xref: /titanic_50/usr/src/uts/common/io/ptms_conf.c (revision ba2e4443695ee6a6f420a35cd4fc3d3346d22932)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains global data and code shared between master and slave parts
31  * of the pseudo-terminal driver.
32  *
33  * Pseudo terminals (or pt's for short) are allocated dynamically.
34  * pt's are put in the global ptms_slots array indexed by minor numbers.
35  *
36  * The slots array is initially small (of the size NPTY_MIN). When more pt's are
37  * needed than the slot array size, the larger slot array is allocated and all
38  * opened pt's move to the new one.
39  *
40  * Resource allocation:
41  *
42  *	pt_ttys structures are allocated via pt_ttys_alloc, which uses
43  *		kmem_cache_alloc().
44  *	Minor number space is allocated via vmem_alloc() interface.
45  *	ptms_slots arrays are allocated via kmem_alloc().
46  *
47  *   Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
48  *   of failure. Also, in anticipation of removing clone device interface to
49  *   pseudo-terminal subsystem, minor 0 should not be used. (Potential future
50  *   development).
51  *
52  *   Device entries in /dev/pts directory are created dynamically via
53  *   ddi_create_minor_node(). It enqueues requests to suer-mode event daemon
54  *   which actually creates entries asynchronously, so they may not be available
55  *   immediately. For this reason we create devices before they are actually
56  *   needed, so for each slot table extension we already have node creation
57  *   requests queued. To avoid overflowing of the event daemon event queue we
58  *   limit the maximum extension of the slot table by the pt_maxdelta tuneable.
59  *   After the table slot size reaches pt_maxdelta, we stop 2^N extension
60  *   algorithm and start extending the slot table size by pt_maxdelta.
61  *
62  * Synchronization:
63  *
64  *   All global data synchronization between ptm/pts is done via global
65  *   ptms_lock mutex which is implicitly initialized by declaring it global.
66  *
67  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
68  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
69  *
70  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
71  *   which allow reader locks to be reacquired by the same thread (usual
72  *   reader/writer locks can't be used for that purpose since it is illegal for
73  *   a thread to acquire a lock it already holds, even as a reader). The sole
74  *   purpose of these macros is to guarantee that the peer queue will not
75  *   disappear (due to closing peer) while it is used. It is safe to use
76  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
77  *   they are not real locks but reference counts).
78  *
79  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
80  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
81  *   be set to appropriate queues *after* qprocson() is called during open (to
82  *   prevent peer from accessing the queue with incomplete plumbing) and set to
83  *   NULL before qprocsoff() is called during close. Put and service procedures
84  *   use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
85  *
86  *   The pt_nullmsg field is only used in open/close routines and is also
87  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
88  *   holds.
89  *
90  * Lock Ordering:
91  *
92  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
93  *   be entered first, followed by per-pty lock.
94  *
95  * Global functions:
96  *
97  * void ptms_init(void);
98  *
99  *	Called by pts/ptm _init entry points. It performes one-time
100  * 	initialization needed for both pts and ptm. This initialization is done
101  * 	here and not in ptms_initspace because all these data structures are not
102  *	needed if pseudo-terminals are not used in the system.
103  *
104  * struct pt_ttys *pt_ttys_alloc(void);
105  *
106  *	Allocate new minor number and pseudo-terminal entry. May sleep.
107  *	New minor number is recorded in pt_minor field of the entry returned.
108  *	This routine also initializes pt_minor and pt_state fields of the new
109  *	pseudo-terminal and puts a pointer to it into ptms_slots array.
110  *
111  * struct pt_ttys *ptms_minor2ptty(minor_t minor)
112  *
113  *	Find pt_ttys structure by minor number.
114  *	Returns NULL when minor is out of range.
115  *
116  * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
117  *
118  *	Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
119  * 	set) free pt entry and corresponding slot.
120  *
121  * Tuneables and configuration:
122  *
123  *	pt_cnt: minimum number of pseudo-terminals in the system. The system
124  *		should provide at least this number of ptys (provided sufficient
125  * 		memory is available). It is different from the older semantics
126  *		of pt_cnt meaning maximum number of ptys.
127  *		Set to 0 by default.
128  *
129  *	pt_max_pty: Maximum number of pseudo-terminals in the system. The system
130  *		should not allocate more ptys than pt_max_pty (although, it may
131  * 		impose stricter maximum). Zero value means no user-defined
132  * 		maximum. This is intended to be used as "denial-of-service"
133  *		protection.
