xref: /titanic_50/usr/src/uts/common/io/mac/mac_client.c (revision 6cd9e705a60bbefe49d1a9cfff2944eaf6312c8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 void *
414 mac_driver(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_driver);
417 }
418 
419 const char *
420 mac_name(mac_handle_t mh)
421 {
422 	return (((mac_impl_t *)mh)->mi_name);
423 }
424 
425 char *
426 mac_client_name(mac_client_handle_t mch)
427 {
428 	return (((mac_client_impl_t *)mch)->mci_name);
429 }
430 
431 minor_t
432 mac_minor(mac_handle_t mh)
433 {
434 	return (((mac_impl_t *)mh)->mi_minor);
435 }
436 
437 /*
438  * Return the VID associated with a MAC client. This function should
439  * be called for clients which are associated with only one VID.
440  */
441 uint16_t
442 mac_client_vid(mac_client_handle_t mch)
443 {
444 	uint16_t		vid = VLAN_ID_NONE;
445 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
446 	flow_desc_t		flow_desc;
447 
448 	if (mcip->mci_nflents == 0)
449 		return (vid);
450 
451 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
452 
453 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
454 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
455 		vid = flow_desc.fd_vid;
456 
457 	return (vid);
458 }
459 
460 /*
461  * Return the link speed associated with the specified MAC client.
462  *
463  * The link speed of a MAC client is equal to the smallest value of
464  * 1) the current link speed of the underlying NIC, or
465  * 2) the bandwidth limit set for the MAC client.
466  *
467  * Note that the bandwidth limit can be higher than the speed
468  * of the underlying NIC. This is allowed to avoid spurious
469  * administration action failures or artifically lowering the
470  * bandwidth limit of a link that may  have temporarily lowered
471  * its link speed due to hardware problem or administrator action.
472  */
473 static uint64_t
474 mac_client_ifspeed(mac_client_impl_t *mcip)
475 {
476 	mac_impl_t *mip = mcip->mci_mip;
477 	uint64_t nic_speed;
478 
479 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
480 
481 	if (nic_speed == 0) {
482 		return (0);
483 	} else {
484 		uint64_t policy_limit = (uint64_t)-1;
485 
486 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
487 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
488 
489 		return (MIN(policy_limit, nic_speed));
490 	}
491 }
492 
493 /*
494  * Return the link state of the specified client. If here are more
495  * than one clients of the underying mac_impl_t, the link state
496  * will always be UP regardless of the link state of the underlying
497  * mac_impl_t. This is needed to allow the MAC clients to continue
498  * to communicate with each other even when the physical link of
499  * their mac_impl_t is down.
500  */
501 static uint64_t
502 mac_client_link_state(mac_client_impl_t *mcip)
503 {
504 	mac_impl_t *mip = mcip->mci_mip;
505 	uint16_t vid;
506 	mac_client_impl_t *mci_list;
507 	mac_unicast_impl_t *mui_list, *oth_mui_list;
508 
509 	/*
510 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
511 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
512 	 * if 'mcip' has more than one VID's then we match ANY one of the
513 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
514 	 */
515 	rw_enter(&mcip->mci_rw_lock, RW_READER);
516 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
517 	    mui_list = mui_list->mui_next) {
518 		vid = mui_list->mui_vid;
519 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
520 		    mci_list = mci_list->mci_client_next) {
521 			if (mci_list == mcip)
522 				continue;
523 			for (oth_mui_list = mci_list->mci_unicast_list;
524 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
525 			    mui_next) {
526 				if (vid == oth_mui_list->mui_vid) {
527 					rw_exit(&mcip->mci_rw_lock);
528 					return (LINK_STATE_UP);
529 				}
530 			}
531 		}
532 	}
533 	rw_exit(&mcip->mci_rw_lock);
534 
535 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
536 }
537 
538 /*
539  * Return the statistics of a MAC client. These statistics are different
540  * then the statistics of the underlying MAC which are returned by
541  * mac_stat_get().
542  */
543 uint64_t
544 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
545 {
546 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
547 	mac_impl_t *mip = mcip->mci_mip;
548 	uint64_t val;
549 
550 	switch (stat) {
551 	case MAC_STAT_LINK_STATE:
552 		val = mac_client_link_state(mcip);
553 		break;
554 	case MAC_STAT_LINK_UP:
555 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
556 		break;
557 	case MAC_STAT_PROMISC:
558 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
559 		break;
560 	case MAC_STAT_IFSPEED:
561 		val = mac_client_ifspeed(mcip);
562 		break;
563 	case MAC_STAT_MULTIRCV:
564 		val = mcip->mci_stat_multircv;
565 		break;
566 	case MAC_STAT_BRDCSTRCV:
567 		val = mcip->mci_stat_brdcstrcv;
568 		break;
569 	case MAC_STAT_MULTIXMT:
570 		val = mcip->mci_stat_multixmt;
571 		break;
572 	case MAC_STAT_BRDCSTXMT:
573 		val = mcip->mci_stat_brdcstxmt;
574 		break;
575 	case MAC_STAT_OBYTES:
576 		val = mcip->mci_stat_obytes;
577 		break;
578 	case MAC_STAT_OPACKETS:
579 		val = mcip->mci_stat_opackets;
580 		break;
581 	case MAC_STAT_OERRORS:
582 		val = mcip->mci_stat_oerrors;
583 		break;
584 	case MAC_STAT_IPACKETS:
585 		val = mcip->mci_stat_ipackets;
586 		break;
587 	case MAC_STAT_RBYTES:
588 		val = mcip->mci_stat_ibytes;
589 		break;
590 	case MAC_STAT_IERRORS:
591 		val = mcip->mci_stat_ierrors;
592 		break;
593 	default:
594 		val = mac_stat_default(mip, stat);
595 		break;
596 	}
597 
598 	return (val);
599 }
600 
601 /*
602  * Return the statistics of the specified MAC instance.
603  */
604 uint64_t
605 mac_stat_get(mac_handle_t mh, uint_t stat)
606 {
607 	mac_impl_t	*mip = (mac_impl_t *)mh;
608 	uint64_t	val;
609 	int		ret;
610 
611 	/*
612 	 * The range of stat determines where it is maintained.  Stat
613 	 * values from 0 up to (but not including) MAC_STAT_MIN are
614 	 * mainteined by the mac module itself.  Everything else is
615 	 * maintained by the driver.
616 	 *
617 	 * If the mac_impl_t being queried corresponds to a VNIC,
618 	 * the stats need to be queried from the lower MAC client
619 	 * corresponding to the VNIC. (The mac_link_update()
620 	 * invoked by the driver to the lower MAC causes the *lower
621 	 * MAC* to update its mi_linkstate, and send a notification
622 	 * to its MAC clients. Due to the VNIC passthrough,
623 	 * these notifications are sent to the upper MAC clients
624 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
625 	 * does not have a valid mi_linkstate.
626 	 */
627 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
628 		/* these stats are maintained by the mac module itself */
629 		switch (stat) {
630 		case MAC_STAT_LINK_STATE:
631 			return (mip->mi_linkstate);
632 		case MAC_STAT_LINK_UP:
633 			return (mip->mi_linkstate == LINK_STATE_UP);
634 		case MAC_STAT_PROMISC:
635 			return (mip->mi_devpromisc != 0);
636 		default:
637 			ASSERT(B_FALSE);
638 		}
639 	}
640 
641 	/*
642 	 * Call the driver to get the given statistic.
643 	 */
644 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
645 	if (ret != 0) {
646 		/*
647 		 * The driver doesn't support this statistic.  Get the
648 		 * statistic's default value.
649 		 */
650 		val = mac_stat_default(mip, stat);
651 	}
652 	return (val);
653 }
654 
655 /*
656  * Utility function which returns the VID associated with a flow entry.
657  */
658 uint16_t
659 i_mac_flow_vid(flow_entry_t *flent)
660 {
661 	flow_desc_t	flow_desc;
662 
663 	mac_flow_get_desc(flent, &flow_desc);
664 
665 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
666 		return (flow_desc.fd_vid);
667 	return (VLAN_ID_NONE);
668 }
669 
670 /*
671  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
672  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
673  * length.
674  */
675 boolean_t
676 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
677 {
678 	mac_impl_t	*mip = (mac_impl_t *)mh;
679 
680 	/*
681 	 * Verify the address. No lock is needed since mi_type and plugin
682 	 * details don't change after mac_register().
683 	 */
684 	if ((len != mip->mi_type->mt_addr_length) ||
685 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
686 	    mip->mi_pdata)) != 0) {
687 		return (B_FALSE);
688 	} else {
689 		return (B_TRUE);
690 	}
691 }
692 
693 void
694 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
695 {
696 	mac_impl_t	*mip = (mac_impl_t *)mh;
697 
698 	if (min_sdu != NULL)
699 		*min_sdu = mip->mi_sdu_min;
700 	if (max_sdu != NULL)
701 		*max_sdu = mip->mi_sdu_max;
702 }
703 
704 /*
705  * Update the MAC unicast address of the specified client's flows. Currently
706  * only one unicast MAC unicast address is allowed per client.
707  */
708 static void
709 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
710 {
711 	mac_impl_t *mip = mcip->mci_mip;
712 	flow_entry_t *flent = mcip->mci_flent;
713 	mac_address_t *map = mcip->mci_unicast;
714 	flow_desc_t flow_desc;
715 
716 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
717 	ASSERT(flent != NULL);
718 
719 	mac_flow_get_desc(flent, &flow_desc);
720 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
721 
722 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
723 	mac_flow_set_desc(flent, &flow_desc);
724 
725 	/*
726 	 * A MAC client could have one MAC address but multiple
727 	 * VLANs. In that case update the flow entries corresponding
728 	 * to all VLANs of the MAC client.
729 	 */
730 	for (flent = mcip->mci_flent_list; flent != NULL;
731 	    flent = flent->fe_client_next) {
732 		mac_flow_get_desc(flent, &flow_desc);
733 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
734 		    flent->fe_type & FLOW_VNIC_MAC))
735 			continue;
736 
737 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
738 		mac_flow_set_desc(flent, &flow_desc);
739 	}
740 }
741 
742 /*
743  * Update all clients that share the same unicast address.
744  */
745 void
746 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
747 {
748 	mac_client_impl_t *mcip;
749 
750 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
751 
752 	/*
753 	 * Find all clients that share the same unicast MAC address and update
754 	 * them appropriately.
755 	 */
756 	for (mcip = mip->mi_clients_list; mcip != NULL;
757 	    mcip = mcip->mci_client_next) {
758 		/*
759 		 * Ignore clients that don't share this MAC address.
760 		 */
761 		if (map != mcip->mci_unicast)
762 			continue;
763 
764 		/*
765 		 * Update those clients with same old unicast MAC address.
766 		 */
767 		mac_unicast_update_client_flow(mcip);
768 	}
769 }
770 
771 /*
772  * Update the unicast MAC address of the specified VNIC MAC client.
773  *
774  * Check whether the operation is valid. Any of following cases should fail:
775  *
776  * 1. It's a VLAN type of VNIC.
777  * 2. The new value is current "primary" MAC address.
778  * 3. The current MAC address is shared with other clients.
779  * 4. The new MAC address has been used. This case will be valid when
780  *    client migration is fully supported.
781  */
782 int
783 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
784 {
785 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
786 	mac_impl_t *mip = mcip->mci_mip;
787 	mac_address_t *map = mcip->mci_unicast;
788 	int err;
789 
790 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
791 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
792 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
793 
794 	i_mac_perim_enter(mip);
795 
796 	/*
797 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
798 	 * of the underlying interface. Must fail here. Refer to case 1 above.
799 	 */
800 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
801 		i_mac_perim_exit(mip);
802 		return (ENOTSUP);
803 	}
804 
805 	/*
806 	 * If the new address is the "primary" one, must fail. Refer to
807 	 * case 2 above.
808 	 */
809 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
810 		i_mac_perim_exit(mip);
811 		return (EACCES);
812 	}
813 
814 	/*
815 	 * If the address is shared by multiple clients, must fail. Refer
816 	 * to case 3 above.
817 	 */
818 	if (mac_check_macaddr_shared(map)) {
819 		i_mac_perim_exit(mip);
820 		return (EBUSY);
821 	}
822 
823 	/*
824 	 * If the new address has been used, must fail for now. Refer to
825 	 * case 4 above.
826 	 */
827 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
828 		i_mac_perim_exit(mip);
829 		return (ENOTSUP);
830 	}
831 
832 	/*
833 	 * Update the MAC address.
834 	 */
835 	err = mac_update_macaddr(map, (uint8_t *)addr);
836 
837 	if (err != 0) {
838 		i_mac_perim_exit(mip);
839 		return (err);
840 	}
841 
842 	/*
843 	 * Update all flows of this MAC client.
844 	 */
845 	mac_unicast_update_client_flow(mcip);
846 
847 	i_mac_perim_exit(mip);
848 	return (0);
849 }
850 
851 /*
852  * Program the new primary unicast address of the specified MAC.
853  *
854  * Function mac_update_macaddr() takes care different types of underlying
855  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
856  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
857  * which will take care of updating the MAC address of the corresponding
858  * MAC client.
859  *
860  * This is the only interface that allow the client to update the "primary"
861  * MAC address of the underlying MAC. The new value must have not been
862  * used by other clients.
863  */
864 int
865 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
866 {
867 	mac_impl_t *mip = (mac_impl_t *)mh;
868 	mac_address_t *map;
869 	int err;
870 
871 	/* verify the address validity */
872 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
873 		return (EINVAL);
874 
875 	i_mac_perim_enter(mip);
876 
877 	/*
878 	 * If the new value is the same as the current primary address value,
879 	 * there's nothing to do.
880 	 */
881 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
882 		i_mac_perim_exit(mip);
883 		return (0);
884 	}
885 
886 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
887 		i_mac_perim_exit(mip);
888 		return (EBUSY);
889 	}
890 
891 	map = mac_find_macaddr(mip, mip->mi_addr);
892 	ASSERT(map != NULL);
893 
894 	/*
895 	 * Update the MAC address.
896 	 */
897 	if (mip->mi_state_flags & MIS_IS_AGGR) {
898 		mac_capab_aggr_t aggr_cap;
899 
900 		/*
901 		 * If the mac is an aggregation, other than the unicast
902 		 * addresses programming, aggr must be informed about this
903 		 * primary unicst address change to change its mac address
904 		 * policy to be user-specified.
