xref: /titanic_50/usr/src/uts/common/io/rge/rge_chip.c (revision cec46707a82764ff5f9b843964ebdf86ffd0e4d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 16;
48 
49 /*
50  * Operating register get/set access routines
51  */
52 
53 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
54 #pragma	inline(rge_reg_get32)
55 
56 static uint32_t
57 rge_reg_get32(rge_t *rgep, uintptr_t regno)
58 {
59 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
60 	    (void *)rgep, regno));
61 
62 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
63 }
64 
65 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
66 #pragma	inline(rge_reg_put32)
67 
68 static void
69 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
70 {
71 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
72 	    (void *)rgep, regno, data));
73 
74 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
75 }
76 
77 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
78 #pragma	inline(rge_reg_set32)
79 
80 static void
81 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
82 {
83 	uint32_t regval;
84 
85 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
86 	    (void *)rgep, regno, bits));
87 
88 	regval = rge_reg_get32(rgep, regno);
89 	regval |= bits;
90 	rge_reg_put32(rgep, regno, regval);
91 }
92 
93 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
94 #pragma	inline(rge_reg_clr32)
95 
96 static void
97 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
98 {
99 	uint32_t regval;
100 
101 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
102 	    (void *)rgep, regno, bits));
103 
104 	regval = rge_reg_get32(rgep, regno);
105 	regval &= ~bits;
106 	rge_reg_put32(rgep, regno, regval);
107 }
108 
109 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
110 #pragma	inline(rge_reg_get16)
111 
112 static uint16_t
113 rge_reg_get16(rge_t *rgep, uintptr_t regno)
114 {
115 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
116 	    (void *)rgep, regno));
117 
118 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
119 }
120 
121 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
122 #pragma	inline(rge_reg_put16)
123 
124 static void
125 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
126 {
127 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
128 	    (void *)rgep, regno, data));
129 
130 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
131 }
132 
133 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
134 #pragma	inline(rge_reg_get8)
135 
136 static uint8_t
137 rge_reg_get8(rge_t *rgep, uintptr_t regno)
138 {
139 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
140 	    (void *)rgep, regno));
141 
142 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
143 }
144 
145 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
146 #pragma	inline(rge_reg_put8)
147 
148 static void
149 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
150 {
151 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
152 	    (void *)rgep, regno, data));
153 
154 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
155 }
156 
157 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
158 #pragma	inline(rge_reg_set8)
159 
160 static void
161 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
162 {
163 	uint8_t regval;
164 
165 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
166 	    (void *)rgep, regno, bits));
167 
168 	regval = rge_reg_get8(rgep, regno);
169 	regval |= bits;
170 	rge_reg_put8(rgep, regno, regval);
171 }
172 
173 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
174 #pragma	inline(rge_reg_clr8)
175 
176 static void
177 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
178 {
179 	uint8_t regval;
180 
181 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
182 	    (void *)rgep, regno, bits));
183 
184 	regval = rge_reg_get8(rgep, regno);
185 	regval &= ~bits;
186 	rge_reg_put8(rgep, regno, regval);
187 }
188 
189 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
190 #pragma	no_inline(rge_mii_get16)
191 
192 uint16_t
193 rge_mii_get16(rge_t *rgep, uintptr_t mii)
194 {
195 	uint32_t regval;
196 	uint32_t val32;
197 	uint32_t i;
198 
199 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
200 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
201 
202 	/*
203 	 * Waiting for PHY reading OK
204 	 */
205 	for (i = 0; i < PHY_RESET_LOOP; i++) {
206 		drv_usecwait(1000);
207 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
208 		if (val32 & PHY_ACCESS_WR_FLAG)
209 			return ((uint16_t)(val32 & 0xffff));
210 	}
211 
212 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
213 	return ((uint16_t)~0u);
214 }
215 
216 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
217 #pragma	no_inline(rge_mii_put16)
218 
219 void
220 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
221 {
222 	uint32_t regval;
223 	uint32_t val32;
224 	uint32_t i;
225 
226 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
227 	regval |= data & PHY_DATA_MASK;
228 	regval |= PHY_ACCESS_WR_FLAG;
229 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
230 
231 	/*
232 	 * Waiting for PHY writing OK
233 	 */
234 	for (i = 0; i < PHY_RESET_LOOP; i++) {
235 		drv_usecwait(1000);
236 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
237 		if (!(val32 & PHY_ACCESS_WR_FLAG))
238 			return;
239 	}
240 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
241 	    mii, data));
242 }
243 
244 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
245 #pragma	no_inline(rge_ephy_put16)
246 
247 void
248 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
249 {
250 	uint32_t regval;
251 	uint32_t val32;
252 	uint32_t i;
253 
254 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
255 	regval |= data & EPHY_DATA_MASK;
256 	regval |= EPHY_ACCESS_WR_FLAG;
257 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
258 
259 	/*
260 	 * Waiting for PHY writing OK
261 	 */
262 	for (i = 0; i < PHY_RESET_LOOP; i++) {
263 		drv_usecwait(1000);
264 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
265 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
266 			return;
267 	}
268 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
269 	    emii, data));
270 }
271 
272 /*
273  * Atomically shift a 32-bit word left, returning
274  * the value it had *before* the shift was applied
275  */
276 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
277 #pragma	inline(rge_mii_put16)
278 
279 static uint32_t
280 rge_atomic_shl32(uint32_t *sp, uint_t count)
281 {
282 	uint32_t oldval;
283 	uint32_t newval;
284 
285 	/* ATOMICALLY */
286 	do {
287 		oldval = *sp;
288 		newval = oldval << count;
289 	} while (cas32(sp, oldval, newval) != oldval);
290 
291 	return (oldval);
292 }
293 
294 /*
295  * PHY operation routines
296  */
297 #if	RGE_DEBUGGING
298 
299 void
300 rge_phydump(rge_t *rgep)
301 {
302 	uint16_t regs[32];
303 	int i;
304 
305 	ASSERT(mutex_owned(rgep->genlock));
306 
307 	for (i = 0; i < 32; ++i) {
308 		regs[i] = rge_mii_get16(rgep, i);
309 	}
310 
311 	for (i = 0; i < 32; i += 8)
312 		RGE_DEBUG(("rge_phydump: "
313 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
314 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
315 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
316 }
317 
318 #endif	/* RGE_DEBUGGING */
319 
320 static void
321 rge_phy_check(rge_t *rgep)
322 {
323 	uint16_t gig_ctl;
324 
325 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
326 		/*
327 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
328 		 * every 15 seconds whin link down & advertise is 1000.
329 		 */
330 		if (rgep->chipid.phy_ver == PHY_VER_S) {
331 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
332 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
333 				rgep->link_down_count++;
334 				if (rgep->link_down_count > 15) {
335 					(void) rge_phy_reset(rgep);
336 					rgep->stats.phy_reset++;
337 					rgep->link_down_count = 0;
338 				}
339 			}
340 		}
341 	} else {
342 		rgep->link_down_count = 0;
343 	}
344 }
345 
346 /*
347  * Basic low-level function to reset the PHY.
