xref: /titanic_50/usr/src/uts/common/io/rge/rge_chip.c (revision ff3124eff995e6cd8ebd8c6543648e0670920034)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 16;
48 
49 /*
50  * Operating register get/set access routines
51  */
52 
53 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
54 #pragma	inline(rge_reg_get32)
55 
56 static uint32_t
57 rge_reg_get32(rge_t *rgep, uintptr_t regno)
58 {
59 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
60 	    (void *)rgep, regno));
61 
62 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
63 }
64 
65 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
66 #pragma	inline(rge_reg_put32)
67 
68 static void
69 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
70 {
71 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
72 	    (void *)rgep, regno, data));
73 
74 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
75 }
76 
77 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
78 #pragma	inline(rge_reg_set32)
79 
80 static void
81 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
82 {
83 	uint32_t regval;
84 
85 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
86 	    (void *)rgep, regno, bits));
87 
88 	regval = rge_reg_get32(rgep, regno);
89 	regval |= bits;
90 	rge_reg_put32(rgep, regno, regval);
91 }
92 
93 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
94 #pragma	inline(rge_reg_clr32)
95 
96 static void
97 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
98 {
99 	uint32_t regval;
100 
101 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
102 	    (void *)rgep, regno, bits));
103 
104 	regval = rge_reg_get32(rgep, regno);
105 	regval &= ~bits;
106 	rge_reg_put32(rgep, regno, regval);
107 }
108 
109 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
110 #pragma	inline(rge_reg_get16)
111 
112 static uint16_t
113 rge_reg_get16(rge_t *rgep, uintptr_t regno)
114 {
115 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
116 	    (void *)rgep, regno));
117 
118 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
119 }
120 
121 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
122 #pragma	inline(rge_reg_put16)
123 
124 static void
125 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
126 {
127 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
128 	    (void *)rgep, regno, data));
129 
130 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
131 }
132 
133 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
134 #pragma	inline(rge_reg_get8)
135 
136 static uint8_t
137 rge_reg_get8(rge_t *rgep, uintptr_t regno)
138 {
139 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
140 	    (void *)rgep, regno));
141 
142 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
143 }
144 
145 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
146 #pragma	inline(rge_reg_put8)
147 
148 static void
149 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
150 {
151 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
152 	    (void *)rgep, regno, data));
153 
154 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
155 }
156 
157 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
158 #pragma	inline(rge_reg_set8)
159 
160 static void
161 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
162 {
163 	uint8_t regval;
164 
165 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
166 	    (void *)rgep, regno, bits));
167 
168 	regval = rge_reg_get8(rgep, regno);
169 	regval |= bits;
170 	rge_reg_put8(rgep, regno, regval);
171 }
172 
173 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
174 #pragma	inline(rge_reg_clr8)
175 
176 static void
177 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
178 {
179 	uint8_t regval;
180 
181 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
182 	    (void *)rgep, regno, bits));
183 
184 	regval = rge_reg_get8(rgep, regno);
185 	regval &= ~bits;
186 	rge_reg_put8(rgep, regno, regval);
187 }
188 
189 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
190 #pragma	no_inline(rge_mii_get16)
191 
192 uint16_t
193 rge_mii_get16(rge_t *rgep, uintptr_t mii)
194 {
195 	uint32_t regval;
196 	uint32_t val32;
197 	uint32_t i;
198 
199 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
200 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
201 
202 	/*
203 	 * Waiting for PHY reading OK
204 	 */
205 	for (i = 0; i < PHY_RESET_LOOP; i++) {
206 		drv_usecwait(1000);
207 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
208 		if (val32 & PHY_ACCESS_WR_FLAG)
209 			return ((uint16_t)(val32 & 0xffff));
210 	}
211 
212 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
213 	return ((uint16_t)~0u);
214 }
215 
216 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
217 #pragma	no_inline(rge_mii_put16)
218 
219 void
220 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
221 {
222 	uint32_t regval;
223 	uint32_t val32;
224 	uint32_t i;
225 
226 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
227 	regval |= data & PHY_DATA_MASK;
228 	regval |= PHY_ACCESS_WR_FLAG;
229 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
230 
231 	/*
232 	 * Waiting for PHY writing OK
233 	 */
234 	for (i = 0; i < PHY_RESET_LOOP; i++) {
235 		drv_usecwait(1000);
236 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
237 		if (!(val32 & PHY_ACCESS_WR_FLAG))
238 			return;
239 	}
240 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
241 	    mii, data));
242 }
243 
244 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
245 #pragma	no_inline(rge_ephy_put16)
246 
247 void
248 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
249 {
250 	uint32_t regval;
251 	uint32_t val32;
252 	uint32_t i;
253 
254 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
255 	regval |= data & EPHY_DATA_MASK;
256 	regval |= EPHY_ACCESS_WR_FLAG;
257 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
258 
259 	/*
260 	 * Waiting for PHY writing OK
261 	 */
262 	for (i = 0; i < PHY_RESET_LOOP; i++) {
263 		drv_usecwait(1000);
264 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
265 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
266 			return;
267 	}
268 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
269 	    emii, data));
270 }
271 
272 /*
273  * Atomically shift a 32-bit word left, returning
274  * the value it had *before* the shift was applied
275  */
276 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
277 #pragma	inline(rge_mii_put16)
278 
279 static uint32_t
280 rge_atomic_shl32(uint32_t *sp, uint_t count)
281 {
282 	uint32_t oldval;
283 	uint32_t newval;
284 
285 	/* ATOMICALLY */
286 	do {
287 		oldval = *sp;
288 		newval = oldval << count;
289 	} while (cas32(sp, oldval, newval) != oldval);
290 
291 	return (oldval);
292 }
293 
294 /*
295  * PHY operation routines
296  */
297 #if	RGE_DEBUGGING
298 
299 void
300 rge_phydump(rge_t *rgep)
301 {
302 	uint16_t regs[32];
303 	int i;
304 
305 	ASSERT(mutex_owned(rgep->genlock));
306 
307 	for (i = 0; i < 32; ++i) {
308 		regs[i] = rge_mii_get16(rgep, i);
309 	}
310 
311 	for (i = 0; i < 32; i += 8)
312 		RGE_DEBUG(("rge_phydump: "
313 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
314 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
315 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
316 }
317 
318 #endif	/* RGE_DEBUGGING */
319 
320 static void
321 rge_phy_check(rge_t *rgep)
322 {
323 	uint16_t gig_ctl;
324 
325 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
326 		/*
327 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
328 		 * every 15 seconds whin link down & advertise is 1000.
329 		 */
330 		if (rgep->chipid.phy_ver == PHY_VER_S) {
331 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
332 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
333 				rgep->link_down_count++;
334 				if (rgep->link_down_count > 15) {
335 					(void) rge_phy_reset(rgep);
336 					rgep->stats.phy_reset++;
337 					rgep->link_down_count = 0;
338 				}
339 			}
340 		}
341 	} else {
342 		rgep->link_down_count = 0;
343 	}
344 }
345 
346 /*
347  * Basic low-level function to reset the PHY.
