xref: /titanic_50/usr/src/uts/common/io/mac/mac_util.c (revision 6ba597c56d749c61b4f783157f63196d7b2445f0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * MAC Services Module - misc utilities
28  */
29 
30 #include <sys/types.h>
31 #include <sys/mac.h>
32 #include <sys/mac_impl.h>
33 #include <sys/mac_client_priv.h>
34 #include <sys/mac_client_impl.h>
35 #include <sys/mac_soft_ring.h>
36 #include <sys/strsubr.h>
37 #include <sys/strsun.h>
38 #include <sys/vlan.h>
39 #include <sys/pattr.h>
40 #include <sys/pci_tools.h>
41 #include <inet/ip.h>
42 #include <inet/ip_impl.h>
43 #include <inet/ip6.h>
44 #include <sys/vtrace.h>
45 #include <sys/dlpi.h>
46 #include <sys/sunndi.h>
47 #include <inet/ipsec_impl.h>
48 #include <inet/sadb.h>
49 #include <inet/ipsecesp.h>
50 #include <inet/ipsecah.h>
51 
52 /*
53  * Copy an mblk, preserving its hardware checksum flags.
54  */
55 static mblk_t *
56 mac_copymsg_cksum(mblk_t *mp)
57 {
58 	mblk_t *mp1;
59 	uint32_t start, stuff, end, value, flags;
60 
61 	mp1 = copymsg(mp);
62 	if (mp1 == NULL)
63 		return (NULL);
64 
65 	hcksum_retrieve(mp, NULL, NULL, &start, &stuff, &end, &value, &flags);
66 	(void) hcksum_assoc(mp1, NULL, NULL, start, stuff, end, value,
67 	    flags, KM_NOSLEEP);
68 
69 	return (mp1);
70 }
71 
72 /*
73  * Copy an mblk chain, presenting the hardware checksum flags of the
74  * individual mblks.
75  */
76 mblk_t *
77 mac_copymsgchain_cksum(mblk_t *mp)
78 {
79 	mblk_t *nmp = NULL;
80 	mblk_t **nmpp = &nmp;
81 
82 	for (; mp != NULL; mp = mp->b_next) {
83 		if ((*nmpp = mac_copymsg_cksum(mp)) == NULL) {
84 			freemsgchain(nmp);
85 			return (NULL);
86 		}
87 
88 		nmpp = &((*nmpp)->b_next);
89 	}
90 
91 	return (nmp);
92 }
93 
94 /*
95  * Process the specified mblk chain for proper handling of hardware
96  * checksum offload. This routine is invoked for loopback traffic
97  * between MAC clients.
98  * The function handles a NULL mblk chain passed as argument.
99  */
100 mblk_t *
101 mac_fix_cksum(mblk_t *mp_chain)
102 {
103 	mblk_t *mp, *prev = NULL, *new_chain = mp_chain, *mp1;
104 	uint32_t flags, start, stuff, end, value;
105 
106 	for (mp = mp_chain; mp != NULL; prev = mp, mp = mp->b_next) {
107 		uint16_t len;
108 		uint32_t offset;
109 		struct ether_header *ehp;
110 		uint16_t sap;
111 
112 		hcksum_retrieve(mp, NULL, NULL, &start, &stuff, &end, &value,
113 		    &flags);
114 		if (flags == 0)
115 			continue;
116 
117 		/*
118 		 * Since the processing of checksum offload for loopback
119 		 * traffic requires modification of the packet contents,
120 		 * ensure sure that we are always modifying our own copy.
121 		 */
122 		if (DB_REF(mp) > 1) {
123 			mp1 = copymsg(mp);
124 			if (mp1 == NULL)
125 				continue;
126 			mp1->b_next = mp->b_next;
127 			mp->b_next = NULL;
128 			freemsg(mp);
129 			if (prev != NULL)
130 				prev->b_next = mp1;
131 			else
132 				new_chain = mp1;
133 			mp = mp1;
134 		}
135 
136 		/*
137 		 * Ethernet, and optionally VLAN header.
138 		 */
139 		/* LINTED: improper alignment cast */
140 		ehp = (struct ether_header *)mp->b_rptr;
141 		if (ntohs(ehp->ether_type) == VLAN_TPID) {
142 			struct ether_vlan_header *evhp;
143 
144 			ASSERT(MBLKL(mp) >= sizeof (struct ether_vlan_header));
145 			/* LINTED: improper alignment cast */
146 			evhp = (struct ether_vlan_header *)mp->b_rptr;
147 			sap = ntohs(evhp->ether_type);
148 			offset = sizeof (struct ether_vlan_header);
149 		} else {
150 			sap = ntohs(ehp->ether_type);
151 			offset = sizeof (struct ether_header);
152 		}
153 
154 		if (MBLKL(mp) <= offset) {
155 			offset -= MBLKL(mp);
156 			if (mp->b_cont == NULL) {
157 				/* corrupted packet, skip it */
158 				if (prev != NULL)
159 					prev->b_next = mp->b_next;
160 				else
161 					new_chain = mp->b_next;
162 				mp1 = mp->b_next;
163 				mp->b_next = NULL;
164 				freemsg(mp);
165 				mp = mp1;
166 				continue;
167 			}
168 			mp = mp->b_cont;
169 		}
170 
171 		if (flags & (HCK_FULLCKSUM | HCK_IPV4_HDRCKSUM)) {
172 			ipha_t *ipha = NULL;
173 
174 			/*
175 			 * In order to compute the full and header
176 			 * checksums, we need to find and parse
177 			 * the IP and/or ULP headers.
