xref: /titanic_50/usr/src/uts/common/io/nge/nge_main.c (revision 5a3d071821f538e6109877cf4a28881c159e8cfc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 
31 /*
32  * Describes the chip's DMA engine
33  */
34 
35 static ddi_dma_attr_t hot_dma_attr = {
36 	DMA_ATTR_V0,			/* dma_attr version	*/
37 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
38 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
39 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
40 	0x0000000000000010ull,		/* dma_attr_align	*/
41 	0x00000FFF,			/* dma_attr_burstsizes	*/
42 	0x00000001,			/* dma_attr_minxfer	*/
43 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
44 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
45 	1,				/* dma_attr_sgllen 	*/
46 	0x00000001,			/* dma_attr_granular 	*/
47 	0
48 };
49 
50 static ddi_dma_attr_t hot_tx_dma_attr = {
51 	DMA_ATTR_V0,			/* dma_attr version	*/
52 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
53 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
54 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
55 	0x0000000000000010ull,		/* dma_attr_align	*/
56 	0x00000FFF,			/* dma_attr_burstsizes	*/
57 	0x00000001,			/* dma_attr_minxfer	*/
58 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
59 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
60 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
61 	1,				/* dma_attr_granular 	*/
62 	0
63 };
64 
65 static ddi_dma_attr_t sum_dma_attr = {
66 	DMA_ATTR_V0,			/* dma_attr version	*/
67 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
68 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
69 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
70 	0x0000000000000010ull,		/* dma_attr_align	*/
71 	0x00000FFF,			/* dma_attr_burstsizes	*/
72 	0x00000001,			/* dma_attr_minxfer	*/
73 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
74 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
75 	1,				/* dma_attr_sgllen 	*/
76 	0x00000001,			/* dma_attr_granular 	*/
77 	0
78 };
79 
80 static ddi_dma_attr_t sum_tx_dma_attr = {
81 	DMA_ATTR_V0,			/* dma_attr version	*/
82 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
83 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
84 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
85 	0x0000000000000010ull,		/* dma_attr_align	*/
86 	0x00000FFF,			/* dma_attr_burstsizes	*/
87 	0x00000001,			/* dma_attr_minxfer	*/
88 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
89 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
90 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
91 	1,				/* dma_attr_granular 	*/
92 	0
93 };
94 
95 /*
96  * DMA access attributes for data.
97  */
98 ddi_device_acc_attr_t nge_data_accattr = {
99 	DDI_DEVICE_ATTR_V0,
100 	DDI_STRUCTURE_LE_ACC,
101 	DDI_STRICTORDER_ACC,
102 	DDI_DEFAULT_ACC
103 };
104 
105 /*
106  * DMA access attributes for descriptors.
107  */
108 static ddi_device_acc_attr_t nge_desc_accattr = {
109 	DDI_DEVICE_ATTR_V0,
110 	DDI_STRUCTURE_LE_ACC,
111 	DDI_STRICTORDER_ACC,
112 	DDI_DEFAULT_ACC
113 };
114 
115 /*
116  * PIO access attributes for registers
117  */
118 static ddi_device_acc_attr_t nge_reg_accattr = {
119 	DDI_DEVICE_ATTR_V0,
120 	DDI_STRUCTURE_LE_ACC,
121 	DDI_STRICTORDER_ACC,
122 	DDI_DEFAULT_ACC
123 };
124 
125 /*
126  * NIC DESC MODE 2
127  */
128 
129 static const nge_desc_attr_t nge_sum_desc = {
130 
131 	sizeof (sum_rx_bd),
132 	sizeof (sum_tx_bd),
133 	&sum_dma_attr,
134 	&sum_tx_dma_attr,
135 	nge_sum_rxd_fill,
136 	nge_sum_rxd_check,
137 	nge_sum_txd_fill,
138 	nge_sum_txd_check,
139 };
140 
141 /*
142  * NIC DESC MODE 3
143  */
144 
145 static const nge_desc_attr_t nge_hot_desc = {
146 
147 	sizeof (hot_rx_bd),
148 	sizeof (hot_tx_bd),
149 	&hot_dma_attr,
150 	&hot_tx_dma_attr,
151 	nge_hot_rxd_fill,
152 	nge_hot_rxd_check,
153 	nge_hot_txd_fill,
154 	nge_hot_txd_check,
155 };
156 
157 static char nge_ident[] = "nVidia 1Gb Ethernet %I%";
158 static char clsize_propname[] = "cache-line-size";
159 static char latency_propname[] = "latency-timer";
160 static char debug_propname[]	= "nge-debug-flags";
161 static char intr_moderation[] = "intr-moderation";
162 static char rx_data_hw[] = "rx-data-hw";
163 static char rx_prd_lw[] = "rx-prd-lw";
164 static char rx_prd_hw[] = "rx-prd-hw";
165 static char sw_intr_intv[] = "sw-intr-intvl";
166 static char nge_desc_mode[] = "desc-mode";
167 static char default_mtu[] = "default_mtu";
168 static char low_memory_mode[] = "minimal-memory-usage";
169 extern kmutex_t nge_log_mutex[1];
170 
171 static int		nge_m_start(void *);
172 static void		nge_m_stop(void *);
173 static int		nge_m_promisc(void *, boolean_t);
174 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
175 static int		nge_m_unicst(void *, const uint8_t *);
176 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
177 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
178 static int		nge_m_setprop(void *, const char *, mac_prop_id_t,
179 	uint_t, const void *);
180 static int		nge_m_getprop(void *, const char *, mac_prop_id_t,
181 	uint_t, void *);
182 static int		nge_set_priv_prop(nge_t *, const char *, uint_t,
183 	const void *);
184 static int		nge_get_priv_prop(nge_t *, const char *, uint_t,
185 	void *);
186 
187 #define		NGE_M_CALLBACK_FLAGS\
188 		(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
189 
190 static mac_callbacks_t nge_m_callbacks = {
191 	NGE_M_CALLBACK_FLAGS,
192 	nge_m_stat,
193 	nge_m_start,
194 	nge_m_stop,
195 	nge_m_promisc,
196 	nge_m_multicst,
197 	nge_m_unicst,
198 	nge_m_tx,
199 	NULL,
200 	nge_m_ioctl,
201 	nge_m_getcapab,
202 	NULL,
203 	NULL,
204 	nge_m_setprop,
205 	nge_m_getprop
206 };
207 
208 static int nge_add_intrs(nge_t *, int);
209 static void nge_rem_intrs(nge_t *);
210 static int nge_register_intrs_and_init_locks(nge_t *);
211 
212 /*
213  * NGE MSI tunable:
214  */
215 boolean_t nge_enable_msi = B_FALSE;
216 
217 static enum ioc_reply
218 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
219 {
220 	/*
221 	 * If the mode isn't being changed, there's nothing to do ...
222 	 */
223 	if (mode == ngep->param_loop_mode)
224 		return (IOC_ACK);
225 
226 	/*
227 	 * Validate the requested mode and prepare a suitable message
228 	 * to explain the link down/up cycle that the change will
229 	 * probably induce ...
230 	 */
231 	switch (mode) {
232 	default:
233 		return (IOC_INVAL);
234 
235 	case NGE_LOOP_NONE:
236 	case NGE_LOOP_EXTERNAL_100:
237 	case NGE_LOOP_EXTERNAL_10:
238 	case NGE_LOOP_INTERNAL_PHY:
239 		break;
240 	}
241 
242 	/*
243 	 * All OK; tell the caller to reprogram
244 	 * the PHY and/or MAC for the new mode ...
245 	 */
246 	ngep->param_loop_mode = mode;
247 	return (IOC_RESTART_ACK);
248 }
249 
250 #undef	NGE_DBG
251 #define	NGE_DBG		NGE_DBG_INIT
252 
253 /*
254  * Utility routine to carve a slice off a chunk of allocated memory,
255  * updating the chunk descriptor accordingly.  The size of the slice
256  * is given by the product of the <qty> and <size> parameters.
257  */
258 void
259 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
260     uint32_t qty, uint32_t size)
261 {
262 	size_t totsize;
263 
264 	totsize = qty*size;
265 	ASSERT(size > 0);
266 	ASSERT(totsize <= chunk->alength);
267 
268 	*slice = *chunk;
269 	slice->nslots = qty;
270 	slice->size = size;
271 	slice->alength = totsize;
272 
273 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
274 	chunk->alength -= totsize;
275 	chunk->offset += totsize;
276 	chunk->cookie.dmac_laddress += totsize;
277 	chunk->cookie.dmac_size -= totsize;
278 }
279 
280 /*
281  * Allocate an area of memory and a DMA handle for accessing it
282  */
283 int
284 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
285     uint_t dma_flags, dma_area_t *dma_p)
286 {
287 	int err;
288 	caddr_t va;
289 
290 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
291 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
292 	/*
293 	 * Allocate handle
294 	 */
295 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
296 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
297 	if (err != DDI_SUCCESS)
298 		goto fail;
299 
300 	/*
301 	 * Allocate memory
302 	 */
303 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
304 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
305 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
306 	if (err != DDI_SUCCESS)
307 		goto fail;
308 
309 	/*
310 	 * Bind the two together
311 	 */
312 	dma_p->mem_va = va;
313 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
314 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
315 	    &dma_p->cookie, &dma_p->ncookies);
316 
317 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
318 		goto fail;
319 
320 	dma_p->nslots = ~0U;
321 	dma_p->size = ~0U;
322 	dma_p->offset = 0;
323 
324 	return (DDI_SUCCESS);
325 
326 fail:
327 	nge_free_dma_mem(dma_p);
328 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
329 
330 	return (DDI_FAILURE);
331 }
332 
333 /*
334  * Free one allocated area of DMAable memory
335  */
336 void
337 nge_free_dma_mem(dma_area_t *dma_p)
338 {
339 	if (dma_p->dma_hdl != NULL) {
340 		if (dma_p->ncookies) {
341 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
342 			dma_p->ncookies = 0;
343 		}
344 	}
345 	if (dma_p->acc_hdl != NULL) {
346 		ddi_dma_mem_free(&dma_p->acc_hdl);
347 		dma_p->acc_hdl = NULL;
348 	}
349 	if (dma_p->dma_hdl != NULL) {
350 		ddi_dma_free_handle(&dma_p->dma_hdl);
351 		dma_p->dma_hdl = NULL;
352 	}
353 }
354 
355 #define	ALLOC_TX_BUF	0x1
356 #define	ALLOC_TX_DESC	0x2
357 #define	ALLOC_RX_DESC	0x4
358 
359 int
360 nge_alloc_bufs(nge_t *ngep)
361 {
362 	int err;
363 	int split;
364 	int progress;
365 	size_t txbuffsize;
366 	size_t rxdescsize;
367 	size_t txdescsize;
368 
369 	txbuffsize = ngep->tx_desc * ngep->buf_size;
370 	rxdescsize = ngep->rx_desc;
371 	txdescsize = ngep->tx_desc;
372 	rxdescsize *= ngep->desc_attr.rxd_size;
373 	txdescsize *= ngep->desc_attr.txd_size;
374 	progress = 0;
375 
376 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
377 	/*
378 	 * Allocate memory & handles for TX buffers
379 	 */
380 	ASSERT((txbuffsize % ngep->nge_split) == 0);
381 	for (split = 0; split < ngep->nge_split; ++split) {
382 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
383 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
384 		    &ngep->send->buf[split]);
385 		if (err != DDI_SUCCESS)
386 			goto fail;
387 	}
388 
389 	progress |= ALLOC_TX_BUF;
390 
391 	/*
392 	 * Allocate memory & handles for receive return rings and
393 	 * buffer (producer) descriptor rings
394 	 */
395 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
396 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
397 	if (err != DDI_SUCCESS)
398 		goto fail;
399 	progress |= ALLOC_RX_DESC;
400 
401 	/*
402 	 * Allocate memory & handles for TX descriptor rings,
403 	 */
404 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
405 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
406 	if (err != DDI_SUCCESS)
407 		goto fail;
408 	return (DDI_SUCCESS);
409 
410 fail:
411 	if (progress & ALLOC_RX_DESC)
412 		nge_free_dma_mem(&ngep->recv->desc);
413 	if (progress & ALLOC_TX_BUF) {
414 		for (split = 0; split < ngep->nge_split; ++split)
415 			nge_free_dma_mem(&ngep->send->buf[split]);
416 	}
417 
418 	return (DDI_FAILURE);
419 }
420 
421 /*
422  * This routine frees the transmit and receive buffers and descriptors.