348  * Doesn't incorporate any special-case workarounds.
349  *
350  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
351  */
352 boolean_t
353 rge_phy_reset(rge_t *rgep)
354 {
355 	uint16_t control;
356 	uint_t count;
357 
358 	/*
359 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
360 	 */
361 	control = rge_mii_get16(rgep, MII_CONTROL);
362 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
363 	for (count = 0; count < 5; count++) {
364 		drv_usecwait(100);
365 		control = rge_mii_get16(rgep, MII_CONTROL);
366 		if (BIC(control, MII_CONTROL_RESET))
367 			return (B_TRUE);
368 	}
369 
370 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
371 	return (B_FALSE);
372 }
373 
374 /*
375  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
376  * and advertisements with the required settings as specified by the various
377  * param_* variables that can be poked via the NDD interface.
378  *
379  * We always reset the PHY and reprogram *all* the relevant registers,
380  * not just those changed.  This should cause the link to go down, and then
381  * back up again once the link is stable and autonegotiation (if enabled)
382  * is complete.  We should get a link state change interrupt somewhere along
383  * the way ...
384  *
385  * NOTE: <genlock> must already be held by the caller
386  */
387 void
388 rge_phy_update(rge_t *rgep)
389 {
390 	boolean_t adv_autoneg;
391 	boolean_t adv_pause;
392 	boolean_t adv_asym_pause;
393 	boolean_t adv_1000fdx;
394 	boolean_t adv_1000hdx;
395 	boolean_t adv_100fdx;
396 	boolean_t adv_100hdx;
397 	boolean_t adv_10fdx;
398 	boolean_t adv_10hdx;
399 
400 	uint16_t control;
401 	uint16_t gigctrl;
402 	uint16_t anar;
403 
404 	ASSERT(mutex_owned(rgep->genlock));
405 
406 	RGE_DEBUG(("rge_phy_update: autoneg %d "
407 	    "pause %d asym_pause %d "
408 	    "1000fdx %d 1000hdx %d "
409 	    "100fdx %d 100hdx %d "
410 	    "10fdx %d 10hdx %d ",
411 	    rgep->param_adv_autoneg,
412 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
413 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
414 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
415 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
416 
417 	control = gigctrl = anar = 0;
418 
419 	/*
420 	 * PHY settings are normally based on the param_* variables,
421 	 * but if any loopback mode is in effect, that takes precedence.
422 	 *
423 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
424 	 * and External loopback at a variety of speeds (with a special
425 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
426 	 * is turned ON, and the speed/mastership is forced.
427 	 */
428 	switch (rgep->param_loop_mode) {
429 	case RGE_LOOP_NONE:
430 	default:
431 		adv_autoneg = rgep->param_adv_autoneg;
432 		adv_pause = rgep->param_adv_pause;
433 		adv_asym_pause = rgep->param_adv_asym_pause;
434 		adv_1000fdx = rgep->param_adv_1000fdx;
435 		adv_1000hdx = rgep->param_adv_1000hdx;
436 		adv_100fdx = rgep->param_adv_100fdx;
437 		adv_100hdx = rgep->param_adv_100hdx;
438 		adv_10fdx = rgep->param_adv_10fdx;
439 		adv_10hdx = rgep->param_adv_10hdx;
440 		break;
441 
442 	case RGE_LOOP_INTERNAL_PHY:
443 	case RGE_LOOP_INTERNAL_MAC:
444 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
445 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
446 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
447 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
448 
449 		switch (rgep->param_loop_mode) {
450 		case RGE_LOOP_INTERNAL_PHY:
451 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
452 				rgep->param_link_speed = 1000;
453 				adv_1000fdx = B_TRUE;
454 			} else {
455 				rgep->param_link_speed = 100;
456 				adv_100fdx = B_TRUE;
457 			}
458 			control = MII_CONTROL_LOOPBACK;
459 			break;
460 
461 		case RGE_LOOP_INTERNAL_MAC:
462 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
463 				rgep->param_link_speed = 1000;
464 				adv_1000fdx = B_TRUE;
465 			} else {
466 				rgep->param_link_speed = 100;
467 				adv_100fdx = B_TRUE;
468 			break;
469 		}
470 	}
471 
472 	RGE_DEBUG(("rge_phy_update: autoneg %d "
473 	    "pause %d asym_pause %d "
474 	    "1000fdx %d 1000hdx %d "
475 	    "100fdx %d 100hdx %d "
476 	    "10fdx %d 10hdx %d ",
477 	    adv_autoneg,
478 	    adv_pause, adv_asym_pause,
479 	    adv_1000fdx, adv_1000hdx,
480 	    adv_100fdx, adv_100hdx,
481 	    adv_10fdx, adv_10hdx));
482 
483 	/*
484 	 * We should have at least one technology capability set;
485 	 * if not, we select a default of 1000Mb/s full-duplex
486 	 */
487 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
488 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
489 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
490 			adv_1000fdx = B_TRUE;
491 		} else {
492 			adv_1000fdx = B_FALSE;
493 			adv_100fdx = B_TRUE;
494 		}
495 	}
496 
497 	/*
498 	 * Now transform the adv_* variables into the proper settings
499 	 * of the PHY registers ...
500 	 *
501 	 * If autonegotiation is (now) enabled, we want to trigger
502 	 * a new autonegotiation cycle once the PHY has been
503 	 * programmed with the capabilities to be advertised.
504 	 *
505 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
506 	 */
507 	if (adv_autoneg)
508 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
509 
510 	if (adv_1000fdx)
511 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
512 	else if (adv_1000hdx)
513 		control |= MII_CONTROL_1000MB;
514 	else if (adv_100fdx)
515 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
516 	else if (adv_100hdx)
517 		control |= MII_CONTROL_100MB;
518 	else if (adv_10fdx)
519 		control |= MII_CONTROL_FDUPLEX;
520 	else if (adv_10hdx)
521 		control |= 0;
522 	else
523 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
524 
525 	if (adv_1000fdx) {
526 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
527 		/*
528 		 * Chipset limitation: need set other capabilities to true
529 		 */
530 		if (rgep->chipid.is_pcie)
531 			adv_1000hdx = B_TRUE;
532 		adv_100fdx = B_TRUE;
533 		adv_100hdx  = B_TRUE;
534 		adv_10fdx = B_TRUE;
535 		adv_10hdx = B_TRUE;
536 	}
537 
538 	if (adv_1000hdx)
539 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
540 
541 	if (adv_100fdx)
542 		anar |= MII_ABILITY_100BASE_TX_FD;
543 	if (adv_100hdx)
544 		anar |= MII_ABILITY_100BASE_TX;
545 	if (adv_10fdx)
546 		anar |= MII_ABILITY_10BASE_T_FD;
547 	if (adv_10hdx)
548 		anar |= MII_ABILITY_10BASE_T;
549 
550 	if (adv_pause)
551 		anar |= MII_ABILITY_PAUSE;
552 	if (adv_asym_pause)
553 		anar |= MII_ABILITY_ASYM_PAUSE;
554 
555 	/*
556 	 * Munge in any other fixed bits we require ...