905 		 */
906 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
907 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
908 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
909 		if (err == 0)
910 			bcopy(addr, map->ma_addr, map->ma_len);
911 	} else {
912 		err = mac_update_macaddr(map, (uint8_t *)addr);
913 	}
914 
915 	if (err != 0) {
916 		i_mac_perim_exit(mip);
917 		return (err);
918 	}
919 
920 	mac_unicast_update_clients(mip, map);
921 
922 	/*
923 	 * Save the new primary MAC address in mac_impl_t.
924 	 */
925 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
926 
927 	i_mac_perim_exit(mip);
928 
929 	if (err == 0)
930 		i_mac_notify(mip, MAC_NOTE_UNICST);
931 
932 	return (err);
933 }
934 
935 /*
936  * Return the current primary MAC address of the specified MAC.
937  */
938 void
939 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
940 {
941 	mac_impl_t *mip = (mac_impl_t *)mh;
942 
943 	rw_enter(&mip->mi_rw_lock, RW_READER);
944 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
945 	rw_exit(&mip->mi_rw_lock);
946 }
947 
948 /*
949  * Return information about the use of the primary MAC address of the
950  * specified MAC instance:
951  *
952  * - if client_name is non-NULL, it must point to a string of at
953  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
954  *   client which uses the primary MAC address.
955  *
956  * - if in_use is non-NULL, used to return whether the primary MAC
957  *   address is currently in use.
958  */
959 void
960 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
961 {
962 	mac_impl_t *mip = (mac_impl_t *)mh;
963 	mac_client_impl_t *cur_client;
964 
965 	if (in_use != NULL)
966 		*in_use = B_FALSE;
967 	if (client_name != NULL)
968 		bzero(client_name, MAXNAMELEN);
969 
970 	/*
971 	 * The mi_rw_lock is used to protect threads that don't hold the
972 	 * mac perimeter to get a consistent view of the mi_clients_list.
973 	 * Threads that modify the list must hold both the mac perimeter and
974 	 * mi_rw_lock(RW_WRITER)
975 	 */
976 	rw_enter(&mip->mi_rw_lock, RW_READER);
977 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
978 	    cur_client = cur_client->mci_client_next) {
979 		if (mac_is_primary_client(cur_client) ||
980 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
981 			rw_exit(&mip->mi_rw_lock);
982 			if (in_use != NULL)
983 				*in_use = B_TRUE;
984 			if (client_name != NULL) {
985 				bcopy(cur_client->mci_name, client_name,
986 				    MAXNAMELEN);
987 			}
988 			return;
989 		}
990 	}
991 	rw_exit(&mip->mi_rw_lock);
992 }
993 
994 /*
995  * Add the specified MAC client to the list of clients which opened
996  * the specified MAC.
997  */
998 static void
999 mac_client_add(mac_client_impl_t *mcip)
1000 {
1001 	mac_impl_t *mip = mcip->mci_mip;
1002 
1003 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1004 
1005 	/* add VNIC to the front of the list */
1006 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1007 	mcip->mci_client_next = mip->mi_clients_list;
1008 	mip->mi_clients_list = mcip;
1009 	mip->mi_nclients++;
1010 	rw_exit(&mip->mi_rw_lock);
1011 }
1012 
1013 /*
1014  * Remove the specified MAC client from the list of clients which opened
1015  * the specified MAC.
1016  */
1017 static void
1018 mac_client_remove(mac_client_impl_t *mcip)
1019 {
1020 	mac_impl_t *mip = mcip->mci_mip;
1021 	mac_client_impl_t **prev, *cclient;
1022 
1023 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1024 
1025 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1026 	prev = &mip->mi_clients_list;
1027 	cclient = *prev;
1028 	while (cclient != NULL && cclient != mcip) {
1029 		prev = &cclient->mci_client_next;
1030 		cclient = *prev;
1031 	}
1032 	ASSERT(cclient != NULL);
1033 	*prev = cclient->mci_client_next;
1034 	mip->mi_nclients--;
1035 	rw_exit(&mip->mi_rw_lock);
1036 }
1037 
1038 static mac_unicast_impl_t *
1039 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1040 {
1041 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1042 
1043 	while ((muip != NULL) && (muip->mui_vid != vid))
1044 		muip = muip->mui_next;
1045 
1046 	return (muip);
1047 }
1048 
1049 /*
1050  * Return whether the specified (MAC address, VID) tuple is already used by
1051  * one of the MAC clients associated with the specified MAC.
1052  */
1053 static boolean_t
1054 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1055 {
1056 	mac_client_impl_t *client;
1057 	mac_address_t *map;
1058 
1059 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1060 
1061 	for (client = mip->mi_clients_list; client != NULL;
1062 	    client = client->mci_client_next) {
1063 
1064 		/*
1065 		 * Ignore clients that don't have unicast address.
1066 		 */
1067 		if (client->mci_unicast_list == NULL)
1068 			continue;
1069 
1070 		map = client->mci_unicast;
1071 
1072 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1073 		    (mac_client_find_vid(client, vid) != NULL)) {
1074 			return (B_TRUE);
1075 		}
1076 	}
1077 
1078 	return (B_FALSE);
1079 }
1080 
1081 /*
1082  * Generate a random MAC address. The MAC address prefix is
1083  * stored in the array pointed to by mac_addr, and its length, in bytes,
1084  * is specified by prefix_len. The least significant bits
1085  * after prefix_len bytes are generated, and stored after the prefix
1086  * in the mac_addr array.
1087  */
1088 int
1089 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1090     uint8_t *mac_addr, mac_diag_t *diag)
1091 {
1092 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1093 	mac_impl_t *mip = mcip->mci_mip;
1094 	size_t addr_len = mip->mi_type->mt_addr_length;
1095 
1096 	if (prefix_len >= addr_len) {
1097 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1098 		return (EINVAL);
1099 	}
1100 
1101 	/* check the prefix value */
1102 	if (prefix_len > 0) {
1103 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1104 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1105 		    addr_len)) {
1106 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1107 			return (EINVAL);
1108 		}
1109 	}
1110 
1111 	/* generate the MAC address */
1112 	if (prefix_len < addr_len) {
1113 		(void) random_get_pseudo_bytes(mac_addr +
1114 		    prefix_len, addr_len - prefix_len);
1115 	}
1116 
1117 	*diag = 0;
1118 	return (0);
1119 }
1120 
1121 /*
1122  * Set the priority range for this MAC client. This will be used to
1123  * determine the absolute priority for the threads created for this
1124  * MAC client using the specified "low", "medium" and "high" level.
1125  * This will also be used for any subflows on this MAC client.
1126  */
1127 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1128 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1129 	    MAXCLSYSPRI, (pri));					\
1130 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1131 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1132 	}
1133 
1134 /*
1135  * MAC client open entry point. Return a new MAC client handle. Each
1136  * MAC client is associated with a name, specified through the 'name'
1137  * argument.
1138  */
1139 int
1140 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1141     uint16_t flags)
1142 {
1143 	mac_impl_t *mip = (mac_impl_t *)mh;
1144 	mac_client_impl_t *mcip;
1145 	int err = 0;
1146 	boolean_t share_desired =
1147 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1148 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1149 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1150 	flow_entry_t	*flent = NULL;
1151 
1152 	*mchp = NULL;
1153 	if (share_desired && no_hwrings) {
1154 		/* can't have shares but no hardware rings */
1155 		return (EINVAL);
1156 	}
1157 
1158 	i_mac_perim_enter(mip);
1159 
1160 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1161 		/*
1162 		 * The underlying MAC is a VNIC. Return the MAC client
1163 		 * handle of the lower MAC which was obtained by
1164 		 * the VNIC driver when it did its mac_client_open().
1165 		 */
1166 
1167 		mcip = mac_vnic_lower(mip);
1168 
1169 		/*
1170 		 * Note that multiple mac clients share the same mcip in
1171 		 * this case.
1172 		 */
1173 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1174 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1175 
1176 		if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1177 			mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1178 
1179 		mip->mi_clients_list = mcip;
1180 		i_mac_perim_exit(mip);
1181 		*mchp = (mac_client_handle_t)mcip;
1182 		return (err);
1183 	}
1184 
1185 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1186 
1187 	mcip->mci_mip = mip;
1188 	mcip->mci_upper_mip = NULL;
1189 	mcip->mci_rx_fn = mac_pkt_drop;
1190 	mcip->mci_rx_arg = NULL;
1191 	mcip->mci_rx_p_fn = NULL;
1192 	mcip->mci_rx_p_arg = NULL;
1193 	mcip->mci_p_unicast_list = NULL;
1194 	mcip->mci_direct_rx_fn = NULL;
1195 	mcip->mci_direct_rx_arg = NULL;
1196 
1197 	mcip->mci_unicast_list = NULL;
1198 
1199 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1200 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1201 
1202 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1203 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1204 
1205 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1206 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1207 
1208 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1209 		datalink_id_t	linkid;
1210 
1211 		ASSERT(name == NULL);
1212 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1213 		    &linkid)) != 0) {
1214 			goto done;
1215 		}
1216 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1217 		    NULL, NULL)) != 0) {
1218 			/*
1219 			 * Use mac name if dlmgmtd is not available.
1220 			 */
1221 			if (err == EBADF) {
1222 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1223 				    sizeof (mcip->mci_name));
1224 				err = 0;
1225 			} else {
1226 				goto done;
1227 			}
1228 		}
1229 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1230 	} else {
1231 		ASSERT(name != NULL);
1232 		if (strlen(name) > MAXNAMELEN) {
1233 			err = EINVAL;
1234 			goto done;
1235 		}
1236 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1237 	}
1238 
1239 	if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1240 		mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1241 
1242 	/* the subflow table will be created dynamically */
1243 	mcip->mci_subflow_tab = NULL;
1244 	mcip->mci_stat_multircv = 0;
1245 	mcip->mci_stat_brdcstrcv = 0;
1246 	mcip->mci_stat_multixmt = 0;
1247 	mcip->mci_stat_brdcstxmt = 0;
1248 
1249 	mcip->mci_stat_obytes = 0;
1250 	mcip->mci_stat_opackets = 0;
1251 	mcip->mci_stat_oerrors = 0;
1252 	mcip->mci_stat_ibytes = 0;
1253 	mcip->mci_stat_ipackets = 0;
1254 	mcip->mci_stat_ierrors = 0;
1255 
1256 	/* Create an initial flow */
1257 
1258 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1259 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1260 	    FLOW_PRIMARY_MAC, &flent);
1261 	if (err != 0)
1262 		goto done;
1263 	mcip->mci_flent = flent;
1264 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1265 	flent->fe_mcip = mcip;
1266 	/*
1267 	 * Place initial creation reference on the flow. This reference
1268 	 * is released in the corresponding delete action viz.
1269 	 * mac_unicast_remove after waiting for all transient refs to
1270 	 * to go away. The wait happens in mac_flow_wait.
1271 	 */
1272 	FLOW_REFHOLD(flent);
1273 
1274 	/*
1275 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1276 	 * will have the right value for mac_rx_srs_setup().
1277 	 */
1278 	mac_client_add(mcip);
1279 
1280 	if (no_hwrings)
1281 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1282 	if (req_hwrings)
1283 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1284 	mcip->mci_share = NULL;
1285 	if (share_desired) {
1286 		ASSERT(!no_hwrings);
1287 		i_mac_share_alloc(mcip);
1288 	}
1289 
1290 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1291 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1292 	*mchp = (mac_client_handle_t)mcip;
1293 
1294 	i_mac_perim_exit(mip);
1295 	return (0);
1296 
1297 done:
1298 	i_mac_perim_exit(mip);
1299 	mcip->mci_state_flags = 0;
1300 	mcip->mci_tx_flag = 0;
1301 	kmem_cache_free(mac_client_impl_cache, mcip);
1302 	return (err);
1303 }
1304 
1305 /*
1306  * Close the specified MAC client handle.
1307  */
1308 void
1309 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1310 {
1311 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1312 	mac_impl_t		*mip = mcip->mci_mip;
1313 	flow_entry_t		*flent;
1314 
1315 	i_mac_perim_enter(mip);
1316 
1317 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1318 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1319 
1320 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1321 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1322 		/*
1323 		 * This is an upper VNIC client initiated operation.
1324 		 * The lower MAC client will be closed by the VNIC driver
1325 		 * when the VNIC is deleted.
1326 		 */
1327 
1328 		i_mac_perim_exit(mip);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Remove the flent associated with the MAC client
1334 	 */
1335 	flent = mcip->mci_flent;
1336 	mcip->mci_flent = NULL;
1337 	FLOW_FINAL_REFRELE(flent);
1338 
1339 	/*
1340 	 * MAC clients must remove the unicast addresses and promisc callbacks
1341 	 * they added before issuing a mac_client_close().
1342 	 */
1343 	ASSERT(mcip->mci_unicast_list == NULL);
1344 	ASSERT(mcip->mci_promisc_list == NULL);
1345 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1346 
1347 	i_mac_share_free(mcip);
1348 
1349 	mac_client_remove(mcip);
1350 
1351 	i_mac_perim_exit(mip);
1352 	mcip->mci_subflow_tab = NULL;
1353 	mcip->mci_state_flags = 0;
1354 	mcip->mci_tx_flag = 0;
1355 	kmem_cache_free(mac_client_impl_cache, mch);
1356 }
1357 
1358 /*
1359  * Enable bypass for the specified MAC client.
1360  */
1361 boolean_t
1362 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1363 {
1364 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1365 	mac_impl_t		*mip = mcip->mci_mip;
1366 
1367 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1368 
1369 	/*
1370 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1371 	 * instead let the packets come up via mac_rx_deliver so the vlan
1372 	 * header can be stripped.
1373 	 */
1374 	if (mcip->mci_nvids > 0)
1375 		return (B_FALSE);
1376 
1377 	/*
1378 	 * These are not accessed directly in the data path, and hence
1379 	 * don't need any protection
1380 	 */
1381 	mcip->mci_direct_rx_fn = rx_fn;
1382 	mcip->mci_direct_rx_arg = arg1;
1383 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1384 	return (B_TRUE);
1385 }
1386 
1387 /*
1388  * Set the receive callback for the specified MAC client. There can be
1389  * at most one such callback per MAC client.
