lun *un, 1446 uint8_t *sense_datap, 1447 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1448 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1449 uint8_t *sense_datap, 1450 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1451 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1452 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1453 static void sd_sense_key_unit_attention(struct sd_lun *un, 1454 uint8_t *sense_datap, 1455 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1456 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1457 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1458 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1459 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1460 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1461 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1462 static void sd_sense_key_default(struct sd_lun *un, 1463 uint8_t *sense_datap, 1464 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1465 1466 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1467 void *arg, int flag); 1468 1469 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1470 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1471 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1472 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1480 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1481 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1482 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1483 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1484 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1485 1486 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1487 1488 static void sd_start_stop_unit_callback(void *arg); 1489 static void sd_start_stop_unit_task(void *arg); 1490 1491 static void sd_taskq_create(void); 1492 static void sd_taskq_delete(void); 1493 static void sd_target_change_task(void *arg); 1494 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag); 1495 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1496 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag); 1497 static void sd_media_change_task(void *arg); 1498 1499 static int sd_handle_mchange(struct sd_lun *un); 1500 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1501 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1502 uint32_t *lbap, int path_flag); 1503 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1504 uint32_t *lbap, uint32_t *psp, int path_flag); 1505 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1506 int flag, int path_flag); 1507 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1508 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1509 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1510 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1511 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1512 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1513 uchar_t usr_cmd, uchar_t *usr_bufp); 1514 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1515 struct dk_callback *dkc); 1516 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1517 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1518 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1519 uchar_t *bufaddr, uint_t buflen, int path_flag); 1520 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1521 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1522 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1523 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1524 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1525 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1526 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1527 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1528 size_t buflen, daddr_t start_block, int path_flag); 1529 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1530 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1531 path_flag) 1532 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1533 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1534 path_flag) 1535 1536 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1537 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1538 uint16_t param_ptr, int path_flag); 1539 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, 1540 uchar_t *bufaddr, size_t buflen, uchar_t class_req); 1541 static boolean_t sd_gesn_media_data_valid(uchar_t *data); 1542 1543 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1544 static void sd_free_rqs(struct sd_lun *un); 1545 1546 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1547 uchar_t *data, int len, int fmt); 1548 static void sd_panic_for_res_conflict(struct sd_lun *un); 1549 1550 /* 1551 * Disk Ioctl Function Prototypes 1552 */ 1553 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1554 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1555 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1556 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1557 1558 /* 1559 * Multi-host Ioctl Prototypes 1560 */ 1561 static int sd_check_mhd(dev_t dev, int interval); 1562 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1563 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1564 static char *sd_sname(uchar_t status); 1565 static void sd_mhd_resvd_recover(void *arg); 1566 static void sd_resv_reclaim_thread(); 1567 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1568 static int sd_reserve_release(dev_t dev, int cmd); 1569 static void sd_rmv_resv_reclaim_req(dev_t dev); 1570 static void sd_mhd_reset_notify_cb(caddr_t arg); 1571 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1572 mhioc_inkeys_t *usrp, int flag); 1573 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1574 mhioc_inresvs_t *usrp, int flag); 1575 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1576 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1577 static int sd_mhdioc_release(dev_t dev); 1578 static int sd_mhdioc_register_devid(dev_t dev); 1579 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1580 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1581 1582 /* 1583 * SCSI removable prototypes 1584 */ 1585 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1586 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1587 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1588 static int sr_pause_resume(dev_t dev, int mode); 1589 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1590 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1591 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1592 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1593 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1594 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1595 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1596 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1597 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1598 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1599 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1600 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1601 static int sr_eject(dev_t dev); 1602 static void sr_ejected(register struct sd_lun *un); 1603 static int sr_check_wp(dev_t dev); 1604 static opaque_t sd_watch_request_submit(struct sd_lun *un); 1605 static int sd_check_media(dev_t dev, enum dkio_state state); 1606 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1607 static void sd_delayed_cv_broadcast(void *arg); 1608 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1609 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1610 1611 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1612 1613 /* 1614 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1615 */ 1616 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1617 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1618 static void sd_wm_cache_destructor(void *wm, void *un); 1619 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1620 daddr_t endb, ushort_t typ); 1621 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1622 daddr_t endb); 1623 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1624 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1625 static void sd_read_modify_write_task(void * arg); 1626 static int 1627 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1628 struct buf **bpp); 1629 1630 1631 /* 1632 * Function prototypes for failfast support. 1633 */ 1634 static void sd_failfast_flushq(struct sd_lun *un); 1635 static int sd_failfast_flushq_callback(struct buf *bp); 1636 1637 /* 1638 * Function prototypes to check for lsi devices 1639 */ 1640 static void sd_is_lsi(struct sd_lun *un); 1641 1642 /* 1643 * Function prototypes for partial DMA support 1644 */ 1645 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1646 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1647 1648 1649 /* Function prototypes for cmlb */ 1650 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1651 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1652 1653 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1654 1655 /* 1656 * For printing RMW warning message timely 1657 */ 1658 static void sd_rmw_msg_print_handler(void *arg); 1659 1660 /* 1661 * Constants for failfast support: 1662 * 1663 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1664 * failfast processing being performed. 1665 * 1666 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1667 * failfast processing on all bufs with B_FAILFAST set. 1668 */ 1669 1670 #define SD_FAILFAST_INACTIVE 0 1671 #define SD_FAILFAST_ACTIVE 1 1672 1673 /* 1674 * Bitmask to control behavior of buf(9S) flushes when a transition to 1675 * the failfast state occurs. Optional bits include: 1676 * 1677 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1678 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1679 * be flushed. 1680 * 1681 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1682 * driver, in addition to the regular wait queue. This includes the xbuf 1683 * queues. When clear, only the driver's wait queue will be flushed. 1684 */ 1685 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1686 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1687 1688 /* 1689 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1690 * to flush all queues within the driver. 1691 */ 1692 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1693 1694 1695 /* 1696 * SD Testing Fault Injection 1697 */ 1698 #ifdef SD_FAULT_INJECTION 1699 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1700 static void sd_faultinjection(struct scsi_pkt *pktp); 1701 static void sd_injection_log(char *buf, struct sd_lun *un); 1702 #endif 1703 1704 /* 1705 * Device driver ops vector 1706 */ 1707 static struct cb_ops sd_cb_ops = { 1708 sdopen, /* open */ 1709 sdclose, /* close */ 1710 sdstrategy, /* strategy */ 1711 nodev, /* print */ 1712 sddump, /* dump */ 1713 sdread, /* read */ 1714 sdwrite, /* write */ 1715 sdioctl, /* ioctl */ 1716 nodev, /* devmap */ 1717 nodev, /* mmap */ 1718 nodev, /* segmap */ 1719 nochpoll, /* poll */ 1720 sd_prop_op, /* cb_prop_op */ 1721 0, /* streamtab */ 1722 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1723 CB_REV, /* cb_rev */ 1724 sdaread, /* async I/O read entry point */ 1725 sdawrite /* async I/O write entry point */ 1726 }; 1727 1728 struct dev_ops sd_ops = { 1729 DEVO_REV, /* devo_rev, */ 1730 0, /* refcnt */ 1731 sdinfo, /* info */ 1732 nulldev, /* identify */ 1733 sdprobe, /* probe */ 1734 sdattach, /* attach */ 1735 sddetach, /* detach */ 1736 nodev, /* reset */ 1737 &sd_cb_ops, /* driver operations */ 1738 NULL, /* bus operations */ 1739 sdpower, /* power */ 1740 ddi_quiesce_not_needed, /* quiesce */ 1741 }; 1742 1743 /* 1744 * This is the loadable module wrapper. 1745 */ 1746 #include <sys/modctl.h> 1747 1748 #ifndef XPV_HVM_DRIVER 1749 static struct modldrv modldrv = { 1750 &mod_driverops, /* Type of module. This one is a driver */ 1751 SD_MODULE_NAME, /* Module name. */ 1752 &sd_ops /* driver ops */ 1753 }; 1754 1755 static struct modlinkage modlinkage = { 1756 MODREV_1, &modldrv, NULL 1757 }; 1758 1759 #else /* XPV_HVM_DRIVER */ 1760 static struct modlmisc modlmisc = { 1761 &mod_miscops, /* Type of module. This one is a misc */ 1762 "HVM " SD_MODULE_NAME, /* Module name. */ 1763 }; 1764 1765 static struct modlinkage modlinkage = { 1766 MODREV_1, &modlmisc, NULL 1767 }; 1768 1769 #endif /* XPV_HVM_DRIVER */ 1770 1771 static cmlb_tg_ops_t sd_tgops = { 1772 TG_DK_OPS_VERSION_1, 1773 sd_tg_rdwr, 1774 sd_tg_getinfo 1775 }; 1776 1777 static struct scsi_asq_key_strings sd_additional_codes[] = { 1778 0x81, 0, "Logical Unit is Reserved", 1779 0x85, 0, "Audio Address Not Valid", 1780 0xb6, 0, "Media Load Mechanism Failed", 1781 0xB9, 0, "Audio Play Operation Aborted", 1782 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1783 0x53, 2, "Medium removal prevented", 1784 0x6f, 0, "Authentication failed during key exchange", 1785 0x6f, 1, "Key not present", 1786 0x6f, 2, "Key not established", 1787 0x6f, 3, "Read without proper authentication", 1788 0x6f, 4, "Mismatched region to this logical unit", 1789 0x6f, 5, "Region reset count error", 1790 0xffff, 0x0, NULL 1791 }; 1792 1793 1794 /* 1795 * Struct for passing printing information for sense data messages 1796 */ 1797 struct sd_sense_info { 1798 int ssi_severity; 1799 int ssi_pfa_flag; 1800 }; 1801 1802 /* 1803 * Table of function pointers for iostart-side routines. Separate "chains" 1804 * of layered function calls are formed by placing the function pointers 1805 * sequentially in the desired order. Functions are called according to an 1806 * incrementing table index ordering. The last function in each chain must 1807 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1808 * in the sd_iodone_chain[] array. 1809 * 1810 * Note: It may seem more natural to organize both the iostart and iodone 1811 * functions together, into an array of structures (or some similar 1812 * organization) with a common index, rather than two separate arrays which 1813 * must be maintained in synchronization. The purpose of this division is 1814 * to achieve improved performance: individual arrays allows for more 1815 * effective cache line utilization on certain platforms. 1816 */ 1817 1818 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1819 1820 1821 static sd_chain_t sd_iostart_chain[] = { 1822 1823 /* Chain for buf IO for disk drive targets (PM enabled) */ 1824 sd_mapblockaddr_iostart, /* Index: 0 */ 1825 sd_pm_iostart, /* Index: 1 */ 1826 sd_core_iostart, /* Index: 2 */ 1827 1828 /* Chain for buf IO for disk drive targets (PM disabled) */ 1829 sd_mapblockaddr_iostart, /* Index: 3 */ 1830 sd_core_iostart, /* Index: 4 */ 1831 1832 /* 1833 * Chain for buf IO for removable-media or large sector size 1834 * disk drive targets with RMW needed (PM enabled) 1835 */ 1836 sd_mapblockaddr_iostart, /* Index: 5 */ 1837 sd_mapblocksize_iostart, /* Index: 6 */ 1838 sd_pm_iostart, /* Index: 7 */ 1839 sd_core_iostart, /* Index: 8 */ 1840 1841 /* 1842 * Chain for buf IO for removable-media or large sector size 1843 * disk drive targets with RMW needed (PM disabled) 1844 */ 1845 sd_mapblockaddr_iostart, /* Index: 9 */ 1846 sd_mapblocksize_iostart, /* Index: 10 */ 1847 sd_core_iostart, /* Index: 11 */ 1848 1849 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1850 sd_mapblockaddr_iostart, /* Index: 12 */ 1851 sd_checksum_iostart, /* Index: 13 */ 1852 sd_pm_iostart, /* Index: 14 */ 1853 sd_core_iostart, /* Index: 15 */ 1854 1855 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1856 sd_mapblockaddr_iostart, /* Index: 16 */ 1857 sd_checksum_iostart, /* Index: 17 */ 1858 sd_core_iostart, /* Index: 18 */ 1859 1860 /* Chain for USCSI commands (all targets) */ 1861 sd_pm_iostart, /* Index: 19 */ 1862 sd_core_iostart, /* Index: 20 */ 1863 1864 /* Chain for checksumming USCSI commands (all targets) */ 1865 sd_checksum_uscsi_iostart, /* Index: 21 */ 1866 sd_pm_iostart, /* Index: 22 */ 1867 sd_core_iostart, /* Index: 23 */ 1868 1869 /* Chain for "direct" USCSI commands (all targets) */ 1870 sd_core_iostart, /* Index: 24 */ 1871 1872 /* Chain for "direct priority" USCSI commands (all targets) */ 1873 sd_core_iostart, /* Index: 25 */ 1874 1875 /* 1876 * Chain for buf IO for large sector size disk drive targets 1877 * with RMW needed with checksumming (PM enabled) 1878 */ 1879 sd_mapblockaddr_iostart, /* Index: 26 */ 1880 sd_mapblocksize_iostart, /* Index: 27 */ 1881 sd_checksum_iostart, /* Index: 28 */ 1882 sd_pm_iostart, /* Index: 29 */ 1883 sd_core_iostart, /* Index: 30 */ 1884 1885 /* 1886 * Chain for buf IO for large sector size disk drive targets 1887 * with RMW needed with checksumming (PM disabled) 1888 */ 1889 sd_mapblockaddr_iostart, /* Index: 31 */ 1890 sd_mapblocksize_iostart, /* Index: 32 */ 1891 sd_checksum_iostart, /* Index: 33 */ 1892 sd_core_iostart, /* Index: 34 */ 1893 1894 }; 1895 1896 /* 1897 * Macros to locate the first function of each iostart chain in the 1898 * sd_iostart_chain[] array. These are located by the index in the array. 1899 */ 1900 #define SD_CHAIN_DISK_IOSTART 0 1901 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1902 #define SD_CHAIN_MSS_DISK_IOSTART 5 1903 #define SD_CHAIN_RMMEDIA_IOSTART 5 1904 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1905 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1906 #define SD_CHAIN_CHKSUM_IOSTART 12 1907 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1908 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1909 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1910 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1911 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1912 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1913 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1914 1915 1916 /* 1917 * Table of function pointers for the iodone-side routines for the driver- 1918 * internal layering mechanism. The calling sequence for iodone routines 1919 * uses a decrementing table index, so the last routine called in a chain 1920 * must be at the lowest array index location for that chain. The last 1921 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1922 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1923 * of the functions in an iodone side chain must correspond to the ordering 1924 * of the iostart routines for that chain. Note that there is no iodone 1925 * side routine that corresponds to sd_core_iostart(), so there is no 1926 * entry in the table for this. 1927 */ 1928 1929 static sd_chain_t sd_iodone_chain[] = { 1930 1931 /* Chain for buf IO for disk drive targets (PM enabled) */ 1932 sd_buf_iodone, /* Index: 0 */ 1933 sd_mapblockaddr_iodone, /* Index: 1 */ 1934 sd_pm_iodone, /* Index: 2 */ 1935 1936 /* Chain for buf IO for disk drive targets (PM disabled) */ 1937 sd_buf_iodone, /* Index: 3 */ 1938 sd_mapblockaddr_iodone, /* Index: 4 */ 1939 1940 /* 1941 * Chain for buf IO for removable-media or large sector size 1942 * disk drive targets with RMW needed (PM enabled) 1943 */ 1944 sd_buf_iodone, /* Index: 5 */ 1945 sd_mapblockaddr_iodone, /* Index: 6 */ 1946 sd_mapblocksize_iodone, /* Index: 7 */ 1947 sd_pm_iodone, /* Index: 8 */ 1948 1949 /* 1950 * Chain for buf IO for removable-media or large sector size 1951 * disk drive targets with RMW needed (PM disabled) 1952 */ 1953 sd_buf_iodone, /* Index: 9 */ 1954 sd_mapblockaddr_iodone, /* Index: 10 */ 1955 sd_mapblocksize_iodone, /* Index: 11 */ 1956 1957 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1958 sd_buf_iodone, /* Index: 12 */ 1959 sd_mapblockaddr_iodone, /* Index: 13 */ 1960 sd_checksum_iodone, /* Index: 14 */ 1961 sd_pm_iodone, /* Index: 15 */ 1962 1963 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1964 sd_buf_iodone, /* Index: 16 */ 1965 sd_mapblockaddr_iodone, /* Index: 17 */ 1966 sd_checksum_iodone, /* Index: 18 */ 1967 1968 /* Chain for USCSI commands (non-checksum targets) */ 1969 sd_uscsi_iodone, /* Index: 19 */ 1970 sd_pm_iodone, /* Index: 20 */ 1971 1972 /* Chain for USCSI commands (checksum targets) */ 1973 sd_uscsi_iodone, /* Index: 21 */ 1974 sd_checksum_uscsi_iodone, /* Index: 22 */ 1975 sd_pm_iodone, /* Index: 22 */ 1976 1977 /* Chain for "direct" USCSI commands (all targets) */ 1978 sd_uscsi_iodone, /* Index: 24 */ 1979 1980 /* Chain for "direct priority" USCSI commands (all targets) */ 1981 sd_uscsi_iodone, /* Index: 25 */ 1982 1983 /* 1984 * Chain for buf IO for large sector size disk drive targets 1985 * with checksumming (PM enabled) 1986 */ 1987 sd_buf_iodone, /* Index: 26 */ 1988 sd_mapblockaddr_iodone, /* Index: 27 */ 1989 sd_mapblocksize_iodone, /* Index: 28 */ 1990 sd_checksum_iodone, /* Index: 29 */ 1991 sd_pm_iodone, /* Index: 30 */ 1992 1993 /* 1994 * Chain for buf IO for large sector size disk drive targets 1995 * with checksumming (PM disabled) 1996 */ 1997 sd_buf_iodone, /* Index: 31 */ 1998 sd_mapblockaddr_iodone, /* Index: 32 */ 1999 sd_mapblocksize_iodone, /* Index: 33 */ 2000 sd_checksum_iodone, /* Index: 34 */ 2001 }; 2002 2003 2004 /* 2005 * Macros to locate the "first" function in the sd_iodone_chain[] array for 2006 * each iodone-side chain. These are located by the array index, but as the 2007 * iodone side functions are called in a decrementing-index order, the 2008 * highest index number in each chain must be specified (as these correspond 2009 * to the first function in the iodone chain that will be called by the core 2010 * at IO completion time). 2011 */ 2012 2013 #define SD_CHAIN_DISK_IODONE 2 2014 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2015 #define SD_CHAIN_RMMEDIA_IODONE 8 2016 #define SD_CHAIN_MSS_DISK_IODONE 8 2017 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2018 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2019 #define SD_CHAIN_CHKSUM_IODONE 15 2020 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2021 #define SD_CHAIN_USCSI_CMD_IODONE 20 2022 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2023 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2024 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2025 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2026 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2027 2028 2029 2030 /* 2031 * Array to map a layering chain index to the appropriate initpkt routine. 2032 * The redundant entries are present so that the index used for accessing 2033 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2034 * with this table as well. 2035 */ 2036 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2037 2038 static sd_initpkt_t sd_initpkt_map[] = { 2039 2040 /* Chain for buf IO for disk drive targets (PM enabled) */ 2041 sd_initpkt_for_buf, /* Index: 0 */ 2042 sd_initpkt_for_buf, /* Index: 1 */ 2043 sd_initpkt_for_buf, /* Index: 2 */ 2044 2045 /* Chain for buf IO for disk drive targets (PM disabled) */ 2046 sd_initpkt_for_buf, /* Index: 3 */ 2047 sd_initpkt_for_buf, /* Index: 4 */ 2048 2049 /* 2050 * Chain for buf IO for removable-media or large sector size 2051 * disk drive targets (PM enabled) 2052 */ 2053 sd_initpkt_for_buf, /* Index: 5 */ 2054 sd_initpkt_for_buf, /* Index: 6 */ 2055 sd_initpkt_for_buf, /* Index: 7 */ 2056 sd_initpkt_for_buf, /* Index: 8 */ 2057 2058 /* 2059 * Chain for buf IO for removable-media or large sector size 2060 * disk drive targets (PM disabled) 2061 */ 2062 sd_initpkt_for_buf, /* Index: 9 */ 2063 sd_initpkt_for_buf, /* Index: 10 */ 2064 sd_initpkt_for_buf, /* Index: 11 */ 2065 2066 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2067 sd_initpkt_for_buf, /* Index: 12 */ 2068 sd_initpkt_for_buf, /* Index: 13 */ 2069 sd_initpkt_for_buf, /* Index: 14 */ 2070 sd_initpkt_for_buf, /* Index: 15 */ 2071 2072 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2073 sd_initpkt_for_buf, /* Index: 16 */ 2074 sd_initpkt_for_buf, /* Index: 17 */ 2075 sd_initpkt_for_buf, /* Index: 18 */ 2076 2077 /* Chain for USCSI commands (non-checksum targets) */ 2078 sd_initpkt_for_uscsi, /* Index: 19 */ 2079 sd_initpkt_for_uscsi, /* Index: 20 */ 2080 2081 /* Chain for USCSI commands (checksum targets) */ 2082 sd_initpkt_for_uscsi, /* Index: 21 */ 2083 sd_initpkt_for_uscsi, /* Index: 22 */ 2084 sd_initpkt_for_uscsi, /* Index: 22 */ 2085 2086 /* Chain for "direct" USCSI commands (all targets) */ 2087 sd_initpkt_for_uscsi, /* Index: 24 */ 2088 2089 /* Chain for "direct priority" USCSI commands (all targets) */ 2090 sd_initpkt_for_uscsi, /* Index: 25 */ 2091 2092 /* 2093 * Chain for buf IO for large sector size disk drive targets 2094 * with checksumming (PM enabled) 2095 */ 2096 sd_initpkt_for_buf, /* Index: 26 */ 2097 sd_initpkt_for_buf, /* Index: 27 */ 2098 sd_initpkt_for_buf, /* Index: 28 */ 2099 sd_initpkt_for_buf, /* Index: 29 */ 2100 sd_initpkt_for_buf, /* Index: 30 */ 2101 2102 /* 2103 * Chain for buf IO for large sector size disk drive targets 2104 * with checksumming (PM disabled) 2105 */ 2106 sd_initpkt_for_buf, /* Index: 31 */ 2107 sd_initpkt_for_buf, /* Index: 32 */ 2108 sd_initpkt_for_buf, /* Index: 33 */ 2109 sd_initpkt_for_buf, /* Index: 34 */ 2110 }; 2111 2112 2113 /* 2114 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2115 * The redundant entries are present so that the index used for accessing 2116 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2117 * with this table as well. 2118 */ 2119 typedef void (*sd_destroypkt_t)(struct buf *); 2120 2121 static sd_destroypkt_t sd_destroypkt_map[] = { 2122 2123 /* Chain for buf IO for disk drive targets (PM enabled) */ 2124 sd_destroypkt_for_buf, /* Index: 0 */ 2125 sd_destroypkt_for_buf, /* Index: 1 */ 2126 sd_destroypkt_for_buf, /* Index: 2 */ 2127 2128 /* Chain for buf IO for disk drive targets (PM disabled) */ 2129 sd_destroypkt_for_buf, /* Index: 3 */ 2130 sd_destroypkt_for_buf, /* Index: 4 */ 2131 2132 /* 2133 * Chain for buf IO for removable-media or large sector size 2134 * disk drive targets (PM enabled) 2135 */ 2136 sd_destroypkt_for_buf, /* Index: 5 */ 2137 sd_destroypkt_for_buf, /* Index: 6 */ 2138 sd_destroypkt_for_buf, /* Index: 7 */ 2139 sd_destroypkt_for_buf, /* Index: 8 */ 2140 2141 /* 2142 * Chain for buf IO for removable-media or large sector size 2143 * disk drive targets (PM disabled) 2144 */ 2145 sd_destroypkt_for_buf, /* Index: 9 */ 2146 sd_destroypkt_for_buf, /* Index: 10 */ 2147 sd_destroypkt_for_buf, /* Index: 11 */ 2148 2149 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2150 sd_destroypkt_for_buf, /* Index: 12 */ 2151 sd_destroypkt_for_buf, /* Index: 13 */ 2152 sd_destroypkt_for_buf, /* Index: 14 */ 2153 sd_destroypkt_for_buf, /* Index: 15 */ 2154 2155 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2156 sd_destroypkt_for_buf, /* Index: 16 */ 2157 sd_destroypkt_for_buf, /* Index: 17 */ 2158 sd_destroypkt_for_buf, /* Index: 18 */ 2159 2160 /* Chain for USCSI commands (non-checksum targets) */ 2161 sd_destroypkt_for_uscsi, /* Index: 19 */ 2162 sd_destroypkt_for_uscsi, /* Index: 20 */ 2163 2164 /* Chain for USCSI commands (checksum targets) */ 2165 sd_destroypkt_for_uscsi, /* Index: 21 */ 2166 sd_destroypkt_for_uscsi, /* Index: 22 */ 2167 sd_destroypkt_for_uscsi, /* Index: 22 */ 2168 2169 /* Chain for "direct" USCSI commands (all targets) */ 2170 sd_destroypkt_for_uscsi, /* Index: 24 */ 2171 2172 /* Chain for "direct priority" USCSI commands (all targets) */ 2173 sd_destroypkt_for_uscsi, /* Index: 25 */ 2174 2175 /* 2176 * Chain for buf IO for large sector size disk drive targets 2177 * with checksumming (PM disabled) 2178 */ 2179 sd_destroypkt_for_buf, /* Index: 26 */ 2180 sd_destroypkt_for_buf, /* Index: 27 */ 2181 sd_destroypkt_for_buf, /* Index: 28 */ 2182 sd_destroypkt_for_buf, /* Index: 29 */ 2183 sd_destroypkt_for_buf, /* Index: 30 */ 2184 2185 /* 2186 * Chain for buf IO for large sector size disk drive targets 2187 * with checksumming (PM enabled) 2188 */ 2189 sd_destroypkt_for_buf, /* Index: 31 */ 2190 sd_destroypkt_for_buf, /* Index: 32 */ 2191 sd_destroypkt_for_buf, /* Index: 33 */ 2192 sd_destroypkt_for_buf, /* Index: 34 */ 2193 }; 2194 2195 2196 2197 /* 2198 * Array to map a layering chain index to the appropriate chain "type". 2199 * The chain type indicates a specific property/usage of the chain. 2200 * The redundant entries are present so that the index used for accessing 2201 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2202 * with this table as well. 2203 */ 2204 2205 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2206 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2207 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2208 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2209 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2210 /* (for error recovery) */ 2211 2212 static int sd_chain_type_map[] = { 2213 2214 /* Chain for buf IO for disk drive targets (PM enabled) */ 2215 SD_CHAIN_BUFIO, /* Index: 0 */ 2216 SD_CHAIN_BUFIO, /* Index: 1 */ 2217 SD_CHAIN_BUFIO, /* Index: 2 */ 2218 2219 /* Chain for buf IO for disk drive targets (PM disabled) */ 2220 SD_CHAIN_BUFIO, /* Index: 3 */ 2221 SD_CHAIN_BUFIO, /* Index: 4 */ 2222 2223 /* 2224 * Chain for buf IO for removable-media or large sector size 2225 * disk drive targets (PM enabled) 2226 */ 2227 SD_CHAIN_BUFIO, /* Index: 5 */ 2228 SD_CHAIN_BUFIO, /* Index: 6 */ 2229 SD_CHAIN_BUFIO, /* Index: 7 */ 2230 SD_CHAIN_BUFIO, /* Index: 8 */ 2231 2232 /* 2233 * Chain for buf IO for removable-media or large sector size 2234 * disk drive targets (PM disabled) 2235 */ 2236 SD_CHAIN_BUFIO, /* Index: 9 */ 2237 SD_CHAIN_BUFIO, /* Index: 10 */ 2238 SD_CHAIN_BUFIO, /* Index: 11 */ 2239 2240 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2241 SD_CHAIN_BUFIO, /* Index: 12 */ 2242 SD_CHAIN_BUFIO, /* Index: 13 */ 2243 SD_CHAIN_BUFIO, /* Index: 14 */ 2244 SD_CHAIN_BUFIO, /* Index: 15 */ 2245 2246 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2247 SD_CHAIN_BUFIO, /* Index: 16 */ 2248 SD_CHAIN_BUFIO, /* Index: 17 */ 2249 SD_CHAIN_BUFIO, /* Index: 18 */ 2250 2251 /* Chain for USCSI commands (non-checksum targets) */ 2252 SD_CHAIN_USCSI, /* Index: 19 */ 2253 SD_CHAIN_USCSI, /* Index: 20 */ 2254 2255 /* Chain for USCSI commands (checksum targets) */ 2256 SD_CHAIN_USCSI, /* Index: 21 */ 2257 SD_CHAIN_USCSI, /* Index: 22 */ 2258 SD_CHAIN_USCSI, /* Index: 23 */ 2259 2260 /* Chain for "direct" USCSI commands (all targets) */ 2261 SD_CHAIN_DIRECT, /* Index: 24 */ 2262 2263 /* Chain for "direct priority" USCSI commands (all targets) */ 2264 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2265 2266 /* 2267 * Chain for buf IO for large sector size disk drive targets 2268 * with checksumming (PM enabled) 2269 */ 2270 SD_CHAIN_BUFIO, /* Index: 26 */ 2271 SD_CHAIN_BUFIO, /* Index: 27 */ 2272 SD_CHAIN_BUFIO, /* Index: 28 */ 2273 SD_CHAIN_BUFIO, /* Index: 29 */ 2274 SD_CHAIN_BUFIO, /* Index: 30 */ 2275 2276 /* 2277 * Chain for buf IO for large sector size disk drive targets 2278 * with checksumming (PM disabled) 2279 */ 2280 SD_CHAIN_BUFIO, /* Index: 31 */ 2281 SD_CHAIN_BUFIO, /* Index: 32 */ 2282 SD_CHAIN_BUFIO, /* Index: 33 */ 2283 SD_CHAIN_BUFIO, /* Index: 34 */ 2284 }; 2285 2286 2287 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2288 #define SD_IS_BUFIO(xp) \ 2289 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2290 2291 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2292 #define SD_IS_DIRECT_PRIORITY(xp) \ 2293 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2294 2295 2296 2297 /* 2298 * Struct, array, and macros to map a specific chain to the appropriate 2299 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2300 * 2301 * The sd_chain_index_map[] array is used at attach time to set the various 2302 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2303 * chain to be used with the instance. This allows different instances to use 2304 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2305 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2306 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2307 * dynamically & without the use of locking; and (2) a layer may update the 2308 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2309 * to allow for deferred processing of an IO within the same chain from a 2310 * different execution context. 2311 */ 2312 2313 struct sd_chain_index { 2314 int sci_iostart_index; 2315 int sci_iodone_index; 2316 }; 2317 2318 static struct sd_chain_index sd_chain_index_map[] = { 2319 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2320 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2321 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2322 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2323 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2324 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2325 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2326 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2327 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2328 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2329 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2330 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2331 2332 }; 2333 2334 2335 /* 2336 * The following are indexes into the sd_chain_index_map[] array. 2337 */ 2338 2339 /* un->un_buf_chain_type must be set to one of these */ 2340 #define SD_CHAIN_INFO_DISK 0 2341 #define SD_CHAIN_INFO_DISK_NO_PM 1 2342 #define SD_CHAIN_INFO_RMMEDIA 2 2343 #define SD_CHAIN_INFO_MSS_DISK 2 2344 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2345 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2346 #define SD_CHAIN_INFO_CHKSUM 4 2347 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2348 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2349 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2350 2351 /* un->un_uscsi_chain_type must be set to one of these */ 2352 #define SD_CHAIN_INFO_USCSI_CMD 6 2353 /* USCSI with PM disabled is the same as DIRECT */ 2354 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2355 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2356 2357 /* un->un_direct_chain_type must be set to one of these */ 2358 #define SD_CHAIN_INFO_DIRECT_CMD 8 2359 2360 /* un->un_priority_chain_type must be set to one of these */ 2361 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2362 2363 /* size for devid inquiries */ 2364 #define MAX_INQUIRY_SIZE 0xF0 2365 2366 /* 2367 * Macros used by functions to pass a given buf(9S) struct along to the 2368 * next function in the layering chain for further processing. 2369 * 2370 * In the following macros, passing more than three arguments to the called 2371 * routines causes the optimizer for the SPARC compiler to stop doing tail 2372 * call elimination which results in significant performance degradation. 2373 */ 2374 #define SD_BEGIN_IOSTART(index, un, bp) \ 2375 ((*(sd_iostart_chain[index]))(index, un, bp)) 2376 2377 #define SD_BEGIN_IODONE(index, un, bp) \ 2378 ((*(sd_iodone_chain[index]))(index, un, bp)) 2379 2380 #define SD_NEXT_IOSTART(index, un, bp) \ 2381 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2382 2383 #define SD_NEXT_IODONE(index, un, bp) \ 2384 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2385 2386 /* 2387 * Function: _init 2388 * 2389 * Description: This is the driver _init(9E) entry point. 2390 * 2391 * Return Code: Returns the value from mod_install(9F) or 2392 * ddi_soft_state_init(9F) as appropriate. 2393 * 2394 * Context: Called when driver module loaded. 2395 */ 2396 2397 int 2398 _init(void) 2399 { 2400 int err; 2401 2402 /* establish driver name from module name */ 2403 sd_label = (char *)mod_modname(&modlinkage); 2404 2405 #ifndef XPV_HVM_DRIVER 2406 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2407 SD_MAXUNIT); 2408 if (err != 0) { 2409 return (err); 2410 } 2411 2412 #else /* XPV_HVM_DRIVER */ 2413 /* Remove the leading "hvm_" from the module name */ 2414 ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0); 2415 sd_label += strlen("hvm_"); 2416 2417 #endif /* XPV_HVM_DRIVER */ 2418 2419 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2420 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2421 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2422 2423 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2424 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2425 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2426 2427 /* 2428 * it's ok to init here even for fibre device 2429 */ 2430 sd_scsi_probe_cache_init(); 2431 2432 sd_scsi_target_lun_init(); 2433 2434 /* 2435 * Creating taskq before mod_install ensures that all callers (threads) 2436 * that enter the module after a successful mod_install encounter 2437 * a valid taskq. 2438 */ 2439 sd_taskq_create(); 2440 2441 err = mod_install(&modlinkage); 2442 if (err != 0) { 2443 /* delete taskq if install fails */ 2444 sd_taskq_delete(); 2445 2446 mutex_destroy(&sd_detach_mutex); 2447 mutex_destroy(&sd_log_mutex); 2448 mutex_destroy(&sd_label_mutex); 2449 2450 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2451 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2452 cv_destroy(&sd_tr.srq_inprocess_cv); 2453 2454 sd_scsi_probe_cache_fini(); 2455 2456 sd_scsi_target_lun_fini(); 2457 2458 #ifndef XPV_HVM_DRIVER 2459 ddi_soft_state_fini(&sd_state); 2460 #endif /* !XPV_HVM_DRIVER */ 2461 return (err); 2462 } 2463 2464 return (err); 2465 } 2466 2467 2468 /* 2469 * Function: _fini 2470 * 2471 * Description: This is the driver _fini(9E) entry point. 2472 * 2473 * Return Code: Returns the value from mod_remove(9F) 2474 * 2475 * Context: Called when driver module is unloaded. 2476 */ 2477 2478 int 2479 _fini(void) 2480 { 2481 int err; 2482 2483 if ((err = mod_remove(&modlinkage)) != 0) { 2484 return (err); 2485 } 2486 2487 sd_taskq_delete(); 2488 2489 mutex_destroy(&sd_detach_mutex); 2490 mutex_destroy(&sd_log_mutex); 2491 mutex_destroy(&sd_label_mutex); 2492 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2493 2494 sd_scsi_probe_cache_fini(); 2495 2496 sd_scsi_target_lun_fini(); 2497 2498 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2499 cv_destroy(&sd_tr.srq_inprocess_cv); 2500 2501 #ifndef XPV_HVM_DRIVER 2502 ddi_soft_state_fini(&sd_state); 2503 #endif /* !XPV_HVM_DRIVER */ 2504 2505 return (err); 2506 } 2507 2508 2509 /* 2510 * Function: _info 2511 * 2512 * Description: This is the driver _info(9E) entry point. 2513 * 2514 * Arguments: modinfop - pointer to the driver modinfo structure 2515 * 2516 * Return Code: Returns the value from mod_info(9F). 2517 * 2518 * Context: Kernel thread context 2519 */ 2520 2521 int 2522 _info(struct modinfo *modinfop) 2523 { 2524 return (mod_info(&modlinkage, modinfop)); 2525 } 2526 2527 2528 /* 2529 * The following routines implement the driver message logging facility. 2530 * They provide component- and level- based debug output filtering. 2531 * Output may also be restricted to messages for a single instance by 2532 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2533 * to NULL, then messages for all instances are printed. 2534 * 2535 * These routines have been cloned from each other due to the language 2536 * constraints of macros and variable argument list processing. 2537 */ 2538 2539 2540 /* 2541 * Function: sd_log_err 2542 * 2543 * Description: This routine is called by the SD_ERROR macro for debug 2544 * logging of error conditions. 2545 * 2546 * Arguments: comp - driver component being logged 2547 * dev - pointer to driver info structure 2548 * fmt - error string and format to be logged 2549 */ 2550 2551 static void 2552 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2553 { 2554 va_list ap; 2555 dev_info_t *dev; 2556 2557 ASSERT(un != NULL); 2558 dev = SD_DEVINFO(un); 2559 ASSERT(dev != NULL); 2560 2561 /* 2562 * Filter messages based on the global component and level masks. 2563 * Also print if un matches the value of sd_debug_un, or if 2564 * sd_debug_un is set to NULL. 2565 */ 2566 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2567 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2568 mutex_enter(&sd_log_mutex); 2569 va_start(ap, fmt); 2570 (void) vsprintf(sd_log_buf, fmt, ap); 2571 va_end(ap); 2572 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2573 mutex_exit(&sd_log_mutex); 2574 } 2575 #ifdef SD_FAULT_INJECTION 2576 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2577 if (un->sd_injection_mask & comp) { 2578 mutex_enter(&sd_log_mutex); 2579 va_start(ap, fmt); 2580 (void) vsprintf(sd_log_buf, fmt, ap); 2581 va_end(ap); 2582 sd_injection_log(sd_log_buf, un); 2583 mutex_exit(&sd_log_mutex); 2584 } 2585 #endif 2586 } 2587 2588 2589 /* 2590 * Function: sd_log_info 2591 * 2592 * Description: This routine is called by the SD_INFO macro for debug 2593 * logging of general purpose informational conditions. 2594 * 2595 * Arguments: comp - driver component being logged 2596 * dev - pointer to driver info structure 2597 * fmt - info string and format to be logged 2598 */ 2599 2600 static void 2601 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2602 { 2603 va_list ap; 2604 dev_info_t *dev; 2605 2606 ASSERT(un != NULL); 2607 dev = SD_DEVINFO(un); 2608 ASSERT(dev != NULL); 2609 2610 /* 2611 * Filter messages based on the global component and level masks. 2612 * Also print if un matches the value of sd_debug_un, or if 2613 * sd_debug_un is set to NULL. 2614 */ 2615 if ((sd_component_mask & component) && 2616 (sd_level_mask & SD_LOGMASK_INFO) && 2617 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2618 mutex_enter(&sd_log_mutex); 2619 va_start(ap, fmt); 2620 (void) vsprintf(sd_log_buf, fmt, ap); 2621 va_end(ap); 2622 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2623 mutex_exit(&sd_log_mutex); 2624 } 2625 #ifdef SD_FAULT_INJECTION 2626 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2627 if (un->sd_injection_mask & component) { 2628 mutex_enter(&sd_log_mutex); 2629 va_start(ap, fmt); 2630 (void) vsprintf(sd_log_buf, fmt, ap); 2631 va_end(ap); 2632 sd_injection_log(sd_log_buf, un); 2633 mutex_exit(&sd_log_mutex); 2634 } 2635 #endif 2636 } 2637 2638 2639 /* 2640 * Function: sd_log_trace 2641 * 2642 * Description: This routine is called by the SD_TRACE macro for debug 2643 * logging of trace conditions (i.e. function entry/exit). 2644 * 2645 * Arguments: comp - driver component being logged 2646 * dev - pointer to driver info structure 2647 * fmt - trace string and format to be logged 2648 */ 2649 2650 static void 2651 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2652 { 2653 va_list ap; 2654 dev_info_t *dev; 2655 2656 ASSERT(un != NULL); 2657 dev = SD_DEVINFO(un); 2658 ASSERT(dev != NULL); 2659 2660 /* 2661 * Filter messages based on the global component and level masks. 2662 * Also print if un matches the value of sd_debug_un, or if 2663 * sd_debug_un is set to NULL. 2664 */ 2665 if ((sd_component_mask & component) && 2666 (sd_level_mask & SD_LOGMASK_TRACE) && 2667 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2668 mutex_enter(&sd_log_mutex); 2669 va_start(ap, fmt); 2670 (void) vsprintf(sd_log_buf, fmt, ap); 2671 va_end(ap); 2672 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2673 mutex_exit(&sd_log_mutex); 2674 } 2675 #ifdef SD_FAULT_INJECTION 2676 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2677 if (un->sd_injection_mask & component) { 2678 mutex_enter(&sd_log_mutex); 2679 va_start(ap, fmt); 2680 (void) vsprintf(sd_log_buf, fmt, ap); 2681 va_end(ap); 2682 sd_injection_log(sd_log_buf, un); 2683 mutex_exit(&sd_log_mutex); 2684 } 2685 #endif 2686 } 2687 2688 2689 /* 2690 * Function: sdprobe 2691 * 2692 * Description: This is the driver probe(9e) entry point function. 2693 * 2694 * Arguments: devi - opaque device info handle 2695 * 2696 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2697 * DDI_PROBE_FAILURE: If the probe failed. 2698 * DDI_PROBE_PARTIAL: If the instance is not present now, 2699 * but may be present in the future. 2700 */ 2701 2702 static int 2703 sdprobe(dev_info_t *devi) 2704 { 2705 struct scsi_device *devp; 2706 int rval; 2707 #ifndef XPV_HVM_DRIVER 2708 int instance = ddi_get_instance(devi); 2709 #endif /* !XPV_HVM_DRIVER */ 2710 2711 /* 2712 * if it wasn't for pln, sdprobe could actually be nulldev 2713 * in the "__fibre" case. 2714 */ 2715 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2716 return (DDI_PROBE_DONTCARE); 2717 } 2718 2719 devp = ddi_get_driver_private(devi); 2720 2721 if (devp == NULL) { 2722 /* Ooops... nexus driver is mis-configured... */ 2723 return (DDI_PROBE_FAILURE); 2724 } 2725 2726 #ifndef XPV_HVM_DRIVER 2727 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2728 return (DDI_PROBE_PARTIAL); 2729 } 2730 #endif /* !XPV_HVM_DRIVER */ 2731 2732 /* 2733 * Call the SCSA utility probe routine to see if we actually 2734 * have a target at this SCSI nexus. 2735 */ 2736 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2737 case SCSIPROBE_EXISTS: 2738 switch (devp->sd_inq->inq_dtype) { 2739 case DTYPE_DIRECT: 2740 rval = DDI_PROBE_SUCCESS; 2741 break; 2742 case DTYPE_RODIRECT: 2743 /* CDs etc. Can be removable media */ 2744 rval = DDI_PROBE_SUCCESS; 2745 break; 2746 case DTYPE_OPTICAL: 2747 /* 2748 * Rewritable optical driver HP115AA 2749 * Can also be removable media 2750 */ 2751 2752 /* 2753 * Do not attempt to bind to DTYPE_OPTICAL if 2754 * pre solaris 9 sparc sd behavior is required 2755 * 2756 * If first time through and sd_dtype_optical_bind 2757 * has not been set in /etc/system check properties 2758 */ 2759 2760 if (sd_dtype_optical_bind < 0) { 2761 sd_dtype_optical_bind = ddi_prop_get_int 2762 (DDI_DEV_T_ANY, devi, 0, 2763 "optical-device-bind", 1); 2764 } 2765 2766 if (sd_dtype_optical_bind == 0) { 2767 rval = DDI_PROBE_FAILURE; 2768 } else { 2769 rval = DDI_PROBE_SUCCESS; 2770 } 2771 break; 2772 2773 case DTYPE_NOTPRESENT: 2774 default: 2775 rval = DDI_PROBE_FAILURE; 2776 break; 2777 } 2778 break; 2779 default: 2780 rval = DDI_PROBE_PARTIAL; 2781 break; 2782 } 2783 2784 /* 2785 * This routine checks for resource allocation prior to freeing, 2786 * so it will take care of the "smart probing" case where a 2787 * scsi_probe() may or may not have been issued and will *not* 2788 * free previously-freed resources. 2789 */ 2790 scsi_unprobe(devp); 2791 return (rval); 2792 } 2793 2794 2795 /* 2796 * Function: sdinfo 2797 * 2798 * Description: This is the driver getinfo(9e) entry point function. 2799 * Given the device number, return the devinfo pointer from 2800 * the scsi_device structure or the instance number 2801 * associated with the dev_t. 2802 * 2803 * Arguments: dip - pointer to device info structure 2804 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2805 * DDI_INFO_DEVT2INSTANCE) 2806 * arg - driver dev_t 2807 * resultp - user buffer for request response 2808 * 2809 * Return Code: DDI_SUCCESS 2810 * DDI_FAILURE 2811 */ 2812 /* ARGSUSED */ 2813 static int 2814 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2815 { 2816 struct sd_lun *un; 2817 dev_t dev; 2818 int instance; 2819 int error; 2820 2821 switch (infocmd) { 2822 case DDI_INFO_DEVT2DEVINFO: 2823 dev = (dev_t)arg; 2824 instance = SDUNIT(dev); 2825 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2826 return (DDI_FAILURE); 2827 } 2828 *result = (void *) SD_DEVINFO(un); 2829 error = DDI_SUCCESS; 2830 break; 2831 case DDI_INFO_DEVT2INSTANCE: 2832 dev = (dev_t)arg; 2833 instance = SDUNIT(dev); 2834 *result = (void *)(uintptr_t)instance; 2835 error = DDI_SUCCESS; 2836 break; 2837 default: 2838 error = DDI_FAILURE; 2839 } 2840 return (error); 2841 } 2842 2843 /* 2844 * Function: sd_prop_op 2845 * 2846 * Description: This is the driver prop_op(9e) entry point function. 2847 * Return the number of blocks for the partition in question 2848 * or forward the request to the property facilities. 2849 * 2850 * Arguments: dev - device number 2851 * dip - pointer to device info structure 2852 * prop_op - property operator 2853 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2854 * name - pointer to property name 2855 * valuep - pointer or address of the user buffer 2856 * lengthp - property length 2857 * 2858 * Return Code: DDI_PROP_SUCCESS 2859 * DDI_PROP_NOT_FOUND 2860 * DDI_PROP_UNDEFINED 2861 * DDI_PROP_NO_MEMORY 2862 * DDI_PROP_BUF_TOO_SMALL 2863 */ 2864 2865 static int 2866 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2867 char *name, caddr_t valuep, int *lengthp) 2868 { 2869 struct sd_lun *un; 2870 2871 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2872 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2873 name, valuep, lengthp)); 2874 2875 return (cmlb_prop_op(un->un_cmlbhandle, 2876 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2877 SDPART(dev), (void *)SD_PATH_DIRECT)); 2878 } 2879 2880 /* 2881 * The following functions are for smart probing: 2882 * sd_scsi_probe_cache_init() 2883 * sd_scsi_probe_cache_fini() 2884 * sd_scsi_clear_probe_cache() 2885 * sd_scsi_probe_with_cache() 2886 */ 2887 2888 /* 2889 * Function: sd_scsi_probe_cache_init 2890 * 2891 * Description: Initializes the probe response cache mutex and head pointer. 2892 * 2893 * Context: Kernel thread context 2894 */ 2895 2896 static void 2897 sd_scsi_probe_cache_init(void) 2898 { 2899 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2900 sd_scsi_probe_cache_head = NULL; 2901 } 2902 2903 2904 /* 2905 * Function: sd_scsi_probe_cache_fini 2906 * 2907 * Description: Frees all resources associated with the probe response cache. 2908 * 2909 * Context: Kernel thread context 2910 */ 2911 2912 static void 2913 sd_scsi_probe_cache_fini(void) 2914 { 2915 struct sd_scsi_probe_cache *cp; 2916 struct sd_scsi_probe_cache *ncp; 2917 2918 /* Clean up our smart probing linked list */ 2919 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2920 ncp = cp->next; 2921 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2922 } 2923 sd_scsi_probe_cache_head = NULL; 2924 mutex_destroy(&sd_scsi_probe_cache_mutex); 2925 } 2926 2927 2928 /* 2929 * Function: sd_scsi_clear_probe_cache 2930 * 2931 * Description: This routine clears the probe response cache. This is 2932 * done when open() returns ENXIO so that when deferred 2933 * attach is attempted (possibly after a device has been 2934 * turned on) we will retry the probe. Since we don't know 2935 * which target we failed to open, we just clear the 2936 * entire cache. 2937 * 2938 * Context: Kernel thread context 2939 */ 2940 2941 static void 2942 sd_scsi_clear_probe_cache(void) 2943 { 2944 struct sd_scsi_probe_cache *cp; 2945 int i; 2946 2947 mutex_enter(&sd_scsi_probe_cache_mutex); 2948 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2949 /* 2950 * Reset all entries to SCSIPROBE_EXISTS. This will 2951 * force probing to be performed the next time 2952 * sd_scsi_probe_with_cache is called. 2953 */ 2954 for (i = 0; i < NTARGETS_WIDE; i++) { 2955 cp->cache[i] = SCSIPROBE_EXISTS; 2956 } 2957 } 2958 mutex_exit(&sd_scsi_probe_cache_mutex); 2959 } 2960 2961 2962 /* 2963 * Function: sd_scsi_probe_with_cache 2964 * 2965 * Description: This routine implements support for a scsi device probe 2966 * with cache. The driver maintains a cache of the target 2967 * responses to scsi probes. If we get no response from a 2968 * target during a probe inquiry, we remember that, and we 2969 * avoid additional calls to scsi_probe on non-zero LUNs 2970 * on the same target until the cache is cleared. By doing 2971 * so we avoid the 1/4 sec selection timeout for nonzero 2972 * LUNs. lun0 of a target is always probed. 2973 * 2974 * Arguments: devp - Pointer to a scsi_device(9S) structure 2975 * waitfunc - indicates what the allocator routines should 2976 * do when resources are not available. This value 2977 * is passed on to scsi_probe() when that routine 2978 * is called. 2979 * 2980 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2981 * otherwise the value returned by scsi_probe(9F). 2982 * 2983 * Context: Kernel thread context 2984 */ 2985 2986 static int 2987 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2988 { 2989 struct sd_scsi_probe_cache *cp; 2990 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2991 int lun, tgt; 2992 2993 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2994 SCSI_ADDR_PROP_LUN, 0); 2995 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2996 SCSI_ADDR_PROP_TARGET, -1); 2997 2998 /* Make sure caching enabled and target in range */ 2999 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 3000 /* do it the old way (no cache) */ 3001 return (scsi_probe(devp, waitfn)); 3002 } 3003 3004 mutex_enter(&sd_scsi_probe_cache_mutex); 3005 3006 /* Find the cache for this scsi bus instance */ 3007 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 3008 if (cp->pdip == pdip) { 3009 break; 3010 } 3011 } 3012 3013 /* If we can't find a cache for this pdip, create one */ 3014 if (cp == NULL) { 3015 int i; 3016 3017 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3018 KM_SLEEP); 3019 cp->pdip = pdip; 3020 cp->next = sd_scsi_probe_cache_head; 3021 sd_scsi_probe_cache_head = cp; 3022 for (i = 0; i < NTARGETS_WIDE; i++) { 3023 cp->cache[i] = SCSIPROBE_EXISTS; 3024 } 3025 } 3026 3027 mutex_exit(&sd_scsi_probe_cache_mutex); 3028 3029 /* Recompute the cache for this target if LUN zero */ 3030 if (lun == 0) { 3031 cp->cache[tgt] = SCSIPROBE_EXISTS; 3032 } 3033 3034 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3035 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3036 return (SCSIPROBE_NORESP); 3037 } 3038 3039 /* Do the actual probe; save & return the result */ 3040 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3041 } 3042 3043 3044 /* 3045 * Function: sd_scsi_target_lun_init 3046 * 3047 * Description: Initializes the attached lun chain mutex and head pointer. 3048 * 3049 * Context: Kernel thread context 3050 */ 3051 3052 static void 3053 sd_scsi_target_lun_init(void) 3054 { 3055 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3056 sd_scsi_target_lun_head = NULL; 3057 } 3058 3059 3060 /* 3061 * Function: sd_scsi_target_lun_fini 3062 * 3063 * Description: Frees all resources associated with the attached lun 3064 * chain 3065 * 3066 * Context: Kernel thread context 3067 */ 3068 3069 static void 3070 sd_scsi_target_lun_fini(void) 3071 { 3072 struct sd_scsi_hba_tgt_lun *cp; 3073 struct sd_scsi_hba_tgt_lun *ncp; 3074 3075 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3076 ncp = cp->next; 3077 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3078 } 3079 sd_scsi_target_lun_head = NULL; 3080 mutex_destroy(&sd_scsi_target_lun_mutex); 3081 } 3082 3083 3084 /* 3085 * Function: sd_scsi_get_target_lun_count 3086 * 3087 * Description: This routine will check in the attached lun chain to see 3088 * how many luns are attached on the required SCSI controller 3089 * and target. Currently, some capabilities like tagged queue 3090 * are supported per target based by HBA. So all luns in a 3091 * target have the same capabilities. Based on this assumption, 3092 * sd should only set these capabilities once per target. This 3093 * function is called when sd needs to decide how many luns 3094 * already attached on a target. 3095 * 3096 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3097 * controller device. 3098 * target - The target ID on the controller's SCSI bus. 3099 * 3100 * Return Code: The number of luns attached on the required target and 3101 * controller. 3102 * -1 if target ID is not in parallel SCSI scope or the given 3103 * dip is not in the chain. 3104 * 3105 * Context: Kernel thread context 3106 */ 3107 3108 static int 3109 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3110 { 3111 struct sd_scsi_hba_tgt_lun *cp; 3112 3113 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3114 return (-1); 3115 } 3116 3117 mutex_enter(&sd_scsi_target_lun_mutex); 3118 3119 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3120 if (cp->pdip == dip) { 3121 break; 3122 } 3123 } 3124 3125 mutex_exit(&sd_scsi_target_lun_mutex); 3126 3127 if (cp == NULL) { 3128 return (-1); 3129 } 3130 3131 return (cp->nlun[target]); 3132 } 3133 3134 3135 /* 3136 * Function: sd_scsi_update_lun_on_target 3137 * 3138 * Description: This routine is used to update the attached lun chain when a 3139 * lun is attached or detached on a target. 3140 * 3141 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3142 * controller device. 3143 * target - The target ID on the controller's SCSI bus. 3144 * flag - Indicate the lun is attached or detached. 3145 * 3146 * Context: Kernel thread context 3147 */ 3148 3149 static void 3150 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3151 { 3152 struct sd_scsi_hba_tgt_lun *cp; 3153 3154 mutex_enter(&sd_scsi_target_lun_mutex); 3155 3156 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3157 if (cp->pdip == dip) { 3158 break; 3159 } 3160 } 3161 3162 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3163 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3164 KM_SLEEP); 3165 cp->pdip = dip; 3166 cp->next = sd_scsi_target_lun_head; 3167 sd_scsi_target_lun_head = cp; 3168 } 3169 3170 mutex_exit(&sd_scsi_target_lun_mutex); 3171 3172 if (cp != NULL) { 3173 if (flag == SD_SCSI_LUN_ATTACH) { 3174 cp->nlun[target] ++; 3175 } else { 3176 cp->nlun[target] --; 3177 } 3178 } 3179 } 3180 3181 3182 /* 3183 * Function: sd_spin_up_unit 3184 * 3185 * Description: Issues the following commands to spin-up the device: 3186 * START STOP UNIT, and INQUIRY. 3187 * 3188 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3189 * structure for this target. 3190 * 3191 * Return Code: 0 - success 3192 * EIO - failure 3193 * EACCES - reservation conflict 3194 * 3195 * Context: Kernel thread context 3196 */ 3197 3198 static int 3199 sd_spin_up_unit(sd_ssc_t *ssc) 3200 { 3201 size_t resid = 0; 3202 int has_conflict = FALSE; 3203 uchar_t *bufaddr; 3204 int status; 3205 struct sd_lun *un; 3206 3207 ASSERT(ssc != NULL); 3208 un = ssc->ssc_un; 3209 ASSERT(un != NULL); 3210 3211 /* 3212 * Send a throwaway START UNIT command. 3213 * 3214 * If we fail on this, we don't care presently what precisely 3215 * is wrong. EMC's arrays will also fail this with a check 3216 * condition (0x2/0x4/0x3) if the device is "inactive," but 3217 * we don't want to fail the attach because it may become 3218 * "active" later. 3219 * We don't know if power condition is supported or not at 3220 * this stage, use START STOP bit. 3221 */ 3222 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3223 SD_TARGET_START, SD_PATH_DIRECT); 3224 3225 if (status != 0) { 3226 if (status == EACCES) 3227 has_conflict = TRUE; 3228 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3229 } 3230 3231 /* 3232 * Send another INQUIRY command to the target. This is necessary for 3233 * non-removable media direct access devices because their INQUIRY data 3234 * may not be fully qualified until they are spun up (perhaps via the 3235 * START command above). Note: This seems to be needed for some 3236 * legacy devices only.) The INQUIRY command should succeed even if a 3237 * Reservation Conflict is present. 3238 */ 3239 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3240 3241 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3242 != 0) { 3243 kmem_free(bufaddr, SUN_INQSIZE); 3244 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3245 return (EIO); 3246 } 3247 3248 /* 3249 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3250 * Note that this routine does not return a failure here even if the 3251 * INQUIRY command did not return any data. This is a legacy behavior. 3252 */ 3253 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3254 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3255 } 3256 3257 kmem_free(bufaddr, SUN_INQSIZE); 3258 3259 /* If we hit a reservation conflict above, tell the caller. */ 3260 if (has_conflict == TRUE) { 3261 return (EACCES); 3262 } 3263 3264 return (0); 3265 } 3266 3267 #ifdef _LP64 3268 /* 3269 * Function: sd_enable_descr_sense 3270 * 3271 * Description: This routine attempts to select descriptor sense format 3272 * using the Control mode page. Devices that support 64 bit 3273 * LBAs (for >2TB luns) should also implement descriptor 3274 * sense data so we will call this function whenever we see 3275 * a lun larger than 2TB. If for some reason the device 3276 * supports 64 bit LBAs but doesn't support descriptor sense 3277 * presumably the mode select will fail. Everything will 3278 * continue to work normally except that we will not get 3279 * complete sense data for commands that fail with an LBA 3280 * larger than 32 bits. 3281 * 3282 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3283 * structure for this target. 3284 * 3285 * Context: Kernel thread context only 3286 */ 3287 3288 static void 3289 sd_enable_descr_sense(sd_ssc_t *ssc) 3290 { 3291 uchar_t *header; 3292 struct mode_control_scsi3 *ctrl_bufp; 3293 size_t buflen; 3294 size_t bd_len; 3295 int status; 3296 struct sd_lun *un; 3297 3298 ASSERT(ssc != NULL); 3299 un = ssc->ssc_un; 3300 ASSERT(un != NULL); 3301 3302 /* 3303 * Read MODE SENSE page 0xA, Control Mode Page 3304 */ 3305 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3306 sizeof (struct mode_control_scsi3); 3307 header = kmem_zalloc(buflen, KM_SLEEP); 3308 3309 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3310 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3311 3312 if (status != 0) { 3313 SD_ERROR(SD_LOG_COMMON, un, 3314 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3315 goto eds_exit; 3316 } 3317 3318 /* 3319 * Determine size of Block Descriptors in order to locate 3320 * the mode page data. ATAPI devices return 0, SCSI devices 3321 * should return MODE_BLK_DESC_LENGTH. 3322 */ 3323 bd_len = ((struct mode_header *)header)->bdesc_length; 3324 3325 /* Clear the mode data length field for MODE SELECT */ 3326 ((struct mode_header *)header)->length = 0; 3327 3328 ctrl_bufp = (struct mode_control_scsi3 *) 3329 (header + MODE_HEADER_LENGTH + bd_len); 3330 3331 /* 3332 * If the page length is smaller than the expected value, 3333 * the target device doesn't support D_SENSE. Bail out here. 3334 */ 3335 if (ctrl_bufp->mode_page.length < 3336 sizeof (struct mode_control_scsi3) - 2) { 3337 SD_ERROR(SD_LOG_COMMON, un, 3338 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3339 goto eds_exit; 3340 } 3341 3342 /* 3343 * Clear PS bit for MODE SELECT 3344 */ 3345 ctrl_bufp->mode_page.ps = 0; 3346 3347 /* 3348 * Set D_SENSE to enable descriptor sense format. 3349 */ 3350 ctrl_bufp->d_sense = 1; 3351 3352 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3353 3354 /* 3355 * Use MODE SELECT to commit the change to the D_SENSE bit 3356 */ 3357 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3358 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3359 3360 if (status != 0) { 3361 SD_INFO(SD_LOG_COMMON, un, 3362 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3363 } else { 3364 kmem_free(header, buflen); 3365 return; 3366 } 3367 3368 eds_exit: 3369 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3370 kmem_free(header, buflen); 3371 } 3372 3373 /* 3374 * Function: sd_reenable_dsense_task 3375 * 3376 * Description: Re-enable descriptor sense after device or bus reset 3377 * 3378 * Context: Executes in a taskq() thread context 3379 */ 3380 static void 3381 sd_reenable_dsense_task(void *arg) 3382 { 3383 struct sd_lun *un = arg; 3384 sd_ssc_t *ssc; 3385 3386 ASSERT(un != NULL); 3387 3388 ssc = sd_ssc_init(un); 3389 sd_enable_descr_sense(ssc); 3390 sd_ssc_fini(ssc); 3391 } 3392 #endif /* _LP64 */ 3393 3394 /* 3395 * Function: sd_set_mmc_caps 3396 * 3397 * Description: This routine determines if the device is MMC compliant and if 3398 * the device supports CDDA via a mode sense of the CDVD 3399 * capabilities mode page. Also checks if the device is a 3400 * dvdram writable device. 3401 * 3402 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3403 * structure for this target. 3404 * 3405 * Context: Kernel thread context only 3406 */ 3407 3408 static void 3409 sd_set_mmc_caps(sd_ssc_t *ssc) 3410 { 3411 struct mode_header_grp2 *sense_mhp; 3412 uchar_t *sense_page; 3413 caddr_t buf; 3414 int bd_len; 3415 int status; 3416 struct uscsi_cmd com; 3417 int rtn; 3418 uchar_t *out_data_rw, *out_data_hd; 3419 uchar_t *rqbuf_rw, *rqbuf_hd; 3420 uchar_t *out_data_gesn; 3421 int gesn_len; 3422 struct sd_lun *un; 3423 3424 ASSERT(ssc != NULL); 3425 un = ssc->ssc_un; 3426 ASSERT(un != NULL); 3427 3428 /* 3429 * The flags which will be set in this function are - mmc compliant, 3430 * dvdram writable device, cdda support. Initialize them to FALSE 3431 * and if a capability is detected - it will be set to TRUE. 3432 */ 3433 un->un_f_mmc_cap = FALSE; 3434 un->un_f_dvdram_writable_device = FALSE; 3435 un->un_f_cfg_cdda = FALSE; 3436 3437 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3438 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3439 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3440 3441 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3442 3443 if (status != 0) { 3444 /* command failed; just return */ 3445 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3446 return; 3447 } 3448 /* 3449 * If the mode sense request for the CDROM CAPABILITIES 3450 * page (0x2A) succeeds the device is assumed to be MMC. 3451 */ 3452 un->un_f_mmc_cap = TRUE; 3453 3454 /* See if GET STATUS EVENT NOTIFICATION is supported */ 3455 if (un->un_f_mmc_gesn_polling) { 3456 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN; 3457 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP); 3458 3459 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc, 3460 out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS); 3461 3462 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3463 3464 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) { 3465 un->un_f_mmc_gesn_polling = FALSE; 3466 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3467 "sd_set_mmc_caps: gesn not supported " 3468 "%d %x %x %x %x\n", rtn, 3469 out_data_gesn[0], out_data_gesn[1], 3470 out_data_gesn[2], out_data_gesn[3]); 3471 } 3472 3473 kmem_free(out_data_gesn, gesn_len); 3474 } 3475 3476 /* Get to the page data */ 3477 sense_mhp = (struct mode_header_grp2 *)buf; 3478 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3479 sense_mhp->bdesc_length_lo; 3480 if (bd_len > MODE_BLK_DESC_LENGTH) { 3481 /* 3482 * We did not get back the expected block descriptor 3483 * length so we cannot determine if the device supports 3484 * CDDA. However, we still indicate the device is MMC 3485 * according to the successful response to the page 3486 * 0x2A mode sense request. 3487 */ 3488 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3489 "sd_set_mmc_caps: Mode Sense returned " 3490 "invalid block descriptor length\n"); 3491 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3492 return; 3493 } 3494 3495 /* See if read CDDA is supported */ 3496 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3497 bd_len); 3498 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3499 3500 /* See if writing DVD RAM is supported. */ 3501 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3502 if (un->un_f_dvdram_writable_device == TRUE) { 3503 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3504 return; 3505 } 3506 3507 /* 3508 * If the device presents DVD or CD capabilities in the mode 3509 * page, we can return here since a RRD will not have 3510 * these capabilities. 3511 */ 3512 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3513 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3514 return; 3515 } 3516 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3517 3518 /* 3519 * If un->un_f_dvdram_writable_device is still FALSE, 3520 * check for a Removable Rigid Disk (RRD). A RRD 3521 * device is identified by the features RANDOM_WRITABLE and 3522 * HARDWARE_DEFECT_MANAGEMENT. 3523 */ 3524 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3525 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3526 3527 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3528 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3529 RANDOM_WRITABLE, SD_PATH_STANDARD); 3530 3531 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3532 3533 if (rtn != 0) { 3534 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3535 kmem_free(rqbuf_rw, SENSE_LENGTH); 3536 return; 3537 } 3538 3539 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3540 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3541 3542 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3543 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3544 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3545 3546 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3547 3548 if (rtn == 0) { 3549 /* 3550 * We have good information, check for random writable 3551 * and hardware defect features. 3552 */ 3553 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3554 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3555 un->un_f_dvdram_writable_device = TRUE; 3556 } 3557 } 3558 3559 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3560 kmem_free(rqbuf_rw, SENSE_LENGTH); 3561 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3562 kmem_free(rqbuf_hd, SENSE_LENGTH); 3563 } 3564 3565 /* 3566 * Function: sd_check_for_writable_cd 3567 * 3568 * Description: This routine determines if the media in the device is 3569 * writable or not. It uses the get configuration command (0x46) 3570 * to determine if the media is writable 3571 * 3572 * Arguments: un - driver soft state (unit) structure 3573 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3574 * chain and the normal command waitq, or 3575 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3576 * "direct" chain and bypass the normal command 3577 * waitq. 3578 * 3579 * Context: Never called at interrupt context. 3580 */ 3581 3582 static void 3583 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3584 { 3585 struct uscsi_cmd com; 3586 uchar_t *out_data; 3587 uchar_t *rqbuf; 3588 int rtn; 3589 uchar_t *out_data_rw, *out_data_hd; 3590 uchar_t *rqbuf_rw, *rqbuf_hd; 3591 struct mode_header_grp2 *sense_mhp; 3592 uchar_t *sense_page; 3593 caddr_t buf; 3594 int bd_len; 3595 int status; 3596 struct sd_lun *un; 3597 3598 ASSERT(ssc != NULL); 3599 un = ssc->ssc_un; 3600 ASSERT(un != NULL); 3601 ASSERT(mutex_owned(SD_MUTEX(un))); 3602 3603 /* 3604 * Initialize the writable media to false, if configuration info. 3605 * tells us otherwise then only we will set it. 3606 */ 3607 un->un_f_mmc_writable_media = FALSE; 3608 mutex_exit(SD_MUTEX(un)); 3609 3610 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3611 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3612 3613 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3614 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3615 3616 if (rtn != 0) 3617 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3618 3619 mutex_enter(SD_MUTEX(un)); 3620 if (rtn == 0) { 3621 /* 3622 * We have good information, check for writable DVD. 3623 */ 3624 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3625 un->un_f_mmc_writable_media = TRUE; 3626 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3627 kmem_free(rqbuf, SENSE_LENGTH); 3628 return; 3629 } 3630 } 3631 3632 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3633 kmem_free(rqbuf, SENSE_LENGTH); 3634 3635 /* 3636 * Determine if this is a RRD type device. 3637 */ 3638 mutex_exit(SD_MUTEX(un)); 3639 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3640 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3641 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3642 3643 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3644 3645 mutex_enter(SD_MUTEX(un)); 3646 if (status != 0) { 3647 /* command failed; just return */ 3648 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3649 return; 3650 } 3651 3652 /* Get to the page data */ 3653 sense_mhp = (struct mode_header_grp2 *)buf; 3654 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3655 if (bd_len > MODE_BLK_DESC_LENGTH) { 3656 /* 3657 * We did not get back the expected block descriptor length so 3658 * we cannot check the mode page. 3659 */ 3660 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3661 "sd_check_for_writable_cd: Mode Sense returned " 3662 "invalid block descriptor length\n"); 3663 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3664 return; 3665 } 3666 3667 /* 3668 * If the device presents DVD or CD capabilities in the mode 3669 * page, we can return here since a RRD device will not have 3670 * these capabilities. 3671 */ 3672 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3673 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3674 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3675 return; 3676 } 3677 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3678 3679 /* 3680 * If un->un_f_mmc_writable_media is still FALSE, 3681 * check for RRD type media. A RRD device is identified 3682 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3683 */ 3684 mutex_exit(SD_MUTEX(un)); 3685 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3686 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3687 3688 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3689 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3690 RANDOM_WRITABLE, path_flag); 3691 3692 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3693 if (rtn != 0) { 3694 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3695 kmem_free(rqbuf_rw, SENSE_LENGTH); 3696 mutex_enter(SD_MUTEX(un)); 3697 return; 3698 } 3699 3700 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3701 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3702 3703 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3704 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3705 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3706 3707 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3708 mutex_enter(SD_MUTEX(un)); 3709 if (rtn == 0) { 3710 /* 3711 * We have good information, check for random writable 3712 * and hardware defect features as current. 3713 */ 3714 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3715 (out_data_rw[10] & 0x1) && 3716 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3717 (out_data_hd[10] & 0x1)) { 3718 un->un_f_mmc_writable_media = TRUE; 3719 } 3720 } 3721 3722 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3723 kmem_free(rqbuf_rw, SENSE_LENGTH); 3724 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3725 kmem_free(rqbuf_hd, SENSE_LENGTH); 3726 } 3727 3728 /* 3729 * Function: sd_read_unit_properties 3730 * 3731 * Description: The following implements a property lookup mechanism. 3732 * Properties for particular disks (keyed on vendor, model 3733 * and rev numbers) are sought in the sd.conf file via 3734 * sd_process_sdconf_file(), and if not found there, are 3735 * looked for in a list hardcoded in this driver via 3736 * sd_process_sdconf_table() Once located the properties 3737 * are used to update the driver unit structure. 3738 * 3739 * Arguments: un - driver soft state (unit) structure 3740 */ 3741 3742 static void 3743 sd_read_unit_properties(struct sd_lun *un) 3744 { 3745 /* 3746 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3747 * the "sd-config-list" property (from the sd.conf file) or if 3748 * there was not a match for the inquiry vid/pid. If this event 3749 * occurs the static driver configuration table is searched for 3750 * a match. 3751 */ 3752 ASSERT(un != NULL); 3753 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3754 sd_process_sdconf_table(un); 3755 } 3756 3757 /* check for LSI device */ 3758 sd_is_lsi(un); 3759 3760 3761 } 3762 3763 3764 /* 3765 * Function: sd_process_sdconf_file 3766 * 3767 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3768 * driver's config file (ie, sd.conf) and update the driver 3769 * soft state structure accordingly. 3770 * 3771 * Arguments: un - driver soft state (unit) structure 3772 * 3773 * Return Code: SD_SUCCESS - The properties were successfully set according 3774 * to the driver configuration file. 3775 * SD_FAILURE - The driver config list was not obtained or 3776 * there was no vid/pid match. This indicates that 3777 * the static config table should be used. 3778 * 3779 * The config file has a property, "sd-config-list". Currently we support 3780 * two kinds of formats. For both formats, the value of this property 3781 * is a list of duplets: 3782 * 3783 * sd-config-list= 3784 * <duplet>, 3785 * [,<duplet>]*; 3786 * 3787 * For the improved format, where 3788 * 3789 * <duplet>:= "<vid+pid>","<tunable-list>" 3790 * 3791 * and 3792 * 3793 * <tunable-list>:= <tunable> [, <tunable> ]*; 3794 * <tunable> = <name> : <value> 3795 * 3796 * The <vid+pid> is the string that is returned by the target device on a 3797 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3798 * to apply to all target devices with the specified <vid+pid>. 3799 * 3800 * Each <tunable> is a "<name> : <value>" pair. 3801 * 3802 * For the old format, the structure of each duplet is as follows: 3803 * 3804 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3805 * 3806 * The first entry of the duplet is the device ID string (the concatenated 3807 * vid & pid; not to be confused with a device_id). This is defined in 3808 * the same way as in the sd_disk_table. 3809 * 3810 * The second part of the duplet is a string that identifies a 3811 * data-property-name-list. The data-property-name-list is defined as 3812 * follows: 3813 * 3814 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3815 * 3816 * The syntax of <data-property-name> depends on the <version> field. 3817 * 3818 * If version = SD_CONF_VERSION_1 we have the following syntax: 3819 * 3820 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3821 * 3822 * where the prop0 value will be used to set prop0 if bit0 set in the 3823 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3824 * 3825 */ 3826 3827 static int 3828 sd_process_sdconf_file(struct sd_lun *un) 3829 { 3830 char **config_list = NULL; 3831 uint_t nelements; 3832 char *vidptr; 3833 int vidlen; 3834 char *dnlist_ptr; 3835 char *dataname_ptr; 3836 char *dataname_lasts; 3837 int *data_list = NULL; 3838 uint_t data_list_len; 3839 int rval = SD_FAILURE; 3840 int i; 3841 3842 ASSERT(un != NULL); 3843 3844 /* Obtain the configuration list associated with the .conf file */ 3845 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3846 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3847 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3848 return (SD_FAILURE); 3849 } 3850 3851 /* 3852 * Compare vids in each duplet to the inquiry vid - if a match is 3853 * made, get the data value and update the soft state structure 3854 * accordingly. 3855 * 3856 * Each duplet should show as a pair of strings, return SD_FAILURE 3857 * otherwise. 3858 */ 3859 if (nelements & 1) { 3860 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3861 "sd-config-list should show as pairs of strings.\n"); 3862 if (config_list) 3863 ddi_prop_free(config_list); 3864 return (SD_FAILURE); 3865 } 3866 3867 for (i = 0; i < nelements; i += 2) { 3868 /* 3869 * Note: The assumption here is that each vid entry is on 3870 * a unique line from its associated duplet. 3871 */ 3872 vidptr = config_list[i]; 3873 vidlen = (int)strlen(vidptr); 3874 if ((vidlen == 0) || 3875 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3876 continue; 3877 } 3878 3879 /* 3880 * dnlist contains 1 or more blank separated 3881 * data-property-name entries 3882 */ 3883 dnlist_ptr = config_list[i + 1]; 3884 3885 if (strchr(dnlist_ptr, ':') != NULL) { 3886 /* 3887 * Decode the improved format sd-config-list. 3888 */ 3889 sd_nvpair_str_decode(un, dnlist_ptr); 3890 } else { 3891 /* 3892 * The old format sd-config-list, loop through all 3893 * data-property-name entries in the 3894 * data-property-name-list 3895 * setting the properties for each. 3896 */ 3897 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3898 &dataname_lasts); dataname_ptr != NULL; 3899 dataname_ptr = sd_strtok_r(NULL, " \t", 3900 &dataname_lasts)) { 3901 int version; 3902 3903 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3904 "sd_process_sdconf_file: disk:%s, " 3905 "data:%s\n", vidptr, dataname_ptr); 3906 3907 /* Get the data list */ 3908 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3909 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3910 &data_list_len) != DDI_PROP_SUCCESS) { 3911 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3912 "sd_process_sdconf_file: data " 3913 "property (%s) has no value\n", 3914 dataname_ptr); 3915 continue; 3916 } 3917 3918 version = data_list[0]; 3919 3920 if (version == SD_CONF_VERSION_1) { 3921 sd_tunables values; 3922 3923 /* Set the properties */ 3924 if (sd_chk_vers1_data(un, data_list[1], 3925 &data_list[2], data_list_len, 3926 dataname_ptr) == SD_SUCCESS) { 3927 sd_get_tunables_from_conf(un, 3928 data_list[1], &data_list[2], 3929 &values); 3930 sd_set_vers1_properties(un, 3931 data_list[1], &values); 3932 rval = SD_SUCCESS; 3933 } else { 3934 rval = SD_FAILURE; 3935 } 3936 } else { 3937 scsi_log(SD_DEVINFO(un), sd_label, 3938 CE_WARN, "data property %s version " 3939 "0x%x is invalid.", 3940 dataname_ptr, version); 3941 rval = SD_FAILURE; 3942 } 3943 if (data_list) 3944 ddi_prop_free(data_list); 3945 } 3946 } 3947 } 3948 3949 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3950 if (config_list) { 3951 ddi_prop_free(config_list); 3952 } 3953 3954 return (rval); 3955 } 3956 3957 /* 3958 * Function: sd_nvpair_str_decode() 3959 * 3960 * Description: Parse the improved format sd-config-list to get 3961 * each entry of tunable, which includes a name-value pair. 3962 * Then call sd_set_properties() to set the property. 3963 * 3964 * Arguments: un - driver soft state (unit) structure 3965 * nvpair_str - the tunable list 3966 */ 3967 static void 3968 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3969 { 3970 char *nv, *name, *value, *token; 3971 char *nv_lasts, *v_lasts, *x_lasts; 3972 3973 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3974 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3975 token = sd_strtok_r(nv, ":", &v_lasts); 3976 name = sd_strtok_r(token, " \t", &x_lasts); 3977 token = sd_strtok_r(NULL, ":", &v_lasts); 3978 value = sd_strtok_r(token, " \t", &x_lasts); 3979 if (name == NULL || value == NULL) { 3980 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3981 "sd_nvpair_str_decode: " 3982 "name or value is not valid!\n"); 3983 } else { 3984 sd_set_properties(un, name, value); 3985 } 3986 } 3987 } 3988 3989 /* 3990 * Function: sd_strtok_r() 3991 * 3992 * Description: This function uses strpbrk and strspn to break 3993 * string into tokens on sequentially subsequent calls. Return 3994 * NULL when no non-separator characters remain. The first 3995 * argument is NULL for subsequent calls. 3996 */ 3997 static char * 3998 sd_strtok_r(char *string, const char *sepset, char **lasts) 3999 { 4000 char *q, *r; 4001 4002 /* First or subsequent call */ 4003 if (string == NULL) 4004 string = *lasts; 4005 4006 if (string == NULL) 4007 return (NULL); 4008 4009 /* Skip leading separators */ 4010 q = string + strspn(string, sepset); 4011 4012 if (*q == '\0') 4013 return (NULL); 4014 4015 if ((r = strpbrk(q, sepset)) == NULL) 4016 *lasts = NULL; 4017 else { 4018 *r = '\0'; 4019 *lasts = r + 1; 4020 } 4021 return (q); 4022 } 4023 4024 /* 4025 * Function: sd_set_properties() 4026 * 4027 * Description: Set device properties based on the improved 4028 * format sd-config-list. 4029 * 4030 * Arguments: un - driver soft state (unit) structure 4031 * name - supported tunable name 4032 * value - tunable value 4033 */ 4034 static void 4035 sd_set_properties(struct sd_lun *un, char *name, char *value) 4036 { 4037 char *endptr = NULL; 4038 long val = 0; 4039 4040 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4041 if (strcasecmp(value, "true") == 0) { 4042 un->un_f_suppress_cache_flush = TRUE; 4043 } else if (strcasecmp(value, "false") == 0) { 4044 un->un_f_suppress_cache_flush = FALSE; 4045 } else { 4046 goto value_invalid; 4047 } 4048 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4049 "suppress_cache_flush flag set to %d\n", 4050 un->un_f_suppress_cache_flush); 4051 return; 4052 } 4053 4054 if (strcasecmp(name, "controller-type") == 0) { 4055 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4056 un->un_ctype = val; 4057 } else { 4058 goto value_invalid; 4059 } 4060 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4061 "ctype set to %d\n", un->un_ctype); 4062 return; 4063 } 4064 4065 if (strcasecmp(name, "delay-busy") == 0) { 4066 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4067 un->un_busy_timeout = drv_usectohz(val / 1000); 4068 } else { 4069 goto value_invalid; 4070 } 4071 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4072 "busy_timeout set to %d\n", un->un_busy_timeout); 4073 return; 4074 } 4075 4076 if (strcasecmp(name, "disksort") == 0) { 4077 if (strcasecmp(value, "true") == 0) { 4078 un->un_f_disksort_disabled = FALSE; 4079 } else if (strcasecmp(value, "false") == 0) { 4080 un->un_f_disksort_disabled = TRUE; 4081 } else { 4082 goto value_invalid; 4083 } 4084 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4085 "disksort disabled flag set to %d\n", 4086 un->un_f_disksort_disabled); 4087 return; 4088 } 4089 4090 if (strcasecmp(name, "power-condition") == 0) { 4091 if (strcasecmp(value, "true") == 0) { 4092 un->un_f_power_condition_disabled = FALSE; 4093 } else if (strcasecmp(value, "false") == 0) { 4094 un->un_f_power_condition_disabled = TRUE; 4095 } else { 4096 goto value_invalid; 4097 } 4098 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4099 "power condition disabled flag set to %d\n", 4100 un->un_f_power_condition_disabled); 4101 return; 4102 } 4103 4104 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4105 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4106 un->un_reserve_release_time = val; 4107 } else { 4108 goto value_invalid; 4109 } 4110 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4111 "reservation release timeout set to %d\n", 4112 un->un_reserve_release_time); 4113 return; 4114 } 4115 4116 if (strcasecmp(name, "reset-lun") == 0) { 4117 if (strcasecmp(value, "true") == 0) { 4118 un->un_f_lun_reset_enabled = TRUE; 4119 } else if (strcasecmp(value, "false") == 0) { 4120 un->un_f_lun_reset_enabled = FALSE; 4121 } else { 4122 goto value_invalid; 4123 } 4124 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4125 "lun reset enabled flag set to %d\n", 4126 un->un_f_lun_reset_enabled); 4127 return; 4128 } 4129 4130 if (strcasecmp(name, "retries-busy") == 0) { 4131 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4132 un->un_busy_retry_count = val; 4133 } else { 4134 goto value_invalid; 4135 } 4136 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4137 "busy retry count set to %d\n", un->un_busy_retry_count); 4138 return; 4139 } 4140 4141 if (strcasecmp(name, "retries-timeout") == 0) { 4142 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4143 un->un_retry_count = val; 4144 } else { 4145 goto value_invalid; 4146 } 4147 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4148 "timeout retry count set to %d\n", un->un_retry_count); 4149 return; 4150 } 4151 4152 if (strcasecmp(name, "retries-notready") == 0) { 4153 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4154 un->un_notready_retry_count = val; 4155 } else { 4156 goto value_invalid; 4157 } 4158 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4159 "notready retry count set to %d\n", 4160 un->un_notready_retry_count); 4161 return; 4162 } 4163 4164 if (strcasecmp(name, "retries-reset") == 0) { 4165 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4166 un->un_reset_retry_count = val; 4167 } else { 4168 goto value_invalid; 4169 } 4170 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4171 "reset retry count set to %d\n", 4172 un->un_reset_retry_count); 4173 return; 4174 } 4175 4176 if (strcasecmp(name, "throttle-max") == 0) { 4177 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4178 un->un_saved_throttle = un->un_throttle = val; 4179 } else { 4180 goto value_invalid; 4181 } 4182 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4183 "throttle set to %d\n", un->un_throttle); 4184 } 4185 4186 if (strcasecmp(name, "throttle-min") == 0) { 4187 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4188 un->un_min_throttle = val; 4189 } else { 4190 goto value_invalid; 4191 } 4192 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4193 "min throttle set to %d\n", un->un_min_throttle); 4194 } 4195 4196 if (strcasecmp(name, "rmw-type") == 0) { 4197 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4198 un->un_f_rmw_type = val; 4199 } else { 4200 goto value_invalid; 4201 } 4202 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4203 "RMW type set to %d\n", un->un_f_rmw_type); 4204 } 4205 4206 /* 4207 * Validate the throttle values. 4208 * If any of the numbers are invalid, set everything to defaults. 4209 */ 4210 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4211 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4212 (un->un_min_throttle > un->un_throttle)) { 4213 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4214 un->un_min_throttle = sd_min_throttle; 4215 } 4216 4217 if (strcasecmp(name, "mmc-gesn-polling") == 0) { 4218 if (strcasecmp(value, "true") == 0) { 4219 un->un_f_mmc_gesn_polling = TRUE; 4220 } else if (strcasecmp(value, "false") == 0) { 4221 un->un_f_mmc_gesn_polling = FALSE; 4222 } else { 4223 goto value_invalid; 4224 } 4225 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4226 "mmc-gesn-polling set to %d\n", 4227 un->un_f_mmc_gesn_polling); 4228 } 4229 4230 return; 4231 4232 value_invalid: 4233 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4234 "value of prop %s is invalid\n", name); 4235 } 4236 4237 /* 4238 * Function: sd_get_tunables_from_conf() 4239 * 4240 * 4241 * This function reads the data list from the sd.conf file and pulls 4242 * the values that can have numeric values as arguments and places 4243 * the values in the appropriate sd_tunables member. 4244 * Since the order of the data list members varies across platforms 4245 * This function reads them from the data list in a platform specific 4246 * order and places them into the correct sd_tunable member that is 4247 * consistent across all platforms. 4248 */ 4249 static void 4250 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4251 sd_tunables *values) 4252 { 4253 int i; 4254 int mask; 4255 4256 bzero(values, sizeof (sd_tunables)); 4257 4258 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4259 4260 mask = 1 << i; 4261 if (mask > flags) { 4262 break; 4263 } 4264 4265 switch (mask & flags) { 4266 case 0: /* This mask bit not set in flags */ 4267 continue; 4268 case SD_CONF_BSET_THROTTLE: 4269 values->sdt_throttle = data_list[i]; 4270 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4271 "sd_get_tunables_from_conf: throttle = %d\n", 4272 values->sdt_throttle); 4273 break; 4274 case SD_CONF_BSET_CTYPE: 4275 values->sdt_ctype = data_list[i]; 4276 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4277 "sd_get_tunables_from_conf: ctype = %d\n", 4278 values->sdt_ctype); 4279 break; 4280 case SD_CONF_BSET_NRR_COUNT: 4281 values->sdt_not_rdy_retries = data_list[i]; 4282 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4283 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4284 values->sdt_not_rdy_retries); 4285 break; 4286 case SD_CONF_BSET_BSY_RETRY_COUNT: 4287 values->sdt_busy_retries = data_list[i]; 4288 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4289 "sd_get_tunables_from_conf: busy_retries = %d\n", 4290 values->sdt_busy_retries); 4291 break; 4292 case SD_CONF_BSET_RST_RETRIES: 4293 values->sdt_reset_retries = data_list[i]; 4294 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4295 "sd_get_tunables_from_conf: reset_retries = %d\n", 4296 values->sdt_reset_retries); 4297 break; 4298 case SD_CONF_BSET_RSV_REL_TIME: 4299 values->sdt_reserv_rel_time = data_list[i]; 4300 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4301 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4302 values->sdt_reserv_rel_time); 4303 break; 4304 case SD_CONF_BSET_MIN_THROTTLE: 4305 values->sdt_min_throttle = data_list[i]; 4306 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4307 "sd_get_tunables_from_conf: min_throttle = %d\n", 4308 values->sdt_min_throttle); 4309 break; 4310 case SD_CONF_BSET_DISKSORT_DISABLED: 4311 values->sdt_disk_sort_dis = data_list[i]; 4312 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4313 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4314 values->sdt_disk_sort_dis); 4315 break; 4316 case SD_CONF_BSET_LUN_RESET_ENABLED: 4317 values->sdt_lun_reset_enable = data_list[i]; 4318 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4319 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4320 "\n", values->sdt_lun_reset_enable); 4321 break; 4322 case SD_CONF_BSET_CACHE_IS_NV: 4323 values->sdt_suppress_cache_flush = data_list[i]; 4324 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4325 "sd_get_tunables_from_conf: \ 4326 suppress_cache_flush = %d" 4327 "\n", values->sdt_suppress_cache_flush); 4328 break; 4329 case SD_CONF_BSET_PC_DISABLED: 4330 values->sdt_disk_sort_dis = data_list[i]; 4331 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4332 "sd_get_tunables_from_conf: power_condition_dis = " 4333 "%d\n", values->sdt_power_condition_dis); 4334 break; 4335 } 4336 } 4337 } 4338 4339 /* 4340 * Function: sd_process_sdconf_table 4341 * 4342 * Description: Search the static configuration table for a match on the 4343 * inquiry vid/pid and update the driver soft state structure 4344 * according to the table property values for the device. 4345 * 4346 * The form of a configuration table entry is: 4347 * <vid+pid>,<flags>,<property-data> 4348 * "SEAGATE ST42400N",1,0x40000, 4349 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4350 * 4351 * Arguments: un - driver soft state (unit) structure 4352 */ 4353 4354 static void 4355 sd_process_sdconf_table(struct sd_lun *un) 4356 { 4357 char *id = NULL; 4358 int table_index; 4359 int idlen; 4360 4361 ASSERT(un != NULL); 4362 for (table_index = 0; table_index < sd_disk_table_size; 4363 table_index++) { 4364 id = sd_disk_table[table_index].device_id; 4365 idlen = strlen(id); 4366 if (idlen == 0) { 4367 continue; 4368 } 4369 4370 /* 4371 * The static configuration table currently does not 4372 * implement version 10 properties. Additionally, 4373 * multiple data-property-name entries are not 4374 * implemented in the static configuration table. 4375 */ 4376 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4377 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4378 "sd_process_sdconf_table: disk %s\n", id); 4379 sd_set_vers1_properties(un, 4380 sd_disk_table[table_index].flags, 4381 sd_disk_table[table_index].properties); 4382 break; 4383 } 4384 } 4385 } 4386 4387 4388 /* 4389 * Function: sd_sdconf_id_match 4390 * 4391 * Description: This local function implements a case sensitive vid/pid 4392 * comparison as well as the boundary cases of wild card and 4393 * multiple blanks. 4394 * 4395 * Note: An implicit assumption made here is that the scsi 4396 * inquiry structure will always keep the vid, pid and 4397 * revision strings in consecutive sequence, so they can be 4398 * read as a single string. If this assumption is not the 4399 * case, a separate string, to be used for the check, needs 4400 * to be built with these strings concatenated. 4401 * 4402 * Arguments: un - driver soft state (unit) structure 4403 * id - table or config file vid/pid 4404 * idlen - length of the vid/pid (bytes) 4405 * 4406 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4407 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4408 */ 4409 4410 static int 4411 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4412 { 4413 struct scsi_inquiry *sd_inq; 4414 int rval = SD_SUCCESS; 4415 4416 ASSERT(un != NULL); 4417 sd_inq = un->un_sd->sd_inq; 4418 ASSERT(id != NULL); 4419 4420 /* 4421 * We use the inq_vid as a pointer to a buffer containing the 4422 * vid and pid and use the entire vid/pid length of the table 4423 * entry for the comparison. This works because the inq_pid 4424 * data member follows inq_vid in the scsi_inquiry structure. 4425 */ 4426 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4427 /* 4428 * The user id string is compared to the inquiry vid/pid 4429 * using a case insensitive comparison and ignoring 4430 * multiple spaces. 4431 */ 4432 rval = sd_blank_cmp(un, id, idlen); 4433 if (rval != SD_SUCCESS) { 4434 /* 4435 * User id strings that start and end with a "*" 4436 * are a special case. These do not have a 4437 * specific vendor, and the product string can 4438 * appear anywhere in the 16 byte PID portion of 4439 * the inquiry data. This is a simple strstr() 4440 * type search for the user id in the inquiry data. 4441 */ 4442 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4443 char *pidptr = &id[1]; 4444 int i; 4445 int j; 4446 int pidstrlen = idlen - 2; 4447 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4448 pidstrlen; 4449 4450 if (j < 0) { 4451 return (SD_FAILURE); 4452 } 4453 for (i = 0; i < j; i++) { 4454 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4455 pidptr, pidstrlen) == 0) { 4456 rval = SD_SUCCESS; 4457 break; 4458 } 4459 } 4460 } 4461 } 4462 } 4463 return (rval); 4464 } 4465 4466 4467 /* 4468 * Function: sd_blank_cmp 4469 * 4470 * Description: If the id string starts and ends with a space, treat 4471 * multiple consecutive spaces as equivalent to a single 4472 * space. For example, this causes a sd_disk_table entry 4473 * of " NEC CDROM " to match a device's id string of 4474 * "NEC CDROM". 4475 * 4476 * Note: The success exit condition for this routine is if 4477 * the pointer to the table entry is '\0' and the cnt of 4478 * the inquiry length is zero. This will happen if the inquiry 4479 * string returned by the device is padded with spaces to be 4480 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4481 * SCSI spec states that the inquiry string is to be padded with 4482 * spaces. 4483 * 4484 * Arguments: un - driver soft state (unit) structure 4485 * id - table or config file vid/pid 4486 * idlen - length of the vid/pid (bytes) 4487 * 4488 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4489 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4490 */ 4491 4492 static int 4493 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4494 { 4495 char *p1; 4496 char *p2; 4497 int cnt; 4498 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4499 sizeof (SD_INQUIRY(un)->inq_pid); 4500 4501 ASSERT(un != NULL); 4502 p2 = un->un_sd->sd_inq->inq_vid; 4503 ASSERT(id != NULL); 4504 p1 = id; 4505 4506 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4507 /* 4508 * Note: string p1 is terminated by a NUL but string p2 4509 * isn't. The end of p2 is determined by cnt. 4510 */ 4511 for (;;) { 4512 /* skip over any extra blanks in both strings */ 4513 while ((*p1 != '\0') && (*p1 == ' ')) { 4514 p1++; 4515 } 4516 while ((cnt != 0) && (*p2 == ' ')) { 4517 p2++; 4518 cnt--; 4519 } 4520 4521 /* compare the two strings */ 4522 if ((cnt == 0) || 4523 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4524 break; 4525 } 4526 while ((cnt > 0) && 4527 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4528 p1++; 4529 p2++; 4530 cnt--; 4531 } 4532 } 4533 } 4534 4535 /* return SD_SUCCESS if both strings match */ 4536 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4537 } 4538 4539 4540 /* 4541 * Function: sd_chk_vers1_data 4542 * 4543 * Description: Verify the version 1 device properties provided by the 4544 * user via the configuration file 4545 * 4546 * Arguments: un - driver soft state (unit) structure 4547 * flags - integer mask indicating properties to be set 4548 * prop_list - integer list of property values 4549 * list_len - number of the elements 4550 * 4551 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4552 * SD_FAILURE - Indicates the user provided data is invalid 4553 */ 4554 4555 static int 4556 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4557 int list_len, char *dataname_ptr) 4558 { 4559 int i; 4560 int mask = 1; 4561 int index = 0; 4562 4563 ASSERT(un != NULL); 4564 4565 /* Check for a NULL property name and list */ 4566 if (dataname_ptr == NULL) { 4567 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4568 "sd_chk_vers1_data: NULL data property name."); 4569 return (SD_FAILURE); 4570 } 4571 if (prop_list == NULL) { 4572 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4573 "sd_chk_vers1_data: %s NULL data property list.", 4574 dataname_ptr); 4575 return (SD_FAILURE); 4576 } 4577 4578 /* Display a warning if undefined bits are set in the flags */ 4579 if (flags & ~SD_CONF_BIT_MASK) { 4580 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4581 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4582 "Properties not set.", 4583 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4584 return (SD_FAILURE); 4585 } 4586 4587 /* 4588 * Verify the length of the list by identifying the highest bit set 4589 * in the flags and validating that the property list has a length 4590 * up to the index of this bit. 4591 */ 4592 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4593 if (flags & mask) { 4594 index++; 4595 } 4596 mask = 1 << i; 4597 } 4598 if (list_len < (index + 2)) { 4599 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4600 "sd_chk_vers1_data: " 4601 "Data property list %s size is incorrect. " 4602 "Properties not set.", dataname_ptr); 4603 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4604 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4605 return (SD_FAILURE); 4606 } 4607 return (SD_SUCCESS); 4608 } 4609 4610 4611 /* 4612 * Function: sd_set_vers1_properties 4613 * 4614 * Description: Set version 1 device properties based on a property list 4615 * retrieved from the driver configuration file or static 4616 * configuration table. Version 1 properties have the format: 4617 * 4618 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4619 * 4620 * where the prop0 value will be used to set prop0 if bit0 4621 * is set in the flags 4622 * 4623 * Arguments: un - driver soft state (unit) structure 4624 * flags - integer mask indicating properties to be set 4625 * prop_list - integer list of property values 4626 */ 4627 4628 static void 4629 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4630 { 4631 ASSERT(un != NULL); 4632 4633 /* 4634 * Set the flag to indicate cache is to be disabled. An attempt 4635 * to disable the cache via sd_cache_control() will be made 4636 * later during attach once the basic initialization is complete. 4637 */ 4638 if (flags & SD_CONF_BSET_NOCACHE) { 4639 un->un_f_opt_disable_cache = TRUE; 4640 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4641 "sd_set_vers1_properties: caching disabled flag set\n"); 4642 } 4643 4644 /* CD-specific configuration parameters */ 4645 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4646 un->un_f_cfg_playmsf_bcd = TRUE; 4647 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4648 "sd_set_vers1_properties: playmsf_bcd set\n"); 4649 } 4650 if (flags & SD_CONF_BSET_READSUB_BCD) { 4651 un->un_f_cfg_readsub_bcd = TRUE; 4652 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4653 "sd_set_vers1_properties: readsub_bcd set\n"); 4654 } 4655 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4656 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4657 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4658 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4659 } 4660 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4661 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4662 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4663 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4664 } 4665 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4666 un->un_f_cfg_no_read_header = TRUE; 4667 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4668 "sd_set_vers1_properties: no_read_header set\n"); 4669 } 4670 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4671 un->un_f_cfg_read_cd_xd4 = TRUE; 4672 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4673 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4674 } 4675 4676 /* Support for devices which do not have valid/unique serial numbers */ 4677 if (flags & SD_CONF_BSET_FAB_DEVID) { 4678 un->un_f_opt_fab_devid = TRUE; 4679 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4680 "sd_set_vers1_properties: fab_devid bit set\n"); 4681 } 4682 4683 /* Support for user throttle configuration */ 4684 if (flags & SD_CONF_BSET_THROTTLE) { 4685 ASSERT(prop_list != NULL); 4686 un->un_saved_throttle = un->un_throttle = 4687 prop_list->sdt_throttle; 4688 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4689 "sd_set_vers1_properties: throttle set to %d\n", 4690 prop_list->sdt_throttle); 4691 } 4692 4693 /* Set the per disk retry count according to the conf file or table. */ 4694 if (flags & SD_CONF_BSET_NRR_COUNT) { 4695 ASSERT(prop_list != NULL); 4696 if (prop_list->sdt_not_rdy_retries) { 4697 un->un_notready_retry_count = 4698 prop_list->sdt_not_rdy_retries; 4699 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4700 "sd_set_vers1_properties: not ready retry count" 4701 " set to %d\n", un->un_notready_retry_count); 4702 } 4703 } 4704 4705 /* The controller type is reported for generic disk driver ioctls */ 4706 if (flags & SD_CONF_BSET_CTYPE) { 4707 ASSERT(prop_list != NULL); 4708 switch (prop_list->sdt_ctype) { 4709 case CTYPE_CDROM: 4710 un->un_ctype = prop_list->sdt_ctype; 4711 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4712 "sd_set_vers1_properties: ctype set to " 4713 "CTYPE_CDROM\n"); 4714 break; 4715 case CTYPE_CCS: 4716 un->un_ctype = prop_list->sdt_ctype; 4717 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4718 "sd_set_vers1_properties: ctype set to " 4719 "CTYPE_CCS\n"); 4720 break; 4721 case CTYPE_ROD: /* RW optical */ 4722 un->un_ctype = prop_list->sdt_ctype; 4723 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4724 "sd_set_vers1_properties: ctype set to " 4725 "CTYPE_ROD\n"); 4726 break; 4727 default: 4728 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4729 "sd_set_vers1_properties: Could not set " 4730 "invalid ctype value (%d)", 4731 prop_list->sdt_ctype); 4732 } 4733 } 4734 4735 /* Purple failover timeout */ 4736 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4737 ASSERT(prop_list != NULL); 4738 un->un_busy_retry_count = 4739 prop_list->sdt_busy_retries; 4740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4741 "sd_set_vers1_properties: " 4742 "busy retry count set to %d\n", 4743 un->un_busy_retry_count); 4744 } 4745 4746 /* Purple reset retry count */ 4747 if (flags & SD_CONF_BSET_RST_RETRIES) { 4748 ASSERT(prop_list != NULL); 4749 un->un_reset_retry_count = 4750 prop_list->sdt_reset_retries; 4751 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4752 "sd_set_vers1_properties: " 4753 "reset retry count set to %d\n", 4754 un->un_reset_retry_count); 4755 } 4756 4757 /* Purple reservation release timeout */ 4758 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4759 ASSERT(prop_list != NULL); 4760 un->un_reserve_release_time = 4761 prop_list->sdt_reserv_rel_time; 4762 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4763 "sd_set_vers1_properties: " 4764 "reservation release timeout set to %d\n", 4765 un->un_reserve_release_time); 4766 } 4767 4768 /* 4769 * Driver flag telling the driver to verify that no commands are pending 4770 * for a device before issuing a Test Unit Ready. This is a workaround 4771 * for a firmware bug in some Seagate eliteI drives. 4772 */ 4773 if (flags & SD_CONF_BSET_TUR_CHECK) { 4774 un->un_f_cfg_tur_check = TRUE; 4775 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4776 "sd_set_vers1_properties: tur queue check set\n"); 4777 } 4778 4779 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4780 un->un_min_throttle = prop_list->sdt_min_throttle; 4781 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4782 "sd_set_vers1_properties: min throttle set to %d\n", 4783 un->un_min_throttle); 4784 } 4785 4786 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4787 un->un_f_disksort_disabled = 4788 (prop_list->sdt_disk_sort_dis != 0) ? 4789 TRUE : FALSE; 4790 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4791 "sd_set_vers1_properties: disksort disabled " 4792 "flag set to %d\n", 4793 prop_list->sdt_disk_sort_dis); 4794 } 4795 4796 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4797 un->un_f_lun_reset_enabled = 4798 (prop_list->sdt_lun_reset_enable != 0) ? 4799 TRUE : FALSE; 4800 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4801 "sd_set_vers1_properties: lun reset enabled " 4802 "flag set to %d\n", 4803 prop_list->sdt_lun_reset_enable); 4804 } 4805 4806 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4807 un->un_f_suppress_cache_flush = 4808 (prop_list->sdt_suppress_cache_flush != 0) ? 4809 TRUE : FALSE; 4810 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4811 "sd_set_vers1_properties: suppress_cache_flush " 4812 "flag set to %d\n", 4813 prop_list->sdt_suppress_cache_flush); 4814 } 4815 4816 if (flags & SD_CONF_BSET_PC_DISABLED) { 4817 un->un_f_power_condition_disabled = 4818 (prop_list->sdt_power_condition_dis != 0) ? 4819 TRUE : FALSE; 4820 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4821 "sd_set_vers1_properties: power_condition_disabled " 4822 "flag set to %d\n", 4823 prop_list->sdt_power_condition_dis); 4824 } 4825 4826 /* 4827 * Validate the throttle values. 4828 * If any of the numbers are invalid, set everything to defaults. 4829 */ 4830 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4831 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4832 (un->un_min_throttle > un->un_throttle)) { 4833 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4834 un->un_min_throttle = sd_min_throttle; 4835 } 4836 } 4837 4838 /* 4839 * Function: sd_is_lsi() 4840 * 4841 * Description: Check for lsi devices, step through the static device 4842 * table to match vid/pid. 4843 * 4844 * Args: un - ptr to sd_lun 4845 * 4846 * Notes: When creating new LSI property, need to add the new LSI property 4847 * to this function. 4848 */ 4849 static void 4850 sd_is_lsi(struct sd_lun *un) 4851 { 4852 char *id = NULL; 4853 int table_index; 4854 int idlen; 4855 void *prop; 4856 4857 ASSERT(un != NULL); 4858 for (table_index = 0; table_index < sd_disk_table_size; 4859 table_index++) { 4860 id = sd_disk_table[table_index].device_id; 4861 idlen = strlen(id); 4862 if (idlen == 0) { 4863 continue; 4864 } 4865 4866 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4867 prop = sd_disk_table[table_index].properties; 4868 if (prop == &lsi_properties || 4869 prop == &lsi_oem_properties || 4870 prop == &lsi_properties_scsi || 4871 prop == &symbios_properties) { 4872 un->un_f_cfg_is_lsi = TRUE; 4873 } 4874 break; 4875 } 4876 } 4877 } 4878 4879 /* 4880 * Function: sd_get_physical_geometry 4881 * 4882 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4883 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4884 * target, and use this information to initialize the physical 4885 * geometry cache specified by pgeom_p. 4886 * 4887 * MODE SENSE is an optional command, so failure in this case 4888 * does not necessarily denote an error. We want to use the 4889 * MODE SENSE commands to derive the physical geometry of the 4890 * device, but if either command fails, the logical geometry is 4891 * used as the fallback for disk label geometry in cmlb. 4892 * 4893 * This requires that un->un_blockcount and un->un_tgt_blocksize 4894 * have already been initialized for the current target and 4895 * that the current values be passed as args so that we don't 4896 * end up ever trying to use -1 as a valid value. This could 4897 * happen if either value is reset while we're not holding 4898 * the mutex. 4899 * 4900 * Arguments: un - driver soft state (unit) structure 4901 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4902 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4903 * to use the USCSI "direct" chain and bypass the normal 4904 * command waitq. 4905 * 4906 * Context: Kernel thread only (can sleep). 4907 */ 4908 4909 static int 4910 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4911 diskaddr_t capacity, int lbasize, int path_flag) 4912 { 4913 struct mode_format *page3p; 4914 struct mode_geometry *page4p; 4915 struct mode_header *headerp; 4916 int sector_size; 4917 int nsect; 4918 int nhead; 4919 int ncyl; 4920 int intrlv; 4921 int spc; 4922 diskaddr_t modesense_capacity; 4923 int rpm; 4924 int bd_len; 4925 int mode_header_length; 4926 uchar_t *p3bufp; 4927 uchar_t *p4bufp; 4928 int cdbsize; 4929 int ret = EIO; 4930 sd_ssc_t *ssc; 4931 int status; 4932 4933 ASSERT(un != NULL); 4934 4935 if (lbasize == 0) { 4936 if (ISCD(un)) { 4937 lbasize = 2048; 4938 } else { 4939 lbasize = un->un_sys_blocksize; 4940 } 4941 } 4942 pgeom_p->g_secsize = (unsigned short)lbasize; 4943 4944 /* 4945 * If the unit is a cd/dvd drive MODE SENSE page three 4946 * and MODE SENSE page four are reserved (see SBC spec 4947 * and MMC spec). To prevent soft errors just return 4948 * using the default LBA size. 4949 */ 4950 if (ISCD(un)) 4951 return (ret); 4952 4953 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4954 4955 /* 4956 * Retrieve MODE SENSE page 3 - Format Device Page 4957 */ 4958 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4959 ssc = sd_ssc_init(un); 4960 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4961 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4962 if (status != 0) { 4963 SD_ERROR(SD_LOG_COMMON, un, 4964 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4965 goto page3_exit; 4966 } 4967 4968 /* 4969 * Determine size of Block Descriptors in order to locate the mode 4970 * page data. ATAPI devices return 0, SCSI devices should return 4971 * MODE_BLK_DESC_LENGTH. 4972 */ 4973 headerp = (struct mode_header *)p3bufp; 4974 if (un->un_f_cfg_is_atapi == TRUE) { 4975 struct mode_header_grp2 *mhp = 4976 (struct mode_header_grp2 *)headerp; 4977 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4978 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4979 } else { 4980 mode_header_length = MODE_HEADER_LENGTH; 4981 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4982 } 4983 4984 if (bd_len > MODE_BLK_DESC_LENGTH) { 4985 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4986 "sd_get_physical_geometry: received unexpected bd_len " 4987 "of %d, page3\n", bd_len); 4988 status = EIO; 4989 goto page3_exit; 4990 } 4991 4992 page3p = (struct mode_format *) 4993 ((caddr_t)headerp + mode_header_length + bd_len); 4994 4995 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4996 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4997 "sd_get_physical_geometry: mode sense pg3 code mismatch " 4998 "%d\n", page3p->mode_page.code); 4999 status = EIO; 5000 goto page3_exit; 5001 } 5002 5003 /* 5004 * Use this physical geometry data only if BOTH MODE SENSE commands 5005 * complete successfully; otherwise, revert to the logical geometry. 5006 * So, we need to save everything in temporary variables. 5007 */ 5008 sector_size = BE_16(page3p->data_bytes_sect); 5009 5010 /* 5011 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5012 */ 5013 if (sector_size == 0) { 5014 sector_size = un->un_sys_blocksize; 5015 } else { 5016 sector_size &= ~(un->un_sys_blocksize - 1); 5017 } 5018 5019 nsect = BE_16(page3p->sect_track); 5020 intrlv = BE_16(page3p->interleave); 5021 5022 SD_INFO(SD_LOG_COMMON, un, 5023 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5024 SD_INFO(SD_LOG_COMMON, un, 5025 " mode page: %d; nsect: %d; sector size: %d;\n", 5026 page3p->mode_page.code, nsect, sector_size); 5027 SD_INFO(SD_LOG_COMMON, un, 5028 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5029 BE_16(page3p->track_skew), 5030 BE_16(page3p->cylinder_skew)); 5031 5032 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5033 5034 /* 5035 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5036 */ 5037 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5038 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 5039 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 5040 if (status != 0) { 5041 SD_ERROR(SD_LOG_COMMON, un, 5042 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5043 goto page4_exit; 5044 } 5045 5046 /* 5047 * Determine size of Block Descriptors in order to locate the mode 5048 * page data. ATAPI devices return 0, SCSI devices should return 5049 * MODE_BLK_DESC_LENGTH. 5050 */ 5051 headerp = (struct mode_header *)p4bufp; 5052 if (un->un_f_cfg_is_atapi == TRUE) { 5053 struct mode_header_grp2 *mhp = 5054 (struct mode_header_grp2 *)headerp; 5055 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5056 } else { 5057 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5058 } 5059 5060 if (bd_len > MODE_BLK_DESC_LENGTH) { 5061 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5062 "sd_get_physical_geometry: received unexpected bd_len of " 5063 "%d, page4\n", bd_len); 5064 status = EIO; 5065 goto page4_exit; 5066 } 5067 5068 page4p = (struct mode_geometry *) 5069 ((caddr_t)headerp + mode_header_length + bd_len); 5070 5071 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5072 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5073 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5074 "%d\n", page4p->mode_page.code); 5075 status = EIO; 5076 goto page4_exit; 5077 } 5078 5079 /* 5080 * Stash the data now, after we know that both commands completed. 5081 */ 5082 5083 5084 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5085 spc = nhead * nsect; 5086 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5087 rpm = BE_16(page4p->rpm); 5088 5089 modesense_capacity = spc * ncyl; 5090 5091 SD_INFO(SD_LOG_COMMON, un, 5092 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5093 SD_INFO(SD_LOG_COMMON, un, 5094 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5095 SD_INFO(SD_LOG_COMMON, un, 5096 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5097 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5098 (void *)pgeom_p, capacity); 5099 5100 /* 5101 * Compensate if the drive's geometry is not rectangular, i.e., 5102 * the product of C * H * S returned by MODE SENSE >= that returned 5103 * by read capacity. This is an idiosyncrasy of the original x86 5104 * disk subsystem. 