134  *		Set to 0 by default.
135  *
136  *         Both pt_cnt and pt_max_pty may be modified during system lifetime
137  *         with their semantics preserved.
138  *
139  *	pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
140  *
141  *	pt_ptyofmem: Approximate percentage of system memory that may be
142  *		occupied by pty data structures. Initially set to NPTY_PERCENT.
143  *		This variable is used once during initialization to estimate
144  * 		maximum number of ptys in the system. The actual maximum is
145  *		determined as minimum of pt_max_pty and calculated value.
146  *
147  *	pt_maxdelta: Maximum extension chunk of the slot table.
148  */
149 
150 
151 
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/termios.h>
155 #include <sys/stream.h>
156 #include <sys/stropts.h>
157 #include <sys/kmem.h>
158 #include <sys/ptms.h>
159 #include <sys/stat.h>
160 #include <sys/sunddi.h>
161 #include <sys/ddi.h>
162 #include <sys/bitmap.h>
163 #include <sys/sysmacros.h>
164 #include <sys/ddi_impldefs.h>
165 #include <sys/zone.h>
166 #ifdef DEBUG
167 #include <sys/strlog.h>
168 #endif
169 
170 
171 /* Initial number of ptms slots */
172 #define	NPTY_INITIAL 16
173 
174 #define	NPTY_PERCENT 5
175 
176 /* Maximum increment of the slot table size */
177 #define	PTY_MAXDELTA 128
178 
179 /*
180  * Tuneable variables.
181  */
182 uint_t	pt_cnt = 0;			/* Minimum number of ptys */
183 size_t 	pt_max_pty = 0;			/* Maximum number of ptys */
184 uint_t	pt_init_cnt = NPTY_INITIAL;	/* Initial number of ptms slots */
185 uint_t	pt_pctofmem = NPTY_PERCENT;	/* Percent of memory to use for ptys */
186 uint_t	pt_maxdelta = PTY_MAXDELTA;	/* Max increment for slot table size */
187 
188 /* Other global variables */
189 
190 kmutex_t ptms_lock;			/* Global data access lock */
191 
192 /*
193  * Slot array and its management variables
194  */
195 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
196 static size_t ptms_nslots = 0;		/* Size of slot array */
197 static size_t ptms_ptymax = 0;		/* Maximum number of ptys */
198 static size_t ptms_inuse = 0;		/* # of ptys currently allocated */
199 static size_t ptms_bt_words = 0;	/* Size of minor bitmap in words */
200 static size_t ptms_bt_len = 0;		/* Size of minor bitmap in bits */
201 
202 dev_info_t 	*pts_dip = NULL;	/* private copy of slave devinfo ptr */
203 
204 static struct kmem_cache *ptms_cache = NULL;	/* pty cache */
205 
206 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
207 
208 static ulong_t *ptms_bt = NULL;		/* pty created minor node bitmap */
209 
210 static uint_t ptms_roundup(uint_t);
211 static int ptms_constructor(void *, void *, int);
212 static void ptms_destructor(void *, void *);
213 static minor_t ptms_grow(void);
214 
215 /*
216  * Total size occupied by one pty. Each pty master/slave pair consumes one
217  * pointer for ptms_slots array, one pt_ttys structure and one empty message
218  * preallocated for pts close.
219  */
220 
221 #define	PTY_SIZE (sizeof (struct pt_ttys) + \
222     sizeof (struct pt_ttys *) + \
223     sizeof (dblk_t))
224 
225 #ifdef DEBUG
226 int ptms_debug = 0;
227 #define	PTMOD_ID 5
228 #endif
229 
230 /*
231  * Clear all bits of x except the highest bit
232  */
233 #define	truncate(x) 	((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
234 
235 /*
236  * Roundup the number to the nearest power of 2
237  */
238 static uint_t
239 ptms_roundup(uint_t x)
240 {
241 	uint_t p = truncate(x);	/* x with non-high bits stripped */
242 
243 	/*
244 	 * If x is a power of 2, return x, otherwise roundup.
245 	 */
246 	return (p == x ? p : (p * 2));
247 }
248 
249 /*
250  * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
251  * only called once during system lifetime. Called from ptm or pts _init
252  * routine.
