xref: /titanic_50/usr/src/uts/common/io/nge/nge_chip.c (revision b9aa66a73c9016cf5c71fe80efe90ce9f2ca5c73)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "nge.h"
28 static uint32_t	nge_watchdog_count	= 1 << 29;
29 extern boolean_t nge_enable_msi;
30 static void nge_sync_mac_modes(nge_t *);
31 
32 #undef NGE_DBG
33 #define	NGE_DBG		NGE_DBG_CHIP
34 
35 /*
36  * Operating register get/set access routines
37  */
38 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
39 #pragma	inline(nge_reg_get8)
40 
41 uint8_t
42 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
43 {
44 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
45 
46 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
47 }
48 
49 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
50 #pragma	inline(nge_reg_put8)
51 
52 void
53 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
54 {
55 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
56 	    (void *)ngep, regno, data));
57 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
58 
59 }
60 
61 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
62 #pragma	inline(nge_reg_get16)
63 
64 uint16_t
65 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
66 {
67 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
68 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
69 }
70 
71 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
72 #pragma	inline(nge_reg_put16)
73 
74 void
75 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
76 {
77 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
78 	    (void *)ngep, regno, data));
79 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
80 
81 }
82 
83 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
84 #pragma	inline(nge_reg_get32)
85 
86 uint32_t
87 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
88 {
89 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
90 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
91 }
92 
93 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
94 #pragma	inline(nge_reg_put32)
95 
96 void
97 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
98 {
99 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
100 	    (void *)ngep, regno, data));
101 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
102 
103 }
104 
105 
106 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
107 #pragma	no_inline(nge_chip_peek_cfg)
108 
109 static int
110 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
111 {
112 	int err;
113 	uint64_t regval;
114 	uint64_t regno;
115 
116 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
117 	    (void *)ngep, (void *)ppd));
118 
119 	err = DDI_SUCCESS;
120 	regno = ppd->pp_acc_offset;
121 
122 	switch (ppd->pp_acc_size) {
123 	case 1:
124 		regval = pci_config_get8(ngep->cfg_handle, regno);
125 		break;
126 
127 	case 2:
128 		regval = pci_config_get16(ngep->cfg_handle, regno);
129 		break;
130 
131 	case 4:
132 		regval = pci_config_get32(ngep->cfg_handle, regno);
133 		break;
134 
135 	case 8:
136 		regval = pci_config_get64(ngep->cfg_handle, regno);
137 		break;
138 	}
139 	ppd->pp_acc_data = regval;
140 	return (err);
141 }
142 
143 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
144 
145 static int
146 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
147 {
148 	int err;
149 	uint64_t regval;
150 	uint64_t regno;
151 
152 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
153 	    (void *)ngep, (void *)ppd));
154 
155 	err = DDI_SUCCESS;
156 	regno = ppd->pp_acc_offset;
157 	regval = ppd->pp_acc_data;
158 
159 	switch (ppd->pp_acc_size) {
160 	case 1:
161 		pci_config_put8(ngep->cfg_handle, regno, regval);
162 		break;
163 
164 	case 2:
165 		pci_config_put16(ngep->cfg_handle, regno, regval);
166 		break;
167 
168 	case 4:
169 		pci_config_put32(ngep->cfg_handle, regno, regval);
170 		break;
171 
172 	case 8:
173 		pci_config_put64(ngep->cfg_handle, regno, regval);
174 		break;
175 	}
176 
177 	return (err);
178 
179 }
180 
181 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
182 
183 static int
184 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
185 {
186 	int err;
187 	uint64_t regval;
188 	void *regaddr;
189 
190 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
191 	    (void *)ngep, (void *)ppd));
192 
193 	err = DDI_SUCCESS;
194 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
195 
196 	switch (ppd->pp_acc_size) {
197 	case 1:
198 		regval = ddi_get8(ngep->io_handle, regaddr);
199 	break;
200 
201 	case 2:
202 		regval = ddi_get16(ngep->io_handle, regaddr);
203 	break;
204 
205 	case 4:
206 		regval = ddi_get32(ngep->io_handle, regaddr);
207 	break;
208 
209 	case 8:
210 		regval = ddi_get64(ngep->io_handle, regaddr);
211 	break;
212 
213 	default:
214 		regval = 0x0ull;
215 	break;
216 	}
217 	ppd->pp_acc_data = regval;
218 	return (err);
219 }
220 
221 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
222 
223 static int
224 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
225 {
226 	int err;
227 	uint64_t regval;
228 	void *regaddr;
229 
230 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
231 	    (void *)ngep, (void *)ppd));
232 
233 	err = DDI_SUCCESS;
234 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
235 	regval = ppd->pp_acc_data;
236 
237 	switch (ppd->pp_acc_size) {
238 	case 1:
239 		ddi_put8(ngep->io_handle, regaddr, regval);
240 		break;
241 
242 	case 2:
243 		ddi_put16(ngep->io_handle, regaddr, regval);
244 		break;
245 
246 	case 4:
247 		ddi_put32(ngep->io_handle, regaddr, regval);
248 		break;
249 
250 	case 8:
251 		ddi_put64(ngep->io_handle, regaddr, regval);
252 		break;
253 	}
254 	return (err);
255 }
256 
257 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
258 #pragma	no_inline(nge_chip_peek_mii)
259 
260 static int
261 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
262 {
263 	int err;
264 
265 	err = DDI_SUCCESS;
266 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
267 	return (err);
268 }
269 
270 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
271 #pragma	no_inline(nge_chip_poke_mii)
272 
273 static int
274 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
275 {
276 	int err;
277 	err = DDI_SUCCESS;
278 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
279 	return (err);
280 }
281 
282 /*
283  * Basic SEEPROM get/set access routine
284  *
285  * This uses the chip's SEEPROM auto-access method, controlled by the
286  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
287  * doesn't have to fiddle with the individual bits.
288  *
289  * The caller should hold <genlock> and *also* have already acquired
290  * the right to access the SEEPROM.
291  *
292  * Return value:
293  *	0 on success,
294  *	ENODATA on access timeout (maybe retryable: device may just be busy)
295  *	EPROTO on other h/w or s/w errors.
296  *
297  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
298  * from a (successful) SEEPROM_ACCESS_READ.
299  */
300 
301 static int
302 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
303 {
304 	uint32_t tries;
305 	nge_ep_cmd cmd_reg;
306 	nge_ep_data data_reg;
307 
308 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
309 	    (void *)ngep, cmd, addr, (void *)dp));
310 
311 	ASSERT(mutex_owned(ngep->genlock));
312 
313 	/*
314 	 * Check there's no command in progress.
315 	 *
316 	 * Note: this *shouldn't* ever find that there is a command
317 	 * in progress, because we already hold the <genlock> mutex.
318 	 * Also, to ensure we don't have a conflict with the chip's
319 	 * internal firmware or a process accessing the same (shared)
320 	 * So this is just a final consistency check: we shouldn't
321 	 * see EITHER the START bit (command started but not complete)
322 	 * OR the COMPLETE bit (command completed but not cleared).
323 	 */
324 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
325 	for (tries = 0; tries < 30; tries++) {
326 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
327 			break;
328 		drv_usecwait(10);
329 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
330 	}
331 
332 	/*
333 	 * This should not happen. If so, we have to restart eeprom
334 	 *  state machine
335 	 */
336 	if (tries == 30) {
337 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
338 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
339 		drv_usecwait(10);
340 		/*
341 		 * Polling the status bit to make assure the eeprom is ready
342 		 */
343 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
344 		for (tries = 0; tries < 30; tries++) {
345 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
346 				break;
347 			drv_usecwait(10);
348 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
349 		}
350 	}
351 
352 	/*
353 	 * Assemble the command ...