1390  */
1391 void
1392 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1393 {
1394 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1395 	mac_impl_t	*mip = mcip->mci_mip;
1396 
1397 	/*
1398 	 * Instead of adding an extra set of locks and refcnts in
1399 	 * the datapath at the mac client boundary, we temporarily quiesce
1400 	 * the SRS and related entities. We then change the receive function
1401 	 * without interference from any receive data thread and then reenable
1402 	 * the data flow subsequently.
1403 	 */
1404 	i_mac_perim_enter(mip);
1405 	mac_rx_client_quiesce(mch);
1406 
1407 	mcip->mci_rx_fn = rx_fn;
1408 	mcip->mci_rx_arg = arg;
1409 	mac_rx_client_restart(mch);
1410 	i_mac_perim_exit(mip);
1411 }
1412 
1413 /*
1414  * Reset the receive callback for the specified MAC client.
1415  */
1416 void
1417 mac_rx_clear(mac_client_handle_t mch)
1418 {
1419 	mac_rx_set(mch, mac_pkt_drop, NULL);
1420 }
1421 
1422 /*
1423  * Walk the MAC client subflow table and updates their priority values.
1424  */
1425 static int
1426 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1427 {
1428 	mac_flow_update_priority(arg, flent);
1429 	return (0);
1430 }
1431 
1432 void
1433 mac_update_subflow_priority(mac_client_impl_t *mcip)
1434 {
1435 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1436 	    mac_update_subflow_priority_cb, mcip);
1437 }
1438 
1439 /*
1440  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1441  * to initialize the cpu and resource control structure in the
1442  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1443  * properties before the flow entry for the unicast address was created).
1444  */
1445 int
1446 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1447 {
1448 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1449 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1450 	int			err = 0;
1451 
1452 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1453 
1454 	err = mac_validate_props(mrp);
1455 	if (err != 0)
1456 		return (err);
1457 
1458 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1459 	if (MCIP_DATAPATH_SETUP(mcip)) {
1460 		/*
1461 		 * We have to set this prior to calling mac_flow_modify.
1462 		 */
1463 		if (mrp->mrp_mask & MRP_PRIORITY) {
1464 			if (mrp->mrp_priority == MPL_RESET) {
1465 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1466 				    MPL_LINK_DEFAULT);
1467 			} else {
1468 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1469 				    mrp->mrp_priority);
1470 			}
1471 		}
1472 
1473 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1474 		if (mrp->mrp_mask & MRP_PRIORITY)
1475 			mac_update_subflow_priority(mcip);
1476 		return (0);
1477 	}
1478 	return (0);
1479 }
1480 
1481 void
1482 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1483 {
1484 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1485 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1486 
1487 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1488 }
1489 
1490 static int
1491 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1492     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1493     flow_entry_t **flent, mac_resource_props_t *mrp)
1494 {
1495 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1496 	flow_desc_t	flow_desc;
1497 	char		flowname[MAXFLOWNAMELEN];
1498 	int		err;
1499 	uint_t		flent_flags;
1500 
1501 	/*
1502 	 * First unicast address being added, create a new flow
1503 	 * for that MAC client.
1504 	 */
1505 	bzero(&flow_desc, sizeof (flow_desc));
1506 
1507 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1508 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1509 	flow_desc.fd_mask = FLOW_LINK_DST;
1510 	if (vid != 0) {
1511 		flow_desc.fd_vid = vid;
1512 		flow_desc.fd_mask |= FLOW_LINK_VID;
1513 	}
1514 
1515 	/*
1516 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1517 	 * and FLOW_VNIC. Even though they're a hack inherited
1518 	 * from the SRS code, we'll keep them for now. They're currently
1519 	 * consumed by mac_datapath_setup() to create the SRS.
1520 	 * That code should be eventually moved out of
1521 	 * mac_datapath_setup() and moved to a mac_srs_create()
1522 	 * function of some sort to keep things clean.
1523 	 *
1524 	 * Also, there's no reason why the SRS for the primary MAC
1525 	 * client should be different than any other MAC client. Until
1526 	 * this is cleaned-up, we support only one MAC unicast address
1527 	 * per client.
1528 	 *
1529 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1530 	 * FLOW_VNIC for everything else.
1531 	 */
1532 	if (is_primary)
1533 		flent_flags = FLOW_PRIMARY_MAC;
1534 	else
1535 		flent_flags = FLOW_VNIC_MAC;
1536 
1537 	/*
1538 	 * For the first flow we use the mac client's name - mci_name, for
1539 	 * subsequent ones we just create a name with the vid. This is
1540 	 * so that we can add these flows to the same flow table. This is
1541 	 * fine as the flow name (except for the one with the mac client's
1542 	 * name) is not visible. When the first flow is removed, we just replace
1543 	 * its fdesc with another from the list, so we will still retain the
1544 	 * flent with the MAC client's flow name.
1545 	 */
1546 	if (first_flow) {
1547 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1548 	} else {
1549 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1550 		flent_flags = FLOW_NO_STATS;
1551 	}
1552 
1553 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1554 	    flent_flags, flent)) != 0)
1555 		return (err);
1556 
1557 	FLOW_MARK(*flent, FE_INCIPIENT);
1558 	(*flent)->fe_mcip = mcip;
1559 
1560 	/*
1561 	 * Place initial creation reference on the flow. This reference
1562 	 * is released in the corresponding delete action viz.
1563 	 * mac_unicast_remove after waiting for all transient refs to
1564 	 * to go away. The wait happens in mac_flow_wait.
1565 	 * We have already held the reference in mac_client_open().
1566 	 */
1567 	if (!first_flow)
1568 		FLOW_REFHOLD(*flent);
1569 	return (0);
1570 }
1571 
1572 /* Refresh the multicast grouping for this VID. */
1573 int
1574 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1575 {
1576 	flow_entry_t		*flent = arg;
1577 	mac_client_impl_t	*mcip = flent->fe_mcip;
1578 	uint16_t		vid;
1579 	flow_desc_t		flow_desc;
1580 
1581 	mac_flow_get_desc(flent, &flow_desc);
1582 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1583 	    flow_desc.fd_vid : VLAN_ID_NONE;
1584 
1585 	/*
1586 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1587 	 * we want to add/remove for this specific vid.
1588 	 */
1589 	if (add) {
1590 		return (mac_bcast_add(mcip, addrp, vid,
1591 		    MAC_ADDRTYPE_MULTICAST));
1592 	} else {
1593 		mac_bcast_delete(mcip, addrp, vid);
1594 		return (0);
1595 	}
1596 }
1597 
1598 static void
1599 mac_update_single_active_client(mac_impl_t *mip)
1600 {
1601 	mac_client_impl_t *client = NULL;
1602 
1603 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1604 
1605 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1606 	if (mip->mi_nactiveclients == 1) {
1607 		/*
1608 		 * Find the one active MAC client from the list of MAC
1609 		 * clients. The active MAC client has at least one
1610 		 * unicast address.
1611 		 */
1612 		for (client = mip->mi_clients_list; client != NULL;
1613 		    client = client->mci_client_next) {
1614 			if (client->mci_unicast_list != NULL)
1615 				break;
1616 		}
1617 		ASSERT(client != NULL);
1618 	}
1619 
1620 	/*
1621 	 * mi_single_active_client is protected by the MAC impl's read/writer
1622 	 * lock, which allows mac_rx() to check the value of that pointer
1623 	 * as a reader.
1624 	 */
1625 	mip->mi_single_active_client = client;
1626 	rw_exit(&mip->mi_rw_lock);
1627 }
1628 
1629 /*
1630  * Set up the data path. Called from i_mac_unicast_add after having
1631  * done all the validations including making sure this is an active
1632  * client (i.e that is ready to process packets.)
1633  */
1634 static int
1635 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
1636     uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
1637     mac_unicast_impl_t *muip)
1638 {
1639 	mac_impl_t	*mip = mcip->mci_mip;
1640 	boolean_t	mac_started = B_FALSE;
1641 	boolean_t	bcast_added = B_FALSE;
1642 	boolean_t	nactiveclients_added = B_FALSE;
1643 	flow_entry_t	*flent;
1644 	int		err = 0;
1645 
1646 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1647 		goto bail;
1648 
1649 	mac_started = B_TRUE;
1650 
1651 	/* add the MAC client to the broadcast address group by default */
1652 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1653 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1654 		    MAC_ADDRTYPE_BROADCAST);
1655 		if (err != 0)
1656 			goto bail;
1657 		bcast_added = B_TRUE;
1658 	}
1659 
1660 	/*
1661 	 * If this is the first unicast address addition for this
1662 	 * client, reuse the pre-allocated larval flow entry associated with
1663 	 * the MAC client.
1664 	 */
1665 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1666 
1667 	/* We are configuring the unicast flow now */
1668 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1669 
1670 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1671 		    (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
1672 		    MPL_LINK_DEFAULT);
1673 
1674 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1675 		    isprimary, B_TRUE, &flent, mrp)) != 0)
1676 			goto bail;
1677 
1678 		mip->mi_nactiveclients++;
1679 		nactiveclients_added = B_TRUE;
1680 
1681 		/*
1682 		 * This will allocate the RX ring group if possible for the
1683 		 * flow and program the software classifier as needed.
1684 		 */
1685 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1686 			goto bail;
1687 
1688 		/*
1689 		 * The unicast MAC address must have been added successfully.
1690 		 */
1691 		ASSERT(mcip->mci_unicast != NULL);
1692 		/*
1693 		 * Push down the sub-flows that were defined on this link
1694 		 * hitherto. The flows are added to the active flow table
1695 		 * and SRS, softrings etc. are created as needed.
1696 		 */
1697 		mac_link_init_flows((mac_client_handle_t)mcip);
1698 	} else {
1699 		mac_address_t *map = mcip->mci_unicast;
1700 
1701 		/*
1702 		 * A unicast flow already exists for that MAC client,
1703 		 * this flow must be the same mac address but with
1704 		 * different VID. It has been checked by mac_addr_in_use().
1705 		 *
1706 		 * We will use the SRS etc. from the mci_flent. Note that
1707 		 * We don't need to create kstat for this as except for
1708 		 * the fdesc, everything will be used from in the 1st flent.
1709 		 */
1710 
1711 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1712 			err = EINVAL;
1713 			goto bail;
1714 		}
1715 
1716 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1717 		    isprimary, B_FALSE, &flent, NULL)) != 0) {
1718 			goto bail;
1719 		}
1720 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1721 			FLOW_FINAL_REFRELE(flent);
1722 			goto bail;
1723 		}
1724 
1725 		/* update the multicast group for this vid */
1726 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1727 		    (void *)flent, B_TRUE);
1728 
1729 	}
1730 
1731 	/* populate the shared MAC address */
1732 	muip->mui_map = mcip->mci_unicast;
1733 
1734 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1735 	muip->mui_next = mcip->mci_unicast_list;
1736 	mcip->mci_unicast_list = muip;
1737 	rw_exit(&mcip->mci_rw_lock);
1738 
1739 
1740 	/*
1741 	 * First add the flent to the flow list of this mcip. Then set
1742 	 * the mip's mi_single_active_client if needed. The Rx path assumes
1743 	 * that mip->mi_single_active_client will always have an associated
1744 	 * flent.
1745 	 */
1746 	mac_client_add_to_flow_list(mcip, flent);
1747 
1748 	if (nactiveclients_added)
1749 		mac_update_single_active_client(mip);
1750 	/*
1751 	 * Trigger a renegotiation of the capabilities when the number of
1752 	 * active clients changes from 1 to 2, since some of the capabilities
1753 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1754 	 * to all the MAC clients whenever physical link is DOWN.
1755 	 */
1756 	if (mip->mi_nactiveclients == 2) {
1757 		mac_capab_update((mac_handle_t)mip);
1758 		mac_virtual_link_update(mip);
1759 	}
1760 	/*
1761 	 * Now that the setup is complete, clear the INCIPIENT flag.
1762 	 * The flag was set to avoid incoming packets seeing inconsistent
1763 	 * structures while the setup was in progress. Clear the mci_tx_flag
1764 	 * by calling mac_tx_client_block. It is possible that
1765 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1766 	 * could have set the MCI_TX_QUIESCE flag.
1767 	 */
1768 	if (flent->fe_rx_ring_group != NULL)
1769 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1770 	FLOW_UNMARK(flent, FE_INCIPIENT);
1771 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1772 	mac_tx_client_unblock(mcip);
1773 	return (0);
1774 bail:
1775 	if (bcast_added)
1776 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1777 	if (mac_started)
1778 		mac_stop((mac_handle_t)mip);
1779 
1780 	if (nactiveclients_added)
1781 		mip->mi_nactiveclients--;
1782 
1783 	kmem_free(muip, sizeof (mac_unicast_impl_t));
1784 	return (err);
1785 }
1786 
1787 /*
1788  * Return the passive primary MAC client, if present. The passive client is
1789  * a stand-by client that has the same unicast address as another that is
1790  * currenly active. Once the active client goes away, the passive client
1791  * becomes active.
1792  */
1793 static mac_client_impl_t *
1794 mac_get_passive_primary_client(mac_impl_t *mip)
1795 {
1796 	mac_client_impl_t	*mcip;
1797 
1798 	for (mcip = mip->mi_clients_list; mcip != NULL;
1799 	    mcip = mcip->mci_client_next) {
1800 		if (mac_is_primary_client(mcip) &&
1801 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1802 			return (mcip);
1803 		}
1804 	}
1805 	return (NULL);
1806 }
1807 
1808 /*
1809  * Add a new unicast address to the MAC client.
1810  *
1811  * The MAC address can be specified either by value, or the MAC client
1812  * can specify that it wants to use the primary MAC address of the
1813  * underlying MAC. See the introductory comments at the beginning
1814  * of this file for more more information on primary MAC addresses.
1815  *
1816  * Note also the tuple (MAC address, VID) must be unique
1817  * for the MAC clients defined on top of the same underlying MAC
1818  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1819  */
1820 int
1821 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1822     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1823 {
1824 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1825 	mac_impl_t		*mip = mcip->mci_mip;
1826 	int			err;
1827 	uint_t			mac_len = mip->mi_type->mt_addr_length;
1828 	boolean_t		check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1829 	boolean_t		fastpath_disabled = B_FALSE;
1830 	boolean_t		is_primary = (flags & MAC_UNICAST_PRIMARY);
1831 	boolean_t		is_unicast_hw = (flags & MAC_UNICAST_HW);
1832 	mac_resource_props_t	mrp;
1833 	boolean_t		passive_client = B_FALSE;
1834 	mac_unicast_impl_t	*muip;
1835 	boolean_t		is_vnic_primary =
1836 	    (flags & MAC_UNICAST_VNIC_PRIMARY);
1837 
1838 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1839 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1840 
1841 	/*
1842 	 * Check whether it's the primary client and flag it.
