1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * SCSI disk target driver. 29 */ 30 #include <sys/scsi/scsi.h> 31 #include <sys/dkbad.h> 32 #include <sys/dklabel.h> 33 #include <sys/dkio.h> 34 #include <sys/fdio.h> 35 #include <sys/cdio.h> 36 #include <sys/mhd.h> 37 #include <sys/vtoc.h> 38 #include <sys/dktp/fdisk.h> 39 #include <sys/kstat.h> 40 #include <sys/vtrace.h> 41 #include <sys/note.h> 42 #include <sys/thread.h> 43 #include <sys/proc.h> 44 #include <sys/efi_partition.h> 45 #include <sys/var.h> 46 #include <sys/aio_req.h> 47 48 #ifdef __lock_lint 49 #define _LP64 50 #define __amd64 51 #endif 52 53 #if (defined(__fibre)) 54 /* Note: is there a leadville version of the following? */ 55 #include <sys/fc4/fcal_linkapp.h> 56 #endif 57 #include <sys/taskq.h> 58 #include <sys/uuid.h> 59 #include <sys/byteorder.h> 60 #include <sys/sdt.h> 61 62 #include "sd_xbuf.h" 63 64 #include <sys/scsi/targets/sddef.h> 65 #include <sys/cmlb.h> 66 #include <sys/sysevent/eventdefs.h> 67 #include <sys/sysevent/dev.h> 68 69 #include <sys/fm/protocol.h> 70 71 /* 72 * Loadable module info. 73 */ 74 #if (defined(__fibre)) 75 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 76 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 77 #else /* !__fibre */ 78 #define SD_MODULE_NAME "SCSI Disk Driver" 79 char _depends_on[] = "misc/scsi misc/cmlb"; 80 #endif /* !__fibre */ 81 82 /* 83 * Define the interconnect type, to allow the driver to distinguish 84 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 85 * 86 * This is really for backward compatibility. In the future, the driver 87 * should actually check the "interconnect-type" property as reported by 88 * the HBA; however at present this property is not defined by all HBAs, 89 * so we will use this #define (1) to permit the driver to run in 90 * backward-compatibility mode; and (2) to print a notification message 91 * if an FC HBA does not support the "interconnect-type" property. The 92 * behavior of the driver will be to assume parallel SCSI behaviors unless 93 * the "interconnect-type" property is defined by the HBA **AND** has a 94 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 95 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 96 * Channel behaviors (as per the old ssd). (Note that the 97 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 98 * will result in the driver assuming parallel SCSI behaviors.) 99 * 100 * (see common/sys/scsi/impl/services.h) 101 * 102 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 103 * since some FC HBAs may already support that, and there is some code in 104 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 105 * default would confuse that code, and besides things should work fine 106 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 107 * "interconnect_type" property. 108 * 109 */ 110 #if (defined(__fibre)) 111 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 112 #else 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 114 #endif 115 116 /* 117 * The name of the driver, established from the module name in _init. 118 */ 119 static char *sd_label = NULL; 120 121 /* 122 * Driver name is unfortunately prefixed on some driver.conf properties. 123 */ 124 #if (defined(__fibre)) 125 #define sd_max_xfer_size ssd_max_xfer_size 126 #define sd_config_list ssd_config_list 127 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 128 static char *sd_config_list = "ssd-config-list"; 129 #else 130 static char *sd_max_xfer_size = "sd_max_xfer_size"; 131 static char *sd_config_list = "sd-config-list"; 132 #endif 133 134 /* 135 * Driver global variables 136 */ 137 138 #if (defined(__fibre)) 139 /* 140 * These #defines are to avoid namespace collisions that occur because this 141 * code is currently used to compile two separate driver modules: sd and ssd. 142 * All global variables need to be treated this way (even if declared static) 143 * in order to allow the debugger to resolve the names properly. 144 * It is anticipated that in the near future the ssd module will be obsoleted, 145 * at which time this namespace issue should go away. 146 */ 147 #define sd_state ssd_state 148 #define sd_io_time ssd_io_time 149 #define sd_failfast_enable ssd_failfast_enable 150 #define sd_ua_retry_count ssd_ua_retry_count 151 #define sd_report_pfa ssd_report_pfa 152 #define sd_max_throttle ssd_max_throttle 153 #define sd_min_throttle ssd_min_throttle 154 #define sd_rot_delay ssd_rot_delay 155 156 #define sd_retry_on_reservation_conflict \ 157 ssd_retry_on_reservation_conflict 158 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 159 #define sd_resv_conflict_name ssd_resv_conflict_name 160 161 #define sd_component_mask ssd_component_mask 162 #define sd_level_mask ssd_level_mask 163 #define sd_debug_un ssd_debug_un 164 #define sd_error_level ssd_error_level 165 166 #define sd_xbuf_active_limit ssd_xbuf_active_limit 167 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 168 169 #define sd_tr ssd_tr 170 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 171 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 172 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 173 #define sd_check_media_time ssd_check_media_time 174 #define sd_wait_cmds_complete ssd_wait_cmds_complete 175 #define sd_label_mutex ssd_label_mutex 176 #define sd_detach_mutex ssd_detach_mutex 177 #define sd_log_buf ssd_log_buf 178 #define sd_log_mutex ssd_log_mutex 179 180 #define sd_disk_table ssd_disk_table 181 #define sd_disk_table_size ssd_disk_table_size 182 #define sd_sense_mutex ssd_sense_mutex 183 #define sd_cdbtab ssd_cdbtab 184 185 #define sd_cb_ops ssd_cb_ops 186 #define sd_ops ssd_ops 187 #define sd_additional_codes ssd_additional_codes 188 #define sd_tgops ssd_tgops 189 190 #define sd_minor_data ssd_minor_data 191 #define sd_minor_data_efi ssd_minor_data_efi 192 193 #define sd_tq ssd_tq 194 #define sd_wmr_tq ssd_wmr_tq 195 #define sd_taskq_name ssd_taskq_name 196 #define sd_wmr_taskq_name ssd_wmr_taskq_name 197 #define sd_taskq_minalloc ssd_taskq_minalloc 198 #define sd_taskq_maxalloc ssd_taskq_maxalloc 199 200 #define sd_dump_format_string ssd_dump_format_string 201 202 #define sd_iostart_chain ssd_iostart_chain 203 #define sd_iodone_chain ssd_iodone_chain 204 205 #define sd_pm_idletime ssd_pm_idletime 206 207 #define sd_force_pm_supported ssd_force_pm_supported 208 209 #define sd_dtype_optical_bind ssd_dtype_optical_bind 210 211 #define sd_ssc_init ssd_ssc_init 212 #define sd_ssc_send ssd_ssc_send 213 #define sd_ssc_fini ssd_ssc_fini 214 #define sd_ssc_assessment ssd_ssc_assessment 215 #define sd_ssc_post ssd_ssc_post 216 #define sd_ssc_print ssd_ssc_print 217 #define sd_ssc_ereport_post ssd_ssc_ereport_post 218 #define sd_ssc_set_info ssd_ssc_set_info 219 #define sd_ssc_extract_info ssd_ssc_extract_info 220 221 #endif 222 223 #ifdef SDDEBUG 224 int sd_force_pm_supported = 0; 225 #endif /* SDDEBUG */ 226 227 void *sd_state = NULL; 228 int sd_io_time = SD_IO_TIME; 229 int sd_failfast_enable = 1; 230 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 231 int sd_report_pfa = 1; 232 int sd_max_throttle = SD_MAX_THROTTLE; 233 int sd_min_throttle = SD_MIN_THROTTLE; 234 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 235 int sd_qfull_throttle_enable = TRUE; 236 237 int sd_retry_on_reservation_conflict = 1; 238 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 240 241 static int sd_dtype_optical_bind = -1; 242 243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 244 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 245 246 /* 247 * Global data for debug logging. To enable debug printing, sd_component_mask 248 * and sd_level_mask should be set to the desired bit patterns as outlined in 249 * sddef.h. 250 */ 251 uint_t sd_component_mask = 0x0; 252 uint_t sd_level_mask = 0x0; 253 struct sd_lun *sd_debug_un = NULL; 254 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 255 256 /* Note: these may go away in the future... */ 257 static uint32_t sd_xbuf_active_limit = 512; 258 static uint32_t sd_xbuf_reserve_limit = 16; 259 260 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 261 262 /* 263 * Timer value used to reset the throttle after it has been reduced 264 * (typically in response to TRAN_BUSY or STATUS_QFULL) 265 */ 266 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 267 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 268 269 /* 270 * Interval value associated with the media change scsi watch. 271 */ 272 static int sd_check_media_time = 3000000; 273 274 /* 275 * Wait value used for in progress operations during a DDI_SUSPEND 276 */ 277 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 278 279 /* 280 * sd_label_mutex protects a static buffer used in the disk label 281 * component of the driver 282 */ 283 static kmutex_t sd_label_mutex; 284 285 /* 286 * sd_detach_mutex protects un_layer_count, un_detach_count, and 287 * un_opens_in_progress in the sd_lun structure. 288 */ 289 static kmutex_t sd_detach_mutex; 290 291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 292 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 293 294 /* 295 * Global buffer and mutex for debug logging 296 */ 297 static char sd_log_buf[1024]; 298 static kmutex_t sd_log_mutex; 299 300 /* 301 * Structs and globals for recording attached lun information. 302 * This maintains a chain. Each node in the chain represents a SCSI controller. 303 * The structure records the number of luns attached to each target connected 304 * with the controller. 305 * For parallel scsi device only. 306 */ 307 struct sd_scsi_hba_tgt_lun { 308 struct sd_scsi_hba_tgt_lun *next; 309 dev_info_t *pdip; 310 int nlun[NTARGETS_WIDE]; 311 }; 312 313 /* 314 * Flag to indicate the lun is attached or detached 315 */ 316 #define SD_SCSI_LUN_ATTACH 0 317 #define SD_SCSI_LUN_DETACH 1 318 319 static kmutex_t sd_scsi_target_lun_mutex; 320 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 321 322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 323 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 324 325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 326 sd_scsi_target_lun_head)) 327 328 /* 329 * "Smart" Probe Caching structs, globals, #defines, etc. 330 * For parallel scsi and non-self-identify device only. 331 */ 332 333 /* 334 * The following resources and routines are implemented to support 335 * "smart" probing, which caches the scsi_probe() results in an array, 336 * in order to help avoid long probe times. 337 */ 338 struct sd_scsi_probe_cache { 339 struct sd_scsi_probe_cache *next; 340 dev_info_t *pdip; 341 int cache[NTARGETS_WIDE]; 342 }; 343 344 static kmutex_t sd_scsi_probe_cache_mutex; 345 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 346 347 /* 348 * Really we only need protection on the head of the linked list, but 349 * better safe than sorry. 350 */ 351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 352 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 353 354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 355 sd_scsi_probe_cache_head)) 356 357 /* 358 * Power attribute table 359 */ 360 static sd_power_attr_ss sd_pwr_ss = { 361 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 362 {0, 100}, 363 {30, 0}, 364 {20000, 0} 365 }; 366 367 static sd_power_attr_pc sd_pwr_pc = { 368 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 369 "3=active", NULL }, 370 {0, 0, 0, 100}, 371 {90, 90, 20, 0}, 372 {15000, 15000, 1000, 0} 373 }; 374 375 /* 376 * Power level to power condition 377 */ 378 static int sd_pl2pc[] = { 379 SD_TARGET_START_VALID, 380 SD_TARGET_STANDBY, 381 SD_TARGET_IDLE, 382 SD_TARGET_ACTIVE 383 }; 384 385 /* 386 * Vendor specific data name property declarations 387 */ 388 389 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 390 391 static sd_tunables seagate_properties = { 392 SEAGATE_THROTTLE_VALUE, 393 0, 394 0, 395 0, 396 0, 397 0, 398 0, 399 0, 400 0 401 }; 402 403 404 static sd_tunables fujitsu_properties = { 405 FUJITSU_THROTTLE_VALUE, 406 0, 407 0, 408 0, 409 0, 410 0, 411 0, 412 0, 413 0 414 }; 415 416 static sd_tunables ibm_properties = { 417 IBM_THROTTLE_VALUE, 418 0, 419 0, 420 0, 421 0, 422 0, 423 0, 424 0, 425 0 426 }; 427 428 static sd_tunables purple_properties = { 429 PURPLE_THROTTLE_VALUE, 430 0, 431 0, 432 PURPLE_BUSY_RETRIES, 433 PURPLE_RESET_RETRY_COUNT, 434 PURPLE_RESERVE_RELEASE_TIME, 435 0, 436 0, 437 0 438 }; 439 440 static sd_tunables sve_properties = { 441 SVE_THROTTLE_VALUE, 442 0, 443 0, 444 SVE_BUSY_RETRIES, 445 SVE_RESET_RETRY_COUNT, 446 SVE_RESERVE_RELEASE_TIME, 447 SVE_MIN_THROTTLE_VALUE, 448 SVE_DISKSORT_DISABLED_FLAG, 449 0 450 }; 451 452 static sd_tunables maserati_properties = { 453 0, 454 0, 455 0, 456 0, 457 0, 458 0, 459 0, 460 MASERATI_DISKSORT_DISABLED_FLAG, 461 MASERATI_LUN_RESET_ENABLED_FLAG 462 }; 463 464 static sd_tunables pirus_properties = { 465 PIRUS_THROTTLE_VALUE, 466 0, 467 PIRUS_NRR_COUNT, 468 PIRUS_BUSY_RETRIES, 469 PIRUS_RESET_RETRY_COUNT, 470 0, 471 PIRUS_MIN_THROTTLE_VALUE, 472 PIRUS_DISKSORT_DISABLED_FLAG, 473 PIRUS_LUN_RESET_ENABLED_FLAG 474 }; 475 476 #endif 477 478 #if (defined(__sparc) && !defined(__fibre)) || \ 479 (defined(__i386) || defined(__amd64)) 480 481 482 static sd_tunables elite_properties = { 483 ELITE_THROTTLE_VALUE, 484 0, 485 0, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 static sd_tunables st31200n_properties = { 495 ST31200N_THROTTLE_VALUE, 496 0, 497 0, 498 0, 499 0, 500 0, 501 0, 502 0, 503 0 504 }; 505 506 #endif /* Fibre or not */ 507 508 static sd_tunables lsi_properties_scsi = { 509 LSI_THROTTLE_VALUE, 510 0, 511 LSI_NOTREADY_RETRIES, 512 0, 513 0, 514 0, 515 0, 516 0, 517 0 518 }; 519 520 static sd_tunables symbios_properties = { 521 SYMBIOS_THROTTLE_VALUE, 522 0, 523 SYMBIOS_NOTREADY_RETRIES, 524 0, 525 0, 526 0, 527 0, 528 0, 529 0 530 }; 531 532 static sd_tunables lsi_properties = { 533 0, 534 0, 535 LSI_NOTREADY_RETRIES, 536 0, 537 0, 538 0, 539 0, 540 0, 541 0 542 }; 543 544 static sd_tunables lsi_oem_properties = { 545 0, 546 0, 547 LSI_OEM_NOTREADY_RETRIES, 548 0, 549 0, 550 0, 551 0, 552 0, 553 0, 554 1 555 }; 556 557 558 559 #if (defined(SD_PROP_TST)) 560 561 #define SD_TST_CTYPE_VAL CTYPE_CDROM 562 #define SD_TST_THROTTLE_VAL 16 563 #define SD_TST_NOTREADY_VAL 12 564 #define SD_TST_BUSY_VAL 60 565 #define SD_TST_RST_RETRY_VAL 36 566 #define SD_TST_RSV_REL_TIME 60 567 568 static sd_tunables tst_properties = { 569 SD_TST_THROTTLE_VAL, 570 SD_TST_CTYPE_VAL, 571 SD_TST_NOTREADY_VAL, 572 SD_TST_BUSY_VAL, 573 SD_TST_RST_RETRY_VAL, 574 SD_TST_RSV_REL_TIME, 575 0, 576 0, 577 0 578 }; 579 #endif 580 581 /* This is similar to the ANSI toupper implementation */ 582 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 583 584 /* 585 * Static Driver Configuration Table 586 * 587 * This is the table of disks which need throttle adjustment (or, perhaps 588 * something else as defined by the flags at a future time.) device_id 589 * is a string consisting of concatenated vid (vendor), pid (product/model) 590 * and revision strings as defined in the scsi_inquiry structure. Offsets of 591 * the parts of the string are as defined by the sizes in the scsi_inquiry 592 * structure. Device type is searched as far as the device_id string is 593 * defined. Flags defines which values are to be set in the driver from the 594 * properties list. 595 * 596 * Entries below which begin and end with a "*" are a special case. 597 * These do not have a specific vendor, and the string which follows 598 * can appear anywhere in the 16 byte PID portion of the inquiry data. 599 * 600 * Entries below which begin and end with a " " (blank) are a special 601 * case. The comparison function will treat multiple consecutive blanks 602 * as equivalent to a single blank. For example, this causes a 603 * sd_disk_table entry of " NEC CDROM " to match a device's id string 604 * of "NEC CDROM". 605 * 606 * Note: The MD21 controller type has been obsoleted. 607 * ST318202F is a Legacy device 608 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 609 * made with an FC connection. The entries here are a legacy. 610 */ 611 static sd_disk_config_t sd_disk_table[] = { 612 #if defined(__fibre) || defined(__i386) || defined(__amd64) 613 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 614 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 615 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 616 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 617 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 618 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 628 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 629 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 630 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 631 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 632 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 633 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 634 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 635 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 637 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 638 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 639 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 640 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 641 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 642 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 643 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 644 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 645 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 663 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 664 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 665 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 666 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 667 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 668 { "SUN T3", SD_CONF_BSET_THROTTLE | 669 SD_CONF_BSET_BSY_RETRY_COUNT| 670 SD_CONF_BSET_RST_RETRIES| 671 SD_CONF_BSET_RSV_REL_TIME, 672 &purple_properties }, 673 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 674 SD_CONF_BSET_BSY_RETRY_COUNT| 675 SD_CONF_BSET_RST_RETRIES| 676 SD_CONF_BSET_RSV_REL_TIME| 677 SD_CONF_BSET_MIN_THROTTLE| 678 SD_CONF_BSET_DISKSORT_DISABLED, 679 &sve_properties }, 680 { "SUN T4", SD_CONF_BSET_THROTTLE | 681 SD_CONF_BSET_BSY_RETRY_COUNT| 682 SD_CONF_BSET_RST_RETRIES| 683 SD_CONF_BSET_RSV_REL_TIME, 684 &purple_properties }, 685 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 686 SD_CONF_BSET_LUN_RESET_ENABLED, 687 &maserati_properties }, 688 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 689 SD_CONF_BSET_NRR_COUNT| 690 SD_CONF_BSET_BSY_RETRY_COUNT| 691 SD_CONF_BSET_RST_RETRIES| 692 SD_CONF_BSET_MIN_THROTTLE| 693 SD_CONF_BSET_DISKSORT_DISABLED| 694 SD_CONF_BSET_LUN_RESET_ENABLED, 695 &pirus_properties }, 696 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 697 SD_CONF_BSET_NRR_COUNT| 698 SD_CONF_BSET_BSY_RETRY_COUNT| 699 SD_CONF_BSET_RST_RETRIES| 700 SD_CONF_BSET_MIN_THROTTLE| 701 SD_CONF_BSET_DISKSORT_DISABLED| 702 SD_CONF_BSET_LUN_RESET_ENABLED, 703 &pirus_properties }, 704 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 705 SD_CONF_BSET_NRR_COUNT| 706 SD_CONF_BSET_BSY_RETRY_COUNT| 707 SD_CONF_BSET_RST_RETRIES| 708 SD_CONF_BSET_MIN_THROTTLE| 709 SD_CONF_BSET_DISKSORT_DISABLED| 710 SD_CONF_BSET_LUN_RESET_ENABLED, 711 &pirus_properties }, 712 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 713 SD_CONF_BSET_NRR_COUNT| 714 SD_CONF_BSET_BSY_RETRY_COUNT| 715 SD_CONF_BSET_RST_RETRIES| 716 SD_CONF_BSET_MIN_THROTTLE| 717 SD_CONF_BSET_DISKSORT_DISABLED| 718 SD_CONF_BSET_LUN_RESET_ENABLED, 719 &pirus_properties }, 720 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 721 SD_CONF_BSET_NRR_COUNT| 722 SD_CONF_BSET_BSY_RETRY_COUNT| 723 SD_CONF_BSET_RST_RETRIES| 724 SD_CONF_BSET_MIN_THROTTLE| 725 SD_CONF_BSET_DISKSORT_DISABLED| 726 SD_CONF_BSET_LUN_RESET_ENABLED, 727 &pirus_properties }, 728 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 729 SD_CONF_BSET_NRR_COUNT| 730 SD_CONF_BSET_BSY_RETRY_COUNT| 731 SD_CONF_BSET_RST_RETRIES| 732 SD_CONF_BSET_MIN_THROTTLE| 733 SD_CONF_BSET_DISKSORT_DISABLED| 734 SD_CONF_BSET_LUN_RESET_ENABLED, 735 &pirus_properties }, 736 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 737 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 738 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 739 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 740 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 741 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 742 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 743 #endif /* fibre or NON-sparc platforms */ 744 #if ((defined(__sparc) && !defined(__fibre)) ||\ 745 (defined(__i386) || defined(__amd64))) 746 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 747 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 748 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 749 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 750 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 751 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 752 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 753 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 754 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 755 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 756 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 757 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 758 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 759 &symbios_properties }, 760 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 761 &lsi_properties_scsi }, 762 #if defined(__i386) || defined(__amd64) 763 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 764 | SD_CONF_BSET_READSUB_BCD 765 | SD_CONF_BSET_READ_TOC_ADDR_BCD 766 | SD_CONF_BSET_NO_READ_HEADER 767 | SD_CONF_BSET_READ_CD_XD4), NULL }, 768 769 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 770 | SD_CONF_BSET_READSUB_BCD 771 | SD_CONF_BSET_READ_TOC_ADDR_BCD 772 | SD_CONF_BSET_NO_READ_HEADER 773 | SD_CONF_BSET_READ_CD_XD4), NULL }, 774 #endif /* __i386 || __amd64 */ 775 #endif /* sparc NON-fibre or NON-sparc platforms */ 776 777 #if (defined(SD_PROP_TST)) 778 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 779 | SD_CONF_BSET_CTYPE 780 | SD_CONF_BSET_NRR_COUNT 781 | SD_CONF_BSET_FAB_DEVID 782 | SD_CONF_BSET_NOCACHE 783 | SD_CONF_BSET_BSY_RETRY_COUNT 784 | SD_CONF_BSET_PLAYMSF_BCD 785 | SD_CONF_BSET_READSUB_BCD 786 | SD_CONF_BSET_READ_TOC_TRK_BCD 787 | SD_CONF_BSET_READ_TOC_ADDR_BCD 788 | SD_CONF_BSET_NO_READ_HEADER 789 | SD_CONF_BSET_READ_CD_XD4 790 | SD_CONF_BSET_RST_RETRIES 791 | SD_CONF_BSET_RSV_REL_TIME 792 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 793 #endif 794 }; 795 796 static const int sd_disk_table_size = 797 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 798 799 800 801 #define SD_INTERCONNECT_PARALLEL 0 802 #define SD_INTERCONNECT_FABRIC 1 803 #define SD_INTERCONNECT_FIBRE 2 804 #define SD_INTERCONNECT_SSA 3 805 #define SD_INTERCONNECT_SATA 4 806 #define SD_INTERCONNECT_SAS 5 807 808 #define SD_IS_PARALLEL_SCSI(un) \ 809 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 810 #define SD_IS_SERIAL(un) \ 811 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 812 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 813 814 /* 815 * Definitions used by device id registration routines 816 */ 817 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 818 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 819 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 820 821 static kmutex_t sd_sense_mutex = {0}; 822 823 /* 824 * Macros for updates of the driver state 825 */ 826 #define New_state(un, s) \ 827 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 828 #define Restore_state(un) \ 829 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 830 831 static struct sd_cdbinfo sd_cdbtab[] = { 832 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 833 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 834 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 835 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 836 }; 837 838 /* 839 * Specifies the number of seconds that must have elapsed since the last 840 * cmd. has completed for a device to be declared idle to the PM framework. 841 */ 842 static int sd_pm_idletime = 1; 843 844 /* 845 * Internal function prototypes 846 */ 847 848 #if (defined(__fibre)) 849 /* 850 * These #defines are to avoid namespace collisions that occur because this 851 * code is currently used to compile two separate driver modules: sd and ssd. 852 * All function names need to be treated this way (even if declared static) 853 * in order to allow the debugger to resolve the names properly. 854 * It is anticipated that in the near future the ssd module will be obsoleted, 855 * at which time this ugliness should go away. 856 */ 857 #define sd_log_trace ssd_log_trace 858 #define sd_log_info ssd_log_info 859 #define sd_log_err ssd_log_err 860 #define sdprobe ssdprobe 861 #define sdinfo ssdinfo 862 #define sd_prop_op ssd_prop_op 863 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 864 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 865 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 866 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 867 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 868 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 869 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 870 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 871 #define sd_spin_up_unit ssd_spin_up_unit 872 #define sd_enable_descr_sense ssd_enable_descr_sense 873 #define sd_reenable_dsense_task ssd_reenable_dsense_task 874 #define sd_set_mmc_caps ssd_set_mmc_caps 875 #define sd_read_unit_properties ssd_read_unit_properties 876 #define sd_process_sdconf_file ssd_process_sdconf_file 877 #define sd_process_sdconf_table ssd_process_sdconf_table 878 #define sd_sdconf_id_match ssd_sdconf_id_match 879 #define sd_blank_cmp ssd_blank_cmp 880 #define sd_chk_vers1_data ssd_chk_vers1_data 881 #define sd_set_vers1_properties ssd_set_vers1_properties 882 #define sd_check_solid_state ssd_check_solid_state 883 884 #define sd_get_physical_geometry ssd_get_physical_geometry 885 #define sd_get_virtual_geometry ssd_get_virtual_geometry 886 #define sd_update_block_info ssd_update_block_info 887 #define sd_register_devid ssd_register_devid 888 #define sd_get_devid ssd_get_devid 889 #define sd_create_devid ssd_create_devid 890 #define sd_write_deviceid ssd_write_deviceid 891 #define sd_check_vpd_page_support ssd_check_vpd_page_support 892 #define sd_setup_pm ssd_setup_pm 893 #define sd_create_pm_components ssd_create_pm_components 894 #define sd_ddi_suspend ssd_ddi_suspend 895 #define sd_ddi_resume ssd_ddi_resume 896 #define sd_pm_state_change ssd_pm_state_change 897 #define sdpower ssdpower 898 #define sdattach ssdattach 899 #define sddetach ssddetach 900 #define sd_unit_attach ssd_unit_attach 901 #define sd_unit_detach ssd_unit_detach 902 #define sd_set_unit_attributes ssd_set_unit_attributes 903 #define sd_create_errstats ssd_create_errstats 904 #define sd_set_errstats ssd_set_errstats 905 #define sd_set_pstats ssd_set_pstats 906 #define sddump ssddump 907 #define sd_scsi_poll ssd_scsi_poll 908 #define sd_send_polled_RQS ssd_send_polled_RQS 909 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 910 #define sd_init_event_callbacks ssd_init_event_callbacks 911 #define sd_event_callback ssd_event_callback 912 #define sd_cache_control ssd_cache_control 913 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 914 #define sd_get_nv_sup ssd_get_nv_sup 915 #define sd_make_device ssd_make_device 916 #define sdopen ssdopen 917 #define sdclose ssdclose 918 #define sd_ready_and_valid ssd_ready_and_valid 919 #define sdmin ssdmin 920 #define sdread ssdread 921 #define sdwrite ssdwrite 922 #define sdaread ssdaread 923 #define sdawrite ssdawrite 924 #define sdstrategy ssdstrategy 925 #define sdioctl ssdioctl 926 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 927 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 928 #define sd_checksum_iostart ssd_checksum_iostart 929 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 930 #define sd_pm_iostart ssd_pm_iostart 931 #define sd_core_iostart ssd_core_iostart 932 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 933 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 934 #define sd_checksum_iodone ssd_checksum_iodone 935 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 936 #define sd_pm_iodone ssd_pm_iodone 937 #define sd_initpkt_for_buf ssd_initpkt_for_buf 938 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 939 #define sd_setup_rw_pkt ssd_setup_rw_pkt 940 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 941 #define sd_buf_iodone ssd_buf_iodone 942 #define sd_uscsi_strategy ssd_uscsi_strategy 943 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 944 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 945 #define sd_uscsi_iodone ssd_uscsi_iodone 946 #define sd_xbuf_strategy ssd_xbuf_strategy 947 #define sd_xbuf_init ssd_xbuf_init 948 #define sd_pm_entry ssd_pm_entry 949 #define sd_pm_exit ssd_pm_exit 950 951 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 952 #define sd_pm_timeout_handler ssd_pm_timeout_handler 953 954 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 955 #define sdintr ssdintr 956 #define sd_start_cmds ssd_start_cmds 957 #define sd_send_scsi_cmd ssd_send_scsi_cmd 958 #define sd_bioclone_alloc ssd_bioclone_alloc 959 #define sd_bioclone_free ssd_bioclone_free 960 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 961 #define sd_shadow_buf_free ssd_shadow_buf_free 962 #define sd_print_transport_rejected_message \ 963 ssd_print_transport_rejected_message 964 #define sd_retry_command ssd_retry_command 965 #define sd_set_retry_bp ssd_set_retry_bp 966 #define sd_send_request_sense_command ssd_send_request_sense_command 967 #define sd_start_retry_command ssd_start_retry_command 968 #define sd_start_direct_priority_command \ 969 ssd_start_direct_priority_command 970 #define sd_return_failed_command ssd_return_failed_command 971 #define sd_return_failed_command_no_restart \ 972 ssd_return_failed_command_no_restart 973 #define sd_return_command ssd_return_command 974 #define sd_sync_with_callback ssd_sync_with_callback 975 #define sdrunout ssdrunout 976 #define sd_mark_rqs_busy ssd_mark_rqs_busy 977 #define sd_mark_rqs_idle ssd_mark_rqs_idle 978 #define sd_reduce_throttle ssd_reduce_throttle 979 #define sd_restore_throttle ssd_restore_throttle 980 #define sd_print_incomplete_msg ssd_print_incomplete_msg 981 #define sd_init_cdb_limits ssd_init_cdb_limits 982 #define sd_pkt_status_good ssd_pkt_status_good 983 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 984 #define sd_pkt_status_busy ssd_pkt_status_busy 985 #define sd_pkt_status_reservation_conflict \ 986 ssd_pkt_status_reservation_conflict 987 #define sd_pkt_status_qfull ssd_pkt_status_qfull 988 #define sd_handle_request_sense ssd_handle_request_sense 989 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 990 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 991 #define sd_validate_sense_data ssd_validate_sense_data 992 #define sd_decode_sense ssd_decode_sense 993 #define sd_print_sense_msg ssd_print_sense_msg 994 #define sd_sense_key_no_sense ssd_sense_key_no_sense 995 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 996 #define sd_sense_key_not_ready ssd_sense_key_not_ready 997 #define sd_sense_key_medium_or_hardware_error \ 998 ssd_sense_key_medium_or_hardware_error 999 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1000 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1001 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1002 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1003 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1004 #define sd_sense_key_default ssd_sense_key_default 1005 #define sd_print_retry_msg ssd_print_retry_msg 1006 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1007 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1008 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1009 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1010 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1011 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1012 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1013 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1014 #define sd_pkt_reason_default ssd_pkt_reason_default 1015 #define sd_reset_target ssd_reset_target 1016 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1017 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1018 #define sd_taskq_create ssd_taskq_create 1019 #define sd_taskq_delete ssd_taskq_delete 1020 #define sd_target_change_task ssd_target_change_task 1021 #define sd_log_dev_status_event ssd_log_dev_status_event 1022 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1023 #define sd_log_eject_request_event ssd_log_eject_request_event 1024 #define sd_media_change_task ssd_media_change_task 1025 #define sd_handle_mchange ssd_handle_mchange 1026 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1027 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1028 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1029 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1030 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1031 sd_send_scsi_feature_GET_CONFIGURATION 1032 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1033 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1034 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1035 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1036 ssd_send_scsi_PERSISTENT_RESERVE_IN 1037 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1038 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1039 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1040 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1041 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1042 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1043 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1044 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1045 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1046 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION \ 1047 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 1048 #define sd_gesn_media_data_valid ssd_gesn_media_data_valid 1049 #define sd_alloc_rqs ssd_alloc_rqs 1050 #define sd_free_rqs ssd_free_rqs 1051 #define sd_dump_memory ssd_dump_memory 1052 #define sd_get_media_info ssd_get_media_info 1053 #define sd_get_media_info_ext ssd_get_media_info_ext 1054 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1055 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1056 #define sd_strtok_r ssd_strtok_r 1057 #define sd_set_properties ssd_set_properties 1058 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1059 #define sd_setup_next_xfer ssd_setup_next_xfer 1060 #define sd_dkio_get_temp ssd_dkio_get_temp 1061 #define sd_check_mhd ssd_check_mhd 1062 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1063 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1064 #define sd_sname ssd_sname 1065 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1066 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1067 #define sd_take_ownership ssd_take_ownership 1068 #define sd_reserve_release ssd_reserve_release 1069 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1070 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1071 #define sd_persistent_reservation_in_read_keys \ 1072 ssd_persistent_reservation_in_read_keys 1073 #define sd_persistent_reservation_in_read_resv \ 1074 ssd_persistent_reservation_in_read_resv 1075 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1076 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1077 #define sd_mhdioc_release ssd_mhdioc_release 1078 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1079 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1080 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1081 #define sr_change_blkmode ssr_change_blkmode 1082 #define sr_change_speed ssr_change_speed 1083 #define sr_atapi_change_speed ssr_atapi_change_speed 1084 #define sr_pause_resume ssr_pause_resume 1085 #define sr_play_msf ssr_play_msf 1086 #define sr_play_trkind ssr_play_trkind 1087 #define sr_read_all_subcodes ssr_read_all_subcodes 1088 #define sr_read_subchannel ssr_read_subchannel 1089 #define sr_read_tocentry ssr_read_tocentry 1090 #define sr_read_tochdr ssr_read_tochdr 1091 #define sr_read_cdda ssr_read_cdda 1092 #define sr_read_cdxa ssr_read_cdxa 1093 #define sr_read_mode1 ssr_read_mode1 1094 #define sr_read_mode2 ssr_read_mode2 1095 #define sr_read_cd_mode2 ssr_read_cd_mode2 1096 #define sr_sector_mode ssr_sector_mode 1097 #define sr_eject ssr_eject 1098 #define sr_ejected ssr_ejected 1099 #define sr_check_wp ssr_check_wp 1100 #define sd_watch_request_submit ssd_watch_request_submit 1101 #define sd_check_media ssd_check_media 1102 #define sd_media_watch_cb ssd_media_watch_cb 1103 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1104 #define sr_volume_ctrl ssr_volume_ctrl 1105 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1106 #define sd_log_page_supported ssd_log_page_supported 1107 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1108 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1109 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1110 #define sd_range_lock ssd_range_lock 1111 #define sd_get_range ssd_get_range 1112 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1113 #define sd_range_unlock ssd_range_unlock 1114 #define sd_read_modify_write_task ssd_read_modify_write_task 1115 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1116 1117 #define sd_iostart_chain ssd_iostart_chain 1118 #define sd_iodone_chain ssd_iodone_chain 1119 #define sd_initpkt_map ssd_initpkt_map 1120 #define sd_destroypkt_map ssd_destroypkt_map 1121 #define sd_chain_type_map ssd_chain_type_map 1122 #define sd_chain_index_map ssd_chain_index_map 1123 1124 #define sd_failfast_flushctl ssd_failfast_flushctl 1125 #define sd_failfast_flushq ssd_failfast_flushq 1126 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1127 1128 #define sd_is_lsi ssd_is_lsi 1129 #define sd_tg_rdwr ssd_tg_rdwr 1130 #define sd_tg_getinfo ssd_tg_getinfo 1131 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1132 1133 #endif /* #if (defined(__fibre)) */ 1134 1135 1136 int _init(void); 1137 int _fini(void); 1138 int _info(struct modinfo *modinfop); 1139 1140 /*PRINTFLIKE3*/ 1141 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1142 /*PRINTFLIKE3*/ 1143 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1144 /*PRINTFLIKE3*/ 1145 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1146 1147 static int sdprobe(dev_info_t *devi); 1148 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1149 void **result); 1150 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1151 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1152 1153 /* 1154 * Smart probe for parallel scsi 1155 */ 1156 static void sd_scsi_probe_cache_init(void); 1157 static void sd_scsi_probe_cache_fini(void); 1158 static void sd_scsi_clear_probe_cache(void); 1159 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1160 1161 /* 1162 * Attached luns on target for parallel scsi 1163 */ 1164 static void sd_scsi_target_lun_init(void); 1165 static void sd_scsi_target_lun_fini(void); 1166 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1167 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1168 1169 static int sd_spin_up_unit(sd_ssc_t *ssc); 1170 1171 /* 1172 * Using sd_ssc_init to establish sd_ssc_t struct 1173 * Using sd_ssc_send to send uscsi internal command 1174 * Using sd_ssc_fini to free sd_ssc_t struct 1175 */ 1176 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1177 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1178 int flag, enum uio_seg dataspace, int path_flag); 1179 static void sd_ssc_fini(sd_ssc_t *ssc); 1180 1181 /* 1182 * Using sd_ssc_assessment to set correct type-of-assessment 1183 * Using sd_ssc_post to post ereport & system log 1184 * sd_ssc_post will call sd_ssc_print to print system log 1185 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1186 */ 1187 static void sd_ssc_assessment(sd_ssc_t *ssc, 1188 enum sd_type_assessment tp_assess); 1189 1190 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1191 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1192 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1193 enum sd_driver_assessment drv_assess); 1194 1195 /* 1196 * Using sd_ssc_set_info to mark an un-decodable-data error. 1197 * Using sd_ssc_extract_info to transfer information from internal 1198 * data structures to sd_ssc_t. 1199 */ 1200 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1201 const char *fmt, ...); 1202 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1203 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1204 1205 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1206 enum uio_seg dataspace, int path_flag); 1207 1208 #ifdef _LP64 1209 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1210 static void sd_reenable_dsense_task(void *arg); 1211 #endif /* _LP64 */ 1212 1213 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1214 1215 static void sd_read_unit_properties(struct sd_lun *un); 1216 static int sd_process_sdconf_file(struct sd_lun *un); 1217 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1218 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1219 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1220 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1221 int *data_list, sd_tunables *values); 1222 static void sd_process_sdconf_table(struct sd_lun *un); 1223 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1224 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1225 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1226 int list_len, char *dataname_ptr); 1227 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1228 sd_tunables *prop_list); 1229 1230 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1231 int reservation_flag); 1232 static int sd_get_devid(sd_ssc_t *ssc); 1233 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1234 static int sd_write_deviceid(sd_ssc_t *ssc); 1235 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1236 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1237 1238 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1239 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1240 1241 static int sd_ddi_suspend(dev_info_t *devi); 1242 static int sd_ddi_resume(dev_info_t *devi); 1243 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1244 static int sdpower(dev_info_t *devi, int component, int level); 1245 1246 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1247 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1248 static int sd_unit_attach(dev_info_t *devi); 1249 static int sd_unit_detach(dev_info_t *devi); 1250 1251 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1252 static void sd_create_errstats(struct sd_lun *un, int instance); 1253 static void sd_set_errstats(struct sd_lun *un); 1254 static void sd_set_pstats(struct sd_lun *un); 1255 1256 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1257 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1258 static int sd_send_polled_RQS(struct sd_lun *un); 1259 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1260 1261 #if (defined(__fibre)) 1262 /* 1263 * Event callbacks (photon) 1264 */ 1265 static void sd_init_event_callbacks(struct sd_lun *un); 1266 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1267 #endif 1268 1269 /* 1270 * Defines for sd_cache_control 1271 */ 1272 1273 #define SD_CACHE_ENABLE 1 1274 #define SD_CACHE_DISABLE 0 1275 #define SD_CACHE_NOCHANGE -1 1276 1277 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1278 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1279 static void sd_get_nv_sup(sd_ssc_t *ssc); 1280 static dev_t sd_make_device(dev_info_t *devi); 1281 static void sd_check_solid_state(sd_ssc_t *ssc); 1282 1283 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1284 uint64_t capacity); 1285 1286 /* 1287 * Driver entry point functions. 1288 */ 1289 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1290 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1291 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1292 1293 static void sdmin(struct buf *bp); 1294 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1295 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1296 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1297 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1298 1299 static int sdstrategy(struct buf *bp); 1300 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1301 1302 /* 1303 * Function prototypes for layering functions in the iostart chain. 1304 */ 1305 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1306 struct buf *bp); 1307 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1308 struct buf *bp); 1309 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1310 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1311 struct buf *bp); 1312 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1313 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1314 1315 /* 1316 * Function prototypes for layering functions in the iodone chain. 1317 */ 1318 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1319 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1320 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1321 struct buf *bp); 1322 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1323 struct buf *bp); 1324 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1325 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1326 struct buf *bp); 1327 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1328 1329 /* 1330 * Prototypes for functions to support buf(9S) based IO. 1331 */ 1332 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1333 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1334 static void sd_destroypkt_for_buf(struct buf *); 1335 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1336 struct buf *bp, int flags, 1337 int (*callback)(caddr_t), caddr_t callback_arg, 1338 diskaddr_t lba, uint32_t blockcount); 1339 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1340 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1341 1342 /* 1343 * Prototypes for functions to support USCSI IO. 1344 */ 1345 static int sd_uscsi_strategy(struct buf *bp); 1346 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1347 static void sd_destroypkt_for_uscsi(struct buf *); 1348 1349 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1350 uchar_t chain_type, void *pktinfop); 1351 1352 static int sd_pm_entry(struct sd_lun *un); 1353 static void sd_pm_exit(struct sd_lun *un); 1354 1355 static void sd_pm_idletimeout_handler(void *arg); 1356 1357 /* 1358 * sd_core internal functions (used at the sd_core_io layer). 1359 */ 1360 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1361 static void sdintr(struct scsi_pkt *pktp); 1362 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1363 1364 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1365 enum uio_seg dataspace, int path_flag); 1366 1367 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1368 daddr_t blkno, int (*func)(struct buf *)); 1369 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1370 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1371 static void sd_bioclone_free(struct buf *bp); 1372 static void sd_shadow_buf_free(struct buf *bp); 1373 1374 static void sd_print_transport_rejected_message(struct sd_lun *un, 1375 struct sd_xbuf *xp, int code); 1376 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1377 void *arg, int code); 1378 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1379 void *arg, int code); 1380 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1381 void *arg, int code); 1382 1383 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1384 int retry_check_flag, 1385 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1386 int c), 1387 void *user_arg, int failure_code, clock_t retry_delay, 1388 void (*statp)(kstat_io_t *)); 1389 1390 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1391 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1392 1393 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1394 struct scsi_pkt *pktp); 1395 static void sd_start_retry_command(void *arg); 1396 static void sd_start_direct_priority_command(void *arg); 1397 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1398 int errcode); 1399 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1400 struct buf *bp, int errcode); 1401 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1402 static void sd_sync_with_callback(struct sd_lun *un); 1403 static int sdrunout(caddr_t arg); 1404 1405 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1406 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1407 1408 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1409 static void sd_restore_throttle(void *arg); 1410 1411 static void sd_init_cdb_limits(struct sd_lun *un); 1412 1413 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1414 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1415 1416 /* 1417 * Error handling functions 1418 */ 1419 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1420 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1421 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1422 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1423 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1424 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1425 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1426 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1427 1428 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1429 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1430 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1433 struct sd_xbuf *xp, size_t actual_len); 1434 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1435 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1436 1437 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1438 void *arg, int code); 1439 1440 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1441 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1443 uint8_t *sense_datap, 1444 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1445 static void sd_sense_key_not_ready(struct sd_lun *un, 1446 uint8_t *sense_datap, 1447 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1448 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1449 uint8_t *sense_datap, 1450 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1451 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1452 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1453 static void sd_sense_key_unit_attention(struct sd_lun *un, 1454 uint8_t *sense_datap, 1455 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1456 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1457 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1458 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1459 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1460 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1461 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1462 static void sd_sense_key_default(struct sd_lun *un, 1463 uint8_t *sense_datap, 1464 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1465 1466 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1467 void *arg, int flag); 1468 1469 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1470 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1471 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1472 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1480 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1481 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1482 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1483 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1484 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1485 1486 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1487 1488 static void sd_start_stop_unit_callback(void *arg); 1489 static void sd_start_stop_unit_task(void *arg); 1490 1491 static void sd_taskq_create(void); 1492 static void sd_taskq_delete(void); 1493 static void sd_target_change_task(void *arg); 1494 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag); 1495 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1496 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag); 1497 static void sd_media_change_task(void *arg); 1498 1499 static int sd_handle_mchange(struct sd_lun *un); 1500 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1501 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1502 uint32_t *lbap, int path_flag); 1503 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1504 uint32_t *lbap, uint32_t *psp, int path_flag); 1505 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1506 int flag, int path_flag); 1507 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1508 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1509 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1510 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1511 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1512 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1513 uchar_t usr_cmd, uchar_t *usr_bufp); 1514 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1515 struct dk_callback *dkc); 1516 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1517 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1518 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1519 uchar_t *bufaddr, uint_t buflen, int path_flag); 1520 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1521 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1522 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1523 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1524 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1525 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1526 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1527 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1528 size_t buflen, daddr_t start_block, int path_flag); 1529 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1530 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1531 path_flag) 1532 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1533 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1534 path_flag) 1535 1536 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1537 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1538 uint16_t param_ptr, int path_flag); 1539 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, 1540 uchar_t *bufaddr, size_t buflen, uchar_t class_req); 1541 static boolean_t sd_gesn_media_data_valid(uchar_t *data); 1542 1543 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1544 static void sd_free_rqs(struct sd_lun *un); 1545 1546 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1547 uchar_t *data, int len, int fmt); 1548 static void sd_panic_for_res_conflict(struct sd_lun *un); 1549 1550 /* 1551 * Disk Ioctl Function Prototypes 1552 */ 1553 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1554 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1555 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1556 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1557 1558 /* 1559 * Multi-host Ioctl Prototypes 1560 */ 1561 static int sd_check_mhd(dev_t dev, int interval); 1562 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1563 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1564 static char *sd_sname(uchar_t status); 1565 static void sd_mhd_resvd_recover(void *arg); 1566 static void sd_resv_reclaim_thread(); 1567 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1568 static int sd_reserve_release(dev_t dev, int cmd); 1569 static void sd_rmv_resv_reclaim_req(dev_t dev); 1570 static void sd_mhd_reset_notify_cb(caddr_t arg); 1571 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1572 mhioc_inkeys_t *usrp, int flag); 1573 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1574 mhioc_inresvs_t *usrp, int flag); 1575 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1576 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1577 static int sd_mhdioc_release(dev_t dev); 1578 static int sd_mhdioc_register_devid(dev_t dev); 1579 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1580 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1581 1582 /* 1583 * SCSI removable prototypes 1584 */ 1585 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1586 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1587 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1588 static int sr_pause_resume(dev_t dev, int mode); 1589 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1590 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1591 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1592 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1593 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1594 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1595 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1596 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1597 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1598 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1599 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1600 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1601 static int sr_eject(dev_t dev); 1602 static void sr_ejected(register struct sd_lun *un); 1603 static int sr_check_wp(dev_t dev); 1604 static opaque_t sd_watch_request_submit(struct sd_lun *un); 1605 static int sd_check_media(dev_t dev, enum dkio_state state); 1606 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1607 static void sd_delayed_cv_broadcast(void *arg); 1608 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1609 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1610 1611 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1612 1613 /* 1614 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1615 */ 1616 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1617 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1618 static void sd_wm_cache_destructor(void *wm, void *un); 1619 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1620 daddr_t endb, ushort_t typ); 1621 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1622 daddr_t endb); 1623 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1624 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1625 static void sd_read_modify_write_task(void * arg); 1626 static int 1627 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1628 struct buf **bpp); 1629 1630 1631 /* 1632 * Function prototypes for failfast support. 1633 */ 1634 static void sd_failfast_flushq(struct sd_lun *un); 1635 static int sd_failfast_flushq_callback(struct buf *bp); 1636 1637 /* 1638 * Function prototypes to check for lsi devices 1639 */ 1640 static void sd_is_lsi(struct sd_lun *un); 1641 1642 /* 1643 * Function prototypes for partial DMA support 1644 */ 1645 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1646 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1647 1648 1649 /* Function prototypes for cmlb */ 1650 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1651 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1652 1653 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1654 1655 /* 1656 * For printing RMW warning message timely 1657 */ 1658 static void sd_rmw_msg_print_handler(void *arg); 1659 1660 /* 1661 * Constants for failfast support: 1662 * 1663 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1664 * failfast processing being performed. 1665 * 1666 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1667 * failfast processing on all bufs with B_FAILFAST set. 1668 */ 1669 1670 #define SD_FAILFAST_INACTIVE 0 1671 #define SD_FAILFAST_ACTIVE 1 1672 1673 /* 1674 * Bitmask to control behavior of buf(9S) flushes when a transition to 1675 * the failfast state occurs. Optional bits include: 1676 * 1677 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1678 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1679 * be flushed. 1680 * 1681 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1682 * driver, in addition to the regular wait queue. This includes the xbuf 1683 * queues. When clear, only the driver's wait queue will be flushed. 1684 */ 1685 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1686 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1687 1688 /* 1689 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1690 * to flush all queues within the driver. 1691 */ 1692 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1693 1694 1695 /* 1696 * SD Testing Fault Injection 1697 */ 1698 #ifdef SD_FAULT_INJECTION 1699 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1700 static void sd_faultinjection(struct scsi_pkt *pktp); 1701 static void sd_injection_log(char *buf, struct sd_lun *un); 1702 #endif 1703 1704 /* 1705 * Device driver ops vector 1706 */ 1707 static struct cb_ops sd_cb_ops = { 1708 sdopen, /* open */ 1709 sdclose, /* close */ 1710 sdstrategy, /* strategy */ 1711 nodev, /* print */ 1712 sddump, /* dump */ 1713 sdread, /* read */ 1714 sdwrite, /* write */ 1715 sdioctl, /* ioctl */ 1716 nodev, /* devmap */ 1717 nodev, /* mmap */ 1718 nodev, /* segmap */ 1719 nochpoll, /* poll */ 1720 sd_prop_op, /* cb_prop_op */ 1721 0, /* streamtab */ 1722 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1723 CB_REV, /* cb_rev */ 1724 sdaread, /* async I/O read entry point */ 1725 sdawrite /* async I/O write entry point */ 1726 }; 1727 1728 struct dev_ops sd_ops = { 1729 DEVO_REV, /* devo_rev, */ 1730 0, /* refcnt */ 1731 sdinfo, /* info */ 1732 nulldev, /* identify */ 1733 sdprobe, /* probe */ 1734 sdattach, /* attach */ 1735 sddetach, /* detach */ 1736 nodev, /* reset */ 1737 &sd_cb_ops, /* driver operations */ 1738 NULL, /* bus operations */ 1739 sdpower, /* power */ 1740 ddi_quiesce_not_needed, /* quiesce */ 1741 }; 1742 1743 /* 1744 * This is the loadable module wrapper. 1745 */ 1746 #include <sys/modctl.h> 1747 1748 #ifndef XPV_HVM_DRIVER 1749 static struct modldrv modldrv = { 1750 &mod_driverops, /* Type of module. This one is a driver */ 1751 SD_MODULE_NAME, /* Module name. */ 1752 &sd_ops /* driver ops */ 1753 }; 1754 1755 static struct modlinkage modlinkage = { 1756 MODREV_1, &modldrv, NULL 1757 }; 1758 1759 #else /* XPV_HVM_DRIVER */ 1760 static struct modlmisc modlmisc = { 1761 &mod_miscops, /* Type of module. This one is a misc */ 1762 "HVM " SD_MODULE_NAME, /* Module name. */ 1763 }; 1764 1765 static struct modlinkage modlinkage = { 1766 MODREV_1, &modlmisc, NULL 1767 }; 1768 1769 #endif /* XPV_HVM_DRIVER */ 1770 1771 static cmlb_tg_ops_t sd_tgops = { 1772 TG_DK_OPS_VERSION_1, 1773 sd_tg_rdwr, 1774 sd_tg_getinfo 1775 }; 1776 1777 static struct scsi_asq_key_strings sd_additional_codes[] = { 1778 0x81, 0, "Logical Unit is Reserved", 1779 0x85, 0, "Audio Address Not Valid", 1780 0xb6, 0, "Media Load Mechanism Failed", 1781 0xB9, 0, "Audio Play Operation Aborted", 1782 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1783 0x53, 2, "Medium removal prevented", 1784 0x6f, 0, "Authentication failed during key exchange", 1785 0x6f, 1, "Key not present", 1786 0x6f, 2, "Key not established", 1787 0x6f, 3, "Read without proper authentication", 1788 0x6f, 4, "Mismatched region to this logical unit", 1789 0x6f, 5, "Region reset count error", 1790 0xffff, 0x0, NULL 1791 }; 1792 1793 1794 /* 1795 * Struct for passing printing information for sense data messages 1796 */ 1797 struct sd_sense_info { 1798 int ssi_severity; 1799 int ssi_pfa_flag; 1800 }; 1801 1802 /* 1803 * Table of function pointers for iostart-side routines. Separate "chains" 1804 * of layered function calls are formed by placing the function pointers 1805 * sequentially in the desired order. Functions are called according to an 1806 * incrementing table index ordering. The last function in each chain must 1807 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1808 * in the sd_iodone_chain[] array. 1809 * 1810 * Note: It may seem more natural to organize both the iostart and iodone 1811 * functions together, into an array of structures (or some similar 1812 * organization) with a common index, rather than two separate arrays which 1813 * must be maintained in synchronization. The purpose of this division is 1814 * to achieve improved performance: individual arrays allows for more 1815 * effective cache line utilization on certain platforms. 1816 */ 1817 1818 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1819 1820 1821 static sd_chain_t sd_iostart_chain[] = { 1822 1823 /* Chain for buf IO for disk drive targets (PM enabled) */ 1824 sd_mapblockaddr_iostart, /* Index: 0 */ 1825 sd_pm_iostart, /* Index: 1 */ 1826 sd_core_iostart, /* Index: 2 */ 1827 1828 /* Chain for buf IO for disk drive targets (PM disabled) */ 1829 sd_mapblockaddr_iostart, /* Index: 3 */ 1830 sd_core_iostart, /* Index: 4 */ 1831 1832 /* 1833 * Chain for buf IO for removable-media or large sector size 1834 * disk drive targets with RMW needed (PM enabled) 1835 */ 1836 sd_mapblockaddr_iostart, /* Index: 5 */ 1837 sd_mapblocksize_iostart, /* Index: 6 */ 1838 sd_pm_iostart, /* Index: 7 */ 1839 sd_core_iostart, /* Index: 8 */ 1840 1841 /* 1842 * Chain for buf IO for removable-media or large sector size 1843 * disk drive targets with RMW needed (PM disabled) 1844 */ 1845 sd_mapblockaddr_iostart, /* Index: 9 */ 1846 sd_mapblocksize_iostart, /* Index: 10 */ 1847 sd_core_iostart, /* Index: 11 */ 1848 1849 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1850 sd_mapblockaddr_iostart, /* Index: 12 */ 1851 sd_checksum_iostart, /* Index: 13 */ 1852 sd_pm_iostart, /* Index: 14 */ 1853 sd_core_iostart, /* Index: 15 */ 1854 1855 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1856 sd_mapblockaddr_iostart, /* Index: 16 */ 1857 sd_checksum_iostart, /* Index: 17 */ 1858 sd_core_iostart, /* Index: 18 */ 1859 1860 /* Chain for USCSI commands (all targets) */ 1861 sd_pm_iostart, /* Index: 19 */ 1862 sd_core_iostart, /* Index: 20 */ 1863 1864 /* Chain for checksumming USCSI commands (all targets) */ 1865 sd_checksum_uscsi_iostart, /* Index: 21 */ 1866 sd_pm_iostart, /* Index: 22 */ 1867 sd_core_iostart, /* Index: 23 */ 1868 1869 /* Chain for "direct" USCSI commands (all targets) */ 1870 sd_core_iostart, /* Index: 24 */ 1871 1872 /* Chain for "direct priority" USCSI commands (all targets) */ 1873 sd_core_iostart, /* Index: 25 */ 1874 1875 /* 1876 * Chain for buf IO for large sector size disk drive targets 1877 * with RMW needed with checksumming (PM enabled) 1878 */ 1879 sd_mapblockaddr_iostart, /* Index: 26 */ 1880 sd_mapblocksize_iostart, /* Index: 27 */ 1881 sd_checksum_iostart, /* Index: 28 */ 1882 sd_pm_iostart, /* Index: 29 */ 1883 sd_core_iostart, /* Index: 30 */ 1884 1885 /* 1886 * Chain for buf IO for large sector size disk drive targets 1887 * with RMW needed with checksumming (PM disabled) 1888 */ 1889 sd_mapblockaddr_iostart, /* Index: 31 */ 1890 sd_mapblocksize_iostart, /* Index: 32 */ 1891 sd_checksum_iostart, /* Index: 33 */ 1892 sd_core_iostart, /* Index: 34 */ 1893 1894 }; 1895 1896 /* 1897 * Macros to locate the first function of each iostart chain in the 1898 * sd_iostart_chain[] array. These are located by the index in the array. 1899 */ 1900 #define SD_CHAIN_DISK_IOSTART 0 1901 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1902 #define SD_CHAIN_MSS_DISK_IOSTART 5 1903 #define SD_CHAIN_RMMEDIA_IOSTART 5 1904 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1905 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1906 #define SD_CHAIN_CHKSUM_IOSTART 12 1907 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1908 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1909 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1910 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1911 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1912 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1913 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1914 1915 1916 /* 1917 * Table of function pointers for the iodone-side routines for the driver- 1918 * internal layering mechanism. The calling sequence for iodone routines 1919 * uses a decrementing table index, so the last routine called in a chain 1920 * must be at the lowest array index location for that chain. The last 1921 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1922 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1923 * of the functions in an iodone side chain must correspond to the ordering 1924 * of the iostart routines for that chain. Note that there is no iodone 1925 * side routine that corresponds to sd_core_iostart(), so there is no 1926 * entry in the table for this. 1927 */ 1928 1929 static sd_chain_t sd_iodone_chain[] = { 1930 1931 /* Chain for buf IO for disk drive targets (PM enabled) */ 1932 sd_buf_iodone, /* Index: 0 */ 1933 sd_mapblockaddr_iodone, /* Index: 1 */ 1934 sd_pm_iodone, /* Index: 2 */ 1935 1936 /* Chain for buf IO for disk drive targets (PM disabled) */ 1937 sd_buf_iodone, /* Index: 3 */ 1938 sd_mapblockaddr_iodone, /* Index: 4 */ 1939 1940 /* 1941 * Chain for buf IO for removable-media or large sector size 1942 * disk drive targets with RMW needed (PM enabled) 1943 */ 1944 sd_buf_iodone, /* Index: 5 */ 1945 sd_mapblockaddr_iodone, /* Index: 6 */ 1946 sd_mapblocksize_iodone, /* Index: 7 */ 1947 sd_pm_iodone, /* Index: 8 */ 1948 1949 /* 1950 * Chain for buf IO for removable-media or large sector size 1951 * disk drive targets with RMW needed (PM disabled) 1952 */ 1953 sd_buf_iodone, /* Index: 9 */ 1954 sd_mapblockaddr_iodone, /* Index: 10 */ 1955 sd_mapblocksize_iodone, /* Index: 11 */ 1956 1957 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1958 sd_buf_iodone, /* Index: 12 */ 1959 sd_mapblockaddr_iodone, /* Index: 13 */ 1960 sd_checksum_iodone, /* Index: 14 */ 1961 sd_pm_iodone, /* Index: 15 */ 1962 1963 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1964 sd_buf_iodone, /* Index: 16 */ 1965 sd_mapblockaddr_iodone, /* Index: 17 */ 1966 sd_checksum_iodone, /* Index: 18 */ 1967 1968 /* Chain for USCSI commands (non-checksum targets) */ 1969 sd_uscsi_iodone, /* Index: 19 */ 1970 sd_pm_iodone, /* Index: 20 */ 1971 1972 /* Chain for USCSI commands (checksum targets) */ 1973 sd_uscsi_iodone, /* Index: 21 */ 1974 sd_checksum_uscsi_iodone, /* Index: 22 */ 1975 sd_pm_iodone, /* Index: 22 */ 1976 1977 /* Chain for "direct" USCSI commands (all targets) */ 1978 sd_uscsi_iodone, /* Index: 24 */ 1979 1980 /* Chain for "direct priority" USCSI commands (all targets) */ 1981 sd_uscsi_iodone, /* Index: 25 */ 1982 1983 /* 1984 * Chain for buf IO for large sector size disk drive targets 1985 * with checksumming (PM enabled) 1986 */ 1987 sd_buf_iodone, /* Index: 26 */ 1988 sd_mapblockaddr_iodone, /* Index: 27 */ 1989 sd_mapblocksize_iodone, /* Index: 28 */ 1990 sd_checksum_iodone, /* Index: 29 */ 1991 sd_pm_iodone, /* Index: 30 */ 1992 1993 /* 1994 * Chain for buf IO for large sector size disk drive targets 1995 * with checksumming (PM disabled) 1996 */ 1997 sd_buf_iodone, /* Index: 31 */ 1998 sd_mapblockaddr_iodone, /* Index: 32 */ 1999 sd_mapblocksize_iodone, /* Index: 33 */ 2000 sd_checksum_iodone, /* Index: 34 */ 2001 }; 2002 2003 2004 /* 2005 * Macros to locate the "first" function in the sd_iodone_chain[] array for 2006 * each iodone-side chain. These are located by the array index, but as the 2007 * iodone side functions are called in a decrementing-index order, the 2008 * highest index number in each chain must be specified (as these correspond 2009 * to the first function in the iodone chain that will be called by the core 2010 * at IO completion time). 2011 */ 2012 2013 #define SD_CHAIN_DISK_IODONE 2 2014 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2015 #define SD_CHAIN_RMMEDIA_IODONE 8 2016 #define SD_CHAIN_MSS_DISK_IODONE 8 2017 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2018 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2019 #define SD_CHAIN_CHKSUM_IODONE 15 2020 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2021 #define SD_CHAIN_USCSI_CMD_IODONE 20 2022 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2023 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2024 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2025 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2026 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2027 2028 2029 2030 /* 2031 * Array to map a layering chain index to the appropriate initpkt routine. 2032 * The redundant entries are present so that the index used for accessing 2033 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2034 * with this table as well. 2035 */ 2036 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2037 2038 static sd_initpkt_t sd_initpkt_map[] = { 2039 2040 /* Chain for buf IO for disk drive targets (PM enabled) */ 2041 sd_initpkt_for_buf, /* Index: 0 */ 2042 sd_initpkt_for_buf, /* Index: 1 */ 2043 sd_initpkt_for_buf, /* Index: 2 */ 2044 2045 /* Chain for buf IO for disk drive targets (PM disabled) */ 2046 sd_initpkt_for_buf, /* Index: 3 */ 2047 sd_initpkt_for_buf, /* Index: 4 */ 2048 2049 /* 2050 * Chain for buf IO for removable-media or large sector size 2051 * disk drive targets (PM enabled) 2052 */ 2053 sd_initpkt_for_buf, /* Index: 5 */ 2054 sd_initpkt_for_buf, /* Index: 6 */ 2055 sd_initpkt_for_buf, /* Index: 7 */ 2056 sd_initpkt_for_buf, /* Index: 8 */ 2057 2058 /* 2059 * Chain for buf IO for removable-media or large sector size 2060 * disk drive targets (PM disabled) 2061 */ 2062 sd_initpkt_for_buf, /* Index: 9 */ 2063 sd_initpkt_for_buf, /* Index: 10 */ 2064 sd_initpkt_for_buf, /* Index: 11 */ 2065 2066 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2067 sd_initpkt_for_buf, /* Index: 12 */ 2068 sd_initpkt_for_buf, /* Index: 13 */ 2069 sd_initpkt_for_buf, /* Index: 14 */ 2070 sd_initpkt_for_buf, /* Index: 15 */ 2071 2072 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2073 sd_initpkt_for_buf, /* Index: 16 */ 2074 sd_initpkt_for_buf, /* Index: 17 */ 2075 sd_initpkt_for_buf, /* Index: 18 */ 2076 2077 /* Chain for USCSI commands (non-checksum targets) */ 2078 sd_initpkt_for_uscsi, /* Index: 19 */ 2079 sd_initpkt_for_uscsi, /* Index: 20 */ 2080 2081 /* Chain for USCSI commands (checksum targets) */ 2082 sd_initpkt_for_uscsi, /* Index: 21 */ 2083 sd_initpkt_for_uscsi, /* Index: 22 */ 2084 sd_initpkt_for_uscsi, /* Index: 22 */ 2085 2086 /* Chain for "direct" USCSI commands (all targets) */ 2087 sd_initpkt_for_uscsi, /* Index: 24 */ 2088 2089 /* Chain for "direct priority" USCSI commands (all targets) */ 2090 sd_initpkt_for_uscsi, /* Index: 25 */ 2091 2092 /* 2093 * Chain for buf IO for large sector size disk drive targets 2094 * with checksumming (PM enabled) 2095 */ 2096 sd_initpkt_for_buf, /* Index: 26 */ 2097 sd_initpkt_for_buf, /* Index: 27 */ 2098 sd_initpkt_for_buf, /* Index: 28 */ 2099 sd_initpkt_for_buf, /* Index: 29 */ 2100 sd_initpkt_for_buf, /* Index: 30 */ 2101 2102 /* 2103 * Chain for buf IO for large sector size disk drive targets 2104 * with checksumming (PM disabled) 2105 */ 2106 sd_initpkt_for_buf, /* Index: 31 */ 2107 sd_initpkt_for_buf, /* Index: 32 */ 2108 sd_initpkt_for_buf, /* Index: 33 */ 2109 sd_initpkt_for_buf, /* Index: 34 */ 2110 }; 2111 2112 2113 /* 2114 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2115 * The redundant entries are present so that the index used for accessing 2116 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2117 * with this table as well. 2118 */ 2119 typedef void (*sd_destroypkt_t)(struct buf *); 2120 2121 static sd_destroypkt_t sd_destroypkt_map[] = { 2122 2123 /* Chain for buf IO for disk drive targets (PM enabled) */ 2124 sd_destroypkt_for_buf, /* Index: 0 */ 2125 sd_destroypkt_for_buf, /* Index: 1 */ 2126 sd_destroypkt_for_buf, /* Index: 2 */ 2127 2128 /* Chain for buf IO for disk drive targets (PM disabled) */ 2129 sd_destroypkt_for_buf, /* Index: 3 */ 2130 sd_destroypkt_for_buf, /* Index: 4 */ 2131 2132 /* 2133 * Chain for buf IO for removable-media or large sector size 2134 * disk drive targets (PM enabled) 2135 */ 2136 sd_destroypkt_for_buf, /* Index: 5 */ 2137 sd_destroypkt_for_buf, /* Index: 6 */ 2138 sd_destroypkt_for_buf, /* Index: 7 */ 2139 sd_destroypkt_for_buf, /* Index: 8 */ 2140 2141 /* 2142 * Chain for buf IO for removable-media or large sector size 2143 * disk drive targets (PM disabled) 2144 */ 2145 sd_destroypkt_for_buf, /* Index: 9 */ 2146 sd_destroypkt_for_buf, /* Index: 10 */ 2147 sd_destroypkt_for_buf, /* Index: 11 */ 2148 2149 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2150 sd_destroypkt_for_buf, /* Index: 12 */ 2151 sd_destroypkt_for_buf, /* Index: 13 */ 2152 sd_destroypkt_for_buf, /* Index: 14 */ 2153 sd_destroypkt_for_buf, /* Index: 15 */ 2154 2155 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2156 sd_destroypkt_for_buf, /* Index: 16 */ 2157 sd_destroypkt_for_buf, /* Index: 17 */ 2158 sd_destroypkt_for_buf, /* Index: 18 */ 2159 2160 /* Chain for USCSI commands (non-checksum targets) */ 2161 sd_destroypkt_for_uscsi, /* Index: 19 */ 2162 sd_destroypkt_for_uscsi, /* Index: 20 */ 2163 2164 /* Chain for USCSI commands (checksum targets) */ 2165 sd_destroypkt_for_uscsi, /* Index: 21 */ 2166 sd_destroypkt_for_uscsi, /* Index: 22 */ 2167 sd_destroypkt_for_uscsi, /* Index: 22 */ 2168 2169 /* Chain for "direct" USCSI commands (all targets) */ 2170 sd_destroypkt_for_uscsi, /* Index: 24 */ 2171 2172 /* Chain for "direct priority" USCSI commands (all targets) */ 2173 sd_destroypkt_for_uscsi, /* Index: 25 */ 2174 2175 /* 2176 * Chain for buf IO for large sector size disk drive targets 2177 * with checksumming (PM disabled) 2178 */ 2179 sd_destroypkt_for_buf, /* Index: 26 */ 2180 sd_destroypkt_for_buf, /* Index: 27 */ 2181 sd_destroypkt_for_buf, /* Index: 28 */ 2182 sd_destroypkt_for_buf, /* Index: 29 */ 2183 sd_destroypkt_for_buf, /* Index: 30 */ 2184 2185 /* 2186 * Chain for buf IO for large sector size disk drive targets 2187 * with checksumming (PM enabled) 2188 */ 2189 sd_destroypkt_for_buf, /* Index: 31 */ 2190 sd_destroypkt_for_buf, /* Index: 32 */ 2191 sd_destroypkt_for_buf, /* Index: 33 */ 2192 sd_destroypkt_for_buf, /* Index: 34 */ 2193 }; 2194 2195 2196 2197 /* 2198 * Array to map a layering chain index to the appropriate chain "type". 2199 * The chain type indicates a specific property/usage of the chain. 2200 * The redundant entries are present so that the index used for accessing 2201 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2202 * with this table as well. 2203 */ 2204 2205 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2206 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2207 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2208 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2209 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2210 /* (for error recovery) */ 2211 2212 static int sd_chain_type_map[] = { 2213 2214 /* Chain for buf IO for disk drive targets (PM enabled) */ 2215 SD_CHAIN_BUFIO, /* Index: 0 */ 2216 SD_CHAIN_BUFIO, /* Index: 1 */ 2217 SD_CHAIN_BUFIO, /* Index: 2 */ 2218 2219 /* Chain for buf IO for disk drive targets (PM disabled) */ 2220 SD_CHAIN_BUFIO, /* Index: 3 */ 2221 SD_CHAIN_BUFIO, /* Index: 4 */ 2222 2223 /* 2224 * Chain for buf IO for removable-media or large sector size 2225 * disk drive targets (PM enabled) 2226 */ 2227 SD_CHAIN_BUFIO, /* Index: 5 */ 2228 SD_CHAIN_BUFIO, /* Index: 6 */ 2229 SD_CHAIN_BUFIO, /* Index: 7 */ 2230 SD_CHAIN_BUFIO, /* Index: 8 */ 2231 2232 /* 2233 * Chain for buf IO for removable-media or large sector size 2234 * disk drive targets (PM disabled) 2235 */ 2236 SD_CHAIN_BUFIO, /* Index: 9 */ 2237 SD_CHAIN_BUFIO, /* Index: 10 */ 2238 SD_CHAIN_BUFIO, /* Index: 11 */ 2239 2240 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2241 SD_CHAIN_BUFIO, /* Index: 12 */ 2242 SD_CHAIN_BUFIO, /* Index: 13 */ 2243 SD_CHAIN_BUFIO, /* Index: 14 */ 2244 SD_CHAIN_BUFIO, /* Index: 15 */ 2245 2246 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2247 SD_CHAIN_BUFIO, /* Index: 16 */ 2248 SD_CHAIN_BUFIO, /* Index: 17 */ 2249 SD_CHAIN_BUFIO, /* Index: 18 */ 2250 2251 /* Chain for USCSI commands (non-checksum targets) */ 2252 SD_CHAIN_USCSI, /* Index: 19 */ 2253 SD_CHAIN_USCSI, /* Index: 20 */ 2254 2255 /* Chain for USCSI commands (checksum targets) */ 2256 SD_CHAIN_USCSI, /* Index: 21 */ 2257 SD_CHAIN_USCSI, /* Index: 22 */ 2258 SD_CHAIN_USCSI, /* Index: 23 */ 2259 2260 /* Chain for "direct" USCSI commands (all targets) */ 2261 SD_CHAIN_DIRECT, /* Index: 24 */ 2262 2263 /* Chain for "direct priority" USCSI commands (all targets) */ 2264 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2265 2266 /* 2267 * Chain for buf IO for large sector size disk drive targets 2268 * with checksumming (PM enabled) 2269 */ 2270 SD_CHAIN_BUFIO, /* Index: 26 */ 2271 SD_CHAIN_BUFIO, /* Index: 27 */ 2272 SD_CHAIN_BUFIO, /* Index: 28 */ 2273 SD_CHAIN_BUFIO, /* Index: 29 */ 2274 SD_CHAIN_BUFIO, /* Index: 30 */ 2275 2276 /* 2277 * Chain for buf IO for large sector size disk drive targets 2278 * with checksumming (PM disabled) 2279 */ 2280 SD_CHAIN_BUFIO, /* Index: 31 */ 2281 SD_CHAIN_BUFIO, /* Index: 32 */ 2282 SD_CHAIN_BUFIO, /* Index: 33 */ 2283 SD_CHAIN_BUFIO, /* Index: 34 */ 2284 }; 2285 2286 2287 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2288 #define SD_IS_BUFIO(xp) \ 2289 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2290 2291 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2292 #define SD_IS_DIRECT_PRIORITY(xp) \ 2293 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2294 2295 2296 2297 /* 2298 * Struct, array, and macros to map a specific chain to the appropriate 2299 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2300 * 2301 * The sd_chain_index_map[] array is used at attach time to set the various 2302 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2303 * chain to be used with the instance. This allows different instances to use 2304 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2305 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2306 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2307 * dynamically & without the use of locking; and (2) a layer may update the 2308 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2309 * to allow for deferred processing of an IO within the same chain from a 2310 * different execution context. 2311 */ 2312 2313 struct sd_chain_index { 2314 int sci_iostart_index; 2315 int sci_iodone_index; 2316 }; 2317 2318 static struct sd_chain_index sd_chain_index_map[] = { 2319 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2320 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2321 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2322 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2323 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2324 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2325 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2326 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2327 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2328 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2329 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2330 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2331 2332 }; 2333 2334 2335 /* 2336 * The following are indexes into the sd_chain_index_map[] array. 2337 */ 2338 2339 /* un->un_buf_chain_type must be set to one of these */ 2340 #define SD_CHAIN_INFO_DISK 0 2341 #define SD_CHAIN_INFO_DISK_NO_PM 1 2342 #define SD_CHAIN_INFO_RMMEDIA 2 2343 #define SD_CHAIN_INFO_MSS_DISK 2 2344 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2345 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2346 #define SD_CHAIN_INFO_CHKSUM 4 2347 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2348 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2349 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2350 2351 /* un->un_uscsi_chain_type must be set to one of these */ 2352 #define SD_CHAIN_INFO_USCSI_CMD 6 2353 /* USCSI with PM disabled is the same as DIRECT */ 2354 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2355 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2356 2357 /* un->un_direct_chain_type must be set to one of these */ 2358 #define SD_CHAIN_INFO_DIRECT_CMD 8 2359 2360 /* un->un_priority_chain_type must be set to one of these */ 2361 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2362 2363 /* size for devid inquiries */ 2364 #define MAX_INQUIRY_SIZE 0xF0 2365 2366 /* 2367 * Macros used by functions to pass a given buf(9S) struct along to the 2368 * next function in the layering chain for further processing. 2369 * 2370 * In the following macros, passing more than three arguments to the called 2371 * routines causes the optimizer for the SPARC compiler to stop doing tail 2372 * call elimination which results in significant performance degradation. 2373 */ 2374 #define SD_BEGIN_IOSTART(index, un, bp) \ 2375 ((*(sd_iostart_chain[index]))(index, un, bp)) 2376 2377 #define SD_BEGIN_IODONE(index, un, bp) \ 2378 ((*(sd_iodone_chain[index]))(index, un, bp)) 2379 2380 #define SD_NEXT_IOSTART(index, un, bp) \ 2381 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2382 2383 #define SD_NEXT_IODONE(index, un, bp) \ 2384 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2385 2386 /* 2387 * Function: _init 2388 * 2389 * Description: This is the driver _init(9E) entry point. 2390 * 2391 * Return Code: Returns the value from mod_install(9F) or 2392 * ddi_soft_state_init(9F) as appropriate. 2393 * 2394 * Context: Called when driver module loaded. 2395 */ 2396 2397 int 2398 _init(void) 2399 { 2400 int err; 2401 2402 /* establish driver name from module name */ 2403 sd_label = (char *)mod_modname(&modlinkage); 2404 2405 #ifndef XPV_HVM_DRIVER 2406 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2407 SD_MAXUNIT); 2408 if (err != 0) { 2409 return (err); 2410 } 2411 2412 #else /* XPV_HVM_DRIVER */ 2413 /* Remove the leading "hvm_" from the module name */ 2414 ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0); 2415 sd_label += strlen("hvm_"); 2416 2417 #endif /* XPV_HVM_DRIVER */ 2418 2419 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2420 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2421 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2422 2423 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2424 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2425 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2426 2427 /* 2428 * it's ok to init here even for fibre device 2429 */ 2430 sd_scsi_probe_cache_init(); 2431 2432 sd_scsi_target_lun_init(); 2433 2434 /* 2435 * Creating taskq before mod_install ensures that all callers (threads) 2436 * that enter the module after a successful mod_install encounter 2437 * a valid taskq. 2438 */ 2439 sd_taskq_create(); 2440 2441 err = mod_install(&modlinkage); 2442 if (err != 0) { 2443 /* delete taskq if install fails */ 2444 sd_taskq_delete(); 2445 2446 mutex_destroy(&sd_detach_mutex); 2447 mutex_destroy(&sd_log_mutex); 2448 mutex_destroy(&sd_label_mutex); 2449 2450 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2451 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2452 cv_destroy(&sd_tr.srq_inprocess_cv); 2453 2454 sd_scsi_probe_cache_fini(); 2455 2456 sd_scsi_target_lun_fini(); 2457 2458 #ifndef XPV_HVM_DRIVER 2459 ddi_soft_state_fini(&sd_state); 2460 #endif /* !XPV_HVM_DRIVER */ 2461 return (err); 2462 } 2463 2464 return (err); 2465 } 2466 2467 2468 /* 2469 * Function: _fini 2470 * 2471 * Description: This is the driver _fini(9E) entry point. 2472 * 2473 * Return Code: Returns the value from mod_remove(9F) 2474 * 2475 * Context: Called when driver module is unloaded. 2476 */ 2477 2478 int 2479 _fini(void) 2480 { 2481 int err; 2482 2483 if ((err = mod_remove(&modlinkage)) != 0) { 2484 return (err); 2485 } 2486 2487 sd_taskq_delete(); 2488 2489 mutex_destroy(&sd_detach_mutex); 2490 mutex_destroy(&sd_log_mutex); 2491 mutex_destroy(&sd_label_mutex); 2492 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2493 2494 sd_scsi_probe_cache_fini(); 2495 2496 sd_scsi_target_lun_fini(); 2497 2498 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2499 cv_destroy(&sd_tr.srq_inprocess_cv); 2500 2501 #ifndef XPV_HVM_DRIVER 2502 ddi_soft_state_fini(&sd_state); 2503 #endif /* !XPV_HVM_DRIVER */ 2504 2505 return (err); 2506 } 2507 2508 2509 /* 2510 * Function: _info 2511 * 2512 * Description: This is the driver _info(9E) entry point. 2513 * 2514 * Arguments: modinfop - pointer to the driver modinfo structure 2515 * 2516 * Return Code: Returns the value from mod_info(9F). 2517 * 2518 * Context: Kernel thread context 2519 */ 2520 2521 int 2522 _info(struct modinfo *modinfop) 2523 { 2524 return (mod_info(&modlinkage, modinfop)); 2525 } 2526 2527 2528 /* 2529 * The following routines implement the driver message logging facility. 2530 * They provide component- and level- based debug output filtering. 2531 * Output may also be restricted to messages for a single instance by 2532 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2533 * to NULL, then messages for all instances are printed. 2534 * 2535 * These routines have been cloned from each other due to the language 2536 * constraints of macros and variable argument list processing. 2537 */ 2538 2539 2540 /* 2541 * Function: sd_log_err 2542 * 2543 * Description: This routine is called by the SD_ERROR macro for debug 2544 * logging of error conditions. 2545 * 2546 * Arguments: comp - driver component being logged 2547 * dev - pointer to driver info structure 2548 * fmt - error string and format to be logged 2549 */ 2550 2551 static void 2552 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2553 { 2554 va_list ap; 2555 dev_info_t *dev; 2556 2557 ASSERT(un != NULL); 2558 dev = SD_DEVINFO(un); 2559 ASSERT(dev != NULL); 2560 2561 /* 2562 * Filter messages based on the global component and level masks. 2563 * Also print if un matches the value of sd_debug_un, or if 2564 * sd_debug_un is set to NULL. 2565 */ 2566 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2567 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2568 mutex_enter(&sd_log_mutex); 2569 va_start(ap, fmt); 2570 (void) vsprintf(sd_log_buf, fmt, ap); 2571 va_end(ap); 2572 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2573 mutex_exit(&sd_log_mutex); 2574 } 2575 #ifdef SD_FAULT_INJECTION 2576 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2577 if (un->sd_injection_mask & comp) { 2578 mutex_enter(&sd_log_mutex); 2579 va_start(ap, fmt); 2580 (void) vsprintf(sd_log_buf, fmt, ap); 2581 va_end(ap); 2582 sd_injection_log(sd_log_buf, un); 2583 mutex_exit(&sd_log_mutex); 2584 } 2585 #endif 2586 } 2587 2588 2589 /* 2590 * Function: sd_log_info 2591 * 2592 * Description: This routine is called by the SD_INFO macro for debug 2593 * logging of general purpose informational conditions. 2594 * 2595 * Arguments: comp - driver component being logged 2596 * dev - pointer to driver info structure 2597 * fmt - info string and format to be logged 2598 */ 2599 2600 static void 2601 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2602 { 2603 va_list ap; 2604 dev_info_t *dev; 2605 2606 ASSERT(un != NULL); 2607 dev = SD_DEVINFO(un); 2608 ASSERT(dev != NULL); 2609 2610 /* 2611 * Filter messages based on the global component and level masks. 2612 * Also print if un matches the value of sd_debug_un, or if 2613 * sd_debug_un is set to NULL. 2614 */ 2615 if ((sd_component_mask & component) && 2616 (sd_level_mask & SD_LOGMASK_INFO) && 2617 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2618 mutex_enter(&sd_log_mutex); 2619 va_start(ap, fmt); 2620 (void) vsprintf(sd_log_buf, fmt, ap); 2621 va_end(ap); 2622 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2623 mutex_exit(&sd_log_mutex); 2624 } 2625 #ifdef SD_FAULT_INJECTION 2626 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2627 if (un->sd_injection_mask & component) { 2628 mutex_enter(&sd_log_mutex); 2629 va_start(ap, fmt); 2630 (void) vsprintf(sd_log_buf, fmt, ap); 2631 va_end(ap); 2632 sd_injection_log(sd_log_buf, un); 2633 mutex_exit(&sd_log_mutex); 2634 } 2635 #endif 2636 } 2637 2638 2639 /* 2640 * Function: sd_log_trace 2641 * 2642 * Description: This routine is called by the SD_TRACE macro for debug 2643 * logging of trace conditions (i.e. function entry/exit). 2644 * 2645 * Arguments: comp - driver component being logged 2646 * dev - pointer to driver info structure 2647 * fmt - trace string and format to be logged 2648 */ 2649 2650 static void 2651 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2652 { 2653 va_list ap; 2654 dev_info_t *dev; 2655 2656 ASSERT(un != NULL); 2657 dev = SD_DEVINFO(un); 2658 ASSERT(dev != NULL); 2659 2660 /* 2661 * Filter messages based on the global component and level masks. 2662 * Also print if un matches the value of sd_debug_un, or if 2663 * sd_debug_un is set to NULL. 2664 */ 2665 if ((sd_component_mask & component) && 2666 (sd_level_mask & SD_LOGMASK_TRACE) && 2667 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2668 mutex_enter(&sd_log_mutex); 2669 va_start(ap, fmt); 2670 (void) vsprintf(sd_log_buf, fmt, ap); 2671 va_end(ap); 2672 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2673 mutex_exit(&sd_log_mutex); 2674 } 2675 #ifdef SD_FAULT_INJECTION 2676 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2677 if (un->sd_injection_mask & component) { 2678 mutex_enter(&sd_log_mutex); 2679 va_start(ap, fmt); 2680 (void) vsprintf(sd_log_buf, fmt, ap); 2681 va_end(ap); 2682 sd_injection_log(sd_log_buf, un); 2683 mutex_exit(&sd_log_mutex); 2684 } 2685 #endif 2686 } 2687 2688 2689 /* 2690 * Function: sdprobe 2691 * 2692 * Description: This is the driver probe(9e) entry point function. 2693 * 2694 * Arguments: devi - opaque device info handle 2695 * 2696 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2697 * DDI_PROBE_FAILURE: If the probe failed. 2698 * DDI_PROBE_PARTIAL: If the instance is not present now, 2699 * but may be present in the future. 2700 */ 2701 2702 static int 2703 sdprobe(dev_info_t *devi) 2704 { 2705 struct scsi_device *devp; 2706 int rval; 2707 #ifndef XPV_HVM_DRIVER 2708 int instance = ddi_get_instance(devi); 2709 #endif /* !XPV_HVM_DRIVER */ 2710 2711 /* 2712 * if it wasn't for pln, sdprobe could actually be nulldev 2713 * in the "__fibre" case. 2714 */ 2715 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2716 return (DDI_PROBE_DONTCARE); 2717 } 2718 2719 devp = ddi_get_driver_private(devi); 2720 2721 if (devp == NULL) { 2722 /* Ooops... nexus driver is mis-configured... */ 2723 return (DDI_PROBE_FAILURE); 2724 } 2725 2726 #ifndef XPV_HVM_DRIVER 2727 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2728 return (DDI_PROBE_PARTIAL); 2729 } 2730 #endif /* !XPV_HVM_DRIVER */ 2731 2732 /* 2733 * Call the SCSA utility probe routine to see if we actually 2734 * have a target at this SCSI nexus. 2735 */ 2736 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2737 case SCSIPROBE_EXISTS: 2738 switch (devp->sd_inq->inq_dtype) { 2739 case DTYPE_DIRECT: 2740 rval = DDI_PROBE_SUCCESS; 2741 break; 2742 case DTYPE_RODIRECT: 2743 /* CDs etc. Can be removable media */ 2744 rval = DDI_PROBE_SUCCESS; 2745 break; 2746 case DTYPE_OPTICAL: 2747 /* 2748 * Rewritable optical driver HP115AA 2749 * Can also be removable media 2750 */ 2751 2752 /* 2753 * Do not attempt to bind to DTYPE_OPTICAL if 2754 * pre solaris 9 sparc sd behavior is required 2755 * 2756 * If first time through and sd_dtype_optical_bind 2757 * has not been set in /etc/system check properties 2758 */ 2759 2760 if (sd_dtype_optical_bind < 0) { 2761 sd_dtype_optical_bind = ddi_prop_get_int 2762 (DDI_DEV_T_ANY, devi, 0, 2763 "optical-device-bind", 1); 2764 } 2765 2766 if (sd_dtype_optical_bind == 0) { 2767 rval = DDI_PROBE_FAILURE; 2768 } else { 2769 rval = DDI_PROBE_SUCCESS; 2770 } 2771 break; 2772 2773 case DTYPE_NOTPRESENT: 2774 default: 2775 rval = DDI_PROBE_FAILURE; 2776 break; 2777 } 2778 break; 2779 default: 2780 rval = DDI_PROBE_PARTIAL; 2781 break; 2782 } 2783 2784 /* 2785 * This routine checks for resource allocation prior to freeing, 2786 * so it will take care of the "smart probing" case where a 2787 * scsi_probe() may or may not have been issued and will *not* 2788 * free previously-freed resources. 2789 */ 2790 scsi_unprobe(devp); 2791 return (rval); 2792 } 2793 2794 2795 /* 2796 * Function: sdinfo 2797 * 2798 * Description: This is the driver getinfo(9e) entry point function. 2799 * Given the device number, return the devinfo pointer from 2800 * the scsi_device structure or the instance number 2801 * associated with the dev_t. 2802 * 2803 * Arguments: dip - pointer to device info structure 2804 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2805 * DDI_INFO_DEVT2INSTANCE) 2806 * arg - driver dev_t 2807 * resultp - user buffer for request response 2808 * 2809 * Return Code: DDI_SUCCESS 2810 * DDI_FAILURE 2811 */ 2812 /* ARGSUSED */ 2813 static int 2814 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2815 { 2816 struct sd_lun *un; 2817 dev_t dev; 2818 int instance; 2819 int error; 2820 2821 switch (infocmd) { 2822 case DDI_INFO_DEVT2DEVINFO: 2823 dev = (dev_t)arg; 2824 instance = SDUNIT(dev); 2825 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2826 return (DDI_FAILURE); 2827 } 2828 *result = (void *) SD_DEVINFO(un); 2829 error = DDI_SUCCESS; 2830 break; 2831 case DDI_INFO_DEVT2INSTANCE: 2832 dev = (dev_t)arg; 2833 instance = SDUNIT(dev); 2834 *result = (void *)(uintptr_t)instance; 2835 error = DDI_SUCCESS; 2836 break; 2837 default: 2838 error = DDI_FAILURE; 2839 } 2840 return (error); 2841 } 2842 2843 /* 2844 * Function: sd_prop_op 2845 * 2846 * Description: This is the driver prop_op(9e) entry point function. 2847 * Return the number of blocks for the partition in question 2848 * or forward the request to the property facilities. 2849 * 2850 * Arguments: dev - device number 2851 * dip - pointer to device info structure 2852 * prop_op - property operator 2853 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2854 * name - pointer to property name 2855 * valuep - pointer or address of the user buffer 2856 * lengthp - property length 2857 * 2858 * Return Code: DDI_PROP_SUCCESS 2859 * DDI_PROP_NOT_FOUND 2860 * DDI_PROP_UNDEFINED 2861 * DDI_PROP_NO_MEMORY 2862 * DDI_PROP_BUF_TOO_SMALL 2863 */ 2864 2865 static int 2866 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2867 char *name, caddr_t valuep, int *lengthp) 2868 { 2869 struct sd_lun *un; 2870 2871 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2872 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2873 name, valuep, lengthp)); 2874 2875 return (cmlb_prop_op(un->un_cmlbhandle, 2876 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2877 SDPART(dev), (void *)SD_PATH_DIRECT)); 2878 } 2879 2880 /* 2881 * The following functions are for smart probing: 2882 * sd_scsi_probe_cache_init() 2883 * sd_scsi_probe_cache_fini() 2884 * sd_scsi_clear_probe_cache() 2885 * sd_scsi_probe_with_cache() 2886 */ 2887 2888 /* 2889 * Function: sd_scsi_probe_cache_init 2890 * 2891 * Description: Initializes the probe response cache mutex and head pointer. 2892 * 2893 * Context: Kernel thread context 2894 */ 2895 2896 static void 2897 sd_scsi_probe_cache_init(void) 2898 { 2899 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2900 sd_scsi_probe_cache_head = NULL; 2901 } 2902 2903 2904 /* 2905 * Function: sd_scsi_probe_cache_fini 2906 * 2907 * Description: Frees all resources associated with the probe response cache. 2908 * 2909 * Context: Kernel thread context 2910 */ 2911 2912 static void 2913 sd_scsi_probe_cache_fini(void) 2914 { 2915 struct sd_scsi_probe_cache *cp; 2916 struct sd_scsi_probe_cache *ncp; 2917 2918 /* Clean up our smart probing linked list */ 2919 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2920 ncp = cp->next; 2921 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2922 } 2923 sd_scsi_probe_cache_head = NULL; 2924 mutex_destroy(&sd_scsi_probe_cache_mutex); 2925 } 2926 2927 2928 /* 2929 * Function: sd_scsi_clear_probe_cache 2930 * 2931 * Description: This routine clears the probe response cache. This is 2932 * done when open() returns ENXIO so that when deferred 2933 * attach is attempted (possibly after a device has been 2934 * turned on) we will retry the probe. Since we don't know 2935 * which target we failed to open, we just clear the 2936 * entire cache. 2937 * 2938 * Context: Kernel thread context 2939 */ 2940 2941 static void 2942 sd_scsi_clear_probe_cache(void) 2943 { 2944 struct sd_scsi_probe_cache *cp; 2945 int i; 2946 2947 mutex_enter(&sd_scsi_probe_cache_mutex); 2948 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2949 /* 2950 * Reset all entries to SCSIPROBE_EXISTS. This will 2951 * force probing to be performed the next time 2952 * sd_scsi_probe_with_cache is called. 2953 */ 2954 for (i = 0; i < NTARGETS_WIDE; i++) { 2955 cp->cache[i] = SCSIPROBE_EXISTS; 2956 } 2957 } 2958 mutex_exit(&sd_scsi_probe_cache_mutex); 2959 } 2960 2961 2962 /* 2963 * Function: sd_scsi_probe_with_cache 2964 * 2965 * Description: This routine implements support for a scsi device probe 2966 * with cache. The driver maintains a cache of the target 2967 * responses to scsi probes. If we get no response from a 2968 * target during a probe inquiry, we remember that, and we 2969 * avoid additional calls to scsi_probe on non-zero LUNs 2970 * on the same target until the cache is cleared. By doing 2971 * so we avoid the 1/4 sec selection timeout for nonzero 2972 * LUNs. lun0 of a target is always probed. 2973 * 2974 * Arguments: devp - Pointer to a scsi_device(9S) structure 2975 * waitfunc - indicates what the allocator routines should 2976 * do when resources are not available. This value 2977 * is passed on to scsi_probe() when that routine 2978 * is called. 2979 * 2980 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2981 * otherwise the value returned by scsi_probe(9F). 2982 * 2983 * Context: Kernel thread context 2984 */ 2985 2986 static int 2987 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2988 { 2989 struct sd_scsi_probe_cache *cp; 2990 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2991 int lun, tgt; 2992 2993 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2994 SCSI_ADDR_PROP_LUN, 0); 2995 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2996 SCSI_ADDR_PROP_TARGET, -1); 2997 2998 /* Make sure caching enabled and target in range */ 2999 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 3000 /* do it the old way (no cache) */ 3001 return (scsi_probe(devp, waitfn)); 3002 } 3003 3004 mutex_enter(&sd_scsi_probe_cache_mutex); 3005 3006 /* Find the cache for this scsi bus instance */ 3007 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 3008 if (cp->pdip == pdip) { 3009 break; 3010 } 3011 } 3012 3013 /* If we can't find a cache for this pdip, create one */ 3014 if (cp == NULL) { 3015 int i; 3016 3017 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3018 KM_SLEEP); 3019 cp->pdip = pdip; 3020 cp->next = sd_scsi_probe_cache_head; 3021 sd_scsi_probe_cache_head = cp; 3022 for (i = 0; i < NTARGETS_WIDE; i++) { 3023 cp->cache[i] = SCSIPROBE_EXISTS; 3024 } 3025 } 3026 3027 mutex_exit(&sd_scsi_probe_cache_mutex); 3028 3029 /* Recompute the cache for this target if LUN zero */ 3030 if (lun == 0) { 3031 cp->cache[tgt] = SCSIPROBE_EXISTS; 3032 } 3033 3034 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3035 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3036 return (SCSIPROBE_NORESP); 3037 } 3038 3039 /* Do the actual probe; save & return the result */ 3040 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3041 } 3042 3043 3044 /* 3045 * Function: sd_scsi_target_lun_init 3046 * 3047 * Description: Initializes the attached lun chain mutex and head pointer. 3048 * 3049 * Context: Kernel thread context 3050 */ 3051 3052 static void 3053 sd_scsi_target_lun_init(void) 3054 { 3055 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3056 sd_scsi_target_lun_head = NULL; 3057 } 3058 3059 3060 /* 3061 * Function: sd_scsi_target_lun_fini 3062 * 3063 * Description: Frees all resources associated with the attached lun 3064 * chain 3065 * 3066 * Context: Kernel thread context 3067 */ 3068 3069 static void 3070 sd_scsi_target_lun_fini(void) 3071 { 3072 struct sd_scsi_hba_tgt_lun *cp; 3073 struct sd_scsi_hba_tgt_lun *ncp; 3074 3075 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3076 ncp = cp->next; 3077 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3078 } 3079 sd_scsi_target_lun_head = NULL; 3080 mutex_destroy(&sd_scsi_target_lun_mutex); 3081 } 3082 3083 3084 /* 3085 * Function: sd_scsi_get_target_lun_count 3086 * 3087 * Description: This routine will check in the attached lun chain to see 3088 * how many luns are attached on the required SCSI controller 3089 * and target. Currently, some capabilities like tagged queue 3090 * are supported per target based by HBA. So all luns in a 3091 * target have the same capabilities. Based on this assumption, 3092 * sd should only set these capabilities once per target. This 3093 * function is called when sd needs to decide how many luns 3094 * already attached on a target. 3095 * 3096 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3097 * controller device. 3098 * target - The target ID on the controller's SCSI bus. 3099 * 3100 * Return Code: The number of luns attached on the required target and 3101 * controller. 3102 * -1 if target ID is not in parallel SCSI scope or the given 3103 * dip is not in the chain. 3104 * 3105 * Context: Kernel thread context 3106 */ 3107 3108 static int 3109 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3110 { 3111 struct sd_scsi_hba_tgt_lun *cp; 3112 3113 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3114 return (-1); 3115 } 3116 3117 mutex_enter(&sd_scsi_target_lun_mutex); 3118 3119 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3120 if (cp->pdip == dip) { 3121 break; 3122 } 3123 } 3124 3125 mutex_exit(&sd_scsi_target_lun_mutex); 3126 3127 if (cp == NULL) { 3128 return (-1); 3129 } 3130 3131 return (cp->nlun[target]); 3132 } 3133 3134 3135 /* 3136 * Function: sd_scsi_update_lun_on_target 3137 * 3138 * Description: This routine is used to update the attached lun chain when a 3139 * lun is attached or detached on a target. 3140 * 3141 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3142 * controller device. 3143 * target - The target ID on the controller's SCSI bus. 3144 * flag - Indicate the lun is attached or detached. 3145 * 3146 * Context: Kernel thread context 3147 */ 3148 3149 static void 3150 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3151 { 3152 struct sd_scsi_hba_tgt_lun *cp; 3153 3154 mutex_enter(&sd_scsi_target_lun_mutex); 3155 3156 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3157 if (cp->pdip == dip) { 3158 break; 3159 } 3160 } 3161 3162 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3163 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3164 KM_SLEEP); 3165 cp->pdip = dip; 3166 cp->next = sd_scsi_target_lun_head; 3167 sd_scsi_target_lun_head = cp; 3168 } 3169 3170 mutex_exit(&sd_scsi_target_lun_mutex); 3171 3172 if (cp != NULL) { 3173 if (flag == SD_SCSI_LUN_ATTACH) { 3174 cp->nlun[target] ++; 3175 } else { 3176 cp->nlun[target] --; 3177 } 3178 } 3179 } 3180 3181 3182 /* 3183 * Function: sd_spin_up_unit 3184 * 3185 * Description: Issues the following commands to spin-up the device: 3186 * START STOP UNIT, and INQUIRY. 3187 * 3188 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3189 * structure for this target. 3190 * 3191 * Return Code: 0 - success 3192 * EIO - failure 3193 * EACCES - reservation conflict 3194 * 3195 * Context: Kernel thread context 3196 */ 3197 3198 static int 3199 sd_spin_up_unit(sd_ssc_t *ssc) 3200 { 3201 size_t resid = 0; 3202 int has_conflict = FALSE; 3203 uchar_t *bufaddr; 3204 int status; 3205 struct sd_lun *un; 3206 3207 ASSERT(ssc != NULL); 3208 un = ssc->ssc_un; 3209 ASSERT(un != NULL); 3210 3211 /* 3212 * Send a throwaway START UNIT command. 3213 * 3214 * If we fail on this, we don't care presently what precisely 3215 * is wrong. EMC's arrays will also fail this with a check 3216 * condition (0x2/0x4/0x3) if the device is "inactive," but 3217 * we don't want to fail the attach because it may become 3218 * "active" later. 3219 * We don't know if power condition is supported or not at 3220 * this stage, use START STOP bit. 3221 */ 3222 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3223 SD_TARGET_START, SD_PATH_DIRECT); 3224 3225 if (status != 0) { 3226 if (status == EACCES) 3227 has_conflict = TRUE; 3228 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3229 } 3230 3231 /* 3232 * Send another INQUIRY command to the target. This is necessary for 3233 * non-removable media direct access devices because their INQUIRY data 3234 * may not be fully qualified until they are spun up (perhaps via the 3235 * START command above). Note: This seems to be needed for some 3236 * legacy devices only.) The INQUIRY command should succeed even if a 3237 * Reservation Conflict is present. 3238 */ 3239 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3240 3241 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3242 != 0) { 3243 kmem_free(bufaddr, SUN_INQSIZE); 3244 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3245 return (EIO); 3246 } 3247 3248 /* 3249 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3250 * Note that this routine does not return a failure here even if the 3251 * INQUIRY command did not return any data. This is a legacy behavior. 3252 */ 3253 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3254 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3255 } 3256 3257 kmem_free(bufaddr, SUN_INQSIZE); 3258 3259 /* If we hit a reservation conflict above, tell the caller. */ 3260 if (has_conflict == TRUE) { 3261 return (EACCES); 3262 } 3263 3264 return (0); 3265 } 3266 3267 #ifdef _LP64 3268 /* 3269 * Function: sd_enable_descr_sense 3270 * 3271 * Description: This routine attempts to select descriptor sense format 3272 * using the Control mode page. Devices that support 64 bit 3273 * LBAs (for >2TB luns) should also implement descriptor 3274 * sense data so we will call this function whenever we see 3275 * a lun larger than 2TB. If for some reason the device 3276 * supports 64 bit LBAs but doesn't support descriptor sense 3277 * presumably the mode select will fail. Everything will 3278 * continue to work normally except that we will not get 3279 * complete sense data for commands that fail with an LBA 3280 * larger than 32 bits. 3281 * 3282 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3283 * structure for this target. 3284 * 3285 * Context: Kernel thread context only 3286 */ 3287 3288 static void 3289 sd_enable_descr_sense(sd_ssc_t *ssc) 3290 { 3291 uchar_t *header; 3292 struct mode_control_scsi3 *ctrl_bufp; 3293 size_t buflen; 3294 size_t bd_len; 3295 int status; 3296 struct sd_lun *un; 3297 3298 ASSERT(ssc != NULL); 3299 un = ssc->ssc_un; 3300 ASSERT(un != NULL); 3301 3302 /* 3303 * Read MODE SENSE page 0xA, Control Mode Page 3304 */ 3305 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3306 sizeof (struct mode_control_scsi3); 3307 header = kmem_zalloc(buflen, KM_SLEEP); 3308 3309 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3310 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3311 3312 if (status != 0) { 3313 SD_ERROR(SD_LOG_COMMON, un, 3314 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3315 goto eds_exit; 3316 } 3317 3318 /* 3319 * Determine size of Block Descriptors in order to locate 3320 * the mode page data. ATAPI devices return 0, SCSI devices 3321 * should return MODE_BLK_DESC_LENGTH. 3322 */ 3323 bd_len = ((struct mode_header *)header)->bdesc_length; 3324 3325 /* Clear the mode data length field for MODE SELECT */ 3326 ((struct mode_header *)header)->length = 0; 3327 3328 ctrl_bufp = (struct mode_control_scsi3 *) 3329 (header + MODE_HEADER_LENGTH + bd_len); 3330 3331 /* 3332 * If the page length is smaller than the expected value, 3333 * the target device doesn't support D_SENSE. Bail out here. 3334 */ 3335 if (ctrl_bufp->mode_page.length < 3336 sizeof (struct mode_control_scsi3) - 2) { 3337 SD_ERROR(SD_LOG_COMMON, un, 3338 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3339 goto eds_exit; 3340 } 3341 3342 /* 3343 * Clear PS bit for MODE SELECT 3344 */ 3345 ctrl_bufp->mode_page.ps = 0; 3346 3347 /* 3348 * Set D_SENSE to enable descriptor sense format. 3349 */ 3350 ctrl_bufp->d_sense = 1; 3351 3352 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3353 3354 /* 3355 * Use MODE SELECT to commit the change to the D_SENSE bit 3356 */ 3357 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3358 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3359 3360 if (status != 0) { 3361 SD_INFO(SD_LOG_COMMON, un, 3362 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3363 } else { 3364 kmem_free(header, buflen); 3365 return; 3366 } 3367 3368 eds_exit: 3369 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3370 kmem_free(header, buflen); 3371 } 3372 3373 /* 3374 * Function: sd_reenable_dsense_task 3375 * 3376 * Description: Re-enable descriptor sense after device or bus reset 3377 * 3378 * Context: Executes in a taskq() thread context 3379 */ 3380 static void 3381 sd_reenable_dsense_task(void *arg) 3382 { 3383 struct sd_lun *un = arg; 3384 sd_ssc_t *ssc; 3385 3386 ASSERT(un != NULL); 3387 3388 ssc = sd_ssc_init(un); 3389 sd_enable_descr_sense(ssc); 3390 sd_ssc_fini(ssc); 3391 } 3392 #endif /* _LP64 */ 3393 3394 /* 3395 * Function: sd_set_mmc_caps 3396 * 3397 * Description: This routine determines if the device is MMC compliant and if 3398 * the device supports CDDA via a mode sense of the CDVD 3399 * capabilities mode page. Also checks if the device is a 3400 * dvdram writable device. 3401 * 3402 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3403 * structure for this target. 3404 * 3405 * Context: Kernel thread context only 3406 */ 3407 3408 static void 3409 sd_set_mmc_caps(sd_ssc_t *ssc) 3410 { 3411 struct mode_header_grp2 *sense_mhp; 3412 uchar_t *sense_page; 3413 caddr_t buf; 3414 int bd_len; 3415 int status; 3416 struct uscsi_cmd com; 3417 int rtn; 3418 uchar_t *out_data_rw, *out_data_hd; 3419 uchar_t *rqbuf_rw, *rqbuf_hd; 3420 uchar_t *out_data_gesn; 3421 int gesn_len; 3422 struct sd_lun *un; 3423 3424 ASSERT(ssc != NULL); 3425 un = ssc->ssc_un; 3426 ASSERT(un != NULL); 3427 3428 /* 3429 * The flags which will be set in this function are - mmc compliant, 3430 * dvdram writable device, cdda support. Initialize them to FALSE 3431 * and if a capability is detected - it will be set to TRUE. 3432 */ 3433 un->un_f_mmc_cap = FALSE; 3434 un->un_f_dvdram_writable_device = FALSE; 3435 un->un_f_cfg_cdda = FALSE; 3436 3437 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3438 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3439 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3440 3441 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3442 3443 if (status != 0) { 3444 /* command failed; just return */ 3445 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3446 return; 3447 } 3448 /* 3449 * If the mode sense request for the CDROM CAPABILITIES 3450 * page (0x2A) succeeds the device is assumed to be MMC. 3451 */ 3452 un->un_f_mmc_cap = TRUE; 3453 3454 /* See if GET STATUS EVENT NOTIFICATION is supported */ 3455 if (un->un_f_mmc_gesn_polling) { 3456 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN; 3457 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP); 3458 3459 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc, 3460 out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS); 3461 3462 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3463 3464 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) { 3465 un->un_f_mmc_gesn_polling = FALSE; 3466 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3467 "sd_set_mmc_caps: gesn not supported " 3468 "%d %x %x %x %x\n", rtn, 3469 out_data_gesn[0], out_data_gesn[1], 3470 out_data_gesn[2], out_data_gesn[3]); 3471 } 3472 3473 kmem_free(out_data_gesn, gesn_len); 3474 } 3475 3476 /* Get to the page data */ 3477 sense_mhp = (struct mode_header_grp2 *)buf; 3478 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3479 sense_mhp->bdesc_length_lo; 3480 if (bd_len > MODE_BLK_DESC_LENGTH) { 3481 /* 3482 * We did not get back the expected block descriptor 3483 * length so we cannot determine if the device supports 3484 * CDDA. However, we still indicate the device is MMC 3485 * according to the successful response to the page 3486 * 0x2A mode sense request. 3487 */ 3488 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3489 "sd_set_mmc_caps: Mode Sense returned " 3490 "invalid block descriptor length\n"); 3491 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3492 return; 3493 } 3494 3495 /* See if read CDDA is supported */ 3496 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3497 bd_len); 3498 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3499 3500 /* See if writing DVD RAM is supported. */ 3501 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3502 if (un->un_f_dvdram_writable_device == TRUE) { 3503 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3504 return; 3505 } 3506 3507 /* 3508 * If the device presents DVD or CD capabilities in the mode 3509 * page, we can return here since a RRD will not have 3510 * these capabilities. 3511 */ 3512 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3513 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3514 return; 3515 } 3516 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3517 3518 /* 3519 * If un->un_f_dvdram_writable_device is still FALSE, 3520 * check for a Removable Rigid Disk (RRD). A RRD 3521 * device is identified by the features RANDOM_WRITABLE and 3522 * HARDWARE_DEFECT_MANAGEMENT. 3523 */ 3524 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3525 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3526 3527 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3528 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3529 RANDOM_WRITABLE, SD_PATH_STANDARD); 3530 3531 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3532 3533 if (rtn != 0) { 3534 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3535 kmem_free(rqbuf_rw, SENSE_LENGTH); 3536 return; 3537 } 3538 3539 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3540 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3541 3542 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3543 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3544 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3545 3546 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3547 3548 if (rtn == 0) { 3549 /* 3550 * We have good information, check for random writable 3551 * and hardware defect features. 3552 */ 3553 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3554 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3555 un->un_f_dvdram_writable_device = TRUE; 3556 } 3557 } 3558 3559 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3560 kmem_free(rqbuf_rw, SENSE_LENGTH); 3561 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3562 kmem_free(rqbuf_hd, SENSE_LENGTH); 3563 } 3564 3565 /* 3566 * Function: sd_check_for_writable_cd 3567 * 3568 * Description: This routine determines if the media in the device is 3569 * writable or not. It uses the get configuration command (0x46) 3570 * to determine if the media is writable 3571 * 3572 * Arguments: un - driver soft state (unit) structure 3573 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3574 * chain and the normal command waitq, or 3575 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3576 * "direct" chain and bypass the normal command 3577 * waitq. 3578 * 3579 * Context: Never called at interrupt context. 3580 */ 3581 3582 static void 3583 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3584 { 3585 struct uscsi_cmd com; 3586 uchar_t *out_data; 3587 uchar_t *rqbuf; 3588 int rtn; 3589 uchar_t *out_data_rw, *out_data_hd; 3590 uchar_t *rqbuf_rw, *rqbuf_hd; 3591 struct mode_header_grp2 *sense_mhp; 3592 uchar_t *sense_page; 3593 caddr_t buf; 3594 int bd_len; 3595 int status; 3596 struct sd_lun *un; 3597 3598 ASSERT(ssc != NULL); 3599 un = ssc->ssc_un; 3600 ASSERT(un != NULL); 3601 ASSERT(mutex_owned(SD_MUTEX(un))); 3602 3603 /* 3604 * Initialize the writable media to false, if configuration info. 3605 * tells us otherwise then only we will set it. 3606 */ 3607 un->un_f_mmc_writable_media = FALSE; 3608 mutex_exit(SD_MUTEX(un)); 3609 3610 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3611 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3612 3613 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3614 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3615 3616 if (rtn != 0) 3617 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3618 3619 mutex_enter(SD_MUTEX(un)); 3620 if (rtn == 0) { 3621 /* 3622 * We have good information, check for writable DVD. 3623 */ 3624 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3625 un->un_f_mmc_writable_media = TRUE; 3626 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3627 kmem_free(rqbuf, SENSE_LENGTH); 3628 return; 3629 } 3630 } 3631 3632 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3633 kmem_free(rqbuf, SENSE_LENGTH); 3634 3635 /* 3636 * Determine if this is a RRD type device. 3637 */ 3638 mutex_exit(SD_MUTEX(un)); 3639 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3640 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3641 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3642 3643 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3644 3645 mutex_enter(SD_MUTEX(un)); 3646 if (status != 0) { 3647 /* command failed; just return */ 3648 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3649 return; 3650 } 3651 3652 /* Get to the page data */ 3653 sense_mhp = (struct mode_header_grp2 *)buf; 3654 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3655 if (bd_len > MODE_BLK_DESC_LENGTH) { 3656 /* 3657 * We did not get back the expected block descriptor length so 3658 * we cannot check the mode page. 3659 */ 3660 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3661 "sd_check_for_writable_cd: Mode Sense returned " 3662 "invalid block descriptor length\n"); 3663 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3664 return; 3665 } 3666 3667 /* 3668 * If the device presents DVD or CD capabilities in the mode 3669 * page, we can return here since a RRD device will not have 3670 * these capabilities. 3671 */ 3672 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3673 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3674 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3675 return; 3676 } 3677 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3678 3679 /* 3680 * If un->un_f_mmc_writable_media is still FALSE, 3681 * check for RRD type media. A RRD device is identified 3682 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3683 */ 3684 mutex_exit(SD_MUTEX(un)); 3685 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3686 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3687 3688 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3689 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3690 RANDOM_WRITABLE, path_flag); 3691 3692 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3693 if (rtn != 0) { 3694 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3695 kmem_free(rqbuf_rw, SENSE_LENGTH); 3696 mutex_enter(SD_MUTEX(un)); 3697 return; 3698 } 3699 3700 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3701 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3702 3703 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3704 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3705 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3706 3707 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3708 mutex_enter(SD_MUTEX(un)); 3709 if (rtn == 0) { 3710 /* 3711 * We have good information, check for random writable 3712 * and hardware defect features as current. 3713 */ 3714 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3715 (out_data_rw[10] & 0x1) && 3716 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3717 (out_data_hd[10] & 0x1)) { 3718 un->un_f_mmc_writable_media = TRUE; 3719 } 3720 } 3721 3722 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3723 kmem_free(rqbuf_rw, SENSE_LENGTH); 3724 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3725 kmem_free(rqbuf_hd, SENSE_LENGTH); 3726 } 3727 3728 /* 3729 * Function: sd_read_unit_properties 3730 * 3731 * Description: The following implements a property lookup mechanism. 3732 * Properties for particular disks (keyed on vendor, model 3733 * and rev numbers) are sought in the sd.conf file via 3734 * sd_process_sdconf_file(), and if not found there, are 3735 * looked for in a list hardcoded in this driver via 3736 * sd_process_sdconf_table() Once located the properties 3737 * are used to update the driver unit structure. 