1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/conf.h> 28 #include <sys/id_space.h> 29 #include <sys/esunddi.h> 30 #include <sys/stat.h> 31 #include <sys/mkdev.h> 32 #include <sys/stream.h> 33 #include <sys/strsubr.h> 34 #include <sys/dlpi.h> 35 #include <sys/modhash.h> 36 #include <sys/mac.h> 37 #include <sys/mac_provider.h> 38 #include <sys/mac_impl.h> 39 #include <sys/mac_client_impl.h> 40 #include <sys/mac_client_priv.h> 41 #include <sys/mac_soft_ring.h> 42 #include <sys/mac_stat.h> 43 #include <sys/dld.h> 44 #include <sys/modctl.h> 45 #include <sys/fs/dv_node.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/callb.h> 49 #include <sys/cpuvar.h> 50 #include <sys/atomic.h> 51 #include <sys/sdt.h> 52 #include <sys/mac_flow.h> 53 #include <sys/ddi_intr_impl.h> 54 #include <sys/disp.h> 55 #include <sys/sdt.h> 56 #include <sys/pattr.h> 57 #include <sys/strsun.h> 58 59 /* 60 * MAC Provider Interface. 61 * 62 * Interface for GLDv3 compatible NIC drivers. 63 */ 64 65 static void i_mac_notify_thread(void *); 66 67 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 68 69 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 70 mac_fanout_recompute, /* MAC_NOTE_LINK */ 71 NULL, /* MAC_NOTE_UNICST */ 72 NULL, /* MAC_NOTE_TX */ 73 NULL, /* MAC_NOTE_DEVPROMISC */ 74 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 75 NULL, /* MAC_NOTE_SDU_SIZE */ 76 NULL, /* MAC_NOTE_MARGIN */ 77 NULL, /* MAC_NOTE_CAPAB_CHG */ 78 NULL /* MAC_NOTE_LOWLINK */ 79 }; 80 81 /* 82 * Driver support functions. 83 */ 84 85 /* REGISTRATION */ 86 87 mac_register_t * 88 mac_alloc(uint_t mac_version) 89 { 90 mac_register_t *mregp; 91 92 /* 93 * Make sure there isn't a version mismatch between the driver and 94 * the framework. In the future, if multiple versions are 95 * supported, this check could become more sophisticated. 96 */ 97 if (mac_version != MAC_VERSION) 98 return (NULL); 99 100 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 101 mregp->m_version = mac_version; 102 return (mregp); 103 } 104 105 void 106 mac_free(mac_register_t *mregp) 107 { 108 kmem_free(mregp, sizeof (mac_register_t)); 109 } 110 111 /* 112 * mac_register() is how drivers register new MACs with the GLDv3 113 * framework. The mregp argument is allocated by drivers using the 114 * mac_alloc() function, and can be freed using mac_free() immediately upon 115 * return from mac_register(). Upon success (0 return value), the mhp 116 * opaque pointer becomes the driver's handle to its MAC interface, and is 117 * the argument to all other mac module entry points. 118 */ 119 /* ARGSUSED */ 120 int 121 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 122 { 123 mac_impl_t *mip; 124 mactype_t *mtype; 125 int err = EINVAL; 126 struct devnames *dnp = NULL; 127 uint_t instance; 128 boolean_t style1_created = B_FALSE; 129 boolean_t style2_created = B_FALSE; 130 char *driver; 131 minor_t minor = 0; 132 133 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 134 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 135 return (EINVAL); 136 137 /* Find the required MAC-Type plugin. */ 138 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 139 return (EINVAL); 140 141 /* Create a mac_impl_t to represent this MAC. */ 142 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 143 144 /* 145 * The mac is not ready for open yet. 146 */ 147 mip->mi_state_flags |= MIS_DISABLED; 148 149 /* 150 * When a mac is registered, the m_instance field can be set to: 151 * 152 * 0: Get the mac's instance number from m_dip. 153 * This is usually used for physical device dips. 154 * 155 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 156 * For example, when an aggregation is created with the key option, 157 * "key" will be used as the instance number. 158 * 159 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 160 * This is often used when a MAC of a virtual link is registered 161 * (e.g., aggregation when "key" is not specified, or vnic). 162 * 163 * Note that the instance number is used to derive the mi_minor field 164 * of mac_impl_t, which will then be used to derive the name of kstats 165 * and the devfs nodes. The first 2 cases are needed to preserve 166 * backward compatibility. 167 */ 168 switch (mregp->m_instance) { 169 case 0: 170 instance = ddi_get_instance(mregp->m_dip); 171 break; 172 case ((uint_t)-1): 173 minor = mac_minor_hold(B_TRUE); 174 if (minor == 0) { 175 err = ENOSPC; 176 goto fail; 177 } 178 instance = minor - 1; 179 break; 180 default: 181 instance = mregp->m_instance; 182 if (instance >= MAC_MAX_MINOR) { 183 err = EINVAL; 184 goto fail; 185 } 186 break; 187 } 188 189 mip->mi_minor = (minor_t)(instance + 1); 190 mip->mi_dip = mregp->m_dip; 191 mip->mi_clients_list = NULL; 192 mip->mi_nclients = 0; 193 194 /* Set the default IEEE Port VLAN Identifier */ 195 mip->mi_pvid = 1; 196 197 /* Default bridge link learning protection values */ 198 mip->mi_llimit = 1000; 199 mip->mi_ldecay = 200; 200 201 driver = (char *)ddi_driver_name(mip->mi_dip); 202 203 /* Construct the MAC name as <drvname><instance> */ 204 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 