253  */
254 void
255 ptms_init(void)
256 {
257 	mutex_enter(&ptms_lock);
258 
259 	if (ptms_slots == NULL) {
260 		ptms_slots = kmem_zalloc(pt_init_cnt *
261 		    sizeof (struct pt_ttys *), KM_SLEEP);
262 
263 		ptms_cache = kmem_cache_create("pty_map",
264 		    sizeof (struct pt_ttys), 0, ptms_constructor,
265 		    ptms_destructor, NULL, NULL, NULL, 0);
266 
267 		/* Allocate bit map for created minor nodes */
268 		ptms_bt_len = pt_init_cnt * 2 + 1;
269 		ptms_bt_words = howmany(ptms_bt_len, BT_NBIPUL);
270 		ptms_bt = kmem_zalloc(sizeof (ulong_t) * ptms_bt_words,
271 			KM_SLEEP);
272 
273 		ptms_nslots = pt_init_cnt;
274 
275 		/* Allocate integer space for minor numbers */
276 		ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
277 		    ptms_nslots, 1, NULL, NULL, NULL, 0,
278 		    VM_SLEEP | VMC_IDENTIFIER);
279 
280 		/*
281 		 * Calculate available number of ptys - how many ptys can we
282 		 * allocate in pt_pctofmem % of available memory. The value is
283 		 * rounded up to the nearest power of 2.
284 		 */
285 		ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
286 		    (100 * PTY_SIZE));
287 	}
288 	mutex_exit(&ptms_lock);
289 }
290 
291 static void
292 ptms_create_node(dev_info_t *devi, minor_t i)
293 {
294 	char name[22];		/* For representing 64-bit minor + NUL */
295 
296 	(void) snprintf(name, sizeof (name), "%d", i);
297 	if (ddi_create_minor_node(devi, name, S_IFCHR,
298 	    i, DDI_PSEUDO, NULL) == DDI_SUCCESS) {
299 		BT_SET(ptms_bt, i);
300 	}
301 }
302 
303 /*
304  * Create nodes in /dev/pts directory.
305  * Called from pts_attach.
306  */
307 int
308 ptms_create_pts_nodes(dev_info_t *devi)
309 {
310 	uint_t i;
311 
312 	mutex_enter(&ptms_lock);
313 	pts_dip = devi;
314 
315 	/*
316 	 * /dev/pts/0 is not used, but some applications may check it, so create
317 	 * it also.
318 	 *
319 	 * Create all minor nodes that have been pre-allocated in ptms_init().
320 	 */
321 	for (i = 0; i <= pt_init_cnt * 2; i++)
322 		ptms_create_node(devi, i);
323 
324 	mutex_exit(&ptms_lock);
325 
326 	return (DDI_SUCCESS);
327 }
328 
329 /*
330  * Destroy nodes in /dev/pts directory.
331  * Called from pts_detach.
332  */
333 int
334 ptms_destroy_pts_nodes(dev_info_t *devi)
335 {
336 	mutex_enter(&ptms_lock);
337 	ddi_remove_minor_node(devi, NULL);
338 	if (ptms_bt != NULL && ptms_bt_words > 0) {
339 		/* Clear bitmap since all minor nodes have been removed */
340 		bzero(ptms_bt, sizeof (ulong_t) * ptms_bt_words);
341 	}
342 	pts_dip = NULL;
343 	mutex_exit(&ptms_lock);
344 	return (DDI_SUCCESS);
345 }
346 
347 /*
348  * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
349  * NULL if no memory or maximum number of entries reached.
350  */
351 struct pt_ttys *
352 pt_ttys_alloc(void)
353 {
354 	minor_t dminor;
355 	struct pt_ttys *pt = NULL;
356 
357 	mutex_enter(&ptms_lock);
358 
359 	/*
360 	 * Always try to allocate new pty when pt_cnt minimum limit is not
361 	 * achieved. If it is achieved, the maximum is determined by either
362 	 * user-specified value (if it is non-zero) or our memory estimations -
363 	 * whatever is less.
364 	 */
365 	if (ptms_inuse >= pt_cnt) {
366 		/*
367 		 * When system achieved required minimum of ptys, check for the
368 		 *   denial of service limits.
369 		 *
370 		 * Since pt_max_pty may be zero, the formula below is used to
371 		 * avoid conditional expression. It will equal to pt_max_pty if
372 		 * it is not zero and ptms_ptymax otherwise.
