1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * SCSI disk target driver. 30 */ 31 #include <sys/scsi/scsi.h> 32 #include <sys/dkbad.h> 33 #include <sys/dklabel.h> 34 #include <sys/dkio.h> 35 #include <sys/fdio.h> 36 #include <sys/cdio.h> 37 #include <sys/mhd.h> 38 #include <sys/vtoc.h> 39 #include <sys/dktp/fdisk.h> 40 #include <sys/kstat.h> 41 #include <sys/vtrace.h> 42 #include <sys/note.h> 43 #include <sys/thread.h> 44 #include <sys/proc.h> 45 #include <sys/efi_partition.h> 46 #include <sys/var.h> 47 #include <sys/aio_req.h> 48 49 #ifdef __lock_lint 50 #define _LP64 51 #define __amd64 52 #endif 53 54 #if (defined(__fibre)) 55 /* Note: is there a leadville version of the following? */ 56 #include <sys/fc4/fcal_linkapp.h> 57 #endif 58 #include <sys/taskq.h> 59 #include <sys/uuid.h> 60 #include <sys/byteorder.h> 61 #include <sys/sdt.h> 62 63 #include "sd_xbuf.h" 64 65 #include <sys/scsi/targets/sddef.h> 66 #include <sys/cmlb.h> 67 68 69 /* 70 * Loadable module info. 71 */ 72 #if (defined(__fibre)) 73 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver %I%" 74 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 75 #else 76 #define SD_MODULE_NAME "SCSI Disk Driver %I%" 77 char _depends_on[] = "misc/scsi misc/cmlb"; 78 #endif 79 80 /* 81 * Define the interconnect type, to allow the driver to distinguish 82 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 83 * 84 * This is really for backward compatibility. In the future, the driver 85 * should actually check the "interconnect-type" property as reported by 86 * the HBA; however at present this property is not defined by all HBAs, 87 * so we will use this #define (1) to permit the driver to run in 88 * backward-compatibility mode; and (2) to print a notification message 89 * if an FC HBA does not support the "interconnect-type" property. The 90 * behavior of the driver will be to assume parallel SCSI behaviors unless 91 * the "interconnect-type" property is defined by the HBA **AND** has a 92 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 93 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 94 * Channel behaviors (as per the old ssd). (Note that the 95 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 96 * will result in the driver assuming parallel SCSI behaviors.) 97 * 98 * (see common/sys/scsi/impl/services.h) 99 * 100 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 101 * since some FC HBAs may already support that, and there is some code in 102 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 103 * default would confuse that code, and besides things should work fine 104 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 105 * "interconnect_type" property. 106 * 107 */ 108 #if (defined(__fibre)) 109 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 110 #else 111 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 112 #endif 113 114 /* 115 * The name of the driver, established from the module name in _init. 116 */ 117 static char *sd_label = NULL; 118 119 /* 120 * Driver name is unfortunately prefixed on some driver.conf properties. 121 */ 122 #if (defined(__fibre)) 123 #define sd_max_xfer_size ssd_max_xfer_size 124 #define sd_config_list ssd_config_list 125 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 126 static char *sd_config_list = "ssd-config-list"; 127 #else 128 static char *sd_max_xfer_size = "sd_max_xfer_size"; 129 static char *sd_config_list = "sd-config-list"; 130 #endif 131 132 /* 133 * Driver global variables 134 */ 135 136 #if (defined(__fibre)) 137 /* 138 * These #defines are to avoid namespace collisions that occur because this 139 * code is currently used to compile two separate driver modules: sd and ssd. 140 * All global variables need to be treated this way (even if declared static) 141 * in order to allow the debugger to resolve the names properly. 142 * It is anticipated that in the near future the ssd module will be obsoleted, 143 * at which time this namespace issue should go away. 144 */ 145 #define sd_state ssd_state 146 #define sd_io_time ssd_io_time 147 #define sd_failfast_enable ssd_failfast_enable 148 #define sd_ua_retry_count ssd_ua_retry_count 149 #define sd_report_pfa ssd_report_pfa 150 #define sd_max_throttle ssd_max_throttle 151 #define sd_min_throttle ssd_min_throttle 152 #define sd_rot_delay ssd_rot_delay 153 154 #define sd_retry_on_reservation_conflict \ 155 ssd_retry_on_reservation_conflict 156 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 157 #define sd_resv_conflict_name ssd_resv_conflict_name 158 159 #define sd_component_mask ssd_component_mask 160 #define sd_level_mask ssd_level_mask 161 #define sd_debug_un ssd_debug_un 162 #define sd_error_level ssd_error_level 163 164 #define sd_xbuf_active_limit ssd_xbuf_active_limit 165 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 166 167 #define sd_tr ssd_tr 168 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 169 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 170 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 171 #define sd_check_media_time ssd_check_media_time 172 #define sd_wait_cmds_complete ssd_wait_cmds_complete 173 #define sd_label_mutex ssd_label_mutex 174 #define sd_detach_mutex ssd_detach_mutex 175 #define sd_log_buf ssd_log_buf 176 #define sd_log_mutex ssd_log_mutex 177 178 #define sd_disk_table ssd_disk_table 179 #define sd_disk_table_size ssd_disk_table_size 180 #define sd_sense_mutex ssd_sense_mutex 181 #define sd_cdbtab ssd_cdbtab 182 183 #define sd_cb_ops ssd_cb_ops 184 #define sd_ops ssd_ops 185 #define sd_additional_codes ssd_additional_codes 186 #define sd_tgops ssd_tgops 187 188 #define sd_minor_data ssd_minor_data 189 #define sd_minor_data_efi ssd_minor_data_efi 190 191 #define sd_tq ssd_tq 192 #define sd_wmr_tq ssd_wmr_tq 193 #define sd_taskq_name ssd_taskq_name 194 #define sd_wmr_taskq_name ssd_wmr_taskq_name 195 #define sd_taskq_minalloc ssd_taskq_minalloc 196 #define sd_taskq_maxalloc ssd_taskq_maxalloc 197 198 #define sd_dump_format_string ssd_dump_format_string 199 200 #define sd_iostart_chain ssd_iostart_chain 201 #define sd_iodone_chain ssd_iodone_chain 202 203 #define sd_pm_idletime ssd_pm_idletime 204 205 #define sd_force_pm_supported ssd_force_pm_supported 206 207 #define sd_dtype_optical_bind ssd_dtype_optical_bind 208 209 #endif 210 211 212 #ifdef SDDEBUG 213 int sd_force_pm_supported = 0; 214 #endif /* SDDEBUG */ 215 216 void *sd_state = NULL; 217 int sd_io_time = SD_IO_TIME; 218 int sd_failfast_enable = 1; 219 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 220 int sd_report_pfa = 1; 221 int sd_max_throttle = SD_MAX_THROTTLE; 222 int sd_min_throttle = SD_MIN_THROTTLE; 223 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 224 int sd_qfull_throttle_enable = TRUE; 225 226 int sd_retry_on_reservation_conflict = 1; 227 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 229 230 static int sd_dtype_optical_bind = -1; 231 232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 233 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 234 235 /* 236 * Global data for debug logging. To enable debug printing, sd_component_mask 237 * and sd_level_mask should be set to the desired bit patterns as outlined in 238 * sddef.h. 239 */ 240 uint_t sd_component_mask = 0x0; 241 uint_t sd_level_mask = 0x0; 242 struct sd_lun *sd_debug_un = NULL; 243 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 244 245 /* Note: these may go away in the future... */ 246 static uint32_t sd_xbuf_active_limit = 512; 247 static uint32_t sd_xbuf_reserve_limit = 16; 248 249 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 250 251 /* 252 * Timer value used to reset the throttle after it has been reduced 253 * (typically in response to TRAN_BUSY or STATUS_QFULL) 254 */ 255 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 256 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 257 258 /* 259 * Interval value associated with the media change scsi watch. 260 */ 261 static int sd_check_media_time = 3000000; 262 263 /* 264 * Wait value used for in progress operations during a DDI_SUSPEND 265 */ 266 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 267 268 /* 269 * sd_label_mutex protects a static buffer used in the disk label 270 * component of the driver 271 */ 272 static kmutex_t sd_label_mutex; 273 274 /* 275 * sd_detach_mutex protects un_layer_count, un_detach_count, and 276 * un_opens_in_progress in the sd_lun structure. 277 */ 278 static kmutex_t sd_detach_mutex; 279 280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 281 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 282 283 /* 284 * Global buffer and mutex for debug logging 285 */ 286 static char sd_log_buf[1024]; 287 static kmutex_t sd_log_mutex; 288 289 /* 290 * Structs and globals for recording attached lun information. 291 * This maintains a chain. Each node in the chain represents a SCSI controller. 292 * The structure records the number of luns attached to each target connected 293 * with the controller. 294 * For parallel scsi device only. 295 */ 296 struct sd_scsi_hba_tgt_lun { 297 struct sd_scsi_hba_tgt_lun *next; 298 dev_info_t *pdip; 299 int nlun[NTARGETS_WIDE]; 300 }; 301 302 /* 303 * Flag to indicate the lun is attached or detached 304 */ 305 #define SD_SCSI_LUN_ATTACH 0 306 #define SD_SCSI_LUN_DETACH 1 307 308 static kmutex_t sd_scsi_target_lun_mutex; 309 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 310 311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 312 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 313 314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 315 sd_scsi_target_lun_head)) 316 317 /* 318 * "Smart" Probe Caching structs, globals, #defines, etc. 319 * For parallel scsi and non-self-identify device only. 320 */ 321 322 /* 323 * The following resources and routines are implemented to support 324 * "smart" probing, which caches the scsi_probe() results in an array, 325 * in order to help avoid long probe times. 326 */ 327 struct sd_scsi_probe_cache { 328 struct sd_scsi_probe_cache *next; 329 dev_info_t *pdip; 330 int cache[NTARGETS_WIDE]; 331 }; 332 333 static kmutex_t sd_scsi_probe_cache_mutex; 334 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 335 336 /* 337 * Really we only need protection on the head of the linked list, but 338 * better safe than sorry. 339 */ 340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 341 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 342 343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 344 sd_scsi_probe_cache_head)) 345 346 347 /* 348 * Vendor specific data name property declarations 349 */ 350 351 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 352 353 static sd_tunables seagate_properties = { 354 SEAGATE_THROTTLE_VALUE, 355 0, 356 0, 357 0, 358 0, 359 0, 360 0, 361 0, 362 0 363 }; 364 365 366 static sd_tunables fujitsu_properties = { 367 FUJITSU_THROTTLE_VALUE, 368 0, 369 0, 370 0, 371 0, 372 0, 373 0, 374 0, 375 0 376 }; 377 378 static sd_tunables ibm_properties = { 379 IBM_THROTTLE_VALUE, 380 0, 381 0, 382 0, 383 0, 384 0, 385 0, 386 0, 387 0 388 }; 389 390 static sd_tunables purple_properties = { 391 PURPLE_THROTTLE_VALUE, 392 0, 393 0, 394 PURPLE_BUSY_RETRIES, 395 PURPLE_RESET_RETRY_COUNT, 396 PURPLE_RESERVE_RELEASE_TIME, 397 0, 398 0, 399 0 400 }; 401 402 static sd_tunables sve_properties = { 403 SVE_THROTTLE_VALUE, 404 0, 405 0, 406 SVE_BUSY_RETRIES, 407 SVE_RESET_RETRY_COUNT, 408 SVE_RESERVE_RELEASE_TIME, 409 SVE_MIN_THROTTLE_VALUE, 410 SVE_DISKSORT_DISABLED_FLAG, 411 0 412 }; 413 414 static sd_tunables maserati_properties = { 415 0, 416 0, 417 0, 418 0, 419 0, 420 0, 421 0, 422 MASERATI_DISKSORT_DISABLED_FLAG, 423 MASERATI_LUN_RESET_ENABLED_FLAG 424 }; 425 426 static sd_tunables pirus_properties = { 427 PIRUS_THROTTLE_VALUE, 428 0, 429 PIRUS_NRR_COUNT, 430 PIRUS_BUSY_RETRIES, 431 PIRUS_RESET_RETRY_COUNT, 432 0, 433 PIRUS_MIN_THROTTLE_VALUE, 434 PIRUS_DISKSORT_DISABLED_FLAG, 435 PIRUS_LUN_RESET_ENABLED_FLAG 436 }; 437 438 #endif 439 440 #if (defined(__sparc) && !defined(__fibre)) || \ 441 (defined(__i386) || defined(__amd64)) 442 443 444 static sd_tunables elite_properties = { 445 ELITE_THROTTLE_VALUE, 446 0, 447 0, 448 0, 449 0, 450 0, 451 0, 452 0, 453 0 454 }; 455 456 static sd_tunables st31200n_properties = { 457 ST31200N_THROTTLE_VALUE, 458 0, 459 0, 460 0, 461 0, 462 0, 463 0, 464 0, 465 0 466 }; 467 468 #endif /* Fibre or not */ 469 470 static sd_tunables lsi_properties_scsi = { 471 LSI_THROTTLE_VALUE, 472 0, 473 LSI_NOTREADY_RETRIES, 474 0, 475 0, 476 0, 477 0, 478 0, 479 0 480 }; 481 482 static sd_tunables symbios_properties = { 483 SYMBIOS_THROTTLE_VALUE, 484 0, 485 SYMBIOS_NOTREADY_RETRIES, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 static sd_tunables lsi_properties = { 495 0, 496 0, 497 LSI_NOTREADY_RETRIES, 498 0, 499 0, 500 0, 501 0, 502 0, 503 0 504 }; 505 506 static sd_tunables lsi_oem_properties = { 507 0, 508 0, 509 LSI_OEM_NOTREADY_RETRIES, 510 0, 511 0, 512 0, 513 0, 514 0, 515 0 516 }; 517 518 519 520 #if (defined(SD_PROP_TST)) 521 522 #define SD_TST_CTYPE_VAL CTYPE_CDROM 523 #define SD_TST_THROTTLE_VAL 16 524 #define SD_TST_NOTREADY_VAL 12 525 #define SD_TST_BUSY_VAL 60 526 #define SD_TST_RST_RETRY_VAL 36 527 #define SD_TST_RSV_REL_TIME 60 528 529 static sd_tunables tst_properties = { 530 SD_TST_THROTTLE_VAL, 531 SD_TST_CTYPE_VAL, 532 SD_TST_NOTREADY_VAL, 533 SD_TST_BUSY_VAL, 534 SD_TST_RST_RETRY_VAL, 535 SD_TST_RSV_REL_TIME, 536 0, 537 0, 538 0 539 }; 540 #endif 541 542 /* This is similar to the ANSI toupper implementation */ 543 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 544 545 /* 546 * Static Driver Configuration Table 547 * 548 * This is the table of disks which need throttle adjustment (or, perhaps 549 * something else as defined by the flags at a future time.) device_id 550 * is a string consisting of concatenated vid (vendor), pid (product/model) 551 * and revision strings as defined in the scsi_inquiry structure. Offsets of 552 * the parts of the string are as defined by the sizes in the scsi_inquiry 553 * structure. Device type is searched as far as the device_id string is 554 * defined. Flags defines which values are to be set in the driver from the 555 * properties list. 556 * 557 * Entries below which begin and end with a "*" are a special case. 558 * These do not have a specific vendor, and the string which follows 559 * can appear anywhere in the 16 byte PID portion of the inquiry data. 560 * 561 * Entries below which begin and end with a " " (blank) are a special 562 * case. The comparison function will treat multiple consecutive blanks 563 * as equivalent to a single blank. For example, this causes a 564 * sd_disk_table entry of " NEC CDROM " to match a device's id string 565 * of "NEC CDROM". 566 * 567 * Note: The MD21 controller type has been obsoleted. 568 * ST318202F is a Legacy device 569 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 570 * made with an FC connection. The entries here are a legacy. 571 */ 572 static sd_disk_config_t sd_disk_table[] = { 573 #if defined(__fibre) || defined(__i386) || defined(__amd64) 574 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 575 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 576 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 577 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 578 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 579 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 580 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 581 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 582 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 583 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 584 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 585 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 586 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 587 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 588 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 589 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 590 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 591 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 592 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 593 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 594 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 595 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 596 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 597 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 598 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 599 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 600 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 601 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 602 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 603 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 604 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 605 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 606 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 607 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 608 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 609 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 610 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 611 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 612 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 613 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 614 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 615 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 616 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 617 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 618 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 619 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 620 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 621 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 622 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 623 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 624 { "SUN T3", SD_CONF_BSET_THROTTLE | 625 SD_CONF_BSET_BSY_RETRY_COUNT| 626 SD_CONF_BSET_RST_RETRIES| 627 SD_CONF_BSET_RSV_REL_TIME, 628 &purple_properties }, 629 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 630 SD_CONF_BSET_BSY_RETRY_COUNT| 631 SD_CONF_BSET_RST_RETRIES| 632 SD_CONF_BSET_RSV_REL_TIME| 633 SD_CONF_BSET_MIN_THROTTLE| 634 SD_CONF_BSET_DISKSORT_DISABLED, 635 &sve_properties }, 636 { "SUN T4", SD_CONF_BSET_THROTTLE | 637 SD_CONF_BSET_BSY_RETRY_COUNT| 638 SD_CONF_BSET_RST_RETRIES| 639 SD_CONF_BSET_RSV_REL_TIME, 640 &purple_properties }, 641 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 642 SD_CONF_BSET_LUN_RESET_ENABLED, 643 &maserati_properties }, 644 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 645 SD_CONF_BSET_NRR_COUNT| 646 SD_CONF_BSET_BSY_RETRY_COUNT| 647 SD_CONF_BSET_RST_RETRIES| 648 SD_CONF_BSET_MIN_THROTTLE| 649 SD_CONF_BSET_DISKSORT_DISABLED| 650 SD_CONF_BSET_LUN_RESET_ENABLED, 651 &pirus_properties }, 652 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 653 SD_CONF_BSET_NRR_COUNT| 654 SD_CONF_BSET_BSY_RETRY_COUNT| 655 SD_CONF_BSET_RST_RETRIES| 656 SD_CONF_BSET_MIN_THROTTLE| 657 SD_CONF_BSET_DISKSORT_DISABLED| 658 SD_CONF_BSET_LUN_RESET_ENABLED, 659 &pirus_properties }, 660 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 661 SD_CONF_BSET_NRR_COUNT| 662 SD_CONF_BSET_BSY_RETRY_COUNT| 663 SD_CONF_BSET_RST_RETRIES| 664 SD_CONF_BSET_MIN_THROTTLE| 665 SD_CONF_BSET_DISKSORT_DISABLED| 666 SD_CONF_BSET_LUN_RESET_ENABLED, 667 &pirus_properties }, 668 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 669 SD_CONF_BSET_NRR_COUNT| 670 SD_CONF_BSET_BSY_RETRY_COUNT| 671 SD_CONF_BSET_RST_RETRIES| 672 SD_CONF_BSET_MIN_THROTTLE| 673 SD_CONF_BSET_DISKSORT_DISABLED| 674 SD_CONF_BSET_LUN_RESET_ENABLED, 675 &pirus_properties }, 676 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 677 SD_CONF_BSET_NRR_COUNT| 678 SD_CONF_BSET_BSY_RETRY_COUNT| 679 SD_CONF_BSET_RST_RETRIES| 680 SD_CONF_BSET_MIN_THROTTLE| 681 SD_CONF_BSET_DISKSORT_DISABLED| 682 SD_CONF_BSET_LUN_RESET_ENABLED, 683 &pirus_properties }, 684 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 685 SD_CONF_BSET_NRR_COUNT| 686 SD_CONF_BSET_BSY_RETRY_COUNT| 687 SD_CONF_BSET_RST_RETRIES| 688 SD_CONF_BSET_MIN_THROTTLE| 689 SD_CONF_BSET_DISKSORT_DISABLED| 690 SD_CONF_BSET_LUN_RESET_ENABLED, 691 &pirus_properties }, 692 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 693 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 694 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 695 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 696 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 697 #endif /* fibre or NON-sparc platforms */ 698 #if ((defined(__sparc) && !defined(__fibre)) ||\ 699 (defined(__i386) || defined(__amd64))) 700 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 701 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 702 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 703 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 704 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 705 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 706 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 707 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 708 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 709 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 710 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 711 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 712 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 713 &symbios_properties }, 714 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 715 &lsi_properties_scsi }, 716 #if defined(__i386) || defined(__amd64) 717 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 718 | SD_CONF_BSET_READSUB_BCD 719 | SD_CONF_BSET_READ_TOC_ADDR_BCD 720 | SD_CONF_BSET_NO_READ_HEADER 721 | SD_CONF_BSET_READ_CD_XD4), NULL }, 722 723 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 724 | SD_CONF_BSET_READSUB_BCD 725 | SD_CONF_BSET_READ_TOC_ADDR_BCD 726 | SD_CONF_BSET_NO_READ_HEADER 727 | SD_CONF_BSET_READ_CD_XD4), NULL }, 728 #endif /* __i386 || __amd64 */ 729 #endif /* sparc NON-fibre or NON-sparc platforms */ 730 731 #if (defined(SD_PROP_TST)) 732 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 733 | SD_CONF_BSET_CTYPE 734 | SD_CONF_BSET_NRR_COUNT 735 | SD_CONF_BSET_FAB_DEVID 736 | SD_CONF_BSET_NOCACHE 737 | SD_CONF_BSET_BSY_RETRY_COUNT 738 | SD_CONF_BSET_PLAYMSF_BCD 739 | SD_CONF_BSET_READSUB_BCD 740 | SD_CONF_BSET_READ_TOC_TRK_BCD 741 | SD_CONF_BSET_READ_TOC_ADDR_BCD 742 | SD_CONF_BSET_NO_READ_HEADER 743 | SD_CONF_BSET_READ_CD_XD4 744 | SD_CONF_BSET_RST_RETRIES 745 | SD_CONF_BSET_RSV_REL_TIME 746 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 747 #endif 748 }; 749 750 static const int sd_disk_table_size = 751 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 752 753 754 755 #define SD_INTERCONNECT_PARALLEL 0 756 #define SD_INTERCONNECT_FABRIC 1 757 #define SD_INTERCONNECT_FIBRE 2 758 #define SD_INTERCONNECT_SSA 3 759 #define SD_INTERCONNECT_SATA 4 760 #define SD_IS_PARALLEL_SCSI(un) \ 761 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 762 #define SD_IS_SERIAL(un) \ 763 ((un)->un_interconnect_type == SD_INTERCONNECT_SATA) 764 765 /* 766 * Definitions used by device id registration routines 767 */ 768 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 769 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 770 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 771 772 static kmutex_t sd_sense_mutex = {0}; 773 774 /* 775 * Macros for updates of the driver state 776 */ 777 #define New_state(un, s) \ 778 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 779 #define Restore_state(un) \ 780 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 781 782 static struct sd_cdbinfo sd_cdbtab[] = { 783 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 784 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 785 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 786 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 787 }; 788 789 /* 790 * Specifies the number of seconds that must have elapsed since the last 791 * cmd. has completed for a device to be declared idle to the PM framework. 792 */ 793 static int sd_pm_idletime = 1; 794 795 /* 796 * Internal function prototypes 797 */ 798 799 #if (defined(__fibre)) 800 /* 801 * These #defines are to avoid namespace collisions that occur because this 802 * code is currently used to compile two separate driver modules: sd and ssd. 803 * All function names need to be treated this way (even if declared static) 804 * in order to allow the debugger to resolve the names properly. 805 * It is anticipated that in the near future the ssd module will be obsoleted, 806 * at which time this ugliness should go away. 807 */ 808 #define sd_log_trace ssd_log_trace 809 #define sd_log_info ssd_log_info 810 #define sd_log_err ssd_log_err 811 #define sdprobe ssdprobe 812 #define sdinfo ssdinfo 813 #define sd_prop_op ssd_prop_op 814 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 815 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 816 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 817 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 818 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 819 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 820 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 821 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 822 #define sd_spin_up_unit ssd_spin_up_unit 823 #define sd_enable_descr_sense ssd_enable_descr_sense 824 #define sd_reenable_dsense_task ssd_reenable_dsense_task 825 #define sd_set_mmc_caps ssd_set_mmc_caps 826 #define sd_read_unit_properties ssd_read_unit_properties 827 #define sd_process_sdconf_file ssd_process_sdconf_file 828 #define sd_process_sdconf_table ssd_process_sdconf_table 829 #define sd_sdconf_id_match ssd_sdconf_id_match 830 #define sd_blank_cmp ssd_blank_cmp 831 #define sd_chk_vers1_data ssd_chk_vers1_data 832 #define sd_set_vers1_properties ssd_set_vers1_properties 833 834 #define sd_get_physical_geometry ssd_get_physical_geometry 835 #define sd_get_virtual_geometry ssd_get_virtual_geometry 836 #define sd_update_block_info ssd_update_block_info 837 #define sd_register_devid ssd_register_devid 838 #define sd_get_devid ssd_get_devid 839 #define sd_create_devid ssd_create_devid 840 #define sd_write_deviceid ssd_write_deviceid 841 #define sd_check_vpd_page_support ssd_check_vpd_page_support 842 #define sd_setup_pm ssd_setup_pm 843 #define sd_create_pm_components ssd_create_pm_components 844 #define sd_ddi_suspend ssd_ddi_suspend 845 #define sd_ddi_pm_suspend ssd_ddi_pm_suspend 846 #define sd_ddi_resume ssd_ddi_resume 847 #define sd_ddi_pm_resume ssd_ddi_pm_resume 848 #define sdpower ssdpower 849 #define sdattach ssdattach 850 #define sddetach ssddetach 851 #define sd_unit_attach ssd_unit_attach 852 #define sd_unit_detach ssd_unit_detach 853 #define sd_set_unit_attributes ssd_set_unit_attributes 854 #define sd_create_errstats ssd_create_errstats 855 #define sd_set_errstats ssd_set_errstats 856 #define sd_set_pstats ssd_set_pstats 857 #define sddump ssddump 858 #define sd_scsi_poll ssd_scsi_poll 859 #define sd_send_polled_RQS ssd_send_polled_RQS 860 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 861 #define sd_init_event_callbacks ssd_init_event_callbacks 862 #define sd_event_callback ssd_event_callback 863 #define sd_cache_control ssd_cache_control 864 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 865 #define sd_make_device ssd_make_device 866 #define sdopen ssdopen 867 #define sdclose ssdclose 868 #define sd_ready_and_valid ssd_ready_and_valid 869 #define sdmin ssdmin 870 #define sdread ssdread 871 #define sdwrite ssdwrite 872 #define sdaread ssdaread 873 #define sdawrite ssdawrite 874 #define sdstrategy ssdstrategy 875 #define sdioctl ssdioctl 876 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 877 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 878 #define sd_checksum_iostart ssd_checksum_iostart 879 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 880 #define sd_pm_iostart ssd_pm_iostart 881 #define sd_core_iostart ssd_core_iostart 882 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 883 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 884 #define sd_checksum_iodone ssd_checksum_iodone 885 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 886 #define sd_pm_iodone ssd_pm_iodone 887 #define sd_initpkt_for_buf ssd_initpkt_for_buf 888 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 889 #define sd_setup_rw_pkt ssd_setup_rw_pkt 890 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 891 #define sd_buf_iodone ssd_buf_iodone 892 #define sd_uscsi_strategy ssd_uscsi_strategy 893 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 894 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 895 #define sd_uscsi_iodone ssd_uscsi_iodone 896 #define sd_xbuf_strategy ssd_xbuf_strategy 897 #define sd_xbuf_init ssd_xbuf_init 898 #define sd_pm_entry ssd_pm_entry 899 #define sd_pm_exit ssd_pm_exit 900 901 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 902 #define sd_pm_timeout_handler ssd_pm_timeout_handler 903 904 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 905 #define sdintr ssdintr 906 #define sd_start_cmds ssd_start_cmds 907 #define sd_send_scsi_cmd ssd_send_scsi_cmd 908 #define sd_bioclone_alloc ssd_bioclone_alloc 909 #define sd_bioclone_free ssd_bioclone_free 910 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 911 #define sd_shadow_buf_free ssd_shadow_buf_free 912 #define sd_print_transport_rejected_message \ 913 ssd_print_transport_rejected_message 914 #define sd_retry_command ssd_retry_command 915 #define sd_set_retry_bp ssd_set_retry_bp 916 #define sd_send_request_sense_command ssd_send_request_sense_command 917 #define sd_start_retry_command ssd_start_retry_command 918 #define sd_start_direct_priority_command \ 919 ssd_start_direct_priority_command 920 #define sd_return_failed_command ssd_return_failed_command 921 #define sd_return_failed_command_no_restart \ 922 ssd_return_failed_command_no_restart 923 #define sd_return_command ssd_return_command 924 #define sd_sync_with_callback ssd_sync_with_callback 925 #define sdrunout ssdrunout 926 #define sd_mark_rqs_busy ssd_mark_rqs_busy 927 #define sd_mark_rqs_idle ssd_mark_rqs_idle 928 #define sd_reduce_throttle ssd_reduce_throttle 929 #define sd_restore_throttle ssd_restore_throttle 930 #define sd_print_incomplete_msg ssd_print_incomplete_msg 931 #define sd_init_cdb_limits ssd_init_cdb_limits 932 #define sd_pkt_status_good ssd_pkt_status_good 933 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 934 #define sd_pkt_status_busy ssd_pkt_status_busy 935 #define sd_pkt_status_reservation_conflict \ 936 ssd_pkt_status_reservation_conflict 937 #define sd_pkt_status_qfull ssd_pkt_status_qfull 938 #define sd_handle_request_sense ssd_handle_request_sense 939 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 940 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 941 #define sd_validate_sense_data ssd_validate_sense_data 942 #define sd_decode_sense ssd_decode_sense 943 #define sd_print_sense_msg ssd_print_sense_msg 944 #define sd_sense_key_no_sense ssd_sense_key_no_sense 945 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 946 #define sd_sense_key_not_ready ssd_sense_key_not_ready 947 #define sd_sense_key_medium_or_hardware_error \ 948 ssd_sense_key_medium_or_hardware_error 949 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 950 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 951 #define sd_sense_key_fail_command ssd_sense_key_fail_command 952 #define sd_sense_key_blank_check ssd_sense_key_blank_check 953 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 954 #define sd_sense_key_default ssd_sense_key_default 955 #define sd_print_retry_msg ssd_print_retry_msg 956 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 957 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 958 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 959 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 960 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 961 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 962 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 963 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 964 #define sd_pkt_reason_default ssd_pkt_reason_default 965 #define sd_reset_target ssd_reset_target 966 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 967 #define sd_start_stop_unit_task ssd_start_stop_unit_task 968 #define sd_taskq_create ssd_taskq_create 969 #define sd_taskq_delete ssd_taskq_delete 970 #define sd_media_change_task ssd_media_change_task 971 #define sd_handle_mchange ssd_handle_mchange 972 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 973 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 974 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 975 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 976 #define sd_send_scsi_feature_GET_CONFIGURATION \ 977 sd_send_scsi_feature_GET_CONFIGURATION 978 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 979 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 980 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 981 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 982 ssd_send_scsi_PERSISTENT_RESERVE_IN 983 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 984 ssd_send_scsi_PERSISTENT_RESERVE_OUT 985 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 986 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 987 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 988 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 989 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 990 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 991 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 992 #define sd_alloc_rqs ssd_alloc_rqs 993 #define sd_free_rqs ssd_free_rqs 994 #define sd_dump_memory ssd_dump_memory 995 #define sd_get_media_info ssd_get_media_info 996 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 997 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 998 #define sd_setup_next_xfer ssd_setup_next_xfer 999 #define sd_dkio_get_temp ssd_dkio_get_temp 1000 #define sd_check_mhd ssd_check_mhd 1001 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1002 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1003 #define sd_sname ssd_sname 1004 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1005 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1006 #define sd_take_ownership ssd_take_ownership 1007 #define sd_reserve_release ssd_reserve_release 1008 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1009 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1010 #define sd_persistent_reservation_in_read_keys \ 1011 ssd_persistent_reservation_in_read_keys 1012 #define sd_persistent_reservation_in_read_resv \ 1013 ssd_persistent_reservation_in_read_resv 1014 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1015 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1016 #define sd_mhdioc_release ssd_mhdioc_release 1017 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1018 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1019 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1020 #define sr_change_blkmode ssr_change_blkmode 1021 #define sr_change_speed ssr_change_speed 1022 #define sr_atapi_change_speed ssr_atapi_change_speed 1023 #define sr_pause_resume ssr_pause_resume 1024 #define sr_play_msf ssr_play_msf 1025 #define sr_play_trkind ssr_play_trkind 1026 #define sr_read_all_subcodes ssr_read_all_subcodes 1027 #define sr_read_subchannel ssr_read_subchannel 1028 #define sr_read_tocentry ssr_read_tocentry 1029 #define sr_read_tochdr ssr_read_tochdr 1030 #define sr_read_cdda ssr_read_cdda 1031 #define sr_read_cdxa ssr_read_cdxa 1032 #define sr_read_mode1 ssr_read_mode1 1033 #define sr_read_mode2 ssr_read_mode2 1034 #define sr_read_cd_mode2 ssr_read_cd_mode2 1035 #define sr_sector_mode ssr_sector_mode 1036 #define sr_eject ssr_eject 1037 #define sr_ejected ssr_ejected 1038 #define sr_check_wp ssr_check_wp 1039 #define sd_check_media ssd_check_media 1040 #define sd_media_watch_cb ssd_media_watch_cb 1041 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1042 #define sr_volume_ctrl ssr_volume_ctrl 1043 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1044 #define sd_log_page_supported ssd_log_page_supported 1045 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1046 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1047 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1048 #define sd_range_lock ssd_range_lock 1049 #define sd_get_range ssd_get_range 1050 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1051 #define sd_range_unlock ssd_range_unlock 1052 #define sd_read_modify_write_task ssd_read_modify_write_task 1053 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1054 1055 #define sd_iostart_chain ssd_iostart_chain 1056 #define sd_iodone_chain ssd_iodone_chain 1057 #define sd_initpkt_map ssd_initpkt_map 1058 #define sd_destroypkt_map ssd_destroypkt_map 1059 #define sd_chain_type_map ssd_chain_type_map 1060 #define sd_chain_index_map ssd_chain_index_map 1061 1062 #define sd_failfast_flushctl ssd_failfast_flushctl 1063 #define sd_failfast_flushq ssd_failfast_flushq 1064 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1065 1066 #define sd_is_lsi ssd_is_lsi 1067 #define sd_tg_rdwr ssd_tg_rdwr 1068 #define sd_tg_getinfo ssd_tg_getinfo 1069 1070 #endif /* #if (defined(__fibre)) */ 1071 1072 1073 int _init(void); 1074 int _fini(void); 1075 int _info(struct modinfo *modinfop); 1076 1077 /*PRINTFLIKE3*/ 1078 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1079 /*PRINTFLIKE3*/ 1080 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1081 /*PRINTFLIKE3*/ 1082 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1083 1084 static int sdprobe(dev_info_t *devi); 1085 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1086 void **result); 1087 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1088 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1089 1090 /* 1091 * Smart probe for parallel scsi 1092 */ 1093 static void sd_scsi_probe_cache_init(void); 1094 static void sd_scsi_probe_cache_fini(void); 1095 static void sd_scsi_clear_probe_cache(void); 1096 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1097 1098 /* 1099 * Attached luns on target for parallel scsi 1100 */ 1101 static void sd_scsi_target_lun_init(void); 1102 static void sd_scsi_target_lun_fini(void); 1103 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1104 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1105 1106 static int sd_spin_up_unit(struct sd_lun *un); 1107 #ifdef _LP64 1108 static void sd_enable_descr_sense(struct sd_lun *un); 1109 static void sd_reenable_dsense_task(void *arg); 1110 #endif /* _LP64 */ 1111 1112 static void sd_set_mmc_caps(struct sd_lun *un); 1113 1114 static void sd_read_unit_properties(struct sd_lun *un); 1115 static int sd_process_sdconf_file(struct sd_lun *un); 1116 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1117 int *data_list, sd_tunables *values); 1118 static void sd_process_sdconf_table(struct sd_lun *un); 1119 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1120 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1121 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1122 int list_len, char *dataname_ptr); 1123 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1124 sd_tunables *prop_list); 1125 1126 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi, 1127 int reservation_flag); 1128 static int sd_get_devid(struct sd_lun *un); 1129 static ddi_devid_t sd_create_devid(struct sd_lun *un); 1130 static int sd_write_deviceid(struct sd_lun *un); 1131 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1132 static int sd_check_vpd_page_support(struct sd_lun *un); 1133 1134 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi); 1135 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1136 1137 static int sd_ddi_suspend(dev_info_t *devi); 1138 static int sd_ddi_pm_suspend(struct sd_lun *un); 1139 static int sd_ddi_resume(dev_info_t *devi); 1140 static int sd_ddi_pm_resume(struct sd_lun *un); 1141 static int sdpower(dev_info_t *devi, int component, int level); 1142 1143 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1144 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1145 static int sd_unit_attach(dev_info_t *devi); 1146 static int sd_unit_detach(dev_info_t *devi); 1147 1148 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1149 static void sd_create_errstats(struct sd_lun *un, int instance); 1150 static void sd_set_errstats(struct sd_lun *un); 1151 static void sd_set_pstats(struct sd_lun *un); 1152 1153 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1154 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1155 static int sd_send_polled_RQS(struct sd_lun *un); 1156 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1157 1158 #if (defined(__fibre)) 1159 /* 1160 * Event callbacks (photon) 1161 */ 1162 static void sd_init_event_callbacks(struct sd_lun *un); 1163 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1164 #endif 1165 1166 /* 1167 * Defines for sd_cache_control 1168 */ 1169 1170 #define SD_CACHE_ENABLE 1 1171 #define SD_CACHE_DISABLE 0 1172 #define SD_CACHE_NOCHANGE -1 1173 1174 static int sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag); 1175 static int sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled); 1176 static dev_t sd_make_device(dev_info_t *devi); 1177 1178 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1179 uint64_t capacity); 1180 1181 /* 1182 * Driver entry point functions. 1183 */ 1184 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1185 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1186 static int sd_ready_and_valid(struct sd_lun *un); 1187 1188 static void sdmin(struct buf *bp); 1189 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1190 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1191 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1192 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1193 1194 static int sdstrategy(struct buf *bp); 1195 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1196 1197 /* 1198 * Function prototypes for layering functions in the iostart chain. 1199 */ 1200 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1201 struct buf *bp); 1202 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1203 struct buf *bp); 1204 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1205 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1206 struct buf *bp); 1207 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1208 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1209 1210 /* 1211 * Function prototypes for layering functions in the iodone chain. 1212 */ 1213 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1214 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1215 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1216 struct buf *bp); 1217 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1218 struct buf *bp); 1219 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1220 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1221 struct buf *bp); 1222 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1223 1224 /* 1225 * Prototypes for functions to support buf(9S) based IO. 1226 */ 1227 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1228 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1229 static void sd_destroypkt_for_buf(struct buf *); 1230 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1231 struct buf *bp, int flags, 1232 int (*callback)(caddr_t), caddr_t callback_arg, 1233 diskaddr_t lba, uint32_t blockcount); 1234 #if defined(__i386) || defined(__amd64) 1235 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1236 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1237 #endif /* defined(__i386) || defined(__amd64) */ 1238 1239 /* 1240 * Prototypes for functions to support USCSI IO. 1241 */ 1242 static int sd_uscsi_strategy(struct buf *bp); 1243 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1244 static void sd_destroypkt_for_uscsi(struct buf *); 1245 1246 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1247 uchar_t chain_type, void *pktinfop); 1248 1249 static int sd_pm_entry(struct sd_lun *un); 1250 static void sd_pm_exit(struct sd_lun *un); 1251 1252 static void sd_pm_idletimeout_handler(void *arg); 1253 1254 /* 1255 * sd_core internal functions (used at the sd_core_io layer). 1256 */ 1257 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1258 static void sdintr(struct scsi_pkt *pktp); 1259 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1260 1261 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1262 enum uio_seg dataspace, int path_flag); 1263 1264 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1265 daddr_t blkno, int (*func)(struct buf *)); 1266 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1267 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1268 static void sd_bioclone_free(struct buf *bp); 1269 static void sd_shadow_buf_free(struct buf *bp); 1270 1271 static void sd_print_transport_rejected_message(struct sd_lun *un, 1272 struct sd_xbuf *xp, int code); 1273 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1274 void *arg, int code); 1275 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1276 void *arg, int code); 1277 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1278 void *arg, int code); 1279 1280 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1281 int retry_check_flag, 1282 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1283 int c), 1284 void *user_arg, int failure_code, clock_t retry_delay, 1285 void (*statp)(kstat_io_t *)); 1286 1287 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1288 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1289 1290 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1291 struct scsi_pkt *pktp); 1292 static void sd_start_retry_command(void *arg); 1293 static void sd_start_direct_priority_command(void *arg); 1294 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1295 int errcode); 1296 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1297 struct buf *bp, int errcode); 1298 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1299 static void sd_sync_with_callback(struct sd_lun *un); 1300 static int sdrunout(caddr_t arg); 1301 1302 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1303 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1304 1305 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1306 static void sd_restore_throttle(void *arg); 1307 1308 static void sd_init_cdb_limits(struct sd_lun *un); 1309 1310 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1311 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1312 1313 /* 1314 * Error handling functions 1315 */ 1316 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1317 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1318 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1319 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1320 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1321 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1322 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1323 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1324 1325 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1326 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1327 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1328 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1329 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1330 struct sd_xbuf *xp); 1331 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1332 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1333 1334 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1335 void *arg, int code); 1336 1337 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1338 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1339 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1340 uint8_t *sense_datap, 1341 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1342 static void sd_sense_key_not_ready(struct sd_lun *un, 1343 uint8_t *sense_datap, 1344 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1345 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1346 uint8_t *sense_datap, 1347 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1348 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1349 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1350 static void sd_sense_key_unit_attention(struct sd_lun *un, 1351 uint8_t *sense_datap, 1352 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1353 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1354 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1355 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1356 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1357 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1358 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1359 static void sd_sense_key_default(struct sd_lun *un, 1360 uint8_t *sense_datap, 1361 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1362 1363 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1364 void *arg, int flag); 1365 1366 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1367 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1368 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1369 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1370 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1371 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1372 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1373 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1374 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1375 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1376 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1377 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1378 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1379 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1380 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1381 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1382 1383 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1384 1385 static void sd_start_stop_unit_callback(void *arg); 1386 static void sd_start_stop_unit_task(void *arg); 1387 1388 static void sd_taskq_create(void); 1389 static void sd_taskq_delete(void); 1390 static void sd_media_change_task(void *arg); 1391 1392 static int sd_handle_mchange(struct sd_lun *un); 1393 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag); 1394 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, 1395 uint32_t *lbap, int path_flag); 1396 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 1397 uint32_t *lbap, int path_flag); 1398 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, 1399 int path_flag); 1400 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, 1401 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1402 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag); 1403 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, 1404 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1405 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, 1406 uchar_t usr_cmd, uchar_t *usr_bufp); 1407 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1408 struct dk_callback *dkc); 1409 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1410 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, 1411 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1412 uchar_t *bufaddr, uint_t buflen, int path_flag); 1413 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 1414 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1415 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1416 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, 1417 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1418 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, 1419 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1420 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 1421 size_t buflen, daddr_t start_block, int path_flag); 1422 #define sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag) \ 1423 sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \ 1424 path_flag) 1425 #define sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag) \ 1426 sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\ 1427 path_flag) 1428 1429 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, 1430 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1431 uint16_t param_ptr, int path_flag); 1432 1433 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1434 static void sd_free_rqs(struct sd_lun *un); 1435 1436 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1437 uchar_t *data, int len, int fmt); 1438 static void sd_panic_for_res_conflict(struct sd_lun *un); 1439 1440 /* 1441 * Disk Ioctl Function Prototypes 1442 */ 1443 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1444 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1445 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1446 1447 /* 1448 * Multi-host Ioctl Prototypes 1449 */ 1450 static int sd_check_mhd(dev_t dev, int interval); 1451 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1452 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1453 static char *sd_sname(uchar_t status); 1454 static void sd_mhd_resvd_recover(void *arg); 1455 static void sd_resv_reclaim_thread(); 1456 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1457 static int sd_reserve_release(dev_t dev, int cmd); 1458 static void sd_rmv_resv_reclaim_req(dev_t dev); 1459 static void sd_mhd_reset_notify_cb(caddr_t arg); 1460 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1461 mhioc_inkeys_t *usrp, int flag); 1462 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1463 mhioc_inresvs_t *usrp, int flag); 1464 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1465 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1466 static int sd_mhdioc_release(dev_t dev); 1467 static int sd_mhdioc_register_devid(dev_t dev); 1468 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1469 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1470 1471 /* 1472 * SCSI removable prototypes 1473 */ 1474 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1475 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1476 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1477 static int sr_pause_resume(dev_t dev, int mode); 1478 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1479 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1480 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1481 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1482 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1483 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1484 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1485 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1486 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1487 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1488 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1489 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1490 static int sr_eject(dev_t dev); 1491 static void sr_ejected(register struct sd_lun *un); 1492 static int sr_check_wp(dev_t dev); 1493 static int sd_check_media(dev_t dev, enum dkio_state state); 1494 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1495 static void sd_delayed_cv_broadcast(void *arg); 1496 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1497 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1498 1499 static int sd_log_page_supported(struct sd_lun *un, int log_page); 1500 1501 /* 1502 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1503 */ 1504 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag); 1505 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1506 static void sd_wm_cache_destructor(void *wm, void *un); 1507 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1508 daddr_t endb, ushort_t typ); 1509 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1510 daddr_t endb); 1511 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1512 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1513 static void sd_read_modify_write_task(void * arg); 1514 static int 1515 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1516 struct buf **bpp); 1517 1518 1519 /* 1520 * Function prototypes for failfast support. 1521 */ 1522 static void sd_failfast_flushq(struct sd_lun *un); 1523 static int sd_failfast_flushq_callback(struct buf *bp); 1524 1525 /* 1526 * Function prototypes to check for lsi devices 1527 */ 1528 static void sd_is_lsi(struct sd_lun *un); 1529 1530 /* 1531 * Function prototypes for x86 support 1532 */ 1533 #if defined(__i386) || defined(__amd64) 1534 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1535 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1536 #endif 1537 1538 1539 /* Function prototypes for cmlb */ 1540 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1541 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1542 1543 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1544 1545 /* 1546 * Constants for failfast support: 1547 * 1548 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1549 * failfast processing being performed. 1550 * 1551 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1552 * failfast processing on all bufs with B_FAILFAST set. 1553 */ 1554 1555 #define SD_FAILFAST_INACTIVE 0 1556 #define SD_FAILFAST_ACTIVE 1 1557 1558 /* 1559 * Bitmask to control behavior of buf(9S) flushes when a transition to 1560 * the failfast state occurs. Optional bits include: 1561 * 1562 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1563 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1564 * be flushed. 1565 * 1566 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1567 * driver, in addition to the regular wait queue. This includes the xbuf 1568 * queues. When clear, only the driver's wait queue will be flushed. 1569 */ 1570 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1571 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1572 1573 /* 1574 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1575 * to flush all queues within the driver. 1576 */ 1577 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1578 1579 1580 /* 1581 * SD Testing Fault Injection 1582 */ 1583 #ifdef SD_FAULT_INJECTION 1584 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1585 static void sd_faultinjection(struct scsi_pkt *pktp); 1586 static void sd_injection_log(char *buf, struct sd_lun *un); 1587 #endif 1588 1589 /* 1590 * Device driver ops vector 1591 */ 1592 static struct cb_ops sd_cb_ops = { 1593 sdopen, /* open */ 1594 sdclose, /* close */ 1595 sdstrategy, /* strategy */ 1596 nodev, /* print */ 1597 sddump, /* dump */ 1598 sdread, /* read */ 1599 sdwrite, /* write */ 1600 sdioctl, /* ioctl */ 1601 nodev, /* devmap */ 1602 nodev, /* mmap */ 1603 nodev, /* segmap */ 1604 nochpoll, /* poll */ 1605 sd_prop_op, /* cb_prop_op */ 1606 0, /* streamtab */ 1607 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1608 CB_REV, /* cb_rev */ 1609 sdaread, /* async I/O read entry point */ 1610 sdawrite /* async I/O write entry point */ 1611 }; 1612 1613 static struct dev_ops sd_ops = { 1614 DEVO_REV, /* devo_rev, */ 1615 0, /* refcnt */ 1616 sdinfo, /* info */ 1617 nulldev, /* identify */ 1618 sdprobe, /* probe */ 1619 sdattach, /* attach */ 1620 sddetach, /* detach */ 1621 nodev, /* reset */ 1622 &sd_cb_ops, /* driver operations */ 1623 NULL, /* bus operations */ 1624 sdpower /* power */ 1625 }; 1626 1627 1628 /* 1629 * This is the loadable module wrapper. 1630 */ 1631 #include <sys/modctl.h> 1632 1633 static struct modldrv modldrv = { 1634 &mod_driverops, /* Type of module. This one is a driver */ 1635 SD_MODULE_NAME, /* Module name. */ 1636 &sd_ops /* driver ops */ 1637 }; 1638 1639 1640 static struct modlinkage modlinkage = { 1641 MODREV_1, 1642 &modldrv, 1643 NULL 1644 }; 1645 1646 static cmlb_tg_ops_t sd_tgops = { 1647 TG_DK_OPS_VERSION_1, 1648 sd_tg_rdwr, 1649 sd_tg_getinfo 1650 }; 1651 1652 static struct scsi_asq_key_strings sd_additional_codes[] = { 1653 0x81, 0, "Logical Unit is Reserved", 1654 0x85, 0, "Audio Address Not Valid", 1655 0xb6, 0, "Media Load Mechanism Failed", 1656 0xB9, 0, "Audio Play Operation Aborted", 1657 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1658 0x53, 2, "Medium removal prevented", 1659 0x6f, 0, "Authentication failed during key exchange", 1660 0x6f, 1, "Key not present", 1661 0x6f, 2, "Key not established", 1662 0x6f, 3, "Read without proper authentication", 1663 0x6f, 4, "Mismatched region to this logical unit", 1664 0x6f, 5, "Region reset count error", 1665 0xffff, 0x0, NULL 1666 }; 1667 1668 1669 /* 1670 * Struct for passing printing information for sense data messages 1671 */ 1672 struct sd_sense_info { 1673 int ssi_severity; 1674 int ssi_pfa_flag; 1675 }; 1676 1677 /* 1678 * Table of function pointers for iostart-side routines. Separate "chains" 1679 * of layered function calls are formed by placing the function pointers 1680 * sequentially in the desired order. Functions are called according to an 1681 * incrementing table index ordering. The last function in each chain must 1682 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1683 * in the sd_iodone_chain[] array. 1684 * 1685 * Note: It may seem more natural to organize both the iostart and iodone 1686 * functions together, into an array of structures (or some similar 1687 * organization) with a common index, rather than two separate arrays which 1688 * must be maintained in synchronization. The purpose of this division is 1689 * to achieve improved performance: individual arrays allows for more 1690 * effective cache line utilization on certain platforms. 1691 */ 1692 1693 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1694 1695 1696 static sd_chain_t sd_iostart_chain[] = { 1697 1698 /* Chain for buf IO for disk drive targets (PM enabled) */ 1699 sd_mapblockaddr_iostart, /* Index: 0 */ 1700 sd_pm_iostart, /* Index: 1 */ 1701 sd_core_iostart, /* Index: 2 */ 1702 1703 /* Chain for buf IO for disk drive targets (PM disabled) */ 1704 sd_mapblockaddr_iostart, /* Index: 3 */ 1705 sd_core_iostart, /* Index: 4 */ 1706 1707 /* Chain for buf IO for removable-media targets (PM enabled) */ 1708 sd_mapblockaddr_iostart, /* Index: 5 */ 1709 sd_mapblocksize_iostart, /* Index: 6 */ 1710 sd_pm_iostart, /* Index: 7 */ 1711 sd_core_iostart, /* Index: 8 */ 1712 1713 /* Chain for buf IO for removable-media targets (PM disabled) */ 1714 sd_mapblockaddr_iostart, /* Index: 9 */ 1715 sd_mapblocksize_iostart, /* Index: 10 */ 1716 sd_core_iostart, /* Index: 11 */ 1717 1718 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1719 sd_mapblockaddr_iostart, /* Index: 12 */ 1720 sd_checksum_iostart, /* Index: 13 */ 1721 sd_pm_iostart, /* Index: 14 */ 1722 sd_core_iostart, /* Index: 15 */ 1723 1724 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1725 sd_mapblockaddr_iostart, /* Index: 16 */ 1726 sd_checksum_iostart, /* Index: 17 */ 1727 sd_core_iostart, /* Index: 18 */ 1728 1729 /* Chain for USCSI commands (all targets) */ 1730 sd_pm_iostart, /* Index: 19 */ 1731 sd_core_iostart, /* Index: 20 */ 1732 1733 /* Chain for checksumming USCSI commands (all targets) */ 1734 sd_checksum_uscsi_iostart, /* Index: 21 */ 1735 sd_pm_iostart, /* Index: 22 */ 1736 sd_core_iostart, /* Index: 23 */ 1737 1738 /* Chain for "direct" USCSI commands (all targets) */ 1739 sd_core_iostart, /* Index: 24 */ 1740 1741 /* Chain for "direct priority" USCSI commands (all targets) */ 1742 sd_core_iostart, /* Index: 25 */ 1743 }; 1744 1745 /* 1746 * Macros to locate the first function of each iostart chain in the 1747 * sd_iostart_chain[] array. These are located by the index in the array. 1748 */ 1749 #define SD_CHAIN_DISK_IOSTART 0 1750 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1751 #define SD_CHAIN_RMMEDIA_IOSTART 5 1752 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1753 #define SD_CHAIN_CHKSUM_IOSTART 12 1754 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1755 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1756 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1757 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1758 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1759 1760 1761 /* 1762 * Table of function pointers for the iodone-side routines for the driver- 1763 * internal layering mechanism. The calling sequence for iodone routines 1764 * uses a decrementing table index, so the last routine called in a chain 1765 * must be at the lowest array index location for that chain. The last 1766 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1767 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1768 * of the functions in an iodone side chain must correspond to the ordering 1769 * of the iostart routines for that chain. Note that there is no iodone 1770 * side routine that corresponds to sd_core_iostart(), so there is no 1771 * entry in the table for this. 1772 */ 1773 1774 static sd_chain_t sd_iodone_chain[] = { 1775 1776 /* Chain for buf IO for disk drive targets (PM enabled) */ 1777 sd_buf_iodone, /* Index: 0 */ 1778 sd_mapblockaddr_iodone, /* Index: 1 */ 1779 sd_pm_iodone, /* Index: 2 */ 1780 1781 /* Chain for buf IO for disk drive targets (PM disabled) */ 1782 sd_buf_iodone, /* Index: 3 */ 1783 sd_mapblockaddr_iodone, /* Index: 4 */ 1784 1785 /* Chain for buf IO for removable-media targets (PM enabled) */ 1786 sd_buf_iodone, /* Index: 5 */ 1787 sd_mapblockaddr_iodone, /* Index: 6 */ 1788 sd_mapblocksize_iodone, /* Index: 7 */ 1789 sd_pm_iodone, /* Index: 8 */ 1790 1791 /* Chain for buf IO for removable-media targets (PM disabled) */ 1792 sd_buf_iodone, /* Index: 9 */ 1793 sd_mapblockaddr_iodone, /* Index: 10 */ 1794 sd_mapblocksize_iodone, /* Index: 11 */ 1795 1796 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1797 sd_buf_iodone, /* Index: 12 */ 1798 sd_mapblockaddr_iodone, /* Index: 13 */ 1799 sd_checksum_iodone, /* Index: 14 */ 1800 sd_pm_iodone, /* Index: 15 */ 1801 1802 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1803 sd_buf_iodone, /* Index: 16 */ 1804 sd_mapblockaddr_iodone, /* Index: 17 */ 1805 sd_checksum_iodone, /* Index: 18 */ 1806 1807 /* Chain for USCSI commands (non-checksum targets) */ 1808 sd_uscsi_iodone, /* Index: 19 */ 1809 sd_pm_iodone, /* Index: 20 */ 1810 1811 /* Chain for USCSI commands (checksum targets) */ 1812 sd_uscsi_iodone, /* Index: 21 */ 1813 sd_checksum_uscsi_iodone, /* Index: 22 */ 1814 sd_pm_iodone, /* Index: 22 */ 1815 1816 /* Chain for "direct" USCSI commands (all targets) */ 1817 sd_uscsi_iodone, /* Index: 24 */ 1818 1819 /* Chain for "direct priority" USCSI commands (all targets) */ 1820 sd_uscsi_iodone, /* Index: 25 */ 1821 }; 1822 1823 1824 /* 1825 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1826 * each iodone-side chain. These are located by the array index, but as the 1827 * iodone side functions are called in a decrementing-index order, the 1828 * highest index number in each chain must be specified (as these correspond 1829 * to the first function in the iodone chain that will be called by the core 1830 * at IO completion time). 1831 */ 1832 1833 #define SD_CHAIN_DISK_IODONE 2 1834 #define SD_CHAIN_DISK_IODONE_NO_PM 4 1835 #define SD_CHAIN_RMMEDIA_IODONE 8 1836 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 1837 #define SD_CHAIN_CHKSUM_IODONE 15 1838 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 1839 #define SD_CHAIN_USCSI_CMD_IODONE 20 1840 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 1841 #define SD_CHAIN_DIRECT_CMD_IODONE 24 1842 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 1843 1844 1845 1846 1847 /* 1848 * Array to map a layering chain index to the appropriate initpkt routine. 1849 * The redundant entries are present so that the index used for accessing 1850 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1851 * with this table as well. 1852 */ 1853 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 1854 1855 static sd_initpkt_t sd_initpkt_map[] = { 1856 1857 /* Chain for buf IO for disk drive targets (PM enabled) */ 1858 sd_initpkt_for_buf, /* Index: 0 */ 1859 sd_initpkt_for_buf, /* Index: 1 */ 1860 sd_initpkt_for_buf, /* Index: 2 */ 1861 1862 /* Chain for buf IO for disk drive targets (PM disabled) */ 1863 sd_initpkt_for_buf, /* Index: 3 */ 1864 sd_initpkt_for_buf, /* Index: 4 */ 1865 1866 /* Chain for buf IO for removable-media targets (PM enabled) */ 1867 sd_initpkt_for_buf, /* Index: 5 */ 1868 sd_initpkt_for_buf, /* Index: 6 */ 1869 sd_initpkt_for_buf, /* Index: 7 */ 1870 sd_initpkt_for_buf, /* Index: 8 */ 1871 1872 /* Chain for buf IO for removable-media targets (PM disabled) */ 1873 sd_initpkt_for_buf, /* Index: 9 */ 1874 sd_initpkt_for_buf, /* Index: 10 */ 1875 sd_initpkt_for_buf, /* Index: 11 */ 1876 1877 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1878 sd_initpkt_for_buf, /* Index: 12 */ 1879 sd_initpkt_for_buf, /* Index: 13 */ 1880 sd_initpkt_for_buf, /* Index: 14 */ 1881 sd_initpkt_for_buf, /* Index: 15 */ 1882 1883 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1884 sd_initpkt_for_buf, /* Index: 16 */ 1885 sd_initpkt_for_buf, /* Index: 17 */ 1886 sd_initpkt_for_buf, /* Index: 18 */ 1887 1888 /* Chain for USCSI commands (non-checksum targets) */ 1889 sd_initpkt_for_uscsi, /* Index: 19 */ 1890 sd_initpkt_for_uscsi, /* Index: 20 */ 1891 1892 /* Chain for USCSI commands (checksum targets) */ 1893 sd_initpkt_for_uscsi, /* Index: 21 */ 1894 sd_initpkt_for_uscsi, /* Index: 22 */ 1895 sd_initpkt_for_uscsi, /* Index: 22 */ 1896 1897 /* Chain for "direct" USCSI commands (all targets) */ 1898 sd_initpkt_for_uscsi, /* Index: 24 */ 1899 1900 /* Chain for "direct priority" USCSI commands (all targets) */ 1901 sd_initpkt_for_uscsi, /* Index: 25 */ 1902 1903 }; 1904 1905 1906 /* 1907 * Array to map a layering chain index to the appropriate destroypktpkt routine. 1908 * The redundant entries are present so that the index used for accessing 1909 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1910 * with this table as well. 1911 */ 1912 typedef void (*sd_destroypkt_t)(struct buf *); 1913 1914 static sd_destroypkt_t sd_destroypkt_map[] = { 1915 1916 /* Chain for buf IO for disk drive targets (PM enabled) */ 1917 sd_destroypkt_for_buf, /* Index: 0 */ 1918 sd_destroypkt_for_buf, /* Index: 1 */ 1919 sd_destroypkt_for_buf, /* Index: 2 */ 1920 1921 /* Chain for buf IO for disk drive targets (PM disabled) */ 1922 sd_destroypkt_for_buf, /* Index: 3 */ 1923 sd_destroypkt_for_buf, /* Index: 4 */ 1924 1925 /* Chain for buf IO for removable-media targets (PM enabled) */ 1926 sd_destroypkt_for_buf, /* Index: 5 */ 1927 sd_destroypkt_for_buf, /* Index: 6 */ 1928 sd_destroypkt_for_buf, /* Index: 7 */ 1929 sd_destroypkt_for_buf, /* Index: 8 */ 1930 1931 /* Chain for buf IO for removable-media targets (PM disabled) */ 1932 sd_destroypkt_for_buf, /* Index: 9 */ 1933 sd_destroypkt_for_buf, /* Index: 10 */ 1934 sd_destroypkt_for_buf, /* Index: 11 */ 1935 1936 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1937 sd_destroypkt_for_buf, /* Index: 12 */ 1938 sd_destroypkt_for_buf, /* Index: 13 */ 1939 sd_destroypkt_for_buf, /* Index: 14 */ 1940 sd_destroypkt_for_buf, /* Index: 15 */ 1941 1942 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1943 sd_destroypkt_for_buf, /* Index: 16 */ 1944 sd_destroypkt_for_buf, /* Index: 17 */ 1945 sd_destroypkt_for_buf, /* Index: 18 */ 1946 1947 /* Chain for USCSI commands (non-checksum targets) */ 1948 sd_destroypkt_for_uscsi, /* Index: 19 */ 1949 sd_destroypkt_for_uscsi, /* Index: 20 */ 1950 1951 /* Chain for USCSI commands (checksum targets) */ 1952 sd_destroypkt_for_uscsi, /* Index: 21 */ 1953 sd_destroypkt_for_uscsi, /* Index: 22 */ 1954 sd_destroypkt_for_uscsi, /* Index: 22 */ 1955 1956 /* Chain for "direct" USCSI commands (all targets) */ 1957 sd_destroypkt_for_uscsi, /* Index: 24 */ 1958 1959 /* Chain for "direct priority" USCSI commands (all targets) */ 1960 sd_destroypkt_for_uscsi, /* Index: 25 */ 1961 1962 }; 1963 1964 1965 1966 /* 1967 * Array to map a layering chain index to the appropriate chain "type". 1968 * The chain type indicates a specific property/usage of the chain. 1969 * The redundant entries are present so that the index used for accessing 1970 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1971 * with this table as well. 1972 */ 1973 1974 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 1975 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 1976 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 1977 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 1978 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 1979 /* (for error recovery) */ 1980 1981 static int sd_chain_type_map[] = { 1982 1983 /* Chain for buf IO for disk drive targets (PM enabled) */ 1984 SD_CHAIN_BUFIO, /* Index: 0 */ 1985 SD_CHAIN_BUFIO, /* Index: 1 */ 1986 SD_CHAIN_BUFIO, /* Index: 2 */ 1987 1988 /* Chain for buf IO for disk drive targets (PM disabled) */ 1989 SD_CHAIN_BUFIO, /* Index: 3 */ 1990 SD_CHAIN_BUFIO, /* Index: 4 */ 1991 1992 /* Chain for buf IO for removable-media targets (PM enabled) */ 1993 SD_CHAIN_BUFIO, /* Index: 5 */ 1994 SD_CHAIN_BUFIO, /* Index: 6 */ 1995 SD_CHAIN_BUFIO, /* Index: 7 */ 1996 SD_CHAIN_BUFIO, /* Index: 8 */ 1997 1998 /* Chain for buf IO for removable-media targets (PM disabled) */ 1999 SD_CHAIN_BUFIO, /* Index: 9 */ 2000 SD_CHAIN_BUFIO, /* Index: 10 */ 2001 SD_CHAIN_BUFIO, /* Index: 11 */ 2002 2003 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2004 SD_CHAIN_BUFIO, /* Index: 12 */ 2005 SD_CHAIN_BUFIO, /* Index: 13 */ 2006 SD_CHAIN_BUFIO, /* Index: 14 */ 2007 SD_CHAIN_BUFIO, /* Index: 15 */ 2008 2009 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2010 SD_CHAIN_BUFIO, /* Index: 16 */ 2011 SD_CHAIN_BUFIO, /* Index: 17 */ 2012 SD_CHAIN_BUFIO, /* Index: 18 */ 2013 2014 /* Chain for USCSI commands (non-checksum targets) */ 2015 SD_CHAIN_USCSI, /* Index: 19 */ 2016 SD_CHAIN_USCSI, /* Index: 20 */ 2017 2018 /* Chain for USCSI commands (checksum targets) */ 2019 SD_CHAIN_USCSI, /* Index: 21 */ 2020 SD_CHAIN_USCSI, /* Index: 22 */ 2021 SD_CHAIN_USCSI, /* Index: 22 */ 2022 2023 /* Chain for "direct" USCSI commands (all targets) */ 2024 SD_CHAIN_DIRECT, /* Index: 24 */ 2025 2026 /* Chain for "direct priority" USCSI commands (all targets) */ 2027 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2028 }; 2029 2030 2031 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2032 #define SD_IS_BUFIO(xp) \ 2033 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2034 2035 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2036 #define SD_IS_DIRECT_PRIORITY(xp) \ 2037 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2038 2039 2040 2041 /* 2042 * Struct, array, and macros to map a specific chain to the appropriate 2043 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2044 * 2045 * The sd_chain_index_map[] array is used at attach time to set the various 2046 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2047 * chain to be used with the instance. This allows different instances to use 2048 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2049 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2050 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2051 * dynamically & without the use of locking; and (2) a layer may update the 2052 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2053 * to allow for deferred processing of an IO within the same chain from a 2054 * different execution context. 2055 */ 2056 2057 struct sd_chain_index { 2058 int sci_iostart_index; 2059 int sci_iodone_index; 2060 }; 2061 2062 static struct sd_chain_index sd_chain_index_map[] = { 2063 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2064 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2065 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2066 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2067 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2068 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2069 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2070 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2071 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2072 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2073 }; 2074 2075 2076 /* 2077 * The following are indexes into the sd_chain_index_map[] array. 2078 */ 2079 2080 /* un->un_buf_chain_type must be set to one of these */ 2081 #define SD_CHAIN_INFO_DISK 0 2082 #define SD_CHAIN_INFO_DISK_NO_PM 1 2083 #define SD_CHAIN_INFO_RMMEDIA 2 2084 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2085 #define SD_CHAIN_INFO_CHKSUM 4 2086 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2087 2088 /* un->un_uscsi_chain_type must be set to one of these */ 2089 #define SD_CHAIN_INFO_USCSI_CMD 6 2090 /* USCSI with PM disabled is the same as DIRECT */ 2091 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2092 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2093 2094 /* un->un_direct_chain_type must be set to one of these */ 2095 #define SD_CHAIN_INFO_DIRECT_CMD 8 2096 2097 /* un->un_priority_chain_type must be set to one of these */ 2098 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2099 2100 /* size for devid inquiries */ 2101 #define MAX_INQUIRY_SIZE 0xF0 2102 2103 /* 2104 * Macros used by functions to pass a given buf(9S) struct along to the 2105 * next function in the layering chain for further processing. 2106 * 2107 * In the following macros, passing more than three arguments to the called 2108 * routines causes the optimizer for the SPARC compiler to stop doing tail 2109 * call elimination which results in significant performance degradation. 2110 */ 2111 #define SD_BEGIN_IOSTART(index, un, bp) \ 2112 ((*(sd_iostart_chain[index]))(index, un, bp)) 2113 2114 #define SD_BEGIN_IODONE(index, un, bp) \ 2115 ((*(sd_iodone_chain[index]))(index, un, bp)) 2116 2117 #define SD_NEXT_IOSTART(index, un, bp) \ 2118 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2119 2120 #define SD_NEXT_IODONE(index, un, bp) \ 2121 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2122 2123 /* 2124 * Function: _init 2125 * 2126 * Description: This is the driver _init(9E) entry point. 2127 * 2128 * Return Code: Returns the value from mod_install(9F) or 2129 * ddi_soft_state_init(9F) as appropriate. 2130 * 2131 * Context: Called when driver module loaded. 2132 */ 2133 2134 int 2135 _init(void) 2136 { 2137 int err; 2138 2139 /* establish driver name from module name */ 2140 sd_label = mod_modname(&modlinkage); 2141 2142 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2143 SD_MAXUNIT); 2144 2145 if (err != 0) { 2146 return (err); 2147 } 2148 2149 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2150 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2151 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2152 2153 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2154 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2155 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2156 2157 /* 2158 * it's ok to init here even for fibre device 2159 */ 2160 sd_scsi_probe_cache_init(); 2161 2162 sd_scsi_target_lun_init(); 2163 2164 /* 2165 * Creating taskq before mod_install ensures that all callers (threads) 2166 * that enter the module after a successfull mod_install encounter 2167 * a valid taskq. 2168 */ 2169 sd_taskq_create(); 2170 2171 err = mod_install(&modlinkage); 2172 if (err != 0) { 2173 /* delete taskq if install fails */ 2174 sd_taskq_delete(); 2175 2176 mutex_destroy(&sd_detach_mutex); 2177 mutex_destroy(&sd_log_mutex); 2178 mutex_destroy(&sd_label_mutex); 2179 2180 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2181 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2182 cv_destroy(&sd_tr.srq_inprocess_cv); 2183 2184 sd_scsi_probe_cache_fini(); 2185 2186 sd_scsi_target_lun_fini(); 2187 2188 ddi_soft_state_fini(&sd_state); 2189 return (err); 2190 } 2191 2192 return (err); 2193 } 2194 2195 2196 /* 2197 * Function: _fini 2198 * 2199 * Description: This is the driver _fini(9E) entry point. 2200 * 2201 * Return Code: Returns the value from mod_remove(9F) 2202 * 2203 * Context: Called when driver module is unloaded. 2204 */ 2205 2206 int 2207 _fini(void) 2208 { 2209 int err; 2210 2211 if ((err = mod_remove(&modlinkage)) != 0) { 2212 return (err); 2213 } 2214 2215 sd_taskq_delete(); 2216 2217 mutex_destroy(&sd_detach_mutex); 2218 mutex_destroy(&sd_log_mutex); 2219 mutex_destroy(&sd_label_mutex); 2220 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2221 2222 sd_scsi_probe_cache_fini(); 2223 2224 sd_scsi_target_lun_fini(); 2225 2226 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2227 cv_destroy(&sd_tr.srq_inprocess_cv); 2228 2229 ddi_soft_state_fini(&sd_state); 2230 2231 return (err); 2232 } 2233 2234 2235 /* 2236 * Function: _info 2237 * 2238 * Description: This is the driver _info(9E) entry point. 2239 * 2240 * Arguments: modinfop - pointer to the driver modinfo structure 2241 * 2242 * Return Code: Returns the value from mod_info(9F). 2243 * 2244 * Context: Kernel thread context 2245 */ 2246 2247 int 2248 _info(struct modinfo *modinfop) 2249 { 2250 return (mod_info(&modlinkage, modinfop)); 2251 } 2252 2253 2254 /* 2255 * The following routines implement the driver message logging facility. 2256 * They provide component- and level- based debug output filtering. 2257 * Output may also be restricted to messages for a single instance by 2258 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2259 * to NULL, then messages for all instances are printed. 2260 * 2261 * These routines have been cloned from each other due to the language 2262 * constraints of macros and variable argument list processing. 2263 */ 2264 2265 2266 /* 2267 * Function: sd_log_err 2268 * 2269 * Description: This routine is called by the SD_ERROR macro for debug 2270 * logging of error conditions. 2271 * 2272 * Arguments: comp - driver component being logged 2273 * dev - pointer to driver info structure 2274 * fmt - error string and format to be logged 2275 */ 2276 2277 static void 2278 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2279 { 2280 va_list ap; 2281 dev_info_t *dev; 2282 2283 ASSERT(un != NULL); 2284 dev = SD_DEVINFO(un); 2285 ASSERT(dev != NULL); 2286 2287 /* 2288 * Filter messages based on the global component and level masks. 2289 * Also print if un matches the value of sd_debug_un, or if 2290 * sd_debug_un is set to NULL. 2291 */ 2292 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2293 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2294 mutex_enter(&sd_log_mutex); 2295 va_start(ap, fmt); 2296 (void) vsprintf(sd_log_buf, fmt, ap); 2297 va_end(ap); 2298 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2299 mutex_exit(&sd_log_mutex); 2300 } 2301 #ifdef SD_FAULT_INJECTION 2302 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2303 if (un->sd_injection_mask & comp) { 2304 mutex_enter(&sd_log_mutex); 2305 va_start(ap, fmt); 2306 (void) vsprintf(sd_log_buf, fmt, ap); 2307 va_end(ap); 2308 sd_injection_log(sd_log_buf, un); 2309 mutex_exit(&sd_log_mutex); 2310 } 2311 #endif 2312 } 2313 2314 2315 /* 2316 * Function: sd_log_info 2317 * 2318 * Description: This routine is called by the SD_INFO macro for debug 2319 * logging of general purpose informational conditions. 2320 * 2321 * Arguments: comp - driver component being logged 2322 * dev - pointer to driver info structure 2323 * fmt - info string and format to be logged 2324 */ 2325 2326 static void 2327 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2328 { 2329 va_list ap; 2330 dev_info_t *dev; 2331 2332 ASSERT(un != NULL); 2333 dev = SD_DEVINFO(un); 2334 ASSERT(dev != NULL); 2335 2336 /* 2337 * Filter messages based on the global component and level masks. 2338 * Also print if un matches the value of sd_debug_un, or if 2339 * sd_debug_un is set to NULL. 2340 */ 2341 if ((sd_component_mask & component) && 2342 (sd_level_mask & SD_LOGMASK_INFO) && 2343 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2344 mutex_enter(&sd_log_mutex); 2345 va_start(ap, fmt); 2346 (void) vsprintf(sd_log_buf, fmt, ap); 2347 va_end(ap); 2348 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2349 mutex_exit(&sd_log_mutex); 2350 } 2351 #ifdef SD_FAULT_INJECTION 2352 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2353 if (un->sd_injection_mask & component) { 2354 mutex_enter(&sd_log_mutex); 2355 va_start(ap, fmt); 2356 (void) vsprintf(sd_log_buf, fmt, ap); 2357 va_end(ap); 2358 sd_injection_log(sd_log_buf, un); 2359 mutex_exit(&sd_log_mutex); 2360 } 2361 #endif 2362 } 2363 2364 2365 /* 2366 * Function: sd_log_trace 2367 * 2368 * Description: This routine is called by the SD_TRACE macro for debug 2369 * logging of trace conditions (i.e. function entry/exit). 2370 * 2371 * Arguments: comp - driver component being logged 2372 * dev - pointer to driver info structure 2373 * fmt - trace string and format to be logged 2374 */ 2375 2376 static void 2377 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2378 { 2379 va_list ap; 2380 dev_info_t *dev; 2381 2382 ASSERT(un != NULL); 2383 dev = SD_DEVINFO(un); 2384 ASSERT(dev != NULL); 2385 2386 /* 2387 * Filter messages based on the global component and level masks. 2388 * Also print if un matches the value of sd_debug_un, or if 2389 * sd_debug_un is set to NULL. 2390 */ 2391 if ((sd_component_mask & component) && 2392 (sd_level_mask & SD_LOGMASK_TRACE) && 2393 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2394 mutex_enter(&sd_log_mutex); 2395 va_start(ap, fmt); 2396 (void) vsprintf(sd_log_buf, fmt, ap); 2397 va_end(ap); 2398 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2399 mutex_exit(&sd_log_mutex); 2400 } 2401 #ifdef SD_FAULT_INJECTION 2402 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2403 if (un->sd_injection_mask & component) { 2404 mutex_enter(&sd_log_mutex); 2405 va_start(ap, fmt); 2406 (void) vsprintf(sd_log_buf, fmt, ap); 2407 va_end(ap); 2408 sd_injection_log(sd_log_buf, un); 2409 mutex_exit(&sd_log_mutex); 2410 } 2411 #endif 2412 } 2413 2414 2415 /* 2416 * Function: sdprobe 2417 * 2418 * Description: This is the driver probe(9e) entry point function. 2419 * 2420 * Arguments: devi - opaque device info handle 2421 * 2422 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2423 * DDI_PROBE_FAILURE: If the probe failed. 2424 * DDI_PROBE_PARTIAL: If the instance is not present now, 2425 * but may be present in the future. 2426 */ 2427 2428 static int 2429 sdprobe(dev_info_t *devi) 2430 { 2431 struct scsi_device *devp; 2432 int rval; 2433 int instance; 2434 2435 /* 2436 * if it wasn't for pln, sdprobe could actually be nulldev 2437 * in the "__fibre" case. 2438 */ 2439 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2440 return (DDI_PROBE_DONTCARE); 2441 } 2442 2443 devp = ddi_get_driver_private(devi); 2444 2445 if (devp == NULL) { 2446 /* Ooops... nexus driver is mis-configured... */ 2447 return (DDI_PROBE_FAILURE); 2448 } 2449 2450 instance = ddi_get_instance(devi); 2451 2452 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2453 return (DDI_PROBE_PARTIAL); 2454 } 2455 2456 /* 2457 * Call the SCSA utility probe routine to see if we actually 2458 * have a target at this SCSI nexus. 2459 */ 2460 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2461 case SCSIPROBE_EXISTS: 2462 switch (devp->sd_inq->inq_dtype) { 2463 case DTYPE_DIRECT: 2464 rval = DDI_PROBE_SUCCESS; 2465 break; 2466 case DTYPE_RODIRECT: 2467 /* CDs etc. Can be removable media */ 2468 rval = DDI_PROBE_SUCCESS; 2469 break; 2470 case DTYPE_OPTICAL: 2471 /* 2472 * Rewritable optical driver HP115AA 2473 * Can also be removable media 2474 */ 2475 2476 /* 2477 * Do not attempt to bind to DTYPE_OPTICAL if 2478 * pre solaris 9 sparc sd behavior is required 2479 * 2480 * If first time through and sd_dtype_optical_bind 2481 * has not been set in /etc/system check properties 2482 */ 2483 2484 if (sd_dtype_optical_bind < 0) { 2485 sd_dtype_optical_bind = ddi_prop_get_int 2486 (DDI_DEV_T_ANY, devi, 0, 2487 "optical-device-bind", 1); 2488 } 2489 2490 if (sd_dtype_optical_bind == 0) { 2491 rval = DDI_PROBE_FAILURE; 2492 } else { 2493 rval = DDI_PROBE_SUCCESS; 2494 } 2495 break; 2496 2497 case DTYPE_NOTPRESENT: 2498 default: 2499 rval = DDI_PROBE_FAILURE; 2500 break; 2501 } 2502 break; 2503 default: 2504 rval = DDI_PROBE_PARTIAL; 2505 break; 2506 } 2507 2508 /* 2509 * This routine checks for resource allocation prior to freeing, 2510 * so it will take care of the "smart probing" case where a 2511 * scsi_probe() may or may not have been issued and will *not* 2512 * free previously-freed resources. 2513 */ 2514 scsi_unprobe(devp); 2515 return (rval); 2516 } 2517 2518 2519 /* 2520 * Function: sdinfo 2521 * 2522 * Description: This is the driver getinfo(9e) entry point function. 2523 * Given the device number, return the devinfo pointer from 2524 * the scsi_device structure or the instance number 2525 * associated with the dev_t. 2526 * 2527 * Arguments: dip - pointer to device info structure 2528 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2529 * DDI_INFO_DEVT2INSTANCE) 2530 * arg - driver dev_t 2531 * resultp - user buffer for request response 2532 * 2533 * Return Code: DDI_SUCCESS 2534 * DDI_FAILURE 2535 */ 2536 /* ARGSUSED */ 2537 static int 2538 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2539 { 2540 struct sd_lun *un; 2541 dev_t dev; 2542 int instance; 2543 int error; 2544 2545 switch (infocmd) { 2546 case DDI_INFO_DEVT2DEVINFO: 2547 dev = (dev_t)arg; 2548 instance = SDUNIT(dev); 2549 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2550 return (DDI_FAILURE); 2551 } 2552 *result = (void *) SD_DEVINFO(un); 2553 error = DDI_SUCCESS; 2554 break; 2555 case DDI_INFO_DEVT2INSTANCE: 2556 dev = (dev_t)arg; 2557 instance = SDUNIT(dev); 2558 *result = (void *)(uintptr_t)instance; 2559 error = DDI_SUCCESS; 2560 break; 2561 default: 2562 error = DDI_FAILURE; 2563 } 2564 return (error); 2565 } 2566 2567 /* 2568 * Function: sd_prop_op 2569 * 2570 * Description: This is the driver prop_op(9e) entry point function. 2571 * Return the number of blocks for the partition in question 2572 * or forward the request to the property facilities. 2573 * 2574 * Arguments: dev - device number 2575 * dip - pointer to device info structure 2576 * prop_op - property operator 2577 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2578 * name - pointer to property name 2579 * valuep - pointer or address of the user buffer 2580 * lengthp - property length 2581 * 2582 * Return Code: DDI_PROP_SUCCESS 2583 * DDI_PROP_NOT_FOUND 2584 * DDI_PROP_UNDEFINED 2585 * DDI_PROP_NO_MEMORY 2586 * DDI_PROP_BUF_TOO_SMALL 2587 */ 2588 2589 static int 2590 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2591 char *name, caddr_t valuep, int *lengthp) 2592 { 2593 int instance = ddi_get_instance(dip); 2594 struct sd_lun *un; 2595 uint64_t nblocks64; 2596 uint_t dblk; 2597 2598 /* 2599 * Our dynamic properties are all device specific and size oriented. 2600 * Requests issued under conditions where size is valid are passed 2601 * to ddi_prop_op_nblocks with the size information, otherwise the 2602 * request is passed to ddi_prop_op. Size depends on valid geometry. 2603 */ 2604 un = ddi_get_soft_state(sd_state, instance); 2605 if ((dev == DDI_DEV_T_ANY) || (un == NULL)) { 2606 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2607 name, valuep, lengthp)); 2608 } else if (!SD_IS_VALID_LABEL(un)) { 2609 return (ddi_prop_op(dev, dip, prop_op, mod_flags, name, 2610 valuep, lengthp)); 2611 } 2612 2613 /* get nblocks value */ 2614 ASSERT(!mutex_owned(SD_MUTEX(un))); 2615 2616 (void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev), 2617 (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 2618 2619 /* report size in target size blocks */ 2620 dblk = un->un_tgt_blocksize / un->un_sys_blocksize; 2621 return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags, 2622 name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize)); 2623 } 2624 2625 /* 2626 * The following functions are for smart probing: 2627 * sd_scsi_probe_cache_init() 2628 * sd_scsi_probe_cache_fini() 2629 * sd_scsi_clear_probe_cache() 2630 * sd_scsi_probe_with_cache() 2631 */ 2632 2633 /* 2634 * Function: sd_scsi_probe_cache_init 2635 * 2636 * Description: Initializes the probe response cache mutex and head pointer. 2637 * 2638 * Context: Kernel thread context 2639 */ 2640 2641 static void 2642 sd_scsi_probe_cache_init(void) 2643 { 2644 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2645 sd_scsi_probe_cache_head = NULL; 2646 } 2647 2648 2649 /* 2650 * Function: sd_scsi_probe_cache_fini 2651 * 2652 * Description: Frees all resources associated with the probe response cache. 2653 * 2654 * Context: Kernel thread context 2655 */ 2656 2657 static void 2658 sd_scsi_probe_cache_fini(void) 2659 { 2660 struct sd_scsi_probe_cache *cp; 2661 struct sd_scsi_probe_cache *ncp; 2662 2663 /* Clean up our smart probing linked list */ 2664 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2665 ncp = cp->next; 2666 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2667 } 2668 sd_scsi_probe_cache_head = NULL; 2669 mutex_destroy(&sd_scsi_probe_cache_mutex); 2670 } 2671 2672 2673 /* 2674 * Function: sd_scsi_clear_probe_cache 2675 * 2676 * Description: This routine clears the probe response cache. This is 2677 * done when open() returns ENXIO so that when deferred 2678 * attach is attempted (possibly after a device has been 2679 * turned on) we will retry the probe. Since we don't know 2680 * which target we failed to open, we just clear the 2681 * entire cache. 2682 * 2683 * Context: Kernel thread context 2684 */ 2685 2686 static void 2687 sd_scsi_clear_probe_cache(void) 2688 { 2689 struct sd_scsi_probe_cache *cp; 2690 int i; 2691 2692 mutex_enter(&sd_scsi_probe_cache_mutex); 2693 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2694 /* 2695 * Reset all entries to SCSIPROBE_EXISTS. This will 2696 * force probing to be performed the next time 2697 * sd_scsi_probe_with_cache is called. 2698 */ 2699 for (i = 0; i < NTARGETS_WIDE; i++) { 2700 cp->cache[i] = SCSIPROBE_EXISTS; 2701 } 2702 } 2703 mutex_exit(&sd_scsi_probe_cache_mutex); 2704 } 2705 2706 2707 /* 2708 * Function: sd_scsi_probe_with_cache 2709 * 2710 * Description: This routine implements support for a scsi device probe 2711 * with cache. The driver maintains a cache of the target 2712 * responses to scsi probes. If we get no response from a 2713 * target during a probe inquiry, we remember that, and we 2714 * avoid additional calls to scsi_probe on non-zero LUNs 2715 * on the same target until the cache is cleared. By doing 2716 * so we avoid the 1/4 sec selection timeout for nonzero 2717 * LUNs. lun0 of a target is always probed. 2718 * 2719 * Arguments: devp - Pointer to a scsi_device(9S) structure 2720 * waitfunc - indicates what the allocator routines should 2721 * do when resources are not available. This value 2722 * is passed on to scsi_probe() when that routine 2723 * is called. 2724 * 2725 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2726 * otherwise the value returned by scsi_probe(9F). 2727 * 2728 * Context: Kernel thread context 2729 */ 2730 2731 static int 2732 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2733 { 2734 struct sd_scsi_probe_cache *cp; 2735 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2736 int lun, tgt; 2737 2738 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2739 SCSI_ADDR_PROP_LUN, 0); 2740 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2741 SCSI_ADDR_PROP_TARGET, -1); 2742 2743 /* Make sure caching enabled and target in range */ 2744 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2745 /* do it the old way (no cache) */ 2746 return (scsi_probe(devp, waitfn)); 2747 } 2748 2749 mutex_enter(&sd_scsi_probe_cache_mutex); 2750 2751 /* Find the cache for this scsi bus instance */ 2752 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2753 if (cp->pdip == pdip) { 2754 break; 2755 } 2756 } 2757 2758 /* If we can't find a cache for this pdip, create one */ 2759 if (cp == NULL) { 2760 int i; 2761 2762 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 2763 KM_SLEEP); 2764 cp->pdip = pdip; 2765 cp->next = sd_scsi_probe_cache_head; 2766 sd_scsi_probe_cache_head = cp; 2767 for (i = 0; i < NTARGETS_WIDE; i++) { 2768 cp->cache[i] = SCSIPROBE_EXISTS; 2769 } 2770 } 2771 2772 mutex_exit(&sd_scsi_probe_cache_mutex); 2773 2774 /* Recompute the cache for this target if LUN zero */ 2775 if (lun == 0) { 2776 cp->cache[tgt] = SCSIPROBE_EXISTS; 2777 } 2778 2779 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 2780 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 2781 return (SCSIPROBE_NORESP); 2782 } 2783 2784 /* Do the actual probe; save & return the result */ 2785 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 2786 } 2787 2788 2789 /* 2790 * Function: sd_scsi_target_lun_init 2791 * 2792 * Description: Initializes the attached lun chain mutex and head pointer. 2793 * 2794 * Context: Kernel thread context 2795 */ 2796 2797 static void 2798 sd_scsi_target_lun_init(void) 2799 { 2800 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 2801 sd_scsi_target_lun_head = NULL; 2802 } 2803 2804 2805 /* 2806 * Function: sd_scsi_target_lun_fini 2807 * 2808 * Description: Frees all resources associated with the attached lun 2809 * chain 2810 * 2811 * Context: Kernel thread context 2812 */ 2813 2814 static void 2815 sd_scsi_target_lun_fini(void) 2816 { 2817 struct sd_scsi_hba_tgt_lun *cp; 2818 struct sd_scsi_hba_tgt_lun *ncp; 2819 2820 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 2821 ncp = cp->next; 2822 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 2823 } 2824 sd_scsi_target_lun_head = NULL; 2825 mutex_destroy(&sd_scsi_target_lun_mutex); 2826 } 2827 2828 2829 /* 2830 * Function: sd_scsi_get_target_lun_count 2831 * 2832 * Description: This routine will check in the attached lun chain to see 2833 * how many luns are attached on the required SCSI controller 2834 * and target. Currently, some capabilities like tagged queue 2835 * are supported per target based by HBA. So all luns in a 2836 * target have the same capabilities. Based on this assumption, 2837 * sd should only set these capabilities once per target. This 2838 * function is called when sd needs to decide how many luns 2839 * already attached on a target. 2840 * 2841 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2842 * controller device. 2843 * target - The target ID on the controller's SCSI bus. 2844 * 2845 * Return Code: The number of luns attached on the required target and 2846 * controller. 2847 * -1 if target ID is not in parallel SCSI scope or the given 2848 * dip is not in the chain. 2849 * 2850 * Context: Kernel thread context 2851 */ 2852 2853 static int 2854 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 2855 { 2856 struct sd_scsi_hba_tgt_lun *cp; 2857 2858 if ((target < 0) || (target >= NTARGETS_WIDE)) { 2859 return (-1); 2860 } 2861 2862 mutex_enter(&sd_scsi_target_lun_mutex); 2863 2864 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 2865 if (cp->pdip == dip) { 2866 break; 2867 } 2868 } 2869 2870 mutex_exit(&sd_scsi_target_lun_mutex); 2871 2872 if (cp == NULL) { 2873 return (-1); 2874 } 2875 2876 return (cp->nlun[target]); 2877 } 2878 2879 2880 /* 2881 * Function: sd_scsi_update_lun_on_target 2882 * 2883 * Description: This routine is used to update the attached lun chain when a 2884 * lun is attached or detached on a target. 2885 * 2886 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2887 * controller device. 2888 * target - The target ID on the controller's SCSI bus. 2889 * flag - Indicate the lun is attached or detached. 2890 * 2891 * Context: Kernel thread context 2892 */ 2893 2894 static void 2895 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 2896 { 2897 struct sd_scsi_hba_tgt_lun *cp; 2898 2899 mutex_enter(&sd_scsi_target_lun_mutex); 2900 2901 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 2902 if (cp->pdip == dip) { 2903 break; 2904 } 2905 } 2906 2907 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 2908 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 2909 KM_SLEEP); 2910 cp->pdip = dip; 2911 cp->next = sd_scsi_target_lun_head; 2912 sd_scsi_target_lun_head = cp; 2913 } 2914 2915 mutex_exit(&sd_scsi_target_lun_mutex); 2916 2917 if (cp != NULL) { 2918 if (flag == SD_SCSI_LUN_ATTACH) { 2919 cp->nlun[target] ++; 2920 } else { 2921 cp->nlun[target] --; 2922 } 2923 } 2924 } 2925 2926 2927 /* 2928 * Function: sd_spin_up_unit 2929 * 2930 * Description: Issues the following commands to spin-up the device: 2931 * START STOP UNIT, and INQUIRY. 2932 * 2933 * Arguments: un - driver soft state (unit) structure 2934 * 2935 * Return Code: 0 - success 2936 * EIO - failure 2937 * EACCES - reservation conflict 2938 * 2939 * Context: Kernel thread context 2940 */ 2941 2942 static int 2943 sd_spin_up_unit(struct sd_lun *un) 2944 { 2945 size_t resid = 0; 2946 int has_conflict = FALSE; 2947 uchar_t *bufaddr; 2948 2949 ASSERT(un != NULL); 2950 2951 /* 2952 * Send a throwaway START UNIT command. 2953 * 2954 * If we fail on this, we don't care presently what precisely 2955 * is wrong. EMC's arrays will also fail this with a check 2956 * condition (0x2/0x4/0x3) if the device is "inactive," but 2957 * we don't want to fail the attach because it may become 2958 * "active" later. 2959 */ 2960 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT) 2961 == EACCES) 2962 has_conflict = TRUE; 2963 2964 /* 2965 * Send another INQUIRY command to the target. This is necessary for 2966 * non-removable media direct access devices because their INQUIRY data 2967 * may not be fully qualified until they are spun up (perhaps via the 2968 * START command above). Note: This seems to be needed for some 2969 * legacy devices only.) The INQUIRY command should succeed even if a 2970 * Reservation Conflict is present. 2971 */ 2972 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 2973 if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) { 2974 kmem_free(bufaddr, SUN_INQSIZE); 2975 return (EIO); 2976 } 2977 2978 /* 2979 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 2980 * Note that this routine does not return a failure here even if the 2981 * INQUIRY command did not return any data. This is a legacy behavior. 2982 */ 2983 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 2984 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 2985 } 2986 2987 kmem_free(bufaddr, SUN_INQSIZE); 2988 2989 /* If we hit a reservation conflict above, tell the caller. */ 2990 if (has_conflict == TRUE) { 2991 return (EACCES); 2992 } 2993 2994 return (0); 2995 } 2996 2997 #ifdef _LP64 2998 /* 2999 * Function: sd_enable_descr_sense 3000 * 3001 * Description: This routine attempts to select descriptor sense format 3002 * using the Control mode page. Devices that support 64 bit 3003 * LBAs (for >2TB luns) should also implement descriptor 3004 * sense data so we will call this function whenever we see 3005 * a lun larger than 2TB. If for some reason the device 3006 * supports 64 bit LBAs but doesn't support descriptor sense 3007 * presumably the mode select will fail. Everything will 3008 * continue to work normally except that we will not get 3009 * complete sense data for commands that fail with an LBA 3010 * larger than 32 bits. 3011 * 3012 * Arguments: un - driver soft state (unit) structure 3013 * 3014 * Context: Kernel thread context only 3015 */ 3016 3017 static void 3018 sd_enable_descr_sense(struct sd_lun *un) 3019 { 3020 uchar_t *header; 3021 struct mode_control_scsi3 *ctrl_bufp; 3022 size_t buflen; 3023 size_t bd_len; 3024 3025 /* 3026 * Read MODE SENSE page 0xA, Control Mode Page 3027 */ 3028 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3029 sizeof (struct mode_control_scsi3); 3030 header = kmem_zalloc(buflen, KM_SLEEP); 3031 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 3032 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) { 3033 SD_ERROR(SD_LOG_COMMON, un, 3034 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3035 goto eds_exit; 3036 } 3037 3038 /* 3039 * Determine size of Block Descriptors in order to locate 3040 * the mode page data. ATAPI devices return 0, SCSI devices 3041 * should return MODE_BLK_DESC_LENGTH. 3042 */ 3043 bd_len = ((struct mode_header *)header)->bdesc_length; 3044 3045 /* Clear the mode data length field for MODE SELECT */ 3046 ((struct mode_header *)header)->length = 0; 3047 3048 ctrl_bufp = (struct mode_control_scsi3 *) 3049 (header + MODE_HEADER_LENGTH + bd_len); 3050 3051 /* 3052 * If the page length is smaller than the expected value, 3053 * the target device doesn't support D_SENSE. Bail out here. 3054 */ 3055 if (ctrl_bufp->mode_page.length < 3056 sizeof (struct mode_control_scsi3) - 2) { 3057 SD_ERROR(SD_LOG_COMMON, un, 3058 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3059 goto eds_exit; 3060 } 3061 3062 /* 3063 * Clear PS bit for MODE SELECT 3064 */ 3065 ctrl_bufp->mode_page.ps = 0; 3066 3067 /* 3068 * Set D_SENSE to enable descriptor sense format. 3069 */ 3070 ctrl_bufp->d_sense = 1; 3071 3072 /* 3073 * Use MODE SELECT to commit the change to the D_SENSE bit 3074 */ 3075 if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 3076 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) { 3077 SD_INFO(SD_LOG_COMMON, un, 3078 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3079 goto eds_exit; 3080 } 3081 3082 eds_exit: 3083 kmem_free(header, buflen); 3084 } 3085 3086 /* 3087 * Function: sd_reenable_dsense_task 3088 * 3089 * Description: Re-enable descriptor sense after device or bus reset 3090 * 3091 * Context: Executes in a taskq() thread context 3092 */ 3093 static void 3094 sd_reenable_dsense_task(void *arg) 3095 { 3096 struct sd_lun *un = arg; 3097 3098 ASSERT(un != NULL); 3099 sd_enable_descr_sense(un); 3100 } 3101 #endif /* _LP64 */ 3102 3103 /* 3104 * Function: sd_set_mmc_caps 3105 * 3106 * Description: This routine determines if the device is MMC compliant and if 3107 * the device supports CDDA via a mode sense of the CDVD 3108 * capabilities mode page. Also checks if the device is a 3109 * dvdram writable device. 3110 * 3111 * Arguments: un - driver soft state (unit) structure 3112 * 3113 * Context: Kernel thread context only 3114 */ 3115 3116 static void 3117 sd_set_mmc_caps(struct sd_lun *un) 3118 { 3119 struct mode_header_grp2 *sense_mhp; 3120 uchar_t *sense_page; 3121 caddr_t buf; 3122 int bd_len; 3123 int status; 3124 struct uscsi_cmd com; 3125 int rtn; 3126 uchar_t *out_data_rw, *out_data_hd; 3127 uchar_t *rqbuf_rw, *rqbuf_hd; 3128 3129 ASSERT(un != NULL); 3130 3131 /* 3132 * The flags which will be set in this function are - mmc compliant, 3133 * dvdram writable device, cdda support. Initialize them to FALSE 3134 * and if a capability is detected - it will be set to TRUE. 3135 */ 3136 un->un_f_mmc_cap = FALSE; 3137 un->un_f_dvdram_writable_device = FALSE; 3138 un->un_f_cfg_cdda = FALSE; 3139 3140 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3141 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3142 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3143 3144 if (status != 0) { 3145 /* command failed; just return */ 3146 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3147 return; 3148 } 3149 /* 3150 * If the mode sense request for the CDROM CAPABILITIES 3151 * page (0x2A) succeeds the device is assumed to be MMC. 3152 */ 3153 un->un_f_mmc_cap = TRUE; 3154 3155 /* Get to the page data */ 3156 sense_mhp = (struct mode_header_grp2 *)buf; 3157 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3158 sense_mhp->bdesc_length_lo; 3159 if (bd_len > MODE_BLK_DESC_LENGTH) { 3160 /* 3161 * We did not get back the expected block descriptor 3162 * length so we cannot determine if the device supports 3163 * CDDA. However, we still indicate the device is MMC 3164 * according to the successful response to the page 3165 * 0x2A mode sense request. 3166 */ 3167 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3168 "sd_set_mmc_caps: Mode Sense returned " 3169 "invalid block descriptor length\n"); 3170 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3171 return; 3172 } 3173 3174 /* See if read CDDA is supported */ 3175 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3176 bd_len); 3177 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3178 3179 /* See if writing DVD RAM is supported. */ 3180 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3181 if (un->un_f_dvdram_writable_device == TRUE) { 3182 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3183 return; 3184 } 3185 3186 /* 3187 * If the device presents DVD or CD capabilities in the mode 3188 * page, we can return here since a RRD will not have 3189 * these capabilities. 3190 */ 3191 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3192 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3193 return; 3194 } 3195 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3196 3197 /* 3198 * If un->un_f_dvdram_writable_device is still FALSE, 3199 * check for a Removable Rigid Disk (RRD). A RRD 3200 * device is identified by the features RANDOM_WRITABLE and 3201 * HARDWARE_DEFECT_MANAGEMENT. 3202 */ 3203 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3204 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3205 3206 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3207 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3208 RANDOM_WRITABLE, SD_PATH_STANDARD); 3209 if (rtn != 0) { 3210 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3211 kmem_free(rqbuf_rw, SENSE_LENGTH); 3212 return; 3213 } 3214 3215 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3216 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3217 3218 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3219 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3220 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3221 if (rtn == 0) { 3222 /* 3223 * We have good information, check for random writable 3224 * and hardware defect features. 