354 	 */
355 	cmd_reg.cmd_bits.addr = (uint32_t)addr;
356 	cmd_reg.cmd_bits.cmd = cmd;
357 	cmd_reg.cmd_bits.sts = 0;
358 
359 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
360 
361 	/*
362 	 * Polling whether the access is successful.
363 	 *
364 	 */
365 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
366 	for (tries = 0; tries < 30; tries++) {
367 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
368 			break;
369 		drv_usecwait(10);
370 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
371 	}
372 
373 	if (tries == 30) {
374 		nge_report(ngep, NGE_HW_ROM);
375 		return (DDI_FAILURE);
376 	}
377 	switch (cmd) {
378 	default:
379 	case SEEPROM_CMD_WRITE_ENABLE:
380 	case SEEPROM_CMD_ERASE:
381 	case SEEPROM_CMD_ERALSE_ALL:
382 	case SEEPROM_CMD_WRITE_DIS:
383 	break;
384 
385 	case SEEPROM_CMD_READ:
386 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
387 		*dp = data_reg.data_bits.data;
388 	break;
389 
390 	case SEEPROM_CMD_WRITE:
391 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
392 		data_reg.data_bits.data = *dp;
393 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
394 	break;
395 	}
396 
397 	return (DDI_SUCCESS);
398 }
399 
400 
401 static int
402 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
403 {
404 	uint16_t data;
405 	int err;
406 
407 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
408 	    ppd->pp_acc_offset, &data);
409 	ppd->pp_acc_data =  data;
410 	return (err);
411 }
412 
413 static int
414 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
415 {
416 	uint16_t data;
417 	int err;
418 
419 	data = ppd->pp_acc_data;
420 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
421 	    ppd->pp_acc_offset, &data);
422 	return (err);
423 }
424 
425 void
426 nge_init_dev_spec_param(nge_t *ngep)
427 {
428 	nge_dev_spec_param_t	*dev_param_p;
429 	chip_info_t	*infop;
430 
431 	dev_param_p = &ngep->dev_spec_param;
432 	infop = (chip_info_t *)&ngep->chipinfo;
433 
434 	switch (infop->device) {
435 	case DEVICE_ID_NF3_E6:
436 	case DEVICE_ID_NF3_DF:
437 	case DEVICE_ID_MCP04_37:
438 	case DEVICE_ID_MCP04_38:
439 		dev_param_p->msi = B_FALSE;
440 		dev_param_p->msi_x = B_FALSE;
441 		dev_param_p->vlan = B_FALSE;
442 		dev_param_p->advanced_pm = B_FALSE;
443 		dev_param_p->mac_addr_order = B_FALSE;
444 		dev_param_p->tx_pause_frame = B_FALSE;
445 		dev_param_p->rx_pause_frame = B_FALSE;
446 		dev_param_p->jumbo = B_FALSE;
447 		dev_param_p->tx_rx_64byte = B_FALSE;
448 		dev_param_p->rx_hw_checksum = B_FALSE;
449 		dev_param_p->tx_hw_checksum = 0;
450 		dev_param_p->desc_type = DESC_OFFLOAD;
451 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
452 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
453 		dev_param_p->nge_split = NGE_SPLIT_32;
454 		break;
455 
456 	case DEVICE_ID_CK804_56:
457 	case DEVICE_ID_CK804_57:
458 		dev_param_p->msi = B_TRUE;
459 		dev_param_p->msi_x = B_TRUE;
460 		dev_param_p->vlan = B_FALSE;
461 		dev_param_p->advanced_pm = B_FALSE;
462 		dev_param_p->mac_addr_order = B_FALSE;
463 		dev_param_p->tx_pause_frame = B_FALSE;
464 		dev_param_p->rx_pause_frame = B_TRUE;
465 		dev_param_p->jumbo = B_TRUE;
466 		dev_param_p->tx_rx_64byte = B_FALSE;
467 		dev_param_p->rx_hw_checksum = B_TRUE;
468 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
469 		dev_param_p->desc_type = DESC_HOT;
470 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
471 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
472 		dev_param_p->nge_split = NGE_SPLIT_96;
473 		break;
474 
475 	case DEVICE_ID_MCP51_268:
476 	case DEVICE_ID_MCP51_269:
477 		dev_param_p->msi = B_FALSE;
478 		dev_param_p->msi_x = B_FALSE;
479 		dev_param_p->vlan = B_FALSE;
480 		dev_param_p->advanced_pm = B_TRUE;
481 		dev_param_p->mac_addr_order = B_FALSE;
482 		dev_param_p->tx_pause_frame = B_FALSE;
483 		dev_param_p->rx_pause_frame = B_FALSE;
484 		dev_param_p->jumbo = B_FALSE;
485 		dev_param_p->tx_rx_64byte = B_TRUE;
486 		dev_param_p->rx_hw_checksum = B_FALSE;
487 		dev_param_p->tx_hw_checksum = 0;
488 		dev_param_p->desc_type = DESC_OFFLOAD;
489 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
490 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
491 		dev_param_p->nge_split = NGE_SPLIT_32;
492 		break;
493 
494 	case DEVICE_ID_MCP55_372:
495 	case DEVICE_ID_MCP55_373:
496 		dev_param_p->msi = B_TRUE;
497 		dev_param_p->msi_x = B_TRUE;
498 		dev_param_p->vlan = B_TRUE;
499 		dev_param_p->advanced_pm = B_TRUE;
500 		dev_param_p->mac_addr_order = B_FALSE;
501 		dev_param_p->tx_pause_frame = B_TRUE;
502 		dev_param_p->rx_pause_frame = B_TRUE;
503 		dev_param_p->jumbo = B_TRUE;
504 		dev_param_p->tx_rx_64byte = B_TRUE;
505 		dev_param_p->rx_hw_checksum = B_TRUE;
506 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
507 		dev_param_p->desc_type = DESC_HOT;
508 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
509 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
510 		dev_param_p->nge_split = NGE_SPLIT_96;
511 		break;
512 
513 	case DEVICE_ID_MCP61_3EE:
514 	case DEVICE_ID_MCP61_3EF:
515 		dev_param_p->msi = B_FALSE;
516 		dev_param_p->msi_x = B_FALSE;
517 		dev_param_p->vlan = B_FALSE;
518 		dev_param_p->advanced_pm = B_TRUE;
519 		dev_param_p->mac_addr_order = B_TRUE;
520 		dev_param_p->tx_pause_frame = B_FALSE;
521 		dev_param_p->rx_pause_frame = B_FALSE;
522 		dev_param_p->jumbo = B_FALSE;
523 		dev_param_p->tx_rx_64byte = B_TRUE;
524 		dev_param_p->rx_hw_checksum = B_FALSE;
525 		dev_param_p->tx_hw_checksum = 0;
526 		dev_param_p->desc_type = DESC_OFFLOAD;
527 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
528 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
529 		dev_param_p->nge_split = NGE_SPLIT_32;
530 		break;
531 
532 	case DEVICE_ID_MCP77_760:
533 		dev_param_p->msi = B_FALSE;
534 		dev_param_p->msi_x = B_FALSE;
535 		dev_param_p->vlan = B_FALSE;
536 		dev_param_p->advanced_pm = B_TRUE;
537 		dev_param_p->mac_addr_order = B_TRUE;
538 		dev_param_p->tx_pause_frame = B_FALSE;
539 		dev_param_p->rx_pause_frame = B_FALSE;
540 		dev_param_p->jumbo = B_FALSE;
541 		dev_param_p->tx_rx_64byte = B_TRUE;
542 		dev_param_p->rx_hw_checksum = B_FALSE;
543 		dev_param_p->tx_hw_checksum = 0;
544 		dev_param_p->desc_type = DESC_HOT;
545 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
546 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
547 		dev_param_p->nge_split = NGE_SPLIT_32;
548 		break;
549 
550 	default:
551 		dev_param_p->msi = B_FALSE;
552 		dev_param_p->msi_x = B_FALSE;
553 		dev_param_p->vlan = B_FALSE;
554 		dev_param_p->advanced_pm = B_FALSE;
555 		dev_param_p->mac_addr_order = B_FALSE;
556 		dev_param_p->tx_pause_frame = B_FALSE;
557 		dev_param_p->rx_pause_frame = B_FALSE;
558 		dev_param_p->jumbo = B_FALSE;
559 		dev_param_p->tx_rx_64byte = B_FALSE;
560 		dev_param_p->rx_hw_checksum = B_FALSE;
561 		dev_param_p->tx_hw_checksum = 0;
562 		dev_param_p->desc_type = DESC_OFFLOAD;
563 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
564 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
565 		dev_param_p->nge_split = NGE_SPLIT_32;
566 		return;
567 	}
568 }
569 /*
570  * Perform first-stage chip (re-)initialisation, using only config-space
571  * accesses:
572  *
573  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
574  *   returning the data in the structure pointed to by <infop>.