373 		 */
374 		size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
375 
376 		/* Do not try to allocate more than allowed */
377 		if (ptms_inuse >= min(ptms_ptymax, user_max)) {
378 			mutex_exit(&ptms_lock);
379 			return (NULL);
380 		}
381 	}
382 	ptms_inuse++;
383 
384 	/*
385 	 * Allocate new minor number. If this fails, all slots are busy and
386 	 * we need to grow the hash.
387 	 */
388 	dminor = (minor_t)(uintptr_t)
389 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
390 
391 	if (dminor == 0) {
392 		/* Grow the cache and retry allocation */
393 		dminor = ptms_grow();
394 	}
395 
396 	if (dminor == 0) {
397 		/* Not enough memory now */
398 		ptms_inuse--;
399 		mutex_exit(&ptms_lock);
400 		return (NULL);
401 	}
402 
403 	if (BT_TEST(ptms_bt, dminor) == 0) {
404 		/*
405 		 * Retry failed node creation.
406 		 */
407 		if (pts_dip != NULL)
408 			ptms_create_node(pts_dip, dminor);
409 	}
410 
411 	pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
412 	if (pt == NULL) {
413 		/* Not enough memory - this entry can't be used now. */
414 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
415 		ptms_inuse--;
416 	} else {
417 		pt->pt_minor = dminor;
418 		pt->pt_pid = curproc->p_pid;	/* For debugging */
419 		pt->pt_state = (PTMOPEN | PTLOCK);
420 		pt->pt_zoneid = getzoneid();
421 		ASSERT(ptms_slots[dminor - 1] == NULL);
422 		ptms_slots[dminor - 1] = pt;
423 	}
424 
425 	mutex_exit(&ptms_lock);
426 	return (pt);
427 }
428 
429 /*
430  * Get pt_ttys structure by minor number.
431  * Returns NULL when minor is out of range.
432  */
433 struct pt_ttys *
434 ptms_minor2ptty(minor_t dminor)
435 {
436 	struct pt_ttys *pt = NULL;
437 
438 	ASSERT(mutex_owned(&ptms_lock));
439 	if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
440 		pt = ptms_slots[dminor - 1];
441 
442 	return (pt);
443 }
444 
445 /*
446  * Close the pt and clear flags_to_clear.
447  * If pt device is not opened by someone else, free it and clear its slot.
448  */
449 void
450 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
451 {
452 	uint_t flags;
453 
454 	ASSERT(MUTEX_NOT_HELD(&ptms_lock));
455 	ASSERT(pt != NULL);
456 
457 	mutex_enter(&ptms_lock);
458 
459 	mutex_enter(&pt->pt_lock);
460 	pt->pt_state &= ~flags_to_clear;
461 	flags = pt->pt_state;
462 	mutex_exit(&pt->pt_lock);
463 
464 	if (! (flags & (PTMOPEN | PTSOPEN))) {
465 		/* No one owns the entry - free it */
466 
467 		ASSERT(pt->ptm_rdq == NULL);
468 		ASSERT(pt->pts_rdq == NULL);
469 		ASSERT(pt->pt_nullmsg == NULL);
470 		ASSERT(pt->pt_refcnt == 0);
471 		ASSERT(pt->pt_minor <= ptms_nslots);
472 		ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
473 		ASSERT(ptms_inuse > 0);
474 
475 		ptms_inuse--;
476 
477 		pt->pt_pid = 0;
478 
479 		ptms_slots[pt->pt_minor - 1] = NULL;
480 		/* Return minor number to the pool of minors */
481 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
482 		/* Return pt to the cache */
483 		kmem_cache_free(ptms_cache, pt);
484 	}
485 	mutex_exit(&ptms_lock);
486 }
487 
488 /*
489  * Allocate another slot table twice as large as the original one (limited to
490  * global maximum). Migrate all pt to the new slot table and free the original
491  * one. Create more /devices entries for new devices.