5105 */ 5106 if (modesense_capacity >= capacity) { 5107 SD_INFO(SD_LOG_COMMON, un, 5108 "sd_get_physical_geometry: adjusting acyl; " 5109 "old: %d; new: %d\n", pgeom_p->g_acyl, 5110 (modesense_capacity - capacity + spc - 1) / spc); 5111 if (sector_size != 0) { 5112 /* 1243403: NEC D38x7 drives don't support sec size */ 5113 pgeom_p->g_secsize = (unsigned short)sector_size; 5114 } 5115 pgeom_p->g_nsect = (unsigned short)nsect; 5116 pgeom_p->g_nhead = (unsigned short)nhead; 5117 pgeom_p->g_capacity = capacity; 5118 pgeom_p->g_acyl = 5119 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5120 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5121 } 5122 5123 pgeom_p->g_rpm = (unsigned short)rpm; 5124 pgeom_p->g_intrlv = (unsigned short)intrlv; 5125 ret = 0; 5126 5127 SD_INFO(SD_LOG_COMMON, un, 5128 "sd_get_physical_geometry: mode sense geometry:\n"); 5129 SD_INFO(SD_LOG_COMMON, un, 5130 " nsect: %d; sector size: %d; interlv: %d\n", 5131 nsect, sector_size, intrlv); 5132 SD_INFO(SD_LOG_COMMON, un, 5133 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5134 nhead, ncyl, rpm, modesense_capacity); 5135 SD_INFO(SD_LOG_COMMON, un, 5136 "sd_get_physical_geometry: (cached)\n"); 5137 SD_INFO(SD_LOG_COMMON, un, 5138 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5139 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5140 pgeom_p->g_nhead, pgeom_p->g_nsect); 5141 SD_INFO(SD_LOG_COMMON, un, 5142 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5143 pgeom_p->g_secsize, pgeom_p->g_capacity, 5144 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5145 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5146 5147 page4_exit: 5148 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5149 5150 page3_exit: 5151 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5152 5153 if (status != 0) { 5154 if (status == EIO) { 5155 /* 5156 * Some disks do not support mode sense(6), we 5157 * should ignore this kind of error(sense key is 5158 * 0x5 - illegal request). 5159 */ 5160 uint8_t *sensep; 5161 int senlen; 5162 5163 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5164 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5165 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5166 5167 if (senlen > 0 && 5168 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5169 sd_ssc_assessment(ssc, 5170 SD_FMT_IGNORE_COMPROMISE); 5171 } else { 5172 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5173 } 5174 } else { 5175 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5176 } 5177 } 5178 sd_ssc_fini(ssc); 5179 return (ret); 5180 } 5181 5182 /* 5183 * Function: sd_get_virtual_geometry 5184 * 5185 * Description: Ask the controller to tell us about the target device. 5186 * 5187 * Arguments: un - pointer to softstate 5188 * capacity - disk capacity in #blocks 5189 * lbasize - disk block size in bytes 5190 * 5191 * Context: Kernel thread only 5192 */ 5193 5194 static int 5195 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5196 diskaddr_t capacity, int lbasize) 5197 { 5198 uint_t geombuf; 5199 int spc; 5200 5201 ASSERT(un != NULL); 5202 5203 /* Set sector size, and total number of sectors */ 5204 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5205 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5206 5207 /* Let the HBA tell us its geometry */ 5208 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5209 5210 /* A value of -1 indicates an undefined "geometry" property */ 5211 if (geombuf == (-1)) { 5212 return (EINVAL); 5213 } 5214 5215 /* Initialize the logical geometry cache. */ 5216 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5217 lgeom_p->g_nsect = geombuf & 0xffff; 5218 lgeom_p->g_secsize = un->un_sys_blocksize; 5219 5220 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5221 5222 /* 5223 * Note: The driver originally converted the capacity value from 5224 * target blocks to system blocks. However, the capacity value passed 5225 * to this routine is already in terms of system blocks (this scaling 5226 * is done when the READ CAPACITY command is issued and processed). 5227 * This 'error' may have gone undetected because the usage of g_ncyl 5228 * (which is based upon g_capacity) is very limited within the driver 5229 */ 5230 lgeom_p->g_capacity = capacity; 5231 5232 /* 5233 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5234 * hba may return zero values if the device has been removed. 5235 */ 5236 if (spc == 0) { 5237 lgeom_p->g_ncyl = 0; 5238 } else { 5239 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5240 } 5241 lgeom_p->g_acyl = 0; 5242 5243 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5244 return (0); 5245 5246 } 5247 /* 5248 * Function: sd_update_block_info 5249 * 5250 * Description: Calculate a byte count to sector count bitshift value 5251 * from sector size. 5252 * 5253 * Arguments: un: unit struct. 5254 * lbasize: new target sector size 5255 * capacity: new target capacity, ie. block count 5256 * 5257 * Context: Kernel thread context 5258 */ 5259 5260 static void 5261 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5262 { 5263 if (lbasize != 0) { 5264 un->un_tgt_blocksize = lbasize; 5265 un->un_f_tgt_blocksize_is_valid = TRUE; 5266 if (!un->un_f_has_removable_media) { 5267 un->un_sys_blocksize = lbasize; 5268 } 5269 } 5270 5271 if (capacity != 0) { 5272 un->un_blockcount = capacity; 5273 un->un_f_blockcount_is_valid = TRUE; 5274 } 5275 } 5276 5277 5278 /* 5279 * Function: sd_register_devid 5280 * 5281 * Description: This routine will obtain the device id information from the 5282 * target, obtain the serial number, and register the device 5283 * id with the ddi framework. 5284 * 5285 * Arguments: devi - the system's dev_info_t for the device. 5286 * un - driver soft state (unit) structure 5287 * reservation_flag - indicates if a reservation conflict 5288 * occurred during attach 5289 * 5290 * Context: Kernel Thread 5291 */ 5292 static void 5293 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5294 { 5295 int rval = 0; 5296 uchar_t *inq80 = NULL; 5297 size_t inq80_len = MAX_INQUIRY_SIZE; 5298 size_t inq80_resid = 0; 5299 uchar_t *inq83 = NULL; 5300 size_t inq83_len = MAX_INQUIRY_SIZE; 5301 size_t inq83_resid = 0; 5302 int dlen, len; 5303 char *sn; 5304 struct sd_lun *un; 5305 5306 ASSERT(ssc != NULL); 5307 un = ssc->ssc_un; 5308 ASSERT(un != NULL); 5309 ASSERT(mutex_owned(SD_MUTEX(un))); 5310 ASSERT((SD_DEVINFO(un)) == devi); 5311 5312 5313 /* 5314 * We check the availability of the World Wide Name (0x83) and Unit 5315 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5316 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5317 * 0x83 is available, that is the best choice. Our next choice is 5318 * 0x80. If neither are available, we munge the devid from the device 5319 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5320 * to fabricate a devid for non-Sun qualified disks. 5321 */ 5322 if (sd_check_vpd_page_support(ssc) == 0) { 5323 /* collect page 80 data if available */ 5324 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5325 5326 mutex_exit(SD_MUTEX(un)); 5327 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5328 5329 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5330 0x01, 0x80, &inq80_resid); 5331 5332 if (rval != 0) { 5333 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5334 kmem_free(inq80, inq80_len); 5335 inq80 = NULL; 5336 inq80_len = 0; 5337 } else if (ddi_prop_exists( 5338 DDI_DEV_T_NONE, SD_DEVINFO(un), 5339 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5340 INQUIRY_SERIAL_NO) == 0) { 5341 /* 5342 * If we don't already have a serial number 5343 * property, do quick verify of data returned 5344 * and define property. 5345 */ 5346 dlen = inq80_len - inq80_resid; 5347 len = (size_t)inq80[3]; 5348 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5349 /* 5350 * Ensure sn termination, skip leading 5351 * blanks, and create property 5352 * 'inquiry-serial-no'. 5353 */ 5354 sn = (char *)&inq80[4]; 5355 sn[len] = 0; 5356 while (*sn && (*sn == ' ')) 5357 sn++; 5358 if (*sn) { 5359 (void) ddi_prop_update_string( 5360 DDI_DEV_T_NONE, 5361 SD_DEVINFO(un), 5362 INQUIRY_SERIAL_NO, sn); 5363 } 5364 } 5365 } 5366 mutex_enter(SD_MUTEX(un)); 5367 } 5368 5369 /* collect page 83 data if available */ 5370 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5371 mutex_exit(SD_MUTEX(un)); 5372 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5373 5374 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5375 0x01, 0x83, &inq83_resid); 5376 5377 if (rval != 0) { 5378 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5379 kmem_free(inq83, inq83_len); 5380 inq83 = NULL; 5381 inq83_len = 0; 5382 } 5383 mutex_enter(SD_MUTEX(un)); 5384 } 5385 } 5386 5387 /* 5388 * If transport has already registered a devid for this target 5389 * then that takes precedence over the driver's determination 5390 * of the devid. 5391 * 5392 * NOTE: The reason this check is done here instead of at the beginning 5393 * of the function is to allow the code above to create the 5394 * 'inquiry-serial-no' property. 5395 */ 5396 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5397 ASSERT(un->un_devid); 5398 un->un_f_devid_transport_defined = TRUE; 5399 goto cleanup; /* use devid registered by the transport */ 5400 } 5401 5402 /* 5403 * This is the case of antiquated Sun disk drives that have the 5404 * FAB_DEVID property set in the disk_table. These drives 5405 * manage the devid's by storing them in last 2 available sectors 5406 * on the drive and have them fabricated by the ddi layer by calling 5407 * ddi_devid_init and passing the DEVID_FAB flag. 5408 */ 5409 if (un->un_f_opt_fab_devid == TRUE) { 5410 /* 5411 * Depending on EINVAL isn't reliable, since a reserved disk 5412 * may result in invalid geometry, so check to make sure a 5413 * reservation conflict did not occur during attach. 5414 */ 5415 if ((sd_get_devid(ssc) == EINVAL) && 5416 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5417 /* 5418 * The devid is invalid AND there is no reservation 5419 * conflict. Fabricate a new devid. 5420 */ 5421 (void) sd_create_devid(ssc); 5422 } 5423 5424 /* Register the devid if it exists */ 5425 if (un->un_devid != NULL) { 5426 (void) ddi_devid_register(SD_DEVINFO(un), 5427 un->un_devid); 5428 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5429 "sd_register_devid: Devid Fabricated\n"); 5430 } 5431 goto cleanup; 5432 } 5433 5434 /* encode best devid possible based on data available */ 5435 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5436 (char *)ddi_driver_name(SD_DEVINFO(un)), 5437 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5438 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5439 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5440 5441 /* devid successfully encoded, register devid */ 5442 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5443 5444 } else { 5445 /* 5446 * Unable to encode a devid based on data available. 5447 * This is not a Sun qualified disk. Older Sun disk 5448 * drives that have the SD_FAB_DEVID property 5449 * set in the disk_table and non Sun qualified 5450 * disks are treated in the same manner. These 5451 * drives manage the devid's by storing them in 5452 * last 2 available sectors on the drive and 5453 * have them fabricated by the ddi layer by 5454 * calling ddi_devid_init and passing the 5455 * DEVID_FAB flag. 5456 * Create a fabricate devid only if there's no 5457 * fabricate devid existed. 5458 */ 5459 if (sd_get_devid(ssc) == EINVAL) { 5460 (void) sd_create_devid(ssc); 5461 } 5462 un->un_f_opt_fab_devid = TRUE; 5463 5464 /* Register the devid if it exists */ 5465 if (un->un_devid != NULL) { 5466 (void) ddi_devid_register(SD_DEVINFO(un), 5467 un->un_devid); 5468 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5469 "sd_register_devid: devid fabricated using " 5470 "ddi framework\n"); 5471 } 5472 } 5473 5474 cleanup: 5475 /* clean up resources */ 5476 if (inq80 != NULL) { 5477 kmem_free(inq80, inq80_len); 5478 } 5479 if (inq83 != NULL) { 5480 kmem_free(inq83, inq83_len); 5481 } 5482 } 5483 5484 5485 5486 /* 5487 * Function: sd_get_devid 5488 * 5489 * Description: This routine will return 0 if a valid device id has been 5490 * obtained from the target and stored in the soft state. If a 5491 * valid device id has not been previously read and stored, a 5492 * read attempt will be made. 5493 * 5494 * Arguments: un - driver soft state (unit) structure 5495 * 5496 * Return Code: 0 if we successfully get the device id 5497 * 5498 * Context: Kernel Thread 5499 */ 5500 5501 static int 5502 sd_get_devid(sd_ssc_t *ssc) 5503 { 5504 struct dk_devid *dkdevid; 5505 ddi_devid_t tmpid; 5506 uint_t *ip; 5507 size_t sz; 5508 diskaddr_t blk; 5509 int status; 5510 int chksum; 5511 int i; 5512 size_t buffer_size; 5513 struct sd_lun *un; 5514 5515 ASSERT(ssc != NULL); 5516 un = ssc->ssc_un; 5517 ASSERT(un != NULL); 5518 ASSERT(mutex_owned(SD_MUTEX(un))); 5519 5520 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5521 un); 5522 5523 if (un->un_devid != NULL) { 5524 return (0); 5525 } 5526 5527 mutex_exit(SD_MUTEX(un)); 5528 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5529 (void *)SD_PATH_DIRECT) != 0) { 5530 mutex_enter(SD_MUTEX(un)); 5531 return (EINVAL); 5532 } 5533 5534 /* 5535 * Read and verify device id, stored in the reserved cylinders at the 5536 * end of the disk. Backup label is on the odd sectors of the last 5537 * track of the last cylinder. Device id will be on track of the next 5538 * to last cylinder. 5539 */ 5540 mutex_enter(SD_MUTEX(un)); 5541 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5542 mutex_exit(SD_MUTEX(un)); 5543 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5544 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5545 SD_PATH_DIRECT); 5546 5547 if (status != 0) { 5548 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5549 goto error; 5550 } 5551 5552 /* Validate the revision */ 5553 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5554 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5555 status = EINVAL; 5556 goto error; 5557 } 5558 5559 /* Calculate the checksum */ 5560 chksum = 0; 5561 ip = (uint_t *)dkdevid; 5562 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5563 i++) { 5564 chksum ^= ip[i]; 5565 } 5566 5567 /* Compare the checksums */ 5568 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5569 status = EINVAL; 5570 goto error; 5571 } 5572 5573 /* Validate the device id */ 5574 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5575 status = EINVAL; 5576 goto error; 5577 } 5578 5579 /* 5580 * Store the device id in the driver soft state 5581 */ 5582 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5583 tmpid = kmem_alloc(sz, KM_SLEEP); 5584 5585 mutex_enter(SD_MUTEX(un)); 5586 5587 un->un_devid = tmpid; 5588 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5589 5590 kmem_free(dkdevid, buffer_size); 5591 5592 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5593 5594 return (status); 5595 error: 5596 mutex_enter(SD_MUTEX(un)); 5597 kmem_free(dkdevid, buffer_size); 5598 return (status); 5599 } 5600 5601 5602 /* 5603 * Function: sd_create_devid 5604 * 5605 * Description: This routine will fabricate the device id and write it 5606 * to the disk. 5607 * 5608 * Arguments: un - driver soft state (unit) structure 5609 * 5610 * Return Code: value of the fabricated device id 5611 * 5612 * Context: Kernel Thread 5613 */ 5614 5615 static ddi_devid_t 5616 sd_create_devid(sd_ssc_t *ssc) 5617 { 5618 struct sd_lun *un; 5619 5620 ASSERT(ssc != NULL); 5621 un = ssc->ssc_un; 5622 ASSERT(un != NULL); 5623 5624 /* Fabricate the devid */ 5625 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5626 == DDI_FAILURE) { 5627 return (NULL); 5628 } 5629 5630 /* Write the devid to disk */ 5631 if (sd_write_deviceid(ssc) != 0) { 5632 ddi_devid_free(un->un_devid); 5633 un->un_devid = NULL; 5634 } 5635 5636 return (un->un_devid); 5637 } 5638 5639 5640 /* 5641 * Function: sd_write_deviceid 5642 * 5643 * Description: This routine will write the device id to the disk 5644 * reserved sector. 5645 * 5646 * Arguments: un - driver soft state (unit) structure 5647 * 5648 * Return Code: EINVAL 5649 * value returned by sd_send_scsi_cmd 5650 * 5651 * Context: Kernel Thread 5652 */ 5653 5654 static int 5655 sd_write_deviceid(sd_ssc_t *ssc) 5656 { 5657 struct dk_devid *dkdevid; 5658 uchar_t *buf; 5659 diskaddr_t blk; 5660 uint_t *ip, chksum; 5661 int status; 5662 int i; 5663 struct sd_lun *un; 5664 5665 ASSERT(ssc != NULL); 5666 un = ssc->ssc_un; 5667 ASSERT(un != NULL); 5668 ASSERT(mutex_owned(SD_MUTEX(un))); 5669 5670 mutex_exit(SD_MUTEX(un)); 5671 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5672 (void *)SD_PATH_DIRECT) != 0) { 5673 mutex_enter(SD_MUTEX(un)); 5674 return (-1); 5675 } 5676 5677 5678 /* Allocate the buffer */ 5679 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5680 dkdevid = (struct dk_devid *)buf; 5681 5682 /* Fill in the revision */ 5683 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5684 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5685 5686 /* Copy in the device id */ 5687 mutex_enter(SD_MUTEX(un)); 5688 bcopy(un->un_devid, &dkdevid->dkd_devid, 5689 ddi_devid_sizeof(un->un_devid)); 5690 mutex_exit(SD_MUTEX(un)); 5691 5692 /* Calculate the checksum */ 5693 chksum = 0; 5694 ip = (uint_t *)dkdevid; 5695 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5696 i++) { 5697 chksum ^= ip[i]; 5698 } 5699 5700 /* Fill-in checksum */ 5701 DKD_FORMCHKSUM(chksum, dkdevid); 5702 5703 /* Write the reserved sector */ 5704 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5705 SD_PATH_DIRECT); 5706 if (status != 0) 5707 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5708 5709 kmem_free(buf, un->un_sys_blocksize); 5710 5711 mutex_enter(SD_MUTEX(un)); 5712 return (status); 5713 } 5714 5715 5716 /* 5717 * Function: sd_check_vpd_page_support 5718 * 5719 * Description: This routine sends an inquiry command with the EVPD bit set and 5720 * a page code of 0x00 to the device. It is used to determine which 5721 * vital product pages are available to find the devid. We are 5722 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5723 * the device does not support that command. 5724 * 5725 * Arguments: un - driver soft state (unit) structure 5726 * 5727 * Return Code: 0 - success 5728 * 1 - check condition 5729 * 5730 * Context: This routine can sleep. 5731 */ 5732 5733 static int 5734 sd_check_vpd_page_support(sd_ssc_t *ssc) 5735 { 5736 uchar_t *page_list = NULL; 5737 uchar_t page_length = 0xff; /* Use max possible length */ 5738 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5739 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5740 int rval = 0; 5741 int counter; 5742 struct sd_lun *un; 5743 5744 ASSERT(ssc != NULL); 5745 un = ssc->ssc_un; 5746 ASSERT(un != NULL); 5747 ASSERT(mutex_owned(SD_MUTEX(un))); 5748 5749 mutex_exit(SD_MUTEX(un)); 5750 5751 /* 5752 * We'll set the page length to the maximum to save figuring it out 5753 * with an additional call. 5754 */ 5755 page_list = kmem_zalloc(page_length, KM_SLEEP); 5756 5757 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5758 page_code, NULL); 5759 5760 if (rval != 0) 5761 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5762 5763 mutex_enter(SD_MUTEX(un)); 5764 5765 /* 5766 * Now we must validate that the device accepted the command, as some 5767 * drives do not support it. If the drive does support it, we will 5768 * return 0, and the supported pages will be in un_vpd_page_mask. If 5769 * not, we return -1. 5770 */ 5771 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5772 /* Loop to find one of the 2 pages we need */ 5773 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5774 5775 /* 5776 * Pages are returned in ascending order, and 0x83 is what we 5777 * are hoping for. 5778 */ 5779 while ((page_list[counter] <= 0xB1) && 5780 (counter <= (page_list[VPD_PAGE_LENGTH] + 5781 VPD_HEAD_OFFSET))) { 5782 /* 5783 * Add 3 because page_list[3] is the number of 5784 * pages minus 3 5785 */ 5786 5787 switch (page_list[counter]) { 5788 case 0x00: 5789 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5790 break; 5791 case 0x80: 5792 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5793 break; 5794 case 0x81: 5795 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5796 break; 5797 case 0x82: 5798 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5799 break; 5800 case 0x83: 5801 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5802 break; 5803 case 0x86: 5804 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5805 break; 5806 case 0xB1: 5807 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5808 break; 5809 } 5810 counter++; 5811 } 5812 5813 } else { 5814 rval = -1; 5815 5816 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5817 "sd_check_vpd_page_support: This drive does not implement " 5818 "VPD pages.\n"); 5819 } 5820 5821 kmem_free(page_list, page_length); 5822 5823 return (rval); 5824 } 5825 5826 5827 /* 5828 * Function: sd_setup_pm 5829 * 5830 * Description: Initialize Power Management on the device 5831 * 5832 * Context: Kernel Thread 5833 */ 5834 5835 static void 5836 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5837 { 5838 uint_t log_page_size; 5839 uchar_t *log_page_data; 5840 int rval = 0; 5841 struct sd_lun *un; 5842 5843 ASSERT(ssc != NULL); 5844 un = ssc->ssc_un; 5845 ASSERT(un != NULL); 5846 5847 /* 5848 * Since we are called from attach, holding a mutex for 5849 * un is unnecessary. Because some of the routines called 5850 * from here require SD_MUTEX to not be held, assert this 5851 * right up front. 5852 */ 5853 ASSERT(!mutex_owned(SD_MUTEX(un))); 5854 /* 5855 * Since the sd device does not have the 'reg' property, 5856 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5857 * The following code is to tell cpr that this device 5858 * DOES need to be suspended and resumed. 5859 */ 5860 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5861 "pm-hardware-state", "needs-suspend-resume"); 5862 5863 /* 5864 * This complies with the new power management framework 5865 * for certain desktop machines. Create the pm_components 5866 * property as a string array property. 5867 * If un_f_pm_supported is TRUE, that means the disk 5868 * attached HBA has set the "pm-capable" property and 5869 * the value of this property is bigger than 0. 5870 */ 5871 if (un->un_f_pm_supported) { 5872 /* 5873 * not all devices have a motor, try it first. 5874 * some devices may return ILLEGAL REQUEST, some 5875 * will hang 5876 * The following START_STOP_UNIT is used to check if target 5877 * device has a motor. 5878 */ 5879 un->un_f_start_stop_supported = TRUE; 5880 5881 if (un->un_f_power_condition_supported) { 5882 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5883 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 5884 SD_PATH_DIRECT); 5885 if (rval != 0) { 5886 un->un_f_power_condition_supported = FALSE; 5887 } 5888 } 5889 if (!un->un_f_power_condition_supported) { 5890 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5891 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 5892 } 5893 if (rval != 0) { 5894 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5895 un->un_f_start_stop_supported = FALSE; 5896 } 5897 5898 /* 5899 * create pm properties anyways otherwise the parent can't 5900 * go to sleep 5901 */ 5902 un->un_f_pm_is_enabled = TRUE; 5903 (void) sd_create_pm_components(devi, un); 5904 5905 /* 5906 * If it claims that log sense is supported, check it out. 5907 */ 5908 if (un->un_f_log_sense_supported) { 5909 rval = sd_log_page_supported(ssc, 5910 START_STOP_CYCLE_PAGE); 5911 if (rval == 1) { 5912 /* Page found, use it. */ 5913 un->un_start_stop_cycle_page = 5914 START_STOP_CYCLE_PAGE; 5915 } else { 5916 /* 5917 * Page not found or log sense is not 5918 * supported. 5919 * Notice we do not check the old style 5920 * START_STOP_CYCLE_VU_PAGE because this 5921 * code path does not apply to old disks. 5922 */ 5923 un->un_f_log_sense_supported = FALSE; 5924 un->un_f_pm_log_sense_smart = FALSE; 5925 } 5926 } 5927 5928 return; 5929 } 5930 5931 /* 5932 * For the disk whose attached HBA has not set the "pm-capable" 5933 * property, check if it supports the power management. 5934 */ 5935 if (!un->un_f_log_sense_supported) { 5936 un->un_power_level = SD_SPINDLE_ON; 5937 un->un_f_pm_is_enabled = FALSE; 5938 return; 5939 } 5940 5941 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5942 5943 #ifdef SDDEBUG 5944 if (sd_force_pm_supported) { 5945 /* Force a successful result */ 5946 rval = 1; 5947 } 5948 #endif 5949 5950 /* 5951 * If the start-stop cycle counter log page is not supported 5952 * or if the pm-capable property is set to be false (0), 5953 * then we should not create the pm_components property. 5954 */ 5955 if (rval == -1) { 5956 /* 5957 * Error. 5958 * Reading log sense failed, most likely this is 5959 * an older drive that does not support log sense. 5960 * If this fails auto-pm is not supported. 5961 */ 5962 un->un_power_level = SD_SPINDLE_ON; 5963 un->un_f_pm_is_enabled = FALSE; 5964 5965 } else if (rval == 0) { 5966 /* 5967 * Page not found. 5968 * The start stop cycle counter is implemented as page 5969 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5970 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5971 */ 5972 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 5973 /* 5974 * Page found, use this one. 5975 */ 5976 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5977 un->un_f_pm_is_enabled = TRUE; 5978 } else { 5979 /* 5980 * Error or page not found. 5981 * auto-pm is not supported for this device. 5982 */ 5983 un->un_power_level = SD_SPINDLE_ON; 5984 un->un_f_pm_is_enabled = FALSE; 5985 } 5986 } else { 5987 /* 5988 * Page found, use it. 5989 */ 5990 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 5991 un->un_f_pm_is_enabled = TRUE; 5992 } 5993 5994 5995 if (un->un_f_pm_is_enabled == TRUE) { 5996 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5997 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5998 5999 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6000 log_page_size, un->un_start_stop_cycle_page, 6001 0x01, 0, SD_PATH_DIRECT); 6002 6003 if (rval != 0) { 6004 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6005 } 6006 6007 #ifdef SDDEBUG 6008 if (sd_force_pm_supported) { 6009 /* Force a successful result */ 6010 rval = 0; 6011 } 6012 #endif 6013 6014 /* 6015 * If the Log sense for Page( Start/stop cycle counter page) 6016 * succeeds, then power management is supported and we can 6017 * enable auto-pm. 6018 */ 6019 if (rval == 0) { 6020 (void) sd_create_pm_components(devi, un); 6021 } else { 6022 un->un_power_level = SD_SPINDLE_ON; 6023 un->un_f_pm_is_enabled = FALSE; 6024 } 6025 6026 kmem_free(log_page_data, log_page_size); 6027 } 6028 } 6029 6030 6031 /* 6032 * Function: sd_create_pm_components 6033 * 6034 * Description: Initialize PM property. 6035 * 6036 * Context: Kernel thread context 6037 */ 6038 6039 static void 6040 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6041 { 6042 ASSERT(!mutex_owned(SD_MUTEX(un))); 6043 6044 if (un->un_f_power_condition_supported) { 6045 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6046 "pm-components", sd_pwr_pc.pm_comp, 5) 6047 != DDI_PROP_SUCCESS) { 6048 un->un_power_level = SD_SPINDLE_ACTIVE; 6049 un->un_f_pm_is_enabled = FALSE; 6050 return; 6051 } 6052 } else { 6053 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6054 "pm-components", sd_pwr_ss.pm_comp, 3) 6055 != DDI_PROP_SUCCESS) { 6056 un->un_power_level = SD_SPINDLE_ON; 6057 un->un_f_pm_is_enabled = FALSE; 6058 return; 6059 } 6060 } 6061 /* 6062 * When components are initially created they are idle, 6063 * power up any non-removables. 6064 * Note: the return value of pm_raise_power can't be used 6065 * for determining if PM should be enabled for this device. 6066 * Even if you check the return values and remove this 6067 * property created above, the PM framework will not honor the 6068 * change after the first call to pm_raise_power. Hence, 6069 * removal of that property does not help if pm_raise_power 6070 * fails. In the case of removable media, the start/stop 6071 * will fail if the media is not present. 6072 */ 6073 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6074 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6075 mutex_enter(SD_MUTEX(un)); 6076 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6077 mutex_enter(&un->un_pm_mutex); 6078 /* Set to on and not busy. */ 6079 un->un_pm_count = 0; 6080 } else { 6081 mutex_enter(SD_MUTEX(un)); 6082 un->un_power_level = SD_PM_STATE_STOPPED(un); 6083 mutex_enter(&un->un_pm_mutex); 6084 /* Set to off. */ 6085 un->un_pm_count = -1; 6086 } 6087 mutex_exit(&un->un_pm_mutex); 6088 mutex_exit(SD_MUTEX(un)); 6089 } 6090 6091 6092 /* 6093 * Function: sd_ddi_suspend 6094 * 6095 * Description: Performs system power-down operations. This includes 6096 * setting the drive state to indicate its suspended so 6097 * that no new commands will be accepted. Also, wait for 6098 * all commands that are in transport or queued to a timer 6099 * for retry to complete. All timeout threads are cancelled. 6100 * 6101 * Return Code: DDI_FAILURE or DDI_SUCCESS 6102 * 6103 * Context: Kernel thread context 6104 */ 6105 6106 static int 6107 sd_ddi_suspend(dev_info_t *devi) 6108 { 6109 struct sd_lun *un; 6110 clock_t wait_cmds_complete; 6111 6112 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6113 if (un == NULL) { 6114 return (DDI_FAILURE); 6115 } 6116 6117 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6118 6119 mutex_enter(SD_MUTEX(un)); 6120 6121 /* Return success if the device is already suspended. */ 6122 if (un->un_state == SD_STATE_SUSPENDED) { 6123 mutex_exit(SD_MUTEX(un)); 6124 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6125 "device already suspended, exiting\n"); 6126 return (DDI_SUCCESS); 6127 } 6128 6129 /* Return failure if the device is being used by HA */ 6130 if (un->un_resvd_status & 6131 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6132 mutex_exit(SD_MUTEX(un)); 6133 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6134 "device in use by HA, exiting\n"); 6135 return (DDI_FAILURE); 6136 } 6137 6138 /* 6139 * Return failure if the device is in a resource wait 6140 * or power changing state. 6141 */ 6142 if ((un->un_state == SD_STATE_RWAIT) || 6143 (un->un_state == SD_STATE_PM_CHANGING)) { 6144 mutex_exit(SD_MUTEX(un)); 6145 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6146 "device in resource wait state, exiting\n"); 6147 return (DDI_FAILURE); 6148 } 6149 6150 6151 un->un_save_state = un->un_last_state; 6152 New_state(un, SD_STATE_SUSPENDED); 6153 6154 /* 6155 * Wait for all commands that are in transport or queued to a timer 6156 * for retry to complete. 6157 * 6158 * While waiting, no new commands will be accepted or sent because of 6159 * the new state we set above. 6160 * 6161 * Wait till current operation has completed. If we are in the resource 6162 * wait state (with an intr outstanding) then we need to wait till the 6163 * intr completes and starts the next cmd. We want to wait for 6164 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6165 */ 6166 wait_cmds_complete = ddi_get_lbolt() + 6167 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6168 6169 while (un->un_ncmds_in_transport != 0) { 6170 /* 6171 * Fail if commands do not finish in the specified time. 6172 */ 6173 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6174 wait_cmds_complete) == -1) { 6175 /* 6176 * Undo the state changes made above. Everything 6177 * must go back to it's original value. 6178 */ 6179 Restore_state(un); 6180 un->un_last_state = un->un_save_state; 6181 /* Wake up any threads that might be waiting. */ 6182 cv_broadcast(&un->un_suspend_cv); 6183 mutex_exit(SD_MUTEX(un)); 6184 SD_ERROR(SD_LOG_IO_PM, un, 6185 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6186 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6187 return (DDI_FAILURE); 6188 } 6189 } 6190 6191 /* 6192 * Cancel SCSI watch thread and timeouts, if any are active 6193 */ 6194 6195 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6196 opaque_t temp_token = un->un_swr_token; 6197 mutex_exit(SD_MUTEX(un)); 6198 scsi_watch_suspend(temp_token); 6199 mutex_enter(SD_MUTEX(un)); 6200 } 6201 6202 if (un->un_reset_throttle_timeid != NULL) { 6203 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6204 un->un_reset_throttle_timeid = NULL; 6205 mutex_exit(SD_MUTEX(un)); 6206 (void) untimeout(temp_id); 6207 mutex_enter(SD_MUTEX(un)); 6208 } 6209 6210 if (un->un_dcvb_timeid != NULL) { 6211 timeout_id_t temp_id = un->un_dcvb_timeid; 6212 un->un_dcvb_timeid = NULL; 6213 mutex_exit(SD_MUTEX(un)); 6214 (void) untimeout(temp_id); 6215 mutex_enter(SD_MUTEX(un)); 6216 } 6217 6218 mutex_enter(&un->un_pm_mutex); 6219 if (un->un_pm_timeid != NULL) { 6220 timeout_id_t temp_id = un->un_pm_timeid; 6221 un->un_pm_timeid = NULL; 6222 mutex_exit(&un->un_pm_mutex); 6223 mutex_exit(SD_MUTEX(un)); 6224 (void) untimeout(temp_id); 6225 mutex_enter(SD_MUTEX(un)); 6226 } else { 6227 mutex_exit(&un->un_pm_mutex); 6228 } 6229 6230 if (un->un_rmw_msg_timeid != NULL) { 6231 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6232 un->un_rmw_msg_timeid = NULL; 6233 mutex_exit(SD_MUTEX(un)); 6234 (void) untimeout(temp_id); 6235 mutex_enter(SD_MUTEX(un)); 6236 } 6237 6238 if (un->un_retry_timeid != NULL) { 6239 timeout_id_t temp_id = un->un_retry_timeid; 6240 un->un_retry_timeid = NULL; 6241 mutex_exit(SD_MUTEX(un)); 6242 (void) untimeout(temp_id); 6243 mutex_enter(SD_MUTEX(un)); 6244 6245 if (un->un_retry_bp != NULL) { 6246 un->un_retry_bp->av_forw = un->un_waitq_headp; 6247 un->un_waitq_headp = un->un_retry_bp; 6248 if (un->un_waitq_tailp == NULL) { 6249 un->un_waitq_tailp = un->un_retry_bp; 6250 } 6251 un->un_retry_bp = NULL; 6252 un->un_retry_statp = NULL; 6253 } 6254 } 6255 6256 if (un->un_direct_priority_timeid != NULL) { 6257 timeout_id_t temp_id = un->un_direct_priority_timeid; 6258 un->un_direct_priority_timeid = NULL; 6259 mutex_exit(SD_MUTEX(un)); 6260 (void) untimeout(temp_id); 6261 mutex_enter(SD_MUTEX(un)); 6262 } 6263 6264 if (un->un_f_is_fibre == TRUE) { 6265 /* 6266 * Remove callbacks for insert and remove events 6267 */ 6268 if (un->un_insert_event != NULL) { 6269 mutex_exit(SD_MUTEX(un)); 6270 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6271 mutex_enter(SD_MUTEX(un)); 6272 un->un_insert_event = NULL; 6273 } 6274 6275 if (un->un_remove_event != NULL) { 6276 mutex_exit(SD_MUTEX(un)); 6277 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6278 mutex_enter(SD_MUTEX(un)); 6279 un->un_remove_event = NULL; 6280 } 6281 } 6282 6283 mutex_exit(SD_MUTEX(un)); 6284 6285 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6286 6287 return (DDI_SUCCESS); 6288 } 6289 6290 6291 /* 6292 * Function: sd_ddi_resume 6293 * 6294 * Description: Performs system power-up operations.. 6295 * 6296 * Return Code: DDI_SUCCESS 6297 * DDI_FAILURE 6298 * 6299 * Context: Kernel thread context 6300 */ 6301 6302 static int 6303 sd_ddi_resume(dev_info_t *devi) 6304 { 6305 struct sd_lun *un; 6306 6307 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6308 if (un == NULL) { 6309 return (DDI_FAILURE); 6310 } 6311 6312 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6313 6314 mutex_enter(SD_MUTEX(un)); 6315 Restore_state(un); 6316 6317 /* 6318 * Restore the state which was saved to give the 6319 * the right state in un_last_state 6320 */ 6321 un->un_last_state = un->un_save_state; 6322 /* 6323 * Note: throttle comes back at full. 6324 * Also note: this MUST be done before calling pm_raise_power 6325 * otherwise the system can get hung in biowait. The scenario where 6326 * this'll happen is under cpr suspend. Writing of the system 6327 * state goes through sddump, which writes 0 to un_throttle. If 6328 * writing the system state then fails, example if the partition is 6329 * too small, then cpr attempts a resume. If throttle isn't restored 6330 * from the saved value until after calling pm_raise_power then 6331 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6332 * in biowait. 6333 */ 6334 un->un_throttle = un->un_saved_throttle; 6335 6336 /* 6337 * The chance of failure is very rare as the only command done in power 6338 * entry point is START command when you transition from 0->1 or 6339 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6340 * which suspend was done. Ignore the return value as the resume should 6341 * not be failed. In the case of removable media the media need not be 6342 * inserted and hence there is a chance that raise power will fail with 6343 * media not present. 6344 */ 6345 if (un->un_f_attach_spinup) { 6346 mutex_exit(SD_MUTEX(un)); 6347 (void) pm_raise_power(SD_DEVINFO(un), 0, 6348 SD_PM_STATE_ACTIVE(un)); 6349 mutex_enter(SD_MUTEX(un)); 6350 } 6351 6352 /* 6353 * Don't broadcast to the suspend cv and therefore possibly 6354 * start I/O until after power has been restored. 6355 */ 6356 cv_broadcast(&un->un_suspend_cv); 6357 cv_broadcast(&un->un_state_cv); 6358 6359 /* restart thread */ 6360 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6361 scsi_watch_resume(un->un_swr_token); 6362 } 6363 6364 #if (defined(__fibre)) 6365 if (un->un_f_is_fibre == TRUE) { 6366 /* 6367 * Add callbacks for insert and remove events 6368 */ 6369 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6370 sd_init_event_callbacks(un); 6371 } 6372 } 6373 #endif 6374 6375 /* 6376 * Transport any pending commands to the target. 6377 * 6378 * If this is a low-activity device commands in queue will have to wait 6379 * until new commands come in, which may take awhile. Also, we 6380 * specifically don't check un_ncmds_in_transport because we know that 6381 * there really are no commands in progress after the unit was 6382 * suspended and we could have reached the throttle level, been 6383 * suspended, and have no new commands coming in for awhile. Highly 6384 * unlikely, but so is the low-activity disk scenario. 6385 */ 6386 ddi_xbuf_dispatch(un->un_xbuf_attr); 6387 6388 sd_start_cmds(un, NULL); 6389 mutex_exit(SD_MUTEX(un)); 6390 6391 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6392 6393 return (DDI_SUCCESS); 6394 } 6395 6396 6397 /* 6398 * Function: sd_pm_state_change 6399 * 6400 * Description: Change the driver power state. 6401 * Someone else is required to actually change the driver 6402 * power level. 6403 * 6404 * Arguments: un - driver soft state (unit) structure 6405 * level - the power level that is changed to 6406 * flag - to decide how to change the power state 6407 * 6408 * Return Code: DDI_SUCCESS 6409 * 6410 * Context: Kernel thread context 6411 */ 6412 static int 6413 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6414 { 6415 ASSERT(un != NULL); 6416 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6417 6418 ASSERT(!mutex_owned(SD_MUTEX(un))); 6419 mutex_enter(SD_MUTEX(un)); 6420 6421 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6422 un->un_power_level = level; 6423 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6424 mutex_enter(&un->un_pm_mutex); 6425 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6426 un->un_pm_count++; 6427 ASSERT(un->un_pm_count == 0); 6428 } 6429 mutex_exit(&un->un_pm_mutex); 6430 } else { 6431 /* 6432 * Exit if power management is not enabled for this device, 6433 * or if the device is being used by HA. 6434 */ 6435 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6436 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6437 mutex_exit(SD_MUTEX(un)); 6438 SD_TRACE(SD_LOG_POWER, un, 6439 "sd_pm_state_change: exiting\n"); 6440 return (DDI_FAILURE); 6441 } 6442 6443 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6444 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6445 6446 /* 6447 * See if the device is not busy, ie.: 6448 * - we have no commands in the driver for this device 6449 * - not waiting for resources 6450 */ 6451 if ((un->un_ncmds_in_driver == 0) && 6452 (un->un_state != SD_STATE_RWAIT)) { 6453 /* 6454 * The device is not busy, so it is OK to go to low 6455 * power state. Indicate low power, but rely on someone 6456 * else to actually change it. 6457 */ 6458 mutex_enter(&un->un_pm_mutex); 6459 un->un_pm_count = -1; 6460 mutex_exit(&un->un_pm_mutex); 6461 un->un_power_level = level; 6462 } 6463 } 6464 6465 mutex_exit(SD_MUTEX(un)); 6466 6467 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6468 6469 return (DDI_SUCCESS); 6470 } 6471 6472 6473 /* 6474 * Function: sd_pm_idletimeout_handler 6475 * 6476 * Description: A timer routine that's active only while a device is busy. 6477 * The purpose is to extend slightly the pm framework's busy 6478 * view of the device to prevent busy/idle thrashing for 6479 * back-to-back commands. Do this by comparing the current time 6480 * to the time at which the last command completed and when the 6481 * difference is greater than sd_pm_idletime, call 6482 * pm_idle_component. In addition to indicating idle to the pm 6483 * framework, update the chain type to again use the internal pm 6484 * layers of the driver. 6485 * 6486 * Arguments: arg - driver soft state (unit) structure 6487 * 6488 * Context: Executes in a timeout(9F) thread context 6489 */ 6490 6491 static void 6492 sd_pm_idletimeout_handler(void *arg) 6493 { 6494 struct sd_lun *un = arg; 6495 6496 time_t now; 6497 6498 mutex_enter(&sd_detach_mutex); 6499 if (un->un_detach_count != 0) { 6500 /* Abort if the instance is detaching */ 6501 mutex_exit(&sd_detach_mutex); 6502 return; 6503 } 6504 mutex_exit(&sd_detach_mutex); 6505 6506 now = ddi_get_time(); 6507 /* 6508 * Grab both mutexes, in the proper order, since we're accessing 6509 * both PM and softstate variables. 6510 */ 6511 mutex_enter(SD_MUTEX(un)); 6512 mutex_enter(&un->un_pm_mutex); 6513 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6514 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6515 /* 6516 * Update the chain types. 6517 * This takes affect on the next new command received. 6518 */ 6519 if (un->un_f_non_devbsize_supported) { 6520 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6521 } else { 6522 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6523 } 6524 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6525 6526 SD_TRACE(SD_LOG_IO_PM, un, 6527 "sd_pm_idletimeout_handler: idling device\n"); 6528 (void) pm_idle_component(SD_DEVINFO(un), 0); 6529 un->un_pm_idle_timeid = NULL; 6530 } else { 6531 un->un_pm_idle_timeid = 6532 timeout(sd_pm_idletimeout_handler, un, 6533 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6534 } 6535 mutex_exit(&un->un_pm_mutex); 6536 mutex_exit(SD_MUTEX(un)); 6537 } 6538 6539 6540 /* 6541 * Function: sd_pm_timeout_handler 6542 * 6543 * Description: Callback to tell framework we are idle. 6544 * 6545 * Context: timeout(9f) thread context. 6546 */ 6547 6548 static void 6549 sd_pm_timeout_handler(void *arg) 6550 { 6551 struct sd_lun *un = arg; 6552 6553 (void) pm_idle_component(SD_DEVINFO(un), 0); 6554 mutex_enter(&un->un_pm_mutex); 6555 un->un_pm_timeid = NULL; 6556 mutex_exit(&un->un_pm_mutex); 6557 } 6558 6559 6560 /* 6561 * Function: sdpower 6562 * 6563 * Description: PM entry point. 6564 * 6565 * Return Code: DDI_SUCCESS 6566 * DDI_FAILURE 6567 * 6568 * Context: Kernel thread context 6569 */ 6570 6571 static int 6572 sdpower(dev_info_t *devi, int component, int level) 6573 { 6574 struct sd_lun *un; 6575 int instance; 6576 int rval = DDI_SUCCESS; 6577 uint_t i, log_page_size, maxcycles, ncycles; 6578 uchar_t *log_page_data; 6579 int log_sense_page; 6580 int medium_present; 6581 time_t intvlp; 6582 struct pm_trans_data sd_pm_tran_data; 6583 uchar_t save_state; 6584 int sval; 6585 uchar_t state_before_pm; 6586 int got_semaphore_here; 6587 sd_ssc_t *ssc; 6588 int last_power_level; 6589 6590 instance = ddi_get_instance(devi); 6591 6592 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6593 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6594 return (DDI_FAILURE); 6595 } 6596 6597 ssc = sd_ssc_init(un); 6598 6599 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6600 6601 /* 6602 * Must synchronize power down with close. 6603 * Attempt to decrement/acquire the open/close semaphore, 6604 * but do NOT wait on it. If it's not greater than zero, 6605 * ie. it can't be decremented without waiting, then 6606 * someone else, either open or close, already has it 6607 * and the try returns 0. Use that knowledge here to determine 6608 * if it's OK to change the device power level. 6609 * Also, only increment it on exit if it was decremented, ie. gotten, 6610 * here. 6611 */ 6612 got_semaphore_here = sema_tryp(&un->un_semoclose); 6613 6614 mutex_enter(SD_MUTEX(un)); 6615 6616 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6617 un->un_ncmds_in_driver); 6618 6619 /* 6620 * If un_ncmds_in_driver is non-zero it indicates commands are 6621 * already being processed in the driver, or if the semaphore was 6622 * not gotten here it indicates an open or close is being processed. 6623 * At the same time somebody is requesting to go to a lower power 6624 * that can't perform I/O, which can't happen, therefore we need to 6625 * return failure. 6626 */ 6627 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6628 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6629 mutex_exit(SD_MUTEX(un)); 6630 6631 if (got_semaphore_here != 0) { 6632 sema_v(&un->un_semoclose); 6633 } 6634 SD_TRACE(SD_LOG_IO_PM, un, 6635 "sdpower: exit, device has queued cmds.\n"); 6636 6637 goto sdpower_failed; 6638 } 6639 6640 /* 6641 * if it is OFFLINE that means the disk is completely dead 6642 * in our case we have to put the disk in on or off by sending commands 6643 * Of course that will fail anyway so return back here. 6644 * 6645 * Power changes to a device that's OFFLINE or SUSPENDED 6646 * are not allowed. 6647 */ 6648 if ((un->un_state == SD_STATE_OFFLINE) || 6649 (un->un_state == SD_STATE_SUSPENDED)) { 6650 mutex_exit(SD_MUTEX(un)); 6651 6652 if (got_semaphore_here != 0) { 6653 sema_v(&un->un_semoclose); 6654 } 6655 SD_TRACE(SD_LOG_IO_PM, un, 6656 "sdpower: exit, device is off-line.\n"); 6657 6658 goto sdpower_failed; 6659 } 6660 6661 /* 6662 * Change the device's state to indicate it's power level 6663 * is being changed. Do this to prevent a power off in the 6664 * middle of commands, which is especially bad on devices 6665 * that are really powered off instead of just spun down. 6666 */ 6667 state_before_pm = un->un_state; 6668 un->un_state = SD_STATE_PM_CHANGING; 6669 6670 mutex_exit(SD_MUTEX(un)); 6671 6672 /* 6673 * If log sense command is not supported, bypass the 6674 * following checking, otherwise, check the log sense 6675 * information for this device. 6676 */ 6677 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6678 un->un_f_log_sense_supported) { 6679 /* 6680 * Get the log sense information to understand whether the 6681 * the powercycle counts have gone beyond the threshhold. 6682 */ 6683 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6684 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6685 6686 mutex_enter(SD_MUTEX(un)); 6687 log_sense_page = un->un_start_stop_cycle_page; 6688 mutex_exit(SD_MUTEX(un)); 6689 6690 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6691 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6692 6693 if (rval != 0) { 6694 if (rval == EIO) 6695 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6696 else 6697 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6698 } 6699 6700 #ifdef SDDEBUG 6701 if (sd_force_pm_supported) { 6702 /* Force a successful result */ 6703 rval = 0; 6704 } 6705 #endif 6706 if (rval != 0) { 6707 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6708 "Log Sense Failed\n"); 6709 6710 kmem_free(log_page_data, log_page_size); 6711 /* Cannot support power management on those drives */ 6712 6713 if (got_semaphore_here != 0) { 6714 sema_v(&un->un_semoclose); 6715 } 6716 /* 6717 * On exit put the state back to it's original value 6718 * and broadcast to anyone waiting for the power 6719 * change completion. 6720 */ 6721 mutex_enter(SD_MUTEX(un)); 6722 un->un_state = state_before_pm; 6723 cv_broadcast(&un->un_suspend_cv); 6724 mutex_exit(SD_MUTEX(un)); 6725 SD_TRACE(SD_LOG_IO_PM, un, 6726 "sdpower: exit, Log Sense Failed.\n"); 6727 6728 goto sdpower_failed; 6729 } 6730 6731 /* 6732 * From the page data - Convert the essential information to 6733 * pm_trans_data 6734 */ 6735 maxcycles = 6736 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6737 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6738 6739 ncycles = 6740 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6741 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6742 6743 if (un->un_f_pm_log_sense_smart) { 6744 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6745 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6746 sd_pm_tran_data.un.smart_count.flag = 0; 6747 sd_pm_tran_data.format = DC_SMART_FORMAT; 6748 } else { 6749 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6750 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6751 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6752 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6753 log_page_data[8+i]; 6754 } 6755 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6756 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6757 } 6758 6759 kmem_free(log_page_data, log_page_size); 6760 6761 /* 6762 * Call pm_trans_check routine to get the Ok from 6763 * the global policy 6764 */ 6765 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6766 #ifdef SDDEBUG 6767 if (sd_force_pm_supported) { 6768 /* Force a successful result */ 6769 rval = 1; 6770 } 6771 #endif 6772 switch (rval) { 6773 case 0: 6774 /* 6775 * Not Ok to Power cycle or error in parameters passed 6776 * Would have given the advised time to consider power 6777 * cycle. Based on the new intvlp parameter we are 6778 * supposed to pretend we are busy so that pm framework 6779 * will never call our power entry point. Because of 6780 * that install a timeout handler and wait for the 6781 * recommended time to elapse so that power management 6782 * can be effective again. 6783 * 6784 * To effect this behavior, call pm_busy_component to 6785 * indicate to the framework this device is busy. 6786 * By not adjusting un_pm_count the rest of PM in 6787 * the driver will function normally, and independent 6788 * of this but because the framework is told the device 6789 * is busy it won't attempt powering down until it gets 6790 * a matching idle. The timeout handler sends this. 6791 * Note: sd_pm_entry can't be called here to do this 6792 * because sdpower may have been called as a result 6793 * of a call to pm_raise_power from within sd_pm_entry. 6794 * 6795 * If a timeout handler is already active then 6796 * don't install another. 6797 */ 6798 mutex_enter(&un->un_pm_mutex); 6799 if (un->un_pm_timeid == NULL) { 6800 un->un_pm_timeid = 6801 timeout(sd_pm_timeout_handler, 6802 un, intvlp * drv_usectohz(1000000)); 6803 mutex_exit(&un->un_pm_mutex); 6804 (void) pm_busy_component(SD_DEVINFO(un), 0); 6805 } else { 6806 mutex_exit(&un->un_pm_mutex); 6807 } 6808 if (got_semaphore_here != 0) { 6809 sema_v(&un->un_semoclose); 6810 } 6811 /* 6812 * On exit put the state back to it's original value 6813 * and broadcast to anyone waiting for the power 6814 * change completion. 6815 */ 6816 mutex_enter(SD_MUTEX(un)); 6817 un->un_state = state_before_pm; 6818 cv_broadcast(&un->un_suspend_cv); 6819 mutex_exit(SD_MUTEX(un)); 6820 6821 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6822 "trans check Failed, not ok to power cycle.\n"); 6823 6824 goto sdpower_failed; 6825 case -1: 6826 if (got_semaphore_here != 0) { 6827 sema_v(&un->un_semoclose); 6828 } 6829 /* 6830 * On exit put the state back to it's original value 6831 * and broadcast to anyone waiting for the power 6832 * change completion. 6833 */ 6834 mutex_enter(SD_MUTEX(un)); 6835 un->un_state = state_before_pm; 6836 cv_broadcast(&un->un_suspend_cv); 6837 mutex_exit(SD_MUTEX(un)); 6838 SD_TRACE(SD_LOG_IO_PM, un, 6839 "sdpower: exit, trans check command Failed.\n"); 6840 6841 goto sdpower_failed; 6842 } 6843 } 6844 6845 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6846 /* 6847 * Save the last state... if the STOP FAILS we need it 6848 * for restoring 6849 */ 6850 mutex_enter(SD_MUTEX(un)); 6851 save_state = un->un_last_state; 6852 last_power_level = un->un_power_level; 6853 /* 6854 * There must not be any cmds. getting processed 6855 * in the driver when we get here. Power to the 6856 * device is potentially going off. 6857 */ 6858 ASSERT(un->un_ncmds_in_driver == 0); 6859 mutex_exit(SD_MUTEX(un)); 6860 6861 /* 6862 * For now PM suspend the device completely before spindle is 6863 * turned off 6864 */ 6865 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 6866 == DDI_FAILURE) { 6867 if (got_semaphore_here != 0) { 6868 sema_v(&un->un_semoclose); 6869 } 6870 /* 6871 * On exit put the state back to it's original value 6872 * and broadcast to anyone waiting for the power 6873 * change completion. 6874 */ 6875 mutex_enter(SD_MUTEX(un)); 6876 un->un_state = state_before_pm; 6877 un->un_power_level = last_power_level; 6878 cv_broadcast(&un->un_suspend_cv); 6879 mutex_exit(SD_MUTEX(un)); 6880 SD_TRACE(SD_LOG_IO_PM, un, 6881 "sdpower: exit, PM suspend Failed.\n"); 6882 6883 goto sdpower_failed; 6884 } 6885 } 6886 6887 /* 6888 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6889 * close, or strategy. Dump no long uses this routine, it uses it's 6890 * own code so it can be done in polled mode. 6891 */ 6892 6893 medium_present = TRUE; 6894 6895 /* 6896 * When powering up, issue a TUR in case the device is at unit 6897 * attention. Don't do retries. Bypass the PM layer, otherwise 6898 * a deadlock on un_pm_busy_cv will occur. 6899 */ 6900 if (SD_PM_IS_IO_CAPABLE(un, level)) { 6901 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6902 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6903 if (sval != 0) 6904 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6905 } 6906 6907 if (un->un_f_power_condition_supported) { 6908 char *pm_condition_name[] = {"STOPPED", "STANDBY", 6909 "IDLE", "ACTIVE"}; 6910 SD_TRACE(SD_LOG_IO_PM, un, 6911 "sdpower: sending \'%s\' power condition", 6912 pm_condition_name[level]); 6913 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 6914 sd_pl2pc[level], SD_PATH_DIRECT); 6915 } else { 6916 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6917 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6918 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 6919 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 6920 SD_TARGET_STOP), SD_PATH_DIRECT); 6921 } 6922 if (sval != 0) { 6923 if (sval == EIO) 6924 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6925 else 6926 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6927 } 6928 6929 /* Command failed, check for media present. */ 6930 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6931 medium_present = FALSE; 6932 } 6933 6934 /* 6935 * The conditions of interest here are: 6936 * if a spindle off with media present fails, 6937 * then restore the state and return an error. 6938 * else if a spindle on fails, 6939 * then return an error (there's no state to restore). 6940 * In all other cases we setup for the new state 6941 * and return success. 6942 */ 6943 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6944 if ((medium_present == TRUE) && (sval != 0)) { 6945 /* The stop command from above failed */ 6946 rval = DDI_FAILURE; 6947 /* 6948 * The stop command failed, and we have media 6949 * present. Put the level back by calling the 6950 * sd_pm_resume() and set the state back to 6951 * it's previous value. 6952 */ 6953 (void) sd_pm_state_change(un, last_power_level, 6954 SD_PM_STATE_ROLLBACK); 6955 mutex_enter(SD_MUTEX(un)); 6956 un->un_last_state = save_state; 6957 mutex_exit(SD_MUTEX(un)); 6958 } else if (un->un_f_monitor_media_state) { 6959 /* 6960 * The stop command from above succeeded. 6961 * Terminate watch thread in case of removable media 6962 * devices going into low power state. This is as per 6963 * the requirements of pm framework, otherwise commands 6964 * will be generated for the device (through watch 6965 * thread), even when the device is in low power state. 6966 */ 6967 mutex_enter(SD_MUTEX(un)); 6968 un->un_f_watcht_stopped = FALSE; 6969 if (un->un_swr_token != NULL) { 6970 opaque_t temp_token = un->un_swr_token; 6971 un->un_f_watcht_stopped = TRUE; 6972 un->un_swr_token = NULL; 6973 mutex_exit(SD_MUTEX(un)); 6974 (void) scsi_watch_request_terminate(temp_token, 6975 SCSI_WATCH_TERMINATE_ALL_WAIT); 6976 } else { 6977 mutex_exit(SD_MUTEX(un)); 6978 } 6979 } 6980 } else { 6981 /* 6982 * The level requested is I/O capable. 6983 * Legacy behavior: return success on a failed spinup 6984 * if there is no media in the drive. 6985 * Do this by looking at medium_present here. 6986 */ 6987 if ((sval != 0) && medium_present) { 6988 /* The start command from above failed */ 6989 rval = DDI_FAILURE; 6990 } else { 6991 /* 6992 * The start command from above succeeded 6993 * PM resume the devices now that we have 6994 * started the disks 6995 */ 6996 (void) sd_pm_state_change(un, level, 6997 SD_PM_STATE_CHANGE); 6998 6999 /* 7000 * Resume the watch thread since it was suspended 7001 * when the device went into low power mode. 7002 */ 7003 if (un->un_f_monitor_media_state) { 7004 mutex_enter(SD_MUTEX(un)); 7005 if (un->un_f_watcht_stopped == TRUE) { 7006 opaque_t temp_token; 7007 7008 un->un_f_watcht_stopped = FALSE; 7009 mutex_exit(SD_MUTEX(un)); 7010 temp_token = 7011 sd_watch_request_submit(un); 7012 mutex_enter(SD_MUTEX(un)); 7013 un->un_swr_token = temp_token; 7014 } 7015 mutex_exit(SD_MUTEX(un)); 7016 } 7017 } 7018 } 7019 7020 if (got_semaphore_here != 0) { 7021 sema_v(&un->un_semoclose); 7022 } 7023 /* 7024 * On exit put the state back to it's original value 7025 * and broadcast to anyone waiting for the power 7026 * change completion. 7027 */ 7028 mutex_enter(SD_MUTEX(un)); 7029 un->un_state = state_before_pm; 7030 cv_broadcast(&un->un_suspend_cv); 7031 mutex_exit(SD_MUTEX(un)); 7032 7033 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7034 7035 sd_ssc_fini(ssc); 7036 return (rval); 7037 7038 sdpower_failed: 7039 7040 sd_ssc_fini(ssc); 7041 return (DDI_FAILURE); 7042 } 7043 7044 7045 7046 /* 7047 * Function: sdattach 7048 * 7049 * Description: Driver's attach(9e) entry point function. 7050 * 7051 * Arguments: devi - opaque device info handle 7052 * cmd - attach type 7053 * 7054 * Return Code: DDI_SUCCESS 7055 * DDI_FAILURE 7056 * 7057 * Context: Kernel thread context 7058 */ 7059 7060 static int 7061 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7062 { 7063 switch (cmd) { 7064 case DDI_ATTACH: 7065 return (sd_unit_attach(devi)); 7066 case DDI_RESUME: 7067 return (sd_ddi_resume(devi)); 7068 default: 7069 break; 7070 } 7071 return (DDI_FAILURE); 7072 } 7073 7074 7075 /* 7076 * Function: sddetach 7077 * 7078 * Description: Driver's detach(9E) entry point function. 7079 * 7080 * Arguments: devi - opaque device info handle 7081 * cmd - detach type 7082 * 7083 * Return Code: DDI_SUCCESS 7084 * DDI_FAILURE 7085 * 7086 * Context: Kernel thread context 7087 */ 7088 7089 static int 7090 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7091 { 7092 switch (cmd) { 7093 case DDI_DETACH: 7094 return (sd_unit_detach(devi)); 7095 case DDI_SUSPEND: 7096 return (sd_ddi_suspend(devi)); 7097 default: 7098 break; 7099 } 7100 return (DDI_FAILURE); 7101 } 7102 7103 7104 /* 7105 * Function: sd_sync_with_callback 7106 * 7107 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7108 * state while the callback routine is active. 7109 * 7110 * Arguments: un: softstate structure for the instance 7111 * 7112 * Context: Kernel thread context 7113 */ 7114 7115 static void 7116 sd_sync_with_callback(struct sd_lun *un) 7117 { 7118 ASSERT(un != NULL); 7119 7120 mutex_enter(SD_MUTEX(un)); 7121 7122 ASSERT(un->un_in_callback >= 0); 7123 7124 while (un->un_in_callback > 0) { 7125 mutex_exit(SD_MUTEX(un)); 7126 delay(2); 7127 mutex_enter(SD_MUTEX(un)); 7128 } 7129 7130 mutex_exit(SD_MUTEX(un)); 7131 } 7132 7133 /* 7134 * Function: sd_unit_attach 7135 * 7136 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7137 * the soft state structure for the device and performs 7138 * all necessary structure and device initializations. 7139 * 7140 * Arguments: devi: the system's dev_info_t for the device. 7141 * 7142 * Return Code: DDI_SUCCESS if attach is successful. 7143 * DDI_FAILURE if any part of the attach fails. 7144 * 7145 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7146 * Kernel thread context only. Can sleep. 7147 */ 7148 7149 static int 7150 sd_unit_attach(dev_info_t *devi) 7151 { 7152 struct scsi_device *devp; 7153 struct sd_lun *un; 7154 char *variantp; 7155 char name_str[48]; 7156 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7157 int instance; 7158 int rval; 7159 int wc_enabled; 7160 int tgt; 7161 uint64_t capacity; 7162 uint_t lbasize = 0; 7163 dev_info_t *pdip = ddi_get_parent(devi); 7164 int offbyone = 0; 7165 int geom_label_valid = 0; 7166 sd_ssc_t *ssc; 7167 int status; 7168 struct sd_fm_internal *sfip = NULL; 7169 int max_xfer_size; 7170 7171 /* 7172 * Retrieve the target driver's private data area. This was set 7173 * up by the HBA. 7174 */ 7175 devp = ddi_get_driver_private(devi); 7176 7177 /* 7178 * Retrieve the target ID of the device. 7179 */ 7180 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7181 SCSI_ADDR_PROP_TARGET, -1); 7182 7183 /* 7184 * Since we have no idea what state things were left in by the last 7185 * user of the device, set up some 'default' settings, ie. turn 'em 7186 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7187 * Do this before the scsi_probe, which sends an inquiry. 7188 * This is a fix for bug (4430280). 7189 * Of special importance is wide-xfer. The drive could have been left 7190 * in wide transfer mode by the last driver to communicate with it, 7191 * this includes us. If that's the case, and if the following is not 7192 * setup properly or we don't re-negotiate with the drive prior to 7193 * transferring data to/from the drive, it causes bus parity errors, 7194 * data overruns, and unexpected interrupts. This first occurred when 7195 * the fix for bug (4378686) was made. 7196 */ 7197 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7198 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7199 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7200 7201 /* 7202 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7203 * on a target. Setting it per lun instance actually sets the 7204 * capability of this target, which affects those luns already 7205 * attached on the same target. So during attach, we can only disable 7206 * this capability only when no other lun has been attached on this 7207 * target. By doing this, we assume a target has the same tagged-qing 7208 * capability for every lun. The condition can be removed when HBA 7209 * is changed to support per lun based tagged-qing capability. 7210 */ 7211 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7212 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7213 } 7214 7215 /* 7216 * Use scsi_probe() to issue an INQUIRY command to the device. 7217 * This call will allocate and fill in the scsi_inquiry structure 7218 * and point the sd_inq member of the scsi_device structure to it. 7219 * If the attach succeeds, then this memory will not be de-allocated 7220 * (via scsi_unprobe()) until the instance is detached. 7221 */ 7222 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7223 goto probe_failed; 7224 } 7225 7226 /* 7227 * Check the device type as specified in the inquiry data and 7228 * claim it if it is of a type that we support. 7229 */ 7230 switch (devp->sd_inq->inq_dtype) { 7231 case DTYPE_DIRECT: 7232 break; 7233 case DTYPE_RODIRECT: 7234 break; 7235 case DTYPE_OPTICAL: 7236 break; 7237 case DTYPE_NOTPRESENT: 7238 default: 7239 /* Unsupported device type; fail the attach. */ 7240 goto probe_failed; 7241 } 7242 7243 /* 7244 * Allocate the soft state structure for this unit. 7245 * 7246 * We rely upon this memory being set to all zeroes by 7247 * ddi_soft_state_zalloc(). We assume that any member of the 7248 * soft state structure that is not explicitly initialized by 7249 * this routine will have a value of zero. 7250 */ 7251 instance = ddi_get_instance(devp->sd_dev); 7252 #ifndef XPV_HVM_DRIVER 7253 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7254 goto probe_failed; 7255 } 7256 #endif /* !XPV_HVM_DRIVER */ 7257 7258 /* 7259 * Retrieve a pointer to the newly-allocated soft state. 7260 * 7261 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7262 * was successful, unless something has gone horribly wrong and the 7263 * ddi's soft state internals are corrupt (in which case it is 7264 * probably better to halt here than just fail the attach....) 7265 */ 7266 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7267 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7268 instance); 7269 /*NOTREACHED*/ 7270 } 7271 7272 /* 7273 * Link the back ptr of the driver soft state to the scsi_device 7274 * struct for this lun. 7275 * Save a pointer to the softstate in the driver-private area of 7276 * the scsi_device struct. 7277 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7278 * we first set un->un_sd below. 7279 */ 7280 un->un_sd = devp; 7281 devp->sd_private = (opaque_t)un; 7282 7283 /* 7284 * The following must be after devp is stored in the soft state struct. 7285 */ 7286 #ifdef SDDEBUG 7287 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7288 "%s_unit_attach: un:0x%p instance:%d\n", 7289 ddi_driver_name(devi), un, instance); 7290 #endif 7291 7292 /* 7293 * Set up the device type and node type (for the minor nodes). 7294 * By default we assume that the device can at least support the 7295 * Common Command Set. Call it a CD-ROM if it reports itself 7296 * as a RODIRECT device. 7297 */ 7298 switch (devp->sd_inq->inq_dtype) { 7299 case DTYPE_RODIRECT: 7300 un->un_node_type = DDI_NT_CD_CHAN; 7301 un->un_ctype = CTYPE_CDROM; 7302 break; 7303 case DTYPE_OPTICAL: 7304 un->un_node_type = DDI_NT_BLOCK_CHAN; 7305 un->un_ctype = CTYPE_ROD; 7306 break; 7307 default: 7308 un->un_node_type = DDI_NT_BLOCK_CHAN; 7309 un->un_ctype = CTYPE_CCS; 7310 break; 7311 } 7312 7313 /* 7314 * Try to read the interconnect type from the HBA. 7315 * 7316 * Note: This driver is currently compiled as two binaries, a parallel 7317 * scsi version (sd) and a fibre channel version (ssd). All functional 7318 * differences are determined at compile time. In the future a single 7319 * binary will be provided and the interconnect type will be used to 7320 * differentiate between fibre and parallel scsi behaviors. At that time 7321 * it will be necessary for all fibre channel HBAs to support this 7322 * property. 7323 * 7324 * set un_f_is_fiber to TRUE ( default fiber ) 7325 */ 7326 un->un_f_is_fibre = TRUE; 7327 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7328 case INTERCONNECT_SSA: 7329 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7330 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7331 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7332 break; 7333 case INTERCONNECT_PARALLEL: 7334 un->un_f_is_fibre = FALSE; 7335 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7336 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7337 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7338 break; 7339 case INTERCONNECT_SAS: 7340 un->un_f_is_fibre = FALSE; 7341 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7342 un->un_node_type = DDI_NT_BLOCK_SAS; 7343 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7344 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7345 break; 7346 case INTERCONNECT_SATA: 7347 un->un_f_is_fibre = FALSE; 7348 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7349 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7350 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7351 break; 7352 case INTERCONNECT_FIBRE: 7353 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7355 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7356 break; 7357 case INTERCONNECT_FABRIC: 7358 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7359 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7360 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7361 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7362 break; 7363 default: 7364 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7365 /* 7366 * The HBA does not support the "interconnect-type" property 7367 * (or did not provide a recognized type). 7368 * 7369 * Note: This will be obsoleted when a single fibre channel 7370 * and parallel scsi driver is delivered. In the meantime the 7371 * interconnect type will be set to the platform default.If that 7372 * type is not parallel SCSI, it means that we should be 7373 * assuming "ssd" semantics. However, here this also means that 7374 * the FC HBA is not supporting the "interconnect-type" property 7375 * like we expect it to, so log this occurrence. 7376 */ 7377 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7378 if (!SD_IS_PARALLEL_SCSI(un)) { 7379 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7380 "sd_unit_attach: un:0x%p Assuming " 7381 "INTERCONNECT_FIBRE\n", un); 7382 } else { 7383 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7384 "sd_unit_attach: un:0x%p Assuming " 7385 "INTERCONNECT_PARALLEL\n", un); 7386 un->un_f_is_fibre = FALSE; 7387 } 7388 #else 7389 /* 7390 * Note: This source will be implemented when a single fibre 7391 * channel and parallel scsi driver is delivered. The default 7392 * will be to assume that if a device does not support the 7393 * "interconnect-type" property it is a parallel SCSI HBA and 7394 * we will set the interconnect type for parallel scsi. 7395 */ 7396 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7397 un->un_f_is_fibre = FALSE; 7398 #endif 7399 break; 7400 } 7401 7402 if (un->un_f_is_fibre == TRUE) { 7403 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7404 SCSI_VERSION_3) { 7405 switch (un->un_interconnect_type) { 7406 case SD_INTERCONNECT_FIBRE: 7407 case SD_INTERCONNECT_SSA: 7408 un->un_node_type = DDI_NT_BLOCK_WWN; 7409 break; 7410 default: 7411 break; 7412 } 7413 } 7414 } 7415 7416 /* 7417 * Initialize the Request Sense command for the target 7418 */ 7419 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7420 goto alloc_rqs_failed; 7421 } 7422 7423 /* 7424 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7425 * with separate binary for sd and ssd. 7426 * 7427 * x86 has 1 binary, un_retry_count is set base on connection type. 7428 * The hardcoded values will go away when Sparc uses 1 binary 7429 * for sd and ssd. This hardcoded values need to match 7430 * SD_RETRY_COUNT in sddef.h 7431 * The value used is base on interconnect type. 7432 * fibre = 3, parallel = 5 7433 */ 7434 #if defined(__i386) || defined(__amd64) 7435 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7436 #else 7437 un->un_retry_count = SD_RETRY_COUNT; 7438 #endif 7439 7440 /* 7441 * Set the per disk retry count to the default number of retries 7442 * for disks and CDROMs. This value can be overridden by the 7443 * disk property list or an entry in sd.conf. 7444 */ 7445 un->un_notready_retry_count = 7446 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7447 : DISK_NOT_READY_RETRY_COUNT(un); 7448 7449 /* 7450 * Set the busy retry count to the default value of un_retry_count. 7451 * This can be overridden by entries in sd.conf or the device 7452 * config table. 7453 */ 7454 un->un_busy_retry_count = un->un_retry_count; 7455 7456 /* 7457 * Init the reset threshold for retries. This number determines 7458 * how many retries must be performed before a reset can be issued 7459 * (for certain error conditions). This can be overridden by entries 7460 * in sd.conf or the device config table. 7461 */ 7462 un->un_reset_retry_count = (un->un_retry_count / 2); 7463 7464 /* 7465 * Set the victim_retry_count to the default un_retry_count 7466 */ 7467 un->un_victim_retry_count = (2 * un->un_retry_count); 7468 7469 /* 7470 * Set the reservation release timeout to the default value of 7471 * 5 seconds. This can be overridden by entries in ssd.conf or the 7472 * device config table. 7473 */ 7474 un->un_reserve_release_time = 5; 7475 7476 /* 7477 * Set up the default maximum transfer size. Note that this may 7478 * get updated later in the attach, when setting up default wide 7479 * operations for disks. 7480 */ 7481 #if defined(__i386) || defined(__amd64) 7482 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7483 un->un_partial_dma_supported = 1; 7484 #else 7485 un->un_max_xfer_size = (uint_t)maxphys; 7486 #endif 7487 7488 /* 7489 * Get "allow bus device reset" property (defaults to "enabled" if 7490 * the property was not defined). This is to disable bus resets for 7491 * certain kinds of error recovery. Note: In the future when a run-time 7492 * fibre check is available the soft state flag should default to 7493 * enabled. 7494 */ 7495 if (un->un_f_is_fibre == TRUE) { 7496 un->un_f_allow_bus_device_reset = TRUE; 7497 } else { 7498 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7499 "allow-bus-device-reset", 1) != 0) { 7500 un->un_f_allow_bus_device_reset = TRUE; 7501 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7502 "sd_unit_attach: un:0x%p Bus device reset " 7503 "enabled\n", un); 7504 } else { 7505 un->un_f_allow_bus_device_reset = FALSE; 7506 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7507 "sd_unit_attach: un:0x%p Bus device reset " 7508 "disabled\n", un); 7509 } 7510 } 7511 7512 /* 7513 * Check if this is an ATAPI device. ATAPI devices use Group 1 7514 * Read/Write commands and Group 2 Mode Sense/Select commands. 7515 * 7516 * Note: The "obsolete" way of doing this is to check for the "atapi" 7517 * property. The new "variant" property with a value of "atapi" has been 7518 * introduced so that future 'variants' of standard SCSI behavior (like 7519 * atapi) could be specified by the underlying HBA drivers by supplying 7520 * a new value for the "variant" property, instead of having to define a 7521 * new property. 7522 */ 7523 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7524 un->un_f_cfg_is_atapi = TRUE; 7525 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7526 "sd_unit_attach: un:0x%p Atapi device\n", un); 7527 } 7528 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7529 &variantp) == DDI_PROP_SUCCESS) { 7530 if (strcmp(variantp, "atapi") == 0) { 7531 un->un_f_cfg_is_atapi = TRUE; 7532 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7533 "sd_unit_attach: un:0x%p Atapi device\n", un); 7534 } 7535 ddi_prop_free(variantp); 7536 } 7537 7538 un->un_cmd_timeout = SD_IO_TIME; 7539 7540 un->un_busy_timeout = SD_BSY_TIMEOUT; 7541 7542 /* Info on current states, statuses, etc. (Updated frequently) */ 7543 un->un_state = SD_STATE_NORMAL; 7544 un->un_last_state = SD_STATE_NORMAL; 7545 7546 /* Control & status info for command throttling */ 7547 un->un_throttle = sd_max_throttle; 7548 un->un_saved_throttle = sd_max_throttle; 7549 un->un_min_throttle = sd_min_throttle; 7550 7551 if (un->un_f_is_fibre == TRUE) { 7552 un->un_f_use_adaptive_throttle = TRUE; 7553 } else { 7554 un->un_f_use_adaptive_throttle = FALSE; 7555 } 7556 7557 /* Removable media support. */ 7558 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7559 un->un_mediastate = DKIO_NONE; 7560 un->un_specified_mediastate = DKIO_NONE; 7561 7562 /* CVs for suspend/resume (PM or DR) */ 7563 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7564 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7565 7566 /* Power management support. */ 7567 un->un_power_level = SD_SPINDLE_UNINIT; 7568 7569 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7570 un->un_f_wcc_inprog = 0; 7571 7572 /* 7573 * The open/close semaphore is used to serialize threads executing 7574 * in the driver's open & close entry point routines for a given 7575 * instance. 7576 */ 7577 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7578 7579 /* 7580 * The conf file entry and softstate variable is a forceful override, 7581 * meaning a non-zero value must be entered to change the default. 7582 */ 7583 un->un_f_disksort_disabled = FALSE; 7584 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7585 7586 /* 7587 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but 7588 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property. 7589 */ 7590 un->un_f_mmc_gesn_polling = TRUE; 7591 7592 /* 7593 * Retrieve the properties from the static driver table or the driver 7594 * configuration file (.conf) for this unit and update the soft state 7595 * for the device as needed for the indicated properties. 7596 * Note: the property configuration needs to occur here as some of the 7597 * following routines may have dependencies on soft state flags set 7598 * as part of the driver property configuration. 7599 */ 7600 sd_read_unit_properties(un); 7601 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7602 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7603 7604 /* 7605 * Only if a device has "hotpluggable" property, it is 7606 * treated as hotpluggable device. Otherwise, it is 7607 * regarded as non-hotpluggable one. 7608 */ 7609 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7610 -1) != -1) { 7611 un->un_f_is_hotpluggable = TRUE; 7612 } 7613 7614 /* 7615 * set unit's attributes(flags) according to "hotpluggable" and 7616 * RMB bit in INQUIRY data. 7617 */ 7618 sd_set_unit_attributes(un, devi); 7619 7620 /* 7621 * By default, we mark the capacity, lbasize, and geometry 7622 * as invalid. Only if we successfully read a valid capacity 7623 * will we update the un_blockcount and un_tgt_blocksize with the 7624 * valid values (the geometry will be validated later). 7625 */ 7626 un->un_f_blockcount_is_valid = FALSE; 7627 un->un_f_tgt_blocksize_is_valid = FALSE; 7628 7629 /* 7630 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7631 * otherwise. 7632 */ 7633 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7634 un->un_blockcount = 0; 7635 7636 /* 7637 * Set up the per-instance info needed to determine the correct 7638 * CDBs and other info for issuing commands to the target. 7639 */ 7640 sd_init_cdb_limits(un); 7641 7642 /* 7643 * Set up the IO chains to use, based upon the target type. 7644 */ 7645 if (un->un_f_non_devbsize_supported) { 7646 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7647 } else { 7648 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7649 } 7650 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7651 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7652 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7653 7654 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7655 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7656 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7657 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7658 7659 7660 if (ISCD(un)) { 7661 un->un_additional_codes = sd_additional_codes; 7662 } else { 7663 un->un_additional_codes = NULL; 7664 } 7665 7666 /* 7667 * Create the kstats here so they can be available for attach-time 7668 * routines that send commands to the unit (either polled or via 7669 * sd_send_scsi_cmd). 7670 * 7671 * Note: This is a critical sequence that needs to be maintained: 7672 * 1) Instantiate the kstats here, before any routines using the 7673 * iopath (i.e. sd_send_scsi_cmd). 7674 * 2) Instantiate and initialize the partition stats 7675 * (sd_set_pstats). 7676 * 3) Initialize the error stats (sd_set_errstats), following 7677 * sd_validate_geometry(),sd_register_devid(), 7678 * and sd_cache_control(). 7679 */ 7680 7681 un->un_stats = kstat_create(sd_label, instance, 7682 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7683 if (un->un_stats != NULL) { 7684 un->un_stats->ks_lock = SD_MUTEX(un); 7685 kstat_install(un->un_stats); 7686 } 7687 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7688 "sd_unit_attach: un:0x%p un_stats created\n", un); 7689 7690 sd_create_errstats(un, instance); 7691 if (un->un_errstats == NULL) { 7692 goto create_errstats_failed; 7693 } 7694 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7695 "sd_unit_attach: un:0x%p errstats created\n", un); 7696 7697 /* 7698 * The following if/else code was relocated here from below as part 7699 * of the fix for bug (4430280). However with the default setup added 7700 * on entry to this routine, it's no longer absolutely necessary for 7701 * this to be before the call to sd_spin_up_unit. 7702 */ 7703 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7704 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7705 (devp->sd_inq->inq_ansi == 5)) && 7706 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7707 7708 /* 7709 * If tagged queueing is supported by the target 7710 * and by the host adapter then we will enable it 7711 */ 7712 un->un_tagflags = 0; 7713 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7714 (un->un_f_arq_enabled == TRUE)) { 7715 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7716 1, 1) == 1) { 7717 un->un_tagflags = FLAG_STAG; 7718 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7719 "sd_unit_attach: un:0x%p tag queueing " 7720 "enabled\n", un); 7721 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7722 "untagged-qing", 0) == 1) { 7723 un->un_f_opt_queueing = TRUE; 7724 un->un_saved_throttle = un->un_throttle = 7725 min(un->un_throttle, 3); 7726 } else { 7727 un->un_f_opt_queueing = FALSE; 7728 un->un_saved_throttle = un->un_throttle = 1; 7729 } 7730 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7731 == 1) && (un->un_f_arq_enabled == TRUE)) { 7732 /* The Host Adapter supports internal queueing. */ 7733 un->un_f_opt_queueing = TRUE; 7734 un->un_saved_throttle = un->un_throttle = 7735 min(un->un_throttle, 3); 7736 } else { 7737 un->un_f_opt_queueing = FALSE; 7738 un->un_saved_throttle = un->un_throttle = 1; 7739 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7740 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7741 } 7742 7743 /* 7744 * Enable large transfers for SATA/SAS drives 7745 */ 7746 if (SD_IS_SERIAL(un)) { 7747 un->un_max_xfer_size = 7748 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7749 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7750 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7751 "sd_unit_attach: un:0x%p max transfer " 7752 "size=0x%x\n", un, un->un_max_xfer_size); 7753 7754 } 7755 7756 /* Setup or tear down default wide operations for disks */ 7757 7758 /* 7759 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7760 * and "ssd_max_xfer_size" to exist simultaneously on the same 7761 * system and be set to different values. In the future this 7762 * code may need to be updated when the ssd module is 7763 * obsoleted and removed from the system. (4299588) 7764 */ 7765 if (SD_IS_PARALLEL_SCSI(un) && 7766 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7767 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7768 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7769 1, 1) == 1) { 7770 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7771 "sd_unit_attach: un:0x%p Wide Transfer " 7772 "enabled\n", un); 7773 } 7774 7775 /* 7776 * If tagged queuing has also been enabled, then 7777 * enable large xfers 7778 */ 7779 if (un->un_saved_throttle == sd_max_throttle) { 7780 un->un_max_xfer_size = 7781 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7782 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7783 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7784 "sd_unit_attach: un:0x%p max transfer " 7785 "size=0x%x\n", un, un->un_max_xfer_size); 7786 } 7787 } else { 7788 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7789 0, 1) == 1) { 7790 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7791 "sd_unit_attach: un:0x%p " 7792 "Wide Transfer disabled\n", un); 7793 } 7794 } 7795 } else { 7796 un->un_tagflags = FLAG_STAG; 7797 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7798 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7799 } 7800 7801 /* 7802 * If this target supports LUN reset, try to enable it. 7803 */ 7804 if (un->un_f_lun_reset_enabled) { 7805 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7806 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7807 "un:0x%p lun_reset capability set\n", un); 7808 } else { 7809 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7810 "un:0x%p lun-reset capability not set\n", un); 7811 } 7812 } 7813 7814 /* 7815 * Adjust the maximum transfer size. This is to fix 7816 * the problem of partial DMA support on SPARC. Some 7817 * HBA driver, like aac, has very small dma_attr_maxxfer 7818 * size, which requires partial DMA support on SPARC. 7819 * In the future the SPARC pci nexus driver may solve 7820 * the problem instead of this fix. 7821 */ 7822 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7823 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7824 /* We need DMA partial even on sparc to ensure sddump() works */ 7825 un->un_max_xfer_size = max_xfer_size; 7826 if (un->un_partial_dma_supported == 0) 7827 un->un_partial_dma_supported = 1; 7828 } 7829 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7830 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 7831 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 7832 un->un_max_xfer_size) == 1) { 7833 un->un_buf_breakup_supported = 1; 7834 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7835 "un:0x%p Buf breakup enabled\n", un); 7836 } 7837 } 7838 7839 /* 7840 * Set PKT_DMA_PARTIAL flag. 7841 */ 7842 if (un->un_partial_dma_supported == 1) { 7843 un->un_pkt_flags = PKT_DMA_PARTIAL; 7844 } else { 7845 un->un_pkt_flags = 0; 7846 } 7847 7848 /* Initialize sd_ssc_t for internal uscsi commands */ 7849 ssc = sd_ssc_init(un); 7850 scsi_fm_init(devp); 7851 7852 /* 7853 * Allocate memory for SCSI FMA stuffs. 7854 */ 7855 un->un_fm_private = 7856 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7857 sfip = (struct sd_fm_internal *)un->un_fm_private; 7858 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7859 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7860 sfip->fm_ssc.ssc_un = un; 7861 7862 if (ISCD(un) || 7863 un->un_f_has_removable_media || 7864 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7865 /* 7866 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7867 * Their log are unchanged. 7868 */ 7869 sfip->fm_log_level = SD_FM_LOG_NSUP; 7870 } else { 7871 /* 7872 * If enter here, it should be non-CDROM and FM-capable 7873 * device, and it will not keep the old scsi_log as before 7874 * in /var/adm/messages. However, the property 7875 * "fm-scsi-log" will control whether the FM telemetry will 7876 * be logged in /var/adm/messages. 7877 */ 7878 int fm_scsi_log; 7879 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7880 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7881 7882 if (fm_scsi_log) 7883 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7884 else 7885 sfip->fm_log_level = SD_FM_LOG_SILENT; 7886 } 7887 7888 /* 7889 * At this point in the attach, we have enough info in the 7890 * soft state to be able to issue commands to the target. 7891 * 7892 * All command paths used below MUST issue their commands as 7893 * SD_PATH_DIRECT. This is important as intermediate layers 7894 * are not all initialized yet (such as PM). 7895 */ 7896 7897 /* 7898 * Send a TEST UNIT READY command to the device. This should clear 7899 * any outstanding UNIT ATTENTION that may be present. 7900 * 7901 * Note: Don't check for success, just track if there is a reservation, 7902 * this is a throw away command to clear any unit attentions. 7903 * 7904 * Note: This MUST be the first command issued to the target during 7905 * attach to ensure power on UNIT ATTENTIONS are cleared. 7906 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7907 * with attempts at spinning up a device with no media. 7908 */ 7909 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7910 if (status != 0) { 7911 if (status == EACCES) 7912 reservation_flag = SD_TARGET_IS_RESERVED; 7913 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7914 } 7915 7916 /* 7917 * If the device is NOT a removable media device, attempt to spin 7918 * it up (using the START_STOP_UNIT command) and read its capacity 7919 * (using the READ CAPACITY command). Note, however, that either 7920 * of these could fail and in some cases we would continue with 7921 * the attach despite the failure (see below). 7922 */ 7923 if (un->un_f_descr_format_supported) { 7924 7925 switch (sd_spin_up_unit(ssc)) { 7926 case 0: 7927 /* 7928 * Spin-up was successful; now try to read the 7929 * capacity. If successful then save the results 7930 * and mark the capacity & lbasize as valid. 7931 */ 7932 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7933 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7934 7935 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7936 &lbasize, SD_PATH_DIRECT); 7937 7938 switch (status) { 7939 case 0: { 7940 if (capacity > DK_MAX_BLOCKS) { 7941 #ifdef _LP64 7942 if ((capacity + 1) > 7943 SD_GROUP1_MAX_ADDRESS) { 7944 /* 7945 * Enable descriptor format 7946 * sense data so that we can 7947 * get 64 bit sense data 7948 * fields. 7949 */ 7950 sd_enable_descr_sense(ssc); 7951 } 7952 #else 7953 /* 32-bit kernels can't handle this */ 7954 scsi_log(SD_DEVINFO(un), 7955 sd_label, CE_WARN, 7956 "disk has %llu blocks, which " 7957 "is too large for a 32-bit " 7958 "kernel", capacity); 7959 7960 #if defined(__i386) || defined(__amd64) 7961 /* 7962 * 1TB disk was treated as (1T - 512)B 7963 * in the past, so that it might have 7964 * valid VTOC and solaris partitions, 7965 * we have to allow it to continue to 7966 * work. 7967 */ 7968 if (capacity -1 > DK_MAX_BLOCKS) 7969 #endif 7970 goto spinup_failed; 7971 #endif 7972 } 7973 7974 /* 7975 * Here it's not necessary to check the case: 7976 * the capacity of the device is bigger than 7977 * what the max hba cdb can support. Because 7978 * sd_send_scsi_READ_CAPACITY will retrieve 7979 * the capacity by sending USCSI command, which 7980 * is constrained by the max hba cdb. Actually, 7981 * sd_send_scsi_READ_CAPACITY will return 7982 * EINVAL when using bigger cdb than required 7983 * cdb length. Will handle this case in 7984 * "case EINVAL". 7985 */ 7986 7987 /* 7988 * The following relies on 7989 * sd_send_scsi_READ_CAPACITY never 7990 * returning 0 for capacity and/or lbasize. 7991 */ 7992 sd_update_block_info(un, lbasize, capacity); 7993 7994 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7995 "sd_unit_attach: un:0x%p capacity = %ld " 7996 "blocks; lbasize= %ld.\n", un, 7997 un->un_blockcount, un->un_tgt_blocksize); 7998 7999 break; 8000 } 8001 case EINVAL: 8002 /* 8003 * In the case where the max-cdb-length property 8004 * is smaller than the required CDB length for 8005 * a SCSI device, a target driver can fail to 8006 * attach to that device. 8007 */ 8008 scsi_log(SD_DEVINFO(un), 8009 sd_label, CE_WARN, 8010 "disk capacity is too large " 8011 "for current cdb length"); 8012 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8013 8014 goto spinup_failed; 8015 case EACCES: 8016 /* 8017 * Should never get here if the spin-up 8018 * succeeded, but code it in anyway. 8019 * From here, just continue with the attach... 8020 */ 8021 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8022 "sd_unit_attach: un:0x%p " 8023 "sd_send_scsi_READ_CAPACITY " 8024 "returned reservation conflict\n", un); 8025 reservation_flag = SD_TARGET_IS_RESERVED; 8026 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8027 break; 8028 default: 8029 /* 8030 * Likewise, should never get here if the 8031 * spin-up succeeded. Just continue with 8032 * the attach... 8033 */ 8034 if (status == EIO) 8035 sd_ssc_assessment(ssc, 8036 SD_FMT_STATUS_CHECK); 8037 else 8038 sd_ssc_assessment(ssc, 8039 SD_FMT_IGNORE); 8040 break; 8041 } 8042 break; 8043 case EACCES: 8044 /* 8045 * Device is reserved by another host. In this case 8046 * we could not spin it up or read the capacity, but 8047 * we continue with the attach anyway. 8048 */ 8049 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8050 "sd_unit_attach: un:0x%p spin-up reservation " 8051 "conflict.\n", un); 8052 reservation_flag = SD_TARGET_IS_RESERVED; 8053 break; 8054 default: 8055 /* Fail the attach if the spin-up failed. */ 8056 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8057 "sd_unit_attach: un:0x%p spin-up failed.", un); 8058 goto spinup_failed; 8059 } 8060 8061 } 8062 8063 /* 8064 * Check to see if this is a MMC drive 8065 */ 8066 if (ISCD(un)) { 8067 sd_set_mmc_caps(ssc); 8068 } 8069 8070 /* 8071 * Add a zero-length attribute to tell the world we support 8072 * kernel ioctls (for layered drivers) 8073 */ 8074 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8075 DDI_KERNEL_IOCTL, NULL, 0); 8076 8077 /* 8078 * Add a boolean property to tell the world we support 8079 * the B_FAILFAST flag (for layered drivers) 8080 */ 8081 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8082 "ddi-failfast-supported", NULL, 0); 8083 8084 /* 8085 * Initialize power management 8086 */ 8087 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8088 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8089 sd_setup_pm(ssc, devi); 8090 if (un->un_f_pm_is_enabled == FALSE) { 8091 /* 8092 * For performance, point to a jump table that does 8093 * not include pm. 8094 * The direct and priority chains don't change with PM. 8095 * 8096 * Note: this is currently done based on individual device 8097 * capabilities. When an interface for determining system 8098 * power enabled state becomes available, or when additional 8099 * layers are added to the command chain, these values will 8100 * have to be re-evaluated for correctness. 8101 */ 8102 if (un->un_f_non_devbsize_supported) { 8103 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8104 } else { 8105 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8106 } 8107 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8108 } 8109 8110 /* 8111 * This property is set to 0 by HA software to avoid retries 8112 * on a reserved disk. (The preferred property name is 8113 * "retry-on-reservation-conflict") (1189689) 8114 * 8115 * Note: The use of a global here can have unintended consequences. A 8116 * per instance variable is preferable to match the capabilities of 8117 * different underlying hba's (4402600) 8118 */ 8119 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8120 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8121 sd_retry_on_reservation_conflict); 8122 if (sd_retry_on_reservation_conflict != 0) { 8123 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8124 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8125 sd_retry_on_reservation_conflict); 8126 } 8127 8128 /* Set up options for QFULL handling. */ 8129 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8130 "qfull-retries", -1)) != -1) { 8131 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8132 rval, 1); 8133 } 8134 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8135 "qfull-retry-interval", -1)) != -1) { 8136 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8137 rval, 1); 8138 } 8139 8140 /* 8141 * This just prints a message that announces the existence of the 8142 * device. The message is always printed in the system logfile, but 8143 * only appears on the console if the system is booted with the 8144 * -v (verbose) argument. 8145 */ 8146 ddi_report_dev(devi); 8147 8148 un->un_mediastate = DKIO_NONE; 8149 8150 /* 8151 * Check if this is a SSD(Solid State Drive). 8152 */ 8153 sd_check_solid_state(ssc); 8154 8155 cmlb_alloc_handle(&un->un_cmlbhandle); 8156 8157 #if defined(__i386) || defined(__amd64) 8158 /* 8159 * On x86, compensate for off-by-1 legacy error 8160 */ 8161 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8162 (lbasize == un->un_sys_blocksize)) 8163 offbyone = CMLB_OFF_BY_ONE; 8164 #endif 8165 8166 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8167 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8168 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8169 un->un_node_type, offbyone, un->un_cmlbhandle, 8170 (void *)SD_PATH_DIRECT) != 0) { 8171 goto cmlb_attach_failed; 8172 } 8173 8174 8175 /* 8176 * Read and validate the device's geometry (ie, disk label) 8177 * A new unformatted drive will not have a valid geometry, but 8178 * the driver needs to successfully attach to this device so 8179 * the drive can be formatted via ioctls. 8180 */ 8181 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8182 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8183 8184 mutex_enter(SD_MUTEX(un)); 8185 8186 /* 8187 * Read and initialize the devid for the unit. 8188 */ 8189 if (un->un_f_devid_supported) { 8190 sd_register_devid(ssc, devi, reservation_flag); 8191 } 8192 mutex_exit(SD_MUTEX(un)); 8193 8194 #if (defined(__fibre)) 8195 /* 8196 * Register callbacks for fibre only. You can't do this solely 8197 * on the basis of the devid_type because this is hba specific. 8198 * We need to query our hba capabilities to find out whether to 8199 * register or not. 8200 */ 8201 if (un->un_f_is_fibre) { 8202 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8203 sd_init_event_callbacks(un); 8204 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8205 "sd_unit_attach: un:0x%p event callbacks inserted", 8206 un); 8207 } 8208 } 8209 #endif 8210 8211 if (un->un_f_opt_disable_cache == TRUE) { 8212 /* 8213 * Disable both read cache and write cache. This is 8214 * the historic behavior of the keywords in the config file. 8215 */ 8216 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8217 0) { 8218 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8219 "sd_unit_attach: un:0x%p Could not disable " 8220 "caching", un); 8221 goto devid_failed; 8222 } 8223 } 8224 8225 /* 8226 * Check the value of the WCE bit now and 8227 * set un_f_write_cache_enabled accordingly. 8228 */ 8229 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8230 mutex_enter(SD_MUTEX(un)); 8231 un->un_f_write_cache_enabled = (wc_enabled != 0); 8232 mutex_exit(SD_MUTEX(un)); 8233 8234 if (un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8235 un->un_tgt_blocksize != DEV_BSIZE) { 8236 if (!(un->un_wm_cache)) { 8237 (void) snprintf(name_str, sizeof (name_str), 8238 "%s%d_cache", 8239 ddi_driver_name(SD_DEVINFO(un)), 8240 ddi_get_instance(SD_DEVINFO(un))); 8241 un->un_wm_cache = kmem_cache_create( 8242 name_str, sizeof (struct sd_w_map), 8243 8, sd_wm_cache_constructor, 8244 sd_wm_cache_destructor, NULL, 8245 (void *)un, NULL, 0); 8246 if (!(un->un_wm_cache)) { 8247 goto wm_cache_failed; 8248 } 8249 } 8250 } 8251 8252 /* 8253 * Check the value of the NV_SUP bit and set 8254 * un_f_suppress_cache_flush accordingly. 8255 */ 8256 sd_get_nv_sup(ssc); 8257 8258 /* 8259 * Find out what type of reservation this disk supports. 8260 */ 8261 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8262 8263 switch (status) { 8264 case 0: 8265 /* 8266 * SCSI-3 reservations are supported. 8267 */ 8268 un->un_reservation_type = SD_SCSI3_RESERVATION; 8269 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8270 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8271 break; 8272 case ENOTSUP: 8273 /* 8274 * The PERSISTENT RESERVE IN command would not be recognized by 8275 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8276 */ 8277 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8278 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8279 un->un_reservation_type = SD_SCSI2_RESERVATION; 8280 8281 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8282 break; 8283 default: 8284 /* 8285 * default to SCSI-3 reservations 8286 */ 8287 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8288 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8289 un->un_reservation_type = SD_SCSI3_RESERVATION; 8290 8291 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8292 break; 8293 } 8294 8295 /* 8296 * Set the pstat and error stat values here, so data obtained during the 8297 * previous attach-time routines is available. 8298 * 8299 * Note: This is a critical sequence that needs to be maintained: 8300 * 1) Instantiate the kstats before any routines using the iopath 8301 * (i.e. sd_send_scsi_cmd). 8302 * 2) Initialize the error stats (sd_set_errstats) and partition 8303 * stats (sd_set_pstats)here, following 8304 * cmlb_validate_geometry(), sd_register_devid(), and 8305 * sd_cache_control(). 8306 */ 8307 8308 if (un->un_f_pkstats_enabled && geom_label_valid) { 8309 sd_set_pstats(un); 8310 SD_TRACE(SD_LOG_IO_PARTITION, un, 8311 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8312 } 8313 8314 sd_set_errstats(un); 8315 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8316 "sd_unit_attach: un:0x%p errstats set\n", un); 8317 8318 8319 /* 8320 * After successfully attaching an instance, we record the information 8321 * of how many luns have been attached on the relative target and 8322 * controller for parallel SCSI. This information is used when sd tries 8323 * to set the tagged queuing capability in HBA. 8324 */ 8325 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8326 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8327 } 8328 8329 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8330 "sd_unit_attach: un:0x%p exit success\n", un); 8331 8332 /* Uninitialize sd_ssc_t pointer */ 8333 sd_ssc_fini(ssc); 8334 8335 return (DDI_SUCCESS); 8336 8337 /* 8338 * An error occurred during the attach; clean up & return failure. 8339 */ 8340 wm_cache_failed: 8341 devid_failed: 8342 8343 setup_pm_failed: 8344 ddi_remove_minor_node(devi, NULL); 8345 8346 cmlb_attach_failed: 8347 /* 8348 * Cleanup from the scsi_ifsetcap() calls (437868) 8349 */ 8350 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8351 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8352 8353 /* 8354 * Refer to the comments of setting tagged-qing in the beginning of 8355 * sd_unit_attach. We can only disable tagged queuing when there is 8356 * no lun attached on the target. 8357 */ 8358 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8359 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8360 } 8361 8362 if (un->un_f_is_fibre == FALSE) { 8363 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8364 } 8365 8366 spinup_failed: 8367 8368 /* Uninitialize sd_ssc_t pointer */ 8369 sd_ssc_fini(ssc); 8370 8371 mutex_enter(SD_MUTEX(un)); 8372 8373 /* Deallocate SCSI FMA memory spaces */ 8374 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8375 8376 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8377 if (un->un_direct_priority_timeid != NULL) { 8378 timeout_id_t temp_id = un->un_direct_priority_timeid; 8379 un->un_direct_priority_timeid = NULL; 8380 mutex_exit(SD_MUTEX(un)); 8381 (void) untimeout(temp_id); 8382 mutex_enter(SD_MUTEX(un)); 8383 } 8384 8385 /* Cancel any pending start/stop timeouts */ 8386 if (un->un_startstop_timeid != NULL) { 8387 timeout_id_t temp_id = un->un_startstop_timeid; 8388 un->un_startstop_timeid = NULL; 8389 mutex_exit(SD_MUTEX(un)); 8390 (void) untimeout(temp_id); 8391 mutex_enter(SD_MUTEX(un)); 8392 } 8393 8394 /* Cancel any pending reset-throttle timeouts */ 8395 if (un->un_reset_throttle_timeid != NULL) { 8396 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8397 un->un_reset_throttle_timeid = NULL; 8398 mutex_exit(SD_MUTEX(un)); 8399 (void) untimeout(temp_id); 8400 mutex_enter(SD_MUTEX(un)); 8401 } 8402 8403 /* Cancel rmw warning message timeouts */ 8404 if (un->un_rmw_msg_timeid != NULL) { 8405 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8406 un->un_rmw_msg_timeid = NULL; 8407 mutex_exit(SD_MUTEX(un)); 8408 (void) untimeout(temp_id); 8409 mutex_enter(SD_MUTEX(un)); 8410 } 8411 8412 /* Cancel any pending retry timeouts */ 8413 if (un->un_retry_timeid != NULL) { 8414 timeout_id_t temp_id = un->un_retry_timeid; 8415 un->un_retry_timeid = NULL; 8416 mutex_exit(SD_MUTEX(un)); 8417 (void) untimeout(temp_id); 8418 mutex_enter(SD_MUTEX(un)); 8419 } 8420 8421 /* Cancel any pending delayed cv broadcast timeouts */ 8422 if (un->un_dcvb_timeid != NULL) { 8423 timeout_id_t temp_id = un->un_dcvb_timeid; 8424 un->un_dcvb_timeid = NULL; 8425 mutex_exit(SD_MUTEX(un)); 8426 (void) untimeout(temp_id); 8427 mutex_enter(SD_MUTEX(un)); 8428 } 8429 8430 mutex_exit(SD_MUTEX(un)); 8431 8432 /* There should not be any in-progress I/O so ASSERT this check */ 8433 ASSERT(un->un_ncmds_in_transport == 0); 8434 ASSERT(un->un_ncmds_in_driver == 0); 8435 8436 /* Do not free the softstate if the callback routine is active */ 8437 sd_sync_with_callback(un); 8438 8439 /* 8440 * Partition stats apparently are not used with removables. These would 8441 * not have been created during attach, so no need to clean them up... 8442 */ 8443 if (un->un_errstats != NULL) { 8444 kstat_delete(un->un_errstats); 8445 un->un_errstats = NULL; 8446 } 8447 8448 create_errstats_failed: 8449 8450 if (un->un_stats != NULL) { 8451 kstat_delete(un->un_stats); 8452 un->un_stats = NULL; 8453 } 8454 8455 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8456 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8457 8458 ddi_prop_remove_all(devi); 8459 sema_destroy(&un->un_semoclose); 8460 cv_destroy(&un->un_state_cv); 8461 8462 getrbuf_failed: 8463 8464 sd_free_rqs(un); 8465 8466 alloc_rqs_failed: 8467 8468 devp->sd_private = NULL; 8469 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8470 8471 get_softstate_failed: 8472 /* 8473 * Note: the man pages are unclear as to whether or not doing a 8474 * ddi_soft_state_free(sd_state, instance) is the right way to 8475 * clean up after the ddi_soft_state_zalloc() if the subsequent 8476 * ddi_get_soft_state() fails. The implication seems to be 8477 * that the get_soft_state cannot fail if the zalloc succeeds. 8478 */ 8479 #ifndef XPV_HVM_DRIVER 8480 ddi_soft_state_free(sd_state, instance); 8481 #endif /* !XPV_HVM_DRIVER */ 8482 8483 probe_failed: 8484 scsi_unprobe(devp); 8485 8486 return (DDI_FAILURE); 8487 } 8488 8489 8490 /* 8491 * Function: sd_unit_detach 8492 * 8493 * Description: Performs DDI_DETACH processing for sddetach(). 8494 * 8495 * Return Code: DDI_SUCCESS 8496 * DDI_FAILURE 8497 * 8498 * Context: Kernel thread context 8499 */ 8500 8501 static int 8502 sd_unit_detach(dev_info_t *devi) 8503 { 8504 struct scsi_device *devp; 8505 struct sd_lun *un; 8506 int i; 8507 int tgt; 8508 dev_t dev; 8509 dev_info_t *pdip = ddi_get_parent(devi); 8510 #ifndef XPV_HVM_DRIVER 8511 int instance = ddi_get_instance(devi); 8512 #endif /* !XPV_HVM_DRIVER */ 8513 8514 mutex_enter(&sd_detach_mutex); 8515 8516 /* 8517 * Fail the detach for any of the following: 8518 * - Unable to get the sd_lun struct for the instance 8519 * - A layered driver has an outstanding open on the instance 8520 * - Another thread is already detaching this instance 8521 * - Another thread is currently performing an open 8522 */ 8523 devp = ddi_get_driver_private(devi); 8524 if ((devp == NULL) || 8525 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8526 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8527 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8528 mutex_exit(&sd_detach_mutex); 8529 return (DDI_FAILURE); 8530 } 8531 8532 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8533 8534 /* 8535 * Mark this instance as currently in a detach, to inhibit any 8536 * opens from a layered driver. 8537 */ 8538 un->un_detach_count++; 8539 mutex_exit(&sd_detach_mutex); 8540 8541 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8542 SCSI_ADDR_PROP_TARGET, -1); 8543 8544 dev = sd_make_device(SD_DEVINFO(un)); 8545 8546 #ifndef lint 8547 _NOTE(COMPETING_THREADS_NOW); 8548 #endif 8549 8550 mutex_enter(SD_MUTEX(un)); 8551 8552 /* 8553 * Fail the detach if there are any outstanding layered 8554 * opens on this device. 8555 */ 8556 for (i = 0; i < NDKMAP; i++) { 8557 if (un->un_ocmap.lyropen[i] != 0) { 8558 goto err_notclosed; 8559 } 8560 } 8561 8562 /* 8563 * Verify there are NO outstanding commands issued to this device. 8564 * ie, un_ncmds_in_transport == 0. 8565 * It's possible to have outstanding commands through the physio 8566 * code path, even though everything's closed. 8567 */ 8568 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8569 (un->un_direct_priority_timeid != NULL) || 8570 (un->un_state == SD_STATE_RWAIT)) { 8571 mutex_exit(SD_MUTEX(un)); 8572 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8573 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8574 goto err_stillbusy; 8575 } 8576 8577 /* 8578 * If we have the device reserved, release the reservation. 8579 */ 8580 if ((un->un_resvd_status & SD_RESERVE) && 8581 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8582 mutex_exit(SD_MUTEX(un)); 8583 /* 8584 * Note: sd_reserve_release sends a command to the device 8585 * via the sd_ioctlcmd() path, and can sleep. 8586 */ 8587 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8588 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8589 "sd_dr_detach: Cannot release reservation \n"); 8590 } 8591 } else { 8592 mutex_exit(SD_MUTEX(un)); 8593 } 8594 8595 /* 8596 * Untimeout any reserve recover, throttle reset, restart unit 8597 * and delayed broadcast timeout threads. Protect the timeout pointer 8598 * from getting nulled by their callback functions. 8599 */ 8600 mutex_enter(SD_MUTEX(un)); 8601 if (un->un_resvd_timeid != NULL) { 8602 timeout_id_t temp_id = un->un_resvd_timeid; 8603 un->un_resvd_timeid = NULL; 8604 mutex_exit(SD_MUTEX(un)); 8605 (void) untimeout(temp_id); 8606 mutex_enter(SD_MUTEX(un)); 8607 } 8608 8609 if (un->un_reset_throttle_timeid != NULL) { 8610 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8611 un->un_reset_throttle_timeid = NULL; 8612 mutex_exit(SD_MUTEX(un)); 8613 (void) untimeout(temp_id); 8614 mutex_enter(SD_MUTEX(un)); 8615 } 8616 8617 if (un->un_startstop_timeid != NULL) { 8618 timeout_id_t temp_id = un->un_startstop_timeid; 8619 un->un_startstop_timeid = NULL; 8620 mutex_exit(SD_MUTEX(un)); 8621 (void) untimeout(temp_id); 8622 mutex_enter(SD_MUTEX(un)); 8623 } 8624 8625 if (un->un_rmw_msg_timeid != NULL) { 8626 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8627 un->un_rmw_msg_timeid = NULL; 8628 mutex_exit(SD_MUTEX(un)); 8629 (void) untimeout(temp_id); 8630 mutex_enter(SD_MUTEX(un)); 8631 } 8632 8633 if (un->un_dcvb_timeid != NULL) { 8634 timeout_id_t temp_id = un->un_dcvb_timeid; 8635 un->un_dcvb_timeid = NULL; 8636 mutex_exit(SD_MUTEX(un)); 8637 (void) untimeout(temp_id); 8638 } else { 8639 mutex_exit(SD_MUTEX(un)); 8640 } 8641 8642 /* Remove any pending reservation reclaim requests for this device */ 8643 sd_rmv_resv_reclaim_req(dev); 8644 8645 mutex_enter(SD_MUTEX(un)); 8646 8647 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8648 if (un->un_direct_priority_timeid != NULL) { 8649 timeout_id_t temp_id = un->un_direct_priority_timeid; 8650 un->un_direct_priority_timeid = NULL; 8651 mutex_exit(SD_MUTEX(un)); 8652 (void) untimeout(temp_id); 8653 mutex_enter(SD_MUTEX(un)); 8654 } 8655 8656 /* Cancel any active multi-host disk watch thread requests */ 8657 if (un->un_mhd_token != NULL) { 8658 mutex_exit(SD_MUTEX(un)); 8659 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8660 if (scsi_watch_request_terminate(un->un_mhd_token, 8661 SCSI_WATCH_TERMINATE_NOWAIT)) { 8662 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8663 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8664 /* 8665 * Note: We are returning here after having removed 8666 * some driver timeouts above. This is consistent with 8667 * the legacy implementation but perhaps the watch 8668 * terminate call should be made with the wait flag set. 8669 */ 8670 goto err_stillbusy; 8671 } 8672 mutex_enter(SD_MUTEX(un)); 8673 un->un_mhd_token = NULL; 8674 } 8675 8676 if (un->un_swr_token != NULL) { 8677 mutex_exit(SD_MUTEX(un)); 8678 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8679 if (scsi_watch_request_terminate(un->un_swr_token, 8680 SCSI_WATCH_TERMINATE_NOWAIT)) { 8681 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8682 "sd_dr_detach: Cannot cancel swr watch request\n"); 8683 /* 8684 * Note: We are returning here after having removed 8685 * some driver timeouts above. This is consistent with 8686 * the legacy implementation but perhaps the watch 8687 * terminate call should be made with the wait flag set. 8688 */ 8689 goto err_stillbusy; 8690 } 8691 mutex_enter(SD_MUTEX(un)); 8692 un->un_swr_token = NULL; 8693 } 8694 8695 mutex_exit(SD_MUTEX(un)); 8696 8697 /* 8698 * Clear any scsi_reset_notifies. We clear the reset notifies 8699 * if we have not registered one. 8700 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8701 */ 8702 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8703 sd_mhd_reset_notify_cb, (caddr_t)un); 8704 8705 /* 8706 * protect the timeout pointers from getting nulled by 8707 * their callback functions during the cancellation process. 8708 * In such a scenario untimeout can be invoked with a null value. 8709 */ 8710 _NOTE(NO_COMPETING_THREADS_NOW); 8711 8712 mutex_enter(&un->un_pm_mutex); 8713 if (un->un_pm_idle_timeid != NULL) { 8714 timeout_id_t temp_id = un->un_pm_idle_timeid; 8715 un->un_pm_idle_timeid = NULL; 8716 mutex_exit(&un->un_pm_mutex); 8717 8718 /* 8719 * Timeout is active; cancel it. 8720 * Note that it'll never be active on a device 8721 * that does not support PM therefore we don't 8722 * have to check before calling pm_idle_component. 8723 */ 8724 (void) untimeout(temp_id); 8725 (void) pm_idle_component(SD_DEVINFO(un), 0); 8726 mutex_enter(&un->un_pm_mutex); 8727 } 8728 8729 /* 8730 * Check whether there is already a timeout scheduled for power 8731 * management. If yes then don't lower the power here, that's. 8732 * the timeout handler's job. 8733 */ 8734 if (un->un_pm_timeid != NULL) { 8735 timeout_id_t temp_id = un->un_pm_timeid; 8736 un->un_pm_timeid = NULL; 8737 mutex_exit(&un->un_pm_mutex); 8738 /* 8739 * Timeout is active; cancel it. 8740 * Note that it'll never be active on a device 8741 * that does not support PM therefore we don't 8742 * have to check before calling pm_idle_component. 8743 */ 8744 (void) untimeout(temp_id); 8745 (void) pm_idle_component(SD_DEVINFO(un), 0); 8746 8747 } else { 8748 mutex_exit(&un->un_pm_mutex); 8749 if ((un->un_f_pm_is_enabled == TRUE) && 8750 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8751 != DDI_SUCCESS)) { 8752 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8753 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8754 /* 8755 * Fix for bug: 4297749, item # 13 8756 * The above test now includes a check to see if PM is 8757 * supported by this device before call 8758 * pm_lower_power(). 8759 * Note, the following is not dead code. The call to 8760 * pm_lower_power above will generate a call back into 8761 * our sdpower routine which might result in a timeout 8762 * handler getting activated. Therefore the following 8763 * code is valid and necessary. 8764 */ 8765 mutex_enter(&un->un_pm_mutex); 8766 if (un->un_pm_timeid != NULL) { 8767 timeout_id_t temp_id = un->un_pm_timeid; 8768 un->un_pm_timeid = NULL; 8769 mutex_exit(&un->un_pm_mutex); 8770 (void) untimeout(temp_id); 8771 (void) pm_idle_component(SD_DEVINFO(un), 0); 8772 } else { 8773 mutex_exit(&un->un_pm_mutex); 8774 } 8775 } 8776 } 8777 8778 /* 8779 * Cleanup from the scsi_ifsetcap() calls (437868) 8780 * Relocated here from above to be after the call to 8781 * pm_lower_power, which was getting errors. 8782 */ 8783 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8784 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8785 8786 /* 8787 * Currently, tagged queuing is supported per target based by HBA. 8788 * Setting this per lun instance actually sets the capability of this 8789 * target in HBA, which affects those luns already attached on the 8790 * same target. So during detach, we can only disable this capability 8791 * only when this is the only lun left on this target. By doing 8792 * this, we assume a target has the same tagged queuing capability 8793 * for every lun. The condition can be removed when HBA is changed to 8794 * support per lun based tagged queuing capability. 8795 */ 8796 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8797 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8798 } 8799 8800 if (un->un_f_is_fibre == FALSE) { 8801 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8802 } 8803 8804 /* 8805 * Remove any event callbacks, fibre only 8806 */ 8807 if (un->un_f_is_fibre == TRUE) { 8808 if ((un->un_insert_event != NULL) && 8809 (ddi_remove_event_handler(un->un_insert_cb_id) != 8810 DDI_SUCCESS)) { 8811 /* 8812 * Note: We are returning here after having done 8813 * substantial cleanup above. This is consistent 8814 * with the legacy implementation but this may not 8815 * be the right thing to do. 8816 */ 8817 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8818 "sd_dr_detach: Cannot cancel insert event\n"); 8819 goto err_remove_event; 8820 } 8821 un->un_insert_event = NULL; 8822 8823 if ((un->un_remove_event != NULL) && 8824 (ddi_remove_event_handler(un->un_remove_cb_id) != 8825 DDI_SUCCESS)) { 8826 /* 8827 * Note: We are returning here after having done 8828 * substantial cleanup above. This is consistent 8829 * with the legacy implementation but this may not 8830 * be the right thing to do. 8831 */ 8832 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8833 "sd_dr_detach: Cannot cancel remove event\n"); 8834 goto err_remove_event; 8835 } 8836 un->un_remove_event = NULL; 8837 } 8838 8839 /* Do not free the softstate if the callback routine is active */ 8840 sd_sync_with_callback(un); 8841 8842 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8843 cmlb_free_handle(&un->un_cmlbhandle); 8844 8845 /* 8846 * Hold the detach mutex here, to make sure that no other threads ever 8847 * can access a (partially) freed soft state structure. 8848 */ 8849 mutex_enter(&sd_detach_mutex); 8850 8851 /* 8852 * Clean up the soft state struct. 8853 * Cleanup is done in reverse order of allocs/inits. 8854 * At this point there should be no competing threads anymore. 8855 */ 8856 8857 scsi_fm_fini(devp); 8858 8859 /* 8860 * Deallocate memory for SCSI FMA. 8861 */ 8862 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8863 8864 /* 8865 * Unregister and free device id if it was not registered 8866 * by the transport. 8867 */ 8868 if (un->un_f_devid_transport_defined == FALSE) 8869 ddi_devid_unregister(devi); 8870 8871 /* 8872 * free the devid structure if allocated before (by ddi_devid_init() 8873 * or ddi_devid_get()). 8874 */ 8875 if (un->un_devid) { 8876 ddi_devid_free(un->un_devid); 8877 un->un_devid = NULL; 8878 } 8879 8880 /* 8881 * Destroy wmap cache if it exists. 8882 */ 8883 if (un->un_wm_cache != NULL) { 8884 kmem_cache_destroy(un->un_wm_cache); 8885 un->un_wm_cache = NULL; 8886 } 8887 8888 /* 8889 * kstat cleanup is done in detach for all device types (4363169). 8890 * We do not want to fail detach if the device kstats are not deleted 8891 * since there is a confusion about the devo_refcnt for the device. 8892 * We just delete the kstats and let detach complete successfully. 