575  */
576 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
577 #pragma	no_inline(nge_chip_cfg_init)
578 
579 void
580 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
581 {
582 	uint16_t command;
583 	ddi_acc_handle_t handle;
584 	nge_interbus_conf interbus_conf;
585 	nge_msi_mask_conf msi_mask_conf;
586 	nge_msi_map_cap_conf cap_conf;
587 
588 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
589 	    (void *)ngep, (void *)infop, reset));
590 
591 	/*
592 	 * save PCI cache line size and subsystem vendor ID
593 	 *
594 	 * Read all the config-space registers that characterise the
595 	 * chip, specifically vendor/device/revision/subsystem vendor
596 	 * and subsystem device id.  We expect (but don't check) that
597 	 */
598 	handle = ngep->cfg_handle;
599 	/* reading the vendor information once */
600 	if (reset == B_FALSE) {
601 		infop->command = pci_config_get16(handle,
602 		    PCI_CONF_COMM);
603 		infop->vendor = pci_config_get16(handle,
604 		    PCI_CONF_VENID);
605 		infop->device = pci_config_get16(handle,
606 		    PCI_CONF_DEVID);
607 		infop->subven = pci_config_get16(handle,
608 		    PCI_CONF_SUBVENID);
609 		infop->subdev = pci_config_get16(handle,
610 		    PCI_CONF_SUBSYSID);
611 		infop->class_code = pci_config_get8(handle,
612 		    PCI_CONF_BASCLASS);
613 		infop->revision = pci_config_get8(handle,
614 		    PCI_CONF_REVID);
615 		infop->clsize = pci_config_get8(handle,
616 		    PCI_CONF_CACHE_LINESZ);
617 		infop->latency = pci_config_get8(handle,
618 		    PCI_CONF_LATENCY_TIMER);
619 	}
620 	if (nge_enable_msi) {
621 		/* Disable the hidden for MSI support */
622 		interbus_conf.conf_val = pci_config_get32(handle,
623 		    PCI_CONF_HT_INTERNAL);
624 		if ((infop->device == DEVICE_ID_MCP55_373) ||
625 		    (infop->device == DEVICE_ID_MCP55_372))
626 			interbus_conf.conf_bits.msix_off = NGE_SET;
627 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
628 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
629 		    interbus_conf.conf_val);
630 
631 		if ((infop->device == DEVICE_ID_MCP55_373) ||
632 		    (infop->device == DEVICE_ID_MCP55_372)) {
633 
634 			/* Disable the vector off for mcp55 */
635 			msi_mask_conf.msi_mask_conf_val =
636 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
637 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
638 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
639 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
640 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
641 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
642 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
643 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
644 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
645 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
646 			    msi_mask_conf.msi_mask_conf_val);
647 
648 			/* Enable the MSI mapping */
649 			cap_conf.msi_map_cap_conf_val =
650 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
651 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
652 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
653 			    cap_conf.msi_map_cap_conf_val);
654 		}
655 	} else {
656 		interbus_conf.conf_val = pci_config_get32(handle,
657 		    PCI_CONF_HT_INTERNAL);
658 		interbus_conf.conf_bits.msi_off = NGE_SET;
659 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
660 		    interbus_conf.conf_val);
661 	}
662 	command = infop->command | PCI_COMM_MAE;
663 	command &= ~PCI_COMM_MEMWR_INVAL;
664 	command |= PCI_COMM_ME;
665 	pci_config_put16(handle, PCI_CONF_COMM, command);
666 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
667 
668 }
669 
670 int
671 nge_chip_stop(nge_t *ngep, boolean_t fault)
672 {
673 	int err;
674 	uint32_t reg_val;
675 	uint32_t	tries;
676 	nge_mintr_src mintr_src;
677 	nge_mii_cs mii_cs;
678 	nge_rx_poll rx_poll;
679 	nge_tx_poll tx_poll;
680 	nge_rx_en rx_en;
681 	nge_tx_en tx_en;
682 	nge_tx_sta tx_sta;
683 	nge_rx_sta rx_sta;
684 	nge_mode_cntl mode;
685 	nge_pmu_cntl2 pmu_cntl2;
686 
687 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
688 
689 	err = DDI_SUCCESS;
690 
691 	/* Clear any pending PHY interrupt */
692 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
693 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
694 
695 	/* Mask all interrupts */
696 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
697 	reg_val &= ~NGE_INTR_ALL_EN;
698 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
699 
700 	/* Disable auto-polling of phy */
701 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
702 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
703 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
704 
705 	/* Reset buffer management & DMA */
706 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
707 	mode.mode_bits.dma_dis = NGE_SET;
708 	mode.mode_bits.desc_type = ngep->desc_mode;
709 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
710 
711 	for (tries = 0; tries < 10000; tries++) {
712 		drv_usecwait(10);
713 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
714 		if (mode.mode_bits.dma_status == NGE_SET)
715 			break;
716 	}
717 	if (tries == 10000) {
718 		ngep->nge_chip_state = NGE_CHIP_ERROR;
719 		return (DDI_FAILURE);
720 	}
721 
722 	/* Disable rx's machine */
723 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
724 	rx_en.bits.rx_en = NGE_CLEAR;
725 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
726 
727 	/* Disable tx's machine */
728 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
729 	tx_en.bits.tx_en = NGE_CLEAR;
730 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
731 
732 	/*
733 	 * Clean the status of tx's state machine
734 	 * and Make assure the tx's channel is idle
735 	 */
736 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
737 	for (tries = 0; tries < 1000; tries++) {
738 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
739 			break;
740 		drv_usecwait(10);
741 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
742 	}
743 	if (tries == 1000) {
744 		ngep->nge_chip_state = NGE_CHIP_ERROR;
745 		return (DDI_FAILURE);
746 	}
747 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
748 
749 	/*
750 	 * Clean the status of rx's state machine
751 	 * and Make assure the tx's channel is idle
752 	 */
753 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
754 	for (tries = 0; tries < 1000; tries++) {
755 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
756 			break;
757 		drv_usecwait(10);
758 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
759 	}
760 	if (tries == 1000) {
761 		ngep->nge_chip_state = NGE_CHIP_ERROR;
762 		return (DDI_FAILURE);
763 	}
764 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
765 
766 	/* Disable auto-poll of rx's state machine */
767 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
768 	rx_poll.poll_bits.rpen = NGE_CLEAR;
769 	rx_poll.poll_bits.rpi = NGE_CLEAR;
770 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
771 
772 	/* Disable auto-polling of tx's  state machine */
773 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
774 	tx_poll.poll_bits.tpen = NGE_CLEAR;
775 	tx_poll.poll_bits.tpi = NGE_CLEAR;
776 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
777 
778 	/* Restore buffer management */
779 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
780 	mode.mode_bits.bm_reset = NGE_SET;
781 	mode.mode_bits.tx_rcom_en = NGE_SET;
782 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
783 
784 	if (ngep->dev_spec_param.advanced_pm) {
785 
786 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
787 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
788 
789 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
790 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
791 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
792 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
793 	}
794 	if (fault)
795 		ngep->nge_chip_state = NGE_CHIP_FAULT;
796 	else
797 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
798 
799 	return (err);
800 }
801 
802 static void
803 nge_rx_setup(nge_t *ngep)
804 {
805 	uint64_t desc_addr;
806 	nge_rxtx_dlen dlen;
807 	nge_rx_poll rx_poll;
808 
809 	/*
810 	 * Filling the address and length of rx's descriptors
811 	 */
812 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
813 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
814 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
815 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
816 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
817 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
818 
819 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
820 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
821 	rx_poll.poll_bits.rpen = NGE_SET;
822 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
823 }
824 