3225 */ 3226 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3227 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3228 un->un_f_dvdram_writable_device = TRUE; 3229 } 3230 } 3231 3232 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3233 kmem_free(rqbuf_rw, SENSE_LENGTH); 3234 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3235 kmem_free(rqbuf_hd, SENSE_LENGTH); 3236 } 3237 3238 /* 3239 * Function: sd_check_for_writable_cd 3240 * 3241 * Description: This routine determines if the media in the device is 3242 * writable or not. It uses the get configuration command (0x46) 3243 * to determine if the media is writable 3244 * 3245 * Arguments: un - driver soft state (unit) structure 3246 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3247 * chain and the normal command waitq, or 3248 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3249 * "direct" chain and bypass the normal command 3250 * waitq. 3251 * 3252 * Context: Never called at interrupt context. 3253 */ 3254 3255 static void 3256 sd_check_for_writable_cd(struct sd_lun *un, int path_flag) 3257 { 3258 struct uscsi_cmd com; 3259 uchar_t *out_data; 3260 uchar_t *rqbuf; 3261 int rtn; 3262 uchar_t *out_data_rw, *out_data_hd; 3263 uchar_t *rqbuf_rw, *rqbuf_hd; 3264 struct mode_header_grp2 *sense_mhp; 3265 uchar_t *sense_page; 3266 caddr_t buf; 3267 int bd_len; 3268 int status; 3269 3270 ASSERT(un != NULL); 3271 ASSERT(mutex_owned(SD_MUTEX(un))); 3272 3273 /* 3274 * Initialize the writable media to false, if configuration info. 3275 * tells us otherwise then only we will set it. 3276 */ 3277 un->un_f_mmc_writable_media = FALSE; 3278 mutex_exit(SD_MUTEX(un)); 3279 3280 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3281 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3282 3283 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH, 3284 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3285 3286 mutex_enter(SD_MUTEX(un)); 3287 if (rtn == 0) { 3288 /* 3289 * We have good information, check for writable DVD. 3290 */ 3291 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3292 un->un_f_mmc_writable_media = TRUE; 3293 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3294 kmem_free(rqbuf, SENSE_LENGTH); 3295 return; 3296 } 3297 } 3298 3299 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3300 kmem_free(rqbuf, SENSE_LENGTH); 3301 3302 /* 3303 * Determine if this is a RRD type device. 3304 */ 3305 mutex_exit(SD_MUTEX(un)); 3306 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3307 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3308 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3309 mutex_enter(SD_MUTEX(un)); 3310 if (status != 0) { 3311 /* command failed; just return */ 3312 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3313 return; 3314 } 3315 3316 /* Get to the page data */ 3317 sense_mhp = (struct mode_header_grp2 *)buf; 3318 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3319 if (bd_len > MODE_BLK_DESC_LENGTH) { 3320 /* 3321 * We did not get back the expected block descriptor length so 3322 * we cannot check the mode page. 3323 */ 3324 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3325 "sd_check_for_writable_cd: Mode Sense returned " 3326 "invalid block descriptor length\n"); 3327 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3328 return; 3329 } 3330 3331 /* 3332 * If the device presents DVD or CD capabilities in the mode 3333 * page, we can return here since a RRD device will not have 3334 * these capabilities. 3335 */ 3336 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3337 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3338 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3339 return; 3340 } 3341 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3342 3343 /* 3344 * If un->un_f_mmc_writable_media is still FALSE, 3345 * check for RRD type media. A RRD device is identified 3346 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3347 */ 3348 mutex_exit(SD_MUTEX(un)); 3349 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3350 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3351 3352 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3353 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3354 RANDOM_WRITABLE, path_flag); 3355 if (rtn != 0) { 3356 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3357 kmem_free(rqbuf_rw, SENSE_LENGTH); 3358 mutex_enter(SD_MUTEX(un)); 3359 return; 3360 } 3361 3362 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3363 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3364 3365 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3366 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3367 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3368 mutex_enter(SD_MUTEX(un)); 3369 if (rtn == 0) { 3370 /* 3371 * We have good information, check for random writable 3372 * and hardware defect features as current. 3373 */ 3374 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3375 (out_data_rw[10] & 0x1) && 3376 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3377 (out_data_hd[10] & 0x1)) { 3378 un->un_f_mmc_writable_media = TRUE; 3379 } 3380 } 3381 3382 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3383 kmem_free(rqbuf_rw, SENSE_LENGTH); 3384 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3385 kmem_free(rqbuf_hd, SENSE_LENGTH); 3386 } 3387 3388 /* 3389 * Function: sd_read_unit_properties 3390 * 3391 * Description: The following implements a property lookup mechanism. 3392 * Properties for particular disks (keyed on vendor, model 3393 * and rev numbers) are sought in the sd.conf file via 3394 * sd_process_sdconf_file(), and if not found there, are 3395 * looked for in a list hardcoded in this driver via 3396 * sd_process_sdconf_table() Once located the properties 3397 * are used to update the driver unit structure. 3398 * 3399 * Arguments: un - driver soft state (unit) structure 3400 */ 3401 3402 static void 3403 sd_read_unit_properties(struct sd_lun *un) 3404 { 3405 /* 3406 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3407 * the "sd-config-list" property (from the sd.conf file) or if 3408 * there was not a match for the inquiry vid/pid. If this event 3409 * occurs the static driver configuration table is searched for 3410 * a match. 3411 */ 3412 ASSERT(un != NULL); 3413 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3414 sd_process_sdconf_table(un); 3415 } 3416 3417 /* check for LSI device */ 3418 sd_is_lsi(un); 3419 3420 3421 } 3422 3423 3424 /* 3425 * Function: sd_process_sdconf_file 3426 * 3427 * Description: Use ddi_getlongprop to obtain the properties from the 3428 * driver's config file (ie, sd.conf) and update the driver 3429 * soft state structure accordingly. 3430 * 3431 * Arguments: un - driver soft state (unit) structure 3432 * 3433 * Return Code: SD_SUCCESS - The properties were successfully set according 3434 * to the driver configuration file. 3435 * SD_FAILURE - The driver config list was not obtained or 3436 * there was no vid/pid match. This indicates that 3437 * the static config table should be used. 3438 * 3439 * The config file has a property, "sd-config-list", which consists of 3440 * one or more duplets as follows: 3441 * 3442 * sd-config-list= 3443 * <duplet>, 3444 * [<duplet>,] 3445 * [<duplet>]; 3446 * 3447 * The structure of each duplet is as follows: 3448 * 3449 * <duplet>:= <vid+pid>,<data-property-name_list> 3450 * 3451 * The first entry of the duplet is the device ID string (the concatenated 3452 * vid & pid; not to be confused with a device_id). This is defined in 3453 * the same way as in the sd_disk_table. 3454 * 3455 * The second part of the duplet is a string that identifies a 3456 * data-property-name-list. The data-property-name-list is defined as 3457 * follows: 3458 * 3459 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3460 * 3461 * The syntax of <data-property-name> depends on the <version> field. 3462 * 3463 * If version = SD_CONF_VERSION_1 we have the following syntax: 3464 * 3465 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3466 * 3467 * where the prop0 value will be used to set prop0 if bit0 set in the 3468 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3469 * 3470 */ 3471 3472 static int 3473 sd_process_sdconf_file(struct sd_lun *un) 3474 { 3475 char *config_list = NULL; 3476 int config_list_len; 3477 int len; 3478 int dupletlen = 0; 3479 char *vidptr; 3480 int vidlen; 3481 char *dnlist_ptr; 3482 char *dataname_ptr; 3483 int dnlist_len; 3484 int dataname_len; 3485 int *data_list; 3486 int data_list_len; 3487 int rval = SD_FAILURE; 3488 int i; 3489 3490 ASSERT(un != NULL); 3491 3492 /* Obtain the configuration list associated with the .conf file */ 3493 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS, 3494 sd_config_list, (caddr_t)&config_list, &config_list_len) 3495 != DDI_PROP_SUCCESS) { 3496 return (SD_FAILURE); 3497 } 3498 3499 /* 3500 * Compare vids in each duplet to the inquiry vid - if a match is 3501 * made, get the data value and update the soft state structure 3502 * accordingly. 3503 * 3504 * Note: This algorithm is complex and difficult to maintain. It should 3505 * be replaced with a more robust implementation. 3506 */ 3507 for (len = config_list_len, vidptr = config_list; len > 0; 3508 vidptr += dupletlen, len -= dupletlen) { 3509 /* 3510 * Note: The assumption here is that each vid entry is on 3511 * a unique line from its associated duplet. 3512 */ 3513 vidlen = dupletlen = (int)strlen(vidptr); 3514 if ((vidlen == 0) || 3515 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3516 dupletlen++; 3517 continue; 3518 } 3519 3520 /* 3521 * dnlist contains 1 or more blank separated 3522 * data-property-name entries 3523 */ 3524 dnlist_ptr = vidptr + vidlen + 1; 3525 dnlist_len = (int)strlen(dnlist_ptr); 3526 dupletlen += dnlist_len + 2; 3527 3528 /* 3529 * Set a pointer for the first data-property-name 3530 * entry in the list 3531 */ 3532 dataname_ptr = dnlist_ptr; 3533 dataname_len = 0; 3534 3535 /* 3536 * Loop through all data-property-name entries in the 3537 * data-property-name-list setting the properties for each. 3538 */ 3539 while (dataname_len < dnlist_len) { 3540 int version; 3541 3542 /* 3543 * Determine the length of the current 3544 * data-property-name entry by indexing until a 3545 * blank or NULL is encountered. When the space is 3546 * encountered reset it to a NULL for compliance 3547 * with ddi_getlongprop(). 3548 */ 3549 for (i = 0; ((dataname_ptr[i] != ' ') && 3550 (dataname_ptr[i] != '\0')); i++) { 3551 ; 3552 } 3553 3554 dataname_len += i; 3555 /* If not null terminated, Make it so */ 3556 if (dataname_ptr[i] == ' ') { 3557 dataname_ptr[i] = '\0'; 3558 } 3559 dataname_len++; 3560 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3561 "sd_process_sdconf_file: disk:%s, data:%s\n", 3562 vidptr, dataname_ptr); 3563 3564 /* Get the data list */ 3565 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0, 3566 dataname_ptr, (caddr_t)&data_list, &data_list_len) 3567 != DDI_PROP_SUCCESS) { 3568 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3569 "sd_process_sdconf_file: data property (%s)" 3570 " has no value\n", dataname_ptr); 3571 dataname_ptr = dnlist_ptr + dataname_len; 3572 continue; 3573 } 3574 3575 version = data_list[0]; 3576 3577 if (version == SD_CONF_VERSION_1) { 3578 sd_tunables values; 3579 3580 /* Set the properties */ 3581 if (sd_chk_vers1_data(un, data_list[1], 3582 &data_list[2], data_list_len, dataname_ptr) 3583 == SD_SUCCESS) { 3584 sd_get_tunables_from_conf(un, 3585 data_list[1], &data_list[2], 3586 &values); 3587 sd_set_vers1_properties(un, 3588 data_list[1], &values); 3589 rval = SD_SUCCESS; 3590 } else { 3591 rval = SD_FAILURE; 3592 } 3593 } else { 3594 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3595 "data property %s version 0x%x is invalid.", 3596 dataname_ptr, version); 3597 rval = SD_FAILURE; 3598 } 3599 kmem_free(data_list, data_list_len); 3600 dataname_ptr = dnlist_ptr + dataname_len; 3601 } 3602 } 3603 3604 /* free up the memory allocated by ddi_getlongprop */ 3605 if (config_list) { 3606 kmem_free(config_list, config_list_len); 3607 } 3608 3609 return (rval); 3610 } 3611 3612 /* 3613 * Function: sd_get_tunables_from_conf() 3614 * 3615 * 3616 * This function reads the data list from the sd.conf file and pulls 3617 * the values that can have numeric values as arguments and places 3618 * the values in the appropriate sd_tunables member. 3619 * Since the order of the data list members varies across platforms 3620 * This function reads them from the data list in a platform specific 3621 * order and places them into the correct sd_tunable member that is 3622 * consistent across all platforms. 3623 */ 3624 static void 3625 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 3626 sd_tunables *values) 3627 { 3628 int i; 3629 int mask; 3630 3631 bzero(values, sizeof (sd_tunables)); 3632 3633 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3634 3635 mask = 1 << i; 3636 if (mask > flags) { 3637 break; 3638 } 3639 3640 switch (mask & flags) { 3641 case 0: /* This mask bit not set in flags */ 3642 continue; 3643 case SD_CONF_BSET_THROTTLE: 3644 values->sdt_throttle = data_list[i]; 3645 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3646 "sd_get_tunables_from_conf: throttle = %d\n", 3647 values->sdt_throttle); 3648 break; 3649 case SD_CONF_BSET_CTYPE: 3650 values->sdt_ctype = data_list[i]; 3651 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3652 "sd_get_tunables_from_conf: ctype = %d\n", 3653 values->sdt_ctype); 3654 break; 3655 case SD_CONF_BSET_NRR_COUNT: 3656 values->sdt_not_rdy_retries = data_list[i]; 3657 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3658 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 3659 values->sdt_not_rdy_retries); 3660 break; 3661 case SD_CONF_BSET_BSY_RETRY_COUNT: 3662 values->sdt_busy_retries = data_list[i]; 3663 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3664 "sd_get_tunables_from_conf: busy_retries = %d\n", 3665 values->sdt_busy_retries); 3666 break; 3667 case SD_CONF_BSET_RST_RETRIES: 3668 values->sdt_reset_retries = data_list[i]; 3669 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3670 "sd_get_tunables_from_conf: reset_retries = %d\n", 3671 values->sdt_reset_retries); 3672 break; 3673 case SD_CONF_BSET_RSV_REL_TIME: 3674 values->sdt_reserv_rel_time = data_list[i]; 3675 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3676 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 3677 values->sdt_reserv_rel_time); 3678 break; 3679 case SD_CONF_BSET_MIN_THROTTLE: 3680 values->sdt_min_throttle = data_list[i]; 3681 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3682 "sd_get_tunables_from_conf: min_throttle = %d\n", 3683 values->sdt_min_throttle); 3684 break; 3685 case SD_CONF_BSET_DISKSORT_DISABLED: 3686 values->sdt_disk_sort_dis = data_list[i]; 3687 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3688 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 3689 values->sdt_disk_sort_dis); 3690 break; 3691 case SD_CONF_BSET_LUN_RESET_ENABLED: 3692 values->sdt_lun_reset_enable = data_list[i]; 3693 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3694 "sd_get_tunables_from_conf: lun_reset_enable = %d" 3695 "\n", values->sdt_lun_reset_enable); 3696 break; 3697 } 3698 } 3699 } 3700 3701 /* 3702 * Function: sd_process_sdconf_table 3703 * 3704 * Description: Search the static configuration table for a match on the 3705 * inquiry vid/pid and update the driver soft state structure 3706 * according to the table property values for the device. 3707 * 3708 * The form of a configuration table entry is: 3709 * <vid+pid>,<flags>,<property-data> 3710 * "SEAGATE ST42400N",1,63,0,0 (Fibre) 3711 * "SEAGATE ST42400N",1,63,0,0,0,0 (Sparc) 3712 * "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0 (Intel) 3713 * 3714 * Arguments: un - driver soft state (unit) structure 3715 */ 3716 3717 static void 3718 sd_process_sdconf_table(struct sd_lun *un) 3719 { 3720 char *id = NULL; 3721 int table_index; 3722 int idlen; 3723 3724 ASSERT(un != NULL); 3725 for (table_index = 0; table_index < sd_disk_table_size; 3726 table_index++) { 3727 id = sd_disk_table[table_index].device_id; 3728 idlen = strlen(id); 3729 if (idlen == 0) { 3730 continue; 3731 } 3732 3733 /* 3734 * The static configuration table currently does not 3735 * implement version 10 properties. Additionally, 3736 * multiple data-property-name entries are not 3737 * implemented in the static configuration table. 3738 */ 3739 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 3740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3741 "sd_process_sdconf_table: disk %s\n", id); 3742 sd_set_vers1_properties(un, 3743 sd_disk_table[table_index].flags, 3744 sd_disk_table[table_index].properties); 3745 break; 3746 } 3747 } 3748 } 3749 3750 3751 /* 3752 * Function: sd_sdconf_id_match 3753 * 3754 * Description: This local function implements a case sensitive vid/pid 3755 * comparison as well as the boundary cases of wild card and 3756 * multiple blanks. 3757 * 3758 * Note: An implicit assumption made here is that the scsi 3759 * inquiry structure will always keep the vid, pid and 3760 * revision strings in consecutive sequence, so they can be 3761 * read as a single string. If this assumption is not the 3762 * case, a separate string, to be used for the check, needs 3763 * to be built with these strings concatenated. 3764 * 3765 * Arguments: un - driver soft state (unit) structure 3766 * id - table or config file vid/pid 3767 * idlen - length of the vid/pid (bytes) 3768 * 3769 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3770 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3771 */ 3772 3773 static int 3774 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 3775 { 3776 struct scsi_inquiry *sd_inq; 3777 int rval = SD_SUCCESS; 3778 3779 ASSERT(un != NULL); 3780 sd_inq = un->un_sd->sd_inq; 3781 ASSERT(id != NULL); 3782 3783 /* 3784 * We use the inq_vid as a pointer to a buffer containing the 3785 * vid and pid and use the entire vid/pid length of the table 3786 * entry for the comparison. This works because the inq_pid 3787 * data member follows inq_vid in the scsi_inquiry structure. 3788 */ 3789 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 3790 /* 3791 * The user id string is compared to the inquiry vid/pid 3792 * using a case insensitive comparison and ignoring 3793 * multiple spaces. 3794 */ 3795 rval = sd_blank_cmp(un, id, idlen); 3796 if (rval != SD_SUCCESS) { 3797 /* 3798 * User id strings that start and end with a "*" 3799 * are a special case. These do not have a 3800 * specific vendor, and the product string can 3801 * appear anywhere in the 16 byte PID portion of 3802 * the inquiry data. This is a simple strstr() 3803 * type search for the user id in the inquiry data. 3804 */ 3805 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 3806 char *pidptr = &id[1]; 3807 int i; 3808 int j; 3809 int pidstrlen = idlen - 2; 3810 j = sizeof (SD_INQUIRY(un)->inq_pid) - 3811 pidstrlen; 3812 3813 if (j < 0) { 3814 return (SD_FAILURE); 3815 } 3816 for (i = 0; i < j; i++) { 3817 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 3818 pidptr, pidstrlen) == 0) { 3819 rval = SD_SUCCESS; 3820 break; 3821 } 3822 } 3823 } 3824 } 3825 } 3826 return (rval); 3827 } 3828 3829 3830 /* 3831 * Function: sd_blank_cmp 3832 * 3833 * Description: If the id string starts and ends with a space, treat 3834 * multiple consecutive spaces as equivalent to a single 3835 * space. For example, this causes a sd_disk_table entry 3836 * of " NEC CDROM " to match a device's id string of 3837 * "NEC CDROM". 3838 * 3839 * Note: The success exit condition for this routine is if 3840 * the pointer to the table entry is '\0' and the cnt of 3841 * the inquiry length is zero. This will happen if the inquiry 3842 * string returned by the device is padded with spaces to be 3843 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 3844 * SCSI spec states that the inquiry string is to be padded with 3845 * spaces. 3846 * 3847 * Arguments: un - driver soft state (unit) structure 3848 * id - table or config file vid/pid 3849 * idlen - length of the vid/pid (bytes) 3850 * 3851 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3852 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3853 */ 3854 3855 static int 3856 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 3857 { 3858 char *p1; 3859 char *p2; 3860 int cnt; 3861 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 3862 sizeof (SD_INQUIRY(un)->inq_pid); 3863 3864 ASSERT(un != NULL); 3865 p2 = un->un_sd->sd_inq->inq_vid; 3866 ASSERT(id != NULL); 3867 p1 = id; 3868 3869 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 3870 /* 3871 * Note: string p1 is terminated by a NUL but string p2 3872 * isn't. The end of p2 is determined by cnt. 3873 */ 3874 for (;;) { 3875 /* skip over any extra blanks in both strings */ 3876 while ((*p1 != '\0') && (*p1 == ' ')) { 3877 p1++; 3878 } 3879 while ((cnt != 0) && (*p2 == ' ')) { 3880 p2++; 3881 cnt--; 3882 } 3883 3884 /* compare the two strings */ 3885 if ((cnt == 0) || 3886 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 3887 break; 3888 } 3889 while ((cnt > 0) && 3890 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 3891 p1++; 3892 p2++; 3893 cnt--; 3894 } 3895 } 3896 } 3897 3898 /* return SD_SUCCESS if both strings match */ 3899 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 3900 } 3901 3902 3903 /* 3904 * Function: sd_chk_vers1_data 3905 * 3906 * Description: Verify the version 1 device properties provided by the 3907 * user via the configuration file 3908 * 3909 * Arguments: un - driver soft state (unit) structure 3910 * flags - integer mask indicating properties to be set 3911 * prop_list - integer list of property values 3912 * list_len - length of user provided data 3913 * 3914 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 3915 * SD_FAILURE - Indicates the user provided data is invalid 3916 */ 3917 3918 static int 3919 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 3920 int list_len, char *dataname_ptr) 3921 { 3922 int i; 3923 int mask = 1; 3924 int index = 0; 3925 3926 ASSERT(un != NULL); 3927 3928 /* Check for a NULL property name and list */ 3929 if (dataname_ptr == NULL) { 3930 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3931 "sd_chk_vers1_data: NULL data property name."); 3932 return (SD_FAILURE); 3933 } 3934 if (prop_list == NULL) { 3935 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3936 "sd_chk_vers1_data: %s NULL data property list.", 3937 dataname_ptr); 3938 return (SD_FAILURE); 3939 } 3940 3941 /* Display a warning if undefined bits are set in the flags */ 3942 if (flags & ~SD_CONF_BIT_MASK) { 3943 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3944 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 3945 "Properties not set.", 3946 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 3947 return (SD_FAILURE); 3948 } 3949 3950 /* 3951 * Verify the length of the list by identifying the highest bit set 3952 * in the flags and validating that the property list has a length 3953 * up to the index of this bit. 3954 */ 3955 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3956 if (flags & mask) { 3957 index++; 3958 } 3959 mask = 1 << i; 3960 } 3961 if ((list_len / sizeof (int)) < (index + 2)) { 3962 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3963 "sd_chk_vers1_data: " 3964 "Data property list %s size is incorrect. " 3965 "Properties not set.", dataname_ptr); 3966 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 3967 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 3968 return (SD_FAILURE); 3969 } 3970 return (SD_SUCCESS); 3971 } 3972 3973 3974 /* 3975 * Function: sd_set_vers1_properties 3976 * 3977 * Description: Set version 1 device properties based on a property list 3978 * retrieved from the driver configuration file or static 3979 * configuration table. Version 1 properties have the format: 3980 * 3981 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3982 * 3983 * where the prop0 value will be used to set prop0 if bit0 3984 * is set in the flags 3985 * 3986 * Arguments: un - driver soft state (unit) structure 3987 * flags - integer mask indicating properties to be set 3988 * prop_list - integer list of property values 3989 */ 3990 3991 static void 3992 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 3993 { 3994 ASSERT(un != NULL); 3995 3996 /* 3997 * Set the flag to indicate cache is to be disabled. An attempt 3998 * to disable the cache via sd_cache_control() will be made 3999 * later during attach once the basic initialization is complete. 4000 */ 4001 if (flags & SD_CONF_BSET_NOCACHE) { 4002 un->un_f_opt_disable_cache = TRUE; 4003 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4004 "sd_set_vers1_properties: caching disabled flag set\n"); 4005 } 4006 4007 /* CD-specific configuration parameters */ 4008 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4009 un->un_f_cfg_playmsf_bcd = TRUE; 4010 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4011 "sd_set_vers1_properties: playmsf_bcd set\n"); 4012 } 4013 if (flags & SD_CONF_BSET_READSUB_BCD) { 4014 un->un_f_cfg_readsub_bcd = TRUE; 4015 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4016 "sd_set_vers1_properties: readsub_bcd set\n"); 4017 } 4018 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4019 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4020 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4021 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4022 } 4023 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4024 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4025 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4026 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4027 } 4028 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4029 un->un_f_cfg_no_read_header = TRUE; 4030 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4031 "sd_set_vers1_properties: no_read_header set\n"); 4032 } 4033 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4034 un->un_f_cfg_read_cd_xd4 = TRUE; 4035 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4036 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4037 } 4038 4039 /* Support for devices which do not have valid/unique serial numbers */ 4040 if (flags & SD_CONF_BSET_FAB_DEVID) { 4041 un->un_f_opt_fab_devid = TRUE; 4042 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4043 "sd_set_vers1_properties: fab_devid bit set\n"); 4044 } 4045 4046 /* Support for user throttle configuration */ 4047 if (flags & SD_CONF_BSET_THROTTLE) { 4048 ASSERT(prop_list != NULL); 4049 un->un_saved_throttle = un->un_throttle = 4050 prop_list->sdt_throttle; 4051 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4052 "sd_set_vers1_properties: throttle set to %d\n", 4053 prop_list->sdt_throttle); 4054 } 4055 4056 /* Set the per disk retry count according to the conf file or table. */ 4057 if (flags & SD_CONF_BSET_NRR_COUNT) { 4058 ASSERT(prop_list != NULL); 4059 if (prop_list->sdt_not_rdy_retries) { 4060 un->un_notready_retry_count = 4061 prop_list->sdt_not_rdy_retries; 4062 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4063 "sd_set_vers1_properties: not ready retry count" 4064 " set to %d\n", un->un_notready_retry_count); 4065 } 4066 } 4067 4068 /* The controller type is reported for generic disk driver ioctls */ 4069 if (flags & SD_CONF_BSET_CTYPE) { 4070 ASSERT(prop_list != NULL); 4071 switch (prop_list->sdt_ctype) { 4072 case CTYPE_CDROM: 4073 un->un_ctype = prop_list->sdt_ctype; 4074 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4075 "sd_set_vers1_properties: ctype set to " 4076 "CTYPE_CDROM\n"); 4077 break; 4078 case CTYPE_CCS: 4079 un->un_ctype = prop_list->sdt_ctype; 4080 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4081 "sd_set_vers1_properties: ctype set to " 4082 "CTYPE_CCS\n"); 4083 break; 4084 case CTYPE_ROD: /* RW optical */ 4085 un->un_ctype = prop_list->sdt_ctype; 4086 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4087 "sd_set_vers1_properties: ctype set to " 4088 "CTYPE_ROD\n"); 4089 break; 4090 default: 4091 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4092 "sd_set_vers1_properties: Could not set " 4093 "invalid ctype value (%d)", 4094 prop_list->sdt_ctype); 4095 } 4096 } 4097 4098 /* Purple failover timeout */ 4099 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4100 ASSERT(prop_list != NULL); 4101 un->un_busy_retry_count = 4102 prop_list->sdt_busy_retries; 4103 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4104 "sd_set_vers1_properties: " 4105 "busy retry count set to %d\n", 4106 un->un_busy_retry_count); 4107 } 4108 4109 /* Purple reset retry count */ 4110 if (flags & SD_CONF_BSET_RST_RETRIES) { 4111 ASSERT(prop_list != NULL); 4112 un->un_reset_retry_count = 4113 prop_list->sdt_reset_retries; 4114 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4115 "sd_set_vers1_properties: " 4116 "reset retry count set to %d\n", 4117 un->un_reset_retry_count); 4118 } 4119 4120 /* Purple reservation release timeout */ 4121 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4122 ASSERT(prop_list != NULL); 4123 un->un_reserve_release_time = 4124 prop_list->sdt_reserv_rel_time; 4125 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4126 "sd_set_vers1_properties: " 4127 "reservation release timeout set to %d\n", 4128 un->un_reserve_release_time); 4129 } 4130 4131 /* 4132 * Driver flag telling the driver to verify that no commands are pending 4133 * for a device before issuing a Test Unit Ready. This is a workaround 4134 * for a firmware bug in some Seagate eliteI drives. 4135 */ 4136 if (flags & SD_CONF_BSET_TUR_CHECK) { 4137 un->un_f_cfg_tur_check = TRUE; 4138 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4139 "sd_set_vers1_properties: tur queue check set\n"); 4140 } 4141 4142 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4143 un->un_min_throttle = prop_list->sdt_min_throttle; 4144 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4145 "sd_set_vers1_properties: min throttle set to %d\n", 4146 un->un_min_throttle); 4147 } 4148 4149 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4150 un->un_f_disksort_disabled = 4151 (prop_list->sdt_disk_sort_dis != 0) ? 4152 TRUE : FALSE; 4153 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4154 "sd_set_vers1_properties: disksort disabled " 4155 "flag set to %d\n", 4156 prop_list->sdt_disk_sort_dis); 4157 } 4158 4159 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4160 un->un_f_lun_reset_enabled = 4161 (prop_list->sdt_lun_reset_enable != 0) ? 4162 TRUE : FALSE; 4163 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4164 "sd_set_vers1_properties: lun reset enabled " 4165 "flag set to %d\n", 4166 prop_list->sdt_lun_reset_enable); 4167 } 4168 4169 /* 4170 * Validate the throttle values. 4171 * If any of the numbers are invalid, set everything to defaults. 4172 */ 4173 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4174 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4175 (un->un_min_throttle > un->un_throttle)) { 4176 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4177 un->un_min_throttle = sd_min_throttle; 4178 } 4179 } 4180 4181 /* 4182 * Function: sd_is_lsi() 4183 * 4184 * Description: Check for lsi devices, step through the static device 4185 * table to match vid/pid. 4186 * 4187 * Args: un - ptr to sd_lun 4188 * 4189 * Notes: When creating new LSI property, need to add the new LSI property 4190 * to this function. 4191 */ 4192 static void 4193 sd_is_lsi(struct sd_lun *un) 4194 { 4195 char *id = NULL; 4196 int table_index; 4197 int idlen; 4198 void *prop; 4199 4200 ASSERT(un != NULL); 4201 for (table_index = 0; table_index < sd_disk_table_size; 4202 table_index++) { 4203 id = sd_disk_table[table_index].device_id; 4204 idlen = strlen(id); 4205 if (idlen == 0) { 4206 continue; 4207 } 4208 4209 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4210 prop = sd_disk_table[table_index].properties; 4211 if (prop == &lsi_properties || 4212 prop == &lsi_oem_properties || 4213 prop == &lsi_properties_scsi || 4214 prop == &symbios_properties) { 4215 un->un_f_cfg_is_lsi = TRUE; 4216 } 4217 break; 4218 } 4219 } 4220 } 4221 4222 /* 4223 * Function: sd_get_physical_geometry 4224 * 4225 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4226 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4227 * target, and use this information to initialize the physical 4228 * geometry cache specified by pgeom_p. 4229 * 4230 * MODE SENSE is an optional command, so failure in this case 4231 * does not necessarily denote an error. We want to use the 4232 * MODE SENSE commands to derive the physical geometry of the 4233 * device, but if either command fails, the logical geometry is 4234 * used as the fallback for disk label geometry in cmlb. 4235 * 4236 * This requires that un->un_blockcount and un->un_tgt_blocksize 4237 * have already been initialized for the current target and 4238 * that the current values be passed as args so that we don't 4239 * end up ever trying to use -1 as a valid value. This could 4240 * happen if either value is reset while we're not holding 4241 * the mutex. 4242 * 4243 * Arguments: un - driver soft state (unit) structure 4244 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4245 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4246 * to use the USCSI "direct" chain and bypass the normal 4247 * command waitq. 4248 * 4249 * Context: Kernel thread only (can sleep). 4250 */ 4251 4252 static int 4253 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4254 diskaddr_t capacity, int lbasize, int path_flag) 4255 { 4256 struct mode_format *page3p; 4257 struct mode_geometry *page4p; 4258 struct mode_header *headerp; 4259 int sector_size; 4260 int nsect; 4261 int nhead; 4262 int ncyl; 4263 int intrlv; 4264 int spc; 4265 diskaddr_t modesense_capacity; 4266 int rpm; 4267 int bd_len; 4268 int mode_header_length; 4269 uchar_t *p3bufp; 4270 uchar_t *p4bufp; 4271 int cdbsize; 4272 int ret = EIO; 4273 4274 ASSERT(un != NULL); 4275 4276 if (lbasize == 0) { 4277 if (ISCD(un)) { 4278 lbasize = 2048; 4279 } else { 4280 lbasize = un->un_sys_blocksize; 4281 } 4282 } 4283 pgeom_p->g_secsize = (unsigned short)lbasize; 4284 4285 /* 4286 * If the unit is a cd/dvd drive MODE SENSE page three 4287 * and MODE SENSE page four are reserved (see SBC spec 4288 * and MMC spec). To prevent soft errors just return 4289 * using the default LBA size. 4290 */ 4291 if (ISCD(un)) 4292 return (ret); 4293 4294 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4295 4296 /* 4297 * Retrieve MODE SENSE page 3 - Format Device Page 4298 */ 4299 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4300 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp, 4301 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag) 4302 != 0) { 4303 SD_ERROR(SD_LOG_COMMON, un, 4304 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4305 goto page3_exit; 4306 } 4307 4308 /* 4309 * Determine size of Block Descriptors in order to locate the mode 4310 * page data. ATAPI devices return 0, SCSI devices should return 4311 * MODE_BLK_DESC_LENGTH. 4312 */ 4313 headerp = (struct mode_header *)p3bufp; 4314 if (un->un_f_cfg_is_atapi == TRUE) { 4315 struct mode_header_grp2 *mhp = 4316 (struct mode_header_grp2 *)headerp; 4317 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4318 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4319 } else { 4320 mode_header_length = MODE_HEADER_LENGTH; 4321 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4322 } 4323 4324 if (bd_len > MODE_BLK_DESC_LENGTH) { 4325 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4326 "received unexpected bd_len of %d, page3\n", bd_len); 4327 goto page3_exit; 4328 } 4329 4330 page3p = (struct mode_format *) 4331 ((caddr_t)headerp + mode_header_length + bd_len); 4332 4333 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4334 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4335 "mode sense pg3 code mismatch %d\n", 4336 page3p->mode_page.code); 4337 goto page3_exit; 4338 } 4339 4340 /* 4341 * Use this physical geometry data only if BOTH MODE SENSE commands 4342 * complete successfully; otherwise, revert to the logical geometry. 4343 * So, we need to save everything in temporary variables. 4344 */ 4345 sector_size = BE_16(page3p->data_bytes_sect); 4346 4347 /* 4348 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 4349 */ 4350 if (sector_size == 0) { 4351 sector_size = un->un_sys_blocksize; 4352 } else { 4353 sector_size &= ~(un->un_sys_blocksize - 1); 4354 } 4355 4356 nsect = BE_16(page3p->sect_track); 4357 intrlv = BE_16(page3p->interleave); 4358 4359 SD_INFO(SD_LOG_COMMON, un, 4360 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 4361 SD_INFO(SD_LOG_COMMON, un, 4362 " mode page: %d; nsect: %d; sector size: %d;\n", 4363 page3p->mode_page.code, nsect, sector_size); 4364 SD_INFO(SD_LOG_COMMON, un, 4365 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 4366 BE_16(page3p->track_skew), 4367 BE_16(page3p->cylinder_skew)); 4368 4369 4370 /* 4371 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 4372 */ 4373 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 4374 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp, 4375 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag) 4376 != 0) { 4377 SD_ERROR(SD_LOG_COMMON, un, 4378 "sd_get_physical_geometry: mode sense page 4 failed\n"); 4379 goto page4_exit; 4380 } 4381 4382 /* 4383 * Determine size of Block Descriptors in order to locate the mode 4384 * page data. ATAPI devices return 0, SCSI devices should return 4385 * MODE_BLK_DESC_LENGTH. 4386 */ 4387 headerp = (struct mode_header *)p4bufp; 4388 if (un->un_f_cfg_is_atapi == TRUE) { 4389 struct mode_header_grp2 *mhp = 4390 (struct mode_header_grp2 *)headerp; 4391 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4392 } else { 4393 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4394 } 4395 4396 if (bd_len > MODE_BLK_DESC_LENGTH) { 4397 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4398 "received unexpected bd_len of %d, page4\n", bd_len); 4399 goto page4_exit; 4400 } 4401 4402 page4p = (struct mode_geometry *) 4403 ((caddr_t)headerp + mode_header_length + bd_len); 4404 4405 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 4406 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4407 "mode sense pg4 code mismatch %d\n", 4408 page4p->mode_page.code); 4409 goto page4_exit; 4410 } 4411 4412 /* 4413 * Stash the data now, after we know that both commands completed. 4414 */ 4415 4416 4417 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 4418 spc = nhead * nsect; 4419 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 4420 rpm = BE_16(page4p->rpm); 4421 4422 modesense_capacity = spc * ncyl; 4423 4424 SD_INFO(SD_LOG_COMMON, un, 4425 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 4426 SD_INFO(SD_LOG_COMMON, un, 4427 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 4428 SD_INFO(SD_LOG_COMMON, un, 4429 " computed capacity(h*s*c): %d;\n", modesense_capacity); 4430 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 4431 (void *)pgeom_p, capacity); 4432 4433 /* 4434 * Compensate if the drive's geometry is not rectangular, i.e., 4435 * the product of C * H * S returned by MODE SENSE >= that returned 4436 * by read capacity. This is an idiosyncrasy of the original x86 4437 * disk subsystem. 4438 */ 4439 if (modesense_capacity >= capacity) { 4440 SD_INFO(SD_LOG_COMMON, un, 4441 "sd_get_physical_geometry: adjusting acyl; " 4442 "old: %d; new: %d\n", pgeom_p->g_acyl, 4443 (modesense_capacity - capacity + spc - 1) / spc); 4444 if (sector_size != 0) { 4445 /* 1243403: NEC D38x7 drives don't support sec size */ 4446 pgeom_p->g_secsize = (unsigned short)sector_size; 4447 } 4448 pgeom_p->g_nsect = (unsigned short)nsect; 4449 pgeom_p->g_nhead = (unsigned short)nhead; 4450 pgeom_p->g_capacity = capacity; 4451 pgeom_p->g_acyl = 4452 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 4453 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 4454 } 4455 4456 pgeom_p->g_rpm = (unsigned short)rpm; 4457 pgeom_p->g_intrlv = (unsigned short)intrlv; 4458 ret = 0; 4459 4460 SD_INFO(SD_LOG_COMMON, un, 4461 "sd_get_physical_geometry: mode sense geometry:\n"); 4462 SD_INFO(SD_LOG_COMMON, un, 4463 " nsect: %d; sector size: %d; interlv: %d\n", 4464 nsect, sector_size, intrlv); 4465 SD_INFO(SD_LOG_COMMON, un, 4466 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 4467 nhead, ncyl, rpm, modesense_capacity); 4468 SD_INFO(SD_LOG_COMMON, un, 4469 "sd_get_physical_geometry: (cached)\n"); 4470 SD_INFO(SD_LOG_COMMON, un, 4471 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 4472 pgeom_p->g_ncyl, pgeom_p->g_acyl, 4473 pgeom_p->g_nhead, pgeom_p->g_nsect); 4474 SD_INFO(SD_LOG_COMMON, un, 4475 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 4476 pgeom_p->g_secsize, pgeom_p->g_capacity, 4477 pgeom_p->g_intrlv, pgeom_p->g_rpm); 4478 4479 page4_exit: 4480 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 4481 page3_exit: 4482 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 4483 4484 return (ret); 4485 } 4486 4487 /* 4488 * Function: sd_get_virtual_geometry 4489 * 4490 * Description: Ask the controller to tell us about the target device. 4491 * 4492 * Arguments: un - pointer to softstate 4493 * capacity - disk capacity in #blocks 4494 * lbasize - disk block size in bytes 4495 * 4496 * Context: Kernel thread only 4497 */ 4498 4499 static int 4500 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 4501 diskaddr_t capacity, int lbasize) 4502 { 4503 uint_t geombuf; 4504 int spc; 4505 4506 ASSERT(un != NULL); 4507 4508 /* Set sector size, and total number of sectors */ 4509 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 4510 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 4511 4512 /* Let the HBA tell us its geometry */ 4513 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 4514 4515 /* A value of -1 indicates an undefined "geometry" property */ 4516 if (geombuf == (-1)) { 4517 return (EINVAL); 4518 } 4519 4520 /* Initialize the logical geometry cache. */ 4521 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 4522 lgeom_p->g_nsect = geombuf & 0xffff; 4523 lgeom_p->g_secsize = un->un_sys_blocksize; 4524 4525 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 4526 4527 /* 4528 * Note: The driver originally converted the capacity value from 4529 * target blocks to system blocks. However, the capacity value passed 4530 * to this routine is already in terms of system blocks (this scaling 4531 * is done when the READ CAPACITY command is issued and processed). 4532 * This 'error' may have gone undetected because the usage of g_ncyl 4533 * (which is based upon g_capacity) is very limited within the driver 4534 */ 4535 lgeom_p->g_capacity = capacity; 4536 4537 /* 4538 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 4539 * hba may return zero values if the device has been removed. 4540 */ 4541 if (spc == 0) { 4542 lgeom_p->g_ncyl = 0; 4543 } else { 4544 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 4545 } 4546 lgeom_p->g_acyl = 0; 4547 4548 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 4549 return (0); 4550 4551 } 4552 /* 4553 * Function: sd_update_block_info 4554 * 4555 * Description: Calculate a byte count to sector count bitshift value 4556 * from sector size. 4557 * 4558 * Arguments: un: unit struct. 4559 * lbasize: new target sector size 4560 * capacity: new target capacity, ie. block count 4561 * 4562 * Context: Kernel thread context 4563 */ 4564 4565 static void 4566 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 4567 { 4568 uint_t dblk; 4569 4570 if (lbasize != 0) { 4571 un->un_tgt_blocksize = lbasize; 4572 un->un_f_tgt_blocksize_is_valid = TRUE; 4573 } 4574 4575 if (capacity != 0) { 4576 un->un_blockcount = capacity; 4577 un->un_f_blockcount_is_valid = TRUE; 4578 } 4579 4580 /* 4581 * Update device capacity properties. 4582 * 4583 * 'device-nblocks' number of blocks in target's units 4584 * 'device-blksize' data bearing size of target's block 4585 * 4586 * NOTE: math is complicated by the fact that un_tgt_blocksize may 4587 * not be a power of two for checksumming disks with 520/528 byte 4588 * sectors. 4589 */ 4590 if (un->un_f_tgt_blocksize_is_valid && 4591 un->un_f_blockcount_is_valid && 4592 un->un_sys_blocksize) { 4593 dblk = un->un_tgt_blocksize / un->un_sys_blocksize; 4594 (void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un), 4595 "device-nblocks", un->un_blockcount / dblk); 4596 /* 4597 * To save memory, only define "device-blksize" when its 4598 * value is differnet than the default DEV_BSIZE value. 4599 */ 4600 if ((un->un_sys_blocksize * dblk) != DEV_BSIZE) 4601 (void) ddi_prop_update_int(DDI_DEV_T_NONE, 4602 SD_DEVINFO(un), "device-blksize", 4603 un->un_sys_blocksize * dblk); 4604 } 4605 } 4606 4607 4608 /* 4609 * Function: sd_register_devid 4610 * 4611 * Description: This routine will obtain the device id information from the 4612 * target, obtain the serial number, and register the device 4613 * id with the ddi framework. 4614 * 4615 * Arguments: devi - the system's dev_info_t for the device. 4616 * un - driver soft state (unit) structure 4617 * reservation_flag - indicates if a reservation conflict 4618 * occurred during attach 4619 * 4620 * Context: Kernel Thread 4621 */ 4622 static void 4623 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag) 4624 { 4625 int rval = 0; 4626 uchar_t *inq80 = NULL; 4627 size_t inq80_len = MAX_INQUIRY_SIZE; 4628 size_t inq80_resid = 0; 4629 uchar_t *inq83 = NULL; 4630 size_t inq83_len = MAX_INQUIRY_SIZE; 4631 size_t inq83_resid = 0; 4632 int dlen, len; 4633 char *sn; 4634 4635 ASSERT(un != NULL); 4636 ASSERT(mutex_owned(SD_MUTEX(un))); 4637 ASSERT((SD_DEVINFO(un)) == devi); 4638 4639 /* 4640 * This is the case of antiquated Sun disk drives that have the 4641 * FAB_DEVID property set in the disk_table. These drives 4642 * manage the devid's by storing them in last 2 available sectors 4643 * on the drive and have them fabricated by the ddi layer by calling 4644 * ddi_devid_init and passing the DEVID_FAB flag. 4645 */ 4646 if (un->un_f_opt_fab_devid == TRUE) { 4647 /* 4648 * Depending on EINVAL isn't reliable, since a reserved disk 4649 * may result in invalid geometry, so check to make sure a 4650 * reservation conflict did not occur during attach. 4651 */ 4652 if ((sd_get_devid(un) == EINVAL) && 4653 (reservation_flag != SD_TARGET_IS_RESERVED)) { 4654 /* 4655 * The devid is invalid AND there is no reservation 4656 * conflict. Fabricate a new devid. 4657 */ 4658 (void) sd_create_devid(un); 4659 } 4660 4661 /* Register the devid if it exists */ 4662 if (un->un_devid != NULL) { 4663 (void) ddi_devid_register(SD_DEVINFO(un), 4664 un->un_devid); 4665 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4666 "sd_register_devid: Devid Fabricated\n"); 4667 } 4668 return; 4669 } 4670 4671 /* 4672 * We check the availibility of the World Wide Name (0x83) and Unit 4673 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 4674 * un_vpd_page_mask from them, we decide which way to get the WWN. If 4675 * 0x83 is availible, that is the best choice. Our next choice is 4676 * 0x80. If neither are availible, we munge the devid from the device 4677 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 4678 * to fabricate a devid for non-Sun qualified disks. 4679 */ 4680 if (sd_check_vpd_page_support(un) == 0) { 4681 /* collect page 80 data if available */ 4682 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 4683 4684 mutex_exit(SD_MUTEX(un)); 4685 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 4686 rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len, 4687 0x01, 0x80, &inq80_resid); 4688 4689 if (rval != 0) { 4690 kmem_free(inq80, inq80_len); 4691 inq80 = NULL; 4692 inq80_len = 0; 4693 } else if (ddi_prop_exists( 4694 DDI_DEV_T_NONE, SD_DEVINFO(un), 4695 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 4696 INQUIRY_SERIAL_NO) == 0) { 4697 /* 4698 * If we don't already have a serial number 4699 * property, do quick verify of data returned 4700 * and define property. 4701 */ 4702 dlen = inq80_len - inq80_resid; 4703 len = (size_t)inq80[3]; 4704 if ((dlen >= 4) && ((len + 4) <= dlen)) { 4705 /* 4706 * Ensure sn termination, skip leading 4707 * blanks, and create property 4708 * 'inquiry-serial-no'. 4709 */ 4710 sn = (char *)&inq80[4]; 4711 sn[len] = 0; 4712 while (*sn && (*sn == ' ')) 4713 sn++; 4714 if (*sn) { 4715 (void) ddi_prop_update_string( 4716 DDI_DEV_T_NONE, 4717 SD_DEVINFO(un), 4718 INQUIRY_SERIAL_NO, sn); 4719 } 4720 } 4721 } 4722 mutex_enter(SD_MUTEX(un)); 4723 } 4724 4725 /* collect page 83 data if available */ 4726 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 4727 mutex_exit(SD_MUTEX(un)); 4728 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 4729 rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len, 4730 0x01, 0x83, &inq83_resid); 4731 4732 if (rval != 0) { 4733 kmem_free(inq83, inq83_len); 4734 inq83 = NULL; 4735 inq83_len = 0; 4736 } 4737 mutex_enter(SD_MUTEX(un)); 4738 } 4739 } 4740 4741 /* encode best devid possible based on data available */ 4742 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 4743 (char *)ddi_driver_name(SD_DEVINFO(un)), 4744 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 4745 inq80, inq80_len - inq80_resid, inq83, inq83_len - 4746 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 4747 4748 /* devid successfully encoded, register devid */ 4749 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 4750 4751 } else { 4752 /* 4753 * Unable to encode a devid based on data available. 4754 * This is not a Sun qualified disk. Older Sun disk 4755 * drives that have the SD_FAB_DEVID property 4756 * set in the disk_table and non Sun qualified 4757 * disks are treated in the same manner. These 4758 * drives manage the devid's by storing them in 4759 * last 2 available sectors on the drive and 4760 * have them fabricated by the ddi layer by 4761 * calling ddi_devid_init and passing the 4762 * DEVID_FAB flag. 4763 * Create a fabricate devid only if there's no 4764 * fabricate devid existed. 4765 */ 4766 if (sd_get_devid(un) == EINVAL) { 4767 (void) sd_create_devid(un); 4768 } 4769 un->un_f_opt_fab_devid = TRUE; 4770 4771 /* Register the devid if it exists */ 4772 if (un->un_devid != NULL) { 4773 (void) ddi_devid_register(SD_DEVINFO(un), 4774 un->un_devid); 4775 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4776 "sd_register_devid: devid fabricated using " 4777 "ddi framework\n"); 4778 } 4779 } 4780 4781 /* clean up resources */ 4782 if (inq80 != NULL) { 4783 kmem_free(inq80, inq80_len); 4784 } 4785 if (inq83 != NULL) { 4786 kmem_free(inq83, inq83_len); 4787 } 4788 } 4789 4790 4791 4792 /* 4793 * Function: sd_get_devid 4794 * 4795 * Description: This routine will return 0 if a valid device id has been 4796 * obtained from the target and stored in the soft state. If a 4797 * valid device id has not been previously read and stored, a 4798 * read attempt will be made. 4799 * 4800 * Arguments: un - driver soft state (unit) structure 4801 * 4802 * Return Code: 0 if we successfully get the device id 4803 * 4804 * Context: Kernel Thread 4805 */ 4806 4807 static int 4808 sd_get_devid(struct sd_lun *un) 4809 { 4810 struct dk_devid *dkdevid; 4811 ddi_devid_t tmpid; 4812 uint_t *ip; 4813 size_t sz; 4814 diskaddr_t blk; 4815 int status; 4816 int chksum; 4817 int i; 4818 size_t buffer_size; 4819 4820 ASSERT(un != NULL); 4821 ASSERT(mutex_owned(SD_MUTEX(un))); 4822 4823 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 4824 un); 4825 4826 if (un->un_devid != NULL) { 4827 return (0); 4828 } 4829 4830 mutex_exit(SD_MUTEX(un)); 4831 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 4832 (void *)SD_PATH_DIRECT) != 0) { 4833 mutex_enter(SD_MUTEX(un)); 4834 return (EINVAL); 4835 } 4836 4837 /* 4838 * Read and verify device id, stored in the reserved cylinders at the 4839 * end of the disk. Backup label is on the odd sectors of the last 4840 * track of the last cylinder. Device id will be on track of the next 4841 * to last cylinder. 4842 */ 4843 mutex_enter(SD_MUTEX(un)); 4844 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 4845 mutex_exit(SD_MUTEX(un)); 4846 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 4847 status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk, 4848 SD_PATH_DIRECT); 4849 if (status != 0) { 4850 goto error; 4851 } 4852 4853 /* Validate the revision */ 4854 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 4855 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 4856 status = EINVAL; 4857 goto error; 4858 } 4859 4860 /* Calculate the checksum */ 4861 chksum = 0; 4862 ip = (uint_t *)dkdevid; 4863 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 4864 i++) { 4865 chksum ^= ip[i]; 4866 } 4867 4868 /* Compare the checksums */ 4869 if (DKD_GETCHKSUM(dkdevid) != chksum) { 4870 status = EINVAL; 4871 goto error; 4872 } 4873 4874 /* Validate the device id */ 4875 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 4876 status = EINVAL; 4877 goto error; 4878 } 4879 4880 /* 4881 * Store the device id in the driver soft state 4882 */ 4883 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 4884 tmpid = kmem_alloc(sz, KM_SLEEP); 4885 4886 mutex_enter(SD_MUTEX(un)); 4887 4888 un->un_devid = tmpid; 4889 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 4890 4891 kmem_free(dkdevid, buffer_size); 4892 4893 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 4894 4895 return (status); 4896 error: 4897 mutex_enter(SD_MUTEX(un)); 4898 kmem_free(dkdevid, buffer_size); 4899 return (status); 4900 } 4901 4902 4903 /* 4904 * Function: sd_create_devid 4905 * 4906 * Description: This routine will fabricate the device id and write it 4907 * to the disk. 4908 * 4909 * Arguments: un - driver soft state (unit) structure 4910 * 4911 * Return Code: value of the fabricated device id 4912 * 4913 * Context: Kernel Thread 4914 */ 4915 4916 static ddi_devid_t 4917 sd_create_devid(struct sd_lun *un) 4918 { 4919 ASSERT(un != NULL); 4920 4921 /* Fabricate the devid */ 4922 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 4923 == DDI_FAILURE) { 4924 return (NULL); 4925 } 4926 4927 /* Write the devid to disk */ 4928 if (sd_write_deviceid(un) != 0) { 4929 ddi_devid_free(un->un_devid); 4930 un->un_devid = NULL; 4931 } 4932 4933 return (un->un_devid); 4934 } 4935 4936 4937 /* 4938 * Function: sd_write_deviceid 4939 * 4940 * Description: This routine will write the device id to the disk 4941 * reserved sector. 4942 * 4943 * Arguments: un - driver soft state (unit) structure 4944 * 4945 * Return Code: EINVAL 4946 * value returned by sd_send_scsi_cmd 4947 * 4948 * Context: Kernel Thread 4949 */ 4950 4951 static int 4952 sd_write_deviceid(struct sd_lun *un) 4953 { 4954 struct dk_devid *dkdevid; 4955 diskaddr_t blk; 4956 uint_t *ip, chksum; 4957 int status; 4958 int i; 4959 4960 ASSERT(mutex_owned(SD_MUTEX(un))); 4961 4962 mutex_exit(SD_MUTEX(un)); 4963 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 4964 (void *)SD_PATH_DIRECT) != 0) { 4965 mutex_enter(SD_MUTEX(un)); 4966 return (-1); 4967 } 4968 4969 4970 /* Allocate the buffer */ 4971 dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 4972 4973 /* Fill in the revision */ 4974 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 4975 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 4976 4977 /* Copy in the device id */ 4978 mutex_enter(SD_MUTEX(un)); 4979 bcopy(un->un_devid, &dkdevid->dkd_devid, 4980 ddi_devid_sizeof(un->un_devid)); 4981 mutex_exit(SD_MUTEX(un)); 4982 4983 /* Calculate the checksum */ 4984 chksum = 0; 4985 ip = (uint_t *)dkdevid; 4986 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 4987 i++) { 4988 chksum ^= ip[i]; 4989 } 4990 4991 /* Fill-in checksum */ 4992 DKD_FORMCHKSUM(chksum, dkdevid); 4993 4994 /* Write the reserved sector */ 4995 status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk, 4996 SD_PATH_DIRECT); 4997 4998 kmem_free(dkdevid, un->un_sys_blocksize); 4999 5000 mutex_enter(SD_MUTEX(un)); 5001 return (status); 5002 } 5003 5004 5005 /* 5006 * Function: sd_check_vpd_page_support 5007 * 5008 * Description: This routine sends an inquiry command with the EVPD bit set and 5009 * a page code of 0x00 to the device. It is used to determine which 5010 * vital product pages are availible to find the devid. We are 5011 * looking for pages 0x83 or 0x80. If we return a negative 1, the 5012 * device does not support that command. 5013 * 5014 * Arguments: un - driver soft state (unit) structure 5015 * 5016 * Return Code: 0 - success 5017 * 1 - check condition 5018 * 5019 * Context: This routine can sleep. 5020 */ 5021 5022 static int 5023 sd_check_vpd_page_support(struct sd_lun *un) 5024 { 5025 uchar_t *page_list = NULL; 5026 uchar_t page_length = 0xff; /* Use max possible length */ 5027 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5028 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5029 int rval = 0; 5030 int counter; 5031 5032 ASSERT(un != NULL); 5033 ASSERT(mutex_owned(SD_MUTEX(un))); 5034 5035 mutex_exit(SD_MUTEX(un)); 5036 5037 /* 5038 * We'll set the page length to the maximum to save figuring it out 5039 * with an additional call. 5040 */ 5041 page_list = kmem_zalloc(page_length, KM_SLEEP); 5042 5043 rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd, 5044 page_code, NULL); 5045 5046 mutex_enter(SD_MUTEX(un)); 5047 5048 /* 5049 * Now we must validate that the device accepted the command, as some 5050 * drives do not support it. If the drive does support it, we will 5051 * return 0, and the supported pages will be in un_vpd_page_mask. If 5052 * not, we return -1. 5053 */ 5054 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5055 /* Loop to find one of the 2 pages we need */ 5056 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5057 5058 /* 5059 * Pages are returned in ascending order, and 0x83 is what we 5060 * are hoping for. 5061 */ 5062 while ((page_list[counter] <= 0x83) && 5063 (counter <= (page_list[VPD_PAGE_LENGTH] + 5064 VPD_HEAD_OFFSET))) { 5065 /* 5066 * Add 3 because page_list[3] is the number of 5067 * pages minus 3 5068 */ 5069 5070 switch (page_list[counter]) { 5071 case 0x00: 5072 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5073 break; 5074 case 0x80: 5075 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5076 break; 5077 case 0x81: 5078 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5079 break; 5080 case 0x82: 5081 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5082 break; 5083 case 0x83: 5084 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5085 break; 5086 } 5087 counter++; 5088 } 5089 5090 } else { 5091 rval = -1; 5092 5093 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5094 "sd_check_vpd_page_support: This drive does not implement " 5095 "VPD pages.\n"); 5096 } 5097 5098 kmem_free(page_list, page_length); 5099 5100 return (rval); 5101 } 5102 5103 5104 /* 5105 * Function: sd_setup_pm 5106 * 5107 * Description: Initialize Power Management on the device 5108 * 5109 * Context: Kernel Thread 5110 */ 5111 5112 static void 5113 sd_setup_pm(struct sd_lun *un, dev_info_t *devi) 5114 { 5115 uint_t log_page_size; 5116 uchar_t *log_page_data; 5117 int rval; 5118 5119 /* 5120 * Since we are called from attach, holding a mutex for 5121 * un is unnecessary. Because some of the routines called 5122 * from here require SD_MUTEX to not be held, assert this 5123 * right up front. 5124 */ 5125 ASSERT(!mutex_owned(SD_MUTEX(un))); 5126 /* 5127 * Since the sd device does not have the 'reg' property, 5128 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5129 * The following code is to tell cpr that this device 5130 * DOES need to be suspended and resumed. 5131 */ 5132 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5133 "pm-hardware-state", "needs-suspend-resume"); 5134 5135 /* 5136 * This complies with the new power management framework 5137 * for certain desktop machines. Create the pm_components 5138 * property as a string array property. 5139 */ 5140 if (un->un_f_pm_supported) { 5141 /* 5142 * not all devices have a motor, try it first. 5143 * some devices may return ILLEGAL REQUEST, some 5144 * will hang 5145 * The following START_STOP_UNIT is used to check if target 5146 * device has a motor. 5147 */ 5148 un->un_f_start_stop_supported = TRUE; 5149 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 5150 SD_PATH_DIRECT) != 0) { 5151 un->un_f_start_stop_supported = FALSE; 5152 } 5153 5154 /* 5155 * create pm properties anyways otherwise the parent can't 5156 * go to sleep 5157 */ 5158 (void) sd_create_pm_components(devi, un); 5159 un->un_f_pm_is_enabled = TRUE; 5160 return; 5161 } 5162 5163 if (!un->un_f_log_sense_supported) { 5164 un->un_power_level = SD_SPINDLE_ON; 5165 un->un_f_pm_is_enabled = FALSE; 5166 return; 5167 } 5168 5169 rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE); 5170 5171 #ifdef SDDEBUG 5172 if (sd_force_pm_supported) { 5173 /* Force a successful result */ 5174 rval = 1; 5175 } 5176 #endif 5177 5178 /* 5179 * If the start-stop cycle counter log page is not supported 5180 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0) 5181 * then we should not create the pm_components property. 5182 */ 5183 if (rval == -1) { 5184 /* 5185 * Error. 5186 * Reading log sense failed, most likely this is 5187 * an older drive that does not support log sense. 5188 * If this fails auto-pm is not supported. 5189 */ 5190 un->un_power_level = SD_SPINDLE_ON; 5191 un->un_f_pm_is_enabled = FALSE; 5192 5193 } else if (rval == 0) { 5194 /* 5195 * Page not found. 5196 * The start stop cycle counter is implemented as page 5197 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5198 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5199 */ 5200 if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) { 5201 /* 5202 * Page found, use this one. 5203 */ 5204 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5205 un->un_f_pm_is_enabled = TRUE; 5206 } else { 5207 /* 5208 * Error or page not found. 5209 * auto-pm is not supported for this device. 5210 */ 5211 un->un_power_level = SD_SPINDLE_ON; 5212 un->un_f_pm_is_enabled = FALSE; 5213 } 5214 } else { 5215 /* 5216 * Page found, use it. 5217 */ 5218 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 5219 un->un_f_pm_is_enabled = TRUE; 5220 } 5221 5222 5223 if (un->un_f_pm_is_enabled == TRUE) { 5224 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5225 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5226 5227 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 5228 log_page_size, un->un_start_stop_cycle_page, 5229 0x01, 0, SD_PATH_DIRECT); 5230 #ifdef SDDEBUG 5231 if (sd_force_pm_supported) { 5232 /* Force a successful result */ 5233 rval = 0; 5234 } 5235 #endif 5236 5237 /* 5238 * If the Log sense for Page( Start/stop cycle counter page) 5239 * succeeds, then power managment is supported and we can 5240 * enable auto-pm. 5241 */ 5242 if (rval == 0) { 5243 (void) sd_create_pm_components(devi, un); 5244 } else { 5245 un->un_power_level = SD_SPINDLE_ON; 5246 un->un_f_pm_is_enabled = FALSE; 5247 } 5248 5249 kmem_free(log_page_data, log_page_size); 5250 } 5251 } 5252 5253 5254 /* 5255 * Function: sd_create_pm_components 5256 * 5257 * Description: Initialize PM property. 5258 * 5259 * Context: Kernel thread context 5260 */ 5261 5262 static void 5263 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 5264 { 5265 char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL }; 5266 5267 ASSERT(!mutex_owned(SD_MUTEX(un))); 5268 5269 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 5270 "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) { 5271 /* 5272 * When components are initially created they are idle, 5273 * power up any non-removables. 5274 * Note: the return value of pm_raise_power can't be used 5275 * for determining if PM should be enabled for this device. 5276 * Even if you check the return values and remove this 5277 * property created above, the PM framework will not honor the 5278 * change after the first call to pm_raise_power. Hence, 5279 * removal of that property does not help if pm_raise_power 5280 * fails. In the case of removable media, the start/stop 5281 * will fail if the media is not present. 5282 */ 5283 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 5284 SD_SPINDLE_ON) == DDI_SUCCESS)) { 5285 mutex_enter(SD_MUTEX(un)); 5286 un->un_power_level = SD_SPINDLE_ON; 5287 mutex_enter(&un->un_pm_mutex); 5288 /* Set to on and not busy. */ 5289 un->un_pm_count = 0; 5290 } else { 5291 mutex_enter(SD_MUTEX(un)); 5292 un->un_power_level = SD_SPINDLE_OFF; 5293 mutex_enter(&un->un_pm_mutex); 5294 /* Set to off. */ 5295 un->un_pm_count = -1; 5296 } 5297 mutex_exit(&un->un_pm_mutex); 5298 mutex_exit(SD_MUTEX(un)); 5299 } else { 5300 un->un_power_level = SD_SPINDLE_ON; 5301 un->un_f_pm_is_enabled = FALSE; 5302 } 5303 } 5304 5305 5306 /* 5307 * Function: sd_ddi_suspend 5308 * 5309 * Description: Performs system power-down operations. This includes 5310 * setting the drive state to indicate its suspended so 5311 * that no new commands will be accepted. Also, wait for 5312 * all commands that are in transport or queued to a timer 5313 * for retry to complete. All timeout threads are cancelled. 5314 * 5315 * Return Code: DDI_FAILURE or DDI_SUCCESS 5316 * 5317 * Context: Kernel thread context 5318 */ 5319 5320 static int 5321 sd_ddi_suspend(dev_info_t *devi) 5322 { 5323 struct sd_lun *un; 5324 clock_t wait_cmds_complete; 5325 5326 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 5327 if (un == NULL) { 5328 return (DDI_FAILURE); 5329 } 5330 5331 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 5332 5333 mutex_enter(SD_MUTEX(un)); 5334 5335 /* Return success if the device is already suspended. */ 5336 if (un->un_state == SD_STATE_SUSPENDED) { 5337 mutex_exit(SD_MUTEX(un)); 5338 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5339 "device already suspended, exiting\n"); 5340 return (DDI_SUCCESS); 5341 } 5342 5343 /* Return failure if the device is being used by HA */ 5344 if (un->un_resvd_status & 5345 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 5346 mutex_exit(SD_MUTEX(un)); 5347 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5348 "device in use by HA, exiting\n"); 5349 return (DDI_FAILURE); 5350 } 5351 5352 /* 5353 * Return failure if the device is in a resource wait 5354 * or power changing state. 5355 */ 5356 if ((un->un_state == SD_STATE_RWAIT) || 5357 (un->un_state == SD_STATE_PM_CHANGING)) { 5358 mutex_exit(SD_MUTEX(un)); 5359 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5360 "device in resource wait state, exiting\n"); 5361 return (DDI_FAILURE); 5362 } 5363 5364 5365 un->un_save_state = un->un_last_state; 5366 New_state(un, SD_STATE_SUSPENDED); 5367 5368 /* 5369 * Wait for all commands that are in transport or queued to a timer 5370 * for retry to complete. 5371 * 5372 * While waiting, no new commands will be accepted or sent because of 5373 * the new state we set above. 5374 * 5375 * Wait till current operation has completed. If we are in the resource 5376 * wait state (with an intr outstanding) then we need to wait till the 5377 * intr completes and starts the next cmd. We want to wait for 5378 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 5379 */ 5380 wait_cmds_complete = ddi_get_lbolt() + 5381 (sd_wait_cmds_complete * drv_usectohz(1000000)); 5382 5383 while (un->un_ncmds_in_transport != 0) { 5384 /* 5385 * Fail if commands do not finish in the specified time. 5386 */ 5387 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 5388 wait_cmds_complete) == -1) { 5389 /* 5390 * Undo the state changes made above. Everything 5391 * must go back to it's original value. 5392 */ 5393 Restore_state(un); 5394 un->un_last_state = un->un_save_state; 5395 /* Wake up any threads that might be waiting. */ 5396 cv_broadcast(&un->un_suspend_cv); 5397 mutex_exit(SD_MUTEX(un)); 5398 SD_ERROR(SD_LOG_IO_PM, un, 5399 "sd_ddi_suspend: failed due to outstanding cmds\n"); 5400 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 5401 return (DDI_FAILURE); 5402 } 5403 } 5404 5405 /* 5406 * Cancel SCSI watch thread and timeouts, if any are active 5407 */ 5408 5409 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 5410 opaque_t temp_token = un->un_swr_token; 5411 mutex_exit(SD_MUTEX(un)); 5412 scsi_watch_suspend(temp_token); 5413 mutex_enter(SD_MUTEX(un)); 5414 } 5415 5416 if (un->un_reset_throttle_timeid != NULL) { 5417 timeout_id_t temp_id = un->un_reset_throttle_timeid; 5418 un->un_reset_throttle_timeid = NULL; 5419 mutex_exit(SD_MUTEX(un)); 5420 (void) untimeout(temp_id); 5421 mutex_enter(SD_MUTEX(un)); 5422 } 5423 5424 if (un->un_dcvb_timeid != NULL) { 5425 timeout_id_t temp_id = un->un_dcvb_timeid; 5426 un->un_dcvb_timeid = NULL; 5427 mutex_exit(SD_MUTEX(un)); 5428 (void) untimeout(temp_id); 5429 mutex_enter(SD_MUTEX(un)); 5430 } 5431 5432 mutex_enter(&un->un_pm_mutex); 5433 if (un->un_pm_timeid != NULL) { 5434 timeout_id_t temp_id = un->un_pm_timeid; 5435 un->un_pm_timeid = NULL; 5436 mutex_exit(&un->un_pm_mutex); 5437 mutex_exit(SD_MUTEX(un)); 5438 (void) untimeout(temp_id); 5439 mutex_enter(SD_MUTEX(un)); 5440 } else { 5441 mutex_exit(&un->un_pm_mutex); 5442 } 5443 5444 if (un->un_retry_timeid != NULL) { 5445 timeout_id_t temp_id = un->un_retry_timeid; 5446 un->un_retry_timeid = NULL; 5447 mutex_exit(SD_MUTEX(un)); 5448 (void) untimeout(temp_id); 5449 mutex_enter(SD_MUTEX(un)); 5450 } 5451 5452 if (un->un_direct_priority_timeid != NULL) { 5453 timeout_id_t temp_id = un->un_direct_priority_timeid; 5454 un->un_direct_priority_timeid = NULL; 5455 mutex_exit(SD_MUTEX(un)); 5456 (void) untimeout(temp_id); 5457 mutex_enter(SD_MUTEX(un)); 5458 } 5459 5460 if (un->un_f_is_fibre == TRUE) { 5461 /* 5462 * Remove callbacks for insert and remove events 5463 */ 5464 if (un->un_insert_event != NULL) { 5465 mutex_exit(SD_MUTEX(un)); 5466 (void) ddi_remove_event_handler(un->un_insert_cb_id); 5467 mutex_enter(SD_MUTEX(un)); 5468 un->un_insert_event = NULL; 5469 } 5470 5471 if (un->un_remove_event != NULL) { 5472 mutex_exit(SD_MUTEX(un)); 5473 (void) ddi_remove_event_handler(un->un_remove_cb_id); 5474 mutex_enter(SD_MUTEX(un)); 5475 un->un_remove_event = NULL; 5476 } 5477 } 5478 5479 mutex_exit(SD_MUTEX(un)); 5480 5481 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 5482 5483 return (DDI_SUCCESS); 5484 } 5485 5486 5487 /* 5488 * Function: sd_ddi_pm_suspend 5489 * 5490 * Description: Set the drive state to low power. 5491 * Someone else is required to actually change the drive 5492 * power level. 5493 * 5494 * Arguments: un - driver soft state (unit) structure 5495 * 5496 * Return Code: DDI_FAILURE or DDI_SUCCESS 5497 * 5498 * Context: Kernel thread context 5499 */ 5500 5501 static int 5502 sd_ddi_pm_suspend(struct sd_lun *un) 5503 { 5504 ASSERT(un != NULL); 5505 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n"); 5506 5507 ASSERT(!mutex_owned(SD_MUTEX(un))); 5508 mutex_enter(SD_MUTEX(un)); 5509 5510 /* 5511 * Exit if power management is not enabled for this device, or if 5512 * the device is being used by HA. 5513 */ 5514 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 5515 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 5516 mutex_exit(SD_MUTEX(un)); 5517 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n"); 5518 return (DDI_SUCCESS); 5519 } 5520 5521 SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n", 5522 un->un_ncmds_in_driver); 5523 5524 /* 5525 * See if the device is not busy, ie.: 5526 * - we have no commands in the driver for this device 5527 * - not waiting for resources 5528 */ 5529 if ((un->un_ncmds_in_driver == 0) && 5530 (un->un_state != SD_STATE_RWAIT)) { 5531 /* 5532 * The device is not busy, so it is OK to go to low power state. 5533 * Indicate low power, but rely on someone else to actually 5534 * change it. 5535 */ 5536 mutex_enter(&un->un_pm_mutex); 5537 un->un_pm_count = -1; 5538 mutex_exit(&un->un_pm_mutex); 5539 un->un_power_level = SD_SPINDLE_OFF; 5540 } 5541 5542 mutex_exit(SD_MUTEX(un)); 5543 5544 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n"); 5545 5546 return (DDI_SUCCESS); 5547 } 5548 5549 5550 /* 5551 * Function: sd_ddi_resume 5552 * 5553 * Description: Performs system power-up operations.. 5554 * 5555 * Return Code: DDI_SUCCESS 5556 * DDI_FAILURE 5557 * 5558 * Context: Kernel thread context 5559 */ 5560 5561 static int 5562 sd_ddi_resume(dev_info_t *devi) 5563 { 5564 struct sd_lun *un; 5565 5566 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 5567 if (un == NULL) { 5568 return (DDI_FAILURE); 5569 } 5570 5571 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 5572 5573 mutex_enter(SD_MUTEX(un)); 5574 Restore_state(un); 5575 5576 /* 5577 * Restore the state which was saved to give the 5578 * the right state in un_last_state 5579 */ 5580 un->un_last_state = un->un_save_state; 5581 /* 5582 * Note: throttle comes back at full. 5583 * Also note: this MUST be done before calling pm_raise_power 5584 * otherwise the system can get hung in biowait. The scenario where 5585 * this'll happen is under cpr suspend. Writing of the system 5586 * state goes through sddump, which writes 0 to un_throttle. If 5587 * writing the system state then fails, example if the partition is 5588 * too small, then cpr attempts a resume. If throttle isn't restored 5589 * from the saved value until after calling pm_raise_power then 5590 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 5591 * in biowait. 5592 */ 5593 un->un_throttle = un->un_saved_throttle; 5594 5595 /* 5596 * The chance of failure is very rare as the only command done in power 5597 * entry point is START command when you transition from 0->1 or 5598 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 5599 * which suspend was done. Ignore the return value as the resume should 5600 * not be failed. In the case of removable media the media need not be 5601 * inserted and hence there is a chance that raise power will fail with 5602 * media not present. 5603 */ 5604 if (un->un_f_attach_spinup) { 5605 mutex_exit(SD_MUTEX(un)); 5606 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 5607 mutex_enter(SD_MUTEX(un)); 5608 } 5609 5610 /* 5611 * Don't broadcast to the suspend cv and therefore possibly 5612 * start I/O until after power has been restored. 5613 */ 5614 cv_broadcast(&un->un_suspend_cv); 5615 cv_broadcast(&un->un_state_cv); 5616 5617 /* restart thread */ 5618 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 5619 scsi_watch_resume(un->un_swr_token); 5620 } 5621 5622 #if (defined(__fibre)) 5623 if (un->un_f_is_fibre == TRUE) { 5624 /* 5625 * Add callbacks for insert and remove events 5626 */ 5627 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 5628 sd_init_event_callbacks(un); 5629 } 5630 } 5631 #endif 5632 5633 /* 5634 * Transport any pending commands to the target. 5635 * 5636 * If this is a low-activity device commands in queue will have to wait 5637 * until new commands come in, which may take awhile. Also, we 5638 * specifically don't check un_ncmds_in_transport because we know that 5639 * there really are no commands in progress after the unit was 5640 * suspended and we could have reached the throttle level, been 5641 * suspended, and have no new commands coming in for awhile. Highly 5642 * unlikely, but so is the low-activity disk scenario. 5643 */ 5644 ddi_xbuf_dispatch(un->un_xbuf_attr); 5645 5646 sd_start_cmds(un, NULL); 5647 mutex_exit(SD_MUTEX(un)); 5648 5649 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 5650 5651 return (DDI_SUCCESS); 5652 } 5653 5654 5655 /* 5656 * Function: sd_ddi_pm_resume 5657 * 5658 * Description: Set the drive state to powered on. 5659 * Someone else is required to actually change the drive 5660 * power level. 5661 * 5662 * Arguments: un - driver soft state (unit) structure 5663 * 5664 * Return Code: DDI_SUCCESS 5665 * 5666 * Context: Kernel thread context 5667 */ 5668 5669 static int 5670 sd_ddi_pm_resume(struct sd_lun *un) 5671 { 5672 ASSERT(un != NULL); 5673 5674 ASSERT(!mutex_owned(SD_MUTEX(un))); 5675 mutex_enter(SD_MUTEX(un)); 5676 un->un_power_level = SD_SPINDLE_ON; 5677 5678 ASSERT(!mutex_owned(&un->un_pm_mutex)); 5679 mutex_enter(&un->un_pm_mutex); 5680 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 5681 un->un_pm_count++; 5682 ASSERT(un->un_pm_count == 0); 5683 /* 5684 * Note: no longer do the cv_broadcast on un_suspend_cv. The 5685 * un_suspend_cv is for a system resume, not a power management 5686 * device resume. (4297749) 5687 * cv_broadcast(&un->un_suspend_cv); 5688 */ 5689 } 5690 mutex_exit(&un->un_pm_mutex); 5691 mutex_exit(SD_MUTEX(un)); 5692 5693 return (DDI_SUCCESS); 5694 } 5695 5696 5697 /* 5698 * Function: sd_pm_idletimeout_handler 5699 * 5700 * Description: A timer routine that's active only while a device is busy. 5701 * The purpose is to extend slightly the pm framework's busy 5702 * view of the device to prevent busy/idle thrashing for 5703 * back-to-back commands. Do this by comparing the current time 5704 * to the time at which the last command completed and when the 5705 * difference is greater than sd_pm_idletime, call 5706 * pm_idle_component. In addition to indicating idle to the pm 5707 * framework, update the chain type to again use the internal pm 5708 * layers of the driver. 5709 * 5710 * Arguments: arg - driver soft state (unit) structure 5711 * 5712 * Context: Executes in a timeout(9F) thread context 5713 */ 5714 5715 static void 5716 sd_pm_idletimeout_handler(void *arg) 5717 { 5718 struct sd_lun *un = arg; 5719 5720 time_t now; 5721 5722 mutex_enter(&sd_detach_mutex); 5723 if (un->un_detach_count != 0) { 5724 /* Abort if the instance is detaching */ 5725 mutex_exit(&sd_detach_mutex); 5726 return; 5727 } 5728 mutex_exit(&sd_detach_mutex); 5729 5730 now = ddi_get_time(); 5731 /* 5732 * Grab both mutexes, in the proper order, since we're accessing 5733 * both PM and softstate variables. 5734 */ 5735 mutex_enter(SD_MUTEX(un)); 5736 mutex_enter(&un->un_pm_mutex); 5737 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 5738 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 5739 /* 5740 * Update the chain types. 5741 * This takes affect on the next new command received. 5742 */ 5743 if (un->un_f_non_devbsize_supported) { 5744 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 5745 } else { 5746 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 5747 } 5748 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 5749 5750 SD_TRACE(SD_LOG_IO_PM, un, 5751 "sd_pm_idletimeout_handler: idling device\n"); 5752 (void) pm_idle_component(SD_DEVINFO(un), 0); 5753 un->un_pm_idle_timeid = NULL; 5754 } else { 5755 un->un_pm_idle_timeid = 5756 timeout(sd_pm_idletimeout_handler, un, 5757 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 5758 } 5759 mutex_exit(&un->un_pm_mutex); 5760 mutex_exit(SD_MUTEX(un)); 5761 } 5762 5763 5764 /* 5765 * Function: sd_pm_timeout_handler 5766 * 5767 * Description: Callback to tell framework we are idle. 5768 * 5769 * Context: timeout(9f) thread context. 5770 */ 5771 5772 static void 5773 sd_pm_timeout_handler(void *arg) 5774 { 5775 struct sd_lun *un = arg; 5776 5777 (void) pm_idle_component(SD_DEVINFO(un), 0); 5778 mutex_enter(&un->un_pm_mutex); 5779 un->un_pm_timeid = NULL; 5780 mutex_exit(&un->un_pm_mutex); 5781 } 5782 5783 5784 /* 5785 * Function: sdpower 5786 * 5787 * Description: PM entry point. 5788 * 5789 * Return Code: DDI_SUCCESS 5790 * DDI_FAILURE 5791 * 5792 * Context: Kernel thread context 5793 */ 5794 5795 static int 5796 sdpower(dev_info_t *devi, int component, int level) 5797 { 5798 struct sd_lun *un; 5799 int instance; 5800 int rval = DDI_SUCCESS; 5801 uint_t i, log_page_size, maxcycles, ncycles; 5802 uchar_t *log_page_data; 5803 int log_sense_page; 5804 int medium_present; 5805 time_t intvlp; 5806 dev_t dev; 5807 struct pm_trans_data sd_pm_tran_data; 5808 uchar_t save_state; 5809 int sval; 5810 uchar_t state_before_pm; 5811 int got_semaphore_here; 5812 5813 instance = ddi_get_instance(devi); 5814 5815 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 5816 (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) || 5817 component != 0) { 5818 return (DDI_FAILURE); 5819 } 5820 5821 dev = sd_make_device(SD_DEVINFO(un)); 5822 5823 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 5824 5825 /* 5826 * Must synchronize power down with close. 5827 * Attempt to decrement/acquire the open/close semaphore, 5828 * but do NOT wait on it. If it's not greater than zero, 5829 * ie. it can't be decremented without waiting, then 5830 * someone else, either open or close, already has it 5831 * and the try returns 0. Use that knowledge here to determine 5832 * if it's OK to change the device power level. 5833 * Also, only increment it on exit if it was decremented, ie. gotten, 5834 * here. 5835 */ 5836 got_semaphore_here = sema_tryp(&un->un_semoclose); 5837 5838 mutex_enter(SD_MUTEX(un)); 5839 5840 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 5841 un->un_ncmds_in_driver); 5842 5843 /* 5844 * If un_ncmds_in_driver is non-zero it indicates commands are 5845 * already being processed in the driver, or if the semaphore was 5846 * not gotten here it indicates an open or close is being processed. 5847 * At the same time somebody is requesting to go low power which 5848 * can't happen, therefore we need to return failure. 5849 */ 5850 if ((level == SD_SPINDLE_OFF) && 5851 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 5852 mutex_exit(SD_MUTEX(un)); 5853 5854 if (got_semaphore_here != 0) { 5855 sema_v(&un->un_semoclose); 5856 } 5857 SD_TRACE(SD_LOG_IO_PM, un, 5858 "sdpower: exit, device has queued cmds.\n"); 5859 return (DDI_FAILURE); 5860 } 5861 5862 /* 5863 * if it is OFFLINE that means the disk is completely dead 5864 * in our case we have to put the disk in on or off by sending commands 5865 * Of course that will fail anyway so return back here. 5866 * 5867 * Power changes to a device that's OFFLINE or SUSPENDED 5868 * are not allowed. 5869 */ 5870 if ((un->un_state == SD_STATE_OFFLINE) || 5871 (un->un_state == SD_STATE_SUSPENDED)) { 5872 mutex_exit(SD_MUTEX(un)); 5873 5874 if (got_semaphore_here != 0) { 5875 sema_v(&un->un_semoclose); 5876 } 5877 SD_TRACE(SD_LOG_IO_PM, un, 5878 "sdpower: exit, device is off-line.\n"); 5879 return (DDI_FAILURE); 5880 } 5881 5882 /* 5883 * Change the device's state to indicate it's power level 5884 * is being changed. Do this to prevent a power off in the 5885 * middle of commands, which is especially bad on devices 5886 * that are really powered off instead of just spun down. 5887 */ 5888 state_before_pm = un->un_state; 5889 un->un_state = SD_STATE_PM_CHANGING; 5890 5891 mutex_exit(SD_MUTEX(un)); 5892 5893 /* 5894 * If "pm-capable" property is set to TRUE by HBA drivers, 5895 * bypass the following checking, otherwise, check the log 5896 * sense information for this device 5897 */ 5898 if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) { 5899 /* 5900 * Get the log sense information to understand whether the 5901 * the powercycle counts have gone beyond the threshhold. 5902 */ 5903 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5904 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5905 5906 mutex_enter(SD_MUTEX(un)); 5907 log_sense_page = un->un_start_stop_cycle_page; 5908 mutex_exit(SD_MUTEX(un)); 5909 5910 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 5911 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 5912 #ifdef SDDEBUG 5913 if (sd_force_pm_supported) { 5914 /* Force a successful result */ 5915 rval = 0; 5916 } 5917 #endif 5918 if (rval != 0) { 5919 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5920 "Log Sense Failed\n"); 5921 kmem_free(log_page_data, log_page_size); 5922 /* Cannot support power management on those drives */ 5923 5924 if (got_semaphore_here != 0) { 5925 sema_v(&un->un_semoclose); 5926 } 5927 /* 5928 * On exit put the state back to it's original value 5929 * and broadcast to anyone waiting for the power 5930 * change completion. 5931 */ 5932 mutex_enter(SD_MUTEX(un)); 5933 un->un_state = state_before_pm; 5934 cv_broadcast(&un->un_suspend_cv); 5935 mutex_exit(SD_MUTEX(un)); 5936 SD_TRACE(SD_LOG_IO_PM, un, 5937 "sdpower: exit, Log Sense Failed.\n"); 5938 return (DDI_FAILURE); 5939 } 5940 5941 /* 5942 * From the page data - Convert the essential information to 5943 * pm_trans_data 5944 */ 5945 maxcycles = 5946 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 5947 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 5948 5949 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 5950 5951 ncycles = 5952 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 5953 (log_page_data[0x26] << 8) | log_page_data[0x27]; 5954 5955 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 5956 5957 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 5958 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 5959 log_page_data[8+i]; 5960 } 5961 5962 kmem_free(log_page_data, log_page_size); 5963 5964 /* 5965 * Call pm_trans_check routine to get the Ok from 5966 * the global policy 5967 */ 5968 5969 sd_pm_tran_data.format = DC_SCSI_FORMAT; 5970 sd_pm_tran_data.un.scsi_cycles.flag = 0; 5971 5972 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 5973 #ifdef SDDEBUG 5974 if (sd_force_pm_supported) { 5975 /* Force a successful result */ 5976 rval = 1; 5977 } 5978 #endif 5979 switch (rval) { 5980 case 0: 5981 /* 5982 * Not Ok to Power cycle or error in parameters passed 5983 * Would have given the advised time to consider power 5984 * cycle. Based on the new intvlp parameter we are 5985 * supposed to pretend we are busy so that pm framework 5986 * will never call our power entry point. Because of 5987 * that install a timeout handler and wait for the 5988 * recommended time to elapse so that power management 5989 * can be effective again. 5990 * 5991 * To effect this behavior, call pm_busy_component to 5992 * indicate to the framework this device is busy. 5993 * By not adjusting un_pm_count the rest of PM in 5994 * the driver will function normally, and independant 5995 * of this but because the framework is told the device 5996 * is busy it won't attempt powering down until it gets 5997 * a matching idle. The timeout handler sends this. 5998 * Note: sd_pm_entry can't be called here to do this 5999 * because sdpower may have been called as a result 6000 * of a call to pm_raise_power from within sd_pm_entry. 6001 * 6002 * If a timeout handler is already active then 6003 * don't install another. 6004 */ 6005 mutex_enter(&un->un_pm_mutex); 6006 if (un->un_pm_timeid == NULL) { 6007 un->un_pm_timeid = 6008 timeout(sd_pm_timeout_handler, 6009 un, intvlp * drv_usectohz(1000000)); 6010 mutex_exit(&un->un_pm_mutex); 6011 (void) pm_busy_component(SD_DEVINFO(un), 0); 6012 } else { 6013 mutex_exit(&un->un_pm_mutex); 6014 } 6015 if (got_semaphore_here != 0) { 6016 sema_v(&un->un_semoclose); 6017 } 6018 /* 6019 * On exit put the state back to it's original value 6020 * and broadcast to anyone waiting for the power 6021 * change completion. 6022 */ 6023 mutex_enter(SD_MUTEX(un)); 6024 un->un_state = state_before_pm; 6025 cv_broadcast(&un->un_suspend_cv); 6026 mutex_exit(SD_MUTEX(un)); 6027 6028 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6029 "trans check Failed, not ok to power cycle.\n"); 6030 return (DDI_FAILURE); 6031 6032 case -1: 6033 if (got_semaphore_here != 0) { 6034 sema_v(&un->un_semoclose); 6035 } 6036 /* 6037 * On exit put the state back to it's original value 6038 * and broadcast to anyone waiting for the power 6039 * change completion. 6040 */ 6041 mutex_enter(SD_MUTEX(un)); 6042 un->un_state = state_before_pm; 6043 cv_broadcast(&un->un_suspend_cv); 6044 mutex_exit(SD_MUTEX(un)); 6045 SD_TRACE(SD_LOG_IO_PM, un, 6046 "sdpower: exit, trans check command Failed.\n"); 6047 return (DDI_FAILURE); 6048 } 6049 } 6050 6051 if (level == SD_SPINDLE_OFF) { 6052 /* 6053 * Save the last state... if the STOP FAILS we need it 6054 * for restoring 6055 */ 6056 mutex_enter(SD_MUTEX(un)); 6057 save_state = un->un_last_state; 6058 /* 6059 * There must not be any cmds. getting processed 6060 * in the driver when we get here. Power to the 6061 * device is potentially going off. 6062 */ 6063 ASSERT(un->un_ncmds_in_driver == 0); 6064 mutex_exit(SD_MUTEX(un)); 6065 6066 /* 6067 * For now suspend the device completely before spindle is 6068 * turned off 6069 */ 6070 if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) { 6071 if (got_semaphore_here != 0) { 6072 sema_v(&un->un_semoclose); 6073 } 6074 /* 6075 * On exit put the state back to it's original value 6076 * and broadcast to anyone waiting for the power 6077 * change completion. 6078 */ 6079 mutex_enter(SD_MUTEX(un)); 6080 un->un_state = state_before_pm; 6081 cv_broadcast(&un->un_suspend_cv); 6082 mutex_exit(SD_MUTEX(un)); 6083 SD_TRACE(SD_LOG_IO_PM, un, 6084 "sdpower: exit, PM suspend Failed.\n"); 6085 return (DDI_FAILURE); 6086 } 6087 } 6088 6089 /* 6090 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6091 * close, or strategy. Dump no long uses this routine, it uses it's 6092 * own code so it can be done in polled mode. 6093 */ 6094 6095 medium_present = TRUE; 6096 6097 /* 6098 * When powering up, issue a TUR in case the device is at unit 6099 * attention. Don't do retries. Bypass the PM layer, otherwise 6100 * a deadlock on un_pm_busy_cv will occur. 6101 */ 6102 if (level == SD_SPINDLE_ON) { 6103 (void) sd_send_scsi_TEST_UNIT_READY(un, 6104 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6105 } 6106 6107 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6108 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6109 6110 sval = sd_send_scsi_START_STOP_UNIT(un, 6111 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP), 6112 SD_PATH_DIRECT); 6113 /* Command failed, check for media present. */ 6114 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6115 medium_present = FALSE; 6116 } 6117 6118 /* 6119 * The conditions of interest here are: 6120 * if a spindle off with media present fails, 6121 * then restore the state and return an error. 6122 * else if a spindle on fails, 6123 * then return an error (there's no state to restore). 6124 * In all other cases we setup for the new state 6125 * and return success. 6126 */ 6127 switch (level) { 6128 case SD_SPINDLE_OFF: 6129 if ((medium_present == TRUE) && (sval != 0)) { 6130 /* The stop command from above failed */ 6131 rval = DDI_FAILURE; 6132 /* 6133 * The stop command failed, and we have media 6134 * present. Put the level back by calling the 6135 * sd_pm_resume() and set the state back to 6136 * it's previous value. 6137 */ 6138 (void) sd_ddi_pm_resume(un); 6139 mutex_enter(SD_MUTEX(un)); 6140 un->un_last_state = save_state; 6141 mutex_exit(SD_MUTEX(un)); 6142 break; 6143 } 6144 /* 6145 * The stop command from above succeeded. 6146 */ 6147 if (un->un_f_monitor_media_state) { 6148 /* 6149 * Terminate watch thread in case of removable media 6150 * devices going into low power state. This is as per 6151 * the requirements of pm framework, otherwise commands 6152 * will be generated for the device (through watch 6153 * thread), even when the device is in low power state. 6154 */ 6155 mutex_enter(SD_MUTEX(un)); 6156 un->un_f_watcht_stopped = FALSE; 6157 if (un->un_swr_token != NULL) { 6158 opaque_t temp_token = un->un_swr_token; 6159 un->un_f_watcht_stopped = TRUE; 6160 un->un_swr_token = NULL; 6161 mutex_exit(SD_MUTEX(un)); 6162 (void) scsi_watch_request_terminate(temp_token, 6163 SCSI_WATCH_TERMINATE_WAIT); 6164 } else { 6165 mutex_exit(SD_MUTEX(un)); 6166 } 6167 } 6168 break; 6169 6170 default: /* The level requested is spindle on... */ 6171 /* 6172 * Legacy behavior: return success on a failed spinup 6173 * if there is no media in the drive. 6174 * Do this by looking at medium_present here. 6175 */ 6176 if ((sval != 0) && medium_present) { 6177 /* The start command from above failed */ 6178 rval = DDI_FAILURE; 6179 break; 6180 } 6181 /* 6182 * The start command from above succeeded 6183 * Resume the devices now that we have 6184 * started the disks 6185 */ 6186 (void) sd_ddi_pm_resume(un); 6187 6188 /* 6189 * Resume the watch thread since it was suspended 6190 * when the device went into low power mode. 6191 */ 6192 if (un->un_f_monitor_media_state) { 6193 mutex_enter(SD_MUTEX(un)); 6194 if (un->un_f_watcht_stopped == TRUE) { 6195 opaque_t temp_token; 6196 6197 un->un_f_watcht_stopped = FALSE; 6198 mutex_exit(SD_MUTEX(un)); 6199 temp_token = scsi_watch_request_submit( 6200 SD_SCSI_DEVP(un), 6201 sd_check_media_time, 6202 SENSE_LENGTH, sd_media_watch_cb, 6203 (caddr_t)dev); 6204 mutex_enter(SD_MUTEX(un)); 6205 un->un_swr_token = temp_token; 6206 } 6207 mutex_exit(SD_MUTEX(un)); 6208 } 6209 } 6210 if (got_semaphore_here != 0) { 6211 sema_v(&un->un_semoclose); 6212 } 6213 /* 6214 * On exit put the state back to it's original value 6215 * and broadcast to anyone waiting for the power 6216 * change completion. 6217 */ 6218 mutex_enter(SD_MUTEX(un)); 6219 un->un_state = state_before_pm; 6220 cv_broadcast(&un->un_suspend_cv); 6221 mutex_exit(SD_MUTEX(un)); 6222 6223 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 6224 6225 return (rval); 6226 } 6227 6228 6229 6230 /* 6231 * Function: sdattach 6232 * 6233 * Description: Driver's attach(9e) entry point function. 6234 * 6235 * Arguments: devi - opaque device info handle 6236 * cmd - attach type 6237 * 6238 * Return Code: DDI_SUCCESS 6239 * DDI_FAILURE 6240 * 6241 * Context: Kernel thread context 6242 */ 6243 6244 static int 6245 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 6246 { 6247 switch (cmd) { 6248 case DDI_ATTACH: 6249 return (sd_unit_attach(devi)); 6250 case DDI_RESUME: 6251 return (sd_ddi_resume(devi)); 6252 default: 6253 break; 6254 } 6255 return (DDI_FAILURE); 6256 } 6257 6258 6259 /* 6260 * Function: sddetach 6261 * 6262 * Description: Driver's detach(9E) entry point function. 6263 * 6264 * Arguments: devi - opaque device info handle 6265 * cmd - detach type 6266 * 6267 * Return Code: DDI_SUCCESS 6268 * DDI_FAILURE 6269 * 6270 * Context: Kernel thread context 6271 */ 6272 6273 static int 6274 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 6275 { 6276 switch (cmd) { 6277 case DDI_DETACH: 6278 return (sd_unit_detach(devi)); 6279 case DDI_SUSPEND: 6280 return (sd_ddi_suspend(devi)); 6281 default: 6282 break; 6283 } 6284 return (DDI_FAILURE); 6285 } 6286 6287 6288 /* 6289 * Function: sd_sync_with_callback 6290 * 6291 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 6292 * state while the callback routine is active. 6293 * 6294 * Arguments: un: softstate structure for the instance 6295 * 6296 * Context: Kernel thread context 6297 */ 6298 6299 static void 6300 sd_sync_with_callback(struct sd_lun *un) 6301 { 6302 ASSERT(un != NULL); 6303 6304 mutex_enter(SD_MUTEX(un)); 6305 6306 ASSERT(un->un_in_callback >= 0); 6307 6308 while (un->un_in_callback > 0) { 6309 mutex_exit(SD_MUTEX(un)); 6310 delay(2); 6311 mutex_enter(SD_MUTEX(un)); 6312 } 6313 6314 mutex_exit(SD_MUTEX(un)); 6315 } 6316 6317 /* 6318 * Function: sd_unit_attach 6319 * 6320 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 6321 * the soft state structure for the device and performs 6322 * all necessary structure and device initializations. 6323 * 6324 * Arguments: devi: the system's dev_info_t for the device. 6325 * 6326 * Return Code: DDI_SUCCESS if attach is successful. 6327 * DDI_FAILURE if any part of the attach fails. 6328 * 6329 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 6330 * Kernel thread context only. Can sleep. 6331 */ 6332 6333 static int 6334 sd_unit_attach(dev_info_t *devi) 6335 { 6336 struct scsi_device *devp; 6337 struct sd_lun *un; 6338 char *variantp; 6339 int reservation_flag = SD_TARGET_IS_UNRESERVED; 6340 int instance; 6341 int rval; 6342 int wc_enabled; 6343 int tgt; 6344 uint64_t capacity; 6345 uint_t lbasize = 0; 6346 dev_info_t *pdip = ddi_get_parent(devi); 6347 int offbyone = 0; 6348 int geom_label_valid = 0; 6349 6350 /* 6351 * Retrieve the target driver's private data area. This was set 6352 * up by the HBA. 6353 */ 6354 devp = ddi_get_driver_private(devi); 6355 6356 /* 6357 * Retrieve the target ID of the device. 6358 */ 6359 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 6360 SCSI_ADDR_PROP_TARGET, -1); 6361 6362 /* 6363 * Since we have no idea what state things were left in by the last 6364 * user of the device, set up some 'default' settings, ie. turn 'em 6365 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 6366 * Do this before the scsi_probe, which sends an inquiry. 6367 * This is a fix for bug (4430280). 6368 * Of special importance is wide-xfer. The drive could have been left 6369 * in wide transfer mode by the last driver to communicate with it, 6370 * this includes us. If that's the case, and if the following is not 6371 * setup properly or we don't re-negotiate with the drive prior to 6372 * transferring data to/from the drive, it causes bus parity errors, 6373 * data overruns, and unexpected interrupts. This first occurred when 6374 * the fix for bug (4378686) was made. 6375 */ 6376 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 6377 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 6378 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 6379 6380 /* 6381 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 6382 * on a target. Setting it per lun instance actually sets the 6383 * capability of this target, which affects those luns already 6384 * attached on the same target. So during attach, we can only disable 6385 * this capability only when no other lun has been attached on this 6386 * target. By doing this, we assume a target has the same tagged-qing 6387 * capability for every lun. The condition can be removed when HBA 6388 * is changed to support per lun based tagged-qing capability. 6389 */ 6390 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 6391 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 6392 } 6393 6394 /* 6395 * Use scsi_probe() to issue an INQUIRY command to the device. 6396 * This call will allocate and fill in the scsi_inquiry structure 6397 * and point the sd_inq member of the scsi_device structure to it. 6398 * If the attach succeeds, then this memory will not be de-allocated 6399 * (via scsi_unprobe()) until the instance is detached. 6400 */ 6401 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 6402 goto probe_failed; 6403 } 6404 6405 /* 6406 * Check the device type as specified in the inquiry data and 6407 * claim it if it is of a type that we support. 6408 */ 6409 switch (devp->sd_inq->inq_dtype) { 6410 case DTYPE_DIRECT: 6411 break; 6412 case DTYPE_RODIRECT: 6413 break; 6414 case DTYPE_OPTICAL: 6415 break; 6416 case DTYPE_NOTPRESENT: 6417 default: 6418 /* Unsupported device type; fail the attach. */ 6419 goto probe_failed; 6420 } 6421 6422 /* 6423 * Allocate the soft state structure for this unit. 6424 * 6425 * We rely upon this memory being set to all zeroes by 6426 * ddi_soft_state_zalloc(). We assume that any member of the 6427 * soft state structure that is not explicitly initialized by 6428 * this routine will have a value of zero. 6429 */ 6430 instance = ddi_get_instance(devp->sd_dev); 6431 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 6432 goto probe_failed; 6433 } 6434 6435 /* 6436 * Retrieve a pointer to the newly-allocated soft state. 6437 * 6438 * This should NEVER fail if the ddi_soft_state_zalloc() call above 6439 * was successful, unless something has gone horribly wrong and the 6440 * ddi's soft state internals are corrupt (in which case it is 6441 * probably better to halt here than just fail the attach....) 6442 */ 6443 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 6444 panic("sd_unit_attach: NULL soft state on instance:0x%x", 6445 instance); 6446 /*NOTREACHED*/ 6447 } 6448 6449 /* 6450 * Link the back ptr of the driver soft state to the scsi_device 6451 * struct for this lun. 6452 * Save a pointer to the softstate in the driver-private area of 6453 * the scsi_device struct. 6454 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 6455 * we first set un->un_sd below. 6456 */ 6457 un->un_sd = devp; 6458 devp->sd_private = (opaque_t)un; 6459 6460 /* 6461 * The following must be after devp is stored in the soft state struct. 6462 */ 6463 #ifdef SDDEBUG 6464 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 6465 "%s_unit_attach: un:0x%p instance:%d\n", 6466 ddi_driver_name(devi), un, instance); 6467 #endif 6468 6469 /* 6470 * Set up the device type and node type (for the minor nodes). 6471 * By default we assume that the device can at least support the 6472 * Common Command Set. Call it a CD-ROM if it reports itself 6473 * as a RODIRECT device. 6474 */ 6475 switch (devp->sd_inq->inq_dtype) { 6476 case DTYPE_RODIRECT: 6477 un->un_node_type = DDI_NT_CD_CHAN; 6478 un->un_ctype = CTYPE_CDROM; 6479 break; 6480 case DTYPE_OPTICAL: 6481 un->un_node_type = DDI_NT_BLOCK_CHAN; 6482 un->un_ctype = CTYPE_ROD; 6483 break; 6484 default: 6485 un->un_node_type = DDI_NT_BLOCK_CHAN; 6486 un->un_ctype = CTYPE_CCS; 6487 break; 6488 } 6489 6490 /* 6491 * Try to read the interconnect type from the HBA. 6492 * 6493 * Note: This driver is currently compiled as two binaries, a parallel 6494 * scsi version (sd) and a fibre channel version (ssd). All functional 6495 * differences are determined at compile time. In the future a single 6496 * binary will be provided and the inteconnect type will be used to 6497 * differentiate between fibre and parallel scsi behaviors. At that time 6498 * it will be necessary for all fibre channel HBAs to support this 6499 * property. 6500 * 6501 * set un_f_is_fiber to TRUE ( default fiber ) 6502 */ 6503 un->un_f_is_fibre = TRUE; 6504 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 6505 case INTERCONNECT_SSA: 6506 un->un_interconnect_type = SD_INTERCONNECT_SSA; 6507 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6508 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 6509 break; 6510 case INTERCONNECT_PARALLEL: 6511 un->un_f_is_fibre = FALSE; 6512 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 6513 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6514 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 6515 break; 6516 case INTERCONNECT_SATA: 6517 un->un_f_is_fibre = FALSE; 6518 un->un_interconnect_type = SD_INTERCONNECT_SATA; 6519 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6520 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 6521 break; 6522 case INTERCONNECT_FIBRE: 6523 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 6524 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6525 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 6526 break; 6527 case INTERCONNECT_FABRIC: 6528 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 6529 un->un_node_type = DDI_NT_BLOCK_FABRIC; 6530 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6531 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 6532 break; 6533 default: 6534 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 6535 /* 6536 * The HBA does not support the "interconnect-type" property 6537 * (or did not provide a recognized type). 6538 * 6539 * Note: This will be obsoleted when a single fibre channel 6540 * and parallel scsi driver is delivered. In the meantime the 6541 * interconnect type will be set to the platform default.If that 6542 * type is not parallel SCSI, it means that we should be 6543 * assuming "ssd" semantics. However, here this also means that 6544 * the FC HBA is not supporting the "interconnect-type" property 6545 * like we expect it to, so log this occurrence. 6546 */ 6547 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 6548 if (!SD_IS_PARALLEL_SCSI(un)) { 6549 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6550 "sd_unit_attach: un:0x%p Assuming " 6551 "INTERCONNECT_FIBRE\n", un); 6552 } else { 6553 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6554 "sd_unit_attach: un:0x%p Assuming " 6555 "INTERCONNECT_PARALLEL\n", un); 6556 un->un_f_is_fibre = FALSE; 6557 } 6558 #else 6559 /* 6560 * Note: This source will be implemented when a single fibre 6561 * channel and parallel scsi driver is delivered. The default 6562 * will be to assume that if a device does not support the 6563 * "interconnect-type" property it is a parallel SCSI HBA and 6564 * we will set the interconnect type for parallel scsi. 6565 */ 6566 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 6567 un->un_f_is_fibre = FALSE; 6568 #endif 6569 break; 6570 } 6571 6572 if (un->un_f_is_fibre == TRUE) { 6573 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 6574 SCSI_VERSION_3) { 6575 switch (un->un_interconnect_type) { 6576 case SD_INTERCONNECT_FIBRE: 6577 case SD_INTERCONNECT_SSA: 6578 un->un_node_type = DDI_NT_BLOCK_WWN; 6579 break; 6580 default: 6581 break; 6582 } 6583 } 6584 } 6585 6586 /* 6587 * Initialize the Request Sense command for the target 6588 */ 6589 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 6590 goto alloc_rqs_failed; 6591 } 6592 6593 /* 6594 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 6595 * with separate binary for sd and ssd. 6596 * 6597 * x86 has 1 binary, un_retry_count is set base on connection type. 6598 * The hardcoded values will go away when Sparc uses 1 binary 6599 * for sd and ssd. This hardcoded values need to match 6600 * SD_RETRY_COUNT in sddef.h 6601 * The value used is base on interconnect type. 6602 * fibre = 3, parallel = 5 6603 */ 6604 #if defined(__i386) || defined(__amd64) 6605 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 6606 #else 6607 un->un_retry_count = SD_RETRY_COUNT; 6608 #endif 6609 6610 /* 6611 * Set the per disk retry count to the default number of retries 6612 * for disks and CDROMs. This value can be overridden by the 6613 * disk property list or an entry in sd.conf. 6614 */ 6615 un->un_notready_retry_count = 6616 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 6617 : DISK_NOT_READY_RETRY_COUNT(un); 6618 6619 /* 6620 * Set the busy retry count to the default value of un_retry_count. 6621 * This can be overridden by entries in sd.conf or the device 6622 * config table. 6623 */ 6624 un->un_busy_retry_count = un->un_retry_count; 6625 6626 /* 6627 * Init the reset threshold for retries. This number determines 6628 * how many retries must be performed before a reset can be issued 6629 * (for certain error conditions). This can be overridden by entries 6630 * in sd.conf or the device config table. 6631 */ 6632 un->un_reset_retry_count = (un->un_retry_count / 2); 6633 6634 /* 6635 * Set the victim_retry_count to the default un_retry_count 6636 */ 6637 un->un_victim_retry_count = (2 * un->un_retry_count); 6638 6639 /* 6640 * Set the reservation release timeout to the default value of 6641 * 5 seconds. This can be overridden by entries in ssd.conf or the 6642 * device config table. 6643 */ 6644 un->un_reserve_release_time = 5; 6645 6646 /* 6647 * Set up the default maximum transfer size. Note that this may 6648 * get updated later in the attach, when setting up default wide 6649 * operations for disks. 6650 */ 6651 #if defined(__i386) || defined(__amd64) 6652 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 6653 #else 6654 un->un_max_xfer_size = (uint_t)maxphys; 6655 #endif 6656 6657 /* 6658 * Get "allow bus device reset" property (defaults to "enabled" if 6659 * the property was not defined). This is to disable bus resets for 6660 * certain kinds of error recovery. Note: In the future when a run-time 6661 * fibre check is available the soft state flag should default to 6662 * enabled. 6663 */ 6664 if (un->un_f_is_fibre == TRUE) { 6665 un->un_f_allow_bus_device_reset = TRUE; 6666 } else { 6667 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 6668 "allow-bus-device-reset", 1) != 0) { 6669 un->un_f_allow_bus_device_reset = TRUE; 6670 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6671 "sd_unit_attach: un:0x%p Bus device reset " 6672 "enabled\n", un); 6673 } else { 6674 un->un_f_allow_bus_device_reset = FALSE; 6675 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6676 "sd_unit_attach: un:0x%p Bus device reset " 6677 "disabled\n", un); 6678 } 6679 } 6680 6681 /* 6682 * Check if this is an ATAPI device. ATAPI devices use Group 1 6683 * Read/Write commands and Group 2 Mode Sense/Select commands. 6684 * 6685 * Note: The "obsolete" way of doing this is to check for the "atapi" 6686 * property. The new "variant" property with a value of "atapi" has been 6687 * introduced so that future 'variants' of standard SCSI behavior (like 6688 * atapi) could be specified by the underlying HBA drivers by supplying 6689 * a new value for the "variant" property, instead of having to define a 6690 * new property. 6691 */ 6692 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 6693 un->un_f_cfg_is_atapi = TRUE; 6694 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6695 "sd_unit_attach: un:0x%p Atapi device\n", un); 6696 } 6697 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 6698 &variantp) == DDI_PROP_SUCCESS) { 6699 if (strcmp(variantp, "atapi") == 0) { 6700 un->un_f_cfg_is_atapi = TRUE; 6701 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6702 "sd_unit_attach: un:0x%p Atapi device\n", un); 6703 } 6704 ddi_prop_free(variantp); 6705 } 6706 6707 un->un_cmd_timeout = SD_IO_TIME; 6708 6709 /* Info on current states, statuses, etc. (Updated frequently) */ 6710 un->un_state = SD_STATE_NORMAL; 6711 un->un_last_state = SD_STATE_NORMAL; 6712 6713 /* Control & status info for command throttling */ 6714 un->un_throttle = sd_max_throttle; 6715 un->un_saved_throttle = sd_max_throttle; 6716 un->un_min_throttle = sd_min_throttle; 6717 6718 if (un->un_f_is_fibre == TRUE) { 6719 un->un_f_use_adaptive_throttle = TRUE; 6720 } else { 6721 un->un_f_use_adaptive_throttle = FALSE; 6722 } 6723 6724 /* Removable media support. */ 6725 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 6726 un->un_mediastate = DKIO_NONE; 6727 un->un_specified_mediastate = DKIO_NONE; 6728 6729 /* CVs for suspend/resume (PM or DR) */ 6730 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 6731 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 6732 6733 /* Power management support. */ 6734 un->un_power_level = SD_SPINDLE_UNINIT; 6735 6736 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 6737 un->un_f_wcc_inprog = 0; 6738 6739 /* 6740 * The open/close semaphore is used to serialize threads executing 6741 * in the driver's open & close entry point routines for a given 6742 * instance. 