3738 * 3739 * Arguments: un - driver soft state (unit) structure 3740 */ 3741 3742 static void 3743 sd_read_unit_properties(struct sd_lun *un) 3744 { 3745 /* 3746 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3747 * the "sd-config-list" property (from the sd.conf file) or if 3748 * there was not a match for the inquiry vid/pid. If this event 3749 * occurs the static driver configuration table is searched for 3750 * a match. 3751 */ 3752 ASSERT(un != NULL); 3753 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3754 sd_process_sdconf_table(un); 3755 } 3756 3757 /* check for LSI device */ 3758 sd_is_lsi(un); 3759 3760 3761 } 3762 3763 3764 /* 3765 * Function: sd_process_sdconf_file 3766 * 3767 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3768 * driver's config file (ie, sd.conf) and update the driver 3769 * soft state structure accordingly. 3770 * 3771 * Arguments: un - driver soft state (unit) structure 3772 * 3773 * Return Code: SD_SUCCESS - The properties were successfully set according 3774 * to the driver configuration file. 3775 * SD_FAILURE - The driver config list was not obtained or 3776 * there was no vid/pid match. This indicates that 3777 * the static config table should be used. 3778 * 3779 * The config file has a property, "sd-config-list". Currently we support 3780 * two kinds of formats. For both formats, the value of this property 3781 * is a list of duplets: 3782 * 3783 * sd-config-list= 3784 * <duplet>, 3785 * [,<duplet>]*; 3786 * 3787 * For the improved format, where 3788 * 3789 * <duplet>:= "<vid+pid>","<tunable-list>" 3790 * 3791 * and 3792 * 3793 * <tunable-list>:= <tunable> [, <tunable> ]*; 3794 * <tunable> = <name> : <value> 3795 * 3796 * The <vid+pid> is the string that is returned by the target device on a 3797 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3798 * to apply to all target devices with the specified <vid+pid>. 3799 * 3800 * Each <tunable> is a "<name> : <value>" pair. 3801 * 3802 * For the old format, the structure of each duplet is as follows: 3803 * 3804 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3805 * 3806 * The first entry of the duplet is the device ID string (the concatenated 3807 * vid & pid; not to be confused with a device_id). This is defined in 3808 * the same way as in the sd_disk_table. 3809 * 3810 * The second part of the duplet is a string that identifies a 3811 * data-property-name-list. The data-property-name-list is defined as 3812 * follows: 3813 * 3814 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3815 * 3816 * The syntax of <data-property-name> depends on the <version> field. 3817 * 3818 * If version = SD_CONF_VERSION_1 we have the following syntax: 3819 * 3820 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3821 * 3822 * where the prop0 value will be used to set prop0 if bit0 set in the 3823 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3824 * 3825 */ 3826 3827 static int 3828 sd_process_sdconf_file(struct sd_lun *un) 3829 { 3830 char **config_list = NULL; 3831 uint_t nelements; 3832 char *vidptr; 3833 int vidlen; 3834 char *dnlist_ptr; 3835 char *dataname_ptr; 3836 char *dataname_lasts; 3837 int *data_list = NULL; 3838 uint_t data_list_len; 3839 int rval = SD_FAILURE; 3840 int i; 3841 3842 ASSERT(un != NULL); 3843 3844 /* Obtain the configuration list associated with the .conf file */ 3845 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3846 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3847 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3848 return (SD_FAILURE); 3849 } 3850 3851 /* 3852 * Compare vids in each duplet to the inquiry vid - if a match is 3853 * made, get the data value and update the soft state structure 3854 * accordingly. 3855 * 3856 * Each duplet should show as a pair of strings, return SD_FAILURE 3857 * otherwise. 3858 */ 3859 if (nelements & 1) { 3860 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3861 "sd-config-list should show as pairs of strings.\n"); 3862 if (config_list) 3863 ddi_prop_free(config_list); 3864 return (SD_FAILURE); 3865 } 3866 3867 for (i = 0; i < nelements; i += 2) { 3868 /* 3869 * Note: The assumption here is that each vid entry is on 3870 * a unique line from its associated duplet. 3871 */ 3872 vidptr = config_list[i]; 3873 vidlen = (int)strlen(vidptr); 3874 if ((vidlen == 0) || 3875 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3876 continue; 3877 } 3878 3879 /* 3880 * dnlist contains 1 or more blank separated 3881 * data-property-name entries 3882 */ 3883 dnlist_ptr = config_list[i + 1]; 3884 3885 if (strchr(dnlist_ptr, ':') != NULL) { 3886 /* 3887 * Decode the improved format sd-config-list. 3888 */ 3889 sd_nvpair_str_decode(un, dnlist_ptr); 3890 } else { 3891 /* 3892 * The old format sd-config-list, loop through all 3893 * data-property-name entries in the 3894 * data-property-name-list 3895 * setting the properties for each. 3896 */ 3897 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3898 &dataname_lasts); dataname_ptr != NULL; 3899 dataname_ptr = sd_strtok_r(NULL, " \t", 3900 &dataname_lasts)) { 3901 int version; 3902 3903 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3904 "sd_process_sdconf_file: disk:%s, " 3905 "data:%s\n", vidptr, dataname_ptr); 3906 3907 /* Get the data list */ 3908 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3909 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3910 &data_list_len) != DDI_PROP_SUCCESS) { 3911 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3912 "sd_process_sdconf_file: data " 3913 "property (%s) has no value\n", 3914 dataname_ptr); 3915 continue; 3916 } 3917 3918 version = data_list[0]; 3919 3920 if (version == SD_CONF_VERSION_1) { 3921 sd_tunables values; 3922 3923 /* Set the properties */ 3924 if (sd_chk_vers1_data(un, data_list[1], 3925 &data_list[2], data_list_len, 3926 dataname_ptr) == SD_SUCCESS) { 3927 sd_get_tunables_from_conf(un, 3928 data_list[1], &data_list[2], 3929 &values); 3930 sd_set_vers1_properties(un, 3931 data_list[1], &values); 3932 rval = SD_SUCCESS; 3933 } else { 3934 rval = SD_FAILURE; 3935 } 3936 } else { 3937 scsi_log(SD_DEVINFO(un), sd_label, 3938 CE_WARN, "data property %s version " 3939 "0x%x is invalid.", 3940 dataname_ptr, version); 3941 rval = SD_FAILURE; 3942 } 3943 if (data_list) 3944 ddi_prop_free(data_list); 3945 } 3946 } 3947 } 3948 3949 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3950 if (config_list) { 3951 ddi_prop_free(config_list); 3952 } 3953 3954 return (rval); 3955 } 3956 3957 /* 3958 * Function: sd_nvpair_str_decode() 3959 * 3960 * Description: Parse the improved format sd-config-list to get 3961 * each entry of tunable, which includes a name-value pair. 3962 * Then call sd_set_properties() to set the property. 3963 * 3964 * Arguments: un - driver soft state (unit) structure 3965 * nvpair_str - the tunable list 3966 */ 3967 static void 3968 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3969 { 3970 char *nv, *name, *value, *token; 3971 char *nv_lasts, *v_lasts, *x_lasts; 3972 3973 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3974 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3975 token = sd_strtok_r(nv, ":", &v_lasts); 3976 name = sd_strtok_r(token, " \t", &x_lasts); 3977 token = sd_strtok_r(NULL, ":", &v_lasts); 3978 value = sd_strtok_r(token, " \t", &x_lasts); 3979 if (name == NULL || value == NULL) { 3980 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3981 "sd_nvpair_str_decode: " 3982 "name or value is not valid!\n"); 3983 } else { 3984 sd_set_properties(un, name, value); 3985 } 3986 } 3987 } 3988 3989 /* 3990 * Function: sd_strtok_r() 3991 * 3992 * Description: This function uses strpbrk and strspn to break 3993 * string into tokens on sequentially subsequent calls. Return 3994 * NULL when no non-separator characters remain. The first 3995 * argument is NULL for subsequent calls. 3996 */ 3997 static char * 3998 sd_strtok_r(char *string, const char *sepset, char **lasts) 3999 { 4000 char *q, *r; 4001 4002 /* First or subsequent call */ 4003 if (string == NULL) 4004 string = *lasts; 4005 4006 if (string == NULL) 4007 return (NULL); 4008 4009 /* Skip leading separators */ 4010 q = string + strspn(string, sepset); 4011 4012 if (*q == '\0') 4013 return (NULL); 4014 4015 if ((r = strpbrk(q, sepset)) == NULL) 4016 *lasts = NULL; 4017 else { 4018 *r = '\0'; 4019 *lasts = r + 1; 4020 } 4021 return (q); 4022 } 4023 4024 /* 4025 * Function: sd_set_properties() 4026 * 4027 * Description: Set device properties based on the improved 4028 * format sd-config-list. 4029 * 4030 * Arguments: un - driver soft state (unit) structure 4031 * name - supported tunable name 4032 * value - tunable value 4033 */ 4034 static void 4035 sd_set_properties(struct sd_lun *un, char *name, char *value) 4036 { 4037 char *endptr = NULL; 4038 long val = 0; 4039 4040 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4041 if (strcasecmp(value, "true") == 0) { 4042 un->un_f_suppress_cache_flush = TRUE; 4043 } else if (strcasecmp(value, "false") == 0) { 4044 un->un_f_suppress_cache_flush = FALSE; 4045 } else { 4046 goto value_invalid; 4047 } 4048 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4049 "suppress_cache_flush flag set to %d\n", 4050 un->un_f_suppress_cache_flush); 4051 return; 4052 } 4053 4054 if (strcasecmp(name, "controller-type") == 0) { 4055 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4056 un->un_ctype = val; 4057 } else { 4058 goto value_invalid; 4059 } 4060 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4061 "ctype set to %d\n", un->un_ctype); 4062 return; 4063 } 4064 4065 if (strcasecmp(name, "delay-busy") == 0) { 4066 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4067 un->un_busy_timeout = drv_usectohz(val / 1000); 4068 } else { 4069 goto value_invalid; 4070 } 4071 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4072 "busy_timeout set to %d\n", un->un_busy_timeout); 4073 return; 4074 } 4075 4076 if (strcasecmp(name, "disksort") == 0) { 4077 if (strcasecmp(value, "true") == 0) { 4078 un->un_f_disksort_disabled = FALSE; 4079 } else if (strcasecmp(value, "false") == 0) { 4080 un->un_f_disksort_disabled = TRUE; 4081 } else { 4082 goto value_invalid; 4083 } 4084 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4085 "disksort disabled flag set to %d\n", 4086 un->un_f_disksort_disabled); 4087 return; 4088 } 4089 4090 if (strcasecmp(name, "power-condition") == 0) { 4091 if (strcasecmp(value, "true") == 0) { 4092 un->un_f_power_condition_disabled = FALSE; 4093 } else if (strcasecmp(value, "false") == 0) { 4094 un->un_f_power_condition_disabled = TRUE; 4095 } else { 4096 goto value_invalid; 4097 } 4098 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4099 "power condition disabled flag set to %d\n", 4100 un->un_f_power_condition_disabled); 4101 return; 4102 } 4103 4104 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4105 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4106 un->un_reserve_release_time = val; 4107 } else { 4108 goto value_invalid; 4109 } 4110 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4111 "reservation release timeout set to %d\n", 4112 un->un_reserve_release_time); 4113 return; 4114 } 4115 4116 if (strcasecmp(name, "reset-lun") == 0) { 4117 if (strcasecmp(value, "true") == 0) { 4118 un->un_f_lun_reset_enabled = TRUE; 4119 } else if (strcasecmp(value, "false") == 0) { 4120 un->un_f_lun_reset_enabled = FALSE; 4121 } else { 4122 goto value_invalid; 4123 } 4124 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4125 "lun reset enabled flag set to %d\n", 4126 un->un_f_lun_reset_enabled); 4127 return; 4128 } 4129 4130 if (strcasecmp(name, "retries-busy") == 0) { 4131 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4132 un->un_busy_retry_count = val; 4133 } else { 4134 goto value_invalid; 4135 } 4136 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4137 "busy retry count set to %d\n", un->un_busy_retry_count); 4138 return; 4139 } 4140 4141 if (strcasecmp(name, "retries-timeout") == 0) { 4142 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4143 un->un_retry_count = val; 4144 } else { 4145 goto value_invalid; 4146 } 4147 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4148 "timeout retry count set to %d\n", un->un_retry_count); 4149 return; 4150 } 4151 4152 if (strcasecmp(name, "retries-notready") == 0) { 4153 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4154 un->un_notready_retry_count = val; 4155 } else { 4156 goto value_invalid; 4157 } 4158 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4159 "notready retry count set to %d\n", 4160 un->un_notready_retry_count); 4161 return; 4162 } 4163 4164 if (strcasecmp(name, "retries-reset") == 0) { 4165 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4166 un->un_reset_retry_count = val; 4167 } else { 4168 goto value_invalid; 4169 } 4170 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4171 "reset retry count set to %d\n", 4172 un->un_reset_retry_count); 4173 return; 4174 } 4175 4176 if (strcasecmp(name, "throttle-max") == 0) { 4177 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4178 un->un_saved_throttle = un->un_throttle = val; 4179 } else { 4180 goto value_invalid; 4181 } 4182 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4183 "throttle set to %d\n", un->un_throttle); 4184 } 4185 4186 if (strcasecmp(name, "throttle-min") == 0) { 4187 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4188 un->un_min_throttle = val; 4189 } else { 4190 goto value_invalid; 4191 } 4192 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4193 "min throttle set to %d\n", un->un_min_throttle); 4194 } 4195 4196 if (strcasecmp(name, "rmw-type") == 0) { 4197 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4198 un->un_f_rmw_type = val; 4199 } else { 4200 goto value_invalid; 4201 } 4202 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4203 "RMW type set to %d\n", un->un_f_rmw_type); 4204 } 4205 4206 /* 4207 * Validate the throttle values. 4208 * If any of the numbers are invalid, set everything to defaults. 4209 */ 4210 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4211 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4212 (un->un_min_throttle > un->un_throttle)) { 4213 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4214 un->un_min_throttle = sd_min_throttle; 4215 } 4216 4217 if (strcasecmp(name, "mmc-gesn-polling") == 0) { 4218 if (strcasecmp(value, "true") == 0) { 4219 un->un_f_mmc_gesn_polling = TRUE; 4220 } else if (strcasecmp(value, "false") == 0) { 4221 un->un_f_mmc_gesn_polling = FALSE; 4222 } else { 4223 goto value_invalid; 4224 } 4225 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4226 "mmc-gesn-polling set to %d\n", 4227 un->un_f_mmc_gesn_polling); 4228 } 4229 4230 return; 4231 4232 value_invalid: 4233 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4234 "value of prop %s is invalid\n", name); 4235 } 4236 4237 /* 4238 * Function: sd_get_tunables_from_conf() 4239 * 4240 * 4241 * This function reads the data list from the sd.conf file and pulls 4242 * the values that can have numeric values as arguments and places 4243 * the values in the appropriate sd_tunables member. 4244 * Since the order of the data list members varies across platforms 4245 * This function reads them from the data list in a platform specific 4246 * order and places them into the correct sd_tunable member that is 4247 * consistent across all platforms. 4248 */ 4249 static void 4250 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4251 sd_tunables *values) 4252 { 4253 int i; 4254 int mask; 4255 4256 bzero(values, sizeof (sd_tunables)); 4257 4258 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4259 4260 mask = 1 << i; 4261 if (mask > flags) { 4262 break; 4263 } 4264 4265 switch (mask & flags) { 4266 case 0: /* This mask bit not set in flags */ 4267 continue; 4268 case SD_CONF_BSET_THROTTLE: 4269 values->sdt_throttle = data_list[i]; 4270 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4271 "sd_get_tunables_from_conf: throttle = %d\n", 4272 values->sdt_throttle); 4273 break; 4274 case SD_CONF_BSET_CTYPE: 4275 values->sdt_ctype = data_list[i]; 4276 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4277 "sd_get_tunables_from_conf: ctype = %d\n", 4278 values->sdt_ctype); 4279 break; 4280 case SD_CONF_BSET_NRR_COUNT: 4281 values->sdt_not_rdy_retries = data_list[i]; 4282 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4283 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4284 values->sdt_not_rdy_retries); 4285 break; 4286 case SD_CONF_BSET_BSY_RETRY_COUNT: 4287 values->sdt_busy_retries = data_list[i]; 4288 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4289 "sd_get_tunables_from_conf: busy_retries = %d\n", 4290 values->sdt_busy_retries); 4291 break; 4292 case SD_CONF_BSET_RST_RETRIES: 4293 values->sdt_reset_retries = data_list[i]; 4294 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4295 "sd_get_tunables_from_conf: reset_retries = %d\n", 4296 values->sdt_reset_retries); 4297 break; 4298 case SD_CONF_BSET_RSV_REL_TIME: 4299 values->sdt_reserv_rel_time = data_list[i]; 4300 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4301 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4302 values->sdt_reserv_rel_time); 4303 break; 4304 case SD_CONF_BSET_MIN_THROTTLE: 4305 values->sdt_min_throttle = data_list[i]; 4306 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4307 "sd_get_tunables_from_conf: min_throttle = %d\n", 4308 values->sdt_min_throttle); 4309 break; 4310 case SD_CONF_BSET_DISKSORT_DISABLED: 4311 values->sdt_disk_sort_dis = data_list[i]; 4312 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4313 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4314 values->sdt_disk_sort_dis); 4315 break; 4316 case SD_CONF_BSET_LUN_RESET_ENABLED: 4317 values->sdt_lun_reset_enable = data_list[i]; 4318 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4319 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4320 "\n", values->sdt_lun_reset_enable); 4321 break; 4322 case SD_CONF_BSET_CACHE_IS_NV: 4323 values->sdt_suppress_cache_flush = data_list[i]; 4324 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4325 "sd_get_tunables_from_conf: \ 4326 suppress_cache_flush = %d" 4327 "\n", values->sdt_suppress_cache_flush); 4328 break; 4329 case SD_CONF_BSET_PC_DISABLED: 4330 values->sdt_disk_sort_dis = data_list[i]; 4331 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4332 "sd_get_tunables_from_conf: power_condition_dis = " 4333 "%d\n", values->sdt_power_condition_dis); 4334 break; 4335 } 4336 } 4337 } 4338 4339 /* 4340 * Function: sd_process_sdconf_table 4341 * 4342 * Description: Search the static configuration table for a match on the 4343 * inquiry vid/pid and update the driver soft state structure 4344 * according to the table property values for the device. 4345 * 4346 * The form of a configuration table entry is: 4347 * <vid+pid>,<flags>,<property-data> 4348 * "SEAGATE ST42400N",1,0x40000, 4349 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4350 * 4351 * Arguments: un - driver soft state (unit) structure 4352 */ 4353 4354 static void 4355 sd_process_sdconf_table(struct sd_lun *un) 4356 { 4357 char *id = NULL; 4358 int table_index; 4359 int idlen; 4360 4361 ASSERT(un != NULL); 4362 for (table_index = 0; table_index < sd_disk_table_size; 4363 table_index++) { 4364 id = sd_disk_table[table_index].device_id; 4365 idlen = strlen(id); 4366 if (idlen == 0) { 4367 continue; 4368 } 4369 4370 /* 4371 * The static configuration table currently does not 4372 * implement version 10 properties. Additionally, 4373 * multiple data-property-name entries are not 4374 * implemented in the static configuration table. 4375 */ 4376 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4377 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4378 "sd_process_sdconf_table: disk %s\n", id); 4379 sd_set_vers1_properties(un, 4380 sd_disk_table[table_index].flags, 4381 sd_disk_table[table_index].properties); 4382 break; 4383 } 4384 } 4385 } 4386 4387 4388 /* 4389 * Function: sd_sdconf_id_match 4390 * 4391 * Description: This local function implements a case sensitive vid/pid 4392 * comparison as well as the boundary cases of wild card and 4393 * multiple blanks. 4394 * 4395 * Note: An implicit assumption made here is that the scsi 4396 * inquiry structure will always keep the vid, pid and 4397 * revision strings in consecutive sequence, so they can be 4398 * read as a single string. If this assumption is not the 4399 * case, a separate string, to be used for the check, needs 4400 * to be built with these strings concatenated. 4401 * 4402 * Arguments: un - driver soft state (unit) structure 4403 * id - table or config file vid/pid 4404 * idlen - length of the vid/pid (bytes) 4405 * 4406 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4407 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4408 */ 4409 4410 static int 4411 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4412 { 4413 struct scsi_inquiry *sd_inq; 4414 int rval = SD_SUCCESS; 4415 4416 ASSERT(un != NULL); 4417 sd_inq = un->un_sd->sd_inq; 4418 ASSERT(id != NULL); 4419 4420 /* 4421 * We use the inq_vid as a pointer to a buffer containing the 4422 * vid and pid and use the entire vid/pid length of the table 4423 * entry for the comparison. This works because the inq_pid 4424 * data member follows inq_vid in the scsi_inquiry structure. 4425 */ 4426 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4427 /* 4428 * The user id string is compared to the inquiry vid/pid 4429 * using a case insensitive comparison and ignoring 4430 * multiple spaces. 4431 */ 4432 rval = sd_blank_cmp(un, id, idlen); 4433 if (rval != SD_SUCCESS) { 4434 /* 4435 * User id strings that start and end with a "*" 4436 * are a special case. These do not have a 4437 * specific vendor, and the product string can 4438 * appear anywhere in the 16 byte PID portion of 4439 * the inquiry data. This is a simple strstr() 4440 * type search for the user id in the inquiry data. 4441 */ 4442 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4443 char *pidptr = &id[1]; 4444 int i; 4445 int j; 4446 int pidstrlen = idlen - 2; 4447 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4448 pidstrlen; 4449 4450 if (j < 0) { 4451 return (SD_FAILURE); 4452 } 4453 for (i = 0; i < j; i++) { 4454 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4455 pidptr, pidstrlen) == 0) { 4456 rval = SD_SUCCESS; 4457 break; 4458 } 4459 } 4460 } 4461 } 4462 } 4463 return (rval); 4464 } 4465 4466 4467 /* 4468 * Function: sd_blank_cmp 4469 * 4470 * Description: If the id string starts and ends with a space, treat 4471 * multiple consecutive spaces as equivalent to a single 4472 * space. For example, this causes a sd_disk_table entry 4473 * of " NEC CDROM " to match a device's id string of 4474 * "NEC CDROM". 4475 * 4476 * Note: The success exit condition for this routine is if 4477 * the pointer to the table entry is '\0' and the cnt of 4478 * the inquiry length is zero. This will happen if the inquiry 4479 * string returned by the device is padded with spaces to be 4480 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4481 * SCSI spec states that the inquiry string is to be padded with 4482 * spaces. 4483 * 4484 * Arguments: un - driver soft state (unit) structure 4485 * id - table or config file vid/pid 4486 * idlen - length of the vid/pid (bytes) 4487 * 4488 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4489 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4490 */ 4491 4492 static int 4493 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4494 { 4495 char *p1; 4496 char *p2; 4497 int cnt; 4498 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4499 sizeof (SD_INQUIRY(un)->inq_pid); 4500 4501 ASSERT(un != NULL); 4502 p2 = un->un_sd->sd_inq->inq_vid; 4503 ASSERT(id != NULL); 4504 p1 = id; 4505 4506 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4507 /* 4508 * Note: string p1 is terminated by a NUL but string p2 4509 * isn't. The end of p2 is determined by cnt. 4510 */ 4511 for (;;) { 4512 /* skip over any extra blanks in both strings */ 4513 while ((*p1 != '\0') && (*p1 == ' ')) { 4514 p1++; 4515 } 4516 while ((cnt != 0) && (*p2 == ' ')) { 4517 p2++; 4518 cnt--; 4519 } 4520 4521 /* compare the two strings */ 4522 if ((cnt == 0) || 4523 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4524 break; 4525 } 4526 while ((cnt > 0) && 4527 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4528 p1++; 4529 p2++; 4530 cnt--; 4531 } 4532 } 4533 } 4534 4535 /* return SD_SUCCESS if both strings match */ 4536 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4537 } 4538 4539 4540 /* 4541 * Function: sd_chk_vers1_data 4542 * 4543 * Description: Verify the version 1 device properties provided by the 4544 * user via the configuration file 4545 * 4546 * Arguments: un - driver soft state (unit) structure 4547 * flags - integer mask indicating properties to be set 4548 * prop_list - integer list of property values 4549 * list_len - number of the elements 4550 * 4551 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4552 * SD_FAILURE - Indicates the user provided data is invalid 4553 */ 4554 4555 static int 4556 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4557 int list_len, char *dataname_ptr) 4558 { 4559 int i; 4560 int mask = 1; 4561 int index = 0; 4562 4563 ASSERT(un != NULL); 4564 4565 /* Check for a NULL property name and list */ 4566 if (dataname_ptr == NULL) { 4567 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4568 "sd_chk_vers1_data: NULL data property name."); 4569 return (SD_FAILURE); 4570 } 4571 if (prop_list == NULL) { 4572 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4573 "sd_chk_vers1_data: %s NULL data property list.", 4574 dataname_ptr); 4575 return (SD_FAILURE); 4576 } 4577 4578 /* Display a warning if undefined bits are set in the flags */ 4579 if (flags & ~SD_CONF_BIT_MASK) { 4580 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4581 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4582 "Properties not set.", 4583 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4584 return (SD_FAILURE); 4585 } 4586 4587 /* 4588 * Verify the length of the list by identifying the highest bit set 4589 * in the flags and validating that the property list has a length 4590 * up to the index of this bit. 4591 */ 4592 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4593 if (flags & mask) { 4594 index++; 4595 } 4596 mask = 1 << i; 4597 } 4598 if (list_len < (index + 2)) { 4599 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4600 "sd_chk_vers1_data: " 4601 "Data property list %s size is incorrect. " 4602 "Properties not set.", dataname_ptr); 4603 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4604 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4605 return (SD_FAILURE); 4606 } 4607 return (SD_SUCCESS); 4608 } 4609 4610 4611 /* 4612 * Function: sd_set_vers1_properties 4613 * 4614 * Description: Set version 1 device properties based on a property list 4615 * retrieved from the driver configuration file or static 4616 * configuration table. Version 1 properties have the format: 4617 * 4618 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4619 * 4620 * where the prop0 value will be used to set prop0 if bit0 4621 * is set in the flags 4622 * 4623 * Arguments: un - driver soft state (unit) structure 4624 * flags - integer mask indicating properties to be set 4625 * prop_list - integer list of property values 4626 */ 4627 4628 static void 4629 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4630 { 4631 ASSERT(un != NULL); 4632 4633 /* 4634 * Set the flag to indicate cache is to be disabled. An attempt 4635 * to disable the cache via sd_cache_control() will be made 4636 * later during attach once the basic initialization is complete. 4637 */ 4638 if (flags & SD_CONF_BSET_NOCACHE) { 4639 un->un_f_opt_disable_cache = TRUE; 4640 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4641 "sd_set_vers1_properties: caching disabled flag set\n"); 4642 } 4643 4644 /* CD-specific configuration parameters */ 4645 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4646 un->un_f_cfg_playmsf_bcd = TRUE; 4647 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4648 "sd_set_vers1_properties: playmsf_bcd set\n"); 4649 } 4650 if (flags & SD_CONF_BSET_READSUB_BCD) { 4651 un->un_f_cfg_readsub_bcd = TRUE; 4652 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4653 "sd_set_vers1_properties: readsub_bcd set\n"); 4654 } 4655 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4656 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4657 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4658 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4659 } 4660 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4661 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4662 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4663 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4664 } 4665 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4666 un->un_f_cfg_no_read_header = TRUE; 4667 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4668 "sd_set_vers1_properties: no_read_header set\n"); 4669 } 4670 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4671 un->un_f_cfg_read_cd_xd4 = TRUE; 4672 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4673 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4674 } 4675 4676 /* Support for devices which do not have valid/unique serial numbers */ 4677 if (flags & SD_CONF_BSET_FAB_DEVID) { 4678 un->un_f_opt_fab_devid = TRUE; 4679 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4680 "sd_set_vers1_properties: fab_devid bit set\n"); 4681 } 4682 4683 /* Support for user throttle configuration */ 4684 if (flags & SD_CONF_BSET_THROTTLE) { 4685 ASSERT(prop_list != NULL); 4686 un->un_saved_throttle = un->un_throttle = 4687 prop_list->sdt_throttle; 4688 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4689 "sd_set_vers1_properties: throttle set to %d\n", 4690 prop_list->sdt_throttle); 4691 } 4692 4693 /* Set the per disk retry count according to the conf file or table. */ 4694 if (flags & SD_CONF_BSET_NRR_COUNT) { 4695 ASSERT(prop_list != NULL); 4696 if (prop_list->sdt_not_rdy_retries) { 4697 un->un_notready_retry_count = 4698 prop_list->sdt_not_rdy_retries; 4699 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4700 "sd_set_vers1_properties: not ready retry count" 4701 " set to %d\n", un->un_notready_retry_count); 4702 } 4703 } 4704 4705 /* The controller type is reported for generic disk driver ioctls */ 4706 if (flags & SD_CONF_BSET_CTYPE) { 4707 ASSERT(prop_list != NULL); 4708 switch (prop_list->sdt_ctype) { 4709 case CTYPE_CDROM: 4710 un->un_ctype = prop_list->sdt_ctype; 4711 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4712 "sd_set_vers1_properties: ctype set to " 4713 "CTYPE_CDROM\n"); 4714 break; 4715 case CTYPE_CCS: 4716 un->un_ctype = prop_list->sdt_ctype; 4717 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4718 "sd_set_vers1_properties: ctype set to " 4719 "CTYPE_CCS\n"); 4720 break; 4721 case CTYPE_ROD: /* RW optical */ 4722 un->un_ctype = prop_list->sdt_ctype; 4723 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4724 "sd_set_vers1_properties: ctype set to " 4725 "CTYPE_ROD\n"); 4726 break; 4727 default: 4728 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4729 "sd_set_vers1_properties: Could not set " 4730 "invalid ctype value (%d)", 4731 prop_list->sdt_ctype); 4732 } 4733 } 4734 4735 /* Purple failover timeout */ 4736 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4737 ASSERT(prop_list != NULL); 4738 un->un_busy_retry_count = 4739 prop_list->sdt_busy_retries; 4740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4741 "sd_set_vers1_properties: " 4742 "busy retry count set to %d\n", 4743 un->un_busy_retry_count); 4744 } 4745 4746 /* Purple reset retry count */ 4747 if (flags & SD_CONF_BSET_RST_RETRIES) { 4748 ASSERT(prop_list != NULL); 4749 un->un_reset_retry_count = 4750 prop_list->sdt_reset_retries; 4751 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4752 "sd_set_vers1_properties: " 4753 "reset retry count set to %d\n", 4754 un->un_reset_retry_count); 4755 } 4756 4757 /* Purple reservation release timeout */ 4758 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4759 ASSERT(prop_list != NULL); 4760 un->un_reserve_release_time = 4761 prop_list->sdt_reserv_rel_time; 4762 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4763 "sd_set_vers1_properties: " 4764 "reservation release timeout set to %d\n", 4765 un->un_reserve_release_time); 4766 } 4767 4768 /* 4769 * Driver flag telling the driver to verify that no commands are pending 4770 * for a device before issuing a Test Unit Ready. This is a workaround 4771 * for a firmware bug in some Seagate eliteI drives. 4772 */ 4773 if (flags & SD_CONF_BSET_TUR_CHECK) { 4774 un->un_f_cfg_tur_check = TRUE; 4775 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4776 "sd_set_vers1_properties: tur queue check set\n"); 4777 } 4778 4779 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4780 un->un_min_throttle = prop_list->sdt_min_throttle; 4781 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4782 "sd_set_vers1_properties: min throttle set to %d\n", 4783 un->un_min_throttle); 4784 } 4785 4786 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4787 un->un_f_disksort_disabled = 4788 (prop_list->sdt_disk_sort_dis != 0) ? 4789 TRUE : FALSE; 4790 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4791 "sd_set_vers1_properties: disksort disabled " 4792 "flag set to %d\n", 4793 prop_list->sdt_disk_sort_dis); 4794 } 4795 4796 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4797 un->un_f_lun_reset_enabled = 4798 (prop_list->sdt_lun_reset_enable != 0) ? 4799 TRUE : FALSE; 4800 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4801 "sd_set_vers1_properties: lun reset enabled " 4802 "flag set to %d\n", 4803 prop_list->sdt_lun_reset_enable); 4804 } 4805 4806 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4807 un->un_f_suppress_cache_flush = 4808 (prop_list->sdt_suppress_cache_flush != 0) ? 4809 TRUE : FALSE; 4810 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4811 "sd_set_vers1_properties: suppress_cache_flush " 4812 "flag set to %d\n", 4813 prop_list->sdt_suppress_cache_flush); 4814 } 4815 4816 if (flags & SD_CONF_BSET_PC_DISABLED) { 4817 un->un_f_power_condition_disabled = 4818 (prop_list->sdt_power_condition_dis != 0) ? 4819 TRUE : FALSE; 4820 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4821 "sd_set_vers1_properties: power_condition_disabled " 4822 "flag set to %d\n", 4823 prop_list->sdt_power_condition_dis); 4824 } 4825 4826 /* 4827 * Validate the throttle values. 4828 * If any of the numbers are invalid, set everything to defaults. 4829 */ 4830 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4831 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4832 (un->un_min_throttle > un->un_throttle)) { 4833 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4834 un->un_min_throttle = sd_min_throttle; 4835 } 4836 } 4837 4838 /* 4839 * Function: sd_is_lsi() 4840 * 4841 * Description: Check for lsi devices, step through the static device 4842 * table to match vid/pid. 4843 * 4844 * Args: un - ptr to sd_lun 4845 * 4846 * Notes: When creating new LSI property, need to add the new LSI property 4847 * to this function. 4848 */ 4849 static void 4850 sd_is_lsi(struct sd_lun *un) 4851 { 4852 char *id = NULL; 4853 int table_index; 4854 int idlen; 4855 void *prop; 4856 4857 ASSERT(un != NULL); 4858 for (table_index = 0; table_index < sd_disk_table_size; 4859 table_index++) { 4860 id = sd_disk_table[table_index].device_id; 4861 idlen = strlen(id); 4862 if (idlen == 0) { 4863 continue; 4864 } 4865 4866 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4867 prop = sd_disk_table[table_index].properties; 4868 if (prop == &lsi_properties || 4869 prop == &lsi_oem_properties || 4870 prop == &lsi_properties_scsi || 4871 prop == &symbios_properties) { 4872 un->un_f_cfg_is_lsi = TRUE; 4873 } 4874 break; 4875 } 4876 } 4877 } 4878 4879 /* 4880 * Function: sd_get_physical_geometry 4881 * 4882 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4883 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4884 * target, and use this information to initialize the physical 4885 * geometry cache specified by pgeom_p. 4886 * 4887 * MODE SENSE is an optional command, so failure in this case 4888 * does not necessarily denote an error. We want to use the 4889 * MODE SENSE commands to derive the physical geometry of the 4890 * device, but if either command fails, the logical geometry is 4891 * used as the fallback for disk label geometry in cmlb. 4892 * 4893 * This requires that un->un_blockcount and un->un_tgt_blocksize 4894 * have already been initialized for the current target and 4895 * that the current values be passed as args so that we don't 4896 * end up ever trying to use -1 as a valid value. This could 4897 * happen if either value is reset while we're not holding 4898 * the mutex. 4899 * 4900 * Arguments: un - driver soft state (unit) structure 4901 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4902 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4903 * to use the USCSI "direct" chain and bypass the normal 4904 * command waitq. 4905 * 4906 * Context: Kernel thread only (can sleep). 4907 */ 4908 4909 static int 4910 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4911 diskaddr_t capacity, int lbasize, int path_flag) 4912 { 4913 struct mode_format *page3p; 4914 struct mode_geometry *page4p; 4915 struct mode_header *headerp; 4916 int sector_size; 4917 int nsect; 4918 int nhead; 4919 int ncyl; 4920 int intrlv; 4921 int spc; 4922 diskaddr_t modesense_capacity; 4923 int rpm; 4924 int bd_len; 4925 int mode_header_length; 4926 uchar_t *p3bufp; 4927 uchar_t *p4bufp; 4928 int cdbsize; 4929 int ret = EIO; 4930 sd_ssc_t *ssc; 4931 int status; 4932 4933 ASSERT(un != NULL); 4934 4935 if (lbasize == 0) { 4936 if (ISCD(un)) { 4937 lbasize = 2048; 4938 } else { 4939 lbasize = un->un_sys_blocksize; 4940 } 4941 } 4942 pgeom_p->g_secsize = (unsigned short)lbasize; 4943 4944 /* 4945 * If the unit is a cd/dvd drive MODE SENSE page three 4946 * and MODE SENSE page four are reserved (see SBC spec 4947 * and MMC spec). To prevent soft errors just return 4948 * using the default LBA size. 4949 */ 4950 if (ISCD(un)) 4951 return (ret); 4952 4953 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4954 4955 /* 4956 * Retrieve MODE SENSE page 3 - Format Device Page 4957 */ 4958 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4959 ssc = sd_ssc_init(un); 4960 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4961 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4962 if (status != 0) { 4963 SD_ERROR(SD_LOG_COMMON, un, 4964 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4965 goto page3_exit; 4966 } 4967 4968 /* 4969 * Determine size of Block Descriptors in order to locate the mode 4970 * page data. ATAPI devices return 0, SCSI devices should return 4971 * MODE_BLK_DESC_LENGTH. 4972 */ 4973 headerp = (struct mode_header *)p3bufp; 4974 if (un->un_f_cfg_is_atapi == TRUE) { 4975 struct mode_header_grp2 *mhp = 4976 (struct mode_header_grp2 *)headerp; 4977 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4978 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4979 } else { 4980 mode_header_length = MODE_HEADER_LENGTH; 4981 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4982 } 4983 4984 if (bd_len > MODE_BLK_DESC_LENGTH) { 4985 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4986 "sd_get_physical_geometry: received unexpected bd_len " 4987 "of %d, page3\n", bd_len); 4988 status = EIO; 4989 goto page3_exit; 4990 } 4991 4992 page3p = (struct mode_format *) 4993 ((caddr_t)headerp + mode_header_length + bd_len); 4994 4995 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4996 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4997 "sd_get_physical_geometry: mode sense pg3 code mismatch " 4998 "%d\n", page3p->mode_page.code); 4999 status = EIO; 5000 goto page3_exit; 5001 } 5002 5003 /* 5004 * Use this physical geometry data only if BOTH MODE SENSE commands 5005 * complete successfully; otherwise, revert to the logical geometry. 5006 * So, we need to save everything in temporary variables. 5007 */ 5008 sector_size = BE_16(page3p->data_bytes_sect); 5009 5010 /* 5011 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5012 */ 5013 if (sector_size == 0) { 5014 sector_size = un->un_sys_blocksize; 5015 } else { 5016 sector_size &= ~(un->un_sys_blocksize - 1); 5017 } 5018 5019 nsect = BE_16(page3p->sect_track); 5020 intrlv = BE_16(page3p->interleave); 5021 5022 SD_INFO(SD_LOG_COMMON, un, 5023 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5024 SD_INFO(SD_LOG_COMMON, un, 5025 " mode page: %d; nsect: %d; sector size: %d;\n", 5026 page3p->mode_page.code, nsect, sector_size); 5027 SD_INFO(SD_LOG_COMMON, un, 5028 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5029 BE_16(page3p->track_skew), 5030 BE_16(page3p->cylinder_skew)); 5031 5032 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5033 5034 /* 5035 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5036 */ 5037 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5038 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 5039 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 5040 if (status != 0) { 5041 SD_ERROR(SD_LOG_COMMON, un, 5042 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5043 goto page4_exit; 5044 } 5045 5046 /* 5047 * Determine size of Block Descriptors in order to locate the mode 5048 * page data. ATAPI devices return 0, SCSI devices should return 5049 * MODE_BLK_DESC_LENGTH. 5050 */ 5051 headerp = (struct mode_header *)p4bufp; 5052 if (un->un_f_cfg_is_atapi == TRUE) { 5053 struct mode_header_grp2 *mhp = 5054 (struct mode_header_grp2 *)headerp; 5055 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5056 } else { 5057 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5058 } 5059 5060 if (bd_len > MODE_BLK_DESC_LENGTH) { 5061 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5062 "sd_get_physical_geometry: received unexpected bd_len of " 5063 "%d, page4\n", bd_len); 5064 status = EIO; 5065 goto page4_exit; 5066 } 5067 5068 page4p = (struct mode_geometry *) 5069 ((caddr_t)headerp + mode_header_length + bd_len); 5070 5071 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5072 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5073 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5074 "%d\n", page4p->mode_page.code); 5075 status = EIO; 5076 goto page4_exit; 5077 } 5078 5079 /* 5080 * Stash the data now, after we know that both commands completed. 5081 */ 5082 5083 5084 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5085 spc = nhead * nsect; 5086 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5087 rpm = BE_16(page4p->rpm); 5088 5089 modesense_capacity = spc * ncyl; 5090 5091 SD_INFO(SD_LOG_COMMON, un, 5092 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5093 SD_INFO(SD_LOG_COMMON, un, 5094 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5095 SD_INFO(SD_LOG_COMMON, un, 5096 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5097 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5098 (void *)pgeom_p, capacity); 5099 5100 /* 5101 * Compensate if the drive's geometry is not rectangular, i.e., 5102 * the product of C * H * S returned by MODE SENSE >= that returned 5103 * by read capacity. This is an idiosyncrasy of the original x86 5104 * disk subsystem. 5105 */ 5106 if (modesense_capacity >= capacity) { 5107 SD_INFO(SD_LOG_COMMON, un, 5108 "sd_get_physical_geometry: adjusting acyl; " 5109 "old: %d; new: %d\n", pgeom_p->g_acyl, 5110 (modesense_capacity - capacity + spc - 1) / spc); 5111 if (sector_size != 0) { 5112 /* 1243403: NEC D38x7 drives don't support sec size */ 5113 pgeom_p->g_secsize = (unsigned short)sector_size; 5114 } 5115 pgeom_p->g_nsect = (unsigned short)nsect; 5116 pgeom_p->g_nhead = (unsigned short)nhead; 5117 pgeom_p->g_capacity = capacity; 5118 pgeom_p->g_acyl = 5119 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5120 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5121 } 5122 5123 pgeom_p->g_rpm = (unsigned short)rpm; 5124 pgeom_p->g_intrlv = (unsigned short)intrlv; 5125 ret = 0; 5126 5127 SD_INFO(SD_LOG_COMMON, un, 5128 "sd_get_physical_geometry: mode sense geometry:\n"); 5129 SD_INFO(SD_LOG_COMMON, un, 5130 " nsect: %d; sector size: %d; interlv: %d\n", 5131 nsect, sector_size, intrlv); 5132 SD_INFO(SD_LOG_COMMON, un, 5133 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5134 nhead, ncyl, rpm, modesense_capacity); 5135 SD_INFO(SD_LOG_COMMON, un, 5136 "sd_get_physical_geometry: (cached)\n"); 5137 SD_INFO(SD_LOG_COMMON, un, 5138 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5139 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5140 pgeom_p->g_nhead, pgeom_p->g_nsect); 5141 SD_INFO(SD_LOG_COMMON, un, 5142 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5143 pgeom_p->g_secsize, pgeom_p->g_capacity, 5144 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5145 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5146 5147 page4_exit: 5148 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5149 5150 page3_exit: 5151 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5152 5153 if (status != 0) { 5154 if (status == EIO) { 5155 /* 5156 * Some disks do not support mode sense(6), we 5157 * should ignore this kind of error(sense key is 5158 * 0x5 - illegal request). 5159 */ 5160 uint8_t *sensep; 5161 int senlen; 5162 5163 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5164 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5165 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5166 5167 if (senlen > 0 && 5168 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5169 sd_ssc_assessment(ssc, 5170 SD_FMT_IGNORE_COMPROMISE); 5171 } else { 5172 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5173 } 5174 } else { 5175 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5176 } 5177 } 5178 sd_ssc_fini(ssc); 5179 return (ret); 5180 } 5181 5182 /* 5183 * Function: sd_get_virtual_geometry 5184 * 5185 * Description: Ask the controller to tell us about the target device. 5186 * 5187 * Arguments: un - pointer to softstate 5188 * capacity - disk capacity in #blocks 5189 * lbasize - disk block size in bytes 5190 * 5191 * Context: Kernel thread only 5192 */ 5193 5194 static int 5195 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5196 diskaddr_t capacity, int lbasize) 5197 { 5198 uint_t geombuf; 5199 int spc; 5200 5201 ASSERT(un != NULL); 5202 5203 /* Set sector size, and total number of sectors */ 5204 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5205 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5206 5207 /* Let the HBA tell us its geometry */ 5208 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5209 5210 /* A value of -1 indicates an undefined "geometry" property */ 5211 if (geombuf == (-1)) { 5212 return (EINVAL); 5213 } 5214 5215 /* Initialize the logical geometry cache. */ 5216 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5217 lgeom_p->g_nsect = geombuf & 0xffff; 5218 lgeom_p->g_secsize = un->un_sys_blocksize; 5219 5220 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5221 5222 /* 5223 * Note: The driver originally converted the capacity value from 5224 * target blocks to system blocks. However, the capacity value passed 5225 * to this routine is already in terms of system blocks (this scaling 5226 * is done when the READ CAPACITY command is issued and processed). 5227 * This 'error' may have gone undetected because the usage of g_ncyl 5228 * (which is based upon g_capacity) is very limited within the driver 5229 */ 5230 lgeom_p->g_capacity = capacity; 5231 5232 /* 5233 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5234 * hba may return zero values if the device has been removed. 5235 */ 5236 if (spc == 0) { 5237 lgeom_p->g_ncyl = 0; 5238 } else { 5239 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5240 } 5241 lgeom_p->g_acyl = 0; 5242 5243 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5244 return (0); 5245 5246 } 5247 /* 5248 * Function: sd_update_block_info 5249 * 5250 * Description: Calculate a byte count to sector count bitshift value 5251 * from sector size. 5252 * 5253 * Arguments: un: unit struct. 5254 * lbasize: new target sector size 5255 * capacity: new target capacity, ie. block count 5256 * 5257 * Context: Kernel thread context 5258 */ 5259 5260 static void 5261 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5262 { 5263 if (lbasize != 0) { 5264 un->un_tgt_blocksize = lbasize; 5265 un->un_f_tgt_blocksize_is_valid = TRUE; 5266 if (!un->un_f_has_removable_media) { 5267 un->un_sys_blocksize = lbasize; 5268 } 5269 } 5270 5271 if (capacity != 0) { 5272 un->un_blockcount = capacity; 5273 un->un_f_blockcount_is_valid = TRUE; 5274 } 5275 } 5276 5277 5278 /* 5279 * Function: sd_register_devid 5280 * 5281 * Description: This routine will obtain the device id information from the 5282 * target, obtain the serial number, and register the device 5283 * id with the ddi framework. 5284 * 5285 * Arguments: devi - the system's dev_info_t for the device. 5286 * un - driver soft state (unit) structure 5287 * reservation_flag - indicates if a reservation conflict 5288 * occurred during attach 5289 * 5290 * Context: Kernel Thread 5291 */ 5292 static void 5293 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5294 { 5295 int rval = 0; 5296 uchar_t *inq80 = NULL; 5297 size_t inq80_len = MAX_INQUIRY_SIZE; 5298 size_t inq80_resid = 0; 5299 uchar_t *inq83 = NULL; 5300 size_t inq83_len = MAX_INQUIRY_SIZE; 5301 size_t inq83_resid = 0; 5302 int dlen, len; 5303 char *sn; 5304 struct sd_lun *un; 5305 5306 ASSERT(ssc != NULL); 5307 un = ssc->ssc_un; 5308 ASSERT(un != NULL); 5309 ASSERT(mutex_owned(SD_MUTEX(un))); 5310 ASSERT((SD_DEVINFO(un)) == devi); 5311 5312 5313 /* 5314 * We check the availability of the World Wide Name (0x83) and Unit 5315 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5316 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5317 * 0x83 is available, that is the best choice. Our next choice is 5318 * 0x80. If neither are available, we munge the devid from the device 5319 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5320 * to fabricate a devid for non-Sun qualified disks. 5321 */ 5322 if (sd_check_vpd_page_support(ssc) == 0) { 5323 /* collect page 80 data if available */ 5324 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5325 5326 mutex_exit(SD_MUTEX(un)); 5327 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5328 5329 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5330 0x01, 0x80, &inq80_resid); 5331 5332 if (rval != 0) { 5333 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5334 kmem_free(inq80, inq80_len); 5335 inq80 = NULL; 5336 inq80_len = 0; 5337 } else if (ddi_prop_exists( 5338 DDI_DEV_T_NONE, SD_DEVINFO(un), 5339 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5340 INQUIRY_SERIAL_NO) == 0) { 5341 /* 5342 * If we don't already have a serial number 5343 * property, do quick verify of data returned 5344 * and define property. 5345 */ 5346 dlen = inq80_len - inq80_resid; 5347 len = (size_t)inq80[3]; 5348 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5349 /* 5350 * Ensure sn termination, skip leading 5351 * blanks, and create property 5352 * 'inquiry-serial-no'. 5353 */ 5354 sn = (char *)&inq80[4]; 5355 sn[len] = 0; 5356 while (*sn && (*sn == ' ')) 5357 sn++; 5358 if (*sn) { 5359 (void) ddi_prop_update_string( 5360 DDI_DEV_T_NONE, 5361 SD_DEVINFO(un), 5362 INQUIRY_SERIAL_NO, sn); 5363 } 5364 } 5365 } 5366 mutex_enter(SD_MUTEX(un)); 5367 } 5368 5369 /* collect page 83 data if available */ 5370 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5371 mutex_exit(SD_MUTEX(un)); 5372 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5373 5374 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5375 0x01, 0x83, &inq83_resid); 5376 5377 if (rval != 0) { 5378 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5379 kmem_free(inq83, inq83_len); 5380 inq83 = NULL; 5381 inq83_len = 0; 5382 } 5383 mutex_enter(SD_MUTEX(un)); 5384 } 5385 } 5386 5387 /* 5388 * If transport has already registered a devid for this target 5389 * then that takes precedence over the driver's determination 5390 * of the devid. 5391 * 5392 * NOTE: The reason this check is done here instead of at the beginning 5393 * of the function is to allow the code above to create the 5394 * 'inquiry-serial-no' property. 5395 */ 5396 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5397 ASSERT(un->un_devid); 5398 un->un_f_devid_transport_defined = TRUE; 5399 goto cleanup; /* use devid registered by the transport */ 5400 } 5401 5402 /* 5403 * This is the case of antiquated Sun disk drives that have the 5404 * FAB_DEVID property set in the disk_table. These drives 5405 * manage the devid's by storing them in last 2 available sectors 5406 * on the drive and have them fabricated by the ddi layer by calling 5407 * ddi_devid_init and passing the DEVID_FAB flag. 5408 */ 5409 if (un->un_f_opt_fab_devid == TRUE) { 5410 /* 5411 * Depending on EINVAL isn't reliable, since a reserved disk 5412 * may result in invalid geometry, so check to make sure a 5413 * reservation conflict did not occur during attach. 5414 */ 5415 if ((sd_get_devid(ssc) == EINVAL) && 5416 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5417 /* 5418 * The devid is invalid AND there is no reservation 5419 * conflict. Fabricate a new devid. 5420 */ 5421 (void) sd_create_devid(ssc); 5422 } 5423 5424 /* Register the devid if it exists */ 5425 if (un->un_devid != NULL) { 5426 (void) ddi_devid_register(SD_DEVINFO(un), 5427 un->un_devid); 5428 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5429 "sd_register_devid: Devid Fabricated\n"); 5430 } 5431 goto cleanup; 5432 } 5433 5434 /* encode best devid possible based on data available */ 5435 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5436 (char *)ddi_driver_name(SD_DEVINFO(un)), 5437 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5438 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5439 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5440 5441 /* devid successfully encoded, register devid */ 5442 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5443 5444 } else { 5445 /* 5446 * Unable to encode a devid based on data available. 5447 * This is not a Sun qualified disk. Older Sun disk 5448 * drives that have the SD_FAB_DEVID property 5449 * set in the disk_table and non Sun qualified 5450 * disks are treated in the same manner. These 5451 * drives manage the devid's by storing them in 5452 * last 2 available sectors on the drive and 5453 * have them fabricated by the ddi layer by 5454 * calling ddi_devid_init and passing the 5455 * DEVID_FAB flag. 5456 * Create a fabricate devid only if there's no 5457 * fabricate devid existed. 5458 */ 5459 if (sd_get_devid(ssc) == EINVAL) { 5460 (void) sd_create_devid(ssc); 5461 } 5462 un->un_f_opt_fab_devid = TRUE; 5463 5464 /* Register the devid if it exists */ 5465 if (un->un_devid != NULL) { 5466 (void) ddi_devid_register(SD_DEVINFO(un), 5467 un->un_devid); 5468 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5469 "sd_register_devid: devid fabricated using " 5470 "ddi framework\n"); 5471 } 5472 } 5473 5474 cleanup: 5475 /* clean up resources */ 5476 if (inq80 != NULL) { 5477 kmem_free(inq80, inq80_len); 5478 } 5479 if (inq83 != NULL) { 5480 kmem_free(inq83, inq83_len); 5481 } 5482 } 5483 5484 5485 5486 /* 5487 * Function: sd_get_devid 5488 * 5489 * Description: This routine will return 0 if a valid device id has been 5490 * obtained from the target and stored in the soft state. If a 5491 * valid device id has not been previously read and stored, a 5492 * read attempt will be made. 5493 * 5494 * Arguments: un - driver soft state (unit) structure 5495 * 5496 * Return Code: 0 if we successfully get the device id 5497 * 5498 * Context: Kernel Thread 5499 */ 5500 5501 static int 5502 sd_get_devid(sd_ssc_t *ssc) 5503 { 5504 struct dk_devid *dkdevid; 5505 ddi_devid_t tmpid; 5506 uint_t *ip; 5507 size_t sz; 5508 diskaddr_t blk; 5509 int status; 5510 int chksum; 5511 int i; 5512 size_t buffer_size; 5513 struct sd_lun *un; 5514 5515 ASSERT(ssc != NULL); 5516 un = ssc->ssc_un; 5517 ASSERT(un != NULL); 5518 ASSERT(mutex_owned(SD_MUTEX(un))); 5519 5520 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5521 un); 5522 5523 if (un->un_devid != NULL) { 5524 return (0); 5525 } 5526 5527 mutex_exit(SD_MUTEX(un)); 5528 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5529 (void *)SD_PATH_DIRECT) != 0) { 5530 mutex_enter(SD_MUTEX(un)); 5531 return (EINVAL); 5532 } 5533 5534 /* 5535 * Read and verify device id, stored in the reserved cylinders at the 5536 * end of the disk. Backup label is on the odd sectors of the last 5537 * track of the last cylinder. Device id will be on track of the next 5538 * to last cylinder. 5539 */ 5540 mutex_enter(SD_MUTEX(un)); 5541 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5542 mutex_exit(SD_MUTEX(un)); 5543 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5544 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5545 SD_PATH_DIRECT); 5546 5547 if (status != 0) { 5548 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5549 goto error; 5550 } 5551 5552 /* Validate the revision */ 5553 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5554 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5555 status = EINVAL; 5556 goto error; 5557 } 5558 5559 /* Calculate the checksum */ 5560 chksum = 0; 5561 ip = (uint_t *)dkdevid; 5562 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5563 i++) { 5564 chksum ^= ip[i]; 5565 } 5566 5567 /* Compare the checksums */ 5568 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5569 status = EINVAL; 5570 goto error; 5571 } 5572 5573 /* Validate the device id */ 5574 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5575 status = EINVAL; 5576 goto error; 5577 } 5578 5579 /* 5580 * Store the device id in the driver soft state 5581 */ 5582 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5583 tmpid = kmem_alloc(sz, KM_SLEEP); 5584 5585 mutex_enter(SD_MUTEX(un)); 5586 5587 un->un_devid = tmpid; 5588 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5589 5590 kmem_free(dkdevid, buffer_size); 5591 5592 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5593 5594 return (status); 5595 error: 5596 mutex_enter(SD_MUTEX(un)); 5597 kmem_free(dkdevid, buffer_size); 5598 return (status); 5599 } 5600 5601 5602 /* 5603 * Function: sd_create_devid 5604 * 5605 * Description: This routine will fabricate the device id and write it 5606 * to the disk. 5607 * 5608 * Arguments: un - driver soft state (unit) structure 5609 * 5610 * Return Code: value of the fabricated device id 5611 * 5612 * Context: Kernel Thread 5613 */ 5614 5615 static ddi_devid_t 5616 sd_create_devid(sd_ssc_t *ssc) 5617 { 5618 struct sd_lun *un; 5619 5620 ASSERT(ssc != NULL); 5621 un = ssc->ssc_un; 5622 ASSERT(un != NULL); 5623 5624 /* Fabricate the devid */ 5625 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5626 == DDI_FAILURE) { 5627 return (NULL); 5628 } 5629 5630 /* Write the devid to disk */ 5631 if (sd_write_deviceid(ssc) != 0) { 5632 ddi_devid_free(un->un_devid); 5633 un->un_devid = NULL; 5634 } 5635 5636 return (un->un_devid); 5637 } 5638 5639 5640 /* 5641 * Function: sd_write_deviceid 5642 * 5643 * Description: This routine will write the device id to the disk 5644 * reserved sector. 5645 * 5646 * Arguments: un - driver soft state (unit) structure 5647 * 5648 * Return Code: EINVAL 5649 * value returned by sd_send_scsi_cmd 5650 * 5651 * Context: Kernel Thread 5652 */ 5653 5654 static int 5655 sd_write_deviceid(sd_ssc_t *ssc) 5656 { 5657 struct dk_devid *dkdevid; 5658 uchar_t *buf; 5659 diskaddr_t blk; 5660 uint_t *ip, chksum; 5661 int status; 5662 int i; 5663 struct sd_lun *un; 5664 5665 ASSERT(ssc != NULL); 5666 un = ssc->ssc_un; 5667 ASSERT(un != NULL); 5668 ASSERT(mutex_owned(SD_MUTEX(un))); 5669 5670 mutex_exit(SD_MUTEX(un)); 5671 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5672 (void *)SD_PATH_DIRECT) != 0) { 5673 mutex_enter(SD_MUTEX(un)); 5674 return (-1); 5675 } 5676 5677 5678 /* Allocate the buffer */ 5679 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5680 dkdevid = (struct dk_devid *)buf; 5681 5682 /* Fill in the revision */ 5683 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5684 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5685 5686 /* Copy in the device id */ 5687 mutex_enter(SD_MUTEX(un)); 5688 bcopy(un->un_devid, &dkdevid->dkd_devid, 5689 ddi_devid_sizeof(un->un_devid)); 5690 mutex_exit(SD_MUTEX(un)); 5691 5692 /* Calculate the checksum */ 5693 chksum = 0; 5694 ip = (uint_t *)dkdevid; 5695 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5696 i++) { 5697 chksum ^= ip[i]; 5698 } 5699 5700 /* Fill-in checksum */ 5701 DKD_FORMCHKSUM(chksum, dkdevid); 5702 5703 /* Write the reserved sector */ 5704 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5705 SD_PATH_DIRECT); 5706 if (status != 0) 5707 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5708 5709 kmem_free(buf, un->un_sys_blocksize); 5710 5711 mutex_enter(SD_MUTEX(un)); 5712 return (status); 5713 } 5714 5715 5716 /* 5717 * Function: sd_check_vpd_page_support 5718 * 5719 * Description: This routine sends an inquiry command with the EVPD bit set and 5720 * a page code of 0x00 to the device. It is used to determine which 5721 * vital product pages are available to find the devid. We are 5722 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5723 * the device does not support that command. 5724 * 5725 * Arguments: un - driver soft state (unit) structure 5726 * 5727 * Return Code: 0 - success 5728 * 1 - check condition 5729 * 5730 * Context: This routine can sleep. 5731 */ 5732 5733 static int 5734 sd_check_vpd_page_support(sd_ssc_t *ssc) 5735 { 5736 uchar_t *page_list = NULL; 5737 uchar_t page_length = 0xff; /* Use max possible length */ 5738 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5739 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5740 int rval = 0; 5741 int counter; 5742 struct sd_lun *un; 5743 5744 ASSERT(ssc != NULL); 5745 un = ssc->ssc_un; 5746 ASSERT(un != NULL); 5747 ASSERT(mutex_owned(SD_MUTEX(un))); 5748 5749 mutex_exit(SD_MUTEX(un)); 5750 5751 /* 5752 * We'll set the page length to the maximum to save figuring it out 5753 * with an additional call. 5754 */ 5755 page_list = kmem_zalloc(page_length, KM_SLEEP); 5756 5757 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5758 page_code, NULL); 5759 5760 if (rval != 0) 5761 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5762 5763 mutex_enter(SD_MUTEX(un)); 5764 5765 /* 5766 * Now we must validate that the device accepted the command, as some 5767 * drives do not support it. If the drive does support it, we will 5768 * return 0, and the supported pages will be in un_vpd_page_mask. If 5769 * not, we return -1. 5770 */ 5771 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5772 /* Loop to find one of the 2 pages we need */ 5773 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5774 5775 /* 5776 * Pages are returned in ascending order, and 0x83 is what we 5777 * are hoping for. 5778 */ 5779 while ((page_list[counter] <= 0xB1) && 5780 (counter <= (page_list[VPD_PAGE_LENGTH] + 5781 VPD_HEAD_OFFSET))) { 5782 /* 5783 * Add 3 because page_list[3] is the number of 5784 * pages minus 3 5785 */ 5786 5787 switch (page_list[counter]) { 5788 case 0x00: 5789 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5790 break; 5791 case 0x80: 5792 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5793 break; 5794 case 0x81: 5795 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5796 break; 5797 case 0x82: 5798 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5799 break; 5800 case 0x83: 5801 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5802 break; 5803 case 0x86: 5804 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5805 break; 5806 case 0xB1: 5807 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5808 break; 5809 } 5810 counter++; 5811 } 5812 5813 } else { 5814 rval = -1; 5815 5816 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5817 "sd_check_vpd_page_support: This drive does not implement " 5818 "VPD pages.\n"); 5819 } 5820 5821 kmem_free(page_list, page_length); 5822 5823 return (rval); 5824 } 5825 5826 5827 /* 5828 * Function: sd_setup_pm 5829 * 5830 * Description: Initialize Power Management on the device 5831 * 5832 * Context: Kernel Thread 5833 */ 5834 5835 static void 5836 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5837 { 5838 uint_t log_page_size; 5839 uchar_t *log_page_data; 5840 int rval = 0; 5841 struct sd_lun *un; 5842 5843 ASSERT(ssc != NULL); 5844 un = ssc->ssc_un; 5845 ASSERT(un != NULL); 5846 5847 /* 5848 * Since we are called from attach, holding a mutex for 5849 * un is unnecessary. Because some of the routines called 5850 * from here require SD_MUTEX to not be held, assert this 5851 * right up front. 5852 */ 5853 ASSERT(!mutex_owned(SD_MUTEX(un))); 5854 /* 5855 * Since the sd device does not have the 'reg' property, 5856 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5857 * The following code is to tell cpr that this device 5858 * DOES need to be suspended and resumed. 5859 */ 5860 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5861 "pm-hardware-state", "needs-suspend-resume"); 5862 5863 /* 5864 * This complies with the new power management framework 5865 * for certain desktop machines. Create the pm_components 5866 * property as a string array property. 5867 * If un_f_pm_supported is TRUE, that means the disk 5868 * attached HBA has set the "pm-capable" property and 5869 * the value of this property is bigger than 0. 5870 */ 5871 if (un->un_f_pm_supported) { 5872 /* 5873 * not all devices have a motor, try it first. 5874 * some devices may return ILLEGAL REQUEST, some 5875 * will hang 5876 * The following START_STOP_UNIT is used to check if target 5877 * device has a motor. 5878 */ 5879 un->un_f_start_stop_supported = TRUE; 5880 5881 if (un->un_f_power_condition_supported) { 5882 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5883 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 5884 SD_PATH_DIRECT); 5885 if (rval != 0) { 5886 un->un_f_power_condition_supported = FALSE; 5887 } 5888 } 5889 if (!un->un_f_power_condition_supported) { 5890 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5891 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 5892 } 5893 if (rval != 0) { 5894 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5895 un->un_f_start_stop_supported = FALSE; 5896 } 5897 5898 /* 5899 * create pm properties anyways otherwise the parent can't 5900 * go to sleep 5901 */ 5902 un->un_f_pm_is_enabled = TRUE; 5903 (void) sd_create_pm_components(devi, un); 5904 5905 /* 5906 * If it claims that log sense is supported, check it out. 5907 */ 5908 if (un->un_f_log_sense_supported) { 5909 rval = sd_log_page_supported(ssc, 5910 START_STOP_CYCLE_PAGE); 5911 if (rval == 1) { 5912 /* Page found, use it. */ 5913 un->un_start_stop_cycle_page = 5914 START_STOP_CYCLE_PAGE; 5915 } else { 5916 /* 5917 * Page not found or log sense is not 5918 * supported. 5919 * Notice we do not check the old style 5920 * START_STOP_CYCLE_VU_PAGE because this 5921 * code path does not apply to old disks. 5922 */ 5923 un->un_f_log_sense_supported = FALSE; 5924 un->un_f_pm_log_sense_smart = FALSE; 5925 } 5926 } 5927 5928 return; 5929 } 5930 5931 /* 5932 * For the disk whose attached HBA has not set the "pm-capable" 5933 * property, check if it supports the power management. 5934 */ 5935 if (!un->un_f_log_sense_supported) { 5936 un->un_power_level = SD_SPINDLE_ON; 5937 un->un_f_pm_is_enabled = FALSE; 5938 return; 5939 } 5940 5941 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5942 5943 #ifdef SDDEBUG 5944 if (sd_force_pm_supported) { 5945 /* Force a successful result */ 5946 rval = 1; 5947 } 5948 #endif 5949 5950 /* 5951 * If the start-stop cycle counter log page is not supported 5952 * or if the pm-capable property is set to be false (0), 5953 * then we should not create the pm_components property. 5954 */ 5955 if (rval == -1) { 5956 /* 5957 * Error. 5958 * Reading log sense failed, most likely this is 5959 * an older drive that does not support log sense. 5960 * If this fails auto-pm is not supported. 5961 */ 5962 un->un_power_level = SD_SPINDLE_ON; 5963 un->un_f_pm_is_enabled = FALSE; 5964 5965 } else if (rval == 0) { 5966 /* 5967 * Page not found. 5968 * The start stop cycle counter is implemented as page 5969 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5970 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5971 */ 5972 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 5973 /* 5974 * Page found, use this one. 5975 */ 5976 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5977 un->un_f_pm_is_enabled = TRUE; 5978 } else { 5979 /* 5980 * Error or page not found. 5981 * auto-pm is not supported for this device. 5982 */ 5983 un->un_power_level = SD_SPINDLE_ON; 5984 un->un_f_pm_is_enabled = FALSE; 5985 } 5986 } else { 5987 /* 5988 * Page found, use it. 5989 */ 5990 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 5991 un->un_f_pm_is_enabled = TRUE; 5992 } 5993 5994 5995 if (un->un_f_pm_is_enabled == TRUE) { 5996 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5997 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5998 5999 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6000 log_page_size, un->un_start_stop_cycle_page, 6001 0x01, 0, SD_PATH_DIRECT); 6002 6003 if (rval != 0) { 6004 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6005 } 6006 6007 #ifdef SDDEBUG 6008 if (sd_force_pm_supported) { 6009 /* Force a successful result */ 6010 rval = 0; 6011 } 6012 #endif 6013 6014 /* 6015 * If the Log sense for Page( Start/stop cycle counter page) 6016 * succeeds, then power management is supported and we can 6017 * enable auto-pm. 6018 */ 6019 if (rval == 0) { 6020 (void) sd_create_pm_components(devi, un); 6021 } else { 6022 un->un_power_level = SD_SPINDLE_ON; 6023 un->un_f_pm_is_enabled = FALSE; 6024 } 6025 6026 kmem_free(log_page_data, log_page_size); 6027 } 6028 } 6029 6030 6031 /* 6032 * Function: sd_create_pm_components 6033 * 6034 * Description: Initialize PM property. 6035 * 6036 * Context: Kernel thread context 6037 */ 6038 6039 static void 6040 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6041 { 6042 ASSERT(!mutex_owned(SD_MUTEX(un))); 6043 6044 if (un->un_f_power_condition_supported) { 6045 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6046 "pm-components", sd_pwr_pc.pm_comp, 5) 6047 != DDI_PROP_SUCCESS) { 6048 un->un_power_level = SD_SPINDLE_ACTIVE; 6049 un->un_f_pm_is_enabled = FALSE; 6050 return; 6051 } 6052 } else { 6053 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6054 "pm-components", sd_pwr_ss.pm_comp, 3) 6055 != DDI_PROP_SUCCESS) { 6056 un->un_power_level = SD_SPINDLE_ON; 6057 un->un_f_pm_is_enabled = FALSE; 6058 return; 6059 } 6060 } 6061 /* 6062 * When components are initially created they are idle, 6063 * power up any non-removables. 6064 * Note: the return value of pm_raise_power can't be used 6065 * for determining if PM should be enabled for this device. 6066 * Even if you check the return values and remove this 6067 * property created above, the PM framework will not honor the 6068 * change after the first call to pm_raise_power. Hence, 6069 * removal of that property does not help if pm_raise_power 6070 * fails. In the case of removable media, the start/stop 6071 * will fail if the media is not present. 6072 */ 6073 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6074 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6075 mutex_enter(SD_MUTEX(un)); 6076 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6077 mutex_enter(&un->un_pm_mutex); 6078 /* Set to on and not busy. */ 6079 un->un_pm_count = 0; 6080 } else { 6081 mutex_enter(SD_MUTEX(un)); 6082 un->un_power_level = SD_PM_STATE_STOPPED(un); 6083 mutex_enter(&un->un_pm_mutex); 6084 /* Set to off. */ 6085 un->un_pm_count = -1; 6086 } 6087 mutex_exit(&un->un_pm_mutex); 6088 mutex_exit(SD_MUTEX(un)); 6089 } 6090 6091 6092 /* 6093 * Function: sd_ddi_suspend 6094 * 6095 * Description: Performs system power-down operations. This includes 6096 * setting the drive state to indicate its suspended so 6097 * that no new commands will be accepted. Also, wait for 6098 * all commands that are in transport or queued to a timer 6099 * for retry to complete. All timeout threads are cancelled. 6100 * 6101 * Return Code: DDI_FAILURE or DDI_SUCCESS 6102 * 6103 * Context: Kernel thread context 6104 */ 6105 6106 static int 6107 sd_ddi_suspend(dev_info_t *devi) 6108 { 6109 struct sd_lun *un; 6110 clock_t wait_cmds_complete; 6111 6112 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6113 if (un == NULL) { 6114 return (DDI_FAILURE); 6115 } 6116 6117 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6118 6119 mutex_enter(SD_MUTEX(un)); 6120 6121 /* Return success if the device is already suspended. */ 6122 if (un->un_state == SD_STATE_SUSPENDED) { 6123 mutex_exit(SD_MUTEX(un)); 6124 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6125 "device already suspended, exiting\n"); 6126 return (DDI_SUCCESS); 6127 } 6128 6129 /* Return failure if the device is being used by HA */ 6130 if (un->un_resvd_status & 6131 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6132 mutex_exit(SD_MUTEX(un)); 6133 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6134 "device in use by HA, exiting\n"); 6135 return (DDI_FAILURE); 6136 } 6137 6138 /* 6139 * Return failure if the device is in a resource wait 6140 * or power changing state. 6141 */ 6142 if ((un->un_state == SD_STATE_RWAIT) || 6143 (un->un_state == SD_STATE_PM_CHANGING)) { 6144 mutex_exit(SD_MUTEX(un)); 6145 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6146 "device in resource wait state, exiting\n"); 6147 return (DDI_FAILURE); 6148 } 6149 6150 6151 un->un_save_state = un->un_last_state; 6152 New_state(un, SD_STATE_SUSPENDED); 6153 6154 /* 6155 * Wait for all commands that are in transport or queued to a timer 6156 * for retry to complete. 6157 * 6158 * While waiting, no new commands will be accepted or sent because of 6159 * the new state we set above. 6160 * 6161 * Wait till current operation has completed. If we are in the resource 6162 * wait state (with an intr outstanding) then we need to wait till the 6163 * intr completes and starts the next cmd. We want to wait for 6164 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6165 */ 6166 wait_cmds_complete = ddi_get_lbolt() + 6167 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6168 6169 while (un->un_ncmds_in_transport != 0) { 6170 /* 6171 * Fail if commands do not finish in the specified time. 6172 */ 6173 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6174 wait_cmds_complete) == -1) { 6175 /* 6176 * Undo the state changes made above. Everything 6177 * must go back to it's original value. 6178 */ 6179 Restore_state(un); 6180 un->un_last_state = un->un_save_state; 6181 /* Wake up any threads that might be waiting. */ 6182 cv_broadcast(&un->un_suspend_cv); 6183 mutex_exit(SD_MUTEX(un)); 6184 SD_ERROR(SD_LOG_IO_PM, un, 6185 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6186 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6187 return (DDI_FAILURE); 6188 } 6189 } 6190 6191 /* 6192 * Cancel SCSI watch thread and timeouts, if any are active 6193 */ 6194 6195 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6196 opaque_t temp_token = un->un_swr_token; 6197 mutex_exit(SD_MUTEX(un)); 6198 scsi_watch_suspend(temp_token); 6199 mutex_enter(SD_MUTEX(un)); 6200 } 6201 6202 if (un->un_reset_throttle_timeid != NULL) { 6203 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6204 un->un_reset_throttle_timeid = NULL; 6205 mutex_exit(SD_MUTEX(un)); 6206 (void) untimeout(temp_id); 6207 mutex_enter(SD_MUTEX(un)); 6208 } 6209 6210 if (un->un_dcvb_timeid != NULL) { 6211 timeout_id_t temp_id = un->un_dcvb_timeid; 6212 un->un_dcvb_timeid = NULL; 6213 mutex_exit(SD_MUTEX(un)); 6214 (void) untimeout(temp_id); 6215 mutex_enter(SD_MUTEX(un)); 6216 } 6217 6218 mutex_enter(&un->un_pm_mutex); 6219 if (un->un_pm_timeid != NULL) { 6220 timeout_id_t temp_id = un->un_pm_timeid; 6221 un->un_pm_timeid = NULL; 6222 mutex_exit(&un->un_pm_mutex); 6223 mutex_exit(SD_MUTEX(un)); 6224 (void) untimeout(temp_id); 6225 mutex_enter(SD_MUTEX(un)); 6226 } else { 6227 mutex_exit(&un->un_pm_mutex); 6228 } 6229 6230 if (un->un_rmw_msg_timeid != NULL) { 6231 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6232 un->un_rmw_msg_timeid = NULL; 6233 mutex_exit(SD_MUTEX(un)); 6234 (void) untimeout(temp_id); 6235 mutex_enter(SD_MUTEX(un)); 6236 } 6237 6238 if (un->un_retry_timeid != NULL) { 6239 timeout_id_t temp_id = un->un_retry_timeid; 6240 un->un_retry_timeid = NULL; 6241 mutex_exit(SD_MUTEX(un)); 6242 (void) untimeout(temp_id); 6243 mutex_enter(SD_MUTEX(un)); 6244 6245 if (un->un_retry_bp != NULL) { 6246 un->un_retry_bp->av_forw = un->un_waitq_headp; 6247 un->un_waitq_headp = un->un_retry_bp; 6248 if (un->un_waitq_tailp == NULL) { 6249 un->un_waitq_tailp = un->un_retry_bp; 6250 } 6251 un->un_retry_bp = NULL; 6252 un->un_retry_statp = NULL; 6253 } 6254 } 6255 6256 if (un->un_direct_priority_timeid != NULL) { 6257 timeout_id_t temp_id = un->un_direct_priority_timeid; 6258 un->un_direct_priority_timeid = NULL; 6259 mutex_exit(SD_MUTEX(un)); 6260 (void) untimeout(temp_id); 6261 mutex_enter(SD_MUTEX(un)); 6262 } 6263 6264 if (un->un_f_is_fibre == TRUE) { 6265 /* 6266 * Remove callbacks for insert and remove events 6267 */ 6268 if (un->un_insert_event != NULL) { 6269 mutex_exit(SD_MUTEX(un)); 6270 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6271 mutex_enter(SD_MUTEX(un)); 6272 un->un_insert_event = NULL; 6273 } 6274 6275 if (un->un_remove_event != NULL) { 6276 mutex_exit(SD_MUTEX(un)); 6277 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6278 mutex_enter(SD_MUTEX(un)); 6279 un->un_remove_event = NULL; 6280 } 6281 } 6282 6283 mutex_exit(SD_MUTEX(un)); 6284 6285 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6286 6287 return (DDI_SUCCESS); 6288 } 6289 6290 6291 /* 6292 * Function: sd_ddi_resume 6293 * 6294 * Description: Performs system power-up operations.. 6295 * 6296 * Return Code: DDI_SUCCESS 6297 * DDI_FAILURE 6298 * 6299 * Context: Kernel thread context 6300 */ 6301 6302 static int 6303 sd_ddi_resume(dev_info_t *devi) 6304 { 6305 struct sd_lun *un; 6306 6307 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6308 if (un == NULL) { 6309 return (DDI_FAILURE); 6310 } 6311 6312 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6313 6314 mutex_enter(SD_MUTEX(un)); 6315 Restore_state(un); 6316 6317 /* 6318 * Restore the state which was saved to give the 6319 * the right state in un_last_state 6320 */ 6321 un->un_last_state = un->un_save_state; 6322 /* 6323 * Note: throttle comes back at full. 6324 * Also note: this MUST be done before calling pm_raise_power 6325 * otherwise the system can get hung in biowait. The scenario where 6326 * this'll happen is under cpr suspend. Writing of the system 6327 * state goes through sddump, which writes 0 to un_throttle. If 6328 * writing the system state then fails, example if the partition is 6329 * too small, then cpr attempts a resume. If throttle isn't restored 6330 * from the saved value until after calling pm_raise_power then 6331 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6332 * in biowait. 6333 */ 6334 un->un_throttle = un->un_saved_throttle; 6335 6336 /* 6337 * The chance of failure is very rare as the only command done in power 6338 * entry point is START command when you transition from 0->1 or 6339 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6340 * which suspend was done. Ignore the return value as the resume should 6341 * not be failed. In the case of removable media the media need not be 6342 * inserted and hence there is a chance that raise power will fail with 6343 * media not present. 6344 */ 6345 if (un->un_f_attach_spinup) { 6346 mutex_exit(SD_MUTEX(un)); 6347 (void) pm_raise_power(SD_DEVINFO(un), 0, 6348 SD_PM_STATE_ACTIVE(un)); 6349 mutex_enter(SD_MUTEX(un)); 6350 } 6351 6352 /* 6353 * Don't broadcast to the suspend cv and therefore possibly 6354 * start I/O until after power has been restored. 6355 */ 6356 cv_broadcast(&un->un_suspend_cv); 6357 cv_broadcast(&un->un_state_cv); 6358 6359 /* restart thread */ 6360 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6361 scsi_watch_resume(un->un_swr_token); 6362 } 6363 6364 #if (defined(__fibre)) 6365 if (un->un_f_is_fibre == TRUE) { 6366 /* 6367 * Add callbacks for insert and remove events 6368 */ 6369 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6370 sd_init_event_callbacks(un); 6371 } 6372 } 6373 #endif 6374 6375 /* 6376 * Transport any pending commands to the target. 6377 * 6378 * If this is a low-activity device commands in queue will have to wait 6379 * until new commands come in, which may take awhile. Also, we 6380 * specifically don't check un_ncmds_in_transport because we know that 6381 * there really are no commands in progress after the unit was 6382 * suspended and we could have reached the throttle level, been 6383 * suspended, and have no new commands coming in for awhile. Highly 6384 * unlikely, but so is the low-activity disk scenario. 6385 */ 6386 ddi_xbuf_dispatch(un->un_xbuf_attr); 6387 6388 sd_start_cmds(un, NULL); 6389 mutex_exit(SD_MUTEX(un)); 6390 6391 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6392 6393 return (DDI_SUCCESS); 6394 } 6395 6396 6397 /* 6398 * Function: sd_pm_state_change 6399 * 6400 * Description: Change the driver power state. 6401 * Someone else is required to actually change the driver 6402 * power level. 6403 * 6404 * Arguments: un - driver soft state (unit) structure 6405 * level - the power level that is changed to 6406 * flag - to decide how to change the power state 6407 * 6408 * Return Code: DDI_SUCCESS 6409 * 6410 * Context: Kernel thread context 6411 */ 6412 static int 6413 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6414 { 6415 ASSERT(un != NULL); 6416 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6417 6418 ASSERT(!mutex_owned(SD_MUTEX(un))); 6419 mutex_enter(SD_MUTEX(un)); 6420 6421 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6422 un->un_power_level = level; 6423 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6424 mutex_enter(&un->un_pm_mutex); 6425 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6426 un->un_pm_count++; 6427 ASSERT(un->un_pm_count == 0); 6428 } 6429 mutex_exit(&un->un_pm_mutex); 6430 } else { 6431 /* 6432 * Exit if power management is not enabled for this device, 6433 * or if the device is being used by HA. 6434 */ 6435 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6436 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6437 mutex_exit(SD_MUTEX(un)); 6438 SD_TRACE(SD_LOG_POWER, un, 6439 "sd_pm_state_change: exiting\n"); 6440 return (DDI_FAILURE); 6441 } 6442 6443 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6444 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6445 6446 /* 6447 * See if the device is not busy, ie.: 6448 * - we have no commands in the driver for this device 6449 * - not waiting for resources 6450 */ 6451 if ((un->un_ncmds_in_driver == 0) && 6452 (un->un_state != SD_STATE_RWAIT)) { 6453 /* 6454 * The device is not busy, so it is OK to go to low 6455 * power state. Indicate low power, but rely on someone 6456 * else to actually change it. 6457 */ 6458 mutex_enter(&un->un_pm_mutex); 6459 un->un_pm_count = -1; 6460 mutex_exit(&un->un_pm_mutex); 6461 un->un_power_level = level; 6462 } 6463 } 6464 6465 mutex_exit(SD_MUTEX(un)); 6466 6467 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6468 6469 return (DDI_SUCCESS); 6470 } 6471 6472 6473 /* 6474 * Function: sd_pm_idletimeout_handler 6475 * 6476 * Description: A timer routine that's active only while a device is busy. 6477 * The purpose is to extend slightly the pm framework's busy 6478 * view of the device to prevent busy/idle thrashing for 6479 * back-to-back commands. Do this by comparing the current time 6480 * to the time at which the last command completed and when the 6481 * difference is greater than sd_pm_idletime, call 6482 * pm_idle_component. In addition to indicating idle to the pm 6483 * framework, update the chain type to again use the internal pm 6484 * layers of the driver. 6485 * 6486 * Arguments: arg - driver soft state (unit) structure 6487 * 6488 * Context: Executes in a timeout(9F) thread context 6489 */ 6490 6491 static void 6492 sd_pm_idletimeout_handler(void *arg) 6493 { 6494 struct sd_lun *un = arg; 6495 6496 time_t now; 6497 6498 mutex_enter(&sd_detach_mutex); 6499 if (un->un_detach_count != 0) { 6500 /* Abort if the instance is detaching */ 6501 mutex_exit(&sd_detach_mutex); 6502 return; 6503 } 6504 mutex_exit(&sd_detach_mutex); 6505 6506 now = ddi_get_time(); 6507 /* 6508 * Grab both mutexes, in the proper order, since we're accessing 6509 * both PM and softstate variables. 6510 */ 6511 mutex_enter(SD_MUTEX(un)); 6512 mutex_enter(&un->un_pm_mutex); 6513 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6514 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6515 /* 6516 * Update the chain types. 6517 * This takes affect on the next new command received. 6518 */ 6519 if (un->un_f_non_devbsize_supported) { 6520 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6521 } else { 6522 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6523 } 6524 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6525 6526 SD_TRACE(SD_LOG_IO_PM, un, 6527 "sd_pm_idletimeout_handler: idling device\n"); 6528 (void) pm_idle_component(SD_DEVINFO(un), 0); 6529 un->un_pm_idle_timeid = NULL; 6530 } else { 6531 un->un_pm_idle_timeid = 6532 timeout(sd_pm_idletimeout_handler, un, 6533 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6534 } 6535 mutex_exit(&un->un_pm_mutex); 6536 mutex_exit(SD_MUTEX(un)); 6537 } 6538 6539 6540 /* 6541 * Function: sd_pm_timeout_handler 6542 * 6543 * Description: Callback to tell framework we are idle. 6544 * 6545 * Context: timeout(9f) thread context. 6546 */ 6547 6548 static void 6549 sd_pm_timeout_handler(void *arg) 6550 { 6551 struct sd_lun *un = arg; 6552 6553 (void) pm_idle_component(SD_DEVINFO(un), 0); 6554 mutex_enter(&un->un_pm_mutex); 6555 un->un_pm_timeid = NULL; 6556 mutex_exit(&un->un_pm_mutex); 6557 } 6558 6559 6560 /* 6561 * Function: sdpower 6562 * 6563 * Description: PM entry point. 6564 * 6565 * Return Code: DDI_SUCCESS 6566 * DDI_FAILURE 6567 * 6568 * Context: Kernel thread context 6569 */ 6570 6571 static int 6572 sdpower(dev_info_t *devi, int component, int level) 6573 { 6574 struct sd_lun *un; 6575 int instance; 6576 int rval = DDI_SUCCESS; 6577 uint_t i, log_page_size, maxcycles, ncycles; 6578 uchar_t *log_page_data; 6579 int log_sense_page; 6580 int medium_present; 6581 time_t intvlp; 6582 struct pm_trans_data sd_pm_tran_data; 6583 uchar_t save_state; 6584 int sval; 6585 uchar_t state_before_pm; 6586 int got_semaphore_here; 6587 sd_ssc_t *ssc; 6588 int last_power_level; 6589 6590 instance = ddi_get_instance(devi); 6591 6592 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6593 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6594 return (DDI_FAILURE); 6595 } 6596 6597 ssc = sd_ssc_init(un); 6598 6599 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6600 6601 /* 6602 * Must synchronize power down with close. 6603 * Attempt to decrement/acquire the open/close semaphore, 6604 * but do NOT wait on it. If it's not greater than zero, 6605 * ie. it can't be decremented without waiting, then 6606 * someone else, either open or close, already has it 6607 * and the try returns 0. Use that knowledge here to determine 6608 * if it's OK to change the device power level. 6609 * Also, only increment it on exit if it was decremented, ie. gotten, 6610 * here. 6611 */ 6612 got_semaphore_here = sema_tryp(&un->un_semoclose); 6613 6614 mutex_enter(SD_MUTEX(un)); 6615 6616 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6617 un->un_ncmds_in_driver); 6618 6619 /* 6620 * If un_ncmds_in_driver is non-zero it indicates commands are 6621 * already being processed in the driver, or if the semaphore was 6622 * not gotten here it indicates an open or close is being processed. 6623 * At the same time somebody is requesting to go to a lower power 6624 * that can't perform I/O, which can't happen, therefore we need to 6625 * return failure. 6626 */ 6627 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6628 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6629 mutex_exit(SD_MUTEX(un)); 6630 6631 if (got_semaphore_here != 0) { 6632 sema_v(&un->un_semoclose); 6633 } 6634 SD_TRACE(SD_LOG_IO_PM, un, 6635 "sdpower: exit, device has queued cmds.\n"); 6636 6637 goto sdpower_failed; 6638 } 6639 6640 /* 6641 * if it is OFFLINE that means the disk is completely dead 6642 * in our case we have to put the disk in on or off by sending commands 6643 * Of course that will fail anyway so return back here. 6644 * 6645 * Power changes to a device that's OFFLINE or SUSPENDED 6646 * are not allowed. 6647 */ 6648 if ((un->un_state == SD_STATE_OFFLINE) || 6649 (un->un_state == SD_STATE_SUSPENDED)) { 6650 mutex_exit(SD_MUTEX(un)); 6651 6652 if (got_semaphore_here != 0) { 6653 sema_v(&un->un_semoclose); 6654 } 6655 SD_TRACE(SD_LOG_IO_PM, un, 6656 "sdpower: exit, device is off-line.\n"); 6657 6658 goto sdpower_failed; 6659 } 6660 6661 /* 6662 * Change the device's state to indicate it's power level 6663 * is being changed. Do this to prevent a power off in the 6664 * middle of commands, which is especially bad on devices 6665 * that are really powered off instead of just spun down. 6666 */ 6667 state_before_pm = un->un_state; 6668 un->un_state = SD_STATE_PM_CHANGING; 6669 6670 mutex_exit(SD_MUTEX(un)); 6671 6672 /* 6673 * If log sense command is not supported, bypass the 6674 * following checking, otherwise, check the log sense 6675 * information for this device. 6676 */ 6677 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6678 un->un_f_log_sense_supported) { 6679 /* 6680 * Get the log sense information to understand whether the 6681 * the powercycle counts have gone beyond the threshhold. 6682 */ 6683 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6684 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6685 6686 mutex_enter(SD_MUTEX(un)); 6687 log_sense_page = un->un_start_stop_cycle_page; 6688 mutex_exit(SD_MUTEX(un)); 6689 6690 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6691 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6692 6693 if (rval != 0) { 6694 if (rval == EIO) 6695 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6696 else 6697 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6698 } 6699 6700 #ifdef SDDEBUG 6701 if (sd_force_pm_supported) { 6702 /* Force a successful result */ 6703 rval = 0; 6704 } 6705 #endif 6706 if (rval != 0) { 6707 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6708 "Log Sense Failed\n"); 6709 6710 kmem_free(log_page_data, log_page_size); 6711 /* Cannot support power management on those drives */ 6712 6713 if (got_semaphore_here != 0) { 6714 sema_v(&un->un_semoclose); 6715 } 6716 /* 6717 * On exit put the state back to it's original value 6718 * and broadcast to anyone waiting for the power 6719 * change completion. 6720 */ 6721 mutex_enter(SD_MUTEX(un)); 6722 un->un_state = state_before_pm; 6723 cv_broadcast(&un->un_suspend_cv); 6724 mutex_exit(SD_MUTEX(un)); 6725 SD_TRACE(SD_LOG_IO_PM, un, 6726 "sdpower: exit, Log Sense Failed.\n"); 6727 6728 goto sdpower_failed; 6729 } 6730 6731 /* 6732 * From the page data - Convert the essential information to 6733 * pm_trans_data 6734 */ 6735 maxcycles = 6736 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6737 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6738 6739 ncycles = 6740 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6741 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6742 6743 if (un->un_f_pm_log_sense_smart) { 6744 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6745 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6746 sd_pm_tran_data.un.smart_count.flag = 0; 6747 sd_pm_tran_data.format = DC_SMART_FORMAT; 6748 } else { 6749 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6750 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6751 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6752 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6753 log_page_data[8+i]; 6754 } 6755 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6756 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6757 } 6758 6759 kmem_free(log_page_data, log_page_size); 6760 6761 /* 6762 * Call pm_trans_check routine to get the Ok from 6763 * the global policy 6764 */ 6765 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6766 #ifdef SDDEBUG 6767 if (sd_force_pm_supported) { 6768 /* Force a successful result */ 6769 rval = 1; 6770 } 6771 #endif 6772 switch (rval) { 6773 case 0: 6774 /* 6775 * Not Ok to Power cycle or error in parameters passed 6776 * Would have given the advised time to consider power 6777 * cycle. Based on the new intvlp parameter we are 6778 * supposed to pretend we are busy so that pm framework 6779 * will never call our power entry point. Because of 6780 * that install a timeout handler and wait for the 6781 * recommended time to elapse so that power management 6782 * can be effective again. 6783 * 6784 * To effect this behavior, call pm_busy_component to 6785 * indicate to the framework this device is busy. 6786 * By not adjusting un_pm_count the rest of PM in 6787 * the driver will function normally, and independent 6788 * of this but because the framework is told the device 6789 * is busy it won't attempt powering down until it gets 6790 * a matching idle. The timeout handler sends this. 6791 * Note: sd_pm_entry can't be called here to do this 6792 * because sdpower may have been called as a result 6793 * of a call to pm_raise_power from within sd_pm_entry. 6794 * 6795 * If a timeout handler is already active then 6796 * don't install another. 6797 */ 6798 mutex_enter(&un->un_pm_mutex); 6799 if (un->un_pm_timeid == NULL) { 6800 un->un_pm_timeid = 6801 timeout(sd_pm_timeout_handler, 6802 un, intvlp * drv_usectohz(1000000)); 6803 mutex_exit(&un->un_pm_mutex); 6804 (void) pm_busy_component(SD_DEVINFO(un), 0); 6805 } else { 6806 mutex_exit(&un->un_pm_mutex); 6807 } 6808 if (got_semaphore_here != 0) { 6809 sema_v(&un->un_semoclose); 6810 } 6811 /* 6812 * On exit put the state back to it's original value 6813 * and broadcast to anyone waiting for the power 6814 * change completion. 6815 */ 6816 mutex_enter(SD_MUTEX(un)); 6817 un->un_state = state_before_pm; 6818 cv_broadcast(&un->un_suspend_cv); 6819 mutex_exit(SD_MUTEX(un)); 6820 6821 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6822 "trans check Failed, not ok to power cycle.\n"); 6823 6824 goto sdpower_failed; 6825 case -1: 6826 if (got_semaphore_here != 0) { 6827 sema_v(&un->un_semoclose); 6828 } 6829 /* 6830 * On exit put the state back to it's original value 6831 * and broadcast to anyone waiting for the power 6832 * change completion. 6833 */ 6834 mutex_enter(SD_MUTEX(un)); 6835 un->un_state = state_before_pm; 6836 cv_broadcast(&un->un_suspend_cv); 6837 mutex_exit(SD_MUTEX(un)); 6838 SD_TRACE(SD_LOG_IO_PM, un, 6839 "sdpower: exit, trans check command Failed.\n"); 6840 6841 goto sdpower_failed; 6842 } 6843 } 6844 6845 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6846 /* 6847 * Save the last state... if the STOP FAILS we need it 6848 * for restoring 6849 */ 6850 mutex_enter(SD_MUTEX(un)); 6851 save_state = un->un_last_state; 6852 last_power_level = un->un_power_level; 6853 /* 6854 * There must not be any cmds. getting processed 6855 * in the driver when we get here. Power to the 6856 * device is potentially going off. 6857 */ 6858 ASSERT(un->un_ncmds_in_driver == 0); 6859 mutex_exit(SD_MUTEX(un)); 6860 6861 /* 6862 * For now PM suspend the device completely before spindle is 6863 * turned off 6864 */ 6865 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 6866 == DDI_FAILURE) { 6867 if (got_semaphore_here != 0) { 6868 sema_v(&un->un_semoclose); 6869 } 6870 /* 6871 * On exit put the state back to it's original value 6872 * and broadcast to anyone waiting for the power 6873 * change completion. 6874 */ 6875 mutex_enter(SD_MUTEX(un)); 6876 un->un_state = state_before_pm; 6877 un->un_power_level = last_power_level; 6878 cv_broadcast(&un->un_suspend_cv); 6879 mutex_exit(SD_MUTEX(un)); 6880 SD_TRACE(SD_LOG_IO_PM, un, 6881 "sdpower: exit, PM suspend Failed.\n"); 6882 6883 goto sdpower_failed; 6884 } 6885 } 6886 6887 /* 6888 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6889 * close, or strategy. Dump no long uses this routine, it uses it's 6890 * own code so it can be done in polled mode. 6891 */ 6892 6893 medium_present = TRUE; 6894 6895 /* 6896 * When powering up, issue a TUR in case the device is at unit 6897 * attention. Don't do retries. Bypass the PM layer, otherwise 6898 * a deadlock on un_pm_busy_cv will occur. 6899 */ 6900 if (SD_PM_IS_IO_CAPABLE(un, level)) { 6901 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6902 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6903 if (sval != 0) 6904 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6905 } 6906 6907 if (un->un_f_power_condition_supported) { 6908 char *pm_condition_name[] = {"STOPPED", "STANDBY", 6909 "IDLE", "ACTIVE"}; 6910 SD_TRACE(SD_LOG_IO_PM, un, 6911 "sdpower: sending \'%s\' power condition", 6912 pm_condition_name[level]); 6913 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 6914 sd_pl2pc[level], SD_PATH_DIRECT); 6915 } else { 6916 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6917 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6918 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 6919 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 6920 SD_TARGET_STOP), SD_PATH_DIRECT); 6921 } 6922 if (sval != 0) { 6923 if (sval == EIO) 6924 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6925 else 6926 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6927 } 6928 6929 /* Command failed, check for media present. */ 6930 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6931 medium_present = FALSE; 6932 } 6933 6934 /* 6935 * The conditions of interest here are: 6936 * if a spindle off with media present fails, 6937 * then restore the state and return an error. 6938 * else if a spindle on fails, 6939 * then return an error (there's no state to restore). 6940 * In all other cases we setup for the new state 6941 * and return success. 6942 */ 6943 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6944 if ((medium_present == TRUE) && (sval != 0)) { 6945 /* The stop command from above failed */ 6946 rval = DDI_FAILURE; 6947 /* 6948 * The stop command failed, and we have media 6949 * present. Put the level back by calling the 6950 * sd_pm_resume() and set the state back to 6951 * it's previous value. 6952 */ 6953 (void) sd_pm_state_change(un, last_power_level, 6954 SD_PM_STATE_ROLLBACK); 6955 mutex_enter(SD_MUTEX(un)); 6956 un->un_last_state = save_state; 6957 mutex_exit(SD_MUTEX(un)); 6958 } else if (un->un_f_monitor_media_state) { 6959 /* 6960 * The stop command from above succeeded. 6961 * Terminate watch thread in case of removable media 6962 * devices going into low power state. This is as per 6963 * the requirements of pm framework, otherwise commands 6964 * will be generated for the device (through watch 6965 * thread), even when the device is in low power state. 6966 */ 6967 mutex_enter(SD_MUTEX(un)); 6968 un->un_f_watcht_stopped = FALSE; 6969 if (un->un_swr_token != NULL) { 6970 opaque_t temp_token = un->un_swr_token; 6971 un->un_f_watcht_stopped = TRUE; 6972 un->un_swr_token = NULL; 6973 mutex_exit(SD_MUTEX(un)); 6974 (void) scsi_watch_request_terminate(temp_token, 6975 SCSI_WATCH_TERMINATE_ALL_WAIT); 6976 } else { 6977 mutex_exit(SD_MUTEX(un)); 6978 } 6979 } 6980 } else { 6981 /* 6982 * The level requested is I/O capable. 6983 * Legacy behavior: return success on a failed spinup 6984 * if there is no media in the drive. 6985 * Do this by looking at medium_present here. 6986 */ 6987 if ((sval != 0) && medium_present) { 6988 /* The start command from above failed */ 6989 rval = DDI_FAILURE; 6990 } else { 6991 /* 6992 * The start command from above succeeded 6993 * PM resume the devices now that we have 6994 * started the disks 6995 */ 6996 (void) sd_pm_state_change(un, level, 6997 SD_PM_STATE_CHANGE); 6998 6999 /* 7000 * Resume the watch thread since it was suspended 7001 * when the device went into low power mode. 7002 */ 7003 if (un->un_f_monitor_media_state) { 7004 mutex_enter(SD_MUTEX(un)); 7005 if (un->un_f_watcht_stopped == TRUE) { 7006 opaque_t temp_token; 7007 7008 un->un_f_watcht_stopped = FALSE; 7009 mutex_exit(SD_MUTEX(un)); 7010 temp_token = 7011 sd_watch_request_submit(un); 7012 mutex_enter(SD_MUTEX(un)); 7013 un->un_swr_token = temp_token; 7014 } 7015 mutex_exit(SD_MUTEX(un)); 7016 } 7017 } 7018 } 7019 7020 if (got_semaphore_here != 0) { 7021 sema_v(&un->un_semoclose); 7022 } 7023 /* 7024 * On exit put the state back to it's original value 7025 * and broadcast to anyone waiting for the power 7026 * change completion. 7027 */ 7028 mutex_enter(SD_MUTEX(un)); 7029 un->un_state = state_before_pm; 7030 cv_broadcast(&un->un_suspend_cv); 7031 mutex_exit(SD_MUTEX(un)); 7032 7033 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7034 7035 sd_ssc_fini(ssc); 7036 return (rval); 7037 7038 sdpower_failed: 7039 7040 sd_ssc_fini(ssc); 7041 return (DDI_FAILURE); 7042 } 7043 7044 7045 7046 /* 7047 * Function: sdattach 7048 * 7049 * Description: Driver's attach(9e) entry point function. 7050 * 7051 * Arguments: devi - opaque device info handle 7052 * cmd - attach type 7053 * 7054 * Return Code: DDI_SUCCESS 7055 * DDI_FAILURE 7056 * 7057 * Context: Kernel thread context 7058 */ 7059 7060 static int 7061 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7062 { 7063 switch (cmd) { 7064 case DDI_ATTACH: 7065 return (sd_unit_attach(devi)); 7066 case DDI_RESUME: 7067 return (sd_ddi_resume(devi)); 7068 default: 7069 break; 7070 } 7071 return (DDI_FAILURE); 7072 } 7073 7074 7075 /* 7076 * Function: sddetach 7077 * 7078 * Description: Driver's detach(9E) entry point function. 7079 * 7080 * Arguments: devi - opaque device info handle 7081 * cmd - detach type 7082 * 7083 * Return Code: DDI_SUCCESS 7084 * DDI_FAILURE 7085 * 7086 * Context: Kernel thread context 7087 */ 7088 7089 static int 7090 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7091 { 7092 switch (cmd) { 7093 case DDI_DETACH: 7094 return (sd_unit_detach(devi)); 7095 case DDI_SUSPEND: 7096 return (sd_ddi_suspend(devi)); 7097 default: 7098 break; 7099 } 7100 return (DDI_FAILURE); 7101 } 7102 7103 7104 /* 7105 * Function: sd_sync_with_callback 7106 * 7107 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7108 * state while the callback routine is active. 7109 * 7110 * Arguments: un: softstate structure for the instance 7111 * 7112 * Context: Kernel thread context 7113 */ 7114 7115 static void 7116 sd_sync_with_callback(struct sd_lun *un) 7117 { 7118 ASSERT(un != NULL); 7119 7120 mutex_enter(SD_MUTEX(un)); 7121 7122 ASSERT(un->un_in_callback >= 0); 7123 7124 while (un->un_in_callback > 0) { 7125 mutex_exit(SD_MUTEX(un)); 7126 delay(2); 7127 mutex_enter(SD_MUTEX(un)); 7128 } 7129 7130 mutex_exit(SD_MUTEX(un)); 7131 } 7132 7133 /* 7134 * Function: sd_unit_attach 7135 * 7136 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7137 * the soft state structure for the device and performs 7138 * all necessary structure and device initializations. 7139 * 7140 * Arguments: devi: the system's dev_info_t for the device. 7141 * 7142 * Return Code: DDI_SUCCESS if attach is successful. 7143 * DDI_FAILURE if any part of the attach fails. 7144 * 7145 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7146 * Kernel thread context only. Can sleep. 7147 */ 7148 7149 static int 7150 sd_unit_attach(dev_info_t *devi) 7151 { 7152 struct scsi_device *devp; 7153 struct sd_lun *un; 7154 char *variantp; 7155 char name_str[48]; 7156 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7157 int instance; 7158 int rval; 7159 int wc_enabled; 7160 int tgt; 7161 uint64_t capacity; 7162 uint_t lbasize = 0; 7163 dev_info_t *pdip = ddi_get_parent(devi); 7164 int offbyone = 0; 7165 int geom_label_valid = 0; 7166 sd_ssc_t *ssc; 7167 int status; 7168 struct sd_fm_internal *sfip = NULL; 7169 int max_xfer_size; 7170 7171 /* 7172 * Retrieve the target driver's private data area. This was set 7173 * up by the HBA. 7174 */ 7175 devp = ddi_get_driver_private(devi); 7176 7177 /* 7178 * Retrieve the target ID of the device. 7179 */ 7180 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7181 SCSI_ADDR_PROP_TARGET, -1); 7182 7183 /* 7184 * Since we have no idea what state things were left in by the last 7185 * user of the device, set up some 'default' settings, ie. turn 'em 7186 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7187 * Do this before the scsi_probe, which sends an inquiry. 7188 * This is a fix for bug (4430280). 7189 * Of special importance is wide-xfer. The drive could have been left 7190 * in wide transfer mode by the last driver to communicate with it, 7191 * this includes us. If that's the case, and if the following is not 7192 * setup properly or we don't re-negotiate with the drive prior to 7193 * transferring data to/from the drive, it causes bus parity errors, 7194 * data overruns, and unexpected interrupts. This first occurred when 7195 * the fix for bug (4378686) was made. 7196 */ 7197 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7198 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7199 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7200 7201 /* 7202 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7203 * on a target. Setting it per lun instance actually sets the 7204 * capability of this target, which affects those luns already 7205 * attached on the same target. So during attach, we can only disable 7206 * this capability only when no other lun has been attached on this 7207 * target. By doing this, we assume a target has the same tagged-qing 7208 * capability for every lun. The condition can be removed when HBA 7209 * is changed to support per lun based tagged-qing capability. 7210 */ 7211 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7212 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7213 } 7214 7215 /* 7216 * Use scsi_probe() to issue an INQUIRY command to the device. 7217 * This call will allocate and fill in the scsi_inquiry structure 7218 * and point the sd_inq member of the scsi_device structure to it. 7219 * If the attach succeeds, then this memory will not be de-allocated 7220 * (via scsi_unprobe()) until the instance is detached. 7221 */ 7222 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7223 goto probe_failed; 7224 } 7225 7226 /* 7227 * Check the device type as specified in the inquiry data and 7228 * claim it if it is of a type that we support. 7229 */ 7230 switch (devp->sd_inq->inq_dtype) { 7231 case DTYPE_DIRECT: 7232 break; 7233 case DTYPE_RODIRECT: 7234 break; 7235 case DTYPE_OPTICAL: 7236 break; 7237 case DTYPE_NOTPRESENT: 7238 default: 7239 /* Unsupported device type; fail the attach. */ 7240 goto probe_failed; 7241 } 7242 7243 /* 7244 * Allocate the soft state structure for this unit. 7245 * 7246 * We rely upon this memory being set to all zeroes by 7247 * ddi_soft_state_zalloc(). We assume that any member of the 7248 * soft state structure that is not explicitly initialized by 7249 * this routine will have a value of zero. 7250 */ 7251 instance = ddi_get_instance(devp->sd_dev); 7252 #ifndef XPV_HVM_DRIVER 7253 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7254 goto probe_failed; 7255 } 7256 #endif /* !XPV_HVM_DRIVER */ 7257 7258 /* 7259 * Retrieve a pointer to the newly-allocated soft state. 7260 * 7261 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7262 * was successful, unless something has gone horribly wrong and the 7263 * ddi's soft state internals are corrupt (in which case it is 7264 * probably better to halt here than just fail the attach....) 7265 */ 7266 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7267 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7268 instance); 7269 /*NOTREACHED*/ 7270 } 7271 7272 /* 7273 * Link the back ptr of the driver soft state to the scsi_device 7274 * struct for this lun. 7275 * Save a pointer to the softstate in the driver-private area of 7276 * the scsi_device struct. 7277 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7278 * we first set un->un_sd below. 7279 */ 7280 un->un_sd = devp; 7281 devp->sd_private = (opaque_t)un; 7282 7283 /* 7284 * The following must be after devp is stored in the soft state struct. 7285 */ 7286 #ifdef SDDEBUG 7287 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7288 "%s_unit_attach: un:0x%p instance:%d\n", 7289 ddi_driver_name(devi), un, instance); 7290 #endif 7291 7292 /* 7293 * Set up the device type and node type (for the minor nodes). 7294 * By default we assume that the device can at least support the 7295 * Common Command Set. Call it a CD-ROM if it reports itself 7296 * as a RODIRECT device. 7297 */ 7298 switch (devp->sd_inq->inq_dtype) { 7299 case DTYPE_RODIRECT: 7300 un->un_node_type = DDI_NT_CD_CHAN; 7301 un->un_ctype = CTYPE_CDROM; 7302 break; 7303 case DTYPE_OPTICAL: 7304 un->un_node_type = DDI_NT_BLOCK_CHAN; 7305 un->un_ctype = CTYPE_ROD; 7306 break; 7307 default: 7308 un->un_node_type = DDI_NT_BLOCK_CHAN; 7309 un->un_ctype = CTYPE_CCS; 7310 break; 7311 } 7312 7313 /* 7314 * Try to read the interconnect type from the HBA. 7315 * 7316 * Note: This driver is currently compiled as two binaries, a parallel 7317 * scsi version (sd) and a fibre channel version (ssd). All functional 7318 * differences are determined at compile time. In the future a single 7319 * binary will be provided and the interconnect type will be used to 7320 * differentiate between fibre and parallel scsi behaviors. At that time 7321 * it will be necessary for all fibre channel HBAs to support this 7322 * property. 7323 * 7324 * set un_f_is_fiber to TRUE ( default fiber ) 7325 */ 7326 un->un_f_is_fibre = TRUE; 7327 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7328 case INTERCONNECT_SSA: 7329 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7330 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7331 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7332 break; 7333 case INTERCONNECT_PARALLEL: 7334 un->un_f_is_fibre = FALSE; 7335 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7336 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7337 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7338 break; 7339 case INTERCONNECT_SAS: 7340 un->un_f_is_fibre = FALSE; 7341 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7342 un->un_node_type = DDI_NT_BLOCK_SAS; 7343 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7344 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7345 break; 7346 case INTERCONNECT_SATA: 7347 un->un_f_is_fibre = FALSE; 7348 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7349 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7350 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7351 break; 7352 case INTERCONNECT_FIBRE: 7353 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7355 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7356 break; 7357 case INTERCONNECT_FABRIC: 7358 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7359 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7360 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7361 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7362 break; 7363 default: 7364 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7365 /* 7366 * The HBA does not support the "interconnect-type" property 7367 * (or did not provide a recognized type). 7368 * 7369 * Note: This will be obsoleted when a single fibre channel 7370 * and parallel scsi driver is delivered. In the meantime the 7371 * interconnect type will be set to the platform default.If that 7372 * type is not parallel SCSI, it means that we should be 7373 * assuming "ssd" semantics. However, here this also means that 7374 * the FC HBA is not supporting the "interconnect-type" property 7375 * like we expect it to, so log this occurrence. 7376 */ 7377 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7378 if (!SD_IS_PARALLEL_SCSI(un)) { 7379 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7380 "sd_unit_attach: un:0x%p Assuming " 7381 "INTERCONNECT_FIBRE\n", un); 7382 } else { 7383 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7384 "sd_unit_attach: un:0x%p Assuming " 7385 "INTERCONNECT_PARALLEL\n", un); 7386 un->un_f_is_fibre = FALSE; 7387 } 7388 #else 7389 /* 7390 * Note: This source will be implemented when a single fibre 7391 * channel and parallel scsi driver is delivered. The default 7392 * will be to assume that if a device does not support the 7393 * "interconnect-type" property it is a parallel SCSI HBA and 7394 * we will set the interconnect type for parallel scsi. 7395 */ 7396 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7397 un->un_f_is_fibre = FALSE; 7398 #endif 7399 break; 7400 } 7401 7402 if (un->un_f_is_fibre == TRUE) { 7403 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7404 SCSI_VERSION_3) { 7405 switch (un->un_interconnect_type) { 7406 case SD_INTERCONNECT_FIBRE: 7407 case SD_INTERCONNECT_SSA: 7408 un->un_node_type = DDI_NT_BLOCK_WWN; 7409 break; 7410 default: 7411 break; 7412 } 7413 } 7414 } 7415 7416 /* 7417 * Initialize the Request Sense command for the target 7418 */ 7419 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7420 goto alloc_rqs_failed; 7421 } 7422 7423 /* 7424 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7425 * with separate binary for sd and ssd. 7426 * 7427 * x86 has 1 binary, un_retry_count is set base on connection type. 7428 * The hardcoded values will go away when Sparc uses 1 binary 7429 * for sd and ssd. This hardcoded values need to match 7430 * SD_RETRY_COUNT in sddef.h 7431 * The value used is base on interconnect type. 7432 * fibre = 3, parallel = 5 7433 */ 7434 #if defined(__i386) || defined(__amd64) 7435 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7436 #else 7437 un->un_retry_count = SD_RETRY_COUNT; 7438 #endif 7439 7440 /* 7441 * Set the per disk retry count to the default number of retries 7442 * for disks and CDROMs. This value can be overridden by the 7443 * disk property list or an entry in sd.conf. 7444 */ 7445 un->un_notready_retry_count = 7446 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7447 : DISK_NOT_READY_RETRY_COUNT(un); 7448 7449 /* 7450 * Set the busy retry count to the default value of un_retry_count. 7451 * This can be overridden by entries in sd.conf or the device 7452 * config table. 7453 */ 7454 un->un_busy_retry_count = un->un_retry_count; 7455 7456 /* 7457 * Init the reset threshold for retries. This number determines 7458 * how many retries must be performed before a reset can be issued 7459 * (for certain error conditions). This can be overridden by entries 7460 * in sd.conf or the device config table. 7461 */ 7462 un->un_reset_retry_count = (un->un_retry_count / 2); 7463 7464 /* 7465 * Set the victim_retry_count to the default un_retry_count 7466 */ 7467 un->un_victim_retry_count = (2 * un->un_retry_count); 7468 7469 /* 7470 * Set the reservation release timeout to the default value of 7471 * 5 seconds. This can be overridden by entries in ssd.conf or the 7472 * device config table. 7473 */ 7474 un->un_reserve_release_time = 5; 7475 7476 /* 7477 * Set up the default maximum transfer size. Note that this may 7478 * get updated later in the attach, when setting up default wide 7479 * operations for disks. 7480 */ 7481 #if defined(__i386) || defined(__amd64) 7482 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7483 un->un_partial_dma_supported = 1; 7484 #else 7485 un->un_max_xfer_size = (uint_t)maxphys; 7486 #endif 7487 7488 /* 7489 * Get "allow bus device reset" property (defaults to "enabled" if 7490 * the property was not defined). This is to disable bus resets for 7491 * certain kinds of error recovery. Note: In the future when a run-time 7492 * fibre check is available the soft state flag should default to 7493 * enabled. 7494 */ 7495 if (un->un_f_is_fibre == TRUE) { 7496 un->un_f_allow_bus_device_reset = TRUE; 7497 } else { 7498 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7499 "allow-bus-device-reset", 1) != 0) { 7500 un->un_f_allow_bus_device_reset = TRUE; 7501 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7502 "sd_unit_attach: un:0x%p Bus device reset " 7503 "enabled\n", un); 7504 } else { 7505 un->un_f_allow_bus_device_reset = FALSE; 7506 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7507 "sd_unit_attach: un:0x%p Bus device reset " 7508 "disabled\n", un); 7509 } 7510 } 7511 7512 /* 7513 * Check if this is an ATAPI device. ATAPI devices use Group 1 7514 * Read/Write commands and Group 2 Mode Sense/Select commands. 7515 * 7516 * Note: The "obsolete" way of doing this is to check for the "atapi" 7517 * property. The new "variant" property with a value of "atapi" has been 7518 * introduced so that future 'variants' of standard SCSI behavior (like 7519 * atapi) could be specified by the underlying HBA drivers by supplying 7520 * a new value for the "variant" property, instead of having to define a 7521 * new property. 7522 */ 7523 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7524 un->un_f_cfg_is_atapi = TRUE; 7525 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7526 "sd_unit_attach: un:0x%p Atapi device\n", un); 7527 } 7528 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7529 &variantp) == DDI_PROP_SUCCESS) { 7530 if (strcmp(variantp, "atapi") == 0) { 7531 un->un_f_cfg_is_atapi = TRUE; 7532 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7533 "sd_unit_attach: un:0x%p Atapi device\n", un); 7534 } 7535 ddi_prop_free(variantp); 7536 } 7537 7538 un->un_cmd_timeout = SD_IO_TIME; 7539 7540 un->un_busy_timeout = SD_BSY_TIMEOUT; 7541 7542 /* Info on current states, statuses, etc. (Updated frequently) */ 7543 un->un_state = SD_STATE_NORMAL; 7544 un->un_last_state = SD_STATE_NORMAL; 7545 7546 /* Control & status info for command throttling */ 7547 un->un_throttle = sd_max_throttle; 7548 un->un_saved_throttle = sd_max_throttle; 7549 un->un_min_throttle = sd_min_throttle; 7550 7551 if (un->un_f_is_fibre == TRUE) { 7552 un->un_f_use_adaptive_throttle = TRUE; 7553 } else { 7554 un->un_f_use_adaptive_throttle = FALSE; 7555 } 7556 7557 /* Removable media support. */ 7558 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7559 un->un_mediastate = DKIO_NONE; 7560 un->un_specified_mediastate = DKIO_NONE; 7561 7562 /* CVs for suspend/resume (PM or DR) */ 7563 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7564 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7565 7566 /* Power management support. */ 7567 un->un_power_level = SD_SPINDLE_UNINIT; 7568 7569 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7570 un->un_f_wcc_inprog = 0; 7571 7572 /* 7573 * The open/close semaphore is used to serialize threads executing 7574 * in the driver's open & close entry point routines for a given 7575 * instance. 7576 */ 7577 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7578 7579 /* 7580 * The conf file entry and softstate variable is a forceful override, 7581 * meaning a non-zero value must be entered to change the default. 7582 */ 7583 un->un_f_disksort_disabled = FALSE; 7584 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7585 7586 /* 7587 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but 7588 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property. 7589 */ 7590 un->un_f_mmc_gesn_polling = TRUE; 7591 7592 /* 7593 * Retrieve the properties from the static driver table or the driver 7594 * configuration file (.conf) for this unit and update the soft state 7595 * for the device as needed for the indicated properties. 7596 * Note: the property configuration needs to occur here as some of the 7597 * following routines may have dependencies on soft state flags set 7598 * as part of the driver property configuration. 7599 */ 7600 sd_read_unit_properties(un); 7601 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7602 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7603 7604 /* 7605 * Only if a device has "hotpluggable" property, it is 7606 * treated as hotpluggable device. Otherwise, it is 7607 * regarded as non-hotpluggable one. 7608 */ 7609 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7610 -1) != -1) { 7611 un->un_f_is_hotpluggable = TRUE; 7612 } 7613 7614 /* 7615 * set unit's attributes(flags) according to "hotpluggable" and 7616 * RMB bit in INQUIRY data. 7617 */ 7618 sd_set_unit_attributes(un, devi); 7619 7620 /* 7621 * By default, we mark the capacity, lbasize, and geometry 7622 * as invalid. Only if we successfully read a valid capacity 7623 * will we update the un_blockcount and un_tgt_blocksize with the 7624 * valid values (the geometry will be validated later). 7625 */ 7626 un->un_f_blockcount_is_valid = FALSE; 7627 un->un_f_tgt_blocksize_is_valid = FALSE; 7628 7629 /* 7630 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7631 * otherwise. 7632 */ 7633 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7634 un->un_blockcount = 0; 7635 7636 /* 7637 * Set up the per-instance info needed to determine the correct 7638 * CDBs and other info for issuing commands to the target. 7639 */ 7640 sd_init_cdb_limits(un); 7641 7642 /* 7643 * Set up the IO chains to use, based upon the target type. 7644 */ 7645 if (un->un_f_non_devbsize_supported) { 7646 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7647 } else { 7648 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7649 } 7650 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7651 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7652 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7653 7654 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7655 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7656 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7657 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7658 7659 7660 if (ISCD(un)) { 7661 un->un_additional_codes = sd_additional_codes; 7662 } else { 7663 un->un_additional_codes = NULL; 7664 } 7665 7666 /* 7667 * Create the kstats here so they can be available for attach-time 7668 * routines that send commands to the unit (either polled or via 7669 * sd_send_scsi_cmd). 7670 * 7671 * Note: This is a critical sequence that needs to be maintained: 7672 * 1) Instantiate the kstats here, before any routines using the 7673 * iopath (i.e. sd_send_scsi_cmd). 7674 * 2) Instantiate and initialize the partition stats 7675 * (sd_set_pstats). 7676 * 3) Initialize the error stats (sd_set_errstats), following 7677 * sd_validate_geometry(),sd_register_devid(), 7678 * and sd_cache_control(). 