557 	 */
558 	anar |= MII_AN_SELECTOR_8023;
559 
560 	/*
561 	 * Restart the PHY and write the new values.  Note the
562 	 * time, so that we can say whether subsequent link state
563 	 * changes can be attributed to our reprogramming the PHY
564 	 */
565 	rge_phy_init(rgep);
566 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
567 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
568 		/* power up PHY for RTL8168B chipset */
569 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
570 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
571 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
572 	}
573 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
574 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
575 	rge_mii_put16(rgep, MII_CONTROL, control);
576 
577 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
578 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
579 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
580 }
581 
582 void rge_phy_init(rge_t *rgep);
583 #pragma	no_inline(rge_phy_init)
584 
585 void
586 rge_phy_init(rge_t *rgep)
587 {
588 	rgep->phy_mii_addr = 1;
589 
590 	/*
591 	 * Below phy config steps are copied from the Programming Guide
592 	 * (there's no detail comments for these steps.)
593 	 */
594 	switch (rgep->chipid.mac_ver) {
595 	case MAC_VER_8169S_D:
596 	case MAC_VER_8169S_E :
597 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
598 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
599 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
600 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
601 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
602 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
603 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
604 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
607 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
608 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
609 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
610 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
611 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
614 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
615 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
616 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
617 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
618 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
621 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
622 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
623 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
624 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
625 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
628 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
629 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
630 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
631 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
632 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
634 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
635 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
636 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
637 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
638 		break;
639 
640 	case MAC_VER_8169SB:
641 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
642 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
643 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
644 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
645 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
646 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
647 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
648 		break;
649 
650 	case MAC_VER_8169SC:
651 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
652 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
653 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
654 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
655 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
656 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
657 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
658 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
659 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
660 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
661 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
662 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
663 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
664 		break;
665 
666 	case MAC_VER_8168:
667 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
668 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
669 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
670 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
671 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
672 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
673 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
674 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
675 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
676 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
677 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
678 		break;
679 
680 	case MAC_VER_8168B_B:
681 	case MAC_VER_8168B_C:
682 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
683 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
684 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
685 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
686 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
687 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
688 		break;
689 	}
690 }
691 
692 void rge_chip_ident(rge_t *rgep);
693 #pragma	no_inline(rge_chip_ident)
694 
695 void
696 rge_chip_ident(rge_t *rgep)
697 {
698 	chip_id_t *chip = &rgep->chipid;
699 	uint32_t val32;
700 	uint16_t val16;
701 
702 	/*
703 	 * Read and record MAC version
704 	 */
705 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
706 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
707 	chip->mac_ver = val32;
708 	switch (chip->mac_ver) {
709 	case MAC_VER_8168:
710 	case MAC_VER_8168B_B:
711 	case MAC_VER_8168B_C:
712 	case MAC_VER_8101E:
713 		chip->is_pcie = B_TRUE;
714 		break;
715 
716 	default:
717 		chip->is_pcie = B_FALSE;
718 		break;
719 	}
720 
721 	/*
722 	 * Read and record PHY version
723 	 */
724 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
725 	val16 &= PHY_VER_MASK;
726 	chip->phy_ver = val16;
727 
728 	/* set pci latency timer */
729 	if (chip->mac_ver == MAC_VER_8169 ||
730 	    chip->mac_ver == MAC_VER_8169S_D ||
731 	    chip->mac_ver == MAC_VER_8169SC)
732 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
733 
734 	if (chip->mac_ver == MAC_VER_8169SC) {
735 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
736 		val16 &= 0x0300;
737 		if (val16 == 0x1)	/* 66Mhz PCI */
738 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
739 		else if (val16 == 0x0) /* 33Mhz PCI */
740 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
741 	}
742 
743 	/*
744 	 * PCIE chipset require the Rx buffer start address must be
745 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
746 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
747 	 */
748 	if (chip->is_pcie) {
749 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
750 		if (rgep->default_mtu > ETHERMTU) {
751 			rge_notice(rgep, "Jumbo packets not supported "
752 			    "for this PCIE chipset");
753 			rgep->default_mtu = ETHERMTU;
754 		}
755 	}
756 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
757 		rgep->head_room = 0;
758 	else
759 		rgep->head_room = RGE_HEADROOM;
760 
761 	/*
762 	 * Initialize other variables.
763 	 */
764 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
765 		rgep->default_mtu = ETHERMTU;
766 	if (rgep->default_mtu > ETHERMTU) {
767 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
768 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
769 		rgep->ethmax_size = RGE_JUMBO_SIZE;
770 	} else {
771 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
772 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
773 		rgep->ethmax_size = ETHERMAX;
774 	}
775 	chip->rxconfig = RX_CONFIG_DEFAULT;
776 	chip->txconfig = TX_CONFIG_DEFAULT;
777 
778 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
779 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
780 }
781 
782 /*
783  * Perform first-stage chip (re-)initialisation, using only config-space
784  * accesses:
785  *
786  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
787  *   returning the data in the structure pointed to by <idp>.
788  * + Enable Memory Space accesses.
789  * + Enable Bus Mastering according.
790  */
791 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
792 #pragma	no_inline(rge_chip_cfg_init)
793 
794 void
795 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
796 {
797 	ddi_acc_handle_t handle;
798 	uint16_t commd;
799 
800 	handle = rgep->cfg_handle;
801 
802 	/*
803 	 * Save PCI cache line size and subsystem vendor ID
804 	 */
805 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
806 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
807 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
808 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
809 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
810 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
811 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
812 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
813 
814 	/*
815 	 * Turn on Master Enable (DMA) and IO Enable bits.