178 			 */
179 
180 			sap = (sap < ETHERTYPE_802_MIN) ? 0 : sap;
181 
182 			/*
183 			 * IP header.
184 			 */
185 			if (sap != ETHERTYPE_IP)
186 				continue;
187 
188 			ASSERT(MBLKL(mp) >= offset + sizeof (ipha_t));
189 			/* LINTED: improper alignment cast */
190 			ipha = (ipha_t *)(mp->b_rptr + offset);
191 
192 			if (flags & HCK_FULLCKSUM) {
193 				ipaddr_t src, dst;
194 				uint32_t cksum;
195 				uint16_t *up;
196 				uint8_t proto;
197 
198 				/*
199 				 * Pointer to checksum field in ULP header.
200 				 */
201 				proto = ipha->ipha_protocol;
202 				ASSERT(ipha->ipha_version_and_hdr_length ==
203 				    IP_SIMPLE_HDR_VERSION);
204 
205 				switch (proto) {
206 				case IPPROTO_TCP:
207 					/* LINTED: improper alignment cast */
208 					up = IPH_TCPH_CHECKSUMP(ipha,
209 					    IP_SIMPLE_HDR_LENGTH);
210 					break;
211 
212 				case IPPROTO_UDP:
213 					/* LINTED: improper alignment cast */
214 					up = IPH_UDPH_CHECKSUMP(ipha,
215 					    IP_SIMPLE_HDR_LENGTH);
216 					break;
217 
218 				default:
219 					cmn_err(CE_WARN, "mac_fix_cksum: "
220 					    "unexpected protocol: %d", proto);
221 					continue;
222 				}
223 
224 				/*
225 				 * Pseudo-header checksum.
226 				 */
227 				src = ipha->ipha_src;
228 				dst = ipha->ipha_dst;
229 				len = ntohs(ipha->ipha_length) -
230 				    IP_SIMPLE_HDR_LENGTH;
231 
232 				cksum = (dst >> 16) + (dst & 0xFFFF) +
233 				    (src >> 16) + (src & 0xFFFF);
234 				cksum += htons(len);
235 
236 				/*
237 				 * The checksum value stored in the packet needs
238 				 * to be correct. Compute it here.
239 				 */
240 				*up = 0;
241 				cksum += (((proto) == IPPROTO_UDP) ?
242 				    IP_UDP_CSUM_COMP : IP_TCP_CSUM_COMP);
243 				cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH +
244 				    offset, cksum);
245 				*(up) = (uint16_t)(cksum ? cksum : ~cksum);
246 
247 				flags |= HCK_FULLCKSUM_OK;
248 				value = 0xffff;
249 			}
250 
251 			if (flags & HCK_IPV4_HDRCKSUM) {
252 				ASSERT(ipha != NULL);
253 				ipha->ipha_hdr_checksum =
254 				    (uint16_t)ip_csum_hdr(ipha);
255 			}
256 		}
257 
258 		if (flags & HCK_PARTIALCKSUM) {
259 			uint16_t *up, partial, cksum;
260 			uchar_t *ipp; /* ptr to beginning of IP header */
261 
262 			if (mp->b_cont != NULL) {
263 				mblk_t *mp1;
264 
265 				mp1 = msgpullup(mp, offset + end);
266 				if (mp1 == NULL)
267 					continue;
268 				mp1->b_next = mp->b_next;
269 				mp->b_next = NULL;
270 				freemsg(mp);
271 				if (prev != NULL)
272 					prev->b_next = mp1;
273 				else
274 					new_chain = mp1;
275 				mp = mp1;
276 			}
277 
278 			ipp = mp->b_rptr + offset;
279 			/* LINTED: cast may result in improper alignment */
280 			up = (uint16_t *)((uchar_t *)ipp + stuff);
281 			partial = *up;
282 			*up = 0;
283 
284 			cksum = IP_BCSUM_PARTIAL(mp->b_rptr + offset + start,
285 			    end - start, partial);
286 			cksum = ~cksum;
287 			*up = cksum ? cksum : ~cksum;
288 
289 			/*
290 			 * Since we already computed the whole checksum,
291 			 * indicate to the stack that it has already
292 			 * been verified by the hardware.
293 			 */
294 			flags &= ~HCK_PARTIALCKSUM;
295 			flags |= (HCK_FULLCKSUM | HCK_FULLCKSUM_OK);
296 			value = 0xffff;
297 		}
298 
299 		(void) hcksum_assoc(mp, NULL, NULL, start, stuff, end,
300 		    value, flags, KM_NOSLEEP);
301 	}
302 
303 	return (new_chain);
304 }
305 
306 /*
307  * Add VLAN tag to the specified mblk.