423  * Make sure the chip is stopped before calling it!
424  */
425 void
426 nge_free_bufs(nge_t *ngep)
427 {
428 	int split;
429 
430 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
431 
432 	nge_free_dma_mem(&ngep->recv->desc);
433 	nge_free_dma_mem(&ngep->send->desc);
434 
435 	for (split = 0; split < ngep->nge_split; ++split)
436 		nge_free_dma_mem(&ngep->send->buf[split]);
437 }
438 
439 /*
440  * Clean up initialisation done above before the memory is freed
441  */
442 static void
443 nge_fini_send_ring(nge_t *ngep)
444 {
445 	uint32_t slot;
446 	size_t dmah_num;
447 	send_ring_t *srp;
448 	sw_tx_sbd_t *ssbdp;
449 
450 	srp = ngep->send;
451 	ssbdp = srp->sw_sbds;
452 
453 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
454 
455 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
456 
457 	for (slot = 0; slot < dmah_num; ++slot) {
458 		if (srp->dmahndl[slot].hndl) {
459 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
460 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
461 			srp->dmahndl[slot].hndl = NULL;
462 			srp->dmahndl[slot].next = NULL;
463 		}
464 	}
465 
466 	srp->dmah_free.head = NULL;
467 	srp->dmah_free.tail = NULL;
468 
469 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
470 
471 }
472 
473 /*
474  * Initialise the specified Send Ring, using the information in the
475  * <dma_area> descriptors that it contains to set up all the other
476  * fields. This routine should be called only once for each ring.
477  */
478 static int
479 nge_init_send_ring(nge_t *ngep)
480 {
481 	size_t dmah_num;
482 	uint32_t nslots;
483 	uint32_t err;
484 	uint32_t slot;
485 	uint32_t split;
486 	send_ring_t *srp;
487 	sw_tx_sbd_t *ssbdp;
488 	dma_area_t desc;
489 	dma_area_t pbuf;
490 
491 	srp = ngep->send;
492 	srp->desc.nslots = ngep->tx_desc;
493 	nslots = srp->desc.nslots;
494 
495 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
496 	/*
497 	 * Other one-off initialisation of per-ring data
498 	 */
499 	srp->ngep = ngep;
500 
501 	/*
502 	 * Allocate the array of s/w Send Buffer Descriptors
503 	 */
504 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
505 	srp->sw_sbds = ssbdp;
506 
507 	/*
508 	 * Now initialise each array element once and for all
509 	 */
510 	desc = srp->desc;
511 	for (split = 0; split < ngep->nge_split; ++split) {
512 		pbuf = srp->buf[split];
513 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
514 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
515 			    ngep->desc_attr.txd_size);
516 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
517 			    ngep->buf_size);
518 		}
519 		ASSERT(pbuf.alength == 0);
520 	}
521 	ASSERT(desc.alength == 0);
522 
523 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
524 
525 	/* preallocate dma handles for tx buffer */
526 	for (slot = 0; slot < dmah_num; ++slot) {
527 
528 		err = ddi_dma_alloc_handle(ngep->devinfo,
529 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
530 		    NULL, &srp->dmahndl[slot].hndl);
531 
532 		if (err != DDI_SUCCESS) {
533 			nge_fini_send_ring(ngep);
534 			nge_error(ngep,
535 			    "nge_init_send_ring: alloc dma handle fails");
536 			return (DDI_FAILURE);
537 		}
538 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
539 	}
540 
541 	srp->dmah_free.head = srp->dmahndl;
542 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
543 	srp->dmah_free.tail->next = NULL;
544 
545 	return (DDI_SUCCESS);
546 }
547 
548 /*
549  * Intialize the tx recycle pointer and tx sending pointer of tx ring
550  * and set the type of tx's data descriptor by default.
551  */
552 static void
553 nge_reinit_send_ring(nge_t *ngep)
554 {
555 	size_t dmah_num;
556 	uint32_t slot;
557 	send_ring_t *srp;
558 	sw_tx_sbd_t *ssbdp;
559 
560 	srp = ngep->send;
561 
562 	/*
563 	 * Reinitialise control variables ...
564 	 */
565 
566 	srp->tx_hwmark = NGE_DESC_MIN;
567 	srp->tx_lwmark = NGE_DESC_MIN;
568 
569 	srp->tx_next = 0;
570 	srp->tx_free = srp->desc.nslots;
571 	srp->tc_next = 0;
572 
573 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
574 
575 	for (slot = 0; slot - dmah_num != 0; ++slot)
576 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
577 
578 	srp->dmah_free.head = srp->dmahndl;
579 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
580 	srp->dmah_free.tail->next = NULL;
581 
582 	/*
583 	 * Zero and sync all the h/w Send Buffer Descriptors
584 	 */
585 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
586 		ssbdp = &srp->sw_sbds[slot];
587 		ssbdp->flags = HOST_OWN;
588 	}
589 
590 	DMA_ZERO(srp->desc);
591 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
592 }
593 
594 /*
595  * Initialize the slot number of rx's ring
596  */
597 static void
598 nge_init_recv_ring(nge_t *ngep)
599 {
600 	recv_ring_t *rrp;
601 
602 	rrp = ngep->recv;
603 	rrp->desc.nslots = ngep->rx_desc;
604 	rrp->ngep = ngep;
605 }
606 
607 /*
608  * Intialize the rx recycle pointer and rx sending pointer of rx ring
609  */
610 static void
611 nge_reinit_recv_ring(nge_t *ngep)
612 {
613 	recv_ring_t *rrp;
614 
615 	rrp = ngep->recv;
616 
617 	/*
618 	 * Reinitialise control variables ...
619 	 */
620 	rrp->prod_index = 0;
621 	/*
622 	 * Zero and sync all the h/w Send Buffer Descriptors
623 	 */
624 	DMA_ZERO(rrp->desc);
625 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
626 }
627 
628 /*
629  * Clean up initialisation done above before the memory is freed
630  */
631 static void
632 nge_fini_buff_ring(nge_t *ngep)
633 {
634 	uint32_t i;
635 	buff_ring_t *brp;
636 	dma_area_t *bufp;
637 	sw_rx_sbd_t *bsbdp;
638 
639 	brp = ngep->buff;
640 	bsbdp = brp->sw_rbds;
641 
642 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
643 
644 	mutex_enter(brp->recycle_lock);
645 	brp->buf_sign++;
646 	mutex_exit(brp->recycle_lock);
647 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
648 		if (bsbdp->bufp) {
649 			if (bsbdp->bufp->mp)
650 				freemsg(bsbdp->bufp->mp);
651 			nge_free_dma_mem(bsbdp->bufp);
652 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
653 			bsbdp->bufp = NULL;
654 		}
655 	}
656 	while (brp->free_list != NULL) {
657 		bufp = brp->free_list;
658 		brp->free_list = bufp->next;
659 		bufp->next = NULL;
660 		if (bufp->mp)
661 			freemsg(bufp->mp);
662 		nge_free_dma_mem(bufp);
663 		kmem_free(bufp, sizeof (dma_area_t));
664 	}
665 	while (brp->recycle_list != NULL) {
666 		bufp = brp->recycle_list;
667 		brp->recycle_list = bufp->next;
668 		bufp->next = NULL;
669 		if (bufp->mp)
670 			freemsg(bufp->mp);
671 		nge_free_dma_mem(bufp);
672 		kmem_free(bufp, sizeof (dma_area_t));
673 	}
674 
675 
676 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
677 	brp->sw_rbds = NULL;
678 }
679 
680 /*
681  * Intialize the Rx's data ring and free ring
682  */
683 static int
684 nge_init_buff_ring(nge_t *ngep)
685 {
686 	uint32_t err;
687 	uint32_t slot;
688 	uint32_t nslots_buff;
689 	uint32_t nslots_recv;
690 	buff_ring_t *brp;
691 	recv_ring_t *rrp;
692 	dma_area_t desc;
693 	dma_area_t *bufp;
694 	sw_rx_sbd_t *bsbdp;
695 
696 	rrp = ngep->recv;
697 	brp = ngep->buff;
698 	brp->nslots = ngep->rx_buf;
699 	brp->rx_bcopy = B_FALSE;
700 	nslots_recv = rrp->desc.nslots;
701 	nslots_buff = brp->nslots;
702 	brp->ngep = ngep;
703 
704 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
705 
706 	/*
707 	 * Allocate the array of s/w Recv Buffer Descriptors
708 	 */
709 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
710 	brp->sw_rbds = bsbdp;
711 	brp->free_list = NULL;
712 	brp->recycle_list = NULL;
713 	for (slot = 0; slot < nslots_buff; ++slot) {
714 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
715 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
716 		    + NGE_HEADROOM),
717 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
718 		if (err != DDI_SUCCESS) {
719 			kmem_free(bufp, sizeof (dma_area_t));
720 			return (DDI_FAILURE);
721 		}
722 
723 		bufp->alength -= NGE_HEADROOM;
724 		bufp->offset += NGE_HEADROOM;
725 		bufp->private = (caddr_t)ngep;
726 		bufp->rx_recycle.free_func = nge_recv_recycle;
727 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
728 		bufp->signature = brp->buf_sign;
729 		bufp->rx_delivered = B_FALSE;
730 		bufp->mp = desballoc(DMA_VPTR(*bufp),
731 		    ngep->buf_size + NGE_HEADROOM,
732 		    0, &bufp->rx_recycle);
733 
734 		if (bufp->mp == NULL) {
735 			return (DDI_FAILURE);
736 		}
737 		bufp->next = brp->free_list;
738 		brp->free_list = bufp;
739 	}
740 
741 	/*
742 	 * Now initialise each array element once and for all
743 	 */
744 	desc = rrp->desc;
745 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
746 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
747 		    ngep->desc_attr.rxd_size);
748 		bufp = brp->free_list;
749 		brp->free_list = bufp->next;
750 		bsbdp->bufp = bufp;
751 		bsbdp->flags = CONTROLER_OWN;
752 		bufp->next = NULL;
753 	}
754 
755 	ASSERT(desc.alength == 0);
756 	return (DDI_SUCCESS);
757 }
758 
759 /*
760  * Fill the host address of data in rx' descriptor
761  * and initialize free pointers of rx free ring
762  */
763 static int
764 nge_reinit_buff_ring(nge_t *ngep)
765 {
766 	uint32_t slot;
767 	uint32_t nslots_recv;
768 	buff_ring_t *brp;
769 	recv_ring_t *rrp;
770 	sw_rx_sbd_t *bsbdp;
771 	void *hw_bd_p;
772 
773 	brp = ngep->buff;
774 	rrp = ngep->recv;
775 	bsbdp = brp->sw_rbds;
776 	nslots_recv = rrp->desc.nslots;
777 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
778 		hw_bd_p = DMA_VPTR(bsbdp->desc);
779 	/*
780 	 * There is a scenario: When the traffic of small tcp
781 	 * packet is heavy, suspending the tcp traffic will
782 	 * cause the preallocated buffers for rx not to be
783 	 * released in time by tcp taffic and cause rx's buffer
784 	 * pointers not to be refilled in time.
785 	 *
786 	 * At this point, if we reinitialize the driver, the bufp
787 	 * pointer for rx's traffic will be NULL.
788 	 * So the result of the reinitializion fails.