816 	 * Enable PCI Memory Space accesses
817 	 */
818 	commd = cidp->command;
819 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
820 	pci_config_put16(handle, PCI_CONF_COMM, commd);
821 
822 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
823 	    cidp->vendor, cidp->device, cidp->revision));
824 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
825 	    cidp->subven, cidp->subdev));
826 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
827 	    cidp->clsize, cidp->latency, cidp->command));
828 }
829 
830 int rge_chip_reset(rge_t *rgep);
831 #pragma	no_inline(rge_chip_reset)
832 
833 int
834 rge_chip_reset(rge_t *rgep)
835 {
836 	int i;
837 	uint8_t val8;
838 
839 	/*
840 	 * Chip should be in STOP state
841 	 */
842 	rge_reg_clr8(rgep, RT_COMMAND_REG,
843 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
844 
845 	/*
846 	 * Disable interrupt
847 	 */
848 	rgep->int_mask = INT_MASK_NONE;
849 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
850 
851 	/*
852 	 * Clear pended interrupt
853 	 */
854 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
855 
856 	/*
857 	 * Reset chip
858 	 */
859 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
860 
861 	/*
862 	 * Wait for reset success
863 	 */
864 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
865 		drv_usecwait(10);
866 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
867 		if (!(val8 & RT_COMMAND_RESET)) {
868 			rgep->rge_chip_state = RGE_CHIP_RESET;
869 			return (0);
870 		}
871 	}
872 	RGE_REPORT((rgep, "rge_chip_reset fail."));
873 	return (-1);
874 }
875 
876 void rge_chip_init(rge_t *rgep);
877 #pragma	no_inline(rge_chip_init)
878 
879 void
880 rge_chip_init(rge_t *rgep)
881 {
882 	uint32_t val32;
883 	uint32_t val16;
884 	uint32_t *hashp;
885 	chip_id_t *chip = &rgep->chipid;
886 
887 	if (chip->is_pcie) {
888 		/*
889 		 * Increase the threshold voltage of RX sensitivity
890 		 */
891 		if (chip->mac_ver != MAC_VER_8168)
892 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
893 
894 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
895 		val16 = 0x12<<8 | val16;
896 		if (rgep->chipid.mac_ver != MAC_VER_8101E &&
897 		    rgep->chipid.mac_ver != MAC_VER_8168B_C) {
898 			rge_reg_put16(rgep, PHY_STATUS_REG, val16);
899 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
900 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
901 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
902 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
903 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
904 			val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
905 			val32 |= 0x7000;
906 			val32 &= 0xffff5fff;
907 			rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
908 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
909 		}
910 	}
911 
912 	/*
913 	 * Config MII register
914 	 */
915 	rgep->param_link_up = LINK_STATE_DOWN;
916 	rge_phy_update(rgep);
917 
918 	/*
919 	 * Enable Rx checksum offload.
920 	 *  Then for vlan support, we must enable receive vlan de-tagging.
921 	 *  Otherwise, there'll be checksum error.
922 	 */
923 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
924 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
925 	if (chip->mac_ver == MAC_VER_8169S_D) {
926 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
927 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
928 	}
929 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
930 
931 	/*
932 	 * Start transmit/receive before set tx/rx configuration register
933 	 */
934 	if (!chip->is_pcie)
935 		rge_reg_set8(rgep, RT_COMMAND_REG,
936 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
937 
938 	/*
939 	 * Set dump tally counter register
940 	 */
941 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
942 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
943 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
944 	val32 &= DUMP_COUNTER_REG_RESV;
945 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
946 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
947 
948 	/*
949 	 * Change to config register write enable mode
950 	 */
951 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
952 
953 	/*
954 	 * Set Tx/Rx maximum packet size
955 	 */
956 	if (rgep->default_mtu > ETHERMTU) {
957 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
958 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
959 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
960 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
961 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
962 	} else {
963 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
964 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
965 	}
966 
967 	/*
968 	 * Set receive configuration register
969 	 */
970 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
971 	val32 &= RX_CONFIG_REG_RESV;
972 	if (rgep->promisc)
973 		val32 |= RX_ACCEPT_ALL_PKT;
974 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
975 
976 	/*
977 	 * Set transmit configuration register
978 	 */
979 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
980 	val32 &= TX_CONFIG_REG_RESV;
981 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
982 
983 	/*
984 	 * Set Tx/Rx descriptor register
985 	 */
986 	val32 = rgep->tx_desc.cookie.dmac_laddress;
987 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
988 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
989 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
990 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
991 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
992 	val32 = rgep->rx_desc.cookie.dmac_laddress;
993 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
994 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
995 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
996 
997 	/*
998 	 * Suggested setting from Realtek
999 	 */
1000 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1001 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1002 	else
1003 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1004 
1005 	/*
1006 	 * Set multicast register
1007 	 */
1008 	hashp = (uint32_t *)rgep->mcast_hash;
1009 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1010 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1011 
1012 	/*
1013 	 * Msic register setting:
1014 	 *   -- Missed packet counter: clear it
1015 	 *   -- TimerInt Register
1016 	 *   -- Timer count register
1017 	 */
1018 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1019 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1020 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1021 
1022 	/*
1023 	 * Return to normal network/host communication mode
1024 	 */
1025 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1026 	drv_usecwait(20);
1027 }
1028 
1029 /*
1030  * rge_chip_start() -- start the chip transmitting and/or receiving,
1031  * including enabling interrupts
1032  */
1033 void rge_chip_start(rge_t *rgep);
1034 #pragma	no_inline(rge_chip_start)
1035 
1036 void
1037 rge_chip_start(rge_t *rgep)
1038 {
1039 	/*
1040 	 * Clear statistics
1041 	 */
1042 	bzero(&rgep->stats, sizeof (rge_stats_t));
1043 	DMA_ZERO(rgep->dma_area_stats);
1044 
1045 	/*
1046 	 * Start transmit/receive
1047 	 */
1048 	rge_reg_set8(rgep, RT_COMMAND_REG,
1049 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1050 
1051 	/*
1052 	 * Enable interrupt
1053 	 */
1054 	rgep->int_mask = RGE_INT_MASK;
1055 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1056 
1057 	/*
1058 	 * All done!