308  */
309 mblk_t *
310 mac_add_vlan_tag(mblk_t *mp, uint_t pri, uint16_t vid)
311 {
312 	mblk_t *hmp;
313 	struct ether_vlan_header *evhp;
314 	struct ether_header *ehp;
315 	uint32_t start, stuff, end, value, flags;
316 
317 	ASSERT(pri != 0 || vid != 0);
318 
319 	/*
320 	 * Allocate an mblk for the new tagged ethernet header,
321 	 * and copy the MAC addresses and ethertype from the
322 	 * original header.
323 	 */
324 
325 	hmp = allocb(sizeof (struct ether_vlan_header), BPRI_MED);
326 	if (hmp == NULL) {
327 		freemsg(mp);
328 		return (NULL);
329 	}
330 
331 	evhp = (struct ether_vlan_header *)hmp->b_rptr;
332 	ehp = (struct ether_header *)mp->b_rptr;
333 
334 	bcopy(ehp, evhp, (ETHERADDRL * 2));
335 	evhp->ether_type = ehp->ether_type;
336 	evhp->ether_tpid = htons(ETHERTYPE_VLAN);
337 
338 	hmp->b_wptr += sizeof (struct ether_vlan_header);
339 	mp->b_rptr += sizeof (struct ether_header);
340 
341 	/*
342 	 * Free the original message if it's now empty. Link the
343 	 * rest of messages to the header message.
344 	 */
345 	hcksum_retrieve(mp, NULL, NULL, &start, &stuff, &end, &value, &flags);
346 	(void) hcksum_assoc(hmp, NULL, NULL, start, stuff, end, value, flags,
347 	    KM_NOSLEEP);
348 	if (MBLKL(mp) == 0) {
349 		hmp->b_cont = mp->b_cont;
350 		freeb(mp);
351 	} else {
352 		hmp->b_cont = mp;
353 	}
354 	ASSERT(MBLKL(hmp) >= sizeof (struct ether_vlan_header));
355 
356 	/*
357 	 * Initialize the new TCI (Tag Control Information).
358 	 */
359 	evhp->ether_tci = htons(VLAN_TCI(pri, 0, vid));
360 
361 	return (hmp);
362 }
363 
364 /*
365  * Adds a VLAN tag with the specified VID and priority to each mblk of
366  * the specified chain.
367  */
368 mblk_t *
369 mac_add_vlan_tag_chain(mblk_t *mp_chain, uint_t pri, uint16_t vid)
370 {
371 	mblk_t *next_mp, **prev, *mp;
372 
373 	mp = mp_chain;
374 	prev = &mp_chain;
375 
376 	while (mp != NULL) {
377 		next_mp = mp->b_next;
378 		mp->b_next = NULL;
379 		if ((mp = mac_add_vlan_tag(mp, pri, vid)) == NULL) {
380 			freemsgchain(next_mp);
381 			break;
382 		}
383 		*prev = mp;
384 		prev = &mp->b_next;
385 		mp = mp->b_next = next_mp;
386 	}
387 
388 	return (mp_chain);
389 }
390 
391 /*
392  * Strip VLAN tag
393  */
394 mblk_t *
395 mac_strip_vlan_tag(mblk_t *mp)
396 {
397 	mblk_t *newmp;
398 	struct ether_vlan_header *evhp;
399 
400 	evhp = (struct ether_vlan_header *)mp->b_rptr;
401 	if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) {
402 		ASSERT(MBLKL(mp) >= sizeof (struct ether_vlan_header));
403 
404 		if (DB_REF(mp) > 1) {
405 			newmp = copymsg(mp);
406 			if (newmp == NULL)
407 				return (NULL);
408 			freemsg(mp);
409 			mp = newmp;
410 		}
411 
412 		evhp = (struct ether_vlan_header *)mp->b_rptr;
413 
414 		ovbcopy(mp->b_rptr, mp->b_rptr + VLAN_TAGSZ, 2 * ETHERADDRL);
415 		mp->b_rptr += VLAN_TAGSZ;
416 	}
417 	return (mp);
418 }
419 
420 /*
421  * Strip VLAN tag from each mblk of the chain.
422  */
423 mblk_t *
424 mac_strip_vlan_tag_chain(mblk_t *mp_chain)
425 {
426 	mblk_t *mp, *next_mp, **prev;
427 
428 	mp = mp_chain;
429 	prev = &mp_chain;
430 
431 	while (mp != NULL) {
432 		next_mp = mp->b_next;
433 		mp->b_next = NULL;
434 		if ((mp = mac_strip_vlan_tag(mp)) == NULL) {
435 			freemsgchain(next_mp);
436 			break;
437 		}
438 		*prev = mp;
439 		prev = &mp->b_next;
440 		mp = mp->b_next = next_mp;
441 	}
442 
443 	return (mp_chain);
444 }
445 
446 /*
447  * Default callback function. Used when the datapath is not yet initialized.
