xref: /titanic_50/usr/src/uts/common/io/mac/mac_client.c (revision 07247649496653b0ece32ce7ea710057f85fa9da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 const char *
414 mac_name(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_name);
417 }
418 
419 char *
420 mac_client_name(mac_client_handle_t mch)
421 {
422 	return (((mac_client_impl_t *)mch)->mci_name);
423 }
424 
425 minor_t
426 mac_minor(mac_handle_t mh)
427 {
428 	return (((mac_impl_t *)mh)->mi_minor);
429 }
430 
431 /*
432  * Return the VID associated with a MAC client. This function should
433  * be called for clients which are associated with only one VID.
434  */
435 uint16_t
436 mac_client_vid(mac_client_handle_t mch)
437 {
438 	uint16_t		vid = VLAN_ID_NONE;
439 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
440 	flow_desc_t		flow_desc;
441 
442 	if (mcip->mci_nflents == 0)
443 		return (vid);
444 
445 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
446 
447 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
448 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
449 		vid = flow_desc.fd_vid;
450 
451 	return (vid);
452 }
453 
454 /*
455  * Return the link speed associated with the specified MAC client.
456  *
457  * The link speed of a MAC client is equal to the smallest value of
458  * 1) the current link speed of the underlying NIC, or
459  * 2) the bandwidth limit set for the MAC client.
460  *
461  * Note that the bandwidth limit can be higher than the speed
462  * of the underlying NIC. This is allowed to avoid spurious
463  * administration action failures or artifically lowering the
464  * bandwidth limit of a link that may  have temporarily lowered
465  * its link speed due to hardware problem or administrator action.
466  */
467 static uint64_t
468 mac_client_ifspeed(mac_client_impl_t *mcip)
469 {
470 	mac_impl_t *mip = mcip->mci_mip;
471 	uint64_t nic_speed;
472 
473 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
474 
475 	if (nic_speed == 0) {
476 		return (0);
477 	} else {
478 		uint64_t policy_limit = (uint64_t)-1;
479 
480 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
481 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
482 
483 		return (MIN(policy_limit, nic_speed));
484 	}
485 }
486 
487 /*
488  * Return the link state of the specified client. If here are more
489  * than one clients of the underying mac_impl_t, the link state
490  * will always be UP regardless of the link state of the underlying
491  * mac_impl_t. This is needed to allow the MAC clients to continue
492  * to communicate with each other even when the physical link of
493  * their mac_impl_t is down.
494  */
495 static uint64_t
496 mac_client_link_state(mac_client_impl_t *mcip)
497 {
498 	mac_impl_t *mip = mcip->mci_mip;
499 	uint16_t vid;
500 	mac_client_impl_t *mci_list;
501 	mac_unicast_impl_t *mui_list, *oth_mui_list;
502 
503 	/*
504 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
505 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
506 	 * if 'mcip' has more than one VID's then we match ANY one of the
507 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
508 	 */
509 	rw_enter(&mcip->mci_rw_lock, RW_READER);
510 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
511 	    mui_list = mui_list->mui_next) {
512 		vid = mui_list->mui_vid;
513 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
514 		    mci_list = mci_list->mci_client_next) {
515 			if (mci_list == mcip)
516 				continue;
517 			for (oth_mui_list = mci_list->mci_unicast_list;
518 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
519 			    mui_next) {
520 				if (vid == oth_mui_list->mui_vid) {
521 					rw_exit(&mcip->mci_rw_lock);
522 					return (LINK_STATE_UP);
523 				}
524 			}
525 		}
526 	}
527 	rw_exit(&mcip->mci_rw_lock);
528 
529 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
530 }
531 
532 /*
533  * Return the statistics of a MAC client. These statistics are different
534  * then the statistics of the underlying MAC which are returned by
535  * mac_stat_get().
536  */
537 uint64_t
538 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
539 {
540 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
541 	mac_impl_t *mip = mcip->mci_mip;
542 	uint64_t val;
543 
544 	switch (stat) {
545 	case MAC_STAT_LINK_STATE:
546 		val = mac_client_link_state(mcip);
547 		break;
548 	case MAC_STAT_LINK_UP:
549 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
550 		break;
551 	case MAC_STAT_PROMISC:
552 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
553 		break;
554 	case MAC_STAT_IFSPEED:
555 		val = mac_client_ifspeed(mcip);
556 		break;
557 	case MAC_STAT_MULTIRCV:
558 		val = mcip->mci_stat_multircv;
559 		break;
560 	case MAC_STAT_BRDCSTRCV:
561 		val = mcip->mci_stat_brdcstrcv;
562 		break;
563 	case MAC_STAT_MULTIXMT:
564 		val = mcip->mci_stat_multixmt;
565 		break;
566 	case MAC_STAT_BRDCSTXMT:
567 		val = mcip->mci_stat_brdcstxmt;
568 		break;
569 	case MAC_STAT_OBYTES:
570 		val = mcip->mci_stat_obytes;
571 		break;
572 	case MAC_STAT_OPACKETS:
573 		val = mcip->mci_stat_opackets;
574 		break;
575 	case MAC_STAT_OERRORS:
576 		val = mcip->mci_stat_oerrors;
577 		break;
578 	case MAC_STAT_IPACKETS:
579 		val = mcip->mci_stat_ipackets;
580 		break;
581 	case MAC_STAT_RBYTES:
582 		val = mcip->mci_stat_ibytes;
583 		break;
584 	case MAC_STAT_IERRORS:
585 		val = mcip->mci_stat_ierrors;
586 		break;
587 	default:
588 		val = mac_stat_default(mip, stat);
589 		break;
590 	}
591 
592 	return (val);
593 }
594 
595 /*
596  * Return the statistics of the specified MAC instance.
597  */
598 uint64_t
599 mac_stat_get(mac_handle_t mh, uint_t stat)
600 {
601 	mac_impl_t	*mip = (mac_impl_t *)mh;
602 	uint64_t	val;
603 	int		ret;
604 
605 	/*
606 	 * The range of stat determines where it is maintained.  Stat
607 	 * values from 0 up to (but not including) MAC_STAT_MIN are
608 	 * mainteined by the mac module itself.  Everything else is
609 	 * maintained by the driver.