1843 	 */
1844 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1845 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1846 
1847 	/*
1848 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1849 	 * which uses the primary mac client's address but with a non-zero
1850 	 * VID. In this case the MAC address is not specified by an upper
1851 	 * MAC client.
1852 	 */
1853 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1854 	    !is_vnic_primary) {
1855 		mac_unicast_impl_t	*muip;
1856 
1857 		/*
1858 		 * The address is being set by the upper MAC client
1859 		 * of a VNIC. The MAC address was already set by the
1860 		 * VNIC driver during VNIC creation.
1861 		 *
1862 		 * Note: a VNIC has only one MAC address. We return
1863 		 * the MAC unicast address handle of the lower MAC client
1864 		 * corresponding to the VNIC. We allocate a new entry
1865 		 * which is flagged appropriately, so that mac_unicast_remove()
1866 		 * doesn't attempt to free the original entry that
1867 		 * was allocated by the VNIC driver.
1868 		 */
1869 		ASSERT(mcip->mci_unicast != NULL);
1870 
1871 		/* Check for VLAN flags, if present */
1872 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1873 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1874 
1875 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1876 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1877 
1878 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1879 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1880 
1881 		/*
1882 		 * Ensure that the primary unicast address of the VNIC
1883 		 * is added only once unless we have the
1884 		 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
1885 		 * a passive MAC client).
1886 		 */
1887 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
1888 			if ((mcip->mci_flags &
1889 			    MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
1890 			    (mcip->mci_flags &
1891 			    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1892 				return (EBUSY);
1893 			}
1894 			mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
1895 			passive_client = B_TRUE;
1896 		}
1897 
1898 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1899 
1900 		/*
1901 		 * Create a handle for vid 0.
1902 		 */
1903 		ASSERT(vid == 0);
1904 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1905 		muip->mui_vid = vid;
1906 		*mah = (mac_unicast_handle_t)muip;
1907 		/*
1908 		 * This will be used by the caller to defer setting the
1909 		 * rx functions.
1910 		 */
1911 		if (passive_client)
1912 			return (EAGAIN);
1913 		return (0);
1914 	}
1915 
1916 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1917 	if ((is_vnic_primary || is_primary) &&
1918 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1919 		return (ENXIO);
1920 	}
1921 
1922 	/*
1923 	 * If this is a VNIC/VLAN, disable softmac fast-path.
1924 	 */
1925 	if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1926 		err = mac_fastpath_disable((mac_handle_t)mip);
1927 		if (err != 0)
1928 			return (err);
1929 		fastpath_disabled = B_TRUE;
1930 	}
1931 
1932 	/*
1933 	 * Return EBUSY if:
1934 	 *  - there is an exclusively active mac client exists.
1935 	 *  - this is an exclusive active mac client but
1936 	 *	a. there is already active mac clients exist, or
1937 	 *	b. fastpath streams are already plumbed on this legacy device
1938 	 */
1939 	if (mip->mi_state_flags & MIS_EXCLUSIVE) {
1940 		if (fastpath_disabled)
1941 			mac_fastpath_enable((mac_handle_t)mip);
1942 		return (EBUSY);
1943 	}
1944 
1945 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
1946 		ASSERT(!fastpath_disabled);
1947 		if (mip->mi_nactiveclients != 0)
1948 			return (EBUSY);
1949 
1950 		if ((mip->mi_state_flags & MIS_LEGACY) &&
1951 		    !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
1952 			return (EBUSY);
1953 		}
1954 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1955 	}
1956 
1957 	bzero(&mrp, sizeof (mac_resource_props_t));
1958 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1959 	    MCIS_IS_AGGR_PORT))) {
1960 		/*
1961 		 * Apply the property cached in the mac_impl_t to the primary
1962 		 * mac client. If the mac client is a VNIC or an aggregation
1963 		 * port, its property should be set in the mcip when the
1964 		 * VNIC/aggr was created.
1965 		 */
1966 		mac_get_resources((mac_handle_t)mip, &mrp);
1967 		(void) mac_client_set_resources(mch, &mrp);
1968 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1969 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1970 		    sizeof (mac_resource_props_t));
1971 	}
1972 
1973 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1974 	muip->mui_vid = vid;
1975 
1976 	if (is_primary || is_vnic_primary) {
1977 		mac_addr = mip->mi_addr;
1978 	} else {
1979 
1980 		/*
1981 		 * Verify the validity of the specified MAC addresses value.
1982 		 */
1983 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
1984 			*diag = MAC_DIAG_MACADDR_INVALID;
1985 			err = EINVAL;
1986 			goto bail_out;
1987 		}
1988 
1989 		/*
1990 		 * Make sure that the specified MAC address is different
1991 		 * than the unicast MAC address of the underlying NIC.
1992 		 */
1993 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
1994 			*diag = MAC_DIAG_MACADDR_NIC;
1995 			err = EINVAL;
1996 			goto bail_out;
1997 		}
1998 	}
1999 
2000 	/*
2001 	 * Set the flags here so that if this is a passive client, we
2002 	 * can return  and set it when we call mac_client_datapath_setup
2003 	 * when this becomes the active client. If we defer to using these
2004 	 * flags to mac_client_datapath_setup, then for a passive client,
2005 	 * we'd have to store the flags somewhere (probably fe_flags)
2006 	 * and then use it.
2007 	 */
2008 	if (!MCIP_DATAPATH_SETUP(mcip)) {
2009 		if (is_unicast_hw) {
2010 			/*
2011 			 * The client requires a hardware MAC address slot
2012 			 * for that unicast address. Since we support only
2013 			 * one unicast MAC address per client, flag the
2014 			 * MAC client itself.
2015 			 */
2016 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
2017 		}
2018 
2019 		/* Check for VLAN flags, if present */
2020 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2021 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2022 
2023 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2024 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2025 
2026 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2027 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2028 	} else {
2029 		/*
2030 		 * Assert that the specified flags are consistent with the
2031 		 * flags specified by previous calls to mac_unicast_add().
2032 		 */
2033 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2034 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2035 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2036 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2037 
2038 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2039 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2040 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2041 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2042 
2043 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2044 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2045 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2046 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2047 
2048 		/*
2049 		 * Make sure the client is consistent about its requests
2050 		 * for MAC addresses. I.e. all requests from the clients
2051 		 * must have the MAC_UNICAST_HW flag set or clear.
2052 		 */
2053 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2054 		    !is_unicast_hw ||
2055 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2056 		    is_unicast_hw) {
2057 			err = EINVAL;
2058 			goto bail_out;
2059 		}
2060 	}
2061 	/*
2062 	 * Make sure the MAC address is not already used by
2063 	 * another MAC client defined on top of the same
2064 	 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2065 	 * set when we allow a passive client to be present which will
2066 	 * be activated when the currently active client goes away - this
2067 	 * works only with primary addresses.
2068 	 */
2069 	if ((check_dups || is_primary || is_vnic_primary) &&
2070 	    mac_addr_in_use(mip, mac_addr, vid)) {
2071 		/*
2072 		 * Must have set the multiple primary address flag when
2073 		 * we did a mac_client_open AND this should be a primary
2074 		 * MAC client AND there should not already be a passive
2075 		 * primary. If all is true then we let this succeed
2076 		 * even if the address is a dup.
2077 		 */
2078 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2079 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2080 		    mac_get_passive_primary_client(mip) != NULL) {
2081 			*diag = MAC_DIAG_MACADDR_INUSE;
2082 			err = EEXIST;
2083 			goto bail_out;
2084 		}
2085 		ASSERT((mcip->mci_flags &
2086 		    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2087 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2088 
2089 		/*
2090 		 * Stash the unicast address handle, we will use it when
2091 		 * we set up the passive client.
2092 		 */
2093 		mcip->mci_p_unicast_list = muip;
2094 		*mah = (mac_unicast_handle_t)muip;
2095 		return (0);
2096 	}
2097 
2098 	err = mac_client_datapath_setup(mcip, vid, mac_addr, &mrp,
2099 	    is_primary || is_vnic_primary, muip);
2100 	if (err != 0)
2101 		goto bail_out;
2102 	*mah = (mac_unicast_handle_t)muip;
2103 	return (0);
2104 
2105 bail_out:
2106 	if (fastpath_disabled)
2107 		mac_fastpath_enable((mac_handle_t)mip);
2108 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2109 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2110 		if (mip->mi_state_flags & MIS_LEGACY) {
2111 			mip->mi_capab_legacy.ml_active_clear(
2112 			    mip->mi_driver);
2113 		}
2114 	}
2115 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2116 	return (err);
2117 }
2118 
2119 /*
2120  * Wrapper function to mac_unicast_add when we want to have the same mac
2121  * client open for two instances, one that is currently active and another
2122  * that will become active when the current one is removed. In this case
2123  * mac_unicast_add will return EGAIN and we will save the rx function and
2124  * arg which will be used when we activate the passive client in
2125  * mac_unicast_remove.
2126  */
2127 int
2128 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2129     uint16_t flags, mac_unicast_handle_t *mah,  uint16_t vid, mac_diag_t *diag,
2130     mac_rx_t rx_fn, void *arg)
2131 {
2132 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2133 	uint_t			err;
2134 
2135 	err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2136 	if (err != 0 && err != EAGAIN)
2137 		return (err);
2138 	if (err == EAGAIN) {
2139 		if (rx_fn != NULL) {
2140 			mcip->mci_rx_p_fn = rx_fn;
2141 			mcip->mci_rx_p_arg = arg;
2142 		}
2143 		return (0);
2144 	}
2145 	if (rx_fn != NULL)
2146 		mac_rx_set(mch, rx_fn, arg);
2147 	return (err);
2148 }
2149 
2150 int
2151 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2152     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2153 {
2154 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2155 	uint_t err;
2156 
2157 	i_mac_perim_enter(mip);
2158 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2159 	i_mac_perim_exit(mip);
2160 
2161 	return (err);
2162 }
2163 
2164 void
2165 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2166     flow_entry_t *flent)
2167 {
2168 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2169 	mac_impl_t		*mip = mcip->mci_mip;
2170 
2171 	/*
2172 	 * We would have initialized subflows etc. only if we brought up
2173 	 * the primary client and set the unicast unicast address etc.
2174 	 * Deactivate the flows. The flow entry will be removed from the
2175 	 * active flow tables, and the associated SRS, softrings etc will
2176 	 * be deleted. But the flow entry itself won't be destroyed, instead
2177 	 * it will continue to be archived off the  the global flow hash
2178 	 * list, for a possible future activation when say IP is plumbed
2179 	 * again.
2180 	 */
2181 	mac_link_release_flows(mch);
2182 
2183 	mip->mi_nactiveclients--;
2184 	mac_update_single_active_client(mip);
2185 
2186 	/* Tear down the data path */
2187 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2188 
2189 	/*
2190 	 * Prevent any future access to the flow entry through the mci_flent
2191 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2192 	 * mac_bcast_send is also under mi_rw_lock.
2193 	 */
2194 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2195 	flent = mcip->mci_flent;
2196 	mac_client_remove_flow_from_list(mcip, flent);
2197 
2198 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2199 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2200 
2201 	/*
2202 	 * This is the last unicast address being removed and there shouldn't
2203 	 * be any outbound data threads at this point coming down from mac
2204 	 * clients. We have waited for the data threads to finish before
2205 	 * starting dld_str_detach. Non-data threads must access TX SRS
2206 	 * under mi_rw_lock.
2207 	 */
2208 	rw_exit(&mip->mi_rw_lock);
2209 
2210 	/*
2211 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2212 	 * contain other flags, such as FE_CONDEMNED, which we need to
2213 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2214 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2215 	 * path). We just clear the stats and reset the initial callback
2216 	 * function, the rest will be set when we call mac_flow_create,
2217 	 * if at all.
2218 	 */
2219 	mutex_enter(&flent->fe_lock);
2220 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2221 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2222 	flent->fe_flags = FE_MC_NO_DATAPATH;
2223 	flow_stat_destroy(flent);
2224 
2225 	/* Initialize the receiver function to a safe routine */
2226 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2227 	flent->fe_cb_arg1 = NULL;
2228 	flent->fe_cb_arg2 = NULL;
2229 
2230 	flent->fe_index = -1;
2231 	mutex_exit(&flent->fe_lock);
2232 
2233 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2234 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2235 		    muip->mui_vid);
2236 	}
2237 
2238 	if (mip->mi_nactiveclients == 1) {
2239 		mac_capab_update((mac_handle_t)mip);
2240 		mac_virtual_link_update(mip);
2241 	}
2242 
2243 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2244 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2245 
2246 		if (mip->mi_state_flags & MIS_LEGACY)
2247 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2248 	}
2249 
2250 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2251 
2252 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2253 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2254 
2255 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2256 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2257 
2258 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2259 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2260 
2261 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2262 
2263 	/*
2264 	 * Disable fastpath if this is a VNIC or a VLAN.
2265 	 */
2266 	if (mcip->mci_state_flags & MCIS_IS_VNIC)
2267 		mac_fastpath_enable((mac_handle_t)mip);
2268 	mac_stop((mac_handle_t)mip);
2269 }
2270 
2271 /*
2272  * Remove a MAC address which was previously added by mac_unicast_add().
2273  */
2274 int
2275 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2276 {
2277 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2278 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2279 	mac_unicast_impl_t *pre;
2280 	mac_impl_t *mip = mcip->mci_mip;
2281 	flow_entry_t		*flent;
2282 	boolean_t		isprimary = B_FALSE;
2283 
2284 	i_mac_perim_enter(mip);
2285 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2286 		/*
2287 		 * Called made by the upper MAC client of a VNIC.
2288 		 * There's nothing much to do, the unicast address will
2289 		 * be removed by the VNIC driver when the VNIC is deleted,
2290 		 * but let's ensure that all our transmit is done before
2291 		 * the client does a mac_client_stop lest it trigger an
2292 		 * assert in the driver.