448  */
449 /* ARGSUSED */
450 void
451 mac_pkt_drop(void *arg, mac_resource_handle_t resource, mblk_t *mp,
452     boolean_t loopback)
453 {
454 	mblk_t	*mp1 = mp;
455 
456 	while (mp1 != NULL) {
457 		mp1->b_prev = NULL;
458 		mp1->b_queue = NULL;
459 		mp1 = mp1->b_next;
460 	}
461 	freemsgchain(mp);
462 }
463 
464 /*
465  * Determines the IPv6 header length accounting for all the optional IPv6
466  * headers (hop-by-hop, destination, routing and fragment). The header length
467  * and next header value (a transport header) is captured.
468  *
469  * Returns B_FALSE if all the IP headers are not in the same mblk otherwise
470  * returns B_TRUE.
471  */
472 boolean_t
473 mac_ip_hdr_length_v6(mblk_t *mp, ip6_t *ip6h, uint16_t *hdr_length,
474     uint8_t *next_hdr, boolean_t *ip_fragmented, uint32_t *ip_frag_ident)
475 {
476 	uint16_t length;
477 	uint_t	ehdrlen;
478 	uint8_t *whereptr;
479 	uint8_t *endptr;
480 	uint8_t *nexthdrp;
481 	ip6_dest_t *desthdr;
482 	ip6_rthdr_t *rthdr;
483 	ip6_frag_t *fraghdr;
484 
485 	endptr = mp->b_wptr;
486 	if (((uchar_t *)ip6h + IPV6_HDR_LEN) > endptr)
487 		return (B_FALSE);
488 	ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION);
489 	length = IPV6_HDR_LEN;
490 	whereptr = ((uint8_t *)&ip6h[1]); /* point to next hdr */
491 
492 	if (ip_fragmented != NULL)
493 		*ip_fragmented = B_FALSE;
494 
495 	nexthdrp = &ip6h->ip6_nxt;
496 	while (whereptr < endptr) {
497 		/* Is there enough left for len + nexthdr? */
498 		if (whereptr + MIN_EHDR_LEN > endptr)
499 			break;
500 
501 		switch (*nexthdrp) {
502 		case IPPROTO_HOPOPTS:
503 		case IPPROTO_DSTOPTS:
504 			/* Assumes the headers are identical for hbh and dst */
505 			desthdr = (ip6_dest_t *)whereptr;
506 			ehdrlen = 8 * (desthdr->ip6d_len + 1);
507 			if ((uchar_t *)desthdr +  ehdrlen > endptr)
508 				return (B_FALSE);
509 			nexthdrp = &desthdr->ip6d_nxt;
510 			break;
511 		case IPPROTO_ROUTING:
512 			rthdr = (ip6_rthdr_t *)whereptr;
513 			ehdrlen =  8 * (rthdr->ip6r_len + 1);
514 			if ((uchar_t *)rthdr +  ehdrlen > endptr)
515 				return (B_FALSE);
516 			nexthdrp = &rthdr->ip6r_nxt;
517 			break;
518 		case IPPROTO_FRAGMENT:
519 			fraghdr = (ip6_frag_t *)whereptr;
520 			ehdrlen = sizeof (ip6_frag_t);
521 			if ((uchar_t *)&fraghdr[1] > endptr)
522 				return (B_FALSE);
523 			nexthdrp = &fraghdr->ip6f_nxt;
524 			if (ip_fragmented != NULL)
525 				*ip_fragmented = B_TRUE;
526 			if (ip_frag_ident != NULL)
527 				*ip_frag_ident = fraghdr->ip6f_ident;
528 			break;
529 		case IPPROTO_NONE:
530 			/* No next header means we're finished */
531 		default:
532 			*hdr_length = length;
533 			*next_hdr = *nexthdrp;
534 			return (B_TRUE);
535 		}
536 		length += ehdrlen;
537 		whereptr += ehdrlen;
538 		*hdr_length = length;
539 		*next_hdr = *nexthdrp;
540 	}
541 	switch (*nexthdrp) {
542 	case IPPROTO_HOPOPTS:
543 	case IPPROTO_DSTOPTS:
544 	case IPPROTO_ROUTING:
545 	case IPPROTO_FRAGMENT:
546 		/*
547 		 * If any know extension headers are still to be processed,
548 		 * the packet's malformed (or at least all the IP header(s) are
549 		 * not in the same mblk - and that should never happen.
550 		 */
551 		return (B_FALSE);
552 
553 	default:
554 		/*
555 		 * If we get here, we know that all of the IP headers were in
556 		 * the same mblk, even if the ULP header is in the next mblk.