789 	 */
790 		if (bsbdp->bufp == NULL)
791 			return (DDI_FAILURE);
792 
793 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
794 		    bsbdp->bufp->alength);
795 	}
796 	return (DDI_SUCCESS);
797 }
798 
799 static void
800 nge_init_ring_param_lock(nge_t *ngep)
801 {
802 	buff_ring_t *brp;
803 	send_ring_t *srp;
804 
805 	srp = ngep->send;
806 	brp = ngep->buff;
807 
808 	/* Init the locks for send ring */
809 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
810 	    DDI_INTR_PRI(ngep->intr_pri));
811 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
812 	    DDI_INTR_PRI(ngep->intr_pri));
813 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
814 	    DDI_INTR_PRI(ngep->intr_pri));
815 
816 	/* Init parameters of buffer ring */
817 	brp->free_list = NULL;
818 	brp->recycle_list = NULL;
819 	brp->rx_hold = 0;
820 	brp->buf_sign = 0;
821 
822 	/* Init recycle list lock */
823 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
824 	    DDI_INTR_PRI(ngep->intr_pri));
825 }
826 
827 int
828 nge_init_rings(nge_t *ngep)
829 {
830 	uint32_t err;
831 
832 	err = nge_init_send_ring(ngep);
833 	if (err != DDI_SUCCESS) {
834 		return (err);
835 	}
836 	nge_init_recv_ring(ngep);
837 
838 	err = nge_init_buff_ring(ngep);
839 	if (err != DDI_SUCCESS) {
840 		nge_fini_send_ring(ngep);
841 		return (DDI_FAILURE);
842 	}
843 
844 	return (err);
845 }
846 
847 static int
848 nge_reinit_ring(nge_t *ngep)
849 {
850 	int err;
851 
852 	nge_reinit_recv_ring(ngep);
853 	nge_reinit_send_ring(ngep);
854 	err = nge_reinit_buff_ring(ngep);
855 	return (err);
856 }
857 
858 
859 void
860 nge_fini_rings(nge_t *ngep)
861 {
862 	/*
863 	 * For receive ring, nothing need to be finished.
864 	 * So only finish buffer ring and send ring here.
865 	 */
866 	nge_fini_buff_ring(ngep);
867 	nge_fini_send_ring(ngep);
868 }
869 
870 /*
871  * Loopback ioctl code
872  */
873 
874 static lb_property_t loopmodes[] = {
875 	{ normal,	"normal",	NGE_LOOP_NONE		},
876 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
877 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
878 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
879 };
880 
881 enum ioc_reply
882 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
883 {
884 	int cmd;
885 	uint32_t *lbmp;
886 	lb_info_sz_t *lbsp;
887 	lb_property_t *lbpp;
888 
889 	/*
890 	 * Validate format of ioctl
891 	 */
892 	if (mp->b_cont == NULL)
893 		return (IOC_INVAL);
894 
895 	cmd = iocp->ioc_cmd;
896 
897 	switch (cmd) {
898 	default:
899 		return (IOC_INVAL);
900 
901 	case LB_GET_INFO_SIZE:
902 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
903 			return (IOC_INVAL);
904 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
905 		*lbsp = sizeof (loopmodes);
906 		return (IOC_REPLY);
907 
908 	case LB_GET_INFO:
909 		if (iocp->ioc_count != sizeof (loopmodes))
910 			return (IOC_INVAL);
911 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
912 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
913 		return (IOC_REPLY);
914 
915 	case LB_GET_MODE:
916 		if (iocp->ioc_count != sizeof (uint32_t))
917 			return (IOC_INVAL);
918 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
919 		*lbmp = ngep->param_loop_mode;
920 		return (IOC_REPLY);
921 
922 	case LB_SET_MODE:
923 		if (iocp->ioc_count != sizeof (uint32_t))
924 			return (IOC_INVAL);
925 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
926 		return (nge_set_loop_mode(ngep, *lbmp));
927 	}
928 }
929 
930 #undef	NGE_DBG
931 #define	NGE_DBG	NGE_DBG_NEMO
932 
933 
934 static void
935 nge_check_desc_prop(nge_t *ngep)
936 {
937 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
938 		ngep->desc_mode = DESC_HOT;
939 
940 	if (ngep->desc_mode == DESC_OFFLOAD)	{
941 
942 		ngep->desc_attr = nge_sum_desc;
943 
944 	}	else if (ngep->desc_mode == DESC_HOT)	{
945 
946 		ngep->desc_attr = nge_hot_desc;
947 	}
948 }
949 
950 /*
951  * nge_get_props -- get the parameters to tune the driver
952  */
953 static void
954 nge_get_props(nge_t *ngep)
955 {
956 	chip_info_t *infop;
957 	dev_info_t *devinfo;
958 	nge_dev_spec_param_t *dev_param_p;
959 
960 	devinfo = ngep->devinfo;
961 	infop = (chip_info_t *)&ngep->chipinfo;
962 	dev_param_p = &ngep->dev_spec_param;
963 
964 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
965 	    DDI_PROP_DONTPASS, clsize_propname, 32);
966 
967 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
968 	    DDI_PROP_DONTPASS, latency_propname, 64);
969 	ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
970 	    DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
971 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
972 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
973 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
974 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
975 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
976 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
977 
978 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
979 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
980 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
981 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
982 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
983 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
984 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
985 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
986 
987 	if (dev_param_p->jumbo) {
988 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
989 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
990 	} else
991 		ngep->default_mtu = ETHERMTU;
992 
993 	if (ngep->default_mtu > ETHERMTU &&
994 	    ngep->default_mtu <= NGE_MTU_2500) {
995 		ngep->buf_size = NGE_JB2500_BUFSZ;
996 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
997 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
998 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
999 		ngep->nge_split = NGE_SPLIT_256;
1000 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
1001 	    ngep->default_mtu <= NGE_MTU_4500) {
1002 		ngep->buf_size = NGE_JB4500_BUFSZ;
1003 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1004 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1005 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1006 		ngep->nge_split = NGE_SPLIT_256;
1007 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
1008 	    ngep->default_mtu <= NGE_MAX_MTU) {
1009 		ngep->buf_size = NGE_JB9000_BUFSZ;
1010 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1011 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1012 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1013 		ngep->nge_split = NGE_SPLIT_256;
1014 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1015 		ngep->default_mtu = NGE_MAX_MTU;
1016 		ngep->buf_size = NGE_JB9000_BUFSZ;
1017 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1018 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1019 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1020 		ngep->nge_split = NGE_SPLIT_256;
1021 	} else if (ngep->lowmem_mode != 0) {
1022 		ngep->default_mtu = ETHERMTU;
1023 		ngep->buf_size = NGE_STD_BUFSZ;
1024 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1025 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1026 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1027 		ngep->nge_split = NGE_SPLIT_32;
1028 	} else {
1029 		ngep->default_mtu = ETHERMTU;
1030 		ngep->buf_size = NGE_STD_BUFSZ;
1031 		ngep->tx_desc = dev_param_p->tx_desc_num;
1032 		ngep->rx_desc = dev_param_p->rx_desc_num;
1033 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1034 		ngep->nge_split = dev_param_p->nge_split;
1035 	}
1036 
1037 	nge_check_desc_prop(ngep);
1038 }
1039 
1040 
1041 static int
1042 nge_reset(nge_t *ngep)
1043 {
1044 	int err;
1045 	nge_mul_addr1 maddr1;
1046 	nge_sw_statistics_t *sw_stp;
1047 	sw_stp = &ngep->statistics.sw_statistics;
1048 	send_ring_t *srp = ngep->send;
1049 
1050 	ASSERT(mutex_owned(ngep->genlock));
1051 	mutex_enter(srp->tc_lock);
1052 	mutex_enter(srp->tx_lock);
1053 
1054 	nge_tx_recycle_all(ngep);
1055 	err = nge_reinit_ring(ngep);
1056 	if (err == DDI_FAILURE) {
1057 		mutex_exit(srp->tx_lock);
1058 		mutex_exit(srp->tc_lock);
1059 		return (err);
1060 	}
1061 	err = nge_chip_reset(ngep);
1062 	/*
1063 	 * Clear the Multicast mac address table
1064 	 */
1065 	nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
1066 	maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
1067 	maddr1.addr_bits.addr = 0;
1068 	nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
1069 
1070 	mutex_exit(srp->tx_lock);
1071 	mutex_exit(srp->tc_lock);
1072 	if (err == DDI_FAILURE)
1073 		return (err);
1074 	ngep->watchdog = 0;
1075 	ngep->resched_needed = B_FALSE;
1076 	ngep->promisc = B_FALSE;
1077 	ngep->param_loop_mode = NGE_LOOP_NONE;
1078 	ngep->factotum_flag = 0;
1079 	ngep->resched_needed = 0;
1080 	ngep->nge_mac_state = NGE_MAC_RESET;
1081 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1082 	ngep->max_sdu += VTAG_SIZE;
1083 	ngep->rx_def = 0x16;
1084 
1085 	/* Clear the software statistics */
1086 	sw_stp->recv_count = 0;
1087 	sw_stp->xmit_count = 0;
1088 	sw_stp->rbytes = 0;
1089 	sw_stp->obytes = 0;
1090 
1091 	return (DDI_SUCCESS);
1092 }
1093 
1094 static void
1095 nge_m_stop(void *arg)
1096 {
1097 	nge_t *ngep = arg;		/* private device info	*/
1098 
1099 	NGE_TRACE(("nge_m_stop($%p)", arg));
1100 
1101 	/*
1102 	 * Just stop processing, then record new MAC state
1103 	 */
1104 	mutex_enter(ngep->genlock);
1105 	/* If suspended, the adapter is already stopped, just return. */
1106 	if (ngep->suspended) {
1107 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1108 		mutex_exit(ngep->genlock);
1109 		return;
1110 	}
1111 	rw_enter(ngep->rwlock, RW_WRITER);
1112 
1113 	(void) nge_chip_stop(ngep, B_FALSE);
1114 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1115 
1116 	/* Recycle all the TX BD */
1117 	nge_tx_recycle_all(ngep);
1118 	nge_fini_rings(ngep);
1119 	nge_free_bufs(ngep);
1120 
1121 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1122 
1123 	rw_exit(ngep->rwlock);
1124 	mutex_exit(ngep->genlock);
1125 }
1126 
1127 static int
1128 nge_m_start(void *arg)
1129 {
1130 	int err;
1131 	nge_t *ngep = arg;
1132 
1133 	NGE_TRACE(("nge_m_start($%p)", arg));
1134 
1135 	/*
1136 	 * Start processing and record new MAC state
1137 	 */
1138 	mutex_enter(ngep->genlock);
1139 	/*
1140 	 * If suspended, don't start, as the resume processing
1141 	 * will recall this function with the suspended flag off.
1142 	 */
1143 	if (ngep->suspended) {
1144 		mutex_exit(ngep->genlock);
1145 		return (EIO);
1146 	}
1147 	rw_enter(ngep->rwlock, RW_WRITER);
1148 	err = nge_alloc_bufs(ngep);
1149 	if (err != DDI_SUCCESS) {
1150 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1151 		goto finish;
1152 	}
1153 	err = nge_init_rings(ngep);
1154 	if (err != DDI_SUCCESS) {
1155 		nge_free_bufs(ngep);
1156 		nge_problem(ngep, "nge_init_rings() failed,err=%x", err);
1157 		goto finish;
1158 	}
1159 	err = nge_restart(ngep);
1160 
1161 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1162 finish:
1163 	rw_exit(ngep->rwlock);
1164 	mutex_exit(ngep->genlock);
1165 
1166 	return (err == DDI_SUCCESS ? 0 : EIO);
1167 }
1168 
1169 static int
1170 nge_m_unicst(void *arg, const uint8_t *macaddr)
1171 {
1172 	nge_t *ngep = arg;
1173 
1174 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1175 	/*
1176 	 * Remember the new current address in the driver state
1177 	 * Sync the chip's idea of the address too ...