348  * Doesn't incorporate any special-case workarounds.
349  *
350  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
351  */
352 boolean_t
353 rge_phy_reset(rge_t *rgep)
354 {
355 	uint16_t control;
356 	uint_t count;
357 
358 	/*
359 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
360 	 */
361 	control = rge_mii_get16(rgep, MII_CONTROL);
362 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
363 	for (count = 0; count < 5; count++) {
364 		drv_usecwait(100);
365 		control = rge_mii_get16(rgep, MII_CONTROL);
366 		if (BIC(control, MII_CONTROL_RESET))
367 			return (B_TRUE);
368 	}
369 
370 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
371 	return (B_FALSE);
372 }
373 
374 /*
375  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
376  * and advertisements with the required settings as specified by the various
377  * param_* variables that can be poked via the NDD interface.
378  *
379  * We always reset the PHY and reprogram *all* the relevant registers,
380  * not just those changed.  This should cause the link to go down, and then
381  * back up again once the link is stable and autonegotiation (if enabled)
382  * is complete.  We should get a link state change interrupt somewhere along
383  * the way ...
384  *
385  * NOTE: <genlock> must already be held by the caller
386  */
387 void
388 rge_phy_update(rge_t *rgep)
389 {
390 	boolean_t adv_autoneg;
391 	boolean_t adv_pause;
392 	boolean_t adv_asym_pause;
393 	boolean_t adv_1000fdx;
394 	boolean_t adv_1000hdx;
395 	boolean_t adv_100fdx;
396 	boolean_t adv_100hdx;
397 	boolean_t adv_10fdx;
398 	boolean_t adv_10hdx;
399 
400 	uint16_t control;
401 	uint16_t gigctrl;
402 	uint16_t anar;
403 
404 	ASSERT(mutex_owned(rgep->genlock));
405 
406 	RGE_DEBUG(("rge_phy_update: autoneg %d "
407 	    "pause %d asym_pause %d "
408 	    "1000fdx %d 1000hdx %d "
409 	    "100fdx %d 100hdx %d "
410 	    "10fdx %d 10hdx %d ",
411 	    rgep->param_adv_autoneg,
412 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
413 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
414 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
415 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
416 
417 	control = gigctrl = anar = 0;
418 
419 	/*
420 	 * PHY settings are normally based on the param_* variables,
421 	 * but if any loopback mode is in effect, that takes precedence.
422 	 *
423 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
424 	 * and External loopback at a variety of speeds (with a special
425 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
426 	 * is turned ON, and the speed/mastership is forced.
427 	 */
428 	switch (rgep->param_loop_mode) {
429 	case RGE_LOOP_NONE:
430 	default:
431 		adv_autoneg = rgep->param_adv_autoneg;
432 		adv_pause = rgep->param_adv_pause;
433 		adv_asym_pause = rgep->param_adv_asym_pause;
434 		adv_1000fdx = rgep->param_adv_1000fdx;
435 		adv_1000hdx = rgep->param_adv_1000hdx;
436 		adv_100fdx = rgep->param_adv_100fdx;
437 		adv_100hdx = rgep->param_adv_100hdx;
438 		adv_10fdx = rgep->param_adv_10fdx;
439 		adv_10hdx = rgep->param_adv_10hdx;
440 		break;
441 
442 	case RGE_LOOP_INTERNAL_PHY:
443 	case RGE_LOOP_INTERNAL_MAC:
444 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
445 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
446 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
447 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
448 
449 		switch (rgep->param_loop_mode) {
450 		case RGE_LOOP_INTERNAL_PHY:
451 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
452 				rgep->param_link_speed = 1000;
453 				adv_1000fdx = B_TRUE;
454 			} else {
455 				rgep->param_link_speed = 100;
456 				adv_100fdx = B_TRUE;
457 			}
458 			control = MII_CONTROL_LOOPBACK;
459 			break;
460 
461 		case RGE_LOOP_INTERNAL_MAC:
462 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
463 				rgep->param_link_speed = 1000;
464 				adv_1000fdx = B_TRUE;
465 			} else {
466 				rgep->param_link_speed = 100;
467 				adv_100fdx = B_TRUE;
468 			break;
469 		}
470 	}
471 
472 	RGE_DEBUG(("rge_phy_update: autoneg %d "
473 	    "pause %d asym_pause %d "
474 	    "1000fdx %d 1000hdx %d "
475 	    "100fdx %d 100hdx %d "
476 	    "10fdx %d 10hdx %d ",
477 	    adv_autoneg,
478 	    adv_pause, adv_asym_pause,
479 	    adv_1000fdx, adv_1000hdx,
480 	    adv_100fdx, adv_100hdx,
481 	    adv_10fdx, adv_10hdx));
482 
483 	/*
484 	 * We should have at least one technology capability set;
485 	 * if not, we select a default of 1000Mb/s full-duplex
486 	 */
487 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
488 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
489 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
490 			adv_1000fdx = B_TRUE;
491 		} else {
492 			adv_1000fdx = B_FALSE;
493 			adv_100fdx = B_TRUE;
494 		}
495 	}
496 
497 	/*
498 	 * Now transform the adv_* variables into the proper settings
499 	 * of the PHY registers ...
500 	 *
501 	 * If autonegotiation is (now) enabled, we want to trigger
502 	 * a new autonegotiation cycle once the PHY has been
503 	 * programmed with the capabilities to be advertised.
504 	 *
505 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
506 	 */
507 	if (adv_autoneg)
508 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
509 
510 	if (adv_1000fdx)
511 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
512 	else if (adv_1000hdx)
513 		control |= MII_CONTROL_1000MB;
514 	else if (adv_100fdx)
515 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
516 	else if (adv_100hdx)
517 		control |= MII_CONTROL_100MB;
518 	else if (adv_10fdx)
519 		control |= MII_CONTROL_FDUPLEX;
520 	else if (adv_10hdx)
521 		control |= 0;
522 	else
523 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
524 
525 	if (adv_1000fdx) {
526 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
527 		/*
528 		 * Chipset limitation: need set other capabilities to true
529 		 */
530 		if (rgep->chipid.is_pcie)
531 			adv_1000hdx = B_TRUE;
532 		adv_100fdx = B_TRUE;
533 		adv_100hdx  = B_TRUE;
534 		adv_10fdx = B_TRUE;
535 		adv_10hdx = B_TRUE;
536 	}
537 
538 	if (adv_1000hdx)
539 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
540 
541 	if (adv_100fdx)
542 		anar |= MII_ABILITY_100BASE_TX_FD;
543 	if (adv_100hdx)
544 		anar |= MII_ABILITY_100BASE_TX;
545 	if (adv_10fdx)
546 		anar |= MII_ABILITY_10BASE_T_FD;
547 	if (adv_10hdx)
548 		anar |= MII_ABILITY_10BASE_T;
549 
550 	if (adv_pause)
551 		anar |= MII_ABILITY_PAUSE;
552 	if (adv_asym_pause)
553 		anar |= MII_ABILITY_ASYM_PAUSE;
554 
555 	/*
556 	 * Munge in any other fixed bits we require ...