2293 		 */
2294 		ASSERT(muip->mui_vid == 0);
2295 
2296 		mac_tx_client_flush(mcip);
2297 
2298 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2299 			mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2300 			if (mcip->mci_rx_p_fn != NULL) {
2301 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2302 				    mcip->mci_rx_p_arg);
2303 				mcip->mci_rx_p_fn = NULL;
2304 				mcip->mci_rx_p_arg = NULL;
2305 			}
2306 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2307 			i_mac_perim_exit(mip);
2308 			return (0);
2309 		}
2310 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2311 
2312 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2313 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2314 
2315 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2316 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2317 
2318 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2319 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2320 
2321 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2322 		i_mac_perim_exit(mip);
2323 		return (0);
2324 	}
2325 
2326 	ASSERT(muip != NULL);
2327 
2328 	/*
2329 	 * We are removing a passive client, we haven't setup the datapath
2330 	 * for this yet, so nothing much to do.
2331 	 */
2332 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2333 
2334 		ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
2335 		ASSERT(mcip->mci_p_unicast_list == muip);
2336 
2337 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2338 
2339 		mcip->mci_p_unicast_list = NULL;
2340 		mcip->mci_rx_p_fn = NULL;
2341 		mcip->mci_rx_p_arg = NULL;
2342 
2343 		mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2344 
2345 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2346 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2347 
2348 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2349 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2350 
2351 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2352 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2353 
2354 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2355 		i_mac_perim_exit(mip);
2356 		return (0);
2357 	}
2358 	/*
2359 	 * Remove the VID from the list of client's VIDs.
2360 	 */
2361 	pre = mcip->mci_unicast_list;
2362 	if (muip == pre) {
2363 		mcip->mci_unicast_list = muip->mui_next;
2364 	} else {
2365 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2366 			pre = pre->mui_next;
2367 		ASSERT(pre->mui_next == muip);
2368 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2369 		pre->mui_next = muip->mui_next;
2370 		rw_exit(&mcip->mci_rw_lock);
2371 	}
2372 
2373 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
2374 	    muip->mui_vid == 0) {
2375 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2376 		isprimary = B_TRUE;
2377 	}
2378 	if (!mac_client_single_rcvr(mcip)) {
2379 		/*
2380 		 * This MAC client is shared by more than one unicast
2381 		 * addresses, so we will just remove the flent
2382 		 * corresponding to the address being removed. We don't invoke
2383 		 * mac_rx_classify_flow_rem() since the additional flow is
2384 		 * not associated with its own separate set of SRS and rings,
2385 		 * and these constructs are still needed for the remaining
2386 		 * flows.
2387 		 */
2388 		flent = mac_client_get_flow(mcip, muip);
2389 		ASSERT(flent != NULL);
2390 
2391 		/*
2392 		 * The first one is disappearing, need to make sure
2393 		 * we replace it with another from the list of
2394 		 * shared clients.
2395 		 */
2396 		if (flent == mcip->mci_flent)
2397 			flent = mac_client_swap_mciflent(mcip);
2398 		mac_client_remove_flow_from_list(mcip, flent);
2399 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2400 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2401 
2402 		/*
2403 		 * The multicast groups that were added by the client so
2404 		 * far must be removed from the brodcast domain corresponding
2405 		 * to the VID being removed.
2406 		 */
2407 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2408 		    (void *)flent, B_FALSE);
2409 
2410 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2411 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2412 			    muip->mui_vid);
2413 		}
2414 
2415 		FLOW_FINAL_REFRELE(flent);
2416 		ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
2417 		/*
2418 		 * Enable fastpath if this is a VNIC or a VLAN.
2419 		 */
2420 		if (mcip->mci_state_flags & MCIS_IS_VNIC)
2421 			mac_fastpath_enable((mac_handle_t)mip);
2422 		mac_stop((mac_handle_t)mip);
2423 		i_mac_perim_exit(mip);
2424 		return (0);
2425 	}
2426 
2427 	mac_client_datapath_teardown(mch, muip, flent);
2428 
2429 	/*
2430 	 * If we are removing the primary, check if we have a passive primary
2431 	 * client that we need to activate now.
2432 	 */
2433 	if (!isprimary) {
2434 		i_mac_perim_exit(mip);
2435 		return (0);
2436 	}
2437 	mcip = mac_get_passive_primary_client(mip);
2438 	if (mcip != NULL) {
2439 		mac_resource_props_t	mrp;
2440 		mac_unicast_impl_t	*muip;
2441 
2442 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2443 		bzero(&mrp, sizeof (mac_resource_props_t));
2444 		/*
2445 		 * Apply the property cached in the mac_impl_t to the
2446 		 * primary mac client.
2447 		 */
2448 		mac_get_resources((mac_handle_t)mip, &mrp);
2449 		(void) mac_client_set_resources(mch, &mrp);
2450 		ASSERT(mcip->mci_p_unicast_list != NULL);
2451 		muip = mcip->mci_p_unicast_list;
2452 		mcip->mci_p_unicast_list = NULL;
2453 		if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
2454 		    mip->mi_addr, &mrp, B_TRUE, muip) == 0) {
2455 			if (mcip->mci_rx_p_fn != NULL) {
2456 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2457 				    mcip->mci_rx_p_arg);
2458 				mcip->mci_rx_p_fn = NULL;
2459 				mcip->mci_rx_p_arg = NULL;
2460 			}
2461 		}
2462 	}
2463 	i_mac_perim_exit(mip);
2464 	return (0);
2465 }
2466 
2467 /*
2468  * Multicast add function invoked by MAC clients.
2469  */
2470 int
2471 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2472 {
2473 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2474 	mac_impl_t		*mip = mcip->mci_mip;
2475 	flow_entry_t		*flent = mcip->mci_flent_list;
2476 	flow_entry_t		*prev_fe = NULL;
2477 	uint16_t		vid;
2478 	int			err = 0;
2479 
2480 	/* Verify the address is a valid multicast address */
2481 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2482 	    mip->mi_pdata)) != 0)
2483 		return (err);
2484 
2485 	i_mac_perim_enter(mip);
2486 	while (flent != NULL) {
2487 		vid = i_mac_flow_vid(flent);
2488 
2489 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2490 		    MAC_ADDRTYPE_MULTICAST);
2491 		if (err != 0)
2492 			break;
2493 		prev_fe = flent;
2494 		flent = flent->fe_client_next;
2495 	}
2496 
2497 	/*
2498 	 * If we failed adding, then undo all, rather than partial
2499 	 * success.
2500 	 */
2501 	if (flent != NULL && prev_fe != NULL) {
2502 		flent = mcip->mci_flent_list;
2503 		while (flent != prev_fe->fe_client_next) {
2504 			vid = i_mac_flow_vid(flent);
2505 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2506 			flent = flent->fe_client_next;
2507 		}
2508 	}
2509 	i_mac_perim_exit(mip);
2510 	return (err);
2511 }
2512 
2513 /*
2514  * Multicast delete function invoked by MAC clients.
2515  */
2516 void
2517 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2518 {
2519 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2520 	mac_impl_t		*mip = mcip->mci_mip;
2521 	flow_entry_t		*flent;
2522 	uint16_t		vid;
2523 
2524 	i_mac_perim_enter(mip);
2525 	for (flent = mcip->mci_flent_list; flent != NULL;
2526 	    flent = flent->fe_client_next) {
2527 		vid = i_mac_flow_vid(flent);
2528 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2529 	}
2530 	i_mac_perim_exit(mip);
2531 }
2532 
2533 /*
2534  * When a MAC client desires to capture packets on an interface,
2535  * it registers a promiscuous call back with mac_promisc_add().
2536  * There are three types of promiscuous callbacks:
2537  *
2538  * * MAC_CLIENT_PROMISC_ALL
2539  *   Captures all packets sent and received by the MAC client,
2540  *   the physical interface, as well as all other MAC clients
2541  *   defined on top of the same MAC.
2542  *
2543  * * MAC_CLIENT_PROMISC_FILTERED
2544  *   Captures all packets sent and received by the MAC client,
2545  *   plus all multicast traffic sent and received by the phyisical
2546  *   interface and the other MAC clients.
2547  *
2548  * * MAC_CLIENT_PROMISC_MULTI
2549  *   Captures all broadcast and multicast packets sent and
2550  *   received by the MAC clients as well as the physical interface.
2551  *
2552  * In all cases, the underlying MAC is put in promiscuous mode.
2553  */
2554 int
2555 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2556     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2557 {
2558 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2559 	mac_impl_t *mip = mcip->mci_mip;
2560 	mac_promisc_impl_t *mpip;
2561 	mac_cb_info_t	*mcbi;
2562 	int rc;
2563 
2564 	i_mac_perim_enter(mip);
2565 
2566 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2567 		i_mac_perim_exit(mip);
2568 		return (rc);
2569 	}
2570 
2571 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2572 	    type == MAC_CLIENT_PROMISC_ALL) {
2573 		/*
2574 		 * The function is being invoked by the upper MAC client
2575 		 * of a VNIC. The VNIC should only see the traffic
2576 		 * it is entitled to.
2577 		 */
2578 		type = MAC_CLIENT_PROMISC_FILTERED;
2579 	}
2580 
2581 
2582 	/*
2583 	 * Turn on promiscuous mode for the underlying NIC.
2584 	 * This is needed even for filtered callbacks which
2585 	 * expect to receive all multicast traffic on the wire.
2586 	 *
2587 	 * Physical promiscuous mode should not be turned on if
2588 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2589 	 */
2590 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2591 		if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
2592 			mac_stop((mac_handle_t)mip);
2593 			i_mac_perim_exit(mip);
2594 			return (rc);
2595 		}
2596 	}
2597 
2598 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2599 
2600 	mpip->mpi_type = type;
2601 	mpip->mpi_fn = fn;
2602 	mpip->mpi_arg = arg;
2603 	mpip->mpi_mcip = mcip;
2604 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2605 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2606 	mpip->mpi_strip_vlan_tag =
2607 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2608 
2609 	mcbi = &mip->mi_promisc_cb_info;
2610 	mutex_enter(mcbi->mcbi_lockp);
2611 
2612 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2613 	    &mpip->mpi_mci_link);
2614 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2615 	    &mpip->mpi_mi_link);
2616 
2617 	mutex_exit(mcbi->mcbi_lockp);
2618 
2619 	*mphp = (mac_promisc_handle_t)mpip;
2620 	i_mac_perim_exit(mip);
2621 	return (0);
2622 }
2623 
2624 /*
2625  * Remove a multicast address previously aded through mac_promisc_add().
2626  */
2627 void
2628 mac_promisc_remove(mac_promisc_handle_t mph)
2629 {
2630 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2631 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2632 	mac_impl_t *mip = mcip->mci_mip;
2633 	mac_cb_info_t *mcbi;
2634 	int rv;
2635 
2636 	i_mac_perim_enter(mip);
2637 
2638 	/*
2639 	 * Even if the device can't be reset into normal mode, we still
2640 	 * need to clear the client promisc callbacks. The client may want
2641 	 * to close the mac end point and we can't have stale callbacks.
2642 	 */
2643 	if (!(mpip->mpi_no_phys)) {
2644 		if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
2645 			cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
2646 			    " mode because of error 0x%x", mip->mi_name, rv);
2647 		}
2648 	}
2649 	mcbi = &mip->mi_promisc_cb_info;
2650 	mutex_enter(mcbi->mcbi_lockp);
2651 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2652 	    &mpip->mpi_mi_link)) {
2653 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2654 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2655 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2656 	} else {
2657 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2658 	}
2659 	mutex_exit(mcbi->mcbi_lockp);
2660 	mac_stop((mac_handle_t)mip);
2661 
2662 	i_mac_perim_exit(mip);
2663 }
2664 
2665 /*
2666  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2667  * that a control operation wants to quiesce the Tx data flow in which case
2668  * we return an error. Holding any of the per cpu locks ensures that the
2669  * mci_tx_flag won't change.
2670  *
2671  * 'CPU' must be accessed just once and used to compute the index into the
2672  * percpu array, and that index must be used for the entire duration of the
2673  * packet send operation. Note that the thread may be preempted and run on
2674  * another cpu any time and so we can't use 'CPU' more than once for the
2675  * operation.
2676  */
2677 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2678 {									\
2679 	(error) = 0;							\
2680 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2681 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2682 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2683 		(mytx)->pcpu_tx_refcnt++;				\
2684 	} else {							\
2685 		(error) = -1;						\
2686 	}								\
2687 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2688 }
2689 
2690 /*
2691  * Release the reference. If needed, signal any control operation waiting
2692  * for Tx quiescence. The wait and signal are always done using the
2693  * mci_tx_pcpu[0]'s lock
2694  */
2695 #define	MAC_TX_RELE(mcip, mytx) {					\
2696 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2697 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2698 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2699 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2700 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2701 		cv_signal(&(mcip)->mci_tx_cv);				\
2702 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2703 	} else {							\
2704 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2705 	}								\
2706 }
2707 
2708 /*
2709  * Bump the count of the number of active Tx threads. This is maintained as
2710  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2711  * a single mci_tx_lock may become contended. However a count of the total
2712  * number of Tx threads per client is needed in order to quiesce the Tx side
2713  * prior to reassigning a Tx ring dynamically to another client. The thread
2714  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2715  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2716  * its own percpu lock and increments its own refcnt.
2717  */
2718 void *
2719 mac_tx_hold(mac_client_handle_t mch)
2720 {
2721 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2722 	mac_tx_percpu_t	*mytx;
2723 	int error;
2724 
2725 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2726 	return (error == 0 ? (void *)mytx : NULL);
2727 }
2728 
2729 void
2730 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2731 {
2732 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2733 	mac_tx_percpu_t	*mytx = mytx_handle;
2734 
2735 	MAC_TX_RELE(mcip, mytx)
2736 }
2737 
2738 /*
2739  * Send function invoked by MAC clients.
2740  */
2741 mac_tx_cookie_t
2742 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2743     uint16_t flag, mblk_t **ret_mp)
2744 {
2745 	mac_tx_cookie_t		cookie;
2746 	int			error;
2747 	mac_tx_percpu_t		*mytx;
2748 	mac_soft_ring_set_t	*srs;
2749 	flow_entry_t		*flent;
2750 	boolean_t		is_subflow = B_FALSE;
2751 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2752 	mac_impl_t		*mip = mcip->mci_mip;
2753 	mac_srs_tx_t		*srs_tx;
2754 
2755 	/*
2756 	 * Check whether the active Tx threads count is bumped already.
