xref: /titanic_50/usr/src/uts/common/io/rge/rge_chip.c (revision e127a3e717f822eb855235fa3bd08235b2cf533d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 16;
48 
49 /*
50  * Operating register get/set access routines
51  */
52 #if	RGE_DEBUGGING
53 
54 static void rge_pci_check(rge_t *rgep);
55 #pragma	no_inline(rge_pci_check)
56 
57 static void
58 rge_pci_check(rge_t *rgep)
59 {
60 	uint16_t pcistatus;
61 
62 	pcistatus = pci_config_get16(rgep->cfg_handle, PCI_CONF_STAT);
63 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
64 		RGE_DEBUG(("rge_pci_check($%p): PCI status 0x%x",
65 			(void *)rgep, pcistatus));
66 }
67 
68 #endif	/* RGE_DEBUGGING */
69 
70 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
71 #pragma	inline(rge_reg_get32)
72 
73 static uint32_t
74 rge_reg_get32(rge_t *rgep, uintptr_t regno)
75 {
76 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
77 		(void *)rgep, regno));
78 
79 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
80 }
81 
82 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
83 #pragma	inline(rge_reg_put32)
84 
85 static void
86 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
87 {
88 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
89 		(void *)rgep, regno, data));
90 
91 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
92 	RGE_PCICHK(rgep);
93 }
94 
95 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
96 #pragma	inline(rge_reg_set32)
97 
98 static void
99 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
100 {
101 	uint32_t regval;
102 
103 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
104 		(void *)rgep, regno, bits));
105 
106 	regval = rge_reg_get32(rgep, regno);
107 	regval |= bits;
108 	rge_reg_put32(rgep, regno, regval);
109 }
110 
111 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
112 #pragma	inline(rge_reg_clr32)
113 
114 static void
115 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
116 {
117 	uint32_t regval;
118 
119 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
120 		(void *)rgep, regno, bits));
121 
122 	regval = rge_reg_get32(rgep, regno);
123 	regval &= ~bits;
124 	rge_reg_put32(rgep, regno, regval);
125 }
126 
127 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
128 #pragma	inline(rge_reg_get16)
129 
130 static uint16_t
131 rge_reg_get16(rge_t *rgep, uintptr_t regno)
132 {
133 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
134 		(void *)rgep, regno));
135 
136 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
137 }
138 
139 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
140 #pragma	inline(rge_reg_put16)
141 
142 static void
143 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
144 {
145 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
146 		(void *)rgep, regno, data));
147 
148 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
149 	RGE_PCICHK(rgep);
150 }
151 
152 static void rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits);
153 #pragma	inline(rge_reg_set16)
154 
155 static void
156 rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits)
157 {
158 	uint16_t regval;
159 
160 	RGE_TRACE(("rge_reg_set16($%p, 0x%lx, 0x%x)",
161 		(void *)rgep, regno, bits));
162 
163 	regval = rge_reg_get16(rgep, regno);
164 	regval |= bits;
165 	rge_reg_put16(rgep, regno, regval);
166 }
167 
168 static void rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits);
169 #pragma	inline(rge_reg_clr16)
170 
171 static void
172 rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits)
173 {
174 	uint16_t regval;
175 
176 	RGE_TRACE(("rge_reg_clr16($%p, 0x%lx, 0x%x)",
177 		(void *)rgep, regno, bits));
178 
179 	regval = rge_reg_get16(rgep, regno);
180 	regval &= ~bits;
181 	rge_reg_put16(rgep, regno, regval);
182 }
183 
184 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
185 #pragma	inline(rge_reg_get8)
186 
187 static uint8_t
188 rge_reg_get8(rge_t *rgep, uintptr_t regno)
189 {
190 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
191 		(void *)rgep, regno));
192 
193 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
194 }
195 
196 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
197 #pragma	inline(rge_reg_put8)
198 
199 static void
200 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
201 {
202 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
203 		(void *)rgep, regno, data));
204 
205 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
206 	RGE_PCICHK(rgep);
207 }
208 
209 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
210 #pragma	inline(rge_reg_set8)
211 
212 static void
213 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
214 {
215 	uint8_t regval;
216 
217 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
218 		(void *)rgep, regno, bits));
219 
220 	regval = rge_reg_get8(rgep, regno);
221 	regval |= bits;
222 	rge_reg_put8(rgep, regno, regval);
223 }
224 
225 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
226 #pragma	inline(rge_reg_clr8)
227 
228 static void
229 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
230 {
231 	uint8_t regval;
232 
233 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
234 		(void *)rgep, regno, bits));
235 
236 	regval = rge_reg_get8(rgep, regno);
237 	regval &= ~bits;
238 	rge_reg_put8(rgep, regno, regval);
239 }
240 
241 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
242 #pragma	no_inline(rge_mii_get16)
243 
244 uint16_t
245 rge_mii_get16(rge_t *rgep, uintptr_t mii)
246 {
247 	uint32_t regval;
248 	uint32_t val32;
249 	uint32_t i;
250 
251 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
252 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
253 
254 	/*
255 	 * Waiting for PHY reading OK
256 	 */
257 	for (i = 0; i < PHY_RESET_LOOP; i++) {
258 		drv_usecwait(100);
259 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
260 		if (val32 & PHY_ACCESS_WR_FLAG)
261 			return ((uint16_t)(val32 & 0xffff));
262 	}
263 
264 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
265 	return ((uint16_t)~0u);
266 }
267 
268 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
269 #pragma	no_inline(rge_mii_put16)
270 
271 void
272 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
273 {
274 	uint32_t regval;
275 	uint32_t val32;
276 	uint32_t i;
277 
278 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
279 	regval |= data & PHY_DATA_MASK;
280 	regval |= PHY_ACCESS_WR_FLAG;
281 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
282 
283 	/*
284 	 * Waiting for PHY writing OK
285 	 */
286 	for (i = 0; i < PHY_RESET_LOOP; i++) {
287 		drv_usecwait(100);
288 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
289 		if (!(val32 & PHY_ACCESS_WR_FLAG))
290 			return;
291 	}
292 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
293 	    mii, data));
294 }
295 
296 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
297 #pragma	no_inline(rge_ephy_put16)
298 
299 void
300 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
301 {
302 	uint32_t regval;
303 	uint32_t val32;
304 	uint32_t i;
305 
306 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
307 	regval |= data & EPHY_DATA_MASK;
308 	regval |= EPHY_ACCESS_WR_FLAG;
309 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
310 
311 	/*
312 	 * Waiting for PHY writing OK
313 	 */
314 	for (i = 0; i < PHY_RESET_LOOP; i++) {
315 		drv_usecwait(100);
316 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
317 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
318 			return;
319 	}
320 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
321 	    emii, data));
322 }
323 
324 /*
325  * Atomically shift a 32-bit word left, returning
326  * the value it had *before* the shift was applied
327  */
328 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
329 #pragma	inline(rge_mii_put16)
330 
331 static uint32_t
332 rge_atomic_shl32(uint32_t *sp, uint_t count)
333 {
334 	uint32_t oldval;
335 	uint32_t newval;
336 
337 	/* ATOMICALLY */
338 	do {
339 		oldval = *sp;
340 		newval = oldval << count;
341 	} while (cas32(sp, oldval, newval) != oldval);
342 
343 	return (oldval);
344 }
345 
346 /*
347  * PHY operation routines
348  */
349 #if	RGE_DEBUGGING
350 
351 static void
352 rge_phydump(rge_t *rgep)
353 {
354 	uint16_t regs[32];
355 	int i;
356 
357 	ASSERT(mutex_owned(rgep->genlock));
358 
359 	for (i = 0; i < 32; ++i) {
360 		regs[i] = rge_mii_get16(rgep, i);
361 	}
362 
363 	for (i = 0; i < 32; i += 8)
364 		RGE_DEBUG(("rge_phydump: "
365 				"0x%04x %04x %04x %04x %04x %04x %04x %04x",
366 			regs[i+0], regs[i+1], regs[i+2], regs[i+3],
367 			regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
368 }
369 
370 #endif	/* RGE_DEBUGGING */
371 
372 /*
373  * Basic low-level function to probe for a PHY
374  *
375  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
376  */
377 static boolean_t
378 rge_phy_probe(rge_t *rgep)
379 {
380 	uint16_t phy_status;
381 
382 	ASSERT(mutex_owned(rgep->genlock));
383 
384 	/*
385 	 * Read the MII_STATUS register twice, in
386 	 * order to clear any sticky bits (but they should
387 	 * have been cleared by the RESET, I think).