7679 */ 7680 7681 un->un_stats = kstat_create(sd_label, instance, 7682 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7683 if (un->un_stats != NULL) { 7684 un->un_stats->ks_lock = SD_MUTEX(un); 7685 kstat_install(un->un_stats); 7686 } 7687 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7688 "sd_unit_attach: un:0x%p un_stats created\n", un); 7689 7690 sd_create_errstats(un, instance); 7691 if (un->un_errstats == NULL) { 7692 goto create_errstats_failed; 7693 } 7694 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7695 "sd_unit_attach: un:0x%p errstats created\n", un); 7696 7697 /* 7698 * The following if/else code was relocated here from below as part 7699 * of the fix for bug (4430280). However with the default setup added 7700 * on entry to this routine, it's no longer absolutely necessary for 7701 * this to be before the call to sd_spin_up_unit. 7702 */ 7703 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7704 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7705 (devp->sd_inq->inq_ansi == 5)) && 7706 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7707 7708 /* 7709 * If tagged queueing is supported by the target 7710 * and by the host adapter then we will enable it 7711 */ 7712 un->un_tagflags = 0; 7713 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7714 (un->un_f_arq_enabled == TRUE)) { 7715 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7716 1, 1) == 1) { 7717 un->un_tagflags = FLAG_STAG; 7718 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7719 "sd_unit_attach: un:0x%p tag queueing " 7720 "enabled\n", un); 7721 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7722 "untagged-qing", 0) == 1) { 7723 un->un_f_opt_queueing = TRUE; 7724 un->un_saved_throttle = un->un_throttle = 7725 min(un->un_throttle, 3); 7726 } else { 7727 un->un_f_opt_queueing = FALSE; 7728 un->un_saved_throttle = un->un_throttle = 1; 7729 } 7730 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7731 == 1) && (un->un_f_arq_enabled == TRUE)) { 7732 /* The Host Adapter supports internal queueing. */ 7733 un->un_f_opt_queueing = TRUE; 7734 un->un_saved_throttle = un->un_throttle = 7735 min(un->un_throttle, 3); 7736 } else { 7737 un->un_f_opt_queueing = FALSE; 7738 un->un_saved_throttle = un->un_throttle = 1; 7739 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7740 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7741 } 7742 7743 /* 7744 * Enable large transfers for SATA/SAS drives 7745 */ 7746 if (SD_IS_SERIAL(un)) { 7747 un->un_max_xfer_size = 7748 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7749 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7750 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7751 "sd_unit_attach: un:0x%p max transfer " 7752 "size=0x%x\n", un, un->un_max_xfer_size); 7753 7754 } 7755 7756 /* Setup or tear down default wide operations for disks */ 7757 7758 /* 7759 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7760 * and "ssd_max_xfer_size" to exist simultaneously on the same 7761 * system and be set to different values. In the future this 7762 * code may need to be updated when the ssd module is 7763 * obsoleted and removed from the system. (4299588) 7764 */ 7765 if (SD_IS_PARALLEL_SCSI(un) && 7766 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7767 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7768 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7769 1, 1) == 1) { 7770 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7771 "sd_unit_attach: un:0x%p Wide Transfer " 7772 "enabled\n", un); 7773 } 7774 7775 /* 7776 * If tagged queuing has also been enabled, then 7777 * enable large xfers 7778 */ 7779 if (un->un_saved_throttle == sd_max_throttle) { 7780 un->un_max_xfer_size = 7781 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7782 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7783 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7784 "sd_unit_attach: un:0x%p max transfer " 7785 "size=0x%x\n", un, un->un_max_xfer_size); 7786 } 7787 } else { 7788 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7789 0, 1) == 1) { 7790 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7791 "sd_unit_attach: un:0x%p " 7792 "Wide Transfer disabled\n", un); 7793 } 7794 } 7795 } else { 7796 un->un_tagflags = FLAG_STAG; 7797 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7798 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7799 } 7800 7801 /* 7802 * If this target supports LUN reset, try to enable it. 7803 */ 7804 if (un->un_f_lun_reset_enabled) { 7805 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7806 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7807 "un:0x%p lun_reset capability set\n", un); 7808 } else { 7809 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7810 "un:0x%p lun-reset capability not set\n", un); 7811 } 7812 } 7813 7814 /* 7815 * Adjust the maximum transfer size. This is to fix 7816 * the problem of partial DMA support on SPARC. Some 7817 * HBA driver, like aac, has very small dma_attr_maxxfer 7818 * size, which requires partial DMA support on SPARC. 7819 * In the future the SPARC pci nexus driver may solve 7820 * the problem instead of this fix. 7821 */ 7822 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7823 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7824 /* We need DMA partial even on sparc to ensure sddump() works */ 7825 un->un_max_xfer_size = max_xfer_size; 7826 if (un->un_partial_dma_supported == 0) 7827 un->un_partial_dma_supported = 1; 7828 } 7829 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7830 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 7831 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 7832 un->un_max_xfer_size) == 1) { 7833 un->un_buf_breakup_supported = 1; 7834 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7835 "un:0x%p Buf breakup enabled\n", un); 7836 } 7837 } 7838 7839 /* 7840 * Set PKT_DMA_PARTIAL flag. 7841 */ 7842 if (un->un_partial_dma_supported == 1) { 7843 un->un_pkt_flags = PKT_DMA_PARTIAL; 7844 } else { 7845 un->un_pkt_flags = 0; 7846 } 7847 7848 /* Initialize sd_ssc_t for internal uscsi commands */ 7849 ssc = sd_ssc_init(un); 7850 scsi_fm_init(devp); 7851 7852 /* 7853 * Allocate memory for SCSI FMA stuffs. 7854 */ 7855 un->un_fm_private = 7856 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7857 sfip = (struct sd_fm_internal *)un->un_fm_private; 7858 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7859 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7860 sfip->fm_ssc.ssc_un = un; 7861 7862 if (ISCD(un) || 7863 un->un_f_has_removable_media || 7864 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7865 /* 7866 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7867 * Their log are unchanged. 7868 */ 7869 sfip->fm_log_level = SD_FM_LOG_NSUP; 7870 } else { 7871 /* 7872 * If enter here, it should be non-CDROM and FM-capable 7873 * device, and it will not keep the old scsi_log as before 7874 * in /var/adm/messages. However, the property 7875 * "fm-scsi-log" will control whether the FM telemetry will 7876 * be logged in /var/adm/messages. 7877 */ 7878 int fm_scsi_log; 7879 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7880 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7881 7882 if (fm_scsi_log) 7883 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7884 else 7885 sfip->fm_log_level = SD_FM_LOG_SILENT; 7886 } 7887 7888 /* 7889 * At this point in the attach, we have enough info in the 7890 * soft state to be able to issue commands to the target. 7891 * 7892 * All command paths used below MUST issue their commands as 7893 * SD_PATH_DIRECT. This is important as intermediate layers 7894 * are not all initialized yet (such as PM). 7895 */ 7896 7897 /* 7898 * Send a TEST UNIT READY command to the device. This should clear 7899 * any outstanding UNIT ATTENTION that may be present. 7900 * 7901 * Note: Don't check for success, just track if there is a reservation, 7902 * this is a throw away command to clear any unit attentions. 7903 * 7904 * Note: This MUST be the first command issued to the target during 7905 * attach to ensure power on UNIT ATTENTIONS are cleared. 7906 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7907 * with attempts at spinning up a device with no media. 7908 */ 7909 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7910 if (status != 0) { 7911 if (status == EACCES) 7912 reservation_flag = SD_TARGET_IS_RESERVED; 7913 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7914 } 7915 7916 /* 7917 * If the device is NOT a removable media device, attempt to spin 7918 * it up (using the START_STOP_UNIT command) and read its capacity 7919 * (using the READ CAPACITY command). Note, however, that either 7920 * of these could fail and in some cases we would continue with 7921 * the attach despite the failure (see below). 7922 */ 7923 if (un->un_f_descr_format_supported) { 7924 7925 switch (sd_spin_up_unit(ssc)) { 7926 case 0: 7927 /* 7928 * Spin-up was successful; now try to read the 7929 * capacity. If successful then save the results 7930 * and mark the capacity & lbasize as valid. 7931 */ 7932 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7933 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7934 7935 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7936 &lbasize, SD_PATH_DIRECT); 7937 7938 switch (status) { 7939 case 0: { 7940 if (capacity > DK_MAX_BLOCKS) { 7941 #ifdef _LP64 7942 if ((capacity + 1) > 7943 SD_GROUP1_MAX_ADDRESS) { 7944 /* 7945 * Enable descriptor format 7946 * sense data so that we can 7947 * get 64 bit sense data 7948 * fields. 7949 */ 7950 sd_enable_descr_sense(ssc); 7951 } 7952 #else 7953 /* 32-bit kernels can't handle this */ 7954 scsi_log(SD_DEVINFO(un), 7955 sd_label, CE_WARN, 7956 "disk has %llu blocks, which " 7957 "is too large for a 32-bit " 7958 "kernel", capacity); 7959 7960 #if defined(__i386) || defined(__amd64) 7961 /* 7962 * 1TB disk was treated as (1T - 512)B 7963 * in the past, so that it might have 7964 * valid VTOC and solaris partitions, 7965 * we have to allow it to continue to 7966 * work. 7967 */ 7968 if (capacity -1 > DK_MAX_BLOCKS) 7969 #endif 7970 goto spinup_failed; 7971 #endif 7972 } 7973 7974 /* 7975 * Here it's not necessary to check the case: 7976 * the capacity of the device is bigger than 7977 * what the max hba cdb can support. Because 7978 * sd_send_scsi_READ_CAPACITY will retrieve 7979 * the capacity by sending USCSI command, which 7980 * is constrained by the max hba cdb. Actually, 7981 * sd_send_scsi_READ_CAPACITY will return 7982 * EINVAL when using bigger cdb than required 7983 * cdb length. Will handle this case in 7984 * "case EINVAL". 7985 */ 7986 7987 /* 7988 * The following relies on 7989 * sd_send_scsi_READ_CAPACITY never 7990 * returning 0 for capacity and/or lbasize. 7991 */ 7992 sd_update_block_info(un, lbasize, capacity); 7993 7994 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7995 "sd_unit_attach: un:0x%p capacity = %ld " 7996 "blocks; lbasize= %ld.\n", un, 7997 un->un_blockcount, un->un_tgt_blocksize); 7998 7999 break; 8000 } 8001 case EINVAL: 8002 /* 8003 * In the case where the max-cdb-length property 8004 * is smaller than the required CDB length for 8005 * a SCSI device, a target driver can fail to 8006 * attach to that device. 8007 */ 8008 scsi_log(SD_DEVINFO(un), 8009 sd_label, CE_WARN, 8010 "disk capacity is too large " 8011 "for current cdb length"); 8012 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8013 8014 goto spinup_failed; 8015 case EACCES: 8016 /* 8017 * Should never get here if the spin-up 8018 * succeeded, but code it in anyway. 8019 * From here, just continue with the attach... 8020 */ 8021 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8022 "sd_unit_attach: un:0x%p " 8023 "sd_send_scsi_READ_CAPACITY " 8024 "returned reservation conflict\n", un); 8025 reservation_flag = SD_TARGET_IS_RESERVED; 8026 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8027 break; 8028 default: 8029 /* 8030 * Likewise, should never get here if the 8031 * spin-up succeeded. Just continue with 8032 * the attach... 8033 */ 8034 if (status == EIO) 8035 sd_ssc_assessment(ssc, 8036 SD_FMT_STATUS_CHECK); 8037 else 8038 sd_ssc_assessment(ssc, 8039 SD_FMT_IGNORE); 8040 break; 8041 } 8042 break; 8043 case EACCES: 8044 /* 8045 * Device is reserved by another host. In this case 8046 * we could not spin it up or read the capacity, but 8047 * we continue with the attach anyway. 8048 */ 8049 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8050 "sd_unit_attach: un:0x%p spin-up reservation " 8051 "conflict.\n", un); 8052 reservation_flag = SD_TARGET_IS_RESERVED; 8053 break; 8054 default: 8055 /* Fail the attach if the spin-up failed. */ 8056 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8057 "sd_unit_attach: un:0x%p spin-up failed.", un); 8058 goto spinup_failed; 8059 } 8060 8061 } 8062 8063 /* 8064 * Check to see if this is a MMC drive 8065 */ 8066 if (ISCD(un)) { 8067 sd_set_mmc_caps(ssc); 8068 } 8069 8070 /* 8071 * Add a zero-length attribute to tell the world we support 8072 * kernel ioctls (for layered drivers) 8073 */ 8074 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8075 DDI_KERNEL_IOCTL, NULL, 0); 8076 8077 /* 8078 * Add a boolean property to tell the world we support 8079 * the B_FAILFAST flag (for layered drivers) 8080 */ 8081 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8082 "ddi-failfast-supported", NULL, 0); 8083 8084 /* 8085 * Initialize power management 8086 */ 8087 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8088 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8089 sd_setup_pm(ssc, devi); 8090 if (un->un_f_pm_is_enabled == FALSE) { 8091 /* 8092 * For performance, point to a jump table that does 8093 * not include pm. 8094 * The direct and priority chains don't change with PM. 8095 * 8096 * Note: this is currently done based on individual device 8097 * capabilities. When an interface for determining system 8098 * power enabled state becomes available, or when additional 8099 * layers are added to the command chain, these values will 8100 * have to be re-evaluated for correctness. 8101 */ 8102 if (un->un_f_non_devbsize_supported) { 8103 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8104 } else { 8105 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8106 } 8107 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8108 } 8109 8110 /* 8111 * This property is set to 0 by HA software to avoid retries 8112 * on a reserved disk. (The preferred property name is 8113 * "retry-on-reservation-conflict") (1189689) 8114 * 8115 * Note: The use of a global here can have unintended consequences. A 8116 * per instance variable is preferable to match the capabilities of 8117 * different underlying hba's (4402600) 8118 */ 8119 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8120 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8121 sd_retry_on_reservation_conflict); 8122 if (sd_retry_on_reservation_conflict != 0) { 8123 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8124 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8125 sd_retry_on_reservation_conflict); 8126 } 8127 8128 /* Set up options for QFULL handling. */ 8129 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8130 "qfull-retries", -1)) != -1) { 8131 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8132 rval, 1); 8133 } 8134 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8135 "qfull-retry-interval", -1)) != -1) { 8136 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8137 rval, 1); 8138 } 8139 8140 /* 8141 * This just prints a message that announces the existence of the 8142 * device. The message is always printed in the system logfile, but 8143 * only appears on the console if the system is booted with the 8144 * -v (verbose) argument. 8145 */ 8146 ddi_report_dev(devi); 8147 8148 un->un_mediastate = DKIO_NONE; 8149 8150 /* 8151 * Check if this is a SSD(Solid State Drive). 8152 */ 8153 sd_check_solid_state(ssc); 8154 8155 cmlb_alloc_handle(&un->un_cmlbhandle); 8156 8157 #if defined(__i386) || defined(__amd64) 8158 /* 8159 * On x86, compensate for off-by-1 legacy error 8160 */ 8161 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8162 (lbasize == un->un_sys_blocksize)) 8163 offbyone = CMLB_OFF_BY_ONE; 8164 #endif 8165 8166 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8167 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8168 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8169 un->un_node_type, offbyone, un->un_cmlbhandle, 8170 (void *)SD_PATH_DIRECT) != 0) { 8171 goto cmlb_attach_failed; 8172 } 8173 8174 8175 /* 8176 * Read and validate the device's geometry (ie, disk label) 8177 * A new unformatted drive will not have a valid geometry, but 8178 * the driver needs to successfully attach to this device so 8179 * the drive can be formatted via ioctls. 8180 */ 8181 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8182 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8183 8184 mutex_enter(SD_MUTEX(un)); 8185 8186 /* 8187 * Read and initialize the devid for the unit. 8188 */ 8189 if (un->un_f_devid_supported) { 8190 sd_register_devid(ssc, devi, reservation_flag); 8191 } 8192 mutex_exit(SD_MUTEX(un)); 8193 8194 #if (defined(__fibre)) 8195 /* 8196 * Register callbacks for fibre only. You can't do this solely 8197 * on the basis of the devid_type because this is hba specific. 8198 * We need to query our hba capabilities to find out whether to 8199 * register or not. 8200 */ 8201 if (un->un_f_is_fibre) { 8202 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8203 sd_init_event_callbacks(un); 8204 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8205 "sd_unit_attach: un:0x%p event callbacks inserted", 8206 un); 8207 } 8208 } 8209 #endif 8210 8211 if (un->un_f_opt_disable_cache == TRUE) { 8212 /* 8213 * Disable both read cache and write cache. This is 8214 * the historic behavior of the keywords in the config file. 8215 */ 8216 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8217 0) { 8218 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8219 "sd_unit_attach: un:0x%p Could not disable " 8220 "caching", un); 8221 goto devid_failed; 8222 } 8223 } 8224 8225 /* 8226 * Check the value of the WCE bit now and 8227 * set un_f_write_cache_enabled accordingly. 8228 */ 8229 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8230 mutex_enter(SD_MUTEX(un)); 8231 un->un_f_write_cache_enabled = (wc_enabled != 0); 8232 mutex_exit(SD_MUTEX(un)); 8233 8234 if (un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8235 un->un_tgt_blocksize != DEV_BSIZE) { 8236 if (!(un->un_wm_cache)) { 8237 (void) snprintf(name_str, sizeof (name_str), 8238 "%s%d_cache", 8239 ddi_driver_name(SD_DEVINFO(un)), 8240 ddi_get_instance(SD_DEVINFO(un))); 8241 un->un_wm_cache = kmem_cache_create( 8242 name_str, sizeof (struct sd_w_map), 8243 8, sd_wm_cache_constructor, 8244 sd_wm_cache_destructor, NULL, 8245 (void *)un, NULL, 0); 8246 if (!(un->un_wm_cache)) { 8247 goto wm_cache_failed; 8248 } 8249 } 8250 } 8251 8252 /* 8253 * Check the value of the NV_SUP bit and set 8254 * un_f_suppress_cache_flush accordingly. 8255 */ 8256 sd_get_nv_sup(ssc); 8257 8258 /* 8259 * Find out what type of reservation this disk supports. 8260 */ 8261 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8262 8263 switch (status) { 8264 case 0: 8265 /* 8266 * SCSI-3 reservations are supported. 8267 */ 8268 un->un_reservation_type = SD_SCSI3_RESERVATION; 8269 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8270 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8271 break; 8272 case ENOTSUP: 8273 /* 8274 * The PERSISTENT RESERVE IN command would not be recognized by 8275 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8276 */ 8277 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8278 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8279 un->un_reservation_type = SD_SCSI2_RESERVATION; 8280 8281 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8282 break; 8283 default: 8284 /* 8285 * default to SCSI-3 reservations 8286 */ 8287 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8288 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8289 un->un_reservation_type = SD_SCSI3_RESERVATION; 8290 8291 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8292 break; 8293 } 8294 8295 /* 8296 * Set the pstat and error stat values here, so data obtained during the 8297 * previous attach-time routines is available. 8298 * 8299 * Note: This is a critical sequence that needs to be maintained: 8300 * 1) Instantiate the kstats before any routines using the iopath 8301 * (i.e. sd_send_scsi_cmd). 8302 * 2) Initialize the error stats (sd_set_errstats) and partition 8303 * stats (sd_set_pstats)here, following 8304 * cmlb_validate_geometry(), sd_register_devid(), and 8305 * sd_cache_control(). 8306 */ 8307 8308 if (un->un_f_pkstats_enabled && geom_label_valid) { 8309 sd_set_pstats(un); 8310 SD_TRACE(SD_LOG_IO_PARTITION, un, 8311 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8312 } 8313 8314 sd_set_errstats(un); 8315 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8316 "sd_unit_attach: un:0x%p errstats set\n", un); 8317 8318 8319 /* 8320 * After successfully attaching an instance, we record the information 8321 * of how many luns have been attached on the relative target and 8322 * controller for parallel SCSI. This information is used when sd tries 8323 * to set the tagged queuing capability in HBA. 8324 */ 8325 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8326 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8327 } 8328 8329 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8330 "sd_unit_attach: un:0x%p exit success\n", un); 8331 8332 /* Uninitialize sd_ssc_t pointer */ 8333 sd_ssc_fini(ssc); 8334 8335 return (DDI_SUCCESS); 8336 8337 /* 8338 * An error occurred during the attach; clean up & return failure. 8339 */ 8340 wm_cache_failed: 8341 devid_failed: 8342 8343 setup_pm_failed: 8344 ddi_remove_minor_node(devi, NULL); 8345 8346 cmlb_attach_failed: 8347 /* 8348 * Cleanup from the scsi_ifsetcap() calls (437868) 8349 */ 8350 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8351 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8352 8353 /* 8354 * Refer to the comments of setting tagged-qing in the beginning of 8355 * sd_unit_attach. We can only disable tagged queuing when there is 8356 * no lun attached on the target. 8357 */ 8358 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8359 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8360 } 8361 8362 if (un->un_f_is_fibre == FALSE) { 8363 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8364 } 8365 8366 spinup_failed: 8367 8368 /* Uninitialize sd_ssc_t pointer */ 8369 sd_ssc_fini(ssc); 8370 8371 mutex_enter(SD_MUTEX(un)); 8372 8373 /* Deallocate SCSI FMA memory spaces */ 8374 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8375 8376 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8377 if (un->un_direct_priority_timeid != NULL) { 8378 timeout_id_t temp_id = un->un_direct_priority_timeid; 8379 un->un_direct_priority_timeid = NULL; 8380 mutex_exit(SD_MUTEX(un)); 8381 (void) untimeout(temp_id); 8382 mutex_enter(SD_MUTEX(un)); 8383 } 8384 8385 /* Cancel any pending start/stop timeouts */ 8386 if (un->un_startstop_timeid != NULL) { 8387 timeout_id_t temp_id = un->un_startstop_timeid; 8388 un->un_startstop_timeid = NULL; 8389 mutex_exit(SD_MUTEX(un)); 8390 (void) untimeout(temp_id); 8391 mutex_enter(SD_MUTEX(un)); 8392 } 8393 8394 /* Cancel any pending reset-throttle timeouts */ 8395 if (un->un_reset_throttle_timeid != NULL) { 8396 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8397 un->un_reset_throttle_timeid = NULL; 8398 mutex_exit(SD_MUTEX(un)); 8399 (void) untimeout(temp_id); 8400 mutex_enter(SD_MUTEX(un)); 8401 } 8402 8403 /* Cancel rmw warning message timeouts */ 8404 if (un->un_rmw_msg_timeid != NULL) { 8405 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8406 un->un_rmw_msg_timeid = NULL; 8407 mutex_exit(SD_MUTEX(un)); 8408 (void) untimeout(temp_id); 8409 mutex_enter(SD_MUTEX(un)); 8410 } 8411 8412 /* Cancel any pending retry timeouts */ 8413 if (un->un_retry_timeid != NULL) { 8414 timeout_id_t temp_id = un->un_retry_timeid; 8415 un->un_retry_timeid = NULL; 8416 mutex_exit(SD_MUTEX(un)); 8417 (void) untimeout(temp_id); 8418 mutex_enter(SD_MUTEX(un)); 8419 } 8420 8421 /* Cancel any pending delayed cv broadcast timeouts */ 8422 if (un->un_dcvb_timeid != NULL) { 8423 timeout_id_t temp_id = un->un_dcvb_timeid; 8424 un->un_dcvb_timeid = NULL; 8425 mutex_exit(SD_MUTEX(un)); 8426 (void) untimeout(temp_id); 8427 mutex_enter(SD_MUTEX(un)); 8428 } 8429 8430 mutex_exit(SD_MUTEX(un)); 8431 8432 /* There should not be any in-progress I/O so ASSERT this check */ 8433 ASSERT(un->un_ncmds_in_transport == 0); 8434 ASSERT(un->un_ncmds_in_driver == 0); 8435 8436 /* Do not free the softstate if the callback routine is active */ 8437 sd_sync_with_callback(un); 8438 8439 /* 8440 * Partition stats apparently are not used with removables. These would 8441 * not have been created during attach, so no need to clean them up... 8442 */ 8443 if (un->un_errstats != NULL) { 8444 kstat_delete(un->un_errstats); 8445 un->un_errstats = NULL; 8446 } 8447 8448 create_errstats_failed: 8449 8450 if (un->un_stats != NULL) { 8451 kstat_delete(un->un_stats); 8452 un->un_stats = NULL; 8453 } 8454 8455 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8456 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8457 8458 ddi_prop_remove_all(devi); 8459 sema_destroy(&un->un_semoclose); 8460 cv_destroy(&un->un_state_cv); 8461 8462 getrbuf_failed: 8463 8464 sd_free_rqs(un); 8465 8466 alloc_rqs_failed: 8467 8468 devp->sd_private = NULL; 8469 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8470 8471 get_softstate_failed: 8472 /* 8473 * Note: the man pages are unclear as to whether or not doing a 8474 * ddi_soft_state_free(sd_state, instance) is the right way to 8475 * clean up after the ddi_soft_state_zalloc() if the subsequent 8476 * ddi_get_soft_state() fails. The implication seems to be 8477 * that the get_soft_state cannot fail if the zalloc succeeds. 8478 */ 8479 #ifndef XPV_HVM_DRIVER 8480 ddi_soft_state_free(sd_state, instance); 8481 #endif /* !XPV_HVM_DRIVER */ 8482 8483 probe_failed: 8484 scsi_unprobe(devp); 8485 8486 return (DDI_FAILURE); 8487 } 8488 8489 8490 /* 8491 * Function: sd_unit_detach 8492 * 8493 * Description: Performs DDI_DETACH processing for sddetach(). 8494 * 8495 * Return Code: DDI_SUCCESS 8496 * DDI_FAILURE 8497 * 8498 * Context: Kernel thread context 8499 */ 8500 8501 static int 8502 sd_unit_detach(dev_info_t *devi) 8503 { 8504 struct scsi_device *devp; 8505 struct sd_lun *un; 8506 int i; 8507 int tgt; 8508 dev_t dev; 8509 dev_info_t *pdip = ddi_get_parent(devi); 8510 #ifndef XPV_HVM_DRIVER 8511 int instance = ddi_get_instance(devi); 8512 #endif /* !XPV_HVM_DRIVER */ 8513 8514 mutex_enter(&sd_detach_mutex); 8515 8516 /* 8517 * Fail the detach for any of the following: 8518 * - Unable to get the sd_lun struct for the instance 8519 * - A layered driver has an outstanding open on the instance 8520 * - Another thread is already detaching this instance 8521 * - Another thread is currently performing an open 8522 */ 8523 devp = ddi_get_driver_private(devi); 8524 if ((devp == NULL) || 8525 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8526 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8527 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8528 mutex_exit(&sd_detach_mutex); 8529 return (DDI_FAILURE); 8530 } 8531 8532 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8533 8534 /* 8535 * Mark this instance as currently in a detach, to inhibit any 8536 * opens from a layered driver. 8537 */ 8538 un->un_detach_count++; 8539 mutex_exit(&sd_detach_mutex); 8540 8541 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8542 SCSI_ADDR_PROP_TARGET, -1); 8543 8544 dev = sd_make_device(SD_DEVINFO(un)); 8545 8546 #ifndef lint 8547 _NOTE(COMPETING_THREADS_NOW); 8548 #endif 8549 8550 mutex_enter(SD_MUTEX(un)); 8551 8552 /* 8553 * Fail the detach if there are any outstanding layered 8554 * opens on this device. 8555 */ 8556 for (i = 0; i < NDKMAP; i++) { 8557 if (un->un_ocmap.lyropen[i] != 0) { 8558 goto err_notclosed; 8559 } 8560 } 8561 8562 /* 8563 * Verify there are NO outstanding commands issued to this device. 8564 * ie, un_ncmds_in_transport == 0. 8565 * It's possible to have outstanding commands through the physio 8566 * code path, even though everything's closed. 8567 */ 8568 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8569 (un->un_direct_priority_timeid != NULL) || 8570 (un->un_state == SD_STATE_RWAIT)) { 8571 mutex_exit(SD_MUTEX(un)); 8572 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8573 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8574 goto err_stillbusy; 8575 } 8576 8577 /* 8578 * If we have the device reserved, release the reservation. 8579 */ 8580 if ((un->un_resvd_status & SD_RESERVE) && 8581 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8582 mutex_exit(SD_MUTEX(un)); 8583 /* 8584 * Note: sd_reserve_release sends a command to the device 8585 * via the sd_ioctlcmd() path, and can sleep. 8586 */ 8587 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8588 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8589 "sd_dr_detach: Cannot release reservation \n"); 8590 } 8591 } else { 8592 mutex_exit(SD_MUTEX(un)); 8593 } 8594 8595 /* 8596 * Untimeout any reserve recover, throttle reset, restart unit 8597 * and delayed broadcast timeout threads. Protect the timeout pointer 8598 * from getting nulled by their callback functions. 8599 */ 8600 mutex_enter(SD_MUTEX(un)); 8601 if (un->un_resvd_timeid != NULL) { 8602 timeout_id_t temp_id = un->un_resvd_timeid; 8603 un->un_resvd_timeid = NULL; 8604 mutex_exit(SD_MUTEX(un)); 8605 (void) untimeout(temp_id); 8606 mutex_enter(SD_MUTEX(un)); 8607 } 8608 8609 if (un->un_reset_throttle_timeid != NULL) { 8610 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8611 un->un_reset_throttle_timeid = NULL; 8612 mutex_exit(SD_MUTEX(un)); 8613 (void) untimeout(temp_id); 8614 mutex_enter(SD_MUTEX(un)); 8615 } 8616 8617 if (un->un_startstop_timeid != NULL) { 8618 timeout_id_t temp_id = un->un_startstop_timeid; 8619 un->un_startstop_timeid = NULL; 8620 mutex_exit(SD_MUTEX(un)); 8621 (void) untimeout(temp_id); 8622 mutex_enter(SD_MUTEX(un)); 8623 } 8624 8625 if (un->un_rmw_msg_timeid != NULL) { 8626 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8627 un->un_rmw_msg_timeid = NULL; 8628 mutex_exit(SD_MUTEX(un)); 8629 (void) untimeout(temp_id); 8630 mutex_enter(SD_MUTEX(un)); 8631 } 8632 8633 if (un->un_dcvb_timeid != NULL) { 8634 timeout_id_t temp_id = un->un_dcvb_timeid; 8635 un->un_dcvb_timeid = NULL; 8636 mutex_exit(SD_MUTEX(un)); 8637 (void) untimeout(temp_id); 8638 } else { 8639 mutex_exit(SD_MUTEX(un)); 8640 } 8641 8642 /* Remove any pending reservation reclaim requests for this device */ 8643 sd_rmv_resv_reclaim_req(dev); 8644 8645 mutex_enter(SD_MUTEX(un)); 8646 8647 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8648 if (un->un_direct_priority_timeid != NULL) { 8649 timeout_id_t temp_id = un->un_direct_priority_timeid; 8650 un->un_direct_priority_timeid = NULL; 8651 mutex_exit(SD_MUTEX(un)); 8652 (void) untimeout(temp_id); 8653 mutex_enter(SD_MUTEX(un)); 8654 } 8655 8656 /* Cancel any active multi-host disk watch thread requests */ 8657 if (un->un_mhd_token != NULL) { 8658 mutex_exit(SD_MUTEX(un)); 8659 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8660 if (scsi_watch_request_terminate(un->un_mhd_token, 8661 SCSI_WATCH_TERMINATE_NOWAIT)) { 8662 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8663 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8664 /* 8665 * Note: We are returning here after having removed 8666 * some driver timeouts above. This is consistent with 8667 * the legacy implementation but perhaps the watch 8668 * terminate call should be made with the wait flag set. 8669 */ 8670 goto err_stillbusy; 8671 } 8672 mutex_enter(SD_MUTEX(un)); 8673 un->un_mhd_token = NULL; 8674 } 8675 8676 if (un->un_swr_token != NULL) { 8677 mutex_exit(SD_MUTEX(un)); 8678 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8679 if (scsi_watch_request_terminate(un->un_swr_token, 8680 SCSI_WATCH_TERMINATE_NOWAIT)) { 8681 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8682 "sd_dr_detach: Cannot cancel swr watch request\n"); 8683 /* 8684 * Note: We are returning here after having removed 8685 * some driver timeouts above. This is consistent with 8686 * the legacy implementation but perhaps the watch 8687 * terminate call should be made with the wait flag set. 8688 */ 8689 goto err_stillbusy; 8690 } 8691 mutex_enter(SD_MUTEX(un)); 8692 un->un_swr_token = NULL; 8693 } 8694 8695 mutex_exit(SD_MUTEX(un)); 8696 8697 /* 8698 * Clear any scsi_reset_notifies. We clear the reset notifies 8699 * if we have not registered one. 8700 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8701 */ 8702 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8703 sd_mhd_reset_notify_cb, (caddr_t)un); 8704 8705 /* 8706 * protect the timeout pointers from getting nulled by 8707 * their callback functions during the cancellation process. 8708 * In such a scenario untimeout can be invoked with a null value. 8709 */ 8710 _NOTE(NO_COMPETING_THREADS_NOW); 8711 8712 mutex_enter(&un->un_pm_mutex); 8713 if (un->un_pm_idle_timeid != NULL) { 8714 timeout_id_t temp_id = un->un_pm_idle_timeid; 8715 un->un_pm_idle_timeid = NULL; 8716 mutex_exit(&un->un_pm_mutex); 8717 8718 /* 8719 * Timeout is active; cancel it. 8720 * Note that it'll never be active on a device 8721 * that does not support PM therefore we don't 8722 * have to check before calling pm_idle_component. 8723 */ 8724 (void) untimeout(temp_id); 8725 (void) pm_idle_component(SD_DEVINFO(un), 0); 8726 mutex_enter(&un->un_pm_mutex); 8727 } 8728 8729 /* 8730 * Check whether there is already a timeout scheduled for power 8731 * management. If yes then don't lower the power here, that's. 8732 * the timeout handler's job. 8733 */ 8734 if (un->un_pm_timeid != NULL) { 8735 timeout_id_t temp_id = un->un_pm_timeid; 8736 un->un_pm_timeid = NULL; 8737 mutex_exit(&un->un_pm_mutex); 8738 /* 8739 * Timeout is active; cancel it. 8740 * Note that it'll never be active on a device 8741 * that does not support PM therefore we don't 8742 * have to check before calling pm_idle_component. 8743 */ 8744 (void) untimeout(temp_id); 8745 (void) pm_idle_component(SD_DEVINFO(un), 0); 8746 8747 } else { 8748 mutex_exit(&un->un_pm_mutex); 8749 if ((un->un_f_pm_is_enabled == TRUE) && 8750 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8751 != DDI_SUCCESS)) { 8752 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8753 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8754 /* 8755 * Fix for bug: 4297749, item # 13 8756 * The above test now includes a check to see if PM is 8757 * supported by this device before call 8758 * pm_lower_power(). 8759 * Note, the following is not dead code. The call to 8760 * pm_lower_power above will generate a call back into 8761 * our sdpower routine which might result in a timeout 8762 * handler getting activated. Therefore the following 8763 * code is valid and necessary. 8764 */ 8765 mutex_enter(&un->un_pm_mutex); 8766 if (un->un_pm_timeid != NULL) { 8767 timeout_id_t temp_id = un->un_pm_timeid; 8768 un->un_pm_timeid = NULL; 8769 mutex_exit(&un->un_pm_mutex); 8770 (void) untimeout(temp_id); 8771 (void) pm_idle_component(SD_DEVINFO(un), 0); 8772 } else { 8773 mutex_exit(&un->un_pm_mutex); 8774 } 8775 } 8776 } 8777 8778 /* 8779 * Cleanup from the scsi_ifsetcap() calls (437868) 8780 * Relocated here from above to be after the call to 8781 * pm_lower_power, which was getting errors. 8782 */ 8783 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8784 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8785 8786 /* 8787 * Currently, tagged queuing is supported per target based by HBA. 8788 * Setting this per lun instance actually sets the capability of this 8789 * target in HBA, which affects those luns already attached on the 8790 * same target. So during detach, we can only disable this capability 8791 * only when this is the only lun left on this target. By doing 8792 * this, we assume a target has the same tagged queuing capability 8793 * for every lun. The condition can be removed when HBA is changed to 8794 * support per lun based tagged queuing capability. 8795 */ 8796 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8797 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8798 } 8799 8800 if (un->un_f_is_fibre == FALSE) { 8801 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8802 } 8803 8804 /* 8805 * Remove any event callbacks, fibre only 8806 */ 8807 if (un->un_f_is_fibre == TRUE) { 8808 if ((un->un_insert_event != NULL) && 8809 (ddi_remove_event_handler(un->un_insert_cb_id) != 8810 DDI_SUCCESS)) { 8811 /* 8812 * Note: We are returning here after having done 8813 * substantial cleanup above. This is consistent 8814 * with the legacy implementation but this may not 8815 * be the right thing to do. 8816 */ 8817 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8818 "sd_dr_detach: Cannot cancel insert event\n"); 8819 goto err_remove_event; 8820 } 8821 un->un_insert_event = NULL; 8822 8823 if ((un->un_remove_event != NULL) && 8824 (ddi_remove_event_handler(un->un_remove_cb_id) != 8825 DDI_SUCCESS)) { 8826 /* 8827 * Note: We are returning here after having done 8828 * substantial cleanup above. This is consistent 8829 * with the legacy implementation but this may not 8830 * be the right thing to do. 8831 */ 8832 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8833 "sd_dr_detach: Cannot cancel remove event\n"); 8834 goto err_remove_event; 8835 } 8836 un->un_remove_event = NULL; 8837 } 8838 8839 /* Do not free the softstate if the callback routine is active */ 8840 sd_sync_with_callback(un); 8841 8842 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8843 cmlb_free_handle(&un->un_cmlbhandle); 8844 8845 /* 8846 * Hold the detach mutex here, to make sure that no other threads ever 8847 * can access a (partially) freed soft state structure. 8848 */ 8849 mutex_enter(&sd_detach_mutex); 8850 8851 /* 8852 * Clean up the soft state struct. 8853 * Cleanup is done in reverse order of allocs/inits. 8854 * At this point there should be no competing threads anymore. 8855 */ 8856 8857 scsi_fm_fini(devp); 8858 8859 /* 8860 * Deallocate memory for SCSI FMA. 8861 */ 8862 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8863 8864 /* 8865 * Unregister and free device id if it was not registered 8866 * by the transport. 8867 */ 8868 if (un->un_f_devid_transport_defined == FALSE) 8869 ddi_devid_unregister(devi); 8870 8871 /* 8872 * free the devid structure if allocated before (by ddi_devid_init() 8873 * or ddi_devid_get()). 8874 */ 8875 if (un->un_devid) { 8876 ddi_devid_free(un->un_devid); 8877 un->un_devid = NULL; 8878 } 8879 8880 /* 8881 * Destroy wmap cache if it exists. 8882 */ 8883 if (un->un_wm_cache != NULL) { 8884 kmem_cache_destroy(un->un_wm_cache); 8885 un->un_wm_cache = NULL; 8886 } 8887 8888 /* 8889 * kstat cleanup is done in detach for all device types (4363169). 8890 * We do not want to fail detach if the device kstats are not deleted 8891 * since there is a confusion about the devo_refcnt for the device. 8892 * We just delete the kstats and let detach complete successfully. 8893 */ 8894 if (un->un_stats != NULL) { 8895 kstat_delete(un->un_stats); 8896 un->un_stats = NULL; 8897 } 8898 if (un->un_errstats != NULL) { 8899 kstat_delete(un->un_errstats); 8900 un->un_errstats = NULL; 8901 } 8902 8903 /* Remove partition stats */ 8904 if (un->un_f_pkstats_enabled) { 8905 for (i = 0; i < NSDMAP; i++) { 8906 if (un->un_pstats[i] != NULL) { 8907 kstat_delete(un->un_pstats[i]); 8908 un->un_pstats[i] = NULL; 8909 } 8910 } 8911 } 8912 8913 /* Remove xbuf registration */ 8914 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8915 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8916 8917 /* Remove driver properties */ 8918 ddi_prop_remove_all(devi); 8919 8920 mutex_destroy(&un->un_pm_mutex); 8921 cv_destroy(&un->un_pm_busy_cv); 8922 8923 cv_destroy(&un->un_wcc_cv); 8924 8925 /* Open/close semaphore */ 8926 sema_destroy(&un->un_semoclose); 8927 8928 /* Removable media condvar. */ 8929 cv_destroy(&un->un_state_cv); 8930 8931 /* Suspend/resume condvar. */ 8932 cv_destroy(&un->un_suspend_cv); 8933 cv_destroy(&un->un_disk_busy_cv); 8934 8935 sd_free_rqs(un); 8936 8937 /* Free up soft state */ 8938 devp->sd_private = NULL; 8939 8940 bzero(un, sizeof (struct sd_lun)); 8941 #ifndef XPV_HVM_DRIVER 8942 ddi_soft_state_free(sd_state, instance); 8943 #endif /* !XPV_HVM_DRIVER */ 8944 8945 mutex_exit(&sd_detach_mutex); 8946 8947 /* This frees up the INQUIRY data associated with the device. */ 8948 scsi_unprobe(devp); 8949 8950 /* 8951 * After successfully detaching an instance, we update the information 8952 * of how many luns have been attached in the relative target and 8953 * controller for parallel SCSI. This information is used when sd tries 8954 * to set the tagged queuing capability in HBA. 8955 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 8956 * check if the device is parallel SCSI. However, we don't need to 8957 * check here because we've already checked during attach. No device 8958 * that is not parallel SCSI is in the chain. 8959 */ 8960 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8961 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 8962 } 8963 8964 return (DDI_SUCCESS); 8965 8966 err_notclosed: 8967 mutex_exit(SD_MUTEX(un)); 8968 8969 err_stillbusy: 8970 _NOTE(NO_COMPETING_THREADS_NOW); 8971 8972 err_remove_event: 8973 mutex_enter(&sd_detach_mutex); 8974 un->un_detach_count--; 8975 mutex_exit(&sd_detach_mutex); 8976 8977 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 8978 return (DDI_FAILURE); 8979 } 8980 8981 8982 /* 8983 * Function: sd_create_errstats 8984 * 8985 * Description: This routine instantiates the device error stats. 8986 * 8987 * Note: During attach the stats are instantiated first so they are 8988 * available for attach-time routines that utilize the driver 8989 * iopath to send commands to the device. The stats are initialized 8990 * separately so data obtained during some attach-time routines is 8991 * available. (4362483) 8992 * 8993 * Arguments: un - driver soft state (unit) structure 8994 * instance - driver instance 8995 * 8996 * Context: Kernel thread context 8997 */ 8998 8999 static void 9000 sd_create_errstats(struct sd_lun *un, int instance) 9001 { 9002 struct sd_errstats *stp; 9003 char kstatmodule_err[KSTAT_STRLEN]; 9004 char kstatname[KSTAT_STRLEN]; 9005 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9006 9007 ASSERT(un != NULL); 9008 9009 if (un->un_errstats != NULL) { 9010 return; 9011 } 9012 9013 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9014 "%serr", sd_label); 9015 (void) snprintf(kstatname, sizeof (kstatname), 9016 "%s%d,err", sd_label, instance); 9017 9018 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9019 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9020 9021 if (un->un_errstats == NULL) { 9022 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9023 "sd_create_errstats: Failed kstat_create\n"); 9024 return; 9025 } 9026 9027 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9028 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9029 KSTAT_DATA_UINT32); 9030 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9031 KSTAT_DATA_UINT32); 9032 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9033 KSTAT_DATA_UINT32); 9034 kstat_named_init(&stp->sd_vid, "Vendor", 9035 KSTAT_DATA_CHAR); 9036 kstat_named_init(&stp->sd_pid, "Product", 9037 KSTAT_DATA_CHAR); 9038 kstat_named_init(&stp->sd_revision, "Revision", 9039 KSTAT_DATA_CHAR); 9040 kstat_named_init(&stp->sd_serial, "Serial No", 9041 KSTAT_DATA_CHAR); 9042 kstat_named_init(&stp->sd_capacity, "Size", 9043 KSTAT_DATA_ULONGLONG); 9044 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9045 KSTAT_DATA_UINT32); 9046 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9047 KSTAT_DATA_UINT32); 9048 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9049 KSTAT_DATA_UINT32); 9050 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9051 KSTAT_DATA_UINT32); 9052 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9053 KSTAT_DATA_UINT32); 9054 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9055 KSTAT_DATA_UINT32); 9056 9057 un->un_errstats->ks_private = un; 9058 un->un_errstats->ks_update = nulldev; 9059 9060 kstat_install(un->un_errstats); 9061 } 9062 9063 9064 /* 9065 * Function: sd_set_errstats 9066 * 9067 * Description: This routine sets the value of the vendor id, product id, 9068 * revision, serial number, and capacity device error stats. 9069 * 9070 * Note: During attach the stats are instantiated first so they are 9071 * available for attach-time routines that utilize the driver 9072 * iopath to send commands to the device. The stats are initialized 9073 * separately so data obtained during some attach-time routines is 9074 * available. (4362483) 9075 * 9076 * Arguments: un - driver soft state (unit) structure 9077 * 9078 * Context: Kernel thread context 9079 */ 9080 9081 static void 9082 sd_set_errstats(struct sd_lun *un) 9083 { 9084 struct sd_errstats *stp; 9085 9086 ASSERT(un != NULL); 9087 ASSERT(un->un_errstats != NULL); 9088 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9089 ASSERT(stp != NULL); 9090 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9091 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9092 (void) strncpy(stp->sd_revision.value.c, 9093 un->un_sd->sd_inq->inq_revision, 4); 9094 9095 /* 9096 * All the errstats are persistent across detach/attach, 9097 * so reset all the errstats here in case of the hot 9098 * replacement of disk drives, except for not changed 9099 * Sun qualified drives. 9100 */ 9101 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9102 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9103 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9104 stp->sd_softerrs.value.ui32 = 0; 9105 stp->sd_harderrs.value.ui32 = 0; 9106 stp->sd_transerrs.value.ui32 = 0; 9107 stp->sd_rq_media_err.value.ui32 = 0; 9108 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9109 stp->sd_rq_nodev_err.value.ui32 = 0; 9110 stp->sd_rq_recov_err.value.ui32 = 0; 9111 stp->sd_rq_illrq_err.value.ui32 = 0; 9112 stp->sd_rq_pfa_err.value.ui32 = 0; 9113 } 9114 9115 /* 9116 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9117 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9118 * (4376302)) 9119 */ 9120 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9121 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9122 sizeof (SD_INQUIRY(un)->inq_serial)); 9123 } 9124 9125 if (un->un_f_blockcount_is_valid != TRUE) { 9126 /* 9127 * Set capacity error stat to 0 for no media. This ensures 9128 * a valid capacity is displayed in response to 'iostat -E' 9129 * when no media is present in the device. 9130 */ 9131 stp->sd_capacity.value.ui64 = 0; 9132 } else { 9133 /* 9134 * Multiply un_blockcount by un->un_sys_blocksize to get 9135 * capacity. 9136 * 9137 * Note: for non-512 blocksize devices "un_blockcount" has been 9138 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9139 * (un_tgt_blocksize / un->un_sys_blocksize). 9140 */ 9141 stp->sd_capacity.value.ui64 = (uint64_t) 9142 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9143 } 9144 } 9145 9146 9147 /* 9148 * Function: sd_set_pstats 9149 * 9150 * Description: This routine instantiates and initializes the partition 9151 * stats for each partition with more than zero blocks. 9152 * (4363169) 9153 * 9154 * Arguments: un - driver soft state (unit) structure 9155 * 9156 * Context: Kernel thread context 9157 */ 9158 9159 static void 9160 sd_set_pstats(struct sd_lun *un) 9161 { 9162 char kstatname[KSTAT_STRLEN]; 9163 int instance; 9164 int i; 9165 diskaddr_t nblks = 0; 9166 char *partname = NULL; 9167 9168 ASSERT(un != NULL); 9169 9170 instance = ddi_get_instance(SD_DEVINFO(un)); 9171 9172 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9173 for (i = 0; i < NSDMAP; i++) { 9174 9175 if (cmlb_partinfo(un->un_cmlbhandle, i, 9176 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9177 continue; 9178 mutex_enter(SD_MUTEX(un)); 9179 9180 if ((un->un_pstats[i] == NULL) && 9181 (nblks != 0)) { 9182 9183 (void) snprintf(kstatname, sizeof (kstatname), 9184 "%s%d,%s", sd_label, instance, 9185 partname); 9186 9187 un->un_pstats[i] = kstat_create(sd_label, 9188 instance, kstatname, "partition", KSTAT_TYPE_IO, 9189 1, KSTAT_FLAG_PERSISTENT); 9190 if (un->un_pstats[i] != NULL) { 9191 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9192 kstat_install(un->un_pstats[i]); 9193 } 9194 } 9195 mutex_exit(SD_MUTEX(un)); 9196 } 9197 } 9198 9199 9200 #if (defined(__fibre)) 9201 /* 9202 * Function: sd_init_event_callbacks 9203 * 9204 * Description: This routine initializes the insertion and removal event 9205 * callbacks. (fibre only) 9206 * 9207 * Arguments: un - driver soft state (unit) structure 9208 * 9209 * Context: Kernel thread context 9210 */ 9211 9212 static void 9213 sd_init_event_callbacks(struct sd_lun *un) 9214 { 9215 ASSERT(un != NULL); 9216 9217 if ((un->un_insert_event == NULL) && 9218 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9219 &un->un_insert_event) == DDI_SUCCESS)) { 9220 /* 9221 * Add the callback for an insertion event 9222 */ 9223 (void) ddi_add_event_handler(SD_DEVINFO(un), 9224 un->un_insert_event, sd_event_callback, (void *)un, 9225 &(un->un_insert_cb_id)); 9226 } 9227 9228 if ((un->un_remove_event == NULL) && 9229 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9230 &un->un_remove_event) == DDI_SUCCESS)) { 9231 /* 9232 * Add the callback for a removal event 9233 */ 9234 (void) ddi_add_event_handler(SD_DEVINFO(un), 9235 un->un_remove_event, sd_event_callback, (void *)un, 9236 &(un->un_remove_cb_id)); 9237 } 9238 } 9239 9240 9241 /* 9242 * Function: sd_event_callback 9243 * 9244 * Description: This routine handles insert/remove events (photon). The 9245 * state is changed to OFFLINE which can be used to supress 9246 * error msgs. (fibre only) 9247 * 9248 * Arguments: un - driver soft state (unit) structure 9249 * 9250 * Context: Callout thread context 9251 */ 9252 /* ARGSUSED */ 9253 static void 9254 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9255 void *bus_impldata) 9256 { 9257 struct sd_lun *un = (struct sd_lun *)arg; 9258 9259 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9260 if (event == un->un_insert_event) { 9261 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9262 mutex_enter(SD_MUTEX(un)); 9263 if (un->un_state == SD_STATE_OFFLINE) { 9264 if (un->un_last_state != SD_STATE_SUSPENDED) { 9265 un->un_state = un->un_last_state; 9266 } else { 9267 /* 9268 * We have gone through SUSPEND/RESUME while 9269 * we were offline. Restore the last state 9270 */ 9271 un->un_state = un->un_save_state; 9272 } 9273 } 9274 mutex_exit(SD_MUTEX(un)); 9275 9276 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9277 } else if (event == un->un_remove_event) { 9278 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9279 mutex_enter(SD_MUTEX(un)); 9280 /* 9281 * We need to handle an event callback that occurs during 9282 * the suspend operation, since we don't prevent it. 9283 */ 9284 if (un->un_state != SD_STATE_OFFLINE) { 9285 if (un->un_state != SD_STATE_SUSPENDED) { 9286 New_state(un, SD_STATE_OFFLINE); 9287 } else { 9288 un->un_last_state = SD_STATE_OFFLINE; 9289 } 9290 } 9291 mutex_exit(SD_MUTEX(un)); 9292 } else { 9293 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9294 "!Unknown event\n"); 9295 } 9296 9297 } 9298 #endif 9299 9300 /* 9301 * Function: sd_cache_control() 9302 * 9303 * Description: This routine is the driver entry point for setting 9304 * read and write caching by modifying the WCE (write cache 9305 * enable) and RCD (read cache disable) bits of mode 9306 * page 8 (MODEPAGE_CACHING). 9307 * 9308 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9309 * structure for this target. 9310 * rcd_flag - flag for controlling the read cache 9311 * wce_flag - flag for controlling the write cache 9312 * 9313 * Return Code: EIO 9314 * code returned by sd_send_scsi_MODE_SENSE and 9315 * sd_send_scsi_MODE_SELECT 9316 * 9317 * Context: Kernel Thread 9318 */ 9319 9320 static int 9321 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9322 { 9323 struct mode_caching *mode_caching_page; 9324 uchar_t *header; 9325 size_t buflen; 9326 int hdrlen; 9327 int bd_len; 9328 int rval = 0; 9329 struct mode_header_grp2 *mhp; 9330 struct sd_lun *un; 9331 int status; 9332 9333 ASSERT(ssc != NULL); 9334 un = ssc->ssc_un; 9335 ASSERT(un != NULL); 9336 9337 /* 9338 * Do a test unit ready, otherwise a mode sense may not work if this 9339 * is the first command sent to the device after boot. 9340 */ 9341 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9342 if (status != 0) 9343 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9344 9345 if (un->un_f_cfg_is_atapi == TRUE) { 9346 hdrlen = MODE_HEADER_LENGTH_GRP2; 9347 } else { 9348 hdrlen = MODE_HEADER_LENGTH; 9349 } 9350 9351 /* 9352 * Allocate memory for the retrieved mode page and its headers. Set 9353 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9354 * we get all of the mode sense data otherwise, the mode select 9355 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9356 */ 9357 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9358 sizeof (struct mode_cache_scsi3); 9359 9360 header = kmem_zalloc(buflen, KM_SLEEP); 9361 9362 /* Get the information from the device. */ 9363 if (un->un_f_cfg_is_atapi == TRUE) { 9364 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9365 MODEPAGE_CACHING, SD_PATH_DIRECT); 9366 } else { 9367 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9368 MODEPAGE_CACHING, SD_PATH_DIRECT); 9369 } 9370 9371 if (rval != 0) { 9372 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9373 "sd_cache_control: Mode Sense Failed\n"); 9374 goto mode_sense_failed; 9375 } 9376 9377 /* 9378 * Determine size of Block Descriptors in order to locate 9379 * the mode page data. ATAPI devices return 0, SCSI devices 9380 * should return MODE_BLK_DESC_LENGTH. 9381 */ 9382 if (un->un_f_cfg_is_atapi == TRUE) { 9383 mhp = (struct mode_header_grp2 *)header; 9384 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9385 } else { 9386 bd_len = ((struct mode_header *)header)->bdesc_length; 9387 } 9388 9389 if (bd_len > MODE_BLK_DESC_LENGTH) { 9390 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9391 "sd_cache_control: Mode Sense returned invalid block " 9392 "descriptor length\n"); 9393 rval = EIO; 9394 goto mode_sense_failed; 9395 } 9396 9397 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9398 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9399 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9400 "sd_cache_control: Mode Sense caching page code mismatch " 9401 "%d\n", mode_caching_page->mode_page.code); 9402 rval = EIO; 9403 goto mode_sense_failed; 9404 } 9405 9406 /* Check the relevant bits on successful mode sense. */ 9407 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9408 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9409 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9410 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9411 9412 size_t sbuflen; 9413 uchar_t save_pg; 9414 9415 /* 9416 * Construct select buffer length based on the 9417 * length of the sense data returned. 9418 */ 9419 sbuflen = hdrlen + bd_len + 9420 sizeof (struct mode_page) + 9421 (int)mode_caching_page->mode_page.length; 9422 9423 /* 9424 * Set the caching bits as requested. 9425 */ 9426 if (rcd_flag == SD_CACHE_ENABLE) 9427 mode_caching_page->rcd = 0; 9428 else if (rcd_flag == SD_CACHE_DISABLE) 9429 mode_caching_page->rcd = 1; 9430 9431 if (wce_flag == SD_CACHE_ENABLE) 9432 mode_caching_page->wce = 1; 9433 else if (wce_flag == SD_CACHE_DISABLE) 9434 mode_caching_page->wce = 0; 9435 9436 /* 9437 * Save the page if the mode sense says the 9438 * drive supports it. 9439 */ 9440 save_pg = mode_caching_page->mode_page.ps ? 9441 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9442 9443 /* Clear reserved bits before mode select. */ 9444 mode_caching_page->mode_page.ps = 0; 9445 9446 /* 9447 * Clear out mode header for mode select. 9448 * The rest of the retrieved page will be reused. 9449 */ 9450 bzero(header, hdrlen); 9451 9452 if (un->un_f_cfg_is_atapi == TRUE) { 9453 mhp = (struct mode_header_grp2 *)header; 9454 mhp->bdesc_length_hi = bd_len >> 8; 9455 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9456 } else { 9457 ((struct mode_header *)header)->bdesc_length = bd_len; 9458 } 9459 9460 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9461 9462 /* Issue mode select to change the cache settings */ 9463 if (un->un_f_cfg_is_atapi == TRUE) { 9464 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9465 sbuflen, save_pg, SD_PATH_DIRECT); 9466 } else { 9467 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9468 sbuflen, save_pg, SD_PATH_DIRECT); 9469 } 9470 9471 } 9472 9473 9474 mode_sense_failed: 9475 9476 kmem_free(header, buflen); 9477 9478 if (rval != 0) { 9479 if (rval == EIO) 9480 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9481 else 9482 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9483 } 9484 return (rval); 9485 } 9486 9487 9488 /* 9489 * Function: sd_get_write_cache_enabled() 9490 * 9491 * Description: This routine is the driver entry point for determining if 9492 * write caching is enabled. It examines the WCE (write cache 9493 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9494 * 9495 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9496 * structure for this target. 9497 * is_enabled - pointer to int where write cache enabled state 9498 * is returned (non-zero -> write cache enabled) 9499 * 9500 * 9501 * Return Code: EIO 9502 * code returned by sd_send_scsi_MODE_SENSE 9503 * 9504 * Context: Kernel Thread 9505 * 9506 * NOTE: If ioctl is added to disable write cache, this sequence should 9507 * be followed so that no locking is required for accesses to 9508 * un->un_f_write_cache_enabled: 9509 * do mode select to clear wce 9510 * do synchronize cache to flush cache 9511 * set un->un_f_write_cache_enabled = FALSE 9512 * 9513 * Conversely, an ioctl to enable the write cache should be done 9514 * in this order: 9515 * set un->un_f_write_cache_enabled = TRUE 9516 * do mode select to set wce 9517 */ 9518 9519 static int 9520 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9521 { 9522 struct mode_caching *mode_caching_page; 9523 uchar_t *header; 9524 size_t buflen; 9525 int hdrlen; 9526 int bd_len; 9527 int rval = 0; 9528 struct sd_lun *un; 9529 int status; 9530 9531 ASSERT(ssc != NULL); 9532 un = ssc->ssc_un; 9533 ASSERT(un != NULL); 9534 ASSERT(is_enabled != NULL); 9535 9536 /* in case of error, flag as enabled */ 9537 *is_enabled = TRUE; 9538 9539 /* 9540 * Do a test unit ready, otherwise a mode sense may not work if this 9541 * is the first command sent to the device after boot. 9542 */ 9543 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9544 9545 if (status != 0) 9546 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9547 9548 if (un->un_f_cfg_is_atapi == TRUE) { 9549 hdrlen = MODE_HEADER_LENGTH_GRP2; 9550 } else { 9551 hdrlen = MODE_HEADER_LENGTH; 9552 } 9553 9554 /* 9555 * Allocate memory for the retrieved mode page and its headers. Set 9556 * a pointer to the page itself. 9557 */ 9558 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9559 header = kmem_zalloc(buflen, KM_SLEEP); 9560 9561 /* Get the information from the device. */ 9562 if (un->un_f_cfg_is_atapi == TRUE) { 9563 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9564 MODEPAGE_CACHING, SD_PATH_DIRECT); 9565 } else { 9566 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9567 MODEPAGE_CACHING, SD_PATH_DIRECT); 9568 } 9569 9570 if (rval != 0) { 9571 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9572 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9573 goto mode_sense_failed; 9574 } 9575 9576 /* 9577 * Determine size of Block Descriptors in order to locate 9578 * the mode page data. ATAPI devices return 0, SCSI devices 9579 * should return MODE_BLK_DESC_LENGTH. 9580 */ 9581 if (un->un_f_cfg_is_atapi == TRUE) { 9582 struct mode_header_grp2 *mhp; 9583 mhp = (struct mode_header_grp2 *)header; 9584 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9585 } else { 9586 bd_len = ((struct mode_header *)header)->bdesc_length; 9587 } 9588 9589 if (bd_len > MODE_BLK_DESC_LENGTH) { 9590 /* FMA should make upset complain here */ 9591 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9592 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9593 "block descriptor length\n"); 9594 rval = EIO; 9595 goto mode_sense_failed; 9596 } 9597 9598 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9599 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9600 /* FMA could make upset complain here */ 9601 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9602 "sd_get_write_cache_enabled: Mode Sense caching page " 9603 "code mismatch %d\n", mode_caching_page->mode_page.code); 9604 rval = EIO; 9605 goto mode_sense_failed; 9606 } 9607 *is_enabled = mode_caching_page->wce; 9608 9609 mode_sense_failed: 9610 if (rval == 0) { 9611 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9612 } else if (rval == EIO) { 9613 /* 9614 * Some disks do not support mode sense(6), we 9615 * should ignore this kind of error(sense key is 9616 * 0x5 - illegal request). 9617 */ 9618 uint8_t *sensep; 9619 int senlen; 9620 9621 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9622 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9623 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9624 9625 if (senlen > 0 && 9626 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9627 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9628 } else { 9629 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9630 } 9631 } else { 9632 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9633 } 9634 kmem_free(header, buflen); 9635 return (rval); 9636 } 9637 9638 /* 9639 * Function: sd_get_nv_sup() 9640 * 9641 * Description: This routine is the driver entry point for 9642 * determining whether non-volatile cache is supported. This 9643 * determination process works as follows: 9644 * 9645 * 1. sd first queries sd.conf on whether 9646 * suppress_cache_flush bit is set for this device. 9647 * 9648 * 2. if not there, then queries the internal disk table. 9649 * 9650 * 3. if either sd.conf or internal disk table specifies 9651 * cache flush be suppressed, we don't bother checking 9652 * NV_SUP bit. 9653 * 9654 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9655 * the optional INQUIRY VPD page 0x86. If the device 9656 * supports VPD page 0x86, sd examines the NV_SUP 9657 * (non-volatile cache support) bit in the INQUIRY VPD page 9658 * 0x86: 9659 * o If NV_SUP bit is set, sd assumes the device has a 9660 * non-volatile cache and set the 9661 * un_f_sync_nv_supported to TRUE. 9662 * o Otherwise cache is not non-volatile, 9663 * un_f_sync_nv_supported is set to FALSE. 9664 * 9665 * Arguments: un - driver soft state (unit) structure 9666 * 9667 * Return Code: 9668 * 9669 * Context: Kernel Thread 9670 */ 9671 9672 static void 9673 sd_get_nv_sup(sd_ssc_t *ssc) 9674 { 9675 int rval = 0; 9676 uchar_t *inq86 = NULL; 9677 size_t inq86_len = MAX_INQUIRY_SIZE; 9678 size_t inq86_resid = 0; 9679 struct dk_callback *dkc; 9680 struct sd_lun *un; 9681 9682 ASSERT(ssc != NULL); 9683 un = ssc->ssc_un; 9684 ASSERT(un != NULL); 9685 9686 mutex_enter(SD_MUTEX(un)); 9687 9688 /* 9689 * Be conservative on the device's support of 9690 * SYNC_NV bit: un_f_sync_nv_supported is 9691 * initialized to be false. 9692 */ 9693 un->un_f_sync_nv_supported = FALSE; 9694 9695 /* 9696 * If either sd.conf or internal disk table 9697 * specifies cache flush be suppressed, then 9698 * we don't bother checking NV_SUP bit. 9699 */ 9700 if (un->un_f_suppress_cache_flush == TRUE) { 9701 mutex_exit(SD_MUTEX(un)); 9702 return; 9703 } 9704 9705 if (sd_check_vpd_page_support(ssc) == 0 && 9706 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9707 mutex_exit(SD_MUTEX(un)); 9708 /* collect page 86 data if available */ 9709 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9710 9711 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9712 0x01, 0x86, &inq86_resid); 9713 9714 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9715 SD_TRACE(SD_LOG_COMMON, un, 9716 "sd_get_nv_sup: \ 9717 successfully get VPD page: %x \ 9718 PAGE LENGTH: %x BYTE 6: %x\n", 9719 inq86[1], inq86[3], inq86[6]); 9720 9721 mutex_enter(SD_MUTEX(un)); 9722 /* 9723 * check the value of NV_SUP bit: only if the device 9724 * reports NV_SUP bit to be 1, the 9725 * un_f_sync_nv_supported bit will be set to true. 9726 */ 9727 if (inq86[6] & SD_VPD_NV_SUP) { 9728 un->un_f_sync_nv_supported = TRUE; 9729 } 9730 mutex_exit(SD_MUTEX(un)); 9731 } else if (rval != 0) { 9732 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9733 } 9734 9735 kmem_free(inq86, inq86_len); 9736 } else { 9737 mutex_exit(SD_MUTEX(un)); 9738 } 9739 9740 /* 9741 * Send a SYNC CACHE command to check whether 9742 * SYNC_NV bit is supported. This command should have 9743 * un_f_sync_nv_supported set to correct value. 9744 */ 9745 mutex_enter(SD_MUTEX(un)); 9746 if (un->un_f_sync_nv_supported) { 9747 mutex_exit(SD_MUTEX(un)); 9748 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9749 dkc->dkc_flag = FLUSH_VOLATILE; 9750 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9751 9752 /* 9753 * Send a TEST UNIT READY command to the device. This should 9754 * clear any outstanding UNIT ATTENTION that may be present. 9755 */ 9756 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9757 if (rval != 0) 9758 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9759 9760 kmem_free(dkc, sizeof (struct dk_callback)); 9761 } else { 9762 mutex_exit(SD_MUTEX(un)); 9763 } 9764 9765 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9766 un_f_suppress_cache_flush is set to %d\n", 9767 un->un_f_suppress_cache_flush); 9768 } 9769 9770 /* 9771 * Function: sd_make_device 9772 * 9773 * Description: Utility routine to return the Solaris device number from 9774 * the data in the device's dev_info structure. 9775 * 9776 * Return Code: The Solaris device number 9777 * 9778 * Context: Any 9779 */ 9780 9781 static dev_t 9782 sd_make_device(dev_info_t *devi) 9783 { 9784 return (makedevice(ddi_driver_major(devi), 9785 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9786 } 9787 9788 9789 /* 9790 * Function: sd_pm_entry 9791 * 9792 * Description: Called at the start of a new command to manage power 9793 * and busy status of a device. This includes determining whether 9794 * the current power state of the device is sufficient for 9795 * performing the command or whether it must be changed. 9796 * The PM framework is notified appropriately. 9797 * Only with a return status of DDI_SUCCESS will the 9798 * component be busy to the framework. 9799 * 9800 * All callers of sd_pm_entry must check the return status 9801 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9802 * of DDI_FAILURE indicates the device failed to power up. 9803 * In this case un_pm_count has been adjusted so the result 9804 * on exit is still powered down, ie. count is less than 0. 9805 * Calling sd_pm_exit with this count value hits an ASSERT. 9806 * 9807 * Return Code: DDI_SUCCESS or DDI_FAILURE 9808 * 9809 * Context: Kernel thread context. 9810 */ 9811 9812 static int 9813 sd_pm_entry(struct sd_lun *un) 9814 { 9815 int return_status = DDI_SUCCESS; 9816 9817 ASSERT(!mutex_owned(SD_MUTEX(un))); 9818 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9819 9820 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9821 9822 if (un->un_f_pm_is_enabled == FALSE) { 9823 SD_TRACE(SD_LOG_IO_PM, un, 9824 "sd_pm_entry: exiting, PM not enabled\n"); 9825 return (return_status); 9826 } 9827 9828 /* 9829 * Just increment a counter if PM is enabled. On the transition from 9830 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9831 * the count with each IO and mark the device as idle when the count 9832 * hits 0. 9833 * 9834 * If the count is less than 0 the device is powered down. If a powered 9835 * down device is successfully powered up then the count must be 9836 * incremented to reflect the power up. Note that it'll get incremented 9837 * a second time to become busy. 9838 * 9839 * Because the following has the potential to change the device state 9840 * and must release the un_pm_mutex to do so, only one thread can be 9841 * allowed through at a time. 9842 */ 9843 9844 mutex_enter(&un->un_pm_mutex); 9845 while (un->un_pm_busy == TRUE) { 9846 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9847 } 9848 un->un_pm_busy = TRUE; 9849 9850 if (un->un_pm_count < 1) { 9851 9852 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9853 9854 /* 9855 * Indicate we are now busy so the framework won't attempt to 9856 * power down the device. This call will only fail if either 9857 * we passed a bad component number or the device has no 9858 * components. Neither of these should ever happen. 9859 */ 9860 mutex_exit(&un->un_pm_mutex); 9861 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9862 ASSERT(return_status == DDI_SUCCESS); 9863 9864 mutex_enter(&un->un_pm_mutex); 9865 9866 if (un->un_pm_count < 0) { 9867 mutex_exit(&un->un_pm_mutex); 9868 9869 SD_TRACE(SD_LOG_IO_PM, un, 9870 "sd_pm_entry: power up component\n"); 9871 9872 /* 9873 * pm_raise_power will cause sdpower to be called 9874 * which brings the device power level to the 9875 * desired state, If successful, un_pm_count and 9876 * un_power_level will be updated appropriately. 9877 */ 9878 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9879 SD_PM_STATE_ACTIVE(un)); 9880 9881 mutex_enter(&un->un_pm_mutex); 9882 9883 if (return_status != DDI_SUCCESS) { 9884 /* 9885 * Power up failed. 9886 * Idle the device and adjust the count 9887 * so the result on exit is that we're 9888 * still powered down, ie. count is less than 0. 9889 */ 9890 SD_TRACE(SD_LOG_IO_PM, un, 9891 "sd_pm_entry: power up failed," 9892 " idle the component\n"); 9893 9894 (void) pm_idle_component(SD_DEVINFO(un), 0); 9895 un->un_pm_count--; 9896 } else { 9897 /* 9898 * Device is powered up, verify the 9899 * count is non-negative. 9900 * This is debug only. 9901 */ 9902 ASSERT(un->un_pm_count == 0); 9903 } 9904 } 9905 9906 if (return_status == DDI_SUCCESS) { 9907 /* 9908 * For performance, now that the device has been tagged 9909 * as busy, and it's known to be powered up, update the 9910 * chain types to use jump tables that do not include 9911 * pm. This significantly lowers the overhead and 9912 * therefore improves performance. 9913 */ 9914 9915 mutex_exit(&un->un_pm_mutex); 9916 mutex_enter(SD_MUTEX(un)); 9917 SD_TRACE(SD_LOG_IO_PM, un, 9918 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9919 un->un_uscsi_chain_type); 9920 9921 if (un->un_f_non_devbsize_supported) { 9922 un->un_buf_chain_type = 9923 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9924 } else { 9925 un->un_buf_chain_type = 9926 SD_CHAIN_INFO_DISK_NO_PM; 9927 } 9928 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9929 9930 SD_TRACE(SD_LOG_IO_PM, un, 9931 " changed uscsi_chain_type to %d\n", 9932 un->un_uscsi_chain_type); 9933 mutex_exit(SD_MUTEX(un)); 9934 mutex_enter(&un->un_pm_mutex); 9935 9936 if (un->un_pm_idle_timeid == NULL) { 9937 /* 300 ms. */ 9938 un->un_pm_idle_timeid = 9939 timeout(sd_pm_idletimeout_handler, un, 9940 (drv_usectohz((clock_t)300000))); 9941 /* 9942 * Include an extra call to busy which keeps the 9943 * device busy with-respect-to the PM layer 9944 * until the timer fires, at which time it'll 9945 * get the extra idle call. 9946 */ 9947 (void) pm_busy_component(SD_DEVINFO(un), 0); 9948 } 9949 } 9950 } 9951 un->un_pm_busy = FALSE; 9952 /* Next... */ 9953 cv_signal(&un->un_pm_busy_cv); 9954 9955 un->un_pm_count++; 9956 9957 SD_TRACE(SD_LOG_IO_PM, un, 9958 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 9959 9960 mutex_exit(&un->un_pm_mutex); 9961 9962 return (return_status); 9963 } 9964 9965 9966 /* 9967 * Function: sd_pm_exit 9968 * 9969 * Description: Called at the completion of a command to manage busy 9970 * status for the device. If the device becomes idle the 9971 * PM framework is notified. 9972 * 9973 * Context: Kernel thread context 9974 */ 9975 9976 static void 9977 sd_pm_exit(struct sd_lun *un) 9978 { 9979 ASSERT(!mutex_owned(SD_MUTEX(un))); 9980 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9981 9982 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 9983 9984 /* 9985 * After attach the following flag is only read, so don't 9986 * take the penalty of acquiring a mutex for it. 9987 */ 9988 if (un->un_f_pm_is_enabled == TRUE) { 9989 9990 mutex_enter(&un->un_pm_mutex); 9991 un->un_pm_count--; 9992 9993 SD_TRACE(SD_LOG_IO_PM, un, 9994 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 9995 9996 ASSERT(un->un_pm_count >= 0); 9997 if (un->un_pm_count == 0) { 9998 mutex_exit(&un->un_pm_mutex); 9999 10000 SD_TRACE(SD_LOG_IO_PM, un, 10001 "sd_pm_exit: idle component\n"); 10002 10003 (void) pm_idle_component(SD_DEVINFO(un), 0); 10004 10005 } else { 10006 mutex_exit(&un->un_pm_mutex); 10007 } 10008 } 10009 10010 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10011 } 10012 10013 10014 /* 10015 * Function: sdopen 10016 * 10017 * Description: Driver's open(9e) entry point function. 10018 * 10019 * Arguments: dev_i - pointer to device number 10020 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10021 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10022 * cred_p - user credential pointer 10023 * 10024 * Return Code: EINVAL 10025 * ENXIO 10026 * EIO 10027 * EROFS 10028 * EBUSY 10029 * 10030 * Context: Kernel thread context 10031 */ 10032 /* ARGSUSED */ 10033 static int 10034 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10035 { 10036 struct sd_lun *un; 10037 int nodelay; 10038 int part; 10039 uint64_t partmask; 10040 int instance; 10041 dev_t dev; 10042 int rval = EIO; 10043 diskaddr_t nblks = 0; 10044 diskaddr_t label_cap; 10045 10046 /* Validate the open type */ 10047 if (otyp >= OTYPCNT) { 10048 return (EINVAL); 10049 } 10050 10051 dev = *dev_p; 10052 instance = SDUNIT(dev); 10053 mutex_enter(&sd_detach_mutex); 10054 10055 /* 10056 * Fail the open if there is no softstate for the instance, or 10057 * if another thread somewhere is trying to detach the instance. 10058 */ 10059 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10060 (un->un_detach_count != 0)) { 10061 mutex_exit(&sd_detach_mutex); 10062 /* 10063 * The probe cache only needs to be cleared when open (9e) fails 10064 * with ENXIO (4238046). 10065 */ 10066 /* 10067 * un-conditionally clearing probe cache is ok with 10068 * separate sd/ssd binaries 10069 * x86 platform can be an issue with both parallel 10070 * and fibre in 1 binary 10071 */ 10072 sd_scsi_clear_probe_cache(); 10073 return (ENXIO); 10074 } 10075 10076 /* 10077 * The un_layer_count is to prevent another thread in specfs from 10078 * trying to detach the instance, which can happen when we are 10079 * called from a higher-layer driver instead of thru specfs. 10080 * This will not be needed when DDI provides a layered driver 10081 * interface that allows specfs to know that an instance is in 10082 * use by a layered driver & should not be detached. 10083 * 10084 * Note: the semantics for layered driver opens are exactly one 10085 * close for every open. 10086 */ 10087 if (otyp == OTYP_LYR) { 10088 un->un_layer_count++; 10089 } 10090 10091 /* 10092 * Keep a count of the current # of opens in progress. This is because 10093 * some layered drivers try to call us as a regular open. This can 10094 * cause problems that we cannot prevent, however by keeping this count 10095 * we can at least keep our open and detach routines from racing against 10096 * each other under such conditions. 10097 */ 10098 un->un_opens_in_progress++; 10099 mutex_exit(&sd_detach_mutex); 10100 10101 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10102 part = SDPART(dev); 10103 partmask = 1 << part; 10104 10105 /* 10106 * We use a semaphore here in order to serialize 10107 * open and close requests on the device. 10108 */ 10109 sema_p(&un->un_semoclose); 10110 10111 mutex_enter(SD_MUTEX(un)); 10112 10113 /* 10114 * All device accesses go thru sdstrategy() where we check 10115 * on suspend status but there could be a scsi_poll command, 10116 * which bypasses sdstrategy(), so we need to check pm 10117 * status. 10118 */ 10119 10120 if (!nodelay) { 10121 while ((un->un_state == SD_STATE_SUSPENDED) || 10122 (un->un_state == SD_STATE_PM_CHANGING)) { 10123 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10124 } 10125 10126 mutex_exit(SD_MUTEX(un)); 10127 if (sd_pm_entry(un) != DDI_SUCCESS) { 10128 rval = EIO; 10129 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10130 "sdopen: sd_pm_entry failed\n"); 10131 goto open_failed_with_pm; 10132 } 10133 mutex_enter(SD_MUTEX(un)); 10134 } 10135 10136 /* check for previous exclusive open */ 10137 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10138 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10139 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10140 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10141 10142 if (un->un_exclopen & (partmask)) { 10143 goto excl_open_fail; 10144 } 10145 10146 if (flag & FEXCL) { 10147 int i; 10148 if (un->un_ocmap.lyropen[part]) { 10149 goto excl_open_fail; 10150 } 10151 for (i = 0; i < (OTYPCNT - 1); i++) { 10152 if (un->un_ocmap.regopen[i] & (partmask)) { 10153 goto excl_open_fail; 10154 } 10155 } 10156 } 10157 10158 /* 10159 * Check the write permission if this is a removable media device, 10160 * NDELAY has not been set, and writable permission is requested. 10161 * 10162 * Note: If NDELAY was set and this is write-protected media the WRITE 10163 * attempt will fail with EIO as part of the I/O processing. This is a 10164 * more permissive implementation that allows the open to succeed and 10165 * WRITE attempts to fail when appropriate. 10166 */ 10167 if (un->un_f_chk_wp_open) { 10168 if ((flag & FWRITE) && (!nodelay)) { 10169 mutex_exit(SD_MUTEX(un)); 10170 /* 10171 * Defer the check for write permission on writable 10172 * DVD drive till sdstrategy and will not fail open even 10173 * if FWRITE is set as the device can be writable 10174 * depending upon the media and the media can change 10175 * after the call to open(). 10176 */ 10177 if (un->un_f_dvdram_writable_device == FALSE) { 10178 if (ISCD(un) || sr_check_wp(dev)) { 10179 rval = EROFS; 10180 mutex_enter(SD_MUTEX(un)); 10181 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10182 "write to cd or write protected media\n"); 10183 goto open_fail; 10184 } 10185 } 10186 mutex_enter(SD_MUTEX(un)); 10187 } 10188 } 10189 10190 /* 10191 * If opening in NDELAY/NONBLOCK mode, just return. 10192 * Check if disk is ready and has a valid geometry later. 10193 */ 10194 if (!nodelay) { 10195 sd_ssc_t *ssc; 10196 10197 mutex_exit(SD_MUTEX(un)); 10198 ssc = sd_ssc_init(un); 10199 rval = sd_ready_and_valid(ssc, part); 10200 sd_ssc_fini(ssc); 10201 mutex_enter(SD_MUTEX(un)); 10202 /* 10203 * Fail if device is not ready or if the number of disk 10204 * blocks is zero or negative for non CD devices. 10205 */ 10206 10207 nblks = 0; 10208 10209 if (rval == SD_READY_VALID && (!ISCD(un))) { 10210 /* if cmlb_partinfo fails, nblks remains 0 */ 10211 mutex_exit(SD_MUTEX(un)); 10212 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10213 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10214 mutex_enter(SD_MUTEX(un)); 10215 } 10216 10217 if ((rval != SD_READY_VALID) || 10218 (!ISCD(un) && nblks <= 0)) { 10219 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10220 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10221 "device not ready or invalid disk block value\n"); 10222 goto open_fail; 10223 } 10224 #if defined(__i386) || defined(__amd64) 10225 } else { 10226 uchar_t *cp; 10227 /* 10228 * x86 requires special nodelay handling, so that p0 is 10229 * always defined and accessible. 10230 * Invalidate geometry only if device is not already open. 10231 */ 10232 cp = &un->un_ocmap.chkd[0]; 10233 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10234 if (*cp != (uchar_t)0) { 10235 break; 10236 } 10237 cp++; 10238 } 10239 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10240 mutex_exit(SD_MUTEX(un)); 10241 cmlb_invalidate(un->un_cmlbhandle, 10242 (void *)SD_PATH_DIRECT); 10243 mutex_enter(SD_MUTEX(un)); 10244 } 10245 10246 #endif 10247 } 10248 10249 if (otyp == OTYP_LYR) { 10250 un->un_ocmap.lyropen[part]++; 10251 } else { 10252 un->un_ocmap.regopen[otyp] |= partmask; 10253 } 10254 10255 /* Set up open and exclusive open flags */ 10256 if (flag & FEXCL) { 10257 un->un_exclopen |= (partmask); 10258 } 10259 10260 /* 10261 * If the lun is EFI labeled and lun capacity is greater than the 10262 * capacity contained in the label, log a sys-event to notify the 10263 * interested module. 10264 * To avoid an infinite loop of logging sys-event, we only log the 10265 * event when the lun is not opened in NDELAY mode. The event handler 10266 * should open the lun in NDELAY mode. 10267 */ 10268 if (!(flag & FNDELAY)) { 10269 mutex_exit(SD_MUTEX(un)); 10270 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10271 (void*)SD_PATH_DIRECT) == 0) { 10272 mutex_enter(SD_MUTEX(un)); 10273 if (un->un_f_blockcount_is_valid && 10274 un->un_blockcount > label_cap) { 10275 mutex_exit(SD_MUTEX(un)); 10276 sd_log_lun_expansion_event(un, 10277 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10278 mutex_enter(SD_MUTEX(un)); 10279 } 10280 } else { 10281 mutex_enter(SD_MUTEX(un)); 10282 } 10283 } 10284 10285 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10286 "open of part %d type %d\n", part, otyp); 10287 10288 mutex_exit(SD_MUTEX(un)); 10289 if (!nodelay) { 10290 sd_pm_exit(un); 10291 } 10292 10293 sema_v(&un->un_semoclose); 10294 10295 mutex_enter(&sd_detach_mutex); 10296 un->un_opens_in_progress--; 10297 mutex_exit(&sd_detach_mutex); 10298 10299 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10300 return (DDI_SUCCESS); 10301 10302 excl_open_fail: 10303 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10304 rval = EBUSY; 10305 10306 open_fail: 10307 mutex_exit(SD_MUTEX(un)); 10308 10309 /* 10310 * On a failed open we must exit the pm management. 10311 */ 10312 if (!nodelay) { 10313 sd_pm_exit(un); 10314 } 10315 open_failed_with_pm: 10316 sema_v(&un->un_semoclose); 10317 10318 mutex_enter(&sd_detach_mutex); 10319 un->un_opens_in_progress--; 10320 if (otyp == OTYP_LYR) { 10321 un->un_layer_count--; 10322 } 10323 mutex_exit(&sd_detach_mutex); 10324 10325 return (rval); 10326 } 10327 10328 10329 /* 10330 * Function: sdclose 10331 * 10332 * Description: Driver's close(9e) entry point function. 10333 * 10334 * Arguments: dev - device number 10335 * flag - file status flag, informational only 10336 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10337 * cred_p - user credential pointer 10338 * 10339 * Return Code: ENXIO 10340 * 10341 * Context: Kernel thread context 10342 */ 10343 /* ARGSUSED */ 10344 static int 10345 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10346 { 10347 struct sd_lun *un; 10348 uchar_t *cp; 10349 int part; 10350 int nodelay; 10351 int rval = 0; 10352 10353 /* Validate the open type */ 10354 if (otyp >= OTYPCNT) { 10355 return (ENXIO); 10356 } 10357 10358 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10359 return (ENXIO); 10360 } 10361 10362 part = SDPART(dev); 10363 nodelay = flag & (FNDELAY | FNONBLOCK); 10364 10365 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10366 "sdclose: close of part %d type %d\n", part, otyp); 10367 10368 /* 10369 * We use a semaphore here in order to serialize 10370 * open and close requests on the device. 10371 */ 10372 sema_p(&un->un_semoclose); 10373 10374 mutex_enter(SD_MUTEX(un)); 10375 10376 /* Don't proceed if power is being changed. */ 10377 while (un->un_state == SD_STATE_PM_CHANGING) { 10378 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10379 } 10380 10381 if (un->un_exclopen & (1 << part)) { 10382 un->un_exclopen &= ~(1 << part); 10383 } 10384 10385 /* Update the open partition map */ 10386 if (otyp == OTYP_LYR) { 10387 un->un_ocmap.lyropen[part] -= 1; 10388 } else { 10389 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10390 } 10391 10392 cp = &un->un_ocmap.chkd[0]; 10393 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10394 if (*cp != NULL) { 10395 break; 10396 } 10397 cp++; 10398 } 10399 10400 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10401 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10402 10403 /* 10404 * We avoid persistance upon the last close, and set 10405 * the throttle back to the maximum. 10406 */ 10407 un->un_throttle = un->un_saved_throttle; 10408 10409 if (un->un_state == SD_STATE_OFFLINE) { 10410 if (un->un_f_is_fibre == FALSE) { 10411 scsi_log(SD_DEVINFO(un), sd_label, 10412 CE_WARN, "offline\n"); 10413 } 10414 mutex_exit(SD_MUTEX(un)); 10415 cmlb_invalidate(un->un_cmlbhandle, 10416 (void *)SD_PATH_DIRECT); 10417 mutex_enter(SD_MUTEX(un)); 10418 10419 } else { 10420 /* 10421 * Flush any outstanding writes in NVRAM cache. 10422 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10423 * cmd, it may not work for non-Pluto devices. 10424 * SYNCHRONIZE CACHE is not required for removables, 10425 * except DVD-RAM drives. 10426 * 10427 * Also note: because SYNCHRONIZE CACHE is currently 10428 * the only command issued here that requires the 10429 * drive be powered up, only do the power up before 10430 * sending the Sync Cache command. If additional 10431 * commands are added which require a powered up 10432 * drive, the following sequence may have to change. 10433 * 10434 * And finally, note that parallel SCSI on SPARC 10435 * only issues a Sync Cache to DVD-RAM, a newly 10436 * supported device. 10437 */ 10438 #if defined(__i386) || defined(__amd64) 10439 if ((un->un_f_sync_cache_supported && 10440 un->un_f_sync_cache_required) || 10441 un->un_f_dvdram_writable_device == TRUE) { 10442 #else 10443 if (un->un_f_dvdram_writable_device == TRUE) { 10444 #endif 10445 mutex_exit(SD_MUTEX(un)); 10446 if (sd_pm_entry(un) == DDI_SUCCESS) { 10447 rval = 10448 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10449 NULL); 10450 /* ignore error if not supported */ 10451 if (rval == ENOTSUP) { 10452 rval = 0; 10453 } else if (rval != 0) { 10454 rval = EIO; 10455 } 10456 sd_pm_exit(un); 10457 } else { 10458 rval = EIO; 10459 } 10460 mutex_enter(SD_MUTEX(un)); 10461 } 10462 10463 /* 10464 * For devices which supports DOOR_LOCK, send an ALLOW 10465 * MEDIA REMOVAL command, but don't get upset if it 10466 * fails. We need to raise the power of the drive before 10467 * we can call sd_send_scsi_DOORLOCK() 10468 */ 10469 if (un->un_f_doorlock_supported) { 10470 mutex_exit(SD_MUTEX(un)); 10471 if (sd_pm_entry(un) == DDI_SUCCESS) { 10472 sd_ssc_t *ssc; 10473 10474 ssc = sd_ssc_init(un); 10475 rval = sd_send_scsi_DOORLOCK(ssc, 10476 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10477 if (rval != 0) 10478 sd_ssc_assessment(ssc, 10479 SD_FMT_IGNORE); 10480 sd_ssc_fini(ssc); 10481 10482 sd_pm_exit(un); 10483 if (ISCD(un) && (rval != 0) && 10484 (nodelay != 0)) { 10485 rval = ENXIO; 10486 } 10487 } else { 10488 rval = EIO; 10489 } 10490 mutex_enter(SD_MUTEX(un)); 10491 } 10492 10493 /* 10494 * If a device has removable media, invalidate all 10495 * parameters related to media, such as geometry, 10496 * blocksize, and blockcount. 10497 */ 10498 if (un->un_f_has_removable_media) { 10499 sr_ejected(un); 10500 } 10501 10502 /* 10503 * Destroy the cache (if it exists) which was 10504 * allocated for the write maps since this is 10505 * the last close for this media. 10506 */ 10507 if (un->un_wm_cache) { 10508 /* 10509 * Check if there are pending commands. 10510 * and if there are give a warning and 10511 * do not destroy the cache. 10512 */ 10513 if (un->un_ncmds_in_driver > 0) { 10514 scsi_log(SD_DEVINFO(un), 10515 sd_label, CE_WARN, 10516 "Unable to clean up memory " 10517 "because of pending I/O\n"); 10518 } else { 10519 kmem_cache_destroy( 10520 un->un_wm_cache); 10521 un->un_wm_cache = NULL; 10522 } 10523 } 10524 } 10525 } 10526 10527 mutex_exit(SD_MUTEX(un)); 10528 sema_v(&un->un_semoclose); 10529 10530 if (otyp == OTYP_LYR) { 10531 mutex_enter(&sd_detach_mutex); 10532 /* 10533 * The detach routine may run when the layer count 10534 * drops to zero. 10535 */ 10536 un->un_layer_count--; 10537 mutex_exit(&sd_detach_mutex); 10538 } 10539 10540 return (rval); 10541 } 10542 10543 10544 /* 10545 * Function: sd_ready_and_valid 10546 * 10547 * Description: Test if device is ready and has a valid geometry. 10548 * 10549 * Arguments: ssc - sd_ssc_t will contain un 10550 * un - driver soft state (unit) structure 10551 * 10552 * Return Code: SD_READY_VALID ready and valid label 10553 * SD_NOT_READY_VALID not ready, no label 10554 * SD_RESERVED_BY_OTHERS reservation conflict 10555 * 10556 * Context: Never called at interrupt context. 10557 */ 10558 10559 static int 10560 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10561 { 10562 struct sd_errstats *stp; 10563 uint64_t capacity; 10564 uint_t lbasize; 10565 int rval = SD_READY_VALID; 10566 char name_str[48]; 10567 boolean_t is_valid; 10568 struct sd_lun *un; 10569 int status; 10570 10571 ASSERT(ssc != NULL); 10572 un = ssc->ssc_un; 10573 ASSERT(un != NULL); 10574 ASSERT(!mutex_owned(SD_MUTEX(un))); 10575 10576 mutex_enter(SD_MUTEX(un)); 10577 /* 10578 * If a device has removable media, we must check if media is 10579 * ready when checking if this device is ready and valid. 10580 */ 10581 if (un->un_f_has_removable_media) { 10582 mutex_exit(SD_MUTEX(un)); 10583 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10584 10585 if (status != 0) { 10586 rval = SD_NOT_READY_VALID; 10587 mutex_enter(SD_MUTEX(un)); 10588 10589 /* Ignore all failed status for removalbe media */ 10590 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10591 10592 goto done; 10593 } 10594 10595 is_valid = SD_IS_VALID_LABEL(un); 10596 mutex_enter(SD_MUTEX(un)); 10597 if (!is_valid || 10598 (un->un_f_blockcount_is_valid == FALSE) || 10599 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10600 10601 /* capacity has to be read every open. */ 10602 mutex_exit(SD_MUTEX(un)); 10603 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10604 &lbasize, SD_PATH_DIRECT); 10605 10606 if (status != 0) { 10607 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10608 10609 cmlb_invalidate(un->un_cmlbhandle, 10610 (void *)SD_PATH_DIRECT); 10611 mutex_enter(SD_MUTEX(un)); 10612 rval = SD_NOT_READY_VALID; 10613 10614 goto done; 10615 } else { 10616 mutex_enter(SD_MUTEX(un)); 10617 sd_update_block_info(un, lbasize, capacity); 10618 } 10619 } 10620 10621 /* 10622 * Check if the media in the device is writable or not. 10623 */ 10624 if (!is_valid && ISCD(un)) { 10625 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10626 } 10627 10628 } else { 10629 /* 10630 * Do a test unit ready to clear any unit attention from non-cd 10631 * devices. 10632 */ 10633 mutex_exit(SD_MUTEX(un)); 10634 10635 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10636 if (status != 0) { 10637 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10638 } 10639 10640 mutex_enter(SD_MUTEX(un)); 10641 } 10642 10643 10644 /* 10645 * If this is a non 512 block device, allocate space for 10646 * the wmap cache. This is being done here since every time 10647 * a media is changed this routine will be called and the 10648 * block size is a function of media rather than device. 10649 */ 10650 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10651 un->un_f_non_devbsize_supported) && 10652 un->un_tgt_blocksize != DEV_BSIZE) { 10653 if (!(un->un_wm_cache)) { 10654 (void) snprintf(name_str, sizeof (name_str), 10655 "%s%d_cache", 10656 ddi_driver_name(SD_DEVINFO(un)), 10657 ddi_get_instance(SD_DEVINFO(un))); 10658 un->un_wm_cache = kmem_cache_create( 10659 name_str, sizeof (struct sd_w_map), 10660 8, sd_wm_cache_constructor, 10661 sd_wm_cache_destructor, NULL, 10662 (void *)un, NULL, 0); 10663 if (!(un->un_wm_cache)) { 10664 rval = ENOMEM; 10665 goto done; 10666 } 10667 } 10668 } 10669 10670 if (un->un_state == SD_STATE_NORMAL) { 10671 /* 10672 * If the target is not yet ready here (defined by a TUR 10673 * failure), invalidate the geometry and print an 'offline' 10674 * message. This is a legacy message, as the state of the 10675 * target is not actually changed to SD_STATE_OFFLINE. 10676 * 10677 * If the TUR fails for EACCES (Reservation Conflict), 10678 * SD_RESERVED_BY_OTHERS will be returned to indicate 10679 * reservation conflict. If the TUR fails for other 10680 * reasons, SD_NOT_READY_VALID will be returned. 10681 */ 10682 int err; 10683 10684 mutex_exit(SD_MUTEX(un)); 10685 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10686 mutex_enter(SD_MUTEX(un)); 10687 10688 if (err != 0) { 10689 mutex_exit(SD_MUTEX(un)); 10690 cmlb_invalidate(un->un_cmlbhandle, 10691 (void *)SD_PATH_DIRECT); 10692 mutex_enter(SD_MUTEX(un)); 10693 if (err == EACCES) { 10694 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10695 "reservation conflict\n"); 10696 rval = SD_RESERVED_BY_OTHERS; 10697 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10698 } else { 10699 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10700 "drive offline\n"); 10701 rval = SD_NOT_READY_VALID; 10702 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10703 } 10704 goto done; 10705 } 10706 } 10707 10708 if (un->un_f_format_in_progress == FALSE) { 10709 mutex_exit(SD_MUTEX(un)); 10710 10711 (void) cmlb_validate(un->un_cmlbhandle, 0, 10712 (void *)SD_PATH_DIRECT); 10713 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10714 NULL, (void *) SD_PATH_DIRECT) != 0) { 10715 rval = SD_NOT_READY_VALID; 10716 mutex_enter(SD_MUTEX(un)); 10717 10718 goto done; 10719 } 10720 if (un->un_f_pkstats_enabled) { 10721 sd_set_pstats(un); 10722 SD_TRACE(SD_LOG_IO_PARTITION, un, 10723 "sd_ready_and_valid: un:0x%p pstats created and " 10724 "set\n", un); 10725 } 10726 mutex_enter(SD_MUTEX(un)); 10727 } 10728 10729 /* 10730 * If this device supports DOOR_LOCK command, try and send 10731 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10732 * if it fails. For a CD, however, it is an error 10733 */ 10734 if (un->un_f_doorlock_supported) { 10735 mutex_exit(SD_MUTEX(un)); 10736 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10737 SD_PATH_DIRECT); 10738 10739 if ((status != 0) && ISCD(un)) { 10740 rval = SD_NOT_READY_VALID; 10741 mutex_enter(SD_MUTEX(un)); 10742 10743 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10744 10745 goto done; 10746 } else if (status != 0) 10747 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10748 mutex_enter(SD_MUTEX(un)); 10749 } 10750 10751 /* The state has changed, inform the media watch routines */ 10752 un->un_mediastate = DKIO_INSERTED; 10753 cv_broadcast(&un->un_state_cv); 10754 rval = SD_READY_VALID; 10755 10756 done: 10757 10758 /* 10759 * Initialize the capacity kstat value, if no media previously 10760 * (capacity kstat is 0) and a media has been inserted 10761 * (un_blockcount > 0). 10762 */ 10763 if (un->un_errstats != NULL) { 10764 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10765 if ((stp->sd_capacity.value.ui64 == 0) && 10766 (un->un_f_blockcount_is_valid == TRUE)) { 10767 stp->sd_capacity.value.ui64 = 10768 (uint64_t)((uint64_t)un->un_blockcount * 10769 un->un_sys_blocksize); 10770 } 10771 } 10772 10773 mutex_exit(SD_MUTEX(un)); 10774 return (rval); 10775 } 10776 10777 10778 /* 10779 * Function: sdmin 10780 * 10781 * Description: Routine to limit the size of a data transfer. Used in 10782 * conjunction with physio(9F). 10783 * 10784 * Arguments: bp - pointer to the indicated buf(9S) struct. 10785 * 10786 * Context: Kernel thread context. 10787 */ 10788 10789 static void 10790 sdmin(struct buf *bp) 10791 { 10792 struct sd_lun *un; 10793 int instance; 10794 10795 instance = SDUNIT(bp->b_edev); 10796 10797 un = ddi_get_soft_state(sd_state, instance); 10798 ASSERT(un != NULL); 10799 10800 /* 10801 * We depend on buf breakup to restrict 10802 * IO size if it is enabled. 10803 */ 10804 if (un->un_buf_breakup_supported) { 10805 return; 10806 } 10807 10808 if (bp->b_bcount > un->un_max_xfer_size) { 10809 bp->b_bcount = un->un_max_xfer_size; 10810 } 10811 } 10812 10813 10814 /* 10815 * Function: sdread 10816 * 10817 * Description: Driver's read(9e) entry point function. 10818 * 10819 * Arguments: dev - device number 10820 * uio - structure pointer describing where data is to be stored 10821 * in user's space 10822 * cred_p - user credential pointer 10823 * 10824 * Return Code: ENXIO 10825 * EIO 10826 * EINVAL 10827 * value returned by physio 10828 * 10829 * Context: Kernel thread context. 10830 */ 10831 /* ARGSUSED */ 10832 static int 10833 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10834 { 10835 struct sd_lun *un = NULL; 10836 int secmask; 10837 int err = 0; 10838 sd_ssc_t *ssc; 10839 10840 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10841 return (ENXIO); 10842 } 10843 10844 ASSERT(!mutex_owned(SD_MUTEX(un))); 10845 10846 10847 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10848 mutex_enter(SD_MUTEX(un)); 10849 /* 10850 * Because the call to sd_ready_and_valid will issue I/O we 10851 * must wait here if either the device is suspended or 10852 * if it's power level is changing. 10853 */ 10854 while ((un->un_state == SD_STATE_SUSPENDED) || 10855 (un->un_state == SD_STATE_PM_CHANGING)) { 10856 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10857 } 10858 un->un_ncmds_in_driver++; 10859 mutex_exit(SD_MUTEX(un)); 10860 10861 /* Initialize sd_ssc_t for internal uscsi commands */ 10862 ssc = sd_ssc_init(un); 10863 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10864 err = EIO; 10865 } else { 10866 err = 0; 10867 } 10868 sd_ssc_fini(ssc); 10869 10870 mutex_enter(SD_MUTEX(un)); 10871 un->un_ncmds_in_driver--; 10872 ASSERT(un->un_ncmds_in_driver >= 0); 10873 mutex_exit(SD_MUTEX(un)); 10874 if (err != 0) 10875 return (err); 10876 } 10877 10878 /* 10879 * Read requests are restricted to multiples of the system block size. 10880 */ 10881 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10882 secmask = un->un_tgt_blocksize - 1; 10883 else 10884 secmask = DEV_BSIZE - 1; 10885 10886 if (uio->uio_loffset & ((offset_t)(secmask))) { 10887 SD_ERROR(SD_LOG_READ_WRITE, un, 10888 "sdread: file offset not modulo %d\n", 10889 secmask + 1); 10890 err = EINVAL; 10891 } else if (uio->uio_iov->iov_len & (secmask)) { 10892 SD_ERROR(SD_LOG_READ_WRITE, un, 10893 "sdread: transfer length not modulo %d\n", 10894 secmask + 1); 10895 err = EINVAL; 10896 } else { 10897 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10898 } 10899 10900 return (err); 10901 } 10902 10903 10904 /* 10905 * Function: sdwrite 10906 * 10907 * Description: Driver's write(9e) entry point function. 10908 * 10909 * Arguments: dev - device number 10910 * uio - structure pointer describing where data is stored in 10911 * user's space 10912 * cred_p - user credential pointer 10913 * 10914 * Return Code: ENXIO 10915 * EIO 10916 * EINVAL 10917 * value returned by physio 10918 * 10919 * Context: Kernel thread context. 10920 */ 10921 /* ARGSUSED */ 10922 static int 10923 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10924 { 10925 struct sd_lun *un = NULL; 10926 int secmask; 10927 int err = 0; 10928 sd_ssc_t *ssc; 10929 10930 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10931 return (ENXIO); 10932 } 10933 10934 ASSERT(!mutex_owned(SD_MUTEX(un))); 10935 10936 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10937 mutex_enter(SD_MUTEX(un)); 10938 /* 10939 * Because the call to sd_ready_and_valid will issue I/O we 10940 * must wait here if either the device is suspended or 10941 * if it's power level is changing. 10942 */ 10943 while ((un->un_state == SD_STATE_SUSPENDED) || 10944 (un->un_state == SD_STATE_PM_CHANGING)) { 10945 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10946 } 10947 un->un_ncmds_in_driver++; 10948 mutex_exit(SD_MUTEX(un)); 10949 10950 /* Initialize sd_ssc_t for internal uscsi commands */ 10951 ssc = sd_ssc_init(un); 10952 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10953 err = EIO; 10954 } else { 10955 err = 0; 10956 } 10957 sd_ssc_fini(ssc); 10958 10959 mutex_enter(SD_MUTEX(un)); 10960 un->un_ncmds_in_driver--; 10961 ASSERT(un->un_ncmds_in_driver >= 0); 10962 mutex_exit(SD_MUTEX(un)); 10963 if (err != 0) 10964 return (err); 10965 } 10966 10967 /* 10968 * Write requests are restricted to multiples of the system block size. 10969 */ 10970 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10971 secmask = un->un_tgt_blocksize - 1; 10972 else 10973 secmask = DEV_BSIZE - 1; 10974 10975 if (uio->uio_loffset & ((offset_t)(secmask))) { 10976 SD_ERROR(SD_LOG_READ_WRITE, un, 10977 "sdwrite: file offset not modulo %d\n", 10978 secmask + 1); 10979 err = EINVAL; 10980 } else if (uio->uio_iov->iov_len & (secmask)) { 10981 SD_ERROR(SD_LOG_READ_WRITE, un, 10982 "sdwrite: transfer length not modulo %d\n", 10983 secmask + 1); 10984 err = EINVAL; 10985 } else { 10986 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10987 } 10988 10989 return (err); 10990 } 10991 10992 10993 /* 10994 * Function: sdaread 10995 * 10996 * Description: Driver's aread(9e) entry point function. 10997 * 10998 * Arguments: dev - device number 10999 * aio - structure pointer describing where data is to be stored 11000 * cred_p - user credential pointer 11001 * 11002 * Return Code: ENXIO 11003 * EIO 11004 * EINVAL 11005 * value returned by aphysio 11006 * 11007 * Context: Kernel thread context. 11008 */ 11009 /* ARGSUSED */ 11010 static int 11011 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11012 { 11013 struct sd_lun *un = NULL; 11014 struct uio *uio = aio->aio_uio; 11015 int secmask; 11016 int err = 0; 11017 sd_ssc_t *ssc; 11018 11019 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11020 return (ENXIO); 11021 } 11022 11023 ASSERT(!mutex_owned(SD_MUTEX(un))); 11024 11025 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11026 mutex_enter(SD_MUTEX(un)); 11027 /* 11028 * Because the call to sd_ready_and_valid will issue I/O we 11029 * must wait here if either the device is suspended or 11030 * if it's power level is changing. 11031 */ 11032 while ((un->un_state == SD_STATE_SUSPENDED) || 11033 (un->un_state == SD_STATE_PM_CHANGING)) { 11034 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11035 } 11036 un->un_ncmds_in_driver++; 11037 mutex_exit(SD_MUTEX(un)); 11038 11039 /* Initialize sd_ssc_t for internal uscsi commands */ 11040 ssc = sd_ssc_init(un); 11041 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11042 err = EIO; 11043 } else { 11044 err = 0; 11045 } 11046 sd_ssc_fini(ssc); 11047 11048 mutex_enter(SD_MUTEX(un)); 11049 un->un_ncmds_in_driver--; 11050 ASSERT(un->un_ncmds_in_driver >= 0); 11051 mutex_exit(SD_MUTEX(un)); 11052 if (err != 0) 11053 return (err); 11054 } 11055 11056 /* 11057 * Read requests are restricted to multiples of the system block size. 11058 */ 11059 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11060 secmask = un->un_tgt_blocksize - 1; 11061 else 11062 secmask = DEV_BSIZE - 1; 11063 11064 if (uio->uio_loffset & ((offset_t)(secmask))) { 11065 SD_ERROR(SD_LOG_READ_WRITE, un, 11066 "sdaread: file offset not modulo %d\n", 11067 secmask + 1); 11068 err = EINVAL; 11069 } else if (uio->uio_iov->iov_len & (secmask)) { 11070 SD_ERROR(SD_LOG_READ_WRITE, un, 11071 "sdaread: transfer length not modulo %d\n", 11072 secmask + 1); 11073 err = EINVAL; 11074 } else { 11075 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11076 } 11077 11078 return (err); 11079 } 11080 11081 11082 /* 11083 * Function: sdawrite 11084 * 11085 * Description: Driver's awrite(9e) entry point function. 11086 * 11087 * Arguments: dev - device number 11088 * aio - structure pointer describing where data is stored 11089 * cred_p - user credential pointer 11090 * 11091 * Return Code: ENXIO 11092 * EIO 11093 * EINVAL 11094 * value returned by aphysio 11095 * 11096 * Context: Kernel thread context. 11097 */ 11098 /* ARGSUSED */ 11099 static int 11100 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11101 { 11102 struct sd_lun *un = NULL; 11103 struct uio *uio = aio->aio_uio; 11104 int secmask; 11105 int err = 0; 11106 sd_ssc_t *ssc; 11107 11108 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11109 return (ENXIO); 11110 } 11111 11112 ASSERT(!mutex_owned(SD_MUTEX(un))); 11113 11114 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11115 mutex_enter(SD_MUTEX(un)); 11116 /* 11117 * Because the call to sd_ready_and_valid will issue I/O we 11118 * must wait here if either the device is suspended or 11119 * if it's power level is changing. 11120 */ 11121 while ((un->un_state == SD_STATE_SUSPENDED) || 11122 (un->un_state == SD_STATE_PM_CHANGING)) { 11123 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11124 } 11125 un->un_ncmds_in_driver++; 11126 mutex_exit(SD_MUTEX(un)); 11127 11128 /* Initialize sd_ssc_t for internal uscsi commands */ 11129 ssc = sd_ssc_init(un); 11130 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11131 err = EIO; 11132 } else { 11133 err = 0; 11134 } 11135 sd_ssc_fini(ssc); 11136 11137 mutex_enter(SD_MUTEX(un)); 11138 un->un_ncmds_in_driver--; 11139 ASSERT(un->un_ncmds_in_driver >= 0); 11140 mutex_exit(SD_MUTEX(un)); 11141 if (err != 0) 11142 return (err); 11143 } 11144 11145 /* 11146 * Write requests are restricted to multiples of the system block size. 11147 */ 11148 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11149 secmask = un->un_tgt_blocksize - 1; 11150 else 11151 secmask = DEV_BSIZE - 1; 11152 11153 if (uio->uio_loffset & ((offset_t)(secmask))) { 11154 SD_ERROR(SD_LOG_READ_WRITE, un, 11155 "sdawrite: file offset not modulo %d\n", 11156 secmask + 1); 11157 err = EINVAL; 11158 } else if (uio->uio_iov->iov_len & (secmask)) { 11159 SD_ERROR(SD_LOG_READ_WRITE, un, 11160 "sdawrite: transfer length not modulo %d\n", 11161 secmask + 1); 11162 err = EINVAL; 11163 } else { 11164 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11165 } 11166 11167 return (err); 11168 } 11169 11170 11171 11172 11173 11174 /* 11175 * Driver IO processing follows the following sequence: 11176 * 11177 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11178 * | | ^ 11179 * v v | 11180 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11181 * | | | | 11182 * v | | | 11183 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11184 * | | ^ ^ 11185 * v v | | 11186 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11187 * | | | | 11188 * +---+ | +------------+ +-------+ 11189 * | | | | 11190 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11191 * | v | | 11192 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11193 * | | ^ | 11194 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11195 * | v | | 11196 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11197 * | | ^ | 11198 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11199 * | v | | 11200 * | sd_checksum_iostart() sd_checksum_iodone() | 11201 * | | ^ | 11202 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11203 * | v | | 11204 * | sd_pm_iostart() sd_pm_iodone() | 11205 * | | ^ | 11206 * | | | | 11207 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11208 * | ^ 11209 * v | 11210 * sd_core_iostart() | 11211 * | | 11212 * | +------>(*destroypkt)() 11213 * +-> sd_start_cmds() <-+ | | 11214 * | | | v 11215 * | | | scsi_destroy_pkt(9F) 11216 * | | | 11217 * +->(*initpkt)() +- sdintr() 11218 * | | | | 11219 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11220 * | +-> scsi_setup_cdb(9F) | 11221 * | | 11222 * +--> scsi_transport(9F) | 11223 * | | 11224 * +----> SCSA ---->+ 11225 * 11226 * 11227 * This code is based upon the following presumptions: 11228 * 11229 * - iostart and iodone functions operate on buf(9S) structures. These 11230 * functions perform the necessary operations on the buf(9S) and pass 11231 * them along to the next function in the chain by using the macros 11232 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11233 * (for iodone side functions). 11234 * 11235 * - The iostart side functions may sleep. The iodone side functions 11236 * are called under interrupt context and may NOT sleep. Therefore 11237 * iodone side functions also may not call iostart side functions. 11238 * (NOTE: iostart side functions should NOT sleep for memory, as 11239 * this could result in deadlock.) 11240 * 11241 * - An iostart side function may call its corresponding iodone side 11242 * function directly (if necessary). 11243 * 11244 * - In the event of an error, an iostart side function can return a buf(9S) 11245 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11246 * b_error in the usual way of course). 11247 * 11248 * - The taskq mechanism may be used by the iodone side functions to dispatch 11249 * requests to the iostart side functions. The iostart side functions in 11250 * this case would be called under the context of a taskq thread, so it's 11251 * OK for them to block/sleep/spin in this case. 11252 * 11253 * - iostart side functions may allocate "shadow" buf(9S) structs and 11254 * pass them along to the next function in the chain. The corresponding 11255 * iodone side functions must coalesce the "shadow" bufs and return 11256 * the "original" buf to the next higher layer. 11257 * 11258 * - The b_private field of the buf(9S) struct holds a pointer to 11259 * an sd_xbuf struct, which contains information needed to 11260 * construct the scsi_pkt for the command. 11261 * 11262 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11263 * layer must acquire & release the SD_MUTEX(un) as needed. 11264 */ 11265 11266 11267 /* 11268 * Create taskq for all targets in the system. This is created at 11269 * _init(9E) and destroyed at _fini(9E). 11270 * 11271 * Note: here we set the minalloc to a reasonably high number to ensure that 11272 * we will have an adequate supply of task entries available at interrupt time. 11273 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11274 * sd_create_taskq(). Since we do not want to sleep for allocations at 11275 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11276 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11277 * requests any one instant in time. 11278 */ 11279 #define SD_TASKQ_NUMTHREADS 8 11280 #define SD_TASKQ_MINALLOC 256 11281 #define SD_TASKQ_MAXALLOC 256 11282 11283 static taskq_t *sd_tq = NULL; 11284 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11285 11286 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11287 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11288 11289 /* 11290 * The following task queue is being created for the write part of 11291 * read-modify-write of non-512 block size devices. 11292 * Limit the number of threads to 1 for now. This number has been chosen 11293 * considering the fact that it applies only to dvd ram drives/MO drives 11294 * currently. Performance for which is not main criteria at this stage. 11295 * Note: It needs to be explored if we can use a single taskq in future 11296 */ 11297 #define SD_WMR_TASKQ_NUMTHREADS 1 11298 static taskq_t *sd_wmr_tq = NULL; 11299 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11300 11301 /* 11302 * Function: sd_taskq_create 11303 * 11304 * Description: Create taskq thread(s) and preallocate task entries 11305 * 11306 * Return Code: Returns a pointer to the allocated taskq_t. 11307 * 11308 * Context: Can sleep. Requires blockable context. 11309 * 11310 * Notes: - The taskq() facility currently is NOT part of the DDI. 11311 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11312 * - taskq_create() will block for memory, also it will panic 11313 * if it cannot create the requested number of threads. 11314 * - Currently taskq_create() creates threads that cannot be 11315 * swapped. 11316 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11317 * supply of taskq entries at interrupt time (ie, so that we 11318 * do not have to sleep for memory) 11319 */ 11320 11321 static void 11322 sd_taskq_create(void) 11323 { 11324 char taskq_name[TASKQ_NAMELEN]; 11325 11326 ASSERT(sd_tq == NULL); 11327 ASSERT(sd_wmr_tq == NULL); 11328 11329 (void) snprintf(taskq_name, sizeof (taskq_name), 11330 "%s_drv_taskq", sd_label); 11331 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11332 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11333 TASKQ_PREPOPULATE)); 11334 11335 (void) snprintf(taskq_name, sizeof (taskq_name), 11336 "%s_rmw_taskq", sd_label); 11337 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11338 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11339 TASKQ_PREPOPULATE)); 11340 } 11341 11342 11343 /* 11344 * Function: sd_taskq_delete 11345 * 11346 * Description: Complementary cleanup routine for sd_taskq_create(). 11347 * 11348 * Context: Kernel thread context. 11349 */ 11350 11351 static void 11352 sd_taskq_delete(void) 11353 { 11354 ASSERT(sd_tq != NULL); 11355 ASSERT(sd_wmr_tq != NULL); 11356 taskq_destroy(sd_tq); 11357 taskq_destroy(sd_wmr_tq); 11358 sd_tq = NULL; 11359 sd_wmr_tq = NULL; 11360 } 11361 11362 11363 /* 11364 * Function: sdstrategy 11365 * 11366 * Description: Driver's strategy (9E) entry point function. 11367 * 11368 * Arguments: bp - pointer to buf(9S) 11369 * 11370 * Return Code: Always returns zero 11371 * 11372 * Context: Kernel thread context. 11373 */ 11374 11375 static int 11376 sdstrategy(struct buf *bp) 11377 { 11378 struct sd_lun *un; 11379 11380 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11381 if (un == NULL) { 11382 bioerror(bp, EIO); 11383 bp->b_resid = bp->b_bcount; 11384 biodone(bp); 11385 return (0); 11386 } 11387 11388 /* As was done in the past, fail new cmds. if state is dumping. */ 11389 if (un->un_state == SD_STATE_DUMPING) { 11390 bioerror(bp, ENXIO); 11391 bp->b_resid = bp->b_bcount; 11392 biodone(bp); 11393 return (0); 11394 } 11395 11396 ASSERT(!mutex_owned(SD_MUTEX(un))); 11397 11398 /* 11399 * Commands may sneak in while we released the mutex in 11400 * DDI_SUSPEND, we should block new commands. However, old 11401 * commands that are still in the driver at this point should 11402 * still be allowed to drain. 11403 */ 11404 mutex_enter(SD_MUTEX(un)); 11405 /* 11406 * Must wait here if either the device is suspended or 11407 * if it's power level is changing. 11408 */ 11409 while ((un->un_state == SD_STATE_SUSPENDED) || 11410 (un->un_state == SD_STATE_PM_CHANGING)) { 11411 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11412 } 11413 11414 un->un_ncmds_in_driver++; 11415 11416 /* 11417 * atapi: Since we are running the CD for now in PIO mode we need to 11418 * call bp_mapin here to avoid bp_mapin called interrupt context under 11419 * the HBA's init_pkt routine. 11420 */ 11421 if (un->un_f_cfg_is_atapi == TRUE) { 11422 mutex_exit(SD_MUTEX(un)); 11423 bp_mapin(bp); 11424 mutex_enter(SD_MUTEX(un)); 11425 } 11426 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11427 un->un_ncmds_in_driver); 11428 11429 if (bp->b_flags & B_WRITE) 11430 un->un_f_sync_cache_required = TRUE; 11431 11432 mutex_exit(SD_MUTEX(un)); 11433 11434 /* 11435 * This will (eventually) allocate the sd_xbuf area and 11436 * call sd_xbuf_strategy(). We just want to return the 11437 * result of ddi_xbuf_qstrategy so that we have an opt- 11438 * imized tail call which saves us a stack frame. 11439 */ 11440 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11441 } 11442 11443 11444 /* 11445 * Function: sd_xbuf_strategy 11446 * 11447 * Description: Function for initiating IO operations via the 11448 * ddi_xbuf_qstrategy() mechanism. 11449 * 11450 * Context: Kernel thread context. 11451 */ 11452 11453 static void 11454 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11455 { 11456 struct sd_lun *un = arg; 11457 11458 ASSERT(bp != NULL); 11459 ASSERT(xp != NULL); 11460 ASSERT(un != NULL); 11461 ASSERT(!mutex_owned(SD_MUTEX(un))); 11462 11463 /* 11464 * Initialize the fields in the xbuf and save a pointer to the 11465 * xbuf in bp->b_private. 11466 */ 11467 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11468 11469 /* Send the buf down the iostart chain */ 11470 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11471 } 11472 11473 11474 /* 11475 * Function: sd_xbuf_init 11476 * 11477 * Description: Prepare the given sd_xbuf struct for use. 11478 * 11479 * Arguments: un - ptr to softstate 11480 * bp - ptr to associated buf(9S) 11481 * xp - ptr to associated sd_xbuf 11482 * chain_type - IO chain type to use: 11483 * SD_CHAIN_NULL 11484 * SD_CHAIN_BUFIO 11485 * SD_CHAIN_USCSI 11486 * SD_CHAIN_DIRECT 11487 * SD_CHAIN_DIRECT_PRIORITY 11488 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11489 * initialization; may be NULL if none. 11490 * 11491 * Context: Kernel thread context 11492 */ 11493 11494 static void 11495 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11496 uchar_t chain_type, void *pktinfop) 11497 { 11498 int index; 11499 11500 ASSERT(un != NULL); 11501 ASSERT(bp != NULL); 11502 ASSERT(xp != NULL); 11503 11504 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11505 bp, chain_type); 11506 11507 xp->xb_un = un; 11508 xp->xb_pktp = NULL; 11509 xp->xb_pktinfo = pktinfop; 11510 xp->xb_private = bp->b_private; 11511 xp->xb_blkno = (daddr_t)bp->b_blkno; 11512 11513 /* 11514 * Set up the iostart and iodone chain indexes in the xbuf, based 11515 * upon the specified chain type to use. 11516 */ 11517 switch (chain_type) { 11518 case SD_CHAIN_NULL: 11519 /* 11520 * Fall thru to just use the values for the buf type, even 11521 * tho for the NULL chain these values will never be used. 11522 */ 11523 /* FALLTHRU */ 11524 case SD_CHAIN_BUFIO: 11525 index = un->un_buf_chain_type; 11526 if ((!un->un_f_has_removable_media) && 11527 (un->un_tgt_blocksize != 0) && 11528 (un->un_tgt_blocksize != DEV_BSIZE)) { 11529 int secmask = 0, blknomask = 0; 11530 blknomask = 11531 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11532 secmask = un->un_tgt_blocksize - 1; 11533 11534 if ((bp->b_lblkno & (blknomask)) || 11535 (bp->b_bcount & (secmask))) { 11536 if (un->un_f_rmw_type != 11537 SD_RMW_TYPE_RETURN_ERROR) { 11538 if (un->un_f_pm_is_enabled == FALSE) 11539 index = 11540 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11541 else 11542 index = 11543 SD_CHAIN_INFO_MSS_DISK; 11544 } 11545 } 11546 } 11547 break; 11548 case SD_CHAIN_USCSI: 11549 index = un->un_uscsi_chain_type; 11550 break; 11551 case SD_CHAIN_DIRECT: 11552 index = un->un_direct_chain_type; 11553 break; 11554 case SD_CHAIN_DIRECT_PRIORITY: 11555 index = un->un_priority_chain_type; 11556 break; 11557 default: 11558 /* We're really broken if we ever get here... */ 11559 panic("sd_xbuf_init: illegal chain type!"); 11560 /*NOTREACHED*/ 11561 } 11562 11563 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11564 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11565 11566 /* 11567 * It might be a bit easier to simply bzero the entire xbuf above, 11568 * but it turns out that since we init a fair number of members anyway, 11569 * we save a fair number cycles by doing explicit assignment of zero. 11570 */ 11571 xp->xb_pkt_flags = 0; 11572 xp->xb_dma_resid = 0; 11573 xp->xb_retry_count = 0; 11574 xp->xb_victim_retry_count = 0; 11575 xp->xb_ua_retry_count = 0; 11576 xp->xb_nr_retry_count = 0; 11577 xp->xb_sense_bp = NULL; 11578 xp->xb_sense_status = 0; 11579 xp->xb_sense_state = 0; 11580 xp->xb_sense_resid = 0; 11581 xp->xb_ena = 0; 11582 11583 bp->b_private = xp; 11584 bp->b_flags &= ~(B_DONE | B_ERROR); 11585 bp->b_resid = 0; 11586 bp->av_forw = NULL; 11587 bp->av_back = NULL; 11588 bioerror(bp, 0); 11589 11590 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11591 } 11592 11593 11594 /* 11595 * Function: sd_uscsi_strategy 11596 * 11597 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11598 * 11599 * Arguments: bp - buf struct ptr 11600 * 11601 * Return Code: Always returns 0 11602 * 11603 * Context: Kernel thread context 11604 */ 11605 11606 static int 11607 sd_uscsi_strategy(struct buf *bp) 11608 { 11609 struct sd_lun *un; 11610 struct sd_uscsi_info *uip; 11611 struct sd_xbuf *xp; 11612 uchar_t chain_type; 11613 uchar_t cmd; 11614 11615 ASSERT(bp != NULL); 11616 11617 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11618 if (un == NULL) { 11619 bioerror(bp, EIO); 11620 bp->b_resid = bp->b_bcount; 11621 biodone(bp); 11622 return (0); 11623 } 11624 11625 ASSERT(!mutex_owned(SD_MUTEX(un))); 11626 11627 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11628 11629 /* 11630 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11631 */ 11632 ASSERT(bp->b_private != NULL); 11633 uip = (struct sd_uscsi_info *)bp->b_private; 11634 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11635 11636 mutex_enter(SD_MUTEX(un)); 11637 /* 11638 * atapi: Since we are running the CD for now in PIO mode we need to 11639 * call bp_mapin here to avoid bp_mapin called interrupt context under 11640 * the HBA's init_pkt routine. 11641 */ 11642 if (un->un_f_cfg_is_atapi == TRUE) { 11643 mutex_exit(SD_MUTEX(un)); 11644 bp_mapin(bp); 11645 mutex_enter(SD_MUTEX(un)); 11646 } 11647 un->un_ncmds_in_driver++; 11648 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11649 un->un_ncmds_in_driver); 11650 11651 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11652 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11653 un->un_f_sync_cache_required = TRUE; 11654 11655 mutex_exit(SD_MUTEX(un)); 11656 11657 switch (uip->ui_flags) { 11658 case SD_PATH_DIRECT: 11659 chain_type = SD_CHAIN_DIRECT; 11660 break; 11661 case SD_PATH_DIRECT_PRIORITY: 11662 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11663 break; 11664 default: 11665 chain_type = SD_CHAIN_USCSI; 11666 break; 11667 } 11668 11669 /* 11670 * We may allocate extra buf for external USCSI commands. If the 11671 * application asks for bigger than 20-byte sense data via USCSI, 11672 * SCSA layer will allocate 252 bytes sense buf for that command. 11673 */ 11674 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11675 SENSE_LENGTH) { 11676 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11677 MAX_SENSE_LENGTH, KM_SLEEP); 11678 } else { 11679 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11680 } 11681 11682 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11683 11684 /* Use the index obtained within xbuf_init */ 11685 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11686 11687 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11688 11689 return (0); 11690 } 11691 11692 /* 11693 * Function: sd_send_scsi_cmd 11694 * 11695 * Description: Runs a USCSI command for user (when called thru sdioctl), 11696 * or for the driver 11697 * 11698 * Arguments: dev - the dev_t for the device 11699 * incmd - ptr to a valid uscsi_cmd struct 11700 * flag - bit flag, indicating open settings, 32/64 bit type 11701 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11702 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11703 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11704 * to use the USCSI "direct" chain and bypass the normal 11705 * command waitq. 11706 * 11707 * Return Code: 0 - successful completion of the given command 11708 * EIO - scsi_uscsi_handle_command() failed 11709 * ENXIO - soft state not found for specified dev 11710 * EINVAL 11711 * EFAULT - copyin/copyout error 11712 * return code of scsi_uscsi_handle_command(): 11713 * EIO 11714 * ENXIO 11715 * EACCES 11716 * 11717 * Context: Waits for command to complete. Can sleep. 11718 */ 11719 11720 static int 11721 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11722 enum uio_seg dataspace, int path_flag) 11723 { 11724 struct sd_lun *un; 11725 sd_ssc_t *ssc; 11726 int rval; 11727 11728 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11729 if (un == NULL) { 11730 return (ENXIO); 11731 } 11732 11733 /* 11734 * Using sd_ssc_send to handle uscsi cmd 11735 */ 11736 ssc = sd_ssc_init(un); 11737 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11738 sd_ssc_fini(ssc); 11739 11740 return (rval); 11741 } 11742 11743 /* 11744 * Function: sd_ssc_init 11745 * 11746 * Description: Uscsi end-user call this function to initialize necessary 11747 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11748 * 11749 * The return value of sd_send_scsi_cmd will be treated as a 11750 * fault in various conditions. Even it is not Zero, some 11751 * callers may ignore the return value. That is to say, we can 11752 * not make an accurate assessment in sdintr, since if a 11753 * command is failed in sdintr it does not mean the caller of 11754 * sd_send_scsi_cmd will treat it as a real failure. 11755 * 11756 * To avoid printing too many error logs for a failed uscsi 11757 * packet that the caller may not treat it as a failure, the 11758 * sd will keep silent for handling all uscsi commands. 11759 * 11760 * During detach->attach and attach-open, for some types of 11761 * problems, the driver should be providing information about 11762 * the problem encountered. Device use USCSI_SILENT, which 11763 * suppresses all driver information. The result is that no 11764 * information about the problem is available. Being 11765 * completely silent during this time is inappropriate. The 11766 * driver needs a more selective filter than USCSI_SILENT, so 11767 * that information related to faults is provided. 11768 * 11769 * To make the accurate accessment, the caller of 11770 * sd_send_scsi_USCSI_CMD should take the ownership and 11771 * get necessary information to print error messages. 11772 * 11773 * If we want to print necessary info of uscsi command, we need to 11774 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11775 * assessment. We use sd_ssc_init to alloc necessary 11776 * structs for sending an uscsi command and we are also 11777 * responsible for free the memory by calling 11778 * sd_ssc_fini. 11779 * 11780 * The calling secquences will look like: 11781 * sd_ssc_init-> 11782 * 11783 * ... 11784 * 11785 * sd_send_scsi_USCSI_CMD-> 11786 * sd_ssc_send-> - - - sdintr 11787 * ... 11788 * 11789 * if we think the return value should be treated as a 11790 * failure, we make the accessment here and print out 11791 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11792 * 11793 * ... 11794 * 11795 * sd_ssc_fini 11796 * 11797 * 11798 * Arguments: un - pointer to driver soft state (unit) structure for this 11799 * target. 11800 * 11801 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11802 * uscsi_cmd and sd_uscsi_info. 11803 * NULL - if can not alloc memory for sd_ssc_t struct 11804 * 11805 * Context: Kernel Thread. 