205 driver, instance); 206 207 mip->mi_driver = mregp->m_driver; 208 209 mip->mi_type = mtype; 210 mip->mi_margin = mregp->m_margin; 211 mip->mi_info.mi_media = mtype->mt_type; 212 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 213 if (mregp->m_max_sdu <= mregp->m_min_sdu) 214 goto fail; 215 mip->mi_sdu_min = mregp->m_min_sdu; 216 mip->mi_sdu_max = mregp->m_max_sdu; 217 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 218 /* 219 * If the media supports a broadcast address, cache a pointer to it 220 * in the mac_info_t so that upper layers can use it. 221 */ 222 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 223 224 mip->mi_v12n_level = mregp->m_v12n; 225 226 /* 227 * Copy the unicast source address into the mac_info_t, but only if 228 * the MAC-Type defines a non-zero address length. We need to 229 * handle MAC-Types that have an address length of 0 230 * (point-to-point protocol MACs for example). 231 */ 232 if (mip->mi_type->mt_addr_length > 0) { 233 if (mregp->m_src_addr == NULL) 234 goto fail; 235 mip->mi_info.mi_unicst_addr = 236 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 237 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 238 mip->mi_type->mt_addr_length); 239 240 /* 241 * Copy the fixed 'factory' MAC address from the immutable 242 * info. This is taken to be the MAC address currently in 243 * use. 244 */ 245 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 246 mip->mi_type->mt_addr_length); 247 248 /* 249 * At this point, we should set up the classification 250 * rules etc but we delay it till mac_open() so that 251 * the resource discovery has taken place and we 252 * know someone wants to use the device. Otherwise 253 * memory gets allocated for Rx ring structures even 254 * during probe. 255 */ 256 257 /* Copy the destination address if one is provided. */ 258 if (mregp->m_dst_addr != NULL) { 259 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 260 mip->mi_type->mt_addr_length); 261 mip->mi_dstaddr_set = B_TRUE; 262 } 263 } else if (mregp->m_src_addr != NULL) { 264 goto fail; 265 } 266 267 /* 268 * The format of the m_pdata is specific to the plugin. It is 269 * passed in as an argument to all of the plugin callbacks. The 270 * driver can update this information by calling 271 * mac_pdata_update(). 272 */ 273 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 274 /* 275 * Verify if the supplied plugin data is valid. Note that 276 * even if the caller passed in a NULL pointer as plugin data, 277 * we still need to verify if that's valid as the plugin may 278 * require plugin data to function. 279 */ 280 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 281 mregp->m_pdata_size)) { 282 goto fail; 283 } 284 if (mregp->m_pdata != NULL) { 285 mip->mi_pdata = 286 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 287 bcopy(mregp->m_pdata, mip->mi_pdata, 288 mregp->m_pdata_size); 289 mip->mi_pdata_size = mregp->m_pdata_size; 290 } 291 } else if (mregp->m_pdata != NULL) { 292 /* 293 * The caller supplied non-NULL plugin data, but the plugin 294 * does not recognize plugin data. 295 */ 296 err = EINVAL; 297 goto fail; 298 } 299 300 /* 301 * Register the private properties. 302 */ 303 mac_register_priv_prop(mip, mregp->m_priv_props); 304 305 /* 306 * Stash the driver callbacks into the mac_impl_t, but first sanity 307 * check to make sure all mandatory callbacks are set. 308 */ 309 if (mregp->m_callbacks->mc_getstat == NULL || 310 mregp->m_callbacks->mc_start == NULL || 311 mregp->m_callbacks->mc_stop == NULL || 312 mregp->m_callbacks->mc_setpromisc == NULL || 313 mregp->m_callbacks->mc_multicst == NULL) { 314 goto fail; 315 } 316 mip->mi_callbacks = mregp->m_callbacks; 317 318 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 319 &mip->mi_capab_legacy)) { 320 mip->mi_state_flags |= MIS_LEGACY; 321 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 322 } else { 323 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 324 mip->mi_minor); 325 } 326 327 /* 328 * Allocate a notification thread. thread_create blocks for memory 329 * if needed, it never fails. 330 */ 331 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 332 mip, 0, &p0, TS_RUN, minclsyspri); 333 334 /* 335 * Initialize the capabilities 336 */ 337 338 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 339 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 340 341 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 342 mip->mi_state_flags |= MIS_IS_VNIC; 343 344 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 345 mip->mi_state_flags |= MIS_IS_AGGR; 346 347 mac_addr_factory_init(mip); 348 349 /* 350 * Enforce the virtrualization level registered. 351 */ 352 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 353 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 354 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 355 goto fail; 356 357 /* 358 * The driver needs to register at least rx rings for this 359 * virtualization level. 360 */ 361 if (mip->mi_rx_groups == NULL) 362 goto fail; 363 } 364 365 /* 366 * The driver must set mc_unicst entry point to NULL when it advertises 367 * CAP_RINGS for rx groups. 