6743 */ 6744 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 6745 6746 /* 6747 * The conf file entry and softstate variable is a forceful override, 6748 * meaning a non-zero value must be entered to change the default. 6749 */ 6750 un->un_f_disksort_disabled = FALSE; 6751 6752 /* 6753 * Retrieve the properties from the static driver table or the driver 6754 * configuration file (.conf) for this unit and update the soft state 6755 * for the device as needed for the indicated properties. 6756 * Note: the property configuration needs to occur here as some of the 6757 * following routines may have dependancies on soft state flags set 6758 * as part of the driver property configuration. 6759 */ 6760 sd_read_unit_properties(un); 6761 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 6762 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 6763 6764 /* 6765 * Only if a device has "hotpluggable" property, it is 6766 * treated as hotpluggable device. Otherwise, it is 6767 * regarded as non-hotpluggable one. 6768 */ 6769 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 6770 -1) != -1) { 6771 un->un_f_is_hotpluggable = TRUE; 6772 } 6773 6774 /* 6775 * set unit's attributes(flags) according to "hotpluggable" and 6776 * RMB bit in INQUIRY data. 6777 */ 6778 sd_set_unit_attributes(un, devi); 6779 6780 /* 6781 * By default, we mark the capacity, lbasize, and geometry 6782 * as invalid. Only if we successfully read a valid capacity 6783 * will we update the un_blockcount and un_tgt_blocksize with the 6784 * valid values (the geometry will be validated later). 6785 */ 6786 un->un_f_blockcount_is_valid = FALSE; 6787 un->un_f_tgt_blocksize_is_valid = FALSE; 6788 6789 /* 6790 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 6791 * otherwise. 6792 */ 6793 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 6794 un->un_blockcount = 0; 6795 6796 /* 6797 * Set up the per-instance info needed to determine the correct 6798 * CDBs and other info for issuing commands to the target. 6799 */ 6800 sd_init_cdb_limits(un); 6801 6802 /* 6803 * Set up the IO chains to use, based upon the target type. 6804 */ 6805 if (un->un_f_non_devbsize_supported) { 6806 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6807 } else { 6808 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6809 } 6810 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6811 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 6812 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 6813 6814 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 6815 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 6816 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 6817 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 6818 6819 6820 if (ISCD(un)) { 6821 un->un_additional_codes = sd_additional_codes; 6822 } else { 6823 un->un_additional_codes = NULL; 6824 } 6825 6826 /* 6827 * Create the kstats here so they can be available for attach-time 6828 * routines that send commands to the unit (either polled or via 6829 * sd_send_scsi_cmd). 6830 * 6831 * Note: This is a critical sequence that needs to be maintained: 6832 * 1) Instantiate the kstats here, before any routines using the 6833 * iopath (i.e. sd_send_scsi_cmd). 6834 * 2) Instantiate and initialize the partition stats 6835 * (sd_set_pstats). 6836 * 3) Initialize the error stats (sd_set_errstats), following 6837 * sd_validate_geometry(),sd_register_devid(), 6838 * and sd_cache_control(). 6839 */ 6840 6841 un->un_stats = kstat_create(sd_label, instance, 6842 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 6843 if (un->un_stats != NULL) { 6844 un->un_stats->ks_lock = SD_MUTEX(un); 6845 kstat_install(un->un_stats); 6846 } 6847 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 6848 "sd_unit_attach: un:0x%p un_stats created\n", un); 6849 6850 sd_create_errstats(un, instance); 6851 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 6852 "sd_unit_attach: un:0x%p errstats created\n", un); 6853 6854 /* 6855 * The following if/else code was relocated here from below as part 6856 * of the fix for bug (4430280). However with the default setup added 6857 * on entry to this routine, it's no longer absolutely necessary for 6858 * this to be before the call to sd_spin_up_unit. 6859 */ 6860 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 6861 /* 6862 * If SCSI-2 tagged queueing is supported by the target 6863 * and by the host adapter then we will enable it. 6864 */ 6865 un->un_tagflags = 0; 6866 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 6867 (devp->sd_inq->inq_cmdque) && 6868 (un->un_f_arq_enabled == TRUE)) { 6869 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 6870 1, 1) == 1) { 6871 un->un_tagflags = FLAG_STAG; 6872 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6873 "sd_unit_attach: un:0x%p tag queueing " 6874 "enabled\n", un); 6875 } else if (scsi_ifgetcap(SD_ADDRESS(un), 6876 "untagged-qing", 0) == 1) { 6877 un->un_f_opt_queueing = TRUE; 6878 un->un_saved_throttle = un->un_throttle = 6879 min(un->un_throttle, 3); 6880 } else { 6881 un->un_f_opt_queueing = FALSE; 6882 un->un_saved_throttle = un->un_throttle = 1; 6883 } 6884 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 6885 == 1) && (un->un_f_arq_enabled == TRUE)) { 6886 /* The Host Adapter supports internal queueing. */ 6887 un->un_f_opt_queueing = TRUE; 6888 un->un_saved_throttle = un->un_throttle = 6889 min(un->un_throttle, 3); 6890 } else { 6891 un->un_f_opt_queueing = FALSE; 6892 un->un_saved_throttle = un->un_throttle = 1; 6893 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6894 "sd_unit_attach: un:0x%p no tag queueing\n", un); 6895 } 6896 6897 /* 6898 * Enable large transfers for SATA/SAS drives 6899 */ 6900 if (SD_IS_SERIAL(un)) { 6901 un->un_max_xfer_size = 6902 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 6903 sd_max_xfer_size, SD_MAX_XFER_SIZE); 6904 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6905 "sd_unit_attach: un:0x%p max transfer " 6906 "size=0x%x\n", un, un->un_max_xfer_size); 6907 6908 } 6909 6910 /* Setup or tear down default wide operations for disks */ 6911 6912 /* 6913 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 6914 * and "ssd_max_xfer_size" to exist simultaneously on the same 6915 * system and be set to different values. In the future this 6916 * code may need to be updated when the ssd module is 6917 * obsoleted and removed from the system. (4299588) 6918 */ 6919 if (SD_IS_PARALLEL_SCSI(un) && 6920 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 6921 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 6922 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 6923 1, 1) == 1) { 6924 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6925 "sd_unit_attach: un:0x%p Wide Transfer " 6926 "enabled\n", un); 6927 } 6928 6929 /* 6930 * If tagged queuing has also been enabled, then 6931 * enable large xfers 6932 */ 6933 if (un->un_saved_throttle == sd_max_throttle) { 6934 un->un_max_xfer_size = 6935 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 6936 sd_max_xfer_size, SD_MAX_XFER_SIZE); 6937 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6938 "sd_unit_attach: un:0x%p max transfer " 6939 "size=0x%x\n", un, un->un_max_xfer_size); 6940 } 6941 } else { 6942 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 6943 0, 1) == 1) { 6944 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6945 "sd_unit_attach: un:0x%p " 6946 "Wide Transfer disabled\n", un); 6947 } 6948 } 6949 } else { 6950 un->un_tagflags = FLAG_STAG; 6951 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 6952 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 6953 } 6954 6955 /* 6956 * If this target supports LUN reset, try to enable it. 6957 */ 6958 if (un->un_f_lun_reset_enabled) { 6959 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 6960 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 6961 "un:0x%p lun_reset capability set\n", un); 6962 } else { 6963 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 6964 "un:0x%p lun-reset capability not set\n", un); 6965 } 6966 } 6967 6968 /* 6969 * At this point in the attach, we have enough info in the 6970 * soft state to be able to issue commands to the target. 6971 * 6972 * All command paths used below MUST issue their commands as 6973 * SD_PATH_DIRECT. This is important as intermediate layers 6974 * are not all initialized yet (such as PM). 6975 */ 6976 6977 /* 6978 * Send a TEST UNIT READY command to the device. This should clear 6979 * any outstanding UNIT ATTENTION that may be present. 6980 * 6981 * Note: Don't check for success, just track if there is a reservation, 6982 * this is a throw away command to clear any unit attentions. 6983 * 6984 * Note: This MUST be the first command issued to the target during 6985 * attach to ensure power on UNIT ATTENTIONS are cleared. 6986 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 6987 * with attempts at spinning up a device with no media. 6988 */ 6989 if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) { 6990 reservation_flag = SD_TARGET_IS_RESERVED; 6991 } 6992 6993 /* 6994 * If the device is NOT a removable media device, attempt to spin 6995 * it up (using the START_STOP_UNIT command) and read its capacity 6996 * (using the READ CAPACITY command). Note, however, that either 6997 * of these could fail and in some cases we would continue with 6998 * the attach despite the failure (see below). 6999 */ 7000 if (un->un_f_descr_format_supported) { 7001 switch (sd_spin_up_unit(un)) { 7002 case 0: 7003 /* 7004 * Spin-up was successful; now try to read the 7005 * capacity. If successful then save the results 7006 * and mark the capacity & lbasize as valid. 7007 */ 7008 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7009 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7010 7011 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, 7012 &lbasize, SD_PATH_DIRECT)) { 7013 case 0: { 7014 if (capacity > DK_MAX_BLOCKS) { 7015 #ifdef _LP64 7016 if (capacity + 1 > 7017 SD_GROUP1_MAX_ADDRESS) { 7018 /* 7019 * Enable descriptor format 7020 * sense data so that we can 7021 * get 64 bit sense data 7022 * fields. 7023 */ 7024 sd_enable_descr_sense(un); 7025 } 7026 #else 7027 /* 32-bit kernels can't handle this */ 7028 scsi_log(SD_DEVINFO(un), 7029 sd_label, CE_WARN, 7030 "disk has %llu blocks, which " 7031 "is too large for a 32-bit " 7032 "kernel", capacity); 7033 7034 #if defined(__i386) || defined(__amd64) 7035 /* 7036 * 1TB disk was treated as (1T - 512)B 7037 * in the past, so that it might have 7038 * valid VTOC and solaris partitions, 7039 * we have to allow it to continue to 7040 * work. 7041 */ 7042 if (capacity -1 > DK_MAX_BLOCKS) 7043 #endif 7044 goto spinup_failed; 7045 #endif 7046 } 7047 7048 /* 7049 * Here it's not necessary to check the case: 7050 * the capacity of the device is bigger than 7051 * what the max hba cdb can support. Because 7052 * sd_send_scsi_READ_CAPACITY will retrieve 7053 * the capacity by sending USCSI command, which 7054 * is constrained by the max hba cdb. Actually, 7055 * sd_send_scsi_READ_CAPACITY will return 7056 * EINVAL when using bigger cdb than required 7057 * cdb length. Will handle this case in 7058 * "case EINVAL". 7059 */ 7060 7061 /* 7062 * The following relies on 7063 * sd_send_scsi_READ_CAPACITY never 7064 * returning 0 for capacity and/or lbasize. 7065 */ 7066 sd_update_block_info(un, lbasize, capacity); 7067 7068 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7069 "sd_unit_attach: un:0x%p capacity = %ld " 7070 "blocks; lbasize= %ld.\n", un, 7071 un->un_blockcount, un->un_tgt_blocksize); 7072 7073 break; 7074 } 7075 case EINVAL: 7076 /* 7077 * In the case where the max-cdb-length property 7078 * is smaller than the required CDB length for 7079 * a SCSI device, a target driver can fail to 7080 * attach to that device. 7081 */ 7082 scsi_log(SD_DEVINFO(un), 7083 sd_label, CE_WARN, 7084 "disk capacity is too large " 7085 "for current cdb length"); 7086 goto spinup_failed; 7087 case EACCES: 7088 /* 7089 * Should never get here if the spin-up 7090 * succeeded, but code it in anyway. 7091 * From here, just continue with the attach... 7092 */ 7093 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7094 "sd_unit_attach: un:0x%p " 7095 "sd_send_scsi_READ_CAPACITY " 7096 "returned reservation conflict\n", un); 7097 reservation_flag = SD_TARGET_IS_RESERVED; 7098 break; 7099 default: 7100 /* 7101 * Likewise, should never get here if the 7102 * spin-up succeeded. Just continue with 7103 * the attach... 7104 */ 7105 break; 7106 } 7107 break; 7108 case EACCES: 7109 /* 7110 * Device is reserved by another host. In this case 7111 * we could not spin it up or read the capacity, but 7112 * we continue with the attach anyway. 7113 */ 7114 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7115 "sd_unit_attach: un:0x%p spin-up reservation " 7116 "conflict.\n", un); 7117 reservation_flag = SD_TARGET_IS_RESERVED; 7118 break; 7119 default: 7120 /* Fail the attach if the spin-up failed. */ 7121 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7122 "sd_unit_attach: un:0x%p spin-up failed.", un); 7123 goto spinup_failed; 7124 } 7125 } 7126 7127 /* 7128 * Check to see if this is a MMC drive 7129 */ 7130 if (ISCD(un)) { 7131 sd_set_mmc_caps(un); 7132 } 7133 7134 7135 /* 7136 * Add a zero-length attribute to tell the world we support 7137 * kernel ioctls (for layered drivers) 7138 */ 7139 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 7140 DDI_KERNEL_IOCTL, NULL, 0); 7141 7142 /* 7143 * Add a boolean property to tell the world we support 7144 * the B_FAILFAST flag (for layered drivers) 7145 */ 7146 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 7147 "ddi-failfast-supported", NULL, 0); 7148 7149 /* 7150 * Initialize power management 7151 */ 7152 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 7153 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 7154 sd_setup_pm(un, devi); 7155 if (un->un_f_pm_is_enabled == FALSE) { 7156 /* 7157 * For performance, point to a jump table that does 7158 * not include pm. 7159 * The direct and priority chains don't change with PM. 7160 * 7161 * Note: this is currently done based on individual device 7162 * capabilities. When an interface for determining system 7163 * power enabled state becomes available, or when additional 7164 * layers are added to the command chain, these values will 7165 * have to be re-evaluated for correctness. 7166 */ 7167 if (un->un_f_non_devbsize_supported) { 7168 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 7169 } else { 7170 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 7171 } 7172 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 7173 } 7174 7175 /* 7176 * This property is set to 0 by HA software to avoid retries 7177 * on a reserved disk. (The preferred property name is 7178 * "retry-on-reservation-conflict") (1189689) 7179 * 7180 * Note: The use of a global here can have unintended consequences. A 7181 * per instance variable is preferrable to match the capabilities of 7182 * different underlying hba's (4402600) 7183 */ 7184 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 7185 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 7186 sd_retry_on_reservation_conflict); 7187 if (sd_retry_on_reservation_conflict != 0) { 7188 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 7189 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 7190 sd_retry_on_reservation_conflict); 7191 } 7192 7193 /* Set up options for QFULL handling. */ 7194 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7195 "qfull-retries", -1)) != -1) { 7196 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 7197 rval, 1); 7198 } 7199 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7200 "qfull-retry-interval", -1)) != -1) { 7201 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 7202 rval, 1); 7203 } 7204 7205 /* 7206 * This just prints a message that announces the existence of the 7207 * device. The message is always printed in the system logfile, but 7208 * only appears on the console if the system is booted with the 7209 * -v (verbose) argument. 7210 */ 7211 ddi_report_dev(devi); 7212 7213 un->un_mediastate = DKIO_NONE; 7214 7215 cmlb_alloc_handle(&un->un_cmlbhandle); 7216 7217 #if defined(__i386) || defined(__amd64) 7218 /* 7219 * On x86, compensate for off-by-1 legacy error 7220 */ 7221 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 7222 (lbasize == un->un_sys_blocksize)) 7223 offbyone = CMLB_OFF_BY_ONE; 7224 #endif 7225 7226 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 7227 un->un_f_has_removable_media, un->un_f_is_hotpluggable, 7228 un->un_node_type, offbyone, un->un_cmlbhandle, 7229 (void *)SD_PATH_DIRECT) != 0) { 7230 goto cmlb_attach_failed; 7231 } 7232 7233 7234 /* 7235 * Read and validate the device's geometry (ie, disk label) 7236 * A new unformatted drive will not have a valid geometry, but 7237 * the driver needs to successfully attach to this device so 7238 * the drive can be formatted via ioctls. 7239 */ 7240 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 7241 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 7242 7243 mutex_enter(SD_MUTEX(un)); 7244 7245 /* 7246 * Read and initialize the devid for the unit. 7247 */ 7248 ASSERT(un->un_errstats != NULL); 7249 if (un->un_f_devid_supported) { 7250 sd_register_devid(un, devi, reservation_flag); 7251 } 7252 mutex_exit(SD_MUTEX(un)); 7253 7254 #if (defined(__fibre)) 7255 /* 7256 * Register callbacks for fibre only. You can't do this soley 7257 * on the basis of the devid_type because this is hba specific. 7258 * We need to query our hba capabilities to find out whether to 7259 * register or not. 7260 */ 7261 if (un->un_f_is_fibre) { 7262 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 7263 sd_init_event_callbacks(un); 7264 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7265 "sd_unit_attach: un:0x%p event callbacks inserted", 7266 un); 7267 } 7268 } 7269 #endif 7270 7271 if (un->un_f_opt_disable_cache == TRUE) { 7272 /* 7273 * Disable both read cache and write cache. This is 7274 * the historic behavior of the keywords in the config file. 7275 */ 7276 if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 7277 0) { 7278 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7279 "sd_unit_attach: un:0x%p Could not disable " 7280 "caching", un); 7281 goto devid_failed; 7282 } 7283 } 7284 7285 /* 7286 * Check the value of the WCE bit now and 7287 * set un_f_write_cache_enabled accordingly. 7288 */ 7289 (void) sd_get_write_cache_enabled(un, &wc_enabled); 7290 mutex_enter(SD_MUTEX(un)); 7291 un->un_f_write_cache_enabled = (wc_enabled != 0); 7292 mutex_exit(SD_MUTEX(un)); 7293 7294 /* 7295 * Find out what type of reservation this disk supports. 7296 */ 7297 switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) { 7298 case 0: 7299 /* 7300 * SCSI-3 reservations are supported. 7301 */ 7302 un->un_reservation_type = SD_SCSI3_RESERVATION; 7303 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7304 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 7305 break; 7306 case ENOTSUP: 7307 /* 7308 * The PERSISTENT RESERVE IN command would not be recognized by 7309 * a SCSI-2 device, so assume the reservation type is SCSI-2. 7310 */ 7311 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7312 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 7313 un->un_reservation_type = SD_SCSI2_RESERVATION; 7314 break; 7315 default: 7316 /* 7317 * default to SCSI-3 reservations 7318 */ 7319 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7320 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 7321 un->un_reservation_type = SD_SCSI3_RESERVATION; 7322 break; 7323 } 7324 7325 /* 7326 * Set the pstat and error stat values here, so data obtained during the 7327 * previous attach-time routines is available. 7328 * 7329 * Note: This is a critical sequence that needs to be maintained: 7330 * 1) Instantiate the kstats before any routines using the iopath 7331 * (i.e. sd_send_scsi_cmd). 7332 * 2) Initialize the error stats (sd_set_errstats) and partition 7333 * stats (sd_set_pstats)here, following 7334 * cmlb_validate_geometry(), sd_register_devid(), and 7335 * sd_cache_control(). 7336 */ 7337 7338 if (un->un_f_pkstats_enabled && geom_label_valid) { 7339 sd_set_pstats(un); 7340 SD_TRACE(SD_LOG_IO_PARTITION, un, 7341 "sd_unit_attach: un:0x%p pstats created and set\n", un); 7342 } 7343 7344 sd_set_errstats(un); 7345 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7346 "sd_unit_attach: un:0x%p errstats set\n", un); 7347 7348 7349 /* 7350 * After successfully attaching an instance, we record the information 7351 * of how many luns have been attached on the relative target and 7352 * controller for parallel SCSI. This information is used when sd tries 7353 * to set the tagged queuing capability in HBA. 7354 */ 7355 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 7356 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 7357 } 7358 7359 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7360 "sd_unit_attach: un:0x%p exit success\n", un); 7361 7362 return (DDI_SUCCESS); 7363 7364 /* 7365 * An error occurred during the attach; clean up & return failure. 7366 */ 7367 7368 devid_failed: 7369 7370 setup_pm_failed: 7371 ddi_remove_minor_node(devi, NULL); 7372 7373 cmlb_attach_failed: 7374 /* 7375 * Cleanup from the scsi_ifsetcap() calls (437868) 7376 */ 7377 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 7378 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 7379 7380 /* 7381 * Refer to the comments of setting tagged-qing in the beginning of 7382 * sd_unit_attach. We can only disable tagged queuing when there is 7383 * no lun attached on the target. 7384 */ 7385 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7386 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 7387 } 7388 7389 if (un->un_f_is_fibre == FALSE) { 7390 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 7391 } 7392 7393 spinup_failed: 7394 7395 mutex_enter(SD_MUTEX(un)); 7396 7397 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 7398 if (un->un_direct_priority_timeid != NULL) { 7399 timeout_id_t temp_id = un->un_direct_priority_timeid; 7400 un->un_direct_priority_timeid = NULL; 7401 mutex_exit(SD_MUTEX(un)); 7402 (void) untimeout(temp_id); 7403 mutex_enter(SD_MUTEX(un)); 7404 } 7405 7406 /* Cancel any pending start/stop timeouts */ 7407 if (un->un_startstop_timeid != NULL) { 7408 timeout_id_t temp_id = un->un_startstop_timeid; 7409 un->un_startstop_timeid = NULL; 7410 mutex_exit(SD_MUTEX(un)); 7411 (void) untimeout(temp_id); 7412 mutex_enter(SD_MUTEX(un)); 7413 } 7414 7415 /* Cancel any pending reset-throttle timeouts */ 7416 if (un->un_reset_throttle_timeid != NULL) { 7417 timeout_id_t temp_id = un->un_reset_throttle_timeid; 7418 un->un_reset_throttle_timeid = NULL; 7419 mutex_exit(SD_MUTEX(un)); 7420 (void) untimeout(temp_id); 7421 mutex_enter(SD_MUTEX(un)); 7422 } 7423 7424 /* Cancel any pending retry timeouts */ 7425 if (un->un_retry_timeid != NULL) { 7426 timeout_id_t temp_id = un->un_retry_timeid; 7427 un->un_retry_timeid = NULL; 7428 mutex_exit(SD_MUTEX(un)); 7429 (void) untimeout(temp_id); 7430 mutex_enter(SD_MUTEX(un)); 7431 } 7432 7433 /* Cancel any pending delayed cv broadcast timeouts */ 7434 if (un->un_dcvb_timeid != NULL) { 7435 timeout_id_t temp_id = un->un_dcvb_timeid; 7436 un->un_dcvb_timeid = NULL; 7437 mutex_exit(SD_MUTEX(un)); 7438 (void) untimeout(temp_id); 7439 mutex_enter(SD_MUTEX(un)); 7440 } 7441 7442 mutex_exit(SD_MUTEX(un)); 7443 7444 /* There should not be any in-progress I/O so ASSERT this check */ 7445 ASSERT(un->un_ncmds_in_transport == 0); 7446 ASSERT(un->un_ncmds_in_driver == 0); 7447 7448 /* Do not free the softstate if the callback routine is active */ 7449 sd_sync_with_callback(un); 7450 7451 /* 7452 * Partition stats apparently are not used with removables. These would 7453 * not have been created during attach, so no need to clean them up... 7454 */ 7455 if (un->un_stats != NULL) { 7456 kstat_delete(un->un_stats); 7457 un->un_stats = NULL; 7458 } 7459 if (un->un_errstats != NULL) { 7460 kstat_delete(un->un_errstats); 7461 un->un_errstats = NULL; 7462 } 7463 7464 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 7465 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 7466 7467 ddi_prop_remove_all(devi); 7468 sema_destroy(&un->un_semoclose); 7469 cv_destroy(&un->un_state_cv); 7470 7471 getrbuf_failed: 7472 7473 sd_free_rqs(un); 7474 7475 alloc_rqs_failed: 7476 7477 devp->sd_private = NULL; 7478 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 7479 7480 get_softstate_failed: 7481 /* 7482 * Note: the man pages are unclear as to whether or not doing a 7483 * ddi_soft_state_free(sd_state, instance) is the right way to 7484 * clean up after the ddi_soft_state_zalloc() if the subsequent 7485 * ddi_get_soft_state() fails. The implication seems to be 7486 * that the get_soft_state cannot fail if the zalloc succeeds. 7487 */ 7488 ddi_soft_state_free(sd_state, instance); 7489 7490 probe_failed: 7491 scsi_unprobe(devp); 7492 #ifdef SDDEBUG 7493 if ((sd_component_mask & SD_LOG_ATTACH_DETACH) && 7494 (sd_level_mask & SD_LOGMASK_TRACE)) { 7495 cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n", 7496 (void *)un); 7497 } 7498 #endif 7499 return (DDI_FAILURE); 7500 } 7501 7502 7503 /* 7504 * Function: sd_unit_detach 7505 * 7506 * Description: Performs DDI_DETACH processing for sddetach(). 7507 * 7508 * Return Code: DDI_SUCCESS 7509 * DDI_FAILURE 7510 * 7511 * Context: Kernel thread context 7512 */ 7513 7514 static int 7515 sd_unit_detach(dev_info_t *devi) 7516 { 7517 struct scsi_device *devp; 7518 struct sd_lun *un; 7519 int i; 7520 int tgt; 7521 dev_t dev; 7522 dev_info_t *pdip = ddi_get_parent(devi); 7523 int instance = ddi_get_instance(devi); 7524 7525 mutex_enter(&sd_detach_mutex); 7526 7527 /* 7528 * Fail the detach for any of the following: 7529 * - Unable to get the sd_lun struct for the instance 7530 * - A layered driver has an outstanding open on the instance 7531 * - Another thread is already detaching this instance 7532 * - Another thread is currently performing an open 7533 */ 7534 devp = ddi_get_driver_private(devi); 7535 if ((devp == NULL) || 7536 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 7537 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 7538 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 7539 mutex_exit(&sd_detach_mutex); 7540 return (DDI_FAILURE); 7541 } 7542 7543 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 7544 7545 /* 7546 * Mark this instance as currently in a detach, to inhibit any 7547 * opens from a layered driver. 7548 */ 7549 un->un_detach_count++; 7550 mutex_exit(&sd_detach_mutex); 7551 7552 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7553 SCSI_ADDR_PROP_TARGET, -1); 7554 7555 dev = sd_make_device(SD_DEVINFO(un)); 7556 7557 #ifndef lint 7558 _NOTE(COMPETING_THREADS_NOW); 7559 #endif 7560 7561 mutex_enter(SD_MUTEX(un)); 7562 7563 /* 7564 * Fail the detach if there are any outstanding layered 7565 * opens on this device. 7566 */ 7567 for (i = 0; i < NDKMAP; i++) { 7568 if (un->un_ocmap.lyropen[i] != 0) { 7569 goto err_notclosed; 7570 } 7571 } 7572 7573 /* 7574 * Verify there are NO outstanding commands issued to this device. 7575 * ie, un_ncmds_in_transport == 0. 7576 * It's possible to have outstanding commands through the physio 7577 * code path, even though everything's closed. 7578 */ 7579 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 7580 (un->un_direct_priority_timeid != NULL) || 7581 (un->un_state == SD_STATE_RWAIT)) { 7582 mutex_exit(SD_MUTEX(un)); 7583 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7584 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 7585 goto err_stillbusy; 7586 } 7587 7588 /* 7589 * If we have the device reserved, release the reservation. 7590 */ 7591 if ((un->un_resvd_status & SD_RESERVE) && 7592 !(un->un_resvd_status & SD_LOST_RESERVE)) { 7593 mutex_exit(SD_MUTEX(un)); 7594 /* 7595 * Note: sd_reserve_release sends a command to the device 7596 * via the sd_ioctlcmd() path, and can sleep. 7597 */ 7598 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 7599 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7600 "sd_dr_detach: Cannot release reservation \n"); 7601 } 7602 } else { 7603 mutex_exit(SD_MUTEX(un)); 7604 } 7605 7606 /* 7607 * Untimeout any reserve recover, throttle reset, restart unit 7608 * and delayed broadcast timeout threads. Protect the timeout pointer 7609 * from getting nulled by their callback functions. 7610 */ 7611 mutex_enter(SD_MUTEX(un)); 7612 if (un->un_resvd_timeid != NULL) { 7613 timeout_id_t temp_id = un->un_resvd_timeid; 7614 un->un_resvd_timeid = NULL; 7615 mutex_exit(SD_MUTEX(un)); 7616 (void) untimeout(temp_id); 7617 mutex_enter(SD_MUTEX(un)); 7618 } 7619 7620 if (un->un_reset_throttle_timeid != NULL) { 7621 timeout_id_t temp_id = un->un_reset_throttle_timeid; 7622 un->un_reset_throttle_timeid = NULL; 7623 mutex_exit(SD_MUTEX(un)); 7624 (void) untimeout(temp_id); 7625 mutex_enter(SD_MUTEX(un)); 7626 } 7627 7628 if (un->un_startstop_timeid != NULL) { 7629 timeout_id_t temp_id = un->un_startstop_timeid; 7630 un->un_startstop_timeid = NULL; 7631 mutex_exit(SD_MUTEX(un)); 7632 (void) untimeout(temp_id); 7633 mutex_enter(SD_MUTEX(un)); 7634 } 7635 7636 if (un->un_dcvb_timeid != NULL) { 7637 timeout_id_t temp_id = un->un_dcvb_timeid; 7638 un->un_dcvb_timeid = NULL; 7639 mutex_exit(SD_MUTEX(un)); 7640 (void) untimeout(temp_id); 7641 } else { 7642 mutex_exit(SD_MUTEX(un)); 7643 } 7644 7645 /* Remove any pending reservation reclaim requests for this device */ 7646 sd_rmv_resv_reclaim_req(dev); 7647 7648 mutex_enter(SD_MUTEX(un)); 7649 7650 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 7651 if (un->un_direct_priority_timeid != NULL) { 7652 timeout_id_t temp_id = un->un_direct_priority_timeid; 7653 un->un_direct_priority_timeid = NULL; 7654 mutex_exit(SD_MUTEX(un)); 7655 (void) untimeout(temp_id); 7656 mutex_enter(SD_MUTEX(un)); 7657 } 7658 7659 /* Cancel any active multi-host disk watch thread requests */ 7660 if (un->un_mhd_token != NULL) { 7661 mutex_exit(SD_MUTEX(un)); 7662 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 7663 if (scsi_watch_request_terminate(un->un_mhd_token, 7664 SCSI_WATCH_TERMINATE_NOWAIT)) { 7665 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7666 "sd_dr_detach: Cannot cancel mhd watch request\n"); 7667 /* 7668 * Note: We are returning here after having removed 7669 * some driver timeouts above. This is consistent with 7670 * the legacy implementation but perhaps the watch 7671 * terminate call should be made with the wait flag set. 7672 */ 7673 goto err_stillbusy; 7674 } 7675 mutex_enter(SD_MUTEX(un)); 7676 un->un_mhd_token = NULL; 7677 } 7678 7679 if (un->un_swr_token != NULL) { 7680 mutex_exit(SD_MUTEX(un)); 7681 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 7682 if (scsi_watch_request_terminate(un->un_swr_token, 7683 SCSI_WATCH_TERMINATE_NOWAIT)) { 7684 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7685 "sd_dr_detach: Cannot cancel swr watch request\n"); 7686 /* 7687 * Note: We are returning here after having removed 7688 * some driver timeouts above. This is consistent with 7689 * the legacy implementation but perhaps the watch 7690 * terminate call should be made with the wait flag set. 7691 */ 7692 goto err_stillbusy; 7693 } 7694 mutex_enter(SD_MUTEX(un)); 7695 un->un_swr_token = NULL; 7696 } 7697 7698 mutex_exit(SD_MUTEX(un)); 7699 7700 /* 7701 * Clear any scsi_reset_notifies. We clear the reset notifies 7702 * if we have not registered one. 7703 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 7704 */ 7705 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 7706 sd_mhd_reset_notify_cb, (caddr_t)un); 7707 7708 /* 7709 * protect the timeout pointers from getting nulled by 7710 * their callback functions during the cancellation process. 7711 * In such a scenario untimeout can be invoked with a null value. 7712 */ 7713 _NOTE(NO_COMPETING_THREADS_NOW); 7714 7715 mutex_enter(&un->un_pm_mutex); 7716 if (un->un_pm_idle_timeid != NULL) { 7717 timeout_id_t temp_id = un->un_pm_idle_timeid; 7718 un->un_pm_idle_timeid = NULL; 7719 mutex_exit(&un->un_pm_mutex); 7720 7721 /* 7722 * Timeout is active; cancel it. 7723 * Note that it'll never be active on a device 7724 * that does not support PM therefore we don't 7725 * have to check before calling pm_idle_component. 7726 */ 7727 (void) untimeout(temp_id); 7728 (void) pm_idle_component(SD_DEVINFO(un), 0); 7729 mutex_enter(&un->un_pm_mutex); 7730 } 7731 7732 /* 7733 * Check whether there is already a timeout scheduled for power 7734 * management. If yes then don't lower the power here, that's. 7735 * the timeout handler's job. 7736 */ 7737 if (un->un_pm_timeid != NULL) { 7738 timeout_id_t temp_id = un->un_pm_timeid; 7739 un->un_pm_timeid = NULL; 7740 mutex_exit(&un->un_pm_mutex); 7741 /* 7742 * Timeout is active; cancel it. 7743 * Note that it'll never be active on a device 7744 * that does not support PM therefore we don't 7745 * have to check before calling pm_idle_component. 7746 */ 7747 (void) untimeout(temp_id); 7748 (void) pm_idle_component(SD_DEVINFO(un), 0); 7749 7750 } else { 7751 mutex_exit(&un->un_pm_mutex); 7752 if ((un->un_f_pm_is_enabled == TRUE) && 7753 (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) != 7754 DDI_SUCCESS)) { 7755 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7756 "sd_dr_detach: Lower power request failed, ignoring.\n"); 7757 /* 7758 * Fix for bug: 4297749, item # 13 7759 * The above test now includes a check to see if PM is 7760 * supported by this device before call 7761 * pm_lower_power(). 7762 * Note, the following is not dead code. The call to 7763 * pm_lower_power above will generate a call back into 7764 * our sdpower routine which might result in a timeout 7765 * handler getting activated. Therefore the following 7766 * code is valid and necessary. 7767 */ 7768 mutex_enter(&un->un_pm_mutex); 7769 if (un->un_pm_timeid != NULL) { 7770 timeout_id_t temp_id = un->un_pm_timeid; 7771 un->un_pm_timeid = NULL; 7772 mutex_exit(&un->un_pm_mutex); 7773 (void) untimeout(temp_id); 7774 (void) pm_idle_component(SD_DEVINFO(un), 0); 7775 } else { 7776 mutex_exit(&un->un_pm_mutex); 7777 } 7778 } 7779 } 7780 7781 /* 7782 * Cleanup from the scsi_ifsetcap() calls (437868) 7783 * Relocated here from above to be after the call to 7784 * pm_lower_power, which was getting errors. 7785 */ 7786 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 7787 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 7788 7789 /* 7790 * Currently, tagged queuing is supported per target based by HBA. 7791 * Setting this per lun instance actually sets the capability of this 7792 * target in HBA, which affects those luns already attached on the 7793 * same target. So during detach, we can only disable this capability 7794 * only when this is the only lun left on this target. By doing 7795 * this, we assume a target has the same tagged queuing capability 7796 * for every lun. The condition can be removed when HBA is changed to 7797 * support per lun based tagged queuing capability. 7798 */ 7799 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 7800 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 7801 } 7802 7803 if (un->un_f_is_fibre == FALSE) { 7804 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 7805 } 7806 7807 /* 7808 * Remove any event callbacks, fibre only 7809 */ 7810 if (un->un_f_is_fibre == TRUE) { 7811 if ((un->un_insert_event != NULL) && 7812 (ddi_remove_event_handler(un->un_insert_cb_id) != 7813 DDI_SUCCESS)) { 7814 /* 7815 * Note: We are returning here after having done 7816 * substantial cleanup above. This is consistent 7817 * with the legacy implementation but this may not 7818 * be the right thing to do. 7819 */ 7820 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7821 "sd_dr_detach: Cannot cancel insert event\n"); 7822 goto err_remove_event; 7823 } 7824 un->un_insert_event = NULL; 7825 7826 if ((un->un_remove_event != NULL) && 7827 (ddi_remove_event_handler(un->un_remove_cb_id) != 7828 DDI_SUCCESS)) { 7829 /* 7830 * Note: We are returning here after having done 7831 * substantial cleanup above. This is consistent 7832 * with the legacy implementation but this may not 7833 * be the right thing to do. 7834 */ 7835 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7836 "sd_dr_detach: Cannot cancel remove event\n"); 7837 goto err_remove_event; 7838 } 7839 un->un_remove_event = NULL; 7840 } 7841 7842 /* Do not free the softstate if the callback routine is active */ 7843 sd_sync_with_callback(un); 7844 7845 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 7846 cmlb_free_handle(&un->un_cmlbhandle); 7847 7848 /* 7849 * Hold the detach mutex here, to make sure that no other threads ever 7850 * can access a (partially) freed soft state structure. 7851 */ 7852 mutex_enter(&sd_detach_mutex); 7853 7854 /* 7855 * Clean up the soft state struct. 7856 * Cleanup is done in reverse order of allocs/inits. 7857 * At this point there should be no competing threads anymore. 7858 */ 7859 7860 /* Unregister and free device id. */ 7861 ddi_devid_unregister(devi); 7862 if (un->un_devid) { 7863 ddi_devid_free(un->un_devid); 7864 un->un_devid = NULL; 7865 } 7866 7867 /* 7868 * Destroy wmap cache if it exists. 7869 */ 7870 if (un->un_wm_cache != NULL) { 7871 kmem_cache_destroy(un->un_wm_cache); 7872 un->un_wm_cache = NULL; 7873 } 7874 7875 /* 7876 * kstat cleanup is done in detach for all device types (4363169). 7877 * We do not want to fail detach if the device kstats are not deleted 7878 * since there is a confusion about the devo_refcnt for the device. 7879 * We just delete the kstats and let detach complete successfully. 7880 */ 7881 if (un->un_stats != NULL) { 7882 kstat_delete(un->un_stats); 7883 un->un_stats = NULL; 7884 } 7885 if (un->un_errstats != NULL) { 7886 kstat_delete(un->un_errstats); 7887 un->un_errstats = NULL; 7888 } 7889 7890 /* Remove partition stats */ 7891 if (un->un_f_pkstats_enabled) { 7892 for (i = 0; i < NSDMAP; i++) { 7893 if (un->un_pstats[i] != NULL) { 7894 kstat_delete(un->un_pstats[i]); 7895 un->un_pstats[i] = NULL; 7896 } 7897 } 7898 } 7899 7900 /* Remove xbuf registration */ 7901 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 7902 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 7903 7904 /* Remove driver properties */ 7905 ddi_prop_remove_all(devi); 7906 7907 mutex_destroy(&un->un_pm_mutex); 7908 cv_destroy(&un->un_pm_busy_cv); 7909 7910 cv_destroy(&un->un_wcc_cv); 7911 7912 /* Open/close semaphore */ 7913 sema_destroy(&un->un_semoclose); 7914 7915 /* Removable media condvar. */ 7916 cv_destroy(&un->un_state_cv); 7917 7918 /* Suspend/resume condvar. */ 7919 cv_destroy(&un->un_suspend_cv); 7920 cv_destroy(&un->un_disk_busy_cv); 7921 7922 sd_free_rqs(un); 7923 7924 /* Free up soft state */ 7925 devp->sd_private = NULL; 7926 7927 bzero(un, sizeof (struct sd_lun)); 7928 ddi_soft_state_free(sd_state, instance); 7929 7930 mutex_exit(&sd_detach_mutex); 7931 7932 /* This frees up the INQUIRY data associated with the device. */ 7933 scsi_unprobe(devp); 7934 7935 /* 7936 * After successfully detaching an instance, we update the information 7937 * of how many luns have been attached in the relative target and 7938 * controller for parallel SCSI. This information is used when sd tries 7939 * to set the tagged queuing capability in HBA. 7940 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 7941 * check if the device is parallel SCSI. However, we don't need to 7942 * check here because we've already checked during attach. No device 7943 * that is not parallel SCSI is in the chain. 7944 */ 7945 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 7946 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 7947 } 7948 7949 return (DDI_SUCCESS); 7950 7951 err_notclosed: 7952 mutex_exit(SD_MUTEX(un)); 7953 7954 err_stillbusy: 7955 _NOTE(NO_COMPETING_THREADS_NOW); 7956 7957 err_remove_event: 7958 mutex_enter(&sd_detach_mutex); 7959 un->un_detach_count--; 7960 mutex_exit(&sd_detach_mutex); 7961 7962 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 7963 return (DDI_FAILURE); 7964 } 7965 7966 7967 /* 7968 * Function: sd_create_errstats 7969 * 7970 * Description: This routine instantiates the device error stats. 7971 * 7972 * Note: During attach the stats are instantiated first so they are 7973 * available for attach-time routines that utilize the driver 7974 * iopath to send commands to the device. The stats are initialized 7975 * separately so data obtained during some attach-time routines is 7976 * available. (4362483) 7977 * 7978 * Arguments: un - driver soft state (unit) structure 7979 * instance - driver instance 7980 * 7981 * Context: Kernel thread context 7982 */ 7983 7984 static void 7985 sd_create_errstats(struct sd_lun *un, int instance) 7986 { 7987 struct sd_errstats *stp; 7988 char kstatmodule_err[KSTAT_STRLEN]; 7989 char kstatname[KSTAT_STRLEN]; 7990 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 7991 7992 ASSERT(un != NULL); 7993 7994 if (un->un_errstats != NULL) { 7995 return; 7996 } 7997 7998 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 7999 "%serr", sd_label); 8000 (void) snprintf(kstatname, sizeof (kstatname), 8001 "%s%d,err", sd_label, instance); 8002 8003 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 8004 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 8005 8006 if (un->un_errstats == NULL) { 8007 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8008 "sd_create_errstats: Failed kstat_create\n"); 8009 return; 8010 } 8011 8012 stp = (struct sd_errstats *)un->un_errstats->ks_data; 8013 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 8014 KSTAT_DATA_UINT32); 8015 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 8016 KSTAT_DATA_UINT32); 8017 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 8018 KSTAT_DATA_UINT32); 8019 kstat_named_init(&stp->sd_vid, "Vendor", 8020 KSTAT_DATA_CHAR); 8021 kstat_named_init(&stp->sd_pid, "Product", 8022 KSTAT_DATA_CHAR); 8023 kstat_named_init(&stp->sd_revision, "Revision", 8024 KSTAT_DATA_CHAR); 8025 kstat_named_init(&stp->sd_serial, "Serial No", 8026 KSTAT_DATA_CHAR); 8027 kstat_named_init(&stp->sd_capacity, "Size", 8028 KSTAT_DATA_ULONGLONG); 8029 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 8030 KSTAT_DATA_UINT32); 8031 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 8032 KSTAT_DATA_UINT32); 8033 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 8034 KSTAT_DATA_UINT32); 8035 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 8036 KSTAT_DATA_UINT32); 8037 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 8038 KSTAT_DATA_UINT32); 8039 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 8040 KSTAT_DATA_UINT32); 8041 8042 un->un_errstats->ks_private = un; 8043 un->un_errstats->ks_update = nulldev; 8044 8045 kstat_install(un->un_errstats); 8046 } 8047 8048 8049 /* 8050 * Function: sd_set_errstats 8051 * 8052 * Description: This routine sets the value of the vendor id, product id, 8053 * revision, serial number, and capacity device error stats. 8054 * 8055 * Note: During attach the stats are instantiated first so they are 8056 * available for attach-time routines that utilize the driver 8057 * iopath to send commands to the device. The stats are initialized 8058 * separately so data obtained during some attach-time routines is 8059 * available. (4362483) 8060 * 8061 * Arguments: un - driver soft state (unit) structure 8062 * 8063 * Context: Kernel thread context 8064 */ 8065 8066 static void 8067 sd_set_errstats(struct sd_lun *un) 8068 { 8069 struct sd_errstats *stp; 8070 8071 ASSERT(un != NULL); 8072 ASSERT(un->un_errstats != NULL); 8073 stp = (struct sd_errstats *)un->un_errstats->ks_data; 8074 ASSERT(stp != NULL); 8075 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 8076 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 8077 (void) strncpy(stp->sd_revision.value.c, 8078 un->un_sd->sd_inq->inq_revision, 4); 8079 8080 /* 8081 * All the errstats are persistent across detach/attach, 8082 * so reset all the errstats here in case of the hot 8083 * replacement of disk drives, except for not changed 8084 * Sun qualified drives. 8085 */ 8086 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 8087 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 8088 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 8089 stp->sd_softerrs.value.ui32 = 0; 8090 stp->sd_harderrs.value.ui32 = 0; 8091 stp->sd_transerrs.value.ui32 = 0; 8092 stp->sd_rq_media_err.value.ui32 = 0; 8093 stp->sd_rq_ntrdy_err.value.ui32 = 0; 8094 stp->sd_rq_nodev_err.value.ui32 = 0; 8095 stp->sd_rq_recov_err.value.ui32 = 0; 8096 stp->sd_rq_illrq_err.value.ui32 = 0; 8097 stp->sd_rq_pfa_err.value.ui32 = 0; 8098 } 8099 8100 /* 8101 * Set the "Serial No" kstat for Sun qualified drives (indicated by 8102 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 8103 * (4376302)) 8104 */ 8105 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 8106 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 8107 sizeof (SD_INQUIRY(un)->inq_serial)); 8108 } 8109 8110 if (un->un_f_blockcount_is_valid != TRUE) { 8111 /* 8112 * Set capacity error stat to 0 for no media. This ensures 8113 * a valid capacity is displayed in response to 'iostat -E' 8114 * when no media is present in the device. 8115 */ 8116 stp->sd_capacity.value.ui64 = 0; 8117 } else { 8118 /* 8119 * Multiply un_blockcount by un->un_sys_blocksize to get 8120 * capacity. 8121 * 8122 * Note: for non-512 blocksize devices "un_blockcount" has been 8123 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 8124 * (un_tgt_blocksize / un->un_sys_blocksize). 8125 */ 8126 stp->sd_capacity.value.ui64 = (uint64_t) 8127 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 8128 } 8129 } 8130 8131 8132 /* 8133 * Function: sd_set_pstats 8134 * 8135 * Description: This routine instantiates and initializes the partition 8136 * stats for each partition with more than zero blocks. 8137 * (4363169) 8138 * 8139 * Arguments: un - driver soft state (unit) structure 8140 * 8141 * Context: Kernel thread context 8142 */ 8143 8144 static void 8145 sd_set_pstats(struct sd_lun *un) 8146 { 8147 char kstatname[KSTAT_STRLEN]; 8148 int instance; 8149 int i; 8150 diskaddr_t nblks = 0; 8151 char *partname = NULL; 8152 8153 ASSERT(un != NULL); 8154 8155 instance = ddi_get_instance(SD_DEVINFO(un)); 8156 8157 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 8158 for (i = 0; i < NSDMAP; i++) { 8159 8160 if (cmlb_partinfo(un->un_cmlbhandle, i, 8161 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 8162 continue; 8163 mutex_enter(SD_MUTEX(un)); 8164 8165 if ((un->un_pstats[i] == NULL) && 8166 (nblks != 0)) { 8167 8168 (void) snprintf(kstatname, sizeof (kstatname), 8169 "%s%d,%s", sd_label, instance, 8170 partname); 8171 8172 un->un_pstats[i] = kstat_create(sd_label, 8173 instance, kstatname, "partition", KSTAT_TYPE_IO, 8174 1, KSTAT_FLAG_PERSISTENT); 8175 if (un->un_pstats[i] != NULL) { 8176 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 8177 kstat_install(un->un_pstats[i]); 8178 } 8179 } 8180 mutex_exit(SD_MUTEX(un)); 8181 } 8182 } 8183 8184 8185 #if (defined(__fibre)) 8186 /* 8187 * Function: sd_init_event_callbacks 8188 * 8189 * Description: This routine initializes the insertion and removal event 8190 * callbacks. (fibre only) 8191 * 8192 * Arguments: un - driver soft state (unit) structure 8193 * 8194 * Context: Kernel thread context 8195 */ 8196 8197 static void 8198 sd_init_event_callbacks(struct sd_lun *un) 8199 { 8200 ASSERT(un != NULL); 8201 8202 if ((un->un_insert_event == NULL) && 8203 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 8204 &un->un_insert_event) == DDI_SUCCESS)) { 8205 /* 8206 * Add the callback for an insertion event 8207 */ 8208 (void) ddi_add_event_handler(SD_DEVINFO(un), 8209 un->un_insert_event, sd_event_callback, (void *)un, 8210 &(un->un_insert_cb_id)); 8211 } 8212 8213 if ((un->un_remove_event == NULL) && 8214 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 8215 &un->un_remove_event) == DDI_SUCCESS)) { 8216 /* 8217 * Add the callback for a removal event 8218 */ 8219 (void) ddi_add_event_handler(SD_DEVINFO(un), 8220 un->un_remove_event, sd_event_callback, (void *)un, 8221 &(un->un_remove_cb_id)); 8222 } 8223 } 8224 8225 8226 /* 8227 * Function: sd_event_callback 8228 * 8229 * Description: This routine handles insert/remove events (photon). The 8230 * state is changed to OFFLINE which can be used to supress 8231 * error msgs. (fibre only) 8232 * 8233 * Arguments: un - driver soft state (unit) structure 8234 * 8235 * Context: Callout thread context 8236 */ 8237 /* ARGSUSED */ 8238 static void 8239 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 8240 void *bus_impldata) 8241 { 8242 struct sd_lun *un = (struct sd_lun *)arg; 8243 8244 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 8245 if (event == un->un_insert_event) { 8246 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 8247 mutex_enter(SD_MUTEX(un)); 8248 if (un->un_state == SD_STATE_OFFLINE) { 8249 if (un->un_last_state != SD_STATE_SUSPENDED) { 8250 un->un_state = un->un_last_state; 8251 } else { 8252 /* 8253 * We have gone through SUSPEND/RESUME while 8254 * we were offline. Restore the last state 8255 */ 8256 un->un_state = un->un_save_state; 8257 } 8258 } 8259 mutex_exit(SD_MUTEX(un)); 8260 8261 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 8262 } else if (event == un->un_remove_event) { 8263 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 8264 mutex_enter(SD_MUTEX(un)); 8265 /* 8266 * We need to handle an event callback that occurs during 8267 * the suspend operation, since we don't prevent it. 8268 */ 8269 if (un->un_state != SD_STATE_OFFLINE) { 8270 if (un->un_state != SD_STATE_SUSPENDED) { 8271 New_state(un, SD_STATE_OFFLINE); 8272 } else { 8273 un->un_last_state = SD_STATE_OFFLINE; 8274 } 8275 } 8276 mutex_exit(SD_MUTEX(un)); 8277 } else { 8278 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 8279 "!Unknown event\n"); 8280 } 8281 8282 } 8283 #endif 8284 8285 /* 8286 * Function: sd_cache_control() 8287 * 8288 * Description: This routine is the driver entry point for setting 8289 * read and write caching by modifying the WCE (write cache 8290 * enable) and RCD (read cache disable) bits of mode 8291 * page 8 (MODEPAGE_CACHING). 8292 * 8293 * Arguments: un - driver soft state (unit) structure 8294 * rcd_flag - flag for controlling the read cache 8295 * wce_flag - flag for controlling the write cache 8296 * 8297 * Return Code: EIO 8298 * code returned by sd_send_scsi_MODE_SENSE and 8299 * sd_send_scsi_MODE_SELECT 8300 * 8301 * Context: Kernel Thread 8302 */ 8303 8304 static int 8305 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag) 8306 { 8307 struct mode_caching *mode_caching_page; 8308 uchar_t *header; 8309 size_t buflen; 8310 int hdrlen; 8311 int bd_len; 8312 int rval = 0; 8313 struct mode_header_grp2 *mhp; 8314 8315 ASSERT(un != NULL); 8316 8317 /* 8318 * Do a test unit ready, otherwise a mode sense may not work if this 8319 * is the first command sent to the device after boot. 8320 */ 8321 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 8322 8323 if (un->un_f_cfg_is_atapi == TRUE) { 8324 hdrlen = MODE_HEADER_LENGTH_GRP2; 8325 } else { 8326 hdrlen = MODE_HEADER_LENGTH; 8327 } 8328 8329 /* 8330 * Allocate memory for the retrieved mode page and its headers. Set 8331 * a pointer to the page itself. Use mode_cache_scsi3 to insure 8332 * we get all of the mode sense data otherwise, the mode select 8333 * will fail. mode_cache_scsi3 is a superset of mode_caching. 8334 */ 8335 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 8336 sizeof (struct mode_cache_scsi3); 8337 8338 header = kmem_zalloc(buflen, KM_SLEEP); 8339 8340 /* Get the information from the device. */ 8341 if (un->un_f_cfg_is_atapi == TRUE) { 8342 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 8343 MODEPAGE_CACHING, SD_PATH_DIRECT); 8344 } else { 8345 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 8346 MODEPAGE_CACHING, SD_PATH_DIRECT); 8347 } 8348 if (rval != 0) { 8349 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 8350 "sd_cache_control: Mode Sense Failed\n"); 8351 kmem_free(header, buflen); 8352 return (rval); 8353 } 8354 8355 /* 8356 * Determine size of Block Descriptors in order to locate 8357 * the mode page data. ATAPI devices return 0, SCSI devices 8358 * should return MODE_BLK_DESC_LENGTH. 8359 */ 8360 if (un->un_f_cfg_is_atapi == TRUE) { 8361 mhp = (struct mode_header_grp2 *)header; 8362 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 8363 } else { 8364 bd_len = ((struct mode_header *)header)->bdesc_length; 8365 } 8366 8367 if (bd_len > MODE_BLK_DESC_LENGTH) { 8368 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 8369 "sd_cache_control: Mode Sense returned invalid " 8370 "block descriptor length\n"); 8371 kmem_free(header, buflen); 8372 return (EIO); 8373 } 8374 8375 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 8376 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 8377 SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense" 8378 " caching page code mismatch %d\n", 8379 mode_caching_page->mode_page.code); 8380 kmem_free(header, buflen); 8381 return (EIO); 8382 } 8383 8384 /* Check the relevant bits on successful mode sense. */ 8385 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 8386 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 8387 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 8388 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 8389 8390 size_t sbuflen; 8391 uchar_t save_pg; 8392 8393 /* 8394 * Construct select buffer length based on the 8395 * length of the sense data returned. 8396 */ 8397 sbuflen = hdrlen + MODE_BLK_DESC_LENGTH + 8398 sizeof (struct mode_page) + 8399 (int)mode_caching_page->mode_page.length; 8400 8401 /* 8402 * Set the caching bits as requested. 8403 */ 8404 if (rcd_flag == SD_CACHE_ENABLE) 8405 mode_caching_page->rcd = 0; 8406 else if (rcd_flag == SD_CACHE_DISABLE) 8407 mode_caching_page->rcd = 1; 8408 8409 if (wce_flag == SD_CACHE_ENABLE) 8410 mode_caching_page->wce = 1; 8411 else if (wce_flag == SD_CACHE_DISABLE) 8412 mode_caching_page->wce = 0; 8413 8414 /* 8415 * Save the page if the mode sense says the 8416 * drive supports it. 8417 */ 8418 save_pg = mode_caching_page->mode_page.ps ? 8419 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 8420 8421 /* Clear reserved bits before mode select. */ 8422 mode_caching_page->mode_page.ps = 0; 8423 8424 /* 8425 * Clear out mode header for mode select. 8426 * The rest of the retrieved page will be reused. 8427 */ 8428 bzero(header, hdrlen); 8429 8430 if (un->un_f_cfg_is_atapi == TRUE) { 8431 mhp = (struct mode_header_grp2 *)header; 8432 mhp->bdesc_length_hi = bd_len >> 8; 8433 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 8434 } else { 8435 ((struct mode_header *)header)->bdesc_length = bd_len; 8436 } 8437 8438 /* Issue mode select to change the cache settings */ 8439 if (un->un_f_cfg_is_atapi == TRUE) { 8440 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header, 8441 sbuflen, save_pg, SD_PATH_DIRECT); 8442 } else { 8443 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 8444 sbuflen, save_pg, SD_PATH_DIRECT); 8445 } 8446 } 8447 8448 kmem_free(header, buflen); 8449 return (rval); 8450 } 8451 8452 8453 /* 8454 * Function: sd_get_write_cache_enabled() 8455 * 8456 * Description: This routine is the driver entry point for determining if 8457 * write caching is enabled. It examines the WCE (write cache 8458 * enable) bits of mode page 8 (MODEPAGE_CACHING). 8459 * 8460 * Arguments: un - driver soft state (unit) structure 8461 * is_enabled - pointer to int where write cache enabled state 8462 * is returned (non-zero -> write cache enabled) 8463 * 8464 * 8465 * Return Code: EIO 8466 * code returned by sd_send_scsi_MODE_SENSE 8467 * 8468 * Context: Kernel Thread 8469 * 8470 * NOTE: If ioctl is added to disable write cache, this sequence should 8471 * be followed so that no locking is required for accesses to 8472 * un->un_f_write_cache_enabled: 8473 * do mode select to clear wce 8474 * do synchronize cache to flush cache 8475 * set un->un_f_write_cache_enabled = FALSE 8476 * 8477 * Conversely, an ioctl to enable the write cache should be done 8478 * in this order: 8479 * set un->un_f_write_cache_enabled = TRUE 8480 * do mode select to set wce 8481 */ 8482 8483 static int 8484 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled) 8485 { 8486 struct mode_caching *mode_caching_page; 8487 uchar_t *header; 8488 size_t buflen; 8489 int hdrlen; 8490 int bd_len; 8491 int rval = 0; 8492 8493 ASSERT(un != NULL); 8494 ASSERT(is_enabled != NULL); 8495 8496 /* in case of error, flag as enabled */ 8497 *is_enabled = TRUE; 8498 8499 /* 8500 * Do a test unit ready, otherwise a mode sense may not work if this 8501 * is the first command sent to the device after boot. 8502 */ 8503 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 8504 8505 if (un->un_f_cfg_is_atapi == TRUE) { 8506 hdrlen = MODE_HEADER_LENGTH_GRP2; 8507 } else { 8508 hdrlen = MODE_HEADER_LENGTH; 8509 } 8510 8511 /* 8512 * Allocate memory for the retrieved mode page and its headers. Set 8513 * a pointer to the page itself. 8514 */ 8515 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 8516 header = kmem_zalloc(buflen, KM_SLEEP); 8517 8518 /* Get the information from the device. */ 8519 if (un->un_f_cfg_is_atapi == TRUE) { 8520 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 8521 MODEPAGE_CACHING, SD_PATH_DIRECT); 8522 } else { 8523 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 8524 MODEPAGE_CACHING, SD_PATH_DIRECT); 8525 } 8526 if (rval != 0) { 8527 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 8528 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 8529 kmem_free(header, buflen); 8530 return (rval); 8531 } 8532 8533 /* 8534 * Determine size of Block Descriptors in order to locate 8535 * the mode page data. ATAPI devices return 0, SCSI devices 8536 * should return MODE_BLK_DESC_LENGTH. 8537 */ 8538 if (un->un_f_cfg_is_atapi == TRUE) { 8539 struct mode_header_grp2 *mhp; 8540 mhp = (struct mode_header_grp2 *)header; 8541 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 8542 } else { 8543 bd_len = ((struct mode_header *)header)->bdesc_length; 8544 } 8545 8546 if (bd_len > MODE_BLK_DESC_LENGTH) { 8547 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 8548 "sd_get_write_cache_enabled: Mode Sense returned invalid " 8549 "block descriptor length\n"); 8550 kmem_free(header, buflen); 8551 return (EIO); 8552 } 8553 8554 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 8555 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 8556 SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense" 8557 " caching page code mismatch %d\n", 8558 mode_caching_page->mode_page.code); 8559 kmem_free(header, buflen); 8560 return (EIO); 8561 } 8562 *is_enabled = mode_caching_page->wce; 8563 8564 kmem_free(header, buflen); 8565 return (0); 8566 } 8567 8568 8569 /* 8570 * Function: sd_make_device 8571 * 8572 * Description: Utility routine to return the Solaris device number from 8573 * the data in the device's dev_info structure. 8574 * 8575 * Return Code: The Solaris device number 8576 * 8577 * Context: Any 8578 */ 8579 8580 static dev_t 8581 sd_make_device(dev_info_t *devi) 8582 { 8583 return (makedevice(ddi_name_to_major(ddi_get_name(devi)), 8584 ddi_get_instance(devi) << SDUNIT_SHIFT)); 8585 } 8586 8587 8588 /* 8589 * Function: sd_pm_entry 8590 * 8591 * Description: Called at the start of a new command to manage power 8592 * and busy status of a device. This includes determining whether 8593 * the current power state of the device is sufficient for 8594 * performing the command or whether it must be changed. 8595 * The PM framework is notified appropriately. 8596 * Only with a return status of DDI_SUCCESS will the 8597 * component be busy to the framework. 8598 * 8599 * All callers of sd_pm_entry must check the return status 8600 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 8601 * of DDI_FAILURE indicates the device failed to power up. 8602 * In this case un_pm_count has been adjusted so the result 8603 * on exit is still powered down, ie. count is less than 0. 8604 * Calling sd_pm_exit with this count value hits an ASSERT. 8605 * 8606 * Return Code: DDI_SUCCESS or DDI_FAILURE 8607 * 8608 * Context: Kernel thread context. 8609 */ 8610 8611 static int 8612 sd_pm_entry(struct sd_lun *un) 8613 { 8614 int return_status = DDI_SUCCESS; 8615 8616 ASSERT(!mutex_owned(SD_MUTEX(un))); 8617 ASSERT(!mutex_owned(&un->un_pm_mutex)); 8618 8619 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 8620 8621 if (un->un_f_pm_is_enabled == FALSE) { 8622 SD_TRACE(SD_LOG_IO_PM, un, 8623 "sd_pm_entry: exiting, PM not enabled\n"); 8624 return (return_status); 8625 } 8626 8627 /* 8628 * Just increment a counter if PM is enabled. On the transition from 8629 * 0 ==> 1, mark the device as busy. The iodone side will decrement 8630 * the count with each IO and mark the device as idle when the count 8631 * hits 0. 8632 * 8633 * If the count is less than 0 the device is powered down. If a powered 8634 * down device is successfully powered up then the count must be 8635 * incremented to reflect the power up. Note that it'll get incremented 8636 * a second time to become busy. 8637 * 8638 * Because the following has the potential to change the device state 8639 * and must release the un_pm_mutex to do so, only one thread can be 8640 * allowed through at a time. 8641 */ 8642 8643 mutex_enter(&un->un_pm_mutex); 8644 while (un->un_pm_busy == TRUE) { 8645 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 8646 } 8647 un->un_pm_busy = TRUE; 8648 8649 if (un->un_pm_count < 1) { 8650 8651 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 8652 8653 /* 8654 * Indicate we are now busy so the framework won't attempt to 8655 * power down the device. This call will only fail if either 8656 * we passed a bad component number or the device has no 8657 * components. Neither of these should ever happen. 8658 */ 8659 mutex_exit(&un->un_pm_mutex); 8660 return_status = pm_busy_component(SD_DEVINFO(un), 0); 8661 ASSERT(return_status == DDI_SUCCESS); 8662 8663 mutex_enter(&un->un_pm_mutex); 8664 8665 if (un->un_pm_count < 0) { 8666 mutex_exit(&un->un_pm_mutex); 8667 8668 SD_TRACE(SD_LOG_IO_PM, un, 8669 "sd_pm_entry: power up component\n"); 8670 8671 /* 8672 * pm_raise_power will cause sdpower to be called 8673 * which brings the device power level to the 8674 * desired state, ON in this case. If successful, 8675 * un_pm_count and un_power_level will be updated 8676 * appropriately. 8677 */ 8678 return_status = pm_raise_power(SD_DEVINFO(un), 0, 8679 SD_SPINDLE_ON); 8680 8681 mutex_enter(&un->un_pm_mutex); 8682 8683 if (return_status != DDI_SUCCESS) { 8684 /* 8685 * Power up failed. 8686 * Idle the device and adjust the count 8687 * so the result on exit is that we're 8688 * still powered down, ie. count is less than 0. 8689 */ 8690 SD_TRACE(SD_LOG_IO_PM, un, 8691 "sd_pm_entry: power up failed," 8692 " idle the component\n"); 8693 8694 (void) pm_idle_component(SD_DEVINFO(un), 0); 8695 un->un_pm_count--; 8696 } else { 8697 /* 8698 * Device is powered up, verify the 8699 * count is non-negative. 8700 * This is debug only. 8701 */ 8702 ASSERT(un->un_pm_count == 0); 8703 } 8704 } 8705 8706 if (return_status == DDI_SUCCESS) { 8707 /* 8708 * For performance, now that the device has been tagged 8709 * as busy, and it's known to be powered up, update the 8710 * chain types to use jump tables that do not include 8711 * pm. This significantly lowers the overhead and 8712 * therefore improves performance. 8713 */ 8714 8715 mutex_exit(&un->un_pm_mutex); 8716 mutex_enter(SD_MUTEX(un)); 8717 SD_TRACE(SD_LOG_IO_PM, un, 8718 "sd_pm_entry: changing uscsi_chain_type from %d\n", 8719 un->un_uscsi_chain_type); 8720 8721 if (un->un_f_non_devbsize_supported) { 8722 un->un_buf_chain_type = 8723 SD_CHAIN_INFO_RMMEDIA_NO_PM; 8724 } else { 8725 un->un_buf_chain_type = 8726 SD_CHAIN_INFO_DISK_NO_PM; 8727 } 8728 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8729 8730 SD_TRACE(SD_LOG_IO_PM, un, 8731 " changed uscsi_chain_type to %d\n", 8732 un->un_uscsi_chain_type); 8733 mutex_exit(SD_MUTEX(un)); 8734 mutex_enter(&un->un_pm_mutex); 8735 8736 if (un->un_pm_idle_timeid == NULL) { 8737 /* 300 ms. */ 8738 un->un_pm_idle_timeid = 8739 timeout(sd_pm_idletimeout_handler, un, 8740 (drv_usectohz((clock_t)300000))); 8741 /* 8742 * Include an extra call to busy which keeps the 8743 * device busy with-respect-to the PM layer 8744 * until the timer fires, at which time it'll 8745 * get the extra idle call. 8746 */ 8747 (void) pm_busy_component(SD_DEVINFO(un), 0); 8748 } 8749 } 8750 } 8751 un->un_pm_busy = FALSE; 8752 /* Next... */ 8753 cv_signal(&un->un_pm_busy_cv); 8754 8755 un->un_pm_count++; 8756 8757 SD_TRACE(SD_LOG_IO_PM, un, 8758 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 8759 8760 mutex_exit(&un->un_pm_mutex); 8761 8762 return (return_status); 8763 } 8764 8765 8766 /* 8767 * Function: sd_pm_exit 8768 * 8769 * Description: Called at the completion of a command to manage busy 8770 * status for the device. If the device becomes idle the 8771 * PM framework is notified. 8772 * 8773 * Context: Kernel thread context 8774 */ 8775 8776 static void 8777 sd_pm_exit(struct sd_lun *un) 8778 { 8779 ASSERT(!mutex_owned(SD_MUTEX(un))); 8780 ASSERT(!mutex_owned(&un->un_pm_mutex)); 8781 8782 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 8783 8784 /* 8785 * After attach the following flag is only read, so don't 8786 * take the penalty of acquiring a mutex for it. 8787 */ 8788 if (un->un_f_pm_is_enabled == TRUE) { 8789 8790 mutex_enter(&un->un_pm_mutex); 8791 un->un_pm_count--; 8792 8793 SD_TRACE(SD_LOG_IO_PM, un, 8794 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 8795 8796 ASSERT(un->un_pm_count >= 0); 8797 if (un->un_pm_count == 0) { 8798 mutex_exit(&un->un_pm_mutex); 8799 8800 SD_TRACE(SD_LOG_IO_PM, un, 8801 "sd_pm_exit: idle component\n"); 8802 8803 (void) pm_idle_component(SD_DEVINFO(un), 0); 8804 8805 } else { 8806 mutex_exit(&un->un_pm_mutex); 8807 } 8808 } 8809 8810 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 8811 } 8812 8813 8814 /* 8815 * Function: sdopen 8816 * 8817 * Description: Driver's open(9e) entry point function. 8818 * 8819 * Arguments: dev_i - pointer to device number 8820 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 8821 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 8822 * cred_p - user credential pointer 8823 * 8824 * Return Code: EINVAL 8825 * ENXIO 8826 * EIO 8827 * EROFS 8828 * EBUSY 8829 * 8830 * Context: Kernel thread context 8831 */ 8832 /* ARGSUSED */ 8833 static int 8834 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 8835 { 8836 struct sd_lun *un; 8837 int nodelay; 8838 int part; 8839 uint64_t partmask; 8840 int instance; 8841 dev_t dev; 8842 int rval = EIO; 8843 diskaddr_t nblks = 0; 8844 8845 /* Validate the open type */ 8846 if (otyp >= OTYPCNT) { 8847 return (EINVAL); 8848 } 8849 8850 dev = *dev_p; 8851 instance = SDUNIT(dev); 8852 mutex_enter(&sd_detach_mutex); 8853 8854 /* 8855 * Fail the open if there is no softstate for the instance, or 8856 * if another thread somewhere is trying to detach the instance. 8857 */ 8858 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 8859 (un->un_detach_count != 0)) { 8860 mutex_exit(&sd_detach_mutex); 8861 /* 8862 * The probe cache only needs to be cleared when open (9e) fails 8863 * with ENXIO (4238046). 8864 */ 8865 /* 8866 * un-conditionally clearing probe cache is ok with 8867 * separate sd/ssd binaries 8868 * x86 platform can be an issue with both parallel 8869 * and fibre in 1 binary 8870 */ 8871 sd_scsi_clear_probe_cache(); 8872 return (ENXIO); 8873 } 8874 8875 /* 8876 * The un_layer_count is to prevent another thread in specfs from 8877 * trying to detach the instance, which can happen when we are 8878 * called from a higher-layer driver instead of thru specfs. 8879 * This will not be needed when DDI provides a layered driver 8880 * interface that allows specfs to know that an instance is in 8881 * use by a layered driver & should not be detached. 8882 * 8883 * Note: the semantics for layered driver opens are exactly one 8884 * close for every open. 8885 */ 8886 if (otyp == OTYP_LYR) { 8887 un->un_layer_count++; 8888 } 8889 8890 /* 8891 * Keep a count of the current # of opens in progress. This is because 8892 * some layered drivers try to call us as a regular open. This can 8893 * cause problems that we cannot prevent, however by keeping this count 8894 * we can at least keep our open and detach routines from racing against 8895 * each other under such conditions. 8896 */ 8897 un->un_opens_in_progress++; 8898 mutex_exit(&sd_detach_mutex); 8899 8900 nodelay = (flag & (FNDELAY | FNONBLOCK)); 8901 part = SDPART(dev); 8902 partmask = 1 << part; 8903 8904 /* 8905 * We use a semaphore here in order to serialize 8906 * open and close requests on the device. 8907 */ 8908 sema_p(&un->un_semoclose); 8909 8910 mutex_enter(SD_MUTEX(un)); 8911 8912 /* 8913 * All device accesses go thru sdstrategy() where we check 8914 * on suspend status but there could be a scsi_poll command, 8915 * which bypasses sdstrategy(), so we need to check pm 8916 * status. 8917 */ 8918 8919 if (!nodelay) { 8920 while ((un->un_state == SD_STATE_SUSPENDED) || 8921 (un->un_state == SD_STATE_PM_CHANGING)) { 8922 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 8923 } 8924 8925 mutex_exit(SD_MUTEX(un)); 8926 if (sd_pm_entry(un) != DDI_SUCCESS) { 8927 rval = EIO; 8928 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 8929 "sdopen: sd_pm_entry failed\n"); 8930 goto open_failed_with_pm; 8931 } 8932 mutex_enter(SD_MUTEX(un)); 8933 } 8934 8935 /* check for previous exclusive open */ 8936 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 8937 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 8938 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 8939 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 8940 8941 if (un->un_exclopen & (partmask)) { 8942 goto excl_open_fail; 8943 } 8944 8945 if (flag & FEXCL) { 8946 int i; 8947 if (un->un_ocmap.lyropen[part]) { 8948 goto excl_open_fail; 8949 } 8950 for (i = 0; i < (OTYPCNT - 1); i++) { 8951 if (un->un_ocmap.regopen[i] & (partmask)) { 8952 goto excl_open_fail; 8953 } 8954 } 8955 } 8956 8957 /* 8958 * Check the write permission if this is a removable media device, 8959 * NDELAY has not been set, and writable permission is requested. 8960 * 8961 * Note: If NDELAY was set and this is write-protected media the WRITE 8962 * attempt will fail with EIO as part of the I/O processing. This is a 8963 * more permissive implementation that allows the open to succeed and 8964 * WRITE attempts to fail when appropriate. 8965 */ 8966 if (un->un_f_chk_wp_open) { 8967 if ((flag & FWRITE) && (!nodelay)) { 8968 mutex_exit(SD_MUTEX(un)); 8969 /* 8970 * Defer the check for write permission on writable 8971 * DVD drive till sdstrategy and will not fail open even 8972 * if FWRITE is set as the device can be writable 8973 * depending upon the media and the media can change 8974 * after the call to open(). 8975 */ 8976 if (un->un_f_dvdram_writable_device == FALSE) { 8977 if (ISCD(un) || sr_check_wp(dev)) { 8978 rval = EROFS; 8979 mutex_enter(SD_MUTEX(un)); 8980 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 8981 "write to cd or write protected media\n"); 8982 goto open_fail; 8983 } 8984 } 8985 mutex_enter(SD_MUTEX(un)); 8986 } 8987 } 8988 8989 /* 8990 * If opening in NDELAY/NONBLOCK mode, just return. 8991 * Check if disk is ready and has a valid geometry later. 8992 */ 8993 if (!nodelay) { 8994 mutex_exit(SD_MUTEX(un)); 8995 rval = sd_ready_and_valid(un); 8996 mutex_enter(SD_MUTEX(un)); 8997 /* 8998 * Fail if device is not ready or if the number of disk 8999 * blocks is zero or negative for non CD devices. 9000 */ 9001 9002 nblks = 0; 9003 9004 if (rval == SD_READY_VALID && (!ISCD(un))) { 9005 /* if cmlb_partinfo fails, nblks remains 0 */ 9006 mutex_exit(SD_MUTEX(un)); 9007 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 9008 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 9009 mutex_enter(SD_MUTEX(un)); 9010 } 9011 9012 if ((rval != SD_READY_VALID) || 9013 (!ISCD(un) && nblks <= 0)) { 9014 rval = un->un_f_has_removable_media ? ENXIO : EIO; 9015 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 9016 "device not ready or invalid disk block value\n"); 9017 goto open_fail; 9018 } 9019 #if defined(__i386) || defined(__amd64) 9020 } else { 9021 uchar_t *cp; 9022 /* 9023 * x86 requires special nodelay handling, so that p0 is 9024 * always defined and accessible. 9025 * Invalidate geometry only if device is not already open. 9026 */ 9027 cp = &un->un_ocmap.chkd[0]; 9028 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 9029 if (*cp != (uchar_t)0) { 9030 break; 9031 } 9032 cp++; 9033 } 9034 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 9035 mutex_exit(SD_MUTEX(un)); 9036 cmlb_invalidate(un->un_cmlbhandle, 9037 (void *)SD_PATH_DIRECT); 9038 mutex_enter(SD_MUTEX(un)); 9039 } 9040 9041 #endif 9042 } 9043 9044 if (otyp == OTYP_LYR) { 9045 un->un_ocmap.lyropen[part]++; 9046 } else { 9047 un->un_ocmap.regopen[otyp] |= partmask; 9048 } 9049 9050 /* Set up open and exclusive open flags */ 9051 if (flag & FEXCL) { 9052 un->un_exclopen |= (partmask); 9053 } 9054 9055 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 9056 "open of part %d type %d\n", part, otyp); 9057 9058 mutex_exit(SD_MUTEX(un)); 9059 if (!nodelay) { 9060 sd_pm_exit(un); 9061 } 9062 9063 sema_v(&un->un_semoclose); 9064 9065 mutex_enter(&sd_detach_mutex); 9066 un->un_opens_in_progress--; 9067 mutex_exit(&sd_detach_mutex); 9068 9069 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 9070 return (DDI_SUCCESS); 9071 9072 excl_open_fail: 9073 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 9074 rval = EBUSY; 9075 9076 open_fail: 9077 mutex_exit(SD_MUTEX(un)); 9078 9079 /* 9080 * On a failed open we must exit the pm management. 9081 */ 9082 if (!nodelay) { 9083 sd_pm_exit(un); 9084 } 9085 open_failed_with_pm: 9086 sema_v(&un->un_semoclose); 9087 9088 mutex_enter(&sd_detach_mutex); 9089 un->un_opens_in_progress--; 9090 if (otyp == OTYP_LYR) { 9091 un->un_layer_count--; 9092 } 9093 mutex_exit(&sd_detach_mutex); 9094 9095 return (rval); 9096 } 9097 9098 9099 /* 9100 * Function: sdclose 9101 * 9102 * Description: Driver's close(9e) entry point function. 9103 * 9104 * Arguments: dev - device number 9105 * flag - file status flag, informational only 9106 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 9107 * cred_p - user credential pointer 9108 * 9109 * Return Code: ENXIO 9110 * 9111 * Context: Kernel thread context 9112 */ 9113 /* ARGSUSED */ 9114 static int 9115 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 9116 { 9117 struct sd_lun *un; 9118 uchar_t *cp; 9119 int part; 9120 int nodelay; 9121 int rval = 0; 9122 9123 /* Validate the open type */ 9124 if (otyp >= OTYPCNT) { 9125 return (ENXIO); 9126 } 9127 9128 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9129 return (ENXIO); 9130 } 9131 9132 part = SDPART(dev); 9133 nodelay = flag & (FNDELAY | FNONBLOCK); 9134 9135 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 9136 "sdclose: close of part %d type %d\n", part, otyp); 9137 9138 /* 9139 * We use a semaphore here in order to serialize 9140 * open and close requests on the device. 9141 */ 9142 sema_p(&un->un_semoclose); 9143 9144 mutex_enter(SD_MUTEX(un)); 9145 9146 /* Don't proceed if power is being changed. */ 9147 while (un->un_state == SD_STATE_PM_CHANGING) { 9148 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9149 } 9150 9151 if (un->un_exclopen & (1 << part)) { 9152 un->un_exclopen &= ~(1 << part); 9153 } 9154 9155 /* Update the open partition map */ 9156 if (otyp == OTYP_LYR) { 9157 un->un_ocmap.lyropen[part] -= 1; 9158 } else { 9159 un->un_ocmap.regopen[otyp] &= ~(1 << part); 9160 } 9161 9162 cp = &un->un_ocmap.chkd[0]; 9163 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 9164 if (*cp != NULL) { 9165 break; 9166 } 9167 cp++; 9168 } 9169 9170 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 9171 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 9172 9173 /* 9174 * We avoid persistance upon the last close, and set 9175 * the throttle back to the maximum. 9176 */ 9177 un->un_throttle = un->un_saved_throttle; 9178 9179 if (un->un_state == SD_STATE_OFFLINE) { 9180 if (un->un_f_is_fibre == FALSE) { 9181 scsi_log(SD_DEVINFO(un), sd_label, 9182 CE_WARN, "offline\n"); 9183 } 9184 mutex_exit(SD_MUTEX(un)); 9185 cmlb_invalidate(un->un_cmlbhandle, 9186 (void *)SD_PATH_DIRECT); 9187 mutex_enter(SD_MUTEX(un)); 9188 9189 } else { 9190 /* 9191 * Flush any outstanding writes in NVRAM cache. 9192 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 9193 * cmd, it may not work for non-Pluto devices. 9194 * SYNCHRONIZE CACHE is not required for removables, 9195 * except DVD-RAM drives. 9196 * 9197 * Also note: because SYNCHRONIZE CACHE is currently 9198 * the only command issued here that requires the 9199 * drive be powered up, only do the power up before 9200 * sending the Sync Cache command. If additional 9201 * commands are added which require a powered up 9202 * drive, the following sequence may have to change. 9203 * 9204 * And finally, note that parallel SCSI on SPARC 9205 * only issues a Sync Cache to DVD-RAM, a newly 9206 * supported device. 9207 */ 9208 #if defined(__i386) || defined(__amd64) 9209 if (un->un_f_sync_cache_supported || 9210 un->un_f_dvdram_writable_device == TRUE) { 9211 #else 9212 if (un->un_f_dvdram_writable_device == TRUE) { 9213 #endif 9214 mutex_exit(SD_MUTEX(un)); 9215 if (sd_pm_entry(un) == DDI_SUCCESS) { 9216 rval = 9217 sd_send_scsi_SYNCHRONIZE_CACHE(un, 9218 NULL); 9219 /* ignore error if not supported */ 9220 if (rval == ENOTSUP) { 9221 rval = 0; 9222 } else if (rval != 0) { 9223 rval = EIO; 9224 } 9225 sd_pm_exit(un); 9226 } else { 9227 rval = EIO; 9228 } 9229 mutex_enter(SD_MUTEX(un)); 9230 } 9231 9232 /* 9233 * For devices which supports DOOR_LOCK, send an ALLOW 9234 * MEDIA REMOVAL command, but don't get upset if it 9235 * fails. We need to raise the power of the drive before 9236 * we can call sd_send_scsi_DOORLOCK() 9237 */ 9238 if (un->un_f_doorlock_supported) { 9239 mutex_exit(SD_MUTEX(un)); 9240 if (sd_pm_entry(un) == DDI_SUCCESS) { 9241 rval = sd_send_scsi_DOORLOCK(un, 9242 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 9243 9244 sd_pm_exit(un); 9245 if (ISCD(un) && (rval != 0) && 9246 (nodelay != 0)) { 9247 rval = ENXIO; 9248 } 9249 } else { 9250 rval = EIO; 9251 } 9252 mutex_enter(SD_MUTEX(un)); 9253 } 9254 9255 /* 9256 * If a device has removable media, invalidate all 9257 * parameters related to media, such as geometry, 9258 * blocksize, and blockcount. 9259 */ 9260 if (un->un_f_has_removable_media) { 9261 sr_ejected(un); 9262 } 9263 9264 /* 9265 * Destroy the cache (if it exists) which was 9266 * allocated for the write maps since this is 9267 * the last close for this media. 9268 */ 9269 if (un->un_wm_cache) { 9270 /* 9271 * Check if there are pending commands. 9272 * and if there are give a warning and 9273 * do not destroy the cache. 9274 */ 9275 if (un->un_ncmds_in_driver > 0) { 9276 scsi_log(SD_DEVINFO(un), 9277 sd_label, CE_WARN, 9278 "Unable to clean up memory " 9279 "because of pending I/O\n"); 9280 } else { 9281 kmem_cache_destroy( 9282 un->un_wm_cache); 9283 un->un_wm_cache = NULL; 9284 } 9285 } 9286 } 9287 } 9288 9289 mutex_exit(SD_MUTEX(un)); 9290 sema_v(&un->un_semoclose); 9291 9292 if (otyp == OTYP_LYR) { 9293 mutex_enter(&sd_detach_mutex); 9294 /* 9295 * The detach routine may run when the layer count 9296 * drops to zero. 9297 */ 9298 un->un_layer_count--; 9299 mutex_exit(&sd_detach_mutex); 9300 } 9301 9302 return (rval); 9303 } 9304 9305 9306 /* 9307 * Function: sd_ready_and_valid 9308 * 9309 * Description: Test if device is ready and has a valid geometry. 9310 * 9311 * Arguments: dev - device number 9312 * un - driver soft state (unit) structure 9313 * 9314 * Return Code: SD_READY_VALID ready and valid label 9315 * SD_NOT_READY_VALID not ready, no label 9316 * SD_RESERVED_BY_OTHERS reservation conflict 9317 * 9318 * Context: Never called at interrupt context. 9319 */ 9320 9321 static int 9322 sd_ready_and_valid(struct sd_lun *un) 9323 { 9324 struct sd_errstats *stp; 9325 uint64_t capacity; 9326 uint_t lbasize; 9327 int rval = SD_READY_VALID; 9328 char name_str[48]; 9329 int is_valid; 9330 9331 ASSERT(un != NULL); 9332 ASSERT(!mutex_owned(SD_MUTEX(un))); 9333 9334 mutex_enter(SD_MUTEX(un)); 9335 /* 9336 * If a device has removable media, we must check if media is 9337 * ready when checking if this device is ready and valid. 9338 */ 9339 if (un->un_f_has_removable_media) { 9340 mutex_exit(SD_MUTEX(un)); 9341 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 9342 rval = SD_NOT_READY_VALID; 9343 mutex_enter(SD_MUTEX(un)); 9344 goto done; 9345 } 9346 9347 is_valid = SD_IS_VALID_LABEL(un); 9348 mutex_enter(SD_MUTEX(un)); 9349 if (!is_valid || 9350 (un->un_f_blockcount_is_valid == FALSE) || 9351 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 9352 9353 /* capacity has to be read every open. */ 9354 mutex_exit(SD_MUTEX(un)); 9355 if (sd_send_scsi_READ_CAPACITY(un, &capacity, 9356 &lbasize, SD_PATH_DIRECT) != 0) { 9357 cmlb_invalidate(un->un_cmlbhandle, 9358 (void *)SD_PATH_DIRECT); 9359 mutex_enter(SD_MUTEX(un)); 9360 rval = SD_NOT_READY_VALID; 9361 goto done; 9362 } else { 9363 mutex_enter(SD_MUTEX(un)); 9364 sd_update_block_info(un, lbasize, capacity); 9365 } 9366 } 9367 9368 /* 9369 * Check if the media in the device is writable or not. 9370 */ 9371 if (!is_valid && ISCD(un)) { 9372 sd_check_for_writable_cd(un, SD_PATH_DIRECT); 9373 } 9374 9375 } else { 9376 /* 9377 * Do a test unit ready to clear any unit attention from non-cd 9378 * devices. 9379 */ 9380 mutex_exit(SD_MUTEX(un)); 9381 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 9382 mutex_enter(SD_MUTEX(un)); 9383 } 9384 9385 9386 /* 9387 * If this is a non 512 block device, allocate space for 9388 * the wmap cache. This is being done here since every time 9389 * a media is changed this routine will be called and the 9390 * block size is a function of media rather than device. 9391 */ 9392 if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) { 9393 if (!(un->un_wm_cache)) { 9394 (void) snprintf(name_str, sizeof (name_str), 9395 "%s%d_cache", 9396 ddi_driver_name(SD_DEVINFO(un)), 9397 ddi_get_instance(SD_DEVINFO(un))); 9398 un->un_wm_cache = kmem_cache_create( 9399 name_str, sizeof (struct sd_w_map), 9400 8, sd_wm_cache_constructor, 9401 sd_wm_cache_destructor, NULL, 9402 (void *)un, NULL, 0); 9403 if (!(un->un_wm_cache)) { 9404 rval = ENOMEM; 9405 goto done; 9406 } 9407 } 9408 } 9409 9410 if (un->un_state == SD_STATE_NORMAL) { 9411 /* 9412 * If the target is not yet ready here (defined by a TUR 9413 * failure), invalidate the geometry and print an 'offline' 9414 * message. This is a legacy message, as the state of the 9415 * target is not actually changed to SD_STATE_OFFLINE. 9416 * 9417 * If the TUR fails for EACCES (Reservation Conflict), 9418 * SD_RESERVED_BY_OTHERS will be returned to indicate 9419 * reservation conflict. If the TUR fails for other 9420 * reasons, SD_NOT_READY_VALID will be returned. 9421 */ 9422 int err; 9423 9424 mutex_exit(SD_MUTEX(un)); 9425 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 9426 mutex_enter(SD_MUTEX(un)); 9427 9428 if (err != 0) { 9429 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 9430 "offline or reservation conflict\n"); 9431 mutex_exit(SD_MUTEX(un)); 9432 cmlb_invalidate(un->un_cmlbhandle, 9433 (void *)SD_PATH_DIRECT); 9434 mutex_enter(SD_MUTEX(un)); 9435 if (err == EACCES) { 9436 rval = SD_RESERVED_BY_OTHERS; 9437 } else { 9438 rval = SD_NOT_READY_VALID; 9439 } 9440 goto done; 9441 } 9442 } 9443 9444 if (un->un_f_format_in_progress == FALSE) { 9445 mutex_exit(SD_MUTEX(un)); 9446 if (cmlb_validate(un->un_cmlbhandle, 0, 9447 (void *)SD_PATH_DIRECT) != 0) { 9448 rval = SD_NOT_READY_VALID; 9449 mutex_enter(SD_MUTEX(un)); 9450 goto done; 9451 } 9452 if (un->un_f_pkstats_enabled) { 9453 sd_set_pstats(un); 9454 SD_TRACE(SD_LOG_IO_PARTITION, un, 9455 "sd_ready_and_valid: un:0x%p pstats created and " 9456 "set\n", un); 9457 } 9458 mutex_enter(SD_MUTEX(un)); 9459 } 9460 9461 /* 9462 * If this device supports DOOR_LOCK command, try and send 9463 * this command to PREVENT MEDIA REMOVAL, but don't get upset 9464 * if it fails. For a CD, however, it is an error 9465 */ 9466 if (un->un_f_doorlock_supported) { 9467 mutex_exit(SD_MUTEX(un)); 9468 if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 9469 SD_PATH_DIRECT) != 0) && ISCD(un)) { 9470 rval = SD_NOT_READY_VALID; 9471 mutex_enter(SD_MUTEX(un)); 9472 goto done; 9473 } 9474 mutex_enter(SD_MUTEX(un)); 9475 } 9476 9477 /* The state has changed, inform the media watch routines */ 9478 un->un_mediastate = DKIO_INSERTED; 9479 cv_broadcast(&un->un_state_cv); 9480 rval = SD_READY_VALID; 9481 9482 done: 9483 9484 /* 9485 * Initialize the capacity kstat value, if no media previously 9486 * (capacity kstat is 0) and a media has been inserted 9487 * (un_blockcount > 0). 9488 */ 9489 if (un->un_errstats != NULL) { 9490 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9491 if ((stp->sd_capacity.value.ui64 == 0) && 9492 (un->un_f_blockcount_is_valid == TRUE)) { 9493 stp->sd_capacity.value.ui64 = 9494 (uint64_t)((uint64_t)un->un_blockcount * 9495 un->un_sys_blocksize); 9496 } 9497 } 9498 9499 mutex_exit(SD_MUTEX(un)); 9500 return (rval); 9501 } 9502 9503 9504 /* 9505 * Function: sdmin 9506 * 9507 * Description: Routine to limit the size of a data transfer. Used in 9508 * conjunction with physio(9F). 9509 * 9510 * Arguments: bp - pointer to the indicated buf(9S) struct. 9511 * 9512 * Context: Kernel thread context. 9513 */ 9514 9515 static void 9516 sdmin(struct buf *bp) 9517 { 9518 struct sd_lun *un; 9519 int instance; 9520 9521 instance = SDUNIT(bp->b_edev); 9522 9523 un = ddi_get_soft_state(sd_state, instance); 9524 ASSERT(un != NULL); 9525 9526 if (bp->b_bcount > un->un_max_xfer_size) { 9527 bp->b_bcount = un->un_max_xfer_size; 9528 } 9529 } 9530 9531 9532 /* 9533 * Function: sdread 9534 * 9535 * Description: Driver's read(9e) entry point function. 9536 * 9537 * Arguments: dev - device number 9538 * uio - structure pointer describing where data is to be stored 9539 * in user's space 9540 * cred_p - user credential pointer 9541 * 9542 * Return Code: ENXIO 9543 * EIO 9544 * EINVAL 9545 * value returned by physio 9546 * 9547 * Context: Kernel thread context. 9548 */ 9549 /* ARGSUSED */ 9550 static int 9551 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 9552 { 9553 struct sd_lun *un = NULL; 9554 int secmask; 9555 int err; 9556 9557 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9558 return (ENXIO); 9559 } 9560 9561 ASSERT(!mutex_owned(SD_MUTEX(un))); 9562 9563 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 9564 mutex_enter(SD_MUTEX(un)); 9565 /* 9566 * Because the call to sd_ready_and_valid will issue I/O we 9567 * must wait here if either the device is suspended or 9568 * if it's power level is changing. 9569 */ 9570 while ((un->un_state == SD_STATE_SUSPENDED) || 9571 (un->un_state == SD_STATE_PM_CHANGING)) { 9572 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9573 } 9574 un->un_ncmds_in_driver++; 9575 mutex_exit(SD_MUTEX(un)); 9576 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 9577 mutex_enter(SD_MUTEX(un)); 9578 un->un_ncmds_in_driver--; 9579 ASSERT(un->un_ncmds_in_driver >= 0); 9580 mutex_exit(SD_MUTEX(un)); 9581 return (EIO); 9582 } 9583 mutex_enter(SD_MUTEX(un)); 9584 un->un_ncmds_in_driver--; 9585 ASSERT(un->un_ncmds_in_driver >= 0); 9586 mutex_exit(SD_MUTEX(un)); 9587 } 9588 9589 /* 9590 * Read requests are restricted to multiples of the system block size. 9591 */ 9592 secmask = un->un_sys_blocksize - 1; 9593 9594 if (uio->uio_loffset & ((offset_t)(secmask))) { 9595 SD_ERROR(SD_LOG_READ_WRITE, un, 9596 "sdread: file offset not modulo %d\n", 9597 un->un_sys_blocksize); 9598 err = EINVAL; 9599 } else if (uio->uio_iov->iov_len & (secmask)) { 9600 SD_ERROR(SD_LOG_READ_WRITE, un, 9601 "sdread: transfer length not modulo %d\n", 9602 un->un_sys_blocksize); 9603 err = EINVAL; 9604 } else { 9605 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 9606 } 9607 return (err); 9608 } 9609 9610 9611 /* 9612 * Function: sdwrite 9613 * 9614 * Description: Driver's write(9e) entry point function. 9615 * 9616 * Arguments: dev - device number 9617 * uio - structure pointer describing where data is stored in 9618 * user's space 9619 * cred_p - user credential pointer 9620 * 9621 * Return Code: ENXIO 9622 * EIO 9623 * EINVAL 9624 * value returned by physio 9625 * 9626 * Context: Kernel thread context. 9627 */ 9628 /* ARGSUSED */ 9629 static int 9630 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 9631 { 9632 struct sd_lun *un = NULL; 9633 int secmask; 9634 int err; 9635 9636 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9637 return (ENXIO); 9638 } 9639 9640 ASSERT(!mutex_owned(SD_MUTEX(un))); 9641 9642 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 9643 mutex_enter(SD_MUTEX(un)); 9644 /* 9645 * Because the call to sd_ready_and_valid will issue I/O we 9646 * must wait here if either the device is suspended or 9647 * if it's power level is changing. 9648 */ 9649 while ((un->un_state == SD_STATE_SUSPENDED) || 9650 (un->un_state == SD_STATE_PM_CHANGING)) { 9651 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9652 } 9653 un->un_ncmds_in_driver++; 9654 mutex_exit(SD_MUTEX(un)); 9655 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 9656 mutex_enter(SD_MUTEX(un)); 9657 un->un_ncmds_in_driver--; 9658 ASSERT(un->un_ncmds_in_driver >= 0); 9659 mutex_exit(SD_MUTEX(un)); 9660 return (EIO); 9661 } 9662 mutex_enter(SD_MUTEX(un)); 9663 un->un_ncmds_in_driver--; 9664 ASSERT(un->un_ncmds_in_driver >= 0); 9665 mutex_exit(SD_MUTEX(un)); 9666 } 9667 9668 /* 9669 * Write requests are restricted to multiples of the system block size. 9670 */ 9671 secmask = un->un_sys_blocksize - 1; 9672 9673 if (uio->uio_loffset & ((offset_t)(secmask))) { 9674 SD_ERROR(SD_LOG_READ_WRITE, un, 9675 "sdwrite: file offset not modulo %d\n", 9676 un->un_sys_blocksize); 9677 err = EINVAL; 9678 } else if (uio->uio_iov->iov_len & (secmask)) { 9679 SD_ERROR(SD_LOG_READ_WRITE, un, 9680 "sdwrite: transfer length not modulo %d\n", 9681 un->un_sys_blocksize); 9682 err = EINVAL; 9683 } else { 9684 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 9685 } 9686 return (err); 9687 } 9688 9689 9690 /* 9691 * Function: sdaread 9692 * 9693 * Description: Driver's aread(9e) entry point function. 9694 * 9695 * Arguments: dev - device number 9696 * aio - structure pointer describing where data is to be stored 9697 * cred_p - user credential pointer 9698 * 9699 * Return Code: ENXIO 9700 * EIO 9701 * EINVAL 9702 * value returned by aphysio 9703 * 9704 * Context: Kernel thread context. 9705 */ 9706 /* ARGSUSED */ 9707 static int 9708 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 9709 { 9710 struct sd_lun *un = NULL; 9711 struct uio *uio = aio->aio_uio; 9712 int secmask; 9713 int err; 9714 9715 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9716 return (ENXIO); 9717 } 9718 9719 ASSERT(!mutex_owned(SD_MUTEX(un))); 9720 9721 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 9722 mutex_enter(SD_MUTEX(un)); 9723 /* 9724 * Because the call to sd_ready_and_valid will issue I/O we 9725 * must wait here if either the device is suspended or 9726 * if it's power level is changing. 9727 */ 9728 while ((un->un_state == SD_STATE_SUSPENDED) || 9729 (un->un_state == SD_STATE_PM_CHANGING)) { 9730 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9731 } 9732 un->un_ncmds_in_driver++; 9733 mutex_exit(SD_MUTEX(un)); 9734 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 9735 mutex_enter(SD_MUTEX(un)); 9736 un->un_ncmds_in_driver--; 9737 ASSERT(un->un_ncmds_in_driver >= 0); 9738 mutex_exit(SD_MUTEX(un)); 9739 return (EIO); 9740 } 9741 mutex_enter(SD_MUTEX(un)); 9742 un->un_ncmds_in_driver--; 9743 ASSERT(un->un_ncmds_in_driver >= 0); 9744 mutex_exit(SD_MUTEX(un)); 9745 } 9746 9747 /* 9748 * Read requests are restricted to multiples of the system block size. 9749 */ 9750 secmask = un->un_sys_blocksize - 1; 9751 9752 if (uio->uio_loffset & ((offset_t)(secmask))) { 9753 SD_ERROR(SD_LOG_READ_WRITE, un, 9754 "sdaread: file offset not modulo %d\n", 9755 un->un_sys_blocksize); 9756 err = EINVAL; 9757 } else if (uio->uio_iov->iov_len & (secmask)) { 9758 SD_ERROR(SD_LOG_READ_WRITE, un, 9759 "sdaread: transfer length not modulo %d\n", 9760 un->un_sys_blocksize); 9761 err = EINVAL; 9762 } else { 9763 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 9764 } 9765 return (err); 9766 } 9767 9768 9769 /* 9770 * Function: sdawrite 9771 * 9772 * Description: Driver's awrite(9e) entry point function. 9773 * 9774 * Arguments: dev - device number 9775 * aio - structure pointer describing where data is stored 9776 * cred_p - user credential pointer 9777 * 9778 * Return Code: ENXIO 9779 * EIO 9780 * EINVAL 9781 * value returned by aphysio 9782 * 9783 * Context: Kernel thread context. 9784 */ 9785 /* ARGSUSED */ 9786 static int 9787 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 9788 { 9789 struct sd_lun *un = NULL; 9790 struct uio *uio = aio->aio_uio; 9791 int secmask; 9792 int err; 9793 9794 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9795 return (ENXIO); 9796 } 9797 9798 ASSERT(!mutex_owned(SD_MUTEX(un))); 9799 9800 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 9801 mutex_enter(SD_MUTEX(un)); 9802 /* 9803 * Because the call to sd_ready_and_valid will issue I/O we 9804 * must wait here if either the device is suspended or 9805 * if it's power level is changing. 9806 */ 9807 while ((un->un_state == SD_STATE_SUSPENDED) || 9808 (un->un_state == SD_STATE_PM_CHANGING)) { 9809 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9810 } 9811 un->un_ncmds_in_driver++; 9812 mutex_exit(SD_MUTEX(un)); 9813 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 9814 mutex_enter(SD_MUTEX(un)); 9815 un->un_ncmds_in_driver--; 9816 ASSERT(un->un_ncmds_in_driver >= 0); 9817 mutex_exit(SD_MUTEX(un)); 9818 return (EIO); 9819 } 9820 mutex_enter(SD_MUTEX(un)); 9821 un->un_ncmds_in_driver--; 9822 ASSERT(un->un_ncmds_in_driver >= 0); 9823 mutex_exit(SD_MUTEX(un)); 9824 } 9825 9826 /* 9827 * Write requests are restricted to multiples of the system block size. 9828 */ 9829 secmask = un->un_sys_blocksize - 1; 9830 9831 if (uio->uio_loffset & ((offset_t)(secmask))) { 9832 SD_ERROR(SD_LOG_READ_WRITE, un, 9833 "sdawrite: file offset not modulo %d\n", 9834 un->un_sys_blocksize); 9835 err = EINVAL; 9836 } else if (uio->uio_iov->iov_len & (secmask)) { 9837 SD_ERROR(SD_LOG_READ_WRITE, un, 9838 "sdawrite: transfer length not modulo %d\n", 9839 un->un_sys_blocksize); 9840 err = EINVAL; 9841 } else { 9842 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 9843 } 9844 return (err); 9845 } 9846 9847 9848 9849 9850 9851 /* 9852 * Driver IO processing follows the following sequence: 9853 * 9854 * sdioctl(9E) sdstrategy(9E) biodone(9F) 9855 * | | ^ 9856 * v v | 9857 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 9858 * | | | | 9859 * v | | | 9860 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 9861 * | | ^ ^ 9862 * v v | | 9863 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 9864 * | | | | 9865 * +---+ | +------------+ +-------+ 9866 * | | | | 9867 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 9868 * | v | | 9869 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 9870 * | | ^ | 9871 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 9872 * | v | | 9873 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 9874 * | | ^ | 9875 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 9876 * | v | | 9877 * | sd_checksum_iostart() sd_checksum_iodone() | 9878 * | | ^ | 9879 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 9880 * | v | | 9881 * | sd_pm_iostart() sd_pm_iodone() | 9882 * | | ^ | 9883 * | | | | 9884 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 9885 * | ^ 9886 * v | 9887 * sd_core_iostart() | 9888 * | | 9889 * | +------>(*destroypkt)() 9890 * +-> sd_start_cmds() <-+ | | 9891 * | | | v 9892 * | | | scsi_destroy_pkt(9F) 9893 * | | | 9894 * +->(*initpkt)() +- sdintr() 9895 * | | | | 9896 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 9897 * | +-> scsi_setup_cdb(9F) | 9898 * | | 9899 * +--> scsi_transport(9F) | 9900 * | | 9901 * +----> SCSA ---->+ 9902 * 9903 * 9904 * This code is based upon the following presumptions: 9905 * 9906 * - iostart and iodone functions operate on buf(9S) structures. These 9907 * functions perform the necessary operations on the buf(9S) and pass 9908 * them along to the next function in the chain by using the macros 9909 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 9910 * (for iodone side functions). 9911 * 9912 * - The iostart side functions may sleep. The iodone side functions 9913 * are called under interrupt context and may NOT sleep. Therefore 9914 * iodone side functions also may not call iostart side functions. 9915 * (NOTE: iostart side functions should NOT sleep for memory, as 9916 * this could result in deadlock.) 9917 * 9918 * - An iostart side function may call its corresponding iodone side 9919 * function directly (if necessary). 9920 * 9921 * - In the event of an error, an iostart side function can return a buf(9S) 9922 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 9923 * b_error in the usual way of course). 9924 * 9925 * - The taskq mechanism may be used by the iodone side functions to dispatch 9926 * requests to the iostart side functions. The iostart side functions in 9927 * this case would be called under the context of a taskq thread, so it's 9928 * OK for them to block/sleep/spin in this case. 9929 * 9930 * - iostart side functions may allocate "shadow" buf(9S) structs and 9931 * pass them along to the next function in the chain. The corresponding 9932 * iodone side functions must coalesce the "shadow" bufs and return 9933 * the "original" buf to the next higher layer. 9934 * 9935 * - The b_private field of the buf(9S) struct holds a pointer to 9936 * an sd_xbuf struct, which contains information needed to 9937 * construct the scsi_pkt for the command. 9938 * 9939 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 9940 * layer must acquire & release the SD_MUTEX(un) as needed. 9941 */ 9942 9943 9944 /* 9945 * Create taskq for all targets in the system. This is created at 9946 * _init(9E) and destroyed at _fini(9E). 9947 * 9948 * Note: here we set the minalloc to a reasonably high number to ensure that 9949 * we will have an adequate supply of task entries available at interrupt time. 9950 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 9951 * sd_create_taskq(). Since we do not want to sleep for allocations at 9952 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 9953 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 9954 * requests any one instant in time. 9955 */ 9956 #define SD_TASKQ_NUMTHREADS 8 9957 #define SD_TASKQ_MINALLOC 256 9958 #define SD_TASKQ_MAXALLOC 256 9959 9960 static taskq_t *sd_tq = NULL; 9961 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 9962 9963 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 9964 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 9965 9966 /* 9967 * The following task queue is being created for the write part of 9968 * read-modify-write of non-512 block size devices. 9969 * Limit the number of threads to 1 for now. This number has been chosen 9970 * considering the fact that it applies only to dvd ram drives/MO drives 9971 * currently. Performance for which is not main criteria at this stage. 9972 * Note: It needs to be explored if we can use a single taskq in future 9973 */ 9974 #define SD_WMR_TASKQ_NUMTHREADS 1 9975 static taskq_t *sd_wmr_tq = NULL; 9976 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 9977 9978 /* 9979 * Function: sd_taskq_create 9980 * 9981 * Description: Create taskq thread(s) and preallocate task entries 9982 * 9983 * Return Code: Returns a pointer to the allocated taskq_t. 9984 * 9985 * Context: Can sleep. Requires blockable context. 9986 * 9987 * Notes: - The taskq() facility currently is NOT part of the DDI. 9988 * (definitely NOT recommeded for 3rd-party drivers!) :-) 9989 * - taskq_create() will block for memory, also it will panic 9990 * if it cannot create the requested number of threads. 9991 * - Currently taskq_create() creates threads that cannot be 9992 * swapped. 9993 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 9994 * supply of taskq entries at interrupt time (ie, so that we 9995 * do not have to sleep for memory) 9996 */ 9997 9998 static void 9999 sd_taskq_create(void) 10000 { 10001 char taskq_name[TASKQ_NAMELEN]; 10002 10003 ASSERT(sd_tq == NULL); 10004 ASSERT(sd_wmr_tq == NULL); 10005 10006 (void) snprintf(taskq_name, sizeof (taskq_name), 10007 "%s_drv_taskq", sd_label); 10008 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 10009 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 10010 TASKQ_PREPOPULATE)); 10011 10012 (void) snprintf(taskq_name, sizeof (taskq_name), 10013 "%s_rmw_taskq", sd_label); 10014 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 10015 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 10016 TASKQ_PREPOPULATE)); 10017 } 10018 10019 10020 /* 10021 * Function: sd_taskq_delete 10022 * 10023 * Description: Complementary cleanup routine for sd_taskq_create(). 10024 * 10025 * Context: Kernel thread context. 10026 */ 10027 10028 static void 10029 sd_taskq_delete(void) 10030 { 10031 ASSERT(sd_tq != NULL); 10032 ASSERT(sd_wmr_tq != NULL); 10033 taskq_destroy(sd_tq); 10034 taskq_destroy(sd_wmr_tq); 10035 sd_tq = NULL; 10036 sd_wmr_tq = NULL; 10037 } 10038 10039 10040 /* 10041 * Function: sdstrategy 10042 * 10043 * Description: Driver's strategy (9E) entry point function. 10044 * 10045 * Arguments: bp - pointer to buf(9S) 10046 * 10047 * Return Code: Always returns zero 10048 * 10049 * Context: Kernel thread context. 10050 */ 10051 10052 static int 10053 sdstrategy(struct buf *bp) 10054 { 10055 struct sd_lun *un; 10056 10057 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 10058 if (un == NULL) { 10059 bioerror(bp, EIO); 10060 bp->b_resid = bp->b_bcount; 10061 biodone(bp); 10062 return (0); 10063 } 10064 /* As was done in the past, fail new cmds. if state is dumping. */ 10065 if (un->un_state == SD_STATE_DUMPING) { 10066 bioerror(bp, ENXIO); 10067 bp->b_resid = bp->b_bcount; 10068 biodone(bp); 10069 return (0); 10070 } 10071 10072 ASSERT(!mutex_owned(SD_MUTEX(un))); 10073 10074 /* 10075 * Commands may sneak in while we released the mutex in 10076 * DDI_SUSPEND, we should block new commands. However, old 10077 * commands that are still in the driver at this point should 10078 * still be allowed to drain. 10079 */ 10080 mutex_enter(SD_MUTEX(un)); 10081 /* 10082 * Must wait here if either the device is suspended or 10083 * if it's power level is changing. 10084 */ 10085 while ((un->un_state == SD_STATE_SUSPENDED) || 10086 (un->un_state == SD_STATE_PM_CHANGING)) { 10087 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10088 } 10089 10090 un->un_ncmds_in_driver++; 10091 10092 /* 10093 * atapi: Since we are running the CD for now in PIO mode we need to 10094 * call bp_mapin here to avoid bp_mapin called interrupt context under 10095 * the HBA's init_pkt routine. 10096 */ 10097 if (un->un_f_cfg_is_atapi == TRUE) { 10098 mutex_exit(SD_MUTEX(un)); 10099 bp_mapin(bp); 10100 mutex_enter(SD_MUTEX(un)); 10101 } 10102 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 10103 un->un_ncmds_in_driver); 10104 10105 mutex_exit(SD_MUTEX(un)); 10106 10107 /* 10108 * This will (eventually) allocate the sd_xbuf area and 10109 * call sd_xbuf_strategy(). We just want to return the 10110 * result of ddi_xbuf_qstrategy so that we have an opt- 10111 * imized tail call which saves us a stack frame. 10112 */ 10113 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 10114 } 10115 10116 10117 /* 10118 * Function: sd_xbuf_strategy 10119 * 10120 * Description: Function for initiating IO operations via the 10121 * ddi_xbuf_qstrategy() mechanism. 10122 * 10123 * Context: Kernel thread context. 10124 */ 10125 10126 static void 10127 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 10128 { 10129 struct sd_lun *un = arg; 10130 10131 ASSERT(bp != NULL); 10132 ASSERT(xp != NULL); 10133 ASSERT(un != NULL); 10134 ASSERT(!mutex_owned(SD_MUTEX(un))); 10135 10136 /* 10137 * Initialize the fields in the xbuf and save a pointer to the 10138 * xbuf in bp->b_private. 10139 */ 10140 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 10141 10142 /* Send the buf down the iostart chain */ 10143 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 10144 } 10145 10146 10147 /* 10148 * Function: sd_xbuf_init 10149 * 10150 * Description: Prepare the given sd_xbuf struct for use. 10151 * 10152 * Arguments: un - ptr to softstate 10153 * bp - ptr to associated buf(9S) 10154 * xp - ptr to associated sd_xbuf 10155 * chain_type - IO chain type to use: 10156 * SD_CHAIN_NULL 10157 * SD_CHAIN_BUFIO 10158 * SD_CHAIN_USCSI 10159 * SD_CHAIN_DIRECT 10160 * SD_CHAIN_DIRECT_PRIORITY 10161 * pktinfop - ptr to private data struct for scsi_pkt(9S) 10162 * initialization; may be NULL if none. 10163 * 10164 * Context: Kernel thread context 10165 */ 10166 10167 static void 10168 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 10169 uchar_t chain_type, void *pktinfop) 10170 { 10171 int index; 10172 10173 ASSERT(un != NULL); 10174 ASSERT(bp != NULL); 10175 ASSERT(xp != NULL); 10176 10177 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 10178 bp, chain_type); 10179 10180 xp->xb_un = un; 10181 xp->xb_pktp = NULL; 10182 xp->xb_pktinfo = pktinfop; 10183 xp->xb_private = bp->b_private; 10184 xp->xb_blkno = (daddr_t)bp->b_blkno; 10185 10186 /* 10187 * Set up the iostart and iodone chain indexes in the xbuf, based 10188 * upon the specified chain type to use. 10189 */ 10190 switch (chain_type) { 10191 case SD_CHAIN_NULL: 10192 /* 10193 * Fall thru to just use the values for the buf type, even 10194 * tho for the NULL chain these values will never be used. 10195 */ 10196 /* FALLTHRU */ 10197 case SD_CHAIN_BUFIO: 10198 index = un->un_buf_chain_type; 10199 break; 10200 case SD_CHAIN_USCSI: 10201 index = un->un_uscsi_chain_type; 10202 break; 10203 case SD_CHAIN_DIRECT: 10204 index = un->un_direct_chain_type; 10205 break; 10206 case SD_CHAIN_DIRECT_PRIORITY: 10207 index = un->un_priority_chain_type; 10208 break; 10209 default: 10210 /* We're really broken if we ever get here... */ 10211 panic("sd_xbuf_init: illegal chain type!"); 10212 /*NOTREACHED*/ 10213 } 10214 10215 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 10216 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 10217 10218 /* 10219 * It might be a bit easier to simply bzero the entire xbuf above, 10220 * but it turns out that since we init a fair number of members anyway, 10221 * we save a fair number cycles by doing explicit assignment of zero. 10222 */ 10223 xp->xb_pkt_flags = 0; 10224 xp->xb_dma_resid = 0; 10225 xp->xb_retry_count = 0; 10226 xp->xb_victim_retry_count = 0; 10227 xp->xb_ua_retry_count = 0; 10228 xp->xb_nr_retry_count = 0; 10229 xp->xb_sense_bp = NULL; 10230 xp->xb_sense_status = 0; 10231 xp->xb_sense_state = 0; 10232 xp->xb_sense_resid = 0; 10233 10234 bp->b_private = xp; 10235 bp->b_flags &= ~(B_DONE | B_ERROR); 10236 bp->b_resid = 0; 10237 bp->av_forw = NULL; 10238 bp->av_back = NULL; 10239 bioerror(bp, 0); 10240 10241 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 10242 } 10243 10244 10245 /* 10246 * Function: sd_uscsi_strategy 10247 * 10248 * Description: Wrapper for calling into the USCSI chain via physio(9F) 10249 * 10250 * Arguments: bp - buf struct ptr 10251 * 10252 * Return Code: Always returns 0 10253 * 10254 * Context: Kernel thread context 10255 */ 10256 10257 static int 10258 sd_uscsi_strategy(struct buf *bp) 10259 { 10260 struct sd_lun *un; 10261 struct sd_uscsi_info *uip; 10262 struct sd_xbuf *xp; 10263 uchar_t chain_type; 10264 10265 ASSERT(bp != NULL); 10266 10267 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 10268 if (un == NULL) { 10269 bioerror(bp, EIO); 10270 bp->b_resid = bp->b_bcount; 10271 biodone(bp); 10272 return (0); 10273 } 10274 10275 ASSERT(!mutex_owned(SD_MUTEX(un))); 10276 10277 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 10278 10279 mutex_enter(SD_MUTEX(un)); 10280 /* 10281 * atapi: Since we are running the CD for now in PIO mode we need to 10282 * call bp_mapin here to avoid bp_mapin called interrupt context under 10283 * the HBA's init_pkt routine. 10284 */ 10285 if (un->un_f_cfg_is_atapi == TRUE) { 10286 mutex_exit(SD_MUTEX(un)); 10287 bp_mapin(bp); 10288 mutex_enter(SD_MUTEX(un)); 10289 } 10290 un->un_ncmds_in_driver++; 10291 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 10292 un->un_ncmds_in_driver); 10293 mutex_exit(SD_MUTEX(un)); 10294 10295 /* 10296 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 10297 */ 10298 ASSERT(bp->b_private != NULL); 10299 uip = (struct sd_uscsi_info *)bp->b_private; 10300 10301 switch (uip->ui_flags) { 10302 case SD_PATH_DIRECT: 10303 chain_type = SD_CHAIN_DIRECT; 10304 break; 10305 case SD_PATH_DIRECT_PRIORITY: 10306 chain_type = SD_CHAIN_DIRECT_PRIORITY; 10307 break; 10308 default: 10309 chain_type = SD_CHAIN_USCSI; 10310 break; 10311 } 10312 10313 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 10314 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 10315 10316 /* Use the index obtained within xbuf_init */ 10317 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 10318 10319 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 10320 10321 return (0); 10322 } 10323 10324 /* 10325 * Function: sd_send_scsi_cmd 10326 * 10327 * Description: Runs a USCSI command for user (when called thru sdioctl), 10328 * or for the driver 10329 * 10330 * Arguments: dev - the dev_t for the device 10331 * incmd - ptr to a valid uscsi_cmd struct 10332 * flag - bit flag, indicating open settings, 32/64 bit type 10333 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 10334 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 10335 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 10336 * to use the USCSI "direct" chain and bypass the normal 10337 * command waitq. 