388 	 */
389 	phy_status = rge_mii_get16(rgep, MII_STATUS);
390 	phy_status = rge_mii_get16(rgep, MII_STATUS);
391 	RGE_DEBUG(("rge_phy_probe: status 0x%x", phy_status));
392 
393 	/*
394 	 * Now check the value read; it should have at least one bit set
395 	 * (for the device capabilities) and at least one clear (one of
396 	 * the error bits). So if we see all 0s or all 1s, there's a
397 	 * problem.  In particular, rge_mii_get16() returns all 1s if
398 	 * communications fails ...
399 	 */
400 	switch (phy_status) {
401 	case 0x0000:
402 	case 0xffff:
403 		return (B_FALSE);
404 
405 	default :
406 		return (B_TRUE);
407 	}
408 }
409 
410 static void
411 rge_phy_check(rge_t *rgep)
412 {
413 	uint16_t gig_ctl;
414 
415 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
416 		/*
417 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
418 		 * every 15 seconds whin link down & advertise is 1000.
419 		 */
420 		if (rgep->chipid.phy_ver == PHY_VER_S) {
421 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
422 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
423 				rgep->link_down_count++;
424 				if (rgep->link_down_count > 15) {
425 					(void) rge_phy_reset(rgep);
426 					rgep->stats.phy_reset++;
427 					rgep->link_down_count = 0;
428 				}
429 			}
430 		}
431 	} else {
432 		rgep->link_down_count = 0;
433 	}
434 }
435 
436 /*
437  * Basic low-level function to reset the PHY.
438  * Doesn't incorporate any special-case workarounds.
439  *
440  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
441  */
442 boolean_t
443 rge_phy_reset(rge_t *rgep)
444 {
445 	uint16_t control;
446 	uint_t count;
447 
448 	/*
449 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
450 	 */
451 	control = rge_mii_get16(rgep, MII_CONTROL);
452 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
453 	for (count = 0; ++count < 1000; ) {
454 		drv_usecwait(100);
455 		control = rge_mii_get16(rgep, MII_CONTROL);
456 		if (BIC(control, MII_CONTROL_RESET))
457 			return (B_TRUE);
458 	}
459 
460 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
461 	return (B_FALSE);
462 }
463 
464 /*
465  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
466  * and advertisements with the required settings as specified by the various
467  * param_* variables that can be poked via the NDD interface.
468  *
469  * We always reset the PHY and reprogram *all* the relevant registers,
470  * not just those changed.  This should cause the link to go down, and then
471  * back up again once the link is stable and autonegotiation (if enabled)
472  * is complete.  We should get a link state change interrupt somewhere along
473  * the way ...
474  *
475  * NOTE: <genlock> must already be held by the caller
476  */
477 void
478 rge_phy_update(rge_t *rgep)
479 {
480 	boolean_t adv_autoneg;
481 	boolean_t adv_pause;
482 	boolean_t adv_asym_pause;
483 	boolean_t adv_1000fdx;
484 	boolean_t adv_1000hdx;
485 	boolean_t adv_100fdx;
486 	boolean_t adv_100hdx;
487 	boolean_t adv_10fdx;
488 	boolean_t adv_10hdx;
489 
490 	uint16_t control;
491 	uint16_t gigctrl;
492 	uint16_t anar;
493 
494 	ASSERT(mutex_owned(rgep->genlock));
495 
496 	RGE_DEBUG(("rge_phy_update: autoneg %d "
497 			"pause %d asym_pause %d "
498 			"1000fdx %d 1000hdx %d "
499 			"100fdx %d 100hdx %d "
500 			"10fdx %d 10hdx %d ",
501 		rgep->param_adv_autoneg,
502 		rgep->param_adv_pause, rgep->param_adv_asym_pause,
503 		rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
504 		rgep->param_adv_100fdx, rgep->param_adv_100hdx,
505 		rgep->param_adv_10fdx, rgep->param_adv_10hdx));
506 
507 	control = gigctrl = anar = 0;
508 
509 	/*
510 	 * PHY settings are normally based on the param_* variables,
511 	 * but if any loopback mode is in effect, that takes precedence.
512 	 *
513 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
514 	 * and External loopback at a variety of speeds (with a special
515 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
516 	 * is turned ON, and the speed/mastership is forced.
517 	 */
518 	switch (rgep->param_loop_mode) {
519 	case RGE_LOOP_NONE:
520 	default:
521 		adv_autoneg = rgep->param_adv_autoneg;
522 		adv_pause = rgep->param_adv_pause;
523 		adv_asym_pause = rgep->param_adv_asym_pause;
524 		adv_1000fdx = rgep->param_adv_1000fdx;
525 		adv_1000hdx = rgep->param_adv_1000hdx;
526 		adv_100fdx = rgep->param_adv_100fdx;
527 		adv_100hdx = rgep->param_adv_100hdx;
528 		adv_10fdx = rgep->param_adv_10fdx;
529 		adv_10hdx = rgep->param_adv_10hdx;
530 		break;
531 
532 	case RGE_LOOP_INTERNAL_PHY:
533 	case RGE_LOOP_INTERNAL_MAC:
534 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
535 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
536 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
537 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
538 
539 		switch (rgep->param_loop_mode) {
540 		case RGE_LOOP_INTERNAL_PHY:
541 			rgep->param_link_speed = 1000;
542 			adv_1000fdx = B_TRUE;
543 			control = MII_CONTROL_LOOPBACK;
544 			break;
545 
546 		case RGE_LOOP_INTERNAL_MAC:
547 			rgep->param_link_speed = 1000;
548 			adv_1000fdx = B_TRUE;
549 			break;
550 		}
551 	}
552 
553 	RGE_DEBUG(("rge_phy_update: autoneg %d "
554 			"pause %d asym_pause %d "
555 			"1000fdx %d 1000hdx %d "
556 			"100fdx %d 100hdx %d "
557 			"10fdx %d 10hdx %d ",
558 		adv_autoneg,
559 		adv_pause, adv_asym_pause,
560 		adv_1000fdx, adv_1000hdx,
561 		adv_100fdx, adv_100hdx,
562 		adv_10fdx, adv_10hdx));
563 
564 	/*
565 	 * We should have at least one technology capability set;
566 	 * if not, we select a default of 1000Mb/s full-duplex
567 	 */
568 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
569 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
570 		adv_1000fdx = B_TRUE;
571 
572 	/*
573 	 * Now transform the adv_* variables into the proper settings
574 	 * of the PHY registers ...