825 static void
826 nge_tx_setup(nge_t *ngep)
827 {
828 	uint64_t desc_addr;
829 	nge_rxtx_dlen dlen;
830 
831 	/*
832 	 * Filling the address and length of tx's descriptors
833 	 */
834 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
835 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
836 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
837 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
838 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
839 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
840 }
841 
842 static int
843 nge_buff_setup(nge_t *ngep)
844 {
845 	nge_mode_cntl mode_cntl;
846 	nge_dev_spec_param_t	*dev_param_p;
847 
848 	dev_param_p = &ngep->dev_spec_param;
849 
850 	/*
851 	 * Configure Rx&Tx's buffer
852 	 */
853 	nge_rx_setup(ngep);
854 	nge_tx_setup(ngep);
855 
856 	/*
857 	 * Configure buffer attribute
858 	 */
859 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
860 
861 	/*
862 	 * Enable Dma access request
863 	 */
864 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
865 
866 	/*
867 	 * Enbale Buffer management
868 	 */
869 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
870 
871 	/*
872 	 * Support Standoffload Descriptor
873 	 */
874 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
875 
876 	/*
877 	 * Support receive hardware checksum
878 	 */
879 	if (dev_param_p->rx_hw_checksum) {
880 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
881 	} else
882 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
883 
884 	/*
885 	 * Disable Tx PRD coarse update
886 	 */
887 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
888 
889 	/*
890 	 * Disable 64-byte access
891 	 */
892 	mode_cntl.mode_bits.w64_dis = NGE_SET;
893 
894 	/*
895 	 * Skip Rx Error Frame is not supported and if
896 	 * enable it, jumbo frame does not work any more.
897 	 */
898 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
899 
900 	/*
901 	 * Can not support hot mode now
902 	 */
903 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
904 
905 	if (dev_param_p->vlan) {
906 		/* Disable the vlan strip for devices which support vlan */
907 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
908 
909 		/* Disable the vlan insert for devices which supprot vlan */
910 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
911 	}
912 
913 	if (dev_param_p->tx_rx_64byte) {
914 
915 		/* Set the maximum TX PRD fetch size to 64 bytes */
916 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
917 
918 		/* Set the maximum RX PRD fetch size to 64 bytes */
919 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
920 	}
921 	/*
922 	 * Upload Rx data as it arrives, rather than waiting for full frame
923 	 */
924 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
925 
926 	/*
927 	 * Normal HOT table accesses
928 	 */
929 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
930 
931 	/*
932 	 * Normal HOT buffer requesting
933 	 */
934 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
935 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
936 
937 	/*
938 	 * Signal controller to check for new Rx descriptors
939 	 */
940 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
941 	mode_cntl.mode_bits.rxdm = NGE_SET;
942 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
943 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
944 
945 
946 	return (DDI_SUCCESS);
947 }
948 
949 /*
950  * When chipset resets, the chipset can not restore  the orignial
951  * mac address to the mac address registers.
952  *
953  * When the driver is dettached, the function will write the orignial
954  * mac address to the mac address registers.
955  */
956 
957 void
958 nge_restore_mac_addr(nge_t *ngep)
959 {
960 	uint32_t mac_addr;
961 
962 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
963 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
964 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
965 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
966 }
967 
968 int
969 nge_chip_reset(nge_t *ngep)
970 {
971 	int err;
972 	uint8_t i;
973 	uint32_t regno;
974 	uint64_t mac = 0;
975 	nge_uni_addr1 uaddr1;
976 	nge_cp_cntl ee_cntl;
977 	nge_soft_misc soft_misc;
978 	nge_pmu_cntl0 pmu_cntl0;
979 	nge_pmu_cntl2 pmu_cntl2;
980 	nge_pm_cntl2 pm_cntl2;
981 	const nge_ksindex_t *ksip;
982 
983 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
984 
985 	/*
986 	 * Clear the statistics by reading the statistics register
987 	 */
988 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
989 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
990 		(void) nge_reg_get32(ngep, regno);
991 	}
992 
993 	/*
994 	 * Setup seeprom control
995 	 */
996 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
997 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
998 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
999 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
1000 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
1001 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
1002 
1003 	/*
1004 	 * Reading the unicast mac address table
1005 	 */
1006 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
1007 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1008 		mac = uaddr1.addr_bits.addr;
1009 		mac <<= 32;
1010 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
1011 			ngep->chipinfo.hw_mac_addr = mac;
1012 			if (ngep->dev_spec_param.mac_addr_order) {
1013 				for (i = 0; i < ETHERADDRL; i++) {
1014 					ngep->chipinfo.vendor_addr.addr[i] =
1015 					    (uchar_t)mac;
1016 					ngep->cur_uni_addr.addr[i] =
1017 					    (uchar_t)mac;
1018 					mac >>= 8;
1019 				}
1020 			} else {
1021 				for (i = ETHERADDRL; i-- != 0; ) {
1022 					ngep->chipinfo.vendor_addr.addr[i] =
1023 					    (uchar_t)mac;
1024 					ngep->cur_uni_addr.addr[i] =
1025 					    (uchar_t)mac;
1026 					mac >>= 8;
1027 				}
1028 			}
1029 			ngep->chipinfo.vendor_addr.set = 1;
1030 	}
1031 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1032 	    ngep->chipinfo.clsize);
1033 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1034 	    ngep->chipinfo.latency);
1035 
1036 
1037 	if (ngep->dev_spec_param.advanced_pm) {
1038 
1039 		/* Program software misc register */
1040 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1041 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1042 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1043 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1044 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1045 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1046 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1047 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1048 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1049 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1050 
1051 		/* wait for 32 us */
1052 		drv_usecwait(32);
1053 
1054 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1055 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1056 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1057 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1058 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1059 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1060 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1061 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1062 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1063 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1064 
1065 		/* Program PMU registers */
1066 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1067 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1068 		    NGE_PMU_CORE_SPD10_BUSY;
1069 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1070 		    NGE_PMU_CORE_SPD10_IDLE;
1071 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1072 		    NGE_PMU_CORE_SPD100_BUSY;
1073 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1074 		    NGE_PMU_CORE_SPD100_IDLE;
1075 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1076 		    NGE_PMU_CORE_SPD1000_BUSY;
1077 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1078 		    NGE_PMU_CORE_SPD100_IDLE;
1079 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1080 		    NGE_PMU_CORE_SPD10_IDLE;
1081 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1082 
1083 		/* Set the core idle limit value */
1084 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1085 		    NGE_PMU_CIDLE_LIMIT_DEF);
1086 
1087 		/* Set the device idle limit value */
1088 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1089 		    NGE_PMU_DIDLE_LIMIT_DEF);
1090 
1091 		/* Enable the core/device idle timer in PMU control 2 */
1092 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1093 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1094 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1095 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1096 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1097 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1098 	}