557 	 */
558 	anar |= MII_AN_SELECTOR_8023;
559 
560 	/*
561 	 * Restart the PHY and write the new values.  Note the
562 	 * time, so that we can say whether subsequent link state
563 	 * changes can be attributed to our reprogramming the PHY
564 	 */
565 	rge_phy_init(rgep);
566 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
567 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
568 	rge_mii_put16(rgep, MII_CONTROL, control);
569 
570 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
571 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
572 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
573 }
574 
575 void rge_phy_init(rge_t *rgep);
576 #pragma	no_inline(rge_phy_init)
577 
578 void
579 rge_phy_init(rge_t *rgep)
580 {
581 	rgep->phy_mii_addr = 1;
582 
583 	/*
584 	 * Below phy config steps are copied from the Programming Guide
585 	 * (there's no detail comments for these steps.)
586 	 */
587 	switch (rgep->chipid.mac_ver) {
588 	case MAC_VER_8169S_D:
589 	case MAC_VER_8169S_E :
590 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
591 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
592 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
593 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
594 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
595 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
596 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
597 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
598 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
599 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
600 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
601 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
602 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
603 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
604 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
607 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
608 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
609 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
610 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
611 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
614 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
615 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
616 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
617 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
618 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
621 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
622 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
623 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
624 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
625 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
628 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
629 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
630 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
631 		break;
632 
633 	case MAC_VER_8169SB:
634 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
635 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
636 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
637 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
638 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
639 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
640 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
641 		break;
642 
643 	case MAC_VER_8169SC:
644 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
645 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
646 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
647 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
648 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
649 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
650 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
651 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
652 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
653 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
654 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
655 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
656 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
657 		break;
658 
659 	case MAC_VER_8168:
660 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
661 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
662 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
663 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
664 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
665 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
666 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
667 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
668 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
669 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
670 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
671 		break;
672 
673 	case MAC_VER_8168B_B:
674 	case MAC_VER_8168B_C:
675 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
676 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
677 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
678 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
679 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
680 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
681 		break;
682 	}
683 }
684 
685 void rge_chip_ident(rge_t *rgep);
686 #pragma	no_inline(rge_chip_ident)
687 
688 void
689 rge_chip_ident(rge_t *rgep)
690 {
691 	chip_id_t *chip = &rgep->chipid;
692 	uint32_t val32;
693 	uint16_t val16;
694 
695 	/*
696 	 * Read and record MAC version
697 	 */
698 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
699 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
700 	chip->mac_ver = val32;
701 	switch (chip->mac_ver) {
702 	case MAC_VER_8168:
703 	case MAC_VER_8168B_B:
704 	case MAC_VER_8168B_C:
705 	case MAC_VER_8101E:
706 		chip->is_pcie = B_TRUE;
707 		break;
708 
709 	default:
710 		chip->is_pcie = B_FALSE;
711 		break;
712 	}
713 
714 	/*
715 	 * Read and record PHY version
716 	 */
717 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
718 	val16 &= PHY_VER_MASK;
719 	chip->phy_ver = val16;
720 
721 	/* set pci latency timer */
722 	if (chip->mac_ver == MAC_VER_8169 ||
723 	    chip->mac_ver == MAC_VER_8169S_D ||
724 	    chip->mac_ver == MAC_VER_8169SC)
725 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
726 
727 	if (chip->mac_ver == MAC_VER_8169SC) {
728 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
729 		val16 &= 0x0300;
730 		if (val16 == 0x1)	/* 66Mhz PCI */
731 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
732 		else if (val16 == 0x0) /* 33Mhz PCI */
733 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
734 	}
735 
736 	/*
737 	 * PCIE chipset require the Rx buffer start address must be
738 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
739 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
740 	 */
741 	if (chip->is_pcie) {
742 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
743 		if (rgep->default_mtu > ETHERMTU) {
744 			rge_notice(rgep, "Jumbo packets not supported "
745 			    "for this PCIE chipset");
746 			rgep->default_mtu = ETHERMTU;
747 		}
748 	}
749 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
750 		rgep->head_room = 0;
751 	else
752 		rgep->head_room = RGE_HEADROOM;
753 
754 	/*
755 	 * Initialize other variables.
756 	 */
757 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
758 		rgep->default_mtu = ETHERMTU;
759 	if (rgep->default_mtu > ETHERMTU) {
760 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
761 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
762 		rgep->ethmax_size = RGE_JUMBO_SIZE;
763 	} else {
764 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
765 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
766 		rgep->ethmax_size = ETHERMAX;
767 	}
768 	chip->rxconfig = RX_CONFIG_DEFAULT;
769 	chip->txconfig = TX_CONFIG_DEFAULT;
770 
771 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
772 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
773 }
774 
775 /*
776  * Perform first-stage chip (re-)initialisation, using only config-space
777  * accesses:
778  *
779  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
780  *   returning the data in the structure pointed to by <idp>.
781  * + Enable Memory Space accesses.
782  * + Enable Bus Mastering according.
783  */
784 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
785 #pragma	no_inline(rge_chip_cfg_init)
786 
787 void
788 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
789 {
790 	ddi_acc_handle_t handle;
791 	uint16_t commd;
792 
793 	handle = rgep->cfg_handle;
794 
795 	/*
796 	 * Save PCI cache line size and subsystem vendor ID
797 	 */
798 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
799 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
800 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
801 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
802 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
803 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
804 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
805 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
806 
807 	/*
808 	 * Turn on Master Enable (DMA) and IO Enable bits.