368 */ 369 if (mip->mi_rx_groups != NULL) { 370 if (mregp->m_callbacks->mc_unicst != NULL) 371 goto fail; 372 } else { 373 if (mregp->m_callbacks->mc_unicst == NULL) 374 goto fail; 375 } 376 377 /* 378 * Initialize MAC addresses. Must be called after mac_init_rings(). 379 */ 380 mac_init_macaddr(mip); 381 382 mip->mi_share_capab.ms_snum = 0; 383 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 384 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 385 &mip->mi_share_capab); 386 } 387 388 /* 389 * Initialize the kstats for this device. 390 */ 391 mac_driver_stat_create(mip); 392 393 /* Zero out any properties. */ 394 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 395 396 if (mip->mi_minor <= MAC_MAX_MINOR) { 397 /* Create a style-2 DLPI device */ 398 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 399 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 400 goto fail; 401 style2_created = B_TRUE; 402 403 /* Create a style-1 DLPI device */ 404 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 405 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 406 goto fail; 407 style1_created = B_TRUE; 408 } 409 410 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 411 412 rw_enter(&i_mac_impl_lock, RW_WRITER); 413 if (mod_hash_insert(i_mac_impl_hash, 414 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 415 rw_exit(&i_mac_impl_lock); 416 err = EEXIST; 417 goto fail; 418 } 419 420 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 421 (mac_impl_t *), mip); 422 423 /* 424 * Mark the MAC to be ready for open. 425 */ 426 mip->mi_state_flags &= ~MIS_DISABLED; 427 rw_exit(&i_mac_impl_lock); 428 429 atomic_inc_32(&i_mac_impl_count); 430 431 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 432 *mhp = (mac_handle_t)mip; 433 return (0); 434 435 fail: 436 if (style1_created) 437 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 438 439 if (style2_created) 440 ddi_remove_minor_node(mip->mi_dip, driver); 441 442 mac_addr_factory_fini(mip); 443 444 /* Clean up registered MAC addresses */ 445 mac_fini_macaddr(mip); 446 447 /* Clean up registered rings */ 448 mac_free_rings(mip, MAC_RING_TYPE_RX); 449 mac_free_rings(mip, MAC_RING_TYPE_TX); 450 451 /* Clean up notification thread */ 452 if (mip->mi_notify_thread != NULL) 453 i_mac_notify_exit(mip); 454 455 if (mip->mi_info.mi_unicst_addr != NULL) { 456 kmem_free(mip->mi_info.mi_unicst_addr, 457 mip->mi_type->mt_addr_length); 458 mip->mi_info.mi_unicst_addr = NULL; 459 } 460 461 mac_driver_stat_delete(mip); 462 463 if (mip->mi_type != NULL) { 464 atomic_dec_32(&mip->mi_type->mt_ref); 465 mip->mi_type = NULL; 466 } 467 468 if (mip->mi_pdata != NULL) { 469 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 470 mip->mi_pdata = NULL; 471 mip->mi_pdata_size = 0; 472 } 473 474 if (minor != 0) { 475 ASSERT(minor > MAC_MAX_MINOR); 476 mac_minor_rele(minor); 477 } 478 479 mip->mi_state_flags = 0; 480 mac_unregister_priv_prop(mip); 481 482 /* 483 * Clear the state before destroying the mac_impl_t 484 */ 485 mip->mi_state_flags = 0; 486 487 kmem_cache_free(i_mac_impl_cachep, mip); 488 return (err); 489 } 490 491 /* 492 * Unregister from the GLDv3 framework 493 */ 494 int 495 mac_unregister(mac_handle_t mh) 496 { 497 int err; 498 mac_impl_t *mip = (mac_impl_t *)mh; 499 mod_hash_val_t val; 500 mac_margin_req_t *mmr, *nextmmr; 501 502 /* Fail the unregister if there are any open references to this mac. */ 503 if ((err = mac_disable_nowait(mh)) != 0) 504 return (err); 505 506 /* 507 * Clean up notification thread and wait for it to exit. 508 */ 509 i_mac_notify_exit(mip); 510 511 i_mac_perim_enter(mip); 512 513 /* 514 * There is still resource properties configured over this mac. 515 */ 516 if (mip->mi_resource_props.mrp_mask != 0) 517 mac_fastpath_enable((mac_handle_t)mip); 518 519 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 520 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 521 ddi_remove_minor_node(mip->mi_dip, 522 (char *)ddi_driver_name(mip->mi_dip)); 523 } 524 525 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 526 MIS_EXCLUSIVE)); 527 528 mac_driver_stat_delete(mip); 529 530 (void) mod_hash_remove(i_mac_impl_hash, 531 (mod_hash_key_t)mip->mi_name, &val); 532 ASSERT(mip == (mac_impl_t *)val); 533 534 ASSERT(i_mac_impl_count > 0); 535 atomic_dec_32(&i_mac_impl_count); 536 537 if (mip->mi_pdata != NULL) 538 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 539 mip->mi_pdata = NULL; 540 mip->mi_pdata_size = 0; 541 542 /* 543 * Free the list of margin request. 544 */ 545 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 546 nextmmr = mmr->mmr_nextp; 547 kmem_free(mmr, sizeof (mac_margin_req_t)); 548 } 549 mip->mi_mmrp = NULL; 550 551 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 552 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 553 mip->mi_info.mi_unicst_addr = NULL; 554 555 atomic_dec_32(&mip->mi_type->mt_ref); 556 mip->mi_type = NULL; 557 558 /* 559 * Free the primary MAC address. 