8893 */ 8894 if (un->un_stats != NULL) { 8895 kstat_delete(un->un_stats); 8896 un->un_stats = NULL; 8897 } 8898 if (un->un_errstats != NULL) { 8899 kstat_delete(un->un_errstats); 8900 un->un_errstats = NULL; 8901 } 8902 8903 /* Remove partition stats */ 8904 if (un->un_f_pkstats_enabled) { 8905 for (i = 0; i < NSDMAP; i++) { 8906 if (un->un_pstats[i] != NULL) { 8907 kstat_delete(un->un_pstats[i]); 8908 un->un_pstats[i] = NULL; 8909 } 8910 } 8911 } 8912 8913 /* Remove xbuf registration */ 8914 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8915 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8916 8917 /* Remove driver properties */ 8918 ddi_prop_remove_all(devi); 8919 8920 mutex_destroy(&un->un_pm_mutex); 8921 cv_destroy(&un->un_pm_busy_cv); 8922 8923 cv_destroy(&un->un_wcc_cv); 8924 8925 /* Open/close semaphore */ 8926 sema_destroy(&un->un_semoclose); 8927 8928 /* Removable media condvar. */ 8929 cv_destroy(&un->un_state_cv); 8930 8931 /* Suspend/resume condvar. */ 8932 cv_destroy(&un->un_suspend_cv); 8933 cv_destroy(&un->un_disk_busy_cv); 8934 8935 sd_free_rqs(un); 8936 8937 /* Free up soft state */ 8938 devp->sd_private = NULL; 8939 8940 bzero(un, sizeof (struct sd_lun)); 8941 #ifndef XPV_HVM_DRIVER 8942 ddi_soft_state_free(sd_state, instance); 8943 #endif /* !XPV_HVM_DRIVER */ 8944 8945 mutex_exit(&sd_detach_mutex); 8946 8947 /* This frees up the INQUIRY data associated with the device. */ 8948 scsi_unprobe(devp); 8949 8950 /* 8951 * After successfully detaching an instance, we update the information 8952 * of how many luns have been attached in the relative target and 8953 * controller for parallel SCSI. This information is used when sd tries 8954 * to set the tagged queuing capability in HBA. 8955 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 8956 * check if the device is parallel SCSI. However, we don't need to 8957 * check here because we've already checked during attach. No device 8958 * that is not parallel SCSI is in the chain. 8959 */ 8960 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8961 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 8962 } 8963 8964 return (DDI_SUCCESS); 8965 8966 err_notclosed: 8967 mutex_exit(SD_MUTEX(un)); 8968 8969 err_stillbusy: 8970 _NOTE(NO_COMPETING_THREADS_NOW); 8971 8972 err_remove_event: 8973 mutex_enter(&sd_detach_mutex); 8974 un->un_detach_count--; 8975 mutex_exit(&sd_detach_mutex); 8976 8977 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 8978 return (DDI_FAILURE); 8979 } 8980 8981 8982 /* 8983 * Function: sd_create_errstats 8984 * 8985 * Description: This routine instantiates the device error stats. 8986 * 8987 * Note: During attach the stats are instantiated first so they are 8988 * available for attach-time routines that utilize the driver 8989 * iopath to send commands to the device. The stats are initialized 8990 * separately so data obtained during some attach-time routines is 8991 * available. (4362483) 8992 * 8993 * Arguments: un - driver soft state (unit) structure 8994 * instance - driver instance 8995 * 8996 * Context: Kernel thread context 8997 */ 8998 8999 static void 9000 sd_create_errstats(struct sd_lun *un, int instance) 9001 { 9002 struct sd_errstats *stp; 9003 char kstatmodule_err[KSTAT_STRLEN]; 9004 char kstatname[KSTAT_STRLEN]; 9005 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9006 9007 ASSERT(un != NULL); 9008 9009 if (un->un_errstats != NULL) { 9010 return; 9011 } 9012 9013 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9014 "%serr", sd_label); 9015 (void) snprintf(kstatname, sizeof (kstatname), 9016 "%s%d,err", sd_label, instance); 9017 9018 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9019 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9020 9021 if (un->un_errstats == NULL) { 9022 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9023 "sd_create_errstats: Failed kstat_create\n"); 9024 return; 9025 } 9026 9027 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9028 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9029 KSTAT_DATA_UINT32); 9030 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9031 KSTAT_DATA_UINT32); 9032 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9033 KSTAT_DATA_UINT32); 9034 kstat_named_init(&stp->sd_vid, "Vendor", 9035 KSTAT_DATA_CHAR); 9036 kstat_named_init(&stp->sd_pid, "Product", 9037 KSTAT_DATA_CHAR); 9038 kstat_named_init(&stp->sd_revision, "Revision", 9039 KSTAT_DATA_CHAR); 9040 kstat_named_init(&stp->sd_serial, "Serial No", 9041 KSTAT_DATA_CHAR); 9042 kstat_named_init(&stp->sd_capacity, "Size", 9043 KSTAT_DATA_ULONGLONG); 9044 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9045 KSTAT_DATA_UINT32); 9046 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9047 KSTAT_DATA_UINT32); 9048 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9049 KSTAT_DATA_UINT32); 9050 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9051 KSTAT_DATA_UINT32); 9052 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9053 KSTAT_DATA_UINT32); 9054 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9055 KSTAT_DATA_UINT32); 9056 9057 un->un_errstats->ks_private = un; 9058 un->un_errstats->ks_update = nulldev; 9059 9060 kstat_install(un->un_errstats); 9061 } 9062 9063 9064 /* 9065 * Function: sd_set_errstats 9066 * 9067 * Description: This routine sets the value of the vendor id, product id, 9068 * revision, serial number, and capacity device error stats. 9069 * 9070 * Note: During attach the stats are instantiated first so they are 9071 * available for attach-time routines that utilize the driver 9072 * iopath to send commands to the device. The stats are initialized 9073 * separately so data obtained during some attach-time routines is 9074 * available. (4362483) 9075 * 9076 * Arguments: un - driver soft state (unit) structure 9077 * 9078 * Context: Kernel thread context 9079 */ 9080 9081 static void 9082 sd_set_errstats(struct sd_lun *un) 9083 { 9084 struct sd_errstats *stp; 9085 9086 ASSERT(un != NULL); 9087 ASSERT(un->un_errstats != NULL); 9088 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9089 ASSERT(stp != NULL); 9090 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9091 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9092 (void) strncpy(stp->sd_revision.value.c, 9093 un->un_sd->sd_inq->inq_revision, 4); 9094 9095 /* 9096 * All the errstats are persistent across detach/attach, 9097 * so reset all the errstats here in case of the hot 9098 * replacement of disk drives, except for not changed 9099 * Sun qualified drives. 9100 */ 9101 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9102 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9103 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9104 stp->sd_softerrs.value.ui32 = 0; 9105 stp->sd_harderrs.value.ui32 = 0; 9106 stp->sd_transerrs.value.ui32 = 0; 9107 stp->sd_rq_media_err.value.ui32 = 0; 9108 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9109 stp->sd_rq_nodev_err.value.ui32 = 0; 9110 stp->sd_rq_recov_err.value.ui32 = 0; 9111 stp->sd_rq_illrq_err.value.ui32 = 0; 9112 stp->sd_rq_pfa_err.value.ui32 = 0; 9113 } 9114 9115 /* 9116 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9117 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9118 * (4376302)) 9119 */ 9120 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9121 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9122 sizeof (SD_INQUIRY(un)->inq_serial)); 9123 } 9124 9125 if (un->un_f_blockcount_is_valid != TRUE) { 9126 /* 9127 * Set capacity error stat to 0 for no media. This ensures 9128 * a valid capacity is displayed in response to 'iostat -E' 9129 * when no media is present in the device. 9130 */ 9131 stp->sd_capacity.value.ui64 = 0; 9132 } else { 9133 /* 9134 * Multiply un_blockcount by un->un_sys_blocksize to get 9135 * capacity. 9136 * 9137 * Note: for non-512 blocksize devices "un_blockcount" has been 9138 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9139 * (un_tgt_blocksize / un->un_sys_blocksize). 9140 */ 9141 stp->sd_capacity.value.ui64 = (uint64_t) 9142 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9143 } 9144 } 9145 9146 9147 /* 9148 * Function: sd_set_pstats 9149 * 9150 * Description: This routine instantiates and initializes the partition 9151 * stats for each partition with more than zero blocks. 9152 * (4363169) 9153 * 9154 * Arguments: un - driver soft state (unit) structure 9155 * 9156 * Context: Kernel thread context 9157 */ 9158 9159 static void 9160 sd_set_pstats(struct sd_lun *un) 9161 { 9162 char kstatname[KSTAT_STRLEN]; 9163 int instance; 9164 int i; 9165 diskaddr_t nblks = 0; 9166 char *partname = NULL; 9167 9168 ASSERT(un != NULL); 9169 9170 instance = ddi_get_instance(SD_DEVINFO(un)); 9171 9172 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9173 for (i = 0; i < NSDMAP; i++) { 9174 9175 if (cmlb_partinfo(un->un_cmlbhandle, i, 9176 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9177 continue; 9178 mutex_enter(SD_MUTEX(un)); 9179 9180 if ((un->un_pstats[i] == NULL) && 9181 (nblks != 0)) { 9182 9183 (void) snprintf(kstatname, sizeof (kstatname), 9184 "%s%d,%s", sd_label, instance, 9185 partname); 9186 9187 un->un_pstats[i] = kstat_create(sd_label, 9188 instance, kstatname, "partition", KSTAT_TYPE_IO, 9189 1, KSTAT_FLAG_PERSISTENT); 9190 if (un->un_pstats[i] != NULL) { 9191 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9192 kstat_install(un->un_pstats[i]); 9193 } 9194 } 9195 mutex_exit(SD_MUTEX(un)); 9196 } 9197 } 9198 9199 9200 #if (defined(__fibre)) 9201 /* 9202 * Function: sd_init_event_callbacks 9203 * 9204 * Description: This routine initializes the insertion and removal event 9205 * callbacks. (fibre only) 9206 * 9207 * Arguments: un - driver soft state (unit) structure 9208 * 9209 * Context: Kernel thread context 9210 */ 9211 9212 static void 9213 sd_init_event_callbacks(struct sd_lun *un) 9214 { 9215 ASSERT(un != NULL); 9216 9217 if ((un->un_insert_event == NULL) && 9218 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9219 &un->un_insert_event) == DDI_SUCCESS)) { 9220 /* 9221 * Add the callback for an insertion event 9222 */ 9223 (void) ddi_add_event_handler(SD_DEVINFO(un), 9224 un->un_insert_event, sd_event_callback, (void *)un, 9225 &(un->un_insert_cb_id)); 9226 } 9227 9228 if ((un->un_remove_event == NULL) && 9229 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9230 &un->un_remove_event) == DDI_SUCCESS)) { 9231 /* 9232 * Add the callback for a removal event 9233 */ 9234 (void) ddi_add_event_handler(SD_DEVINFO(un), 9235 un->un_remove_event, sd_event_callback, (void *)un, 9236 &(un->un_remove_cb_id)); 9237 } 9238 } 9239 9240 9241 /* 9242 * Function: sd_event_callback 9243 * 9244 * Description: This routine handles insert/remove events (photon). The 9245 * state is changed to OFFLINE which can be used to supress 9246 * error msgs. (fibre only) 9247 * 9248 * Arguments: un - driver soft state (unit) structure 9249 * 9250 * Context: Callout thread context 9251 */ 9252 /* ARGSUSED */ 9253 static void 9254 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9255 void *bus_impldata) 9256 { 9257 struct sd_lun *un = (struct sd_lun *)arg; 9258 9259 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9260 if (event == un->un_insert_event) { 9261 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9262 mutex_enter(SD_MUTEX(un)); 9263 if (un->un_state == SD_STATE_OFFLINE) { 9264 if (un->un_last_state != SD_STATE_SUSPENDED) { 9265 un->un_state = un->un_last_state; 9266 } else { 9267 /* 9268 * We have gone through SUSPEND/RESUME while 9269 * we were offline. Restore the last state 9270 */ 9271 un->un_state = un->un_save_state; 9272 } 9273 } 9274 mutex_exit(SD_MUTEX(un)); 9275 9276 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9277 } else if (event == un->un_remove_event) { 9278 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9279 mutex_enter(SD_MUTEX(un)); 9280 /* 9281 * We need to handle an event callback that occurs during 9282 * the suspend operation, since we don't prevent it. 9283 */ 9284 if (un->un_state != SD_STATE_OFFLINE) { 9285 if (un->un_state != SD_STATE_SUSPENDED) { 9286 New_state(un, SD_STATE_OFFLINE); 9287 } else { 9288 un->un_last_state = SD_STATE_OFFLINE; 9289 } 9290 } 9291 mutex_exit(SD_MUTEX(un)); 9292 } else { 9293 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9294 "!Unknown event\n"); 9295 } 9296 9297 } 9298 #endif 9299 9300 /* 9301 * Function: sd_cache_control() 9302 * 9303 * Description: This routine is the driver entry point for setting 9304 * read and write caching by modifying the WCE (write cache 9305 * enable) and RCD (read cache disable) bits of mode 9306 * page 8 (MODEPAGE_CACHING). 9307 * 9308 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9309 * structure for this target. 9310 * rcd_flag - flag for controlling the read cache 9311 * wce_flag - flag for controlling the write cache 9312 * 9313 * Return Code: EIO 9314 * code returned by sd_send_scsi_MODE_SENSE and 9315 * sd_send_scsi_MODE_SELECT 9316 * 9317 * Context: Kernel Thread 9318 */ 9319 9320 static int 9321 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9322 { 9323 struct mode_caching *mode_caching_page; 9324 uchar_t *header; 9325 size_t buflen; 9326 int hdrlen; 9327 int bd_len; 9328 int rval = 0; 9329 struct mode_header_grp2 *mhp; 9330 struct sd_lun *un; 9331 int status; 9332 9333 ASSERT(ssc != NULL); 9334 un = ssc->ssc_un; 9335 ASSERT(un != NULL); 9336 9337 /* 9338 * Do a test unit ready, otherwise a mode sense may not work if this 9339 * is the first command sent to the device after boot. 9340 */ 9341 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9342 if (status != 0) 9343 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9344 9345 if (un->un_f_cfg_is_atapi == TRUE) { 9346 hdrlen = MODE_HEADER_LENGTH_GRP2; 9347 } else { 9348 hdrlen = MODE_HEADER_LENGTH; 9349 } 9350 9351 /* 9352 * Allocate memory for the retrieved mode page and its headers. Set 9353 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9354 * we get all of the mode sense data otherwise, the mode select 9355 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9356 */ 9357 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9358 sizeof (struct mode_cache_scsi3); 9359 9360 header = kmem_zalloc(buflen, KM_SLEEP); 9361 9362 /* Get the information from the device. */ 9363 if (un->un_f_cfg_is_atapi == TRUE) { 9364 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9365 MODEPAGE_CACHING, SD_PATH_DIRECT); 9366 } else { 9367 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9368 MODEPAGE_CACHING, SD_PATH_DIRECT); 9369 } 9370 9371 if (rval != 0) { 9372 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9373 "sd_cache_control: Mode Sense Failed\n"); 9374 goto mode_sense_failed; 9375 } 9376 9377 /* 9378 * Determine size of Block Descriptors in order to locate 9379 * the mode page data. ATAPI devices return 0, SCSI devices 9380 * should return MODE_BLK_DESC_LENGTH. 9381 */ 9382 if (un->un_f_cfg_is_atapi == TRUE) { 9383 mhp = (struct mode_header_grp2 *)header; 9384 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9385 } else { 9386 bd_len = ((struct mode_header *)header)->bdesc_length; 9387 } 9388 9389 if (bd_len > MODE_BLK_DESC_LENGTH) { 9390 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9391 "sd_cache_control: Mode Sense returned invalid block " 9392 "descriptor length\n"); 9393 rval = EIO; 9394 goto mode_sense_failed; 9395 } 9396 9397 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9398 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9399 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9400 "sd_cache_control: Mode Sense caching page code mismatch " 9401 "%d\n", mode_caching_page->mode_page.code); 9402 rval = EIO; 9403 goto mode_sense_failed; 9404 } 9405 9406 /* Check the relevant bits on successful mode sense. */ 9407 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9408 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9409 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9410 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9411 9412 size_t sbuflen; 9413 uchar_t save_pg; 9414 9415 /* 9416 * Construct select buffer length based on the 9417 * length of the sense data returned. 9418 */ 9419 sbuflen = hdrlen + bd_len + 9420 sizeof (struct mode_page) + 9421 (int)mode_caching_page->mode_page.length; 9422 9423 /* 9424 * Set the caching bits as requested. 9425 */ 9426 if (rcd_flag == SD_CACHE_ENABLE) 9427 mode_caching_page->rcd = 0; 9428 else if (rcd_flag == SD_CACHE_DISABLE) 9429 mode_caching_page->rcd = 1; 9430 9431 if (wce_flag == SD_CACHE_ENABLE) 9432 mode_caching_page->wce = 1; 9433 else if (wce_flag == SD_CACHE_DISABLE) 9434 mode_caching_page->wce = 0; 9435 9436 /* 9437 * Save the page if the mode sense says the 9438 * drive supports it. 9439 */ 9440 save_pg = mode_caching_page->mode_page.ps ? 9441 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9442 9443 /* Clear reserved bits before mode select. */ 9444 mode_caching_page->mode_page.ps = 0; 9445 9446 /* 9447 * Clear out mode header for mode select. 9448 * The rest of the retrieved page will be reused. 9449 */ 9450 bzero(header, hdrlen); 9451 9452 if (un->un_f_cfg_is_atapi == TRUE) { 9453 mhp = (struct mode_header_grp2 *)header; 9454 mhp->bdesc_length_hi = bd_len >> 8; 9455 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9456 } else { 9457 ((struct mode_header *)header)->bdesc_length = bd_len; 9458 } 9459 9460 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9461 9462 /* Issue mode select to change the cache settings */ 9463 if (un->un_f_cfg_is_atapi == TRUE) { 9464 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9465 sbuflen, save_pg, SD_PATH_DIRECT); 9466 } else { 9467 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9468 sbuflen, save_pg, SD_PATH_DIRECT); 9469 } 9470 9471 } 9472 9473 9474 mode_sense_failed: 9475 9476 kmem_free(header, buflen); 9477 9478 if (rval != 0) { 9479 if (rval == EIO) 9480 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9481 else 9482 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9483 } 9484 return (rval); 9485 } 9486 9487 9488 /* 9489 * Function: sd_get_write_cache_enabled() 9490 * 9491 * Description: This routine is the driver entry point for determining if 9492 * write caching is enabled. It examines the WCE (write cache 9493 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9494 * 9495 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9496 * structure for this target. 9497 * is_enabled - pointer to int where write cache enabled state 9498 * is returned (non-zero -> write cache enabled) 9499 * 9500 * 9501 * Return Code: EIO 9502 * code returned by sd_send_scsi_MODE_SENSE 9503 * 9504 * Context: Kernel Thread 9505 * 9506 * NOTE: If ioctl is added to disable write cache, this sequence should 9507 * be followed so that no locking is required for accesses to 9508 * un->un_f_write_cache_enabled: 9509 * do mode select to clear wce 9510 * do synchronize cache to flush cache 9511 * set un->un_f_write_cache_enabled = FALSE 9512 * 9513 * Conversely, an ioctl to enable the write cache should be done 9514 * in this order: 9515 * set un->un_f_write_cache_enabled = TRUE 9516 * do mode select to set wce 9517 */ 9518 9519 static int 9520 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9521 { 9522 struct mode_caching *mode_caching_page; 9523 uchar_t *header; 9524 size_t buflen; 9525 int hdrlen; 9526 int bd_len; 9527 int rval = 0; 9528 struct sd_lun *un; 9529 int status; 9530 9531 ASSERT(ssc != NULL); 9532 un = ssc->ssc_un; 9533 ASSERT(un != NULL); 9534 ASSERT(is_enabled != NULL); 9535 9536 /* in case of error, flag as enabled */ 9537 *is_enabled = TRUE; 9538 9539 /* 9540 * Do a test unit ready, otherwise a mode sense may not work if this 9541 * is the first command sent to the device after boot. 9542 */ 9543 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9544 9545 if (status != 0) 9546 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9547 9548 if (un->un_f_cfg_is_atapi == TRUE) { 9549 hdrlen = MODE_HEADER_LENGTH_GRP2; 9550 } else { 9551 hdrlen = MODE_HEADER_LENGTH; 9552 } 9553 9554 /* 9555 * Allocate memory for the retrieved mode page and its headers. Set 9556 * a pointer to the page itself. 9557 */ 9558 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9559 header = kmem_zalloc(buflen, KM_SLEEP); 9560 9561 /* Get the information from the device. */ 9562 if (un->un_f_cfg_is_atapi == TRUE) { 9563 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9564 MODEPAGE_CACHING, SD_PATH_DIRECT); 9565 } else { 9566 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9567 MODEPAGE_CACHING, SD_PATH_DIRECT); 9568 } 9569 9570 if (rval != 0) { 9571 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9572 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9573 goto mode_sense_failed; 9574 } 9575 9576 /* 9577 * Determine size of Block Descriptors in order to locate 9578 * the mode page data. ATAPI devices return 0, SCSI devices 9579 * should return MODE_BLK_DESC_LENGTH. 9580 */ 9581 if (un->un_f_cfg_is_atapi == TRUE) { 9582 struct mode_header_grp2 *mhp; 9583 mhp = (struct mode_header_grp2 *)header; 9584 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9585 } else { 9586 bd_len = ((struct mode_header *)header)->bdesc_length; 9587 } 9588 9589 if (bd_len > MODE_BLK_DESC_LENGTH) { 9590 /* FMA should make upset complain here */ 9591 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9592 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9593 "block descriptor length\n"); 9594 rval = EIO; 9595 goto mode_sense_failed; 9596 } 9597 9598 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9599 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9600 /* FMA could make upset complain here */ 9601 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9602 "sd_get_write_cache_enabled: Mode Sense caching page " 9603 "code mismatch %d\n", mode_caching_page->mode_page.code); 9604 rval = EIO; 9605 goto mode_sense_failed; 9606 } 9607 *is_enabled = mode_caching_page->wce; 9608 9609 mode_sense_failed: 9610 if (rval == 0) { 9611 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9612 } else if (rval == EIO) { 9613 /* 9614 * Some disks do not support mode sense(6), we 9615 * should ignore this kind of error(sense key is 9616 * 0x5 - illegal request). 9617 */ 9618 uint8_t *sensep; 9619 int senlen; 9620 9621 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9622 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9623 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9624 9625 if (senlen > 0 && 9626 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9627 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9628 } else { 9629 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9630 } 9631 } else { 9632 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9633 } 9634 kmem_free(header, buflen); 9635 return (rval); 9636 } 9637 9638 /* 9639 * Function: sd_get_nv_sup() 9640 * 9641 * Description: This routine is the driver entry point for 9642 * determining whether non-volatile cache is supported. This 9643 * determination process works as follows: 9644 * 9645 * 1. sd first queries sd.conf on whether 9646 * suppress_cache_flush bit is set for this device. 9647 * 9648 * 2. if not there, then queries the internal disk table. 9649 * 9650 * 3. if either sd.conf or internal disk table specifies 9651 * cache flush be suppressed, we don't bother checking 9652 * NV_SUP bit. 9653 * 9654 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9655 * the optional INQUIRY VPD page 0x86. If the device 9656 * supports VPD page 0x86, sd examines the NV_SUP 9657 * (non-volatile cache support) bit in the INQUIRY VPD page 9658 * 0x86: 9659 * o If NV_SUP bit is set, sd assumes the device has a 9660 * non-volatile cache and set the 9661 * un_f_sync_nv_supported to TRUE. 9662 * o Otherwise cache is not non-volatile, 9663 * un_f_sync_nv_supported is set to FALSE. 9664 * 9665 * Arguments: un - driver soft state (unit) structure 9666 * 9667 * Return Code: 9668 * 9669 * Context: Kernel Thread 9670 */ 9671 9672 static void 9673 sd_get_nv_sup(sd_ssc_t *ssc) 9674 { 9675 int rval = 0; 9676 uchar_t *inq86 = NULL; 9677 size_t inq86_len = MAX_INQUIRY_SIZE; 9678 size_t inq86_resid = 0; 9679 struct dk_callback *dkc; 9680 struct sd_lun *un; 9681 9682 ASSERT(ssc != NULL); 9683 un = ssc->ssc_un; 9684 ASSERT(un != NULL); 9685 9686 mutex_enter(SD_MUTEX(un)); 9687 9688 /* 9689 * Be conservative on the device's support of 9690 * SYNC_NV bit: un_f_sync_nv_supported is 9691 * initialized to be false. 9692 */ 9693 un->un_f_sync_nv_supported = FALSE; 9694 9695 /* 9696 * If either sd.conf or internal disk table 9697 * specifies cache flush be suppressed, then 9698 * we don't bother checking NV_SUP bit. 9699 */ 9700 if (un->un_f_suppress_cache_flush == TRUE) { 9701 mutex_exit(SD_MUTEX(un)); 9702 return; 9703 } 9704 9705 if (sd_check_vpd_page_support(ssc) == 0 && 9706 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9707 mutex_exit(SD_MUTEX(un)); 9708 /* collect page 86 data if available */ 9709 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9710 9711 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9712 0x01, 0x86, &inq86_resid); 9713 9714 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9715 SD_TRACE(SD_LOG_COMMON, un, 9716 "sd_get_nv_sup: \ 9717 successfully get VPD page: %x \ 9718 PAGE LENGTH: %x BYTE 6: %x\n", 9719 inq86[1], inq86[3], inq86[6]); 9720 9721 mutex_enter(SD_MUTEX(un)); 9722 /* 9723 * check the value of NV_SUP bit: only if the device 9724 * reports NV_SUP bit to be 1, the 9725 * un_f_sync_nv_supported bit will be set to true. 9726 */ 9727 if (inq86[6] & SD_VPD_NV_SUP) { 9728 un->un_f_sync_nv_supported = TRUE; 9729 } 9730 mutex_exit(SD_MUTEX(un)); 9731 } else if (rval != 0) { 9732 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9733 } 9734 9735 kmem_free(inq86, inq86_len); 9736 } else { 9737 mutex_exit(SD_MUTEX(un)); 9738 } 9739 9740 /* 9741 * Send a SYNC CACHE command to check whether 9742 * SYNC_NV bit is supported. This command should have 9743 * un_f_sync_nv_supported set to correct value. 9744 */ 9745 mutex_enter(SD_MUTEX(un)); 9746 if (un->un_f_sync_nv_supported) { 9747 mutex_exit(SD_MUTEX(un)); 9748 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9749 dkc->dkc_flag = FLUSH_VOLATILE; 9750 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9751 9752 /* 9753 * Send a TEST UNIT READY command to the device. This should 9754 * clear any outstanding UNIT ATTENTION that may be present. 9755 */ 9756 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9757 if (rval != 0) 9758 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9759 9760 kmem_free(dkc, sizeof (struct dk_callback)); 9761 } else { 9762 mutex_exit(SD_MUTEX(un)); 9763 } 9764 9765 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9766 un_f_suppress_cache_flush is set to %d\n", 9767 un->un_f_suppress_cache_flush); 9768 } 9769 9770 /* 9771 * Function: sd_make_device 9772 * 9773 * Description: Utility routine to return the Solaris device number from 9774 * the data in the device's dev_info structure. 9775 * 9776 * Return Code: The Solaris device number 9777 * 9778 * Context: Any 9779 */ 9780 9781 static dev_t 9782 sd_make_device(dev_info_t *devi) 9783 { 9784 return (makedevice(ddi_driver_major(devi), 9785 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9786 } 9787 9788 9789 /* 9790 * Function: sd_pm_entry 9791 * 9792 * Description: Called at the start of a new command to manage power 9793 * and busy status of a device. This includes determining whether 9794 * the current power state of the device is sufficient for 9795 * performing the command or whether it must be changed. 9796 * The PM framework is notified appropriately. 9797 * Only with a return status of DDI_SUCCESS will the 9798 * component be busy to the framework. 9799 * 9800 * All callers of sd_pm_entry must check the return status 9801 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9802 * of DDI_FAILURE indicates the device failed to power up. 9803 * In this case un_pm_count has been adjusted so the result 9804 * on exit is still powered down, ie. count is less than 0. 9805 * Calling sd_pm_exit with this count value hits an ASSERT. 9806 * 9807 * Return Code: DDI_SUCCESS or DDI_FAILURE 9808 * 9809 * Context: Kernel thread context. 9810 */ 9811 9812 static int 9813 sd_pm_entry(struct sd_lun *un) 9814 { 9815 int return_status = DDI_SUCCESS; 9816 9817 ASSERT(!mutex_owned(SD_MUTEX(un))); 9818 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9819 9820 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9821 9822 if (un->un_f_pm_is_enabled == FALSE) { 9823 SD_TRACE(SD_LOG_IO_PM, un, 9824 "sd_pm_entry: exiting, PM not enabled\n"); 9825 return (return_status); 9826 } 9827 9828 /* 9829 * Just increment a counter if PM is enabled. On the transition from 9830 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9831 * the count with each IO and mark the device as idle when the count 9832 * hits 0. 9833 * 9834 * If the count is less than 0 the device is powered down. If a powered 9835 * down device is successfully powered up then the count must be 9836 * incremented to reflect the power up. Note that it'll get incremented 9837 * a second time to become busy. 9838 * 9839 * Because the following has the potential to change the device state 9840 * and must release the un_pm_mutex to do so, only one thread can be 9841 * allowed through at a time. 9842 */ 9843 9844 mutex_enter(&un->un_pm_mutex); 9845 while (un->un_pm_busy == TRUE) { 9846 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9847 } 9848 un->un_pm_busy = TRUE; 9849 9850 if (un->un_pm_count < 1) { 9851 9852 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9853 9854 /* 9855 * Indicate we are now busy so the framework won't attempt to 9856 * power down the device. This call will only fail if either 9857 * we passed a bad component number or the device has no 9858 * components. Neither of these should ever happen. 9859 */ 9860 mutex_exit(&un->un_pm_mutex); 9861 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9862 ASSERT(return_status == DDI_SUCCESS); 9863 9864 mutex_enter(&un->un_pm_mutex); 9865 9866 if (un->un_pm_count < 0) { 9867 mutex_exit(&un->un_pm_mutex); 9868 9869 SD_TRACE(SD_LOG_IO_PM, un, 9870 "sd_pm_entry: power up component\n"); 9871 9872 /* 9873 * pm_raise_power will cause sdpower to be called 9874 * which brings the device power level to the 9875 * desired state, If successful, un_pm_count and 9876 * un_power_level will be updated appropriately. 9877 */ 9878 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9879 SD_PM_STATE_ACTIVE(un)); 9880 9881 mutex_enter(&un->un_pm_mutex); 9882 9883 if (return_status != DDI_SUCCESS) { 9884 /* 9885 * Power up failed. 9886 * Idle the device and adjust the count 9887 * so the result on exit is that we're 9888 * still powered down, ie. count is less than 0. 9889 */ 9890 SD_TRACE(SD_LOG_IO_PM, un, 9891 "sd_pm_entry: power up failed," 9892 " idle the component\n"); 9893 9894 (void) pm_idle_component(SD_DEVINFO(un), 0); 9895 un->un_pm_count--; 9896 } else { 9897 /* 9898 * Device is powered up, verify the 9899 * count is non-negative. 9900 * This is debug only. 9901 */ 9902 ASSERT(un->un_pm_count == 0); 9903 } 9904 } 9905 9906 if (return_status == DDI_SUCCESS) { 9907 /* 9908 * For performance, now that the device has been tagged 9909 * as busy, and it's known to be powered up, update the 9910 * chain types to use jump tables that do not include 9911 * pm. This significantly lowers the overhead and 9912 * therefore improves performance. 9913 */ 9914 9915 mutex_exit(&un->un_pm_mutex); 9916 mutex_enter(SD_MUTEX(un)); 9917 SD_TRACE(SD_LOG_IO_PM, un, 9918 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9919 un->un_uscsi_chain_type); 9920 9921 if (un->un_f_non_devbsize_supported) { 9922 un->un_buf_chain_type = 9923 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9924 } else { 9925 un->un_buf_chain_type = 9926 SD_CHAIN_INFO_DISK_NO_PM; 9927 } 9928 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9929 9930 SD_TRACE(SD_LOG_IO_PM, un, 9931 " changed uscsi_chain_type to %d\n", 9932 un->un_uscsi_chain_type); 9933 mutex_exit(SD_MUTEX(un)); 9934 mutex_enter(&un->un_pm_mutex); 9935 9936 if (un->un_pm_idle_timeid == NULL) { 9937 /* 300 ms. */ 9938 un->un_pm_idle_timeid = 9939 timeout(sd_pm_idletimeout_handler, un, 9940 (drv_usectohz((clock_t)300000))); 9941 /* 9942 * Include an extra call to busy which keeps the 9943 * device busy with-respect-to the PM layer 9944 * until the timer fires, at which time it'll 9945 * get the extra idle call. 9946 */ 9947 (void) pm_busy_component(SD_DEVINFO(un), 0); 9948 } 9949 } 9950 } 9951 un->un_pm_busy = FALSE; 9952 /* Next... */ 9953 cv_signal(&un->un_pm_busy_cv); 9954 9955 un->un_pm_count++; 9956 9957 SD_TRACE(SD_LOG_IO_PM, un, 9958 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 9959 9960 mutex_exit(&un->un_pm_mutex); 9961 9962 return (return_status); 9963 } 9964 9965 9966 /* 9967 * Function: sd_pm_exit 9968 * 9969 * Description: Called at the completion of a command to manage busy 9970 * status for the device. If the device becomes idle the 9971 * PM framework is notified. 9972 * 9973 * Context: Kernel thread context 9974 */ 9975 9976 static void 9977 sd_pm_exit(struct sd_lun *un) 9978 { 9979 ASSERT(!mutex_owned(SD_MUTEX(un))); 9980 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9981 9982 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 9983 9984 /* 9985 * After attach the following flag is only read, so don't 9986 * take the penalty of acquiring a mutex for it. 9987 */ 9988 if (un->un_f_pm_is_enabled == TRUE) { 9989 9990 mutex_enter(&un->un_pm_mutex); 9991 un->un_pm_count--; 9992 9993 SD_TRACE(SD_LOG_IO_PM, un, 9994 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 9995 9996 ASSERT(un->un_pm_count >= 0); 9997 if (un->un_pm_count == 0) { 9998 mutex_exit(&un->un_pm_mutex); 9999 10000 SD_TRACE(SD_LOG_IO_PM, un, 10001 "sd_pm_exit: idle component\n"); 10002 10003 (void) pm_idle_component(SD_DEVINFO(un), 0); 10004 10005 } else { 10006 mutex_exit(&un->un_pm_mutex); 10007 } 10008 } 10009 10010 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10011 } 10012 10013 10014 /* 10015 * Function: sdopen 10016 * 10017 * Description: Driver's open(9e) entry point function. 10018 * 10019 * Arguments: dev_i - pointer to device number 10020 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10021 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10022 * cred_p - user credential pointer 10023 * 10024 * Return Code: EINVAL 10025 * ENXIO 10026 * EIO 10027 * EROFS 10028 * EBUSY 10029 * 10030 * Context: Kernel thread context 10031 */ 10032 /* ARGSUSED */ 10033 static int 10034 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10035 { 10036 struct sd_lun *un; 10037 int nodelay; 10038 int part; 10039 uint64_t partmask; 10040 int instance; 10041 dev_t dev; 10042 int rval = EIO; 10043 diskaddr_t nblks = 0; 10044 diskaddr_t label_cap; 10045 10046 /* Validate the open type */ 10047 if (otyp >= OTYPCNT) { 10048 return (EINVAL); 10049 } 10050 10051 dev = *dev_p; 10052 instance = SDUNIT(dev); 10053 mutex_enter(&sd_detach_mutex); 10054 10055 /* 10056 * Fail the open if there is no softstate for the instance, or 10057 * if another thread somewhere is trying to detach the instance. 10058 */ 10059 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10060 (un->un_detach_count != 0)) { 10061 mutex_exit(&sd_detach_mutex); 10062 /* 10063 * The probe cache only needs to be cleared when open (9e) fails 10064 * with ENXIO (4238046). 10065 */ 10066 /* 10067 * un-conditionally clearing probe cache is ok with 10068 * separate sd/ssd binaries 10069 * x86 platform can be an issue with both parallel 10070 * and fibre in 1 binary 10071 */ 10072 sd_scsi_clear_probe_cache(); 10073 return (ENXIO); 10074 } 10075 10076 /* 10077 * The un_layer_count is to prevent another thread in specfs from 10078 * trying to detach the instance, which can happen when we are 10079 * called from a higher-layer driver instead of thru specfs. 10080 * This will not be needed when DDI provides a layered driver 10081 * interface that allows specfs to know that an instance is in 10082 * use by a layered driver & should not be detached. 10083 * 10084 * Note: the semantics for layered driver opens are exactly one 10085 * close for every open. 10086 */ 10087 if (otyp == OTYP_LYR) { 10088 un->un_layer_count++; 10089 } 10090 10091 /* 10092 * Keep a count of the current # of opens in progress. This is because 10093 * some layered drivers try to call us as a regular open. This can 10094 * cause problems that we cannot prevent, however by keeping this count 10095 * we can at least keep our open and detach routines from racing against 10096 * each other under such conditions. 10097 */ 10098 un->un_opens_in_progress++; 10099 mutex_exit(&sd_detach_mutex); 10100 10101 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10102 part = SDPART(dev); 10103 partmask = 1 << part; 10104 10105 /* 10106 * We use a semaphore here in order to serialize 10107 * open and close requests on the device. 10108 */ 10109 sema_p(&un->un_semoclose); 10110 10111 mutex_enter(SD_MUTEX(un)); 10112 10113 /* 10114 * All device accesses go thru sdstrategy() where we check 10115 * on suspend status but there could be a scsi_poll command, 10116 * which bypasses sdstrategy(), so we need to check pm 10117 * status. 10118 */ 10119 10120 if (!nodelay) { 10121 while ((un->un_state == SD_STATE_SUSPENDED) || 10122 (un->un_state == SD_STATE_PM_CHANGING)) { 10123 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10124 } 10125 10126 mutex_exit(SD_MUTEX(un)); 10127 if (sd_pm_entry(un) != DDI_SUCCESS) { 10128 rval = EIO; 10129 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10130 "sdopen: sd_pm_entry failed\n"); 10131 goto open_failed_with_pm; 10132 } 10133 mutex_enter(SD_MUTEX(un)); 10134 } 10135 10136 /* check for previous exclusive open */ 10137 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10138 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10139 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10140 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10141 10142 if (un->un_exclopen & (partmask)) { 10143 goto excl_open_fail; 10144 } 10145 10146 if (flag & FEXCL) { 10147 int i; 10148 if (un->un_ocmap.lyropen[part]) { 10149 goto excl_open_fail; 10150 } 10151 for (i = 0; i < (OTYPCNT - 1); i++) { 10152 if (un->un_ocmap.regopen[i] & (partmask)) { 10153 goto excl_open_fail; 10154 } 10155 } 10156 } 10157 10158 /* 10159 * Check the write permission if this is a removable media device, 10160 * NDELAY has not been set, and writable permission is requested. 10161 * 10162 * Note: If NDELAY was set and this is write-protected media the WRITE 10163 * attempt will fail with EIO as part of the I/O processing. This is a 10164 * more permissive implementation that allows the open to succeed and 10165 * WRITE attempts to fail when appropriate. 10166 */ 10167 if (un->un_f_chk_wp_open) { 10168 if ((flag & FWRITE) && (!nodelay)) { 10169 mutex_exit(SD_MUTEX(un)); 10170 /* 10171 * Defer the check for write permission on writable 10172 * DVD drive till sdstrategy and will not fail open even 10173 * if FWRITE is set as the device can be writable 10174 * depending upon the media and the media can change 10175 * after the call to open(). 10176 */ 10177 if (un->un_f_dvdram_writable_device == FALSE) { 10178 if (ISCD(un) || sr_check_wp(dev)) { 10179 rval = EROFS; 10180 mutex_enter(SD_MUTEX(un)); 10181 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10182 "write to cd or write protected media\n"); 10183 goto open_fail; 10184 } 10185 } 10186 mutex_enter(SD_MUTEX(un)); 10187 } 10188 } 10189 10190 /* 10191 * If opening in NDELAY/NONBLOCK mode, just return. 10192 * Check if disk is ready and has a valid geometry later. 10193 */ 10194 if (!nodelay) { 10195 sd_ssc_t *ssc; 10196 10197 mutex_exit(SD_MUTEX(un)); 10198 ssc = sd_ssc_init(un); 10199 rval = sd_ready_and_valid(ssc, part); 10200 sd_ssc_fini(ssc); 10201 mutex_enter(SD_MUTEX(un)); 10202 /* 10203 * Fail if device is not ready or if the number of disk 10204 * blocks is zero or negative for non CD devices. 10205 */ 10206 10207 nblks = 0; 10208 10209 if (rval == SD_READY_VALID && (!ISCD(un))) { 10210 /* if cmlb_partinfo fails, nblks remains 0 */ 10211 mutex_exit(SD_MUTEX(un)); 10212 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10213 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10214 mutex_enter(SD_MUTEX(un)); 10215 } 10216 10217 if ((rval != SD_READY_VALID) || 10218 (!ISCD(un) && nblks <= 0)) { 10219 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10220 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10221 "device not ready or invalid disk block value\n"); 10222 goto open_fail; 10223 } 10224 #if defined(__i386) || defined(__amd64) 10225 } else { 10226 uchar_t *cp; 10227 /* 10228 * x86 requires special nodelay handling, so that p0 is 10229 * always defined and accessible. 10230 * Invalidate geometry only if device is not already open. 10231 */ 10232 cp = &un->un_ocmap.chkd[0]; 10233 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10234 if (*cp != (uchar_t)0) { 10235 break; 10236 } 10237 cp++; 10238 } 10239 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10240 mutex_exit(SD_MUTEX(un)); 10241 cmlb_invalidate(un->un_cmlbhandle, 10242 (void *)SD_PATH_DIRECT); 10243 mutex_enter(SD_MUTEX(un)); 10244 } 10245 10246 #endif 10247 } 10248 10249 if (otyp == OTYP_LYR) { 10250 un->un_ocmap.lyropen[part]++; 10251 } else { 10252 un->un_ocmap.regopen[otyp] |= partmask; 10253 } 10254 10255 /* Set up open and exclusive open flags */ 10256 if (flag & FEXCL) { 10257 un->un_exclopen |= (partmask); 10258 } 10259 10260 /* 10261 * If the lun is EFI labeled and lun capacity is greater than the 10262 * capacity contained in the label, log a sys-event to notify the 10263 * interested module. 10264 * To avoid an infinite loop of logging sys-event, we only log the 10265 * event when the lun is not opened in NDELAY mode. The event handler 10266 * should open the lun in NDELAY mode. 10267 */ 10268 if (!(flag & FNDELAY)) { 10269 mutex_exit(SD_MUTEX(un)); 10270 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10271 (void*)SD_PATH_DIRECT) == 0) { 10272 mutex_enter(SD_MUTEX(un)); 10273 if (un->un_f_blockcount_is_valid && 10274 un->un_blockcount > label_cap) { 10275 mutex_exit(SD_MUTEX(un)); 10276 sd_log_lun_expansion_event(un, 10277 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10278 mutex_enter(SD_MUTEX(un)); 10279 } 10280 } else { 10281 mutex_enter(SD_MUTEX(un)); 10282 } 10283 } 10284 10285 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10286 "open of part %d type %d\n", part, otyp); 10287 10288 mutex_exit(SD_MUTEX(un)); 10289 if (!nodelay) { 10290 sd_pm_exit(un); 10291 } 10292 10293 sema_v(&un->un_semoclose); 10294 10295 mutex_enter(&sd_detach_mutex); 10296 un->un_opens_in_progress--; 10297 mutex_exit(&sd_detach_mutex); 10298 10299 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10300 return (DDI_SUCCESS); 10301 10302 excl_open_fail: 10303 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10304 rval = EBUSY; 10305 10306 open_fail: 10307 mutex_exit(SD_MUTEX(un)); 10308 10309 /* 10310 * On a failed open we must exit the pm management. 10311 */ 10312 if (!nodelay) { 10313 sd_pm_exit(un); 10314 } 10315 open_failed_with_pm: 10316 sema_v(&un->un_semoclose); 10317 10318 mutex_enter(&sd_detach_mutex); 10319 un->un_opens_in_progress--; 10320 if (otyp == OTYP_LYR) { 10321 un->un_layer_count--; 10322 } 10323 mutex_exit(&sd_detach_mutex); 10324 10325 return (rval); 10326 } 10327 10328 10329 /* 10330 * Function: sdclose 10331 * 10332 * Description: Driver's close(9e) entry point function. 10333 * 10334 * Arguments: dev - device number 10335 * flag - file status flag, informational only 10336 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10337 * cred_p - user credential pointer 10338 * 10339 * Return Code: ENXIO 10340 * 10341 * Context: Kernel thread context 10342 */ 10343 /* ARGSUSED */ 10344 static int 10345 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10346 { 10347 struct sd_lun *un; 10348 uchar_t *cp; 10349 int part; 10350 int nodelay; 10351 int rval = 0; 10352 10353 /* Validate the open type */ 10354 if (otyp >= OTYPCNT) { 10355 return (ENXIO); 10356 } 10357 10358 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10359 return (ENXIO); 10360 } 10361 10362 part = SDPART(dev); 10363 nodelay = flag & (FNDELAY | FNONBLOCK); 10364 10365 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10366 "sdclose: close of part %d type %d\n", part, otyp); 10367 10368 /* 10369 * We use a semaphore here in order to serialize 10370 * open and close requests on the device. 10371 */ 10372 sema_p(&un->un_semoclose); 10373 10374 mutex_enter(SD_MUTEX(un)); 10375 10376 /* Don't proceed if power is being changed. */ 10377 while (un->un_state == SD_STATE_PM_CHANGING) { 10378 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10379 } 10380 10381 if (un->un_exclopen & (1 << part)) { 10382 un->un_exclopen &= ~(1 << part); 10383 } 10384 10385 /* Update the open partition map */ 10386 if (otyp == OTYP_LYR) { 10387 un->un_ocmap.lyropen[part] -= 1; 10388 } else { 10389 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10390 } 10391 10392 cp = &un->un_ocmap.chkd[0]; 10393 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10394 if (*cp != NULL) { 10395 break; 10396 } 10397 cp++; 10398 } 10399 10400 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10401 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10402 10403 /* 10404 * We avoid persistance upon the last close, and set 10405 * the throttle back to the maximum. 10406 */ 10407 un->un_throttle = un->un_saved_throttle; 10408 10409 if (un->un_state == SD_STATE_OFFLINE) { 10410 if (un->un_f_is_fibre == FALSE) { 10411 scsi_log(SD_DEVINFO(un), sd_label, 10412 CE_WARN, "offline\n"); 10413 } 10414 mutex_exit(SD_MUTEX(un)); 10415 cmlb_invalidate(un->un_cmlbhandle, 10416 (void *)SD_PATH_DIRECT); 10417 mutex_enter(SD_MUTEX(un)); 10418 10419 } else { 10420 /* 10421 * Flush any outstanding writes in NVRAM cache. 10422 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10423 * cmd, it may not work for non-Pluto devices. 10424 * SYNCHRONIZE CACHE is not required for removables, 10425 * except DVD-RAM drives. 10426 * 10427 * Also note: because SYNCHRONIZE CACHE is currently 10428 * the only command issued here that requires the 10429 * drive be powered up, only do the power up before 10430 * sending the Sync Cache command. If additional 10431 * commands are added which require a powered up 10432 * drive, the following sequence may have to change. 10433 * 10434 * And finally, note that parallel SCSI on SPARC 10435 * only issues a Sync Cache to DVD-RAM, a newly 10436 * supported device. 10437 */ 10438 #if defined(__i386) || defined(__amd64) 10439 if ((un->un_f_sync_cache_supported && 10440 un->un_f_sync_cache_required) || 10441 un->un_f_dvdram_writable_device == TRUE) { 10442 #else 10443 if (un->un_f_dvdram_writable_device == TRUE) { 10444 #endif 10445 mutex_exit(SD_MUTEX(un)); 10446 if (sd_pm_entry(un) == DDI_SUCCESS) { 10447 rval = 10448 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10449 NULL); 10450 /* ignore error if not supported */ 10451 if (rval == ENOTSUP) { 10452 rval = 0; 10453 } else if (rval != 0) { 10454 rval = EIO; 10455 } 10456 sd_pm_exit(un); 10457 } else { 10458 rval = EIO; 10459 } 10460 mutex_enter(SD_MUTEX(un)); 10461 } 10462 10463 /* 10464 * For devices which supports DOOR_LOCK, send an ALLOW 10465 * MEDIA REMOVAL command, but don't get upset if it 10466 * fails. We need to raise the power of the drive before 10467 * we can call sd_send_scsi_DOORLOCK() 10468 */ 10469 if (un->un_f_doorlock_supported) { 10470 mutex_exit(SD_MUTEX(un)); 10471 if (sd_pm_entry(un) == DDI_SUCCESS) { 10472 sd_ssc_t *ssc; 10473 10474 ssc = sd_ssc_init(un); 10475 rval = sd_send_scsi_DOORLOCK(ssc, 10476 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10477 if (rval != 0) 10478 sd_ssc_assessment(ssc, 10479 SD_FMT_IGNORE); 10480 sd_ssc_fini(ssc); 10481 10482 sd_pm_exit(un); 10483 if (ISCD(un) && (rval != 0) && 10484 (nodelay != 0)) { 10485 rval = ENXIO; 10486 } 10487 } else { 10488 rval = EIO; 10489 } 10490 mutex_enter(SD_MUTEX(un)); 10491 } 10492 10493 /* 10494 * If a device has removable media, invalidate all 10495 * parameters related to media, such as geometry, 10496 * blocksize, and blockcount. 10497 */ 10498 if (un->un_f_has_removable_media) { 10499 sr_ejected(un); 10500 } 10501 10502 /* 10503 * Destroy the cache (if it exists) which was 10504 * allocated for the write maps since this is 10505 * the last close for this media. 10506 */ 10507 if (un->un_wm_cache) { 10508 /* 10509 * Check if there are pending commands. 10510 * and if there are give a warning and 10511 * do not destroy the cache. 10512 */ 10513 if (un->un_ncmds_in_driver > 0) { 10514 scsi_log(SD_DEVINFO(un), 10515 sd_label, CE_WARN, 10516 "Unable to clean up memory " 10517 "because of pending I/O\n"); 10518 } else { 10519 kmem_cache_destroy( 10520 un->un_wm_cache); 10521 un->un_wm_cache = NULL; 10522 } 10523 } 10524 } 10525 } 10526 10527 mutex_exit(SD_MUTEX(un)); 10528 sema_v(&un->un_semoclose); 10529 10530 if (otyp == OTYP_LYR) { 10531 mutex_enter(&sd_detach_mutex); 10532 /* 10533 * The detach routine may run when the layer count 10534 * drops to zero. 10535 */ 10536 un->un_layer_count--; 10537 mutex_exit(&sd_detach_mutex); 10538 } 10539 10540 return (rval); 10541 } 10542 10543 10544 /* 10545 * Function: sd_ready_and_valid 10546 * 10547 * Description: Test if device is ready and has a valid geometry. 10548 * 10549 * Arguments: ssc - sd_ssc_t will contain un 10550 * un - driver soft state (unit) structure 10551 * 10552 * Return Code: SD_READY_VALID ready and valid label 10553 * SD_NOT_READY_VALID not ready, no label 10554 * SD_RESERVED_BY_OTHERS reservation conflict 10555 * 10556 * Context: Never called at interrupt context. 10557 */ 10558 10559 static int 10560 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10561 { 10562 struct sd_errstats *stp; 10563 uint64_t capacity; 10564 uint_t lbasize; 10565 int rval = SD_READY_VALID; 10566 char name_str[48]; 10567 boolean_t is_valid; 10568 struct sd_lun *un; 10569 int status; 10570 10571 ASSERT(ssc != NULL); 10572 un = ssc->ssc_un; 10573 ASSERT(un != NULL); 10574 ASSERT(!mutex_owned(SD_MUTEX(un))); 10575 10576 mutex_enter(SD_MUTEX(un)); 10577 /* 10578 * If a device has removable media, we must check if media is 10579 * ready when checking if this device is ready and valid. 10580 */ 10581 if (un->un_f_has_removable_media) { 10582 mutex_exit(SD_MUTEX(un)); 10583 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10584 10585 if (status != 0) { 10586 rval = SD_NOT_READY_VALID; 10587 mutex_enter(SD_MUTEX(un)); 10588 10589 /* Ignore all failed status for removalbe media */ 10590 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10591 10592 goto done; 10593 } 10594 10595 is_valid = SD_IS_VALID_LABEL(un); 10596 mutex_enter(SD_MUTEX(un)); 10597 if (!is_valid || 10598 (un->un_f_blockcount_is_valid == FALSE) || 10599 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10600 10601 /* capacity has to be read every open. */ 10602 mutex_exit(SD_MUTEX(un)); 10603 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10604 &lbasize, SD_PATH_DIRECT); 10605 10606 if (status != 0) { 10607 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10608 10609 cmlb_invalidate(un->un_cmlbhandle, 10610 (void *)SD_PATH_DIRECT); 10611 mutex_enter(SD_MUTEX(un)); 10612 rval = SD_NOT_READY_VALID; 10613 10614 goto done; 10615 } else { 10616 mutex_enter(SD_MUTEX(un)); 10617 sd_update_block_info(un, lbasize, capacity); 10618 } 10619 } 10620 10621 /* 10622 * Check if the media in the device is writable or not. 10623 */ 10624 if (!is_valid && ISCD(un)) { 10625 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10626 } 10627 10628 } else { 10629 /* 10630 * Do a test unit ready to clear any unit attention from non-cd 10631 * devices. 10632 */ 10633 mutex_exit(SD_MUTEX(un)); 10634 10635 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10636 if (status != 0) { 10637 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10638 } 10639 10640 mutex_enter(SD_MUTEX(un)); 10641 } 10642 10643 10644 /* 10645 * If this is a non 512 block device, allocate space for 10646 * the wmap cache. This is being done here since every time 10647 * a media is changed this routine will be called and the 10648 * block size is a function of media rather than device. 10649 */ 10650 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10651 un->un_f_non_devbsize_supported) && 10652 un->un_tgt_blocksize != DEV_BSIZE) { 10653 if (!(un->un_wm_cache)) { 10654 (void) snprintf(name_str, sizeof (name_str), 10655 "%s%d_cache", 10656 ddi_driver_name(SD_DEVINFO(un)), 10657 ddi_get_instance(SD_DEVINFO(un))); 10658 un->un_wm_cache = kmem_cache_create( 10659 name_str, sizeof (struct sd_w_map), 10660 8, sd_wm_cache_constructor, 10661 sd_wm_cache_destructor, NULL, 10662 (void *)un, NULL, 0); 10663 if (!(un->un_wm_cache)) { 10664 rval = ENOMEM; 10665 goto done; 10666 } 10667 } 10668 } 10669 10670 if (un->un_state == SD_STATE_NORMAL) { 10671 /* 10672 * If the target is not yet ready here (defined by a TUR 10673 * failure), invalidate the geometry and print an 'offline' 10674 * message. This is a legacy message, as the state of the 10675 * target is not actually changed to SD_STATE_OFFLINE. 10676 * 10677 * If the TUR fails for EACCES (Reservation Conflict), 10678 * SD_RESERVED_BY_OTHERS will be returned to indicate 10679 * reservation conflict. If the TUR fails for other 10680 * reasons, SD_NOT_READY_VALID will be returned. 10681 */ 10682 int err; 10683 10684 mutex_exit(SD_MUTEX(un)); 10685 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10686 mutex_enter(SD_MUTEX(un)); 10687 10688 if (err != 0) { 10689 mutex_exit(SD_MUTEX(un)); 10690 cmlb_invalidate(un->un_cmlbhandle, 10691 (void *)SD_PATH_DIRECT); 10692 mutex_enter(SD_MUTEX(un)); 10693 if (err == EACCES) { 10694 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10695 "reservation conflict\n"); 10696 rval = SD_RESERVED_BY_OTHERS; 10697 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10698 } else { 10699 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10700 "drive offline\n"); 10701 rval = SD_NOT_READY_VALID; 10702 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10703 } 10704 goto done; 10705 } 10706 } 10707 10708 if (un->un_f_format_in_progress == FALSE) { 10709 mutex_exit(SD_MUTEX(un)); 10710 10711 (void) cmlb_validate(un->un_cmlbhandle, 0, 10712 (void *)SD_PATH_DIRECT); 10713 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10714 NULL, (void *) SD_PATH_DIRECT) != 0) { 10715 rval = SD_NOT_READY_VALID; 10716 mutex_enter(SD_MUTEX(un)); 10717 10718 goto done; 10719 } 10720 if (un->un_f_pkstats_enabled) { 10721 sd_set_pstats(un); 10722 SD_TRACE(SD_LOG_IO_PARTITION, un, 10723 "sd_ready_and_valid: un:0x%p pstats created and " 10724 "set\n", un); 10725 } 10726 mutex_enter(SD_MUTEX(un)); 10727 } 10728 10729 /* 10730 * If this device supports DOOR_LOCK command, try and send 10731 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10732 * if it fails. For a CD, however, it is an error 10733 */ 10734 if (un->un_f_doorlock_supported) { 10735 mutex_exit(SD_MUTEX(un)); 10736 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10737 SD_PATH_DIRECT); 10738 10739 if ((status != 0) && ISCD(un)) { 10740 rval = SD_NOT_READY_VALID; 10741 mutex_enter(SD_MUTEX(un)); 10742 10743 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10744 10745 goto done; 10746 } else if (status != 0) 10747 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10748 mutex_enter(SD_MUTEX(un)); 10749 } 10750 10751 /* The state has changed, inform the media watch routines */ 10752 un->un_mediastate = DKIO_INSERTED; 10753 cv_broadcast(&un->un_state_cv); 10754 rval = SD_READY_VALID; 10755 10756 done: 10757 10758 /* 10759 * Initialize the capacity kstat value, if no media previously 10760 * (capacity kstat is 0) and a media has been inserted 10761 * (un_blockcount > 0). 10762 */ 10763 if (un->un_errstats != NULL) { 10764 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10765 if ((stp->sd_capacity.value.ui64 == 0) && 10766 (un->un_f_blockcount_is_valid == TRUE)) { 10767 stp->sd_capacity.value.ui64 = 10768 (uint64_t)((uint64_t)un->un_blockcount * 10769 un->un_sys_blocksize); 10770 } 10771 } 10772 10773 mutex_exit(SD_MUTEX(un)); 10774 return (rval); 10775 } 10776 10777 10778 /* 10779 * Function: sdmin 10780 * 10781 * Description: Routine to limit the size of a data transfer. Used in 10782 * conjunction with physio(9F). 10783 * 10784 * Arguments: bp - pointer to the indicated buf(9S) struct. 10785 * 10786 * Context: Kernel thread context. 10787 */ 10788 10789 static void 10790 sdmin(struct buf *bp) 10791 { 10792 struct sd_lun *un; 10793 int instance; 10794 10795 instance = SDUNIT(bp->b_edev); 10796 10797 un = ddi_get_soft_state(sd_state, instance); 10798 ASSERT(un != NULL); 10799 10800 /* 10801 * We depend on DMA partial or buf breakup to restrict 10802 * IO size if any of them enabled. 10803 */ 10804 if (un->un_partial_dma_supported || 10805 un->un_buf_breakup_supported) { 10806 return; 10807 } 10808 10809 if (bp->b_bcount > un->un_max_xfer_size) { 10810 bp->b_bcount = un->un_max_xfer_size; 10811 } 10812 } 10813 10814 10815 /* 10816 * Function: sdread 10817 * 10818 * Description: Driver's read(9e) entry point function. 10819 * 10820 * Arguments: dev - device number 10821 * uio - structure pointer describing where data is to be stored 10822 * in user's space 10823 * cred_p - user credential pointer 10824 * 10825 * Return Code: ENXIO 10826 * EIO 10827 * EINVAL 10828 * value returned by physio 10829 * 10830 * Context: Kernel thread context. 10831 */ 10832 /* ARGSUSED */ 10833 static int 10834 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10835 { 10836 struct sd_lun *un = NULL; 10837 int secmask; 10838 int err = 0; 10839 sd_ssc_t *ssc; 10840 10841 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10842 return (ENXIO); 10843 } 10844 10845 ASSERT(!mutex_owned(SD_MUTEX(un))); 10846 10847 10848 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10849 mutex_enter(SD_MUTEX(un)); 10850 /* 10851 * Because the call to sd_ready_and_valid will issue I/O we 10852 * must wait here if either the device is suspended or 10853 * if it's power level is changing. 10854 */ 10855 while ((un->un_state == SD_STATE_SUSPENDED) || 10856 (un->un_state == SD_STATE_PM_CHANGING)) { 10857 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10858 } 10859 un->un_ncmds_in_driver++; 10860 mutex_exit(SD_MUTEX(un)); 10861 10862 /* Initialize sd_ssc_t for internal uscsi commands */ 10863 ssc = sd_ssc_init(un); 10864 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10865 err = EIO; 10866 } else { 10867 err = 0; 10868 } 10869 sd_ssc_fini(ssc); 10870 10871 mutex_enter(SD_MUTEX(un)); 10872 un->un_ncmds_in_driver--; 10873 ASSERT(un->un_ncmds_in_driver >= 0); 10874 mutex_exit(SD_MUTEX(un)); 10875 if (err != 0) 10876 return (err); 10877 } 10878 10879 /* 10880 * Read requests are restricted to multiples of the system block size. 10881 */ 10882 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10883 secmask = un->un_tgt_blocksize - 1; 10884 else 10885 secmask = DEV_BSIZE - 1; 10886 10887 if (uio->uio_loffset & ((offset_t)(secmask))) { 10888 SD_ERROR(SD_LOG_READ_WRITE, un, 10889 "sdread: file offset not modulo %d\n", 10890 secmask + 1); 10891 err = EINVAL; 10892 } else if (uio->uio_iov->iov_len & (secmask)) { 10893 SD_ERROR(SD_LOG_READ_WRITE, un, 10894 "sdread: transfer length not modulo %d\n", 10895 secmask + 1); 10896 err = EINVAL; 10897 } else { 10898 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10899 } 10900 10901 return (err); 10902 } 10903 10904 10905 /* 10906 * Function: sdwrite 10907 * 10908 * Description: Driver's write(9e) entry point function. 10909 * 10910 * Arguments: dev - device number 10911 * uio - structure pointer describing where data is stored in 10912 * user's space 10913 * cred_p - user credential pointer 10914 * 10915 * Return Code: ENXIO 10916 * EIO 10917 * EINVAL 10918 * value returned by physio 10919 * 10920 * Context: Kernel thread context. 10921 */ 10922 /* ARGSUSED */ 10923 static int 10924 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10925 { 10926 struct sd_lun *un = NULL; 10927 int secmask; 10928 int err = 0; 10929 sd_ssc_t *ssc; 10930 10931 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10932 return (ENXIO); 10933 } 10934 10935 ASSERT(!mutex_owned(SD_MUTEX(un))); 10936 10937 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10938 mutex_enter(SD_MUTEX(un)); 10939 /* 10940 * Because the call to sd_ready_and_valid will issue I/O we 10941 * must wait here if either the device is suspended or 10942 * if it's power level is changing. 10943 */ 10944 while ((un->un_state == SD_STATE_SUSPENDED) || 10945 (un->un_state == SD_STATE_PM_CHANGING)) { 10946 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10947 } 10948 un->un_ncmds_in_driver++; 10949 mutex_exit(SD_MUTEX(un)); 10950 10951 /* Initialize sd_ssc_t for internal uscsi commands */ 10952 ssc = sd_ssc_init(un); 10953 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10954 err = EIO; 10955 } else { 10956 err = 0; 10957 } 10958 sd_ssc_fini(ssc); 10959 10960 mutex_enter(SD_MUTEX(un)); 10961 un->un_ncmds_in_driver--; 10962 ASSERT(un->un_ncmds_in_driver >= 0); 10963 mutex_exit(SD_MUTEX(un)); 10964 if (err != 0) 10965 return (err); 10966 } 10967 10968 /* 10969 * Write requests are restricted to multiples of the system block size. 10970 */ 10971 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10972 secmask = un->un_tgt_blocksize - 1; 10973 else 10974 secmask = DEV_BSIZE - 1; 10975 10976 if (uio->uio_loffset & ((offset_t)(secmask))) { 10977 SD_ERROR(SD_LOG_READ_WRITE, un, 10978 "sdwrite: file offset not modulo %d\n", 10979 secmask + 1); 10980 err = EINVAL; 10981 } else if (uio->uio_iov->iov_len & (secmask)) { 10982 SD_ERROR(SD_LOG_READ_WRITE, un, 10983 "sdwrite: transfer length not modulo %d\n", 10984 secmask + 1); 10985 err = EINVAL; 10986 } else { 10987 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10988 } 10989 10990 return (err); 10991 } 10992 10993 10994 /* 10995 * Function: sdaread 10996 * 10997 * Description: Driver's aread(9e) entry point function. 10998 * 10999 * Arguments: dev - device number 11000 * aio - structure pointer describing where data is to be stored 11001 * cred_p - user credential pointer 11002 * 11003 * Return Code: ENXIO 11004 * EIO 11005 * EINVAL 11006 * value returned by aphysio 11007 * 11008 * Context: Kernel thread context. 11009 */ 11010 /* ARGSUSED */ 11011 static int 11012 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11013 { 11014 struct sd_lun *un = NULL; 11015 struct uio *uio = aio->aio_uio; 11016 int secmask; 11017 int err = 0; 11018 sd_ssc_t *ssc; 11019 11020 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11021 return (ENXIO); 11022 } 11023 11024 ASSERT(!mutex_owned(SD_MUTEX(un))); 11025 11026 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11027 mutex_enter(SD_MUTEX(un)); 11028 /* 11029 * Because the call to sd_ready_and_valid will issue I/O we 11030 * must wait here if either the device is suspended or 11031 * if it's power level is changing. 11032 */ 11033 while ((un->un_state == SD_STATE_SUSPENDED) || 11034 (un->un_state == SD_STATE_PM_CHANGING)) { 11035 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11036 } 11037 un->un_ncmds_in_driver++; 11038 mutex_exit(SD_MUTEX(un)); 11039 11040 /* Initialize sd_ssc_t for internal uscsi commands */ 11041 ssc = sd_ssc_init(un); 11042 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11043 err = EIO; 11044 } else { 11045 err = 0; 11046 } 11047 sd_ssc_fini(ssc); 11048 11049 mutex_enter(SD_MUTEX(un)); 11050 un->un_ncmds_in_driver--; 11051 ASSERT(un->un_ncmds_in_driver >= 0); 11052 mutex_exit(SD_MUTEX(un)); 11053 if (err != 0) 11054 return (err); 11055 } 11056 11057 /* 11058 * Read requests are restricted to multiples of the system block size. 11059 */ 11060 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11061 secmask = un->un_tgt_blocksize - 1; 11062 else 11063 secmask = DEV_BSIZE - 1; 11064 11065 if (uio->uio_loffset & ((offset_t)(secmask))) { 11066 SD_ERROR(SD_LOG_READ_WRITE, un, 11067 "sdaread: file offset not modulo %d\n", 11068 secmask + 1); 11069 err = EINVAL; 11070 } else if (uio->uio_iov->iov_len & (secmask)) { 11071 SD_ERROR(SD_LOG_READ_WRITE, un, 11072 "sdaread: transfer length not modulo %d\n", 11073 secmask + 1); 11074 err = EINVAL; 11075 } else { 11076 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11077 } 11078 11079 return (err); 11080 } 11081 11082 11083 /* 11084 * Function: sdawrite 11085 * 11086 * Description: Driver's awrite(9e) entry point function. 11087 * 11088 * Arguments: dev - device number 11089 * aio - structure pointer describing where data is stored 11090 * cred_p - user credential pointer 11091 * 11092 * Return Code: ENXIO 11093 * EIO 11094 * EINVAL 11095 * value returned by aphysio 11096 * 11097 * Context: Kernel thread context. 11098 */ 11099 /* ARGSUSED */ 11100 static int 11101 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11102 { 11103 struct sd_lun *un = NULL; 11104 struct uio *uio = aio->aio_uio; 11105 int secmask; 11106 int err = 0; 11107 sd_ssc_t *ssc; 11108 11109 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11110 return (ENXIO); 11111 } 11112 11113 ASSERT(!mutex_owned(SD_MUTEX(un))); 11114 11115 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11116 mutex_enter(SD_MUTEX(un)); 11117 /* 11118 * Because the call to sd_ready_and_valid will issue I/O we 11119 * must wait here if either the device is suspended or 11120 * if it's power level is changing. 11121 */ 11122 while ((un->un_state == SD_STATE_SUSPENDED) || 11123 (un->un_state == SD_STATE_PM_CHANGING)) { 11124 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11125 } 11126 un->un_ncmds_in_driver++; 11127 mutex_exit(SD_MUTEX(un)); 11128 11129 /* Initialize sd_ssc_t for internal uscsi commands */ 11130 ssc = sd_ssc_init(un); 11131 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11132 err = EIO; 11133 } else { 11134 err = 0; 11135 } 11136 sd_ssc_fini(ssc); 11137 11138 mutex_enter(SD_MUTEX(un)); 11139 un->un_ncmds_in_driver--; 11140 ASSERT(un->un_ncmds_in_driver >= 0); 11141 mutex_exit(SD_MUTEX(un)); 11142 if (err != 0) 11143 return (err); 11144 } 11145 11146 /* 11147 * Write requests are restricted to multiples of the system block size. 11148 */ 11149 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11150 secmask = un->un_tgt_blocksize - 1; 11151 else 11152 secmask = DEV_BSIZE - 1; 11153 11154 if (uio->uio_loffset & ((offset_t)(secmask))) { 11155 SD_ERROR(SD_LOG_READ_WRITE, un, 11156 "sdawrite: file offset not modulo %d\n", 11157 secmask + 1); 11158 err = EINVAL; 11159 } else if (uio->uio_iov->iov_len & (secmask)) { 11160 SD_ERROR(SD_LOG_READ_WRITE, un, 11161 "sdawrite: transfer length not modulo %d\n", 11162 secmask + 1); 11163 err = EINVAL; 11164 } else { 11165 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11166 } 11167 11168 return (err); 11169 } 11170 11171 11172 11173 11174 11175 /* 11176 * Driver IO processing follows the following sequence: 11177 * 11178 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11179 * | | ^ 11180 * v v | 11181 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11182 * | | | | 11183 * v | | | 11184 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11185 * | | ^ ^ 11186 * v v | | 11187 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11188 * | | | | 11189 * +---+ | +------------+ +-------+ 11190 * | | | | 11191 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11192 * | v | | 11193 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11194 * | | ^ | 11195 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11196 * | v | | 11197 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11198 * | | ^ | 11199 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11200 * | v | | 11201 * | sd_checksum_iostart() sd_checksum_iodone() | 11202 * | | ^ | 11203 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11204 * | v | | 11205 * | sd_pm_iostart() sd_pm_iodone() | 11206 * | | ^ | 11207 * | | | | 11208 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11209 * | ^ 11210 * v | 11211 * sd_core_iostart() | 11212 * | | 11213 * | +------>(*destroypkt)() 11214 * +-> sd_start_cmds() <-+ | | 11215 * | | | v 11216 * | | | scsi_destroy_pkt(9F) 11217 * | | | 11218 * +->(*initpkt)() +- sdintr() 11219 * | | | | 11220 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11221 * | +-> scsi_setup_cdb(9F) | 11222 * | | 11223 * +--> scsi_transport(9F) | 11224 * | | 11225 * +----> SCSA ---->+ 11226 * 11227 * 11228 * This code is based upon the following presumptions: 11229 * 11230 * - iostart and iodone functions operate on buf(9S) structures. These 11231 * functions perform the necessary operations on the buf(9S) and pass 11232 * them along to the next function in the chain by using the macros 11233 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11234 * (for iodone side functions). 11235 * 11236 * - The iostart side functions may sleep. The iodone side functions 11237 * are called under interrupt context and may NOT sleep. Therefore 11238 * iodone side functions also may not call iostart side functions. 11239 * (NOTE: iostart side functions should NOT sleep for memory, as 11240 * this could result in deadlock.) 11241 * 11242 * - An iostart side function may call its corresponding iodone side 11243 * function directly (if necessary). 11244 * 11245 * - In the event of an error, an iostart side function can return a buf(9S) 11246 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11247 * b_error in the usual way of course). 11248 * 11249 * - The taskq mechanism may be used by the iodone side functions to dispatch 11250 * requests to the iostart side functions. The iostart side functions in 11251 * this case would be called under the context of a taskq thread, so it's 11252 * OK for them to block/sleep/spin in this case. 11253 * 11254 * - iostart side functions may allocate "shadow" buf(9S) structs and 11255 * pass them along to the next function in the chain. The corresponding 11256 * iodone side functions must coalesce the "shadow" bufs and return 11257 * the "original" buf to the next higher layer. 11258 * 11259 * - The b_private field of the buf(9S) struct holds a pointer to 11260 * an sd_xbuf struct, which contains information needed to 11261 * construct the scsi_pkt for the command. 11262 * 11263 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11264 * layer must acquire & release the SD_MUTEX(un) as needed. 11265 */ 11266 11267 11268 /* 11269 * Create taskq for all targets in the system. This is created at 11270 * _init(9E) and destroyed at _fini(9E). 11271 * 11272 * Note: here we set the minalloc to a reasonably high number to ensure that 11273 * we will have an adequate supply of task entries available at interrupt time. 11274 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11275 * sd_create_taskq(). Since we do not want to sleep for allocations at 11276 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11277 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11278 * requests any one instant in time. 11279 */ 11280 #define SD_TASKQ_NUMTHREADS 8 11281 #define SD_TASKQ_MINALLOC 256 11282 #define SD_TASKQ_MAXALLOC 256 11283 11284 static taskq_t *sd_tq = NULL; 11285 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11286 11287 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11288 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11289 11290 /* 11291 * The following task queue is being created for the write part of 11292 * read-modify-write of non-512 block size devices. 11293 * Limit the number of threads to 1 for now. This number has been chosen 11294 * considering the fact that it applies only to dvd ram drives/MO drives 11295 * currently. Performance for which is not main criteria at this stage. 11296 * Note: It needs to be explored if we can use a single taskq in future 11297 */ 11298 #define SD_WMR_TASKQ_NUMTHREADS 1 11299 static taskq_t *sd_wmr_tq = NULL; 11300 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11301 11302 /* 11303 * Function: sd_taskq_create 11304 * 11305 * Description: Create taskq thread(s) and preallocate task entries 11306 * 11307 * Return Code: Returns a pointer to the allocated taskq_t. 11308 * 11309 * Context: Can sleep. Requires blockable context. 11310 * 11311 * Notes: - The taskq() facility currently is NOT part of the DDI. 11312 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11313 * - taskq_create() will block for memory, also it will panic 11314 * if it cannot create the requested number of threads. 11315 * - Currently taskq_create() creates threads that cannot be 11316 * swapped. 11317 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11318 * supply of taskq entries at interrupt time (ie, so that we 11319 * do not have to sleep for memory) 11320 */ 11321 11322 static void 11323 sd_taskq_create(void) 11324 { 11325 char taskq_name[TASKQ_NAMELEN]; 11326 11327 ASSERT(sd_tq == NULL); 11328 ASSERT(sd_wmr_tq == NULL); 11329 11330 (void) snprintf(taskq_name, sizeof (taskq_name), 11331 "%s_drv_taskq", sd_label); 11332 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11333 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11334 TASKQ_PREPOPULATE)); 11335 11336 (void) snprintf(taskq_name, sizeof (taskq_name), 11337 "%s_rmw_taskq", sd_label); 11338 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11339 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11340 TASKQ_PREPOPULATE)); 11341 } 11342 11343 11344 /* 11345 * Function: sd_taskq_delete 11346 * 11347 * Description: Complementary cleanup routine for sd_taskq_create(). 11348 * 11349 * Context: Kernel thread context. 11350 */ 11351 11352 static void 11353 sd_taskq_delete(void) 11354 { 11355 ASSERT(sd_tq != NULL); 11356 ASSERT(sd_wmr_tq != NULL); 11357 taskq_destroy(sd_tq); 11358 taskq_destroy(sd_wmr_tq); 11359 sd_tq = NULL; 11360 sd_wmr_tq = NULL; 11361 } 11362 11363 11364 /* 11365 * Function: sdstrategy 11366 * 11367 * Description: Driver's strategy (9E) entry point function. 11368 * 11369 * Arguments: bp - pointer to buf(9S) 11370 * 11371 * Return Code: Always returns zero 11372 * 11373 * Context: Kernel thread context. 11374 */ 11375 11376 static int 11377 sdstrategy(struct buf *bp) 11378 { 11379 struct sd_lun *un; 11380 11381 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11382 if (un == NULL) { 11383 bioerror(bp, EIO); 11384 bp->b_resid = bp->b_bcount; 11385 biodone(bp); 11386 return (0); 11387 } 11388 11389 /* As was done in the past, fail new cmds. if state is dumping. */ 11390 if (un->un_state == SD_STATE_DUMPING) { 11391 bioerror(bp, ENXIO); 11392 bp->b_resid = bp->b_bcount; 11393 biodone(bp); 11394 return (0); 11395 } 11396 11397 ASSERT(!mutex_owned(SD_MUTEX(un))); 11398 11399 /* 11400 * Commands may sneak in while we released the mutex in 11401 * DDI_SUSPEND, we should block new commands. However, old 11402 * commands that are still in the driver at this point should 11403 * still be allowed to drain. 11404 */ 11405 mutex_enter(SD_MUTEX(un)); 11406 /* 11407 * Must wait here if either the device is suspended or 11408 * if it's power level is changing. 11409 */ 11410 while ((un->un_state == SD_STATE_SUSPENDED) || 11411 (un->un_state == SD_STATE_PM_CHANGING)) { 11412 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11413 } 11414 11415 un->un_ncmds_in_driver++; 11416 11417 /* 11418 * atapi: Since we are running the CD for now in PIO mode we need to 11419 * call bp_mapin here to avoid bp_mapin called interrupt context under 11420 * the HBA's init_pkt routine. 11421 */ 11422 if (un->un_f_cfg_is_atapi == TRUE) { 11423 mutex_exit(SD_MUTEX(un)); 11424 bp_mapin(bp); 11425 mutex_enter(SD_MUTEX(un)); 11426 } 11427 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11428 un->un_ncmds_in_driver); 11429 11430 if (bp->b_flags & B_WRITE) 11431 un->un_f_sync_cache_required = TRUE; 11432 11433 mutex_exit(SD_MUTEX(un)); 11434 11435 /* 11436 * This will (eventually) allocate the sd_xbuf area and 11437 * call sd_xbuf_strategy(). We just want to return the 11438 * result of ddi_xbuf_qstrategy so that we have an opt- 11439 * imized tail call which saves us a stack frame. 11440 */ 11441 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11442 } 11443 11444 11445 /* 11446 * Function: sd_xbuf_strategy 11447 * 11448 * Description: Function for initiating IO operations via the 11449 * ddi_xbuf_qstrategy() mechanism. 11450 * 11451 * Context: Kernel thread context. 11452 */ 11453 11454 static void 11455 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11456 { 11457 struct sd_lun *un = arg; 11458 11459 ASSERT(bp != NULL); 11460 ASSERT(xp != NULL); 11461 ASSERT(un != NULL); 11462 ASSERT(!mutex_owned(SD_MUTEX(un))); 11463 11464 /* 11465 * Initialize the fields in the xbuf and save a pointer to the 11466 * xbuf in bp->b_private. 11467 */ 11468 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11469 11470 /* Send the buf down the iostart chain */ 11471 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11472 } 11473 11474 11475 /* 11476 * Function: sd_xbuf_init 11477 * 11478 * Description: Prepare the given sd_xbuf struct for use. 11479 * 11480 * Arguments: un - ptr to softstate 11481 * bp - ptr to associated buf(9S) 11482 * xp - ptr to associated sd_xbuf 11483 * chain_type - IO chain type to use: 11484 * SD_CHAIN_NULL 11485 * SD_CHAIN_BUFIO 11486 * SD_CHAIN_USCSI 11487 * SD_CHAIN_DIRECT 11488 * SD_CHAIN_DIRECT_PRIORITY 11489 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11490 * initialization; may be NULL if none. 11491 * 11492 * Context: Kernel thread context 11493 */ 11494 11495 static void 11496 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11497 uchar_t chain_type, void *pktinfop) 11498 { 11499 int index; 11500 11501 ASSERT(un != NULL); 11502 ASSERT(bp != NULL); 11503 ASSERT(xp != NULL); 11504 11505 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11506 bp, chain_type); 11507 11508 xp->xb_un = un; 11509 xp->xb_pktp = NULL; 11510 xp->xb_pktinfo = pktinfop; 11511 xp->xb_private = bp->b_private; 11512 xp->xb_blkno = (daddr_t)bp->b_blkno; 11513 11514 /* 11515 * Set up the iostart and iodone chain indexes in the xbuf, based 11516 * upon the specified chain type to use. 11517 */ 11518 switch (chain_type) { 11519 case SD_CHAIN_NULL: 11520 /* 11521 * Fall thru to just use the values for the buf type, even 11522 * tho for the NULL chain these values will never be used. 11523 */ 11524 /* FALLTHRU */ 11525 case SD_CHAIN_BUFIO: 11526 index = un->un_buf_chain_type; 11527 if ((!un->un_f_has_removable_media) && 11528 (un->un_tgt_blocksize != 0) && 11529 (un->un_tgt_blocksize != DEV_BSIZE)) { 11530 int secmask = 0, blknomask = 0; 11531 blknomask = 11532 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11533 secmask = un->un_tgt_blocksize - 1; 11534 11535 if ((bp->b_lblkno & (blknomask)) || 11536 (bp->b_bcount & (secmask))) { 11537 if (un->un_f_rmw_type != 11538 SD_RMW_TYPE_RETURN_ERROR) { 11539 if (un->un_f_pm_is_enabled == FALSE) 11540 index = 11541 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11542 else 11543 index = 11544 SD_CHAIN_INFO_MSS_DISK; 11545 } 11546 } 11547 } 11548 break; 11549 case SD_CHAIN_USCSI: 11550 index = un->un_uscsi_chain_type; 11551 break; 11552 case SD_CHAIN_DIRECT: 11553 index = un->un_direct_chain_type; 11554 break; 11555 case SD_CHAIN_DIRECT_PRIORITY: 11556 index = un->un_priority_chain_type; 11557 break; 11558 default: 11559 /* We're really broken if we ever get here... */ 11560 panic("sd_xbuf_init: illegal chain type!"); 11561 /*NOTREACHED*/ 11562 } 11563 11564 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11565 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11566 11567 /* 11568 * It might be a bit easier to simply bzero the entire xbuf above, 11569 * but it turns out that since we init a fair number of members anyway, 11570 * we save a fair number cycles by doing explicit assignment of zero. 11571 */ 11572 xp->xb_pkt_flags = 0; 11573 xp->xb_dma_resid = 0; 11574 xp->xb_retry_count = 0; 11575 xp->xb_victim_retry_count = 0; 11576 xp->xb_ua_retry_count = 0; 11577 xp->xb_nr_retry_count = 0; 11578 xp->xb_sense_bp = NULL; 11579 xp->xb_sense_status = 0; 11580 xp->xb_sense_state = 0; 11581 xp->xb_sense_resid = 0; 11582 xp->xb_ena = 0; 11583 11584 bp->b_private = xp; 11585 bp->b_flags &= ~(B_DONE | B_ERROR); 11586 bp->b_resid = 0; 11587 bp->av_forw = NULL; 11588 bp->av_back = NULL; 11589 bioerror(bp, 0); 11590 11591 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11592 } 11593 11594 11595 /* 11596 * Function: sd_uscsi_strategy 11597 * 11598 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11599 * 11600 * Arguments: bp - buf struct ptr 11601 * 11602 * Return Code: Always returns 0 11603 * 11604 * Context: Kernel thread context 11605 */ 11606 11607 static int 11608 sd_uscsi_strategy(struct buf *bp) 11609 { 11610 struct sd_lun *un; 11611 struct sd_uscsi_info *uip; 11612 struct sd_xbuf *xp; 11613 uchar_t chain_type; 11614 uchar_t cmd; 11615 11616 ASSERT(bp != NULL); 11617 11618 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11619 if (un == NULL) { 11620 bioerror(bp, EIO); 11621 bp->b_resid = bp->b_bcount; 11622 biodone(bp); 11623 return (0); 11624 } 11625 11626 ASSERT(!mutex_owned(SD_MUTEX(un))); 11627 11628 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11629 11630 /* 11631 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11632 */ 11633 ASSERT(bp->b_private != NULL); 11634 uip = (struct sd_uscsi_info *)bp->b_private; 11635 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11636 11637 mutex_enter(SD_MUTEX(un)); 11638 /* 11639 * atapi: Since we are running the CD for now in PIO mode we need to 11640 * call bp_mapin here to avoid bp_mapin called interrupt context under 11641 * the HBA's init_pkt routine. 11642 */ 11643 if (un->un_f_cfg_is_atapi == TRUE) { 11644 mutex_exit(SD_MUTEX(un)); 11645 bp_mapin(bp); 11646 mutex_enter(SD_MUTEX(un)); 11647 } 11648 un->un_ncmds_in_driver++; 11649 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11650 un->un_ncmds_in_driver); 11651 11652 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11653 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11654 un->un_f_sync_cache_required = TRUE; 11655 11656 mutex_exit(SD_MUTEX(un)); 11657 11658 switch (uip->ui_flags) { 11659 case SD_PATH_DIRECT: 11660 chain_type = SD_CHAIN_DIRECT; 11661 break; 11662 case SD_PATH_DIRECT_PRIORITY: 11663 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11664 break; 11665 default: 11666 chain_type = SD_CHAIN_USCSI; 11667 break; 11668 } 11669 11670 /* 11671 * We may allocate extra buf for external USCSI commands. If the 11672 * application asks for bigger than 20-byte sense data via USCSI, 11673 * SCSA layer will allocate 252 bytes sense buf for that command. 11674 */ 11675 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11676 SENSE_LENGTH) { 11677 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11678 MAX_SENSE_LENGTH, KM_SLEEP); 11679 } else { 11680 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11681 } 11682 11683 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11684 11685 /* Use the index obtained within xbuf_init */ 11686 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11687 11688 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11689 11690 return (0); 11691 } 11692 11693 /* 11694 * Function: sd_send_scsi_cmd 11695 * 11696 * Description: Runs a USCSI command for user (when called thru sdioctl), 11697 * or for the driver 11698 * 11699 * Arguments: dev - the dev_t for the device 11700 * incmd - ptr to a valid uscsi_cmd struct 11701 * flag - bit flag, indicating open settings, 32/64 bit type 11702 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11703 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11704 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11705 * to use the USCSI "direct" chain and bypass the normal 11706 * command waitq. 11707 * 11708 * Return Code: 0 - successful completion of the given command 11709 * EIO - scsi_uscsi_handle_command() failed 11710 * ENXIO - soft state not found for specified dev 11711 * EINVAL 11712 * EFAULT - copyin/copyout error 11713 * return code of scsi_uscsi_handle_command(): 11714 * EIO 11715 * ENXIO 11716 * EACCES 11717 * 11718 * Context: Waits for command to complete. Can sleep. 11719 */ 11720 11721 static int 11722 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11723 enum uio_seg dataspace, int path_flag) 11724 { 11725 struct sd_lun *un; 11726 sd_ssc_t *ssc; 11727 int rval; 11728 11729 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11730 if (un == NULL) { 11731 return (ENXIO); 11732 } 11733 11734 /* 11735 * Using sd_ssc_send to handle uscsi cmd 11736 */ 11737 ssc = sd_ssc_init(un); 11738 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11739 sd_ssc_fini(ssc); 11740 11741 return (rval); 11742 } 11743 11744 /* 11745 * Function: sd_ssc_init 11746 * 11747 * Description: Uscsi end-user call this function to initialize necessary 11748 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11749 * 11750 * The return value of sd_send_scsi_cmd will be treated as a 11751 * fault in various conditions. Even it is not Zero, some 11752 * callers may ignore the return value. That is to say, we can 11753 * not make an accurate assessment in sdintr, since if a 11754 * command is failed in sdintr it does not mean the caller of 11755 * sd_send_scsi_cmd will treat it as a real failure. 11756 * 11757 * To avoid printing too many error logs for a failed uscsi 11758 * packet that the caller may not treat it as a failure, the 11759 * sd will keep silent for handling all uscsi commands. 11760 * 11761 * During detach->attach and attach-open, for some types of 11762 * problems, the driver should be providing information about 11763 * the problem encountered. Device use USCSI_SILENT, which 11764 * suppresses all driver information. The result is that no 11765 * information about the problem is available. Being 11766 * completely silent during this time is inappropriate. The 11767 * driver needs a more selective filter than USCSI_SILENT, so 11768 * that information related to faults is provided. 11769 * 11770 * To make the accurate accessment, the caller of 11771 * sd_send_scsi_USCSI_CMD should take the ownership and 11772 * get necessary information to print error messages. 11773 * 11774 * If we want to print necessary info of uscsi command, we need to 11775 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11776 * assessment. We use sd_ssc_init to alloc necessary 11777 * structs for sending an uscsi command and we are also 11778 * responsible for free the memory by calling 11779 * sd_ssc_fini. 11780 * 11781 * The calling secquences will look like: 11782 * sd_ssc_init-> 11783 * 11784 * ... 11785 * 11786 * sd_send_scsi_USCSI_CMD-> 11787 * sd_ssc_send-> - - - sdintr 11788 * ... 11789 * 11790 * if we think the return value should be treated as a 11791 * failure, we make the accessment here and print out 11792 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11793 * 11794 * ... 11795 * 11796 * sd_ssc_fini 11797 * 11798 * 11799 * Arguments: un - pointer to driver soft state (unit) structure for this 11800 * target. 11801 * 11802 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11803 * uscsi_cmd and sd_uscsi_info. 11804 * NULL - if can not alloc memory for sd_ssc_t struct 11805 * 11806 * Context: Kernel Thread. 11807 */ 11808 static sd_ssc_t * 11809 sd_ssc_init(struct sd_lun *un) 11810 { 11811 sd_ssc_t *ssc; 11812 struct uscsi_cmd *ucmdp; 11813 struct sd_uscsi_info *uip; 11814 11815 ASSERT(un != NULL); 11816 ASSERT(!mutex_owned(SD_MUTEX(un))); 11817 11818 /* 11819 * Allocate sd_ssc_t structure 11820 */ 11821 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11822 11823 /* 11824 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11825 */ 11826 ucmdp = scsi_uscsi_alloc(); 11827 11828 /* 11829 * Allocate sd_uscsi_info structure 11830 */ 11831 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11832 11833 ssc->ssc_uscsi_cmd = ucmdp; 11834 ssc->ssc_uscsi_info = uip; 11835 ssc->ssc_un = un; 11836 11837 return (ssc); 11838 } 11839 11840 /* 11841 * Function: sd_ssc_fini 11842 * 11843 * Description: To free sd_ssc_t and it's hanging off 11844 * 11845 * Arguments: ssc - struct pointer of sd_ssc_t. 11846 */ 11847 static void 11848 sd_ssc_fini(sd_ssc_t *ssc) 11849 { 11850 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11851 11852 if (ssc->ssc_uscsi_info != NULL) { 11853 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11854 ssc->ssc_uscsi_info = NULL; 11855 } 11856 11857 kmem_free(ssc, sizeof (sd_ssc_t)); 11858 ssc = NULL; 11859 } 11860 11861 /* 11862 * Function: sd_ssc_send 11863 * 11864 * Description: Runs a USCSI command for user when called through sdioctl, 11865 * or for the driver. 11866 * 11867 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11868 * sd_uscsi_info in. 11869 * incmd - ptr to a valid uscsi_cmd struct 11870 * flag - bit flag, indicating open settings, 32/64 bit type 11871 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11872 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11873 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11874 * to use the USCSI "direct" chain and bypass the normal 11875 * command waitq. 11876 * 11877 * Return Code: 0 - successful completion of the given command 11878 * EIO - scsi_uscsi_handle_command() failed 11879 * ENXIO - soft state not found for specified dev 11880 * ECANCELED - command cancelled due to low power 11881 * EINVAL 11882 * EFAULT - copyin/copyout error 11883 * return code of scsi_uscsi_handle_command(): 11884 * EIO 11885 * ENXIO 11886 * EACCES 11887 * 11888 * Context: Kernel Thread; 11889 * Waits for command to complete. Can sleep. 11890 */ 11891 static int 11892 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11893 enum uio_seg dataspace, int path_flag) 11894 { 11895 struct sd_uscsi_info *uip; 11896 struct uscsi_cmd *uscmd; 11897 struct sd_lun *un; 11898 dev_t dev; 11899 11900 int format = 0; 11901 int rval; 11902 11903 ASSERT(ssc != NULL); 11904 un = ssc->ssc_un; 11905 ASSERT(un != NULL); 11906 uscmd = ssc->ssc_uscsi_cmd; 11907 ASSERT(uscmd != NULL); 11908 ASSERT(!mutex_owned(SD_MUTEX(un))); 11909 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11910 /* 11911 * If enter here, it indicates that the previous uscsi 11912 * command has not been processed by sd_ssc_assessment. 11913 * This is violating our rules of FMA telemetry processing. 11914 * We should print out this message and the last undisposed 11915 * uscsi command. 11916 */ 11917 if (uscmd->uscsi_cdb != NULL) { 11918 SD_INFO(SD_LOG_SDTEST, un, 11919 "sd_ssc_send is missing the alternative " 11920 "sd_ssc_assessment when running command 0x%x.\n", 11921 uscmd->uscsi_cdb[0]); 11922 } 11923 /* 11924 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 11925 * the initial status. 11926 */ 11927 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11928 } 11929 11930 /* 11931 * We need to make sure sd_ssc_send will have sd_ssc_assessment 11932 * followed to avoid missing FMA telemetries. 11933 */ 11934 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 11935 11936 /* 11937 * if USCSI_PMFAILFAST is set and un is in low power, fail the 11938 * command immediately. 11939 */ 11940 mutex_enter(SD_MUTEX(un)); 11941 mutex_enter(&un->un_pm_mutex); 11942 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 11943 SD_DEVICE_IS_IN_LOW_POWER(un)) { 11944 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 11945 "un:0x%p is in low power\n", un); 11946 mutex_exit(&un->un_pm_mutex); 11947 mutex_exit(SD_MUTEX(un)); 11948 return (ECANCELED); 11949 } 11950 mutex_exit(&un->un_pm_mutex); 11951 mutex_exit(SD_MUTEX(un)); 11952 11953 #ifdef SDDEBUG 11954 switch (dataspace) { 11955 case UIO_USERSPACE: 11956 SD_TRACE(SD_LOG_IO, un, 11957 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 11958 break; 11959 case UIO_SYSSPACE: 11960 SD_TRACE(SD_LOG_IO, un, 11961 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 11962 break; 11963 default: 11964 SD_TRACE(SD_LOG_IO, un, 11965 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 11966 break; 11967 } 11968 #endif 11969 11970 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 11971 SD_ADDRESS(un), &uscmd); 11972 if (rval != 0) { 11973 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 11974 "scsi_uscsi_alloc_and_copyin failed\n", un); 11975 return (rval); 11976 } 11977 11978 if ((uscmd->uscsi_cdb != NULL) && 11979 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 11980 mutex_enter(SD_MUTEX(un)); 11981 un->un_f_format_in_progress = TRUE; 11982 mutex_exit(SD_MUTEX(un)); 11983 format = 1; 11984 } 11985 11986 /* 11987 * Allocate an sd_uscsi_info struct and fill it with the info 11988 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11989 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11990 * since we allocate the buf here in this function, we do not 11991 * need to preserve the prior contents of b_private. 11992 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11993 */ 11994 uip = ssc->ssc_uscsi_info; 11995 uip->ui_flags = path_flag; 11996 uip->ui_cmdp = uscmd; 11997 11998 /* 11999 * Commands sent with priority are intended for error recovery 12000 * situations, and do not have retries performed. 12001 */ 12002 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12003 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12004 } 12005 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12006 12007 dev = SD_GET_DEV(un); 12008 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12009 sd_uscsi_strategy, NULL, uip); 12010 12011 /* 12012 * mark ssc_flags right after handle_cmd to make sure 12013 * the uscsi has been sent 12014 */ 12015 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 12016 12017 #ifdef SDDEBUG 12018 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12019 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12020 uscmd->uscsi_status, uscmd->uscsi_resid); 12021 if (uscmd->uscsi_bufaddr != NULL) { 12022 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12023 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12024 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12025 if (dataspace == UIO_SYSSPACE) { 12026 SD_DUMP_MEMORY(un, SD_LOG_IO, 12027 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12028 uscmd->uscsi_buflen, SD_LOG_HEX); 12029 } 12030 } 12031 #endif 12032 12033 if (format == 1) { 12034 mutex_enter(SD_MUTEX(un)); 12035 un->un_f_format_in_progress = FALSE; 12036 mutex_exit(SD_MUTEX(un)); 12037 } 12038 12039 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 12040 12041 return (rval); 12042 } 12043 12044 /* 12045 * Function: sd_ssc_print 12046 * 12047 * Description: Print information available to the console. 12048 * 12049 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12050 * sd_uscsi_info in. 12051 * sd_severity - log level. 12052 * Context: Kernel thread or interrupt context. 12053 */ 12054 static void 12055 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12056 { 12057 struct uscsi_cmd *ucmdp; 12058 struct scsi_device *devp; 12059 dev_info_t *devinfo; 12060 uchar_t *sensep; 12061 int senlen; 12062 union scsi_cdb *cdbp; 12063 uchar_t com; 12064 extern struct scsi_key_strings scsi_cmds[]; 12065 12066 ASSERT(ssc != NULL); 12067 ASSERT(ssc->ssc_un != NULL); 12068 12069 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12070 return; 12071 ucmdp = ssc->ssc_uscsi_cmd; 12072 devp = SD_SCSI_DEVP(ssc->ssc_un); 12073 devinfo = SD_DEVINFO(ssc->ssc_un); 12074 ASSERT(ucmdp != NULL); 12075 ASSERT(devp != NULL); 12076 ASSERT(devinfo != NULL); 12077 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12078 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12079 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12080 12081 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12082 if (cdbp == NULL) 12083 return; 12084 /* We don't print log if no sense data available. */ 12085 if (senlen == 0) 12086 sensep = NULL; 12087 com = cdbp->scc_cmd; 12088 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12089 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12090 } 12091 12092 /* 12093 * Function: sd_ssc_assessment 12094 * 12095 * Description: We use this function to make an assessment at the point 12096 * where SD driver may encounter a potential error. 12097 * 12098 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12099 * sd_uscsi_info in. 12100 * tp_assess - a hint of strategy for ereport posting. 12101 * Possible values of tp_assess include: 12102 * SD_FMT_IGNORE - we don't post any ereport because we're 12103 * sure that it is ok to ignore the underlying problems. 12104 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12105 * but it might be not correct to ignore the underlying hardware 12106 * error. 12107 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12108 * payload driver-assessment of value "fail" or 12109 * "fatal"(depending on what information we have here). This 12110 * assessment value is usually set when SD driver think there 12111 * is a potential error occurred(Typically, when return value 12112 * of the SCSI command is EIO). 12113 * SD_FMT_STANDARD - we will post an ereport with the payload 12114 * driver-assessment of value "info". This assessment value is 12115 * set when the SCSI command returned successfully and with 12116 * sense data sent back. 12117 * 12118 * Context: Kernel thread. 12119 */ 12120 static void 12121 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12122 { 12123 int senlen = 0; 12124 struct uscsi_cmd *ucmdp = NULL; 12125 struct sd_lun *un; 12126 12127 ASSERT(ssc != NULL); 12128 un = ssc->ssc_un; 12129 ASSERT(un != NULL); 12130 ucmdp = ssc->ssc_uscsi_cmd; 12131 ASSERT(ucmdp != NULL); 12132 12133 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12134 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12135 } else { 12136 /* 12137 * If enter here, it indicates that we have a wrong 12138 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12139 * both of which should be called in a pair in case of 12140 * loss of FMA telemetries. 12141 */ 12142 if (ucmdp->uscsi_cdb != NULL) { 12143 SD_INFO(SD_LOG_SDTEST, un, 12144 "sd_ssc_assessment is missing the " 12145 "alternative sd_ssc_send when running 0x%x, " 12146 "or there are superfluous sd_ssc_assessment for " 12147 "the same sd_ssc_send.\n", 12148 ucmdp->uscsi_cdb[0]); 12149 } 12150 /* 12151 * Set the ssc_flags to the initial value to avoid passing 12152 * down dirty flags to the following sd_ssc_send function. 12153 */ 12154 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12155 return; 12156 } 12157 12158 /* 12159 * Only handle an issued command which is waiting for assessment. 12160 * A command which is not issued will not have 12161 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12162 */ 12163 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12164 sd_ssc_print(ssc, SCSI_ERR_INFO); 12165 return; 12166 } else { 12167 /* 12168 * For an issued command, we should clear this flag in 12169 * order to make the sd_ssc_t structure be used off 12170 * multiple uscsi commands. 12171 */ 12172 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12173 } 12174 12175 /* 12176 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12177 * commands here. And we should clear the ssc_flags before return. 12178 */ 12179 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12180 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12181 return; 12182 } 12183 12184 switch (tp_assess) { 12185 case SD_FMT_IGNORE: 12186 case SD_FMT_IGNORE_COMPROMISE: 12187 break; 12188 case SD_FMT_STATUS_CHECK: 12189 /* 12190 * For a failed command(including the succeeded command 12191 * with invalid data sent back). 12192 */ 12193 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12194 break; 12195 case SD_FMT_STANDARD: 12196 /* 12197 * Always for the succeeded commands probably with sense 12198 * data sent back. 12199 * Limitation: 12200 * We can only handle a succeeded command with sense 12201 * data sent back when auto-request-sense is enabled. 12202 */ 12203 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12204 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12205 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12206 (un->un_f_arq_enabled == TRUE) && 12207 senlen > 0 && 12208 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12209 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12210 } 12211 break; 12212 default: 12213 /* 12214 * Should not have other type of assessment. 12215 */ 12216 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12217 "sd_ssc_assessment got wrong " 12218 "sd_type_assessment %d.\n", tp_assess); 12219 break; 12220 } 12221 /* 12222 * Clear up the ssc_flags before return. 12223 */ 12224 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12225 } 12226 12227 /* 12228 * Function: sd_ssc_post 12229 * 12230 * Description: 1. read the driver property to get fm-scsi-log flag. 12231 * 2. print log if fm_log_capable is non-zero. 12232 * 3. call sd_ssc_ereport_post to post ereport if possible. 12233 * 12234 * Context: May be called from kernel thread or interrupt context. 12235 */ 12236 static void 12237 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12238 { 12239 struct sd_lun *un; 12240 int sd_severity; 12241 12242 ASSERT(ssc != NULL); 12243 un = ssc->ssc_un; 12244 ASSERT(un != NULL); 12245 12246 /* 12247 * We may enter here from sd_ssc_assessment(for USCSI command) or 12248 * by directly called from sdintr context. 12249 * We don't handle a non-disk drive(CD-ROM, removable media). 12250 * Clear the ssc_flags before return in case we've set 12251 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12252 * driver. 12253 */ 12254 if (ISCD(un) || un->un_f_has_removable_media) { 12255 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12256 return; 12257 } 12258 12259 switch (sd_assess) { 12260 case SD_FM_DRV_FATAL: 12261 sd_severity = SCSI_ERR_FATAL; 12262 break; 12263 case SD_FM_DRV_RECOVERY: 12264 sd_severity = SCSI_ERR_RECOVERED; 12265 break; 12266 case SD_FM_DRV_RETRY: 12267 sd_severity = SCSI_ERR_RETRYABLE; 12268 break; 12269 case SD_FM_DRV_NOTICE: 12270 sd_severity = SCSI_ERR_INFO; 12271 break; 12272 default: 12273 sd_severity = SCSI_ERR_UNKNOWN; 12274 } 12275 /* print log */ 12276 sd_ssc_print(ssc, sd_severity); 12277 12278 /* always post ereport */ 12279 sd_ssc_ereport_post(ssc, sd_assess); 12280 } 12281 12282 /* 12283 * Function: sd_ssc_set_info 12284 * 12285 * Description: Mark ssc_flags and set ssc_info which would be the 12286 * payload of uderr ereport. This function will cause 12287 * sd_ssc_ereport_post to post uderr ereport only. 12288 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12289 * the function will also call SD_ERROR or scsi_log for a 12290 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12291 * 12292 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12293 * sd_uscsi_info in. 12294 * ssc_flags - indicate the sub-category of a uderr. 12295 * comp - this argument is meaningful only when 12296 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12297 * values include: 12298 * > 0, SD_ERROR is used with comp as the driver logging 12299 * component; 12300 * = 0, scsi-log is used to log error telemetries; 12301 * < 0, no log available for this telemetry. 12302 * 12303 * Context: Kernel thread or interrupt context 12304 */ 12305 static void 12306 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12307 { 12308 va_list ap; 12309 12310 ASSERT(ssc != NULL); 12311 ASSERT(ssc->ssc_un != NULL); 12312 12313 ssc->ssc_flags |= ssc_flags; 12314 va_start(ap, fmt); 12315 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12316 va_end(ap); 12317 12318 /* 12319 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12320 * with invalid data sent back. For non-uscsi command, the 12321 * following code will be bypassed. 12322 */ 12323 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12324 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12325 /* 12326 * If the error belong to certain component and we 12327 * do not want it to show up on the console, we 12328 * will use SD_ERROR, otherwise scsi_log is 12329 * preferred. 12330 */ 12331 if (comp > 0) { 12332 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12333 } else if (comp == 0) { 12334 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12335 CE_WARN, ssc->ssc_info); 12336 } 12337 } 12338 } 12339 } 12340 12341 /* 12342 * Function: sd_buf_iodone 12343 * 12344 * Description: Frees the sd_xbuf & returns the buf to its originator. 12345 * 12346 * Context: May be called from interrupt context. 12347 */ 12348 /* ARGSUSED */ 12349 static void 12350 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12351 { 12352 struct sd_xbuf *xp; 12353 12354 ASSERT(un != NULL); 12355 ASSERT(bp != NULL); 12356 ASSERT(!mutex_owned(SD_MUTEX(un))); 12357 12358 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12359 12360 xp = SD_GET_XBUF(bp); 12361 ASSERT(xp != NULL); 12362 12363 /* xbuf is gone after this */ 12364 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12365 mutex_enter(SD_MUTEX(un)); 12366 12367 /* 12368 * Grab time when the cmd completed. 12369 * This is used for determining if the system has been 12370 * idle long enough to make it idle to the PM framework. 12371 * This is for lowering the overhead, and therefore improving 12372 * performance per I/O operation. 12373 */ 12374 un->un_pm_idle_time = ddi_get_time(); 12375 12376 un->un_ncmds_in_driver--; 12377 ASSERT(un->un_ncmds_in_driver >= 0); 12378 SD_INFO(SD_LOG_IO, un, 12379 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12380 un->un_ncmds_in_driver); 12381 12382 mutex_exit(SD_MUTEX(un)); 12383 } 12384 12385 biodone(bp); /* bp is gone after this */ 12386 12387 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12388 } 12389 12390 12391 /* 12392 * Function: sd_uscsi_iodone 12393 * 12394 * Description: Frees the sd_xbuf & returns the buf to its originator. 12395 * 12396 * Context: May be called from interrupt context. 12397 */ 12398 /* ARGSUSED */ 12399 static void 12400 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12401 { 12402 struct sd_xbuf *xp; 12403 12404 ASSERT(un != NULL); 12405 ASSERT(bp != NULL); 12406 12407 xp = SD_GET_XBUF(bp); 12408 ASSERT(xp != NULL); 12409 ASSERT(!mutex_owned(SD_MUTEX(un))); 12410 12411 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12412 12413 bp->b_private = xp->xb_private; 12414 12415 mutex_enter(SD_MUTEX(un)); 12416 12417 /* 12418 * Grab time when the cmd completed. 12419 * This is used for determining if the system has been 12420 * idle long enough to make it idle to the PM framework. 12421 * This is for lowering the overhead, and therefore improving 12422 * performance per I/O operation. 12423 */ 12424 un->un_pm_idle_time = ddi_get_time(); 12425 12426 un->un_ncmds_in_driver--; 12427 ASSERT(un->un_ncmds_in_driver >= 0); 12428 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12429 un->un_ncmds_in_driver); 12430 12431 mutex_exit(SD_MUTEX(un)); 12432 12433 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12434 SENSE_LENGTH) { 12435 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12436 MAX_SENSE_LENGTH); 12437 } else { 12438 kmem_free(xp, sizeof (struct sd_xbuf)); 12439 } 12440 12441 biodone(bp); 12442 12443 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12444 } 12445 12446 12447 /* 12448 * Function: sd_mapblockaddr_iostart 12449 * 12450 * Description: Verify request lies within the partition limits for 12451 * the indicated minor device. Issue "overrun" buf if 12452 * request would exceed partition range. Converts 12453 * partition-relative block address to absolute. 12454 * 12455 * Upon exit of this function: 12456 * 1.I/O is aligned 12457 * xp->xb_blkno represents the absolute sector address 12458 * 2.I/O is misaligned 12459 * xp->xb_blkno represents the absolute logical block address 12460 * based on DEV_BSIZE. The logical block address will be 12461 * converted to physical sector address in sd_mapblocksize_\ 12462 * iostart. 12463 * 3.I/O is misaligned but is aligned in "overrun" buf 12464 * xp->xb_blkno represents the absolute logical block address 12465 * based on DEV_BSIZE. The logical block address will be 12466 * converted to physical sector address in sd_mapblocksize_\ 12467 * iostart. But no RMW will be issued in this case. 12468 * 12469 * Context: Can sleep 12470 * 12471 * Issues: This follows what the old code did, in terms of accessing 12472 * some of the partition info in the unit struct without holding 12473 * the mutext. This is a general issue, if the partition info 12474 * can be altered while IO is in progress... as soon as we send 12475 * a buf, its partitioning can be invalid before it gets to the 12476 * device. Probably the right fix is to move partitioning out 12477 * of the driver entirely. 12478 */ 12479 12480 static void 12481 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12482 { 12483 diskaddr_t nblocks; /* #blocks in the given partition */ 12484 daddr_t blocknum; /* Block number specified by the buf */ 12485 size_t requested_nblocks; 12486 size_t available_nblocks; 12487 int partition; 12488 diskaddr_t partition_offset; 12489 struct sd_xbuf *xp; 12490 int secmask = 0, blknomask = 0; 12491 ushort_t is_aligned = TRUE; 12492 12493 ASSERT(un != NULL); 12494 ASSERT(bp != NULL); 12495 ASSERT(!mutex_owned(SD_MUTEX(un))); 12496 12497 SD_TRACE(SD_LOG_IO_PARTITION, un, 12498 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12499 12500 xp = SD_GET_XBUF(bp); 12501 ASSERT(xp != NULL); 12502 12503 /* 12504 * If the geometry is not indicated as valid, attempt to access 12505 * the unit & verify the geometry/label. This can be the case for 12506 * removable-media devices, of if the device was opened in 12507 * NDELAY/NONBLOCK mode. 12508 */ 12509 partition = SDPART(bp->b_edev); 12510 12511 if (!SD_IS_VALID_LABEL(un)) { 12512 sd_ssc_t *ssc; 12513 /* 12514 * Initialize sd_ssc_t for internal uscsi commands 12515 * In case of potential porformance issue, we need 12516 * to alloc memory only if there is invalid label 12517 */ 12518 ssc = sd_ssc_init(un); 12519 12520 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12521 /* 12522 * For removable devices it is possible to start an 12523 * I/O without a media by opening the device in nodelay 12524 * mode. Also for writable CDs there can be many 12525 * scenarios where there is no geometry yet but volume 12526 * manager is trying to issue a read() just because 12527 * it can see TOC on the CD. So do not print a message 12528 * for removables. 12529 */ 12530 if (!un->un_f_has_removable_media) { 12531 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12532 "i/o to invalid geometry\n"); 12533 } 12534 bioerror(bp, EIO); 12535 bp->b_resid = bp->b_bcount; 12536 SD_BEGIN_IODONE(index, un, bp); 12537 12538 sd_ssc_fini(ssc); 12539 return; 12540 } 12541 sd_ssc_fini(ssc); 12542 } 12543 12544 nblocks = 0; 12545 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12546 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12547 12548 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12549 secmask = un->un_tgt_blocksize - 1; 12550 12551 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12552 is_aligned = FALSE; 12553 } 12554 12555 if (!(NOT_DEVBSIZE(un))) { 12556 /* 12557 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12558 * Convert the logical block number to target's physical sector 12559 * number. 12560 */ 12561 if (is_aligned) { 12562 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12563 } else { 12564 switch (un->un_f_rmw_type) { 12565 case SD_RMW_TYPE_RETURN_ERROR: 12566 bp->b_flags |= B_ERROR; 12567 goto error_exit; 12568 12569 case SD_RMW_TYPE_DEFAULT: 12570 mutex_enter(SD_MUTEX(un)); 12571 if (un->un_rmw_msg_timeid == NULL) { 12572 scsi_log(SD_DEVINFO(un), sd_label, 12573 CE_WARN, "I/O request is not " 12574 "aligned with %d disk sector size. " 12575 "It is handled through Read Modify " 12576 "Write but the performance is " 12577 "very low.\n", 12578 un->un_tgt_blocksize); 12579 un->un_rmw_msg_timeid = 12580 timeout(sd_rmw_msg_print_handler, 12581 un, SD_RMW_MSG_PRINT_TIMEOUT); 12582 } else { 12583 un->un_rmw_incre_count ++; 12584 } 12585 mutex_exit(SD_MUTEX(un)); 12586 break; 12587 12588 case SD_RMW_TYPE_NO_WARNING: 12589 default: 12590 break; 12591 } 12592 12593 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12594 partition_offset = SD_TGT2SYSBLOCK(un, 12595 partition_offset); 12596 } 12597 } 12598 12599 /* 12600 * blocknum is the starting block number of the request. At this 12601 * point it is still relative to the start of the minor device. 12602 */ 12603 blocknum = xp->xb_blkno; 12604 12605 /* 12606 * Legacy: If the starting block number is one past the last block 12607 * in the partition, do not set B_ERROR in the buf. 12608 */ 12609 if (blocknum == nblocks) { 12610 goto error_exit; 12611 } 12612 12613 /* 12614 * Confirm that the first block of the request lies within the 12615 * partition limits. Also the requested number of bytes must be 12616 * a multiple of the system block size. 12617 */ 12618 if ((blocknum < 0) || (blocknum >= nblocks) || 12619 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12620 bp->b_flags |= B_ERROR; 12621 goto error_exit; 12622 } 12623 12624 /* 12625 * If the requsted # blocks exceeds the available # blocks, that 12626 * is an overrun of the partition. 12627 */ 12628 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12629 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12630 } else { 12631 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12632 } 12633 12634 available_nblocks = (size_t)(nblocks - blocknum); 12635 ASSERT(nblocks >= blocknum); 12636 12637 if (requested_nblocks > available_nblocks) { 12638 size_t resid; 12639 12640 /* 12641 * Allocate an "overrun" buf to allow the request to proceed 12642 * for the amount of space available in the partition. The 12643 * amount not transferred will be added into the b_resid 12644 * when the operation is complete. The overrun buf 12645 * replaces the original buf here, and the original buf 12646 * is saved inside the overrun buf, for later use. 12647 */ 12648 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12649 resid = SD_TGTBLOCKS2BYTES(un, 12650 (offset_t)(requested_nblocks - available_nblocks)); 12651 } else { 12652 resid = SD_SYSBLOCKS2BYTES( 12653 (offset_t)(requested_nblocks - available_nblocks)); 12654 } 12655 12656 size_t count = bp->b_bcount - resid; 12657 /* 12658 * Note: count is an unsigned entity thus it'll NEVER 12659 * be less than 0 so ASSERT the original values are 12660 * correct. 12661 */ 12662 ASSERT(bp->b_bcount >= resid); 12663 12664 bp = sd_bioclone_alloc(bp, count, blocknum, 12665 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12666 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12667 ASSERT(xp != NULL); 12668 } 12669 12670 /* At this point there should be no residual for this buf. */ 12671 ASSERT(bp->b_resid == 0); 12672 12673 /* Convert the block number to an absolute address. */ 12674 xp->xb_blkno += partition_offset; 12675 12676 SD_NEXT_IOSTART(index, un, bp); 12677 12678 SD_TRACE(SD_LOG_IO_PARTITION, un, 12679 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12680 12681 return; 12682 12683 error_exit: 12684 bp->b_resid = bp->b_bcount; 12685 SD_BEGIN_IODONE(index, un, bp); 12686 SD_TRACE(SD_LOG_IO_PARTITION, un, 12687 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12688 } 12689 12690 12691 /* 12692 * Function: sd_mapblockaddr_iodone 12693 * 12694 * Description: Completion-side processing for partition management. 12695 * 12696 * Context: May be called under interrupt context 12697 */ 12698 12699 static void 12700 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12701 { 12702 /* int partition; */ /* Not used, see below. */ 12703 ASSERT(un != NULL); 12704 ASSERT(bp != NULL); 12705 ASSERT(!mutex_owned(SD_MUTEX(un))); 12706 12707 SD_TRACE(SD_LOG_IO_PARTITION, un, 12708 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12709 12710 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12711 /* 12712 * We have an "overrun" buf to deal with... 12713 */ 12714 struct sd_xbuf *xp; 12715 struct buf *obp; /* ptr to the original buf */ 12716 12717 xp = SD_GET_XBUF(bp); 12718 ASSERT(xp != NULL); 12719 12720 /* Retrieve the pointer to the original buf */ 12721 obp = (struct buf *)xp->xb_private; 12722 ASSERT(obp != NULL); 12723 12724 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12725 bioerror(obp, bp->b_error); 12726 12727 sd_bioclone_free(bp); 12728 12729 /* 12730 * Get back the original buf. 12731 * Note that since the restoration of xb_blkno below 12732 * was removed, the sd_xbuf is not needed. 12733 */ 12734 bp = obp; 12735 /* 12736 * xp = SD_GET_XBUF(bp); 12737 * ASSERT(xp != NULL); 12738 */ 12739 } 12740 12741 /* 12742 * Convert sd->xb_blkno back to a minor-device relative value. 12743 * Note: this has been commented out, as it is not needed in the 12744 * current implementation of the driver (ie, since this function 12745 * is at the top of the layering chains, so the info will be 12746 * discarded) and it is in the "hot" IO path. 12747 * 12748 * partition = getminor(bp->b_edev) & SDPART_MASK; 12749 * xp->xb_blkno -= un->un_offset[partition]; 12750 */ 12751 12752 SD_NEXT_IODONE(index, un, bp); 12753 12754 SD_TRACE(SD_LOG_IO_PARTITION, un, 12755 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12756 } 12757 12758 12759 /* 12760 * Function: sd_mapblocksize_iostart 12761 * 12762 * Description: Convert between system block size (un->un_sys_blocksize) 12763 * and target block size (un->un_tgt_blocksize). 12764 * 12765 * Context: Can sleep to allocate resources. 12766 * 12767 * Assumptions: A higher layer has already performed any partition validation, 12768 * and converted the xp->xb_blkno to an absolute value relative 12769 * to the start of the device. 12770 * 12771 * It is also assumed that the higher layer has implemented 12772 * an "overrun" mechanism for the case where the request would 12773 * read/write beyond the end of a partition. In this case we 12774 * assume (and ASSERT) that bp->b_resid == 0. 12775 * 12776 * Note: The implementation for this routine assumes the target 12777 * block size remains constant between allocation and transport. 12778 */ 12779 12780 static void 12781 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12782 { 12783 struct sd_mapblocksize_info *bsp; 12784 struct sd_xbuf *xp; 12785 offset_t first_byte; 12786 daddr_t start_block, end_block; 12787 daddr_t request_bytes; 12788 ushort_t is_aligned = FALSE; 12789 12790 ASSERT(un != NULL); 12791 ASSERT(bp != NULL); 12792 ASSERT(!mutex_owned(SD_MUTEX(un))); 12793 ASSERT(bp->b_resid == 0); 12794 12795 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12796 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12797 12798 /* 12799 * For a non-writable CD, a write request is an error 12800 */ 12801 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12802 (un->un_f_mmc_writable_media == FALSE)) { 12803 bioerror(bp, EIO); 12804 bp->b_resid = bp->b_bcount; 12805 SD_BEGIN_IODONE(index, un, bp); 12806 return; 12807 } 12808 12809 /* 12810 * We do not need a shadow buf if the device is using 12811 * un->un_sys_blocksize as its block size or if bcount == 0. 