10338 * 10339 * Return Code: 0 - successful completion of the given command 10340 * EIO - scsi_uscsi_handle_command() failed 10341 * ENXIO - soft state not found for specified dev 10342 * EINVAL 10343 * EFAULT - copyin/copyout error 10344 * return code of scsi_uscsi_handle_command(): 10345 * EIO 10346 * ENXIO 10347 * EACCES 10348 * 10349 * Context: Waits for command to complete. Can sleep. 10350 */ 10351 10352 static int 10353 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 10354 enum uio_seg dataspace, int path_flag) 10355 { 10356 struct sd_uscsi_info *uip; 10357 struct uscsi_cmd *uscmd; 10358 struct sd_lun *un; 10359 int format = 0; 10360 int rval; 10361 10362 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 10363 if (un == NULL) { 10364 return (ENXIO); 10365 } 10366 10367 ASSERT(!mutex_owned(SD_MUTEX(un))); 10368 10369 #ifdef SDDEBUG 10370 switch (dataspace) { 10371 case UIO_USERSPACE: 10372 SD_TRACE(SD_LOG_IO, un, 10373 "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un); 10374 break; 10375 case UIO_SYSSPACE: 10376 SD_TRACE(SD_LOG_IO, un, 10377 "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un); 10378 break; 10379 default: 10380 SD_TRACE(SD_LOG_IO, un, 10381 "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un); 10382 break; 10383 } 10384 #endif 10385 10386 rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag, 10387 SD_ADDRESS(un), &uscmd); 10388 if (rval != 0) { 10389 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 10390 "scsi_uscsi_alloc_and_copyin failed\n", un); 10391 return (rval); 10392 } 10393 10394 if ((uscmd->uscsi_cdb != NULL) && 10395 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 10396 mutex_enter(SD_MUTEX(un)); 10397 un->un_f_format_in_progress = TRUE; 10398 mutex_exit(SD_MUTEX(un)); 10399 format = 1; 10400 } 10401 10402 /* 10403 * Allocate an sd_uscsi_info struct and fill it with the info 10404 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 10405 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 10406 * since we allocate the buf here in this function, we do not 10407 * need to preserve the prior contents of b_private. 10408 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 10409 */ 10410 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 10411 uip->ui_flags = path_flag; 10412 uip->ui_cmdp = uscmd; 10413 10414 /* 10415 * Commands sent with priority are intended for error recovery 10416 * situations, and do not have retries performed. 10417 */ 10418 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 10419 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 10420 } 10421 uscmd->uscsi_flags &= ~USCSI_NOINTR; 10422 10423 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 10424 sd_uscsi_strategy, NULL, uip); 10425 10426 #ifdef SDDEBUG 10427 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 10428 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 10429 uscmd->uscsi_status, uscmd->uscsi_resid); 10430 if (uscmd->uscsi_bufaddr != NULL) { 10431 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 10432 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 10433 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 10434 if (dataspace == UIO_SYSSPACE) { 10435 SD_DUMP_MEMORY(un, SD_LOG_IO, 10436 "data", (uchar_t *)uscmd->uscsi_bufaddr, 10437 uscmd->uscsi_buflen, SD_LOG_HEX); 10438 } 10439 } 10440 #endif 10441 10442 if (format == 1) { 10443 mutex_enter(SD_MUTEX(un)); 10444 un->un_f_format_in_progress = FALSE; 10445 mutex_exit(SD_MUTEX(un)); 10446 } 10447 10448 (void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd); 10449 kmem_free(uip, sizeof (struct sd_uscsi_info)); 10450 10451 return (rval); 10452 } 10453 10454 10455 /* 10456 * Function: sd_buf_iodone 10457 * 10458 * Description: Frees the sd_xbuf & returns the buf to its originator. 10459 * 10460 * Context: May be called from interrupt context. 10461 */ 10462 /* ARGSUSED */ 10463 static void 10464 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 10465 { 10466 struct sd_xbuf *xp; 10467 10468 ASSERT(un != NULL); 10469 ASSERT(bp != NULL); 10470 ASSERT(!mutex_owned(SD_MUTEX(un))); 10471 10472 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 10473 10474 xp = SD_GET_XBUF(bp); 10475 ASSERT(xp != NULL); 10476 10477 mutex_enter(SD_MUTEX(un)); 10478 10479 /* 10480 * Grab time when the cmd completed. 10481 * This is used for determining if the system has been 10482 * idle long enough to make it idle to the PM framework. 10483 * This is for lowering the overhead, and therefore improving 10484 * performance per I/O operation. 10485 */ 10486 un->un_pm_idle_time = ddi_get_time(); 10487 10488 un->un_ncmds_in_driver--; 10489 ASSERT(un->un_ncmds_in_driver >= 0); 10490 SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 10491 un->un_ncmds_in_driver); 10492 10493 mutex_exit(SD_MUTEX(un)); 10494 10495 ddi_xbuf_done(bp, un->un_xbuf_attr); /* xbuf is gone after this */ 10496 biodone(bp); /* bp is gone after this */ 10497 10498 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 10499 } 10500 10501 10502 /* 10503 * Function: sd_uscsi_iodone 10504 * 10505 * Description: Frees the sd_xbuf & returns the buf to its originator. 10506 * 10507 * Context: May be called from interrupt context. 10508 */ 10509 /* ARGSUSED */ 10510 static void 10511 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 10512 { 10513 struct sd_xbuf *xp; 10514 10515 ASSERT(un != NULL); 10516 ASSERT(bp != NULL); 10517 10518 xp = SD_GET_XBUF(bp); 10519 ASSERT(xp != NULL); 10520 ASSERT(!mutex_owned(SD_MUTEX(un))); 10521 10522 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 10523 10524 bp->b_private = xp->xb_private; 10525 10526 mutex_enter(SD_MUTEX(un)); 10527 10528 /* 10529 * Grab time when the cmd completed. 10530 * This is used for determining if the system has been 10531 * idle long enough to make it idle to the PM framework. 10532 * This is for lowering the overhead, and therefore improving 10533 * performance per I/O operation. 10534 */ 10535 un->un_pm_idle_time = ddi_get_time(); 10536 10537 un->un_ncmds_in_driver--; 10538 ASSERT(un->un_ncmds_in_driver >= 0); 10539 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 10540 un->un_ncmds_in_driver); 10541 10542 mutex_exit(SD_MUTEX(un)); 10543 10544 kmem_free(xp, sizeof (struct sd_xbuf)); 10545 biodone(bp); 10546 10547 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 10548 } 10549 10550 10551 /* 10552 * Function: sd_mapblockaddr_iostart 10553 * 10554 * Description: Verify request lies within the partition limits for 10555 * the indicated minor device. Issue "overrun" buf if 10556 * request would exceed partition range. Converts 10557 * partition-relative block address to absolute. 10558 * 10559 * Context: Can sleep 10560 * 10561 * Issues: This follows what the old code did, in terms of accessing 10562 * some of the partition info in the unit struct without holding 10563 * the mutext. This is a general issue, if the partition info 10564 * can be altered while IO is in progress... as soon as we send 10565 * a buf, its partitioning can be invalid before it gets to the 10566 * device. Probably the right fix is to move partitioning out 10567 * of the driver entirely. 10568 */ 10569 10570 static void 10571 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 10572 { 10573 diskaddr_t nblocks; /* #blocks in the given partition */ 10574 daddr_t blocknum; /* Block number specified by the buf */ 10575 size_t requested_nblocks; 10576 size_t available_nblocks; 10577 int partition; 10578 diskaddr_t partition_offset; 10579 struct sd_xbuf *xp; 10580 10581 10582 ASSERT(un != NULL); 10583 ASSERT(bp != NULL); 10584 ASSERT(!mutex_owned(SD_MUTEX(un))); 10585 10586 SD_TRACE(SD_LOG_IO_PARTITION, un, 10587 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 10588 10589 xp = SD_GET_XBUF(bp); 10590 ASSERT(xp != NULL); 10591 10592 /* 10593 * If the geometry is not indicated as valid, attempt to access 10594 * the unit & verify the geometry/label. This can be the case for 10595 * removable-media devices, of if the device was opened in 10596 * NDELAY/NONBLOCK mode. 10597 */ 10598 if (!SD_IS_VALID_LABEL(un) && 10599 (sd_ready_and_valid(un) != SD_READY_VALID)) { 10600 /* 10601 * For removable devices it is possible to start an I/O 10602 * without a media by opening the device in nodelay mode. 10603 * Also for writable CDs there can be many scenarios where 10604 * there is no geometry yet but volume manager is trying to 10605 * issue a read() just because it can see TOC on the CD. So 10606 * do not print a message for removables. 10607 */ 10608 if (!un->un_f_has_removable_media) { 10609 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10610 "i/o to invalid geometry\n"); 10611 } 10612 bioerror(bp, EIO); 10613 bp->b_resid = bp->b_bcount; 10614 SD_BEGIN_IODONE(index, un, bp); 10615 return; 10616 } 10617 10618 partition = SDPART(bp->b_edev); 10619 10620 nblocks = 0; 10621 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 10622 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 10623 10624 /* 10625 * blocknum is the starting block number of the request. At this 10626 * point it is still relative to the start of the minor device. 10627 */ 10628 blocknum = xp->xb_blkno; 10629 10630 /* 10631 * Legacy: If the starting block number is one past the last block 10632 * in the partition, do not set B_ERROR in the buf. 10633 */ 10634 if (blocknum == nblocks) { 10635 goto error_exit; 10636 } 10637 10638 /* 10639 * Confirm that the first block of the request lies within the 10640 * partition limits. Also the requested number of bytes must be 10641 * a multiple of the system block size. 10642 */ 10643 if ((blocknum < 0) || (blocknum >= nblocks) || 10644 ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) { 10645 bp->b_flags |= B_ERROR; 10646 goto error_exit; 10647 } 10648 10649 /* 10650 * If the requsted # blocks exceeds the available # blocks, that 10651 * is an overrun of the partition. 10652 */ 10653 requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount); 10654 available_nblocks = (size_t)(nblocks - blocknum); 10655 ASSERT(nblocks >= blocknum); 10656 10657 if (requested_nblocks > available_nblocks) { 10658 /* 10659 * Allocate an "overrun" buf to allow the request to proceed 10660 * for the amount of space available in the partition. The 10661 * amount not transferred will be added into the b_resid 10662 * when the operation is complete. The overrun buf 10663 * replaces the original buf here, and the original buf 10664 * is saved inside the overrun buf, for later use. 10665 */ 10666 size_t resid = SD_SYSBLOCKS2BYTES(un, 10667 (offset_t)(requested_nblocks - available_nblocks)); 10668 size_t count = bp->b_bcount - resid; 10669 /* 10670 * Note: count is an unsigned entity thus it'll NEVER 10671 * be less than 0 so ASSERT the original values are 10672 * correct. 10673 */ 10674 ASSERT(bp->b_bcount >= resid); 10675 10676 bp = sd_bioclone_alloc(bp, count, blocknum, 10677 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 10678 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 10679 ASSERT(xp != NULL); 10680 } 10681 10682 /* At this point there should be no residual for this buf. */ 10683 ASSERT(bp->b_resid == 0); 10684 10685 /* Convert the block number to an absolute address. */ 10686 xp->xb_blkno += partition_offset; 10687 10688 SD_NEXT_IOSTART(index, un, bp); 10689 10690 SD_TRACE(SD_LOG_IO_PARTITION, un, 10691 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 10692 10693 return; 10694 10695 error_exit: 10696 bp->b_resid = bp->b_bcount; 10697 SD_BEGIN_IODONE(index, un, bp); 10698 SD_TRACE(SD_LOG_IO_PARTITION, un, 10699 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 10700 } 10701 10702 10703 /* 10704 * Function: sd_mapblockaddr_iodone 10705 * 10706 * Description: Completion-side processing for partition management. 10707 * 10708 * Context: May be called under interrupt context 10709 */ 10710 10711 static void 10712 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 10713 { 10714 /* int partition; */ /* Not used, see below. */ 10715 ASSERT(un != NULL); 10716 ASSERT(bp != NULL); 10717 ASSERT(!mutex_owned(SD_MUTEX(un))); 10718 10719 SD_TRACE(SD_LOG_IO_PARTITION, un, 10720 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 10721 10722 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 10723 /* 10724 * We have an "overrun" buf to deal with... 10725 */ 10726 struct sd_xbuf *xp; 10727 struct buf *obp; /* ptr to the original buf */ 10728 10729 xp = SD_GET_XBUF(bp); 10730 ASSERT(xp != NULL); 10731 10732 /* Retrieve the pointer to the original buf */ 10733 obp = (struct buf *)xp->xb_private; 10734 ASSERT(obp != NULL); 10735 10736 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 10737 bioerror(obp, bp->b_error); 10738 10739 sd_bioclone_free(bp); 10740 10741 /* 10742 * Get back the original buf. 10743 * Note that since the restoration of xb_blkno below 10744 * was removed, the sd_xbuf is not needed. 10745 */ 10746 bp = obp; 10747 /* 10748 * xp = SD_GET_XBUF(bp); 10749 * ASSERT(xp != NULL); 10750 */ 10751 } 10752 10753 /* 10754 * Convert sd->xb_blkno back to a minor-device relative value. 10755 * Note: this has been commented out, as it is not needed in the 10756 * current implementation of the driver (ie, since this function 10757 * is at the top of the layering chains, so the info will be 10758 * discarded) and it is in the "hot" IO path. 10759 * 10760 * partition = getminor(bp->b_edev) & SDPART_MASK; 10761 * xp->xb_blkno -= un->un_offset[partition]; 10762 */ 10763 10764 SD_NEXT_IODONE(index, un, bp); 10765 10766 SD_TRACE(SD_LOG_IO_PARTITION, un, 10767 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 10768 } 10769 10770 10771 /* 10772 * Function: sd_mapblocksize_iostart 10773 * 10774 * Description: Convert between system block size (un->un_sys_blocksize) 10775 * and target block size (un->un_tgt_blocksize). 10776 * 10777 * Context: Can sleep to allocate resources. 10778 * 10779 * Assumptions: A higher layer has already performed any partition validation, 10780 * and converted the xp->xb_blkno to an absolute value relative 10781 * to the start of the device. 10782 * 10783 * It is also assumed that the higher layer has implemented 10784 * an "overrun" mechanism for the case where the request would 10785 * read/write beyond the end of a partition. In this case we 10786 * assume (and ASSERT) that bp->b_resid == 0. 10787 * 10788 * Note: The implementation for this routine assumes the target 10789 * block size remains constant between allocation and transport. 10790 */ 10791 10792 static void 10793 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 10794 { 10795 struct sd_mapblocksize_info *bsp; 10796 struct sd_xbuf *xp; 10797 offset_t first_byte; 10798 daddr_t start_block, end_block; 10799 daddr_t request_bytes; 10800 ushort_t is_aligned = FALSE; 10801 10802 ASSERT(un != NULL); 10803 ASSERT(bp != NULL); 10804 ASSERT(!mutex_owned(SD_MUTEX(un))); 10805 ASSERT(bp->b_resid == 0); 10806 10807 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 10808 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 10809 10810 /* 10811 * For a non-writable CD, a write request is an error 10812 */ 10813 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 10814 (un->un_f_mmc_writable_media == FALSE)) { 10815 bioerror(bp, EIO); 10816 bp->b_resid = bp->b_bcount; 10817 SD_BEGIN_IODONE(index, un, bp); 10818 return; 10819 } 10820 10821 /* 10822 * We do not need a shadow buf if the device is using 10823 * un->un_sys_blocksize as its block size or if bcount == 0. 10824 * In this case there is no layer-private data block allocated. 10825 */ 10826 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 10827 (bp->b_bcount == 0)) { 10828 goto done; 10829 } 10830 10831 #if defined(__i386) || defined(__amd64) 10832 /* We do not support non-block-aligned transfers for ROD devices */ 10833 ASSERT(!ISROD(un)); 10834 #endif 10835 10836 xp = SD_GET_XBUF(bp); 10837 ASSERT(xp != NULL); 10838 10839 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 10840 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 10841 un->un_tgt_blocksize, un->un_sys_blocksize); 10842 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 10843 "request start block:0x%x\n", xp->xb_blkno); 10844 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 10845 "request len:0x%x\n", bp->b_bcount); 10846 10847 /* 10848 * Allocate the layer-private data area for the mapblocksize layer. 10849 * Layers are allowed to use the xp_private member of the sd_xbuf 10850 * struct to store the pointer to their layer-private data block, but 10851 * each layer also has the responsibility of restoring the prior 10852 * contents of xb_private before returning the buf/xbuf to the 10853 * higher layer that sent it. 10854 * 10855 * Here we save the prior contents of xp->xb_private into the 10856 * bsp->mbs_oprivate field of our layer-private data area. This value 10857 * is restored by sd_mapblocksize_iodone() just prior to freeing up 10858 * the layer-private area and returning the buf/xbuf to the layer 10859 * that sent it. 10860 * 10861 * Note that here we use kmem_zalloc for the allocation as there are 10862 * parts of the mapblocksize code that expect certain fields to be 10863 * zero unless explicitly set to a required value. 10864 */ 10865 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 10866 bsp->mbs_oprivate = xp->xb_private; 10867 xp->xb_private = bsp; 10868 10869 /* 10870 * This treats the data on the disk (target) as an array of bytes. 10871 * first_byte is the byte offset, from the beginning of the device, 10872 * to the location of the request. This is converted from a 10873 * un->un_sys_blocksize block address to a byte offset, and then back 10874 * to a block address based upon a un->un_tgt_blocksize block size. 10875 * 10876 * xp->xb_blkno should be absolute upon entry into this function, 10877 * but, but it is based upon partitions that use the "system" 10878 * block size. It must be adjusted to reflect the block size of 10879 * the target. 10880 * 10881 * Note that end_block is actually the block that follows the last 10882 * block of the request, but that's what is needed for the computation. 10883 */ 10884 first_byte = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 10885 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 10886 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 10887 un->un_tgt_blocksize; 10888 10889 /* request_bytes is rounded up to a multiple of the target block size */ 10890 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 10891 10892 /* 10893 * See if the starting address of the request and the request 10894 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 10895 * then we do not need to allocate a shadow buf to handle the request. 10896 */ 10897 if (((first_byte % un->un_tgt_blocksize) == 0) && 10898 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 10899 is_aligned = TRUE; 10900 } 10901 10902 if ((bp->b_flags & B_READ) == 0) { 10903 /* 10904 * Lock the range for a write operation. An aligned request is 10905 * considered a simple write; otherwise the request must be a 10906 * read-modify-write. 10907 */ 10908 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 10909 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 10910 } 10911 10912 /* 10913 * Alloc a shadow buf if the request is not aligned. Also, this is 10914 * where the READ command is generated for a read-modify-write. (The 10915 * write phase is deferred until after the read completes.) 10916 */ 10917 if (is_aligned == FALSE) { 10918 10919 struct sd_mapblocksize_info *shadow_bsp; 10920 struct sd_xbuf *shadow_xp; 10921 struct buf *shadow_bp; 10922 10923 /* 10924 * Allocate the shadow buf and it associated xbuf. Note that 10925 * after this call the xb_blkno value in both the original 10926 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 10927 * same: absolute relative to the start of the device, and 10928 * adjusted for the target block size. The b_blkno in the 10929 * shadow buf will also be set to this value. We should never 10930 * change b_blkno in the original bp however. 10931 * 10932 * Note also that the shadow buf will always need to be a 10933 * READ command, regardless of whether the incoming command 10934 * is a READ or a WRITE. 10935 */ 10936 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 10937 xp->xb_blkno, 10938 (int (*)(struct buf *)) sd_mapblocksize_iodone); 10939 10940 shadow_xp = SD_GET_XBUF(shadow_bp); 10941 10942 /* 10943 * Allocate the layer-private data for the shadow buf. 10944 * (No need to preserve xb_private in the shadow xbuf.) 10945 */ 10946 shadow_xp->xb_private = shadow_bsp = 10947 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 10948 10949 /* 10950 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 10951 * to figure out where the start of the user data is (based upon 10952 * the system block size) in the data returned by the READ 10953 * command (which will be based upon the target blocksize). Note 10954 * that this is only really used if the request is unaligned. 10955 */ 10956 bsp->mbs_copy_offset = (ssize_t)(first_byte - 10957 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 10958 ASSERT((bsp->mbs_copy_offset >= 0) && 10959 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 10960 10961 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 10962 10963 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 10964 10965 /* Transfer the wmap (if any) to the shadow buf */ 10966 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 10967 bsp->mbs_wmp = NULL; 10968 10969 /* 10970 * The shadow buf goes on from here in place of the 10971 * original buf. 10972 */ 10973 shadow_bsp->mbs_orig_bp = bp; 10974 bp = shadow_bp; 10975 } 10976 10977 SD_INFO(SD_LOG_IO_RMMEDIA, un, 10978 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 10979 SD_INFO(SD_LOG_IO_RMMEDIA, un, 10980 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 10981 request_bytes); 10982 SD_INFO(SD_LOG_IO_RMMEDIA, un, 10983 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 10984 10985 done: 10986 SD_NEXT_IOSTART(index, un, bp); 10987 10988 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 10989 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 10990 } 10991 10992 10993 /* 10994 * Function: sd_mapblocksize_iodone 10995 * 10996 * Description: Completion side processing for block-size mapping. 10997 * 10998 * Context: May be called under interrupt context 10999 */ 11000 11001 static void 11002 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 11003 { 11004 struct sd_mapblocksize_info *bsp; 11005 struct sd_xbuf *xp; 11006 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 11007 struct buf *orig_bp; /* ptr to the original buf */ 11008 offset_t shadow_end; 11009 offset_t request_end; 11010 offset_t shadow_start; 11011 ssize_t copy_offset; 11012 size_t copy_length; 11013 size_t shortfall; 11014 uint_t is_write; /* TRUE if this bp is a WRITE */ 11015 uint_t has_wmap; /* TRUE is this bp has a wmap */ 11016 11017 ASSERT(un != NULL); 11018 ASSERT(bp != NULL); 11019 11020 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 11021 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 11022 11023 /* 11024 * There is no shadow buf or layer-private data if the target is 11025 * using un->un_sys_blocksize as its block size or if bcount == 0. 11026 */ 11027 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 11028 (bp->b_bcount == 0)) { 11029 goto exit; 11030 } 11031 11032 xp = SD_GET_XBUF(bp); 11033 ASSERT(xp != NULL); 11034 11035 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 11036 bsp = xp->xb_private; 11037 11038 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 11039 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 11040 11041 if (is_write) { 11042 /* 11043 * For a WRITE request we must free up the block range that 11044 * we have locked up. This holds regardless of whether this is 11045 * an aligned write request or a read-modify-write request. 11046 */ 11047 sd_range_unlock(un, bsp->mbs_wmp); 11048 bsp->mbs_wmp = NULL; 11049 } 11050 11051 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 11052 /* 11053 * An aligned read or write command will have no shadow buf; 11054 * there is not much else to do with it. 11055 */ 11056 goto done; 11057 } 11058 11059 orig_bp = bsp->mbs_orig_bp; 11060 ASSERT(orig_bp != NULL); 11061 orig_xp = SD_GET_XBUF(orig_bp); 11062 ASSERT(orig_xp != NULL); 11063 ASSERT(!mutex_owned(SD_MUTEX(un))); 11064 11065 if (!is_write && has_wmap) { 11066 /* 11067 * A READ with a wmap means this is the READ phase of a 11068 * read-modify-write. If an error occurred on the READ then 11069 * we do not proceed with the WRITE phase or copy any data. 11070 * Just release the write maps and return with an error. 11071 */ 11072 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 11073 orig_bp->b_resid = orig_bp->b_bcount; 11074 bioerror(orig_bp, bp->b_error); 11075 sd_range_unlock(un, bsp->mbs_wmp); 11076 goto freebuf_done; 11077 } 11078 } 11079 11080 /* 11081 * Here is where we set up to copy the data from the shadow buf 11082 * into the space associated with the original buf. 11083 * 11084 * To deal with the conversion between block sizes, these 11085 * computations treat the data as an array of bytes, with the 11086 * first byte (byte 0) corresponding to the first byte in the 11087 * first block on the disk. 11088 */ 11089 11090 /* 11091 * shadow_start and shadow_len indicate the location and size of 11092 * the data returned with the shadow IO request. 11093 */ 11094 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 11095 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 11096 11097 /* 11098 * copy_offset gives the offset (in bytes) from the start of the first 11099 * block of the READ request to the beginning of the data. We retrieve 11100 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 11101 * there by sd_mapblockize_iostart(). copy_length gives the amount of 11102 * data to be copied (in bytes). 11103 */ 11104 copy_offset = bsp->mbs_copy_offset; 11105 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 11106 copy_length = orig_bp->b_bcount; 11107 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 11108 11109 /* 11110 * Set up the resid and error fields of orig_bp as appropriate. 11111 */ 11112 if (shadow_end >= request_end) { 11113 /* We got all the requested data; set resid to zero */ 11114 orig_bp->b_resid = 0; 11115 } else { 11116 /* 11117 * We failed to get enough data to fully satisfy the original 11118 * request. Just copy back whatever data we got and set 11119 * up the residual and error code as required. 11120 * 11121 * 'shortfall' is the amount by which the data received with the 11122 * shadow buf has "fallen short" of the requested amount. 11123 */ 11124 shortfall = (size_t)(request_end - shadow_end); 11125 11126 if (shortfall > orig_bp->b_bcount) { 11127 /* 11128 * We did not get enough data to even partially 11129 * fulfill the original request. The residual is 11130 * equal to the amount requested. 11131 */ 11132 orig_bp->b_resid = orig_bp->b_bcount; 11133 } else { 11134 /* 11135 * We did not get all the data that we requested 11136 * from the device, but we will try to return what 11137 * portion we did get. 11138 */ 11139 orig_bp->b_resid = shortfall; 11140 } 11141 ASSERT(copy_length >= orig_bp->b_resid); 11142 copy_length -= orig_bp->b_resid; 11143 } 11144 11145 /* Propagate the error code from the shadow buf to the original buf */ 11146 bioerror(orig_bp, bp->b_error); 11147 11148 if (is_write) { 11149 goto freebuf_done; /* No data copying for a WRITE */ 11150 } 11151 11152 if (has_wmap) { 11153 /* 11154 * This is a READ command from the READ phase of a 11155 * read-modify-write request. We have to copy the data given 11156 * by the user OVER the data returned by the READ command, 11157 * then convert the command from a READ to a WRITE and send 11158 * it back to the target. 11159 */ 11160 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 11161 copy_length); 11162 11163 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 11164 11165 /* 11166 * Dispatch the WRITE command to the taskq thread, which 11167 * will in turn send the command to the target. When the 11168 * WRITE command completes, we (sd_mapblocksize_iodone()) 11169 * will get called again as part of the iodone chain 11170 * processing for it. Note that we will still be dealing 11171 * with the shadow buf at that point. 11172 */ 11173 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 11174 KM_NOSLEEP) != 0) { 11175 /* 11176 * Dispatch was successful so we are done. Return 11177 * without going any higher up the iodone chain. Do 11178 * not free up any layer-private data until after the 11179 * WRITE completes. 11180 */ 11181 return; 11182 } 11183 11184 /* 11185 * Dispatch of the WRITE command failed; set up the error 11186 * condition and send this IO back up the iodone chain. 11187 */ 11188 bioerror(orig_bp, EIO); 11189 orig_bp->b_resid = orig_bp->b_bcount; 11190 11191 } else { 11192 /* 11193 * This is a regular READ request (ie, not a RMW). Copy the 11194 * data from the shadow buf into the original buf. The 11195 * copy_offset compensates for any "misalignment" between the 11196 * shadow buf (with its un->un_tgt_blocksize blocks) and the 11197 * original buf (with its un->un_sys_blocksize blocks). 11198 */ 11199 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 11200 copy_length); 11201 } 11202 11203 freebuf_done: 11204 11205 /* 11206 * At this point we still have both the shadow buf AND the original 11207 * buf to deal with, as well as the layer-private data area in each. 11208 * Local variables are as follows: 11209 * 11210 * bp -- points to shadow buf 11211 * xp -- points to xbuf of shadow buf 11212 * bsp -- points to layer-private data area of shadow buf 11213 * orig_bp -- points to original buf 11214 * 11215 * First free the shadow buf and its associated xbuf, then free the 11216 * layer-private data area from the shadow buf. There is no need to 11217 * restore xb_private in the shadow xbuf. 11218 */ 11219 sd_shadow_buf_free(bp); 11220 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 11221 11222 /* 11223 * Now update the local variables to point to the original buf, xbuf, 11224 * and layer-private area. 11225 */ 11226 bp = orig_bp; 11227 xp = SD_GET_XBUF(bp); 11228 ASSERT(xp != NULL); 11229 ASSERT(xp == orig_xp); 11230 bsp = xp->xb_private; 11231 ASSERT(bsp != NULL); 11232 11233 done: 11234 /* 11235 * Restore xb_private to whatever it was set to by the next higher 11236 * layer in the chain, then free the layer-private data area. 11237 */ 11238 xp->xb_private = bsp->mbs_oprivate; 11239 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 11240 11241 exit: 11242 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 11243 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 11244 11245 SD_NEXT_IODONE(index, un, bp); 11246 } 11247 11248 11249 /* 11250 * Function: sd_checksum_iostart 11251 * 11252 * Description: A stub function for a layer that's currently not used. 11253 * For now just a placeholder. 11254 * 11255 * Context: Kernel thread context 11256 */ 11257 11258 static void 11259 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 11260 { 11261 ASSERT(un != NULL); 11262 ASSERT(bp != NULL); 11263 ASSERT(!mutex_owned(SD_MUTEX(un))); 11264 SD_NEXT_IOSTART(index, un, bp); 11265 } 11266 11267 11268 /* 11269 * Function: sd_checksum_iodone 11270 * 11271 * Description: A stub function for a layer that's currently not used. 11272 * For now just a placeholder. 11273 * 11274 * Context: May be called under interrupt context 11275 */ 11276 11277 static void 11278 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 11279 { 11280 ASSERT(un != NULL); 11281 ASSERT(bp != NULL); 11282 ASSERT(!mutex_owned(SD_MUTEX(un))); 11283 SD_NEXT_IODONE(index, un, bp); 11284 } 11285 11286 11287 /* 11288 * Function: sd_checksum_uscsi_iostart 11289 * 11290 * Description: A stub function for a layer that's currently not used. 11291 * For now just a placeholder. 11292 * 11293 * Context: Kernel thread context 11294 */ 11295 11296 static void 11297 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 11298 { 11299 ASSERT(un != NULL); 11300 ASSERT(bp != NULL); 11301 ASSERT(!mutex_owned(SD_MUTEX(un))); 11302 SD_NEXT_IOSTART(index, un, bp); 11303 } 11304 11305 11306 /* 11307 * Function: sd_checksum_uscsi_iodone 11308 * 11309 * Description: A stub function for a layer that's currently not used. 11310 * For now just a placeholder. 11311 * 11312 * Context: May be called under interrupt context 11313 */ 11314 11315 static void 11316 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 11317 { 11318 ASSERT(un != NULL); 11319 ASSERT(bp != NULL); 11320 ASSERT(!mutex_owned(SD_MUTEX(un))); 11321 SD_NEXT_IODONE(index, un, bp); 11322 } 11323 11324 11325 /* 11326 * Function: sd_pm_iostart 11327 * 11328 * Description: iostart-side routine for Power mangement. 11329 * 11330 * Context: Kernel thread context 11331 */ 11332 11333 static void 11334 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 11335 { 11336 ASSERT(un != NULL); 11337 ASSERT(bp != NULL); 11338 ASSERT(!mutex_owned(SD_MUTEX(un))); 11339 ASSERT(!mutex_owned(&un->un_pm_mutex)); 11340 11341 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 11342 11343 if (sd_pm_entry(un) != DDI_SUCCESS) { 11344 /* 11345 * Set up to return the failed buf back up the 'iodone' 11346 * side of the calling chain. 11347 */ 11348 bioerror(bp, EIO); 11349 bp->b_resid = bp->b_bcount; 11350 11351 SD_BEGIN_IODONE(index, un, bp); 11352 11353 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 11354 return; 11355 } 11356 11357 SD_NEXT_IOSTART(index, un, bp); 11358 11359 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 11360 } 11361 11362 11363 /* 11364 * Function: sd_pm_iodone 11365 * 11366 * Description: iodone-side routine for power mangement. 11367 * 11368 * Context: may be called from interrupt context 11369 */ 11370 11371 static void 11372 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 11373 { 11374 ASSERT(un != NULL); 11375 ASSERT(bp != NULL); 11376 ASSERT(!mutex_owned(&un->un_pm_mutex)); 11377 11378 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 11379 11380 /* 11381 * After attach the following flag is only read, so don't 11382 * take the penalty of acquiring a mutex for it. 11383 */ 11384 if (un->un_f_pm_is_enabled == TRUE) { 11385 sd_pm_exit(un); 11386 } 11387 11388 SD_NEXT_IODONE(index, un, bp); 11389 11390 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 11391 } 11392 11393 11394 /* 11395 * Function: sd_core_iostart 11396 * 11397 * Description: Primary driver function for enqueuing buf(9S) structs from 11398 * the system and initiating IO to the target device 11399 * 11400 * Context: Kernel thread context. Can sleep. 11401 * 11402 * Assumptions: - The given xp->xb_blkno is absolute 11403 * (ie, relative to the start of the device). 11404 * - The IO is to be done using the native blocksize of 11405 * the device, as specified in un->un_tgt_blocksize. 11406 */ 11407 /* ARGSUSED */ 11408 static void 11409 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 11410 { 11411 struct sd_xbuf *xp; 11412 11413 ASSERT(un != NULL); 11414 ASSERT(bp != NULL); 11415 ASSERT(!mutex_owned(SD_MUTEX(un))); 11416 ASSERT(bp->b_resid == 0); 11417 11418 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 11419 11420 xp = SD_GET_XBUF(bp); 11421 ASSERT(xp != NULL); 11422 11423 mutex_enter(SD_MUTEX(un)); 11424 11425 /* 11426 * If we are currently in the failfast state, fail any new IO 11427 * that has B_FAILFAST set, then return. 11428 */ 11429 if ((bp->b_flags & B_FAILFAST) && 11430 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 11431 mutex_exit(SD_MUTEX(un)); 11432 bioerror(bp, EIO); 11433 bp->b_resid = bp->b_bcount; 11434 SD_BEGIN_IODONE(index, un, bp); 11435 return; 11436 } 11437 11438 if (SD_IS_DIRECT_PRIORITY(xp)) { 11439 /* 11440 * Priority command -- transport it immediately. 11441 * 11442 * Note: We may want to assert that USCSI_DIAGNOSE is set, 11443 * because all direct priority commands should be associated 11444 * with error recovery actions which we don't want to retry. 11445 */ 11446 sd_start_cmds(un, bp); 11447 } else { 11448 /* 11449 * Normal command -- add it to the wait queue, then start 11450 * transporting commands from the wait queue. 11451 */ 11452 sd_add_buf_to_waitq(un, bp); 11453 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 11454 sd_start_cmds(un, NULL); 11455 } 11456 11457 mutex_exit(SD_MUTEX(un)); 11458 11459 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 11460 } 11461 11462 11463 /* 11464 * Function: sd_init_cdb_limits 11465 * 11466 * Description: This is to handle scsi_pkt initialization differences 11467 * between the driver platforms. 11468 * 11469 * Legacy behaviors: 11470 * 11471 * If the block number or the sector count exceeds the 11472 * capabilities of a Group 0 command, shift over to a 11473 * Group 1 command. We don't blindly use Group 1 11474 * commands because a) some drives (CDC Wren IVs) get a 11475 * bit confused, and b) there is probably a fair amount 11476 * of speed difference for a target to receive and decode 11477 * a 10 byte command instead of a 6 byte command. 11478 * 11479 * The xfer time difference of 6 vs 10 byte CDBs is 11480 * still significant so this code is still worthwhile. 11481 * 10 byte CDBs are very inefficient with the fas HBA driver 11482 * and older disks. Each CDB byte took 1 usec with some 11483 * popular disks. 11484 * 11485 * Context: Must be called at attach time 11486 */ 11487 11488 static void 11489 sd_init_cdb_limits(struct sd_lun *un) 11490 { 11491 int hba_cdb_limit; 11492 11493 /* 11494 * Use CDB_GROUP1 commands for most devices except for 11495 * parallel SCSI fixed drives in which case we get better 11496 * performance using CDB_GROUP0 commands (where applicable). 11497 */ 11498 un->un_mincdb = SD_CDB_GROUP1; 11499 #if !defined(__fibre) 11500 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 11501 !un->un_f_has_removable_media) { 11502 un->un_mincdb = SD_CDB_GROUP0; 11503 } 11504 #endif 11505 11506 /* 11507 * Try to read the max-cdb-length supported by HBA. 11508 */ 11509 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 11510 if (0 >= un->un_max_hba_cdb) { 11511 un->un_max_hba_cdb = CDB_GROUP4; 11512 hba_cdb_limit = SD_CDB_GROUP4; 11513 } else if (0 < un->un_max_hba_cdb && 11514 un->un_max_hba_cdb < CDB_GROUP1) { 11515 hba_cdb_limit = SD_CDB_GROUP0; 11516 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 11517 un->un_max_hba_cdb < CDB_GROUP5) { 11518 hba_cdb_limit = SD_CDB_GROUP1; 11519 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 11520 un->un_max_hba_cdb < CDB_GROUP4) { 11521 hba_cdb_limit = SD_CDB_GROUP5; 11522 } else { 11523 hba_cdb_limit = SD_CDB_GROUP4; 11524 } 11525 11526 /* 11527 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 11528 * commands for fixed disks unless we are building for a 32 bit 11529 * kernel. 11530 */ 11531 #ifdef _LP64 11532 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 11533 min(hba_cdb_limit, SD_CDB_GROUP4); 11534 #else 11535 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 11536 min(hba_cdb_limit, SD_CDB_GROUP1); 11537 #endif 11538 11539 /* 11540 * x86 systems require the PKT_DMA_PARTIAL flag 11541 */ 11542 #if defined(__x86) 11543 un->un_pkt_flags = PKT_DMA_PARTIAL; 11544 #else 11545 un->un_pkt_flags = 0; 11546 #endif 11547 11548 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 11549 ? sizeof (struct scsi_arq_status) : 1); 11550 un->un_cmd_timeout = (ushort_t)sd_io_time; 11551 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 11552 } 11553 11554 11555 /* 11556 * Function: sd_initpkt_for_buf 11557 * 11558 * Description: Allocate and initialize for transport a scsi_pkt struct, 11559 * based upon the info specified in the given buf struct. 11560 * 11561 * Assumes the xb_blkno in the request is absolute (ie, 11562 * relative to the start of the device (NOT partition!). 11563 * Also assumes that the request is using the native block 11564 * size of the device (as returned by the READ CAPACITY 11565 * command). 11566 * 11567 * Return Code: SD_PKT_ALLOC_SUCCESS 11568 * SD_PKT_ALLOC_FAILURE 11569 * SD_PKT_ALLOC_FAILURE_NO_DMA 11570 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 11571 * 11572 * Context: Kernel thread and may be called from software interrupt context 11573 * as part of a sdrunout callback. This function may not block or 11574 * call routines that block 11575 */ 11576 11577 static int 11578 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 11579 { 11580 struct sd_xbuf *xp; 11581 struct scsi_pkt *pktp = NULL; 11582 struct sd_lun *un; 11583 size_t blockcount; 11584 daddr_t startblock; 11585 int rval; 11586 int cmd_flags; 11587 11588 ASSERT(bp != NULL); 11589 ASSERT(pktpp != NULL); 11590 xp = SD_GET_XBUF(bp); 11591 ASSERT(xp != NULL); 11592 un = SD_GET_UN(bp); 11593 ASSERT(un != NULL); 11594 ASSERT(mutex_owned(SD_MUTEX(un))); 11595 ASSERT(bp->b_resid == 0); 11596 11597 SD_TRACE(SD_LOG_IO_CORE, un, 11598 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 11599 11600 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 11601 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 11602 /* 11603 * Already have a scsi_pkt -- just need DMA resources. 11604 * We must recompute the CDB in case the mapping returns 11605 * a nonzero pkt_resid. 11606 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 11607 * that is being retried, the unmap/remap of the DMA resouces 11608 * will result in the entire transfer starting over again 11609 * from the very first block. 11610 */ 11611 ASSERT(xp->xb_pktp != NULL); 11612 pktp = xp->xb_pktp; 11613 } else { 11614 pktp = NULL; 11615 } 11616 #endif /* __i386 || __amd64 */ 11617 11618 startblock = xp->xb_blkno; /* Absolute block num. */ 11619 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 11620 11621 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 11622 11623 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 11624 11625 #else 11626 11627 cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags; 11628 11629 #endif 11630 11631 /* 11632 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 11633 * call scsi_init_pkt, and build the CDB. 11634 */ 11635 rval = sd_setup_rw_pkt(un, &pktp, bp, 11636 cmd_flags, sdrunout, (caddr_t)un, 11637 startblock, blockcount); 11638 11639 if (rval == 0) { 11640 /* 11641 * Success. 11642 * 11643 * If partial DMA is being used and required for this transfer. 11644 * set it up here. 11645 */ 11646 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 11647 (pktp->pkt_resid != 0)) { 11648 11649 /* 11650 * Save the CDB length and pkt_resid for the 11651 * next xfer 11652 */ 11653 xp->xb_dma_resid = pktp->pkt_resid; 11654 11655 /* rezero resid */ 11656 pktp->pkt_resid = 0; 11657 11658 } else { 11659 xp->xb_dma_resid = 0; 11660 } 11661 11662 pktp->pkt_flags = un->un_tagflags; 11663 pktp->pkt_time = un->un_cmd_timeout; 11664 pktp->pkt_comp = sdintr; 11665 11666 pktp->pkt_private = bp; 11667 *pktpp = pktp; 11668 11669 SD_TRACE(SD_LOG_IO_CORE, un, 11670 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 11671 11672 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 11673 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 11674 #endif 11675 11676 return (SD_PKT_ALLOC_SUCCESS); 11677 11678 } 11679 11680 /* 11681 * SD_PKT_ALLOC_FAILURE is the only expected failure code 11682 * from sd_setup_rw_pkt. 11683 */ 11684 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 11685 11686 if (rval == SD_PKT_ALLOC_FAILURE) { 11687 *pktpp = NULL; 11688 /* 11689 * Set the driver state to RWAIT to indicate the driver 11690 * is waiting on resource allocations. The driver will not 11691 * suspend, pm_suspend, or detatch while the state is RWAIT. 11692 */ 11693 New_state(un, SD_STATE_RWAIT); 11694 11695 SD_ERROR(SD_LOG_IO_CORE, un, 11696 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 11697 11698 if ((bp->b_flags & B_ERROR) != 0) { 11699 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 11700 } 11701 return (SD_PKT_ALLOC_FAILURE); 11702 } else { 11703 /* 11704 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 11705 * 11706 * This should never happen. Maybe someone messed with the 11707 * kernel's minphys? 11708 */ 11709 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 11710 "Request rejected: too large for CDB: " 11711 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 11712 SD_ERROR(SD_LOG_IO_CORE, un, 11713 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 11714 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 11715 11716 } 11717 } 11718 11719 11720 /* 11721 * Function: sd_destroypkt_for_buf 11722 * 11723 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 11724 * 11725 * Context: Kernel thread or interrupt context 11726 */ 11727 11728 static void 11729 sd_destroypkt_for_buf(struct buf *bp) 11730 { 11731 ASSERT(bp != NULL); 11732 ASSERT(SD_GET_UN(bp) != NULL); 11733 11734 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 11735 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 11736 11737 ASSERT(SD_GET_PKTP(bp) != NULL); 11738 scsi_destroy_pkt(SD_GET_PKTP(bp)); 11739 11740 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 11741 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 11742 } 11743 11744 /* 11745 * Function: sd_setup_rw_pkt 11746 * 11747 * Description: Determines appropriate CDB group for the requested LBA 11748 * and transfer length, calls scsi_init_pkt, and builds 11749 * the CDB. Do not use for partial DMA transfers except 11750 * for the initial transfer since the CDB size must 11751 * remain constant. 11752 * 11753 * Context: Kernel thread and may be called from software interrupt 11754 * context as part of a sdrunout callback. This function may not 11755 * block or call routines that block 11756 */ 11757 11758 11759 int 11760 sd_setup_rw_pkt(struct sd_lun *un, 11761 struct scsi_pkt **pktpp, struct buf *bp, int flags, 11762 int (*callback)(caddr_t), caddr_t callback_arg, 11763 diskaddr_t lba, uint32_t blockcount) 11764 { 11765 struct scsi_pkt *return_pktp; 11766 union scsi_cdb *cdbp; 11767 struct sd_cdbinfo *cp = NULL; 11768 int i; 11769 11770 /* 11771 * See which size CDB to use, based upon the request. 11772 */ 11773 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 11774 11775 /* 11776 * Check lba and block count against sd_cdbtab limits. 11777 * In the partial DMA case, we have to use the same size 11778 * CDB for all the transfers. Check lba + blockcount 11779 * against the max LBA so we know that segment of the 11780 * transfer can use the CDB we select. 11781 */ 11782 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 11783 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 11784 11785 /* 11786 * The command will fit into the CDB type 11787 * specified by sd_cdbtab[i]. 11788 */ 11789 cp = sd_cdbtab + i; 11790 11791 /* 11792 * Call scsi_init_pkt so we can fill in the 11793 * CDB. 11794 */ 11795 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 11796 bp, cp->sc_grpcode, un->un_status_len, 0, 11797 flags, callback, callback_arg); 11798 11799 if (return_pktp != NULL) { 11800 11801 /* 11802 * Return new value of pkt 11803 */ 11804 *pktpp = return_pktp; 11805 11806 /* 11807 * To be safe, zero the CDB insuring there is 11808 * no leftover data from a previous command. 11809 */ 11810 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 11811 11812 /* 11813 * Handle partial DMA mapping 11814 */ 11815 if (return_pktp->pkt_resid != 0) { 11816 11817 /* 11818 * Not going to xfer as many blocks as 11819 * originally expected 11820 */ 11821 blockcount -= 11822 SD_BYTES2TGTBLOCKS(un, 11823 return_pktp->pkt_resid); 11824 } 11825 11826 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 11827 11828 /* 11829 * Set command byte based on the CDB 11830 * type we matched. 11831 */ 11832 cdbp->scc_cmd = cp->sc_grpmask | 11833 ((bp->b_flags & B_READ) ? 11834 SCMD_READ : SCMD_WRITE); 11835 11836 SD_FILL_SCSI1_LUN(un, return_pktp); 11837 11838 /* 11839 * Fill in LBA and length 11840 */ 11841 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 11842 (cp->sc_grpcode == CDB_GROUP4) || 11843 (cp->sc_grpcode == CDB_GROUP0) || 11844 (cp->sc_grpcode == CDB_GROUP5)); 11845 11846 if (cp->sc_grpcode == CDB_GROUP1) { 11847 FORMG1ADDR(cdbp, lba); 11848 FORMG1COUNT(cdbp, blockcount); 11849 return (0); 11850 } else if (cp->sc_grpcode == CDB_GROUP4) { 11851 FORMG4LONGADDR(cdbp, lba); 11852 FORMG4COUNT(cdbp, blockcount); 11853 return (0); 11854 } else if (cp->sc_grpcode == CDB_GROUP0) { 11855 FORMG0ADDR(cdbp, lba); 11856 FORMG0COUNT(cdbp, blockcount); 11857 return (0); 11858 } else if (cp->sc_grpcode == CDB_GROUP5) { 11859 FORMG5ADDR(cdbp, lba); 11860 FORMG5COUNT(cdbp, blockcount); 11861 return (0); 11862 } 11863 11864 /* 11865 * It should be impossible to not match one 11866 * of the CDB types above, so we should never 11867 * reach this point. Set the CDB command byte 11868 * to test-unit-ready to avoid writing 11869 * to somewhere we don't intend. 11870 */ 11871 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 11872 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 11873 } else { 11874 /* 11875 * Couldn't get scsi_pkt 11876 */ 11877 return (SD_PKT_ALLOC_FAILURE); 11878 } 11879 } 11880 } 11881 11882 /* 11883 * None of the available CDB types were suitable. This really 11884 * should never happen: on a 64 bit system we support 11885 * READ16/WRITE16 which will hold an entire 64 bit disk address 11886 * and on a 32 bit system we will refuse to bind to a device 11887 * larger than 2TB so addresses will never be larger than 32 bits. 11888 */ 11889 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 11890 } 11891 11892 #if defined(__i386) || defined(__amd64) 11893 /* 11894 * Function: sd_setup_next_rw_pkt 11895 * 11896 * Description: Setup packet for partial DMA transfers, except for the 11897 * initial transfer. sd_setup_rw_pkt should be used for 11898 * the initial transfer. 11899 * 11900 * Context: Kernel thread and may be called from interrupt context. 11901 */ 11902 11903 int 11904 sd_setup_next_rw_pkt(struct sd_lun *un, 11905 struct scsi_pkt *pktp, struct buf *bp, 11906 diskaddr_t lba, uint32_t blockcount) 11907 { 11908 uchar_t com; 11909 union scsi_cdb *cdbp; 11910 uchar_t cdb_group_id; 11911 11912 ASSERT(pktp != NULL); 11913 ASSERT(pktp->pkt_cdbp != NULL); 11914 11915 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 11916 com = cdbp->scc_cmd; 11917 cdb_group_id = CDB_GROUPID(com); 11918 11919 ASSERT((cdb_group_id == CDB_GROUPID_0) || 11920 (cdb_group_id == CDB_GROUPID_1) || 11921 (cdb_group_id == CDB_GROUPID_4) || 11922 (cdb_group_id == CDB_GROUPID_5)); 11923 11924 /* 11925 * Move pkt to the next portion of the xfer. 11926 * func is NULL_FUNC so we do not have to release 11927 * the disk mutex here. 11928 */ 11929 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 11930 NULL_FUNC, NULL) == pktp) { 11931 /* Success. Handle partial DMA */ 11932 if (pktp->pkt_resid != 0) { 11933 blockcount -= 11934 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 11935 } 11936 11937 cdbp->scc_cmd = com; 11938 SD_FILL_SCSI1_LUN(un, pktp); 11939 if (cdb_group_id == CDB_GROUPID_1) { 11940 FORMG1ADDR(cdbp, lba); 11941 FORMG1COUNT(cdbp, blockcount); 11942 return (0); 11943 } else if (cdb_group_id == CDB_GROUPID_4) { 11944 FORMG4LONGADDR(cdbp, lba); 11945 FORMG4COUNT(cdbp, blockcount); 11946 return (0); 11947 } else if (cdb_group_id == CDB_GROUPID_0) { 11948 FORMG0ADDR(cdbp, lba); 11949 FORMG0COUNT(cdbp, blockcount); 11950 return (0); 11951 } else if (cdb_group_id == CDB_GROUPID_5) { 11952 FORMG5ADDR(cdbp, lba); 11953 FORMG5COUNT(cdbp, blockcount); 11954 return (0); 11955 } 11956 11957 /* Unreachable */ 11958 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 11959 } 11960 11961 /* 11962 * Error setting up next portion of cmd transfer. 11963 * Something is definitely very wrong and this 11964 * should not happen. 11965 */ 11966 return (SD_PKT_ALLOC_FAILURE); 11967 } 11968 #endif /* defined(__i386) || defined(__amd64) */ 11969 11970 /* 11971 * Function: sd_initpkt_for_uscsi 11972 * 11973 * Description: Allocate and initialize for transport a scsi_pkt struct, 11974 * based upon the info specified in the given uscsi_cmd struct. 11975 * 11976 * Return Code: SD_PKT_ALLOC_SUCCESS 11977 * SD_PKT_ALLOC_FAILURE 11978 * SD_PKT_ALLOC_FAILURE_NO_DMA 11979 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 11980 * 11981 * Context: Kernel thread and may be called from software interrupt context 11982 * as part of a sdrunout callback. This function may not block or 11983 * call routines that block 11984 */ 11985 11986 static int 11987 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 11988 { 11989 struct uscsi_cmd *uscmd; 11990 struct sd_xbuf *xp; 11991 struct scsi_pkt *pktp; 11992 struct sd_lun *un; 11993 uint32_t flags = 0; 11994 11995 ASSERT(bp != NULL); 11996 ASSERT(pktpp != NULL); 11997 xp = SD_GET_XBUF(bp); 11998 ASSERT(xp != NULL); 11999 un = SD_GET_UN(bp); 12000 ASSERT(un != NULL); 12001 ASSERT(mutex_owned(SD_MUTEX(un))); 12002 12003 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 12004 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 12005 ASSERT(uscmd != NULL); 12006 12007 SD_TRACE(SD_LOG_IO_CORE, un, 12008 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 12009 12010 /* 12011 * Allocate the scsi_pkt for the command. 12012 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 12013 * during scsi_init_pkt time and will continue to use the 12014 * same path as long as the same scsi_pkt is used without 12015 * intervening scsi_dma_free(). Since uscsi command does 12016 * not call scsi_dmafree() before retry failed command, it 12017 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 12018 * set such that scsi_vhci can use other available path for 12019 * retry. Besides, ucsci command does not allow DMA breakup, 12020 * so there is no need to set PKT_DMA_PARTIAL flag. 12021 */ 12022 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 12023 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 12024 sizeof (struct scsi_arq_status), 0, 12025 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 12026 sdrunout, (caddr_t)un); 12027 12028 if (pktp == NULL) { 12029 *pktpp = NULL; 12030 /* 12031 * Set the driver state to RWAIT to indicate the driver 12032 * is waiting on resource allocations. The driver will not 12033 * suspend, pm_suspend, or detatch while the state is RWAIT. 12034 */ 12035 New_state(un, SD_STATE_RWAIT); 12036 12037 SD_ERROR(SD_LOG_IO_CORE, un, 12038 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 12039 12040 if ((bp->b_flags & B_ERROR) != 0) { 12041 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 12042 } 12043 return (SD_PKT_ALLOC_FAILURE); 12044 } 12045 12046 /* 12047 * We do not do DMA breakup for USCSI commands, so return failure 12048 * here if all the needed DMA resources were not allocated. 12049 */ 12050 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 12051 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 12052 scsi_destroy_pkt(pktp); 12053 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 12054 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 12055 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 12056 } 12057 12058 /* Init the cdb from the given uscsi struct */ 12059 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 12060 uscmd->uscsi_cdb[0], 0, 0, 0); 12061 12062 SD_FILL_SCSI1_LUN(un, pktp); 12063 12064 /* 12065 * Set up the optional USCSI flags. See the uscsi (7I) man page 12066 * for listing of the supported flags. 12067 */ 12068 12069 if (uscmd->uscsi_flags & USCSI_SILENT) { 12070 flags |= FLAG_SILENT; 12071 } 12072 12073 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 12074 flags |= FLAG_DIAGNOSE; 12075 } 12076 12077 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 12078 flags |= FLAG_ISOLATE; 12079 } 12080 12081 if (un->un_f_is_fibre == FALSE) { 12082 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 12083 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 12084 } 12085 } 12086 12087 /* 12088 * Set the pkt flags here so we save time later. 12089 * Note: These flags are NOT in the uscsi man page!!! 12090 */ 12091 if (uscmd->uscsi_flags & USCSI_HEAD) { 12092 flags |= FLAG_HEAD; 12093 } 12094 12095 if (uscmd->uscsi_flags & USCSI_NOINTR) { 12096 flags |= FLAG_NOINTR; 12097 } 12098 12099 /* 12100 * For tagged queueing, things get a bit complicated. 12101 * Check first for head of queue and last for ordered queue. 12102 * If neither head nor order, use the default driver tag flags. 12103 */ 12104 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 12105 if (uscmd->uscsi_flags & USCSI_HTAG) { 12106 flags |= FLAG_HTAG; 12107 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 12108 flags |= FLAG_OTAG; 12109 } else { 12110 flags |= un->un_tagflags & FLAG_TAGMASK; 12111 } 12112 } 12113 12114 if (uscmd->uscsi_flags & USCSI_NODISCON) { 12115 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 12116 } 12117 12118 pktp->pkt_flags = flags; 12119 12120 /* Copy the caller's CDB into the pkt... */ 12121 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 12122 12123 if (uscmd->uscsi_timeout == 0) { 12124 pktp->pkt_time = un->un_uscsi_timeout; 12125 } else { 12126 pktp->pkt_time = uscmd->uscsi_timeout; 12127 } 12128 12129 /* need it later to identify USCSI request in sdintr */ 12130 xp->xb_pkt_flags |= SD_XB_USCSICMD; 12131 12132 xp->xb_sense_resid = uscmd->uscsi_rqresid; 12133 12134 pktp->pkt_private = bp; 12135 pktp->pkt_comp = sdintr; 12136 *pktpp = pktp; 12137 12138 SD_TRACE(SD_LOG_IO_CORE, un, 12139 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 12140 12141 return (SD_PKT_ALLOC_SUCCESS); 12142 } 12143 12144 12145 /* 12146 * Function: sd_destroypkt_for_uscsi 12147 * 12148 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 12149 * IOs.. Also saves relevant info into the associated uscsi_cmd 12150 * struct. 12151 * 12152 * Context: May be called under interrupt context 12153 */ 12154 12155 static void 12156 sd_destroypkt_for_uscsi(struct buf *bp) 12157 { 12158 struct uscsi_cmd *uscmd; 12159 struct sd_xbuf *xp; 12160 struct scsi_pkt *pktp; 12161 struct sd_lun *un; 12162 12163 ASSERT(bp != NULL); 12164 xp = SD_GET_XBUF(bp); 12165 ASSERT(xp != NULL); 12166 un = SD_GET_UN(bp); 12167 ASSERT(un != NULL); 12168 ASSERT(!mutex_owned(SD_MUTEX(un))); 12169 pktp = SD_GET_PKTP(bp); 12170 ASSERT(pktp != NULL); 12171 12172 SD_TRACE(SD_LOG_IO_CORE, un, 12173 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 12174 12175 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 12176 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 12177 ASSERT(uscmd != NULL); 12178 12179 /* Save the status and the residual into the uscsi_cmd struct */ 12180 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 12181 uscmd->uscsi_resid = bp->b_resid; 12182 12183 /* 12184 * If enabled, copy any saved sense data into the area specified 12185 * by the uscsi command. 12186 */ 12187 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 12188 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 12189 /* 12190 * Note: uscmd->uscsi_rqbuf should always point to a buffer 12191 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 12192 */ 12193 uscmd->uscsi_rqstatus = xp->xb_sense_status; 12194 uscmd->uscsi_rqresid = xp->xb_sense_resid; 12195 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH); 12196 } 12197 12198 /* We are done with the scsi_pkt; free it now */ 12199 ASSERT(SD_GET_PKTP(bp) != NULL); 12200 scsi_destroy_pkt(SD_GET_PKTP(bp)); 12201 12202 SD_TRACE(SD_LOG_IO_CORE, un, 12203 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 12204 } 12205 12206 12207 /* 12208 * Function: sd_bioclone_alloc 12209 * 12210 * Description: Allocate a buf(9S) and init it as per the given buf 12211 * and the various arguments. The associated sd_xbuf 12212 * struct is (nearly) duplicated. The struct buf *bp 12213 * argument is saved in new_xp->xb_private. 12214 * 12215 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 12216 * datalen - size of data area for the shadow bp 12217 * blkno - starting LBA 12218 * func - function pointer for b_iodone in the shadow buf. (May 12219 * be NULL if none.) 12220 * 12221 * Return Code: Pointer to allocates buf(9S) struct 12222 * 12223 * Context: Can sleep. 12224 */ 12225 12226 static struct buf * 12227 sd_bioclone_alloc(struct buf *bp, size_t datalen, 12228 daddr_t blkno, int (*func)(struct buf *)) 12229 { 12230 struct sd_lun *un; 12231 struct sd_xbuf *xp; 12232 struct sd_xbuf *new_xp; 12233 struct buf *new_bp; 12234 12235 ASSERT(bp != NULL); 12236 xp = SD_GET_XBUF(bp); 12237 ASSERT(xp != NULL); 12238 un = SD_GET_UN(bp); 12239 ASSERT(un != NULL); 12240 ASSERT(!mutex_owned(SD_MUTEX(un))); 12241 12242 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 12243 NULL, KM_SLEEP); 12244 12245 new_bp->b_lblkno = blkno; 12246 12247 /* 12248 * Allocate an xbuf for the shadow bp and copy the contents of the 12249 * original xbuf into it. 12250 */ 12251 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 12252 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 12253 12254 /* 12255 * The given bp is automatically saved in the xb_private member 12256 * of the new xbuf. Callers are allowed to depend on this. 12257 */ 12258 new_xp->xb_private = bp; 12259 12260 new_bp->b_private = new_xp; 12261 12262 return (new_bp); 12263 } 12264 12265 /* 12266 * Function: sd_shadow_buf_alloc 12267 * 12268 * Description: Allocate a buf(9S) and init it as per the given buf 12269 * and the various arguments. The associated sd_xbuf 12270 * struct is (nearly) duplicated. The struct buf *bp 12271 * argument is saved in new_xp->xb_private. 12272 * 12273 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 12274 * datalen - size of data area for the shadow bp 12275 * bflags - B_READ or B_WRITE (pseudo flag) 12276 * blkno - starting LBA 12277 * func - function pointer for b_iodone in the shadow buf. (May 12278 * be NULL if none.) 12279 * 12280 * Return Code: Pointer to allocates buf(9S) struct 12281 * 12282 * Context: Can sleep. 12283 */ 12284 12285 static struct buf * 12286 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 12287 daddr_t blkno, int (*func)(struct buf *)) 12288 { 12289 struct sd_lun *un; 12290 struct sd_xbuf *xp; 12291 struct sd_xbuf *new_xp; 12292 struct buf *new_bp; 12293 12294 ASSERT(bp != NULL); 12295 xp = SD_GET_XBUF(bp); 12296 ASSERT(xp != NULL); 12297 un = SD_GET_UN(bp); 12298 ASSERT(un != NULL); 12299 ASSERT(!mutex_owned(SD_MUTEX(un))); 12300 12301 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 12302 bp_mapin(bp); 12303 } 12304 12305 bflags &= (B_READ | B_WRITE); 12306 #if defined(__i386) || defined(__amd64) 12307 new_bp = getrbuf(KM_SLEEP); 12308 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 12309 new_bp->b_bcount = datalen; 12310 new_bp->b_flags = bflags | 12311 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 12312 #else 12313 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 12314 datalen, bflags, SLEEP_FUNC, NULL); 12315 #endif 12316 new_bp->av_forw = NULL; 12317 new_bp->av_back = NULL; 12318 new_bp->b_dev = bp->b_dev; 12319 new_bp->b_blkno = blkno; 12320 new_bp->b_iodone = func; 12321 new_bp->b_edev = bp->b_edev; 12322 new_bp->b_resid = 0; 12323 12324 /* We need to preserve the B_FAILFAST flag */ 12325 if (bp->b_flags & B_FAILFAST) { 12326 new_bp->b_flags |= B_FAILFAST; 12327 } 12328 12329 /* 12330 * Allocate an xbuf for the shadow bp and copy the contents of the 12331 * original xbuf into it. 12332 */ 12333 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 12334 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 12335 12336 /* Need later to copy data between the shadow buf & original buf! */ 12337 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 12338 12339 /* 12340 * The given bp is automatically saved in the xb_private member 12341 * of the new xbuf. Callers are allowed to depend on this. 12342 */ 12343 new_xp->xb_private = bp; 12344 12345 new_bp->b_private = new_xp; 12346 12347 return (new_bp); 12348 } 12349 12350 /* 12351 * Function: sd_bioclone_free 12352 * 12353 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 12354 * in the larger than partition operation. 12355 * 12356 * Context: May be called under interrupt context 12357 */ 12358 12359 static void 12360 sd_bioclone_free(struct buf *bp) 12361 { 12362 struct sd_xbuf *xp; 12363 12364 ASSERT(bp != NULL); 12365 xp = SD_GET_XBUF(bp); 12366 ASSERT(xp != NULL); 12367 12368 /* 12369 * Call bp_mapout() before freeing the buf, in case a lower 12370 * layer or HBA had done a bp_mapin(). we must do this here 12371 * as we are the "originator" of the shadow buf. 12372 */ 12373 bp_mapout(bp); 12374 12375 /* 12376 * Null out b_iodone before freeing the bp, to ensure that the driver 12377 * never gets confused by a stale value in this field. (Just a little 12378 * extra defensiveness here.) 12379 */ 12380 bp->b_iodone = NULL; 12381 12382 freerbuf(bp); 12383 12384 kmem_free(xp, sizeof (struct sd_xbuf)); 12385 } 12386 12387 /* 12388 * Function: sd_shadow_buf_free 12389 * 12390 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 12391 * 12392 * Context: May be called under interrupt context 12393 */ 12394 12395 static void 12396 sd_shadow_buf_free(struct buf *bp) 12397 { 12398 struct sd_xbuf *xp; 12399 12400 ASSERT(bp != NULL); 12401 xp = SD_GET_XBUF(bp); 12402 ASSERT(xp != NULL); 12403 12404 #if defined(__sparc) 12405 /* 12406 * Call bp_mapout() before freeing the buf, in case a lower 12407 * layer or HBA had done a bp_mapin(). we must do this here 12408 * as we are the "originator" of the shadow buf. 12409 */ 12410 bp_mapout(bp); 12411 #endif 12412 12413 /* 12414 * Null out b_iodone before freeing the bp, to ensure that the driver 12415 * never gets confused by a stale value in this field. (Just a little 12416 * extra defensiveness here.) 12417 */ 12418 bp->b_iodone = NULL; 12419 12420 #if defined(__i386) || defined(__amd64) 12421 kmem_free(bp->b_un.b_addr, bp->b_bcount); 12422 freerbuf(bp); 12423 #else 12424 scsi_free_consistent_buf(bp); 12425 #endif 12426 12427 kmem_free(xp, sizeof (struct sd_xbuf)); 12428 } 12429 12430 12431 /* 12432 * Function: sd_print_transport_rejected_message 12433 * 12434 * Description: This implements the ludicrously complex rules for printing 12435 * a "transport rejected" message. This is to address the 12436 * specific problem of having a flood of this error message 12437 * produced when a failover occurs. 12438 * 12439 * Context: Any. 12440 */ 12441 12442 static void 12443 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 12444 int code) 12445 { 12446 ASSERT(un != NULL); 12447 ASSERT(mutex_owned(SD_MUTEX(un))); 12448 ASSERT(xp != NULL); 12449 12450 /* 12451 * Print the "transport rejected" message under the following 12452 * conditions: 12453 * 12454 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 12455 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 12456 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 12457 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 12458 * scsi_transport(9F) (which indicates that the target might have 12459 * gone off-line). This uses the un->un_tran_fatal_count 12460 * count, which is incremented whenever a TRAN_FATAL_ERROR is 12461 * received, and reset to zero whenver a TRAN_ACCEPT is returned 12462 * from scsi_transport(). 12463 * 12464 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 12465 * the preceeding cases in order for the message to be printed. 12466 */ 12467 if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) { 12468 if ((sd_level_mask & SD_LOGMASK_DIAG) || 12469 (code != TRAN_FATAL_ERROR) || 12470 (un->un_tran_fatal_count == 1)) { 12471 switch (code) { 12472 case TRAN_BADPKT: 12473 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12474 "transport rejected bad packet\n"); 12475 break; 12476 case TRAN_FATAL_ERROR: 12477 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12478 "transport rejected fatal error\n"); 12479 break; 12480 default: 12481 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12482 "transport rejected (%d)\n", code); 12483 break; 12484 } 12485 } 12486 } 12487 } 12488 12489 12490 /* 12491 * Function: sd_add_buf_to_waitq 12492 * 12493 * Description: Add the given buf(9S) struct to the wait queue for the 12494 * instance. If sorting is enabled, then the buf is added 12495 * to the queue via an elevator sort algorithm (a la 12496 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 12497 * If sorting is not enabled, then the buf is just added 12498 * to the end of the wait queue. 12499 * 12500 * Return Code: void 12501 * 12502 * Context: Does not sleep/block, therefore technically can be called 12503 * from any context. However if sorting is enabled then the 12504 * execution time is indeterminate, and may take long if 12505 * the wait queue grows large. 12506 */ 12507 12508 static void 12509 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 12510 { 12511 struct buf *ap; 12512 12513 ASSERT(bp != NULL); 12514 ASSERT(un != NULL); 12515 ASSERT(mutex_owned(SD_MUTEX(un))); 12516 12517 /* If the queue is empty, add the buf as the only entry & return. */ 12518 if (un->un_waitq_headp == NULL) { 12519 ASSERT(un->un_waitq_tailp == NULL); 12520 un->un_waitq_headp = un->un_waitq_tailp = bp; 12521 bp->av_forw = NULL; 12522 return; 12523 } 12524 12525 ASSERT(un->un_waitq_tailp != NULL); 12526 12527 /* 12528 * If sorting is disabled, just add the buf to the tail end of 12529 * the wait queue and return. 12530 */ 12531 if (un->un_f_disksort_disabled) { 12532 un->un_waitq_tailp->av_forw = bp; 12533 un->un_waitq_tailp = bp; 12534 bp->av_forw = NULL; 12535 return; 12536 } 12537 12538 /* 12539 * Sort thru the list of requests currently on the wait queue 12540 * and add the new buf request at the appropriate position. 12541 * 12542 * The un->un_waitq_headp is an activity chain pointer on which 12543 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 12544 * first queue holds those requests which are positioned after 12545 * the current SD_GET_BLKNO() (in the first request); the second holds 12546 * requests which came in after their SD_GET_BLKNO() number was passed. 12547 * Thus we implement a one way scan, retracting after reaching 12548 * the end of the drive to the first request on the second 12549 * queue, at which time it becomes the first queue. 12550 * A one-way scan is natural because of the way UNIX read-ahead 12551 * blocks are allocated. 12552 * 12553 * If we lie after the first request, then we must locate the 12554 * second request list and add ourselves to it. 12555 */ 12556 ap = un->un_waitq_headp; 12557 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 12558 while (ap->av_forw != NULL) { 12559 /* 12560 * Look for an "inversion" in the (normally 12561 * ascending) block numbers. This indicates 12562 * the start of the second request list. 12563 */ 12564 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 12565 /* 12566 * Search the second request list for the 12567 * first request at a larger block number. 12568 * We go before that; however if there is 12569 * no such request, we go at the end. 12570 */ 12571 do { 12572 if (SD_GET_BLKNO(bp) < 12573 SD_GET_BLKNO(ap->av_forw)) { 12574 goto insert; 12575 } 12576 ap = ap->av_forw; 12577 } while (ap->av_forw != NULL); 12578 goto insert; /* after last */ 12579 } 12580 ap = ap->av_forw; 12581 } 12582 12583 /* 12584 * No inversions... we will go after the last, and 12585 * be the first request in the second request list. 12586 */ 12587 goto insert; 12588 } 12589 12590 /* 12591 * Request is at/after the current request... 12592 * sort in the first request list. 12593 */ 12594 while (ap->av_forw != NULL) { 12595 /* 12596 * We want to go after the current request (1) if 12597 * there is an inversion after it (i.e. it is the end 12598 * of the first request list), or (2) if the next 12599 * request is a larger block no. than our request. 12600 */ 12601 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 12602 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 12603 goto insert; 12604 } 12605 ap = ap->av_forw; 12606 } 12607 12608 /* 12609 * Neither a second list nor a larger request, therefore 12610 * we go at the end of the first list (which is the same 12611 * as the end of the whole schebang). 12612 */ 12613 insert: 12614 bp->av_forw = ap->av_forw; 12615 ap->av_forw = bp; 12616 12617 /* 12618 * If we inserted onto the tail end of the waitq, make sure the 12619 * tail pointer is updated. 12620 */ 12621 if (ap == un->un_waitq_tailp) { 12622 un->un_waitq_tailp = bp; 12623 } 12624 } 12625 12626 12627 /* 12628 * Function: sd_start_cmds 12629 * 12630 * Description: Remove and transport cmds from the driver queues. 12631 * 12632 * Arguments: un - pointer to the unit (soft state) struct for the target. 12633 * 12634 * immed_bp - ptr to a buf to be transported immediately. Only 12635 * the immed_bp is transported; bufs on the waitq are not 12636 * processed and the un_retry_bp is not checked. If immed_bp is 12637 * NULL, then normal queue processing is performed. 12638 * 12639 * Context: May be called from kernel thread context, interrupt context, 12640 * or runout callback context. This function may not block or 12641 * call routines that block. 12642 */ 12643 12644 static void 12645 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 12646 { 12647 struct sd_xbuf *xp; 12648 struct buf *bp; 12649 void (*statp)(kstat_io_t *); 12650 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 12651 void (*saved_statp)(kstat_io_t *); 12652 #endif 12653 int rval; 12654 12655 ASSERT(un != NULL); 12656 ASSERT(mutex_owned(SD_MUTEX(un))); 12657 ASSERT(un->un_ncmds_in_transport >= 0); 12658 ASSERT(un->un_throttle >= 0); 12659 12660 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 12661 12662 do { 12663 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 12664 saved_statp = NULL; 12665 #endif 12666 12667 /* 12668 * If we are syncing or dumping, fail the command to 12669 * avoid recursively calling back into scsi_transport(). 12670 * The dump I/O itself uses a separate code path so this 12671 * only prevents non-dump I/O from being sent while dumping. 12672 * File system sync takes place before dumping begins. 12673 * During panic, filesystem I/O is allowed provided 12674 * un_in_callback is <= 1. This is to prevent recursion 12675 * such as sd_start_cmds -> scsi_transport -> sdintr -> 12676 * sd_start_cmds and so on. See panic.c for more information 12677 * about the states the system can be in during panic. 12678 */ 12679 if ((un->un_state == SD_STATE_DUMPING) || 12680 (ddi_in_panic() && (un->un_in_callback > 1))) { 12681 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12682 "sd_start_cmds: panicking\n"); 12683 goto exit; 12684 } 12685 12686 if ((bp = immed_bp) != NULL) { 12687 /* 12688 * We have a bp that must be transported immediately. 12689 * It's OK to transport the immed_bp here without doing 12690 * the throttle limit check because the immed_bp is 12691 * always used in a retry/recovery case. This means 12692 * that we know we are not at the throttle limit by 12693 * virtue of the fact that to get here we must have 12694 * already gotten a command back via sdintr(). This also 12695 * relies on (1) the command on un_retry_bp preventing 12696 * further commands from the waitq from being issued; 12697 * and (2) the code in sd_retry_command checking the 12698 * throttle limit before issuing a delayed or immediate 12699 * retry. This holds even if the throttle limit is 12700 * currently ratcheted down from its maximum value. 12701 */ 12702 statp = kstat_runq_enter; 12703 if (bp == un->un_retry_bp) { 12704 ASSERT((un->un_retry_statp == NULL) || 12705 (un->un_retry_statp == kstat_waitq_enter) || 12706 (un->un_retry_statp == 12707 kstat_runq_back_to_waitq)); 12708 /* 12709 * If the waitq kstat was incremented when 12710 * sd_set_retry_bp() queued this bp for a retry, 12711 * then we must set up statp so that the waitq 12712 * count will get decremented correctly below. 12713 * Also we must clear un->un_retry_statp to 12714 * ensure that we do not act on a stale value 12715 * in this field. 12716 */ 12717 if ((un->un_retry_statp == kstat_waitq_enter) || 12718 (un->un_retry_statp == 12719 kstat_runq_back_to_waitq)) { 12720 statp = kstat_waitq_to_runq; 12721 } 12722 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 12723 saved_statp = un->un_retry_statp; 12724 #endif 12725 un->un_retry_statp = NULL; 12726 12727 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 12728 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 12729 "un_throttle:%d un_ncmds_in_transport:%d\n", 12730 un, un->un_retry_bp, un->un_throttle, 12731 un->un_ncmds_in_transport); 12732 } else { 12733 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 12734 "processing priority bp:0x%p\n", bp); 12735 } 12736 12737 } else if ((bp = un->un_waitq_headp) != NULL) { 12738 /* 12739 * A command on the waitq is ready to go, but do not 12740 * send it if: 12741 * 12742 * (1) the throttle limit has been reached, or 12743 * (2) a retry is pending, or 12744 * (3) a START_STOP_UNIT callback pending, or 12745 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 12746 * command is pending. 12747 * 12748 * For all of these conditions, IO processing will 12749 * restart after the condition is cleared. 12750 */ 12751 if (un->un_ncmds_in_transport >= un->un_throttle) { 12752 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12753 "sd_start_cmds: exiting, " 12754 "throttle limit reached!\n"); 12755 goto exit; 12756 } 12757 if (un->un_retry_bp != NULL) { 12758 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12759 "sd_start_cmds: exiting, retry pending!\n"); 12760 goto exit; 12761 } 12762 if (un->un_startstop_timeid != NULL) { 12763 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12764 "sd_start_cmds: exiting, " 12765 "START_STOP pending!\n"); 12766 goto exit; 12767 } 12768 if (un->un_direct_priority_timeid != NULL) { 12769 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12770 "sd_start_cmds: exiting, " 12771 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 12772 goto exit; 12773 } 12774 12775 /* Dequeue the command */ 12776 un->un_waitq_headp = bp->av_forw; 12777 if (un->un_waitq_headp == NULL) { 12778 un->un_waitq_tailp = NULL; 12779 } 12780 bp->av_forw = NULL; 12781 statp = kstat_waitq_to_runq; 12782 SD_TRACE(SD_LOG_IO_CORE, un, 12783 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 12784 12785 } else { 12786 /* No work to do so bail out now */ 12787 SD_TRACE(SD_LOG_IO_CORE, un, 12788 "sd_start_cmds: no more work, exiting!\n"); 12789 goto exit; 12790 } 12791 12792 /* 12793 * Reset the state to normal. This is the mechanism by which 12794 * the state transitions from either SD_STATE_RWAIT or 12795 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 12796 * If state is SD_STATE_PM_CHANGING then this command is 12797 * part of the device power control and the state must 12798 * not be put back to normal. Doing so would would 12799 * allow new commands to proceed when they shouldn't, 12800 * the device may be going off. 12801 */ 12802 if ((un->un_state != SD_STATE_SUSPENDED) && 12803 (un->un_state != SD_STATE_PM_CHANGING)) { 12804 New_state(un, SD_STATE_NORMAL); 12805 } 12806 12807 xp = SD_GET_XBUF(bp); 12808 ASSERT(xp != NULL); 12809 12810 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 12811 /* 12812 * Allocate the scsi_pkt if we need one, or attach DMA 12813 * resources if we have a scsi_pkt that needs them. The 12814 * latter should only occur for commands that are being 12815 * retried. 12816 */ 12817 if ((xp->xb_pktp == NULL) || 12818 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 12819 #else 12820 if (xp->xb_pktp == NULL) { 12821 #endif 12822 /* 12823 * There is no scsi_pkt allocated for this buf. Call 12824 * the initpkt function to allocate & init one. 12825 * 12826 * The scsi_init_pkt runout callback functionality is 12827 * implemented as follows: 12828 * 12829 * 1) The initpkt function always calls 12830 * scsi_init_pkt(9F) with sdrunout specified as the 12831 * callback routine. 12832 * 2) A successful packet allocation is initialized and 12833 * the I/O is transported. 12834 * 3) The I/O associated with an allocation resource 12835 * failure is left on its queue to be retried via 12836 * runout or the next I/O. 12837 * 4) The I/O associated with a DMA error is removed 12838 * from the queue and failed with EIO. Processing of 12839 * the transport queues is also halted to be 12840 * restarted via runout or the next I/O. 12841 * 5) The I/O associated with a CDB size or packet 12842 * size error is removed from the queue and failed 12843 * with EIO. Processing of the transport queues is 12844 * continued. 12845 * 12846 * Note: there is no interface for canceling a runout 12847 * callback. To prevent the driver from detaching or 12848 * suspending while a runout is pending the driver 12849 * state is set to SD_STATE_RWAIT 12850 * 12851 * Note: using the scsi_init_pkt callback facility can 12852 * result in an I/O request persisting at the head of 12853 * the list which cannot be satisfied even after 12854 * multiple retries. In the future the driver may 12855 * implement some kind of maximum runout count before 12856 * failing an I/O. 12857 * 12858 * Note: the use of funcp below may seem superfluous, 12859 * but it helps warlock figure out the correct 12860 * initpkt function calls (see [s]sd.wlcmd). 12861 */ 12862 struct scsi_pkt *pktp; 12863 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 12864 12865 ASSERT(bp != un->un_rqs_bp); 12866 12867 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 12868 switch ((*funcp)(bp, &pktp)) { 12869 case SD_PKT_ALLOC_SUCCESS: 12870 xp->xb_pktp = pktp; 12871 SD_TRACE(SD_LOG_IO_CORE, un, 12872 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 12873 pktp); 12874 goto got_pkt; 12875 12876 case SD_PKT_ALLOC_FAILURE: 12877 /* 12878 * Temporary (hopefully) resource depletion. 12879 * Since retries and RQS commands always have a 12880 * scsi_pkt allocated, these cases should never 12881 * get here. So the only cases this needs to 12882 * handle is a bp from the waitq (which we put 12883 * back onto the waitq for sdrunout), or a bp 12884 * sent as an immed_bp (which we just fail). 12885 */ 12886 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12887 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 12888 12889 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 12890 12891 if (bp == immed_bp) { 12892 /* 12893 * If SD_XB_DMA_FREED is clear, then 12894 * this is a failure to allocate a 12895 * scsi_pkt, and we must fail the 12896 * command. 12897 */ 12898 if ((xp->xb_pkt_flags & 12899 SD_XB_DMA_FREED) == 0) { 12900 break; 12901 } 12902 12903 /* 12904 * If this immediate command is NOT our 12905 * un_retry_bp, then we must fail it. 12906 */ 12907 if (bp != un->un_retry_bp) { 12908 break; 12909 } 12910 12911 /* 12912 * We get here if this cmd is our 12913 * un_retry_bp that was DMAFREED, but 12914 * scsi_init_pkt() failed to reallocate 12915 * DMA resources when we attempted to 12916 * retry it. This can happen when an 12917 * mpxio failover is in progress, but 12918 * we don't want to just fail the 12919 * command in this case. 12920 * 12921 * Use timeout(9F) to restart it after 12922 * a 100ms delay. We don't want to 12923 * let sdrunout() restart it, because 12924 * sdrunout() is just supposed to start 12925 * commands that are sitting on the 12926 * wait queue. The un_retry_bp stays 12927 * set until the command completes, but 12928 * sdrunout can be called many times 12929 * before that happens. Since sdrunout 12930 * cannot tell if the un_retry_bp is 12931 * already in the transport, it could 12932 * end up calling scsi_transport() for 12933 * the un_retry_bp multiple times. 12934 * 12935 * Also: don't schedule the callback 12936 * if some other callback is already 12937 * pending. 12938 */ 12939 if (un->un_retry_statp == NULL) { 12940 /* 12941 * restore the kstat pointer to 12942 * keep kstat counts coherent 12943 * when we do retry the command. 12944 */ 12945 un->un_retry_statp = 12946 saved_statp; 12947 } 12948 12949 if ((un->un_startstop_timeid == NULL) && 12950 (un->un_retry_timeid == NULL) && 12951 (un->un_direct_priority_timeid == 12952 NULL)) { 12953 12954 un->un_retry_timeid = 12955 timeout( 12956 sd_start_retry_command, 12957 un, SD_RESTART_TIMEOUT); 12958 } 12959 goto exit; 12960 } 12961 12962 #else 12963 if (bp == immed_bp) { 12964 break; /* Just fail the command */ 12965 } 12966 #endif 12967 12968 /* Add the buf back to the head of the waitq */ 12969 bp->av_forw = un->un_waitq_headp; 12970 un->un_waitq_headp = bp; 12971 if (un->un_waitq_tailp == NULL) { 12972 un->un_waitq_tailp = bp; 12973 } 12974 goto exit; 12975 12976 case SD_PKT_ALLOC_FAILURE_NO_DMA: 12977 /* 12978 * HBA DMA resource failure. Fail the command 12979 * and continue processing of the queues. 12980 */ 12981 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12982 "sd_start_cmds: " 12983 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 12984 break; 12985 12986 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 12987 /* 12988 * Note:x86: Partial DMA mapping not supported 12989 * for USCSI commands, and all the needed DMA 12990 * resources were not allocated. 12991 */ 12992 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 12993 "sd_start_cmds: " 12994 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 12995 break; 12996 12997 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 12998 /* 12999 * Note:x86: Request cannot fit into CDB based 13000 * on lba and len. 13001 */ 13002 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13003 "sd_start_cmds: " 13004 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 13005 break; 13006 13007 default: 13008 /* Should NEVER get here! */ 13009 panic("scsi_initpkt error"); 13010 /*NOTREACHED*/ 13011 } 13012 13013 /* 13014 * Fatal error in allocating a scsi_pkt for this buf. 13015 * Update kstats & return the buf with an error code. 13016 * We must use sd_return_failed_command_no_restart() to 13017 * avoid a recursive call back into sd_start_cmds(). 13018 * However this also means that we must keep processing 13019 * the waitq here in order to avoid stalling. 13020 */ 13021 if (statp == kstat_waitq_to_runq) { 13022 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 13023 } 13024 sd_return_failed_command_no_restart(un, bp, EIO); 13025 if (bp == immed_bp) { 13026 /* immed_bp is gone by now, so clear this */ 13027 immed_bp = NULL; 13028 } 13029 continue; 13030 } 13031 got_pkt: 13032 if (bp == immed_bp) { 13033 /* goto the head of the class.... */ 13034 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 13035 } 13036 13037 un->un_ncmds_in_transport++; 13038 SD_UPDATE_KSTATS(un, statp, bp); 13039 13040 /* 13041 * Call scsi_transport() to send the command to the target. 13042 * According to SCSA architecture, we must drop the mutex here 13043 * before calling scsi_transport() in order to avoid deadlock. 13044 * Note that the scsi_pkt's completion routine can be executed 13045 * (from interrupt context) even before the call to 13046 * scsi_transport() returns. 13047 */ 13048 SD_TRACE(SD_LOG_IO_CORE, un, 13049 "sd_start_cmds: calling scsi_transport()\n"); 13050 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 13051 13052 mutex_exit(SD_MUTEX(un)); 13053 rval = scsi_transport(xp->xb_pktp); 13054 mutex_enter(SD_MUTEX(un)); 13055 13056 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13057 "sd_start_cmds: scsi_transport() returned %d\n", rval); 13058 13059 switch (rval) { 13060 case TRAN_ACCEPT: 13061 /* Clear this with every pkt accepted by the HBA */ 13062 un->un_tran_fatal_count = 0; 13063 break; /* Success; try the next cmd (if any) */ 13064 13065 case TRAN_BUSY: 13066 un->un_ncmds_in_transport--; 13067 ASSERT(un->un_ncmds_in_transport >= 0); 13068 13069 /* 13070 * Don't retry request sense, the sense data 13071 * is lost when another request is sent. 13072 * Free up the rqs buf and retry 13073 * the original failed cmd. Update kstat. 13074 */ 13075 if (bp == un->un_rqs_bp) { 13076 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 13077 bp = sd_mark_rqs_idle(un, xp); 13078 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 13079 NULL, NULL, EIO, SD_BSY_TIMEOUT / 500, 13080 kstat_waitq_enter); 13081 goto exit; 13082 } 13083 13084 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13085 /* 13086 * Free the DMA resources for the scsi_pkt. This will 13087 * allow mpxio to select another path the next time 13088 * we call scsi_transport() with this scsi_pkt. 13089 * See sdintr() for the rationalization behind this. 13090 */ 13091 if ((un->un_f_is_fibre == TRUE) && 13092 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 13093 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 13094 scsi_dmafree(xp->xb_pktp); 13095 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 13096 } 13097 #endif 13098 13099 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 13100 /* 13101 * Commands that are SD_PATH_DIRECT_PRIORITY 13102 * are for error recovery situations. These do 13103 * not use the normal command waitq, so if they 13104 * get a TRAN_BUSY we cannot put them back onto 13105 * the waitq for later retry. One possible 13106 * problem is that there could already be some 13107 * other command on un_retry_bp that is waiting 13108 * for this one to complete, so we would be 13109 * deadlocked if we put this command back onto 13110 * the waitq for later retry (since un_retry_bp 13111 * must complete before the driver gets back to 13112 * commands on the waitq). 13113 * 13114 * To avoid deadlock we must schedule a callback 13115 * that will restart this command after a set 13116 * interval. This should keep retrying for as 13117 * long as the underlying transport keeps 13118 * returning TRAN_BUSY (just like for other 13119 * commands). Use the same timeout interval as 13120 * for the ordinary TRAN_BUSY retry. 13121 */ 13122 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13123 "sd_start_cmds: scsi_transport() returned " 13124 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 13125 13126 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 13127 un->un_direct_priority_timeid = 13128 timeout(sd_start_direct_priority_command, 13129 bp, SD_BSY_TIMEOUT / 500); 13130 13131 goto exit; 13132 } 13133 13134 /* 13135 * For TRAN_BUSY, we want to reduce the throttle value, 13136 * unless we are retrying a command. 13137 */ 13138 if (bp != un->un_retry_bp) { 13139 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 13140 } 13141 13142 /* 13143 * Set up the bp to be tried again 10 ms later. 13144 * Note:x86: Is there a timeout value in the sd_lun 13145 * for this condition? 13146 */ 13147 sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500, 13148 kstat_runq_back_to_waitq); 13149 goto exit; 13150 13151 case TRAN_FATAL_ERROR: 13152 un->un_tran_fatal_count++; 13153 /* FALLTHRU */ 13154 13155 case TRAN_BADPKT: 13156 default: 13157 un->un_ncmds_in_transport--; 13158 ASSERT(un->un_ncmds_in_transport >= 0); 13159 13160 /* 13161 * If this is our REQUEST SENSE command with a 13162 * transport error, we must get back the pointers 13163 * to the original buf, and mark the REQUEST 13164 * SENSE command as "available". 13165 */ 13166 if (bp == un->un_rqs_bp) { 13167 bp = sd_mark_rqs_idle(un, xp); 13168 xp = SD_GET_XBUF(bp); 13169 } else { 13170 /* 13171 * Legacy behavior: do not update transport 13172 * error count for request sense commands. 13173 */ 13174 SD_UPDATE_ERRSTATS(un, sd_transerrs); 13175 } 13176 13177 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 13178 sd_print_transport_rejected_message(un, xp, rval); 13179 13180 /* 13181 * We must use sd_return_failed_command_no_restart() to 13182 * avoid a recursive call back into sd_start_cmds(). 13183 * However this also means that we must keep processing 13184 * the waitq here in order to avoid stalling. 13185 */ 13186 sd_return_failed_command_no_restart(un, bp, EIO); 13187 13188 /* 13189 * Notify any threads waiting in sd_ddi_suspend() that 13190 * a command completion has occurred. 13191 */ 13192 if (un->un_state == SD_STATE_SUSPENDED) { 13193 cv_broadcast(&un->un_disk_busy_cv); 13194 } 13195 13196 if (bp == immed_bp) { 13197 /* immed_bp is gone by now, so clear this */ 13198 immed_bp = NULL; 13199 } 13200 break; 13201 } 13202 13203 } while (immed_bp == NULL); 13204 13205 exit: 13206 ASSERT(mutex_owned(SD_MUTEX(un))); 13207 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 13208 } 13209 13210 13211 /* 13212 * Function: sd_return_command 13213 * 13214 * Description: Returns a command to its originator (with or without an 13215 * error). Also starts commands waiting to be transported 13216 * to the target. 13217 * 13218 * Context: May be called from interrupt, kernel, or timeout context 13219 */ 13220 13221 static void 13222 sd_return_command(struct sd_lun *un, struct buf *bp) 13223 { 13224 struct sd_xbuf *xp; 13225 #if defined(__i386) || defined(__amd64) 13226 struct scsi_pkt *pktp; 13227 #endif 13228 13229 ASSERT(bp != NULL); 13230 ASSERT(un != NULL); 13231 ASSERT(mutex_owned(SD_MUTEX(un))); 13232 ASSERT(bp != un->un_rqs_bp); 13233 xp = SD_GET_XBUF(bp); 13234 ASSERT(xp != NULL); 13235 13236 #if defined(__i386) || defined(__amd64) 13237 pktp = SD_GET_PKTP(bp); 13238 #endif 13239 13240 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 13241 13242 #if defined(__i386) || defined(__amd64) 13243 /* 13244 * Note:x86: check for the "sdrestart failed" case. 13245 */ 13246 if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 13247 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 13248 (xp->xb_pktp->pkt_resid == 0)) { 13249 13250 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 13251 /* 13252 * Successfully set up next portion of cmd 13253 * transfer, try sending it 13254 */ 13255 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 13256 NULL, NULL, 0, (clock_t)0, NULL); 13257 sd_start_cmds(un, NULL); 13258 return; /* Note:x86: need a return here? */ 13259 } 13260 } 13261 #endif 13262 13263 /* 13264 * If this is the failfast bp, clear it from un_failfast_bp. This 13265 * can happen if upon being re-tried the failfast bp either 13266 * succeeded or encountered another error (possibly even a different 13267 * error than the one that precipitated the failfast state, but in 13268 * that case it would have had to exhaust retries as well). Regardless, 13269 * this should not occur whenever the instance is in the active 13270 * failfast state. 13271 */ 13272 if (bp == un->un_failfast_bp) { 13273 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 13274 un->un_failfast_bp = NULL; 13275 } 13276 13277 /* 13278 * Clear the failfast state upon successful completion of ANY cmd. 13279 */ 13280 if (bp->b_error == 0) { 13281 un->un_failfast_state = SD_FAILFAST_INACTIVE; 13282 } 13283 13284 /* 13285 * This is used if the command was retried one or more times. Show that 13286 * we are done with it, and allow processing of the waitq to resume. 13287 */ 13288 if (bp == un->un_retry_bp) { 13289 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13290 "sd_return_command: un:0x%p: " 13291 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 13292 un->un_retry_bp = NULL; 13293 un->un_retry_statp = NULL; 13294 } 13295 13296 SD_UPDATE_RDWR_STATS(un, bp); 13297 SD_UPDATE_PARTITION_STATS(un, bp); 13298 13299 switch (un->un_state) { 13300 case SD_STATE_SUSPENDED: 13301 /* 13302 * Notify any threads waiting in sd_ddi_suspend() that 13303 * a command completion has occurred. 13304 */ 13305 cv_broadcast(&un->un_disk_busy_cv); 13306 break; 13307 default: 13308 sd_start_cmds(un, NULL); 13309 break; 13310 } 13311 13312 /* Return this command up the iodone chain to its originator. */ 13313 mutex_exit(SD_MUTEX(un)); 13314 13315 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 13316 xp->xb_pktp = NULL; 13317 13318 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 13319 13320 ASSERT(!mutex_owned(SD_MUTEX(un))); 13321 mutex_enter(SD_MUTEX(un)); 13322 13323 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 13324 } 13325 13326 13327 /* 13328 * Function: sd_return_failed_command 13329 * 13330 * Description: Command completion when an error occurred. 13331 * 13332 * Context: May be called from interrupt context 13333 */ 13334 13335 static void 13336 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 13337 { 13338 ASSERT(bp != NULL); 13339 ASSERT(un != NULL); 13340 ASSERT(mutex_owned(SD_MUTEX(un))); 13341 13342 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13343 "sd_return_failed_command: entry\n"); 13344 13345 /* 13346 * b_resid could already be nonzero due to a partial data 13347 * transfer, so do not change it here. 13348 */ 13349 SD_BIOERROR(bp, errcode); 13350 13351 sd_return_command(un, bp); 13352 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13353 "sd_return_failed_command: exit\n"); 13354 } 13355 13356 13357 /* 13358 * Function: sd_return_failed_command_no_restart 13359 * 13360 * Description: Same as sd_return_failed_command, but ensures that no 13361 * call back into sd_start_cmds will be issued. 13362 * 13363 * Context: May be called from interrupt context 13364 */ 13365 13366 static void 13367 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 13368 int errcode) 13369 { 13370 struct sd_xbuf *xp; 13371 13372 ASSERT(bp != NULL); 13373 ASSERT(un != NULL); 13374 ASSERT(mutex_owned(SD_MUTEX(un))); 13375 xp = SD_GET_XBUF(bp); 13376 ASSERT(xp != NULL); 13377 ASSERT(errcode != 0); 13378 13379 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13380 "sd_return_failed_command_no_restart: entry\n"); 13381 13382 /* 13383 * b_resid could already be nonzero due to a partial data 13384 * transfer, so do not change it here. 13385 */ 13386 SD_BIOERROR(bp, errcode); 13387 13388 /* 13389 * If this is the failfast bp, clear it. This can happen if the 13390 * failfast bp encounterd a fatal error when we attempted to 13391 * re-try it (such as a scsi_transport(9F) failure). However 13392 * we should NOT be in an active failfast state if the failfast 13393 * bp is not NULL. 13394 */ 13395 if (bp == un->un_failfast_bp) { 13396 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 13397 un->un_failfast_bp = NULL; 13398 } 13399 13400 if (bp == un->un_retry_bp) { 13401 /* 13402 * This command was retried one or more times. Show that we are 13403 * done with it, and allow processing of the waitq to resume. 13404 */ 13405 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13406 "sd_return_failed_command_no_restart: " 13407 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 13408 un->un_retry_bp = NULL; 13409 un->un_retry_statp = NULL; 13410 } 13411 13412 SD_UPDATE_RDWR_STATS(un, bp); 13413 SD_UPDATE_PARTITION_STATS(un, bp); 13414 13415 mutex_exit(SD_MUTEX(un)); 13416 13417 if (xp->xb_pktp != NULL) { 13418 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 13419 xp->xb_pktp = NULL; 13420 } 13421 13422 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 13423 13424 mutex_enter(SD_MUTEX(un)); 13425 13426 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13427 "sd_return_failed_command_no_restart: exit\n"); 13428 } 13429 13430 13431 /* 13432 * Function: sd_retry_command 13433 * 13434 * Description: queue up a command for retry, or (optionally) fail it 13435 * if retry counts are exhausted. 13436 * 13437 * Arguments: un - Pointer to the sd_lun struct for the target. 13438 * 13439 * bp - Pointer to the buf for the command to be retried. 13440 * 13441 * retry_check_flag - Flag to see which (if any) of the retry 13442 * counts should be decremented/checked. If the indicated 13443 * retry count is exhausted, then the command will not be 13444 * retried; it will be failed instead. This should use a 13445 * value equal to one of the following: 13446 * 13447 * SD_RETRIES_NOCHECK 13448 * SD_RESD_RETRIES_STANDARD 13449 * SD_RETRIES_VICTIM 13450 * 13451 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 13452 * if the check should be made to see of FLAG_ISOLATE is set 13453 * in the pkt. If FLAG_ISOLATE is set, then the command is 13454 * not retried, it is simply failed. 13455 * 13456 * user_funcp - Ptr to function to call before dispatching the 13457 * command. May be NULL if no action needs to be performed. 13458 * (Primarily intended for printing messages.) 13459 * 13460 * user_arg - Optional argument to be passed along to 13461 * the user_funcp call. 13462 * 13463 * failure_code - errno return code to set in the bp if the 13464 * command is going to be failed. 13465 * 13466 * retry_delay - Retry delay interval in (clock_t) units. May 13467 * be zero which indicates that the retry should be retried 13468 * immediately (ie, without an intervening delay). 13469 * 13470 * statp - Ptr to kstat function to be updated if the command 13471 * is queued for a delayed retry. May be NULL if no kstat 13472 * update is desired. 13473 * 13474 * Context: May be called from interrupt context. 13475 */ 13476 13477 static void 13478 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 13479 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 13480 code), void *user_arg, int failure_code, clock_t retry_delay, 13481 void (*statp)(kstat_io_t *)) 13482 { 13483 struct sd_xbuf *xp; 13484 struct scsi_pkt *pktp; 13485 13486 ASSERT(un != NULL); 13487 ASSERT(mutex_owned(SD_MUTEX(un))); 13488 ASSERT(bp != NULL); 13489 xp = SD_GET_XBUF(bp); 13490 ASSERT(xp != NULL); 13491 pktp = SD_GET_PKTP(bp); 13492 ASSERT(pktp != NULL); 13493 13494 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 13495 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 13496 13497 /* 13498 * If we are syncing or dumping, fail the command to avoid 13499 * recursively calling back into scsi_transport(). 13500 */ 13501 if (ddi_in_panic()) { 13502 goto fail_command_no_log; 13503 } 13504 13505 /* 13506 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 13507 * log an error and fail the command. 13508 */ 13509 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 13510 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 13511 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 13512 sd_dump_memory(un, SD_LOG_IO, "CDB", 13513 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 13514 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 13515 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 13516 goto fail_command; 13517 } 13518 13519 /* 13520 * If we are suspended, then put the command onto head of the 13521 * wait queue since we don't want to start more commands, and 13522 * clear the un_retry_bp. Next time when we are resumed, will 13523 * handle the command in the wait queue. 13524 */ 13525 switch (un->un_state) { 13526 case SD_STATE_SUSPENDED: 13527 case SD_STATE_DUMPING: 13528 bp->av_forw = un->un_waitq_headp; 13529 un->un_waitq_headp = bp; 13530 if (un->un_waitq_tailp == NULL) { 13531 un->un_waitq_tailp = bp; 13532 } 13533 if (bp == un->un_retry_bp) { 13534 un->un_retry_bp = NULL; 13535 un->un_retry_statp = NULL; 13536 } 13537 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13538 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 13539 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 13540 return; 13541 default: 13542 break; 13543 } 13544 13545 /* 13546 * If the caller wants us to check FLAG_ISOLATE, then see if that 13547 * is set; if it is then we do not want to retry the command. 13548 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 13549 */ 13550 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 13551 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 13552 goto fail_command; 13553 } 13554 } 13555 13556 13557 /* 13558 * If SD_RETRIES_FAILFAST is set, it indicates that either a 13559 * command timeout or a selection timeout has occurred. This means 13560 * that we were unable to establish an kind of communication with 13561 * the target, and subsequent retries and/or commands are likely 13562 * to encounter similar results and take a long time to complete. 13563 * 13564 * If this is a failfast error condition, we need to update the 13565 * failfast state, even if this bp does not have B_FAILFAST set. 13566 */ 13567 if (retry_check_flag & SD_RETRIES_FAILFAST) { 13568 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 13569 ASSERT(un->un_failfast_bp == NULL); 13570 /* 13571 * If we are already in the active failfast state, and 13572 * another failfast error condition has been detected, 13573 * then fail this command if it has B_FAILFAST set. 13574 * If B_FAILFAST is clear, then maintain the legacy 13575 * behavior of retrying heroically, even tho this will 13576 * take a lot more time to fail the command. 13577 */ 13578 if (bp->b_flags & B_FAILFAST) { 13579 goto fail_command; 13580 } 13581 } else { 13582 /* 13583 * We're not in the active failfast state, but we 13584 * have a failfast error condition, so we must begin 13585 * transition to the next state. We do this regardless 13586 * of whether or not this bp has B_FAILFAST set. 13587 */ 13588 if (un->un_failfast_bp == NULL) { 13589 /* 13590 * This is the first bp to meet a failfast 13591 * condition so save it on un_failfast_bp & 13592 * do normal retry processing. Do not enter 13593 * active failfast state yet. This marks 13594 * entry into the "failfast pending" state. 13595 */ 13596 un->un_failfast_bp = bp; 13597 13598 } else if (un->un_failfast_bp == bp) { 13599 /* 13600 * This is the second time *this* bp has 13601 * encountered a failfast error condition, 13602 * so enter active failfast state & flush 13603 * queues as appropriate. 13604 */ 13605 un->un_failfast_state = SD_FAILFAST_ACTIVE; 13606 un->un_failfast_bp = NULL; 13607 sd_failfast_flushq(un); 13608 13609 /* 13610 * Fail this bp now if B_FAILFAST set; 13611 * otherwise continue with retries. (It would 13612 * be pretty ironic if this bp succeeded on a 13613 * subsequent retry after we just flushed all 13614 * the queues). 13615 */ 13616 if (bp->b_flags & B_FAILFAST) { 13617 goto fail_command; 13618 } 13619 13620 #if !defined(lint) && !defined(__lint) 13621 } else { 13622 /* 13623 * If neither of the preceeding conditionals 13624 * was true, it means that there is some 13625 * *other* bp that has met an inital failfast 13626 * condition and is currently either being 13627 * retried or is waiting to be retried. In 13628 * that case we should perform normal retry 13629 * processing on *this* bp, since there is a 13630 * chance that the current failfast condition 13631 * is transient and recoverable. If that does 13632 * not turn out to be the case, then retries 13633 * will be cleared when the wait queue is 13634 * flushed anyway. 13635 */ 13636 #endif 13637 } 13638 } 13639 } else { 13640 /* 13641 * SD_RETRIES_FAILFAST is clear, which indicates that we 13642 * likely were able to at least establish some level of 13643 * communication with the target and subsequent commands 13644 * and/or retries are likely to get through to the target, 13645 * In this case we want to be aggressive about clearing 13646 * the failfast state. Note that this does not affect 13647 * the "failfast pending" condition. 13648 */ 13649 un->un_failfast_state = SD_FAILFAST_INACTIVE; 13650 } 13651 13652 13653 /* 13654 * Check the specified retry count to see if we can still do 13655 * any retries with this pkt before we should fail it. 13656 */ 13657 switch (retry_check_flag & SD_RETRIES_MASK) { 13658 case SD_RETRIES_VICTIM: 13659 /* 13660 * Check the victim retry count. If exhausted, then fall 13661 * thru & check against the standard retry count. 13662 */ 13663 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 13664 /* Increment count & proceed with the retry */ 13665 xp->xb_victim_retry_count++; 13666 break; 13667 } 13668 /* Victim retries exhausted, fall back to std. retries... */ 13669 /* FALLTHRU */ 13670 13671 case SD_RETRIES_STANDARD: 13672 if (xp->xb_retry_count >= un->un_retry_count) { 13673 /* Retries exhausted, fail the command */ 13674 SD_TRACE(SD_LOG_IO_CORE, un, 13675 "sd_retry_command: retries exhausted!\n"); 13676 /* 13677 * update b_resid for failed SCMD_READ & SCMD_WRITE 13678 * commands with nonzero pkt_resid. 13679 */ 13680 if ((pktp->pkt_reason == CMD_CMPLT) && 13681 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 13682 (pktp->pkt_resid != 0)) { 13683 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 13684 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 13685 SD_UPDATE_B_RESID(bp, pktp); 13686 } 13687 } 13688 goto fail_command; 13689 } 13690 xp->xb_retry_count++; 13691 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13692 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 13693 break; 13694 13695 case SD_RETRIES_UA: 13696 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 13697 /* Retries exhausted, fail the command */ 13698 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13699 "Unit Attention retries exhausted. " 13700 "Check the target.\n"); 13701 goto fail_command; 13702 } 13703 xp->xb_ua_retry_count++; 13704 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13705 "sd_retry_command: retry count:%d\n", 13706 xp->xb_ua_retry_count); 13707 break; 13708 13709 case SD_RETRIES_BUSY: 13710 if (xp->xb_retry_count >= un->un_busy_retry_count) { 13711 /* Retries exhausted, fail the command */ 13712 SD_TRACE(SD_LOG_IO_CORE, un, 13713 "sd_retry_command: retries exhausted!\n"); 13714 goto fail_command; 13715 } 13716 xp->xb_retry_count++; 13717 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13718 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 13719 break; 13720 13721 case SD_RETRIES_NOCHECK: 13722 default: 13723 /* No retry count to check. Just proceed with the retry */ 13724 break; 13725 } 13726 13727 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 13728 13729 /* 13730 * If we were given a zero timeout, we must attempt to retry the 13731 * command immediately (ie, without a delay). 