809 	 * Enable PCI Memory Space accesses
810 	 */
811 	commd = cidp->command;
812 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
813 	pci_config_put16(handle, PCI_CONF_COMM, commd);
814 
815 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
816 	    cidp->vendor, cidp->device, cidp->revision));
817 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
818 	    cidp->subven, cidp->subdev));
819 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
820 	    cidp->clsize, cidp->latency, cidp->command));
821 }
822 
823 int rge_chip_reset(rge_t *rgep);
824 #pragma	no_inline(rge_chip_reset)
825 
826 int
827 rge_chip_reset(rge_t *rgep)
828 {
829 	int i;
830 	uint8_t val8;
831 
832 	/*
833 	 * Chip should be in STOP state
834 	 */
835 	rge_reg_clr8(rgep, RT_COMMAND_REG,
836 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
837 
838 	/*
839 	 * Disable interrupt
840 	 */
841 	rgep->int_mask = INT_MASK_NONE;
842 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
843 
844 	/*
845 	 * Clear pended interrupt
846 	 */
847 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
848 
849 	/*
850 	 * Reset chip
851 	 */
852 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
853 
854 	/*
855 	 * Wait for reset success
856 	 */
857 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
858 		drv_usecwait(10);
859 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
860 		if (!(val8 & RT_COMMAND_RESET)) {
861 			rgep->rge_chip_state = RGE_CHIP_RESET;
862 			return (0);
863 		}
864 	}
865 	RGE_REPORT((rgep, "rge_chip_reset fail."));
866 	return (-1);
867 }
868 
869 void rge_chip_init(rge_t *rgep);
870 #pragma	no_inline(rge_chip_init)
871 
872 void
873 rge_chip_init(rge_t *rgep)
874 {
875 	uint32_t val32;
876 	uint32_t val16;
877 	uint32_t *hashp;
878 	chip_id_t *chip = &rgep->chipid;
879 
880 	if (chip->is_pcie) {
881 		/*
882 		 * Increase the threshold voltage of RX sensitivity
883 		 */
884 		if (chip->mac_ver != MAC_VER_8168)
885 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
886 
887 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
888 		val16 = 0x12<<8 | val16;
889 		if (rgep->chipid.mac_ver != MAC_VER_8101E &&
890 		    rgep->chipid.mac_ver != MAC_VER_8168B_C) {
891 			rge_reg_put16(rgep, PHY_STATUS_REG, val16);
892 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
893 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
894 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
895 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
896 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
897 			val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
898 			val32 |= 0x7000;
899 			val32 &= 0xffff5fff;
900 			rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
901 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
902 		}
903 	}
904 
905 	/*
906 	 * Config MII register
907 	 */
908 	rgep->param_link_up = LINK_STATE_DOWN;
909 	rge_phy_update(rgep);
910 
911 	/*
912 	 * Enable Rx checksum offload.
913 	 *  Then for vlan support, we must enable receive vlan de-tagging.
914 	 *  Otherwise, there'll be checksum error.
915 	 */
916 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
917 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
918 	if (chip->mac_ver == MAC_VER_8169S_D) {
919 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
920 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
921 	}
922 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
923 
924 	/*
925 	 * Start transmit/receive before set tx/rx configuration register
926 	 */
927 	if (!chip->is_pcie)
928 		rge_reg_set8(rgep, RT_COMMAND_REG,
929 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
930 
931 	/*
932 	 * Set dump tally counter register
933 	 */
934 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
935 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
936 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
937 	val32 &= DUMP_COUNTER_REG_RESV;
938 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
939 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
940 
941 	/*
942 	 * Change to config register write enable mode
943 	 */
944 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
945 
946 	/*
947 	 * Set Tx/Rx maximum packet size
948 	 */
949 	if (rgep->default_mtu > ETHERMTU) {
950 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
951 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
952 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
953 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
954 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
955 	} else {
956 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
957 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
958 	}
959 
960 	/*
961 	 * Set receive configuration register
962 	 */
963 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
964 	val32 &= RX_CONFIG_REG_RESV;
965 	if (rgep->promisc)
966 		val32 |= RX_ACCEPT_ALL_PKT;
967 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
968 
969 	/*
970 	 * Set transmit configuration register
971 	 */
972 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
973 	val32 &= TX_CONFIG_REG_RESV;
974 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
975 
976 	/*
977 	 * Set Tx/Rx descriptor register
978 	 */
979 	val32 = rgep->tx_desc.cookie.dmac_laddress;
980 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
981 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
982 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
983 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
984 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
985 	val32 = rgep->rx_desc.cookie.dmac_laddress;
986 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
987 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
988 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
989 
990 	/*
991 	 * Suggested setting from Realtek
992 	 */
993 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
994 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
995 	else
996 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
997 
998 	/*
999 	 * Set multicast register
1000 	 */
1001 	hashp = (uint32_t *)rgep->mcast_hash;
1002 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1003 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1004 
1005 	/*
1006 	 * Msic register setting:
1007 	 *   -- Missed packet counter: clear it
1008 	 *   -- TimerInt Register
1009 	 *   -- Timer count register
1010 	 */
1011 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1012 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1013 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1014 
1015 	/*
1016 	 * Return to normal network/host communication mode
1017 	 */
1018 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1019 	drv_usecwait(20);
1020 }
1021 
1022 /*
1023  * rge_chip_start() -- start the chip transmitting and/or receiving,
1024  * including enabling interrupts
1025  */
1026 void rge_chip_start(rge_t *rgep);
1027 #pragma	no_inline(rge_chip_start)
1028 
1029 void
1030 rge_chip_start(rge_t *rgep)
1031 {
1032 	/*
1033 	 * Clear statistics
1034 	 */
1035 	bzero(&rgep->stats, sizeof (rge_stats_t));
1036 	DMA_ZERO(rgep->dma_area_stats);
1037 
1038 	/*
1039 	 * Start transmit/receive
1040 	 */
1041 	rge_reg_set8(rgep, RT_COMMAND_REG,
1042 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1043 
1044 	/*
1045 	 * Enable interrupt
1046 	 */
1047 	rgep->int_mask = RGE_INT_MASK;
1048 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1049 
1050 	/*
1051 	 * All done!