1099 	/*
1100 	 * Stop the chipset and clear buffer management
1101 	 */
1102 	err = nge_chip_stop(ngep, B_FALSE);
1103 	if (err == DDI_FAILURE)
1104 		return (err);
1105 	/*
1106 	 * Clear the power state bits for phy since interface no longer
1107 	 * works after rebooting from Windows on a multi-boot machine
1108 	 */
1109 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1110 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1111 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1112 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1113 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1114 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF ||
1115 	    ngep->chipinfo.device == DEVICE_ID_MCP77_760) {
1116 
1117 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1118 		/* bring phy out of coma mode */
1119 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1120 		/* disable auto reset coma bits */
1121 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1122 		/* restore power to gated clocks */
1123 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1124 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1125 	}
1126 
1127 	/*
1128 	 * Reset the external phy
1129 	 */
1130 	if (!nge_phy_reset(ngep))
1131 		return (DDI_FAILURE);
1132 	ngep->nge_chip_state = NGE_CHIP_RESET;
1133 	return (DDI_SUCCESS);
1134 }
1135 
1136 int
1137 nge_chip_start(nge_t *ngep)
1138 {
1139 	int err;
1140 	nge_itc itc;
1141 	nge_tx_cntl tx_cntl;
1142 	nge_rx_cntrl0 rx_cntl0;
1143 	nge_rx_cntl1 rx_cntl1;
1144 	nge_tx_en tx_en;
1145 	nge_rx_en rx_en;
1146 	nge_mii_cs mii_cs;
1147 	nge_swtr_cntl swtr_cntl;
1148 	nge_rx_fifo_wm rx_fifo;
1149 	nge_intr_mask intr_mask;
1150 	nge_mintr_mask mintr_mask;
1151 	nge_dev_spec_param_t	*dev_param_p;
1152 
1153 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1154 
1155 	/*
1156 	 * Setup buffer management
1157 	 */
1158 	err = nge_buff_setup(ngep);
1159 	if (err == DDI_FAILURE)
1160 		return (err);
1161 
1162 	dev_param_p = &ngep->dev_spec_param;
1163 
1164 	/*
1165 	 * Enable polling attribute
1166 	 */
1167 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1168 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1169 	mii_cs.cs_bits.ap_en = NGE_SET;
1170 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1171 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1172 
1173 	/*
1174 	 * Setup link
1175 	 */
1176 	(*ngep->physops->phys_update)(ngep);
1177 
1178 	/*
1179 	 * Configure the tx's parameters
1180 	 */
1181 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1182 	if (dev_param_p->tx_pause_frame)
1183 		tx_cntl.cntl_bits.paen = NGE_SET;
1184 	else
1185 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1186 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1187 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1188 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1189 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1190 	tx_cntl.cntl_bits.max_retry = 15;
1191 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1192 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1193 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1194 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1195 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1196 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1197 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1198 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1199 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1200 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1201 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1202 
1203 
1204 	/*
1205 	 * Configure the parameters of Rx's state machine
1206 	 * Enabe the parameters:
1207 	 * 1). Pad Strip
1208 	 * 2). FCS Relay
1209 	 * 3). Pause
1210 	 * 4). Address filter
1211 	 * 5). Runt Packet receive
1212 	 * 6). Broadcast
1213 	 * 7). Receive Deferral
1214 	 *
1215 	 * Disable the following parameters for decreasing
1216 	 * the number of interrupts:
1217 	 * 1). Runt Inerrupt.
1218 	 * 2). Rx's Late Collision interrupt.
1219 	 * 3). Rx's Max length Error Interrupt.
1220 	 * 4). Rx's Length Field error Interrupt.
1221 	 * 5). Rx's FCS error interrupt.
1222 	 * 6). Rx's overflow error interrupt.
1223 	 * 7). Rx's Frame alignment error interrupt.
1224 	 */
1225 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1226 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1227 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1228 	if (dev_param_p->rx_pause_frame)
1229 		rx_cntl0.cntl_bits.paen = NGE_SET;
1230 	else
1231 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1232 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1233 	rx_cntl0.cntl_bits.afen = NGE_SET;
1234 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1235 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1236 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1237 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1238 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1239 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1240 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1241 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1242 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1243 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1244 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1245 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1246 
1247 	/*
1248 	 * Configure the watermark for the rx's statemachine
1249 	 */
1250 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1251 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1252 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1253 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1254 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1255 
1256 	/*
1257 	 * Configure the deffer time slot for rx's state machine
1258 	 */
1259 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1260 
1261 	/*
1262 	 * Configure the length of rx's packet
1263 	 */
1264 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1265 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1266 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1267 	/*
1268 	 * Enable Tx's state machine
1269 	 */
1270 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1271 	tx_en.bits.tx_en = NGE_SET;
1272 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1273 
1274 	/*
1275 	 * Enable Rx's state machine
1276 	 */
1277 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1278 	rx_en.bits.rx_en = NGE_SET;
1279 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1280 
1281 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1282 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1283 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1284 
1285 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1286 	swtr_cntl.cntl_bits.sten = NGE_SET;
1287 	swtr_cntl.cntl_bits.stren = NGE_SET;
1288 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1289 
1290 	/*
1291 	 * Disable all mii read/write operation Interrupt
1292 	 */
1293 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1294 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1295 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1296 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1297 	mintr_mask.mask_bits.mapi = NGE_SET;
1298 	mintr_mask.mask_bits.mpdi = NGE_SET;
1299 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1300 
1301 	/*
1302 	 * Enable all interrupt event
1303 	 */
1304 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1305 	intr_mask.mask_bits.reint = NGE_SET;
1306 	intr_mask.mask_bits.rcint = NGE_SET;
1307 	intr_mask.mask_bits.miss = NGE_SET;
1308 	intr_mask.mask_bits.teint = NGE_CLEAR;
1309 	intr_mask.mask_bits.tcint = NGE_SET;
1310 	intr_mask.mask_bits.stint = NGE_CLEAR;
1311 	intr_mask.mask_bits.mint = NGE_CLEAR;
1312 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1313 	intr_mask.mask_bits.tfint = NGE_CLEAR;
1314 	intr_mask.mask_bits.feint = NGE_SET;
1315 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1316 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1317 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1318 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1319 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1320 	ngep->intr_masks = intr_mask.mask_val;
1321 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1322 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1323 	return (DDI_SUCCESS);
1324 }
1325 
1326 /*
1327  * nge_chip_sync() -- program the chip with the unicast MAC address,
1328  * the multicast hash table, the required level of promiscuity.