610 	 *
611 	 * If the mac_impl_t being queried corresponds to a VNIC,
612 	 * the stats need to be queried from the lower MAC client
613 	 * corresponding to the VNIC. (The mac_link_update()
614 	 * invoked by the driver to the lower MAC causes the *lower
615 	 * MAC* to update its mi_linkstate, and send a notification
616 	 * to its MAC clients. Due to the VNIC passthrough,
617 	 * these notifications are sent to the upper MAC clients
618 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
619 	 * does not have a valid mi_linkstate.
620 	 */
621 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
622 		/* these stats are maintained by the mac module itself */
623 		switch (stat) {
624 		case MAC_STAT_LINK_STATE:
625 			return (mip->mi_linkstate);
626 		case MAC_STAT_LINK_UP:
627 			return (mip->mi_linkstate == LINK_STATE_UP);
628 		case MAC_STAT_PROMISC:
629 			return (mip->mi_devpromisc != 0);
630 		default:
631 			ASSERT(B_FALSE);
632 		}
633 	}
634 
635 	/*
636 	 * Call the driver to get the given statistic.
637 	 */
638 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
639 	if (ret != 0) {
640 		/*
641 		 * The driver doesn't support this statistic.  Get the
642 		 * statistic's default value.
643 		 */
644 		val = mac_stat_default(mip, stat);
645 	}
646 	return (val);
647 }
648 
649 /*
650  * Utility function which returns the VID associated with a flow entry.
651  */
652 uint16_t
653 i_mac_flow_vid(flow_entry_t *flent)
654 {
655 	flow_desc_t	flow_desc;
656 
657 	mac_flow_get_desc(flent, &flow_desc);
658 
659 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
660 		return (flow_desc.fd_vid);
661 	return (VLAN_ID_NONE);
662 }
663 
664 /*
665  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
666  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
667  * length.
668  */
669 boolean_t
670 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
671 {
672 	mac_impl_t	*mip = (mac_impl_t *)mh;
673 
674 	/*
675 	 * Verify the address. No lock is needed since mi_type and plugin
676 	 * details don't change after mac_register().
677 	 */
678 	if ((len != mip->mi_type->mt_addr_length) ||
679 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
680 	    mip->mi_pdata)) != 0) {
681 		return (B_FALSE);
682 	} else {
683 		return (B_TRUE);
684 	}
685 }
686 
687 void
688 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
689 {
690 	mac_impl_t	*mip = (mac_impl_t *)mh;
691 
692 	if (min_sdu != NULL)
693 		*min_sdu = mip->mi_sdu_min;
694 	if (max_sdu != NULL)
695 		*max_sdu = mip->mi_sdu_max;
696 }
697 
698 /*
699  * Update the MAC unicast address of the specified client's flows. Currently
700  * only one unicast MAC unicast address is allowed per client.
701  */
702 static void
703 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
704 {
705 	mac_impl_t *mip = mcip->mci_mip;
706 	flow_entry_t *flent = mcip->mci_flent;
707 	mac_address_t *map = mcip->mci_unicast;
708 	flow_desc_t flow_desc;
709 
710 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
711 	ASSERT(flent != NULL);
712 
713 	mac_flow_get_desc(flent, &flow_desc);
714 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
715 
716 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
717 	mac_flow_set_desc(flent, &flow_desc);
718 
719 	/*
720 	 * A MAC client could have one MAC address but multiple
721 	 * VLANs. In that case update the flow entries corresponding
722 	 * to all VLANs of the MAC client.
723 	 */
724 	for (flent = mcip->mci_flent_list; flent != NULL;
725 	    flent = flent->fe_client_next) {
726 		mac_flow_get_desc(flent, &flow_desc);
727 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
728 		    flent->fe_type & FLOW_VNIC_MAC))
729 			continue;
730 
731 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
732 		mac_flow_set_desc(flent, &flow_desc);
733 	}
734 }
735 
736 /*
737  * Update all clients that share the same unicast address.
738  */
739 void
740 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
741 {
742 	mac_client_impl_t *mcip;
743 
744 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
745 
746 	/*
747 	 * Find all clients that share the same unicast MAC address and update
748 	 * them appropriately.
749 	 */
750 	for (mcip = mip->mi_clients_list; mcip != NULL;
751 	    mcip = mcip->mci_client_next) {
752 		/*
753 		 * Ignore clients that don't share this MAC address.
754 		 */
755 		if (map != mcip->mci_unicast)
756 			continue;
757 
758 		/*
759 		 * Update those clients with same old unicast MAC address.
760 		 */
761 		mac_unicast_update_client_flow(mcip);
762 	}
763 }
764 
765 /*
766  * Update the unicast MAC address of the specified VNIC MAC client.
767  *
768  * Check whether the operation is valid. Any of following cases should fail:
769  *
770  * 1. It's a VLAN type of VNIC.
771  * 2. The new value is current "primary" MAC address.
772  * 3. The current MAC address is shared with other clients.
773  * 4. The new MAC address has been used. This case will be valid when
774  *    client migration is fully supported.
775  */
776 int
777 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
778 {
779 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
780 	mac_impl_t *mip = mcip->mci_mip;
781 	mac_address_t *map = mcip->mci_unicast;
782 	int err;
783 
784 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
785 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
786 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
787 
788 	i_mac_perim_enter(mip);
789 
790 	/*
791 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
792 	 * of the underlying interface. Must fail here. Refer to case 1 above.
793 	 */
794 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
795 		i_mac_perim_exit(mip);
796 		return (ENOTSUP);
797 	}
798 
799 	/*
800 	 * If the new address is the "primary" one, must fail. Refer to
801 	 * case 2 above.
802 	 */
803 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
804 		i_mac_perim_exit(mip);
805 		return (EACCES);
806 	}
807 
808 	/*
809 	 * If the address is shared by multiple clients, must fail. Refer
810 	 * to case 3 above.
811 	 */
812 	if (mac_check_macaddr_shared(map)) {
813 		i_mac_perim_exit(mip);
814 		return (EBUSY);
815 	}
816 
817 	/*
818 	 * If the new address has been used, must fail for now. Refer to
819 	 * case 4 above.
820 	 */
821 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
822 		i_mac_perim_exit(mip);
823 		return (ENOTSUP);
824 	}
825 
826 	/*
827 	 * Update the MAC address.
828 	 */
829 	err = mac_update_macaddr(map, (uint8_t *)addr);
830 
831 	if (err != 0) {
832 		i_mac_perim_exit(mip);
833 		return (err);
834 	}
835 
836 	/*
837 	 * Update all flows of this MAC client.