1052 	 */
1053 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1054 }
1055 
1056 /*
1057  * rge_chip_stop() -- stop board receiving
1058  */
1059 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1060 #pragma	no_inline(rge_chip_stop)
1061 
1062 void
1063 rge_chip_stop(rge_t *rgep, boolean_t fault)
1064 {
1065 	/*
1066 	 * Disable interrupt
1067 	 */
1068 	rgep->int_mask = INT_MASK_NONE;
1069 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1070 
1071 	/*
1072 	 * Clear pended interrupt
1073 	 */
1074 	if (!rgep->suspended) {
1075 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1076 	}
1077 
1078 	/*
1079 	 * Stop the board and disable transmit/receive
1080 	 */
1081 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1082 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1083 
1084 	if (fault)
1085 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1086 	else
1087 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1088 }
1089 
1090 /*
1091  * rge_get_mac_addr() -- get the MAC address on NIC
1092  */
1093 static void rge_get_mac_addr(rge_t *rgep);
1094 #pragma	inline(rge_get_mac_addr)
1095 
1096 static void
1097 rge_get_mac_addr(rge_t *rgep)
1098 {
1099 	uint8_t *macaddr = rgep->netaddr;
1100 	uint32_t val32;
1101 
1102 	/*
1103 	 * Read first 4-byte of mac address
1104 	 */
1105 	val32 = rge_reg_get32(rgep, ID_0_REG);
1106 	macaddr[0] = val32 & 0xff;
1107 	val32 = val32 >> 8;
1108 	macaddr[1] = val32 & 0xff;
1109 	val32 = val32 >> 8;
1110 	macaddr[2] = val32 & 0xff;
1111 	val32 = val32 >> 8;
1112 	macaddr[3] = val32 & 0xff;
1113 
1114 	/*
1115 	 * Read last 2-byte of mac address
1116 	 */
1117 	val32 = rge_reg_get32(rgep, ID_4_REG);
1118 	macaddr[4] = val32 & 0xff;
1119 	val32 = val32 >> 8;
1120 	macaddr[5] = val32 & 0xff;
1121 }
1122 
1123 static void rge_set_mac_addr(rge_t *rgep);
1124 #pragma	inline(rge_set_mac_addr)
1125 
1126 static void
1127 rge_set_mac_addr(rge_t *rgep)
1128 {
1129 	uint8_t *p = rgep->netaddr;
1130 	uint32_t val32;
1131 
1132 	/*
1133 	 * Change to config register write enable mode
1134 	 */
1135 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1136 
1137 	/*
1138 	 * Get first 4 bytes of mac address
1139 	 */
1140 	val32 = p[3];
1141 	val32 = val32 << 8;
1142 	val32 |= p[2];
1143 	val32 = val32 << 8;
1144 	val32 |= p[1];
1145 	val32 = val32 << 8;
1146 	val32 |= p[0];
1147 
1148 	/*
1149 	 * Set first 4 bytes of mac address
1150 	 */
1151 	rge_reg_put32(rgep, ID_0_REG, val32);
1152 
1153 	/*
1154 	 * Get last 2 bytes of mac address
1155 	 */
1156 	val32 = p[5];
1157 	val32 = val32 << 8;
1158 	val32 |= p[4];
1159 
1160 	/*
1161 	 * Set last 2 bytes of mac address
1162 	 */
1163 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1164 	rge_reg_put32(rgep, ID_4_REG, val32);
1165 
1166 	/*
1167 	 * Return to normal network/host communication mode
1168 	 */
1169 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1170 }
1171 
1172 static void rge_set_multi_addr(rge_t *rgep);
1173 #pragma	inline(rge_set_multi_addr)
1174 
1175 static void
1176 rge_set_multi_addr(rge_t *rgep)
1177 {
1178 	uint32_t *hashp;
1179 
1180 	hashp = (uint32_t *)rgep->mcast_hash;
1181 
1182 	/*
1183 	 * Change to config register write enable mode
1184 	 */
1185 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1186 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1187 
1188 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1189 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1190 
1191 	/*
1192 	 * Return to normal network/host communication mode
1193 	 */
1194 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1195 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1196 }
1197 
1198 static void rge_set_promisc(rge_t *rgep);
1199 #pragma	inline(rge_set_promisc)
1200 
1201 static void
1202 rge_set_promisc(rge_t *rgep)
1203 {
1204 	if (rgep->promisc)
1205 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1206 	else
1207 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1208 }
1209 
1210 /*
1211  * rge_chip_sync() -- program the chip with the unicast MAC address,
1212  * the multicast hash table, the required level of promiscuity, and
1213  * the current loopback mode ...
1214  */
1215 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1216 #pragma	no_inline(rge_chip_sync)
1217 
1218 void
1219 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1220 {
1221 	switch (todo) {
1222 	case RGE_GET_MAC:
1223 		rge_get_mac_addr(rgep);
1224 		break;
1225 	case RGE_SET_MAC:
1226 		/* Reprogram the unicast MAC address(es) ... */
1227 		rge_set_mac_addr(rgep);
1228 		break;
1229 	case RGE_SET_MUL:
1230 		/* Reprogram the hashed multicast address table ... */
1231 		rge_set_multi_addr(rgep);
1232 		break;
1233 	case RGE_SET_PROMISC:
1234 		/* Set or clear the PROMISCUOUS mode bit */
1235 		rge_set_promisc(rgep);
1236 		break;
1237 	default:
1238 		break;
1239 	}
1240 }
1241 
1242 void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1243 #pragma	no_inline(rge_chip_blank)
1244 
1245 void
1246 rge_chip_blank(void *arg, time_t ticks, uint_t count)
1247 {
1248 	_NOTE(ARGUNUSED(arg, ticks, count));
1249 }
1250 
1251 void rge_tx_trigger(rge_t *rgep);
1252 #pragma	no_inline(rge_tx_trigger)
1253 
1254 void
1255 rge_tx_trigger(rge_t *rgep)
1256 {
1257 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1258 }
1259 
1260 void rge_hw_stats_dump(rge_t *rgep);
1261 #pragma	no_inline(rge_tx_trigger)
1262 
1263 void
1264 rge_hw_stats_dump(rge_t *rgep)
1265 {
1266 	int i = 0;
1267 
1268 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1269 		drv_usecwait(100);
1270 		if (++i > STATS_DUMP_LOOP) {
1271 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1272 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1273 			return;
1274 		}
1275 	}
1276 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1277 
1278 	/*
1279 	 * Start H/W statistics dump for RTL8169 chip
1280 	 */
1281 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1282 }
1283 
1284 /*
1285  * ========== Hardware interrupt handler ==========
1286  */
1287 
1288 #undef	RGE_DBG
1289 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1290 
1291 static void rge_wake_factotum(rge_t *rgep);
1292 #pragma	inline(rge_wake_factotum)
1293 
1294 static void
1295 rge_wake_factotum(rge_t *rgep)
1296 {
1297 	if (rgep->factotum_flag == 0) {
1298 		rgep->factotum_flag = 1;
1299 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1300 	}
1301 }
1302 
1303 /*
1304  *	rge_intr() -- handle chip interrupts
1305  */
1306 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1307 #pragma	no_inline(rge_intr)
1308 
1309 uint_t
1310 rge_intr(caddr_t arg1, caddr_t arg2)
1311 {
1312 	rge_t *rgep = (rge_t *)arg1;
1313 	uint16_t int_status;
1314 
1315 	_NOTE(ARGUNUSED(arg2))
1316 
1317 	mutex_enter(rgep->genlock);
1318 
1319 	if (rgep->suspended) {
1320 		mutex_exit(rgep->genlock);
1321 		return (DDI_INTR_UNCLAIMED);
1322 	}
1323 
1324 	/*
1325 	 * Was this interrupt caused by our device...
1326 	 */
1327 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1328 	if (!(int_status & rgep->int_mask)) {
1329 		mutex_exit(rgep->genlock);
1330 		return (DDI_INTR_UNCLAIMED);
1331 				/* indicate it wasn't our interrupt */
1332 	}
1333 	rgep->stats.intr++;
1334 
1335 	/*
1336 	 * Clear interrupt
1337 	 *	For PCIE chipset, we need disable interrupt first.