560 */ 561 mac_fini_macaddr(mip); 562 563 /* 564 * free all rings 565 */ 566 mac_free_rings(mip, MAC_RING_TYPE_RX); 567 mac_free_rings(mip, MAC_RING_TYPE_TX); 568 569 mac_addr_factory_fini(mip); 570 571 bzero(mip->mi_addr, MAXMACADDRLEN); 572 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 573 574 /* and the flows */ 575 mac_flow_tab_destroy(mip->mi_flow_tab); 576 mip->mi_flow_tab = NULL; 577 578 if (mip->mi_minor > MAC_MAX_MINOR) 579 mac_minor_rele(mip->mi_minor); 580 581 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 582 583 /* 584 * Reset the perim related fields to default values before 585 * kmem_cache_free 586 */ 587 i_mac_perim_exit(mip); 588 mip->mi_state_flags = 0; 589 590 mac_unregister_priv_prop(mip); 591 592 ASSERT(mip->mi_bridge_link == NULL); 593 kmem_cache_free(i_mac_impl_cachep, mip); 594 595 return (0); 596 } 597 598 /* DATA RECEPTION */ 599 600 /* 601 * This function is invoked for packets received by the MAC driver in 602 * interrupt context. The ring generation number provided by the driver 603 * is matched with the ring generation number held in MAC. If they do not 604 * match, received packets are considered stale packets coming from an older 605 * assignment of the ring. Drop them. 606 */ 607 void 608 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 609 uint64_t mr_gen_num) 610 { 611 mac_ring_t *mr = (mac_ring_t *)mrh; 612 613 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 614 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 615 mr->mr_gen_num, uint64_t, mr_gen_num); 616 freemsgchain(mp_chain); 617 return; 618 } 619 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 620 } 621 622 /* 623 * This function is invoked for each packet received by the underlying driver. 624 */ 625 void 626 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 627 { 628 mac_impl_t *mip = (mac_impl_t *)mh; 629 630 /* 631 * Check if the link is part of a bridge. If not, then we don't need 632 * to take the lock to remain consistent. Make this common case 633 * lock-free and tail-call optimized. 634 */ 635 if (mip->mi_bridge_link == NULL) { 636 mac_rx_common(mh, mrh, mp_chain); 637 } else { 638 /* 639 * Once we take a reference on the bridge link, the bridge 640 * module itself can't unload, so the callback pointers are 641 * stable. 642 */ 643 mutex_enter(&mip->mi_bridge_lock); 644 if ((mh = mip->mi_bridge_link) != NULL) 645 mac_bridge_ref_cb(mh, B_TRUE); 646 mutex_exit(&mip->mi_bridge_lock); 647 if (mh == NULL) { 648 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 649 } else { 650 mac_bridge_rx_cb(mh, mrh, mp_chain); 651 mac_bridge_ref_cb(mh, B_FALSE); 652 } 653 } 654 } 655 656 /* 657 * Special case function: this allows snooping of packets transmitted and 658 * received by TRILL. By design, they go directly into the TRILL module. 659 */ 660 void 661 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 662 { 663 mac_impl_t *mip = (mac_impl_t *)mh; 664 665 if (mip->mi_promisc_list != NULL) 666 mac_promisc_dispatch(mip, mp, NULL); 667 } 668 669 /* 670 * This is the upward reentry point for packets arriving from the bridging 671 * module and from mac_rx for links not part of a bridge. 672 */ 673 void 674 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 675 { 676 mac_impl_t *mip = (mac_impl_t *)mh; 677 mac_ring_t *mr = (mac_ring_t *)mrh; 678 mac_soft_ring_set_t *mac_srs; 679 mblk_t *bp = mp_chain; 680 boolean_t hw_classified = B_FALSE; 681 682 /* 683 * If there are any promiscuous mode callbacks defined for 684 * this MAC, pass them a copy if appropriate. 685 */ 686 if (mip->mi_promisc_list != NULL) 687 mac_promisc_dispatch(mip, mp_chain, NULL); 688 689 if (mr != NULL) { 690 /* 691 * If the SRS teardown has started, just return. The 'mr' 692 * continues to be valid until the driver unregisters the mac. 693 * Hardware classified packets will not make their way up 694 * beyond this point once the teardown has started. The driver 695 * is never passed a pointer to a flow entry or SRS or any 696 * structure that can be freed much before mac_unregister. 697 */ 698 mutex_enter(&mr->mr_lock); 699 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 700 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 701 mutex_exit(&mr->mr_lock); 702 freemsgchain(mp_chain); 703 return; 704 } 705 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 706 hw_classified = B_TRUE; 707 MR_REFHOLD_LOCKED(mr); 708 } 709 mutex_exit(&mr->mr_lock); 710 711 /* 712 * We check if an SRS is controlling this ring. 713 * If so, we can directly call the srs_lower_proc 714 * routine otherwise we need to go through mac_rx_classify 715 * to reach the right place. 