11806 */ 11807 static sd_ssc_t * 11808 sd_ssc_init(struct sd_lun *un) 11809 { 11810 sd_ssc_t *ssc; 11811 struct uscsi_cmd *ucmdp; 11812 struct sd_uscsi_info *uip; 11813 11814 ASSERT(un != NULL); 11815 ASSERT(!mutex_owned(SD_MUTEX(un))); 11816 11817 /* 11818 * Allocate sd_ssc_t structure 11819 */ 11820 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11821 11822 /* 11823 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11824 */ 11825 ucmdp = scsi_uscsi_alloc(); 11826 11827 /* 11828 * Allocate sd_uscsi_info structure 11829 */ 11830 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11831 11832 ssc->ssc_uscsi_cmd = ucmdp; 11833 ssc->ssc_uscsi_info = uip; 11834 ssc->ssc_un = un; 11835 11836 return (ssc); 11837 } 11838 11839 /* 11840 * Function: sd_ssc_fini 11841 * 11842 * Description: To free sd_ssc_t and it's hanging off 11843 * 11844 * Arguments: ssc - struct pointer of sd_ssc_t. 11845 */ 11846 static void 11847 sd_ssc_fini(sd_ssc_t *ssc) 11848 { 11849 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11850 11851 if (ssc->ssc_uscsi_info != NULL) { 11852 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11853 ssc->ssc_uscsi_info = NULL; 11854 } 11855 11856 kmem_free(ssc, sizeof (sd_ssc_t)); 11857 ssc = NULL; 11858 } 11859 11860 /* 11861 * Function: sd_ssc_send 11862 * 11863 * Description: Runs a USCSI command for user when called through sdioctl, 11864 * or for the driver. 11865 * 11866 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11867 * sd_uscsi_info in. 11868 * incmd - ptr to a valid uscsi_cmd struct 11869 * flag - bit flag, indicating open settings, 32/64 bit type 11870 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11871 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11872 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11873 * to use the USCSI "direct" chain and bypass the normal 11874 * command waitq. 11875 * 11876 * Return Code: 0 - successful completion of the given command 11877 * EIO - scsi_uscsi_handle_command() failed 11878 * ENXIO - soft state not found for specified dev 11879 * ECANCELED - command cancelled due to low power 11880 * EINVAL 11881 * EFAULT - copyin/copyout error 11882 * return code of scsi_uscsi_handle_command(): 11883 * EIO 11884 * ENXIO 11885 * EACCES 11886 * 11887 * Context: Kernel Thread; 11888 * Waits for command to complete. Can sleep. 11889 */ 11890 static int 11891 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11892 enum uio_seg dataspace, int path_flag) 11893 { 11894 struct sd_uscsi_info *uip; 11895 struct uscsi_cmd *uscmd; 11896 struct sd_lun *un; 11897 dev_t dev; 11898 11899 int format = 0; 11900 int rval; 11901 11902 ASSERT(ssc != NULL); 11903 un = ssc->ssc_un; 11904 ASSERT(un != NULL); 11905 uscmd = ssc->ssc_uscsi_cmd; 11906 ASSERT(uscmd != NULL); 11907 ASSERT(!mutex_owned(SD_MUTEX(un))); 11908 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11909 /* 11910 * If enter here, it indicates that the previous uscsi 11911 * command has not been processed by sd_ssc_assessment. 11912 * This is violating our rules of FMA telemetry processing. 11913 * We should print out this message and the last undisposed 11914 * uscsi command. 11915 */ 11916 if (uscmd->uscsi_cdb != NULL) { 11917 SD_INFO(SD_LOG_SDTEST, un, 11918 "sd_ssc_send is missing the alternative " 11919 "sd_ssc_assessment when running command 0x%x.\n", 11920 uscmd->uscsi_cdb[0]); 11921 } 11922 /* 11923 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 11924 * the initial status. 11925 */ 11926 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11927 } 11928 11929 /* 11930 * We need to make sure sd_ssc_send will have sd_ssc_assessment 11931 * followed to avoid missing FMA telemetries. 11932 */ 11933 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 11934 11935 /* 11936 * if USCSI_PMFAILFAST is set and un is in low power, fail the 11937 * command immediately. 11938 */ 11939 mutex_enter(SD_MUTEX(un)); 11940 mutex_enter(&un->un_pm_mutex); 11941 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 11942 SD_DEVICE_IS_IN_LOW_POWER(un)) { 11943 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 11944 "un:0x%p is in low power\n", un); 11945 mutex_exit(&un->un_pm_mutex); 11946 mutex_exit(SD_MUTEX(un)); 11947 return (ECANCELED); 11948 } 11949 mutex_exit(&un->un_pm_mutex); 11950 mutex_exit(SD_MUTEX(un)); 11951 11952 #ifdef SDDEBUG 11953 switch (dataspace) { 11954 case UIO_USERSPACE: 11955 SD_TRACE(SD_LOG_IO, un, 11956 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 11957 break; 11958 case UIO_SYSSPACE: 11959 SD_TRACE(SD_LOG_IO, un, 11960 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 11961 break; 11962 default: 11963 SD_TRACE(SD_LOG_IO, un, 11964 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 11965 break; 11966 } 11967 #endif 11968 11969 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 11970 SD_ADDRESS(un), &uscmd); 11971 if (rval != 0) { 11972 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 11973 "scsi_uscsi_alloc_and_copyin failed\n", un); 11974 return (rval); 11975 } 11976 11977 if ((uscmd->uscsi_cdb != NULL) && 11978 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 11979 mutex_enter(SD_MUTEX(un)); 11980 un->un_f_format_in_progress = TRUE; 11981 mutex_exit(SD_MUTEX(un)); 11982 format = 1; 11983 } 11984 11985 /* 11986 * Allocate an sd_uscsi_info struct and fill it with the info 11987 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11988 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11989 * since we allocate the buf here in this function, we do not 11990 * need to preserve the prior contents of b_private. 11991 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11992 */ 11993 uip = ssc->ssc_uscsi_info; 11994 uip->ui_flags = path_flag; 11995 uip->ui_cmdp = uscmd; 11996 11997 /* 11998 * Commands sent with priority are intended for error recovery 11999 * situations, and do not have retries performed. 12000 */ 12001 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12002 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12003 } 12004 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12005 12006 dev = SD_GET_DEV(un); 12007 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12008 sd_uscsi_strategy, NULL, uip); 12009 12010 /* 12011 * mark ssc_flags right after handle_cmd to make sure 12012 * the uscsi has been sent 12013 */ 12014 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 12015 12016 #ifdef SDDEBUG 12017 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12018 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12019 uscmd->uscsi_status, uscmd->uscsi_resid); 12020 if (uscmd->uscsi_bufaddr != NULL) { 12021 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12022 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12023 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12024 if (dataspace == UIO_SYSSPACE) { 12025 SD_DUMP_MEMORY(un, SD_LOG_IO, 12026 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12027 uscmd->uscsi_buflen, SD_LOG_HEX); 12028 } 12029 } 12030 #endif 12031 12032 if (format == 1) { 12033 mutex_enter(SD_MUTEX(un)); 12034 un->un_f_format_in_progress = FALSE; 12035 mutex_exit(SD_MUTEX(un)); 12036 } 12037 12038 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 12039 12040 return (rval); 12041 } 12042 12043 /* 12044 * Function: sd_ssc_print 12045 * 12046 * Description: Print information available to the console. 12047 * 12048 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12049 * sd_uscsi_info in. 12050 * sd_severity - log level. 12051 * Context: Kernel thread or interrupt context. 12052 */ 12053 static void 12054 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12055 { 12056 struct uscsi_cmd *ucmdp; 12057 struct scsi_device *devp; 12058 dev_info_t *devinfo; 12059 uchar_t *sensep; 12060 int senlen; 12061 union scsi_cdb *cdbp; 12062 uchar_t com; 12063 extern struct scsi_key_strings scsi_cmds[]; 12064 12065 ASSERT(ssc != NULL); 12066 ASSERT(ssc->ssc_un != NULL); 12067 12068 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12069 return; 12070 ucmdp = ssc->ssc_uscsi_cmd; 12071 devp = SD_SCSI_DEVP(ssc->ssc_un); 12072 devinfo = SD_DEVINFO(ssc->ssc_un); 12073 ASSERT(ucmdp != NULL); 12074 ASSERT(devp != NULL); 12075 ASSERT(devinfo != NULL); 12076 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12077 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12078 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12079 12080 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12081 if (cdbp == NULL) 12082 return; 12083 /* We don't print log if no sense data available. */ 12084 if (senlen == 0) 12085 sensep = NULL; 12086 com = cdbp->scc_cmd; 12087 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12088 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12089 } 12090 12091 /* 12092 * Function: sd_ssc_assessment 12093 * 12094 * Description: We use this function to make an assessment at the point 12095 * where SD driver may encounter a potential error. 12096 * 12097 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12098 * sd_uscsi_info in. 12099 * tp_assess - a hint of strategy for ereport posting. 12100 * Possible values of tp_assess include: 12101 * SD_FMT_IGNORE - we don't post any ereport because we're 12102 * sure that it is ok to ignore the underlying problems. 12103 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12104 * but it might be not correct to ignore the underlying hardware 12105 * error. 12106 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12107 * payload driver-assessment of value "fail" or 12108 * "fatal"(depending on what information we have here). This 12109 * assessment value is usually set when SD driver think there 12110 * is a potential error occurred(Typically, when return value 12111 * of the SCSI command is EIO). 12112 * SD_FMT_STANDARD - we will post an ereport with the payload 12113 * driver-assessment of value "info". This assessment value is 12114 * set when the SCSI command returned successfully and with 12115 * sense data sent back. 12116 * 12117 * Context: Kernel thread. 12118 */ 12119 static void 12120 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12121 { 12122 int senlen = 0; 12123 struct uscsi_cmd *ucmdp = NULL; 12124 struct sd_lun *un; 12125 12126 ASSERT(ssc != NULL); 12127 un = ssc->ssc_un; 12128 ASSERT(un != NULL); 12129 ucmdp = ssc->ssc_uscsi_cmd; 12130 ASSERT(ucmdp != NULL); 12131 12132 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12133 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12134 } else { 12135 /* 12136 * If enter here, it indicates that we have a wrong 12137 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12138 * both of which should be called in a pair in case of 12139 * loss of FMA telemetries. 12140 */ 12141 if (ucmdp->uscsi_cdb != NULL) { 12142 SD_INFO(SD_LOG_SDTEST, un, 12143 "sd_ssc_assessment is missing the " 12144 "alternative sd_ssc_send when running 0x%x, " 12145 "or there are superfluous sd_ssc_assessment for " 12146 "the same sd_ssc_send.\n", 12147 ucmdp->uscsi_cdb[0]); 12148 } 12149 /* 12150 * Set the ssc_flags to the initial value to avoid passing 12151 * down dirty flags to the following sd_ssc_send function. 12152 */ 12153 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12154 return; 12155 } 12156 12157 /* 12158 * Only handle an issued command which is waiting for assessment. 12159 * A command which is not issued will not have 12160 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12161 */ 12162 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12163 sd_ssc_print(ssc, SCSI_ERR_INFO); 12164 return; 12165 } else { 12166 /* 12167 * For an issued command, we should clear this flag in 12168 * order to make the sd_ssc_t structure be used off 12169 * multiple uscsi commands. 12170 */ 12171 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12172 } 12173 12174 /* 12175 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12176 * commands here. And we should clear the ssc_flags before return. 12177 */ 12178 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12179 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12180 return; 12181 } 12182 12183 switch (tp_assess) { 12184 case SD_FMT_IGNORE: 12185 case SD_FMT_IGNORE_COMPROMISE: 12186 break; 12187 case SD_FMT_STATUS_CHECK: 12188 /* 12189 * For a failed command(including the succeeded command 12190 * with invalid data sent back). 12191 */ 12192 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12193 break; 12194 case SD_FMT_STANDARD: 12195 /* 12196 * Always for the succeeded commands probably with sense 12197 * data sent back. 12198 * Limitation: 12199 * We can only handle a succeeded command with sense 12200 * data sent back when auto-request-sense is enabled. 12201 */ 12202 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12203 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12204 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12205 (un->un_f_arq_enabled == TRUE) && 12206 senlen > 0 && 12207 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12208 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12209 } 12210 break; 12211 default: 12212 /* 12213 * Should not have other type of assessment. 12214 */ 12215 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12216 "sd_ssc_assessment got wrong " 12217 "sd_type_assessment %d.\n", tp_assess); 12218 break; 12219 } 12220 /* 12221 * Clear up the ssc_flags before return. 12222 */ 12223 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12224 } 12225 12226 /* 12227 * Function: sd_ssc_post 12228 * 12229 * Description: 1. read the driver property to get fm-scsi-log flag. 12230 * 2. print log if fm_log_capable is non-zero. 12231 * 3. call sd_ssc_ereport_post to post ereport if possible. 12232 * 12233 * Context: May be called from kernel thread or interrupt context. 12234 */ 12235 static void 12236 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12237 { 12238 struct sd_lun *un; 12239 int sd_severity; 12240 12241 ASSERT(ssc != NULL); 12242 un = ssc->ssc_un; 12243 ASSERT(un != NULL); 12244 12245 /* 12246 * We may enter here from sd_ssc_assessment(for USCSI command) or 12247 * by directly called from sdintr context. 12248 * We don't handle a non-disk drive(CD-ROM, removable media). 12249 * Clear the ssc_flags before return in case we've set 12250 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12251 * driver. 12252 */ 12253 if (ISCD(un) || un->un_f_has_removable_media) { 12254 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12255 return; 12256 } 12257 12258 switch (sd_assess) { 12259 case SD_FM_DRV_FATAL: 12260 sd_severity = SCSI_ERR_FATAL; 12261 break; 12262 case SD_FM_DRV_RECOVERY: 12263 sd_severity = SCSI_ERR_RECOVERED; 12264 break; 12265 case SD_FM_DRV_RETRY: 12266 sd_severity = SCSI_ERR_RETRYABLE; 12267 break; 12268 case SD_FM_DRV_NOTICE: 12269 sd_severity = SCSI_ERR_INFO; 12270 break; 12271 default: 12272 sd_severity = SCSI_ERR_UNKNOWN; 12273 } 12274 /* print log */ 12275 sd_ssc_print(ssc, sd_severity); 12276 12277 /* always post ereport */ 12278 sd_ssc_ereport_post(ssc, sd_assess); 12279 } 12280 12281 /* 12282 * Function: sd_ssc_set_info 12283 * 12284 * Description: Mark ssc_flags and set ssc_info which would be the 12285 * payload of uderr ereport. This function will cause 12286 * sd_ssc_ereport_post to post uderr ereport only. 12287 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12288 * the function will also call SD_ERROR or scsi_log for a 12289 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12290 * 12291 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12292 * sd_uscsi_info in. 12293 * ssc_flags - indicate the sub-category of a uderr. 12294 * comp - this argument is meaningful only when 12295 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12296 * values include: 12297 * > 0, SD_ERROR is used with comp as the driver logging 12298 * component; 12299 * = 0, scsi-log is used to log error telemetries; 12300 * < 0, no log available for this telemetry. 12301 * 12302 * Context: Kernel thread or interrupt context 12303 */ 12304 static void 12305 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12306 { 12307 va_list ap; 12308 12309 ASSERT(ssc != NULL); 12310 ASSERT(ssc->ssc_un != NULL); 12311 12312 ssc->ssc_flags |= ssc_flags; 12313 va_start(ap, fmt); 12314 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12315 va_end(ap); 12316 12317 /* 12318 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12319 * with invalid data sent back. For non-uscsi command, the 12320 * following code will be bypassed. 12321 */ 12322 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12323 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12324 /* 12325 * If the error belong to certain component and we 12326 * do not want it to show up on the console, we 12327 * will use SD_ERROR, otherwise scsi_log is 12328 * preferred. 12329 */ 12330 if (comp > 0) { 12331 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12332 } else if (comp == 0) { 12333 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12334 CE_WARN, ssc->ssc_info); 12335 } 12336 } 12337 } 12338 } 12339 12340 /* 12341 * Function: sd_buf_iodone 12342 * 12343 * Description: Frees the sd_xbuf & returns the buf to its originator. 12344 * 12345 * Context: May be called from interrupt context. 12346 */ 12347 /* ARGSUSED */ 12348 static void 12349 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12350 { 12351 struct sd_xbuf *xp; 12352 12353 ASSERT(un != NULL); 12354 ASSERT(bp != NULL); 12355 ASSERT(!mutex_owned(SD_MUTEX(un))); 12356 12357 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12358 12359 xp = SD_GET_XBUF(bp); 12360 ASSERT(xp != NULL); 12361 12362 /* xbuf is gone after this */ 12363 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12364 mutex_enter(SD_MUTEX(un)); 12365 12366 /* 12367 * Grab time when the cmd completed. 12368 * This is used for determining if the system has been 12369 * idle long enough to make it idle to the PM framework. 12370 * This is for lowering the overhead, and therefore improving 12371 * performance per I/O operation. 12372 */ 12373 un->un_pm_idle_time = ddi_get_time(); 12374 12375 un->un_ncmds_in_driver--; 12376 ASSERT(un->un_ncmds_in_driver >= 0); 12377 SD_INFO(SD_LOG_IO, un, 12378 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12379 un->un_ncmds_in_driver); 12380 12381 mutex_exit(SD_MUTEX(un)); 12382 } 12383 12384 biodone(bp); /* bp is gone after this */ 12385 12386 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12387 } 12388 12389 12390 /* 12391 * Function: sd_uscsi_iodone 12392 * 12393 * Description: Frees the sd_xbuf & returns the buf to its originator. 12394 * 12395 * Context: May be called from interrupt context. 12396 */ 12397 /* ARGSUSED */ 12398 static void 12399 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12400 { 12401 struct sd_xbuf *xp; 12402 12403 ASSERT(un != NULL); 12404 ASSERT(bp != NULL); 12405 12406 xp = SD_GET_XBUF(bp); 12407 ASSERT(xp != NULL); 12408 ASSERT(!mutex_owned(SD_MUTEX(un))); 12409 12410 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12411 12412 bp->b_private = xp->xb_private; 12413 12414 mutex_enter(SD_MUTEX(un)); 12415 12416 /* 12417 * Grab time when the cmd completed. 12418 * This is used for determining if the system has been 12419 * idle long enough to make it idle to the PM framework. 12420 * This is for lowering the overhead, and therefore improving 12421 * performance per I/O operation. 12422 */ 12423 un->un_pm_idle_time = ddi_get_time(); 12424 12425 un->un_ncmds_in_driver--; 12426 ASSERT(un->un_ncmds_in_driver >= 0); 12427 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12428 un->un_ncmds_in_driver); 12429 12430 mutex_exit(SD_MUTEX(un)); 12431 12432 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12433 SENSE_LENGTH) { 12434 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12435 MAX_SENSE_LENGTH); 12436 } else { 12437 kmem_free(xp, sizeof (struct sd_xbuf)); 12438 } 12439 12440 biodone(bp); 12441 12442 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12443 } 12444 12445 12446 /* 12447 * Function: sd_mapblockaddr_iostart 12448 * 12449 * Description: Verify request lies within the partition limits for 12450 * the indicated minor device. Issue "overrun" buf if 12451 * request would exceed partition range. Converts 12452 * partition-relative block address to absolute. 12453 * 12454 * Upon exit of this function: 12455 * 1.I/O is aligned 12456 * xp->xb_blkno represents the absolute sector address 12457 * 2.I/O is misaligned 12458 * xp->xb_blkno represents the absolute logical block address 12459 * based on DEV_BSIZE. The logical block address will be 12460 * converted to physical sector address in sd_mapblocksize_\ 12461 * iostart. 12462 * 3.I/O is misaligned but is aligned in "overrun" buf 12463 * xp->xb_blkno represents the absolute logical block address 12464 * based on DEV_BSIZE. The logical block address will be 12465 * converted to physical sector address in sd_mapblocksize_\ 12466 * iostart. But no RMW will be issued in this case. 12467 * 12468 * Context: Can sleep 12469 * 12470 * Issues: This follows what the old code did, in terms of accessing 12471 * some of the partition info in the unit struct without holding 12472 * the mutext. This is a general issue, if the partition info 12473 * can be altered while IO is in progress... as soon as we send 12474 * a buf, its partitioning can be invalid before it gets to the 12475 * device. Probably the right fix is to move partitioning out 12476 * of the driver entirely. 12477 */ 12478 12479 static void 12480 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12481 { 12482 diskaddr_t nblocks; /* #blocks in the given partition */ 12483 daddr_t blocknum; /* Block number specified by the buf */ 12484 size_t requested_nblocks; 12485 size_t available_nblocks; 12486 int partition; 12487 diskaddr_t partition_offset; 12488 struct sd_xbuf *xp; 12489 int secmask = 0, blknomask = 0; 12490 ushort_t is_aligned = TRUE; 12491 12492 ASSERT(un != NULL); 12493 ASSERT(bp != NULL); 12494 ASSERT(!mutex_owned(SD_MUTEX(un))); 12495 12496 SD_TRACE(SD_LOG_IO_PARTITION, un, 12497 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12498 12499 xp = SD_GET_XBUF(bp); 12500 ASSERT(xp != NULL); 12501 12502 /* 12503 * If the geometry is not indicated as valid, attempt to access 12504 * the unit & verify the geometry/label. This can be the case for 12505 * removable-media devices, of if the device was opened in 12506 * NDELAY/NONBLOCK mode. 12507 */ 12508 partition = SDPART(bp->b_edev); 12509 12510 if (!SD_IS_VALID_LABEL(un)) { 12511 sd_ssc_t *ssc; 12512 /* 12513 * Initialize sd_ssc_t for internal uscsi commands 12514 * In case of potential porformance issue, we need 12515 * to alloc memory only if there is invalid label 12516 */ 12517 ssc = sd_ssc_init(un); 12518 12519 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12520 /* 12521 * For removable devices it is possible to start an 12522 * I/O without a media by opening the device in nodelay 12523 * mode. Also for writable CDs there can be many 12524 * scenarios where there is no geometry yet but volume 12525 * manager is trying to issue a read() just because 12526 * it can see TOC on the CD. So do not print a message 12527 * for removables. 12528 */ 12529 if (!un->un_f_has_removable_media) { 12530 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12531 "i/o to invalid geometry\n"); 12532 } 12533 bioerror(bp, EIO); 12534 bp->b_resid = bp->b_bcount; 12535 SD_BEGIN_IODONE(index, un, bp); 12536 12537 sd_ssc_fini(ssc); 12538 return; 12539 } 12540 sd_ssc_fini(ssc); 12541 } 12542 12543 nblocks = 0; 12544 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12545 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12546 12547 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12548 secmask = un->un_tgt_blocksize - 1; 12549 12550 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12551 is_aligned = FALSE; 12552 } 12553 12554 if (!(NOT_DEVBSIZE(un))) { 12555 /* 12556 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12557 * Convert the logical block number to target's physical sector 12558 * number. 12559 */ 12560 if (is_aligned) { 12561 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12562 } else { 12563 switch (un->un_f_rmw_type) { 12564 case SD_RMW_TYPE_RETURN_ERROR: 12565 bp->b_flags |= B_ERROR; 12566 goto error_exit; 12567 12568 case SD_RMW_TYPE_DEFAULT: 12569 mutex_enter(SD_MUTEX(un)); 12570 if (un->un_rmw_msg_timeid == NULL) { 12571 scsi_log(SD_DEVINFO(un), sd_label, 12572 CE_WARN, "I/O request is not " 12573 "aligned with %d disk sector size. " 12574 "It is handled through Read Modify " 12575 "Write but the performance is " 12576 "very low.\n", 12577 un->un_tgt_blocksize); 12578 un->un_rmw_msg_timeid = 12579 timeout(sd_rmw_msg_print_handler, 12580 un, SD_RMW_MSG_PRINT_TIMEOUT); 12581 } else { 12582 un->un_rmw_incre_count ++; 12583 } 12584 mutex_exit(SD_MUTEX(un)); 12585 break; 12586 12587 case SD_RMW_TYPE_NO_WARNING: 12588 default: 12589 break; 12590 } 12591 12592 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12593 partition_offset = SD_TGT2SYSBLOCK(un, 12594 partition_offset); 12595 } 12596 } 12597 12598 /* 12599 * blocknum is the starting block number of the request. At this 12600 * point it is still relative to the start of the minor device. 12601 */ 12602 blocknum = xp->xb_blkno; 12603 12604 /* 12605 * Legacy: If the starting block number is one past the last block 12606 * in the partition, do not set B_ERROR in the buf. 12607 */ 12608 if (blocknum == nblocks) { 12609 goto error_exit; 12610 } 12611 12612 /* 12613 * Confirm that the first block of the request lies within the 12614 * partition limits. Also the requested number of bytes must be 12615 * a multiple of the system block size. 12616 */ 12617 if ((blocknum < 0) || (blocknum >= nblocks) || 12618 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12619 bp->b_flags |= B_ERROR; 12620 goto error_exit; 12621 } 12622 12623 /* 12624 * If the requsted # blocks exceeds the available # blocks, that 12625 * is an overrun of the partition. 12626 */ 12627 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12628 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12629 } else { 12630 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12631 } 12632 12633 available_nblocks = (size_t)(nblocks - blocknum); 12634 ASSERT(nblocks >= blocknum); 12635 12636 if (requested_nblocks > available_nblocks) { 12637 size_t resid; 12638 12639 /* 12640 * Allocate an "overrun" buf to allow the request to proceed 12641 * for the amount of space available in the partition. The 12642 * amount not transferred will be added into the b_resid 12643 * when the operation is complete. The overrun buf 12644 * replaces the original buf here, and the original buf 12645 * is saved inside the overrun buf, for later use. 12646 */ 12647 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12648 resid = SD_TGTBLOCKS2BYTES(un, 12649 (offset_t)(requested_nblocks - available_nblocks)); 12650 } else { 12651 resid = SD_SYSBLOCKS2BYTES( 12652 (offset_t)(requested_nblocks - available_nblocks)); 12653 } 12654 12655 size_t count = bp->b_bcount - resid; 12656 /* 12657 * Note: count is an unsigned entity thus it'll NEVER 12658 * be less than 0 so ASSERT the original values are 12659 * correct. 12660 */ 12661 ASSERT(bp->b_bcount >= resid); 12662 12663 bp = sd_bioclone_alloc(bp, count, blocknum, 12664 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12665 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12666 ASSERT(xp != NULL); 12667 } 12668 12669 /* At this point there should be no residual for this buf. */ 12670 ASSERT(bp->b_resid == 0); 12671 12672 /* Convert the block number to an absolute address. */ 12673 xp->xb_blkno += partition_offset; 12674 12675 SD_NEXT_IOSTART(index, un, bp); 12676 12677 SD_TRACE(SD_LOG_IO_PARTITION, un, 12678 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12679 12680 return; 12681 12682 error_exit: 12683 bp->b_resid = bp->b_bcount; 12684 SD_BEGIN_IODONE(index, un, bp); 12685 SD_TRACE(SD_LOG_IO_PARTITION, un, 12686 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12687 } 12688 12689 12690 /* 12691 * Function: sd_mapblockaddr_iodone 12692 * 12693 * Description: Completion-side processing for partition management. 12694 * 12695 * Context: May be called under interrupt context 12696 */ 12697 12698 static void 12699 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12700 { 12701 /* int partition; */ /* Not used, see below. */ 12702 ASSERT(un != NULL); 12703 ASSERT(bp != NULL); 12704 ASSERT(!mutex_owned(SD_MUTEX(un))); 12705 12706 SD_TRACE(SD_LOG_IO_PARTITION, un, 12707 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12708 12709 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12710 /* 12711 * We have an "overrun" buf to deal with... 12712 */ 12713 struct sd_xbuf *xp; 12714 struct buf *obp; /* ptr to the original buf */ 12715 12716 xp = SD_GET_XBUF(bp); 12717 ASSERT(xp != NULL); 12718 12719 /* Retrieve the pointer to the original buf */ 12720 obp = (struct buf *)xp->xb_private; 12721 ASSERT(obp != NULL); 12722 12723 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12724 bioerror(obp, bp->b_error); 12725 12726 sd_bioclone_free(bp); 12727 12728 /* 12729 * Get back the original buf. 12730 * Note that since the restoration of xb_blkno below 12731 * was removed, the sd_xbuf is not needed. 12732 */ 12733 bp = obp; 12734 /* 12735 * xp = SD_GET_XBUF(bp); 12736 * ASSERT(xp != NULL); 12737 */ 12738 } 12739 12740 /* 12741 * Convert sd->xb_blkno back to a minor-device relative value. 12742 * Note: this has been commented out, as it is not needed in the 12743 * current implementation of the driver (ie, since this function 12744 * is at the top of the layering chains, so the info will be 12745 * discarded) and it is in the "hot" IO path. 12746 * 12747 * partition = getminor(bp->b_edev) & SDPART_MASK; 12748 * xp->xb_blkno -= un->un_offset[partition]; 12749 */ 12750 12751 SD_NEXT_IODONE(index, un, bp); 12752 12753 SD_TRACE(SD_LOG_IO_PARTITION, un, 12754 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12755 } 12756 12757 12758 /* 12759 * Function: sd_mapblocksize_iostart 12760 * 12761 * Description: Convert between system block size (un->un_sys_blocksize) 12762 * and target block size (un->un_tgt_blocksize). 12763 * 12764 * Context: Can sleep to allocate resources. 12765 * 12766 * Assumptions: A higher layer has already performed any partition validation, 12767 * and converted the xp->xb_blkno to an absolute value relative 12768 * to the start of the device. 12769 * 12770 * It is also assumed that the higher layer has implemented 12771 * an "overrun" mechanism for the case where the request would 12772 * read/write beyond the end of a partition. In this case we 12773 * assume (and ASSERT) that bp->b_resid == 0. 12774 * 12775 * Note: The implementation for this routine assumes the target 12776 * block size remains constant between allocation and transport. 12777 */ 12778 12779 static void 12780 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12781 { 12782 struct sd_mapblocksize_info *bsp; 12783 struct sd_xbuf *xp; 12784 offset_t first_byte; 12785 daddr_t start_block, end_block; 12786 daddr_t request_bytes; 12787 ushort_t is_aligned = FALSE; 12788 12789 ASSERT(un != NULL); 12790 ASSERT(bp != NULL); 12791 ASSERT(!mutex_owned(SD_MUTEX(un))); 12792 ASSERT(bp->b_resid == 0); 12793 12794 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12795 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12796 12797 /* 12798 * For a non-writable CD, a write request is an error 12799 */ 12800 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12801 (un->un_f_mmc_writable_media == FALSE)) { 12802 bioerror(bp, EIO); 12803 bp->b_resid = bp->b_bcount; 12804 SD_BEGIN_IODONE(index, un, bp); 12805 return; 12806 } 12807 12808 /* 12809 * We do not need a shadow buf if the device is using 12810 * un->un_sys_blocksize as its block size or if bcount == 0. 12811 * In this case there is no layer-private data block allocated. 12812 */ 12813 if ((un->un_tgt_blocksize == DEV_BSIZE) || 12814 (bp->b_bcount == 0)) { 12815 goto done; 12816 } 12817 12818 #if defined(__i386) || defined(__amd64) 12819 /* We do not support non-block-aligned transfers for ROD devices */ 12820 ASSERT(!ISROD(un)); 12821 #endif 12822 12823 xp = SD_GET_XBUF(bp); 12824 ASSERT(xp != NULL); 12825 12826 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12827 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12828 un->un_tgt_blocksize, DEV_BSIZE); 12829 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12830 "request start block:0x%x\n", xp->xb_blkno); 12831 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12832 "request len:0x%x\n", bp->b_bcount); 12833 12834 /* 12835 * Allocate the layer-private data area for the mapblocksize layer. 12836 * Layers are allowed to use the xp_private member of the sd_xbuf 12837 * struct to store the pointer to their layer-private data block, but 12838 * each layer also has the responsibility of restoring the prior 12839 * contents of xb_private before returning the buf/xbuf to the 12840 * higher layer that sent it. 12841 * 12842 * Here we save the prior contents of xp->xb_private into the 12843 * bsp->mbs_oprivate field of our layer-private data area. This value 12844 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12845 * the layer-private area and returning the buf/xbuf to the layer 12846 * that sent it. 12847 * 12848 * Note that here we use kmem_zalloc for the allocation as there are 12849 * parts of the mapblocksize code that expect certain fields to be 12850 * zero unless explicitly set to a required value. 12851 */ 12852 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12853 bsp->mbs_oprivate = xp->xb_private; 12854 xp->xb_private = bsp; 12855 12856 /* 12857 * This treats the data on the disk (target) as an array of bytes. 12858 * first_byte is the byte offset, from the beginning of the device, 12859 * to the location of the request. This is converted from a 12860 * un->un_sys_blocksize block address to a byte offset, and then back 12861 * to a block address based upon a un->un_tgt_blocksize block size. 12862 * 12863 * xp->xb_blkno should be absolute upon entry into this function, 12864 * but, but it is based upon partitions that use the "system" 12865 * block size. It must be adjusted to reflect the block size of 12866 * the target. 12867 * 12868 * Note that end_block is actually the block that follows the last 12869 * block of the request, but that's what is needed for the computation. 12870 */ 12871 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 12872 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12873 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12874 un->un_tgt_blocksize; 12875 12876 /* request_bytes is rounded up to a multiple of the target block size */ 12877 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12878 12879 /* 12880 * See if the starting address of the request and the request 12881 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12882 * then we do not need to allocate a shadow buf to handle the request. 12883 */ 12884 if (((first_byte % un->un_tgt_blocksize) == 0) && 12885 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12886 is_aligned = TRUE; 12887 } 12888 12889 if ((bp->b_flags & B_READ) == 0) { 12890 /* 12891 * Lock the range for a write operation. An aligned request is 12892 * considered a simple write; otherwise the request must be a 12893 * read-modify-write. 12894 */ 12895 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12896 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12897 } 12898 12899 /* 12900 * Alloc a shadow buf if the request is not aligned. Also, this is 12901 * where the READ command is generated for a read-modify-write. (The 12902 * write phase is deferred until after the read completes.) 12903 */ 12904 if (is_aligned == FALSE) { 12905 12906 struct sd_mapblocksize_info *shadow_bsp; 12907 struct sd_xbuf *shadow_xp; 12908 struct buf *shadow_bp; 12909 12910 /* 12911 * Allocate the shadow buf and it associated xbuf. Note that 12912 * after this call the xb_blkno value in both the original 12913 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12914 * same: absolute relative to the start of the device, and 12915 * adjusted for the target block size. The b_blkno in the 12916 * shadow buf will also be set to this value. We should never 12917 * change b_blkno in the original bp however. 12918 * 12919 * Note also that the shadow buf will always need to be a 12920 * READ command, regardless of whether the incoming command 12921 * is a READ or a WRITE. 12922 */ 12923 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12924 xp->xb_blkno, 12925 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12926 12927 shadow_xp = SD_GET_XBUF(shadow_bp); 12928 12929 /* 12930 * Allocate the layer-private data for the shadow buf. 12931 * (No need to preserve xb_private in the shadow xbuf.) 12932 */ 12933 shadow_xp->xb_private = shadow_bsp = 12934 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12935 12936 /* 12937 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12938 * to figure out where the start of the user data is (based upon 12939 * the system block size) in the data returned by the READ 12940 * command (which will be based upon the target blocksize). Note 12941 * that this is only really used if the request is unaligned. 12942 */ 12943 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12944 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12945 ASSERT((bsp->mbs_copy_offset >= 0) && 12946 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12947 12948 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12949 12950 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12951 12952 /* Transfer the wmap (if any) to the shadow buf */ 12953 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12954 bsp->mbs_wmp = NULL; 12955 12956 /* 12957 * The shadow buf goes on from here in place of the 12958 * original buf. 12959 */ 12960 shadow_bsp->mbs_orig_bp = bp; 12961 bp = shadow_bp; 12962 } 12963 12964 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12965 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12966 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12967 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12968 request_bytes); 12969 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12970 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12971 12972 done: 12973 SD_NEXT_IOSTART(index, un, bp); 12974 12975 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12976 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12977 } 12978 12979 12980 /* 12981 * Function: sd_mapblocksize_iodone 12982 * 12983 * Description: Completion side processing for block-size mapping. 12984 * 12985 * Context: May be called under interrupt context 12986 */ 12987 12988 static void 12989 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12990 { 12991 struct sd_mapblocksize_info *bsp; 12992 struct sd_xbuf *xp; 12993 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12994 struct buf *orig_bp; /* ptr to the original buf */ 12995 offset_t shadow_end; 12996 offset_t request_end; 12997 offset_t shadow_start; 12998 ssize_t copy_offset; 12999 size_t copy_length; 13000 size_t shortfall; 13001 uint_t is_write; /* TRUE if this bp is a WRITE */ 13002 uint_t has_wmap; /* TRUE is this bp has a wmap */ 13003 13004 ASSERT(un != NULL); 13005 ASSERT(bp != NULL); 13006 13007 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13008 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 13009 13010 /* 13011 * There is no shadow buf or layer-private data if the target is 13012 * using un->un_sys_blocksize as its block size or if bcount == 0. 13013 */ 13014 if ((un->un_tgt_blocksize == DEV_BSIZE) || 13015 (bp->b_bcount == 0)) { 13016 goto exit; 13017 } 13018 13019 xp = SD_GET_XBUF(bp); 13020 ASSERT(xp != NULL); 13021 13022 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 13023 bsp = xp->xb_private; 13024 13025 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 13026 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 13027 13028 if (is_write) { 13029 /* 13030 * For a WRITE request we must free up the block range that 13031 * we have locked up. This holds regardless of whether this is 13032 * an aligned write request or a read-modify-write request. 13033 */ 13034 sd_range_unlock(un, bsp->mbs_wmp); 13035 bsp->mbs_wmp = NULL; 13036 } 13037 13038 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 13039 /* 13040 * An aligned read or write command will have no shadow buf; 13041 * there is not much else to do with it. 13042 */ 13043 goto done; 13044 } 13045 13046 orig_bp = bsp->mbs_orig_bp; 13047 ASSERT(orig_bp != NULL); 13048 orig_xp = SD_GET_XBUF(orig_bp); 13049 ASSERT(orig_xp != NULL); 13050 ASSERT(!mutex_owned(SD_MUTEX(un))); 13051 13052 if (!is_write && has_wmap) { 13053 /* 13054 * A READ with a wmap means this is the READ phase of a 13055 * read-modify-write. If an error occurred on the READ then 13056 * we do not proceed with the WRITE phase or copy any data. 13057 * Just release the write maps and return with an error. 13058 */ 13059 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13060 orig_bp->b_resid = orig_bp->b_bcount; 13061 bioerror(orig_bp, bp->b_error); 13062 sd_range_unlock(un, bsp->mbs_wmp); 13063 goto freebuf_done; 13064 } 13065 } 13066 13067 /* 13068 * Here is where we set up to copy the data from the shadow buf 13069 * into the space associated with the original buf. 13070 * 13071 * To deal with the conversion between block sizes, these 13072 * computations treat the data as an array of bytes, with the 13073 * first byte (byte 0) corresponding to the first byte in the 13074 * first block on the disk. 13075 */ 13076 13077 /* 13078 * shadow_start and shadow_len indicate the location and size of 13079 * the data returned with the shadow IO request. 13080 */ 13081 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13082 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13083 13084 /* 13085 * copy_offset gives the offset (in bytes) from the start of the first 13086 * block of the READ request to the beginning of the data. We retrieve 13087 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13088 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13089 * data to be copied (in bytes). 13090 */ 13091 copy_offset = bsp->mbs_copy_offset; 13092 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 13093 copy_length = orig_bp->b_bcount; 13094 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13095 13096 /* 13097 * Set up the resid and error fields of orig_bp as appropriate. 13098 */ 13099 if (shadow_end >= request_end) { 13100 /* We got all the requested data; set resid to zero */ 13101 orig_bp->b_resid = 0; 13102 } else { 13103 /* 13104 * We failed to get enough data to fully satisfy the original 13105 * request. Just copy back whatever data we got and set 13106 * up the residual and error code as required. 13107 * 13108 * 'shortfall' is the amount by which the data received with the 13109 * shadow buf has "fallen short" of the requested amount. 13110 */ 13111 shortfall = (size_t)(request_end - shadow_end); 13112 13113 if (shortfall > orig_bp->b_bcount) { 13114 /* 13115 * We did not get enough data to even partially 13116 * fulfill the original request. The residual is 13117 * equal to the amount requested. 13118 */ 13119 orig_bp->b_resid = orig_bp->b_bcount; 13120 } else { 13121 /* 13122 * We did not get all the data that we requested 13123 * from the device, but we will try to return what 13124 * portion we did get. 13125 */ 13126 orig_bp->b_resid = shortfall; 13127 } 13128 ASSERT(copy_length >= orig_bp->b_resid); 13129 copy_length -= orig_bp->b_resid; 13130 } 13131 13132 /* Propagate the error code from the shadow buf to the original buf */ 13133 bioerror(orig_bp, bp->b_error); 13134 13135 if (is_write) { 13136 goto freebuf_done; /* No data copying for a WRITE */ 13137 } 13138 13139 if (has_wmap) { 13140 /* 13141 * This is a READ command from the READ phase of a 13142 * read-modify-write request. We have to copy the data given 13143 * by the user OVER the data returned by the READ command, 13144 * then convert the command from a READ to a WRITE and send 13145 * it back to the target. 13146 */ 13147 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13148 copy_length); 13149 13150 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13151 13152 /* 13153 * Dispatch the WRITE command to the taskq thread, which 13154 * will in turn send the command to the target. When the 13155 * WRITE command completes, we (sd_mapblocksize_iodone()) 13156 * will get called again as part of the iodone chain 13157 * processing for it. Note that we will still be dealing 13158 * with the shadow buf at that point. 13159 */ 13160 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13161 KM_NOSLEEP) != 0) { 13162 /* 13163 * Dispatch was successful so we are done. Return 13164 * without going any higher up the iodone chain. Do 13165 * not free up any layer-private data until after the 13166 * WRITE completes. 13167 */ 13168 return; 13169 } 13170 13171 /* 13172 * Dispatch of the WRITE command failed; set up the error 13173 * condition and send this IO back up the iodone chain. 13174 */ 13175 bioerror(orig_bp, EIO); 13176 orig_bp->b_resid = orig_bp->b_bcount; 13177 13178 } else { 13179 /* 13180 * This is a regular READ request (ie, not a RMW). Copy the 13181 * data from the shadow buf into the original buf. The 13182 * copy_offset compensates for any "misalignment" between the 13183 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13184 * original buf (with its un->un_sys_blocksize blocks). 13185 */ 13186 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13187 copy_length); 13188 } 13189 13190 freebuf_done: 13191 13192 /* 13193 * At this point we still have both the shadow buf AND the original 13194 * buf to deal with, as well as the layer-private data area in each. 13195 * Local variables are as follows: 13196 * 13197 * bp -- points to shadow buf 13198 * xp -- points to xbuf of shadow buf 13199 * bsp -- points to layer-private data area of shadow buf 13200 * orig_bp -- points to original buf 13201 * 13202 * First free the shadow buf and its associated xbuf, then free the 13203 * layer-private data area from the shadow buf. There is no need to 13204 * restore xb_private in the shadow xbuf. 13205 */ 13206 sd_shadow_buf_free(bp); 13207 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13208 13209 /* 13210 * Now update the local variables to point to the original buf, xbuf, 13211 * and layer-private area. 13212 */ 13213 bp = orig_bp; 13214 xp = SD_GET_XBUF(bp); 13215 ASSERT(xp != NULL); 13216 ASSERT(xp == orig_xp); 13217 bsp = xp->xb_private; 13218 ASSERT(bsp != NULL); 13219 13220 done: 13221 /* 13222 * Restore xb_private to whatever it was set to by the next higher 13223 * layer in the chain, then free the layer-private data area. 13224 */ 13225 xp->xb_private = bsp->mbs_oprivate; 13226 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13227 13228 exit: 13229 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13230 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13231 13232 SD_NEXT_IODONE(index, un, bp); 13233 } 13234 13235 13236 /* 13237 * Function: sd_checksum_iostart 13238 * 13239 * Description: A stub function for a layer that's currently not used. 13240 * For now just a placeholder. 13241 * 13242 * Context: Kernel thread context 13243 */ 13244 13245 static void 13246 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13247 { 13248 ASSERT(un != NULL); 13249 ASSERT(bp != NULL); 13250 ASSERT(!mutex_owned(SD_MUTEX(un))); 13251 SD_NEXT_IOSTART(index, un, bp); 13252 } 13253 13254 13255 /* 13256 * Function: sd_checksum_iodone 13257 * 13258 * Description: A stub function for a layer that's currently not used. 13259 * For now just a placeholder. 13260 * 13261 * Context: May be called under interrupt context 13262 */ 13263 13264 static void 13265 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13266 { 13267 ASSERT(un != NULL); 13268 ASSERT(bp != NULL); 13269 ASSERT(!mutex_owned(SD_MUTEX(un))); 13270 SD_NEXT_IODONE(index, un, bp); 13271 } 13272 13273 13274 /* 13275 * Function: sd_checksum_uscsi_iostart 13276 * 13277 * Description: A stub function for a layer that's currently not used. 13278 * For now just a placeholder. 13279 * 13280 * Context: Kernel thread context 13281 */ 13282 13283 static void 13284 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13285 { 13286 ASSERT(un != NULL); 13287 ASSERT(bp != NULL); 13288 ASSERT(!mutex_owned(SD_MUTEX(un))); 13289 SD_NEXT_IOSTART(index, un, bp); 13290 } 13291 13292 13293 /* 13294 * Function: sd_checksum_uscsi_iodone 13295 * 13296 * Description: A stub function for a layer that's currently not used. 13297 * For now just a placeholder. 13298 * 13299 * Context: May be called under interrupt context 13300 */ 13301 13302 static void 13303 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13304 { 13305 ASSERT(un != NULL); 13306 ASSERT(bp != NULL); 13307 ASSERT(!mutex_owned(SD_MUTEX(un))); 13308 SD_NEXT_IODONE(index, un, bp); 13309 } 13310 13311 13312 /* 13313 * Function: sd_pm_iostart 13314 * 13315 * Description: iostart-side routine for Power mangement. 13316 * 13317 * Context: Kernel thread context 13318 */ 13319 13320 static void 13321 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13322 { 13323 ASSERT(un != NULL); 13324 ASSERT(bp != NULL); 13325 ASSERT(!mutex_owned(SD_MUTEX(un))); 13326 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13327 13328 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13329 13330 if (sd_pm_entry(un) != DDI_SUCCESS) { 13331 /* 13332 * Set up to return the failed buf back up the 'iodone' 13333 * side of the calling chain. 13334 */ 13335 bioerror(bp, EIO); 13336 bp->b_resid = bp->b_bcount; 13337 13338 SD_BEGIN_IODONE(index, un, bp); 13339 13340 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13341 return; 13342 } 13343 13344 SD_NEXT_IOSTART(index, un, bp); 13345 13346 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13347 } 13348 13349 13350 /* 13351 * Function: sd_pm_iodone 13352 * 13353 * Description: iodone-side routine for power mangement. 13354 * 13355 * Context: may be called from interrupt context 13356 */ 13357 13358 static void 13359 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13360 { 13361 ASSERT(un != NULL); 13362 ASSERT(bp != NULL); 13363 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13364 13365 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13366 13367 /* 13368 * After attach the following flag is only read, so don't 13369 * take the penalty of acquiring a mutex for it. 13370 */ 13371 if (un->un_f_pm_is_enabled == TRUE) { 13372 sd_pm_exit(un); 13373 } 13374 13375 SD_NEXT_IODONE(index, un, bp); 13376 13377 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13378 } 13379 13380 13381 /* 13382 * Function: sd_core_iostart 13383 * 13384 * Description: Primary driver function for enqueuing buf(9S) structs from 13385 * the system and initiating IO to the target device 13386 * 13387 * Context: Kernel thread context. Can sleep. 13388 * 13389 * Assumptions: - The given xp->xb_blkno is absolute 13390 * (ie, relative to the start of the device). 13391 * - The IO is to be done using the native blocksize of 13392 * the device, as specified in un->un_tgt_blocksize. 13393 */ 13394 /* ARGSUSED */ 13395 static void 13396 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13397 { 13398 struct sd_xbuf *xp; 13399 13400 ASSERT(un != NULL); 13401 ASSERT(bp != NULL); 13402 ASSERT(!mutex_owned(SD_MUTEX(un))); 13403 ASSERT(bp->b_resid == 0); 13404 13405 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13406 13407 xp = SD_GET_XBUF(bp); 13408 ASSERT(xp != NULL); 13409 13410 mutex_enter(SD_MUTEX(un)); 13411 13412 /* 13413 * If we are currently in the failfast state, fail any new IO 13414 * that has B_FAILFAST set, then return. 13415 */ 13416 if ((bp->b_flags & B_FAILFAST) && 13417 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13418 mutex_exit(SD_MUTEX(un)); 13419 bioerror(bp, EIO); 13420 bp->b_resid = bp->b_bcount; 13421 SD_BEGIN_IODONE(index, un, bp); 13422 return; 13423 } 13424 13425 if (SD_IS_DIRECT_PRIORITY(xp)) { 13426 /* 13427 * Priority command -- transport it immediately. 13428 * 13429 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13430 * because all direct priority commands should be associated 13431 * with error recovery actions which we don't want to retry. 13432 */ 13433 sd_start_cmds(un, bp); 13434 } else { 13435 /* 13436 * Normal command -- add it to the wait queue, then start 13437 * transporting commands from the wait queue. 13438 */ 13439 sd_add_buf_to_waitq(un, bp); 13440 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13441 sd_start_cmds(un, NULL); 13442 } 13443 13444 mutex_exit(SD_MUTEX(un)); 13445 13446 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13447 } 13448 13449 13450 /* 13451 * Function: sd_init_cdb_limits 13452 * 13453 * Description: This is to handle scsi_pkt initialization differences 13454 * between the driver platforms. 13455 * 13456 * Legacy behaviors: 13457 * 13458 * If the block number or the sector count exceeds the 13459 * capabilities of a Group 0 command, shift over to a 13460 * Group 1 command. We don't blindly use Group 1 13461 * commands because a) some drives (CDC Wren IVs) get a 13462 * bit confused, and b) there is probably a fair amount 13463 * of speed difference for a target to receive and decode 13464 * a 10 byte command instead of a 6 byte command. 13465 * 13466 * The xfer time difference of 6 vs 10 byte CDBs is 13467 * still significant so this code is still worthwhile. 13468 * 10 byte CDBs are very inefficient with the fas HBA driver 13469 * and older disks. Each CDB byte took 1 usec with some 13470 * popular disks. 13471 * 13472 * Context: Must be called at attach time 13473 */ 13474 13475 static void 13476 sd_init_cdb_limits(struct sd_lun *un) 13477 { 13478 int hba_cdb_limit; 13479 13480 /* 13481 * Use CDB_GROUP1 commands for most devices except for 13482 * parallel SCSI fixed drives in which case we get better 13483 * performance using CDB_GROUP0 commands (where applicable). 13484 */ 13485 un->un_mincdb = SD_CDB_GROUP1; 13486 #if !defined(__fibre) 13487 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13488 !un->un_f_has_removable_media) { 13489 un->un_mincdb = SD_CDB_GROUP0; 13490 } 13491 #endif 13492 13493 /* 13494 * Try to read the max-cdb-length supported by HBA. 13495 */ 13496 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13497 if (0 >= un->un_max_hba_cdb) { 13498 un->un_max_hba_cdb = CDB_GROUP4; 13499 hba_cdb_limit = SD_CDB_GROUP4; 13500 } else if (0 < un->un_max_hba_cdb && 13501 un->un_max_hba_cdb < CDB_GROUP1) { 13502 hba_cdb_limit = SD_CDB_GROUP0; 13503 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13504 un->un_max_hba_cdb < CDB_GROUP5) { 13505 hba_cdb_limit = SD_CDB_GROUP1; 13506 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13507 un->un_max_hba_cdb < CDB_GROUP4) { 13508 hba_cdb_limit = SD_CDB_GROUP5; 13509 } else { 13510 hba_cdb_limit = SD_CDB_GROUP4; 13511 } 13512 13513 /* 13514 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13515 * commands for fixed disks unless we are building for a 32 bit 13516 * kernel. 13517 */ 13518 #ifdef _LP64 13519 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13520 min(hba_cdb_limit, SD_CDB_GROUP4); 13521 #else 13522 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13523 min(hba_cdb_limit, SD_CDB_GROUP1); 13524 #endif 13525 13526 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13527 ? sizeof (struct scsi_arq_status) : 1); 13528 un->un_cmd_timeout = (ushort_t)sd_io_time; 13529 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13530 } 13531 13532 13533 /* 13534 * Function: sd_initpkt_for_buf 13535 * 13536 * Description: Allocate and initialize for transport a scsi_pkt struct, 13537 * based upon the info specified in the given buf struct. 13538 * 13539 * Assumes the xb_blkno in the request is absolute (ie, 13540 * relative to the start of the device (NOT partition!). 13541 * Also assumes that the request is using the native block 13542 * size of the device (as returned by the READ CAPACITY 13543 * command). 13544 * 13545 * Return Code: SD_PKT_ALLOC_SUCCESS 13546 * SD_PKT_ALLOC_FAILURE 13547 * SD_PKT_ALLOC_FAILURE_NO_DMA 13548 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13549 * 13550 * Context: Kernel thread and may be called from software interrupt context 13551 * as part of a sdrunout callback. This function may not block or 13552 * call routines that block 13553 */ 13554 13555 static int 13556 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13557 { 13558 struct sd_xbuf *xp; 13559 struct scsi_pkt *pktp = NULL; 13560 struct sd_lun *un; 13561 size_t blockcount; 13562 daddr_t startblock; 13563 int rval; 13564 int cmd_flags; 13565 13566 ASSERT(bp != NULL); 13567 ASSERT(pktpp != NULL); 13568 xp = SD_GET_XBUF(bp); 13569 ASSERT(xp != NULL); 13570 un = SD_GET_UN(bp); 13571 ASSERT(un != NULL); 13572 ASSERT(mutex_owned(SD_MUTEX(un))); 13573 ASSERT(bp->b_resid == 0); 13574 13575 SD_TRACE(SD_LOG_IO_CORE, un, 13576 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13577 13578 mutex_exit(SD_MUTEX(un)); 13579 13580 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13581 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13582 /* 13583 * Already have a scsi_pkt -- just need DMA resources. 13584 * We must recompute the CDB in case the mapping returns 13585 * a nonzero pkt_resid. 13586 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13587 * that is being retried, the unmap/remap of the DMA resouces 13588 * will result in the entire transfer starting over again 13589 * from the very first block. 13590 */ 13591 ASSERT(xp->xb_pktp != NULL); 13592 pktp = xp->xb_pktp; 13593 } else { 13594 pktp = NULL; 13595 } 13596 #endif /* __i386 || __amd64 */ 13597 13598 startblock = xp->xb_blkno; /* Absolute block num. */ 13599 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13600 13601 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13602 13603 /* 13604 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13605 * call scsi_init_pkt, and build the CDB. 13606 */ 13607 rval = sd_setup_rw_pkt(un, &pktp, bp, 13608 cmd_flags, sdrunout, (caddr_t)un, 13609 startblock, blockcount); 13610 13611 if (rval == 0) { 13612 /* 13613 * Success. 13614 * 13615 * If partial DMA is being used and required for this transfer. 13616 * set it up here. 13617 */ 13618 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13619 (pktp->pkt_resid != 0)) { 13620 13621 /* 13622 * Save the CDB length and pkt_resid for the 13623 * next xfer 13624 */ 13625 xp->xb_dma_resid = pktp->pkt_resid; 13626 13627 /* rezero resid */ 13628 pktp->pkt_resid = 0; 13629 13630 } else { 13631 xp->xb_dma_resid = 0; 13632 } 13633 13634 pktp->pkt_flags = un->un_tagflags; 13635 pktp->pkt_time = un->un_cmd_timeout; 13636 pktp->pkt_comp = sdintr; 13637 13638 pktp->pkt_private = bp; 13639 *pktpp = pktp; 13640 13641 SD_TRACE(SD_LOG_IO_CORE, un, 13642 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13643 13644 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13645 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13646 #endif 13647 13648 mutex_enter(SD_MUTEX(un)); 13649 return (SD_PKT_ALLOC_SUCCESS); 13650 13651 } 13652 13653 /* 13654 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13655 * from sd_setup_rw_pkt. 13656 */ 13657 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13658 13659 if (rval == SD_PKT_ALLOC_FAILURE) { 13660 *pktpp = NULL; 13661 /* 13662 * Set the driver state to RWAIT to indicate the driver 13663 * is waiting on resource allocations. The driver will not 13664 * suspend, pm_suspend, or detatch while the state is RWAIT. 13665 */ 13666 mutex_enter(SD_MUTEX(un)); 13667 New_state(un, SD_STATE_RWAIT); 13668 13669 SD_ERROR(SD_LOG_IO_CORE, un, 13670 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13671 13672 if ((bp->b_flags & B_ERROR) != 0) { 13673 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13674 } 13675 return (SD_PKT_ALLOC_FAILURE); 13676 } else { 13677 /* 13678 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13679 * 13680 * This should never happen. Maybe someone messed with the 13681 * kernel's minphys? 13682 */ 13683 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13684 "Request rejected: too large for CDB: " 13685 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13686 SD_ERROR(SD_LOG_IO_CORE, un, 13687 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13688 mutex_enter(SD_MUTEX(un)); 13689 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13690 13691 } 13692 } 13693 13694 13695 /* 13696 * Function: sd_destroypkt_for_buf 13697 * 13698 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13699 * 13700 * Context: Kernel thread or interrupt context 13701 */ 13702 13703 static void 13704 sd_destroypkt_for_buf(struct buf *bp) 13705 { 13706 ASSERT(bp != NULL); 13707 ASSERT(SD_GET_UN(bp) != NULL); 13708 13709 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13710 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13711 13712 ASSERT(SD_GET_PKTP(bp) != NULL); 13713 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13714 13715 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13716 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13717 } 13718 13719 /* 13720 * Function: sd_setup_rw_pkt 13721 * 13722 * Description: Determines appropriate CDB group for the requested LBA 13723 * and transfer length, calls scsi_init_pkt, and builds 13724 * the CDB. Do not use for partial DMA transfers except 13725 * for the initial transfer since the CDB size must 13726 * remain constant. 13727 * 13728 * Context: Kernel thread and may be called from software interrupt 13729 * context as part of a sdrunout callback. This function may not 13730 * block or call routines that block 13731 */ 13732 13733 13734 int 13735 sd_setup_rw_pkt(struct sd_lun *un, 13736 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13737 int (*callback)(caddr_t), caddr_t callback_arg, 13738 diskaddr_t lba, uint32_t blockcount) 13739 { 13740 struct scsi_pkt *return_pktp; 13741 union scsi_cdb *cdbp; 13742 struct sd_cdbinfo *cp = NULL; 13743 int i; 13744 13745 /* 13746 * See which size CDB to use, based upon the request. 13747 */ 13748 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13749 13750 /* 13751 * Check lba and block count against sd_cdbtab limits. 13752 * In the partial DMA case, we have to use the same size 13753 * CDB for all the transfers. Check lba + blockcount 13754 * against the max LBA so we know that segment of the 13755 * transfer can use the CDB we select. 13756 */ 13757 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13758 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13759 13760 /* 13761 * The command will fit into the CDB type 13762 * specified by sd_cdbtab[i]. 13763 */ 13764 cp = sd_cdbtab + i; 13765 13766 /* 13767 * Call scsi_init_pkt so we can fill in the 13768 * CDB. 13769 */ 13770 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13771 bp, cp->sc_grpcode, un->un_status_len, 0, 13772 flags, callback, callback_arg); 13773 13774 if (return_pktp != NULL) { 13775 13776 /* 13777 * Return new value of pkt 13778 */ 13779 *pktpp = return_pktp; 13780 13781 /* 13782 * To be safe, zero the CDB insuring there is 13783 * no leftover data from a previous command. 13784 */ 13785 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13786 13787 /* 13788 * Handle partial DMA mapping 13789 */ 13790 if (return_pktp->pkt_resid != 0) { 13791 13792 /* 13793 * Not going to xfer as many blocks as 13794 * originally expected 13795 */ 13796 blockcount -= 13797 SD_BYTES2TGTBLOCKS(un, 13798 return_pktp->pkt_resid); 13799 } 13800 13801 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13802 13803 /* 13804 * Set command byte based on the CDB 13805 * type we matched. 13806 */ 13807 cdbp->scc_cmd = cp->sc_grpmask | 13808 ((bp->b_flags & B_READ) ? 13809 SCMD_READ : SCMD_WRITE); 13810 13811 SD_FILL_SCSI1_LUN(un, return_pktp); 13812 13813 /* 13814 * Fill in LBA and length 13815 */ 13816 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13817 (cp->sc_grpcode == CDB_GROUP4) || 13818 (cp->sc_grpcode == CDB_GROUP0) || 13819 (cp->sc_grpcode == CDB_GROUP5)); 13820 13821 if (cp->sc_grpcode == CDB_GROUP1) { 13822 FORMG1ADDR(cdbp, lba); 13823 FORMG1COUNT(cdbp, blockcount); 13824 return (0); 13825 } else if (cp->sc_grpcode == CDB_GROUP4) { 13826 FORMG4LONGADDR(cdbp, lba); 13827 FORMG4COUNT(cdbp, blockcount); 13828 return (0); 13829 } else if (cp->sc_grpcode == CDB_GROUP0) { 13830 FORMG0ADDR(cdbp, lba); 13831 FORMG0COUNT(cdbp, blockcount); 13832 return (0); 13833 } else if (cp->sc_grpcode == CDB_GROUP5) { 13834 FORMG5ADDR(cdbp, lba); 13835 FORMG5COUNT(cdbp, blockcount); 13836 return (0); 13837 } 13838 13839 /* 13840 * It should be impossible to not match one 13841 * of the CDB types above, so we should never 13842 * reach this point. Set the CDB command byte 13843 * to test-unit-ready to avoid writing 13844 * to somewhere we don't intend. 13845 */ 13846 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13847 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13848 } else { 13849 /* 13850 * Couldn't get scsi_pkt 13851 */ 13852 return (SD_PKT_ALLOC_FAILURE); 13853 } 13854 } 13855 } 13856 13857 /* 13858 * None of the available CDB types were suitable. This really 13859 * should never happen: on a 64 bit system we support 13860 * READ16/WRITE16 which will hold an entire 64 bit disk address 13861 * and on a 32 bit system we will refuse to bind to a device 13862 * larger than 2TB so addresses will never be larger than 32 bits. 13863 */ 13864 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13865 } 13866 13867 /* 13868 * Function: sd_setup_next_rw_pkt 13869 * 13870 * Description: Setup packet for partial DMA transfers, except for the 13871 * initial transfer. sd_setup_rw_pkt should be used for 13872 * the initial transfer. 13873 * 13874 * Context: Kernel thread and may be called from interrupt context. 13875 */ 13876 13877 int 13878 sd_setup_next_rw_pkt(struct sd_lun *un, 13879 struct scsi_pkt *pktp, struct buf *bp, 13880 diskaddr_t lba, uint32_t blockcount) 13881 { 13882 uchar_t com; 13883 union scsi_cdb *cdbp; 13884 uchar_t cdb_group_id; 13885 13886 ASSERT(pktp != NULL); 13887 ASSERT(pktp->pkt_cdbp != NULL); 13888 13889 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13890 com = cdbp->scc_cmd; 13891 cdb_group_id = CDB_GROUPID(com); 13892 13893 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13894 (cdb_group_id == CDB_GROUPID_1) || 13895 (cdb_group_id == CDB_GROUPID_4) || 13896 (cdb_group_id == CDB_GROUPID_5)); 13897 13898 /* 13899 * Move pkt to the next portion of the xfer. 13900 * func is NULL_FUNC so we do not have to release 13901 * the disk mutex here. 13902 */ 13903 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13904 NULL_FUNC, NULL) == pktp) { 13905 /* Success. Handle partial DMA */ 13906 if (pktp->pkt_resid != 0) { 13907 blockcount -= 13908 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13909 } 13910 13911 cdbp->scc_cmd = com; 13912 SD_FILL_SCSI1_LUN(un, pktp); 13913 if (cdb_group_id == CDB_GROUPID_1) { 13914 FORMG1ADDR(cdbp, lba); 13915 FORMG1COUNT(cdbp, blockcount); 13916 return (0); 13917 } else if (cdb_group_id == CDB_GROUPID_4) { 13918 FORMG4LONGADDR(cdbp, lba); 13919 FORMG4COUNT(cdbp, blockcount); 13920 return (0); 13921 } else if (cdb_group_id == CDB_GROUPID_0) { 13922 FORMG0ADDR(cdbp, lba); 13923 FORMG0COUNT(cdbp, blockcount); 13924 return (0); 13925 } else if (cdb_group_id == CDB_GROUPID_5) { 13926 FORMG5ADDR(cdbp, lba); 13927 FORMG5COUNT(cdbp, blockcount); 13928 return (0); 13929 } 13930 13931 /* Unreachable */ 13932 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13933 } 13934 13935 /* 13936 * Error setting up next portion of cmd transfer. 13937 * Something is definitely very wrong and this 13938 * should not happen. 13939 */ 13940 return (SD_PKT_ALLOC_FAILURE); 13941 } 13942 13943 /* 13944 * Function: sd_initpkt_for_uscsi 13945 * 13946 * Description: Allocate and initialize for transport a scsi_pkt struct, 13947 * based upon the info specified in the given uscsi_cmd struct. 13948 * 13949 * Return Code: SD_PKT_ALLOC_SUCCESS 13950 * SD_PKT_ALLOC_FAILURE 13951 * SD_PKT_ALLOC_FAILURE_NO_DMA 13952 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13953 * 13954 * Context: Kernel thread and may be called from software interrupt context 13955 * as part of a sdrunout callback. This function may not block or 13956 * call routines that block 13957 */ 13958 13959 static int 13960 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13961 { 13962 struct uscsi_cmd *uscmd; 13963 struct sd_xbuf *xp; 13964 struct scsi_pkt *pktp; 13965 struct sd_lun *un; 13966 uint32_t flags = 0; 13967 13968 ASSERT(bp != NULL); 13969 ASSERT(pktpp != NULL); 13970 xp = SD_GET_XBUF(bp); 13971 ASSERT(xp != NULL); 13972 un = SD_GET_UN(bp); 13973 ASSERT(un != NULL); 13974 ASSERT(mutex_owned(SD_MUTEX(un))); 13975 13976 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13977 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13978 ASSERT(uscmd != NULL); 13979 13980 SD_TRACE(SD_LOG_IO_CORE, un, 13981 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13982 13983 /* 13984 * Allocate the scsi_pkt for the command. 13985 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13986 * during scsi_init_pkt time and will continue to use the 13987 * same path as long as the same scsi_pkt is used without 13988 * intervening scsi_dma_free(). Since uscsi command does 13989 * not call scsi_dmafree() before retry failed command, it 13990 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13991 * set such that scsi_vhci can use other available path for 13992 * retry. Besides, ucsci command does not allow DMA breakup, 13993 * so there is no need to set PKT_DMA_PARTIAL flag. 13994 */ 13995 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 13996 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13997 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13998 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 13999 - sizeof (struct scsi_extended_sense)), 0, 14000 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 14001 sdrunout, (caddr_t)un); 14002 } else { 14003 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14004 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14005 sizeof (struct scsi_arq_status), 0, 14006 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 14007 sdrunout, (caddr_t)un); 14008 } 14009 14010 if (pktp == NULL) { 14011 *pktpp = NULL; 14012 /* 14013 * Set the driver state to RWAIT to indicate the driver 14014 * is waiting on resource allocations. The driver will not 14015 * suspend, pm_suspend, or detatch while the state is RWAIT. 14016 */ 14017 New_state(un, SD_STATE_RWAIT); 14018 14019 SD_ERROR(SD_LOG_IO_CORE, un, 14020 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 14021 14022 if ((bp->b_flags & B_ERROR) != 0) { 14023 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 14024 } 14025 return (SD_PKT_ALLOC_FAILURE); 14026 } 14027 14028 /* 14029 * We do not do DMA breakup for USCSI commands, so return failure 14030 * here if all the needed DMA resources were not allocated. 14031 */ 14032 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 14033 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 14034 scsi_destroy_pkt(pktp); 14035 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 14036 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 14037 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 14038 } 14039 14040 /* Init the cdb from the given uscsi struct */ 14041 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 14042 uscmd->uscsi_cdb[0], 0, 0, 0); 14043 14044 SD_FILL_SCSI1_LUN(un, pktp); 14045 14046 /* 14047 * Set up the optional USCSI flags. See the uscsi (7I) man page 14048 * for listing of the supported flags. 14049 */ 14050 14051 if (uscmd->uscsi_flags & USCSI_SILENT) { 14052 flags |= FLAG_SILENT; 14053 } 14054 14055 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14056 flags |= FLAG_DIAGNOSE; 14057 } 14058 14059 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14060 flags |= FLAG_ISOLATE; 14061 } 14062 14063 if (un->un_f_is_fibre == FALSE) { 14064 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14065 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14066 } 14067 } 14068 14069 /* 14070 * Set the pkt flags here so we save time later. 14071 * Note: These flags are NOT in the uscsi man page!!! 14072 */ 14073 if (uscmd->uscsi_flags & USCSI_HEAD) { 14074 flags |= FLAG_HEAD; 14075 } 14076 14077 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14078 flags |= FLAG_NOINTR; 14079 } 14080 14081 /* 14082 * For tagged queueing, things get a bit complicated. 14083 * Check first for head of queue and last for ordered queue. 14084 * If neither head nor order, use the default driver tag flags. 14085 */ 14086 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14087 if (uscmd->uscsi_flags & USCSI_HTAG) { 14088 flags |= FLAG_HTAG; 14089 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14090 flags |= FLAG_OTAG; 14091 } else { 14092 flags |= un->un_tagflags & FLAG_TAGMASK; 14093 } 14094 } 14095 14096 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14097 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14098 } 14099 14100 pktp->pkt_flags = flags; 14101 14102 /* Transfer uscsi information to scsi_pkt */ 14103 (void) scsi_uscsi_pktinit(uscmd, pktp); 14104 14105 /* Copy the caller's CDB into the pkt... */ 14106 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14107 14108 if (uscmd->uscsi_timeout == 0) { 14109 pktp->pkt_time = un->un_uscsi_timeout; 14110 } else { 14111 pktp->pkt_time = uscmd->uscsi_timeout; 14112 } 14113 14114 /* need it later to identify USCSI request in sdintr */ 14115 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14116 14117 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14118 14119 pktp->pkt_private = bp; 14120 pktp->pkt_comp = sdintr; 14121 *pktpp = pktp; 14122 14123 SD_TRACE(SD_LOG_IO_CORE, un, 14124 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14125 14126 return (SD_PKT_ALLOC_SUCCESS); 14127 } 14128 14129 14130 /* 14131 * Function: sd_destroypkt_for_uscsi 14132 * 14133 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14134 * IOs.. Also saves relevant info into the associated uscsi_cmd 14135 * struct. 14136 * 14137 * Context: May be called under interrupt context 14138 */ 14139 14140 static void 14141 sd_destroypkt_for_uscsi(struct buf *bp) 14142 { 14143 struct uscsi_cmd *uscmd; 14144 struct sd_xbuf *xp; 14145 struct scsi_pkt *pktp; 14146 struct sd_lun *un; 14147 struct sd_uscsi_info *suip; 14148 14149 ASSERT(bp != NULL); 14150 xp = SD_GET_XBUF(bp); 14151 ASSERT(xp != NULL); 14152 un = SD_GET_UN(bp); 14153 ASSERT(un != NULL); 14154 ASSERT(!mutex_owned(SD_MUTEX(un))); 14155 pktp = SD_GET_PKTP(bp); 14156 ASSERT(pktp != NULL); 14157 14158 SD_TRACE(SD_LOG_IO_CORE, un, 14159 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14160 14161 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14162 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14163 ASSERT(uscmd != NULL); 14164 14165 /* Save the status and the residual into the uscsi_cmd struct */ 14166 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14167 uscmd->uscsi_resid = bp->b_resid; 14168 14169 /* Transfer scsi_pkt information to uscsi */ 14170 (void) scsi_uscsi_pktfini(pktp, uscmd); 14171 14172 /* 14173 * If enabled, copy any saved sense data into the area specified 14174 * by the uscsi command. 14175 */ 14176 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14177 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14178 /* 14179 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14180 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14181 */ 14182 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14183 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14184 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14185 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14186 MAX_SENSE_LENGTH); 14187 } else { 14188 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14189 SENSE_LENGTH); 14190 } 14191 } 14192 /* 14193 * The following assignments are for SCSI FMA. 14194 */ 14195 ASSERT(xp->xb_private != NULL); 14196 suip = (struct sd_uscsi_info *)xp->xb_private; 14197 suip->ui_pkt_reason = pktp->pkt_reason; 14198 suip->ui_pkt_state = pktp->pkt_state; 14199 suip->ui_pkt_statistics = pktp->pkt_statistics; 14200 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14201 14202 /* We are done with the scsi_pkt; free it now */ 14203 ASSERT(SD_GET_PKTP(bp) != NULL); 14204 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14205 14206 SD_TRACE(SD_LOG_IO_CORE, un, 14207 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14208 } 14209 14210 14211 /* 14212 * Function: sd_bioclone_alloc 14213 * 14214 * Description: Allocate a buf(9S) and init it as per the given buf 14215 * and the various arguments. The associated sd_xbuf 14216 * struct is (nearly) duplicated. The struct buf *bp 14217 * argument is saved in new_xp->xb_private. 14218 * 14219 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14220 * datalen - size of data area for the shadow bp 14221 * blkno - starting LBA 14222 * func - function pointer for b_iodone in the shadow buf. (May 14223 * be NULL if none.) 14224 * 14225 * Return Code: Pointer to allocates buf(9S) struct 14226 * 14227 * Context: Can sleep. 14228 */ 14229 14230 static struct buf * 14231 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14232 daddr_t blkno, int (*func)(struct buf *)) 14233 { 14234 struct sd_lun *un; 14235 struct sd_xbuf *xp; 14236 struct sd_xbuf *new_xp; 14237 struct buf *new_bp; 14238 14239 ASSERT(bp != NULL); 14240 xp = SD_GET_XBUF(bp); 14241 ASSERT(xp != NULL); 14242 un = SD_GET_UN(bp); 14243 ASSERT(un != NULL); 14244 ASSERT(!mutex_owned(SD_MUTEX(un))); 14245 14246 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14247 NULL, KM_SLEEP); 14248 14249 new_bp->b_lblkno = blkno; 14250 14251 /* 14252 * Allocate an xbuf for the shadow bp and copy the contents of the 14253 * original xbuf into it. 14254 */ 14255 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14256 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14257 14258 /* 14259 * The given bp is automatically saved in the xb_private member 14260 * of the new xbuf. Callers are allowed to depend on this. 14261 */ 14262 new_xp->xb_private = bp; 14263 14264 new_bp->b_private = new_xp; 14265 14266 return (new_bp); 14267 } 14268 14269 /* 14270 * Function: sd_shadow_buf_alloc 14271 * 14272 * Description: Allocate a buf(9S) and init it as per the given buf 14273 * and the various arguments. The associated sd_xbuf 14274 * struct is (nearly) duplicated. The struct buf *bp 14275 * argument is saved in new_xp->xb_private. 14276 * 14277 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14278 * datalen - size of data area for the shadow bp 14279 * bflags - B_READ or B_WRITE (pseudo flag) 14280 * blkno - starting LBA 14281 * func - function pointer for b_iodone in the shadow buf. (May 14282 * be NULL if none.) 14283 * 14284 * Return Code: Pointer to allocates buf(9S) struct 14285 * 14286 * Context: Can sleep. 14287 */ 14288 14289 static struct buf * 14290 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14291 daddr_t blkno, int (*func)(struct buf *)) 14292 { 14293 struct sd_lun *un; 14294 struct sd_xbuf *xp; 14295 struct sd_xbuf *new_xp; 14296 struct buf *new_bp; 14297 14298 ASSERT(bp != NULL); 14299 xp = SD_GET_XBUF(bp); 14300 ASSERT(xp != NULL); 14301 un = SD_GET_UN(bp); 14302 ASSERT(un != NULL); 14303 ASSERT(!mutex_owned(SD_MUTEX(un))); 14304 14305 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14306 bp_mapin(bp); 14307 } 14308 14309 bflags &= (B_READ | B_WRITE); 14310 #if defined(__i386) || defined(__amd64) 14311 new_bp = getrbuf(KM_SLEEP); 14312 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14313 new_bp->b_bcount = datalen; 14314 new_bp->b_flags = bflags | 14315 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14316 #else 14317 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14318 datalen, bflags, SLEEP_FUNC, NULL); 14319 #endif 14320 new_bp->av_forw = NULL; 14321 new_bp->av_back = NULL; 14322 new_bp->b_dev = bp->b_dev; 14323 new_bp->b_blkno = blkno; 14324 new_bp->b_iodone = func; 14325 new_bp->b_edev = bp->b_edev; 14326 new_bp->b_resid = 0; 14327 14328 /* We need to preserve the B_FAILFAST flag */ 14329 if (bp->b_flags & B_FAILFAST) { 14330 new_bp->b_flags |= B_FAILFAST; 14331 } 14332 14333 /* 14334 * Allocate an xbuf for the shadow bp and copy the contents of the 14335 * original xbuf into it. 14336 */ 14337 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14338 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14339 14340 /* Need later to copy data between the shadow buf & original buf! */ 14341 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14342 14343 /* 14344 * The given bp is automatically saved in the xb_private member 14345 * of the new xbuf. Callers are allowed to depend on this. 14346 */ 14347 new_xp->xb_private = bp; 14348 14349 new_bp->b_private = new_xp; 14350 14351 return (new_bp); 14352 } 14353 14354 /* 14355 * Function: sd_bioclone_free 14356 * 14357 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14358 * in the larger than partition operation. 14359 * 14360 * Context: May be called under interrupt context 14361 */ 14362 14363 static void 14364 sd_bioclone_free(struct buf *bp) 14365 { 14366 struct sd_xbuf *xp; 14367 14368 ASSERT(bp != NULL); 14369 xp = SD_GET_XBUF(bp); 14370 ASSERT(xp != NULL); 14371 14372 /* 14373 * Call bp_mapout() before freeing the buf, in case a lower 14374 * layer or HBA had done a bp_mapin(). we must do this here 14375 * as we are the "originator" of the shadow buf. 14376 */ 14377 bp_mapout(bp); 14378 14379 /* 14380 * Null out b_iodone before freeing the bp, to ensure that the driver 14381 * never gets confused by a stale value in this field. (Just a little 14382 * extra defensiveness here.) 14383 */ 14384 bp->b_iodone = NULL; 14385 14386 freerbuf(bp); 14387 14388 kmem_free(xp, sizeof (struct sd_xbuf)); 14389 } 14390 14391 /* 14392 * Function: sd_shadow_buf_free 14393 * 14394 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14395 * 14396 * Context: May be called under interrupt context 14397 */ 14398 14399 static void 14400 sd_shadow_buf_free(struct buf *bp) 14401 { 14402 struct sd_xbuf *xp; 14403 14404 ASSERT(bp != NULL); 14405 xp = SD_GET_XBUF(bp); 14406 ASSERT(xp != NULL); 14407 14408 #if defined(__sparc) 14409 /* 14410 * Call bp_mapout() before freeing the buf, in case a lower 14411 * layer or HBA had done a bp_mapin(). we must do this here 14412 * as we are the "originator" of the shadow buf. 14413 */ 14414 bp_mapout(bp); 14415 #endif 14416 14417 /* 14418 * Null out b_iodone before freeing the bp, to ensure that the driver 14419 * never gets confused by a stale value in this field. (Just a little 14420 * extra defensiveness here.) 14421 */ 14422 bp->b_iodone = NULL; 14423 14424 #if defined(__i386) || defined(__amd64) 14425 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14426 freerbuf(bp); 14427 #else 14428 scsi_free_consistent_buf(bp); 14429 #endif 14430 14431 kmem_free(xp, sizeof (struct sd_xbuf)); 14432 } 14433 14434 14435 /* 14436 * Function: sd_print_transport_rejected_message 14437 * 14438 * Description: This implements the ludicrously complex rules for printing 14439 * a "transport rejected" message. This is to address the 14440 * specific problem of having a flood of this error message 14441 * produced when a failover occurs. 14442 * 14443 * Context: Any. 14444 */ 14445 14446 static void 14447 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14448 int code) 14449 { 14450 ASSERT(un != NULL); 14451 ASSERT(mutex_owned(SD_MUTEX(un))); 14452 ASSERT(xp != NULL); 14453 14454 /* 14455 * Print the "transport rejected" message under the following 14456 * conditions: 14457 * 14458 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14459 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14460 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14461 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14462 * scsi_transport(9F) (which indicates that the target might have 14463 * gone off-line). This uses the un->un_tran_fatal_count 14464 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14465 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14466 * from scsi_transport(). 14467 * 14468 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14469 * the preceeding cases in order for the message to be printed. 14470 */ 14471 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14472 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14473 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14474 (code != TRAN_FATAL_ERROR) || 14475 (un->un_tran_fatal_count == 1)) { 14476 switch (code) { 14477 case TRAN_BADPKT: 14478 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14479 "transport rejected bad packet\n"); 14480 break; 14481 case TRAN_FATAL_ERROR: 14482 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14483 "transport rejected fatal error\n"); 14484 break; 14485 default: 14486 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14487 "transport rejected (%d)\n", code); 14488 break; 14489 } 14490 } 14491 } 14492 } 14493 14494 14495 /* 14496 * Function: sd_add_buf_to_waitq 14497 * 14498 * Description: Add the given buf(9S) struct to the wait queue for the 14499 * instance. If sorting is enabled, then the buf is added 14500 * to the queue via an elevator sort algorithm (a la 14501 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14502 * If sorting is not enabled, then the buf is just added 14503 * to the end of the wait queue. 14504 * 14505 * Return Code: void 14506 * 14507 * Context: Does not sleep/block, therefore technically can be called 14508 * from any context. However if sorting is enabled then the 14509 * execution time is indeterminate, and may take long if 14510 * the wait queue grows large. 14511 */ 14512 14513 static void 14514 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14515 { 14516 struct buf *ap; 14517 14518 ASSERT(bp != NULL); 14519 ASSERT(un != NULL); 14520 ASSERT(mutex_owned(SD_MUTEX(un))); 14521 14522 /* If the queue is empty, add the buf as the only entry & return. */ 14523 if (un->un_waitq_headp == NULL) { 14524 ASSERT(un->un_waitq_tailp == NULL); 14525 un->un_waitq_headp = un->un_waitq_tailp = bp; 14526 bp->av_forw = NULL; 14527 return; 14528 } 14529 14530 ASSERT(un->un_waitq_tailp != NULL); 14531 14532 /* 14533 * If sorting is disabled, just add the buf to the tail end of 14534 * the wait queue and return. 14535 */ 14536 if (un->un_f_disksort_disabled) { 14537 un->un_waitq_tailp->av_forw = bp; 14538 un->un_waitq_tailp = bp; 14539 bp->av_forw = NULL; 14540 return; 14541 } 14542 14543 /* 14544 * Sort thru the list of requests currently on the wait queue 14545 * and add the new buf request at the appropriate position. 14546 * 14547 * The un->un_waitq_headp is an activity chain pointer on which 14548 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14549 * first queue holds those requests which are positioned after 14550 * the current SD_GET_BLKNO() (in the first request); the second holds 14551 * requests which came in after their SD_GET_BLKNO() number was passed. 14552 * Thus we implement a one way scan, retracting after reaching 14553 * the end of the drive to the first request on the second 14554 * queue, at which time it becomes the first queue. 14555 * A one-way scan is natural because of the way UNIX read-ahead 14556 * blocks are allocated. 14557 * 14558 * If we lie after the first request, then we must locate the 14559 * second request list and add ourselves to it. 14560 */ 14561 ap = un->un_waitq_headp; 14562 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14563 while (ap->av_forw != NULL) { 14564 /* 14565 * Look for an "inversion" in the (normally 14566 * ascending) block numbers. This indicates 14567 * the start of the second request list. 14568 */ 14569 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14570 /* 14571 * Search the second request list for the 14572 * first request at a larger block number. 14573 * We go before that; however if there is 14574 * no such request, we go at the end. 14575 */ 14576 do { 14577 if (SD_GET_BLKNO(bp) < 14578 SD_GET_BLKNO(ap->av_forw)) { 14579 goto insert; 14580 } 14581 ap = ap->av_forw; 14582 } while (ap->av_forw != NULL); 14583 goto insert; /* after last */ 14584 } 14585 ap = ap->av_forw; 14586 } 14587 14588 /* 14589 * No inversions... we will go after the last, and 14590 * be the first request in the second request list. 14591 */ 14592 goto insert; 14593 } 14594 14595 /* 14596 * Request is at/after the current request... 14597 * sort in the first request list. 14598 */ 14599 while (ap->av_forw != NULL) { 14600 /* 14601 * We want to go after the current request (1) if 14602 * there is an inversion after it (i.e. it is the end 14603 * of the first request list), or (2) if the next 14604 * request is a larger block no. than our request. 14605 */ 14606 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14607 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14608 goto insert; 14609 } 14610 ap = ap->av_forw; 14611 } 14612 14613 /* 14614 * Neither a second list nor a larger request, therefore 14615 * we go at the end of the first list (which is the same 14616 * as the end of the whole schebang). 14617 */ 14618 insert: 14619 bp->av_forw = ap->av_forw; 14620 ap->av_forw = bp; 14621 14622 /* 14623 * If we inserted onto the tail end of the waitq, make sure the 14624 * tail pointer is updated. 14625 */ 14626 if (ap == un->un_waitq_tailp) { 14627 un->un_waitq_tailp = bp; 14628 } 14629 } 14630 14631 14632 /* 14633 * Function: sd_start_cmds 14634 * 14635 * Description: Remove and transport cmds from the driver queues. 14636 * 14637 * Arguments: un - pointer to the unit (soft state) struct for the target. 14638 * 14639 * immed_bp - ptr to a buf to be transported immediately. Only 14640 * the immed_bp is transported; bufs on the waitq are not 14641 * processed and the un_retry_bp is not checked. If immed_bp is 14642 * NULL, then normal queue processing is performed. 14643 * 14644 * Context: May be called from kernel thread context, interrupt context, 14645 * or runout callback context. This function may not block or 14646 * call routines that block. 14647 */ 14648 14649 static void 14650 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14651 { 14652 struct sd_xbuf *xp; 14653 struct buf *bp; 14654 void (*statp)(kstat_io_t *); 14655 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14656 void (*saved_statp)(kstat_io_t *); 14657 #endif 14658 int rval; 14659 struct sd_fm_internal *sfip = NULL; 14660 14661 ASSERT(un != NULL); 14662 ASSERT(mutex_owned(SD_MUTEX(un))); 14663 ASSERT(un->un_ncmds_in_transport >= 0); 14664 ASSERT(un->un_throttle >= 0); 14665 14666 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14667 14668 do { 14669 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14670 saved_statp = NULL; 14671 #endif 14672 14673 /* 14674 * If we are syncing or dumping, fail the command to 14675 * avoid recursively calling back into scsi_transport(). 14676 * The dump I/O itself uses a separate code path so this 14677 * only prevents non-dump I/O from being sent while dumping. 14678 * File system sync takes place before dumping begins. 14679 * During panic, filesystem I/O is allowed provided 14680 * un_in_callback is <= 1. This is to prevent recursion 14681 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14682 * sd_start_cmds and so on. See panic.c for more information 14683 * about the states the system can be in during panic. 14684 */ 14685 if ((un->un_state == SD_STATE_DUMPING) || 14686 (ddi_in_panic() && (un->un_in_callback > 1))) { 14687 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14688 "sd_start_cmds: panicking\n"); 14689 goto exit; 14690 } 14691 14692 if ((bp = immed_bp) != NULL) { 14693 /* 14694 * We have a bp that must be transported immediately. 14695 * It's OK to transport the immed_bp here without doing 14696 * the throttle limit check because the immed_bp is 14697 * always used in a retry/recovery case. This means 14698 * that we know we are not at the throttle limit by 14699 * virtue of the fact that to get here we must have 14700 * already gotten a command back via sdintr(). This also 14701 * relies on (1) the command on un_retry_bp preventing 14702 * further commands from the waitq from being issued; 14703 * and (2) the code in sd_retry_command checking the 14704 * throttle limit before issuing a delayed or immediate 14705 * retry. This holds even if the throttle limit is 14706 * currently ratcheted down from its maximum value. 14707 */ 14708 statp = kstat_runq_enter; 14709 if (bp == un->un_retry_bp) { 14710 ASSERT((un->un_retry_statp == NULL) || 14711 (un->un_retry_statp == kstat_waitq_enter) || 14712 (un->un_retry_statp == 14713 kstat_runq_back_to_waitq)); 14714 /* 14715 * If the waitq kstat was incremented when 14716 * sd_set_retry_bp() queued this bp for a retry, 14717 * then we must set up statp so that the waitq 14718 * count will get decremented correctly below. 14719 * Also we must clear un->un_retry_statp to 14720 * ensure that we do not act on a stale value 14721 * in this field. 14722 */ 14723 if ((un->un_retry_statp == kstat_waitq_enter) || 14724 (un->un_retry_statp == 14725 kstat_runq_back_to_waitq)) { 14726 statp = kstat_waitq_to_runq; 14727 } 14728 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14729 saved_statp = un->un_retry_statp; 14730 #endif 14731 un->un_retry_statp = NULL; 14732 14733 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14734 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14735 "un_throttle:%d un_ncmds_in_transport:%d\n", 14736 un, un->un_retry_bp, un->un_throttle, 14737 un->un_ncmds_in_transport); 14738 } else { 14739 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14740 "processing priority bp:0x%p\n", bp); 14741 } 14742 14743 } else if ((bp = un->un_waitq_headp) != NULL) { 14744 /* 14745 * A command on the waitq is ready to go, but do not 14746 * send it if: 14747 * 14748 * (1) the throttle limit has been reached, or 14749 * (2) a retry is pending, or 14750 * (3) a START_STOP_UNIT callback pending, or 14751 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14752 * command is pending. 14753 * 14754 * For all of these conditions, IO processing will 14755 * restart after the condition is cleared. 14756 */ 14757 if (un->un_ncmds_in_transport >= un->un_throttle) { 14758 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14759 "sd_start_cmds: exiting, " 14760 "throttle limit reached!\n"); 14761 goto exit; 14762 } 14763 if (un->un_retry_bp != NULL) { 14764 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14765 "sd_start_cmds: exiting, retry pending!\n"); 14766 goto exit; 14767 } 14768 if (un->un_startstop_timeid != NULL) { 14769 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14770 "sd_start_cmds: exiting, " 14771 "START_STOP pending!\n"); 14772 goto exit; 14773 } 14774 if (un->un_direct_priority_timeid != NULL) { 14775 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14776 "sd_start_cmds: exiting, " 14777 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14778 goto exit; 14779 } 14780 14781 /* Dequeue the command */ 14782 un->un_waitq_headp = bp->av_forw; 14783 if (un->un_waitq_headp == NULL) { 14784 un->un_waitq_tailp = NULL; 14785 } 14786 bp->av_forw = NULL; 14787 statp = kstat_waitq_to_runq; 14788 SD_TRACE(SD_LOG_IO_CORE, un, 14789 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14790 14791 } else { 14792 /* No work to do so bail out now */ 14793 SD_TRACE(SD_LOG_IO_CORE, un, 14794 "sd_start_cmds: no more work, exiting!\n"); 14795 goto exit; 14796 } 14797 14798 /* 14799 * Reset the state to normal. This is the mechanism by which 14800 * the state transitions from either SD_STATE_RWAIT or 14801 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14802 * If state is SD_STATE_PM_CHANGING then this command is 14803 * part of the device power control and the state must 14804 * not be put back to normal. Doing so would would 14805 * allow new commands to proceed when they shouldn't, 14806 * the device may be going off. 14807 */ 14808 if ((un->un_state != SD_STATE_SUSPENDED) && 14809 (un->un_state != SD_STATE_PM_CHANGING)) { 14810 New_state(un, SD_STATE_NORMAL); 14811 } 14812 14813 xp = SD_GET_XBUF(bp); 14814 ASSERT(xp != NULL); 14815 14816 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14817 /* 14818 * Allocate the scsi_pkt if we need one, or attach DMA 14819 * resources if we have a scsi_pkt that needs them. The 14820 * latter should only occur for commands that are being 14821 * retried. 14822 */ 14823 if ((xp->xb_pktp == NULL) || 14824 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14825 #else 14826 if (xp->xb_pktp == NULL) { 14827 #endif 14828 /* 14829 * There is no scsi_pkt allocated for this buf. Call 14830 * the initpkt function to allocate & init one. 14831 * 14832 * The scsi_init_pkt runout callback functionality is 14833 * implemented as follows: 14834 * 14835 * 1) The initpkt function always calls 14836 * scsi_init_pkt(9F) with sdrunout specified as the 14837 * callback routine. 14838 * 2) A successful packet allocation is initialized and 14839 * the I/O is transported. 14840 * 3) The I/O associated with an allocation resource 14841 * failure is left on its queue to be retried via 14842 * runout or the next I/O. 14843 * 4) The I/O associated with a DMA error is removed 14844 * from the queue and failed with EIO. Processing of 14845 * the transport queues is also halted to be 14846 * restarted via runout or the next I/O. 14847 * 5) The I/O associated with a CDB size or packet 14848 * size error is removed from the queue and failed 14849 * with EIO. Processing of the transport queues is 14850 * continued. 14851 * 14852 * Note: there is no interface for canceling a runout 14853 * callback. To prevent the driver from detaching or 14854 * suspending while a runout is pending the driver 14855 * state is set to SD_STATE_RWAIT 14856 * 14857 * Note: using the scsi_init_pkt callback facility can 14858 * result in an I/O request persisting at the head of 14859 * the list which cannot be satisfied even after 14860 * multiple retries. In the future the driver may 14861 * implement some kind of maximum runout count before 14862 * failing an I/O. 14863 * 14864 * Note: the use of funcp below may seem superfluous, 14865 * but it helps warlock figure out the correct 14866 * initpkt function calls (see [s]sd.wlcmd). 14867 */ 14868 struct scsi_pkt *pktp; 14869 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14870 14871 ASSERT(bp != un->un_rqs_bp); 14872 14873 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14874 switch ((*funcp)(bp, &pktp)) { 14875 case SD_PKT_ALLOC_SUCCESS: 14876 xp->xb_pktp = pktp; 14877 SD_TRACE(SD_LOG_IO_CORE, un, 14878 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14879 pktp); 14880 goto got_pkt; 14881 14882 case SD_PKT_ALLOC_FAILURE: 14883 /* 14884 * Temporary (hopefully) resource depletion. 14885 * Since retries and RQS commands always have a 14886 * scsi_pkt allocated, these cases should never 14887 * get here. So the only cases this needs to 14888 * handle is a bp from the waitq (which we put 14889 * back onto the waitq for sdrunout), or a bp 14890 * sent as an immed_bp (which we just fail). 14891 */ 14892 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14893 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14894 14895 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14896 14897 if (bp == immed_bp) { 14898 /* 14899 * If SD_XB_DMA_FREED is clear, then 14900 * this is a failure to allocate a 14901 * scsi_pkt, and we must fail the 14902 * command. 14903 */ 14904 if ((xp->xb_pkt_flags & 14905 SD_XB_DMA_FREED) == 0) { 14906 break; 14907 } 14908 14909 /* 14910 * If this immediate command is NOT our 14911 * un_retry_bp, then we must fail it. 14912 */ 14913 if (bp != un->un_retry_bp) { 14914 break; 14915 } 14916 14917 /* 14918 * We get here if this cmd is our 14919 * un_retry_bp that was DMAFREED, but 14920 * scsi_init_pkt() failed to reallocate 14921 * DMA resources when we attempted to 14922 * retry it. This can happen when an 14923 * mpxio failover is in progress, but 14924 * we don't want to just fail the 14925 * command in this case. 14926 * 14927 * Use timeout(9F) to restart it after 14928 * a 100ms delay. We don't want to 14929 * let sdrunout() restart it, because 14930 * sdrunout() is just supposed to start 14931 * commands that are sitting on the 14932 * wait queue. The un_retry_bp stays 14933 * set until the command completes, but 14934 * sdrunout can be called many times 14935 * before that happens. Since sdrunout 14936 * cannot tell if the un_retry_bp is 14937 * already in the transport, it could 14938 * end up calling scsi_transport() for 14939 * the un_retry_bp multiple times. 14940 * 14941 * Also: don't schedule the callback 14942 * if some other callback is already 14943 * pending. 14944 */ 14945 if (un->un_retry_statp == NULL) { 14946 /* 14947 * restore the kstat pointer to 14948 * keep kstat counts coherent 14949 * when we do retry the command. 14950 */ 14951 un->un_retry_statp = 14952 saved_statp; 14953 } 14954 14955 if ((un->un_startstop_timeid == NULL) && 14956 (un->un_retry_timeid == NULL) && 14957 (un->un_direct_priority_timeid == 14958 NULL)) { 14959 14960 un->un_retry_timeid = 14961 timeout( 14962 sd_start_retry_command, 14963 un, SD_RESTART_TIMEOUT); 14964 } 14965 goto exit; 14966 } 14967 14968 #else 14969 if (bp == immed_bp) { 14970 break; /* Just fail the command */ 14971 } 14972 #endif 14973 14974 /* Add the buf back to the head of the waitq */ 14975 bp->av_forw = un->un_waitq_headp; 14976 un->un_waitq_headp = bp; 14977 if (un->un_waitq_tailp == NULL) { 14978 un->un_waitq_tailp = bp; 14979 } 14980 goto exit; 14981 14982 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14983 /* 14984 * HBA DMA resource failure. Fail the command 14985 * and continue processing of the queues. 14986 */ 14987 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14988 "sd_start_cmds: " 14989 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14990 break; 14991 14992 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14993 /* 14994 * Note:x86: Partial DMA mapping not supported 14995 * for USCSI commands, and all the needed DMA 14996 * resources were not allocated. 14997 */ 14998 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14999 "sd_start_cmds: " 15000 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 15001 break; 15002 15003 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 15004 /* 15005 * Note:x86: Request cannot fit into CDB based 15006 * on lba and len. 15007 */ 15008 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15009 "sd_start_cmds: " 15010 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 15011 break; 15012 15013 default: 15014 /* Should NEVER get here! */ 15015 panic("scsi_initpkt error"); 15016 /*NOTREACHED*/ 15017 } 15018 15019 /* 15020 * Fatal error in allocating a scsi_pkt for this buf. 15021 * Update kstats & return the buf with an error code. 15022 * We must use sd_return_failed_command_no_restart() to 15023 * avoid a recursive call back into sd_start_cmds(). 15024 * However this also means that we must keep processing 15025 * the waitq here in order to avoid stalling. 15026 */ 15027 if (statp == kstat_waitq_to_runq) { 15028 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 15029 } 15030 sd_return_failed_command_no_restart(un, bp, EIO); 15031 if (bp == immed_bp) { 15032 /* immed_bp is gone by now, so clear this */ 15033 immed_bp = NULL; 15034 } 15035 continue; 15036 } 15037 got_pkt: 15038 if (bp == immed_bp) { 15039 /* goto the head of the class.... */ 15040 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15041 } 15042 15043 un->un_ncmds_in_transport++; 15044 SD_UPDATE_KSTATS(un, statp, bp); 15045 15046 /* 15047 * Call scsi_transport() to send the command to the target. 15048 * According to SCSA architecture, we must drop the mutex here 15049 * before calling scsi_transport() in order to avoid deadlock. 15050 * Note that the scsi_pkt's completion routine can be executed 15051 * (from interrupt context) even before the call to 15052 * scsi_transport() returns. 15053 */ 15054 SD_TRACE(SD_LOG_IO_CORE, un, 15055 "sd_start_cmds: calling scsi_transport()\n"); 15056 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15057 15058 mutex_exit(SD_MUTEX(un)); 15059 rval = scsi_transport(xp->xb_pktp); 15060 mutex_enter(SD_MUTEX(un)); 15061 15062 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15063 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15064 15065 switch (rval) { 15066 case TRAN_ACCEPT: 15067 /* Clear this with every pkt accepted by the HBA */ 15068 un->un_tran_fatal_count = 0; 15069 break; /* Success; try the next cmd (if any) */ 15070 15071 case TRAN_BUSY: 15072 un->un_ncmds_in_transport--; 15073 ASSERT(un->un_ncmds_in_transport >= 0); 15074 15075 /* 15076 * Don't retry request sense, the sense data 15077 * is lost when another request is sent. 15078 * Free up the rqs buf and retry 15079 * the original failed cmd. Update kstat. 15080 */ 15081 if (bp == un->un_rqs_bp) { 15082 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15083 bp = sd_mark_rqs_idle(un, xp); 15084 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15085 NULL, NULL, EIO, un->un_busy_timeout / 500, 15086 kstat_waitq_enter); 15087 goto exit; 15088 } 15089 15090 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15091 /* 15092 * Free the DMA resources for the scsi_pkt. This will 15093 * allow mpxio to select another path the next time 15094 * we call scsi_transport() with this scsi_pkt. 15095 * See sdintr() for the rationalization behind this. 15096 */ 15097 if ((un->un_f_is_fibre == TRUE) && 15098 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15099 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15100 scsi_dmafree(xp->xb_pktp); 15101 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15102 } 15103 #endif 15104 15105 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15106 /* 15107 * Commands that are SD_PATH_DIRECT_PRIORITY 15108 * are for error recovery situations. These do 15109 * not use the normal command waitq, so if they 15110 * get a TRAN_BUSY we cannot put them back onto 15111 * the waitq for later retry. One possible 15112 * problem is that there could already be some 15113 * other command on un_retry_bp that is waiting 15114 * for this one to complete, so we would be 15115 * deadlocked if we put this command back onto 15116 * the waitq for later retry (since un_retry_bp 15117 * must complete before the driver gets back to 15118 * commands on the waitq). 15119 * 15120 * To avoid deadlock we must schedule a callback 15121 * that will restart this command after a set 15122 * interval. This should keep retrying for as 15123 * long as the underlying transport keeps 15124 * returning TRAN_BUSY (just like for other 15125 * commands). Use the same timeout interval as 15126 * for the ordinary TRAN_BUSY retry. 15127 */ 15128 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15129 "sd_start_cmds: scsi_transport() returned " 15130 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15131 15132 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15133 un->un_direct_priority_timeid = 15134 timeout(sd_start_direct_priority_command, 15135 bp, un->un_busy_timeout / 500); 15136 15137 goto exit; 15138 } 15139 15140 /* 15141 * For TRAN_BUSY, we want to reduce the throttle value, 15142 * unless we are retrying a command. 15143 */ 15144 if (bp != un->un_retry_bp) { 15145 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15146 } 15147 15148 /* 15149 * Set up the bp to be tried again 10 ms later. 15150 * Note:x86: Is there a timeout value in the sd_lun 15151 * for this condition? 15152 */ 15153 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15154 kstat_runq_back_to_waitq); 15155 goto exit; 15156 15157 case TRAN_FATAL_ERROR: 15158 un->un_tran_fatal_count++; 15159 /* FALLTHRU */ 15160 15161 case TRAN_BADPKT: 15162 default: 15163 un->un_ncmds_in_transport--; 15164 ASSERT(un->un_ncmds_in_transport >= 0); 15165 15166 /* 15167 * If this is our REQUEST SENSE command with a 15168 * transport error, we must get back the pointers 15169 * to the original buf, and mark the REQUEST 15170 * SENSE command as "available". 15171 */ 15172 if (bp == un->un_rqs_bp) { 15173 bp = sd_mark_rqs_idle(un, xp); 15174 xp = SD_GET_XBUF(bp); 15175 } else { 15176 /* 15177 * Legacy behavior: do not update transport 15178 * error count for request sense commands. 15179 */ 15180 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15181 } 15182 15183 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15184 sd_print_transport_rejected_message(un, xp, rval); 15185 15186 /* 15187 * This command will be terminated by SD driver due 15188 * to a fatal transport error. We should post 15189 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15190 * of "fail" for any command to indicate this 15191 * situation. 15192 */ 15193 if (xp->xb_ena > 0) { 15194 ASSERT(un->un_fm_private != NULL); 15195 sfip = un->un_fm_private; 15196 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15197 sd_ssc_extract_info(&sfip->fm_ssc, un, 15198 xp->xb_pktp, bp, xp); 15199 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15200 } 15201 15202 /* 15203 * We must use sd_return_failed_command_no_restart() to 15204 * avoid a recursive call back into sd_start_cmds(). 15205 * However this also means that we must keep processing 15206 * the waitq here in order to avoid stalling. 15207 */ 15208 sd_return_failed_command_no_restart(un, bp, EIO); 15209 15210 /* 15211 * Notify any threads waiting in sd_ddi_suspend() that 15212 * a command completion has occurred. 15213 */ 15214 if (un->un_state == SD_STATE_SUSPENDED) { 15215 cv_broadcast(&un->un_disk_busy_cv); 15216 } 15217 15218 if (bp == immed_bp) { 15219 /* immed_bp is gone by now, so clear this */ 15220 immed_bp = NULL; 15221 } 15222 break; 15223 } 15224 15225 } while (immed_bp == NULL); 15226 15227 exit: 15228 ASSERT(mutex_owned(SD_MUTEX(un))); 15229 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15230 } 15231 15232 15233 /* 15234 * Function: sd_return_command 15235 * 15236 * Description: Returns a command to its originator (with or without an 15237 * error). Also starts commands waiting to be transported 15238 * to the target. 15239 * 15240 * Context: May be called from interrupt, kernel, or timeout context 15241 */ 15242 15243 static void 15244 sd_return_command(struct sd_lun *un, struct buf *bp) 15245 { 15246 struct sd_xbuf *xp; 15247 struct scsi_pkt *pktp; 15248 struct sd_fm_internal *sfip; 15249 15250 ASSERT(bp != NULL); 15251 ASSERT(un != NULL); 15252 ASSERT(mutex_owned(SD_MUTEX(un))); 15253 ASSERT(bp != un->un_rqs_bp); 15254 xp = SD_GET_XBUF(bp); 15255 ASSERT(xp != NULL); 15256 15257 pktp = SD_GET_PKTP(bp); 15258 sfip = (struct sd_fm_internal *)un->un_fm_private; 15259 ASSERT(sfip != NULL); 15260 15261 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15262 15263 /* 15264 * Note: check for the "sdrestart failed" case. 15265 */ 15266 if ((un->un_partial_dma_supported == 1) && 15267 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15268 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15269 (xp->xb_pktp->pkt_resid == 0)) { 15270 15271 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15272 /* 15273 * Successfully set up next portion of cmd 15274 * transfer, try sending it 15275 */ 15276 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15277 NULL, NULL, 0, (clock_t)0, NULL); 15278 sd_start_cmds(un, NULL); 15279 return; /* Note:x86: need a return here? */ 15280 } 15281 } 15282 15283 /* 15284 * If this is the failfast bp, clear it from un_failfast_bp. This 15285 * can happen if upon being re-tried the failfast bp either 15286 * succeeded or encountered another error (possibly even a different 15287 * error than the one that precipitated the failfast state, but in 15288 * that case it would have had to exhaust retries as well). Regardless, 15289 * this should not occur whenever the instance is in the active 15290 * failfast state. 15291 */ 15292 if (bp == un->un_failfast_bp) { 15293 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15294 un->un_failfast_bp = NULL; 15295 } 15296 15297 /* 15298 * Clear the failfast state upon successful completion of ANY cmd. 15299 */ 15300 if (bp->b_error == 0) { 15301 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15302 /* 15303 * If this is a successful command, but used to be retried, 15304 * we will take it as a recovered command and post an 15305 * ereport with driver-assessment of "recovered". 15306 */ 15307 if (xp->xb_ena > 0) { 15308 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15309 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15310 } 15311 } else { 15312 /* 15313 * If this is a failed non-USCSI command we will post an 15314 * ereport with driver-assessment set accordingly("fail" or 15315 * "fatal"). 15316 */ 15317 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15318 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15319 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15320 } 15321 } 15322 15323 /* 15324 * This is used if the command was retried one or more times. Show that 15325 * we are done with it, and allow processing of the waitq to resume. 15326 */ 15327 if (bp == un->un_retry_bp) { 15328 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15329 "sd_return_command: un:0x%p: " 15330 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15331 un->un_retry_bp = NULL; 15332 un->un_retry_statp = NULL; 15333 } 15334 15335 SD_UPDATE_RDWR_STATS(un, bp); 15336 SD_UPDATE_PARTITION_STATS(un, bp); 15337 15338 switch (un->un_state) { 15339 case SD_STATE_SUSPENDED: 15340 /* 15341 * Notify any threads waiting in sd_ddi_suspend() that 15342 * a command completion has occurred. 15343 */ 15344 cv_broadcast(&un->un_disk_busy_cv); 15345 break; 15346 default: 15347 sd_start_cmds(un, NULL); 15348 break; 15349 } 15350 15351 /* Return this command up the iodone chain to its originator. */ 15352 mutex_exit(SD_MUTEX(un)); 15353 15354 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15355 xp->xb_pktp = NULL; 15356 15357 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15358 15359 ASSERT(!mutex_owned(SD_MUTEX(un))); 15360 mutex_enter(SD_MUTEX(un)); 15361 15362 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15363 } 15364 15365 15366 /* 15367 * Function: sd_return_failed_command 15368 * 15369 * Description: Command completion when an error occurred. 15370 * 15371 * Context: May be called from interrupt context 15372 */ 15373 15374 static void 15375 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15376 { 15377 ASSERT(bp != NULL); 15378 ASSERT(un != NULL); 15379 ASSERT(mutex_owned(SD_MUTEX(un))); 15380 15381 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15382 "sd_return_failed_command: entry\n"); 15383 15384 /* 15385 * b_resid could already be nonzero due to a partial data 15386 * transfer, so do not change it here. 15387 */ 15388 SD_BIOERROR(bp, errcode); 15389 15390 sd_return_command(un, bp); 15391 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15392 "sd_return_failed_command: exit\n"); 15393 } 15394 15395 15396 /* 15397 * Function: sd_return_failed_command_no_restart 15398 * 15399 * Description: Same as sd_return_failed_command, but ensures that no 15400 * call back into sd_start_cmds will be issued. 15401 * 15402 * Context: May be called from interrupt context 15403 */ 15404 15405 static void 15406 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15407 int errcode) 15408 { 15409 struct sd_xbuf *xp; 15410 15411 ASSERT(bp != NULL); 15412 ASSERT(un != NULL); 15413 ASSERT(mutex_owned(SD_MUTEX(un))); 15414 xp = SD_GET_XBUF(bp); 15415 ASSERT(xp != NULL); 15416 ASSERT(errcode != 0); 15417 15418 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15419 "sd_return_failed_command_no_restart: entry\n"); 15420 15421 /* 15422 * b_resid could already be nonzero due to a partial data 15423 * transfer, so do not change it here. 15424 */ 15425 SD_BIOERROR(bp, errcode); 15426 15427 /* 15428 * If this is the failfast bp, clear it. This can happen if the 15429 * failfast bp encounterd a fatal error when we attempted to 15430 * re-try it (such as a scsi_transport(9F) failure). However 15431 * we should NOT be in an active failfast state if the failfast 15432 * bp is not NULL. 15433 */ 15434 if (bp == un->un_failfast_bp) { 15435 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15436 un->un_failfast_bp = NULL; 15437 } 15438 15439 if (bp == un->un_retry_bp) { 15440 /* 15441 * This command was retried one or more times. Show that we are 15442 * done with it, and allow processing of the waitq to resume. 15443 */ 15444 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15445 "sd_return_failed_command_no_restart: " 15446 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15447 un->un_retry_bp = NULL; 15448 un->un_retry_statp = NULL; 15449 } 15450 15451 SD_UPDATE_RDWR_STATS(un, bp); 15452 SD_UPDATE_PARTITION_STATS(un, bp); 15453 15454 mutex_exit(SD_MUTEX(un)); 15455 15456 if (xp->xb_pktp != NULL) { 15457 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15458 xp->xb_pktp = NULL; 15459 } 15460 15461 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15462 15463 mutex_enter(SD_MUTEX(un)); 15464 15465 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15466 "sd_return_failed_command_no_restart: exit\n"); 15467 } 15468 15469 15470 /* 15471 * Function: sd_retry_command 15472 * 15473 * Description: queue up a command for retry, or (optionally) fail it 15474 * if retry counts are exhausted. 15475 * 15476 * Arguments: un - Pointer to the sd_lun struct for the target. 15477 * 15478 * bp - Pointer to the buf for the command to be retried. 15479 * 15480 * retry_check_flag - Flag to see which (if any) of the retry 15481 * counts should be decremented/checked. If the indicated 15482 * retry count is exhausted, then the command will not be 15483 * retried; it will be failed instead. This should use a 15484 * value equal to one of the following: 15485 * 15486 * SD_RETRIES_NOCHECK 15487 * SD_RESD_RETRIES_STANDARD 15488 * SD_RETRIES_VICTIM 15489 * 15490 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15491 * if the check should be made to see of FLAG_ISOLATE is set 15492 * in the pkt. If FLAG_ISOLATE is set, then the command is 15493 * not retried, it is simply failed. 15494 * 15495 * user_funcp - Ptr to function to call before dispatching the 15496 * command. May be NULL if no action needs to be performed. 15497 * (Primarily intended for printing messages.) 15498 * 15499 * user_arg - Optional argument to be passed along to 15500 * the user_funcp call. 15501 * 15502 * failure_code - errno return code to set in the bp if the 15503 * command is going to be failed. 15504 * 15505 * retry_delay - Retry delay interval in (clock_t) units. May 15506 * be zero which indicates that the retry should be retried 15507 * immediately (ie, without an intervening delay). 15508 * 15509 * statp - Ptr to kstat function to be updated if the command 15510 * is queued for a delayed retry. May be NULL if no kstat 15511 * update is desired. 15512 * 15513 * Context: May be called from interrupt context. 15514 */ 15515 15516 static void 15517 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15518 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15519 code), void *user_arg, int failure_code, clock_t retry_delay, 15520 void (*statp)(kstat_io_t *)) 15521 { 15522 struct sd_xbuf *xp; 15523 struct scsi_pkt *pktp; 15524 struct sd_fm_internal *sfip; 15525 15526 ASSERT(un != NULL); 15527 ASSERT(mutex_owned(SD_MUTEX(un))); 15528 ASSERT(bp != NULL); 15529 xp = SD_GET_XBUF(bp); 15530 ASSERT(xp != NULL); 15531 pktp = SD_GET_PKTP(bp); 15532 ASSERT(pktp != NULL); 15533 15534 sfip = (struct sd_fm_internal *)un->un_fm_private; 15535 ASSERT(sfip != NULL); 15536 15537 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15538 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15539 15540 /* 15541 * If we are syncing or dumping, fail the command to avoid 15542 * recursively calling back into scsi_transport(). 15543 */ 15544 if (ddi_in_panic()) { 15545 goto fail_command_no_log; 15546 } 15547 15548 /* 15549 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15550 * log an error and fail the command. 15551 */ 15552 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15553 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15554 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15555 sd_dump_memory(un, SD_LOG_IO, "CDB", 15556 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15557 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15558 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15559 goto fail_command; 15560 } 15561 15562 /* 15563 * If we are suspended, then put the command onto head of the 15564 * wait queue since we don't want to start more commands, and 15565 * clear the un_retry_bp. Next time when we are resumed, will 15566 * handle the command in the wait queue. 15567 */ 15568 switch (un->un_state) { 15569 case SD_STATE_SUSPENDED: 15570 case SD_STATE_DUMPING: 15571 bp->av_forw = un->un_waitq_headp; 15572 un->un_waitq_headp = bp; 15573 if (un->un_waitq_tailp == NULL) { 15574 un->un_waitq_tailp = bp; 15575 } 15576 if (bp == un->un_retry_bp) { 15577 un->un_retry_bp = NULL; 15578 un->un_retry_statp = NULL; 15579 } 15580 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15581 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15582 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15583 return; 15584 default: 15585 break; 15586 } 15587 15588 /* 15589 * If the caller wants us to check FLAG_ISOLATE, then see if that 15590 * is set; if it is then we do not want to retry the command. 15591 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15592 */ 15593 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15594 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15595 goto fail_command; 15596 } 15597 } 15598 15599 15600 /* 15601 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15602 * command timeout or a selection timeout has occurred. This means 15603 * that we were unable to establish an kind of communication with 15604 * the target, and subsequent retries and/or commands are likely 15605 * to encounter similar results and take a long time to complete. 15606 * 15607 * If this is a failfast error condition, we need to update the 15608 * failfast state, even if this bp does not have B_FAILFAST set. 15609 */ 15610 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15611 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15612 ASSERT(un->un_failfast_bp == NULL); 15613 /* 15614 * If we are already in the active failfast state, and 15615 * another failfast error condition has been detected, 15616 * then fail this command if it has B_FAILFAST set. 15617 * If B_FAILFAST is clear, then maintain the legacy 15618 * behavior of retrying heroically, even tho this will 15619 * take a lot more time to fail the command. 15620 */ 15621 if (bp->b_flags & B_FAILFAST) { 15622 goto fail_command; 15623 } 15624 } else { 15625 /* 15626 * We're not in the active failfast state, but we 15627 * have a failfast error condition, so we must begin 15628 * transition to the next state. We do this regardless 15629 * of whether or not this bp has B_FAILFAST set. 15630 */ 15631 if (un->un_failfast_bp == NULL) { 15632 /* 15633 * This is the first bp to meet a failfast 15634 * condition so save it on un_failfast_bp & 15635 * do normal retry processing. Do not enter 15636 * active failfast state yet. This marks 15637 * entry into the "failfast pending" state. 15638 */ 15639 un->un_failfast_bp = bp; 15640 15641 } else if (un->un_failfast_bp == bp) { 15642 /* 15643 * This is the second time *this* bp has 15644 * encountered a failfast error condition, 15645 * so enter active failfast state & flush 15646 * queues as appropriate. 15647 */ 15648 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15649 un->un_failfast_bp = NULL; 15650 sd_failfast_flushq(un); 15651 15652 /* 15653 * Fail this bp now if B_FAILFAST set; 15654 * otherwise continue with retries. (It would 15655 * be pretty ironic if this bp succeeded on a 15656 * subsequent retry after we just flushed all 15657 * the queues). 15658 */ 15659 if (bp->b_flags & B_FAILFAST) { 15660 goto fail_command; 15661 } 15662 15663 #if !defined(lint) && !defined(__lint) 15664 } else { 15665 /* 15666 * If neither of the preceeding conditionals 15667 * was true, it means that there is some 15668 * *other* bp that has met an inital failfast 15669 * condition and is currently either being 15670 * retried or is waiting to be retried. In 15671 * that case we should perform normal retry 15672 * processing on *this* bp, since there is a 15673 * chance that the current failfast condition 15674 * is transient and recoverable. If that does 15675 * not turn out to be the case, then retries 15676 * will be cleared when the wait queue is 15677 * flushed anyway. 15678 */ 15679 #endif 15680 } 15681 } 15682 } else { 15683 /* 15684 * SD_RETRIES_FAILFAST is clear, which indicates that we 15685 * likely were able to at least establish some level of 15686 * communication with the target and subsequent commands 15687 * and/or retries are likely to get through to the target, 15688 * In this case we want to be aggressive about clearing 15689 * the failfast state. Note that this does not affect 15690 * the "failfast pending" condition. 