1178 	 */
1179 	mutex_enter(ngep->genlock);
1180 
1181 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1182 	ngep->cur_uni_addr.set = 1;
1183 
1184 	/*
1185 	 * If we are suspended, we want to quit now, and not update
1186 	 * the chip.  Doing so might put it in a bad state, but the
1187 	 * resume will get the unicast address installed.
1188 	 */
1189 	if (ngep->suspended) {
1190 		mutex_exit(ngep->genlock);
1191 		return (DDI_SUCCESS);
1192 	}
1193 	nge_chip_sync(ngep);
1194 
1195 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1196 	mutex_exit(ngep->genlock);
1197 
1198 	return (0);
1199 }
1200 
1201 static int
1202 nge_m_promisc(void *arg, boolean_t on)
1203 {
1204 	nge_t *ngep = arg;
1205 
1206 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1207 
1208 	/*
1209 	 * Store specified mode and pass to chip layer to update h/w
1210 	 */
1211 	mutex_enter(ngep->genlock);
1212 	/*
1213 	 * If suspended, there is no need to do anything, even
1214 	 * recording the promiscuious mode is not neccessary, as
1215 	 * it won't be properly set on resume.  Just return failing.
1216 	 */
1217 	if (ngep->suspended) {
1218 		mutex_exit(ngep->genlock);
1219 		return (DDI_FAILURE);
1220 	}
1221 	if (ngep->promisc == on) {
1222 		mutex_exit(ngep->genlock);
1223 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1224 		return (0);
1225 	}
1226 	ngep->promisc = on;
1227 	nge_chip_sync(ngep);
1228 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1229 	mutex_exit(ngep->genlock);
1230 
1231 	return (0);
1232 }
1233 
1234 static void nge_mulparam(nge_t *ngep)
1235 {
1236 	uint8_t number;
1237 	ether_addr_t pand;
1238 	ether_addr_t por;
1239 	mul_item *plist;
1240 
1241 	for (number = 0; number < ETHERADDRL; number++) {
1242 		pand[number] = 0x00;
1243 		por[number] = 0x00;
1244 	}
1245 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1246 		for (number = 0; number < ETHERADDRL; number++) {
1247 			pand[number] &= plist->mul_addr[number];
1248 			por[number] |= plist->mul_addr[number];
1249 		}
1250 	}
1251 	for (number = 0; number < ETHERADDRL; number++) {
1252 		ngep->cur_mul_addr.addr[number]
1253 		    = pand[number] & por[number];
1254 		ngep->cur_mul_mask.addr[number]
1255 		    = pand [number] | (~por[number]);
1256 	}
1257 }
1258 static int
1259 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1260 {
1261 	boolean_t update;
1262 	boolean_t b_eq;
1263 	nge_t *ngep = arg;
1264 	mul_item *plist;
1265 	mul_item *plist_prev;
1266 	mul_item *pitem;
1267 
1268 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1269 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1270 
1271 	update = B_FALSE;
1272 	plist = plist_prev = NULL;
1273 	mutex_enter(ngep->genlock);
1274 	if (add) {
1275 		if (ngep->pcur_mulist != NULL) {
1276 			for (plist = ngep->pcur_mulist; plist != NULL;
1277 			    plist = plist->next) {
1278 				b_eq = ether_eq(plist->mul_addr, mca);
1279 				if (b_eq) {
1280 					plist->ref_cnt++;
1281 					break;
1282 				}
1283 				plist_prev = plist;
1284 			}
1285 		}
1286 
1287 		if (plist == NULL) {
1288 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1289 			ether_copy(mca, pitem->mul_addr);
1290 			pitem ->ref_cnt++;
1291 			pitem ->next = NULL;
1292 			if (plist_prev == NULL)
1293 				ngep->pcur_mulist = pitem;
1294 			else
1295 				plist_prev->next = pitem;
1296 			update = B_TRUE;
1297 		}
1298 	} else {
1299 		if (ngep->pcur_mulist != NULL) {
1300 			for (plist = ngep->pcur_mulist; plist != NULL;
1301 			    plist = plist->next) {
1302 				b_eq = ether_eq(plist->mul_addr, mca);
1303 				if (b_eq) {
1304 					update = B_TRUE;
1305 					break;
1306 				}
1307 				plist_prev = plist;
1308 			}
1309 
1310 			if (update) {
1311 				if ((plist_prev == NULL) &&
1312 				    (plist->next == NULL))
1313 					ngep->pcur_mulist = NULL;
1314 				else if ((plist_prev == NULL) &&
1315 				    (plist->next != NULL))
1316 					ngep->pcur_mulist = plist->next;
1317 				else
1318 					plist_prev->next = plist->next;
1319 				kmem_free(plist, sizeof (mul_item));
1320 			}
1321 		}
1322 	}
1323 
1324 	if (update && !ngep->suspended) {
1325 		nge_mulparam(ngep);
1326 		nge_chip_sync(ngep);
1327 	}
1328 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1329 	mutex_exit(ngep->genlock);
1330 
1331 	return (0);
1332 }
1333 
1334 static void
1335 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1336 {
1337 	int err;
1338 	int cmd;
1339 	nge_t *ngep = arg;
1340 	struct iocblk *iocp;
1341 	enum ioc_reply status;
1342 	boolean_t need_privilege;
1343 
1344 	/*
1345 	 * If suspended, we might actually be able to do some of
1346 	 * these ioctls, but it is harder to make sure they occur
1347 	 * without actually putting the hardware in an undesireable
1348 	 * state.  So just NAK it.
1349 	 */
1350 	mutex_enter(ngep->genlock);
1351 	if (ngep->suspended) {
1352 		miocnak(wq, mp, 0, EINVAL);
1353 		mutex_exit(ngep->genlock);
1354 		return;
1355 	}
1356 	mutex_exit(ngep->genlock);
1357 
1358 	/*
1359 	 * Validate the command before bothering with the mutex ...
1360 	 */
1361 	iocp = (struct iocblk *)mp->b_rptr;
1362 	iocp->ioc_error = 0;
1363 	need_privilege = B_TRUE;
1364 	cmd = iocp->ioc_cmd;
1365 
1366 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1367 	switch (cmd) {
1368 	default:
1369 		NGE_LDB(NGE_DBG_BADIOC,
1370 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1371 
1372 		miocnak(wq, mp, 0, EINVAL);
1373 		return;
1374 
1375 	case NGE_MII_READ:
1376 	case NGE_MII_WRITE:
1377 	case NGE_SEE_READ:
1378 	case NGE_SEE_WRITE:
1379 	case NGE_DIAG:
1380 	case NGE_PEEK:
1381 	case NGE_POKE:
1382 	case NGE_PHY_RESET:
1383 	case NGE_SOFT_RESET:
1384 	case NGE_HARD_RESET:
1385 		break;
1386 
1387 	case LB_GET_INFO_SIZE:
1388 	case LB_GET_INFO:
1389 	case LB_GET_MODE:
1390 		need_privilege = B_FALSE;
1391 		break;
1392 	case LB_SET_MODE:
1393 		break;
1394 
1395 	case ND_GET:
1396 		need_privilege = B_FALSE;
1397 		break;
1398 	case ND_SET:
1399 		break;
1400 	}
1401 
1402 	if (need_privilege) {
1403 		/*
1404 		 * Check for specific net_config privilege.
1405 		 */
1406 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1407 		if (err != 0) {
1408 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1409 			    cmd, err));
1410 			miocnak(wq, mp, 0, err);
1411 			return;
1412 		}
1413 	}
1414 
1415 	mutex_enter(ngep->genlock);
1416 
1417 	switch (cmd) {
1418 	default:
1419 		_NOTE(NOTREACHED)
1420 		status = IOC_INVAL;
1421 	break;
1422 
1423 	case NGE_MII_READ:
1424 	case NGE_MII_WRITE:
1425 	case NGE_SEE_READ:
1426 	case NGE_SEE_WRITE:
1427 	case NGE_DIAG:
1428 	case NGE_PEEK:
1429 	case NGE_POKE:
1430 	case NGE_PHY_RESET:
1431 	case NGE_SOFT_RESET:
1432 	case NGE_HARD_RESET:
1433 		status = nge_chip_ioctl(ngep, mp, iocp);
1434 	break;
1435 
1436 	case LB_GET_INFO_SIZE:
1437 	case LB_GET_INFO:
1438 	case LB_GET_MODE:
1439 	case LB_SET_MODE:
1440 		status = nge_loop_ioctl(ngep, mp, iocp);
1441 	break;
1442 
1443 	case ND_GET:
1444 	case ND_SET:
1445 		status = nge_nd_ioctl(ngep, wq, mp, iocp);
1446 	break;
1447 
1448 	}
1449 
1450 	/*
1451 	 * Do we need to reprogram the PHY and/or the MAC?
1452 	 * Do it now, while we still have the mutex.
1453 	 *
1454 	 * Note: update the PHY first, 'cos it controls the
1455 	 * speed/duplex parameters that the MAC code uses.
1456 	 */
1457 
1458 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1459 
1460 	switch (status) {
1461 	case IOC_RESTART_REPLY:
1462 	case IOC_RESTART_ACK:
1463 		(*ngep->physops->phys_update)(ngep);
1464 		nge_chip_sync(ngep);
1465 		break;
1466 
1467 	default:
1468 	break;
1469 	}
1470 
1471 	mutex_exit(ngep->genlock);
1472 
1473 	/*
1474 	 * Finally, decide how to reply
1475 	 */
1476 	switch (status) {
1477 
1478 	default:
1479 	case IOC_INVAL:
1480 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1481 		    EINVAL : iocp->ioc_error);
1482 		break;
1483 
1484 	case IOC_DONE:
1485 		break;
1486 
1487 	case IOC_RESTART_ACK:
1488 	case IOC_ACK:
1489 		miocack(wq, mp, 0, 0);
1490 		break;
1491 
1492 	case IOC_RESTART_REPLY:
1493 	case IOC_REPLY:
1494 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1495 		    M_IOCACK : M_IOCNAK;
1496 		qreply(wq, mp);
1497 		break;
1498 	}
1499 }
1500 
1501 static boolean_t
1502 nge_param_locked(mac_prop_id_t pr_num)
1503 {
1504 	/*
1505 	 * All adv_* parameters are locked (read-only) while
1506 	 * the device is in any sort of loopback mode ...
1507 	 */
1508 	switch (pr_num) {
1509 		case DLD_PROP_ADV_1000FDX_CAP:
1510 		case DLD_PROP_EN_1000FDX_CAP:
1511 		case DLD_PROP_ADV_1000HDX_CAP:
1512 		case DLD_PROP_EN_1000HDX_CAP:
1513 		case DLD_PROP_ADV_100FDX_CAP:
1514 		case DLD_PROP_EN_100FDX_CAP:
1515 		case DLD_PROP_ADV_100HDX_CAP:
1516 		case DLD_PROP_EN_100HDX_CAP:
1517 		case DLD_PROP_ADV_10FDX_CAP:
1518 		case DLD_PROP_EN_10FDX_CAP:
1519 		case DLD_PROP_ADV_10HDX_CAP:
1520 		case DLD_PROP_EN_10HDX_CAP:
1521 		case DLD_PROP_AUTONEG:
1522 		case DLD_PROP_FLOWCTRL:
1523 			return (B_TRUE);
1524 	}
1525 	return (B_FALSE);
1526 }
1527 
1528 /*
1529  * callback functions for set/get of properties
1530  */
1531 static int
1532 nge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1533     uint_t pr_valsize, const void *pr_val)
1534 {
1535 	nge_t *ngep = barg;
1536 	int err = 0;
1537 	uint64_t cur_mtu, new_mtu;
1538 	link_flowctrl_t fl;
1539 
1540 	mutex_enter(ngep->genlock);
1541 	if (ngep->param_loop_mode != NGE_LOOP_NONE &&
1542 	    nge_param_locked(pr_num)) {
1543 		/*
1544 		 * All adv_* parameters are locked (read-only)
1545 		 * while the device is in any sort of loopback mode.