716 */ 717 if (hw_classified) { 718 mac_srs = mr->mr_srs; 719 /* 720 * This is supposed to be the fast path. 721 * All packets received though here were steered by 722 * the hardware classifier, and share the same 723 * MAC header info. 724 */ 725 mac_srs->srs_rx.sr_lower_proc(mh, 726 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 727 MR_REFRELE(mr); 728 return; 729 } 730 /* We'll fall through to software classification */ 731 } else { 732 flow_entry_t *flent; 733 int err; 734 735 rw_enter(&mip->mi_rw_lock, RW_READER); 736 if (mip->mi_single_active_client != NULL) { 737 flent = mip->mi_single_active_client->mci_flent_list; 738 FLOW_TRY_REFHOLD(flent, err); 739 rw_exit(&mip->mi_rw_lock); 740 if (err == 0) { 741 (flent->fe_cb_fn)(flent->fe_cb_arg1, 742 flent->fe_cb_arg2, mp_chain, B_FALSE); 743 FLOW_REFRELE(flent); 744 return; 745 } 746 } else { 747 rw_exit(&mip->mi_rw_lock); 748 } 749 } 750 751 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 752 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 753 return; 754 } 755 756 freemsgchain(bp); 757 } 758 759 /* DATA TRANSMISSION */ 760 761 /* 762 * A driver's notification to resume transmission, in case of a provider 763 * without TX rings. 764 */ 765 void 766 mac_tx_update(mac_handle_t mh) 767 { 768 mac_tx_ring_update(mh, NULL); 769 } 770 771 /* 772 * A driver's notification to resume transmission on the specified TX ring. 773 */ 774 void 775 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 776 { 777 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 778 } 779 780 /* LINK STATE */ 781 /* 782 * Notify the MAC layer about a link state change 783 */ 784 void 785 mac_link_update(mac_handle_t mh, link_state_t link) 786 { 787 mac_impl_t *mip = (mac_impl_t *)mh; 788 789 /* 790 * Save the link state. 791 */ 792 mip->mi_lowlinkstate = link; 793 794 /* 795 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 796 * thread to deliver both lower and upper notifications. 797 */ 798 i_mac_notify(mip, MAC_NOTE_LOWLINK); 799 } 800 801 /* 802 * Notify the MAC layer about a link state change due to bridging. 803 */ 804 void 805 mac_link_redo(mac_handle_t mh, link_state_t link) 806 { 807 mac_impl_t *mip = (mac_impl_t *)mh; 808 809 /* 810 * Save the link state. 811 */ 812 mip->mi_linkstate = link; 813 814 /* 815 * Send a MAC_NOTE_LINK notification. Only upper notifications are 816 * made. 817 */ 818 i_mac_notify(mip, MAC_NOTE_LINK); 819 } 820 821 /* MINOR NODE HANDLING */ 822 823 /* 824 * Given a dev_t, return the instance number (PPA) associated with it. 825 * Drivers can use this in their getinfo(9e) implementation to lookup 826 * the instance number (i.e. PPA) of the device, to use as an index to 827 * their own array of soft state structures. 828 * 829 * Returns -1 on error. 830 */ 831 int 832 mac_devt_to_instance(dev_t devt) 833 { 834 return (dld_devt_to_instance(devt)); 835 } 836 837 /* 838 * This function returns the first minor number that is available for 839 * driver private use. All minor numbers smaller than this are 840 * reserved for GLDv3 use. 841 */ 842 minor_t 843 mac_private_minor(void) 844 { 845 return (MAC_PRIVATE_MINOR); 846 } 847 848 /* OTHER CONTROL INFORMATION */ 849 850 /* 851 * A driver notified us that its primary MAC address has changed. 852 */ 853 void 854 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 855 { 856 mac_impl_t *mip = (mac_impl_t *)mh; 857 858 if (mip->mi_type->mt_addr_length == 0) 859 return; 860 861 i_mac_perim_enter(mip); 862 863 /* 864 * If address changes, freshen the MAC address value and update 865 * all MAC clients that share this MAC address. 866 */ 867 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 868 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 869 (uint8_t *)addr); 870 } 871 872 i_mac_perim_exit(mip); 873 874 /* 875 * Send a MAC_NOTE_UNICST notification. 876 */ 877 i_mac_notify(mip, MAC_NOTE_UNICST); 878 } 879 880 void 881 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 882 { 883 mac_impl_t *mip = (mac_impl_t *)mh; 884 885 if (mip->mi_type->mt_addr_length == 0) 886 return; 887 888 i_mac_perim_enter(mip); 889 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 890 i_mac_perim_exit(mip); 891 i_mac_notify(mip, MAC_NOTE_DEST); 892 } 893 894 /* 895 * MAC plugin information changed. 896 */ 897 int 898 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 899 { 900 mac_impl_t *mip = (mac_impl_t *)mh; 901 902 /* 903 * Verify that the plugin supports MAC plugin data and that the 904 * supplied data is valid. 905 */ 906 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 907 return (EINVAL); 908 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 909 return (EINVAL); 910 911 if (mip->mi_pdata != NULL) 912 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 913 914 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 915 bcopy(mac_pdata, mip->mi_pdata, dsize); 916 mip->mi_pdata_size = dsize; 917 918 /* 919 * Since the MAC plugin data is used to construct MAC headers that 920 * were cached in fast-path headers, we need to flush fast-path 921 * information for links associated with this mac. 922 */ 923 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 924 return (0); 925 } 926 927 /* 928 * Invoked by driver as well as the framework to notify its capability change. 