1329  */
1330 void
1331 nge_chip_sync(nge_t *ngep)
1332 {
1333 	uint8_t i;
1334 	uint64_t macaddr;
1335 	uint64_t mul_addr;
1336 	uint64_t mul_mask;
1337 	nge_rx_cntrl0 rx_cntl;
1338 	nge_uni_addr1 uni_adr1;
1339 
1340 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1341 
1342 	macaddr = 0x0ull;
1343 	mul_addr = 0x0ull;
1344 	mul_mask = 0x0ull;
1345 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1346 
1347 	if (ngep->promisc) {
1348 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1349 		rx_cntl.cntl_bits.brdis = NGE_SET;
1350 	} else {
1351 		rx_cntl.cntl_bits.afen = NGE_SET;
1352 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1353 	}
1354 
1355 	/*
1356 	 * Transform the MAC address from host to chip format, the unicast
1357 	 * MAC address(es) ...
1358 	 */
1359 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1360 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1361 		macaddr <<= (i > 1) ? 8 : 0;
1362 	}
1363 
1364 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1365 	macaddr = macaddr >>32;
1366 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1367 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1368 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1369 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1370 
1371 	/*
1372 	 * Reprogram the  multicast address table ...
1373 	 */
1374 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1375 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1376 		mul_addr <<= (i > 1) ? 8 : 0;
1377 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1378 		mul_mask <<= (i > 1) ? 8 : 0;
1379 	}
1380 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1381 	mul_addr >>= 32;
1382 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1383 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1384 	mul_mask >>= 32;
1385 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1386 	/*
1387 	 * Set or clear the PROMISCUOUS mode bit
1388 	 */
1389 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1390 	/*
1391 	 * For internal PHY loopback, the link will
1392 	 * not be up, so it need to sync mac modes directly.
1393 	 */
1394 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1395 		nge_sync_mac_modes(ngep);
1396 }
1397 
1398 static void
1399 nge_chip_err(nge_t *ngep)
1400 {
1401 	nge_reg010 reg010_ins;
1402 	nge_sw_statistics_t *psw_stat;
1403 	nge_intr_mask intr_mask;
1404 
1405 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1406 
1407 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1408 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1409 	if (reg010_ins.reg010_bits.resv0)
1410 		psw_stat->fe_err.tso_err_mss ++;
1411 
1412 	if (reg010_ins.reg010_bits.resv1)
1413 		psw_stat->fe_err.tso_dis ++;
1414 
1415 	if (reg010_ins.reg010_bits.resv2)
1416 		psw_stat->fe_err.tso_err_nosum ++;
1417 
1418 	if (reg010_ins.reg010_bits.resv3)
1419 		psw_stat->fe_err.tso_err_hov ++;
1420 
1421 	if (reg010_ins.reg010_bits.resv4)
1422 		psw_stat->fe_err.tso_err_huf ++;
1423 
1424 	if (reg010_ins.reg010_bits.resv5)
1425 		psw_stat->fe_err.tso_err_l2 ++;
1426 
1427 	if (reg010_ins.reg010_bits.resv6)
1428 		psw_stat->fe_err.tso_err_ip ++;
1429 
1430 	if (reg010_ins.reg010_bits.resv7)
1431 		psw_stat->fe_err.tso_err_l4 ++;
1432 
1433 	if (reg010_ins.reg010_bits.resv8)
1434 		psw_stat->fe_err.tso_err_tcp ++;
1435 
1436 	if (reg010_ins.reg010_bits.resv9)
1437 		psw_stat->fe_err.hsum_err_ip ++;
1438 
1439 	if (reg010_ins.reg010_bits.resv10)
1440 		psw_stat->fe_err.hsum_err_l4 ++;
1441 
1442 	if (reg010_ins.reg010_val != 0) {
1443 
1444 		/*
1445 		 * Fatal error is triggered by malformed driver commands.
1446 		 * Disable unless debugging.
1447 		 */
1448 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1449 		intr_mask.mask_bits.feint = NGE_CLEAR;
1450 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1451 		ngep->intr_masks = intr_mask.mask_val;
1452 
1453 	}
1454 }
1455 
1456 static void
1457 nge_sync_mac_modes(nge_t *ngep)
1458 {
1459 	nge_tx_def tx_def;
1460 	nge_tx_fifo_wm tx_fifo;
1461 	nge_bkoff_cntl bk_cntl;
1462 	nge_mac2phy m2p;
1463 	nge_rx_cntrl0 rx_cntl0;
1464 	nge_dev_spec_param_t	*dev_param_p;
1465 
1466 	dev_param_p = &ngep->dev_spec_param;
1467 
1468 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1469 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1470 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1471 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1472 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1473 	switch (ngep->param_link_speed) {
1474 	case 10:
1475 		m2p.m2p_bits.speed = low_speed;
1476 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1477 		if (ngep->phy_mode == RGMII_IN) {
1478 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1479 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1480 		} else {
1481 			tx_def.def_bits.if_def = TX_TIFG_MII;
1482 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1483 		}
1484 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1485 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1486 		break;
1487 
1488 	case 100:
1489 		m2p.m2p_bits.speed = fast_speed;
1490 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1491 		if (ngep->phy_mode == RGMII_IN) {
1492 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1493 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1494 		} else {
1495 			tx_def.def_bits.if_def = TX_TIFG_MII;
1496 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1497 		}
1498 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1499 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1500 		break;
1501 
1502 	case 1000:
1503 		m2p.m2p_bits.speed = giga_speed;
1504 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1505 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1506 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1507 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1508 		} else {
1509 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1510 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1511 		}
1512 
1513 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1514 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1515 		break;
1516 	}
1517 
1518 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1519 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1520 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1521 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1522 	}
1523 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1524 		m2p.m2p_bits.hdup_en = NGE_SET;
1525 	}
1526 	else
1527 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1528 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1529 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1530 
1531 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1532 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1533 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1534 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1535 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1536 
1537 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1538 
1539 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1540 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame)
1541 		rx_cntl0.cntl_bits.paen = NGE_SET;
1542 	else
1543 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1544 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1545 }
1546 
1547 /*
1548  * Handler for hardware link state change.
1549  *
1550  * When this routine is called, the hardware link state has changed
1551  * and the new state is reflected in the param_* variables.  Here
1552  * we must update the softstate, reprogram the MAC to match, and
1553  * record the change in the log and/or on the console.