13732 */ 13733 if (retry_delay == 0) { 13734 /* 13735 * Check some limiting conditions to see if we can actually 13736 * do the immediate retry. If we cannot, then we must 13737 * fall back to queueing up a delayed retry. 13738 */ 13739 if (un->un_ncmds_in_transport >= un->un_throttle) { 13740 /* 13741 * We are at the throttle limit for the target, 13742 * fall back to delayed retry. 13743 */ 13744 retry_delay = SD_BSY_TIMEOUT; 13745 statp = kstat_waitq_enter; 13746 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13747 "sd_retry_command: immed. retry hit " 13748 "throttle!\n"); 13749 } else { 13750 /* 13751 * We're clear to proceed with the immediate retry. 13752 * First call the user-provided function (if any) 13753 */ 13754 if (user_funcp != NULL) { 13755 (*user_funcp)(un, bp, user_arg, 13756 SD_IMMEDIATE_RETRY_ISSUED); 13757 #ifdef __lock_lint 13758 sd_print_incomplete_msg(un, bp, user_arg, 13759 SD_IMMEDIATE_RETRY_ISSUED); 13760 sd_print_cmd_incomplete_msg(un, bp, user_arg, 13761 SD_IMMEDIATE_RETRY_ISSUED); 13762 sd_print_sense_failed_msg(un, bp, user_arg, 13763 SD_IMMEDIATE_RETRY_ISSUED); 13764 #endif 13765 } 13766 13767 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13768 "sd_retry_command: issuing immediate retry\n"); 13769 13770 /* 13771 * Call sd_start_cmds() to transport the command to 13772 * the target. 13773 */ 13774 sd_start_cmds(un, bp); 13775 13776 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13777 "sd_retry_command exit\n"); 13778 return; 13779 } 13780 } 13781 13782 /* 13783 * Set up to retry the command after a delay. 13784 * First call the user-provided function (if any) 13785 */ 13786 if (user_funcp != NULL) { 13787 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 13788 } 13789 13790 sd_set_retry_bp(un, bp, retry_delay, statp); 13791 13792 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 13793 return; 13794 13795 fail_command: 13796 13797 if (user_funcp != NULL) { 13798 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 13799 } 13800 13801 fail_command_no_log: 13802 13803 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13804 "sd_retry_command: returning failed command\n"); 13805 13806 sd_return_failed_command(un, bp, failure_code); 13807 13808 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 13809 } 13810 13811 13812 /* 13813 * Function: sd_set_retry_bp 13814 * 13815 * Description: Set up the given bp for retry. 13816 * 13817 * Arguments: un - ptr to associated softstate 13818 * bp - ptr to buf(9S) for the command 13819 * retry_delay - time interval before issuing retry (may be 0) 13820 * statp - optional pointer to kstat function 13821 * 13822 * Context: May be called under interrupt context 13823 */ 13824 13825 static void 13826 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 13827 void (*statp)(kstat_io_t *)) 13828 { 13829 ASSERT(un != NULL); 13830 ASSERT(mutex_owned(SD_MUTEX(un))); 13831 ASSERT(bp != NULL); 13832 13833 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 13834 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 13835 13836 /* 13837 * Indicate that the command is being retried. This will not allow any 13838 * other commands on the wait queue to be transported to the target 13839 * until this command has been completed (success or failure). The 13840 * "retry command" is not transported to the target until the given 13841 * time delay expires, unless the user specified a 0 retry_delay. 13842 * 13843 * Note: the timeout(9F) callback routine is what actually calls 13844 * sd_start_cmds() to transport the command, with the exception of a 13845 * zero retry_delay. The only current implementor of a zero retry delay 13846 * is the case where a START_STOP_UNIT is sent to spin-up a device. 13847 */ 13848 if (un->un_retry_bp == NULL) { 13849 ASSERT(un->un_retry_statp == NULL); 13850 un->un_retry_bp = bp; 13851 13852 /* 13853 * If the user has not specified a delay the command should 13854 * be queued and no timeout should be scheduled. 13855 */ 13856 if (retry_delay == 0) { 13857 /* 13858 * Save the kstat pointer that will be used in the 13859 * call to SD_UPDATE_KSTATS() below, so that 13860 * sd_start_cmds() can correctly decrement the waitq 13861 * count when it is time to transport this command. 13862 */ 13863 un->un_retry_statp = statp; 13864 goto done; 13865 } 13866 } 13867 13868 if (un->un_retry_bp == bp) { 13869 /* 13870 * Save the kstat pointer that will be used in the call to 13871 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 13872 * correctly decrement the waitq count when it is time to 13873 * transport this command. 13874 */ 13875 un->un_retry_statp = statp; 13876 13877 /* 13878 * Schedule a timeout if: 13879 * 1) The user has specified a delay. 13880 * 2) There is not a START_STOP_UNIT callback pending. 13881 * 13882 * If no delay has been specified, then it is up to the caller 13883 * to ensure that IO processing continues without stalling. 13884 * Effectively, this means that the caller will issue the 13885 * required call to sd_start_cmds(). The START_STOP_UNIT 13886 * callback does this after the START STOP UNIT command has 13887 * completed. In either of these cases we should not schedule 13888 * a timeout callback here. Also don't schedule the timeout if 13889 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 13890 */ 13891 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 13892 (un->un_direct_priority_timeid == NULL)) { 13893 un->un_retry_timeid = 13894 timeout(sd_start_retry_command, un, retry_delay); 13895 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13896 "sd_set_retry_bp: setting timeout: un: 0x%p" 13897 " bp:0x%p un_retry_timeid:0x%p\n", 13898 un, bp, un->un_retry_timeid); 13899 } 13900 } else { 13901 /* 13902 * We only get in here if there is already another command 13903 * waiting to be retried. In this case, we just put the 13904 * given command onto the wait queue, so it can be transported 13905 * after the current retry command has completed. 13906 * 13907 * Also we have to make sure that if the command at the head 13908 * of the wait queue is the un_failfast_bp, that we do not 13909 * put ahead of it any other commands that are to be retried. 13910 */ 13911 if ((un->un_failfast_bp != NULL) && 13912 (un->un_failfast_bp == un->un_waitq_headp)) { 13913 /* 13914 * Enqueue this command AFTER the first command on 13915 * the wait queue (which is also un_failfast_bp). 13916 */ 13917 bp->av_forw = un->un_waitq_headp->av_forw; 13918 un->un_waitq_headp->av_forw = bp; 13919 if (un->un_waitq_headp == un->un_waitq_tailp) { 13920 un->un_waitq_tailp = bp; 13921 } 13922 } else { 13923 /* Enqueue this command at the head of the waitq. */ 13924 bp->av_forw = un->un_waitq_headp; 13925 un->un_waitq_headp = bp; 13926 if (un->un_waitq_tailp == NULL) { 13927 un->un_waitq_tailp = bp; 13928 } 13929 } 13930 13931 if (statp == NULL) { 13932 statp = kstat_waitq_enter; 13933 } 13934 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13935 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 13936 } 13937 13938 done: 13939 if (statp != NULL) { 13940 SD_UPDATE_KSTATS(un, statp, bp); 13941 } 13942 13943 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13944 "sd_set_retry_bp: exit un:0x%p\n", un); 13945 } 13946 13947 13948 /* 13949 * Function: sd_start_retry_command 13950 * 13951 * Description: Start the command that has been waiting on the target's 13952 * retry queue. Called from timeout(9F) context after the 13953 * retry delay interval has expired. 13954 * 13955 * Arguments: arg - pointer to associated softstate for the device. 13956 * 13957 * Context: timeout(9F) thread context. May not sleep. 13958 */ 13959 13960 static void 13961 sd_start_retry_command(void *arg) 13962 { 13963 struct sd_lun *un = arg; 13964 13965 ASSERT(un != NULL); 13966 ASSERT(!mutex_owned(SD_MUTEX(un))); 13967 13968 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13969 "sd_start_retry_command: entry\n"); 13970 13971 mutex_enter(SD_MUTEX(un)); 13972 13973 un->un_retry_timeid = NULL; 13974 13975 if (un->un_retry_bp != NULL) { 13976 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13977 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 13978 un, un->un_retry_bp); 13979 sd_start_cmds(un, un->un_retry_bp); 13980 } 13981 13982 mutex_exit(SD_MUTEX(un)); 13983 13984 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 13985 "sd_start_retry_command: exit\n"); 13986 } 13987 13988 13989 /* 13990 * Function: sd_start_direct_priority_command 13991 * 13992 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 13993 * received TRAN_BUSY when we called scsi_transport() to send it 13994 * to the underlying HBA. This function is called from timeout(9F) 13995 * context after the delay interval has expired. 13996 * 13997 * Arguments: arg - pointer to associated buf(9S) to be restarted. 13998 * 13999 * Context: timeout(9F) thread context. May not sleep. 14000 */ 14001 14002 static void 14003 sd_start_direct_priority_command(void *arg) 14004 { 14005 struct buf *priority_bp = arg; 14006 struct sd_lun *un; 14007 14008 ASSERT(priority_bp != NULL); 14009 un = SD_GET_UN(priority_bp); 14010 ASSERT(un != NULL); 14011 ASSERT(!mutex_owned(SD_MUTEX(un))); 14012 14013 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14014 "sd_start_direct_priority_command: entry\n"); 14015 14016 mutex_enter(SD_MUTEX(un)); 14017 un->un_direct_priority_timeid = NULL; 14018 sd_start_cmds(un, priority_bp); 14019 mutex_exit(SD_MUTEX(un)); 14020 14021 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14022 "sd_start_direct_priority_command: exit\n"); 14023 } 14024 14025 14026 /* 14027 * Function: sd_send_request_sense_command 14028 * 14029 * Description: Sends a REQUEST SENSE command to the target 14030 * 14031 * Context: May be called from interrupt context. 14032 */ 14033 14034 static void 14035 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 14036 struct scsi_pkt *pktp) 14037 { 14038 ASSERT(bp != NULL); 14039 ASSERT(un != NULL); 14040 ASSERT(mutex_owned(SD_MUTEX(un))); 14041 14042 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 14043 "entry: buf:0x%p\n", bp); 14044 14045 /* 14046 * If we are syncing or dumping, then fail the command to avoid a 14047 * recursive callback into scsi_transport(). Also fail the command 14048 * if we are suspended (legacy behavior). 14049 */ 14050 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 14051 (un->un_state == SD_STATE_DUMPING)) { 14052 sd_return_failed_command(un, bp, EIO); 14053 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14054 "sd_send_request_sense_command: syncing/dumping, exit\n"); 14055 return; 14056 } 14057 14058 /* 14059 * Retry the failed command and don't issue the request sense if: 14060 * 1) the sense buf is busy 14061 * 2) we have 1 or more outstanding commands on the target 14062 * (the sense data will be cleared or invalidated any way) 14063 * 14064 * Note: There could be an issue with not checking a retry limit here, 14065 * the problem is determining which retry limit to check. 14066 */ 14067 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 14068 /* Don't retry if the command is flagged as non-retryable */ 14069 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 14070 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 14071 NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter); 14072 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14073 "sd_send_request_sense_command: " 14074 "at full throttle, retrying exit\n"); 14075 } else { 14076 sd_return_failed_command(un, bp, EIO); 14077 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14078 "sd_send_request_sense_command: " 14079 "at full throttle, non-retryable exit\n"); 14080 } 14081 return; 14082 } 14083 14084 sd_mark_rqs_busy(un, bp); 14085 sd_start_cmds(un, un->un_rqs_bp); 14086 14087 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14088 "sd_send_request_sense_command: exit\n"); 14089 } 14090 14091 14092 /* 14093 * Function: sd_mark_rqs_busy 14094 * 14095 * Description: Indicate that the request sense bp for this instance is 14096 * in use. 14097 * 14098 * Context: May be called under interrupt context 14099 */ 14100 14101 static void 14102 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 14103 { 14104 struct sd_xbuf *sense_xp; 14105 14106 ASSERT(un != NULL); 14107 ASSERT(bp != NULL); 14108 ASSERT(mutex_owned(SD_MUTEX(un))); 14109 ASSERT(un->un_sense_isbusy == 0); 14110 14111 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 14112 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 14113 14114 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 14115 ASSERT(sense_xp != NULL); 14116 14117 SD_INFO(SD_LOG_IO, un, 14118 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 14119 14120 ASSERT(sense_xp->xb_pktp != NULL); 14121 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 14122 == (FLAG_SENSING | FLAG_HEAD)); 14123 14124 un->un_sense_isbusy = 1; 14125 un->un_rqs_bp->b_resid = 0; 14126 sense_xp->xb_pktp->pkt_resid = 0; 14127 sense_xp->xb_pktp->pkt_reason = 0; 14128 14129 /* So we can get back the bp at interrupt time! */ 14130 sense_xp->xb_sense_bp = bp; 14131 14132 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 14133 14134 /* 14135 * Mark this buf as awaiting sense data. (This is already set in 14136 * the pkt_flags for the RQS packet.) 14137 */ 14138 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 14139 14140 sense_xp->xb_retry_count = 0; 14141 sense_xp->xb_victim_retry_count = 0; 14142 sense_xp->xb_ua_retry_count = 0; 14143 sense_xp->xb_nr_retry_count = 0; 14144 sense_xp->xb_dma_resid = 0; 14145 14146 /* Clean up the fields for auto-request sense */ 14147 sense_xp->xb_sense_status = 0; 14148 sense_xp->xb_sense_state = 0; 14149 sense_xp->xb_sense_resid = 0; 14150 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 14151 14152 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 14153 } 14154 14155 14156 /* 14157 * Function: sd_mark_rqs_idle 14158 * 14159 * Description: SD_MUTEX must be held continuously through this routine 14160 * to prevent reuse of the rqs struct before the caller can 14161 * complete it's processing. 14162 * 14163 * Return Code: Pointer to the RQS buf 14164 * 14165 * Context: May be called under interrupt context 14166 */ 14167 14168 static struct buf * 14169 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 14170 { 14171 struct buf *bp; 14172 ASSERT(un != NULL); 14173 ASSERT(sense_xp != NULL); 14174 ASSERT(mutex_owned(SD_MUTEX(un))); 14175 ASSERT(un->un_sense_isbusy != 0); 14176 14177 un->un_sense_isbusy = 0; 14178 bp = sense_xp->xb_sense_bp; 14179 sense_xp->xb_sense_bp = NULL; 14180 14181 /* This pkt is no longer interested in getting sense data */ 14182 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 14183 14184 return (bp); 14185 } 14186 14187 14188 14189 /* 14190 * Function: sd_alloc_rqs 14191 * 14192 * Description: Set up the unit to receive auto request sense data 14193 * 14194 * Return Code: DDI_SUCCESS or DDI_FAILURE 14195 * 14196 * Context: Called under attach(9E) context 14197 */ 14198 14199 static int 14200 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 14201 { 14202 struct sd_xbuf *xp; 14203 14204 ASSERT(un != NULL); 14205 ASSERT(!mutex_owned(SD_MUTEX(un))); 14206 ASSERT(un->un_rqs_bp == NULL); 14207 ASSERT(un->un_rqs_pktp == NULL); 14208 14209 /* 14210 * First allocate the required buf and scsi_pkt structs, then set up 14211 * the CDB in the scsi_pkt for a REQUEST SENSE command. 14212 */ 14213 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 14214 SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 14215 if (un->un_rqs_bp == NULL) { 14216 return (DDI_FAILURE); 14217 } 14218 14219 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 14220 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 14221 14222 if (un->un_rqs_pktp == NULL) { 14223 sd_free_rqs(un); 14224 return (DDI_FAILURE); 14225 } 14226 14227 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 14228 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 14229 SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0); 14230 14231 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 14232 14233 /* Set up the other needed members in the ARQ scsi_pkt. */ 14234 un->un_rqs_pktp->pkt_comp = sdintr; 14235 un->un_rqs_pktp->pkt_time = sd_io_time; 14236 un->un_rqs_pktp->pkt_flags |= 14237 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 14238 14239 /* 14240 * Allocate & init the sd_xbuf struct for the RQS command. Do not 14241 * provide any intpkt, destroypkt routines as we take care of 14242 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 14243 */ 14244 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14245 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 14246 xp->xb_pktp = un->un_rqs_pktp; 14247 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14248 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 14249 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 14250 14251 /* 14252 * Save the pointer to the request sense private bp so it can 14253 * be retrieved in sdintr. 14254 */ 14255 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 14256 ASSERT(un->un_rqs_bp->b_private == xp); 14257 14258 /* 14259 * See if the HBA supports auto-request sense for the specified 14260 * target/lun. If it does, then try to enable it (if not already 14261 * enabled). 14262 * 14263 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 14264 * failure, while for other HBAs (pln) scsi_ifsetcap will always 14265 * return success. However, in both of these cases ARQ is always 14266 * enabled and scsi_ifgetcap will always return true. The best approach 14267 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 14268 * 14269 * The 3rd case is the HBA (adp) always return enabled on 14270 * scsi_ifgetgetcap even when it's not enable, the best approach 14271 * is issue a scsi_ifsetcap then a scsi_ifgetcap 14272 * Note: this case is to circumvent the Adaptec bug. (x86 only) 14273 */ 14274 14275 if (un->un_f_is_fibre == TRUE) { 14276 un->un_f_arq_enabled = TRUE; 14277 } else { 14278 #if defined(__i386) || defined(__amd64) 14279 /* 14280 * Circumvent the Adaptec bug, remove this code when 14281 * the bug is fixed 14282 */ 14283 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 14284 #endif 14285 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 14286 case 0: 14287 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14288 "sd_alloc_rqs: HBA supports ARQ\n"); 14289 /* 14290 * ARQ is supported by this HBA but currently is not 14291 * enabled. Attempt to enable it and if successful then 14292 * mark this instance as ARQ enabled. 14293 */ 14294 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 14295 == 1) { 14296 /* Successfully enabled ARQ in the HBA */ 14297 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14298 "sd_alloc_rqs: ARQ enabled\n"); 14299 un->un_f_arq_enabled = TRUE; 14300 } else { 14301 /* Could not enable ARQ in the HBA */ 14302 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14303 "sd_alloc_rqs: failed ARQ enable\n"); 14304 un->un_f_arq_enabled = FALSE; 14305 } 14306 break; 14307 case 1: 14308 /* 14309 * ARQ is supported by this HBA and is already enabled. 14310 * Just mark ARQ as enabled for this instance. 14311 */ 14312 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14313 "sd_alloc_rqs: ARQ already enabled\n"); 14314 un->un_f_arq_enabled = TRUE; 14315 break; 14316 default: 14317 /* 14318 * ARQ is not supported by this HBA; disable it for this 14319 * instance. 14320 */ 14321 SD_INFO(SD_LOG_ATTACH_DETACH, un, 14322 "sd_alloc_rqs: HBA does not support ARQ\n"); 14323 un->un_f_arq_enabled = FALSE; 14324 break; 14325 } 14326 } 14327 14328 return (DDI_SUCCESS); 14329 } 14330 14331 14332 /* 14333 * Function: sd_free_rqs 14334 * 14335 * Description: Cleanup for the pre-instance RQS command. 14336 * 14337 * Context: Kernel thread context 14338 */ 14339 14340 static void 14341 sd_free_rqs(struct sd_lun *un) 14342 { 14343 ASSERT(un != NULL); 14344 14345 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 14346 14347 /* 14348 * If consistent memory is bound to a scsi_pkt, the pkt 14349 * has to be destroyed *before* freeing the consistent memory. 14350 * Don't change the sequence of this operations. 14351 * scsi_destroy_pkt() might access memory, which isn't allowed, 14352 * after it was freed in scsi_free_consistent_buf(). 14353 */ 14354 if (un->un_rqs_pktp != NULL) { 14355 scsi_destroy_pkt(un->un_rqs_pktp); 14356 un->un_rqs_pktp = NULL; 14357 } 14358 14359 if (un->un_rqs_bp != NULL) { 14360 kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf)); 14361 scsi_free_consistent_buf(un->un_rqs_bp); 14362 un->un_rqs_bp = NULL; 14363 } 14364 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 14365 } 14366 14367 14368 14369 /* 14370 * Function: sd_reduce_throttle 14371 * 14372 * Description: Reduces the maximum # of outstanding commands on a 14373 * target to the current number of outstanding commands. 14374 * Queues a tiemout(9F) callback to restore the limit 14375 * after a specified interval has elapsed. 14376 * Typically used when we get a TRAN_BUSY return code 14377 * back from scsi_transport(). 14378 * 14379 * Arguments: un - ptr to the sd_lun softstate struct 14380 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 14381 * 14382 * Context: May be called from interrupt context 14383 */ 14384 14385 static void 14386 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 14387 { 14388 ASSERT(un != NULL); 14389 ASSERT(mutex_owned(SD_MUTEX(un))); 14390 ASSERT(un->un_ncmds_in_transport >= 0); 14391 14392 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 14393 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 14394 un, un->un_throttle, un->un_ncmds_in_transport); 14395 14396 if (un->un_throttle > 1) { 14397 if (un->un_f_use_adaptive_throttle == TRUE) { 14398 switch (throttle_type) { 14399 case SD_THROTTLE_TRAN_BUSY: 14400 if (un->un_busy_throttle == 0) { 14401 un->un_busy_throttle = un->un_throttle; 14402 } 14403 break; 14404 case SD_THROTTLE_QFULL: 14405 un->un_busy_throttle = 0; 14406 break; 14407 default: 14408 ASSERT(FALSE); 14409 } 14410 14411 if (un->un_ncmds_in_transport > 0) { 14412 un->un_throttle = un->un_ncmds_in_transport; 14413 } 14414 14415 } else { 14416 if (un->un_ncmds_in_transport == 0) { 14417 un->un_throttle = 1; 14418 } else { 14419 un->un_throttle = un->un_ncmds_in_transport; 14420 } 14421 } 14422 } 14423 14424 /* Reschedule the timeout if none is currently active */ 14425 if (un->un_reset_throttle_timeid == NULL) { 14426 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 14427 un, SD_THROTTLE_RESET_INTERVAL); 14428 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14429 "sd_reduce_throttle: timeout scheduled!\n"); 14430 } 14431 14432 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 14433 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 14434 } 14435 14436 14437 14438 /* 14439 * Function: sd_restore_throttle 14440 * 14441 * Description: Callback function for timeout(9F). Resets the current 14442 * value of un->un_throttle to its default. 14443 * 14444 * Arguments: arg - pointer to associated softstate for the device. 14445 * 14446 * Context: May be called from interrupt context 14447 */ 14448 14449 static void 14450 sd_restore_throttle(void *arg) 14451 { 14452 struct sd_lun *un = arg; 14453 14454 ASSERT(un != NULL); 14455 ASSERT(!mutex_owned(SD_MUTEX(un))); 14456 14457 mutex_enter(SD_MUTEX(un)); 14458 14459 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 14460 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 14461 14462 un->un_reset_throttle_timeid = NULL; 14463 14464 if (un->un_f_use_adaptive_throttle == TRUE) { 14465 /* 14466 * If un_busy_throttle is nonzero, then it contains the 14467 * value that un_throttle was when we got a TRAN_BUSY back 14468 * from scsi_transport(). We want to revert back to this 14469 * value. 14470 * 14471 * In the QFULL case, the throttle limit will incrementally 14472 * increase until it reaches max throttle. 14473 */ 14474 if (un->un_busy_throttle > 0) { 14475 un->un_throttle = un->un_busy_throttle; 14476 un->un_busy_throttle = 0; 14477 } else { 14478 /* 14479 * increase throttle by 10% open gate slowly, schedule 14480 * another restore if saved throttle has not been 14481 * reached 14482 */ 14483 short throttle; 14484 if (sd_qfull_throttle_enable) { 14485 throttle = un->un_throttle + 14486 max((un->un_throttle / 10), 1); 14487 un->un_throttle = 14488 (throttle < un->un_saved_throttle) ? 14489 throttle : un->un_saved_throttle; 14490 if (un->un_throttle < un->un_saved_throttle) { 14491 un->un_reset_throttle_timeid = 14492 timeout(sd_restore_throttle, 14493 un, 14494 SD_QFULL_THROTTLE_RESET_INTERVAL); 14495 } 14496 } 14497 } 14498 14499 /* 14500 * If un_throttle has fallen below the low-water mark, we 14501 * restore the maximum value here (and allow it to ratchet 14502 * down again if necessary). 14503 */ 14504 if (un->un_throttle < un->un_min_throttle) { 14505 un->un_throttle = un->un_saved_throttle; 14506 } 14507 } else { 14508 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 14509 "restoring limit from 0x%x to 0x%x\n", 14510 un->un_throttle, un->un_saved_throttle); 14511 un->un_throttle = un->un_saved_throttle; 14512 } 14513 14514 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14515 "sd_restore_throttle: calling sd_start_cmds!\n"); 14516 14517 sd_start_cmds(un, NULL); 14518 14519 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14520 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 14521 un, un->un_throttle); 14522 14523 mutex_exit(SD_MUTEX(un)); 14524 14525 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 14526 } 14527 14528 /* 14529 * Function: sdrunout 14530 * 14531 * Description: Callback routine for scsi_init_pkt when a resource allocation 14532 * fails. 14533 * 14534 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 14535 * soft state instance. 14536 * 14537 * Return Code: The scsi_init_pkt routine allows for the callback function to 14538 * return a 0 indicating the callback should be rescheduled or a 1 14539 * indicating not to reschedule. This routine always returns 1 14540 * because the driver always provides a callback function to 14541 * scsi_init_pkt. This results in a callback always being scheduled 14542 * (via the scsi_init_pkt callback implementation) if a resource 14543 * failure occurs. 14544 * 14545 * Context: This callback function may not block or call routines that block 14546 * 14547 * Note: Using the scsi_init_pkt callback facility can result in an I/O 14548 * request persisting at the head of the list which cannot be 14549 * satisfied even after multiple retries. In the future the driver 14550 * may implement some time of maximum runout count before failing 14551 * an I/O. 14552 */ 14553 14554 static int 14555 sdrunout(caddr_t arg) 14556 { 14557 struct sd_lun *un = (struct sd_lun *)arg; 14558 14559 ASSERT(un != NULL); 14560 ASSERT(!mutex_owned(SD_MUTEX(un))); 14561 14562 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 14563 14564 mutex_enter(SD_MUTEX(un)); 14565 sd_start_cmds(un, NULL); 14566 mutex_exit(SD_MUTEX(un)); 14567 /* 14568 * This callback routine always returns 1 (i.e. do not reschedule) 14569 * because we always specify sdrunout as the callback handler for 14570 * scsi_init_pkt inside the call to sd_start_cmds. 14571 */ 14572 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 14573 return (1); 14574 } 14575 14576 14577 /* 14578 * Function: sdintr 14579 * 14580 * Description: Completion callback routine for scsi_pkt(9S) structs 14581 * sent to the HBA driver via scsi_transport(9F). 14582 * 14583 * Context: Interrupt context 14584 */ 14585 14586 static void 14587 sdintr(struct scsi_pkt *pktp) 14588 { 14589 struct buf *bp; 14590 struct sd_xbuf *xp; 14591 struct sd_lun *un; 14592 14593 ASSERT(pktp != NULL); 14594 bp = (struct buf *)pktp->pkt_private; 14595 ASSERT(bp != NULL); 14596 xp = SD_GET_XBUF(bp); 14597 ASSERT(xp != NULL); 14598 ASSERT(xp->xb_pktp != NULL); 14599 un = SD_GET_UN(bp); 14600 ASSERT(un != NULL); 14601 ASSERT(!mutex_owned(SD_MUTEX(un))); 14602 14603 #ifdef SD_FAULT_INJECTION 14604 14605 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 14606 /* SD FaultInjection */ 14607 sd_faultinjection(pktp); 14608 14609 #endif /* SD_FAULT_INJECTION */ 14610 14611 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 14612 " xp:0x%p, un:0x%p\n", bp, xp, un); 14613 14614 mutex_enter(SD_MUTEX(un)); 14615 14616 /* Reduce the count of the #commands currently in transport */ 14617 un->un_ncmds_in_transport--; 14618 ASSERT(un->un_ncmds_in_transport >= 0); 14619 14620 /* Increment counter to indicate that the callback routine is active */ 14621 un->un_in_callback++; 14622 14623 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14624 14625 #ifdef SDDEBUG 14626 if (bp == un->un_retry_bp) { 14627 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 14628 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 14629 un, un->un_retry_bp, un->un_ncmds_in_transport); 14630 } 14631 #endif 14632 14633 /* 14634 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 14635 * state if needed. 14636 */ 14637 if (pktp->pkt_reason == CMD_DEV_GONE) { 14638 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 14639 "Device is gone\n"); 14640 if (un->un_mediastate != DKIO_DEV_GONE) { 14641 un->un_mediastate = DKIO_DEV_GONE; 14642 cv_broadcast(&un->un_state_cv); 14643 } 14644 sd_return_failed_command(un, bp, EIO); 14645 goto exit; 14646 } 14647 14648 /* 14649 * First see if the pkt has auto-request sense data with it.... 14650 * Look at the packet state first so we don't take a performance 14651 * hit looking at the arq enabled flag unless absolutely necessary. 14652 */ 14653 if ((pktp->pkt_state & STATE_ARQ_DONE) && 14654 (un->un_f_arq_enabled == TRUE)) { 14655 /* 14656 * The HBA did an auto request sense for this command so check 14657 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 14658 * driver command that should not be retried. 14659 */ 14660 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 14661 /* 14662 * Save the relevant sense info into the xp for the 14663 * original cmd. 14664 */ 14665 struct scsi_arq_status *asp; 14666 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 14667 xp->xb_sense_status = 14668 *((uchar_t *)(&(asp->sts_rqpkt_status))); 14669 xp->xb_sense_state = asp->sts_rqpkt_state; 14670 xp->xb_sense_resid = asp->sts_rqpkt_resid; 14671 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 14672 min(sizeof (struct scsi_extended_sense), 14673 SENSE_LENGTH)); 14674 14675 /* fail the command */ 14676 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14677 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 14678 sd_return_failed_command(un, bp, EIO); 14679 goto exit; 14680 } 14681 14682 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 14683 /* 14684 * We want to either retry or fail this command, so free 14685 * the DMA resources here. If we retry the command then 14686 * the DMA resources will be reallocated in sd_start_cmds(). 14687 * Note that when PKT_DMA_PARTIAL is used, this reallocation 14688 * causes the *entire* transfer to start over again from the 14689 * beginning of the request, even for PARTIAL chunks that 14690 * have already transferred successfully. 14691 */ 14692 if ((un->un_f_is_fibre == TRUE) && 14693 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14694 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 14695 scsi_dmafree(pktp); 14696 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14697 } 14698 #endif 14699 14700 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14701 "sdintr: arq done, sd_handle_auto_request_sense\n"); 14702 14703 sd_handle_auto_request_sense(un, bp, xp, pktp); 14704 goto exit; 14705 } 14706 14707 /* Next see if this is the REQUEST SENSE pkt for the instance */ 14708 if (pktp->pkt_flags & FLAG_SENSING) { 14709 /* This pktp is from the unit's REQUEST_SENSE command */ 14710 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14711 "sdintr: sd_handle_request_sense\n"); 14712 sd_handle_request_sense(un, bp, xp, pktp); 14713 goto exit; 14714 } 14715 14716 /* 14717 * Check to see if the command successfully completed as requested; 14718 * this is the most common case (and also the hot performance path). 14719 * 14720 * Requirements for successful completion are: 14721 * pkt_reason is CMD_CMPLT and packet status is status good. 14722 * In addition: 14723 * - A residual of zero indicates successful completion no matter what 14724 * the command is. 14725 * - If the residual is not zero and the command is not a read or 14726 * write, then it's still defined as successful completion. In other 14727 * words, if the command is a read or write the residual must be 14728 * zero for successful completion. 14729 * - If the residual is not zero and the command is a read or 14730 * write, and it's a USCSICMD, then it's still defined as 14731 * successful completion. 14732 */ 14733 if ((pktp->pkt_reason == CMD_CMPLT) && 14734 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 14735 14736 /* 14737 * Since this command is returned with a good status, we 14738 * can reset the count for Sonoma failover. 14739 */ 14740 un->un_sonoma_failure_count = 0; 14741 14742 /* 14743 * Return all USCSI commands on good status 14744 */ 14745 if (pktp->pkt_resid == 0) { 14746 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14747 "sdintr: returning command for resid == 0\n"); 14748 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 14749 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 14750 SD_UPDATE_B_RESID(bp, pktp); 14751 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14752 "sdintr: returning command for resid != 0\n"); 14753 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 14754 SD_UPDATE_B_RESID(bp, pktp); 14755 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14756 "sdintr: returning uscsi command\n"); 14757 } else { 14758 goto not_successful; 14759 } 14760 sd_return_command(un, bp); 14761 14762 /* 14763 * Decrement counter to indicate that the callback routine 14764 * is done. 14765 */ 14766 un->un_in_callback--; 14767 ASSERT(un->un_in_callback >= 0); 14768 mutex_exit(SD_MUTEX(un)); 14769 14770 return; 14771 } 14772 14773 not_successful: 14774 14775 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 14776 /* 14777 * The following is based upon knowledge of the underlying transport 14778 * and its use of DMA resources. This code should be removed when 14779 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 14780 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 14781 * and sd_start_cmds(). 14782 * 14783 * Free any DMA resources associated with this command if there 14784 * is a chance it could be retried or enqueued for later retry. 14785 * If we keep the DMA binding then mpxio cannot reissue the 14786 * command on another path whenever a path failure occurs. 14787 * 14788 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 14789 * causes the *entire* transfer to start over again from the 14790 * beginning of the request, even for PARTIAL chunks that 14791 * have already transferred successfully. 14792 * 14793 * This is only done for non-uscsi commands (and also skipped for the 14794 * driver's internal RQS command). Also just do this for Fibre Channel 14795 * devices as these are the only ones that support mpxio. 14796 */ 14797 if ((un->un_f_is_fibre == TRUE) && 14798 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14799 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 14800 scsi_dmafree(pktp); 14801 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14802 } 14803 #endif 14804 14805 /* 14806 * The command did not successfully complete as requested so check 14807 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 14808 * driver command that should not be retried so just return. If 14809 * FLAG_DIAGNOSE is not set the error will be processed below. 14810 */ 14811 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 14812 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14813 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 14814 /* 14815 * Issue a request sense if a check condition caused the error 14816 * (we handle the auto request sense case above), otherwise 14817 * just fail the command. 14818 */ 14819 if ((pktp->pkt_reason == CMD_CMPLT) && 14820 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 14821 sd_send_request_sense_command(un, bp, pktp); 14822 } else { 14823 sd_return_failed_command(un, bp, EIO); 14824 } 14825 goto exit; 14826 } 14827 14828 /* 14829 * The command did not successfully complete as requested so process 14830 * the error, retry, and/or attempt recovery. 14831 */ 14832 switch (pktp->pkt_reason) { 14833 case CMD_CMPLT: 14834 switch (SD_GET_PKT_STATUS(pktp)) { 14835 case STATUS_GOOD: 14836 /* 14837 * The command completed successfully with a non-zero 14838 * residual 14839 */ 14840 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14841 "sdintr: STATUS_GOOD \n"); 14842 sd_pkt_status_good(un, bp, xp, pktp); 14843 break; 14844 14845 case STATUS_CHECK: 14846 case STATUS_TERMINATED: 14847 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14848 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 14849 sd_pkt_status_check_condition(un, bp, xp, pktp); 14850 break; 14851 14852 case STATUS_BUSY: 14853 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14854 "sdintr: STATUS_BUSY\n"); 14855 sd_pkt_status_busy(un, bp, xp, pktp); 14856 break; 14857 14858 case STATUS_RESERVATION_CONFLICT: 14859 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14860 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 14861 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 14862 break; 14863 14864 case STATUS_QFULL: 14865 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14866 "sdintr: STATUS_QFULL\n"); 14867 sd_pkt_status_qfull(un, bp, xp, pktp); 14868 break; 14869 14870 case STATUS_MET: 14871 case STATUS_INTERMEDIATE: 14872 case STATUS_SCSI2: 14873 case STATUS_INTERMEDIATE_MET: 14874 case STATUS_ACA_ACTIVE: 14875 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 14876 "Unexpected SCSI status received: 0x%x\n", 14877 SD_GET_PKT_STATUS(pktp)); 14878 sd_return_failed_command(un, bp, EIO); 14879 break; 14880 14881 default: 14882 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 14883 "Invalid SCSI status received: 0x%x\n", 14884 SD_GET_PKT_STATUS(pktp)); 14885 sd_return_failed_command(un, bp, EIO); 14886 break; 14887 14888 } 14889 break; 14890 14891 case CMD_INCOMPLETE: 14892 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14893 "sdintr: CMD_INCOMPLETE\n"); 14894 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 14895 break; 14896 case CMD_TRAN_ERR: 14897 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14898 "sdintr: CMD_TRAN_ERR\n"); 14899 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 14900 break; 14901 case CMD_RESET: 14902 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14903 "sdintr: CMD_RESET \n"); 14904 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 14905 break; 14906 case CMD_ABORTED: 14907 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14908 "sdintr: CMD_ABORTED \n"); 14909 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 14910 break; 14911 case CMD_TIMEOUT: 14912 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14913 "sdintr: CMD_TIMEOUT\n"); 14914 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 14915 break; 14916 case CMD_UNX_BUS_FREE: 14917 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14918 "sdintr: CMD_UNX_BUS_FREE \n"); 14919 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 14920 break; 14921 case CMD_TAG_REJECT: 14922 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14923 "sdintr: CMD_TAG_REJECT\n"); 14924 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 14925 break; 14926 default: 14927 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14928 "sdintr: default\n"); 14929 sd_pkt_reason_default(un, bp, xp, pktp); 14930 break; 14931 } 14932 14933 exit: 14934 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 14935 14936 /* Decrement counter to indicate that the callback routine is done. */ 14937 un->un_in_callback--; 14938 ASSERT(un->un_in_callback >= 0); 14939 14940 /* 14941 * At this point, the pkt has been dispatched, ie, it is either 14942 * being re-tried or has been returned to its caller and should 14943 * not be referenced. 14944 */ 14945 14946 mutex_exit(SD_MUTEX(un)); 14947 } 14948 14949 14950 /* 14951 * Function: sd_print_incomplete_msg 14952 * 14953 * Description: Prints the error message for a CMD_INCOMPLETE error. 14954 * 14955 * Arguments: un - ptr to associated softstate for the device. 14956 * bp - ptr to the buf(9S) for the command. 14957 * arg - message string ptr 14958 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 14959 * or SD_NO_RETRY_ISSUED. 14960 * 14961 * Context: May be called under interrupt context 14962 */ 14963 14964 static void 14965 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 14966 { 14967 struct scsi_pkt *pktp; 14968 char *msgp; 14969 char *cmdp = arg; 14970 14971 ASSERT(un != NULL); 14972 ASSERT(mutex_owned(SD_MUTEX(un))); 14973 ASSERT(bp != NULL); 14974 ASSERT(arg != NULL); 14975 pktp = SD_GET_PKTP(bp); 14976 ASSERT(pktp != NULL); 14977 14978 switch (code) { 14979 case SD_DELAYED_RETRY_ISSUED: 14980 case SD_IMMEDIATE_RETRY_ISSUED: 14981 msgp = "retrying"; 14982 break; 14983 case SD_NO_RETRY_ISSUED: 14984 default: 14985 msgp = "giving up"; 14986 break; 14987 } 14988 14989 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 14990 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14991 "incomplete %s- %s\n", cmdp, msgp); 14992 } 14993 } 14994 14995 14996 14997 /* 14998 * Function: sd_pkt_status_good 14999 * 15000 * Description: Processing for a STATUS_GOOD code in pkt_status. 15001 * 15002 * Context: May be called under interrupt context 15003 */ 15004 15005 static void 15006 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 15007 struct sd_xbuf *xp, struct scsi_pkt *pktp) 15008 { 15009 char *cmdp; 15010 15011 ASSERT(un != NULL); 15012 ASSERT(mutex_owned(SD_MUTEX(un))); 15013 ASSERT(bp != NULL); 15014 ASSERT(xp != NULL); 15015 ASSERT(pktp != NULL); 15016 ASSERT(pktp->pkt_reason == CMD_CMPLT); 15017 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 15018 ASSERT(pktp->pkt_resid != 0); 15019 15020 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 15021 15022 SD_UPDATE_ERRSTATS(un, sd_harderrs); 15023 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 15024 case SCMD_READ: 15025 cmdp = "read"; 15026 break; 15027 case SCMD_WRITE: 15028 cmdp = "write"; 15029 break; 15030 default: 15031 SD_UPDATE_B_RESID(bp, pktp); 15032 sd_return_command(un, bp); 15033 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 15034 return; 15035 } 15036 15037 /* 15038 * See if we can retry the read/write, preferrably immediately. 15039 * If retries are exhaused, then sd_retry_command() will update 15040 * the b_resid count. 15041 */ 15042 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 15043 cmdp, EIO, (clock_t)0, NULL); 15044 15045 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 15046 } 15047 15048 15049 15050 15051 15052 /* 15053 * Function: sd_handle_request_sense 15054 * 15055 * Description: Processing for non-auto Request Sense command. 15056 * 15057 * Arguments: un - ptr to associated softstate 15058 * sense_bp - ptr to buf(9S) for the RQS command 15059 * sense_xp - ptr to the sd_xbuf for the RQS command 15060 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 15061 * 15062 * Context: May be called under interrupt context 15063 */ 15064 15065 static void 15066 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 15067 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 15068 { 15069 struct buf *cmd_bp; /* buf for the original command */ 15070 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 15071 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 15072 15073 ASSERT(un != NULL); 15074 ASSERT(mutex_owned(SD_MUTEX(un))); 15075 ASSERT(sense_bp != NULL); 15076 ASSERT(sense_xp != NULL); 15077 ASSERT(sense_pktp != NULL); 15078 15079 /* 15080 * Note the sense_bp, sense_xp, and sense_pktp here are for the 15081 * RQS command and not the original command. 15082 */ 15083 ASSERT(sense_pktp == un->un_rqs_pktp); 15084 ASSERT(sense_bp == un->un_rqs_bp); 15085 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 15086 (FLAG_SENSING | FLAG_HEAD)); 15087 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 15088 FLAG_SENSING) == FLAG_SENSING); 15089 15090 /* These are the bp, xp, and pktp for the original command */ 15091 cmd_bp = sense_xp->xb_sense_bp; 15092 cmd_xp = SD_GET_XBUF(cmd_bp); 15093 cmd_pktp = SD_GET_PKTP(cmd_bp); 15094 15095 if (sense_pktp->pkt_reason != CMD_CMPLT) { 15096 /* 15097 * The REQUEST SENSE command failed. Release the REQUEST 15098 * SENSE command for re-use, get back the bp for the original 15099 * command, and attempt to re-try the original command if 15100 * FLAG_DIAGNOSE is not set in the original packet. 15101 */ 15102 SD_UPDATE_ERRSTATS(un, sd_harderrs); 15103 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15104 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 15105 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 15106 NULL, NULL, EIO, (clock_t)0, NULL); 15107 return; 15108 } 15109 } 15110 15111 /* 15112 * Save the relevant sense info into the xp for the original cmd. 15113 * 15114 * Note: if the request sense failed the state info will be zero 15115 * as set in sd_mark_rqs_busy() 15116 */ 15117 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 15118 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 15119 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 15120 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH); 15121 15122 /* 15123 * Free up the RQS command.... 15124 * NOTE: 15125 * Must do this BEFORE calling sd_validate_sense_data! 15126 * sd_validate_sense_data may return the original command in 15127 * which case the pkt will be freed and the flags can no 15128 * longer be touched. 15129 * SD_MUTEX is held through this process until the command 15130 * is dispatched based upon the sense data, so there are 15131 * no race conditions. 15132 */ 15133 (void) sd_mark_rqs_idle(un, sense_xp); 15134 15135 /* 15136 * For a retryable command see if we have valid sense data, if so then 15137 * turn it over to sd_decode_sense() to figure out the right course of 15138 * action. Just fail a non-retryable command. 15139 */ 15140 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15141 if (sd_validate_sense_data(un, cmd_bp, cmd_xp) == 15142 SD_SENSE_DATA_IS_VALID) { 15143 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 15144 } 15145 } else { 15146 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 15147 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15148 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 15149 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15150 sd_return_failed_command(un, cmd_bp, EIO); 15151 } 15152 } 15153 15154 15155 15156 15157 /* 15158 * Function: sd_handle_auto_request_sense 15159 * 15160 * Description: Processing for auto-request sense information. 15161 * 15162 * Arguments: un - ptr to associated softstate 15163 * bp - ptr to buf(9S) for the command 15164 * xp - ptr to the sd_xbuf for the command 15165 * pktp - ptr to the scsi_pkt(9S) for the command 15166 * 15167 * Context: May be called under interrupt context 15168 */ 15169 15170 static void 15171 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 15172 struct sd_xbuf *xp, struct scsi_pkt *pktp) 15173 { 15174 struct scsi_arq_status *asp; 15175 15176 ASSERT(un != NULL); 15177 ASSERT(mutex_owned(SD_MUTEX(un))); 15178 ASSERT(bp != NULL); 15179 ASSERT(xp != NULL); 15180 ASSERT(pktp != NULL); 15181 ASSERT(pktp != un->un_rqs_pktp); 15182 ASSERT(bp != un->un_rqs_bp); 15183 15184 /* 15185 * For auto-request sense, we get a scsi_arq_status back from 15186 * the HBA, with the sense data in the sts_sensedata member. 15187 * The pkt_scbp of the packet points to this scsi_arq_status. 15188 */ 15189 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 15190 15191 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 15192 /* 15193 * The auto REQUEST SENSE failed; see if we can re-try 15194 * the original command. 15195 */ 15196 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15197 "auto request sense failed (reason=%s)\n", 15198 scsi_rname(asp->sts_rqpkt_reason)); 15199 15200 sd_reset_target(un, pktp); 15201 15202 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15203 NULL, NULL, EIO, (clock_t)0, NULL); 15204 return; 15205 } 15206 15207 /* Save the relevant sense info into the xp for the original cmd. */ 15208 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 15209 xp->xb_sense_state = asp->sts_rqpkt_state; 15210 xp->xb_sense_resid = asp->sts_rqpkt_resid; 15211 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 15212 min(sizeof (struct scsi_extended_sense), SENSE_LENGTH)); 15213 15214 /* 15215 * See if we have valid sense data, if so then turn it over to 15216 * sd_decode_sense() to figure out the right course of action. 15217 */ 15218 if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) { 15219 sd_decode_sense(un, bp, xp, pktp); 15220 } 15221 } 15222 15223 15224 /* 15225 * Function: sd_print_sense_failed_msg 15226 * 15227 * Description: Print log message when RQS has failed. 15228 * 15229 * Arguments: un - ptr to associated softstate 15230 * bp - ptr to buf(9S) for the command 15231 * arg - generic message string ptr 15232 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 15233 * or SD_NO_RETRY_ISSUED 15234 * 15235 * Context: May be called from interrupt context 15236 */ 15237 15238 static void 15239 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 15240 int code) 15241 { 15242 char *msgp = arg; 15243 15244 ASSERT(un != NULL); 15245 ASSERT(mutex_owned(SD_MUTEX(un))); 15246 ASSERT(bp != NULL); 15247 15248 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 15249 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 15250 } 15251 } 15252 15253 15254 /* 15255 * Function: sd_validate_sense_data 15256 * 15257 * Description: Check the given sense data for validity. 15258 * If the sense data is not valid, the command will 15259 * be either failed or retried! 15260 * 15261 * Return Code: SD_SENSE_DATA_IS_INVALID 15262 * SD_SENSE_DATA_IS_VALID 15263 * 15264 * Context: May be called from interrupt context 15265 */ 15266 15267 static int 15268 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp) 15269 { 15270 struct scsi_extended_sense *esp; 15271 struct scsi_pkt *pktp; 15272 size_t actual_len; 15273 char *msgp = NULL; 15274 15275 ASSERT(un != NULL); 15276 ASSERT(mutex_owned(SD_MUTEX(un))); 15277 ASSERT(bp != NULL); 15278 ASSERT(bp != un->un_rqs_bp); 15279 ASSERT(xp != NULL); 15280 15281 pktp = SD_GET_PKTP(bp); 15282 ASSERT(pktp != NULL); 15283 15284 /* 15285 * Check the status of the RQS command (auto or manual). 15286 */ 15287 switch (xp->xb_sense_status & STATUS_MASK) { 15288 case STATUS_GOOD: 15289 break; 15290 15291 case STATUS_RESERVATION_CONFLICT: 15292 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 15293 return (SD_SENSE_DATA_IS_INVALID); 15294 15295 case STATUS_BUSY: 15296 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15297 "Busy Status on REQUEST SENSE\n"); 15298 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 15299 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 15300 return (SD_SENSE_DATA_IS_INVALID); 15301 15302 case STATUS_QFULL: 15303 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15304 "QFULL Status on REQUEST SENSE\n"); 15305 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 15306 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 15307 return (SD_SENSE_DATA_IS_INVALID); 15308 15309 case STATUS_CHECK: 15310 case STATUS_TERMINATED: 15311 msgp = "Check Condition on REQUEST SENSE\n"; 15312 goto sense_failed; 15313 15314 default: 15315 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 15316 goto sense_failed; 15317 } 15318 15319 /* 15320 * See if we got the minimum required amount of sense data. 15321 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 15322 * or less. 15323 */ 15324 actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid); 15325 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 15326 (actual_len == 0)) { 15327 msgp = "Request Sense couldn't get sense data\n"; 15328 goto sense_failed; 15329 } 15330 15331 if (actual_len < SUN_MIN_SENSE_LENGTH) { 15332 msgp = "Not enough sense information\n"; 15333 goto sense_failed; 15334 } 15335 15336 /* 15337 * We require the extended sense data 15338 */ 15339 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 15340 if (esp->es_class != CLASS_EXTENDED_SENSE) { 15341 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 15342 static char tmp[8]; 15343 static char buf[148]; 15344 char *p = (char *)(xp->xb_sense_data); 15345 int i; 15346 15347 mutex_enter(&sd_sense_mutex); 15348 (void) strcpy(buf, "undecodable sense information:"); 15349 for (i = 0; i < actual_len; i++) { 15350 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 15351 (void) strcpy(&buf[strlen(buf)], tmp); 15352 } 15353 i = strlen(buf); 15354 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 15355 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf); 15356 mutex_exit(&sd_sense_mutex); 15357 } 15358 /* Note: Legacy behavior, fail the command with no retry */ 15359 sd_return_failed_command(un, bp, EIO); 15360 return (SD_SENSE_DATA_IS_INVALID); 15361 } 15362 15363 /* 15364 * Check that es_code is valid (es_class concatenated with es_code 15365 * make up the "response code" field. es_class will always be 7, so 15366 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 15367 * format. 15368 */ 15369 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 15370 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 15371 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 15372 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 15373 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 15374 goto sense_failed; 15375 } 15376 15377 return (SD_SENSE_DATA_IS_VALID); 15378 15379 sense_failed: 15380 /* 15381 * If the request sense failed (for whatever reason), attempt 15382 * to retry the original command. 15383 */ 15384 #if defined(__i386) || defined(__amd64) 15385 /* 15386 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 15387 * sddef.h for Sparc platform, and x86 uses 1 binary 15388 * for both SCSI/FC. 15389 * The SD_RETRY_DELAY value need to be adjusted here 15390 * when SD_RETRY_DELAY change in sddef.h 15391 */ 15392 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15393 sd_print_sense_failed_msg, msgp, EIO, 15394 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 15395 #else 15396 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15397 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 15398 #endif 15399 15400 return (SD_SENSE_DATA_IS_INVALID); 15401 } 15402 15403 15404 15405 /* 15406 * Function: sd_decode_sense 15407 * 15408 * Description: Take recovery action(s) when SCSI Sense Data is received. 15409 * 15410 * Context: Interrupt context. 15411 */ 15412 15413 static void 15414 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 15415 struct scsi_pkt *pktp) 15416 { 15417 uint8_t sense_key; 15418 15419 ASSERT(un != NULL); 15420 ASSERT(mutex_owned(SD_MUTEX(un))); 15421 ASSERT(bp != NULL); 15422 ASSERT(bp != un->un_rqs_bp); 15423 ASSERT(xp != NULL); 15424 ASSERT(pktp != NULL); 15425 15426 sense_key = scsi_sense_key(xp->xb_sense_data); 15427 15428 switch (sense_key) { 15429 case KEY_NO_SENSE: 15430 sd_sense_key_no_sense(un, bp, xp, pktp); 15431 break; 15432 case KEY_RECOVERABLE_ERROR: 15433 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 15434 bp, xp, pktp); 15435 break; 15436 case KEY_NOT_READY: 15437 sd_sense_key_not_ready(un, xp->xb_sense_data, 15438 bp, xp, pktp); 15439 break; 15440 case KEY_MEDIUM_ERROR: 15441 case KEY_HARDWARE_ERROR: 15442 sd_sense_key_medium_or_hardware_error(un, 15443 xp->xb_sense_data, bp, xp, pktp); 15444 break; 15445 case KEY_ILLEGAL_REQUEST: 15446 sd_sense_key_illegal_request(un, bp, xp, pktp); 15447 break; 15448 case KEY_UNIT_ATTENTION: 15449 sd_sense_key_unit_attention(un, xp->xb_sense_data, 15450 bp, xp, pktp); 15451 break; 15452 case KEY_WRITE_PROTECT: 15453 case KEY_VOLUME_OVERFLOW: 15454 case KEY_MISCOMPARE: 15455 sd_sense_key_fail_command(un, bp, xp, pktp); 15456 break; 15457 case KEY_BLANK_CHECK: 15458 sd_sense_key_blank_check(un, bp, xp, pktp); 15459 break; 15460 case KEY_ABORTED_COMMAND: 15461 sd_sense_key_aborted_command(un, bp, xp, pktp); 15462 break; 15463 case KEY_VENDOR_UNIQUE: 15464 case KEY_COPY_ABORTED: 15465 case KEY_EQUAL: 15466 case KEY_RESERVED: 15467 default: 15468 sd_sense_key_default(un, xp->xb_sense_data, 15469 bp, xp, pktp); 15470 break; 15471 } 15472 } 15473 15474 15475 /* 15476 * Function: sd_dump_memory 15477 * 15478 * Description: Debug logging routine to print the contents of a user provided 15479 * buffer. The output of the buffer is broken up into 256 byte 15480 * segments due to a size constraint of the scsi_log. 15481 * implementation. 15482 * 15483 * Arguments: un - ptr to softstate 15484 * comp - component mask 15485 * title - "title" string to preceed data when printed 15486 * data - ptr to data block to be printed 15487 * len - size of data block to be printed 15488 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 15489 * 15490 * Context: May be called from interrupt context 15491 */ 15492 15493 #define SD_DUMP_MEMORY_BUF_SIZE 256 15494 15495 static char *sd_dump_format_string[] = { 15496 " 0x%02x", 15497 " %c" 15498 }; 15499 15500 static void 15501 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 15502 int len, int fmt) 15503 { 15504 int i, j; 15505 int avail_count; 15506 int start_offset; 15507 int end_offset; 15508 size_t entry_len; 15509 char *bufp; 15510 char *local_buf; 15511 char *format_string; 15512 15513 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 15514 15515 /* 15516 * In the debug version of the driver, this function is called from a 15517 * number of places which are NOPs in the release driver. 15518 * The debug driver therefore has additional methods of filtering 15519 * debug output. 15520 */ 15521 #ifdef SDDEBUG 15522 /* 15523 * In the debug version of the driver we can reduce the amount of debug 15524 * messages by setting sd_error_level to something other than 15525 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 15526 * sd_component_mask. 15527 */ 15528 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 15529 (sd_error_level != SCSI_ERR_ALL)) { 15530 return; 15531 } 15532 if (((sd_component_mask & comp) == 0) || 15533 (sd_error_level != SCSI_ERR_ALL)) { 15534 return; 15535 } 15536 #else 15537 if (sd_error_level != SCSI_ERR_ALL) { 15538 return; 15539 } 15540 #endif 15541 15542 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 15543 bufp = local_buf; 15544 /* 15545 * Available length is the length of local_buf[], minus the 15546 * length of the title string, minus one for the ":", minus 15547 * one for the newline, minus one for the NULL terminator. 15548 * This gives the #bytes available for holding the printed 15549 * values from the given data buffer. 15550 */ 15551 if (fmt == SD_LOG_HEX) { 15552 format_string = sd_dump_format_string[0]; 15553 } else /* SD_LOG_CHAR */ { 15554 format_string = sd_dump_format_string[1]; 15555 } 15556 /* 15557 * Available count is the number of elements from the given 15558 * data buffer that we can fit into the available length. 15559 * This is based upon the size of the format string used. 15560 * Make one entry and find it's size. 15561 */ 15562 (void) sprintf(bufp, format_string, data[0]); 15563 entry_len = strlen(bufp); 15564 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 15565 15566 j = 0; 15567 while (j < len) { 15568 bufp = local_buf; 15569 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 15570 start_offset = j; 15571 15572 end_offset = start_offset + avail_count; 15573 15574 (void) sprintf(bufp, "%s:", title); 15575 bufp += strlen(bufp); 15576 for (i = start_offset; ((i < end_offset) && (j < len)); 15577 i++, j++) { 15578 (void) sprintf(bufp, format_string, data[i]); 15579 bufp += entry_len; 15580 } 15581 (void) sprintf(bufp, "\n"); 15582 15583 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 15584 } 15585 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 15586 } 15587 15588 /* 15589 * Function: sd_print_sense_msg 15590 * 15591 * Description: Log a message based upon the given sense data. 15592 * 15593 * Arguments: un - ptr to associated softstate 15594 * bp - ptr to buf(9S) for the command 15595 * arg - ptr to associate sd_sense_info struct 15596 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 15597 * or SD_NO_RETRY_ISSUED 15598 * 15599 * Context: May be called from interrupt context 15600 */ 15601 15602 static void 15603 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 15604 { 15605 struct sd_xbuf *xp; 15606 struct scsi_pkt *pktp; 15607 uint8_t *sensep; 15608 daddr_t request_blkno; 15609 diskaddr_t err_blkno; 15610 int severity; 15611 int pfa_flag; 15612 extern struct scsi_key_strings scsi_cmds[]; 15613 15614 ASSERT(un != NULL); 15615 ASSERT(mutex_owned(SD_MUTEX(un))); 15616 ASSERT(bp != NULL); 15617 xp = SD_GET_XBUF(bp); 15618 ASSERT(xp != NULL); 15619 pktp = SD_GET_PKTP(bp); 15620 ASSERT(pktp != NULL); 15621 ASSERT(arg != NULL); 15622 15623 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 15624 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 15625 15626 if ((code == SD_DELAYED_RETRY_ISSUED) || 15627 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 15628 severity = SCSI_ERR_RETRYABLE; 15629 } 15630 15631 /* Use absolute block number for the request block number */ 15632 request_blkno = xp->xb_blkno; 15633 15634 /* 15635 * Now try to get the error block number from the sense data 15636 */ 15637 sensep = xp->xb_sense_data; 15638 15639 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 15640 (uint64_t *)&err_blkno)) { 15641 /* 15642 * We retrieved the error block number from the information 15643 * portion of the sense data. 15644 * 15645 * For USCSI commands we are better off using the error 15646 * block no. as the requested block no. (This is the best 15647 * we can estimate.) 15648 */ 15649 if ((SD_IS_BUFIO(xp) == FALSE) && 15650 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 15651 request_blkno = err_blkno; 15652 } 15653 } else { 15654 /* 15655 * Without the es_valid bit set (for fixed format) or an 15656 * information descriptor (for descriptor format) we cannot 15657 * be certain of the error blkno, so just use the 15658 * request_blkno. 15659 */ 15660 err_blkno = (diskaddr_t)request_blkno; 15661 } 15662 15663 /* 15664 * The following will log the buffer contents for the release driver 15665 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 15666 * level is set to verbose. 15667 */ 15668 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 15669 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15670 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15671 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 15672 15673 if (pfa_flag == FALSE) { 15674 /* This is normally only set for USCSI */ 15675 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 15676 return; 15677 } 15678 15679 if ((SD_IS_BUFIO(xp) == TRUE) && 15680 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 15681 (severity < sd_error_level))) { 15682 return; 15683 } 15684 } 15685 15686 /* 15687 * Check for Sonoma Failover and keep a count of how many failed I/O's 15688 */ 15689 if ((SD_IS_LSI(un)) && 15690 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 15691 (scsi_sense_asc(sensep) == 0x94) && 15692 (scsi_sense_ascq(sensep) == 0x01)) { 15693 un->un_sonoma_failure_count++; 15694 if (un->un_sonoma_failure_count > 1) { 15695 return; 15696 } 15697 } 15698 15699 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 15700 request_blkno, err_blkno, scsi_cmds, 15701 (struct scsi_extended_sense *)sensep, 15702 un->un_additional_codes, NULL); 15703 } 15704 15705 /* 15706 * Function: sd_sense_key_no_sense 15707 * 15708 * Description: Recovery action when sense data was not received. 15709 * 15710 * Context: May be called from interrupt context 15711 */ 15712 15713 static void 15714 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 15715 struct sd_xbuf *xp, struct scsi_pkt *pktp) 15716 { 15717 struct sd_sense_info si; 15718 15719 ASSERT(un != NULL); 15720 ASSERT(mutex_owned(SD_MUTEX(un))); 15721 ASSERT(bp != NULL); 15722 ASSERT(xp != NULL); 15723 ASSERT(pktp != NULL); 15724 15725 si.ssi_severity = SCSI_ERR_FATAL; 15726 si.ssi_pfa_flag = FALSE; 15727 15728 SD_UPDATE_ERRSTATS(un, sd_softerrs); 15729 15730 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 15731 &si, EIO, (clock_t)0, NULL); 15732 } 15733 15734 15735 /* 15736 * Function: sd_sense_key_recoverable_error 15737 * 15738 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 15739 * 15740 * Context: May be called from interrupt context 15741 */ 15742 15743 static void 15744 sd_sense_key_recoverable_error(struct sd_lun *un, 15745 uint8_t *sense_datap, 15746 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 15747 { 15748 struct sd_sense_info si; 15749 uint8_t asc = scsi_sense_asc(sense_datap); 15750 15751 ASSERT(un != NULL); 15752 ASSERT(mutex_owned(SD_MUTEX(un))); 15753 ASSERT(bp != NULL); 15754 ASSERT(xp != NULL); 15755 ASSERT(pktp != NULL); 15756 15757 /* 15758 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 15759 */ 15760 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 15761 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 15762 si.ssi_severity = SCSI_ERR_INFO; 15763 si.ssi_pfa_flag = TRUE; 15764 } else { 15765 SD_UPDATE_ERRSTATS(un, sd_softerrs); 15766 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 15767 si.ssi_severity = SCSI_ERR_RECOVERED; 15768 si.ssi_pfa_flag = FALSE; 15769 } 15770 15771 if (pktp->pkt_resid == 0) { 15772 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 15773 sd_return_command(un, bp); 15774 return; 15775 } 15776 15777 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 15778 &si, EIO, (clock_t)0, NULL); 15779 } 15780 15781 15782 15783 15784 /* 15785 * Function: sd_sense_key_not_ready 15786 * 15787 * Description: Recovery actions for a SCSI "Not Ready" sense key. 15788 * 15789 * Context: May be called from interrupt context 15790 */ 15791 15792 static void 15793 sd_sense_key_not_ready(struct sd_lun *un, 15794 uint8_t *sense_datap, 15795 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 15796 { 15797 struct sd_sense_info si; 15798 uint8_t asc = scsi_sense_asc(sense_datap); 15799 uint8_t ascq = scsi_sense_ascq(sense_datap); 15800 15801 ASSERT(un != NULL); 15802 ASSERT(mutex_owned(SD_MUTEX(un))); 15803 ASSERT(bp != NULL); 15804 ASSERT(xp != NULL); 15805 ASSERT(pktp != NULL); 15806 15807 si.ssi_severity = SCSI_ERR_FATAL; 15808 si.ssi_pfa_flag = FALSE; 15809 15810 /* 15811 * Update error stats after first NOT READY error. Disks may have 15812 * been powered down and may need to be restarted. For CDROMs, 15813 * report NOT READY errors only if media is present. 15814 */ 15815 if ((ISCD(un) && (asc == 0x3A)) || 15816 (xp->xb_nr_retry_count > 0)) { 15817 SD_UPDATE_ERRSTATS(un, sd_harderrs); 15818 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 15819 } 15820 15821 /* 15822 * Just fail if the "not ready" retry limit has been reached. 15823 */ 15824 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 15825 /* Special check for error message printing for removables. */ 15826 if (un->un_f_has_removable_media && (asc == 0x04) && 15827 (ascq >= 0x04)) { 15828 si.ssi_severity = SCSI_ERR_ALL; 15829 } 15830 goto fail_command; 15831 } 15832 15833 /* 15834 * Check the ASC and ASCQ in the sense data as needed, to determine 15835 * what to do. 15836 */ 15837 switch (asc) { 15838 case 0x04: /* LOGICAL UNIT NOT READY */ 15839 /* 15840 * disk drives that don't spin up result in a very long delay 15841 * in format without warning messages. We will log a message 15842 * if the error level is set to verbose. 15843 */ 15844 if (sd_error_level < SCSI_ERR_RETRYABLE) { 15845 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15846 "logical unit not ready, resetting disk\n"); 15847 } 15848 15849 /* 15850 * There are different requirements for CDROMs and disks for 15851 * the number of retries. If a CD-ROM is giving this, it is 15852 * probably reading TOC and is in the process of getting 15853 * ready, so we should keep on trying for a long time to make 15854 * sure that all types of media are taken in account (for 15855 * some media the drive takes a long time to read TOC). For 15856 * disks we do not want to retry this too many times as this 15857 * can cause a long hang in format when the drive refuses to 15858 * spin up (a very common failure). 15859 */ 15860 switch (ascq) { 15861 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 15862 /* 15863 * Disk drives frequently refuse to spin up which 15864 * results in a very long hang in format without 15865 * warning messages. 15866 * 15867 * Note: This code preserves the legacy behavior of 15868 * comparing xb_nr_retry_count against zero for fibre 15869 * channel targets instead of comparing against the 15870 * un_reset_retry_count value. The reason for this 15871 * discrepancy has been so utterly lost beneath the 15872 * Sands of Time that even Indiana Jones could not 15873 * find it. 15874 */ 15875 if (un->un_f_is_fibre == TRUE) { 15876 if (((sd_level_mask & SD_LOGMASK_DIAG) || 15877 (xp->xb_nr_retry_count > 0)) && 15878 (un->un_startstop_timeid == NULL)) { 15879 scsi_log(SD_DEVINFO(un), sd_label, 15880 CE_WARN, "logical unit not ready, " 15881 "resetting disk\n"); 15882 sd_reset_target(un, pktp); 15883 } 15884 } else { 15885 if (((sd_level_mask & SD_LOGMASK_DIAG) || 15886 (xp->xb_nr_retry_count > 15887 un->un_reset_retry_count)) && 15888 (un->un_startstop_timeid == NULL)) { 15889 scsi_log(SD_DEVINFO(un), sd_label, 15890 CE_WARN, "logical unit not ready, " 15891 "resetting disk\n"); 15892 sd_reset_target(un, pktp); 15893 } 15894 } 15895 break; 15896 15897 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 15898 /* 15899 * If the target is in the process of becoming 15900 * ready, just proceed with the retry. This can 15901 * happen with CD-ROMs that take a long time to 15902 * read TOC after a power cycle or reset. 15903 */ 15904 goto do_retry; 15905 15906 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 15907 break; 15908 15909 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 15910 /* 15911 * Retries cannot help here so just fail right away. 15912 */ 15913 goto fail_command; 15914 15915 case 0x88: 15916 /* 15917 * Vendor-unique code for T3/T4: it indicates a 15918 * path problem in a mutipathed config, but as far as 15919 * the target driver is concerned it equates to a fatal 15920 * error, so we should just fail the command right away 15921 * (without printing anything to the console). If this 15922 * is not a T3/T4, fall thru to the default recovery 15923 * action. 15924 * T3/T4 is FC only, don't need to check is_fibre 15925 */ 15926 if (SD_IS_T3(un) || SD_IS_T4(un)) { 15927 sd_return_failed_command(un, bp, EIO); 15928 return; 15929 } 15930 /* FALLTHRU */ 15931 15932 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 15933 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 15934 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 15935 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 15936 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 15937 default: /* Possible future codes in SCSI spec? */ 15938 /* 15939 * For removable-media devices, do not retry if 15940 * ASCQ > 2 as these result mostly from USCSI commands 15941 * on MMC devices issued to check status of an 15942 * operation initiated in immediate mode. Also for 15943 * ASCQ >= 4 do not print console messages as these 15944 * mainly represent a user-initiated operation 15945 * instead of a system failure. 15946 */ 15947 if (un->un_f_has_removable_media) { 15948 si.ssi_severity = SCSI_ERR_ALL; 15949 goto fail_command; 15950 } 15951 break; 15952 } 15953 15954 /* 15955 * As part of our recovery attempt for the NOT READY 15956 * condition, we issue a START STOP UNIT command. However 15957 * we want to wait for a short delay before attempting this 15958 * as there may still be more commands coming back from the 15959 * target with the check condition. To do this we use 15960 * timeout(9F) to call sd_start_stop_unit_callback() after 15961 * the delay interval expires. (sd_start_stop_unit_callback() 15962 * dispatches sd_start_stop_unit_task(), which will issue 15963 * the actual START STOP UNIT command. The delay interval 15964 * is one-half of the delay that we will use to retry the 15965 * command that generated the NOT READY condition. 15966 * 15967 * Note that we could just dispatch sd_start_stop_unit_task() 15968 * from here and allow it to sleep for the delay interval, 15969 * but then we would be tying up the taskq thread 15970 * uncesessarily for the duration of the delay. 15971 * 15972 * Do not issue the START STOP UNIT if the current command 15973 * is already a START STOP UNIT. 15974 */ 15975 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 15976 break; 15977 } 15978 15979 /* 15980 * Do not schedule the timeout if one is already pending. 15981 */ 15982 if (un->un_startstop_timeid != NULL) { 15983 SD_INFO(SD_LOG_ERROR, un, 15984 "sd_sense_key_not_ready: restart already issued to" 15985 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 15986 ddi_get_instance(SD_DEVINFO(un))); 15987 break; 15988 } 15989 15990 /* 15991 * Schedule the START STOP UNIT command, then queue the command 15992 * for a retry. 15993 * 15994 * Note: A timeout is not scheduled for this retry because we 15995 * want the retry to be serial with the START_STOP_UNIT. The 15996 * retry will be started when the START_STOP_UNIT is completed 15997 * in sd_start_stop_unit_task. 15998 */ 15999 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 16000 un, SD_BSY_TIMEOUT / 2); 16001 xp->xb_nr_retry_count++; 16002 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 16003 return; 16004 16005 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 16006 if (sd_error_level < SCSI_ERR_RETRYABLE) { 16007 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16008 "unit does not respond to selection\n"); 16009 } 16010 break; 16011 16012 case 0x3A: /* MEDIUM NOT PRESENT */ 16013 if (sd_error_level >= SCSI_ERR_FATAL) { 16014 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16015 "Caddy not inserted in drive\n"); 16016 } 16017 16018 sr_ejected(un); 16019 un->un_mediastate = DKIO_EJECTED; 16020 /* The state has changed, inform the media watch routines */ 16021 cv_broadcast(&un->un_state_cv); 16022 /* Just fail if no media is present in the drive. */ 16023 goto fail_command; 16024 16025 default: 16026 if (sd_error_level < SCSI_ERR_RETRYABLE) { 16027 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 16028 "Unit not Ready. Additional sense code 0x%x\n", 16029 asc); 16030 } 16031 break; 16032 } 16033 16034 do_retry: 16035 16036 /* 16037 * Retry the command, as some targets may report NOT READY for 16038 * several seconds after being reset. 16039 */ 16040 xp->xb_nr_retry_count++; 16041 si.ssi_severity = SCSI_ERR_RETRYABLE; 16042 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 16043 &si, EIO, SD_BSY_TIMEOUT, NULL); 16044 16045 return; 16046 16047 fail_command: 16048 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 16049 sd_return_failed_command(un, bp, EIO); 16050 } 16051 16052 16053 16054 /* 16055 * Function: sd_sense_key_medium_or_hardware_error 16056 * 16057 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 16058 * sense key. 16059 * 16060 * Context: May be called from interrupt context 16061 */ 16062 16063 static void 16064 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 16065 uint8_t *sense_datap, 16066 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 16067 { 16068 struct sd_sense_info si; 16069 uint8_t sense_key = scsi_sense_key(sense_datap); 16070 uint8_t asc = scsi_sense_asc(sense_datap); 16071 16072 ASSERT(un != NULL); 16073 ASSERT(mutex_owned(SD_MUTEX(un))); 16074 ASSERT(bp != NULL); 16075 ASSERT(xp != NULL); 16076 ASSERT(pktp != NULL); 16077 16078 si.ssi_severity = SCSI_ERR_FATAL; 16079 si.ssi_pfa_flag = FALSE; 16080 16081 if (sense_key == KEY_MEDIUM_ERROR) { 16082 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 16083 } 16084 16085 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16086 16087 if ((un->un_reset_retry_count != 0) && 16088 (xp->xb_retry_count == un->un_reset_retry_count)) { 16089 mutex_exit(SD_MUTEX(un)); 16090 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 16091 if (un->un_f_allow_bus_device_reset == TRUE) { 16092 16093 boolean_t try_resetting_target = B_TRUE; 16094 16095 /* 16096 * We need to be able to handle specific ASC when we are 16097 * handling a KEY_HARDWARE_ERROR. In particular 16098 * taking the default action of resetting the target may 16099 * not be the appropriate way to attempt recovery. 16100 * Resetting a target because of a single LUN failure 16101 * victimizes all LUNs on that target. 16102 * 16103 * This is true for the LSI arrays, if an LSI 16104 * array controller returns an ASC of 0x84 (LUN Dead) we 16105 * should trust it. 16106 */ 16107 16108 if (sense_key == KEY_HARDWARE_ERROR) { 16109 switch (asc) { 16110 case 0x84: 16111 if (SD_IS_LSI(un)) { 16112 try_resetting_target = B_FALSE; 16113 } 16114 break; 16115 default: 16116 break; 16117 } 16118 } 16119 16120 if (try_resetting_target == B_TRUE) { 16121 int reset_retval = 0; 16122 if (un->un_f_lun_reset_enabled == TRUE) { 16123 SD_TRACE(SD_LOG_IO_CORE, un, 16124 "sd_sense_key_medium_or_hardware_" 16125 "error: issuing RESET_LUN\n"); 16126 reset_retval = 16127 scsi_reset(SD_ADDRESS(un), 16128 RESET_LUN); 16129 } 16130 if (reset_retval == 0) { 16131 SD_TRACE(SD_LOG_IO_CORE, un, 16132 "sd_sense_key_medium_or_hardware_" 16133 "error: issuing RESET_TARGET\n"); 16134 (void) scsi_reset(SD_ADDRESS(un), 16135 RESET_TARGET); 16136 } 16137 } 16138 } 16139 mutex_enter(SD_MUTEX(un)); 16140 } 16141 16142 /* 16143 * This really ought to be a fatal error, but we will retry anyway 16144 * as some drives report this as a spurious error. 16145 */ 16146 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 16147 &si, EIO, (clock_t)0, NULL); 16148 } 16149 16150 16151 16152 /* 16153 * Function: sd_sense_key_illegal_request 16154 * 16155 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 16156 * 16157 * Context: May be called from interrupt context 16158 */ 16159 16160 static void 16161 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 16162 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16163 { 16164 struct sd_sense_info si; 16165 16166 ASSERT(un != NULL); 16167 ASSERT(mutex_owned(SD_MUTEX(un))); 16168 ASSERT(bp != NULL); 16169 ASSERT(xp != NULL); 16170 ASSERT(pktp != NULL); 16171 16172 SD_UPDATE_ERRSTATS(un, sd_softerrs); 16173 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 16174 16175 si.ssi_severity = SCSI_ERR_INFO; 16176 si.ssi_pfa_flag = FALSE; 16177 16178 /* Pointless to retry if the target thinks it's an illegal request */ 16179 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 16180 sd_return_failed_command(un, bp, EIO); 16181 } 16182 16183 16184 16185 16186 /* 16187 * Function: sd_sense_key_unit_attention 16188 * 16189 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 16190 * 16191 * Context: May be called from interrupt context 16192 */ 16193 16194 static void 16195 sd_sense_key_unit_attention(struct sd_lun *un, 16196 uint8_t *sense_datap, 16197 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 16198 { 16199 /* 16200 * For UNIT ATTENTION we allow retries for one minute. Devices 16201 * like Sonoma can return UNIT ATTENTION close to a minute 16202 * under certain conditions. 16203 */ 16204 int retry_check_flag = SD_RETRIES_UA; 16205 boolean_t kstat_updated = B_FALSE; 16206 struct sd_sense_info si; 16207 uint8_t asc = scsi_sense_asc(sense_datap); 16208 16209 ASSERT(un != NULL); 16210 ASSERT(mutex_owned(SD_MUTEX(un))); 16211 ASSERT(bp != NULL); 16212 ASSERT(xp != NULL); 16213 ASSERT(pktp != NULL); 16214 16215 si.ssi_severity = SCSI_ERR_INFO; 16216 si.ssi_pfa_flag = FALSE; 16217 16218 16219 switch (asc) { 16220 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 16221 if (sd_report_pfa != 0) { 16222 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 16223 si.ssi_pfa_flag = TRUE; 16224 retry_check_flag = SD_RETRIES_STANDARD; 16225 goto do_retry; 16226 } 16227 16228 break; 16229 16230 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 16231 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 16232 un->un_resvd_status |= 16233 (SD_LOST_RESERVE | SD_WANT_RESERVE); 16234 } 16235 #ifdef _LP64 16236 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 16237 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 16238 un, KM_NOSLEEP) == 0) { 16239 /* 16240 * If we can't dispatch the task we'll just 16241 * live without descriptor sense. We can 16242 * try again on the next "unit attention" 16243 */ 16244 SD_ERROR(SD_LOG_ERROR, un, 16245 "sd_sense_key_unit_attention: " 16246 "Could not dispatch " 16247 "sd_reenable_dsense_task\n"); 16248 } 16249 } 16250 #endif /* _LP64 */ 16251 /* FALLTHRU */ 16252 16253 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 16254 if (!un->un_f_has_removable_media) { 16255 break; 16256 } 16257 16258 /* 16259 * When we get a unit attention from a removable-media device, 16260 * it may be in a state that will take a long time to recover 16261 * (e.g., from a reset). Since we are executing in interrupt 16262 * context here, we cannot wait around for the device to come 16263 * back. So hand this command off to sd_media_change_task() 16264 * for deferred processing under taskq thread context. (Note 16265 * that the command still may be failed if a problem is 16266 * encountered at a later time.) 16267 */ 16268 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 16269 KM_NOSLEEP) == 0) { 16270 /* 16271 * Cannot dispatch the request so fail the command. 16272 */ 16273 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16274 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 16275 si.ssi_severity = SCSI_ERR_FATAL; 16276 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 16277 sd_return_failed_command(un, bp, EIO); 16278 } 16279 16280 /* 16281 * If failed to dispatch sd_media_change_task(), we already 16282 * updated kstat. If succeed to dispatch sd_media_change_task(), 16283 * we should update kstat later if it encounters an error. So, 16284 * we update kstat_updated flag here. 16285 */ 16286 kstat_updated = B_TRUE; 16287 16288 /* 16289 * Either the command has been successfully dispatched to a 16290 * task Q for retrying, or the dispatch failed. In either case 16291 * do NOT retry again by calling sd_retry_command. This sets up 16292 * two retries of the same command and when one completes and 16293 * frees the resources the other will access freed memory, 16294 * a bad thing. 16295 */ 16296 return; 16297 16298 default: 16299 break; 16300 } 16301 16302 /* 16303 * Update kstat if we haven't done that. 16304 */ 16305 if (!kstat_updated) { 16306 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16307 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 16308 } 16309 16310 do_retry: 16311 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 16312 EIO, SD_UA_RETRY_DELAY, NULL); 16313 } 16314 16315 16316 16317 /* 16318 * Function: sd_sense_key_fail_command 16319 * 16320 * Description: Use to fail a command when we don't like the sense key that 16321 * was returned. 16322 * 16323 * Context: May be called from interrupt context 16324 */ 16325 16326 static void 16327 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 16328 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16329 { 16330 struct sd_sense_info si; 16331 16332 ASSERT(un != NULL); 16333 ASSERT(mutex_owned(SD_MUTEX(un))); 16334 ASSERT(bp != NULL); 16335 ASSERT(xp != NULL); 16336 ASSERT(pktp != NULL); 16337 16338 si.ssi_severity = SCSI_ERR_FATAL; 16339 si.ssi_pfa_flag = FALSE; 16340 16341 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 16342 sd_return_failed_command(un, bp, EIO); 16343 } 16344 16345 16346 16347 /* 16348 * Function: sd_sense_key_blank_check 16349 * 16350 * Description: Recovery actions for a SCSI "Blank Check" sense key. 16351 * Has no monetary connotation. 16352 * 16353 * Context: May be called from interrupt context 16354 */ 16355 16356 static void 16357 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 16358 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16359 { 16360 struct sd_sense_info si; 16361 16362 ASSERT(un != NULL); 16363 ASSERT(mutex_owned(SD_MUTEX(un))); 16364 ASSERT(bp != NULL); 16365 ASSERT(xp != NULL); 16366 ASSERT(pktp != NULL); 16367 16368 /* 16369 * Blank check is not fatal for removable devices, therefore 16370 * it does not require a console message. 16371 */ 16372 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 16373 SCSI_ERR_FATAL; 16374 si.ssi_pfa_flag = FALSE; 16375 16376 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 16377 sd_return_failed_command(un, bp, EIO); 16378 } 16379 16380 16381 16382 16383 /* 16384 * Function: sd_sense_key_aborted_command 16385 * 16386 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 16387 * 16388 * Context: May be called from interrupt context 16389 */ 16390 16391 static void 16392 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 16393 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16394 { 16395 struct sd_sense_info si; 16396 16397 ASSERT(un != NULL); 16398 ASSERT(mutex_owned(SD_MUTEX(un))); 16399 ASSERT(bp != NULL); 16400 ASSERT(xp != NULL); 16401 ASSERT(pktp != NULL); 16402 16403 si.ssi_severity = SCSI_ERR_FATAL; 16404 si.ssi_pfa_flag = FALSE; 16405 16406 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16407 16408 /* 16409 * This really ought to be a fatal error, but we will retry anyway 16410 * as some drives report this as a spurious error. 16411 */ 16412 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 16413 &si, EIO, drv_usectohz(100000), NULL); 16414 } 16415 16416 16417 16418 /* 16419 * Function: sd_sense_key_default 16420 * 16421 * Description: Default recovery action for several SCSI sense keys (basically 16422 * attempts a retry). 16423 * 16424 * Context: May be called from interrupt context 16425 */ 16426 16427 static void 16428 sd_sense_key_default(struct sd_lun *un, 16429 uint8_t *sense_datap, 16430 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 16431 { 16432 struct sd_sense_info si; 16433 uint8_t sense_key = scsi_sense_key(sense_datap); 16434 16435 ASSERT(un != NULL); 16436 ASSERT(mutex_owned(SD_MUTEX(un))); 16437 ASSERT(bp != NULL); 16438 ASSERT(xp != NULL); 16439 ASSERT(pktp != NULL); 16440 16441 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16442 16443 /* 16444 * Undecoded sense key. Attempt retries and hope that will fix 16445 * the problem. Otherwise, we're dead. 16446 */ 16447 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16448 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16449 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 16450 } 16451 16452 si.ssi_severity = SCSI_ERR_FATAL; 16453 si.ssi_pfa_flag = FALSE; 16454 16455 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 16456 &si, EIO, (clock_t)0, NULL); 16457 } 16458 16459 16460 16461 /* 16462 * Function: sd_print_retry_msg 16463 * 16464 * Description: Print a message indicating the retry action being taken. 16465 * 16466 * Arguments: un - ptr to associated softstate 16467 * bp - ptr to buf(9S) for the command 16468 * arg - not used. 16469 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 16470 * or SD_NO_RETRY_ISSUED 16471 * 16472 * Context: May be called from interrupt context 16473 */ 16474 /* ARGSUSED */ 16475 static void 16476 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 16477 { 16478 struct sd_xbuf *xp; 16479 struct scsi_pkt *pktp; 16480 char *reasonp; 16481 char *msgp; 16482 16483 ASSERT(un != NULL); 16484 ASSERT(mutex_owned(SD_MUTEX(un))); 16485 ASSERT(bp != NULL); 16486 pktp = SD_GET_PKTP(bp); 16487 ASSERT(pktp != NULL); 16488 xp = SD_GET_XBUF(bp); 16489 ASSERT(xp != NULL); 16490 16491 ASSERT(!mutex_owned(&un->un_pm_mutex)); 16492 mutex_enter(&un->un_pm_mutex); 16493 if ((un->un_state == SD_STATE_SUSPENDED) || 16494 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 16495 (pktp->pkt_flags & FLAG_SILENT)) { 16496 mutex_exit(&un->un_pm_mutex); 16497 goto update_pkt_reason; 16498 } 16499 mutex_exit(&un->un_pm_mutex); 16500 16501 /* 16502 * Suppress messages if they are all the same pkt_reason; with 16503 * TQ, many (up to 256) are returned with the same pkt_reason. 16504 * If we are in panic, then suppress the retry messages. 16505 */ 16506 switch (flag) { 16507 case SD_NO_RETRY_ISSUED: 16508 msgp = "giving up"; 16509 break; 16510 case SD_IMMEDIATE_RETRY_ISSUED: 16511 case SD_DELAYED_RETRY_ISSUED: 16512 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 16513 ((pktp->pkt_reason == un->un_last_pkt_reason) && 16514 (sd_error_level != SCSI_ERR_ALL))) { 16515 return; 16516 } 16517 msgp = "retrying command"; 16518 break; 16519 default: 16520 goto update_pkt_reason; 16521 } 16522 16523 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 16524 scsi_rname(pktp->pkt_reason)); 16525 16526 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16527 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 16528 16529 update_pkt_reason: 16530 /* 16531 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 16532 * This is to prevent multiple console messages for the same failure 16533 * condition. Note that un->un_last_pkt_reason is NOT restored if & 16534 * when the command is retried successfully because there still may be 16535 * more commands coming back with the same value of pktp->pkt_reason. 16536 */ 16537 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 16538 un->un_last_pkt_reason = pktp->pkt_reason; 16539 } 16540 } 16541 16542 16543 /* 16544 * Function: sd_print_cmd_incomplete_msg 16545 * 16546 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 16547 * 16548 * Arguments: un - ptr to associated softstate 16549 * bp - ptr to buf(9S) for the command 16550 * arg - passed to sd_print_retry_msg() 16551 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 16552 * or SD_NO_RETRY_ISSUED 16553 * 16554 * Context: May be called from interrupt context 16555 */ 16556 16557 static void 16558 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 16559 int code) 16560 { 16561 dev_info_t *dip; 16562 16563 ASSERT(un != NULL); 16564 ASSERT(mutex_owned(SD_MUTEX(un))); 16565 ASSERT(bp != NULL); 16566 16567 switch (code) { 16568 case SD_NO_RETRY_ISSUED: 16569 /* Command was failed. Someone turned off this target? */ 16570 if (un->un_state != SD_STATE_OFFLINE) { 16571 /* 16572 * Suppress message if we are detaching and 16573 * device has been disconnected 16574 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 16575 * private interface and not part of the DDI 16576 */ 16577 dip = un->un_sd->sd_dev; 16578 if (!(DEVI_IS_DETACHING(dip) && 16579 DEVI_IS_DEVICE_REMOVED(dip))) { 16580 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16581 "disk not responding to selection\n"); 16582 } 16583 New_state(un, SD_STATE_OFFLINE); 16584 } 16585 break; 16586 16587 case SD_DELAYED_RETRY_ISSUED: 16588 case SD_IMMEDIATE_RETRY_ISSUED: 16589 default: 16590 /* Command was successfully queued for retry */ 16591 sd_print_retry_msg(un, bp, arg, code); 16592 break; 16593 } 16594 } 16595 16596 16597 /* 16598 * Function: sd_pkt_reason_cmd_incomplete 16599 * 16600 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 16601 * 16602 * Context: May be called from interrupt context 16603 */ 16604 16605 static void 16606 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 16607 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16608 { 16609 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 16610 16611 ASSERT(un != NULL); 16612 ASSERT(mutex_owned(SD_MUTEX(un))); 16613 ASSERT(bp != NULL); 16614 ASSERT(xp != NULL); 16615 ASSERT(pktp != NULL); 16616 16617 /* Do not do a reset if selection did not complete */ 16618 /* Note: Should this not just check the bit? */ 16619 if (pktp->pkt_state != STATE_GOT_BUS) { 16620 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16621 sd_reset_target(un, pktp); 16622 } 16623 16624 /* 16625 * If the target was not successfully selected, then set 16626 * SD_RETRIES_FAILFAST to indicate that we lost communication 16627 * with the target, and further retries and/or commands are 16628 * likely to take a long time. 16629 */ 16630 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 16631 flag |= SD_RETRIES_FAILFAST; 16632 } 16633 16634 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16635 16636 sd_retry_command(un, bp, flag, 16637 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16638 } 16639 16640 16641 16642 /* 16643 * Function: sd_pkt_reason_cmd_tran_err 16644 * 16645 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 16646 * 16647 * Context: May be called from interrupt context 16648 */ 16649 16650 static void 16651 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 16652 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16653 { 16654 ASSERT(un != NULL); 16655 ASSERT(mutex_owned(SD_MUTEX(un))); 16656 ASSERT(bp != NULL); 16657 ASSERT(xp != NULL); 16658 ASSERT(pktp != NULL); 16659 16660 /* 16661 * Do not reset if we got a parity error, or if 16662 * selection did not complete. 16663 */ 16664 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16665 /* Note: Should this not just check the bit for pkt_state? */ 16666 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 16667 (pktp->pkt_state != STATE_GOT_BUS)) { 16668 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16669 sd_reset_target(un, pktp); 16670 } 16671 16672 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16673 16674 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 16675 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16676 } 16677 16678 16679 16680 /* 16681 * Function: sd_pkt_reason_cmd_reset 16682 * 16683 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 16684 * 16685 * Context: May be called from interrupt context 16686 */ 16687 16688 static void 16689 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 16690 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16691 { 16692 ASSERT(un != NULL); 16693 ASSERT(mutex_owned(SD_MUTEX(un))); 16694 ASSERT(bp != NULL); 16695 ASSERT(xp != NULL); 16696 ASSERT(pktp != NULL); 16697 16698 /* The target may still be running the command, so try to reset. */ 16699 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16700 sd_reset_target(un, pktp); 16701 16702 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16703 16704 /* 16705 * If pkt_reason is CMD_RESET chances are that this pkt got 16706 * reset because another target on this bus caused it. The target 16707 * that caused it should get CMD_TIMEOUT with pkt_statistics 16708 * of STAT_TIMEOUT/STAT_DEV_RESET. 16709 */ 16710 16711 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 16712 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16713 } 16714 16715 16716 16717 16718 /* 16719 * Function: sd_pkt_reason_cmd_aborted 16720 * 16721 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 16722 * 16723 * Context: May be called from interrupt context 16724 */ 16725 16726 static void 16727 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 16728 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16729 { 16730 ASSERT(un != NULL); 16731 ASSERT(mutex_owned(SD_MUTEX(un))); 16732 ASSERT(bp != NULL); 16733 ASSERT(xp != NULL); 16734 ASSERT(pktp != NULL); 16735 16736 /* The target may still be running the command, so try to reset. */ 16737 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16738 sd_reset_target(un, pktp); 16739 16740 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16741 16742 /* 16743 * If pkt_reason is CMD_ABORTED chances are that this pkt got 16744 * aborted because another target on this bus caused it. The target 16745 * that caused it should get CMD_TIMEOUT with pkt_statistics 16746 * of STAT_TIMEOUT/STAT_DEV_RESET. 16747 */ 16748 16749 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 16750 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16751 } 16752 16753 16754 16755 /* 16756 * Function: sd_pkt_reason_cmd_timeout 16757 * 16758 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 16759 * 16760 * Context: May be called from interrupt context 16761 */ 16762 16763 static void 16764 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 16765 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16766 { 16767 ASSERT(un != NULL); 16768 ASSERT(mutex_owned(SD_MUTEX(un))); 16769 ASSERT(bp != NULL); 16770 ASSERT(xp != NULL); 16771 ASSERT(pktp != NULL); 16772 16773 16774 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16775 sd_reset_target(un, pktp); 16776 16777 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16778 16779 /* 16780 * A command timeout indicates that we could not establish 16781 * communication with the target, so set SD_RETRIES_FAILFAST 16782 * as further retries/commands are likely to take a long time. 16783 */ 16784 sd_retry_command(un, bp, 16785 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 16786 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16787 } 16788 16789 16790 16791 /* 16792 * Function: sd_pkt_reason_cmd_unx_bus_free 16793 * 16794 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 16795 * 16796 * Context: May be called from interrupt context 16797 */ 16798 16799 static void 16800 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 16801 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16802 { 16803 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 16804 16805 ASSERT(un != NULL); 16806 ASSERT(mutex_owned(SD_MUTEX(un))); 16807 ASSERT(bp != NULL); 16808 ASSERT(xp != NULL); 16809 ASSERT(pktp != NULL); 16810 16811 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16812 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16813 16814 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 16815 sd_print_retry_msg : NULL; 16816 16817 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 16818 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16819 } 16820 16821 16822 /* 16823 * Function: sd_pkt_reason_cmd_tag_reject 16824 * 16825 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 16826 * 16827 * Context: May be called from interrupt context 16828 */ 16829 16830 static void 16831 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 16832 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16833 { 16834 ASSERT(un != NULL); 16835 ASSERT(mutex_owned(SD_MUTEX(un))); 16836 ASSERT(bp != NULL); 16837 ASSERT(xp != NULL); 16838 ASSERT(pktp != NULL); 16839 16840 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16841 pktp->pkt_flags = 0; 16842 un->un_tagflags = 0; 16843 if (un->un_f_opt_queueing == TRUE) { 16844 un->un_throttle = min(un->un_throttle, 3); 16845 } else { 16846 un->un_throttle = 1; 16847 } 16848 mutex_exit(SD_MUTEX(un)); 16849 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 16850 mutex_enter(SD_MUTEX(un)); 16851 16852 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16853 16854 /* Legacy behavior not to check retry counts here. */ 16855 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 16856 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16857 } 16858 16859 16860 /* 16861 * Function: sd_pkt_reason_default 16862 * 16863 * Description: Default recovery actions for SCSA pkt_reason values that 16864 * do not have more explicit recovery actions. 16865 * 16866 * Context: May be called from interrupt context 16867 */ 16868 16869 static void 16870 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 16871 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16872 { 16873 ASSERT(un != NULL); 16874 ASSERT(mutex_owned(SD_MUTEX(un))); 16875 ASSERT(bp != NULL); 16876 ASSERT(xp != NULL); 16877 ASSERT(pktp != NULL); 16878 16879 SD_UPDATE_ERRSTATS(un, sd_transerrs); 16880 sd_reset_target(un, pktp); 16881 16882 SD_UPDATE_RESERVATION_STATUS(un, pktp); 16883 16884 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 16885 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 16886 } 16887 16888 16889 16890 /* 16891 * Function: sd_pkt_status_check_condition 16892 * 16893 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 16894 * 16895 * Context: May be called from interrupt context 16896 */ 16897 16898 static void 16899 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 16900 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16901 { 16902 ASSERT(un != NULL); 16903 ASSERT(mutex_owned(SD_MUTEX(un))); 16904 ASSERT(bp != NULL); 16905 ASSERT(xp != NULL); 16906 ASSERT(pktp != NULL); 16907 16908 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 16909 "entry: buf:0x%p xp:0x%p\n", bp, xp); 16910 16911 /* 16912 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 16913 * command will be retried after the request sense). Otherwise, retry 16914 * the command. Note: we are issuing the request sense even though the 16915 * retry limit may have been reached for the failed command. 16916 */ 16917 if (un->un_f_arq_enabled == FALSE) { 16918 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 16919 "no ARQ, sending request sense command\n"); 16920 sd_send_request_sense_command(un, bp, pktp); 16921 } else { 16922 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 16923 "ARQ,retrying request sense command\n"); 16924 #if defined(__i386) || defined(__amd64) 16925 /* 16926 * The SD_RETRY_DELAY value need to be adjusted here 16927 * when SD_RETRY_DELAY change in sddef.h 16928 */ 16929 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 16930 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 16931 NULL); 16932 #else 16933 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 16934 EIO, SD_RETRY_DELAY, NULL); 16935 #endif 16936 } 16937 16938 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 16939 } 16940 16941 16942 /* 16943 * Function: sd_pkt_status_busy 16944 * 16945 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 16946 * 16947 * Context: May be called from interrupt context 16948 */ 16949 16950 static void 16951 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 16952 struct scsi_pkt *pktp) 16953 { 16954 ASSERT(un != NULL); 16955 ASSERT(mutex_owned(SD_MUTEX(un))); 16956 ASSERT(bp != NULL); 16957 ASSERT(xp != NULL); 16958 ASSERT(pktp != NULL); 16959 16960 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16961 "sd_pkt_status_busy: entry\n"); 16962 16963 /* If retries are exhausted, just fail the command. */ 16964 if (xp->xb_retry_count >= un->un_busy_retry_count) { 16965 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16966 "device busy too long\n"); 16967 sd_return_failed_command(un, bp, EIO); 16968 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16969 "sd_pkt_status_busy: exit\n"); 16970 return; 16971 } 16972 xp->xb_retry_count++; 16973 16974 /* 16975 * Try to reset the target. However, we do not want to perform 16976 * more than one reset if the device continues to fail. The reset 16977 * will be performed when the retry count reaches the reset 16978 * threshold. This threshold should be set such that at least 16979 * one retry is issued before the reset is performed. 16980 */ 16981 if (xp->xb_retry_count == 16982 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 16983 int rval = 0; 16984 mutex_exit(SD_MUTEX(un)); 16985 if (un->un_f_allow_bus_device_reset == TRUE) { 16986 /* 16987 * First try to reset the LUN; if we cannot then 16988 * try to reset the target. 16989 */ 16990 if (un->un_f_lun_reset_enabled == TRUE) { 16991 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16992 "sd_pkt_status_busy: RESET_LUN\n"); 16993 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 16994 } 16995 if (rval == 0) { 16996 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16997 "sd_pkt_status_busy: RESET_TARGET\n"); 16998 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 16999 } 17000 } 17001 if (rval == 0) { 17002 /* 17003 * If the RESET_LUN and/or RESET_TARGET failed, 17004 * try RESET_ALL 17005 */ 17006 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17007 "sd_pkt_status_busy: RESET_ALL\n"); 17008 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 17009 } 17010 mutex_enter(SD_MUTEX(un)); 17011 if (rval == 0) { 17012 /* 17013 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 17014 * At this point we give up & fail the command. 17015 */ 17016 sd_return_failed_command(un, bp, EIO); 17017 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17018 "sd_pkt_status_busy: exit (failed cmd)\n"); 17019 return; 17020 } 17021 } 17022 17023 /* 17024 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 17025 * we have already checked the retry counts above. 17026 */ 17027 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 17028 EIO, SD_BSY_TIMEOUT, NULL); 17029 17030 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17031 "sd_pkt_status_busy: exit\n"); 17032 } 17033 17034 17035 /* 17036 * Function: sd_pkt_status_reservation_conflict 17037 * 17038 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 17039 * command status. 17040 * 17041 * Context: May be called from interrupt context 17042 */ 17043 17044 static void 17045 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 17046 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17047 { 17048 ASSERT(un != NULL); 17049 ASSERT(mutex_owned(SD_MUTEX(un))); 17050 ASSERT(bp != NULL); 17051 ASSERT(xp != NULL); 17052 ASSERT(pktp != NULL); 17053 17054 /* 17055 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 17056 * conflict could be due to various reasons like incorrect keys, not 17057 * registered or not reserved etc. So, we return EACCES to the caller. 17058 */ 17059 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 17060 int cmd = SD_GET_PKT_OPCODE(pktp); 17061 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 17062 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 17063 sd_return_failed_command(un, bp, EACCES); 17064 return; 17065 } 17066 } 17067 17068 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 17069 17070 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 17071 if (sd_failfast_enable != 0) { 17072 /* By definition, we must panic here.... */ 17073 sd_panic_for_res_conflict(un); 17074 /*NOTREACHED*/ 17075 } 17076 SD_ERROR(SD_LOG_IO, un, 17077 "sd_handle_resv_conflict: Disk Reserved\n"); 17078 sd_return_failed_command(un, bp, EACCES); 17079 return; 17080 } 17081 17082 /* 17083 * 1147670: retry only if sd_retry_on_reservation_conflict 17084 * property is set (default is 1). Retries will not succeed 17085 * on a disk reserved by another initiator. HA systems 17086 * may reset this via sd.conf to avoid these retries. 17087 * 17088 * Note: The legacy return code for this failure is EIO, however EACCES 17089 * seems more appropriate for a reservation conflict. 17090 */ 17091 if (sd_retry_on_reservation_conflict == 0) { 17092 SD_ERROR(SD_LOG_IO, un, 17093 "sd_handle_resv_conflict: Device Reserved\n"); 17094 sd_return_failed_command(un, bp, EIO); 17095 return; 17096 } 17097 17098 /* 17099 * Retry the command if we can. 17100 * 17101 * Note: The legacy return code for this failure is EIO, however EACCES 17102 * seems more appropriate for a reservation conflict. 17103 */ 17104 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 17105 (clock_t)2, NULL); 17106 } 17107 17108 17109 17110 /* 17111 * Function: sd_pkt_status_qfull 17112 * 17113 * Description: Handle a QUEUE FULL condition from the target. This can 17114 * occur if the HBA does not handle the queue full condition. 17115 * (Basically this means third-party HBAs as Sun HBAs will 17116 * handle the queue full condition.) Note that if there are 17117 * some commands already in the transport, then the queue full 17118 * has occurred because the queue for this nexus is actually 17119 * full. If there are no commands in the transport, then the 17120 * queue full is resulting from some other initiator or lun 17121 * consuming all the resources at the target. 17122 * 17123 * Context: May be called from interrupt context 17124 */ 17125 17126 static void 17127 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 17128 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17129 { 17130 ASSERT(un != NULL); 17131 ASSERT(mutex_owned(SD_MUTEX(un))); 17132 ASSERT(bp != NULL); 17133 ASSERT(xp != NULL); 17134 ASSERT(pktp != NULL); 17135 17136 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17137 "sd_pkt_status_qfull: entry\n"); 17138 17139 /* 17140 * Just lower the QFULL throttle and retry the command. Note that 17141 * we do not limit the number of retries here. 17142 */ 17143 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 17144 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 17145 SD_RESTART_TIMEOUT, NULL); 17146 17147 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17148 "sd_pkt_status_qfull: exit\n"); 17149 } 17150 17151 17152 /* 17153 * Function: sd_reset_target 17154 * 17155 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 17156 * RESET_TARGET, or RESET_ALL. 17157 * 17158 * Context: May be called under interrupt context. 