557 		 */
558 		*hdr_length = length;
559 		*next_hdr = *nexthdrp;
560 		return (B_TRUE);
561 	}
562 }
563 
564 typedef struct mac_dladm_intr {
565 	int	ino;
566 	int	cpu_id;
567 	char	driver_path[MAXPATHLEN];
568 	char	nexus_path[MAXPATHLEN];
569 } mac_dladm_intr_t;
570 
571 /* Bind the interrupt to cpu_num */
572 static int
573 mac_set_intr(ldi_handle_t lh, processorid_t cpu_num, int ino)
574 {
575 	pcitool_intr_set_t	iset;
576 	int			err;
577 
578 	iset.ino = ino;
579 	iset.cpu_id = cpu_num;
580 	iset.user_version = PCITOOL_VERSION;
581 	err = ldi_ioctl(lh, PCITOOL_DEVICE_SET_INTR, (intptr_t)&iset, FKIOCTL,
582 	    kcred, NULL);
583 
584 	return (err);
585 }
586 
587 /*
588  * Search interrupt information. iget is filled in with the info to search
589  */
590 static boolean_t
591 mac_search_intrinfo(pcitool_intr_get_t *iget_p, mac_dladm_intr_t *dln)
592 {
593 	int	i;
594 	char	driver_path[2 * MAXPATHLEN];
595 
596 	for (i = 0; i < iget_p->num_devs; i++) {
597 		(void) strlcpy(driver_path, iget_p->dev[i].path, MAXPATHLEN);
598 		(void) snprintf(&driver_path[strlen(driver_path)], MAXPATHLEN,
599 		    ":%s%d", iget_p->dev[i].driver_name,
600 		    iget_p->dev[i].dev_inst);
601 		/* Match the device path for the device path */
602 		if (strcmp(driver_path, dln->driver_path) == 0) {
603 			dln->ino = iget_p->ino;
604 			dln->cpu_id = iget_p->cpu_id;
605 			return (B_TRUE);
606 		}
607 	}
608 	return (B_FALSE);
609 }
610 
611 /*
612  * Get information about ino, i.e. if this is the interrupt for our
613  * device and where it is bound etc.
614  */
615 static boolean_t
616 mac_get_single_intr(ldi_handle_t lh, int ino, mac_dladm_intr_t *dln)
617 {
618 	pcitool_intr_get_t	*iget_p;
619 	int			ipsz;
620 	int			nipsz;
621 	int			err;
622 	uint8_t			inum;
623 
624 	/*
625 	 * Check if SLEEP is OK, i.e if could come here in response to
626 	 * changing the fanout due to some callback from the driver, say
627 	 * link speed changes.
628 	 */
629 	ipsz = PCITOOL_IGET_SIZE(0);
630 	iget_p = kmem_zalloc(ipsz, KM_SLEEP);
631 
632 	iget_p->num_devs_ret = 0;
633 	iget_p->user_version = PCITOOL_VERSION;
634 	iget_p->ino = ino;
635 
636 	err = ldi_ioctl(lh, PCITOOL_DEVICE_GET_INTR, (intptr_t)iget_p,
637 	    FKIOCTL, kcred, NULL);
638 	if (err != 0) {
639 		kmem_free(iget_p, ipsz);
640 		return (B_FALSE);
641 	}
642 	if (iget_p->num_devs == 0) {
643 		kmem_free(iget_p, ipsz);
644 		return (B_FALSE);
645 	}
646 	inum = iget_p->num_devs;
647 	if (iget_p->num_devs_ret < iget_p->num_devs) {
648 		/* Reallocate */
649 		nipsz = PCITOOL_IGET_SIZE(iget_p->num_devs);
650 
651 		kmem_free(iget_p, ipsz);
652 		ipsz = nipsz;
653 		iget_p = kmem_zalloc(ipsz, KM_SLEEP);
654 
655 		iget_p->num_devs_ret = inum;
656 		iget_p->ino = ino;
657 		iget_p->user_version = PCITOOL_VERSION;
658 		err = ldi_ioctl(lh, PCITOOL_DEVICE_GET_INTR, (intptr_t)iget_p,
659 		    FKIOCTL, kcred, NULL);
660 		if (err != 0) {
661 			kmem_free(iget_p, ipsz);
662 			return (B_FALSE);
663 		}
664 		/* defensive */
665 		if (iget_p->num_devs != iget_p->num_devs_ret) {
666 			kmem_free(iget_p, ipsz);
667 			return (B_FALSE);
668 		}
669 	}
670 
671 	if (mac_search_intrinfo(iget_p, dln)) {
672 		kmem_free(iget_p, ipsz);
673 		return (B_TRUE);
674 	}
675 	kmem_free(iget_p, ipsz);
676 	return (B_FALSE);
677 }
678 
679 /*
680  * Get the interrupts and check each one to see if it is for our device.