1338 	 */
1339 	if (rgep->chipid.is_pcie)
1340 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1341 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1342 
1343 	/*
1344 	 * Cable link change interrupt
1345 	 */
1346 	if (int_status & LINK_CHANGE_INT) {
1347 		rge_chip_cyclic(rgep);
1348 	}
1349 
1350 	mutex_exit(rgep->genlock);
1351 
1352 	/*
1353 	 * Receive interrupt
1354 	 */
1355 	if (int_status & RGE_RX_INT)
1356 		rge_receive(rgep);
1357 
1358 	/*
1359 	 * Re-enable interrupt for PCIE chipset
1360 	 */
1361 	if (rgep->chipid.is_pcie)
1362 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1363 
1364 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1365 }
1366 
1367 /*
1368  * ========== Factotum, implemented as a softint handler ==========
1369  */
1370 
1371 #undef	RGE_DBG
1372 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1373 
1374 static boolean_t rge_factotum_link_check(rge_t *rgep);
1375 #pragma	no_inline(rge_factotum_link_check)
1376 
1377 static boolean_t
1378 rge_factotum_link_check(rge_t *rgep)
1379 {
1380 	uint8_t media_status;
1381 	int32_t link;
1382 
1383 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1384 	link = (media_status & PHY_STATUS_LINK_UP) ?
1385 	    LINK_STATE_UP : LINK_STATE_DOWN;
1386 	if (rgep->param_link_up != link) {
1387 		/*
1388 		 * Link change.
1389 		 */
1390 		rgep->param_link_up = link;
1391 
1392 		if (link == LINK_STATE_UP) {
1393 			if (media_status & PHY_STATUS_1000MF) {
1394 				rgep->param_link_speed = RGE_SPEED_1000M;
1395 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1396 			} else {
1397 				rgep->param_link_speed =
1398 				    (media_status & PHY_STATUS_100M) ?
1399 				    RGE_SPEED_100M : RGE_SPEED_10M;
1400 				rgep->param_link_duplex =
1401 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1402 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1403 			}
1404 		}
1405 		return (B_TRUE);
1406 	}
1407 	return (B_FALSE);
1408 }
1409 
1410 /*
1411  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1412  */
1413 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1414 #pragma	no_inline(rge_factotum_stall_check)
1415 
1416 static boolean_t
1417 rge_factotum_stall_check(rge_t *rgep)
1418 {
1419 	uint32_t dogval;
1420 
1421 	ASSERT(mutex_owned(rgep->genlock));
1422 
1423 	/*
1424 	 * Specific check for Tx stall ...
1425 	 *
1426 	 * The 'watchdog' counter is incremented whenever a packet
1427 	 * is queued, reset to 1 when some (but not all) buffers
1428 	 * are reclaimed, reset to 0 (disabled) when all buffers
1429 	 * are reclaimed, and shifted left here.  If it exceeds the
1430 	 * threshold value, the chip is assumed to have stalled and
1431 	 * is put into the ERROR state.  The factotum will then reset
1432 	 * it on the next pass.
1433 	 *
1434 	 * All of which should ensure that we don't get into a state
1435 	 * where packets are left pending indefinitely!
1436 	 */
1437 	if (rgep->resched_needed)
1438 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1439 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1440 	if (dogval < rge_watchdog_count)
1441 		return (B_FALSE);
1442 
1443 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1444 	return (B_TRUE);
1445 
1446 }
1447 
1448 /*
1449  * The factotum is woken up when there's something to do that we'd rather
1450  * not do from inside a hardware interrupt handler or high-level cyclic.
1451  * Its two main tasks are:
1452  *	reset & restart the chip after an error
1453  *	check the link status whenever necessary
1454  */
1455 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1456 #pragma	no_inline(rge_chip_factotum)
1457 
1458 uint_t
1459 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1460 {
1461 	rge_t *rgep;
1462 	uint_t result;
1463 	boolean_t error;
1464 	boolean_t linkchg;
1465 
1466 	rgep = (rge_t *)arg1;
1467 	_NOTE(ARGUNUSED(arg2))
1468 
1469 	if (rgep->factotum_flag == 0)
1470 		return (DDI_INTR_UNCLAIMED);
1471 
1472 	rgep->factotum_flag = 0;
1473 	result = DDI_INTR_CLAIMED;
1474 	error = B_FALSE;
1475 	linkchg = B_FALSE;
1476 
1477 	mutex_enter(rgep->genlock);
1478 	switch (rgep->rge_chip_state) {
1479 	default:
1480 		break;
1481 
1482 	case RGE_CHIP_RUNNING:
1483 		linkchg = rge_factotum_link_check(rgep);
1484 		error = rge_factotum_stall_check(rgep);
1485 		break;
1486 
1487 	case RGE_CHIP_ERROR:
1488 		error = B_TRUE;
1489 		break;
1490 
1491 	case RGE_CHIP_FAULT:
1492 		/*
1493 		 * Fault detected, time to reset ...
1494 		 */
1495 		if (rge_autorecover) {
1496 			RGE_REPORT((rgep, "automatic recovery activated"));
1497 			rge_restart(rgep);
1498 		}
1499 		break;
1500 	}
1501 
1502 	/*
1503 	 * If an error is detected, stop the chip now, marking it as
1504 	 * faulty, so that it will be reset next time through ...
1505 	 */
1506 	if (error)
1507 		rge_chip_stop(rgep, B_TRUE);
1508 	mutex_exit(rgep->genlock);
1509 
1510 	/*
1511 	 * If the link state changed, tell the world about it.
1512 	 * Note: can't do this while still holding the mutex.
1513 	 */
1514 	if (linkchg)
1515 		mac_link_update(rgep->mh, rgep->param_link_up);
1516 
1517 	return (result);
1518 }
1519 
1520 /*
1521  * High-level cyclic handler
1522  *
1523  * This routine schedules a (low-level) softint callback to the
1524  * factotum, and prods the chip to update the status block (which
1525  * will cause a hardware interrupt when complete).