1546 		 */
1547 		mutex_exit(ngep->genlock);
1548 		return (EBUSY);
1549 	}
1550 	switch (pr_num) {
1551 		case DLD_PROP_EN_1000FDX_CAP:
1552 			ngep->param_en_1000fdx = *(uint8_t *)pr_val;
1553 			ngep->param_adv_1000fdx = *(uint8_t *)pr_val;
1554 			goto reprogram;
1555 		case DLD_PROP_EN_1000HDX_CAP:
1556 			ngep->param_en_1000hdx = *(uint8_t *)pr_val;
1557 			ngep->param_adv_1000hdx = *(uint8_t *)pr_val;
1558 			goto reprogram;
1559 		case DLD_PROP_EN_100FDX_CAP:
1560 			ngep->param_en_100fdx = *(uint8_t *)pr_val;
1561 			ngep->param_adv_100fdx = *(uint8_t *)pr_val;
1562 			goto reprogram;
1563 		case DLD_PROP_EN_100HDX_CAP:
1564 			ngep->param_en_100hdx = *(uint8_t *)pr_val;
1565 			ngep->param_adv_100hdx = *(uint8_t *)pr_val;
1566 			goto reprogram;
1567 		case DLD_PROP_EN_10FDX_CAP:
1568 			ngep->param_en_10fdx = *(uint8_t *)pr_val;
1569 			ngep->param_adv_10fdx = *(uint8_t *)pr_val;
1570 			goto reprogram;
1571 		case DLD_PROP_EN_10HDX_CAP:
1572 			ngep->param_en_10hdx = *(uint8_t *)pr_val;
1573 			ngep->param_adv_10hdx = *(uint8_t *)pr_val;
1574 reprogram:
1575 		(*ngep->physops->phys_update)(ngep);
1576 		nge_chip_sync(ngep);
1577 		break;
1578 
1579 		case DLD_PROP_ADV_1000FDX_CAP:
1580 		case DLD_PROP_ADV_1000HDX_CAP:
1581 		case DLD_PROP_ADV_100FDX_CAP:
1582 		case DLD_PROP_ADV_100HDX_CAP:
1583 		case DLD_PROP_ADV_10FDX_CAP:
1584 		case DLD_PROP_ADV_10HDX_CAP:
1585 		case DLD_PROP_STATUS:
1586 		case DLD_PROP_SPEED:
1587 		case DLD_PROP_DUPLEX:
1588 			err = ENOTSUP; /* read-only prop. Can't set this */
1589 			break;
1590 		case DLD_PROP_AUTONEG:
1591 			ngep->param_adv_autoneg = *(uint8_t *)pr_val;
1592 			(*ngep->physops->phys_update)(ngep);
1593 			nge_chip_sync(ngep);
1594 			break;
1595 		case DLD_PROP_DEFMTU:
1596 			cur_mtu = ngep->default_mtu;
1597 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
1598 			if (new_mtu == cur_mtu) {
1599 				err = 0;
1600 				break;
1601 			}
1602 			if (new_mtu < ETHERMTU ||
1603 			    new_mtu > NGE_MAX_MTU) {
1604 				err = EINVAL;
1605 				break;
1606 			}
1607 			if ((new_mtu > ETHERMTU) &&
1608 			    (!ngep->dev_spec_param.jumbo)) {
1609 				err = EINVAL;
1610 				break;
1611 			}
1612 			if (ngep->nge_mac_state == NGE_MAC_STARTED) {
1613 				err = EBUSY;
1614 				break;
1615 			}
1616 
1617 			ngep->default_mtu = new_mtu;
1618 			if (ngep->default_mtu > ETHERMTU &&
1619 			    ngep->default_mtu <= NGE_MTU_2500) {
1620 				ngep->buf_size = NGE_JB2500_BUFSZ;
1621 				ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1622 				ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1623 				ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1624 				ngep->nge_split = NGE_SPLIT_256;
1625 			} else if (ngep->default_mtu > NGE_MTU_2500 &&
1626 			    ngep->default_mtu <= NGE_MTU_4500) {
1627 				ngep->buf_size = NGE_JB4500_BUFSZ;
1628 				ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1629 				ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1630 				ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1631 				ngep->nge_split = NGE_SPLIT_256;
1632 			} else if (ngep->default_mtu > NGE_MTU_4500 &&
1633 			    ngep->default_mtu <= NGE_MAX_MTU) {
1634 				ngep->buf_size = NGE_JB9000_BUFSZ;
1635 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1636 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1637 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1638 				ngep->nge_split = NGE_SPLIT_256;
1639 			} else if (ngep->default_mtu > NGE_MAX_MTU) {
1640 				ngep->default_mtu = NGE_MAX_MTU;
1641 				ngep->buf_size = NGE_JB9000_BUFSZ;
1642 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1643 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1644 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1645 				ngep->nge_split = NGE_SPLIT_256;
1646 			} else if (ngep->lowmem_mode != 0) {
1647 				ngep->default_mtu = ETHERMTU;
1648 				ngep->buf_size = NGE_STD_BUFSZ;
1649 				ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1650 				ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1651 				ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1652 				ngep->nge_split = NGE_SPLIT_32;
1653 			} else {
1654 				ngep->default_mtu = ETHERMTU;
1655 				ngep->buf_size = NGE_STD_BUFSZ;
1656 				ngep->tx_desc =
1657 				    ngep->dev_spec_param.tx_desc_num;
1658 				ngep->rx_desc =
1659 				    ngep->dev_spec_param.rx_desc_num;
1660 				ngep->rx_buf =
1661 				    ngep->dev_spec_param.rx_desc_num * 2;
1662 				ngep->nge_split =
1663 				    ngep->dev_spec_param.nge_split;
1664 			}
1665 
1666 			err = mac_maxsdu_update(ngep->mh, ngep->default_mtu);
1667 
1668 			break;
1669 		case DLD_PROP_FLOWCTRL:
1670 			bcopy(pr_val, &fl, sizeof (fl));
1671 			switch (fl) {
1672 			default:
1673 				err = ENOTSUP;
1674 				break;
1675 			case LINK_FLOWCTRL_NONE:
1676 				ngep->param_adv_pause = 0;
1677 				ngep->param_adv_asym_pause = 0;
1678 
1679 				ngep->param_link_rx_pause = B_FALSE;
1680 				ngep->param_link_tx_pause = B_FALSE;
1681 				break;
1682 			case LINK_FLOWCTRL_RX:
1683 				if (!((ngep->param_lp_pause == 0) &&
1684 				    (ngep->param_lp_asym_pause == 1))) {
1685 					err = EINVAL;
1686 					break;
1687 				}
1688 				ngep->param_adv_pause = 1;
1689 				ngep->param_adv_asym_pause = 1;
1690 
1691 				ngep->param_link_rx_pause = B_TRUE;
1692 				ngep->param_link_tx_pause = B_FALSE;
1693 				break;
1694 			case LINK_FLOWCTRL_TX:
1695 				if (!((ngep->param_lp_pause == 1) &&
1696 				    (ngep->param_lp_asym_pause == 1))) {
1697 					err = EINVAL;
1698 					break;
1699 				}
1700 				ngep->param_adv_pause = 0;
1701 				ngep->param_adv_asym_pause = 1;
1702 
1703 				ngep->param_link_rx_pause = B_FALSE;
1704 				ngep->param_link_tx_pause = B_TRUE;
1705 				break;
1706 			case LINK_FLOWCTRL_BI:
1707 				if (ngep->param_lp_pause != 1) {
1708 					err = EINVAL;
1709 					break;
1710 				}
1711 				ngep->param_adv_pause = 1;
1712 
1713 				ngep->param_link_rx_pause = B_TRUE;
1714 				ngep->param_link_tx_pause = B_TRUE;
1715 				break;
1716 			}
1717 
1718 			if (err == 0) {
1719 				(*ngep->physops->phys_update)(ngep);
1720 				nge_chip_sync(ngep);
1721 			}
1722 
1723 			break;
1724 		case DLD_PROP_PRIVATE:
1725 			err = nge_set_priv_prop(ngep, pr_name, pr_valsize,
1726 			    pr_val);
1727 			if (err == 0) {
1728 				(*ngep->physops->phys_update)(ngep);
1729 				nge_chip_sync(ngep);
1730 			}
1731 			break;
1732 		default:
1733 			err = ENOTSUP;
1734 	}
1735 	mutex_exit(ngep->genlock);
1736 	return (err);
1737 }
1738 
1739 static int
1740 nge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1741     uint_t pr_valsize, void *pr_val)
1742 {
1743 	nge_t *ngep = barg;
1744 	int err = EINVAL;
1745 	link_flowctrl_t fl;
1746 	uint64_t tmp = 0;
1747 
1748 	bzero(pr_val, pr_valsize);
1749 	switch (pr_num) {
1750 		case DLD_PROP_DUPLEX:
1751 			if (pr_valsize >= sizeof (uint8_t)) {
1752 				*(uint8_t *)pr_val = ngep->param_link_duplex;
1753 				err = 0;
1754 			}
1755 			break;
1756 		case DLD_PROP_SPEED:
1757 			if (pr_valsize >= sizeof (uint64_t)) {
1758 				tmp = ngep->param_link_speed * 1000000ull;
1759 				bcopy(&tmp, pr_val, sizeof (tmp));
1760 				err = 0;
1761 			}
1762 			break;
1763 		case DLD_PROP_STATUS:
1764 			if (pr_valsize >= sizeof (uint8_t)) {
1765 				*(uint8_t *)pr_val = ngep->param_link_up;
1766 				err = 0;
1767 			}
1768 			break;
1769 		case DLD_PROP_AUTONEG:
1770 			if (pr_valsize >= sizeof (uint8_t)) {
1771 				*(uint8_t *)pr_val = ngep->param_adv_autoneg;
1772 				err = 0;
1773 			}
1774 			break;
1775 		case DLD_PROP_DEFMTU: {
1776 			if (pr_valsize >= sizeof (uint64_t)) {
1777 				tmp = ngep->default_mtu;
1778 				bcopy(&tmp, pr_val, sizeof (tmp));
1779 				err = 0;
1780 			}
1781 			break;
1782 		}
1783 		case DLD_PROP_FLOWCTRL:
1784 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
1785 				if (ngep->param_link_rx_pause &&
1786 				    !ngep->param_link_tx_pause)
1787 					fl = LINK_FLOWCTRL_RX;
1788 
1789 				if (!ngep->param_link_rx_pause &&
1790 				    !ngep->param_link_tx_pause)
1791 					fl = LINK_FLOWCTRL_NONE;
1792 
1793 				if (!ngep->param_link_rx_pause &&
1794 				    ngep->param_link_tx_pause)
1795 					fl = LINK_FLOWCTRL_TX;
1796 
1797 				if (ngep->param_link_rx_pause &&
1798 				    ngep->param_link_tx_pause)
1799 					fl = LINK_FLOWCTRL_BI;
1800 				bcopy(&fl, pr_val, sizeof (fl));
1801 				err = 0;
1802 			}
1803 			break;
1804 		case DLD_PROP_ADV_1000FDX_CAP:
1805 			if (pr_valsize >= sizeof (uint8_t)) {
1806 				*(uint8_t *)pr_val = ngep->param_adv_1000fdx;
1807 				err = 0;
1808 			}
1809 			break;
1810 		case DLD_PROP_EN_1000FDX_CAP:
1811 			if (pr_valsize >= sizeof (uint8_t)) {
1812 				*(uint8_t *)pr_val = ngep->param_en_1000fdx;
1813 				err = 0;
1814 			}
1815 			break;
1816 		case DLD_PROP_ADV_1000HDX_CAP:
1817 			if (pr_valsize >= sizeof (uint8_t)) {
1818 				*(uint8_t *)pr_val = ngep->param_adv_1000hdx;