2757 	 */
2758 	if (!(flag & MAC_TX_NO_HOLD)) {
2759 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2760 		if (error != 0) {
2761 			freemsgchain(mp_chain);
2762 			return (NULL);
2763 		}
2764 	}
2765 
2766 	if (mcip->mci_subflow_tab != NULL &&
2767 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2768 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2769 	    FLOW_OUTBOUND, &flent) == 0) {
2770 		/*
2771 		 * The main assumption here is that if in the event
2772 		 * we get a chain, all the packets will be classified
2773 		 * to the same Flow/SRS. If this changes for any
2774 		 * reason, the following logic should change as well.
2775 		 * I suppose the fanout_hint also assumes this .
2776 		 */
2777 		ASSERT(flent != NULL);
2778 		is_subflow = B_TRUE;
2779 	} else {
2780 		flent = mcip->mci_flent;
2781 	}
2782 
2783 	srs = flent->fe_tx_srs;
2784 	srs_tx = &srs->srs_tx;
2785 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2786 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2787 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2788 	    mp_chain->b_next == NULL) {
2789 		uint64_t	obytes;
2790 
2791 		/*
2792 		 * Since dls always opens the underlying MAC, nclients equals
2793 		 * to 1 means that the only active client is dls itself acting
2794 		 * as a primary client of the MAC instance. Since dls will not
2795 		 * send tagged packets in that case, and dls is trusted to send
2796 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2797 		 * check is required only if nclients is greater than 1.
2798 		 */
2799 		if (mip->mi_nclients > 1) {
2800 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2801 				int	err = 0;
2802 
2803 				MAC_VID_CHECK(mcip, mp_chain, err);
2804 				if (err != 0) {
2805 					freemsg(mp_chain);
2806 					mcip->mci_stat_oerrors++;
2807 					goto done;
2808 				}
2809 			}
2810 			if (MAC_TAG_NEEDED(mcip)) {
2811 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2812 				    mac_client_vid(mch));
2813 				if (mp_chain == NULL) {
2814 					mcip->mci_stat_oerrors++;
2815 					goto done;
2816 				}
2817 			}
2818 		}
2819 
2820 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2821 		    msgdsize(mp_chain));
2822 
2823 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
2824 
2825 		if (mp_chain == NULL) {
2826 			cookie = NULL;
2827 			mcip->mci_stat_obytes += obytes;
2828 			mcip->mci_stat_opackets += 1;
2829 			if ((srs->srs_type & SRST_FLOW) != 0) {
2830 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2831 				FLOW_STAT_UPDATE(flent, opackets, 1);
2832 			}
2833 		} else {
2834 			mutex_enter(&srs->srs_lock);
2835 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2836 			    flag, ret_mp);
2837 			mutex_exit(&srs->srs_lock);
2838 		}
2839 	} else {
2840 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2841 	}
2842 
2843 done:
2844 	if (is_subflow)
2845 		FLOW_REFRELE(flent);
2846 
2847 	if (!(flag & MAC_TX_NO_HOLD))
2848 		MAC_TX_RELE(mcip, mytx);
2849 
2850 	return (cookie);
2851 }
2852 
2853 /*
2854  * mac_tx_is_blocked
2855  *
2856  * Given a cookie, it returns if the ring identified by the cookie is
2857  * flow-controlled or not. If NULL is passed in place of a cookie,
2858  * then it finds out if any of the underlying rings belonging to the
2859  * SRS is flow controlled or not and returns that status.
2860  */
2861 /* ARGSUSED */
2862 boolean_t
2863 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2864 {
2865 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2866 	mac_soft_ring_set_t *mac_srs;
2867 	mac_soft_ring_t *sringp;
2868 	boolean_t blocked = B_FALSE;
2869 	mac_tx_percpu_t *mytx;
2870 	int err;
2871 	int i;
2872 
2873 	/*
2874 	 * Bump the reference count so that mac_srs won't be deleted.
2875 	 * If the client is currently quiesced and we failed to bump
2876 	 * the reference, return B_TRUE so that flow control stays
2877 	 * as enabled.
2878 	 *
2879 	 * Flow control will then be disabled once the client is no
2880 	 * longer quiesced.
2881 	 */
2882 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2883 	if (err != 0)
2884 		return (B_TRUE);
2885 
2886 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2887 		MAC_TX_RELE(mcip, mytx);
2888 		return (B_FALSE);
2889 	}
2890 
2891 	mutex_enter(&mac_srs->srs_lock);
2892 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2893 		if (cookie != NULL) {
2894 			sringp = (mac_soft_ring_t *)cookie;
2895 			mutex_enter(&sringp->s_ring_lock);
2896 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2897 				blocked = B_TRUE;
2898 			mutex_exit(&sringp->s_ring_lock);
2899 		} else {
2900 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2901 				sringp = mac_srs->srs_oth_soft_rings[i];
2902 				mutex_enter(&sringp->s_ring_lock);
2903 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2904 					blocked = B_TRUE;
2905 					mutex_exit(&sringp->s_ring_lock);
2906 					break;
2907 				}
2908 				mutex_exit(&sringp->s_ring_lock);
2909 			}
2910 		}
2911 	} else {
2912 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2913 	}
2914 	mutex_exit(&mac_srs->srs_lock);
2915 	MAC_TX_RELE(mcip, mytx);
2916 	return (blocked);
2917 }
2918 
2919 /*
2920  * Check if the MAC client is the primary MAC client.
2921  */
2922 boolean_t
2923 mac_is_primary_client(mac_client_impl_t *mcip)
2924 {
2925 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2926 }
2927 
2928 void
2929 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2930 {
2931 	mac_impl_t	*mip = (mac_impl_t *)mh;
2932 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2933 
2934 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2935 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2936 		/*
2937 		 * If ndd props were registered, call them.
2938 		 * Note that ndd ioctls are Obsolete
2939 		 */
2940 		mac_ndd_ioctl(mip, wq, bp);
2941 		return;
2942 	}
2943 
2944 	/*
2945 	 * Call the driver to handle the ioctl.  The driver may not support
2946 	 * any ioctls, in which case we reply with a NAK on its behalf.
2947 	 */
2948 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2949 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2950 	else
2951 		miocnak(wq, bp, 0, EINVAL);
2952 }
2953 
2954 /*
2955  * Return the link state of the specified MAC instance.
2956  */
2957 link_state_t
2958 mac_link_get(mac_handle_t mh)
2959 {
2960 	return (((mac_impl_t *)mh)->mi_linkstate);
2961 }
2962 
2963 /*
2964  * Add a mac client specified notification callback. Please see the comments
2965  * above mac_callback_add() for general information about mac callback
2966  * addition/deletion in the presence of mac callback list walkers
2967  */
2968 mac_notify_handle_t
2969 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2970 {
2971 	mac_impl_t		*mip = (mac_impl_t *)mh;
2972 	mac_notify_cb_t		*mncb;
2973 	mac_cb_info_t		*mcbi;
2974 
2975 	/*
2976 	 * Allocate a notify callback structure, fill in the details and
2977 	 * use the mac callback list manipulation functions to chain into
2978 	 * the list of callbacks.
2979 	 */
2980 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
2981 	mncb->mncb_fn = notify_fn;
2982 	mncb->mncb_arg = arg;
2983 	mncb->mncb_mip = mip;
2984 	mncb->mncb_link.mcb_objp = mncb;
2985 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
2986 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
2987 
2988 	mcbi = &mip->mi_notify_cb_info;
2989 
2990 	i_mac_perim_enter(mip);
2991 	mutex_enter(mcbi->mcbi_lockp);
2992 
2993 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
2994 	    &mncb->mncb_link);
2995 
2996 	mutex_exit(mcbi->mcbi_lockp);
2997 	i_mac_perim_exit(mip);
2998 	return ((mac_notify_handle_t)mncb);
2999 }
3000 
3001 void
3002 mac_notify_remove_wait(mac_handle_t mh)
3003 {
3004 	mac_impl_t	*mip = (mac_impl_t *)mh;
3005 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
3006 
3007 	mutex_enter(mcbi->mcbi_lockp);
3008 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
3009 	mutex_exit(mcbi->mcbi_lockp);
3010 }
3011 
3012 /*
3013  * Remove a mac client specified notification callback
3014  */
3015 int
3016 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3017 {
3018 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
3019 	mac_impl_t	*mip = mncb->mncb_mip;
3020 	mac_cb_info_t	*mcbi;
3021 	int		err = 0;
3022 
3023 	mcbi = &mip->mi_notify_cb_info;
3024 
3025 	i_mac_perim_enter(mip);
3026 	mutex_enter(mcbi->mcbi_lockp);
3027 
3028 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
3029 	/*
3030 	 * If there aren't any list walkers, the remove would succeed
3031 	 * inline, else we wait for the deferred remove to complete
3032 	 */
3033 	if (mac_callback_remove(&mip->mi_notify_cb_info,
3034 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3035 		kmem_free(mncb, sizeof (mac_notify_cb_t));
3036 	} else {
3037 		err = EBUSY;
3038 	}
3039 
3040 	mutex_exit(mcbi->mcbi_lockp);
3041 	i_mac_perim_exit(mip);
3042 
3043 	/*
3044 	 * If we failed to remove the notification callback and "wait" is set
3045 	 * to be B_TRUE, wait for the callback to finish after we exit the
3046 	 * mac perimeter.
3047 	 */
3048 	if (err != 0 && wait) {
3049 		mac_notify_remove_wait((mac_handle_t)mip);
3050 		return (0);
3051 	}
3052 
3053 	return (err);
3054 }
3055 
3056 /*
3057  * Associate resource management callbacks with the specified MAC
3058  * clients.
3059  */
3060 
3061 void
3062 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3063     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3064     mac_resource_restart_t restart, mac_resource_bind_t bind,
3065     void *arg)
3066 {
3067 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3068 
3069 	mcip->mci_resource_add = add;
3070 	mcip->mci_resource_remove = remove;
3071 	mcip->mci_resource_quiesce = quiesce;
3072 	mcip->mci_resource_restart = restart;
3073 	mcip->mci_resource_bind = bind;
3074 	mcip->mci_resource_arg = arg;
3075 
3076 	if (arg == NULL)
3077 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3078 }
3079 
3080 void
3081 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3082 {
3083 	/* update the 'resource_add' callback */
3084 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3085 }
3086 
3087 /*
3088  * Sets up the client resources and enable the polling interface over all the
3089  * SRS's and the soft rings of the client
3090  */
3091 void
3092 mac_client_poll_enable(mac_client_handle_t mch)
3093 {
3094 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3095 	mac_soft_ring_set_t	*mac_srs;
3096 	flow_entry_t		*flent;
3097 	int			i;
3098 
3099 	flent = mcip->mci_flent;
3100 	ASSERT(flent != NULL);
3101 
3102 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3103 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3104 		ASSERT(mac_srs->srs_mcip == mcip);
3105 		mac_srs_client_poll_enable(mcip, mac_srs);
3106 	}
3107 }
3108 
3109 /*
3110  * Tears down the client resources and disable the polling interface over all
3111  * the SRS's and the soft rings of the client
3112  */
3113 void
3114 mac_client_poll_disable(mac_client_handle_t mch)
3115 {
3116 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3117 	mac_soft_ring_set_t	*mac_srs;
3118 	flow_entry_t		*flent;
3119 	int			i;
3120 
3121 	flent = mcip->mci_flent;
3122 	ASSERT(flent != NULL);
3123 
3124 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3125 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3126 		ASSERT(mac_srs->srs_mcip == mcip);
3127 		mac_srs_client_poll_disable(mcip, mac_srs);
3128 	}
3129 }
3130 
3131 /*
3132  * Associate the CPUs specified by the given property with a MAC client.
3133  */
3134 int
3135 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3136 {
3137 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3138 	mac_impl_t *mip = mcip->mci_mip;
3139 	int err = 0;
3140 
3141 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3142 
3143 	if ((err = mac_validate_props(mrp)) != 0)
3144 		return (err);
3145 
3146 	if (MCIP_DATAPATH_SETUP(mcip))
3147 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3148 
3149 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3150 	return (0);
3151 }
3152 
3153 /*
3154  * Apply the specified properties to the specified MAC client.
3155  */
3156 int
3157 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3158 {
3159 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3160 	mac_impl_t *mip = mcip->mci_mip;
3161 	int err = 0;
3162 
3163 	i_mac_perim_enter(mip);
3164 
3165 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3166 		err = mac_resource_ctl_set(mch, mrp);
3167 		if (err != 0) {
3168 			i_mac_perim_exit(mip);
3169 			return (err);
3170 		}
3171 	}
3172 
3173 	if (mrp->mrp_mask & MRP_CPUS)
3174 		err = mac_cpu_set(mch, mrp);
3175 
3176 	i_mac_perim_exit(mip);
3177 	return (err);
3178 }
3179 
3180 /*
3181  * Return the properties currently associated with the specified MAC client.
3182  */
3183 void
3184 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3185 {
3186 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3187 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3188 
3189 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3190 }
3191 
3192 /*
3193  * Pass a copy of the specified packet to the promiscuous callbacks
3194  * of the specified MAC.
3195  *
3196  * If sender is NULL, the function is being invoked for a packet chain
3197  * received from the wire. If sender is non-NULL, it points to
3198  * the MAC client from which the packet is being sent.
3199  *
3200  * The packets are distributed to the promiscuous callbacks as follows:
3201  *
3202  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3203  * - all broadcast and multicast packets are sent to the
3204  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3205  *
3206  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3207  * after classification by mac_rx_deliver().
3208  */
3209 
3210 static void
3211 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3212     boolean_t loopback)
3213 {
3214 	mblk_t *mp_copy;
3215 
3216 	mp_copy = copymsg(mp);
3217 	if (mp_copy == NULL)
3218 		return;
3219 	mp_copy->b_next = NULL;
3220 
3221 	if (mpip->mpi_strip_vlan_tag) {
3222 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
3223 			return;
3224 	}
3225 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3226 }
3227 
3228 /*
3229  * Return the VID of a packet. Zero if the packet is not tagged.
3230  */
3231 static uint16_t
3232 mac_ether_vid(mblk_t *mp)
3233 {
3234 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3235 
3236 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3237 		struct ether_vlan_header *t_evhp =
3238 		    (struct ether_vlan_header *)mp->b_rptr;
3239 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3240 	}
3241 
3242 	return (0);
3243 }
3244 
3245 /*
3246  * Return whether the specified packet contains a multicast or broadcast
3247  * destination MAC address.