1059 	 */
1060 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1061 }
1062 
1063 /*
1064  * rge_chip_stop() -- stop board receiving
1065  */
1066 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1067 #pragma	no_inline(rge_chip_stop)
1068 
1069 void
1070 rge_chip_stop(rge_t *rgep, boolean_t fault)
1071 {
1072 	/*
1073 	 * Disable interrupt
1074 	 */
1075 	rgep->int_mask = INT_MASK_NONE;
1076 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1077 
1078 	/*
1079 	 * Clear pended interrupt
1080 	 */
1081 	if (!rgep->suspended) {
1082 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1083 	}
1084 
1085 	/*
1086 	 * Stop the board and disable transmit/receive
1087 	 */
1088 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1089 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1090 
1091 	if (fault)
1092 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1093 	else
1094 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1095 }
1096 
1097 /*
1098  * rge_get_mac_addr() -- get the MAC address on NIC
1099  */
1100 static void rge_get_mac_addr(rge_t *rgep);
1101 #pragma	inline(rge_get_mac_addr)
1102 
1103 static void
1104 rge_get_mac_addr(rge_t *rgep)
1105 {
1106 	uint8_t *macaddr = rgep->netaddr;
1107 	uint32_t val32;
1108 
1109 	/*
1110 	 * Read first 4-byte of mac address
1111 	 */
1112 	val32 = rge_reg_get32(rgep, ID_0_REG);
1113 	macaddr[0] = val32 & 0xff;
1114 	val32 = val32 >> 8;
1115 	macaddr[1] = val32 & 0xff;
1116 	val32 = val32 >> 8;
1117 	macaddr[2] = val32 & 0xff;
1118 	val32 = val32 >> 8;
1119 	macaddr[3] = val32 & 0xff;
1120 
1121 	/*
1122 	 * Read last 2-byte of mac address
1123 	 */
1124 	val32 = rge_reg_get32(rgep, ID_4_REG);
1125 	macaddr[4] = val32 & 0xff;
1126 	val32 = val32 >> 8;
1127 	macaddr[5] = val32 & 0xff;
1128 }
1129 
1130 static void rge_set_mac_addr(rge_t *rgep);
1131 #pragma	inline(rge_set_mac_addr)
1132 
1133 static void
1134 rge_set_mac_addr(rge_t *rgep)
1135 {
1136 	uint8_t *p = rgep->netaddr;
1137 	uint32_t val32;
1138 
1139 	/*
1140 	 * Change to config register write enable mode
1141 	 */
1142 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1143 
1144 	/*
1145 	 * Get first 4 bytes of mac address
1146 	 */
1147 	val32 = p[3];
1148 	val32 = val32 << 8;
1149 	val32 |= p[2];
1150 	val32 = val32 << 8;
1151 	val32 |= p[1];
1152 	val32 = val32 << 8;
1153 	val32 |= p[0];
1154 
1155 	/*
1156 	 * Set first 4 bytes of mac address
1157 	 */
1158 	rge_reg_put32(rgep, ID_0_REG, val32);
1159 
1160 	/*
1161 	 * Get last 2 bytes of mac address
1162 	 */
1163 	val32 = p[5];
1164 	val32 = val32 << 8;
1165 	val32 |= p[4];
1166 
1167 	/*
1168 	 * Set last 2 bytes of mac address
1169 	 */
1170 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1171 	rge_reg_put32(rgep, ID_4_REG, val32);
1172 
1173 	/*
1174 	 * Return to normal network/host communication mode
1175 	 */
1176 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1177 }
1178 
1179 static void rge_set_multi_addr(rge_t *rgep);
1180 #pragma	inline(rge_set_multi_addr)
1181 
1182 static void
1183 rge_set_multi_addr(rge_t *rgep)
1184 {
1185 	uint32_t *hashp;
1186 
1187 	hashp = (uint32_t *)rgep->mcast_hash;
1188 
1189 	/*
1190 	 * Change to config register write enable mode
1191 	 */
1192 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1193 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1194 
1195 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1196 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1197 
1198 	/*
1199 	 * Return to normal network/host communication mode
1200 	 */
1201 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1202 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1203 }
1204 
1205 static void rge_set_promisc(rge_t *rgep);
1206 #pragma	inline(rge_set_promisc)
1207 
1208 static void
1209 rge_set_promisc(rge_t *rgep)
1210 {
1211 	if (rgep->promisc)
1212 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1213 	else
1214 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1215 }
1216 
1217 /*
1218  * rge_chip_sync() -- program the chip with the unicast MAC address,
1219  * the multicast hash table, the required level of promiscuity, and
1220  * the current loopback mode ...
1221  */
1222 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1223 #pragma	no_inline(rge_chip_sync)
1224 
1225 void
1226 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1227 {
1228 	switch (todo) {
1229 	case RGE_GET_MAC:
1230 		rge_get_mac_addr(rgep);
1231 		break;
1232 	case RGE_SET_MAC:
1233 		/* Reprogram the unicast MAC address(es) ... */
1234 		rge_set_mac_addr(rgep);
1235 		break;
1236 	case RGE_SET_MUL:
1237 		/* Reprogram the hashed multicast address table ... */
1238 		rge_set_multi_addr(rgep);
1239 		break;
1240 	case RGE_SET_PROMISC:
1241 		/* Set or clear the PROMISCUOUS mode bit */
1242 		rge_set_promisc(rgep);
1243 		break;
1244 	default:
1245 		break;
1246 	}
1247 }
1248 
1249 void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1250 #pragma	no_inline(rge_chip_blank)
1251 
1252 void
1253 rge_chip_blank(void *arg, time_t ticks, uint_t count)
1254 {
1255 	_NOTE(ARGUNUSED(arg, ticks, count));
1256 }
1257 
1258 void rge_tx_trigger(rge_t *rgep);
1259 #pragma	no_inline(rge_tx_trigger)
1260 
1261 void
1262 rge_tx_trigger(rge_t *rgep)
1263 {
1264 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1265 }
1266 
1267 void rge_hw_stats_dump(rge_t *rgep);
1268 #pragma	no_inline(rge_tx_trigger)
1269 
1270 void
1271 rge_hw_stats_dump(rge_t *rgep)
1272 {
1273 	int i = 0;
1274 
1275 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1276 		drv_usecwait(100);
1277 		if (++i > STATS_DUMP_LOOP) {
1278 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1279 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1280 			return;
1281 		}
1282 	}
1283 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1284 
1285 	/*
1286 	 * Start H/W statistics dump for RTL8169 chip
1287 	 */
1288 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1289 }
1290 
1291 /*
1292  * ========== Hardware interrupt handler ==========
1293  */
1294 
1295 #undef	RGE_DBG
1296 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1297 
1298 static void rge_wake_factotum(rge_t *rgep);
1299 #pragma	inline(rge_wake_factotum)
1300 
1301 static void
1302 rge_wake_factotum(rge_t *rgep)
1303 {
1304 	if (rgep->factotum_flag == 0) {
1305 		rgep->factotum_flag = 1;
1306 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1307 	}
1308 }
1309 
1310 /*
1311  *	rge_intr() -- handle chip interrupts
1312  */
1313 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1314 #pragma	no_inline(rge_intr)
1315 
1316 uint_t
1317 rge_intr(caddr_t arg1, caddr_t arg2)
1318 {
1319 	rge_t *rgep = (rge_t *)arg1;
1320 	uint16_t int_status;
1321 
1322 	_NOTE(ARGUNUSED(arg2))
1323 
1324 	mutex_enter(rgep->genlock);
1325 
1326 	if (rgep->suspended) {
1327 		mutex_exit(rgep->genlock);
1328 		return (DDI_INTR_UNCLAIMED);
1329 	}
1330 
1331 	/*
1332 	 * Was this interrupt caused by our device...
1333 	 */
1334 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1335 	if (!(int_status & rgep->int_mask)) {
1336 		mutex_exit(rgep->genlock);
1337 		return (DDI_INTR_UNCLAIMED);
1338 				/* indicate it wasn't our interrupt */
1339 	}
1340 	rgep->stats.intr++;
1341 
1342 	/*
1343 	 * Clear interrupt
1344 	 *	For PCIE chipset, we need disable interrupt first.