15691 */ 15692 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15693 } 15694 15695 15696 /* 15697 * Check the specified retry count to see if we can still do 15698 * any retries with this pkt before we should fail it. 15699 */ 15700 switch (retry_check_flag & SD_RETRIES_MASK) { 15701 case SD_RETRIES_VICTIM: 15702 /* 15703 * Check the victim retry count. If exhausted, then fall 15704 * thru & check against the standard retry count. 15705 */ 15706 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15707 /* Increment count & proceed with the retry */ 15708 xp->xb_victim_retry_count++; 15709 break; 15710 } 15711 /* Victim retries exhausted, fall back to std. retries... */ 15712 /* FALLTHRU */ 15713 15714 case SD_RETRIES_STANDARD: 15715 if (xp->xb_retry_count >= un->un_retry_count) { 15716 /* Retries exhausted, fail the command */ 15717 SD_TRACE(SD_LOG_IO_CORE, un, 15718 "sd_retry_command: retries exhausted!\n"); 15719 /* 15720 * update b_resid for failed SCMD_READ & SCMD_WRITE 15721 * commands with nonzero pkt_resid. 15722 */ 15723 if ((pktp->pkt_reason == CMD_CMPLT) && 15724 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15725 (pktp->pkt_resid != 0)) { 15726 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15727 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15728 SD_UPDATE_B_RESID(bp, pktp); 15729 } 15730 } 15731 goto fail_command; 15732 } 15733 xp->xb_retry_count++; 15734 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15735 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15736 break; 15737 15738 case SD_RETRIES_UA: 15739 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15740 /* Retries exhausted, fail the command */ 15741 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15742 "Unit Attention retries exhausted. " 15743 "Check the target.\n"); 15744 goto fail_command; 15745 } 15746 xp->xb_ua_retry_count++; 15747 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15748 "sd_retry_command: retry count:%d\n", 15749 xp->xb_ua_retry_count); 15750 break; 15751 15752 case SD_RETRIES_BUSY: 15753 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15754 /* Retries exhausted, fail the command */ 15755 SD_TRACE(SD_LOG_IO_CORE, un, 15756 "sd_retry_command: retries exhausted!\n"); 15757 goto fail_command; 15758 } 15759 xp->xb_retry_count++; 15760 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15761 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15762 break; 15763 15764 case SD_RETRIES_NOCHECK: 15765 default: 15766 /* No retry count to check. Just proceed with the retry */ 15767 break; 15768 } 15769 15770 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15771 15772 /* 15773 * If this is a non-USCSI command being retried 15774 * during execution last time, we should post an ereport with 15775 * driver-assessment of the value "retry". 15776 * For partial DMA, request sense and STATUS_QFULL, there are no 15777 * hardware errors, we bypass ereport posting. 15778 */ 15779 if (failure_code != 0) { 15780 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15781 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15782 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15783 } 15784 } 15785 15786 /* 15787 * If we were given a zero timeout, we must attempt to retry the 15788 * command immediately (ie, without a delay). 15789 */ 15790 if (retry_delay == 0) { 15791 /* 15792 * Check some limiting conditions to see if we can actually 15793 * do the immediate retry. If we cannot, then we must 15794 * fall back to queueing up a delayed retry. 15795 */ 15796 if (un->un_ncmds_in_transport >= un->un_throttle) { 15797 /* 15798 * We are at the throttle limit for the target, 15799 * fall back to delayed retry. 15800 */ 15801 retry_delay = un->un_busy_timeout; 15802 statp = kstat_waitq_enter; 15803 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15804 "sd_retry_command: immed. retry hit " 15805 "throttle!\n"); 15806 } else { 15807 /* 15808 * We're clear to proceed with the immediate retry. 15809 * First call the user-provided function (if any) 15810 */ 15811 if (user_funcp != NULL) { 15812 (*user_funcp)(un, bp, user_arg, 15813 SD_IMMEDIATE_RETRY_ISSUED); 15814 #ifdef __lock_lint 15815 sd_print_incomplete_msg(un, bp, user_arg, 15816 SD_IMMEDIATE_RETRY_ISSUED); 15817 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15818 SD_IMMEDIATE_RETRY_ISSUED); 15819 sd_print_sense_failed_msg(un, bp, user_arg, 15820 SD_IMMEDIATE_RETRY_ISSUED); 15821 #endif 15822 } 15823 15824 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15825 "sd_retry_command: issuing immediate retry\n"); 15826 15827 /* 15828 * Call sd_start_cmds() to transport the command to 15829 * the target. 15830 */ 15831 sd_start_cmds(un, bp); 15832 15833 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15834 "sd_retry_command exit\n"); 15835 return; 15836 } 15837 } 15838 15839 /* 15840 * Set up to retry the command after a delay. 15841 * First call the user-provided function (if any) 15842 */ 15843 if (user_funcp != NULL) { 15844 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15845 } 15846 15847 sd_set_retry_bp(un, bp, retry_delay, statp); 15848 15849 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15850 return; 15851 15852 fail_command: 15853 15854 if (user_funcp != NULL) { 15855 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15856 } 15857 15858 fail_command_no_log: 15859 15860 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15861 "sd_retry_command: returning failed command\n"); 15862 15863 sd_return_failed_command(un, bp, failure_code); 15864 15865 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15866 } 15867 15868 15869 /* 15870 * Function: sd_set_retry_bp 15871 * 15872 * Description: Set up the given bp for retry. 15873 * 15874 * Arguments: un - ptr to associated softstate 15875 * bp - ptr to buf(9S) for the command 15876 * retry_delay - time interval before issuing retry (may be 0) 15877 * statp - optional pointer to kstat function 15878 * 15879 * Context: May be called under interrupt context 15880 */ 15881 15882 static void 15883 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15884 void (*statp)(kstat_io_t *)) 15885 { 15886 ASSERT(un != NULL); 15887 ASSERT(mutex_owned(SD_MUTEX(un))); 15888 ASSERT(bp != NULL); 15889 15890 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15891 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15892 15893 /* 15894 * Indicate that the command is being retried. This will not allow any 15895 * other commands on the wait queue to be transported to the target 15896 * until this command has been completed (success or failure). The 15897 * "retry command" is not transported to the target until the given 15898 * time delay expires, unless the user specified a 0 retry_delay. 15899 * 15900 * Note: the timeout(9F) callback routine is what actually calls 15901 * sd_start_cmds() to transport the command, with the exception of a 15902 * zero retry_delay. The only current implementor of a zero retry delay 15903 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15904 */ 15905 if (un->un_retry_bp == NULL) { 15906 ASSERT(un->un_retry_statp == NULL); 15907 un->un_retry_bp = bp; 15908 15909 /* 15910 * If the user has not specified a delay the command should 15911 * be queued and no timeout should be scheduled. 15912 */ 15913 if (retry_delay == 0) { 15914 /* 15915 * Save the kstat pointer that will be used in the 15916 * call to SD_UPDATE_KSTATS() below, so that 15917 * sd_start_cmds() can correctly decrement the waitq 15918 * count when it is time to transport this command. 15919 */ 15920 un->un_retry_statp = statp; 15921 goto done; 15922 } 15923 } 15924 15925 if (un->un_retry_bp == bp) { 15926 /* 15927 * Save the kstat pointer that will be used in the call to 15928 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15929 * correctly decrement the waitq count when it is time to 15930 * transport this command. 15931 */ 15932 un->un_retry_statp = statp; 15933 15934 /* 15935 * Schedule a timeout if: 15936 * 1) The user has specified a delay. 15937 * 2) There is not a START_STOP_UNIT callback pending. 15938 * 15939 * If no delay has been specified, then it is up to the caller 15940 * to ensure that IO processing continues without stalling. 15941 * Effectively, this means that the caller will issue the 15942 * required call to sd_start_cmds(). The START_STOP_UNIT 15943 * callback does this after the START STOP UNIT command has 15944 * completed. In either of these cases we should not schedule 15945 * a timeout callback here. Also don't schedule the timeout if 15946 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15947 */ 15948 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15949 (un->un_direct_priority_timeid == NULL)) { 15950 un->un_retry_timeid = 15951 timeout(sd_start_retry_command, un, retry_delay); 15952 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15953 "sd_set_retry_bp: setting timeout: un: 0x%p" 15954 " bp:0x%p un_retry_timeid:0x%p\n", 15955 un, bp, un->un_retry_timeid); 15956 } 15957 } else { 15958 /* 15959 * We only get in here if there is already another command 15960 * waiting to be retried. In this case, we just put the 15961 * given command onto the wait queue, so it can be transported 15962 * after the current retry command has completed. 15963 * 15964 * Also we have to make sure that if the command at the head 15965 * of the wait queue is the un_failfast_bp, that we do not 15966 * put ahead of it any other commands that are to be retried. 15967 */ 15968 if ((un->un_failfast_bp != NULL) && 15969 (un->un_failfast_bp == un->un_waitq_headp)) { 15970 /* 15971 * Enqueue this command AFTER the first command on 15972 * the wait queue (which is also un_failfast_bp). 15973 */ 15974 bp->av_forw = un->un_waitq_headp->av_forw; 15975 un->un_waitq_headp->av_forw = bp; 15976 if (un->un_waitq_headp == un->un_waitq_tailp) { 15977 un->un_waitq_tailp = bp; 15978 } 15979 } else { 15980 /* Enqueue this command at the head of the waitq. */ 15981 bp->av_forw = un->un_waitq_headp; 15982 un->un_waitq_headp = bp; 15983 if (un->un_waitq_tailp == NULL) { 15984 un->un_waitq_tailp = bp; 15985 } 15986 } 15987 15988 if (statp == NULL) { 15989 statp = kstat_waitq_enter; 15990 } 15991 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15992 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15993 } 15994 15995 done: 15996 if (statp != NULL) { 15997 SD_UPDATE_KSTATS(un, statp, bp); 15998 } 15999 16000 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16001 "sd_set_retry_bp: exit un:0x%p\n", un); 16002 } 16003 16004 16005 /* 16006 * Function: sd_start_retry_command 16007 * 16008 * Description: Start the command that has been waiting on the target's 16009 * retry queue. Called from timeout(9F) context after the 16010 * retry delay interval has expired. 16011 * 16012 * Arguments: arg - pointer to associated softstate for the device. 16013 * 16014 * Context: timeout(9F) thread context. May not sleep. 16015 */ 16016 16017 static void 16018 sd_start_retry_command(void *arg) 16019 { 16020 struct sd_lun *un = arg; 16021 16022 ASSERT(un != NULL); 16023 ASSERT(!mutex_owned(SD_MUTEX(un))); 16024 16025 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16026 "sd_start_retry_command: entry\n"); 16027 16028 mutex_enter(SD_MUTEX(un)); 16029 16030 un->un_retry_timeid = NULL; 16031 16032 if (un->un_retry_bp != NULL) { 16033 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16034 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 16035 un, un->un_retry_bp); 16036 sd_start_cmds(un, un->un_retry_bp); 16037 } 16038 16039 mutex_exit(SD_MUTEX(un)); 16040 16041 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16042 "sd_start_retry_command: exit\n"); 16043 } 16044 16045 /* 16046 * Function: sd_rmw_msg_print_handler 16047 * 16048 * Description: If RMW mode is enabled and warning message is triggered 16049 * print I/O count during a fixed interval. 16050 * 16051 * Arguments: arg - pointer to associated softstate for the device. 16052 * 16053 * Context: timeout(9F) thread context. May not sleep. 16054 */ 16055 static void 16056 sd_rmw_msg_print_handler(void *arg) 16057 { 16058 struct sd_lun *un = arg; 16059 16060 ASSERT(un != NULL); 16061 ASSERT(!mutex_owned(SD_MUTEX(un))); 16062 16063 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16064 "sd_rmw_msg_print_handler: entry\n"); 16065 16066 mutex_enter(SD_MUTEX(un)); 16067 16068 if (un->un_rmw_incre_count > 0) { 16069 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16070 "%"PRIu64" I/O requests are not aligned with %d disk " 16071 "sector size in %ld seconds. They are handled through " 16072 "Read Modify Write but the performance is very low!\n", 16073 un->un_rmw_incre_count, un->un_tgt_blocksize, 16074 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16075 un->un_rmw_incre_count = 0; 16076 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16077 un, SD_RMW_MSG_PRINT_TIMEOUT); 16078 } else { 16079 un->un_rmw_msg_timeid = NULL; 16080 } 16081 16082 mutex_exit(SD_MUTEX(un)); 16083 16084 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16085 "sd_rmw_msg_print_handler: exit\n"); 16086 } 16087 16088 /* 16089 * Function: sd_start_direct_priority_command 16090 * 16091 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16092 * received TRAN_BUSY when we called scsi_transport() to send it 16093 * to the underlying HBA. This function is called from timeout(9F) 16094 * context after the delay interval has expired. 16095 * 16096 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16097 * 16098 * Context: timeout(9F) thread context. May not sleep. 16099 */ 16100 16101 static void 16102 sd_start_direct_priority_command(void *arg) 16103 { 16104 struct buf *priority_bp = arg; 16105 struct sd_lun *un; 16106 16107 ASSERT(priority_bp != NULL); 16108 un = SD_GET_UN(priority_bp); 16109 ASSERT(un != NULL); 16110 ASSERT(!mutex_owned(SD_MUTEX(un))); 16111 16112 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16113 "sd_start_direct_priority_command: entry\n"); 16114 16115 mutex_enter(SD_MUTEX(un)); 16116 un->un_direct_priority_timeid = NULL; 16117 sd_start_cmds(un, priority_bp); 16118 mutex_exit(SD_MUTEX(un)); 16119 16120 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16121 "sd_start_direct_priority_command: exit\n"); 16122 } 16123 16124 16125 /* 16126 * Function: sd_send_request_sense_command 16127 * 16128 * Description: Sends a REQUEST SENSE command to the target 16129 * 16130 * Context: May be called from interrupt context. 16131 */ 16132 16133 static void 16134 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16135 struct scsi_pkt *pktp) 16136 { 16137 ASSERT(bp != NULL); 16138 ASSERT(un != NULL); 16139 ASSERT(mutex_owned(SD_MUTEX(un))); 16140 16141 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16142 "entry: buf:0x%p\n", bp); 16143 16144 /* 16145 * If we are syncing or dumping, then fail the command to avoid a 16146 * recursive callback into scsi_transport(). Also fail the command 16147 * if we are suspended (legacy behavior). 16148 */ 16149 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16150 (un->un_state == SD_STATE_DUMPING)) { 16151 sd_return_failed_command(un, bp, EIO); 16152 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16153 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16154 return; 16155 } 16156 16157 /* 16158 * Retry the failed command and don't issue the request sense if: 16159 * 1) the sense buf is busy 16160 * 2) we have 1 or more outstanding commands on the target 16161 * (the sense data will be cleared or invalidated any way) 16162 * 16163 * Note: There could be an issue with not checking a retry limit here, 16164 * the problem is determining which retry limit to check. 16165 */ 16166 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16167 /* Don't retry if the command is flagged as non-retryable */ 16168 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16169 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16170 NULL, NULL, 0, un->un_busy_timeout, 16171 kstat_waitq_enter); 16172 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16173 "sd_send_request_sense_command: " 16174 "at full throttle, retrying exit\n"); 16175 } else { 16176 sd_return_failed_command(un, bp, EIO); 16177 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16178 "sd_send_request_sense_command: " 16179 "at full throttle, non-retryable exit\n"); 16180 } 16181 return; 16182 } 16183 16184 sd_mark_rqs_busy(un, bp); 16185 sd_start_cmds(un, un->un_rqs_bp); 16186 16187 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16188 "sd_send_request_sense_command: exit\n"); 16189 } 16190 16191 16192 /* 16193 * Function: sd_mark_rqs_busy 16194 * 16195 * Description: Indicate that the request sense bp for this instance is 16196 * in use. 16197 * 16198 * Context: May be called under interrupt context 16199 */ 16200 16201 static void 16202 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16203 { 16204 struct sd_xbuf *sense_xp; 16205 16206 ASSERT(un != NULL); 16207 ASSERT(bp != NULL); 16208 ASSERT(mutex_owned(SD_MUTEX(un))); 16209 ASSERT(un->un_sense_isbusy == 0); 16210 16211 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16212 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16213 16214 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16215 ASSERT(sense_xp != NULL); 16216 16217 SD_INFO(SD_LOG_IO, un, 16218 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16219 16220 ASSERT(sense_xp->xb_pktp != NULL); 16221 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16222 == (FLAG_SENSING | FLAG_HEAD)); 16223 16224 un->un_sense_isbusy = 1; 16225 un->un_rqs_bp->b_resid = 0; 16226 sense_xp->xb_pktp->pkt_resid = 0; 16227 sense_xp->xb_pktp->pkt_reason = 0; 16228 16229 /* So we can get back the bp at interrupt time! */ 16230 sense_xp->xb_sense_bp = bp; 16231 16232 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16233 16234 /* 16235 * Mark this buf as awaiting sense data. (This is already set in 16236 * the pkt_flags for the RQS packet.) 16237 */ 16238 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16239 16240 /* Request sense down same path */ 16241 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16242 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16243 sense_xp->xb_pktp->pkt_path_instance = 16244 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16245 16246 sense_xp->xb_retry_count = 0; 16247 sense_xp->xb_victim_retry_count = 0; 16248 sense_xp->xb_ua_retry_count = 0; 16249 sense_xp->xb_nr_retry_count = 0; 16250 sense_xp->xb_dma_resid = 0; 16251 16252 /* Clean up the fields for auto-request sense */ 16253 sense_xp->xb_sense_status = 0; 16254 sense_xp->xb_sense_state = 0; 16255 sense_xp->xb_sense_resid = 0; 16256 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16257 16258 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16259 } 16260 16261 16262 /* 16263 * Function: sd_mark_rqs_idle 16264 * 16265 * Description: SD_MUTEX must be held continuously through this routine 16266 * to prevent reuse of the rqs struct before the caller can 16267 * complete it's processing. 16268 * 16269 * Return Code: Pointer to the RQS buf 16270 * 16271 * Context: May be called under interrupt context 16272 */ 16273 16274 static struct buf * 16275 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16276 { 16277 struct buf *bp; 16278 ASSERT(un != NULL); 16279 ASSERT(sense_xp != NULL); 16280 ASSERT(mutex_owned(SD_MUTEX(un))); 16281 ASSERT(un->un_sense_isbusy != 0); 16282 16283 un->un_sense_isbusy = 0; 16284 bp = sense_xp->xb_sense_bp; 16285 sense_xp->xb_sense_bp = NULL; 16286 16287 /* This pkt is no longer interested in getting sense data */ 16288 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16289 16290 return (bp); 16291 } 16292 16293 16294 16295 /* 16296 * Function: sd_alloc_rqs 16297 * 16298 * Description: Set up the unit to receive auto request sense data 16299 * 16300 * Return Code: DDI_SUCCESS or DDI_FAILURE 16301 * 16302 * Context: Called under attach(9E) context 16303 */ 16304 16305 static int 16306 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16307 { 16308 struct sd_xbuf *xp; 16309 16310 ASSERT(un != NULL); 16311 ASSERT(!mutex_owned(SD_MUTEX(un))); 16312 ASSERT(un->un_rqs_bp == NULL); 16313 ASSERT(un->un_rqs_pktp == NULL); 16314 16315 /* 16316 * First allocate the required buf and scsi_pkt structs, then set up 16317 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16318 */ 16319 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16320 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16321 if (un->un_rqs_bp == NULL) { 16322 return (DDI_FAILURE); 16323 } 16324 16325 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16326 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16327 16328 if (un->un_rqs_pktp == NULL) { 16329 sd_free_rqs(un); 16330 return (DDI_FAILURE); 16331 } 16332 16333 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16334 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16335 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16336 16337 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16338 16339 /* Set up the other needed members in the ARQ scsi_pkt. */ 16340 un->un_rqs_pktp->pkt_comp = sdintr; 16341 un->un_rqs_pktp->pkt_time = sd_io_time; 16342 un->un_rqs_pktp->pkt_flags |= 16343 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16344 16345 /* 16346 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16347 * provide any intpkt, destroypkt routines as we take care of 16348 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16349 */ 16350 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16351 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16352 xp->xb_pktp = un->un_rqs_pktp; 16353 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16354 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16355 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16356 16357 /* 16358 * Save the pointer to the request sense private bp so it can 16359 * be retrieved in sdintr. 16360 */ 16361 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16362 ASSERT(un->un_rqs_bp->b_private == xp); 16363 16364 /* 16365 * See if the HBA supports auto-request sense for the specified 16366 * target/lun. If it does, then try to enable it (if not already 16367 * enabled). 16368 * 16369 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16370 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16371 * return success. However, in both of these cases ARQ is always 16372 * enabled and scsi_ifgetcap will always return true. The best approach 16373 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16374 * 16375 * The 3rd case is the HBA (adp) always return enabled on 16376 * scsi_ifgetgetcap even when it's not enable, the best approach 16377 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16378 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16379 */ 16380 16381 if (un->un_f_is_fibre == TRUE) { 16382 un->un_f_arq_enabled = TRUE; 16383 } else { 16384 #if defined(__i386) || defined(__amd64) 16385 /* 16386 * Circumvent the Adaptec bug, remove this code when 16387 * the bug is fixed 16388 */ 16389 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16390 #endif 16391 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16392 case 0: 16393 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16394 "sd_alloc_rqs: HBA supports ARQ\n"); 16395 /* 16396 * ARQ is supported by this HBA but currently is not 16397 * enabled. Attempt to enable it and if successful then 16398 * mark this instance as ARQ enabled. 16399 */ 16400 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16401 == 1) { 16402 /* Successfully enabled ARQ in the HBA */ 16403 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16404 "sd_alloc_rqs: ARQ enabled\n"); 16405 un->un_f_arq_enabled = TRUE; 16406 } else { 16407 /* Could not enable ARQ in the HBA */ 16408 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16409 "sd_alloc_rqs: failed ARQ enable\n"); 16410 un->un_f_arq_enabled = FALSE; 16411 } 16412 break; 16413 case 1: 16414 /* 16415 * ARQ is supported by this HBA and is already enabled. 16416 * Just mark ARQ as enabled for this instance. 16417 */ 16418 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16419 "sd_alloc_rqs: ARQ already enabled\n"); 16420 un->un_f_arq_enabled = TRUE; 16421 break; 16422 default: 16423 /* 16424 * ARQ is not supported by this HBA; disable it for this 16425 * instance. 16426 */ 16427 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16428 "sd_alloc_rqs: HBA does not support ARQ\n"); 16429 un->un_f_arq_enabled = FALSE; 16430 break; 16431 } 16432 } 16433 16434 return (DDI_SUCCESS); 16435 } 16436 16437 16438 /* 16439 * Function: sd_free_rqs 16440 * 16441 * Description: Cleanup for the pre-instance RQS command. 16442 * 16443 * Context: Kernel thread context 16444 */ 16445 16446 static void 16447 sd_free_rqs(struct sd_lun *un) 16448 { 16449 ASSERT(un != NULL); 16450 16451 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16452 16453 /* 16454 * If consistent memory is bound to a scsi_pkt, the pkt 16455 * has to be destroyed *before* freeing the consistent memory. 16456 * Don't change the sequence of this operations. 16457 * scsi_destroy_pkt() might access memory, which isn't allowed, 16458 * after it was freed in scsi_free_consistent_buf(). 16459 */ 16460 if (un->un_rqs_pktp != NULL) { 16461 scsi_destroy_pkt(un->un_rqs_pktp); 16462 un->un_rqs_pktp = NULL; 16463 } 16464 16465 if (un->un_rqs_bp != NULL) { 16466 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16467 if (xp != NULL) { 16468 kmem_free(xp, sizeof (struct sd_xbuf)); 16469 } 16470 scsi_free_consistent_buf(un->un_rqs_bp); 16471 un->un_rqs_bp = NULL; 16472 } 16473 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16474 } 16475 16476 16477 16478 /* 16479 * Function: sd_reduce_throttle 16480 * 16481 * Description: Reduces the maximum # of outstanding commands on a 16482 * target to the current number of outstanding commands. 16483 * Queues a tiemout(9F) callback to restore the limit 16484 * after a specified interval has elapsed. 16485 * Typically used when we get a TRAN_BUSY return code 16486 * back from scsi_transport(). 16487 * 16488 * Arguments: un - ptr to the sd_lun softstate struct 16489 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16490 * 16491 * Context: May be called from interrupt context 16492 */ 16493 16494 static void 16495 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16496 { 16497 ASSERT(un != NULL); 16498 ASSERT(mutex_owned(SD_MUTEX(un))); 16499 ASSERT(un->un_ncmds_in_transport >= 0); 16500 16501 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16502 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16503 un, un->un_throttle, un->un_ncmds_in_transport); 16504 16505 if (un->un_throttle > 1) { 16506 if (un->un_f_use_adaptive_throttle == TRUE) { 16507 switch (throttle_type) { 16508 case SD_THROTTLE_TRAN_BUSY: 16509 if (un->un_busy_throttle == 0) { 16510 un->un_busy_throttle = un->un_throttle; 16511 } 16512 break; 16513 case SD_THROTTLE_QFULL: 16514 un->un_busy_throttle = 0; 16515 break; 16516 default: 16517 ASSERT(FALSE); 16518 } 16519 16520 if (un->un_ncmds_in_transport > 0) { 16521 un->un_throttle = un->un_ncmds_in_transport; 16522 } 16523 16524 } else { 16525 if (un->un_ncmds_in_transport == 0) { 16526 un->un_throttle = 1; 16527 } else { 16528 un->un_throttle = un->un_ncmds_in_transport; 16529 } 16530 } 16531 } 16532 16533 /* Reschedule the timeout if none is currently active */ 16534 if (un->un_reset_throttle_timeid == NULL) { 16535 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16536 un, SD_THROTTLE_RESET_INTERVAL); 16537 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16538 "sd_reduce_throttle: timeout scheduled!\n"); 16539 } 16540 16541 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16542 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16543 } 16544 16545 16546 16547 /* 16548 * Function: sd_restore_throttle 16549 * 16550 * Description: Callback function for timeout(9F). Resets the current 16551 * value of un->un_throttle to its default. 16552 * 16553 * Arguments: arg - pointer to associated softstate for the device. 16554 * 16555 * Context: May be called from interrupt context 16556 */ 16557 16558 static void 16559 sd_restore_throttle(void *arg) 16560 { 16561 struct sd_lun *un = arg; 16562 16563 ASSERT(un != NULL); 16564 ASSERT(!mutex_owned(SD_MUTEX(un))); 16565 16566 mutex_enter(SD_MUTEX(un)); 16567 16568 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16569 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16570 16571 un->un_reset_throttle_timeid = NULL; 16572 16573 if (un->un_f_use_adaptive_throttle == TRUE) { 16574 /* 16575 * If un_busy_throttle is nonzero, then it contains the 16576 * value that un_throttle was when we got a TRAN_BUSY back 16577 * from scsi_transport(). We want to revert back to this 16578 * value. 16579 * 16580 * In the QFULL case, the throttle limit will incrementally 16581 * increase until it reaches max throttle. 16582 */ 16583 if (un->un_busy_throttle > 0) { 16584 un->un_throttle = un->un_busy_throttle; 16585 un->un_busy_throttle = 0; 16586 } else { 16587 /* 16588 * increase throttle by 10% open gate slowly, schedule 16589 * another restore if saved throttle has not been 16590 * reached 16591 */ 16592 short throttle; 16593 if (sd_qfull_throttle_enable) { 16594 throttle = un->un_throttle + 16595 max((un->un_throttle / 10), 1); 16596 un->un_throttle = 16597 (throttle < un->un_saved_throttle) ? 16598 throttle : un->un_saved_throttle; 16599 if (un->un_throttle < un->un_saved_throttle) { 16600 un->un_reset_throttle_timeid = 16601 timeout(sd_restore_throttle, 16602 un, 16603 SD_QFULL_THROTTLE_RESET_INTERVAL); 16604 } 16605 } 16606 } 16607 16608 /* 16609 * If un_throttle has fallen below the low-water mark, we 16610 * restore the maximum value here (and allow it to ratchet 16611 * down again if necessary). 16612 */ 16613 if (un->un_throttle < un->un_min_throttle) { 16614 un->un_throttle = un->un_saved_throttle; 16615 } 16616 } else { 16617 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16618 "restoring limit from 0x%x to 0x%x\n", 16619 un->un_throttle, un->un_saved_throttle); 16620 un->un_throttle = un->un_saved_throttle; 16621 } 16622 16623 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16624 "sd_restore_throttle: calling sd_start_cmds!\n"); 16625 16626 sd_start_cmds(un, NULL); 16627 16628 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16629 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16630 un, un->un_throttle); 16631 16632 mutex_exit(SD_MUTEX(un)); 16633 16634 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16635 } 16636 16637 /* 16638 * Function: sdrunout 16639 * 16640 * Description: Callback routine for scsi_init_pkt when a resource allocation 16641 * fails. 16642 * 16643 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16644 * soft state instance. 16645 * 16646 * Return Code: The scsi_init_pkt routine allows for the callback function to 16647 * return a 0 indicating the callback should be rescheduled or a 1 16648 * indicating not to reschedule. This routine always returns 1 16649 * because the driver always provides a callback function to 16650 * scsi_init_pkt. This results in a callback always being scheduled 16651 * (via the scsi_init_pkt callback implementation) if a resource 16652 * failure occurs. 16653 * 16654 * Context: This callback function may not block or call routines that block 16655 * 16656 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16657 * request persisting at the head of the list which cannot be 16658 * satisfied even after multiple retries. In the future the driver 16659 * may implement some time of maximum runout count before failing 16660 * an I/O. 16661 */ 16662 16663 static int 16664 sdrunout(caddr_t arg) 16665 { 16666 struct sd_lun *un = (struct sd_lun *)arg; 16667 16668 ASSERT(un != NULL); 16669 ASSERT(!mutex_owned(SD_MUTEX(un))); 16670 16671 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16672 16673 mutex_enter(SD_MUTEX(un)); 16674 sd_start_cmds(un, NULL); 16675 mutex_exit(SD_MUTEX(un)); 16676 /* 16677 * This callback routine always returns 1 (i.e. do not reschedule) 16678 * because we always specify sdrunout as the callback handler for 16679 * scsi_init_pkt inside the call to sd_start_cmds. 16680 */ 16681 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16682 return (1); 16683 } 16684 16685 16686 /* 16687 * Function: sdintr 16688 * 16689 * Description: Completion callback routine for scsi_pkt(9S) structs 16690 * sent to the HBA driver via scsi_transport(9F). 16691 * 16692 * Context: Interrupt context 16693 */ 16694 16695 static void 16696 sdintr(struct scsi_pkt *pktp) 16697 { 16698 struct buf *bp; 16699 struct sd_xbuf *xp; 16700 struct sd_lun *un; 16701 size_t actual_len; 16702 sd_ssc_t *sscp; 16703 16704 ASSERT(pktp != NULL); 16705 bp = (struct buf *)pktp->pkt_private; 16706 ASSERT(bp != NULL); 16707 xp = SD_GET_XBUF(bp); 16708 ASSERT(xp != NULL); 16709 ASSERT(xp->xb_pktp != NULL); 16710 un = SD_GET_UN(bp); 16711 ASSERT(un != NULL); 16712 ASSERT(!mutex_owned(SD_MUTEX(un))); 16713 16714 #ifdef SD_FAULT_INJECTION 16715 16716 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16717 /* SD FaultInjection */ 16718 sd_faultinjection(pktp); 16719 16720 #endif /* SD_FAULT_INJECTION */ 16721 16722 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16723 " xp:0x%p, un:0x%p\n", bp, xp, un); 16724 16725 mutex_enter(SD_MUTEX(un)); 16726 16727 ASSERT(un->un_fm_private != NULL); 16728 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16729 ASSERT(sscp != NULL); 16730 16731 /* Reduce the count of the #commands currently in transport */ 16732 un->un_ncmds_in_transport--; 16733 ASSERT(un->un_ncmds_in_transport >= 0); 16734 16735 /* Increment counter to indicate that the callback routine is active */ 16736 un->un_in_callback++; 16737 16738 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16739 16740 #ifdef SDDEBUG 16741 if (bp == un->un_retry_bp) { 16742 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16743 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16744 un, un->un_retry_bp, un->un_ncmds_in_transport); 16745 } 16746 #endif 16747 16748 /* 16749 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16750 * state if needed. 16751 */ 16752 if (pktp->pkt_reason == CMD_DEV_GONE) { 16753 /* Prevent multiple console messages for the same failure. */ 16754 if (un->un_last_pkt_reason != CMD_DEV_GONE) { 16755 un->un_last_pkt_reason = CMD_DEV_GONE; 16756 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16757 "Command failed to complete...Device is gone\n"); 16758 } 16759 if (un->un_mediastate != DKIO_DEV_GONE) { 16760 un->un_mediastate = DKIO_DEV_GONE; 16761 cv_broadcast(&un->un_state_cv); 16762 } 16763 /* 16764 * If the command happens to be the REQUEST SENSE command, 16765 * free up the rqs buf and fail the original command. 16766 */ 16767 if (bp == un->un_rqs_bp) { 16768 bp = sd_mark_rqs_idle(un, xp); 16769 } 16770 sd_return_failed_command(un, bp, EIO); 16771 goto exit; 16772 } 16773 16774 if (pktp->pkt_state & STATE_XARQ_DONE) { 16775 SD_TRACE(SD_LOG_COMMON, un, 16776 "sdintr: extra sense data received. pkt=%p\n", pktp); 16777 } 16778 16779 /* 16780 * First see if the pkt has auto-request sense data with it.... 16781 * Look at the packet state first so we don't take a performance 16782 * hit looking at the arq enabled flag unless absolutely necessary. 16783 */ 16784 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16785 (un->un_f_arq_enabled == TRUE)) { 16786 /* 16787 * The HBA did an auto request sense for this command so check 16788 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16789 * driver command that should not be retried. 16790 */ 16791 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16792 /* 16793 * Save the relevant sense info into the xp for the 16794 * original cmd. 16795 */ 16796 struct scsi_arq_status *asp; 16797 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16798 xp->xb_sense_status = 16799 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16800 xp->xb_sense_state = asp->sts_rqpkt_state; 16801 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16802 if (pktp->pkt_state & STATE_XARQ_DONE) { 16803 actual_len = MAX_SENSE_LENGTH - 16804 xp->xb_sense_resid; 16805 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16806 MAX_SENSE_LENGTH); 16807 } else { 16808 if (xp->xb_sense_resid > SENSE_LENGTH) { 16809 actual_len = MAX_SENSE_LENGTH - 16810 xp->xb_sense_resid; 16811 } else { 16812 actual_len = SENSE_LENGTH - 16813 xp->xb_sense_resid; 16814 } 16815 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16816 if ((((struct uscsi_cmd *) 16817 (xp->xb_pktinfo))->uscsi_rqlen) > 16818 actual_len) { 16819 xp->xb_sense_resid = 16820 (((struct uscsi_cmd *) 16821 (xp->xb_pktinfo))-> 16822 uscsi_rqlen) - actual_len; 16823 } else { 16824 xp->xb_sense_resid = 0; 16825 } 16826 } 16827 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16828 SENSE_LENGTH); 16829 } 16830 16831 /* fail the command */ 16832 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16833 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16834 sd_return_failed_command(un, bp, EIO); 16835 goto exit; 16836 } 16837 16838 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16839 /* 16840 * We want to either retry or fail this command, so free 16841 * the DMA resources here. If we retry the command then 16842 * the DMA resources will be reallocated in sd_start_cmds(). 16843 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16844 * causes the *entire* transfer to start over again from the 16845 * beginning of the request, even for PARTIAL chunks that 16846 * have already transferred successfully. 16847 */ 16848 if ((un->un_f_is_fibre == TRUE) && 16849 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16850 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16851 scsi_dmafree(pktp); 16852 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16853 } 16854 #endif 16855 16856 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16857 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16858 16859 sd_handle_auto_request_sense(un, bp, xp, pktp); 16860 goto exit; 16861 } 16862 16863 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16864 if (pktp->pkt_flags & FLAG_SENSING) { 16865 /* This pktp is from the unit's REQUEST_SENSE command */ 16866 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16867 "sdintr: sd_handle_request_sense\n"); 16868 sd_handle_request_sense(un, bp, xp, pktp); 16869 goto exit; 16870 } 16871 16872 /* 16873 * Check to see if the command successfully completed as requested; 16874 * this is the most common case (and also the hot performance path). 16875 * 16876 * Requirements for successful completion are: 16877 * pkt_reason is CMD_CMPLT and packet status is status good. 16878 * In addition: 16879 * - A residual of zero indicates successful completion no matter what 16880 * the command is. 16881 * - If the residual is not zero and the command is not a read or 16882 * write, then it's still defined as successful completion. In other 16883 * words, if the command is a read or write the residual must be 16884 * zero for successful completion. 16885 * - If the residual is not zero and the command is a read or 16886 * write, and it's a USCSICMD, then it's still defined as 16887 * successful completion. 16888 */ 16889 if ((pktp->pkt_reason == CMD_CMPLT) && 16890 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16891 16892 /* 16893 * Since this command is returned with a good status, we 16894 * can reset the count for Sonoma failover. 16895 */ 16896 un->un_sonoma_failure_count = 0; 16897 16898 /* 16899 * Return all USCSI commands on good status 16900 */ 16901 if (pktp->pkt_resid == 0) { 16902 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16903 "sdintr: returning command for resid == 0\n"); 16904 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16905 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16906 SD_UPDATE_B_RESID(bp, pktp); 16907 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16908 "sdintr: returning command for resid != 0\n"); 16909 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16910 SD_UPDATE_B_RESID(bp, pktp); 16911 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16912 "sdintr: returning uscsi command\n"); 16913 } else { 16914 goto not_successful; 16915 } 16916 sd_return_command(un, bp); 16917 16918 /* 16919 * Decrement counter to indicate that the callback routine 16920 * is done. 16921 */ 16922 un->un_in_callback--; 16923 ASSERT(un->un_in_callback >= 0); 16924 mutex_exit(SD_MUTEX(un)); 16925 16926 return; 16927 } 16928 16929 not_successful: 16930 16931 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16932 /* 16933 * The following is based upon knowledge of the underlying transport 16934 * and its use of DMA resources. This code should be removed when 16935 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16936 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16937 * and sd_start_cmds(). 16938 * 16939 * Free any DMA resources associated with this command if there 16940 * is a chance it could be retried or enqueued for later retry. 16941 * If we keep the DMA binding then mpxio cannot reissue the 16942 * command on another path whenever a path failure occurs. 16943 * 16944 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16945 * causes the *entire* transfer to start over again from the 16946 * beginning of the request, even for PARTIAL chunks that 16947 * have already transferred successfully. 16948 * 16949 * This is only done for non-uscsi commands (and also skipped for the 16950 * driver's internal RQS command). Also just do this for Fibre Channel 16951 * devices as these are the only ones that support mpxio. 16952 */ 16953 if ((un->un_f_is_fibre == TRUE) && 16954 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16955 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16956 scsi_dmafree(pktp); 16957 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16958 } 16959 #endif 16960 16961 /* 16962 * The command did not successfully complete as requested so check 16963 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16964 * driver command that should not be retried so just return. If 16965 * FLAG_DIAGNOSE is not set the error will be processed below. 16966 */ 16967 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16968 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16969 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16970 /* 16971 * Issue a request sense if a check condition caused the error 16972 * (we handle the auto request sense case above), otherwise 16973 * just fail the command. 16974 */ 16975 if ((pktp->pkt_reason == CMD_CMPLT) && 16976 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16977 sd_send_request_sense_command(un, bp, pktp); 16978 } else { 16979 sd_return_failed_command(un, bp, EIO); 16980 } 16981 goto exit; 16982 } 16983 16984 /* 16985 * The command did not successfully complete as requested so process 16986 * the error, retry, and/or attempt recovery. 16987 */ 16988 switch (pktp->pkt_reason) { 16989 case CMD_CMPLT: 16990 switch (SD_GET_PKT_STATUS(pktp)) { 16991 case STATUS_GOOD: 16992 /* 16993 * The command completed successfully with a non-zero 16994 * residual 16995 */ 16996 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16997 "sdintr: STATUS_GOOD \n"); 16998 sd_pkt_status_good(un, bp, xp, pktp); 16999 break; 17000 17001 case STATUS_CHECK: 17002 case STATUS_TERMINATED: 17003 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17004 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 17005 sd_pkt_status_check_condition(un, bp, xp, pktp); 17006 break; 17007 17008 case STATUS_BUSY: 17009 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17010 "sdintr: STATUS_BUSY\n"); 17011 sd_pkt_status_busy(un, bp, xp, pktp); 17012 break; 17013 17014 case STATUS_RESERVATION_CONFLICT: 17015 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17016 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 17017 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17018 break; 17019 17020 case STATUS_QFULL: 17021 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17022 "sdintr: STATUS_QFULL\n"); 17023 sd_pkt_status_qfull(un, bp, xp, pktp); 17024 break; 17025 17026 case STATUS_MET: 17027 case STATUS_INTERMEDIATE: 17028 case STATUS_SCSI2: 17029 case STATUS_INTERMEDIATE_MET: 17030 case STATUS_ACA_ACTIVE: 17031 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17032 "Unexpected SCSI status received: 0x%x\n", 17033 SD_GET_PKT_STATUS(pktp)); 17034 /* 17035 * Mark the ssc_flags when detected invalid status 17036 * code for non-USCSI command. 17037 */ 17038 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17039 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17040 0, "stat-code"); 17041 } 17042 sd_return_failed_command(un, bp, EIO); 17043 break; 17044 17045 default: 17046 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17047 "Invalid SCSI status received: 0x%x\n", 17048 SD_GET_PKT_STATUS(pktp)); 17049 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17050 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17051 0, "stat-code"); 17052 } 17053 sd_return_failed_command(un, bp, EIO); 17054 break; 17055 17056 } 17057 break; 17058 17059 case CMD_INCOMPLETE: 17060 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17061 "sdintr: CMD_INCOMPLETE\n"); 17062 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17063 break; 17064 case CMD_TRAN_ERR: 17065 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17066 "sdintr: CMD_TRAN_ERR\n"); 17067 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17068 break; 17069 case CMD_RESET: 17070 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17071 "sdintr: CMD_RESET \n"); 17072 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17073 break; 17074 case CMD_ABORTED: 17075 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17076 "sdintr: CMD_ABORTED \n"); 17077 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17078 break; 17079 case CMD_TIMEOUT: 17080 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17081 "sdintr: CMD_TIMEOUT\n"); 17082 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17083 break; 17084 case CMD_UNX_BUS_FREE: 17085 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17086 "sdintr: CMD_UNX_BUS_FREE \n"); 17087 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17088 break; 17089 case CMD_TAG_REJECT: 17090 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17091 "sdintr: CMD_TAG_REJECT\n"); 17092 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17093 break; 17094 default: 17095 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17096 "sdintr: default\n"); 17097 /* 17098 * Mark the ssc_flags for detecting invliad pkt_reason. 17099 */ 17100 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17101 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17102 0, "pkt-reason"); 17103 } 17104 sd_pkt_reason_default(un, bp, xp, pktp); 17105 break; 17106 } 17107 17108 exit: 17109 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17110 17111 /* Decrement counter to indicate that the callback routine is done. */ 17112 un->un_in_callback--; 17113 ASSERT(un->un_in_callback >= 0); 17114 17115 /* 17116 * At this point, the pkt has been dispatched, ie, it is either 17117 * being re-tried or has been returned to its caller and should 17118 * not be referenced. 17119 */ 17120 17121 mutex_exit(SD_MUTEX(un)); 17122 } 17123 17124 17125 /* 17126 * Function: sd_print_incomplete_msg 17127 * 17128 * Description: Prints the error message for a CMD_INCOMPLETE error. 17129 * 17130 * Arguments: un - ptr to associated softstate for the device. 17131 * bp - ptr to the buf(9S) for the command. 17132 * arg - message string ptr 17133 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17134 * or SD_NO_RETRY_ISSUED. 17135 * 17136 * Context: May be called under interrupt context 17137 */ 17138 17139 static void 17140 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17141 { 17142 struct scsi_pkt *pktp; 17143 char *msgp; 17144 char *cmdp = arg; 17145 17146 ASSERT(un != NULL); 17147 ASSERT(mutex_owned(SD_MUTEX(un))); 17148 ASSERT(bp != NULL); 17149 ASSERT(arg != NULL); 17150 pktp = SD_GET_PKTP(bp); 17151 ASSERT(pktp != NULL); 17152 17153 switch (code) { 17154 case SD_DELAYED_RETRY_ISSUED: 17155 case SD_IMMEDIATE_RETRY_ISSUED: 17156 msgp = "retrying"; 17157 break; 17158 case SD_NO_RETRY_ISSUED: 17159 default: 17160 msgp = "giving up"; 17161 break; 17162 } 17163 17164 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17165 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17166 "incomplete %s- %s\n", cmdp, msgp); 17167 } 17168 } 17169 17170 17171 17172 /* 17173 * Function: sd_pkt_status_good 17174 * 17175 * Description: Processing for a STATUS_GOOD code in pkt_status. 17176 * 17177 * Context: May be called under interrupt context 17178 */ 17179 17180 static void 17181 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17182 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17183 { 17184 char *cmdp; 17185 17186 ASSERT(un != NULL); 17187 ASSERT(mutex_owned(SD_MUTEX(un))); 17188 ASSERT(bp != NULL); 17189 ASSERT(xp != NULL); 17190 ASSERT(pktp != NULL); 17191 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17192 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17193 ASSERT(pktp->pkt_resid != 0); 17194 17195 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17196 17197 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17198 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17199 case SCMD_READ: 17200 cmdp = "read"; 17201 break; 17202 case SCMD_WRITE: 17203 cmdp = "write"; 17204 break; 17205 default: 17206 SD_UPDATE_B_RESID(bp, pktp); 17207 sd_return_command(un, bp); 17208 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17209 return; 17210 } 17211 17212 /* 17213 * See if we can retry the read/write, preferrably immediately. 17214 * If retries are exhaused, then sd_retry_command() will update 17215 * the b_resid count. 17216 */ 17217 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17218 cmdp, EIO, (clock_t)0, NULL); 17219 17220 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17221 } 17222 17223 17224 17225 17226 17227 /* 17228 * Function: sd_handle_request_sense 17229 * 17230 * Description: Processing for non-auto Request Sense command. 17231 * 17232 * Arguments: un - ptr to associated softstate 17233 * sense_bp - ptr to buf(9S) for the RQS command 17234 * sense_xp - ptr to the sd_xbuf for the RQS command 17235 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17236 * 17237 * Context: May be called under interrupt context 17238 */ 17239 17240 static void 17241 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17242 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17243 { 17244 struct buf *cmd_bp; /* buf for the original command */ 17245 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17246 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17247 size_t actual_len; /* actual sense data length */ 17248 17249 ASSERT(un != NULL); 17250 ASSERT(mutex_owned(SD_MUTEX(un))); 17251 ASSERT(sense_bp != NULL); 17252 ASSERT(sense_xp != NULL); 17253 ASSERT(sense_pktp != NULL); 17254 17255 /* 17256 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17257 * RQS command and not the original command. 17258 */ 17259 ASSERT(sense_pktp == un->un_rqs_pktp); 17260 ASSERT(sense_bp == un->un_rqs_bp); 17261 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17262 (FLAG_SENSING | FLAG_HEAD)); 17263 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17264 FLAG_SENSING) == FLAG_SENSING); 17265 17266 /* These are the bp, xp, and pktp for the original command */ 17267 cmd_bp = sense_xp->xb_sense_bp; 17268 cmd_xp = SD_GET_XBUF(cmd_bp); 17269 cmd_pktp = SD_GET_PKTP(cmd_bp); 17270 17271 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17272 /* 17273 * The REQUEST SENSE command failed. Release the REQUEST 17274 * SENSE command for re-use, get back the bp for the original 17275 * command, and attempt to re-try the original command if 17276 * FLAG_DIAGNOSE is not set in the original packet. 17277 */ 17278 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17279 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17280 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17281 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17282 NULL, NULL, EIO, (clock_t)0, NULL); 17283 return; 17284 } 17285 } 17286 17287 /* 17288 * Save the relevant sense info into the xp for the original cmd. 17289 * 17290 * Note: if the request sense failed the state info will be zero 17291 * as set in sd_mark_rqs_busy() 17292 */ 17293 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17294 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17295 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17296 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17297 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17298 SENSE_LENGTH)) { 17299 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17300 MAX_SENSE_LENGTH); 17301 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17302 } else { 17303 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17304 SENSE_LENGTH); 17305 if (actual_len < SENSE_LENGTH) { 17306 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17307 } else { 17308 cmd_xp->xb_sense_resid = 0; 17309 } 17310 } 17311 17312 /* 17313 * Free up the RQS command.... 17314 * NOTE: 17315 * Must do this BEFORE calling sd_validate_sense_data! 17316 * sd_validate_sense_data may return the original command in 17317 * which case the pkt will be freed and the flags can no 17318 * longer be touched. 17319 * SD_MUTEX is held through this process until the command 17320 * is dispatched based upon the sense data, so there are 17321 * no race conditions. 17322 */ 17323 (void) sd_mark_rqs_idle(un, sense_xp); 17324 17325 /* 17326 * For a retryable command see if we have valid sense data, if so then 17327 * turn it over to sd_decode_sense() to figure out the right course of 17328 * action. Just fail a non-retryable command. 17329 */ 17330 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17331 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17332 SD_SENSE_DATA_IS_VALID) { 17333 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17334 } 17335 } else { 17336 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17337 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17338 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17339 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17340 sd_return_failed_command(un, cmd_bp, EIO); 17341 } 17342 } 17343 17344 17345 17346 17347 /* 17348 * Function: sd_handle_auto_request_sense 17349 * 17350 * Description: Processing for auto-request sense information. 17351 * 17352 * Arguments: un - ptr to associated softstate 17353 * bp - ptr to buf(9S) for the command 17354 * xp - ptr to the sd_xbuf for the command 17355 * pktp - ptr to the scsi_pkt(9S) for the command 17356 * 17357 * Context: May be called under interrupt context 17358 */ 17359 17360 static void 17361 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17362 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17363 { 17364 struct scsi_arq_status *asp; 17365 size_t actual_len; 17366 17367 ASSERT(un != NULL); 17368 ASSERT(mutex_owned(SD_MUTEX(un))); 17369 ASSERT(bp != NULL); 17370 ASSERT(xp != NULL); 17371 ASSERT(pktp != NULL); 17372 ASSERT(pktp != un->un_rqs_pktp); 17373 ASSERT(bp != un->un_rqs_bp); 17374 17375 /* 17376 * For auto-request sense, we get a scsi_arq_status back from 17377 * the HBA, with the sense data in the sts_sensedata member. 17378 * The pkt_scbp of the packet points to this scsi_arq_status. 17379 */ 17380 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17381 17382 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17383 /* 17384 * The auto REQUEST SENSE failed; see if we can re-try 17385 * the original command. 17386 */ 17387 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17388 "auto request sense failed (reason=%s)\n", 17389 scsi_rname(asp->sts_rqpkt_reason)); 17390 17391 sd_reset_target(un, pktp); 17392 17393 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17394 NULL, NULL, EIO, (clock_t)0, NULL); 17395 return; 17396 } 17397 17398 /* Save the relevant sense info into the xp for the original cmd. */ 17399 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17400 xp->xb_sense_state = asp->sts_rqpkt_state; 17401 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17402 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17403 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17404 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17405 MAX_SENSE_LENGTH); 17406 } else { 17407 if (xp->xb_sense_resid > SENSE_LENGTH) { 17408 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17409 } else { 17410 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17411 } 17412 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17413 if ((((struct uscsi_cmd *) 17414 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17415 xp->xb_sense_resid = (((struct uscsi_cmd *) 17416 (xp->xb_pktinfo))->uscsi_rqlen) - 17417 actual_len; 17418 } else { 17419 xp->xb_sense_resid = 0; 17420 } 17421 } 17422 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17423 } 17424 17425 /* 17426 * See if we have valid sense data, if so then turn it over to 17427 * sd_decode_sense() to figure out the right course of action. 17428 */ 17429 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17430 SD_SENSE_DATA_IS_VALID) { 17431 sd_decode_sense(un, bp, xp, pktp); 17432 } 17433 } 17434 17435 17436 /* 17437 * Function: sd_print_sense_failed_msg 17438 * 17439 * Description: Print log message when RQS has failed. 17440 * 17441 * Arguments: un - ptr to associated softstate 17442 * bp - ptr to buf(9S) for the command 17443 * arg - generic message string ptr 17444 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17445 * or SD_NO_RETRY_ISSUED 17446 * 17447 * Context: May be called from interrupt context 17448 */ 17449 17450 static void 17451 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17452 int code) 17453 { 17454 char *msgp = arg; 17455 17456 ASSERT(un != NULL); 17457 ASSERT(mutex_owned(SD_MUTEX(un))); 17458 ASSERT(bp != NULL); 17459 17460 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17461 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17462 } 17463 } 17464 17465 17466 /* 17467 * Function: sd_validate_sense_data 17468 * 17469 * Description: Check the given sense data for validity. 17470 * If the sense data is not valid, the command will 17471 * be either failed or retried! 17472 * 17473 * Return Code: SD_SENSE_DATA_IS_INVALID 17474 * SD_SENSE_DATA_IS_VALID 17475 * 17476 * Context: May be called from interrupt context 17477 */ 17478 17479 static int 17480 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17481 size_t actual_len) 17482 { 17483 struct scsi_extended_sense *esp; 17484 struct scsi_pkt *pktp; 17485 char *msgp = NULL; 17486 sd_ssc_t *sscp; 17487 17488 ASSERT(un != NULL); 17489 ASSERT(mutex_owned(SD_MUTEX(un))); 17490 ASSERT(bp != NULL); 17491 ASSERT(bp != un->un_rqs_bp); 17492 ASSERT(xp != NULL); 17493 ASSERT(un->un_fm_private != NULL); 17494 17495 pktp = SD_GET_PKTP(bp); 17496 ASSERT(pktp != NULL); 17497 17498 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17499 ASSERT(sscp != NULL); 17500 17501 /* 17502 * Check the status of the RQS command (auto or manual). 17503 */ 17504 switch (xp->xb_sense_status & STATUS_MASK) { 17505 case STATUS_GOOD: 17506 break; 17507 17508 case STATUS_RESERVATION_CONFLICT: 17509 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17510 return (SD_SENSE_DATA_IS_INVALID); 17511 17512 case STATUS_BUSY: 17513 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17514 "Busy Status on REQUEST SENSE\n"); 17515 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17516 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17517 return (SD_SENSE_DATA_IS_INVALID); 17518 17519 case STATUS_QFULL: 17520 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17521 "QFULL Status on REQUEST SENSE\n"); 17522 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17523 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17524 return (SD_SENSE_DATA_IS_INVALID); 17525 17526 case STATUS_CHECK: 17527 case STATUS_TERMINATED: 17528 msgp = "Check Condition on REQUEST SENSE\n"; 17529 goto sense_failed; 17530 17531 default: 17532 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17533 goto sense_failed; 17534 } 17535 17536 /* 17537 * See if we got the minimum required amount of sense data. 17538 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17539 * or less. 17540 */ 17541 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17542 (actual_len == 0)) { 17543 msgp = "Request Sense couldn't get sense data\n"; 17544 goto sense_failed; 17545 } 17546 17547 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17548 msgp = "Not enough sense information\n"; 17549 /* Mark the ssc_flags for detecting invalid sense data */ 17550 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17551 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17552 "sense-data"); 17553 } 17554 goto sense_failed; 17555 } 17556 17557 /* 17558 * We require the extended sense data 17559 */ 17560 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17561 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17562 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17563 static char tmp[8]; 17564 static char buf[148]; 17565 char *p = (char *)(xp->xb_sense_data); 17566 int i; 17567 17568 mutex_enter(&sd_sense_mutex); 17569 (void) strcpy(buf, "undecodable sense information:"); 17570 for (i = 0; i < actual_len; i++) { 17571 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17572 (void) strcpy(&buf[strlen(buf)], tmp); 17573 } 17574 i = strlen(buf); 17575 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17576 17577 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17578 scsi_log(SD_DEVINFO(un), sd_label, 17579 CE_WARN, buf); 17580 } 17581 mutex_exit(&sd_sense_mutex); 17582 } 17583 17584 /* Mark the ssc_flags for detecting invalid sense data */ 17585 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17586 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17587 "sense-data"); 17588 } 17589 17590 /* Note: Legacy behavior, fail the command with no retry */ 17591 sd_return_failed_command(un, bp, EIO); 17592 return (SD_SENSE_DATA_IS_INVALID); 17593 } 17594 17595 /* 17596 * Check that es_code is valid (es_class concatenated with es_code 17597 * make up the "response code" field. es_class will always be 7, so 17598 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17599 * format. 17600 */ 17601 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17602 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17603 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17604 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17605 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17606 /* Mark the ssc_flags for detecting invalid sense data */ 17607 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17608 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17609 "sense-data"); 17610 } 17611 goto sense_failed; 17612 } 17613 17614 return (SD_SENSE_DATA_IS_VALID); 17615 17616 sense_failed: 17617 /* 17618 * If the request sense failed (for whatever reason), attempt 17619 * to retry the original command. 17620 */ 17621 #if defined(__i386) || defined(__amd64) 17622 /* 17623 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17624 * sddef.h for Sparc platform, and x86 uses 1 binary 17625 * for both SCSI/FC. 17626 * The SD_RETRY_DELAY value need to be adjusted here 17627 * when SD_RETRY_DELAY change in sddef.h 17628 */ 17629 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17630 sd_print_sense_failed_msg, msgp, EIO, 17631 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17632 #else 17633 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17634 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17635 #endif 17636 17637 return (SD_SENSE_DATA_IS_INVALID); 17638 } 17639 17640 /* 17641 * Function: sd_decode_sense 17642 * 17643 * Description: Take recovery action(s) when SCSI Sense Data is received. 17644 * 17645 * Context: Interrupt context. 17646 */ 17647 17648 static void 17649 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17650 struct scsi_pkt *pktp) 17651 { 17652 uint8_t sense_key; 17653 17654 ASSERT(un != NULL); 17655 ASSERT(mutex_owned(SD_MUTEX(un))); 17656 ASSERT(bp != NULL); 17657 ASSERT(bp != un->un_rqs_bp); 17658 ASSERT(xp != NULL); 17659 ASSERT(pktp != NULL); 17660 17661 sense_key = scsi_sense_key(xp->xb_sense_data); 17662 17663 switch (sense_key) { 17664 case KEY_NO_SENSE: 17665 sd_sense_key_no_sense(un, bp, xp, pktp); 17666 break; 17667 case KEY_RECOVERABLE_ERROR: 17668 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17669 bp, xp, pktp); 17670 break; 17671 case KEY_NOT_READY: 17672 sd_sense_key_not_ready(un, xp->xb_sense_data, 17673 bp, xp, pktp); 17674 break; 17675 case KEY_MEDIUM_ERROR: 17676 case KEY_HARDWARE_ERROR: 17677 sd_sense_key_medium_or_hardware_error(un, 17678 xp->xb_sense_data, bp, xp, pktp); 17679 break; 17680 case KEY_ILLEGAL_REQUEST: 17681 sd_sense_key_illegal_request(un, bp, xp, pktp); 17682 break; 17683 case KEY_UNIT_ATTENTION: 17684 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17685 bp, xp, pktp); 17686 break; 17687 case KEY_WRITE_PROTECT: 17688 case KEY_VOLUME_OVERFLOW: 17689 case KEY_MISCOMPARE: 17690 sd_sense_key_fail_command(un, bp, xp, pktp); 17691 break; 17692 case KEY_BLANK_CHECK: 17693 sd_sense_key_blank_check(un, bp, xp, pktp); 17694 break; 17695 case KEY_ABORTED_COMMAND: 17696 sd_sense_key_aborted_command(un, bp, xp, pktp); 17697 break; 17698 case KEY_VENDOR_UNIQUE: 17699 case KEY_COPY_ABORTED: 17700 case KEY_EQUAL: 17701 case KEY_RESERVED: 17702 default: 17703 sd_sense_key_default(un, xp->xb_sense_data, 17704 bp, xp, pktp); 17705 break; 17706 } 17707 } 17708 17709 17710 /* 17711 * Function: sd_dump_memory 17712 * 17713 * Description: Debug logging routine to print the contents of a user provided 17714 * buffer. The output of the buffer is broken up into 256 byte 17715 * segments due to a size constraint of the scsi_log. 17716 * implementation. 17717 * 17718 * Arguments: un - ptr to softstate 17719 * comp - component mask 17720 * title - "title" string to preceed data when printed 17721 * data - ptr to data block to be printed 17722 * len - size of data block to be printed 17723 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17724 * 17725 * Context: May be called from interrupt context 17726 */ 17727 17728 #define SD_DUMP_MEMORY_BUF_SIZE 256 17729 17730 static char *sd_dump_format_string[] = { 17731 " 0x%02x", 17732 " %c" 17733 }; 17734 17735 static void 17736 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17737 int len, int fmt) 17738 { 17739 int i, j; 17740 int avail_count; 17741 int start_offset; 17742 int end_offset; 17743 size_t entry_len; 17744 char *bufp; 17745 char *local_buf; 17746 char *format_string; 17747 17748 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17749 17750 /* 17751 * In the debug version of the driver, this function is called from a 17752 * number of places which are NOPs in the release driver. 17753 * The debug driver therefore has additional methods of filtering 17754 * debug output. 17755 */ 17756 #ifdef SDDEBUG 17757 /* 17758 * In the debug version of the driver we can reduce the amount of debug 17759 * messages by setting sd_error_level to something other than 17760 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17761 * sd_component_mask. 17762 */ 17763 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17764 (sd_error_level != SCSI_ERR_ALL)) { 17765 return; 17766 } 17767 if (((sd_component_mask & comp) == 0) || 17768 (sd_error_level != SCSI_ERR_ALL)) { 17769 return; 17770 } 17771 #else 17772 if (sd_error_level != SCSI_ERR_ALL) { 17773 return; 17774 } 17775 #endif 17776 17777 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17778 bufp = local_buf; 17779 /* 17780 * Available length is the length of local_buf[], minus the 17781 * length of the title string, minus one for the ":", minus 17782 * one for the newline, minus one for the NULL terminator. 17783 * This gives the #bytes available for holding the printed 17784 * values from the given data buffer. 17785 */ 17786 if (fmt == SD_LOG_HEX) { 17787 format_string = sd_dump_format_string[0]; 17788 } else /* SD_LOG_CHAR */ { 17789 format_string = sd_dump_format_string[1]; 17790 } 17791 /* 17792 * Available count is the number of elements from the given 17793 * data buffer that we can fit into the available length. 17794 * This is based upon the size of the format string used. 17795 * Make one entry and find it's size. 17796 */ 17797 (void) sprintf(bufp, format_string, data[0]); 17798 entry_len = strlen(bufp); 17799 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17800 17801 j = 0; 17802 while (j < len) { 17803 bufp = local_buf; 17804 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17805 start_offset = j; 17806 17807 end_offset = start_offset + avail_count; 17808 17809 (void) sprintf(bufp, "%s:", title); 17810 bufp += strlen(bufp); 17811 for (i = start_offset; ((i < end_offset) && (j < len)); 17812 i++, j++) { 17813 (void) sprintf(bufp, format_string, data[i]); 17814 bufp += entry_len; 17815 } 17816 (void) sprintf(bufp, "\n"); 17817 17818 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17819 } 17820 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17821 } 17822 17823 /* 17824 * Function: sd_print_sense_msg 17825 * 17826 * Description: Log a message based upon the given sense data. 17827 * 17828 * Arguments: un - ptr to associated softstate 17829 * bp - ptr to buf(9S) for the command 17830 * arg - ptr to associate sd_sense_info struct 17831 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17832 * or SD_NO_RETRY_ISSUED 17833 * 17834 * Context: May be called from interrupt context 17835 */ 17836 17837 static void 17838 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17839 { 17840 struct sd_xbuf *xp; 17841 struct scsi_pkt *pktp; 17842 uint8_t *sensep; 17843 daddr_t request_blkno; 17844 diskaddr_t err_blkno; 17845 int severity; 17846 int pfa_flag; 17847 extern struct scsi_key_strings scsi_cmds[]; 17848 17849 ASSERT(un != NULL); 17850 ASSERT(mutex_owned(SD_MUTEX(un))); 17851 ASSERT(bp != NULL); 17852 xp = SD_GET_XBUF(bp); 17853 ASSERT(xp != NULL); 17854 pktp = SD_GET_PKTP(bp); 17855 ASSERT(pktp != NULL); 17856 ASSERT(arg != NULL); 17857 17858 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17859 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17860 17861 if ((code == SD_DELAYED_RETRY_ISSUED) || 17862 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17863 severity = SCSI_ERR_RETRYABLE; 17864 } 17865 17866 /* Use absolute block number for the request block number */ 17867 request_blkno = xp->xb_blkno; 17868 17869 /* 17870 * Now try to get the error block number from the sense data 17871 */ 17872 sensep = xp->xb_sense_data; 17873 17874 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17875 (uint64_t *)&err_blkno)) { 17876 /* 17877 * We retrieved the error block number from the information 17878 * portion of the sense data. 17879 * 17880 * For USCSI commands we are better off using the error 17881 * block no. as the requested block no. (This is the best 17882 * we can estimate.) 17883 */ 17884 if ((SD_IS_BUFIO(xp) == FALSE) && 17885 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17886 request_blkno = err_blkno; 17887 } 17888 } else { 17889 /* 17890 * Without the es_valid bit set (for fixed format) or an 17891 * information descriptor (for descriptor format) we cannot 17892 * be certain of the error blkno, so just use the 17893 * request_blkno. 17894 */ 17895 err_blkno = (diskaddr_t)request_blkno; 17896 } 17897 17898 /* 17899 * The following will log the buffer contents for the release driver 17900 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17901 * level is set to verbose. 17902 */ 17903 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17904 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17905 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17906 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17907 17908 if (pfa_flag == FALSE) { 17909 /* This is normally only set for USCSI */ 17910 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17911 return; 17912 } 17913 17914 if ((SD_IS_BUFIO(xp) == TRUE) && 17915 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17916 (severity < sd_error_level))) { 17917 return; 17918 } 17919 } 17920 /* 17921 * Check for Sonoma Failover and keep a count of how many failed I/O's 17922 */ 17923 if ((SD_IS_LSI(un)) && 17924 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 17925 (scsi_sense_asc(sensep) == 0x94) && 17926 (scsi_sense_ascq(sensep) == 0x01)) { 17927 un->un_sonoma_failure_count++; 17928 if (un->un_sonoma_failure_count > 1) { 17929 return; 17930 } 17931 } 17932 17933 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 17934 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 17935 (pktp->pkt_resid == 0))) { 17936 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17937 request_blkno, err_blkno, scsi_cmds, 17938 (struct scsi_extended_sense *)sensep, 17939 un->un_additional_codes, NULL); 17940 } 17941 } 17942 17943 /* 17944 * Function: sd_sense_key_no_sense 17945 * 17946 * Description: Recovery action when sense data was not received. 17947 * 17948 * Context: May be called from interrupt context 17949 */ 17950 17951 static void 17952 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17953 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17954 { 17955 struct sd_sense_info si; 17956 17957 ASSERT(un != NULL); 17958 ASSERT(mutex_owned(SD_MUTEX(un))); 17959 ASSERT(bp != NULL); 17960 ASSERT(xp != NULL); 17961 ASSERT(pktp != NULL); 17962 17963 si.ssi_severity = SCSI_ERR_FATAL; 17964 si.ssi_pfa_flag = FALSE; 17965 17966 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17967 17968 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17969 &si, EIO, (clock_t)0, NULL); 17970 } 17971 17972 17973 /* 17974 * Function: sd_sense_key_recoverable_error 17975 * 17976 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17977 * 17978 * Context: May be called from interrupt context 17979 */ 17980 17981 static void 17982 sd_sense_key_recoverable_error(struct sd_lun *un, 17983 uint8_t *sense_datap, 17984 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17985 { 17986 struct sd_sense_info si; 17987 uint8_t asc = scsi_sense_asc(sense_datap); 17988 17989 ASSERT(un != NULL); 17990 ASSERT(mutex_owned(SD_MUTEX(un))); 17991 ASSERT(bp != NULL); 17992 ASSERT(xp != NULL); 17993 ASSERT(pktp != NULL); 17994 17995 /* 17996 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17997 */ 17998 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17999 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18000 si.ssi_severity = SCSI_ERR_INFO; 18001 si.ssi_pfa_flag = TRUE; 18002 } else { 18003 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18004 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 18005 si.ssi_severity = SCSI_ERR_RECOVERED; 18006 si.ssi_pfa_flag = FALSE; 18007 } 18008 18009 if (pktp->pkt_resid == 0) { 18010 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18011 sd_return_command(un, bp); 18012 return; 18013 } 18014 18015 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18016 &si, EIO, (clock_t)0, NULL); 18017 } 18018 18019 18020 18021 18022 /* 18023 * Function: sd_sense_key_not_ready 18024 * 18025 * Description: Recovery actions for a SCSI "Not Ready" sense key. 18026 * 18027 * Context: May be called from interrupt context 18028 */ 18029 18030 static void 18031 sd_sense_key_not_ready(struct sd_lun *un, 18032 uint8_t *sense_datap, 18033 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18034 { 18035 struct sd_sense_info si; 18036 uint8_t asc = scsi_sense_asc(sense_datap); 18037 uint8_t ascq = scsi_sense_ascq(sense_datap); 18038 18039 ASSERT(un != NULL); 18040 ASSERT(mutex_owned(SD_MUTEX(un))); 18041 ASSERT(bp != NULL); 18042 ASSERT(xp != NULL); 18043 ASSERT(pktp != NULL); 18044 18045 si.ssi_severity = SCSI_ERR_FATAL; 18046 si.ssi_pfa_flag = FALSE; 18047 18048 /* 18049 * Update error stats after first NOT READY error. Disks may have 18050 * been powered down and may need to be restarted. For CDROMs, 18051 * report NOT READY errors only if media is present. 18052 */ 18053 if ((ISCD(un) && (asc == 0x3A)) || 18054 (xp->xb_nr_retry_count > 0)) { 18055 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18056 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18057 } 18058 18059 /* 18060 * Just fail if the "not ready" retry limit has been reached. 18061 */ 18062 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18063 /* Special check for error message printing for removables. */ 18064 if (un->un_f_has_removable_media && (asc == 0x04) && 18065 (ascq >= 0x04)) { 18066 si.ssi_severity = SCSI_ERR_ALL; 18067 } 18068 goto fail_command; 18069 } 18070 18071 /* 18072 * Check the ASC and ASCQ in the sense data as needed, to determine 18073 * what to do. 18074 */ 18075 switch (asc) { 18076 case 0x04: /* LOGICAL UNIT NOT READY */ 18077 /* 18078 * disk drives that don't spin up result in a very long delay 18079 * in format without warning messages. We will log a message 18080 * if the error level is set to verbose. 18081 */ 18082 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18083 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18084 "logical unit not ready, resetting disk\n"); 18085 } 18086 18087 /* 18088 * There are different requirements for CDROMs and disks for 18089 * the number of retries. If a CD-ROM is giving this, it is 18090 * probably reading TOC and is in the process of getting 18091 * ready, so we should keep on trying for a long time to make 18092 * sure that all types of media are taken in account (for 18093 * some media the drive takes a long time to read TOC). For 18094 * disks we do not want to retry this too many times as this 18095 * can cause a long hang in format when the drive refuses to 18096 * spin up (a very common failure). 18097 */ 18098 switch (ascq) { 18099 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18100 /* 18101 * Disk drives frequently refuse to spin up which 18102 * results in a very long hang in format without 18103 * warning messages. 18104 * 18105 * Note: This code preserves the legacy behavior of 18106 * comparing xb_nr_retry_count against zero for fibre 18107 * channel targets instead of comparing against the 18108 * un_reset_retry_count value. The reason for this 18109 * discrepancy has been so utterly lost beneath the 18110 * Sands of Time that even Indiana Jones could not 18111 * find it. 18112 */ 18113 if (un->un_f_is_fibre == TRUE) { 18114 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18115 (xp->xb_nr_retry_count > 0)) && 18116 (un->un_startstop_timeid == NULL)) { 18117 scsi_log(SD_DEVINFO(un), sd_label, 18118 CE_WARN, "logical unit not ready, " 18119 "resetting disk\n"); 18120 sd_reset_target(un, pktp); 18121 } 18122 } else { 18123 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18124 (xp->xb_nr_retry_count > 18125 un->un_reset_retry_count)) && 18126 (un->un_startstop_timeid == NULL)) { 18127 scsi_log(SD_DEVINFO(un), sd_label, 18128 CE_WARN, "logical unit not ready, " 18129 "resetting disk\n"); 18130 sd_reset_target(un, pktp); 18131 } 18132 } 18133 break; 18134 18135 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18136 /* 18137 * If the target is in the process of becoming 18138 * ready, just proceed with the retry. This can 18139 * happen with CD-ROMs that take a long time to 18140 * read TOC after a power cycle or reset. 18141 */ 18142 goto do_retry; 18143 18144 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18145 break; 18146 18147 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18148 /* 18149 * Retries cannot help here so just fail right away. 18150 */ 18151 goto fail_command; 18152 18153 case 0x88: 18154 /* 18155 * Vendor-unique code for T3/T4: it indicates a 18156 * path problem in a mutipathed config, but as far as 18157 * the target driver is concerned it equates to a fatal 18158 * error, so we should just fail the command right away 18159 * (without printing anything to the console). If this 18160 * is not a T3/T4, fall thru to the default recovery 18161 * action. 18162 * T3/T4 is FC only, don't need to check is_fibre 18163 */ 18164 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18165 sd_return_failed_command(un, bp, EIO); 18166 return; 18167 } 18168 /* FALLTHRU */ 18169 18170 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18171 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18172 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18173 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18174 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18175 default: /* Possible future codes in SCSI spec? */ 18176 /* 18177 * For removable-media devices, do not retry if 18178 * ASCQ > 2 as these result mostly from USCSI commands 18179 * on MMC devices issued to check status of an 18180 * operation initiated in immediate mode. Also for 18181 * ASCQ >= 4 do not print console messages as these 18182 * mainly represent a user-initiated operation 18183 * instead of a system failure. 18184 */ 18185 if (un->un_f_has_removable_media) { 18186 si.ssi_severity = SCSI_ERR_ALL; 18187 goto fail_command; 18188 } 18189 break; 18190 } 18191 18192 /* 18193 * As part of our recovery attempt for the NOT READY 18194 * condition, we issue a START STOP UNIT command. However 18195 * we want to wait for a short delay before attempting this 18196 * as there may still be more commands coming back from the 18197 * target with the check condition. To do this we use 18198 * timeout(9F) to call sd_start_stop_unit_callback() after 18199 * the delay interval expires. (sd_start_stop_unit_callback() 18200 * dispatches sd_start_stop_unit_task(), which will issue 18201 * the actual START STOP UNIT command. The delay interval 18202 * is one-half of the delay that we will use to retry the 18203 * command that generated the NOT READY condition. 18204 * 18205 * Note that we could just dispatch sd_start_stop_unit_task() 18206 * from here and allow it to sleep for the delay interval, 18207 * but then we would be tying up the taskq thread 18208 * uncesessarily for the duration of the delay. 18209 * 18210 * Do not issue the START STOP UNIT if the current command 18211 * is already a START STOP UNIT. 18212 */ 18213 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18214 break; 18215 } 18216 18217 /* 18218 * Do not schedule the timeout if one is already pending. 18219 */ 18220 if (un->un_startstop_timeid != NULL) { 18221 SD_INFO(SD_LOG_ERROR, un, 18222 "sd_sense_key_not_ready: restart already issued to" 18223 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18224 ddi_get_instance(SD_DEVINFO(un))); 18225 break; 18226 } 18227 18228 /* 18229 * Schedule the START STOP UNIT command, then queue the command 18230 * for a retry. 18231 * 18232 * Note: A timeout is not scheduled for this retry because we 18233 * want the retry to be serial with the START_STOP_UNIT. The 18234 * retry will be started when the START_STOP_UNIT is completed 18235 * in sd_start_stop_unit_task. 18236 */ 18237 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18238 un, un->un_busy_timeout / 2); 18239 xp->xb_nr_retry_count++; 18240 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18241 return; 18242 18243 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18244 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18245 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18246 "unit does not respond to selection\n"); 18247 } 18248 break; 18249 18250 case 0x3A: /* MEDIUM NOT PRESENT */ 18251 if (sd_error_level >= SCSI_ERR_FATAL) { 18252 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18253 "Caddy not inserted in drive\n"); 18254 } 18255 18256 sr_ejected(un); 18257 un->un_mediastate = DKIO_EJECTED; 18258 /* The state has changed, inform the media watch routines */ 18259 cv_broadcast(&un->un_state_cv); 18260 /* Just fail if no media is present in the drive. */ 18261 goto fail_command; 18262 18263 default: 18264 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18265 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18266 "Unit not Ready. Additional sense code 0x%x\n", 18267 asc); 18268 } 18269 break; 18270 } 18271 18272 do_retry: 18273 18274 /* 18275 * Retry the command, as some targets may report NOT READY for 18276 * several seconds after being reset. 18277 */ 18278 xp->xb_nr_retry_count++; 18279 si.ssi_severity = SCSI_ERR_RETRYABLE; 18280 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18281 &si, EIO, un->un_busy_timeout, NULL); 18282 18283 return; 18284 18285 fail_command: 18286 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18287 sd_return_failed_command(un, bp, EIO); 18288 } 18289 18290 18291 18292 /* 18293 * Function: sd_sense_key_medium_or_hardware_error 18294 * 18295 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18296 * sense key. 18297 * 18298 * Context: May be called from interrupt context 18299 */ 18300 18301 static void 18302 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 18303 uint8_t *sense_datap, 18304 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18305 { 18306 struct sd_sense_info si; 18307 uint8_t sense_key = scsi_sense_key(sense_datap); 18308 uint8_t asc = scsi_sense_asc(sense_datap); 18309 18310 ASSERT(un != NULL); 18311 ASSERT(mutex_owned(SD_MUTEX(un))); 18312 ASSERT(bp != NULL); 18313 ASSERT(xp != NULL); 18314 ASSERT(pktp != NULL); 18315 18316 si.ssi_severity = SCSI_ERR_FATAL; 18317 si.ssi_pfa_flag = FALSE; 18318 18319 if (sense_key == KEY_MEDIUM_ERROR) { 18320 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18321 } 18322 18323 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18324 18325 if ((un->un_reset_retry_count != 0) && 18326 (xp->xb_retry_count == un->un_reset_retry_count)) { 18327 mutex_exit(SD_MUTEX(un)); 18328 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18329 if (un->un_f_allow_bus_device_reset == TRUE) { 18330 18331 boolean_t try_resetting_target = B_TRUE; 18332 18333 /* 18334 * We need to be able to handle specific ASC when we are 18335 * handling a KEY_HARDWARE_ERROR. In particular 18336 * taking the default action of resetting the target may 18337 * not be the appropriate way to attempt recovery. 18338 * Resetting a target because of a single LUN failure 18339 * victimizes all LUNs on that target. 18340 * 18341 * This is true for the LSI arrays, if an LSI 18342 * array controller returns an ASC of 0x84 (LUN Dead) we 18343 * should trust it. 18344 */ 18345 18346 if (sense_key == KEY_HARDWARE_ERROR) { 18347 switch (asc) { 18348 case 0x84: 18349 if (SD_IS_LSI(un)) { 18350 try_resetting_target = B_FALSE; 18351 } 18352 break; 18353 default: 18354 break; 18355 } 18356 } 18357 18358 if (try_resetting_target == B_TRUE) { 18359 int reset_retval = 0; 18360 if (un->un_f_lun_reset_enabled == TRUE) { 18361 SD_TRACE(SD_LOG_IO_CORE, un, 18362 "sd_sense_key_medium_or_hardware_" 18363 "error: issuing RESET_LUN\n"); 18364 reset_retval = 18365 scsi_reset(SD_ADDRESS(un), 18366 RESET_LUN); 18367 } 18368 if (reset_retval == 0) { 18369 SD_TRACE(SD_LOG_IO_CORE, un, 18370 "sd_sense_key_medium_or_hardware_" 18371 "error: issuing RESET_TARGET\n"); 18372 (void) scsi_reset(SD_ADDRESS(un), 18373 RESET_TARGET); 18374 } 18375 } 18376 } 18377 mutex_enter(SD_MUTEX(un)); 18378 } 18379 18380 /* 18381 * This really ought to be a fatal error, but we will retry anyway 18382 * as some drives report this as a spurious error. 18383 */ 18384 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18385 &si, EIO, (clock_t)0, NULL); 18386 } 18387 18388 18389 18390 /* 18391 * Function: sd_sense_key_illegal_request 18392 * 18393 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18394 * 18395 * Context: May be called from interrupt context 18396 */ 18397 18398 static void 18399 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18400 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18401 { 18402 struct sd_sense_info si; 18403 18404 ASSERT(un != NULL); 18405 ASSERT(mutex_owned(SD_MUTEX(un))); 18406 ASSERT(bp != NULL); 18407 ASSERT(xp != NULL); 18408 ASSERT(pktp != NULL); 18409 18410 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18411 18412 si.ssi_severity = SCSI_ERR_INFO; 18413 si.ssi_pfa_flag = FALSE; 18414 18415 /* Pointless to retry if the target thinks it's an illegal request */ 18416 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18417 sd_return_failed_command(un, bp, EIO); 18418 } 18419 18420 18421 18422 18423 /* 18424 * Function: sd_sense_key_unit_attention 18425 * 18426 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18427 * 18428 * Context: May be called from interrupt context 18429 */ 18430 18431 static void 18432 sd_sense_key_unit_attention(struct sd_lun *un, 18433 uint8_t *sense_datap, 18434 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18435 { 18436 /* 18437 * For UNIT ATTENTION we allow retries for one minute. Devices 18438 * like Sonoma can return UNIT ATTENTION close to a minute 18439 * under certain conditions. 18440 */ 18441 int retry_check_flag = SD_RETRIES_UA; 18442 boolean_t kstat_updated = B_FALSE; 18443 struct sd_sense_info si; 18444 uint8_t asc = scsi_sense_asc(sense_datap); 18445 uint8_t ascq = scsi_sense_ascq(sense_datap); 18446 18447 ASSERT(un != NULL); 18448 ASSERT(mutex_owned(SD_MUTEX(un))); 18449 ASSERT(bp != NULL); 18450 ASSERT(xp != NULL); 18451 ASSERT(pktp != NULL); 18452 18453 si.ssi_severity = SCSI_ERR_INFO; 18454 si.ssi_pfa_flag = FALSE; 18455 18456 18457 switch (asc) { 18458 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18459 if (sd_report_pfa != 0) { 18460 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18461 si.ssi_pfa_flag = TRUE; 18462 retry_check_flag = SD_RETRIES_STANDARD; 18463 goto do_retry; 18464 } 18465 18466 break; 18467 18468 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18469 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18470 un->un_resvd_status |= 18471 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18472 } 18473 #ifdef _LP64 18474 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18475 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18476 un, KM_NOSLEEP) == 0) { 18477 /* 18478 * If we can't dispatch the task we'll just 18479 * live without descriptor sense. We can 18480 * try again on the next "unit attention" 18481 */ 18482 SD_ERROR(SD_LOG_ERROR, un, 18483 "sd_sense_key_unit_attention: " 18484 "Could not dispatch " 18485 "sd_reenable_dsense_task\n"); 18486 } 18487 } 18488 #endif /* _LP64 */ 18489 /* FALLTHRU */ 18490 18491 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18492 if (!un->un_f_has_removable_media) { 18493 break; 18494 } 18495 18496 /* 18497 * When we get a unit attention from a removable-media device, 18498 * it may be in a state that will take a long time to recover 18499 * (e.g., from a reset). Since we are executing in interrupt 18500 * context here, we cannot wait around for the device to come 18501 * back. So hand this command off to sd_media_change_task() 18502 * for deferred processing under taskq thread context. (Note 18503 * that the command still may be failed if a problem is 18504 * encountered at a later time.) 18505 */ 18506 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18507 KM_NOSLEEP) == 0) { 18508 /* 18509 * Cannot dispatch the request so fail the command. 18510 */ 18511 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18512 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18513 si.ssi_severity = SCSI_ERR_FATAL; 18514 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18515 sd_return_failed_command(un, bp, EIO); 18516 } 18517 18518 /* 18519 * If failed to dispatch sd_media_change_task(), we already 18520 * updated kstat. If succeed to dispatch sd_media_change_task(), 18521 * we should update kstat later if it encounters an error. So, 18522 * we update kstat_updated flag here. 18523 */ 18524 kstat_updated = B_TRUE; 18525 18526 /* 18527 * Either the command has been successfully dispatched to a 18528 * task Q for retrying, or the dispatch failed. In either case 18529 * do NOT retry again by calling sd_retry_command. This sets up 18530 * two retries of the same command and when one completes and 18531 * frees the resources the other will access freed memory, 18532 * a bad thing. 18533 */ 18534 return; 18535 18536 default: 18537 break; 18538 } 18539 18540 /* 18541 * ASC ASCQ 18542 * 2A 09 Capacity data has changed 18543 * 2A 01 Mode parameters changed 18544 * 3F 0E Reported luns data has changed 18545 * Arrays that support logical unit expansion should report 18546 * capacity changes(2Ah/09). Mode parameters changed and 18547 * reported luns data has changed are the approximation. 18548 */ 18549 if (((asc == 0x2a) && (ascq == 0x09)) || 18550 ((asc == 0x2a) && (ascq == 0x01)) || 18551 ((asc == 0x3f) && (ascq == 0x0e))) { 18552 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18553 KM_NOSLEEP) == 0) { 18554 SD_ERROR(SD_LOG_ERROR, un, 18555 "sd_sense_key_unit_attention: " 18556 "Could not dispatch sd_target_change_task\n"); 18557 } 18558 } 18559 18560 /* 18561 * Update kstat if we haven't done that. 18562 */ 18563 if (!kstat_updated) { 18564 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18565 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18566 } 18567 18568 do_retry: 18569 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18570 EIO, SD_UA_RETRY_DELAY, NULL); 18571 } 18572 18573 18574 18575 /* 18576 * Function: sd_sense_key_fail_command 18577 * 18578 * Description: Use to fail a command when we don't like the sense key that 18579 * was returned. 18580 * 18581 * Context: May be called from interrupt context 18582 */ 18583 18584 static void 18585 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18586 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18587 { 18588 struct sd_sense_info si; 18589 18590 ASSERT(un != NULL); 18591 ASSERT(mutex_owned(SD_MUTEX(un))); 18592 ASSERT(bp != NULL); 18593 ASSERT(xp != NULL); 18594 ASSERT(pktp != NULL); 18595 18596 si.ssi_severity = SCSI_ERR_FATAL; 18597 si.ssi_pfa_flag = FALSE; 18598 18599 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18600 sd_return_failed_command(un, bp, EIO); 18601 } 18602 18603 18604 18605 /* 18606 * Function: sd_sense_key_blank_check 18607 * 18608 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18609 * Has no monetary connotation. 18610 * 18611 * Context: May be called from interrupt context 18612 */ 18613 18614 static void 18615 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18616 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18617 { 18618 struct sd_sense_info si; 18619 18620 ASSERT(un != NULL); 18621 ASSERT(mutex_owned(SD_MUTEX(un))); 18622 ASSERT(bp != NULL); 18623 ASSERT(xp != NULL); 18624 ASSERT(pktp != NULL); 18625 18626 /* 18627 * Blank check is not fatal for removable devices, therefore 18628 * it does not require a console message. 18629 */ 18630 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18631 SCSI_ERR_FATAL; 18632 si.ssi_pfa_flag = FALSE; 18633 18634 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18635 sd_return_failed_command(un, bp, EIO); 18636 } 18637 18638 18639 18640 18641 /* 18642 * Function: sd_sense_key_aborted_command 18643 * 18644 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18645 * 18646 * Context: May be called from interrupt context 18647 */ 18648 18649 static void 18650 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18651 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18652 { 18653 struct sd_sense_info si; 18654 18655 ASSERT(un != NULL); 18656 ASSERT(mutex_owned(SD_MUTEX(un))); 18657 ASSERT(bp != NULL); 18658 ASSERT(xp != NULL); 18659 ASSERT(pktp != NULL); 18660 18661 si.ssi_severity = SCSI_ERR_FATAL; 18662 si.ssi_pfa_flag = FALSE; 18663 18664 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18665 18666 /* 18667 * This really ought to be a fatal error, but we will retry anyway 18668 * as some drives report this as a spurious error. 18669 */ 18670 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18671 &si, EIO, drv_usectohz(100000), NULL); 18672 } 18673 18674 18675 18676 /* 18677 * Function: sd_sense_key_default 18678 * 18679 * Description: Default recovery action for several SCSI sense keys (basically 18680 * attempts a retry). 18681 * 18682 * Context: May be called from interrupt context 18683 */ 18684 18685 static void 18686 sd_sense_key_default(struct sd_lun *un, 18687 uint8_t *sense_datap, 18688 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18689 { 18690 struct sd_sense_info si; 18691 uint8_t sense_key = scsi_sense_key(sense_datap); 18692 18693 ASSERT(un != NULL); 18694 ASSERT(mutex_owned(SD_MUTEX(un))); 18695 ASSERT(bp != NULL); 18696 ASSERT(xp != NULL); 18697 ASSERT(pktp != NULL); 18698 18699 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18700 18701 /* 18702 * Undecoded sense key. Attempt retries and hope that will fix 18703 * the problem. Otherwise, we're dead. 18704 */ 18705 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18706 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18707 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18708 } 18709 18710 si.ssi_severity = SCSI_ERR_FATAL; 18711 si.ssi_pfa_flag = FALSE; 18712 18713 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18714 &si, EIO, (clock_t)0, NULL); 18715 } 18716 18717 18718 18719 /* 18720 * Function: sd_print_retry_msg 18721 * 18722 * Description: Print a message indicating the retry action being taken. 18723 * 18724 * Arguments: un - ptr to associated softstate 18725 * bp - ptr to buf(9S) for the command 18726 * arg - not used. 18727 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18728 * or SD_NO_RETRY_ISSUED 18729 * 18730 * Context: May be called from interrupt context 18731 */ 18732 /* ARGSUSED */ 18733 static void 18734 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18735 { 18736 struct sd_xbuf *xp; 18737 struct scsi_pkt *pktp; 18738 char *reasonp; 18739 char *msgp; 18740 18741 ASSERT(un != NULL); 18742 ASSERT(mutex_owned(SD_MUTEX(un))); 18743 ASSERT(bp != NULL); 18744 pktp = SD_GET_PKTP(bp); 18745 ASSERT(pktp != NULL); 18746 xp = SD_GET_XBUF(bp); 18747 ASSERT(xp != NULL); 18748 18749 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18750 mutex_enter(&un->un_pm_mutex); 18751 if ((un->un_state == SD_STATE_SUSPENDED) || 18752 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18753 (pktp->pkt_flags & FLAG_SILENT)) { 18754 mutex_exit(&un->un_pm_mutex); 18755 goto update_pkt_reason; 18756 } 18757 mutex_exit(&un->un_pm_mutex); 18758 18759 /* 18760 * Suppress messages if they are all the same pkt_reason; with 18761 * TQ, many (up to 256) are returned with the same pkt_reason. 18762 * If we are in panic, then suppress the retry messages. 18763 */ 18764 switch (flag) { 18765 case SD_NO_RETRY_ISSUED: 18766 msgp = "giving up"; 18767 break; 18768 case SD_IMMEDIATE_RETRY_ISSUED: 18769 case SD_DELAYED_RETRY_ISSUED: 18770 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18771 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18772 (sd_error_level != SCSI_ERR_ALL))) { 18773 return; 18774 } 18775 msgp = "retrying command"; 18776 break; 18777 default: 18778 goto update_pkt_reason; 18779 } 18780 18781 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18782 scsi_rname(pktp->pkt_reason)); 18783 18784 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18785 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18786 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18787 } 18788 18789 update_pkt_reason: 18790 /* 18791 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18792 * This is to prevent multiple console messages for the same failure 18793 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18794 * when the command is retried successfully because there still may be 18795 * more commands coming back with the same value of pktp->pkt_reason. 18796 */ 18797 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18798 un->un_last_pkt_reason = pktp->pkt_reason; 18799 } 18800 } 18801 18802 18803 /* 18804 * Function: sd_print_cmd_incomplete_msg 18805 * 18806 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18807 * 18808 * Arguments: un - ptr to associated softstate 18809 * bp - ptr to buf(9S) for the command 18810 * arg - passed to sd_print_retry_msg() 18811 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18812 * or SD_NO_RETRY_ISSUED 18813 * 18814 * Context: May be called from interrupt context 18815 */ 18816 18817 static void 18818 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18819 int code) 18820 { 18821 dev_info_t *dip; 18822 18823 ASSERT(un != NULL); 18824 ASSERT(mutex_owned(SD_MUTEX(un))); 18825 ASSERT(bp != NULL); 18826 18827 switch (code) { 18828 case SD_NO_RETRY_ISSUED: 18829 /* Command was failed. Someone turned off this target? */ 18830 if (un->un_state != SD_STATE_OFFLINE) { 18831 /* 18832 * Suppress message if we are detaching and 18833 * device has been disconnected 18834 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18835 * private interface and not part of the DDI 18836 */ 18837 dip = un->un_sd->sd_dev; 18838 if (!(DEVI_IS_DETACHING(dip) && 18839 DEVI_IS_DEVICE_REMOVED(dip))) { 18840 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18841 "disk not responding to selection\n"); 18842 } 18843 New_state(un, SD_STATE_OFFLINE); 18844 } 18845 break; 18846 18847 case SD_DELAYED_RETRY_ISSUED: 18848 case SD_IMMEDIATE_RETRY_ISSUED: 18849 default: 18850 /* Command was successfully queued for retry */ 18851 sd_print_retry_msg(un, bp, arg, code); 18852 break; 18853 } 18854 } 18855 18856 18857 /* 18858 * Function: sd_pkt_reason_cmd_incomplete 18859 * 18860 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18861 * 18862 * Context: May be called from interrupt context 18863 */ 18864 18865 static void 18866 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18867 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18868 { 18869 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18870 18871 ASSERT(un != NULL); 18872 ASSERT(mutex_owned(SD_MUTEX(un))); 18873 ASSERT(bp != NULL); 18874 ASSERT(xp != NULL); 18875 ASSERT(pktp != NULL); 18876 18877 /* Do not do a reset if selection did not complete */ 18878 /* Note: Should this not just check the bit? */ 18879 if (pktp->pkt_state != STATE_GOT_BUS) { 18880 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18881 sd_reset_target(un, pktp); 18882 } 18883 18884 /* 18885 * If the target was not successfully selected, then set 18886 * SD_RETRIES_FAILFAST to indicate that we lost communication 18887 * with the target, and further retries and/or commands are 18888 * likely to take a long time. 18889 */ 18890 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18891 flag |= SD_RETRIES_FAILFAST; 18892 } 18893 18894 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18895 18896 sd_retry_command(un, bp, flag, 18897 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18898 } 18899 18900 18901 18902 /* 18903 * Function: sd_pkt_reason_cmd_tran_err 18904 * 18905 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18906 * 18907 * Context: May be called from interrupt context 18908 */ 18909 18910 static void 18911 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18912 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18913 { 18914 ASSERT(un != NULL); 18915 ASSERT(mutex_owned(SD_MUTEX(un))); 18916 ASSERT(bp != NULL); 18917 ASSERT(xp != NULL); 18918 ASSERT(pktp != NULL); 18919 18920 /* 18921 * Do not reset if we got a parity error, or if 18922 * selection did not complete. 18923 */ 18924 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18925 /* Note: Should this not just check the bit for pkt_state? */ 18926 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18927 (pktp->pkt_state != STATE_GOT_BUS)) { 18928 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18929 sd_reset_target(un, pktp); 18930 } 18931 18932 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18933 18934 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18935 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18936 } 18937 18938 18939 18940 /* 18941 * Function: sd_pkt_reason_cmd_reset 18942 * 18943 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18944 * 18945 * Context: May be called from interrupt context 18946 */ 18947 18948 static void 18949 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18950 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18951 { 18952 ASSERT(un != NULL); 18953 ASSERT(mutex_owned(SD_MUTEX(un))); 18954 ASSERT(bp != NULL); 18955 ASSERT(xp != NULL); 18956 ASSERT(pktp != NULL); 18957 18958 /* The target may still be running the command, so try to reset. */ 18959 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18960 sd_reset_target(un, pktp); 18961 18962 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18963 18964 /* 18965 * If pkt_reason is CMD_RESET chances are that this pkt got 18966 * reset because another target on this bus caused it. The target 18967 * that caused it should get CMD_TIMEOUT with pkt_statistics 18968 * of STAT_TIMEOUT/STAT_DEV_RESET. 18969 */ 18970 18971 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18972 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18973 } 18974 18975 18976 18977 18978 /* 18979 * Function: sd_pkt_reason_cmd_aborted 18980 * 18981 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18982 * 18983 * Context: May be called from interrupt context 18984 */ 18985 18986 static void 18987 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18988 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18989 { 18990 ASSERT(un != NULL); 18991 ASSERT(mutex_owned(SD_MUTEX(un))); 18992 ASSERT(bp != NULL); 18993 ASSERT(xp != NULL); 18994 ASSERT(pktp != NULL); 18995 18996 /* The target may still be running the command, so try to reset. */ 18997 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18998 sd_reset_target(un, pktp); 18999 19000 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19001 19002 /* 19003 * If pkt_reason is CMD_ABORTED chances are that this pkt got 19004 * aborted because another target on this bus caused it. The target 19005 * that caused it should get CMD_TIMEOUT with pkt_statistics 19006 * of STAT_TIMEOUT/STAT_DEV_RESET. 19007 */ 19008 19009 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19010 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19011 } 19012 19013 19014 19015 /* 19016 * Function: sd_pkt_reason_cmd_timeout 19017 * 19018 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 19019 * 19020 * Context: May be called from interrupt context 19021 */ 19022 19023 static void 19024 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 19025 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19026 { 19027 ASSERT(un != NULL); 19028 ASSERT(mutex_owned(SD_MUTEX(un))); 19029 ASSERT(bp != NULL); 19030 ASSERT(xp != NULL); 19031 ASSERT(pktp != NULL); 19032 19033 19034 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19035 sd_reset_target(un, pktp); 19036 19037 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19038 19039 /* 19040 * A command timeout indicates that we could not establish 19041 * communication with the target, so set SD_RETRIES_FAILFAST 19042 * as further retries/commands are likely to take a long time. 19043 */ 19044 sd_retry_command(un, bp, 19045 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 19046 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19047 } 19048 19049 19050 19051 /* 19052 * Function: sd_pkt_reason_cmd_unx_bus_free 19053 * 19054 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19055 * 19056 * Context: May be called from interrupt context 19057 */ 19058 19059 static void 19060 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19061 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19062 { 19063 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19064 19065 ASSERT(un != NULL); 19066 ASSERT(mutex_owned(SD_MUTEX(un))); 19067 ASSERT(bp != NULL); 19068 ASSERT(xp != NULL); 19069 ASSERT(pktp != NULL); 19070 19071 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19072 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19073 19074 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19075 sd_print_retry_msg : NULL; 19076 19077 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19078 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19079 } 19080 19081 19082 /* 19083 * Function: sd_pkt_reason_cmd_tag_reject 19084 * 19085 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19086 * 19087 * Context: May be called from interrupt context 19088 */ 19089 19090 static void 19091 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19092 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19093 { 19094 ASSERT(un != NULL); 19095 ASSERT(mutex_owned(SD_MUTEX(un))); 19096 ASSERT(bp != NULL); 19097 ASSERT(xp != NULL); 19098 ASSERT(pktp != NULL); 19099 19100 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19101 pktp->pkt_flags = 0; 19102 un->un_tagflags = 0; 19103 if (un->un_f_opt_queueing == TRUE) { 19104 un->un_throttle = min(un->un_throttle, 3); 19105 } else { 19106 un->un_throttle = 1; 19107 } 19108 mutex_exit(SD_MUTEX(un)); 19109 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19110 mutex_enter(SD_MUTEX(un)); 19111 19112 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19113 19114 /* Legacy behavior not to check retry counts here. */ 19115 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19116 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19117 } 19118 19119 19120 /* 19121 * Function: sd_pkt_reason_default 19122 * 19123 * Description: Default recovery actions for SCSA pkt_reason values that 19124 * do not have more explicit recovery actions. 19125 * 19126 * Context: May be called from interrupt context 19127 */ 19128 19129 static void 19130 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 19131 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19132 { 19133 ASSERT(un != NULL); 19134 ASSERT(mutex_owned(SD_MUTEX(un))); 19135 ASSERT(bp != NULL); 19136 ASSERT(xp != NULL); 19137 ASSERT(pktp != NULL); 19138 19139 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19140 sd_reset_target(un, pktp); 19141 19142 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19143 19144 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19145 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19146 } 19147 19148 19149 19150 /* 19151 * Function: sd_pkt_status_check_condition 19152 * 19153 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19154 * 19155 * Context: May be called from interrupt context 19156 */ 19157 19158 static void 19159 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19160 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19161 { 19162 ASSERT(un != NULL); 19163 ASSERT(mutex_owned(SD_MUTEX(un))); 19164 ASSERT(bp != NULL); 19165 ASSERT(xp != NULL); 19166 ASSERT(pktp != NULL); 19167 19168 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19169 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19170 19171 /* 19172 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19173 * command will be retried after the request sense). Otherwise, retry 19174 * the command. Note: we are issuing the request sense even though the 19175 * retry limit may have been reached for the failed command. 19176 */ 19177 if (un->un_f_arq_enabled == FALSE) { 19178 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19179 "no ARQ, sending request sense command\n"); 19180 sd_send_request_sense_command(un, bp, pktp); 19181 } else { 19182 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19183 "ARQ,retrying request sense command\n"); 19184 #if defined(__i386) || defined(__amd64) 19185 /* 19186 * The SD_RETRY_DELAY value need to be adjusted here 19187 * when SD_RETRY_DELAY change in sddef.h 19188 */ 19189 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19190 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19191 NULL); 19192 #else 19193 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19194 EIO, SD_RETRY_DELAY, NULL); 19195 #endif 19196 } 19197 19198 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19199 } 19200 19201 19202 /* 19203 * Function: sd_pkt_status_busy 19204 * 19205 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19206 * 19207 * Context: May be called from interrupt context 19208 */ 19209 19210 static void 19211 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19212 struct scsi_pkt *pktp) 19213 { 19214 ASSERT(un != NULL); 19215 ASSERT(mutex_owned(SD_MUTEX(un))); 19216 ASSERT(bp != NULL); 19217 ASSERT(xp != NULL); 19218 ASSERT(pktp != NULL); 19219 19220 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19221 "sd_pkt_status_busy: entry\n"); 19222 19223 /* If retries are exhausted, just fail the command. */ 19224 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19225 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19226 "device busy too long\n"); 19227 sd_return_failed_command(un, bp, EIO); 19228 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19229 "sd_pkt_status_busy: exit\n"); 19230 return; 19231 } 19232 xp->xb_retry_count++; 19233 19234 /* 19235 * Try to reset the target. However, we do not want to perform 19236 * more than one reset if the device continues to fail. The reset 19237 * will be performed when the retry count reaches the reset 19238 * threshold. This threshold should be set such that at least 19239 * one retry is issued before the reset is performed. 19240 */ 19241 if (xp->xb_retry_count == 19242 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19243 int rval = 0; 19244 mutex_exit(SD_MUTEX(un)); 19245 if (un->un_f_allow_bus_device_reset == TRUE) { 19246 /* 19247 * First try to reset the LUN; if we cannot then 19248 * try to reset the target. 19249 */ 19250 if (un->un_f_lun_reset_enabled == TRUE) { 19251 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19252 "sd_pkt_status_busy: RESET_LUN\n"); 19253 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19254 } 19255 if (rval == 0) { 19256 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19257 "sd_pkt_status_busy: RESET_TARGET\n"); 19258 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19259 } 19260 } 19261 if (rval == 0) { 19262 /* 19263 * If the RESET_LUN and/or RESET_TARGET failed, 19264 * try RESET_ALL 19265 */ 19266 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19267 "sd_pkt_status_busy: RESET_ALL\n"); 19268 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19269 } 19270 mutex_enter(SD_MUTEX(un)); 19271 if (rval == 0) { 19272 /* 19273 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19274 * At this point we give up & fail the command. 19275 */ 19276 sd_return_failed_command(un, bp, EIO); 19277 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19278 "sd_pkt_status_busy: exit (failed cmd)\n"); 19279 return; 19280 } 19281 } 19282 19283 /* 19284 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19285 * we have already checked the retry counts above. 19286 */ 19287 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19288 EIO, un->un_busy_timeout, NULL); 19289 19290 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19291 "sd_pkt_status_busy: exit\n"); 19292 } 19293 19294 19295 /* 19296 * Function: sd_pkt_status_reservation_conflict 19297 * 19298 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19299 * command status. 19300 * 19301 * Context: May be called from interrupt context 19302 */ 19303 19304 static void 19305 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19306 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19307 { 19308 ASSERT(un != NULL); 19309 ASSERT(mutex_owned(SD_MUTEX(un))); 19310 ASSERT(bp != NULL); 19311 ASSERT(xp != NULL); 19312 ASSERT(pktp != NULL); 19313 19314 /* 19315 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19316 * conflict could be due to various reasons like incorrect keys, not 19317 * registered or not reserved etc. So, we return EACCES to the caller. 19318 */ 19319 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19320 int cmd = SD_GET_PKT_OPCODE(pktp); 19321 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19322 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19323 sd_return_failed_command(un, bp, EACCES); 19324 return; 19325 } 19326 } 19327 19328 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19329 19330 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19331 if (sd_failfast_enable != 0) { 19332 /* By definition, we must panic here.... */ 19333 sd_panic_for_res_conflict(un); 19334 /*NOTREACHED*/ 19335 } 19336 SD_ERROR(SD_LOG_IO, un, 19337 "sd_handle_resv_conflict: Disk Reserved\n"); 19338 sd_return_failed_command(un, bp, EACCES); 19339 return; 19340 } 19341 19342 /* 19343 * 1147670: retry only if sd_retry_on_reservation_conflict 19344 * property is set (default is 1). Retries will not succeed 19345 * on a disk reserved by another initiator. HA systems 19346 * may reset this via sd.conf to avoid these retries. 19347 * 19348 * Note: The legacy return code for this failure is EIO, however EACCES 19349 * seems more appropriate for a reservation conflict. 19350 */ 19351 if (sd_retry_on_reservation_conflict == 0) { 19352 SD_ERROR(SD_LOG_IO, un, 19353 "sd_handle_resv_conflict: Device Reserved\n"); 19354 sd_return_failed_command(un, bp, EIO); 19355 return; 19356 } 19357 19358 /* 19359 * Retry the command if we can. 19360 * 19361 * Note: The legacy return code for this failure is EIO, however EACCES 19362 * seems more appropriate for a reservation conflict. 19363 */ 19364 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19365 (clock_t)2, NULL); 19366 } 19367 19368 19369 19370 /* 19371 * Function: sd_pkt_status_qfull 19372 * 19373 * Description: Handle a QUEUE FULL condition from the target. This can 19374 * occur if the HBA does not handle the queue full condition. 19375 * (Basically this means third-party HBAs as Sun HBAs will 19376 * handle the queue full condition.) Note that if there are 19377 * some commands already in the transport, then the queue full 19378 * has occurred because the queue for this nexus is actually 19379 * full. If there are no commands in the transport, then the 19380 * queue full is resulting from some other initiator or lun 19381 * consuming all the resources at the target. 19382 * 19383 * Context: May be called from interrupt context 19384 */ 19385 19386 static void 19387 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 19388 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19389 { 19390 ASSERT(un != NULL); 19391 ASSERT(mutex_owned(SD_MUTEX(un))); 19392 ASSERT(bp != NULL); 19393 ASSERT(xp != NULL); 19394 ASSERT(pktp != NULL); 19395 19396 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19397 "sd_pkt_status_qfull: entry\n"); 19398 19399 /* 19400 * Just lower the QFULL throttle and retry the command. Note that 19401 * we do not limit the number of retries here. 19402 */ 19403 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19404 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19405 SD_RESTART_TIMEOUT, NULL); 19406 19407 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19408 "sd_pkt_status_qfull: exit\n"); 19409 } 19410 19411 19412 /* 19413 * Function: sd_reset_target 19414 * 19415 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19416 * RESET_TARGET, or RESET_ALL. 19417 * 19418 * Context: May be called under interrupt context. 19419 */ 19420 19421 static void 19422 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19423 { 19424 int rval = 0; 19425 19426 ASSERT(un != NULL); 19427 ASSERT(mutex_owned(SD_MUTEX(un))); 19428 ASSERT(pktp != NULL); 19429 19430 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19431 19432 /* 19433 * No need to reset if the transport layer has already done so. 19434 */ 19435 if ((pktp->pkt_statistics & 19436 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19437 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19438 "sd_reset_target: no reset\n"); 19439 return; 19440 } 19441 19442 mutex_exit(SD_MUTEX(un)); 19443 19444 if (un->un_f_allow_bus_device_reset == TRUE) { 19445 if (un->un_f_lun_reset_enabled == TRUE) { 19446 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19447 "sd_reset_target: RESET_LUN\n"); 19448 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19449 } 19450 if (rval == 0) { 19451 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19452 "sd_reset_target: RESET_TARGET\n"); 19453 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19454 } 19455 } 19456 19457 if (rval == 0) { 19458 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19459 "sd_reset_target: RESET_ALL\n"); 19460 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19461 } 19462 19463 mutex_enter(SD_MUTEX(un)); 19464 19465 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19466 } 19467 19468 /* 19469 * Function: sd_target_change_task 19470 * 19471 * Description: Handle dynamic target change 19472 * 19473 * Context: Executes in a taskq() thread context 19474 */ 19475 static void 19476 sd_target_change_task(void *arg) 19477 { 19478 struct sd_lun *un = arg; 19479 uint64_t capacity; 19480 diskaddr_t label_cap; 19481 uint_t lbasize; 19482 sd_ssc_t *ssc; 19483 19484 ASSERT(un != NULL); 19485 ASSERT(!mutex_owned(SD_MUTEX(un))); 19486 19487 if ((un->un_f_blockcount_is_valid == FALSE) || 19488 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19489 return; 19490 } 19491 19492 ssc = sd_ssc_init(un); 19493 19494 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19495 &lbasize, SD_PATH_DIRECT) != 0) { 19496 SD_ERROR(SD_LOG_ERROR, un, 19497 "sd_target_change_task: fail to read capacity\n"); 19498 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19499 goto task_exit; 19500 } 19501 19502 mutex_enter(SD_MUTEX(un)); 19503 if (capacity <= un->un_blockcount) { 19504 mutex_exit(SD_MUTEX(un)); 19505 goto task_exit; 19506 } 19507 19508 sd_update_block_info(un, lbasize, capacity); 19509 mutex_exit(SD_MUTEX(un)); 19510 19511 /* 19512 * If lun is EFI labeled and lun capacity is greater than the 19513 * capacity contained in the label, log a sys event. 19514 */ 19515 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19516 (void*)SD_PATH_DIRECT) == 0) { 19517 mutex_enter(SD_MUTEX(un)); 19518 if (un->un_f_blockcount_is_valid && 19519 un->un_blockcount > label_cap) { 19520 mutex_exit(SD_MUTEX(un)); 19521 sd_log_lun_expansion_event(un, KM_SLEEP); 19522 } else { 19523 mutex_exit(SD_MUTEX(un)); 19524 } 19525 } 19526 19527 task_exit: 19528 sd_ssc_fini(ssc); 19529 } 19530 19531 19532 /* 19533 * Function: sd_log_dev_status_event 19534 * 19535 * Description: Log EC_dev_status sysevent 19536 * 19537 * Context: Never called from interrupt context 19538 */ 19539 static void 19540 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag) 19541 { 19542 int err; 19543 char *path; 19544 nvlist_t *attr_list; 19545 19546 /* Allocate and build sysevent attribute list */ 19547 err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19548 if (err != 0) { 19549 SD_ERROR(SD_LOG_ERROR, un, 19550 "sd_log_dev_status_event: fail to allocate space\n"); 19551 return; 19552 } 19553 19554 path = kmem_alloc(MAXPATHLEN, km_flag); 19555 if (path == NULL) { 19556 nvlist_free(attr_list); 19557 SD_ERROR(SD_LOG_ERROR, un, 19558 "sd_log_dev_status_event: fail to allocate space\n"); 19559 return; 19560 } 19561 /* 19562 * Add path attribute to identify the lun. 19563 * We are using minor node 'a' as the sysevent attribute. 19564 */ 19565 (void) snprintf(path, MAXPATHLEN, "/devices"); 19566 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19567 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19568 ":a"); 19569 19570 err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path); 19571 if (err != 0) { 19572 nvlist_free(attr_list); 19573 kmem_free(path, MAXPATHLEN); 19574 SD_ERROR(SD_LOG_ERROR, un, 19575 "sd_log_dev_status_event: fail to add attribute\n"); 19576 return; 19577 } 19578 19579 /* Log dynamic lun expansion sysevent */ 19580 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19581 esc, attr_list, NULL, km_flag); 19582 if (err != DDI_SUCCESS) { 19583 SD_ERROR(SD_LOG_ERROR, un, 19584 "sd_log_dev_status_event: fail to log sysevent\n"); 19585 } 19586 19587 nvlist_free(attr_list); 19588 kmem_free(path, MAXPATHLEN); 19589 } 19590 19591 19592 /* 19593 * Function: sd_log_lun_expansion_event 19594 * 19595 * Description: Log lun expansion sys event 19596 * 19597 * Context: Never called from interrupt context 19598 */ 19599 static void 19600 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19601 { 19602 sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag); 19603 } 19604 19605 19606 /* 19607 * Function: sd_log_eject_request_event 19608 * 19609 * Description: Log eject request sysevent 19610 * 19611 * Context: Never called from interrupt context 19612 */ 19613 static void 19614 sd_log_eject_request_event(struct sd_lun *un, int km_flag) 19615 { 19616 sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag); 19617 } 19618 19619 19620 /* 19621 * Function: sd_media_change_task 19622 * 19623 * Description: Recovery action for CDROM to become available. 