681  */
682 static int
683 mac_validate_intr(ldi_handle_t lh, mac_dladm_intr_t *dln, processorid_t cpuid)
684 {
685 	pcitool_intr_info_t	intr_info;
686 	int			err;
687 	int			ino;
688 
689 	err = ldi_ioctl(lh, PCITOOL_SYSTEM_INTR_INFO, (intptr_t)&intr_info,
690 	    FKIOCTL, kcred, NULL);
691 	if (err != 0)
692 		return (-1);
693 
694 	for (ino = 0; ino < intr_info.num_intr; ino++) {
695 		if (mac_get_single_intr(lh, ino, dln)) {
696 			if (dln->cpu_id == cpuid)
697 				return (0);
698 			return (1);
699 		}
700 	}
701 	return (-1);
702 }
703 
704 /*
705  * Obtain the nexus parent node info. for mdip.
706  */
707 static dev_info_t *
708 mac_get_nexus_node(dev_info_t *mdip, mac_dladm_intr_t *dln)
709 {
710 	struct dev_info		*tdip = (struct dev_info *)mdip;
711 	struct ddi_minor_data	*minordata;
712 	int			circ;
713 	dev_info_t		*pdip;
714 	char			pathname[MAXPATHLEN];
715 
716 	while (tdip != NULL) {
717 		/*
718 		 * The netboot code could call this function while walking the
719 		 * device tree so we need to use ndi_devi_tryenter() here to
720 		 * avoid deadlock.
721 		 */
722 		if (ndi_devi_tryenter((dev_info_t *)tdip, &circ) == 0)
723 			break;
724 
725 		for (minordata = tdip->devi_minor; minordata != NULL;
726 		    minordata = minordata->next) {
727 			if (strncmp(minordata->ddm_node_type, DDI_NT_INTRCTL,
728 			    strlen(DDI_NT_INTRCTL)) == 0) {
729 				pdip = minordata->dip;
730 				(void) ddi_pathname(pdip, pathname);
731 				(void) snprintf(dln->nexus_path, MAXPATHLEN,
732 				    "/devices%s:intr", pathname);
733 				(void) ddi_pathname_minor(minordata, pathname);
734 				ndi_devi_exit((dev_info_t *)tdip, circ);
735 				return (pdip);
736 			}
737 		}
738 		ndi_devi_exit((dev_info_t *)tdip, circ);
739 		tdip = tdip->devi_parent;
740 	}
741 	return (NULL);
742 }
743 
744 /*
745  * For a primary MAC client, if the user has set a list or CPUs or
746  * we have obtained it implicitly, we try to retarget the interrupt
747  * for that device on one of the CPUs in the list.
748  * We assign the interrupt to the same CPU as the poll thread.
749  */
750 static boolean_t
751 mac_check_interrupt_binding(dev_info_t *mdip, int32_t cpuid)
752 {
753 	ldi_handle_t		lh = NULL;
754 	ldi_ident_t		li = NULL;
755 	int			err;
756 	int			ret;
757 	mac_dladm_intr_t	dln;
758 	dev_info_t		*dip;
759 	struct ddi_minor_data	*minordata;
760 
761 	dln.nexus_path[0] = '\0';
762 	dln.driver_path[0] = '\0';
763 
764 	minordata = ((struct dev_info *)mdip)->devi_minor;
765 	while (minordata != NULL) {
766 		if (minordata->type == DDM_MINOR)
767 			break;
768 		minordata = minordata->next;
769 	}
770 	if (minordata == NULL)
771 		return (B_FALSE);
772 
773 	(void) ddi_pathname_minor(minordata, dln.driver_path);
774 
775 	dip = mac_get_nexus_node(mdip, &dln);
776 	/* defensive */
777 	if (dip == NULL)
778 		return (B_FALSE);
779 
780 	err = ldi_ident_from_major(ddi_driver_major(dip), &li);
781 	if (err != 0)
782 		return (B_FALSE);
783 
784 	err = ldi_open_by_name(dln.nexus_path, FREAD|FWRITE, kcred, &lh, li);
785 	if (err != 0)
786 		return (B_FALSE);
787 
788 	ret = mac_validate_intr(lh, &dln, cpuid);
789 	if (ret < 0) {
790 		(void) ldi_close(lh, FREAD|FWRITE, kcred);
791 		return (B_FALSE);
792 	}
793 	/* cmn_note? */
794 	if (ret != 0)
795 		if ((err = (mac_set_intr(lh, cpuid, dln.ino))) != 0) {
796 			(void) ldi_close(lh, FREAD|FWRITE, kcred);
797 			return (B_FALSE);
798 		}
799 	(void) ldi_close(lh, FREAD|FWRITE, kcred);
800 	return (B_TRUE);
801 }
802 
803 void
804 mac_client_set_intr_cpu(void *arg, mac_client_handle_t mch, int32_t cpuid)
805 {
806 	dev_info_t		*mdip = (dev_info_t *)arg;
807 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
808 	mac_resource_props_t	*mrp;
809 	mac_perim_handle_t	mph;
810 
811 	if (cpuid == -1 || !mac_check_interrupt_binding(mdip, cpuid))
812 		return;
813 
814 	mac_perim_enter_by_mh((mac_handle_t)mcip->mci_mip, &mph);
815 	mrp = MCIP_RESOURCE_PROPS(mcip);
816 	mrp->mrp_intr_cpu = cpuid;
817 	mac_perim_exit(mph);
818 }
819 
820 int32_t
821 mac_client_intr_cpu(mac_client_handle_t mch)
822 {
823 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
824 	mac_cpus_t		*srs_cpu;
825 	mac_soft_ring_set_t	*rx_srs;
826 	flow_entry_t		*flent = mcip->mci_flent;
827 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
828 
829 	/*
830 	 * Check if we need to retarget the interrupt. We do this only
831 	 * for the primary MAC client. We do this if we have the only
832 	 *  exclusive ring in the group.