929 */ 930 void 931 mac_capab_update(mac_handle_t mh) 932 { 933 /* Send MAC_NOTE_CAPAB_CHG notification */ 934 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 935 } 936 937 int 938 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 939 { 940 mac_impl_t *mip = (mac_impl_t *)mh; 941 942 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 943 return (EINVAL); 944 mip->mi_sdu_max = sdu_max; 945 946 /* Send a MAC_NOTE_SDU_SIZE notification. */ 947 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 948 return (0); 949 } 950 951 static void 952 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 953 { 954 mac_client_impl_t *mcip; 955 flow_entry_t *flent; 956 mac_soft_ring_set_t *mac_rx_srs; 957 mac_cpus_t *srs_cpu; 958 int i; 959 960 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 961 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 962 /* interrupt can be re-targeted */ 963 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 964 flent = mcip->mci_flent; 965 if (ring->mr_type == MAC_RING_TYPE_RX) { 966 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 967 mac_rx_srs = flent->fe_rx_srs[i]; 968 if (mac_rx_srs->srs_ring != ring) 969 continue; 970 srs_cpu = &mac_rx_srs->srs_cpu; 971 mutex_enter(&cpu_lock); 972 mac_rx_srs_retarget_intr(mac_rx_srs, 973 srs_cpu->mc_rx_intr_cpu); 974 mutex_exit(&cpu_lock); 975 break; 976 } 977 } else { 978 if (flent->fe_tx_srs != NULL) { 979 mutex_enter(&cpu_lock); 980 mac_tx_srs_retarget_intr( 981 flent->fe_tx_srs); 982 mutex_exit(&cpu_lock); 983 } 984 } 985 } 986 } 987 988 /* 989 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 990 * their clients. There is a 1-1 mapping pseudo ring and the hardware 991 * ring. ddi interrupt handles are exported from the hardware ring to 992 * the pseudo ring. Thus when the interrupt handle changes, clients of 993 * aggr that are using the handle need to use the new handle and 994 * re-target their interrupts. 995 */ 996 static void 997 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 998 ddi_intr_handle_t ddh) 999 { 1000 mac_ring_t *pring; 1001 mac_group_t *pgroup; 1002 mac_impl_t *pmip; 1003 char macname[MAXNAMELEN]; 1004 mac_perim_handle_t p_mph; 1005 uint64_t saved_gen_num; 1006 1007 again: 1008 pring = (mac_ring_t *)ring->mr_prh; 1009 pgroup = (mac_group_t *)pring->mr_gh; 1010 pmip = (mac_impl_t *)pgroup->mrg_mh; 1011 saved_gen_num = ring->mr_gen_num; 1012 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1013 /* 1014 * We need to enter aggr's perimeter. The locking hierarchy 1015 * dictates that aggr's perimeter should be entered first 1016 * and then the port's perimeter. So drop the port's 1017 * perimeter, enter aggr's and then re-enter port's 1018 * perimeter. 1019 */ 1020 i_mac_perim_exit(mip); 1021 /* 1022 * While we know pmip is the aggr's mip, there is a 1023 * possibility that aggr could have unregistered by 1024 * the time we exit port's perimeter (mip) and 1025 * enter aggr's perimeter (pmip). To avoid that 1026 * scenario, enter aggr's perimeter using its name. 1027 */ 1028 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1029 return; 1030 i_mac_perim_enter(mip); 1031 /* 1032 * Check if the ring got assigned to another aggregation before 1033 * be could enter aggr's and the port's perimeter. When a ring 1034 * gets deleted from an aggregation, it calls mac_stop_ring() 1035 * which increments the generation number. So checking 1036 * generation number will be enough. 1037 */ 1038 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1039 i_mac_perim_exit(mip); 1040 mac_perim_exit(p_mph); 1041 i_mac_perim_enter(mip); 1042 goto again; 1043 } 1044 1045 /* Check if pseudo ring is still present */ 1046 if (ring->mr_prh != NULL) { 1047 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1048 pring->mr_info.mri_intr.mi_ddi_shared = 1049 ring->mr_info.mri_intr.mi_ddi_shared; 1050 if (ddh != NULL) 1051 mac_ring_intr_retarget(pgroup, pring); 1052 } 1053 i_mac_perim_exit(mip); 1054 mac_perim_exit(p_mph); 1055 } 1056 /* 1057 * API called by driver to provide new interrupt handle for TX/RX rings. 1058 * This usually happens when IRM (Interrupt Resource Manangement) 1059 * framework either gives the driver more MSI-x interrupts or takes 1060 * away MSI-x interrupts from the driver. 1061 */ 1062 void 1063 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1064 { 1065 mac_ring_t *ring = (mac_ring_t *)mrh; 1066 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1067 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1068 1069 i_mac_perim_enter(mip); 1070 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1071 if (ddh == NULL) { 1072 /* Interrupts being reset */ 1073 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1074 if (ring->mr_prh != NULL) { 1075 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1076 return; 1077 } 1078 } else { 1079 /* New interrupt handle */ 1080 mac_compare_ddi_handle(mip->mi_rx_groups, 1081 mip->mi_rx_group_count, ring); 1082 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1083 mac_compare_ddi_handle(mip->mi_tx_groups, 1084 mip->mi_tx_group_count, ring); 1085 } 1086 if (ring->mr_prh != NULL) { 1087 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1088 return; 1089 } else { 1090 mac_ring_intr_retarget(group, ring); 1091 } 1092 } 1093 i_mac_perim_exit(mip); 1094 } 1095 1096 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1097 1098 /* 1099 * Updates the mac_impl structure with the current state of the link 1100 */ 1101 static void 1102 i_mac_log_link_state(mac_impl_t *mip) 1103 { 1104 /* 1105 * If no change, then it is not interesting. 