12812 * In this case there is no layer-private data block allocated. 12813 */ 12814 if ((un->un_tgt_blocksize == DEV_BSIZE) || 12815 (bp->b_bcount == 0)) { 12816 goto done; 12817 } 12818 12819 #if defined(__i386) || defined(__amd64) 12820 /* We do not support non-block-aligned transfers for ROD devices */ 12821 ASSERT(!ISROD(un)); 12822 #endif 12823 12824 xp = SD_GET_XBUF(bp); 12825 ASSERT(xp != NULL); 12826 12827 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12828 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12829 un->un_tgt_blocksize, DEV_BSIZE); 12830 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12831 "request start block:0x%x\n", xp->xb_blkno); 12832 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12833 "request len:0x%x\n", bp->b_bcount); 12834 12835 /* 12836 * Allocate the layer-private data area for the mapblocksize layer. 12837 * Layers are allowed to use the xp_private member of the sd_xbuf 12838 * struct to store the pointer to their layer-private data block, but 12839 * each layer also has the responsibility of restoring the prior 12840 * contents of xb_private before returning the buf/xbuf to the 12841 * higher layer that sent it. 12842 * 12843 * Here we save the prior contents of xp->xb_private into the 12844 * bsp->mbs_oprivate field of our layer-private data area. This value 12845 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12846 * the layer-private area and returning the buf/xbuf to the layer 12847 * that sent it. 12848 * 12849 * Note that here we use kmem_zalloc for the allocation as there are 12850 * parts of the mapblocksize code that expect certain fields to be 12851 * zero unless explicitly set to a required value. 12852 */ 12853 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12854 bsp->mbs_oprivate = xp->xb_private; 12855 xp->xb_private = bsp; 12856 12857 /* 12858 * This treats the data on the disk (target) as an array of bytes. 12859 * first_byte is the byte offset, from the beginning of the device, 12860 * to the location of the request. This is converted from a 12861 * un->un_sys_blocksize block address to a byte offset, and then back 12862 * to a block address based upon a un->un_tgt_blocksize block size. 12863 * 12864 * xp->xb_blkno should be absolute upon entry into this function, 12865 * but, but it is based upon partitions that use the "system" 12866 * block size. It must be adjusted to reflect the block size of 12867 * the target. 12868 * 12869 * Note that end_block is actually the block that follows the last 12870 * block of the request, but that's what is needed for the computation. 12871 */ 12872 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 12873 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12874 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12875 un->un_tgt_blocksize; 12876 12877 /* request_bytes is rounded up to a multiple of the target block size */ 12878 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12879 12880 /* 12881 * See if the starting address of the request and the request 12882 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12883 * then we do not need to allocate a shadow buf to handle the request. 12884 */ 12885 if (((first_byte % un->un_tgt_blocksize) == 0) && 12886 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12887 is_aligned = TRUE; 12888 } 12889 12890 if ((bp->b_flags & B_READ) == 0) { 12891 /* 12892 * Lock the range for a write operation. An aligned request is 12893 * considered a simple write; otherwise the request must be a 12894 * read-modify-write. 12895 */ 12896 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12897 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12898 } 12899 12900 /* 12901 * Alloc a shadow buf if the request is not aligned. Also, this is 12902 * where the READ command is generated for a read-modify-write. (The 12903 * write phase is deferred until after the read completes.) 12904 */ 12905 if (is_aligned == FALSE) { 12906 12907 struct sd_mapblocksize_info *shadow_bsp; 12908 struct sd_xbuf *shadow_xp; 12909 struct buf *shadow_bp; 12910 12911 /* 12912 * Allocate the shadow buf and it associated xbuf. Note that 12913 * after this call the xb_blkno value in both the original 12914 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12915 * same: absolute relative to the start of the device, and 12916 * adjusted for the target block size. The b_blkno in the 12917 * shadow buf will also be set to this value. We should never 12918 * change b_blkno in the original bp however. 12919 * 12920 * Note also that the shadow buf will always need to be a 12921 * READ command, regardless of whether the incoming command 12922 * is a READ or a WRITE. 12923 */ 12924 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12925 xp->xb_blkno, 12926 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12927 12928 shadow_xp = SD_GET_XBUF(shadow_bp); 12929 12930 /* 12931 * Allocate the layer-private data for the shadow buf. 12932 * (No need to preserve xb_private in the shadow xbuf.) 12933 */ 12934 shadow_xp->xb_private = shadow_bsp = 12935 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12936 12937 /* 12938 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12939 * to figure out where the start of the user data is (based upon 12940 * the system block size) in the data returned by the READ 12941 * command (which will be based upon the target blocksize). Note 12942 * that this is only really used if the request is unaligned. 12943 */ 12944 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12945 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12946 ASSERT((bsp->mbs_copy_offset >= 0) && 12947 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12948 12949 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12950 12951 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12952 12953 /* Transfer the wmap (if any) to the shadow buf */ 12954 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12955 bsp->mbs_wmp = NULL; 12956 12957 /* 12958 * The shadow buf goes on from here in place of the 12959 * original buf. 12960 */ 12961 shadow_bsp->mbs_orig_bp = bp; 12962 bp = shadow_bp; 12963 } 12964 12965 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12966 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12967 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12968 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12969 request_bytes); 12970 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12971 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12972 12973 done: 12974 SD_NEXT_IOSTART(index, un, bp); 12975 12976 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12977 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12978 } 12979 12980 12981 /* 12982 * Function: sd_mapblocksize_iodone 12983 * 12984 * Description: Completion side processing for block-size mapping. 12985 * 12986 * Context: May be called under interrupt context 12987 */ 12988 12989 static void 12990 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12991 { 12992 struct sd_mapblocksize_info *bsp; 12993 struct sd_xbuf *xp; 12994 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12995 struct buf *orig_bp; /* ptr to the original buf */ 12996 offset_t shadow_end; 12997 offset_t request_end; 12998 offset_t shadow_start; 12999 ssize_t copy_offset; 13000 size_t copy_length; 13001 size_t shortfall; 13002 uint_t is_write; /* TRUE if this bp is a WRITE */ 13003 uint_t has_wmap; /* TRUE is this bp has a wmap */ 13004 13005 ASSERT(un != NULL); 13006 ASSERT(bp != NULL); 13007 13008 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13009 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 13010 13011 /* 13012 * There is no shadow buf or layer-private data if the target is 13013 * using un->un_sys_blocksize as its block size or if bcount == 0. 13014 */ 13015 if ((un->un_tgt_blocksize == DEV_BSIZE) || 13016 (bp->b_bcount == 0)) { 13017 goto exit; 13018 } 13019 13020 xp = SD_GET_XBUF(bp); 13021 ASSERT(xp != NULL); 13022 13023 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 13024 bsp = xp->xb_private; 13025 13026 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 13027 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 13028 13029 if (is_write) { 13030 /* 13031 * For a WRITE request we must free up the block range that 13032 * we have locked up. This holds regardless of whether this is 13033 * an aligned write request or a read-modify-write request. 13034 */ 13035 sd_range_unlock(un, bsp->mbs_wmp); 13036 bsp->mbs_wmp = NULL; 13037 } 13038 13039 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 13040 /* 13041 * An aligned read or write command will have no shadow buf; 13042 * there is not much else to do with it. 13043 */ 13044 goto done; 13045 } 13046 13047 orig_bp = bsp->mbs_orig_bp; 13048 ASSERT(orig_bp != NULL); 13049 orig_xp = SD_GET_XBUF(orig_bp); 13050 ASSERT(orig_xp != NULL); 13051 ASSERT(!mutex_owned(SD_MUTEX(un))); 13052 13053 if (!is_write && has_wmap) { 13054 /* 13055 * A READ with a wmap means this is the READ phase of a 13056 * read-modify-write. If an error occurred on the READ then 13057 * we do not proceed with the WRITE phase or copy any data. 13058 * Just release the write maps and return with an error. 13059 */ 13060 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13061 orig_bp->b_resid = orig_bp->b_bcount; 13062 bioerror(orig_bp, bp->b_error); 13063 sd_range_unlock(un, bsp->mbs_wmp); 13064 goto freebuf_done; 13065 } 13066 } 13067 13068 /* 13069 * Here is where we set up to copy the data from the shadow buf 13070 * into the space associated with the original buf. 13071 * 13072 * To deal with the conversion between block sizes, these 13073 * computations treat the data as an array of bytes, with the 13074 * first byte (byte 0) corresponding to the first byte in the 13075 * first block on the disk. 13076 */ 13077 13078 /* 13079 * shadow_start and shadow_len indicate the location and size of 13080 * the data returned with the shadow IO request. 13081 */ 13082 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13083 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13084 13085 /* 13086 * copy_offset gives the offset (in bytes) from the start of the first 13087 * block of the READ request to the beginning of the data. We retrieve 13088 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13089 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13090 * data to be copied (in bytes). 13091 */ 13092 copy_offset = bsp->mbs_copy_offset; 13093 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 13094 copy_length = orig_bp->b_bcount; 13095 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13096 13097 /* 13098 * Set up the resid and error fields of orig_bp as appropriate. 13099 */ 13100 if (shadow_end >= request_end) { 13101 /* We got all the requested data; set resid to zero */ 13102 orig_bp->b_resid = 0; 13103 } else { 13104 /* 13105 * We failed to get enough data to fully satisfy the original 13106 * request. Just copy back whatever data we got and set 13107 * up the residual and error code as required. 13108 * 13109 * 'shortfall' is the amount by which the data received with the 13110 * shadow buf has "fallen short" of the requested amount. 13111 */ 13112 shortfall = (size_t)(request_end - shadow_end); 13113 13114 if (shortfall > orig_bp->b_bcount) { 13115 /* 13116 * We did not get enough data to even partially 13117 * fulfill the original request. The residual is 13118 * equal to the amount requested. 13119 */ 13120 orig_bp->b_resid = orig_bp->b_bcount; 13121 } else { 13122 /* 13123 * We did not get all the data that we requested 13124 * from the device, but we will try to return what 13125 * portion we did get. 13126 */ 13127 orig_bp->b_resid = shortfall; 13128 } 13129 ASSERT(copy_length >= orig_bp->b_resid); 13130 copy_length -= orig_bp->b_resid; 13131 } 13132 13133 /* Propagate the error code from the shadow buf to the original buf */ 13134 bioerror(orig_bp, bp->b_error); 13135 13136 if (is_write) { 13137 goto freebuf_done; /* No data copying for a WRITE */ 13138 } 13139 13140 if (has_wmap) { 13141 /* 13142 * This is a READ command from the READ phase of a 13143 * read-modify-write request. We have to copy the data given 13144 * by the user OVER the data returned by the READ command, 13145 * then convert the command from a READ to a WRITE and send 13146 * it back to the target. 13147 */ 13148 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13149 copy_length); 13150 13151 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13152 13153 /* 13154 * Dispatch the WRITE command to the taskq thread, which 13155 * will in turn send the command to the target. When the 13156 * WRITE command completes, we (sd_mapblocksize_iodone()) 13157 * will get called again as part of the iodone chain 13158 * processing for it. Note that we will still be dealing 13159 * with the shadow buf at that point. 13160 */ 13161 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13162 KM_NOSLEEP) != 0) { 13163 /* 13164 * Dispatch was successful so we are done. Return 13165 * without going any higher up the iodone chain. Do 13166 * not free up any layer-private data until after the 13167 * WRITE completes. 13168 */ 13169 return; 13170 } 13171 13172 /* 13173 * Dispatch of the WRITE command failed; set up the error 13174 * condition and send this IO back up the iodone chain. 13175 */ 13176 bioerror(orig_bp, EIO); 13177 orig_bp->b_resid = orig_bp->b_bcount; 13178 13179 } else { 13180 /* 13181 * This is a regular READ request (ie, not a RMW). Copy the 13182 * data from the shadow buf into the original buf. The 13183 * copy_offset compensates for any "misalignment" between the 13184 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13185 * original buf (with its un->un_sys_blocksize blocks). 13186 */ 13187 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13188 copy_length); 13189 } 13190 13191 freebuf_done: 13192 13193 /* 13194 * At this point we still have both the shadow buf AND the original 13195 * buf to deal with, as well as the layer-private data area in each. 13196 * Local variables are as follows: 13197 * 13198 * bp -- points to shadow buf 13199 * xp -- points to xbuf of shadow buf 13200 * bsp -- points to layer-private data area of shadow buf 13201 * orig_bp -- points to original buf 13202 * 13203 * First free the shadow buf and its associated xbuf, then free the 13204 * layer-private data area from the shadow buf. There is no need to 13205 * restore xb_private in the shadow xbuf. 13206 */ 13207 sd_shadow_buf_free(bp); 13208 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13209 13210 /* 13211 * Now update the local variables to point to the original buf, xbuf, 13212 * and layer-private area. 13213 */ 13214 bp = orig_bp; 13215 xp = SD_GET_XBUF(bp); 13216 ASSERT(xp != NULL); 13217 ASSERT(xp == orig_xp); 13218 bsp = xp->xb_private; 13219 ASSERT(bsp != NULL); 13220 13221 done: 13222 /* 13223 * Restore xb_private to whatever it was set to by the next higher 13224 * layer in the chain, then free the layer-private data area. 13225 */ 13226 xp->xb_private = bsp->mbs_oprivate; 13227 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13228 13229 exit: 13230 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13231 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13232 13233 SD_NEXT_IODONE(index, un, bp); 13234 } 13235 13236 13237 /* 13238 * Function: sd_checksum_iostart 13239 * 13240 * Description: A stub function for a layer that's currently not used. 13241 * For now just a placeholder. 13242 * 13243 * Context: Kernel thread context 13244 */ 13245 13246 static void 13247 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13248 { 13249 ASSERT(un != NULL); 13250 ASSERT(bp != NULL); 13251 ASSERT(!mutex_owned(SD_MUTEX(un))); 13252 SD_NEXT_IOSTART(index, un, bp); 13253 } 13254 13255 13256 /* 13257 * Function: sd_checksum_iodone 13258 * 13259 * Description: A stub function for a layer that's currently not used. 13260 * For now just a placeholder. 13261 * 13262 * Context: May be called under interrupt context 13263 */ 13264 13265 static void 13266 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13267 { 13268 ASSERT(un != NULL); 13269 ASSERT(bp != NULL); 13270 ASSERT(!mutex_owned(SD_MUTEX(un))); 13271 SD_NEXT_IODONE(index, un, bp); 13272 } 13273 13274 13275 /* 13276 * Function: sd_checksum_uscsi_iostart 13277 * 13278 * Description: A stub function for a layer that's currently not used. 13279 * For now just a placeholder. 13280 * 13281 * Context: Kernel thread context 13282 */ 13283 13284 static void 13285 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13286 { 13287 ASSERT(un != NULL); 13288 ASSERT(bp != NULL); 13289 ASSERT(!mutex_owned(SD_MUTEX(un))); 13290 SD_NEXT_IOSTART(index, un, bp); 13291 } 13292 13293 13294 /* 13295 * Function: sd_checksum_uscsi_iodone 13296 * 13297 * Description: A stub function for a layer that's currently not used. 13298 * For now just a placeholder. 13299 * 13300 * Context: May be called under interrupt context 13301 */ 13302 13303 static void 13304 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13305 { 13306 ASSERT(un != NULL); 13307 ASSERT(bp != NULL); 13308 ASSERT(!mutex_owned(SD_MUTEX(un))); 13309 SD_NEXT_IODONE(index, un, bp); 13310 } 13311 13312 13313 /* 13314 * Function: sd_pm_iostart 13315 * 13316 * Description: iostart-side routine for Power mangement. 13317 * 13318 * Context: Kernel thread context 13319 */ 13320 13321 static void 13322 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13323 { 13324 ASSERT(un != NULL); 13325 ASSERT(bp != NULL); 13326 ASSERT(!mutex_owned(SD_MUTEX(un))); 13327 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13328 13329 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13330 13331 if (sd_pm_entry(un) != DDI_SUCCESS) { 13332 /* 13333 * Set up to return the failed buf back up the 'iodone' 13334 * side of the calling chain. 13335 */ 13336 bioerror(bp, EIO); 13337 bp->b_resid = bp->b_bcount; 13338 13339 SD_BEGIN_IODONE(index, un, bp); 13340 13341 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13342 return; 13343 } 13344 13345 SD_NEXT_IOSTART(index, un, bp); 13346 13347 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13348 } 13349 13350 13351 /* 13352 * Function: sd_pm_iodone 13353 * 13354 * Description: iodone-side routine for power mangement. 13355 * 13356 * Context: may be called from interrupt context 13357 */ 13358 13359 static void 13360 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13361 { 13362 ASSERT(un != NULL); 13363 ASSERT(bp != NULL); 13364 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13365 13366 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13367 13368 /* 13369 * After attach the following flag is only read, so don't 13370 * take the penalty of acquiring a mutex for it. 13371 */ 13372 if (un->un_f_pm_is_enabled == TRUE) { 13373 sd_pm_exit(un); 13374 } 13375 13376 SD_NEXT_IODONE(index, un, bp); 13377 13378 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13379 } 13380 13381 13382 /* 13383 * Function: sd_core_iostart 13384 * 13385 * Description: Primary driver function for enqueuing buf(9S) structs from 13386 * the system and initiating IO to the target device 13387 * 13388 * Context: Kernel thread context. Can sleep. 13389 * 13390 * Assumptions: - The given xp->xb_blkno is absolute 13391 * (ie, relative to the start of the device). 13392 * - The IO is to be done using the native blocksize of 13393 * the device, as specified in un->un_tgt_blocksize. 13394 */ 13395 /* ARGSUSED */ 13396 static void 13397 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13398 { 13399 struct sd_xbuf *xp; 13400 13401 ASSERT(un != NULL); 13402 ASSERT(bp != NULL); 13403 ASSERT(!mutex_owned(SD_MUTEX(un))); 13404 ASSERT(bp->b_resid == 0); 13405 13406 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13407 13408 xp = SD_GET_XBUF(bp); 13409 ASSERT(xp != NULL); 13410 13411 mutex_enter(SD_MUTEX(un)); 13412 13413 /* 13414 * If we are currently in the failfast state, fail any new IO 13415 * that has B_FAILFAST set, then return. 13416 */ 13417 if ((bp->b_flags & B_FAILFAST) && 13418 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13419 mutex_exit(SD_MUTEX(un)); 13420 bioerror(bp, EIO); 13421 bp->b_resid = bp->b_bcount; 13422 SD_BEGIN_IODONE(index, un, bp); 13423 return; 13424 } 13425 13426 if (SD_IS_DIRECT_PRIORITY(xp)) { 13427 /* 13428 * Priority command -- transport it immediately. 13429 * 13430 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13431 * because all direct priority commands should be associated 13432 * with error recovery actions which we don't want to retry. 13433 */ 13434 sd_start_cmds(un, bp); 13435 } else { 13436 /* 13437 * Normal command -- add it to the wait queue, then start 13438 * transporting commands from the wait queue. 13439 */ 13440 sd_add_buf_to_waitq(un, bp); 13441 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13442 sd_start_cmds(un, NULL); 13443 } 13444 13445 mutex_exit(SD_MUTEX(un)); 13446 13447 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13448 } 13449 13450 13451 /* 13452 * Function: sd_init_cdb_limits 13453 * 13454 * Description: This is to handle scsi_pkt initialization differences 13455 * between the driver platforms. 13456 * 13457 * Legacy behaviors: 13458 * 13459 * If the block number or the sector count exceeds the 13460 * capabilities of a Group 0 command, shift over to a 13461 * Group 1 command. We don't blindly use Group 1 13462 * commands because a) some drives (CDC Wren IVs) get a 13463 * bit confused, and b) there is probably a fair amount 13464 * of speed difference for a target to receive and decode 13465 * a 10 byte command instead of a 6 byte command. 13466 * 13467 * The xfer time difference of 6 vs 10 byte CDBs is 13468 * still significant so this code is still worthwhile. 13469 * 10 byte CDBs are very inefficient with the fas HBA driver 13470 * and older disks. Each CDB byte took 1 usec with some 13471 * popular disks. 13472 * 13473 * Context: Must be called at attach time 13474 */ 13475 13476 static void 13477 sd_init_cdb_limits(struct sd_lun *un) 13478 { 13479 int hba_cdb_limit; 13480 13481 /* 13482 * Use CDB_GROUP1 commands for most devices except for 13483 * parallel SCSI fixed drives in which case we get better 13484 * performance using CDB_GROUP0 commands (where applicable). 13485 */ 13486 un->un_mincdb = SD_CDB_GROUP1; 13487 #if !defined(__fibre) 13488 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13489 !un->un_f_has_removable_media) { 13490 un->un_mincdb = SD_CDB_GROUP0; 13491 } 13492 #endif 13493 13494 /* 13495 * Try to read the max-cdb-length supported by HBA. 13496 */ 13497 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13498 if (0 >= un->un_max_hba_cdb) { 13499 un->un_max_hba_cdb = CDB_GROUP4; 13500 hba_cdb_limit = SD_CDB_GROUP4; 13501 } else if (0 < un->un_max_hba_cdb && 13502 un->un_max_hba_cdb < CDB_GROUP1) { 13503 hba_cdb_limit = SD_CDB_GROUP0; 13504 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13505 un->un_max_hba_cdb < CDB_GROUP5) { 13506 hba_cdb_limit = SD_CDB_GROUP1; 13507 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13508 un->un_max_hba_cdb < CDB_GROUP4) { 13509 hba_cdb_limit = SD_CDB_GROUP5; 13510 } else { 13511 hba_cdb_limit = SD_CDB_GROUP4; 13512 } 13513 13514 /* 13515 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13516 * commands for fixed disks unless we are building for a 32 bit 13517 * kernel. 13518 */ 13519 #ifdef _LP64 13520 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13521 min(hba_cdb_limit, SD_CDB_GROUP4); 13522 #else 13523 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13524 min(hba_cdb_limit, SD_CDB_GROUP1); 13525 #endif 13526 13527 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13528 ? sizeof (struct scsi_arq_status) : 1); 13529 un->un_cmd_timeout = (ushort_t)sd_io_time; 13530 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13531 } 13532 13533 13534 /* 13535 * Function: sd_initpkt_for_buf 13536 * 13537 * Description: Allocate and initialize for transport a scsi_pkt struct, 13538 * based upon the info specified in the given buf struct. 13539 * 13540 * Assumes the xb_blkno in the request is absolute (ie, 13541 * relative to the start of the device (NOT partition!). 13542 * Also assumes that the request is using the native block 13543 * size of the device (as returned by the READ CAPACITY 13544 * command). 13545 * 13546 * Return Code: SD_PKT_ALLOC_SUCCESS 13547 * SD_PKT_ALLOC_FAILURE 13548 * SD_PKT_ALLOC_FAILURE_NO_DMA 13549 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13550 * 13551 * Context: Kernel thread and may be called from software interrupt context 13552 * as part of a sdrunout callback. This function may not block or 13553 * call routines that block 13554 */ 13555 13556 static int 13557 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13558 { 13559 struct sd_xbuf *xp; 13560 struct scsi_pkt *pktp = NULL; 13561 struct sd_lun *un; 13562 size_t blockcount; 13563 daddr_t startblock; 13564 int rval; 13565 int cmd_flags; 13566 13567 ASSERT(bp != NULL); 13568 ASSERT(pktpp != NULL); 13569 xp = SD_GET_XBUF(bp); 13570 ASSERT(xp != NULL); 13571 un = SD_GET_UN(bp); 13572 ASSERT(un != NULL); 13573 ASSERT(mutex_owned(SD_MUTEX(un))); 13574 ASSERT(bp->b_resid == 0); 13575 13576 SD_TRACE(SD_LOG_IO_CORE, un, 13577 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13578 13579 mutex_exit(SD_MUTEX(un)); 13580 13581 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13582 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13583 /* 13584 * Already have a scsi_pkt -- just need DMA resources. 13585 * We must recompute the CDB in case the mapping returns 13586 * a nonzero pkt_resid. 13587 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13588 * that is being retried, the unmap/remap of the DMA resouces 13589 * will result in the entire transfer starting over again 13590 * from the very first block. 13591 */ 13592 ASSERT(xp->xb_pktp != NULL); 13593 pktp = xp->xb_pktp; 13594 } else { 13595 pktp = NULL; 13596 } 13597 #endif /* __i386 || __amd64 */ 13598 13599 startblock = xp->xb_blkno; /* Absolute block num. */ 13600 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13601 13602 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13603 13604 /* 13605 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13606 * call scsi_init_pkt, and build the CDB. 13607 */ 13608 rval = sd_setup_rw_pkt(un, &pktp, bp, 13609 cmd_flags, sdrunout, (caddr_t)un, 13610 startblock, blockcount); 13611 13612 if (rval == 0) { 13613 /* 13614 * Success. 13615 * 13616 * If partial DMA is being used and required for this transfer. 13617 * set it up here. 13618 */ 13619 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13620 (pktp->pkt_resid != 0)) { 13621 13622 /* 13623 * Save the CDB length and pkt_resid for the 13624 * next xfer 13625 */ 13626 xp->xb_dma_resid = pktp->pkt_resid; 13627 13628 /* rezero resid */ 13629 pktp->pkt_resid = 0; 13630 13631 } else { 13632 xp->xb_dma_resid = 0; 13633 } 13634 13635 pktp->pkt_flags = un->un_tagflags; 13636 pktp->pkt_time = un->un_cmd_timeout; 13637 pktp->pkt_comp = sdintr; 13638 13639 pktp->pkt_private = bp; 13640 *pktpp = pktp; 13641 13642 SD_TRACE(SD_LOG_IO_CORE, un, 13643 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13644 13645 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13646 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13647 #endif 13648 13649 mutex_enter(SD_MUTEX(un)); 13650 return (SD_PKT_ALLOC_SUCCESS); 13651 13652 } 13653 13654 /* 13655 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13656 * from sd_setup_rw_pkt. 13657 */ 13658 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13659 13660 if (rval == SD_PKT_ALLOC_FAILURE) { 13661 *pktpp = NULL; 13662 /* 13663 * Set the driver state to RWAIT to indicate the driver 13664 * is waiting on resource allocations. The driver will not 13665 * suspend, pm_suspend, or detatch while the state is RWAIT. 13666 */ 13667 mutex_enter(SD_MUTEX(un)); 13668 New_state(un, SD_STATE_RWAIT); 13669 13670 SD_ERROR(SD_LOG_IO_CORE, un, 13671 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13672 13673 if ((bp->b_flags & B_ERROR) != 0) { 13674 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13675 } 13676 return (SD_PKT_ALLOC_FAILURE); 13677 } else { 13678 /* 13679 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13680 * 13681 * This should never happen. Maybe someone messed with the 13682 * kernel's minphys? 13683 */ 13684 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13685 "Request rejected: too large for CDB: " 13686 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13687 SD_ERROR(SD_LOG_IO_CORE, un, 13688 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13689 mutex_enter(SD_MUTEX(un)); 13690 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13691 13692 } 13693 } 13694 13695 13696 /* 13697 * Function: sd_destroypkt_for_buf 13698 * 13699 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13700 * 13701 * Context: Kernel thread or interrupt context 13702 */ 13703 13704 static void 13705 sd_destroypkt_for_buf(struct buf *bp) 13706 { 13707 ASSERT(bp != NULL); 13708 ASSERT(SD_GET_UN(bp) != NULL); 13709 13710 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13711 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13712 13713 ASSERT(SD_GET_PKTP(bp) != NULL); 13714 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13715 13716 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13717 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13718 } 13719 13720 /* 13721 * Function: sd_setup_rw_pkt 13722 * 13723 * Description: Determines appropriate CDB group for the requested LBA 13724 * and transfer length, calls scsi_init_pkt, and builds 13725 * the CDB. Do not use for partial DMA transfers except 13726 * for the initial transfer since the CDB size must 13727 * remain constant. 13728 * 13729 * Context: Kernel thread and may be called from software interrupt 13730 * context as part of a sdrunout callback. This function may not 13731 * block or call routines that block 13732 */ 13733 13734 13735 int 13736 sd_setup_rw_pkt(struct sd_lun *un, 13737 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13738 int (*callback)(caddr_t), caddr_t callback_arg, 13739 diskaddr_t lba, uint32_t blockcount) 13740 { 13741 struct scsi_pkt *return_pktp; 13742 union scsi_cdb *cdbp; 13743 struct sd_cdbinfo *cp = NULL; 13744 int i; 13745 13746 /* 13747 * See which size CDB to use, based upon the request. 13748 */ 13749 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13750 13751 /* 13752 * Check lba and block count against sd_cdbtab limits. 13753 * In the partial DMA case, we have to use the same size 13754 * CDB for all the transfers. Check lba + blockcount 13755 * against the max LBA so we know that segment of the 13756 * transfer can use the CDB we select. 13757 */ 13758 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13759 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13760 13761 /* 13762 * The command will fit into the CDB type 13763 * specified by sd_cdbtab[i]. 13764 */ 13765 cp = sd_cdbtab + i; 13766 13767 /* 13768 * Call scsi_init_pkt so we can fill in the 13769 * CDB. 13770 */ 13771 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13772 bp, cp->sc_grpcode, un->un_status_len, 0, 13773 flags, callback, callback_arg); 13774 13775 if (return_pktp != NULL) { 13776 13777 /* 13778 * Return new value of pkt 13779 */ 13780 *pktpp = return_pktp; 13781 13782 /* 13783 * To be safe, zero the CDB insuring there is 13784 * no leftover data from a previous command. 13785 */ 13786 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13787 13788 /* 13789 * Handle partial DMA mapping 13790 */ 13791 if (return_pktp->pkt_resid != 0) { 13792 13793 /* 13794 * Not going to xfer as many blocks as 13795 * originally expected 13796 */ 13797 blockcount -= 13798 SD_BYTES2TGTBLOCKS(un, 13799 return_pktp->pkt_resid); 13800 } 13801 13802 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13803 13804 /* 13805 * Set command byte based on the CDB 13806 * type we matched. 13807 */ 13808 cdbp->scc_cmd = cp->sc_grpmask | 13809 ((bp->b_flags & B_READ) ? 13810 SCMD_READ : SCMD_WRITE); 13811 13812 SD_FILL_SCSI1_LUN(un, return_pktp); 13813 13814 /* 13815 * Fill in LBA and length 13816 */ 13817 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13818 (cp->sc_grpcode == CDB_GROUP4) || 13819 (cp->sc_grpcode == CDB_GROUP0) || 13820 (cp->sc_grpcode == CDB_GROUP5)); 13821 13822 if (cp->sc_grpcode == CDB_GROUP1) { 13823 FORMG1ADDR(cdbp, lba); 13824 FORMG1COUNT(cdbp, blockcount); 13825 return (0); 13826 } else if (cp->sc_grpcode == CDB_GROUP4) { 13827 FORMG4LONGADDR(cdbp, lba); 13828 FORMG4COUNT(cdbp, blockcount); 13829 return (0); 13830 } else if (cp->sc_grpcode == CDB_GROUP0) { 13831 FORMG0ADDR(cdbp, lba); 13832 FORMG0COUNT(cdbp, blockcount); 13833 return (0); 13834 } else if (cp->sc_grpcode == CDB_GROUP5) { 13835 FORMG5ADDR(cdbp, lba); 13836 FORMG5COUNT(cdbp, blockcount); 13837 return (0); 13838 } 13839 13840 /* 13841 * It should be impossible to not match one 13842 * of the CDB types above, so we should never 13843 * reach this point. Set the CDB command byte 13844 * to test-unit-ready to avoid writing 13845 * to somewhere we don't intend. 13846 */ 13847 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13848 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13849 } else { 13850 /* 13851 * Couldn't get scsi_pkt 13852 */ 13853 return (SD_PKT_ALLOC_FAILURE); 13854 } 13855 } 13856 } 13857 13858 /* 13859 * None of the available CDB types were suitable. This really 13860 * should never happen: on a 64 bit system we support 13861 * READ16/WRITE16 which will hold an entire 64 bit disk address 13862 * and on a 32 bit system we will refuse to bind to a device 13863 * larger than 2TB so addresses will never be larger than 32 bits. 13864 */ 13865 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13866 } 13867 13868 /* 13869 * Function: sd_setup_next_rw_pkt 13870 * 13871 * Description: Setup packet for partial DMA transfers, except for the 13872 * initial transfer. sd_setup_rw_pkt should be used for 13873 * the initial transfer. 13874 * 13875 * Context: Kernel thread and may be called from interrupt context. 13876 */ 13877 13878 int 13879 sd_setup_next_rw_pkt(struct sd_lun *un, 13880 struct scsi_pkt *pktp, struct buf *bp, 13881 diskaddr_t lba, uint32_t blockcount) 13882 { 13883 uchar_t com; 13884 union scsi_cdb *cdbp; 13885 uchar_t cdb_group_id; 13886 13887 ASSERT(pktp != NULL); 13888 ASSERT(pktp->pkt_cdbp != NULL); 13889 13890 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13891 com = cdbp->scc_cmd; 13892 cdb_group_id = CDB_GROUPID(com); 13893 13894 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13895 (cdb_group_id == CDB_GROUPID_1) || 13896 (cdb_group_id == CDB_GROUPID_4) || 13897 (cdb_group_id == CDB_GROUPID_5)); 13898 13899 /* 13900 * Move pkt to the next portion of the xfer. 13901 * func is NULL_FUNC so we do not have to release 13902 * the disk mutex here. 13903 */ 13904 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13905 NULL_FUNC, NULL) == pktp) { 13906 /* Success. Handle partial DMA */ 13907 if (pktp->pkt_resid != 0) { 13908 blockcount -= 13909 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13910 } 13911 13912 cdbp->scc_cmd = com; 13913 SD_FILL_SCSI1_LUN(un, pktp); 13914 if (cdb_group_id == CDB_GROUPID_1) { 13915 FORMG1ADDR(cdbp, lba); 13916 FORMG1COUNT(cdbp, blockcount); 13917 return (0); 13918 } else if (cdb_group_id == CDB_GROUPID_4) { 13919 FORMG4LONGADDR(cdbp, lba); 13920 FORMG4COUNT(cdbp, blockcount); 13921 return (0); 13922 } else if (cdb_group_id == CDB_GROUPID_0) { 13923 FORMG0ADDR(cdbp, lba); 13924 FORMG0COUNT(cdbp, blockcount); 13925 return (0); 13926 } else if (cdb_group_id == CDB_GROUPID_5) { 13927 FORMG5ADDR(cdbp, lba); 13928 FORMG5COUNT(cdbp, blockcount); 13929 return (0); 13930 } 13931 13932 /* Unreachable */ 13933 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13934 } 13935 13936 /* 13937 * Error setting up next portion of cmd transfer. 13938 * Something is definitely very wrong and this 13939 * should not happen. 13940 */ 13941 return (SD_PKT_ALLOC_FAILURE); 13942 } 13943 13944 /* 13945 * Function: sd_initpkt_for_uscsi 13946 * 13947 * Description: Allocate and initialize for transport a scsi_pkt struct, 13948 * based upon the info specified in the given uscsi_cmd struct. 13949 * 13950 * Return Code: SD_PKT_ALLOC_SUCCESS 13951 * SD_PKT_ALLOC_FAILURE 13952 * SD_PKT_ALLOC_FAILURE_NO_DMA 13953 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13954 * 13955 * Context: Kernel thread and may be called from software interrupt context 13956 * as part of a sdrunout callback. This function may not block or 13957 * call routines that block 13958 */ 13959 13960 static int 13961 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13962 { 13963 struct uscsi_cmd *uscmd; 13964 struct sd_xbuf *xp; 13965 struct scsi_pkt *pktp; 13966 struct sd_lun *un; 13967 uint32_t flags = 0; 13968 13969 ASSERT(bp != NULL); 13970 ASSERT(pktpp != NULL); 13971 xp = SD_GET_XBUF(bp); 13972 ASSERT(xp != NULL); 13973 un = SD_GET_UN(bp); 13974 ASSERT(un != NULL); 13975 ASSERT(mutex_owned(SD_MUTEX(un))); 13976 13977 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13978 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13979 ASSERT(uscmd != NULL); 13980 13981 SD_TRACE(SD_LOG_IO_CORE, un, 13982 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13983 13984 /* 13985 * Allocate the scsi_pkt for the command. 13986 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13987 * during scsi_init_pkt time and will continue to use the 13988 * same path as long as the same scsi_pkt is used without 13989 * intervening scsi_dma_free(). Since uscsi command does 13990 * not call scsi_dmafree() before retry failed command, it 13991 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13992 * set such that scsi_vhci can use other available path for 13993 * retry. Besides, ucsci command does not allow DMA breakup, 13994 * so there is no need to set PKT_DMA_PARTIAL flag. 13995 */ 13996 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 13997 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13998 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13999 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 14000 - sizeof (struct scsi_extended_sense)), 0, 14001 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 14002 sdrunout, (caddr_t)un); 14003 } else { 14004 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14005 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14006 sizeof (struct scsi_arq_status), 0, 14007 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 14008 sdrunout, (caddr_t)un); 14009 } 14010 14011 if (pktp == NULL) { 14012 *pktpp = NULL; 14013 /* 14014 * Set the driver state to RWAIT to indicate the driver 14015 * is waiting on resource allocations. The driver will not 14016 * suspend, pm_suspend, or detatch while the state is RWAIT. 14017 */ 14018 New_state(un, SD_STATE_RWAIT); 14019 14020 SD_ERROR(SD_LOG_IO_CORE, un, 14021 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 14022 14023 if ((bp->b_flags & B_ERROR) != 0) { 14024 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 14025 } 14026 return (SD_PKT_ALLOC_FAILURE); 14027 } 14028 14029 /* 14030 * We do not do DMA breakup for USCSI commands, so return failure 14031 * here if all the needed DMA resources were not allocated. 14032 */ 14033 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 14034 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 14035 scsi_destroy_pkt(pktp); 14036 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 14037 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 14038 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 14039 } 14040 14041 /* Init the cdb from the given uscsi struct */ 14042 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 14043 uscmd->uscsi_cdb[0], 0, 0, 0); 14044 14045 SD_FILL_SCSI1_LUN(un, pktp); 14046 14047 /* 14048 * Set up the optional USCSI flags. See the uscsi (7I) man page 14049 * for listing of the supported flags. 14050 */ 14051 14052 if (uscmd->uscsi_flags & USCSI_SILENT) { 14053 flags |= FLAG_SILENT; 14054 } 14055 14056 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14057 flags |= FLAG_DIAGNOSE; 14058 } 14059 14060 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14061 flags |= FLAG_ISOLATE; 14062 } 14063 14064 if (un->un_f_is_fibre == FALSE) { 14065 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14066 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14067 } 14068 } 14069 14070 /* 14071 * Set the pkt flags here so we save time later. 14072 * Note: These flags are NOT in the uscsi man page!!! 14073 */ 14074 if (uscmd->uscsi_flags & USCSI_HEAD) { 14075 flags |= FLAG_HEAD; 14076 } 14077 14078 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14079 flags |= FLAG_NOINTR; 14080 } 14081 14082 /* 14083 * For tagged queueing, things get a bit complicated. 14084 * Check first for head of queue and last for ordered queue. 14085 * If neither head nor order, use the default driver tag flags. 14086 */ 14087 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14088 if (uscmd->uscsi_flags & USCSI_HTAG) { 14089 flags |= FLAG_HTAG; 14090 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14091 flags |= FLAG_OTAG; 14092 } else { 14093 flags |= un->un_tagflags & FLAG_TAGMASK; 14094 } 14095 } 14096 14097 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14098 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14099 } 14100 14101 pktp->pkt_flags = flags; 14102 14103 /* Transfer uscsi information to scsi_pkt */ 14104 (void) scsi_uscsi_pktinit(uscmd, pktp); 14105 14106 /* Copy the caller's CDB into the pkt... */ 14107 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14108 14109 if (uscmd->uscsi_timeout == 0) { 14110 pktp->pkt_time = un->un_uscsi_timeout; 14111 } else { 14112 pktp->pkt_time = uscmd->uscsi_timeout; 14113 } 14114 14115 /* need it later to identify USCSI request in sdintr */ 14116 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14117 14118 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14119 14120 pktp->pkt_private = bp; 14121 pktp->pkt_comp = sdintr; 14122 *pktpp = pktp; 14123 14124 SD_TRACE(SD_LOG_IO_CORE, un, 14125 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14126 14127 return (SD_PKT_ALLOC_SUCCESS); 14128 } 14129 14130 14131 /* 14132 * Function: sd_destroypkt_for_uscsi 14133 * 14134 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14135 * IOs.. Also saves relevant info into the associated uscsi_cmd 14136 * struct. 14137 * 14138 * Context: May be called under interrupt context 14139 */ 14140 14141 static void 14142 sd_destroypkt_for_uscsi(struct buf *bp) 14143 { 14144 struct uscsi_cmd *uscmd; 14145 struct sd_xbuf *xp; 14146 struct scsi_pkt *pktp; 14147 struct sd_lun *un; 14148 struct sd_uscsi_info *suip; 14149 14150 ASSERT(bp != NULL); 14151 xp = SD_GET_XBUF(bp); 14152 ASSERT(xp != NULL); 14153 un = SD_GET_UN(bp); 14154 ASSERT(un != NULL); 14155 ASSERT(!mutex_owned(SD_MUTEX(un))); 14156 pktp = SD_GET_PKTP(bp); 14157 ASSERT(pktp != NULL); 14158 14159 SD_TRACE(SD_LOG_IO_CORE, un, 14160 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14161 14162 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14163 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14164 ASSERT(uscmd != NULL); 14165 14166 /* Save the status and the residual into the uscsi_cmd struct */ 14167 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14168 uscmd->uscsi_resid = bp->b_resid; 14169 14170 /* Transfer scsi_pkt information to uscsi */ 14171 (void) scsi_uscsi_pktfini(pktp, uscmd); 14172 14173 /* 14174 * If enabled, copy any saved sense data into the area specified 14175 * by the uscsi command. 14176 */ 14177 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14178 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14179 /* 14180 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14181 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14182 */ 14183 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14184 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14185 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14186 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14187 MAX_SENSE_LENGTH); 14188 } else { 14189 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14190 SENSE_LENGTH); 14191 } 14192 } 14193 /* 14194 * The following assignments are for SCSI FMA. 14195 */ 14196 ASSERT(xp->xb_private != NULL); 14197 suip = (struct sd_uscsi_info *)xp->xb_private; 14198 suip->ui_pkt_reason = pktp->pkt_reason; 14199 suip->ui_pkt_state = pktp->pkt_state; 14200 suip->ui_pkt_statistics = pktp->pkt_statistics; 14201 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14202 14203 /* We are done with the scsi_pkt; free it now */ 14204 ASSERT(SD_GET_PKTP(bp) != NULL); 14205 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14206 14207 SD_TRACE(SD_LOG_IO_CORE, un, 14208 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14209 } 14210 14211 14212 /* 14213 * Function: sd_bioclone_alloc 14214 * 14215 * Description: Allocate a buf(9S) and init it as per the given buf 14216 * and the various arguments. The associated sd_xbuf 14217 * struct is (nearly) duplicated. The struct buf *bp 14218 * argument is saved in new_xp->xb_private. 14219 * 14220 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14221 * datalen - size of data area for the shadow bp 14222 * blkno - starting LBA 14223 * func - function pointer for b_iodone in the shadow buf. (May 14224 * be NULL if none.) 14225 * 14226 * Return Code: Pointer to allocates buf(9S) struct 14227 * 14228 * Context: Can sleep. 14229 */ 14230 14231 static struct buf * 14232 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14233 daddr_t blkno, int (*func)(struct buf *)) 14234 { 14235 struct sd_lun *un; 14236 struct sd_xbuf *xp; 14237 struct sd_xbuf *new_xp; 14238 struct buf *new_bp; 14239 14240 ASSERT(bp != NULL); 14241 xp = SD_GET_XBUF(bp); 14242 ASSERT(xp != NULL); 14243 un = SD_GET_UN(bp); 14244 ASSERT(un != NULL); 14245 ASSERT(!mutex_owned(SD_MUTEX(un))); 14246 14247 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14248 NULL, KM_SLEEP); 14249 14250 new_bp->b_lblkno = blkno; 14251 14252 /* 14253 * Allocate an xbuf for the shadow bp and copy the contents of the 14254 * original xbuf into it. 14255 */ 14256 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14257 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14258 14259 /* 14260 * The given bp is automatically saved in the xb_private member 14261 * of the new xbuf. Callers are allowed to depend on this. 14262 */ 14263 new_xp->xb_private = bp; 14264 14265 new_bp->b_private = new_xp; 14266 14267 return (new_bp); 14268 } 14269 14270 /* 14271 * Function: sd_shadow_buf_alloc 14272 * 14273 * Description: Allocate a buf(9S) and init it as per the given buf 14274 * and the various arguments. The associated sd_xbuf 14275 * struct is (nearly) duplicated. The struct buf *bp 14276 * argument is saved in new_xp->xb_private. 14277 * 14278 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14279 * datalen - size of data area for the shadow bp 14280 * bflags - B_READ or B_WRITE (pseudo flag) 14281 * blkno - starting LBA 14282 * func - function pointer for b_iodone in the shadow buf. (May 14283 * be NULL if none.) 14284 * 14285 * Return Code: Pointer to allocates buf(9S) struct 14286 * 14287 * Context: Can sleep. 14288 */ 14289 14290 static struct buf * 14291 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14292 daddr_t blkno, int (*func)(struct buf *)) 14293 { 14294 struct sd_lun *un; 14295 struct sd_xbuf *xp; 14296 struct sd_xbuf *new_xp; 14297 struct buf *new_bp; 14298 14299 ASSERT(bp != NULL); 14300 xp = SD_GET_XBUF(bp); 14301 ASSERT(xp != NULL); 14302 un = SD_GET_UN(bp); 14303 ASSERT(un != NULL); 14304 ASSERT(!mutex_owned(SD_MUTEX(un))); 14305 14306 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14307 bp_mapin(bp); 14308 } 14309 14310 bflags &= (B_READ | B_WRITE); 14311 #if defined(__i386) || defined(__amd64) 14312 new_bp = getrbuf(KM_SLEEP); 14313 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14314 new_bp->b_bcount = datalen; 14315 new_bp->b_flags = bflags | 14316 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14317 #else 14318 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14319 datalen, bflags, SLEEP_FUNC, NULL); 14320 #endif 14321 new_bp->av_forw = NULL; 14322 new_bp->av_back = NULL; 14323 new_bp->b_dev = bp->b_dev; 14324 new_bp->b_blkno = blkno; 14325 new_bp->b_iodone = func; 14326 new_bp->b_edev = bp->b_edev; 14327 new_bp->b_resid = 0; 14328 14329 /* We need to preserve the B_FAILFAST flag */ 14330 if (bp->b_flags & B_FAILFAST) { 14331 new_bp->b_flags |= B_FAILFAST; 14332 } 14333 14334 /* 14335 * Allocate an xbuf for the shadow bp and copy the contents of the 14336 * original xbuf into it. 14337 */ 14338 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14339 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14340 14341 /* Need later to copy data between the shadow buf & original buf! */ 14342 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14343 14344 /* 14345 * The given bp is automatically saved in the xb_private member 14346 * of the new xbuf. Callers are allowed to depend on this. 14347 */ 14348 new_xp->xb_private = bp; 14349 14350 new_bp->b_private = new_xp; 14351 14352 return (new_bp); 14353 } 14354 14355 /* 14356 * Function: sd_bioclone_free 14357 * 14358 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14359 * in the larger than partition operation. 14360 * 14361 * Context: May be called under interrupt context 14362 */ 14363 14364 static void 14365 sd_bioclone_free(struct buf *bp) 14366 { 14367 struct sd_xbuf *xp; 14368 14369 ASSERT(bp != NULL); 14370 xp = SD_GET_XBUF(bp); 14371 ASSERT(xp != NULL); 14372 14373 /* 14374 * Call bp_mapout() before freeing the buf, in case a lower 14375 * layer or HBA had done a bp_mapin(). we must do this here 14376 * as we are the "originator" of the shadow buf. 14377 */ 14378 bp_mapout(bp); 14379 14380 /* 14381 * Null out b_iodone before freeing the bp, to ensure that the driver 14382 * never gets confused by a stale value in this field. (Just a little 14383 * extra defensiveness here.) 14384 */ 14385 bp->b_iodone = NULL; 14386 14387 freerbuf(bp); 14388 14389 kmem_free(xp, sizeof (struct sd_xbuf)); 14390 } 14391 14392 /* 14393 * Function: sd_shadow_buf_free 14394 * 14395 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14396 * 14397 * Context: May be called under interrupt context 14398 */ 14399 14400 static void 14401 sd_shadow_buf_free(struct buf *bp) 14402 { 14403 struct sd_xbuf *xp; 14404 14405 ASSERT(bp != NULL); 14406 xp = SD_GET_XBUF(bp); 14407 ASSERT(xp != NULL); 14408 14409 #if defined(__sparc) 14410 /* 14411 * Call bp_mapout() before freeing the buf, in case a lower 14412 * layer or HBA had done a bp_mapin(). we must do this here 14413 * as we are the "originator" of the shadow buf. 14414 */ 14415 bp_mapout(bp); 14416 #endif 14417 14418 /* 14419 * Null out b_iodone before freeing the bp, to ensure that the driver 14420 * never gets confused by a stale value in this field. (Just a little 14421 * extra defensiveness here.) 14422 */ 14423 bp->b_iodone = NULL; 14424 14425 #if defined(__i386) || defined(__amd64) 14426 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14427 freerbuf(bp); 14428 #else 14429 scsi_free_consistent_buf(bp); 14430 #endif 14431 14432 kmem_free(xp, sizeof (struct sd_xbuf)); 14433 } 14434 14435 14436 /* 14437 * Function: sd_print_transport_rejected_message 14438 * 14439 * Description: This implements the ludicrously complex rules for printing 14440 * a "transport rejected" message. This is to address the 14441 * specific problem of having a flood of this error message 14442 * produced when a failover occurs. 14443 * 14444 * Context: Any. 14445 */ 14446 14447 static void 14448 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14449 int code) 14450 { 14451 ASSERT(un != NULL); 14452 ASSERT(mutex_owned(SD_MUTEX(un))); 14453 ASSERT(xp != NULL); 14454 14455 /* 14456 * Print the "transport rejected" message under the following 14457 * conditions: 14458 * 14459 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14460 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14461 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14462 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14463 * scsi_transport(9F) (which indicates that the target might have 14464 * gone off-line). This uses the un->un_tran_fatal_count 14465 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14466 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14467 * from scsi_transport(). 14468 * 14469 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14470 * the preceeding cases in order for the message to be printed. 14471 */ 14472 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14473 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14474 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14475 (code != TRAN_FATAL_ERROR) || 14476 (un->un_tran_fatal_count == 1)) { 14477 switch (code) { 14478 case TRAN_BADPKT: 14479 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14480 "transport rejected bad packet\n"); 14481 break; 14482 case TRAN_FATAL_ERROR: 14483 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14484 "transport rejected fatal error\n"); 14485 break; 14486 default: 14487 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14488 "transport rejected (%d)\n", code); 14489 break; 14490 } 14491 } 14492 } 14493 } 14494 14495 14496 /* 14497 * Function: sd_add_buf_to_waitq 14498 * 14499 * Description: Add the given buf(9S) struct to the wait queue for the 14500 * instance. If sorting is enabled, then the buf is added 14501 * to the queue via an elevator sort algorithm (a la 14502 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14503 * If sorting is not enabled, then the buf is just added 14504 * to the end of the wait queue. 14505 * 14506 * Return Code: void 14507 * 14508 * Context: Does not sleep/block, therefore technically can be called 14509 * from any context. However if sorting is enabled then the 14510 * execution time is indeterminate, and may take long if 14511 * the wait queue grows large. 14512 */ 14513 14514 static void 14515 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14516 { 14517 struct buf *ap; 14518 14519 ASSERT(bp != NULL); 14520 ASSERT(un != NULL); 14521 ASSERT(mutex_owned(SD_MUTEX(un))); 14522 14523 /* If the queue is empty, add the buf as the only entry & return. */ 14524 if (un->un_waitq_headp == NULL) { 14525 ASSERT(un->un_waitq_tailp == NULL); 14526 un->un_waitq_headp = un->un_waitq_tailp = bp; 14527 bp->av_forw = NULL; 14528 return; 14529 } 14530 14531 ASSERT(un->un_waitq_tailp != NULL); 14532 14533 /* 14534 * If sorting is disabled, just add the buf to the tail end of 14535 * the wait queue and return. 14536 */ 14537 if (un->un_f_disksort_disabled) { 14538 un->un_waitq_tailp->av_forw = bp; 14539 un->un_waitq_tailp = bp; 14540 bp->av_forw = NULL; 14541 return; 14542 } 14543 14544 /* 14545 * Sort thru the list of requests currently on the wait queue 14546 * and add the new buf request at the appropriate position. 14547 * 14548 * The un->un_waitq_headp is an activity chain pointer on which 14549 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14550 * first queue holds those requests which are positioned after 14551 * the current SD_GET_BLKNO() (in the first request); the second holds 14552 * requests which came in after their SD_GET_BLKNO() number was passed. 14553 * Thus we implement a one way scan, retracting after reaching 14554 * the end of the drive to the first request on the second 14555 * queue, at which time it becomes the first queue. 14556 * A one-way scan is natural because of the way UNIX read-ahead 14557 * blocks are allocated. 14558 * 14559 * If we lie after the first request, then we must locate the 14560 * second request list and add ourselves to it. 14561 */ 14562 ap = un->un_waitq_headp; 14563 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14564 while (ap->av_forw != NULL) { 14565 /* 14566 * Look for an "inversion" in the (normally 14567 * ascending) block numbers. This indicates 14568 * the start of the second request list. 14569 */ 14570 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14571 /* 14572 * Search the second request list for the 14573 * first request at a larger block number. 14574 * We go before that; however if there is 14575 * no such request, we go at the end. 14576 */ 14577 do { 14578 if (SD_GET_BLKNO(bp) < 14579 SD_GET_BLKNO(ap->av_forw)) { 14580 goto insert; 14581 } 14582 ap = ap->av_forw; 14583 } while (ap->av_forw != NULL); 14584 goto insert; /* after last */ 14585 } 14586 ap = ap->av_forw; 14587 } 14588 14589 /* 14590 * No inversions... we will go after the last, and 14591 * be the first request in the second request list. 14592 */ 14593 goto insert; 14594 } 14595 14596 /* 14597 * Request is at/after the current request... 14598 * sort in the first request list. 14599 */ 14600 while (ap->av_forw != NULL) { 14601 /* 14602 * We want to go after the current request (1) if 14603 * there is an inversion after it (i.e. it is the end 14604 * of the first request list), or (2) if the next 14605 * request is a larger block no. than our request. 14606 */ 14607 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14608 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14609 goto insert; 14610 } 14611 ap = ap->av_forw; 14612 } 14613 14614 /* 14615 * Neither a second list nor a larger request, therefore 14616 * we go at the end of the first list (which is the same 14617 * as the end of the whole schebang). 14618 */ 14619 insert: 14620 bp->av_forw = ap->av_forw; 14621 ap->av_forw = bp; 14622 14623 /* 14624 * If we inserted onto the tail end of the waitq, make sure the 14625 * tail pointer is updated. 14626 */ 14627 if (ap == un->un_waitq_tailp) { 14628 un->un_waitq_tailp = bp; 14629 } 14630 } 14631 14632 14633 /* 14634 * Function: sd_start_cmds 14635 * 14636 * Description: Remove and transport cmds from the driver queues. 14637 * 14638 * Arguments: un - pointer to the unit (soft state) struct for the target. 14639 * 14640 * immed_bp - ptr to a buf to be transported immediately. Only 14641 * the immed_bp is transported; bufs on the waitq are not 14642 * processed and the un_retry_bp is not checked. If immed_bp is 14643 * NULL, then normal queue processing is performed. 14644 * 14645 * Context: May be called from kernel thread context, interrupt context, 14646 * or runout callback context. This function may not block or 14647 * call routines that block. 14648 */ 14649 14650 static void 14651 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14652 { 14653 struct sd_xbuf *xp; 14654 struct buf *bp; 14655 void (*statp)(kstat_io_t *); 14656 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14657 void (*saved_statp)(kstat_io_t *); 14658 #endif 14659 int rval; 14660 struct sd_fm_internal *sfip = NULL; 14661 14662 ASSERT(un != NULL); 14663 ASSERT(mutex_owned(SD_MUTEX(un))); 14664 ASSERT(un->un_ncmds_in_transport >= 0); 14665 ASSERT(un->un_throttle >= 0); 14666 14667 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14668 14669 do { 14670 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14671 saved_statp = NULL; 14672 #endif 14673 14674 /* 14675 * If we are syncing or dumping, fail the command to 14676 * avoid recursively calling back into scsi_transport(). 14677 * The dump I/O itself uses a separate code path so this 14678 * only prevents non-dump I/O from being sent while dumping. 14679 * File system sync takes place before dumping begins. 14680 * During panic, filesystem I/O is allowed provided 14681 * un_in_callback is <= 1. This is to prevent recursion 14682 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14683 * sd_start_cmds and so on. See panic.c for more information 14684 * about the states the system can be in during panic. 14685 */ 14686 if ((un->un_state == SD_STATE_DUMPING) || 14687 (ddi_in_panic() && (un->un_in_callback > 1))) { 14688 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14689 "sd_start_cmds: panicking\n"); 14690 goto exit; 14691 } 14692 14693 if ((bp = immed_bp) != NULL) { 14694 /* 14695 * We have a bp that must be transported immediately. 14696 * It's OK to transport the immed_bp here without doing 14697 * the throttle limit check because the immed_bp is 14698 * always used in a retry/recovery case. This means 14699 * that we know we are not at the throttle limit by 14700 * virtue of the fact that to get here we must have 14701 * already gotten a command back via sdintr(). This also 14702 * relies on (1) the command on un_retry_bp preventing 14703 * further commands from the waitq from being issued; 14704 * and (2) the code in sd_retry_command checking the 14705 * throttle limit before issuing a delayed or immediate 14706 * retry. This holds even if the throttle limit is 14707 * currently ratcheted down from its maximum value. 14708 */ 14709 statp = kstat_runq_enter; 14710 if (bp == un->un_retry_bp) { 14711 ASSERT((un->un_retry_statp == NULL) || 14712 (un->un_retry_statp == kstat_waitq_enter) || 14713 (un->un_retry_statp == 14714 kstat_runq_back_to_waitq)); 14715 /* 14716 * If the waitq kstat was incremented when 14717 * sd_set_retry_bp() queued this bp for a retry, 14718 * then we must set up statp so that the waitq 14719 * count will get decremented correctly below. 14720 * Also we must clear un->un_retry_statp to 14721 * ensure that we do not act on a stale value 14722 * in this field. 14723 */ 14724 if ((un->un_retry_statp == kstat_waitq_enter) || 14725 (un->un_retry_statp == 14726 kstat_runq_back_to_waitq)) { 14727 statp = kstat_waitq_to_runq; 14728 } 14729 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14730 saved_statp = un->un_retry_statp; 14731 #endif 14732 un->un_retry_statp = NULL; 14733 14734 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14735 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14736 "un_throttle:%d un_ncmds_in_transport:%d\n", 14737 un, un->un_retry_bp, un->un_throttle, 14738 un->un_ncmds_in_transport); 14739 } else { 14740 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14741 "processing priority bp:0x%p\n", bp); 14742 } 14743 14744 } else if ((bp = un->un_waitq_headp) != NULL) { 14745 /* 14746 * A command on the waitq is ready to go, but do not 14747 * send it if: 14748 * 14749 * (1) the throttle limit has been reached, or 14750 * (2) a retry is pending, or 14751 * (3) a START_STOP_UNIT callback pending, or 14752 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14753 * command is pending. 14754 * 14755 * For all of these conditions, IO processing will 14756 * restart after the condition is cleared. 14757 */ 14758 if (un->un_ncmds_in_transport >= un->un_throttle) { 14759 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14760 "sd_start_cmds: exiting, " 14761 "throttle limit reached!\n"); 14762 goto exit; 14763 } 14764 if (un->un_retry_bp != NULL) { 14765 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14766 "sd_start_cmds: exiting, retry pending!\n"); 14767 goto exit; 14768 } 14769 if (un->un_startstop_timeid != NULL) { 14770 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14771 "sd_start_cmds: exiting, " 14772 "START_STOP pending!\n"); 14773 goto exit; 14774 } 14775 if (un->un_direct_priority_timeid != NULL) { 14776 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14777 "sd_start_cmds: exiting, " 14778 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14779 goto exit; 14780 } 14781 14782 /* Dequeue the command */ 14783 un->un_waitq_headp = bp->av_forw; 14784 if (un->un_waitq_headp == NULL) { 14785 un->un_waitq_tailp = NULL; 14786 } 14787 bp->av_forw = NULL; 14788 statp = kstat_waitq_to_runq; 14789 SD_TRACE(SD_LOG_IO_CORE, un, 14790 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14791 14792 } else { 14793 /* No work to do so bail out now */ 14794 SD_TRACE(SD_LOG_IO_CORE, un, 14795 "sd_start_cmds: no more work, exiting!\n"); 14796 goto exit; 14797 } 14798 14799 /* 14800 * Reset the state to normal. This is the mechanism by which 14801 * the state transitions from either SD_STATE_RWAIT or 14802 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14803 * If state is SD_STATE_PM_CHANGING then this command is 14804 * part of the device power control and the state must 14805 * not be put back to normal. Doing so would would 14806 * allow new commands to proceed when they shouldn't, 14807 * the device may be going off. 14808 */ 14809 if ((un->un_state != SD_STATE_SUSPENDED) && 14810 (un->un_state != SD_STATE_PM_CHANGING)) { 14811 New_state(un, SD_STATE_NORMAL); 14812 } 14813 14814 xp = SD_GET_XBUF(bp); 14815 ASSERT(xp != NULL); 14816 14817 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14818 /* 14819 * Allocate the scsi_pkt if we need one, or attach DMA 14820 * resources if we have a scsi_pkt that needs them. The 14821 * latter should only occur for commands that are being 14822 * retried. 14823 */ 14824 if ((xp->xb_pktp == NULL) || 14825 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14826 #else 14827 if (xp->xb_pktp == NULL) { 14828 #endif 14829 /* 14830 * There is no scsi_pkt allocated for this buf. Call 14831 * the initpkt function to allocate & init one. 14832 * 14833 * The scsi_init_pkt runout callback functionality is 14834 * implemented as follows: 14835 * 14836 * 1) The initpkt function always calls 14837 * scsi_init_pkt(9F) with sdrunout specified as the 14838 * callback routine. 14839 * 2) A successful packet allocation is initialized and 14840 * the I/O is transported. 14841 * 3) The I/O associated with an allocation resource 14842 * failure is left on its queue to be retried via 14843 * runout or the next I/O. 14844 * 4) The I/O associated with a DMA error is removed 14845 * from the queue and failed with EIO. Processing of 14846 * the transport queues is also halted to be 14847 * restarted via runout or the next I/O. 14848 * 5) The I/O associated with a CDB size or packet 14849 * size error is removed from the queue and failed 14850 * with EIO. Processing of the transport queues is 14851 * continued. 14852 * 14853 * Note: there is no interface for canceling a runout 14854 * callback. To prevent the driver from detaching or 14855 * suspending while a runout is pending the driver 14856 * state is set to SD_STATE_RWAIT 14857 * 14858 * Note: using the scsi_init_pkt callback facility can 14859 * result in an I/O request persisting at the head of 14860 * the list which cannot be satisfied even after 14861 * multiple retries. In the future the driver may 14862 * implement some kind of maximum runout count before 14863 * failing an I/O. 14864 * 14865 * Note: the use of funcp below may seem superfluous, 14866 * but it helps warlock figure out the correct 14867 * initpkt function calls (see [s]sd.wlcmd). 14868 */ 14869 struct scsi_pkt *pktp; 14870 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14871 14872 ASSERT(bp != un->un_rqs_bp); 14873 14874 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14875 switch ((*funcp)(bp, &pktp)) { 14876 case SD_PKT_ALLOC_SUCCESS: 14877 xp->xb_pktp = pktp; 14878 SD_TRACE(SD_LOG_IO_CORE, un, 14879 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14880 pktp); 14881 goto got_pkt; 14882 14883 case SD_PKT_ALLOC_FAILURE: 14884 /* 14885 * Temporary (hopefully) resource depletion. 14886 * Since retries and RQS commands always have a 14887 * scsi_pkt allocated, these cases should never 14888 * get here. So the only cases this needs to 14889 * handle is a bp from the waitq (which we put 14890 * back onto the waitq for sdrunout), or a bp 14891 * sent as an immed_bp (which we just fail). 14892 */ 14893 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14894 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14895 14896 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14897 14898 if (bp == immed_bp) { 14899 /* 14900 * If SD_XB_DMA_FREED is clear, then 14901 * this is a failure to allocate a 14902 * scsi_pkt, and we must fail the 14903 * command. 14904 */ 14905 if ((xp->xb_pkt_flags & 14906 SD_XB_DMA_FREED) == 0) { 14907 break; 14908 } 14909 14910 /* 14911 * If this immediate command is NOT our 14912 * un_retry_bp, then we must fail it. 14913 */ 14914 if (bp != un->un_retry_bp) { 14915 break; 14916 } 14917 14918 /* 14919 * We get here if this cmd is our 14920 * un_retry_bp that was DMAFREED, but 14921 * scsi_init_pkt() failed to reallocate 14922 * DMA resources when we attempted to 14923 * retry it. This can happen when an 14924 * mpxio failover is in progress, but 14925 * we don't want to just fail the 14926 * command in this case. 14927 * 14928 * Use timeout(9F) to restart it after 14929 * a 100ms delay. We don't want to 14930 * let sdrunout() restart it, because 14931 * sdrunout() is just supposed to start 14932 * commands that are sitting on the 14933 * wait queue. The un_retry_bp stays 14934 * set until the command completes, but 14935 * sdrunout can be called many times 14936 * before that happens. Since sdrunout 14937 * cannot tell if the un_retry_bp is 14938 * already in the transport, it could 14939 * end up calling scsi_transport() for 14940 * the un_retry_bp multiple times. 14941 * 14942 * Also: don't schedule the callback 14943 * if some other callback is already 14944 * pending. 14945 */ 14946 if (un->un_retry_statp == NULL) { 14947 /* 14948 * restore the kstat pointer to 14949 * keep kstat counts coherent 14950 * when we do retry the command. 14951 */ 14952 un->un_retry_statp = 14953 saved_statp; 14954 } 14955 14956 if ((un->un_startstop_timeid == NULL) && 14957 (un->un_retry_timeid == NULL) && 14958 (un->un_direct_priority_timeid == 14959 NULL)) { 14960 14961 un->un_retry_timeid = 14962 timeout( 14963 sd_start_retry_command, 14964 un, SD_RESTART_TIMEOUT); 14965 } 14966 goto exit; 14967 } 14968 14969 #else 14970 if (bp == immed_bp) { 14971 break; /* Just fail the command */ 14972 } 14973 #endif 14974 14975 /* Add the buf back to the head of the waitq */ 14976 bp->av_forw = un->un_waitq_headp; 14977 un->un_waitq_headp = bp; 14978 if (un->un_waitq_tailp == NULL) { 14979 un->un_waitq_tailp = bp; 14980 } 14981 goto exit; 14982 14983 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14984 /* 14985 * HBA DMA resource failure. Fail the command 14986 * and continue processing of the queues. 14987 */ 14988 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14989 "sd_start_cmds: " 14990 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14991 break; 14992 14993 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14994 /* 14995 * Note:x86: Partial DMA mapping not supported 14996 * for USCSI commands, and all the needed DMA 14997 * resources were not allocated. 14998 */ 14999 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15000 "sd_start_cmds: " 15001 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 15002 break; 15003 15004 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 15005 /* 15006 * Note:x86: Request cannot fit into CDB based 15007 * on lba and len. 15008 */ 15009 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15010 "sd_start_cmds: " 15011 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 15012 break; 15013 15014 default: 15015 /* Should NEVER get here! */ 15016 panic("scsi_initpkt error"); 15017 /*NOTREACHED*/ 15018 } 15019 15020 /* 15021 * Fatal error in allocating a scsi_pkt for this buf. 15022 * Update kstats & return the buf with an error code. 15023 * We must use sd_return_failed_command_no_restart() to 15024 * avoid a recursive call back into sd_start_cmds(). 15025 * However this also means that we must keep processing 15026 * the waitq here in order to avoid stalling. 15027 */ 15028 if (statp == kstat_waitq_to_runq) { 15029 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 15030 } 15031 sd_return_failed_command_no_restart(un, bp, EIO); 15032 if (bp == immed_bp) { 15033 /* immed_bp is gone by now, so clear this */ 15034 immed_bp = NULL; 15035 } 15036 continue; 15037 } 15038 got_pkt: 15039 if (bp == immed_bp) { 15040 /* goto the head of the class.... */ 15041 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15042 } 15043 15044 un->un_ncmds_in_transport++; 15045 SD_UPDATE_KSTATS(un, statp, bp); 15046 15047 /* 15048 * Call scsi_transport() to send the command to the target. 15049 * According to SCSA architecture, we must drop the mutex here 15050 * before calling scsi_transport() in order to avoid deadlock. 15051 * Note that the scsi_pkt's completion routine can be executed 15052 * (from interrupt context) even before the call to 15053 * scsi_transport() returns. 15054 */ 15055 SD_TRACE(SD_LOG_IO_CORE, un, 15056 "sd_start_cmds: calling scsi_transport()\n"); 15057 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15058 15059 mutex_exit(SD_MUTEX(un)); 15060 rval = scsi_transport(xp->xb_pktp); 15061 mutex_enter(SD_MUTEX(un)); 15062 15063 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15064 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15065 15066 switch (rval) { 15067 case TRAN_ACCEPT: 15068 /* Clear this with every pkt accepted by the HBA */ 15069 un->un_tran_fatal_count = 0; 15070 break; /* Success; try the next cmd (if any) */ 15071 15072 case TRAN_BUSY: 15073 un->un_ncmds_in_transport--; 15074 ASSERT(un->un_ncmds_in_transport >= 0); 15075 15076 /* 15077 * Don't retry request sense, the sense data 15078 * is lost when another request is sent. 15079 * Free up the rqs buf and retry 15080 * the original failed cmd. Update kstat. 15081 */ 15082 if (bp == un->un_rqs_bp) { 15083 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15084 bp = sd_mark_rqs_idle(un, xp); 15085 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15086 NULL, NULL, EIO, un->un_busy_timeout / 500, 15087 kstat_waitq_enter); 15088 goto exit; 15089 } 15090 15091 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15092 /* 15093 * Free the DMA resources for the scsi_pkt. This will 15094 * allow mpxio to select another path the next time 15095 * we call scsi_transport() with this scsi_pkt. 15096 * See sdintr() for the rationalization behind this. 15097 */ 15098 if ((un->un_f_is_fibre == TRUE) && 15099 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15100 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15101 scsi_dmafree(xp->xb_pktp); 15102 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15103 } 15104 #endif 15105 15106 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15107 /* 15108 * Commands that are SD_PATH_DIRECT_PRIORITY 15109 * are for error recovery situations. These do 15110 * not use the normal command waitq, so if they 15111 * get a TRAN_BUSY we cannot put them back onto 15112 * the waitq for later retry. One possible 15113 * problem is that there could already be some 15114 * other command on un_retry_bp that is waiting 15115 * for this one to complete, so we would be 15116 * deadlocked if we put this command back onto 15117 * the waitq for later retry (since un_retry_bp 15118 * must complete before the driver gets back to 15119 * commands on the waitq). 15120 * 15121 * To avoid deadlock we must schedule a callback 15122 * that will restart this command after a set 15123 * interval. This should keep retrying for as 15124 * long as the underlying transport keeps 15125 * returning TRAN_BUSY (just like for other 15126 * commands). Use the same timeout interval as 15127 * for the ordinary TRAN_BUSY retry. 15128 */ 15129 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15130 "sd_start_cmds: scsi_transport() returned " 15131 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15132 15133 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15134 un->un_direct_priority_timeid = 15135 timeout(sd_start_direct_priority_command, 15136 bp, un->un_busy_timeout / 500); 15137 15138 goto exit; 15139 } 15140 15141 /* 15142 * For TRAN_BUSY, we want to reduce the throttle value, 15143 * unless we are retrying a command. 15144 */ 15145 if (bp != un->un_retry_bp) { 15146 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15147 } 15148 15149 /* 15150 * Set up the bp to be tried again 10 ms later. 15151 * Note:x86: Is there a timeout value in the sd_lun 15152 * for this condition? 15153 */ 15154 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15155 kstat_runq_back_to_waitq); 15156 goto exit; 15157 15158 case TRAN_FATAL_ERROR: 15159 un->un_tran_fatal_count++; 15160 /* FALLTHRU */ 15161 15162 case TRAN_BADPKT: 15163 default: 15164 un->un_ncmds_in_transport--; 15165 ASSERT(un->un_ncmds_in_transport >= 0); 15166 15167 /* 15168 * If this is our REQUEST SENSE command with a 15169 * transport error, we must get back the pointers 15170 * to the original buf, and mark the REQUEST 15171 * SENSE command as "available". 15172 */ 15173 if (bp == un->un_rqs_bp) { 15174 bp = sd_mark_rqs_idle(un, xp); 15175 xp = SD_GET_XBUF(bp); 15176 } else { 15177 /* 15178 * Legacy behavior: do not update transport 15179 * error count for request sense commands. 15180 */ 15181 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15182 } 15183 15184 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15185 sd_print_transport_rejected_message(un, xp, rval); 15186 15187 /* 15188 * This command will be terminated by SD driver due 15189 * to a fatal transport error. We should post 15190 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15191 * of "fail" for any command to indicate this 15192 * situation. 15193 */ 15194 if (xp->xb_ena > 0) { 15195 ASSERT(un->un_fm_private != NULL); 15196 sfip = un->un_fm_private; 15197 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15198 sd_ssc_extract_info(&sfip->fm_ssc, un, 15199 xp->xb_pktp, bp, xp); 15200 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15201 } 15202 15203 /* 15204 * We must use sd_return_failed_command_no_restart() to 15205 * avoid a recursive call back into sd_start_cmds(). 15206 * However this also means that we must keep processing 15207 * the waitq here in order to avoid stalling. 15208 */ 15209 sd_return_failed_command_no_restart(un, bp, EIO); 15210 15211 /* 15212 * Notify any threads waiting in sd_ddi_suspend() that 15213 * a command completion has occurred. 15214 */ 15215 if (un->un_state == SD_STATE_SUSPENDED) { 15216 cv_broadcast(&un->un_disk_busy_cv); 15217 } 15218 15219 if (bp == immed_bp) { 15220 /* immed_bp is gone by now, so clear this */ 15221 immed_bp = NULL; 15222 } 15223 break; 15224 } 15225 15226 } while (immed_bp == NULL); 15227 15228 exit: 15229 ASSERT(mutex_owned(SD_MUTEX(un))); 15230 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15231 } 15232 15233 15234 /* 15235 * Function: sd_return_command 15236 * 15237 * Description: Returns a command to its originator (with or without an 15238 * error). Also starts commands waiting to be transported 15239 * to the target. 15240 * 15241 * Context: May be called from interrupt, kernel, or timeout context 15242 */ 15243 15244 static void 15245 sd_return_command(struct sd_lun *un, struct buf *bp) 15246 { 15247 struct sd_xbuf *xp; 15248 struct scsi_pkt *pktp; 15249 struct sd_fm_internal *sfip; 15250 15251 ASSERT(bp != NULL); 15252 ASSERT(un != NULL); 15253 ASSERT(mutex_owned(SD_MUTEX(un))); 15254 ASSERT(bp != un->un_rqs_bp); 15255 xp = SD_GET_XBUF(bp); 15256 ASSERT(xp != NULL); 15257 15258 pktp = SD_GET_PKTP(bp); 15259 sfip = (struct sd_fm_internal *)un->un_fm_private; 15260 ASSERT(sfip != NULL); 15261 15262 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15263 15264 /* 15265 * Note: check for the "sdrestart failed" case. 15266 */ 15267 if ((un->un_partial_dma_supported == 1) && 15268 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15269 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15270 (xp->xb_pktp->pkt_resid == 0)) { 15271 15272 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15273 /* 15274 * Successfully set up next portion of cmd 15275 * transfer, try sending it 15276 */ 15277 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15278 NULL, NULL, 0, (clock_t)0, NULL); 15279 sd_start_cmds(un, NULL); 15280 return; /* Note:x86: need a return here? */ 15281 } 15282 } 15283 15284 /* 15285 * If this is the failfast bp, clear it from un_failfast_bp. This 15286 * can happen if upon being re-tried the failfast bp either 15287 * succeeded or encountered another error (possibly even a different 15288 * error than the one that precipitated the failfast state, but in 15289 * that case it would have had to exhaust retries as well). Regardless, 15290 * this should not occur whenever the instance is in the active 15291 * failfast state. 15292 */ 15293 if (bp == un->un_failfast_bp) { 15294 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15295 un->un_failfast_bp = NULL; 15296 } 15297 15298 /* 15299 * Clear the failfast state upon successful completion of ANY cmd. 15300 */ 15301 if (bp->b_error == 0) { 15302 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15303 /* 15304 * If this is a successful command, but used to be retried, 15305 * we will take it as a recovered command and post an 15306 * ereport with driver-assessment of "recovered". 15307 */ 15308 if (xp->xb_ena > 0) { 15309 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15310 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15311 } 15312 } else { 15313 /* 15314 * If this is a failed non-USCSI command we will post an 15315 * ereport with driver-assessment set accordingly("fail" or 15316 * "fatal"). 15317 */ 15318 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15319 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15320 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15321 } 15322 } 15323 15324 /* 15325 * This is used if the command was retried one or more times. Show that 15326 * we are done with it, and allow processing of the waitq to resume. 15327 */ 15328 if (bp == un->un_retry_bp) { 15329 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15330 "sd_return_command: un:0x%p: " 15331 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15332 un->un_retry_bp = NULL; 15333 un->un_retry_statp = NULL; 15334 } 15335 15336 SD_UPDATE_RDWR_STATS(un, bp); 15337 SD_UPDATE_PARTITION_STATS(un, bp); 15338 15339 switch (un->un_state) { 15340 case SD_STATE_SUSPENDED: 15341 /* 15342 * Notify any threads waiting in sd_ddi_suspend() that 15343 * a command completion has occurred. 15344 */ 15345 cv_broadcast(&un->un_disk_busy_cv); 15346 break; 15347 default: 15348 sd_start_cmds(un, NULL); 15349 break; 15350 } 15351 15352 /* Return this command up the iodone chain to its originator. */ 15353 mutex_exit(SD_MUTEX(un)); 15354 15355 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15356 xp->xb_pktp = NULL; 15357 15358 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15359 15360 ASSERT(!mutex_owned(SD_MUTEX(un))); 15361 mutex_enter(SD_MUTEX(un)); 15362 15363 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15364 } 15365 15366 15367 /* 15368 * Function: sd_return_failed_command 15369 * 15370 * Description: Command completion when an error occurred. 15371 * 15372 * Context: May be called from interrupt context 15373 */ 15374 15375 static void 15376 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15377 { 15378 ASSERT(bp != NULL); 15379 ASSERT(un != NULL); 15380 ASSERT(mutex_owned(SD_MUTEX(un))); 15381 15382 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15383 "sd_return_failed_command: entry\n"); 15384 15385 /* 15386 * b_resid could already be nonzero due to a partial data 15387 * transfer, so do not change it here. 15388 */ 15389 SD_BIOERROR(bp, errcode); 15390 15391 sd_return_command(un, bp); 15392 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15393 "sd_return_failed_command: exit\n"); 15394 } 15395 15396 15397 /* 15398 * Function: sd_return_failed_command_no_restart 15399 * 15400 * Description: Same as sd_return_failed_command, but ensures that no 15401 * call back into sd_start_cmds will be issued. 15402 * 15403 * Context: May be called from interrupt context 15404 */ 15405 15406 static void 15407 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15408 int errcode) 15409 { 15410 struct sd_xbuf *xp; 15411 15412 ASSERT(bp != NULL); 15413 ASSERT(un != NULL); 15414 ASSERT(mutex_owned(SD_MUTEX(un))); 15415 xp = SD_GET_XBUF(bp); 15416 ASSERT(xp != NULL); 15417 ASSERT(errcode != 0); 15418 15419 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15420 "sd_return_failed_command_no_restart: entry\n"); 15421 15422 /* 15423 * b_resid could already be nonzero due to a partial data 15424 * transfer, so do not change it here. 15425 */ 15426 SD_BIOERROR(bp, errcode); 15427 15428 /* 15429 * If this is the failfast bp, clear it. This can happen if the 15430 * failfast bp encounterd a fatal error when we attempted to 15431 * re-try it (such as a scsi_transport(9F) failure). However 15432 * we should NOT be in an active failfast state if the failfast 15433 * bp is not NULL. 15434 */ 15435 if (bp == un->un_failfast_bp) { 15436 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15437 un->un_failfast_bp = NULL; 15438 } 15439 15440 if (bp == un->un_retry_bp) { 15441 /* 15442 * This command was retried one or more times. Show that we are 15443 * done with it, and allow processing of the waitq to resume. 15444 */ 15445 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15446 "sd_return_failed_command_no_restart: " 15447 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15448 un->un_retry_bp = NULL; 15449 un->un_retry_statp = NULL; 15450 } 15451 15452 SD_UPDATE_RDWR_STATS(un, bp); 15453 SD_UPDATE_PARTITION_STATS(un, bp); 15454 15455 mutex_exit(SD_MUTEX(un)); 15456 15457 if (xp->xb_pktp != NULL) { 15458 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15459 xp->xb_pktp = NULL; 15460 } 15461 15462 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15463 15464 mutex_enter(SD_MUTEX(un)); 15465 15466 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15467 "sd_return_failed_command_no_restart: exit\n"); 15468 } 15469 15470 15471 /* 15472 * Function: sd_retry_command 15473 * 15474 * Description: queue up a command for retry, or (optionally) fail it 15475 * if retry counts are exhausted. 15476 * 15477 * Arguments: un - Pointer to the sd_lun struct for the target. 15478 * 15479 * bp - Pointer to the buf for the command to be retried. 15480 * 15481 * retry_check_flag - Flag to see which (if any) of the retry 15482 * counts should be decremented/checked. If the indicated 15483 * retry count is exhausted, then the command will not be 15484 * retried; it will be failed instead. This should use a 15485 * value equal to one of the following: 15486 * 15487 * SD_RETRIES_NOCHECK 15488 * SD_RESD_RETRIES_STANDARD 15489 * SD_RETRIES_VICTIM 15490 * 15491 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15492 * if the check should be made to see of FLAG_ISOLATE is set 15493 * in the pkt. If FLAG_ISOLATE is set, then the command is 15494 * not retried, it is simply failed. 15495 * 15496 * user_funcp - Ptr to function to call before dispatching the 15497 * command. May be NULL if no action needs to be performed. 15498 * (Primarily intended for printing messages.) 15499 * 15500 * user_arg - Optional argument to be passed along to 15501 * the user_funcp call. 15502 * 15503 * failure_code - errno return code to set in the bp if the 15504 * command is going to be failed. 15505 * 15506 * retry_delay - Retry delay interval in (clock_t) units. May 15507 * be zero which indicates that the retry should be retried 15508 * immediately (ie, without an intervening delay). 15509 * 15510 * statp - Ptr to kstat function to be updated if the command 15511 * is queued for a delayed retry. May be NULL if no kstat 15512 * update is desired. 15513 * 15514 * Context: May be called from interrupt context. 15515 */ 15516 15517 static void 15518 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15519 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15520 code), void *user_arg, int failure_code, clock_t retry_delay, 15521 void (*statp)(kstat_io_t *)) 15522 { 15523 struct sd_xbuf *xp; 15524 struct scsi_pkt *pktp; 15525 struct sd_fm_internal *sfip; 15526 15527 ASSERT(un != NULL); 15528 ASSERT(mutex_owned(SD_MUTEX(un))); 15529 ASSERT(bp != NULL); 15530 xp = SD_GET_XBUF(bp); 15531 ASSERT(xp != NULL); 15532 pktp = SD_GET_PKTP(bp); 15533 ASSERT(pktp != NULL); 15534 15535 sfip = (struct sd_fm_internal *)un->un_fm_private; 15536 ASSERT(sfip != NULL); 15537 15538 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15539 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15540 15541 /* 15542 * If we are syncing or dumping, fail the command to avoid 15543 * recursively calling back into scsi_transport(). 15544 */ 15545 if (ddi_in_panic()) { 15546 goto fail_command_no_log; 15547 } 15548 15549 /* 15550 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15551 * log an error and fail the command. 15552 */ 15553 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15554 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15555 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15556 sd_dump_memory(un, SD_LOG_IO, "CDB", 15557 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15558 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15559 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15560 goto fail_command; 15561 } 15562 15563 /* 15564 * If we are suspended, then put the command onto head of the 15565 * wait queue since we don't want to start more commands, and 15566 * clear the un_retry_bp. Next time when we are resumed, will 15567 * handle the command in the wait queue. 15568 */ 15569 switch (un->un_state) { 15570 case SD_STATE_SUSPENDED: 15571 case SD_STATE_DUMPING: 15572 bp->av_forw = un->un_waitq_headp; 15573 un->un_waitq_headp = bp; 15574 if (un->un_waitq_tailp == NULL) { 15575 un->un_waitq_tailp = bp; 15576 } 15577 if (bp == un->un_retry_bp) { 15578 un->un_retry_bp = NULL; 15579 un->un_retry_statp = NULL; 15580 } 15581 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15582 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15583 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15584 return; 15585 default: 15586 break; 15587 } 15588 15589 /* 15590 * If the caller wants us to check FLAG_ISOLATE, then see if that 15591 * is set; if it is then we do not want to retry the command. 15592 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15593 */ 15594 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15595 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15596 goto fail_command; 15597 } 15598 } 15599 15600 15601 /* 15602 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15603 * command timeout or a selection timeout has occurred. This means 15604 * that we were unable to establish an kind of communication with 15605 * the target, and subsequent retries and/or commands are likely 15606 * to encounter similar results and take a long time to complete. 15607 * 15608 * If this is a failfast error condition, we need to update the 15609 * failfast state, even if this bp does not have B_FAILFAST set. 15610 */ 15611 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15612 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15613 ASSERT(un->un_failfast_bp == NULL); 15614 /* 15615 * If we are already in the active failfast state, and 15616 * another failfast error condition has been detected, 15617 * then fail this command if it has B_FAILFAST set. 15618 * If B_FAILFAST is clear, then maintain the legacy 15619 * behavior of retrying heroically, even tho this will 15620 * take a lot more time to fail the command. 15621 */ 15622 if (bp->b_flags & B_FAILFAST) { 15623 goto fail_command; 15624 } 15625 } else { 15626 /* 15627 * We're not in the active failfast state, but we 15628 * have a failfast error condition, so we must begin 15629 * transition to the next state. We do this regardless 15630 * of whether or not this bp has B_FAILFAST set. 15631 */ 15632 if (un->un_failfast_bp == NULL) { 15633 /* 15634 * This is the first bp to meet a failfast 15635 * condition so save it on un_failfast_bp & 15636 * do normal retry processing. Do not enter 15637 * active failfast state yet. This marks 15638 * entry into the "failfast pending" state. 15639 */ 15640 un->un_failfast_bp = bp; 15641 15642 } else if (un->un_failfast_bp == bp) { 15643 /* 15644 * This is the second time *this* bp has 15645 * encountered a failfast error condition, 15646 * so enter active failfast state & flush 15647 * queues as appropriate. 15648 */ 15649 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15650 un->un_failfast_bp = NULL; 15651 sd_failfast_flushq(un); 15652 15653 /* 15654 * Fail this bp now if B_FAILFAST set; 15655 * otherwise continue with retries. (It would 15656 * be pretty ironic if this bp succeeded on a 15657 * subsequent retry after we just flushed all 15658 * the queues). 15659 */ 15660 if (bp->b_flags & B_FAILFAST) { 15661 goto fail_command; 15662 } 15663 15664 #if !defined(lint) && !defined(__lint) 15665 } else { 15666 /* 15667 * If neither of the preceeding conditionals 15668 * was true, it means that there is some 15669 * *other* bp that has met an inital failfast 15670 * condition and is currently either being 15671 * retried or is waiting to be retried. In 15672 * that case we should perform normal retry 15673 * processing on *this* bp, since there is a 15674 * chance that the current failfast condition 15675 * is transient and recoverable. If that does 15676 * not turn out to be the case, then retries 15677 * will be cleared when the wait queue is 15678 * flushed anyway. 15679 */ 15680 #endif 15681 } 15682 } 15683 } else { 15684 /* 15685 * SD_RETRIES_FAILFAST is clear, which indicates that we 15686 * likely were able to at least establish some level of 15687 * communication with the target and subsequent commands 15688 * and/or retries are likely to get through to the target, 15689 * In this case we want to be aggressive about clearing 15690 * the failfast state. Note that this does not affect 15691 * the "failfast pending" condition. 15692 */ 15693 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15694 } 15695 15696 15697 /* 15698 * Check the specified retry count to see if we can still do 15699 * any retries with this pkt before we should fail it. 15700 */ 15701 switch (retry_check_flag & SD_RETRIES_MASK) { 15702 case SD_RETRIES_VICTIM: 15703 /* 15704 * Check the victim retry count. If exhausted, then fall 15705 * thru & check against the standard retry count. 15706 */ 15707 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15708 /* Increment count & proceed with the retry */ 15709 xp->xb_victim_retry_count++; 15710 break; 15711 } 15712 /* Victim retries exhausted, fall back to std. retries... */ 15713 /* FALLTHRU */ 15714 15715 case SD_RETRIES_STANDARD: 15716 if (xp->xb_retry_count >= un->un_retry_count) { 15717 /* Retries exhausted, fail the command */ 15718 SD_TRACE(SD_LOG_IO_CORE, un, 15719 "sd_retry_command: retries exhausted!\n"); 15720 /* 15721 * update b_resid for failed SCMD_READ & SCMD_WRITE 15722 * commands with nonzero pkt_resid. 15723 */ 15724 if ((pktp->pkt_reason == CMD_CMPLT) && 15725 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15726 (pktp->pkt_resid != 0)) { 15727 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15728 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15729 SD_UPDATE_B_RESID(bp, pktp); 15730 } 15731 } 15732 goto fail_command; 15733 } 15734 xp->xb_retry_count++; 15735 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15736 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15737 break; 15738 15739 case SD_RETRIES_UA: 15740 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15741 /* Retries exhausted, fail the command */ 15742 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15743 "Unit Attention retries exhausted. " 15744 "Check the target.\n"); 15745 goto fail_command; 15746 } 15747 xp->xb_ua_retry_count++; 15748 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15749 "sd_retry_command: retry count:%d\n", 15750 xp->xb_ua_retry_count); 15751 break; 15752 15753 case SD_RETRIES_BUSY: 15754 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15755 /* Retries exhausted, fail the command */ 15756 SD_TRACE(SD_LOG_IO_CORE, un, 15757 "sd_retry_command: retries exhausted!\n"); 15758 goto fail_command; 15759 } 15760 xp->xb_retry_count++; 15761 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15762 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15763 break; 15764 15765 case SD_RETRIES_NOCHECK: 15766 default: 15767 /* No retry count to check. Just proceed with the retry */ 15768 break; 15769 } 15770 15771 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15772 15773 /* 15774 * If this is a non-USCSI command being retried 15775 * during execution last time, we should post an ereport with 15776 * driver-assessment of the value "retry". 15777 * For partial DMA, request sense and STATUS_QFULL, there are no 15778 * hardware errors, we bypass ereport posting. 15779 */ 15780 if (failure_code != 0) { 15781 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15782 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15783 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15784 } 15785 } 15786 15787 /* 15788 * If we were given a zero timeout, we must attempt to retry the 15789 * command immediately (ie, without a delay). 15790 */ 15791 if (retry_delay == 0) { 15792 /* 15793 * Check some limiting conditions to see if we can actually 15794 * do the immediate retry. If we cannot, then we must 15795 * fall back to queueing up a delayed retry. 15796 */ 15797 if (un->un_ncmds_in_transport >= un->un_throttle) { 15798 /* 15799 * We are at the throttle limit for the target, 15800 * fall back to delayed retry. 15801 */ 15802 retry_delay = un->un_busy_timeout; 15803 statp = kstat_waitq_enter; 15804 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15805 "sd_retry_command: immed. retry hit " 15806 "throttle!\n"); 15807 } else { 15808 /* 15809 * We're clear to proceed with the immediate retry. 15810 * First call the user-provided function (if any) 15811 */ 15812 if (user_funcp != NULL) { 15813 (*user_funcp)(un, bp, user_arg, 15814 SD_IMMEDIATE_RETRY_ISSUED); 15815 #ifdef __lock_lint 15816 sd_print_incomplete_msg(un, bp, user_arg, 15817 SD_IMMEDIATE_RETRY_ISSUED); 15818 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15819 SD_IMMEDIATE_RETRY_ISSUED); 15820 sd_print_sense_failed_msg(un, bp, user_arg, 15821 SD_IMMEDIATE_RETRY_ISSUED); 15822 #endif 15823 } 15824 15825 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15826 "sd_retry_command: issuing immediate retry\n"); 15827 15828 /* 15829 * Call sd_start_cmds() to transport the command to 15830 * the target. 15831 */ 15832 sd_start_cmds(un, bp); 15833 15834 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15835 "sd_retry_command exit\n"); 15836 return; 15837 } 15838 } 15839 15840 /* 15841 * Set up to retry the command after a delay. 15842 * First call the user-provided function (if any) 15843 */ 15844 if (user_funcp != NULL) { 15845 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15846 } 15847 15848 sd_set_retry_bp(un, bp, retry_delay, statp); 15849 15850 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15851 return; 15852 15853 fail_command: 15854 15855 if (user_funcp != NULL) { 15856 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15857 } 15858 15859 fail_command_no_log: 15860 15861 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15862 "sd_retry_command: returning failed command\n"); 15863 15864 sd_return_failed_command(un, bp, failure_code); 15865 15866 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15867 } 15868 15869 15870 /* 15871 * Function: sd_set_retry_bp 15872 * 15873 * Description: Set up the given bp for retry. 15874 * 15875 * Arguments: un - ptr to associated softstate 15876 * bp - ptr to buf(9S) for the command 15877 * retry_delay - time interval before issuing retry (may be 0) 15878 * statp - optional pointer to kstat function 15879 * 15880 * Context: May be called under interrupt context 15881 */ 15882 15883 static void 15884 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15885 void (*statp)(kstat_io_t *)) 15886 { 15887 ASSERT(un != NULL); 15888 ASSERT(mutex_owned(SD_MUTEX(un))); 15889 ASSERT(bp != NULL); 15890 15891 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15892 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15893 15894 /* 15895 * Indicate that the command is being retried. This will not allow any 15896 * other commands on the wait queue to be transported to the target 15897 * until this command has been completed (success or failure). The 15898 * "retry command" is not transported to the target until the given 15899 * time delay expires, unless the user specified a 0 retry_delay. 15900 * 15901 * Note: the timeout(9F) callback routine is what actually calls 15902 * sd_start_cmds() to transport the command, with the exception of a 15903 * zero retry_delay. The only current implementor of a zero retry delay 15904 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15905 */ 15906 if (un->un_retry_bp == NULL) { 15907 ASSERT(un->un_retry_statp == NULL); 15908 un->un_retry_bp = bp; 15909 15910 /* 15911 * If the user has not specified a delay the command should 15912 * be queued and no timeout should be scheduled. 15913 */ 15914 if (retry_delay == 0) { 15915 /* 15916 * Save the kstat pointer that will be used in the 15917 * call to SD_UPDATE_KSTATS() below, so that 15918 * sd_start_cmds() can correctly decrement the waitq 15919 * count when it is time to transport this command. 15920 */ 15921 un->un_retry_statp = statp; 15922 goto done; 15923 } 15924 } 15925 15926 if (un->un_retry_bp == bp) { 15927 /* 15928 * Save the kstat pointer that will be used in the call to 15929 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15930 * correctly decrement the waitq count when it is time to 15931 * transport this command. 15932 */ 15933 un->un_retry_statp = statp; 15934 15935 /* 15936 * Schedule a timeout if: 15937 * 1) The user has specified a delay. 15938 * 2) There is not a START_STOP_UNIT callback pending. 15939 * 15940 * If no delay has been specified, then it is up to the caller 15941 * to ensure that IO processing continues without stalling. 15942 * Effectively, this means that the caller will issue the 15943 * required call to sd_start_cmds(). The START_STOP_UNIT 15944 * callback does this after the START STOP UNIT command has 15945 * completed. In either of these cases we should not schedule 15946 * a timeout callback here. Also don't schedule the timeout if 15947 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15948 */ 15949 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15950 (un->un_direct_priority_timeid == NULL)) { 15951 un->un_retry_timeid = 15952 timeout(sd_start_retry_command, un, retry_delay); 15953 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15954 "sd_set_retry_bp: setting timeout: un: 0x%p" 15955 " bp:0x%p un_retry_timeid:0x%p\n", 15956 un, bp, un->un_retry_timeid); 15957 } 15958 } else { 15959 /* 15960 * We only get in here if there is already another command 15961 * waiting to be retried. In this case, we just put the 15962 * given command onto the wait queue, so it can be transported 15963 * after the current retry command has completed. 15964 * 15965 * Also we have to make sure that if the command at the head 15966 * of the wait queue is the un_failfast_bp, that we do not 15967 * put ahead of it any other commands that are to be retried. 15968 */ 15969 if ((un->un_failfast_bp != NULL) && 15970 (un->un_failfast_bp == un->un_waitq_headp)) { 15971 /* 15972 * Enqueue this command AFTER the first command on 15973 * the wait queue (which is also un_failfast_bp). 15974 */ 15975 bp->av_forw = un->un_waitq_headp->av_forw; 15976 un->un_waitq_headp->av_forw = bp; 15977 if (un->un_waitq_headp == un->un_waitq_tailp) { 15978 un->un_waitq_tailp = bp; 15979 } 15980 } else { 15981 /* Enqueue this command at the head of the waitq. */ 15982 bp->av_forw = un->un_waitq_headp; 15983 un->un_waitq_headp = bp; 15984 if (un->un_waitq_tailp == NULL) { 15985 un->un_waitq_tailp = bp; 15986 } 15987 } 15988 15989 if (statp == NULL) { 15990 statp = kstat_waitq_enter; 15991 } 15992 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15993 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15994 } 15995 15996 done: 15997 if (statp != NULL) { 15998 SD_UPDATE_KSTATS(un, statp, bp); 15999 } 16000 16001 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16002 "sd_set_retry_bp: exit un:0x%p\n", un); 16003 } 16004 16005 16006 /* 16007 * Function: sd_start_retry_command 16008 * 16009 * Description: Start the command that has been waiting on the target's 16010 * retry queue. Called from timeout(9F) context after the 16011 * retry delay interval has expired. 16012 * 16013 * Arguments: arg - pointer to associated softstate for the device. 16014 * 16015 * Context: timeout(9F) thread context. May not sleep. 16016 */ 16017 16018 static void 16019 sd_start_retry_command(void *arg) 16020 { 16021 struct sd_lun *un = arg; 16022 16023 ASSERT(un != NULL); 16024 ASSERT(!mutex_owned(SD_MUTEX(un))); 16025 16026 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16027 "sd_start_retry_command: entry\n"); 16028 16029 mutex_enter(SD_MUTEX(un)); 16030 16031 un->un_retry_timeid = NULL; 16032 16033 if (un->un_retry_bp != NULL) { 16034 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16035 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 16036 un, un->un_retry_bp); 16037 sd_start_cmds(un, un->un_retry_bp); 16038 } 16039 16040 mutex_exit(SD_MUTEX(un)); 16041 16042 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16043 "sd_start_retry_command: exit\n"); 16044 } 16045 16046 /* 16047 * Function: sd_rmw_msg_print_handler 16048 * 16049 * Description: If RMW mode is enabled and warning message is triggered 16050 * print I/O count during a fixed interval. 16051 * 16052 * Arguments: arg - pointer to associated softstate for the device. 16053 * 16054 * Context: timeout(9F) thread context. May not sleep. 16055 */ 16056 static void 16057 sd_rmw_msg_print_handler(void *arg) 16058 { 16059 struct sd_lun *un = arg; 16060 16061 ASSERT(un != NULL); 16062 ASSERT(!mutex_owned(SD_MUTEX(un))); 16063 16064 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16065 "sd_rmw_msg_print_handler: entry\n"); 16066 16067 mutex_enter(SD_MUTEX(un)); 16068 16069 if (un->un_rmw_incre_count > 0) { 16070 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16071 "%"PRIu64" I/O requests are not aligned with %d disk " 16072 "sector size in %ld seconds. They are handled through " 16073 "Read Modify Write but the performance is very low!\n", 16074 un->un_rmw_incre_count, un->un_tgt_blocksize, 16075 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16076 un->un_rmw_incre_count = 0; 16077 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16078 un, SD_RMW_MSG_PRINT_TIMEOUT); 16079 } else { 16080 un->un_rmw_msg_timeid = NULL; 16081 } 16082 16083 mutex_exit(SD_MUTEX(un)); 16084 16085 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16086 "sd_rmw_msg_print_handler: exit\n"); 16087 } 16088 16089 /* 16090 * Function: sd_start_direct_priority_command 16091 * 16092 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16093 * received TRAN_BUSY when we called scsi_transport() to send it 16094 * to the underlying HBA. This function is called from timeout(9F) 16095 * context after the delay interval has expired. 16096 * 16097 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16098 * 16099 * Context: timeout(9F) thread context. May not sleep. 16100 */ 16101 16102 static void 16103 sd_start_direct_priority_command(void *arg) 16104 { 16105 struct buf *priority_bp = arg; 16106 struct sd_lun *un; 16107 16108 ASSERT(priority_bp != NULL); 16109 un = SD_GET_UN(priority_bp); 16110 ASSERT(un != NULL); 16111 ASSERT(!mutex_owned(SD_MUTEX(un))); 16112 16113 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16114 "sd_start_direct_priority_command: entry\n"); 16115 16116 mutex_enter(SD_MUTEX(un)); 16117 un->un_direct_priority_timeid = NULL; 16118 sd_start_cmds(un, priority_bp); 16119 mutex_exit(SD_MUTEX(un)); 16120 16121 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16122 "sd_start_direct_priority_command: exit\n"); 16123 } 16124 16125 16126 /* 16127 * Function: sd_send_request_sense_command 16128 * 16129 * Description: Sends a REQUEST SENSE command to the target 16130 * 16131 * Context: May be called from interrupt context. 16132 */ 16133 16134 static void 16135 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16136 struct scsi_pkt *pktp) 16137 { 16138 ASSERT(bp != NULL); 16139 ASSERT(un != NULL); 16140 ASSERT(mutex_owned(SD_MUTEX(un))); 16141 16142 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16143 "entry: buf:0x%p\n", bp); 16144 16145 /* 16146 * If we are syncing or dumping, then fail the command to avoid a 16147 * recursive callback into scsi_transport(). Also fail the command 16148 * if we are suspended (legacy behavior). 16149 */ 16150 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16151 (un->un_state == SD_STATE_DUMPING)) { 16152 sd_return_failed_command(un, bp, EIO); 16153 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16154 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16155 return; 16156 } 16157 16158 /* 16159 * Retry the failed command and don't issue the request sense if: 16160 * 1) the sense buf is busy 16161 * 2) we have 1 or more outstanding commands on the target 16162 * (the sense data will be cleared or invalidated any way) 16163 * 16164 * Note: There could be an issue with not checking a retry limit here, 16165 * the problem is determining which retry limit to check. 16166 */ 16167 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16168 /* Don't retry if the command is flagged as non-retryable */ 16169 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16170 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16171 NULL, NULL, 0, un->un_busy_timeout, 16172 kstat_waitq_enter); 16173 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16174 "sd_send_request_sense_command: " 16175 "at full throttle, retrying exit\n"); 16176 } else { 16177 sd_return_failed_command(un, bp, EIO); 16178 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16179 "sd_send_request_sense_command: " 16180 "at full throttle, non-retryable exit\n"); 16181 } 16182 return; 16183 } 16184 16185 sd_mark_rqs_busy(un, bp); 16186 sd_start_cmds(un, un->un_rqs_bp); 16187 16188 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16189 "sd_send_request_sense_command: exit\n"); 16190 } 16191 16192 16193 /* 16194 * Function: sd_mark_rqs_busy 16195 * 16196 * Description: Indicate that the request sense bp for this instance is 16197 * in use. 16198 * 16199 * Context: May be called under interrupt context 16200 */ 16201 16202 static void 16203 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16204 { 16205 struct sd_xbuf *sense_xp; 16206 16207 ASSERT(un != NULL); 16208 ASSERT(bp != NULL); 16209 ASSERT(mutex_owned(SD_MUTEX(un))); 16210 ASSERT(un->un_sense_isbusy == 0); 16211 16212 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16213 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16214 16215 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16216 ASSERT(sense_xp != NULL); 16217 16218 SD_INFO(SD_LOG_IO, un, 16219 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16220 16221 ASSERT(sense_xp->xb_pktp != NULL); 16222 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16223 == (FLAG_SENSING | FLAG_HEAD)); 16224 16225 un->un_sense_isbusy = 1; 16226 un->un_rqs_bp->b_resid = 0; 16227 sense_xp->xb_pktp->pkt_resid = 0; 16228 sense_xp->xb_pktp->pkt_reason = 0; 16229 16230 /* So we can get back the bp at interrupt time! */ 16231 sense_xp->xb_sense_bp = bp; 16232 16233 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16234 16235 /* 16236 * Mark this buf as awaiting sense data. (This is already set in 16237 * the pkt_flags for the RQS packet.) 16238 */ 16239 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16240 16241 /* Request sense down same path */ 16242 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16243 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16244 sense_xp->xb_pktp->pkt_path_instance = 16245 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16246 16247 sense_xp->xb_retry_count = 0; 16248 sense_xp->xb_victim_retry_count = 0; 16249 sense_xp->xb_ua_retry_count = 0; 16250 sense_xp->xb_nr_retry_count = 0; 16251 sense_xp->xb_dma_resid = 0; 16252 16253 /* Clean up the fields for auto-request sense */ 16254 sense_xp->xb_sense_status = 0; 16255 sense_xp->xb_sense_state = 0; 16256 sense_xp->xb_sense_resid = 0; 16257 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16258 16259 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16260 } 16261 16262 16263 /* 16264 * Function: sd_mark_rqs_idle 16265 * 16266 * Description: SD_MUTEX must be held continuously through this routine 16267 * to prevent reuse of the rqs struct before the caller can 16268 * complete it's processing. 16269 * 16270 * Return Code: Pointer to the RQS buf 16271 * 16272 * Context: May be called under interrupt context 16273 */ 16274 16275 static struct buf * 16276 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16277 { 16278 struct buf *bp; 16279 ASSERT(un != NULL); 16280 ASSERT(sense_xp != NULL); 16281 ASSERT(mutex_owned(SD_MUTEX(un))); 16282 ASSERT(un->un_sense_isbusy != 0); 16283 16284 un->un_sense_isbusy = 0; 16285 bp = sense_xp->xb_sense_bp; 16286 sense_xp->xb_sense_bp = NULL; 16287 16288 /* This pkt is no longer interested in getting sense data */ 16289 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16290 16291 return (bp); 16292 } 16293 16294 16295 16296 /* 16297 * Function: sd_alloc_rqs 16298 * 16299 * Description: Set up the unit to receive auto request sense data 16300 * 16301 * Return Code: DDI_SUCCESS or DDI_FAILURE 16302 * 16303 * Context: Called under attach(9E) context 16304 */ 16305 16306 static int 16307 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16308 { 16309 struct sd_xbuf *xp; 16310 16311 ASSERT(un != NULL); 16312 ASSERT(!mutex_owned(SD_MUTEX(un))); 16313 ASSERT(un->un_rqs_bp == NULL); 16314 ASSERT(un->un_rqs_pktp == NULL); 16315 16316 /* 16317 * First allocate the required buf and scsi_pkt structs, then set up 16318 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16319 */ 16320 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16321 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16322 if (un->un_rqs_bp == NULL) { 16323 return (DDI_FAILURE); 16324 } 16325 16326 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16327 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16328 16329 if (un->un_rqs_pktp == NULL) { 16330 sd_free_rqs(un); 16331 return (DDI_FAILURE); 16332 } 16333 16334 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16335 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16336 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16337 16338 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16339 16340 /* Set up the other needed members in the ARQ scsi_pkt. */ 16341 un->un_rqs_pktp->pkt_comp = sdintr; 16342 un->un_rqs_pktp->pkt_time = sd_io_time; 16343 un->un_rqs_pktp->pkt_flags |= 16344 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16345 16346 /* 16347 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16348 * provide any intpkt, destroypkt routines as we take care of 16349 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16350 */ 16351 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16352 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16353 xp->xb_pktp = un->un_rqs_pktp; 16354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16355 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16356 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16357 16358 /* 16359 * Save the pointer to the request sense private bp so it can 16360 * be retrieved in sdintr. 16361 */ 16362 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16363 ASSERT(un->un_rqs_bp->b_private == xp); 16364 16365 /* 16366 * See if the HBA supports auto-request sense for the specified 16367 * target/lun. If it does, then try to enable it (if not already 16368 * enabled). 16369 * 16370 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16371 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16372 * return success. However, in both of these cases ARQ is always 16373 * enabled and scsi_ifgetcap will always return true. The best approach 16374 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16375 * 16376 * The 3rd case is the HBA (adp) always return enabled on 16377 * scsi_ifgetgetcap even when it's not enable, the best approach 16378 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16379 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16380 */ 16381 16382 if (un->un_f_is_fibre == TRUE) { 16383 un->un_f_arq_enabled = TRUE; 16384 } else { 16385 #if defined(__i386) || defined(__amd64) 16386 /* 16387 * Circumvent the Adaptec bug, remove this code when 16388 * the bug is fixed 16389 */ 16390 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16391 #endif 16392 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16393 case 0: 16394 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16395 "sd_alloc_rqs: HBA supports ARQ\n"); 16396 /* 16397 * ARQ is supported by this HBA but currently is not 16398 * enabled. Attempt to enable it and if successful then 16399 * mark this instance as ARQ enabled. 16400 */ 16401 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16402 == 1) { 16403 /* Successfully enabled ARQ in the HBA */ 16404 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16405 "sd_alloc_rqs: ARQ enabled\n"); 16406 un->un_f_arq_enabled = TRUE; 16407 } else { 16408 /* Could not enable ARQ in the HBA */ 16409 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16410 "sd_alloc_rqs: failed ARQ enable\n"); 16411 un->un_f_arq_enabled = FALSE; 16412 } 16413 break; 16414 case 1: 16415 /* 16416 * ARQ is supported by this HBA and is already enabled. 16417 * Just mark ARQ as enabled for this instance. 16418 */ 16419 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16420 "sd_alloc_rqs: ARQ already enabled\n"); 16421 un->un_f_arq_enabled = TRUE; 16422 break; 16423 default: 16424 /* 16425 * ARQ is not supported by this HBA; disable it for this 16426 * instance. 16427 */ 16428 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16429 "sd_alloc_rqs: HBA does not support ARQ\n"); 16430 un->un_f_arq_enabled = FALSE; 16431 break; 16432 } 16433 } 16434 16435 return (DDI_SUCCESS); 16436 } 16437 16438 16439 /* 16440 * Function: sd_free_rqs 16441 * 16442 * Description: Cleanup for the pre-instance RQS command. 