19624 * 19625 * Context: Executes in a taskq() thread context 19626 */ 19627 19628 static void 19629 sd_media_change_task(void *arg) 19630 { 19631 struct scsi_pkt *pktp = arg; 19632 struct sd_lun *un; 19633 struct buf *bp; 19634 struct sd_xbuf *xp; 19635 int err = 0; 19636 int retry_count = 0; 19637 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19638 struct sd_sense_info si; 19639 19640 ASSERT(pktp != NULL); 19641 bp = (struct buf *)pktp->pkt_private; 19642 ASSERT(bp != NULL); 19643 xp = SD_GET_XBUF(bp); 19644 ASSERT(xp != NULL); 19645 un = SD_GET_UN(bp); 19646 ASSERT(un != NULL); 19647 ASSERT(!mutex_owned(SD_MUTEX(un))); 19648 ASSERT(un->un_f_monitor_media_state); 19649 19650 si.ssi_severity = SCSI_ERR_INFO; 19651 si.ssi_pfa_flag = FALSE; 19652 19653 /* 19654 * When a reset is issued on a CDROM, it takes a long time to 19655 * recover. First few attempts to read capacity and other things 19656 * related to handling unit attention fail (with a ASC 0x4 and 19657 * ASCQ 0x1). In that case we want to do enough retries and we want 19658 * to limit the retries in other cases of genuine failures like 19659 * no media in drive. 19660 */ 19661 while (retry_count++ < retry_limit) { 19662 if ((err = sd_handle_mchange(un)) == 0) { 19663 break; 19664 } 19665 if (err == EAGAIN) { 19666 retry_limit = SD_UNIT_ATTENTION_RETRY; 19667 } 19668 /* Sleep for 0.5 sec. & try again */ 19669 delay(drv_usectohz(500000)); 19670 } 19671 19672 /* 19673 * Dispatch (retry or fail) the original command here, 19674 * along with appropriate console messages.... 19675 * 19676 * Must grab the mutex before calling sd_retry_command, 19677 * sd_print_sense_msg and sd_return_failed_command. 19678 */ 19679 mutex_enter(SD_MUTEX(un)); 19680 if (err != SD_CMD_SUCCESS) { 19681 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19682 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19683 si.ssi_severity = SCSI_ERR_FATAL; 19684 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19685 sd_return_failed_command(un, bp, EIO); 19686 } else { 19687 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 19688 &si, EIO, (clock_t)0, NULL); 19689 } 19690 mutex_exit(SD_MUTEX(un)); 19691 } 19692 19693 19694 19695 /* 19696 * Function: sd_handle_mchange 19697 * 19698 * Description: Perform geometry validation & other recovery when CDROM 19699 * has been removed from drive. 19700 * 19701 * Return Code: 0 for success 19702 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19703 * sd_send_scsi_READ_CAPACITY() 19704 * 19705 * Context: Executes in a taskq() thread context 19706 */ 19707 19708 static int 19709 sd_handle_mchange(struct sd_lun *un) 19710 { 19711 uint64_t capacity; 19712 uint32_t lbasize; 19713 int rval; 19714 sd_ssc_t *ssc; 19715 19716 ASSERT(!mutex_owned(SD_MUTEX(un))); 19717 ASSERT(un->un_f_monitor_media_state); 19718 19719 ssc = sd_ssc_init(un); 19720 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19721 SD_PATH_DIRECT_PRIORITY); 19722 19723 if (rval != 0) 19724 goto failed; 19725 19726 mutex_enter(SD_MUTEX(un)); 19727 sd_update_block_info(un, lbasize, capacity); 19728 19729 if (un->un_errstats != NULL) { 19730 struct sd_errstats *stp = 19731 (struct sd_errstats *)un->un_errstats->ks_data; 19732 stp->sd_capacity.value.ui64 = (uint64_t) 19733 ((uint64_t)un->un_blockcount * 19734 (uint64_t)un->un_tgt_blocksize); 19735 } 19736 19737 /* 19738 * Check if the media in the device is writable or not 19739 */ 19740 if (ISCD(un)) { 19741 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19742 } 19743 19744 /* 19745 * Note: Maybe let the strategy/partitioning chain worry about getting 19746 * valid geometry. 19747 */ 19748 mutex_exit(SD_MUTEX(un)); 19749 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19750 19751 19752 if (cmlb_validate(un->un_cmlbhandle, 0, 19753 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19754 sd_ssc_fini(ssc); 19755 return (EIO); 19756 } else { 19757 if (un->un_f_pkstats_enabled) { 19758 sd_set_pstats(un); 19759 SD_TRACE(SD_LOG_IO_PARTITION, un, 19760 "sd_handle_mchange: un:0x%p pstats created and " 19761 "set\n", un); 19762 } 19763 } 19764 19765 /* 19766 * Try to lock the door 19767 */ 19768 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19769 SD_PATH_DIRECT_PRIORITY); 19770 failed: 19771 if (rval != 0) 19772 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19773 sd_ssc_fini(ssc); 19774 return (rval); 19775 } 19776 19777 19778 /* 19779 * Function: sd_send_scsi_DOORLOCK 19780 * 19781 * Description: Issue the scsi DOOR LOCK command 19782 * 19783 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19784 * structure for this target. 19785 * flag - SD_REMOVAL_ALLOW 19786 * SD_REMOVAL_PREVENT 19787 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19788 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19789 * to use the USCSI "direct" chain and bypass the normal 19790 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19791 * command is issued as part of an error recovery action. 19792 * 19793 * Return Code: 0 - Success 19794 * errno return code from sd_ssc_send() 19795 * 19796 * Context: Can sleep. 19797 */ 19798 19799 static int 19800 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19801 { 19802 struct scsi_extended_sense sense_buf; 19803 union scsi_cdb cdb; 19804 struct uscsi_cmd ucmd_buf; 19805 int status; 19806 struct sd_lun *un; 19807 19808 ASSERT(ssc != NULL); 19809 un = ssc->ssc_un; 19810 ASSERT(un != NULL); 19811 ASSERT(!mutex_owned(SD_MUTEX(un))); 19812 19813 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19814 19815 /* already determined doorlock is not supported, fake success */ 19816 if (un->un_f_doorlock_supported == FALSE) { 19817 return (0); 19818 } 19819 19820 /* 19821 * If we are ejecting and see an SD_REMOVAL_PREVENT 19822 * ignore the command so we can complete the eject 19823 * operation. 19824 */ 19825 if (flag == SD_REMOVAL_PREVENT) { 19826 mutex_enter(SD_MUTEX(un)); 19827 if (un->un_f_ejecting == TRUE) { 19828 mutex_exit(SD_MUTEX(un)); 19829 return (EAGAIN); 19830 } 19831 mutex_exit(SD_MUTEX(un)); 19832 } 19833 19834 bzero(&cdb, sizeof (cdb)); 19835 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19836 19837 cdb.scc_cmd = SCMD_DOORLOCK; 19838 cdb.cdb_opaque[4] = (uchar_t)flag; 19839 19840 ucmd_buf.uscsi_cdb = (char *)&cdb; 19841 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19842 ucmd_buf.uscsi_bufaddr = NULL; 19843 ucmd_buf.uscsi_buflen = 0; 19844 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19845 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19846 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19847 ucmd_buf.uscsi_timeout = 15; 19848 19849 SD_TRACE(SD_LOG_IO, un, 19850 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19851 19852 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19853 UIO_SYSSPACE, path_flag); 19854 19855 if (status == 0) 19856 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19857 19858 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19859 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19860 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19861 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19862 19863 /* fake success and skip subsequent doorlock commands */ 19864 un->un_f_doorlock_supported = FALSE; 19865 return (0); 19866 } 19867 19868 return (status); 19869 } 19870 19871 /* 19872 * Function: sd_send_scsi_READ_CAPACITY 19873 * 19874 * Description: This routine uses the scsi READ CAPACITY command to determine 19875 * the device capacity in number of blocks and the device native 19876 * block size. If this function returns a failure, then the 19877 * values in *capp and *lbap are undefined. If the capacity 19878 * returned is 0xffffffff then the lun is too large for a 19879 * normal READ CAPACITY command and the results of a 19880 * READ CAPACITY 16 will be used instead. 19881 * 19882 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19883 * capp - ptr to unsigned 64-bit variable to receive the 19884 * capacity value from the command. 19885 * lbap - ptr to unsigned 32-bit varaible to receive the 19886 * block size value from the command 19887 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19888 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19889 * to use the USCSI "direct" chain and bypass the normal 19890 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19891 * command is issued as part of an error recovery action. 19892 * 19893 * Return Code: 0 - Success 19894 * EIO - IO error 19895 * EACCES - Reservation conflict detected 19896 * EAGAIN - Device is becoming ready 19897 * errno return code from sd_ssc_send() 19898 * 19899 * Context: Can sleep. Blocks until command completes. 19900 */ 19901 19902 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19903 19904 static int 19905 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 19906 int path_flag) 19907 { 19908 struct scsi_extended_sense sense_buf; 19909 struct uscsi_cmd ucmd_buf; 19910 union scsi_cdb cdb; 19911 uint32_t *capacity_buf; 19912 uint64_t capacity; 19913 uint32_t lbasize; 19914 uint32_t pbsize; 19915 int status; 19916 struct sd_lun *un; 19917 19918 ASSERT(ssc != NULL); 19919 19920 un = ssc->ssc_un; 19921 ASSERT(un != NULL); 19922 ASSERT(!mutex_owned(SD_MUTEX(un))); 19923 ASSERT(capp != NULL); 19924 ASSERT(lbap != NULL); 19925 19926 SD_TRACE(SD_LOG_IO, un, 19927 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19928 19929 /* 19930 * First send a READ_CAPACITY command to the target. 19931 * (This command is mandatory under SCSI-2.) 19932 * 19933 * Set up the CDB for the READ_CAPACITY command. The Partial 19934 * Medium Indicator bit is cleared. The address field must be 19935 * zero if the PMI bit is zero. 19936 */ 19937 bzero(&cdb, sizeof (cdb)); 19938 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19939 19940 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19941 19942 cdb.scc_cmd = SCMD_READ_CAPACITY; 19943 19944 ucmd_buf.uscsi_cdb = (char *)&cdb; 19945 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19946 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19947 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19948 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19949 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19950 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19951 ucmd_buf.uscsi_timeout = 60; 19952 19953 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19954 UIO_SYSSPACE, path_flag); 19955 19956 switch (status) { 19957 case 0: 19958 /* Return failure if we did not get valid capacity data. */ 19959 if (ucmd_buf.uscsi_resid != 0) { 19960 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19961 "sd_send_scsi_READ_CAPACITY received invalid " 19962 "capacity data"); 19963 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19964 return (EIO); 19965 } 19966 /* 19967 * Read capacity and block size from the READ CAPACITY 10 data. 19968 * This data may be adjusted later due to device specific 19969 * issues. 19970 * 19971 * According to the SCSI spec, the READ CAPACITY 10 19972 * command returns the following: 19973 * 19974 * bytes 0-3: Maximum logical block address available. 19975 * (MSB in byte:0 & LSB in byte:3) 19976 * 19977 * bytes 4-7: Block length in bytes 19978 * (MSB in byte:4 & LSB in byte:7) 19979 * 19980 */ 19981 capacity = BE_32(capacity_buf[0]); 19982 lbasize = BE_32(capacity_buf[1]); 19983 19984 /* 19985 * Done with capacity_buf 19986 */ 19987 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19988 19989 /* 19990 * if the reported capacity is set to all 0xf's, then 19991 * this disk is too large and requires SBC-2 commands. 19992 * Reissue the request using READ CAPACITY 16. 19993 */ 19994 if (capacity == 0xffffffff) { 19995 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19996 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 19997 &lbasize, &pbsize, path_flag); 19998 if (status != 0) { 19999 return (status); 20000 } 20001 } 20002 break; /* Success! */ 20003 case EIO: 20004 switch (ucmd_buf.uscsi_status) { 20005 case STATUS_RESERVATION_CONFLICT: 20006 status = EACCES; 20007 break; 20008 case STATUS_CHECK: 20009 /* 20010 * Check condition; look for ASC/ASCQ of 0x04/0x01 20011 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20012 */ 20013 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20014 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20015 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20016 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20017 return (EAGAIN); 20018 } 20019 break; 20020 default: 20021 break; 20022 } 20023 /* FALLTHRU */ 20024 default: 20025 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20026 return (status); 20027 } 20028 20029 /* 20030 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20031 * (2352 and 0 are common) so for these devices always force the value 20032 * to 2048 as required by the ATAPI specs. 20033 */ 20034 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20035 lbasize = 2048; 20036 } 20037 20038 /* 20039 * Get the maximum LBA value from the READ CAPACITY data. 20040 * Here we assume that the Partial Medium Indicator (PMI) bit 20041 * was cleared when issuing the command. This means that the LBA 20042 * returned from the device is the LBA of the last logical block 20043 * on the logical unit. The actual logical block count will be 20044 * this value plus one. 20045 */ 20046 capacity += 1; 20047 20048 /* 20049 * Currently, for removable media, the capacity is saved in terms 20050 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20051 */ 20052 if (un->un_f_has_removable_media) 20053 capacity *= (lbasize / un->un_sys_blocksize); 20054 20055 /* 20056 * Copy the values from the READ CAPACITY command into the space 20057 * provided by the caller. 20058 */ 20059 *capp = capacity; 20060 *lbap = lbasize; 20061 20062 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 20063 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 20064 20065 /* 20066 * Both the lbasize and capacity from the device must be nonzero, 20067 * otherwise we assume that the values are not valid and return 20068 * failure to the caller. (4203735) 20069 */ 20070 if ((capacity == 0) || (lbasize == 0)) { 20071 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20072 "sd_send_scsi_READ_CAPACITY received invalid value " 20073 "capacity %llu lbasize %d", capacity, lbasize); 20074 return (EIO); 20075 } 20076 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20077 return (0); 20078 } 20079 20080 /* 20081 * Function: sd_send_scsi_READ_CAPACITY_16 20082 * 20083 * Description: This routine uses the scsi READ CAPACITY 16 command to 20084 * determine the device capacity in number of blocks and the 20085 * device native block size. If this function returns a failure, 20086 * then the values in *capp and *lbap are undefined. 20087 * This routine should be called by sd_send_scsi_READ_CAPACITY 20088 * which will apply any device specific adjustments to capacity 20089 * and lbasize. One exception is it is also called by 20090 * sd_get_media_info_ext. In that function, there is no need to 20091 * adjust the capacity and lbasize. 20092 * 20093 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20094 * capp - ptr to unsigned 64-bit variable to receive the 20095 * capacity value from the command. 20096 * lbap - ptr to unsigned 32-bit varaible to receive the 20097 * block size value from the command 20098 * psp - ptr to unsigned 32-bit variable to receive the 20099 * physical block size value from the command 20100 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20101 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20102 * to use the USCSI "direct" chain and bypass the normal 20103 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20104 * this command is issued as part of an error recovery 20105 * action. 20106 * 20107 * Return Code: 0 - Success 20108 * EIO - IO error 20109 * EACCES - Reservation conflict detected 20110 * EAGAIN - Device is becoming ready 20111 * errno return code from sd_ssc_send() 20112 * 20113 * Context: Can sleep. Blocks until command completes. 20114 */ 20115 20116 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20117 20118 static int 20119 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 20120 uint32_t *lbap, uint32_t *psp, int path_flag) 20121 { 20122 struct scsi_extended_sense sense_buf; 20123 struct uscsi_cmd ucmd_buf; 20124 union scsi_cdb cdb; 20125 uint64_t *capacity16_buf; 20126 uint64_t capacity; 20127 uint32_t lbasize; 20128 uint32_t pbsize; 20129 uint32_t lbpb_exp; 20130 int status; 20131 struct sd_lun *un; 20132 20133 ASSERT(ssc != NULL); 20134 20135 un = ssc->ssc_un; 20136 ASSERT(un != NULL); 20137 ASSERT(!mutex_owned(SD_MUTEX(un))); 20138 ASSERT(capp != NULL); 20139 ASSERT(lbap != NULL); 20140 20141 SD_TRACE(SD_LOG_IO, un, 20142 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20143 20144 /* 20145 * First send a READ_CAPACITY_16 command to the target. 20146 * 20147 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20148 * Medium Indicator bit is cleared. The address field must be 20149 * zero if the PMI bit is zero. 20150 */ 20151 bzero(&cdb, sizeof (cdb)); 20152 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20153 20154 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20155 20156 ucmd_buf.uscsi_cdb = (char *)&cdb; 20157 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20158 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20159 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20160 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20161 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20162 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20163 ucmd_buf.uscsi_timeout = 60; 20164 20165 /* 20166 * Read Capacity (16) is a Service Action In command. One 20167 * command byte (0x9E) is overloaded for multiple operations, 20168 * with the second CDB byte specifying the desired operation 20169 */ 20170 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20171 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20172 20173 /* 20174 * Fill in allocation length field 20175 */ 20176 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20177 20178 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20179 UIO_SYSSPACE, path_flag); 20180 20181 switch (status) { 20182 case 0: 20183 /* Return failure if we did not get valid capacity data. */ 20184 if (ucmd_buf.uscsi_resid > 20) { 20185 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20186 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20187 "capacity data"); 20188 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20189 return (EIO); 20190 } 20191 20192 /* 20193 * Read capacity and block size from the READ CAPACITY 10 data. 20194 * This data may be adjusted later due to device specific 20195 * issues. 20196 * 20197 * According to the SCSI spec, the READ CAPACITY 10 20198 * command returns the following: 20199 * 20200 * bytes 0-7: Maximum logical block address available. 20201 * (MSB in byte:0 & LSB in byte:7) 20202 * 20203 * bytes 8-11: Block length in bytes 20204 * (MSB in byte:8 & LSB in byte:11) 20205 * 20206 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20207 */ 20208 capacity = BE_64(capacity16_buf[0]); 20209 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20210 lbpb_exp = (BE_64(capacity16_buf[1]) >> 40) & 0x0f; 20211 20212 pbsize = lbasize << lbpb_exp; 20213 20214 /* 20215 * Done with capacity16_buf 20216 */ 20217 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20218 20219 /* 20220 * if the reported capacity is set to all 0xf's, then 20221 * this disk is too large. This could only happen with 20222 * a device that supports LBAs larger than 64 bits which 20223 * are not defined by any current T10 standards. 20224 */ 20225 if (capacity == 0xffffffffffffffff) { 20226 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20227 "disk is too large"); 20228 return (EIO); 20229 } 20230 break; /* Success! */ 20231 case EIO: 20232 switch (ucmd_buf.uscsi_status) { 20233 case STATUS_RESERVATION_CONFLICT: 20234 status = EACCES; 20235 break; 20236 case STATUS_CHECK: 20237 /* 20238 * Check condition; look for ASC/ASCQ of 0x04/0x01 20239 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20240 */ 20241 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20242 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20243 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20244 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20245 return (EAGAIN); 20246 } 20247 break; 20248 default: 20249 break; 20250 } 20251 /* FALLTHRU */ 20252 default: 20253 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20254 return (status); 20255 } 20256 20257 *capp = capacity; 20258 *lbap = lbasize; 20259 *psp = pbsize; 20260 20261 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20262 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20263 capacity, lbasize, pbsize); 20264 20265 return (0); 20266 } 20267 20268 20269 /* 20270 * Function: sd_send_scsi_START_STOP_UNIT 20271 * 20272 * Description: Issue a scsi START STOP UNIT command to the target. 20273 * 20274 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20275 * structure for this target. 20276 * pc_flag - SD_POWER_CONDITION 20277 * SD_START_STOP 20278 * flag - SD_TARGET_START 20279 * SD_TARGET_STOP 20280 * SD_TARGET_EJECT 20281 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20282 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20283 * to use the USCSI "direct" chain and bypass the normal 20284 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20285 * command is issued as part of an error recovery action. 20286 * 20287 * Return Code: 0 - Success 20288 * EIO - IO error 20289 * EACCES - Reservation conflict detected 20290 * ENXIO - Not Ready, medium not present 20291 * errno return code from sd_ssc_send() 20292 * 20293 * Context: Can sleep. 20294 */ 20295 20296 static int 20297 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20298 int path_flag) 20299 { 20300 struct scsi_extended_sense sense_buf; 20301 union scsi_cdb cdb; 20302 struct uscsi_cmd ucmd_buf; 20303 int status; 20304 struct sd_lun *un; 20305 20306 ASSERT(ssc != NULL); 20307 un = ssc->ssc_un; 20308 ASSERT(un != NULL); 20309 ASSERT(!mutex_owned(SD_MUTEX(un))); 20310 20311 SD_TRACE(SD_LOG_IO, un, 20312 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20313 20314 if (un->un_f_check_start_stop && 20315 ((pc_flag == SD_START_STOP) && (flag != SD_TARGET_EJECT)) && 20316 (un->un_f_start_stop_supported != TRUE)) { 20317 return (0); 20318 } 20319 20320 /* 20321 * If we are performing an eject operation and 20322 * we receive any command other than SD_TARGET_EJECT 20323 * we should immediately return. 20324 */ 20325 if (flag != SD_TARGET_EJECT) { 20326 mutex_enter(SD_MUTEX(un)); 20327 if (un->un_f_ejecting == TRUE) { 20328 mutex_exit(SD_MUTEX(un)); 20329 return (EAGAIN); 20330 } 20331 mutex_exit(SD_MUTEX(un)); 20332 } 20333 20334 bzero(&cdb, sizeof (cdb)); 20335 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20336 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20337 20338 cdb.scc_cmd = SCMD_START_STOP; 20339 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20340 (uchar_t)(flag << 4) : (uchar_t)flag; 20341 20342 ucmd_buf.uscsi_cdb = (char *)&cdb; 20343 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20344 ucmd_buf.uscsi_bufaddr = NULL; 20345 ucmd_buf.uscsi_buflen = 0; 20346 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20347 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20348 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20349 ucmd_buf.uscsi_timeout = 200; 20350 20351 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20352 UIO_SYSSPACE, path_flag); 20353 20354 switch (status) { 20355 case 0: 20356 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20357 break; /* Success! */ 20358 case EIO: 20359 switch (ucmd_buf.uscsi_status) { 20360 case STATUS_RESERVATION_CONFLICT: 20361 status = EACCES; 20362 break; 20363 case STATUS_CHECK: 20364 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20365 switch (scsi_sense_key( 20366 (uint8_t *)&sense_buf)) { 20367 case KEY_ILLEGAL_REQUEST: 20368 status = ENOTSUP; 20369 break; 20370 case KEY_NOT_READY: 20371 if (scsi_sense_asc( 20372 (uint8_t *)&sense_buf) 20373 == 0x3A) { 20374 status = ENXIO; 20375 } 20376 break; 20377 default: 20378 break; 20379 } 20380 } 20381 break; 20382 default: 20383 break; 20384 } 20385 break; 20386 default: 20387 break; 20388 } 20389 20390 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20391 20392 return (status); 20393 } 20394 20395 20396 /* 20397 * Function: sd_start_stop_unit_callback 20398 * 20399 * Description: timeout(9F) callback to begin recovery process for a 20400 * device that has spun down. 20401 * 20402 * Arguments: arg - pointer to associated softstate struct. 20403 * 20404 * Context: Executes in a timeout(9F) thread context 20405 */ 20406 20407 static void 20408 sd_start_stop_unit_callback(void *arg) 20409 { 20410 struct sd_lun *un = arg; 20411 ASSERT(un != NULL); 20412 ASSERT(!mutex_owned(SD_MUTEX(un))); 20413 20414 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20415 20416 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20417 } 20418 20419 20420 /* 20421 * Function: sd_start_stop_unit_task 20422 * 20423 * Description: Recovery procedure when a drive is spun down. 20424 * 20425 * Arguments: arg - pointer to associated softstate struct. 20426 * 20427 * Context: Executes in a taskq() thread context 20428 */ 20429 20430 static void 20431 sd_start_stop_unit_task(void *arg) 20432 { 20433 struct sd_lun *un = arg; 20434 sd_ssc_t *ssc; 20435 int power_level; 20436 int rval; 20437 20438 ASSERT(un != NULL); 20439 ASSERT(!mutex_owned(SD_MUTEX(un))); 20440 20441 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20442 20443 /* 20444 * Some unformatted drives report not ready error, no need to 20445 * restart if format has been initiated. 20446 */ 20447 mutex_enter(SD_MUTEX(un)); 20448 if (un->un_f_format_in_progress == TRUE) { 20449 mutex_exit(SD_MUTEX(un)); 20450 return; 20451 } 20452 mutex_exit(SD_MUTEX(un)); 20453 20454 ssc = sd_ssc_init(un); 20455 /* 20456 * When a START STOP command is issued from here, it is part of a 20457 * failure recovery operation and must be issued before any other 20458 * commands, including any pending retries. Thus it must be sent 20459 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20460 * succeeds or not, we will start I/O after the attempt. 20461 * If power condition is supported and the current power level 20462 * is capable of performing I/O, we should set the power condition 20463 * to that level. Otherwise, set the power condition to ACTIVE. 20464 */ 20465 if (un->un_f_power_condition_supported) { 20466 mutex_enter(SD_MUTEX(un)); 20467 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20468 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20469 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20470 mutex_exit(SD_MUTEX(un)); 20471 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20472 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20473 } else { 20474 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20475 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20476 } 20477 20478 if (rval != 0) 20479 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20480 sd_ssc_fini(ssc); 20481 /* 20482 * The above call blocks until the START_STOP_UNIT command completes. 20483 * Now that it has completed, we must re-try the original IO that 20484 * received the NOT READY condition in the first place. There are 20485 * three possible conditions here: 20486 * 20487 * (1) The original IO is on un_retry_bp. 20488 * (2) The original IO is on the regular wait queue, and un_retry_bp 20489 * is NULL. 20490 * (3) The original IO is on the regular wait queue, and un_retry_bp 20491 * points to some other, unrelated bp. 20492 * 20493 * For each case, we must call sd_start_cmds() with un_retry_bp 20494 * as the argument. If un_retry_bp is NULL, this will initiate 20495 * processing of the regular wait queue. If un_retry_bp is not NULL, 20496 * then this will process the bp on un_retry_bp. That may or may not 20497 * be the original IO, but that does not matter: the important thing 20498 * is to keep the IO processing going at this point. 20499 * 20500 * Note: This is a very specific error recovery sequence associated 20501 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20502 * serialize the I/O with completion of the spin-up. 20503 */ 20504 mutex_enter(SD_MUTEX(un)); 20505 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20506 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20507 un, un->un_retry_bp); 20508 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20509 sd_start_cmds(un, un->un_retry_bp); 20510 mutex_exit(SD_MUTEX(un)); 20511 20512 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20513 } 20514 20515 20516 /* 20517 * Function: sd_send_scsi_INQUIRY 20518 * 20519 * Description: Issue the scsi INQUIRY command. 20520 * 20521 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20522 * structure for this target. 20523 * bufaddr 20524 * buflen 20525 * evpd 20526 * page_code 20527 * page_length 20528 * 20529 * Return Code: 0 - Success 20530 * errno return code from sd_ssc_send() 20531 * 20532 * Context: Can sleep. Does not return until command is completed. 20533 */ 20534 20535 static int 20536 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20537 uchar_t evpd, uchar_t page_code, size_t *residp) 20538 { 20539 union scsi_cdb cdb; 20540 struct uscsi_cmd ucmd_buf; 20541 int status; 20542 struct sd_lun *un; 20543 20544 ASSERT(ssc != NULL); 20545 un = ssc->ssc_un; 20546 ASSERT(un != NULL); 20547 ASSERT(!mutex_owned(SD_MUTEX(un))); 20548 ASSERT(bufaddr != NULL); 20549 20550 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20551 20552 bzero(&cdb, sizeof (cdb)); 20553 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20554 bzero(bufaddr, buflen); 20555 20556 cdb.scc_cmd = SCMD_INQUIRY; 20557 cdb.cdb_opaque[1] = evpd; 20558 cdb.cdb_opaque[2] = page_code; 20559 FORMG0COUNT(&cdb, buflen); 20560 20561 ucmd_buf.uscsi_cdb = (char *)&cdb; 20562 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20563 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20564 ucmd_buf.uscsi_buflen = buflen; 20565 ucmd_buf.uscsi_rqbuf = NULL; 20566 ucmd_buf.uscsi_rqlen = 0; 20567 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20568 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20569 20570 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20571 UIO_SYSSPACE, SD_PATH_DIRECT); 20572 20573 /* 20574 * Only handle status == 0, the upper-level caller 20575 * will put different assessment based on the context. 20576 */ 20577 if (status == 0) 20578 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20579 20580 if ((status == 0) && (residp != NULL)) { 20581 *residp = ucmd_buf.uscsi_resid; 20582 } 20583 20584 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20585 20586 return (status); 20587 } 20588 20589 20590 /* 20591 * Function: sd_send_scsi_TEST_UNIT_READY 20592 * 20593 * Description: Issue the scsi TEST UNIT READY command. 20594 * This routine can be told to set the flag USCSI_DIAGNOSE to 20595 * prevent retrying failed commands. Use this when the intent 20596 * is either to check for device readiness, to clear a Unit 20597 * Attention, or to clear any outstanding sense data. 20598 * However under specific conditions the expected behavior 20599 * is for retries to bring a device ready, so use the flag 20600 * with caution. 20601 * 20602 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20603 * structure for this target. 20604 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20605 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20606 * 0: dont check for media present, do retries on cmd. 20607 * 20608 * Return Code: 0 - Success 20609 * EIO - IO error 20610 * EACCES - Reservation conflict detected 20611 * ENXIO - Not Ready, medium not present 20612 * errno return code from sd_ssc_send() 20613 * 20614 * Context: Can sleep. Does not return until command is completed. 20615 */ 20616 20617 static int 20618 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20619 { 20620 struct scsi_extended_sense sense_buf; 20621 union scsi_cdb cdb; 20622 struct uscsi_cmd ucmd_buf; 20623 int status; 20624 struct sd_lun *un; 20625 20626 ASSERT(ssc != NULL); 20627 un = ssc->ssc_un; 20628 ASSERT(un != NULL); 20629 ASSERT(!mutex_owned(SD_MUTEX(un))); 20630 20631 SD_TRACE(SD_LOG_IO, un, 20632 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20633 20634 /* 20635 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20636 * timeouts when they receive a TUR and the queue is not empty. Check 20637 * the configuration flag set during attach (indicating the drive has 20638 * this firmware bug) and un_ncmds_in_transport before issuing the 20639 * TUR. If there are 20640 * pending commands return success, this is a bit arbitrary but is ok 20641 * for non-removables (i.e. the eliteI disks) and non-clustering 20642 * configurations. 20643 */ 20644 if (un->un_f_cfg_tur_check == TRUE) { 20645 mutex_enter(SD_MUTEX(un)); 20646 if (un->un_ncmds_in_transport != 0) { 20647 mutex_exit(SD_MUTEX(un)); 20648 return (0); 20649 } 20650 mutex_exit(SD_MUTEX(un)); 20651 } 20652 20653 bzero(&cdb, sizeof (cdb)); 20654 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20655 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20656 20657 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20658 20659 ucmd_buf.uscsi_cdb = (char *)&cdb; 20660 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20661 ucmd_buf.uscsi_bufaddr = NULL; 20662 ucmd_buf.uscsi_buflen = 0; 20663 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20664 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20665 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20666 20667 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20668 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20669 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20670 } 20671 ucmd_buf.uscsi_timeout = 60; 20672 20673 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20674 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20675 SD_PATH_STANDARD)); 20676 20677 switch (status) { 20678 case 0: 20679 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20680 break; /* Success! */ 20681 case EIO: 20682 switch (ucmd_buf.uscsi_status) { 20683 case STATUS_RESERVATION_CONFLICT: 20684 status = EACCES; 20685 break; 20686 case STATUS_CHECK: 20687 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20688 break; 20689 } 20690 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20691 (scsi_sense_key((uint8_t *)&sense_buf) == 20692 KEY_NOT_READY) && 20693 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20694 status = ENXIO; 20695 } 20696 break; 20697 default: 20698 break; 20699 } 20700 break; 20701 default: 20702 break; 20703 } 20704 20705 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20706 20707 return (status); 20708 } 20709 20710 /* 20711 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20712 * 20713 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20714 * 20715 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20716 * structure for this target. 20717 * 20718 * Return Code: 0 - Success 20719 * EACCES 20720 * ENOTSUP 20721 * errno return code from sd_ssc_send() 20722 * 20723 * Context: Can sleep. Does not return until command is completed. 20724 */ 20725 20726 static int 20727 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20728 uint16_t data_len, uchar_t *data_bufp) 20729 { 20730 struct scsi_extended_sense sense_buf; 20731 union scsi_cdb cdb; 20732 struct uscsi_cmd ucmd_buf; 20733 int status; 20734 int no_caller_buf = FALSE; 20735 struct sd_lun *un; 20736 20737 ASSERT(ssc != NULL); 20738 un = ssc->ssc_un; 20739 ASSERT(un != NULL); 20740 ASSERT(!mutex_owned(SD_MUTEX(un))); 20741 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20742 20743 SD_TRACE(SD_LOG_IO, un, 20744 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20745 20746 bzero(&cdb, sizeof (cdb)); 20747 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20748 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20749 if (data_bufp == NULL) { 20750 /* Allocate a default buf if the caller did not give one */ 20751 ASSERT(data_len == 0); 20752 data_len = MHIOC_RESV_KEY_SIZE; 20753 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20754 no_caller_buf = TRUE; 20755 } 20756 20757 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20758 cdb.cdb_opaque[1] = usr_cmd; 20759 FORMG1COUNT(&cdb, data_len); 20760 20761 ucmd_buf.uscsi_cdb = (char *)&cdb; 20762 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20763 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20764 ucmd_buf.uscsi_buflen = data_len; 20765 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20766 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20767 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20768 ucmd_buf.uscsi_timeout = 60; 20769 20770 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20771 UIO_SYSSPACE, SD_PATH_STANDARD); 20772 20773 switch (status) { 20774 case 0: 20775 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20776 20777 break; /* Success! */ 20778 case EIO: 20779 switch (ucmd_buf.uscsi_status) { 20780 case STATUS_RESERVATION_CONFLICT: 20781 status = EACCES; 20782 break; 20783 case STATUS_CHECK: 20784 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20785 (scsi_sense_key((uint8_t *)&sense_buf) == 20786 KEY_ILLEGAL_REQUEST)) { 20787 status = ENOTSUP; 20788 } 20789 break; 20790 default: 20791 break; 20792 } 20793 break; 20794 default: 20795 break; 20796 } 20797 20798 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20799 20800 if (no_caller_buf == TRUE) { 20801 kmem_free(data_bufp, data_len); 20802 } 20803 20804 return (status); 20805 } 20806 20807 20808 /* 20809 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20810 * 20811 * Description: This routine is the driver entry point for handling CD-ROM 20812 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20813 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20814 * device. 20815 * 20816 * Arguments: ssc - ssc contains un - pointer to soft state struct 20817 * for the target. 20818 * usr_cmd SCSI-3 reservation facility command (one of 20819 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20820 * SD_SCSI3_PREEMPTANDABORT) 20821 * usr_bufp - user provided pointer register, reserve descriptor or 20822 * preempt and abort structure (mhioc_register_t, 20823 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20824 * 20825 * Return Code: 0 - Success 20826 * EACCES 20827 * ENOTSUP 20828 * errno return code from sd_ssc_send() 20829 * 20830 * Context: Can sleep. Does not return until command is completed. 20831 */ 20832 20833 static int 20834 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20835 uchar_t *usr_bufp) 20836 { 20837 struct scsi_extended_sense sense_buf; 20838 union scsi_cdb cdb; 20839 struct uscsi_cmd ucmd_buf; 20840 int status; 20841 uchar_t data_len = sizeof (sd_prout_t); 20842 sd_prout_t *prp; 20843 struct sd_lun *un; 20844 20845 ASSERT(ssc != NULL); 20846 un = ssc->ssc_un; 20847 ASSERT(un != NULL); 20848 ASSERT(!mutex_owned(SD_MUTEX(un))); 20849 ASSERT(data_len == 24); /* required by scsi spec */ 20850 20851 SD_TRACE(SD_LOG_IO, un, 20852 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20853 20854 if (usr_bufp == NULL) { 20855 return (EINVAL); 20856 } 20857 20858 bzero(&cdb, sizeof (cdb)); 20859 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20860 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20861 prp = kmem_zalloc(data_len, KM_SLEEP); 20862 20863 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 20864 cdb.cdb_opaque[1] = usr_cmd; 20865 FORMG1COUNT(&cdb, data_len); 20866 20867 ucmd_buf.uscsi_cdb = (char *)&cdb; 20868 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20869 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 20870 ucmd_buf.uscsi_buflen = data_len; 20871 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20872 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20873 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20874 ucmd_buf.uscsi_timeout = 60; 20875 20876 switch (usr_cmd) { 20877 case SD_SCSI3_REGISTER: { 20878 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 20879 20880 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20881 bcopy(ptr->newkey.key, prp->service_key, 20882 MHIOC_RESV_KEY_SIZE); 20883 prp->aptpl = ptr->aptpl; 20884 break; 20885 } 20886 case SD_SCSI3_RESERVE: 20887 case SD_SCSI3_RELEASE: { 20888 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 20889 20890 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20891 prp->scope_address = BE_32(ptr->scope_specific_addr); 20892 cdb.cdb_opaque[2] = ptr->type; 20893 break; 20894 } 20895 case SD_SCSI3_PREEMPTANDABORT: { 20896 mhioc_preemptandabort_t *ptr = 20897 (mhioc_preemptandabort_t *)usr_bufp; 20898 20899 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20900 bcopy(ptr->victim_key.key, prp->service_key, 20901 MHIOC_RESV_KEY_SIZE); 20902 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 20903 cdb.cdb_opaque[2] = ptr->resvdesc.type; 20904 ucmd_buf.uscsi_flags |= USCSI_HEAD; 20905 break; 20906 } 20907 case SD_SCSI3_REGISTERANDIGNOREKEY: 20908 { 20909 mhioc_registerandignorekey_t *ptr; 20910 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 20911 bcopy(ptr->newkey.key, 20912 prp->service_key, MHIOC_RESV_KEY_SIZE); 20913 prp->aptpl = ptr->aptpl; 20914 break; 20915 } 20916 default: 20917 ASSERT(FALSE); 20918 break; 20919 } 20920 20921 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20922 UIO_SYSSPACE, SD_PATH_STANDARD); 20923 20924 switch (status) { 20925 case 0: 20926 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20927 break; /* Success! */ 20928 case EIO: 20929 switch (ucmd_buf.uscsi_status) { 20930 case STATUS_RESERVATION_CONFLICT: 20931 status = EACCES; 20932 break; 20933 case STATUS_CHECK: 20934 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20935 (scsi_sense_key((uint8_t *)&sense_buf) == 20936 KEY_ILLEGAL_REQUEST)) { 20937 status = ENOTSUP; 20938 } 20939 break; 20940 default: 20941 break; 20942 } 20943 break; 20944 default: 20945 break; 20946 } 20947 20948 kmem_free(prp, data_len); 20949 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 20950 return (status); 20951 } 20952 20953 20954 /* 20955 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 20956 * 20957 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 20958 * 20959 * Arguments: un - pointer to the target's soft state struct 20960 * dkc - pointer to the callback structure 20961 * 20962 * Return Code: 0 - success 20963 * errno-type error code 20964 * 20965 * Context: kernel thread context only. 20966 * 20967 * _______________________________________________________________ 20968 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 20969 * |FLUSH_VOLATILE| | operation | 20970 * |______________|______________|_________________________________| 20971 * | 0 | NULL | Synchronous flush on both | 20972 * | | | volatile and non-volatile cache | 20973 * |______________|______________|_________________________________| 20974 * | 1 | NULL | Synchronous flush on volatile | 20975 * | | | cache; disk drivers may suppress| 20976 * | | | flush if disk table indicates | 20977 * | | | non-volatile cache | 20978 * |______________|______________|_________________________________| 20979 * | 0 | !NULL | Asynchronous flush on both | 20980 * | | | volatile and non-volatile cache;| 20981 * |______________|______________|_________________________________| 20982 * | 1 | !NULL | Asynchronous flush on volatile | 20983 * | | | cache; disk drivers may suppress| 20984 * | | | flush if disk table indicates | 20985 * | | | non-volatile cache | 20986 * |______________|______________|_________________________________| 20987 * 20988 */ 20989 20990 static int 20991 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 20992 { 20993 struct sd_uscsi_info *uip; 20994 struct uscsi_cmd *uscmd; 20995 union scsi_cdb *cdb; 20996 struct buf *bp; 20997 int rval = 0; 20998 int is_async; 20999 21000 SD_TRACE(SD_LOG_IO, un, 21001 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 21002 21003 ASSERT(un != NULL); 21004 ASSERT(!mutex_owned(SD_MUTEX(un))); 21005 21006 if (dkc == NULL || dkc->dkc_callback == NULL) { 21007 is_async = FALSE; 21008 } else { 21009 is_async = TRUE; 21010 } 21011 21012 mutex_enter(SD_MUTEX(un)); 21013 /* check whether cache flush should be suppressed */ 21014 if (un->un_f_suppress_cache_flush == TRUE) { 21015 mutex_exit(SD_MUTEX(un)); 21016 /* 21017 * suppress the cache flush if the device is told to do 21018 * so by sd.conf or disk table 21019 */ 21020 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 21021 skip the cache flush since suppress_cache_flush is %d!\n", 21022 un->un_f_suppress_cache_flush); 21023 21024 if (is_async == TRUE) { 21025 /* invoke callback for asynchronous flush */ 21026 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 21027 } 21028 return (rval); 21029 } 21030 mutex_exit(SD_MUTEX(un)); 21031 21032 /* 21033 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 21034 * set properly 21035 */ 21036 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 21037 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 21038 21039 mutex_enter(SD_MUTEX(un)); 21040 if (dkc != NULL && un->un_f_sync_nv_supported && 21041 (dkc->dkc_flag & FLUSH_VOLATILE)) { 21042 /* 21043 * if the device supports SYNC_NV bit, turn on 21044 * the SYNC_NV bit to only flush volatile cache 21045 */ 21046 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 21047 } 21048 mutex_exit(SD_MUTEX(un)); 21049 21050 /* 21051 * First get some memory for the uscsi_cmd struct and cdb 21052 * and initialize for SYNCHRONIZE_CACHE cmd. 21053 */ 21054 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21055 uscmd->uscsi_cdblen = CDB_GROUP1; 21056 uscmd->uscsi_cdb = (caddr_t)cdb; 21057 uscmd->uscsi_bufaddr = NULL; 21058 uscmd->uscsi_buflen = 0; 21059 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 21060 uscmd->uscsi_rqlen = SENSE_LENGTH; 21061 uscmd->uscsi_rqresid = SENSE_LENGTH; 21062 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 21063 uscmd->uscsi_timeout = sd_io_time; 21064 21065 /* 21066 * Allocate an sd_uscsi_info struct and fill it with the info 21067 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 21068 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 21069 * since we allocate the buf here in this function, we do not 21070 * need to preserve the prior contents of b_private. 21071 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 21072 */ 21073 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 21074 uip->ui_flags = SD_PATH_DIRECT; 21075 uip->ui_cmdp = uscmd; 21076 21077 bp = getrbuf(KM_SLEEP); 21078 bp->b_private = uip; 21079 21080 /* 21081 * Setup buffer to carry uscsi request. 21082 */ 21083 bp->b_flags = B_BUSY; 21084 bp->b_bcount = 0; 21085 bp->b_blkno = 0; 21086 21087 if (is_async == TRUE) { 21088 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21089 uip->ui_dkc = *dkc; 21090 } 21091 21092 bp->b_edev = SD_GET_DEV(un); 21093 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21094 21095 /* 21096 * Unset un_f_sync_cache_required flag 21097 */ 21098 mutex_enter(SD_MUTEX(un)); 21099 un->un_f_sync_cache_required = FALSE; 21100 mutex_exit(SD_MUTEX(un)); 21101 21102 (void) sd_uscsi_strategy(bp); 21103 21104 /* 21105 * If synchronous request, wait for completion 21106 * If async just return and let b_iodone callback 21107 * cleanup. 21108 * NOTE: On return, u_ncmds_in_driver will be decremented, 21109 * but it was also incremented in sd_uscsi_strategy(), so 21110 * we should be ok. 21111 */ 21112 if (is_async == FALSE) { 21113 (void) biowait(bp); 21114 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21115 } 21116 21117 return (rval); 21118 } 21119 21120 21121 static int 21122 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21123 { 21124 struct sd_uscsi_info *uip; 21125 struct uscsi_cmd *uscmd; 21126 uint8_t *sense_buf; 21127 struct sd_lun *un; 21128 int status; 21129 union scsi_cdb *cdb; 21130 21131 uip = (struct sd_uscsi_info *)(bp->b_private); 21132 ASSERT(uip != NULL); 21133 21134 uscmd = uip->ui_cmdp; 21135 ASSERT(uscmd != NULL); 21136 21137 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21138 ASSERT(sense_buf != NULL); 21139 21140 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21141 ASSERT(un != NULL); 21142 21143 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21144 21145 status = geterror(bp); 21146 switch (status) { 21147 case 0: 21148 break; /* Success! */ 21149 case EIO: 21150 switch (uscmd->uscsi_status) { 21151 case STATUS_RESERVATION_CONFLICT: 21152 /* Ignore reservation conflict */ 21153 status = 0; 21154 goto done; 21155 21156 case STATUS_CHECK: 21157 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21158 (scsi_sense_key(sense_buf) == 21159 KEY_ILLEGAL_REQUEST)) { 21160 /* Ignore Illegal Request error */ 21161 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21162 mutex_enter(SD_MUTEX(un)); 21163 un->un_f_sync_nv_supported = FALSE; 21164 mutex_exit(SD_MUTEX(un)); 21165 status = 0; 21166 SD_TRACE(SD_LOG_IO, un, 21167 "un_f_sync_nv_supported \ 21168 is set to false.\n"); 21169 goto done; 21170 } 21171 21172 mutex_enter(SD_MUTEX(un)); 21173 un->un_f_sync_cache_supported = FALSE; 21174 mutex_exit(SD_MUTEX(un)); 21175 SD_TRACE(SD_LOG_IO, un, 21176 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21177 un_f_sync_cache_supported set to false \ 21178 with asc = %x, ascq = %x\n", 21179 scsi_sense_asc(sense_buf), 21180 scsi_sense_ascq(sense_buf)); 21181 status = ENOTSUP; 21182 goto done; 21183 } 21184 break; 21185 default: 21186 break; 21187 } 21188 /* FALLTHRU */ 21189 default: 21190 /* 21191 * Turn on the un_f_sync_cache_required flag 21192 * since the SYNC CACHE command failed 21193 */ 21194 mutex_enter(SD_MUTEX(un)); 21195 un->un_f_sync_cache_required = TRUE; 21196 mutex_exit(SD_MUTEX(un)); 21197 21198 /* 21199 * Don't log an error message if this device 21200 * has removable media. 21201 */ 21202 if (!un->un_f_has_removable_media) { 21203 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21204 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21205 } 21206 break; 21207 } 21208 21209 done: 21210 if (uip->ui_dkc.dkc_callback != NULL) { 21211 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21212 } 21213 21214 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21215 freerbuf(bp); 21216 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21217 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21218 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21219 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21220 21221 return (status); 21222 } 21223 21224 21225 /* 21226 * Function: sd_send_scsi_GET_CONFIGURATION 21227 * 21228 * Description: Issues the get configuration command to the device. 21229 * Called from sd_check_for_writable_cd & sd_get_media_info 21230 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21231 * Arguments: ssc 21232 * ucmdbuf 21233 * rqbuf 21234 * rqbuflen 21235 * bufaddr 21236 * buflen 21237 * path_flag 21238 * 21239 * Return Code: 0 - Success 21240 * errno return code from sd_ssc_send() 21241 * 21242 * Context: Can sleep. Does not return until command is completed. 21243 * 21244 */ 21245 21246 static int 21247 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21248 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21249 int path_flag) 21250 { 21251 char cdb[CDB_GROUP1]; 21252 int status; 21253 struct sd_lun *un; 21254 21255 ASSERT(ssc != NULL); 21256 un = ssc->ssc_un; 21257 ASSERT(un != NULL); 21258 ASSERT(!mutex_owned(SD_MUTEX(un))); 21259 ASSERT(bufaddr != NULL); 21260 ASSERT(ucmdbuf != NULL); 21261 ASSERT(rqbuf != NULL); 21262 21263 SD_TRACE(SD_LOG_IO, un, 21264 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21265 21266 bzero(cdb, sizeof (cdb)); 21267 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21268 bzero(rqbuf, rqbuflen); 21269 bzero(bufaddr, buflen); 21270 21271 /* 21272 * Set up cdb field for the get configuration command. 21273 */ 21274 cdb[0] = SCMD_GET_CONFIGURATION; 21275 cdb[1] = 0x02; /* Requested Type */ 21276 cdb[8] = SD_PROFILE_HEADER_LEN; 21277 ucmdbuf->uscsi_cdb = cdb; 21278 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21279 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21280 ucmdbuf->uscsi_buflen = buflen; 21281 ucmdbuf->uscsi_timeout = sd_io_time; 21282 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21283 ucmdbuf->uscsi_rqlen = rqbuflen; 21284 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21285 21286 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21287 UIO_SYSSPACE, path_flag); 21288 21289 switch (status) { 21290 case 0: 21291 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21292 break; /* Success! */ 21293 case EIO: 21294 switch (ucmdbuf->uscsi_status) { 21295 case STATUS_RESERVATION_CONFLICT: 21296 status = EACCES; 21297 break; 21298 default: 21299 break; 21300 } 21301 break; 21302 default: 21303 break; 21304 } 21305 21306 if (status == 0) { 21307 SD_DUMP_MEMORY(un, SD_LOG_IO, 21308 "sd_send_scsi_GET_CONFIGURATION: data", 21309 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21310 } 21311 21312 SD_TRACE(SD_LOG_IO, un, 21313 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21314 21315 return (status); 21316 } 21317 21318 /* 21319 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21320 * 21321 * Description: Issues the get configuration command to the device to 21322 * retrieve a specific feature. Called from 21323 * sd_check_for_writable_cd & sd_set_mmc_caps. 21324 * Arguments: ssc 21325 * ucmdbuf 21326 * rqbuf 21327 * rqbuflen 21328 * bufaddr 21329 * buflen 21330 * feature 21331 * 21332 * Return Code: 0 - Success 21333 * errno return code from sd_ssc_send() 21334 * 21335 * Context: Can sleep. Does not return until command is completed. 21336 * 21337 */ 21338 static int 21339 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 21340 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 21341 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 21342 { 21343 char cdb[CDB_GROUP1]; 21344 int status; 21345 struct sd_lun *un; 21346 21347 ASSERT(ssc != NULL); 21348 un = ssc->ssc_un; 21349 ASSERT(un != NULL); 21350 ASSERT(!mutex_owned(SD_MUTEX(un))); 21351 ASSERT(bufaddr != NULL); 21352 ASSERT(ucmdbuf != NULL); 21353 ASSERT(rqbuf != NULL); 21354 21355 SD_TRACE(SD_LOG_IO, un, 21356 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21357 21358 bzero(cdb, sizeof (cdb)); 21359 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21360 bzero(rqbuf, rqbuflen); 21361 bzero(bufaddr, buflen); 21362 21363 /* 21364 * Set up cdb field for the get configuration command. 21365 */ 21366 cdb[0] = SCMD_GET_CONFIGURATION; 21367 cdb[1] = 0x02; /* Requested Type */ 21368 cdb[3] = feature; 21369 cdb[8] = buflen; 21370 ucmdbuf->uscsi_cdb = cdb; 21371 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21372 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21373 ucmdbuf->uscsi_buflen = buflen; 21374 ucmdbuf->uscsi_timeout = sd_io_time; 21375 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21376 ucmdbuf->uscsi_rqlen = rqbuflen; 21377 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21378 21379 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21380 UIO_SYSSPACE, path_flag); 21381 21382 switch (status) { 21383 case 0: 21384 21385 break; /* Success! */ 21386 case EIO: 21387 switch (ucmdbuf->uscsi_status) { 21388 case STATUS_RESERVATION_CONFLICT: 21389 status = EACCES; 21390 break; 21391 default: 21392 break; 21393 } 21394 break; 21395 default: 21396 break; 21397 } 21398 21399 if (status == 0) { 21400 SD_DUMP_MEMORY(un, SD_LOG_IO, 21401 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21402 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21403 } 21404 21405 SD_TRACE(SD_LOG_IO, un, 21406 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21407 21408 return (status); 21409 } 21410 21411 21412 /* 21413 * Function: sd_send_scsi_MODE_SENSE 21414 * 21415 * Description: Utility function for issuing a scsi MODE SENSE command. 21416 * Note: This routine uses a consistent implementation for Group0, 21417 * Group1, and Group2 commands across all platforms. ATAPI devices 21418 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21419 * 21420 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21421 * structure for this target. 21422 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21423 * CDB_GROUP[1|2] (10 byte). 21424 * bufaddr - buffer for page data retrieved from the target. 21425 * buflen - size of page to be retrieved. 21426 * page_code - page code of data to be retrieved from the target. 21427 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21428 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21429 * to use the USCSI "direct" chain and bypass the normal 21430 * command waitq. 21431 * 21432 * Return Code: 0 - Success 21433 * errno return code from sd_ssc_send() 21434 * 21435 * Context: Can sleep. Does not return until command is completed. 21436 */ 21437 21438 static int 21439 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21440 size_t buflen, uchar_t page_code, int path_flag) 21441 { 21442 struct scsi_extended_sense sense_buf; 21443 union scsi_cdb cdb; 21444 struct uscsi_cmd ucmd_buf; 21445 int status; 21446 int headlen; 21447 struct sd_lun *un; 21448 21449 ASSERT(ssc != NULL); 21450 un = ssc->ssc_un; 21451 ASSERT(un != NULL); 21452 ASSERT(!mutex_owned(SD_MUTEX(un))); 21453 ASSERT(bufaddr != NULL); 21454 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21455 (cdbsize == CDB_GROUP2)); 21456 21457 SD_TRACE(SD_LOG_IO, un, 21458 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21459 21460 bzero(&cdb, sizeof (cdb)); 21461 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21462 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21463 bzero(bufaddr, buflen); 21464 21465 if (cdbsize == CDB_GROUP0) { 21466 cdb.scc_cmd = SCMD_MODE_SENSE; 21467 cdb.cdb_opaque[2] = page_code; 21468 FORMG0COUNT(&cdb, buflen); 21469 headlen = MODE_HEADER_LENGTH; 21470 } else { 21471 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 21472 cdb.cdb_opaque[2] = page_code; 21473 FORMG1COUNT(&cdb, buflen); 21474 headlen = MODE_HEADER_LENGTH_GRP2; 21475 } 21476 21477 ASSERT(headlen <= buflen); 21478 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21479 21480 ucmd_buf.uscsi_cdb = (char *)&cdb; 21481 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21482 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21483 ucmd_buf.uscsi_buflen = buflen; 21484 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21485 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21486 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21487 ucmd_buf.uscsi_timeout = 60; 21488 21489 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21490 UIO_SYSSPACE, path_flag); 21491 21492 switch (status) { 21493 case 0: 21494 /* 21495 * sr_check_wp() uses 0x3f page code and check the header of 21496 * mode page to determine if target device is write-protected. 21497 * But some USB devices return 0 bytes for 0x3f page code. For 21498 * this case, make sure that mode page header is returned at 21499 * least. 21500 */ 21501 if (buflen - ucmd_buf.uscsi_resid < headlen) { 21502 status = EIO; 21503 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 21504 "mode page header is not returned"); 21505 } 21506 break; /* Success! */ 21507 case EIO: 21508 switch (ucmd_buf.uscsi_status) { 21509 case STATUS_RESERVATION_CONFLICT: 21510 status = EACCES; 21511 break; 21512 default: 21513 break; 21514 } 21515 break; 21516 default: 21517 break; 21518 } 21519 21520 if (status == 0) { 21521 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 21522 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21523 } 21524 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 21525 21526 return (status); 21527 } 21528 21529 21530 /* 21531 * Function: sd_send_scsi_MODE_SELECT 21532 * 21533 * Description: Utility function for issuing a scsi MODE SELECT command. 21534 * Note: This routine uses a consistent implementation for Group0, 21535 * Group1, and Group2 commands across all platforms. ATAPI devices 21536 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21537 * 21538 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21539 * structure for this target. 21540 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21541 * CDB_GROUP[1|2] (10 byte). 21542 * bufaddr - buffer for page data retrieved from the target. 21543 * buflen - size of page to be retrieved. 21544 * save_page - boolean to determin if SP bit should be set. 21545 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21546 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21547 * to use the USCSI "direct" chain and bypass the normal 21548 * command waitq. 21549 * 21550 * Return Code: 0 - Success 21551 * errno return code from sd_ssc_send() 21552 * 21553 * Context: Can sleep. Does not return until command is completed. 21554 */ 21555 21556 static int 21557 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21558 size_t buflen, uchar_t save_page, int path_flag) 21559 { 21560 struct scsi_extended_sense sense_buf; 21561 union scsi_cdb cdb; 21562 struct uscsi_cmd ucmd_buf; 21563 int status; 21564 struct sd_lun *un; 21565 21566 ASSERT(ssc != NULL); 21567 un = ssc->ssc_un; 21568 ASSERT(un != NULL); 21569 ASSERT(!mutex_owned(SD_MUTEX(un))); 21570 ASSERT(bufaddr != NULL); 21571 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21572 (cdbsize == CDB_GROUP2)); 21573 21574 SD_TRACE(SD_LOG_IO, un, 21575 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 21576 21577 bzero(&cdb, sizeof (cdb)); 21578 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21579 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21580 21581 /* Set the PF bit for many third party drives */ 21582 cdb.cdb_opaque[1] = 0x10; 21583 21584 /* Set the savepage(SP) bit if given */ 21585 if (save_page == SD_SAVE_PAGE) { 21586 cdb.cdb_opaque[1] |= 0x01; 21587 } 21588 21589 if (cdbsize == CDB_GROUP0) { 21590 cdb.scc_cmd = SCMD_MODE_SELECT; 21591 FORMG0COUNT(&cdb, buflen); 21592 } else { 21593 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 21594 FORMG1COUNT(&cdb, buflen); 21595 } 21596 21597 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21598 21599 ucmd_buf.uscsi_cdb = (char *)&cdb; 21600 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21601 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21602 ucmd_buf.uscsi_buflen = buflen; 21603 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21604 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21605 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21606 ucmd_buf.uscsi_timeout = 60; 21607 21608 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21609 UIO_SYSSPACE, path_flag); 21610 21611 switch (status) { 21612 case 0: 21613 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21614 break; /* Success! */ 21615 case EIO: 21616 switch (ucmd_buf.uscsi_status) { 21617 case STATUS_RESERVATION_CONFLICT: 21618 status = EACCES; 21619 break; 21620 default: 21621 break; 21622 } 21623 break; 21624 default: 21625 break; 21626 } 21627 21628 if (status == 0) { 21629 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 21630 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21631 } 21632 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 21633 21634 return (status); 21635 } 21636 21637 21638 /* 21639 * Function: sd_send_scsi_RDWR 21640 * 21641 * Description: Issue a scsi READ or WRITE command with the given parameters. 21642 * 21643 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21644 * structure for this target. 21645 * cmd: SCMD_READ or SCMD_WRITE 21646 * bufaddr: Address of caller's buffer to receive the RDWR data 21647 * buflen: Length of caller's buffer receive the RDWR data. 21648 * start_block: Block number for the start of the RDWR operation. 21649 * (Assumes target-native block size.) 21650 * residp: Pointer to variable to receive the redisual of the 21651 * RDWR operation (may be NULL of no residual requested). 21652 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21653 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21654 * to use the USCSI "direct" chain and bypass the normal 21655 * command waitq. 21656 * 21657 * Return Code: 0 - Success 21658 * errno return code from sd_ssc_send() 21659 * 21660 * Context: Can sleep. Does not return until command is completed. 21661 */ 21662 21663 static int 21664 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 21665 size_t buflen, daddr_t start_block, int path_flag) 21666 { 21667 struct scsi_extended_sense sense_buf; 21668 union scsi_cdb cdb; 21669 struct uscsi_cmd ucmd_buf; 21670 uint32_t block_count; 21671 int status; 21672 int cdbsize; 21673 uchar_t flag; 21674 struct sd_lun *un; 21675 21676 ASSERT(ssc != NULL); 21677 un = ssc->ssc_un; 21678 ASSERT(un != NULL); 21679 ASSERT(!mutex_owned(SD_MUTEX(un))); 21680 ASSERT(bufaddr != NULL); 21681 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 21682 21683 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 21684 21685 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 21686 return (EINVAL); 21687 } 21688 21689 mutex_enter(SD_MUTEX(un)); 21690 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21691 mutex_exit(SD_MUTEX(un)); 21692 21693 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21694 21695 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21696 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21697 bufaddr, buflen, start_block, block_count); 21698 21699 bzero(&cdb, sizeof (cdb)); 21700 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21701 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21702 21703 /* Compute CDB size to use */ 21704 if (start_block > 0xffffffff) 21705 cdbsize = CDB_GROUP4; 21706 else if ((start_block & 0xFFE00000) || 21707 (un->un_f_cfg_is_atapi == TRUE)) 21708 cdbsize = CDB_GROUP1; 21709 else 21710 cdbsize = CDB_GROUP0; 21711 21712 switch (cdbsize) { 21713 case CDB_GROUP0: /* 6-byte CDBs */ 21714 cdb.scc_cmd = cmd; 21715 FORMG0ADDR(&cdb, start_block); 21716 FORMG0COUNT(&cdb, block_count); 21717 break; 21718 case CDB_GROUP1: /* 10-byte CDBs */ 21719 cdb.scc_cmd = cmd | SCMD_GROUP1; 21720 FORMG1ADDR(&cdb, start_block); 21721 FORMG1COUNT(&cdb, block_count); 21722 break; 21723 case CDB_GROUP4: /* 16-byte CDBs */ 21724 cdb.scc_cmd = cmd | SCMD_GROUP4; 21725 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21726 FORMG4COUNT(&cdb, block_count); 21727 break; 21728 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21729 default: 21730 /* All others reserved */ 21731 return (EINVAL); 21732 } 21733 21734 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21735 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21736 21737 ucmd_buf.uscsi_cdb = (char *)&cdb; 21738 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21739 ucmd_buf.uscsi_bufaddr = bufaddr; 21740 ucmd_buf.uscsi_buflen = buflen; 21741 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21742 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21743 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21744 ucmd_buf.uscsi_timeout = 60; 21745 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21746 UIO_SYSSPACE, path_flag); 21747 21748 switch (status) { 21749 case 0: 21750 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21751 break; /* Success! */ 21752 case EIO: 21753 switch (ucmd_buf.uscsi_status) { 21754 case STATUS_RESERVATION_CONFLICT: 21755 status = EACCES; 21756 break; 21757 default: 21758 break; 21759 } 21760 break; 21761 default: 21762 break; 21763 } 21764 21765 if (status == 0) { 21766 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21767 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21768 } 21769 21770 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21771 21772 return (status); 21773 } 21774 21775 21776 /* 21777 * Function: sd_send_scsi_LOG_SENSE 21778 * 21779 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21780 * 21781 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21782 * structure for this target. 21783 * 21784 * Return Code: 0 - Success 21785 * errno return code from sd_ssc_send() 21786 * 21787 * Context: Can sleep. Does not return until command is completed. 21788 */ 21789 21790 static int 21791 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21792 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21793 int path_flag) 21794 21795 { 21796 struct scsi_extended_sense sense_buf; 21797 union scsi_cdb cdb; 21798 struct uscsi_cmd ucmd_buf; 21799 int status; 21800 struct sd_lun *un; 21801 21802 ASSERT(ssc != NULL); 21803 un = ssc->ssc_un; 21804 ASSERT(un != NULL); 21805 ASSERT(!mutex_owned(SD_MUTEX(un))); 21806 21807 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21808 21809 bzero(&cdb, sizeof (cdb)); 21810 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21811 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21812 21813 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21814 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21815 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21816 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21817 FORMG1COUNT(&cdb, buflen); 21818 21819 ucmd_buf.uscsi_cdb = (char *)&cdb; 21820 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21821 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21822 ucmd_buf.uscsi_buflen = buflen; 21823 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21824 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21825 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21826 ucmd_buf.uscsi_timeout = 60; 21827 21828 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21829 UIO_SYSSPACE, path_flag); 21830 21831 switch (status) { 21832 case 0: 21833 break; 21834 case EIO: 21835 switch (ucmd_buf.uscsi_status) { 21836 case STATUS_RESERVATION_CONFLICT: 21837 status = EACCES; 21838 break; 21839 case STATUS_CHECK: 21840 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21841 (scsi_sense_key((uint8_t *)&sense_buf) == 21842 KEY_ILLEGAL_REQUEST) && 21843 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 21844 /* 21845 * ASC 0x24: INVALID FIELD IN CDB 21846 */ 21847 switch (page_code) { 21848 case START_STOP_CYCLE_PAGE: 21849 /* 21850 * The start stop cycle counter is 21851 * implemented as page 0x31 in earlier 21852 * generation disks. In new generation 21853 * disks the start stop cycle counter is 21854 * implemented as page 0xE. To properly 21855 * handle this case if an attempt for 21856 * log page 0xE is made and fails we 21857 * will try again using page 0x31. 21858 * 21859 * Network storage BU committed to 21860 * maintain the page 0x31 for this 21861 * purpose and will not have any other 21862 * page implemented with page code 0x31 21863 * until all disks transition to the 21864 * standard page. 21865 */ 21866 mutex_enter(SD_MUTEX(un)); 21867 un->un_start_stop_cycle_page = 21868 START_STOP_CYCLE_VU_PAGE; 21869 cdb.cdb_opaque[2] = 21870 (char)(page_control << 6) | 21871 un->un_start_stop_cycle_page; 21872 mutex_exit(SD_MUTEX(un)); 21873 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 21874 status = sd_ssc_send( 21875 ssc, &ucmd_buf, FKIOCTL, 21876 UIO_SYSSPACE, path_flag); 21877 21878 break; 21879 case TEMPERATURE_PAGE: 21880 status = ENOTTY; 21881 break; 21882 default: 21883 break; 21884 } 21885 } 21886 break; 21887 default: 21888 break; 21889 } 21890 break; 21891 default: 21892 break; 21893 } 21894 21895 if (status == 0) { 21896 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21897 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 21898 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21899 } 21900 21901 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 21902 21903 return (status); 21904 } 21905 21906 21907 /* 21908 * Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 21909 * 21910 * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command. 21911 * 21912 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21913 * structure for this target. 21914 * bufaddr 21915 * buflen 21916 * class_req 21917 * 21918 * Return Code: 0 - Success 21919 * errno return code from sd_ssc_send() 21920 * 21921 * Context: Can sleep. Does not return until command is completed. 21922 */ 21923 21924 static int 21925 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr, 21926 size_t buflen, uchar_t class_req) 21927 { 21928 union scsi_cdb cdb; 21929 struct uscsi_cmd ucmd_buf; 21930 int status; 21931 struct sd_lun *un; 21932 21933 ASSERT(ssc != NULL); 21934 un = ssc->ssc_un; 21935 ASSERT(un != NULL); 21936 ASSERT(!mutex_owned(SD_MUTEX(un))); 21937 ASSERT(bufaddr != NULL); 21938 21939 SD_TRACE(SD_LOG_IO, un, 21940 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un); 21941 21942 bzero(&cdb, sizeof (cdb)); 21943 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21944 bzero(bufaddr, buflen); 21945 21946 cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION; 21947 cdb.cdb_opaque[1] = 1; /* polled */ 21948 cdb.cdb_opaque[4] = class_req; 21949 FORMG1COUNT(&cdb, buflen); 21950 21951 ucmd_buf.uscsi_cdb = (char *)&cdb; 21952 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21953 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21954 ucmd_buf.uscsi_buflen = buflen; 21955 ucmd_buf.uscsi_rqbuf = NULL; 21956 ucmd_buf.uscsi_rqlen = 0; 21957 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 21958 ucmd_buf.uscsi_timeout = 60; 21959 21960 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21961 UIO_SYSSPACE, SD_PATH_DIRECT); 21962 21963 /* 21964 * Only handle status == 0, the upper-level caller 21965 * will put different assessment based on the context. 21966 */ 21967 if (status == 0) { 21968 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21969 21970 if (ucmd_buf.uscsi_resid != 0) { 21971 status = EIO; 21972 } 21973 } 21974 21975 SD_TRACE(SD_LOG_IO, un, 21976 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n"); 21977 21978 return (status); 21979 } 21980 21981 21982 static boolean_t 21983 sd_gesn_media_data_valid(uchar_t *data) 21984 { 21985 uint16_t len; 21986 21987 len = (data[1] << 8) | data[0]; 21988 return ((len >= 6) && 21989 ((data[2] & SD_GESN_HEADER_NEA) == 0) && 21990 ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) && 21991 ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0)); 21992 } 21993 21994 21995 /* 21996 * Function: sdioctl 21997 * 21998 * Description: Driver's ioctl(9e) entry point function. 21999 * 22000 * Arguments: dev - device number 22001 * cmd - ioctl operation to be performed 22002 * arg - user argument, contains data to be set or reference 22003 * parameter for get 22004 * flag - bit flag, indicating open settings, 32/64 bit type 22005 * cred_p - user credential pointer 22006 * rval_p - calling process return value (OPT) 22007 * 22008 * Return Code: EINVAL 22009 * ENOTTY 22010 * ENXIO 22011 * EIO 22012 * EFAULT 22013 * ENOTSUP 22014 * EPERM 22015 * 22016 * Context: Called from the device switch at normal priority. 22017 */ 22018 22019 static int 22020 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 22021 { 22022 struct sd_lun *un = NULL; 22023 int err = 0; 22024 int i = 0; 22025 cred_t *cr; 22026 int tmprval = EINVAL; 22027 boolean_t is_valid; 22028 sd_ssc_t *ssc; 22029 22030 /* 22031 * All device accesses go thru sdstrategy where we check on suspend 22032 * status 22033 */ 22034 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22035 return (ENXIO); 22036 } 22037 22038 ASSERT(!mutex_owned(SD_MUTEX(un))); 22039 22040 /* Initialize sd_ssc_t for internal uscsi commands */ 22041 ssc = sd_ssc_init(un); 22042 22043 is_valid = SD_IS_VALID_LABEL(un); 22044 22045 /* 22046 * Moved this wait from sd_uscsi_strategy to here for 22047 * reasons of deadlock prevention. Internal driver commands, 22048 * specifically those to change a devices power level, result 22049 * in a call to sd_uscsi_strategy. 22050 */ 22051 mutex_enter(SD_MUTEX(un)); 22052 while ((un->un_state == SD_STATE_SUSPENDED) || 22053 (un->un_state == SD_STATE_PM_CHANGING)) { 22054 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 22055 } 22056 /* 22057 * Twiddling the counter here protects commands from now 22058 * through to the top of sd_uscsi_strategy. Without the 22059 * counter inc. a power down, for example, could get in 22060 * after the above check for state is made and before 22061 * execution gets to the top of sd_uscsi_strategy. 22062 * That would cause problems. 22063 */ 22064 un->un_ncmds_in_driver++; 22065 22066 if (!is_valid && 22067 (flag & (FNDELAY | FNONBLOCK))) { 22068 switch (cmd) { 22069 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 22070 case DKIOCGVTOC: 22071 case DKIOCGEXTVTOC: 22072 case DKIOCGAPART: 22073 case DKIOCPARTINFO: 22074 case DKIOCEXTPARTINFO: 22075 case DKIOCSGEOM: 22076 case DKIOCSAPART: 22077 case DKIOCGETEFI: 22078 case DKIOCPARTITION: 22079 case DKIOCSVTOC: 22080 case DKIOCSEXTVTOC: 22081 case DKIOCSETEFI: 22082 case DKIOCGMBOOT: 22083 case DKIOCSMBOOT: 22084 case DKIOCG_PHYGEOM: 22085 case DKIOCG_VIRTGEOM: 22086 #if defined(__i386) || defined(__amd64) 22087 case DKIOCSETEXTPART: 22088 #endif 22089 /* let cmlb handle it */ 22090 goto skip_ready_valid; 22091 22092 case CDROMPAUSE: 22093 case CDROMRESUME: 22094 case CDROMPLAYMSF: 22095 case CDROMPLAYTRKIND: 22096 case CDROMREADTOCHDR: 22097 case CDROMREADTOCENTRY: 22098 case CDROMSTOP: 22099 case CDROMSTART: 22100 case CDROMVOLCTRL: 22101 case CDROMSUBCHNL: 22102 case CDROMREADMODE2: 22103 case CDROMREADMODE1: 22104 case CDROMREADOFFSET: 22105 case CDROMSBLKMODE: 22106 case CDROMGBLKMODE: 22107 case CDROMGDRVSPEED: 22108 case CDROMSDRVSPEED: 22109 case CDROMCDDA: 22110 case CDROMCDXA: 22111 case CDROMSUBCODE: 22112 if (!ISCD(un)) { 22113 un->un_ncmds_in_driver--; 22114 ASSERT(un->un_ncmds_in_driver >= 0); 22115 mutex_exit(SD_MUTEX(un)); 22116 err = ENOTTY; 22117 goto done_without_assess; 22118 } 22119 break; 22120 case FDEJECT: 22121 case DKIOCEJECT: 22122 case CDROMEJECT: 22123 if (!un->un_f_eject_media_supported) { 22124 un->un_ncmds_in_driver--; 22125 ASSERT(un->un_ncmds_in_driver >= 0); 22126 mutex_exit(SD_MUTEX(un)); 22127 err = ENOTTY; 22128 goto done_without_assess; 22129 } 22130 break; 22131 case DKIOCFLUSHWRITECACHE: 22132 mutex_exit(SD_MUTEX(un)); 22133 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22134 if (err != 0) { 22135 mutex_enter(SD_MUTEX(un)); 22136 un->un_ncmds_in_driver--; 22137 ASSERT(un->un_ncmds_in_driver >= 0); 22138 mutex_exit(SD_MUTEX(un)); 22139 err = EIO; 22140 goto done_quick_assess; 22141 } 22142 mutex_enter(SD_MUTEX(un)); 22143 /* FALLTHROUGH */ 22144 case DKIOCREMOVABLE: 22145 case DKIOCHOTPLUGGABLE: 22146 case DKIOCINFO: 22147 case DKIOCGMEDIAINFO: 22148 case DKIOCGMEDIAINFOEXT: 22149 case MHIOCENFAILFAST: 22150 case MHIOCSTATUS: 22151 case MHIOCTKOWN: 22152 case MHIOCRELEASE: 22153 case MHIOCGRP_INKEYS: 22154 case MHIOCGRP_INRESV: 22155 case MHIOCGRP_REGISTER: 22156 case MHIOCGRP_RESERVE: 22157 case MHIOCGRP_PREEMPTANDABORT: 22158 case MHIOCGRP_REGISTERANDIGNOREKEY: 22159 case CDROMCLOSETRAY: 22160 case USCSICMD: 22161 goto skip_ready_valid; 22162 default: 22163 break; 22164 } 22165 22166 mutex_exit(SD_MUTEX(un)); 22167 err = sd_ready_and_valid(ssc, SDPART(dev)); 22168 mutex_enter(SD_MUTEX(un)); 22169 22170 if (err != SD_READY_VALID) { 22171 switch (cmd) { 22172 case DKIOCSTATE: 22173 case CDROMGDRVSPEED: 22174 case CDROMSDRVSPEED: 22175 case FDEJECT: /* for eject command */ 22176 case DKIOCEJECT: 22177 case CDROMEJECT: 22178 case DKIOCREMOVABLE: 22179 case DKIOCHOTPLUGGABLE: 22180 break; 22181 default: 22182 if (un->un_f_has_removable_media) { 22183 err = ENXIO; 22184 } else { 22185 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22186 if (err == SD_RESERVED_BY_OTHERS) { 22187 err = EACCES; 22188 } else { 22189 err = EIO; 22190 } 22191 } 22192 un->un_ncmds_in_driver--; 22193 ASSERT(un->un_ncmds_in_driver >= 0); 22194 mutex_exit(SD_MUTEX(un)); 22195 22196 goto done_without_assess; 22197 } 22198 } 22199 } 22200 22201 skip_ready_valid: 22202 mutex_exit(SD_MUTEX(un)); 22203 22204 switch (cmd) { 22205 case DKIOCINFO: 22206 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22207 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22208 break; 22209 22210 case DKIOCGMEDIAINFO: 22211 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22212 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22213 break; 22214 22215 case DKIOCGMEDIAINFOEXT: 22216 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22217 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22218 break; 22219 22220 case DKIOCGGEOM: 22221 case DKIOCGVTOC: 22222 case DKIOCGEXTVTOC: 22223 case DKIOCGAPART: 22224 case DKIOCPARTINFO: 22225 case DKIOCEXTPARTINFO: 22226 case DKIOCSGEOM: 22227 case DKIOCSAPART: 22228 case DKIOCGETEFI: 22229 case DKIOCPARTITION: 22230 case DKIOCSVTOC: 22231 case DKIOCSEXTVTOC: 22232 case DKIOCSETEFI: 22233 case DKIOCGMBOOT: 22234 case DKIOCSMBOOT: 22235 case DKIOCG_PHYGEOM: 22236 case DKIOCG_VIRTGEOM: 22237 #if defined(__i386) || defined(__amd64) 22238 case DKIOCSETEXTPART: 22239 #endif 22240 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22241 22242 /* TUR should spin up */ 22243 22244 if (un->un_f_has_removable_media) 22245 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22246 SD_CHECK_FOR_MEDIA); 22247 22248 else 22249 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22250 22251 if (err != 0) 22252 goto done_with_assess; 22253 22254 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22255 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22256 22257 if ((err == 0) && 22258 ((cmd == DKIOCSETEFI) || 22259 (un->un_f_pkstats_enabled) && 22260 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22261 cmd == DKIOCSEXTVTOC))) { 22262 22263 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22264 (void *)SD_PATH_DIRECT); 22265 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22266 sd_set_pstats(un); 22267 SD_TRACE(SD_LOG_IO_PARTITION, un, 22268 "sd_ioctl: un:0x%p pstats created and " 22269 "set\n", un); 22270 } 22271 } 22272 22273 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22274 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22275 22276 mutex_enter(SD_MUTEX(un)); 22277 if (un->un_f_devid_supported && 22278 (un->un_f_opt_fab_devid == TRUE)) { 22279 if (un->un_devid == NULL) { 22280 sd_register_devid(ssc, SD_DEVINFO(un), 22281 SD_TARGET_IS_UNRESERVED); 22282 } else { 22283 /* 22284 * The device id for this disk 22285 * has been fabricated. The 22286 * device id must be preserved 22287 * by writing it back out to 22288 * disk. 22289 */ 22290 if (sd_write_deviceid(ssc) != 0) { 22291 ddi_devid_free(un->un_devid); 22292 un->un_devid = NULL; 22293 } 22294 } 22295 } 22296 mutex_exit(SD_MUTEX(un)); 22297 } 22298 22299 break; 22300 22301 case DKIOCLOCK: 22302 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22303 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22304 SD_PATH_STANDARD); 22305 goto done_with_assess; 22306 22307 case DKIOCUNLOCK: 22308 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22309 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22310 SD_PATH_STANDARD); 22311 goto done_with_assess; 22312 22313 case DKIOCSTATE: { 22314 enum dkio_state state; 22315 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22316 22317 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22318 err = EFAULT; 22319 } else { 22320 err = sd_check_media(dev, state); 22321 if (err == 0) { 22322 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22323 sizeof (int), flag) != 0) 22324 err = EFAULT; 22325 } 22326 } 22327 break; 22328 } 22329 22330 case DKIOCREMOVABLE: 22331 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22332 i = un->un_f_has_removable_media ? 1 : 0; 22333 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22334 err = EFAULT; 22335 } else { 22336 err = 0; 22337 } 22338 break; 22339 22340 case DKIOCHOTPLUGGABLE: 22341 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22342 i = un->un_f_is_hotpluggable ? 1 : 0; 22343 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22344 err = EFAULT; 22345 } else { 22346 err = 0; 22347 } 22348 break; 22349 22350 case DKIOCGTEMPERATURE: 22351 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22352 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22353 break; 22354 22355 case MHIOCENFAILFAST: 22356 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22357 if ((err = drv_priv(cred_p)) == 0) { 22358 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22359 } 22360 break; 22361 22362 case MHIOCTKOWN: 22363 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22364 if ((err = drv_priv(cred_p)) == 0) { 22365 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22366 } 22367 break; 22368 22369 case MHIOCRELEASE: 22370 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22371 if ((err = drv_priv(cred_p)) == 0) { 22372 err = sd_mhdioc_release(dev); 22373 } 22374 break; 22375 22376 case MHIOCSTATUS: 22377 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22378 if ((err = drv_priv(cred_p)) == 0) { 22379 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22380 case 0: 22381 err = 0; 22382 break; 22383 case EACCES: 22384 *rval_p = 1; 22385 err = 0; 22386 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22387 break; 22388 default: 22389 err = EIO; 22390 goto done_with_assess; 22391 } 22392 } 22393 break; 22394 22395 case MHIOCQRESERVE: 22396 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22397 if ((err = drv_priv(cred_p)) == 0) { 22398 err = sd_reserve_release(dev, SD_RESERVE); 22399 } 22400 break; 22401 22402 case MHIOCREREGISTERDEVID: 22403 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22404 if (drv_priv(cred_p) == EPERM) { 22405 err = EPERM; 22406 } else if (!un->un_f_devid_supported) { 22407 err = ENOTTY; 22408 } else { 22409 err = sd_mhdioc_register_devid(dev); 22410 } 22411 break; 22412 22413 case MHIOCGRP_INKEYS: 22414 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22415 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22416 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22417 err = ENOTSUP; 22418 } else { 22419 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22420 flag); 22421 } 22422 } 22423 break; 22424 22425 case MHIOCGRP_INRESV: 22426 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22427 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22428 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22429 err = ENOTSUP; 22430 } else { 22431 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22432 } 22433 } 22434 break; 22435 22436 case MHIOCGRP_REGISTER: 22437 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22438 if ((err = drv_priv(cred_p)) != EPERM) { 22439 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22440 err = ENOTSUP; 22441 } else if (arg != NULL) { 22442 mhioc_register_t reg; 22443 if (ddi_copyin((void *)arg, ®, 22444 sizeof (mhioc_register_t), flag) != 0) { 22445 err = EFAULT; 22446 } else { 22447 err = 22448 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22449 ssc, SD_SCSI3_REGISTER, 22450 (uchar_t *)®); 22451 if (err != 0) 22452 goto done_with_assess; 22453 } 22454 } 22455 } 22456 break; 22457 22458 case MHIOCGRP_RESERVE: 22459 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 22460 if ((err = drv_priv(cred_p)) != EPERM) { 22461 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22462 err = ENOTSUP; 22463 } else if (arg != NULL) { 22464 mhioc_resv_desc_t resv_desc; 22465 if (ddi_copyin((void *)arg, &resv_desc, 22466 sizeof (mhioc_resv_desc_t), flag) != 0) { 22467 err = EFAULT; 22468 } else { 22469 err = 22470 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22471 ssc, SD_SCSI3_RESERVE, 22472 (uchar_t *)&resv_desc); 22473 if (err != 0) 22474 goto done_with_assess; 22475 } 22476 } 22477 } 22478 break; 22479 22480 case MHIOCGRP_PREEMPTANDABORT: 22481 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 22482 if ((err = drv_priv(cred_p)) != EPERM) { 22483 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22484 err = ENOTSUP; 22485 } else if (arg != NULL) { 22486 mhioc_preemptandabort_t preempt_abort; 22487 if (ddi_copyin((void *)arg, &preempt_abort, 22488 sizeof (mhioc_preemptandabort_t), 22489 flag) != 0) { 22490 err = EFAULT; 22491 } else { 22492 err = 22493 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22494 ssc, SD_SCSI3_PREEMPTANDABORT, 22495 (uchar_t *)&preempt_abort); 22496 if (err != 0) 22497 goto done_with_assess; 22498 } 22499 } 22500 } 22501 break; 22502 22503 case MHIOCGRP_REGISTERANDIGNOREKEY: 22504 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 22505 if ((err = drv_priv(cred_p)) != EPERM) { 22506 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22507 err = ENOTSUP; 22508 } else if (arg != NULL) { 22509 mhioc_registerandignorekey_t r_and_i; 22510 if (ddi_copyin((void *)arg, (void *)&r_and_i, 22511 sizeof (mhioc_registerandignorekey_t), 22512 flag) != 0) { 22513 err = EFAULT; 22514 } else { 22515 err = 22516 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22517 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 22518 (uchar_t *)&r_and_i); 22519 if (err != 0) 22520 goto done_with_assess; 22521 } 22522 } 22523 } 22524 break; 22525 22526 case USCSICMD: 22527 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 22528 cr = ddi_get_cred(); 22529 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 22530 err = EPERM; 22531 } else { 22532 enum uio_seg uioseg; 22533 22534 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 22535 UIO_USERSPACE; 22536 if (un->un_f_format_in_progress == TRUE) { 22537 err = EAGAIN; 22538 break; 22539 } 22540 22541 err = sd_ssc_send(ssc, 22542 (struct uscsi_cmd *)arg, 22543 flag, uioseg, SD_PATH_STANDARD); 22544 if (err != 0) 22545 goto done_with_assess; 22546 else 22547 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22548 } 22549 break; 22550 22551 case CDROMPAUSE: 22552 case CDROMRESUME: 22553 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 22554 if (!ISCD(un)) { 22555 err = ENOTTY; 22556 } else { 22557 err = sr_pause_resume(dev, cmd); 22558 } 22559 break; 22560 22561 case CDROMPLAYMSF: 22562 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 22563 if (!ISCD(un)) { 22564 err = ENOTTY; 22565 } else { 22566 err = sr_play_msf(dev, (caddr_t)arg, flag); 22567 } 22568 break; 22569 22570 case CDROMPLAYTRKIND: 22571 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 22572 #if defined(__i386) || defined(__amd64) 22573 /* 22574 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 22575 */ 22576 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22577 #else 22578 if (!ISCD(un)) { 22579 #endif 22580 err = ENOTTY; 22581 } else { 22582 err = sr_play_trkind(dev, (caddr_t)arg, flag); 22583 } 22584 break; 22585 22586 case CDROMREADTOCHDR: 22587 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 22588 if (!ISCD(un)) { 22589 err = ENOTTY; 22590 } else { 22591 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 22592 } 22593 break; 22594 22595 case CDROMREADTOCENTRY: 22596 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 22597 if (!ISCD(un)) { 22598 err = ENOTTY; 22599 } else { 22600 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 22601 } 22602 break; 22603 22604 case CDROMSTOP: 22605 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 22606 if (!ISCD(un)) { 22607 err = ENOTTY; 22608 } else { 22609 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22610 SD_TARGET_STOP, SD_PATH_STANDARD); 22611 goto done_with_assess; 22612 } 22613 break; 22614 22615 case CDROMSTART: 22616 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 22617 if (!ISCD(un)) { 22618 err = ENOTTY; 22619 } else { 22620 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22621 SD_TARGET_START, SD_PATH_STANDARD); 22622 goto done_with_assess; 22623 } 22624 break; 22625 22626 case CDROMCLOSETRAY: 22627 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 22628 if (!ISCD(un)) { 22629 err = ENOTTY; 22630 } else { 22631 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22632 SD_TARGET_CLOSE, SD_PATH_STANDARD); 22633 goto done_with_assess; 22634 } 22635 break; 22636 22637 case FDEJECT: /* for eject command */ 22638 case DKIOCEJECT: 22639 case CDROMEJECT: 22640 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 22641 if (!un->un_f_eject_media_supported) { 22642 err = ENOTTY; 22643 } else { 22644 err = sr_eject(dev); 22645 } 22646 break; 22647 22648 case CDROMVOLCTRL: 22649 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 22650 if (!ISCD(un)) { 22651 err = ENOTTY; 22652 } else { 22653 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 22654 } 22655 break; 22656 22657 case CDROMSUBCHNL: 22658 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 22659 if (!ISCD(un)) { 22660 err = ENOTTY; 22661 } else { 22662 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 22663 } 22664 break; 22665 22666 case CDROMREADMODE2: 22667 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 22668 if (!ISCD(un)) { 22669 err = ENOTTY; 22670 } else if (un->un_f_cfg_is_atapi == TRUE) { 22671 /* 22672 * If the drive supports READ CD, use that instead of 22673 * switching the LBA size via a MODE SELECT 22674 * Block Descriptor 22675 */ 22676 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 22677 } else { 22678 err = sr_read_mode2(dev, (caddr_t)arg, flag); 22679 } 22680 break; 22681 22682 case CDROMREADMODE1: 22683 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 22684 if (!ISCD(un)) { 22685 err = ENOTTY; 22686 } else { 22687 err = sr_read_mode1(dev, (caddr_t)arg, flag); 22688 } 22689 break; 22690 22691 case CDROMREADOFFSET: 22692 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 22693 if (!ISCD(un)) { 22694 err = ENOTTY; 22695 } else { 22696 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 22697 flag); 22698 } 22699 break; 22700 22701 case CDROMSBLKMODE: 22702 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 22703 /* 22704 * There is no means of changing block size in case of atapi 22705 * drives, thus return ENOTTY if drive type is atapi 22706 */ 22707 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22708 err = ENOTTY; 22709 } else if (un->un_f_mmc_cap == TRUE) { 22710 22711 /* 22712 * MMC Devices do not support changing the 22713 * logical block size 22714 * 22715 * Note: EINVAL is being returned instead of ENOTTY to 22716 * maintain consistancy with the original mmc 22717 * driver update. 22718 */ 22719 err = EINVAL; 22720 } else { 22721 mutex_enter(SD_MUTEX(un)); 22722 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 22723 (un->un_ncmds_in_transport > 0)) { 22724 mutex_exit(SD_MUTEX(un)); 22725 err = EINVAL; 22726 } else { 22727 mutex_exit(SD_MUTEX(un)); 22728 err = sr_change_blkmode(dev, cmd, arg, flag); 22729 } 22730 } 22731 break; 22732 22733 case CDROMGBLKMODE: 22734 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 22735 if (!ISCD(un)) { 22736 err = ENOTTY; 22737 } else if ((un->un_f_cfg_is_atapi != FALSE) && 22738 (un->un_f_blockcount_is_valid != FALSE)) { 22739 /* 22740 * Drive is an ATAPI drive so return target block 22741 * size for ATAPI drives since we cannot change the 22742 * blocksize on ATAPI drives. Used primarily to detect 22743 * if an ATAPI cdrom is present. 22744 */ 22745 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 22746 sizeof (int), flag) != 0) { 22747 err = EFAULT; 22748 } else { 22749 err = 0; 22750 } 22751 22752 } else { 22753 /* 22754 * Drive supports changing block sizes via a Mode 22755 * Select. 22756 */ 22757 err = sr_change_blkmode(dev, cmd, arg, flag); 22758 } 22759 break; 22760 22761 case CDROMGDRVSPEED: 22762 case CDROMSDRVSPEED: 22763 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 22764 if (!ISCD(un)) { 22765 err = ENOTTY; 22766 } else if (un->un_f_mmc_cap == TRUE) { 22767 /* 22768 * Note: In the future the driver implementation 22769 * for getting and 22770 * setting cd speed should entail: 22771 * 1) If non-mmc try the Toshiba mode page 22772 * (sr_change_speed) 22773 * 2) If mmc but no support for Real Time Streaming try 22774 * the SET CD SPEED (0xBB) command 22775 * (sr_atapi_change_speed) 22776 * 3) If mmc and support for Real Time Streaming 22777 * try the GET PERFORMANCE and SET STREAMING 22778 * commands (not yet implemented, 4380808) 22779 */ 22780 /* 22781 * As per recent MMC spec, CD-ROM speed is variable 22782 * and changes with LBA. Since there is no such 22783 * things as drive speed now, fail this ioctl. 22784 * 22785 * Note: EINVAL is returned for consistancy of original 22786 * implementation which included support for getting 22787 * the drive speed of mmc devices but not setting 22788 * the drive speed. Thus EINVAL would be returned 22789 * if a set request was made for an mmc device. 22790 * We no longer support get or set speed for 22791 * mmc but need to remain consistent with regard 22792 * to the error code returned. 22793 */ 22794 err = EINVAL; 22795 } else if (un->un_f_cfg_is_atapi == TRUE) { 22796 err = sr_atapi_change_speed(dev, cmd, arg, flag); 22797 } else { 22798 err = sr_change_speed(dev, cmd, arg, flag); 22799 } 22800 break; 22801 22802 case CDROMCDDA: 22803 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 22804 if (!ISCD(un)) { 22805 err = ENOTTY; 22806 } else { 22807 err = sr_read_cdda(dev, (void *)arg, flag); 22808 } 22809 break; 22810 22811 case CDROMCDXA: 22812 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 22813 if (!ISCD(un)) { 22814 err = ENOTTY; 22815 } else { 22816 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 22817 } 22818 break; 22819 22820 case CDROMSUBCODE: 22821 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 22822 if (!ISCD(un)) { 22823 err = ENOTTY; 22824 } else { 22825 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 22826 } 22827 break; 22828 22829 22830 #ifdef SDDEBUG 22831 /* RESET/ABORTS testing ioctls */ 22832 case DKIOCRESET: { 22833 int reset_level; 22834 22835 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 22836 err = EFAULT; 22837 } else { 22838 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 22839 "reset_level = 0x%lx\n", reset_level); 22840 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 22841 err = 0; 22842 } else { 22843 err = EIO; 22844 } 22845 } 22846 break; 22847 } 22848 22849 case DKIOCABORT: 22850 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 22851 if (scsi_abort(SD_ADDRESS(un), NULL)) { 22852 err = 0; 22853 } else { 22854 err = EIO; 22855 } 22856 break; 22857 #endif 22858 22859 #ifdef SD_FAULT_INJECTION 22860 /* SDIOC FaultInjection testing ioctls */ 22861 case SDIOCSTART: 22862 case SDIOCSTOP: 22863 case SDIOCINSERTPKT: 22864 case SDIOCINSERTXB: 22865 case SDIOCINSERTUN: 22866 case SDIOCINSERTARQ: 22867 case SDIOCPUSH: 22868 case SDIOCRETRIEVE: 22869 case SDIOCRUN: 22870 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 22871 "SDIOC detected cmd:0x%X:\n", cmd); 22872 /* call error generator */ 22873 sd_faultinjection_ioctl(cmd, arg, un); 22874 err = 0; 22875 break; 22876 22877 #endif /* SD_FAULT_INJECTION */ 22878 22879 case DKIOCFLUSHWRITECACHE: 22880 { 22881 struct dk_callback *dkc = (struct dk_callback *)arg; 22882 22883 mutex_enter(SD_MUTEX(un)); 22884 if (!un->un_f_sync_cache_supported || 22885 !un->un_f_write_cache_enabled) { 22886 err = un->un_f_sync_cache_supported ? 22887 0 : ENOTSUP; 22888 mutex_exit(SD_MUTEX(un)); 22889 if ((flag & FKIOCTL) && dkc != NULL && 22890 dkc->dkc_callback != NULL) { 22891 (*dkc->dkc_callback)(dkc->dkc_cookie, 22892 err); 22893 /* 22894 * Did callback and reported error. 22895 * Since we did a callback, ioctl 22896 * should return 0. 22897 */ 22898 err = 0; 22899 } 22900 break; 22901 } 22902 mutex_exit(SD_MUTEX(un)); 22903 22904 if ((flag & FKIOCTL) && dkc != NULL && 22905 dkc->dkc_callback != NULL) { 22906 /* async SYNC CACHE request */ 22907 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 22908 } else { 22909 /* synchronous SYNC CACHE request */ 22910 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22911 } 22912 } 22913 break; 22914 22915 case DKIOCGETWCE: { 22916 22917 int wce; 22918 22919 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 22920 break; 22921 } 22922 22923 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 22924 err = EFAULT; 22925 } 22926 break; 22927 } 22928 22929 case DKIOCSETWCE: { 22930 22931 int wce, sync_supported; 22932 int cur_wce = 0; 22933 22934 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 22935 err = EFAULT; 22936 break; 22937 } 22938 22939 /* 22940 * Synchronize multiple threads trying to enable 22941 * or disable the cache via the un_f_wcc_cv 22942 * condition variable. 22943 */ 22944 mutex_enter(SD_MUTEX(un)); 22945 22946 /* 22947 * Don't allow the cache to be enabled if the 22948 * config file has it disabled. 22949 */ 22950 if (un->un_f_opt_disable_cache && wce) { 22951 mutex_exit(SD_MUTEX(un)); 22952 err = EINVAL; 22953 break; 22954 } 22955 22956 /* 22957 * Wait for write cache change in progress 22958 * bit to be clear before proceeding. 22959 */ 22960 while (un->un_f_wcc_inprog) 22961 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 22962 22963 un->un_f_wcc_inprog = 1; 22964 22965 mutex_exit(SD_MUTEX(un)); 22966 22967 /* 22968 * Get the current write cache state 22969 */ 22970 if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) { 22971 mutex_enter(SD_MUTEX(un)); 22972 un->un_f_wcc_inprog = 0; 22973 cv_broadcast(&un->un_wcc_cv); 22974 mutex_exit(SD_MUTEX(un)); 22975 break; 22976 } 22977 22978 mutex_enter(SD_MUTEX(un)); 22979 un->un_f_write_cache_enabled = (cur_wce != 0); 22980 22981 if (un->un_f_write_cache_enabled && wce == 0) { 22982 /* 22983 * Disable the write cache. Don't clear 22984 * un_f_write_cache_enabled until after 22985 * the mode select and flush are complete. 22986 */ 22987 sync_supported = un->un_f_sync_cache_supported; 22988 22989 /* 22990 * If cache flush is suppressed, we assume that the 22991 * controller firmware will take care of managing the 22992 * write cache for us: no need to explicitly 22993 * disable it. 22994 */ 22995 if (!un->un_f_suppress_cache_flush) { 22996 mutex_exit(SD_MUTEX(un)); 22997 if ((err = sd_cache_control(ssc, 22998 SD_CACHE_NOCHANGE, 22999 SD_CACHE_DISABLE)) == 0 && 23000 sync_supported) { 23001 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 23002 NULL); 23003 } 23004 } else { 23005 mutex_exit(SD_MUTEX(un)); 23006 } 23007 23008 mutex_enter(SD_MUTEX(un)); 23009 if (err == 0) { 23010 un->un_f_write_cache_enabled = 0; 23011 } 23012 23013 } else if (!un->un_f_write_cache_enabled && wce != 0) { 23014 /* 23015 * Set un_f_write_cache_enabled first, so there is 23016 * no window where the cache is enabled, but the 23017 * bit says it isn't. 23018 */ 23019 un->un_f_write_cache_enabled = 1; 23020 23021 /* 23022 * If cache flush is suppressed, we assume that the 23023 * controller firmware will take care of managing the 23024 * write cache for us: no need to explicitly 23025 * enable it. 23026 */ 23027 if (!un->un_f_suppress_cache_flush) { 23028 mutex_exit(SD_MUTEX(un)); 23029 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 23030 SD_CACHE_ENABLE); 23031 } else { 23032 mutex_exit(SD_MUTEX(un)); 23033 } 23034 23035 mutex_enter(SD_MUTEX(un)); 23036 23037 if (err) { 23038 un->un_f_write_cache_enabled = 0; 23039 } 23040 } 23041 23042 un->un_f_wcc_inprog = 0; 23043 cv_broadcast(&un->un_wcc_cv); 23044 mutex_exit(SD_MUTEX(un)); 23045 break; 23046 } 23047 23048 default: 23049 err = ENOTTY; 23050 break; 23051 } 23052 mutex_enter(SD_MUTEX(un)); 23053 un->un_ncmds_in_driver--; 23054 ASSERT(un->un_ncmds_in_driver >= 0); 23055 mutex_exit(SD_MUTEX(un)); 23056 23057 23058 done_without_assess: 23059 sd_ssc_fini(ssc); 23060 23061 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23062 return (err); 23063 23064 done_with_assess: 23065 mutex_enter(SD_MUTEX(un)); 23066 un->un_ncmds_in_driver--; 23067 ASSERT(un->un_ncmds_in_driver >= 0); 23068 mutex_exit(SD_MUTEX(un)); 23069 23070 done_quick_assess: 23071 if (err != 0) 23072 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23073 /* Uninitialize sd_ssc_t pointer */ 23074 sd_ssc_fini(ssc); 23075 23076 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23077 return (err); 23078 } 23079 23080 23081 /* 23082 * Function: sd_dkio_ctrl_info 23083 * 23084 * Description: This routine is the driver entry point for handling controller 23085 * information ioctl requests (DKIOCINFO). 23086 * 23087 * Arguments: dev - the device number 23088 * arg - pointer to user provided dk_cinfo structure 23089 * specifying the controller type and attributes. 23090 * flag - this argument is a pass through to ddi_copyxxx() 23091 * directly from the mode argument of ioctl(). 23092 * 23093 * Return Code: 0 23094 * EFAULT 23095 * ENXIO 23096 */ 23097 23098 static int 23099 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 23100 { 23101 struct sd_lun *un = NULL; 23102 struct dk_cinfo *info; 23103 dev_info_t *pdip; 23104 int lun, tgt; 23105 23106 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23107 return (ENXIO); 23108 } 23109 23110 info = (struct dk_cinfo *) 23111 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 23112 23113 switch (un->un_ctype) { 23114 case CTYPE_CDROM: 23115 info->dki_ctype = DKC_CDROM; 23116 break; 23117 default: 23118 info->dki_ctype = DKC_SCSI_CCS; 23119 break; 23120 } 23121 pdip = ddi_get_parent(SD_DEVINFO(un)); 23122 info->dki_cnum = ddi_get_instance(pdip); 23123 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 23124 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 23125 } else { 23126 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 23127 DK_DEVLEN - 1); 23128 } 23129 23130 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23131 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 23132 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23133 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 23134 23135 /* Unit Information */ 23136 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 23137 info->dki_slave = ((tgt << 3) | lun); 23138 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 23139 DK_DEVLEN - 1); 23140 info->dki_flags = DKI_FMTVOL; 23141 info->dki_partition = SDPART(dev); 23142 23143 /* Max Transfer size of this device in blocks */ 23144 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 23145 info->dki_addr = 0; 23146 info->dki_space = 0; 23147 info->dki_prio = 0; 23148 info->dki_vec = 0; 23149 23150 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 23151 kmem_free(info, sizeof (struct dk_cinfo)); 23152 return (EFAULT); 23153 } else { 23154 kmem_free(info, sizeof (struct dk_cinfo)); 23155 return (0); 23156 } 23157 } 23158 23159 23160 /* 23161 * Function: sd_get_media_info 23162 * 23163 * Description: This routine is the driver entry point for handling ioctl 23164 * requests for the media type or command set profile used by the 23165 * drive to operate on the media (DKIOCGMEDIAINFO). 23166 * 23167 * Arguments: dev - the device number 23168 * arg - pointer to user provided dk_minfo structure 23169 * specifying the media type, logical block size and 23170 * drive capacity. 23171 * flag - this argument is a pass through to ddi_copyxxx() 23172 * directly from the mode argument of ioctl(). 23173 * 23174 * Return Code: 0 23175 * EACCESS 23176 * EFAULT 23177 * ENXIO 23178 * EIO 23179 */ 23180 23181 static int 23182 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 23183 { 23184 struct sd_lun *un = NULL; 23185 struct uscsi_cmd com; 23186 struct scsi_inquiry *sinq; 23187 struct dk_minfo media_info; 23188 u_longlong_t media_capacity; 23189 uint64_t capacity; 23190 uint_t lbasize; 23191 uchar_t *out_data; 23192 uchar_t *rqbuf; 23193 int rval = 0; 23194 int rtn; 23195 sd_ssc_t *ssc; 23196 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23197 (un->un_state == SD_STATE_OFFLINE)) { 23198 return (ENXIO); 23199 } 23200 23201 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 23202 23203 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23204 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23205 23206 /* Issue a TUR to determine if the drive is ready with media present */ 23207 ssc = sd_ssc_init(un); 23208 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23209 if (rval == ENXIO) { 23210 goto done; 23211 } else if (rval != 0) { 23212 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23213 } 23214 23215 /* Now get configuration data */ 23216 if (ISCD(un)) { 23217 media_info.dki_media_type = DK_CDROM; 23218 23219 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23220 if (un->un_f_mmc_cap == TRUE) { 23221 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23222 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23223 SD_PATH_STANDARD); 23224 23225 if (rtn) { 23226 /* 23227 * We ignore all failures for CD and need to 23228 * put the assessment before processing code 23229 * to avoid missing assessment for FMA. 23230 */ 23231 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23232 /* 23233 * Failed for other than an illegal request 23234 * or command not supported 23235 */ 23236 if ((com.uscsi_status == STATUS_CHECK) && 23237 (com.uscsi_rqstatus == STATUS_GOOD)) { 23238 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23239 (rqbuf[12] != 0x20)) { 23240 rval = EIO; 23241 goto no_assessment; 23242 } 23243 } 23244 } else { 23245 /* 23246 * The GET CONFIGURATION command succeeded 23247 * so set the media type according to the 23248 * returned data 23249 */ 23250 media_info.dki_media_type = out_data[6]; 23251 media_info.dki_media_type <<= 8; 23252 media_info.dki_media_type |= out_data[7]; 23253 } 23254 } 23255 } else { 23256 /* 23257 * The profile list is not available, so we attempt to identify 23258 * the media type based on the inquiry data 23259 */ 23260 sinq = un->un_sd->sd_inq; 23261 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23262 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23263 /* This is a direct access device or optical disk */ 23264 media_info.dki_media_type = DK_FIXED_DISK; 23265 23266 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23267 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23268 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23269 media_info.dki_media_type = DK_ZIP; 23270 } else if ( 23271 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23272 media_info.dki_media_type = DK_JAZ; 23273 } 23274 } 23275 } else { 23276 /* 23277 * Not a CD, direct access or optical disk so return 23278 * unknown media 23279 */ 23280 media_info.dki_media_type = DK_UNKNOWN; 23281 } 23282 } 23283 23284 /* Now read the capacity so we can provide the lbasize and capacity */ 23285 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23286 SD_PATH_DIRECT); 23287 switch (rval) { 23288 case 0: 23289 break; 23290 case EACCES: 23291 rval = EACCES; 23292 goto done; 23293 default: 23294 rval = EIO; 23295 goto done; 23296 } 23297 23298 /* 23299 * If lun is expanded dynamically, update the un structure. 23300 */ 23301 mutex_enter(SD_MUTEX(un)); 23302 if ((un->un_f_blockcount_is_valid == TRUE) && 23303 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23304 (capacity > un->un_blockcount)) { 23305 sd_update_block_info(un, lbasize, capacity); 23306 } 23307 mutex_exit(SD_MUTEX(un)); 23308 23309 media_info.dki_lbsize = lbasize; 23310 media_capacity = capacity; 23311 23312 /* 23313 * sd_send_scsi_READ_CAPACITY() reports capacity in 23314 * un->un_sys_blocksize chunks. So we need to convert it into 23315 * cap.lbasize chunks. 23316 */ 23317 media_capacity *= un->un_sys_blocksize; 23318 media_capacity /= lbasize; 23319 media_info.dki_capacity = media_capacity; 23320 23321 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 23322 rval = EFAULT; 23323 /* Put goto. Anybody might add some code below in future */ 23324 goto no_assessment; 23325 } 23326 done: 23327 if (rval != 0) { 23328 if (rval == EIO) 23329 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23330 else 23331 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23332 } 23333 no_assessment: 23334 sd_ssc_fini(ssc); 23335 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23336 kmem_free(rqbuf, SENSE_LENGTH); 23337 return (rval); 23338 } 23339 23340 /* 23341 * Function: sd_get_media_info_ext 23342 * 23343 * Description: This routine is the driver entry point for handling ioctl 23344 * requests for the media type or command set profile used by the 23345 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 23346 * difference this ioctl and DKIOCGMEDIAINFO is the return value 23347 * of this ioctl contains both logical block size and physical 23348 * block size. 23349 * 23350 * 23351 * Arguments: dev - the device number 23352 * arg - pointer to user provided dk_minfo_ext structure 23353 * specifying the media type, logical block size, 23354 * physical block size and disk capacity. 23355 * flag - this argument is a pass through to ddi_copyxxx() 23356 * directly from the mode argument of ioctl(). 23357 * 23358 * Return Code: 0 23359 * EACCESS 23360 * EFAULT 23361 * ENXIO 23362 * EIO 23363 */ 23364 23365 static int 23366 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 23367 { 23368 struct sd_lun *un = NULL; 23369 struct uscsi_cmd com; 23370 struct scsi_inquiry *sinq; 23371 struct dk_minfo_ext media_info_ext; 23372 u_longlong_t media_capacity; 23373 uint64_t capacity; 23374 uint_t lbasize; 23375 uint_t pbsize; 23376 uchar_t *out_data; 23377 uchar_t *rqbuf; 23378 int rval = 0; 23379 int rtn; 23380 sd_ssc_t *ssc; 23381 23382 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23383 (un->un_state == SD_STATE_OFFLINE)) { 23384 return (ENXIO); 23385 } 23386 23387 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_ext: entry\n"); 23388 23389 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23390 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23391 ssc = sd_ssc_init(un); 23392 23393 /* Issue a TUR to determine if the drive is ready with media present */ 23394 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23395 if (rval == ENXIO) { 23396 goto done; 23397 } else if (rval != 0) { 23398 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23399 } 23400 23401 /* Now get configuration data */ 23402 if (ISCD(un)) { 23403 media_info_ext.dki_media_type = DK_CDROM; 23404 23405 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23406 if (un->un_f_mmc_cap == TRUE) { 23407 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23408 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23409 SD_PATH_STANDARD); 23410 23411 if (rtn) { 23412 /* 23413 * We ignore all failures for CD and need to 23414 * put the assessment before processing code 23415 * to avoid missing assessment for FMA. 23416 */ 23417 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23418 /* 23419 * Failed for other than an illegal request 23420 * or command not supported 23421 */ 23422 if ((com.uscsi_status == STATUS_CHECK) && 23423 (com.uscsi_rqstatus == STATUS_GOOD)) { 23424 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23425 (rqbuf[12] != 0x20)) { 23426 rval = EIO; 23427 goto no_assessment; 23428 } 23429 } 23430 } else { 23431 /* 23432 * The GET CONFIGURATION command succeeded 23433 * so set the media type according to the 23434 * returned data 23435 */ 23436 media_info_ext.dki_media_type = out_data[6]; 23437 media_info_ext.dki_media_type <<= 8; 23438 media_info_ext.dki_media_type |= out_data[7]; 23439 } 23440 } 23441 } else { 23442 /* 23443 * The profile list is not available, so we attempt to identify 23444 * the media type based on the inquiry data 23445 */ 23446 sinq = un->un_sd->sd_inq; 23447 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23448 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23449 /* This is a direct access device or optical disk */ 23450 media_info_ext.dki_media_type = DK_FIXED_DISK; 23451 23452 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23453 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23454 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23455 media_info_ext.dki_media_type = DK_ZIP; 23456 } else if ( 23457 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23458 media_info_ext.dki_media_type = DK_JAZ; 23459 } 23460 } 23461 } else { 23462 /* 23463 * Not a CD, direct access or optical disk so return 23464 * unknown media 23465 */ 23466 media_info_ext.dki_media_type = DK_UNKNOWN; 23467 } 23468 } 23469 23470 /* 23471 * Now read the capacity so we can provide the lbasize, 23472 * pbsize and capacity. 23473 */ 23474 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, &pbsize, 23475 SD_PATH_DIRECT); 23476 23477 if (rval != 0) { 23478 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23479 SD_PATH_DIRECT); 23480 23481 switch (rval) { 23482 case 0: 23483 pbsize = lbasize; 23484 media_capacity = capacity; 23485 /* 23486 * sd_send_scsi_READ_CAPACITY() reports capacity in 23487 * un->un_sys_blocksize chunks. So we need to convert 23488 * it into cap.lbsize chunks. 23489 */ 23490 if (un->un_f_has_removable_media) { 23491 media_capacity *= un->un_sys_blocksize; 23492 media_capacity /= lbasize; 23493 } 23494 break; 23495 case EACCES: 23496 rval = EACCES; 23497 goto done; 23498 default: 23499 rval = EIO; 23500 goto done; 23501 } 23502 } else { 23503 media_capacity = capacity; 23504 } 23505 23506 /* 23507 * If lun is expanded dynamically, update the un structure. 23508 */ 23509 mutex_enter(SD_MUTEX(un)); 23510 if ((un->un_f_blockcount_is_valid == TRUE) && 23511 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23512 (capacity > un->un_blockcount)) { 23513 sd_update_block_info(un, lbasize, capacity); 23514 } 23515 mutex_exit(SD_MUTEX(un)); 23516 23517 media_info_ext.dki_lbsize = lbasize; 23518 media_info_ext.dki_capacity = media_capacity; 23519 media_info_ext.dki_pbsize = pbsize; 23520 23521 if (ddi_copyout(&media_info_ext, arg, sizeof (struct dk_minfo_ext), 23522 flag)) { 23523 rval = EFAULT; 23524 goto no_assessment; 23525 } 23526 done: 23527 if (rval != 0) { 23528 if (rval == EIO) 23529 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23530 else 23531 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23532 } 23533 no_assessment: 23534 sd_ssc_fini(ssc); 23535 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23536 kmem_free(rqbuf, SENSE_LENGTH); 23537 return (rval); 23538 } 23539 23540 /* 23541 * Function: sd_watch_request_submit 23542 * 23543 * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit 23544 * depending on which is supported by device. 23545 */ 23546 static opaque_t 23547 sd_watch_request_submit(struct sd_lun *un) 23548 { 23549 dev_t dev; 23550 23551 /* All submissions are unified to use same device number */ 23552 dev = sd_make_device(SD_DEVINFO(un)); 23553 23554 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23555 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un), 23556 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23557 (caddr_t)dev)); 23558 } else { 23559 return (scsi_watch_request_submit(SD_SCSI_DEVP(un), 23560 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23561 (caddr_t)dev)); 23562 } 23563 } 23564 23565 23566 /* 23567 * Function: sd_check_media 23568 * 23569 * Description: This utility routine implements the functionality for the 23570 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 23571 * driver state changes from that specified by the user 23572 * (inserted or ejected). For example, if the user specifies 23573 * DKIO_EJECTED and the current media state is inserted this 23574 * routine will immediately return DKIO_INSERTED. However, if the 23575 * current media state is not inserted the user thread will be 23576 * blocked until the drive state changes. If DKIO_NONE is specified 23577 * the user thread will block until a drive state change occurs. 23578 * 23579 * Arguments: dev - the device number 23580 * state - user pointer to a dkio_state, updated with the current 23581 * drive state at return. 23582 * 23583 * Return Code: ENXIO 23584 * EIO 23585 * EAGAIN 23586 * EINTR 23587 */ 23588 23589 static int 23590 sd_check_media(dev_t dev, enum dkio_state state) 23591 { 23592 struct sd_lun *un = NULL; 23593 enum dkio_state prev_state; 23594 opaque_t token = NULL; 23595 int rval = 0; 23596 sd_ssc_t *ssc; 23597 23598 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23599 return (ENXIO); 23600 } 23601 23602 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 23603 23604 ssc = sd_ssc_init(un); 23605 23606 mutex_enter(SD_MUTEX(un)); 23607 23608 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 23609 "state=%x, mediastate=%x\n", state, un->un_mediastate); 23610 23611 prev_state = un->un_mediastate; 23612 23613 /* is there anything to do? */ 23614 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 23615 /* 23616 * submit the request to the scsi_watch service; 23617 * scsi_media_watch_cb() does the real work 23618 */ 23619 mutex_exit(SD_MUTEX(un)); 23620 23621 /* 23622 * This change handles the case where a scsi watch request is 23623 * added to a device that is powered down. To accomplish this 23624 * we power up the device before adding the scsi watch request, 23625 * since the scsi watch sends a TUR directly to the device 23626 * which the device cannot handle if it is powered down. 23627 */ 23628 if (sd_pm_entry(un) != DDI_SUCCESS) { 23629 mutex_enter(SD_MUTEX(un)); 23630 goto done; 23631 } 23632 23633 token = sd_watch_request_submit(un); 23634 23635 sd_pm_exit(un); 23636 23637 mutex_enter(SD_MUTEX(un)); 23638 if (token == NULL) { 23639 rval = EAGAIN; 23640 goto done; 23641 } 23642 23643 /* 23644 * This is a special case IOCTL that doesn't return 23645 * until the media state changes. Routine sdpower 23646 * knows about and handles this so don't count it 23647 * as an active cmd in the driver, which would 23648 * keep the device busy to the pm framework. 23649 * If the count isn't decremented the device can't 23650 * be powered down. 23651 */ 23652 un->un_ncmds_in_driver--; 23653 ASSERT(un->un_ncmds_in_driver >= 0); 23654 23655 /* 23656 * if a prior request had been made, this will be the same 23657 * token, as scsi_watch was designed that way. 23658 */ 23659 un->un_swr_token = token; 23660 un->un_specified_mediastate = state; 23661 23662 /* 23663 * now wait for media change 23664 * we will not be signalled unless mediastate == state but it is 23665 * still better to test for this condition, since there is a 23666 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 23667 */ 23668 SD_TRACE(SD_LOG_COMMON, un, 23669 "sd_check_media: waiting for media state change\n"); 23670 while (un->un_mediastate == state) { 23671 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 23672 SD_TRACE(SD_LOG_COMMON, un, 23673 "sd_check_media: waiting for media state " 23674 "was interrupted\n"); 23675 un->un_ncmds_in_driver++; 23676 rval = EINTR; 23677 goto done; 23678 } 23679 SD_TRACE(SD_LOG_COMMON, un, 23680 "sd_check_media: received signal, state=%x\n", 23681 un->un_mediastate); 23682 } 23683 /* 23684 * Inc the counter to indicate the device once again 23685 * has an active outstanding cmd. 23686 */ 23687 un->un_ncmds_in_driver++; 23688 } 23689 23690 /* invalidate geometry */ 23691 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 23692 sr_ejected(un); 23693 } 23694 23695 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 23696 uint64_t capacity; 23697 uint_t lbasize; 23698 23699 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 23700 mutex_exit(SD_MUTEX(un)); 23701 /* 23702 * Since the following routines use SD_PATH_DIRECT, we must 23703 * call PM directly before the upcoming disk accesses. This 23704 * may cause the disk to be power/spin up. 23705 */ 23706 23707 if (sd_pm_entry(un) == DDI_SUCCESS) { 23708 rval = sd_send_scsi_READ_CAPACITY(ssc, 23709 &capacity, &lbasize, SD_PATH_DIRECT); 23710 if (rval != 0) { 23711 sd_pm_exit(un); 23712 if (rval == EIO) 23713 sd_ssc_assessment(ssc, 23714 SD_FMT_STATUS_CHECK); 23715 else 23716 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23717 mutex_enter(SD_MUTEX(un)); 23718 goto done; 23719 } 23720 } else { 23721 rval = EIO; 23722 mutex_enter(SD_MUTEX(un)); 23723 goto done; 23724 } 23725 mutex_enter(SD_MUTEX(un)); 23726 23727 sd_update_block_info(un, lbasize, capacity); 23728 23729 /* 23730 * Check if the media in the device is writable or not 23731 */ 23732 if (ISCD(un)) { 23733 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 23734 } 23735 23736 mutex_exit(SD_MUTEX(un)); 23737 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 23738 if ((cmlb_validate(un->un_cmlbhandle, 0, 23739 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 23740 sd_set_pstats(un); 23741 SD_TRACE(SD_LOG_IO_PARTITION, un, 23742 "sd_check_media: un:0x%p pstats created and " 23743 "set\n", un); 23744 } 23745 23746 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 23747 SD_PATH_DIRECT); 23748 23749 sd_pm_exit(un); 23750 23751 if (rval != 0) { 23752 if (rval == EIO) 23753 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23754 else 23755 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23756 } 23757 23758 mutex_enter(SD_MUTEX(un)); 23759 } 23760 done: 23761 sd_ssc_fini(ssc); 23762 un->un_f_watcht_stopped = FALSE; 23763 if (token != NULL && un->un_swr_token != NULL) { 23764 /* 23765 * Use of this local token and the mutex ensures that we avoid 23766 * some race conditions associated with terminating the 23767 * scsi watch. 