1819 				err = 0;
1820 			}
1821 			break;
1822 		case DLD_PROP_EN_1000HDX_CAP:
1823 			if (pr_valsize >= sizeof (uint8_t)) {
1824 				*(uint8_t *)pr_val = ngep->param_en_1000hdx;
1825 				err = 0;
1826 			}
1827 			break;
1828 		case DLD_PROP_ADV_100FDX_CAP:
1829 			if (pr_valsize >= sizeof (uint8_t)) {
1830 				*(uint8_t *)pr_val = ngep->param_adv_100fdx;
1831 				err = 0;
1832 			}
1833 			break;
1834 		case DLD_PROP_EN_100FDX_CAP:
1835 			if (pr_valsize >= sizeof (uint8_t)) {
1836 				*(uint8_t *)pr_val = ngep->param_en_100fdx;
1837 				err = 0;
1838 			}
1839 			break;
1840 		case DLD_PROP_ADV_100HDX_CAP:
1841 			if (pr_valsize >= sizeof (uint8_t)) {
1842 				*(uint8_t *)pr_val = ngep->param_adv_100hdx;
1843 				err = 0;
1844 			}
1845 			break;
1846 		case DLD_PROP_EN_100HDX_CAP:
1847 			if (pr_valsize >= sizeof (uint8_t)) {
1848 				*(uint8_t *)pr_val = ngep->param_en_100hdx;
1849 				err = 0;
1850 			}
1851 			break;
1852 		case DLD_PROP_ADV_10FDX_CAP:
1853 			if (pr_valsize >= sizeof (uint8_t)) {
1854 				*(uint8_t *)pr_val = ngep->param_adv_10fdx;
1855 				err = 0;
1856 			}
1857 			break;
1858 		case DLD_PROP_EN_10FDX_CAP:
1859 			if (pr_valsize >= sizeof (uint8_t)) {
1860 				*(uint8_t *)pr_val = ngep->param_en_10fdx;
1861 				err = 0;
1862 			}
1863 			break;
1864 		case DLD_PROP_ADV_10HDX_CAP:
1865 			if (pr_valsize >= sizeof (uint8_t)) {
1866 				*(uint8_t *)pr_val = ngep->param_adv_10hdx;
1867 				err = 0;
1868 			}
1869 			break;
1870 		case DLD_PROP_EN_10HDX_CAP:
1871 			if (pr_valsize >= sizeof (uint8_t)) {
1872 				*(uint8_t *)pr_val = ngep->param_en_10hdx;
1873 				err = 0;
1874 			}
1875 			break;
1876 		case DLD_PROP_PRIVATE:
1877 			err = nge_get_priv_prop(ngep, pr_name, pr_valsize,
1878 			    pr_val);
1879 			break;
1880 		default:
1881 			err = ENOTSUP;
1882 	}
1883 	return (err);
1884 }
1885 
1886 /* ARGSUSED */
1887 static int
1888 nge_set_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
1889     const void *pr_val)
1890 {
1891 	int err = 0;
1892 	long result;
1893 
1894 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
1895 		if (pr_val == NULL) {
1896 			err = EINVAL;
1897 			return (err);
1898 		}
1899 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1900 		if (result < 0 || result > NGE_MAX_SDU) {
1901 			err = EINVAL;
1902 		} else {
1903 			ngep->param_txbcopy_threshold = (uint32_t)result;
1904 			goto reprogram;
1905 		}
1906 		return (err);
1907 	}
1908 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
1909 		if (pr_val == NULL) {
1910 			err = EINVAL;
1911 			return (err);
1912 		}
1913 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1914 		if (result < 0 || result > NGE_MAX_SDU) {
1915 			err = EINVAL;
1916 		} else {
1917 			ngep->param_rxbcopy_threshold = (uint32_t)result;
1918 			goto reprogram;
1919 		}
1920 		return (err);
1921 	}
1922 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
1923 		if (pr_val == NULL) {
1924 			err = EINVAL;
1925 			return (err);
1926 		}
1927 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1928 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
1929 			err = EINVAL;
1930 		} else {
1931 			ngep->param_recv_max_packet = (uint32_t)result;
1932 			goto reprogram;
1933 		}
1934 		return (err);
1935 	}
1936 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
1937 		if (pr_val == NULL) {
1938 			err = EINVAL;
1939 			return (err);
1940 		}
1941 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1942 		if (result < 0 || result > 10000) {
1943 			err = EINVAL;
1944 		} else {
1945 			ngep->param_poll_quiet_time = (uint32_t)result;
1946 			goto reprogram;
1947 		}
1948 		return (err);
1949 	}
1950 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
1951 		if (pr_val == NULL) {
1952 			err = EINVAL;
1953 			return (err);
1954 		}
1955 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1956 		if (result < 0 || result > 10000) {
1957 			err = EINVAL;
1958 		} else {
1959 			ngep->param_poll_busy_time = (uint32_t)result;
1960 			goto reprogram;
1961 		}
1962 		return (err);
1963 	}
1964 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
1965 		if (pr_val == NULL) {
1966 			err = EINVAL;
1967 			return (err);
1968 		}
1969 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1970 		if (result < 0 || result > PARAM_RECV_MAX_PACKET) {
1971 			err = EINVAL;
1972 		} else {
1973 			ngep->param_rx_intr_hwater = (uint32_t)result;
1974 			goto reprogram;
1975 		}
1976 		return (err);
1977 	}
1978 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
1979 		if (pr_val == NULL) {
1980 			err = EINVAL;
1981 			return (err);
1982 		}
1983 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1984 		if (result < 0 || result > PARAM_RECV_MAX_PACKET) {
1985 			err = EINVAL;
1986 		} else {
1987 			ngep->param_rx_intr_lwater = (uint32_t)result;
1988 			goto reprogram;
1989 		}
1990 		return (err);
1991 	}
1992 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
1993 		if (pr_val == NULL) {
1994 			err = EINVAL;
1995 			return (err);
1996 		}
1997 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1998 		if (result < 1 || result > 10000) {
1999 			err = EINVAL;
2000 		} else {
2001 			ngep->param_tx_n_intr = (uint32_t)result;
2002 			goto reprogram;
2003 		}
2004 		return (err);
2005 	}
2006 
2007 	err = ENOTSUP;
2008 	return (err);
2009 
2010 reprogram:
2011 	if (err == 0) {
2012 		(*ngep->physops->phys_update)(ngep);
2013 		nge_chip_sync(ngep);
2014 	}
2015 
2016 	return (err);
2017 }
2018 
2019 static int
2020 nge_get_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
2021     void *pr_val)
2022 {
2023 	char valstr[MAXNAMELEN];
2024 	int err = ENOTSUP;
2025 	uint_t strsize;
2026 
2027 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2028 		(void) sprintf(valstr, "%d", ngep->param_txbcopy_threshold);
2029 		err = 0;
2030 		goto done;
2031 	}
2032 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2033 		(void) sprintf(valstr, "%d", ngep->param_rxbcopy_threshold);
2034 		err = 0;
2035 		goto done;
2036 	}
2037 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
2038 		(void) sprintf(valstr, "%d", ngep->param_recv_max_packet);
2039 		err = 0;
2040 		goto done;
2041 	}
2042 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
2043 		(void) sprintf(valstr, "%d", ngep->param_poll_quiet_time);
2044 		err = 0;
2045 		goto done;
2046 	}
2047 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
2048 		(void) sprintf(valstr, "%d", ngep->param_poll_busy_time);
2049 		err = 0;
2050 		goto done;
2051 	}
2052 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
2053 		(void) sprintf(valstr, "%d", ngep->param_rx_intr_hwater);
2054 		err = 0;
2055 		goto done;
2056 	}
2057 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2058 		(void) sprintf(valstr, "%d", ngep->param_rx_intr_lwater);
2059 		err = 0;
2060 		goto done;
2061 	}
2062 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2063 		(void) sprintf(valstr, "%d", ngep->param_tx_n_intr);
2064 		err = 0;
2065 		goto done;
2066 	}
2067 
2068 done:
2069 	if (err == 0) {
2070 		strsize = (uint_t)strlen(valstr);
2071 		if (pr_valsize < strsize) {
2072 			err = ENOBUFS;
2073 		} else {
2074 			(void) strlcpy(pr_val, valstr, strsize);
2075 		}
2076 	}
2077 	return (err);
2078 }
2079 
2080 /* ARGSUSED */
2081 static boolean_t
2082 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2083 {
2084 	nge_t	*ngep = arg;
2085 	nge_dev_spec_param_t *dev_param_p;
2086 
2087 	dev_param_p = &ngep->dev_spec_param;
2088 
2089 	switch (cap) {
2090 	case MAC_CAPAB_HCKSUM: {
2091 		uint32_t *hcksum_txflags = cap_data;
2092 
2093 		if (dev_param_p->tx_hw_checksum) {
2094 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
2095 		} else
2096 			return (B_FALSE);
2097 		break;
2098 	}
2099 	case MAC_CAPAB_POLL:
2100 		/*
2101 		 * There's nothing for us to fill in, simply returning
2102 		 * B_TRUE, stating that we support polling is sufficient.
2103 		 */
2104 		break;
2105 	default:
2106 		return (B_FALSE);
2107 	}
2108 	return (B_TRUE);
2109 }
2110 
2111 #undef	NGE_DBG
2112 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
2113 int
2114 nge_restart(nge_t *ngep)
2115 {
2116 	int err = 0;
2117 	err = nge_reset(ngep);
2118 	if (!err)
2119 		err = nge_chip_start(ngep);
2120 
2121 	if (err) {
2122 		ngep->nge_mac_state = NGE_MAC_STOPPED;
2123 		return (DDI_FAILURE);
2124 	} else {
2125 		ngep->nge_mac_state = NGE_MAC_STARTED;
2126 		return (DDI_SUCCESS);
2127 	}
2128 }
2129 
2130 void
2131 nge_wake_factotum(nge_t *ngep)
2132 {
2133 	mutex_enter(ngep->softlock);
2134 	if (ngep->factotum_flag == 0) {
2135 		ngep->factotum_flag = 1;
2136 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
2137 	}
2138 	mutex_exit(ngep->softlock);
2139 }
2140 
2141 /*
2142  * High-level cyclic handler
2143  *
2144  * This routine schedules a (low-level) softint callback to the
2145  * factotum.