17159 */ 17160 17161 static void 17162 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 17163 { 17164 int rval = 0; 17165 17166 ASSERT(un != NULL); 17167 ASSERT(mutex_owned(SD_MUTEX(un))); 17168 ASSERT(pktp != NULL); 17169 17170 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 17171 17172 /* 17173 * No need to reset if the transport layer has already done so. 17174 */ 17175 if ((pktp->pkt_statistics & 17176 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 17177 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17178 "sd_reset_target: no reset\n"); 17179 return; 17180 } 17181 17182 mutex_exit(SD_MUTEX(un)); 17183 17184 if (un->un_f_allow_bus_device_reset == TRUE) { 17185 if (un->un_f_lun_reset_enabled == TRUE) { 17186 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17187 "sd_reset_target: RESET_LUN\n"); 17188 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 17189 } 17190 if (rval == 0) { 17191 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17192 "sd_reset_target: RESET_TARGET\n"); 17193 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 17194 } 17195 } 17196 17197 if (rval == 0) { 17198 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17199 "sd_reset_target: RESET_ALL\n"); 17200 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 17201 } 17202 17203 mutex_enter(SD_MUTEX(un)); 17204 17205 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 17206 } 17207 17208 17209 /* 17210 * Function: sd_media_change_task 17211 * 17212 * Description: Recovery action for CDROM to become available. 17213 * 17214 * Context: Executes in a taskq() thread context 17215 */ 17216 17217 static void 17218 sd_media_change_task(void *arg) 17219 { 17220 struct scsi_pkt *pktp = arg; 17221 struct sd_lun *un; 17222 struct buf *bp; 17223 struct sd_xbuf *xp; 17224 int err = 0; 17225 int retry_count = 0; 17226 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 17227 struct sd_sense_info si; 17228 17229 ASSERT(pktp != NULL); 17230 bp = (struct buf *)pktp->pkt_private; 17231 ASSERT(bp != NULL); 17232 xp = SD_GET_XBUF(bp); 17233 ASSERT(xp != NULL); 17234 un = SD_GET_UN(bp); 17235 ASSERT(un != NULL); 17236 ASSERT(!mutex_owned(SD_MUTEX(un))); 17237 ASSERT(un->un_f_monitor_media_state); 17238 17239 si.ssi_severity = SCSI_ERR_INFO; 17240 si.ssi_pfa_flag = FALSE; 17241 17242 /* 17243 * When a reset is issued on a CDROM, it takes a long time to 17244 * recover. First few attempts to read capacity and other things 17245 * related to handling unit attention fail (with a ASC 0x4 and 17246 * ASCQ 0x1). In that case we want to do enough retries and we want 17247 * to limit the retries in other cases of genuine failures like 17248 * no media in drive. 17249 */ 17250 while (retry_count++ < retry_limit) { 17251 if ((err = sd_handle_mchange(un)) == 0) { 17252 break; 17253 } 17254 if (err == EAGAIN) { 17255 retry_limit = SD_UNIT_ATTENTION_RETRY; 17256 } 17257 /* Sleep for 0.5 sec. & try again */ 17258 delay(drv_usectohz(500000)); 17259 } 17260 17261 /* 17262 * Dispatch (retry or fail) the original command here, 17263 * along with appropriate console messages.... 17264 * 17265 * Must grab the mutex before calling sd_retry_command, 17266 * sd_print_sense_msg and sd_return_failed_command. 17267 */ 17268 mutex_enter(SD_MUTEX(un)); 17269 if (err != SD_CMD_SUCCESS) { 17270 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17271 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17272 si.ssi_severity = SCSI_ERR_FATAL; 17273 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17274 sd_return_failed_command(un, bp, EIO); 17275 } else { 17276 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 17277 &si, EIO, (clock_t)0, NULL); 17278 } 17279 mutex_exit(SD_MUTEX(un)); 17280 } 17281 17282 17283 17284 /* 17285 * Function: sd_handle_mchange 17286 * 17287 * Description: Perform geometry validation & other recovery when CDROM 17288 * has been removed from drive. 17289 * 17290 * Return Code: 0 for success 17291 * errno-type return code of either sd_send_scsi_DOORLOCK() or 17292 * sd_send_scsi_READ_CAPACITY() 17293 * 17294 * Context: Executes in a taskq() thread context 17295 */ 17296 17297 static int 17298 sd_handle_mchange(struct sd_lun *un) 17299 { 17300 uint64_t capacity; 17301 uint32_t lbasize; 17302 int rval; 17303 17304 ASSERT(!mutex_owned(SD_MUTEX(un))); 17305 ASSERT(un->un_f_monitor_media_state); 17306 17307 if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 17308 SD_PATH_DIRECT_PRIORITY)) != 0) { 17309 return (rval); 17310 } 17311 17312 mutex_enter(SD_MUTEX(un)); 17313 sd_update_block_info(un, lbasize, capacity); 17314 17315 if (un->un_errstats != NULL) { 17316 struct sd_errstats *stp = 17317 (struct sd_errstats *)un->un_errstats->ks_data; 17318 stp->sd_capacity.value.ui64 = (uint64_t) 17319 ((uint64_t)un->un_blockcount * 17320 (uint64_t)un->un_tgt_blocksize); 17321 } 17322 17323 17324 /* 17325 * Check if the media in the device is writable or not 17326 */ 17327 if (ISCD(un)) 17328 sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY); 17329 17330 /* 17331 * Note: Maybe let the strategy/partitioning chain worry about getting 17332 * valid geometry. 17333 */ 17334 mutex_exit(SD_MUTEX(un)); 17335 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 17336 17337 17338 if (cmlb_validate(un->un_cmlbhandle, 0, 17339 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 17340 return (EIO); 17341 } else { 17342 if (un->un_f_pkstats_enabled) { 17343 sd_set_pstats(un); 17344 SD_TRACE(SD_LOG_IO_PARTITION, un, 17345 "sd_handle_mchange: un:0x%p pstats created and " 17346 "set\n", un); 17347 } 17348 } 17349 17350 17351 /* 17352 * Try to lock the door 17353 */ 17354 return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 17355 SD_PATH_DIRECT_PRIORITY)); 17356 } 17357 17358 17359 /* 17360 * Function: sd_send_scsi_DOORLOCK 17361 * 17362 * Description: Issue the scsi DOOR LOCK command 17363 * 17364 * Arguments: un - pointer to driver soft state (unit) structure for 17365 * this target. 17366 * flag - SD_REMOVAL_ALLOW 17367 * SD_REMOVAL_PREVENT 17368 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 17369 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 17370 * to use the USCSI "direct" chain and bypass the normal 17371 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 17372 * command is issued as part of an error recovery action. 17373 * 17374 * Return Code: 0 - Success 17375 * errno return code from sd_send_scsi_cmd() 17376 * 17377 * Context: Can sleep. 17378 */ 17379 17380 static int 17381 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag) 17382 { 17383 union scsi_cdb cdb; 17384 struct uscsi_cmd ucmd_buf; 17385 struct scsi_extended_sense sense_buf; 17386 int status; 17387 17388 ASSERT(un != NULL); 17389 ASSERT(!mutex_owned(SD_MUTEX(un))); 17390 17391 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 17392 17393 /* already determined doorlock is not supported, fake success */ 17394 if (un->un_f_doorlock_supported == FALSE) { 17395 return (0); 17396 } 17397 17398 /* 17399 * If we are ejecting and see an SD_REMOVAL_PREVENT 17400 * ignore the command so we can complete the eject 17401 * operation. 17402 */ 17403 if (flag == SD_REMOVAL_PREVENT) { 17404 mutex_enter(SD_MUTEX(un)); 17405 if (un->un_f_ejecting == TRUE) { 17406 mutex_exit(SD_MUTEX(un)); 17407 return (EAGAIN); 17408 } 17409 mutex_exit(SD_MUTEX(un)); 17410 } 17411 17412 bzero(&cdb, sizeof (cdb)); 17413 bzero(&ucmd_buf, sizeof (ucmd_buf)); 17414 17415 cdb.scc_cmd = SCMD_DOORLOCK; 17416 cdb.cdb_opaque[4] = (uchar_t)flag; 17417 17418 ucmd_buf.uscsi_cdb = (char *)&cdb; 17419 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 17420 ucmd_buf.uscsi_bufaddr = NULL; 17421 ucmd_buf.uscsi_buflen = 0; 17422 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 17423 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 17424 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 17425 ucmd_buf.uscsi_timeout = 15; 17426 17427 SD_TRACE(SD_LOG_IO, un, 17428 "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n"); 17429 17430 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 17431 UIO_SYSSPACE, path_flag); 17432 17433 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 17434 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 17435 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 17436 /* fake success and skip subsequent doorlock commands */ 17437 un->un_f_doorlock_supported = FALSE; 17438 return (0); 17439 } 17440 17441 return (status); 17442 } 17443 17444 /* 17445 * Function: sd_send_scsi_READ_CAPACITY 17446 * 17447 * Description: This routine uses the scsi READ CAPACITY command to determine 17448 * the device capacity in number of blocks and the device native 17449 * block size. If this function returns a failure, then the 17450 * values in *capp and *lbap are undefined. If the capacity 17451 * returned is 0xffffffff then the lun is too large for a 17452 * normal READ CAPACITY command and the results of a 17453 * READ CAPACITY 16 will be used instead. 17454 * 17455 * Arguments: un - ptr to soft state struct for the target 17456 * capp - ptr to unsigned 64-bit variable to receive the 17457 * capacity value from the command. 17458 * lbap - ptr to unsigned 32-bit varaible to receive the 17459 * block size value from the command 17460 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 17461 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 17462 * to use the USCSI "direct" chain and bypass the normal 17463 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 17464 * command is issued as part of an error recovery action. 17465 * 17466 * Return Code: 0 - Success 17467 * EIO - IO error 17468 * EACCES - Reservation conflict detected 17469 * EAGAIN - Device is becoming ready 17470 * errno return code from sd_send_scsi_cmd() 17471 * 17472 * Context: Can sleep. Blocks until command completes. 17473 */ 17474 17475 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 17476 17477 static int 17478 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap, 17479 int path_flag) 17480 { 17481 struct scsi_extended_sense sense_buf; 17482 struct uscsi_cmd ucmd_buf; 17483 union scsi_cdb cdb; 17484 uint32_t *capacity_buf; 17485 uint64_t capacity; 17486 uint32_t lbasize; 17487 int status; 17488 17489 ASSERT(un != NULL); 17490 ASSERT(!mutex_owned(SD_MUTEX(un))); 17491 ASSERT(capp != NULL); 17492 ASSERT(lbap != NULL); 17493 17494 SD_TRACE(SD_LOG_IO, un, 17495 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 17496 17497 /* 17498 * First send a READ_CAPACITY command to the target. 17499 * (This command is mandatory under SCSI-2.) 17500 * 17501 * Set up the CDB for the READ_CAPACITY command. The Partial 17502 * Medium Indicator bit is cleared. The address field must be 17503 * zero if the PMI bit is zero. 17504 */ 17505 bzero(&cdb, sizeof (cdb)); 17506 bzero(&ucmd_buf, sizeof (ucmd_buf)); 17507 17508 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 17509 17510 cdb.scc_cmd = SCMD_READ_CAPACITY; 17511 17512 ucmd_buf.uscsi_cdb = (char *)&cdb; 17513 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 17514 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 17515 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 17516 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 17517 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 17518 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 17519 ucmd_buf.uscsi_timeout = 60; 17520 17521 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 17522 UIO_SYSSPACE, path_flag); 17523 17524 switch (status) { 17525 case 0: 17526 /* Return failure if we did not get valid capacity data. */ 17527 if (ucmd_buf.uscsi_resid != 0) { 17528 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 17529 return (EIO); 17530 } 17531 17532 /* 17533 * Read capacity and block size from the READ CAPACITY 10 data. 17534 * This data may be adjusted later due to device specific 17535 * issues. 17536 * 17537 * According to the SCSI spec, the READ CAPACITY 10 17538 * command returns the following: 17539 * 17540 * bytes 0-3: Maximum logical block address available. 17541 * (MSB in byte:0 & LSB in byte:3) 17542 * 17543 * bytes 4-7: Block length in bytes 17544 * (MSB in byte:4 & LSB in byte:7) 17545 * 17546 */ 17547 capacity = BE_32(capacity_buf[0]); 17548 lbasize = BE_32(capacity_buf[1]); 17549 17550 /* 17551 * Done with capacity_buf 17552 */ 17553 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 17554 17555 /* 17556 * if the reported capacity is set to all 0xf's, then 17557 * this disk is too large and requires SBC-2 commands. 17558 * Reissue the request using READ CAPACITY 16. 17559 */ 17560 if (capacity == 0xffffffff) { 17561 status = sd_send_scsi_READ_CAPACITY_16(un, &capacity, 17562 &lbasize, path_flag); 17563 if (status != 0) { 17564 return (status); 17565 } 17566 } 17567 break; /* Success! */ 17568 case EIO: 17569 switch (ucmd_buf.uscsi_status) { 17570 case STATUS_RESERVATION_CONFLICT: 17571 status = EACCES; 17572 break; 17573 case STATUS_CHECK: 17574 /* 17575 * Check condition; look for ASC/ASCQ of 0x04/0x01 17576 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 17577 */ 17578 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 17579 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 17580 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 17581 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 17582 return (EAGAIN); 17583 } 17584 break; 17585 default: 17586 break; 17587 } 17588 /* FALLTHRU */ 17589 default: 17590 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 17591 return (status); 17592 } 17593 17594 /* 17595 * Some ATAPI CD-ROM drives report inaccurate LBA size values 17596 * (2352 and 0 are common) so for these devices always force the value 17597 * to 2048 as required by the ATAPI specs. 17598 */ 17599 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 17600 lbasize = 2048; 17601 } 17602 17603 /* 17604 * Get the maximum LBA value from the READ CAPACITY data. 17605 * Here we assume that the Partial Medium Indicator (PMI) bit 17606 * was cleared when issuing the command. This means that the LBA 17607 * returned from the device is the LBA of the last logical block 17608 * on the logical unit. The actual logical block count will be 17609 * this value plus one. 17610 * 17611 * Currently the capacity is saved in terms of un->un_sys_blocksize, 17612 * so scale the capacity value to reflect this. 17613 */ 17614 capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize); 17615 17616 /* 17617 * Copy the values from the READ CAPACITY command into the space 17618 * provided by the caller. 17619 */ 17620 *capp = capacity; 17621 *lbap = lbasize; 17622 17623 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 17624 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 17625 17626 /* 17627 * Both the lbasize and capacity from the device must be nonzero, 17628 * otherwise we assume that the values are not valid and return 17629 * failure to the caller. (4203735) 17630 */ 17631 if ((capacity == 0) || (lbasize == 0)) { 17632 return (EIO); 17633 } 17634 17635 return (0); 17636 } 17637 17638 /* 17639 * Function: sd_send_scsi_READ_CAPACITY_16 17640 * 17641 * Description: This routine uses the scsi READ CAPACITY 16 command to 17642 * determine the device capacity in number of blocks and the 17643 * device native block size. If this function returns a failure, 17644 * then the values in *capp and *lbap are undefined. 17645 * This routine should always be called by 17646 * sd_send_scsi_READ_CAPACITY which will appy any device 17647 * specific adjustments to capacity and lbasize. 17648 * 17649 * Arguments: un - ptr to soft state struct for the target 17650 * capp - ptr to unsigned 64-bit variable to receive the 17651 * capacity value from the command. 17652 * lbap - ptr to unsigned 32-bit varaible to receive the 17653 * block size value from the command 17654 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 17655 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 17656 * to use the USCSI "direct" chain and bypass the normal 17657 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 17658 * this command is issued as part of an error recovery 17659 * action. 17660 * 17661 * Return Code: 0 - Success 17662 * EIO - IO error 17663 * EACCES - Reservation conflict detected 17664 * EAGAIN - Device is becoming ready 17665 * errno return code from sd_send_scsi_cmd() 17666 * 17667 * Context: Can sleep. Blocks until command completes. 17668 */ 17669 17670 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 17671 17672 static int 17673 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 17674 uint32_t *lbap, int path_flag) 17675 { 17676 struct scsi_extended_sense sense_buf; 17677 struct uscsi_cmd ucmd_buf; 17678 union scsi_cdb cdb; 17679 uint64_t *capacity16_buf; 17680 uint64_t capacity; 17681 uint32_t lbasize; 17682 int status; 17683 17684 ASSERT(un != NULL); 17685 ASSERT(!mutex_owned(SD_MUTEX(un))); 17686 ASSERT(capp != NULL); 17687 ASSERT(lbap != NULL); 17688 17689 SD_TRACE(SD_LOG_IO, un, 17690 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 17691 17692 /* 17693 * First send a READ_CAPACITY_16 command to the target. 17694 * 17695 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 17696 * Medium Indicator bit is cleared. The address field must be 17697 * zero if the PMI bit is zero. 17698 */ 17699 bzero(&cdb, sizeof (cdb)); 17700 bzero(&ucmd_buf, sizeof (ucmd_buf)); 17701 17702 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 17703 17704 ucmd_buf.uscsi_cdb = (char *)&cdb; 17705 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 17706 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 17707 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 17708 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 17709 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 17710 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 17711 ucmd_buf.uscsi_timeout = 60; 17712 17713 /* 17714 * Read Capacity (16) is a Service Action In command. One 17715 * command byte (0x9E) is overloaded for multiple operations, 17716 * with the second CDB byte specifying the desired operation 17717 */ 17718 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 17719 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 17720 17721 /* 17722 * Fill in allocation length field 17723 */ 17724 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 17725 17726 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 17727 UIO_SYSSPACE, path_flag); 17728 17729 switch (status) { 17730 case 0: 17731 /* Return failure if we did not get valid capacity data. */ 17732 if (ucmd_buf.uscsi_resid > 20) { 17733 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 17734 return (EIO); 17735 } 17736 17737 /* 17738 * Read capacity and block size from the READ CAPACITY 10 data. 17739 * This data may be adjusted later due to device specific 17740 * issues. 17741 * 17742 * According to the SCSI spec, the READ CAPACITY 10 17743 * command returns the following: 17744 * 17745 * bytes 0-7: Maximum logical block address available. 17746 * (MSB in byte:0 & LSB in byte:7) 17747 * 17748 * bytes 8-11: Block length in bytes 17749 * (MSB in byte:8 & LSB in byte:11) 17750 * 17751 */ 17752 capacity = BE_64(capacity16_buf[0]); 17753 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 17754 17755 /* 17756 * Done with capacity16_buf 17757 */ 17758 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 17759 17760 /* 17761 * if the reported capacity is set to all 0xf's, then 17762 * this disk is too large. This could only happen with 17763 * a device that supports LBAs larger than 64 bits which 17764 * are not defined by any current T10 standards. 17765 */ 17766 if (capacity == 0xffffffffffffffff) { 17767 return (EIO); 17768 } 17769 break; /* Success! */ 17770 case EIO: 17771 switch (ucmd_buf.uscsi_status) { 17772 case STATUS_RESERVATION_CONFLICT: 17773 status = EACCES; 17774 break; 17775 case STATUS_CHECK: 17776 /* 17777 * Check condition; look for ASC/ASCQ of 0x04/0x01 17778 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 17779 */ 17780 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 17781 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 17782 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 17783 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 17784 return (EAGAIN); 17785 } 17786 break; 17787 default: 17788 break; 17789 } 17790 /* FALLTHRU */ 17791 default: 17792 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 17793 return (status); 17794 } 17795 17796 *capp = capacity; 17797 *lbap = lbasize; 17798 17799 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 17800 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 17801 17802 return (0); 17803 } 17804 17805 17806 /* 17807 * Function: sd_send_scsi_START_STOP_UNIT 17808 * 17809 * Description: Issue a scsi START STOP UNIT command to the target. 17810 * 17811 * Arguments: un - pointer to driver soft state (unit) structure for 17812 * this target. 17813 * flag - SD_TARGET_START 17814 * SD_TARGET_STOP 17815 * SD_TARGET_EJECT 17816 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 17817 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 17818 * to use the USCSI "direct" chain and bypass the normal 17819 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 17820 * command is issued as part of an error recovery action. 17821 * 17822 * Return Code: 0 - Success 17823 * EIO - IO error 17824 * EACCES - Reservation conflict detected 17825 * ENXIO - Not Ready, medium not present 17826 * errno return code from sd_send_scsi_cmd() 17827 * 17828 * Context: Can sleep. 17829 */ 17830 17831 static int 17832 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag) 17833 { 17834 struct scsi_extended_sense sense_buf; 17835 union scsi_cdb cdb; 17836 struct uscsi_cmd ucmd_buf; 17837 int status; 17838 17839 ASSERT(un != NULL); 17840 ASSERT(!mutex_owned(SD_MUTEX(un))); 17841 17842 SD_TRACE(SD_LOG_IO, un, 17843 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 17844 17845 if (un->un_f_check_start_stop && 17846 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 17847 (un->un_f_start_stop_supported != TRUE)) { 17848 return (0); 17849 } 17850 17851 /* 17852 * If we are performing an eject operation and 17853 * we receive any command other than SD_TARGET_EJECT 17854 * we should immediately return. 17855 */ 17856 if (flag != SD_TARGET_EJECT) { 17857 mutex_enter(SD_MUTEX(un)); 17858 if (un->un_f_ejecting == TRUE) { 17859 mutex_exit(SD_MUTEX(un)); 17860 return (EAGAIN); 17861 } 17862 mutex_exit(SD_MUTEX(un)); 17863 } 17864 17865 bzero(&cdb, sizeof (cdb)); 17866 bzero(&ucmd_buf, sizeof (ucmd_buf)); 17867 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 17868 17869 cdb.scc_cmd = SCMD_START_STOP; 17870 cdb.cdb_opaque[4] = (uchar_t)flag; 17871 17872 ucmd_buf.uscsi_cdb = (char *)&cdb; 17873 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 17874 ucmd_buf.uscsi_bufaddr = NULL; 17875 ucmd_buf.uscsi_buflen = 0; 17876 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 17877 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 17878 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 17879 ucmd_buf.uscsi_timeout = 200; 17880 17881 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 17882 UIO_SYSSPACE, path_flag); 17883 17884 switch (status) { 17885 case 0: 17886 break; /* Success! */ 17887 case EIO: 17888 switch (ucmd_buf.uscsi_status) { 17889 case STATUS_RESERVATION_CONFLICT: 17890 status = EACCES; 17891 break; 17892 case STATUS_CHECK: 17893 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 17894 switch (scsi_sense_key( 17895 (uint8_t *)&sense_buf)) { 17896 case KEY_ILLEGAL_REQUEST: 17897 status = ENOTSUP; 17898 break; 17899 case KEY_NOT_READY: 17900 if (scsi_sense_asc( 17901 (uint8_t *)&sense_buf) 17902 == 0x3A) { 17903 status = ENXIO; 17904 } 17905 break; 17906 default: 17907 break; 17908 } 17909 } 17910 break; 17911 default: 17912 break; 17913 } 17914 break; 17915 default: 17916 break; 17917 } 17918 17919 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 17920 17921 return (status); 17922 } 17923 17924 17925 /* 17926 * Function: sd_start_stop_unit_callback 17927 * 17928 * Description: timeout(9F) callback to begin recovery process for a 17929 * device that has spun down. 17930 * 17931 * Arguments: arg - pointer to associated softstate struct. 17932 * 17933 * Context: Executes in a timeout(9F) thread context 17934 */ 17935 17936 static void 17937 sd_start_stop_unit_callback(void *arg) 17938 { 17939 struct sd_lun *un = arg; 17940 ASSERT(un != NULL); 17941 ASSERT(!mutex_owned(SD_MUTEX(un))); 17942 17943 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 17944 17945 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 17946 } 17947 17948 17949 /* 17950 * Function: sd_start_stop_unit_task 17951 * 17952 * Description: Recovery procedure when a drive is spun down. 17953 * 17954 * Arguments: arg - pointer to associated softstate struct. 17955 * 17956 * Context: Executes in a taskq() thread context 17957 */ 17958 17959 static void 17960 sd_start_stop_unit_task(void *arg) 17961 { 17962 struct sd_lun *un = arg; 17963 17964 ASSERT(un != NULL); 17965 ASSERT(!mutex_owned(SD_MUTEX(un))); 17966 17967 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 17968 17969 /* 17970 * Some unformatted drives report not ready error, no need to 17971 * restart if format has been initiated. 17972 */ 17973 mutex_enter(SD_MUTEX(un)); 17974 if (un->un_f_format_in_progress == TRUE) { 17975 mutex_exit(SD_MUTEX(un)); 17976 return; 17977 } 17978 mutex_exit(SD_MUTEX(un)); 17979 17980 /* 17981 * When a START STOP command is issued from here, it is part of a 17982 * failure recovery operation and must be issued before any other 17983 * commands, including any pending retries. Thus it must be sent 17984 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 17985 * succeeds or not, we will start I/O after the attempt. 17986 */ 17987 (void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 17988 SD_PATH_DIRECT_PRIORITY); 17989 17990 /* 17991 * The above call blocks until the START_STOP_UNIT command completes. 17992 * Now that it has completed, we must re-try the original IO that 17993 * received the NOT READY condition in the first place. There are 17994 * three possible conditions here: 17995 * 17996 * (1) The original IO is on un_retry_bp. 17997 * (2) The original IO is on the regular wait queue, and un_retry_bp 17998 * is NULL. 17999 * (3) The original IO is on the regular wait queue, and un_retry_bp 18000 * points to some other, unrelated bp. 18001 * 18002 * For each case, we must call sd_start_cmds() with un_retry_bp 18003 * as the argument. If un_retry_bp is NULL, this will initiate 18004 * processing of the regular wait queue. If un_retry_bp is not NULL, 18005 * then this will process the bp on un_retry_bp. That may or may not 18006 * be the original IO, but that does not matter: the important thing 18007 * is to keep the IO processing going at this point. 18008 * 18009 * Note: This is a very specific error recovery sequence associated 18010 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 18011 * serialize the I/O with completion of the spin-up. 18012 */ 18013 mutex_enter(SD_MUTEX(un)); 18014 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18015 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 18016 un, un->un_retry_bp); 18017 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 18018 sd_start_cmds(un, un->un_retry_bp); 18019 mutex_exit(SD_MUTEX(un)); 18020 18021 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 18022 } 18023 18024 18025 /* 18026 * Function: sd_send_scsi_INQUIRY 18027 * 18028 * Description: Issue the scsi INQUIRY command. 18029 * 18030 * Arguments: un 18031 * bufaddr 18032 * buflen 18033 * evpd 18034 * page_code 18035 * page_length 18036 * 18037 * Return Code: 0 - Success 18038 * errno return code from sd_send_scsi_cmd() 18039 * 18040 * Context: Can sleep. Does not return until command is completed. 18041 */ 18042 18043 static int 18044 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen, 18045 uchar_t evpd, uchar_t page_code, size_t *residp) 18046 { 18047 union scsi_cdb cdb; 18048 struct uscsi_cmd ucmd_buf; 18049 int status; 18050 18051 ASSERT(un != NULL); 18052 ASSERT(!mutex_owned(SD_MUTEX(un))); 18053 ASSERT(bufaddr != NULL); 18054 18055 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 18056 18057 bzero(&cdb, sizeof (cdb)); 18058 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18059 bzero(bufaddr, buflen); 18060 18061 cdb.scc_cmd = SCMD_INQUIRY; 18062 cdb.cdb_opaque[1] = evpd; 18063 cdb.cdb_opaque[2] = page_code; 18064 FORMG0COUNT(&cdb, buflen); 18065 18066 ucmd_buf.uscsi_cdb = (char *)&cdb; 18067 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 18068 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 18069 ucmd_buf.uscsi_buflen = buflen; 18070 ucmd_buf.uscsi_rqbuf = NULL; 18071 ucmd_buf.uscsi_rqlen = 0; 18072 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 18073 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 18074 18075 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18076 UIO_SYSSPACE, SD_PATH_DIRECT); 18077 18078 if ((status == 0) && (residp != NULL)) { 18079 *residp = ucmd_buf.uscsi_resid; 18080 } 18081 18082 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 18083 18084 return (status); 18085 } 18086 18087 18088 /* 18089 * Function: sd_send_scsi_TEST_UNIT_READY 18090 * 18091 * Description: Issue the scsi TEST UNIT READY command. 18092 * This routine can be told to set the flag USCSI_DIAGNOSE to 18093 * prevent retrying failed commands. Use this when the intent 18094 * is either to check for device readiness, to clear a Unit 18095 * Attention, or to clear any outstanding sense data. 18096 * However under specific conditions the expected behavior 18097 * is for retries to bring a device ready, so use the flag 18098 * with caution. 18099 * 18100 * Arguments: un 18101 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 18102 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 18103 * 0: dont check for media present, do retries on cmd. 18104 * 18105 * Return Code: 0 - Success 18106 * EIO - IO error 18107 * EACCES - Reservation conflict detected 18108 * ENXIO - Not Ready, medium not present 18109 * errno return code from sd_send_scsi_cmd() 18110 * 18111 * Context: Can sleep. Does not return until command is completed. 18112 */ 18113 18114 static int 18115 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag) 18116 { 18117 struct scsi_extended_sense sense_buf; 18118 union scsi_cdb cdb; 18119 struct uscsi_cmd ucmd_buf; 18120 int status; 18121 18122 ASSERT(un != NULL); 18123 ASSERT(!mutex_owned(SD_MUTEX(un))); 18124 18125 SD_TRACE(SD_LOG_IO, un, 18126 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 18127 18128 /* 18129 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 18130 * timeouts when they receive a TUR and the queue is not empty. Check 18131 * the configuration flag set during attach (indicating the drive has 18132 * this firmware bug) and un_ncmds_in_transport before issuing the 18133 * TUR. If there are 18134 * pending commands return success, this is a bit arbitrary but is ok 18135 * for non-removables (i.e. the eliteI disks) and non-clustering 18136 * configurations. 18137 */ 18138 if (un->un_f_cfg_tur_check == TRUE) { 18139 mutex_enter(SD_MUTEX(un)); 18140 if (un->un_ncmds_in_transport != 0) { 18141 mutex_exit(SD_MUTEX(un)); 18142 return (0); 18143 } 18144 mutex_exit(SD_MUTEX(un)); 18145 } 18146 18147 bzero(&cdb, sizeof (cdb)); 18148 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18149 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 18150 18151 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 18152 18153 ucmd_buf.uscsi_cdb = (char *)&cdb; 18154 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 18155 ucmd_buf.uscsi_bufaddr = NULL; 18156 ucmd_buf.uscsi_buflen = 0; 18157 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18158 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 18159 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 18160 18161 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 18162 if ((flag & SD_DONT_RETRY_TUR) != 0) { 18163 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 18164 } 18165 ucmd_buf.uscsi_timeout = 60; 18166 18167 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18168 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 18169 SD_PATH_STANDARD)); 18170 18171 switch (status) { 18172 case 0: 18173 break; /* Success! */ 18174 case EIO: 18175 switch (ucmd_buf.uscsi_status) { 18176 case STATUS_RESERVATION_CONFLICT: 18177 status = EACCES; 18178 break; 18179 case STATUS_CHECK: 18180 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 18181 break; 18182 } 18183 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 18184 (scsi_sense_key((uint8_t *)&sense_buf) == 18185 KEY_NOT_READY) && 18186 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 18187 status = ENXIO; 18188 } 18189 break; 18190 default: 18191 break; 18192 } 18193 break; 18194 default: 18195 break; 18196 } 18197 18198 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 18199 18200 return (status); 18201 } 18202 18203 18204 /* 18205 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 18206 * 18207 * Description: Issue the scsi PERSISTENT RESERVE IN command. 18208 * 18209 * Arguments: un 18210 * 18211 * Return Code: 0 - Success 18212 * EACCES 18213 * ENOTSUP 18214 * errno return code from sd_send_scsi_cmd() 18215 * 18216 * Context: Can sleep. Does not return until command is completed. 18217 */ 18218 18219 static int 18220 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t usr_cmd, 18221 uint16_t data_len, uchar_t *data_bufp) 18222 { 18223 struct scsi_extended_sense sense_buf; 18224 union scsi_cdb cdb; 18225 struct uscsi_cmd ucmd_buf; 18226 int status; 18227 int no_caller_buf = FALSE; 18228 18229 ASSERT(un != NULL); 18230 ASSERT(!mutex_owned(SD_MUTEX(un))); 18231 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 18232 18233 SD_TRACE(SD_LOG_IO, un, 18234 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 18235 18236 bzero(&cdb, sizeof (cdb)); 18237 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18238 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 18239 if (data_bufp == NULL) { 18240 /* Allocate a default buf if the caller did not give one */ 18241 ASSERT(data_len == 0); 18242 data_len = MHIOC_RESV_KEY_SIZE; 18243 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 18244 no_caller_buf = TRUE; 18245 } 18246 18247 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 18248 cdb.cdb_opaque[1] = usr_cmd; 18249 FORMG1COUNT(&cdb, data_len); 18250 18251 ucmd_buf.uscsi_cdb = (char *)&cdb; 18252 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 18253 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 18254 ucmd_buf.uscsi_buflen = data_len; 18255 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18256 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 18257 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 18258 ucmd_buf.uscsi_timeout = 60; 18259 18260 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18261 UIO_SYSSPACE, SD_PATH_STANDARD); 18262 18263 switch (status) { 18264 case 0: 18265 break; /* Success! */ 18266 case EIO: 18267 switch (ucmd_buf.uscsi_status) { 18268 case STATUS_RESERVATION_CONFLICT: 18269 status = EACCES; 18270 break; 18271 case STATUS_CHECK: 18272 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 18273 (scsi_sense_key((uint8_t *)&sense_buf) == 18274 KEY_ILLEGAL_REQUEST)) { 18275 status = ENOTSUP; 18276 } 18277 break; 18278 default: 18279 break; 18280 } 18281 break; 18282 default: 18283 break; 18284 } 18285 18286 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 18287 18288 if (no_caller_buf == TRUE) { 18289 kmem_free(data_bufp, data_len); 18290 } 18291 18292 return (status); 18293 } 18294 18295 18296 /* 18297 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 18298 * 18299 * Description: This routine is the driver entry point for handling CD-ROM 18300 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 18301 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 18302 * device. 18303 * 18304 * Arguments: un - Pointer to soft state struct for the target. 18305 * usr_cmd SCSI-3 reservation facility command (one of 18306 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 18307 * SD_SCSI3_PREEMPTANDABORT) 18308 * usr_bufp - user provided pointer register, reserve descriptor or 18309 * preempt and abort structure (mhioc_register_t, 18310 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 18311 * 18312 * Return Code: 0 - Success 18313 * EACCES 18314 * ENOTSUP 18315 * errno return code from sd_send_scsi_cmd() 18316 * 18317 * Context: Can sleep. Does not return until command is completed. 18318 */ 18319 18320 static int 18321 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd, 18322 uchar_t *usr_bufp) 18323 { 18324 struct scsi_extended_sense sense_buf; 18325 union scsi_cdb cdb; 18326 struct uscsi_cmd ucmd_buf; 18327 int status; 18328 uchar_t data_len = sizeof (sd_prout_t); 18329 sd_prout_t *prp; 18330 18331 ASSERT(un != NULL); 18332 ASSERT(!mutex_owned(SD_MUTEX(un))); 18333 ASSERT(data_len == 24); /* required by scsi spec */ 18334 18335 SD_TRACE(SD_LOG_IO, un, 18336 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 18337 18338 if (usr_bufp == NULL) { 18339 return (EINVAL); 18340 } 18341 18342 bzero(&cdb, sizeof (cdb)); 18343 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18344 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 18345 prp = kmem_zalloc(data_len, KM_SLEEP); 18346 18347 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 18348 cdb.cdb_opaque[1] = usr_cmd; 18349 FORMG1COUNT(&cdb, data_len); 18350 18351 ucmd_buf.uscsi_cdb = (char *)&cdb; 18352 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 18353 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 18354 ucmd_buf.uscsi_buflen = data_len; 18355 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18356 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 18357 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 18358 ucmd_buf.uscsi_timeout = 60; 18359 18360 switch (usr_cmd) { 18361 case SD_SCSI3_REGISTER: { 18362 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 18363 18364 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 18365 bcopy(ptr->newkey.key, prp->service_key, 18366 MHIOC_RESV_KEY_SIZE); 18367 prp->aptpl = ptr->aptpl; 18368 break; 18369 } 18370 case SD_SCSI3_RESERVE: 18371 case SD_SCSI3_RELEASE: { 18372 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 18373 18374 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 18375 prp->scope_address = BE_32(ptr->scope_specific_addr); 18376 cdb.cdb_opaque[2] = ptr->type; 18377 break; 18378 } 18379 case SD_SCSI3_PREEMPTANDABORT: { 18380 mhioc_preemptandabort_t *ptr = 18381 (mhioc_preemptandabort_t *)usr_bufp; 18382 18383 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 18384 bcopy(ptr->victim_key.key, prp->service_key, 18385 MHIOC_RESV_KEY_SIZE); 18386 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 18387 cdb.cdb_opaque[2] = ptr->resvdesc.type; 18388 ucmd_buf.uscsi_flags |= USCSI_HEAD; 18389 break; 18390 } 18391 case SD_SCSI3_REGISTERANDIGNOREKEY: 18392 { 18393 mhioc_registerandignorekey_t *ptr; 18394 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 18395 bcopy(ptr->newkey.key, 18396 prp->service_key, MHIOC_RESV_KEY_SIZE); 18397 prp->aptpl = ptr->aptpl; 18398 break; 18399 } 18400 default: 18401 ASSERT(FALSE); 18402 break; 18403 } 18404 18405 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18406 UIO_SYSSPACE, SD_PATH_STANDARD); 18407 18408 switch (status) { 18409 case 0: 18410 break; /* Success! */ 18411 case EIO: 18412 switch (ucmd_buf.uscsi_status) { 18413 case STATUS_RESERVATION_CONFLICT: 18414 status = EACCES; 18415 break; 18416 case STATUS_CHECK: 18417 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 18418 (scsi_sense_key((uint8_t *)&sense_buf) == 18419 KEY_ILLEGAL_REQUEST)) { 18420 status = ENOTSUP; 18421 } 18422 break; 18423 default: 18424 break; 18425 } 18426 break; 18427 default: 18428 break; 18429 } 18430 18431 kmem_free(prp, data_len); 18432 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 18433 return (status); 18434 } 18435 18436 18437 /* 18438 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 18439 * 18440 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 18441 * 18442 * Arguments: un - pointer to the target's soft state struct 18443 * 18444 * Return Code: 0 - success 18445 * errno-type error code 18446 * 18447 * Context: kernel thread context only. 18448 */ 18449 18450 static int 18451 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 18452 { 18453 struct sd_uscsi_info *uip; 18454 struct uscsi_cmd *uscmd; 18455 union scsi_cdb *cdb; 18456 struct buf *bp; 18457 int rval = 0; 18458 18459 SD_TRACE(SD_LOG_IO, un, 18460 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 18461 18462 ASSERT(un != NULL); 18463 ASSERT(!mutex_owned(SD_MUTEX(un))); 18464 18465 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 18466 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 18467 18468 /* 18469 * First get some memory for the uscsi_cmd struct and cdb 18470 * and initialize for SYNCHRONIZE_CACHE cmd. 18471 */ 18472 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 18473 uscmd->uscsi_cdblen = CDB_GROUP1; 18474 uscmd->uscsi_cdb = (caddr_t)cdb; 18475 uscmd->uscsi_bufaddr = NULL; 18476 uscmd->uscsi_buflen = 0; 18477 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 18478 uscmd->uscsi_rqlen = SENSE_LENGTH; 18479 uscmd->uscsi_rqresid = SENSE_LENGTH; 18480 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 18481 uscmd->uscsi_timeout = sd_io_time; 18482 18483 /* 18484 * Allocate an sd_uscsi_info struct and fill it with the info 18485 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 18486 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 18487 * since we allocate the buf here in this function, we do not 18488 * need to preserve the prior contents of b_private. 18489 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 18490 */ 18491 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 18492 uip->ui_flags = SD_PATH_DIRECT; 18493 uip->ui_cmdp = uscmd; 18494 18495 bp = getrbuf(KM_SLEEP); 18496 bp->b_private = uip; 18497 18498 /* 18499 * Setup buffer to carry uscsi request. 18500 */ 18501 bp->b_flags = B_BUSY; 18502 bp->b_bcount = 0; 18503 bp->b_blkno = 0; 18504 18505 if (dkc != NULL) { 18506 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 18507 uip->ui_dkc = *dkc; 18508 } 18509 18510 bp->b_edev = SD_GET_DEV(un); 18511 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 18512 18513 (void) sd_uscsi_strategy(bp); 18514 18515 /* 18516 * If synchronous request, wait for completion 18517 * If async just return and let b_iodone callback 18518 * cleanup. 18519 * NOTE: On return, u_ncmds_in_driver will be decremented, 18520 * but it was also incremented in sd_uscsi_strategy(), so 18521 * we should be ok. 18522 */ 18523 if (dkc == NULL) { 18524 (void) biowait(bp); 18525 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 18526 } 18527 18528 return (rval); 18529 } 18530 18531 18532 static int 18533 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 18534 { 18535 struct sd_uscsi_info *uip; 18536 struct uscsi_cmd *uscmd; 18537 uint8_t *sense_buf; 18538 struct sd_lun *un; 18539 int status; 18540 18541 uip = (struct sd_uscsi_info *)(bp->b_private); 18542 ASSERT(uip != NULL); 18543 18544 uscmd = uip->ui_cmdp; 18545 ASSERT(uscmd != NULL); 18546 18547 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 18548 ASSERT(sense_buf != NULL); 18549 18550 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 18551 ASSERT(un != NULL); 18552 18553 status = geterror(bp); 18554 switch (status) { 18555 case 0: 18556 break; /* Success! */ 18557 case EIO: 18558 switch (uscmd->uscsi_status) { 18559 case STATUS_RESERVATION_CONFLICT: 18560 /* Ignore reservation conflict */ 18561 status = 0; 18562 goto done; 18563 18564 case STATUS_CHECK: 18565 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 18566 (scsi_sense_key(sense_buf) == 18567 KEY_ILLEGAL_REQUEST)) { 18568 /* Ignore Illegal Request error */ 18569 mutex_enter(SD_MUTEX(un)); 18570 un->un_f_sync_cache_supported = FALSE; 18571 mutex_exit(SD_MUTEX(un)); 18572 status = ENOTSUP; 18573 goto done; 18574 } 18575 break; 18576 default: 18577 break; 18578 } 18579 /* FALLTHRU */ 18580 default: 18581 /* 18582 * Don't log an error message if this device 18583 * has removable media. 18584 */ 18585 if (!un->un_f_has_removable_media) { 18586 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18587 "SYNCHRONIZE CACHE command failed (%d)\n", status); 18588 } 18589 break; 18590 } 18591 18592 done: 18593 if (uip->ui_dkc.dkc_callback != NULL) { 18594 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 18595 } 18596 18597 ASSERT((bp->b_flags & B_REMAPPED) == 0); 18598 freerbuf(bp); 18599 kmem_free(uip, sizeof (struct sd_uscsi_info)); 18600 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 18601 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 18602 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 18603 18604 return (status); 18605 } 18606 18607 18608 /* 18609 * Function: sd_send_scsi_GET_CONFIGURATION 18610 * 18611 * Description: Issues the get configuration command to the device. 18612 * Called from sd_check_for_writable_cd & sd_get_media_info 18613 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 18614 * Arguments: un 18615 * ucmdbuf 18616 * rqbuf 18617 * rqbuflen 18618 * bufaddr 18619 * buflen 18620 * path_flag 18621 * 18622 * Return Code: 0 - Success 18623 * errno return code from sd_send_scsi_cmd() 18624 * 18625 * Context: Can sleep. Does not return until command is completed. 18626 * 18627 */ 18628 18629 static int 18630 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf, 18631 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 18632 int path_flag) 18633 { 18634 char cdb[CDB_GROUP1]; 18635 int status; 18636 18637 ASSERT(un != NULL); 18638 ASSERT(!mutex_owned(SD_MUTEX(un))); 18639 ASSERT(bufaddr != NULL); 18640 ASSERT(ucmdbuf != NULL); 18641 ASSERT(rqbuf != NULL); 18642 18643 SD_TRACE(SD_LOG_IO, un, 18644 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 18645 18646 bzero(cdb, sizeof (cdb)); 18647 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 18648 bzero(rqbuf, rqbuflen); 18649 bzero(bufaddr, buflen); 18650 18651 /* 18652 * Set up cdb field for the get configuration command. 18653 */ 18654 cdb[0] = SCMD_GET_CONFIGURATION; 18655 cdb[1] = 0x02; /* Requested Type */ 18656 cdb[8] = SD_PROFILE_HEADER_LEN; 18657 ucmdbuf->uscsi_cdb = cdb; 18658 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 18659 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 18660 ucmdbuf->uscsi_buflen = buflen; 18661 ucmdbuf->uscsi_timeout = sd_io_time; 18662 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 18663 ucmdbuf->uscsi_rqlen = rqbuflen; 18664 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 18665 18666 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL, 18667 UIO_SYSSPACE, path_flag); 18668 18669 switch (status) { 18670 case 0: 18671 break; /* Success! */ 18672 case EIO: 18673 switch (ucmdbuf->uscsi_status) { 18674 case STATUS_RESERVATION_CONFLICT: 18675 status = EACCES; 18676 break; 18677 default: 18678 break; 18679 } 18680 break; 18681 default: 18682 break; 18683 } 18684 18685 if (status == 0) { 18686 SD_DUMP_MEMORY(un, SD_LOG_IO, 18687 "sd_send_scsi_GET_CONFIGURATION: data", 18688 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 18689 } 18690 18691 SD_TRACE(SD_LOG_IO, un, 18692 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 18693 18694 return (status); 18695 } 18696 18697 /* 18698 * Function: sd_send_scsi_feature_GET_CONFIGURATION 18699 * 18700 * Description: Issues the get configuration command to the device to 18701 * retrieve a specific feature. Called from 18702 * sd_check_for_writable_cd & sd_set_mmc_caps. 18703 * Arguments: un 18704 * ucmdbuf 18705 * rqbuf 18706 * rqbuflen 18707 * bufaddr 18708 * buflen 18709 * feature 18710 * 18711 * Return Code: 0 - Success 18712 * errno return code from sd_send_scsi_cmd() 18713 * 18714 * Context: Can sleep. Does not return until command is completed. 18715 * 18716 */ 18717 static int 18718 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 18719 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 18720 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 18721 { 18722 char cdb[CDB_GROUP1]; 18723 int status; 18724 18725 ASSERT(un != NULL); 18726 ASSERT(!mutex_owned(SD_MUTEX(un))); 18727 ASSERT(bufaddr != NULL); 18728 ASSERT(ucmdbuf != NULL); 18729 ASSERT(rqbuf != NULL); 18730 18731 SD_TRACE(SD_LOG_IO, un, 18732 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 18733 18734 bzero(cdb, sizeof (cdb)); 18735 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 18736 bzero(rqbuf, rqbuflen); 18737 bzero(bufaddr, buflen); 18738 18739 /* 18740 * Set up cdb field for the get configuration command. 18741 */ 18742 cdb[0] = SCMD_GET_CONFIGURATION; 18743 cdb[1] = 0x02; /* Requested Type */ 18744 cdb[3] = feature; 18745 cdb[8] = buflen; 18746 ucmdbuf->uscsi_cdb = cdb; 18747 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 18748 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 18749 ucmdbuf->uscsi_buflen = buflen; 18750 ucmdbuf->uscsi_timeout = sd_io_time; 18751 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 18752 ucmdbuf->uscsi_rqlen = rqbuflen; 18753 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 18754 18755 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL, 18756 UIO_SYSSPACE, path_flag); 18757 18758 switch (status) { 18759 case 0: 18760 break; /* Success! */ 18761 case EIO: 18762 switch (ucmdbuf->uscsi_status) { 18763 case STATUS_RESERVATION_CONFLICT: 18764 status = EACCES; 18765 break; 18766 default: 18767 break; 18768 } 18769 break; 18770 default: 18771 break; 18772 } 18773 18774 if (status == 0) { 18775 SD_DUMP_MEMORY(un, SD_LOG_IO, 18776 "sd_send_scsi_feature_GET_CONFIGURATION: data", 18777 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 18778 } 18779 18780 SD_TRACE(SD_LOG_IO, un, 18781 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 18782 18783 return (status); 18784 } 18785 18786 18787 /* 18788 * Function: sd_send_scsi_MODE_SENSE 18789 * 18790 * Description: Utility function for issuing a scsi MODE SENSE command. 18791 * Note: This routine uses a consistent implementation for Group0, 18792 * Group1, and Group2 commands across all platforms. ATAPI devices 18793 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 18794 * 18795 * Arguments: un - pointer to the softstate struct for the target. 18796 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 18797 * CDB_GROUP[1|2] (10 byte). 18798 * bufaddr - buffer for page data retrieved from the target. 18799 * buflen - size of page to be retrieved. 18800 * page_code - page code of data to be retrieved from the target. 18801 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 18802 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 18803 * to use the USCSI "direct" chain and bypass the normal 18804 * command waitq. 18805 * 18806 * Return Code: 0 - Success 18807 * errno return code from sd_send_scsi_cmd() 18808 * 18809 * Context: Can sleep. Does not return until command is completed. 18810 */ 18811 18812 static int 18813 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 18814 size_t buflen, uchar_t page_code, int path_flag) 18815 { 18816 struct scsi_extended_sense sense_buf; 18817 union scsi_cdb cdb; 18818 struct uscsi_cmd ucmd_buf; 18819 int status; 18820 int headlen; 18821 18822 ASSERT(un != NULL); 18823 ASSERT(!mutex_owned(SD_MUTEX(un))); 18824 ASSERT(bufaddr != NULL); 18825 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 18826 (cdbsize == CDB_GROUP2)); 18827 18828 SD_TRACE(SD_LOG_IO, un, 18829 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 18830 18831 bzero(&cdb, sizeof (cdb)); 18832 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18833 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 18834 bzero(bufaddr, buflen); 18835 18836 if (cdbsize == CDB_GROUP0) { 18837 cdb.scc_cmd = SCMD_MODE_SENSE; 18838 cdb.cdb_opaque[2] = page_code; 18839 FORMG0COUNT(&cdb, buflen); 18840 headlen = MODE_HEADER_LENGTH; 18841 } else { 18842 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 18843 cdb.cdb_opaque[2] = page_code; 18844 FORMG1COUNT(&cdb, buflen); 18845 headlen = MODE_HEADER_LENGTH_GRP2; 18846 } 18847 18848 ASSERT(headlen <= buflen); 18849 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 18850 18851 ucmd_buf.uscsi_cdb = (char *)&cdb; 18852 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 18853 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 18854 ucmd_buf.uscsi_buflen = buflen; 18855 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18856 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 18857 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 18858 ucmd_buf.uscsi_timeout = 60; 18859 18860 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18861 UIO_SYSSPACE, path_flag); 18862 18863 switch (status) { 18864 case 0: 18865 /* 18866 * sr_check_wp() uses 0x3f page code and check the header of 18867 * mode page to determine if target device is write-protected. 18868 * But some USB devices return 0 bytes for 0x3f page code. For 18869 * this case, make sure that mode page header is returned at 18870 * least. 18871 */ 18872 if (buflen - ucmd_buf.uscsi_resid < headlen) 18873 status = EIO; 18874 break; /* Success! */ 18875 case EIO: 18876 switch (ucmd_buf.uscsi_status) { 18877 case STATUS_RESERVATION_CONFLICT: 18878 status = EACCES; 18879 break; 18880 default: 18881 break; 18882 } 18883 break; 18884 default: 18885 break; 18886 } 18887 18888 if (status == 0) { 18889 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 18890 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 18891 } 18892 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 18893 18894 return (status); 18895 } 18896 18897 18898 /* 18899 * Function: sd_send_scsi_MODE_SELECT 18900 * 18901 * Description: Utility function for issuing a scsi MODE SELECT command. 18902 * Note: This routine uses a consistent implementation for Group0, 18903 * Group1, and Group2 commands across all platforms. ATAPI devices 18904 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 18905 * 18906 * Arguments: un - pointer to the softstate struct for the target. 18907 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 18908 * CDB_GROUP[1|2] (10 byte). 18909 * bufaddr - buffer for page data retrieved from the target. 18910 * buflen - size of page to be retrieved. 18911 * save_page - boolean to determin if SP bit should be set. 18912 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 18913 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 18914 * to use the USCSI "direct" chain and bypass the normal 18915 * command waitq. 18916 * 18917 * Return Code: 0 - Success 18918 * errno return code from sd_send_scsi_cmd() 18919 * 18920 * Context: Can sleep. Does not return until command is completed. 18921 */ 18922 18923 static int 18924 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 18925 size_t buflen, uchar_t save_page, int path_flag) 18926 { 18927 struct scsi_extended_sense sense_buf; 18928 union scsi_cdb cdb; 18929 struct uscsi_cmd ucmd_buf; 18930 int status; 18931 18932 ASSERT(un != NULL); 18933 ASSERT(!mutex_owned(SD_MUTEX(un))); 18934 ASSERT(bufaddr != NULL); 18935 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 18936 (cdbsize == CDB_GROUP2)); 18937 18938 SD_TRACE(SD_LOG_IO, un, 18939 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 18940 18941 bzero(&cdb, sizeof (cdb)); 18942 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18943 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 18944 18945 /* Set the PF bit for many third party drives */ 18946 cdb.cdb_opaque[1] = 0x10; 18947 18948 /* Set the savepage(SP) bit if given */ 18949 if (save_page == SD_SAVE_PAGE) { 18950 cdb.cdb_opaque[1] |= 0x01; 18951 } 18952 18953 if (cdbsize == CDB_GROUP0) { 18954 cdb.scc_cmd = SCMD_MODE_SELECT; 18955 FORMG0COUNT(&cdb, buflen); 18956 } else { 18957 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 18958 FORMG1COUNT(&cdb, buflen); 18959 } 18960 18961 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 18962 18963 ucmd_buf.uscsi_cdb = (char *)&cdb; 18964 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 18965 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 18966 ucmd_buf.uscsi_buflen = buflen; 18967 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18968 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 18969 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 18970 ucmd_buf.uscsi_timeout = 60; 18971 18972 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 18973 UIO_SYSSPACE, path_flag); 18974 18975 switch (status) { 18976 case 0: 18977 break; /* Success! */ 18978 case EIO: 18979 switch (ucmd_buf.uscsi_status) { 18980 case STATUS_RESERVATION_CONFLICT: 18981 status = EACCES; 18982 break; 18983 default: 18984 break; 18985 } 18986 break; 18987 default: 18988 break; 18989 } 18990 18991 if (status == 0) { 18992 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 18993 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 18994 } 18995 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 18996 18997 return (status); 18998 } 18999 19000 19001 /* 19002 * Function: sd_send_scsi_RDWR 19003 * 19004 * Description: Issue a scsi READ or WRITE command with the given parameters. 19005 * 19006 * Arguments: un: Pointer to the sd_lun struct for the target. 19007 * cmd: SCMD_READ or SCMD_WRITE 19008 * bufaddr: Address of caller's buffer to receive the RDWR data 19009 * buflen: Length of caller's buffer receive the RDWR data. 19010 * start_block: Block number for the start of the RDWR operation. 19011 * (Assumes target-native block size.) 19012 * residp: Pointer to variable to receive the redisual of the 19013 * RDWR operation (may be NULL of no residual requested). 19014 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19015 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19016 * to use the USCSI "direct" chain and bypass the normal 19017 * command waitq. 19018 * 19019 * Return Code: 0 - Success 19020 * errno return code from sd_send_scsi_cmd() 19021 * 19022 * Context: Can sleep. Does not return until command is completed. 19023 */ 19024 19025 static int 19026 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 19027 size_t buflen, daddr_t start_block, int path_flag) 19028 { 19029 struct scsi_extended_sense sense_buf; 19030 union scsi_cdb cdb; 19031 struct uscsi_cmd ucmd_buf; 19032 uint32_t block_count; 19033 int status; 19034 int cdbsize; 19035 uchar_t flag; 19036 19037 ASSERT(un != NULL); 19038 ASSERT(!mutex_owned(SD_MUTEX(un))); 19039 ASSERT(bufaddr != NULL); 19040 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 19041 19042 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 19043 19044 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 19045 return (EINVAL); 19046 } 19047 19048 mutex_enter(SD_MUTEX(un)); 19049 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 19050 mutex_exit(SD_MUTEX(un)); 19051 19052 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 19053 19054 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 19055 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 19056 bufaddr, buflen, start_block, block_count); 19057 19058 bzero(&cdb, sizeof (cdb)); 19059 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19060 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19061 19062 /* Compute CDB size to use */ 19063 if (start_block > 0xffffffff) 19064 cdbsize = CDB_GROUP4; 19065 else if ((start_block & 0xFFE00000) || 19066 (un->un_f_cfg_is_atapi == TRUE)) 19067 cdbsize = CDB_GROUP1; 19068 else 19069 cdbsize = CDB_GROUP0; 19070 19071 switch (cdbsize) { 19072 case CDB_GROUP0: /* 6-byte CDBs */ 19073 cdb.scc_cmd = cmd; 19074 FORMG0ADDR(&cdb, start_block); 19075 FORMG0COUNT(&cdb, block_count); 19076 break; 19077 case CDB_GROUP1: /* 10-byte CDBs */ 19078 cdb.scc_cmd = cmd | SCMD_GROUP1; 19079 FORMG1ADDR(&cdb, start_block); 19080 FORMG1COUNT(&cdb, block_count); 19081 break; 19082 case CDB_GROUP4: /* 16-byte CDBs */ 19083 cdb.scc_cmd = cmd | SCMD_GROUP4; 19084 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 19085 FORMG4COUNT(&cdb, block_count); 19086 break; 19087 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 19088 default: 19089 /* All others reserved */ 19090 return (EINVAL); 19091 } 19092 19093 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 19094 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 19095 19096 ucmd_buf.uscsi_cdb = (char *)&cdb; 19097 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 19098 ucmd_buf.uscsi_bufaddr = bufaddr; 19099 ucmd_buf.uscsi_buflen = buflen; 19100 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19101 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19102 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 19103 ucmd_buf.uscsi_timeout = 60; 19104 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19105 UIO_SYSSPACE, path_flag); 19106 switch (status) { 19107 case 0: 19108 break; /* Success! */ 19109 case EIO: 19110 switch (ucmd_buf.uscsi_status) { 19111 case STATUS_RESERVATION_CONFLICT: 19112 status = EACCES; 19113 break; 19114 default: 19115 break; 19116 } 19117 break; 19118 default: 19119 break; 19120 } 19121 19122 if (status == 0) { 19123 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 19124 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 19125 } 19126 19127 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 19128 19129 return (status); 19130 } 19131 19132 19133 /* 19134 * Function: sd_send_scsi_LOG_SENSE 19135 * 19136 * Description: Issue a scsi LOG_SENSE command with the given parameters. 19137 * 19138 * Arguments: un: Pointer to the sd_lun struct for the target. 19139 * 19140 * Return Code: 0 - Success 19141 * errno return code from sd_send_scsi_cmd() 19142 * 19143 * Context: Can sleep. Does not return until command is completed. 19144 */ 19145 19146 static int 19147 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen, 19148 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 19149 int path_flag) 19150 19151 { 19152 struct scsi_extended_sense sense_buf; 19153 union scsi_cdb cdb; 19154 struct uscsi_cmd ucmd_buf; 19155 int status; 19156 19157 ASSERT(un != NULL); 19158 ASSERT(!mutex_owned(SD_MUTEX(un))); 19159 19160 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 19161 19162 bzero(&cdb, sizeof (cdb)); 19163 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19164 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19165 19166 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 19167 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 19168 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 19169 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 19170 FORMG1COUNT(&cdb, buflen); 19171 19172 ucmd_buf.uscsi_cdb = (char *)&cdb; 19173 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19174 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 19175 ucmd_buf.uscsi_buflen = buflen; 19176 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19177 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19178 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19179 ucmd_buf.uscsi_timeout = 60; 19180 19181 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19182 UIO_SYSSPACE, path_flag); 19183 19184 switch (status) { 19185 case 0: 19186 break; 19187 case EIO: 19188 switch (ucmd_buf.uscsi_status) { 19189 case STATUS_RESERVATION_CONFLICT: 19190 status = EACCES; 19191 break; 19192 case STATUS_CHECK: 19193 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19194 (scsi_sense_key((uint8_t *)&sense_buf) == 19195 KEY_ILLEGAL_REQUEST) && 19196 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 19197 /* 19198 * ASC 0x24: INVALID FIELD IN CDB 19199 */ 19200 switch (page_code) { 19201 case START_STOP_CYCLE_PAGE: 19202 /* 19203 * The start stop cycle counter is 19204 * implemented as page 0x31 in earlier 19205 * generation disks. In new generation 19206 * disks the start stop cycle counter is 19207 * implemented as page 0xE. To properly 19208 * handle this case if an attempt for 19209 * log page 0xE is made and fails we 19210 * will try again using page 0x31. 19211 * 19212 * Network storage BU committed to 19213 * maintain the page 0x31 for this 19214 * purpose and will not have any other 19215 * page implemented with page code 0x31 19216 * until all disks transition to the 19217 * standard page. 19218 */ 19219 mutex_enter(SD_MUTEX(un)); 19220 un->un_start_stop_cycle_page = 19221 START_STOP_CYCLE_VU_PAGE; 19222 cdb.cdb_opaque[2] = 19223 (char)(page_control << 6) | 19224 un->un_start_stop_cycle_page; 19225 mutex_exit(SD_MUTEX(un)); 19226 status = sd_send_scsi_cmd( 19227 SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19228 UIO_SYSSPACE, path_flag); 19229 19230 break; 19231 case TEMPERATURE_PAGE: 19232 status = ENOTTY; 19233 break; 19234 default: 19235 break; 19236 } 19237 } 19238 break; 19239 default: 19240 break; 19241 } 19242 break; 19243 default: 19244 break; 19245 } 19246 19247 if (status == 0) { 19248 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 19249 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 19250 } 19251 19252 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 19253 19254 return (status); 19255 } 19256 19257 19258 /* 19259 * Function: sdioctl 19260 * 19261 * Description: Driver's ioctl(9e) entry point function. 19262 * 19263 * Arguments: dev - device number 19264 * cmd - ioctl operation to be performed 19265 * arg - user argument, contains data to be set or reference 19266 * parameter for get 19267 * flag - bit flag, indicating open settings, 32/64 bit type 19268 * cred_p - user credential pointer 19269 * rval_p - calling process return value (OPT) 19270 * 19271 * Return Code: EINVAL 19272 * ENOTTY 19273 * ENXIO 19274 * EIO 19275 * EFAULT 19276 * ENOTSUP 19277 * EPERM 19278 * 19279 * Context: Called from the device switch at normal priority. 19280 */ 19281 19282 static int 19283 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 19284 { 19285 struct sd_lun *un = NULL; 19286 int err = 0; 19287 int i = 0; 19288 cred_t *cr; 19289 int tmprval = EINVAL; 19290 int is_valid; 19291 19292 /* 19293 * All device accesses go thru sdstrategy where we check on suspend 19294 * status 19295 */ 19296 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 19297 return (ENXIO); 19298 } 19299 19300 ASSERT(!mutex_owned(SD_MUTEX(un))); 19301 19302 19303 is_valid = SD_IS_VALID_LABEL(un); 19304 19305 /* 19306 * Moved this wait from sd_uscsi_strategy to here for 19307 * reasons of deadlock prevention. Internal driver commands, 19308 * specifically those to change a devices power level, result 19309 * in a call to sd_uscsi_strategy. 19310 */ 19311 mutex_enter(SD_MUTEX(un)); 19312 while ((un->un_state == SD_STATE_SUSPENDED) || 19313 (un->un_state == SD_STATE_PM_CHANGING)) { 19314 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 19315 } 19316 /* 19317 * Twiddling the counter here protects commands from now 19318 * through to the top of sd_uscsi_strategy. Without the 19319 * counter inc. a power down, for example, could get in 19320 * after the above check for state is made and before 19321 * execution gets to the top of sd_uscsi_strategy. 19322 * That would cause problems. 19323 */ 19324 un->un_ncmds_in_driver++; 19325 19326 if (!is_valid && 19327 (flag & (FNDELAY | FNONBLOCK))) { 19328 switch (cmd) { 19329 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 19330 case DKIOCGVTOC: 19331 case DKIOCGAPART: 19332 case DKIOCPARTINFO: 19333 case DKIOCSGEOM: 19334 case DKIOCSAPART: 19335 case DKIOCGETEFI: 19336 case DKIOCPARTITION: 19337 case DKIOCSVTOC: 19338 case DKIOCSETEFI: 19339 case DKIOCGMBOOT: 19340 case DKIOCSMBOOT: 19341 case DKIOCG_PHYGEOM: 19342 case DKIOCG_VIRTGEOM: 19343 /* let cmlb handle it */ 19344 goto skip_ready_valid; 19345 19346 case CDROMPAUSE: 19347 case CDROMRESUME: 19348 case CDROMPLAYMSF: 19349 case CDROMPLAYTRKIND: 19350 case CDROMREADTOCHDR: 19351 case CDROMREADTOCENTRY: 19352 case CDROMSTOP: 19353 case CDROMSTART: 19354 case CDROMVOLCTRL: 19355 case CDROMSUBCHNL: 19356 case CDROMREADMODE2: 19357 case CDROMREADMODE1: 19358 case CDROMREADOFFSET: 19359 case CDROMSBLKMODE: 19360 case CDROMGBLKMODE: 19361 case CDROMGDRVSPEED: 19362 case CDROMSDRVSPEED: 19363 case CDROMCDDA: 19364 case CDROMCDXA: 19365 case CDROMSUBCODE: 19366 if (!ISCD(un)) { 19367 un->un_ncmds_in_driver--; 19368 ASSERT(un->un_ncmds_in_driver >= 0); 19369 mutex_exit(SD_MUTEX(un)); 19370 return (ENOTTY); 19371 } 19372 break; 19373 case FDEJECT: 19374 case DKIOCEJECT: 19375 case CDROMEJECT: 19376 if (!un->un_f_eject_media_supported) { 19377 un->un_ncmds_in_driver--; 19378 ASSERT(un->un_ncmds_in_driver >= 0); 19379 mutex_exit(SD_MUTEX(un)); 19380 return (ENOTTY); 19381 } 19382 break; 19383 case DKIOCFLUSHWRITECACHE: 19384 mutex_exit(SD_MUTEX(un)); 19385 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 19386 if (err != 0) { 19387 mutex_enter(SD_MUTEX(un)); 19388 un->un_ncmds_in_driver--; 19389 ASSERT(un->un_ncmds_in_driver >= 0); 19390 mutex_exit(SD_MUTEX(un)); 19391 return (EIO); 19392 } 19393 mutex_enter(SD_MUTEX(un)); 19394 /* FALLTHROUGH */ 19395 case DKIOCREMOVABLE: 19396 case DKIOCHOTPLUGGABLE: 19397 case DKIOCINFO: 19398 case DKIOCGMEDIAINFO: 19399 case MHIOCENFAILFAST: 19400 case MHIOCSTATUS: 19401 case MHIOCTKOWN: 19402 case MHIOCRELEASE: 19403 case MHIOCGRP_INKEYS: 19404 case MHIOCGRP_INRESV: 19405 case MHIOCGRP_REGISTER: 19406 case MHIOCGRP_RESERVE: 19407 case MHIOCGRP_PREEMPTANDABORT: 19408 case MHIOCGRP_REGISTERANDIGNOREKEY: 19409 case CDROMCLOSETRAY: 19410 case USCSICMD: 19411 goto skip_ready_valid; 19412 default: 19413 break; 19414 } 19415 19416 mutex_exit(SD_MUTEX(un)); 19417 err = sd_ready_and_valid(un); 19418 mutex_enter(SD_MUTEX(un)); 19419 19420 if (err != SD_READY_VALID) { 19421 switch (cmd) { 19422 case DKIOCSTATE: 19423 case CDROMGDRVSPEED: 19424 case CDROMSDRVSPEED: 19425 case FDEJECT: /* for eject command */ 19426 case DKIOCEJECT: 19427 case CDROMEJECT: 19428 case DKIOCREMOVABLE: 19429 case DKIOCHOTPLUGGABLE: 19430 break; 19431 default: 19432 if (un->un_f_has_removable_media) { 19433 err = ENXIO; 19434 } else { 19435 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 19436 if (err == SD_RESERVED_BY_OTHERS) { 19437 err = EACCES; 19438 } else { 19439 err = EIO; 19440 } 19441 } 19442 un->un_ncmds_in_driver--; 19443 ASSERT(un->un_ncmds_in_driver >= 0); 19444 mutex_exit(SD_MUTEX(un)); 19445 return (err); 19446 } 19447 } 19448 } 19449 19450 skip_ready_valid: 19451 mutex_exit(SD_MUTEX(un)); 19452 19453 switch (cmd) { 19454 case DKIOCINFO: 19455 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 19456 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 19457 break; 19458 19459 case DKIOCGMEDIAINFO: 19460 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 19461 err = sd_get_media_info(dev, (caddr_t)arg, flag); 19462 break; 19463 19464 case DKIOCGGEOM: 19465 case DKIOCGVTOC: 19466 case DKIOCGAPART: 19467 case DKIOCPARTINFO: 19468 case DKIOCSGEOM: 19469 case DKIOCSAPART: 19470 case DKIOCGETEFI: 19471 case DKIOCPARTITION: 19472 case DKIOCSVTOC: 19473 case DKIOCSETEFI: 19474 case DKIOCGMBOOT: 19475 case DKIOCSMBOOT: 19476 case DKIOCG_PHYGEOM: 19477 case DKIOCG_VIRTGEOM: 19478 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 19479 19480 /* TUR should spin up */ 19481 19482 if (un->un_f_has_removable_media) 19483 err = sd_send_scsi_TEST_UNIT_READY(un, 19484 SD_CHECK_FOR_MEDIA); 19485 else 19486 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 19487 19488 if (err != 0) 19489 break; 19490 19491 err = cmlb_ioctl(un->un_cmlbhandle, dev, 19492 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 19493 19494 if ((err == 0) && 19495 ((cmd == DKIOCSETEFI) || 19496 (un->un_f_pkstats_enabled) && 19497 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) { 19498 19499 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 19500 (void *)SD_PATH_DIRECT); 19501 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 19502 sd_set_pstats(un); 19503 SD_TRACE(SD_LOG_IO_PARTITION, un, 19504 "sd_ioctl: un:0x%p pstats created and " 19505 "set\n", un); 19506 } 19507 } 19508 19509 if ((cmd == DKIOCSVTOC) || 19510 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 19511 19512 mutex_enter(SD_MUTEX(un)); 19513 if (un->un_f_devid_supported && 19514 (un->un_f_opt_fab_devid == TRUE)) { 19515 if (un->un_devid == NULL) { 19516 sd_register_devid(un, SD_DEVINFO(un), 19517 SD_TARGET_IS_UNRESERVED); 19518 } else { 19519 /* 19520 * The device id for this disk 19521 * has been fabricated. The 19522 * device id must be preserved 19523 * by writing it back out to 19524 * disk. 19525 */ 19526 if (sd_write_deviceid(un) != 0) { 19527 ddi_devid_free(un->un_devid); 19528 un->un_devid = NULL; 19529 } 19530 } 19531 } 19532 mutex_exit(SD_MUTEX(un)); 19533 } 19534 19535 break; 19536 19537 case DKIOCLOCK: 19538 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 19539 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 19540 SD_PATH_STANDARD); 19541 break; 19542 19543 case DKIOCUNLOCK: 19544 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 19545 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 19546 SD_PATH_STANDARD); 19547 break; 19548 19549 case DKIOCSTATE: { 19550 enum dkio_state state; 19551 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 19552 19553 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 19554 err = EFAULT; 19555 } else { 19556 err = sd_check_media(dev, state); 19557 if (err == 0) { 19558 if (ddi_copyout(&un->un_mediastate, (void *)arg, 19559 sizeof (int), flag) != 0) 19560 err = EFAULT; 19561 } 19562 } 19563 break; 19564 } 19565 19566 case DKIOCREMOVABLE: 19567 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 19568 i = un->un_f_has_removable_media ? 1 : 0; 19569 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 19570 err = EFAULT; 19571 } else { 19572 err = 0; 19573 } 19574 break; 19575 19576 case DKIOCHOTPLUGGABLE: 19577 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 19578 i = un->un_f_is_hotpluggable ? 1 : 0; 19579 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 19580 err = EFAULT; 19581 } else { 19582 err = 0; 19583 } 19584 break; 19585 19586 case DKIOCGTEMPERATURE: 19587 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 19588 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 19589 break; 19590 19591 case MHIOCENFAILFAST: 19592 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 19593 if ((err = drv_priv(cred_p)) == 0) { 19594 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 19595 } 19596 break; 19597 19598 case MHIOCTKOWN: 19599 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 19600 if ((err = drv_priv(cred_p)) == 0) { 19601 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 19602 } 19603 break; 19604 19605 case MHIOCRELEASE: 19606 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 19607 if ((err = drv_priv(cred_p)) == 0) { 19608 err = sd_mhdioc_release(dev); 19609 } 19610 break; 19611 19612 case MHIOCSTATUS: 19613 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 19614 if ((err = drv_priv(cred_p)) == 0) { 19615 switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) { 19616 case 0: 19617 err = 0; 19618 break; 19619 case EACCES: 19620 *rval_p = 1; 19621 err = 0; 19622 break; 19623 default: 19624 err = EIO; 19625 break; 19626 } 19627 } 19628 break; 19629 19630 case MHIOCQRESERVE: 19631 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 19632 if ((err = drv_priv(cred_p)) == 0) { 19633 err = sd_reserve_release(dev, SD_RESERVE); 19634 } 19635 break; 19636 19637 case MHIOCREREGISTERDEVID: 19638 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 19639 if (drv_priv(cred_p) == EPERM) { 19640 err = EPERM; 19641 } else if (!un->un_f_devid_supported) { 19642 err = ENOTTY; 19643 } else { 19644 err = sd_mhdioc_register_devid(dev); 19645 } 19646 break; 19647 19648 case MHIOCGRP_INKEYS: 19649 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 19650 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 19651 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19652 err = ENOTSUP; 19653 } else { 19654 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 19655 flag); 19656 } 19657 } 19658 break; 19659 19660 case MHIOCGRP_INRESV: 19661 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 19662 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 19663 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19664 err = ENOTSUP; 19665 } else { 19666 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 19667 } 19668 } 19669 break; 19670 19671 case MHIOCGRP_REGISTER: 19672 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 19673 if ((err = drv_priv(cred_p)) != EPERM) { 19674 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19675 err = ENOTSUP; 19676 } else if (arg != NULL) { 19677 mhioc_register_t reg; 19678 if (ddi_copyin((void *)arg, ®, 19679 sizeof (mhioc_register_t), flag) != 0) { 19680 err = EFAULT; 19681 } else { 19682 err = 19683 sd_send_scsi_PERSISTENT_RESERVE_OUT( 19684 un, SD_SCSI3_REGISTER, 19685 (uchar_t *)®); 19686 } 19687 } 19688 } 19689 break; 19690 19691 case MHIOCGRP_RESERVE: 19692 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 19693 if ((err = drv_priv(cred_p)) != EPERM) { 19694 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19695 err = ENOTSUP; 19696 } else if (arg != NULL) { 19697 mhioc_resv_desc_t resv_desc; 19698 if (ddi_copyin((void *)arg, &resv_desc, 19699 sizeof (mhioc_resv_desc_t), flag) != 0) { 19700 err = EFAULT; 19701 } else { 19702 err = 19703 sd_send_scsi_PERSISTENT_RESERVE_OUT( 19704 un, SD_SCSI3_RESERVE, 19705 (uchar_t *)&resv_desc); 19706 } 19707 } 19708 } 19709 break; 19710 19711 case MHIOCGRP_PREEMPTANDABORT: 19712 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 19713 if ((err = drv_priv(cred_p)) != EPERM) { 19714 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19715 err = ENOTSUP; 19716 } else if (arg != NULL) { 19717 mhioc_preemptandabort_t preempt_abort; 19718 if (ddi_copyin((void *)arg, &preempt_abort, 19719 sizeof (mhioc_preemptandabort_t), 19720 flag) != 0) { 19721 err = EFAULT; 19722 } else { 19723 err = 19724 sd_send_scsi_PERSISTENT_RESERVE_OUT( 19725 un, SD_SCSI3_PREEMPTANDABORT, 19726 (uchar_t *)&preempt_abort); 19727 } 19728 } 19729 } 19730 break; 19731 19732 case MHIOCGRP_REGISTERANDIGNOREKEY: 19733 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 19734 if ((err = drv_priv(cred_p)) != EPERM) { 19735 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 19736 err = ENOTSUP; 19737 } else if (arg != NULL) { 19738 mhioc_registerandignorekey_t r_and_i; 19739 if (ddi_copyin((void *)arg, (void *)&r_and_i, 19740 sizeof (mhioc_registerandignorekey_t), 19741 flag) != 0) { 19742 err = EFAULT; 19743 } else { 19744 err = 19745 sd_send_scsi_PERSISTENT_RESERVE_OUT( 19746 un, SD_SCSI3_REGISTERANDIGNOREKEY, 19747 (uchar_t *)&r_and_i); 19748 } 19749 } 19750 } 19751 break; 19752 19753 case USCSICMD: 19754 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 19755 cr = ddi_get_cred(); 19756 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 19757 err = EPERM; 19758 } else { 19759 enum uio_seg uioseg; 19760 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 19761 UIO_USERSPACE; 19762 if (un->un_f_format_in_progress == TRUE) { 19763 err = EAGAIN; 19764 break; 19765 } 19766 err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg, 19767 flag, uioseg, SD_PATH_STANDARD); 19768 } 19769 break; 19770 19771 case CDROMPAUSE: 19772 case CDROMRESUME: 19773 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 19774 if (!ISCD(un)) { 19775 err = ENOTTY; 19776 } else { 19777 err = sr_pause_resume(dev, cmd); 19778 } 19779 break; 19780 19781 case CDROMPLAYMSF: 19782 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 19783 if (!ISCD(un)) { 19784 err = ENOTTY; 19785 } else { 19786 err = sr_play_msf(dev, (caddr_t)arg, flag); 19787 } 19788 break; 19789 19790 case CDROMPLAYTRKIND: 19791 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 19792 #if defined(__i386) || defined(__amd64) 19793 /* 19794 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 19795 */ 19796 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 19797 #else 19798 if (!ISCD(un)) { 19799 #endif 19800 err = ENOTTY; 19801 } else { 19802 err = sr_play_trkind(dev, (caddr_t)arg, flag); 19803 } 19804 break; 19805 19806 case CDROMREADTOCHDR: 19807 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 19808 if (!ISCD(un)) { 19809 err = ENOTTY; 19810 } else { 19811 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 19812 } 19813 break; 19814 19815 case CDROMREADTOCENTRY: 19816 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 19817 if (!ISCD(un)) { 19818 err = ENOTTY; 19819 } else { 19820 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 19821 } 19822 break; 19823 19824 case CDROMSTOP: 19825 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 19826 if (!ISCD(un)) { 19827 err = ENOTTY; 19828 } else { 19829 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP, 19830 SD_PATH_STANDARD); 19831 } 19832 break; 19833 19834 case CDROMSTART: 19835 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 19836 if (!ISCD(un)) { 19837 err = ENOTTY; 19838 } else { 19839 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 19840 SD_PATH_STANDARD); 19841 } 19842 break; 19843 19844 case CDROMCLOSETRAY: 19845 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 19846 if (!ISCD(un)) { 19847 err = ENOTTY; 19848 } else { 19849 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE, 19850 SD_PATH_STANDARD); 19851 } 19852 break; 19853 19854 case FDEJECT: /* for eject command */ 19855 case DKIOCEJECT: 19856 case CDROMEJECT: 19857 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 19858 if (!un->un_f_eject_media_supported) { 19859 err = ENOTTY; 19860 } else { 19861 err = sr_eject(dev); 19862 } 19863 break; 19864 19865 case CDROMVOLCTRL: 19866 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 19867 if (!ISCD(un)) { 19868 err = ENOTTY; 19869 } else { 19870 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 19871 } 19872 break; 19873 19874 case CDROMSUBCHNL: 19875 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 19876 if (!ISCD(un)) { 19877 err = ENOTTY; 19878 } else { 19879 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 19880 } 19881 break; 19882 19883 case CDROMREADMODE2: 19884 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 19885 if (!ISCD(un)) { 19886 err = ENOTTY; 19887 } else if (un->un_f_cfg_is_atapi == TRUE) { 19888 /* 19889 * If the drive supports READ CD, use that instead of 19890 * switching the LBA size via a MODE SELECT 19891 * Block Descriptor 19892 */ 19893 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 19894 } else { 19895 err = sr_read_mode2(dev, (caddr_t)arg, flag); 19896 } 19897 break; 19898 19899 case CDROMREADMODE1: 19900 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 19901 if (!ISCD(un)) { 19902 err = ENOTTY; 19903 } else { 19904 err = sr_read_mode1(dev, (caddr_t)arg, flag); 19905 } 19906 break; 19907 19908 case CDROMREADOFFSET: 19909 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 19910 if (!ISCD(un)) { 19911 err = ENOTTY; 19912 } else { 19913 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 19914 flag); 19915 } 19916 break; 19917 19918 case CDROMSBLKMODE: 19919 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 19920 /* 19921 * There is no means of changing block size in case of atapi 19922 * drives, thus return ENOTTY if drive type is atapi 19923 */ 19924 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 19925 err = ENOTTY; 19926 } else if (un->un_f_mmc_cap == TRUE) { 19927 19928 /* 19929 * MMC Devices do not support changing the 19930 * logical block size 19931 * 19932 * Note: EINVAL is being returned instead of ENOTTY to 19933 * maintain consistancy with the original mmc 19934 * driver update. 19935 */ 19936 err = EINVAL; 19937 } else { 19938 mutex_enter(SD_MUTEX(un)); 19939 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 19940 (un->un_ncmds_in_transport > 0)) { 19941 mutex_exit(SD_MUTEX(un)); 19942 err = EINVAL; 19943 } else { 19944 mutex_exit(SD_MUTEX(un)); 19945 err = sr_change_blkmode(dev, cmd, arg, flag); 19946 } 19947 } 19948 break; 19949 19950 case CDROMGBLKMODE: 19951 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 19952 if (!ISCD(un)) { 19953 err = ENOTTY; 19954 } else if ((un->un_f_cfg_is_atapi != FALSE) && 19955 (un->un_f_blockcount_is_valid != FALSE)) { 19956 /* 19957 * Drive is an ATAPI drive so return target block 19958 * size for ATAPI drives since we cannot change the 19959 * blocksize on ATAPI drives. Used primarily to detect 19960 * if an ATAPI cdrom is present. 19961 */ 19962 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 19963 sizeof (int), flag) != 0) { 19964 err = EFAULT; 19965 } else { 19966 err = 0; 19967 } 19968 19969 } else { 19970 /* 19971 * Drive supports changing block sizes via a Mode 19972 * Select. 19973 */ 19974 err = sr_change_blkmode(dev, cmd, arg, flag); 19975 } 19976 break; 19977 19978 case CDROMGDRVSPEED: 19979 case CDROMSDRVSPEED: 19980 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 19981 if (!ISCD(un)) { 19982 err = ENOTTY; 19983 } else if (un->un_f_mmc_cap == TRUE) { 19984 /* 19985 * Note: In the future the driver implementation 19986 * for getting and 19987 * setting cd speed should entail: 19988 * 1) If non-mmc try the Toshiba mode page 19989 * (sr_change_speed) 19990 * 2) If mmc but no support for Real Time Streaming try 19991 * the SET CD SPEED (0xBB) command 19992 * (sr_atapi_change_speed) 19993 * 3) If mmc and support for Real Time Streaming 19994 * try the GET PERFORMANCE and SET STREAMING 19995 * commands (not yet implemented, 4380808) 19996 */ 19997 /* 19998 * As per recent MMC spec, CD-ROM speed is variable 19999 * and changes with LBA. Since there is no such 20000 * things as drive speed now, fail this ioctl. 20001 * 20002 * Note: EINVAL is returned for consistancy of original 20003 * implementation which included support for getting 20004 * the drive speed of mmc devices but not setting 20005 * the drive speed. Thus EINVAL would be returned 20006 * if a set request was made for an mmc device. 20007 * We no longer support get or set speed for 20008 * mmc but need to remain consistent with regard 20009 * to the error code returned. 20010 */ 20011 err = EINVAL; 20012 } else if (un->un_f_cfg_is_atapi == TRUE) { 20013 err = sr_atapi_change_speed(dev, cmd, arg, flag); 20014 } else { 20015 err = sr_change_speed(dev, cmd, arg, flag); 20016 } 20017 break; 20018 20019 case CDROMCDDA: 20020 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 20021 if (!ISCD(un)) { 20022 err = ENOTTY; 20023 } else { 20024 err = sr_read_cdda(dev, (void *)arg, flag); 20025 } 20026 break; 20027 20028 case CDROMCDXA: 20029 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 20030 if (!ISCD(un)) { 20031 err = ENOTTY; 20032 } else { 20033 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 20034 } 20035 break; 20036 20037 case CDROMSUBCODE: 20038 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 20039 if (!ISCD(un)) { 20040 err = ENOTTY; 20041 } else { 20042 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 20043 } 20044 break; 20045 20046 20047 #ifdef SDDEBUG 20048 /* RESET/ABORTS testing ioctls */ 20049 case DKIOCRESET: { 20050 int reset_level; 20051 20052 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 20053 err = EFAULT; 20054 } else { 20055 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 20056 "reset_level = 0x%lx\n", reset_level); 20057 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 20058 err = 0; 20059 } else { 20060 err = EIO; 20061 } 20062 } 20063 break; 20064 } 20065 20066 case DKIOCABORT: 20067 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 20068 if (scsi_abort(SD_ADDRESS(un), NULL)) { 20069 err = 0; 20070 } else { 20071 err = EIO; 20072 } 20073 break; 20074 #endif 20075 20076 #ifdef SD_FAULT_INJECTION 20077 /* SDIOC FaultInjection testing ioctls */ 20078 case SDIOCSTART: 20079 case SDIOCSTOP: 20080 case SDIOCINSERTPKT: 20081 case SDIOCINSERTXB: 20082 case SDIOCINSERTUN: 20083 case SDIOCINSERTARQ: 20084 case SDIOCPUSH: 20085 case SDIOCRETRIEVE: 20086 case SDIOCRUN: 20087 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 20088 "SDIOC detected cmd:0x%X:\n", cmd); 20089 /* call error generator */ 20090 sd_faultinjection_ioctl(cmd, arg, un); 20091 err = 0; 20092 break; 20093 20094 #endif /* SD_FAULT_INJECTION */ 20095 20096 case DKIOCFLUSHWRITECACHE: 20097 { 20098 struct dk_callback *dkc = (struct dk_callback *)arg; 20099 20100 mutex_enter(SD_MUTEX(un)); 20101 if (!un->un_f_sync_cache_supported || 20102 !un->un_f_write_cache_enabled) { 20103 err = un->un_f_sync_cache_supported ? 20104 0 : ENOTSUP; 20105 mutex_exit(SD_MUTEX(un)); 20106 if ((flag & FKIOCTL) && dkc != NULL && 20107 dkc->dkc_callback != NULL) { 20108 (*dkc->dkc_callback)(dkc->dkc_cookie, 20109 err); 20110 /* 20111 * Did callback and reported error. 20112 * Since we did a callback, ioctl 20113 * should return 0. 20114 */ 20115 err = 0; 20116 } 20117 break; 20118 } 20119 mutex_exit(SD_MUTEX(un)); 20120 20121 if ((flag & FKIOCTL) && dkc != NULL && 20122 dkc->dkc_callback != NULL) { 20123 /* async SYNC CACHE request */ 20124 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 20125 } else { 20126 /* synchronous SYNC CACHE request */ 20127 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 20128 } 20129 } 20130 break; 20131 20132 case DKIOCGETWCE: { 20133 20134 int wce; 20135 20136 if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) { 20137 break; 20138 } 20139 20140 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 20141 err = EFAULT; 20142 } 20143 break; 20144 } 20145 20146 case DKIOCSETWCE: { 20147 20148 int wce, sync_supported; 20149 20150 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 20151 err = EFAULT; 20152 break; 20153 } 20154 20155 /* 20156 * Synchronize multiple threads trying to enable 20157 * or disable the cache via the un_f_wcc_cv 20158 * condition variable. 20159 */ 20160 mutex_enter(SD_MUTEX(un)); 20161 20162 /* 20163 * Don't allow the cache to be enabled if the 20164 * config file has it disabled. 20165 */ 20166 if (un->un_f_opt_disable_cache && wce) { 20167 mutex_exit(SD_MUTEX(un)); 20168 err = EINVAL; 20169 break; 20170 } 20171 20172 /* 20173 * Wait for write cache change in progress 20174 * bit to be clear before proceeding. 20175 */ 20176 while (un->un_f_wcc_inprog) 20177 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 20178 20179 un->un_f_wcc_inprog = 1; 20180 20181 if (un->un_f_write_cache_enabled && wce == 0) { 20182 /* 20183 * Disable the write cache. Don't clear 20184 * un_f_write_cache_enabled until after 20185 * the mode select and flush are complete. 20186 */ 20187 sync_supported = un->un_f_sync_cache_supported; 20188 mutex_exit(SD_MUTEX(un)); 20189 if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE, 20190 SD_CACHE_DISABLE)) == 0 && sync_supported) { 20191 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 20192 } 20193 20194 mutex_enter(SD_MUTEX(un)); 20195 if (err == 0) { 20196 un->un_f_write_cache_enabled = 0; 20197 } 20198 20199 } else if (!un->un_f_write_cache_enabled && wce != 0) { 20200 /* 20201 * Set un_f_write_cache_enabled first, so there is 20202 * no window where the cache is enabled, but the 20203 * bit says it isn't. 20204 */ 20205 un->un_f_write_cache_enabled = 1; 20206 mutex_exit(SD_MUTEX(un)); 20207 20208 err = sd_cache_control(un, SD_CACHE_NOCHANGE, 20209 SD_CACHE_ENABLE); 20210 20211 mutex_enter(SD_MUTEX(un)); 20212 20213 if (err) { 20214 un->un_f_write_cache_enabled = 0; 20215 } 20216 } 20217 20218 un->un_f_wcc_inprog = 0; 20219 cv_broadcast(&un->un_wcc_cv); 20220 mutex_exit(SD_MUTEX(un)); 20221 break; 20222 } 20223 20224 default: 20225 err = ENOTTY; 20226 break; 20227 } 20228 mutex_enter(SD_MUTEX(un)); 20229 un->un_ncmds_in_driver--; 20230 ASSERT(un->un_ncmds_in_driver >= 0); 20231 mutex_exit(SD_MUTEX(un)); 20232 20233 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 20234 return (err); 20235 } 20236 20237 20238 /* 20239 * Function: sd_dkio_ctrl_info 20240 * 20241 * Description: This routine is the driver entry point for handling controller 20242 * information ioctl requests (DKIOCINFO). 20243 * 20244 * Arguments: dev - the device number 20245 * arg - pointer to user provided dk_cinfo structure 20246 * specifying the controller type and attributes. 20247 * flag - this argument is a pass through to ddi_copyxxx() 20248 * directly from the mode argument of ioctl(). 20249 * 20250 * Return Code: 0 20251 * EFAULT 20252 * ENXIO 20253 */ 20254 20255 static int 20256 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 20257 { 20258 struct sd_lun *un = NULL; 20259 struct dk_cinfo *info; 20260 dev_info_t *pdip; 20261 int lun, tgt; 20262 20263 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20264 return (ENXIO); 20265 } 20266 20267 info = (struct dk_cinfo *) 20268 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 20269 20270 switch (un->un_ctype) { 20271 case CTYPE_CDROM: 20272 info->dki_ctype = DKC_CDROM; 20273 break; 20274 default: 20275 info->dki_ctype = DKC_SCSI_CCS; 20276 break; 20277 } 20278 pdip = ddi_get_parent(SD_DEVINFO(un)); 20279 info->dki_cnum = ddi_get_instance(pdip); 20280 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 20281 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 20282 } else { 20283 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 20284 DK_DEVLEN - 1); 20285 } 20286 20287 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 20288 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 20289 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 20290 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 20291 20292 /* Unit Information */ 20293 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 20294 info->dki_slave = ((tgt << 3) | lun); 20295 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 20296 DK_DEVLEN - 1); 20297 info->dki_flags = DKI_FMTVOL; 20298 info->dki_partition = SDPART(dev); 20299 20300 /* Max Transfer size of this device in blocks */ 20301 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 20302 info->dki_addr = 0; 20303 info->dki_space = 0; 20304 info->dki_prio = 0; 20305 info->dki_vec = 0; 20306 20307 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 20308 kmem_free(info, sizeof (struct dk_cinfo)); 20309 return (EFAULT); 20310 } else { 20311 kmem_free(info, sizeof (struct dk_cinfo)); 20312 return (0); 20313 } 20314 } 20315 20316 20317 /* 20318 * Function: sd_get_media_info 20319 * 20320 * Description: This routine is the driver entry point for handling ioctl 20321 * requests for the media type or command set profile used by the 20322 * drive to operate on the media (DKIOCGMEDIAINFO). 20323 * 20324 * Arguments: dev - the device number 20325 * arg - pointer to user provided dk_minfo structure 20326 * specifying the media type, logical block size and 20327 * drive capacity. 20328 * flag - this argument is a pass through to ddi_copyxxx() 20329 * directly from the mode argument of ioctl(). 20330 * 20331 * Return Code: 0 20332 * EACCESS 20333 * EFAULT 20334 * ENXIO 20335 * EIO 20336 */ 20337 20338 static int 20339 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 20340 { 20341 struct sd_lun *un = NULL; 20342 struct uscsi_cmd com; 20343 struct scsi_inquiry *sinq; 20344 struct dk_minfo media_info; 20345 u_longlong_t media_capacity; 20346 uint64_t capacity; 20347 uint_t lbasize; 20348 uchar_t *out_data; 20349 uchar_t *rqbuf; 20350 int rval = 0; 20351 int rtn; 20352 20353 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 20354 (un->un_state == SD_STATE_OFFLINE)) { 20355 return (ENXIO); 20356 } 20357 20358 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 20359 20360 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 20361 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20362 20363 /* Issue a TUR to determine if the drive is ready with media present */ 20364 rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA); 20365 if (rval == ENXIO) { 20366 goto done; 20367 } 20368 20369 /* Now get configuration data */ 20370 if (ISCD(un)) { 20371 media_info.dki_media_type = DK_CDROM; 20372 20373 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 20374 if (un->un_f_mmc_cap == TRUE) { 20375 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, 20376 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 20377 SD_PATH_STANDARD); 20378 20379 if (rtn) { 20380 /* 20381 * Failed for other than an illegal request 20382 * or command not supported 20383 */ 20384 if ((com.uscsi_status == STATUS_CHECK) && 20385 (com.uscsi_rqstatus == STATUS_GOOD)) { 20386 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 20387 (rqbuf[12] != 0x20)) { 20388 rval = EIO; 20389 goto done; 20390 } 20391 } 20392 } else { 20393 /* 20394 * The GET CONFIGURATION command succeeded 20395 * so set the media type according to the 20396 * returned data 20397 */ 20398 media_info.dki_media_type = out_data[6]; 20399 media_info.dki_media_type <<= 8; 20400 media_info.dki_media_type |= out_data[7]; 20401 } 20402 } 20403 } else { 20404 /* 20405 * The profile list is not available, so we attempt to identify 20406 * the media type based on the inquiry data 20407 */ 20408 sinq = un->un_sd->sd_inq; 20409 if ((sinq->inq_dtype == DTYPE_DIRECT) || 20410 (sinq->inq_dtype == DTYPE_OPTICAL)) { 20411 /* This is a direct access device or optical disk */ 20412 media_info.dki_media_type = DK_FIXED_DISK; 20413 20414 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 20415 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 20416 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 20417 media_info.dki_media_type = DK_ZIP; 20418 } else if ( 20419 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 20420 media_info.dki_media_type = DK_JAZ; 20421 } 20422 } 20423 } else { 20424 /* 20425 * Not a CD, direct access or optical disk so return 20426 * unknown media 20427 */ 20428 media_info.dki_media_type = DK_UNKNOWN; 20429 } 20430 } 20431 20432 /* Now read the capacity so we can provide the lbasize and capacity */ 20433 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 20434 SD_PATH_DIRECT)) { 20435 case 0: 20436 break; 20437 case EACCES: 20438 rval = EACCES; 20439 goto done; 20440 default: 20441 rval = EIO; 20442 goto done; 20443 } 20444 20445 media_info.dki_lbsize = lbasize; 20446 media_capacity = capacity; 20447 20448 /* 20449 * sd_send_scsi_READ_CAPACITY() reports capacity in 20450 * un->un_sys_blocksize chunks. So we need to convert it into 20451 * cap.lbasize chunks. 20452 */ 20453 media_capacity *= un->un_sys_blocksize; 20454 media_capacity /= lbasize; 20455 media_info.dki_capacity = media_capacity; 20456 20457 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 20458 rval = EFAULT; 20459 /* Put goto. Anybody might add some code below in future */ 20460 goto done; 20461 } 20462 done: 20463 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 20464 kmem_free(rqbuf, SENSE_LENGTH); 20465 return (rval); 20466 } 20467 20468 20469 /* 20470 * Function: sd_check_media 20471 * 20472 * Description: This utility routine implements the functionality for the 20473 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 20474 * driver state changes from that specified by the user 20475 * (inserted or ejected). For example, if the user specifies 20476 * DKIO_EJECTED and the current media state is inserted this 20477 * routine will immediately return DKIO_INSERTED. However, if the 20478 * current media state is not inserted the user thread will be 20479 * blocked until the drive state changes. If DKIO_NONE is specified 20480 * the user thread will block until a drive state change occurs. 20481 * 20482 * Arguments: dev - the device number 20483 * state - user pointer to a dkio_state, updated with the current 20484 * drive state at return. 20485 * 20486 * Return Code: ENXIO 20487 * EIO 20488 * EAGAIN 20489 * EINTR 20490 */ 20491 20492 static int 20493 sd_check_media(dev_t dev, enum dkio_state state) 20494 { 20495 struct sd_lun *un = NULL; 20496 enum dkio_state prev_state; 20497 opaque_t token = NULL; 20498 int rval = 0; 20499 20500 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20501 return (ENXIO); 20502 } 20503 20504 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 20505 20506 mutex_enter(SD_MUTEX(un)); 20507 20508 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 20509 "state=%x, mediastate=%x\n", state, un->un_mediastate); 20510 20511 prev_state = un->un_mediastate; 20512 20513 /* is there anything to do? */ 20514 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 20515 /* 20516 * submit the request to the scsi_watch service; 20517 * scsi_media_watch_cb() does the real work 20518 */ 20519 mutex_exit(SD_MUTEX(un)); 20520 20521 /* 20522 * This change handles the case where a scsi watch request is 20523 * added to a device that is powered down. To accomplish this 20524 * we power up the device before adding the scsi watch request, 20525 * since the scsi watch sends a TUR directly to the device 20526 * which the device cannot handle if it is powered down. 20527 */ 20528 if (sd_pm_entry(un) != DDI_SUCCESS) { 20529 mutex_enter(SD_MUTEX(un)); 20530 goto done; 20531 } 20532 20533 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 20534 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 20535 (caddr_t)dev); 20536 20537 sd_pm_exit(un); 20538 20539 mutex_enter(SD_MUTEX(un)); 20540 if (token == NULL) { 20541 rval = EAGAIN; 20542 goto done; 20543 } 20544 20545 /* 20546 * This is a special case IOCTL that doesn't return 20547 * until the media state changes. Routine sdpower 20548 * knows about and handles this so don't count it 20549 * as an active cmd in the driver, which would 20550 * keep the device busy to the pm framework. 20551 * If the count isn't decremented the device can't 20552 * be powered down. 20553 */ 20554 un->un_ncmds_in_driver--; 20555 ASSERT(un->un_ncmds_in_driver >= 0); 20556 20557 /* 20558 * if a prior request had been made, this will be the same 20559 * token, as scsi_watch was designed that way. 20560 */ 20561 un->un_swr_token = token; 20562 un->un_specified_mediastate = state; 20563 20564 /* 20565 * now wait for media change 20566 * we will not be signalled unless mediastate == state but it is 20567 * still better to test for this condition, since there is a 20568 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 20569 */ 20570 SD_TRACE(SD_LOG_COMMON, un, 20571 "sd_check_media: waiting for media state change\n"); 20572 while (un->un_mediastate == state) { 20573 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 20574 SD_TRACE(SD_LOG_COMMON, un, 20575 "sd_check_media: waiting for media state " 20576 "was interrupted\n"); 20577 un->un_ncmds_in_driver++; 20578 rval = EINTR; 20579 goto done; 20580 } 20581 SD_TRACE(SD_LOG_COMMON, un, 20582 "sd_check_media: received signal, state=%x\n", 20583 un->un_mediastate); 20584 } 20585 /* 20586 * Inc the counter to indicate the device once again 20587 * has an active outstanding cmd. 20588 */ 20589 un->un_ncmds_in_driver++; 20590 } 20591 20592 /* invalidate geometry */ 20593 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 20594 sr_ejected(un); 20595 } 20596 20597 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 20598 uint64_t capacity; 20599 uint_t lbasize; 20600 20601 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 20602 mutex_exit(SD_MUTEX(un)); 20603 /* 20604 * Since the following routines use SD_PATH_DIRECT, we must 20605 * call PM directly before the upcoming disk accesses. This 20606 * may cause the disk to be power/spin up. 20607 */ 20608 20609 if (sd_pm_entry(un) == DDI_SUCCESS) { 20610 rval = sd_send_scsi_READ_CAPACITY(un, 20611 &capacity, 20612 &lbasize, SD_PATH_DIRECT); 20613 if (rval != 0) { 20614 sd_pm_exit(un); 20615 mutex_enter(SD_MUTEX(un)); 20616 goto done; 20617 } 20618 } else { 20619 rval = EIO; 20620 mutex_enter(SD_MUTEX(un)); 20621 goto done; 20622 } 20623 mutex_enter(SD_MUTEX(un)); 20624 20625 sd_update_block_info(un, lbasize, capacity); 20626 20627 /* 20628 * Check if the media in the device is writable or not 20629 */ 20630 if (ISCD(un)) 20631 sd_check_for_writable_cd(un, SD_PATH_DIRECT); 20632 20633 mutex_exit(SD_MUTEX(un)); 20634 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 20635 if ((cmlb_validate(un->un_cmlbhandle, 0, 20636 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 20637 sd_set_pstats(un); 20638 SD_TRACE(SD_LOG_IO_PARTITION, un, 20639 "sd_check_media: un:0x%p pstats created and " 20640 "set\n", un); 20641 } 20642 20643 rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 20644 SD_PATH_DIRECT); 20645 sd_pm_exit(un); 20646 20647 mutex_enter(SD_MUTEX(un)); 20648 } 20649 done: 20650 un->un_f_watcht_stopped = FALSE; 20651 if (un->un_swr_token) { 20652 /* 20653 * Use of this local token and the mutex ensures that we avoid 20654 * some race conditions associated with terminating the 20655 * scsi watch. 20656 */ 20657 token = un->un_swr_token; 20658 un->un_swr_token = (opaque_t)NULL; 20659 mutex_exit(SD_MUTEX(un)); 20660 (void) scsi_watch_request_terminate(token, 20661 SCSI_WATCH_TERMINATE_WAIT); 20662 mutex_enter(SD_MUTEX(un)); 20663 } 20664 20665 /* 20666 * Update the capacity kstat value, if no media previously 20667 * (capacity kstat is 0) and a media has been inserted 20668 * (un_f_blockcount_is_valid == TRUE) 20669 */ 20670 if (un->un_errstats) { 20671 struct sd_errstats *stp = NULL; 20672 20673 stp = (struct sd_errstats *)un->un_errstats->ks_data; 20674 if ((stp->sd_capacity.value.ui64 == 0) && 20675 (un->un_f_blockcount_is_valid == TRUE)) { 20676 stp->sd_capacity.value.ui64 = 20677 (uint64_t)((uint64_t)un->un_blockcount * 20678 un->un_sys_blocksize); 20679 } 20680 } 20681 mutex_exit(SD_MUTEX(un)); 20682 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 20683 return (rval); 20684 } 20685 20686 20687 /* 20688 * Function: sd_delayed_cv_broadcast 20689 * 20690 * Description: Delayed cv_broadcast to allow for target to recover from media 20691 * insertion. 20692 * 20693 * Arguments: arg - driver soft state (unit) structure 20694 */ 20695 20696 static void 20697 sd_delayed_cv_broadcast(void *arg) 20698 { 20699 struct sd_lun *un = arg; 20700 20701 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 20702 20703 mutex_enter(SD_MUTEX(un)); 20704 un->un_dcvb_timeid = NULL; 20705 cv_broadcast(&un->un_state_cv); 20706 mutex_exit(SD_MUTEX(un)); 20707 } 20708 20709 20710 /* 20711 * Function: sd_media_watch_cb 20712 * 20713 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 20714 * routine processes the TUR sense data and updates the driver 20715 * state if a transition has occurred. The user thread 20716 * (sd_check_media) is then signalled. 20717 * 20718 * Arguments: arg - the device 'dev_t' is used for context to discriminate 20719 * among multiple watches that share this callback function 20720 * resultp - scsi watch facility result packet containing scsi 20721 * packet, status byte and sense data 20722 * 20723 * Return Code: 0 for success, -1 for failure 20724 */ 20725 20726 static int 20727 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 20728 { 20729 struct sd_lun *un; 20730 struct scsi_status *statusp = resultp->statusp; 20731 uint8_t *sensep = (uint8_t *)resultp->sensep; 20732 enum dkio_state state = DKIO_NONE; 20733 dev_t dev = (dev_t)arg; 20734 uchar_t actual_sense_length; 20735 uint8_t skey, asc, ascq; 20736 20737 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20738 return (-1); 20739 } 20740 actual_sense_length = resultp->actual_sense_length; 20741 20742 mutex_enter(SD_MUTEX(un)); 20743 SD_TRACE(SD_LOG_COMMON, un, 20744 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 20745 *((char *)statusp), (void *)sensep, actual_sense_length); 20746 20747 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 20748 un->un_mediastate = DKIO_DEV_GONE; 20749 cv_broadcast(&un->un_state_cv); 20750 mutex_exit(SD_MUTEX(un)); 20751 20752 return (0); 20753 } 20754 20755 /* 20756 * If there was a check condition then sensep points to valid sense data 20757 * If status was not a check condition but a reservation or busy status 20758 * then the new state is DKIO_NONE 20759 */ 20760 if (sensep != NULL) { 20761 skey = scsi_sense_key(sensep); 20762 asc = scsi_sense_asc(sensep); 20763 ascq = scsi_sense_ascq(sensep); 20764 20765 SD_INFO(SD_LOG_COMMON, un, 20766 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 20767 skey, asc, ascq); 20768 /* This routine only uses up to 13 bytes of sense data. */ 20769 if (actual_sense_length >= 13) { 20770 if (skey == KEY_UNIT_ATTENTION) { 20771 if (asc == 0x28) { 20772 state = DKIO_INSERTED; 20773 } 20774 } else if (skey == KEY_NOT_READY) { 20775 /* 20776 * if 02/04/02 means that the host 20777 * should send start command. Explicitly 20778 * leave the media state as is 20779 * (inserted) as the media is inserted 20780 * and host has stopped device for PM 20781 * reasons. Upon next true read/write 20782 * to this media will bring the 20783 * device to the right state good for 20784 * media access. 20785 */ 20786 if (asc == 0x3a) { 20787 state = DKIO_EJECTED; 20788 } else { 20789 /* 20790 * If the drive is busy with an 20791 * operation or long write, keep the 20792 * media in an inserted state. 20793 */ 20794 20795 if ((asc == 0x04) && 20796 ((ascq == 0x02) || 20797 (ascq == 0x07) || 20798 (ascq == 0x08))) { 20799 state = DKIO_INSERTED; 20800 } 20801 } 20802 } else if (skey == KEY_NO_SENSE) { 20803 if ((asc == 0x00) && (ascq == 0x00)) { 20804 /* 20805 * Sense Data 00/00/00 does not provide 20806 * any information about the state of 20807 * the media. Ignore it. 20808 */ 20809 mutex_exit(SD_MUTEX(un)); 20810 return (0); 20811 } 20812 } 20813 } 20814 } else if ((*((char *)statusp) == STATUS_GOOD) && 20815 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 20816 state = DKIO_INSERTED; 20817 } 20818 20819 SD_TRACE(SD_LOG_COMMON, un, 20820 "sd_media_watch_cb: state=%x, specified=%x\n", 20821 state, un->un_specified_mediastate); 20822 20823 /* 20824 * now signal the waiting thread if this is *not* the specified state; 20825 * delay the signal if the state is DKIO_INSERTED to allow the target 20826 * to recover 20827 */ 20828 if (state != un->un_specified_mediastate) { 20829 un->un_mediastate = state; 20830 if (state == DKIO_INSERTED) { 20831 /* 20832 * delay the signal to give the drive a chance 20833 * to do what it apparently needs to do 20834 */ 20835 SD_TRACE(SD_LOG_COMMON, un, 20836 "sd_media_watch_cb: delayed cv_broadcast\n"); 20837 if (un->un_dcvb_timeid == NULL) { 20838 un->un_dcvb_timeid = 20839 timeout(sd_delayed_cv_broadcast, un, 20840 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 20841 } 20842 } else { 20843 SD_TRACE(SD_LOG_COMMON, un, 20844 "sd_media_watch_cb: immediate cv_broadcast\n"); 20845 cv_broadcast(&un->un_state_cv); 20846 } 20847 } 20848 mutex_exit(SD_MUTEX(un)); 20849 return (0); 20850 } 20851 20852 20853 /* 20854 * Function: sd_dkio_get_temp 20855 * 20856 * Description: This routine is the driver entry point for handling ioctl 20857 * requests to get the disk temperature. 