575 	 *
576 	 * If autonegotiation is (now) enabled, we want to trigger
577 	 * a new autonegotiation cycle once the PHY has been
578 	 * programmed with the capabilities to be advertised.
579 	 *
580 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
581 	 */
582 	if (adv_autoneg)
583 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
584 
585 	if (adv_1000fdx)
586 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
587 	else if (adv_1000hdx)
588 		control |= MII_CONTROL_1000MB;
589 	else if (adv_100fdx)
590 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
591 	else if (adv_100hdx)
592 		control |= MII_CONTROL_100MB;
593 	else if (adv_10fdx)
594 		control |= MII_CONTROL_FDUPLEX;
595 	else if (adv_10hdx)
596 		control |= 0;
597 	else
598 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
599 
600 	if (adv_1000fdx) {
601 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
602 		/*
603 		 * Chipset limitation: need set other capabilities to true
604 		 */
605 		if (rgep->chipid.is_pcie)
606 			adv_1000hdx = B_TRUE;
607 		adv_100fdx = B_TRUE;
608 		adv_100hdx  = B_TRUE;
609 		adv_10fdx = B_TRUE;
610 		adv_10hdx = B_TRUE;
611 	}
612 
613 	if (adv_1000hdx)
614 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
615 
616 	if (adv_100fdx)
617 		anar |= MII_ABILITY_100BASE_TX_FD;
618 	if (adv_100hdx)
619 		anar |= MII_ABILITY_100BASE_TX;
620 	if (adv_10fdx)
621 		anar |= MII_ABILITY_10BASE_T_FD;
622 	if (adv_10hdx)
623 		anar |= MII_ABILITY_10BASE_T;
624 
625 	if (adv_pause)
626 		anar |= MII_ABILITY_PAUSE;
627 	if (adv_asym_pause)
628 		anar |= MII_ABILITY_ASYM_PAUSE;
629 
630 	/*
631 	 * Munge in any other fixed bits we require ...
632 	 */
633 	anar |= MII_AN_SELECTOR_8023;
634 
635 	/*
636 	 * Restart the PHY and write the new values.  Note the
637 	 * time, so that we can say whether subsequent link state
638 	 * changes can be attributed to our reprogramming the PHY
639 	 */
640 	rgep->phys_write_time = gethrtime();
641 	rge_phy_init(rgep);
642 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
643 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
644 	rge_mii_put16(rgep, MII_CONTROL, control);
645 
646 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
647 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
648 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
649 }
650 
651 void rge_phy_init(rge_t *rgep);
652 #pragma	no_inline(rge_phy_init)
653 
654 void
655 rge_phy_init(rge_t *rgep)
656 {
657 	rgep->phy_mii_addr = 1;
658 
659 	/*
660 	 * Below phy config steps are copied from the Programming Guide
661 	 * (there's no detail comments for these steps.)
662 	 */
663 	switch (rgep->chipid.mac_ver) {
664 	case MAC_VER_8169S_D:
665 	case MAC_VER_8169S_E :
666 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
667 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
668 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
669 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
670 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
671 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
672 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
673 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
674 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
675 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
676 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
677 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
678 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
679 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
680 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
681 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
682 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
683 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
684 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
685 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
686 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
687 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
688 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
689 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
690 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
691 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
692 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
693 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
694 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
695 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
696 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
697 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
698 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
699 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
700 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
701 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
702 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
703 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
704 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
705 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
706 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
707 		break;
708 
709 	case MAC_VER_8169SB:
710 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
711 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
712 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
713 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
714 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
715 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
716 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
717 		break;
718 
719 	case MAC_VER_8168:
720 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
721 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
722 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
723 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
724 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
725 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
726 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
727 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
728 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
729 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
730 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
731 		break;
732 
733 	case MAC_VER_8168B_B:
734 	case MAC_VER_8168B_C:
735 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
736 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
737 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
738 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
739 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
740 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
741 		break;
742 	}
743 }
744 
745 void rge_chip_ident(rge_t *rgep);
746 #pragma	no_inline(rge_chip_ident)
747 
748 void
749 rge_chip_ident(rge_t *rgep)
750 {
751 	chip_id_t *chip = &rgep->chipid;
752 	uint32_t val32;
753 	uint16_t val16;
754 
755 	/*
756 	 * Read and record MAC version
757 	 */
758 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
759 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
760 	chip->mac_ver = val32;
761 	switch (chip->mac_ver) {
762 	case MAC_VER_8168:
763 	case MAC_VER_8168B_B:
764 	case MAC_VER_8168B_C:
765 		chip->is_pcie = B_TRUE;
766 		break;
767 
768 	default:
769 		chip->is_pcie = B_FALSE;
770 		break;
771 	}
772 
773 	/*
774 	 * Read and record PHY version
775 	 */
776 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
777 	val16 &= PHY_VER_MASK;
778 	chip->phy_ver = val16;
779 
780 	/* set pci latency timer */
781 	if (chip->mac_ver == MAC_VER_8169 ||
782 	    chip->mac_ver == MAC_VER_8169S_D)
783 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
784 
785 	/*
786 	 * PCIE chipset require the Rx buffer start address must be
787 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
788 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
789 	 */
790 	if (chip->is_pcie) {
791 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
792 		if (rgep->default_mtu > ETHERMTU) {
793 			rge_notice(rgep, "Jumbo packets not supported "
794 			    "for this PCIE chipset");
795 			rgep->default_mtu = ETHERMTU;
796 		}
797 	}
798 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
799 		rgep->head_room = 0;
800 	else
801 		rgep->head_room = RGE_HEADROOM;
802 
803 	/*
804 	 * Initialize other variables.
805 	 */
806 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
807 		rgep->default_mtu = ETHERMTU;
808 	if (rgep->default_mtu > ETHERMTU) {
809 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
810 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
811 		rgep->ethmax_size = RGE_JUMBO_SIZE;
812 	} else {
813 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
814 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
815 		rgep->ethmax_size = ETHERMAX;
816 	}
817 	chip->rxconfig = RX_CONFIG_DEFAULT;
818 	chip->txconfig = TX_CONFIG_DEFAULT;
819 
820 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
821 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
822 }
823 
824 /*
825  * Perform first-stage chip (re-)initialisation, using only config-space
826  * accesses:
827  *
828  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
829  *   returning the data in the structure pointed to by <idp>.
830  * + Enable Memory Space accesses.
831  * + Enable Bus Mastering according.
832  */
833 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
834 #pragma	no_inline(rge_chip_cfg_init)
835 
836 void
837 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
838 {
839 	ddi_acc_handle_t handle;
840 	uint16_t commd;
841 
842 	handle = rgep->cfg_handle;
843 
844 	/*
845 	 * Save PCI cache line size and subsystem vendor ID
846 	 */
847 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
848 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
849 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
850 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
851 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
852 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
853 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
854 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
855 
856 	/*
857 	 * Turn on Master Enable (DMA) and IO Enable bits.