2146  */
2147 
2148 static void
2149 nge_chip_cyclic(void *arg)
2150 {
2151 	nge_t *ngep;
2152 
2153 	ngep = (nge_t *)arg;
2154 
2155 	switch (ngep->nge_chip_state) {
2156 	default:
2157 		return;
2158 
2159 	case NGE_CHIP_RUNNING:
2160 		break;
2161 
2162 	case NGE_CHIP_FAULT:
2163 	case NGE_CHIP_ERROR:
2164 		break;
2165 	}
2166 
2167 	nge_wake_factotum(ngep);
2168 }
2169 
2170 static void
2171 nge_unattach(nge_t *ngep)
2172 {
2173 	send_ring_t *srp;
2174 	buff_ring_t *brp;
2175 
2176 	srp = ngep->send;
2177 	brp = ngep->buff;
2178 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
2179 
2180 	/*
2181 	 * Flag that no more activity may be initiated
2182 	 */
2183 	ngep->progress &= ~PROGRESS_READY;
2184 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
2185 
2186 	/*
2187 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2188 	 * Clean up and free all NGE data structures
2189 	 */
2190 	if (ngep->periodic_id != NULL) {
2191 		ddi_periodic_delete(ngep->periodic_id);
2192 		ngep->periodic_id = NULL;
2193 	}
2194 
2195 	if (ngep->progress & PROGRESS_KSTATS)
2196 		nge_fini_kstats(ngep);
2197 
2198 	if (ngep->progress & PROGRESS_NDD)
2199 		nge_nd_cleanup(ngep);
2200 
2201 	if (ngep->progress & PROGRESS_HWINT) {
2202 		mutex_enter(ngep->genlock);
2203 		nge_restore_mac_addr(ngep);
2204 		(void) nge_chip_stop(ngep, B_FALSE);
2205 		mutex_exit(ngep->genlock);
2206 	}
2207 
2208 	if (ngep->progress & PROGRESS_SWINT)
2209 		nge_rem_intrs(ngep);
2210 
2211 	if (ngep->progress & PROGRESS_FACTOTUM)
2212 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
2213 
2214 	if (ngep->progress & PROGRESS_RESCHED)
2215 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
2216 
2217 	if (ngep->progress & PROGRESS_INTR) {
2218 		mutex_destroy(srp->tx_lock);
2219 		mutex_destroy(srp->tc_lock);
2220 		mutex_destroy(&srp->dmah_lock);
2221 		mutex_destroy(brp->recycle_lock);
2222 
2223 		mutex_destroy(ngep->genlock);
2224 		mutex_destroy(ngep->softlock);
2225 		rw_destroy(ngep->rwlock);
2226 	}
2227 
2228 	if (ngep->progress & PROGRESS_REGS)
2229 		ddi_regs_map_free(&ngep->io_handle);
2230 
2231 	if (ngep->progress & PROGRESS_CFG)
2232 		pci_config_teardown(&ngep->cfg_handle);
2233 
2234 	ddi_remove_minor_node(ngep->devinfo, NULL);
2235 
2236 	kmem_free(ngep, sizeof (*ngep));
2237 }
2238 
2239 static int
2240 nge_resume(dev_info_t *devinfo)
2241 {
2242 	nge_t		*ngep;
2243 	chip_info_t	*infop;
2244 	int 		err;
2245 
2246 	ASSERT(devinfo != NULL);
2247 
2248 	ngep = ddi_get_driver_private(devinfo);
2249 	err = 0;
2250 
2251 	/*
2252 	 * If there are state inconsistancies, this is bad.  Returning
2253 	 * DDI_FAILURE here will eventually cause the machine to panic,
2254 	 * so it is best done here so that there is a possibility of
2255 	 * debugging the problem.
2256 	 */
2257 	if (ngep == NULL)
2258 		cmn_err(CE_PANIC,
2259 		    "nge: ngep returned from ddi_get_driver_private was NULL");
2260 	infop = (chip_info_t *)&ngep->chipinfo;
2261 
2262 	if (ngep->devinfo != devinfo)
2263 		cmn_err(CE_PANIC,
2264 		    "nge: passed devinfo not the same as saved devinfo");
2265 
2266 	mutex_enter(ngep->genlock);
2267 	rw_enter(ngep->rwlock, RW_WRITER);
2268 
2269 	/*
2270 	 * Fetch the config space.  Even though we have most of it cached,
2271 	 * some values *might* change across a suspend/resume.
2272 	 */
2273 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2274 
2275 	/*
2276 	 * Only in one case, this conditional branch can be executed: the port
2277 	 * hasn't been plumbed.
2278 	 */
2279 	if (ngep->suspended == B_FALSE) {
2280 		rw_exit(ngep->rwlock);
2281 		mutex_exit(ngep->genlock);
2282 		return (DDI_SUCCESS);
2283 	}
2284 
2285 	nge_tx_recycle_all(ngep);
2286 	err = nge_reinit_ring(ngep);
2287 	if (!err) {
2288 		err = nge_chip_reset(ngep);
2289 		if (!err)
2290 			err = nge_chip_start(ngep);
2291 	}
2292 
2293 	if (err) {
2294 		/*
2295 		 * We note the failure, but return success, as the
2296 		 * system is still usable without this controller.
2297 		 */
2298 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
2299 	} else {
2300 		ngep->nge_mac_state = NGE_MAC_STARTED;
2301 	}
2302 	ngep->suspended = B_FALSE;
2303 
2304 	rw_exit(ngep->rwlock);
2305 	mutex_exit(ngep->genlock);
2306 
2307 	return (DDI_SUCCESS);
2308 }
2309 
2310 /*
2311  * attach(9E) -- Attach a device to the system
2312  *
2313  * Called once for each board successfully probed.
2314  */
2315 static int
2316 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2317 {
2318 	int		err;
2319 	int		i;
2320 	int		instance;
2321 	caddr_t		regs;
2322 	nge_t		*ngep;
2323 	chip_info_t	*infop;
2324 	mac_register_t	*macp;
2325 
2326 	switch (cmd) {
2327 	default:
2328 		return (DDI_FAILURE);
2329 
2330 	case DDI_RESUME:
2331 		return (nge_resume(devinfo));
2332 
2333 	case DDI_ATTACH:
2334 		break;
2335 	}
2336 
2337 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
2338 	instance = ddi_get_instance(devinfo);
2339 	ddi_set_driver_private(devinfo, ngep);
2340 	ngep->devinfo = devinfo;
2341 
2342 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
2343 	    NGE_DRIVER_NAME, instance);
2344 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
2345 	if (err != DDI_SUCCESS) {
2346 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
2347 		goto attach_fail;
2348 	}
2349 	infop = (chip_info_t *)&ngep->chipinfo;
2350 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2351 	nge_init_dev_spec_param(ngep);
2352 	nge_get_props(ngep);
2353 	ngep->progress |= PROGRESS_CFG;
2354 
2355 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
2356 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
2357 	if (err != DDI_SUCCESS) {
2358 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
2359 		goto attach_fail;
2360 	}
2361 	ngep->io_regs = regs;
2362 	ngep->progress |= PROGRESS_REGS;
2363 
2364 	err = nge_register_intrs_and_init_locks(ngep);
2365 	if (err != DDI_SUCCESS) {
2366 		nge_problem(ngep, "nge_attach:"
2367 		    " register intrs and init locks failed");
2368 		goto attach_fail;
2369 	}
2370 	nge_init_ring_param_lock(ngep);
2371 	ngep->progress |= PROGRESS_INTR;
2372 
2373 	mutex_enter(ngep->genlock);
2374 
2375 	/*
2376 	 * Initialise link state variables
2377 	 * Stop, reset & reinitialise the chip.
2378 	 * Initialise the (internal) PHY.
2379 	 */
2380 	nge_phys_init(ngep);
2381 	err = nge_chip_reset(ngep);
2382 	if (err != DDI_SUCCESS) {
2383 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
2384 		mutex_exit(ngep->genlock);
2385 		goto attach_fail;
2386 	}
2387 	nge_chip_sync(ngep);
2388 
2389 	/*
2390 	 * Now that mutex locks are initialized, enable interrupts.
2391 	 */
2392 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2393 		/* Call ddi_intr_block_enable() for MSI interrupts */
2394 		(void) ddi_intr_block_enable(ngep->htable,
2395 		    ngep->intr_actual_cnt);
2396 	} else {
2397 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
2398 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2399 			(void) ddi_intr_enable(ngep->htable[i]);
2400 		}
2401 	}
2402 
2403 	ngep->link_state = LINK_STATE_UNKNOWN;
2404 	ngep->progress |= PROGRESS_HWINT;
2405 
2406 	/*
2407 	 * Register NDD-tweakable parameters
2408 	 */
2409 	if (nge_nd_init(ngep)) {
2410 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
2411 		mutex_exit(ngep->genlock);
2412 		goto attach_fail;
2413 	}
2414 	ngep->progress |= PROGRESS_NDD;
2415 
2416 	/*
2417 	 * Create & initialise named kstats
2418 	 */
2419 	nge_init_kstats(ngep, instance);
2420 	ngep->progress |= PROGRESS_KSTATS;
2421 
2422 	mutex_exit(ngep->genlock);
2423 
2424 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2425 		goto attach_fail;
2426 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2427 	macp->m_driver = ngep;
2428 	macp->m_dip = devinfo;
2429 	macp->m_src_addr = infop->vendor_addr.addr;
2430 	macp->m_callbacks = &nge_m_callbacks;
2431 	macp->m_min_sdu = 0;
2432 	macp->m_max_sdu = ngep->default_mtu;
2433 	macp->m_margin = VTAG_SIZE;
2434 	/*
2435 	 * Finally, we're ready to register ourselves with the mac
2436 	 * interface; if this succeeds, we're all ready to start()
2437 	 */
2438 	err = mac_register(macp, &ngep->mh);
2439 	mac_free(macp);
2440 	if (err != 0)
2441 		goto attach_fail;
2442 
2443 	/*
2444 	 * Register a periodical handler.
2445 	 * nge_chip_cyclic() is invoked in kernel context.
2446 	 */
2447 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
2448 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
2449 
2450 	ngep->progress |= PROGRESS_READY;
2451 	return (DDI_SUCCESS);
2452 
2453 attach_fail:
2454 	nge_unattach(ngep);
2455 	return (DDI_FAILURE);
2456 }
2457 
2458 static int
2459 nge_suspend(nge_t *ngep)
2460 {
2461 	mutex_enter(ngep->genlock);
2462 	rw_enter(ngep->rwlock, RW_WRITER);
2463 
2464 	/* if the port hasn't been plumbed, just return */
2465 	if (ngep->nge_mac_state != NGE_MAC_STARTED) {
2466 		rw_exit(ngep->rwlock);
2467 		mutex_exit(ngep->genlock);
2468 		return (DDI_SUCCESS);
2469 	}
2470 	ngep->suspended = B_TRUE;
2471 	(void) nge_chip_stop(ngep, B_FALSE);
2472 	ngep->nge_mac_state = NGE_MAC_STOPPED;
2473 
2474 	rw_exit(ngep->rwlock);
2475 	mutex_exit(ngep->genlock);
2476 	return (DDI_SUCCESS);
2477 }
2478 
2479 /*
2480  * detach(9E) -- Detach a device from the system
2481  */
2482 static int
2483 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2484 {
2485 	int i;
2486 	nge_t *ngep;
2487 	mul_item *p, *nextp;
2488 	buff_ring_t *brp;
2489 
2490 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
2491 
2492 	ngep = ddi_get_driver_private(devinfo);
2493 	brp = ngep->buff;
2494 
2495 	switch (cmd) {
2496 	default:
2497 		return (DDI_FAILURE);
2498 
2499 	case DDI_SUSPEND:
2500 		/*
2501 		 * Stop the NIC
2502 		 * Note: This driver doesn't currently support WOL, but
2503 		 *	should it in the future, it is important to
2504 		 *	make sure the PHY remains powered so that the
2505 		 *	wakeup packet can actually be recieved.
2506 		 */
2507 		return (nge_suspend(ngep));
2508 
2509 	case DDI_DETACH:
2510 		break;
2511 	}
2512 
2513 	/* Try to wait all the buffer post to upper layer be released */
2514 	for (i = 0; i < 1000; i++) {
2515 		if (brp->rx_hold == 0)
2516 			break;
2517 		drv_usecwait(1000);
2518 	}
2519 
2520 	/* If there is any posted buffer, reject to detach */
2521 	if (brp->rx_hold != 0)
2522 		return (DDI_FAILURE);
2523 
2524 	/* Recycle the multicast table */
2525 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
2526 		nextp = p->next;
2527 		kmem_free(p, sizeof (mul_item));
2528 	}
2529 	ngep->pcur_mulist = NULL;
2530 
2531 	/*
2532 	 * Unregister from the GLD subsystem.  This can fail, in
2533 	 * particular if there are DLPI style-2 streams still open -
2534 	 * in which case we just return failure without shutting
2535 	 * down chip operations.