23768 */ 23769 token = un->un_swr_token; 23770 mutex_exit(SD_MUTEX(un)); 23771 (void) scsi_watch_request_terminate(token, 23772 SCSI_WATCH_TERMINATE_WAIT); 23773 if (scsi_watch_get_ref_count(token) == 0) { 23774 mutex_enter(SD_MUTEX(un)); 23775 un->un_swr_token = (opaque_t)NULL; 23776 } else { 23777 mutex_enter(SD_MUTEX(un)); 23778 } 23779 } 23780 23781 /* 23782 * Update the capacity kstat value, if no media previously 23783 * (capacity kstat is 0) and a media has been inserted 23784 * (un_f_blockcount_is_valid == TRUE) 23785 */ 23786 if (un->un_errstats) { 23787 struct sd_errstats *stp = NULL; 23788 23789 stp = (struct sd_errstats *)un->un_errstats->ks_data; 23790 if ((stp->sd_capacity.value.ui64 == 0) && 23791 (un->un_f_blockcount_is_valid == TRUE)) { 23792 stp->sd_capacity.value.ui64 = 23793 (uint64_t)((uint64_t)un->un_blockcount * 23794 un->un_sys_blocksize); 23795 } 23796 } 23797 mutex_exit(SD_MUTEX(un)); 23798 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 23799 return (rval); 23800 } 23801 23802 23803 /* 23804 * Function: sd_delayed_cv_broadcast 23805 * 23806 * Description: Delayed cv_broadcast to allow for target to recover from media 23807 * insertion. 23808 * 23809 * Arguments: arg - driver soft state (unit) structure 23810 */ 23811 23812 static void 23813 sd_delayed_cv_broadcast(void *arg) 23814 { 23815 struct sd_lun *un = arg; 23816 23817 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 23818 23819 mutex_enter(SD_MUTEX(un)); 23820 un->un_dcvb_timeid = NULL; 23821 cv_broadcast(&un->un_state_cv); 23822 mutex_exit(SD_MUTEX(un)); 23823 } 23824 23825 23826 /* 23827 * Function: sd_media_watch_cb 23828 * 23829 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 23830 * routine processes the TUR sense data and updates the driver 23831 * state if a transition has occurred. The user thread 23832 * (sd_check_media) is then signalled. 23833 * 23834 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23835 * among multiple watches that share this callback function 23836 * resultp - scsi watch facility result packet containing scsi 23837 * packet, status byte and sense data 23838 * 23839 * Return Code: 0 for success, -1 for failure 23840 */ 23841 23842 static int 23843 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23844 { 23845 struct sd_lun *un; 23846 struct scsi_status *statusp = resultp->statusp; 23847 uint8_t *sensep = (uint8_t *)resultp->sensep; 23848 enum dkio_state state = DKIO_NONE; 23849 dev_t dev = (dev_t)arg; 23850 uchar_t actual_sense_length; 23851 uint8_t skey, asc, ascq; 23852 23853 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23854 return (-1); 23855 } 23856 actual_sense_length = resultp->actual_sense_length; 23857 23858 mutex_enter(SD_MUTEX(un)); 23859 SD_TRACE(SD_LOG_COMMON, un, 23860 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 23861 *((char *)statusp), (void *)sensep, actual_sense_length); 23862 23863 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 23864 un->un_mediastate = DKIO_DEV_GONE; 23865 cv_broadcast(&un->un_state_cv); 23866 mutex_exit(SD_MUTEX(un)); 23867 23868 return (0); 23869 } 23870 23871 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23872 if (sd_gesn_media_data_valid(resultp->mmc_data)) { 23873 if ((resultp->mmc_data[5] & 23874 SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) { 23875 state = DKIO_INSERTED; 23876 } else { 23877 state = DKIO_EJECTED; 23878 } 23879 if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) == 23880 SD_GESN_MEDIA_EVENT_EJECTREQUEST) { 23881 sd_log_eject_request_event(un, KM_NOSLEEP); 23882 } 23883 } 23884 } else if (sensep != NULL) { 23885 /* 23886 * If there was a check condition then sensep points to valid 23887 * sense data. If status was not a check condition but a 23888 * reservation or busy status then the new state is DKIO_NONE. 23889 */ 23890 skey = scsi_sense_key(sensep); 23891 asc = scsi_sense_asc(sensep); 23892 ascq = scsi_sense_ascq(sensep); 23893 23894 SD_INFO(SD_LOG_COMMON, un, 23895 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 23896 skey, asc, ascq); 23897 /* This routine only uses up to 13 bytes of sense data. */ 23898 if (actual_sense_length >= 13) { 23899 if (skey == KEY_UNIT_ATTENTION) { 23900 if (asc == 0x28) { 23901 state = DKIO_INSERTED; 23902 } 23903 } else if (skey == KEY_NOT_READY) { 23904 /* 23905 * Sense data of 02/06/00 means that the 23906 * drive could not read the media (No 23907 * reference position found). In this case 23908 * to prevent a hang on the DKIOCSTATE IOCTL 23909 * we set the media state to DKIO_INSERTED. 23910 */ 23911 if (asc == 0x06 && ascq == 0x00) 23912 state = DKIO_INSERTED; 23913 23914 /* 23915 * if 02/04/02 means that the host 23916 * should send start command. Explicitly 23917 * leave the media state as is 23918 * (inserted) as the media is inserted 23919 * and host has stopped device for PM 23920 * reasons. Upon next true read/write 23921 * to this media will bring the 23922 * device to the right state good for 23923 * media access. 23924 */ 23925 if (asc == 0x3a) { 23926 state = DKIO_EJECTED; 23927 } else { 23928 /* 23929 * If the drive is busy with an 23930 * operation or long write, keep the 23931 * media in an inserted state. 23932 */ 23933 23934 if ((asc == 0x04) && 23935 ((ascq == 0x02) || 23936 (ascq == 0x07) || 23937 (ascq == 0x08))) { 23938 state = DKIO_INSERTED; 23939 } 23940 } 23941 } else if (skey == KEY_NO_SENSE) { 23942 if ((asc == 0x00) && (ascq == 0x00)) { 23943 /* 23944 * Sense Data 00/00/00 does not provide 23945 * any information about the state of 23946 * the media. Ignore it. 23947 */ 23948 mutex_exit(SD_MUTEX(un)); 23949 return (0); 23950 } 23951 } 23952 } 23953 } else if ((*((char *)statusp) == STATUS_GOOD) && 23954 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 23955 state = DKIO_INSERTED; 23956 } 23957 23958 SD_TRACE(SD_LOG_COMMON, un, 23959 "sd_media_watch_cb: state=%x, specified=%x\n", 23960 state, un->un_specified_mediastate); 23961 23962 /* 23963 * now signal the waiting thread if this is *not* the specified state; 23964 * delay the signal if the state is DKIO_INSERTED to allow the target 23965 * to recover 23966 */ 23967 if (state != un->un_specified_mediastate) { 23968 un->un_mediastate = state; 23969 if (state == DKIO_INSERTED) { 23970 /* 23971 * delay the signal to give the drive a chance 23972 * to do what it apparently needs to do 23973 */ 23974 SD_TRACE(SD_LOG_COMMON, un, 23975 "sd_media_watch_cb: delayed cv_broadcast\n"); 23976 if (un->un_dcvb_timeid == NULL) { 23977 un->un_dcvb_timeid = 23978 timeout(sd_delayed_cv_broadcast, un, 23979 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 23980 } 23981 } else { 23982 SD_TRACE(SD_LOG_COMMON, un, 23983 "sd_media_watch_cb: immediate cv_broadcast\n"); 23984 cv_broadcast(&un->un_state_cv); 23985 } 23986 } 23987 mutex_exit(SD_MUTEX(un)); 23988 return (0); 23989 } 23990 23991 23992 /* 23993 * Function: sd_dkio_get_temp 23994 * 23995 * Description: This routine is the driver entry point for handling ioctl 23996 * requests to get the disk temperature. 23997 * 23998 * Arguments: dev - the device number 23999 * arg - pointer to user provided dk_temperature structure. 24000 * flag - this argument is a pass through to ddi_copyxxx() 24001 * directly from the mode argument of ioctl(). 24002 * 24003 * Return Code: 0 24004 * EFAULT 24005 * ENXIO 24006 * EAGAIN 24007 */ 24008 24009 static int 24010 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24011 { 24012 struct sd_lun *un = NULL; 24013 struct dk_temperature *dktemp = NULL; 24014 uchar_t *temperature_page; 24015 int rval = 0; 24016 int path_flag = SD_PATH_STANDARD; 24017 sd_ssc_t *ssc; 24018 24019 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24020 return (ENXIO); 24021 } 24022 24023 ssc = sd_ssc_init(un); 24024 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24025 24026 /* copyin the disk temp argument to get the user flags */ 24027 if (ddi_copyin((void *)arg, dktemp, 24028 sizeof (struct dk_temperature), flag) != 0) { 24029 rval = EFAULT; 24030 goto done; 24031 } 24032 24033 /* Initialize the temperature to invalid. */ 24034 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24035 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24036 24037 /* 24038 * Note: Investigate removing the "bypass pm" semantic. 24039 * Can we just bypass PM always? 24040 */ 24041 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24042 path_flag = SD_PATH_DIRECT; 24043 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24044 mutex_enter(&un->un_pm_mutex); 24045 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24046 /* 24047 * If DKT_BYPASS_PM is set, and the drive happens to be 24048 * in low power mode, we can not wake it up, Need to 24049 * return EAGAIN. 24050 */ 24051 mutex_exit(&un->un_pm_mutex); 24052 rval = EAGAIN; 24053 goto done; 24054 } else { 24055 /* 24056 * Indicate to PM the device is busy. This is required 24057 * to avoid a race - i.e. the ioctl is issuing a 24058 * command and the pm framework brings down the device 24059 * to low power mode (possible power cut-off on some 24060 * platforms). 24061 */ 24062 mutex_exit(&un->un_pm_mutex); 24063 if (sd_pm_entry(un) != DDI_SUCCESS) { 24064 rval = EAGAIN; 24065 goto done; 24066 } 24067 } 24068 } 24069 24070 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24071 24072 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 24073 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 24074 if (rval != 0) 24075 goto done2; 24076 24077 /* 24078 * For the current temperature verify that the parameter length is 0x02 24079 * and the parameter code is 0x00 24080 */ 24081 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24082 (temperature_page[5] == 0x00)) { 24083 if (temperature_page[9] == 0xFF) { 24084 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24085 } else { 24086 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24087 } 24088 } 24089 24090 /* 24091 * For the reference temperature verify that the parameter 24092 * length is 0x02 and the parameter code is 0x01 24093 */ 24094 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24095 (temperature_page[11] == 0x01)) { 24096 if (temperature_page[15] == 0xFF) { 24097 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24098 } else { 24099 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24100 } 24101 } 24102 24103 /* Do the copyout regardless of the temperature commands status. */ 24104 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24105 flag) != 0) { 24106 rval = EFAULT; 24107 goto done1; 24108 } 24109 24110 done2: 24111 if (rval != 0) { 24112 if (rval == EIO) 24113 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24114 else 24115 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24116 } 24117 done1: 24118 if (path_flag == SD_PATH_DIRECT) { 24119 sd_pm_exit(un); 24120 } 24121 24122 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24123 done: 24124 sd_ssc_fini(ssc); 24125 if (dktemp != NULL) { 24126 kmem_free(dktemp, sizeof (struct dk_temperature)); 24127 } 24128 24129 return (rval); 24130 } 24131 24132 24133 /* 24134 * Function: sd_log_page_supported 24135 * 24136 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24137 * supported log pages. 24138 * 24139 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 24140 * structure for this target. 24141 * log_page - 24142 * 24143 * Return Code: -1 - on error (log sense is optional and may not be supported). 24144 * 0 - log page not found. 24145 * 1 - log page found. 24146 */ 24147 24148 static int 24149 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 24150 { 24151 uchar_t *log_page_data; 24152 int i; 24153 int match = 0; 24154 int log_size; 24155 int status = 0; 24156 struct sd_lun *un; 24157 24158 ASSERT(ssc != NULL); 24159 un = ssc->ssc_un; 24160 ASSERT(un != NULL); 24161 24162 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24163 24164 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 24165 SD_PATH_DIRECT); 24166 24167 if (status != 0) { 24168 if (status == EIO) { 24169 /* 24170 * Some disks do not support log sense, we 24171 * should ignore this kind of error(sense key is 24172 * 0x5 - illegal request). 24173 */ 24174 uint8_t *sensep; 24175 int senlen; 24176 24177 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 24178 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 24179 ssc->ssc_uscsi_cmd->uscsi_rqresid); 24180 24181 if (senlen > 0 && 24182 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 24183 sd_ssc_assessment(ssc, 24184 SD_FMT_IGNORE_COMPROMISE); 24185 } else { 24186 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24187 } 24188 } else { 24189 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24190 } 24191 24192 SD_ERROR(SD_LOG_COMMON, un, 24193 "sd_log_page_supported: failed log page retrieval\n"); 24194 kmem_free(log_page_data, 0xFF); 24195 return (-1); 24196 } 24197 24198 log_size = log_page_data[3]; 24199 24200 /* 24201 * The list of supported log pages start from the fourth byte. Check 24202 * until we run out of log pages or a match is found. 24203 */ 24204 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24205 if (log_page_data[i] == log_page) { 24206 match++; 24207 } 24208 } 24209 kmem_free(log_page_data, 0xFF); 24210 return (match); 24211 } 24212 24213 24214 /* 24215 * Function: sd_mhdioc_failfast 24216 * 24217 * Description: This routine is the driver entry point for handling ioctl 24218 * requests to enable/disable the multihost failfast option. 24219 * (MHIOCENFAILFAST) 24220 * 24221 * Arguments: dev - the device number 24222 * arg - user specified probing interval. 24223 * flag - this argument is a pass through to ddi_copyxxx() 24224 * directly from the mode argument of ioctl(). 24225 * 24226 * Return Code: 0 24227 * EFAULT 24228 * ENXIO 24229 */ 24230 24231 static int 24232 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24233 { 24234 struct sd_lun *un = NULL; 24235 int mh_time; 24236 int rval = 0; 24237 24238 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24239 return (ENXIO); 24240 } 24241 24242 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24243 return (EFAULT); 24244 24245 if (mh_time) { 24246 mutex_enter(SD_MUTEX(un)); 24247 un->un_resvd_status |= SD_FAILFAST; 24248 mutex_exit(SD_MUTEX(un)); 24249 /* 24250 * If mh_time is INT_MAX, then this ioctl is being used for 24251 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24252 */ 24253 if (mh_time != INT_MAX) { 24254 rval = sd_check_mhd(dev, mh_time); 24255 } 24256 } else { 24257 (void) sd_check_mhd(dev, 0); 24258 mutex_enter(SD_MUTEX(un)); 24259 un->un_resvd_status &= ~SD_FAILFAST; 24260 mutex_exit(SD_MUTEX(un)); 24261 } 24262 return (rval); 24263 } 24264 24265 24266 /* 24267 * Function: sd_mhdioc_takeown 24268 * 24269 * Description: This routine is the driver entry point for handling ioctl 24270 * requests to forcefully acquire exclusive access rights to the 24271 * multihost disk (MHIOCTKOWN). 24272 * 24273 * Arguments: dev - the device number 24274 * arg - user provided structure specifying the delay 24275 * parameters in milliseconds 24276 * flag - this argument is a pass through to ddi_copyxxx() 24277 * directly from the mode argument of ioctl(). 24278 * 24279 * Return Code: 0 24280 * EFAULT 24281 * ENXIO 24282 */ 24283 24284 static int 24285 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24286 { 24287 struct sd_lun *un = NULL; 24288 struct mhioctkown *tkown = NULL; 24289 int rval = 0; 24290 24291 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24292 return (ENXIO); 24293 } 24294 24295 if (arg != NULL) { 24296 tkown = (struct mhioctkown *) 24297 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24298 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24299 if (rval != 0) { 24300 rval = EFAULT; 24301 goto error; 24302 } 24303 } 24304 24305 rval = sd_take_ownership(dev, tkown); 24306 mutex_enter(SD_MUTEX(un)); 24307 if (rval == 0) { 24308 un->un_resvd_status |= SD_RESERVE; 24309 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24310 sd_reinstate_resv_delay = 24311 tkown->reinstate_resv_delay * 1000; 24312 } else { 24313 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24314 } 24315 /* 24316 * Give the scsi_watch routine interval set by 24317 * the MHIOCENFAILFAST ioctl precedence here. 24318 */ 24319 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24320 mutex_exit(SD_MUTEX(un)); 24321 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24322 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24323 "sd_mhdioc_takeown : %d\n", 24324 sd_reinstate_resv_delay); 24325 } else { 24326 mutex_exit(SD_MUTEX(un)); 24327 } 24328 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24329 sd_mhd_reset_notify_cb, (caddr_t)un); 24330 } else { 24331 un->un_resvd_status &= ~SD_RESERVE; 24332 mutex_exit(SD_MUTEX(un)); 24333 } 24334 24335 error: 24336 if (tkown != NULL) { 24337 kmem_free(tkown, sizeof (struct mhioctkown)); 24338 } 24339 return (rval); 24340 } 24341 24342 24343 /* 24344 * Function: sd_mhdioc_release 24345 * 24346 * Description: This routine is the driver entry point for handling ioctl 24347 * requests to release exclusive access rights to the multihost 24348 * disk (MHIOCRELEASE). 24349 * 24350 * Arguments: dev - the device number 24351 * 24352 * Return Code: 0 24353 * ENXIO 24354 */ 24355 24356 static int 24357 sd_mhdioc_release(dev_t dev) 24358 { 24359 struct sd_lun *un = NULL; 24360 timeout_id_t resvd_timeid_save; 24361 int resvd_status_save; 24362 int rval = 0; 24363 24364 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24365 return (ENXIO); 24366 } 24367 24368 mutex_enter(SD_MUTEX(un)); 24369 resvd_status_save = un->un_resvd_status; 24370 un->un_resvd_status &= 24371 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24372 if (un->un_resvd_timeid) { 24373 resvd_timeid_save = un->un_resvd_timeid; 24374 un->un_resvd_timeid = NULL; 24375 mutex_exit(SD_MUTEX(un)); 24376 (void) untimeout(resvd_timeid_save); 24377 } else { 24378 mutex_exit(SD_MUTEX(un)); 24379 } 24380 24381 /* 24382 * destroy any pending timeout thread that may be attempting to 24383 * reinstate reservation on this device. 24384 */ 24385 sd_rmv_resv_reclaim_req(dev); 24386 24387 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24388 mutex_enter(SD_MUTEX(un)); 24389 if ((un->un_mhd_token) && 24390 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24391 mutex_exit(SD_MUTEX(un)); 24392 (void) sd_check_mhd(dev, 0); 24393 } else { 24394 mutex_exit(SD_MUTEX(un)); 24395 } 24396 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24397 sd_mhd_reset_notify_cb, (caddr_t)un); 24398 } else { 24399 /* 24400 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24401 */ 24402 mutex_enter(SD_MUTEX(un)); 24403 un->un_resvd_status = resvd_status_save; 24404 mutex_exit(SD_MUTEX(un)); 24405 } 24406 return (rval); 24407 } 24408 24409 24410 /* 24411 * Function: sd_mhdioc_register_devid 24412 * 24413 * Description: This routine is the driver entry point for handling ioctl 24414 * requests to register the device id (MHIOCREREGISTERDEVID). 24415 * 24416 * Note: The implementation for this ioctl has been updated to 24417 * be consistent with the original PSARC case (1999/357) 24418 * (4375899, 4241671, 4220005) 24419 * 24420 * Arguments: dev - the device number 24421 * 24422 * Return Code: 0 24423 * ENXIO 24424 */ 24425 24426 static int 24427 sd_mhdioc_register_devid(dev_t dev) 24428 { 24429 struct sd_lun *un = NULL; 24430 int rval = 0; 24431 sd_ssc_t *ssc; 24432 24433 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24434 return (ENXIO); 24435 } 24436 24437 ASSERT(!mutex_owned(SD_MUTEX(un))); 24438 24439 mutex_enter(SD_MUTEX(un)); 24440 24441 /* If a devid already exists, de-register it */ 24442 if (un->un_devid != NULL) { 24443 ddi_devid_unregister(SD_DEVINFO(un)); 24444 /* 24445 * After unregister devid, needs to free devid memory 24446 */ 24447 ddi_devid_free(un->un_devid); 24448 un->un_devid = NULL; 24449 } 24450 24451 /* Check for reservation conflict */ 24452 mutex_exit(SD_MUTEX(un)); 24453 ssc = sd_ssc_init(un); 24454 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24455 mutex_enter(SD_MUTEX(un)); 24456 24457 switch (rval) { 24458 case 0: 24459 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24460 break; 24461 case EACCES: 24462 break; 24463 default: 24464 rval = EIO; 24465 } 24466 24467 mutex_exit(SD_MUTEX(un)); 24468 if (rval != 0) { 24469 if (rval == EIO) 24470 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24471 else 24472 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24473 } 24474 sd_ssc_fini(ssc); 24475 return (rval); 24476 } 24477 24478 24479 /* 24480 * Function: sd_mhdioc_inkeys 24481 * 24482 * Description: This routine is the driver entry point for handling ioctl 24483 * requests to issue the SCSI-3 Persistent In Read Keys command 24484 * to the device (MHIOCGRP_INKEYS). 24485 * 24486 * Arguments: dev - the device number 24487 * arg - user provided in_keys structure 24488 * flag - this argument is a pass through to ddi_copyxxx() 24489 * directly from the mode argument of ioctl(). 24490 * 24491 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24492 * ENXIO 24493 * EFAULT 24494 */ 24495 24496 static int 24497 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24498 { 24499 struct sd_lun *un; 24500 mhioc_inkeys_t inkeys; 24501 int rval = 0; 24502 24503 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24504 return (ENXIO); 24505 } 24506 24507 #ifdef _MULTI_DATAMODEL 24508 switch (ddi_model_convert_from(flag & FMODELS)) { 24509 case DDI_MODEL_ILP32: { 24510 struct mhioc_inkeys32 inkeys32; 24511 24512 if (ddi_copyin(arg, &inkeys32, 24513 sizeof (struct mhioc_inkeys32), flag) != 0) { 24514 return (EFAULT); 24515 } 24516 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24517 if ((rval = sd_persistent_reservation_in_read_keys(un, 24518 &inkeys, flag)) != 0) { 24519 return (rval); 24520 } 24521 inkeys32.generation = inkeys.generation; 24522 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24523 flag) != 0) { 24524 return (EFAULT); 24525 } 24526 break; 24527 } 24528 case DDI_MODEL_NONE: 24529 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24530 flag) != 0) { 24531 return (EFAULT); 24532 } 24533 if ((rval = sd_persistent_reservation_in_read_keys(un, 24534 &inkeys, flag)) != 0) { 24535 return (rval); 24536 } 24537 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24538 flag) != 0) { 24539 return (EFAULT); 24540 } 24541 break; 24542 } 24543 24544 #else /* ! _MULTI_DATAMODEL */ 24545 24546 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24547 return (EFAULT); 24548 } 24549 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24550 if (rval != 0) { 24551 return (rval); 24552 } 24553 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24554 return (EFAULT); 24555 } 24556 24557 #endif /* _MULTI_DATAMODEL */ 24558 24559 return (rval); 24560 } 24561 24562 24563 /* 24564 * Function: sd_mhdioc_inresv 24565 * 24566 * Description: This routine is the driver entry point for handling ioctl 24567 * requests to issue the SCSI-3 Persistent In Read Reservations 24568 * command to the device (MHIOCGRP_INKEYS). 24569 * 24570 * Arguments: dev - the device number 24571 * arg - user provided in_resv structure 24572 * flag - this argument is a pass through to ddi_copyxxx() 24573 * directly from the mode argument of ioctl(). 24574 * 24575 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24576 * ENXIO 24577 * EFAULT 24578 */ 24579 24580 static int 24581 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24582 { 24583 struct sd_lun *un; 24584 mhioc_inresvs_t inresvs; 24585 int rval = 0; 24586 24587 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24588 return (ENXIO); 24589 } 24590 24591 #ifdef _MULTI_DATAMODEL 24592 24593 switch (ddi_model_convert_from(flag & FMODELS)) { 24594 case DDI_MODEL_ILP32: { 24595 struct mhioc_inresvs32 inresvs32; 24596 24597 if (ddi_copyin(arg, &inresvs32, 24598 sizeof (struct mhioc_inresvs32), flag) != 0) { 24599 return (EFAULT); 24600 } 24601 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24602 if ((rval = sd_persistent_reservation_in_read_resv(un, 24603 &inresvs, flag)) != 0) { 24604 return (rval); 24605 } 24606 inresvs32.generation = inresvs.generation; 24607 if (ddi_copyout(&inresvs32, arg, 24608 sizeof (struct mhioc_inresvs32), flag) != 0) { 24609 return (EFAULT); 24610 } 24611 break; 24612 } 24613 case DDI_MODEL_NONE: 24614 if (ddi_copyin(arg, &inresvs, 24615 sizeof (mhioc_inresvs_t), flag) != 0) { 24616 return (EFAULT); 24617 } 24618 if ((rval = sd_persistent_reservation_in_read_resv(un, 24619 &inresvs, flag)) != 0) { 24620 return (rval); 24621 } 24622 if (ddi_copyout(&inresvs, arg, 24623 sizeof (mhioc_inresvs_t), flag) != 0) { 24624 return (EFAULT); 24625 } 24626 break; 24627 } 24628 24629 #else /* ! _MULTI_DATAMODEL */ 24630 24631 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24632 return (EFAULT); 24633 } 24634 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24635 if (rval != 0) { 24636 return (rval); 24637 } 24638 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24639 return (EFAULT); 24640 } 24641 24642 #endif /* ! _MULTI_DATAMODEL */ 24643 24644 return (rval); 24645 } 24646 24647 24648 /* 24649 * The following routines support the clustering functionality described below 24650 * and implement lost reservation reclaim functionality. 24651 * 24652 * Clustering 24653 * ---------- 24654 * The clustering code uses two different, independent forms of SCSI 24655 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24656 * Persistent Group Reservations. For any particular disk, it will use either 24657 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24658 * 24659 * SCSI-2 24660 * The cluster software takes ownership of a multi-hosted disk by issuing the 24661 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24662 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 24663 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 24664 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 24665 * driver. The meaning of failfast is that if the driver (on this host) ever 24666 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 24667 * it should immediately panic the host. The motivation for this ioctl is that 24668 * if this host does encounter reservation conflict, the underlying cause is 24669 * that some other host of the cluster has decided that this host is no longer 24670 * in the cluster and has seized control of the disks for itself. Since this 24671 * host is no longer in the cluster, it ought to panic itself. The 24672 * MHIOCENFAILFAST ioctl does two things: 24673 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 24674 * error to panic the host 24675 * (b) it sets up a periodic timer to test whether this host still has 24676 * "access" (in that no other host has reserved the device): if the 24677 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 24678 * purpose of that periodic timer is to handle scenarios where the host is 24679 * otherwise temporarily quiescent, temporarily doing no real i/o. 24680 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 24681 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 24682 * the device itself. 24683 * 24684 * SCSI-3 PGR 24685 * A direct semantic implementation of the SCSI-3 Persistent Reservation 24686 * facility is supported through the shared multihost disk ioctls 24687 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 24688 * MHIOCGRP_PREEMPTANDABORT) 24689 * 24690 * Reservation Reclaim: 24691 * -------------------- 24692 * To support the lost reservation reclaim operations this driver creates a 24693 * single thread to handle reinstating reservations on all devices that have 24694 * lost reservations sd_resv_reclaim_requests are logged for all devices that 24695 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 24696 * and the reservation reclaim thread loops through the requests to regain the 24697 * lost reservations. 24698 */ 24699 24700 /* 24701 * Function: sd_check_mhd() 24702 * 24703 * Description: This function sets up and submits a scsi watch request or 24704 * terminates an existing watch request. This routine is used in 24705 * support of reservation reclaim. 24706 * 24707 * Arguments: dev - the device 'dev_t' is used for context to discriminate 24708 * among multiple watches that share the callback function 24709 * interval - the number of microseconds specifying the watch 24710 * interval for issuing TEST UNIT READY commands. If 24711 * set to 0 the watch should be terminated. If the 24712 * interval is set to 0 and if the device is required 24713 * to hold reservation while disabling failfast, the 24714 * watch is restarted with an interval of 24715 * reinstate_resv_delay. 24716 * 24717 * Return Code: 0 - Successful submit/terminate of scsi watch request 24718 * ENXIO - Indicates an invalid device was specified 24719 * EAGAIN - Unable to submit the scsi watch request 24720 */ 24721 24722 static int 24723 sd_check_mhd(dev_t dev, int interval) 24724 { 24725 struct sd_lun *un; 24726 opaque_t token; 24727 24728 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24729 return (ENXIO); 24730 } 24731 24732 /* is this a watch termination request? */ 24733 if (interval == 0) { 24734 mutex_enter(SD_MUTEX(un)); 24735 /* if there is an existing watch task then terminate it */ 24736 if (un->un_mhd_token) { 24737 token = un->un_mhd_token; 24738 un->un_mhd_token = NULL; 24739 mutex_exit(SD_MUTEX(un)); 24740 (void) scsi_watch_request_terminate(token, 24741 SCSI_WATCH_TERMINATE_ALL_WAIT); 24742 mutex_enter(SD_MUTEX(un)); 24743 } else { 24744 mutex_exit(SD_MUTEX(un)); 24745 /* 24746 * Note: If we return here we don't check for the 24747 * failfast case. This is the original legacy 24748 * implementation but perhaps we should be checking 24749 * the failfast case. 24750 */ 24751 return (0); 24752 } 24753 /* 24754 * If the device is required to hold reservation while 24755 * disabling failfast, we need to restart the scsi_watch 24756 * routine with an interval of reinstate_resv_delay. 24757 */ 24758 if (un->un_resvd_status & SD_RESERVE) { 24759 interval = sd_reinstate_resv_delay/1000; 24760 } else { 24761 /* no failfast so bail */ 24762 mutex_exit(SD_MUTEX(un)); 24763 return (0); 24764 } 24765 mutex_exit(SD_MUTEX(un)); 24766 } 24767 24768 /* 24769 * adjust minimum time interval to 1 second, 24770 * and convert from msecs to usecs 24771 */ 24772 if (interval > 0 && interval < 1000) { 24773 interval = 1000; 24774 } 24775 interval *= 1000; 24776 24777 /* 24778 * submit the request to the scsi_watch service 24779 */ 24780 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 24781 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 24782 if (token == NULL) { 24783 return (EAGAIN); 24784 } 24785 24786 /* 24787 * save token for termination later on 24788 */ 24789 mutex_enter(SD_MUTEX(un)); 24790 un->un_mhd_token = token; 24791 mutex_exit(SD_MUTEX(un)); 24792 return (0); 24793 } 24794 24795 24796 /* 24797 * Function: sd_mhd_watch_cb() 24798 * 24799 * Description: This function is the call back function used by the scsi watch 24800 * facility. The scsi watch facility sends the "Test Unit Ready" 24801 * and processes the status. If applicable (i.e. a "Unit Attention" 24802 * status and automatic "Request Sense" not used) the scsi watch 24803 * facility will send a "Request Sense" and retrieve the sense data 24804 * to be passed to this callback function. In either case the 24805 * automatic "Request Sense" or the facility submitting one, this 24806 * callback is passed the status and sense data. 24807 * 24808 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24809 * among multiple watches that share this callback function 24810 * resultp - scsi watch facility result packet containing scsi 24811 * packet, status byte and sense data 24812 * 24813 * Return Code: 0 - continue the watch task 24814 * non-zero - terminate the watch task 24815 */ 24816 24817 static int 24818 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24819 { 24820 struct sd_lun *un; 24821 struct scsi_status *statusp; 24822 uint8_t *sensep; 24823 struct scsi_pkt *pkt; 24824 uchar_t actual_sense_length; 24825 dev_t dev = (dev_t)arg; 24826 24827 ASSERT(resultp != NULL); 24828 statusp = resultp->statusp; 24829 sensep = (uint8_t *)resultp->sensep; 24830 pkt = resultp->pkt; 24831 actual_sense_length = resultp->actual_sense_length; 24832 24833 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24834 return (ENXIO); 24835 } 24836 24837 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24838 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 24839 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 24840 24841 /* Begin processing of the status and/or sense data */ 24842 if (pkt->pkt_reason != CMD_CMPLT) { 24843 /* Handle the incomplete packet */ 24844 sd_mhd_watch_incomplete(un, pkt); 24845 return (0); 24846 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 24847 if (*((unsigned char *)statusp) 24848 == STATUS_RESERVATION_CONFLICT) { 24849 /* 24850 * Handle a reservation conflict by panicking if 24851 * configured for failfast or by logging the conflict 24852 * and updating the reservation status 24853 */ 24854 mutex_enter(SD_MUTEX(un)); 24855 if ((un->un_resvd_status & SD_FAILFAST) && 24856 (sd_failfast_enable)) { 24857 sd_panic_for_res_conflict(un); 24858 /*NOTREACHED*/ 24859 } 24860 SD_INFO(SD_LOG_IOCTL_MHD, un, 24861 "sd_mhd_watch_cb: Reservation Conflict\n"); 24862 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 24863 mutex_exit(SD_MUTEX(un)); 24864 } 24865 } 24866 24867 if (sensep != NULL) { 24868 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 24869 mutex_enter(SD_MUTEX(un)); 24870 if ((scsi_sense_asc(sensep) == 24871 SD_SCSI_RESET_SENSE_CODE) && 24872 (un->un_resvd_status & SD_RESERVE)) { 24873 /* 24874 * The additional sense code indicates a power 24875 * on or bus device reset has occurred; update 24876 * the reservation status. 24877 */ 24878 un->un_resvd_status |= 24879 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24880 SD_INFO(SD_LOG_IOCTL_MHD, un, 24881 "sd_mhd_watch_cb: Lost Reservation\n"); 24882 } 24883 } else { 24884 return (0); 24885 } 24886 } else { 24887 mutex_enter(SD_MUTEX(un)); 24888 } 24889 24890 if ((un->un_resvd_status & SD_RESERVE) && 24891 (un->un_resvd_status & SD_LOST_RESERVE)) { 24892 if (un->un_resvd_status & SD_WANT_RESERVE) { 24893 /* 24894 * A reset occurred in between the last probe and this 24895 * one so if a timeout is pending cancel it. 24896 */ 24897 if (un->un_resvd_timeid) { 24898 timeout_id_t temp_id = un->un_resvd_timeid; 24899 un->un_resvd_timeid = NULL; 24900 mutex_exit(SD_MUTEX(un)); 24901 (void) untimeout(temp_id); 24902 mutex_enter(SD_MUTEX(un)); 24903 } 24904 un->un_resvd_status &= ~SD_WANT_RESERVE; 24905 } 24906 if (un->un_resvd_timeid == 0) { 24907 /* Schedule a timeout to handle the lost reservation */ 24908 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 24909 (void *)dev, 24910 drv_usectohz(sd_reinstate_resv_delay)); 24911 } 24912 } 24913 mutex_exit(SD_MUTEX(un)); 24914 return (0); 24915 } 24916 24917 24918 /* 24919 * Function: sd_mhd_watch_incomplete() 24920 * 24921 * Description: This function is used to find out why a scsi pkt sent by the 24922 * scsi watch facility was not completed. Under some scenarios this 24923 * routine will return. Otherwise it will send a bus reset to see 24924 * if the drive is still online. 24925 * 24926 * Arguments: un - driver soft state (unit) structure 24927 * pkt - incomplete scsi pkt 24928 */ 24929 24930 static void 24931 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 24932 { 24933 int be_chatty; 24934 int perr; 24935 24936 ASSERT(pkt != NULL); 24937 ASSERT(un != NULL); 24938 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 24939 perr = (pkt->pkt_statistics & STAT_PERR); 24940 24941 mutex_enter(SD_MUTEX(un)); 24942 if (un->un_state == SD_STATE_DUMPING) { 24943 mutex_exit(SD_MUTEX(un)); 24944 return; 24945 } 24946 24947 switch (pkt->pkt_reason) { 24948 case CMD_UNX_BUS_FREE: 24949 /* 24950 * If we had a parity error that caused the target to drop BSY*, 24951 * don't be chatty about it. 24952 */ 24953 if (perr && be_chatty) { 24954 be_chatty = 0; 24955 } 24956 break; 24957 case CMD_TAG_REJECT: 24958 /* 24959 * The SCSI-2 spec states that a tag reject will be sent by the 24960 * target if tagged queuing is not supported. A tag reject may 24961 * also be sent during certain initialization periods or to 24962 * control internal resources. For the latter case the target 24963 * may also return Queue Full. 24964 * 24965 * If this driver receives a tag reject from a target that is 24966 * going through an init period or controlling internal 24967 * resources tagged queuing will be disabled. This is a less 24968 * than optimal behavior but the driver is unable to determine 24969 * the target state and assumes tagged queueing is not supported 24970 */ 24971 pkt->pkt_flags = 0; 24972 un->un_tagflags = 0; 24973 24974 if (un->un_f_opt_queueing == TRUE) { 24975 un->un_throttle = min(un->un_throttle, 3); 24976 } else { 24977 un->un_throttle = 1; 24978 } 24979 mutex_exit(SD_MUTEX(un)); 24980 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 24981 mutex_enter(SD_MUTEX(un)); 24982 break; 24983 case CMD_INCOMPLETE: 24984 /* 24985 * The transport stopped with an abnormal state, fallthrough and 24986 * reset the target and/or bus unless selection did not complete 24987 * (indicated by STATE_GOT_BUS) in which case we don't want to 24988 * go through a target/bus reset 24989 */ 24990 if (pkt->pkt_state == STATE_GOT_BUS) { 24991 break; 24992 } 24993 /*FALLTHROUGH*/ 24994 24995 case CMD_TIMEOUT: 24996 default: 24997 /* 24998 * The lun may still be running the command, so a lun reset 24999 * should be attempted. If the lun reset fails or cannot be 25000 * issued, than try a target reset. Lastly try a bus reset. 25001 */ 25002 if ((pkt->pkt_statistics & 25003 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25004 int reset_retval = 0; 25005 mutex_exit(SD_MUTEX(un)); 25006 if (un->un_f_allow_bus_device_reset == TRUE) { 25007 if (un->un_f_lun_reset_enabled == TRUE) { 25008 reset_retval = 25009 scsi_reset(SD_ADDRESS(un), 25010 RESET_LUN); 25011 } 25012 if (reset_retval == 0) { 25013 reset_retval = 25014 scsi_reset(SD_ADDRESS(un), 25015 RESET_TARGET); 25016 } 25017 } 25018 if (reset_retval == 0) { 25019 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25020 } 25021 mutex_enter(SD_MUTEX(un)); 25022 } 25023 break; 25024 } 25025 25026 /* A device/bus reset has occurred; update the reservation status. */ 25027 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25028 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25029 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25030 un->un_resvd_status |= 25031 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25032 SD_INFO(SD_LOG_IOCTL_MHD, un, 25033 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25034 } 25035 } 25036 25037 /* 25038 * The disk has been turned off; Update the device state. 25039 * 25040 * Note: Should we be offlining the disk here? 25041 */ 25042 if (pkt->pkt_state == STATE_GOT_BUS) { 25043 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25044 "Disk not responding to selection\n"); 25045 if (un->un_state != SD_STATE_OFFLINE) { 25046 New_state(un, SD_STATE_OFFLINE); 25047 } 25048 } else if (be_chatty) { 25049 /* 25050 * suppress messages if they are all the same pkt reason; 25051 * with TQ, many (up to 256) are returned with the same 25052 * pkt_reason 25053 */ 25054 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25055 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25056 "sd_mhd_watch_incomplete: " 25057 "SCSI transport failed: reason '%s'\n", 25058 scsi_rname(pkt->pkt_reason)); 25059 } 25060 } 25061 un->un_last_pkt_reason = pkt->pkt_reason; 25062 mutex_exit(SD_MUTEX(un)); 25063 } 25064 25065 25066 /* 25067 * Function: sd_sname() 25068 * 25069 * Description: This is a simple little routine to return a string containing 25070 * a printable description of command status byte for use in 25071 * logging. 25072 * 25073 * Arguments: status - pointer to a status byte 25074 * 25075 * Return Code: char * - string containing status description. 25076 */ 25077 25078 static char * 25079 sd_sname(uchar_t status) 25080 { 25081 switch (status & STATUS_MASK) { 25082 case STATUS_GOOD: 25083 return ("good status"); 25084 case STATUS_CHECK: 25085 return ("check condition"); 25086 case STATUS_MET: 25087 return ("condition met"); 25088 case STATUS_BUSY: 25089 return ("busy"); 25090 case STATUS_INTERMEDIATE: 25091 return ("intermediate"); 25092 case STATUS_INTERMEDIATE_MET: 25093 return ("intermediate - condition met"); 25094 case STATUS_RESERVATION_CONFLICT: 25095 return ("reservation_conflict"); 25096 case STATUS_TERMINATED: 25097 return ("command terminated"); 25098 case STATUS_QFULL: 25099 return ("queue full"); 25100 default: 25101 return ("<unknown status>"); 25102 } 25103 } 25104 25105 25106 /* 25107 * Function: sd_mhd_resvd_recover() 25108 * 25109 * Description: This function adds a reservation entry to the 25110 * sd_resv_reclaim_request list and signals the reservation 25111 * reclaim thread that there is work pending. If the reservation 25112 * reclaim thread has not been previously created this function 25113 * will kick it off. 25114 * 25115 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25116 * among multiple watches that share this callback function 25117 * 25118 * Context: This routine is called by timeout() and is run in interrupt 25119 * context. It must not sleep or call other functions which may 25120 * sleep. 25121 */ 25122 25123 static void 25124 sd_mhd_resvd_recover(void *arg) 25125 { 25126 dev_t dev = (dev_t)arg; 25127 struct sd_lun *un; 25128 struct sd_thr_request *sd_treq = NULL; 25129 struct sd_thr_request *sd_cur = NULL; 25130 struct sd_thr_request *sd_prev = NULL; 25131 int already_there = 0; 25132 25133 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25134 return; 25135 } 25136 25137 mutex_enter(SD_MUTEX(un)); 25138 un->un_resvd_timeid = NULL; 25139 if (un->un_resvd_status & SD_WANT_RESERVE) { 25140 /* 25141 * There was a reset so don't issue the reserve, allow the 25142 * sd_mhd_watch_cb callback function to notice this and 25143 * reschedule the timeout for reservation. 25144 */ 25145 mutex_exit(SD_MUTEX(un)); 25146 return; 25147 } 25148 mutex_exit(SD_MUTEX(un)); 25149 25150 /* 25151 * Add this device to the sd_resv_reclaim_request list and the 25152 * sd_resv_reclaim_thread should take care of the rest. 25153 * 25154 * Note: We can't sleep in this context so if the memory allocation 25155 * fails allow the sd_mhd_watch_cb callback function to notice this and 25156 * reschedule the timeout for reservation. (4378460) 25157 */ 25158 sd_treq = (struct sd_thr_request *) 25159 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25160 if (sd_treq == NULL) { 25161 return; 25162 } 25163 25164 sd_treq->sd_thr_req_next = NULL; 25165 sd_treq->dev = dev; 25166 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25167 if (sd_tr.srq_thr_req_head == NULL) { 25168 sd_tr.srq_thr_req_head = sd_treq; 25169 } else { 25170 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25171 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25172 if (sd_cur->dev == dev) { 25173 /* 25174 * already in Queue so don't log 25175 * another request for the device 25176 */ 25177 already_there = 1; 25178 break; 25179 } 25180 sd_prev = sd_cur; 25181 } 25182 if (!already_there) { 25183 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25184 "logging request for %lx\n", dev); 25185 sd_prev->sd_thr_req_next = sd_treq; 25186 } else { 25187 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25188 } 25189 } 25190 25191 /* 25192 * Create a kernel thread to do the reservation reclaim and free up this 25193 * thread. We cannot block this thread while we go away to do the 25194 * reservation reclaim 25195 */ 25196 if (sd_tr.srq_resv_reclaim_thread == NULL) 25197 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25198 sd_resv_reclaim_thread, NULL, 25199 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25200 25201 /* Tell the reservation reclaim thread that it has work to do */ 25202 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25203 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25204 } 25205 25206 /* 25207 * Function: sd_resv_reclaim_thread() 25208 * 25209 * Description: This function implements the reservation reclaim operations 25210 * 25211 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25212 * among multiple watches that share this callback function 25213 */ 25214 25215 static void 25216 sd_resv_reclaim_thread() 25217 { 25218 struct sd_lun *un; 25219 struct sd_thr_request *sd_mhreq; 25220 25221 /* Wait for work */ 25222 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25223 if (sd_tr.srq_thr_req_head == NULL) { 25224 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25225 &sd_tr.srq_resv_reclaim_mutex); 25226 } 25227 25228 /* Loop while we have work */ 25229 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25230 un = ddi_get_soft_state(sd_state, 25231 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25232 if (un == NULL) { 25233 /* 25234 * softstate structure is NULL so just 25235 * dequeue the request and continue 25236 */ 25237 sd_tr.srq_thr_req_head = 25238 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25239 kmem_free(sd_tr.srq_thr_cur_req, 25240 sizeof (struct sd_thr_request)); 25241 continue; 25242 } 25243 25244 /* dequeue the request */ 25245 sd_mhreq = sd_tr.srq_thr_cur_req; 25246 sd_tr.srq_thr_req_head = 25247 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25248 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25249 25250 /* 25251 * Reclaim reservation only if SD_RESERVE is still set. There 25252 * may have been a call to MHIOCRELEASE before we got here. 25253 */ 25254 mutex_enter(SD_MUTEX(un)); 25255 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25256 /* 25257 * Note: The SD_LOST_RESERVE flag is cleared before 25258 * reclaiming the reservation. If this is done after the 25259 * call to sd_reserve_release a reservation loss in the 25260 * window between pkt completion of reserve cmd and 25261 * mutex_enter below may not be recognized 25262 */ 25263 un->un_resvd_status &= ~SD_LOST_RESERVE; 25264 mutex_exit(SD_MUTEX(un)); 25265 25266 if (sd_reserve_release(sd_mhreq->dev, 25267 SD_RESERVE) == 0) { 25268 mutex_enter(SD_MUTEX(un)); 25269 un->un_resvd_status |= SD_RESERVE; 25270 mutex_exit(SD_MUTEX(un)); 25271 SD_INFO(SD_LOG_IOCTL_MHD, un, 25272 "sd_resv_reclaim_thread: " 25273 "Reservation Recovered\n"); 25274 } else { 25275 mutex_enter(SD_MUTEX(un)); 25276 un->un_resvd_status |= SD_LOST_RESERVE; 25277 mutex_exit(SD_MUTEX(un)); 25278 SD_INFO(SD_LOG_IOCTL_MHD, un, 25279 "sd_resv_reclaim_thread: Failed " 25280 "Reservation Recovery\n"); 25281 } 25282 } else { 25283 mutex_exit(SD_MUTEX(un)); 25284 } 25285 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25286 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25287 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25288 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25289 /* 25290 * wakeup the destroy thread if anyone is waiting on 25291 * us to complete. 25292 */ 25293 cv_signal(&sd_tr.srq_inprocess_cv); 25294 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25295 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25296 } 25297 25298 /* 25299 * cleanup the sd_tr structure now that this thread will not exist 25300 */ 25301 ASSERT(sd_tr.srq_thr_req_head == NULL); 25302 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25303 sd_tr.srq_resv_reclaim_thread = NULL; 25304 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25305 thread_exit(); 25306 } 25307 25308 25309 /* 25310 * Function: sd_rmv_resv_reclaim_req() 25311 * 25312 * Description: This function removes any pending reservation reclaim requests 25313 * for the specified device. 25314 * 25315 * Arguments: dev - the device 'dev_t' 25316 */ 25317 25318 static void 25319 sd_rmv_resv_reclaim_req(dev_t dev) 25320 { 25321 struct sd_thr_request *sd_mhreq; 25322 struct sd_thr_request *sd_prev; 25323 25324 /* Remove a reservation reclaim request from the list */ 25325 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25326 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25327 /* 25328 * We are attempting to reinstate reservation for 25329 * this device. We wait for sd_reserve_release() 25330 * to return before we return. 25331 */ 25332 cv_wait(&sd_tr.srq_inprocess_cv, 25333 &sd_tr.srq_resv_reclaim_mutex); 25334 } else { 25335 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25336 if (sd_mhreq && sd_mhreq->dev == dev) { 25337 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25338 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25339 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25340 return; 25341 } 25342 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25343 if (sd_mhreq && sd_mhreq->dev == dev) { 25344 break; 25345 } 25346 sd_prev = sd_mhreq; 25347 } 25348 if (sd_mhreq != NULL) { 25349 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25350 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25351 } 25352 } 25353 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25354 } 25355 25356 25357 /* 25358 * Function: sd_mhd_reset_notify_cb() 25359 * 25360 * Description: This is a call back function for scsi_reset_notify. This 25361 * function updates the softstate reserved status and logs the 25362 * reset. The driver scsi watch facility callback function 25363 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25364 * will reclaim the reservation. 25365 * 25366 * Arguments: arg - driver soft state (unit) structure 25367 */ 25368 25369 static void 25370 sd_mhd_reset_notify_cb(caddr_t arg) 25371 { 25372 struct sd_lun *un = (struct sd_lun *)arg; 25373 25374 mutex_enter(SD_MUTEX(un)); 25375 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25376 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25377 SD_INFO(SD_LOG_IOCTL_MHD, un, 25378 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25379 } 25380 mutex_exit(SD_MUTEX(un)); 25381 } 25382 25383 25384 /* 25385 * Function: sd_take_ownership() 25386 * 25387 * Description: This routine implements an algorithm to achieve a stable 25388 * reservation on disks which don't implement priority reserve, 25389 * and makes sure that other host lose re-reservation attempts. 25390 * This algorithm contains of a loop that keeps issuing the RESERVE 25391 * for some period of time (min_ownership_delay, default 6 seconds) 25392 * During that loop, it looks to see if there has been a bus device 25393 * reset or bus reset (both of which cause an existing reservation 25394 * to be lost). If the reservation is lost issue RESERVE until a 25395 * period of min_ownership_delay with no resets has gone by, or 25396 * until max_ownership_delay has expired. This loop ensures that 25397 * the host really did manage to reserve the device, in spite of 25398 * resets. The looping for min_ownership_delay (default six 25399 * seconds) is important to early generation clustering products, 25400 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25401 * MHIOCENFAILFAST periodic timer of two seconds. By having 25402 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25403 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25404 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25405 * have already noticed, via the MHIOCENFAILFAST polling, that it 25406 * no longer "owns" the disk and will have panicked itself. Thus, 25407 * the host issuing the MHIOCTKOWN is assured (with timing 25408 * dependencies) that by the time it actually starts to use the 25409 * disk for real work, the old owner is no longer accessing it. 25410 * 25411 * min_ownership_delay is the minimum amount of time for which the 25412 * disk must be reserved continuously devoid of resets before the 25413 * MHIOCTKOWN ioctl will return success. 25414 * 25415 * max_ownership_delay indicates the amount of time by which the 25416 * take ownership should succeed or timeout with an error. 25417 * 25418 * Arguments: dev - the device 'dev_t' 25419 * *p - struct containing timing info. 25420 * 25421 * Return Code: 0 for success or error code 25422 */ 25423 25424 static int 25425 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25426 { 25427 struct sd_lun *un; 25428 int rval; 25429 int err; 25430 int reservation_count = 0; 25431 int min_ownership_delay = 6000000; /* in usec */ 25432 int max_ownership_delay = 30000000; /* in usec */ 25433 clock_t start_time; /* starting time of this algorithm */ 25434 clock_t end_time; /* time limit for giving up */ 25435 clock_t ownership_time; /* time limit for stable ownership */ 25436 clock_t current_time; 25437 clock_t previous_current_time; 25438 25439 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25440 return (ENXIO); 25441 } 25442 25443 /* 25444 * Attempt a device reservation. A priority reservation is requested. 25445 */ 25446 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25447 != SD_SUCCESS) { 25448 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25449 "sd_take_ownership: return(1)=%d\n", rval); 25450 return (rval); 25451 } 25452 25453 /* Update the softstate reserved status to indicate the reservation */ 25454 mutex_enter(SD_MUTEX(un)); 25455 un->un_resvd_status |= SD_RESERVE; 25456 un->un_resvd_status &= 25457 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25458 mutex_exit(SD_MUTEX(un)); 25459 25460 if (p != NULL) { 25461 if (p->min_ownership_delay != 0) { 25462 min_ownership_delay = p->min_ownership_delay * 1000; 25463 } 25464 if (p->max_ownership_delay != 0) { 25465 max_ownership_delay = p->max_ownership_delay * 1000; 25466 } 25467 } 25468 SD_INFO(SD_LOG_IOCTL_MHD, un, 25469 "sd_take_ownership: min, max delays: %d, %d\n", 25470 min_ownership_delay, max_ownership_delay); 25471 25472 start_time = ddi_get_lbolt(); 25473 current_time = start_time; 25474 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25475 end_time = start_time + drv_usectohz(max_ownership_delay); 25476 25477 while (current_time - end_time < 0) { 25478 delay(drv_usectohz(500000)); 25479 25480 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25481 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25482 mutex_enter(SD_MUTEX(un)); 25483 rval = (un->un_resvd_status & 25484 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25485 mutex_exit(SD_MUTEX(un)); 25486 break; 25487 } 25488 } 25489 previous_current_time = current_time; 25490 current_time = ddi_get_lbolt(); 25491 mutex_enter(SD_MUTEX(un)); 25492 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25493 ownership_time = ddi_get_lbolt() + 25494 drv_usectohz(min_ownership_delay); 25495 reservation_count = 0; 25496 } else { 25497 reservation_count++; 25498 } 25499 un->un_resvd_status |= SD_RESERVE; 25500 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25501 mutex_exit(SD_MUTEX(un)); 25502 25503 SD_INFO(SD_LOG_IOCTL_MHD, un, 25504 "sd_take_ownership: ticks for loop iteration=%ld, " 25505 "reservation=%s\n", (current_time - previous_current_time), 25506 reservation_count ? "ok" : "reclaimed"); 25507 25508 if (current_time - ownership_time >= 0 && 25509 reservation_count >= 4) { 25510 rval = 0; /* Achieved a stable ownership */ 25511 break; 25512 } 25513 if (current_time - end_time >= 0) { 25514 rval = EACCES; /* No ownership in max possible time */ 25515 break; 25516 } 25517 } 25518 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25519 "sd_take_ownership: return(2)=%d\n", rval); 25520 return (rval); 25521 } 25522 25523 25524 /* 25525 * Function: sd_reserve_release() 25526 * 25527 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25528 * PRIORITY RESERVE commands based on a user specified command type 25529 * 25530 * Arguments: dev - the device 'dev_t' 25531 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25532 * SD_RESERVE, SD_RELEASE 25533 * 25534 * Return Code: 0 or Error Code 25535 */ 25536 25537 static int 25538 sd_reserve_release(dev_t dev, int cmd) 25539 { 25540 struct uscsi_cmd *com = NULL; 25541 struct sd_lun *un = NULL; 25542 char cdb[CDB_GROUP0]; 25543 int rval; 25544 25545 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25546 (cmd == SD_PRIORITY_RESERVE)); 25547 25548 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25549 return (ENXIO); 25550 } 25551 25552 /* instantiate and initialize the command and cdb */ 25553 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25554 bzero(cdb, CDB_GROUP0); 25555 com->uscsi_flags = USCSI_SILENT; 25556 com->uscsi_timeout = un->un_reserve_release_time; 25557 com->uscsi_cdblen = CDB_GROUP0; 25558 com->uscsi_cdb = cdb; 25559 if (cmd == SD_RELEASE) { 25560 cdb[0] = SCMD_RELEASE; 25561 } else { 25562 cdb[0] = SCMD_RESERVE; 25563 } 25564 25565 /* Send the command. */ 25566 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25567 SD_PATH_STANDARD); 25568 25569 /* 25570 * "break" a reservation that is held by another host, by issuing a 25571 * reset if priority reserve is desired, and we could not get the 25572 * device. 25573 */ 25574 if ((cmd == SD_PRIORITY_RESERVE) && 25575 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25576 /* 25577 * First try to reset the LUN. If we cannot, then try a target 25578 * reset, followed by a bus reset if the target reset fails. 25579 */ 25580 int reset_retval = 0; 25581 if (un->un_f_lun_reset_enabled == TRUE) { 25582 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25583 } 25584 if (reset_retval == 0) { 25585 /* The LUN reset either failed or was not issued */ 25586 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25587 } 25588 if ((reset_retval == 0) && 25589 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25590 rval = EIO; 25591 kmem_free(com, sizeof (*com)); 25592 return (rval); 25593 } 25594 25595 bzero(com, sizeof (struct uscsi_cmd)); 25596 com->uscsi_flags = USCSI_SILENT; 25597 com->uscsi_cdb = cdb; 25598 com->uscsi_cdblen = CDB_GROUP0; 25599 com->uscsi_timeout = 5; 25600 25601 /* 25602 * Reissue the last reserve command, this time without request 25603 * sense. Assume that it is just a regular reserve command. 25604 */ 25605 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25606 SD_PATH_STANDARD); 25607 } 25608 25609 /* Return an error if still getting a reservation conflict. */ 25610 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25611 rval = EACCES; 25612 } 25613 25614 kmem_free(com, sizeof (*com)); 25615 return (rval); 25616 } 25617 25618 25619 #define SD_NDUMP_RETRIES 12 25620 /* 25621 * System Crash Dump routine 25622 */ 25623 25624 static int 25625 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25626 { 25627 int instance; 25628 int partition; 25629 int i; 25630 int err; 25631 struct sd_lun *un; 25632 struct scsi_pkt *wr_pktp; 25633 struct buf *wr_bp; 25634 struct buf wr_buf; 25635 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25636 daddr_t tgt_blkno; /* rmw - blkno for target */ 25637 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25638 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25639 size_t io_start_offset; 25640 int doing_rmw = FALSE; 25641 int rval; 25642 ssize_t dma_resid; 25643 daddr_t oblkno; 25644 diskaddr_t nblks = 0; 25645 diskaddr_t start_block; 25646 25647 instance = SDUNIT(dev); 25648 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25649 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 25650 return (ENXIO); 25651 } 25652 25653 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25654 25655 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25656 25657 partition = SDPART(dev); 25658 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25659 25660 if (!(NOT_DEVBSIZE(un))) { 25661 int secmask = 0; 25662 int blknomask = 0; 25663 25664 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 25665 secmask = un->un_tgt_blocksize - 1; 25666 25667 if (blkno & blknomask) { 25668 SD_TRACE(SD_LOG_DUMP, un, 25669 "sddump: dump start block not modulo %d\n", 25670 un->un_tgt_blocksize); 25671 return (EINVAL); 25672 } 25673 25674 if ((nblk * DEV_BSIZE) & secmask) { 25675 SD_TRACE(SD_LOG_DUMP, un, 25676 "sddump: dump length not modulo %d\n", 25677 un->un_tgt_blocksize); 25678 return (EINVAL); 25679 } 25680 25681 } 25682 25683 /* Validate blocks to dump at against partition size. */ 25684 25685 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 25686 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 25687 25688 if (NOT_DEVBSIZE(un)) { 25689 if ((blkno + nblk) > nblks) { 25690 SD_TRACE(SD_LOG_DUMP, un, 25691 "sddump: dump range larger than partition: " 25692 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25693 blkno, nblk, nblks); 25694 return (EINVAL); 25695 } 25696 } else { 25697 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 25698 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 25699 SD_TRACE(SD_LOG_DUMP, un, 25700 "sddump: dump range larger than partition: " 25701 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25702 blkno, nblk, nblks); 25703 return (EINVAL); 25704 } 25705 } 25706 25707 mutex_enter(&un->un_pm_mutex); 25708 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 25709 struct scsi_pkt *start_pktp; 25710 25711 mutex_exit(&un->un_pm_mutex); 25712 25713 /* 25714 * use pm framework to power on HBA 1st 25715 */ 25716 (void) pm_raise_power(SD_DEVINFO(un), 0, 25717 SD_PM_STATE_ACTIVE(un)); 25718 25719 /* 25720 * Dump no long uses sdpower to power on a device, it's 25721 * in-line here so it can be done in polled mode. 25722 */ 25723 25724 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 25725 25726 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 25727 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 25728 25729 if (start_pktp == NULL) { 25730 /* We were not given a SCSI packet, fail. */ 25731 return (EIO); 25732 } 25733 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 25734 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 25735 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 25736 start_pktp->pkt_flags = FLAG_NOINTR; 25737 25738 mutex_enter(SD_MUTEX(un)); 25739 SD_FILL_SCSI1_LUN(un, start_pktp); 25740 mutex_exit(SD_MUTEX(un)); 25741 /* 25742 * Scsi_poll returns 0 (success) if the command completes and 25743 * the status block is STATUS_GOOD. 25744 */ 25745 if (sd_scsi_poll(un, start_pktp) != 0) { 25746 scsi_destroy_pkt(start_pktp); 25747 return (EIO); 25748 } 25749 scsi_destroy_pkt(start_pktp); 25750 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 25751 SD_PM_STATE_CHANGE); 25752 } else { 25753 mutex_exit(&un->un_pm_mutex); 25754 } 25755 25756 mutex_enter(SD_MUTEX(un)); 25757 un->un_throttle = 0; 25758 25759 /* 25760 * The first time through, reset the specific target device. 25761 * However, when cpr calls sddump we know that sd is in a 25762 * a good state so no bus reset is required. 25763 * Clear sense data via Request Sense cmd. 25764 * In sddump we don't care about allow_bus_device_reset anymore 25765 */ 25766 25767 if ((un->un_state != SD_STATE_SUSPENDED) && 25768 (un->un_state != SD_STATE_DUMPING)) { 25769 25770 New_state(un, SD_STATE_DUMPING); 25771 25772 if (un->un_f_is_fibre == FALSE) { 25773 mutex_exit(SD_MUTEX(un)); 25774 /* 25775 * Attempt a bus reset for parallel scsi. 25776 * 25777 * Note: A bus reset is required because on some host 25778 * systems (i.e. E420R) a bus device reset is 25779 * insufficient to reset the state of the target. 25780 * 25781 * Note: Don't issue the reset for fibre-channel, 25782 * because this tends to hang the bus (loop) for 25783 * too long while everyone is logging out and in 25784 * and the deadman timer for dumping will fire 25785 * before the dump is complete. 25786 */ 25787 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 25788 mutex_enter(SD_MUTEX(un)); 25789 Restore_state(un); 25790 mutex_exit(SD_MUTEX(un)); 25791 return (EIO); 25792 } 25793 25794 /* Delay to give the device some recovery time. */ 25795 drv_usecwait(10000); 25796 25797 if (sd_send_polled_RQS(un) == SD_FAILURE) { 25798 SD_INFO(SD_LOG_DUMP, un, 25799 "sddump: sd_send_polled_RQS failed\n"); 25800 } 25801 mutex_enter(SD_MUTEX(un)); 25802 } 25803 } 25804 25805 /* 25806 * Convert the partition-relative block number to a 25807 * disk physical block number. 25808 */ 25809 if (NOT_DEVBSIZE(un)) { 25810 blkno += start_block; 25811 } else { 25812 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 25813 blkno += start_block; 25814 } 25815 25816 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 25817 25818 25819 /* 25820 * Check if the device has a non-512 block size. 25821 */ 25822 wr_bp = NULL; 25823 if (NOT_DEVBSIZE(un)) { 25824 tgt_byte_offset = blkno * un->un_sys_blocksize; 25825 tgt_byte_count = nblk * un->un_sys_blocksize; 25826 if ((tgt_byte_offset % un->un_tgt_blocksize) || 25827 (tgt_byte_count % un->un_tgt_blocksize)) { 25828 doing_rmw = TRUE; 25829 /* 25830 * Calculate the block number and number of block 25831 * in terms of the media block size. 25832 */ 25833 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25834 tgt_nblk = 25835 ((tgt_byte_offset + tgt_byte_count + 25836 (un->un_tgt_blocksize - 1)) / 25837 un->un_tgt_blocksize) - tgt_blkno; 25838 25839 /* 25840 * Invoke the routine which is going to do read part 25841 * of read-modify-write. 25842 * Note that this routine returns a pointer to 25843 * a valid bp in wr_bp. 25844 */ 25845 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 25846 &wr_bp); 25847 if (err) { 25848 mutex_exit(SD_MUTEX(un)); 25849 return (err); 25850 } 25851 /* 25852 * Offset is being calculated as - 25853 * (original block # * system block size) - 25854 * (new block # * target block size) 25855 */ 25856 io_start_offset = 25857 ((uint64_t)(blkno * un->un_sys_blocksize)) - 25858 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 25859 25860 ASSERT((io_start_offset >= 0) && 25861 (io_start_offset < un->un_tgt_blocksize)); 25862 /* 25863 * Do the modify portion of read modify write. 25864 */ 25865 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 25866 (size_t)nblk * un->un_sys_blocksize); 25867 } else { 25868 doing_rmw = FALSE; 25869 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25870 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 25871 } 25872 25873 /* Convert blkno and nblk to target blocks */ 25874 blkno = tgt_blkno; 25875 nblk = tgt_nblk; 25876 } else { 25877 wr_bp = &wr_buf; 25878 bzero(wr_bp, sizeof (struct buf)); 25879 wr_bp->b_flags = B_BUSY; 25880 wr_bp->b_un.b_addr = addr; 25881 wr_bp->b_bcount = nblk << DEV_BSHIFT; 25882 wr_bp->b_resid = 0; 25883 } 25884 25885 mutex_exit(SD_MUTEX(un)); 25886 25887 /* 25888 * Obtain a SCSI packet for the write command. 25889 * It should be safe to call the allocator here without 25890 * worrying about being locked for DVMA mapping because 25891 * the address we're passed is already a DVMA mapping 25892 * 25893 * We are also not going to worry about semaphore ownership 25894 * in the dump buffer. Dumping is single threaded at present. 25895 */ 25896 25897 wr_pktp = NULL; 25898 25899 dma_resid = wr_bp->b_bcount; 25900 oblkno = blkno; 25901 25902 if (!(NOT_DEVBSIZE(un))) { 25903 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 25904 } 25905 25906 while (dma_resid != 0) { 25907 25908 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25909 wr_bp->b_flags &= ~B_ERROR; 25910 25911 if (un->un_partial_dma_supported == 1) { 25912 blkno = oblkno + 25913 ((wr_bp->b_bcount - dma_resid) / 25914 un->un_tgt_blocksize); 25915 nblk = dma_resid / un->un_tgt_blocksize; 25916 25917 if (wr_pktp) { 25918 /* 25919 * Partial DMA transfers after initial transfer 25920 */ 25921 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 25922 blkno, nblk); 25923 } else { 25924 /* Initial transfer */ 25925 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25926 un->un_pkt_flags, NULL_FUNC, NULL, 25927 blkno, nblk); 25928 } 25929 } else { 25930 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25931 0, NULL_FUNC, NULL, blkno, nblk); 25932 } 25933 25934 if (rval == 0) { 25935 /* We were given a SCSI packet, continue. */ 25936 break; 25937 } 25938 25939 if (i == 0) { 25940 if (wr_bp->b_flags & B_ERROR) { 25941 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25942 "no resources for dumping; " 25943 "error code: 0x%x, retrying", 25944 geterror(wr_bp)); 25945 } else { 25946 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25947 "no resources for dumping; retrying"); 25948 } 25949 } else if (i != (SD_NDUMP_RETRIES - 1)) { 25950 if (wr_bp->b_flags & B_ERROR) { 25951 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25952 "no resources for dumping; error code: " 25953 "0x%x, retrying\n", geterror(wr_bp)); 25954 } 25955 } else { 25956 if (wr_bp->b_flags & B_ERROR) { 25957 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25958 "no resources for dumping; " 25959 "error code: 0x%x, retries failed, " 25960 "giving up.\n", geterror(wr_bp)); 25961 } else { 25962 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25963 "no resources for dumping; " 25964 "retries failed, giving up.\n"); 25965 } 25966 mutex_enter(SD_MUTEX(un)); 25967 Restore_state(un); 25968 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 25969 mutex_exit(SD_MUTEX(un)); 25970 scsi_free_consistent_buf(wr_bp); 25971 } else { 25972 mutex_exit(SD_MUTEX(un)); 25973 } 25974 return (EIO); 25975 } 25976 drv_usecwait(10000); 25977 } 25978 25979 if (un->un_partial_dma_supported == 1) { 25980 /* 25981 * save the resid from PARTIAL_DMA 25982 */ 25983 dma_resid = wr_pktp->pkt_resid; 25984 if (dma_resid != 0) 25985 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 25986 wr_pktp->pkt_resid = 0; 25987 } else { 25988 dma_resid = 0; 25989 } 25990 25991 /* SunBug 1222170 */ 25992 wr_pktp->pkt_flags = FLAG_NOINTR; 25993 25994 err = EIO; 25995 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25996 25997 /* 25998 * Scsi_poll returns 0 (success) if the command completes and 25999 * the status block is STATUS_GOOD. We should only check 26000 * errors if this condition is not true. Even then we should 26001 * send our own request sense packet only if we have a check 26002 * condition and auto request sense has not been performed by 26003 * the hba. 26004 */ 26005 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26006 26007 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26008 (wr_pktp->pkt_resid == 0)) { 26009 err = SD_SUCCESS; 26010 break; 26011 } 26012 26013 /* 26014 * Check CMD_DEV_GONE 1st, give up if device is gone. 26015 */ 26016 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26017 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26018 "Error while dumping state...Device is gone\n"); 26019 break; 26020 } 26021 26022 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26023 SD_INFO(SD_LOG_DUMP, un, 26024 "sddump: write failed with CHECK, try # %d\n", i); 26025 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26026 (void) sd_send_polled_RQS(un); 26027 } 26028 26029 continue; 26030 } 26031 26032 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26033 int reset_retval = 0; 26034 26035 SD_INFO(SD_LOG_DUMP, un, 26036 "sddump: write failed with BUSY, try # %d\n", i); 26037 26038 if (un->un_f_lun_reset_enabled == TRUE) { 26039 reset_retval = scsi_reset(SD_ADDRESS(un), 26040 RESET_LUN); 26041 } 26042 if (reset_retval == 0) { 26043 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26044 } 26045 (void) sd_send_polled_RQS(un); 26046 26047 } else { 26048 SD_INFO(SD_LOG_DUMP, un, 26049 "sddump: write failed with 0x%x, try # %d\n", 26050 SD_GET_PKT_STATUS(wr_pktp), i); 26051 mutex_enter(SD_MUTEX(un)); 26052 sd_reset_target(un, wr_pktp); 26053 mutex_exit(SD_MUTEX(un)); 26054 } 26055 26056 /* 26057 * If we are not getting anywhere with lun/target resets, 26058 * let's reset the bus. 26059 */ 26060 if (i == SD_NDUMP_RETRIES/2) { 26061 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26062 (void) sd_send_polled_RQS(un); 26063 } 26064 } 26065 } 26066 26067 scsi_destroy_pkt(wr_pktp); 26068 mutex_enter(SD_MUTEX(un)); 26069 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26070 mutex_exit(SD_MUTEX(un)); 26071 scsi_free_consistent_buf(wr_bp); 26072 } else { 26073 mutex_exit(SD_MUTEX(un)); 26074 } 26075 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26076 return (err); 26077 } 26078 26079 /* 26080 * Function: sd_scsi_poll() 26081 * 26082 * Description: This is a wrapper for the scsi_poll call. 26083 * 26084 * Arguments: sd_lun - The unit structure 26085 * scsi_pkt - The scsi packet being sent to the device. 26086 * 26087 * Return Code: 0 - Command completed successfully with good status 26088 * -1 - Command failed. This could indicate a check condition 26089 * or other status value requiring recovery action. 26090 * 26091 * NOTE: This code is only called off sddump(). 26092 */ 26093 26094 static int 26095 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26096 { 26097 int status; 26098 26099 ASSERT(un != NULL); 26100 ASSERT(!mutex_owned(SD_MUTEX(un))); 26101 ASSERT(pktp != NULL); 26102 26103 status = SD_SUCCESS; 26104 26105 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26106 pktp->pkt_flags |= un->un_tagflags; 26107 pktp->pkt_flags &= ~FLAG_NODISCON; 26108 } 26109 26110 status = sd_ddi_scsi_poll(pktp); 26111 /* 26112 * Scsi_poll returns 0 (success) if the command completes and the 26113 * status block is STATUS_GOOD. We should only check errors if this 26114 * condition is not true. Even then we should send our own request 26115 * sense packet only if we have a check condition and auto 26116 * request sense has not been performed by the hba. 26117 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26118 */ 26119 if ((status != SD_SUCCESS) && 26120 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26121 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26122 (pktp->pkt_reason != CMD_DEV_GONE)) 26123 (void) sd_send_polled_RQS(un); 26124 26125 return (status); 26126 } 26127 26128 /* 26129 * Function: sd_send_polled_RQS() 26130 * 26131 * Description: This sends the request sense command to a device. 26132 * 26133 * Arguments: sd_lun - The unit structure 26134 * 26135 * Return Code: 0 - Command completed successfully with good status 26136 * -1 - Command failed. 26137 * 26138 */ 26139 26140 static int 26141 sd_send_polled_RQS(struct sd_lun *un) 26142 { 26143 int ret_val; 26144 struct scsi_pkt *rqs_pktp; 26145 struct buf *rqs_bp; 26146 26147 ASSERT(un != NULL); 26148 ASSERT(!mutex_owned(SD_MUTEX(un))); 26149 26150 ret_val = SD_SUCCESS; 26151 26152 rqs_pktp = un->un_rqs_pktp; 26153 rqs_bp = un->un_rqs_bp; 26154 26155 mutex_enter(SD_MUTEX(un)); 26156 26157 if (un->un_sense_isbusy) { 26158 ret_val = SD_FAILURE; 26159 mutex_exit(SD_MUTEX(un)); 26160 return (ret_val); 26161 } 26162 26163 /* 26164 * If the request sense buffer (and packet) is not in use, 26165 * let's set the un_sense_isbusy and send our packet 26166 */ 26167 un->un_sense_isbusy = 1; 26168 rqs_pktp->pkt_resid = 0; 26169 rqs_pktp->pkt_reason = 0; 26170 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26171 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26172 26173 mutex_exit(SD_MUTEX(un)); 26174 26175 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26176 " 0x%p\n", rqs_bp->b_un.b_addr); 26177 26178 /* 26179 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26180 * axle - it has a call into us! 26181 */ 26182 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26183 SD_INFO(SD_LOG_COMMON, un, 26184 "sd_send_polled_RQS: RQS failed\n"); 26185 } 26186 26187 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26188 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26189 26190 mutex_enter(SD_MUTEX(un)); 26191 un->un_sense_isbusy = 0; 26192 mutex_exit(SD_MUTEX(un)); 26193 26194 return (ret_val); 26195 } 26196 26197 /* 26198 * Defines needed for localized version of the scsi_poll routine. 26199 */ 26200 #define CSEC 10000 /* usecs */ 26201 #define SEC_TO_CSEC (1000000/CSEC) 26202 26203 /* 26204 * Function: sd_ddi_scsi_poll() 26205 * 26206 * Description: Localized version of the scsi_poll routine. The purpose is to 26207 * send a scsi_pkt to a device as a polled command. This version 26208 * is to ensure more robust handling of transport errors. 26209 * Specifically this routine cures not ready, coming ready 26210 * transition for power up and reset of sonoma's. This can take 26211 * up to 45 seconds for power-on and 20 seconds for reset of a 26212 * sonoma lun. 26213 * 26214 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26215 * 26216 * Return Code: 0 - Command completed successfully with good status 26217 * -1 - Command failed. 26218 * 26219 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26220 * be fixed (removing this code), we need to determine how to handle the 26221 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26222 * 26223 * NOTE: This code is only called off sddump(). 26224 */ 26225 static int 26226 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26227 { 26228 int rval = -1; 26229 int savef; 26230 long savet; 26231 void (*savec)(); 26232 int timeout; 26233 int busy_count; 26234 int poll_delay; 26235 int rc; 26236 uint8_t *sensep; 26237 struct scsi_arq_status *arqstat; 26238 extern int do_polled_io; 26239 26240 ASSERT(pkt->pkt_scbp); 26241 26242 /* 26243 * save old flags.. 26244 */ 26245 savef = pkt->pkt_flags; 26246 savec = pkt->pkt_comp; 26247 savet = pkt->pkt_time; 26248 26249 pkt->pkt_flags |= FLAG_NOINTR; 26250 26251 /* 26252 * XXX there is nothing in the SCSA spec that states that we should not 26253 * do a callback for polled cmds; however, removing this will break sd 26254 * and probably other target drivers 26255 */ 26256 pkt->pkt_comp = NULL; 26257 26258 /* 26259 * we don't like a polled command without timeout. 26260 * 60 seconds seems long enough. 26261 */ 26262 if (pkt->pkt_time == 0) 26263 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26264 26265 /* 26266 * Send polled cmd. 26267 * 26268 * We do some error recovery for various errors. Tran_busy, 26269 * queue full, and non-dispatched commands are retried every 10 msec. 26270 * as they are typically transient failures. Busy status and Not 26271 * Ready are retried every second as this status takes a while to 26272 * change. 26273 */ 26274 timeout = pkt->pkt_time * SEC_TO_CSEC; 26275 26276 for (busy_count = 0; busy_count < timeout; busy_count++) { 26277 /* 26278 * Initialize pkt status variables. 26279 */ 26280 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26281 26282 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26283 if (rc != TRAN_BUSY) { 26284 /* Transport failed - give up. */ 26285 break; 26286 } else { 26287 /* Transport busy - try again. */ 26288 poll_delay = 1 * CSEC; /* 10 msec. */ 26289 } 26290 } else { 26291 /* 26292 * Transport accepted - check pkt status. 26293 */ 26294 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26295 if ((pkt->pkt_reason == CMD_CMPLT) && 26296 (rc == STATUS_CHECK) && 26297 (pkt->pkt_state & STATE_ARQ_DONE)) { 26298 arqstat = 26299 (struct scsi_arq_status *)(pkt->pkt_scbp); 26300 sensep = (uint8_t *)&arqstat->sts_sensedata; 26301 } else { 26302 sensep = NULL; 26303 } 26304 26305 if ((pkt->pkt_reason == CMD_CMPLT) && 26306 (rc == STATUS_GOOD)) { 26307 /* No error - we're done */ 26308 rval = 0; 26309 break; 26310 26311 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26312 /* Lost connection - give up */ 26313 break; 26314 26315 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26316 (pkt->pkt_state == 0)) { 26317 /* Pkt not dispatched - try again. */ 26318 poll_delay = 1 * CSEC; /* 10 msec. */ 26319 26320 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26321 (rc == STATUS_QFULL)) { 26322 /* Queue full - try again. */ 26323 poll_delay = 1 * CSEC; /* 10 msec. */ 26324 26325 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26326 (rc == STATUS_BUSY)) { 26327 /* Busy - try again. */ 26328 poll_delay = 100 * CSEC; /* 1 sec. */ 26329 busy_count += (SEC_TO_CSEC - 1); 26330 26331 } else if ((sensep != NULL) && 26332 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26333 /* 26334 * Unit Attention - try again. 26335 * Pretend it took 1 sec. 26336 * NOTE: 'continue' avoids poll_delay 26337 */ 26338 busy_count += (SEC_TO_CSEC - 1); 26339 continue; 26340 26341 } else if ((sensep != NULL) && 26342 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26343 (scsi_sense_asc(sensep) == 0x04) && 26344 (scsi_sense_ascq(sensep) == 0x01)) { 26345 /* 26346 * Not ready -> ready - try again. 26347 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26348 * ...same as STATUS_BUSY 26349 */ 26350 poll_delay = 100 * CSEC; /* 1 sec. */ 26351 busy_count += (SEC_TO_CSEC - 1); 26352 26353 } else { 26354 /* BAD status - give up. */ 26355 break; 26356 } 26357 } 26358 26359 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26360 !do_polled_io) { 26361 delay(drv_usectohz(poll_delay)); 26362 } else { 26363 /* we busy wait during cpr_dump or interrupt threads */ 26364 drv_usecwait(poll_delay); 26365 } 26366 } 26367 26368 pkt->pkt_flags = savef; 26369 pkt->pkt_comp = savec; 26370 pkt->pkt_time = savet; 26371 26372 /* return on error */ 26373 if (rval) 26374 return (rval); 26375 26376 /* 26377 * This is not a performance critical code path. 26378 * 26379 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26380 * issues associated with looking at DMA memory prior to 26381 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26382 */ 26383 scsi_sync_pkt(pkt); 26384 return (0); 26385 } 26386 26387 26388 26389 /* 26390 * Function: sd_persistent_reservation_in_read_keys 26391 * 26392 * Description: This routine is the driver entry point for handling CD-ROM 26393 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26394 * by sending the SCSI-3 PRIN commands to the device. 26395 * Processes the read keys command response by copying the 26396 * reservation key information into the user provided buffer. 26397 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26398 * 26399 * Arguments: un - Pointer to soft state struct for the target. 26400 * usrp - user provided pointer to multihost Persistent In Read 26401 * Keys structure (mhioc_inkeys_t) 26402 * flag - this argument is a pass through to ddi_copyxxx() 26403 * directly from the mode argument of ioctl(). 26404 * 26405 * Return Code: 0 - Success 26406 * EACCES 26407 * ENOTSUP 26408 * errno return code from sd_send_scsi_cmd() 26409 * 26410 * Context: Can sleep. Does not return until command is completed. 26411 */ 26412 26413 static int 26414 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26415 mhioc_inkeys_t *usrp, int flag) 26416 { 26417 #ifdef _MULTI_DATAMODEL 26418 struct mhioc_key_list32 li32; 26419 #endif 26420 sd_prin_readkeys_t *in; 26421 mhioc_inkeys_t *ptr; 26422 mhioc_key_list_t li; 26423 uchar_t *data_bufp; 26424 int data_len; 26425 int rval = 0; 26426 size_t copysz; 26427 sd_ssc_t *ssc; 26428 26429 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26430 return (EINVAL); 26431 } 26432 bzero(&li, sizeof (mhioc_key_list_t)); 26433 26434 ssc = sd_ssc_init(un); 26435 26436 /* 26437 * Get the listsize from user 26438 */ 26439 #ifdef _MULTI_DATAMODEL 26440 26441 switch (ddi_model_convert_from(flag & FMODELS)) { 26442 case DDI_MODEL_ILP32: 26443 copysz = sizeof (struct mhioc_key_list32); 26444 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26445 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26446 "sd_persistent_reservation_in_read_keys: " 26447 "failed ddi_copyin: mhioc_key_list32_t\n"); 26448 rval = EFAULT; 26449 goto done; 26450 } 26451 li.listsize = li32.listsize; 26452 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26453 break; 26454 26455 case DDI_MODEL_NONE: 26456 copysz = sizeof (mhioc_key_list_t); 26457 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26458 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26459 "sd_persistent_reservation_in_read_keys: " 26460 "failed ddi_copyin: mhioc_key_list_t\n"); 26461 rval = EFAULT; 26462 goto done; 26463 } 26464 break; 26465 } 26466 26467 #else /* ! _MULTI_DATAMODEL */ 26468 copysz = sizeof (mhioc_key_list_t); 26469 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26470 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26471 "sd_persistent_reservation_in_read_keys: " 26472 "failed ddi_copyin: mhioc_key_list_t\n"); 26473 rval = EFAULT; 26474 goto done; 26475 } 26476 #endif 26477 26478 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26479 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26480 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26481 26482 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26483 data_len, data_bufp); 26484 if (rval != 0) { 26485 if (rval == EIO) 26486 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26487 else 26488 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26489 goto done; 26490 } 26491 in = (sd_prin_readkeys_t *)data_bufp; 26492 ptr->generation = BE_32(in->generation); 26493 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26494 26495 /* 26496 * Return the min(listsize, listlen) keys 26497 */ 26498 #ifdef _MULTI_DATAMODEL 26499 26500 switch (ddi_model_convert_from(flag & FMODELS)) { 26501 case DDI_MODEL_ILP32: 26502 li32.listlen = li.listlen; 26503 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26504 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26505 "sd_persistent_reservation_in_read_keys: " 26506 "failed ddi_copyout: mhioc_key_list32_t\n"); 26507 rval = EFAULT; 26508 goto done; 26509 } 26510 break; 26511 26512 case DDI_MODEL_NONE: 26513 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26514 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26515 "sd_persistent_reservation_in_read_keys: " 26516 "failed ddi_copyout: mhioc_key_list_t\n"); 26517 rval = EFAULT; 26518 goto done; 26519 } 26520 break; 26521 } 26522 26523 #else /* ! _MULTI_DATAMODEL */ 26524 26525 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26526 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26527 "sd_persistent_reservation_in_read_keys: " 26528 "failed ddi_copyout: mhioc_key_list_t\n"); 26529 rval = EFAULT; 26530 goto done; 26531 } 26532 26533 #endif /* _MULTI_DATAMODEL */ 26534 26535 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26536 li.listsize * MHIOC_RESV_KEY_SIZE); 26537 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26538 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26539 "sd_persistent_reservation_in_read_keys: " 26540 "failed ddi_copyout: keylist\n"); 26541 rval = EFAULT; 26542 } 26543 done: 26544 sd_ssc_fini(ssc); 26545 kmem_free(data_bufp, data_len); 26546 return (rval); 26547 } 26548 26549 26550 /* 26551 * Function: sd_persistent_reservation_in_read_resv 26552 * 26553 * Description: This routine is the driver entry point for handling CD-ROM 26554 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26555 * by sending the SCSI-3 PRIN commands to the device. 26556 * Process the read persistent reservations command response by 26557 * copying the reservation information into the user provided 26558 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26559 * 26560 * Arguments: un - Pointer to soft state struct for the target. 26561 * usrp - user provided pointer to multihost Persistent In Read 26562 * Keys structure (mhioc_inkeys_t) 26563 * flag - this argument is a pass through to ddi_copyxxx() 26564 * directly from the mode argument of ioctl(). 26565 * 26566 * Return Code: 0 - Success 26567 * EACCES 26568 * ENOTSUP 26569 * errno return code from sd_send_scsi_cmd() 26570 * 26571 * Context: Can sleep. Does not return until command is completed. 26572 */ 26573 26574 static int 26575 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26576 mhioc_inresvs_t *usrp, int flag) 26577 { 26578 #ifdef _MULTI_DATAMODEL 26579 struct mhioc_resv_desc_list32 resvlist32; 26580 #endif 26581 sd_prin_readresv_t *in; 26582 mhioc_inresvs_t *ptr; 26583 sd_readresv_desc_t *readresv_ptr; 26584 mhioc_resv_desc_list_t resvlist; 26585 mhioc_resv_desc_t resvdesc; 26586 uchar_t *data_bufp = NULL; 26587 int data_len; 26588 int rval = 0; 26589 int i; 26590 size_t copysz; 26591 mhioc_resv_desc_t *bufp; 26592 sd_ssc_t *ssc; 26593 26594 if ((ptr = usrp) == NULL) { 26595 return (EINVAL); 26596 } 26597 26598 ssc = sd_ssc_init(un); 26599 26600 /* 26601 * Get the listsize from user 26602 */ 26603 #ifdef _MULTI_DATAMODEL 26604 switch (ddi_model_convert_from(flag & FMODELS)) { 26605 case DDI_MODEL_ILP32: 26606 copysz = sizeof (struct mhioc_resv_desc_list32); 26607 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26608 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26609 "sd_persistent_reservation_in_read_resv: " 26610 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26611 rval = EFAULT; 26612 goto done; 26613 } 26614 resvlist.listsize = resvlist32.listsize; 26615 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26616 break; 26617 26618 case DDI_MODEL_NONE: 26619 copysz = sizeof (mhioc_resv_desc_list_t); 26620 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26621 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26622 "sd_persistent_reservation_in_read_resv: " 26623 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26624 rval = EFAULT; 26625 goto done; 26626 } 26627 break; 26628 } 26629 #else /* ! _MULTI_DATAMODEL */ 26630 copysz = sizeof (mhioc_resv_desc_list_t); 26631 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26632 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26633 "sd_persistent_reservation_in_read_resv: " 26634 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26635 rval = EFAULT; 26636 goto done; 26637 } 26638 #endif /* ! _MULTI_DATAMODEL */ 26639 26640 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26641 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26642 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26643 26644 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 26645 data_len, data_bufp); 26646 if (rval != 0) { 26647 if (rval == EIO) 26648 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26649 else 26650 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26651 goto done; 26652 } 26653 in = (sd_prin_readresv_t *)data_bufp; 26654 ptr->generation = BE_32(in->generation); 26655 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26656 26657 /* 26658 * Return the min(listsize, listlen( keys 26659 */ 26660 #ifdef _MULTI_DATAMODEL 26661 26662 switch (ddi_model_convert_from(flag & FMODELS)) { 26663 case DDI_MODEL_ILP32: 26664 resvlist32.listlen = resvlist.listlen; 26665 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26666 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26667 "sd_persistent_reservation_in_read_resv: " 26668 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26669 rval = EFAULT; 26670 goto done; 26671 } 26672 break; 26673 26674 case DDI_MODEL_NONE: 26675 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26676 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26677 "sd_persistent_reservation_in_read_resv: " 26678 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26679 rval = EFAULT; 26680 goto done; 26681 } 26682 break; 26683 } 26684 26685 #else /* ! _MULTI_DATAMODEL */ 26686 26687 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26688 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26689 "sd_persistent_reservation_in_read_resv: " 26690 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26691 rval = EFAULT; 26692 goto done; 26693 } 26694 26695 #endif /* ! _MULTI_DATAMODEL */ 26696 26697 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26698 bufp = resvlist.list; 26699 copysz = sizeof (mhioc_resv_desc_t); 26700 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26701 i++, readresv_ptr++, bufp++) { 26702 26703 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26704 MHIOC_RESV_KEY_SIZE); 26705 resvdesc.type = readresv_ptr->type; 26706 resvdesc.scope = readresv_ptr->scope; 26707 resvdesc.scope_specific_addr = 26708 BE_32(readresv_ptr->scope_specific_addr); 26709 26710 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26711 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26712 "sd_persistent_reservation_in_read_resv: " 26713 "failed ddi_copyout: resvlist\n"); 26714 rval = EFAULT; 26715 goto done; 26716 } 26717 } 26718 done: 26719 sd_ssc_fini(ssc); 26720 /* only if data_bufp is allocated, we need to free it */ 26721 if (data_bufp) { 26722 kmem_free(data_bufp, data_len); 26723 } 26724 return (rval); 26725 } 26726 26727 26728 /* 26729 * Function: sr_change_blkmode() 26730 * 26731 * Description: This routine is the driver entry point for handling CD-ROM 26732 * block mode ioctl requests. Support for returning and changing 26733 * the current block size in use by the device is implemented. The 26734 * LBA size is changed via a MODE SELECT Block Descriptor. 26735 * 26736 * This routine issues a mode sense with an allocation length of 26737 * 12 bytes for the mode page header and a single block descriptor. 26738 * 26739 * Arguments: dev - the device 'dev_t' 26740 * cmd - the request type; one of CDROMGBLKMODE (get) or 26741 * CDROMSBLKMODE (set) 26742 * data - current block size or requested block size 26743 * flag - this argument is a pass through to ddi_copyxxx() directly 26744 * from the mode argument of ioctl(). 26745 * 26746 * Return Code: the code returned by sd_send_scsi_cmd() 26747 * EINVAL if invalid arguments are provided 26748 * EFAULT if ddi_copyxxx() fails 26749 * ENXIO if fail ddi_get_soft_state 26750 * EIO if invalid mode sense block descriptor length 26751 * 26752 */ 26753 26754 static int 26755 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26756 { 26757 struct sd_lun *un = NULL; 26758 struct mode_header *sense_mhp, *select_mhp; 26759 struct block_descriptor *sense_desc, *select_desc; 26760 int current_bsize; 26761 int rval = EINVAL; 26762 uchar_t *sense = NULL; 26763 uchar_t *select = NULL; 26764 sd_ssc_t *ssc; 26765 26766 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 26767 26768 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26769 return (ENXIO); 26770 } 26771 26772 /* 26773 * The block length is changed via the Mode Select block descriptor, the 26774 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 26775 * required as part of this routine. Therefore the mode sense allocation 26776 * length is specified to be the length of a mode page header and a 26777 * block descriptor. 26778 */ 26779 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26780 26781 ssc = sd_ssc_init(un); 26782 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26783 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 26784 sd_ssc_fini(ssc); 26785 if (rval != 0) { 26786 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26787 "sr_change_blkmode: Mode Sense Failed\n"); 26788 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26789 return (rval); 26790 } 26791 26792 /* Check the block descriptor len to handle only 1 block descriptor */ 26793 sense_mhp = (struct mode_header *)sense; 26794 if ((sense_mhp->bdesc_length == 0) || 26795 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 26796 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26797 "sr_change_blkmode: Mode Sense returned invalid block" 26798 " descriptor length\n"); 26799 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26800 return (EIO); 26801 } 26802 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 26803 current_bsize = ((sense_desc->blksize_hi << 16) | 26804 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 26805 26806 /* Process command */ 26807 switch (cmd) { 26808 case CDROMGBLKMODE: 26809 /* Return the block size obtained during the mode sense */ 26810 if (ddi_copyout(¤t_bsize, (void *)data, 26811 sizeof (int), flag) != 0) 26812 rval = EFAULT; 26813 break; 26814 case CDROMSBLKMODE: 26815 /* Validate the requested block size */ 26816 switch (data) { 26817 case CDROM_BLK_512: 26818 case CDROM_BLK_1024: 26819 case CDROM_BLK_2048: 26820 case CDROM_BLK_2056: 26821 case CDROM_BLK_2336: 26822 case CDROM_BLK_2340: 26823 case CDROM_BLK_2352: 26824 case CDROM_BLK_2368: 26825 case CDROM_BLK_2448: 26826 case CDROM_BLK_2646: 26827 case CDROM_BLK_2647: 26828 break; 26829 default: 26830 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26831 "sr_change_blkmode: " 26832 "Block Size '%ld' Not Supported\n", data); 26833 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26834 return (EINVAL); 26835 } 26836 26837 /* 26838 * The current block size matches the requested block size so 26839 * there is no need to send the mode select to change the size 26840 */ 26841 if (current_bsize == data) { 26842 break; 26843 } 26844 26845 /* Build the select data for the requested block size */ 26846 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26847 select_mhp = (struct mode_header *)select; 26848 select_desc = 26849 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 26850 /* 26851 * The LBA size is changed via the block descriptor, so the 26852 * descriptor is built according to the user data 26853 */ 26854 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 26855 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 26856 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 26857 select_desc->blksize_lo = (char)((data) & 0x000000ff); 26858 26859 /* Send the mode select for the requested block size */ 26860 ssc = sd_ssc_init(un); 26861 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26862 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26863 SD_PATH_STANDARD); 26864 sd_ssc_fini(ssc); 26865 if (rval != 0) { 26866 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26867 "sr_change_blkmode: Mode Select Failed\n"); 26868 /* 26869 * The mode select failed for the requested block size, 26870 * so reset the data for the original block size and 26871 * send it to the target. The error is indicated by the 26872 * return value for the failed mode select. 26873 */ 26874 select_desc->blksize_hi = sense_desc->blksize_hi; 26875 select_desc->blksize_mid = sense_desc->blksize_mid; 26876 select_desc->blksize_lo = sense_desc->blksize_lo; 26877 ssc = sd_ssc_init(un); 26878 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26879 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26880 SD_PATH_STANDARD); 26881 sd_ssc_fini(ssc); 26882 } else { 26883 ASSERT(!mutex_owned(SD_MUTEX(un))); 26884 mutex_enter(SD_MUTEX(un)); 26885 sd_update_block_info(un, (uint32_t)data, 0); 26886 mutex_exit(SD_MUTEX(un)); 26887 } 26888 break; 26889 default: 26890 /* should not reach here, but check anyway */ 26891 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26892 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 26893 rval = EINVAL; 26894 break; 26895 } 26896 26897 if (select) { 26898 kmem_free(select, BUFLEN_CHG_BLK_MODE); 26899 } 26900 if (sense) { 26901 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26902 } 26903 return (rval); 26904 } 26905 26906 26907 /* 26908 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 26909 * implement driver support for getting and setting the CD speed. The command 26910 * set used will be based on the device type. If the device has not been 26911 * identified as MMC the Toshiba vendor specific mode page will be used. If 26912 * the device is MMC but does not support the Real Time Streaming feature 26913 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 26914 * be used to read the speed. 26915 */ 26916 26917 /* 26918 * Function: sr_change_speed() 26919 * 26920 * Description: This routine is the driver entry point for handling CD-ROM 26921 * drive speed ioctl requests for devices supporting the Toshiba 26922 * vendor specific drive speed mode page. Support for returning 26923 * and changing the current drive speed in use by the device is 26924 * implemented. 26925 * 26926 * Arguments: dev - the device 'dev_t' 26927 * cmd - the request type; one of CDROMGDRVSPEED (get) or 26928 * CDROMSDRVSPEED (set) 26929 * data - current drive speed or requested drive speed 26930 * flag - this argument is a pass through to ddi_copyxxx() directly 26931 * from the mode argument of ioctl(). 26932 * 26933 * Return Code: the code returned by sd_send_scsi_cmd() 26934 * EINVAL if invalid arguments are provided 26935 * EFAULT if ddi_copyxxx() fails 26936 * ENXIO if fail ddi_get_soft_state 26937 * EIO if invalid mode sense block descriptor length 26938 */ 26939 26940 static int 26941 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 26942 { 26943 struct sd_lun *un = NULL; 26944 struct mode_header *sense_mhp, *select_mhp; 26945 struct mode_speed *sense_page, *select_page; 26946 int current_speed; 26947 int rval = EINVAL; 26948 int bd_len; 26949 uchar_t *sense = NULL; 26950 uchar_t *select = NULL; 26951 sd_ssc_t *ssc; 26952 26953 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 26954 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26955 return (ENXIO); 26956 } 26957 26958 /* 26959 * Note: The drive speed is being modified here according to a Toshiba 26960 * vendor specific mode page (0x31). 26961 */ 26962 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 26963 26964 ssc = sd_ssc_init(un); 26965 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26966 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 26967 SD_PATH_STANDARD); 26968 sd_ssc_fini(ssc); 26969 if (rval != 0) { 26970 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26971 "sr_change_speed: Mode Sense Failed\n"); 26972 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26973 return (rval); 26974 } 26975 sense_mhp = (struct mode_header *)sense; 26976 26977 /* Check the block descriptor len to handle only 1 block descriptor */ 26978 bd_len = sense_mhp->bdesc_length; 26979 if (bd_len > MODE_BLK_DESC_LENGTH) { 26980 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26981 "sr_change_speed: Mode Sense returned invalid block " 26982 "descriptor length\n"); 26983 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26984 return (EIO); 26985 } 26986 26987 sense_page = (struct mode_speed *) 26988 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 26989 current_speed = sense_page->speed; 26990 26991 /* Process command */ 26992 switch (cmd) { 26993 case CDROMGDRVSPEED: 26994 /* Return the drive speed obtained during the mode sense */ 26995 if (current_speed == 0x2) { 26996 current_speed = CDROM_TWELVE_SPEED; 26997 } 26998 if (ddi_copyout(¤t_speed, (void *)data, 26999 sizeof (int), flag) != 0) { 27000 rval = EFAULT; 27001 } 27002 break; 27003 case CDROMSDRVSPEED: 27004 /* Validate the requested drive speed */ 27005 switch ((uchar_t)data) { 27006 case CDROM_TWELVE_SPEED: 27007 data = 0x2; 27008 /*FALLTHROUGH*/ 27009 case CDROM_NORMAL_SPEED: 27010 case CDROM_DOUBLE_SPEED: 27011 case CDROM_QUAD_SPEED: 27012 case CDROM_MAXIMUM_SPEED: 27013 break; 27014 default: 27015 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27016 "sr_change_speed: " 27017 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27018 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27019 return (EINVAL); 27020 } 27021 27022 /* 27023 * The current drive speed matches the requested drive speed so 27024 * there is no need to send the mode select to change the speed 27025 */ 27026 if (current_speed == data) { 27027 break; 27028 } 27029 27030 /* Build the select data for the requested drive speed */ 27031 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27032 select_mhp = (struct mode_header *)select; 27033 select_mhp->bdesc_length = 0; 27034 select_page = 27035 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27036 select_page = 27037 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27038 select_page->mode_page.code = CDROM_MODE_SPEED; 27039 select_page->mode_page.length = 2; 27040 select_page->speed = (uchar_t)data; 27041 27042 /* Send the mode select for the requested block size */ 27043 ssc = sd_ssc_init(un); 27044 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27045 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27046 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27047 sd_ssc_fini(ssc); 27048 if (rval != 0) { 27049 /* 27050 * The mode select failed for the requested drive speed, 27051 * so reset the data for the original drive speed and 27052 * send it to the target. The error is indicated by the 27053 * return value for the failed mode select. 27054 */ 27055 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27056 "sr_drive_speed: Mode Select Failed\n"); 27057 select_page->speed = sense_page->speed; 27058 ssc = sd_ssc_init(un); 27059 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27060 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27061 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27062 sd_ssc_fini(ssc); 27063 } 27064 break; 27065 default: 27066 /* should not reach here, but check anyway */ 27067 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27068 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27069 rval = EINVAL; 27070 break; 27071 } 27072 27073 if (select) { 27074 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27075 } 27076 if (sense) { 27077 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27078 } 27079 27080 return (rval); 27081 } 27082 27083 27084 /* 27085 * Function: sr_atapi_change_speed() 27086 * 27087 * Description: This routine is the driver entry point for handling CD-ROM 27088 * drive speed ioctl requests for MMC devices that do not support 27089 * the Real Time Streaming feature (0x107). 27090 * 27091 * Note: This routine will use the SET SPEED command which may not 27092 * be supported by all devices. 27093 * 27094 * Arguments: dev- the device 'dev_t' 27095 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27096 * CDROMSDRVSPEED (set) 27097 * data- current drive speed or requested drive speed 27098 * flag- this argument is a pass through to ddi_copyxxx() directly 27099 * from the mode argument of ioctl(). 27100 * 27101 * Return Code: the code returned by sd_send_scsi_cmd() 27102 * EINVAL if invalid arguments are provided 27103 * EFAULT if ddi_copyxxx() fails 27104 * ENXIO if fail ddi_get_soft_state 27105 * EIO if invalid mode sense block descriptor length 27106 */ 27107 27108 static int 27109 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27110 { 27111 struct sd_lun *un; 27112 struct uscsi_cmd *com = NULL; 27113 struct mode_header_grp2 *sense_mhp; 27114 uchar_t *sense_page; 27115 uchar_t *sense = NULL; 27116 char cdb[CDB_GROUP5]; 27117 int bd_len; 27118 int current_speed = 0; 27119 int max_speed = 0; 27120 int rval; 27121 sd_ssc_t *ssc; 27122 27123 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27124 27125 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27126 return (ENXIO); 27127 } 27128 27129 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27130 27131 ssc = sd_ssc_init(un); 27132 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27133 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27134 SD_PATH_STANDARD); 27135 sd_ssc_fini(ssc); 27136 if (rval != 0) { 27137 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27138 "sr_atapi_change_speed: Mode Sense Failed\n"); 27139 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27140 return (rval); 27141 } 27142 27143 /* Check the block descriptor len to handle only 1 block descriptor */ 27144 sense_mhp = (struct mode_header_grp2 *)sense; 27145 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27146 if (bd_len > MODE_BLK_DESC_LENGTH) { 27147 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27148 "sr_atapi_change_speed: Mode Sense returned invalid " 27149 "block descriptor length\n"); 27150 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27151 return (EIO); 27152 } 27153 27154 /* Calculate the current and maximum drive speeds */ 27155 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27156 current_speed = (sense_page[14] << 8) | sense_page[15]; 27157 max_speed = (sense_page[8] << 8) | sense_page[9]; 27158 27159 /* Process the command */ 27160 switch (cmd) { 27161 case CDROMGDRVSPEED: 27162 current_speed /= SD_SPEED_1X; 27163 if (ddi_copyout(¤t_speed, (void *)data, 27164 sizeof (int), flag) != 0) 27165 rval = EFAULT; 27166 break; 27167 case CDROMSDRVSPEED: 27168 /* Convert the speed code to KB/sec */ 27169 switch ((uchar_t)data) { 27170 case CDROM_NORMAL_SPEED: 27171 current_speed = SD_SPEED_1X; 27172 break; 27173 case CDROM_DOUBLE_SPEED: 27174 current_speed = 2 * SD_SPEED_1X; 27175 break; 27176 case CDROM_QUAD_SPEED: 27177 current_speed = 4 * SD_SPEED_1X; 27178 break; 27179 case CDROM_TWELVE_SPEED: 27180 current_speed = 12 * SD_SPEED_1X; 27181 break; 27182 case CDROM_MAXIMUM_SPEED: 27183 current_speed = 0xffff; 27184 break; 27185 default: 27186 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27187 "sr_atapi_change_speed: invalid drive speed %d\n", 27188 (uchar_t)data); 27189 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27190 return (EINVAL); 27191 } 27192 27193 /* Check the request against the drive's max speed. */ 27194 if (current_speed != 0xffff) { 27195 if (current_speed > max_speed) { 27196 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27197 return (EINVAL); 27198 } 27199 } 27200 27201 /* 27202 * Build and send the SET SPEED command 27203 * 27204 * Note: The SET SPEED (0xBB) command used in this routine is 27205 * obsolete per the SCSI MMC spec but still supported in the 27206 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27207 * therefore the command is still implemented in this routine. 27208 */ 27209 bzero(cdb, sizeof (cdb)); 27210 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27211 cdb[2] = (uchar_t)(current_speed >> 8); 27212 cdb[3] = (uchar_t)current_speed; 27213 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27214 com->uscsi_cdb = (caddr_t)cdb; 27215 com->uscsi_cdblen = CDB_GROUP5; 27216 com->uscsi_bufaddr = NULL; 27217 com->uscsi_buflen = 0; 27218 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27219 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27220 break; 27221 default: 27222 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27223 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27224 rval = EINVAL; 27225 } 27226 27227 if (sense) { 27228 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27229 } 27230 if (com) { 27231 kmem_free(com, sizeof (*com)); 27232 } 27233 return (rval); 27234 } 27235 27236 27237 /* 27238 * Function: sr_pause_resume() 27239 * 27240 * Description: This routine is the driver entry point for handling CD-ROM 27241 * pause/resume ioctl requests. This only affects the audio play 27242 * operation. 27243 * 27244 * Arguments: dev - the device 'dev_t' 27245 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27246 * for setting the resume bit of the cdb. 27247 * 27248 * Return Code: the code returned by sd_send_scsi_cmd() 27249 * EINVAL if invalid mode specified 27250 * 27251 */ 27252 27253 static int 27254 sr_pause_resume(dev_t dev, int cmd) 27255 { 27256 struct sd_lun *un; 27257 struct uscsi_cmd *com; 27258 char cdb[CDB_GROUP1]; 27259 int rval; 27260 27261 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27262 return (ENXIO); 27263 } 27264 27265 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27266 bzero(cdb, CDB_GROUP1); 27267 cdb[0] = SCMD_PAUSE_RESUME; 27268 switch (cmd) { 27269 case CDROMRESUME: 27270 cdb[8] = 1; 27271 break; 27272 case CDROMPAUSE: 27273 cdb[8] = 0; 27274 break; 27275 default: 27276 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27277 " Command '%x' Not Supported\n", cmd); 27278 rval = EINVAL; 27279 goto done; 27280 } 27281 27282 com->uscsi_cdb = cdb; 27283 com->uscsi_cdblen = CDB_GROUP1; 27284 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27285 27286 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27287 SD_PATH_STANDARD); 27288 27289 done: 27290 kmem_free(com, sizeof (*com)); 27291 return (rval); 27292 } 27293 27294 27295 /* 27296 * Function: sr_play_msf() 27297 * 27298 * Description: This routine is the driver entry point for handling CD-ROM 27299 * ioctl requests to output the audio signals at the specified 27300 * starting address and continue the audio play until the specified 27301 * ending address (CDROMPLAYMSF) The address is in Minute Second 27302 * Frame (MSF) format. 27303 * 27304 * Arguments: dev - the device 'dev_t' 27305 * data - pointer to user provided audio msf structure, 27306 * specifying start/end addresses. 27307 * flag - this argument is a pass through to ddi_copyxxx() 27308 * directly from the mode argument of ioctl(). 27309 * 27310 * Return Code: the code returned by sd_send_scsi_cmd() 27311 * EFAULT if ddi_copyxxx() fails 27312 * ENXIO if fail ddi_get_soft_state 27313 * EINVAL if data pointer is NULL 27314 */ 27315 27316 static int 27317 sr_play_msf(dev_t dev, caddr_t data, int flag) 27318 { 27319 struct sd_lun *un; 27320 struct uscsi_cmd *com; 27321 struct cdrom_msf msf_struct; 27322 struct cdrom_msf *msf = &msf_struct; 27323 char cdb[CDB_GROUP1]; 27324 int rval; 27325 27326 if (data == NULL) { 27327 return (EINVAL); 27328 } 27329 27330 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27331 return (ENXIO); 27332 } 27333 27334 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27335 return (EFAULT); 27336 } 27337 27338 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27339 bzero(cdb, CDB_GROUP1); 27340 cdb[0] = SCMD_PLAYAUDIO_MSF; 27341 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27342 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27343 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27344 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27345 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27346 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27347 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27348 } else { 27349 cdb[3] = msf->cdmsf_min0; 27350 cdb[4] = msf->cdmsf_sec0; 27351 cdb[5] = msf->cdmsf_frame0; 27352 cdb[6] = msf->cdmsf_min1; 27353 cdb[7] = msf->cdmsf_sec1; 27354 cdb[8] = msf->cdmsf_frame1; 27355 } 27356 com->uscsi_cdb = cdb; 27357 com->uscsi_cdblen = CDB_GROUP1; 27358 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27359 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27360 SD_PATH_STANDARD); 27361 kmem_free(com, sizeof (*com)); 27362 return (rval); 27363 } 27364 27365 27366 /* 27367 * Function: sr_play_trkind() 27368 * 27369 * Description: This routine is the driver entry point for handling CD-ROM 27370 * ioctl requests to output the audio signals at the specified 27371 * starting address and continue the audio play until the specified 27372 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27373 * format. 27374 * 27375 * Arguments: dev - the device 'dev_t' 27376 * data - pointer to user provided audio track/index structure, 27377 * specifying start/end addresses. 27378 * flag - this argument is a pass through to ddi_copyxxx() 27379 * directly from the mode argument of ioctl(). 27380 * 27381 * Return Code: the code returned by sd_send_scsi_cmd() 27382 * EFAULT if ddi_copyxxx() fails 27383 * ENXIO if fail ddi_get_soft_state 27384 * EINVAL if data pointer is NULL 27385 */ 27386 27387 static int 27388 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27389 { 27390 struct cdrom_ti ti_struct; 27391 struct cdrom_ti *ti = &ti_struct; 27392 struct uscsi_cmd *com = NULL; 27393 char cdb[CDB_GROUP1]; 27394 int rval; 27395 27396 if (data == NULL) { 27397 return (EINVAL); 27398 } 27399 27400 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27401 return (EFAULT); 27402 } 27403 27404 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27405 bzero(cdb, CDB_GROUP1); 27406 cdb[0] = SCMD_PLAYAUDIO_TI; 27407 cdb[4] = ti->cdti_trk0; 27408 cdb[5] = ti->cdti_ind0; 27409 cdb[7] = ti->cdti_trk1; 27410 cdb[8] = ti->cdti_ind1; 27411 com->uscsi_cdb = cdb; 27412 com->uscsi_cdblen = CDB_GROUP1; 27413 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27414 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27415 SD_PATH_STANDARD); 27416 kmem_free(com, sizeof (*com)); 27417 return (rval); 27418 } 27419 27420 27421 /* 27422 * Function: sr_read_all_subcodes() 27423 * 27424 * Description: This routine is the driver entry point for handling CD-ROM 27425 * ioctl requests to return raw subcode data while the target is 27426 * playing audio (CDROMSUBCODE). 27427 * 27428 * Arguments: dev - the device 'dev_t' 27429 * data - pointer to user provided cdrom subcode structure, 27430 * specifying the transfer length and address. 27431 * flag - this argument is a pass through to ddi_copyxxx() 27432 * directly from the mode argument of ioctl(). 27433 * 27434 * Return Code: the code returned by sd_send_scsi_cmd() 27435 * EFAULT if ddi_copyxxx() fails 27436 * ENXIO if fail ddi_get_soft_state 27437 * EINVAL if data pointer is NULL 27438 */ 27439 27440 static int 27441 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27442 { 27443 struct sd_lun *un = NULL; 27444 struct uscsi_cmd *com = NULL; 27445 struct cdrom_subcode *subcode = NULL; 27446 int rval; 27447 size_t buflen; 27448 char cdb[CDB_GROUP5]; 27449 27450 #ifdef _MULTI_DATAMODEL 27451 /* To support ILP32 applications in an LP64 world */ 27452 struct cdrom_subcode32 cdrom_subcode32; 27453 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27454 #endif 27455 if (data == NULL) { 27456 return (EINVAL); 27457 } 27458 27459 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27460 return (ENXIO); 27461 } 27462 27463 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27464 27465 #ifdef _MULTI_DATAMODEL 27466 switch (ddi_model_convert_from(flag & FMODELS)) { 27467 case DDI_MODEL_ILP32: 27468 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27469 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27470 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27471 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27472 return (EFAULT); 27473 } 27474 /* Convert the ILP32 uscsi data from the application to LP64 */ 27475 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27476 break; 27477 case DDI_MODEL_NONE: 27478 if (ddi_copyin(data, subcode, 27479 sizeof (struct cdrom_subcode), flag)) { 27480 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27481 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27482 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27483 return (EFAULT); 27484 } 27485 break; 27486 } 27487 #else /* ! _MULTI_DATAMODEL */ 27488 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27489 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27490 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27491 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27492 return (EFAULT); 27493 } 27494 #endif /* _MULTI_DATAMODEL */ 27495 27496 /* 27497 * Since MMC-2 expects max 3 bytes for length, check if the 27498 * length input is greater than 3 bytes 27499 */ 27500 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27501 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27502 "sr_read_all_subcodes: " 27503 "cdrom transfer length too large: %d (limit %d)\n", 27504 subcode->cdsc_length, 0xFFFFFF); 27505 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27506 return (EINVAL); 27507 } 27508 27509 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27510 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27511 bzero(cdb, CDB_GROUP5); 27512 27513 if (un->un_f_mmc_cap == TRUE) { 27514 cdb[0] = (char)SCMD_READ_CD; 27515 cdb[2] = (char)0xff; 27516 cdb[3] = (char)0xff; 27517 cdb[4] = (char)0xff; 27518 cdb[5] = (char)0xff; 27519 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27520 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27521 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27522 cdb[10] = 1; 27523 } else { 27524 /* 27525 * Note: A vendor specific command (0xDF) is being used her to 27526 * request a read of all subcodes. 27527 */ 27528 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27529 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27530 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27531 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27532 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27533 } 27534 com->uscsi_cdb = cdb; 27535 com->uscsi_cdblen = CDB_GROUP5; 27536 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27537 com->uscsi_buflen = buflen; 27538 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27539 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27540 SD_PATH_STANDARD); 27541 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27542 kmem_free(com, sizeof (*com)); 27543 return (rval); 27544 } 27545 27546 27547 /* 27548 * Function: sr_read_subchannel() 27549 * 27550 * Description: This routine is the driver entry point for handling CD-ROM 27551 * ioctl requests to return the Q sub-channel data of the CD 27552 * current position block. (CDROMSUBCHNL) The data includes the 27553 * track number, index number, absolute CD-ROM address (LBA or MSF 27554 * format per the user) , track relative CD-ROM address (LBA or MSF 27555 * format per the user), control data and audio status. 27556 * 27557 * Arguments: dev - the device 'dev_t' 27558 * data - pointer to user provided cdrom sub-channel structure 27559 * flag - this argument is a pass through to ddi_copyxxx() 27560 * directly from the mode argument of ioctl(). 27561 * 27562 * Return Code: the code returned by sd_send_scsi_cmd() 27563 * EFAULT if ddi_copyxxx() fails 27564 * ENXIO if fail ddi_get_soft_state 27565 * EINVAL if data pointer is NULL 27566 */ 27567 27568 static int 27569 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27570 { 27571 struct sd_lun *un; 27572 struct uscsi_cmd *com; 27573 struct cdrom_subchnl subchanel; 27574 struct cdrom_subchnl *subchnl = &subchanel; 27575 char cdb[CDB_GROUP1]; 27576 caddr_t buffer; 27577 int rval; 27578 27579 if (data == NULL) { 27580 return (EINVAL); 27581 } 27582 27583 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27584 (un->un_state == SD_STATE_OFFLINE)) { 27585 return (ENXIO); 27586 } 27587 27588 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27589 return (EFAULT); 27590 } 27591 27592 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27593 bzero(cdb, CDB_GROUP1); 27594 cdb[0] = SCMD_READ_SUBCHANNEL; 27595 /* Set the MSF bit based on the user requested address format */ 27596 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27597 /* 27598 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27599 * returned 27600 */ 27601 cdb[2] = 0x40; 27602 /* 27603 * Set byte 3 to specify the return data format. A value of 0x01 27604 * indicates that the CD-ROM current position should be returned. 27605 */ 27606 cdb[3] = 0x01; 27607 cdb[8] = 0x10; 27608 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27609 com->uscsi_cdb = cdb; 27610 com->uscsi_cdblen = CDB_GROUP1; 27611 com->uscsi_bufaddr = buffer; 27612 com->uscsi_buflen = 16; 27613 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27614 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27615 SD_PATH_STANDARD); 27616 if (rval != 0) { 27617 kmem_free(buffer, 16); 27618 kmem_free(com, sizeof (*com)); 27619 return (rval); 27620 } 27621 27622 /* Process the returned Q sub-channel data */ 27623 subchnl->cdsc_audiostatus = buffer[1]; 27624 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27625 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27626 subchnl->cdsc_trk = buffer[6]; 27627 subchnl->cdsc_ind = buffer[7]; 27628 if (subchnl->cdsc_format & CDROM_LBA) { 27629 subchnl->cdsc_absaddr.lba = 27630 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27631 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27632 subchnl->cdsc_reladdr.lba = 27633 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27634 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27635 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27636 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27637 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27638 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27639 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27640 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27641 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27642 } else { 27643 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27644 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27645 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27646 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27647 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27648 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27649 } 27650 kmem_free(buffer, 16); 27651 kmem_free(com, sizeof (*com)); 27652 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27653 != 0) { 27654 return (EFAULT); 27655 } 27656 return (rval); 27657 } 27658 27659 27660 /* 27661 * Function: sr_read_tocentry() 27662 * 27663 * Description: This routine is the driver entry point for handling CD-ROM 27664 * ioctl requests to read from the Table of Contents (TOC) 27665 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27666 * fields, the starting address (LBA or MSF format per the user) 27667 * and the data mode if the user specified track is a data track. 27668 * 27669 * Note: The READ HEADER (0x44) command used in this routine is 27670 * obsolete per the SCSI MMC spec but still supported in the 27671 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27672 * therefore the command is still implemented in this routine. 