492  */
493 static minor_t
494 ptms_grow()
495 {
496 	minor_t old_size = ptms_nslots;
497 	minor_t delta = MIN(pt_maxdelta, old_size);
498 	minor_t new_size = old_size + delta;
499 	minor_t	new_delta = MIN(pt_maxdelta, new_size);
500 	struct pt_ttys **ptms_old = ptms_slots;
501 	struct pt_ttys **ptms_new;
502 	ulong_t	*new_bt;
503 	size_t	new_bt_words;
504 	size_t	new_bt_len;
505 	void  *vaddr;			/* vmem_add return value */
506 	minor_t i;
507 
508 	ASSERT(MUTEX_HELD(&ptms_lock));
509 
510 	DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
511 
512 	/* Allocate new ptms array */
513 	ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
514 	    KM_NOSLEEP);
515 	if (ptms_new == NULL)
516 		return ((minor_t)0);
517 
518 	/* Allocate new ptms bitmap */
519 	new_bt_len = ptms_bt_len + new_delta;
520 	new_bt_words = howmany(new_bt_len, BT_NBIPUL);
521 	new_bt = kmem_zalloc(sizeof (ulong_t) * new_bt_words, KM_NOSLEEP);
522 	if (new_bt == NULL) {
523 		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
524 		return ((minor_t)0);
525 	}
526 
527 	/* Increase clone index space */
528 	vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
529 	    new_size - old_size, VM_NOSLEEP);
530 
531 	if (vaddr == NULL) {
532 		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
533 		kmem_free(new_bt, sizeof (ulong_t) * new_bt_words);
534 		return ((minor_t)0);
535 	}
536 
537 	/* Migrate pt entries to a new location */
538 	ptms_nslots = new_size;
539 	bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
540 	ptms_slots = ptms_new;
541 	kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
542 
543 	/* Migrate bitmap entries to a new location */
544 	bt_copy(ptms_bt, new_bt, ptms_bt_words);
545 	kmem_free(ptms_bt, sizeof (ulong_t) * ptms_bt_words);
546 	ptms_bt = new_bt;
547 	ptms_bt_words = new_bt_words;
548 	ptms_bt_len = new_bt_len;
549 
550 	/*
551 	 * Add new or previously failed /devices entries.
552 	 * Devices are created asynchronously via event daemon requests, so we
553 	 * pre-create devices before they are actually needed.
554 	 * Faster performance could be obtained by keeping track of
555 	 * the last uncreated node, rather than searching.
556 	 */
557 	if (pts_dip != NULL) {
558 		for (i = bt_availbit(ptms_bt, ptms_bt_len); i < ptms_bt_len;
559 			i++) {
560 			if (BT_TEST(ptms_bt, i) == 0)
561 				ptms_create_node(pts_dip, i);
562 		}
563 	}
564 
565 	/* Allocate minor number and return it */
566 	return ((minor_t)(uintptr_t)
567 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
568 }
569 
570 /*ARGSUSED*/
571 static int
572 ptms_constructor(void *maddr, void *arg, int kmflags)
573 {
574 	struct pt_ttys *pt = maddr;
575 
576 	pt->pts_rdq = NULL;
577 	pt->ptm_rdq = NULL;
578 	pt->pt_nullmsg = NULL;
579 	pt->pt_pid = NULL;
580 	pt->pt_minor = NULL;
581 	pt->pt_refcnt = 0;
582 	pt->pt_state = 0;
583 	pt->pt_zoneid = GLOBAL_ZONEID;
584 
585 	cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
586 	mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
587 	return (0);
588 }
589 
590 /*ARGSUSED*/
591 static void
592 ptms_destructor(void *maddr, void *arg)
593 {
594 	struct pt_ttys *pt = maddr;
595 
596 	ASSERT(pt->pt_refcnt == 0);
597 	ASSERT(pt->pt_state == 0);
598 	ASSERT(pt->ptm_rdq == NULL);
599 	ASSERT(pt->pts_rdq == NULL);
600 
601 	mutex_destroy(&pt->pt_lock);
602 	cv_destroy(&pt->pt_cv);
603 }
604 
605 #ifdef DEBUG
606 void
607 ptms_log(char *str, uint_t arg)
608 {
609 	if (ptms_debug) {
610 		if (ptms_debug & 2)
611 			cmn_err(CE_CONT, str, arg);
612 		if (ptms_debug & 4)
613 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
614 			    str, arg);
615 		else
616 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
617 	}
618 }
619 
620 void
621 ptms_logp(char *str, uintptr_t arg)
622 {
623 	if (ptms_debug) {
624 		if (ptms_debug & 2)
625 			cmn_err(CE_CONT, str, arg);
626 		if (ptms_debug & 4)
627 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
628 			    str, arg);
629 		else
630 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
631 	}
632 }
633 #endif
634