1106 */ 1107 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1108 return; 1109 1110 switch (mip->mi_lowlinkstate) { 1111 case LINK_STATE_UP: 1112 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1113 char det[200]; 1114 1115 mip->mi_type->mt_ops.mtops_link_details(det, 1116 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1117 1118 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1119 } else { 1120 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1121 } 1122 break; 1123 1124 case LINK_STATE_DOWN: 1125 /* 1126 * Only transitions from UP to DOWN are interesting 1127 */ 1128 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1129 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1130 break; 1131 1132 case LINK_STATE_UNKNOWN: 1133 /* 1134 * This case is normally not interesting. 1135 */ 1136 break; 1137 } 1138 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1139 } 1140 1141 /* 1142 * Main routine for the callbacks notifications thread 1143 */ 1144 static void 1145 i_mac_notify_thread(void *arg) 1146 { 1147 mac_impl_t *mip = arg; 1148 callb_cpr_t cprinfo; 1149 mac_cb_t *mcb; 1150 mac_cb_info_t *mcbi; 1151 mac_notify_cb_t *mncb; 1152 1153 mcbi = &mip->mi_notify_cb_info; 1154 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1155 "i_mac_notify_thread"); 1156 1157 mutex_enter(mcbi->mcbi_lockp); 1158 1159 for (;;) { 1160 uint32_t bits; 1161 uint32_t type; 1162 1163 bits = mip->mi_notify_bits; 1164 if (bits == 0) { 1165 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1166 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1167 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1168 continue; 1169 } 1170 mip->mi_notify_bits = 0; 1171 if ((bits & (1 << MAC_NNOTE)) != 0) { 1172 /* request to quit */ 1173 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1174 break; 1175 } 1176 1177 mutex_exit(mcbi->mcbi_lockp); 1178 1179 /* 1180 * Log link changes on the actual link, but then do reports on 1181 * synthetic state (if part of a bridge). 1182 */ 1183 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1184 link_state_t newstate; 1185 mac_handle_t mh; 1186 1187 i_mac_log_link_state(mip); 1188 newstate = mip->mi_lowlinkstate; 1189 if (mip->mi_bridge_link != NULL) { 1190 mutex_enter(&mip->mi_bridge_lock); 1191 if ((mh = mip->mi_bridge_link) != NULL) { 1192 newstate = mac_bridge_ls_cb(mh, 1193 newstate); 1194 } 1195 mutex_exit(&mip->mi_bridge_lock); 1196 } 1197 if (newstate != mip->mi_linkstate) { 1198 mip->mi_linkstate = newstate; 1199 bits |= 1 << MAC_NOTE_LINK; 1200 } 1201 } 1202 1203 /* 1204 * Do notification callbacks for each notification type. 1205 */ 1206 for (type = 0; type < MAC_NNOTE; type++) { 1207 if ((bits & (1 << type)) == 0) { 1208 continue; 1209 } 1210 1211 if (mac_notify_cb_list[type] != NULL) 1212 (*mac_notify_cb_list[type])(mip); 1213 1214 /* 1215 * Walk the list of notifications. 1216 */ 1217 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1218 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1219 mcb = mcb->mcb_nextp) { 1220 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1221 mncb->mncb_fn(mncb->mncb_arg, type); 1222 } 1223 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1224 &mip->mi_notify_cb_list); 1225 } 1226 1227 mutex_enter(mcbi->mcbi_lockp); 1228 } 1229 1230 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1231 cv_broadcast(&mcbi->mcbi_cv); 1232 1233 /* CALLB_CPR_EXIT drops the lock */ 1234 CALLB_CPR_EXIT(&cprinfo); 1235 thread_exit(); 1236 } 1237 1238 /* 1239 * Signal the i_mac_notify_thread asking it to quit. 1240 * Then wait till it is done. 1241 */ 1242 void 1243 i_mac_notify_exit(mac_impl_t *mip) 1244 { 1245 mac_cb_info_t *mcbi; 1246 1247 mcbi = &mip->mi_notify_cb_info; 1248 1249 mutex_enter(mcbi->mcbi_lockp); 1250 mip->mi_notify_bits = (1 << MAC_NNOTE); 1251 cv_broadcast(&mcbi->mcbi_cv); 1252 1253 1254 while ((mip->mi_notify_thread != NULL) && 1255 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1256 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1257 } 1258 1259 /* Necessary clean up before doing kmem_cache_free */ 1260 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1261 mip->mi_notify_bits = 0; 1262 mip->mi_notify_thread = NULL; 1263 mutex_exit(mcbi->mcbi_lockp); 1264 } 1265 1266 /* 1267 * Entry point invoked by drivers to dynamically add a ring to an 1268 * existing group. 1269 */ 1270 int 1271 mac_group_add_ring(mac_group_handle_t gh, int index) 1272 { 1273 mac_group_t *group = (mac_group_t *)gh; 1274 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1275 int ret; 1276 1277 i_mac_perim_enter(mip); 1278 ret = i_mac_group_add_ring(group, NULL, index); 1279 i_mac_perim_exit(mip); 1280 return (ret); 1281 } 1282 1283 /* 1284 * Entry point invoked by drivers to dynamically remove a ring 1285 * from an existing group. The specified ring handle must no longer 1286 * be used by the driver after a call to this function. 