858 	 * Enable PCI Memory Space accesses
859 	 */
860 	commd = cidp->command;
861 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
862 	pci_config_put16(handle, PCI_CONF_COMM, commd);
863 
864 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
865 		cidp->vendor, cidp->device, cidp->revision));
866 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
867 		cidp->subven, cidp->subdev));
868 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
869 		cidp->clsize, cidp->latency, cidp->command));
870 }
871 
872 int rge_chip_reset(rge_t *rgep);
873 #pragma	no_inline(rge_chip_reset)
874 
875 int
876 rge_chip_reset(rge_t *rgep)
877 {
878 	int i;
879 	uint8_t val8;
880 
881 	/*
882 	 * Chip should be in STOP state
883 	 */
884 	rge_reg_clr8(rgep, RT_COMMAND_REG,
885 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
886 
887 	/*
888 	 * Disable interrupt
889 	 */
890 	rgep->int_mask = INT_MASK_NONE;
891 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
892 
893 	/*
894 	 * Clear pended interrupt
895 	 */
896 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
897 
898 	/*
899 	 * Reset chip
900 	 */
901 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
902 
903 	/*
904 	 * Wait for reset success
905 	 */
906 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
907 		drv_usecwait(10);
908 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
909 		if (!(val8 & RT_COMMAND_RESET)) {
910 			rgep->rge_chip_state = RGE_CHIP_RESET;
911 			return (0);
912 		}
913 	}
914 	RGE_REPORT((rgep, "rge_chip_reset fail."));
915 	return (-1);
916 }
917 
918 void rge_chip_init(rge_t *rgep);
919 #pragma	no_inline(rge_chip_init)
920 
921 void
922 rge_chip_init(rge_t *rgep)
923 {
924 	uint32_t val32;
925 	uint32_t val16;
926 	uint32_t *hashp;
927 	chip_id_t *chip = &rgep->chipid;
928 
929 	if (chip->is_pcie) {
930 		/*
931 		 * Increase the threshold voltage of RX sensitivity
932 		 */
933 		if (chip->mac_ver != MAC_VER_8168)
934 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
935 
936 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
937 		val16 = 0x12<<8 | val16;
938 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
939 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
940 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
941 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
942 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
943 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
944 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
945 		val32 |= 0x7000;
946 		val32 &= 0xffff5fff;
947 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
948 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
949 	}
950 
951 	/*
952 	 * Config MII register
953 	 */
954 	rgep->param_link_up = LINK_STATE_DOWN;
955 	rge_phy_update(rgep);
956 
957 	/*
958 	 * Enable Rx checksum offload.
959 	 *  Then for vlan support, we must enable receive vlan de-tagging.
960 	 *  Otherwise, there'll be checksum error.
961 	 */
962 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
963 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
964 	if (chip->mac_ver == MAC_VER_8169S_D) {
965 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
966 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
967 	}
968 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
969 
970 	/*
971 	 * Start transmit/receive before set tx/rx configuration register
972 	 */
973 	if (!chip->is_pcie)
974 		rge_reg_set8(rgep, RT_COMMAND_REG,
975 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
976 
977 	/*
978 	 * Set dump tally counter register
979 	 */
980 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
981 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
982 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
983 	val32 &= DUMP_COUNTER_REG_RESV;
984 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
985 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
986 
987 	/*
988 	 * Change to config register write enable mode
989 	 */
990 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
991 
992 	/*
993 	 * Set Tx/Rx maximum packet size
994 	 */
995 	if (rgep->default_mtu > ETHERMTU) {
996 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
997 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
998 	} else {
999 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
1000 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
1001 	}
1002 
1003 	/*
1004 	 * Set receive configuration register
1005 	 */
1006 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
1007 	val32 &= RX_CONFIG_REG_RESV;
1008 	if (rgep->promisc)
1009 		val32 |= RX_ACCEPT_ALL_PKT;
1010 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
1011 
1012 	/*
1013 	 * Set transmit configuration register
1014 	 */
1015 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
1016 	val32 &= TX_CONFIG_REG_RESV;
1017 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
1018 
1019 	/*
1020 	 * Set Tx/Rx descriptor register
1021 	 */
1022 	val32 = rgep->tx_desc.cookie.dmac_laddress;
1023 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
1024 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
1025 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
1026 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
1027 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
1028 	val32 = rgep->rx_desc.cookie.dmac_laddress;
1029 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
1030 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1031 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1032 
1033 	/*
1034 	 * Suggested setting from Realtek
1035 	 */
1036 	rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1037 
1038 	/*
1039 	 * Return to normal network/host communication mode
1040 	 */
1041 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1042 	drv_usecwait(20);
1043 
1044 	/*
1045 	 * Set multicast register
1046 	 */
1047 	hashp = (uint32_t *)rgep->mcast_hash;
1048 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1049 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1050 
1051 	/*
1052 	 * Msic register setting:
1053 	 *   -- Missed packet counter: clear it
1054 	 *   -- TimerInt Register
1055 	 *   -- Timer count register
1056 	 */
1057 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1058 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1059 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1060 }
1061 
1062 /*
1063  * rge_chip_start() -- start the chip transmitting and/or receiving,
1064  * including enabling interrupts
1065  */
1066 void rge_chip_start(rge_t *rgep);
1067 #pragma	no_inline(rge_chip_start)
1068 
1069 void
1070 rge_chip_start(rge_t *rgep)
1071 {
1072 	/*
1073 	 * Clear statistics
1074 	 */
1075 	bzero(&rgep->stats, sizeof (rge_stats_t));
1076 	DMA_ZERO(rgep->dma_area_stats);
1077 
1078 	/*
1079 	 * Start transmit/receive
1080 	 */
1081 	rge_reg_set8(rgep, RT_COMMAND_REG,
1082 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1083 
1084 	/*
1085 	 * Enable interrupt
1086 	 */
1087 	rgep->int_mask = RGE_INT_MASK;
1088 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1089 
1090 	/*
1091 	 * All done!