20858 * 20859 * Arguments: dev - the device number 20860 * arg - pointer to user provided dk_temperature structure. 20861 * flag - this argument is a pass through to ddi_copyxxx() 20862 * directly from the mode argument of ioctl(). 20863 * 20864 * Return Code: 0 20865 * EFAULT 20866 * ENXIO 20867 * EAGAIN 20868 */ 20869 20870 static int 20871 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 20872 { 20873 struct sd_lun *un = NULL; 20874 struct dk_temperature *dktemp = NULL; 20875 uchar_t *temperature_page; 20876 int rval = 0; 20877 int path_flag = SD_PATH_STANDARD; 20878 20879 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20880 return (ENXIO); 20881 } 20882 20883 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 20884 20885 /* copyin the disk temp argument to get the user flags */ 20886 if (ddi_copyin((void *)arg, dktemp, 20887 sizeof (struct dk_temperature), flag) != 0) { 20888 rval = EFAULT; 20889 goto done; 20890 } 20891 20892 /* Initialize the temperature to invalid. */ 20893 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 20894 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 20895 20896 /* 20897 * Note: Investigate removing the "bypass pm" semantic. 20898 * Can we just bypass PM always? 20899 */ 20900 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 20901 path_flag = SD_PATH_DIRECT; 20902 ASSERT(!mutex_owned(&un->un_pm_mutex)); 20903 mutex_enter(&un->un_pm_mutex); 20904 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 20905 /* 20906 * If DKT_BYPASS_PM is set, and the drive happens to be 20907 * in low power mode, we can not wake it up, Need to 20908 * return EAGAIN. 20909 */ 20910 mutex_exit(&un->un_pm_mutex); 20911 rval = EAGAIN; 20912 goto done; 20913 } else { 20914 /* 20915 * Indicate to PM the device is busy. This is required 20916 * to avoid a race - i.e. the ioctl is issuing a 20917 * command and the pm framework brings down the device 20918 * to low power mode (possible power cut-off on some 20919 * platforms). 20920 */ 20921 mutex_exit(&un->un_pm_mutex); 20922 if (sd_pm_entry(un) != DDI_SUCCESS) { 20923 rval = EAGAIN; 20924 goto done; 20925 } 20926 } 20927 } 20928 20929 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 20930 20931 if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page, 20932 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) { 20933 goto done2; 20934 } 20935 20936 /* 20937 * For the current temperature verify that the parameter length is 0x02 20938 * and the parameter code is 0x00 20939 */ 20940 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 20941 (temperature_page[5] == 0x00)) { 20942 if (temperature_page[9] == 0xFF) { 20943 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 20944 } else { 20945 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 20946 } 20947 } 20948 20949 /* 20950 * For the reference temperature verify that the parameter 20951 * length is 0x02 and the parameter code is 0x01 20952 */ 20953 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 20954 (temperature_page[11] == 0x01)) { 20955 if (temperature_page[15] == 0xFF) { 20956 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 20957 } else { 20958 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 20959 } 20960 } 20961 20962 /* Do the copyout regardless of the temperature commands status. */ 20963 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 20964 flag) != 0) { 20965 rval = EFAULT; 20966 } 20967 20968 done2: 20969 if (path_flag == SD_PATH_DIRECT) { 20970 sd_pm_exit(un); 20971 } 20972 20973 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 20974 done: 20975 if (dktemp != NULL) { 20976 kmem_free(dktemp, sizeof (struct dk_temperature)); 20977 } 20978 20979 return (rval); 20980 } 20981 20982 20983 /* 20984 * Function: sd_log_page_supported 20985 * 20986 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 20987 * supported log pages. 20988 * 20989 * Arguments: un - 20990 * log_page - 20991 * 20992 * Return Code: -1 - on error (log sense is optional and may not be supported). 20993 * 0 - log page not found. 20994 * 1 - log page found. 20995 */ 20996 20997 static int 20998 sd_log_page_supported(struct sd_lun *un, int log_page) 20999 { 21000 uchar_t *log_page_data; 21001 int i; 21002 int match = 0; 21003 int log_size; 21004 21005 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 21006 21007 if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0, 21008 SD_PATH_DIRECT) != 0) { 21009 SD_ERROR(SD_LOG_COMMON, un, 21010 "sd_log_page_supported: failed log page retrieval\n"); 21011 kmem_free(log_page_data, 0xFF); 21012 return (-1); 21013 } 21014 log_size = log_page_data[3]; 21015 21016 /* 21017 * The list of supported log pages start from the fourth byte. Check 21018 * until we run out of log pages or a match is found. 21019 */ 21020 for (i = 4; (i < (log_size + 4)) && !match; i++) { 21021 if (log_page_data[i] == log_page) { 21022 match++; 21023 } 21024 } 21025 kmem_free(log_page_data, 0xFF); 21026 return (match); 21027 } 21028 21029 21030 /* 21031 * Function: sd_mhdioc_failfast 21032 * 21033 * Description: This routine is the driver entry point for handling ioctl 21034 * requests to enable/disable the multihost failfast option. 21035 * (MHIOCENFAILFAST) 21036 * 21037 * Arguments: dev - the device number 21038 * arg - user specified probing interval. 21039 * flag - this argument is a pass through to ddi_copyxxx() 21040 * directly from the mode argument of ioctl(). 21041 * 21042 * Return Code: 0 21043 * EFAULT 21044 * ENXIO 21045 */ 21046 21047 static int 21048 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 21049 { 21050 struct sd_lun *un = NULL; 21051 int mh_time; 21052 int rval = 0; 21053 21054 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21055 return (ENXIO); 21056 } 21057 21058 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 21059 return (EFAULT); 21060 21061 if (mh_time) { 21062 mutex_enter(SD_MUTEX(un)); 21063 un->un_resvd_status |= SD_FAILFAST; 21064 mutex_exit(SD_MUTEX(un)); 21065 /* 21066 * If mh_time is INT_MAX, then this ioctl is being used for 21067 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 21068 */ 21069 if (mh_time != INT_MAX) { 21070 rval = sd_check_mhd(dev, mh_time); 21071 } 21072 } else { 21073 (void) sd_check_mhd(dev, 0); 21074 mutex_enter(SD_MUTEX(un)); 21075 un->un_resvd_status &= ~SD_FAILFAST; 21076 mutex_exit(SD_MUTEX(un)); 21077 } 21078 return (rval); 21079 } 21080 21081 21082 /* 21083 * Function: sd_mhdioc_takeown 21084 * 21085 * Description: This routine is the driver entry point for handling ioctl 21086 * requests to forcefully acquire exclusive access rights to the 21087 * multihost disk (MHIOCTKOWN). 21088 * 21089 * Arguments: dev - the device number 21090 * arg - user provided structure specifying the delay 21091 * parameters in milliseconds 21092 * flag - this argument is a pass through to ddi_copyxxx() 21093 * directly from the mode argument of ioctl(). 21094 * 21095 * Return Code: 0 21096 * EFAULT 21097 * ENXIO 21098 */ 21099 21100 static int 21101 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 21102 { 21103 struct sd_lun *un = NULL; 21104 struct mhioctkown *tkown = NULL; 21105 int rval = 0; 21106 21107 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21108 return (ENXIO); 21109 } 21110 21111 if (arg != NULL) { 21112 tkown = (struct mhioctkown *) 21113 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 21114 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 21115 if (rval != 0) { 21116 rval = EFAULT; 21117 goto error; 21118 } 21119 } 21120 21121 rval = sd_take_ownership(dev, tkown); 21122 mutex_enter(SD_MUTEX(un)); 21123 if (rval == 0) { 21124 un->un_resvd_status |= SD_RESERVE; 21125 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 21126 sd_reinstate_resv_delay = 21127 tkown->reinstate_resv_delay * 1000; 21128 } else { 21129 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 21130 } 21131 /* 21132 * Give the scsi_watch routine interval set by 21133 * the MHIOCENFAILFAST ioctl precedence here. 21134 */ 21135 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 21136 mutex_exit(SD_MUTEX(un)); 21137 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 21138 SD_TRACE(SD_LOG_IOCTL_MHD, un, 21139 "sd_mhdioc_takeown : %d\n", 21140 sd_reinstate_resv_delay); 21141 } else { 21142 mutex_exit(SD_MUTEX(un)); 21143 } 21144 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 21145 sd_mhd_reset_notify_cb, (caddr_t)un); 21146 } else { 21147 un->un_resvd_status &= ~SD_RESERVE; 21148 mutex_exit(SD_MUTEX(un)); 21149 } 21150 21151 error: 21152 if (tkown != NULL) { 21153 kmem_free(tkown, sizeof (struct mhioctkown)); 21154 } 21155 return (rval); 21156 } 21157 21158 21159 /* 21160 * Function: sd_mhdioc_release 21161 * 21162 * Description: This routine is the driver entry point for handling ioctl 21163 * requests to release exclusive access rights to the multihost 21164 * disk (MHIOCRELEASE). 21165 * 21166 * Arguments: dev - the device number 21167 * 21168 * Return Code: 0 21169 * ENXIO 21170 */ 21171 21172 static int 21173 sd_mhdioc_release(dev_t dev) 21174 { 21175 struct sd_lun *un = NULL; 21176 timeout_id_t resvd_timeid_save; 21177 int resvd_status_save; 21178 int rval = 0; 21179 21180 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21181 return (ENXIO); 21182 } 21183 21184 mutex_enter(SD_MUTEX(un)); 21185 resvd_status_save = un->un_resvd_status; 21186 un->un_resvd_status &= 21187 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 21188 if (un->un_resvd_timeid) { 21189 resvd_timeid_save = un->un_resvd_timeid; 21190 un->un_resvd_timeid = NULL; 21191 mutex_exit(SD_MUTEX(un)); 21192 (void) untimeout(resvd_timeid_save); 21193 } else { 21194 mutex_exit(SD_MUTEX(un)); 21195 } 21196 21197 /* 21198 * destroy any pending timeout thread that may be attempting to 21199 * reinstate reservation on this device. 21200 */ 21201 sd_rmv_resv_reclaim_req(dev); 21202 21203 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 21204 mutex_enter(SD_MUTEX(un)); 21205 if ((un->un_mhd_token) && 21206 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 21207 mutex_exit(SD_MUTEX(un)); 21208 (void) sd_check_mhd(dev, 0); 21209 } else { 21210 mutex_exit(SD_MUTEX(un)); 21211 } 21212 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 21213 sd_mhd_reset_notify_cb, (caddr_t)un); 21214 } else { 21215 /* 21216 * sd_mhd_watch_cb will restart the resvd recover timeout thread 21217 */ 21218 mutex_enter(SD_MUTEX(un)); 21219 un->un_resvd_status = resvd_status_save; 21220 mutex_exit(SD_MUTEX(un)); 21221 } 21222 return (rval); 21223 } 21224 21225 21226 /* 21227 * Function: sd_mhdioc_register_devid 21228 * 21229 * Description: This routine is the driver entry point for handling ioctl 21230 * requests to register the device id (MHIOCREREGISTERDEVID). 21231 * 21232 * Note: The implementation for this ioctl has been updated to 21233 * be consistent with the original PSARC case (1999/357) 21234 * (4375899, 4241671, 4220005) 21235 * 21236 * Arguments: dev - the device number 21237 * 21238 * Return Code: 0 21239 * ENXIO 21240 */ 21241 21242 static int 21243 sd_mhdioc_register_devid(dev_t dev) 21244 { 21245 struct sd_lun *un = NULL; 21246 int rval = 0; 21247 21248 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21249 return (ENXIO); 21250 } 21251 21252 ASSERT(!mutex_owned(SD_MUTEX(un))); 21253 21254 mutex_enter(SD_MUTEX(un)); 21255 21256 /* If a devid already exists, de-register it */ 21257 if (un->un_devid != NULL) { 21258 ddi_devid_unregister(SD_DEVINFO(un)); 21259 /* 21260 * After unregister devid, needs to free devid memory 21261 */ 21262 ddi_devid_free(un->un_devid); 21263 un->un_devid = NULL; 21264 } 21265 21266 /* Check for reservation conflict */ 21267 mutex_exit(SD_MUTEX(un)); 21268 rval = sd_send_scsi_TEST_UNIT_READY(un, 0); 21269 mutex_enter(SD_MUTEX(un)); 21270 21271 switch (rval) { 21272 case 0: 21273 sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 21274 break; 21275 case EACCES: 21276 break; 21277 default: 21278 rval = EIO; 21279 } 21280 21281 mutex_exit(SD_MUTEX(un)); 21282 return (rval); 21283 } 21284 21285 21286 /* 21287 * Function: sd_mhdioc_inkeys 21288 * 21289 * Description: This routine is the driver entry point for handling ioctl 21290 * requests to issue the SCSI-3 Persistent In Read Keys command 21291 * to the device (MHIOCGRP_INKEYS). 21292 * 21293 * Arguments: dev - the device number 21294 * arg - user provided in_keys structure 21295 * flag - this argument is a pass through to ddi_copyxxx() 21296 * directly from the mode argument of ioctl(). 21297 * 21298 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 21299 * ENXIO 21300 * EFAULT 21301 */ 21302 21303 static int 21304 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 21305 { 21306 struct sd_lun *un; 21307 mhioc_inkeys_t inkeys; 21308 int rval = 0; 21309 21310 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21311 return (ENXIO); 21312 } 21313 21314 #ifdef _MULTI_DATAMODEL 21315 switch (ddi_model_convert_from(flag & FMODELS)) { 21316 case DDI_MODEL_ILP32: { 21317 struct mhioc_inkeys32 inkeys32; 21318 21319 if (ddi_copyin(arg, &inkeys32, 21320 sizeof (struct mhioc_inkeys32), flag) != 0) { 21321 return (EFAULT); 21322 } 21323 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 21324 if ((rval = sd_persistent_reservation_in_read_keys(un, 21325 &inkeys, flag)) != 0) { 21326 return (rval); 21327 } 21328 inkeys32.generation = inkeys.generation; 21329 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 21330 flag) != 0) { 21331 return (EFAULT); 21332 } 21333 break; 21334 } 21335 case DDI_MODEL_NONE: 21336 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 21337 flag) != 0) { 21338 return (EFAULT); 21339 } 21340 if ((rval = sd_persistent_reservation_in_read_keys(un, 21341 &inkeys, flag)) != 0) { 21342 return (rval); 21343 } 21344 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 21345 flag) != 0) { 21346 return (EFAULT); 21347 } 21348 break; 21349 } 21350 21351 #else /* ! _MULTI_DATAMODEL */ 21352 21353 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 21354 return (EFAULT); 21355 } 21356 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 21357 if (rval != 0) { 21358 return (rval); 21359 } 21360 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 21361 return (EFAULT); 21362 } 21363 21364 #endif /* _MULTI_DATAMODEL */ 21365 21366 return (rval); 21367 } 21368 21369 21370 /* 21371 * Function: sd_mhdioc_inresv 21372 * 21373 * Description: This routine is the driver entry point for handling ioctl 21374 * requests to issue the SCSI-3 Persistent In Read Reservations 21375 * command to the device (MHIOCGRP_INKEYS). 21376 * 21377 * Arguments: dev - the device number 21378 * arg - user provided in_resv structure 21379 * flag - this argument is a pass through to ddi_copyxxx() 21380 * directly from the mode argument of ioctl(). 21381 * 21382 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 21383 * ENXIO 21384 * EFAULT 21385 */ 21386 21387 static int 21388 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 21389 { 21390 struct sd_lun *un; 21391 mhioc_inresvs_t inresvs; 21392 int rval = 0; 21393 21394 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21395 return (ENXIO); 21396 } 21397 21398 #ifdef _MULTI_DATAMODEL 21399 21400 switch (ddi_model_convert_from(flag & FMODELS)) { 21401 case DDI_MODEL_ILP32: { 21402 struct mhioc_inresvs32 inresvs32; 21403 21404 if (ddi_copyin(arg, &inresvs32, 21405 sizeof (struct mhioc_inresvs32), flag) != 0) { 21406 return (EFAULT); 21407 } 21408 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 21409 if ((rval = sd_persistent_reservation_in_read_resv(un, 21410 &inresvs, flag)) != 0) { 21411 return (rval); 21412 } 21413 inresvs32.generation = inresvs.generation; 21414 if (ddi_copyout(&inresvs32, arg, 21415 sizeof (struct mhioc_inresvs32), flag) != 0) { 21416 return (EFAULT); 21417 } 21418 break; 21419 } 21420 case DDI_MODEL_NONE: 21421 if (ddi_copyin(arg, &inresvs, 21422 sizeof (mhioc_inresvs_t), flag) != 0) { 21423 return (EFAULT); 21424 } 21425 if ((rval = sd_persistent_reservation_in_read_resv(un, 21426 &inresvs, flag)) != 0) { 21427 return (rval); 21428 } 21429 if (ddi_copyout(&inresvs, arg, 21430 sizeof (mhioc_inresvs_t), flag) != 0) { 21431 return (EFAULT); 21432 } 21433 break; 21434 } 21435 21436 #else /* ! _MULTI_DATAMODEL */ 21437 21438 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 21439 return (EFAULT); 21440 } 21441 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 21442 if (rval != 0) { 21443 return (rval); 21444 } 21445 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 21446 return (EFAULT); 21447 } 21448 21449 #endif /* ! _MULTI_DATAMODEL */ 21450 21451 return (rval); 21452 } 21453 21454 21455 /* 21456 * The following routines support the clustering functionality described below 21457 * and implement lost reservation reclaim functionality. 21458 * 21459 * Clustering 21460 * ---------- 21461 * The clustering code uses two different, independent forms of SCSI 21462 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 21463 * Persistent Group Reservations. For any particular disk, it will use either 21464 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 21465 * 21466 * SCSI-2 21467 * The cluster software takes ownership of a multi-hosted disk by issuing the 21468 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 21469 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 21470 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 21471 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 21472 * driver. The meaning of failfast is that if the driver (on this host) ever 21473 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 21474 * it should immediately panic the host. The motivation for this ioctl is that 21475 * if this host does encounter reservation conflict, the underlying cause is 21476 * that some other host of the cluster has decided that this host is no longer 21477 * in the cluster and has seized control of the disks for itself. Since this 21478 * host is no longer in the cluster, it ought to panic itself. The 21479 * MHIOCENFAILFAST ioctl does two things: 21480 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 21481 * error to panic the host 21482 * (b) it sets up a periodic timer to test whether this host still has 21483 * "access" (in that no other host has reserved the device): if the 21484 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 21485 * purpose of that periodic timer is to handle scenarios where the host is 21486 * otherwise temporarily quiescent, temporarily doing no real i/o. 21487 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 21488 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 21489 * the device itself. 21490 * 21491 * SCSI-3 PGR 21492 * A direct semantic implementation of the SCSI-3 Persistent Reservation 21493 * facility is supported through the shared multihost disk ioctls 21494 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 21495 * MHIOCGRP_PREEMPTANDABORT) 21496 * 21497 * Reservation Reclaim: 21498 * -------------------- 21499 * To support the lost reservation reclaim operations this driver creates a 21500 * single thread to handle reinstating reservations on all devices that have 21501 * lost reservations sd_resv_reclaim_requests are logged for all devices that 21502 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 21503 * and the reservation reclaim thread loops through the requests to regain the 21504 * lost reservations. 21505 */ 21506 21507 /* 21508 * Function: sd_check_mhd() 21509 * 21510 * Description: This function sets up and submits a scsi watch request or 21511 * terminates an existing watch request. This routine is used in 21512 * support of reservation reclaim. 21513 * 21514 * Arguments: dev - the device 'dev_t' is used for context to discriminate 21515 * among multiple watches that share the callback function 21516 * interval - the number of microseconds specifying the watch 21517 * interval for issuing TEST UNIT READY commands. If 21518 * set to 0 the watch should be terminated. If the 21519 * interval is set to 0 and if the device is required 21520 * to hold reservation while disabling failfast, the 21521 * watch is restarted with an interval of 21522 * reinstate_resv_delay. 21523 * 21524 * Return Code: 0 - Successful submit/terminate of scsi watch request 21525 * ENXIO - Indicates an invalid device was specified 21526 * EAGAIN - Unable to submit the scsi watch request 21527 */ 21528 21529 static int 21530 sd_check_mhd(dev_t dev, int interval) 21531 { 21532 struct sd_lun *un; 21533 opaque_t token; 21534 21535 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21536 return (ENXIO); 21537 } 21538 21539 /* is this a watch termination request? */ 21540 if (interval == 0) { 21541 mutex_enter(SD_MUTEX(un)); 21542 /* if there is an existing watch task then terminate it */ 21543 if (un->un_mhd_token) { 21544 token = un->un_mhd_token; 21545 un->un_mhd_token = NULL; 21546 mutex_exit(SD_MUTEX(un)); 21547 (void) scsi_watch_request_terminate(token, 21548 SCSI_WATCH_TERMINATE_WAIT); 21549 mutex_enter(SD_MUTEX(un)); 21550 } else { 21551 mutex_exit(SD_MUTEX(un)); 21552 /* 21553 * Note: If we return here we don't check for the 21554 * failfast case. This is the original legacy 21555 * implementation but perhaps we should be checking 21556 * the failfast case. 21557 */ 21558 return (0); 21559 } 21560 /* 21561 * If the device is required to hold reservation while 21562 * disabling failfast, we need to restart the scsi_watch 21563 * routine with an interval of reinstate_resv_delay. 21564 */ 21565 if (un->un_resvd_status & SD_RESERVE) { 21566 interval = sd_reinstate_resv_delay/1000; 21567 } else { 21568 /* no failfast so bail */ 21569 mutex_exit(SD_MUTEX(un)); 21570 return (0); 21571 } 21572 mutex_exit(SD_MUTEX(un)); 21573 } 21574 21575 /* 21576 * adjust minimum time interval to 1 second, 21577 * and convert from msecs to usecs 21578 */ 21579 if (interval > 0 && interval < 1000) { 21580 interval = 1000; 21581 } 21582 interval *= 1000; 21583 21584 /* 21585 * submit the request to the scsi_watch service 21586 */ 21587 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 21588 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 21589 if (token == NULL) { 21590 return (EAGAIN); 21591 } 21592 21593 /* 21594 * save token for termination later on 21595 */ 21596 mutex_enter(SD_MUTEX(un)); 21597 un->un_mhd_token = token; 21598 mutex_exit(SD_MUTEX(un)); 21599 return (0); 21600 } 21601 21602 21603 /* 21604 * Function: sd_mhd_watch_cb() 21605 * 21606 * Description: This function is the call back function used by the scsi watch 21607 * facility. The scsi watch facility sends the "Test Unit Ready" 21608 * and processes the status. If applicable (i.e. a "Unit Attention" 21609 * status and automatic "Request Sense" not used) the scsi watch 21610 * facility will send a "Request Sense" and retrieve the sense data 21611 * to be passed to this callback function. In either case the 21612 * automatic "Request Sense" or the facility submitting one, this 21613 * callback is passed the status and sense data. 21614 * 21615 * Arguments: arg - the device 'dev_t' is used for context to discriminate 21616 * among multiple watches that share this callback function 21617 * resultp - scsi watch facility result packet containing scsi 21618 * packet, status byte and sense data 21619 * 21620 * Return Code: 0 - continue the watch task 21621 * non-zero - terminate the watch task 21622 */ 21623 21624 static int 21625 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 21626 { 21627 struct sd_lun *un; 21628 struct scsi_status *statusp; 21629 uint8_t *sensep; 21630 struct scsi_pkt *pkt; 21631 uchar_t actual_sense_length; 21632 dev_t dev = (dev_t)arg; 21633 21634 ASSERT(resultp != NULL); 21635 statusp = resultp->statusp; 21636 sensep = (uint8_t *)resultp->sensep; 21637 pkt = resultp->pkt; 21638 actual_sense_length = resultp->actual_sense_length; 21639 21640 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21641 return (ENXIO); 21642 } 21643 21644 SD_TRACE(SD_LOG_IOCTL_MHD, un, 21645 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 21646 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 21647 21648 /* Begin processing of the status and/or sense data */ 21649 if (pkt->pkt_reason != CMD_CMPLT) { 21650 /* Handle the incomplete packet */ 21651 sd_mhd_watch_incomplete(un, pkt); 21652 return (0); 21653 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 21654 if (*((unsigned char *)statusp) 21655 == STATUS_RESERVATION_CONFLICT) { 21656 /* 21657 * Handle a reservation conflict by panicking if 21658 * configured for failfast or by logging the conflict 21659 * and updating the reservation status 21660 */ 21661 mutex_enter(SD_MUTEX(un)); 21662 if ((un->un_resvd_status & SD_FAILFAST) && 21663 (sd_failfast_enable)) { 21664 sd_panic_for_res_conflict(un); 21665 /*NOTREACHED*/ 21666 } 21667 SD_INFO(SD_LOG_IOCTL_MHD, un, 21668 "sd_mhd_watch_cb: Reservation Conflict\n"); 21669 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 21670 mutex_exit(SD_MUTEX(un)); 21671 } 21672 } 21673 21674 if (sensep != NULL) { 21675 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 21676 mutex_enter(SD_MUTEX(un)); 21677 if ((scsi_sense_asc(sensep) == 21678 SD_SCSI_RESET_SENSE_CODE) && 21679 (un->un_resvd_status & SD_RESERVE)) { 21680 /* 21681 * The additional sense code indicates a power 21682 * on or bus device reset has occurred; update 21683 * the reservation status. 21684 */ 21685 un->un_resvd_status |= 21686 (SD_LOST_RESERVE | SD_WANT_RESERVE); 21687 SD_INFO(SD_LOG_IOCTL_MHD, un, 21688 "sd_mhd_watch_cb: Lost Reservation\n"); 21689 } 21690 } else { 21691 return (0); 21692 } 21693 } else { 21694 mutex_enter(SD_MUTEX(un)); 21695 } 21696 21697 if ((un->un_resvd_status & SD_RESERVE) && 21698 (un->un_resvd_status & SD_LOST_RESERVE)) { 21699 if (un->un_resvd_status & SD_WANT_RESERVE) { 21700 /* 21701 * A reset occurred in between the last probe and this 21702 * one so if a timeout is pending cancel it. 21703 */ 21704 if (un->un_resvd_timeid) { 21705 timeout_id_t temp_id = un->un_resvd_timeid; 21706 un->un_resvd_timeid = NULL; 21707 mutex_exit(SD_MUTEX(un)); 21708 (void) untimeout(temp_id); 21709 mutex_enter(SD_MUTEX(un)); 21710 } 21711 un->un_resvd_status &= ~SD_WANT_RESERVE; 21712 } 21713 if (un->un_resvd_timeid == 0) { 21714 /* Schedule a timeout to handle the lost reservation */ 21715 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 21716 (void *)dev, 21717 drv_usectohz(sd_reinstate_resv_delay)); 21718 } 21719 } 21720 mutex_exit(SD_MUTEX(un)); 21721 return (0); 21722 } 21723 21724 21725 /* 21726 * Function: sd_mhd_watch_incomplete() 21727 * 21728 * Description: This function is used to find out why a scsi pkt sent by the 21729 * scsi watch facility was not completed. Under some scenarios this 21730 * routine will return. Otherwise it will send a bus reset to see 21731 * if the drive is still online. 21732 * 21733 * Arguments: un - driver soft state (unit) structure 21734 * pkt - incomplete scsi pkt 21735 */ 21736 21737 static void 21738 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 21739 { 21740 int be_chatty; 21741 int perr; 21742 21743 ASSERT(pkt != NULL); 21744 ASSERT(un != NULL); 21745 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 21746 perr = (pkt->pkt_statistics & STAT_PERR); 21747 21748 mutex_enter(SD_MUTEX(un)); 21749 if (un->un_state == SD_STATE_DUMPING) { 21750 mutex_exit(SD_MUTEX(un)); 21751 return; 21752 } 21753 21754 switch (pkt->pkt_reason) { 21755 case CMD_UNX_BUS_FREE: 21756 /* 21757 * If we had a parity error that caused the target to drop BSY*, 21758 * don't be chatty about it. 21759 */ 21760 if (perr && be_chatty) { 21761 be_chatty = 0; 21762 } 21763 break; 21764 case CMD_TAG_REJECT: 21765 /* 21766 * The SCSI-2 spec states that a tag reject will be sent by the 21767 * target if tagged queuing is not supported. A tag reject may 21768 * also be sent during certain initialization periods or to 21769 * control internal resources. For the latter case the target 21770 * may also return Queue Full. 21771 * 21772 * If this driver receives a tag reject from a target that is 21773 * going through an init period or controlling internal 21774 * resources tagged queuing will be disabled. This is a less 21775 * than optimal behavior but the driver is unable to determine 21776 * the target state and assumes tagged queueing is not supported 21777 */ 21778 pkt->pkt_flags = 0; 21779 un->un_tagflags = 0; 21780 21781 if (un->un_f_opt_queueing == TRUE) { 21782 un->un_throttle = min(un->un_throttle, 3); 21783 } else { 21784 un->un_throttle = 1; 21785 } 21786 mutex_exit(SD_MUTEX(un)); 21787 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 21788 mutex_enter(SD_MUTEX(un)); 21789 break; 21790 case CMD_INCOMPLETE: 21791 /* 21792 * The transport stopped with an abnormal state, fallthrough and 21793 * reset the target and/or bus unless selection did not complete 21794 * (indicated by STATE_GOT_BUS) in which case we don't want to 21795 * go through a target/bus reset 21796 */ 21797 if (pkt->pkt_state == STATE_GOT_BUS) { 21798 break; 21799 } 21800 /*FALLTHROUGH*/ 21801 21802 case CMD_TIMEOUT: 21803 default: 21804 /* 21805 * The lun may still be running the command, so a lun reset 21806 * should be attempted. If the lun reset fails or cannot be 21807 * issued, than try a target reset. Lastly try a bus reset. 21808 */ 21809 if ((pkt->pkt_statistics & 21810 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 21811 int reset_retval = 0; 21812 mutex_exit(SD_MUTEX(un)); 21813 if (un->un_f_allow_bus_device_reset == TRUE) { 21814 if (un->un_f_lun_reset_enabled == TRUE) { 21815 reset_retval = 21816 scsi_reset(SD_ADDRESS(un), 21817 RESET_LUN); 21818 } 21819 if (reset_retval == 0) { 21820 reset_retval = 21821 scsi_reset(SD_ADDRESS(un), 21822 RESET_TARGET); 21823 } 21824 } 21825 if (reset_retval == 0) { 21826 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 21827 } 21828 mutex_enter(SD_MUTEX(un)); 21829 } 21830 break; 21831 } 21832 21833 /* A device/bus reset has occurred; update the reservation status. */ 21834 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 21835 (STAT_BUS_RESET | STAT_DEV_RESET))) { 21836 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 21837 un->un_resvd_status |= 21838 (SD_LOST_RESERVE | SD_WANT_RESERVE); 21839 SD_INFO(SD_LOG_IOCTL_MHD, un, 21840 "sd_mhd_watch_incomplete: Lost Reservation\n"); 21841 } 21842 } 21843 21844 /* 21845 * The disk has been turned off; Update the device state. 21846 * 21847 * Note: Should we be offlining the disk here? 21848 */ 21849 if (pkt->pkt_state == STATE_GOT_BUS) { 21850 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 21851 "Disk not responding to selection\n"); 21852 if (un->un_state != SD_STATE_OFFLINE) { 21853 New_state(un, SD_STATE_OFFLINE); 21854 } 21855 } else if (be_chatty) { 21856 /* 21857 * suppress messages if they are all the same pkt reason; 21858 * with TQ, many (up to 256) are returned with the same 21859 * pkt_reason 21860 */ 21861 if (pkt->pkt_reason != un->un_last_pkt_reason) { 21862 SD_ERROR(SD_LOG_IOCTL_MHD, un, 21863 "sd_mhd_watch_incomplete: " 21864 "SCSI transport failed: reason '%s'\n", 21865 scsi_rname(pkt->pkt_reason)); 21866 } 21867 } 21868 un->un_last_pkt_reason = pkt->pkt_reason; 21869 mutex_exit(SD_MUTEX(un)); 21870 } 21871 21872 21873 /* 21874 * Function: sd_sname() 21875 * 21876 * Description: This is a simple little routine to return a string containing 21877 * a printable description of command status byte for use in 21878 * logging. 21879 * 21880 * Arguments: status - pointer to a status byte 21881 * 21882 * Return Code: char * - string containing status description. 21883 */ 21884 21885 static char * 21886 sd_sname(uchar_t status) 21887 { 21888 switch (status & STATUS_MASK) { 21889 case STATUS_GOOD: 21890 return ("good status"); 21891 case STATUS_CHECK: 21892 return ("check condition"); 21893 case STATUS_MET: 21894 return ("condition met"); 21895 case STATUS_BUSY: 21896 return ("busy"); 21897 case STATUS_INTERMEDIATE: 21898 return ("intermediate"); 21899 case STATUS_INTERMEDIATE_MET: 21900 return ("intermediate - condition met"); 21901 case STATUS_RESERVATION_CONFLICT: 21902 return ("reservation_conflict"); 21903 case STATUS_TERMINATED: 21904 return ("command terminated"); 21905 case STATUS_QFULL: 21906 return ("queue full"); 21907 default: 21908 return ("<unknown status>"); 21909 } 21910 } 21911 21912 21913 /* 21914 * Function: sd_mhd_resvd_recover() 21915 * 21916 * Description: This function adds a reservation entry to the 21917 * sd_resv_reclaim_request list and signals the reservation 21918 * reclaim thread that there is work pending. If the reservation 21919 * reclaim thread has not been previously created this function 21920 * will kick it off. 21921 * 21922 * Arguments: arg - the device 'dev_t' is used for context to discriminate 21923 * among multiple watches that share this callback function 21924 * 21925 * Context: This routine is called by timeout() and is run in interrupt 21926 * context. It must not sleep or call other functions which may 21927 * sleep. 21928 */ 21929 21930 static void 21931 sd_mhd_resvd_recover(void *arg) 21932 { 21933 dev_t dev = (dev_t)arg; 21934 struct sd_lun *un; 21935 struct sd_thr_request *sd_treq = NULL; 21936 struct sd_thr_request *sd_cur = NULL; 21937 struct sd_thr_request *sd_prev = NULL; 21938 int already_there = 0; 21939 21940 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21941 return; 21942 } 21943 21944 mutex_enter(SD_MUTEX(un)); 21945 un->un_resvd_timeid = NULL; 21946 if (un->un_resvd_status & SD_WANT_RESERVE) { 21947 /* 21948 * There was a reset so don't issue the reserve, allow the 21949 * sd_mhd_watch_cb callback function to notice this and 21950 * reschedule the timeout for reservation. 21951 */ 21952 mutex_exit(SD_MUTEX(un)); 21953 return; 21954 } 21955 mutex_exit(SD_MUTEX(un)); 21956 21957 /* 21958 * Add this device to the sd_resv_reclaim_request list and the 21959 * sd_resv_reclaim_thread should take care of the rest. 21960 * 21961 * Note: We can't sleep in this context so if the memory allocation 21962 * fails allow the sd_mhd_watch_cb callback function to notice this and 21963 * reschedule the timeout for reservation. (4378460) 21964 */ 21965 sd_treq = (struct sd_thr_request *) 21966 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 21967 if (sd_treq == NULL) { 21968 return; 21969 } 21970 21971 sd_treq->sd_thr_req_next = NULL; 21972 sd_treq->dev = dev; 21973 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 21974 if (sd_tr.srq_thr_req_head == NULL) { 21975 sd_tr.srq_thr_req_head = sd_treq; 21976 } else { 21977 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 21978 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 21979 if (sd_cur->dev == dev) { 21980 /* 21981 * already in Queue so don't log 21982 * another request for the device 21983 */ 21984 already_there = 1; 21985 break; 21986 } 21987 sd_prev = sd_cur; 21988 } 21989 if (!already_there) { 21990 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 21991 "logging request for %lx\n", dev); 21992 sd_prev->sd_thr_req_next = sd_treq; 21993 } else { 21994 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 21995 } 21996 } 21997 21998 /* 21999 * Create a kernel thread to do the reservation reclaim and free up this 22000 * thread. We cannot block this thread while we go away to do the 22001 * reservation reclaim 22002 */ 22003 if (sd_tr.srq_resv_reclaim_thread == NULL) 22004 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 22005 sd_resv_reclaim_thread, NULL, 22006 0, &p0, TS_RUN, v.v_maxsyspri - 2); 22007 22008 /* Tell the reservation reclaim thread that it has work to do */ 22009 cv_signal(&sd_tr.srq_resv_reclaim_cv); 22010 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 22011 } 22012 22013 /* 22014 * Function: sd_resv_reclaim_thread() 22015 * 22016 * Description: This function implements the reservation reclaim operations 22017 * 22018 * Arguments: arg - the device 'dev_t' is used for context to discriminate 22019 * among multiple watches that share this callback function 22020 */ 22021 22022 static void 22023 sd_resv_reclaim_thread() 22024 { 22025 struct sd_lun *un; 22026 struct sd_thr_request *sd_mhreq; 22027 22028 /* Wait for work */ 22029 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 22030 if (sd_tr.srq_thr_req_head == NULL) { 22031 cv_wait(&sd_tr.srq_resv_reclaim_cv, 22032 &sd_tr.srq_resv_reclaim_mutex); 22033 } 22034 22035 /* Loop while we have work */ 22036 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 22037 un = ddi_get_soft_state(sd_state, 22038 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 22039 if (un == NULL) { 22040 /* 22041 * softstate structure is NULL so just 22042 * dequeue the request and continue 22043 */ 22044 sd_tr.srq_thr_req_head = 22045 sd_tr.srq_thr_cur_req->sd_thr_req_next; 22046 kmem_free(sd_tr.srq_thr_cur_req, 22047 sizeof (struct sd_thr_request)); 22048 continue; 22049 } 22050 22051 /* dequeue the request */ 22052 sd_mhreq = sd_tr.srq_thr_cur_req; 22053 sd_tr.srq_thr_req_head = 22054 sd_tr.srq_thr_cur_req->sd_thr_req_next; 22055 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 22056 22057 /* 22058 * Reclaim reservation only if SD_RESERVE is still set. There 22059 * may have been a call to MHIOCRELEASE before we got here. 22060 */ 22061 mutex_enter(SD_MUTEX(un)); 22062 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 22063 /* 22064 * Note: The SD_LOST_RESERVE flag is cleared before 22065 * reclaiming the reservation. If this is done after the 22066 * call to sd_reserve_release a reservation loss in the 22067 * window between pkt completion of reserve cmd and 22068 * mutex_enter below may not be recognized 22069 */ 22070 un->un_resvd_status &= ~SD_LOST_RESERVE; 22071 mutex_exit(SD_MUTEX(un)); 22072 22073 if (sd_reserve_release(sd_mhreq->dev, 22074 SD_RESERVE) == 0) { 22075 mutex_enter(SD_MUTEX(un)); 22076 un->un_resvd_status |= SD_RESERVE; 22077 mutex_exit(SD_MUTEX(un)); 22078 SD_INFO(SD_LOG_IOCTL_MHD, un, 22079 "sd_resv_reclaim_thread: " 22080 "Reservation Recovered\n"); 22081 } else { 22082 mutex_enter(SD_MUTEX(un)); 22083 un->un_resvd_status |= SD_LOST_RESERVE; 22084 mutex_exit(SD_MUTEX(un)); 22085 SD_INFO(SD_LOG_IOCTL_MHD, un, 22086 "sd_resv_reclaim_thread: Failed " 22087 "Reservation Recovery\n"); 22088 } 22089 } else { 22090 mutex_exit(SD_MUTEX(un)); 22091 } 22092 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 22093 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 22094 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 22095 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 22096 /* 22097 * wakeup the destroy thread if anyone is waiting on 22098 * us to complete. 22099 */ 22100 cv_signal(&sd_tr.srq_inprocess_cv); 22101 SD_TRACE(SD_LOG_IOCTL_MHD, un, 22102 "sd_resv_reclaim_thread: cv_signalling current request \n"); 22103 } 22104 22105 /* 22106 * cleanup the sd_tr structure now that this thread will not exist 22107 */ 22108 ASSERT(sd_tr.srq_thr_req_head == NULL); 22109 ASSERT(sd_tr.srq_thr_cur_req == NULL); 22110 sd_tr.srq_resv_reclaim_thread = NULL; 22111 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 22112 thread_exit(); 22113 } 22114 22115 22116 /* 22117 * Function: sd_rmv_resv_reclaim_req() 22118 * 22119 * Description: This function removes any pending reservation reclaim requests 22120 * for the specified device. 22121 * 22122 * Arguments: dev - the device 'dev_t' 22123 */ 22124 22125 static void 22126 sd_rmv_resv_reclaim_req(dev_t dev) 22127 { 22128 struct sd_thr_request *sd_mhreq; 22129 struct sd_thr_request *sd_prev; 22130 22131 /* Remove a reservation reclaim request from the list */ 22132 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 22133 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 22134 /* 22135 * We are attempting to reinstate reservation for 22136 * this device. We wait for sd_reserve_release() 22137 * to return before we return. 22138 */ 22139 cv_wait(&sd_tr.srq_inprocess_cv, 22140 &sd_tr.srq_resv_reclaim_mutex); 22141 } else { 22142 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 22143 if (sd_mhreq && sd_mhreq->dev == dev) { 22144 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 22145 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 22146 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 22147 return; 22148 } 22149 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 22150 if (sd_mhreq && sd_mhreq->dev == dev) { 22151 break; 22152 } 22153 sd_prev = sd_mhreq; 22154 } 22155 if (sd_mhreq != NULL) { 22156 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 22157 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 22158 } 22159 } 22160 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 22161 } 22162 22163 22164 /* 22165 * Function: sd_mhd_reset_notify_cb() 22166 * 22167 * Description: This is a call back function for scsi_reset_notify. This 22168 * function updates the softstate reserved status and logs the 22169 * reset. The driver scsi watch facility callback function 22170 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 22171 * will reclaim the reservation. 22172 * 22173 * Arguments: arg - driver soft state (unit) structure 22174 */ 22175 22176 static void 22177 sd_mhd_reset_notify_cb(caddr_t arg) 22178 { 22179 struct sd_lun *un = (struct sd_lun *)arg; 22180 22181 mutex_enter(SD_MUTEX(un)); 22182 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 22183 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 22184 SD_INFO(SD_LOG_IOCTL_MHD, un, 22185 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 22186 } 22187 mutex_exit(SD_MUTEX(un)); 22188 } 22189 22190 22191 /* 22192 * Function: sd_take_ownership() 22193 * 22194 * Description: This routine implements an algorithm to achieve a stable 22195 * reservation on disks which don't implement priority reserve, 22196 * and makes sure that other host lose re-reservation attempts. 22197 * This algorithm contains of a loop that keeps issuing the RESERVE 22198 * for some period of time (min_ownership_delay, default 6 seconds) 22199 * During that loop, it looks to see if there has been a bus device 22200 * reset or bus reset (both of which cause an existing reservation 22201 * to be lost). If the reservation is lost issue RESERVE until a 22202 * period of min_ownership_delay with no resets has gone by, or 22203 * until max_ownership_delay has expired. This loop ensures that 22204 * the host really did manage to reserve the device, in spite of 22205 * resets. The looping for min_ownership_delay (default six 22206 * seconds) is important to early generation clustering products, 22207 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 22208 * MHIOCENFAILFAST periodic timer of two seconds. By having 22209 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 22210 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 22211 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 22212 * have already noticed, via the MHIOCENFAILFAST polling, that it 22213 * no longer "owns" the disk and will have panicked itself. Thus, 22214 * the host issuing the MHIOCTKOWN is assured (with timing 22215 * dependencies) that by the time it actually starts to use the 22216 * disk for real work, the old owner is no longer accessing it. 22217 * 22218 * min_ownership_delay is the minimum amount of time for which the 22219 * disk must be reserved continuously devoid of resets before the 22220 * MHIOCTKOWN ioctl will return success. 22221 * 22222 * max_ownership_delay indicates the amount of time by which the 22223 * take ownership should succeed or timeout with an error. 22224 * 22225 * Arguments: dev - the device 'dev_t' 22226 * *p - struct containing timing info. 22227 * 22228 * Return Code: 0 for success or error code 22229 */ 22230 22231 static int 22232 sd_take_ownership(dev_t dev, struct mhioctkown *p) 22233 { 22234 struct sd_lun *un; 22235 int rval; 22236 int err; 22237 int reservation_count = 0; 22238 int min_ownership_delay = 6000000; /* in usec */ 22239 int max_ownership_delay = 30000000; /* in usec */ 22240 clock_t start_time; /* starting time of this algorithm */ 22241 clock_t end_time; /* time limit for giving up */ 22242 clock_t ownership_time; /* time limit for stable ownership */ 22243 clock_t current_time; 22244 clock_t previous_current_time; 22245 22246 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22247 return (ENXIO); 22248 } 22249 22250 /* 22251 * Attempt a device reservation. A priority reservation is requested. 22252 */ 22253 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 22254 != SD_SUCCESS) { 22255 SD_ERROR(SD_LOG_IOCTL_MHD, un, 22256 "sd_take_ownership: return(1)=%d\n", rval); 22257 return (rval); 22258 } 22259 22260 /* Update the softstate reserved status to indicate the reservation */ 22261 mutex_enter(SD_MUTEX(un)); 22262 un->un_resvd_status |= SD_RESERVE; 22263 un->un_resvd_status &= 22264 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 22265 mutex_exit(SD_MUTEX(un)); 22266 22267 if (p != NULL) { 22268 if (p->min_ownership_delay != 0) { 22269 min_ownership_delay = p->min_ownership_delay * 1000; 22270 } 22271 if (p->max_ownership_delay != 0) { 22272 max_ownership_delay = p->max_ownership_delay * 1000; 22273 } 22274 } 22275 SD_INFO(SD_LOG_IOCTL_MHD, un, 22276 "sd_take_ownership: min, max delays: %d, %d\n", 22277 min_ownership_delay, max_ownership_delay); 22278 22279 start_time = ddi_get_lbolt(); 22280 current_time = start_time; 22281 ownership_time = current_time + drv_usectohz(min_ownership_delay); 22282 end_time = start_time + drv_usectohz(max_ownership_delay); 22283 22284 while (current_time - end_time < 0) { 22285 delay(drv_usectohz(500000)); 22286 22287 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 22288 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 22289 mutex_enter(SD_MUTEX(un)); 22290 rval = (un->un_resvd_status & 22291 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 22292 mutex_exit(SD_MUTEX(un)); 22293 break; 22294 } 22295 } 22296 previous_current_time = current_time; 22297 current_time = ddi_get_lbolt(); 22298 mutex_enter(SD_MUTEX(un)); 22299 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 22300 ownership_time = ddi_get_lbolt() + 22301 drv_usectohz(min_ownership_delay); 22302 reservation_count = 0; 22303 } else { 22304 reservation_count++; 22305 } 22306 un->un_resvd_status |= SD_RESERVE; 22307 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 22308 mutex_exit(SD_MUTEX(un)); 22309 22310 SD_INFO(SD_LOG_IOCTL_MHD, un, 22311 "sd_take_ownership: ticks for loop iteration=%ld, " 22312 "reservation=%s\n", (current_time - previous_current_time), 22313 reservation_count ? "ok" : "reclaimed"); 22314 22315 if (current_time - ownership_time >= 0 && 22316 reservation_count >= 4) { 22317 rval = 0; /* Achieved a stable ownership */ 22318 break; 22319 } 22320 if (current_time - end_time >= 0) { 22321 rval = EACCES; /* No ownership in max possible time */ 22322 break; 22323 } 22324 } 22325 SD_TRACE(SD_LOG_IOCTL_MHD, un, 22326 "sd_take_ownership: return(2)=%d\n", rval); 22327 return (rval); 22328 } 22329 22330 22331 /* 22332 * Function: sd_reserve_release() 22333 * 22334 * Description: This function builds and sends scsi RESERVE, RELEASE, and 22335 * PRIORITY RESERVE commands based on a user specified command type 22336 * 22337 * Arguments: dev - the device 'dev_t' 22338 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 22339 * SD_RESERVE, SD_RELEASE 22340 * 22341 * Return Code: 0 or Error Code 22342 */ 22343 22344 static int 22345 sd_reserve_release(dev_t dev, int cmd) 22346 { 22347 struct uscsi_cmd *com = NULL; 22348 struct sd_lun *un = NULL; 22349 char cdb[CDB_GROUP0]; 22350 int rval; 22351 22352 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 22353 (cmd == SD_PRIORITY_RESERVE)); 22354 22355 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22356 return (ENXIO); 22357 } 22358 22359 /* instantiate and initialize the command and cdb */ 22360 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 22361 bzero(cdb, CDB_GROUP0); 22362 com->uscsi_flags = USCSI_SILENT; 22363 com->uscsi_timeout = un->un_reserve_release_time; 22364 com->uscsi_cdblen = CDB_GROUP0; 22365 com->uscsi_cdb = cdb; 22366 if (cmd == SD_RELEASE) { 22367 cdb[0] = SCMD_RELEASE; 22368 } else { 22369 cdb[0] = SCMD_RESERVE; 22370 } 22371 22372 /* Send the command. */ 22373 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 22374 SD_PATH_STANDARD); 22375 22376 /* 22377 * "break" a reservation that is held by another host, by issuing a 22378 * reset if priority reserve is desired, and we could not get the 22379 * device. 22380 */ 22381 if ((cmd == SD_PRIORITY_RESERVE) && 22382 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 22383 /* 22384 * First try to reset the LUN. If we cannot, then try a target 22385 * reset, followed by a bus reset if the target reset fails. 22386 */ 22387 int reset_retval = 0; 22388 if (un->un_f_lun_reset_enabled == TRUE) { 22389 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 22390 } 22391 if (reset_retval == 0) { 22392 /* The LUN reset either failed or was not issued */ 22393 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 22394 } 22395 if ((reset_retval == 0) && 22396 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 22397 rval = EIO; 22398 kmem_free(com, sizeof (*com)); 22399 return (rval); 22400 } 22401 22402 bzero(com, sizeof (struct uscsi_cmd)); 22403 com->uscsi_flags = USCSI_SILENT; 22404 com->uscsi_cdb = cdb; 22405 com->uscsi_cdblen = CDB_GROUP0; 22406 com->uscsi_timeout = 5; 22407 22408 /* 22409 * Reissue the last reserve command, this time without request 22410 * sense. Assume that it is just a regular reserve command. 22411 */ 22412 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 22413 SD_PATH_STANDARD); 22414 } 22415 22416 /* Return an error if still getting a reservation conflict. */ 22417 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 22418 rval = EACCES; 22419 } 22420 22421 kmem_free(com, sizeof (*com)); 22422 return (rval); 22423 } 22424 22425 22426 #define SD_NDUMP_RETRIES 12 22427 /* 22428 * System Crash Dump routine 22429 */ 22430 22431 static int 22432 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 22433 { 22434 int instance; 22435 int partition; 22436 int i; 22437 int err; 22438 struct sd_lun *un; 22439 struct scsi_pkt *wr_pktp; 22440 struct buf *wr_bp; 22441 struct buf wr_buf; 22442 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 22443 daddr_t tgt_blkno; /* rmw - blkno for target */ 22444 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 22445 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 22446 size_t io_start_offset; 22447 int doing_rmw = FALSE; 22448 int rval; 22449 #if defined(__i386) || defined(__amd64) 22450 ssize_t dma_resid; 22451 daddr_t oblkno; 22452 #endif 22453 diskaddr_t nblks = 0; 22454 diskaddr_t start_block; 22455 22456 instance = SDUNIT(dev); 22457 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 22458 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 22459 return (ENXIO); 22460 } 22461 22462 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 22463 22464 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 22465 22466 partition = SDPART(dev); 22467 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 22468 22469 /* Validate blocks to dump at against partition size. */ 22470 22471 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 22472 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 22473 22474 if ((blkno + nblk) > nblks) { 22475 SD_TRACE(SD_LOG_DUMP, un, 22476 "sddump: dump range larger than partition: " 22477 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 22478 blkno, nblk, nblks); 22479 return (EINVAL); 22480 } 22481 22482 mutex_enter(&un->un_pm_mutex); 22483 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 22484 struct scsi_pkt *start_pktp; 22485 22486 mutex_exit(&un->un_pm_mutex); 22487 22488 /* 22489 * use pm framework to power on HBA 1st 22490 */ 22491 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 22492 22493 /* 22494 * Dump no long uses sdpower to power on a device, it's 22495 * in-line here so it can be done in polled mode. 22496 */ 22497 22498 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 22499 22500 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 22501 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 22502 22503 if (start_pktp == NULL) { 22504 /* We were not given a SCSI packet, fail. */ 22505 return (EIO); 22506 } 22507 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 22508 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 22509 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 22510 start_pktp->pkt_flags = FLAG_NOINTR; 22511 22512 mutex_enter(SD_MUTEX(un)); 22513 SD_FILL_SCSI1_LUN(un, start_pktp); 22514 mutex_exit(SD_MUTEX(un)); 22515 /* 22516 * Scsi_poll returns 0 (success) if the command completes and 22517 * the status block is STATUS_GOOD. 22518 */ 22519 if (sd_scsi_poll(un, start_pktp) != 0) { 22520 scsi_destroy_pkt(start_pktp); 22521 return (EIO); 22522 } 22523 scsi_destroy_pkt(start_pktp); 22524 (void) sd_ddi_pm_resume(un); 22525 } else { 22526 mutex_exit(&un->un_pm_mutex); 22527 } 22528 22529 mutex_enter(SD_MUTEX(un)); 22530 un->un_throttle = 0; 22531 22532 /* 22533 * The first time through, reset the specific target device. 22534 * However, when cpr calls sddump we know that sd is in a 22535 * a good state so no bus reset is required. 22536 * Clear sense data via Request Sense cmd. 22537 * In sddump we don't care about allow_bus_device_reset anymore 22538 */ 22539 22540 if ((un->un_state != SD_STATE_SUSPENDED) && 22541 (un->un_state != SD_STATE_DUMPING)) { 22542 22543 New_state(un, SD_STATE_DUMPING); 22544 22545 if (un->un_f_is_fibre == FALSE) { 22546 mutex_exit(SD_MUTEX(un)); 22547 /* 22548 * Attempt a bus reset for parallel scsi. 22549 * 22550 * Note: A bus reset is required because on some host 22551 * systems (i.e. E420R) a bus device reset is 22552 * insufficient to reset the state of the target. 22553 * 22554 * Note: Don't issue the reset for fibre-channel, 22555 * because this tends to hang the bus (loop) for 22556 * too long while everyone is logging out and in 22557 * and the deadman timer for dumping will fire 22558 * before the dump is complete. 22559 */ 22560 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 22561 mutex_enter(SD_MUTEX(un)); 22562 Restore_state(un); 22563 mutex_exit(SD_MUTEX(un)); 22564 return (EIO); 22565 } 22566 22567 /* Delay to give the device some recovery time. */ 22568 drv_usecwait(10000); 22569 22570 if (sd_send_polled_RQS(un) == SD_FAILURE) { 22571 SD_INFO(SD_LOG_DUMP, un, 22572 "sddump: sd_send_polled_RQS failed\n"); 22573 } 22574 mutex_enter(SD_MUTEX(un)); 22575 } 22576 } 22577 22578 /* 22579 * Convert the partition-relative block number to a 22580 * disk physical block number. 22581 */ 22582 blkno += start_block; 22583 22584 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 22585 22586 22587 /* 22588 * Check if the device has a non-512 block size. 22589 */ 22590 wr_bp = NULL; 22591 if (NOT_DEVBSIZE(un)) { 22592 tgt_byte_offset = blkno * un->un_sys_blocksize; 22593 tgt_byte_count = nblk * un->un_sys_blocksize; 22594 if ((tgt_byte_offset % un->un_tgt_blocksize) || 22595 (tgt_byte_count % un->un_tgt_blocksize)) { 22596 doing_rmw = TRUE; 22597 /* 22598 * Calculate the block number and number of block 22599 * in terms of the media block size. 22600 */ 22601 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 22602 tgt_nblk = 22603 ((tgt_byte_offset + tgt_byte_count + 22604 (un->un_tgt_blocksize - 1)) / 22605 un->un_tgt_blocksize) - tgt_blkno; 22606 22607 /* 22608 * Invoke the routine which is going to do read part 22609 * of read-modify-write. 22610 * Note that this routine returns a pointer to 22611 * a valid bp in wr_bp. 22612 */ 22613 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 22614 &wr_bp); 22615 if (err) { 22616 mutex_exit(SD_MUTEX(un)); 22617 return (err); 22618 } 22619 /* 22620 * Offset is being calculated as - 22621 * (original block # * system block size) - 22622 * (new block # * target block size) 22623 */ 22624 io_start_offset = 22625 ((uint64_t)(blkno * un->un_sys_blocksize)) - 22626 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 22627 22628 ASSERT((io_start_offset >= 0) && 22629 (io_start_offset < un->un_tgt_blocksize)); 22630 /* 22631 * Do the modify portion of read modify write. 22632 */ 22633 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 22634 (size_t)nblk * un->un_sys_blocksize); 22635 } else { 22636 doing_rmw = FALSE; 22637 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 22638 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 22639 } 22640 22641 /* Convert blkno and nblk to target blocks */ 22642 blkno = tgt_blkno; 22643 nblk = tgt_nblk; 22644 } else { 22645 wr_bp = &wr_buf; 22646 bzero(wr_bp, sizeof (struct buf)); 22647 wr_bp->b_flags = B_BUSY; 22648 wr_bp->b_un.b_addr = addr; 22649 wr_bp->b_bcount = nblk << DEV_BSHIFT; 22650 wr_bp->b_resid = 0; 22651 } 22652 22653 mutex_exit(SD_MUTEX(un)); 22654 22655 /* 22656 * Obtain a SCSI packet for the write command. 22657 * It should be safe to call the allocator here without 22658 * worrying about being locked for DVMA mapping because 22659 * the address we're passed is already a DVMA mapping 22660 * 22661 * We are also not going to worry about semaphore ownership 22662 * in the dump buffer. Dumping is single threaded at present. 22663 */ 22664 22665 wr_pktp = NULL; 22666 22667 #if defined(__i386) || defined(__amd64) 22668 dma_resid = wr_bp->b_bcount; 22669 oblkno = blkno; 22670 while (dma_resid != 0) { 22671 #endif 22672 22673 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 22674 wr_bp->b_flags &= ~B_ERROR; 22675 22676 #if defined(__i386) || defined(__amd64) 22677 blkno = oblkno + 22678 ((wr_bp->b_bcount - dma_resid) / 22679 un->un_tgt_blocksize); 22680 nblk = dma_resid / un->un_tgt_blocksize; 22681 22682 if (wr_pktp) { 22683 /* Partial DMA transfers after initial transfer */ 22684 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 22685 blkno, nblk); 22686 } else { 22687 /* Initial transfer */ 22688 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 22689 un->un_pkt_flags, NULL_FUNC, NULL, 22690 blkno, nblk); 22691 } 22692 #else 22693 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 22694 0, NULL_FUNC, NULL, blkno, nblk); 22695 #endif 22696 22697 if (rval == 0) { 22698 /* We were given a SCSI packet, continue. */ 22699 break; 22700 } 22701 22702 if (i == 0) { 22703 if (wr_bp->b_flags & B_ERROR) { 22704 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 22705 "no resources for dumping; " 22706 "error code: 0x%x, retrying", 22707 geterror(wr_bp)); 22708 } else { 22709 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 22710 "no resources for dumping; retrying"); 22711 } 22712 } else if (i != (SD_NDUMP_RETRIES - 1)) { 22713 if (wr_bp->b_flags & B_ERROR) { 22714 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 22715 "no resources for dumping; error code: " 22716 "0x%x, retrying\n", geterror(wr_bp)); 22717 } 22718 } else { 22719 if (wr_bp->b_flags & B_ERROR) { 22720 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 22721 "no resources for dumping; " 22722 "error code: 0x%x, retries failed, " 22723 "giving up.\n", geterror(wr_bp)); 22724 } else { 22725 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 22726 "no resources for dumping; " 22727 "retries failed, giving up.\n"); 22728 } 22729 mutex_enter(SD_MUTEX(un)); 22730 Restore_state(un); 22731 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 22732 mutex_exit(SD_MUTEX(un)); 22733 scsi_free_consistent_buf(wr_bp); 22734 } else { 22735 mutex_exit(SD_MUTEX(un)); 22736 } 22737 return (EIO); 22738 } 22739 drv_usecwait(10000); 22740 } 22741 22742 #if defined(__i386) || defined(__amd64) 22743 /* 22744 * save the resid from PARTIAL_DMA 22745 */ 22746 dma_resid = wr_pktp->pkt_resid; 22747 if (dma_resid != 0) 22748 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 22749 wr_pktp->pkt_resid = 0; 22750 #endif 22751 22752 /* SunBug 1222170 */ 22753 wr_pktp->pkt_flags = FLAG_NOINTR; 22754 22755 err = EIO; 22756 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 22757 22758 /* 22759 * Scsi_poll returns 0 (success) if the command completes and 22760 * the status block is STATUS_GOOD. We should only check 22761 * errors if this condition is not true. Even then we should 22762 * send our own request sense packet only if we have a check 22763 * condition and auto request sense has not been performed by 22764 * the hba. 22765 */ 22766 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 22767 22768 if ((sd_scsi_poll(un, wr_pktp) == 0) && 22769 (wr_pktp->pkt_resid == 0)) { 22770 err = SD_SUCCESS; 22771 break; 22772 } 22773 22774 /* 22775 * Check CMD_DEV_GONE 1st, give up if device is gone. 22776 */ 22777 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 22778 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 22779 "Device is gone\n"); 22780 break; 22781 } 22782 22783 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 22784 SD_INFO(SD_LOG_DUMP, un, 22785 "sddump: write failed with CHECK, try # %d\n", i); 22786 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 22787 (void) sd_send_polled_RQS(un); 22788 } 22789 22790 continue; 22791 } 22792 22793 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 22794 int reset_retval = 0; 22795 22796 SD_INFO(SD_LOG_DUMP, un, 22797 "sddump: write failed with BUSY, try # %d\n", i); 22798 22799 if (un->un_f_lun_reset_enabled == TRUE) { 22800 reset_retval = scsi_reset(SD_ADDRESS(un), 22801 RESET_LUN); 22802 } 22803 if (reset_retval == 0) { 22804 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 22805 } 22806 (void) sd_send_polled_RQS(un); 22807 22808 } else { 22809 SD_INFO(SD_LOG_DUMP, un, 22810 "sddump: write failed with 0x%x, try # %d\n", 22811 SD_GET_PKT_STATUS(wr_pktp), i); 22812 mutex_enter(SD_MUTEX(un)); 22813 sd_reset_target(un, wr_pktp); 22814 mutex_exit(SD_MUTEX(un)); 22815 } 22816 22817 /* 22818 * If we are not getting anywhere with lun/target resets, 22819 * let's reset the bus. 22820 */ 22821 if (i == SD_NDUMP_RETRIES/2) { 22822 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 22823 (void) sd_send_polled_RQS(un); 22824 } 22825 22826 } 22827 #if defined(__i386) || defined(__amd64) 22828 } /* dma_resid */ 22829 #endif 22830 22831 scsi_destroy_pkt(wr_pktp); 22832 mutex_enter(SD_MUTEX(un)); 22833 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 22834 mutex_exit(SD_MUTEX(un)); 22835 scsi_free_consistent_buf(wr_bp); 22836 } else { 22837 mutex_exit(SD_MUTEX(un)); 22838 } 22839 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 22840 return (err); 22841 } 22842 22843 /* 22844 * Function: sd_scsi_poll() 22845 * 22846 * Description: This is a wrapper for the scsi_poll call. 22847 * 22848 * Arguments: sd_lun - The unit structure 22849 * scsi_pkt - The scsi packet being sent to the device. 22850 * 22851 * Return Code: 0 - Command completed successfully with good status 22852 * -1 - Command failed. This could indicate a check condition 22853 * or other status value requiring recovery action. 22854 * 22855 */ 22856 22857 static int 22858 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 22859 { 22860 int status; 22861 22862 ASSERT(un != NULL); 22863 ASSERT(!mutex_owned(SD_MUTEX(un))); 22864 ASSERT(pktp != NULL); 22865 22866 status = SD_SUCCESS; 22867 22868 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 22869 pktp->pkt_flags |= un->un_tagflags; 22870 pktp->pkt_flags &= ~FLAG_NODISCON; 22871 } 22872 22873 status = sd_ddi_scsi_poll(pktp); 22874 /* 22875 * Scsi_poll returns 0 (success) if the command completes and the 22876 * status block is STATUS_GOOD. We should only check errors if this 22877 * condition is not true. Even then we should send our own request 22878 * sense packet only if we have a check condition and auto 22879 * request sense has not been performed by the hba. 22880 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 22881 */ 22882 if ((status != SD_SUCCESS) && 22883 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 22884 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 22885 (pktp->pkt_reason != CMD_DEV_GONE)) 22886 (void) sd_send_polled_RQS(un); 22887 22888 return (status); 22889 } 22890 22891 /* 22892 * Function: sd_send_polled_RQS() 22893 * 22894 * Description: This sends the request sense command to a device. 22895 * 22896 * Arguments: sd_lun - The unit structure 22897 * 22898 * Return Code: 0 - Command completed successfully with good status 22899 * -1 - Command failed. 22900 * 22901 */ 22902 22903 static int 22904 sd_send_polled_RQS(struct sd_lun *un) 22905 { 22906 int ret_val; 22907 struct scsi_pkt *rqs_pktp; 22908 struct buf *rqs_bp; 22909 22910 ASSERT(un != NULL); 22911 ASSERT(!mutex_owned(SD_MUTEX(un))); 22912 22913 ret_val = SD_SUCCESS; 22914 22915 rqs_pktp = un->un_rqs_pktp; 22916 rqs_bp = un->un_rqs_bp; 22917 22918 mutex_enter(SD_MUTEX(un)); 22919 22920 if (un->un_sense_isbusy) { 22921 ret_val = SD_FAILURE; 22922 mutex_exit(SD_MUTEX(un)); 22923 return (ret_val); 22924 } 22925 22926 /* 22927 * If the request sense buffer (and packet) is not in use, 22928 * let's set the un_sense_isbusy and send our packet 22929 */ 22930 un->un_sense_isbusy = 1; 22931 rqs_pktp->pkt_resid = 0; 22932 rqs_pktp->pkt_reason = 0; 22933 rqs_pktp->pkt_flags |= FLAG_NOINTR; 22934 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 22935 22936 mutex_exit(SD_MUTEX(un)); 22937 22938 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 22939 " 0x%p\n", rqs_bp->b_un.b_addr); 22940 22941 /* 22942 * Can't send this to sd_scsi_poll, we wrap ourselves around the 22943 * axle - it has a call into us! 22944 */ 22945 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 22946 SD_INFO(SD_LOG_COMMON, un, 22947 "sd_send_polled_RQS: RQS failed\n"); 22948 } 22949 22950 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 22951 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 22952 22953 mutex_enter(SD_MUTEX(un)); 22954 un->un_sense_isbusy = 0; 22955 mutex_exit(SD_MUTEX(un)); 22956 22957 return (ret_val); 22958 } 22959 22960 /* 22961 * Defines needed for localized version of the scsi_poll routine. 22962 */ 22963 #define SD_CSEC 10000 /* usecs */ 22964 #define SD_SEC_TO_CSEC (1000000/SD_CSEC) 22965 22966 22967 /* 22968 * Function: sd_ddi_scsi_poll() 22969 * 22970 * Description: Localized version of the scsi_poll routine. The purpose is to 22971 * send a scsi_pkt to a device as a polled command. This version 22972 * is to ensure more robust handling of transport errors. 22973 * Specifically this routine cures not ready, coming ready 22974 * transition for power up and reset of sonoma's. This can take 22975 * up to 45 seconds for power-on and 20 seconds for reset of a 22976 * sonoma lun. 22977 * 22978 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 22979 * 22980 * Return Code: 0 - Command completed successfully with good status 22981 * -1 - Command failed. 22982 * 22983 */ 22984 22985 static int 22986 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 22987 { 22988 int busy_count; 22989 int timeout; 22990 int rval = SD_FAILURE; 22991 int savef; 22992 uint8_t *sensep; 22993 long savet; 22994 void (*savec)(); 22995 /* 22996 * The following is defined in machdep.c and is used in determining if 22997 * the scsi transport system will do polled I/O instead of interrupt 22998 * I/O when called from xx_dump(). 22999 */ 23000 extern int do_polled_io; 23001 23002 /* 23003 * save old flags in pkt, to restore at end 23004 */ 23005 savef = pkt->pkt_flags; 23006 savec = pkt->pkt_comp; 23007 savet = pkt->pkt_time; 23008 23009 pkt->pkt_flags |= FLAG_NOINTR; 23010 23011 /* 23012 * XXX there is nothing in the SCSA spec that states that we should not 23013 * do a callback for polled cmds; however, removing this will break sd 23014 * and probably other target drivers 23015 */ 23016 pkt->pkt_comp = NULL; 23017 23018 /* 23019 * we don't like a polled command without timeout. 23020 * 60 seconds seems long enough. 23021 */ 23022 if (pkt->pkt_time == 0) { 23023 pkt->pkt_time = SCSI_POLL_TIMEOUT; 23024 } 23025 23026 /* 23027 * Send polled cmd. 23028 * 23029 * We do some error recovery for various errors. Tran_busy, 23030 * queue full, and non-dispatched commands are retried every 10 msec. 23031 * as they are typically transient failures. Busy status and Not 23032 * Ready are retried every second as this status takes a while to 23033 * change. Unit attention is retried for pkt_time (60) times 23034 * with no delay. 23035 */ 23036 timeout = pkt->pkt_time * SD_SEC_TO_CSEC; 23037 23038 for (busy_count = 0; busy_count < timeout; busy_count++) { 23039 int rc; 23040 int poll_delay; 23041 23042 /* 23043 * Initialize pkt status variables. 23044 */ 23045 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 23046 23047 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 23048 if (rc != TRAN_BUSY) { 23049 /* Transport failed - give up. */ 23050 break; 23051 } else { 23052 /* Transport busy - try again. */ 23053 poll_delay = 1 * SD_CSEC; /* 10 msec */ 23054 } 23055 } else { 23056 /* 23057 * Transport accepted - check pkt status. 23058 */ 23059 rc = (*pkt->pkt_scbp) & STATUS_MASK; 23060 if (pkt->pkt_reason == CMD_CMPLT && 23061 rc == STATUS_CHECK && 23062 pkt->pkt_state & STATE_ARQ_DONE) { 23063 struct scsi_arq_status *arqstat = 23064 (struct scsi_arq_status *)(pkt->pkt_scbp); 23065 23066 sensep = (uint8_t *)&arqstat->sts_sensedata; 23067 } else { 23068 sensep = NULL; 23069 } 23070 23071 if ((pkt->pkt_reason == CMD_CMPLT) && 23072 (rc == STATUS_GOOD)) { 23073 /* No error - we're done */ 23074 rval = SD_SUCCESS; 23075 break; 23076 23077 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 23078 /* Lost connection - give up */ 23079 break; 23080 23081 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 23082 (pkt->pkt_state == 0)) { 23083 /* Pkt not dispatched - try again. */ 23084 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 23085 23086 } else if ((pkt->pkt_reason == CMD_CMPLT) && 23087 (rc == STATUS_QFULL)) { 23088 /* Queue full - try again. */ 23089 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 23090 23091 } else if ((pkt->pkt_reason == CMD_CMPLT) && 23092 (rc == STATUS_BUSY)) { 23093 /* Busy - try again. */ 23094 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 23095 busy_count += (SD_SEC_TO_CSEC - 1); 23096 23097 } else if ((sensep != NULL) && 23098 (scsi_sense_key(sensep) == 23099 KEY_UNIT_ATTENTION)) { 23100 /* Unit Attention - try again */ 23101 busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */ 23102 continue; 23103 23104 } else if ((sensep != NULL) && 23105 (scsi_sense_key(sensep) == KEY_NOT_READY) && 23106 (scsi_sense_asc(sensep) == 0x04) && 23107 (scsi_sense_ascq(sensep) == 0x01)) { 23108 /* Not ready -> ready - try again. */ 23109 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 23110 busy_count += (SD_SEC_TO_CSEC - 1); 23111 23112 } else { 23113 /* BAD status - give up. */ 23114 break; 23115 } 23116 } 23117 23118 if ((curthread->t_flag & T_INTR_THREAD) == 0 && 23119 !do_polled_io) { 23120 delay(drv_usectohz(poll_delay)); 23121 } else { 23122 /* we busy wait during cpr_dump or interrupt threads */ 23123 drv_usecwait(poll_delay); 23124 } 23125 } 23126 23127 pkt->pkt_flags = savef; 23128 pkt->pkt_comp = savec; 23129 pkt->pkt_time = savet; 23130 return (rval); 23131 } 23132 23133 23134 /* 23135 * Function: sd_persistent_reservation_in_read_keys 23136 * 23137 * Description: This routine is the driver entry point for handling CD-ROM 23138 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 23139 * by sending the SCSI-3 PRIN commands to the device. 23140 * Processes the read keys command response by copying the 23141 * reservation key information into the user provided buffer. 23142 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 23143 * 23144 * Arguments: un - Pointer to soft state struct for the target. 23145 * usrp - user provided pointer to multihost Persistent In Read 23146 * Keys structure (mhioc_inkeys_t) 23147 * flag - this argument is a pass through to ddi_copyxxx() 23148 * directly from the mode argument of ioctl(). 23149 * 23150 * Return Code: 0 - Success 23151 * EACCES 23152 * ENOTSUP 23153 * errno return code from sd_send_scsi_cmd() 23154 * 23155 * Context: Can sleep. Does not return until command is completed. 23156 */ 23157 23158 static int 23159 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 23160 mhioc_inkeys_t *usrp, int flag) 23161 { 23162 #ifdef _MULTI_DATAMODEL 23163 struct mhioc_key_list32 li32; 23164 #endif 23165 sd_prin_readkeys_t *in; 23166 mhioc_inkeys_t *ptr; 23167 mhioc_key_list_t li; 23168 uchar_t *data_bufp; 23169 int data_len; 23170 int rval; 23171 size_t copysz; 23172 23173 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 23174 return (EINVAL); 23175 } 23176 bzero(&li, sizeof (mhioc_key_list_t)); 23177 23178 /* 23179 * Get the listsize from user 23180 */ 23181 #ifdef _MULTI_DATAMODEL 23182 23183 switch (ddi_model_convert_from(flag & FMODELS)) { 23184 case DDI_MODEL_ILP32: 23185 copysz = sizeof (struct mhioc_key_list32); 23186 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 23187 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23188 "sd_persistent_reservation_in_read_keys: " 23189 "failed ddi_copyin: mhioc_key_list32_t\n"); 23190 rval = EFAULT; 23191 goto done; 23192 } 23193 li.listsize = li32.listsize; 23194 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 23195 break; 23196 23197 case DDI_MODEL_NONE: 23198 copysz = sizeof (mhioc_key_list_t); 23199 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 23200 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23201 "sd_persistent_reservation_in_read_keys: " 23202 "failed ddi_copyin: mhioc_key_list_t\n"); 23203 rval = EFAULT; 23204 goto done; 23205 } 23206 break; 23207 } 23208 23209 #else /* ! _MULTI_DATAMODEL */ 23210 copysz = sizeof (mhioc_key_list_t); 23211 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 23212 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23213 "sd_persistent_reservation_in_read_keys: " 23214 "failed ddi_copyin: mhioc_key_list_t\n"); 23215 rval = EFAULT; 23216 goto done; 23217 } 23218 #endif 23219 23220 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 23221 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 23222 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 23223 23224 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 23225 data_len, data_bufp)) != 0) { 23226 goto done; 23227 } 23228 in = (sd_prin_readkeys_t *)data_bufp; 23229 ptr->generation = BE_32(in->generation); 23230 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 23231 23232 /* 23233 * Return the min(listsize, listlen) keys 23234 */ 23235 #ifdef _MULTI_DATAMODEL 23236 23237 switch (ddi_model_convert_from(flag & FMODELS)) { 23238 case DDI_MODEL_ILP32: 23239 li32.listlen = li.listlen; 23240 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 23241 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23242 "sd_persistent_reservation_in_read_keys: " 23243 "failed ddi_copyout: mhioc_key_list32_t\n"); 23244 rval = EFAULT; 23245 goto done; 23246 } 23247 break; 23248 23249 case DDI_MODEL_NONE: 23250 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 23251 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23252 "sd_persistent_reservation_in_read_keys: " 23253 "failed ddi_copyout: mhioc_key_list_t\n"); 23254 rval = EFAULT; 23255 goto done; 23256 } 23257 break; 23258 } 23259 23260 #else /* ! _MULTI_DATAMODEL */ 23261 23262 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 23263 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23264 "sd_persistent_reservation_in_read_keys: " 23265 "failed ddi_copyout: mhioc_key_list_t\n"); 23266 rval = EFAULT; 23267 goto done; 23268 } 23269 23270 #endif /* _MULTI_DATAMODEL */ 23271 23272 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 23273 li.listsize * MHIOC_RESV_KEY_SIZE); 23274 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 23275 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23276 "sd_persistent_reservation_in_read_keys: " 23277 "failed ddi_copyout: keylist\n"); 23278 rval = EFAULT; 23279 } 23280 done: 23281 kmem_free(data_bufp, data_len); 23282 return (rval); 23283 } 23284 23285 23286 /* 23287 * Function: sd_persistent_reservation_in_read_resv 23288 * 23289 * Description: This routine is the driver entry point for handling CD-ROM 23290 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 23291 * by sending the SCSI-3 PRIN commands to the device. 23292 * Process the read persistent reservations command response by 23293 * copying the reservation information into the user provided 23294 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 23295 * 23296 * Arguments: un - Pointer to soft state struct for the target. 23297 * usrp - user provided pointer to multihost Persistent In Read 23298 * Keys structure (mhioc_inkeys_t) 23299 * flag - this argument is a pass through to ddi_copyxxx() 23300 * directly from the mode argument of ioctl(). 23301 * 23302 * Return Code: 0 - Success 23303 * EACCES 23304 * ENOTSUP 23305 * errno return code from sd_send_scsi_cmd() 23306 * 23307 * Context: Can sleep. Does not return until command is completed. 23308 */ 23309 23310 static int 23311 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 23312 mhioc_inresvs_t *usrp, int flag) 23313 { 23314 #ifdef _MULTI_DATAMODEL 23315 struct mhioc_resv_desc_list32 resvlist32; 23316 #endif 23317 sd_prin_readresv_t *in; 23318 mhioc_inresvs_t *ptr; 23319 sd_readresv_desc_t *readresv_ptr; 23320 mhioc_resv_desc_list_t resvlist; 23321 mhioc_resv_desc_t resvdesc; 23322 uchar_t *data_bufp; 23323 int data_len; 23324 int rval; 23325 int i; 23326 size_t copysz; 23327 mhioc_resv_desc_t *bufp; 23328 23329 if ((ptr = usrp) == NULL) { 23330 return (EINVAL); 23331 } 23332 23333 /* 23334 * Get the listsize from user 23335 */ 23336 #ifdef _MULTI_DATAMODEL 23337 switch (ddi_model_convert_from(flag & FMODELS)) { 23338 case DDI_MODEL_ILP32: 23339 copysz = sizeof (struct mhioc_resv_desc_list32); 23340 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 23341 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23342 "sd_persistent_reservation_in_read_resv: " 23343 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 23344 rval = EFAULT; 23345 goto done; 23346 } 23347 resvlist.listsize = resvlist32.listsize; 23348 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 23349 break; 23350 23351 case DDI_MODEL_NONE: 23352 copysz = sizeof (mhioc_resv_desc_list_t); 23353 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 23354 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23355 "sd_persistent_reservation_in_read_resv: " 23356 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 23357 rval = EFAULT; 23358 goto done; 23359 } 23360 break; 23361 } 23362 #else /* ! _MULTI_DATAMODEL */ 23363 copysz = sizeof (mhioc_resv_desc_list_t); 23364 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 23365 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23366 "sd_persistent_reservation_in_read_resv: " 23367 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 23368 rval = EFAULT; 23369 goto done; 23370 } 23371 #endif /* ! _MULTI_DATAMODEL */ 23372 23373 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 23374 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 23375 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 23376 23377 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV, 23378 data_len, data_bufp)) != 0) { 23379 goto done; 23380 } 23381 in = (sd_prin_readresv_t *)data_bufp; 23382 ptr->generation = BE_32(in->generation); 23383 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 23384 23385 /* 23386 * Return the min(listsize, listlen( keys 23387 */ 23388 #ifdef _MULTI_DATAMODEL 23389 23390 switch (ddi_model_convert_from(flag & FMODELS)) { 23391 case DDI_MODEL_ILP32: 23392 resvlist32.listlen = resvlist.listlen; 23393 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 23394 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23395 "sd_persistent_reservation_in_read_resv: " 23396 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 23397 rval = EFAULT; 23398 goto done; 23399 } 23400 break; 23401 23402 case DDI_MODEL_NONE: 23403 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 23404 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23405 "sd_persistent_reservation_in_read_resv: " 23406 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 23407 rval = EFAULT; 23408 goto done; 23409 } 23410 break; 23411 } 23412 23413 #else /* ! _MULTI_DATAMODEL */ 23414 23415 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 23416 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23417 "sd_persistent_reservation_in_read_resv: " 23418 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 23419 rval = EFAULT; 23420 goto done; 23421 } 23422 23423 #endif /* ! _MULTI_DATAMODEL */ 23424 23425 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 23426 bufp = resvlist.list; 23427 copysz = sizeof (mhioc_resv_desc_t); 23428 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 23429 i++, readresv_ptr++, bufp++) { 23430 23431 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 23432 MHIOC_RESV_KEY_SIZE); 23433 resvdesc.type = readresv_ptr->type; 23434 resvdesc.scope = readresv_ptr->scope; 23435 resvdesc.scope_specific_addr = 23436 BE_32(readresv_ptr->scope_specific_addr); 23437 23438 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 23439 SD_ERROR(SD_LOG_IOCTL_MHD, un, 23440 "sd_persistent_reservation_in_read_resv: " 23441 "failed ddi_copyout: resvlist\n"); 23442 rval = EFAULT; 23443 goto done; 23444 } 23445 } 23446 done: 23447 kmem_free(data_bufp, data_len); 23448 return (rval); 23449 } 23450 23451 23452 /* 23453 * Function: sr_change_blkmode() 23454 * 23455 * Description: This routine is the driver entry point for handling CD-ROM 23456 * block mode ioctl requests. Support for returning and changing 23457 * the current block size in use by the device is implemented. The 23458 * LBA size is changed via a MODE SELECT Block Descriptor. 23459 * 23460 * This routine issues a mode sense with an allocation length of 23461 * 12 bytes for the mode page header and a single block descriptor. 23462 * 23463 * Arguments: dev - the device 'dev_t' 23464 * cmd - the request type; one of CDROMGBLKMODE (get) or 23465 * CDROMSBLKMODE (set) 23466 * data - current block size or requested block size 23467 * flag - this argument is a pass through to ddi_copyxxx() directly 23468 * from the mode argument of ioctl(). 23469 * 23470 * Return Code: the code returned by sd_send_scsi_cmd() 23471 * EINVAL if invalid arguments are provided 23472 * EFAULT if ddi_copyxxx() fails 23473 * ENXIO if fail ddi_get_soft_state 23474 * EIO if invalid mode sense block descriptor length 23475 * 23476 */ 23477 23478 static int 23479 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 23480 { 23481 struct sd_lun *un = NULL; 23482 struct mode_header *sense_mhp, *select_mhp; 23483 struct block_descriptor *sense_desc, *select_desc; 23484 int current_bsize; 23485 int rval = EINVAL; 23486 uchar_t *sense = NULL; 23487 uchar_t *select = NULL; 23488 23489 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 23490 23491 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23492 return (ENXIO); 23493 } 23494 23495 /* 23496 * The block length is changed via the Mode Select block descriptor, the 23497 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 23498 * required as part of this routine. Therefore the mode sense allocation 23499 * length is specified to be the length of a mode page header and a 23500 * block descriptor. 23501 */ 23502 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 23503 23504 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 23505 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) { 23506 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23507 "sr_change_blkmode: Mode Sense Failed\n"); 23508 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 23509 return (rval); 23510 } 23511 23512 /* Check the block descriptor len to handle only 1 block descriptor */ 23513 sense_mhp = (struct mode_header *)sense; 23514 if ((sense_mhp->bdesc_length == 0) || 23515 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 23516 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23517 "sr_change_blkmode: Mode Sense returned invalid block" 23518 " descriptor length\n"); 23519 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 23520 return (EIO); 23521 } 23522 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 23523 current_bsize = ((sense_desc->blksize_hi << 16) | 23524 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 23525 23526 /* Process command */ 23527 switch (cmd) { 23528 case CDROMGBLKMODE: 23529 /* Return the block size obtained during the mode sense */ 23530 if (ddi_copyout(¤t_bsize, (void *)data, 23531 sizeof (int), flag) != 0) 23532 rval = EFAULT; 23533 break; 23534 case CDROMSBLKMODE: 23535 /* Validate the requested block size */ 23536 switch (data) { 23537 case CDROM_BLK_512: 23538 case CDROM_BLK_1024: 23539 case CDROM_BLK_2048: 23540 case CDROM_BLK_2056: 23541 case CDROM_BLK_2336: 23542 case CDROM_BLK_2340: 23543 case CDROM_BLK_2352: 23544 case CDROM_BLK_2368: 23545 case CDROM_BLK_2448: 23546 case CDROM_BLK_2646: 23547 case CDROM_BLK_2647: 23548 break; 23549 default: 23550 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23551 "sr_change_blkmode: " 23552 "Block Size '%ld' Not Supported\n", data); 23553 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 23554 return (EINVAL); 23555 } 23556 23557 /* 23558 * The current block size matches the requested block size so 23559 * there is no need to send the mode select to change the size 23560 */ 23561 if (current_bsize == data) { 23562 break; 23563 } 23564 23565 /* Build the select data for the requested block size */ 23566 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 23567 select_mhp = (struct mode_header *)select; 23568 select_desc = 23569 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 23570 /* 23571 * The LBA size is changed via the block descriptor, so the 23572 * descriptor is built according to the user data 23573 */ 23574 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 23575 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 23576 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 23577 select_desc->blksize_lo = (char)((data) & 0x000000ff); 23578 23579 /* Send the mode select for the requested block size */ 23580 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 23581 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 23582 SD_PATH_STANDARD)) != 0) { 23583 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23584 "sr_change_blkmode: Mode Select Failed\n"); 23585 /* 23586 * The mode select failed for the requested block size, 23587 * so reset the data for the original block size and 23588 * send it to the target. The error is indicated by the 23589 * return value for the failed mode select. 23590 */ 23591 select_desc->blksize_hi = sense_desc->blksize_hi; 23592 select_desc->blksize_mid = sense_desc->blksize_mid; 23593 select_desc->blksize_lo = sense_desc->blksize_lo; 23594 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 23595 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 23596 SD_PATH_STANDARD); 23597 } else { 23598 ASSERT(!mutex_owned(SD_MUTEX(un))); 23599 mutex_enter(SD_MUTEX(un)); 23600 sd_update_block_info(un, (uint32_t)data, 0); 23601 mutex_exit(SD_MUTEX(un)); 23602 } 23603 break; 23604 default: 23605 /* should not reach here, but check anyway */ 23606 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23607 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 23608 rval = EINVAL; 23609 break; 23610 } 23611 23612 if (select) { 23613 kmem_free(select, BUFLEN_CHG_BLK_MODE); 23614 } 23615 if (sense) { 23616 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 23617 } 23618 return (rval); 23619 } 23620 23621 23622 /* 23623 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 23624 * implement driver support for getting and setting the CD speed. The command 23625 * set used will be based on the device type. If the device has not been 23626 * identified as MMC the Toshiba vendor specific mode page will be used. If 23627 * the device is MMC but does not support the Real Time Streaming feature 23628 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 23629 * be used to read the speed. 23630 */ 23631 23632 /* 23633 * Function: sr_change_speed() 23634 * 23635 * Description: This routine is the driver entry point for handling CD-ROM 23636 * drive speed ioctl requests for devices supporting the Toshiba 23637 * vendor specific drive speed mode page. Support for returning 23638 * and changing the current drive speed in use by the device is 23639 * implemented. 23640 * 23641 * Arguments: dev - the device 'dev_t' 23642 * cmd - the request type; one of CDROMGDRVSPEED (get) or 23643 * CDROMSDRVSPEED (set) 23644 * data - current drive speed or requested drive speed 23645 * flag - this argument is a pass through to ddi_copyxxx() directly 23646 * from the mode argument of ioctl(). 23647 * 23648 * Return Code: the code returned by sd_send_scsi_cmd() 23649 * EINVAL if invalid arguments are provided 23650 * EFAULT if ddi_copyxxx() fails 23651 * ENXIO if fail ddi_get_soft_state 23652 * EIO if invalid mode sense block descriptor length 23653 */ 23654 23655 static int 23656 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 23657 { 23658 struct sd_lun *un = NULL; 23659 struct mode_header *sense_mhp, *select_mhp; 23660 struct mode_speed *sense_page, *select_page; 23661 int current_speed; 23662 int rval = EINVAL; 23663 int bd_len; 23664 uchar_t *sense = NULL; 23665 uchar_t *select = NULL; 23666 23667 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 23668 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23669 return (ENXIO); 23670 } 23671 23672 /* 23673 * Note: The drive speed is being modified here according to a Toshiba 23674 * vendor specific mode page (0x31). 23675 */ 23676 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 23677 23678 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 23679 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 23680 SD_PATH_STANDARD)) != 0) { 23681 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23682 "sr_change_speed: Mode Sense Failed\n"); 23683 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 23684 return (rval); 23685 } 23686 sense_mhp = (struct mode_header *)sense; 23687 23688 /* Check the block descriptor len to handle only 1 block descriptor */ 23689 bd_len = sense_mhp->bdesc_length; 23690 if (bd_len > MODE_BLK_DESC_LENGTH) { 23691 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23692 "sr_change_speed: Mode Sense returned invalid block " 23693 "descriptor length\n"); 23694 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 23695 return (EIO); 23696 } 23697 23698 sense_page = (struct mode_speed *) 23699 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 23700 current_speed = sense_page->speed; 23701 23702 /* Process command */ 23703 switch (cmd) { 23704 case CDROMGDRVSPEED: 23705 /* Return the drive speed obtained during the mode sense */ 23706 if (current_speed == 0x2) { 23707 current_speed = CDROM_TWELVE_SPEED; 23708 } 23709 if (ddi_copyout(¤t_speed, (void *)data, 23710 sizeof (int), flag) != 0) { 23711 rval = EFAULT; 23712 } 23713 break; 23714 case CDROMSDRVSPEED: 23715 /* Validate the requested drive speed */ 23716 switch ((uchar_t)data) { 23717 case CDROM_TWELVE_SPEED: 23718 data = 0x2; 23719 /*FALLTHROUGH*/ 23720 case CDROM_NORMAL_SPEED: 23721 case CDROM_DOUBLE_SPEED: 23722 case CDROM_QUAD_SPEED: 23723 case CDROM_MAXIMUM_SPEED: 23724 break; 23725 default: 23726 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23727 "sr_change_speed: " 23728 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 23729 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 23730 return (EINVAL); 23731 } 23732 23733 /* 23734 * The current drive speed matches the requested drive speed so 23735 * there is no need to send the mode select to change the speed 23736 */ 23737 if (current_speed == data) { 23738 break; 23739 } 23740 23741 /* Build the select data for the requested drive speed */ 23742 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 23743 select_mhp = (struct mode_header *)select; 23744 select_mhp->bdesc_length = 0; 23745 select_page = 23746 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 23747 select_page = 23748 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 23749 select_page->mode_page.code = CDROM_MODE_SPEED; 23750 select_page->mode_page.length = 2; 23751 select_page->speed = (uchar_t)data; 23752 23753 /* Send the mode select for the requested block size */ 23754 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 23755 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 23756 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 23757 /* 23758 * The mode select failed for the requested drive speed, 23759 * so reset the data for the original drive speed and 23760 * send it to the target. The error is indicated by the 23761 * return value for the failed mode select. 23762 */ 23763 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23764 "sr_drive_speed: Mode Select Failed\n"); 23765 select_page->speed = sense_page->speed; 23766 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 23767 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 23768 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 23769 } 23770 break; 23771 default: 23772 /* should not reach here, but check anyway */ 23773 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23774 "sr_change_speed: Command '%x' Not Supported\n", cmd); 23775 rval = EINVAL; 23776 break; 23777 } 23778 23779 if (select) { 23780 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 23781 } 23782 if (sense) { 23783 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 23784 } 23785 23786 return (rval); 23787 } 23788 23789 23790 /* 23791 * Function: sr_atapi_change_speed() 23792 * 23793 * Description: This routine is the driver entry point for handling CD-ROM 23794 * drive speed ioctl requests for MMC devices that do not support 23795 * the Real Time Streaming feature (0x107). 23796 * 23797 * Note: This routine will use the SET SPEED command which may not 23798 * be supported by all devices. 23799 * 23800 * Arguments: dev- the device 'dev_t' 23801 * cmd- the request type; one of CDROMGDRVSPEED (get) or 23802 * CDROMSDRVSPEED (set) 23803 * data- current drive speed or requested drive speed 23804 * flag- this argument is a pass through to ddi_copyxxx() directly 23805 * from the mode argument of ioctl(). 23806 * 23807 * Return Code: the code returned by sd_send_scsi_cmd() 23808 * EINVAL if invalid arguments are provided 23809 * EFAULT if ddi_copyxxx() fails 23810 * ENXIO if fail ddi_get_soft_state 23811 * EIO if invalid mode sense block descriptor length 23812 */ 23813 23814 static int 23815 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 23816 { 23817 struct sd_lun *un; 23818 struct uscsi_cmd *com = NULL; 23819 struct mode_header_grp2 *sense_mhp; 23820 uchar_t *sense_page; 23821 uchar_t *sense = NULL; 23822 char cdb[CDB_GROUP5]; 23823 int bd_len; 23824 int current_speed = 0; 23825 int max_speed = 0; 23826 int rval; 23827 23828 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 23829 23830 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23831 return (ENXIO); 23832 } 23833 23834 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 23835 23836 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 23837 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 23838 SD_PATH_STANDARD)) != 0) { 23839 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23840 "sr_atapi_change_speed: Mode Sense Failed\n"); 23841 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 23842 return (rval); 23843 } 23844 23845 /* Check the block descriptor len to handle only 1 block descriptor */ 23846 sense_mhp = (struct mode_header_grp2 *)sense; 23847 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 23848 if (bd_len > MODE_BLK_DESC_LENGTH) { 23849 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23850 "sr_atapi_change_speed: Mode Sense returned invalid " 23851 "block descriptor length\n"); 23852 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 23853 return (EIO); 23854 } 23855 23856 /* Calculate the current and maximum drive speeds */ 23857 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 23858 current_speed = (sense_page[14] << 8) | sense_page[15]; 23859 max_speed = (sense_page[8] << 8) | sense_page[9]; 23860 23861 /* Process the command */ 23862 switch (cmd) { 23863 case CDROMGDRVSPEED: 23864 current_speed /= SD_SPEED_1X; 23865 if (ddi_copyout(¤t_speed, (void *)data, 23866 sizeof (int), flag) != 0) 23867 rval = EFAULT; 23868 break; 23869 case CDROMSDRVSPEED: 23870 /* Convert the speed code to KB/sec */ 23871 switch ((uchar_t)data) { 23872 case CDROM_NORMAL_SPEED: 23873 current_speed = SD_SPEED_1X; 23874 break; 23875 case CDROM_DOUBLE_SPEED: 23876 current_speed = 2 * SD_SPEED_1X; 23877 break; 23878 case CDROM_QUAD_SPEED: 23879 current_speed = 4 * SD_SPEED_1X; 23880 break; 23881 case CDROM_TWELVE_SPEED: 23882 current_speed = 12 * SD_SPEED_1X; 23883 break; 23884 case CDROM_MAXIMUM_SPEED: 23885 current_speed = 0xffff; 23886 break; 23887 default: 23888 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23889 "sr_atapi_change_speed: invalid drive speed %d\n", 23890 (uchar_t)data); 23891 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 23892 return (EINVAL); 23893 } 23894 23895 /* Check the request against the drive's max speed. */ 23896 if (current_speed != 0xffff) { 23897 if (current_speed > max_speed) { 23898 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 23899 return (EINVAL); 23900 } 23901 } 23902 23903 /* 23904 * Build and send the SET SPEED command 23905 * 23906 * Note: The SET SPEED (0xBB) command used in this routine is 23907 * obsolete per the SCSI MMC spec but still supported in the 23908 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 23909 * therefore the command is still implemented in this routine. 23910 */ 23911 bzero(cdb, sizeof (cdb)); 23912 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 23913 cdb[2] = (uchar_t)(current_speed >> 8); 23914 cdb[3] = (uchar_t)current_speed; 23915 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 23916 com->uscsi_cdb = (caddr_t)cdb; 23917 com->uscsi_cdblen = CDB_GROUP5; 23918 com->uscsi_bufaddr = NULL; 23919 com->uscsi_buflen = 0; 23920 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 23921 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 23922 break; 23923 default: 23924 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 23925 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 23926 rval = EINVAL; 23927 } 23928 23929 if (sense) { 23930 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 23931 } 23932 if (com) { 23933 kmem_free(com, sizeof (*com)); 23934 } 23935 return (rval); 23936 } 23937 23938 23939 /* 23940 * Function: sr_pause_resume() 23941 * 23942 * Description: This routine is the driver entry point for handling CD-ROM 23943 * pause/resume ioctl requests. This only affects the audio play 23944 * operation. 23945 * 23946 * Arguments: dev - the device 'dev_t' 23947 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 23948 * for setting the resume bit of the cdb. 23949 * 23950 * Return Code: the code returned by sd_send_scsi_cmd() 23951 * EINVAL if invalid mode specified 23952 * 23953 */ 23954 23955 static int 23956 sr_pause_resume(dev_t dev, int cmd) 23957 { 23958 struct sd_lun *un; 23959 struct uscsi_cmd *com; 23960 char cdb[CDB_GROUP1]; 23961 int rval; 23962 23963 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23964 return (ENXIO); 23965 } 23966 23967 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 23968 bzero(cdb, CDB_GROUP1); 23969 cdb[0] = SCMD_PAUSE_RESUME; 23970 switch (cmd) { 23971 case CDROMRESUME: 23972 cdb[8] = 1; 23973 break; 23974 case CDROMPAUSE: 23975 cdb[8] = 0; 23976 break; 23977 default: 23978 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 23979 " Command '%x' Not Supported\n", cmd); 23980 rval = EINVAL; 23981 goto done; 23982 } 23983 23984 com->uscsi_cdb = cdb; 23985 com->uscsi_cdblen = CDB_GROUP1; 23986 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 23987 23988 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 23989 SD_PATH_STANDARD); 23990 23991 done: 23992 kmem_free(com, sizeof (*com)); 23993 return (rval); 23994 } 23995 23996 23997 /* 23998 * Function: sr_play_msf() 23999 * 24000 * Description: This routine is the driver entry point for handling CD-ROM 24001 * ioctl requests to output the audio signals at the specified 24002 * starting address and continue the audio play until the specified 24003 * ending address (CDROMPLAYMSF) The address is in Minute Second 24004 * Frame (MSF) format. 24005 * 24006 * Arguments: dev - the device 'dev_t' 24007 * data - pointer to user provided audio msf structure, 24008 * specifying start/end addresses. 24009 * flag - this argument is a pass through to ddi_copyxxx() 24010 * directly from the mode argument of ioctl(). 24011 * 24012 * Return Code: the code returned by sd_send_scsi_cmd() 24013 * EFAULT if ddi_copyxxx() fails 24014 * ENXIO if fail ddi_get_soft_state 24015 * EINVAL if data pointer is NULL 24016 */ 24017 24018 static int 24019 sr_play_msf(dev_t dev, caddr_t data, int flag) 24020 { 24021 struct sd_lun *un; 24022 struct uscsi_cmd *com; 24023 struct cdrom_msf msf_struct; 24024 struct cdrom_msf *msf = &msf_struct; 24025 char cdb[CDB_GROUP1]; 24026 int rval; 24027 24028 if (data == NULL) { 24029 return (EINVAL); 24030 } 24031 24032 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24033 return (ENXIO); 24034 } 24035 24036 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 24037 return (EFAULT); 24038 } 24039 24040 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24041 bzero(cdb, CDB_GROUP1); 24042 cdb[0] = SCMD_PLAYAUDIO_MSF; 24043 if (un->un_f_cfg_playmsf_bcd == TRUE) { 24044 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 24045 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 24046 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 24047 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 24048 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 24049 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 24050 } else { 24051 cdb[3] = msf->cdmsf_min0; 24052 cdb[4] = msf->cdmsf_sec0; 24053 cdb[5] = msf->cdmsf_frame0; 24054 cdb[6] = msf->cdmsf_min1; 24055 cdb[7] = msf->cdmsf_sec1; 24056 cdb[8] = msf->cdmsf_frame1; 24057 } 24058 com->uscsi_cdb = cdb; 24059 com->uscsi_cdblen = CDB_GROUP1; 24060 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 24061 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24062 SD_PATH_STANDARD); 24063 kmem_free(com, sizeof (*com)); 24064 return (rval); 24065 } 24066 24067 24068 /* 24069 * Function: sr_play_trkind() 24070 * 24071 * Description: This routine is the driver entry point for handling CD-ROM 24072 * ioctl requests to output the audio signals at the specified 24073 * starting address and continue the audio play until the specified 24074 * ending address (CDROMPLAYTRKIND). The address is in Track Index 24075 * format. 24076 * 24077 * Arguments: dev - the device 'dev_t' 24078 * data - pointer to user provided audio track/index structure, 24079 * specifying start/end addresses. 24080 * flag - this argument is a pass through to ddi_copyxxx() 24081 * directly from the mode argument of ioctl(). 24082 * 24083 * Return Code: the code returned by sd_send_scsi_cmd() 24084 * EFAULT if ddi_copyxxx() fails 24085 * ENXIO if fail ddi_get_soft_state 24086 * EINVAL if data pointer is NULL 24087 */ 24088 24089 static int 24090 sr_play_trkind(dev_t dev, caddr_t data, int flag) 24091 { 24092 struct cdrom_ti ti_struct; 24093 struct cdrom_ti *ti = &ti_struct; 24094 struct uscsi_cmd *com = NULL; 24095 char cdb[CDB_GROUP1]; 24096 int rval; 24097 24098 if (data == NULL) { 24099 return (EINVAL); 24100 } 24101 24102 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 24103 return (EFAULT); 24104 } 24105 24106 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24107 bzero(cdb, CDB_GROUP1); 24108 cdb[0] = SCMD_PLAYAUDIO_TI; 24109 cdb[4] = ti->cdti_trk0; 24110 cdb[5] = ti->cdti_ind0; 24111 cdb[7] = ti->cdti_trk1; 24112 cdb[8] = ti->cdti_ind1; 24113 com->uscsi_cdb = cdb; 24114 com->uscsi_cdblen = CDB_GROUP1; 24115 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 24116 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24117 SD_PATH_STANDARD); 24118 kmem_free(com, sizeof (*com)); 24119 return (rval); 24120 } 24121 24122 24123 /* 24124 * Function: sr_read_all_subcodes() 24125 * 24126 * Description: This routine is the driver entry point for handling CD-ROM 24127 * ioctl requests to return raw subcode data while the target is 24128 * playing audio (CDROMSUBCODE). 24129 * 24130 * Arguments: dev - the device 'dev_t' 24131 * data - pointer to user provided cdrom subcode structure, 24132 * specifying the transfer length and address. 24133 * flag - this argument is a pass through to ddi_copyxxx() 24134 * directly from the mode argument of ioctl(). 24135 * 24136 * Return Code: the code returned by sd_send_scsi_cmd() 24137 * EFAULT if ddi_copyxxx() fails 24138 * ENXIO if fail ddi_get_soft_state 24139 * EINVAL if data pointer is NULL 24140 */ 24141 24142 static int 24143 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 24144 { 24145 struct sd_lun *un = NULL; 24146 struct uscsi_cmd *com = NULL; 24147 struct cdrom_subcode *subcode = NULL; 24148 int rval; 24149 size_t buflen; 24150 char cdb[CDB_GROUP5]; 24151 24152 #ifdef _MULTI_DATAMODEL 24153 /* To support ILP32 applications in an LP64 world */ 24154 struct cdrom_subcode32 cdrom_subcode32; 24155 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 24156 #endif 24157 if (data == NULL) { 24158 return (EINVAL); 24159 } 24160 24161 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24162 return (ENXIO); 24163 } 24164 24165 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 24166 24167 #ifdef _MULTI_DATAMODEL 24168 switch (ddi_model_convert_from(flag & FMODELS)) { 24169 case DDI_MODEL_ILP32: 24170 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 24171 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24172 "sr_read_all_subcodes: ddi_copyin Failed\n"); 24173 kmem_free(subcode, sizeof (struct cdrom_subcode)); 24174 return (EFAULT); 24175 } 24176 /* Convert the ILP32 uscsi data from the application to LP64 */ 24177 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 24178 break; 24179 case DDI_MODEL_NONE: 24180 if (ddi_copyin(data, subcode, 24181 sizeof (struct cdrom_subcode), flag)) { 24182 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24183 "sr_read_all_subcodes: ddi_copyin Failed\n"); 24184 kmem_free(subcode, sizeof (struct cdrom_subcode)); 24185 return (EFAULT); 24186 } 24187 break; 24188 } 24189 #else /* ! _MULTI_DATAMODEL */ 24190 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 24191 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24192 "sr_read_all_subcodes: ddi_copyin Failed\n"); 24193 kmem_free(subcode, sizeof (struct cdrom_subcode)); 24194 return (EFAULT); 24195 } 24196 #endif /* _MULTI_DATAMODEL */ 24197 24198 /* 24199 * Since MMC-2 expects max 3 bytes for length, check if the 24200 * length input is greater than 3 bytes 24201 */ 24202 if ((subcode->cdsc_length & 0xFF000000) != 0) { 24203 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24204 "sr_read_all_subcodes: " 24205 "cdrom transfer length too large: %d (limit %d)\n", 24206 subcode->cdsc_length, 0xFFFFFF); 24207 kmem_free(subcode, sizeof (struct cdrom_subcode)); 24208 return (EINVAL); 24209 } 24210 24211 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 24212 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24213 bzero(cdb, CDB_GROUP5); 24214 24215 if (un->un_f_mmc_cap == TRUE) { 24216 cdb[0] = (char)SCMD_READ_CD; 24217 cdb[2] = (char)0xff; 24218 cdb[3] = (char)0xff; 24219 cdb[4] = (char)0xff; 24220 cdb[5] = (char)0xff; 24221 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 24222 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 24223 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 24224 cdb[10] = 1; 24225 } else { 24226 /* 24227 * Note: A vendor specific command (0xDF) is being used her to 24228 * request a read of all subcodes. 24229 */ 24230 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 24231 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 24232 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 24233 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 24234 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 24235 } 24236 com->uscsi_cdb = cdb; 24237 com->uscsi_cdblen = CDB_GROUP5; 24238 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 24239 com->uscsi_buflen = buflen; 24240 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 24241 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 24242 SD_PATH_STANDARD); 24243 kmem_free(subcode, sizeof (struct cdrom_subcode)); 24244 kmem_free(com, sizeof (*com)); 24245 return (rval); 24246 } 24247 24248 24249 /* 24250 * Function: sr_read_subchannel() 24251 * 24252 * Description: This routine is the driver entry point for handling CD-ROM 24253 * ioctl requests to return the Q sub-channel data of the CD 24254 * current position block. (CDROMSUBCHNL) The data includes the 24255 * track number, index number, absolute CD-ROM address (LBA or MSF 24256 * format per the user) , track relative CD-ROM address (LBA or MSF 24257 * format per the user), control data and audio status. 24258 * 24259 * Arguments: dev - the device 'dev_t' 24260 * data - pointer to user provided cdrom sub-channel structure 24261 * flag - this argument is a pass through to ddi_copyxxx() 24262 * directly from the mode argument of ioctl(). 