833 	 */
834 	if (mac_is_primary_client(mcip) && flent->fe_rx_srs_cnt == 2) {
835 		rx_srs = flent->fe_rx_srs[1];
836 		srs_cpu = &rx_srs->srs_cpu;
837 		if (mrp->mrp_intr_cpu == srs_cpu->mc_pollid)
838 			return (-1);
839 		return (srs_cpu->mc_pollid);
840 	}
841 	return (-1);
842 }
843 
844 void *
845 mac_get_devinfo(mac_handle_t mh)
846 {
847 	mac_impl_t	*mip = (mac_impl_t *)mh;
848 
849 	return ((void *)mip->mi_dip);
850 }
851 
852 #define	PKT_HASH_2BYTES(x) ((x)[0] ^ (x)[1])
853 #define	PKT_HASH_4BYTES(x) ((x)[0] ^ (x)[1] ^ (x)[2] ^ (x)[3])
854 #define	PKT_HASH_MAC(x) ((x)[0] ^ (x)[1] ^ (x)[2] ^ (x)[3] ^ (x)[4] ^ (x)[5])
855 
856 uint64_t
857 mac_pkt_hash(uint_t media, mblk_t *mp, uint8_t policy, boolean_t is_outbound)
858 {
859 	struct ether_header *ehp;
860 	uint64_t hash = 0;
861 	uint16_t sap;
862 	uint_t skip_len;
863 	uint8_t proto;
864 	boolean_t ip_fragmented;
865 
866 	/*
867 	 * We may want to have one of these per MAC type plugin in the
868 	 * future. For now supports only ethernet.
869 	 */
870 	if (media != DL_ETHER)
871 		return (0L);
872 
873 	/* for now we support only outbound packets */
874 	ASSERT(is_outbound);
875 	ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
876 	ASSERT(MBLKL(mp) >= sizeof (struct ether_header));
877 
878 	/* compute L2 hash */
879 
880 	ehp = (struct ether_header *)mp->b_rptr;
881 
882 	if ((policy & MAC_PKT_HASH_L2) != 0) {
883 		uchar_t *mac_src = ehp->ether_shost.ether_addr_octet;
884 		uchar_t *mac_dst = ehp->ether_dhost.ether_addr_octet;
885 		hash = PKT_HASH_MAC(mac_src) ^ PKT_HASH_MAC(mac_dst);
886 		policy &= ~MAC_PKT_HASH_L2;
887 	}
888 
889 	if (policy == 0)
890 		goto done;
891 
892 	/* skip ethernet header */
893 
894 	sap = ntohs(ehp->ether_type);
895 	if (sap == ETHERTYPE_VLAN) {
896 		struct ether_vlan_header *evhp;
897 		mblk_t *newmp = NULL;
898 
899 		skip_len = sizeof (struct ether_vlan_header);
900 		if (MBLKL(mp) < skip_len) {
901 			/* the vlan tag is the payload, pull up first */
902 			newmp = msgpullup(mp, -1);
903 			if ((newmp == NULL) || (MBLKL(newmp) < skip_len)) {
904 				goto done;
905 			}
906 			evhp = (struct ether_vlan_header *)newmp->b_rptr;
907 		} else {
908 			evhp = (struct ether_vlan_header *)mp->b_rptr;
909 		}
910 
911 		sap = ntohs(evhp->ether_type);
912 		freemsg(newmp);
913 	} else {
914 		skip_len = sizeof (struct ether_header);
915 	}
916 
917 	/* if ethernet header is in its own mblk, skip it */
918 	if (MBLKL(mp) <= skip_len) {
919 		skip_len -= MBLKL(mp);
920 		mp = mp->b_cont;
921 		if (mp == NULL)
922 			goto done;
923 	}
924 
925 	sap = (sap < ETHERTYPE_802_MIN) ? 0 : sap;
926 
927 	/* compute IP src/dst addresses hash and skip IPv{4,6} header */
928 
929 	switch (sap) {
930 	case ETHERTYPE_IP: {
931 		ipha_t *iphp;
932 
933 		/*
934 		 * If the header is not aligned or the header doesn't fit
935 		 * in the mblk, bail now. Note that this may cause packets
936 		 * reordering.