27673 * 27674 * Arguments: dev - the device 'dev_t' 27675 * data - pointer to user provided toc entry structure, 27676 * specifying the track # and the address format 27677 * (LBA or MSF). 27678 * flag - this argument is a pass through to ddi_copyxxx() 27679 * directly from the mode argument of ioctl(). 27680 * 27681 * Return Code: the code returned by sd_send_scsi_cmd() 27682 * EFAULT if ddi_copyxxx() fails 27683 * ENXIO if fail ddi_get_soft_state 27684 * EINVAL if data pointer is NULL 27685 */ 27686 27687 static int 27688 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27689 { 27690 struct sd_lun *un = NULL; 27691 struct uscsi_cmd *com; 27692 struct cdrom_tocentry toc_entry; 27693 struct cdrom_tocentry *entry = &toc_entry; 27694 caddr_t buffer; 27695 int rval; 27696 char cdb[CDB_GROUP1]; 27697 27698 if (data == NULL) { 27699 return (EINVAL); 27700 } 27701 27702 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27703 (un->un_state == SD_STATE_OFFLINE)) { 27704 return (ENXIO); 27705 } 27706 27707 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27708 return (EFAULT); 27709 } 27710 27711 /* Validate the requested track and address format */ 27712 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27713 return (EINVAL); 27714 } 27715 27716 if (entry->cdte_track == 0) { 27717 return (EINVAL); 27718 } 27719 27720 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27721 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27722 bzero(cdb, CDB_GROUP1); 27723 27724 cdb[0] = SCMD_READ_TOC; 27725 /* Set the MSF bit based on the user requested address format */ 27726 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27727 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27728 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27729 } else { 27730 cdb[6] = entry->cdte_track; 27731 } 27732 27733 /* 27734 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27735 * (4 byte TOC response header + 8 byte track descriptor) 27736 */ 27737 cdb[8] = 12; 27738 com->uscsi_cdb = cdb; 27739 com->uscsi_cdblen = CDB_GROUP1; 27740 com->uscsi_bufaddr = buffer; 27741 com->uscsi_buflen = 0x0C; 27742 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27743 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27744 SD_PATH_STANDARD); 27745 if (rval != 0) { 27746 kmem_free(buffer, 12); 27747 kmem_free(com, sizeof (*com)); 27748 return (rval); 27749 } 27750 27751 /* Process the toc entry */ 27752 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27753 entry->cdte_ctrl = (buffer[5] & 0x0F); 27754 if (entry->cdte_format & CDROM_LBA) { 27755 entry->cdte_addr.lba = 27756 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27757 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27758 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27759 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27760 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27761 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27762 /* 27763 * Send a READ TOC command using the LBA address format to get 27764 * the LBA for the track requested so it can be used in the 27765 * READ HEADER request 27766 * 27767 * Note: The MSF bit of the READ HEADER command specifies the 27768 * output format. The block address specified in that command 27769 * must be in LBA format. 27770 */ 27771 cdb[1] = 0; 27772 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27773 SD_PATH_STANDARD); 27774 if (rval != 0) { 27775 kmem_free(buffer, 12); 27776 kmem_free(com, sizeof (*com)); 27777 return (rval); 27778 } 27779 } else { 27780 entry->cdte_addr.msf.minute = buffer[9]; 27781 entry->cdte_addr.msf.second = buffer[10]; 27782 entry->cdte_addr.msf.frame = buffer[11]; 27783 /* 27784 * Send a READ TOC command using the LBA address format to get 27785 * the LBA for the track requested so it can be used in the 27786 * READ HEADER request 27787 * 27788 * Note: The MSF bit of the READ HEADER command specifies the 27789 * output format. The block address specified in that command 27790 * must be in LBA format. 27791 */ 27792 cdb[1] = 0; 27793 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27794 SD_PATH_STANDARD); 27795 if (rval != 0) { 27796 kmem_free(buffer, 12); 27797 kmem_free(com, sizeof (*com)); 27798 return (rval); 27799 } 27800 } 27801 27802 /* 27803 * Build and send the READ HEADER command to determine the data mode of 27804 * the user specified track. 27805 */ 27806 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 27807 (entry->cdte_track != CDROM_LEADOUT)) { 27808 bzero(cdb, CDB_GROUP1); 27809 cdb[0] = SCMD_READ_HEADER; 27810 cdb[2] = buffer[8]; 27811 cdb[3] = buffer[9]; 27812 cdb[4] = buffer[10]; 27813 cdb[5] = buffer[11]; 27814 cdb[8] = 0x08; 27815 com->uscsi_buflen = 0x08; 27816 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27817 SD_PATH_STANDARD); 27818 if (rval == 0) { 27819 entry->cdte_datamode = buffer[0]; 27820 } else { 27821 /* 27822 * READ HEADER command failed, since this is 27823 * obsoleted in one spec, its better to return 27824 * -1 for an invlid track so that we can still 27825 * receive the rest of the TOC data. 27826 */ 27827 entry->cdte_datamode = (uchar_t)-1; 27828 } 27829 } else { 27830 entry->cdte_datamode = (uchar_t)-1; 27831 } 27832 27833 kmem_free(buffer, 12); 27834 kmem_free(com, sizeof (*com)); 27835 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 27836 return (EFAULT); 27837 27838 return (rval); 27839 } 27840 27841 27842 /* 27843 * Function: sr_read_tochdr() 27844 * 27845 * Description: This routine is the driver entry point for handling CD-ROM 27846 * ioctl requests to read the Table of Contents (TOC) header 27847 * (CDROMREADTOHDR). The TOC header consists of the disk starting 27848 * and ending track numbers 27849 * 27850 * Arguments: dev - the device 'dev_t' 27851 * data - pointer to user provided toc header structure, 27852 * specifying the starting and ending track numbers. 27853 * flag - this argument is a pass through to ddi_copyxxx() 27854 * directly from the mode argument of ioctl(). 27855 * 27856 * Return Code: the code returned by sd_send_scsi_cmd() 27857 * EFAULT if ddi_copyxxx() fails 27858 * ENXIO if fail ddi_get_soft_state 27859 * EINVAL if data pointer is NULL 27860 */ 27861 27862 static int 27863 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 27864 { 27865 struct sd_lun *un; 27866 struct uscsi_cmd *com; 27867 struct cdrom_tochdr toc_header; 27868 struct cdrom_tochdr *hdr = &toc_header; 27869 char cdb[CDB_GROUP1]; 27870 int rval; 27871 caddr_t buffer; 27872 27873 if (data == NULL) { 27874 return (EINVAL); 27875 } 27876 27877 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27878 (un->un_state == SD_STATE_OFFLINE)) { 27879 return (ENXIO); 27880 } 27881 27882 buffer = kmem_zalloc(4, KM_SLEEP); 27883 bzero(cdb, CDB_GROUP1); 27884 cdb[0] = SCMD_READ_TOC; 27885 /* 27886 * Specifying a track number of 0x00 in the READ TOC command indicates 27887 * that the TOC header should be returned 27888 */ 27889 cdb[6] = 0x00; 27890 /* 27891 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 27892 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 27893 */ 27894 cdb[8] = 0x04; 27895 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27896 com->uscsi_cdb = cdb; 27897 com->uscsi_cdblen = CDB_GROUP1; 27898 com->uscsi_bufaddr = buffer; 27899 com->uscsi_buflen = 0x04; 27900 com->uscsi_timeout = 300; 27901 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27902 27903 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27904 SD_PATH_STANDARD); 27905 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27906 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 27907 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 27908 } else { 27909 hdr->cdth_trk0 = buffer[2]; 27910 hdr->cdth_trk1 = buffer[3]; 27911 } 27912 kmem_free(buffer, 4); 27913 kmem_free(com, sizeof (*com)); 27914 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 27915 return (EFAULT); 27916 } 27917 return (rval); 27918 } 27919 27920 27921 /* 27922 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 27923 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 27924 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 27925 * digital audio and extended architecture digital audio. These modes are 27926 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 27927 * MMC specs. 27928 * 27929 * In addition to support for the various data formats these routines also 27930 * include support for devices that implement only the direct access READ 27931 * commands (0x08, 0x28), devices that implement the READ_CD commands 27932 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 27933 * READ CDXA commands (0xD8, 0xDB) 27934 */ 27935 27936 /* 27937 * Function: sr_read_mode1() 27938 * 27939 * Description: This routine is the driver entry point for handling CD-ROM 27940 * ioctl read mode1 requests (CDROMREADMODE1). 27941 * 27942 * Arguments: dev - the device 'dev_t' 27943 * data - pointer to user provided cd read structure specifying 27944 * the lba buffer address and length. 27945 * flag - this argument is a pass through to ddi_copyxxx() 27946 * directly from the mode argument of ioctl(). 27947 * 27948 * Return Code: the code returned by sd_send_scsi_cmd() 27949 * EFAULT if ddi_copyxxx() fails 27950 * ENXIO if fail ddi_get_soft_state 27951 * EINVAL if data pointer is NULL 27952 */ 27953 27954 static int 27955 sr_read_mode1(dev_t dev, caddr_t data, int flag) 27956 { 27957 struct sd_lun *un; 27958 struct cdrom_read mode1_struct; 27959 struct cdrom_read *mode1 = &mode1_struct; 27960 int rval; 27961 sd_ssc_t *ssc; 27962 27963 #ifdef _MULTI_DATAMODEL 27964 /* To support ILP32 applications in an LP64 world */ 27965 struct cdrom_read32 cdrom_read32; 27966 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27967 #endif /* _MULTI_DATAMODEL */ 27968 27969 if (data == NULL) { 27970 return (EINVAL); 27971 } 27972 27973 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27974 (un->un_state == SD_STATE_OFFLINE)) { 27975 return (ENXIO); 27976 } 27977 27978 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27979 "sd_read_mode1: entry: un:0x%p\n", un); 27980 27981 #ifdef _MULTI_DATAMODEL 27982 switch (ddi_model_convert_from(flag & FMODELS)) { 27983 case DDI_MODEL_ILP32: 27984 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27985 return (EFAULT); 27986 } 27987 /* Convert the ILP32 uscsi data from the application to LP64 */ 27988 cdrom_read32tocdrom_read(cdrd32, mode1); 27989 break; 27990 case DDI_MODEL_NONE: 27991 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27992 return (EFAULT); 27993 } 27994 } 27995 #else /* ! _MULTI_DATAMODEL */ 27996 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27997 return (EFAULT); 27998 } 27999 #endif /* _MULTI_DATAMODEL */ 28000 28001 ssc = sd_ssc_init(un); 28002 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 28003 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28004 sd_ssc_fini(ssc); 28005 28006 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28007 "sd_read_mode1: exit: un:0x%p\n", un); 28008 28009 return (rval); 28010 } 28011 28012 28013 /* 28014 * Function: sr_read_cd_mode2() 28015 * 28016 * Description: This routine is the driver entry point for handling CD-ROM 28017 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28018 * support the READ CD (0xBE) command or the 1st generation 28019 * READ CD (0xD4) command. 28020 * 28021 * Arguments: dev - the device 'dev_t' 28022 * data - pointer to user provided cd read structure specifying 28023 * the lba buffer address and length. 28024 * flag - this argument is a pass through to ddi_copyxxx() 28025 * directly from the mode argument of ioctl(). 28026 * 28027 * Return Code: the code returned by sd_send_scsi_cmd() 28028 * EFAULT if ddi_copyxxx() fails 28029 * ENXIO if fail ddi_get_soft_state 28030 * EINVAL if data pointer is NULL 28031 */ 28032 28033 static int 28034 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28035 { 28036 struct sd_lun *un; 28037 struct uscsi_cmd *com; 28038 struct cdrom_read mode2_struct; 28039 struct cdrom_read *mode2 = &mode2_struct; 28040 uchar_t cdb[CDB_GROUP5]; 28041 int nblocks; 28042 int rval; 28043 #ifdef _MULTI_DATAMODEL 28044 /* To support ILP32 applications in an LP64 world */ 28045 struct cdrom_read32 cdrom_read32; 28046 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28047 #endif /* _MULTI_DATAMODEL */ 28048 28049 if (data == NULL) { 28050 return (EINVAL); 28051 } 28052 28053 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28054 (un->un_state == SD_STATE_OFFLINE)) { 28055 return (ENXIO); 28056 } 28057 28058 #ifdef _MULTI_DATAMODEL 28059 switch (ddi_model_convert_from(flag & FMODELS)) { 28060 case DDI_MODEL_ILP32: 28061 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28062 return (EFAULT); 28063 } 28064 /* Convert the ILP32 uscsi data from the application to LP64 */ 28065 cdrom_read32tocdrom_read(cdrd32, mode2); 28066 break; 28067 case DDI_MODEL_NONE: 28068 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28069 return (EFAULT); 28070 } 28071 break; 28072 } 28073 28074 #else /* ! _MULTI_DATAMODEL */ 28075 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28076 return (EFAULT); 28077 } 28078 #endif /* _MULTI_DATAMODEL */ 28079 28080 bzero(cdb, sizeof (cdb)); 28081 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28082 /* Read command supported by 1st generation atapi drives */ 28083 cdb[0] = SCMD_READ_CDD4; 28084 } else { 28085 /* Universal CD Access Command */ 28086 cdb[0] = SCMD_READ_CD; 28087 } 28088 28089 /* 28090 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28091 */ 28092 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28093 28094 /* set the start address */ 28095 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28096 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28097 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28098 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28099 28100 /* set the transfer length */ 28101 nblocks = mode2->cdread_buflen / 2336; 28102 cdb[6] = (uchar_t)(nblocks >> 16); 28103 cdb[7] = (uchar_t)(nblocks >> 8); 28104 cdb[8] = (uchar_t)nblocks; 28105 28106 /* set the filter bits */ 28107 cdb[9] = CDROM_READ_CD_USERDATA; 28108 28109 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28110 com->uscsi_cdb = (caddr_t)cdb; 28111 com->uscsi_cdblen = sizeof (cdb); 28112 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28113 com->uscsi_buflen = mode2->cdread_buflen; 28114 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28115 28116 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28117 SD_PATH_STANDARD); 28118 kmem_free(com, sizeof (*com)); 28119 return (rval); 28120 } 28121 28122 28123 /* 28124 * Function: sr_read_mode2() 28125 * 28126 * Description: This routine is the driver entry point for handling CD-ROM 28127 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28128 * do not support the READ CD (0xBE) command. 28129 * 28130 * Arguments: dev - the device 'dev_t' 28131 * data - pointer to user provided cd read structure specifying 28132 * the lba buffer address and length. 28133 * flag - this argument is a pass through to ddi_copyxxx() 28134 * directly from the mode argument of ioctl(). 28135 * 28136 * Return Code: the code returned by sd_send_scsi_cmd() 28137 * EFAULT if ddi_copyxxx() fails 28138 * ENXIO if fail ddi_get_soft_state 28139 * EINVAL if data pointer is NULL 28140 * EIO if fail to reset block size 28141 * EAGAIN if commands are in progress in the driver 28142 */ 28143 28144 static int 28145 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28146 { 28147 struct sd_lun *un; 28148 struct cdrom_read mode2_struct; 28149 struct cdrom_read *mode2 = &mode2_struct; 28150 int rval; 28151 uint32_t restore_blksize; 28152 struct uscsi_cmd *com; 28153 uchar_t cdb[CDB_GROUP0]; 28154 int nblocks; 28155 28156 #ifdef _MULTI_DATAMODEL 28157 /* To support ILP32 applications in an LP64 world */ 28158 struct cdrom_read32 cdrom_read32; 28159 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28160 #endif /* _MULTI_DATAMODEL */ 28161 28162 if (data == NULL) { 28163 return (EINVAL); 28164 } 28165 28166 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28167 (un->un_state == SD_STATE_OFFLINE)) { 28168 return (ENXIO); 28169 } 28170 28171 /* 28172 * Because this routine will update the device and driver block size 28173 * being used we want to make sure there are no commands in progress. 28174 * If commands are in progress the user will have to try again. 28175 * 28176 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28177 * in sdioctl to protect commands from sdioctl through to the top of 28178 * sd_uscsi_strategy. See sdioctl for details. 28179 */ 28180 mutex_enter(SD_MUTEX(un)); 28181 if (un->un_ncmds_in_driver != 1) { 28182 mutex_exit(SD_MUTEX(un)); 28183 return (EAGAIN); 28184 } 28185 mutex_exit(SD_MUTEX(un)); 28186 28187 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28188 "sd_read_mode2: entry: un:0x%p\n", un); 28189 28190 #ifdef _MULTI_DATAMODEL 28191 switch (ddi_model_convert_from(flag & FMODELS)) { 28192 case DDI_MODEL_ILP32: 28193 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28194 return (EFAULT); 28195 } 28196 /* Convert the ILP32 uscsi data from the application to LP64 */ 28197 cdrom_read32tocdrom_read(cdrd32, mode2); 28198 break; 28199 case DDI_MODEL_NONE: 28200 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28201 return (EFAULT); 28202 } 28203 break; 28204 } 28205 #else /* ! _MULTI_DATAMODEL */ 28206 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28207 return (EFAULT); 28208 } 28209 #endif /* _MULTI_DATAMODEL */ 28210 28211 /* Store the current target block size for restoration later */ 28212 restore_blksize = un->un_tgt_blocksize; 28213 28214 /* Change the device and soft state target block size to 2336 */ 28215 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28216 rval = EIO; 28217 goto done; 28218 } 28219 28220 28221 bzero(cdb, sizeof (cdb)); 28222 28223 /* set READ operation */ 28224 cdb[0] = SCMD_READ; 28225 28226 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28227 mode2->cdread_lba >>= 2; 28228 28229 /* set the start address */ 28230 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28231 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28232 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28233 28234 /* set the transfer length */ 28235 nblocks = mode2->cdread_buflen / 2336; 28236 cdb[4] = (uchar_t)nblocks & 0xFF; 28237 28238 /* build command */ 28239 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28240 com->uscsi_cdb = (caddr_t)cdb; 28241 com->uscsi_cdblen = sizeof (cdb); 28242 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28243 com->uscsi_buflen = mode2->cdread_buflen; 28244 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28245 28246 /* 28247 * Issue SCSI command with user space address for read buffer. 28248 * 28249 * This sends the command through main channel in the driver. 28250 * 28251 * Since this is accessed via an IOCTL call, we go through the 28252 * standard path, so that if the device was powered down, then 28253 * it would be 'awakened' to handle the command. 28254 */ 28255 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28256 SD_PATH_STANDARD); 28257 28258 kmem_free(com, sizeof (*com)); 28259 28260 /* Restore the device and soft state target block size */ 28261 if (sr_sector_mode(dev, restore_blksize) != 0) { 28262 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28263 "can't do switch back to mode 1\n"); 28264 /* 28265 * If sd_send_scsi_READ succeeded we still need to report 28266 * an error because we failed to reset the block size 28267 */ 28268 if (rval == 0) { 28269 rval = EIO; 28270 } 28271 } 28272 28273 done: 28274 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28275 "sd_read_mode2: exit: un:0x%p\n", un); 28276 28277 return (rval); 28278 } 28279 28280 28281 /* 28282 * Function: sr_sector_mode() 28283 * 28284 * Description: This utility function is used by sr_read_mode2 to set the target 28285 * block size based on the user specified size. This is a legacy 28286 * implementation based upon a vendor specific mode page 28287 * 28288 * Arguments: dev - the device 'dev_t' 28289 * data - flag indicating if block size is being set to 2336 or 28290 * 512. 28291 * 28292 * Return Code: the code returned by sd_send_scsi_cmd() 28293 * EFAULT if ddi_copyxxx() fails 28294 * ENXIO if fail ddi_get_soft_state 28295 * EINVAL if data pointer is NULL 28296 */ 28297 28298 static int 28299 sr_sector_mode(dev_t dev, uint32_t blksize) 28300 { 28301 struct sd_lun *un; 28302 uchar_t *sense; 28303 uchar_t *select; 28304 int rval; 28305 sd_ssc_t *ssc; 28306 28307 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28308 (un->un_state == SD_STATE_OFFLINE)) { 28309 return (ENXIO); 28310 } 28311 28312 sense = kmem_zalloc(20, KM_SLEEP); 28313 28314 /* Note: This is a vendor specific mode page (0x81) */ 28315 ssc = sd_ssc_init(un); 28316 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28317 SD_PATH_STANDARD); 28318 sd_ssc_fini(ssc); 28319 if (rval != 0) { 28320 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28321 "sr_sector_mode: Mode Sense failed\n"); 28322 kmem_free(sense, 20); 28323 return (rval); 28324 } 28325 select = kmem_zalloc(20, KM_SLEEP); 28326 select[3] = 0x08; 28327 select[10] = ((blksize >> 8) & 0xff); 28328 select[11] = (blksize & 0xff); 28329 select[12] = 0x01; 28330 select[13] = 0x06; 28331 select[14] = sense[14]; 28332 select[15] = sense[15]; 28333 if (blksize == SD_MODE2_BLKSIZE) { 28334 select[14] |= 0x01; 28335 } 28336 28337 ssc = sd_ssc_init(un); 28338 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28339 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28340 sd_ssc_fini(ssc); 28341 if (rval != 0) { 28342 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28343 "sr_sector_mode: Mode Select failed\n"); 28344 } else { 28345 /* 28346 * Only update the softstate block size if we successfully 28347 * changed the device block mode. 28348 */ 28349 mutex_enter(SD_MUTEX(un)); 28350 sd_update_block_info(un, blksize, 0); 28351 mutex_exit(SD_MUTEX(un)); 28352 } 28353 kmem_free(sense, 20); 28354 kmem_free(select, 20); 28355 return (rval); 28356 } 28357 28358 28359 /* 28360 * Function: sr_read_cdda() 28361 * 28362 * Description: This routine is the driver entry point for handling CD-ROM 28363 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28364 * the target supports CDDA these requests are handled via a vendor 28365 * specific command (0xD8) If the target does not support CDDA 28366 * these requests are handled via the READ CD command (0xBE). 28367 * 28368 * Arguments: dev - the device 'dev_t' 28369 * data - pointer to user provided CD-DA structure specifying 28370 * the track starting address, transfer length, and 28371 * subcode options. 28372 * flag - this argument is a pass through to ddi_copyxxx() 28373 * directly from the mode argument of ioctl(). 28374 * 28375 * Return Code: the code returned by sd_send_scsi_cmd() 28376 * EFAULT if ddi_copyxxx() fails 28377 * ENXIO if fail ddi_get_soft_state 28378 * EINVAL if invalid arguments are provided 28379 * ENOTTY 28380 */ 28381 28382 static int 28383 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28384 { 28385 struct sd_lun *un; 28386 struct uscsi_cmd *com; 28387 struct cdrom_cdda *cdda; 28388 int rval; 28389 size_t buflen; 28390 char cdb[CDB_GROUP5]; 28391 28392 #ifdef _MULTI_DATAMODEL 28393 /* To support ILP32 applications in an LP64 world */ 28394 struct cdrom_cdda32 cdrom_cdda32; 28395 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28396 #endif /* _MULTI_DATAMODEL */ 28397 28398 if (data == NULL) { 28399 return (EINVAL); 28400 } 28401 28402 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28403 return (ENXIO); 28404 } 28405 28406 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28407 28408 #ifdef _MULTI_DATAMODEL 28409 switch (ddi_model_convert_from(flag & FMODELS)) { 28410 case DDI_MODEL_ILP32: 28411 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28412 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28413 "sr_read_cdda: ddi_copyin Failed\n"); 28414 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28415 return (EFAULT); 28416 } 28417 /* Convert the ILP32 uscsi data from the application to LP64 */ 28418 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28419 break; 28420 case DDI_MODEL_NONE: 28421 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28422 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28423 "sr_read_cdda: ddi_copyin Failed\n"); 28424 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28425 return (EFAULT); 28426 } 28427 break; 28428 } 28429 #else /* ! _MULTI_DATAMODEL */ 28430 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28431 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28432 "sr_read_cdda: ddi_copyin Failed\n"); 28433 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28434 return (EFAULT); 28435 } 28436 #endif /* _MULTI_DATAMODEL */ 28437 28438 /* 28439 * Since MMC-2 expects max 3 bytes for length, check if the 28440 * length input is greater than 3 bytes 28441 */ 28442 if ((cdda->cdda_length & 0xFF000000) != 0) { 28443 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28444 "cdrom transfer length too large: %d (limit %d)\n", 28445 cdda->cdda_length, 0xFFFFFF); 28446 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28447 return (EINVAL); 28448 } 28449 28450 switch (cdda->cdda_subcode) { 28451 case CDROM_DA_NO_SUBCODE: 28452 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28453 break; 28454 case CDROM_DA_SUBQ: 28455 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28456 break; 28457 case CDROM_DA_ALL_SUBCODE: 28458 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28459 break; 28460 case CDROM_DA_SUBCODE_ONLY: 28461 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28462 break; 28463 default: 28464 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28465 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28466 cdda->cdda_subcode); 28467 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28468 return (EINVAL); 28469 } 28470 28471 /* Build and send the command */ 28472 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28473 bzero(cdb, CDB_GROUP5); 28474 28475 if (un->un_f_cfg_cdda == TRUE) { 28476 cdb[0] = (char)SCMD_READ_CD; 28477 cdb[1] = 0x04; 28478 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28479 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28480 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28481 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28482 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28483 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28484 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28485 cdb[9] = 0x10; 28486 switch (cdda->cdda_subcode) { 28487 case CDROM_DA_NO_SUBCODE : 28488 cdb[10] = 0x0; 28489 break; 28490 case CDROM_DA_SUBQ : 28491 cdb[10] = 0x2; 28492 break; 28493 case CDROM_DA_ALL_SUBCODE : 28494 cdb[10] = 0x1; 28495 break; 28496 case CDROM_DA_SUBCODE_ONLY : 28497 /* FALLTHROUGH */ 28498 default : 28499 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28500 kmem_free(com, sizeof (*com)); 28501 return (ENOTTY); 28502 } 28503 } else { 28504 cdb[0] = (char)SCMD_READ_CDDA; 28505 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28506 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28507 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28508 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28509 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28510 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28511 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28512 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28513 cdb[10] = cdda->cdda_subcode; 28514 } 28515 28516 com->uscsi_cdb = cdb; 28517 com->uscsi_cdblen = CDB_GROUP5; 28518 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28519 com->uscsi_buflen = buflen; 28520 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28521 28522 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28523 SD_PATH_STANDARD); 28524 28525 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28526 kmem_free(com, sizeof (*com)); 28527 return (rval); 28528 } 28529 28530 28531 /* 28532 * Function: sr_read_cdxa() 28533 * 28534 * Description: This routine is the driver entry point for handling CD-ROM 28535 * ioctl requests to return CD-XA (Extended Architecture) data. 28536 * (CDROMCDXA). 28537 * 28538 * Arguments: dev - the device 'dev_t' 28539 * data - pointer to user provided CD-XA structure specifying 28540 * the data starting address, transfer length, and format 28541 * flag - this argument is a pass through to ddi_copyxxx() 28542 * directly from the mode argument of ioctl(). 28543 * 28544 * Return Code: the code returned by sd_send_scsi_cmd() 28545 * EFAULT if ddi_copyxxx() fails 28546 * ENXIO if fail ddi_get_soft_state 28547 * EINVAL if data pointer is NULL 28548 */ 28549 28550 static int 28551 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28552 { 28553 struct sd_lun *un; 28554 struct uscsi_cmd *com; 28555 struct cdrom_cdxa *cdxa; 28556 int rval; 28557 size_t buflen; 28558 char cdb[CDB_GROUP5]; 28559 uchar_t read_flags; 28560 28561 #ifdef _MULTI_DATAMODEL 28562 /* To support ILP32 applications in an LP64 world */ 28563 struct cdrom_cdxa32 cdrom_cdxa32; 28564 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28565 #endif /* _MULTI_DATAMODEL */ 28566 28567 if (data == NULL) { 28568 return (EINVAL); 28569 } 28570 28571 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28572 return (ENXIO); 28573 } 28574 28575 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28576 28577 #ifdef _MULTI_DATAMODEL 28578 switch (ddi_model_convert_from(flag & FMODELS)) { 28579 case DDI_MODEL_ILP32: 28580 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28581 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28582 return (EFAULT); 28583 } 28584 /* 28585 * Convert the ILP32 uscsi data from the 28586 * application to LP64 for internal use. 28587 */ 28588 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28589 break; 28590 case DDI_MODEL_NONE: 28591 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28592 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28593 return (EFAULT); 28594 } 28595 break; 28596 } 28597 #else /* ! _MULTI_DATAMODEL */ 28598 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28599 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28600 return (EFAULT); 28601 } 28602 #endif /* _MULTI_DATAMODEL */ 28603 28604 /* 28605 * Since MMC-2 expects max 3 bytes for length, check if the 28606 * length input is greater than 3 bytes 28607 */ 28608 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28609 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28610 "cdrom transfer length too large: %d (limit %d)\n", 28611 cdxa->cdxa_length, 0xFFFFFF); 28612 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28613 return (EINVAL); 28614 } 28615 28616 switch (cdxa->cdxa_format) { 28617 case CDROM_XA_DATA: 28618 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28619 read_flags = 0x10; 28620 break; 28621 case CDROM_XA_SECTOR_DATA: 28622 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28623 read_flags = 0xf8; 28624 break; 28625 case CDROM_XA_DATA_W_ERROR: 28626 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28627 read_flags = 0xfc; 28628 break; 28629 default: 28630 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28631 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28632 cdxa->cdxa_format); 28633 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28634 return (EINVAL); 28635 } 28636 28637 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28638 bzero(cdb, CDB_GROUP5); 28639 if (un->un_f_mmc_cap == TRUE) { 28640 cdb[0] = (char)SCMD_READ_CD; 28641 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28642 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28643 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28644 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28645 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28646 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28647 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28648 cdb[9] = (char)read_flags; 28649 } else { 28650 /* 28651 * Note: A vendor specific command (0xDB) is being used her to 28652 * request a read of all subcodes. 28653 */ 28654 cdb[0] = (char)SCMD_READ_CDXA; 28655 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28656 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28657 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28658 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28659 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28660 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28661 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28662 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28663 cdb[10] = cdxa->cdxa_format; 28664 } 28665 com->uscsi_cdb = cdb; 28666 com->uscsi_cdblen = CDB_GROUP5; 28667 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28668 com->uscsi_buflen = buflen; 28669 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28670 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28671 SD_PATH_STANDARD); 28672 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28673 kmem_free(com, sizeof (*com)); 28674 return (rval); 28675 } 28676 28677 28678 /* 28679 * Function: sr_eject() 28680 * 28681 * Description: This routine is the driver entry point for handling CD-ROM 28682 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28683 * 28684 * Arguments: dev - the device 'dev_t' 28685 * 28686 * Return Code: the code returned by sd_send_scsi_cmd() 28687 */ 28688 28689 static int 28690 sr_eject(dev_t dev) 28691 { 28692 struct sd_lun *un; 28693 int rval; 28694 sd_ssc_t *ssc; 28695 28696 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28697 (un->un_state == SD_STATE_OFFLINE)) { 28698 return (ENXIO); 28699 } 28700 28701 /* 28702 * To prevent race conditions with the eject 28703 * command, keep track of an eject command as 28704 * it progresses. If we are already handling 28705 * an eject command in the driver for the given 28706 * unit and another request to eject is received 28707 * immediately return EAGAIN so we don't lose 28708 * the command if the current eject command fails. 28709 */ 28710 mutex_enter(SD_MUTEX(un)); 28711 if (un->un_f_ejecting == TRUE) { 28712 mutex_exit(SD_MUTEX(un)); 28713 return (EAGAIN); 28714 } 28715 un->un_f_ejecting = TRUE; 28716 mutex_exit(SD_MUTEX(un)); 28717 28718 ssc = sd_ssc_init(un); 28719 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 28720 SD_PATH_STANDARD); 28721 sd_ssc_fini(ssc); 28722 28723 if (rval != 0) { 28724 mutex_enter(SD_MUTEX(un)); 28725 un->un_f_ejecting = FALSE; 28726 mutex_exit(SD_MUTEX(un)); 28727 return (rval); 28728 } 28729 28730 ssc = sd_ssc_init(un); 28731 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 28732 SD_TARGET_EJECT, SD_PATH_STANDARD); 28733 sd_ssc_fini(ssc); 28734 28735 if (rval == 0) { 28736 mutex_enter(SD_MUTEX(un)); 28737 sr_ejected(un); 28738 un->un_mediastate = DKIO_EJECTED; 28739 un->un_f_ejecting = FALSE; 28740 cv_broadcast(&un->un_state_cv); 28741 mutex_exit(SD_MUTEX(un)); 28742 } else { 28743 mutex_enter(SD_MUTEX(un)); 28744 un->un_f_ejecting = FALSE; 28745 mutex_exit(SD_MUTEX(un)); 28746 } 28747 return (rval); 28748 } 28749 28750 28751 /* 28752 * Function: sr_ejected() 28753 * 28754 * Description: This routine updates the soft state structure to invalidate the 28755 * geometry information after the media has been ejected or a 28756 * media eject has been detected. 28757 * 28758 * Arguments: un - driver soft state (unit) structure 28759 */ 28760 28761 static void 28762 sr_ejected(struct sd_lun *un) 28763 { 28764 struct sd_errstats *stp; 28765 28766 ASSERT(un != NULL); 28767 ASSERT(mutex_owned(SD_MUTEX(un))); 28768 28769 un->un_f_blockcount_is_valid = FALSE; 28770 un->un_f_tgt_blocksize_is_valid = FALSE; 28771 mutex_exit(SD_MUTEX(un)); 28772 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 28773 mutex_enter(SD_MUTEX(un)); 28774 28775 if (un->un_errstats != NULL) { 28776 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28777 stp->sd_capacity.value.ui64 = 0; 28778 } 28779 } 28780 28781 28782 /* 28783 * Function: sr_check_wp() 28784 * 28785 * Description: This routine checks the write protection of a removable 28786 * media disk and hotpluggable devices via the write protect bit of 28787 * the Mode Page Header device specific field. Some devices choke 28788 * on unsupported mode page. In order to workaround this issue, 28789 * this routine has been implemented to use 0x3f mode page(request 28790 * for all pages) for all device types. 28791 * 28792 * Arguments: dev - the device 'dev_t' 28793 * 28794 * Return Code: int indicating if the device is write protected (1) or not (0) 28795 * 28796 * Context: Kernel thread. 28797 * 28798 */ 28799 28800 static int 28801 sr_check_wp(dev_t dev) 28802 { 28803 struct sd_lun *un; 28804 uchar_t device_specific; 28805 uchar_t *sense; 28806 int hdrlen; 28807 int rval = FALSE; 28808 int status; 28809 sd_ssc_t *ssc; 28810 28811 /* 28812 * Note: The return codes for this routine should be reworked to 28813 * properly handle the case of a NULL softstate. 28814 */ 28815 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28816 return (FALSE); 28817 } 28818 28819 if (un->un_f_cfg_is_atapi == TRUE) { 28820 /* 28821 * The mode page contents are not required; set the allocation 28822 * length for the mode page header only 28823 */ 28824 hdrlen = MODE_HEADER_LENGTH_GRP2; 28825 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28826 ssc = sd_ssc_init(un); 28827 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 28828 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28829 sd_ssc_fini(ssc); 28830 if (status != 0) 28831 goto err_exit; 28832 device_specific = 28833 ((struct mode_header_grp2 *)sense)->device_specific; 28834 } else { 28835 hdrlen = MODE_HEADER_LENGTH; 28836 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28837 ssc = sd_ssc_init(un); 28838 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 28839 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28840 sd_ssc_fini(ssc); 28841 if (status != 0) 28842 goto err_exit; 28843 device_specific = 28844 ((struct mode_header *)sense)->device_specific; 28845 } 28846 28847 28848 /* 28849 * Write protect mode sense failed; not all disks 28850 * understand this query. Return FALSE assuming that 28851 * these devices are not writable. 28852 */ 28853 if (device_specific & WRITE_PROTECT) { 28854 rval = TRUE; 28855 } 28856 28857 err_exit: 28858 kmem_free(sense, hdrlen); 28859 return (rval); 28860 } 28861 28862 /* 28863 * Function: sr_volume_ctrl() 28864 * 28865 * Description: This routine is the driver entry point for handling CD-ROM 28866 * audio output volume ioctl requests. (CDROMVOLCTRL) 28867 * 28868 * Arguments: dev - the device 'dev_t' 28869 * data - pointer to user audio volume control structure 28870 * flag - this argument is a pass through to ddi_copyxxx() 28871 * directly from the mode argument of ioctl(). 28872 * 28873 * Return Code: the code returned by sd_send_scsi_cmd() 28874 * EFAULT if ddi_copyxxx() fails 28875 * ENXIO if fail ddi_get_soft_state 28876 * EINVAL if data pointer is NULL 28877 * 28878 */ 28879 28880 static int 28881 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 28882 { 28883 struct sd_lun *un; 28884 struct cdrom_volctrl volume; 28885 struct cdrom_volctrl *vol = &volume; 28886 uchar_t *sense_page; 28887 uchar_t *select_page; 28888 uchar_t *sense; 28889 uchar_t *select; 28890 int sense_buflen; 28891 int select_buflen; 28892 int rval; 28893 sd_ssc_t *ssc; 28894 28895 if (data == NULL) { 28896 return (EINVAL); 28897 } 28898 28899 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28900 (un->un_state == SD_STATE_OFFLINE)) { 28901 return (ENXIO); 28902 } 28903 28904 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 28905 return (EFAULT); 28906 } 28907 28908 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28909 struct mode_header_grp2 *sense_mhp; 28910 struct mode_header_grp2 *select_mhp; 28911 int bd_len; 28912 28913 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 28914 select_buflen = MODE_HEADER_LENGTH_GRP2 + 28915 MODEPAGE_AUDIO_CTRL_LEN; 28916 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28917 select = kmem_zalloc(select_buflen, KM_SLEEP); 28918 ssc = sd_ssc_init(un); 28919 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 28920 sense_buflen, MODEPAGE_AUDIO_CTRL, 28921 SD_PATH_STANDARD); 28922 sd_ssc_fini(ssc); 28923 28924 if (rval != 0) { 28925 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28926 "sr_volume_ctrl: Mode Sense Failed\n"); 28927 kmem_free(sense, sense_buflen); 28928 kmem_free(select, select_buflen); 28929 return (rval); 28930 } 28931 sense_mhp = (struct mode_header_grp2 *)sense; 28932 select_mhp = (struct mode_header_grp2 *)select; 28933 bd_len = (sense_mhp->bdesc_length_hi << 8) | 28934 sense_mhp->bdesc_length_lo; 28935 if (bd_len > MODE_BLK_DESC_LENGTH) { 28936 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28937 "sr_volume_ctrl: Mode Sense returned invalid " 28938 "block descriptor length\n"); 28939 kmem_free(sense, sense_buflen); 28940 kmem_free(select, select_buflen); 28941 return (EIO); 28942 } 28943 sense_page = (uchar_t *) 28944 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 28945 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 28946 select_mhp->length_msb = 0; 28947 select_mhp->length_lsb = 0; 28948 select_mhp->bdesc_length_hi = 0; 28949 select_mhp->bdesc_length_lo = 0; 28950 } else { 28951 struct mode_header *sense_mhp, *select_mhp; 28952 28953 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28954 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28955 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28956 select = kmem_zalloc(select_buflen, KM_SLEEP); 28957 ssc = sd_ssc_init(un); 28958 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 28959 sense_buflen, MODEPAGE_AUDIO_CTRL, 28960 SD_PATH_STANDARD); 28961 sd_ssc_fini(ssc); 28962 28963 if (rval != 0) { 28964 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28965 "sr_volume_ctrl: Mode Sense Failed\n"); 28966 kmem_free(sense, sense_buflen); 28967 kmem_free(select, select_buflen); 28968 return (rval); 28969 } 28970 sense_mhp = (struct mode_header *)sense; 28971 select_mhp = (struct mode_header *)select; 28972 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 28973 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28974 "sr_volume_ctrl: Mode Sense returned invalid " 28975 "block descriptor length\n"); 28976 kmem_free(sense, sense_buflen); 28977 kmem_free(select, select_buflen); 28978 return (EIO); 28979 } 28980 sense_page = (uchar_t *) 28981 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 28982 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 28983 select_mhp->length = 0; 28984 select_mhp->bdesc_length = 0; 28985 } 28986 /* 28987 * Note: An audio control data structure could be created and overlayed 28988 * on the following in place of the array indexing method implemented. 28989 */ 28990 28991 /* Build the select data for the user volume data */ 28992 select_page[0] = MODEPAGE_AUDIO_CTRL; 28993 select_page[1] = 0xE; 28994 /* Set the immediate bit */ 28995 select_page[2] = 0x04; 28996 /* Zero out reserved fields */ 28997 select_page[3] = 0x00; 28998 select_page[4] = 0x00; 28999 /* Return sense data for fields not to be modified */ 29000 select_page[5] = sense_page[5]; 29001 select_page[6] = sense_page[6]; 29002 select_page[7] = sense_page[7]; 29003 /* Set the user specified volume levels for channel 0 and 1 */ 29004 select_page[8] = 0x01; 29005 select_page[9] = vol->channel0; 29006 select_page[10] = 0x02; 29007 select_page[11] = vol->channel1; 29008 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29009 select_page[12] = sense_page[12]; 29010 select_page[13] = sense_page[13]; 29011 select_page[14] = sense_page[14]; 29012 select_page[15] = sense_page[15]; 29013 29014 ssc = sd_ssc_init(un); 29015 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29016 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 29017 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29018 } else { 29019 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 29020 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29021 } 29022 sd_ssc_fini(ssc); 29023 29024 kmem_free(sense, sense_buflen); 29025 kmem_free(select, select_buflen); 29026 return (rval); 29027 } 29028 29029 29030 /* 29031 * Function: sr_read_sony_session_offset() 29032 * 29033 * Description: This routine is the driver entry point for handling CD-ROM 29034 * ioctl requests for session offset information. (CDROMREADOFFSET) 29035 * The address of the first track in the last session of a 29036 * multi-session CD-ROM is returned 29037 * 29038 * Note: This routine uses a vendor specific key value in the 29039 * command control field without implementing any vendor check here 29040 * or in the ioctl routine. 29041 * 29042 * Arguments: dev - the device 'dev_t' 29043 * data - pointer to an int to hold the requested address 29044 * flag - this argument is a pass through to ddi_copyxxx() 29045 * directly from the mode argument of ioctl(). 29046 * 29047 * Return Code: the code returned by sd_send_scsi_cmd() 29048 * EFAULT if ddi_copyxxx() fails 29049 * ENXIO if fail ddi_get_soft_state 29050 * EINVAL if data pointer is NULL 29051 */ 29052 29053 static int 29054 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29055 { 29056 struct sd_lun *un; 29057 struct uscsi_cmd *com; 29058 caddr_t buffer; 29059 char cdb[CDB_GROUP1]; 29060 int session_offset = 0; 29061 int rval; 29062 29063 if (data == NULL) { 29064 return (EINVAL); 29065 } 29066 29067 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29068 (un->un_state == SD_STATE_OFFLINE)) { 29069 return (ENXIO); 29070 } 29071 29072 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29073 bzero(cdb, CDB_GROUP1); 29074 cdb[0] = SCMD_READ_TOC; 29075 /* 29076 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29077 * (4 byte TOC response header + 8 byte response data) 29078 */ 29079 cdb[8] = SONY_SESSION_OFFSET_LEN; 29080 /* Byte 9 is the control byte. A vendor specific value is used */ 29081 cdb[9] = SONY_SESSION_OFFSET_KEY; 29082 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29083 com->uscsi_cdb = cdb; 29084 com->uscsi_cdblen = CDB_GROUP1; 29085 com->uscsi_bufaddr = buffer; 29086 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29087 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29088 29089 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29090 SD_PATH_STANDARD); 29091 if (rval != 0) { 29092 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29093 kmem_free(com, sizeof (*com)); 29094 return (rval); 29095 } 29096 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29097 session_offset = 29098 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29099 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29100 /* 29101 * Offset returned offset in current lbasize block's. Convert to 29102 * 2k block's to return to the user 29103 */ 29104 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29105 session_offset >>= 2; 29106 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29107 session_offset >>= 1; 29108 } 29109 } 29110 29111 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29112 rval = EFAULT; 29113 } 29114 29115 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29116 kmem_free(com, sizeof (*com)); 29117 return (rval); 29118 } 29119 29120 29121 /* 29122 * Function: sd_wm_cache_constructor() 29123 * 29124 * Description: Cache Constructor for the wmap cache for the read/modify/write 29125 * devices. 29126 * 29127 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29128 * un - sd_lun structure for the device. 29129 * flag - the km flags passed to constructor 29130 * 29131 * Return Code: 0 on success. 29132 * -1 on failure. 29133 */ 29134 29135 /*ARGSUSED*/ 29136 static int 29137 sd_wm_cache_constructor(void *wm, void *un, int flags) 29138 { 29139 bzero(wm, sizeof (struct sd_w_map)); 29140 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29141 return (0); 29142 } 29143 29144 29145 /* 29146 * Function: sd_wm_cache_destructor() 29147 * 29148 * Description: Cache destructor for the wmap cache for the read/modify/write 29149 * devices. 29150 * 29151 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29152 * un - sd_lun structure for the device. 29153 */ 29154 /*ARGSUSED*/ 29155 static void 29156 sd_wm_cache_destructor(void *wm, void *un) 29157 { 29158 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29159 } 29160 29161 29162 /* 29163 * Function: sd_range_lock() 29164 * 29165 * Description: Lock the range of blocks specified as parameter to ensure 29166 * that read, modify write is atomic and no other i/o writes 29167 * to the same location. The range is specified in terms 29168 * of start and end blocks. Block numbers are the actual 29169 * media block numbers and not system. 29170 * 29171 * Arguments: un - sd_lun structure for the device. 29172 * startb - The starting block number 29173 * endb - The end block number 29174 * typ - type of i/o - simple/read_modify_write 29175 * 29176 * Return Code: wm - pointer to the wmap structure. 29177 * 29178 * Context: This routine can sleep. 29179 */ 29180 29181 static struct sd_w_map * 29182 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29183 { 29184 struct sd_w_map *wmp = NULL; 29185 struct sd_w_map *sl_wmp = NULL; 29186 struct sd_w_map *tmp_wmp; 29187 wm_state state = SD_WM_CHK_LIST; 29188 29189 29190 ASSERT(un != NULL); 29191 ASSERT(!mutex_owned(SD_MUTEX(un))); 29192 29193 mutex_enter(SD_MUTEX(un)); 29194 29195 while (state != SD_WM_DONE) { 29196 29197 switch (state) { 29198 case SD_WM_CHK_LIST: 29199 /* 29200 * This is the starting state. Check the wmap list 29201 * to see if the range is currently available. 29202 */ 29203 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29204 /* 29205 * If this is a simple write and no rmw 29206 * i/o is pending then try to lock the 29207 * range as the range should be available. 29208 */ 29209 state = SD_WM_LOCK_RANGE; 29210 } else { 29211 tmp_wmp = sd_get_range(un, startb, endb); 29212 if (tmp_wmp != NULL) { 29213 if ((wmp != NULL) && ONLIST(un, wmp)) { 29214 /* 29215 * Should not keep onlist wmps 29216 * while waiting this macro 29217 * will also do wmp = NULL; 29218 */ 29219 FREE_ONLIST_WMAP(un, wmp); 29220 } 29221 /* 29222 * sl_wmp is the wmap on which wait 29223 * is done, since the tmp_wmp points 29224 * to the inuse wmap, set sl_wmp to 29225 * tmp_wmp and change the state to sleep 29226 */ 29227 sl_wmp = tmp_wmp; 29228 state = SD_WM_WAIT_MAP; 29229 } else { 29230 state = SD_WM_LOCK_RANGE; 29231 } 29232 29233 } 29234 break; 29235 29236 case SD_WM_LOCK_RANGE: 29237 ASSERT(un->un_wm_cache); 29238 /* 29239 * The range need to be locked, try to get a wmap. 29240 * First attempt it with NO_SLEEP, want to avoid a sleep 29241 * if possible as we will have to release the sd mutex 29242 * if we have to sleep. 29243 */ 29244 if (wmp == NULL) 29245 wmp = kmem_cache_alloc(un->un_wm_cache, 29246 KM_NOSLEEP); 29247 if (wmp == NULL) { 29248 mutex_exit(SD_MUTEX(un)); 29249 _NOTE(DATA_READABLE_WITHOUT_LOCK 29250 (sd_lun::un_wm_cache)) 29251 wmp = kmem_cache_alloc(un->un_wm_cache, 29252 KM_SLEEP); 29253 mutex_enter(SD_MUTEX(un)); 29254 /* 29255 * we released the mutex so recheck and go to 29256 * check list state. 29257 */ 29258 state = SD_WM_CHK_LIST; 29259 } else { 29260 /* 29261 * We exit out of state machine since we 29262 * have the wmap. Do the housekeeping first. 29263 * place the wmap on the wmap list if it is not 29264 * on it already and then set the state to done. 29265 */ 29266 wmp->wm_start = startb; 29267 wmp->wm_end = endb; 29268 wmp->wm_flags = typ | SD_WM_BUSY; 29269 if (typ & SD_WTYPE_RMW) { 29270 un->un_rmw_count++; 29271 } 29272 /* 29273 * If not already on the list then link 29274 */ 29275 if (!ONLIST(un, wmp)) { 29276 wmp->wm_next = un->un_wm; 29277 wmp->wm_prev = NULL; 29278 if (wmp->wm_next) 29279 wmp->wm_next->wm_prev = wmp; 29280 un->un_wm = wmp; 29281 } 29282 state = SD_WM_DONE; 29283 } 29284 break; 29285 29286 case SD_WM_WAIT_MAP: 29287 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29288 /* 29289 * Wait is done on sl_wmp, which is set in the 29290 * check_list state. 29291 */ 29292 sl_wmp->wm_wanted_count++; 29293 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29294 sl_wmp->wm_wanted_count--; 29295 /* 29296 * We can reuse the memory from the completed sl_wmp 29297 * lock range for our new lock, but only if noone is 29298 * waiting for it. 29299 */ 29300 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29301 if (sl_wmp->wm_wanted_count == 0) { 29302 if (wmp != NULL) 29303 CHK_N_FREEWMP(un, wmp); 29304 wmp = sl_wmp; 29305 } 29306 sl_wmp = NULL; 29307 /* 29308 * After waking up, need to recheck for availability of 29309 * range. 29310 */ 29311 state = SD_WM_CHK_LIST; 29312 break; 29313 29314 default: 29315 panic("sd_range_lock: " 29316 "Unknown state %d in sd_range_lock", state); 29317 /*NOTREACHED*/ 29318 } /* switch(state) */ 29319 29320 } /* while(state != SD_WM_DONE) */ 29321 29322 mutex_exit(SD_MUTEX(un)); 29323 29324 ASSERT(wmp != NULL); 29325 29326 return (wmp); 29327 } 29328 29329 29330 /* 29331 * Function: sd_get_range() 29332 * 29333 * Description: Find if there any overlapping I/O to this one 29334 * Returns the write-map of 1st such I/O, NULL otherwise. 29335 * 29336 * Arguments: un - sd_lun structure for the device. 29337 * startb - The starting block number 29338 * endb - The end block number 29339 * 29340 * Return Code: wm - pointer to the wmap structure. 29341 */ 29342 29343 static struct sd_w_map * 29344 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29345 { 29346 struct sd_w_map *wmp; 29347 29348 ASSERT(un != NULL); 29349 29350 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29351 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29352 continue; 29353 } 29354 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29355 break; 29356 } 29357 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29358 break; 29359 } 29360 } 29361 29362 return (wmp); 29363 } 29364 29365 29366 /* 29367 * Function: sd_free_inlist_wmap() 29368 * 29369 * Description: Unlink and free a write map struct. 29370 * 29371 * Arguments: un - sd_lun structure for the device. 29372 * wmp - sd_w_map which needs to be unlinked. 29373 */ 29374 29375 static void 29376 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29377 { 29378 ASSERT(un != NULL); 29379 29380 if (un->un_wm == wmp) { 29381 un->un_wm = wmp->wm_next; 29382 } else { 29383 wmp->wm_prev->wm_next = wmp->wm_next; 29384 } 29385 29386 if (wmp->wm_next) { 29387 wmp->wm_next->wm_prev = wmp->wm_prev; 29388 } 29389 29390 wmp->wm_next = wmp->wm_prev = NULL; 29391 29392 kmem_cache_free(un->un_wm_cache, wmp); 29393 } 29394 29395 29396 /* 29397 * Function: sd_range_unlock() 29398 * 29399 * Description: Unlock the range locked by wm. 29400 * Free write map if nobody else is waiting on it. 29401 * 29402 * Arguments: un - sd_lun structure for the device. 29403 * wmp - sd_w_map which needs to be unlinked. 29404 */ 29405 29406 static void 29407 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29408 { 29409 ASSERT(un != NULL); 29410 ASSERT(wm != NULL); 29411 ASSERT(!mutex_owned(SD_MUTEX(un))); 29412 29413 mutex_enter(SD_MUTEX(un)); 29414 29415 if (wm->wm_flags & SD_WTYPE_RMW) { 29416 un->un_rmw_count--; 29417 } 29418 29419 if (wm->wm_wanted_count) { 29420 wm->wm_flags = 0; 29421 /* 29422 * Broadcast that the wmap is available now. 29423 */ 29424 cv_broadcast(&wm->wm_avail); 29425 } else { 29426 /* 29427 * If no one is waiting on the map, it should be free'ed. 29428 */ 29429 sd_free_inlist_wmap(un, wm); 29430 } 29431 29432 mutex_exit(SD_MUTEX(un)); 29433 } 29434 29435 29436 /* 29437 * Function: sd_read_modify_write_task 29438 * 29439 * Description: Called from a taskq thread to initiate the write phase of 29440 * a read-modify-write request. This is used for targets where 29441 * un->un_sys_blocksize != un->un_tgt_blocksize. 29442 * 29443 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29444 * 29445 * Context: Called under taskq thread context. 29446 */ 29447 29448 static void 29449 sd_read_modify_write_task(void *arg) 29450 { 29451 struct sd_mapblocksize_info *bsp; 29452 struct buf *bp; 29453 struct sd_xbuf *xp; 29454 struct sd_lun *un; 29455 29456 bp = arg; /* The bp is given in arg */ 29457 ASSERT(bp != NULL); 29458 29459 /* Get the pointer to the layer-private data struct */ 29460 xp = SD_GET_XBUF(bp); 29461 ASSERT(xp != NULL); 29462 bsp = xp->xb_private; 29463 ASSERT(bsp != NULL); 29464 29465 un = SD_GET_UN(bp); 29466 ASSERT(un != NULL); 29467 ASSERT(!mutex_owned(SD_MUTEX(un))); 29468 29469 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29470 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29471 29472 /* 29473 * This is the write phase of a read-modify-write request, called 29474 * under the context of a taskq thread in response to the completion 29475 * of the read portion of the rmw request completing under interrupt 29476 * context. The write request must be sent from here down the iostart 29477 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29478 * we use the layer index saved in the layer-private data area. 29479 */ 29480 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29481 29482 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29483 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29484 } 29485 29486 29487 /* 29488 * Function: sddump_do_read_of_rmw() 29489 * 29490 * Description: This routine will be called from sddump, If sddump is called 29491 * with an I/O which not aligned on device blocksize boundary 29492 * then the write has to be converted to read-modify-write. 29493 * Do the read part here in order to keep sddump simple. 29494 * Note - That the sd_mutex is held across the call to this 29495 * routine. 29496 * 29497 * Arguments: un - sd_lun 29498 * blkno - block number in terms of media block size. 29499 * nblk - number of blocks. 29500 * bpp - pointer to pointer to the buf structure. On return 29501 * from this function, *bpp points to the valid buffer 29502 * to which the write has to be done. 29503 * 29504 * Return Code: 0 for success or errno-type return code 29505 */ 29506 29507 static int 29508 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29509 struct buf **bpp) 29510 { 29511 int err; 29512 int i; 29513 int rval; 29514 struct buf *bp; 29515 struct scsi_pkt *pkt = NULL; 29516 uint32_t target_blocksize; 29517 29518 ASSERT(un != NULL); 29519 ASSERT(mutex_owned(SD_MUTEX(un))); 29520 29521 target_blocksize = un->un_tgt_blocksize; 29522 29523 mutex_exit(SD_MUTEX(un)); 29524 29525 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29526 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29527 if (bp == NULL) { 29528 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29529 "no resources for dumping; giving up"); 29530 err = ENOMEM; 29531 goto done; 29532 } 29533 29534 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29535 blkno, nblk); 29536 if (rval != 0) { 29537 scsi_free_consistent_buf(bp); 29538 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29539 "no resources for dumping; giving up"); 29540 err = ENOMEM; 29541 goto done; 29542 } 29543 29544 pkt->pkt_flags |= FLAG_NOINTR; 29545 29546 err = EIO; 29547 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29548 29549 /* 29550 * Scsi_poll returns 0 (success) if the command completes and 29551 * the status block is STATUS_GOOD. We should only check 29552 * errors if this condition is not true. Even then we should 29553 * send our own request sense packet only if we have a check 29554 * condition and auto request sense has not been performed by 29555 * the hba. 29556 */ 29557 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29558 29559 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29560 err = 0; 29561 break; 29562 } 29563 29564 /* 29565 * Check CMD_DEV_GONE 1st, give up if device is gone, 29566 * no need to read RQS data. 29567 */ 29568 if (pkt->pkt_reason == CMD_DEV_GONE) { 29569 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29570 "Error while dumping state with rmw..." 29571 "Device is gone\n"); 29572 break; 29573 } 29574 29575 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29576 SD_INFO(SD_LOG_DUMP, un, 29577 "sddump: read failed with CHECK, try # %d\n", i); 29578 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29579 (void) sd_send_polled_RQS(un); 29580 } 29581 29582 continue; 29583 } 29584 29585 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29586 int reset_retval = 0; 29587 29588 SD_INFO(SD_LOG_DUMP, un, 29589 "sddump: read failed with BUSY, try # %d\n", i); 29590 29591 if (un->un_f_lun_reset_enabled == TRUE) { 29592 reset_retval = scsi_reset(SD_ADDRESS(un), 29593 RESET_LUN); 29594 } 29595 if (reset_retval == 0) { 29596 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29597 } 29598 (void) sd_send_polled_RQS(un); 29599 29600 } else { 29601 SD_INFO(SD_LOG_DUMP, un, 29602 "sddump: read failed with 0x%x, try # %d\n", 29603 SD_GET_PKT_STATUS(pkt), i); 29604 mutex_enter(SD_MUTEX(un)); 29605 sd_reset_target(un, pkt); 29606 mutex_exit(SD_MUTEX(un)); 29607 } 29608 29609 /* 29610 * If we are not getting anywhere with lun/target resets, 29611 * let's reset the bus. 29612 */ 29613 if (i > SD_NDUMP_RETRIES/2) { 29614 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29615 (void) sd_send_polled_RQS(un); 29616 } 29617 29618 } 29619 scsi_destroy_pkt(pkt); 29620 29621 if (err != 0) { 29622 scsi_free_consistent_buf(bp); 29623 *bpp = NULL; 29624 } else { 29625 *bpp = bp; 29626 } 29627 29628 done: 29629 mutex_enter(SD_MUTEX(un)); 29630 return (err); 29631 } 29632 29633 29634 /* 29635 * Function: sd_failfast_flushq 29636 * 29637 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29638 * in b_flags and move them onto the failfast queue, then kick 29639 * off a thread to return all bp's on the failfast queue to 29640 * their owners with an error set. 29641 * 29642 * Arguments: un - pointer to the soft state struct for the instance. 29643 * 29644 * Context: may execute in interrupt context. 29645 */ 29646 29647 static void 29648 sd_failfast_flushq(struct sd_lun *un) 29649 { 29650 struct buf *bp; 29651 struct buf *next_waitq_bp; 29652 struct buf *prev_waitq_bp = NULL; 29653 29654 ASSERT(un != NULL); 29655 ASSERT(mutex_owned(SD_MUTEX(un))); 29656 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29657 ASSERT(un->un_failfast_bp == NULL); 29658 29659 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29660 "sd_failfast_flushq: entry: un:0x%p\n", un); 29661 29662 /* 29663 * Check if we should flush all bufs when entering failfast state, or 29664 * just those with B_FAILFAST set. 29665 */ 29666 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29667 /* 29668 * Move *all* bp's on the wait queue to the failfast flush 29669 * queue, including those that do NOT have B_FAILFAST set. 29670 */ 29671 if (un->un_failfast_headp == NULL) { 29672 ASSERT(un->un_failfast_tailp == NULL); 29673 un->un_failfast_headp = un->un_waitq_headp; 29674 } else { 29675 ASSERT(un->un_failfast_tailp != NULL); 29676 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29677 } 29678 29679 un->un_failfast_tailp = un->un_waitq_tailp; 29680 29681 /* update kstat for each bp moved out of the waitq */ 29682 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29683 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29684 } 29685 29686 /* empty the waitq */ 29687 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29688 29689 } else { 29690 /* 29691 * Go thru the wait queue, pick off all entries with 29692 * B_FAILFAST set, and move these onto the failfast queue. 29693 */ 29694 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29695 /* 29696 * Save the pointer to the next bp on the wait queue, 29697 * so we get to it on the next iteration of this loop. 29698 */ 29699 next_waitq_bp = bp->av_forw; 29700 29701 /* 29702 * If this bp from the wait queue does NOT have 29703 * B_FAILFAST set, just move on to the next element 29704 * in the wait queue. Note, this is the only place 29705 * where it is correct to set prev_waitq_bp. 29706 */ 29707 if ((bp->b_flags & B_FAILFAST) == 0) { 29708 prev_waitq_bp = bp; 29709 continue; 29710 } 29711 29712 /* 29713 * Remove the bp from the wait queue. 29714 */ 29715 if (bp == un->un_waitq_headp) { 29716 /* The bp is the first element of the waitq. */ 29717 un->un_waitq_headp = next_waitq_bp; 29718 if (un->un_waitq_headp == NULL) { 29719 /* The wait queue is now empty */ 29720 un->un_waitq_tailp = NULL; 29721 } 29722 } else { 29723 /* 29724 * The bp is either somewhere in the middle 29725 * or at the end of the wait queue. 29726 */ 29727 ASSERT(un->un_waitq_headp != NULL); 29728 ASSERT(prev_waitq_bp != NULL); 29729 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29730 == 0); 29731 if (bp == un->un_waitq_tailp) { 29732 /* bp is the last entry on the waitq. */ 29733 ASSERT(next_waitq_bp == NULL); 29734 un->un_waitq_tailp = prev_waitq_bp; 29735 } 29736 prev_waitq_bp->av_forw = next_waitq_bp; 29737 } 29738 bp->av_forw = NULL; 29739 29740 /* 29741 * update kstat since the bp is moved out of 29742 * the waitq 29743 */ 29744 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29745 29746 /* 29747 * Now put the bp onto the failfast queue. 29748 */ 29749 if (un->un_failfast_headp == NULL) { 29750 /* failfast queue is currently empty */ 29751 ASSERT(un->un_failfast_tailp == NULL); 29752 un->un_failfast_headp = 29753 un->un_failfast_tailp = bp; 29754 } else { 29755 /* Add the bp to the end of the failfast q */ 29756 ASSERT(un->un_failfast_tailp != NULL); 29757 ASSERT(un->un_failfast_tailp->b_flags & 29758 B_FAILFAST); 29759 un->un_failfast_tailp->av_forw = bp; 29760 un->un_failfast_tailp = bp; 29761 } 29762 } 29763 } 29764 29765 /* 29766 * Now return all bp's on the failfast queue to their owners. 29767 */ 29768 while ((bp = un->un_failfast_headp) != NULL) { 29769 29770 un->un_failfast_headp = bp->av_forw; 29771 if (un->un_failfast_headp == NULL) { 29772 un->un_failfast_tailp = NULL; 29773 } 29774 29775 /* 29776 * We want to return the bp with a failure error code, but 29777 * we do not want a call to sd_start_cmds() to occur here, 29778 * so use sd_return_failed_command_no_restart() instead of 29779 * sd_return_failed_command(). 29780 */ 29781 sd_return_failed_command_no_restart(un, bp, EIO); 29782 } 29783 29784 /* Flush the xbuf queues if required. */ 29785 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29786 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29787 } 29788 29789 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29790 "sd_failfast_flushq: exit: un:0x%p\n", un); 29791 } 29792 29793 29794 /* 29795 * Function: sd_failfast_flushq_callback 29796 * 29797 * Description: Return TRUE if the given bp meets the criteria for failfast 29798 * flushing. Used with ddi_xbuf_flushq(9F). 29799 * 29800 * Arguments: bp - ptr to buf struct to be examined. 29801 * 29802 * Context: Any 29803 */ 29804 29805 static int 29806 sd_failfast_flushq_callback(struct buf *bp) 29807 { 29808 /* 29809 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29810 * state is entered; OR (2) the given bp has B_FAILFAST set. 29811 */ 29812 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29813 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29814 } 29815 29816 29817 29818 /* 29819 * Function: sd_setup_next_xfer 29820 * 29821 * Description: Prepare next I/O operation using DMA_PARTIAL 29822 * 29823 */ 29824 29825 static int 29826 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 29827 struct scsi_pkt *pkt, struct sd_xbuf *xp) 29828 { 29829 ssize_t num_blks_not_xfered; 29830 daddr_t strt_blk_num; 29831 ssize_t bytes_not_xfered; 29832 int rval; 29833 29834 ASSERT(pkt->pkt_resid == 0); 29835 29836 /* 29837 * Calculate next block number and amount to be transferred. 29838 * 29839 * How much data NOT transfered to the HBA yet. 29840 */ 29841 bytes_not_xfered = xp->xb_dma_resid; 29842 29843 /* 29844 * figure how many blocks NOT transfered to the HBA yet. 29845 */ 29846 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 29847 29848 /* 29849 * set starting block number to the end of what WAS transfered. 29850 */ 29851 strt_blk_num = xp->xb_blkno + 29852 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 29853 29854 /* 29855 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 29856 * will call scsi_initpkt with NULL_FUNC so we do not have to release 29857 * the disk mutex here. 29858 */ 29859 rval = sd_setup_next_rw_pkt(un, pkt, bp, 29860 strt_blk_num, num_blks_not_xfered); 29861 29862 if (rval == 0) { 29863 29864 /* 29865 * Success. 29866 * 29867 * Adjust things if there are still more blocks to be 29868 * transfered. 29869 */ 29870 xp->xb_dma_resid = pkt->pkt_resid; 29871 pkt->pkt_resid = 0; 29872 29873 return (1); 29874 } 29875 29876 /* 29877 * There's really only one possible return value from 29878 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 29879 * returns NULL. 29880 */ 29881 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 29882 29883 bp->b_resid = bp->b_bcount; 29884 bp->b_flags |= B_ERROR; 29885 29886 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29887 "Error setting up next portion of DMA transfer\n"); 29888 29889 return (0); 29890 } 29891 29892 /* 29893 * Function: sd_panic_for_res_conflict 29894 * 29895 * Description: Call panic with a string formatted with "Reservation Conflict" 29896 * and a human readable identifier indicating the SD instance 29897 * that experienced the reservation conflict. 29898 * 29899 * Arguments: un - pointer to the soft state struct for the instance. 29900 * 29901 * Context: may execute in interrupt context. 29902 */ 29903 29904 #define SD_RESV_CONFLICT_FMT_LEN 40 29905 void 29906 sd_panic_for_res_conflict(struct sd_lun *un) 29907 { 29908 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 29909 char path_str[MAXPATHLEN]; 29910 29911 (void) snprintf(panic_str, sizeof (panic_str), 29912 "Reservation Conflict\nDisk: %s", 29913 ddi_pathname(SD_DEVINFO(un), path_str)); 29914 29915 panic(panic_str); 29916 } 29917 29918 /* 29919 * Note: The following sd_faultinjection_ioctl( ) routines implement 29920 * driver support for handling fault injection for error analysis 29921 * causing faults in multiple layers of the driver. 29922 * 29923 */ 29924 29925 #ifdef SD_FAULT_INJECTION 29926 static uint_t sd_fault_injection_on = 0; 29927 29928 /* 29929 * Function: sd_faultinjection_ioctl() 29930 * 29931 * Description: This routine is the driver entry point for handling 29932 * faultinjection ioctls to inject errors into the 29933 * layer model 29934 * 29935 * Arguments: cmd - the ioctl cmd received 29936 * arg - the arguments from user and returns 29937 */ 29938 29939 static void 29940 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 29941 29942 uint_t i = 0; 29943 uint_t rval; 29944 29945 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 29946 29947 mutex_enter(SD_MUTEX(un)); 29948 29949 switch (cmd) { 29950 case SDIOCRUN: 29951 /* Allow pushed faults to be injected */ 29952 SD_INFO(SD_LOG_SDTEST, un, 29953 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 29954 29955 sd_fault_injection_on = 1; 29956 29957 SD_INFO(SD_LOG_IOERR, un, 29958 "sd_faultinjection_ioctl: run finished\n"); 29959 break; 29960 29961 case SDIOCSTART: 29962 /* Start Injection Session */ 29963 SD_INFO(SD_LOG_SDTEST, un, 29964 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 29965 29966 sd_fault_injection_on = 0; 29967 un->sd_injection_mask = 0xFFFFFFFF; 29968 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29969 un->sd_fi_fifo_pkt[i] = NULL; 29970 un->sd_fi_fifo_xb[i] = NULL; 29971 un->sd_fi_fifo_un[i] = NULL; 29972 un->sd_fi_fifo_arq[i] = NULL; 29973 } 29974 un->sd_fi_fifo_start = 0; 29975 un->sd_fi_fifo_end = 0; 29976 29977 mutex_enter(&(un->un_fi_mutex)); 29978 un->sd_fi_log[0] = '\0'; 29979 un->sd_fi_buf_len = 0; 29980 mutex_exit(&(un->un_fi_mutex)); 29981 29982 SD_INFO(SD_LOG_IOERR, un, 29983 "sd_faultinjection_ioctl: start finished\n"); 29984 break; 29985 29986 case SDIOCSTOP: 29987 /* Stop Injection Session */ 29988 SD_INFO(SD_LOG_SDTEST, un, 29989 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 29990 sd_fault_injection_on = 0; 29991 un->sd_injection_mask = 0x0; 29992 29993 /* Empty stray or unuseds structs from fifo */ 29994 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29995 if (un->sd_fi_fifo_pkt[i] != NULL) { 29996 kmem_free(un->sd_fi_fifo_pkt[i], 29997 sizeof (struct sd_fi_pkt)); 29998 } 29999 if (un->sd_fi_fifo_xb[i] != NULL) { 30000 kmem_free(un->sd_fi_fifo_xb[i], 30001 sizeof (struct sd_fi_xb)); 30002 } 30003 if (un->sd_fi_fifo_un[i] != NULL) { 30004 kmem_free(un->sd_fi_fifo_un[i], 30005 sizeof (struct sd_fi_un)); 30006 } 30007 if (un->sd_fi_fifo_arq[i] != NULL) { 30008 kmem_free(un->sd_fi_fifo_arq[i], 30009 sizeof (struct sd_fi_arq)); 30010 } 30011 un->sd_fi_fifo_pkt[i] = NULL; 30012 un->sd_fi_fifo_un[i] = NULL; 30013 un->sd_fi_fifo_xb[i] = NULL; 30014 un->sd_fi_fifo_arq[i] = NULL; 30015 } 30016 un->sd_fi_fifo_start = 0; 30017 un->sd_fi_fifo_end = 0; 30018 30019 SD_INFO(SD_LOG_IOERR, un, 30020 "sd_faultinjection_ioctl: stop finished\n"); 30021 break; 30022 30023 case SDIOCINSERTPKT: 30024 /* Store a packet struct to be pushed onto fifo */ 30025 SD_INFO(SD_LOG_SDTEST, un, 30026 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30027 30028 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30029 30030 sd_fault_injection_on = 0; 30031 30032 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30033 if (un->sd_fi_fifo_pkt[i] != NULL) { 30034 kmem_free(un->sd_fi_fifo_pkt[i], 30035 sizeof (struct sd_fi_pkt)); 30036 } 30037 if (arg != NULL) { 30038 un->sd_fi_fifo_pkt[i] = 30039 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30040 if (un->sd_fi_fifo_pkt[i] == NULL) { 30041 /* Alloc failed don't store anything */ 30042 break; 30043 } 30044 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30045 sizeof (struct sd_fi_pkt), 0); 30046 if (rval == -1) { 30047 kmem_free(un->sd_fi_fifo_pkt[i], 30048 sizeof (struct sd_fi_pkt)); 30049 un->sd_fi_fifo_pkt[i] = NULL; 30050 } 30051 } else { 30052 SD_INFO(SD_LOG_IOERR, un, 30053 "sd_faultinjection_ioctl: pkt null\n"); 30054 } 30055 break; 30056 30057 case SDIOCINSERTXB: 30058 /* Store a xb struct to be pushed onto fifo */ 30059 SD_INFO(SD_LOG_SDTEST, un, 30060 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30061 30062 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30063 30064 sd_fault_injection_on = 0; 30065 30066 if (un->sd_fi_fifo_xb[i] != NULL) { 30067 kmem_free(un->sd_fi_fifo_xb[i], 30068 sizeof (struct sd_fi_xb)); 30069 un->sd_fi_fifo_xb[i] = NULL; 30070 } 30071 if (arg != NULL) { 30072 un->sd_fi_fifo_xb[i] = 30073 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30074 if (un->sd_fi_fifo_xb[i] == NULL) { 30075 /* Alloc failed don't store anything */ 30076 break; 30077 } 30078 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30079 sizeof (struct sd_fi_xb), 0); 30080 30081 if (rval == -1) { 30082 kmem_free(un->sd_fi_fifo_xb[i], 30083 sizeof (struct sd_fi_xb)); 30084 un->sd_fi_fifo_xb[i] = NULL; 30085 } 30086 } else { 30087 SD_INFO(SD_LOG_IOERR, un, 30088 "sd_faultinjection_ioctl: xb null\n"); 30089 } 30090 break; 30091 30092 case SDIOCINSERTUN: 30093 /* Store a un struct to be pushed onto fifo */ 30094 SD_INFO(SD_LOG_SDTEST, un, 30095 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30096 30097 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30098 30099 sd_fault_injection_on = 0; 30100 30101 if (un->sd_fi_fifo_un[i] != NULL) { 30102 kmem_free(un->sd_fi_fifo_un[i], 30103 sizeof (struct sd_fi_un)); 30104 un->sd_fi_fifo_un[i] = NULL; 30105 } 30106 if (arg != NULL) { 30107 un->sd_fi_fifo_un[i] = 30108 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30109 if (un->sd_fi_fifo_un[i] == NULL) { 30110 /* Alloc failed don't store anything */ 30111 break; 30112 } 30113 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30114 sizeof (struct sd_fi_un), 0); 30115 if (rval == -1) { 30116 kmem_free(un->sd_fi_fifo_un[i], 30117 sizeof (struct sd_fi_un)); 30118 un->sd_fi_fifo_un[i] = NULL; 30119 } 30120 30121 } else { 30122 SD_INFO(SD_LOG_IOERR, un, 30123 "sd_faultinjection_ioctl: un null\n"); 30124 } 30125 30126 break; 30127 30128 case SDIOCINSERTARQ: 30129 /* Store a arq struct to be pushed onto fifo */ 30130 SD_INFO(SD_LOG_SDTEST, un, 30131 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30132 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30133 30134 sd_fault_injection_on = 0; 30135 30136 if (un->sd_fi_fifo_arq[i] != NULL) { 30137 kmem_free(un->sd_fi_fifo_arq[i], 30138 sizeof (struct sd_fi_arq)); 30139 un->sd_fi_fifo_arq[i] = NULL; 30140 } 30141 if (arg != NULL) { 30142 un->sd_fi_fifo_arq[i] = 30143 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30144 if (un->sd_fi_fifo_arq[i] == NULL) { 30145 /* Alloc failed don't store anything */ 30146 break; 30147 } 30148 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30149 sizeof (struct sd_fi_arq), 0); 30150 if (rval == -1) { 30151 kmem_free(un->sd_fi_fifo_arq[i], 30152 sizeof (struct sd_fi_arq)); 30153 un->sd_fi_fifo_arq[i] = NULL; 30154 } 30155 30156 } else { 30157 SD_INFO(SD_LOG_IOERR, un, 30158 "sd_faultinjection_ioctl: arq null\n"); 30159 } 30160 30161 break; 30162 30163 case SDIOCPUSH: 30164 /* Push stored xb, pkt, un, and arq onto fifo */ 30165 sd_fault_injection_on = 0; 30166 30167 if (arg != NULL) { 30168 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30169 if (rval != -1 && 30170 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30171 un->sd_fi_fifo_end += i; 30172 } 30173 } else { 30174 SD_INFO(SD_LOG_IOERR, un, 30175 "sd_faultinjection_ioctl: push arg null\n"); 30176 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30177 un->sd_fi_fifo_end++; 30178 } 30179 } 30180 SD_INFO(SD_LOG_IOERR, un, 30181 "sd_faultinjection_ioctl: push to end=%d\n", 30182 un->sd_fi_fifo_end); 30183 break; 30184 30185 case SDIOCRETRIEVE: 30186 /* Return buffer of log from Injection session */ 30187 SD_INFO(SD_LOG_SDTEST, un, 30188 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30189 30190 sd_fault_injection_on = 0; 30191 30192 mutex_enter(&(un->un_fi_mutex)); 30193 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30194 un->sd_fi_buf_len+1, 0); 30195 mutex_exit(&(un->un_fi_mutex)); 30196 30197 if (rval == -1) { 30198 /* 30199 * arg is possibly invalid setting 30200 * it to NULL for return 30201 */ 30202 arg = NULL; 30203 } 30204 break; 30205 } 30206 30207 mutex_exit(SD_MUTEX(un)); 30208 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30209 " exit\n"); 30210 } 30211 30212 30213 /* 30214 * Function: sd_injection_log() 30215 * 30216 * Description: This routine adds buff to the already existing injection log 30217 * for retrieval via faultinjection_ioctl for use in fault 30218 * detection and recovery 30219 * 30220 * Arguments: buf - the string to add to the log 30221 */ 30222 30223 static void 30224 sd_injection_log(char *buf, struct sd_lun *un) 30225 { 30226 uint_t len; 30227 30228 ASSERT(un != NULL); 30229 ASSERT(buf != NULL); 30230 30231 mutex_enter(&(un->un_fi_mutex)); 30232 30233 len = min(strlen(buf), 255); 30234 /* Add logged value to Injection log to be returned later */ 30235 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30236 uint_t offset = strlen((char *)un->sd_fi_log); 30237 char *destp = (char *)un->sd_fi_log + offset; 30238 int i; 30239 for (i = 0; i < len; i++) { 30240 *destp++ = *buf++; 30241 } 30242 un->sd_fi_buf_len += len; 30243 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30244 } 30245 30246 mutex_exit(&(un->un_fi_mutex)); 30247 } 30248 30249 30250 /* 30251 * Function: sd_faultinjection() 30252 * 30253 * Description: This routine takes the pkt and changes its 30254 * content based on error injection scenerio. 30255 * 30256 * Arguments: pktp - packet to be changed 30257 */ 30258 30259 static void 30260 sd_faultinjection(struct scsi_pkt *pktp) 30261 { 30262 uint_t i; 30263 struct sd_fi_pkt *fi_pkt; 30264 struct sd_fi_xb *fi_xb; 30265 struct sd_fi_un *fi_un; 30266 struct sd_fi_arq *fi_arq; 30267 struct buf *bp; 30268 struct sd_xbuf *xb; 30269 struct sd_lun *un; 30270 30271 ASSERT(pktp != NULL); 30272 30273 /* pull bp xb and un from pktp */ 30274 bp = (struct buf *)pktp->pkt_private; 30275 xb = SD_GET_XBUF(bp); 30276 un = SD_GET_UN(bp); 30277 30278 ASSERT(un != NULL); 30279 30280 mutex_enter(SD_MUTEX(un)); 30281 30282 SD_TRACE(SD_LOG_SDTEST, un, 30283 "sd_faultinjection: entry Injection from sdintr\n"); 30284 30285 /* if injection is off return */ 30286 if (sd_fault_injection_on == 0 || 30287 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30288 mutex_exit(SD_MUTEX(un)); 30289 return; 30290 } 30291 30292 SD_INFO(SD_LOG_SDTEST, un, 30293 "sd_faultinjection: is working for copying\n"); 30294 30295 /* take next set off fifo */ 30296 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30297 30298 fi_pkt = un->sd_fi_fifo_pkt[i]; 30299 fi_xb = un->sd_fi_fifo_xb[i]; 30300 fi_un = un->sd_fi_fifo_un[i]; 30301 fi_arq = un->sd_fi_fifo_arq[i]; 30302 30303 30304 /* set variables accordingly */ 30305 /* set pkt if it was on fifo */ 30306 if (fi_pkt != NULL) { 30307 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30308 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30309 if (fi_pkt->pkt_cdbp != 0xff) 30310 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30311 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30312 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30313 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30314 30315 } 30316 /* set xb if it was on fifo */ 30317 if (fi_xb != NULL) { 30318 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30319 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30320 if (fi_xb->xb_retry_count != 0) 30321 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30322 SD_CONDSET(xb, xb, xb_victim_retry_count, 30323 "xb_victim_retry_count"); 30324 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30325 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30326 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30327 30328 /* copy in block data from sense */ 30329 /* 30330 * if (fi_xb->xb_sense_data[0] != -1) { 30331 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30332 * SENSE_LENGTH); 30333 * } 30334 */ 30335 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30336 30337 /* copy in extended sense codes */ 30338 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30339 xb, es_code, "es_code"); 30340 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30341 xb, es_key, "es_key"); 30342 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30343 xb, es_add_code, "es_add_code"); 30344 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30345 xb, es_qual_code, "es_qual_code"); 30346 struct scsi_extended_sense *esp; 30347 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30348 esp->es_class = CLASS_EXTENDED_SENSE; 30349 } 30350 30351 /* set un if it was on fifo */ 30352 if (fi_un != NULL) { 30353 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30354 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30355 SD_CONDSET(un, un, un_reset_retry_count, 30356 "un_reset_retry_count"); 30357 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30358 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30359 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30360 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30361 "un_f_allow_bus_device_reset"); 30362 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30363 30364 } 30365 30366 /* copy in auto request sense if it was on fifo */ 30367 if (fi_arq != NULL) { 30368 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30369 } 30370 30371 /* free structs */ 30372 if (un->sd_fi_fifo_pkt[i] != NULL) { 30373 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30374 } 30375 if (un->sd_fi_fifo_xb[i] != NULL) { 30376 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30377 } 30378 if (un->sd_fi_fifo_un[i] != NULL) { 30379 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30380 } 30381 if (un->sd_fi_fifo_arq[i] != NULL) { 30382 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30383 } 30384 30385 /* 30386 * kmem_free does not gurantee to set to NULL 30387 * since we uses these to determine if we set 30388 * values or not lets confirm they are always 30389 * NULL after free 30390 */ 30391 un->sd_fi_fifo_pkt[i] = NULL; 30392 un->sd_fi_fifo_un[i] = NULL; 30393 un->sd_fi_fifo_xb[i] = NULL; 30394 un->sd_fi_fifo_arq[i] = NULL; 30395 30396 un->sd_fi_fifo_start++; 30397 30398 mutex_exit(SD_MUTEX(un)); 30399 30400 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30401 } 30402 30403 #endif /* SD_FAULT_INJECTION */ 30404 30405 /* 30406 * This routine is invoked in sd_unit_attach(). Before calling it, the 30407 * properties in conf file should be processed already, and "hotpluggable" 30408 * property was processed also. 30409 * 30410 * The sd driver distinguishes 3 different type of devices: removable media, 30411 * non-removable media, and hotpluggable. Below the differences are defined: 30412 * 30413 * 1. Device ID 30414 * 30415 * The device ID of a device is used to identify this device. Refer to 30416 * ddi_devid_register(9F). 30417 * 30418 * For a non-removable media disk device which can provide 0x80 or 0x83 30419 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30420 * device ID is created to identify this device. For other non-removable 30421 * media devices, a default device ID is created only if this device has 30422 * at least 2 alter cylinders. Otherwise, this device has no devid. 30423 * 30424 * ------------------------------------------------------- 30425 * removable media hotpluggable | Can Have Device ID 30426 * ------------------------------------------------------- 30427 * false false | Yes 30428 * false true | Yes 30429 * true x | No 30430 * ------------------------------------------------------ 30431 * 30432 * 30433 * 2. SCSI group 4 commands 30434 * 30435 * In SCSI specs, only some commands in group 4 command set can use 30436 * 8-byte addresses that can be used to access >2TB storage spaces. 30437 * Other commands have no such capability. Without supporting group4, 30438 * it is impossible to make full use of storage spaces of a disk with 30439 * capacity larger than 2TB. 30440 * 30441 * ----------------------------------------------- 30442 * removable media hotpluggable LP64 | Group 30443 * ----------------------------------------------- 30444 * false false false | 1 30445 * false false true | 4 30446 * false true false | 1 30447 * false true true | 4 30448 * true x x | 5 30449 * ----------------------------------------------- 30450 * 30451 * 30452 * 3. Check for VTOC Label 30453 * 30454 * If a direct-access disk has no EFI label, sd will check if it has a 30455 * valid VTOC label. Now, sd also does that check for removable media 30456 * and hotpluggable devices. 30457 * 30458 * -------------------------------------------------------------- 30459 * Direct-Access removable media hotpluggable | Check Label 30460 * ------------------------------------------------------------- 30461 * false false false | No 30462 * false false true | No 30463 * false true false | Yes 30464 * false true true | Yes 30465 * true x x | Yes 30466 * -------------------------------------------------------------- 30467 * 30468 * 30469 * 4. Building default VTOC label 30470 * 30471 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30472 * If those devices have no valid VTOC label, sd(7d) will attempt to 30473 * create default VTOC for them. Currently sd creates default VTOC label 30474 * for all devices on x86 platform (VTOC_16), but only for removable 30475 * media devices on SPARC (VTOC_8). 30476 * 30477 * ----------------------------------------------------------- 30478 * removable media hotpluggable platform | Default Label 30479 * ----------------------------------------------------------- 30480 * false false sparc | No 30481 * false true x86 | Yes 30482 * false true sparc | Yes 30483 * true x x | Yes 30484 * ---------------------------------------------------------- 30485 * 30486 * 30487 * 5. Supported blocksizes of target devices 30488 * 30489 * Sd supports non-512-byte blocksize for removable media devices only. 30490 * For other devices, only 512-byte blocksize is supported. This may be 30491 * changed in near future because some RAID devices require non-512-byte 30492 * blocksize 30493 * 30494 * ----------------------------------------------------------- 30495 * removable media hotpluggable | non-512-byte blocksize 30496 * ----------------------------------------------------------- 30497 * false false | No 30498 * false true | No 30499 * true x | Yes 30500 * ----------------------------------------------------------- 30501 * 30502 * 30503 * 6. Automatic mount & unmount 30504 * 30505 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30506 * if a device is removable media device. It return 1 for removable media 30507 * devices, and 0 for others. 30508 * 30509 * The automatic mounting subsystem should distinguish between the types 30510 * of devices and apply automounting policies to each. 30511 * 30512 * 30513 * 7. fdisk partition management 30514 * 30515 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30516 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30517 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30518 * fdisk partitions on both x86 and SPARC platform. 30519 * 30520 * ----------------------------------------------------------- 30521 * platform removable media USB/1394 | fdisk supported 30522 * ----------------------------------------------------------- 30523 * x86 X X | true 30524 * ------------------------------------------------------------ 30525 * sparc X X | false 30526 * ------------------------------------------------------------ 30527 * 30528 * 30529 * 8. MBOOT/MBR 30530 * 30531 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30532 * read/write mboot for removable media devices on sparc platform. 30533 * 30534 * ----------------------------------------------------------- 30535 * platform removable media USB/1394 | mboot supported 30536 * ----------------------------------------------------------- 30537 * x86 X X | true 30538 * ------------------------------------------------------------ 30539 * sparc false false | false 30540 * sparc false true | true 30541 * sparc true false | true 30542 * sparc true true | true 30543 * ------------------------------------------------------------ 30544 * 30545 * 30546 * 9. error handling during opening device 30547 * 30548 * If failed to open a disk device, an errno is returned. For some kinds 30549 * of errors, different errno is returned depending on if this device is 30550 * a removable media device. This brings USB/1394 hard disks in line with 30551 * expected hard disk behavior. It is not expected that this breaks any 30552 * application. 30553 * 30554 * ------------------------------------------------------ 30555 * removable media hotpluggable | errno 30556 * ------------------------------------------------------ 30557 * false false | EIO 30558 * false true | EIO 30559 * true x | ENXIO 30560 * ------------------------------------------------------ 30561 * 30562 * 30563 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30564 * 30565 * These IOCTLs are applicable only to removable media devices. 30566 * 30567 * ----------------------------------------------------------- 30568 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30569 * ----------------------------------------------------------- 30570 * false false | No 30571 * false true | No 30572 * true x | Yes 30573 * ----------------------------------------------------------- 30574 * 30575 * 30576 * 12. Kstats for partitions 30577 * 30578 * sd creates partition kstat for non-removable media devices. USB and 30579 * Firewire hard disks now have partition kstats 30580 * 30581 * ------------------------------------------------------ 30582 * removable media hotpluggable | kstat 30583 * ------------------------------------------------------ 30584 * false false | Yes 30585 * false true | Yes 30586 * true x | No 30587 * ------------------------------------------------------ 30588 * 30589 * 30590 * 13. Removable media & hotpluggable properties 30591 * 30592 * Sd driver creates a "removable-media" property for removable media 30593 * devices. Parent nexus drivers create a "hotpluggable" property if 30594 * it supports hotplugging. 30595 * 30596 * --------------------------------------------------------------------- 30597 * removable media hotpluggable | "removable-media" " hotpluggable" 30598 * --------------------------------------------------------------------- 30599 * false false | No No 30600 * false true | No Yes 30601 * true false | Yes No 30602 * true true | Yes Yes 30603 * --------------------------------------------------------------------- 30604 * 30605 * 30606 * 14. Power Management 30607 * 30608 * sd only power manages removable media devices or devices that support 30609 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30610 * 30611 * A parent nexus that supports hotplugging can also set "pm-capable" 30612 * if the disk can be power managed. 30613 * 30614 * ------------------------------------------------------------ 30615 * removable media hotpluggable pm-capable | power manage 30616 * ------------------------------------------------------------ 30617 * false false false | No 30618 * false false true | Yes 30619 * false true false | No 30620 * false true true | Yes 30621 * true x x | Yes 30622 * ------------------------------------------------------------ 30623 * 30624 * USB and firewire hard disks can now be power managed independently 30625 * of the framebuffer 30626 * 30627 * 30628 * 15. Support for USB disks with capacity larger than 1TB 30629 * 30630 * Currently, sd doesn't permit a fixed disk device with capacity 30631 * larger than 1TB to be used in a 32-bit operating system environment. 30632 * However, sd doesn't do that for removable media devices. Instead, it 30633 * assumes that removable media devices cannot have a capacity larger 30634 * than 1TB. Therefore, using those devices on 32-bit system is partially 30635 * supported, which can cause some unexpected results. 30636 * 30637 * --------------------------------------------------------------------- 30638 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30639 * --------------------------------------------------------------------- 30640 * false false | true | no 30641 * false true | true | no 30642 * true false | true | Yes 30643 * true true | true | Yes 30644 * --------------------------------------------------------------------- 30645 * 30646 * 30647 * 16. Check write-protection at open time 30648 * 30649 * When a removable media device is being opened for writing without NDELAY 30650 * flag, sd will check if this device is writable. If attempting to open 30651 * without NDELAY flag a write-protected device, this operation will abort. 30652 * 30653 * ------------------------------------------------------------ 30654 * removable media USB/1394 | WP Check 30655 * ------------------------------------------------------------ 30656 * false false | No 30657 * false true | No 30658 * true false | Yes 30659 * true true | Yes 30660 * ------------------------------------------------------------ 30661 * 30662 * 30663 * 17. syslog when corrupted VTOC is encountered 30664 * 30665 * Currently, if an invalid VTOC is encountered, sd only print syslog 30666 * for fixed SCSI disks. 30667 * ------------------------------------------------------------ 30668 * removable media USB/1394 | print syslog 30669 * ------------------------------------------------------------ 30670 * false false | Yes 30671 * false true | No 30672 * true false | No 30673 * true true | No 30674 * ------------------------------------------------------------ 30675 */ 30676 static void 30677 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30678 { 30679 int pm_cap; 30680 30681 ASSERT(un->un_sd); 30682 ASSERT(un->un_sd->sd_inq); 30683 30684 /* 30685 * Enable SYNC CACHE support for all devices. 30686 */ 30687 un->un_f_sync_cache_supported = TRUE; 30688 30689 /* 30690 * Set the sync cache required flag to false. 30691 * This would ensure that there is no SYNC CACHE 30692 * sent when there are no writes 30693 */ 30694 un->un_f_sync_cache_required = FALSE; 30695 30696 if (un->un_sd->sd_inq->inq_rmb) { 30697 /* 30698 * The media of this device is removable. And for this kind 30699 * of devices, it is possible to change medium after opening 30700 * devices. Thus we should support this operation. 30701 */ 30702 un->un_f_has_removable_media = TRUE; 30703 30704 /* 30705 * support non-512-byte blocksize of removable media devices 30706 */ 30707 un->un_f_non_devbsize_supported = TRUE; 30708 30709 /* 30710 * Assume that all removable media devices support DOOR_LOCK 30711 */ 30712 un->un_f_doorlock_supported = TRUE; 30713 30714 /* 30715 * For a removable media device, it is possible to be opened 30716 * with NDELAY flag when there is no media in drive, in this 30717 * case we don't care if device is writable. But if without 30718 * NDELAY flag, we need to check if media is write-protected. 30719 */ 30720 un->un_f_chk_wp_open = TRUE; 30721 30722 /* 30723 * need to start a SCSI watch thread to monitor media state, 30724 * when media is being inserted or ejected, notify syseventd. 30725 */ 30726 un->un_f_monitor_media_state = TRUE; 30727 30728 /* 30729 * Some devices don't support START_STOP_UNIT command. 30730 * Therefore, we'd better check if a device supports it 30731 * before sending it. 30732 */ 30733 un->un_f_check_start_stop = TRUE; 30734 30735 /* 30736 * support eject media ioctl: 30737 * FDEJECT, DKIOCEJECT, CDROMEJECT 30738 */ 30739 un->un_f_eject_media_supported = TRUE; 30740 30741 /* 30742 * Because many removable-media devices don't support 30743 * LOG_SENSE, we couldn't use this command to check if 30744 * a removable media device support power-management. 30745 * We assume that they support power-management via 30746 * START_STOP_UNIT command and can be spun up and down 30747 * without limitations. 30748 */ 30749 un->un_f_pm_supported = TRUE; 30750 30751 /* 30752 * Need to create a zero length (Boolean) property 30753 * removable-media for the removable media devices. 30754 * Note that the return value of the property is not being 30755 * checked, since if unable to create the property 30756 * then do not want the attach to fail altogether. Consistent 30757 * with other property creation in attach. 30758 */ 30759 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30760 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30761 30762 } else { 30763 /* 30764 * create device ID for device 30765 */ 30766 un->un_f_devid_supported = TRUE; 30767 30768 /* 30769 * Spin up non-removable-media devices once it is attached 30770 */ 30771 un->un_f_attach_spinup = TRUE; 30772 30773 /* 30774 * According to SCSI specification, Sense data has two kinds of 30775 * format: fixed format, and descriptor format. At present, we 30776 * don't support descriptor format sense data for removable 30777 * media. 30778 */ 30779 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30780 un->un_f_descr_format_supported = TRUE; 30781 } 30782 30783 /* 30784 * kstats are created only for non-removable media devices. 30785 * 30786 * Set this in sd.conf to 0 in order to disable kstats. The 30787 * default is 1, so they are enabled by default. 30788 */ 30789 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30790 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30791 "enable-partition-kstats", 1)); 30792 30793 /* 30794 * Check if HBA has set the "pm-capable" property. 30795 * If "pm-capable" exists and is non-zero then we can 30796 * power manage the device without checking the start/stop 30797 * cycle count log sense page. 30798 * 30799 * If "pm-capable" exists and is set to be false (0), 30800 * then we should not power manage the device. 30801 * 30802 * If "pm-capable" doesn't exist then pm_cap will 30803 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 30804 * sd will check the start/stop cycle count log sense page 30805 * and power manage the device if the cycle count limit has 30806 * not been exceeded. 30807 */ 30808 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 30809 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 30810 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 30811 un->un_f_log_sense_supported = TRUE; 30812 if (!un->un_f_power_condition_disabled && 30813 SD_INQUIRY(un)->inq_ansi == 6) { 30814 un->un_f_power_condition_supported = TRUE; 30815 } 30816 } else { 30817 /* 30818 * pm-capable property exists. 30819 * 30820 * Convert "TRUE" values for pm_cap to 30821 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 30822 * later. "TRUE" values are any values defined in 30823 * inquiry.h. 30824 */ 30825 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 30826 un->un_f_log_sense_supported = FALSE; 30827 } else { 30828 /* SD_PM_CAPABLE_IS_TRUE case */ 30829 un->un_f_pm_supported = TRUE; 30830 if (!un->un_f_power_condition_disabled && 30831 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 30832 un->un_f_power_condition_supported = 30833 TRUE; 30834 } 30835 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 30836 un->un_f_log_sense_supported = TRUE; 30837 un->un_f_pm_log_sense_smart = 30838 SD_PM_CAP_SMART_LOG(pm_cap); 30839 } 30840 } 30841 30842 SD_INFO(SD_LOG_ATTACH_DETACH, un, 30843 "sd_unit_attach: un:0x%p pm-capable " 30844 "property set to %d.\n", un, un->un_f_pm_supported); 30845 } 30846 } 30847 30848 if (un->un_f_is_hotpluggable) { 30849 30850 /* 30851 * Have to watch hotpluggable devices as well, since 30852 * that's the only way for userland applications to 30853 * detect hot removal while device is busy/mounted. 30854 */ 30855 un->un_f_monitor_media_state = TRUE; 30856 30857 un->un_f_check_start_stop = TRUE; 30858 30859 } 30860 } 30861 30862 /* 30863 * sd_tg_rdwr: 30864 * Provides rdwr access for cmlb via sd_tgops. The start_block is 30865 * in sys block size, req_length in bytes. 30866 * 30867 */ 30868 static int 30869 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 30870 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 30871 { 30872 struct sd_lun *un; 30873 int path_flag = (int)(uintptr_t)tg_cookie; 30874 char *dkl = NULL; 30875 diskaddr_t real_addr = start_block; 30876 diskaddr_t first_byte, end_block; 30877 30878 size_t buffer_size = reqlength; 30879 int rval = 0; 30880 diskaddr_t cap; 30881 uint32_t lbasize; 30882 sd_ssc_t *ssc; 30883 30884 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30885 if (un == NULL) 30886 return (ENXIO); 30887 30888 if (cmd != TG_READ && cmd != TG_WRITE) 30889 return (EINVAL); 30890 30891 ssc = sd_ssc_init(un); 30892 mutex_enter(SD_MUTEX(un)); 30893 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 30894 mutex_exit(SD_MUTEX(un)); 30895 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30896 &lbasize, path_flag); 30897 if (rval != 0) 30898 goto done1; 30899 mutex_enter(SD_MUTEX(un)); 30900 sd_update_block_info(un, lbasize, cap); 30901 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 30902 mutex_exit(SD_MUTEX(un)); 30903 rval = EIO; 30904 goto done; 30905 } 30906 } 30907 30908 if (NOT_DEVBSIZE(un)) { 30909 /* 30910 * sys_blocksize != tgt_blocksize, need to re-adjust 30911 * blkno and save the index to beginning of dk_label 30912 */ 30913 first_byte = SD_SYSBLOCKS2BYTES(start_block); 30914 real_addr = first_byte / un->un_tgt_blocksize; 30915 30916 end_block = (first_byte + reqlength + 30917 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 30918 30919 /* round up buffer size to multiple of target block size */ 30920 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 30921 30922 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 30923 "label_addr: 0x%x allocation size: 0x%x\n", 30924 real_addr, buffer_size); 30925 30926 if (((first_byte % un->un_tgt_blocksize) != 0) || 30927 (reqlength % un->un_tgt_blocksize) != 0) 30928 /* the request is not aligned */ 30929 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 30930 } 30931 30932 /* 30933 * The MMC standard allows READ CAPACITY to be 30934 * inaccurate by a bounded amount (in the interest of 30935 * response latency). As a result, failed READs are 30936 * commonplace (due to the reading of metadata and not 30937 * data). Depending on the per-Vendor/drive Sense data, 30938 * the failed READ can cause many (unnecessary) retries. 30939 */ 30940 30941 if (ISCD(un) && (cmd == TG_READ) && 30942 (un->un_f_blockcount_is_valid == TRUE) && 30943 ((start_block == (un->un_blockcount - 1))|| 30944 (start_block == (un->un_blockcount - 2)))) { 30945 path_flag = SD_PATH_DIRECT_PRIORITY; 30946 } 30947 30948 mutex_exit(SD_MUTEX(un)); 30949 if (cmd == TG_READ) { 30950 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 30951 buffer_size, real_addr, path_flag); 30952 if (dkl != NULL) 30953 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 30954 real_addr), bufaddr, reqlength); 30955 } else { 30956 if (dkl) { 30957 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 30958 real_addr, path_flag); 30959 if (rval) { 30960 goto done1; 30961 } 30962 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 30963 real_addr), reqlength); 30964 } 30965 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 30966 buffer_size, real_addr, path_flag); 30967 } 30968 30969 done1: 30970 if (dkl != NULL) 30971 kmem_free(dkl, buffer_size); 30972 30973 if (rval != 0) { 30974 if (rval == EIO) 30975 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 30976 else 30977 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 30978 } 30979 done: 30980 sd_ssc_fini(ssc); 30981 return (rval); 30982 } 30983 30984 30985 static int 30986 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 30987 { 30988 30989 struct sd_lun *un; 30990 diskaddr_t cap; 30991 uint32_t lbasize; 30992 int path_flag = (int)(uintptr_t)tg_cookie; 30993 int ret = 0; 30994 30995 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30996 if (un == NULL) 30997 return (ENXIO); 30998 30999 switch (cmd) { 31000 case TG_GETPHYGEOM: 31001 case TG_GETVIRTGEOM: 31002 case TG_GETCAPACITY: 31003 case TG_GETBLOCKSIZE: 31004 mutex_enter(SD_MUTEX(un)); 31005 31006 if ((un->un_f_blockcount_is_valid == TRUE) && 31007 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 31008 cap = un->un_blockcount; 31009 lbasize = un->un_tgt_blocksize; 31010 mutex_exit(SD_MUTEX(un)); 31011 } else { 31012 sd_ssc_t *ssc; 31013 mutex_exit(SD_MUTEX(un)); 31014 ssc = sd_ssc_init(un); 31015 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31016 &lbasize, path_flag); 31017 if (ret != 0) { 31018 if (ret == EIO) 31019 sd_ssc_assessment(ssc, 31020 SD_FMT_STATUS_CHECK); 31021 else 31022 sd_ssc_assessment(ssc, 31023 SD_FMT_IGNORE); 31024 sd_ssc_fini(ssc); 31025 return (ret); 31026 } 31027 sd_ssc_fini(ssc); 31028 mutex_enter(SD_MUTEX(un)); 31029 sd_update_block_info(un, lbasize, cap); 31030 if ((un->un_f_blockcount_is_valid == FALSE) || 31031 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 31032 mutex_exit(SD_MUTEX(un)); 31033 return (EIO); 31034 } 31035 mutex_exit(SD_MUTEX(un)); 31036 } 31037 31038 if (cmd == TG_GETCAPACITY) { 31039 *(diskaddr_t *)arg = cap; 31040 return (0); 31041 } 31042 31043 if (cmd == TG_GETBLOCKSIZE) { 31044 *(uint32_t *)arg = lbasize; 31045 return (0); 31046 } 31047 31048 if (cmd == TG_GETPHYGEOM) 31049 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 31050 cap, lbasize, path_flag); 31051 else 31052 /* TG_GETVIRTGEOM */ 31053 ret = sd_get_virtual_geometry(un, 31054 (cmlb_geom_t *)arg, cap, lbasize); 31055 31056 return (ret); 31057 31058 case TG_GETATTR: 31059 mutex_enter(SD_MUTEX(un)); 31060 ((tg_attribute_t *)arg)->media_is_writable = 31061 un->un_f_mmc_writable_media; 31062 ((tg_attribute_t *)arg)->media_is_solid_state = 31063 un->un_f_is_solid_state; 31064 mutex_exit(SD_MUTEX(un)); 31065 return (0); 31066 default: 31067 return (ENOTTY); 31068 31069 } 31070 } 31071 31072 /* 31073 * Function: sd_ssc_ereport_post 31074 * 31075 * Description: Will be called when SD driver need to post an ereport. 31076 * 31077 * Context: Kernel thread or interrupt context. 31078 */ 31079 static void 31080 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 31081 { 31082 int uscsi_path_instance = 0; 31083 uchar_t uscsi_pkt_reason; 31084 uint32_t uscsi_pkt_state; 31085 uint32_t uscsi_pkt_statistics; 31086 uint64_t uscsi_ena; 31087 uchar_t op_code; 31088 uint8_t *sensep; 31089 union scsi_cdb *cdbp; 31090 uint_t cdblen = 0; 31091 uint_t senlen = 0; 31092 struct sd_lun *un; 31093 dev_info_t *dip; 31094 char *devid; 31095 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 31096 SSC_FLAGS_INVALID_STATUS | 31097 SSC_FLAGS_INVALID_SENSE | 31098 SSC_FLAGS_INVALID_DATA; 31099 char assessment[16]; 31100 31101 ASSERT(ssc != NULL); 31102 ASSERT(ssc->ssc_uscsi_cmd != NULL); 31103 ASSERT(ssc->ssc_uscsi_info != NULL); 31104 31105 un = ssc->ssc_un; 31106 ASSERT(un != NULL); 31107 31108 dip = un->un_sd->sd_dev; 31109 31110 /* 31111 * Get the devid: 31112 * devid will only be passed to non-transport error reports. 31113 */ 31114 devid = DEVI(dip)->devi_devid_str; 31115 31116 /* 31117 * If we are syncing or dumping, the command will not be executed 31118 * so we bypass this situation. 31119 */ 31120 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 31121 (un->un_state == SD_STATE_DUMPING)) 31122 return; 31123 31124 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 31125 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 31126 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 31127 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 31128 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 31129 31130 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 31131 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 31132 31133 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 31134 if (cdbp == NULL) { 31135 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 31136 "sd_ssc_ereport_post meet empty cdb\n"); 31137 return; 31138 } 31139 31140 op_code = cdbp->scc_cmd; 31141 31142 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 31143 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 31144 ssc->ssc_uscsi_cmd->uscsi_rqresid); 31145 31146 if (senlen > 0) 31147 ASSERT(sensep != NULL); 31148 31149 /* 31150 * Initialize drv_assess to corresponding values. 31151 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 31152 * on the sense-key returned back. 31153 */ 31154 switch (drv_assess) { 31155 case SD_FM_DRV_RECOVERY: 31156 (void) sprintf(assessment, "%s", "recovered"); 31157 break; 31158 case SD_FM_DRV_RETRY: 31159 (void) sprintf(assessment, "%s", "retry"); 31160 break; 31161 case SD_FM_DRV_NOTICE: 31162 (void) sprintf(assessment, "%s", "info"); 31163 break; 31164 case SD_FM_DRV_FATAL: 31165 default: 31166 (void) sprintf(assessment, "%s", "unknown"); 31167 } 31168 /* 31169 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 31170 * command, we will post ereport.io.scsi.cmd.disk.recovered. 31171 * driver-assessment will always be "recovered" here. 31172 */ 31173 if (drv_assess == SD_FM_DRV_RECOVERY) { 31174 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31175 "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP, 31176 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31177 "driver-assessment", DATA_TYPE_STRING, assessment, 31178 "op-code", DATA_TYPE_UINT8, op_code, 31179 "cdb", DATA_TYPE_UINT8_ARRAY, 31180 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31181 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31182 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31183 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31184 NULL); 31185 return; 31186 } 31187 31188 /* 31189 * If there is un-expected/un-decodable data, we should post 31190 * ereport.io.scsi.cmd.disk.dev.uderr. 31191 * driver-assessment will be set based on parameter drv_assess. 31192 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 31193 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 31194 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 31195 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 31196 */ 31197 if (ssc->ssc_flags & ssc_invalid_flags) { 31198 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 31199 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31200 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 31201 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31202 "driver-assessment", DATA_TYPE_STRING, 31203 drv_assess == SD_FM_DRV_FATAL ? 31204 "fail" : assessment, 31205 "op-code", DATA_TYPE_UINT8, op_code, 31206 "cdb", DATA_TYPE_UINT8_ARRAY, 31207 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31208 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31209 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31210 "pkt-stats", DATA_TYPE_UINT32, 31211 uscsi_pkt_statistics, 31212 "stat-code", DATA_TYPE_UINT8, 31213 ssc->ssc_uscsi_cmd->uscsi_status, 31214 "un-decode-info", DATA_TYPE_STRING, 31215 ssc->ssc_info, 31216 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31217 senlen, sensep, 31218 NULL); 31219 } else { 31220 /* 31221 * For other type of invalid data, the 31222 * un-decode-value field would be empty because the 31223 * un-decodable content could be seen from upper 31224 * level payload or inside un-decode-info. 31225 */ 31226 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31227 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 31228 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31229 "driver-assessment", DATA_TYPE_STRING, 31230 drv_assess == SD_FM_DRV_FATAL ? 31231 "fail" : assessment, 31232 "op-code", DATA_TYPE_UINT8, op_code, 31233 "cdb", DATA_TYPE_UINT8_ARRAY, 31234 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31235 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31236 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31237 "pkt-stats", DATA_TYPE_UINT32, 31238 uscsi_pkt_statistics, 31239 "stat-code", DATA_TYPE_UINT8, 31240 ssc->ssc_uscsi_cmd->uscsi_status, 31241 "un-decode-info", DATA_TYPE_STRING, 31242 ssc->ssc_info, 31243 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31244 0, NULL, 31245 NULL); 31246 } 31247 ssc->ssc_flags &= ~ssc_invalid_flags; 31248 return; 31249 } 31250 31251 if (uscsi_pkt_reason != CMD_CMPLT || 31252 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31253 /* 31254 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31255 * set inside sd_start_cmds due to errors(bad packet or 31256 * fatal transport error), we should take it as a 31257 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31258 * driver-assessment will be set based on drv_assess. 31259 * We will set devid to NULL because it is a transport 31260 * error. 31261 */ 31262 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31263 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31264 31265 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31266 "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION, 31267 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31268 "driver-assessment", DATA_TYPE_STRING, 31269 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31270 "op-code", DATA_TYPE_UINT8, op_code, 31271 "cdb", DATA_TYPE_UINT8_ARRAY, 31272 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31273 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31274 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31275 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31276 NULL); 31277 } else { 31278 /* 31279 * If we got here, we have a completed command, and we need 31280 * to further investigate the sense data to see what kind 31281 * of ereport we should post. 31282 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 31283 * if sense-key == 0x3. 31284 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31285 * driver-assessment will be set based on the parameter 31286 * drv_assess. 31287 */ 31288 if (senlen > 0) { 31289 /* 31290 * Here we have sense data available. 31291 */ 31292 uint8_t sense_key; 31293 sense_key = scsi_sense_key(sensep); 31294 if (sense_key == 0x3) { 31295 /* 31296 * sense-key == 0x3(medium error), 31297 * driver-assessment should be "fatal" if 31298 * drv_assess is SD_FM_DRV_FATAL. 31299 */ 31300 scsi_fm_ereport_post(un->un_sd, 31301 uscsi_path_instance, 31302 "cmd.disk.dev.rqs.merr", 31303 uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION, 31304 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31305 "driver-assessment", 31306 DATA_TYPE_STRING, 31307 drv_assess == SD_FM_DRV_FATAL ? 31308 "fatal" : assessment, 31309 "op-code", 31310 DATA_TYPE_UINT8, op_code, 31311 "cdb", 31312 DATA_TYPE_UINT8_ARRAY, cdblen, 31313 ssc->ssc_uscsi_cmd->uscsi_cdb, 31314 "pkt-reason", 31315 DATA_TYPE_UINT8, uscsi_pkt_reason, 31316 "pkt-state", 31317 DATA_TYPE_UINT8, uscsi_pkt_state, 31318 "pkt-stats", 31319 DATA_TYPE_UINT32, 31320 uscsi_pkt_statistics, 31321 "stat-code", 31322 DATA_TYPE_UINT8, 31323 ssc->ssc_uscsi_cmd->uscsi_status, 31324 "key", 31325 DATA_TYPE_UINT8, 31326 scsi_sense_key(sensep), 31327 "asc", 31328 DATA_TYPE_UINT8, 31329 scsi_sense_asc(sensep), 31330 "ascq", 31331 DATA_TYPE_UINT8, 31332 scsi_sense_ascq(sensep), 31333 "sense-data", 31334 DATA_TYPE_UINT8_ARRAY, 31335 senlen, sensep, 31336 "lba", 31337 DATA_TYPE_UINT64, 31338 ssc->ssc_uscsi_info->ui_lba, 31339 NULL); 31340 } else { 31341 /* 31342 * if sense-key == 0x4(hardware 31343 * error), driver-assessment should 31344 * be "fatal" if drv_assess is 31345 * SD_FM_DRV_FATAL. 31346 */ 31347 scsi_fm_ereport_post(un->un_sd, 31348 uscsi_path_instance, 31349 "cmd.disk.dev.rqs.derr", 31350 uscsi_ena, devid, DDI_NOSLEEP, 31351 FM_VERSION, 31352 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31353 "driver-assessment", 31354 DATA_TYPE_STRING, 31355 drv_assess == SD_FM_DRV_FATAL ? 31356 (sense_key == 0x4 ? 31357 "fatal" : "fail") : assessment, 31358 "op-code", 31359 DATA_TYPE_UINT8, op_code, 31360 "cdb", 31361 DATA_TYPE_UINT8_ARRAY, cdblen, 31362 ssc->ssc_uscsi_cmd->uscsi_cdb, 31363 "pkt-reason", 31364 DATA_TYPE_UINT8, uscsi_pkt_reason, 31365 "pkt-state", 31366 DATA_TYPE_UINT8, uscsi_pkt_state, 31367 "pkt-stats", 31368 DATA_TYPE_UINT32, 31369 uscsi_pkt_statistics, 31370 "stat-code", 31371 DATA_TYPE_UINT8, 31372 ssc->ssc_uscsi_cmd->uscsi_status, 31373 "key", 31374 DATA_TYPE_UINT8, 31375 scsi_sense_key(sensep), 31376 "asc", 31377 DATA_TYPE_UINT8, 31378 scsi_sense_asc(sensep), 31379 "ascq", 31380 DATA_TYPE_UINT8, 31381 scsi_sense_ascq(sensep), 31382 "sense-data", 31383 DATA_TYPE_UINT8_ARRAY, 31384 senlen, sensep, 31385 NULL); 31386 } 31387 } else { 31388 /* 31389 * For stat_code == STATUS_GOOD, this is not a 31390 * hardware error. 31391 */ 31392 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31393 return; 31394 31395 /* 31396 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31397 * stat-code but with sense data unavailable. 31398 * driver-assessment will be set based on parameter 31399 * drv_assess. 31400 */ 31401 scsi_fm_ereport_post(un->un_sd, 31402 uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena, 31403 devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 31404 FM_EREPORT_VERS0, 31405 "driver-assessment", DATA_TYPE_STRING, 31406 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31407 "op-code", DATA_TYPE_UINT8, op_code, 31408 "cdb", 31409 DATA_TYPE_UINT8_ARRAY, 31410 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31411 "pkt-reason", 31412 DATA_TYPE_UINT8, uscsi_pkt_reason, 31413 "pkt-state", 31414 DATA_TYPE_UINT8, uscsi_pkt_state, 31415 "pkt-stats", 31416 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31417 "stat-code", 31418 DATA_TYPE_UINT8, 31419 ssc->ssc_uscsi_cmd->uscsi_status, 31420 NULL); 31421 } 31422 } 31423 } 31424 31425 /* 31426 * Function: sd_ssc_extract_info 31427 * 31428 * Description: Extract information available to help generate ereport. 31429 * 31430 * Context: Kernel thread or interrupt context. 31431 */ 31432 static void 31433 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31434 struct buf *bp, struct sd_xbuf *xp) 31435 { 31436 size_t senlen = 0; 31437 union scsi_cdb *cdbp; 31438 int path_instance; 31439 /* 31440 * Need scsi_cdb_size array to determine the cdb length. 31441 */ 31442 extern uchar_t scsi_cdb_size[]; 31443 31444 ASSERT(un != NULL); 31445 ASSERT(pktp != NULL); 31446 ASSERT(bp != NULL); 31447 ASSERT(xp != NULL); 31448 ASSERT(ssc != NULL); 31449 ASSERT(mutex_owned(SD_MUTEX(un))); 31450 31451 /* 31452 * Transfer the cdb buffer pointer here. 31453 */ 31454 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31455 31456 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31457 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31458 31459 /* 31460 * Transfer the sense data buffer pointer if sense data is available, 31461 * calculate the sense data length first. 31462 */ 31463 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 31464 (xp->xb_sense_state & STATE_ARQ_DONE)) { 31465 /* 31466 * For arq case, we will enter here. 31467 */ 31468 if (xp->xb_sense_state & STATE_XARQ_DONE) { 31469 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 31470 } else { 31471 senlen = SENSE_LENGTH; 31472 } 31473 } else { 31474 /* 31475 * For non-arq case, we will enter this branch. 31476 */ 31477 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 31478 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 31479 senlen = SENSE_LENGTH - xp->xb_sense_resid; 31480 } 31481 31482 } 31483 31484 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 31485 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 31486 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 31487 31488 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 31489 31490 /* 31491 * Only transfer path_instance when scsi_pkt was properly allocated. 31492 */ 31493 path_instance = pktp->pkt_path_instance; 31494 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 31495 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 31496 else 31497 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 31498 31499 /* 31500 * Copy in the other fields we may need when posting ereport. 31501 */ 31502 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 31503 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 31504 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 31505 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 31506 31507 /* 31508 * For partially read/write command, we will not create ena 31509 * in case of a successful command be reconized as recovered. 31510 */ 31511 if ((pktp->pkt_reason == CMD_CMPLT) && 31512 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 31513 (senlen == 0)) { 31514 return; 31515 } 31516 31517 /* 31518 * To associate ereports of a single command execution flow, we 31519 * need a shared ena for a specific command. 31520 */ 31521 if (xp->xb_ena == 0) 31522 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 31523 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 31524 } 31525 31526 31527 /* 31528 * Function: sd_check_solid_state 31529 * 31530 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 31531 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 31532 * RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the 31533 * device is a solid state drive. 31534 * 31535 * Context: Kernel thread or interrupt context. 31536 */ 31537 31538 static void 31539 sd_check_solid_state(sd_ssc_t *ssc) 31540 { 31541 int rval = 0; 31542 uchar_t *inqb1 = NULL; 31543 size_t inqb1_len = MAX_INQUIRY_SIZE; 31544 size_t inqb1_resid = 0; 31545 struct sd_lun *un; 31546 31547 ASSERT(ssc != NULL); 31548 un = ssc->ssc_un; 31549 ASSERT(un != NULL); 31550 ASSERT(!mutex_owned(SD_MUTEX(un))); 31551 31552 mutex_enter(SD_MUTEX(un)); 31553 un->un_f_is_solid_state = FALSE; 31554 31555 if (ISCD(un)) { 31556 mutex_exit(SD_MUTEX(un)); 31557 return; 31558 } 31559 31560 if (sd_check_vpd_page_support(ssc) == 0 && 31561 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 31562 mutex_exit(SD_MUTEX(un)); 31563 /* collect page b1 data */ 31564 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 31565 31566 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 31567 0x01, 0xB1, &inqb1_resid); 31568 31569 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 31570 SD_TRACE(SD_LOG_COMMON, un, 31571 "sd_check_solid_state: \ 31572 successfully get VPD page: %x \ 31573 PAGE LENGTH: %x BYTE 4: %x \ 31574 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 31575 inqb1[5]); 31576 31577 mutex_enter(SD_MUTEX(un)); 31578 /* 31579 * Check the MEDIUM ROTATION RATE. If it is set 31580 * to 1, the device is a solid state drive. 31581 */ 31582 if (inqb1[4] == 0 && inqb1[5] == 1) { 31583 un->un_f_is_solid_state = TRUE; 31584 } 31585 mutex_exit(SD_MUTEX(un)); 31586 } else if (rval != 0) { 31587 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31588 } 31589 31590 kmem_free(inqb1, inqb1_len); 31591 } else { 31592 mutex_exit(SD_MUTEX(un)); 31593 } 31594 } 31595