838 	 */
839 	mac_unicast_update_client_flow(mcip);
840 
841 	i_mac_perim_exit(mip);
842 	return (0);
843 }
844 
845 /*
846  * Program the new primary unicast address of the specified MAC.
847  *
848  * Function mac_update_macaddr() takes care different types of underlying
849  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
850  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
851  * which will take care of updating the MAC address of the corresponding
852  * MAC client.
853  *
854  * This is the only interface that allow the client to update the "primary"
855  * MAC address of the underlying MAC. The new value must have not been
856  * used by other clients.
857  */
858 int
859 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
860 {
861 	mac_impl_t *mip = (mac_impl_t *)mh;
862 	mac_address_t *map;
863 	int err;
864 
865 	/* verify the address validity */
866 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
867 		return (EINVAL);
868 
869 	i_mac_perim_enter(mip);
870 
871 	/*
872 	 * If the new value is the same as the current primary address value,
873 	 * there's nothing to do.
874 	 */
875 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
876 		i_mac_perim_exit(mip);
877 		return (0);
878 	}
879 
880 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
881 		i_mac_perim_exit(mip);
882 		return (EBUSY);
883 	}
884 
885 	map = mac_find_macaddr(mip, mip->mi_addr);
886 	ASSERT(map != NULL);
887 
888 	/*
889 	 * Update the MAC address.
890 	 */
891 	if (mip->mi_state_flags & MIS_IS_AGGR) {
892 		mac_capab_aggr_t aggr_cap;
893 
894 		/*
895 		 * If the mac is an aggregation, other than the unicast
896 		 * addresses programming, aggr must be informed about this
897 		 * primary unicst address change to change its mac address
898 		 * policy to be user-specified.
899 		 */
900 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
901 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
902 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
903 		if (err == 0)
904 			bcopy(addr, map->ma_addr, map->ma_len);
905 	} else {
906 		err = mac_update_macaddr(map, (uint8_t *)addr);
907 	}
908 
909 	if (err != 0) {
910 		i_mac_perim_exit(mip);
911 		return (err);
912 	}
913 
914 	mac_unicast_update_clients(mip, map);
915 
916 	/*
917 	 * Save the new primary MAC address in mac_impl_t.
918 	 */
919 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
920 
921 	i_mac_perim_exit(mip);
922 
923 	if (err == 0)
924 		i_mac_notify(mip, MAC_NOTE_UNICST);
925 
926 	return (err);
927 }
928 
929 /*
930  * Return the current primary MAC address of the specified MAC.
931  */
932 void
933 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
934 {
935 	mac_impl_t *mip = (mac_impl_t *)mh;
936 
937 	rw_enter(&mip->mi_rw_lock, RW_READER);
938 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
939 	rw_exit(&mip->mi_rw_lock);
940 }
941 
942 /*
943  * Return information about the use of the primary MAC address of the
944  * specified MAC instance:
945  *
946  * - if client_name is non-NULL, it must point to a string of at
947  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
948  *   client which uses the primary MAC address.
949  *
950  * - if in_use is non-NULL, used to return whether the primary MAC
951  *   address is currently in use.
952  */
953 void
954 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
955 {
956 	mac_impl_t *mip = (mac_impl_t *)mh;
957 	mac_client_impl_t *cur_client;
958 
959 	if (in_use != NULL)
960 		*in_use = B_FALSE;
961 	if (client_name != NULL)
962 		bzero(client_name, MAXNAMELEN);
963 
964 	/*
965 	 * The mi_rw_lock is used to protect threads that don't hold the
966 	 * mac perimeter to get a consistent view of the mi_clients_list.
967 	 * Threads that modify the list must hold both the mac perimeter and
968 	 * mi_rw_lock(RW_WRITER)
969 	 */
970 	rw_enter(&mip->mi_rw_lock, RW_READER);
971 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
972 	    cur_client = cur_client->mci_client_next) {
973 		if (mac_is_primary_client(cur_client) ||
974 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
975 			rw_exit(&mip->mi_rw_lock);
976 			if (in_use != NULL)
977 				*in_use = B_TRUE;
978 			if (client_name != NULL) {
979 				bcopy(cur_client->mci_name, client_name,
980 				    MAXNAMELEN);
981 			}
982 			return;
983 		}
984 	}
985 	rw_exit(&mip->mi_rw_lock);
986 }
987 
988 /*
989  * Add the specified MAC client to the list of clients which opened
990  * the specified MAC.
991  */
992 static void
993 mac_client_add(mac_client_impl_t *mcip)
994 {
995 	mac_impl_t *mip = mcip->mci_mip;
996 
997 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
998 
999 	/* add VNIC to the front of the list */
1000 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1001 	mcip->mci_client_next = mip->mi_clients_list;
1002 	mip->mi_clients_list = mcip;
1003 	mip->mi_nclients++;
1004 	rw_exit(&mip->mi_rw_lock);
1005 }
1006 
1007 /*
1008  * Remove the specified MAC client from the list of clients which opened
1009  * the specified MAC.
1010  */
1011 static void
1012 mac_client_remove(mac_client_impl_t *mcip)
1013 {
1014 	mac_impl_t *mip = mcip->mci_mip;
1015 	mac_client_impl_t **prev, *cclient;
1016 
1017 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1018 
1019 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1020 	prev = &mip->mi_clients_list;
1021 	cclient = *prev;
1022 	while (cclient != NULL && cclient != mcip) {
1023 		prev = &cclient->mci_client_next;
1024 		cclient = *prev;
1025 	}
1026 	ASSERT(cclient != NULL);
1027 	*prev = cclient->mci_client_next;
1028 	mip->mi_nclients--;
1029 	rw_exit(&mip->mi_rw_lock);
1030 }
1031 
1032 static mac_unicast_impl_t *
1033 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1034 {
1035 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1036 
1037 	while ((muip != NULL) && (muip->mui_vid != vid))
1038 		muip = muip->mui_next;
1039 
1040 	return (muip);
1041 }
1042 
1043 /*
1044  * Return whether the specified (MAC address, VID) tuple is already used by
1045  * one of the MAC clients associated with the specified MAC.
1046  */
1047 static boolean_t
1048 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1049 {
1050 	mac_client_impl_t *client;
1051 	mac_address_t *map;
1052 
1053 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1054 
1055 	for (client = mip->mi_clients_list; client != NULL;
1056 	    client = client->mci_client_next) {
1057 
1058 		/*
1059 		 * Ignore clients that don't have unicast address.