937 		 */
938 		iphp = (ipha_t *)(mp->b_rptr + skip_len);
939 		if (((unsigned char *)iphp + sizeof (ipha_t) > mp->b_wptr) ||
940 		    !OK_32PTR((char *)iphp))
941 			goto done;
942 
943 		proto = iphp->ipha_protocol;
944 		skip_len += IPH_HDR_LENGTH(iphp);
945 
946 		/* Check if the packet is fragmented. */
947 		ip_fragmented = ntohs(iphp->ipha_fragment_offset_and_flags) &
948 		    IPH_OFFSET;
949 
950 		/*
951 		 * For fragmented packets, use addresses in addition to
952 		 * the frag_id to generate the hash inorder to get
953 		 * better distribution.
954 		 */
955 		if (ip_fragmented || (policy & MAC_PKT_HASH_L3) != 0) {
956 			uint8_t *ip_src = (uint8_t *)&(iphp->ipha_src);
957 			uint8_t *ip_dst = (uint8_t *)&(iphp->ipha_dst);
958 
959 			hash ^= (PKT_HASH_4BYTES(ip_src) ^
960 			    PKT_HASH_4BYTES(ip_dst));
961 			policy &= ~MAC_PKT_HASH_L3;
962 		}
963 
964 		if (ip_fragmented) {
965 			uint8_t *identp = (uint8_t *)&iphp->ipha_ident;
966 			hash ^= PKT_HASH_2BYTES(identp);
967 			goto done;
968 		}
969 		break;
970 	}
971 	case ETHERTYPE_IPV6: {
972 		ip6_t *ip6hp;
973 		uint16_t hdr_length;
974 		uint32_t ip_frag_ident;
975 
976 		/*
977 		 * If the header is not aligned or the header doesn't fit
978 		 * in the mblk, bail now. Note that this may cause packets
979 		 * reordering.
980 		 */
981 
982 		ip6hp = (ip6_t *)(mp->b_rptr + skip_len);
983 		if (((unsigned char *)ip6hp + IPV6_HDR_LEN > mp->b_wptr) ||
984 		    !OK_32PTR((char *)ip6hp))
985 			goto done;
986 
987 		if (!mac_ip_hdr_length_v6(mp, ip6hp, &hdr_length, &proto,
988 		    &ip_fragmented, &ip_frag_ident))
989 			goto done;
990 		skip_len += hdr_length;
991 
992 		/*
993 		 * For fragmented packets, use addresses in addition to
994 		 * the frag_id to generate the hash inorder to get
995 		 * better distribution.
996 		 */
997 		if (ip_fragmented || (policy & MAC_PKT_HASH_L3) != 0) {
998 			uint8_t *ip_src = &(ip6hp->ip6_src.s6_addr8[12]);
999 			uint8_t *ip_dst = &(ip6hp->ip6_dst.s6_addr8[12]);
1000 
1001 			hash ^= (PKT_HASH_4BYTES(ip_src) ^
1002 			    PKT_HASH_4BYTES(ip_dst));
1003 			policy &= ~MAC_PKT_HASH_L3;
1004 		}
1005 
1006 		if (ip_fragmented) {
1007 			uint8_t *identp = (uint8_t *)&ip_frag_ident;
1008 			hash ^= PKT_HASH_4BYTES(identp);
1009 			goto done;
1010 		}
1011 		break;
1012 	}
1013 	default:
1014 		goto done;
1015 	}
1016 
1017 	if (policy == 0)
1018 		goto done;
1019 
1020 	/* if ip header is in its own mblk, skip it */
1021 	if (MBLKL(mp) <= skip_len) {
1022 		skip_len -= MBLKL(mp);
1023 		mp = mp->b_cont;
1024 		if (mp == NULL)
1025 			goto done;
1026 	}
1027 
1028 	/* parse ULP header */
1029 again:
1030 	switch (proto) {
1031 	case IPPROTO_TCP:
1032 	case IPPROTO_UDP:
1033 	case IPPROTO_ESP:
1034 	case IPPROTO_SCTP:
1035 		/*
1036 		 * These Internet Protocols are intentionally designed
1037 		 * for hashing from the git-go.  Port numbers are in the first
1038 		 * word for transports, SPI is first for ESP.
1039 		 */
1040 		if (mp->b_rptr + skip_len + 4 > mp->b_wptr)
1041 			goto done;
1042 		hash ^= PKT_HASH_4BYTES((mp->b_rptr + skip_len));
1043 		break;
1044 
1045 	case IPPROTO_AH: {
1046 		ah_t *ah = (ah_t *)(mp->b_rptr + skip_len);
1047 		uint_t ah_length = AH_TOTAL_LEN(ah);
1048 
1049 		if ((unsigned char *)ah + sizeof (ah_t) > mp->b_wptr)
1050 			goto done;
1051 
1052 		proto = ah->ah_nexthdr;
1053 		skip_len += ah_length;
1054 
1055 		/* if AH header is in its own mblk, skip it */
1056 		if (MBLKL(mp) <= skip_len) {
1057 			skip_len -= MBLKL(mp);
1058 			mp = mp->b_cont;
1059 			if (mp == NULL)
1060 				goto done;
1061 		}
1062 
1063 		goto again;
1064 	}
1065 	}
1066 
1067 done:
1068 	return (hash);
1069 }
1070