1554  */
1555 static void
1556 nge_factotum_link_handler(nge_t *ngep)
1557 {
1558 	/*
1559 	 * Update the s/w link_state
1560 	 */
1561 	if (ngep->param_link_up)
1562 		ngep->link_state = LINK_STATE_UP;
1563 	else
1564 		ngep->link_state = LINK_STATE_DOWN;
1565 
1566 	/*
1567 	 * Reprogram the MAC modes to match
1568 	 */
1569 	nge_sync_mac_modes(ngep);
1570 }
1571 
1572 static boolean_t
1573 nge_factotum_link_check(nge_t *ngep)
1574 {
1575 	boolean_t lchg;
1576 	boolean_t check;
1577 
1578 	ASSERT(mutex_owned(ngep->genlock));
1579 
1580 	(*ngep->physops->phys_check)(ngep);
1581 	switch (ngep->link_state) {
1582 	case LINK_STATE_UP:
1583 		lchg = (ngep->param_link_up == B_FALSE);
1584 		check = (ngep->param_link_up == B_FALSE);
1585 		break;
1586 
1587 	case LINK_STATE_DOWN:
1588 		lchg = (ngep->param_link_up == B_TRUE);
1589 		check = (ngep->param_link_up == B_TRUE);
1590 		break;
1591 
1592 	default:
1593 		check = B_TRUE;
1594 		break;
1595 	}
1596 
1597 	/*
1598 	 * If <check> is false, we're sure the link hasn't changed.
1599 	 * If true, however, it's not yet definitive; we have to call
1600 	 * nge_phys_check() to determine whether the link has settled
1601 	 * into a new state yet ... and if it has, then call the link
1602 	 * state change handler.But when the chip is 5700 in Dell 6650
1603 	 * ,even if check is false, the link may have changed.So we
1604 	 * have to call nge_phys_check() to determine the link state.
1605 	 */
1606 	if (check)
1607 		nge_factotum_link_handler(ngep);
1608 
1609 	return (lchg);
1610 }
1611 
1612 /*
1613  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1614  */
1615 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1616 
1617 static boolean_t
1618 nge_factotum_stall_check(nge_t *ngep)
1619 {
1620 	uint32_t dogval;
1621 	/*
1622 	 * Specific check for Tx stall ...
1623 	 *
1624 	 * The 'watchdog' counter is incremented whenever a packet
1625 	 * is queued, reset to 1 when some (but not all) buffers
1626 	 * are reclaimed, reset to 0 (disabled) when all buffers
1627 	 * are reclaimed, and shifted left here.  If it exceeds the
1628 	 * threshold value, the chip is assumed to have stalled and
1629 	 * is put into the ERROR state.  The factotum will then reset
1630 	 * it on the next pass.
1631 	 *
1632 	 * All of which should ensure that we don't get into a state
1633 	 * where packets are left pending indefinitely!
1634 	 */
1635 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1636 	if (dogval < nge_watchdog_count) {
1637 		ngep->stall_cknum = 0;
1638 	} else {
1639 		ngep->stall_cknum++;
1640 	}
1641 	if (ngep->stall_cknum < 16) {
1642 		return (B_FALSE);
1643 	} else {
1644 		ngep->stall_cknum = 0;
1645 		ngep->statistics.sw_statistics.tx_stall++;
1646 		return (B_TRUE);
1647 	}
1648 }
1649 
1650 
1651 
1652 /*
1653  * The factotum is woken up when there's something to do that we'd rather
1654  * not do from inside a hardware interrupt handler or high-level cyclic.
1655  * Its two main tasks are:
1656  *	reset & restart the chip after an error
1657  *	check the link status whenever necessary
1658  */
1659 /* ARGSUSED */
1660 uint_t
1661 nge_chip_factotum(caddr_t args1, caddr_t args2)
1662 {
1663 	uint_t result;
1664 	nge_t *ngep;
1665 	boolean_t err;
1666 	boolean_t linkchg;
1667 
1668 	ngep = (nge_t *)args1;
1669 
1670 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1671 
1672 	mutex_enter(ngep->softlock);
1673 	if (ngep->factotum_flag == 0) {
1674 		mutex_exit(ngep->softlock);
1675 		return (DDI_INTR_UNCLAIMED);
1676 	}
1677 	ngep->factotum_flag = 0;
1678 	mutex_exit(ngep->softlock);
1679 	err = B_FALSE;
1680 	linkchg = B_FALSE;
1681 	result = DDI_INTR_CLAIMED;
1682 
1683 	mutex_enter(ngep->genlock);
1684 	switch (ngep->nge_chip_state) {
1685 	default:
1686 		break;
1687 
1688 	case NGE_CHIP_RUNNING:
1689 		linkchg = nge_factotum_link_check(ngep);
1690 		err = nge_factotum_stall_check(ngep);
1691 		break;
1692 
1693 	case NGE_CHIP_FAULT:
1694 		(void) nge_restart(ngep);
1695 		NGE_REPORT((ngep, "automatic recovery activated"));
1696 		break;
1697 	}
1698 
1699 	if (err)
1700 		(void) nge_chip_stop(ngep, B_TRUE);
1701 	mutex_exit(ngep->genlock);
1702 
1703 	/*
1704 	 * If the link state changed, tell the world about it (if
1705 	 * this version of MAC supports link state notification).
1706 	 * Note: can't do this while still holding the mutex.
1707 	 */
1708 	if (linkchg)
1709 		mac_link_update(ngep->mh, ngep->link_state);
1710 
1711 	return (result);
1712 
1713 }
1714 
1715 static void
1716 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1717 {
1718 	boolean_t brx;
1719 	boolean_t btx;
1720 	nge_mintr_src mintr_src;
1721 
1722 	brx = B_FALSE;
1723 	btx = B_FALSE;
1724 	ngep->statistics.sw_statistics.intr_count++;
1725 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1726 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1727 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1728 	    != 0 ? B_TRUE : B_FALSE;
1729 	if (pintr_src->int_bits.reint)
1730 		ngep->statistics.sw_statistics.rx_err++;
1731 	if (pintr_src->int_bits.miss)
1732 		ngep->statistics.sw_statistics.rx_nobuffer++;
1733 
1734 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tcint)
1735 	    != 0 ? B_TRUE : B_FALSE;
1736 	if (pintr_src->int_bits.stint && ngep->poll)
1737 		ngep->stint_count ++;
1738 	if (ngep->poll && (ngep->stint_count % ngep->param_tx_n_intr == 0))
1739 		btx = B_TRUE;
1740 	if (btx)
1741 		nge_tx_recycle(ngep, B_TRUE);
1742 	if (brx)
1743 		nge_receive(ngep);
1744 	if (pintr_src->int_bits.teint)
1745 		ngep->statistics.sw_statistics.tx_stop_err++;
1746 	if (ngep->intr_moderation && brx) {
1747 		if (ngep->poll) {
1748 			if (ngep->recv_count < ngep->param_rx_intr_hwater) {
1749 				ngep->quiet_time++;
1750 				if (ngep->quiet_time ==
1751 				    ngep->param_poll_quiet_time) {
1752 					ngep->poll = B_FALSE;
1753 					ngep->quiet_time = 0;
1754 					ngep->stint_count = 0;
1755 					nge_tx_recycle(ngep, B_TRUE);
1756 				}
1757 			} else
1758 				ngep->quiet_time = 0;
1759 		} else {
1760 			if (ngep->recv_count > ngep->param_rx_intr_lwater) {
1761 				ngep->busy_time++;
1762 				if (ngep->busy_time ==
1763 				    ngep->param_poll_busy_time) {
1764 					ngep->poll = B_TRUE;
1765 					ngep->busy_time = 0;
1766 				}
1767 			} else
1768 				ngep->busy_time = 0;
1769 		}
1770 	}
1771 	ngep->recv_count = 0;
1772 	if (pintr_src->int_bits.feint)
1773 		nge_chip_err(ngep);
1774 	/* link interrupt, check the link state */
1775 	if (pintr_src->int_bits.mint) {
1776 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1777 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1778 		nge_wake_factotum(ngep);
1779 	}
1780 }
1781 
1782 /*
1783  *	nge_chip_intr() -- handle chip interrupts
1784  */
1785 /* ARGSUSED */
1786 uint_t
1787 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1788 {
1789 	nge_t *ngep = (nge_t *)arg1;
1790 	nge_intr_src intr_src;
1791 	nge_intr_mask intr_mask;
1792 
1793 	mutex_enter(ngep->genlock);
1794 
1795 	if (ngep->suspended) {
1796 		mutex_exit(ngep->genlock);
1797 		return (DDI_INTR_UNCLAIMED);
1798 	}
1799 
1800 	/*
1801 	 * Check whether chip's says it's asserting #INTA;
1802 	 * if not, don't process or claim the interrupt.