1060 		 */
1061 		if (client->mci_unicast_list == NULL)
1062 			continue;
1063 
1064 		map = client->mci_unicast;
1065 
1066 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1067 		    (mac_client_find_vid(client, vid) != NULL)) {
1068 			return (B_TRUE);
1069 		}
1070 	}
1071 
1072 	return (B_FALSE);
1073 }
1074 
1075 /*
1076  * Generate a random MAC address. The MAC address prefix is
1077  * stored in the array pointed to by mac_addr, and its length, in bytes,
1078  * is specified by prefix_len. The least significant bits
1079  * after prefix_len bytes are generated, and stored after the prefix
1080  * in the mac_addr array.
1081  */
1082 int
1083 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1084     uint8_t *mac_addr, mac_diag_t *diag)
1085 {
1086 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1087 	mac_impl_t *mip = mcip->mci_mip;
1088 	size_t addr_len = mip->mi_type->mt_addr_length;
1089 
1090 	if (prefix_len >= addr_len) {
1091 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1092 		return (EINVAL);
1093 	}
1094 
1095 	/* check the prefix value */
1096 	if (prefix_len > 0) {
1097 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1098 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1099 		    addr_len)) {
1100 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1101 			return (EINVAL);
1102 		}
1103 	}
1104 
1105 	/* generate the MAC address */
1106 	if (prefix_len < addr_len) {
1107 		(void) random_get_pseudo_bytes(mac_addr +
1108 		    prefix_len, addr_len - prefix_len);
1109 	}
1110 
1111 	*diag = 0;
1112 	return (0);
1113 }
1114 
1115 /*
1116  * Set the priority range for this MAC client. This will be used to
1117  * determine the absolute priority for the threads created for this
1118  * MAC client using the specified "low", "medium" and "high" level.
1119  * This will also be used for any subflows on this MAC client.
1120  */
1121 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1122 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1123 	    MAXCLSYSPRI, (pri));					\
1124 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1125 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1126 	}
1127 
1128 /*
1129  * MAC client open entry point. Return a new MAC client handle. Each
1130  * MAC client is associated with a name, specified through the 'name'
1131  * argument.
1132  */
1133 int
1134 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1135     uint16_t flags)
1136 {
1137 	mac_impl_t *mip = (mac_impl_t *)mh;
1138 	mac_client_impl_t *mcip;
1139 	int err = 0;
1140 	boolean_t share_desired =
1141 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1142 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1143 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1144 	flow_entry_t	*flent = NULL;
1145 
1146 	*mchp = NULL;
1147 	if (share_desired && no_hwrings) {
1148 		/* can't have shares but no hardware rings */
1149 		return (EINVAL);
1150 	}
1151 
1152 	i_mac_perim_enter(mip);
1153 
1154 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1155 		/*
1156 		 * The underlying MAC is a VNIC. Return the MAC client
1157 		 * handle of the lower MAC which was obtained by
1158 		 * the VNIC driver when it did its mac_client_open().
1159 		 */
1160 
1161 		mcip = mac_vnic_lower(mip);
1162 
1163 		/*
1164 		 * Note that multiple mac clients share the same mcip in
1165 		 * this case.
1166 		 */
1167 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1168 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1169 
1170 		mip->mi_clients_list = mcip;
1171 		i_mac_perim_exit(mip);
1172 		*mchp = (mac_client_handle_t)mcip;
1173 		return (err);
1174 	}
1175 
1176 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1177 
1178 	mcip->mci_mip = mip;
1179 	mcip->mci_upper_mip = NULL;
1180 	mcip->mci_rx_fn = mac_pkt_drop;
1181 	mcip->mci_rx_arg = NULL;
1182 	mcip->mci_direct_rx_fn = NULL;
1183 	mcip->mci_direct_rx_arg = NULL;
1184 
1185 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1186 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1187 
1188 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1189 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1190 
1191 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1192 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1193 
1194 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1195 		datalink_id_t	linkid;
1196 
1197 		ASSERT(name == NULL);
1198 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1199 		    &linkid)) != 0) {
1200 			goto done;
1201 		}
1202 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1203 		    NULL, NULL)) != 0) {
1204 			/*
1205 			 * Use mac name if dlmgmtd is not available.
1206 			 */
1207 			if (err == EBADF) {
1208 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1209 				    sizeof (mcip->mci_name));
1210 				err = 0;
1211 			} else {
1212 				goto done;
1213 			}
1214 		}
1215 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1216 	} else {
1217 		ASSERT(name != NULL);
1218 		if (strlen(name) > MAXNAMELEN) {
1219 			err = EINVAL;
1220 			goto done;
1221 		}
1222 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1223 	}
1224 	/* the subflow table will be created dynamically */
1225 	mcip->mci_subflow_tab = NULL;
1226 	mcip->mci_stat_multircv = 0;
1227 	mcip->mci_stat_brdcstrcv = 0;
1228 	mcip->mci_stat_multixmt = 0;
1229 	mcip->mci_stat_brdcstxmt = 0;
1230 
1231 	mcip->mci_stat_obytes = 0;
1232 	mcip->mci_stat_opackets = 0;
1233 	mcip->mci_stat_oerrors = 0;
1234 	mcip->mci_stat_ibytes = 0;
1235 	mcip->mci_stat_ipackets = 0;
1236 	mcip->mci_stat_ierrors = 0;
1237 
1238 	/* Create an initial flow */
1239 
1240 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1241 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1242 	    FLOW_PRIMARY_MAC, &flent);
1243 	if (err != 0)
1244 		goto done;
1245 	mcip->mci_flent = flent;
1246 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1247 	flent->fe_mcip = mcip;
1248 	/*
1249 	 * Place initial creation reference on the flow. This reference
1250 	 * is released in the corresponding delete action viz.
1251 	 * mac_unicast_remove after waiting for all transient refs to
1252 	 * to go away. The wait happens in mac_flow_wait.
1253 	 */
1254 	FLOW_REFHOLD(flent);
1255 
1256 	/*
1257 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1258 	 * will have the right value for mac_rx_srs_setup().