16443 * 16444 * Context: Kernel thread context 16445 */ 16446 16447 static void 16448 sd_free_rqs(struct sd_lun *un) 16449 { 16450 ASSERT(un != NULL); 16451 16452 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16453 16454 /* 16455 * If consistent memory is bound to a scsi_pkt, the pkt 16456 * has to be destroyed *before* freeing the consistent memory. 16457 * Don't change the sequence of this operations. 16458 * scsi_destroy_pkt() might access memory, which isn't allowed, 16459 * after it was freed in scsi_free_consistent_buf(). 16460 */ 16461 if (un->un_rqs_pktp != NULL) { 16462 scsi_destroy_pkt(un->un_rqs_pktp); 16463 un->un_rqs_pktp = NULL; 16464 } 16465 16466 if (un->un_rqs_bp != NULL) { 16467 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16468 if (xp != NULL) { 16469 kmem_free(xp, sizeof (struct sd_xbuf)); 16470 } 16471 scsi_free_consistent_buf(un->un_rqs_bp); 16472 un->un_rqs_bp = NULL; 16473 } 16474 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16475 } 16476 16477 16478 16479 /* 16480 * Function: sd_reduce_throttle 16481 * 16482 * Description: Reduces the maximum # of outstanding commands on a 16483 * target to the current number of outstanding commands. 16484 * Queues a tiemout(9F) callback to restore the limit 16485 * after a specified interval has elapsed. 16486 * Typically used when we get a TRAN_BUSY return code 16487 * back from scsi_transport(). 16488 * 16489 * Arguments: un - ptr to the sd_lun softstate struct 16490 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16491 * 16492 * Context: May be called from interrupt context 16493 */ 16494 16495 static void 16496 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16497 { 16498 ASSERT(un != NULL); 16499 ASSERT(mutex_owned(SD_MUTEX(un))); 16500 ASSERT(un->un_ncmds_in_transport >= 0); 16501 16502 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16503 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16504 un, un->un_throttle, un->un_ncmds_in_transport); 16505 16506 if (un->un_throttle > 1) { 16507 if (un->un_f_use_adaptive_throttle == TRUE) { 16508 switch (throttle_type) { 16509 case SD_THROTTLE_TRAN_BUSY: 16510 if (un->un_busy_throttle == 0) { 16511 un->un_busy_throttle = un->un_throttle; 16512 } 16513 break; 16514 case SD_THROTTLE_QFULL: 16515 un->un_busy_throttle = 0; 16516 break; 16517 default: 16518 ASSERT(FALSE); 16519 } 16520 16521 if (un->un_ncmds_in_transport > 0) { 16522 un->un_throttle = un->un_ncmds_in_transport; 16523 } 16524 16525 } else { 16526 if (un->un_ncmds_in_transport == 0) { 16527 un->un_throttle = 1; 16528 } else { 16529 un->un_throttle = un->un_ncmds_in_transport; 16530 } 16531 } 16532 } 16533 16534 /* Reschedule the timeout if none is currently active */ 16535 if (un->un_reset_throttle_timeid == NULL) { 16536 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16537 un, SD_THROTTLE_RESET_INTERVAL); 16538 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16539 "sd_reduce_throttle: timeout scheduled!\n"); 16540 } 16541 16542 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16543 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16544 } 16545 16546 16547 16548 /* 16549 * Function: sd_restore_throttle 16550 * 16551 * Description: Callback function for timeout(9F). Resets the current 16552 * value of un->un_throttle to its default. 16553 * 16554 * Arguments: arg - pointer to associated softstate for the device. 16555 * 16556 * Context: May be called from interrupt context 16557 */ 16558 16559 static void 16560 sd_restore_throttle(void *arg) 16561 { 16562 struct sd_lun *un = arg; 16563 16564 ASSERT(un != NULL); 16565 ASSERT(!mutex_owned(SD_MUTEX(un))); 16566 16567 mutex_enter(SD_MUTEX(un)); 16568 16569 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16570 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16571 16572 un->un_reset_throttle_timeid = NULL; 16573 16574 if (un->un_f_use_adaptive_throttle == TRUE) { 16575 /* 16576 * If un_busy_throttle is nonzero, then it contains the 16577 * value that un_throttle was when we got a TRAN_BUSY back 16578 * from scsi_transport(). We want to revert back to this 16579 * value. 16580 * 16581 * In the QFULL case, the throttle limit will incrementally 16582 * increase until it reaches max throttle. 16583 */ 16584 if (un->un_busy_throttle > 0) { 16585 un->un_throttle = un->un_busy_throttle; 16586 un->un_busy_throttle = 0; 16587 } else { 16588 /* 16589 * increase throttle by 10% open gate slowly, schedule 16590 * another restore if saved throttle has not been 16591 * reached 16592 */ 16593 short throttle; 16594 if (sd_qfull_throttle_enable) { 16595 throttle = un->un_throttle + 16596 max((un->un_throttle / 10), 1); 16597 un->un_throttle = 16598 (throttle < un->un_saved_throttle) ? 16599 throttle : un->un_saved_throttle; 16600 if (un->un_throttle < un->un_saved_throttle) { 16601 un->un_reset_throttle_timeid = 16602 timeout(sd_restore_throttle, 16603 un, 16604 SD_QFULL_THROTTLE_RESET_INTERVAL); 16605 } 16606 } 16607 } 16608 16609 /* 16610 * If un_throttle has fallen below the low-water mark, we 16611 * restore the maximum value here (and allow it to ratchet 16612 * down again if necessary). 16613 */ 16614 if (un->un_throttle < un->un_min_throttle) { 16615 un->un_throttle = un->un_saved_throttle; 16616 } 16617 } else { 16618 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16619 "restoring limit from 0x%x to 0x%x\n", 16620 un->un_throttle, un->un_saved_throttle); 16621 un->un_throttle = un->un_saved_throttle; 16622 } 16623 16624 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16625 "sd_restore_throttle: calling sd_start_cmds!\n"); 16626 16627 sd_start_cmds(un, NULL); 16628 16629 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16630 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16631 un, un->un_throttle); 16632 16633 mutex_exit(SD_MUTEX(un)); 16634 16635 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16636 } 16637 16638 /* 16639 * Function: sdrunout 16640 * 16641 * Description: Callback routine for scsi_init_pkt when a resource allocation 16642 * fails. 16643 * 16644 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16645 * soft state instance. 16646 * 16647 * Return Code: The scsi_init_pkt routine allows for the callback function to 16648 * return a 0 indicating the callback should be rescheduled or a 1 16649 * indicating not to reschedule. This routine always returns 1 16650 * because the driver always provides a callback function to 16651 * scsi_init_pkt. This results in a callback always being scheduled 16652 * (via the scsi_init_pkt callback implementation) if a resource 16653 * failure occurs. 16654 * 16655 * Context: This callback function may not block or call routines that block 16656 * 16657 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16658 * request persisting at the head of the list which cannot be 16659 * satisfied even after multiple retries. In the future the driver 16660 * may implement some time of maximum runout count before failing 16661 * an I/O. 16662 */ 16663 16664 static int 16665 sdrunout(caddr_t arg) 16666 { 16667 struct sd_lun *un = (struct sd_lun *)arg; 16668 16669 ASSERT(un != NULL); 16670 ASSERT(!mutex_owned(SD_MUTEX(un))); 16671 16672 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16673 16674 mutex_enter(SD_MUTEX(un)); 16675 sd_start_cmds(un, NULL); 16676 mutex_exit(SD_MUTEX(un)); 16677 /* 16678 * This callback routine always returns 1 (i.e. do not reschedule) 16679 * because we always specify sdrunout as the callback handler for 16680 * scsi_init_pkt inside the call to sd_start_cmds. 16681 */ 16682 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16683 return (1); 16684 } 16685 16686 16687 /* 16688 * Function: sdintr 16689 * 16690 * Description: Completion callback routine for scsi_pkt(9S) structs 16691 * sent to the HBA driver via scsi_transport(9F). 16692 * 16693 * Context: Interrupt context 16694 */ 16695 16696 static void 16697 sdintr(struct scsi_pkt *pktp) 16698 { 16699 struct buf *bp; 16700 struct sd_xbuf *xp; 16701 struct sd_lun *un; 16702 size_t actual_len; 16703 sd_ssc_t *sscp; 16704 16705 ASSERT(pktp != NULL); 16706 bp = (struct buf *)pktp->pkt_private; 16707 ASSERT(bp != NULL); 16708 xp = SD_GET_XBUF(bp); 16709 ASSERT(xp != NULL); 16710 ASSERT(xp->xb_pktp != NULL); 16711 un = SD_GET_UN(bp); 16712 ASSERT(un != NULL); 16713 ASSERT(!mutex_owned(SD_MUTEX(un))); 16714 16715 #ifdef SD_FAULT_INJECTION 16716 16717 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16718 /* SD FaultInjection */ 16719 sd_faultinjection(pktp); 16720 16721 #endif /* SD_FAULT_INJECTION */ 16722 16723 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16724 " xp:0x%p, un:0x%p\n", bp, xp, un); 16725 16726 mutex_enter(SD_MUTEX(un)); 16727 16728 ASSERT(un->un_fm_private != NULL); 16729 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16730 ASSERT(sscp != NULL); 16731 16732 /* Reduce the count of the #commands currently in transport */ 16733 un->un_ncmds_in_transport--; 16734 ASSERT(un->un_ncmds_in_transport >= 0); 16735 16736 /* Increment counter to indicate that the callback routine is active */ 16737 un->un_in_callback++; 16738 16739 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16740 16741 #ifdef SDDEBUG 16742 if (bp == un->un_retry_bp) { 16743 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16744 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16745 un, un->un_retry_bp, un->un_ncmds_in_transport); 16746 } 16747 #endif 16748 16749 /* 16750 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16751 * state if needed. 16752 */ 16753 if (pktp->pkt_reason == CMD_DEV_GONE) { 16754 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16755 "Command failed to complete...Device is gone\n"); 16756 if (un->un_mediastate != DKIO_DEV_GONE) { 16757 un->un_mediastate = DKIO_DEV_GONE; 16758 cv_broadcast(&un->un_state_cv); 16759 } 16760 /* 16761 * If the command happens to be the REQUEST SENSE command, 16762 * free up the rqs buf and fail the original command. 16763 */ 16764 if (bp == un->un_rqs_bp) { 16765 bp = sd_mark_rqs_idle(un, xp); 16766 } 16767 sd_return_failed_command(un, bp, EIO); 16768 goto exit; 16769 } 16770 16771 if (pktp->pkt_state & STATE_XARQ_DONE) { 16772 SD_TRACE(SD_LOG_COMMON, un, 16773 "sdintr: extra sense data received. pkt=%p\n", pktp); 16774 } 16775 16776 /* 16777 * First see if the pkt has auto-request sense data with it.... 16778 * Look at the packet state first so we don't take a performance 16779 * hit looking at the arq enabled flag unless absolutely necessary. 16780 */ 16781 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16782 (un->un_f_arq_enabled == TRUE)) { 16783 /* 16784 * The HBA did an auto request sense for this command so check 16785 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16786 * driver command that should not be retried. 16787 */ 16788 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16789 /* 16790 * Save the relevant sense info into the xp for the 16791 * original cmd. 16792 */ 16793 struct scsi_arq_status *asp; 16794 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16795 xp->xb_sense_status = 16796 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16797 xp->xb_sense_state = asp->sts_rqpkt_state; 16798 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16799 if (pktp->pkt_state & STATE_XARQ_DONE) { 16800 actual_len = MAX_SENSE_LENGTH - 16801 xp->xb_sense_resid; 16802 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16803 MAX_SENSE_LENGTH); 16804 } else { 16805 if (xp->xb_sense_resid > SENSE_LENGTH) { 16806 actual_len = MAX_SENSE_LENGTH - 16807 xp->xb_sense_resid; 16808 } else { 16809 actual_len = SENSE_LENGTH - 16810 xp->xb_sense_resid; 16811 } 16812 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16813 if ((((struct uscsi_cmd *) 16814 (xp->xb_pktinfo))->uscsi_rqlen) > 16815 actual_len) { 16816 xp->xb_sense_resid = 16817 (((struct uscsi_cmd *) 16818 (xp->xb_pktinfo))-> 16819 uscsi_rqlen) - actual_len; 16820 } else { 16821 xp->xb_sense_resid = 0; 16822 } 16823 } 16824 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16825 SENSE_LENGTH); 16826 } 16827 16828 /* fail the command */ 16829 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16830 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16831 sd_return_failed_command(un, bp, EIO); 16832 goto exit; 16833 } 16834 16835 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16836 /* 16837 * We want to either retry or fail this command, so free 16838 * the DMA resources here. If we retry the command then 16839 * the DMA resources will be reallocated in sd_start_cmds(). 16840 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16841 * causes the *entire* transfer to start over again from the 16842 * beginning of the request, even for PARTIAL chunks that 16843 * have already transferred successfully. 16844 */ 16845 if ((un->un_f_is_fibre == TRUE) && 16846 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16847 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16848 scsi_dmafree(pktp); 16849 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16850 } 16851 #endif 16852 16853 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16854 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16855 16856 sd_handle_auto_request_sense(un, bp, xp, pktp); 16857 goto exit; 16858 } 16859 16860 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16861 if (pktp->pkt_flags & FLAG_SENSING) { 16862 /* This pktp is from the unit's REQUEST_SENSE command */ 16863 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16864 "sdintr: sd_handle_request_sense\n"); 16865 sd_handle_request_sense(un, bp, xp, pktp); 16866 goto exit; 16867 } 16868 16869 /* 16870 * Check to see if the command successfully completed as requested; 16871 * this is the most common case (and also the hot performance path). 16872 * 16873 * Requirements for successful completion are: 16874 * pkt_reason is CMD_CMPLT and packet status is status good. 16875 * In addition: 16876 * - A residual of zero indicates successful completion no matter what 16877 * the command is. 16878 * - If the residual is not zero and the command is not a read or 16879 * write, then it's still defined as successful completion. In other 16880 * words, if the command is a read or write the residual must be 16881 * zero for successful completion. 16882 * - If the residual is not zero and the command is a read or 16883 * write, and it's a USCSICMD, then it's still defined as 16884 * successful completion. 16885 */ 16886 if ((pktp->pkt_reason == CMD_CMPLT) && 16887 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16888 16889 /* 16890 * Since this command is returned with a good status, we 16891 * can reset the count for Sonoma failover. 16892 */ 16893 un->un_sonoma_failure_count = 0; 16894 16895 /* 16896 * Return all USCSI commands on good status 16897 */ 16898 if (pktp->pkt_resid == 0) { 16899 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16900 "sdintr: returning command for resid == 0\n"); 16901 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16902 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16903 SD_UPDATE_B_RESID(bp, pktp); 16904 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16905 "sdintr: returning command for resid != 0\n"); 16906 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16907 SD_UPDATE_B_RESID(bp, pktp); 16908 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16909 "sdintr: returning uscsi command\n"); 16910 } else { 16911 goto not_successful; 16912 } 16913 sd_return_command(un, bp); 16914 16915 /* 16916 * Decrement counter to indicate that the callback routine 16917 * is done. 16918 */ 16919 un->un_in_callback--; 16920 ASSERT(un->un_in_callback >= 0); 16921 mutex_exit(SD_MUTEX(un)); 16922 16923 return; 16924 } 16925 16926 not_successful: 16927 16928 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16929 /* 16930 * The following is based upon knowledge of the underlying transport 16931 * and its use of DMA resources. This code should be removed when 16932 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16933 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16934 * and sd_start_cmds(). 16935 * 16936 * Free any DMA resources associated with this command if there 16937 * is a chance it could be retried or enqueued for later retry. 16938 * If we keep the DMA binding then mpxio cannot reissue the 16939 * command on another path whenever a path failure occurs. 16940 * 16941 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16942 * causes the *entire* transfer to start over again from the 16943 * beginning of the request, even for PARTIAL chunks that 16944 * have already transferred successfully. 16945 * 16946 * This is only done for non-uscsi commands (and also skipped for the 16947 * driver's internal RQS command). Also just do this for Fibre Channel 16948 * devices as these are the only ones that support mpxio. 16949 */ 16950 if ((un->un_f_is_fibre == TRUE) && 16951 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16952 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16953 scsi_dmafree(pktp); 16954 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16955 } 16956 #endif 16957 16958 /* 16959 * The command did not successfully complete as requested so check 16960 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16961 * driver command that should not be retried so just return. If 16962 * FLAG_DIAGNOSE is not set the error will be processed below. 16963 */ 16964 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16965 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16966 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16967 /* 16968 * Issue a request sense if a check condition caused the error 16969 * (we handle the auto request sense case above), otherwise 16970 * just fail the command. 16971 */ 16972 if ((pktp->pkt_reason == CMD_CMPLT) && 16973 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16974 sd_send_request_sense_command(un, bp, pktp); 16975 } else { 16976 sd_return_failed_command(un, bp, EIO); 16977 } 16978 goto exit; 16979 } 16980 16981 /* 16982 * The command did not successfully complete as requested so process 16983 * the error, retry, and/or attempt recovery. 16984 */ 16985 switch (pktp->pkt_reason) { 16986 case CMD_CMPLT: 16987 switch (SD_GET_PKT_STATUS(pktp)) { 16988 case STATUS_GOOD: 16989 /* 16990 * The command completed successfully with a non-zero 16991 * residual 16992 */ 16993 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16994 "sdintr: STATUS_GOOD \n"); 16995 sd_pkt_status_good(un, bp, xp, pktp); 16996 break; 16997 16998 case STATUS_CHECK: 16999 case STATUS_TERMINATED: 17000 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17001 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 17002 sd_pkt_status_check_condition(un, bp, xp, pktp); 17003 break; 17004 17005 case STATUS_BUSY: 17006 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17007 "sdintr: STATUS_BUSY\n"); 17008 sd_pkt_status_busy(un, bp, xp, pktp); 17009 break; 17010 17011 case STATUS_RESERVATION_CONFLICT: 17012 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17013 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 17014 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17015 break; 17016 17017 case STATUS_QFULL: 17018 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17019 "sdintr: STATUS_QFULL\n"); 17020 sd_pkt_status_qfull(un, bp, xp, pktp); 17021 break; 17022 17023 case STATUS_MET: 17024 case STATUS_INTERMEDIATE: 17025 case STATUS_SCSI2: 17026 case STATUS_INTERMEDIATE_MET: 17027 case STATUS_ACA_ACTIVE: 17028 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17029 "Unexpected SCSI status received: 0x%x\n", 17030 SD_GET_PKT_STATUS(pktp)); 17031 /* 17032 * Mark the ssc_flags when detected invalid status 17033 * code for non-USCSI command. 17034 */ 17035 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17036 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17037 0, "stat-code"); 17038 } 17039 sd_return_failed_command(un, bp, EIO); 17040 break; 17041 17042 default: 17043 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17044 "Invalid SCSI status received: 0x%x\n", 17045 SD_GET_PKT_STATUS(pktp)); 17046 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17047 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17048 0, "stat-code"); 17049 } 17050 sd_return_failed_command(un, bp, EIO); 17051 break; 17052 17053 } 17054 break; 17055 17056 case CMD_INCOMPLETE: 17057 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17058 "sdintr: CMD_INCOMPLETE\n"); 17059 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17060 break; 17061 case CMD_TRAN_ERR: 17062 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17063 "sdintr: CMD_TRAN_ERR\n"); 17064 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17065 break; 17066 case CMD_RESET: 17067 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17068 "sdintr: CMD_RESET \n"); 17069 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17070 break; 17071 case CMD_ABORTED: 17072 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17073 "sdintr: CMD_ABORTED \n"); 17074 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17075 break; 17076 case CMD_TIMEOUT: 17077 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17078 "sdintr: CMD_TIMEOUT\n"); 17079 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17080 break; 17081 case CMD_UNX_BUS_FREE: 17082 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17083 "sdintr: CMD_UNX_BUS_FREE \n"); 17084 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17085 break; 17086 case CMD_TAG_REJECT: 17087 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17088 "sdintr: CMD_TAG_REJECT\n"); 17089 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17090 break; 17091 default: 17092 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17093 "sdintr: default\n"); 17094 /* 17095 * Mark the ssc_flags for detecting invliad pkt_reason. 17096 */ 17097 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17098 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17099 0, "pkt-reason"); 17100 } 17101 sd_pkt_reason_default(un, bp, xp, pktp); 17102 break; 17103 } 17104 17105 exit: 17106 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17107 17108 /* Decrement counter to indicate that the callback routine is done. */ 17109 un->un_in_callback--; 17110 ASSERT(un->un_in_callback >= 0); 17111 17112 /* 17113 * At this point, the pkt has been dispatched, ie, it is either 17114 * being re-tried or has been returned to its caller and should 17115 * not be referenced. 17116 */ 17117 17118 mutex_exit(SD_MUTEX(un)); 17119 } 17120 17121 17122 /* 17123 * Function: sd_print_incomplete_msg 17124 * 17125 * Description: Prints the error message for a CMD_INCOMPLETE error. 17126 * 17127 * Arguments: un - ptr to associated softstate for the device. 17128 * bp - ptr to the buf(9S) for the command. 17129 * arg - message string ptr 17130 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17131 * or SD_NO_RETRY_ISSUED. 17132 * 17133 * Context: May be called under interrupt context 17134 */ 17135 17136 static void 17137 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17138 { 17139 struct scsi_pkt *pktp; 17140 char *msgp; 17141 char *cmdp = arg; 17142 17143 ASSERT(un != NULL); 17144 ASSERT(mutex_owned(SD_MUTEX(un))); 17145 ASSERT(bp != NULL); 17146 ASSERT(arg != NULL); 17147 pktp = SD_GET_PKTP(bp); 17148 ASSERT(pktp != NULL); 17149 17150 switch (code) { 17151 case SD_DELAYED_RETRY_ISSUED: 17152 case SD_IMMEDIATE_RETRY_ISSUED: 17153 msgp = "retrying"; 17154 break; 17155 case SD_NO_RETRY_ISSUED: 17156 default: 17157 msgp = "giving up"; 17158 break; 17159 } 17160 17161 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17162 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17163 "incomplete %s- %s\n", cmdp, msgp); 17164 } 17165 } 17166 17167 17168 17169 /* 17170 * Function: sd_pkt_status_good 17171 * 17172 * Description: Processing for a STATUS_GOOD code in pkt_status. 17173 * 17174 * Context: May be called under interrupt context 17175 */ 17176 17177 static void 17178 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17179 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17180 { 17181 char *cmdp; 17182 17183 ASSERT(un != NULL); 17184 ASSERT(mutex_owned(SD_MUTEX(un))); 17185 ASSERT(bp != NULL); 17186 ASSERT(xp != NULL); 17187 ASSERT(pktp != NULL); 17188 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17189 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17190 ASSERT(pktp->pkt_resid != 0); 17191 17192 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17193 17194 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17195 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17196 case SCMD_READ: 17197 cmdp = "read"; 17198 break; 17199 case SCMD_WRITE: 17200 cmdp = "write"; 17201 break; 17202 default: 17203 SD_UPDATE_B_RESID(bp, pktp); 17204 sd_return_command(un, bp); 17205 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17206 return; 17207 } 17208 17209 /* 17210 * See if we can retry the read/write, preferrably immediately. 17211 * If retries are exhaused, then sd_retry_command() will update 17212 * the b_resid count. 17213 */ 17214 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17215 cmdp, EIO, (clock_t)0, NULL); 17216 17217 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17218 } 17219 17220 17221 17222 17223 17224 /* 17225 * Function: sd_handle_request_sense 17226 * 17227 * Description: Processing for non-auto Request Sense command. 17228 * 17229 * Arguments: un - ptr to associated softstate 17230 * sense_bp - ptr to buf(9S) for the RQS command 17231 * sense_xp - ptr to the sd_xbuf for the RQS command 17232 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17233 * 17234 * Context: May be called under interrupt context 17235 */ 17236 17237 static void 17238 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17239 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17240 { 17241 struct buf *cmd_bp; /* buf for the original command */ 17242 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17243 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17244 size_t actual_len; /* actual sense data length */ 17245 17246 ASSERT(un != NULL); 17247 ASSERT(mutex_owned(SD_MUTEX(un))); 17248 ASSERT(sense_bp != NULL); 17249 ASSERT(sense_xp != NULL); 17250 ASSERT(sense_pktp != NULL); 17251 17252 /* 17253 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17254 * RQS command and not the original command. 17255 */ 17256 ASSERT(sense_pktp == un->un_rqs_pktp); 17257 ASSERT(sense_bp == un->un_rqs_bp); 17258 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17259 (FLAG_SENSING | FLAG_HEAD)); 17260 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17261 FLAG_SENSING) == FLAG_SENSING); 17262 17263 /* These are the bp, xp, and pktp for the original command */ 17264 cmd_bp = sense_xp->xb_sense_bp; 17265 cmd_xp = SD_GET_XBUF(cmd_bp); 17266 cmd_pktp = SD_GET_PKTP(cmd_bp); 17267 17268 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17269 /* 17270 * The REQUEST SENSE command failed. Release the REQUEST 17271 * SENSE command for re-use, get back the bp for the original 17272 * command, and attempt to re-try the original command if 17273 * FLAG_DIAGNOSE is not set in the original packet. 17274 */ 17275 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17276 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17277 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17278 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17279 NULL, NULL, EIO, (clock_t)0, NULL); 17280 return; 17281 } 17282 } 17283 17284 /* 17285 * Save the relevant sense info into the xp for the original cmd. 17286 * 17287 * Note: if the request sense failed the state info will be zero 17288 * as set in sd_mark_rqs_busy() 17289 */ 17290 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17291 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17292 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17293 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17294 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17295 SENSE_LENGTH)) { 17296 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17297 MAX_SENSE_LENGTH); 17298 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17299 } else { 17300 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17301 SENSE_LENGTH); 17302 if (actual_len < SENSE_LENGTH) { 17303 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17304 } else { 17305 cmd_xp->xb_sense_resid = 0; 17306 } 17307 } 17308 17309 /* 17310 * Free up the RQS command.... 17311 * NOTE: 17312 * Must do this BEFORE calling sd_validate_sense_data! 17313 * sd_validate_sense_data may return the original command in 17314 * which case the pkt will be freed and the flags can no 17315 * longer be touched. 17316 * SD_MUTEX is held through this process until the command 17317 * is dispatched based upon the sense data, so there are 17318 * no race conditions. 17319 */ 17320 (void) sd_mark_rqs_idle(un, sense_xp); 17321 17322 /* 17323 * For a retryable command see if we have valid sense data, if so then 17324 * turn it over to sd_decode_sense() to figure out the right course of 17325 * action. Just fail a non-retryable command. 17326 */ 17327 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17328 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17329 SD_SENSE_DATA_IS_VALID) { 17330 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17331 } 17332 } else { 17333 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17334 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17335 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17336 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17337 sd_return_failed_command(un, cmd_bp, EIO); 17338 } 17339 } 17340 17341 17342 17343 17344 /* 17345 * Function: sd_handle_auto_request_sense 17346 * 17347 * Description: Processing for auto-request sense information. 17348 * 17349 * Arguments: un - ptr to associated softstate 17350 * bp - ptr to buf(9S) for the command 17351 * xp - ptr to the sd_xbuf for the command 17352 * pktp - ptr to the scsi_pkt(9S) for the command 17353 * 17354 * Context: May be called under interrupt context 17355 */ 17356 17357 static void 17358 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17359 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17360 { 17361 struct scsi_arq_status *asp; 17362 size_t actual_len; 17363 17364 ASSERT(un != NULL); 17365 ASSERT(mutex_owned(SD_MUTEX(un))); 17366 ASSERT(bp != NULL); 17367 ASSERT(xp != NULL); 17368 ASSERT(pktp != NULL); 17369 ASSERT(pktp != un->un_rqs_pktp); 17370 ASSERT(bp != un->un_rqs_bp); 17371 17372 /* 17373 * For auto-request sense, we get a scsi_arq_status back from 17374 * the HBA, with the sense data in the sts_sensedata member. 17375 * The pkt_scbp of the packet points to this scsi_arq_status. 17376 */ 17377 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17378 17379 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17380 /* 17381 * The auto REQUEST SENSE failed; see if we can re-try 17382 * the original command. 17383 */ 17384 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17385 "auto request sense failed (reason=%s)\n", 17386 scsi_rname(asp->sts_rqpkt_reason)); 17387 17388 sd_reset_target(un, pktp); 17389 17390 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17391 NULL, NULL, EIO, (clock_t)0, NULL); 17392 return; 17393 } 17394 17395 /* Save the relevant sense info into the xp for the original cmd. */ 17396 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17397 xp->xb_sense_state = asp->sts_rqpkt_state; 17398 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17399 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17400 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17401 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17402 MAX_SENSE_LENGTH); 17403 } else { 17404 if (xp->xb_sense_resid > SENSE_LENGTH) { 17405 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17406 } else { 17407 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17408 } 17409 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17410 if ((((struct uscsi_cmd *) 17411 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17412 xp->xb_sense_resid = (((struct uscsi_cmd *) 17413 (xp->xb_pktinfo))->uscsi_rqlen) - 17414 actual_len; 17415 } else { 17416 xp->xb_sense_resid = 0; 17417 } 17418 } 17419 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17420 } 17421 17422 /* 17423 * See if we have valid sense data, if so then turn it over to 17424 * sd_decode_sense() to figure out the right course of action. 17425 */ 17426 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17427 SD_SENSE_DATA_IS_VALID) { 17428 sd_decode_sense(un, bp, xp, pktp); 17429 } 17430 } 17431 17432 17433 /* 17434 * Function: sd_print_sense_failed_msg 17435 * 17436 * Description: Print log message when RQS has failed. 17437 * 17438 * Arguments: un - ptr to associated softstate 17439 * bp - ptr to buf(9S) for the command 17440 * arg - generic message string ptr 17441 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17442 * or SD_NO_RETRY_ISSUED 17443 * 17444 * Context: May be called from interrupt context 17445 */ 17446 17447 static void 17448 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17449 int code) 17450 { 17451 char *msgp = arg; 17452 17453 ASSERT(un != NULL); 17454 ASSERT(mutex_owned(SD_MUTEX(un))); 17455 ASSERT(bp != NULL); 17456 17457 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17458 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17459 } 17460 } 17461 17462 17463 /* 17464 * Function: sd_validate_sense_data 17465 * 17466 * Description: Check the given sense data for validity. 17467 * If the sense data is not valid, the command will 17468 * be either failed or retried! 17469 * 17470 * Return Code: SD_SENSE_DATA_IS_INVALID 17471 * SD_SENSE_DATA_IS_VALID 17472 * 17473 * Context: May be called from interrupt context 17474 */ 17475 17476 static int 17477 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17478 size_t actual_len) 17479 { 17480 struct scsi_extended_sense *esp; 17481 struct scsi_pkt *pktp; 17482 char *msgp = NULL; 17483 sd_ssc_t *sscp; 17484 17485 ASSERT(un != NULL); 17486 ASSERT(mutex_owned(SD_MUTEX(un))); 17487 ASSERT(bp != NULL); 17488 ASSERT(bp != un->un_rqs_bp); 17489 ASSERT(xp != NULL); 17490 ASSERT(un->un_fm_private != NULL); 17491 17492 pktp = SD_GET_PKTP(bp); 17493 ASSERT(pktp != NULL); 17494 17495 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17496 ASSERT(sscp != NULL); 17497 17498 /* 17499 * Check the status of the RQS command (auto or manual). 17500 */ 17501 switch (xp->xb_sense_status & STATUS_MASK) { 17502 case STATUS_GOOD: 17503 break; 17504 17505 case STATUS_RESERVATION_CONFLICT: 17506 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17507 return (SD_SENSE_DATA_IS_INVALID); 17508 17509 case STATUS_BUSY: 17510 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17511 "Busy Status on REQUEST SENSE\n"); 17512 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17513 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17514 return (SD_SENSE_DATA_IS_INVALID); 17515 17516 case STATUS_QFULL: 17517 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17518 "QFULL Status on REQUEST SENSE\n"); 17519 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17520 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17521 return (SD_SENSE_DATA_IS_INVALID); 17522 17523 case STATUS_CHECK: 17524 case STATUS_TERMINATED: 17525 msgp = "Check Condition on REQUEST SENSE\n"; 17526 goto sense_failed; 17527 17528 default: 17529 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17530 goto sense_failed; 17531 } 17532 17533 /* 17534 * See if we got the minimum required amount of sense data. 17535 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17536 * or less. 17537 */ 17538 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17539 (actual_len == 0)) { 17540 msgp = "Request Sense couldn't get sense data\n"; 17541 goto sense_failed; 17542 } 17543 17544 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17545 msgp = "Not enough sense information\n"; 17546 /* Mark the ssc_flags for detecting invalid sense data */ 17547 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17548 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17549 "sense-data"); 17550 } 17551 goto sense_failed; 17552 } 17553 17554 /* 17555 * We require the extended sense data 17556 */ 17557 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17558 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17559 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17560 static char tmp[8]; 17561 static char buf[148]; 17562 char *p = (char *)(xp->xb_sense_data); 17563 int i; 17564 17565 mutex_enter(&sd_sense_mutex); 17566 (void) strcpy(buf, "undecodable sense information:"); 17567 for (i = 0; i < actual_len; i++) { 17568 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17569 (void) strcpy(&buf[strlen(buf)], tmp); 17570 } 17571 i = strlen(buf); 17572 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17573 17574 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17575 scsi_log(SD_DEVINFO(un), sd_label, 17576 CE_WARN, buf); 17577 } 17578 mutex_exit(&sd_sense_mutex); 17579 } 17580 17581 /* Mark the ssc_flags for detecting invalid sense data */ 17582 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17583 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17584 "sense-data"); 17585 } 17586 17587 /* Note: Legacy behavior, fail the command with no retry */ 17588 sd_return_failed_command(un, bp, EIO); 17589 return (SD_SENSE_DATA_IS_INVALID); 17590 } 17591 17592 /* 17593 * Check that es_code is valid (es_class concatenated with es_code 17594 * make up the "response code" field. es_class will always be 7, so 17595 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17596 * format. 17597 */ 17598 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17599 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17600 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17601 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17602 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17603 /* Mark the ssc_flags for detecting invalid sense data */ 17604 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17605 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17606 "sense-data"); 17607 } 17608 goto sense_failed; 17609 } 17610 17611 return (SD_SENSE_DATA_IS_VALID); 17612 17613 sense_failed: 17614 /* 17615 * If the request sense failed (for whatever reason), attempt 17616 * to retry the original command. 17617 */ 17618 #if defined(__i386) || defined(__amd64) 17619 /* 17620 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17621 * sddef.h for Sparc platform, and x86 uses 1 binary 17622 * for both SCSI/FC. 17623 * The SD_RETRY_DELAY value need to be adjusted here 17624 * when SD_RETRY_DELAY change in sddef.h 17625 */ 17626 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17627 sd_print_sense_failed_msg, msgp, EIO, 17628 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17629 #else 17630 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17631 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17632 #endif 17633 17634 return (SD_SENSE_DATA_IS_INVALID); 17635 } 17636 17637 /* 17638 * Function: sd_decode_sense 17639 * 17640 * Description: Take recovery action(s) when SCSI Sense Data is received. 17641 * 17642 * Context: Interrupt context. 17643 */ 17644 17645 static void 17646 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17647 struct scsi_pkt *pktp) 17648 { 17649 uint8_t sense_key; 17650 17651 ASSERT(un != NULL); 17652 ASSERT(mutex_owned(SD_MUTEX(un))); 17653 ASSERT(bp != NULL); 17654 ASSERT(bp != un->un_rqs_bp); 17655 ASSERT(xp != NULL); 17656 ASSERT(pktp != NULL); 17657 17658 sense_key = scsi_sense_key(xp->xb_sense_data); 17659 17660 switch (sense_key) { 17661 case KEY_NO_SENSE: 17662 sd_sense_key_no_sense(un, bp, xp, pktp); 17663 break; 17664 case KEY_RECOVERABLE_ERROR: 17665 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17666 bp, xp, pktp); 17667 break; 17668 case KEY_NOT_READY: 17669 sd_sense_key_not_ready(un, xp->xb_sense_data, 17670 bp, xp, pktp); 17671 break; 17672 case KEY_MEDIUM_ERROR: 17673 case KEY_HARDWARE_ERROR: 17674 sd_sense_key_medium_or_hardware_error(un, 17675 xp->xb_sense_data, bp, xp, pktp); 17676 break; 17677 case KEY_ILLEGAL_REQUEST: 17678 sd_sense_key_illegal_request(un, bp, xp, pktp); 17679 break; 17680 case KEY_UNIT_ATTENTION: 17681 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17682 bp, xp, pktp); 17683 break; 17684 case KEY_WRITE_PROTECT: 17685 case KEY_VOLUME_OVERFLOW: 17686 case KEY_MISCOMPARE: 17687 sd_sense_key_fail_command(un, bp, xp, pktp); 17688 break; 17689 case KEY_BLANK_CHECK: 17690 sd_sense_key_blank_check(un, bp, xp, pktp); 17691 break; 17692 case KEY_ABORTED_COMMAND: 17693 sd_sense_key_aborted_command(un, bp, xp, pktp); 17694 break; 17695 case KEY_VENDOR_UNIQUE: 17696 case KEY_COPY_ABORTED: 17697 case KEY_EQUAL: 17698 case KEY_RESERVED: 17699 default: 17700 sd_sense_key_default(un, xp->xb_sense_data, 17701 bp, xp, pktp); 17702 break; 17703 } 17704 } 17705 17706 17707 /* 17708 * Function: sd_dump_memory 17709 * 17710 * Description: Debug logging routine to print the contents of a user provided 17711 * buffer. The output of the buffer is broken up into 256 byte 17712 * segments due to a size constraint of the scsi_log. 17713 * implementation. 17714 * 17715 * Arguments: un - ptr to softstate 17716 * comp - component mask 17717 * title - "title" string to preceed data when printed 17718 * data - ptr to data block to be printed 17719 * len - size of data block to be printed 17720 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17721 * 17722 * Context: May be called from interrupt context 17723 */ 17724 17725 #define SD_DUMP_MEMORY_BUF_SIZE 256 17726 17727 static char *sd_dump_format_string[] = { 17728 " 0x%02x", 17729 " %c" 17730 }; 17731 17732 static void 17733 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17734 int len, int fmt) 17735 { 17736 int i, j; 17737 int avail_count; 17738 int start_offset; 17739 int end_offset; 17740 size_t entry_len; 17741 char *bufp; 17742 char *local_buf; 17743 char *format_string; 17744 17745 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17746 17747 /* 17748 * In the debug version of the driver, this function is called from a 17749 * number of places which are NOPs in the release driver. 17750 * The debug driver therefore has additional methods of filtering 17751 * debug output. 17752 */ 17753 #ifdef SDDEBUG 17754 /* 17755 * In the debug version of the driver we can reduce the amount of debug 17756 * messages by setting sd_error_level to something other than 17757 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17758 * sd_component_mask. 17759 */ 17760 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17761 (sd_error_level != SCSI_ERR_ALL)) { 17762 return; 17763 } 17764 if (((sd_component_mask & comp) == 0) || 17765 (sd_error_level != SCSI_ERR_ALL)) { 17766 return; 17767 } 17768 #else 17769 if (sd_error_level != SCSI_ERR_ALL) { 17770 return; 17771 } 17772 #endif 17773 17774 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17775 bufp = local_buf; 17776 /* 17777 * Available length is the length of local_buf[], minus the 17778 * length of the title string, minus one for the ":", minus 17779 * one for the newline, minus one for the NULL terminator. 17780 * This gives the #bytes available for holding the printed 17781 * values from the given data buffer. 17782 */ 17783 if (fmt == SD_LOG_HEX) { 17784 format_string = sd_dump_format_string[0]; 17785 } else /* SD_LOG_CHAR */ { 17786 format_string = sd_dump_format_string[1]; 17787 } 17788 /* 17789 * Available count is the number of elements from the given 17790 * data buffer that we can fit into the available length. 17791 * This is based upon the size of the format string used. 17792 * Make one entry and find it's size. 17793 */ 17794 (void) sprintf(bufp, format_string, data[0]); 17795 entry_len = strlen(bufp); 17796 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17797 17798 j = 0; 17799 while (j < len) { 17800 bufp = local_buf; 17801 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17802 start_offset = j; 17803 17804 end_offset = start_offset + avail_count; 17805 17806 (void) sprintf(bufp, "%s:", title); 17807 bufp += strlen(bufp); 17808 for (i = start_offset; ((i < end_offset) && (j < len)); 17809 i++, j++) { 17810 (void) sprintf(bufp, format_string, data[i]); 17811 bufp += entry_len; 17812 } 17813 (void) sprintf(bufp, "\n"); 17814 17815 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17816 } 17817 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17818 } 17819 17820 /* 17821 * Function: sd_print_sense_msg 17822 * 17823 * Description: Log a message based upon the given sense data. 17824 * 17825 * Arguments: un - ptr to associated softstate 17826 * bp - ptr to buf(9S) for the command 17827 * arg - ptr to associate sd_sense_info struct 17828 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17829 * or SD_NO_RETRY_ISSUED 17830 * 17831 * Context: May be called from interrupt context 17832 */ 17833 17834 static void 17835 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17836 { 17837 struct sd_xbuf *xp; 17838 struct scsi_pkt *pktp; 17839 uint8_t *sensep; 17840 daddr_t request_blkno; 17841 diskaddr_t err_blkno; 17842 int severity; 17843 int pfa_flag; 17844 extern struct scsi_key_strings scsi_cmds[]; 17845 17846 ASSERT(un != NULL); 17847 ASSERT(mutex_owned(SD_MUTEX(un))); 17848 ASSERT(bp != NULL); 17849 xp = SD_GET_XBUF(bp); 17850 ASSERT(xp != NULL); 17851 pktp = SD_GET_PKTP(bp); 17852 ASSERT(pktp != NULL); 17853 ASSERT(arg != NULL); 17854 17855 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17856 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17857 17858 if ((code == SD_DELAYED_RETRY_ISSUED) || 17859 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17860 severity = SCSI_ERR_RETRYABLE; 17861 } 17862 17863 /* Use absolute block number for the request block number */ 17864 request_blkno = xp->xb_blkno; 17865 17866 /* 17867 * Now try to get the error block number from the sense data 17868 */ 17869 sensep = xp->xb_sense_data; 17870 17871 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17872 (uint64_t *)&err_blkno)) { 17873 /* 17874 * We retrieved the error block number from the information 17875 * portion of the sense data. 17876 * 17877 * For USCSI commands we are better off using the error 17878 * block no. as the requested block no. (This is the best 17879 * we can estimate.) 17880 */ 17881 if ((SD_IS_BUFIO(xp) == FALSE) && 17882 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17883 request_blkno = err_blkno; 17884 } 17885 } else { 17886 /* 17887 * Without the es_valid bit set (for fixed format) or an 17888 * information descriptor (for descriptor format) we cannot 17889 * be certain of the error blkno, so just use the 17890 * request_blkno. 17891 */ 17892 err_blkno = (diskaddr_t)request_blkno; 17893 } 17894 17895 /* 17896 * The following will log the buffer contents for the release driver 17897 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17898 * level is set to verbose. 17899 */ 17900 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17901 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17902 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17903 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17904 17905 if (pfa_flag == FALSE) { 17906 /* This is normally only set for USCSI */ 17907 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17908 return; 17909 } 17910 17911 if ((SD_IS_BUFIO(xp) == TRUE) && 17912 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17913 (severity < sd_error_level))) { 17914 return; 17915 } 17916 } 17917 /* 17918 * Check for Sonoma Failover and keep a count of how many failed I/O's 17919 */ 17920 if ((SD_IS_LSI(un)) && 17921 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 17922 (scsi_sense_asc(sensep) == 0x94) && 17923 (scsi_sense_ascq(sensep) == 0x01)) { 17924 un->un_sonoma_failure_count++; 17925 if (un->un_sonoma_failure_count > 1) { 17926 return; 17927 } 17928 } 17929 17930 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 17931 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 17932 (pktp->pkt_resid == 0))) { 17933 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17934 request_blkno, err_blkno, scsi_cmds, 17935 (struct scsi_extended_sense *)sensep, 17936 un->un_additional_codes, NULL); 17937 } 17938 } 17939 17940 /* 17941 * Function: sd_sense_key_no_sense 17942 * 17943 * Description: Recovery action when sense data was not received. 17944 * 17945 * Context: May be called from interrupt context 17946 */ 17947 17948 static void 17949 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17950 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17951 { 17952 struct sd_sense_info si; 17953 17954 ASSERT(un != NULL); 17955 ASSERT(mutex_owned(SD_MUTEX(un))); 17956 ASSERT(bp != NULL); 17957 ASSERT(xp != NULL); 17958 ASSERT(pktp != NULL); 17959 17960 si.ssi_severity = SCSI_ERR_FATAL; 17961 si.ssi_pfa_flag = FALSE; 17962 17963 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17964 17965 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17966 &si, EIO, (clock_t)0, NULL); 17967 } 17968 17969 17970 /* 17971 * Function: sd_sense_key_recoverable_error 17972 * 17973 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17974 * 17975 * Context: May be called from interrupt context 17976 */ 17977 17978 static void 17979 sd_sense_key_recoverable_error(struct sd_lun *un, 17980 uint8_t *sense_datap, 17981 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17982 { 17983 struct sd_sense_info si; 17984 uint8_t asc = scsi_sense_asc(sense_datap); 17985 17986 ASSERT(un != NULL); 17987 ASSERT(mutex_owned(SD_MUTEX(un))); 17988 ASSERT(bp != NULL); 17989 ASSERT(xp != NULL); 17990 ASSERT(pktp != NULL); 17991 17992 /* 17993 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17994 */ 17995 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17996 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17997 si.ssi_severity = SCSI_ERR_INFO; 17998 si.ssi_pfa_flag = TRUE; 17999 } else { 18000 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18001 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 18002 si.ssi_severity = SCSI_ERR_RECOVERED; 18003 si.ssi_pfa_flag = FALSE; 18004 } 18005 18006 if (pktp->pkt_resid == 0) { 18007 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18008 sd_return_command(un, bp); 18009 return; 18010 } 18011 18012 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18013 &si, EIO, (clock_t)0, NULL); 18014 } 18015 18016 18017 18018 18019 /* 18020 * Function: sd_sense_key_not_ready 18021 * 18022 * Description: Recovery actions for a SCSI "Not Ready" sense key. 18023 * 18024 * Context: May be called from interrupt context 18025 */ 18026 18027 static void 18028 sd_sense_key_not_ready(struct sd_lun *un, 18029 uint8_t *sense_datap, 18030 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18031 { 18032 struct sd_sense_info si; 18033 uint8_t asc = scsi_sense_asc(sense_datap); 18034 uint8_t ascq = scsi_sense_ascq(sense_datap); 18035 18036 ASSERT(un != NULL); 18037 ASSERT(mutex_owned(SD_MUTEX(un))); 18038 ASSERT(bp != NULL); 18039 ASSERT(xp != NULL); 18040 ASSERT(pktp != NULL); 18041 18042 si.ssi_severity = SCSI_ERR_FATAL; 18043 si.ssi_pfa_flag = FALSE; 18044 18045 /* 18046 * Update error stats after first NOT READY error. Disks may have 18047 * been powered down and may need to be restarted. For CDROMs, 18048 * report NOT READY errors only if media is present. 18049 */ 18050 if ((ISCD(un) && (asc == 0x3A)) || 18051 (xp->xb_nr_retry_count > 0)) { 18052 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18053 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18054 } 18055 18056 /* 18057 * Just fail if the "not ready" retry limit has been reached. 18058 */ 18059 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18060 /* Special check for error message printing for removables. */ 18061 if (un->un_f_has_removable_media && (asc == 0x04) && 18062 (ascq >= 0x04)) { 18063 si.ssi_severity = SCSI_ERR_ALL; 18064 } 18065 goto fail_command; 18066 } 18067 18068 /* 18069 * Check the ASC and ASCQ in the sense data as needed, to determine 18070 * what to do. 18071 */ 18072 switch (asc) { 18073 case 0x04: /* LOGICAL UNIT NOT READY */ 18074 /* 18075 * disk drives that don't spin up result in a very long delay 18076 * in format without warning messages. We will log a message 18077 * if the error level is set to verbose. 18078 */ 18079 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18080 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18081 "logical unit not ready, resetting disk\n"); 18082 } 18083 18084 /* 18085 * There are different requirements for CDROMs and disks for 18086 * the number of retries. If a CD-ROM is giving this, it is 18087 * probably reading TOC and is in the process of getting 18088 * ready, so we should keep on trying for a long time to make 18089 * sure that all types of media are taken in account (for 18090 * some media the drive takes a long time to read TOC). For 18091 * disks we do not want to retry this too many times as this 18092 * can cause a long hang in format when the drive refuses to 18093 * spin up (a very common failure). 18094 */ 18095 switch (ascq) { 18096 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18097 /* 18098 * Disk drives frequently refuse to spin up which 18099 * results in a very long hang in format without 18100 * warning messages. 18101 * 18102 * Note: This code preserves the legacy behavior of 18103 * comparing xb_nr_retry_count against zero for fibre 18104 * channel targets instead of comparing against the 18105 * un_reset_retry_count value. The reason for this 18106 * discrepancy has been so utterly lost beneath the 18107 * Sands of Time that even Indiana Jones could not 18108 * find it. 18109 */ 18110 if (un->un_f_is_fibre == TRUE) { 18111 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18112 (xp->xb_nr_retry_count > 0)) && 18113 (un->un_startstop_timeid == NULL)) { 18114 scsi_log(SD_DEVINFO(un), sd_label, 18115 CE_WARN, "logical unit not ready, " 18116 "resetting disk\n"); 18117 sd_reset_target(un, pktp); 18118 } 18119 } else { 18120 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18121 (xp->xb_nr_retry_count > 18122 un->un_reset_retry_count)) && 18123 (un->un_startstop_timeid == NULL)) { 18124 scsi_log(SD_DEVINFO(un), sd_label, 18125 CE_WARN, "logical unit not ready, " 18126 "resetting disk\n"); 18127 sd_reset_target(un, pktp); 18128 } 18129 } 18130 break; 18131 18132 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18133 /* 18134 * If the target is in the process of becoming 18135 * ready, just proceed with the retry. This can 18136 * happen with CD-ROMs that take a long time to 18137 * read TOC after a power cycle or reset. 18138 */ 18139 goto do_retry; 18140 18141 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18142 break; 18143 18144 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18145 /* 18146 * Retries cannot help here so just fail right away. 18147 */ 18148 goto fail_command; 18149 18150 case 0x88: 18151 /* 18152 * Vendor-unique code for T3/T4: it indicates a 18153 * path problem in a mutipathed config, but as far as 18154 * the target driver is concerned it equates to a fatal 18155 * error, so we should just fail the command right away 18156 * (without printing anything to the console). If this 18157 * is not a T3/T4, fall thru to the default recovery 18158 * action. 18159 * T3/T4 is FC only, don't need to check is_fibre 18160 */ 18161 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18162 sd_return_failed_command(un, bp, EIO); 18163 return; 18164 } 18165 /* FALLTHRU */ 18166 18167 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18168 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18169 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18170 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18171 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18172 default: /* Possible future codes in SCSI spec? */ 18173 /* 18174 * For removable-media devices, do not retry if 18175 * ASCQ > 2 as these result mostly from USCSI commands 18176 * on MMC devices issued to check status of an 18177 * operation initiated in immediate mode. Also for 18178 * ASCQ >= 4 do not print console messages as these 18179 * mainly represent a user-initiated operation 18180 * instead of a system failure. 18181 */ 18182 if (un->un_f_has_removable_media) { 18183 si.ssi_severity = SCSI_ERR_ALL; 18184 goto fail_command; 18185 } 18186 break; 18187 } 18188 18189 /* 18190 * As part of our recovery attempt for the NOT READY 18191 * condition, we issue a START STOP UNIT command. However 18192 * we want to wait for a short delay before attempting this 18193 * as there may still be more commands coming back from the 18194 * target with the check condition. To do this we use 18195 * timeout(9F) to call sd_start_stop_unit_callback() after 18196 * the delay interval expires. (sd_start_stop_unit_callback() 18197 * dispatches sd_start_stop_unit_task(), which will issue 18198 * the actual START STOP UNIT command. The delay interval 18199 * is one-half of the delay that we will use to retry the 18200 * command that generated the NOT READY condition. 18201 * 18202 * Note that we could just dispatch sd_start_stop_unit_task() 18203 * from here and allow it to sleep for the delay interval, 18204 * but then we would be tying up the taskq thread 18205 * uncesessarily for the duration of the delay. 18206 * 18207 * Do not issue the START STOP UNIT if the current command 18208 * is already a START STOP UNIT. 18209 */ 18210 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18211 break; 18212 } 18213 18214 /* 18215 * Do not schedule the timeout if one is already pending. 18216 */ 18217 if (un->un_startstop_timeid != NULL) { 18218 SD_INFO(SD_LOG_ERROR, un, 18219 "sd_sense_key_not_ready: restart already issued to" 18220 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18221 ddi_get_instance(SD_DEVINFO(un))); 18222 break; 18223 } 18224 18225 /* 18226 * Schedule the START STOP UNIT command, then queue the command 18227 * for a retry. 18228 * 18229 * Note: A timeout is not scheduled for this retry because we 18230 * want the retry to be serial with the START_STOP_UNIT. The 18231 * retry will be started when the START_STOP_UNIT is completed 18232 * in sd_start_stop_unit_task. 18233 */ 18234 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18235 un, un->un_busy_timeout / 2); 18236 xp->xb_nr_retry_count++; 18237 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18238 return; 18239 18240 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18241 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18242 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18243 "unit does not respond to selection\n"); 18244 } 18245 break; 18246 18247 case 0x3A: /* MEDIUM NOT PRESENT */ 18248 if (sd_error_level >= SCSI_ERR_FATAL) { 18249 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18250 "Caddy not inserted in drive\n"); 18251 } 18252 18253 sr_ejected(un); 18254 un->un_mediastate = DKIO_EJECTED; 18255 /* The state has changed, inform the media watch routines */ 18256 cv_broadcast(&un->un_state_cv); 18257 /* Just fail if no media is present in the drive. */ 18258 goto fail_command; 18259 18260 default: 18261 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18262 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18263 "Unit not Ready. Additional sense code 0x%x\n", 18264 asc); 18265 } 18266 break; 18267 } 18268 18269 do_retry: 18270 18271 /* 18272 * Retry the command, as some targets may report NOT READY for 18273 * several seconds after being reset. 18274 */ 18275 xp->xb_nr_retry_count++; 18276 si.ssi_severity = SCSI_ERR_RETRYABLE; 18277 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18278 &si, EIO, un->un_busy_timeout, NULL); 18279 18280 return; 18281 18282 fail_command: 18283 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18284 sd_return_failed_command(un, bp, EIO); 18285 } 18286 18287 18288 18289 /* 18290 * Function: sd_sense_key_medium_or_hardware_error 18291 * 18292 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18293 * sense key. 18294 * 18295 * Context: May be called from interrupt context 18296 */ 18297 18298 static void 18299 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 18300 uint8_t *sense_datap, 18301 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18302 { 18303 struct sd_sense_info si; 18304 uint8_t sense_key = scsi_sense_key(sense_datap); 18305 uint8_t asc = scsi_sense_asc(sense_datap); 18306 18307 ASSERT(un != NULL); 18308 ASSERT(mutex_owned(SD_MUTEX(un))); 18309 ASSERT(bp != NULL); 18310 ASSERT(xp != NULL); 18311 ASSERT(pktp != NULL); 18312 18313 si.ssi_severity = SCSI_ERR_FATAL; 18314 si.ssi_pfa_flag = FALSE; 18315 18316 if (sense_key == KEY_MEDIUM_ERROR) { 18317 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18318 } 18319 18320 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18321 18322 if ((un->un_reset_retry_count != 0) && 18323 (xp->xb_retry_count == un->un_reset_retry_count)) { 18324 mutex_exit(SD_MUTEX(un)); 18325 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18326 if (un->un_f_allow_bus_device_reset == TRUE) { 18327 18328 boolean_t try_resetting_target = B_TRUE; 18329 18330 /* 18331 * We need to be able to handle specific ASC when we are 18332 * handling a KEY_HARDWARE_ERROR. In particular 18333 * taking the default action of resetting the target may 18334 * not be the appropriate way to attempt recovery. 18335 * Resetting a target because of a single LUN failure 18336 * victimizes all LUNs on that target. 18337 * 18338 * This is true for the LSI arrays, if an LSI 18339 * array controller returns an ASC of 0x84 (LUN Dead) we 18340 * should trust it. 18341 */ 18342 18343 if (sense_key == KEY_HARDWARE_ERROR) { 18344 switch (asc) { 18345 case 0x84: 18346 if (SD_IS_LSI(un)) { 18347 try_resetting_target = B_FALSE; 18348 } 18349 break; 18350 default: 18351 break; 18352 } 18353 } 18354 18355 if (try_resetting_target == B_TRUE) { 18356 int reset_retval = 0; 18357 if (un->un_f_lun_reset_enabled == TRUE) { 18358 SD_TRACE(SD_LOG_IO_CORE, un, 18359 "sd_sense_key_medium_or_hardware_" 18360 "error: issuing RESET_LUN\n"); 18361 reset_retval = 18362 scsi_reset(SD_ADDRESS(un), 18363 RESET_LUN); 18364 } 18365 if (reset_retval == 0) { 18366 SD_TRACE(SD_LOG_IO_CORE, un, 18367 "sd_sense_key_medium_or_hardware_" 18368 "error: issuing RESET_TARGET\n"); 18369 (void) scsi_reset(SD_ADDRESS(un), 18370 RESET_TARGET); 18371 } 18372 } 18373 } 18374 mutex_enter(SD_MUTEX(un)); 18375 } 18376 18377 /* 18378 * This really ought to be a fatal error, but we will retry anyway 18379 * as some drives report this as a spurious error. 18380 */ 18381 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18382 &si, EIO, (clock_t)0, NULL); 18383 } 18384 18385 18386 18387 /* 18388 * Function: sd_sense_key_illegal_request 18389 * 18390 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18391 * 18392 * Context: May be called from interrupt context 18393 */ 18394 18395 static void 18396 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18397 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18398 { 18399 struct sd_sense_info si; 18400 18401 ASSERT(un != NULL); 18402 ASSERT(mutex_owned(SD_MUTEX(un))); 18403 ASSERT(bp != NULL); 18404 ASSERT(xp != NULL); 18405 ASSERT(pktp != NULL); 18406 18407 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18408 18409 si.ssi_severity = SCSI_ERR_INFO; 18410 si.ssi_pfa_flag = FALSE; 18411 18412 /* Pointless to retry if the target thinks it's an illegal request */ 18413 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18414 sd_return_failed_command(un, bp, EIO); 18415 } 18416 18417 18418 18419 18420 /* 18421 * Function: sd_sense_key_unit_attention 18422 * 18423 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18424 * 18425 * Context: May be called from interrupt context 18426 */ 18427 18428 static void 18429 sd_sense_key_unit_attention(struct sd_lun *un, 18430 uint8_t *sense_datap, 18431 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18432 { 18433 /* 18434 * For UNIT ATTENTION we allow retries for one minute. Devices 18435 * like Sonoma can return UNIT ATTENTION close to a minute 18436 * under certain conditions. 18437 */ 18438 int retry_check_flag = SD_RETRIES_UA; 18439 boolean_t kstat_updated = B_FALSE; 18440 struct sd_sense_info si; 18441 uint8_t asc = scsi_sense_asc(sense_datap); 18442 uint8_t ascq = scsi_sense_ascq(sense_datap); 18443 18444 ASSERT(un != NULL); 18445 ASSERT(mutex_owned(SD_MUTEX(un))); 18446 ASSERT(bp != NULL); 18447 ASSERT(xp != NULL); 18448 ASSERT(pktp != NULL); 18449 18450 si.ssi_severity = SCSI_ERR_INFO; 18451 si.ssi_pfa_flag = FALSE; 18452 18453 18454 switch (asc) { 18455 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18456 if (sd_report_pfa != 0) { 18457 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18458 si.ssi_pfa_flag = TRUE; 18459 retry_check_flag = SD_RETRIES_STANDARD; 18460 goto do_retry; 18461 } 18462 18463 break; 18464 18465 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18466 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18467 un->un_resvd_status |= 18468 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18469 } 18470 #ifdef _LP64 18471 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18472 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18473 un, KM_NOSLEEP) == 0) { 18474 /* 18475 * If we can't dispatch the task we'll just 18476 * live without descriptor sense. We can 18477 * try again on the next "unit attention" 18478 */ 18479 SD_ERROR(SD_LOG_ERROR, un, 18480 "sd_sense_key_unit_attention: " 18481 "Could not dispatch " 18482 "sd_reenable_dsense_task\n"); 18483 } 18484 } 18485 #endif /* _LP64 */ 18486 /* FALLTHRU */ 18487 18488 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18489 if (!un->un_f_has_removable_media) { 18490 break; 18491 } 18492 18493 /* 18494 * When we get a unit attention from a removable-media device, 18495 * it may be in a state that will take a long time to recover 18496 * (e.g., from a reset). Since we are executing in interrupt 18497 * context here, we cannot wait around for the device to come 18498 * back. So hand this command off to sd_media_change_task() 18499 * for deferred processing under taskq thread context. (Note 18500 * that the command still may be failed if a problem is 18501 * encountered at a later time.) 18502 */ 18503 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18504 KM_NOSLEEP) == 0) { 18505 /* 18506 * Cannot dispatch the request so fail the command. 18507 */ 18508 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18509 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18510 si.ssi_severity = SCSI_ERR_FATAL; 18511 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18512 sd_return_failed_command(un, bp, EIO); 18513 } 18514 18515 /* 18516 * If failed to dispatch sd_media_change_task(), we already 18517 * updated kstat. If succeed to dispatch sd_media_change_task(), 18518 * we should update kstat later if it encounters an error. So, 18519 * we update kstat_updated flag here. 18520 */ 18521 kstat_updated = B_TRUE; 18522 18523 /* 18524 * Either the command has been successfully dispatched to a 18525 * task Q for retrying, or the dispatch failed. In either case 18526 * do NOT retry again by calling sd_retry_command. This sets up 18527 * two retries of the same command and when one completes and 18528 * frees the resources the other will access freed memory, 18529 * a bad thing. 18530 */ 18531 return; 18532 18533 default: 18534 break; 18535 } 18536 18537 /* 18538 * ASC ASCQ 18539 * 2A 09 Capacity data has changed 18540 * 2A 01 Mode parameters changed 18541 * 3F 0E Reported luns data has changed 18542 * Arrays that support logical unit expansion should report 18543 * capacity changes(2Ah/09). Mode parameters changed and 18544 * reported luns data has changed are the approximation. 18545 */ 18546 if (((asc == 0x2a) && (ascq == 0x09)) || 18547 ((asc == 0x2a) && (ascq == 0x01)) || 18548 ((asc == 0x3f) && (ascq == 0x0e))) { 18549 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18550 KM_NOSLEEP) == 0) { 18551 SD_ERROR(SD_LOG_ERROR, un, 18552 "sd_sense_key_unit_attention: " 18553 "Could not dispatch sd_target_change_task\n"); 18554 } 18555 } 18556 18557 /* 18558 * Update kstat if we haven't done that. 18559 */ 18560 if (!kstat_updated) { 18561 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18562 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18563 } 18564 18565 do_retry: 18566 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18567 EIO, SD_UA_RETRY_DELAY, NULL); 18568 } 18569 18570 18571 18572 /* 18573 * Function: sd_sense_key_fail_command 18574 * 18575 * Description: Use to fail a command when we don't like the sense key that 18576 * was returned. 18577 * 18578 * Context: May be called from interrupt context 18579 */ 18580 18581 static void 18582 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18583 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18584 { 18585 struct sd_sense_info si; 18586 18587 ASSERT(un != NULL); 18588 ASSERT(mutex_owned(SD_MUTEX(un))); 18589 ASSERT(bp != NULL); 18590 ASSERT(xp != NULL); 18591 ASSERT(pktp != NULL); 18592 18593 si.ssi_severity = SCSI_ERR_FATAL; 18594 si.ssi_pfa_flag = FALSE; 18595 18596 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18597 sd_return_failed_command(un, bp, EIO); 18598 } 18599 18600 18601 18602 /* 18603 * Function: sd_sense_key_blank_check 18604 * 18605 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18606 * Has no monetary connotation. 18607 * 18608 * Context: May be called from interrupt context 18609 */ 18610 18611 static void 18612 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18613 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18614 { 18615 struct sd_sense_info si; 18616 18617 ASSERT(un != NULL); 18618 ASSERT(mutex_owned(SD_MUTEX(un))); 18619 ASSERT(bp != NULL); 18620 ASSERT(xp != NULL); 18621 ASSERT(pktp != NULL); 18622 18623 /* 18624 * Blank check is not fatal for removable devices, therefore 18625 * it does not require a console message. 18626 */ 18627 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18628 SCSI_ERR_FATAL; 18629 si.ssi_pfa_flag = FALSE; 18630 18631 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18632 sd_return_failed_command(un, bp, EIO); 18633 } 18634 18635 18636 18637 18638 /* 18639 * Function: sd_sense_key_aborted_command 18640 * 18641 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18642 * 18643 * Context: May be called from interrupt context 18644 */ 18645 18646 static void 18647 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18648 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18649 { 18650 struct sd_sense_info si; 18651 18652 ASSERT(un != NULL); 18653 ASSERT(mutex_owned(SD_MUTEX(un))); 18654 ASSERT(bp != NULL); 18655 ASSERT(xp != NULL); 18656 ASSERT(pktp != NULL); 18657 18658 si.ssi_severity = SCSI_ERR_FATAL; 18659 si.ssi_pfa_flag = FALSE; 18660 18661 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18662 18663 /* 18664 * This really ought to be a fatal error, but we will retry anyway 18665 * as some drives report this as a spurious error. 18666 */ 18667 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18668 &si, EIO, drv_usectohz(100000), NULL); 18669 } 18670 18671 18672 18673 /* 18674 * Function: sd_sense_key_default 18675 * 18676 * Description: Default recovery action for several SCSI sense keys (basically 18677 * attempts a retry). 18678 * 18679 * Context: May be called from interrupt context 18680 */ 18681 18682 static void 18683 sd_sense_key_default(struct sd_lun *un, 18684 uint8_t *sense_datap, 18685 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18686 { 18687 struct sd_sense_info si; 18688 uint8_t sense_key = scsi_sense_key(sense_datap); 18689 18690 ASSERT(un != NULL); 18691 ASSERT(mutex_owned(SD_MUTEX(un))); 18692 ASSERT(bp != NULL); 18693 ASSERT(xp != NULL); 18694 ASSERT(pktp != NULL); 18695 18696 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18697 18698 /* 18699 * Undecoded sense key. Attempt retries and hope that will fix 18700 * the problem. Otherwise, we're dead. 18701 */ 18702 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18703 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18704 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18705 } 18706 18707 si.ssi_severity = SCSI_ERR_FATAL; 18708 si.ssi_pfa_flag = FALSE; 18709 18710 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18711 &si, EIO, (clock_t)0, NULL); 18712 } 18713 18714 18715 18716 /* 18717 * Function: sd_print_retry_msg 18718 * 18719 * Description: Print a message indicating the retry action being taken. 18720 * 18721 * Arguments: un - ptr to associated softstate 18722 * bp - ptr to buf(9S) for the command 18723 * arg - not used. 18724 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18725 * or SD_NO_RETRY_ISSUED 18726 * 18727 * Context: May be called from interrupt context 18728 */ 18729 /* ARGSUSED */ 18730 static void 18731 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18732 { 18733 struct sd_xbuf *xp; 18734 struct scsi_pkt *pktp; 18735 char *reasonp; 18736 char *msgp; 18737 18738 ASSERT(un != NULL); 18739 ASSERT(mutex_owned(SD_MUTEX(un))); 18740 ASSERT(bp != NULL); 18741 pktp = SD_GET_PKTP(bp); 18742 ASSERT(pktp != NULL); 18743 xp = SD_GET_XBUF(bp); 18744 ASSERT(xp != NULL); 18745 18746 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18747 mutex_enter(&un->un_pm_mutex); 18748 if ((un->un_state == SD_STATE_SUSPENDED) || 18749 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18750 (pktp->pkt_flags & FLAG_SILENT)) { 18751 mutex_exit(&un->un_pm_mutex); 18752 goto update_pkt_reason; 18753 } 18754 mutex_exit(&un->un_pm_mutex); 18755 18756 /* 18757 * Suppress messages if they are all the same pkt_reason; with 18758 * TQ, many (up to 256) are returned with the same pkt_reason. 18759 * If we are in panic, then suppress the retry messages. 18760 */ 18761 switch (flag) { 18762 case SD_NO_RETRY_ISSUED: 18763 msgp = "giving up"; 18764 break; 18765 case SD_IMMEDIATE_RETRY_ISSUED: 18766 case SD_DELAYED_RETRY_ISSUED: 18767 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18768 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18769 (sd_error_level != SCSI_ERR_ALL))) { 18770 return; 18771 } 18772 msgp = "retrying command"; 18773 break; 18774 default: 18775 goto update_pkt_reason; 18776 } 18777 18778 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18779 scsi_rname(pktp->pkt_reason)); 18780 18781 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18782 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18783 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18784 } 18785 18786 update_pkt_reason: 18787 /* 18788 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18789 * This is to prevent multiple console messages for the same failure 18790 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18791 * when the command is retried successfully because there still may be 18792 * more commands coming back with the same value of pktp->pkt_reason. 18793 */ 18794 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18795 un->un_last_pkt_reason = pktp->pkt_reason; 18796 } 18797 } 18798 18799 18800 /* 18801 * Function: sd_print_cmd_incomplete_msg 18802 * 18803 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18804 * 18805 * Arguments: un - ptr to associated softstate 18806 * bp - ptr to buf(9S) for the command 18807 * arg - passed to sd_print_retry_msg() 18808 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18809 * or SD_NO_RETRY_ISSUED 18810 * 18811 * Context: May be called from interrupt context 18812 */ 18813 18814 static void 18815 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18816 int code) 18817 { 18818 dev_info_t *dip; 18819 18820 ASSERT(un != NULL); 18821 ASSERT(mutex_owned(SD_MUTEX(un))); 18822 ASSERT(bp != NULL); 18823 18824 switch (code) { 18825 case SD_NO_RETRY_ISSUED: 18826 /* Command was failed. Someone turned off this target? */ 18827 if (un->un_state != SD_STATE_OFFLINE) { 18828 /* 18829 * Suppress message if we are detaching and 18830 * device has been disconnected 18831 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18832 * private interface and not part of the DDI 18833 */ 18834 dip = un->un_sd->sd_dev; 18835 if (!(DEVI_IS_DETACHING(dip) && 18836 DEVI_IS_DEVICE_REMOVED(dip))) { 18837 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18838 "disk not responding to selection\n"); 18839 } 18840 New_state(un, SD_STATE_OFFLINE); 18841 } 18842 break; 18843 18844 case SD_DELAYED_RETRY_ISSUED: 18845 case SD_IMMEDIATE_RETRY_ISSUED: 18846 default: 18847 /* Command was successfully queued for retry */ 18848 sd_print_retry_msg(un, bp, arg, code); 18849 break; 18850 } 18851 } 18852 18853 18854 /* 18855 * Function: sd_pkt_reason_cmd_incomplete 18856 * 18857 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18858 * 18859 * Context: May be called from interrupt context 18860 */ 18861 18862 static void 18863 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18864 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18865 { 18866 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18867 18868 ASSERT(un != NULL); 18869 ASSERT(mutex_owned(SD_MUTEX(un))); 18870 ASSERT(bp != NULL); 18871 ASSERT(xp != NULL); 18872 ASSERT(pktp != NULL); 18873 18874 /* Do not do a reset if selection did not complete */ 18875 /* Note: Should this not just check the bit? */ 18876 if (pktp->pkt_state != STATE_GOT_BUS) { 18877 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18878 sd_reset_target(un, pktp); 18879 } 18880 18881 /* 18882 * If the target was not successfully selected, then set 18883 * SD_RETRIES_FAILFAST to indicate that we lost communication 18884 * with the target, and further retries and/or commands are 18885 * likely to take a long time. 18886 */ 18887 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18888 flag |= SD_RETRIES_FAILFAST; 18889 } 18890 18891 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18892 18893 sd_retry_command(un, bp, flag, 18894 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18895 } 18896 18897 18898 18899 /* 18900 * Function: sd_pkt_reason_cmd_tran_err 18901 * 18902 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18903 * 18904 * Context: May be called from interrupt context 18905 */ 18906 18907 static void 18908 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18909 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18910 { 18911 ASSERT(un != NULL); 18912 ASSERT(mutex_owned(SD_MUTEX(un))); 18913 ASSERT(bp != NULL); 18914 ASSERT(xp != NULL); 18915 ASSERT(pktp != NULL); 18916 18917 /* 18918 * Do not reset if we got a parity error, or if 18919 * selection did not complete. 18920 */ 18921 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18922 /* Note: Should this not just check the bit for pkt_state? */ 18923 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18924 (pktp->pkt_state != STATE_GOT_BUS)) { 18925 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18926 sd_reset_target(un, pktp); 18927 } 18928 18929 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18930 18931 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18932 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18933 } 18934 18935 18936 18937 /* 18938 * Function: sd_pkt_reason_cmd_reset 18939 * 18940 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18941 * 18942 * Context: May be called from interrupt context 18943 */ 18944 18945 static void 18946 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18947 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18948 { 18949 ASSERT(un != NULL); 18950 ASSERT(mutex_owned(SD_MUTEX(un))); 18951 ASSERT(bp != NULL); 18952 ASSERT(xp != NULL); 18953 ASSERT(pktp != NULL); 18954 18955 /* The target may still be running the command, so try to reset. */ 18956 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18957 sd_reset_target(un, pktp); 18958 18959 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18960 18961 /* 18962 * If pkt_reason is CMD_RESET chances are that this pkt got 18963 * reset because another target on this bus caused it. The target 18964 * that caused it should get CMD_TIMEOUT with pkt_statistics 18965 * of STAT_TIMEOUT/STAT_DEV_RESET. 18966 */ 18967 18968 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18969 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18970 } 18971 18972 18973 18974 18975 /* 18976 * Function: sd_pkt_reason_cmd_aborted 18977 * 18978 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18979 * 18980 * Context: May be called from interrupt context 18981 */ 18982 18983 static void 18984 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18985 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18986 { 18987 ASSERT(un != NULL); 18988 ASSERT(mutex_owned(SD_MUTEX(un))); 18989 ASSERT(bp != NULL); 18990 ASSERT(xp != NULL); 18991 ASSERT(pktp != NULL); 18992 18993 /* The target may still be running the command, so try to reset. */ 18994 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18995 sd_reset_target(un, pktp); 18996 18997 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18998 18999 /* 19000 * If pkt_reason is CMD_ABORTED chances are that this pkt got 19001 * aborted because another target on this bus caused it. The target 19002 * that caused it should get CMD_TIMEOUT with pkt_statistics 19003 * of STAT_TIMEOUT/STAT_DEV_RESET. 19004 */ 19005 19006 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19007 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19008 } 19009 19010 19011 19012 /* 19013 * Function: sd_pkt_reason_cmd_timeout 19014 * 19015 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 19016 * 19017 * Context: May be called from interrupt context 19018 */ 19019 19020 static void 19021 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 19022 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19023 { 19024 ASSERT(un != NULL); 19025 ASSERT(mutex_owned(SD_MUTEX(un))); 19026 ASSERT(bp != NULL); 19027 ASSERT(xp != NULL); 19028 ASSERT(pktp != NULL); 19029 19030 19031 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19032 sd_reset_target(un, pktp); 19033 19034 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19035 19036 /* 19037 * A command timeout indicates that we could not establish 19038 * communication with the target, so set SD_RETRIES_FAILFAST 19039 * as further retries/commands are likely to take a long time. 19040 */ 19041 sd_retry_command(un, bp, 19042 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 19043 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19044 } 19045 19046 19047 19048 /* 19049 * Function: sd_pkt_reason_cmd_unx_bus_free 19050 * 19051 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19052 * 19053 * Context: May be called from interrupt context 19054 */ 19055 19056 static void 19057 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19058 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19059 { 19060 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19061 19062 ASSERT(un != NULL); 19063 ASSERT(mutex_owned(SD_MUTEX(un))); 19064 ASSERT(bp != NULL); 19065 ASSERT(xp != NULL); 19066 ASSERT(pktp != NULL); 19067 19068 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19069 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19070 19071 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19072 sd_print_retry_msg : NULL; 19073 19074 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19075 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19076 } 19077 19078 19079 /* 19080 * Function: sd_pkt_reason_cmd_tag_reject 19081 * 19082 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19083 * 19084 * Context: May be called from interrupt context 19085 */ 19086 19087 static void 19088 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19089 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19090 { 19091 ASSERT(un != NULL); 19092 ASSERT(mutex_owned(SD_MUTEX(un))); 19093 ASSERT(bp != NULL); 19094 ASSERT(xp != NULL); 19095 ASSERT(pktp != NULL); 19096 19097 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19098 pktp->pkt_flags = 0; 19099 un->un_tagflags = 0; 19100 if (un->un_f_opt_queueing == TRUE) { 19101 un->un_throttle = min(un->un_throttle, 3); 19102 } else { 19103 un->un_throttle = 1; 19104 } 19105 mutex_exit(SD_MUTEX(un)); 19106 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19107 mutex_enter(SD_MUTEX(un)); 19108 19109 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19110 19111 /* Legacy behavior not to check retry counts here. */ 19112 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19113 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19114 } 19115 19116 19117 /* 19118 * Function: sd_pkt_reason_default 19119 * 19120 * Description: Default recovery actions for SCSA pkt_reason values that 19121 * do not have more explicit recovery actions. 19122 * 19123 * Context: May be called from interrupt context 19124 */ 19125 19126 static void 19127 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 19128 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19129 { 19130 ASSERT(un != NULL); 19131 ASSERT(mutex_owned(SD_MUTEX(un))); 19132 ASSERT(bp != NULL); 19133 ASSERT(xp != NULL); 19134 ASSERT(pktp != NULL); 19135 19136 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19137 sd_reset_target(un, pktp); 19138 19139 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19140 19141 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19142 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19143 } 19144 19145 19146 19147 /* 19148 * Function: sd_pkt_status_check_condition 19149 * 19150 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19151 * 19152 * Context: May be called from interrupt context 19153 */ 19154 19155 static void 19156 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19157 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19158 { 19159 ASSERT(un != NULL); 19160 ASSERT(mutex_owned(SD_MUTEX(un))); 19161 ASSERT(bp != NULL); 19162 ASSERT(xp != NULL); 19163 ASSERT(pktp != NULL); 19164 19165 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19166 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19167 19168 /* 19169 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19170 * command will be retried after the request sense). Otherwise, retry 19171 * the command. Note: we are issuing the request sense even though the 19172 * retry limit may have been reached for the failed command. 19173 */ 19174 if (un->un_f_arq_enabled == FALSE) { 19175 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19176 "no ARQ, sending request sense command\n"); 19177 sd_send_request_sense_command(un, bp, pktp); 19178 } else { 19179 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19180 "ARQ,retrying request sense command\n"); 19181 #if defined(__i386) || defined(__amd64) 19182 /* 19183 * The SD_RETRY_DELAY value need to be adjusted here 19184 * when SD_RETRY_DELAY change in sddef.h 19185 */ 19186 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19187 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19188 NULL); 19189 #else 19190 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19191 EIO, SD_RETRY_DELAY, NULL); 19192 #endif 19193 } 19194 19195 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19196 } 19197 19198 19199 /* 19200 * Function: sd_pkt_status_busy 19201 * 19202 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19203 * 19204 * Context: May be called from interrupt context 19205 */ 19206 19207 static void 19208 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19209 struct scsi_pkt *pktp) 19210 { 19211 ASSERT(un != NULL); 19212 ASSERT(mutex_owned(SD_MUTEX(un))); 19213 ASSERT(bp != NULL); 19214 ASSERT(xp != NULL); 19215 ASSERT(pktp != NULL); 19216 19217 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19218 "sd_pkt_status_busy: entry\n"); 19219 19220 /* If retries are exhausted, just fail the command. */ 19221 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19222 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19223 "device busy too long\n"); 19224 sd_return_failed_command(un, bp, EIO); 19225 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19226 "sd_pkt_status_busy: exit\n"); 19227 return; 19228 } 19229 xp->xb_retry_count++; 19230 19231 /* 19232 * Try to reset the target. However, we do not want to perform 19233 * more than one reset if the device continues to fail. The reset 19234 * will be performed when the retry count reaches the reset 19235 * threshold. This threshold should be set such that at least 19236 * one retry is issued before the reset is performed. 19237 */ 19238 if (xp->xb_retry_count == 19239 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19240 int rval = 0; 19241 mutex_exit(SD_MUTEX(un)); 19242 if (un->un_f_allow_bus_device_reset == TRUE) { 19243 /* 19244 * First try to reset the LUN; if we cannot then 19245 * try to reset the target. 19246 */ 19247 if (un->un_f_lun_reset_enabled == TRUE) { 19248 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19249 "sd_pkt_status_busy: RESET_LUN\n"); 19250 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19251 } 19252 if (rval == 0) { 19253 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19254 "sd_pkt_status_busy: RESET_TARGET\n"); 19255 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19256 } 19257 } 19258 if (rval == 0) { 19259 /* 19260 * If the RESET_LUN and/or RESET_TARGET failed, 19261 * try RESET_ALL 19262 */ 19263 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19264 "sd_pkt_status_busy: RESET_ALL\n"); 19265 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19266 } 19267 mutex_enter(SD_MUTEX(un)); 19268 if (rval == 0) { 19269 /* 19270 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19271 * At this point we give up & fail the command. 19272 */ 19273 sd_return_failed_command(un, bp, EIO); 19274 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19275 "sd_pkt_status_busy: exit (failed cmd)\n"); 19276 return; 19277 } 19278 } 19279 19280 /* 19281 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19282 * we have already checked the retry counts above. 19283 */ 19284 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19285 EIO, un->un_busy_timeout, NULL); 19286 19287 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19288 "sd_pkt_status_busy: exit\n"); 19289 } 19290 19291 19292 /* 19293 * Function: sd_pkt_status_reservation_conflict 19294 * 19295 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19296 * command status. 19297 * 19298 * Context: May be called from interrupt context 19299 */ 19300 19301 static void 19302 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19303 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19304 { 19305 ASSERT(un != NULL); 19306 ASSERT(mutex_owned(SD_MUTEX(un))); 19307 ASSERT(bp != NULL); 19308 ASSERT(xp != NULL); 19309 ASSERT(pktp != NULL); 19310 19311 /* 19312 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19313 * conflict could be due to various reasons like incorrect keys, not 19314 * registered or not reserved etc. So, we return EACCES to the caller. 19315 */ 19316 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19317 int cmd = SD_GET_PKT_OPCODE(pktp); 19318 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19319 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19320 sd_return_failed_command(un, bp, EACCES); 19321 return; 19322 } 19323 } 19324 19325 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19326 19327 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19328 if (sd_failfast_enable != 0) { 19329 /* By definition, we must panic here.... */ 19330 sd_panic_for_res_conflict(un); 19331 /*NOTREACHED*/ 19332 } 19333 SD_ERROR(SD_LOG_IO, un, 19334 "sd_handle_resv_conflict: Disk Reserved\n"); 19335 sd_return_failed_command(un, bp, EACCES); 19336 return; 19337 } 19338 19339 /* 19340 * 1147670: retry only if sd_retry_on_reservation_conflict 19341 * property is set (default is 1). Retries will not succeed 19342 * on a disk reserved by another initiator. HA systems 19343 * may reset this via sd.conf to avoid these retries. 19344 * 19345 * Note: The legacy return code for this failure is EIO, however EACCES 19346 * seems more appropriate for a reservation conflict. 19347 */ 19348 if (sd_retry_on_reservation_conflict == 0) { 19349 SD_ERROR(SD_LOG_IO, un, 19350 "sd_handle_resv_conflict: Device Reserved\n"); 19351 sd_return_failed_command(un, bp, EIO); 19352 return; 19353 } 19354 19355 /* 19356 * Retry the command if we can. 19357 * 19358 * Note: The legacy return code for this failure is EIO, however EACCES 19359 * seems more appropriate for a reservation conflict. 19360 */ 19361 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19362 (clock_t)2, NULL); 19363 } 19364 19365 19366 19367 /* 19368 * Function: sd_pkt_status_qfull 19369 * 19370 * Description: Handle a QUEUE FULL condition from the target. This can 19371 * occur if the HBA does not handle the queue full condition. 19372 * (Basically this means third-party HBAs as Sun HBAs will 19373 * handle the queue full condition.) Note that if there are 19374 * some commands already in the transport, then the queue full 19375 * has occurred because the queue for this nexus is actually 19376 * full. If there are no commands in the transport, then the 19377 * queue full is resulting from some other initiator or lun 19378 * consuming all the resources at the target. 19379 * 19380 * Context: May be called from interrupt context 19381 */ 19382 19383 static void 19384 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 19385 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19386 { 19387 ASSERT(un != NULL); 19388 ASSERT(mutex_owned(SD_MUTEX(un))); 19389 ASSERT(bp != NULL); 19390 ASSERT(xp != NULL); 19391 ASSERT(pktp != NULL); 19392 19393 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19394 "sd_pkt_status_qfull: entry\n"); 19395 19396 /* 19397 * Just lower the QFULL throttle and retry the command. Note that 19398 * we do not limit the number of retries here. 19399 */ 19400 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19401 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19402 SD_RESTART_TIMEOUT, NULL); 19403 19404 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19405 "sd_pkt_status_qfull: exit\n"); 19406 } 19407 19408 19409 /* 19410 * Function: sd_reset_target 19411 * 19412 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19413 * RESET_TARGET, or RESET_ALL. 19414 * 19415 * Context: May be called under interrupt context. 19416 */ 19417 19418 static void 19419 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19420 { 19421 int rval = 0; 19422 19423 ASSERT(un != NULL); 19424 ASSERT(mutex_owned(SD_MUTEX(un))); 19425 ASSERT(pktp != NULL); 19426 19427 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19428 19429 /* 19430 * No need to reset if the transport layer has already done so. 19431 */ 19432 if ((pktp->pkt_statistics & 19433 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19434 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19435 "sd_reset_target: no reset\n"); 19436 return; 19437 } 19438 19439 mutex_exit(SD_MUTEX(un)); 19440 19441 if (un->un_f_allow_bus_device_reset == TRUE) { 19442 if (un->un_f_lun_reset_enabled == TRUE) { 19443 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19444 "sd_reset_target: RESET_LUN\n"); 19445 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19446 } 19447 if (rval == 0) { 19448 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19449 "sd_reset_target: RESET_TARGET\n"); 19450 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19451 } 19452 } 19453 19454 if (rval == 0) { 19455 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19456 "sd_reset_target: RESET_ALL\n"); 19457 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19458 } 19459 19460 mutex_enter(SD_MUTEX(un)); 19461 19462 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19463 } 19464 19465 /* 19466 * Function: sd_target_change_task 19467 * 19468 * Description: Handle dynamic target change 19469 * 19470 * Context: Executes in a taskq() thread context 19471 */ 19472 static void 19473 sd_target_change_task(void *arg) 19474 { 19475 struct sd_lun *un = arg; 19476 uint64_t capacity; 19477 diskaddr_t label_cap; 19478 uint_t lbasize; 19479 sd_ssc_t *ssc; 19480 19481 ASSERT(un != NULL); 19482 ASSERT(!mutex_owned(SD_MUTEX(un))); 19483 19484 if ((un->un_f_blockcount_is_valid == FALSE) || 19485 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19486 return; 19487 } 19488 19489 ssc = sd_ssc_init(un); 19490 19491 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19492 &lbasize, SD_PATH_DIRECT) != 0) { 19493 SD_ERROR(SD_LOG_ERROR, un, 19494 "sd_target_change_task: fail to read capacity\n"); 19495 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19496 goto task_exit; 19497 } 19498 19499 mutex_enter(SD_MUTEX(un)); 19500 if (capacity <= un->un_blockcount) { 19501 mutex_exit(SD_MUTEX(un)); 19502 goto task_exit; 19503 } 19504 19505 sd_update_block_info(un, lbasize, capacity); 19506 mutex_exit(SD_MUTEX(un)); 19507 19508 /* 19509 * If lun is EFI labeled and lun capacity is greater than the 19510 * capacity contained in the label, log a sys event. 19511 */ 19512 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19513 (void*)SD_PATH_DIRECT) == 0) { 19514 mutex_enter(SD_MUTEX(un)); 19515 if (un->un_f_blockcount_is_valid && 19516 un->un_blockcount > label_cap) { 19517 mutex_exit(SD_MUTEX(un)); 19518 sd_log_lun_expansion_event(un, KM_SLEEP); 19519 } else { 19520 mutex_exit(SD_MUTEX(un)); 19521 } 19522 } 19523 19524 task_exit: 19525 sd_ssc_fini(ssc); 19526 } 19527 19528 19529 /* 19530 * Function: sd_log_dev_status_event 19531 * 19532 * Description: Log EC_dev_status sysevent 19533 * 19534 * Context: Never called from interrupt context 19535 */ 19536 static void 19537 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag) 19538 { 19539 int err; 19540 char *path; 19541 nvlist_t *attr_list; 19542 19543 /* Allocate and build sysevent attribute list */ 19544 err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19545 if (err != 0) { 19546 SD_ERROR(SD_LOG_ERROR, un, 19547 "sd_log_dev_status_event: fail to allocate space\n"); 19548 return; 19549 } 19550 19551 path = kmem_alloc(MAXPATHLEN, km_flag); 19552 if (path == NULL) { 19553 nvlist_free(attr_list); 19554 SD_ERROR(SD_LOG_ERROR, un, 19555 "sd_log_dev_status_event: fail to allocate space\n"); 19556 return; 19557 } 19558 /* 19559 * Add path attribute to identify the lun. 19560 * We are using minor node 'a' as the sysevent attribute. 19561 */ 19562 (void) snprintf(path, MAXPATHLEN, "/devices"); 19563 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19564 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19565 ":a"); 19566 19567 err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path); 19568 if (err != 0) { 19569 nvlist_free(attr_list); 19570 kmem_free(path, MAXPATHLEN); 19571 SD_ERROR(SD_LOG_ERROR, un, 19572 "sd_log_dev_status_event: fail to add attribute\n"); 19573 return; 19574 } 19575 19576 /* Log dynamic lun expansion sysevent */ 19577 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19578 esc, attr_list, NULL, km_flag); 19579 if (err != DDI_SUCCESS) { 19580 SD_ERROR(SD_LOG_ERROR, un, 19581 "sd_log_dev_status_event: fail to log sysevent\n"); 19582 } 19583 19584 nvlist_free(attr_list); 19585 kmem_free(path, MAXPATHLEN); 19586 } 19587 19588 19589 /* 19590 * Function: sd_log_lun_expansion_event 19591 * 19592 * Description: Log lun expansion sys event 19593 * 19594 * Context: Never called from interrupt context 19595 */ 19596 static void 19597 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19598 { 19599 sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag); 19600 } 19601 19602 19603 /* 19604 * Function: sd_log_eject_request_event 19605 * 19606 * Description: Log eject request sysevent 19607 * 19608 * Context: Never called from interrupt context 19609 */ 19610 static void 19611 sd_log_eject_request_event(struct sd_lun *un, int km_flag) 19612 { 19613 sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag); 19614 } 19615 19616 19617 /* 19618 * Function: sd_media_change_task 19619 * 19620 * Description: Recovery action for CDROM to become available. 19621 * 19622 * Context: Executes in a taskq() thread context 19623 */ 19624 19625 static void 19626 sd_media_change_task(void *arg) 19627 { 19628 struct scsi_pkt *pktp = arg; 19629 struct sd_lun *un; 19630 struct buf *bp; 19631 struct sd_xbuf *xp; 19632 int err = 0; 19633 int retry_count = 0; 19634 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19635 struct sd_sense_info si; 19636 19637 ASSERT(pktp != NULL); 19638 bp = (struct buf *)pktp->pkt_private; 19639 ASSERT(bp != NULL); 19640 xp = SD_GET_XBUF(bp); 19641 ASSERT(xp != NULL); 19642 un = SD_GET_UN(bp); 19643 ASSERT(un != NULL); 19644 ASSERT(!mutex_owned(SD_MUTEX(un))); 19645 ASSERT(un->un_f_monitor_media_state); 19646 19647 si.ssi_severity = SCSI_ERR_INFO; 19648 si.ssi_pfa_flag = FALSE; 19649 19650 /* 19651 * When a reset is issued on a CDROM, it takes a long time to 19652 * recover. First few attempts to read capacity and other things 19653 * related to handling unit attention fail (with a ASC 0x4 and 19654 * ASCQ 0x1). In that case we want to do enough retries and we want 19655 * to limit the retries in other cases of genuine failures like 19656 * no media in drive. 19657 */ 19658 while (retry_count++ < retry_limit) { 19659 if ((err = sd_handle_mchange(un)) == 0) { 19660 break; 19661 } 19662 if (err == EAGAIN) { 19663 retry_limit = SD_UNIT_ATTENTION_RETRY; 19664 } 19665 /* Sleep for 0.5 sec. & try again */ 19666 delay(drv_usectohz(500000)); 19667 } 19668 19669 /* 19670 * Dispatch (retry or fail) the original command here, 19671 * along with appropriate console messages.... 19672 * 19673 * Must grab the mutex before calling sd_retry_command, 19674 * sd_print_sense_msg and sd_return_failed_command. 19675 */ 19676 mutex_enter(SD_MUTEX(un)); 19677 if (err != SD_CMD_SUCCESS) { 19678 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19679 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19680 si.ssi_severity = SCSI_ERR_FATAL; 19681 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19682 sd_return_failed_command(un, bp, EIO); 19683 } else { 19684 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 19685 &si, EIO, (clock_t)0, NULL); 19686 } 19687 mutex_exit(SD_MUTEX(un)); 19688 } 19689 19690 19691 19692 /* 19693 * Function: sd_handle_mchange 19694 * 19695 * Description: Perform geometry validation & other recovery when CDROM 19696 * has been removed from drive. 19697 * 19698 * Return Code: 0 for success 19699 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19700 * sd_send_scsi_READ_CAPACITY() 19701 * 19702 * Context: Executes in a taskq() thread context 19703 */ 19704 19705 static int 19706 sd_handle_mchange(struct sd_lun *un) 19707 { 19708 uint64_t capacity; 19709 uint32_t lbasize; 19710 int rval; 19711 sd_ssc_t *ssc; 19712 19713 ASSERT(!mutex_owned(SD_MUTEX(un))); 19714 ASSERT(un->un_f_monitor_media_state); 19715 19716 ssc = sd_ssc_init(un); 19717 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19718 SD_PATH_DIRECT_PRIORITY); 19719 19720 if (rval != 0) 19721 goto failed; 19722 19723 mutex_enter(SD_MUTEX(un)); 19724 sd_update_block_info(un, lbasize, capacity); 19725 19726 if (un->un_errstats != NULL) { 19727 struct sd_errstats *stp = 19728 (struct sd_errstats *)un->un_errstats->ks_data; 19729 stp->sd_capacity.value.ui64 = (uint64_t) 19730 ((uint64_t)un->un_blockcount * 19731 (uint64_t)un->un_tgt_blocksize); 19732 } 19733 19734 /* 19735 * Check if the media in the device is writable or not 19736 */ 19737 if (ISCD(un)) { 19738 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19739 } 19740 19741 /* 19742 * Note: Maybe let the strategy/partitioning chain worry about getting 19743 * valid geometry. 19744 */ 19745 mutex_exit(SD_MUTEX(un)); 19746 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19747 19748 19749 if (cmlb_validate(un->un_cmlbhandle, 0, 19750 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19751 sd_ssc_fini(ssc); 19752 return (EIO); 19753 } else { 19754 if (un->un_f_pkstats_enabled) { 19755 sd_set_pstats(un); 19756 SD_TRACE(SD_LOG_IO_PARTITION, un, 19757 "sd_handle_mchange: un:0x%p pstats created and " 19758 "set\n", un); 19759 } 19760 } 19761 19762 /* 19763 * Try to lock the door 19764 */ 19765 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19766 SD_PATH_DIRECT_PRIORITY); 19767 failed: 19768 if (rval != 0) 19769 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19770 sd_ssc_fini(ssc); 19771 return (rval); 19772 } 19773 19774 19775 /* 19776 * Function: sd_send_scsi_DOORLOCK 19777 * 19778 * Description: Issue the scsi DOOR LOCK command 19779 * 19780 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19781 * structure for this target. 19782 * flag - SD_REMOVAL_ALLOW 19783 * SD_REMOVAL_PREVENT 19784 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19785 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19786 * to use the USCSI "direct" chain and bypass the normal 19787 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19788 * command is issued as part of an error recovery action. 19789 * 19790 * Return Code: 0 - Success 19791 * errno return code from sd_ssc_send() 19792 * 19793 * Context: Can sleep. 19794 */ 19795 19796 static int 19797 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19798 { 19799 struct scsi_extended_sense sense_buf; 19800 union scsi_cdb cdb; 19801 struct uscsi_cmd ucmd_buf; 19802 int status; 19803 struct sd_lun *un; 19804 19805 ASSERT(ssc != NULL); 19806 un = ssc->ssc_un; 19807 ASSERT(un != NULL); 19808 ASSERT(!mutex_owned(SD_MUTEX(un))); 19809 19810 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19811 19812 /* already determined doorlock is not supported, fake success */ 19813 if (un->un_f_doorlock_supported == FALSE) { 19814 return (0); 19815 } 19816 19817 /* 19818 * If we are ejecting and see an SD_REMOVAL_PREVENT 19819 * ignore the command so we can complete the eject 19820 * operation. 19821 */ 19822 if (flag == SD_REMOVAL_PREVENT) { 19823 mutex_enter(SD_MUTEX(un)); 19824 if (un->un_f_ejecting == TRUE) { 19825 mutex_exit(SD_MUTEX(un)); 19826 return (EAGAIN); 19827 } 19828 mutex_exit(SD_MUTEX(un)); 19829 } 19830 19831 bzero(&cdb, sizeof (cdb)); 19832 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19833 19834 cdb.scc_cmd = SCMD_DOORLOCK; 19835 cdb.cdb_opaque[4] = (uchar_t)flag; 19836 19837 ucmd_buf.uscsi_cdb = (char *)&cdb; 19838 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19839 ucmd_buf.uscsi_bufaddr = NULL; 19840 ucmd_buf.uscsi_buflen = 0; 19841 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19842 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19843 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19844 ucmd_buf.uscsi_timeout = 15; 19845 19846 SD_TRACE(SD_LOG_IO, un, 19847 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19848 19849 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19850 UIO_SYSSPACE, path_flag); 19851 19852 if (status == 0) 19853 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19854 19855 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19856 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19857 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19858 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19859 19860 /* fake success and skip subsequent doorlock commands */ 19861 un->un_f_doorlock_supported = FALSE; 19862 return (0); 19863 } 19864 19865 return (status); 19866 } 19867 19868 /* 19869 * Function: sd_send_scsi_READ_CAPACITY 19870 * 19871 * Description: This routine uses the scsi READ CAPACITY command to determine 19872 * the device capacity in number of blocks and the device native 19873 * block size. If this function returns a failure, then the 19874 * values in *capp and *lbap are undefined. If the capacity 19875 * returned is 0xffffffff then the lun is too large for a 19876 * normal READ CAPACITY command and the results of a 19877 * READ CAPACITY 16 will be used instead. 19878 * 19879 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19880 * capp - ptr to unsigned 64-bit variable to receive the 19881 * capacity value from the command. 19882 * lbap - ptr to unsigned 32-bit varaible to receive the 19883 * block size value from the command 19884 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19885 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19886 * to use the USCSI "direct" chain and bypass the normal 19887 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19888 * command is issued as part of an error recovery action. 19889 * 19890 * Return Code: 0 - Success 19891 * EIO - IO error 19892 * EACCES - Reservation conflict detected 19893 * EAGAIN - Device is becoming ready 19894 * errno return code from sd_ssc_send() 19895 * 19896 * Context: Can sleep. Blocks until command completes. 19897 */ 19898 19899 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19900 19901 static int 19902 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 19903 int path_flag) 19904 { 19905 struct scsi_extended_sense sense_buf; 19906 struct uscsi_cmd ucmd_buf; 19907 union scsi_cdb cdb; 19908 uint32_t *capacity_buf; 19909 uint64_t capacity; 19910 uint32_t lbasize; 19911 uint32_t pbsize; 19912 int status; 19913 struct sd_lun *un; 19914 19915 ASSERT(ssc != NULL); 19916 19917 un = ssc->ssc_un; 19918 ASSERT(un != NULL); 19919 ASSERT(!mutex_owned(SD_MUTEX(un))); 19920 ASSERT(capp != NULL); 19921 ASSERT(lbap != NULL); 19922 19923 SD_TRACE(SD_LOG_IO, un, 19924 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19925 19926 /* 19927 * First send a READ_CAPACITY command to the target. 19928 * (This command is mandatory under SCSI-2.) 19929 * 19930 * Set up the CDB for the READ_CAPACITY command. The Partial 19931 * Medium Indicator bit is cleared. The address field must be 19932 * zero if the PMI bit is zero. 19933 */ 19934 bzero(&cdb, sizeof (cdb)); 19935 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19936 19937 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19938 19939 cdb.scc_cmd = SCMD_READ_CAPACITY; 19940 19941 ucmd_buf.uscsi_cdb = (char *)&cdb; 19942 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19943 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19944 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19945 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19946 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19947 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19948 ucmd_buf.uscsi_timeout = 60; 19949 19950 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19951 UIO_SYSSPACE, path_flag); 19952 19953 switch (status) { 19954 case 0: 19955 /* Return failure if we did not get valid capacity data. */ 19956 if (ucmd_buf.uscsi_resid != 0) { 19957 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19958 "sd_send_scsi_READ_CAPACITY received invalid " 19959 "capacity data"); 19960 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19961 return (EIO); 19962 } 19963 /* 19964 * Read capacity and block size from the READ CAPACITY 10 data. 19965 * This data may be adjusted later due to device specific 19966 * issues. 19967 * 19968 * According to the SCSI spec, the READ CAPACITY 10 19969 * command returns the following: 19970 * 19971 * bytes 0-3: Maximum logical block address available. 19972 * (MSB in byte:0 & LSB in byte:3) 19973 * 19974 * bytes 4-7: Block length in bytes 19975 * (MSB in byte:4 & LSB in byte:7) 19976 * 19977 */ 19978 capacity = BE_32(capacity_buf[0]); 19979 lbasize = BE_32(capacity_buf[1]); 19980 19981 /* 19982 * Done with capacity_buf 19983 */ 19984 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19985 19986 /* 19987 * if the reported capacity is set to all 0xf's, then 19988 * this disk is too large and requires SBC-2 commands. 19989 * Reissue the request using READ CAPACITY 16. 19990 */ 19991 if (capacity == 0xffffffff) { 19992 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19993 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 19994 &lbasize, &pbsize, path_flag); 19995 if (status != 0) { 19996 return (status); 19997 } 19998 } 19999 break; /* Success! */ 20000 case EIO: 20001 switch (ucmd_buf.uscsi_status) { 20002 case STATUS_RESERVATION_CONFLICT: 20003 status = EACCES; 20004 break; 20005 case STATUS_CHECK: 20006 /* 20007 * Check condition; look for ASC/ASCQ of 0x04/0x01 20008 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20009 */ 20010 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20011 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20012 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20013 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20014 return (EAGAIN); 20015 } 20016 break; 20017 default: 20018 break; 20019 } 20020 /* FALLTHRU */ 20021 default: 20022 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20023 return (status); 20024 } 20025 20026 /* 20027 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20028 * (2352 and 0 are common) so for these devices always force the value 20029 * to 2048 as required by the ATAPI specs. 20030 */ 20031 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20032 lbasize = 2048; 20033 } 20034 20035 /* 20036 * Get the maximum LBA value from the READ CAPACITY data. 20037 * Here we assume that the Partial Medium Indicator (PMI) bit 20038 * was cleared when issuing the command. This means that the LBA 20039 * returned from the device is the LBA of the last logical block 20040 * on the logical unit. The actual logical block count will be 20041 * this value plus one. 20042 */ 20043 capacity += 1; 20044 20045 /* 20046 * Currently, for removable media, the capacity is saved in terms 20047 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20048 */ 20049 if (un->un_f_has_removable_media) 20050 capacity *= (lbasize / un->un_sys_blocksize); 20051 20052 /* 20053 * Copy the values from the READ CAPACITY command into the space 20054 * provided by the caller. 20055 */ 20056 *capp = capacity; 20057 *lbap = lbasize; 20058 20059 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 20060 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 20061 20062 /* 20063 * Both the lbasize and capacity from the device must be nonzero, 20064 * otherwise we assume that the values are not valid and return 20065 * failure to the caller. (4203735) 20066 */ 20067 if ((capacity == 0) || (lbasize == 0)) { 20068 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20069 "sd_send_scsi_READ_CAPACITY received invalid value " 20070 "capacity %llu lbasize %d", capacity, lbasize); 20071 return (EIO); 20072 } 20073 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20074 return (0); 20075 } 20076 20077 /* 20078 * Function: sd_send_scsi_READ_CAPACITY_16 20079 * 20080 * Description: This routine uses the scsi READ CAPACITY 16 command to 20081 * determine the device capacity in number of blocks and the 20082 * device native block size. If this function returns a failure, 20083 * then the values in *capp and *lbap are undefined. 20084 * This routine should be called by sd_send_scsi_READ_CAPACITY 20085 * which will apply any device specific adjustments to capacity 20086 * and lbasize. One exception is it is also called by 20087 * sd_get_media_info_ext. In that function, there is no need to 20088 * adjust the capacity and lbasize. 20089 * 20090 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20091 * capp - ptr to unsigned 64-bit variable to receive the 20092 * capacity value from the command. 20093 * lbap - ptr to unsigned 32-bit varaible to receive the 20094 * block size value from the command 20095 * psp - ptr to unsigned 32-bit variable to receive the 20096 * physical block size value from the command 20097 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20098 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20099 * to use the USCSI "direct" chain and bypass the normal 20100 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20101 * this command is issued as part of an error recovery 20102 * action. 20103 * 20104 * Return Code: 0 - Success 20105 * EIO - IO error 20106 * EACCES - Reservation conflict detected 20107 * EAGAIN - Device is becoming ready 20108 * errno return code from sd_ssc_send() 20109 * 20110 * Context: Can sleep. Blocks until command completes. 20111 */ 20112 20113 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20114 20115 static int 20116 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 20117 uint32_t *lbap, uint32_t *psp, int path_flag) 20118 { 20119 struct scsi_extended_sense sense_buf; 20120 struct uscsi_cmd ucmd_buf; 20121 union scsi_cdb cdb; 20122 uint64_t *capacity16_buf; 20123 uint64_t capacity; 20124 uint32_t lbasize; 20125 uint32_t pbsize; 20126 uint32_t lbpb_exp; 20127 int status; 20128 struct sd_lun *un; 20129 20130 ASSERT(ssc != NULL); 20131 20132 un = ssc->ssc_un; 20133 ASSERT(un != NULL); 20134 ASSERT(!mutex_owned(SD_MUTEX(un))); 20135 ASSERT(capp != NULL); 20136 ASSERT(lbap != NULL); 20137 20138 SD_TRACE(SD_LOG_IO, un, 20139 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20140 20141 /* 20142 * First send a READ_CAPACITY_16 command to the target. 20143 * 20144 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20145 * Medium Indicator bit is cleared. The address field must be 20146 * zero if the PMI bit is zero. 20147 */ 20148 bzero(&cdb, sizeof (cdb)); 20149 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20150 20151 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20152 20153 ucmd_buf.uscsi_cdb = (char *)&cdb; 20154 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20155 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20156 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20157 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20158 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20159 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20160 ucmd_buf.uscsi_timeout = 60; 20161 20162 /* 20163 * Read Capacity (16) is a Service Action In command. One 20164 * command byte (0x9E) is overloaded for multiple operations, 20165 * with the second CDB byte specifying the desired operation 20166 */ 20167 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20168 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20169 20170 /* 20171 * Fill in allocation length field 20172 */ 20173 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20174 20175 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20176 UIO_SYSSPACE, path_flag); 20177 20178 switch (status) { 20179 case 0: 20180 /* Return failure if we did not get valid capacity data. */ 20181 if (ucmd_buf.uscsi_resid > 20) { 20182 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20183 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20184 "capacity data"); 20185 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20186 return (EIO); 20187 } 20188 20189 /* 20190 * Read capacity and block size from the READ CAPACITY 10 data. 20191 * This data may be adjusted later due to device specific 20192 * issues. 