2536 	 */
2537 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
2538 		return (DDI_FAILURE);
2539 
2540 	/*
2541 	 * All activity stopped, so we can clean up & exit
2542 	 */
2543 	nge_unattach(ngep);
2544 	return (DDI_SUCCESS);
2545 }
2546 
2547 
2548 /*
2549  * ========== Module Loading Data & Entry Points ==========
2550  */
2551 
2552 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
2553     nodev, NULL, D_MP, NULL);
2554 
2555 
2556 static struct modldrv nge_modldrv = {
2557 	&mod_driverops,		/* Type of module.  This one is a driver */
2558 	nge_ident,		/* short description */
2559 	&nge_dev_ops		/* driver specific ops */
2560 };
2561 
2562 static struct modlinkage modlinkage = {
2563 	MODREV_1, (void *)&nge_modldrv, NULL
2564 };
2565 
2566 
2567 int
2568 _info(struct modinfo *modinfop)
2569 {
2570 	return (mod_info(&modlinkage, modinfop));
2571 }
2572 
2573 int
2574 _init(void)
2575 {
2576 	int status;
2577 
2578 	mac_init_ops(&nge_dev_ops, "nge");
2579 	status = mod_install(&modlinkage);
2580 	if (status != DDI_SUCCESS)
2581 		mac_fini_ops(&nge_dev_ops);
2582 	else
2583 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
2584 
2585 	return (status);
2586 }
2587 
2588 int
2589 _fini(void)
2590 {
2591 	int status;
2592 
2593 	status = mod_remove(&modlinkage);
2594 	if (status == DDI_SUCCESS) {
2595 		mac_fini_ops(&nge_dev_ops);
2596 		mutex_destroy(nge_log_mutex);
2597 	}
2598 
2599 	return (status);
2600 }
2601 
2602 /*
2603  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
2604  */
2605 
2606 /*
2607  * Register interrupts and initialize each mutex and condition variables
2608  */
2609 
2610 static int
2611 nge_register_intrs_and_init_locks(nge_t *ngep)
2612 {
2613 	int		err;
2614 	int		intr_types;
2615 	uint_t		soft_prip;
2616 	nge_msi_mask	msi_mask;
2617 	nge_msi_map0_vec map0_vec;
2618 	nge_msi_map1_vec map1_vec;
2619 
2620 	/*
2621 	 * Add the softint handlers:
2622 	 *
2623 	 * Both of these handlers are used to avoid restrictions on the
2624 	 * context and/or mutexes required for some operations.  In
2625 	 * particular, the hardware interrupt handler and its subfunctions
2626 	 * can detect a number of conditions that we don't want to handle
2627 	 * in that context or with that set of mutexes held.  So, these
2628 	 * softints are triggered instead:
2629 	 *
2630 	 * the <resched> softint is triggered if if we have previously
2631 	 * had to refuse to send a packet because of resource shortage
2632 	 * (we've run out of transmit buffers), but the send completion
2633 	 * interrupt handler has now detected that more buffers have
2634 	 * become available.  Its only purpose is to call gld_sched()
2635 	 * to retry the pending transmits (we're not allowed to hold
2636 	 * driver-defined mutexes across gld_sched()).
2637 	 *
2638 	 * the <factotum> is triggered if the h/w interrupt handler
2639 	 * sees the <link state changed> or <error> bits in the status
2640 	 * block.  It's also triggered periodically to poll the link
2641 	 * state, just in case we aren't getting link status change
2642 	 * interrupts ...
2643 	 */
2644 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
2645 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
2646 	if (err != DDI_SUCCESS) {
2647 		nge_problem(ngep,
2648 		    "nge_attach: add nge_reschedule softintr failed");
2649 
2650 		return (DDI_FAILURE);
2651 	}
2652 	ngep->progress |= PROGRESS_RESCHED;
2653 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
2654 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
2655 	if (err != DDI_SUCCESS) {
2656 		nge_problem(ngep,
2657 		    "nge_attach: add nge_chip_factotum softintr failed!");
2658 
2659 		return (DDI_FAILURE);
2660 	}
2661 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2662 	    != DDI_SUCCESS) {
2663 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2664 
2665 		return (DDI_FAILURE);
2666 	}
2667 	ngep->soft_pri = soft_prip;
2668 
2669 	ngep->progress |= PROGRESS_FACTOTUM;
2670 	/* Get supported interrupt types */
2671 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2672 	    != DDI_SUCCESS) {
2673 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2674 
2675 		return (DDI_FAILURE);
2676 	}
2677 
2678 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2679 	    intr_types));
2680 
2681 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2682 
2683 		/* MSI Configurations for mcp55 chipset */
2684 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2685 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2686 
2687 
2688 			/* Enable the 8 vectors */
2689 			msi_mask.msi_mask_val =
2690 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2691 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2692 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2693 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2694 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2695 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2696 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2697 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2698 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2699 			nge_reg_put32(ngep, NGE_MSI_MASK,
2700 			    msi_mask.msi_mask_val);
2701 
2702 			/*
2703 			 * Remapping the MSI MAP0 and MAP1. MCP55
2704 			 * is default mapping all the interrupt to 0 vector.
2705 			 * Software needs to remapping this.
2706 			 * This mapping is same as CK804.
2707 			 */
2708 			map0_vec.msi_map0_val =
2709 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2710 			map1_vec.msi_map1_val =
2711 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2712 			map0_vec.vecs_bits.reint_vec = 0;
2713 			map0_vec.vecs_bits.rcint_vec = 0;
2714 			map0_vec.vecs_bits.miss_vec = 3;
2715 			map0_vec.vecs_bits.teint_vec = 5;
2716 			map0_vec.vecs_bits.tcint_vec = 5;
2717 			map0_vec.vecs_bits.stint_vec = 2;
2718 			map0_vec.vecs_bits.mint_vec = 6;
2719 			map0_vec.vecs_bits.rfint_vec = 0;
2720 			map1_vec.vecs_bits.tfint_vec = 5;
2721 			map1_vec.vecs_bits.feint_vec = 6;
2722 			map1_vec.vecs_bits.resv8_11 = 3;
2723 			map1_vec.vecs_bits.resv12_15 = 1;
2724 			map1_vec.vecs_bits.resv16_19 = 0;
2725 			map1_vec.vecs_bits.resv20_23 = 7;
2726 			map1_vec.vecs_bits.resv24_31 = 0xff;
2727 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2728 			    map0_vec.msi_map0_val);
2729 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2730 			    map1_vec.msi_map1_val);
2731 		}
2732 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2733 			NGE_DEBUG(("MSI registration failed, "
2734 			    "trying FIXED interrupt type\n"));
2735 		} else {
2736 			nge_log(ngep, "Using MSI interrupt type\n");
2737 
2738 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2739 			ngep->progress |= PROGRESS_SWINT;
2740 		}
2741 	}
2742 
2743 	if (!(ngep->progress & PROGRESS_SWINT) &&
2744 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2745 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2746 			nge_error(ngep, "FIXED interrupt "
2747 			    "registration failed\n");
2748 
2749 			return (DDI_FAILURE);
2750 		}
2751 
2752 		nge_log(ngep, "Using FIXED interrupt type\n");
2753 
2754 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2755 		ngep->progress |= PROGRESS_SWINT;
2756 	}
2757 
2758 
2759 	if (!(ngep->progress & PROGRESS_SWINT)) {
2760 		nge_error(ngep, "No interrupts registered\n");
2761 
2762 		return (DDI_FAILURE);
2763 	}
2764 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2765 	    DDI_INTR_PRI(ngep->intr_pri));
2766 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2767 	    DDI_INTR_PRI(ngep->soft_pri));
2768 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2769 	    DDI_INTR_PRI(ngep->intr_pri));
2770 
2771 	return (DDI_SUCCESS);
2772 }
2773 
2774 /*
2775  * nge_add_intrs:
2776  *
2777  * Register FIXED or MSI interrupts.
2778  */
2779 static int
2780 nge_add_intrs(nge_t *ngep, int	intr_type)
2781 {
2782 	dev_info_t	*dip = ngep->devinfo;
2783 	int		avail, actual, intr_size, count = 0;
2784 	int		i, flag, ret;
2785 
2786 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2787 
2788 	/* Get number of interrupts */
2789 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2790 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2791 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2792 		    "count: %d", ret, count);
2793 
2794 		return (DDI_FAILURE);
2795 	}
2796 
2797 	/* Get number of available interrupts */
2798 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2799 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2800 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2801 		    "ret: %d, avail: %d\n", ret, avail);
2802 
2803 		return (DDI_FAILURE);
2804 	}
2805 
2806 	if (avail < count) {
2807 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2808 		    count, avail));
2809 	}
2810 	flag = DDI_INTR_ALLOC_NORMAL;
2811 
2812 	/* Allocate an array of interrupt handles */
2813 	intr_size = count * sizeof (ddi_intr_handle_t);
2814 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2815 
2816 	/* Call ddi_intr_alloc() */
2817 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2818 	    count, &actual, flag);
2819 
2820 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2821 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
2822 
2823 		kmem_free(ngep->htable, intr_size);
2824 		return (DDI_FAILURE);
2825 	}
2826 
2827 	if (actual < count) {
2828 		NGE_DEBUG(("Requested: %d, Received: %d\n",
2829 		    count, actual));
2830 	}
2831 
2832 	ngep->intr_actual_cnt = actual;
2833 	ngep->intr_req_cnt = count;
2834 
2835 	/*
2836 	 * Get priority for first msi, assume remaining are all the same
2837 	 */
2838 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
2839 	    DDI_SUCCESS) {
2840 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
2841 
2842 		/* Free already allocated intr */
2843 		for (i = 0; i < actual; i++) {
2844 			(void) ddi_intr_free(ngep->htable[i]);
2845 		}
2846 
2847 		kmem_free(ngep->htable, intr_size);
2848 
2849 		return (DDI_FAILURE);
2850 	}
2851 	/* Test for high level mutex */
2852 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
2853 		nge_error(ngep, "nge_add_intrs:"
2854 		    "Hi level interrupt not supported");
2855 
2856 		for (i = 0; i < actual; i++)
2857 			(void) ddi_intr_free(ngep->htable[i]);
2858 
2859 		kmem_free(ngep->htable, intr_size);
2860 
2861 		return (DDI_FAILURE);
2862 	}
2863 
2864 
2865 	/* Call ddi_intr_add_handler() */
2866 	for (i = 0; i < actual; i++) {
2867 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
2868 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2869 			nge_error(ngep, "ddi_intr_add_handler() "
2870 			    "failed %d\n", ret);
2871 
2872 			/* Free already allocated intr */
2873 			for (i = 0; i < actual; i++) {
2874 				(void) ddi_intr_free(ngep->htable[i]);
2875 			}
2876 
2877 			kmem_free(ngep->htable, intr_size);
2878 
2879 			return (DDI_FAILURE);
2880 		}
2881 	}
2882 
2883 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
2884 	    != DDI_SUCCESS) {
2885 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
2886 
2887 		for (i = 0; i < actual; i++) {
2888 			(void) ddi_intr_remove_handler(ngep->htable[i]);
2889 			(void) ddi_intr_free(ngep->htable[i]);
2890 		}
2891 
2892 		kmem_free(ngep->htable, intr_size);
2893 
2894 		return (DDI_FAILURE);
2895 	}
2896 
2897 	return (DDI_SUCCESS);
2898 }
2899 
2900 /*
2901  * nge_rem_intrs:
2902  *
2903  * Unregister FIXED or MSI interrupts
2904  */
2905 static void
2906 nge_rem_intrs(nge_t *ngep)
2907 {
2908 	int	i;
2909 
2910 	NGE_DEBUG(("nge_rem_intrs\n"));
2911 
2912 	/* Disable all interrupts */
2913 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2914 		/* Call ddi_intr_block_disable() */
2915 		(void) ddi_intr_block_disable(ngep->htable,
2916 		    ngep->intr_actual_cnt);
2917 	} else {
2918 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2919 			(void) ddi_intr_disable(ngep->htable[i]);
2920 		}
2921 	}
2922 
2923 	/* Call ddi_intr_remove_handler() */
2924 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
2925 		(void) ddi_intr_remove_handler(ngep->htable[i]);
2926 		(void) ddi_intr_free(ngep->htable[i]);
2927 	}
2928 
2929 	kmem_free(ngep->htable,
2930 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
2931 }
2932