1259 	 */
1260 	mac_client_add(mcip);
1261 
1262 	if (no_hwrings)
1263 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1264 	if (req_hwrings)
1265 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1266 	mcip->mci_share = NULL;
1267 	if (share_desired) {
1268 		ASSERT(!no_hwrings);
1269 		i_mac_share_alloc(mcip);
1270 	}
1271 
1272 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1273 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1274 	*mchp = (mac_client_handle_t)mcip;
1275 
1276 	i_mac_perim_exit(mip);
1277 	return (0);
1278 
1279 done:
1280 	i_mac_perim_exit(mip);
1281 	mcip->mci_state_flags = 0;
1282 	mcip->mci_tx_flag = 0;
1283 	kmem_cache_free(mac_client_impl_cache, mcip);
1284 	return (err);
1285 }
1286 
1287 /*
1288  * Close the specified MAC client handle.
1289  */
1290 void
1291 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1292 {
1293 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1294 	mac_impl_t		*mip = mcip->mci_mip;
1295 	flow_entry_t		*flent;
1296 
1297 	i_mac_perim_enter(mip);
1298 
1299 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1300 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1301 
1302 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1303 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1304 		/*
1305 		 * This is an upper VNIC client initiated operation.
1306 		 * The lower MAC client will be closed by the VNIC driver
1307 		 * when the VNIC is deleted.
1308 		 */
1309 
1310 		i_mac_perim_exit(mip);
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * Remove the flent associated with the MAC client
1316 	 */
1317 	flent = mcip->mci_flent;
1318 	mcip->mci_flent = NULL;
1319 	FLOW_FINAL_REFRELE(flent);
1320 
1321 	/*
1322 	 * MAC clients must remove the unicast addresses and promisc callbacks
1323 	 * they added before issuing a mac_client_close().
1324 	 */
1325 	ASSERT(mcip->mci_unicast_list == NULL);
1326 	ASSERT(mcip->mci_promisc_list == NULL);
1327 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1328 
1329 	i_mac_share_free(mcip);
1330 
1331 	mac_client_remove(mcip);
1332 
1333 	i_mac_perim_exit(mip);
1334 	mcip->mci_subflow_tab = NULL;
1335 	mcip->mci_state_flags = 0;
1336 	mcip->mci_tx_flag = 0;
1337 	kmem_cache_free(mac_client_impl_cache, mch);
1338 }
1339 
1340 /*
1341  * Enable bypass for the specified MAC client.
1342  */
1343 boolean_t
1344 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1345 {
1346 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1347 	mac_impl_t		*mip = mcip->mci_mip;
1348 
1349 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1350 
1351 	/*
1352 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1353 	 * instead let the packets come up via mac_rx_deliver so the vlan
1354 	 * header can be stripped.
1355 	 */
1356 	if (mcip->mci_nvids > 0)
1357 		return (B_FALSE);
1358 
1359 	/*
1360 	 * These are not accessed directly in the data path, and hence
1361 	 * don't need any protection
1362 	 */
1363 	mcip->mci_direct_rx_fn = rx_fn;
1364 	mcip->mci_direct_rx_arg = arg1;
1365 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1366 	return (B_TRUE);
1367 }
1368 
1369 /*
1370  * Set the receive callback for the specified MAC client. There can be
1371  * at most one such callback per MAC client.
1372  */
1373 void
1374 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1375 {
1376 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1377 	mac_impl_t	*mip = mcip->mci_mip;
1378 
1379 	/*
1380 	 * Instead of adding an extra set of locks and refcnts in
1381 	 * the datapath at the mac client boundary, we temporarily quiesce
1382 	 * the SRS and related entities. We then change the receive function
1383 	 * without interference from any receive data thread and then reenable
1384 	 * the data flow subsequently.
1385 	 */
1386 	i_mac_perim_enter(mip);
1387 	mac_rx_client_quiesce(mch);
1388 
1389 	mcip->mci_rx_fn = rx_fn;
1390 	mcip->mci_rx_arg = arg;
1391 	mac_rx_client_restart(mch);
1392 	i_mac_perim_exit(mip);
1393 }
1394 
1395 /*
1396  * Reset the receive callback for the specified MAC client.
1397  */
1398 void
1399 mac_rx_clear(mac_client_handle_t mch)
1400 {
1401 	mac_rx_set(mch, mac_pkt_drop, NULL);
1402 }
1403 
1404 /*
1405  * Walk the MAC client subflow table and updates their priority values.
1406  */
1407 static int
1408 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1409 {
1410 	mac_flow_update_priority(arg, flent);
1411 	return (0);
1412 }
1413 
1414 void
1415 mac_update_subflow_priority(mac_client_impl_t *mcip)
1416 {
1417 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1418 	    mac_update_subflow_priority_cb, mcip);
1419 }
1420 
1421 /*
1422  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1423  * to initialize the cpu and resource control structure in the
1424  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1425  * properties before the flow entry for the unicast address was created).
1426  */
1427 int
1428 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1429 {
1430 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1431 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1432 	int			err = 0;
1433 
1434 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1435 
1436 	err = mac_validate_props(mrp);
1437 	if (err != 0)
1438 		return (err);
1439 
1440 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1441 	if (MCIP_DATAPATH_SETUP(mcip)) {
1442 		/*
1443 		 * We have to set this prior to calling mac_flow_modify.
1444 		 */
1445 		if (mrp->mrp_mask & MRP_PRIORITY) {
1446 			if (mrp->mrp_priority == MPL_RESET) {
1447 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1448 				    MPL_LINK_DEFAULT);
1449 			} else {
1450 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1451 				    mrp->mrp_priority);
1452 			}
1453 		}
1454 
1455 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1456 		if (mrp->mrp_mask & MRP_PRIORITY)
1457 			mac_update_subflow_priority(mcip);
1458 		return (0);
1459 	}
1460 	return (0);
1461 }
1462 
1463 void
1464 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1465 {
1466 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1467 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1468 
1469 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1470 }
1471 
1472 static int
1473 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1474     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1475     flow_entry_t **flent, mac_resource_props_t *mrp)
1476 {
1477 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1478 	flow_desc_t	flow_desc;
1479 	char		flowname[MAXFLOWNAMELEN];
1480 	int		err;
1481 	uint_t		flent_flags;
1482 
1483 	/*
1484 	 * First unicast address being added, create a new flow
1485 	 * for that MAC client.