1287 */ 1288 void 1289 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1290 { 1291 mac_group_t *group = (mac_group_t *)gh; 1292 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1293 1294 i_mac_perim_enter(mip); 1295 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1296 i_mac_perim_exit(mip); 1297 } 1298 1299 /* 1300 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1301 * entry points. 1302 */ 1303 1304 void 1305 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1306 { 1307 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1308 1309 /* nothing to do if the caller doesn't want the default value */ 1310 if (pr->pr_default == NULL) 1311 return; 1312 1313 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1314 1315 *(uint8_t *)(pr->pr_default) = val; 1316 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1317 } 1318 1319 void 1320 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1321 { 1322 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1323 1324 /* nothing to do if the caller doesn't want the default value */ 1325 if (pr->pr_default == NULL) 1326 return; 1327 1328 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1329 1330 bcopy(&val, pr->pr_default, sizeof (val)); 1331 1332 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1333 } 1334 1335 void 1336 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1337 { 1338 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1339 1340 /* nothing to do if the caller doesn't want the default value */ 1341 if (pr->pr_default == NULL) 1342 return; 1343 1344 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1345 1346 bcopy(&val, pr->pr_default, sizeof (val)); 1347 1348 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1349 } 1350 1351 void 1352 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1353 { 1354 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1355 1356 /* nothing to do if the caller doesn't want the default value */ 1357 if (pr->pr_default == NULL) 1358 return; 1359 1360 if (strlen(str) > pr->pr_default_size) 1361 pr->pr_errno = ENOBUFS; 1362 else 1363 (void) strlcpy(pr->pr_default, str, strlen(str)); 1364 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1365 } 1366 1367 void 1368 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1369 link_flowctrl_t val) 1370 { 1371 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1372 1373 /* nothing to do if the caller doesn't want the default value */ 1374 if (pr->pr_default == NULL) 1375 return; 1376 1377 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1378 1379 bcopy(&val, pr->pr_default, sizeof (val)); 1380 1381 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1382 } 1383 1384 void 1385 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1386 uint32_t max) 1387 { 1388 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1389 mac_propval_range_t *range = pr->pr_range; 1390 mac_propval_uint32_range_t *range32; 1391 1392 /* nothing to do if the caller doesn't want the range info */ 1393 if (range == NULL) 1394 return; 1395 1396 if (pr->pr_range_cur_count++ == 0) { 1397 /* first range */ 1398 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1399 range->mpr_type = MAC_PROPVAL_UINT32; 1400 } else { 1401 /* all ranges of a property should be of the same type */ 1402 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1403 if (pr->pr_range_cur_count > range->mpr_count) { 1404 pr->pr_errno = ENOSPC; 1405 return; 1406 } 1407 } 1408 1409 range32 = range->mpr_range_uint32; 1410 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1411 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1412 } 1413 1414 void 1415 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1416 { 1417 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1418 1419 pr->pr_perm = perm; 1420 pr->pr_flags |= MAC_PROP_INFO_PERM; 1421 } 1422 1423 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1424 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1425 { 1426 uint32_t flags; 1427 1428 ASSERT(DB_TYPE(mp) == M_DATA); 1429 1430 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1431 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1432 if (value != NULL) 1433 *value = (uint32_t)DB_CKSUM16(mp); 1434 if ((flags & HCK_PARTIALCKSUM) != 0) { 1435 if (start != NULL) 1436 *start = (uint32_t)DB_CKSUMSTART(mp); 1437 if (stuff != NULL) 1438 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1439 if (end != NULL) 1440 *end = (uint32_t)DB_CKSUMEND(mp); 1441 } 1442 } 1443 1444 if (flags_ptr != NULL) 1445 *flags_ptr = flags; 1446 } 1447 1448 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1449 uint32_t end, uint32_t value, uint32_t flags) 1450 { 1451 ASSERT(DB_TYPE(mp) == M_DATA); 1452 1453 DB_CKSUMSTART(mp) = (intptr_t)start; 1454 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1455 DB_CKSUMEND(mp) = (intptr_t)end; 1456 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1457 DB_CKSUM16(mp) = (uint16_t)value; 1458 } 1459 1460 void 1461 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1462 { 1463 ASSERT(DB_TYPE(mp) == M_DATA); 1464 1465 if (flags != NULL) { 1466 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1467 if ((*flags != 0) && (mss != NULL)) 1468 *mss = (uint32_t)DB_LSOMSS(mp); 1469 } 1470 } 1471