20193 * 20194 * According to the SCSI spec, the READ CAPACITY 10 20195 * command returns the following: 20196 * 20197 * bytes 0-7: Maximum logical block address available. 20198 * (MSB in byte:0 & LSB in byte:7) 20199 * 20200 * bytes 8-11: Block length in bytes 20201 * (MSB in byte:8 & LSB in byte:11) 20202 * 20203 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20204 */ 20205 capacity = BE_64(capacity16_buf[0]); 20206 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20207 lbpb_exp = (BE_64(capacity16_buf[1]) >> 40) & 0x0f; 20208 20209 pbsize = lbasize << lbpb_exp; 20210 20211 /* 20212 * Done with capacity16_buf 20213 */ 20214 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20215 20216 /* 20217 * if the reported capacity is set to all 0xf's, then 20218 * this disk is too large. This could only happen with 20219 * a device that supports LBAs larger than 64 bits which 20220 * are not defined by any current T10 standards. 20221 */ 20222 if (capacity == 0xffffffffffffffff) { 20223 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20224 "disk is too large"); 20225 return (EIO); 20226 } 20227 break; /* Success! */ 20228 case EIO: 20229 switch (ucmd_buf.uscsi_status) { 20230 case STATUS_RESERVATION_CONFLICT: 20231 status = EACCES; 20232 break; 20233 case STATUS_CHECK: 20234 /* 20235 * Check condition; look for ASC/ASCQ of 0x04/0x01 20236 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20237 */ 20238 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20239 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20240 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20241 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20242 return (EAGAIN); 20243 } 20244 break; 20245 default: 20246 break; 20247 } 20248 /* FALLTHRU */ 20249 default: 20250 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20251 return (status); 20252 } 20253 20254 *capp = capacity; 20255 *lbap = lbasize; 20256 *psp = pbsize; 20257 20258 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20259 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20260 capacity, lbasize, pbsize); 20261 20262 return (0); 20263 } 20264 20265 20266 /* 20267 * Function: sd_send_scsi_START_STOP_UNIT 20268 * 20269 * Description: Issue a scsi START STOP UNIT command to the target. 20270 * 20271 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20272 * structure for this target. 20273 * pc_flag - SD_POWER_CONDITION 20274 * SD_START_STOP 20275 * flag - SD_TARGET_START 20276 * SD_TARGET_STOP 20277 * SD_TARGET_EJECT 20278 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20279 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20280 * to use the USCSI "direct" chain and bypass the normal 20281 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20282 * command is issued as part of an error recovery action. 20283 * 20284 * Return Code: 0 - Success 20285 * EIO - IO error 20286 * EACCES - Reservation conflict detected 20287 * ENXIO - Not Ready, medium not present 20288 * errno return code from sd_ssc_send() 20289 * 20290 * Context: Can sleep. 20291 */ 20292 20293 static int 20294 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20295 int path_flag) 20296 { 20297 struct scsi_extended_sense sense_buf; 20298 union scsi_cdb cdb; 20299 struct uscsi_cmd ucmd_buf; 20300 int status; 20301 struct sd_lun *un; 20302 20303 ASSERT(ssc != NULL); 20304 un = ssc->ssc_un; 20305 ASSERT(un != NULL); 20306 ASSERT(!mutex_owned(SD_MUTEX(un))); 20307 20308 SD_TRACE(SD_LOG_IO, un, 20309 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20310 20311 if (un->un_f_check_start_stop && 20312 ((pc_flag == SD_START_STOP) && (flag != SD_TARGET_EJECT)) && 20313 (un->un_f_start_stop_supported != TRUE)) { 20314 return (0); 20315 } 20316 20317 /* 20318 * If we are performing an eject operation and 20319 * we receive any command other than SD_TARGET_EJECT 20320 * we should immediately return. 20321 */ 20322 if (flag != SD_TARGET_EJECT) { 20323 mutex_enter(SD_MUTEX(un)); 20324 if (un->un_f_ejecting == TRUE) { 20325 mutex_exit(SD_MUTEX(un)); 20326 return (EAGAIN); 20327 } 20328 mutex_exit(SD_MUTEX(un)); 20329 } 20330 20331 bzero(&cdb, sizeof (cdb)); 20332 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20333 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20334 20335 cdb.scc_cmd = SCMD_START_STOP; 20336 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20337 (uchar_t)(flag << 4) : (uchar_t)flag; 20338 20339 ucmd_buf.uscsi_cdb = (char *)&cdb; 20340 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20341 ucmd_buf.uscsi_bufaddr = NULL; 20342 ucmd_buf.uscsi_buflen = 0; 20343 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20344 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20345 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20346 ucmd_buf.uscsi_timeout = 200; 20347 20348 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20349 UIO_SYSSPACE, path_flag); 20350 20351 switch (status) { 20352 case 0: 20353 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20354 break; /* Success! */ 20355 case EIO: 20356 switch (ucmd_buf.uscsi_status) { 20357 case STATUS_RESERVATION_CONFLICT: 20358 status = EACCES; 20359 break; 20360 case STATUS_CHECK: 20361 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20362 switch (scsi_sense_key( 20363 (uint8_t *)&sense_buf)) { 20364 case KEY_ILLEGAL_REQUEST: 20365 status = ENOTSUP; 20366 break; 20367 case KEY_NOT_READY: 20368 if (scsi_sense_asc( 20369 (uint8_t *)&sense_buf) 20370 == 0x3A) { 20371 status = ENXIO; 20372 } 20373 break; 20374 default: 20375 break; 20376 } 20377 } 20378 break; 20379 default: 20380 break; 20381 } 20382 break; 20383 default: 20384 break; 20385 } 20386 20387 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20388 20389 return (status); 20390 } 20391 20392 20393 /* 20394 * Function: sd_start_stop_unit_callback 20395 * 20396 * Description: timeout(9F) callback to begin recovery process for a 20397 * device that has spun down. 20398 * 20399 * Arguments: arg - pointer to associated softstate struct. 20400 * 20401 * Context: Executes in a timeout(9F) thread context 20402 */ 20403 20404 static void 20405 sd_start_stop_unit_callback(void *arg) 20406 { 20407 struct sd_lun *un = arg; 20408 ASSERT(un != NULL); 20409 ASSERT(!mutex_owned(SD_MUTEX(un))); 20410 20411 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20412 20413 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20414 } 20415 20416 20417 /* 20418 * Function: sd_start_stop_unit_task 20419 * 20420 * Description: Recovery procedure when a drive is spun down. 20421 * 20422 * Arguments: arg - pointer to associated softstate struct. 20423 * 20424 * Context: Executes in a taskq() thread context 20425 */ 20426 20427 static void 20428 sd_start_stop_unit_task(void *arg) 20429 { 20430 struct sd_lun *un = arg; 20431 sd_ssc_t *ssc; 20432 int power_level; 20433 int rval; 20434 20435 ASSERT(un != NULL); 20436 ASSERT(!mutex_owned(SD_MUTEX(un))); 20437 20438 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20439 20440 /* 20441 * Some unformatted drives report not ready error, no need to 20442 * restart if format has been initiated. 20443 */ 20444 mutex_enter(SD_MUTEX(un)); 20445 if (un->un_f_format_in_progress == TRUE) { 20446 mutex_exit(SD_MUTEX(un)); 20447 return; 20448 } 20449 mutex_exit(SD_MUTEX(un)); 20450 20451 ssc = sd_ssc_init(un); 20452 /* 20453 * When a START STOP command is issued from here, it is part of a 20454 * failure recovery operation and must be issued before any other 20455 * commands, including any pending retries. Thus it must be sent 20456 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20457 * succeeds or not, we will start I/O after the attempt. 20458 * If power condition is supported and the current power level 20459 * is capable of performing I/O, we should set the power condition 20460 * to that level. Otherwise, set the power condition to ACTIVE. 20461 */ 20462 if (un->un_f_power_condition_supported) { 20463 mutex_enter(SD_MUTEX(un)); 20464 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20465 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20466 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20467 mutex_exit(SD_MUTEX(un)); 20468 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20469 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20470 } else { 20471 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20472 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20473 } 20474 20475 if (rval != 0) 20476 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20477 sd_ssc_fini(ssc); 20478 /* 20479 * The above call blocks until the START_STOP_UNIT command completes. 20480 * Now that it has completed, we must re-try the original IO that 20481 * received the NOT READY condition in the first place. There are 20482 * three possible conditions here: 20483 * 20484 * (1) The original IO is on un_retry_bp. 20485 * (2) The original IO is on the regular wait queue, and un_retry_bp 20486 * is NULL. 20487 * (3) The original IO is on the regular wait queue, and un_retry_bp 20488 * points to some other, unrelated bp. 20489 * 20490 * For each case, we must call sd_start_cmds() with un_retry_bp 20491 * as the argument. If un_retry_bp is NULL, this will initiate 20492 * processing of the regular wait queue. If un_retry_bp is not NULL, 20493 * then this will process the bp on un_retry_bp. That may or may not 20494 * be the original IO, but that does not matter: the important thing 20495 * is to keep the IO processing going at this point. 20496 * 20497 * Note: This is a very specific error recovery sequence associated 20498 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20499 * serialize the I/O with completion of the spin-up. 20500 */ 20501 mutex_enter(SD_MUTEX(un)); 20502 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20503 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20504 un, un->un_retry_bp); 20505 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20506 sd_start_cmds(un, un->un_retry_bp); 20507 mutex_exit(SD_MUTEX(un)); 20508 20509 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20510 } 20511 20512 20513 /* 20514 * Function: sd_send_scsi_INQUIRY 20515 * 20516 * Description: Issue the scsi INQUIRY command. 20517 * 20518 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20519 * structure for this target. 20520 * bufaddr 20521 * buflen 20522 * evpd 20523 * page_code 20524 * page_length 20525 * 20526 * Return Code: 0 - Success 20527 * errno return code from sd_ssc_send() 20528 * 20529 * Context: Can sleep. Does not return until command is completed. 20530 */ 20531 20532 static int 20533 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20534 uchar_t evpd, uchar_t page_code, size_t *residp) 20535 { 20536 union scsi_cdb cdb; 20537 struct uscsi_cmd ucmd_buf; 20538 int status; 20539 struct sd_lun *un; 20540 20541 ASSERT(ssc != NULL); 20542 un = ssc->ssc_un; 20543 ASSERT(un != NULL); 20544 ASSERT(!mutex_owned(SD_MUTEX(un))); 20545 ASSERT(bufaddr != NULL); 20546 20547 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20548 20549 bzero(&cdb, sizeof (cdb)); 20550 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20551 bzero(bufaddr, buflen); 20552 20553 cdb.scc_cmd = SCMD_INQUIRY; 20554 cdb.cdb_opaque[1] = evpd; 20555 cdb.cdb_opaque[2] = page_code; 20556 FORMG0COUNT(&cdb, buflen); 20557 20558 ucmd_buf.uscsi_cdb = (char *)&cdb; 20559 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20560 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20561 ucmd_buf.uscsi_buflen = buflen; 20562 ucmd_buf.uscsi_rqbuf = NULL; 20563 ucmd_buf.uscsi_rqlen = 0; 20564 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20565 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20566 20567 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20568 UIO_SYSSPACE, SD_PATH_DIRECT); 20569 20570 /* 20571 * Only handle status == 0, the upper-level caller 20572 * will put different assessment based on the context. 20573 */ 20574 if (status == 0) 20575 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20576 20577 if ((status == 0) && (residp != NULL)) { 20578 *residp = ucmd_buf.uscsi_resid; 20579 } 20580 20581 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20582 20583 return (status); 20584 } 20585 20586 20587 /* 20588 * Function: sd_send_scsi_TEST_UNIT_READY 20589 * 20590 * Description: Issue the scsi TEST UNIT READY command. 20591 * This routine can be told to set the flag USCSI_DIAGNOSE to 20592 * prevent retrying failed commands. Use this when the intent 20593 * is either to check for device readiness, to clear a Unit 20594 * Attention, or to clear any outstanding sense data. 20595 * However under specific conditions the expected behavior 20596 * is for retries to bring a device ready, so use the flag 20597 * with caution. 20598 * 20599 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20600 * structure for this target. 20601 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20602 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20603 * 0: dont check for media present, do retries on cmd. 20604 * 20605 * Return Code: 0 - Success 20606 * EIO - IO error 20607 * EACCES - Reservation conflict detected 20608 * ENXIO - Not Ready, medium not present 20609 * errno return code from sd_ssc_send() 20610 * 20611 * Context: Can sleep. Does not return until command is completed. 20612 */ 20613 20614 static int 20615 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20616 { 20617 struct scsi_extended_sense sense_buf; 20618 union scsi_cdb cdb; 20619 struct uscsi_cmd ucmd_buf; 20620 int status; 20621 struct sd_lun *un; 20622 20623 ASSERT(ssc != NULL); 20624 un = ssc->ssc_un; 20625 ASSERT(un != NULL); 20626 ASSERT(!mutex_owned(SD_MUTEX(un))); 20627 20628 SD_TRACE(SD_LOG_IO, un, 20629 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20630 20631 /* 20632 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20633 * timeouts when they receive a TUR and the queue is not empty. Check 20634 * the configuration flag set during attach (indicating the drive has 20635 * this firmware bug) and un_ncmds_in_transport before issuing the 20636 * TUR. If there are 20637 * pending commands return success, this is a bit arbitrary but is ok 20638 * for non-removables (i.e. the eliteI disks) and non-clustering 20639 * configurations. 20640 */ 20641 if (un->un_f_cfg_tur_check == TRUE) { 20642 mutex_enter(SD_MUTEX(un)); 20643 if (un->un_ncmds_in_transport != 0) { 20644 mutex_exit(SD_MUTEX(un)); 20645 return (0); 20646 } 20647 mutex_exit(SD_MUTEX(un)); 20648 } 20649 20650 bzero(&cdb, sizeof (cdb)); 20651 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20652 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20653 20654 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20655 20656 ucmd_buf.uscsi_cdb = (char *)&cdb; 20657 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20658 ucmd_buf.uscsi_bufaddr = NULL; 20659 ucmd_buf.uscsi_buflen = 0; 20660 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20661 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20662 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20663 20664 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20665 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20666 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20667 } 20668 ucmd_buf.uscsi_timeout = 60; 20669 20670 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20671 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20672 SD_PATH_STANDARD)); 20673 20674 switch (status) { 20675 case 0: 20676 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20677 break; /* Success! */ 20678 case EIO: 20679 switch (ucmd_buf.uscsi_status) { 20680 case STATUS_RESERVATION_CONFLICT: 20681 status = EACCES; 20682 break; 20683 case STATUS_CHECK: 20684 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20685 break; 20686 } 20687 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20688 (scsi_sense_key((uint8_t *)&sense_buf) == 20689 KEY_NOT_READY) && 20690 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20691 status = ENXIO; 20692 } 20693 break; 20694 default: 20695 break; 20696 } 20697 break; 20698 default: 20699 break; 20700 } 20701 20702 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20703 20704 return (status); 20705 } 20706 20707 /* 20708 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20709 * 20710 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20711 * 20712 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20713 * structure for this target. 20714 * 20715 * Return Code: 0 - Success 20716 * EACCES 20717 * ENOTSUP 20718 * errno return code from sd_ssc_send() 20719 * 20720 * Context: Can sleep. Does not return until command is completed. 20721 */ 20722 20723 static int 20724 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20725 uint16_t data_len, uchar_t *data_bufp) 20726 { 20727 struct scsi_extended_sense sense_buf; 20728 union scsi_cdb cdb; 20729 struct uscsi_cmd ucmd_buf; 20730 int status; 20731 int no_caller_buf = FALSE; 20732 struct sd_lun *un; 20733 20734 ASSERT(ssc != NULL); 20735 un = ssc->ssc_un; 20736 ASSERT(un != NULL); 20737 ASSERT(!mutex_owned(SD_MUTEX(un))); 20738 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20739 20740 SD_TRACE(SD_LOG_IO, un, 20741 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20742 20743 bzero(&cdb, sizeof (cdb)); 20744 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20745 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20746 if (data_bufp == NULL) { 20747 /* Allocate a default buf if the caller did not give one */ 20748 ASSERT(data_len == 0); 20749 data_len = MHIOC_RESV_KEY_SIZE; 20750 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20751 no_caller_buf = TRUE; 20752 } 20753 20754 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20755 cdb.cdb_opaque[1] = usr_cmd; 20756 FORMG1COUNT(&cdb, data_len); 20757 20758 ucmd_buf.uscsi_cdb = (char *)&cdb; 20759 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20760 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20761 ucmd_buf.uscsi_buflen = data_len; 20762 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20763 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20764 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20765 ucmd_buf.uscsi_timeout = 60; 20766 20767 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20768 UIO_SYSSPACE, SD_PATH_STANDARD); 20769 20770 switch (status) { 20771 case 0: 20772 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20773 20774 break; /* Success! */ 20775 case EIO: 20776 switch (ucmd_buf.uscsi_status) { 20777 case STATUS_RESERVATION_CONFLICT: 20778 status = EACCES; 20779 break; 20780 case STATUS_CHECK: 20781 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20782 (scsi_sense_key((uint8_t *)&sense_buf) == 20783 KEY_ILLEGAL_REQUEST)) { 20784 status = ENOTSUP; 20785 } 20786 break; 20787 default: 20788 break; 20789 } 20790 break; 20791 default: 20792 break; 20793 } 20794 20795 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20796 20797 if (no_caller_buf == TRUE) { 20798 kmem_free(data_bufp, data_len); 20799 } 20800 20801 return (status); 20802 } 20803 20804 20805 /* 20806 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20807 * 20808 * Description: This routine is the driver entry point for handling CD-ROM 20809 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20810 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20811 * device. 20812 * 20813 * Arguments: ssc - ssc contains un - pointer to soft state struct 20814 * for the target. 20815 * usr_cmd SCSI-3 reservation facility command (one of 20816 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20817 * SD_SCSI3_PREEMPTANDABORT) 20818 * usr_bufp - user provided pointer register, reserve descriptor or 20819 * preempt and abort structure (mhioc_register_t, 20820 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20821 * 20822 * Return Code: 0 - Success 20823 * EACCES 20824 * ENOTSUP 20825 * errno return code from sd_ssc_send() 20826 * 20827 * Context: Can sleep. Does not return until command is completed. 20828 */ 20829 20830 static int 20831 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20832 uchar_t *usr_bufp) 20833 { 20834 struct scsi_extended_sense sense_buf; 20835 union scsi_cdb cdb; 20836 struct uscsi_cmd ucmd_buf; 20837 int status; 20838 uchar_t data_len = sizeof (sd_prout_t); 20839 sd_prout_t *prp; 20840 struct sd_lun *un; 20841 20842 ASSERT(ssc != NULL); 20843 un = ssc->ssc_un; 20844 ASSERT(un != NULL); 20845 ASSERT(!mutex_owned(SD_MUTEX(un))); 20846 ASSERT(data_len == 24); /* required by scsi spec */ 20847 20848 SD_TRACE(SD_LOG_IO, un, 20849 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20850 20851 if (usr_bufp == NULL) { 20852 return (EINVAL); 20853 } 20854 20855 bzero(&cdb, sizeof (cdb)); 20856 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20857 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20858 prp = kmem_zalloc(data_len, KM_SLEEP); 20859 20860 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 20861 cdb.cdb_opaque[1] = usr_cmd; 20862 FORMG1COUNT(&cdb, data_len); 20863 20864 ucmd_buf.uscsi_cdb = (char *)&cdb; 20865 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20866 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 20867 ucmd_buf.uscsi_buflen = data_len; 20868 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20869 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20870 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20871 ucmd_buf.uscsi_timeout = 60; 20872 20873 switch (usr_cmd) { 20874 case SD_SCSI3_REGISTER: { 20875 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 20876 20877 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20878 bcopy(ptr->newkey.key, prp->service_key, 20879 MHIOC_RESV_KEY_SIZE); 20880 prp->aptpl = ptr->aptpl; 20881 break; 20882 } 20883 case SD_SCSI3_RESERVE: 20884 case SD_SCSI3_RELEASE: { 20885 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 20886 20887 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20888 prp->scope_address = BE_32(ptr->scope_specific_addr); 20889 cdb.cdb_opaque[2] = ptr->type; 20890 break; 20891 } 20892 case SD_SCSI3_PREEMPTANDABORT: { 20893 mhioc_preemptandabort_t *ptr = 20894 (mhioc_preemptandabort_t *)usr_bufp; 20895 20896 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20897 bcopy(ptr->victim_key.key, prp->service_key, 20898 MHIOC_RESV_KEY_SIZE); 20899 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 20900 cdb.cdb_opaque[2] = ptr->resvdesc.type; 20901 ucmd_buf.uscsi_flags |= USCSI_HEAD; 20902 break; 20903 } 20904 case SD_SCSI3_REGISTERANDIGNOREKEY: 20905 { 20906 mhioc_registerandignorekey_t *ptr; 20907 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 20908 bcopy(ptr->newkey.key, 20909 prp->service_key, MHIOC_RESV_KEY_SIZE); 20910 prp->aptpl = ptr->aptpl; 20911 break; 20912 } 20913 default: 20914 ASSERT(FALSE); 20915 break; 20916 } 20917 20918 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20919 UIO_SYSSPACE, SD_PATH_STANDARD); 20920 20921 switch (status) { 20922 case 0: 20923 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20924 break; /* Success! */ 20925 case EIO: 20926 switch (ucmd_buf.uscsi_status) { 20927 case STATUS_RESERVATION_CONFLICT: 20928 status = EACCES; 20929 break; 20930 case STATUS_CHECK: 20931 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20932 (scsi_sense_key((uint8_t *)&sense_buf) == 20933 KEY_ILLEGAL_REQUEST)) { 20934 status = ENOTSUP; 20935 } 20936 break; 20937 default: 20938 break; 20939 } 20940 break; 20941 default: 20942 break; 20943 } 20944 20945 kmem_free(prp, data_len); 20946 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 20947 return (status); 20948 } 20949 20950 20951 /* 20952 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 20953 * 20954 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 20955 * 20956 * Arguments: un - pointer to the target's soft state struct 20957 * dkc - pointer to the callback structure 20958 * 20959 * Return Code: 0 - success 20960 * errno-type error code 20961 * 20962 * Context: kernel thread context only. 20963 * 20964 * _______________________________________________________________ 20965 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 20966 * |FLUSH_VOLATILE| | operation | 20967 * |______________|______________|_________________________________| 20968 * | 0 | NULL | Synchronous flush on both | 20969 * | | | volatile and non-volatile cache | 20970 * |______________|______________|_________________________________| 20971 * | 1 | NULL | Synchronous flush on volatile | 20972 * | | | cache; disk drivers may suppress| 20973 * | | | flush if disk table indicates | 20974 * | | | non-volatile cache | 20975 * |______________|______________|_________________________________| 20976 * | 0 | !NULL | Asynchronous flush on both | 20977 * | | | volatile and non-volatile cache;| 20978 * |______________|______________|_________________________________| 20979 * | 1 | !NULL | Asynchronous flush on volatile | 20980 * | | | cache; disk drivers may suppress| 20981 * | | | flush if disk table indicates | 20982 * | | | non-volatile cache | 20983 * |______________|______________|_________________________________| 20984 * 20985 */ 20986 20987 static int 20988 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 20989 { 20990 struct sd_uscsi_info *uip; 20991 struct uscsi_cmd *uscmd; 20992 union scsi_cdb *cdb; 20993 struct buf *bp; 20994 int rval = 0; 20995 int is_async; 20996 20997 SD_TRACE(SD_LOG_IO, un, 20998 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 20999 21000 ASSERT(un != NULL); 21001 ASSERT(!mutex_owned(SD_MUTEX(un))); 21002 21003 if (dkc == NULL || dkc->dkc_callback == NULL) { 21004 is_async = FALSE; 21005 } else { 21006 is_async = TRUE; 21007 } 21008 21009 mutex_enter(SD_MUTEX(un)); 21010 /* check whether cache flush should be suppressed */ 21011 if (un->un_f_suppress_cache_flush == TRUE) { 21012 mutex_exit(SD_MUTEX(un)); 21013 /* 21014 * suppress the cache flush if the device is told to do 21015 * so by sd.conf or disk table 21016 */ 21017 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 21018 skip the cache flush since suppress_cache_flush is %d!\n", 21019 un->un_f_suppress_cache_flush); 21020 21021 if (is_async == TRUE) { 21022 /* invoke callback for asynchronous flush */ 21023 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 21024 } 21025 return (rval); 21026 } 21027 mutex_exit(SD_MUTEX(un)); 21028 21029 /* 21030 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 21031 * set properly 21032 */ 21033 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 21034 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 21035 21036 mutex_enter(SD_MUTEX(un)); 21037 if (dkc != NULL && un->un_f_sync_nv_supported && 21038 (dkc->dkc_flag & FLUSH_VOLATILE)) { 21039 /* 21040 * if the device supports SYNC_NV bit, turn on 21041 * the SYNC_NV bit to only flush volatile cache 21042 */ 21043 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 21044 } 21045 mutex_exit(SD_MUTEX(un)); 21046 21047 /* 21048 * First get some memory for the uscsi_cmd struct and cdb 21049 * and initialize for SYNCHRONIZE_CACHE cmd. 21050 */ 21051 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21052 uscmd->uscsi_cdblen = CDB_GROUP1; 21053 uscmd->uscsi_cdb = (caddr_t)cdb; 21054 uscmd->uscsi_bufaddr = NULL; 21055 uscmd->uscsi_buflen = 0; 21056 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 21057 uscmd->uscsi_rqlen = SENSE_LENGTH; 21058 uscmd->uscsi_rqresid = SENSE_LENGTH; 21059 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 21060 uscmd->uscsi_timeout = sd_io_time; 21061 21062 /* 21063 * Allocate an sd_uscsi_info struct and fill it with the info 21064 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 21065 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 21066 * since we allocate the buf here in this function, we do not 21067 * need to preserve the prior contents of b_private. 21068 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 21069 */ 21070 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 21071 uip->ui_flags = SD_PATH_DIRECT; 21072 uip->ui_cmdp = uscmd; 21073 21074 bp = getrbuf(KM_SLEEP); 21075 bp->b_private = uip; 21076 21077 /* 21078 * Setup buffer to carry uscsi request. 21079 */ 21080 bp->b_flags = B_BUSY; 21081 bp->b_bcount = 0; 21082 bp->b_blkno = 0; 21083 21084 if (is_async == TRUE) { 21085 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21086 uip->ui_dkc = *dkc; 21087 } 21088 21089 bp->b_edev = SD_GET_DEV(un); 21090 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21091 21092 /* 21093 * Unset un_f_sync_cache_required flag 21094 */ 21095 mutex_enter(SD_MUTEX(un)); 21096 un->un_f_sync_cache_required = FALSE; 21097 mutex_exit(SD_MUTEX(un)); 21098 21099 (void) sd_uscsi_strategy(bp); 21100 21101 /* 21102 * If synchronous request, wait for completion 21103 * If async just return and let b_iodone callback 21104 * cleanup. 21105 * NOTE: On return, u_ncmds_in_driver will be decremented, 21106 * but it was also incremented in sd_uscsi_strategy(), so 21107 * we should be ok. 21108 */ 21109 if (is_async == FALSE) { 21110 (void) biowait(bp); 21111 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21112 } 21113 21114 return (rval); 21115 } 21116 21117 21118 static int 21119 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21120 { 21121 struct sd_uscsi_info *uip; 21122 struct uscsi_cmd *uscmd; 21123 uint8_t *sense_buf; 21124 struct sd_lun *un; 21125 int status; 21126 union scsi_cdb *cdb; 21127 21128 uip = (struct sd_uscsi_info *)(bp->b_private); 21129 ASSERT(uip != NULL); 21130 21131 uscmd = uip->ui_cmdp; 21132 ASSERT(uscmd != NULL); 21133 21134 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21135 ASSERT(sense_buf != NULL); 21136 21137 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21138 ASSERT(un != NULL); 21139 21140 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21141 21142 status = geterror(bp); 21143 switch (status) { 21144 case 0: 21145 break; /* Success! */ 21146 case EIO: 21147 switch (uscmd->uscsi_status) { 21148 case STATUS_RESERVATION_CONFLICT: 21149 /* Ignore reservation conflict */ 21150 status = 0; 21151 goto done; 21152 21153 case STATUS_CHECK: 21154 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21155 (scsi_sense_key(sense_buf) == 21156 KEY_ILLEGAL_REQUEST)) { 21157 /* Ignore Illegal Request error */ 21158 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21159 mutex_enter(SD_MUTEX(un)); 21160 un->un_f_sync_nv_supported = FALSE; 21161 mutex_exit(SD_MUTEX(un)); 21162 status = 0; 21163 SD_TRACE(SD_LOG_IO, un, 21164 "un_f_sync_nv_supported \ 21165 is set to false.\n"); 21166 goto done; 21167 } 21168 21169 mutex_enter(SD_MUTEX(un)); 21170 un->un_f_sync_cache_supported = FALSE; 21171 mutex_exit(SD_MUTEX(un)); 21172 SD_TRACE(SD_LOG_IO, un, 21173 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21174 un_f_sync_cache_supported set to false \ 21175 with asc = %x, ascq = %x\n", 21176 scsi_sense_asc(sense_buf), 21177 scsi_sense_ascq(sense_buf)); 21178 status = ENOTSUP; 21179 goto done; 21180 } 21181 break; 21182 default: 21183 break; 21184 } 21185 /* FALLTHRU */ 21186 default: 21187 /* 21188 * Turn on the un_f_sync_cache_required flag 21189 * since the SYNC CACHE command failed 21190 */ 21191 mutex_enter(SD_MUTEX(un)); 21192 un->un_f_sync_cache_required = TRUE; 21193 mutex_exit(SD_MUTEX(un)); 21194 21195 /* 21196 * Don't log an error message if this device 21197 * has removable media. 21198 */ 21199 if (!un->un_f_has_removable_media) { 21200 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21201 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21202 } 21203 break; 21204 } 21205 21206 done: 21207 if (uip->ui_dkc.dkc_callback != NULL) { 21208 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21209 } 21210 21211 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21212 freerbuf(bp); 21213 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21214 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21215 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21216 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21217 21218 return (status); 21219 } 21220 21221 21222 /* 21223 * Function: sd_send_scsi_GET_CONFIGURATION 21224 * 21225 * Description: Issues the get configuration command to the device. 21226 * Called from sd_check_for_writable_cd & sd_get_media_info 21227 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21228 * Arguments: ssc 21229 * ucmdbuf 21230 * rqbuf 21231 * rqbuflen 21232 * bufaddr 21233 * buflen 21234 * path_flag 21235 * 21236 * Return Code: 0 - Success 21237 * errno return code from sd_ssc_send() 21238 * 21239 * Context: Can sleep. Does not return until command is completed. 21240 * 21241 */ 21242 21243 static int 21244 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21245 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21246 int path_flag) 21247 { 21248 char cdb[CDB_GROUP1]; 21249 int status; 21250 struct sd_lun *un; 21251 21252 ASSERT(ssc != NULL); 21253 un = ssc->ssc_un; 21254 ASSERT(un != NULL); 21255 ASSERT(!mutex_owned(SD_MUTEX(un))); 21256 ASSERT(bufaddr != NULL); 21257 ASSERT(ucmdbuf != NULL); 21258 ASSERT(rqbuf != NULL); 21259 21260 SD_TRACE(SD_LOG_IO, un, 21261 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21262 21263 bzero(cdb, sizeof (cdb)); 21264 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21265 bzero(rqbuf, rqbuflen); 21266 bzero(bufaddr, buflen); 21267 21268 /* 21269 * Set up cdb field for the get configuration command. 21270 */ 21271 cdb[0] = SCMD_GET_CONFIGURATION; 21272 cdb[1] = 0x02; /* Requested Type */ 21273 cdb[8] = SD_PROFILE_HEADER_LEN; 21274 ucmdbuf->uscsi_cdb = cdb; 21275 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21276 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21277 ucmdbuf->uscsi_buflen = buflen; 21278 ucmdbuf->uscsi_timeout = sd_io_time; 21279 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21280 ucmdbuf->uscsi_rqlen = rqbuflen; 21281 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21282 21283 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21284 UIO_SYSSPACE, path_flag); 21285 21286 switch (status) { 21287 case 0: 21288 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21289 break; /* Success! */ 21290 case EIO: 21291 switch (ucmdbuf->uscsi_status) { 21292 case STATUS_RESERVATION_CONFLICT: 21293 status = EACCES; 21294 break; 21295 default: 21296 break; 21297 } 21298 break; 21299 default: 21300 break; 21301 } 21302 21303 if (status == 0) { 21304 SD_DUMP_MEMORY(un, SD_LOG_IO, 21305 "sd_send_scsi_GET_CONFIGURATION: data", 21306 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21307 } 21308 21309 SD_TRACE(SD_LOG_IO, un, 21310 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21311 21312 return (status); 21313 } 21314 21315 /* 21316 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21317 * 21318 * Description: Issues the get configuration command to the device to 21319 * retrieve a specific feature. Called from 21320 * sd_check_for_writable_cd & sd_set_mmc_caps. 21321 * Arguments: ssc 21322 * ucmdbuf 21323 * rqbuf 21324 * rqbuflen 21325 * bufaddr 21326 * buflen 21327 * feature 21328 * 21329 * Return Code: 0 - Success 21330 * errno return code from sd_ssc_send() 21331 * 21332 * Context: Can sleep. Does not return until command is completed. 21333 * 21334 */ 21335 static int 21336 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 21337 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 21338 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 21339 { 21340 char cdb[CDB_GROUP1]; 21341 int status; 21342 struct sd_lun *un; 21343 21344 ASSERT(ssc != NULL); 21345 un = ssc->ssc_un; 21346 ASSERT(un != NULL); 21347 ASSERT(!mutex_owned(SD_MUTEX(un))); 21348 ASSERT(bufaddr != NULL); 21349 ASSERT(ucmdbuf != NULL); 21350 ASSERT(rqbuf != NULL); 21351 21352 SD_TRACE(SD_LOG_IO, un, 21353 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21354 21355 bzero(cdb, sizeof (cdb)); 21356 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21357 bzero(rqbuf, rqbuflen); 21358 bzero(bufaddr, buflen); 21359 21360 /* 21361 * Set up cdb field for the get configuration command. 21362 */ 21363 cdb[0] = SCMD_GET_CONFIGURATION; 21364 cdb[1] = 0x02; /* Requested Type */ 21365 cdb[3] = feature; 21366 cdb[8] = buflen; 21367 ucmdbuf->uscsi_cdb = cdb; 21368 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21369 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21370 ucmdbuf->uscsi_buflen = buflen; 21371 ucmdbuf->uscsi_timeout = sd_io_time; 21372 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21373 ucmdbuf->uscsi_rqlen = rqbuflen; 21374 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21375 21376 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21377 UIO_SYSSPACE, path_flag); 21378 21379 switch (status) { 21380 case 0: 21381 21382 break; /* Success! */ 21383 case EIO: 21384 switch (ucmdbuf->uscsi_status) { 21385 case STATUS_RESERVATION_CONFLICT: 21386 status = EACCES; 21387 break; 21388 default: 21389 break; 21390 } 21391 break; 21392 default: 21393 break; 21394 } 21395 21396 if (status == 0) { 21397 SD_DUMP_MEMORY(un, SD_LOG_IO, 21398 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21399 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21400 } 21401 21402 SD_TRACE(SD_LOG_IO, un, 21403 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21404 21405 return (status); 21406 } 21407 21408 21409 /* 21410 * Function: sd_send_scsi_MODE_SENSE 21411 * 21412 * Description: Utility function for issuing a scsi MODE SENSE command. 21413 * Note: This routine uses a consistent implementation for Group0, 21414 * Group1, and Group2 commands across all platforms. ATAPI devices 21415 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21416 * 21417 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21418 * structure for this target. 21419 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21420 * CDB_GROUP[1|2] (10 byte). 21421 * bufaddr - buffer for page data retrieved from the target. 21422 * buflen - size of page to be retrieved. 21423 * page_code - page code of data to be retrieved from the target. 21424 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21425 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21426 * to use the USCSI "direct" chain and bypass the normal 21427 * command waitq. 21428 * 21429 * Return Code: 0 - Success 21430 * errno return code from sd_ssc_send() 21431 * 21432 * Context: Can sleep. Does not return until command is completed. 21433 */ 21434 21435 static int 21436 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21437 size_t buflen, uchar_t page_code, int path_flag) 21438 { 21439 struct scsi_extended_sense sense_buf; 21440 union scsi_cdb cdb; 21441 struct uscsi_cmd ucmd_buf; 21442 int status; 21443 int headlen; 21444 struct sd_lun *un; 21445 21446 ASSERT(ssc != NULL); 21447 un = ssc->ssc_un; 21448 ASSERT(un != NULL); 21449 ASSERT(!mutex_owned(SD_MUTEX(un))); 21450 ASSERT(bufaddr != NULL); 21451 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21452 (cdbsize == CDB_GROUP2)); 21453 21454 SD_TRACE(SD_LOG_IO, un, 21455 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21456 21457 bzero(&cdb, sizeof (cdb)); 21458 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21459 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21460 bzero(bufaddr, buflen); 21461 21462 if (cdbsize == CDB_GROUP0) { 21463 cdb.scc_cmd = SCMD_MODE_SENSE; 21464 cdb.cdb_opaque[2] = page_code; 21465 FORMG0COUNT(&cdb, buflen); 21466 headlen = MODE_HEADER_LENGTH; 21467 } else { 21468 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 21469 cdb.cdb_opaque[2] = page_code; 21470 FORMG1COUNT(&cdb, buflen); 21471 headlen = MODE_HEADER_LENGTH_GRP2; 21472 } 21473 21474 ASSERT(headlen <= buflen); 21475 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21476 21477 ucmd_buf.uscsi_cdb = (char *)&cdb; 21478 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21479 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21480 ucmd_buf.uscsi_buflen = buflen; 21481 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21482 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21483 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21484 ucmd_buf.uscsi_timeout = 60; 21485 21486 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21487 UIO_SYSSPACE, path_flag); 21488 21489 switch (status) { 21490 case 0: 21491 /* 21492 * sr_check_wp() uses 0x3f page code and check the header of 21493 * mode page to determine if target device is write-protected. 21494 * But some USB devices return 0 bytes for 0x3f page code. For 21495 * this case, make sure that mode page header is returned at 21496 * least. 21497 */ 21498 if (buflen - ucmd_buf.uscsi_resid < headlen) { 21499 status = EIO; 21500 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 21501 "mode page header is not returned"); 21502 } 21503 break; /* Success! */ 21504 case EIO: 21505 switch (ucmd_buf.uscsi_status) { 21506 case STATUS_RESERVATION_CONFLICT: 21507 status = EACCES; 21508 break; 21509 default: 21510 break; 21511 } 21512 break; 21513 default: 21514 break; 21515 } 21516 21517 if (status == 0) { 21518 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 21519 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21520 } 21521 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 21522 21523 return (status); 21524 } 21525 21526 21527 /* 21528 * Function: sd_send_scsi_MODE_SELECT 21529 * 21530 * Description: Utility function for issuing a scsi MODE SELECT command. 21531 * Note: This routine uses a consistent implementation for Group0, 21532 * Group1, and Group2 commands across all platforms. ATAPI devices 21533 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21534 * 21535 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21536 * structure for this target. 21537 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21538 * CDB_GROUP[1|2] (10 byte). 21539 * bufaddr - buffer for page data retrieved from the target. 21540 * buflen - size of page to be retrieved. 21541 * save_page - boolean to determin if SP bit should be set. 21542 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21543 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21544 * to use the USCSI "direct" chain and bypass the normal 21545 * command waitq. 21546 * 21547 * Return Code: 0 - Success 21548 * errno return code from sd_ssc_send() 21549 * 21550 * Context: Can sleep. Does not return until command is completed. 21551 */ 21552 21553 static int 21554 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21555 size_t buflen, uchar_t save_page, int path_flag) 21556 { 21557 struct scsi_extended_sense sense_buf; 21558 union scsi_cdb cdb; 21559 struct uscsi_cmd ucmd_buf; 21560 int status; 21561 struct sd_lun *un; 21562 21563 ASSERT(ssc != NULL); 21564 un = ssc->ssc_un; 21565 ASSERT(un != NULL); 21566 ASSERT(!mutex_owned(SD_MUTEX(un))); 21567 ASSERT(bufaddr != NULL); 21568 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21569 (cdbsize == CDB_GROUP2)); 21570 21571 SD_TRACE(SD_LOG_IO, un, 21572 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 21573 21574 bzero(&cdb, sizeof (cdb)); 21575 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21576 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21577 21578 /* Set the PF bit for many third party drives */ 21579 cdb.cdb_opaque[1] = 0x10; 21580 21581 /* Set the savepage(SP) bit if given */ 21582 if (save_page == SD_SAVE_PAGE) { 21583 cdb.cdb_opaque[1] |= 0x01; 21584 } 21585 21586 if (cdbsize == CDB_GROUP0) { 21587 cdb.scc_cmd = SCMD_MODE_SELECT; 21588 FORMG0COUNT(&cdb, buflen); 21589 } else { 21590 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 21591 FORMG1COUNT(&cdb, buflen); 21592 } 21593 21594 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21595 21596 ucmd_buf.uscsi_cdb = (char *)&cdb; 21597 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21598 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21599 ucmd_buf.uscsi_buflen = buflen; 21600 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21601 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21602 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21603 ucmd_buf.uscsi_timeout = 60; 21604 21605 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21606 UIO_SYSSPACE, path_flag); 21607 21608 switch (status) { 21609 case 0: 21610 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21611 break; /* Success! */ 21612 case EIO: 21613 switch (ucmd_buf.uscsi_status) { 21614 case STATUS_RESERVATION_CONFLICT: 21615 status = EACCES; 21616 break; 21617 default: 21618 break; 21619 } 21620 break; 21621 default: 21622 break; 21623 } 21624 21625 if (status == 0) { 21626 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 21627 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21628 } 21629 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 21630 21631 return (status); 21632 } 21633 21634 21635 /* 21636 * Function: sd_send_scsi_RDWR 21637 * 21638 * Description: Issue a scsi READ or WRITE command with the given parameters. 21639 * 21640 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21641 * structure for this target. 21642 * cmd: SCMD_READ or SCMD_WRITE 21643 * bufaddr: Address of caller's buffer to receive the RDWR data 21644 * buflen: Length of caller's buffer receive the RDWR data. 21645 * start_block: Block number for the start of the RDWR operation. 21646 * (Assumes target-native block size.) 21647 * residp: Pointer to variable to receive the redisual of the 21648 * RDWR operation (may be NULL of no residual requested). 21649 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21650 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21651 * to use the USCSI "direct" chain and bypass the normal 21652 * command waitq. 21653 * 21654 * Return Code: 0 - Success 21655 * errno return code from sd_ssc_send() 21656 * 21657 * Context: Can sleep. Does not return until command is completed. 21658 */ 21659 21660 static int 21661 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 21662 size_t buflen, daddr_t start_block, int path_flag) 21663 { 21664 struct scsi_extended_sense sense_buf; 21665 union scsi_cdb cdb; 21666 struct uscsi_cmd ucmd_buf; 21667 uint32_t block_count; 21668 int status; 21669 int cdbsize; 21670 uchar_t flag; 21671 struct sd_lun *un; 21672 21673 ASSERT(ssc != NULL); 21674 un = ssc->ssc_un; 21675 ASSERT(un != NULL); 21676 ASSERT(!mutex_owned(SD_MUTEX(un))); 21677 ASSERT(bufaddr != NULL); 21678 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 21679 21680 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 21681 21682 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 21683 return (EINVAL); 21684 } 21685 21686 mutex_enter(SD_MUTEX(un)); 21687 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21688 mutex_exit(SD_MUTEX(un)); 21689 21690 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21691 21692 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21693 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21694 bufaddr, buflen, start_block, block_count); 21695 21696 bzero(&cdb, sizeof (cdb)); 21697 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21698 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21699 21700 /* Compute CDB size to use */ 21701 if (start_block > 0xffffffff) 21702 cdbsize = CDB_GROUP4; 21703 else if ((start_block & 0xFFE00000) || 21704 (un->un_f_cfg_is_atapi == TRUE)) 21705 cdbsize = CDB_GROUP1; 21706 else 21707 cdbsize = CDB_GROUP0; 21708 21709 switch (cdbsize) { 21710 case CDB_GROUP0: /* 6-byte CDBs */ 21711 cdb.scc_cmd = cmd; 21712 FORMG0ADDR(&cdb, start_block); 21713 FORMG0COUNT(&cdb, block_count); 21714 break; 21715 case CDB_GROUP1: /* 10-byte CDBs */ 21716 cdb.scc_cmd = cmd | SCMD_GROUP1; 21717 FORMG1ADDR(&cdb, start_block); 21718 FORMG1COUNT(&cdb, block_count); 21719 break; 21720 case CDB_GROUP4: /* 16-byte CDBs */ 21721 cdb.scc_cmd = cmd | SCMD_GROUP4; 21722 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21723 FORMG4COUNT(&cdb, block_count); 21724 break; 21725 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21726 default: 21727 /* All others reserved */ 21728 return (EINVAL); 21729 } 21730 21731 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21732 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21733 21734 ucmd_buf.uscsi_cdb = (char *)&cdb; 21735 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21736 ucmd_buf.uscsi_bufaddr = bufaddr; 21737 ucmd_buf.uscsi_buflen = buflen; 21738 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21739 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21740 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21741 ucmd_buf.uscsi_timeout = 60; 21742 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21743 UIO_SYSSPACE, path_flag); 21744 21745 switch (status) { 21746 case 0: 21747 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21748 break; /* Success! */ 21749 case EIO: 21750 switch (ucmd_buf.uscsi_status) { 21751 case STATUS_RESERVATION_CONFLICT: 21752 status = EACCES; 21753 break; 21754 default: 21755 break; 21756 } 21757 break; 21758 default: 21759 break; 21760 } 21761 21762 if (status == 0) { 21763 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21764 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21765 } 21766 21767 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21768 21769 return (status); 21770 } 21771 21772 21773 /* 21774 * Function: sd_send_scsi_LOG_SENSE 21775 * 21776 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21777 * 21778 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21779 * structure for this target. 21780 * 21781 * Return Code: 0 - Success 21782 * errno return code from sd_ssc_send() 21783 * 21784 * Context: Can sleep. Does not return until command is completed. 21785 */ 21786 21787 static int 21788 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21789 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21790 int path_flag) 21791 21792 { 21793 struct scsi_extended_sense sense_buf; 21794 union scsi_cdb cdb; 21795 struct uscsi_cmd ucmd_buf; 21796 int status; 21797 struct sd_lun *un; 21798 21799 ASSERT(ssc != NULL); 21800 un = ssc->ssc_un; 21801 ASSERT(un != NULL); 21802 ASSERT(!mutex_owned(SD_MUTEX(un))); 21803 21804 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21805 21806 bzero(&cdb, sizeof (cdb)); 21807 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21808 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21809 21810 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21811 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21812 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21813 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21814 FORMG1COUNT(&cdb, buflen); 21815 21816 ucmd_buf.uscsi_cdb = (char *)&cdb; 21817 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21818 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21819 ucmd_buf.uscsi_buflen = buflen; 21820 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21821 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21822 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21823 ucmd_buf.uscsi_timeout = 60; 21824 21825 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21826 UIO_SYSSPACE, path_flag); 21827 21828 switch (status) { 21829 case 0: 21830 break; 21831 case EIO: 21832 switch (ucmd_buf.uscsi_status) { 21833 case STATUS_RESERVATION_CONFLICT: 21834 status = EACCES; 21835 break; 21836 case STATUS_CHECK: 21837 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21838 (scsi_sense_key((uint8_t *)&sense_buf) == 21839 KEY_ILLEGAL_REQUEST) && 21840 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 21841 /* 21842 * ASC 0x24: INVALID FIELD IN CDB 21843 */ 21844 switch (page_code) { 21845 case START_STOP_CYCLE_PAGE: 21846 /* 21847 * The start stop cycle counter is 21848 * implemented as page 0x31 in earlier 21849 * generation disks. In new generation 21850 * disks the start stop cycle counter is 21851 * implemented as page 0xE. To properly 21852 * handle this case if an attempt for 21853 * log page 0xE is made and fails we 21854 * will try again using page 0x31. 21855 * 21856 * Network storage BU committed to 21857 * maintain the page 0x31 for this 21858 * purpose and will not have any other 21859 * page implemented with page code 0x31 21860 * until all disks transition to the 21861 * standard page. 21862 */ 21863 mutex_enter(SD_MUTEX(un)); 21864 un->un_start_stop_cycle_page = 21865 START_STOP_CYCLE_VU_PAGE; 21866 cdb.cdb_opaque[2] = 21867 (char)(page_control << 6) | 21868 un->un_start_stop_cycle_page; 21869 mutex_exit(SD_MUTEX(un)); 21870 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 21871 status = sd_ssc_send( 21872 ssc, &ucmd_buf, FKIOCTL, 21873 UIO_SYSSPACE, path_flag); 21874 21875 break; 21876 case TEMPERATURE_PAGE: 21877 status = ENOTTY; 21878 break; 21879 default: 21880 break; 21881 } 21882 } 21883 break; 21884 default: 21885 break; 21886 } 21887 break; 21888 default: 21889 break; 21890 } 21891 21892 if (status == 0) { 21893 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21894 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 21895 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21896 } 21897 21898 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 21899 21900 return (status); 21901 } 21902 21903 21904 /* 21905 * Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 21906 * 21907 * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command. 21908 * 21909 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21910 * structure for this target. 21911 * bufaddr 21912 * buflen 21913 * class_req 21914 * 21915 * Return Code: 0 - Success 21916 * errno return code from sd_ssc_send() 21917 * 21918 * Context: Can sleep. Does not return until command is completed. 21919 */ 21920 21921 static int 21922 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr, 21923 size_t buflen, uchar_t class_req) 21924 { 21925 union scsi_cdb cdb; 21926 struct uscsi_cmd ucmd_buf; 21927 int status; 21928 struct sd_lun *un; 21929 21930 ASSERT(ssc != NULL); 21931 un = ssc->ssc_un; 21932 ASSERT(un != NULL); 21933 ASSERT(!mutex_owned(SD_MUTEX(un))); 21934 ASSERT(bufaddr != NULL); 21935 21936 SD_TRACE(SD_LOG_IO, un, 21937 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un); 21938 21939 bzero(&cdb, sizeof (cdb)); 21940 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21941 bzero(bufaddr, buflen); 21942 21943 cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION; 21944 cdb.cdb_opaque[1] = 1; /* polled */ 21945 cdb.cdb_opaque[4] = class_req; 21946 FORMG1COUNT(&cdb, buflen); 21947 21948 ucmd_buf.uscsi_cdb = (char *)&cdb; 21949 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21950 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21951 ucmd_buf.uscsi_buflen = buflen; 21952 ucmd_buf.uscsi_rqbuf = NULL; 21953 ucmd_buf.uscsi_rqlen = 0; 21954 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 21955 ucmd_buf.uscsi_timeout = 60; 21956 21957 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21958 UIO_SYSSPACE, SD_PATH_DIRECT); 21959 21960 /* 21961 * Only handle status == 0, the upper-level caller 21962 * will put different assessment based on the context. 21963 */ 21964 if (status == 0) { 21965 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21966 21967 if (ucmd_buf.uscsi_resid != 0) { 21968 status = EIO; 21969 } 21970 } 21971 21972 SD_TRACE(SD_LOG_IO, un, 21973 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n"); 21974 21975 return (status); 21976 } 21977 21978 21979 static boolean_t 21980 sd_gesn_media_data_valid(uchar_t *data) 21981 { 21982 uint16_t len; 21983 21984 len = (data[1] << 8) | data[0]; 21985 return ((len >= 6) && 21986 ((data[2] & SD_GESN_HEADER_NEA) == 0) && 21987 ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) && 21988 ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0)); 21989 } 21990 21991 21992 /* 21993 * Function: sdioctl 21994 * 21995 * Description: Driver's ioctl(9e) entry point function. 21996 * 21997 * Arguments: dev - device number 21998 * cmd - ioctl operation to be performed 21999 * arg - user argument, contains data to be set or reference 22000 * parameter for get 22001 * flag - bit flag, indicating open settings, 32/64 bit type 22002 * cred_p - user credential pointer 22003 * rval_p - calling process return value (OPT) 22004 * 22005 * Return Code: EINVAL 22006 * ENOTTY 22007 * ENXIO 22008 * EIO 22009 * EFAULT 22010 * ENOTSUP 22011 * EPERM 22012 * 22013 * Context: Called from the device switch at normal priority. 22014 */ 22015 22016 static int 22017 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 22018 { 22019 struct sd_lun *un = NULL; 22020 int err = 0; 22021 int i = 0; 22022 cred_t *cr; 22023 int tmprval = EINVAL; 22024 boolean_t is_valid; 22025 sd_ssc_t *ssc; 22026 22027 /* 22028 * All device accesses go thru sdstrategy where we check on suspend 22029 * status 22030 */ 22031 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22032 return (ENXIO); 22033 } 22034 22035 ASSERT(!mutex_owned(SD_MUTEX(un))); 22036 22037 /* Initialize sd_ssc_t for internal uscsi commands */ 22038 ssc = sd_ssc_init(un); 22039 22040 is_valid = SD_IS_VALID_LABEL(un); 22041 22042 /* 22043 * Moved this wait from sd_uscsi_strategy to here for 22044 * reasons of deadlock prevention. Internal driver commands, 22045 * specifically those to change a devices power level, result 22046 * in a call to sd_uscsi_strategy. 22047 */ 22048 mutex_enter(SD_MUTEX(un)); 22049 while ((un->un_state == SD_STATE_SUSPENDED) || 22050 (un->un_state == SD_STATE_PM_CHANGING)) { 22051 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 22052 } 22053 /* 22054 * Twiddling the counter here protects commands from now 22055 * through to the top of sd_uscsi_strategy. Without the 22056 * counter inc. a power down, for example, could get in 22057 * after the above check for state is made and before 22058 * execution gets to the top of sd_uscsi_strategy. 22059 * That would cause problems. 22060 */ 22061 un->un_ncmds_in_driver++; 22062 22063 if (!is_valid && 22064 (flag & (FNDELAY | FNONBLOCK))) { 22065 switch (cmd) { 22066 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 22067 case DKIOCGVTOC: 22068 case DKIOCGEXTVTOC: 22069 case DKIOCGAPART: 22070 case DKIOCPARTINFO: 22071 case DKIOCEXTPARTINFO: 22072 case DKIOCSGEOM: 22073 case DKIOCSAPART: 22074 case DKIOCGETEFI: 22075 case DKIOCPARTITION: 22076 case DKIOCSVTOC: 22077 case DKIOCSEXTVTOC: 22078 case DKIOCSETEFI: 22079 case DKIOCGMBOOT: 22080 case DKIOCSMBOOT: 22081 case DKIOCG_PHYGEOM: 22082 case DKIOCG_VIRTGEOM: 22083 #if defined(__i386) || defined(__amd64) 22084 case DKIOCSETEXTPART: 22085 #endif 22086 /* let cmlb handle it */ 22087 goto skip_ready_valid; 22088 22089 case CDROMPAUSE: 22090 case CDROMRESUME: 22091 case CDROMPLAYMSF: 22092 case CDROMPLAYTRKIND: 22093 case CDROMREADTOCHDR: 22094 case CDROMREADTOCENTRY: 22095 case CDROMSTOP: 22096 case CDROMSTART: 22097 case CDROMVOLCTRL: 22098 case CDROMSUBCHNL: 22099 case CDROMREADMODE2: 22100 case CDROMREADMODE1: 22101 case CDROMREADOFFSET: 22102 case CDROMSBLKMODE: 22103 case CDROMGBLKMODE: 22104 case CDROMGDRVSPEED: 22105 case CDROMSDRVSPEED: 22106 case CDROMCDDA: 22107 case CDROMCDXA: 22108 case CDROMSUBCODE: 22109 if (!ISCD(un)) { 22110 un->un_ncmds_in_driver--; 22111 ASSERT(un->un_ncmds_in_driver >= 0); 22112 mutex_exit(SD_MUTEX(un)); 22113 err = ENOTTY; 22114 goto done_without_assess; 22115 } 22116 break; 22117 case FDEJECT: 22118 case DKIOCEJECT: 22119 case CDROMEJECT: 22120 if (!un->un_f_eject_media_supported) { 22121 un->un_ncmds_in_driver--; 22122 ASSERT(un->un_ncmds_in_driver >= 0); 22123 mutex_exit(SD_MUTEX(un)); 22124 err = ENOTTY; 22125 goto done_without_assess; 22126 } 22127 break; 22128 case DKIOCFLUSHWRITECACHE: 22129 mutex_exit(SD_MUTEX(un)); 22130 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22131 if (err != 0) { 22132 mutex_enter(SD_MUTEX(un)); 22133 un->un_ncmds_in_driver--; 22134 ASSERT(un->un_ncmds_in_driver >= 0); 22135 mutex_exit(SD_MUTEX(un)); 22136 err = EIO; 22137 goto done_quick_assess; 22138 } 22139 mutex_enter(SD_MUTEX(un)); 22140 /* FALLTHROUGH */ 22141 case DKIOCREMOVABLE: 22142 case DKIOCHOTPLUGGABLE: 22143 case DKIOCINFO: 22144 case DKIOCGMEDIAINFO: 22145 case DKIOCGMEDIAINFOEXT: 22146 case MHIOCENFAILFAST: 22147 case MHIOCSTATUS: 22148 case MHIOCTKOWN: 22149 case MHIOCRELEASE: 22150 case MHIOCGRP_INKEYS: 22151 case MHIOCGRP_INRESV: 22152 case MHIOCGRP_REGISTER: 22153 case MHIOCGRP_RESERVE: 22154 case MHIOCGRP_PREEMPTANDABORT: 22155 case MHIOCGRP_REGISTERANDIGNOREKEY: 22156 case CDROMCLOSETRAY: 22157 case USCSICMD: 22158 goto skip_ready_valid; 22159 default: 22160 break; 22161 } 22162 22163 mutex_exit(SD_MUTEX(un)); 22164 err = sd_ready_and_valid(ssc, SDPART(dev)); 22165 mutex_enter(SD_MUTEX(un)); 22166 22167 if (err != SD_READY_VALID) { 22168 switch (cmd) { 22169 case DKIOCSTATE: 22170 case CDROMGDRVSPEED: 22171 case CDROMSDRVSPEED: 22172 case FDEJECT: /* for eject command */ 22173 case DKIOCEJECT: 22174 case CDROMEJECT: 22175 case DKIOCREMOVABLE: 22176 case DKIOCHOTPLUGGABLE: 22177 break; 22178 default: 22179 if (un->un_f_has_removable_media) { 22180 err = ENXIO; 22181 } else { 22182 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22183 if (err == SD_RESERVED_BY_OTHERS) { 22184 err = EACCES; 22185 } else { 22186 err = EIO; 22187 } 22188 } 22189 un->un_ncmds_in_driver--; 22190 ASSERT(un->un_ncmds_in_driver >= 0); 22191 mutex_exit(SD_MUTEX(un)); 22192 22193 goto done_without_assess; 22194 } 22195 } 22196 } 22197 22198 skip_ready_valid: 22199 mutex_exit(SD_MUTEX(un)); 22200 22201 switch (cmd) { 22202 case DKIOCINFO: 22203 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22204 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22205 break; 22206 22207 case DKIOCGMEDIAINFO: 22208 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22209 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22210 break; 22211 22212 case DKIOCGMEDIAINFOEXT: 22213 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22214 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22215 break; 22216 22217 case DKIOCGGEOM: 22218 case DKIOCGVTOC: 22219 case DKIOCGEXTVTOC: 22220 case DKIOCGAPART: 22221 case DKIOCPARTINFO: 22222 case DKIOCEXTPARTINFO: 22223 case DKIOCSGEOM: 22224 case DKIOCSAPART: 22225 case DKIOCGETEFI: 22226 case DKIOCPARTITION: 22227 case DKIOCSVTOC: 22228 case DKIOCSEXTVTOC: 22229 case DKIOCSETEFI: 22230 case DKIOCGMBOOT: 22231 case DKIOCSMBOOT: 22232 case DKIOCG_PHYGEOM: 22233 case DKIOCG_VIRTGEOM: 22234 #if defined(__i386) || defined(__amd64) 22235 case DKIOCSETEXTPART: 22236 #endif 22237 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22238 22239 /* TUR should spin up */ 22240 22241 if (un->un_f_has_removable_media) 22242 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22243 SD_CHECK_FOR_MEDIA); 22244 22245 else 22246 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22247 22248 if (err != 0) 22249 goto done_with_assess; 22250 22251 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22252 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22253 22254 if ((err == 0) && 22255 ((cmd == DKIOCSETEFI) || 22256 (un->un_f_pkstats_enabled) && 22257 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22258 cmd == DKIOCSEXTVTOC))) { 22259 22260 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22261 (void *)SD_PATH_DIRECT); 22262 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22263 sd_set_pstats(un); 22264 SD_TRACE(SD_LOG_IO_PARTITION, un, 22265 "sd_ioctl: un:0x%p pstats created and " 22266 "set\n", un); 22267 } 22268 } 22269 22270 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22271 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22272 22273 mutex_enter(SD_MUTEX(un)); 22274 if (un->un_f_devid_supported && 22275 (un->un_f_opt_fab_devid == TRUE)) { 22276 if (un->un_devid == NULL) { 22277 sd_register_devid(ssc, SD_DEVINFO(un), 22278 SD_TARGET_IS_UNRESERVED); 22279 } else { 22280 /* 22281 * The device id for this disk 22282 * has been fabricated. The 22283 * device id must be preserved 22284 * by writing it back out to 22285 * disk. 22286 */ 22287 if (sd_write_deviceid(ssc) != 0) { 22288 ddi_devid_free(un->un_devid); 22289 un->un_devid = NULL; 22290 } 22291 } 22292 } 22293 mutex_exit(SD_MUTEX(un)); 22294 } 22295 22296 break; 22297 22298 case DKIOCLOCK: 22299 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22300 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22301 SD_PATH_STANDARD); 22302 goto done_with_assess; 22303 22304 case DKIOCUNLOCK: 22305 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22306 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22307 SD_PATH_STANDARD); 22308 goto done_with_assess; 22309 22310 case DKIOCSTATE: { 22311 enum dkio_state state; 22312 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22313 22314 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22315 err = EFAULT; 22316 } else { 22317 err = sd_check_media(dev, state); 22318 if (err == 0) { 22319 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22320 sizeof (int), flag) != 0) 22321 err = EFAULT; 22322 } 22323 } 22324 break; 22325 } 22326 22327 case DKIOCREMOVABLE: 22328 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22329 i = un->un_f_has_removable_media ? 1 : 0; 22330 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22331 err = EFAULT; 22332 } else { 22333 err = 0; 22334 } 22335 break; 22336 22337 case DKIOCHOTPLUGGABLE: 22338 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22339 i = un->un_f_is_hotpluggable ? 1 : 0; 22340 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22341 err = EFAULT; 22342 } else { 22343 err = 0; 22344 } 22345 break; 22346 22347 case DKIOCGTEMPERATURE: 22348 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22349 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22350 break; 22351 22352 case MHIOCENFAILFAST: 22353 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22354 if ((err = drv_priv(cred_p)) == 0) { 22355 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22356 } 22357 break; 22358 22359 case MHIOCTKOWN: 22360 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22361 if ((err = drv_priv(cred_p)) == 0) { 22362 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22363 } 22364 break; 22365 22366 case MHIOCRELEASE: 22367 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22368 if ((err = drv_priv(cred_p)) == 0) { 22369 err = sd_mhdioc_release(dev); 22370 } 22371 break; 22372 22373 case MHIOCSTATUS: 22374 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22375 if ((err = drv_priv(cred_p)) == 0) { 22376 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22377 case 0: 22378 err = 0; 22379 break; 22380 case EACCES: 22381 *rval_p = 1; 22382 err = 0; 22383 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22384 break; 22385 default: 22386 err = EIO; 22387 goto done_with_assess; 22388 } 22389 } 22390 break; 22391 22392 case MHIOCQRESERVE: 22393 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22394 if ((err = drv_priv(cred_p)) == 0) { 22395 err = sd_reserve_release(dev, SD_RESERVE); 22396 } 22397 break; 22398 22399 case MHIOCREREGISTERDEVID: 22400 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22401 if (drv_priv(cred_p) == EPERM) { 22402 err = EPERM; 22403 } else if (!un->un_f_devid_supported) { 22404 err = ENOTTY; 22405 } else { 22406 err = sd_mhdioc_register_devid(dev); 22407 } 22408 break; 22409 22410 case MHIOCGRP_INKEYS: 22411 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22412 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22413 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22414 err = ENOTSUP; 22415 } else { 22416 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22417 flag); 22418 } 22419 } 22420 break; 22421 22422 case MHIOCGRP_INRESV: 22423 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22424 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22425 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22426 err = ENOTSUP; 22427 } else { 22428 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22429 } 22430 } 22431 break; 22432 22433 case MHIOCGRP_REGISTER: 22434 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22435 if ((err = drv_priv(cred_p)) != EPERM) { 22436 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22437 err = ENOTSUP; 22438 } else if (arg != NULL) { 22439 mhioc_register_t reg; 22440 if (ddi_copyin((void *)arg, ®, 22441 sizeof (mhioc_register_t), flag) != 0) { 22442 err = EFAULT; 22443 } else { 22444 err = 22445 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22446 ssc, SD_SCSI3_REGISTER, 22447 (uchar_t *)®); 22448 if (err != 0) 22449 goto done_with_assess; 22450 } 22451 } 22452 } 22453 break; 22454 22455 case MHIOCGRP_RESERVE: 22456 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 22457 if ((err = drv_priv(cred_p)) != EPERM) { 22458 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22459 err = ENOTSUP; 22460 } else if (arg != NULL) { 22461 mhioc_resv_desc_t resv_desc; 22462 if (ddi_copyin((void *)arg, &resv_desc, 22463 sizeof (mhioc_resv_desc_t), flag) != 0) { 22464 err = EFAULT; 22465 } else { 22466 err = 22467 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22468 ssc, SD_SCSI3_RESERVE, 22469 (uchar_t *)&resv_desc); 22470 if (err != 0) 22471 goto done_with_assess; 22472 } 22473 } 22474 } 22475 break; 22476 22477 case MHIOCGRP_PREEMPTANDABORT: 22478 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 22479 if ((err = drv_priv(cred_p)) != EPERM) { 22480 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22481 err = ENOTSUP; 22482 } else if (arg != NULL) { 22483 mhioc_preemptandabort_t preempt_abort; 22484 if (ddi_copyin((void *)arg, &preempt_abort, 22485 sizeof (mhioc_preemptandabort_t), 22486 flag) != 0) { 22487 err = EFAULT; 22488 } else { 22489 err = 22490 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22491 ssc, SD_SCSI3_PREEMPTANDABORT, 22492 (uchar_t *)&preempt_abort); 22493 if (err != 0) 22494 goto done_with_assess; 22495 } 22496 } 22497 } 22498 break; 22499 22500 case MHIOCGRP_REGISTERANDIGNOREKEY: 22501 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 22502 if ((err = drv_priv(cred_p)) != EPERM) { 22503 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22504 err = ENOTSUP; 22505 } else if (arg != NULL) { 22506 mhioc_registerandignorekey_t r_and_i; 22507 if (ddi_copyin((void *)arg, (void *)&r_and_i, 22508 sizeof (mhioc_registerandignorekey_t), 22509 flag) != 0) { 22510 err = EFAULT; 22511 } else { 22512 err = 22513 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22514 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 22515 (uchar_t *)&r_and_i); 22516 if (err != 0) 22517 goto done_with_assess; 22518 } 22519 } 22520 } 22521 break; 22522 22523 case USCSICMD: 22524 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 22525 cr = ddi_get_cred(); 22526 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 22527 err = EPERM; 22528 } else { 22529 enum uio_seg uioseg; 22530 22531 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 22532 UIO_USERSPACE; 22533 if (un->un_f_format_in_progress == TRUE) { 22534 err = EAGAIN; 22535 break; 22536 } 22537 22538 err = sd_ssc_send(ssc, 22539 (struct uscsi_cmd *)arg, 22540 flag, uioseg, SD_PATH_STANDARD); 22541 if (err != 0) 22542 goto done_with_assess; 22543 else 22544 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22545 } 22546 break; 22547 22548 case CDROMPAUSE: 22549 case CDROMRESUME: 22550 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 22551 if (!ISCD(un)) { 22552 err = ENOTTY; 22553 } else { 22554 err = sr_pause_resume(dev, cmd); 22555 } 22556 break; 22557 22558 case CDROMPLAYMSF: 22559 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 22560 if (!ISCD(un)) { 22561 err = ENOTTY; 22562 } else { 22563 err = sr_play_msf(dev, (caddr_t)arg, flag); 22564 } 22565 break; 22566 22567 case CDROMPLAYTRKIND: 22568 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 22569 #if defined(__i386) || defined(__amd64) 22570 /* 22571 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 22572 */ 22573 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22574 #else 22575 if (!ISCD(un)) { 22576 #endif 22577 err = ENOTTY; 22578 } else { 22579 err = sr_play_trkind(dev, (caddr_t)arg, flag); 22580 } 22581 break; 22582 22583 case CDROMREADTOCHDR: 22584 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 22585 if (!ISCD(un)) { 22586 err = ENOTTY; 22587 } else { 22588 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 22589 } 22590 break; 22591 22592 case CDROMREADTOCENTRY: 22593 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 22594 if (!ISCD(un)) { 22595 err = ENOTTY; 22596 } else { 22597 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 22598 } 22599 break; 22600 22601 case CDROMSTOP: 22602 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 22603 if (!ISCD(un)) { 22604 err = ENOTTY; 22605 } else { 22606 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22607 SD_TARGET_STOP, SD_PATH_STANDARD); 22608 goto done_with_assess; 22609 } 22610 break; 22611 22612 case CDROMSTART: 22613 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 22614 if (!ISCD(un)) { 22615 err = ENOTTY; 22616 } else { 22617 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22618 SD_TARGET_START, SD_PATH_STANDARD); 22619 goto done_with_assess; 22620 } 22621 break; 22622 22623 case CDROMCLOSETRAY: 22624 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 22625 if (!ISCD(un)) { 22626 err = ENOTTY; 22627 } else { 22628 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22629 SD_TARGET_CLOSE, SD_PATH_STANDARD); 22630 goto done_with_assess; 22631 } 22632 break; 22633 22634 case FDEJECT: /* for eject command */ 22635 case DKIOCEJECT: 22636 case CDROMEJECT: 22637 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 22638 if (!un->un_f_eject_media_supported) { 22639 err = ENOTTY; 22640 } else { 22641 err = sr_eject(dev); 22642 } 22643 break; 22644 22645 case CDROMVOLCTRL: 22646 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 22647 if (!ISCD(un)) { 22648 err = ENOTTY; 22649 } else { 22650 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 22651 } 22652 break; 22653 22654 case CDROMSUBCHNL: 22655 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 22656 if (!ISCD(un)) { 22657 err = ENOTTY; 22658 } else { 22659 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 22660 } 22661 break; 22662 22663 case CDROMREADMODE2: 22664 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 22665 if (!ISCD(un)) { 22666 err = ENOTTY; 22667 } else if (un->un_f_cfg_is_atapi == TRUE) { 22668 /* 22669 * If the drive supports READ CD, use that instead of 22670 * switching the LBA size via a MODE SELECT 22671 * Block Descriptor 22672 */ 22673 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 22674 } else { 22675 err = sr_read_mode2(dev, (caddr_t)arg, flag); 22676 } 22677 break; 22678 22679 case CDROMREADMODE1: 22680 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 22681 if (!ISCD(un)) { 22682 err = ENOTTY; 22683 } else { 22684 err = sr_read_mode1(dev, (caddr_t)arg, flag); 22685 } 22686 break; 22687 22688 case CDROMREADOFFSET: 22689 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 22690 if (!ISCD(un)) { 22691 err = ENOTTY; 22692 } else { 22693 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 22694 flag); 22695 } 22696 break; 22697 22698 case CDROMSBLKMODE: 22699 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 22700 /* 22701 * There is no means of changing block size in case of atapi 22702 * drives, thus return ENOTTY if drive type is atapi 22703 */ 22704 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22705 err = ENOTTY; 22706 } else if (un->un_f_mmc_cap == TRUE) { 22707 22708 /* 22709 * MMC Devices do not support changing the 22710 * logical block size 22711 * 22712 * Note: EINVAL is being returned instead of ENOTTY to 22713 * maintain consistancy with the original mmc 22714 * driver update. 22715 */ 22716 err = EINVAL; 22717 } else { 22718 mutex_enter(SD_MUTEX(un)); 22719 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 22720 (un->un_ncmds_in_transport > 0)) { 22721 mutex_exit(SD_MUTEX(un)); 22722 err = EINVAL; 22723 } else { 22724 mutex_exit(SD_MUTEX(un)); 22725 err = sr_change_blkmode(dev, cmd, arg, flag); 22726 } 22727 } 22728 break; 22729 22730 case CDROMGBLKMODE: 22731 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 22732 if (!ISCD(un)) { 22733 err = ENOTTY; 22734 } else if ((un->un_f_cfg_is_atapi != FALSE) && 22735 (un->un_f_blockcount_is_valid != FALSE)) { 22736 /* 22737 * Drive is an ATAPI drive so return target block 22738 * size for ATAPI drives since we cannot change the 22739 * blocksize on ATAPI drives. Used primarily to detect 22740 * if an ATAPI cdrom is present. 22741 */ 22742 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 22743 sizeof (int), flag) != 0) { 22744 err = EFAULT; 22745 } else { 22746 err = 0; 22747 } 22748 22749 } else { 22750 /* 22751 * Drive supports changing block sizes via a Mode 22752 * Select. 22753 */ 22754 err = sr_change_blkmode(dev, cmd, arg, flag); 22755 } 22756 break; 22757 22758 case CDROMGDRVSPEED: 22759 case CDROMSDRVSPEED: 22760 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 22761 if (!ISCD(un)) { 22762 err = ENOTTY; 22763 } else if (un->un_f_mmc_cap == TRUE) { 22764 /* 22765 * Note: In the future the driver implementation 22766 * for getting and 22767 * setting cd speed should entail: 22768 * 1) If non-mmc try the Toshiba mode page 22769 * (sr_change_speed) 22770 * 2) If mmc but no support for Real Time Streaming try 22771 * the SET CD SPEED (0xBB) command 22772 * (sr_atapi_change_speed) 22773 * 3) If mmc and support for Real Time Streaming 22774 * try the GET PERFORMANCE and SET STREAMING 22775 * commands (not yet implemented, 4380808) 22776 */ 22777 /* 22778 * As per recent MMC spec, CD-ROM speed is variable 22779 * and changes with LBA. Since there is no such 22780 * things as drive speed now, fail this ioctl. 22781 * 22782 * Note: EINVAL is returned for consistancy of original 22783 * implementation which included support for getting 22784 * the drive speed of mmc devices but not setting 22785 * the drive speed. Thus EINVAL would be returned 22786 * if a set request was made for an mmc device. 22787 * We no longer support get or set speed for 22788 * mmc but need to remain consistent with regard 22789 * to the error code returned. 22790 */ 22791 err = EINVAL; 22792 } else if (un->un_f_cfg_is_atapi == TRUE) { 22793 err = sr_atapi_change_speed(dev, cmd, arg, flag); 22794 } else { 22795 err = sr_change_speed(dev, cmd, arg, flag); 22796 } 22797 break; 22798 22799 case CDROMCDDA: 22800 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 22801 if (!ISCD(un)) { 22802 err = ENOTTY; 22803 } else { 22804 err = sr_read_cdda(dev, (void *)arg, flag); 22805 } 22806 break; 22807 22808 case CDROMCDXA: 22809 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 22810 if (!ISCD(un)) { 22811 err = ENOTTY; 22812 } else { 22813 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 22814 } 22815 break; 22816 22817 case CDROMSUBCODE: 22818 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 22819 if (!ISCD(un)) { 22820 err = ENOTTY; 22821 } else { 22822 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 22823 } 22824 break; 22825 22826 22827 #ifdef SDDEBUG 22828 /* RESET/ABORTS testing ioctls */ 22829 case DKIOCRESET: { 22830 int reset_level; 22831 22832 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 22833 err = EFAULT; 22834 } else { 22835 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 22836 "reset_level = 0x%lx\n", reset_level); 22837 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 22838 err = 0; 22839 } else { 22840 err = EIO; 22841 } 22842 } 22843 break; 22844 } 22845 22846 case DKIOCABORT: 22847 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 22848 if (scsi_abort(SD_ADDRESS(un), NULL)) { 22849 err = 0; 22850 } else { 22851 err = EIO; 22852 } 22853 break; 22854 #endif 22855 22856 #ifdef SD_FAULT_INJECTION 22857 /* SDIOC FaultInjection testing ioctls */ 22858 case SDIOCSTART: 22859 case SDIOCSTOP: 22860 case SDIOCINSERTPKT: 22861 case SDIOCINSERTXB: 22862 case SDIOCINSERTUN: 22863 case SDIOCINSERTARQ: 22864 case SDIOCPUSH: 22865 case SDIOCRETRIEVE: 22866 case SDIOCRUN: 22867 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 22868 "SDIOC detected cmd:0x%X:\n", cmd); 22869 /* call error generator */ 22870 sd_faultinjection_ioctl(cmd, arg, un); 22871 err = 0; 22872 break; 22873 22874 #endif /* SD_FAULT_INJECTION */ 22875 22876 case DKIOCFLUSHWRITECACHE: 22877 { 22878 struct dk_callback *dkc = (struct dk_callback *)arg; 22879 22880 mutex_enter(SD_MUTEX(un)); 22881 if (!un->un_f_sync_cache_supported || 22882 !un->un_f_write_cache_enabled) { 22883 err = un->un_f_sync_cache_supported ? 22884 0 : ENOTSUP; 22885 mutex_exit(SD_MUTEX(un)); 22886 if ((flag & FKIOCTL) && dkc != NULL && 22887 dkc->dkc_callback != NULL) { 22888 (*dkc->dkc_callback)(dkc->dkc_cookie, 22889 err); 22890 /* 22891 * Did callback and reported error. 22892 * Since we did a callback, ioctl 22893 * should return 0. 22894 */ 22895 err = 0; 22896 } 22897 break; 22898 } 22899 mutex_exit(SD_MUTEX(un)); 22900 22901 if ((flag & FKIOCTL) && dkc != NULL && 22902 dkc->dkc_callback != NULL) { 22903 /* async SYNC CACHE request */ 22904 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 22905 } else { 22906 /* synchronous SYNC CACHE request */ 22907 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22908 } 22909 } 22910 break; 22911 22912 case DKIOCGETWCE: { 22913 22914 int wce; 22915 22916 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 22917 break; 22918 } 22919 22920 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 22921 err = EFAULT; 22922 } 22923 break; 22924 } 22925 22926 case DKIOCSETWCE: { 22927 22928 int wce, sync_supported; 22929 22930 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 22931 err = EFAULT; 22932 break; 22933 } 22934 22935 /* 22936 * Synchronize multiple threads trying to enable 22937 * or disable the cache via the un_f_wcc_cv 22938 * condition variable. 22939 */ 22940 mutex_enter(SD_MUTEX(un)); 22941 22942 /* 22943 * Don't allow the cache to be enabled if the 22944 * config file has it disabled. 22945 */ 22946 if (un->un_f_opt_disable_cache && wce) { 22947 mutex_exit(SD_MUTEX(un)); 22948 err = EINVAL; 22949 break; 22950 } 22951 22952 /* 22953 * Wait for write cache change in progress 22954 * bit to be clear before proceeding. 22955 */ 22956 while (un->un_f_wcc_inprog) 22957 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 22958 22959 un->un_f_wcc_inprog = 1; 22960 22961 if (un->un_f_write_cache_enabled && wce == 0) { 22962 /* 22963 * Disable the write cache. Don't clear 22964 * un_f_write_cache_enabled until after 22965 * the mode select and flush are complete. 22966 */ 22967 sync_supported = un->un_f_sync_cache_supported; 22968 22969 /* 22970 * If cache flush is suppressed, we assume that the 22971 * controller firmware will take care of managing the 22972 * write cache for us: no need to explicitly 22973 * disable it. 22974 */ 22975 if (!un->un_f_suppress_cache_flush) { 22976 mutex_exit(SD_MUTEX(un)); 22977 if ((err = sd_cache_control(ssc, 22978 SD_CACHE_NOCHANGE, 22979 SD_CACHE_DISABLE)) == 0 && 22980 sync_supported) { 22981 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 22982 NULL); 22983 } 22984 } else { 22985 mutex_exit(SD_MUTEX(un)); 22986 } 22987 22988 mutex_enter(SD_MUTEX(un)); 22989 if (err == 0) { 22990 un->un_f_write_cache_enabled = 0; 22991 } 22992 22993 } else if (!un->un_f_write_cache_enabled && wce != 0) { 22994 /* 22995 * Set un_f_write_cache_enabled first, so there is 22996 * no window where the cache is enabled, but the 22997 * bit says it isn't. 22998 */ 22999 un->un_f_write_cache_enabled = 1; 23000 23001 /* 23002 * If cache flush is suppressed, we assume that the 23003 * controller firmware will take care of managing the 23004 * write cache for us: no need to explicitly 23005 * enable it. 23006 */ 23007 if (!un->un_f_suppress_cache_flush) { 23008 mutex_exit(SD_MUTEX(un)); 23009 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 23010 SD_CACHE_ENABLE); 23011 } else { 23012 mutex_exit(SD_MUTEX(un)); 23013 } 23014 23015 mutex_enter(SD_MUTEX(un)); 23016 23017 if (err) { 23018 un->un_f_write_cache_enabled = 0; 23019 } 23020 } 23021 23022 un->un_f_wcc_inprog = 0; 23023 cv_broadcast(&un->un_wcc_cv); 23024 mutex_exit(SD_MUTEX(un)); 23025 break; 23026 } 23027 23028 default: 23029 err = ENOTTY; 23030 break; 23031 } 23032 mutex_enter(SD_MUTEX(un)); 23033 un->un_ncmds_in_driver--; 23034 ASSERT(un->un_ncmds_in_driver >= 0); 23035 mutex_exit(SD_MUTEX(un)); 23036 23037 23038 done_without_assess: 23039 sd_ssc_fini(ssc); 23040 23041 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23042 return (err); 23043 23044 done_with_assess: 23045 mutex_enter(SD_MUTEX(un)); 23046 un->un_ncmds_in_driver--; 23047 ASSERT(un->un_ncmds_in_driver >= 0); 23048 mutex_exit(SD_MUTEX(un)); 23049 23050 done_quick_assess: 23051 if (err != 0) 23052 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23053 /* Uninitialize sd_ssc_t pointer */ 23054 sd_ssc_fini(ssc); 23055 23056 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23057 return (err); 23058 } 23059 23060 23061 /* 23062 * Function: sd_dkio_ctrl_info 23063 * 23064 * Description: This routine is the driver entry point for handling controller 23065 * information ioctl requests (DKIOCINFO). 23066 * 23067 * Arguments: dev - the device number 23068 * arg - pointer to user provided dk_cinfo structure 23069 * specifying the controller type and attributes. 23070 * flag - this argument is a pass through to ddi_copyxxx() 23071 * directly from the mode argument of ioctl(). 23072 * 23073 * Return Code: 0 23074 * EFAULT 23075 * ENXIO 23076 */ 23077 23078 static int 23079 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 23080 { 23081 struct sd_lun *un = NULL; 23082 struct dk_cinfo *info; 23083 dev_info_t *pdip; 23084 int lun, tgt; 23085 23086 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23087 return (ENXIO); 23088 } 23089 23090 info = (struct dk_cinfo *) 23091 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 23092 23093 switch (un->un_ctype) { 23094 case CTYPE_CDROM: 23095 info->dki_ctype = DKC_CDROM; 23096 break; 23097 default: 23098 info->dki_ctype = DKC_SCSI_CCS; 23099 break; 23100 } 23101 pdip = ddi_get_parent(SD_DEVINFO(un)); 23102 info->dki_cnum = ddi_get_instance(pdip); 23103 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 23104 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 23105 } else { 23106 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 23107 DK_DEVLEN - 1); 23108 } 23109 23110 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23111 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 23112 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23113 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 23114 23115 /* Unit Information */ 23116 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 23117 info->dki_slave = ((tgt << 3) | lun); 23118 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 23119 DK_DEVLEN - 1); 23120 info->dki_flags = DKI_FMTVOL; 23121 info->dki_partition = SDPART(dev); 23122 23123 /* Max Transfer size of this device in blocks */ 23124 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 23125 info->dki_addr = 0; 23126 info->dki_space = 0; 23127 info->dki_prio = 0; 23128 info->dki_vec = 0; 23129 23130 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 23131 kmem_free(info, sizeof (struct dk_cinfo)); 23132 return (EFAULT); 23133 } else { 23134 kmem_free(info, sizeof (struct dk_cinfo)); 23135 return (0); 23136 } 23137 } 23138 23139 23140 /* 23141 * Function: sd_get_media_info 23142 * 23143 * Description: This routine is the driver entry point for handling ioctl 23144 * requests for the media type or command set profile used by the 23145 * drive to operate on the media (DKIOCGMEDIAINFO). 23146 * 23147 * Arguments: dev - the device number 23148 * arg - pointer to user provided dk_minfo structure 23149 * specifying the media type, logical block size and 23150 * drive capacity. 23151 * flag - this argument is a pass through to ddi_copyxxx() 23152 * directly from the mode argument of ioctl(). 23153 * 23154 * Return Code: 0 23155 * EACCESS 23156 * EFAULT 23157 * ENXIO 23158 * EIO 23159 */ 23160 23161 static int 23162 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 23163 { 23164 struct sd_lun *un = NULL; 23165 struct uscsi_cmd com; 23166 struct scsi_inquiry *sinq; 23167 struct dk_minfo media_info; 23168 u_longlong_t media_capacity; 23169 uint64_t capacity; 23170 uint_t lbasize; 23171 uchar_t *out_data; 23172 uchar_t *rqbuf; 23173 int rval = 0; 23174 int rtn; 23175 sd_ssc_t *ssc; 23176 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23177 (un->un_state == SD_STATE_OFFLINE)) { 23178 return (ENXIO); 23179 } 23180 23181 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 23182 23183 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23184 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23185 23186 /* Issue a TUR to determine if the drive is ready with media present */ 23187 ssc = sd_ssc_init(un); 23188 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23189 if (rval == ENXIO) { 23190 goto done; 23191 } else if (rval != 0) { 23192 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23193 } 23194 23195 /* Now get configuration data */ 23196 if (ISCD(un)) { 23197 media_info.dki_media_type = DK_CDROM; 23198 23199 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23200 if (un->un_f_mmc_cap == TRUE) { 23201 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23202 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23203 SD_PATH_STANDARD); 23204 23205 if (rtn) { 23206 /* 23207 * We ignore all failures for CD and need to 23208 * put the assessment before processing code 23209 * to avoid missing assessment for FMA. 23210 */ 23211 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23212 /* 23213 * Failed for other than an illegal request 23214 * or command not supported 23215 */ 23216 if ((com.uscsi_status == STATUS_CHECK) && 23217 (com.uscsi_rqstatus == STATUS_GOOD)) { 23218 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23219 (rqbuf[12] != 0x20)) { 23220 rval = EIO; 23221 goto no_assessment; 23222 } 23223 } 23224 } else { 23225 /* 23226 * The GET CONFIGURATION command succeeded 23227 * so set the media type according to the 23228 * returned data 23229 */ 23230 media_info.dki_media_type = out_data[6]; 23231 media_info.dki_media_type <<= 8; 23232 media_info.dki_media_type |= out_data[7]; 23233 } 23234 } 23235 } else { 23236 /* 23237 * The profile list is not available, so we attempt to identify 23238 * the media type based on the inquiry data 23239 */ 23240 sinq = un->un_sd->sd_inq; 23241 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23242 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23243 /* This is a direct access device or optical disk */ 23244 media_info.dki_media_type = DK_FIXED_DISK; 23245 23246 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23247 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23248 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23249 media_info.dki_media_type = DK_ZIP; 23250 } else if ( 23251 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23252 media_info.dki_media_type = DK_JAZ; 23253 } 23254 } 23255 } else { 23256 /* 23257 * Not a CD, direct access or optical disk so return 23258 * unknown media 23259 */ 23260 media_info.dki_media_type = DK_UNKNOWN; 23261 } 23262 } 23263 23264 /* Now read the capacity so we can provide the lbasize and capacity */ 23265 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23266 SD_PATH_DIRECT); 23267 switch (rval) { 23268 case 0: 23269 break; 23270 case EACCES: 23271 rval = EACCES; 23272 goto done; 23273 default: 23274 rval = EIO; 23275 goto done; 23276 } 23277 23278 /* 23279 * If lun is expanded dynamically, update the un structure. 23280 */ 23281 mutex_enter(SD_MUTEX(un)); 23282 if ((un->un_f_blockcount_is_valid == TRUE) && 23283 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23284 (capacity > un->un_blockcount)) { 23285 sd_update_block_info(un, lbasize, capacity); 23286 } 23287 mutex_exit(SD_MUTEX(un)); 23288 23289 media_info.dki_lbsize = lbasize; 23290 media_capacity = capacity; 23291 23292 /* 23293 * sd_send_scsi_READ_CAPACITY() reports capacity in 23294 * un->un_sys_blocksize chunks. So we need to convert it into 23295 * cap.lbasize chunks. 23296 */ 23297 media_capacity *= un->un_sys_blocksize; 23298 media_capacity /= lbasize; 23299 media_info.dki_capacity = media_capacity; 23300 23301 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 23302 rval = EFAULT; 23303 /* Put goto. Anybody might add some code below in future */ 23304 goto no_assessment; 23305 } 23306 done: 23307 if (rval != 0) { 23308 if (rval == EIO) 23309 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23310 else 23311 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23312 } 23313 no_assessment: 23314 sd_ssc_fini(ssc); 23315 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23316 kmem_free(rqbuf, SENSE_LENGTH); 23317 return (rval); 23318 } 23319 23320 /* 23321 * Function: sd_get_media_info_ext 23322 * 23323 * Description: This routine is the driver entry point for handling ioctl 23324 * requests for the media type or command set profile used by the 23325 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 23326 * difference this ioctl and DKIOCGMEDIAINFO is the return value 23327 * of this ioctl contains both logical block size and physical 23328 * block size. 23329 * 23330 * 23331 * Arguments: dev - the device number 23332 * arg - pointer to user provided dk_minfo_ext structure 23333 * specifying the media type, logical block size, 23334 * physical block size and disk capacity. 23335 * flag - this argument is a pass through to ddi_copyxxx() 23336 * directly from the mode argument of ioctl(). 23337 * 23338 * Return Code: 0 23339 * EACCESS 23340 * EFAULT 23341 * ENXIO 23342 * EIO 23343 */ 23344 23345 static int 23346 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 23347 { 23348 struct sd_lun *un = NULL; 23349 struct uscsi_cmd com; 23350 struct scsi_inquiry *sinq; 23351 struct dk_minfo_ext media_info_ext; 23352 u_longlong_t media_capacity; 23353 uint64_t capacity; 23354 uint_t lbasize; 23355 uint_t pbsize; 23356 uchar_t *out_data; 23357 uchar_t *rqbuf; 23358 int rval = 0; 23359 int rtn; 23360 sd_ssc_t *ssc; 23361 23362 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23363 (un->un_state == SD_STATE_OFFLINE)) { 23364 return (ENXIO); 23365 } 23366 23367 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_ext: entry\n"); 23368 23369 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23370 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23371 ssc = sd_ssc_init(un); 23372 23373 /* Issue a TUR to determine if the drive is ready with media present */ 23374 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23375 if (rval == ENXIO) { 23376 goto done; 23377 } else if (rval != 0) { 23378 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23379 } 23380 23381 /* Now get configuration data */ 23382 if (ISCD(un)) { 23383 media_info_ext.dki_media_type = DK_CDROM; 23384 23385 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23386 if (un->un_f_mmc_cap == TRUE) { 23387 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23388 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23389 SD_PATH_STANDARD); 23390 23391 if (rtn) { 23392 /* 23393 * We ignore all failures for CD and need to 23394 * put the assessment before processing code 23395 * to avoid missing assessment for FMA. 23396 */ 23397 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23398 /* 23399 * Failed for other than an illegal request 23400 * or command not supported 23401 */ 23402 if ((com.uscsi_status == STATUS_CHECK) && 23403 (com.uscsi_rqstatus == STATUS_GOOD)) { 23404 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23405 (rqbuf[12] != 0x20)) { 23406 rval = EIO; 23407 goto no_assessment; 23408 } 23409 } 23410 } else { 23411 /* 23412 * The GET CONFIGURATION command succeeded 23413 * so set the media type according to the 23414 * returned data 23415 */ 23416 media_info_ext.dki_media_type = out_data[6]; 23417 media_info_ext.dki_media_type <<= 8; 23418 media_info_ext.dki_media_type |= out_data[7]; 23419 } 23420 } 23421 } else { 23422 /* 23423 * The profile list is not available, so we attempt to identify 23424 * the media type based on the inquiry data 23425 */ 23426 sinq = un->un_sd->sd_inq; 23427 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23428 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23429 /* This is a direct access device or optical disk */ 23430 media_info_ext.dki_media_type = DK_FIXED_DISK; 23431 23432 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23433 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23434 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23435 media_info_ext.dki_media_type = DK_ZIP; 23436 } else if ( 23437 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23438 media_info_ext.dki_media_type = DK_JAZ; 23439 } 23440 } 23441 } else { 23442 /* 23443 * Not a CD, direct access or optical disk so return 23444 * unknown media 23445 */ 23446 media_info_ext.dki_media_type = DK_UNKNOWN; 23447 } 23448 } 23449 23450 /* 23451 * Now read the capacity so we can provide the lbasize, 23452 * pbsize and capacity. 23453 */ 23454 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, &pbsize, 23455 SD_PATH_DIRECT); 23456 23457 if (rval != 0) { 23458 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23459 SD_PATH_DIRECT); 23460 23461 switch (rval) { 23462 case 0: 23463 pbsize = lbasize; 23464 media_capacity = capacity; 23465 /* 23466 * sd_send_scsi_READ_CAPACITY() reports capacity in 23467 * un->un_sys_blocksize chunks. So we need to convert 23468 * it into cap.lbsize chunks. 23469 */ 23470 if (un->un_f_has_removable_media) { 23471 media_capacity *= un->un_sys_blocksize; 23472 media_capacity /= lbasize; 23473 } 23474 break; 23475 case EACCES: 23476 rval = EACCES; 23477 goto done; 23478 default: 23479 rval = EIO; 23480 goto done; 23481 } 23482 } else { 23483 media_capacity = capacity; 23484 } 23485 23486 /* 23487 * If lun is expanded dynamically, update the un structure. 23488 */ 23489 mutex_enter(SD_MUTEX(un)); 23490 if ((un->un_f_blockcount_is_valid == TRUE) && 23491 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23492 (capacity > un->un_blockcount)) { 23493 sd_update_block_info(un, lbasize, capacity); 23494 } 23495 mutex_exit(SD_MUTEX(un)); 23496 23497 media_info_ext.dki_lbsize = lbasize; 23498 media_info_ext.dki_capacity = media_capacity; 23499 media_info_ext.dki_pbsize = pbsize; 23500 23501 if (ddi_copyout(&media_info_ext, arg, sizeof (struct dk_minfo_ext), 23502 flag)) { 23503 rval = EFAULT; 23504 goto no_assessment; 23505 } 23506 done: 23507 if (rval != 0) { 23508 if (rval == EIO) 23509 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23510 else 23511 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23512 } 23513 no_assessment: 23514 sd_ssc_fini(ssc); 23515 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23516 kmem_free(rqbuf, SENSE_LENGTH); 23517 return (rval); 23518 } 23519 23520 /* 23521 * Function: sd_watch_request_submit 23522 * 23523 * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit 23524 * depending on which is supported by device. 23525 */ 23526 static opaque_t 23527 sd_watch_request_submit(struct sd_lun *un) 23528 { 23529 dev_t dev; 23530 23531 /* All submissions are unified to use same device number */ 23532 dev = sd_make_device(SD_DEVINFO(un)); 23533 23534 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23535 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un), 23536 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23537 (caddr_t)dev)); 23538 } else { 23539 return (scsi_watch_request_submit(SD_SCSI_DEVP(un), 23540 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23541 (caddr_t)dev)); 23542 } 23543 } 23544 23545 23546 /* 23547 * Function: sd_check_media 23548 * 23549 * Description: This utility routine implements the functionality for the 23550 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 23551 * driver state changes from that specified by the user 23552 * (inserted or ejected). For example, if the user specifies 23553 * DKIO_EJECTED and the current media state is inserted this 23554 * routine will immediately return DKIO_INSERTED. However, if the 23555 * current media state is not inserted the user thread will be 23556 * blocked until the drive state changes. If DKIO_NONE is specified 23557 * the user thread will block until a drive state change occurs. 23558 * 23559 * Arguments: dev - the device number 23560 * state - user pointer to a dkio_state, updated with the current 23561 * drive state at return. 23562 * 23563 * Return Code: ENXIO 23564 * EIO 23565 * EAGAIN 23566 * EINTR 23567 */ 23568 23569 static int 23570 sd_check_media(dev_t dev, enum dkio_state state) 23571 { 23572 struct sd_lun *un = NULL; 23573 enum dkio_state prev_state; 23574 opaque_t token = NULL; 23575 int rval = 0; 23576 sd_ssc_t *ssc; 23577 23578 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23579 return (ENXIO); 23580 } 23581 23582 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 23583 23584 ssc = sd_ssc_init(un); 23585 23586 mutex_enter(SD_MUTEX(un)); 23587 23588 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 23589 "state=%x, mediastate=%x\n", state, un->un_mediastate); 23590 23591 prev_state = un->un_mediastate; 23592 23593 /* is there anything to do? */ 23594 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 23595 /* 23596 * submit the request to the scsi_watch service; 23597 * scsi_media_watch_cb() does the real work 23598 */ 23599 mutex_exit(SD_MUTEX(un)); 23600 23601 /* 23602 * This change handles the case where a scsi watch request is 23603 * added to a device that is powered down. To accomplish this 23604 * we power up the device before adding the scsi watch request, 23605 * since the scsi watch sends a TUR directly to the device 23606 * which the device cannot handle if it is powered down. 23607 */ 23608 if (sd_pm_entry(un) != DDI_SUCCESS) { 23609 mutex_enter(SD_MUTEX(un)); 23610 goto done; 23611 } 23612 23613 token = sd_watch_request_submit(un); 23614 23615 sd_pm_exit(un); 23616 23617 mutex_enter(SD_MUTEX(un)); 23618 if (token == NULL) { 23619 rval = EAGAIN; 23620 goto done; 23621 } 23622 23623 /* 23624 * This is a special case IOCTL that doesn't return 23625 * until the media state changes. Routine sdpower 23626 * knows about and handles this so don't count it 23627 * as an active cmd in the driver, which would 23628 * keep the device busy to the pm framework. 23629 * If the count isn't decremented the device can't 23630 * be powered down. 23631 */ 23632 un->un_ncmds_in_driver--; 23633 ASSERT(un->un_ncmds_in_driver >= 0); 23634 23635 /* 23636 * if a prior request had been made, this will be the same 23637 * token, as scsi_watch was designed that way. 23638 */ 23639 un->un_swr_token = token; 23640 un->un_specified_mediastate = state; 23641 23642 /* 23643 * now wait for media change 23644 * we will not be signalled unless mediastate == state but it is 23645 * still better to test for this condition, since there is a 23646 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 23647 */ 23648 SD_TRACE(SD_LOG_COMMON, un, 23649 "sd_check_media: waiting for media state change\n"); 23650 while (un->un_mediastate == state) { 23651 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 23652 SD_TRACE(SD_LOG_COMMON, un, 23653 "sd_check_media: waiting for media state " 23654 "was interrupted\n"); 23655 un->un_ncmds_in_driver++; 23656 rval = EINTR; 23657 goto done; 23658 } 23659 SD_TRACE(SD_LOG_COMMON, un, 23660 "sd_check_media: received signal, state=%x\n", 23661 un->un_mediastate); 23662 } 23663 /* 23664 * Inc the counter to indicate the device once again 23665 * has an active outstanding cmd. 23666 */ 23667 un->un_ncmds_in_driver++; 23668 } 23669 23670 /* invalidate geometry */ 23671 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 23672 sr_ejected(un); 23673 } 23674 23675 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 23676 uint64_t capacity; 23677 uint_t lbasize; 23678 23679 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 23680 mutex_exit(SD_MUTEX(un)); 23681 /* 23682 * Since the following routines use SD_PATH_DIRECT, we must 23683 * call PM directly before the upcoming disk accesses. This 23684 * may cause the disk to be power/spin up. 23685 */ 23686 23687 if (sd_pm_entry(un) == DDI_SUCCESS) { 23688 rval = sd_send_scsi_READ_CAPACITY(ssc, 23689 &capacity, &lbasize, SD_PATH_DIRECT); 23690 if (rval != 0) { 23691 sd_pm_exit(un); 23692 if (rval == EIO) 23693 sd_ssc_assessment(ssc, 23694 SD_FMT_STATUS_CHECK); 23695 else 23696 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23697 mutex_enter(SD_MUTEX(un)); 23698 goto done; 23699 } 23700 } else { 23701 rval = EIO; 23702 mutex_enter(SD_MUTEX(un)); 23703 goto done; 23704 } 23705 mutex_enter(SD_MUTEX(un)); 23706 23707 sd_update_block_info(un, lbasize, capacity); 23708 23709 /* 23710 * Check if the media in the device is writable or not 23711 */ 23712 if (ISCD(un)) { 23713 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 23714 } 23715 23716 mutex_exit(SD_MUTEX(un)); 23717 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 23718 if ((cmlb_validate(un->un_cmlbhandle, 0, 23719 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 23720 sd_set_pstats(un); 23721 SD_TRACE(SD_LOG_IO_PARTITION, un, 23722 "sd_check_media: un:0x%p pstats created and " 23723 "set\n", un); 23724 } 23725 23726 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 23727 SD_PATH_DIRECT); 23728 23729 sd_pm_exit(un); 23730 23731 if (rval != 0) { 23732 if (rval == EIO) 23733 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23734 else 23735 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23736 } 23737 23738 mutex_enter(SD_MUTEX(un)); 23739 } 23740 done: 23741 sd_ssc_fini(ssc); 23742 un->un_f_watcht_stopped = FALSE; 23743 if (token != NULL && un->un_swr_token != NULL) { 23744 /* 23745 * Use of this local token and the mutex ensures that we avoid 23746 * some race conditions associated with terminating the 23747 * scsi watch. 23748 */ 23749 token = un->un_swr_token; 23750 mutex_exit(SD_MUTEX(un)); 23751 (void) scsi_watch_request_terminate(token, 23752 SCSI_WATCH_TERMINATE_WAIT); 23753 if (scsi_watch_get_ref_count(token) == 0) { 23754 mutex_enter(SD_MUTEX(un)); 23755 un->un_swr_token = (opaque_t)NULL; 23756 } else { 23757 mutex_enter(SD_MUTEX(un)); 23758 } 23759 } 23760 23761 /* 23762 * Update the capacity kstat value, if no media previously 23763 * (capacity kstat is 0) and a media has been inserted 23764 * (un_f_blockcount_is_valid == TRUE) 23765 */ 23766 if (un->un_errstats) { 23767 struct sd_errstats *stp = NULL; 23768 23769 stp = (struct sd_errstats *)un->un_errstats->ks_data; 23770 if ((stp->sd_capacity.value.ui64 == 0) && 23771 (un->un_f_blockcount_is_valid == TRUE)) { 23772 stp->sd_capacity.value.ui64 = 23773 (uint64_t)((uint64_t)un->un_blockcount * 23774 un->un_sys_blocksize); 23775 } 23776 } 23777 mutex_exit(SD_MUTEX(un)); 23778 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 23779 return (rval); 23780 } 23781 23782 23783 /* 23784 * Function: sd_delayed_cv_broadcast 23785 * 23786 * Description: Delayed cv_broadcast to allow for target to recover from media 23787 * insertion. 23788 * 23789 * Arguments: arg - driver soft state (unit) structure 23790 */ 23791 23792 static void 23793 sd_delayed_cv_broadcast(void *arg) 23794 { 23795 struct sd_lun *un = arg; 23796 23797 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 23798 23799 mutex_enter(SD_MUTEX(un)); 23800 un->un_dcvb_timeid = NULL; 23801 cv_broadcast(&un->un_state_cv); 23802 mutex_exit(SD_MUTEX(un)); 23803 } 23804 23805 23806 /* 23807 * Function: sd_media_watch_cb 23808 * 23809 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 23810 * routine processes the TUR sense data and updates the driver 23811 * state if a transition has occurred. The user thread 23812 * (sd_check_media) is then signalled. 23813 * 23814 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23815 * among multiple watches that share this callback function 23816 * resultp - scsi watch facility result packet containing scsi 23817 * packet, status byte and sense data 23818 * 23819 * Return Code: 0 for success, -1 for failure 23820 */ 23821 23822 static int 23823 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23824 { 23825 struct sd_lun *un; 23826 struct scsi_status *statusp = resultp->statusp; 23827 uint8_t *sensep = (uint8_t *)resultp->sensep; 23828 enum dkio_state state = DKIO_NONE; 23829 dev_t dev = (dev_t)arg; 23830 uchar_t actual_sense_length; 23831 uint8_t skey, asc, ascq; 23832 23833 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23834 return (-1); 23835 } 23836 actual_sense_length = resultp->actual_sense_length; 23837 23838 mutex_enter(SD_MUTEX(un)); 23839 SD_TRACE(SD_LOG_COMMON, un, 23840 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 23841 *((char *)statusp), (void *)sensep, actual_sense_length); 23842 23843 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 23844 un->un_mediastate = DKIO_DEV_GONE; 23845 cv_broadcast(&un->un_state_cv); 23846 mutex_exit(SD_MUTEX(un)); 23847 23848 return (0); 23849 } 23850 23851 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23852 if (sd_gesn_media_data_valid(resultp->mmc_data)) { 23853 if ((resultp->mmc_data[5] & 23854 SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) { 23855 state = DKIO_INSERTED; 23856 } else { 23857 state = DKIO_EJECTED; 23858 } 23859 if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) == 23860 SD_GESN_MEDIA_EVENT_EJECTREQUEST) { 23861 sd_log_eject_request_event(un, KM_NOSLEEP); 23862 } 23863 } 23864 } else if (sensep != NULL) { 23865 /* 23866 * If there was a check condition then sensep points to valid 23867 * sense data. If status was not a check condition but a 23868 * reservation or busy status then the new state is DKIO_NONE. 23869 */ 23870 skey = scsi_sense_key(sensep); 23871 asc = scsi_sense_asc(sensep); 23872 ascq = scsi_sense_ascq(sensep); 23873 23874 SD_INFO(SD_LOG_COMMON, un, 23875 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 23876 skey, asc, ascq); 23877 /* This routine only uses up to 13 bytes of sense data. */ 23878 if (actual_sense_length >= 13) { 23879 if (skey == KEY_UNIT_ATTENTION) { 23880 if (asc == 0x28) { 23881 state = DKIO_INSERTED; 23882 } 23883 } else if (skey == KEY_NOT_READY) { 23884 /* 23885 * Sense data of 02/06/00 means that the 23886 * drive could not read the media (No 23887 * reference position found). In this case 23888 * to prevent a hang on the DKIOCSTATE IOCTL 23889 * we set the media state to DKIO_INSERTED. 23890 */ 23891 if (asc == 0x06 && ascq == 0x00) 23892 state = DKIO_INSERTED; 23893 23894 /* 23895 * if 02/04/02 means that the host 23896 * should send start command. Explicitly 23897 * leave the media state as is 23898 * (inserted) as the media is inserted 23899 * and host has stopped device for PM 23900 * reasons. Upon next true read/write 23901 * to this media will bring the 23902 * device to the right state good for 23903 * media access. 23904 */ 23905 if (asc == 0x3a) { 23906 state = DKIO_EJECTED; 23907 } else { 23908 /* 23909 * If the drive is busy with an 23910 * operation or long write, keep the 23911 * media in an inserted state. 23912 */ 23913 23914 if ((asc == 0x04) && 23915 ((ascq == 0x02) || 23916 (ascq == 0x07) || 23917 (ascq == 0x08))) { 23918 state = DKIO_INSERTED; 23919 } 23920 } 23921 } else if (skey == KEY_NO_SENSE) { 23922 if ((asc == 0x00) && (ascq == 0x00)) { 23923 /* 23924 * Sense Data 00/00/00 does not provide 23925 * any information about the state of 23926 * the media. Ignore it. 23927 */ 23928 mutex_exit(SD_MUTEX(un)); 23929 return (0); 23930 } 23931 } 23932 } 23933 } else if ((*((char *)statusp) == STATUS_GOOD) && 23934 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 23935 state = DKIO_INSERTED; 23936 } 23937 23938 SD_TRACE(SD_LOG_COMMON, un, 23939 "sd_media_watch_cb: state=%x, specified=%x\n", 23940 state, un->un_specified_mediastate); 23941 23942 /* 23943 * now signal the waiting thread if this is *not* the specified state; 23944 * delay the signal if the state is DKIO_INSERTED to allow the target 23945 * to recover 23946 */ 23947 if (state != un->un_specified_mediastate) { 23948 un->un_mediastate = state; 23949 if (state == DKIO_INSERTED) { 23950 /* 23951 * delay the signal to give the drive a chance 23952 * to do what it apparently needs to do 23953 */ 23954 SD_TRACE(SD_LOG_COMMON, un, 23955 "sd_media_watch_cb: delayed cv_broadcast\n"); 23956 if (un->un_dcvb_timeid == NULL) { 23957 un->un_dcvb_timeid = 23958 timeout(sd_delayed_cv_broadcast, un, 23959 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 23960 } 23961 } else { 23962 SD_TRACE(SD_LOG_COMMON, un, 23963 "sd_media_watch_cb: immediate cv_broadcast\n"); 23964 cv_broadcast(&un->un_state_cv); 23965 } 23966 } 23967 mutex_exit(SD_MUTEX(un)); 23968 return (0); 23969 } 23970 23971 23972 /* 23973 * Function: sd_dkio_get_temp 23974 * 23975 * Description: This routine is the driver entry point for handling ioctl 23976 * requests to get the disk temperature. 23977 * 23978 * Arguments: dev - the device number 23979 * arg - pointer to user provided dk_temperature structure. 23980 * flag - this argument is a pass through to ddi_copyxxx() 23981 * directly from the mode argument of ioctl(). 23982 * 23983 * Return Code: 0 23984 * EFAULT 23985 * ENXIO 23986 * EAGAIN 23987 */ 23988 23989 static int 23990 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 23991 { 23992 struct sd_lun *un = NULL; 23993 struct dk_temperature *dktemp = NULL; 23994 uchar_t *temperature_page; 23995 int rval = 0; 23996 int path_flag = SD_PATH_STANDARD; 23997 sd_ssc_t *ssc; 23998 23999 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24000 return (ENXIO); 24001 } 24002 24003 ssc = sd_ssc_init(un); 24004 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24005 24006 /* copyin the disk temp argument to get the user flags */ 24007 if (ddi_copyin((void *)arg, dktemp, 24008 sizeof (struct dk_temperature), flag) != 0) { 24009 rval = EFAULT; 24010 goto done; 24011 } 24012 24013 /* Initialize the temperature to invalid. */ 24014 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24015 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24016 24017 /* 24018 * Note: Investigate removing the "bypass pm" semantic. 24019 * Can we just bypass PM always? 24020 */ 24021 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24022 path_flag = SD_PATH_DIRECT; 24023 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24024 mutex_enter(&un->un_pm_mutex); 24025 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24026 /* 24027 * If DKT_BYPASS_PM is set, and the drive happens to be 24028 * in low power mode, we can not wake it up, Need to 24029 * return EAGAIN. 24030 */ 24031 mutex_exit(&un->un_pm_mutex); 24032 rval = EAGAIN; 24033 goto done; 24034 } else { 24035 /* 24036 * Indicate to PM the device is busy. This is required 24037 * to avoid a race - i.e. the ioctl is issuing a 24038 * command and the pm framework brings down the device 24039 * to low power mode (possible power cut-off on some 24040 * platforms). 24041 */ 24042 mutex_exit(&un->un_pm_mutex); 24043 if (sd_pm_entry(un) != DDI_SUCCESS) { 24044 rval = EAGAIN; 24045 goto done; 24046 } 24047 } 24048 } 24049 24050 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24051 24052 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 24053 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 24054 if (rval != 0) 24055 goto done2; 24056 24057 /* 24058 * For the current temperature verify that the parameter length is 0x02 24059 * and the parameter code is 0x00 24060 */ 24061 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24062 (temperature_page[5] == 0x00)) { 24063 if (temperature_page[9] == 0xFF) { 24064 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24065 } else { 24066 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24067 } 24068 } 24069 24070 /* 24071 * For the reference temperature verify that the parameter 24072 * length is 0x02 and the parameter code is 0x01 24073 */ 24074 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24075 (temperature_page[11] == 0x01)) { 24076 if (temperature_page[15] == 0xFF) { 24077 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24078 } else { 24079 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24080 } 24081 } 24082 24083 /* Do the copyout regardless of the temperature commands status. */ 24084 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24085 flag) != 0) { 24086 rval = EFAULT; 24087 goto done1; 24088 } 24089 24090 done2: 24091 if (rval != 0) { 24092 if (rval == EIO) 24093 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24094 else 24095 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24096 } 24097 done1: 24098 if (path_flag == SD_PATH_DIRECT) { 24099 sd_pm_exit(un); 24100 } 24101 24102 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24103 done: 24104 sd_ssc_fini(ssc); 24105 if (dktemp != NULL) { 24106 kmem_free(dktemp, sizeof (struct dk_temperature)); 24107 } 24108 24109 return (rval); 24110 } 24111 24112 24113 /* 24114 * Function: sd_log_page_supported 24115 * 24116 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24117 * supported log pages. 24118 * 24119 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 24120 * structure for this target. 24121 * log_page - 24122 * 24123 * Return Code: -1 - on error (log sense is optional and may not be supported). 24124 * 0 - log page not found. 24125 * 1 - log page found. 24126 */ 24127 24128 static int 24129 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 24130 { 24131 uchar_t *log_page_data; 24132 int i; 24133 int match = 0; 24134 int log_size; 24135 int status = 0; 24136 struct sd_lun *un; 24137 24138 ASSERT(ssc != NULL); 24139 un = ssc->ssc_un; 24140 ASSERT(un != NULL); 24141 24142 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24143 24144 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 24145 SD_PATH_DIRECT); 24146 24147 if (status != 0) { 24148 if (status == EIO) { 24149 /* 24150 * Some disks do not support log sense, we 24151 * should ignore this kind of error(sense key is 24152 * 0x5 - illegal request). 24153 */ 24154 uint8_t *sensep; 24155 int senlen; 24156 24157 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 24158 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 24159 ssc->ssc_uscsi_cmd->uscsi_rqresid); 24160 24161 if (senlen > 0 && 24162 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 24163 sd_ssc_assessment(ssc, 24164 SD_FMT_IGNORE_COMPROMISE); 24165 } else { 24166 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24167 } 24168 } else { 24169 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24170 } 24171 24172 SD_ERROR(SD_LOG_COMMON, un, 24173 "sd_log_page_supported: failed log page retrieval\n"); 24174 kmem_free(log_page_data, 0xFF); 24175 return (-1); 24176 } 24177 24178 log_size = log_page_data[3]; 24179 24180 /* 24181 * The list of supported log pages start from the fourth byte. Check 24182 * until we run out of log pages or a match is found. 