1092 	 */
1093 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1094 }
1095 
1096 /*
1097  * rge_chip_stop() -- stop board receiving
1098  */
1099 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1100 #pragma	no_inline(rge_chip_stop)
1101 
1102 void
1103 rge_chip_stop(rge_t *rgep, boolean_t fault)
1104 {
1105 	/*
1106 	 * Disable interrupt
1107 	 */
1108 	rgep->int_mask = INT_MASK_NONE;
1109 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1110 
1111 	/*
1112 	 * Clear pended interrupt
1113 	 */
1114 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1115 
1116 	/*
1117 	 * Stop the board and disable transmit/receive
1118 	 */
1119 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1120 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1121 
1122 	if (fault)
1123 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1124 	else
1125 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1126 }
1127 
1128 /*
1129  * rge_get_mac_addr() -- get the MAC address on NIC
1130  */
1131 static void rge_get_mac_addr(rge_t *rgep);
1132 #pragma	inline(rge_get_mac_addr)
1133 
1134 static void
1135 rge_get_mac_addr(rge_t *rgep)
1136 {
1137 	uint8_t *macaddr = rgep->netaddr;
1138 	uint32_t val32;
1139 
1140 	/*
1141 	 * Read first 4-byte of mac address
1142 	 */
1143 	val32 = rge_reg_get32(rgep, ID_0_REG);
1144 	macaddr[0] = val32 & 0xff;
1145 	val32 = val32 >> 8;
1146 	macaddr[1] = val32 & 0xff;
1147 	val32 = val32 >> 8;
1148 	macaddr[2] = val32 & 0xff;
1149 	val32 = val32 >> 8;
1150 	macaddr[3] = val32 & 0xff;
1151 
1152 	/*
1153 	 * Read last 2-byte of mac address
1154 	 */
1155 	val32 = rge_reg_get32(rgep, ID_4_REG);
1156 	macaddr[4] = val32 & 0xff;
1157 	val32 = val32 >> 8;
1158 	macaddr[5] = val32 & 0xff;
1159 }
1160 
1161 static void rge_set_mac_addr(rge_t *rgep);
1162 #pragma	inline(rge_set_mac_addr)
1163 
1164 static void
1165 rge_set_mac_addr(rge_t *rgep)
1166 {
1167 	uint8_t *p = rgep->netaddr;
1168 	uint32_t val32;
1169 
1170 	/*
1171 	 * Change to config register write enable mode
1172 	 */
1173 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1174 
1175 	/*
1176 	 * Get first 4 bytes of mac address
1177 	 */
1178 	val32 = p[3];
1179 	val32 = val32 << 8;
1180 	val32 |= p[2];
1181 	val32 = val32 << 8;
1182 	val32 |= p[1];
1183 	val32 = val32 << 8;
1184 	val32 |= p[0];
1185 
1186 	/*
1187 	 * Set first 4 bytes of mac address
1188 	 */
1189 	rge_reg_put32(rgep, ID_0_REG, val32);
1190 
1191 	/*
1192 	 * Get last 2 bytes of mac address
1193 	 */
1194 	val32 = p[5];
1195 	val32 = val32 << 8;
1196 	val32 |= p[4];
1197 
1198 	/*
1199 	 * Set last 2 bytes of mac address
1200 	 */
1201 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1202 	rge_reg_put32(rgep, ID_4_REG, val32);
1203 
1204 	/*
1205 	 * Return to normal network/host communication mode
1206 	 */
1207 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1208 }
1209 
1210 static void rge_set_multi_addr(rge_t *rgep);
1211 #pragma	inline(rge_set_multi_addr)
1212 
1213 static void
1214 rge_set_multi_addr(rge_t *rgep)
1215 {
1216 	uint32_t *hashp;
1217 
1218 	hashp = (uint32_t *)rgep->mcast_hash;
1219 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1220 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1221 	rge_reg_set8(rgep, RT_COMMAND_REG,
1222 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1223 }
1224 
1225 static void rge_set_promisc(rge_t *rgep);
1226 #pragma	inline(rge_set_promisc)
1227 
1228 static void
1229 rge_set_promisc(rge_t *rgep)
1230 {
1231 	if (rgep->promisc)
1232 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1233 	else
1234 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1235 
1236 	rge_reg_set8(rgep, RT_COMMAND_REG,
1237 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1238 }
1239 
1240 /*
1241  * rge_chip_sync() -- program the chip with the unicast MAC address,
1242  * the multicast hash table, the required level of promiscuity, and
1243  * the current loopback mode ...
1244  */
1245 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1246 #pragma	no_inline(rge_chip_sync)
1247 
1248 void
1249 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1250 {
1251 	switch (todo) {
1252 	case RGE_GET_MAC:
1253 		rge_get_mac_addr(rgep);
1254 		break;
1255 	case RGE_SET_MAC:
1256 		/* Reprogram the unicast MAC address(es) ... */
1257 		rge_set_mac_addr(rgep);
1258 		break;
1259 	case RGE_SET_MUL:
1260 		/* Reprogram the hashed multicast address table ... */
1261 		rge_set_multi_addr(rgep);
1262 		break;
1263 	case RGE_SET_PROMISC:
1264 		/* Set or clear the PROMISCUOUS mode bit */
1265 		rge_set_promisc(rgep);
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 
1272 void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1273 #pragma	no_inline(rge_chip_blank)
1274 
1275 void
1276 rge_chip_blank(void *arg, time_t ticks, uint_t count)
1277 {
1278 	_NOTE(ARGUNUSED(arg, ticks, count));
1279 }
1280 
1281 void rge_tx_trigger(rge_t *rgep);
1282 #pragma	no_inline(rge_tx_trigger)
1283 
1284 void
1285 rge_tx_trigger(rge_t *rgep)
1286 {
1287 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1288 }
1289 
1290 void rge_hw_stats_dump(rge_t *rgep);
1291 #pragma	no_inline(rge_tx_trigger)
1292 
1293 void
1294 rge_hw_stats_dump(rge_t *rgep)
1295 {
1296 	int i = 0;
1297 
1298 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1299 		drv_usecwait(100);
1300 		if (++i > STATS_DUMP_LOOP) {
1301 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1302 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1303 			return;
1304 		}
1305 	}
1306 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1307 
1308 	/*
1309 	 * Start H/W statistics dump for RTL8169 chip
1310 	 */
1311 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1312 }
1313 
1314 /*
1315  * ========== Hardware interrupt handler ==========
1316  */
1317 
1318 #undef	RGE_DBG
1319 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1320 
1321 static void rge_wake_factotum(rge_t *rgep);
1322 #pragma	inline(rge_wake_factotum)
1323 
1324 static void
1325 rge_wake_factotum(rge_t *rgep)
1326 {
1327 	if (rgep->factotum_flag == 0) {
1328 		rgep->factotum_flag = 1;
1329 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1330 	}
1331 }
1332 
1333 /*
1334  *	rge_intr() -- handle chip interrupts
1335  */
1336 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1337 #pragma	no_inline(rge_intr)
1338 
1339 uint_t
1340 rge_intr(caddr_t arg1, caddr_t arg2)
1341 {
1342 	rge_t *rgep = (rge_t *)arg1;
1343 	uint16_t int_status;
1344 
1345 	_NOTE(ARGUNUSED(arg2))
1346 
1347 	mutex_enter(rgep->genlock);
1348 	/*
1349 	 * Was this interrupt caused by our device...
1350 	 */
1351 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1352 	if (!(int_status & rgep->int_mask)) {
1353 		mutex_exit(rgep->genlock);
1354 		return (DDI_INTR_UNCLAIMED);
1355 				/* indicate it wasn't our interrupt */
1356 	}
1357 	rgep->stats.intr++;
1358 
1359 	/*
1360 	 * Clear interrupt
1361 	 *	For PCIE chipset, we need disable interrupt first.