24263 * 24264 * Return Code: the code returned by sd_send_scsi_cmd() 24265 * EFAULT if ddi_copyxxx() fails 24266 * ENXIO if fail ddi_get_soft_state 24267 * EINVAL if data pointer is NULL 24268 */ 24269 24270 static int 24271 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 24272 { 24273 struct sd_lun *un; 24274 struct uscsi_cmd *com; 24275 struct cdrom_subchnl subchanel; 24276 struct cdrom_subchnl *subchnl = &subchanel; 24277 char cdb[CDB_GROUP1]; 24278 caddr_t buffer; 24279 int rval; 24280 24281 if (data == NULL) { 24282 return (EINVAL); 24283 } 24284 24285 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24286 (un->un_state == SD_STATE_OFFLINE)) { 24287 return (ENXIO); 24288 } 24289 24290 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 24291 return (EFAULT); 24292 } 24293 24294 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 24295 bzero(cdb, CDB_GROUP1); 24296 cdb[0] = SCMD_READ_SUBCHANNEL; 24297 /* Set the MSF bit based on the user requested address format */ 24298 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 24299 /* 24300 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 24301 * returned 24302 */ 24303 cdb[2] = 0x40; 24304 /* 24305 * Set byte 3 to specify the return data format. A value of 0x01 24306 * indicates that the CD-ROM current position should be returned. 24307 */ 24308 cdb[3] = 0x01; 24309 cdb[8] = 0x10; 24310 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24311 com->uscsi_cdb = cdb; 24312 com->uscsi_cdblen = CDB_GROUP1; 24313 com->uscsi_bufaddr = buffer; 24314 com->uscsi_buflen = 16; 24315 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 24316 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24317 SD_PATH_STANDARD); 24318 if (rval != 0) { 24319 kmem_free(buffer, 16); 24320 kmem_free(com, sizeof (*com)); 24321 return (rval); 24322 } 24323 24324 /* Process the returned Q sub-channel data */ 24325 subchnl->cdsc_audiostatus = buffer[1]; 24326 subchnl->cdsc_adr = (buffer[5] & 0xF0); 24327 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 24328 subchnl->cdsc_trk = buffer[6]; 24329 subchnl->cdsc_ind = buffer[7]; 24330 if (subchnl->cdsc_format & CDROM_LBA) { 24331 subchnl->cdsc_absaddr.lba = 24332 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 24333 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 24334 subchnl->cdsc_reladdr.lba = 24335 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 24336 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 24337 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 24338 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 24339 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 24340 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 24341 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 24342 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 24343 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 24344 } else { 24345 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 24346 subchnl->cdsc_absaddr.msf.second = buffer[10]; 24347 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 24348 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 24349 subchnl->cdsc_reladdr.msf.second = buffer[14]; 24350 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 24351 } 24352 kmem_free(buffer, 16); 24353 kmem_free(com, sizeof (*com)); 24354 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 24355 != 0) { 24356 return (EFAULT); 24357 } 24358 return (rval); 24359 } 24360 24361 24362 /* 24363 * Function: sr_read_tocentry() 24364 * 24365 * Description: This routine is the driver entry point for handling CD-ROM 24366 * ioctl requests to read from the Table of Contents (TOC) 24367 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 24368 * fields, the starting address (LBA or MSF format per the user) 24369 * and the data mode if the user specified track is a data track. 24370 * 24371 * Note: The READ HEADER (0x44) command used in this routine is 24372 * obsolete per the SCSI MMC spec but still supported in the 24373 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 24374 * therefore the command is still implemented in this routine. 24375 * 24376 * Arguments: dev - the device 'dev_t' 24377 * data - pointer to user provided toc entry structure, 24378 * specifying the track # and the address format 24379 * (LBA or MSF). 24380 * flag - this argument is a pass through to ddi_copyxxx() 24381 * directly from the mode argument of ioctl(). 24382 * 24383 * Return Code: the code returned by sd_send_scsi_cmd() 24384 * EFAULT if ddi_copyxxx() fails 24385 * ENXIO if fail ddi_get_soft_state 24386 * EINVAL if data pointer is NULL 24387 */ 24388 24389 static int 24390 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 24391 { 24392 struct sd_lun *un = NULL; 24393 struct uscsi_cmd *com; 24394 struct cdrom_tocentry toc_entry; 24395 struct cdrom_tocentry *entry = &toc_entry; 24396 caddr_t buffer; 24397 int rval; 24398 char cdb[CDB_GROUP1]; 24399 24400 if (data == NULL) { 24401 return (EINVAL); 24402 } 24403 24404 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24405 (un->un_state == SD_STATE_OFFLINE)) { 24406 return (ENXIO); 24407 } 24408 24409 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 24410 return (EFAULT); 24411 } 24412 24413 /* Validate the requested track and address format */ 24414 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 24415 return (EINVAL); 24416 } 24417 24418 if (entry->cdte_track == 0) { 24419 return (EINVAL); 24420 } 24421 24422 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 24423 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24424 bzero(cdb, CDB_GROUP1); 24425 24426 cdb[0] = SCMD_READ_TOC; 24427 /* Set the MSF bit based on the user requested address format */ 24428 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 24429 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 24430 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 24431 } else { 24432 cdb[6] = entry->cdte_track; 24433 } 24434 24435 /* 24436 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 24437 * (4 byte TOC response header + 8 byte track descriptor) 24438 */ 24439 cdb[8] = 12; 24440 com->uscsi_cdb = cdb; 24441 com->uscsi_cdblen = CDB_GROUP1; 24442 com->uscsi_bufaddr = buffer; 24443 com->uscsi_buflen = 0x0C; 24444 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 24445 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24446 SD_PATH_STANDARD); 24447 if (rval != 0) { 24448 kmem_free(buffer, 12); 24449 kmem_free(com, sizeof (*com)); 24450 return (rval); 24451 } 24452 24453 /* Process the toc entry */ 24454 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 24455 entry->cdte_ctrl = (buffer[5] & 0x0F); 24456 if (entry->cdte_format & CDROM_LBA) { 24457 entry->cdte_addr.lba = 24458 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 24459 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 24460 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 24461 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 24462 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 24463 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 24464 /* 24465 * Send a READ TOC command using the LBA address format to get 24466 * the LBA for the track requested so it can be used in the 24467 * READ HEADER request 24468 * 24469 * Note: The MSF bit of the READ HEADER command specifies the 24470 * output format. The block address specified in that command 24471 * must be in LBA format. 24472 */ 24473 cdb[1] = 0; 24474 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24475 SD_PATH_STANDARD); 24476 if (rval != 0) { 24477 kmem_free(buffer, 12); 24478 kmem_free(com, sizeof (*com)); 24479 return (rval); 24480 } 24481 } else { 24482 entry->cdte_addr.msf.minute = buffer[9]; 24483 entry->cdte_addr.msf.second = buffer[10]; 24484 entry->cdte_addr.msf.frame = buffer[11]; 24485 /* 24486 * Send a READ TOC command using the LBA address format to get 24487 * the LBA for the track requested so it can be used in the 24488 * READ HEADER request 24489 * 24490 * Note: The MSF bit of the READ HEADER command specifies the 24491 * output format. The block address specified in that command 24492 * must be in LBA format. 24493 */ 24494 cdb[1] = 0; 24495 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24496 SD_PATH_STANDARD); 24497 if (rval != 0) { 24498 kmem_free(buffer, 12); 24499 kmem_free(com, sizeof (*com)); 24500 return (rval); 24501 } 24502 } 24503 24504 /* 24505 * Build and send the READ HEADER command to determine the data mode of 24506 * the user specified track. 24507 */ 24508 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 24509 (entry->cdte_track != CDROM_LEADOUT)) { 24510 bzero(cdb, CDB_GROUP1); 24511 cdb[0] = SCMD_READ_HEADER; 24512 cdb[2] = buffer[8]; 24513 cdb[3] = buffer[9]; 24514 cdb[4] = buffer[10]; 24515 cdb[5] = buffer[11]; 24516 cdb[8] = 0x08; 24517 com->uscsi_buflen = 0x08; 24518 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24519 SD_PATH_STANDARD); 24520 if (rval == 0) { 24521 entry->cdte_datamode = buffer[0]; 24522 } else { 24523 /* 24524 * READ HEADER command failed, since this is 24525 * obsoleted in one spec, its better to return 24526 * -1 for an invlid track so that we can still 24527 * receive the rest of the TOC data. 24528 */ 24529 entry->cdte_datamode = (uchar_t)-1; 24530 } 24531 } else { 24532 entry->cdte_datamode = (uchar_t)-1; 24533 } 24534 24535 kmem_free(buffer, 12); 24536 kmem_free(com, sizeof (*com)); 24537 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 24538 return (EFAULT); 24539 24540 return (rval); 24541 } 24542 24543 24544 /* 24545 * Function: sr_read_tochdr() 24546 * 24547 * Description: This routine is the driver entry point for handling CD-ROM 24548 * ioctl requests to read the Table of Contents (TOC) header 24549 * (CDROMREADTOHDR). The TOC header consists of the disk starting 24550 * and ending track numbers 24551 * 24552 * Arguments: dev - the device 'dev_t' 24553 * data - pointer to user provided toc header structure, 24554 * specifying the starting and ending track numbers. 24555 * flag - this argument is a pass through to ddi_copyxxx() 24556 * directly from the mode argument of ioctl(). 24557 * 24558 * Return Code: the code returned by sd_send_scsi_cmd() 24559 * EFAULT if ddi_copyxxx() fails 24560 * ENXIO if fail ddi_get_soft_state 24561 * EINVAL if data pointer is NULL 24562 */ 24563 24564 static int 24565 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 24566 { 24567 struct sd_lun *un; 24568 struct uscsi_cmd *com; 24569 struct cdrom_tochdr toc_header; 24570 struct cdrom_tochdr *hdr = &toc_header; 24571 char cdb[CDB_GROUP1]; 24572 int rval; 24573 caddr_t buffer; 24574 24575 if (data == NULL) { 24576 return (EINVAL); 24577 } 24578 24579 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24580 (un->un_state == SD_STATE_OFFLINE)) { 24581 return (ENXIO); 24582 } 24583 24584 buffer = kmem_zalloc(4, KM_SLEEP); 24585 bzero(cdb, CDB_GROUP1); 24586 cdb[0] = SCMD_READ_TOC; 24587 /* 24588 * Specifying a track number of 0x00 in the READ TOC command indicates 24589 * that the TOC header should be returned 24590 */ 24591 cdb[6] = 0x00; 24592 /* 24593 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 24594 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 24595 */ 24596 cdb[8] = 0x04; 24597 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24598 com->uscsi_cdb = cdb; 24599 com->uscsi_cdblen = CDB_GROUP1; 24600 com->uscsi_bufaddr = buffer; 24601 com->uscsi_buflen = 0x04; 24602 com->uscsi_timeout = 300; 24603 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 24604 24605 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24606 SD_PATH_STANDARD); 24607 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 24608 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 24609 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 24610 } else { 24611 hdr->cdth_trk0 = buffer[2]; 24612 hdr->cdth_trk1 = buffer[3]; 24613 } 24614 kmem_free(buffer, 4); 24615 kmem_free(com, sizeof (*com)); 24616 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 24617 return (EFAULT); 24618 } 24619 return (rval); 24620 } 24621 24622 24623 /* 24624 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 24625 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 24626 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 24627 * digital audio and extended architecture digital audio. These modes are 24628 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 24629 * MMC specs. 24630 * 24631 * In addition to support for the various data formats these routines also 24632 * include support for devices that implement only the direct access READ 24633 * commands (0x08, 0x28), devices that implement the READ_CD commands 24634 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 24635 * READ CDXA commands (0xD8, 0xDB) 24636 */ 24637 24638 /* 24639 * Function: sr_read_mode1() 24640 * 24641 * Description: This routine is the driver entry point for handling CD-ROM 24642 * ioctl read mode1 requests (CDROMREADMODE1). 24643 * 24644 * Arguments: dev - the device 'dev_t' 24645 * data - pointer to user provided cd read structure specifying 24646 * the lba buffer address and length. 24647 * flag - this argument is a pass through to ddi_copyxxx() 24648 * directly from the mode argument of ioctl(). 24649 * 24650 * Return Code: the code returned by sd_send_scsi_cmd() 24651 * EFAULT if ddi_copyxxx() fails 24652 * ENXIO if fail ddi_get_soft_state 24653 * EINVAL if data pointer is NULL 24654 */ 24655 24656 static int 24657 sr_read_mode1(dev_t dev, caddr_t data, int flag) 24658 { 24659 struct sd_lun *un; 24660 struct cdrom_read mode1_struct; 24661 struct cdrom_read *mode1 = &mode1_struct; 24662 int rval; 24663 #ifdef _MULTI_DATAMODEL 24664 /* To support ILP32 applications in an LP64 world */ 24665 struct cdrom_read32 cdrom_read32; 24666 struct cdrom_read32 *cdrd32 = &cdrom_read32; 24667 #endif /* _MULTI_DATAMODEL */ 24668 24669 if (data == NULL) { 24670 return (EINVAL); 24671 } 24672 24673 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24674 (un->un_state == SD_STATE_OFFLINE)) { 24675 return (ENXIO); 24676 } 24677 24678 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 24679 "sd_read_mode1: entry: un:0x%p\n", un); 24680 24681 #ifdef _MULTI_DATAMODEL 24682 switch (ddi_model_convert_from(flag & FMODELS)) { 24683 case DDI_MODEL_ILP32: 24684 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 24685 return (EFAULT); 24686 } 24687 /* Convert the ILP32 uscsi data from the application to LP64 */ 24688 cdrom_read32tocdrom_read(cdrd32, mode1); 24689 break; 24690 case DDI_MODEL_NONE: 24691 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 24692 return (EFAULT); 24693 } 24694 } 24695 #else /* ! _MULTI_DATAMODEL */ 24696 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 24697 return (EFAULT); 24698 } 24699 #endif /* _MULTI_DATAMODEL */ 24700 24701 rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr, 24702 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 24703 24704 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 24705 "sd_read_mode1: exit: un:0x%p\n", un); 24706 24707 return (rval); 24708 } 24709 24710 24711 /* 24712 * Function: sr_read_cd_mode2() 24713 * 24714 * Description: This routine is the driver entry point for handling CD-ROM 24715 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 24716 * support the READ CD (0xBE) command or the 1st generation 24717 * READ CD (0xD4) command. 24718 * 24719 * Arguments: dev - the device 'dev_t' 24720 * data - pointer to user provided cd read structure specifying 24721 * the lba buffer address and length. 24722 * flag - this argument is a pass through to ddi_copyxxx() 24723 * directly from the mode argument of ioctl(). 24724 * 24725 * Return Code: the code returned by sd_send_scsi_cmd() 24726 * EFAULT if ddi_copyxxx() fails 24727 * ENXIO if fail ddi_get_soft_state 24728 * EINVAL if data pointer is NULL 24729 */ 24730 24731 static int 24732 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 24733 { 24734 struct sd_lun *un; 24735 struct uscsi_cmd *com; 24736 struct cdrom_read mode2_struct; 24737 struct cdrom_read *mode2 = &mode2_struct; 24738 uchar_t cdb[CDB_GROUP5]; 24739 int nblocks; 24740 int rval; 24741 #ifdef _MULTI_DATAMODEL 24742 /* To support ILP32 applications in an LP64 world */ 24743 struct cdrom_read32 cdrom_read32; 24744 struct cdrom_read32 *cdrd32 = &cdrom_read32; 24745 #endif /* _MULTI_DATAMODEL */ 24746 24747 if (data == NULL) { 24748 return (EINVAL); 24749 } 24750 24751 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24752 (un->un_state == SD_STATE_OFFLINE)) { 24753 return (ENXIO); 24754 } 24755 24756 #ifdef _MULTI_DATAMODEL 24757 switch (ddi_model_convert_from(flag & FMODELS)) { 24758 case DDI_MODEL_ILP32: 24759 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 24760 return (EFAULT); 24761 } 24762 /* Convert the ILP32 uscsi data from the application to LP64 */ 24763 cdrom_read32tocdrom_read(cdrd32, mode2); 24764 break; 24765 case DDI_MODEL_NONE: 24766 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 24767 return (EFAULT); 24768 } 24769 break; 24770 } 24771 24772 #else /* ! _MULTI_DATAMODEL */ 24773 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 24774 return (EFAULT); 24775 } 24776 #endif /* _MULTI_DATAMODEL */ 24777 24778 bzero(cdb, sizeof (cdb)); 24779 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 24780 /* Read command supported by 1st generation atapi drives */ 24781 cdb[0] = SCMD_READ_CDD4; 24782 } else { 24783 /* Universal CD Access Command */ 24784 cdb[0] = SCMD_READ_CD; 24785 } 24786 24787 /* 24788 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 24789 */ 24790 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 24791 24792 /* set the start address */ 24793 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 24794 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 24795 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 24796 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 24797 24798 /* set the transfer length */ 24799 nblocks = mode2->cdread_buflen / 2336; 24800 cdb[6] = (uchar_t)(nblocks >> 16); 24801 cdb[7] = (uchar_t)(nblocks >> 8); 24802 cdb[8] = (uchar_t)nblocks; 24803 24804 /* set the filter bits */ 24805 cdb[9] = CDROM_READ_CD_USERDATA; 24806 24807 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24808 com->uscsi_cdb = (caddr_t)cdb; 24809 com->uscsi_cdblen = sizeof (cdb); 24810 com->uscsi_bufaddr = mode2->cdread_bufaddr; 24811 com->uscsi_buflen = mode2->cdread_buflen; 24812 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 24813 24814 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 24815 SD_PATH_STANDARD); 24816 kmem_free(com, sizeof (*com)); 24817 return (rval); 24818 } 24819 24820 24821 /* 24822 * Function: sr_read_mode2() 24823 * 24824 * Description: This routine is the driver entry point for handling CD-ROM 24825 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 24826 * do not support the READ CD (0xBE) command. 24827 * 24828 * Arguments: dev - the device 'dev_t' 24829 * data - pointer to user provided cd read structure specifying 24830 * the lba buffer address and length. 24831 * flag - this argument is a pass through to ddi_copyxxx() 24832 * directly from the mode argument of ioctl(). 24833 * 24834 * Return Code: the code returned by sd_send_scsi_cmd() 24835 * EFAULT if ddi_copyxxx() fails 24836 * ENXIO if fail ddi_get_soft_state 24837 * EINVAL if data pointer is NULL 24838 * EIO if fail to reset block size 24839 * EAGAIN if commands are in progress in the driver 24840 */ 24841 24842 static int 24843 sr_read_mode2(dev_t dev, caddr_t data, int flag) 24844 { 24845 struct sd_lun *un; 24846 struct cdrom_read mode2_struct; 24847 struct cdrom_read *mode2 = &mode2_struct; 24848 int rval; 24849 uint32_t restore_blksize; 24850 struct uscsi_cmd *com; 24851 uchar_t cdb[CDB_GROUP0]; 24852 int nblocks; 24853 24854 #ifdef _MULTI_DATAMODEL 24855 /* To support ILP32 applications in an LP64 world */ 24856 struct cdrom_read32 cdrom_read32; 24857 struct cdrom_read32 *cdrd32 = &cdrom_read32; 24858 #endif /* _MULTI_DATAMODEL */ 24859 24860 if (data == NULL) { 24861 return (EINVAL); 24862 } 24863 24864 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 24865 (un->un_state == SD_STATE_OFFLINE)) { 24866 return (ENXIO); 24867 } 24868 24869 /* 24870 * Because this routine will update the device and driver block size 24871 * being used we want to make sure there are no commands in progress. 24872 * If commands are in progress the user will have to try again. 24873 * 24874 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 24875 * in sdioctl to protect commands from sdioctl through to the top of 24876 * sd_uscsi_strategy. See sdioctl for details. 24877 */ 24878 mutex_enter(SD_MUTEX(un)); 24879 if (un->un_ncmds_in_driver != 1) { 24880 mutex_exit(SD_MUTEX(un)); 24881 return (EAGAIN); 24882 } 24883 mutex_exit(SD_MUTEX(un)); 24884 24885 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 24886 "sd_read_mode2: entry: un:0x%p\n", un); 24887 24888 #ifdef _MULTI_DATAMODEL 24889 switch (ddi_model_convert_from(flag & FMODELS)) { 24890 case DDI_MODEL_ILP32: 24891 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 24892 return (EFAULT); 24893 } 24894 /* Convert the ILP32 uscsi data from the application to LP64 */ 24895 cdrom_read32tocdrom_read(cdrd32, mode2); 24896 break; 24897 case DDI_MODEL_NONE: 24898 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 24899 return (EFAULT); 24900 } 24901 break; 24902 } 24903 #else /* ! _MULTI_DATAMODEL */ 24904 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 24905 return (EFAULT); 24906 } 24907 #endif /* _MULTI_DATAMODEL */ 24908 24909 /* Store the current target block size for restoration later */ 24910 restore_blksize = un->un_tgt_blocksize; 24911 24912 /* Change the device and soft state target block size to 2336 */ 24913 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 24914 rval = EIO; 24915 goto done; 24916 } 24917 24918 24919 bzero(cdb, sizeof (cdb)); 24920 24921 /* set READ operation */ 24922 cdb[0] = SCMD_READ; 24923 24924 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 24925 mode2->cdread_lba >>= 2; 24926 24927 /* set the start address */ 24928 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 24929 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 24930 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 24931 24932 /* set the transfer length */ 24933 nblocks = mode2->cdread_buflen / 2336; 24934 cdb[4] = (uchar_t)nblocks & 0xFF; 24935 24936 /* build command */ 24937 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24938 com->uscsi_cdb = (caddr_t)cdb; 24939 com->uscsi_cdblen = sizeof (cdb); 24940 com->uscsi_bufaddr = mode2->cdread_bufaddr; 24941 com->uscsi_buflen = mode2->cdread_buflen; 24942 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 24943 24944 /* 24945 * Issue SCSI command with user space address for read buffer. 24946 * 24947 * This sends the command through main channel in the driver. 24948 * 24949 * Since this is accessed via an IOCTL call, we go through the 24950 * standard path, so that if the device was powered down, then 24951 * it would be 'awakened' to handle the command. 24952 */ 24953 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 24954 SD_PATH_STANDARD); 24955 24956 kmem_free(com, sizeof (*com)); 24957 24958 /* Restore the device and soft state target block size */ 24959 if (sr_sector_mode(dev, restore_blksize) != 0) { 24960 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24961 "can't do switch back to mode 1\n"); 24962 /* 24963 * If sd_send_scsi_READ succeeded we still need to report 24964 * an error because we failed to reset the block size 24965 */ 24966 if (rval == 0) { 24967 rval = EIO; 24968 } 24969 } 24970 24971 done: 24972 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 24973 "sd_read_mode2: exit: un:0x%p\n", un); 24974 24975 return (rval); 24976 } 24977 24978 24979 /* 24980 * Function: sr_sector_mode() 24981 * 24982 * Description: This utility function is used by sr_read_mode2 to set the target 24983 * block size based on the user specified size. This is a legacy 24984 * implementation based upon a vendor specific mode page 24985 * 24986 * Arguments: dev - the device 'dev_t' 24987 * data - flag indicating if block size is being set to 2336 or 24988 * 512. 24989 * 24990 * Return Code: the code returned by sd_send_scsi_cmd() 24991 * EFAULT if ddi_copyxxx() fails 24992 * ENXIO if fail ddi_get_soft_state 24993 * EINVAL if data pointer is NULL 24994 */ 24995 24996 static int 24997 sr_sector_mode(dev_t dev, uint32_t blksize) 24998 { 24999 struct sd_lun *un; 25000 uchar_t *sense; 25001 uchar_t *select; 25002 int rval; 25003 25004 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 25005 (un->un_state == SD_STATE_OFFLINE)) { 25006 return (ENXIO); 25007 } 25008 25009 sense = kmem_zalloc(20, KM_SLEEP); 25010 25011 /* Note: This is a vendor specific mode page (0x81) */ 25012 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81, 25013 SD_PATH_STANDARD)) != 0) { 25014 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 25015 "sr_sector_mode: Mode Sense failed\n"); 25016 kmem_free(sense, 20); 25017 return (rval); 25018 } 25019 select = kmem_zalloc(20, KM_SLEEP); 25020 select[3] = 0x08; 25021 select[10] = ((blksize >> 8) & 0xff); 25022 select[11] = (blksize & 0xff); 25023 select[12] = 0x01; 25024 select[13] = 0x06; 25025 select[14] = sense[14]; 25026 select[15] = sense[15]; 25027 if (blksize == SD_MODE2_BLKSIZE) { 25028 select[14] |= 0x01; 25029 } 25030 25031 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20, 25032 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 25033 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 25034 "sr_sector_mode: Mode Select failed\n"); 25035 } else { 25036 /* 25037 * Only update the softstate block size if we successfully 25038 * changed the device block mode. 25039 */ 25040 mutex_enter(SD_MUTEX(un)); 25041 sd_update_block_info(un, blksize, 0); 25042 mutex_exit(SD_MUTEX(un)); 25043 } 25044 kmem_free(sense, 20); 25045 kmem_free(select, 20); 25046 return (rval); 25047 } 25048 25049 25050 /* 25051 * Function: sr_read_cdda() 25052 * 25053 * Description: This routine is the driver entry point for handling CD-ROM 25054 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 25055 * the target supports CDDA these requests are handled via a vendor 25056 * specific command (0xD8) If the target does not support CDDA 25057 * these requests are handled via the READ CD command (0xBE). 25058 * 25059 * Arguments: dev - the device 'dev_t' 25060 * data - pointer to user provided CD-DA structure specifying 25061 * the track starting address, transfer length, and 25062 * subcode options. 25063 * flag - this argument is a pass through to ddi_copyxxx() 25064 * directly from the mode argument of ioctl(). 25065 * 25066 * Return Code: the code returned by sd_send_scsi_cmd() 25067 * EFAULT if ddi_copyxxx() fails 25068 * ENXIO if fail ddi_get_soft_state 25069 * EINVAL if invalid arguments are provided 25070 * ENOTTY 25071 */ 25072 25073 static int 25074 sr_read_cdda(dev_t dev, caddr_t data, int flag) 25075 { 25076 struct sd_lun *un; 25077 struct uscsi_cmd *com; 25078 struct cdrom_cdda *cdda; 25079 int rval; 25080 size_t buflen; 25081 char cdb[CDB_GROUP5]; 25082 25083 #ifdef _MULTI_DATAMODEL 25084 /* To support ILP32 applications in an LP64 world */ 25085 struct cdrom_cdda32 cdrom_cdda32; 25086 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 25087 #endif /* _MULTI_DATAMODEL */ 25088 25089 if (data == NULL) { 25090 return (EINVAL); 25091 } 25092 25093 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25094 return (ENXIO); 25095 } 25096 25097 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 25098 25099 #ifdef _MULTI_DATAMODEL 25100 switch (ddi_model_convert_from(flag & FMODELS)) { 25101 case DDI_MODEL_ILP32: 25102 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 25103 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25104 "sr_read_cdda: ddi_copyin Failed\n"); 25105 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25106 return (EFAULT); 25107 } 25108 /* Convert the ILP32 uscsi data from the application to LP64 */ 25109 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 25110 break; 25111 case DDI_MODEL_NONE: 25112 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 25113 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25114 "sr_read_cdda: ddi_copyin Failed\n"); 25115 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25116 return (EFAULT); 25117 } 25118 break; 25119 } 25120 #else /* ! _MULTI_DATAMODEL */ 25121 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 25122 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25123 "sr_read_cdda: ddi_copyin Failed\n"); 25124 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25125 return (EFAULT); 25126 } 25127 #endif /* _MULTI_DATAMODEL */ 25128 25129 /* 25130 * Since MMC-2 expects max 3 bytes for length, check if the 25131 * length input is greater than 3 bytes 25132 */ 25133 if ((cdda->cdda_length & 0xFF000000) != 0) { 25134 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 25135 "cdrom transfer length too large: %d (limit %d)\n", 25136 cdda->cdda_length, 0xFFFFFF); 25137 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25138 return (EINVAL); 25139 } 25140 25141 switch (cdda->cdda_subcode) { 25142 case CDROM_DA_NO_SUBCODE: 25143 buflen = CDROM_BLK_2352 * cdda->cdda_length; 25144 break; 25145 case CDROM_DA_SUBQ: 25146 buflen = CDROM_BLK_2368 * cdda->cdda_length; 25147 break; 25148 case CDROM_DA_ALL_SUBCODE: 25149 buflen = CDROM_BLK_2448 * cdda->cdda_length; 25150 break; 25151 case CDROM_DA_SUBCODE_ONLY: 25152 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 25153 break; 25154 default: 25155 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25156 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 25157 cdda->cdda_subcode); 25158 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25159 return (EINVAL); 25160 } 25161 25162 /* Build and send the command */ 25163 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25164 bzero(cdb, CDB_GROUP5); 25165 25166 if (un->un_f_cfg_cdda == TRUE) { 25167 cdb[0] = (char)SCMD_READ_CD; 25168 cdb[1] = 0x04; 25169 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 25170 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 25171 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 25172 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 25173 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 25174 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 25175 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 25176 cdb[9] = 0x10; 25177 switch (cdda->cdda_subcode) { 25178 case CDROM_DA_NO_SUBCODE : 25179 cdb[10] = 0x0; 25180 break; 25181 case CDROM_DA_SUBQ : 25182 cdb[10] = 0x2; 25183 break; 25184 case CDROM_DA_ALL_SUBCODE : 25185 cdb[10] = 0x1; 25186 break; 25187 case CDROM_DA_SUBCODE_ONLY : 25188 /* FALLTHROUGH */ 25189 default : 25190 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25191 kmem_free(com, sizeof (*com)); 25192 return (ENOTTY); 25193 } 25194 } else { 25195 cdb[0] = (char)SCMD_READ_CDDA; 25196 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 25197 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 25198 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 25199 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 25200 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 25201 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 25202 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 25203 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 25204 cdb[10] = cdda->cdda_subcode; 25205 } 25206 25207 com->uscsi_cdb = cdb; 25208 com->uscsi_cdblen = CDB_GROUP5; 25209 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 25210 com->uscsi_buflen = buflen; 25211 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 25212 25213 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 25214 SD_PATH_STANDARD); 25215 25216 kmem_free(cdda, sizeof (struct cdrom_cdda)); 25217 kmem_free(com, sizeof (*com)); 25218 return (rval); 25219 } 25220 25221 25222 /* 25223 * Function: sr_read_cdxa() 25224 * 25225 * Description: This routine is the driver entry point for handling CD-ROM 25226 * ioctl requests to return CD-XA (Extended Architecture) data. 25227 * (CDROMCDXA). 25228 * 25229 * Arguments: dev - the device 'dev_t' 25230 * data - pointer to user provided CD-XA structure specifying 25231 * the data starting address, transfer length, and format 25232 * flag - this argument is a pass through to ddi_copyxxx() 25233 * directly from the mode argument of ioctl(). 25234 * 25235 * Return Code: the code returned by sd_send_scsi_cmd() 25236 * EFAULT if ddi_copyxxx() fails 25237 * ENXIO if fail ddi_get_soft_state 25238 * EINVAL if data pointer is NULL 25239 */ 25240 25241 static int 25242 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 25243 { 25244 struct sd_lun *un; 25245 struct uscsi_cmd *com; 25246 struct cdrom_cdxa *cdxa; 25247 int rval; 25248 size_t buflen; 25249 char cdb[CDB_GROUP5]; 25250 uchar_t read_flags; 25251 25252 #ifdef _MULTI_DATAMODEL 25253 /* To support ILP32 applications in an LP64 world */ 25254 struct cdrom_cdxa32 cdrom_cdxa32; 25255 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 25256 #endif /* _MULTI_DATAMODEL */ 25257 25258 if (data == NULL) { 25259 return (EINVAL); 25260 } 25261 25262 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25263 return (ENXIO); 25264 } 25265 25266 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 25267 25268 #ifdef _MULTI_DATAMODEL 25269 switch (ddi_model_convert_from(flag & FMODELS)) { 25270 case DDI_MODEL_ILP32: 25271 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 25272 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25273 return (EFAULT); 25274 } 25275 /* 25276 * Convert the ILP32 uscsi data from the 25277 * application to LP64 for internal use. 25278 */ 25279 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 25280 break; 25281 case DDI_MODEL_NONE: 25282 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 25283 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25284 return (EFAULT); 25285 } 25286 break; 25287 } 25288 #else /* ! _MULTI_DATAMODEL */ 25289 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 25290 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25291 return (EFAULT); 25292 } 25293 #endif /* _MULTI_DATAMODEL */ 25294 25295 /* 25296 * Since MMC-2 expects max 3 bytes for length, check if the 25297 * length input is greater than 3 bytes 25298 */ 25299 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 25300 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 25301 "cdrom transfer length too large: %d (limit %d)\n", 25302 cdxa->cdxa_length, 0xFFFFFF); 25303 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25304 return (EINVAL); 25305 } 25306 25307 switch (cdxa->cdxa_format) { 25308 case CDROM_XA_DATA: 25309 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 25310 read_flags = 0x10; 25311 break; 25312 case CDROM_XA_SECTOR_DATA: 25313 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 25314 read_flags = 0xf8; 25315 break; 25316 case CDROM_XA_DATA_W_ERROR: 25317 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 25318 read_flags = 0xfc; 25319 break; 25320 default: 25321 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25322 "sr_read_cdxa: Format '0x%x' Not Supported\n", 25323 cdxa->cdxa_format); 25324 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25325 return (EINVAL); 25326 } 25327 25328 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25329 bzero(cdb, CDB_GROUP5); 25330 if (un->un_f_mmc_cap == TRUE) { 25331 cdb[0] = (char)SCMD_READ_CD; 25332 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 25333 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 25334 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 25335 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 25336 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 25337 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 25338 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 25339 cdb[9] = (char)read_flags; 25340 } else { 25341 /* 25342 * Note: A vendor specific command (0xDB) is being used her to 25343 * request a read of all subcodes. 25344 */ 25345 cdb[0] = (char)SCMD_READ_CDXA; 25346 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 25347 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 25348 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 25349 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 25350 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 25351 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 25352 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 25353 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 25354 cdb[10] = cdxa->cdxa_format; 25355 } 25356 com->uscsi_cdb = cdb; 25357 com->uscsi_cdblen = CDB_GROUP5; 25358 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 25359 com->uscsi_buflen = buflen; 25360 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 25361 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 25362 SD_PATH_STANDARD); 25363 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 25364 kmem_free(com, sizeof (*com)); 25365 return (rval); 25366 } 25367 25368 25369 /* 25370 * Function: sr_eject() 25371 * 25372 * Description: This routine is the driver entry point for handling CD-ROM 25373 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 25374 * 25375 * Arguments: dev - the device 'dev_t' 25376 * 25377 * Return Code: the code returned by sd_send_scsi_cmd() 25378 */ 25379 25380 static int 25381 sr_eject(dev_t dev) 25382 { 25383 struct sd_lun *un; 25384 int rval; 25385 25386 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 25387 (un->un_state == SD_STATE_OFFLINE)) { 25388 return (ENXIO); 25389 } 25390 25391 /* 25392 * To prevent race conditions with the eject 25393 * command, keep track of an eject command as 25394 * it progresses. If we are already handling 25395 * an eject command in the driver for the given 25396 * unit and another request to eject is received 25397 * immediately return EAGAIN so we don't lose 25398 * the command if the current eject command fails. 25399 */ 25400 mutex_enter(SD_MUTEX(un)); 25401 if (un->un_f_ejecting == TRUE) { 25402 mutex_exit(SD_MUTEX(un)); 25403 return (EAGAIN); 25404 } 25405 un->un_f_ejecting = TRUE; 25406 mutex_exit(SD_MUTEX(un)); 25407 25408 if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 25409 SD_PATH_STANDARD)) != 0) { 25410 mutex_enter(SD_MUTEX(un)); 25411 un->un_f_ejecting = FALSE; 25412 mutex_exit(SD_MUTEX(un)); 25413 return (rval); 25414 } 25415 25416 rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT, 25417 SD_PATH_STANDARD); 25418 25419 if (rval == 0) { 25420 mutex_enter(SD_MUTEX(un)); 25421 sr_ejected(un); 25422 un->un_mediastate = DKIO_EJECTED; 25423 un->un_f_ejecting = FALSE; 25424 cv_broadcast(&un->un_state_cv); 25425 mutex_exit(SD_MUTEX(un)); 25426 } else { 25427 mutex_enter(SD_MUTEX(un)); 25428 un->un_f_ejecting = FALSE; 25429 mutex_exit(SD_MUTEX(un)); 25430 } 25431 return (rval); 25432 } 25433 25434 25435 /* 25436 * Function: sr_ejected() 25437 * 25438 * Description: This routine updates the soft state structure to invalidate the 25439 * geometry information after the media has been ejected or a 25440 * media eject has been detected. 25441 * 25442 * Arguments: un - driver soft state (unit) structure 25443 */ 25444 25445 static void 25446 sr_ejected(struct sd_lun *un) 25447 { 25448 struct sd_errstats *stp; 25449 25450 ASSERT(un != NULL); 25451 ASSERT(mutex_owned(SD_MUTEX(un))); 25452 25453 un->un_f_blockcount_is_valid = FALSE; 25454 un->un_f_tgt_blocksize_is_valid = FALSE; 25455 mutex_exit(SD_MUTEX(un)); 25456 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 25457 mutex_enter(SD_MUTEX(un)); 25458 25459 if (un->un_errstats != NULL) { 25460 stp = (struct sd_errstats *)un->un_errstats->ks_data; 25461 stp->sd_capacity.value.ui64 = 0; 25462 } 25463 25464 /* remove "capacity-of-device" properties */ 25465 (void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un), 25466 "device-nblocks"); 25467 (void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un), 25468 "device-blksize"); 25469 } 25470 25471 25472 /* 25473 * Function: sr_check_wp() 25474 * 25475 * Description: This routine checks the write protection of a removable 25476 * media disk and hotpluggable devices via the write protect bit of 25477 * the Mode Page Header device specific field. Some devices choke 25478 * on unsupported mode page. In order to workaround this issue, 25479 * this routine has been implemented to use 0x3f mode page(request 25480 * for all pages) for all device types. 25481 * 25482 * Arguments: dev - the device 'dev_t' 25483 * 25484 * Return Code: int indicating if the device is write protected (1) or not (0) 25485 * 25486 * Context: Kernel thread. 25487 * 25488 */ 25489 25490 static int 25491 sr_check_wp(dev_t dev) 25492 { 25493 struct sd_lun *un; 25494 uchar_t device_specific; 25495 uchar_t *sense; 25496 int hdrlen; 25497 int rval = FALSE; 25498 25499 /* 25500 * Note: The return codes for this routine should be reworked to 25501 * properly handle the case of a NULL softstate. 25502 */ 25503 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25504 return (FALSE); 25505 } 25506 25507 if (un->un_f_cfg_is_atapi == TRUE) { 25508 /* 25509 * The mode page contents are not required; set the allocation 25510 * length for the mode page header only 25511 */ 25512 hdrlen = MODE_HEADER_LENGTH_GRP2; 25513 sense = kmem_zalloc(hdrlen, KM_SLEEP); 25514 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen, 25515 MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0) 25516 goto err_exit; 25517 device_specific = 25518 ((struct mode_header_grp2 *)sense)->device_specific; 25519 } else { 25520 hdrlen = MODE_HEADER_LENGTH; 25521 sense = kmem_zalloc(hdrlen, KM_SLEEP); 25522 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen, 25523 MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0) 25524 goto err_exit; 25525 device_specific = 25526 ((struct mode_header *)sense)->device_specific; 25527 } 25528 25529 /* 25530 * Write protect mode sense failed; not all disks 25531 * understand this query. Return FALSE assuming that 25532 * these devices are not writable. 25533 */ 25534 if (device_specific & WRITE_PROTECT) { 25535 rval = TRUE; 25536 } 25537 25538 err_exit: 25539 kmem_free(sense, hdrlen); 25540 return (rval); 25541 } 25542 25543 /* 25544 * Function: sr_volume_ctrl() 25545 * 25546 * Description: This routine is the driver entry point for handling CD-ROM 25547 * audio output volume ioctl requests. (CDROMVOLCTRL) 25548 * 25549 * Arguments: dev - the device 'dev_t' 25550 * data - pointer to user audio volume control structure 25551 * flag - this argument is a pass through to ddi_copyxxx() 25552 * directly from the mode argument of ioctl(). 25553 * 25554 * Return Code: the code returned by sd_send_scsi_cmd() 25555 * EFAULT if ddi_copyxxx() fails 25556 * ENXIO if fail ddi_get_soft_state 25557 * EINVAL if data pointer is NULL 25558 * 25559 */ 25560 25561 static int 25562 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 25563 { 25564 struct sd_lun *un; 25565 struct cdrom_volctrl volume; 25566 struct cdrom_volctrl *vol = &volume; 25567 uchar_t *sense_page; 25568 uchar_t *select_page; 25569 uchar_t *sense; 25570 uchar_t *select; 25571 int sense_buflen; 25572 int select_buflen; 25573 int rval; 25574 25575 if (data == NULL) { 25576 return (EINVAL); 25577 } 25578 25579 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 25580 (un->un_state == SD_STATE_OFFLINE)) { 25581 return (ENXIO); 25582 } 25583 25584 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 25585 return (EFAULT); 25586 } 25587 25588 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 25589 struct mode_header_grp2 *sense_mhp; 25590 struct mode_header_grp2 *select_mhp; 25591 int bd_len; 25592 25593 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 25594 select_buflen = MODE_HEADER_LENGTH_GRP2 + 25595 MODEPAGE_AUDIO_CTRL_LEN; 25596 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 25597 select = kmem_zalloc(select_buflen, KM_SLEEP); 25598 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 25599 sense_buflen, MODEPAGE_AUDIO_CTRL, 25600 SD_PATH_STANDARD)) != 0) { 25601 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 25602 "sr_volume_ctrl: Mode Sense Failed\n"); 25603 kmem_free(sense, sense_buflen); 25604 kmem_free(select, select_buflen); 25605 return (rval); 25606 } 25607 sense_mhp = (struct mode_header_grp2 *)sense; 25608 select_mhp = (struct mode_header_grp2 *)select; 25609 bd_len = (sense_mhp->bdesc_length_hi << 8) | 25610 sense_mhp->bdesc_length_lo; 25611 if (bd_len > MODE_BLK_DESC_LENGTH) { 25612 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25613 "sr_volume_ctrl: Mode Sense returned invalid " 25614 "block descriptor length\n"); 25615 kmem_free(sense, sense_buflen); 25616 kmem_free(select, select_buflen); 25617 return (EIO); 25618 } 25619 sense_page = (uchar_t *) 25620 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 25621 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 25622 select_mhp->length_msb = 0; 25623 select_mhp->length_lsb = 0; 25624 select_mhp->bdesc_length_hi = 0; 25625 select_mhp->bdesc_length_lo = 0; 25626 } else { 25627 struct mode_header *sense_mhp, *select_mhp; 25628 25629 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 25630 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 25631 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 25632 select = kmem_zalloc(select_buflen, KM_SLEEP); 25633 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 25634 sense_buflen, MODEPAGE_AUDIO_CTRL, 25635 SD_PATH_STANDARD)) != 0) { 25636 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25637 "sr_volume_ctrl: Mode Sense Failed\n"); 25638 kmem_free(sense, sense_buflen); 25639 kmem_free(select, select_buflen); 25640 return (rval); 25641 } 25642 sense_mhp = (struct mode_header *)sense; 25643 select_mhp = (struct mode_header *)select; 25644 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 25645 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25646 "sr_volume_ctrl: Mode Sense returned invalid " 25647 "block descriptor length\n"); 25648 kmem_free(sense, sense_buflen); 25649 kmem_free(select, select_buflen); 25650 return (EIO); 25651 } 25652 sense_page = (uchar_t *) 25653 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 25654 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 25655 select_mhp->length = 0; 25656 select_mhp->bdesc_length = 0; 25657 } 25658 /* 25659 * Note: An audio control data structure could be created and overlayed 25660 * on the following in place of the array indexing method implemented. 25661 */ 25662 25663 /* Build the select data for the user volume data */ 25664 select_page[0] = MODEPAGE_AUDIO_CTRL; 25665 select_page[1] = 0xE; 25666 /* Set the immediate bit */ 25667 select_page[2] = 0x04; 25668 /* Zero out reserved fields */ 25669 select_page[3] = 0x00; 25670 select_page[4] = 0x00; 25671 /* Return sense data for fields not to be modified */ 25672 select_page[5] = sense_page[5]; 25673 select_page[6] = sense_page[6]; 25674 select_page[7] = sense_page[7]; 25675 /* Set the user specified volume levels for channel 0 and 1 */ 25676 select_page[8] = 0x01; 25677 select_page[9] = vol->channel0; 25678 select_page[10] = 0x02; 25679 select_page[11] = vol->channel1; 25680 /* Channel 2 and 3 are currently unsupported so return the sense data */ 25681 select_page[12] = sense_page[12]; 25682 select_page[13] = sense_page[13]; 25683 select_page[14] = sense_page[14]; 25684 select_page[15] = sense_page[15]; 25685 25686 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 25687 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select, 25688 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 25689 } else { 25690 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 25691 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 25692 } 25693 25694 kmem_free(sense, sense_buflen); 25695 kmem_free(select, select_buflen); 25696 return (rval); 25697 } 25698 25699 25700 /* 25701 * Function: sr_read_sony_session_offset() 25702 * 25703 * Description: This routine is the driver entry point for handling CD-ROM 25704 * ioctl requests for session offset information. (CDROMREADOFFSET) 25705 * The address of the first track in the last session of a 25706 * multi-session CD-ROM is returned 25707 * 25708 * Note: This routine uses a vendor specific key value in the 25709 * command control field without implementing any vendor check here 25710 * or in the ioctl routine. 25711 * 25712 * Arguments: dev - the device 'dev_t' 25713 * data - pointer to an int to hold the requested address 25714 * flag - this argument is a pass through to ddi_copyxxx() 25715 * directly from the mode argument of ioctl(). 25716 * 25717 * Return Code: the code returned by sd_send_scsi_cmd() 25718 * EFAULT if ddi_copyxxx() fails 25719 * ENXIO if fail ddi_get_soft_state 25720 * EINVAL if data pointer is NULL 25721 */ 25722 25723 static int 25724 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 25725 { 25726 struct sd_lun *un; 25727 struct uscsi_cmd *com; 25728 caddr_t buffer; 25729 char cdb[CDB_GROUP1]; 25730 int session_offset = 0; 25731 int rval; 25732 25733 if (data == NULL) { 25734 return (EINVAL); 25735 } 25736 25737 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 25738 (un->un_state == SD_STATE_OFFLINE)) { 25739 return (ENXIO); 25740 } 25741 25742 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 25743 bzero(cdb, CDB_GROUP1); 25744 cdb[0] = SCMD_READ_TOC; 25745 /* 25746 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 25747 * (4 byte TOC response header + 8 byte response data) 25748 */ 25749 cdb[8] = SONY_SESSION_OFFSET_LEN; 25750 /* Byte 9 is the control byte. A vendor specific value is used */ 25751 cdb[9] = SONY_SESSION_OFFSET_KEY; 25752 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25753 com->uscsi_cdb = cdb; 25754 com->uscsi_cdblen = CDB_GROUP1; 25755 com->uscsi_bufaddr = buffer; 25756 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 25757 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 25758 25759 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25760 SD_PATH_STANDARD); 25761 if (rval != 0) { 25762 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 25763 kmem_free(com, sizeof (*com)); 25764 return (rval); 25765 } 25766 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 25767 session_offset = 25768 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 25769 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 25770 /* 25771 * Offset returned offset in current lbasize block's. Convert to 25772 * 2k block's to return to the user 25773 */ 25774 if (un->un_tgt_blocksize == CDROM_BLK_512) { 25775 session_offset >>= 2; 25776 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 25777 session_offset >>= 1; 25778 } 25779 } 25780 25781 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 25782 rval = EFAULT; 25783 } 25784 25785 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 25786 kmem_free(com, sizeof (*com)); 25787 return (rval); 25788 } 25789 25790 25791 /* 25792 * Function: sd_wm_cache_constructor() 25793 * 25794 * Description: Cache Constructor for the wmap cache for the read/modify/write 25795 * devices. 25796 * 25797 * Arguments: wm - A pointer to the sd_w_map to be initialized. 25798 * un - sd_lun structure for the device. 25799 * flag - the km flags passed to constructor 25800 * 25801 * Return Code: 0 on success. 25802 * -1 on failure. 25803 */ 25804 25805 /*ARGSUSED*/ 25806 static int 25807 sd_wm_cache_constructor(void *wm, void *un, int flags) 25808 { 25809 bzero(wm, sizeof (struct sd_w_map)); 25810 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 25811 return (0); 25812 } 25813 25814 25815 /* 25816 * Function: sd_wm_cache_destructor() 25817 * 25818 * Description: Cache destructor for the wmap cache for the read/modify/write 25819 * devices. 25820 * 25821 * Arguments: wm - A pointer to the sd_w_map to be initialized. 25822 * un - sd_lun structure for the device. 25823 */ 25824 /*ARGSUSED*/ 25825 static void 25826 sd_wm_cache_destructor(void *wm, void *un) 25827 { 25828 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 25829 } 25830 25831 25832 /* 25833 * Function: sd_range_lock() 25834 * 25835 * Description: Lock the range of blocks specified as parameter to ensure 25836 * that read, modify write is atomic and no other i/o writes 25837 * to the same location. The range is specified in terms 25838 * of start and end blocks. Block numbers are the actual 25839 * media block numbers and not system. 25840 * 25841 * Arguments: un - sd_lun structure for the device. 25842 * startb - The starting block number 25843 * endb - The end block number 25844 * typ - type of i/o - simple/read_modify_write 25845 * 25846 * Return Code: wm - pointer to the wmap structure. 25847 * 25848 * Context: This routine can sleep. 25849 */ 25850 25851 static struct sd_w_map * 25852 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 25853 { 25854 struct sd_w_map *wmp = NULL; 25855 struct sd_w_map *sl_wmp = NULL; 25856 struct sd_w_map *tmp_wmp; 25857 wm_state state = SD_WM_CHK_LIST; 25858 25859 25860 ASSERT(un != NULL); 25861 ASSERT(!mutex_owned(SD_MUTEX(un))); 25862 25863 mutex_enter(SD_MUTEX(un)); 25864 25865 while (state != SD_WM_DONE) { 25866 25867 switch (state) { 25868 case SD_WM_CHK_LIST: 25869 /* 25870 * This is the starting state. Check the wmap list 25871 * to see if the range is currently available. 25872 */ 25873 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 25874 /* 25875 * If this is a simple write and no rmw 25876 * i/o is pending then try to lock the 25877 * range as the range should be available. 25878 */ 25879 state = SD_WM_LOCK_RANGE; 25880 } else { 25881 tmp_wmp = sd_get_range(un, startb, endb); 25882 if (tmp_wmp != NULL) { 25883 if ((wmp != NULL) && ONLIST(un, wmp)) { 25884 /* 25885 * Should not keep onlist wmps 25886 * while waiting this macro 25887 * will also do wmp = NULL; 25888 */ 25889 FREE_ONLIST_WMAP(un, wmp); 25890 } 25891 /* 25892 * sl_wmp is the wmap on which wait 25893 * is done, since the tmp_wmp points 25894 * to the inuse wmap, set sl_wmp to 25895 * tmp_wmp and change the state to sleep 25896 */ 25897 sl_wmp = tmp_wmp; 25898 state = SD_WM_WAIT_MAP; 25899 } else { 25900 state = SD_WM_LOCK_RANGE; 25901 } 25902 25903 } 25904 break; 25905 25906 case SD_WM_LOCK_RANGE: 25907 ASSERT(un->un_wm_cache); 25908 /* 25909 * The range need to be locked, try to get a wmap. 25910 * First attempt it with NO_SLEEP, want to avoid a sleep 25911 * if possible as we will have to release the sd mutex 25912 * if we have to sleep. 25913 */ 25914 if (wmp == NULL) 25915 wmp = kmem_cache_alloc(un->un_wm_cache, 25916 KM_NOSLEEP); 25917 if (wmp == NULL) { 25918 mutex_exit(SD_MUTEX(un)); 25919 _NOTE(DATA_READABLE_WITHOUT_LOCK 25920 (sd_lun::un_wm_cache)) 25921 wmp = kmem_cache_alloc(un->un_wm_cache, 25922 KM_SLEEP); 25923 mutex_enter(SD_MUTEX(un)); 25924 /* 25925 * we released the mutex so recheck and go to 25926 * check list state. 25927 */ 25928 state = SD_WM_CHK_LIST; 25929 } else { 25930 /* 25931 * We exit out of state machine since we 25932 * have the wmap. Do the housekeeping first. 25933 * place the wmap on the wmap list if it is not 25934 * on it already and then set the state to done. 25935 */ 25936 wmp->wm_start = startb; 25937 wmp->wm_end = endb; 25938 wmp->wm_flags = typ | SD_WM_BUSY; 25939 if (typ & SD_WTYPE_RMW) { 25940 un->un_rmw_count++; 25941 } 25942 /* 25943 * If not already on the list then link 25944 */ 25945 if (!ONLIST(un, wmp)) { 25946 wmp->wm_next = un->un_wm; 25947 wmp->wm_prev = NULL; 25948 if (wmp->wm_next) 25949 wmp->wm_next->wm_prev = wmp; 25950 un->un_wm = wmp; 25951 } 25952 state = SD_WM_DONE; 25953 } 25954 break; 25955 25956 case SD_WM_WAIT_MAP: 25957 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 25958 /* 25959 * Wait is done on sl_wmp, which is set in the 25960 * check_list state. 25961 */ 25962 sl_wmp->wm_wanted_count++; 25963 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 25964 sl_wmp->wm_wanted_count--; 25965 /* 25966 * We can reuse the memory from the completed sl_wmp 25967 * lock range for our new lock, but only if noone is 25968 * waiting for it. 25969 */ 25970 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 25971 if (sl_wmp->wm_wanted_count == 0) { 25972 if (wmp != NULL) 25973 CHK_N_FREEWMP(un, wmp); 25974 wmp = sl_wmp; 25975 } 25976 sl_wmp = NULL; 25977 /* 25978 * After waking up, need to recheck for availability of 25979 * range. 25980 */ 25981 state = SD_WM_CHK_LIST; 25982 break; 25983 25984 default: 25985 panic("sd_range_lock: " 25986 "Unknown state %d in sd_range_lock", state); 25987 /*NOTREACHED*/ 25988 } /* switch(state) */ 25989 25990 } /* while(state != SD_WM_DONE) */ 25991 25992 mutex_exit(SD_MUTEX(un)); 25993 25994 ASSERT(wmp != NULL); 25995 25996 return (wmp); 25997 } 25998 25999 26000 /* 26001 * Function: sd_get_range() 26002 * 26003 * Description: Find if there any overlapping I/O to this one 26004 * Returns the write-map of 1st such I/O, NULL otherwise. 26005 * 26006 * Arguments: un - sd_lun structure for the device. 26007 * startb - The starting block number 26008 * endb - The end block number 26009 * 26010 * Return Code: wm - pointer to the wmap structure. 26011 */ 26012 26013 static struct sd_w_map * 26014 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 26015 { 26016 struct sd_w_map *wmp; 26017 26018 ASSERT(un != NULL); 26019 26020 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 26021 if (!(wmp->wm_flags & SD_WM_BUSY)) { 26022 continue; 26023 } 26024 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 26025 break; 26026 } 26027 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 26028 break; 26029 } 26030 } 26031 26032 return (wmp); 26033 } 26034 26035 26036 /* 26037 * Function: sd_free_inlist_wmap() 26038 * 26039 * Description: Unlink and free a write map struct. 26040 * 26041 * Arguments: un - sd_lun structure for the device. 26042 * wmp - sd_w_map which needs to be unlinked. 26043 */ 26044 26045 static void 26046 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 26047 { 26048 ASSERT(un != NULL); 26049 26050 if (un->un_wm == wmp) { 26051 un->un_wm = wmp->wm_next; 26052 } else { 26053 wmp->wm_prev->wm_next = wmp->wm_next; 26054 } 26055 26056 if (wmp->wm_next) { 26057 wmp->wm_next->wm_prev = wmp->wm_prev; 26058 } 26059 26060 wmp->wm_next = wmp->wm_prev = NULL; 26061 26062 kmem_cache_free(un->un_wm_cache, wmp); 26063 } 26064 26065 26066 /* 26067 * Function: sd_range_unlock() 26068 * 26069 * Description: Unlock the range locked by wm. 26070 * Free write map if nobody else is waiting on it. 26071 * 26072 * Arguments: un - sd_lun structure for the device. 26073 * wmp - sd_w_map which needs to be unlinked. 26074 */ 26075 26076 static void 26077 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 26078 { 26079 ASSERT(un != NULL); 26080 ASSERT(wm != NULL); 26081 ASSERT(!mutex_owned(SD_MUTEX(un))); 26082 26083 mutex_enter(SD_MUTEX(un)); 26084 26085 if (wm->wm_flags & SD_WTYPE_RMW) { 26086 un->un_rmw_count--; 26087 } 26088 26089 if (wm->wm_wanted_count) { 26090 wm->wm_flags = 0; 26091 /* 26092 * Broadcast that the wmap is available now. 26093 */ 26094 cv_broadcast(&wm->wm_avail); 26095 } else { 26096 /* 26097 * If no one is waiting on the map, it should be free'ed. 26098 */ 26099 sd_free_inlist_wmap(un, wm); 26100 } 26101 26102 mutex_exit(SD_MUTEX(un)); 26103 } 26104 26105 26106 /* 26107 * Function: sd_read_modify_write_task 26108 * 26109 * Description: Called from a taskq thread to initiate the write phase of 26110 * a read-modify-write request. This is used for targets where 26111 * un->un_sys_blocksize != un->un_tgt_blocksize. 26112 * 26113 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 26114 * 26115 * Context: Called under taskq thread context. 26116 */ 26117 26118 static void 26119 sd_read_modify_write_task(void *arg) 26120 { 26121 struct sd_mapblocksize_info *bsp; 26122 struct buf *bp; 26123 struct sd_xbuf *xp; 26124 struct sd_lun *un; 26125 26126 bp = arg; /* The bp is given in arg */ 26127 ASSERT(bp != NULL); 26128 26129 /* Get the pointer to the layer-private data struct */ 26130 xp = SD_GET_XBUF(bp); 26131 ASSERT(xp != NULL); 26132 bsp = xp->xb_private; 26133 ASSERT(bsp != NULL); 26134 26135 un = SD_GET_UN(bp); 26136 ASSERT(un != NULL); 26137 ASSERT(!mutex_owned(SD_MUTEX(un))); 26138 26139 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 26140 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 26141 26142 /* 26143 * This is the write phase of a read-modify-write request, called 26144 * under the context of a taskq thread in response to the completion 26145 * of the read portion of the rmw request completing under interrupt 26146 * context. The write request must be sent from here down the iostart 26147 * chain as if it were being sent from sd_mapblocksize_iostart(), so 26148 * we use the layer index saved in the layer-private data area. 26149 */ 26150 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 26151 26152 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 26153 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 26154 } 26155 26156 26157 /* 26158 * Function: sddump_do_read_of_rmw() 26159 * 26160 * Description: This routine will be called from sddump, If sddump is called 26161 * with an I/O which not aligned on device blocksize boundary 26162 * then the write has to be converted to read-modify-write. 26163 * Do the read part here in order to keep sddump simple. 26164 * Note - That the sd_mutex is held across the call to this 26165 * routine. 26166 * 26167 * Arguments: un - sd_lun 26168 * blkno - block number in terms of media block size. 26169 * nblk - number of blocks. 26170 * bpp - pointer to pointer to the buf structure. On return 26171 * from this function, *bpp points to the valid buffer 26172 * to which the write has to be done. 26173 * 26174 * Return Code: 0 for success or errno-type return code 26175 */ 26176 26177 static int 26178 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 26179 struct buf **bpp) 26180 { 26181 int err; 26182 int i; 26183 int rval; 26184 struct buf *bp; 26185 struct scsi_pkt *pkt = NULL; 26186 uint32_t target_blocksize; 26187 26188 ASSERT(un != NULL); 26189 ASSERT(mutex_owned(SD_MUTEX(un))); 26190 26191 target_blocksize = un->un_tgt_blocksize; 26192 26193 mutex_exit(SD_MUTEX(un)); 26194 26195 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 26196 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 26197 if (bp == NULL) { 26198 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26199 "no resources for dumping; giving up"); 26200 err = ENOMEM; 26201 goto done; 26202 } 26203 26204 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 26205 blkno, nblk); 26206 if (rval != 0) { 26207 scsi_free_consistent_buf(bp); 26208 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26209 "no resources for dumping; giving up"); 26210 err = ENOMEM; 26211 goto done; 26212 } 26213 26214 pkt->pkt_flags |= FLAG_NOINTR; 26215 26216 err = EIO; 26217 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26218 26219 /* 26220 * Scsi_poll returns 0 (success) if the command completes and 26221 * the status block is STATUS_GOOD. We should only check 26222 * errors if this condition is not true. Even then we should 26223 * send our own request sense packet only if we have a check 26224 * condition and auto request sense has not been performed by 26225 * the hba. 26226 */ 26227 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 26228 26229 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 26230 err = 0; 26231 break; 26232 } 26233 26234 /* 26235 * Check CMD_DEV_GONE 1st, give up if device is gone, 26236 * no need to read RQS data. 26237 */ 26238 if (pkt->pkt_reason == CMD_DEV_GONE) { 26239 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26240 "Device is gone\n"); 26241 break; 26242 } 26243 26244 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 26245 SD_INFO(SD_LOG_DUMP, un, 26246 "sddump: read failed with CHECK, try # %d\n", i); 26247 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 26248 (void) sd_send_polled_RQS(un); 26249 } 26250 26251 continue; 26252 } 26253 26254 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 26255 int reset_retval = 0; 26256 26257 SD_INFO(SD_LOG_DUMP, un, 26258 "sddump: read failed with BUSY, try # %d\n", i); 26259 26260 if (un->un_f_lun_reset_enabled == TRUE) { 26261 reset_retval = scsi_reset(SD_ADDRESS(un), 26262 RESET_LUN); 26263 } 26264 if (reset_retval == 0) { 26265 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26266 } 26267 (void) sd_send_polled_RQS(un); 26268 26269 } else { 26270 SD_INFO(SD_LOG_DUMP, un, 26271 "sddump: read failed with 0x%x, try # %d\n", 26272 SD_GET_PKT_STATUS(pkt), i); 26273 mutex_enter(SD_MUTEX(un)); 26274 sd_reset_target(un, pkt); 26275 mutex_exit(SD_MUTEX(un)); 26276 } 26277 26278 /* 26279 * If we are not getting anywhere with lun/target resets, 26280 * let's reset the bus. 26281 */ 26282 if (i > SD_NDUMP_RETRIES/2) { 26283 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26284 (void) sd_send_polled_RQS(un); 26285 } 26286 26287 } 26288 scsi_destroy_pkt(pkt); 26289 26290 if (err != 0) { 26291 scsi_free_consistent_buf(bp); 26292 *bpp = NULL; 26293 } else { 26294 *bpp = bp; 26295 } 26296 26297 done: 26298 mutex_enter(SD_MUTEX(un)); 26299 return (err); 26300 } 26301 26302 26303 /* 26304 * Function: sd_failfast_flushq 26305 * 26306 * Description: Take all bp's on the wait queue that have B_FAILFAST set 26307 * in b_flags and move them onto the failfast queue, then kick 26308 * off a thread to return all bp's on the failfast queue to 26309 * their owners with an error set. 26310 * 26311 * Arguments: un - pointer to the soft state struct for the instance. 26312 * 26313 * Context: may execute in interrupt context. 26314 */ 26315 26316 static void 26317 sd_failfast_flushq(struct sd_lun *un) 26318 { 26319 struct buf *bp; 26320 struct buf *next_waitq_bp; 26321 struct buf *prev_waitq_bp = NULL; 26322 26323 ASSERT(un != NULL); 26324 ASSERT(mutex_owned(SD_MUTEX(un))); 26325 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 26326 ASSERT(un->un_failfast_bp == NULL); 26327 26328 SD_TRACE(SD_LOG_IO_FAILFAST, un, 26329 "sd_failfast_flushq: entry: un:0x%p\n", un); 26330 26331 /* 26332 * Check if we should flush all bufs when entering failfast state, or 26333 * just those with B_FAILFAST set. 26334 */ 26335 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 26336 /* 26337 * Move *all* bp's on the wait queue to the failfast flush 26338 * queue, including those that do NOT have B_FAILFAST set. 26339 */ 26340 if (un->un_failfast_headp == NULL) { 26341 ASSERT(un->un_failfast_tailp == NULL); 26342 un->un_failfast_headp = un->un_waitq_headp; 26343 } else { 26344 ASSERT(un->un_failfast_tailp != NULL); 26345 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 26346 } 26347 26348 un->un_failfast_tailp = un->un_waitq_tailp; 26349 26350 /* update kstat for each bp moved out of the waitq */ 26351 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 26352 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 26353 } 26354 26355 /* empty the waitq */ 26356 un->un_waitq_headp = un->un_waitq_tailp = NULL; 26357 26358 } else { 26359 /* 26360 * Go thru the wait queue, pick off all entries with 26361 * B_FAILFAST set, and move these onto the failfast queue. 26362 */ 26363 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 26364 /* 26365 * Save the pointer to the next bp on the wait queue, 26366 * so we get to it on the next iteration of this loop. 26367 */ 26368 next_waitq_bp = bp->av_forw; 26369 26370 /* 26371 * If this bp from the wait queue does NOT have 26372 * B_FAILFAST set, just move on to the next element 26373 * in the wait queue. Note, this is the only place 26374 * where it is correct to set prev_waitq_bp. 26375 */ 26376 if ((bp->b_flags & B_FAILFAST) == 0) { 26377 prev_waitq_bp = bp; 26378 continue; 26379 } 26380 26381 /* 26382 * Remove the bp from the wait queue. 26383 */ 26384 if (bp == un->un_waitq_headp) { 26385 /* The bp is the first element of the waitq. */ 26386 un->un_waitq_headp = next_waitq_bp; 26387 if (un->un_waitq_headp == NULL) { 26388 /* The wait queue is now empty */ 26389 un->un_waitq_tailp = NULL; 26390 } 26391 } else { 26392 /* 26393 * The bp is either somewhere in the middle 26394 * or at the end of the wait queue. 26395 */ 26396 ASSERT(un->un_waitq_headp != NULL); 26397 ASSERT(prev_waitq_bp != NULL); 26398 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 26399 == 0); 26400 if (bp == un->un_waitq_tailp) { 26401 /* bp is the last entry on the waitq. */ 26402 ASSERT(next_waitq_bp == NULL); 26403 un->un_waitq_tailp = prev_waitq_bp; 26404 } 26405 prev_waitq_bp->av_forw = next_waitq_bp; 26406 } 26407 bp->av_forw = NULL; 26408 26409 /* 26410 * update kstat since the bp is moved out of 26411 * the waitq 26412 */ 26413 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 26414 26415 /* 26416 * Now put the bp onto the failfast queue. 26417 */ 26418 if (un->un_failfast_headp == NULL) { 26419 /* failfast queue is currently empty */ 26420 ASSERT(un->un_failfast_tailp == NULL); 26421 un->un_failfast_headp = 26422 un->un_failfast_tailp = bp; 26423 } else { 26424 /* Add the bp to the end of the failfast q */ 26425 ASSERT(un->un_failfast_tailp != NULL); 26426 ASSERT(un->un_failfast_tailp->b_flags & 26427 B_FAILFAST); 26428 un->un_failfast_tailp->av_forw = bp; 26429 un->un_failfast_tailp = bp; 26430 } 26431 } 26432 } 26433 26434 /* 26435 * Now return all bp's on the failfast queue to their owners. 26436 */ 26437 while ((bp = un->un_failfast_headp) != NULL) { 26438 26439 un->un_failfast_headp = bp->av_forw; 26440 if (un->un_failfast_headp == NULL) { 26441 un->un_failfast_tailp = NULL; 26442 } 26443 26444 /* 26445 * We want to return the bp with a failure error code, but 26446 * we do not want a call to sd_start_cmds() to occur here, 26447 * so use sd_return_failed_command_no_restart() instead of 26448 * sd_return_failed_command(). 26449 */ 26450 sd_return_failed_command_no_restart(un, bp, EIO); 26451 } 26452 26453 /* Flush the xbuf queues if required. */ 26454 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 26455 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 26456 } 26457 26458 SD_TRACE(SD_LOG_IO_FAILFAST, un, 26459 "sd_failfast_flushq: exit: un:0x%p\n", un); 26460 } 26461 26462 26463 /* 26464 * Function: sd_failfast_flushq_callback 26465 * 26466 * Description: Return TRUE if the given bp meets the criteria for failfast 26467 * flushing. Used with ddi_xbuf_flushq(9F). 26468 * 26469 * Arguments: bp - ptr to buf struct to be examined. 26470 * 26471 * Context: Any 26472 */ 26473 26474 static int 26475 sd_failfast_flushq_callback(struct buf *bp) 26476 { 26477 /* 26478 * Return TRUE if (1) we want to flush ALL bufs when the failfast 26479 * state is entered; OR (2) the given bp has B_FAILFAST set. 26480 */ 26481 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 26482 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 26483 } 26484 26485 26486 26487 #if defined(__i386) || defined(__amd64) 26488 /* 26489 * Function: sd_setup_next_xfer 26490 * 26491 * Description: Prepare next I/O operation using DMA_PARTIAL 26492 * 26493 */ 26494 26495 static int 26496 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 26497 struct scsi_pkt *pkt, struct sd_xbuf *xp) 26498 { 26499 ssize_t num_blks_not_xfered; 26500 daddr_t strt_blk_num; 26501 ssize_t bytes_not_xfered; 26502 int rval; 26503 26504 ASSERT(pkt->pkt_resid == 0); 26505 26506 /* 26507 * Calculate next block number and amount to be transferred. 26508 * 26509 * How much data NOT transfered to the HBA yet. 26510 */ 26511 bytes_not_xfered = xp->xb_dma_resid; 26512 26513 /* 26514 * figure how many blocks NOT transfered to the HBA yet. 26515 */ 26516 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 26517 26518 /* 26519 * set starting block number to the end of what WAS transfered. 26520 */ 26521 strt_blk_num = xp->xb_blkno + 26522 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 26523 26524 /* 26525 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 26526 * will call scsi_initpkt with NULL_FUNC so we do not have to release 26527 * the disk mutex here. 26528 */ 26529 rval = sd_setup_next_rw_pkt(un, pkt, bp, 26530 strt_blk_num, num_blks_not_xfered); 26531 26532 if (rval == 0) { 26533 26534 /* 26535 * Success. 26536 * 26537 * Adjust things if there are still more blocks to be 26538 * transfered. 26539 */ 26540 xp->xb_dma_resid = pkt->pkt_resid; 26541 pkt->pkt_resid = 0; 26542 26543 return (1); 26544 } 26545 26546 /* 26547 * There's really only one possible return value from 26548 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 26549 * returns NULL. 26550 */ 26551 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 26552 26553 bp->b_resid = bp->b_bcount; 26554 bp->b_flags |= B_ERROR; 26555 26556 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26557 "Error setting up next portion of DMA transfer\n"); 26558 26559 return (0); 26560 } 26561 #endif 26562 26563 /* 26564 * Function: sd_panic_for_res_conflict 26565 * 26566 * Description: Call panic with a string formatted with "Reservation Conflict" 26567 * and a human readable identifier indicating the SD instance 26568 * that experienced the reservation conflict. 26569 * 26570 * Arguments: un - pointer to the soft state struct for the instance. 26571 * 26572 * Context: may execute in interrupt context. 26573 */ 26574 26575 #define SD_RESV_CONFLICT_FMT_LEN 40 26576 void 26577 sd_panic_for_res_conflict(struct sd_lun *un) 26578 { 26579 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 26580 char path_str[MAXPATHLEN]; 26581 26582 (void) snprintf(panic_str, sizeof (panic_str), 26583 "Reservation Conflict\nDisk: %s", 26584 ddi_pathname(SD_DEVINFO(un), path_str)); 26585 26586 panic(panic_str); 26587 } 26588 26589 /* 26590 * Note: The following sd_faultinjection_ioctl( ) routines implement 26591 * driver support for handling fault injection for error analysis 26592 * causing faults in multiple layers of the driver. 26593 * 26594 */ 26595 26596 #ifdef SD_FAULT_INJECTION 26597 static uint_t sd_fault_injection_on = 0; 26598 26599 /* 26600 * Function: sd_faultinjection_ioctl() 26601 * 26602 * Description: This routine is the driver entry point for handling 26603 * faultinjection ioctls to inject errors into the 26604 * layer model 26605 * 26606 * Arguments: cmd - the ioctl cmd received 26607 * arg - the arguments from user and returns 26608 */ 26609 26610 static void 26611 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 26612 26613 uint_t i; 26614 uint_t rval; 26615 26616 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 26617 26618 mutex_enter(SD_MUTEX(un)); 26619 26620 switch (cmd) { 26621 case SDIOCRUN: 26622 /* Allow pushed faults to be injected */ 26623 SD_INFO(SD_LOG_SDTEST, un, 26624 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 26625 26626 sd_fault_injection_on = 1; 26627 26628 SD_INFO(SD_LOG_IOERR, un, 26629 "sd_faultinjection_ioctl: run finished\n"); 26630 break; 26631 26632 case SDIOCSTART: 26633 /* Start Injection Session */ 26634 SD_INFO(SD_LOG_SDTEST, un, 26635 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 26636 26637 sd_fault_injection_on = 0; 26638 un->sd_injection_mask = 0xFFFFFFFF; 26639 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 26640 un->sd_fi_fifo_pkt[i] = NULL; 26641 un->sd_fi_fifo_xb[i] = NULL; 26642 un->sd_fi_fifo_un[i] = NULL; 26643 un->sd_fi_fifo_arq[i] = NULL; 26644 } 26645 un->sd_fi_fifo_start = 0; 26646 un->sd_fi_fifo_end = 0; 26647 26648 mutex_enter(&(un->un_fi_mutex)); 26649 un->sd_fi_log[0] = '\0'; 26650 un->sd_fi_buf_len = 0; 26651 mutex_exit(&(un->un_fi_mutex)); 26652 26653 SD_INFO(SD_LOG_IOERR, un, 26654 "sd_faultinjection_ioctl: start finished\n"); 26655 break; 26656 26657 case SDIOCSTOP: 26658 /* Stop Injection Session */ 26659 SD_INFO(SD_LOG_SDTEST, un, 26660 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 26661 sd_fault_injection_on = 0; 26662 un->sd_injection_mask = 0x0; 26663 26664 /* Empty stray or unuseds structs from fifo */ 26665 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 26666 if (un->sd_fi_fifo_pkt[i] != NULL) { 26667 kmem_free(un->sd_fi_fifo_pkt[i], 26668 sizeof (struct sd_fi_pkt)); 26669 } 26670 if (un->sd_fi_fifo_xb[i] != NULL) { 26671 kmem_free(un->sd_fi_fifo_xb[i], 26672 sizeof (struct sd_fi_xb)); 26673 } 26674 if (un->sd_fi_fifo_un[i] != NULL) { 26675 kmem_free(un->sd_fi_fifo_un[i], 26676 sizeof (struct sd_fi_un)); 26677 } 26678 if (un->sd_fi_fifo_arq[i] != NULL) { 26679 kmem_free(un->sd_fi_fifo_arq[i], 26680 sizeof (struct sd_fi_arq)); 26681 } 26682 un->sd_fi_fifo_pkt[i] = NULL; 26683 un->sd_fi_fifo_un[i] = NULL; 26684 un->sd_fi_fifo_xb[i] = NULL; 26685 un->sd_fi_fifo_arq[i] = NULL; 26686 } 26687 un->sd_fi_fifo_start = 0; 26688 un->sd_fi_fifo_end = 0; 26689 26690 SD_INFO(SD_LOG_IOERR, un, 26691 "sd_faultinjection_ioctl: stop finished\n"); 26692 break; 26693 26694 case SDIOCINSERTPKT: 26695 /* Store a packet struct to be pushed onto fifo */ 26696 SD_INFO(SD_LOG_SDTEST, un, 26697 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 26698 26699 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 26700 26701 sd_fault_injection_on = 0; 26702 26703 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 26704 if (un->sd_fi_fifo_pkt[i] != NULL) { 26705 kmem_free(un->sd_fi_fifo_pkt[i], 26706 sizeof (struct sd_fi_pkt)); 26707 } 26708 if (arg != NULL) { 26709 un->sd_fi_fifo_pkt[i] = 26710 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 26711 if (un->sd_fi_fifo_pkt[i] == NULL) { 26712 /* Alloc failed don't store anything */ 26713 break; 26714 } 26715 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 26716 sizeof (struct sd_fi_pkt), 0); 26717 if (rval == -1) { 26718 kmem_free(un->sd_fi_fifo_pkt[i], 26719 sizeof (struct sd_fi_pkt)); 26720 un->sd_fi_fifo_pkt[i] = NULL; 26721 } 26722 } else { 26723 SD_INFO(SD_LOG_IOERR, un, 26724 "sd_faultinjection_ioctl: pkt null\n"); 26725 } 26726 break; 26727 26728 case SDIOCINSERTXB: 26729 /* Store a xb struct to be pushed onto fifo */ 26730 SD_INFO(SD_LOG_SDTEST, un, 26731 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 26732 26733 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 26734 26735 sd_fault_injection_on = 0; 26736 26737 if (un->sd_fi_fifo_xb[i] != NULL) { 26738 kmem_free(un->sd_fi_fifo_xb[i], 26739 sizeof (struct sd_fi_xb)); 26740 un->sd_fi_fifo_xb[i] = NULL; 26741 } 26742 if (arg != NULL) { 26743 un->sd_fi_fifo_xb[i] = 26744 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 26745 if (un->sd_fi_fifo_xb[i] == NULL) { 26746 /* Alloc failed don't store anything */ 26747 break; 26748 } 26749 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 26750 sizeof (struct sd_fi_xb), 0); 26751 26752 if (rval == -1) { 26753 kmem_free(un->sd_fi_fifo_xb[i], 26754 sizeof (struct sd_fi_xb)); 26755 un->sd_fi_fifo_xb[i] = NULL; 26756 } 26757 } else { 26758 SD_INFO(SD_LOG_IOERR, un, 26759 "sd_faultinjection_ioctl: xb null\n"); 26760 } 26761 break; 26762 26763 case SDIOCINSERTUN: 26764 /* Store a un struct to be pushed onto fifo */ 26765 SD_INFO(SD_LOG_SDTEST, un, 26766 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 26767 26768 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 26769 26770 sd_fault_injection_on = 0; 26771 26772 if (un->sd_fi_fifo_un[i] != NULL) { 26773 kmem_free(un->sd_fi_fifo_un[i], 26774 sizeof (struct sd_fi_un)); 26775 un->sd_fi_fifo_un[i] = NULL; 26776 } 26777 if (arg != NULL) { 26778 un->sd_fi_fifo_un[i] = 26779 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 26780 if (un->sd_fi_fifo_un[i] == NULL) { 26781 /* Alloc failed don't store anything */ 26782 break; 26783 } 26784 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 26785 sizeof (struct sd_fi_un), 0); 26786 if (rval == -1) { 26787 kmem_free(un->sd_fi_fifo_un[i], 26788 sizeof (struct sd_fi_un)); 26789 un->sd_fi_fifo_un[i] = NULL; 26790 } 26791 26792 } else { 26793 SD_INFO(SD_LOG_IOERR, un, 26794 "sd_faultinjection_ioctl: un null\n"); 26795 } 26796 26797 break; 26798 26799 case SDIOCINSERTARQ: 26800 /* Store a arq struct to be pushed onto fifo */ 26801 SD_INFO(SD_LOG_SDTEST, un, 26802 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 26803 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 26804 26805 sd_fault_injection_on = 0; 26806 26807 if (un->sd_fi_fifo_arq[i] != NULL) { 26808 kmem_free(un->sd_fi_fifo_arq[i], 26809 sizeof (struct sd_fi_arq)); 26810 un->sd_fi_fifo_arq[i] = NULL; 26811 } 26812 if (arg != NULL) { 26813 un->sd_fi_fifo_arq[i] = 26814 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 26815 if (un->sd_fi_fifo_arq[i] == NULL) { 26816 /* Alloc failed don't store anything */ 26817 break; 26818 } 26819 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 26820 sizeof (struct sd_fi_arq), 0); 26821 if (rval == -1) { 26822 kmem_free(un->sd_fi_fifo_arq[i], 26823 sizeof (struct sd_fi_arq)); 26824 un->sd_fi_fifo_arq[i] = NULL; 26825 } 26826 26827 } else { 26828 SD_INFO(SD_LOG_IOERR, un, 26829 "sd_faultinjection_ioctl: arq null\n"); 26830 } 26831 26832 break; 26833 26834 case SDIOCPUSH: 26835 /* Push stored xb, pkt, un, and arq onto fifo */ 26836 sd_fault_injection_on = 0; 26837 26838 if (arg != NULL) { 26839 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 26840 if (rval != -1 && 26841 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 26842 un->sd_fi_fifo_end += i; 26843 } 26844 } else { 26845 SD_INFO(SD_LOG_IOERR, un, 26846 "sd_faultinjection_ioctl: push arg null\n"); 26847 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 26848 un->sd_fi_fifo_end++; 26849 } 26850 } 26851 SD_INFO(SD_LOG_IOERR, un, 26852 "sd_faultinjection_ioctl: push to end=%d\n", 26853 un->sd_fi_fifo_end); 26854 break; 26855 26856 case SDIOCRETRIEVE: 26857 /* Return buffer of log from Injection session */ 26858 SD_INFO(SD_LOG_SDTEST, un, 26859 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 26860 26861 sd_fault_injection_on = 0; 26862 26863 mutex_enter(&(un->un_fi_mutex)); 26864 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 26865 un->sd_fi_buf_len+1, 0); 26866 mutex_exit(&(un->un_fi_mutex)); 26867 26868 if (rval == -1) { 26869 /* 26870 * arg is possibly invalid setting 26871 * it to NULL for return 26872 */ 26873 arg = NULL; 26874 } 26875 break; 26876 } 26877 26878 mutex_exit(SD_MUTEX(un)); 26879 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 26880 " exit\n"); 26881 } 26882 26883 26884 /* 26885 * Function: sd_injection_log() 26886 * 26887 * Description: This routine adds buff to the already existing injection log 26888 * for retrieval via faultinjection_ioctl for use in fault 26889 * detection and recovery 26890 * 26891 * Arguments: buf - the string to add to the log 26892 */ 26893 26894 static void 26895 sd_injection_log(char *buf, struct sd_lun *un) 26896 { 26897 uint_t len; 26898 26899 ASSERT(un != NULL); 26900 ASSERT(buf != NULL); 26901 26902 mutex_enter(&(un->un_fi_mutex)); 26903 26904 len = min(strlen(buf), 255); 26905 /* Add logged value to Injection log to be returned later */ 26906 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 26907 uint_t offset = strlen((char *)un->sd_fi_log); 26908 char *destp = (char *)un->sd_fi_log + offset; 26909 int i; 26910 for (i = 0; i < len; i++) { 26911 *destp++ = *buf++; 26912 } 26913 un->sd_fi_buf_len += len; 26914 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 26915 } 26916 26917 mutex_exit(&(un->un_fi_mutex)); 26918 } 26919 26920 26921 /* 26922 * Function: sd_faultinjection() 26923 * 26924 * Description: This routine takes the pkt and changes its 26925 * content based on error injection scenerio. 26926 * 26927 * Arguments: pktp - packet to be changed 26928 */ 26929 26930 static void 26931 sd_faultinjection(struct scsi_pkt *pktp) 26932 { 26933 uint_t i; 26934 struct sd_fi_pkt *fi_pkt; 26935 struct sd_fi_xb *fi_xb; 26936 struct sd_fi_un *fi_un; 26937 struct sd_fi_arq *fi_arq; 26938 struct buf *bp; 26939 struct sd_xbuf *xb; 26940 struct sd_lun *un; 26941 26942 ASSERT(pktp != NULL); 26943 26944 /* pull bp xb and un from pktp */ 26945 bp = (struct buf *)pktp->pkt_private; 26946 xb = SD_GET_XBUF(bp); 26947 un = SD_GET_UN(bp); 26948 26949 ASSERT(un != NULL); 26950 26951 mutex_enter(SD_MUTEX(un)); 26952 26953 SD_TRACE(SD_LOG_SDTEST, un, 26954 "sd_faultinjection: entry Injection from sdintr\n"); 26955 26956 /* if injection is off return */ 26957 if (sd_fault_injection_on == 0 || 26958 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 26959 mutex_exit(SD_MUTEX(un)); 26960 return; 26961 } 26962 26963 26964 /* take next set off fifo */ 26965 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 26966 26967 fi_pkt = un->sd_fi_fifo_pkt[i]; 26968 fi_xb = un->sd_fi_fifo_xb[i]; 26969 fi_un = un->sd_fi_fifo_un[i]; 26970 fi_arq = un->sd_fi_fifo_arq[i]; 26971 26972 26973 /* set variables accordingly */ 26974 /* set pkt if it was on fifo */ 26975 if (fi_pkt != NULL) { 26976 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 26977 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 26978 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 26979 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 26980 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 26981 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 26982 26983 } 26984 26985 /* set xb if it was on fifo */ 26986 if (fi_xb != NULL) { 26987 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 26988 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 26989 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 26990 SD_CONDSET(xb, xb, xb_victim_retry_count, 26991 "xb_victim_retry_count"); 26992 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 26993 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 26994 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 26995 26996 /* copy in block data from sense */ 26997 if (fi_xb->xb_sense_data[0] != -1) { 26998 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 26999 SENSE_LENGTH); 27000 } 27001 27002 /* copy in extended sense codes */ 27003 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code, 27004 "es_code"); 27005 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key, 27006 "es_key"); 27007 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code, 27008 "es_add_code"); 27009 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, 27010 es_qual_code, "es_qual_code"); 27011 } 27012 27013 /* set un if it was on fifo */ 27014 if (fi_un != NULL) { 27015 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 27016 SD_CONDSET(un, un, un_ctype, "un_ctype"); 27017 SD_CONDSET(un, un, un_reset_retry_count, 27018 "un_reset_retry_count"); 27019 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 27020 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 27021 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 27022 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 27023 "un_f_allow_bus_device_reset"); 27024 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 27025 27026 } 27027 27028 /* copy in auto request sense if it was on fifo */ 27029 if (fi_arq != NULL) { 27030 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 27031 } 27032 27033 /* free structs */ 27034 if (un->sd_fi_fifo_pkt[i] != NULL) { 27035 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 27036 } 27037 if (un->sd_fi_fifo_xb[i] != NULL) { 27038 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 27039 } 27040 if (un->sd_fi_fifo_un[i] != NULL) { 27041 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 27042 } 27043 if (un->sd_fi_fifo_arq[i] != NULL) { 27044 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 27045 } 27046 27047 /* 27048 * kmem_free does not gurantee to set to NULL 27049 * since we uses these to determine if we set 27050 * values or not lets confirm they are always 27051 * NULL after free 27052 */ 27053 un->sd_fi_fifo_pkt[i] = NULL; 27054 un->sd_fi_fifo_un[i] = NULL; 27055 un->sd_fi_fifo_xb[i] = NULL; 27056 un->sd_fi_fifo_arq[i] = NULL; 27057 27058 un->sd_fi_fifo_start++; 27059 27060 mutex_exit(SD_MUTEX(un)); 27061 27062 SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 27063 } 27064 27065 #endif /* SD_FAULT_INJECTION */ 27066 27067 /* 27068 * This routine is invoked in sd_unit_attach(). Before calling it, the 27069 * properties in conf file should be processed already, and "hotpluggable" 27070 * property was processed also. 27071 * 27072 * The sd driver distinguishes 3 different type of devices: removable media, 27073 * non-removable media, and hotpluggable. Below the differences are defined: 27074 * 27075 * 1. Device ID 27076 * 27077 * The device ID of a device is used to identify this device. Refer to 27078 * ddi_devid_register(9F). 27079 * 27080 * For a non-removable media disk device which can provide 0x80 or 0x83 27081 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 27082 * device ID is created to identify this device. For other non-removable 27083 * media devices, a default device ID is created only if this device has 27084 * at least 2 alter cylinders. Otherwise, this device has no devid. 27085 * 27086 * ------------------------------------------------------- 27087 * removable media hotpluggable | Can Have Device ID 27088 * ------------------------------------------------------- 27089 * false false | Yes 27090 * false true | Yes 27091 * true x | No 27092 * ------------------------------------------------------ 27093 * 27094 * 27095 * 2. SCSI group 4 commands 27096 * 27097 * In SCSI specs, only some commands in group 4 command set can use 27098 * 8-byte addresses that can be used to access >2TB storage spaces. 27099 * Other commands have no such capability. Without supporting group4, 27100 * it is impossible to make full use of storage spaces of a disk with 27101 * capacity larger than 2TB. 27102 * 27103 * ----------------------------------------------- 27104 * removable media hotpluggable LP64 | Group 27105 * ----------------------------------------------- 27106 * false false false | 1 27107 * false false true | 4 27108 * false true false | 1 27109 * false true true | 4 27110 * true x x | 5 27111 * ----------------------------------------------- 27112 * 27113 * 27114 * 3. Check for VTOC Label 27115 * 27116 * If a direct-access disk has no EFI label, sd will check if it has a 27117 * valid VTOC label. Now, sd also does that check for removable media 27118 * and hotpluggable devices. 27119 * 27120 * -------------------------------------------------------------- 27121 * Direct-Access removable media hotpluggable | Check Label 27122 * ------------------------------------------------------------- 27123 * false false false | No 27124 * false false true | No 27125 * false true false | Yes 27126 * false true true | Yes 27127 * true x x | Yes 27128 * -------------------------------------------------------------- 27129 * 27130 * 27131 * 4. Building default VTOC label 27132 * 27133 * As section 3 says, sd checks if some kinds of devices have VTOC label. 27134 * If those devices have no valid VTOC label, sd(7d) will attempt to 27135 * create default VTOC for them. Currently sd creates default VTOC label 27136 * for all devices on x86 platform (VTOC_16), but only for removable 27137 * media devices on SPARC (VTOC_8). 27138 * 27139 * ----------------------------------------------------------- 27140 * removable media hotpluggable platform | Default Label 27141 * ----------------------------------------------------------- 27142 * false false sparc | No 27143 * false true x86 | Yes 27144 * false true sparc | Yes 27145 * true x x | Yes 27146 * ---------------------------------------------------------- 27147 * 27148 * 27149 * 5. Supported blocksizes of target devices 27150 * 27151 * Sd supports non-512-byte blocksize for removable media devices only. 27152 * For other devices, only 512-byte blocksize is supported. This may be 27153 * changed in near future because some RAID devices require non-512-byte 27154 * blocksize 27155 * 27156 * ----------------------------------------------------------- 27157 * removable media hotpluggable | non-512-byte blocksize 27158 * ----------------------------------------------------------- 27159 * false false | No 27160 * false true | No 27161 * true x | Yes 27162 * ----------------------------------------------------------- 27163 * 27164 * 27165 * 6. Automatic mount & unmount 27166 * 27167 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 27168 * if a device is removable media device. It return 1 for removable media 27169 * devices, and 0 for others. 27170 * 27171 * The automatic mounting subsystem should distinguish between the types 27172 * of devices and apply automounting policies to each. 27173 * 27174 * 27175 * 7. fdisk partition management 27176 * 27177 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 27178 * just supports fdisk partitions on x86 platform. On sparc platform, sd 27179 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 27180 * fdisk partitions on both x86 and SPARC platform. 27181 * 27182 * ----------------------------------------------------------- 27183 * platform removable media USB/1394 | fdisk supported 27184 * ----------------------------------------------------------- 27185 * x86 X X | true 27186 * ------------------------------------------------------------ 27187 * sparc X X | false 27188 * ------------------------------------------------------------ 27189 * 27190 * 27191 * 8. MBOOT/MBR 27192 * 27193 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 27194 * read/write mboot for removable media devices on sparc platform. 27195 * 27196 * ----------------------------------------------------------- 27197 * platform removable media USB/1394 | mboot supported 27198 * ----------------------------------------------------------- 27199 * x86 X X | true 27200 * ------------------------------------------------------------ 27201 * sparc false false | false 27202 * sparc false true | true 27203 * sparc true false | true 27204 * sparc true true | true 27205 * ------------------------------------------------------------ 27206 * 27207 * 27208 * 9. error handling during opening device 27209 * 27210 * If failed to open a disk device, an errno is returned. For some kinds 27211 * of errors, different errno is returned depending on if this device is 27212 * a removable media device. This brings USB/1394 hard disks in line with 27213 * expected hard disk behavior. It is not expected that this breaks any 27214 * application. 27215 * 27216 * ------------------------------------------------------ 27217 * removable media hotpluggable | errno 27218 * ------------------------------------------------------ 27219 * false false | EIO 27220 * false true | EIO 27221 * true x | ENXIO 27222 * ------------------------------------------------------ 27223 * 27224 * 27225 * 11. ioctls: DKIOCEJECT, CDROMEJECT 27226 * 27227 * These IOCTLs are applicable only to removable media devices. 27228 * 27229 * ----------------------------------------------------------- 27230 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 27231 * ----------------------------------------------------------- 27232 * false false | No 27233 * false true | No 27234 * true x | Yes 27235 * ----------------------------------------------------------- 27236 * 27237 * 27238 * 12. Kstats for partitions 27239 * 27240 * sd creates partition kstat for non-removable media devices. USB and 27241 * Firewire hard disks now have partition kstats 27242 * 27243 * ------------------------------------------------------ 27244 * removable media hotpluggable | kstat 27245 * ------------------------------------------------------ 27246 * false false | Yes 27247 * false true | Yes 27248 * true x | No 27249 * ------------------------------------------------------ 27250 * 27251 * 27252 * 13. Removable media & hotpluggable properties 27253 * 27254 * Sd driver creates a "removable-media" property for removable media 27255 * devices. Parent nexus drivers create a "hotpluggable" property if 27256 * it supports hotplugging. 27257 * 27258 * --------------------------------------------------------------------- 27259 * removable media hotpluggable | "removable-media" " hotpluggable" 27260 * --------------------------------------------------------------------- 27261 * false false | No No 27262 * false true | No Yes 27263 * true false | Yes No 27264 * true true | Yes Yes 27265 * --------------------------------------------------------------------- 27266 * 27267 * 27268 * 14. Power Management 27269 * 27270 * sd only power manages removable media devices or devices that support 27271 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 27272 * 27273 * A parent nexus that supports hotplugging can also set "pm-capable" 27274 * if the disk can be power managed. 27275 * 27276 * ------------------------------------------------------------ 27277 * removable media hotpluggable pm-capable | power manage 27278 * ------------------------------------------------------------ 27279 * false false false | No 27280 * false false true | Yes 27281 * false true false | No 27282 * false true true | Yes 27283 * true x x | Yes 27284 * ------------------------------------------------------------ 27285 * 27286 * USB and firewire hard disks can now be power managed independently 27287 * of the framebuffer 27288 * 27289 * 27290 * 15. Support for USB disks with capacity larger than 1TB 27291 * 27292 * Currently, sd doesn't permit a fixed disk device with capacity 27293 * larger than 1TB to be used in a 32-bit operating system environment. 27294 * However, sd doesn't do that for removable media devices. Instead, it 27295 * assumes that removable media devices cannot have a capacity larger 27296 * than 1TB. Therefore, using those devices on 32-bit system is partially 27297 * supported, which can cause some unexpected results. 27298 * 27299 * --------------------------------------------------------------------- 27300 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 27301 * --------------------------------------------------------------------- 27302 * false false | true | no 27303 * false true | true | no 27304 * true false | true | Yes 27305 * true true | true | Yes 27306 * --------------------------------------------------------------------- 27307 * 27308 * 27309 * 16. Check write-protection at open time 27310 * 27311 * When a removable media device is being opened for writing without NDELAY 27312 * flag, sd will check if this device is writable. If attempting to open 27313 * without NDELAY flag a write-protected device, this operation will abort. 27314 * 27315 * ------------------------------------------------------------ 27316 * removable media USB/1394 | WP Check 27317 * ------------------------------------------------------------ 27318 * false false | No 27319 * false true | No 27320 * true false | Yes 27321 * true true | Yes 27322 * ------------------------------------------------------------ 27323 * 27324 * 27325 * 17. syslog when corrupted VTOC is encountered 27326 * 27327 * Currently, if an invalid VTOC is encountered, sd only print syslog 27328 * for fixed SCSI disks. 27329 * ------------------------------------------------------------ 27330 * removable media USB/1394 | print syslog 27331 * ------------------------------------------------------------ 27332 * false false | Yes 27333 * false true | No 27334 * true false | No 27335 * true true | No 27336 * ------------------------------------------------------------ 27337 */ 27338 static void 27339 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 27340 { 27341 int pm_capable_prop; 27342 27343 ASSERT(un->un_sd); 27344 ASSERT(un->un_sd->sd_inq); 27345 27346 /* 27347 * Enable SYNC CACHE support for all devices. 27348 */ 27349 un->un_f_sync_cache_supported = TRUE; 27350 27351 if (un->un_sd->sd_inq->inq_rmb) { 27352 /* 27353 * The media of this device is removable. And for this kind 27354 * of devices, it is possible to change medium after opening 27355 * devices. Thus we should support this operation. 27356 */ 27357 un->un_f_has_removable_media = TRUE; 27358 27359 /* 27360 * support non-512-byte blocksize of removable media devices 27361 */ 27362 un->un_f_non_devbsize_supported = TRUE; 27363 27364 /* 27365 * Assume that all removable media devices support DOOR_LOCK 27366 */ 27367 un->un_f_doorlock_supported = TRUE; 27368 27369 /* 27370 * For a removable media device, it is possible to be opened 27371 * with NDELAY flag when there is no media in drive, in this 27372 * case we don't care if device is writable. But if without 27373 * NDELAY flag, we need to check if media is write-protected. 27374 */ 27375 un->un_f_chk_wp_open = TRUE; 27376 27377 /* 27378 * need to start a SCSI watch thread to monitor media state, 27379 * when media is being inserted or ejected, notify syseventd. 27380 */ 27381 un->un_f_monitor_media_state = TRUE; 27382 27383 /* 27384 * Some devices don't support START_STOP_UNIT command. 27385 * Therefore, we'd better check if a device supports it 27386 * before sending it. 27387 */ 27388 un->un_f_check_start_stop = TRUE; 27389 27390 /* 27391 * support eject media ioctl: 27392 * FDEJECT, DKIOCEJECT, CDROMEJECT 27393 */ 27394 un->un_f_eject_media_supported = TRUE; 27395 27396 /* 27397 * Because many removable-media devices don't support 27398 * LOG_SENSE, we couldn't use this command to check if 27399 * a removable media device support power-management. 27400 * We assume that they support power-management via 27401 * START_STOP_UNIT command and can be spun up and down 27402 * without limitations. 27403 */ 27404 un->un_f_pm_supported = TRUE; 27405 27406 /* 27407 * Need to create a zero length (Boolean) property 27408 * removable-media for the removable media devices. 27409 * Note that the return value of the property is not being 27410 * checked, since if unable to create the property 27411 * then do not want the attach to fail altogether. Consistent 27412 * with other property creation in attach. 27413 */ 27414 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 27415 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 27416 27417 } else { 27418 /* 27419 * create device ID for device 27420 */ 27421 un->un_f_devid_supported = TRUE; 27422 27423 /* 27424 * Spin up non-removable-media devices once it is attached 27425 */ 27426 un->un_f_attach_spinup = TRUE; 27427 27428 /* 27429 * According to SCSI specification, Sense data has two kinds of 27430 * format: fixed format, and descriptor format. At present, we 27431 * don't support descriptor format sense data for removable 27432 * media. 27433 */ 27434 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 27435 un->un_f_descr_format_supported = TRUE; 27436 } 27437 27438 /* 27439 * kstats are created only for non-removable media devices. 27440 * 27441 * Set this in sd.conf to 0 in order to disable kstats. The 27442 * default is 1, so they are enabled by default. 27443 */ 27444 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 27445 SD_DEVINFO(un), DDI_PROP_DONTPASS, 27446 "enable-partition-kstats", 1)); 27447 27448 /* 27449 * Check if HBA has set the "pm-capable" property. 27450 * If "pm-capable" exists and is non-zero then we can 27451 * power manage the device without checking the start/stop 27452 * cycle count log sense page. 27453 * 27454 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0) 27455 * then we should not power manage the device. 27456 * 27457 * If "pm-capable" doesn't exist then pm_capable_prop will 27458 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 27459 * sd will check the start/stop cycle count log sense page 27460 * and power manage the device if the cycle count limit has 27461 * not been exceeded. 27462 */ 27463 pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 27464 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 27465 if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) { 27466 un->un_f_log_sense_supported = TRUE; 27467 } else { 27468 /* 27469 * pm-capable property exists. 27470 * 27471 * Convert "TRUE" values for pm_capable_prop to 27472 * SD_PM_CAPABLE_TRUE (1) to make it easier to check 27473 * later. "TRUE" values are any values except 27474 * SD_PM_CAPABLE_FALSE (0) and 27475 * SD_PM_CAPABLE_UNDEFINED (-1) 27476 */ 27477 if (pm_capable_prop == SD_PM_CAPABLE_FALSE) { 27478 un->un_f_log_sense_supported = FALSE; 27479 } else { 27480 un->un_f_pm_supported = TRUE; 27481 } 27482 27483 SD_INFO(SD_LOG_ATTACH_DETACH, un, 27484 "sd_unit_attach: un:0x%p pm-capable " 27485 "property set to %d.\n", un, un->un_f_pm_supported); 27486 } 27487 } 27488 27489 if (un->un_f_is_hotpluggable) { 27490 27491 /* 27492 * Have to watch hotpluggable devices as well, since 27493 * that's the only way for userland applications to 27494 * detect hot removal while device is busy/mounted. 27495 */ 27496 un->un_f_monitor_media_state = TRUE; 27497 27498 un->un_f_check_start_stop = TRUE; 27499 27500 } 27501 } 27502 27503 /* 27504 * sd_tg_rdwr: 27505 * Provides rdwr access for cmlb via sd_tgops. The start_block is 27506 * in sys block size, req_length in bytes. 27507 * 27508 */ 27509 static int 27510 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 27511 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 27512 { 27513 struct sd_lun *un; 27514 int path_flag = (int)(uintptr_t)tg_cookie; 27515 char *dkl = NULL; 27516 diskaddr_t real_addr = start_block; 27517 diskaddr_t first_byte, end_block; 27518 27519 size_t buffer_size = reqlength; 27520 int rval; 27521 diskaddr_t cap; 27522 uint32_t lbasize; 27523 27524 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 27525 if (un == NULL) 27526 return (ENXIO); 27527 27528 if (cmd != TG_READ && cmd != TG_WRITE) 27529 return (EINVAL); 27530 27531 mutex_enter(SD_MUTEX(un)); 27532 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 27533 mutex_exit(SD_MUTEX(un)); 27534 rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap, 27535 &lbasize, path_flag); 27536 if (rval != 0) 27537 return (rval); 27538 mutex_enter(SD_MUTEX(un)); 27539 sd_update_block_info(un, lbasize, cap); 27540 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 27541 mutex_exit(SD_MUTEX(un)); 27542 return (EIO); 27543 } 27544 } 27545 27546 if (NOT_DEVBSIZE(un)) { 27547 /* 27548 * sys_blocksize != tgt_blocksize, need to re-adjust 27549 * blkno and save the index to beginning of dk_label 27550 */ 27551 first_byte = SD_SYSBLOCKS2BYTES(un, start_block); 27552 real_addr = first_byte / un->un_tgt_blocksize; 27553 27554 end_block = (first_byte + reqlength + 27555 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 27556 27557 /* round up buffer size to multiple of target block size */ 27558 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 27559 27560 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 27561 "label_addr: 0x%x allocation size: 0x%x\n", 27562 real_addr, buffer_size); 27563 27564 if (((first_byte % un->un_tgt_blocksize) != 0) || 27565 (reqlength % un->un_tgt_blocksize) != 0) 27566 /* the request is not aligned */ 27567 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 27568 } 27569 27570 /* 27571 * The MMC standard allows READ CAPACITY to be 27572 * inaccurate by a bounded amount (in the interest of 27573 * response latency). As a result, failed READs are 27574 * commonplace (due to the reading of metadata and not 27575 * data). Depending on the per-Vendor/drive Sense data, 27576 * the failed READ can cause many (unnecessary) retries. 27577 */ 27578 27579 if (ISCD(un) && (cmd == TG_READ) && 27580 (un->un_f_blockcount_is_valid == TRUE) && 27581 ((start_block == (un->un_blockcount - 1))|| 27582 (start_block == (un->un_blockcount - 2)))) { 27583 path_flag = SD_PATH_DIRECT_PRIORITY; 27584 } 27585 27586 mutex_exit(SD_MUTEX(un)); 27587 if (cmd == TG_READ) { 27588 rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr, 27589 buffer_size, real_addr, path_flag); 27590 if (dkl != NULL) 27591 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 27592 real_addr), bufaddr, reqlength); 27593 } else { 27594 if (dkl) { 27595 rval = sd_send_scsi_READ(un, dkl, buffer_size, 27596 real_addr, path_flag); 27597 if (rval) { 27598 kmem_free(dkl, buffer_size); 27599 return (rval); 27600 } 27601 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 27602 real_addr), reqlength); 27603 } 27604 rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr, 27605 buffer_size, real_addr, path_flag); 27606 } 27607 27608 if (dkl != NULL) 27609 kmem_free(dkl, buffer_size); 27610 27611 return (rval); 27612 } 27613 27614 27615 static int 27616 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 27617 { 27618 27619 struct sd_lun *un; 27620 diskaddr_t cap; 27621 uint32_t lbasize; 27622 int path_flag = (int)(uintptr_t)tg_cookie; 27623 int ret = 0; 27624 27625 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 27626 if (un == NULL) 27627 return (ENXIO); 27628 27629 switch (cmd) { 27630 case TG_GETPHYGEOM: 27631 case TG_GETVIRTGEOM: 27632 case TG_GETCAPACITY: 27633 case TG_GETBLOCKSIZE: 27634 mutex_enter(SD_MUTEX(un)); 27635 27636 if ((un->un_f_blockcount_is_valid == TRUE) && 27637 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 27638 cap = un->un_blockcount; 27639 lbasize = un->un_tgt_blocksize; 27640 mutex_exit(SD_MUTEX(un)); 27641 } else { 27642 mutex_exit(SD_MUTEX(un)); 27643 ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap, 27644 &lbasize, path_flag); 27645 if (ret != 0) 27646 return (ret); 27647 mutex_enter(SD_MUTEX(un)); 27648 sd_update_block_info(un, lbasize, cap); 27649 if ((un->un_f_blockcount_is_valid == FALSE) || 27650 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 27651 mutex_exit(SD_MUTEX(un)); 27652 return (EIO); 27653 } 27654 mutex_exit(SD_MUTEX(un)); 27655 } 27656 27657 if (cmd == TG_GETCAPACITY) { 27658 *(diskaddr_t *)arg = cap; 27659 return (0); 27660 } 27661 27662 if (cmd == TG_GETBLOCKSIZE) { 27663 *(uint32_t *)arg = lbasize; 27664 return (0); 27665 } 27666 27667 if (cmd == TG_GETPHYGEOM) 27668 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 27669 cap, lbasize, path_flag); 27670 else 27671 /* TG_GETVIRTGEOM */ 27672 ret = sd_get_virtual_geometry(un, 27673 (cmlb_geom_t *)arg, cap, lbasize); 27674 27675 return (ret); 27676 27677 case TG_GETATTR: 27678 mutex_enter(SD_MUTEX(un)); 27679 ((tg_attribute_t *)arg)->media_is_writable = 27680 un->un_f_mmc_writable_media; 27681 mutex_exit(SD_MUTEX(un)); 27682 return (0); 27683 default: 27684 return (ENOTTY); 27685 27686 } 27687 27688 } 27689