24183 */ 24184 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24185 if (log_page_data[i] == log_page) { 24186 match++; 24187 } 24188 } 24189 kmem_free(log_page_data, 0xFF); 24190 return (match); 24191 } 24192 24193 24194 /* 24195 * Function: sd_mhdioc_failfast 24196 * 24197 * Description: This routine is the driver entry point for handling ioctl 24198 * requests to enable/disable the multihost failfast option. 24199 * (MHIOCENFAILFAST) 24200 * 24201 * Arguments: dev - the device number 24202 * arg - user specified probing interval. 24203 * flag - this argument is a pass through to ddi_copyxxx() 24204 * directly from the mode argument of ioctl(). 24205 * 24206 * Return Code: 0 24207 * EFAULT 24208 * ENXIO 24209 */ 24210 24211 static int 24212 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24213 { 24214 struct sd_lun *un = NULL; 24215 int mh_time; 24216 int rval = 0; 24217 24218 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24219 return (ENXIO); 24220 } 24221 24222 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24223 return (EFAULT); 24224 24225 if (mh_time) { 24226 mutex_enter(SD_MUTEX(un)); 24227 un->un_resvd_status |= SD_FAILFAST; 24228 mutex_exit(SD_MUTEX(un)); 24229 /* 24230 * If mh_time is INT_MAX, then this ioctl is being used for 24231 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24232 */ 24233 if (mh_time != INT_MAX) { 24234 rval = sd_check_mhd(dev, mh_time); 24235 } 24236 } else { 24237 (void) sd_check_mhd(dev, 0); 24238 mutex_enter(SD_MUTEX(un)); 24239 un->un_resvd_status &= ~SD_FAILFAST; 24240 mutex_exit(SD_MUTEX(un)); 24241 } 24242 return (rval); 24243 } 24244 24245 24246 /* 24247 * Function: sd_mhdioc_takeown 24248 * 24249 * Description: This routine is the driver entry point for handling ioctl 24250 * requests to forcefully acquire exclusive access rights to the 24251 * multihost disk (MHIOCTKOWN). 24252 * 24253 * Arguments: dev - the device number 24254 * arg - user provided structure specifying the delay 24255 * parameters in milliseconds 24256 * flag - this argument is a pass through to ddi_copyxxx() 24257 * directly from the mode argument of ioctl(). 24258 * 24259 * Return Code: 0 24260 * EFAULT 24261 * ENXIO 24262 */ 24263 24264 static int 24265 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24266 { 24267 struct sd_lun *un = NULL; 24268 struct mhioctkown *tkown = NULL; 24269 int rval = 0; 24270 24271 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24272 return (ENXIO); 24273 } 24274 24275 if (arg != NULL) { 24276 tkown = (struct mhioctkown *) 24277 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24278 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24279 if (rval != 0) { 24280 rval = EFAULT; 24281 goto error; 24282 } 24283 } 24284 24285 rval = sd_take_ownership(dev, tkown); 24286 mutex_enter(SD_MUTEX(un)); 24287 if (rval == 0) { 24288 un->un_resvd_status |= SD_RESERVE; 24289 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24290 sd_reinstate_resv_delay = 24291 tkown->reinstate_resv_delay * 1000; 24292 } else { 24293 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24294 } 24295 /* 24296 * Give the scsi_watch routine interval set by 24297 * the MHIOCENFAILFAST ioctl precedence here. 24298 */ 24299 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24300 mutex_exit(SD_MUTEX(un)); 24301 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24302 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24303 "sd_mhdioc_takeown : %d\n", 24304 sd_reinstate_resv_delay); 24305 } else { 24306 mutex_exit(SD_MUTEX(un)); 24307 } 24308 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24309 sd_mhd_reset_notify_cb, (caddr_t)un); 24310 } else { 24311 un->un_resvd_status &= ~SD_RESERVE; 24312 mutex_exit(SD_MUTEX(un)); 24313 } 24314 24315 error: 24316 if (tkown != NULL) { 24317 kmem_free(tkown, sizeof (struct mhioctkown)); 24318 } 24319 return (rval); 24320 } 24321 24322 24323 /* 24324 * Function: sd_mhdioc_release 24325 * 24326 * Description: This routine is the driver entry point for handling ioctl 24327 * requests to release exclusive access rights to the multihost 24328 * disk (MHIOCRELEASE). 24329 * 24330 * Arguments: dev - the device number 24331 * 24332 * Return Code: 0 24333 * ENXIO 24334 */ 24335 24336 static int 24337 sd_mhdioc_release(dev_t dev) 24338 { 24339 struct sd_lun *un = NULL; 24340 timeout_id_t resvd_timeid_save; 24341 int resvd_status_save; 24342 int rval = 0; 24343 24344 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24345 return (ENXIO); 24346 } 24347 24348 mutex_enter(SD_MUTEX(un)); 24349 resvd_status_save = un->un_resvd_status; 24350 un->un_resvd_status &= 24351 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24352 if (un->un_resvd_timeid) { 24353 resvd_timeid_save = un->un_resvd_timeid; 24354 un->un_resvd_timeid = NULL; 24355 mutex_exit(SD_MUTEX(un)); 24356 (void) untimeout(resvd_timeid_save); 24357 } else { 24358 mutex_exit(SD_MUTEX(un)); 24359 } 24360 24361 /* 24362 * destroy any pending timeout thread that may be attempting to 24363 * reinstate reservation on this device. 24364 */ 24365 sd_rmv_resv_reclaim_req(dev); 24366 24367 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24368 mutex_enter(SD_MUTEX(un)); 24369 if ((un->un_mhd_token) && 24370 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24371 mutex_exit(SD_MUTEX(un)); 24372 (void) sd_check_mhd(dev, 0); 24373 } else { 24374 mutex_exit(SD_MUTEX(un)); 24375 } 24376 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24377 sd_mhd_reset_notify_cb, (caddr_t)un); 24378 } else { 24379 /* 24380 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24381 */ 24382 mutex_enter(SD_MUTEX(un)); 24383 un->un_resvd_status = resvd_status_save; 24384 mutex_exit(SD_MUTEX(un)); 24385 } 24386 return (rval); 24387 } 24388 24389 24390 /* 24391 * Function: sd_mhdioc_register_devid 24392 * 24393 * Description: This routine is the driver entry point for handling ioctl 24394 * requests to register the device id (MHIOCREREGISTERDEVID). 24395 * 24396 * Note: The implementation for this ioctl has been updated to 24397 * be consistent with the original PSARC case (1999/357) 24398 * (4375899, 4241671, 4220005) 24399 * 24400 * Arguments: dev - the device number 24401 * 24402 * Return Code: 0 24403 * ENXIO 24404 */ 24405 24406 static int 24407 sd_mhdioc_register_devid(dev_t dev) 24408 { 24409 struct sd_lun *un = NULL; 24410 int rval = 0; 24411 sd_ssc_t *ssc; 24412 24413 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24414 return (ENXIO); 24415 } 24416 24417 ASSERT(!mutex_owned(SD_MUTEX(un))); 24418 24419 mutex_enter(SD_MUTEX(un)); 24420 24421 /* If a devid already exists, de-register it */ 24422 if (un->un_devid != NULL) { 24423 ddi_devid_unregister(SD_DEVINFO(un)); 24424 /* 24425 * After unregister devid, needs to free devid memory 24426 */ 24427 ddi_devid_free(un->un_devid); 24428 un->un_devid = NULL; 24429 } 24430 24431 /* Check for reservation conflict */ 24432 mutex_exit(SD_MUTEX(un)); 24433 ssc = sd_ssc_init(un); 24434 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24435 mutex_enter(SD_MUTEX(un)); 24436 24437 switch (rval) { 24438 case 0: 24439 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24440 break; 24441 case EACCES: 24442 break; 24443 default: 24444 rval = EIO; 24445 } 24446 24447 mutex_exit(SD_MUTEX(un)); 24448 if (rval != 0) { 24449 if (rval == EIO) 24450 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24451 else 24452 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24453 } 24454 sd_ssc_fini(ssc); 24455 return (rval); 24456 } 24457 24458 24459 /* 24460 * Function: sd_mhdioc_inkeys 24461 * 24462 * Description: This routine is the driver entry point for handling ioctl 24463 * requests to issue the SCSI-3 Persistent In Read Keys command 24464 * to the device (MHIOCGRP_INKEYS). 24465 * 24466 * Arguments: dev - the device number 24467 * arg - user provided in_keys structure 24468 * flag - this argument is a pass through to ddi_copyxxx() 24469 * directly from the mode argument of ioctl(). 24470 * 24471 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24472 * ENXIO 24473 * EFAULT 24474 */ 24475 24476 static int 24477 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24478 { 24479 struct sd_lun *un; 24480 mhioc_inkeys_t inkeys; 24481 int rval = 0; 24482 24483 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24484 return (ENXIO); 24485 } 24486 24487 #ifdef _MULTI_DATAMODEL 24488 switch (ddi_model_convert_from(flag & FMODELS)) { 24489 case DDI_MODEL_ILP32: { 24490 struct mhioc_inkeys32 inkeys32; 24491 24492 if (ddi_copyin(arg, &inkeys32, 24493 sizeof (struct mhioc_inkeys32), flag) != 0) { 24494 return (EFAULT); 24495 } 24496 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24497 if ((rval = sd_persistent_reservation_in_read_keys(un, 24498 &inkeys, flag)) != 0) { 24499 return (rval); 24500 } 24501 inkeys32.generation = inkeys.generation; 24502 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24503 flag) != 0) { 24504 return (EFAULT); 24505 } 24506 break; 24507 } 24508 case DDI_MODEL_NONE: 24509 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24510 flag) != 0) { 24511 return (EFAULT); 24512 } 24513 if ((rval = sd_persistent_reservation_in_read_keys(un, 24514 &inkeys, flag)) != 0) { 24515 return (rval); 24516 } 24517 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24518 flag) != 0) { 24519 return (EFAULT); 24520 } 24521 break; 24522 } 24523 24524 #else /* ! _MULTI_DATAMODEL */ 24525 24526 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24527 return (EFAULT); 24528 } 24529 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24530 if (rval != 0) { 24531 return (rval); 24532 } 24533 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24534 return (EFAULT); 24535 } 24536 24537 #endif /* _MULTI_DATAMODEL */ 24538 24539 return (rval); 24540 } 24541 24542 24543 /* 24544 * Function: sd_mhdioc_inresv 24545 * 24546 * Description: This routine is the driver entry point for handling ioctl 24547 * requests to issue the SCSI-3 Persistent In Read Reservations 24548 * command to the device (MHIOCGRP_INKEYS). 24549 * 24550 * Arguments: dev - the device number 24551 * arg - user provided in_resv structure 24552 * flag - this argument is a pass through to ddi_copyxxx() 24553 * directly from the mode argument of ioctl(). 24554 * 24555 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24556 * ENXIO 24557 * EFAULT 24558 */ 24559 24560 static int 24561 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24562 { 24563 struct sd_lun *un; 24564 mhioc_inresvs_t inresvs; 24565 int rval = 0; 24566 24567 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24568 return (ENXIO); 24569 } 24570 24571 #ifdef _MULTI_DATAMODEL 24572 24573 switch (ddi_model_convert_from(flag & FMODELS)) { 24574 case DDI_MODEL_ILP32: { 24575 struct mhioc_inresvs32 inresvs32; 24576 24577 if (ddi_copyin(arg, &inresvs32, 24578 sizeof (struct mhioc_inresvs32), flag) != 0) { 24579 return (EFAULT); 24580 } 24581 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24582 if ((rval = sd_persistent_reservation_in_read_resv(un, 24583 &inresvs, flag)) != 0) { 24584 return (rval); 24585 } 24586 inresvs32.generation = inresvs.generation; 24587 if (ddi_copyout(&inresvs32, arg, 24588 sizeof (struct mhioc_inresvs32), flag) != 0) { 24589 return (EFAULT); 24590 } 24591 break; 24592 } 24593 case DDI_MODEL_NONE: 24594 if (ddi_copyin(arg, &inresvs, 24595 sizeof (mhioc_inresvs_t), flag) != 0) { 24596 return (EFAULT); 24597 } 24598 if ((rval = sd_persistent_reservation_in_read_resv(un, 24599 &inresvs, flag)) != 0) { 24600 return (rval); 24601 } 24602 if (ddi_copyout(&inresvs, arg, 24603 sizeof (mhioc_inresvs_t), flag) != 0) { 24604 return (EFAULT); 24605 } 24606 break; 24607 } 24608 24609 #else /* ! _MULTI_DATAMODEL */ 24610 24611 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24612 return (EFAULT); 24613 } 24614 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24615 if (rval != 0) { 24616 return (rval); 24617 } 24618 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24619 return (EFAULT); 24620 } 24621 24622 #endif /* ! _MULTI_DATAMODEL */ 24623 24624 return (rval); 24625 } 24626 24627 24628 /* 24629 * The following routines support the clustering functionality described below 24630 * and implement lost reservation reclaim functionality. 24631 * 24632 * Clustering 24633 * ---------- 24634 * The clustering code uses two different, independent forms of SCSI 24635 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24636 * Persistent Group Reservations. For any particular disk, it will use either 24637 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24638 * 24639 * SCSI-2 24640 * The cluster software takes ownership of a multi-hosted disk by issuing the 24641 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24642 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 24643 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 24644 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 24645 * driver. The meaning of failfast is that if the driver (on this host) ever 24646 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 24647 * it should immediately panic the host. The motivation for this ioctl is that 24648 * if this host does encounter reservation conflict, the underlying cause is 24649 * that some other host of the cluster has decided that this host is no longer 24650 * in the cluster and has seized control of the disks for itself. Since this 24651 * host is no longer in the cluster, it ought to panic itself. The 24652 * MHIOCENFAILFAST ioctl does two things: 24653 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 24654 * error to panic the host 24655 * (b) it sets up a periodic timer to test whether this host still has 24656 * "access" (in that no other host has reserved the device): if the 24657 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 24658 * purpose of that periodic timer is to handle scenarios where the host is 24659 * otherwise temporarily quiescent, temporarily doing no real i/o. 24660 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 24661 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 24662 * the device itself. 24663 * 24664 * SCSI-3 PGR 24665 * A direct semantic implementation of the SCSI-3 Persistent Reservation 24666 * facility is supported through the shared multihost disk ioctls 24667 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 24668 * MHIOCGRP_PREEMPTANDABORT) 24669 * 24670 * Reservation Reclaim: 24671 * -------------------- 24672 * To support the lost reservation reclaim operations this driver creates a 24673 * single thread to handle reinstating reservations on all devices that have 24674 * lost reservations sd_resv_reclaim_requests are logged for all devices that 24675 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 24676 * and the reservation reclaim thread loops through the requests to regain the 24677 * lost reservations. 24678 */ 24679 24680 /* 24681 * Function: sd_check_mhd() 24682 * 24683 * Description: This function sets up and submits a scsi watch request or 24684 * terminates an existing watch request. This routine is used in 24685 * support of reservation reclaim. 24686 * 24687 * Arguments: dev - the device 'dev_t' is used for context to discriminate 24688 * among multiple watches that share the callback function 24689 * interval - the number of microseconds specifying the watch 24690 * interval for issuing TEST UNIT READY commands. If 24691 * set to 0 the watch should be terminated. If the 24692 * interval is set to 0 and if the device is required 24693 * to hold reservation while disabling failfast, the 24694 * watch is restarted with an interval of 24695 * reinstate_resv_delay. 24696 * 24697 * Return Code: 0 - Successful submit/terminate of scsi watch request 24698 * ENXIO - Indicates an invalid device was specified 24699 * EAGAIN - Unable to submit the scsi watch request 24700 */ 24701 24702 static int 24703 sd_check_mhd(dev_t dev, int interval) 24704 { 24705 struct sd_lun *un; 24706 opaque_t token; 24707 24708 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24709 return (ENXIO); 24710 } 24711 24712 /* is this a watch termination request? */ 24713 if (interval == 0) { 24714 mutex_enter(SD_MUTEX(un)); 24715 /* if there is an existing watch task then terminate it */ 24716 if (un->un_mhd_token) { 24717 token = un->un_mhd_token; 24718 un->un_mhd_token = NULL; 24719 mutex_exit(SD_MUTEX(un)); 24720 (void) scsi_watch_request_terminate(token, 24721 SCSI_WATCH_TERMINATE_ALL_WAIT); 24722 mutex_enter(SD_MUTEX(un)); 24723 } else { 24724 mutex_exit(SD_MUTEX(un)); 24725 /* 24726 * Note: If we return here we don't check for the 24727 * failfast case. This is the original legacy 24728 * implementation but perhaps we should be checking 24729 * the failfast case. 24730 */ 24731 return (0); 24732 } 24733 /* 24734 * If the device is required to hold reservation while 24735 * disabling failfast, we need to restart the scsi_watch 24736 * routine with an interval of reinstate_resv_delay. 24737 */ 24738 if (un->un_resvd_status & SD_RESERVE) { 24739 interval = sd_reinstate_resv_delay/1000; 24740 } else { 24741 /* no failfast so bail */ 24742 mutex_exit(SD_MUTEX(un)); 24743 return (0); 24744 } 24745 mutex_exit(SD_MUTEX(un)); 24746 } 24747 24748 /* 24749 * adjust minimum time interval to 1 second, 24750 * and convert from msecs to usecs 24751 */ 24752 if (interval > 0 && interval < 1000) { 24753 interval = 1000; 24754 } 24755 interval *= 1000; 24756 24757 /* 24758 * submit the request to the scsi_watch service 24759 */ 24760 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 24761 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 24762 if (token == NULL) { 24763 return (EAGAIN); 24764 } 24765 24766 /* 24767 * save token for termination later on 24768 */ 24769 mutex_enter(SD_MUTEX(un)); 24770 un->un_mhd_token = token; 24771 mutex_exit(SD_MUTEX(un)); 24772 return (0); 24773 } 24774 24775 24776 /* 24777 * Function: sd_mhd_watch_cb() 24778 * 24779 * Description: This function is the call back function used by the scsi watch 24780 * facility. The scsi watch facility sends the "Test Unit Ready" 24781 * and processes the status. If applicable (i.e. a "Unit Attention" 24782 * status and automatic "Request Sense" not used) the scsi watch 24783 * facility will send a "Request Sense" and retrieve the sense data 24784 * to be passed to this callback function. In either case the 24785 * automatic "Request Sense" or the facility submitting one, this 24786 * callback is passed the status and sense data. 24787 * 24788 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24789 * among multiple watches that share this callback function 24790 * resultp - scsi watch facility result packet containing scsi 24791 * packet, status byte and sense data 24792 * 24793 * Return Code: 0 - continue the watch task 24794 * non-zero - terminate the watch task 24795 */ 24796 24797 static int 24798 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24799 { 24800 struct sd_lun *un; 24801 struct scsi_status *statusp; 24802 uint8_t *sensep; 24803 struct scsi_pkt *pkt; 24804 uchar_t actual_sense_length; 24805 dev_t dev = (dev_t)arg; 24806 24807 ASSERT(resultp != NULL); 24808 statusp = resultp->statusp; 24809 sensep = (uint8_t *)resultp->sensep; 24810 pkt = resultp->pkt; 24811 actual_sense_length = resultp->actual_sense_length; 24812 24813 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24814 return (ENXIO); 24815 } 24816 24817 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24818 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 24819 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 24820 24821 /* Begin processing of the status and/or sense data */ 24822 if (pkt->pkt_reason != CMD_CMPLT) { 24823 /* Handle the incomplete packet */ 24824 sd_mhd_watch_incomplete(un, pkt); 24825 return (0); 24826 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 24827 if (*((unsigned char *)statusp) 24828 == STATUS_RESERVATION_CONFLICT) { 24829 /* 24830 * Handle a reservation conflict by panicking if 24831 * configured for failfast or by logging the conflict 24832 * and updating the reservation status 24833 */ 24834 mutex_enter(SD_MUTEX(un)); 24835 if ((un->un_resvd_status & SD_FAILFAST) && 24836 (sd_failfast_enable)) { 24837 sd_panic_for_res_conflict(un); 24838 /*NOTREACHED*/ 24839 } 24840 SD_INFO(SD_LOG_IOCTL_MHD, un, 24841 "sd_mhd_watch_cb: Reservation Conflict\n"); 24842 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 24843 mutex_exit(SD_MUTEX(un)); 24844 } 24845 } 24846 24847 if (sensep != NULL) { 24848 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 24849 mutex_enter(SD_MUTEX(un)); 24850 if ((scsi_sense_asc(sensep) == 24851 SD_SCSI_RESET_SENSE_CODE) && 24852 (un->un_resvd_status & SD_RESERVE)) { 24853 /* 24854 * The additional sense code indicates a power 24855 * on or bus device reset has occurred; update 24856 * the reservation status. 24857 */ 24858 un->un_resvd_status |= 24859 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24860 SD_INFO(SD_LOG_IOCTL_MHD, un, 24861 "sd_mhd_watch_cb: Lost Reservation\n"); 24862 } 24863 } else { 24864 return (0); 24865 } 24866 } else { 24867 mutex_enter(SD_MUTEX(un)); 24868 } 24869 24870 if ((un->un_resvd_status & SD_RESERVE) && 24871 (un->un_resvd_status & SD_LOST_RESERVE)) { 24872 if (un->un_resvd_status & SD_WANT_RESERVE) { 24873 /* 24874 * A reset occurred in between the last probe and this 24875 * one so if a timeout is pending cancel it. 24876 */ 24877 if (un->un_resvd_timeid) { 24878 timeout_id_t temp_id = un->un_resvd_timeid; 24879 un->un_resvd_timeid = NULL; 24880 mutex_exit(SD_MUTEX(un)); 24881 (void) untimeout(temp_id); 24882 mutex_enter(SD_MUTEX(un)); 24883 } 24884 un->un_resvd_status &= ~SD_WANT_RESERVE; 24885 } 24886 if (un->un_resvd_timeid == 0) { 24887 /* Schedule a timeout to handle the lost reservation */ 24888 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 24889 (void *)dev, 24890 drv_usectohz(sd_reinstate_resv_delay)); 24891 } 24892 } 24893 mutex_exit(SD_MUTEX(un)); 24894 return (0); 24895 } 24896 24897 24898 /* 24899 * Function: sd_mhd_watch_incomplete() 24900 * 24901 * Description: This function is used to find out why a scsi pkt sent by the 24902 * scsi watch facility was not completed. Under some scenarios this 24903 * routine will return. Otherwise it will send a bus reset to see 24904 * if the drive is still online. 24905 * 24906 * Arguments: un - driver soft state (unit) structure 24907 * pkt - incomplete scsi pkt 24908 */ 24909 24910 static void 24911 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 24912 { 24913 int be_chatty; 24914 int perr; 24915 24916 ASSERT(pkt != NULL); 24917 ASSERT(un != NULL); 24918 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 24919 perr = (pkt->pkt_statistics & STAT_PERR); 24920 24921 mutex_enter(SD_MUTEX(un)); 24922 if (un->un_state == SD_STATE_DUMPING) { 24923 mutex_exit(SD_MUTEX(un)); 24924 return; 24925 } 24926 24927 switch (pkt->pkt_reason) { 24928 case CMD_UNX_BUS_FREE: 24929 /* 24930 * If we had a parity error that caused the target to drop BSY*, 24931 * don't be chatty about it. 24932 */ 24933 if (perr && be_chatty) { 24934 be_chatty = 0; 24935 } 24936 break; 24937 case CMD_TAG_REJECT: 24938 /* 24939 * The SCSI-2 spec states that a tag reject will be sent by the 24940 * target if tagged queuing is not supported. A tag reject may 24941 * also be sent during certain initialization periods or to 24942 * control internal resources. For the latter case the target 24943 * may also return Queue Full. 24944 * 24945 * If this driver receives a tag reject from a target that is 24946 * going through an init period or controlling internal 24947 * resources tagged queuing will be disabled. This is a less 24948 * than optimal behavior but the driver is unable to determine 24949 * the target state and assumes tagged queueing is not supported 24950 */ 24951 pkt->pkt_flags = 0; 24952 un->un_tagflags = 0; 24953 24954 if (un->un_f_opt_queueing == TRUE) { 24955 un->un_throttle = min(un->un_throttle, 3); 24956 } else { 24957 un->un_throttle = 1; 24958 } 24959 mutex_exit(SD_MUTEX(un)); 24960 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 24961 mutex_enter(SD_MUTEX(un)); 24962 break; 24963 case CMD_INCOMPLETE: 24964 /* 24965 * The transport stopped with an abnormal state, fallthrough and 24966 * reset the target and/or bus unless selection did not complete 24967 * (indicated by STATE_GOT_BUS) in which case we don't want to 24968 * go through a target/bus reset 24969 */ 24970 if (pkt->pkt_state == STATE_GOT_BUS) { 24971 break; 24972 } 24973 /*FALLTHROUGH*/ 24974 24975 case CMD_TIMEOUT: 24976 default: 24977 /* 24978 * The lun may still be running the command, so a lun reset 24979 * should be attempted. If the lun reset fails or cannot be 24980 * issued, than try a target reset. Lastly try a bus reset. 24981 */ 24982 if ((pkt->pkt_statistics & 24983 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 24984 int reset_retval = 0; 24985 mutex_exit(SD_MUTEX(un)); 24986 if (un->un_f_allow_bus_device_reset == TRUE) { 24987 if (un->un_f_lun_reset_enabled == TRUE) { 24988 reset_retval = 24989 scsi_reset(SD_ADDRESS(un), 24990 RESET_LUN); 24991 } 24992 if (reset_retval == 0) { 24993 reset_retval = 24994 scsi_reset(SD_ADDRESS(un), 24995 RESET_TARGET); 24996 } 24997 } 24998 if (reset_retval == 0) { 24999 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25000 } 25001 mutex_enter(SD_MUTEX(un)); 25002 } 25003 break; 25004 } 25005 25006 /* A device/bus reset has occurred; update the reservation status. */ 25007 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25008 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25009 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25010 un->un_resvd_status |= 25011 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25012 SD_INFO(SD_LOG_IOCTL_MHD, un, 25013 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25014 } 25015 } 25016 25017 /* 25018 * The disk has been turned off; Update the device state. 25019 * 25020 * Note: Should we be offlining the disk here? 25021 */ 25022 if (pkt->pkt_state == STATE_GOT_BUS) { 25023 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25024 "Disk not responding to selection\n"); 25025 if (un->un_state != SD_STATE_OFFLINE) { 25026 New_state(un, SD_STATE_OFFLINE); 25027 } 25028 } else if (be_chatty) { 25029 /* 25030 * suppress messages if they are all the same pkt reason; 25031 * with TQ, many (up to 256) are returned with the same 25032 * pkt_reason 25033 */ 25034 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25035 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25036 "sd_mhd_watch_incomplete: " 25037 "SCSI transport failed: reason '%s'\n", 25038 scsi_rname(pkt->pkt_reason)); 25039 } 25040 } 25041 un->un_last_pkt_reason = pkt->pkt_reason; 25042 mutex_exit(SD_MUTEX(un)); 25043 } 25044 25045 25046 /* 25047 * Function: sd_sname() 25048 * 25049 * Description: This is a simple little routine to return a string containing 25050 * a printable description of command status byte for use in 25051 * logging. 25052 * 25053 * Arguments: status - pointer to a status byte 25054 * 25055 * Return Code: char * - string containing status description. 25056 */ 25057 25058 static char * 25059 sd_sname(uchar_t status) 25060 { 25061 switch (status & STATUS_MASK) { 25062 case STATUS_GOOD: 25063 return ("good status"); 25064 case STATUS_CHECK: 25065 return ("check condition"); 25066 case STATUS_MET: 25067 return ("condition met"); 25068 case STATUS_BUSY: 25069 return ("busy"); 25070 case STATUS_INTERMEDIATE: 25071 return ("intermediate"); 25072 case STATUS_INTERMEDIATE_MET: 25073 return ("intermediate - condition met"); 25074 case STATUS_RESERVATION_CONFLICT: 25075 return ("reservation_conflict"); 25076 case STATUS_TERMINATED: 25077 return ("command terminated"); 25078 case STATUS_QFULL: 25079 return ("queue full"); 25080 default: 25081 return ("<unknown status>"); 25082 } 25083 } 25084 25085 25086 /* 25087 * Function: sd_mhd_resvd_recover() 25088 * 25089 * Description: This function adds a reservation entry to the 25090 * sd_resv_reclaim_request list and signals the reservation 25091 * reclaim thread that there is work pending. If the reservation 25092 * reclaim thread has not been previously created this function 25093 * will kick it off. 25094 * 25095 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25096 * among multiple watches that share this callback function 25097 * 25098 * Context: This routine is called by timeout() and is run in interrupt 25099 * context. It must not sleep or call other functions which may 25100 * sleep. 25101 */ 25102 25103 static void 25104 sd_mhd_resvd_recover(void *arg) 25105 { 25106 dev_t dev = (dev_t)arg; 25107 struct sd_lun *un; 25108 struct sd_thr_request *sd_treq = NULL; 25109 struct sd_thr_request *sd_cur = NULL; 25110 struct sd_thr_request *sd_prev = NULL; 25111 int already_there = 0; 25112 25113 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25114 return; 25115 } 25116 25117 mutex_enter(SD_MUTEX(un)); 25118 un->un_resvd_timeid = NULL; 25119 if (un->un_resvd_status & SD_WANT_RESERVE) { 25120 /* 25121 * There was a reset so don't issue the reserve, allow the 25122 * sd_mhd_watch_cb callback function to notice this and 25123 * reschedule the timeout for reservation. 25124 */ 25125 mutex_exit(SD_MUTEX(un)); 25126 return; 25127 } 25128 mutex_exit(SD_MUTEX(un)); 25129 25130 /* 25131 * Add this device to the sd_resv_reclaim_request list and the 25132 * sd_resv_reclaim_thread should take care of the rest. 25133 * 25134 * Note: We can't sleep in this context so if the memory allocation 25135 * fails allow the sd_mhd_watch_cb callback function to notice this and 25136 * reschedule the timeout for reservation. (4378460) 25137 */ 25138 sd_treq = (struct sd_thr_request *) 25139 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25140 if (sd_treq == NULL) { 25141 return; 25142 } 25143 25144 sd_treq->sd_thr_req_next = NULL; 25145 sd_treq->dev = dev; 25146 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25147 if (sd_tr.srq_thr_req_head == NULL) { 25148 sd_tr.srq_thr_req_head = sd_treq; 25149 } else { 25150 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25151 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25152 if (sd_cur->dev == dev) { 25153 /* 25154 * already in Queue so don't log 25155 * another request for the device 25156 */ 25157 already_there = 1; 25158 break; 25159 } 25160 sd_prev = sd_cur; 25161 } 25162 if (!already_there) { 25163 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25164 "logging request for %lx\n", dev); 25165 sd_prev->sd_thr_req_next = sd_treq; 25166 } else { 25167 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25168 } 25169 } 25170 25171 /* 25172 * Create a kernel thread to do the reservation reclaim and free up this 25173 * thread. We cannot block this thread while we go away to do the 25174 * reservation reclaim 25175 */ 25176 if (sd_tr.srq_resv_reclaim_thread == NULL) 25177 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25178 sd_resv_reclaim_thread, NULL, 25179 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25180 25181 /* Tell the reservation reclaim thread that it has work to do */ 25182 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25183 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25184 } 25185 25186 /* 25187 * Function: sd_resv_reclaim_thread() 25188 * 25189 * Description: This function implements the reservation reclaim operations 25190 * 25191 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25192 * among multiple watches that share this callback function 25193 */ 25194 25195 static void 25196 sd_resv_reclaim_thread() 25197 { 25198 struct sd_lun *un; 25199 struct sd_thr_request *sd_mhreq; 25200 25201 /* Wait for work */ 25202 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25203 if (sd_tr.srq_thr_req_head == NULL) { 25204 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25205 &sd_tr.srq_resv_reclaim_mutex); 25206 } 25207 25208 /* Loop while we have work */ 25209 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25210 un = ddi_get_soft_state(sd_state, 25211 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25212 if (un == NULL) { 25213 /* 25214 * softstate structure is NULL so just 25215 * dequeue the request and continue 25216 */ 25217 sd_tr.srq_thr_req_head = 25218 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25219 kmem_free(sd_tr.srq_thr_cur_req, 25220 sizeof (struct sd_thr_request)); 25221 continue; 25222 } 25223 25224 /* dequeue the request */ 25225 sd_mhreq = sd_tr.srq_thr_cur_req; 25226 sd_tr.srq_thr_req_head = 25227 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25228 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25229 25230 /* 25231 * Reclaim reservation only if SD_RESERVE is still set. There 25232 * may have been a call to MHIOCRELEASE before we got here. 25233 */ 25234 mutex_enter(SD_MUTEX(un)); 25235 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25236 /* 25237 * Note: The SD_LOST_RESERVE flag is cleared before 25238 * reclaiming the reservation. If this is done after the 25239 * call to sd_reserve_release a reservation loss in the 25240 * window between pkt completion of reserve cmd and 25241 * mutex_enter below may not be recognized 25242 */ 25243 un->un_resvd_status &= ~SD_LOST_RESERVE; 25244 mutex_exit(SD_MUTEX(un)); 25245 25246 if (sd_reserve_release(sd_mhreq->dev, 25247 SD_RESERVE) == 0) { 25248 mutex_enter(SD_MUTEX(un)); 25249 un->un_resvd_status |= SD_RESERVE; 25250 mutex_exit(SD_MUTEX(un)); 25251 SD_INFO(SD_LOG_IOCTL_MHD, un, 25252 "sd_resv_reclaim_thread: " 25253 "Reservation Recovered\n"); 25254 } else { 25255 mutex_enter(SD_MUTEX(un)); 25256 un->un_resvd_status |= SD_LOST_RESERVE; 25257 mutex_exit(SD_MUTEX(un)); 25258 SD_INFO(SD_LOG_IOCTL_MHD, un, 25259 "sd_resv_reclaim_thread: Failed " 25260 "Reservation Recovery\n"); 25261 } 25262 } else { 25263 mutex_exit(SD_MUTEX(un)); 25264 } 25265 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25266 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25267 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25268 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25269 /* 25270 * wakeup the destroy thread if anyone is waiting on 25271 * us to complete. 25272 */ 25273 cv_signal(&sd_tr.srq_inprocess_cv); 25274 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25275 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25276 } 25277 25278 /* 25279 * cleanup the sd_tr structure now that this thread will not exist 25280 */ 25281 ASSERT(sd_tr.srq_thr_req_head == NULL); 25282 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25283 sd_tr.srq_resv_reclaim_thread = NULL; 25284 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25285 thread_exit(); 25286 } 25287 25288 25289 /* 25290 * Function: sd_rmv_resv_reclaim_req() 25291 * 25292 * Description: This function removes any pending reservation reclaim requests 25293 * for the specified device. 25294 * 25295 * Arguments: dev - the device 'dev_t' 25296 */ 25297 25298 static void 25299 sd_rmv_resv_reclaim_req(dev_t dev) 25300 { 25301 struct sd_thr_request *sd_mhreq; 25302 struct sd_thr_request *sd_prev; 25303 25304 /* Remove a reservation reclaim request from the list */ 25305 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25306 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25307 /* 25308 * We are attempting to reinstate reservation for 25309 * this device. We wait for sd_reserve_release() 25310 * to return before we return. 25311 */ 25312 cv_wait(&sd_tr.srq_inprocess_cv, 25313 &sd_tr.srq_resv_reclaim_mutex); 25314 } else { 25315 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25316 if (sd_mhreq && sd_mhreq->dev == dev) { 25317 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25318 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25319 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25320 return; 25321 } 25322 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25323 if (sd_mhreq && sd_mhreq->dev == dev) { 25324 break; 25325 } 25326 sd_prev = sd_mhreq; 25327 } 25328 if (sd_mhreq != NULL) { 25329 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25330 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25331 } 25332 } 25333 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25334 } 25335 25336 25337 /* 25338 * Function: sd_mhd_reset_notify_cb() 25339 * 25340 * Description: This is a call back function for scsi_reset_notify. This 25341 * function updates the softstate reserved status and logs the 25342 * reset. The driver scsi watch facility callback function 25343 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25344 * will reclaim the reservation. 25345 * 25346 * Arguments: arg - driver soft state (unit) structure 25347 */ 25348 25349 static void 25350 sd_mhd_reset_notify_cb(caddr_t arg) 25351 { 25352 struct sd_lun *un = (struct sd_lun *)arg; 25353 25354 mutex_enter(SD_MUTEX(un)); 25355 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25356 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25357 SD_INFO(SD_LOG_IOCTL_MHD, un, 25358 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25359 } 25360 mutex_exit(SD_MUTEX(un)); 25361 } 25362 25363 25364 /* 25365 * Function: sd_take_ownership() 25366 * 25367 * Description: This routine implements an algorithm to achieve a stable 25368 * reservation on disks which don't implement priority reserve, 25369 * and makes sure that other host lose re-reservation attempts. 25370 * This algorithm contains of a loop that keeps issuing the RESERVE 25371 * for some period of time (min_ownership_delay, default 6 seconds) 25372 * During that loop, it looks to see if there has been a bus device 25373 * reset or bus reset (both of which cause an existing reservation 25374 * to be lost). If the reservation is lost issue RESERVE until a 25375 * period of min_ownership_delay with no resets has gone by, or 25376 * until max_ownership_delay has expired. This loop ensures that 25377 * the host really did manage to reserve the device, in spite of 25378 * resets. The looping for min_ownership_delay (default six 25379 * seconds) is important to early generation clustering products, 25380 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25381 * MHIOCENFAILFAST periodic timer of two seconds. By having 25382 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25383 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25384 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25385 * have already noticed, via the MHIOCENFAILFAST polling, that it 25386 * no longer "owns" the disk and will have panicked itself. Thus, 25387 * the host issuing the MHIOCTKOWN is assured (with timing 25388 * dependencies) that by the time it actually starts to use the 25389 * disk for real work, the old owner is no longer accessing it. 25390 * 25391 * min_ownership_delay is the minimum amount of time for which the 25392 * disk must be reserved continuously devoid of resets before the 25393 * MHIOCTKOWN ioctl will return success. 25394 * 25395 * max_ownership_delay indicates the amount of time by which the 25396 * take ownership should succeed or timeout with an error. 25397 * 25398 * Arguments: dev - the device 'dev_t' 25399 * *p - struct containing timing info. 25400 * 25401 * Return Code: 0 for success or error code 25402 */ 25403 25404 static int 25405 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25406 { 25407 struct sd_lun *un; 25408 int rval; 25409 int err; 25410 int reservation_count = 0; 25411 int min_ownership_delay = 6000000; /* in usec */ 25412 int max_ownership_delay = 30000000; /* in usec */ 25413 clock_t start_time; /* starting time of this algorithm */ 25414 clock_t end_time; /* time limit for giving up */ 25415 clock_t ownership_time; /* time limit for stable ownership */ 25416 clock_t current_time; 25417 clock_t previous_current_time; 25418 25419 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25420 return (ENXIO); 25421 } 25422 25423 /* 25424 * Attempt a device reservation. A priority reservation is requested. 25425 */ 25426 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25427 != SD_SUCCESS) { 25428 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25429 "sd_take_ownership: return(1)=%d\n", rval); 25430 return (rval); 25431 } 25432 25433 /* Update the softstate reserved status to indicate the reservation */ 25434 mutex_enter(SD_MUTEX(un)); 25435 un->un_resvd_status |= SD_RESERVE; 25436 un->un_resvd_status &= 25437 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25438 mutex_exit(SD_MUTEX(un)); 25439 25440 if (p != NULL) { 25441 if (p->min_ownership_delay != 0) { 25442 min_ownership_delay = p->min_ownership_delay * 1000; 25443 } 25444 if (p->max_ownership_delay != 0) { 25445 max_ownership_delay = p->max_ownership_delay * 1000; 25446 } 25447 } 25448 SD_INFO(SD_LOG_IOCTL_MHD, un, 25449 "sd_take_ownership: min, max delays: %d, %d\n", 25450 min_ownership_delay, max_ownership_delay); 25451 25452 start_time = ddi_get_lbolt(); 25453 current_time = start_time; 25454 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25455 end_time = start_time + drv_usectohz(max_ownership_delay); 25456 25457 while (current_time - end_time < 0) { 25458 delay(drv_usectohz(500000)); 25459 25460 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25461 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25462 mutex_enter(SD_MUTEX(un)); 25463 rval = (un->un_resvd_status & 25464 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25465 mutex_exit(SD_MUTEX(un)); 25466 break; 25467 } 25468 } 25469 previous_current_time = current_time; 25470 current_time = ddi_get_lbolt(); 25471 mutex_enter(SD_MUTEX(un)); 25472 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25473 ownership_time = ddi_get_lbolt() + 25474 drv_usectohz(min_ownership_delay); 25475 reservation_count = 0; 25476 } else { 25477 reservation_count++; 25478 } 25479 un->un_resvd_status |= SD_RESERVE; 25480 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25481 mutex_exit(SD_MUTEX(un)); 25482 25483 SD_INFO(SD_LOG_IOCTL_MHD, un, 25484 "sd_take_ownership: ticks for loop iteration=%ld, " 25485 "reservation=%s\n", (current_time - previous_current_time), 25486 reservation_count ? "ok" : "reclaimed"); 25487 25488 if (current_time - ownership_time >= 0 && 25489 reservation_count >= 4) { 25490 rval = 0; /* Achieved a stable ownership */ 25491 break; 25492 } 25493 if (current_time - end_time >= 0) { 25494 rval = EACCES; /* No ownership in max possible time */ 25495 break; 25496 } 25497 } 25498 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25499 "sd_take_ownership: return(2)=%d\n", rval); 25500 return (rval); 25501 } 25502 25503 25504 /* 25505 * Function: sd_reserve_release() 25506 * 25507 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25508 * PRIORITY RESERVE commands based on a user specified command type 25509 * 25510 * Arguments: dev - the device 'dev_t' 25511 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25512 * SD_RESERVE, SD_RELEASE 25513 * 25514 * Return Code: 0 or Error Code 25515 */ 25516 25517 static int 25518 sd_reserve_release(dev_t dev, int cmd) 25519 { 25520 struct uscsi_cmd *com = NULL; 25521 struct sd_lun *un = NULL; 25522 char cdb[CDB_GROUP0]; 25523 int rval; 25524 25525 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25526 (cmd == SD_PRIORITY_RESERVE)); 25527 25528 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25529 return (ENXIO); 25530 } 25531 25532 /* instantiate and initialize the command and cdb */ 25533 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25534 bzero(cdb, CDB_GROUP0); 25535 com->uscsi_flags = USCSI_SILENT; 25536 com->uscsi_timeout = un->un_reserve_release_time; 25537 com->uscsi_cdblen = CDB_GROUP0; 25538 com->uscsi_cdb = cdb; 25539 if (cmd == SD_RELEASE) { 25540 cdb[0] = SCMD_RELEASE; 25541 } else { 25542 cdb[0] = SCMD_RESERVE; 25543 } 25544 25545 /* Send the command. */ 25546 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25547 SD_PATH_STANDARD); 25548 25549 /* 25550 * "break" a reservation that is held by another host, by issuing a 25551 * reset if priority reserve is desired, and we could not get the 25552 * device. 25553 */ 25554 if ((cmd == SD_PRIORITY_RESERVE) && 25555 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25556 /* 25557 * First try to reset the LUN. If we cannot, then try a target 25558 * reset, followed by a bus reset if the target reset fails. 25559 */ 25560 int reset_retval = 0; 25561 if (un->un_f_lun_reset_enabled == TRUE) { 25562 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25563 } 25564 if (reset_retval == 0) { 25565 /* The LUN reset either failed or was not issued */ 25566 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25567 } 25568 if ((reset_retval == 0) && 25569 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25570 rval = EIO; 25571 kmem_free(com, sizeof (*com)); 25572 return (rval); 25573 } 25574 25575 bzero(com, sizeof (struct uscsi_cmd)); 25576 com->uscsi_flags = USCSI_SILENT; 25577 com->uscsi_cdb = cdb; 25578 com->uscsi_cdblen = CDB_GROUP0; 25579 com->uscsi_timeout = 5; 25580 25581 /* 25582 * Reissue the last reserve command, this time without request 25583 * sense. Assume that it is just a regular reserve command. 25584 */ 25585 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25586 SD_PATH_STANDARD); 25587 } 25588 25589 /* Return an error if still getting a reservation conflict. */ 25590 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25591 rval = EACCES; 25592 } 25593 25594 kmem_free(com, sizeof (*com)); 25595 return (rval); 25596 } 25597 25598 25599 #define SD_NDUMP_RETRIES 12 25600 /* 25601 * System Crash Dump routine 25602 */ 25603 25604 static int 25605 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25606 { 25607 int instance; 25608 int partition; 25609 int i; 25610 int err; 25611 struct sd_lun *un; 25612 struct scsi_pkt *wr_pktp; 25613 struct buf *wr_bp; 25614 struct buf wr_buf; 25615 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25616 daddr_t tgt_blkno; /* rmw - blkno for target */ 25617 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25618 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25619 size_t io_start_offset; 25620 int doing_rmw = FALSE; 25621 int rval; 25622 ssize_t dma_resid; 25623 daddr_t oblkno; 25624 diskaddr_t nblks = 0; 25625 diskaddr_t start_block; 25626 25627 instance = SDUNIT(dev); 25628 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25629 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 25630 return (ENXIO); 25631 } 25632 25633 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25634 25635 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25636 25637 partition = SDPART(dev); 25638 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25639 25640 if (!(NOT_DEVBSIZE(un))) { 25641 int secmask = 0; 25642 int blknomask = 0; 25643 25644 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 25645 secmask = un->un_tgt_blocksize - 1; 25646 25647 if (blkno & blknomask) { 25648 SD_TRACE(SD_LOG_DUMP, un, 25649 "sddump: dump start block not modulo %d\n", 25650 un->un_tgt_blocksize); 25651 return (EINVAL); 25652 } 25653 25654 if ((nblk * DEV_BSIZE) & secmask) { 25655 SD_TRACE(SD_LOG_DUMP, un, 25656 "sddump: dump length not modulo %d\n", 25657 un->un_tgt_blocksize); 25658 return (EINVAL); 25659 } 25660 25661 } 25662 25663 /* Validate blocks to dump at against partition size. */ 25664 25665 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 25666 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 25667 25668 if (NOT_DEVBSIZE(un)) { 25669 if ((blkno + nblk) > nblks) { 25670 SD_TRACE(SD_LOG_DUMP, un, 25671 "sddump: dump range larger than partition: " 25672 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25673 blkno, nblk, nblks); 25674 return (EINVAL); 25675 } 25676 } else { 25677 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 25678 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 25679 SD_TRACE(SD_LOG_DUMP, un, 25680 "sddump: dump range larger than partition: " 25681 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25682 blkno, nblk, nblks); 25683 return (EINVAL); 25684 } 25685 } 25686 25687 mutex_enter(&un->un_pm_mutex); 25688 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 25689 struct scsi_pkt *start_pktp; 25690 25691 mutex_exit(&un->un_pm_mutex); 25692 25693 /* 25694 * use pm framework to power on HBA 1st 25695 */ 25696 (void) pm_raise_power(SD_DEVINFO(un), 0, 25697 SD_PM_STATE_ACTIVE(un)); 25698 25699 /* 25700 * Dump no long uses sdpower to power on a device, it's 25701 * in-line here so it can be done in polled mode. 25702 */ 25703 25704 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 25705 25706 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 25707 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 25708 25709 if (start_pktp == NULL) { 25710 /* We were not given a SCSI packet, fail. */ 25711 return (EIO); 25712 } 25713 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 25714 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 25715 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 25716 start_pktp->pkt_flags = FLAG_NOINTR; 25717 25718 mutex_enter(SD_MUTEX(un)); 25719 SD_FILL_SCSI1_LUN(un, start_pktp); 25720 mutex_exit(SD_MUTEX(un)); 25721 /* 25722 * Scsi_poll returns 0 (success) if the command completes and 25723 * the status block is STATUS_GOOD. 25724 */ 25725 if (sd_scsi_poll(un, start_pktp) != 0) { 25726 scsi_destroy_pkt(start_pktp); 25727 return (EIO); 25728 } 25729 scsi_destroy_pkt(start_pktp); 25730 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 25731 SD_PM_STATE_CHANGE); 25732 } else { 25733 mutex_exit(&un->un_pm_mutex); 25734 } 25735 25736 mutex_enter(SD_MUTEX(un)); 25737 un->un_throttle = 0; 25738 25739 /* 25740 * The first time through, reset the specific target device. 25741 * However, when cpr calls sddump we know that sd is in a 25742 * a good state so no bus reset is required. 25743 * Clear sense data via Request Sense cmd. 25744 * In sddump we don't care about allow_bus_device_reset anymore 25745 */ 25746 25747 if ((un->un_state != SD_STATE_SUSPENDED) && 25748 (un->un_state != SD_STATE_DUMPING)) { 25749 25750 New_state(un, SD_STATE_DUMPING); 25751 25752 if (un->un_f_is_fibre == FALSE) { 25753 mutex_exit(SD_MUTEX(un)); 25754 /* 25755 * Attempt a bus reset for parallel scsi. 25756 * 25757 * Note: A bus reset is required because on some host 25758 * systems (i.e. E420R) a bus device reset is 25759 * insufficient to reset the state of the target. 25760 * 25761 * Note: Don't issue the reset for fibre-channel, 25762 * because this tends to hang the bus (loop) for 25763 * too long while everyone is logging out and in 25764 * and the deadman timer for dumping will fire 25765 * before the dump is complete. 25766 */ 25767 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 25768 mutex_enter(SD_MUTEX(un)); 25769 Restore_state(un); 25770 mutex_exit(SD_MUTEX(un)); 25771 return (EIO); 25772 } 25773 25774 /* Delay to give the device some recovery time. */ 25775 drv_usecwait(10000); 25776 25777 if (sd_send_polled_RQS(un) == SD_FAILURE) { 25778 SD_INFO(SD_LOG_DUMP, un, 25779 "sddump: sd_send_polled_RQS failed\n"); 25780 } 25781 mutex_enter(SD_MUTEX(un)); 25782 } 25783 } 25784 25785 /* 25786 * Convert the partition-relative block number to a 25787 * disk physical block number. 25788 */ 25789 if (NOT_DEVBSIZE(un)) { 25790 blkno += start_block; 25791 } else { 25792 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 25793 blkno += start_block; 25794 } 25795 25796 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 25797 25798 25799 /* 25800 * Check if the device has a non-512 block size. 25801 */ 25802 wr_bp = NULL; 25803 if (NOT_DEVBSIZE(un)) { 25804 tgt_byte_offset = blkno * un->un_sys_blocksize; 25805 tgt_byte_count = nblk * un->un_sys_blocksize; 25806 if ((tgt_byte_offset % un->un_tgt_blocksize) || 25807 (tgt_byte_count % un->un_tgt_blocksize)) { 25808 doing_rmw = TRUE; 25809 /* 25810 * Calculate the block number and number of block 25811 * in terms of the media block size. 25812 */ 25813 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25814 tgt_nblk = 25815 ((tgt_byte_offset + tgt_byte_count + 25816 (un->un_tgt_blocksize - 1)) / 25817 un->un_tgt_blocksize) - tgt_blkno; 25818 25819 /* 25820 * Invoke the routine which is going to do read part 25821 * of read-modify-write. 25822 * Note that this routine returns a pointer to 25823 * a valid bp in wr_bp. 25824 */ 25825 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 25826 &wr_bp); 25827 if (err) { 25828 mutex_exit(SD_MUTEX(un)); 25829 return (err); 25830 } 25831 /* 25832 * Offset is being calculated as - 25833 * (original block # * system block size) - 25834 * (new block # * target block size) 25835 */ 25836 io_start_offset = 25837 ((uint64_t)(blkno * un->un_sys_blocksize)) - 25838 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 25839 25840 ASSERT((io_start_offset >= 0) && 25841 (io_start_offset < un->un_tgt_blocksize)); 25842 /* 25843 * Do the modify portion of read modify write. 25844 */ 25845 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 25846 (size_t)nblk * un->un_sys_blocksize); 25847 } else { 25848 doing_rmw = FALSE; 25849 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25850 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 25851 } 25852 25853 /* Convert blkno and nblk to target blocks */ 25854 blkno = tgt_blkno; 25855 nblk = tgt_nblk; 25856 } else { 25857 wr_bp = &wr_buf; 25858 bzero(wr_bp, sizeof (struct buf)); 25859 wr_bp->b_flags = B_BUSY; 25860 wr_bp->b_un.b_addr = addr; 25861 wr_bp->b_bcount = nblk << DEV_BSHIFT; 25862 wr_bp->b_resid = 0; 25863 } 25864 25865 mutex_exit(SD_MUTEX(un)); 25866 25867 /* 25868 * Obtain a SCSI packet for the write command. 25869 * It should be safe to call the allocator here without 25870 * worrying about being locked for DVMA mapping because 25871 * the address we're passed is already a DVMA mapping 25872 * 25873 * We are also not going to worry about semaphore ownership 25874 * in the dump buffer. Dumping is single threaded at present. 25875 */ 25876 25877 wr_pktp = NULL; 25878 25879 dma_resid = wr_bp->b_bcount; 25880 oblkno = blkno; 25881 25882 if (!(NOT_DEVBSIZE(un))) { 25883 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 25884 } 25885 25886 while (dma_resid != 0) { 25887 25888 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25889 wr_bp->b_flags &= ~B_ERROR; 25890 25891 if (un->un_partial_dma_supported == 1) { 25892 blkno = oblkno + 25893 ((wr_bp->b_bcount - dma_resid) / 25894 un->un_tgt_blocksize); 25895 nblk = dma_resid / un->un_tgt_blocksize; 25896 25897 if (wr_pktp) { 25898 /* 25899 * Partial DMA transfers after initial transfer 25900 */ 25901 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 25902 blkno, nblk); 25903 } else { 25904 /* Initial transfer */ 25905 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25906 un->un_pkt_flags, NULL_FUNC, NULL, 25907 blkno, nblk); 25908 } 25909 } else { 25910 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25911 0, NULL_FUNC, NULL, blkno, nblk); 25912 } 25913 25914 if (rval == 0) { 25915 /* We were given a SCSI packet, continue. */ 25916 break; 25917 } 25918 25919 if (i == 0) { 25920 if (wr_bp->b_flags & B_ERROR) { 25921 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25922 "no resources for dumping; " 25923 "error code: 0x%x, retrying", 25924 geterror(wr_bp)); 25925 } else { 25926 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25927 "no resources for dumping; retrying"); 25928 } 25929 } else if (i != (SD_NDUMP_RETRIES - 1)) { 25930 if (wr_bp->b_flags & B_ERROR) { 25931 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25932 "no resources for dumping; error code: " 25933 "0x%x, retrying\n", geterror(wr_bp)); 25934 } 25935 } else { 25936 if (wr_bp->b_flags & B_ERROR) { 25937 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25938 "no resources for dumping; " 25939 "error code: 0x%x, retries failed, " 25940 "giving up.\n", geterror(wr_bp)); 25941 } else { 25942 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25943 "no resources for dumping; " 25944 "retries failed, giving up.\n"); 25945 } 25946 mutex_enter(SD_MUTEX(un)); 25947 Restore_state(un); 25948 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 25949 mutex_exit(SD_MUTEX(un)); 25950 scsi_free_consistent_buf(wr_bp); 25951 } else { 25952 mutex_exit(SD_MUTEX(un)); 25953 } 25954 return (EIO); 25955 } 25956 drv_usecwait(10000); 25957 } 25958 25959 if (un->un_partial_dma_supported == 1) { 25960 /* 25961 * save the resid from PARTIAL_DMA 25962 */ 25963 dma_resid = wr_pktp->pkt_resid; 25964 if (dma_resid != 0) 25965 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 25966 wr_pktp->pkt_resid = 0; 25967 } else { 25968 dma_resid = 0; 25969 } 25970 25971 /* SunBug 1222170 */ 25972 wr_pktp->pkt_flags = FLAG_NOINTR; 25973 25974 err = EIO; 25975 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25976 25977 /* 25978 * Scsi_poll returns 0 (success) if the command completes and 25979 * the status block is STATUS_GOOD. We should only check 25980 * errors if this condition is not true. Even then we should 25981 * send our own request sense packet only if we have a check 25982 * condition and auto request sense has not been performed by 25983 * the hba. 25984 */ 25985 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 25986 25987 if ((sd_scsi_poll(un, wr_pktp) == 0) && 25988 (wr_pktp->pkt_resid == 0)) { 25989 err = SD_SUCCESS; 25990 break; 25991 } 25992 25993 /* 25994 * Check CMD_DEV_GONE 1st, give up if device is gone. 25995 */ 25996 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 25997 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25998 "Error while dumping state...Device is gone\n"); 25999 break; 26000 } 26001 26002 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26003 SD_INFO(SD_LOG_DUMP, un, 26004 "sddump: write failed with CHECK, try # %d\n", i); 26005 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26006 (void) sd_send_polled_RQS(un); 26007 } 26008 26009 continue; 26010 } 26011 26012 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26013 int reset_retval = 0; 26014 26015 SD_INFO(SD_LOG_DUMP, un, 26016 "sddump: write failed with BUSY, try # %d\n", i); 26017 26018 if (un->un_f_lun_reset_enabled == TRUE) { 26019 reset_retval = scsi_reset(SD_ADDRESS(un), 26020 RESET_LUN); 26021 } 26022 if (reset_retval == 0) { 26023 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26024 } 26025 (void) sd_send_polled_RQS(un); 26026 26027 } else { 26028 SD_INFO(SD_LOG_DUMP, un, 26029 "sddump: write failed with 0x%x, try # %d\n", 26030 SD_GET_PKT_STATUS(wr_pktp), i); 26031 mutex_enter(SD_MUTEX(un)); 26032 sd_reset_target(un, wr_pktp); 26033 mutex_exit(SD_MUTEX(un)); 26034 } 26035 26036 /* 26037 * If we are not getting anywhere with lun/target resets, 26038 * let's reset the bus. 26039 */ 26040 if (i == SD_NDUMP_RETRIES/2) { 26041 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26042 (void) sd_send_polled_RQS(un); 26043 } 26044 } 26045 } 26046 26047 scsi_destroy_pkt(wr_pktp); 26048 mutex_enter(SD_MUTEX(un)); 26049 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26050 mutex_exit(SD_MUTEX(un)); 26051 scsi_free_consistent_buf(wr_bp); 26052 } else { 26053 mutex_exit(SD_MUTEX(un)); 26054 } 26055 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26056 return (err); 26057 } 26058 26059 /* 26060 * Function: sd_scsi_poll() 26061 * 26062 * Description: This is a wrapper for the scsi_poll call. 26063 * 26064 * Arguments: sd_lun - The unit structure 26065 * scsi_pkt - The scsi packet being sent to the device. 26066 * 26067 * Return Code: 0 - Command completed successfully with good status 26068 * -1 - Command failed. This could indicate a check condition 26069 * or other status value requiring recovery action. 26070 * 26071 * NOTE: This code is only called off sddump(). 26072 */ 26073 26074 static int 26075 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26076 { 26077 int status; 26078 26079 ASSERT(un != NULL); 26080 ASSERT(!mutex_owned(SD_MUTEX(un))); 26081 ASSERT(pktp != NULL); 26082 26083 status = SD_SUCCESS; 26084 26085 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26086 pktp->pkt_flags |= un->un_tagflags; 26087 pktp->pkt_flags &= ~FLAG_NODISCON; 26088 } 26089 26090 status = sd_ddi_scsi_poll(pktp); 26091 /* 26092 * Scsi_poll returns 0 (success) if the command completes and the 26093 * status block is STATUS_GOOD. We should only check errors if this 26094 * condition is not true. Even then we should send our own request 26095 * sense packet only if we have a check condition and auto 26096 * request sense has not been performed by the hba. 26097 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26098 */ 26099 if ((status != SD_SUCCESS) && 26100 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26101 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26102 (pktp->pkt_reason != CMD_DEV_GONE)) 26103 (void) sd_send_polled_RQS(un); 26104 26105 return (status); 26106 } 26107 26108 /* 26109 * Function: sd_send_polled_RQS() 26110 * 26111 * Description: This sends the request sense command to a device. 26112 * 26113 * Arguments: sd_lun - The unit structure 26114 * 26115 * Return Code: 0 - Command completed successfully with good status 26116 * -1 - Command failed. 26117 * 26118 */ 26119 26120 static int 26121 sd_send_polled_RQS(struct sd_lun *un) 26122 { 26123 int ret_val; 26124 struct scsi_pkt *rqs_pktp; 26125 struct buf *rqs_bp; 26126 26127 ASSERT(un != NULL); 26128 ASSERT(!mutex_owned(SD_MUTEX(un))); 26129 26130 ret_val = SD_SUCCESS; 26131 26132 rqs_pktp = un->un_rqs_pktp; 26133 rqs_bp = un->un_rqs_bp; 26134 26135 mutex_enter(SD_MUTEX(un)); 26136 26137 if (un->un_sense_isbusy) { 26138 ret_val = SD_FAILURE; 26139 mutex_exit(SD_MUTEX(un)); 26140 return (ret_val); 26141 } 26142 26143 /* 26144 * If the request sense buffer (and packet) is not in use, 26145 * let's set the un_sense_isbusy and send our packet 26146 */ 26147 un->un_sense_isbusy = 1; 26148 rqs_pktp->pkt_resid = 0; 26149 rqs_pktp->pkt_reason = 0; 26150 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26151 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26152 26153 mutex_exit(SD_MUTEX(un)); 26154 26155 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26156 " 0x%p\n", rqs_bp->b_un.b_addr); 26157 26158 /* 26159 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26160 * axle - it has a call into us! 26161 */ 26162 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26163 SD_INFO(SD_LOG_COMMON, un, 26164 "sd_send_polled_RQS: RQS failed\n"); 26165 } 26166 26167 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26168 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26169 26170 mutex_enter(SD_MUTEX(un)); 26171 un->un_sense_isbusy = 0; 26172 mutex_exit(SD_MUTEX(un)); 26173 26174 return (ret_val); 26175 } 26176 26177 /* 26178 * Defines needed for localized version of the scsi_poll routine. 26179 */ 26180 #define CSEC 10000 /* usecs */ 26181 #define SEC_TO_CSEC (1000000/CSEC) 26182 26183 /* 26184 * Function: sd_ddi_scsi_poll() 26185 * 26186 * Description: Localized version of the scsi_poll routine. The purpose is to 26187 * send a scsi_pkt to a device as a polled command. This version 26188 * is to ensure more robust handling of transport errors. 26189 * Specifically this routine cures not ready, coming ready 26190 * transition for power up and reset of sonoma's. This can take 26191 * up to 45 seconds for power-on and 20 seconds for reset of a 26192 * sonoma lun. 26193 * 26194 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26195 * 26196 * Return Code: 0 - Command completed successfully with good status 26197 * -1 - Command failed. 26198 * 26199 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26200 * be fixed (removing this code), we need to determine how to handle the 26201 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26202 * 26203 * NOTE: This code is only called off sddump(). 26204 */ 26205 static int 26206 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26207 { 26208 int rval = -1; 26209 int savef; 26210 long savet; 26211 void (*savec)(); 26212 int timeout; 26213 int busy_count; 26214 int poll_delay; 26215 int rc; 26216 uint8_t *sensep; 26217 struct scsi_arq_status *arqstat; 26218 extern int do_polled_io; 26219 26220 ASSERT(pkt->pkt_scbp); 26221 26222 /* 26223 * save old flags.. 26224 */ 26225 savef = pkt->pkt_flags; 26226 savec = pkt->pkt_comp; 26227 savet = pkt->pkt_time; 26228 26229 pkt->pkt_flags |= FLAG_NOINTR; 26230 26231 /* 26232 * XXX there is nothing in the SCSA spec that states that we should not 26233 * do a callback for polled cmds; however, removing this will break sd 26234 * and probably other target drivers 26235 */ 26236 pkt->pkt_comp = NULL; 26237 26238 /* 26239 * we don't like a polled command without timeout. 26240 * 60 seconds seems long enough. 26241 */ 26242 if (pkt->pkt_time == 0) 26243 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26244 26245 /* 26246 * Send polled cmd. 26247 * 26248 * We do some error recovery for various errors. Tran_busy, 26249 * queue full, and non-dispatched commands are retried every 10 msec. 26250 * as they are typically transient failures. Busy status and Not 26251 * Ready are retried every second as this status takes a while to 26252 * change. 26253 */ 26254 timeout = pkt->pkt_time * SEC_TO_CSEC; 26255 26256 for (busy_count = 0; busy_count < timeout; busy_count++) { 26257 /* 26258 * Initialize pkt status variables. 26259 */ 26260 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26261 26262 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26263 if (rc != TRAN_BUSY) { 26264 /* Transport failed - give up. */ 26265 break; 26266 } else { 26267 /* Transport busy - try again. */ 26268 poll_delay = 1 * CSEC; /* 10 msec. */ 26269 } 26270 } else { 26271 /* 26272 * Transport accepted - check pkt status. 26273 */ 26274 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26275 if ((pkt->pkt_reason == CMD_CMPLT) && 26276 (rc == STATUS_CHECK) && 26277 (pkt->pkt_state & STATE_ARQ_DONE)) { 26278 arqstat = 26279 (struct scsi_arq_status *)(pkt->pkt_scbp); 26280 sensep = (uint8_t *)&arqstat->sts_sensedata; 26281 } else { 26282 sensep = NULL; 26283 } 26284 26285 if ((pkt->pkt_reason == CMD_CMPLT) && 26286 (rc == STATUS_GOOD)) { 26287 /* No error - we're done */ 26288 rval = 0; 26289 break; 26290 26291 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26292 /* Lost connection - give up */ 26293 break; 26294 26295 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26296 (pkt->pkt_state == 0)) { 26297 /* Pkt not dispatched - try again. */ 26298 poll_delay = 1 * CSEC; /* 10 msec. */ 26299 26300 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26301 (rc == STATUS_QFULL)) { 26302 /* Queue full - try again. */ 26303 poll_delay = 1 * CSEC; /* 10 msec. */ 26304 26305 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26306 (rc == STATUS_BUSY)) { 26307 /* Busy - try again. */ 26308 poll_delay = 100 * CSEC; /* 1 sec. */ 26309 busy_count += (SEC_TO_CSEC - 1); 26310 26311 } else if ((sensep != NULL) && 26312 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26313 /* 26314 * Unit Attention - try again. 26315 * Pretend it took 1 sec. 26316 * NOTE: 'continue' avoids poll_delay 26317 */ 26318 busy_count += (SEC_TO_CSEC - 1); 26319 continue; 26320 26321 } else if ((sensep != NULL) && 26322 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26323 (scsi_sense_asc(sensep) == 0x04) && 26324 (scsi_sense_ascq(sensep) == 0x01)) { 26325 /* 26326 * Not ready -> ready - try again. 26327 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26328 * ...same as STATUS_BUSY 26329 */ 26330 poll_delay = 100 * CSEC; /* 1 sec. */ 26331 busy_count += (SEC_TO_CSEC - 1); 26332 26333 } else { 26334 /* BAD status - give up. */ 26335 break; 26336 } 26337 } 26338 26339 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26340 !do_polled_io) { 26341 delay(drv_usectohz(poll_delay)); 26342 } else { 26343 /* we busy wait during cpr_dump or interrupt threads */ 26344 drv_usecwait(poll_delay); 26345 } 26346 } 26347 26348 pkt->pkt_flags = savef; 26349 pkt->pkt_comp = savec; 26350 pkt->pkt_time = savet; 26351 26352 /* return on error */ 26353 if (rval) 26354 return (rval); 26355 26356 /* 26357 * This is not a performance critical code path. 26358 * 26359 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26360 * issues associated with looking at DMA memory prior to 26361 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26362 */ 26363 scsi_sync_pkt(pkt); 26364 return (0); 26365 } 26366 26367 26368 26369 /* 26370 * Function: sd_persistent_reservation_in_read_keys 26371 * 26372 * Description: This routine is the driver entry point for handling CD-ROM 26373 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26374 * by sending the SCSI-3 PRIN commands to the device. 26375 * Processes the read keys command response by copying the 26376 * reservation key information into the user provided buffer. 26377 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26378 * 26379 * Arguments: un - Pointer to soft state struct for the target. 26380 * usrp - user provided pointer to multihost Persistent In Read 26381 * Keys structure (mhioc_inkeys_t) 26382 * flag - this argument is a pass through to ddi_copyxxx() 26383 * directly from the mode argument of ioctl(). 26384 * 26385 * Return Code: 0 - Success 26386 * EACCES 26387 * ENOTSUP 26388 * errno return code from sd_send_scsi_cmd() 26389 * 26390 * Context: Can sleep. Does not return until command is completed. 26391 */ 26392 26393 static int 26394 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26395 mhioc_inkeys_t *usrp, int flag) 26396 { 26397 #ifdef _MULTI_DATAMODEL 26398 struct mhioc_key_list32 li32; 26399 #endif 26400 sd_prin_readkeys_t *in; 26401 mhioc_inkeys_t *ptr; 26402 mhioc_key_list_t li; 26403 uchar_t *data_bufp; 26404 int data_len; 26405 int rval = 0; 26406 size_t copysz; 26407 sd_ssc_t *ssc; 26408 26409 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26410 return (EINVAL); 26411 } 26412 bzero(&li, sizeof (mhioc_key_list_t)); 26413 26414 ssc = sd_ssc_init(un); 26415 26416 /* 26417 * Get the listsize from user 26418 */ 26419 #ifdef _MULTI_DATAMODEL 26420 26421 switch (ddi_model_convert_from(flag & FMODELS)) { 26422 case DDI_MODEL_ILP32: 26423 copysz = sizeof (struct mhioc_key_list32); 26424 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26425 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26426 "sd_persistent_reservation_in_read_keys: " 26427 "failed ddi_copyin: mhioc_key_list32_t\n"); 26428 rval = EFAULT; 26429 goto done; 26430 } 26431 li.listsize = li32.listsize; 26432 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26433 break; 26434 26435 case DDI_MODEL_NONE: 26436 copysz = sizeof (mhioc_key_list_t); 26437 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26438 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26439 "sd_persistent_reservation_in_read_keys: " 26440 "failed ddi_copyin: mhioc_key_list_t\n"); 26441 rval = EFAULT; 26442 goto done; 26443 } 26444 break; 26445 } 26446 26447 #else /* ! _MULTI_DATAMODEL */ 26448 copysz = sizeof (mhioc_key_list_t); 26449 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26450 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26451 "sd_persistent_reservation_in_read_keys: " 26452 "failed ddi_copyin: mhioc_key_list_t\n"); 26453 rval = EFAULT; 26454 goto done; 26455 } 26456 #endif 26457 26458 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26459 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26460 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26461 26462 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26463 data_len, data_bufp); 26464 if (rval != 0) { 26465 if (rval == EIO) 26466 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26467 else 26468 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26469 goto done; 26470 } 26471 in = (sd_prin_readkeys_t *)data_bufp; 26472 ptr->generation = BE_32(in->generation); 26473 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26474 26475 /* 26476 * Return the min(listsize, listlen) keys 26477 */ 26478 #ifdef _MULTI_DATAMODEL 26479 26480 switch (ddi_model_convert_from(flag & FMODELS)) { 26481 case DDI_MODEL_ILP32: 26482 li32.listlen = li.listlen; 26483 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26484 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26485 "sd_persistent_reservation_in_read_keys: " 26486 "failed ddi_copyout: mhioc_key_list32_t\n"); 26487 rval = EFAULT; 26488 goto done; 26489 } 26490 break; 26491 26492 case DDI_MODEL_NONE: 26493 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26494 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26495 "sd_persistent_reservation_in_read_keys: " 26496 "failed ddi_copyout: mhioc_key_list_t\n"); 26497 rval = EFAULT; 26498 goto done; 26499 } 26500 break; 26501 } 26502 26503 #else /* ! _MULTI_DATAMODEL */ 26504 26505 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26506 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26507 "sd_persistent_reservation_in_read_keys: " 26508 "failed ddi_copyout: mhioc_key_list_t\n"); 26509 rval = EFAULT; 26510 goto done; 26511 } 26512 26513 #endif /* _MULTI_DATAMODEL */ 26514 26515 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26516 li.listsize * MHIOC_RESV_KEY_SIZE); 26517 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26518 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26519 "sd_persistent_reservation_in_read_keys: " 26520 "failed ddi_copyout: keylist\n"); 26521 rval = EFAULT; 26522 } 26523 done: 26524 sd_ssc_fini(ssc); 26525 kmem_free(data_bufp, data_len); 26526 return (rval); 26527 } 26528 26529 26530 /* 26531 * Function: sd_persistent_reservation_in_read_resv 26532 * 26533 * Description: This routine is the driver entry point for handling CD-ROM 26534 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26535 * by sending the SCSI-3 PRIN commands to the device. 26536 * Process the read persistent reservations command response by 26537 * copying the reservation information into the user provided 26538 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26539 * 26540 * Arguments: un - Pointer to soft state struct for the target. 26541 * usrp - user provided pointer to multihost Persistent In Read 26542 * Keys structure (mhioc_inkeys_t) 26543 * flag - this argument is a pass through to ddi_copyxxx() 26544 * directly from the mode argument of ioctl(). 26545 * 26546 * Return Code: 0 - Success 26547 * EACCES 26548 * ENOTSUP 26549 * errno return code from sd_send_scsi_cmd() 26550 * 26551 * Context: Can sleep. Does not return until command is completed. 26552 */ 26553 26554 static int 26555 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26556 mhioc_inresvs_t *usrp, int flag) 26557 { 26558 #ifdef _MULTI_DATAMODEL 26559 struct mhioc_resv_desc_list32 resvlist32; 26560 #endif 26561 sd_prin_readresv_t *in; 26562 mhioc_inresvs_t *ptr; 26563 sd_readresv_desc_t *readresv_ptr; 26564 mhioc_resv_desc_list_t resvlist; 26565 mhioc_resv_desc_t resvdesc; 26566 uchar_t *data_bufp = NULL; 26567 int data_len; 26568 int rval = 0; 26569 int i; 26570 size_t copysz; 26571 mhioc_resv_desc_t *bufp; 26572 sd_ssc_t *ssc; 26573 26574 if ((ptr = usrp) == NULL) { 26575 return (EINVAL); 26576 } 26577 26578 ssc = sd_ssc_init(un); 26579 26580 /* 26581 * Get the listsize from user 26582 */ 26583 #ifdef _MULTI_DATAMODEL 26584 switch (ddi_model_convert_from(flag & FMODELS)) { 26585 case DDI_MODEL_ILP32: 26586 copysz = sizeof (struct mhioc_resv_desc_list32); 26587 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26588 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26589 "sd_persistent_reservation_in_read_resv: " 26590 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26591 rval = EFAULT; 26592 goto done; 26593 } 26594 resvlist.listsize = resvlist32.listsize; 26595 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26596 break; 26597 26598 case DDI_MODEL_NONE: 26599 copysz = sizeof (mhioc_resv_desc_list_t); 26600 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26601 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26602 "sd_persistent_reservation_in_read_resv: " 26603 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26604 rval = EFAULT; 26605 goto done; 26606 } 26607 break; 26608 } 26609 #else /* ! _MULTI_DATAMODEL */ 26610 copysz = sizeof (mhioc_resv_desc_list_t); 26611 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26612 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26613 "sd_persistent_reservation_in_read_resv: " 26614 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26615 rval = EFAULT; 26616 goto done; 26617 } 26618 #endif /* ! _MULTI_DATAMODEL */ 26619 26620 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26621 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26622 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26623 26624 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 26625 data_len, data_bufp); 26626 if (rval != 0) { 26627 if (rval == EIO) 26628 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26629 else 26630 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26631 goto done; 26632 } 26633 in = (sd_prin_readresv_t *)data_bufp; 26634 ptr->generation = BE_32(in->generation); 26635 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26636 26637 /* 26638 * Return the min(listsize, listlen( keys 26639 */ 26640 #ifdef _MULTI_DATAMODEL 26641 26642 switch (ddi_model_convert_from(flag & FMODELS)) { 26643 case DDI_MODEL_ILP32: 26644 resvlist32.listlen = resvlist.listlen; 26645 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26646 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26647 "sd_persistent_reservation_in_read_resv: " 26648 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26649 rval = EFAULT; 26650 goto done; 26651 } 26652 break; 26653 26654 case DDI_MODEL_NONE: 26655 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26656 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26657 "sd_persistent_reservation_in_read_resv: " 26658 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26659 rval = EFAULT; 26660 goto done; 26661 } 26662 break; 26663 } 26664 26665 #else /* ! _MULTI_DATAMODEL */ 26666 26667 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26668 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26669 "sd_persistent_reservation_in_read_resv: " 26670 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26671 rval = EFAULT; 26672 goto done; 26673 } 26674 26675 #endif /* ! _MULTI_DATAMODEL */ 26676 26677 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26678 bufp = resvlist.list; 26679 copysz = sizeof (mhioc_resv_desc_t); 26680 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26681 i++, readresv_ptr++, bufp++) { 26682 26683 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26684 MHIOC_RESV_KEY_SIZE); 26685 resvdesc.type = readresv_ptr->type; 26686 resvdesc.scope = readresv_ptr->scope; 26687 resvdesc.scope_specific_addr = 26688 BE_32(readresv_ptr->scope_specific_addr); 26689 26690 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26691 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26692 "sd_persistent_reservation_in_read_resv: " 26693 "failed ddi_copyout: resvlist\n"); 26694 rval = EFAULT; 26695 goto done; 26696 } 26697 } 26698 done: 26699 sd_ssc_fini(ssc); 26700 /* only if data_bufp is allocated, we need to free it */ 26701 if (data_bufp) { 26702 kmem_free(data_bufp, data_len); 26703 } 26704 return (rval); 26705 } 26706 26707 26708 /* 26709 * Function: sr_change_blkmode() 26710 * 26711 * Description: This routine is the driver entry point for handling CD-ROM 26712 * block mode ioctl requests. Support for returning and changing 26713 * the current block size in use by the device is implemented. The 26714 * LBA size is changed via a MODE SELECT Block Descriptor. 26715 * 26716 * This routine issues a mode sense with an allocation length of 26717 * 12 bytes for the mode page header and a single block descriptor. 26718 * 26719 * Arguments: dev - the device 'dev_t' 26720 * cmd - the request type; one of CDROMGBLKMODE (get) or 26721 * CDROMSBLKMODE (set) 26722 * data - current block size or requested block size 26723 * flag - this argument is a pass through to ddi_copyxxx() directly 26724 * from the mode argument of ioctl(). 26725 * 26726 * Return Code: the code returned by sd_send_scsi_cmd() 26727 * EINVAL if invalid arguments are provided 26728 * EFAULT if ddi_copyxxx() fails 26729 * ENXIO if fail ddi_get_soft_state 26730 * EIO if invalid mode sense block descriptor length 26731 * 26732 */ 26733 26734 static int 26735 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26736 { 26737 struct sd_lun *un = NULL; 26738 struct mode_header *sense_mhp, *select_mhp; 26739 struct block_descriptor *sense_desc, *select_desc; 26740 int current_bsize; 26741 int rval = EINVAL; 26742 uchar_t *sense = NULL; 26743 uchar_t *select = NULL; 26744 sd_ssc_t *ssc; 26745 26746 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 26747 26748 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26749 return (ENXIO); 26750 } 26751 26752 /* 26753 * The block length is changed via the Mode Select block descriptor, the 26754 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 26755 * required as part of this routine. Therefore the mode sense allocation 26756 * length is specified to be the length of a mode page header and a 26757 * block descriptor. 26758 */ 26759 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26760 26761 ssc = sd_ssc_init(un); 26762 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26763 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 26764 sd_ssc_fini(ssc); 26765 if (rval != 0) { 26766 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26767 "sr_change_blkmode: Mode Sense Failed\n"); 26768 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26769 return (rval); 26770 } 26771 26772 /* Check the block descriptor len to handle only 1 block descriptor */ 26773 sense_mhp = (struct mode_header *)sense; 26774 if ((sense_mhp->bdesc_length == 0) || 26775 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 26776 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26777 "sr_change_blkmode: Mode Sense returned invalid block" 26778 " descriptor length\n"); 26779 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26780 return (EIO); 26781 } 26782 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 26783 current_bsize = ((sense_desc->blksize_hi << 16) | 26784 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 26785 26786 /* Process command */ 26787 switch (cmd) { 26788 case CDROMGBLKMODE: 26789 /* Return the block size obtained during the mode sense */ 26790 if (ddi_copyout(¤t_bsize, (void *)data, 26791 sizeof (int), flag) != 0) 26792 rval = EFAULT; 26793 break; 26794 case CDROMSBLKMODE: 26795 /* Validate the requested block size */ 26796 switch (data) { 26797 case CDROM_BLK_512: 26798 case CDROM_BLK_1024: 26799 case CDROM_BLK_2048: 26800 case CDROM_BLK_2056: 26801 case CDROM_BLK_2336: 26802 case CDROM_BLK_2340: 26803 case CDROM_BLK_2352: 26804 case CDROM_BLK_2368: 26805 case CDROM_BLK_2448: 26806 case CDROM_BLK_2646: 26807 case CDROM_BLK_2647: 26808 break; 26809 default: 26810 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26811 "sr_change_blkmode: " 26812 "Block Size '%ld' Not Supported\n", data); 26813 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26814 return (EINVAL); 26815 } 26816 26817 /* 26818 * The current block size matches the requested block size so 26819 * there is no need to send the mode select to change the size 26820 */ 26821 if (current_bsize == data) { 26822 break; 26823 } 26824 26825 /* Build the select data for the requested block size */ 26826 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26827 select_mhp = (struct mode_header *)select; 26828 select_desc = 26829 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 26830 /* 26831 * The LBA size is changed via the block descriptor, so the 26832 * descriptor is built according to the user data 26833 */ 26834 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 26835 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 26836 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 26837 select_desc->blksize_lo = (char)((data) & 0x000000ff); 26838 26839 /* Send the mode select for the requested block size */ 26840 ssc = sd_ssc_init(un); 26841 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26842 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26843 SD_PATH_STANDARD); 26844 sd_ssc_fini(ssc); 26845 if (rval != 0) { 26846 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26847 "sr_change_blkmode: Mode Select Failed\n"); 26848 /* 26849 * The mode select failed for the requested block size, 26850 * so reset the data for the original block size and 26851 * send it to the target. The error is indicated by the 26852 * return value for the failed mode select. 26853 */ 26854 select_desc->blksize_hi = sense_desc->blksize_hi; 26855 select_desc->blksize_mid = sense_desc->blksize_mid; 26856 select_desc->blksize_lo = sense_desc->blksize_lo; 26857 ssc = sd_ssc_init(un); 26858 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26859 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26860 SD_PATH_STANDARD); 26861 sd_ssc_fini(ssc); 26862 } else { 26863 ASSERT(!mutex_owned(SD_MUTEX(un))); 26864 mutex_enter(SD_MUTEX(un)); 26865 sd_update_block_info(un, (uint32_t)data, 0); 26866 mutex_exit(SD_MUTEX(un)); 26867 } 26868 break; 26869 default: 26870 /* should not reach here, but check anyway */ 26871 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26872 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 26873 rval = EINVAL; 26874 break; 26875 } 26876 26877 if (select) { 26878 kmem_free(select, BUFLEN_CHG_BLK_MODE); 26879 } 26880 if (sense) { 26881 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26882 } 26883 return (rval); 26884 } 26885 26886 26887 /* 26888 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 26889 * implement driver support for getting and setting the CD speed. The command 26890 * set used will be based on the device type. If the device has not been 26891 * identified as MMC the Toshiba vendor specific mode page will be used. If 26892 * the device is MMC but does not support the Real Time Streaming feature 26893 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 26894 * be used to read the speed. 26895 */ 26896 26897 /* 26898 * Function: sr_change_speed() 26899 * 26900 * Description: This routine is the driver entry point for handling CD-ROM 26901 * drive speed ioctl requests for devices supporting the Toshiba 26902 * vendor specific drive speed mode page. Support for returning 26903 * and changing the current drive speed in use by the device is 26904 * implemented. 26905 * 26906 * Arguments: dev - the device 'dev_t' 26907 * cmd - the request type; one of CDROMGDRVSPEED (get) or 26908 * CDROMSDRVSPEED (set) 26909 * data - current drive speed or requested drive speed 26910 * flag - this argument is a pass through to ddi_copyxxx() directly 26911 * from the mode argument of ioctl(). 26912 * 26913 * Return Code: the code returned by sd_send_scsi_cmd() 26914 * EINVAL if invalid arguments are provided 26915 * EFAULT if ddi_copyxxx() fails 26916 * ENXIO if fail ddi_get_soft_state 26917 * EIO if invalid mode sense block descriptor length 26918 */ 26919 26920 static int 26921 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 26922 { 26923 struct sd_lun *un = NULL; 26924 struct mode_header *sense_mhp, *select_mhp; 26925 struct mode_speed *sense_page, *select_page; 26926 int current_speed; 26927 int rval = EINVAL; 26928 int bd_len; 26929 uchar_t *sense = NULL; 26930 uchar_t *select = NULL; 26931 sd_ssc_t *ssc; 26932 26933 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 26934 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26935 return (ENXIO); 26936 } 26937 26938 /* 26939 * Note: The drive speed is being modified here according to a Toshiba 26940 * vendor specific mode page (0x31). 26941 */ 26942 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 26943 26944 ssc = sd_ssc_init(un); 26945 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26946 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 26947 SD_PATH_STANDARD); 26948 sd_ssc_fini(ssc); 26949 if (rval != 0) { 26950 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26951 "sr_change_speed: Mode Sense Failed\n"); 26952 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26953 return (rval); 26954 } 26955 sense_mhp = (struct mode_header *)sense; 26956 26957 /* Check the block descriptor len to handle only 1 block descriptor */ 26958 bd_len = sense_mhp->bdesc_length; 26959 if (bd_len > MODE_BLK_DESC_LENGTH) { 26960 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26961 "sr_change_speed: Mode Sense returned invalid block " 26962 "descriptor length\n"); 26963 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26964 return (EIO); 26965 } 26966 26967 sense_page = (struct mode_speed *) 26968 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 26969 current_speed = sense_page->speed; 26970 26971 /* Process command */ 26972 switch (cmd) { 26973 case CDROMGDRVSPEED: 26974 /* Return the drive speed obtained during the mode sense */ 26975 if (current_speed == 0x2) { 26976 current_speed = CDROM_TWELVE_SPEED; 26977 } 26978 if (ddi_copyout(¤t_speed, (void *)data, 26979 sizeof (int), flag) != 0) { 26980 rval = EFAULT; 26981 } 26982 break; 26983 case CDROMSDRVSPEED: 26984 /* Validate the requested drive speed */ 26985 switch ((uchar_t)data) { 26986 case CDROM_TWELVE_SPEED: 26987 data = 0x2; 26988 /*FALLTHROUGH*/ 26989 case CDROM_NORMAL_SPEED: 26990 case CDROM_DOUBLE_SPEED: 26991 case CDROM_QUAD_SPEED: 26992 case CDROM_MAXIMUM_SPEED: 26993 break; 26994 default: 26995 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26996 "sr_change_speed: " 26997 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 26998 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26999 return (EINVAL); 27000 } 27001 27002 /* 27003 * The current drive speed matches the requested drive speed so 27004 * there is no need to send the mode select to change the speed 27005 */ 27006 if (current_speed == data) { 27007 break; 27008 } 27009 27010 /* Build the select data for the requested drive speed */ 27011 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27012 select_mhp = (struct mode_header *)select; 27013 select_mhp->bdesc_length = 0; 27014 select_page = 27015 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27016 select_page = 27017 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27018 select_page->mode_page.code = CDROM_MODE_SPEED; 27019 select_page->mode_page.length = 2; 27020 select_page->speed = (uchar_t)data; 27021 27022 /* Send the mode select for the requested block size */ 27023 ssc = sd_ssc_init(un); 27024 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27025 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27026 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27027 sd_ssc_fini(ssc); 27028 if (rval != 0) { 27029 /* 27030 * The mode select failed for the requested drive speed, 27031 * so reset the data for the original drive speed and 27032 * send it to the target. The error is indicated by the 27033 * return value for the failed mode select. 27034 */ 27035 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27036 "sr_drive_speed: Mode Select Failed\n"); 27037 select_page->speed = sense_page->speed; 27038 ssc = sd_ssc_init(un); 27039 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27040 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27041 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27042 sd_ssc_fini(ssc); 27043 } 27044 break; 27045 default: 27046 /* should not reach here, but check anyway */ 27047 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27048 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27049 rval = EINVAL; 27050 break; 27051 } 27052 27053 if (select) { 27054 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27055 } 27056 if (sense) { 27057 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27058 } 27059 27060 return (rval); 27061 } 27062 27063 27064 /* 27065 * Function: sr_atapi_change_speed() 27066 * 27067 * Description: This routine is the driver entry point for handling CD-ROM 27068 * drive speed ioctl requests for MMC devices that do not support 27069 * the Real Time Streaming feature (0x107). 27070 * 27071 * Note: This routine will use the SET SPEED command which may not 27072 * be supported by all devices. 27073 * 27074 * Arguments: dev- the device 'dev_t' 27075 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27076 * CDROMSDRVSPEED (set) 27077 * data- current drive speed or requested drive speed 27078 * flag- this argument is a pass through to ddi_copyxxx() directly 27079 * from the mode argument of ioctl(). 27080 * 27081 * Return Code: the code returned by sd_send_scsi_cmd() 27082 * EINVAL if invalid arguments are provided 27083 * EFAULT if ddi_copyxxx() fails 27084 * ENXIO if fail ddi_get_soft_state 27085 * EIO if invalid mode sense block descriptor length 27086 */ 27087 27088 static int 27089 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27090 { 27091 struct sd_lun *un; 27092 struct uscsi_cmd *com = NULL; 27093 struct mode_header_grp2 *sense_mhp; 27094 uchar_t *sense_page; 27095 uchar_t *sense = NULL; 27096 char cdb[CDB_GROUP5]; 27097 int bd_len; 27098 int current_speed = 0; 27099 int max_speed = 0; 27100 int rval; 27101 sd_ssc_t *ssc; 27102 27103 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27104 27105 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27106 return (ENXIO); 27107 } 27108 27109 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27110 27111 ssc = sd_ssc_init(un); 27112 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27113 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27114 SD_PATH_STANDARD); 27115 sd_ssc_fini(ssc); 27116 if (rval != 0) { 27117 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27118 "sr_atapi_change_speed: Mode Sense Failed\n"); 27119 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27120 return (rval); 27121 } 27122 27123 /* Check the block descriptor len to handle only 1 block descriptor */ 27124 sense_mhp = (struct mode_header_grp2 *)sense; 27125 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27126 if (bd_len > MODE_BLK_DESC_LENGTH) { 27127 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27128 "sr_atapi_change_speed: Mode Sense returned invalid " 27129 "block descriptor length\n"); 27130 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27131 return (EIO); 27132 } 27133 27134 /* Calculate the current and maximum drive speeds */ 27135 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27136 current_speed = (sense_page[14] << 8) | sense_page[15]; 27137 max_speed = (sense_page[8] << 8) | sense_page[9]; 27138 27139 /* Process the command */ 27140 switch (cmd) { 27141 case CDROMGDRVSPEED: 27142 current_speed /= SD_SPEED_1X; 27143 if (ddi_copyout(¤t_speed, (void *)data, 27144 sizeof (int), flag) != 0) 27145 rval = EFAULT; 27146 break; 27147 case CDROMSDRVSPEED: 27148 /* Convert the speed code to KB/sec */ 27149 switch ((uchar_t)data) { 27150 case CDROM_NORMAL_SPEED: 27151 current_speed = SD_SPEED_1X; 27152 break; 27153 case CDROM_DOUBLE_SPEED: 27154 current_speed = 2 * SD_SPEED_1X; 27155 break; 27156 case CDROM_QUAD_SPEED: 27157 current_speed = 4 * SD_SPEED_1X; 27158 break; 27159 case CDROM_TWELVE_SPEED: 27160 current_speed = 12 * SD_SPEED_1X; 27161 break; 27162 case CDROM_MAXIMUM_SPEED: 27163 current_speed = 0xffff; 27164 break; 27165 default: 27166 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27167 "sr_atapi_change_speed: invalid drive speed %d\n", 27168 (uchar_t)data); 27169 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27170 return (EINVAL); 27171 } 27172 27173 /* Check the request against the drive's max speed. */ 27174 if (current_speed != 0xffff) { 27175 if (current_speed > max_speed) { 27176 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27177 return (EINVAL); 27178 } 27179 } 27180 27181 /* 27182 * Build and send the SET SPEED command 27183 * 27184 * Note: The SET SPEED (0xBB) command used in this routine is 27185 * obsolete per the SCSI MMC spec but still supported in the 27186 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27187 * therefore the command is still implemented in this routine. 27188 */ 27189 bzero(cdb, sizeof (cdb)); 27190 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27191 cdb[2] = (uchar_t)(current_speed >> 8); 27192 cdb[3] = (uchar_t)current_speed; 27193 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27194 com->uscsi_cdb = (caddr_t)cdb; 27195 com->uscsi_cdblen = CDB_GROUP5; 27196 com->uscsi_bufaddr = NULL; 27197 com->uscsi_buflen = 0; 27198 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27199 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27200 break; 27201 default: 27202 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27203 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27204 rval = EINVAL; 27205 } 27206 27207 if (sense) { 27208 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27209 } 27210 if (com) { 27211 kmem_free(com, sizeof (*com)); 27212 } 27213 return (rval); 27214 } 27215 27216 27217 /* 27218 * Function: sr_pause_resume() 27219 * 27220 * Description: This routine is the driver entry point for handling CD-ROM 27221 * pause/resume ioctl requests. This only affects the audio play 27222 * operation. 27223 * 27224 * Arguments: dev - the device 'dev_t' 27225 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27226 * for setting the resume bit of the cdb. 27227 * 27228 * Return Code: the code returned by sd_send_scsi_cmd() 27229 * EINVAL if invalid mode specified 27230 * 27231 */ 27232 27233 static int 27234 sr_pause_resume(dev_t dev, int cmd) 27235 { 27236 struct sd_lun *un; 27237 struct uscsi_cmd *com; 27238 char cdb[CDB_GROUP1]; 27239 int rval; 27240 27241 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27242 return (ENXIO); 27243 } 27244 27245 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27246 bzero(cdb, CDB_GROUP1); 27247 cdb[0] = SCMD_PAUSE_RESUME; 27248 switch (cmd) { 27249 case CDROMRESUME: 27250 cdb[8] = 1; 27251 break; 27252 case CDROMPAUSE: 27253 cdb[8] = 0; 27254 break; 27255 default: 27256 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27257 " Command '%x' Not Supported\n", cmd); 27258 rval = EINVAL; 27259 goto done; 27260 } 27261 27262 com->uscsi_cdb = cdb; 27263 com->uscsi_cdblen = CDB_GROUP1; 27264 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27265 27266 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27267 SD_PATH_STANDARD); 27268 27269 done: 27270 kmem_free(com, sizeof (*com)); 27271 return (rval); 27272 } 27273 27274 27275 /* 27276 * Function: sr_play_msf() 27277 * 27278 * Description: This routine is the driver entry point for handling CD-ROM 27279 * ioctl requests to output the audio signals at the specified 27280 * starting address and continue the audio play until the specified 27281 * ending address (CDROMPLAYMSF) The address is in Minute Second 27282 * Frame (MSF) format. 27283 * 27284 * Arguments: dev - the device 'dev_t' 27285 * data - pointer to user provided audio msf structure, 27286 * specifying start/end addresses. 27287 * flag - this argument is a pass through to ddi_copyxxx() 27288 * directly from the mode argument of ioctl(). 27289 * 27290 * Return Code: the code returned by sd_send_scsi_cmd() 27291 * EFAULT if ddi_copyxxx() fails 27292 * ENXIO if fail ddi_get_soft_state 27293 * EINVAL if data pointer is NULL 27294 */ 27295 27296 static int 27297 sr_play_msf(dev_t dev, caddr_t data, int flag) 27298 { 27299 struct sd_lun *un; 27300 struct uscsi_cmd *com; 27301 struct cdrom_msf msf_struct; 27302 struct cdrom_msf *msf = &msf_struct; 27303 char cdb[CDB_GROUP1]; 27304 int rval; 27305 27306 if (data == NULL) { 27307 return (EINVAL); 27308 } 27309 27310 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27311 return (ENXIO); 27312 } 27313 27314 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27315 return (EFAULT); 27316 } 27317 27318 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27319 bzero(cdb, CDB_GROUP1); 27320 cdb[0] = SCMD_PLAYAUDIO_MSF; 27321 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27322 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27323 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27324 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27325 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27326 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27327 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27328 } else { 27329 cdb[3] = msf->cdmsf_min0; 27330 cdb[4] = msf->cdmsf_sec0; 27331 cdb[5] = msf->cdmsf_frame0; 27332 cdb[6] = msf->cdmsf_min1; 27333 cdb[7] = msf->cdmsf_sec1; 27334 cdb[8] = msf->cdmsf_frame1; 27335 } 27336 com->uscsi_cdb = cdb; 27337 com->uscsi_cdblen = CDB_GROUP1; 27338 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27339 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27340 SD_PATH_STANDARD); 27341 kmem_free(com, sizeof (*com)); 27342 return (rval); 27343 } 27344 27345 27346 /* 27347 * Function: sr_play_trkind() 27348 * 27349 * Description: This routine is the driver entry point for handling CD-ROM 27350 * ioctl requests to output the audio signals at the specified 27351 * starting address and continue the audio play until the specified 27352 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27353 * format. 27354 * 27355 * Arguments: dev - the device 'dev_t' 27356 * data - pointer to user provided audio track/index structure, 27357 * specifying start/end addresses. 27358 * flag - this argument is a pass through to ddi_copyxxx() 27359 * directly from the mode argument of ioctl(). 27360 * 27361 * Return Code: the code returned by sd_send_scsi_cmd() 27362 * EFAULT if ddi_copyxxx() fails 27363 * ENXIO if fail ddi_get_soft_state 27364 * EINVAL if data pointer is NULL 27365 */ 27366 27367 static int 27368 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27369 { 27370 struct cdrom_ti ti_struct; 27371 struct cdrom_ti *ti = &ti_struct; 27372 struct uscsi_cmd *com = NULL; 27373 char cdb[CDB_GROUP1]; 27374 int rval; 27375 27376 if (data == NULL) { 27377 return (EINVAL); 27378 } 27379 27380 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27381 return (EFAULT); 27382 } 27383 27384 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27385 bzero(cdb, CDB_GROUP1); 27386 cdb[0] = SCMD_PLAYAUDIO_TI; 27387 cdb[4] = ti->cdti_trk0; 27388 cdb[5] = ti->cdti_ind0; 27389 cdb[7] = ti->cdti_trk1; 27390 cdb[8] = ti->cdti_ind1; 27391 com->uscsi_cdb = cdb; 27392 com->uscsi_cdblen = CDB_GROUP1; 27393 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27394 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27395 SD_PATH_STANDARD); 27396 kmem_free(com, sizeof (*com)); 27397 return (rval); 27398 } 27399 27400 27401 /* 27402 * Function: sr_read_all_subcodes() 27403 * 27404 * Description: This routine is the driver entry point for handling CD-ROM 27405 * ioctl requests to return raw subcode data while the target is 27406 * playing audio (CDROMSUBCODE). 27407 * 27408 * Arguments: dev - the device 'dev_t' 27409 * data - pointer to user provided cdrom subcode structure, 27410 * specifying the transfer length and address. 27411 * flag - this argument is a pass through to ddi_copyxxx() 27412 * directly from the mode argument of ioctl(). 27413 * 27414 * Return Code: the code returned by sd_send_scsi_cmd() 27415 * EFAULT if ddi_copyxxx() fails 27416 * ENXIO if fail ddi_get_soft_state 27417 * EINVAL if data pointer is NULL 27418 */ 27419 27420 static int 27421 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27422 { 27423 struct sd_lun *un = NULL; 27424 struct uscsi_cmd *com = NULL; 27425 struct cdrom_subcode *subcode = NULL; 27426 int rval; 27427 size_t buflen; 27428 char cdb[CDB_GROUP5]; 27429 27430 #ifdef _MULTI_DATAMODEL 27431 /* To support ILP32 applications in an LP64 world */ 27432 struct cdrom_subcode32 cdrom_subcode32; 27433 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27434 #endif 27435 if (data == NULL) { 27436 return (EINVAL); 27437 } 27438 27439 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27440 return (ENXIO); 27441 } 27442 27443 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27444 27445 #ifdef _MULTI_DATAMODEL 27446 switch (ddi_model_convert_from(flag & FMODELS)) { 27447 case DDI_MODEL_ILP32: 27448 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27449 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27450 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27451 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27452 return (EFAULT); 27453 } 27454 /* Convert the ILP32 uscsi data from the application to LP64 */ 27455 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27456 break; 27457 case DDI_MODEL_NONE: 27458 if (ddi_copyin(data, subcode, 27459 sizeof (struct cdrom_subcode), flag)) { 27460 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27461 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27462 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27463 return (EFAULT); 27464 } 27465 break; 27466 } 27467 #else /* ! _MULTI_DATAMODEL */ 27468 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27469 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27470 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27471 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27472 return (EFAULT); 27473 } 27474 #endif /* _MULTI_DATAMODEL */ 27475 27476 /* 27477 * Since MMC-2 expects max 3 bytes for length, check if the 27478 * length input is greater than 3 bytes 27479 */ 27480 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27481 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27482 "sr_read_all_subcodes: " 27483 "cdrom transfer length too large: %d (limit %d)\n", 27484 subcode->cdsc_length, 0xFFFFFF); 27485 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27486 return (EINVAL); 27487 } 27488 27489 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27490 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27491 bzero(cdb, CDB_GROUP5); 27492 27493 if (un->un_f_mmc_cap == TRUE) { 27494 cdb[0] = (char)SCMD_READ_CD; 27495 cdb[2] = (char)0xff; 27496 cdb[3] = (char)0xff; 27497 cdb[4] = (char)0xff; 27498 cdb[5] = (char)0xff; 27499 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27500 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27501 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27502 cdb[10] = 1; 27503 } else { 27504 /* 27505 * Note: A vendor specific command (0xDF) is being used her to 27506 * request a read of all subcodes. 27507 */ 27508 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27509 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27510 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27511 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27512 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27513 } 27514 com->uscsi_cdb = cdb; 27515 com->uscsi_cdblen = CDB_GROUP5; 27516 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27517 com->uscsi_buflen = buflen; 27518 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27519 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27520 SD_PATH_STANDARD); 27521 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27522 kmem_free(com, sizeof (*com)); 27523 return (rval); 27524 } 27525 27526 27527 /* 27528 * Function: sr_read_subchannel() 27529 * 27530 * Description: This routine is the driver entry point for handling CD-ROM 27531 * ioctl requests to return the Q sub-channel data of the CD 27532 * current position block. (CDROMSUBCHNL) The data includes the 27533 * track number, index number, absolute CD-ROM address (LBA or MSF 27534 * format per the user) , track relative CD-ROM address (LBA or MSF 27535 * format per the user), control data and audio status. 27536 * 27537 * Arguments: dev - the device 'dev_t' 27538 * data - pointer to user provided cdrom sub-channel structure 27539 * flag - this argument is a pass through to ddi_copyxxx() 27540 * directly from the mode argument of ioctl(). 27541 * 27542 * Return Code: the code returned by sd_send_scsi_cmd() 27543 * EFAULT if ddi_copyxxx() fails 27544 * ENXIO if fail ddi_get_soft_state 27545 * EINVAL if data pointer is NULL 27546 */ 27547 27548 static int 27549 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27550 { 27551 struct sd_lun *un; 27552 struct uscsi_cmd *com; 27553 struct cdrom_subchnl subchanel; 27554 struct cdrom_subchnl *subchnl = &subchanel; 27555 char cdb[CDB_GROUP1]; 27556 caddr_t buffer; 27557 int rval; 27558 27559 if (data == NULL) { 27560 return (EINVAL); 27561 } 27562 27563 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27564 (un->un_state == SD_STATE_OFFLINE)) { 27565 return (ENXIO); 27566 } 27567 27568 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27569 return (EFAULT); 27570 } 27571 27572 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27573 bzero(cdb, CDB_GROUP1); 27574 cdb[0] = SCMD_READ_SUBCHANNEL; 27575 /* Set the MSF bit based on the user requested address format */ 27576 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27577 /* 27578 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27579 * returned 27580 */ 27581 cdb[2] = 0x40; 27582 /* 27583 * Set byte 3 to specify the return data format. A value of 0x01 27584 * indicates that the CD-ROM current position should be returned. 27585 */ 27586 cdb[3] = 0x01; 27587 cdb[8] = 0x10; 27588 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27589 com->uscsi_cdb = cdb; 27590 com->uscsi_cdblen = CDB_GROUP1; 27591 com->uscsi_bufaddr = buffer; 27592 com->uscsi_buflen = 16; 27593 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27594 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27595 SD_PATH_STANDARD); 27596 if (rval != 0) { 27597 kmem_free(buffer, 16); 27598 kmem_free(com, sizeof (*com)); 27599 return (rval); 27600 } 27601 27602 /* Process the returned Q sub-channel data */ 27603 subchnl->cdsc_audiostatus = buffer[1]; 27604 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27605 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27606 subchnl->cdsc_trk = buffer[6]; 27607 subchnl->cdsc_ind = buffer[7]; 27608 if (subchnl->cdsc_format & CDROM_LBA) { 27609 subchnl->cdsc_absaddr.lba = 27610 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27611 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27612 subchnl->cdsc_reladdr.lba = 27613 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27614 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27615 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27616 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27617 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27618 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27619 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27620 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27621 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27622 } else { 27623 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27624 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27625 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27626 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27627 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27628 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27629 } 27630 kmem_free(buffer, 16); 27631 kmem_free(com, sizeof (*com)); 27632 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27633 != 0) { 27634 return (EFAULT); 27635 } 27636 return (rval); 27637 } 27638 27639 27640 /* 27641 * Function: sr_read_tocentry() 27642 * 27643 * Description: This routine is the driver entry point for handling CD-ROM 27644 * ioctl requests to read from the Table of Contents (TOC) 27645 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27646 * fields, the starting address (LBA or MSF format per the user) 27647 * and the data mode if the user specified track is a data track. 27648 * 27649 * Note: The READ HEADER (0x44) command used in this routine is 27650 * obsolete per the SCSI MMC spec but still supported in the 27651 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27652 * therefore the command is still implemented in this routine. 27653 * 27654 * Arguments: dev - the device 'dev_t' 27655 * data - pointer to user provided toc entry structure, 27656 * specifying the track # and the address format 27657 * (LBA or MSF). 27658 * flag - this argument is a pass through to ddi_copyxxx() 27659 * directly from the mode argument of ioctl(). 27660 * 27661 * Return Code: the code returned by sd_send_scsi_cmd() 27662 * EFAULT if ddi_copyxxx() fails 27663 * ENXIO if fail ddi_get_soft_state 27664 * EINVAL if data pointer is NULL 27665 */ 27666 27667 static int 27668 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27669 { 27670 struct sd_lun *un = NULL; 27671 struct uscsi_cmd *com; 27672 struct cdrom_tocentry toc_entry; 27673 struct cdrom_tocentry *entry = &toc_entry; 27674 caddr_t buffer; 27675 int rval; 27676 char cdb[CDB_GROUP1]; 27677 27678 if (data == NULL) { 27679 return (EINVAL); 27680 } 27681 27682 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27683 (un->un_state == SD_STATE_OFFLINE)) { 27684 return (ENXIO); 27685 } 27686 27687 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27688 return (EFAULT); 27689 } 27690 27691 /* Validate the requested track and address format */ 27692 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27693 return (EINVAL); 27694 } 27695 27696 if (entry->cdte_track == 0) { 27697 return (EINVAL); 27698 } 27699 27700 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27701 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27702 bzero(cdb, CDB_GROUP1); 27703 27704 cdb[0] = SCMD_READ_TOC; 27705 /* Set the MSF bit based on the user requested address format */ 27706 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27707 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27708 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27709 } else { 27710 cdb[6] = entry->cdte_track; 27711 } 27712 27713 /* 27714 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27715 * (4 byte TOC response header + 8 byte track descriptor) 27716 */ 27717 cdb[8] = 12; 27718 com->uscsi_cdb = cdb; 27719 com->uscsi_cdblen = CDB_GROUP1; 27720 com->uscsi_bufaddr = buffer; 27721 com->uscsi_buflen = 0x0C; 27722 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27723 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27724 SD_PATH_STANDARD); 27725 if (rval != 0) { 27726 kmem_free(buffer, 12); 27727 kmem_free(com, sizeof (*com)); 27728 return (rval); 27729 } 27730 27731 /* Process the toc entry */ 27732 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27733 entry->cdte_ctrl = (buffer[5] & 0x0F); 27734 if (entry->cdte_format & CDROM_LBA) { 27735 entry->cdte_addr.lba = 27736 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27737 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27738 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27739 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27740 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27741 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27742 /* 27743 * Send a READ TOC command using the LBA address format to get 27744 * the LBA for the track requested so it can be used in the 27745 * READ HEADER request 27746 * 27747 * Note: The MSF bit of the READ HEADER command specifies the 27748 * output format. The block address specified in that command 27749 * must be in LBA format. 27750 */ 27751 cdb[1] = 0; 27752 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27753 SD_PATH_STANDARD); 27754 if (rval != 0) { 27755 kmem_free(buffer, 12); 27756 kmem_free(com, sizeof (*com)); 27757 return (rval); 27758 } 27759 } else { 27760 entry->cdte_addr.msf.minute = buffer[9]; 27761 entry->cdte_addr.msf.second = buffer[10]; 27762 entry->cdte_addr.msf.frame = buffer[11]; 27763 /* 27764 * Send a READ TOC command using the LBA address format to get 27765 * the LBA for the track requested so it can be used in the 27766 * READ HEADER request 27767 * 27768 * Note: The MSF bit of the READ HEADER command specifies the 27769 * output format. The block address specified in that command 27770 * must be in LBA format. 27771 */ 27772 cdb[1] = 0; 27773 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27774 SD_PATH_STANDARD); 27775 if (rval != 0) { 27776 kmem_free(buffer, 12); 27777 kmem_free(com, sizeof (*com)); 27778 return (rval); 27779 } 27780 } 27781 27782 /* 27783 * Build and send the READ HEADER command to determine the data mode of 27784 * the user specified track. 27785 */ 27786 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 27787 (entry->cdte_track != CDROM_LEADOUT)) { 27788 bzero(cdb, CDB_GROUP1); 27789 cdb[0] = SCMD_READ_HEADER; 27790 cdb[2] = buffer[8]; 27791 cdb[3] = buffer[9]; 27792 cdb[4] = buffer[10]; 27793 cdb[5] = buffer[11]; 27794 cdb[8] = 0x08; 27795 com->uscsi_buflen = 0x08; 27796 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27797 SD_PATH_STANDARD); 27798 if (rval == 0) { 27799 entry->cdte_datamode = buffer[0]; 27800 } else { 27801 /* 27802 * READ HEADER command failed, since this is 27803 * obsoleted in one spec, its better to return 27804 * -1 for an invlid track so that we can still 27805 * receive the rest of the TOC data. 27806 */ 27807 entry->cdte_datamode = (uchar_t)-1; 27808 } 27809 } else { 27810 entry->cdte_datamode = (uchar_t)-1; 27811 } 27812 27813 kmem_free(buffer, 12); 27814 kmem_free(com, sizeof (*com)); 27815 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 27816 return (EFAULT); 27817 27818 return (rval); 27819 } 27820 27821 27822 /* 27823 * Function: sr_read_tochdr() 27824 * 27825 * Description: This routine is the driver entry point for handling CD-ROM 27826 * ioctl requests to read the Table of Contents (TOC) header 27827 * (CDROMREADTOHDR). The TOC header consists of the disk starting 27828 * and ending track numbers 27829 * 27830 * Arguments: dev - the device 'dev_t' 27831 * data - pointer to user provided toc header structure, 27832 * specifying the starting and ending track numbers. 27833 * flag - this argument is a pass through to ddi_copyxxx() 27834 * directly from the mode argument of ioctl(). 