1486 	 */
1487 	bzero(&flow_desc, sizeof (flow_desc));
1488 
1489 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1490 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1491 	flow_desc.fd_mask = FLOW_LINK_DST;
1492 	if (vid != 0) {
1493 		flow_desc.fd_vid = vid;
1494 		flow_desc.fd_mask |= FLOW_LINK_VID;
1495 	}
1496 
1497 	/*
1498 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1499 	 * and FLOW_VNIC. Even though they're a hack inherited
1500 	 * from the SRS code, we'll keep them for now. They're currently
1501 	 * consumed by mac_datapath_setup() to create the SRS.
1502 	 * That code should be eventually moved out of
1503 	 * mac_datapath_setup() and moved to a mac_srs_create()
1504 	 * function of some sort to keep things clean.
1505 	 *
1506 	 * Also, there's no reason why the SRS for the primary MAC
1507 	 * client should be different than any other MAC client. Until
1508 	 * this is cleaned-up, we support only one MAC unicast address
1509 	 * per client.
1510 	 *
1511 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1512 	 * FLOW_VNIC for everything else.
1513 	 */
1514 	if (is_primary)
1515 		flent_flags = FLOW_PRIMARY_MAC;
1516 	else
1517 		flent_flags = FLOW_VNIC_MAC;
1518 
1519 	/*
1520 	 * For the first flow we use the mac client's name - mci_name, for
1521 	 * subsequent ones we just create a name with the vid. This is
1522 	 * so that we can add these flows to the same flow table. This is
1523 	 * fine as the flow name (except for the one with the mac client's
1524 	 * name) is not visible. When the first flow is removed, we just replace
1525 	 * its fdesc with another from the list, so we will still retain the
1526 	 * flent with the MAC client's flow name.
1527 	 */
1528 	if (first_flow) {
1529 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1530 	} else {
1531 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1532 		flent_flags = FLOW_NO_STATS;
1533 	}
1534 
1535 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1536 	    flent_flags, flent)) != 0)
1537 		return (err);
1538 
1539 	FLOW_MARK(*flent, FE_INCIPIENT);
1540 	(*flent)->fe_mcip = mcip;
1541 
1542 	/*
1543 	 * Place initial creation reference on the flow. This reference
1544 	 * is released in the corresponding delete action viz.
1545 	 * mac_unicast_remove after waiting for all transient refs to
1546 	 * to go away. The wait happens in mac_flow_wait.
1547 	 * We have already held the reference in mac_client_open().
1548 	 */
1549 	if (!first_flow)
1550 		FLOW_REFHOLD(*flent);
1551 	return (0);
1552 }
1553 
1554 /* Refresh the multicast grouping for this VID. */
1555 int
1556 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1557 {
1558 	flow_entry_t		*flent = arg;
1559 	mac_client_impl_t	*mcip = flent->fe_mcip;
1560 	uint16_t		vid;
1561 	flow_desc_t		flow_desc;
1562 
1563 	mac_flow_get_desc(flent, &flow_desc);
1564 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1565 	    flow_desc.fd_vid : VLAN_ID_NONE;
1566 
1567 	/*
1568 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1569 	 * we want to add/remove for this specific vid.
1570 	 */
1571 	if (add) {
1572 		return (mac_bcast_add(mcip, addrp, vid,
1573 		    MAC_ADDRTYPE_MULTICAST));
1574 	} else {
1575 		mac_bcast_delete(mcip, addrp, vid);
1576 		return (0);
1577 	}
1578 }
1579 
1580 static void
1581 mac_update_single_active_client(mac_impl_t *mip)
1582 {
1583 	mac_client_impl_t *client = NULL;
1584 
1585 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1586 
1587 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1588 	if (mip->mi_nactiveclients == 1) {
1589 		/*
1590 		 * Find the one active MAC client from the list of MAC
1591 		 * clients. The active MAC client has at least one
1592 		 * unicast address.
1593 		 */
1594 		for (client = mip->mi_clients_list; client != NULL;
1595 		    client = client->mci_client_next) {
1596 			if (client->mci_unicast_list != NULL)
1597 				break;
1598 		}
1599 		ASSERT(client != NULL);
1600 	}
1601 
1602 	/*
1603 	 * mi_single_active_client is protected by the MAC impl's read/writer
1604 	 * lock, which allows mac_rx() to check the value of that pointer
1605 	 * as a reader.
1606 	 */
1607 	mip->mi_single_active_client = client;
1608 	rw_exit(&mip->mi_rw_lock);
1609 }
1610 
1611 /*
1612  * Add a new unicast address to the MAC client.
1613  *
1614  * The MAC address can be specified either by value, or the MAC client
1615  * can specify that it wants to use the primary MAC address of the
1616  * underlying MAC. See the introductory comments at the beginning
1617  * of this file for more more information on primary MAC addresses.
1618  *
1619  * Note also the tuple (MAC address, VID) must be unique
1620  * for the MAC clients defined on top of the same underlying MAC
1621  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1622  */
1623 int
1624 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1625     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1626 {
1627 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1628 	mac_impl_t *mip = mcip->mci_mip;
1629 	mac_unicast_impl_t *muip;
1630 	flow_entry_t *flent;
1631 	int err;
1632 	uint_t mac_len = mip->mi_type->mt_addr_length;
1633 	boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1634 	boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
1635 	boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY);
1636 	boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
1637 	boolean_t bcast_added = B_FALSE;
1638 	boolean_t nactiveclients_added = B_FALSE;
1639 	boolean_t mac_started = B_FALSE;
1640 	mac_resource_props_t mrp;
1641 
1642 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1643 
1644 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1645 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1646 
1647 	/*
1648 	 * Check whether it's the primary client and flag it.
1649 	 */
1650 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1651 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1652 
1653 	/*
1654 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1655 	 * which uses the primary mac client's address but with a non-zero
1656 	 * VID. In this case the MAC address is not specified by an upper
1657 	 * MAC client.
1658 	 */
1659 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1660 	    !is_vnic_primary) {
1661 		/*
1662 		 * The address is being set by the upper MAC client
1663 		 * of a VNIC. The MAC address was already set by the
1664 		 * VNIC driver during VNIC creation.
1665 		 *
1666 		 * Note: a VNIC has only one MAC address. We return
1667 		 * the MAC unicast address handle of the lower MAC client
1668 		 * corresponding to the VNIC. We allocate a new entry
1669 		 * which is flagged appropriately, so that mac_unicast_remove()
1670 		 * doesn't attempt to free the original entry that
1671 		 * was allocated by the VNIC driver.