1345 	 */
1346 	if (rgep->chipid.is_pcie)
1347 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1348 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1349 
1350 	/*
1351 	 * Cable link change interrupt
1352 	 */
1353 	if (int_status & LINK_CHANGE_INT) {
1354 		rge_chip_cyclic(rgep);
1355 	}
1356 
1357 	mutex_exit(rgep->genlock);
1358 
1359 	/*
1360 	 * Receive interrupt
1361 	 */
1362 	if (int_status & RGE_RX_INT)
1363 		rge_receive(rgep);
1364 
1365 	/*
1366 	 * Re-enable interrupt for PCIE chipset
1367 	 */
1368 	if (rgep->chipid.is_pcie)
1369 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1370 
1371 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1372 }
1373 
1374 /*
1375  * ========== Factotum, implemented as a softint handler ==========
1376  */
1377 
1378 #undef	RGE_DBG
1379 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1380 
1381 static boolean_t rge_factotum_link_check(rge_t *rgep);
1382 #pragma	no_inline(rge_factotum_link_check)
1383 
1384 static boolean_t
1385 rge_factotum_link_check(rge_t *rgep)
1386 {
1387 	uint8_t media_status;
1388 	int32_t link;
1389 
1390 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1391 	link = (media_status & PHY_STATUS_LINK_UP) ?
1392 	    LINK_STATE_UP : LINK_STATE_DOWN;
1393 	if (rgep->param_link_up != link) {
1394 		/*
1395 		 * Link change.
1396 		 */
1397 		rgep->param_link_up = link;
1398 
1399 		if (link == LINK_STATE_UP) {
1400 			if (media_status & PHY_STATUS_1000MF) {
1401 				rgep->param_link_speed = RGE_SPEED_1000M;
1402 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1403 			} else {
1404 				rgep->param_link_speed =
1405 				    (media_status & PHY_STATUS_100M) ?
1406 				    RGE_SPEED_100M : RGE_SPEED_10M;
1407 				rgep->param_link_duplex =
1408 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1409 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1410 			}
1411 		}
1412 		return (B_TRUE);
1413 	}
1414 	return (B_FALSE);
1415 }
1416 
1417 /*
1418  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1419  */
1420 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1421 #pragma	no_inline(rge_factotum_stall_check)
1422 
1423 static boolean_t
1424 rge_factotum_stall_check(rge_t *rgep)
1425 {
1426 	uint32_t dogval;
1427 
1428 	ASSERT(mutex_owned(rgep->genlock));
1429 
1430 	/*
1431 	 * Specific check for Tx stall ...
1432 	 *
1433 	 * The 'watchdog' counter is incremented whenever a packet
1434 	 * is queued, reset to 1 when some (but not all) buffers
1435 	 * are reclaimed, reset to 0 (disabled) when all buffers
1436 	 * are reclaimed, and shifted left here.  If it exceeds the
1437 	 * threshold value, the chip is assumed to have stalled and
1438 	 * is put into the ERROR state.  The factotum will then reset
1439 	 * it on the next pass.
1440 	 *
1441 	 * All of which should ensure that we don't get into a state
1442 	 * where packets are left pending indefinitely!
1443 	 */
1444 	if (rgep->resched_needed)
1445 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1446 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1447 	if (dogval < rge_watchdog_count)
1448 		return (B_FALSE);
1449 
1450 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1451 	return (B_TRUE);
1452 
1453 }
1454 
1455 /*
1456  * The factotum is woken up when there's something to do that we'd rather
1457  * not do from inside a hardware interrupt handler or high-level cyclic.
1458  * Its two main tasks are:
1459  *	reset & restart the chip after an error
1460  *	check the link status whenever necessary
1461  */
1462 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1463 #pragma	no_inline(rge_chip_factotum)
1464 
1465 uint_t
1466 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1467 {
1468 	rge_t *rgep;
1469 	uint_t result;
1470 	boolean_t error;
1471 	boolean_t linkchg;
1472 
1473 	rgep = (rge_t *)arg1;
1474 	_NOTE(ARGUNUSED(arg2))
1475 
1476 	if (rgep->factotum_flag == 0)
1477 		return (DDI_INTR_UNCLAIMED);
1478 
1479 	rgep->factotum_flag = 0;
1480 	result = DDI_INTR_CLAIMED;
1481 	error = B_FALSE;
1482 	linkchg = B_FALSE;
1483 
1484 	mutex_enter(rgep->genlock);
1485 	switch (rgep->rge_chip_state) {
1486 	default:
1487 		break;
1488 
1489 	case RGE_CHIP_RUNNING:
1490 		linkchg = rge_factotum_link_check(rgep);
1491 		error = rge_factotum_stall_check(rgep);
1492 		break;
1493 
1494 	case RGE_CHIP_ERROR:
1495 		error = B_TRUE;
1496 		break;
1497 
1498 	case RGE_CHIP_FAULT:
1499 		/*
1500 		 * Fault detected, time to reset ...
1501 		 */
1502 		if (rge_autorecover) {
1503 			RGE_REPORT((rgep, "automatic recovery activated"));
1504 			rge_restart(rgep);
1505 		}
1506 		break;
1507 	}
1508 
1509 	/*
1510 	 * If an error is detected, stop the chip now, marking it as
1511 	 * faulty, so that it will be reset next time through ...
1512 	 */
1513 	if (error)
1514 		rge_chip_stop(rgep, B_TRUE);
1515 	mutex_exit(rgep->genlock);
1516 
1517 	/*
1518 	 * If the link state changed, tell the world about it.
1519 	 * Note: can't do this while still holding the mutex.
1520 	 */
1521 	if (linkchg)
1522 		mac_link_update(rgep->mh, rgep->param_link_up);
1523 
1524 	return (result);
1525 }
1526 
1527 /*
1528  * High-level cyclic handler
1529  *
1530  * This routine schedules a (low-level) softint callback to the
1531  * factotum, and prods the chip to update the status block (which
1532  * will cause a hardware interrupt when complete).