27835 * 27836 * Return Code: the code returned by sd_send_scsi_cmd() 27837 * EFAULT if ddi_copyxxx() fails 27838 * ENXIO if fail ddi_get_soft_state 27839 * EINVAL if data pointer is NULL 27840 */ 27841 27842 static int 27843 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 27844 { 27845 struct sd_lun *un; 27846 struct uscsi_cmd *com; 27847 struct cdrom_tochdr toc_header; 27848 struct cdrom_tochdr *hdr = &toc_header; 27849 char cdb[CDB_GROUP1]; 27850 int rval; 27851 caddr_t buffer; 27852 27853 if (data == NULL) { 27854 return (EINVAL); 27855 } 27856 27857 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27858 (un->un_state == SD_STATE_OFFLINE)) { 27859 return (ENXIO); 27860 } 27861 27862 buffer = kmem_zalloc(4, KM_SLEEP); 27863 bzero(cdb, CDB_GROUP1); 27864 cdb[0] = SCMD_READ_TOC; 27865 /* 27866 * Specifying a track number of 0x00 in the READ TOC command indicates 27867 * that the TOC header should be returned 27868 */ 27869 cdb[6] = 0x00; 27870 /* 27871 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 27872 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 27873 */ 27874 cdb[8] = 0x04; 27875 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27876 com->uscsi_cdb = cdb; 27877 com->uscsi_cdblen = CDB_GROUP1; 27878 com->uscsi_bufaddr = buffer; 27879 com->uscsi_buflen = 0x04; 27880 com->uscsi_timeout = 300; 27881 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27882 27883 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27884 SD_PATH_STANDARD); 27885 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27886 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 27887 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 27888 } else { 27889 hdr->cdth_trk0 = buffer[2]; 27890 hdr->cdth_trk1 = buffer[3]; 27891 } 27892 kmem_free(buffer, 4); 27893 kmem_free(com, sizeof (*com)); 27894 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 27895 return (EFAULT); 27896 } 27897 return (rval); 27898 } 27899 27900 27901 /* 27902 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 27903 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 27904 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 27905 * digital audio and extended architecture digital audio. These modes are 27906 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 27907 * MMC specs. 27908 * 27909 * In addition to support for the various data formats these routines also 27910 * include support for devices that implement only the direct access READ 27911 * commands (0x08, 0x28), devices that implement the READ_CD commands 27912 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 27913 * READ CDXA commands (0xD8, 0xDB) 27914 */ 27915 27916 /* 27917 * Function: sr_read_mode1() 27918 * 27919 * Description: This routine is the driver entry point for handling CD-ROM 27920 * ioctl read mode1 requests (CDROMREADMODE1). 27921 * 27922 * Arguments: dev - the device 'dev_t' 27923 * data - pointer to user provided cd read structure specifying 27924 * the lba buffer address and length. 27925 * flag - this argument is a pass through to ddi_copyxxx() 27926 * directly from the mode argument of ioctl(). 27927 * 27928 * Return Code: the code returned by sd_send_scsi_cmd() 27929 * EFAULT if ddi_copyxxx() fails 27930 * ENXIO if fail ddi_get_soft_state 27931 * EINVAL if data pointer is NULL 27932 */ 27933 27934 static int 27935 sr_read_mode1(dev_t dev, caddr_t data, int flag) 27936 { 27937 struct sd_lun *un; 27938 struct cdrom_read mode1_struct; 27939 struct cdrom_read *mode1 = &mode1_struct; 27940 int rval; 27941 sd_ssc_t *ssc; 27942 27943 #ifdef _MULTI_DATAMODEL 27944 /* To support ILP32 applications in an LP64 world */ 27945 struct cdrom_read32 cdrom_read32; 27946 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27947 #endif /* _MULTI_DATAMODEL */ 27948 27949 if (data == NULL) { 27950 return (EINVAL); 27951 } 27952 27953 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27954 (un->un_state == SD_STATE_OFFLINE)) { 27955 return (ENXIO); 27956 } 27957 27958 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27959 "sd_read_mode1: entry: un:0x%p\n", un); 27960 27961 #ifdef _MULTI_DATAMODEL 27962 switch (ddi_model_convert_from(flag & FMODELS)) { 27963 case DDI_MODEL_ILP32: 27964 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27965 return (EFAULT); 27966 } 27967 /* Convert the ILP32 uscsi data from the application to LP64 */ 27968 cdrom_read32tocdrom_read(cdrd32, mode1); 27969 break; 27970 case DDI_MODEL_NONE: 27971 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27972 return (EFAULT); 27973 } 27974 } 27975 #else /* ! _MULTI_DATAMODEL */ 27976 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27977 return (EFAULT); 27978 } 27979 #endif /* _MULTI_DATAMODEL */ 27980 27981 ssc = sd_ssc_init(un); 27982 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 27983 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 27984 sd_ssc_fini(ssc); 27985 27986 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27987 "sd_read_mode1: exit: un:0x%p\n", un); 27988 27989 return (rval); 27990 } 27991 27992 27993 /* 27994 * Function: sr_read_cd_mode2() 27995 * 27996 * Description: This routine is the driver entry point for handling CD-ROM 27997 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 27998 * support the READ CD (0xBE) command or the 1st generation 27999 * READ CD (0xD4) command. 28000 * 28001 * Arguments: dev - the device 'dev_t' 28002 * data - pointer to user provided cd read structure specifying 28003 * the lba buffer address and length. 28004 * flag - this argument is a pass through to ddi_copyxxx() 28005 * directly from the mode argument of ioctl(). 28006 * 28007 * Return Code: the code returned by sd_send_scsi_cmd() 28008 * EFAULT if ddi_copyxxx() fails 28009 * ENXIO if fail ddi_get_soft_state 28010 * EINVAL if data pointer is NULL 28011 */ 28012 28013 static int 28014 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28015 { 28016 struct sd_lun *un; 28017 struct uscsi_cmd *com; 28018 struct cdrom_read mode2_struct; 28019 struct cdrom_read *mode2 = &mode2_struct; 28020 uchar_t cdb[CDB_GROUP5]; 28021 int nblocks; 28022 int rval; 28023 #ifdef _MULTI_DATAMODEL 28024 /* To support ILP32 applications in an LP64 world */ 28025 struct cdrom_read32 cdrom_read32; 28026 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28027 #endif /* _MULTI_DATAMODEL */ 28028 28029 if (data == NULL) { 28030 return (EINVAL); 28031 } 28032 28033 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28034 (un->un_state == SD_STATE_OFFLINE)) { 28035 return (ENXIO); 28036 } 28037 28038 #ifdef _MULTI_DATAMODEL 28039 switch (ddi_model_convert_from(flag & FMODELS)) { 28040 case DDI_MODEL_ILP32: 28041 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28042 return (EFAULT); 28043 } 28044 /* Convert the ILP32 uscsi data from the application to LP64 */ 28045 cdrom_read32tocdrom_read(cdrd32, mode2); 28046 break; 28047 case DDI_MODEL_NONE: 28048 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28049 return (EFAULT); 28050 } 28051 break; 28052 } 28053 28054 #else /* ! _MULTI_DATAMODEL */ 28055 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28056 return (EFAULT); 28057 } 28058 #endif /* _MULTI_DATAMODEL */ 28059 28060 bzero(cdb, sizeof (cdb)); 28061 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28062 /* Read command supported by 1st generation atapi drives */ 28063 cdb[0] = SCMD_READ_CDD4; 28064 } else { 28065 /* Universal CD Access Command */ 28066 cdb[0] = SCMD_READ_CD; 28067 } 28068 28069 /* 28070 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28071 */ 28072 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28073 28074 /* set the start address */ 28075 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28076 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28077 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28078 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28079 28080 /* set the transfer length */ 28081 nblocks = mode2->cdread_buflen / 2336; 28082 cdb[6] = (uchar_t)(nblocks >> 16); 28083 cdb[7] = (uchar_t)(nblocks >> 8); 28084 cdb[8] = (uchar_t)nblocks; 28085 28086 /* set the filter bits */ 28087 cdb[9] = CDROM_READ_CD_USERDATA; 28088 28089 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28090 com->uscsi_cdb = (caddr_t)cdb; 28091 com->uscsi_cdblen = sizeof (cdb); 28092 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28093 com->uscsi_buflen = mode2->cdread_buflen; 28094 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28095 28096 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28097 SD_PATH_STANDARD); 28098 kmem_free(com, sizeof (*com)); 28099 return (rval); 28100 } 28101 28102 28103 /* 28104 * Function: sr_read_mode2() 28105 * 28106 * Description: This routine is the driver entry point for handling CD-ROM 28107 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28108 * do not support the READ CD (0xBE) command. 28109 * 28110 * Arguments: dev - the device 'dev_t' 28111 * data - pointer to user provided cd read structure specifying 28112 * the lba buffer address and length. 28113 * flag - this argument is a pass through to ddi_copyxxx() 28114 * directly from the mode argument of ioctl(). 28115 * 28116 * Return Code: the code returned by sd_send_scsi_cmd() 28117 * EFAULT if ddi_copyxxx() fails 28118 * ENXIO if fail ddi_get_soft_state 28119 * EINVAL if data pointer is NULL 28120 * EIO if fail to reset block size 28121 * EAGAIN if commands are in progress in the driver 28122 */ 28123 28124 static int 28125 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28126 { 28127 struct sd_lun *un; 28128 struct cdrom_read mode2_struct; 28129 struct cdrom_read *mode2 = &mode2_struct; 28130 int rval; 28131 uint32_t restore_blksize; 28132 struct uscsi_cmd *com; 28133 uchar_t cdb[CDB_GROUP0]; 28134 int nblocks; 28135 28136 #ifdef _MULTI_DATAMODEL 28137 /* To support ILP32 applications in an LP64 world */ 28138 struct cdrom_read32 cdrom_read32; 28139 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28140 #endif /* _MULTI_DATAMODEL */ 28141 28142 if (data == NULL) { 28143 return (EINVAL); 28144 } 28145 28146 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28147 (un->un_state == SD_STATE_OFFLINE)) { 28148 return (ENXIO); 28149 } 28150 28151 /* 28152 * Because this routine will update the device and driver block size 28153 * being used we want to make sure there are no commands in progress. 28154 * If commands are in progress the user will have to try again. 28155 * 28156 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28157 * in sdioctl to protect commands from sdioctl through to the top of 28158 * sd_uscsi_strategy. See sdioctl for details. 28159 */ 28160 mutex_enter(SD_MUTEX(un)); 28161 if (un->un_ncmds_in_driver != 1) { 28162 mutex_exit(SD_MUTEX(un)); 28163 return (EAGAIN); 28164 } 28165 mutex_exit(SD_MUTEX(un)); 28166 28167 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28168 "sd_read_mode2: entry: un:0x%p\n", un); 28169 28170 #ifdef _MULTI_DATAMODEL 28171 switch (ddi_model_convert_from(flag & FMODELS)) { 28172 case DDI_MODEL_ILP32: 28173 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28174 return (EFAULT); 28175 } 28176 /* Convert the ILP32 uscsi data from the application to LP64 */ 28177 cdrom_read32tocdrom_read(cdrd32, mode2); 28178 break; 28179 case DDI_MODEL_NONE: 28180 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28181 return (EFAULT); 28182 } 28183 break; 28184 } 28185 #else /* ! _MULTI_DATAMODEL */ 28186 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28187 return (EFAULT); 28188 } 28189 #endif /* _MULTI_DATAMODEL */ 28190 28191 /* Store the current target block size for restoration later */ 28192 restore_blksize = un->un_tgt_blocksize; 28193 28194 /* Change the device and soft state target block size to 2336 */ 28195 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28196 rval = EIO; 28197 goto done; 28198 } 28199 28200 28201 bzero(cdb, sizeof (cdb)); 28202 28203 /* set READ operation */ 28204 cdb[0] = SCMD_READ; 28205 28206 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28207 mode2->cdread_lba >>= 2; 28208 28209 /* set the start address */ 28210 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28211 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28212 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28213 28214 /* set the transfer length */ 28215 nblocks = mode2->cdread_buflen / 2336; 28216 cdb[4] = (uchar_t)nblocks & 0xFF; 28217 28218 /* build command */ 28219 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28220 com->uscsi_cdb = (caddr_t)cdb; 28221 com->uscsi_cdblen = sizeof (cdb); 28222 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28223 com->uscsi_buflen = mode2->cdread_buflen; 28224 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28225 28226 /* 28227 * Issue SCSI command with user space address for read buffer. 28228 * 28229 * This sends the command through main channel in the driver. 28230 * 28231 * Since this is accessed via an IOCTL call, we go through the 28232 * standard path, so that if the device was powered down, then 28233 * it would be 'awakened' to handle the command. 28234 */ 28235 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28236 SD_PATH_STANDARD); 28237 28238 kmem_free(com, sizeof (*com)); 28239 28240 /* Restore the device and soft state target block size */ 28241 if (sr_sector_mode(dev, restore_blksize) != 0) { 28242 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28243 "can't do switch back to mode 1\n"); 28244 /* 28245 * If sd_send_scsi_READ succeeded we still need to report 28246 * an error because we failed to reset the block size 28247 */ 28248 if (rval == 0) { 28249 rval = EIO; 28250 } 28251 } 28252 28253 done: 28254 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28255 "sd_read_mode2: exit: un:0x%p\n", un); 28256 28257 return (rval); 28258 } 28259 28260 28261 /* 28262 * Function: sr_sector_mode() 28263 * 28264 * Description: This utility function is used by sr_read_mode2 to set the target 28265 * block size based on the user specified size. This is a legacy 28266 * implementation based upon a vendor specific mode page 28267 * 28268 * Arguments: dev - the device 'dev_t' 28269 * data - flag indicating if block size is being set to 2336 or 28270 * 512. 28271 * 28272 * Return Code: the code returned by sd_send_scsi_cmd() 28273 * EFAULT if ddi_copyxxx() fails 28274 * ENXIO if fail ddi_get_soft_state 28275 * EINVAL if data pointer is NULL 28276 */ 28277 28278 static int 28279 sr_sector_mode(dev_t dev, uint32_t blksize) 28280 { 28281 struct sd_lun *un; 28282 uchar_t *sense; 28283 uchar_t *select; 28284 int rval; 28285 sd_ssc_t *ssc; 28286 28287 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28288 (un->un_state == SD_STATE_OFFLINE)) { 28289 return (ENXIO); 28290 } 28291 28292 sense = kmem_zalloc(20, KM_SLEEP); 28293 28294 /* Note: This is a vendor specific mode page (0x81) */ 28295 ssc = sd_ssc_init(un); 28296 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28297 SD_PATH_STANDARD); 28298 sd_ssc_fini(ssc); 28299 if (rval != 0) { 28300 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28301 "sr_sector_mode: Mode Sense failed\n"); 28302 kmem_free(sense, 20); 28303 return (rval); 28304 } 28305 select = kmem_zalloc(20, KM_SLEEP); 28306 select[3] = 0x08; 28307 select[10] = ((blksize >> 8) & 0xff); 28308 select[11] = (blksize & 0xff); 28309 select[12] = 0x01; 28310 select[13] = 0x06; 28311 select[14] = sense[14]; 28312 select[15] = sense[15]; 28313 if (blksize == SD_MODE2_BLKSIZE) { 28314 select[14] |= 0x01; 28315 } 28316 28317 ssc = sd_ssc_init(un); 28318 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28319 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28320 sd_ssc_fini(ssc); 28321 if (rval != 0) { 28322 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28323 "sr_sector_mode: Mode Select failed\n"); 28324 } else { 28325 /* 28326 * Only update the softstate block size if we successfully 28327 * changed the device block mode. 28328 */ 28329 mutex_enter(SD_MUTEX(un)); 28330 sd_update_block_info(un, blksize, 0); 28331 mutex_exit(SD_MUTEX(un)); 28332 } 28333 kmem_free(sense, 20); 28334 kmem_free(select, 20); 28335 return (rval); 28336 } 28337 28338 28339 /* 28340 * Function: sr_read_cdda() 28341 * 28342 * Description: This routine is the driver entry point for handling CD-ROM 28343 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28344 * the target supports CDDA these requests are handled via a vendor 28345 * specific command (0xD8) If the target does not support CDDA 28346 * these requests are handled via the READ CD command (0xBE). 28347 * 28348 * Arguments: dev - the device 'dev_t' 28349 * data - pointer to user provided CD-DA structure specifying 28350 * the track starting address, transfer length, and 28351 * subcode options. 28352 * flag - this argument is a pass through to ddi_copyxxx() 28353 * directly from the mode argument of ioctl(). 28354 * 28355 * Return Code: the code returned by sd_send_scsi_cmd() 28356 * EFAULT if ddi_copyxxx() fails 28357 * ENXIO if fail ddi_get_soft_state 28358 * EINVAL if invalid arguments are provided 28359 * ENOTTY 28360 */ 28361 28362 static int 28363 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28364 { 28365 struct sd_lun *un; 28366 struct uscsi_cmd *com; 28367 struct cdrom_cdda *cdda; 28368 int rval; 28369 size_t buflen; 28370 char cdb[CDB_GROUP5]; 28371 28372 #ifdef _MULTI_DATAMODEL 28373 /* To support ILP32 applications in an LP64 world */ 28374 struct cdrom_cdda32 cdrom_cdda32; 28375 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28376 #endif /* _MULTI_DATAMODEL */ 28377 28378 if (data == NULL) { 28379 return (EINVAL); 28380 } 28381 28382 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28383 return (ENXIO); 28384 } 28385 28386 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28387 28388 #ifdef _MULTI_DATAMODEL 28389 switch (ddi_model_convert_from(flag & FMODELS)) { 28390 case DDI_MODEL_ILP32: 28391 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28392 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28393 "sr_read_cdda: ddi_copyin Failed\n"); 28394 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28395 return (EFAULT); 28396 } 28397 /* Convert the ILP32 uscsi data from the application to LP64 */ 28398 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28399 break; 28400 case DDI_MODEL_NONE: 28401 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28402 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28403 "sr_read_cdda: ddi_copyin Failed\n"); 28404 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28405 return (EFAULT); 28406 } 28407 break; 28408 } 28409 #else /* ! _MULTI_DATAMODEL */ 28410 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28411 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28412 "sr_read_cdda: ddi_copyin Failed\n"); 28413 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28414 return (EFAULT); 28415 } 28416 #endif /* _MULTI_DATAMODEL */ 28417 28418 /* 28419 * Since MMC-2 expects max 3 bytes for length, check if the 28420 * length input is greater than 3 bytes 28421 */ 28422 if ((cdda->cdda_length & 0xFF000000) != 0) { 28423 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28424 "cdrom transfer length too large: %d (limit %d)\n", 28425 cdda->cdda_length, 0xFFFFFF); 28426 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28427 return (EINVAL); 28428 } 28429 28430 switch (cdda->cdda_subcode) { 28431 case CDROM_DA_NO_SUBCODE: 28432 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28433 break; 28434 case CDROM_DA_SUBQ: 28435 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28436 break; 28437 case CDROM_DA_ALL_SUBCODE: 28438 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28439 break; 28440 case CDROM_DA_SUBCODE_ONLY: 28441 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28442 break; 28443 default: 28444 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28445 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28446 cdda->cdda_subcode); 28447 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28448 return (EINVAL); 28449 } 28450 28451 /* Build and send the command */ 28452 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28453 bzero(cdb, CDB_GROUP5); 28454 28455 if (un->un_f_cfg_cdda == TRUE) { 28456 cdb[0] = (char)SCMD_READ_CD; 28457 cdb[1] = 0x04; 28458 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28459 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28460 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28461 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28462 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28463 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28464 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28465 cdb[9] = 0x10; 28466 switch (cdda->cdda_subcode) { 28467 case CDROM_DA_NO_SUBCODE : 28468 cdb[10] = 0x0; 28469 break; 28470 case CDROM_DA_SUBQ : 28471 cdb[10] = 0x2; 28472 break; 28473 case CDROM_DA_ALL_SUBCODE : 28474 cdb[10] = 0x1; 28475 break; 28476 case CDROM_DA_SUBCODE_ONLY : 28477 /* FALLTHROUGH */ 28478 default : 28479 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28480 kmem_free(com, sizeof (*com)); 28481 return (ENOTTY); 28482 } 28483 } else { 28484 cdb[0] = (char)SCMD_READ_CDDA; 28485 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28486 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28487 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28488 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28489 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28490 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28491 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28492 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28493 cdb[10] = cdda->cdda_subcode; 28494 } 28495 28496 com->uscsi_cdb = cdb; 28497 com->uscsi_cdblen = CDB_GROUP5; 28498 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28499 com->uscsi_buflen = buflen; 28500 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28501 28502 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28503 SD_PATH_STANDARD); 28504 28505 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28506 kmem_free(com, sizeof (*com)); 28507 return (rval); 28508 } 28509 28510 28511 /* 28512 * Function: sr_read_cdxa() 28513 * 28514 * Description: This routine is the driver entry point for handling CD-ROM 28515 * ioctl requests to return CD-XA (Extended Architecture) data. 28516 * (CDROMCDXA). 28517 * 28518 * Arguments: dev - the device 'dev_t' 28519 * data - pointer to user provided CD-XA structure specifying 28520 * the data starting address, transfer length, and format 28521 * flag - this argument is a pass through to ddi_copyxxx() 28522 * directly from the mode argument of ioctl(). 28523 * 28524 * Return Code: the code returned by sd_send_scsi_cmd() 28525 * EFAULT if ddi_copyxxx() fails 28526 * ENXIO if fail ddi_get_soft_state 28527 * EINVAL if data pointer is NULL 28528 */ 28529 28530 static int 28531 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28532 { 28533 struct sd_lun *un; 28534 struct uscsi_cmd *com; 28535 struct cdrom_cdxa *cdxa; 28536 int rval; 28537 size_t buflen; 28538 char cdb[CDB_GROUP5]; 28539 uchar_t read_flags; 28540 28541 #ifdef _MULTI_DATAMODEL 28542 /* To support ILP32 applications in an LP64 world */ 28543 struct cdrom_cdxa32 cdrom_cdxa32; 28544 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28545 #endif /* _MULTI_DATAMODEL */ 28546 28547 if (data == NULL) { 28548 return (EINVAL); 28549 } 28550 28551 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28552 return (ENXIO); 28553 } 28554 28555 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28556 28557 #ifdef _MULTI_DATAMODEL 28558 switch (ddi_model_convert_from(flag & FMODELS)) { 28559 case DDI_MODEL_ILP32: 28560 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28561 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28562 return (EFAULT); 28563 } 28564 /* 28565 * Convert the ILP32 uscsi data from the 28566 * application to LP64 for internal use. 28567 */ 28568 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28569 break; 28570 case DDI_MODEL_NONE: 28571 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28572 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28573 return (EFAULT); 28574 } 28575 break; 28576 } 28577 #else /* ! _MULTI_DATAMODEL */ 28578 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28579 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28580 return (EFAULT); 28581 } 28582 #endif /* _MULTI_DATAMODEL */ 28583 28584 /* 28585 * Since MMC-2 expects max 3 bytes for length, check if the 28586 * length input is greater than 3 bytes 28587 */ 28588 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28589 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28590 "cdrom transfer length too large: %d (limit %d)\n", 28591 cdxa->cdxa_length, 0xFFFFFF); 28592 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28593 return (EINVAL); 28594 } 28595 28596 switch (cdxa->cdxa_format) { 28597 case CDROM_XA_DATA: 28598 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28599 read_flags = 0x10; 28600 break; 28601 case CDROM_XA_SECTOR_DATA: 28602 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28603 read_flags = 0xf8; 28604 break; 28605 case CDROM_XA_DATA_W_ERROR: 28606 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28607 read_flags = 0xfc; 28608 break; 28609 default: 28610 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28611 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28612 cdxa->cdxa_format); 28613 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28614 return (EINVAL); 28615 } 28616 28617 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28618 bzero(cdb, CDB_GROUP5); 28619 if (un->un_f_mmc_cap == TRUE) { 28620 cdb[0] = (char)SCMD_READ_CD; 28621 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28622 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28623 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28624 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28625 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28626 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28627 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28628 cdb[9] = (char)read_flags; 28629 } else { 28630 /* 28631 * Note: A vendor specific command (0xDB) is being used her to 28632 * request a read of all subcodes. 28633 */ 28634 cdb[0] = (char)SCMD_READ_CDXA; 28635 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28636 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28637 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28638 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28639 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28640 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28641 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28642 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28643 cdb[10] = cdxa->cdxa_format; 28644 } 28645 com->uscsi_cdb = cdb; 28646 com->uscsi_cdblen = CDB_GROUP5; 28647 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28648 com->uscsi_buflen = buflen; 28649 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28650 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28651 SD_PATH_STANDARD); 28652 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28653 kmem_free(com, sizeof (*com)); 28654 return (rval); 28655 } 28656 28657 28658 /* 28659 * Function: sr_eject() 28660 * 28661 * Description: This routine is the driver entry point for handling CD-ROM 28662 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28663 * 28664 * Arguments: dev - the device 'dev_t' 28665 * 28666 * Return Code: the code returned by sd_send_scsi_cmd() 28667 */ 28668 28669 static int 28670 sr_eject(dev_t dev) 28671 { 28672 struct sd_lun *un; 28673 int rval; 28674 sd_ssc_t *ssc; 28675 28676 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28677 (un->un_state == SD_STATE_OFFLINE)) { 28678 return (ENXIO); 28679 } 28680 28681 /* 28682 * To prevent race conditions with the eject 28683 * command, keep track of an eject command as 28684 * it progresses. If we are already handling 28685 * an eject command in the driver for the given 28686 * unit and another request to eject is received 28687 * immediately return EAGAIN so we don't lose 28688 * the command if the current eject command fails. 28689 */ 28690 mutex_enter(SD_MUTEX(un)); 28691 if (un->un_f_ejecting == TRUE) { 28692 mutex_exit(SD_MUTEX(un)); 28693 return (EAGAIN); 28694 } 28695 un->un_f_ejecting = TRUE; 28696 mutex_exit(SD_MUTEX(un)); 28697 28698 ssc = sd_ssc_init(un); 28699 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 28700 SD_PATH_STANDARD); 28701 sd_ssc_fini(ssc); 28702 28703 if (rval != 0) { 28704 mutex_enter(SD_MUTEX(un)); 28705 un->un_f_ejecting = FALSE; 28706 mutex_exit(SD_MUTEX(un)); 28707 return (rval); 28708 } 28709 28710 ssc = sd_ssc_init(un); 28711 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 28712 SD_TARGET_EJECT, SD_PATH_STANDARD); 28713 sd_ssc_fini(ssc); 28714 28715 if (rval == 0) { 28716 mutex_enter(SD_MUTEX(un)); 28717 sr_ejected(un); 28718 un->un_mediastate = DKIO_EJECTED; 28719 un->un_f_ejecting = FALSE; 28720 cv_broadcast(&un->un_state_cv); 28721 mutex_exit(SD_MUTEX(un)); 28722 } else { 28723 mutex_enter(SD_MUTEX(un)); 28724 un->un_f_ejecting = FALSE; 28725 mutex_exit(SD_MUTEX(un)); 28726 } 28727 return (rval); 28728 } 28729 28730 28731 /* 28732 * Function: sr_ejected() 28733 * 28734 * Description: This routine updates the soft state structure to invalidate the 28735 * geometry information after the media has been ejected or a 28736 * media eject has been detected. 28737 * 28738 * Arguments: un - driver soft state (unit) structure 28739 */ 28740 28741 static void 28742 sr_ejected(struct sd_lun *un) 28743 { 28744 struct sd_errstats *stp; 28745 28746 ASSERT(un != NULL); 28747 ASSERT(mutex_owned(SD_MUTEX(un))); 28748 28749 un->un_f_blockcount_is_valid = FALSE; 28750 un->un_f_tgt_blocksize_is_valid = FALSE; 28751 mutex_exit(SD_MUTEX(un)); 28752 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 28753 mutex_enter(SD_MUTEX(un)); 28754 28755 if (un->un_errstats != NULL) { 28756 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28757 stp->sd_capacity.value.ui64 = 0; 28758 } 28759 } 28760 28761 28762 /* 28763 * Function: sr_check_wp() 28764 * 28765 * Description: This routine checks the write protection of a removable 28766 * media disk and hotpluggable devices via the write protect bit of 28767 * the Mode Page Header device specific field. Some devices choke 28768 * on unsupported mode page. In order to workaround this issue, 28769 * this routine has been implemented to use 0x3f mode page(request 28770 * for all pages) for all device types. 28771 * 28772 * Arguments: dev - the device 'dev_t' 28773 * 28774 * Return Code: int indicating if the device is write protected (1) or not (0) 28775 * 28776 * Context: Kernel thread. 28777 * 28778 */ 28779 28780 static int 28781 sr_check_wp(dev_t dev) 28782 { 28783 struct sd_lun *un; 28784 uchar_t device_specific; 28785 uchar_t *sense; 28786 int hdrlen; 28787 int rval = FALSE; 28788 int status; 28789 sd_ssc_t *ssc; 28790 28791 /* 28792 * Note: The return codes for this routine should be reworked to 28793 * properly handle the case of a NULL softstate. 28794 */ 28795 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28796 return (FALSE); 28797 } 28798 28799 if (un->un_f_cfg_is_atapi == TRUE) { 28800 /* 28801 * The mode page contents are not required; set the allocation 28802 * length for the mode page header only 28803 */ 28804 hdrlen = MODE_HEADER_LENGTH_GRP2; 28805 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28806 ssc = sd_ssc_init(un); 28807 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 28808 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28809 sd_ssc_fini(ssc); 28810 if (status != 0) 28811 goto err_exit; 28812 device_specific = 28813 ((struct mode_header_grp2 *)sense)->device_specific; 28814 } else { 28815 hdrlen = MODE_HEADER_LENGTH; 28816 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28817 ssc = sd_ssc_init(un); 28818 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 28819 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28820 sd_ssc_fini(ssc); 28821 if (status != 0) 28822 goto err_exit; 28823 device_specific = 28824 ((struct mode_header *)sense)->device_specific; 28825 } 28826 28827 28828 /* 28829 * Write protect mode sense failed; not all disks 28830 * understand this query. Return FALSE assuming that 28831 * these devices are not writable. 28832 */ 28833 if (device_specific & WRITE_PROTECT) { 28834 rval = TRUE; 28835 } 28836 28837 err_exit: 28838 kmem_free(sense, hdrlen); 28839 return (rval); 28840 } 28841 28842 /* 28843 * Function: sr_volume_ctrl() 28844 * 28845 * Description: This routine is the driver entry point for handling CD-ROM 28846 * audio output volume ioctl requests. (CDROMVOLCTRL) 28847 * 28848 * Arguments: dev - the device 'dev_t' 28849 * data - pointer to user audio volume control structure 28850 * flag - this argument is a pass through to ddi_copyxxx() 28851 * directly from the mode argument of ioctl(). 28852 * 28853 * Return Code: the code returned by sd_send_scsi_cmd() 28854 * EFAULT if ddi_copyxxx() fails 28855 * ENXIO if fail ddi_get_soft_state 28856 * EINVAL if data pointer is NULL 28857 * 28858 */ 28859 28860 static int 28861 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 28862 { 28863 struct sd_lun *un; 28864 struct cdrom_volctrl volume; 28865 struct cdrom_volctrl *vol = &volume; 28866 uchar_t *sense_page; 28867 uchar_t *select_page; 28868 uchar_t *sense; 28869 uchar_t *select; 28870 int sense_buflen; 28871 int select_buflen; 28872 int rval; 28873 sd_ssc_t *ssc; 28874 28875 if (data == NULL) { 28876 return (EINVAL); 28877 } 28878 28879 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28880 (un->un_state == SD_STATE_OFFLINE)) { 28881 return (ENXIO); 28882 } 28883 28884 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 28885 return (EFAULT); 28886 } 28887 28888 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28889 struct mode_header_grp2 *sense_mhp; 28890 struct mode_header_grp2 *select_mhp; 28891 int bd_len; 28892 28893 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 28894 select_buflen = MODE_HEADER_LENGTH_GRP2 + 28895 MODEPAGE_AUDIO_CTRL_LEN; 28896 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28897 select = kmem_zalloc(select_buflen, KM_SLEEP); 28898 ssc = sd_ssc_init(un); 28899 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 28900 sense_buflen, MODEPAGE_AUDIO_CTRL, 28901 SD_PATH_STANDARD); 28902 sd_ssc_fini(ssc); 28903 28904 if (rval != 0) { 28905 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28906 "sr_volume_ctrl: Mode Sense Failed\n"); 28907 kmem_free(sense, sense_buflen); 28908 kmem_free(select, select_buflen); 28909 return (rval); 28910 } 28911 sense_mhp = (struct mode_header_grp2 *)sense; 28912 select_mhp = (struct mode_header_grp2 *)select; 28913 bd_len = (sense_mhp->bdesc_length_hi << 8) | 28914 sense_mhp->bdesc_length_lo; 28915 if (bd_len > MODE_BLK_DESC_LENGTH) { 28916 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28917 "sr_volume_ctrl: Mode Sense returned invalid " 28918 "block descriptor length\n"); 28919 kmem_free(sense, sense_buflen); 28920 kmem_free(select, select_buflen); 28921 return (EIO); 28922 } 28923 sense_page = (uchar_t *) 28924 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 28925 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 28926 select_mhp->length_msb = 0; 28927 select_mhp->length_lsb = 0; 28928 select_mhp->bdesc_length_hi = 0; 28929 select_mhp->bdesc_length_lo = 0; 28930 } else { 28931 struct mode_header *sense_mhp, *select_mhp; 28932 28933 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28934 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28935 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28936 select = kmem_zalloc(select_buflen, KM_SLEEP); 28937 ssc = sd_ssc_init(un); 28938 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 28939 sense_buflen, MODEPAGE_AUDIO_CTRL, 28940 SD_PATH_STANDARD); 28941 sd_ssc_fini(ssc); 28942 28943 if (rval != 0) { 28944 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28945 "sr_volume_ctrl: Mode Sense Failed\n"); 28946 kmem_free(sense, sense_buflen); 28947 kmem_free(select, select_buflen); 28948 return (rval); 28949 } 28950 sense_mhp = (struct mode_header *)sense; 28951 select_mhp = (struct mode_header *)select; 28952 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 28953 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28954 "sr_volume_ctrl: Mode Sense returned invalid " 28955 "block descriptor length\n"); 28956 kmem_free(sense, sense_buflen); 28957 kmem_free(select, select_buflen); 28958 return (EIO); 28959 } 28960 sense_page = (uchar_t *) 28961 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 28962 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 28963 select_mhp->length = 0; 28964 select_mhp->bdesc_length = 0; 28965 } 28966 /* 28967 * Note: An audio control data structure could be created and overlayed 28968 * on the following in place of the array indexing method implemented. 28969 */ 28970 28971 /* Build the select data for the user volume data */ 28972 select_page[0] = MODEPAGE_AUDIO_CTRL; 28973 select_page[1] = 0xE; 28974 /* Set the immediate bit */ 28975 select_page[2] = 0x04; 28976 /* Zero out reserved fields */ 28977 select_page[3] = 0x00; 28978 select_page[4] = 0x00; 28979 /* Return sense data for fields not to be modified */ 28980 select_page[5] = sense_page[5]; 28981 select_page[6] = sense_page[6]; 28982 select_page[7] = sense_page[7]; 28983 /* Set the user specified volume levels for channel 0 and 1 */ 28984 select_page[8] = 0x01; 28985 select_page[9] = vol->channel0; 28986 select_page[10] = 0x02; 28987 select_page[11] = vol->channel1; 28988 /* Channel 2 and 3 are currently unsupported so return the sense data */ 28989 select_page[12] = sense_page[12]; 28990 select_page[13] = sense_page[13]; 28991 select_page[14] = sense_page[14]; 28992 select_page[15] = sense_page[15]; 28993 28994 ssc = sd_ssc_init(un); 28995 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28996 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 28997 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28998 } else { 28999 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 29000 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29001 } 29002 sd_ssc_fini(ssc); 29003 29004 kmem_free(sense, sense_buflen); 29005 kmem_free(select, select_buflen); 29006 return (rval); 29007 } 29008 29009 29010 /* 29011 * Function: sr_read_sony_session_offset() 29012 * 29013 * Description: This routine is the driver entry point for handling CD-ROM 29014 * ioctl requests for session offset information. (CDROMREADOFFSET) 29015 * The address of the first track in the last session of a 29016 * multi-session CD-ROM is returned 29017 * 29018 * Note: This routine uses a vendor specific key value in the 29019 * command control field without implementing any vendor check here 29020 * or in the ioctl routine. 29021 * 29022 * Arguments: dev - the device 'dev_t' 29023 * data - pointer to an int to hold the requested address 29024 * flag - this argument is a pass through to ddi_copyxxx() 29025 * directly from the mode argument of ioctl(). 29026 * 29027 * Return Code: the code returned by sd_send_scsi_cmd() 29028 * EFAULT if ddi_copyxxx() fails 29029 * ENXIO if fail ddi_get_soft_state 29030 * EINVAL if data pointer is NULL 29031 */ 29032 29033 static int 29034 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29035 { 29036 struct sd_lun *un; 29037 struct uscsi_cmd *com; 29038 caddr_t buffer; 29039 char cdb[CDB_GROUP1]; 29040 int session_offset = 0; 29041 int rval; 29042 29043 if (data == NULL) { 29044 return (EINVAL); 29045 } 29046 29047 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29048 (un->un_state == SD_STATE_OFFLINE)) { 29049 return (ENXIO); 29050 } 29051 29052 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29053 bzero(cdb, CDB_GROUP1); 29054 cdb[0] = SCMD_READ_TOC; 29055 /* 29056 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29057 * (4 byte TOC response header + 8 byte response data) 29058 */ 29059 cdb[8] = SONY_SESSION_OFFSET_LEN; 29060 /* Byte 9 is the control byte. A vendor specific value is used */ 29061 cdb[9] = SONY_SESSION_OFFSET_KEY; 29062 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29063 com->uscsi_cdb = cdb; 29064 com->uscsi_cdblen = CDB_GROUP1; 29065 com->uscsi_bufaddr = buffer; 29066 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29067 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29068 29069 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29070 SD_PATH_STANDARD); 29071 if (rval != 0) { 29072 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29073 kmem_free(com, sizeof (*com)); 29074 return (rval); 29075 } 29076 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29077 session_offset = 29078 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29079 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29080 /* 29081 * Offset returned offset in current lbasize block's. Convert to 29082 * 2k block's to return to the user 29083 */ 29084 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29085 session_offset >>= 2; 29086 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29087 session_offset >>= 1; 29088 } 29089 } 29090 29091 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29092 rval = EFAULT; 29093 } 29094 29095 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29096 kmem_free(com, sizeof (*com)); 29097 return (rval); 29098 } 29099 29100 29101 /* 29102 * Function: sd_wm_cache_constructor() 29103 * 29104 * Description: Cache Constructor for the wmap cache for the read/modify/write 29105 * devices. 29106 * 29107 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29108 * un - sd_lun structure for the device. 29109 * flag - the km flags passed to constructor 29110 * 29111 * Return Code: 0 on success. 29112 * -1 on failure. 29113 */ 29114 29115 /*ARGSUSED*/ 29116 static int 29117 sd_wm_cache_constructor(void *wm, void *un, int flags) 29118 { 29119 bzero(wm, sizeof (struct sd_w_map)); 29120 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29121 return (0); 29122 } 29123 29124 29125 /* 29126 * Function: sd_wm_cache_destructor() 29127 * 29128 * Description: Cache destructor for the wmap cache for the read/modify/write 29129 * devices. 29130 * 29131 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29132 * un - sd_lun structure for the device. 29133 */ 29134 /*ARGSUSED*/ 29135 static void 29136 sd_wm_cache_destructor(void *wm, void *un) 29137 { 29138 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29139 } 29140 29141 29142 /* 29143 * Function: sd_range_lock() 29144 * 29145 * Description: Lock the range of blocks specified as parameter to ensure 29146 * that read, modify write is atomic and no other i/o writes 29147 * to the same location. The range is specified in terms 29148 * of start and end blocks. Block numbers are the actual 29149 * media block numbers and not system. 29150 * 29151 * Arguments: un - sd_lun structure for the device. 29152 * startb - The starting block number 29153 * endb - The end block number 29154 * typ - type of i/o - simple/read_modify_write 29155 * 29156 * Return Code: wm - pointer to the wmap structure. 29157 * 29158 * Context: This routine can sleep. 29159 */ 29160 29161 static struct sd_w_map * 29162 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29163 { 29164 struct sd_w_map *wmp = NULL; 29165 struct sd_w_map *sl_wmp = NULL; 29166 struct sd_w_map *tmp_wmp; 29167 wm_state state = SD_WM_CHK_LIST; 29168 29169 29170 ASSERT(un != NULL); 29171 ASSERT(!mutex_owned(SD_MUTEX(un))); 29172 29173 mutex_enter(SD_MUTEX(un)); 29174 29175 while (state != SD_WM_DONE) { 29176 29177 switch (state) { 29178 case SD_WM_CHK_LIST: 29179 /* 29180 * This is the starting state. Check the wmap list 29181 * to see if the range is currently available. 29182 */ 29183 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29184 /* 29185 * If this is a simple write and no rmw 29186 * i/o is pending then try to lock the 29187 * range as the range should be available. 29188 */ 29189 state = SD_WM_LOCK_RANGE; 29190 } else { 29191 tmp_wmp = sd_get_range(un, startb, endb); 29192 if (tmp_wmp != NULL) { 29193 if ((wmp != NULL) && ONLIST(un, wmp)) { 29194 /* 29195 * Should not keep onlist wmps 29196 * while waiting this macro 29197 * will also do wmp = NULL; 29198 */ 29199 FREE_ONLIST_WMAP(un, wmp); 29200 } 29201 /* 29202 * sl_wmp is the wmap on which wait 29203 * is done, since the tmp_wmp points 29204 * to the inuse wmap, set sl_wmp to 29205 * tmp_wmp and change the state to sleep 29206 */ 29207 sl_wmp = tmp_wmp; 29208 state = SD_WM_WAIT_MAP; 29209 } else { 29210 state = SD_WM_LOCK_RANGE; 29211 } 29212 29213 } 29214 break; 29215 29216 case SD_WM_LOCK_RANGE: 29217 ASSERT(un->un_wm_cache); 29218 /* 29219 * The range need to be locked, try to get a wmap. 29220 * First attempt it with NO_SLEEP, want to avoid a sleep 29221 * if possible as we will have to release the sd mutex 29222 * if we have to sleep. 29223 */ 29224 if (wmp == NULL) 29225 wmp = kmem_cache_alloc(un->un_wm_cache, 29226 KM_NOSLEEP); 29227 if (wmp == NULL) { 29228 mutex_exit(SD_MUTEX(un)); 29229 _NOTE(DATA_READABLE_WITHOUT_LOCK 29230 (sd_lun::un_wm_cache)) 29231 wmp = kmem_cache_alloc(un->un_wm_cache, 29232 KM_SLEEP); 29233 mutex_enter(SD_MUTEX(un)); 29234 /* 29235 * we released the mutex so recheck and go to 29236 * check list state. 29237 */ 29238 state = SD_WM_CHK_LIST; 29239 } else { 29240 /* 29241 * We exit out of state machine since we 29242 * have the wmap. Do the housekeeping first. 29243 * place the wmap on the wmap list if it is not 29244 * on it already and then set the state to done. 29245 */ 29246 wmp->wm_start = startb; 29247 wmp->wm_end = endb; 29248 wmp->wm_flags = typ | SD_WM_BUSY; 29249 if (typ & SD_WTYPE_RMW) { 29250 un->un_rmw_count++; 29251 } 29252 /* 29253 * If not already on the list then link 29254 */ 29255 if (!ONLIST(un, wmp)) { 29256 wmp->wm_next = un->un_wm; 29257 wmp->wm_prev = NULL; 29258 if (wmp->wm_next) 29259 wmp->wm_next->wm_prev = wmp; 29260 un->un_wm = wmp; 29261 } 29262 state = SD_WM_DONE; 29263 } 29264 break; 29265 29266 case SD_WM_WAIT_MAP: 29267 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29268 /* 29269 * Wait is done on sl_wmp, which is set in the 29270 * check_list state. 29271 */ 29272 sl_wmp->wm_wanted_count++; 29273 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29274 sl_wmp->wm_wanted_count--; 29275 /* 29276 * We can reuse the memory from the completed sl_wmp 29277 * lock range for our new lock, but only if noone is 29278 * waiting for it. 29279 */ 29280 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29281 if (sl_wmp->wm_wanted_count == 0) { 29282 if (wmp != NULL) 29283 CHK_N_FREEWMP(un, wmp); 29284 wmp = sl_wmp; 29285 } 29286 sl_wmp = NULL; 29287 /* 29288 * After waking up, need to recheck for availability of 29289 * range. 29290 */ 29291 state = SD_WM_CHK_LIST; 29292 break; 29293 29294 default: 29295 panic("sd_range_lock: " 29296 "Unknown state %d in sd_range_lock", state); 29297 /*NOTREACHED*/ 29298 } /* switch(state) */ 29299 29300 } /* while(state != SD_WM_DONE) */ 29301 29302 mutex_exit(SD_MUTEX(un)); 29303 29304 ASSERT(wmp != NULL); 29305 29306 return (wmp); 29307 } 29308 29309 29310 /* 29311 * Function: sd_get_range() 29312 * 29313 * Description: Find if there any overlapping I/O to this one 29314 * Returns the write-map of 1st such I/O, NULL otherwise. 29315 * 29316 * Arguments: un - sd_lun structure for the device. 29317 * startb - The starting block number 29318 * endb - The end block number 29319 * 29320 * Return Code: wm - pointer to the wmap structure. 29321 */ 29322 29323 static struct sd_w_map * 29324 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29325 { 29326 struct sd_w_map *wmp; 29327 29328 ASSERT(un != NULL); 29329 29330 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29331 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29332 continue; 29333 } 29334 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29335 break; 29336 } 29337 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29338 break; 29339 } 29340 } 29341 29342 return (wmp); 29343 } 29344 29345 29346 /* 29347 * Function: sd_free_inlist_wmap() 29348 * 29349 * Description: Unlink and free a write map struct. 29350 * 29351 * Arguments: un - sd_lun structure for the device. 29352 * wmp - sd_w_map which needs to be unlinked. 29353 */ 29354 29355 static void 29356 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29357 { 29358 ASSERT(un != NULL); 29359 29360 if (un->un_wm == wmp) { 29361 un->un_wm = wmp->wm_next; 29362 } else { 29363 wmp->wm_prev->wm_next = wmp->wm_next; 29364 } 29365 29366 if (wmp->wm_next) { 29367 wmp->wm_next->wm_prev = wmp->wm_prev; 29368 } 29369 29370 wmp->wm_next = wmp->wm_prev = NULL; 29371 29372 kmem_cache_free(un->un_wm_cache, wmp); 29373 } 29374 29375 29376 /* 29377 * Function: sd_range_unlock() 29378 * 29379 * Description: Unlock the range locked by wm. 29380 * Free write map if nobody else is waiting on it. 29381 * 29382 * Arguments: un - sd_lun structure for the device. 29383 * wmp - sd_w_map which needs to be unlinked. 29384 */ 29385 29386 static void 29387 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29388 { 29389 ASSERT(un != NULL); 29390 ASSERT(wm != NULL); 29391 ASSERT(!mutex_owned(SD_MUTEX(un))); 29392 29393 mutex_enter(SD_MUTEX(un)); 29394 29395 if (wm->wm_flags & SD_WTYPE_RMW) { 29396 un->un_rmw_count--; 29397 } 29398 29399 if (wm->wm_wanted_count) { 29400 wm->wm_flags = 0; 29401 /* 29402 * Broadcast that the wmap is available now. 29403 */ 29404 cv_broadcast(&wm->wm_avail); 29405 } else { 29406 /* 29407 * If no one is waiting on the map, it should be free'ed. 29408 */ 29409 sd_free_inlist_wmap(un, wm); 29410 } 29411 29412 mutex_exit(SD_MUTEX(un)); 29413 } 29414 29415 29416 /* 29417 * Function: sd_read_modify_write_task 29418 * 29419 * Description: Called from a taskq thread to initiate the write phase of 29420 * a read-modify-write request. This is used for targets where 29421 * un->un_sys_blocksize != un->un_tgt_blocksize. 29422 * 29423 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29424 * 29425 * Context: Called under taskq thread context. 29426 */ 29427 29428 static void 29429 sd_read_modify_write_task(void *arg) 29430 { 29431 struct sd_mapblocksize_info *bsp; 29432 struct buf *bp; 29433 struct sd_xbuf *xp; 29434 struct sd_lun *un; 29435 29436 bp = arg; /* The bp is given in arg */ 29437 ASSERT(bp != NULL); 29438 29439 /* Get the pointer to the layer-private data struct */ 29440 xp = SD_GET_XBUF(bp); 29441 ASSERT(xp != NULL); 29442 bsp = xp->xb_private; 29443 ASSERT(bsp != NULL); 29444 29445 un = SD_GET_UN(bp); 29446 ASSERT(un != NULL); 29447 ASSERT(!mutex_owned(SD_MUTEX(un))); 29448 29449 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29450 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29451 29452 /* 29453 * This is the write phase of a read-modify-write request, called 29454 * under the context of a taskq thread in response to the completion 29455 * of the read portion of the rmw request completing under interrupt 29456 * context. The write request must be sent from here down the iostart 29457 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29458 * we use the layer index saved in the layer-private data area. 29459 */ 29460 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29461 29462 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29463 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29464 } 29465 29466 29467 /* 29468 * Function: sddump_do_read_of_rmw() 29469 * 29470 * Description: This routine will be called from sddump, If sddump is called 29471 * with an I/O which not aligned on device blocksize boundary 29472 * then the write has to be converted to read-modify-write. 29473 * Do the read part here in order to keep sddump simple. 29474 * Note - That the sd_mutex is held across the call to this 29475 * routine. 29476 * 29477 * Arguments: un - sd_lun 29478 * blkno - block number in terms of media block size. 29479 * nblk - number of blocks. 29480 * bpp - pointer to pointer to the buf structure. On return 29481 * from this function, *bpp points to the valid buffer 29482 * to which the write has to be done. 29483 * 29484 * Return Code: 0 for success or errno-type return code 29485 */ 29486 29487 static int 29488 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29489 struct buf **bpp) 29490 { 29491 int err; 29492 int i; 29493 int rval; 29494 struct buf *bp; 29495 struct scsi_pkt *pkt = NULL; 29496 uint32_t target_blocksize; 29497 29498 ASSERT(un != NULL); 29499 ASSERT(mutex_owned(SD_MUTEX(un))); 29500 29501 target_blocksize = un->un_tgt_blocksize; 29502 29503 mutex_exit(SD_MUTEX(un)); 29504 29505 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29506 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29507 if (bp == NULL) { 29508 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29509 "no resources for dumping; giving up"); 29510 err = ENOMEM; 29511 goto done; 29512 } 29513 29514 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29515 blkno, nblk); 29516 if (rval != 0) { 29517 scsi_free_consistent_buf(bp); 29518 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29519 "no resources for dumping; giving up"); 29520 err = ENOMEM; 29521 goto done; 29522 } 29523 29524 pkt->pkt_flags |= FLAG_NOINTR; 29525 29526 err = EIO; 29527 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29528 29529 /* 29530 * Scsi_poll returns 0 (success) if the command completes and 29531 * the status block is STATUS_GOOD. We should only check 29532 * errors if this condition is not true. Even then we should 29533 * send our own request sense packet only if we have a check 29534 * condition and auto request sense has not been performed by 29535 * the hba. 29536 */ 29537 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29538 29539 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29540 err = 0; 29541 break; 29542 } 29543 29544 /* 29545 * Check CMD_DEV_GONE 1st, give up if device is gone, 29546 * no need to read RQS data. 29547 */ 29548 if (pkt->pkt_reason == CMD_DEV_GONE) { 29549 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29550 "Error while dumping state with rmw..." 29551 "Device is gone\n"); 29552 break; 29553 } 29554 29555 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29556 SD_INFO(SD_LOG_DUMP, un, 29557 "sddump: read failed with CHECK, try # %d\n", i); 29558 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29559 (void) sd_send_polled_RQS(un); 29560 } 29561 29562 continue; 29563 } 29564 29565 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29566 int reset_retval = 0; 29567 29568 SD_INFO(SD_LOG_DUMP, un, 29569 "sddump: read failed with BUSY, try # %d\n", i); 29570 29571 if (un->un_f_lun_reset_enabled == TRUE) { 29572 reset_retval = scsi_reset(SD_ADDRESS(un), 29573 RESET_LUN); 29574 } 29575 if (reset_retval == 0) { 29576 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29577 } 29578 (void) sd_send_polled_RQS(un); 29579 29580 } else { 29581 SD_INFO(SD_LOG_DUMP, un, 29582 "sddump: read failed with 0x%x, try # %d\n", 29583 SD_GET_PKT_STATUS(pkt), i); 29584 mutex_enter(SD_MUTEX(un)); 29585 sd_reset_target(un, pkt); 29586 mutex_exit(SD_MUTEX(un)); 29587 } 29588 29589 /* 29590 * If we are not getting anywhere with lun/target resets, 29591 * let's reset the bus. 29592 */ 29593 if (i > SD_NDUMP_RETRIES/2) { 29594 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29595 (void) sd_send_polled_RQS(un); 29596 } 29597 29598 } 29599 scsi_destroy_pkt(pkt); 29600 29601 if (err != 0) { 29602 scsi_free_consistent_buf(bp); 29603 *bpp = NULL; 29604 } else { 29605 *bpp = bp; 29606 } 29607 29608 done: 29609 mutex_enter(SD_MUTEX(un)); 29610 return (err); 29611 } 29612 29613 29614 /* 29615 * Function: sd_failfast_flushq 29616 * 29617 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29618 * in b_flags and move them onto the failfast queue, then kick 29619 * off a thread to return all bp's on the failfast queue to 29620 * their owners with an error set. 29621 * 29622 * Arguments: un - pointer to the soft state struct for the instance. 29623 * 29624 * Context: may execute in interrupt context. 29625 */ 29626 29627 static void 29628 sd_failfast_flushq(struct sd_lun *un) 29629 { 29630 struct buf *bp; 29631 struct buf *next_waitq_bp; 29632 struct buf *prev_waitq_bp = NULL; 29633 29634 ASSERT(un != NULL); 29635 ASSERT(mutex_owned(SD_MUTEX(un))); 29636 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29637 ASSERT(un->un_failfast_bp == NULL); 29638 29639 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29640 "sd_failfast_flushq: entry: un:0x%p\n", un); 29641 29642 /* 29643 * Check if we should flush all bufs when entering failfast state, or 29644 * just those with B_FAILFAST set. 29645 */ 29646 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29647 /* 29648 * Move *all* bp's on the wait queue to the failfast flush 29649 * queue, including those that do NOT have B_FAILFAST set. 29650 */ 29651 if (un->un_failfast_headp == NULL) { 29652 ASSERT(un->un_failfast_tailp == NULL); 29653 un->un_failfast_headp = un->un_waitq_headp; 29654 } else { 29655 ASSERT(un->un_failfast_tailp != NULL); 29656 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29657 } 29658 29659 un->un_failfast_tailp = un->un_waitq_tailp; 29660 29661 /* update kstat for each bp moved out of the waitq */ 29662 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29663 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29664 } 29665 29666 /* empty the waitq */ 29667 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29668 29669 } else { 29670 /* 29671 * Go thru the wait queue, pick off all entries with 29672 * B_FAILFAST set, and move these onto the failfast queue. 29673 */ 29674 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29675 /* 29676 * Save the pointer to the next bp on the wait queue, 29677 * so we get to it on the next iteration of this loop. 29678 */ 29679 next_waitq_bp = bp->av_forw; 29680 29681 /* 29682 * If this bp from the wait queue does NOT have 29683 * B_FAILFAST set, just move on to the next element 29684 * in the wait queue. Note, this is the only place 29685 * where it is correct to set prev_waitq_bp. 29686 */ 29687 if ((bp->b_flags & B_FAILFAST) == 0) { 29688 prev_waitq_bp = bp; 29689 continue; 29690 } 29691 29692 /* 29693 * Remove the bp from the wait queue. 29694 */ 29695 if (bp == un->un_waitq_headp) { 29696 /* The bp is the first element of the waitq. */ 29697 un->un_waitq_headp = next_waitq_bp; 29698 if (un->un_waitq_headp == NULL) { 29699 /* The wait queue is now empty */ 29700 un->un_waitq_tailp = NULL; 29701 } 29702 } else { 29703 /* 29704 * The bp is either somewhere in the middle 29705 * or at the end of the wait queue. 29706 */ 29707 ASSERT(un->un_waitq_headp != NULL); 29708 ASSERT(prev_waitq_bp != NULL); 29709 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29710 == 0); 29711 if (bp == un->un_waitq_tailp) { 29712 /* bp is the last entry on the waitq. */ 29713 ASSERT(next_waitq_bp == NULL); 29714 un->un_waitq_tailp = prev_waitq_bp; 29715 } 29716 prev_waitq_bp->av_forw = next_waitq_bp; 29717 } 29718 bp->av_forw = NULL; 29719 29720 /* 29721 * update kstat since the bp is moved out of 29722 * the waitq 29723 */ 29724 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29725 29726 /* 29727 * Now put the bp onto the failfast queue. 29728 */ 29729 if (un->un_failfast_headp == NULL) { 29730 /* failfast queue is currently empty */ 29731 ASSERT(un->un_failfast_tailp == NULL); 29732 un->un_failfast_headp = 29733 un->un_failfast_tailp = bp; 29734 } else { 29735 /* Add the bp to the end of the failfast q */ 29736 ASSERT(un->un_failfast_tailp != NULL); 29737 ASSERT(un->un_failfast_tailp->b_flags & 29738 B_FAILFAST); 29739 un->un_failfast_tailp->av_forw = bp; 29740 un->un_failfast_tailp = bp; 29741 } 29742 } 29743 } 29744 29745 /* 29746 * Now return all bp's on the failfast queue to their owners. 29747 */ 29748 while ((bp = un->un_failfast_headp) != NULL) { 29749 29750 un->un_failfast_headp = bp->av_forw; 29751 if (un->un_failfast_headp == NULL) { 29752 un->un_failfast_tailp = NULL; 29753 } 29754 29755 /* 29756 * We want to return the bp with a failure error code, but 29757 * we do not want a call to sd_start_cmds() to occur here, 29758 * so use sd_return_failed_command_no_restart() instead of 29759 * sd_return_failed_command(). 29760 */ 29761 sd_return_failed_command_no_restart(un, bp, EIO); 29762 } 29763 29764 /* Flush the xbuf queues if required. */ 29765 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29766 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29767 } 29768 29769 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29770 "sd_failfast_flushq: exit: un:0x%p\n", un); 29771 } 29772 29773 29774 /* 29775 * Function: sd_failfast_flushq_callback 29776 * 29777 * Description: Return TRUE if the given bp meets the criteria for failfast 29778 * flushing. Used with ddi_xbuf_flushq(9F). 29779 * 29780 * Arguments: bp - ptr to buf struct to be examined. 29781 * 29782 * Context: Any 29783 */ 29784 29785 static int 29786 sd_failfast_flushq_callback(struct buf *bp) 29787 { 29788 /* 29789 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29790 * state is entered; OR (2) the given bp has B_FAILFAST set. 29791 */ 29792 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29793 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29794 } 29795 29796 29797 29798 /* 29799 * Function: sd_setup_next_xfer 29800 * 29801 * Description: Prepare next I/O operation using DMA_PARTIAL 29802 * 29803 */ 29804 29805 static int 29806 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 29807 struct scsi_pkt *pkt, struct sd_xbuf *xp) 29808 { 29809 ssize_t num_blks_not_xfered; 29810 daddr_t strt_blk_num; 29811 ssize_t bytes_not_xfered; 29812 int rval; 29813 29814 ASSERT(pkt->pkt_resid == 0); 29815 29816 /* 29817 * Calculate next block number and amount to be transferred. 29818 * 29819 * How much data NOT transfered to the HBA yet. 29820 */ 29821 bytes_not_xfered = xp->xb_dma_resid; 29822 29823 /* 29824 * figure how many blocks NOT transfered to the HBA yet. 29825 */ 29826 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 29827 29828 /* 29829 * set starting block number to the end of what WAS transfered. 29830 */ 29831 strt_blk_num = xp->xb_blkno + 29832 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 29833 29834 /* 29835 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 29836 * will call scsi_initpkt with NULL_FUNC so we do not have to release 29837 * the disk mutex here. 29838 */ 29839 rval = sd_setup_next_rw_pkt(un, pkt, bp, 29840 strt_blk_num, num_blks_not_xfered); 29841 29842 if (rval == 0) { 29843 29844 /* 29845 * Success. 29846 * 29847 * Adjust things if there are still more blocks to be 29848 * transfered. 29849 */ 29850 xp->xb_dma_resid = pkt->pkt_resid; 29851 pkt->pkt_resid = 0; 29852 29853 return (1); 29854 } 29855 29856 /* 29857 * There's really only one possible return value from 29858 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 29859 * returns NULL. 29860 */ 29861 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 29862 29863 bp->b_resid = bp->b_bcount; 29864 bp->b_flags |= B_ERROR; 29865 29866 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29867 "Error setting up next portion of DMA transfer\n"); 29868 29869 return (0); 29870 } 29871 29872 /* 29873 * Function: sd_panic_for_res_conflict 29874 * 29875 * Description: Call panic with a string formatted with "Reservation Conflict" 29876 * and a human readable identifier indicating the SD instance 29877 * that experienced the reservation conflict. 29878 * 29879 * Arguments: un - pointer to the soft state struct for the instance. 29880 * 29881 * Context: may execute in interrupt context. 29882 */ 29883 29884 #define SD_RESV_CONFLICT_FMT_LEN 40 29885 void 29886 sd_panic_for_res_conflict(struct sd_lun *un) 29887 { 29888 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 29889 char path_str[MAXPATHLEN]; 29890 29891 (void) snprintf(panic_str, sizeof (panic_str), 29892 "Reservation Conflict\nDisk: %s", 29893 ddi_pathname(SD_DEVINFO(un), path_str)); 29894 29895 panic(panic_str); 29896 } 29897 29898 /* 29899 * Note: The following sd_faultinjection_ioctl( ) routines implement 29900 * driver support for handling fault injection for error analysis 29901 * causing faults in multiple layers of the driver. 29902 * 29903 */ 29904 29905 #ifdef SD_FAULT_INJECTION 29906 static uint_t sd_fault_injection_on = 0; 29907 29908 /* 29909 * Function: sd_faultinjection_ioctl() 29910 * 29911 * Description: This routine is the driver entry point for handling 29912 * faultinjection ioctls to inject errors into the 29913 * layer model 29914 * 29915 * Arguments: cmd - the ioctl cmd received 29916 * arg - the arguments from user and returns 29917 */ 29918 29919 static void 29920 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 29921 29922 uint_t i = 0; 29923 uint_t rval; 29924 29925 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 29926 29927 mutex_enter(SD_MUTEX(un)); 29928 29929 switch (cmd) { 29930 case SDIOCRUN: 29931 /* Allow pushed faults to be injected */ 29932 SD_INFO(SD_LOG_SDTEST, un, 29933 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 29934 29935 sd_fault_injection_on = 1; 29936 29937 SD_INFO(SD_LOG_IOERR, un, 29938 "sd_faultinjection_ioctl: run finished\n"); 29939 break; 29940 29941 case SDIOCSTART: 29942 /* Start Injection Session */ 29943 SD_INFO(SD_LOG_SDTEST, un, 29944 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 29945 29946 sd_fault_injection_on = 0; 29947 un->sd_injection_mask = 0xFFFFFFFF; 29948 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29949 un->sd_fi_fifo_pkt[i] = NULL; 29950 un->sd_fi_fifo_xb[i] = NULL; 29951 un->sd_fi_fifo_un[i] = NULL; 29952 un->sd_fi_fifo_arq[i] = NULL; 29953 } 29954 un->sd_fi_fifo_start = 0; 29955 un->sd_fi_fifo_end = 0; 29956 29957 mutex_enter(&(un->un_fi_mutex)); 29958 un->sd_fi_log[0] = '\0'; 29959 un->sd_fi_buf_len = 0; 29960 mutex_exit(&(un->un_fi_mutex)); 29961 29962 SD_INFO(SD_LOG_IOERR, un, 29963 "sd_faultinjection_ioctl: start finished\n"); 29964 break; 29965 29966 case SDIOCSTOP: 29967 /* Stop Injection Session */ 29968 SD_INFO(SD_LOG_SDTEST, un, 29969 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 29970 sd_fault_injection_on = 0; 29971 un->sd_injection_mask = 0x0; 29972 29973 /* Empty stray or unuseds structs from fifo */ 29974 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29975 if (un->sd_fi_fifo_pkt[i] != NULL) { 29976 kmem_free(un->sd_fi_fifo_pkt[i], 29977 sizeof (struct sd_fi_pkt)); 29978 } 29979 if (un->sd_fi_fifo_xb[i] != NULL) { 29980 kmem_free(un->sd_fi_fifo_xb[i], 29981 sizeof (struct sd_fi_xb)); 29982 } 29983 if (un->sd_fi_fifo_un[i] != NULL) { 29984 kmem_free(un->sd_fi_fifo_un[i], 29985 sizeof (struct sd_fi_un)); 29986 } 29987 if (un->sd_fi_fifo_arq[i] != NULL) { 29988 kmem_free(un->sd_fi_fifo_arq[i], 29989 sizeof (struct sd_fi_arq)); 29990 } 29991 un->sd_fi_fifo_pkt[i] = NULL; 29992 un->sd_fi_fifo_un[i] = NULL; 29993 un->sd_fi_fifo_xb[i] = NULL; 29994 un->sd_fi_fifo_arq[i] = NULL; 29995 } 29996 un->sd_fi_fifo_start = 0; 29997 un->sd_fi_fifo_end = 0; 29998 29999 SD_INFO(SD_LOG_IOERR, un, 30000 "sd_faultinjection_ioctl: stop finished\n"); 30001 break; 30002 30003 case SDIOCINSERTPKT: 30004 /* Store a packet struct to be pushed onto fifo */ 30005 SD_INFO(SD_LOG_SDTEST, un, 30006 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30007 30008 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30009 30010 sd_fault_injection_on = 0; 30011 30012 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30013 if (un->sd_fi_fifo_pkt[i] != NULL) { 30014 kmem_free(un->sd_fi_fifo_pkt[i], 30015 sizeof (struct sd_fi_pkt)); 30016 } 30017 if (arg != NULL) { 30018 un->sd_fi_fifo_pkt[i] = 30019 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30020 if (un->sd_fi_fifo_pkt[i] == NULL) { 30021 /* Alloc failed don't store anything */ 30022 break; 30023 } 30024 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30025 sizeof (struct sd_fi_pkt), 0); 30026 if (rval == -1) { 30027 kmem_free(un->sd_fi_fifo_pkt[i], 30028 sizeof (struct sd_fi_pkt)); 30029 un->sd_fi_fifo_pkt[i] = NULL; 30030 } 30031 } else { 30032 SD_INFO(SD_LOG_IOERR, un, 30033 "sd_faultinjection_ioctl: pkt null\n"); 30034 } 30035 break; 30036 30037 case SDIOCINSERTXB: 30038 /* Store a xb struct to be pushed onto fifo */ 30039 SD_INFO(SD_LOG_SDTEST, un, 30040 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30041 30042 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30043 30044 sd_fault_injection_on = 0; 30045 30046 if (un->sd_fi_fifo_xb[i] != NULL) { 30047 kmem_free(un->sd_fi_fifo_xb[i], 30048 sizeof (struct sd_fi_xb)); 30049 un->sd_fi_fifo_xb[i] = NULL; 30050 } 30051 if (arg != NULL) { 30052 un->sd_fi_fifo_xb[i] = 30053 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30054 if (un->sd_fi_fifo_xb[i] == NULL) { 30055 /* Alloc failed don't store anything */ 30056 break; 30057 } 30058 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30059 sizeof (struct sd_fi_xb), 0); 30060 30061 if (rval == -1) { 30062 kmem_free(un->sd_fi_fifo_xb[i], 30063 sizeof (struct sd_fi_xb)); 30064 un->sd_fi_fifo_xb[i] = NULL; 30065 } 30066 } else { 30067 SD_INFO(SD_LOG_IOERR, un, 30068 "sd_faultinjection_ioctl: xb null\n"); 30069 } 30070 break; 30071 30072 case SDIOCINSERTUN: 30073 /* Store a un struct to be pushed onto fifo */ 30074 SD_INFO(SD_LOG_SDTEST, un, 30075 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30076 30077 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30078 30079 sd_fault_injection_on = 0; 30080 30081 if (un->sd_fi_fifo_un[i] != NULL) { 30082 kmem_free(un->sd_fi_fifo_un[i], 30083 sizeof (struct sd_fi_un)); 30084 un->sd_fi_fifo_un[i] = NULL; 30085 } 30086 if (arg != NULL) { 30087 un->sd_fi_fifo_un[i] = 30088 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30089 if (un->sd_fi_fifo_un[i] == NULL) { 30090 /* Alloc failed don't store anything */ 30091 break; 30092 } 30093 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30094 sizeof (struct sd_fi_un), 0); 30095 if (rval == -1) { 30096 kmem_free(un->sd_fi_fifo_un[i], 30097 sizeof (struct sd_fi_un)); 30098 un->sd_fi_fifo_un[i] = NULL; 30099 } 30100 30101 } else { 30102 SD_INFO(SD_LOG_IOERR, un, 30103 "sd_faultinjection_ioctl: un null\n"); 30104 } 30105 30106 break; 30107 30108 case SDIOCINSERTARQ: 30109 /* Store a arq struct to be pushed onto fifo */ 30110 SD_INFO(SD_LOG_SDTEST, un, 30111 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30112 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30113 30114 sd_fault_injection_on = 0; 30115 30116 if (un->sd_fi_fifo_arq[i] != NULL) { 30117 kmem_free(un->sd_fi_fifo_arq[i], 30118 sizeof (struct sd_fi_arq)); 30119 un->sd_fi_fifo_arq[i] = NULL; 30120 } 30121 if (arg != NULL) { 30122 un->sd_fi_fifo_arq[i] = 30123 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30124 if (un->sd_fi_fifo_arq[i] == NULL) { 30125 /* Alloc failed don't store anything */ 30126 break; 30127 } 30128 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30129 sizeof (struct sd_fi_arq), 0); 30130 if (rval == -1) { 30131 kmem_free(un->sd_fi_fifo_arq[i], 30132 sizeof (struct sd_fi_arq)); 30133 un->sd_fi_fifo_arq[i] = NULL; 30134 } 30135 30136 } else { 30137 SD_INFO(SD_LOG_IOERR, un, 30138 "sd_faultinjection_ioctl: arq null\n"); 30139 } 30140 30141 break; 30142 30143 case SDIOCPUSH: 30144 /* Push stored xb, pkt, un, and arq onto fifo */ 30145 sd_fault_injection_on = 0; 30146 30147 if (arg != NULL) { 30148 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30149 if (rval != -1 && 30150 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30151 un->sd_fi_fifo_end += i; 30152 } 30153 } else { 30154 SD_INFO(SD_LOG_IOERR, un, 30155 "sd_faultinjection_ioctl: push arg null\n"); 30156 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30157 un->sd_fi_fifo_end++; 30158 } 30159 } 30160 SD_INFO(SD_LOG_IOERR, un, 30161 "sd_faultinjection_ioctl: push to end=%d\n", 30162 un->sd_fi_fifo_end); 30163 break; 30164 30165 case SDIOCRETRIEVE: 30166 /* Return buffer of log from Injection session */ 30167 SD_INFO(SD_LOG_SDTEST, un, 30168 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30169 30170 sd_fault_injection_on = 0; 30171 30172 mutex_enter(&(un->un_fi_mutex)); 30173 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30174 un->sd_fi_buf_len+1, 0); 30175 mutex_exit(&(un->un_fi_mutex)); 30176 30177 if (rval == -1) { 30178 /* 30179 * arg is possibly invalid setting 30180 * it to NULL for return 30181 */ 30182 arg = NULL; 30183 } 30184 break; 30185 } 30186 30187 mutex_exit(SD_MUTEX(un)); 30188 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30189 " exit\n"); 30190 } 30191 30192 30193 /* 30194 * Function: sd_injection_log() 30195 * 30196 * Description: This routine adds buff to the already existing injection log 30197 * for retrieval via faultinjection_ioctl for use in fault 30198 * detection and recovery 30199 * 30200 * Arguments: buf - the string to add to the log 30201 */ 30202 30203 static void 30204 sd_injection_log(char *buf, struct sd_lun *un) 30205 { 30206 uint_t len; 30207 30208 ASSERT(un != NULL); 30209 ASSERT(buf != NULL); 30210 30211 mutex_enter(&(un->un_fi_mutex)); 30212 30213 len = min(strlen(buf), 255); 30214 /* Add logged value to Injection log to be returned later */ 30215 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30216 uint_t offset = strlen((char *)un->sd_fi_log); 30217 char *destp = (char *)un->sd_fi_log + offset; 30218 int i; 30219 for (i = 0; i < len; i++) { 30220 *destp++ = *buf++; 30221 } 30222 un->sd_fi_buf_len += len; 30223 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30224 } 30225 30226 mutex_exit(&(un->un_fi_mutex)); 30227 } 30228 30229 30230 /* 30231 * Function: sd_faultinjection() 30232 * 30233 * Description: This routine takes the pkt and changes its 30234 * content based on error injection scenerio. 30235 * 30236 * Arguments: pktp - packet to be changed 30237 */ 30238 30239 static void 30240 sd_faultinjection(struct scsi_pkt *pktp) 30241 { 30242 uint_t i; 30243 struct sd_fi_pkt *fi_pkt; 30244 struct sd_fi_xb *fi_xb; 30245 struct sd_fi_un *fi_un; 30246 struct sd_fi_arq *fi_arq; 30247 struct buf *bp; 30248 struct sd_xbuf *xb; 30249 struct sd_lun *un; 30250 30251 ASSERT(pktp != NULL); 30252 30253 /* pull bp xb and un from pktp */ 30254 bp = (struct buf *)pktp->pkt_private; 30255 xb = SD_GET_XBUF(bp); 30256 un = SD_GET_UN(bp); 30257 30258 ASSERT(un != NULL); 30259 30260 mutex_enter(SD_MUTEX(un)); 30261 30262 SD_TRACE(SD_LOG_SDTEST, un, 30263 "sd_faultinjection: entry Injection from sdintr\n"); 30264 30265 /* if injection is off return */ 30266 if (sd_fault_injection_on == 0 || 30267 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30268 mutex_exit(SD_MUTEX(un)); 30269 return; 30270 } 30271 30272 SD_INFO(SD_LOG_SDTEST, un, 30273 "sd_faultinjection: is working for copying\n"); 30274 30275 /* take next set off fifo */ 30276 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30277 30278 fi_pkt = un->sd_fi_fifo_pkt[i]; 30279 fi_xb = un->sd_fi_fifo_xb[i]; 30280 fi_un = un->sd_fi_fifo_un[i]; 30281 fi_arq = un->sd_fi_fifo_arq[i]; 30282 30283 30284 /* set variables accordingly */ 30285 /* set pkt if it was on fifo */ 30286 if (fi_pkt != NULL) { 30287 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30288 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30289 if (fi_pkt->pkt_cdbp != 0xff) 30290 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30291 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30292 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30293 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30294 30295 } 30296 /* set xb if it was on fifo */ 30297 if (fi_xb != NULL) { 30298 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30299 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30300 if (fi_xb->xb_retry_count != 0) 30301 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30302 SD_CONDSET(xb, xb, xb_victim_retry_count, 30303 "xb_victim_retry_count"); 30304 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30305 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30306 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30307 30308 /* copy in block data from sense */ 30309 /* 30310 * if (fi_xb->xb_sense_data[0] != -1) { 30311 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30312 * SENSE_LENGTH); 30313 * } 30314 */ 30315 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30316 30317 /* copy in extended sense codes */ 30318 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30319 xb, es_code, "es_code"); 30320 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30321 xb, es_key, "es_key"); 30322 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30323 xb, es_add_code, "es_add_code"); 30324 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30325 xb, es_qual_code, "es_qual_code"); 30326 struct scsi_extended_sense *esp; 30327 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30328 esp->es_class = CLASS_EXTENDED_SENSE; 30329 } 30330 30331 /* set un if it was on fifo */ 30332 if (fi_un != NULL) { 30333 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30334 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30335 SD_CONDSET(un, un, un_reset_retry_count, 30336 "un_reset_retry_count"); 30337 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30338 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30339 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30340 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30341 "un_f_allow_bus_device_reset"); 30342 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30343 30344 } 30345 30346 /* copy in auto request sense if it was on fifo */ 30347 if (fi_arq != NULL) { 30348 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30349 } 30350 30351 /* free structs */ 30352 if (un->sd_fi_fifo_pkt[i] != NULL) { 30353 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30354 } 30355 if (un->sd_fi_fifo_xb[i] != NULL) { 30356 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30357 } 30358 if (un->sd_fi_fifo_un[i] != NULL) { 30359 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30360 } 30361 if (un->sd_fi_fifo_arq[i] != NULL) { 30362 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30363 } 30364 30365 /* 30366 * kmem_free does not gurantee to set to NULL 30367 * since we uses these to determine if we set 30368 * values or not lets confirm they are always 30369 * NULL after free 30370 */ 30371 un->sd_fi_fifo_pkt[i] = NULL; 30372 un->sd_fi_fifo_un[i] = NULL; 30373 un->sd_fi_fifo_xb[i] = NULL; 30374 un->sd_fi_fifo_arq[i] = NULL; 30375 30376 un->sd_fi_fifo_start++; 30377 30378 mutex_exit(SD_MUTEX(un)); 30379 30380 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30381 } 30382 30383 #endif /* SD_FAULT_INJECTION */ 30384 30385 /* 30386 * This routine is invoked in sd_unit_attach(). Before calling it, the 30387 * properties in conf file should be processed already, and "hotpluggable" 30388 * property was processed also. 30389 * 30390 * The sd driver distinguishes 3 different type of devices: removable media, 30391 * non-removable media, and hotpluggable. Below the differences are defined: 30392 * 30393 * 1. Device ID 30394 * 30395 * The device ID of a device is used to identify this device. Refer to 30396 * ddi_devid_register(9F). 30397 * 30398 * For a non-removable media disk device which can provide 0x80 or 0x83 30399 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30400 * device ID is created to identify this device. For other non-removable 30401 * media devices, a default device ID is created only if this device has 30402 * at least 2 alter cylinders. Otherwise, this device has no devid. 30403 * 30404 * ------------------------------------------------------- 30405 * removable media hotpluggable | Can Have Device ID 30406 * ------------------------------------------------------- 30407 * false false | Yes 30408 * false true | Yes 30409 * true x | No 30410 * ------------------------------------------------------ 30411 * 30412 * 30413 * 2. SCSI group 4 commands 30414 * 30415 * In SCSI specs, only some commands in group 4 command set can use 30416 * 8-byte addresses that can be used to access >2TB storage spaces. 30417 * Other commands have no such capability. Without supporting group4, 30418 * it is impossible to make full use of storage spaces of a disk with 30419 * capacity larger than 2TB. 30420 * 30421 * ----------------------------------------------- 30422 * removable media hotpluggable LP64 | Group 30423 * ----------------------------------------------- 30424 * false false false | 1 30425 * false false true | 4 30426 * false true false | 1 30427 * false true true | 4 30428 * true x x | 5 30429 * ----------------------------------------------- 30430 * 30431 * 30432 * 3. Check for VTOC Label 30433 * 30434 * If a direct-access disk has no EFI label, sd will check if it has a 30435 * valid VTOC label. Now, sd also does that check for removable media 30436 * and hotpluggable devices. 30437 * 30438 * -------------------------------------------------------------- 30439 * Direct-Access removable media hotpluggable | Check Label 30440 * ------------------------------------------------------------- 30441 * false false false | No 30442 * false false true | No 30443 * false true false | Yes 30444 * false true true | Yes 30445 * true x x | Yes 30446 * -------------------------------------------------------------- 30447 * 30448 * 30449 * 4. Building default VTOC label 30450 * 30451 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30452 * If those devices have no valid VTOC label, sd(7d) will attempt to 30453 * create default VTOC for them. Currently sd creates default VTOC label 30454 * for all devices on x86 platform (VTOC_16), but only for removable 30455 * media devices on SPARC (VTOC_8). 30456 * 30457 * ----------------------------------------------------------- 30458 * removable media hotpluggable platform | Default Label 30459 * ----------------------------------------------------------- 30460 * false false sparc | No 30461 * false true x86 | Yes 30462 * false true sparc | Yes 30463 * true x x | Yes 30464 * ---------------------------------------------------------- 30465 * 30466 * 30467 * 5. Supported blocksizes of target devices 30468 * 30469 * Sd supports non-512-byte blocksize for removable media devices only. 30470 * For other devices, only 512-byte blocksize is supported. This may be 30471 * changed in near future because some RAID devices require non-512-byte 30472 * blocksize 30473 * 30474 * ----------------------------------------------------------- 30475 * removable media hotpluggable | non-512-byte blocksize 30476 * ----------------------------------------------------------- 30477 * false false | No 30478 * false true | No 30479 * true x | Yes 30480 * ----------------------------------------------------------- 30481 * 30482 * 30483 * 6. Automatic mount & unmount 30484 * 30485 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30486 * if a device is removable media device. It return 1 for removable media 30487 * devices, and 0 for others. 30488 * 30489 * The automatic mounting subsystem should distinguish between the types 30490 * of devices and apply automounting policies to each. 30491 * 30492 * 30493 * 7. fdisk partition management 30494 * 30495 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30496 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30497 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30498 * fdisk partitions on both x86 and SPARC platform. 30499 * 30500 * ----------------------------------------------------------- 30501 * platform removable media USB/1394 | fdisk supported 30502 * ----------------------------------------------------------- 30503 * x86 X X | true 30504 * ------------------------------------------------------------ 30505 * sparc X X | false 30506 * ------------------------------------------------------------ 30507 * 30508 * 30509 * 8. MBOOT/MBR 30510 * 30511 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30512 * read/write mboot for removable media devices on sparc platform. 30513 * 30514 * ----------------------------------------------------------- 30515 * platform removable media USB/1394 | mboot supported 30516 * ----------------------------------------------------------- 30517 * x86 X X | true 30518 * ------------------------------------------------------------ 30519 * sparc false false | false 30520 * sparc false true | true 30521 * sparc true false | true 30522 * sparc true true | true 30523 * ------------------------------------------------------------ 30524 * 30525 * 30526 * 9. error handling during opening device 30527 * 30528 * If failed to open a disk device, an errno is returned. For some kinds 30529 * of errors, different errno is returned depending on if this device is 30530 * a removable media device. This brings USB/1394 hard disks in line with 30531 * expected hard disk behavior. It is not expected that this breaks any 30532 * application. 30533 * 30534 * ------------------------------------------------------ 30535 * removable media hotpluggable | errno 30536 * ------------------------------------------------------ 30537 * false false | EIO 30538 * false true | EIO 30539 * true x | ENXIO 30540 * ------------------------------------------------------ 30541 * 30542 * 30543 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30544 * 30545 * These IOCTLs are applicable only to removable media devices. 30546 * 30547 * ----------------------------------------------------------- 30548 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30549 * ----------------------------------------------------------- 30550 * false false | No 30551 * false true | No 30552 * true x | Yes 30553 * ----------------------------------------------------------- 30554 * 30555 * 30556 * 12. Kstats for partitions 30557 * 30558 * sd creates partition kstat for non-removable media devices. USB and 30559 * Firewire hard disks now have partition kstats 30560 * 30561 * ------------------------------------------------------ 30562 * removable media hotpluggable | kstat 30563 * ------------------------------------------------------ 30564 * false false | Yes 30565 * false true | Yes 30566 * true x | No 30567 * ------------------------------------------------------ 30568 * 30569 * 30570 * 13. Removable media & hotpluggable properties 30571 * 30572 * Sd driver creates a "removable-media" property for removable media 30573 * devices. Parent nexus drivers create a "hotpluggable" property if 30574 * it supports hotplugging. 30575 * 30576 * --------------------------------------------------------------------- 30577 * removable media hotpluggable | "removable-media" " hotpluggable" 30578 * --------------------------------------------------------------------- 30579 * false false | No No 30580 * false true | No Yes 30581 * true false | Yes No 30582 * true true | Yes Yes 30583 * --------------------------------------------------------------------- 30584 * 30585 * 30586 * 14. Power Management 30587 * 30588 * sd only power manages removable media devices or devices that support 30589 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30590 * 30591 * A parent nexus that supports hotplugging can also set "pm-capable" 30592 * if the disk can be power managed. 30593 * 30594 * ------------------------------------------------------------ 30595 * removable media hotpluggable pm-capable | power manage 30596 * ------------------------------------------------------------ 30597 * false false false | No 30598 * false false true | Yes 30599 * false true false | No 30600 * false true true | Yes 30601 * true x x | Yes 30602 * ------------------------------------------------------------ 30603 * 30604 * USB and firewire hard disks can now be power managed independently 30605 * of the framebuffer 30606 * 30607 * 30608 * 15. Support for USB disks with capacity larger than 1TB 30609 * 30610 * Currently, sd doesn't permit a fixed disk device with capacity 30611 * larger than 1TB to be used in a 32-bit operating system environment. 30612 * However, sd doesn't do that for removable media devices. Instead, it 30613 * assumes that removable media devices cannot have a capacity larger 30614 * than 1TB. Therefore, using those devices on 32-bit system is partially 30615 * supported, which can cause some unexpected results. 30616 * 30617 * --------------------------------------------------------------------- 30618 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30619 * --------------------------------------------------------------------- 30620 * false false | true | no 30621 * false true | true | no 30622 * true false | true | Yes 30623 * true true | true | Yes 30624 * --------------------------------------------------------------------- 30625 * 30626 * 30627 * 16. Check write-protection at open time 30628 * 30629 * When a removable media device is being opened for writing without NDELAY 30630 * flag, sd will check if this device is writable. If attempting to open 30631 * without NDELAY flag a write-protected device, this operation will abort. 30632 * 30633 * ------------------------------------------------------------ 30634 * removable media USB/1394 | WP Check 30635 * ------------------------------------------------------------ 30636 * false false | No 30637 * false true | No 30638 * true false | Yes 30639 * true true | Yes 30640 * ------------------------------------------------------------ 30641 * 30642 * 30643 * 17. syslog when corrupted VTOC is encountered 30644 * 30645 * Currently, if an invalid VTOC is encountered, sd only print syslog 30646 * for fixed SCSI disks. 30647 * ------------------------------------------------------------ 30648 * removable media USB/1394 | print syslog 30649 * ------------------------------------------------------------ 30650 * false false | Yes 30651 * false true | No 30652 * true false | No 30653 * true true | No 30654 * ------------------------------------------------------------ 30655 */ 30656 static void 30657 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30658 { 30659 int pm_cap; 30660 30661 ASSERT(un->un_sd); 30662 ASSERT(un->un_sd->sd_inq); 30663 30664 /* 30665 * Enable SYNC CACHE support for all devices. 30666 */ 30667 un->un_f_sync_cache_supported = TRUE; 30668 30669 /* 30670 * Set the sync cache required flag to false. 30671 * This would ensure that there is no SYNC CACHE 30672 * sent when there are no writes 30673 */ 30674 un->un_f_sync_cache_required = FALSE; 30675 30676 if (un->un_sd->sd_inq->inq_rmb) { 30677 /* 30678 * The media of this device is removable. And for this kind 30679 * of devices, it is possible to change medium after opening 30680 * devices. Thus we should support this operation. 30681 */ 30682 un->un_f_has_removable_media = TRUE; 30683 30684 /* 30685 * support non-512-byte blocksize of removable media devices 30686 */ 30687 un->un_f_non_devbsize_supported = TRUE; 30688 30689 /* 30690 * Assume that all removable media devices support DOOR_LOCK 30691 */ 30692 un->un_f_doorlock_supported = TRUE; 30693 30694 /* 30695 * For a removable media device, it is possible to be opened 30696 * with NDELAY flag when there is no media in drive, in this 30697 * case we don't care if device is writable. But if without 30698 * NDELAY flag, we need to check if media is write-protected. 30699 */ 30700 un->un_f_chk_wp_open = TRUE; 30701 30702 /* 30703 * need to start a SCSI watch thread to monitor media state, 30704 * when media is being inserted or ejected, notify syseventd. 30705 */ 30706 un->un_f_monitor_media_state = TRUE; 30707 30708 /* 30709 * Some devices don't support START_STOP_UNIT command. 30710 * Therefore, we'd better check if a device supports it 30711 * before sending it. 30712 */ 30713 un->un_f_check_start_stop = TRUE; 30714 30715 /* 30716 * support eject media ioctl: 30717 * FDEJECT, DKIOCEJECT, CDROMEJECT 30718 */ 30719 un->un_f_eject_media_supported = TRUE; 30720 30721 /* 30722 * Because many removable-media devices don't support 30723 * LOG_SENSE, we couldn't use this command to check if 30724 * a removable media device support power-management. 30725 * We assume that they support power-management via 30726 * START_STOP_UNIT command and can be spun up and down 30727 * without limitations. 30728 */ 30729 un->un_f_pm_supported = TRUE; 30730 30731 /* 30732 * Need to create a zero length (Boolean) property 30733 * removable-media for the removable media devices. 30734 * Note that the return value of the property is not being 30735 * checked, since if unable to create the property 30736 * then do not want the attach to fail altogether. Consistent 30737 * with other property creation in attach. 30738 */ 30739 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30740 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30741 30742 } else { 30743 /* 30744 * create device ID for device 30745 */ 30746 un->un_f_devid_supported = TRUE; 30747 30748 /* 30749 * Spin up non-removable-media devices once it is attached 30750 */ 30751 un->un_f_attach_spinup = TRUE; 30752 30753 /* 30754 * According to SCSI specification, Sense data has two kinds of 30755 * format: fixed format, and descriptor format. At present, we 30756 * don't support descriptor format sense data for removable 30757 * media. 30758 */ 30759 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30760 un->un_f_descr_format_supported = TRUE; 30761 } 30762 30763 /* 30764 * kstats are created only for non-removable media devices. 30765 * 30766 * Set this in sd.conf to 0 in order to disable kstats. The 30767 * default is 1, so they are enabled by default. 30768 */ 30769 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30770 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30771 "enable-partition-kstats", 1)); 30772 30773 /* 30774 * Check if HBA has set the "pm-capable" property. 30775 * If "pm-capable" exists and is non-zero then we can 30776 * power manage the device without checking the start/stop 30777 * cycle count log sense page. 30778 * 30779 * If "pm-capable" exists and is set to be false (0), 30780 * then we should not power manage the device. 30781 * 30782 * If "pm-capable" doesn't exist then pm_cap will 30783 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 30784 * sd will check the start/stop cycle count log sense page 30785 * and power manage the device if the cycle count limit has 30786 * not been exceeded. 30787 */ 30788 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 30789 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 30790 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 30791 un->un_f_log_sense_supported = TRUE; 30792 if (!un->un_f_power_condition_disabled && 30793 SD_INQUIRY(un)->inq_ansi == 6) { 30794 un->un_f_power_condition_supported = TRUE; 30795 } 30796 } else { 30797 /* 30798 * pm-capable property exists. 30799 * 30800 * Convert "TRUE" values for pm_cap to 30801 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 30802 * later. "TRUE" values are any values defined in 30803 * inquiry.h. 30804 */ 30805 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 30806 un->un_f_log_sense_supported = FALSE; 30807 } else { 30808 /* SD_PM_CAPABLE_IS_TRUE case */ 30809 un->un_f_pm_supported = TRUE; 30810 if (!un->un_f_power_condition_disabled && 30811 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 30812 un->un_f_power_condition_supported = 30813 TRUE; 30814 } 30815 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 30816 un->un_f_log_sense_supported = TRUE; 30817 un->un_f_pm_log_sense_smart = 30818 SD_PM_CAP_SMART_LOG(pm_cap); 30819 } 30820 } 30821 30822 SD_INFO(SD_LOG_ATTACH_DETACH, un, 30823 "sd_unit_attach: un:0x%p pm-capable " 30824 "property set to %d.\n", un, un->un_f_pm_supported); 30825 } 30826 } 30827 30828 if (un->un_f_is_hotpluggable) { 30829 30830 /* 30831 * Have to watch hotpluggable devices as well, since 30832 * that's the only way for userland applications to 30833 * detect hot removal while device is busy/mounted. 30834 */ 30835 un->un_f_monitor_media_state = TRUE; 30836 30837 un->un_f_check_start_stop = TRUE; 30838 30839 } 30840 } 30841 30842 /* 30843 * sd_tg_rdwr: 30844 * Provides rdwr access for cmlb via sd_tgops. The start_block is 30845 * in sys block size, req_length in bytes. 30846 * 30847 */ 30848 static int 30849 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 30850 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 30851 { 30852 struct sd_lun *un; 30853 int path_flag = (int)(uintptr_t)tg_cookie; 30854 char *dkl = NULL; 30855 diskaddr_t real_addr = start_block; 30856 diskaddr_t first_byte, end_block; 30857 30858 size_t buffer_size = reqlength; 30859 int rval = 0; 30860 diskaddr_t cap; 30861 uint32_t lbasize; 30862 sd_ssc_t *ssc; 30863 30864 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30865 if (un == NULL) 30866 return (ENXIO); 30867 30868 if (cmd != TG_READ && cmd != TG_WRITE) 30869 return (EINVAL); 30870 30871 ssc = sd_ssc_init(un); 30872 mutex_enter(SD_MUTEX(un)); 30873 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 30874 mutex_exit(SD_MUTEX(un)); 30875 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30876 &lbasize, path_flag); 30877 if (rval != 0) 30878 goto done1; 30879 mutex_enter(SD_MUTEX(un)); 30880 sd_update_block_info(un, lbasize, cap); 30881 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 30882 mutex_exit(SD_MUTEX(un)); 30883 rval = EIO; 30884 goto done; 30885 } 30886 } 30887 30888 if (NOT_DEVBSIZE(un)) { 30889 /* 30890 * sys_blocksize != tgt_blocksize, need to re-adjust 30891 * blkno and save the index to beginning of dk_label 30892 */ 30893 first_byte = SD_SYSBLOCKS2BYTES(start_block); 30894 real_addr = first_byte / un->un_tgt_blocksize; 30895 30896 end_block = (first_byte + reqlength + 30897 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 30898 30899 /* round up buffer size to multiple of target block size */ 30900 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 30901 30902 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 30903 "label_addr: 0x%x allocation size: 0x%x\n", 30904 real_addr, buffer_size); 30905 30906 if (((first_byte % un->un_tgt_blocksize) != 0) || 30907 (reqlength % un->un_tgt_blocksize) != 0) 30908 /* the request is not aligned */ 30909 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 30910 } 30911 30912 /* 30913 * The MMC standard allows READ CAPACITY to be 30914 * inaccurate by a bounded amount (in the interest of 30915 * response latency). As a result, failed READs are 30916 * commonplace (due to the reading of metadata and not 30917 * data). Depending on the per-Vendor/drive Sense data, 30918 * the failed READ can cause many (unnecessary) retries. 30919 */ 30920 30921 if (ISCD(un) && (cmd == TG_READ) && 30922 (un->un_f_blockcount_is_valid == TRUE) && 30923 ((start_block == (un->un_blockcount - 1))|| 30924 (start_block == (un->un_blockcount - 2)))) { 30925 path_flag = SD_PATH_DIRECT_PRIORITY; 30926 } 30927 30928 mutex_exit(SD_MUTEX(un)); 30929 if (cmd == TG_READ) { 30930 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 30931 buffer_size, real_addr, path_flag); 30932 if (dkl != NULL) 30933 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 30934 real_addr), bufaddr, reqlength); 30935 } else { 30936 if (dkl) { 30937 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 30938 real_addr, path_flag); 30939 if (rval) { 30940 goto done1; 30941 } 30942 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 30943 real_addr), reqlength); 30944 } 30945 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 30946 buffer_size, real_addr, path_flag); 30947 } 30948 30949 done1: 30950 if (dkl != NULL) 30951 kmem_free(dkl, buffer_size); 30952 30953 if (rval != 0) { 30954 if (rval == EIO) 30955 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 30956 else 30957 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 30958 } 30959 done: 30960 sd_ssc_fini(ssc); 30961 return (rval); 30962 } 30963 30964 30965 static int 30966 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 30967 { 30968 30969 struct sd_lun *un; 30970 diskaddr_t cap; 30971 uint32_t lbasize; 30972 int path_flag = (int)(uintptr_t)tg_cookie; 30973 int ret = 0; 30974 30975 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30976 if (un == NULL) 30977 return (ENXIO); 30978 30979 switch (cmd) { 30980 case TG_GETPHYGEOM: 30981 case TG_GETVIRTGEOM: 30982 case TG_GETCAPACITY: 30983 case TG_GETBLOCKSIZE: 30984 mutex_enter(SD_MUTEX(un)); 30985 30986 if ((un->un_f_blockcount_is_valid == TRUE) && 30987 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 30988 cap = un->un_blockcount; 30989 lbasize = un->un_tgt_blocksize; 30990 mutex_exit(SD_MUTEX(un)); 30991 } else { 30992 sd_ssc_t *ssc; 30993 mutex_exit(SD_MUTEX(un)); 30994 ssc = sd_ssc_init(un); 30995 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30996 &lbasize, path_flag); 30997 if (ret != 0) { 30998 if (ret == EIO) 30999 sd_ssc_assessment(ssc, 31000 SD_FMT_STATUS_CHECK); 31001 else 31002 sd_ssc_assessment(ssc, 31003 SD_FMT_IGNORE); 31004 sd_ssc_fini(ssc); 31005 return (ret); 31006 } 31007 sd_ssc_fini(ssc); 31008 mutex_enter(SD_MUTEX(un)); 31009 sd_update_block_info(un, lbasize, cap); 31010 if ((un->un_f_blockcount_is_valid == FALSE) || 31011 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 31012 mutex_exit(SD_MUTEX(un)); 31013 return (EIO); 31014 } 31015 mutex_exit(SD_MUTEX(un)); 31016 } 31017 31018 if (cmd == TG_GETCAPACITY) { 31019 *(diskaddr_t *)arg = cap; 31020 return (0); 31021 } 31022 31023 if (cmd == TG_GETBLOCKSIZE) { 31024 *(uint32_t *)arg = lbasize; 31025 return (0); 31026 } 31027 31028 if (cmd == TG_GETPHYGEOM) 31029 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 31030 cap, lbasize, path_flag); 31031 else 31032 /* TG_GETVIRTGEOM */ 31033 ret = sd_get_virtual_geometry(un, 31034 (cmlb_geom_t *)arg, cap, lbasize); 31035 31036 return (ret); 31037 31038 case TG_GETATTR: 31039 mutex_enter(SD_MUTEX(un)); 31040 ((tg_attribute_t *)arg)->media_is_writable = 31041 un->un_f_mmc_writable_media; 31042 ((tg_attribute_t *)arg)->media_is_solid_state = 31043 un->un_f_is_solid_state; 31044 mutex_exit(SD_MUTEX(un)); 31045 return (0); 31046 default: 31047 return (ENOTTY); 31048 31049 } 31050 } 31051 31052 /* 31053 * Function: sd_ssc_ereport_post 31054 * 31055 * Description: Will be called when SD driver need to post an ereport. 31056 * 31057 * Context: Kernel thread or interrupt context. 31058 */ 31059 static void 31060 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 31061 { 31062 int uscsi_path_instance = 0; 31063 uchar_t uscsi_pkt_reason; 31064 uint32_t uscsi_pkt_state; 31065 uint32_t uscsi_pkt_statistics; 31066 uint64_t uscsi_ena; 31067 uchar_t op_code; 31068 uint8_t *sensep; 31069 union scsi_cdb *cdbp; 31070 uint_t cdblen = 0; 31071 uint_t senlen = 0; 31072 struct sd_lun *un; 31073 dev_info_t *dip; 31074 char *devid; 31075 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 31076 SSC_FLAGS_INVALID_STATUS | 31077 SSC_FLAGS_INVALID_SENSE | 31078 SSC_FLAGS_INVALID_DATA; 31079 char assessment[16]; 31080 31081 ASSERT(ssc != NULL); 31082 ASSERT(ssc->ssc_uscsi_cmd != NULL); 31083 ASSERT(ssc->ssc_uscsi_info != NULL); 31084 31085 un = ssc->ssc_un; 31086 ASSERT(un != NULL); 31087 31088 dip = un->un_sd->sd_dev; 31089 31090 /* 31091 * Get the devid: 31092 * devid will only be passed to non-transport error reports. 31093 */ 31094 devid = DEVI(dip)->devi_devid_str; 31095 31096 /* 31097 * If we are syncing or dumping, the command will not be executed 31098 * so we bypass this situation. 31099 */ 31100 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 31101 (un->un_state == SD_STATE_DUMPING)) 31102 return; 31103 31104 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 31105 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 31106 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 31107 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 31108 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 31109 31110 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 31111 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 31112 31113 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 31114 if (cdbp == NULL) { 31115 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 31116 "sd_ssc_ereport_post meet empty cdb\n"); 31117 return; 31118 } 31119 31120 op_code = cdbp->scc_cmd; 31121 31122 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 31123 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 31124 ssc->ssc_uscsi_cmd->uscsi_rqresid); 31125 31126 if (senlen > 0) 31127 ASSERT(sensep != NULL); 31128 31129 /* 31130 * Initialize drv_assess to corresponding values. 31131 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 31132 * on the sense-key returned back. 31133 */ 31134 switch (drv_assess) { 31135 case SD_FM_DRV_RECOVERY: 31136 (void) sprintf(assessment, "%s", "recovered"); 31137 break; 31138 case SD_FM_DRV_RETRY: 31139 (void) sprintf(assessment, "%s", "retry"); 31140 break; 31141 case SD_FM_DRV_NOTICE: 31142 (void) sprintf(assessment, "%s", "info"); 31143 break; 31144 case SD_FM_DRV_FATAL: 31145 default: 31146 (void) sprintf(assessment, "%s", "unknown"); 31147 } 31148 /* 31149 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 31150 * command, we will post ereport.io.scsi.cmd.disk.recovered. 31151 * driver-assessment will always be "recovered" here. 31152 */ 31153 if (drv_assess == SD_FM_DRV_RECOVERY) { 31154 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31155 "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP, 31156 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31157 "driver-assessment", DATA_TYPE_STRING, assessment, 31158 "op-code", DATA_TYPE_UINT8, op_code, 31159 "cdb", DATA_TYPE_UINT8_ARRAY, 31160 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31161 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31162 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31163 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31164 NULL); 31165 return; 31166 } 31167 31168 /* 31169 * If there is un-expected/un-decodable data, we should post 31170 * ereport.io.scsi.cmd.disk.dev.uderr. 31171 * driver-assessment will be set based on parameter drv_assess. 31172 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 31173 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 31174 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 31175 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 31176 */ 31177 if (ssc->ssc_flags & ssc_invalid_flags) { 31178 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 31179 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31180 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 31181 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31182 "driver-assessment", DATA_TYPE_STRING, 31183 drv_assess == SD_FM_DRV_FATAL ? 31184 "fail" : assessment, 31185 "op-code", DATA_TYPE_UINT8, op_code, 31186 "cdb", DATA_TYPE_UINT8_ARRAY, 31187 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31188 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31189 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31190 "pkt-stats", DATA_TYPE_UINT32, 31191 uscsi_pkt_statistics, 31192 "stat-code", DATA_TYPE_UINT8, 31193 ssc->ssc_uscsi_cmd->uscsi_status, 31194 "un-decode-info", DATA_TYPE_STRING, 31195 ssc->ssc_info, 31196 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31197 senlen, sensep, 31198 NULL); 31199 } else { 31200 /* 31201 * For other type of invalid data, the 31202 * un-decode-value field would be empty because the 31203 * un-decodable content could be seen from upper 31204 * level payload or inside un-decode-info. 31205 */ 31206 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31207 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 31208 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31209 "driver-assessment", DATA_TYPE_STRING, 31210 drv_assess == SD_FM_DRV_FATAL ? 31211 "fail" : assessment, 31212 "op-code", DATA_TYPE_UINT8, op_code, 31213 "cdb", DATA_TYPE_UINT8_ARRAY, 31214 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31215 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31216 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31217 "pkt-stats", DATA_TYPE_UINT32, 31218 uscsi_pkt_statistics, 31219 "stat-code", DATA_TYPE_UINT8, 31220 ssc->ssc_uscsi_cmd->uscsi_status, 31221 "un-decode-info", DATA_TYPE_STRING, 31222 ssc->ssc_info, 31223 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31224 0, NULL, 31225 NULL); 31226 } 31227 ssc->ssc_flags &= ~ssc_invalid_flags; 31228 return; 31229 } 31230 31231 if (uscsi_pkt_reason != CMD_CMPLT || 31232 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31233 /* 31234 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31235 * set inside sd_start_cmds due to errors(bad packet or 31236 * fatal transport error), we should take it as a 31237 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31238 * driver-assessment will be set based on drv_assess. 31239 * We will set devid to NULL because it is a transport 31240 * error. 31241 */ 31242 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31243 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31244 31245 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31246 "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION, 31247 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31248 "driver-assessment", DATA_TYPE_STRING, 31249 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31250 "op-code", DATA_TYPE_UINT8, op_code, 31251 "cdb", DATA_TYPE_UINT8_ARRAY, 31252 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31253 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31254 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31255 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31256 NULL); 31257 } else { 31258 /* 31259 * If we got here, we have a completed command, and we need 31260 * to further investigate the sense data to see what kind 31261 * of ereport we should post. 31262 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 31263 * if sense-key == 0x3. 31264 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31265 * driver-assessment will be set based on the parameter 31266 * drv_assess. 31267 */ 31268 if (senlen > 0) { 31269 /* 31270 * Here we have sense data available. 31271 */ 31272 uint8_t sense_key; 31273 sense_key = scsi_sense_key(sensep); 31274 if (sense_key == 0x3) { 31275 /* 31276 * sense-key == 0x3(medium error), 31277 * driver-assessment should be "fatal" if 31278 * drv_assess is SD_FM_DRV_FATAL. 31279 */ 31280 scsi_fm_ereport_post(un->un_sd, 31281 uscsi_path_instance, 31282 "cmd.disk.dev.rqs.merr", 31283 uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION, 31284 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31285 "driver-assessment", 31286 DATA_TYPE_STRING, 31287 drv_assess == SD_FM_DRV_FATAL ? 31288 "fatal" : assessment, 31289 "op-code", 31290 DATA_TYPE_UINT8, op_code, 31291 "cdb", 31292 DATA_TYPE_UINT8_ARRAY, cdblen, 31293 ssc->ssc_uscsi_cmd->uscsi_cdb, 31294 "pkt-reason", 31295 DATA_TYPE_UINT8, uscsi_pkt_reason, 31296 "pkt-state", 31297 DATA_TYPE_UINT8, uscsi_pkt_state, 31298 "pkt-stats", 31299 DATA_TYPE_UINT32, 31300 uscsi_pkt_statistics, 31301 "stat-code", 31302 DATA_TYPE_UINT8, 31303 ssc->ssc_uscsi_cmd->uscsi_status, 31304 "key", 31305 DATA_TYPE_UINT8, 31306 scsi_sense_key(sensep), 31307 "asc", 31308 DATA_TYPE_UINT8, 31309 scsi_sense_asc(sensep), 31310 "ascq", 31311 DATA_TYPE_UINT8, 31312 scsi_sense_ascq(sensep), 31313 "sense-data", 31314 DATA_TYPE_UINT8_ARRAY, 31315 senlen, sensep, 31316 "lba", 31317 DATA_TYPE_UINT64, 31318 ssc->ssc_uscsi_info->ui_lba, 31319 NULL); 31320 } else { 31321 /* 31322 * if sense-key == 0x4(hardware 31323 * error), driver-assessment should 31324 * be "fatal" if drv_assess is 31325 * SD_FM_DRV_FATAL. 31326 */ 31327 scsi_fm_ereport_post(un->un_sd, 31328 uscsi_path_instance, 31329 "cmd.disk.dev.rqs.derr", 31330 uscsi_ena, devid, DDI_NOSLEEP, 31331 FM_VERSION, 31332 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31333 "driver-assessment", 31334 DATA_TYPE_STRING, 31335 drv_assess == SD_FM_DRV_FATAL ? 31336 (sense_key == 0x4 ? 31337 "fatal" : "fail") : assessment, 31338 "op-code", 31339 DATA_TYPE_UINT8, op_code, 31340 "cdb", 31341 DATA_TYPE_UINT8_ARRAY, cdblen, 31342 ssc->ssc_uscsi_cmd->uscsi_cdb, 31343 "pkt-reason", 31344 DATA_TYPE_UINT8, uscsi_pkt_reason, 31345 "pkt-state", 31346 DATA_TYPE_UINT8, uscsi_pkt_state, 31347 "pkt-stats", 31348 DATA_TYPE_UINT32, 31349 uscsi_pkt_statistics, 31350 "stat-code", 31351 DATA_TYPE_UINT8, 31352 ssc->ssc_uscsi_cmd->uscsi_status, 31353 "key", 31354 DATA_TYPE_UINT8, 31355 scsi_sense_key(sensep), 31356 "asc", 31357 DATA_TYPE_UINT8, 31358 scsi_sense_asc(sensep), 31359 "ascq", 31360 DATA_TYPE_UINT8, 31361 scsi_sense_ascq(sensep), 31362 "sense-data", 31363 DATA_TYPE_UINT8_ARRAY, 31364 senlen, sensep, 31365 NULL); 31366 } 31367 } else { 31368 /* 31369 * For stat_code == STATUS_GOOD, this is not a 31370 * hardware error. 31371 */ 31372 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31373 return; 31374 31375 /* 31376 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31377 * stat-code but with sense data unavailable. 31378 * driver-assessment will be set based on parameter 31379 * drv_assess. 31380 */ 31381 scsi_fm_ereport_post(un->un_sd, 31382 uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena, 31383 devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 31384 FM_EREPORT_VERS0, 31385 "driver-assessment", DATA_TYPE_STRING, 31386 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31387 "op-code", DATA_TYPE_UINT8, op_code, 31388 "cdb", 31389 DATA_TYPE_UINT8_ARRAY, 31390 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31391 "pkt-reason", 31392 DATA_TYPE_UINT8, uscsi_pkt_reason, 31393 "pkt-state", 31394 DATA_TYPE_UINT8, uscsi_pkt_state, 31395 "pkt-stats", 31396 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31397 "stat-code", 31398 DATA_TYPE_UINT8, 31399 ssc->ssc_uscsi_cmd->uscsi_status, 31400 NULL); 31401 } 31402 } 31403 } 31404 31405 /* 31406 * Function: sd_ssc_extract_info 31407 * 31408 * Description: Extract information available to help generate ereport. 31409 * 31410 * Context: Kernel thread or interrupt context. 31411 */ 31412 static void 31413 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31414 struct buf *bp, struct sd_xbuf *xp) 31415 { 31416 size_t senlen = 0; 31417 union scsi_cdb *cdbp; 31418 int path_instance; 31419 /* 31420 * Need scsi_cdb_size array to determine the cdb length. 31421 */ 31422 extern uchar_t scsi_cdb_size[]; 31423 31424 ASSERT(un != NULL); 31425 ASSERT(pktp != NULL); 31426 ASSERT(bp != NULL); 31427 ASSERT(xp != NULL); 31428 ASSERT(ssc != NULL); 31429 ASSERT(mutex_owned(SD_MUTEX(un))); 31430 31431 /* 31432 * Transfer the cdb buffer pointer here. 31433 */ 31434 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31435 31436 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31437 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31438 31439 /* 31440 * Transfer the sense data buffer pointer if sense data is available, 31441 * calculate the sense data length first. 31442 */ 31443 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 31444 (xp->xb_sense_state & STATE_ARQ_DONE)) { 31445 /* 31446 * For arq case, we will enter here. 31447 */ 31448 if (xp->xb_sense_state & STATE_XARQ_DONE) { 31449 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 31450 } else { 31451 senlen = SENSE_LENGTH; 31452 } 31453 } else { 31454 /* 31455 * For non-arq case, we will enter this branch. 31456 */ 31457 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 31458 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 31459 senlen = SENSE_LENGTH - xp->xb_sense_resid; 31460 } 31461 31462 } 31463 31464 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 31465 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 31466 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 31467 31468 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 31469 31470 /* 31471 * Only transfer path_instance when scsi_pkt was properly allocated. 31472 */ 31473 path_instance = pktp->pkt_path_instance; 31474 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 31475 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 31476 else 31477 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 31478 31479 /* 31480 * Copy in the other fields we may need when posting ereport. 31481 */ 31482 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 31483 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 31484 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 31485 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 31486 31487 /* 31488 * For partially read/write command, we will not create ena 31489 * in case of a successful command be reconized as recovered. 31490 */ 31491 if ((pktp->pkt_reason == CMD_CMPLT) && 31492 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 31493 (senlen == 0)) { 31494 return; 31495 } 31496 31497 /* 31498 * To associate ereports of a single command execution flow, we 31499 * need a shared ena for a specific command. 31500 */ 31501 if (xp->xb_ena == 0) 31502 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 31503 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 31504 } 31505 31506 31507 /* 31508 * Function: sd_check_solid_state 31509 * 31510 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 31511 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 31512 * RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the 31513 * device is a solid state drive. 31514 * 31515 * Context: Kernel thread or interrupt context. 31516 */ 31517 31518 static void 31519 sd_check_solid_state(sd_ssc_t *ssc) 31520 { 31521 int rval = 0; 31522 uchar_t *inqb1 = NULL; 31523 size_t inqb1_len = MAX_INQUIRY_SIZE; 31524 size_t inqb1_resid = 0; 31525 struct sd_lun *un; 31526 31527 ASSERT(ssc != NULL); 31528 un = ssc->ssc_un; 31529 ASSERT(un != NULL); 31530 ASSERT(!mutex_owned(SD_MUTEX(un))); 31531 31532 mutex_enter(SD_MUTEX(un)); 31533 un->un_f_is_solid_state = FALSE; 31534 31535 if (ISCD(un)) { 31536 mutex_exit(SD_MUTEX(un)); 31537 return; 31538 } 31539 31540 if (sd_check_vpd_page_support(ssc) == 0 && 31541 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 31542 mutex_exit(SD_MUTEX(un)); 31543 /* collect page b1 data */ 31544 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 31545 31546 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 31547 0x01, 0xB1, &inqb1_resid); 31548 31549 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 31550 SD_TRACE(SD_LOG_COMMON, un, 31551 "sd_check_solid_state: \ 31552 successfully get VPD page: %x \ 31553 PAGE LENGTH: %x BYTE 4: %x \ 31554 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 31555 inqb1[5]); 31556 31557 mutex_enter(SD_MUTEX(un)); 31558 /* 31559 * Check the MEDIUM ROTATION RATE. If it is set 31560 * to 1, the device is a solid state drive. 31561 */ 31562 if (inqb1[4] == 0 && inqb1[5] == 1) { 31563 un->un_f_is_solid_state = TRUE; 31564 } 31565 mutex_exit(SD_MUTEX(un)); 31566 } else if (rval != 0) { 31567 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31568 } 31569 31570 kmem_free(inqb1, inqb1_len); 31571 } else { 31572 mutex_exit(SD_MUTEX(un)); 31573 } 31574 } 31575