1526  */
1527 void rge_chip_cyclic(void *arg);
1528 #pragma	no_inline(rge_chip_cyclic)
1529 
1530 void
1531 rge_chip_cyclic(void *arg)
1532 {
1533 	rge_t *rgep;
1534 
1535 	rgep = arg;
1536 
1537 	switch (rgep->rge_chip_state) {
1538 	default:
1539 		return;
1540 
1541 	case RGE_CHIP_RUNNING:
1542 		rge_phy_check(rgep);
1543 		break;
1544 
1545 	case RGE_CHIP_FAULT:
1546 	case RGE_CHIP_ERROR:
1547 		break;
1548 	}
1549 
1550 	rge_wake_factotum(rgep);
1551 }
1552 
1553 
1554 /*
1555  * ========== Ioctl subfunctions ==========
1556  */
1557 
1558 #undef	RGE_DBG
1559 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1560 
1561 #if	RGE_DEBUGGING || RGE_DO_PPIO
1562 
1563 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1564 #pragma	no_inline(rge_chip_peek_cfg)
1565 
1566 static void
1567 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1568 {
1569 	uint64_t regval;
1570 	uint64_t regno;
1571 
1572 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1573 	    (void *)rgep, (void *)ppd));
1574 
1575 	regno = ppd->pp_acc_offset;
1576 
1577 	switch (ppd->pp_acc_size) {
1578 	case 1:
1579 		regval = pci_config_get8(rgep->cfg_handle, regno);
1580 		break;
1581 
1582 	case 2:
1583 		regval = pci_config_get16(rgep->cfg_handle, regno);
1584 		break;
1585 
1586 	case 4:
1587 		regval = pci_config_get32(rgep->cfg_handle, regno);
1588 		break;
1589 
1590 	case 8:
1591 		regval = pci_config_get64(rgep->cfg_handle, regno);
1592 		break;
1593 	}
1594 
1595 	ppd->pp_acc_data = regval;
1596 }
1597 
1598 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1599 #pragma	no_inline(rge_chip_poke_cfg)
1600 
1601 static void
1602 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1603 {
1604 	uint64_t regval;
1605 	uint64_t regno;
1606 
1607 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1608 	    (void *)rgep, (void *)ppd));
1609 
1610 	regno = ppd->pp_acc_offset;
1611 	regval = ppd->pp_acc_data;
1612 
1613 	switch (ppd->pp_acc_size) {
1614 	case 1:
1615 		pci_config_put8(rgep->cfg_handle, regno, regval);
1616 		break;
1617 
1618 	case 2:
1619 		pci_config_put16(rgep->cfg_handle, regno, regval);
1620 		break;
1621 
1622 	case 4:
1623 		pci_config_put32(rgep->cfg_handle, regno, regval);
1624 		break;
1625 
1626 	case 8:
1627 		pci_config_put64(rgep->cfg_handle, regno, regval);
1628 		break;
1629 	}
1630 }
1631 
1632 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1633 #pragma	no_inline(rge_chip_peek_reg)
1634 
1635 static void
1636 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1637 {
1638 	uint64_t regval;
1639 	void *regaddr;
1640 
1641 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1642 	    (void *)rgep, (void *)ppd));
1643 
1644 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1645 
1646 	switch (ppd->pp_acc_size) {
1647 	case 1:
1648 		regval = ddi_get8(rgep->io_handle, regaddr);
1649 		break;
1650 
1651 	case 2:
1652 		regval = ddi_get16(rgep->io_handle, regaddr);
1653 		break;
1654 
1655 	case 4:
1656 		regval = ddi_get32(rgep->io_handle, regaddr);
1657 		break;
1658 
1659 	case 8:
1660 		regval = ddi_get64(rgep->io_handle, regaddr);
1661 		break;
1662 	}
1663 
1664 	ppd->pp_acc_data = regval;
1665 }
1666 
1667 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1668 #pragma	no_inline(rge_chip_peek_reg)
1669 
1670 static void
1671 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1672 {
1673 	uint64_t regval;
1674 	void *regaddr;
1675 
1676 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1677 	    (void *)rgep, (void *)ppd));
1678 
1679 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1680 	regval = ppd->pp_acc_data;
1681 
1682 	switch (ppd->pp_acc_size) {
1683 	case 1:
1684 		ddi_put8(rgep->io_handle, regaddr, regval);
1685 		break;
1686 
1687 	case 2:
1688 		ddi_put16(rgep->io_handle, regaddr, regval);
1689 		break;
1690 
1691 	case 4:
1692 		ddi_put32(rgep->io_handle, regaddr, regval);
1693 		break;
1694 
1695 	case 8:
1696 		ddi_put64(rgep->io_handle, regaddr, regval);
1697 		break;
1698 	}
1699 }
1700 
1701 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1702 #pragma	no_inline(rge_chip_peek_mii)
1703 
1704 static void
1705 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1706 {
1707 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1708 	    (void *)rgep, (void *)ppd));
1709 
1710 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1711 }
1712 
1713 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1714 #pragma	no_inline(rge_chip_poke_mii)
1715 
1716 static void
1717 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1718 {
1719 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1720 	    (void *)rgep, (void *)ppd));
1721 
1722 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1723 }
1724 
1725 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1726 #pragma	no_inline(rge_chip_peek_mem)
1727 
1728 static void
1729 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1730 {
1731 	uint64_t regval;
1732 	void *vaddr;
1733 
1734 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1735 	    (void *)rgep, (void *)ppd));
1736 
1737 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1738 
1739 	switch (ppd->pp_acc_size) {
1740 	case 1:
1741 		regval = *(uint8_t *)vaddr;
1742 		break;
1743 
1744 	case 2:
1745 		regval = *(uint16_t *)vaddr;
1746 		break;
1747 
1748 	case 4:
1749 		regval = *(uint32_t *)vaddr;
1750 		break;
1751 
1752 	case 8:
1753 		regval = *(uint64_t *)vaddr;
1754 		break;
1755 	}
1756 
1757 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1758 	    (void *)rgep, (void *)ppd, regval, vaddr));
1759 
1760 	ppd->pp_acc_data = regval;
1761 }
1762 
1763 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1764 #pragma	no_inline(rge_chip_poke_mem)
1765 
1766 static void
1767 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1768 {
1769 	uint64_t regval;
1770 	void *vaddr;
1771 
1772 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1773 	    (void *)rgep, (void *)ppd));
1774 
1775 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1776 	regval = ppd->pp_acc_data;
1777 
1778 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1779 	    (void *)rgep, (void *)ppd, regval, vaddr));
1780 
1781 	switch (ppd->pp_acc_size) {
1782 	case 1:
1783 		*(uint8_t *)vaddr = (uint8_t)regval;
1784 		break;
1785 
1786 	case 2:
1787 		*(uint16_t *)vaddr = (uint16_t)regval;
1788 		break;
1789 
1790 	case 4:
1791 		*(uint32_t *)vaddr = (uint32_t)regval;
1792 		break;
1793 
1794 	case 8:
1795 		*(uint64_t *)vaddr = (uint64_t)regval;
1796 		break;
1797 	}
1798 }
1799 
1800 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1801 					struct iocblk *iocp);
1802 #pragma	no_inline(rge_pp_ioctl)
1803 
1804 static enum ioc_reply
1805 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1806 {
1807 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1808 	rge_peekpoke_t *ppd;
1809 	dma_area_t *areap;
1810 	uint64_t sizemask;
1811 	uint64_t mem_va;
1812 	uint64_t maxoff;
1813 	boolean_t peek;
1814 
1815 	switch (cmd) {
1816 	default:
1817 		/* NOTREACHED */
1818 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1819 		return (IOC_INVAL);
1820 
1821 	case RGE_PEEK:
1822 		peek = B_TRUE;
1823 		break;
1824 
1825 	case RGE_POKE:
1826 		peek = B_FALSE;
1827 		break;
1828 	}
1829 
1830 	/*
1831 	 * Validate format of ioctl
1832 	 */
1833 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1834 		return (IOC_INVAL);
1835 	if (mp->b_cont == NULL)
1836 		return (IOC_INVAL);
1837 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1838 
1839 	/*
1840 	 * Validate request parameters
1841 	 */
1842 	switch (ppd->pp_acc_space) {
1843 	default:
1844 		return (IOC_INVAL);
1845 
1846 	case RGE_PP_SPACE_CFG:
1847 		/*
1848 		 * Config space
1849 		 */
1850 		sizemask = 8|4|2|1;
1851 		mem_va = 0;
1852 		maxoff = PCI_CONF_HDR_SIZE;
1853 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1854 		break;
1855 
1856 	case RGE_PP_SPACE_REG:
1857 		/*
1858 		 * Memory-mapped I/O space
1859 		 */
1860 		sizemask = 8|4|2|1;
1861 		mem_va = 0;
1862 		maxoff = RGE_REGISTER_MAX;
1863 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1864 		break;
1865 
1866 	case RGE_PP_SPACE_MII:
1867 		/*
1868 		 * PHY's MII registers
1869 		 * NB: all PHY registers are two bytes, but the
1870 		 * addresses increment in ones (word addressing).