1533  */
1534 void rge_chip_cyclic(void *arg);
1535 #pragma	no_inline(rge_chip_cyclic)
1536 
1537 void
1538 rge_chip_cyclic(void *arg)
1539 {
1540 	rge_t *rgep;
1541 
1542 	rgep = arg;
1543 
1544 	switch (rgep->rge_chip_state) {
1545 	default:
1546 		return;
1547 
1548 	case RGE_CHIP_RUNNING:
1549 		rge_phy_check(rgep);
1550 		break;
1551 
1552 	case RGE_CHIP_FAULT:
1553 	case RGE_CHIP_ERROR:
1554 		break;
1555 	}
1556 
1557 	rge_wake_factotum(rgep);
1558 }
1559 
1560 
1561 /*
1562  * ========== Ioctl subfunctions ==========
1563  */
1564 
1565 #undef	RGE_DBG
1566 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1567 
1568 #if	RGE_DEBUGGING || RGE_DO_PPIO
1569 
1570 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1571 #pragma	no_inline(rge_chip_peek_cfg)
1572 
1573 static void
1574 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1575 {
1576 	uint64_t regval;
1577 	uint64_t regno;
1578 
1579 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1580 	    (void *)rgep, (void *)ppd));
1581 
1582 	regno = ppd->pp_acc_offset;
1583 
1584 	switch (ppd->pp_acc_size) {
1585 	case 1:
1586 		regval = pci_config_get8(rgep->cfg_handle, regno);
1587 		break;
1588 
1589 	case 2:
1590 		regval = pci_config_get16(rgep->cfg_handle, regno);
1591 		break;
1592 
1593 	case 4:
1594 		regval = pci_config_get32(rgep->cfg_handle, regno);
1595 		break;
1596 
1597 	case 8:
1598 		regval = pci_config_get64(rgep->cfg_handle, regno);
1599 		break;
1600 	}
1601 
1602 	ppd->pp_acc_data = regval;
1603 }
1604 
1605 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1606 #pragma	no_inline(rge_chip_poke_cfg)
1607 
1608 static void
1609 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1610 {
1611 	uint64_t regval;
1612 	uint64_t regno;
1613 
1614 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1615 	    (void *)rgep, (void *)ppd));
1616 
1617 	regno = ppd->pp_acc_offset;
1618 	regval = ppd->pp_acc_data;
1619 
1620 	switch (ppd->pp_acc_size) {
1621 	case 1:
1622 		pci_config_put8(rgep->cfg_handle, regno, regval);
1623 		break;
1624 
1625 	case 2:
1626 		pci_config_put16(rgep->cfg_handle, regno, regval);
1627 		break;
1628 
1629 	case 4:
1630 		pci_config_put32(rgep->cfg_handle, regno, regval);
1631 		break;
1632 
1633 	case 8:
1634 		pci_config_put64(rgep->cfg_handle, regno, regval);
1635 		break;
1636 	}
1637 }
1638 
1639 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1640 #pragma	no_inline(rge_chip_peek_reg)
1641 
1642 static void
1643 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1644 {
1645 	uint64_t regval;
1646 	void *regaddr;
1647 
1648 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1649 	    (void *)rgep, (void *)ppd));
1650 
1651 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1652 
1653 	switch (ppd->pp_acc_size) {
1654 	case 1:
1655 		regval = ddi_get8(rgep->io_handle, regaddr);
1656 		break;
1657 
1658 	case 2:
1659 		regval = ddi_get16(rgep->io_handle, regaddr);
1660 		break;
1661 
1662 	case 4:
1663 		regval = ddi_get32(rgep->io_handle, regaddr);
1664 		break;
1665 
1666 	case 8:
1667 		regval = ddi_get64(rgep->io_handle, regaddr);
1668 		break;
1669 	}
1670 
1671 	ppd->pp_acc_data = regval;
1672 }
1673 
1674 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1675 #pragma	no_inline(rge_chip_peek_reg)
1676 
1677 static void
1678 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1679 {
1680 	uint64_t regval;
1681 	void *regaddr;
1682 
1683 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1684 	    (void *)rgep, (void *)ppd));
1685 
1686 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1687 	regval = ppd->pp_acc_data;
1688 
1689 	switch (ppd->pp_acc_size) {
1690 	case 1:
1691 		ddi_put8(rgep->io_handle, regaddr, regval);
1692 		break;
1693 
1694 	case 2:
1695 		ddi_put16(rgep->io_handle, regaddr, regval);
1696 		break;
1697 
1698 	case 4:
1699 		ddi_put32(rgep->io_handle, regaddr, regval);
1700 		break;
1701 
1702 	case 8:
1703 		ddi_put64(rgep->io_handle, regaddr, regval);
1704 		break;
1705 	}
1706 }
1707 
1708 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1709 #pragma	no_inline(rge_chip_peek_mii)
1710 
1711 static void
1712 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1713 {
1714 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1715 	    (void *)rgep, (void *)ppd));
1716 
1717 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1718 }
1719 
1720 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1721 #pragma	no_inline(rge_chip_poke_mii)
1722 
1723 static void
1724 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1725 {
1726 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1727 	    (void *)rgep, (void *)ppd));
1728 
1729 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1730 }
1731 
1732 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1733 #pragma	no_inline(rge_chip_peek_mem)
1734 
1735 static void
1736 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1737 {
1738 	uint64_t regval;
1739 	void *vaddr;
1740 
1741 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1742 	    (void *)rgep, (void *)ppd));
1743 
1744 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1745 
1746 	switch (ppd->pp_acc_size) {
1747 	case 1:
1748 		regval = *(uint8_t *)vaddr;
1749 		break;
1750 
1751 	case 2:
1752 		regval = *(uint16_t *)vaddr;
1753 		break;
1754 
1755 	case 4:
1756 		regval = *(uint32_t *)vaddr;
1757 		break;
1758 
1759 	case 8:
1760 		regval = *(uint64_t *)vaddr;
1761 		break;
1762 	}
1763 
1764 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1765 	    (void *)rgep, (void *)ppd, regval, vaddr));
1766 
1767 	ppd->pp_acc_data = regval;
1768 }
1769 
1770 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1771 #pragma	no_inline(rge_chip_poke_mem)
1772 
1773 static void
1774 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1775 {
1776 	uint64_t regval;
1777 	void *vaddr;
1778 
1779 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1780 	    (void *)rgep, (void *)ppd));
1781 
1782 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1783 	regval = ppd->pp_acc_data;
1784 
1785 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1786 	    (void *)rgep, (void *)ppd, regval, vaddr));
1787 
1788 	switch (ppd->pp_acc_size) {
1789 	case 1:
1790 		*(uint8_t *)vaddr = (uint8_t)regval;
1791 		break;
1792 
1793 	case 2:
1794 		*(uint16_t *)vaddr = (uint16_t)regval;
1795 		break;
1796 
1797 	case 4:
1798 		*(uint32_t *)vaddr = (uint32_t)regval;
1799 		break;
1800 
1801 	case 8:
1802 		*(uint64_t *)vaddr = (uint64_t)regval;
1803 		break;
1804 	}
1805 }
1806 
1807 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1808 					struct iocblk *iocp);
1809 #pragma	no_inline(rge_pp_ioctl)
1810 
1811 static enum ioc_reply
1812 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1813 {
1814 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1815 	rge_peekpoke_t *ppd;
1816 	dma_area_t *areap;
1817 	uint64_t sizemask;
1818 	uint64_t mem_va;
1819 	uint64_t maxoff;
1820 	boolean_t peek;
1821 
1822 	switch (cmd) {
1823 	default:
1824 		/* NOTREACHED */
1825 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1826 		return (IOC_INVAL);
1827 
1828 	case RGE_PEEK:
1829 		peek = B_TRUE;
1830 		break;
1831 
1832 	case RGE_POKE:
1833 		peek = B_FALSE;
1834 		break;
1835 	}
1836 
1837 	/*
1838 	 * Validate format of ioctl
1839 	 */
1840 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1841 		return (IOC_INVAL);
1842 	if (mp->b_cont == NULL)
1843 		return (IOC_INVAL);
1844 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1845 
1846 	/*
1847 	 * Validate request parameters
1848 	 */
1849 	switch (ppd->pp_acc_space) {
1850 	default:
1851 		return (IOC_INVAL);
1852 
1853 	case RGE_PP_SPACE_CFG:
1854 		/*
1855 		 * Config space
1856 		 */
1857 		sizemask = 8|4|2|1;
1858 		mem_va = 0;
1859 		maxoff = PCI_CONF_HDR_SIZE;
1860 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1861 		break;
1862 
1863 	case RGE_PP_SPACE_REG:
1864 		/*
1865 		 * Memory-mapped I/O space
1866 		 */
1867 		sizemask = 8|4|2|1;
1868 		mem_va = 0;
1869 		maxoff = RGE_REGISTER_MAX;
1870 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1871 		break;
1872 
1873 	case RGE_PP_SPACE_MII:
1874 		/*
1875 		 * PHY's MII registers
1876 		 * NB: all PHY registers are two bytes, but the
1877 		 * addresses increment in ones (word addressing).