1362 	 */
1363 	if (rgep->chipid.is_pcie)
1364 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1365 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1366 
1367 	/*
1368 	 * Cable link change interrupt
1369 	 */
1370 	if (int_status & LINK_CHANGE_INT) {
1371 		rge_chip_cyclic(rgep);
1372 	}
1373 
1374 	mutex_exit(rgep->genlock);
1375 
1376 	/*
1377 	 * Receive interrupt
1378 	 */
1379 	if (int_status & RGE_RX_INT)
1380 		rge_receive(rgep);
1381 
1382 	/*
1383 	 * Re-enable interrupt for PCIE chipset
1384 	 */
1385 	if (rgep->chipid.is_pcie)
1386 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1387 
1388 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1389 }
1390 
1391 /*
1392  * ========== Factotum, implemented as a softint handler ==========
1393  */
1394 
1395 #undef	RGE_DBG
1396 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1397 
1398 static boolean_t rge_factotum_link_check(rge_t *rgep);
1399 #pragma	no_inline(rge_factotum_link_check)
1400 
1401 static boolean_t
1402 rge_factotum_link_check(rge_t *rgep)
1403 {
1404 	uint8_t media_status;
1405 	int32_t link;
1406 	void (*logfn)(rge_t *rgep, const char *fmt, ...);
1407 	const char *msg;
1408 	hrtime_t deltat;
1409 
1410 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1411 	link = (media_status & PHY_STATUS_LINK_UP) ?
1412 	    LINK_STATE_UP : LINK_STATE_DOWN;
1413 	if (rgep->param_link_up != link) {
1414 		/*
1415 		 * Link change. We have to decide whether to write a message
1416 		 * on the console or only in the log.  If the PHY has
1417 		 * been reprogrammed (at user request) "recently", then
1418 		 * the message only goes in the log.  Otherwise it's an
1419 		 * "unexpected" event, and it goes on the console as well.
1420 		 */
1421 		rgep->param_link_up = link;
1422 		rgep->phys_event_time = gethrtime();
1423 		deltat = rgep->phys_event_time - rgep->phys_write_time;
1424 		if (deltat > RGE_LINK_SETTLE_TIME)
1425 			msg = "";
1426 		else if (link == LINK_STATE_UP)
1427 			msg = rgep->link_up_msg;
1428 		else
1429 			msg = rgep->link_down_msg;
1430 		logfn = (msg == NULL || *msg == '\0') ? rge_notice : rge_log;
1431 
1432 		if (link == LINK_STATE_UP) {
1433 			if (media_status & PHY_STATUS_1000MF) {
1434 				rgep->param_link_speed = RGE_SPEED_1000M;
1435 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1436 			} else {
1437 				rgep->param_link_speed =
1438 				    (media_status & PHY_STATUS_100M) ?
1439 				    RGE_SPEED_100M : RGE_SPEED_10M;
1440 				rgep->param_link_duplex =
1441 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1442 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1443 			}
1444 			logfn(rgep,
1445 			    "link up %sbps %s_Duplex%s",
1446 			    (rgep->param_link_speed == RGE_SPEED_10M) ?
1447 			    "10M" : (rgep->param_link_speed == RGE_SPEED_100M ?
1448 			    "100M" : "1000M"),
1449 			    (rgep->param_link_duplex == LINK_DUPLEX_FULL) ?
1450 			    "Full" : "Half",
1451 			    msg);
1452 		} else {
1453 			logfn(rgep, "link down%s", msg);
1454 		}
1455 		return (B_TRUE);
1456 	}
1457 	return (B_FALSE);
1458 }
1459 
1460 /*
1461  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1462  */
1463 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1464 #pragma	no_inline(rge_factotum_stall_check)
1465 
1466 static boolean_t
1467 rge_factotum_stall_check(rge_t *rgep)
1468 {
1469 	uint32_t dogval;
1470 
1471 	ASSERT(mutex_owned(rgep->genlock));
1472 
1473 	/*
1474 	 * Specific check for Tx stall ...
1475 	 *
1476 	 * The 'watchdog' counter is incremented whenever a packet
1477 	 * is queued, reset to 1 when some (but not all) buffers
1478 	 * are reclaimed, reset to 0 (disabled) when all buffers
1479 	 * are reclaimed, and shifted left here.  If it exceeds the
1480 	 * threshold value, the chip is assumed to have stalled and
1481 	 * is put into the ERROR state.  The factotum will then reset
1482 	 * it on the next pass.
1483 	 *
1484 	 * All of which should ensure that we don't get into a state
1485 	 * where packets are left pending indefinitely!
1486 	 */
1487 	if (rgep->resched_needed)
1488 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1489 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1490 	if (dogval < rge_watchdog_count)
1491 		return (B_FALSE);
1492 
1493 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1494 	return (B_TRUE);
1495 
1496 }
1497 
1498 /*
1499  * The factotum is woken up when there's something to do that we'd rather
1500  * not do from inside a hardware interrupt handler or high-level cyclic.
1501  * Its two main tasks are:
1502  *	reset & restart the chip after an error
1503  *	check the link status whenever necessary
1504  */
1505 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1506 #pragma	no_inline(rge_chip_factotum)
1507 
1508 uint_t
1509 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1510 {
1511 	rge_t *rgep;
1512 	uint_t result;
1513 	boolean_t error;
1514 	boolean_t linkchg;
1515 
1516 	rgep = (rge_t *)arg1;
1517 	_NOTE(ARGUNUSED(arg2))
1518 
1519 	if (rgep->factotum_flag == 0)
1520 		return (DDI_INTR_UNCLAIMED);
1521 
1522 	rgep->factotum_flag = 0;
1523 	result = DDI_INTR_CLAIMED;
1524 	error = B_FALSE;
1525 	linkchg = B_FALSE;
1526 
1527 	mutex_enter(rgep->genlock);
1528 	switch (rgep->rge_chip_state) {
1529 	default:
1530 		break;
1531 
1532 	case RGE_CHIP_RUNNING:
1533 		linkchg = rge_factotum_link_check(rgep);
1534 		error = rge_factotum_stall_check(rgep);
1535 		break;
1536 
1537 	case RGE_CHIP_ERROR:
1538 		error = B_TRUE;
1539 		break;
1540 
1541 	case RGE_CHIP_FAULT:
1542 		/*
1543 		 * Fault detected, time to reset ...
1544 		 */
1545 		if (rge_autorecover) {
1546 			RGE_REPORT((rgep, "automatic recovery activated"));
1547 			rge_restart(rgep);
1548 		}
1549 		break;
1550 	}
1551 
1552 	/*
1553 	 * If an error is detected, stop the chip now, marking it as
1554 	 * faulty, so that it will be reset next time through ...
1555 	 */
1556 	if (error)
1557 		rge_chip_stop(rgep, B_TRUE);
1558 	mutex_exit(rgep->genlock);
1559 
1560 	/*
1561 	 * If the link state changed, tell the world about it.
1562 	 * Note: can't do this while still holding the mutex.
1563 	 */
1564 	if (linkchg)
1565 		mac_link_update(rgep->mh, rgep->param_link_up);
1566 
1567 	return (result);
1568 }
1569 
1570 /*
1571  * High-level cyclic handler
1572  *
1573  * This routine schedules a (low-level) softint callback to the
1574  * factotum, and prods the chip to update the status block (which
1575  * will cause a hardware interrupt when complete).