1672 		 */
1673 		ASSERT(mcip->mci_unicast != NULL);
1674 
1675 		/* Check for VLAN flags, if present */
1676 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1677 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1678 
1679 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1680 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1681 
1682 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1683 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1684 
1685 		/*
1686 		 * Ensure that the primary unicast address of the VNIC
1687 		 * is added only once.
1688 		 */
1689 		if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY)
1690 			return (EBUSY);
1691 
1692 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1693 
1694 		/*
1695 		 * Create a handle for vid 0.
1696 		 */
1697 		ASSERT(vid == 0);
1698 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1699 		muip->mui_vid = vid;
1700 		*mah = (mac_unicast_handle_t)muip;
1701 		return (0);
1702 	}
1703 
1704 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1705 	if ((is_vnic_primary || is_primary) &&
1706 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1707 		return (ENXIO);
1708 	}
1709 
1710 	/*
1711 	 * Return EBUSY if:
1712 	 *  - this is an exclusive active mac client and there already exist
1713 	 *    active mac clients, or
1714 	 *  - there already exist an exclusively active mac client.
1715 	 */
1716 	if ((mcip->mci_state_flags & MCIS_EXCLUSIVE) &&
1717 	    (mip->mi_nactiveclients != 0) || (mip->mi_state_flags &
1718 	    MIS_EXCLUSIVE)) {
1719 		return (EBUSY);
1720 	}
1721 
1722 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
1723 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1724 
1725 	bzero(&mrp, sizeof (mac_resource_props_t));
1726 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1727 	    MCIS_IS_AGGR_PORT))) {
1728 		/*
1729 		 * Apply the property cached in the mac_impl_t to the primary
1730 		 * mac client. If the mac client is a VNIC or an aggregation
1731 		 * port, its property should be set in the mcip when the
1732 		 * VNIC/aggr was created.
1733 		 */
1734 		mac_get_resources((mac_handle_t)mip, &mrp);
1735 		(void) mac_client_set_resources(mch, &mrp);
1736 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1737 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1738 		    sizeof (mac_resource_props_t));
1739 	}
1740 
1741 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1742 	muip->mui_vid = vid;
1743 
1744 	if (is_primary || is_vnic_primary) {
1745 		mac_addr = mip->mi_addr;
1746 		check_dups = B_TRUE;
1747 	} else {
1748 
1749 		/*
1750 		 * Verify the validity of the specified MAC addresses value.
1751 		 */
1752 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
1753 			*diag = MAC_DIAG_MACADDR_INVALID;
1754 			err = EINVAL;
1755 			goto bail;
1756 		}
1757 
1758 		/*
1759 		 * Make sure that the specified MAC address is different
1760 		 * than the unicast MAC address of the underlying NIC.
1761 		 */
1762 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
1763 			*diag = MAC_DIAG_MACADDR_NIC;
1764 			err = EINVAL;
1765 			goto bail;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Make sure the MAC address is not already used by
1771 	 * another MAC client defined on top of the same
1772 	 * underlying NIC.
1773 	 * xxx-venu mac_unicast_add doesnt' seem to be called
1774 	 * with MAC_UNICAST_NODUPCHECK currently, if it does
1775 	 * get called we need to do mac_addr_in_use() just
1776 	 * to check for addr_in_use till 6697876 is fixed.
1777 	 */
1778 	if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) {
1779 		*diag = MAC_DIAG_MACADDR_INUSE;
1780 		err = EEXIST;
1781 		goto bail;
1782 	}
1783 
1784 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1785 		goto bail;
1786 
1787 	mac_started = B_TRUE;
1788 
1789 	/* add the MAC client to the broadcast address group by default */
1790 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1791 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1792 		    MAC_ADDRTYPE_BROADCAST);
1793 		if (err != 0)
1794 			goto bail;
1795 		bcast_added = B_TRUE;
1796 	}
1797 
1798 	/*
1799 	 * If this is the first unicast address addition for this
1800 	 * client, reuse the pre-allocated larval flow entry associated with
1801 	 * the MAC client.
1802 	 */
1803 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1804 
1805 	/* We are configuring the unicast flow now */
1806 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1807 		if (is_unicast_hw) {
1808 			/*
1809 			 * The client requires a hardware MAC address slot
1810 			 * for that unicast address. Since we support only
1811 			 * one unicast MAC address per client, flag the
1812 			 * MAC client itself.
1813 			 */
1814 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
1815 		}
1816 
1817 		/* Check for VLAN flags, if present */
1818 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1819 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1820 
1821 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1822 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1823 
1824 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1825 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1826 
1827 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1828 		    (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority :
1829 		    MPL_LINK_DEFAULT);
1830 
1831 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1832 		    is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0)
1833 			goto bail;
1834 
1835 		mip->mi_nactiveclients++;
1836 		nactiveclients_added = B_TRUE;
1837 
1838 		/*
1839 		 * This will allocate the RX ring group if possible for the
1840 		 * flow and program the software classifier as needed.
1841 		 */
1842 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1843 			goto bail;
1844 
1845 		/*
1846 		 * The unicast MAC address must have been added successfully.
1847 		 */
1848 		ASSERT(mcip->mci_unicast != NULL);
1849 		/*
1850 		 * Push down the sub-flows that were defined on this link
1851 		 * hitherto. The flows are added to the active flow table
1852 		 * and SRS, softrings etc. are created as needed.
1853 		 */
1854 		mac_link_init_flows(mch);
1855 	} else {
1856 		mac_address_t *map = mcip->mci_unicast;
1857 
1858 		/*
1859 		 * A unicast flow already exists for that MAC client,
1860 		 * this flow must be the same mac address but with
1861 		 * different VID. It has been checked by mac_addr_in_use().
1862 		 *
1863 		 * We will use the SRS etc. from the mci_flent. Note that
1864 		 * We don't need to create kstat for this as except for
1865 		 * the fdesc, everything will be used from in the 1st flent.
1866 		 */
1867 
1868 		/*
1869 		 * Assert that the specified flags are consistent with the
1870 		 * flags specified by previous calls to mac_unicast_add().
1871 		 */
1872 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
1873 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
1874 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
1875 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
1876 
1877 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
1878 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
1879 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
1880 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
1881 
1882 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
1883 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
1884 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
1885 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
1886 
1887 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1888 			err = EINVAL;
1889 			goto bail;
1890 		}
1891 
1892 		/*
1893 		 * Make sure the client is consistent about its requests
1894 		 * for MAC addresses. I.e. all requests from the clients
1895 		 * must have the MAC_UNICAST_HW flag set or clear.