3248  */
3249 static boolean_t
3250 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3251 {
3252 	mac_header_info_t hdr_info;
3253 
3254 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3255 		return (B_FALSE);
3256 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3257 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3258 }
3259 
3260 /*
3261  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3262  * "sender" points to the sender MAC client for outbound packets, and
3263  * is set to NULL for inbound packets.
3264  */
3265 void
3266 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3267     mac_client_impl_t *sender)
3268 {
3269 	mac_promisc_impl_t *mpip;
3270 	mac_cb_t *mcb;
3271 	mblk_t *mp;
3272 	boolean_t is_mcast, is_sender;
3273 
3274 	MAC_PROMISC_WALKER_INC(mip);
3275 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3276 		is_mcast = mac_is_mcast(mip, mp);
3277 		/* send packet to interested callbacks */
3278 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3279 		    mcb = mcb->mcb_nextp) {
3280 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3281 			is_sender = (mpip->mpi_mcip == sender);
3282 
3283 			if (is_sender && mpip->mpi_no_tx_loop)
3284 				/*
3285 				 * The sender doesn't want to receive
3286 				 * copies of the packets it sends.
3287 				 */
3288 				continue;
3289 
3290 			/*
3291 			 * For an ethernet MAC, don't displatch a multicast
3292 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3293 			 * of the packet matches the VID of the client.
3294 			 */
3295 			if (is_mcast &&
3296 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3297 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3298 			    mac_ether_vid(mp)))
3299 				continue;
3300 
3301 			if (is_sender ||
3302 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3303 			    is_mcast)
3304 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3305 		}
3306 	}
3307 	MAC_PROMISC_WALKER_DCR(mip);
3308 }
3309 
3310 void
3311 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3312 {
3313 	mac_impl_t		*mip = mcip->mci_mip;
3314 	mac_promisc_impl_t	*mpip;
3315 	boolean_t		is_mcast;
3316 	mblk_t			*mp;
3317 	mac_cb_t		*mcb;
3318 
3319 	/*
3320 	 * The unicast packets for the MAC client still
3321 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3322 	 * promiscuous callbacks. The broadcast and multicast
3323 	 * packets were delivered from mac_rx().
3324 	 */
3325 	MAC_PROMISC_WALKER_INC(mip);
3326 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3327 		is_mcast = mac_is_mcast(mip, mp);
3328 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3329 		    mcb = mcb->mcb_nextp) {
3330 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3331 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3332 			    !is_mcast) {
3333 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3334 			}
3335 		}
3336 	}
3337 	MAC_PROMISC_WALKER_DCR(mip);
3338 }
3339 
3340 /*
3341  * Return the margin value currently assigned to the specified MAC instance.
3342  */
3343 void
3344 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3345 {
3346 	mac_impl_t *mip = (mac_impl_t *)mh;
3347 
3348 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3349 	*marginp = mip->mi_margin;
3350 	rw_exit(&(mip->mi_rw_lock));
3351 }
3352 
3353 /*
3354  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3355  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3356  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3357  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3358  * cannot disappear while we are accessing it.
3359  */
3360 typedef struct i_mac_info_state_s {
3361 	const char	*mi_name;
3362 	mac_info_t	*mi_infop;
3363 } i_mac_info_state_t;
3364 
3365 /*ARGSUSED*/
3366 static uint_t
3367 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3368 {
3369 	i_mac_info_state_t *statep = arg;
3370 	mac_impl_t *mip = (mac_impl_t *)val;
3371 
3372 	if (mip->mi_state_flags & MIS_DISABLED)
3373 		return (MH_WALK_CONTINUE);
3374 
3375 	if (strcmp(statep->mi_name,
3376 	    ddi_driver_name(mip->mi_dip)) != 0)
3377 		return (MH_WALK_CONTINUE);
3378 
3379 	statep->mi_infop = &mip->mi_info;
3380 	return (MH_WALK_TERMINATE);
3381 }
3382 
3383 boolean_t
3384 mac_info_get(const char *name, mac_info_t *minfop)
3385 {
3386 	i_mac_info_state_t state;
3387 
3388 	rw_enter(&i_mac_impl_lock, RW_READER);
3389 	state.mi_name = name;
3390 	state.mi_infop = NULL;
3391 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3392 	if (state.mi_infop == NULL) {
3393 		rw_exit(&i_mac_impl_lock);
3394 		return (B_FALSE);
3395 	}
3396 	*minfop = *state.mi_infop;
3397 	rw_exit(&i_mac_impl_lock);
3398 	return (B_TRUE);
3399 }
3400 
3401 /*
3402  * To get the capabilities that MAC layer cares about, such as rings, factory
3403  * mac address, vnic or not, it should directly invoke this function
3404  */
3405 boolean_t
3406 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3407 {
3408 	mac_impl_t *mip = (mac_impl_t *)mh;
3409 
3410 	if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3411 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3412 	else
3413 		return (B_FALSE);
3414 }
3415 
3416 /*
3417  * Capability query function. If number of active mac clients is greater than
3418  * 1, only limited capabilities can be advertised to the caller no matter the
3419  * driver has certain capability or not. Else, we query the driver to get the
3420  * capability.
3421  */
3422 boolean_t
3423 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3424 {
3425 	mac_impl_t *mip = (mac_impl_t *)mh;
3426 
3427 	/*
3428 	 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
3429 	 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
3430 	 */
3431 	if (mip->mi_nactiveclients > 1) {
3432 		switch (cap) {
3433 		case MAC_CAPAB_NO_NATIVEVLAN:
3434 		case MAC_CAPAB_NO_ZCOPY:
3435 			return (B_TRUE);
3436 		case MAC_CAPAB_LEGACY:
3437 		case MAC_CAPAB_HCKSUM:
3438 			break;
3439 		default:
3440 			return (B_FALSE);
3441 		}
3442 	}
3443 
3444 	/* else get capab from driver */
3445 	return (i_mac_capab_get(mh, cap, cap_data));
3446 }
3447 
3448 boolean_t
3449 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3450 {
3451 	mac_impl_t *mip = (mac_impl_t *)mh;
3452 
3453 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3454 	    mip->mi_pdata));
3455 }
3456 
3457 mblk_t *
3458 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3459     size_t extra_len)
3460 {
3461 	mac_impl_t *mip = (mac_impl_t *)mh;
3462 
3463 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3464 	    mip->mi_pdata, payload, extra_len));
3465 }
3466 
3467 int
3468 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3469 {
3470 	mac_impl_t *mip = (mac_impl_t *)mh;
3471 
3472 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3473 	    mhip));
3474 }
3475 
3476 mblk_t *
3477 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3478 {
3479 	mac_impl_t *mip = (mac_impl_t *)mh;
3480 
3481 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3482 		if (DB_REF(mp) > 1) {
3483 			mblk_t *newmp = copymsg(mp);
3484 			if (newmp == NULL)
3485 				return (NULL);
3486 			freemsg(mp);
3487 			mp = newmp;
3488 		}
3489 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3490 		    mip->mi_pdata));
3491 	}
3492 	return (mp);
3493 }
3494 
3495 mblk_t *
3496 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3497 {
3498 	mac_impl_t *mip = (mac_impl_t *)mh;
3499 
3500 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3501 		if (DB_REF(mp) > 1) {
3502 			mblk_t *newmp = copymsg(mp);
3503 			if (newmp == NULL)
3504 				return (NULL);
3505 			freemsg(mp);
3506 			mp = newmp;
3507 		}
3508 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3509 		    mip->mi_pdata));
3510 	}
3511 	return (mp);
3512 }
3513 
3514 uint_t
3515 mac_addr_len(mac_handle_t mh)
3516 {
3517 	mac_impl_t *mip = (mac_impl_t *)mh;
3518 
3519 	return (mip->mi_type->mt_addr_length);
3520 }
3521 
3522 /* True if a MAC is a VNIC */
3523 boolean_t
3524 mac_is_vnic(mac_handle_t mh)
3525 {
3526 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3527 }
3528 
3529 mac_handle_t
3530 mac_get_lower_mac_handle(mac_handle_t mh)
3531 {
3532 	mac_impl_t *mip = (mac_impl_t *)mh;
3533 
3534 	ASSERT(mac_is_vnic(mh));
3535 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3536 }
3537 
3538 void
3539 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3540     boolean_t is_user_flow)
3541 {
3542 	if (nmrp != NULL && cmrp != NULL) {
3543 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3544 			if (nmrp->mrp_priority == MPL_RESET) {
3545 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3546 				if (is_user_flow) {
3547 					cmrp->mrp_priority =
3548 					    MPL_SUBFLOW_DEFAULT;
3549 				} else {
3550 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3551 				}
3552 			} else {
3553 				cmrp->mrp_mask |= MRP_PRIORITY;
3554 				cmrp->mrp_priority = nmrp->mrp_priority;
3555 			}
3556 		}
3557 		if (nmrp->mrp_mask & MRP_MAXBW) {
3558 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3559 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3560 				cmrp->mrp_mask &= ~MRP_MAXBW;
3561 			else
3562 				cmrp->mrp_mask |= MRP_MAXBW;
3563 		}
3564 		if (nmrp->mrp_mask & MRP_CPUS)
3565 			MAC_COPY_CPUS(nmrp, cmrp);
3566 	}
3567 }
3568 
3569 /*
3570  * i_mac_set_resources:
3571  *
3572  * This routine associates properties with the primary MAC client of
3573  * the specified MAC instance.
3574  * - Cache the properties in mac_impl_t
3575  * - Apply the properties to the primary MAC client if exists
3576  */
3577 int
3578 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3579 {
3580 	mac_impl_t		*mip = (mac_impl_t *)mh;
3581 	mac_client_impl_t	*mcip;
3582 	int			err = 0;
3583 	uint32_t		resmask, newresmask;
3584 	mac_resource_props_t	tmrp, umrp;
3585 
3586 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3587 
3588 	err = mac_validate_props(mrp);
3589 	if (err != 0)
3590 		return (err);
3591 
3592 	bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t));
3593 	resmask = umrp.mrp_mask;
3594 	mac_update_resources(mrp, &umrp, B_FALSE);
3595 	newresmask = umrp.mrp_mask;
3596 
3597 	if (resmask == 0 && newresmask != 0) {
3598 		/*
3599 		 * Bandwidth, priority or cpu link properties configured,
3600 		 * must disable fastpath.
3601 		 */
3602 		if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0)
3603 			return (err);
3604 	}
3605 
3606 	/*
3607 	 * Since bind_cpu may be modified by mac_client_set_resources()
3608 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3609 	 * This allows us to cache only user edits in mip.
3610 	 */
3611 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3612 	mcip = mac_primary_client_handle(mip);
3613 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3614 		err =
3615 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3616 	}
3617 
3618 	/* Only update the values if mac_client_set_resources succeeded */
3619 	if (err == 0) {
3620 		bcopy(&umrp, &mip->mi_resource_props,
3621 		    sizeof (mac_resource_props_t));
3622 		/*
3623 		 * If bankwidth, priority or cpu link properties cleared,
3624 		 * renable fastpath.
3625 		 */
3626 		if (resmask != 0 && newresmask == 0)
3627 			mac_fastpath_enable((mac_handle_t)mip);
3628 	} else if (resmask == 0 && newresmask != 0) {
3629 		mac_fastpath_enable((mac_handle_t)mip);
3630 	}
3631 	return (err);
3632 }
3633 
3634 int
3635 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3636 {
3637 	int err;
3638 
3639 	i_mac_perim_enter((mac_impl_t *)mh);
3640 	err = i_mac_set_resources(mh, mrp);
3641 	i_mac_perim_exit((mac_impl_t *)mh);
3642 	return (err);
3643 }
3644 
3645 /*
3646  * Get the properties cached for the specified MAC instance.
3647  */
3648 void
3649 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3650 {
3651 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3652 	mac_client_impl_t	*mcip;
3653 
3654 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3655 		mcip = mac_primary_client_handle(mip);
3656 		if (mcip != NULL) {
3657 			mac_client_get_resources((mac_client_handle_t)mcip,
3658 			    mrp);
3659 			return;
3660 		}
3661 	}
3662 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3663 }
3664 
3665 /*
3666  * Rename a mac client, its flow, and the kstat.
3667  */
3668 int
3669 mac_rename_primary(mac_handle_t mh, const char *new_name)
3670 {
3671 	mac_impl_t		*mip = (mac_impl_t *)mh;
3672 	mac_client_impl_t	*cur_clnt = NULL;
3673 	flow_entry_t		*fep;
3674 
3675 	i_mac_perim_enter(mip);
3676 
3677 	/*
3678 	 * VNICs: we need to change the sys flow name and
3679 	 * the associated flow kstat.
3680 	 */
3681 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3682 		ASSERT(new_name != NULL);
3683 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3684 		goto done;
3685 	}
3686 	/*
3687 	 * This mac may itself be an aggr link, or it may have some client
3688 	 * which is an aggr port. For both cases, we need to change the
3689 	 * aggr port's mac client name, its flow name and the associated flow
3690 	 * kstat.
3691 	 */
3692 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3693 		mac_capab_aggr_t aggr_cap;
3694 		mac_rename_fn_t rename_fn;
3695 		boolean_t ret;
3696 
3697 		ASSERT(new_name != NULL);
3698 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3699 		    (void *)(&aggr_cap));
3700 		ASSERT(ret == B_TRUE);
3701 		rename_fn = aggr_cap.mca_rename_fn;
3702 		rename_fn(new_name, mip->mi_driver);
3703 		/*
3704 		 * The aggr's client name and kstat flow name will be
3705 		 * updated below, i.e. via mac_rename_flow_names.
3706 		 */
3707 	}
3708 
3709 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3710 	    cur_clnt = cur_clnt->mci_client_next) {
3711 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3712 			if (new_name != NULL) {
3713 				char *str_st = cur_clnt->mci_name;
3714 				char *str_del = strchr(str_st, '-');
3715 
3716 				ASSERT(str_del != NULL);
3717 				bzero(str_del + 1, MAXNAMELEN -
3718 				    (str_del - str_st + 1));
3719 				bcopy(new_name, str_del + 1,
3720 				    strlen(new_name));
3721 			}
3722 			fep = cur_clnt->mci_flent;
3723 			mac_rename_flow(fep, cur_clnt->mci_name);
3724 			break;
3725 		} else if (new_name != NULL &&
3726 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3727 			mac_rename_flow_names(cur_clnt, new_name);
3728 			break;
3729 		}
3730 	}
3731 
3732 done:
3733 	i_mac_perim_exit(mip);
3734 	return (0);
3735 }
3736 
3737 /*
3738  * Rename the MAC client's flow names
3739  */
3740 static void
3741 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3742 {
3743 	flow_entry_t	*flent;
3744 	uint16_t	vid;
3745 	char		flowname[MAXFLOWNAMELEN];
3746 	mac_impl_t	*mip = mcip->mci_mip;
3747 
3748 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3749 
3750 	/*
3751 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3752 	 * see a self-consistent value for mci_name
3753 	 */
3754 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3755 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3756 	rw_exit(&mip->mi_rw_lock);
3757 
3758 	mac_rename_flow(mcip->mci_flent, new_name);
3759 
3760 	if (mcip->mci_nflents == 1)
3761 		return;
3762 
3763 	/*
3764 	 * We have to rename all the others too, no stats to destroy for
3765 	 * these.