1878 		 * So we scale the address here, then undo the
1879 		 * transformation inside the peek/poke functions.
1880 		 */
1881 		ppd->pp_acc_offset *= 2;
1882 		sizemask = 2;
1883 		mem_va = 0;
1884 		maxoff = (MII_MAXREG+1)*2;
1885 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1886 		break;
1887 
1888 	case RGE_PP_SPACE_RGE:
1889 		/*
1890 		 * RGE data structure!
1891 		 */
1892 		sizemask = 8|4|2|1;
1893 		mem_va = (uintptr_t)rgep;
1894 		maxoff = sizeof (*rgep);
1895 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1896 		break;
1897 
1898 	case RGE_PP_SPACE_STATISTICS:
1899 	case RGE_PP_SPACE_TXDESC:
1900 	case RGE_PP_SPACE_TXBUFF:
1901 	case RGE_PP_SPACE_RXDESC:
1902 	case RGE_PP_SPACE_RXBUFF:
1903 		/*
1904 		 * Various DMA_AREAs
1905 		 */
1906 		switch (ppd->pp_acc_space) {
1907 		case RGE_PP_SPACE_TXDESC:
1908 			areap = &rgep->dma_area_txdesc;
1909 			break;
1910 		case RGE_PP_SPACE_RXDESC:
1911 			areap = &rgep->dma_area_rxdesc;
1912 			break;
1913 		case RGE_PP_SPACE_STATISTICS:
1914 			areap = &rgep->dma_area_stats;
1915 			break;
1916 		}
1917 
1918 		sizemask = 8|4|2|1;
1919 		mem_va = (uintptr_t)areap->mem_va;
1920 		maxoff = areap->alength;
1921 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1922 		break;
1923 	}
1924 
1925 	switch (ppd->pp_acc_size) {
1926 	default:
1927 		return (IOC_INVAL);
1928 
1929 	case 8:
1930 	case 4:
1931 	case 2:
1932 	case 1:
1933 		if ((ppd->pp_acc_size & sizemask) == 0)
1934 			return (IOC_INVAL);
1935 		break;
1936 	}
1937 
1938 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1939 		return (IOC_INVAL);
1940 
1941 	if (ppd->pp_acc_offset >= maxoff)
1942 		return (IOC_INVAL);
1943 
1944 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1945 		return (IOC_INVAL);
1946 
1947 	/*
1948 	 * All OK - go do it!
1949 	 */
1950 	ppd->pp_acc_offset += mem_va;
1951 	(*ppfn)(rgep, ppd);
1952 	return (peek ? IOC_REPLY : IOC_ACK);
1953 }
1954 
1955 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1956 					struct iocblk *iocp);
1957 #pragma	no_inline(rge_diag_ioctl)
1958 
1959 static enum ioc_reply
1960 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1961 {
1962 	ASSERT(mutex_owned(rgep->genlock));
1963 
1964 	switch (cmd) {
1965 	default:
1966 		/* NOTREACHED */
1967 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1968 		return (IOC_INVAL);
1969 
1970 	case RGE_DIAG:
1971 		/*
1972 		 * Currently a no-op
1973 		 */
1974 		return (IOC_ACK);
1975 
1976 	case RGE_PEEK:
1977 	case RGE_POKE:
1978 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
1979 
1980 	case RGE_PHY_RESET:
1981 		return (IOC_RESTART_ACK);
1982 
1983 	case RGE_SOFT_RESET:
1984 	case RGE_HARD_RESET:
1985 		/*
1986 		 * Reset and reinitialise the 570x hardware
1987 		 */
1988 		rge_restart(rgep);
1989 		return (IOC_ACK);
1990 	}
1991 
1992 	/* NOTREACHED */
1993 }
1994 
1995 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
1996 
1997 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1998 				    struct iocblk *iocp);
1999 #pragma	no_inline(rge_mii_ioctl)
2000 
2001 static enum ioc_reply
2002 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2003 {
2004 	struct rge_mii_rw *miirwp;
2005 
2006 	/*
2007 	 * Validate format of ioctl
2008 	 */
2009 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2010 		return (IOC_INVAL);
2011 	if (mp->b_cont == NULL)
2012 		return (IOC_INVAL);
2013 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2014 
2015 	/*
2016 	 * Validate request parameters ...
2017 	 */
2018 	if (miirwp->mii_reg > MII_MAXREG)
2019 		return (IOC_INVAL);
2020 
2021 	switch (cmd) {
2022 	default:
2023 		/* NOTREACHED */
2024 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2025 		return (IOC_INVAL);
2026 
2027 	case RGE_MII_READ:
2028 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2029 		return (IOC_REPLY);
2030 
2031 	case RGE_MII_WRITE:
2032 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2033 		return (IOC_ACK);
2034 	}
2035 
2036 	/* NOTREACHED */
2037 }
2038 
2039 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2040 				struct iocblk *iocp);
2041 #pragma	no_inline(rge_chip_ioctl)
2042 
2043 enum ioc_reply
2044 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2045 {
2046 	int cmd;
2047 
2048 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2049 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2050 
2051 	ASSERT(mutex_owned(rgep->genlock));
2052 
2053 	cmd = iocp->ioc_cmd;
2054 	switch (cmd) {
2055 	default:
2056 		/* NOTREACHED */
2057 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2058 		return (IOC_INVAL);
2059 
2060 	case RGE_DIAG:
2061 	case RGE_PEEK:
2062 	case RGE_POKE:
2063 	case RGE_PHY_RESET:
2064 	case RGE_SOFT_RESET:
2065 	case RGE_HARD_RESET:
2066 #if	RGE_DEBUGGING || RGE_DO_PPIO
2067 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2068 #else
2069 		return (IOC_INVAL);
2070 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2071 
2072 	case RGE_MII_READ:
2073 	case RGE_MII_WRITE:
2074 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2075 
2076 	}
2077 
2078 	/* NOTREACHED */
2079 }
2080