1871 		 * So we scale the address here, then undo the
1872 		 * transformation inside the peek/poke functions.
1873 		 */
1874 		ppd->pp_acc_offset *= 2;
1875 		sizemask = 2;
1876 		mem_va = 0;
1877 		maxoff = (MII_MAXREG+1)*2;
1878 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1879 		break;
1880 
1881 	case RGE_PP_SPACE_RGE:
1882 		/*
1883 		 * RGE data structure!
1884 		 */
1885 		sizemask = 8|4|2|1;
1886 		mem_va = (uintptr_t)rgep;
1887 		maxoff = sizeof (*rgep);
1888 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1889 		break;
1890 
1891 	case RGE_PP_SPACE_STATISTICS:
1892 	case RGE_PP_SPACE_TXDESC:
1893 	case RGE_PP_SPACE_TXBUFF:
1894 	case RGE_PP_SPACE_RXDESC:
1895 	case RGE_PP_SPACE_RXBUFF:
1896 		/*
1897 		 * Various DMA_AREAs
1898 		 */
1899 		switch (ppd->pp_acc_space) {
1900 		case RGE_PP_SPACE_TXDESC:
1901 			areap = &rgep->dma_area_txdesc;
1902 			break;
1903 		case RGE_PP_SPACE_RXDESC:
1904 			areap = &rgep->dma_area_rxdesc;
1905 			break;
1906 		case RGE_PP_SPACE_STATISTICS:
1907 			areap = &rgep->dma_area_stats;
1908 			break;
1909 		}
1910 
1911 		sizemask = 8|4|2|1;
1912 		mem_va = (uintptr_t)areap->mem_va;
1913 		maxoff = areap->alength;
1914 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1915 		break;
1916 	}
1917 
1918 	switch (ppd->pp_acc_size) {
1919 	default:
1920 		return (IOC_INVAL);
1921 
1922 	case 8:
1923 	case 4:
1924 	case 2:
1925 	case 1:
1926 		if ((ppd->pp_acc_size & sizemask) == 0)
1927 			return (IOC_INVAL);
1928 		break;
1929 	}
1930 
1931 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1932 		return (IOC_INVAL);
1933 
1934 	if (ppd->pp_acc_offset >= maxoff)
1935 		return (IOC_INVAL);
1936 
1937 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1938 		return (IOC_INVAL);
1939 
1940 	/*
1941 	 * All OK - go do it!
1942 	 */
1943 	ppd->pp_acc_offset += mem_va;
1944 	(*ppfn)(rgep, ppd);
1945 	return (peek ? IOC_REPLY : IOC_ACK);
1946 }
1947 
1948 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1949 					struct iocblk *iocp);
1950 #pragma	no_inline(rge_diag_ioctl)
1951 
1952 static enum ioc_reply
1953 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1954 {
1955 	ASSERT(mutex_owned(rgep->genlock));
1956 
1957 	switch (cmd) {
1958 	default:
1959 		/* NOTREACHED */
1960 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1961 		return (IOC_INVAL);
1962 
1963 	case RGE_DIAG:
1964 		/*
1965 		 * Currently a no-op
1966 		 */
1967 		return (IOC_ACK);
1968 
1969 	case RGE_PEEK:
1970 	case RGE_POKE:
1971 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
1972 
1973 	case RGE_PHY_RESET:
1974 		return (IOC_RESTART_ACK);
1975 
1976 	case RGE_SOFT_RESET:
1977 	case RGE_HARD_RESET:
1978 		/*
1979 		 * Reset and reinitialise the 570x hardware
1980 		 */
1981 		rge_restart(rgep);
1982 		return (IOC_ACK);
1983 	}
1984 
1985 	/* NOTREACHED */
1986 }
1987 
1988 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
1989 
1990 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1991 				    struct iocblk *iocp);
1992 #pragma	no_inline(rge_mii_ioctl)
1993 
1994 static enum ioc_reply
1995 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1996 {
1997 	struct rge_mii_rw *miirwp;
1998 
1999 	/*
2000 	 * Validate format of ioctl
2001 	 */
2002 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2003 		return (IOC_INVAL);
2004 	if (mp->b_cont == NULL)
2005 		return (IOC_INVAL);
2006 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2007 
2008 	/*
2009 	 * Validate request parameters ...
2010 	 */
2011 	if (miirwp->mii_reg > MII_MAXREG)
2012 		return (IOC_INVAL);
2013 
2014 	switch (cmd) {
2015 	default:
2016 		/* NOTREACHED */
2017 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2018 		return (IOC_INVAL);
2019 
2020 	case RGE_MII_READ:
2021 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2022 		return (IOC_REPLY);
2023 
2024 	case RGE_MII_WRITE:
2025 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2026 		return (IOC_ACK);
2027 	}
2028 
2029 	/* NOTREACHED */
2030 }
2031 
2032 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2033 				struct iocblk *iocp);
2034 #pragma	no_inline(rge_chip_ioctl)
2035 
2036 enum ioc_reply
2037 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2038 {
2039 	int cmd;
2040 
2041 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2042 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2043 
2044 	ASSERT(mutex_owned(rgep->genlock));
2045 
2046 	cmd = iocp->ioc_cmd;
2047 	switch (cmd) {
2048 	default:
2049 		/* NOTREACHED */
2050 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2051 		return (IOC_INVAL);
2052 
2053 	case RGE_DIAG:
2054 	case RGE_PEEK:
2055 	case RGE_POKE:
2056 	case RGE_PHY_RESET:
2057 	case RGE_SOFT_RESET:
2058 	case RGE_HARD_RESET:
2059 #if	RGE_DEBUGGING || RGE_DO_PPIO
2060 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2061 #else
2062 		return (IOC_INVAL);
2063 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2064 
2065 	case RGE_MII_READ:
2066 	case RGE_MII_WRITE:
2067 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2068 
2069 	}
2070 
2071 	/* NOTREACHED */
2072 }
2073