1576  */
1577 void rge_chip_cyclic(void *arg);
1578 #pragma	no_inline(rge_chip_cyclic)
1579 
1580 void
1581 rge_chip_cyclic(void *arg)
1582 {
1583 	rge_t *rgep;
1584 
1585 	rgep = arg;
1586 
1587 	switch (rgep->rge_chip_state) {
1588 	default:
1589 		return;
1590 
1591 	case RGE_CHIP_RUNNING:
1592 		rge_phy_check(rgep);
1593 		break;
1594 
1595 	case RGE_CHIP_FAULT:
1596 	case RGE_CHIP_ERROR:
1597 		break;
1598 	}
1599 
1600 	rge_wake_factotum(rgep);
1601 }
1602 
1603 
1604 /*
1605  * ========== Ioctl subfunctions ==========
1606  */
1607 
1608 #undef	RGE_DBG
1609 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1610 
1611 #if	RGE_DEBUGGING || RGE_DO_PPIO
1612 
1613 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1614 #pragma	no_inline(rge_chip_peek_cfg)
1615 
1616 static void
1617 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1618 {
1619 	uint64_t regval;
1620 	uint64_t regno;
1621 
1622 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1623 		(void *)rgep, (void *)ppd));
1624 
1625 	regno = ppd->pp_acc_offset;
1626 
1627 	switch (ppd->pp_acc_size) {
1628 	case 1:
1629 		regval = pci_config_get8(rgep->cfg_handle, regno);
1630 		break;
1631 
1632 	case 2:
1633 		regval = pci_config_get16(rgep->cfg_handle, regno);
1634 		break;
1635 
1636 	case 4:
1637 		regval = pci_config_get32(rgep->cfg_handle, regno);
1638 		break;
1639 
1640 	case 8:
1641 		regval = pci_config_get64(rgep->cfg_handle, regno);
1642 		break;
1643 	}
1644 
1645 	ppd->pp_acc_data = regval;
1646 }
1647 
1648 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1649 #pragma	no_inline(rge_chip_poke_cfg)
1650 
1651 static void
1652 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1653 {
1654 	uint64_t regval;
1655 	uint64_t regno;
1656 
1657 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1658 		(void *)rgep, (void *)ppd));
1659 
1660 	regno = ppd->pp_acc_offset;
1661 	regval = ppd->pp_acc_data;
1662 
1663 	switch (ppd->pp_acc_size) {
1664 	case 1:
1665 		pci_config_put8(rgep->cfg_handle, regno, regval);
1666 		break;
1667 
1668 	case 2:
1669 		pci_config_put16(rgep->cfg_handle, regno, regval);
1670 		break;
1671 
1672 	case 4:
1673 		pci_config_put32(rgep->cfg_handle, regno, regval);
1674 		break;
1675 
1676 	case 8:
1677 		pci_config_put64(rgep->cfg_handle, regno, regval);
1678 		break;
1679 	}
1680 }
1681 
1682 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1683 #pragma	no_inline(rge_chip_peek_reg)
1684 
1685 static void
1686 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1687 {
1688 	uint64_t regval;
1689 	void *regaddr;
1690 
1691 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1692 		(void *)rgep, (void *)ppd));
1693 
1694 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1695 
1696 	switch (ppd->pp_acc_size) {
1697 	case 1:
1698 		regval = ddi_get8(rgep->io_handle, regaddr);
1699 		break;
1700 
1701 	case 2:
1702 		regval = ddi_get16(rgep->io_handle, regaddr);
1703 		break;
1704 
1705 	case 4:
1706 		regval = ddi_get32(rgep->io_handle, regaddr);
1707 		break;
1708 
1709 	case 8:
1710 		regval = ddi_get64(rgep->io_handle, regaddr);
1711 		break;
1712 	}
1713 
1714 	ppd->pp_acc_data = regval;
1715 }
1716 
1717 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1718 #pragma	no_inline(rge_chip_peek_reg)
1719 
1720 static void
1721 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1722 {
1723 	uint64_t regval;
1724 	void *regaddr;
1725 
1726 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1727 		(void *)rgep, (void *)ppd));
1728 
1729 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1730 	regval = ppd->pp_acc_data;
1731 
1732 	switch (ppd->pp_acc_size) {
1733 	case 1:
1734 		ddi_put8(rgep->io_handle, regaddr, regval);
1735 		break;
1736 
1737 	case 2:
1738 		ddi_put16(rgep->io_handle, regaddr, regval);
1739 		break;
1740 
1741 	case 4:
1742 		ddi_put32(rgep->io_handle, regaddr, regval);
1743 		break;
1744 
1745 	case 8:
1746 		ddi_put64(rgep->io_handle, regaddr, regval);
1747 		break;
1748 	}
1749 	RGE_PCICHK(rgep);
1750 }
1751 
1752 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1753 #pragma	no_inline(rge_chip_peek_mii)
1754 
1755 static void
1756 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1757 {
1758 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1759 		(void *)rgep, (void *)ppd));
1760 
1761 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1762 }
1763 
1764 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1765 #pragma	no_inline(rge_chip_poke_mii)
1766 
1767 static void
1768 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1769 {
1770 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1771 		(void *)rgep, (void *)ppd));
1772 
1773 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1774 }
1775 
1776 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1777 #pragma	no_inline(rge_chip_peek_mem)
1778 
1779 static void
1780 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1781 {
1782 	uint64_t regval;
1783 	void *vaddr;
1784 
1785 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1786 		(void *)rgep, (void *)ppd));
1787 
1788 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1789 
1790 	switch (ppd->pp_acc_size) {
1791 	case 1:
1792 		regval = *(uint8_t *)vaddr;
1793 		break;
1794 
1795 	case 2:
1796 		regval = *(uint16_t *)vaddr;
1797 		break;
1798 
1799 	case 4:
1800 		regval = *(uint32_t *)vaddr;
1801 		break;
1802 
1803 	case 8:
1804 		regval = *(uint64_t *)vaddr;
1805 		break;
1806 	}
1807 
1808 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1809 		(void *)rgep, (void *)ppd, regval, vaddr));
1810 
1811 	ppd->pp_acc_data = regval;
1812 }
1813 
1814 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1815 #pragma	no_inline(rge_chip_poke_mem)
1816 
1817 static void
1818 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1819 {
1820 	uint64_t regval;
1821 	void *vaddr;
1822 
1823 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1824 		(void *)rgep, (void *)ppd));
1825 
1826 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1827 	regval = ppd->pp_acc_data;
1828 
1829 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1830 		(void *)rgep, (void *)ppd, regval, vaddr));
1831 
1832 	switch (ppd->pp_acc_size) {
1833 	case 1:
1834 		*(uint8_t *)vaddr = (uint8_t)regval;
1835 		break;
1836 
1837 	case 2:
1838 		*(uint16_t *)vaddr = (uint16_t)regval;
1839 		break;
1840 
1841 	case 4:
1842 		*(uint32_t *)vaddr = (uint32_t)regval;
1843 		break;
1844 
1845 	case 8:
1846 		*(uint64_t *)vaddr = (uint64_t)regval;
1847 		break;
1848 	}
1849 }
1850 
1851 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1852 					struct iocblk *iocp);
1853 #pragma	no_inline(rge_pp_ioctl)
1854 
1855 static enum ioc_reply
1856 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1857 {
1858 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1859 	rge_peekpoke_t *ppd;
1860 	dma_area_t *areap;
1861 	uint64_t sizemask;
1862 	uint64_t mem_va;
1863 	uint64_t maxoff;
1864 	boolean_t peek;
1865 
1866 	switch (cmd) {
1867 	default:
1868 		/* NOTREACHED */
1869 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1870 		return (IOC_INVAL);
1871 
1872 	case RGE_PEEK:
1873 		peek = B_TRUE;
1874 		break;
1875 
1876 	case RGE_POKE:
1877 		peek = B_FALSE;
1878 		break;
1879 	}
1880 
1881 	/*
1882 	 * Validate format of ioctl
1883 	 */
1884 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1885 		return (IOC_INVAL);
1886 	if (mp->b_cont == NULL)
1887 		return (IOC_INVAL);
1888 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1889 
1890 	/*
1891 	 * Validate request parameters
1892 	 */
1893 	switch (ppd->pp_acc_space) {
1894 	default:
1895 		return (IOC_INVAL);
1896 
1897 	case RGE_PP_SPACE_CFG:
1898 		/*
1899 		 * Config space
1900 		 */
1901 		sizemask = 8|4|2|1;
1902 		mem_va = 0;
1903 		maxoff = PCI_CONF_HDR_SIZE;
1904 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1905 		break;
1906 
1907 	case RGE_PP_SPACE_REG:
1908 		/*
1909 		 * Memory-mapped I/O space
1910 		 */
1911 		sizemask = 8|4|2|1;
1912 		mem_va = 0;
1913 		maxoff = RGE_REGISTER_MAX;
1914 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1915 		break;
1916 
1917 	case RGE_PP_SPACE_MII:
1918 		/*
1919 		 * PHY's MII registers
1920 		 * NB: all PHY registers are two bytes, but the
1921 		 * addresses increment in ones (word addressing).