3766 	 */
3767 	for (flent = mcip->mci_flent_list; flent != NULL;
3768 	    flent = flent->fe_client_next) {
3769 		if (flent != mcip->mci_flent) {
3770 			vid = i_mac_flow_vid(flent);
3771 			(void) sprintf(flowname, "%s%u", new_name, vid);
3772 			mac_flow_set_name(flent, flowname);
3773 		}
3774 	}
3775 }
3776 
3777 
3778 /*
3779  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3780  * defined for the specified MAC client.
3781  */
3782 static void
3783 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3784 {
3785 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3786 	/*
3787 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3788 	 * using mi_rw_lock
3789 	 */
3790 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3791 
3792 	/* Add it to the head */
3793 	flent->fe_client_next = mcip->mci_flent_list;
3794 	mcip->mci_flent_list = flent;
3795 	mcip->mci_nflents++;
3796 
3797 	/*
3798 	 * Keep track of the number of non-zero VIDs addresses per MAC
3799 	 * client to avoid figuring it out in the data-path.
3800 	 */
3801 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3802 		mcip->mci_nvids++;
3803 
3804 	rw_exit(&mcip->mci_rw_lock);
3805 }
3806 
3807 /*
3808  * Remove a flow entry from the MAC client's list.
3809  */
3810 static void
3811 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3812 {
3813 	flow_entry_t	*fe = mcip->mci_flent_list;
3814 	flow_entry_t	*prev_fe = NULL;
3815 
3816 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3817 	/*
3818 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3819 	 * using mci_rw_lock
3820 	 */
3821 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3822 	while ((fe != NULL) && (fe != flent)) {
3823 		prev_fe = fe;
3824 		fe = fe->fe_client_next;
3825 	}
3826 
3827 	ASSERT(fe != NULL);
3828 	if (prev_fe == NULL) {
3829 		/* Deleting the first node */
3830 		mcip->mci_flent_list = fe->fe_client_next;
3831 	} else {
3832 		prev_fe->fe_client_next = fe->fe_client_next;
3833 	}
3834 	mcip->mci_nflents--;
3835 
3836 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3837 		mcip->mci_nvids--;
3838 
3839 	rw_exit(&mcip->mci_rw_lock);
3840 }
3841 
3842 /*
3843  * Check if the given VID belongs to this MAC client.
3844  */
3845 boolean_t
3846 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3847 {
3848 	flow_entry_t	*flent;
3849 	uint16_t	mci_vid;
3850 
3851 	/* The mci_flent_list is protected by mci_rw_lock */
3852 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3853 	for (flent = mcip->mci_flent_list; flent != NULL;
3854 	    flent = flent->fe_client_next) {
3855 		mci_vid = i_mac_flow_vid(flent);
3856 		if (vid == mci_vid) {
3857 			rw_exit(&mcip->mci_rw_lock);
3858 			return (B_TRUE);
3859 		}
3860 	}
3861 	rw_exit(&mcip->mci_rw_lock);
3862 	return (B_FALSE);
3863 }
3864 
3865 /*
3866  * Get the flow entry for the specified <MAC addr, VID> tuple.
3867  */
3868 static flow_entry_t *
3869 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3870 {
3871 	mac_address_t *map = mcip->mci_unicast;
3872 	flow_entry_t *flent;
3873 	uint16_t vid;
3874 	flow_desc_t flow_desc;
3875 
3876 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3877 
3878 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3879 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3880 		return (NULL);
3881 
3882 	for (flent = mcip->mci_flent_list; flent != NULL;
3883 	    flent = flent->fe_client_next) {
3884 		vid = i_mac_flow_vid(flent);
3885 		if (vid == muip->mui_vid) {
3886 			return (flent);
3887 		}
3888 	}
3889 
3890 	return (NULL);
3891 }
3892 
3893 /*
3894  * Since mci_flent has the SRSs, when we want to remove it, we replace
3895  * the flow_desc_t in mci_flent with that of an existing flent and then
3896  * remove that flent instead of mci_flent.
3897  */
3898 static flow_entry_t *
3899 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3900 {
3901 	flow_entry_t	*flent = mcip->mci_flent;
3902 	flow_tab_t	*ft = flent->fe_flow_tab;
3903 	flow_entry_t	*flent1;
3904 	flow_desc_t	fl_desc;
3905 	char		fl_name[MAXFLOWNAMELEN];
3906 	int		err;
3907 
3908 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3909 	ASSERT(mcip->mci_nflents > 1);
3910 
3911 	/* get the next flent following the primary flent  */
3912 	flent1 = mcip->mci_flent_list->fe_client_next;
3913 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3914 
3915 	/*
3916 	 * Remove the flent from the flow table before updating the
3917 	 * flow descriptor as the hash depends on the flow descriptor.
3918 	 * This also helps incoming packet classification avoid having
3919 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
3920 	 * flow table is done under the fe_lock so that log or stat functions
3921 	 * see a self-consistent fe_flow_desc. The name and desc are specific
3922 	 * to a flow, the rest are shared by all the clients, including
3923 	 * resource control etc.
3924 	 */
3925 	mac_flow_remove(ft, flent, B_TRUE);
3926 	mac_flow_remove(ft, flent1, B_TRUE);
3927 
3928 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
3929 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
3930 
3931 	/* update the primary flow entry */
3932 	mutex_enter(&flent->fe_lock);
3933 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
3934 	    sizeof (flow_desc_t));
3935 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
3936 	mutex_exit(&flent->fe_lock);
3937 
3938 	/* update the flow entry that is to be freed */
3939 	mutex_enter(&flent1->fe_lock);
3940 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
3941 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
3942 	mutex_exit(&flent1->fe_lock);
3943 
3944 	/* now reinsert the flow entries in the table */
3945 	err = mac_flow_add(ft, flent);
3946 	ASSERT(err == 0);
3947 
3948 	err = mac_flow_add(ft, flent1);
3949 	ASSERT(err == 0);
3950 
3951 	return (flent1);
3952 }
3953 
3954 /*
3955  * Return whether there is only one flow entry associated with this
3956  * MAC client.
3957  */
3958 static boolean_t
3959 mac_client_single_rcvr(mac_client_impl_t *mcip)
3960 {
3961 	return (mcip->mci_nflents == 1);
3962 }
3963 
3964 int
3965 mac_validate_props(mac_resource_props_t *mrp)
3966 {
3967 	if (mrp == NULL)
3968 		return (0);
3969 
3970 	if (mrp->mrp_mask & MRP_PRIORITY) {
3971 		mac_priority_level_t	pri = mrp->mrp_priority;
3972 
3973 		if (pri < MPL_LOW || pri > MPL_RESET)
3974 			return (EINVAL);
3975 	}
3976 
3977 	if (mrp->mrp_mask & MRP_MAXBW) {
3978 		uint64_t maxbw = mrp->mrp_maxbw;
3979 
3980 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
3981 			return (EINVAL);
3982 	}
3983 	if (mrp->mrp_mask & MRP_CPUS) {
3984 		int i, j;
3985 		mac_cpu_mode_t	fanout;
3986 
3987 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
3988 			return (EINVAL);
3989 
3990 		for (i = 0; i < mrp->mrp_ncpus; i++) {
3991 			for (j = 0; j < mrp->mrp_ncpus; j++) {
3992 				if (i != j &&
3993 				    mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
3994 					return (EINVAL);
3995 				}
3996 			}
3997 		}
3998 
3999 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4000 			cpu_t *cp;
4001 			int rv;
4002 
4003 			mutex_enter(&cpu_lock);
4004 			cp = cpu_get(mrp->mrp_cpu[i]);
4005 			if (cp != NULL)
4006 				rv = cpu_is_online(cp);
4007 			else
4008 				rv = 0;
4009 			mutex_exit(&cpu_lock);
4010 			if (rv == 0)
4011 				return (EINVAL);
4012 		}
4013 
4014 		fanout = mrp->mrp_fanout_mode;
4015 		if (fanout < 0 || fanout > MCM_CPUS)
4016 			return (EINVAL);
4017 	}
4018 	return (0);
4019 }
4020 
4021 /*
4022  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
4023  * underlying physical link is down. This is to allow MAC clients to
4024  * communicate with other clients.
4025  */
4026 void
4027 mac_virtual_link_update(mac_impl_t *mip)
4028 {
4029 	if (mip->mi_linkstate != LINK_STATE_UP)
4030 		i_mac_notify(mip, MAC_NOTE_LINK);
4031 }
4032 
4033 /*
4034  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
4035  * mac handle in the client.
4036  */
4037 void
4038 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
4039 {
4040 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
4041 
4042 	mcip->mci_upper_mip = (mac_impl_t *)mh;
4043 }
4044 
4045 /*
4046  * Mark the mac as being used exclusively by the single mac client that is
4047  * doing some control operation on this mac. No further opens of this mac
4048  * will be allowed until this client calls mac_unmark_exclusive. The mac
4049  * client calling this function must already be in the mac perimeter
4050  */
4051 int
4052 mac_mark_exclusive(mac_handle_t mh)
4053 {
4054 	mac_impl_t	*mip = (mac_impl_t *)mh;
4055 
4056 	ASSERT(MAC_PERIM_HELD(mh));
4057 	/*
4058 	 * Look up its entry in the global hash table.
4059 	 */
4060 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4061 	if (mip->mi_state_flags & MIS_DISABLED) {
4062 		rw_exit(&i_mac_impl_lock);
4063 		return (ENOENT);
4064 	}
4065 
4066 	/*
4067 	 * A reference to mac is held even if the link is not plumbed.
4068 	 * In i_dls_link_create() we open the MAC interface and hold the
4069 	 * reference. There is an additional reference for the mac_open
4070 	 * done in acquiring the mac perimeter
4071 	 */
4072 	if (mip->mi_ref != 2) {
4073 		rw_exit(&i_mac_impl_lock);
4074 		return (EBUSY);
4075 	}
4076 
4077 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4078 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
4079 	rw_exit(&i_mac_impl_lock);
4080 	return (0);
4081 }
4082 
4083 void
4084 mac_unmark_exclusive(mac_handle_t mh)
4085 {
4086 	mac_impl_t	*mip = (mac_impl_t *)mh;
4087 
4088 	ASSERT(MAC_PERIM_HELD(mh));
4089 
4090 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4091 	/* 1 for the creation and another for the perimeter */
4092 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4093 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
4094 	rw_exit(&i_mac_impl_lock);
4095 }
4096 
4097 /*
4098  * Set the MTU for the specified device. The function returns EBUSY if
4099  * another MAC client prevents the caller to become the exclusive client.
4100  * Returns EAGAIN if the client is started.
4101  */
4102 int
4103 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
4104 {
4105 	mac_impl_t *mip = (mac_impl_t *)mh;
4106 	uint_t old_mtu;
4107 	int rv;
4108 	boolean_t exclusive = B_FALSE;
4109 
4110 	i_mac_perim_enter(mip);
4111 
4112 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
4113 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
4114 		rv = ENOTSUP;
4115 		goto bail;
4116 	}
4117 
4118 	if ((rv = mac_mark_exclusive(mh)) != 0)
4119 		goto bail;
4120 	exclusive = B_TRUE;
4121 
4122 	if (mip->mi_active > 0) {
4123 		/*
4124 		 * The MAC instance is started, for example due to the
4125 		 * presence of a promiscuous clients. Fail the operation
4126 		 * since the MAC's MTU cannot be changed while the NIC
4127 		 * is started.
4128 		 */
4129 		rv = EAGAIN;
4130 		goto bail;
4131 	}
4132 
4133 	mac_sdu_get(mh, NULL, &old_mtu);
4134 
4135 	if (old_mtu != new_mtu) {
4136 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
4137 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
4138 	}
4139 
4140 bail:
4141 	if (exclusive)
4142 		mac_unmark_exclusive(mh);
4143 	i_mac_perim_exit(mip);
4144 
4145 	if (rv == 0 && old_mtu_arg != NULL)
4146 		*old_mtu_arg = old_mtu;
4147 	return (rv);
4148 }
4149 
4150 void
4151 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
4152     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
4153 {
4154 	mac_impl_t *mip = (mac_impl_t *)mh;
4155 	mac_grp_client_t *mcip;
4156 	uint_t i = 0, index = 0;
4157 
4158 	/* Revisit when we implement fully dynamic group allocation */
4159 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
4160 
4161 	rw_enter(&mip->mi_rw_lock, RW_READER);
4162 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
4163 	*type = mip->mi_rx_groups[grp_index].mrg_type;
4164 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
4165 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
4166 	    mcip = mcip->mgc_next) {
4167 		int name_len = strlen(mcip->mgc_client->mci_name);
4168 
4169 		/*
4170 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
4171 		 * names.
4172 		 * XXXX Formating the client name string needs to be moved
4173 		 * to user land when fixing the size of dhi_clnts in
4174 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
4175 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
4176 		 */
4177 		if (index + name_len >= MAXCLIENTNAMELEN) {
4178 			index = MAXCLIENTNAMELEN;
4179 			break;
4180 		}
4181 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
4182 		    name_len);
4183 		index += name_len;
4184 		clnts_name[index++] = ',';
4185 		i++;
4186 	}
4187 
4188 	/* Get rid of the last , */
4189 	if (index > 0)
4190 		clnts_name[index - 1] = '\0';
4191 	*n_clnts = i;
4192 	rw_exit(&mip->mi_rw_lock);
4193 }
4194 
4195 uint_t
4196 mac_hwgrp_num(mac_handle_t mh)
4197 {
4198 	mac_impl_t *mip = (mac_impl_t *)mh;
4199 
4200 	return (mip->mi_rx_group_count);
4201 }
4202