1803 	 */
1804 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1805 	if (intr_src.intr_val == 0) {
1806 		mutex_exit(ngep->genlock);
1807 		return (DDI_INTR_UNCLAIMED);
1808 	}
1809 	/*
1810 	 * Ack the interrupt
1811 	 */
1812 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1813 
1814 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1815 		mutex_exit(ngep->genlock);
1816 		return (DDI_INTR_CLAIMED);
1817 	}
1818 	nge_intr_handle(ngep, &intr_src);
1819 	if (ngep->poll && !ngep->ch_intr_mode) {
1820 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1821 		intr_mask.mask_bits.stint = NGE_SET;
1822 		intr_mask.mask_bits.rcint = NGE_CLEAR;
1823 		intr_mask.mask_bits.reint = NGE_CLEAR;
1824 		intr_mask.mask_bits.tcint = NGE_CLEAR;
1825 		intr_mask.mask_bits.teint = NGE_CLEAR;
1826 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1827 		ngep->ch_intr_mode = B_TRUE;
1828 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1829 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1830 		ngep->ch_intr_mode = B_FALSE;
1831 	}
1832 	mutex_exit(ngep->genlock);
1833 	return (DDI_INTR_CLAIMED);
1834 }
1835 
1836 static enum ioc_reply
1837 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1838 {
1839 	int err;
1840 	uint64_t sizemask;
1841 	uint64_t mem_va;
1842 	uint64_t maxoff;
1843 	boolean_t peek;
1844 	nge_peekpoke_t *ppd;
1845 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1846 
1847 	switch (cmd) {
1848 	default:
1849 		return (IOC_INVAL);
1850 
1851 	case NGE_PEEK:
1852 		peek = B_TRUE;
1853 		break;
1854 
1855 	case NGE_POKE:
1856 		peek = B_FALSE;
1857 		break;
1858 	}
1859 
1860 	/*
1861 	 * Validate format of ioctl
1862 	 */
1863 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1864 		return (IOC_INVAL);
1865 	if (mp->b_cont == NULL)
1866 		return (IOC_INVAL);
1867 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1868 
1869 	/*
1870 	 * Validate request parameters
1871 	 */
1872 	switch (ppd->pp_acc_space) {
1873 	default:
1874 		return (IOC_INVAL);
1875 
1876 	case NGE_PP_SPACE_CFG:
1877 		/*
1878 		 * Config space
1879 		 */
1880 		sizemask = 8|4|2|1;
1881 		mem_va = 0;
1882 		maxoff = PCI_CONF_HDR_SIZE;
1883 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1884 		break;
1885 
1886 	case NGE_PP_SPACE_REG:
1887 		/*
1888 		 * Memory-mapped I/O space
1889 		 */
1890 		sizemask = 8|4|2|1;
1891 		mem_va = 0;
1892 		maxoff = NGE_REG_SIZE;
1893 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1894 		break;
1895 
1896 	case NGE_PP_SPACE_MII:
1897 		sizemask = 4|2|1;
1898 		mem_va = 0;
1899 		maxoff = NGE_MII_SIZE;
1900 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1901 		break;
1902 
1903 	case NGE_PP_SPACE_SEEPROM:
1904 		sizemask = 4|2|1;
1905 		mem_va = 0;
1906 		maxoff = NGE_SEEROM_SIZE;
1907 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1908 		break;
1909 	}
1910 
1911 	switch (ppd->pp_acc_size) {
1912 	default:
1913 		return (IOC_INVAL);
1914 
1915 	case 8:
1916 	case 4:
1917 	case 2:
1918 	case 1:
1919 		if ((ppd->pp_acc_size & sizemask) == 0)
1920 			return (IOC_INVAL);
1921 		break;
1922 	}
1923 
1924 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1925 		return (IOC_INVAL);
1926 
1927 	if (ppd->pp_acc_offset >= maxoff)
1928 		return (IOC_INVAL);
1929 
1930 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1931 		return (IOC_INVAL);
1932 
1933 	/*
1934 	 * All OK - go do it!
1935 	 */
1936 	ppd->pp_acc_offset += mem_va;
1937 	if (ppfn)
1938 		err = (*ppfn)(ngep, ppd);
1939 	if (err != DDI_SUCCESS)
1940 		return (IOC_INVAL);
1941 	return (peek ? IOC_REPLY : IOC_ACK);
1942 }
1943 
1944 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1945 					struct iocblk *iocp);
1946 #pragma	no_inline(nge_diag_ioctl)
1947 
1948 static enum ioc_reply
1949 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1950 {
1951 	ASSERT(mutex_owned(ngep->genlock));
1952 
1953 	switch (cmd) {
1954 	default:
1955 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1956 		return (IOC_INVAL);
1957 
1958 	case NGE_DIAG:
1959 		return (IOC_ACK);
1960 
1961 	case NGE_PEEK:
1962 	case NGE_POKE:
1963 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1964 
1965 	case NGE_PHY_RESET:
1966 		return (IOC_RESTART_ACK);
1967 
1968 	case NGE_SOFT_RESET:
1969 	case NGE_HARD_RESET:
1970 		return (IOC_ACK);
1971 	}
1972 
1973 	/* NOTREACHED */
1974 }
1975 
1976 enum ioc_reply
1977 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1978 {
1979 	int cmd;
1980 
1981 	ASSERT(mutex_owned(ngep->genlock));
1982 
1983 	cmd = iocp->ioc_cmd;
1984 
1985 	switch (cmd) {
1986 	default:
1987 		return (IOC_INVAL);
1988 
1989 	case NGE_DIAG:
1990 	case NGE_PEEK:
1991 	case NGE_POKE:
1992 	case NGE_PHY_RESET:
1993 	case NGE_SOFT_RESET:
1994 	case NGE_HARD_RESET:
1995 #if	NGE_DEBUGGING
1996 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
1997 #else
1998 		return (IOC_INVAL);
1999 #endif
2000 
2001 	case NGE_MII_READ:
2002 	case NGE_MII_WRITE:
2003 		return (IOC_INVAL);
2004 
2005 #if	NGE_SEE_IO32
2006 	case NGE_SEE_READ:
2007 	case NGE_SEE_WRITE:
2008 		return (IOC_INVAL);
2009 #endif
2010 
2011 #if	NGE_FLASH_IO32
2012 	case NGE_FLASH_READ:
2013 	case NGE_FLASH_WRITE:
2014 		return (IOC_INVAL);
2015 #endif
2016 	}
2017 }
2018