1922 		 * So we scale the address here, then undo the
1923 		 * transformation inside the peek/poke functions.
1924 		 */
1925 		ppd->pp_acc_offset *= 2;
1926 		sizemask = 2;
1927 		mem_va = 0;
1928 		maxoff = (MII_MAXREG+1)*2;
1929 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1930 		break;
1931 
1932 	case RGE_PP_SPACE_RGE:
1933 		/*
1934 		 * RGE data structure!
1935 		 */
1936 		sizemask = 8|4|2|1;
1937 		mem_va = (uintptr_t)rgep;
1938 		maxoff = sizeof (*rgep);
1939 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1940 		break;
1941 
1942 	case RGE_PP_SPACE_STATISTICS:
1943 	case RGE_PP_SPACE_TXDESC:
1944 	case RGE_PP_SPACE_TXBUFF:
1945 	case RGE_PP_SPACE_RXDESC:
1946 	case RGE_PP_SPACE_RXBUFF:
1947 		/*
1948 		 * Various DMA_AREAs
1949 		 */
1950 		switch (ppd->pp_acc_space) {
1951 		case RGE_PP_SPACE_TXDESC:
1952 			areap = &rgep->dma_area_txdesc;
1953 			break;
1954 		case RGE_PP_SPACE_RXDESC:
1955 			areap = &rgep->dma_area_rxdesc;
1956 			break;
1957 		case RGE_PP_SPACE_STATISTICS:
1958 			areap = &rgep->dma_area_stats;
1959 			break;
1960 		}
1961 
1962 		sizemask = 8|4|2|1;
1963 		mem_va = (uintptr_t)areap->mem_va;
1964 		maxoff = areap->alength;
1965 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1966 		break;
1967 	}
1968 
1969 	switch (ppd->pp_acc_size) {
1970 	default:
1971 		return (IOC_INVAL);
1972 
1973 	case 8:
1974 	case 4:
1975 	case 2:
1976 	case 1:
1977 		if ((ppd->pp_acc_size & sizemask) == 0)
1978 			return (IOC_INVAL);
1979 		break;
1980 	}
1981 
1982 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1983 		return (IOC_INVAL);
1984 
1985 	if (ppd->pp_acc_offset >= maxoff)
1986 		return (IOC_INVAL);
1987 
1988 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1989 		return (IOC_INVAL);
1990 
1991 	/*
1992 	 * All OK - go do it!
1993 	 */
1994 	ppd->pp_acc_offset += mem_va;
1995 	(*ppfn)(rgep, ppd);
1996 	return (peek ? IOC_REPLY : IOC_ACK);
1997 }
1998 
1999 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2000 					struct iocblk *iocp);
2001 #pragma	no_inline(rge_diag_ioctl)
2002 
2003 static enum ioc_reply
2004 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2005 {
2006 	ASSERT(mutex_owned(rgep->genlock));
2007 
2008 	switch (cmd) {
2009 	default:
2010 		/* NOTREACHED */
2011 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2012 		return (IOC_INVAL);
2013 
2014 	case RGE_DIAG:
2015 		/*
2016 		 * Currently a no-op
2017 		 */
2018 		return (IOC_ACK);
2019 
2020 	case RGE_PEEK:
2021 	case RGE_POKE:
2022 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2023 
2024 	case RGE_PHY_RESET:
2025 		return (IOC_RESTART_ACK);
2026 
2027 	case RGE_SOFT_RESET:
2028 	case RGE_HARD_RESET:
2029 		/*
2030 		 * Reset and reinitialise the 570x hardware
2031 		 */
2032 		rge_restart(rgep);
2033 		return (IOC_ACK);
2034 	}
2035 
2036 	/* NOTREACHED */
2037 }
2038 
2039 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2040 
2041 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2042 				    struct iocblk *iocp);
2043 #pragma	no_inline(rge_mii_ioctl)
2044 
2045 static enum ioc_reply
2046 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2047 {
2048 	struct rge_mii_rw *miirwp;
2049 
2050 	/*
2051 	 * Validate format of ioctl
2052 	 */
2053 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2054 		return (IOC_INVAL);
2055 	if (mp->b_cont == NULL)
2056 		return (IOC_INVAL);
2057 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2058 
2059 	/*
2060 	 * Validate request parameters ...
2061 	 */
2062 	if (miirwp->mii_reg > MII_MAXREG)
2063 		return (IOC_INVAL);
2064 
2065 	switch (cmd) {
2066 	default:
2067 		/* NOTREACHED */
2068 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2069 		return (IOC_INVAL);
2070 
2071 	case RGE_MII_READ:
2072 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2073 		return (IOC_REPLY);
2074 
2075 	case RGE_MII_WRITE:
2076 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2077 		return (IOC_ACK);
2078 	}
2079 
2080 	/* NOTREACHED */
2081 }
2082 
2083 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2084 				struct iocblk *iocp);
2085 #pragma	no_inline(rge_chip_ioctl)
2086 
2087 enum ioc_reply
2088 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2089 {
2090 	int cmd;
2091 
2092 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2093 		(void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2094 
2095 	ASSERT(mutex_owned(rgep->genlock));
2096 
2097 	cmd = iocp->ioc_cmd;
2098 	switch (cmd) {
2099 	default:
2100 		/* NOTREACHED */
2101 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2102 		return (IOC_INVAL);
2103 
2104 	case RGE_DIAG:
2105 	case RGE_PEEK:
2106 	case RGE_POKE:
2107 	case RGE_PHY_RESET:
2108 	case RGE_SOFT_RESET:
2109 	case RGE_HARD_RESET:
2110 #if	RGE_DEBUGGING || RGE_DO_PPIO
2111 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2112 #else
2113 		return (IOC_INVAL);
2114 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2115 
2116 	case RGE_MII_READ:
2117 	case RGE_MII_WRITE:
2118 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2119 
2120 	}
2121 
2122 	/* NOTREACHED */
2123 }
2124