1896 		 */
1897 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
1898 		    !is_unicast_hw ||
1899 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
1900 		    is_unicast_hw) {
1901 			err = EINVAL;
1902 			goto bail;
1903 		}
1904 
1905 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1906 		    is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0)
1907 			goto bail;
1908 
1909 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1910 			FLOW_FINAL_REFRELE(flent);
1911 			goto bail;
1912 		}
1913 
1914 		/* update the multicast group for this vid */
1915 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1916 		    (void *)flent, B_TRUE);
1917 
1918 	}
1919 
1920 	/* populate the shared MAC address */
1921 	muip->mui_map = mcip->mci_unicast;
1922 
1923 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1924 	muip->mui_next = mcip->mci_unicast_list;
1925 	mcip->mci_unicast_list = muip;
1926 	rw_exit(&mcip->mci_rw_lock);
1927 
1928 	*mah = (mac_unicast_handle_t)muip;
1929 
1930 	/*
1931 	 * First add the flent to the flow list of this mcip. Then set
1932 	 * the mip's mi_single_active_client if needed. The Rx path assumes
1933 	 * that mip->mi_single_active_client will always have an associated
1934 	 * flent.
1935 	 */
1936 	mac_client_add_to_flow_list(mcip, flent);
1937 
1938 	if (nactiveclients_added)
1939 		mac_update_single_active_client(mip);
1940 	/*
1941 	 * Trigger a renegotiation of the capabilities when the number of
1942 	 * active clients changes from 1 to 2, since some of the capabilities
1943 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1944 	 * to all the MAC clients whenever physical link is DOWN.
1945 	 */
1946 	if (mip->mi_nactiveclients == 2) {
1947 		mac_capab_update((mac_handle_t)mip);
1948 		mac_virtual_link_update(mip);
1949 	}
1950 	/*
1951 	 * Now that the setup is complete, clear the INCIPIENT flag.
1952 	 * The flag was set to avoid incoming packets seeing inconsistent
1953 	 * structures while the setup was in progress. Clear the mci_tx_flag
1954 	 * by calling mac_tx_client_block. It is possible that
1955 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1956 	 * could have set the MCI_TX_QUIESCE flag.
1957 	 */
1958 	if (flent->fe_rx_ring_group != NULL)
1959 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1960 	FLOW_UNMARK(flent, FE_INCIPIENT);
1961 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1962 	mac_tx_client_unblock(mcip);
1963 	return (0);
1964 bail:
1965 	if (bcast_added)
1966 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1967 	if (mac_started)
1968 		mac_stop((mac_handle_t)mip);
1969 
1970 	if (nactiveclients_added)
1971 		mip->mi_nactiveclients--;
1972 
1973 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
1974 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
1975 	kmem_free(muip, sizeof (mac_unicast_impl_t));
1976 	return (err);
1977 }
1978 
1979 int
1980 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1981     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1982 {
1983 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
1984 	uint_t err;
1985 
1986 	i_mac_perim_enter(mip);
1987 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
1988 	i_mac_perim_exit(mip);
1989 
1990 	return (err);
1991 }
1992 
1993 /*
1994  * Remove a MAC address which was previously added by mac_unicast_add().
1995  */
1996 int
1997 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
1998 {
1999 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2000 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2001 	mac_unicast_impl_t *pre;
2002 	mac_impl_t *mip = mcip->mci_mip;
2003 	flow_entry_t *flent;
2004 
2005 	i_mac_perim_enter(mip);
2006 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2007 		/*
2008 		 * Called made by the upper MAC client of a VNIC.
2009 		 * There's nothing much to do, the unicast address will
2010 		 * be removed by the VNIC driver when the VNIC is deleted,
2011 		 * but let's ensure that all our transmit is done before
2012 		 * the client does a mac_client_stop lest it trigger an
2013 		 * assert in the driver.
2014 		 */
2015 		ASSERT(muip->mui_vid == 0);
2016 
2017 		mac_tx_client_flush(mcip);
2018 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2019 
2020 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2021 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2022 
2023 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2024 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2025 
2026 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2027 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2028 
2029 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2030 		i_mac_perim_exit(mip);
2031 		return (0);
2032 	}
2033 
2034 	ASSERT(muip != NULL);
2035 
2036 	/*
2037 	 * Remove the VID from the list of client's VIDs.
2038 	 */
2039 	pre = mcip->mci_unicast_list;
2040 	if (muip == pre) {
2041 		mcip->mci_unicast_list = muip->mui_next;
2042 	} else {
2043 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2044 			pre = pre->mui_next;
2045 		ASSERT(pre->mui_next == muip);
2046 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2047 		pre->mui_next = muip->mui_next;
2048 		rw_exit(&mcip->mci_rw_lock);
2049 	}
2050 
2051 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0)
2052 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2053 
2054 	if (!mac_client_single_rcvr(mcip)) {
2055 		/*
2056 		 * This MAC client is shared by more than one unicast
2057 		 * addresses, so we will just remove the flent
2058 		 * corresponding to the address being removed. We don't invoke
2059 		 * mac_rx_classify_flow_rem() since the additional flow is
2060 		 * not associated with its own separate set of SRS and rings,
2061 		 * and these constructs are still needed for the remaining
2062 		 * flows.
2063 		 */
2064 		flent = mac_client_get_flow(mcip, muip);
2065 		ASSERT(flent != NULL);
2066 
2067 		/*
2068 		 * The first one is disappearing, need to make sure
2069 		 * we replace it with another from the list of
2070 		 * shared clients.
2071 		 */
2072 		if (flent == mcip->mci_flent)
2073 			flent = mac_client_swap_mciflent(mcip);
2074 		mac_client_remove_flow_from_list(mcip, flent);
2075 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2076 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2077 
2078 		/*
2079 		 * The multicast groups that were added by the client so
2080 		 * far must be removed from the brodcast domain corresponding
2081 		 * to the VID being removed.
2082 		 */
2083 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2084 		    (void *)flent, B_FALSE);
2085 
2086 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2087 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2088 			    muip->mui_vid);
2089 		}
2090 		mac_stop((mac_handle_t)mip);
2091 		FLOW_FINAL_REFRELE(flent);
2092 		i_mac_perim_exit(mip);
2093 		return (0);
2094 	}
2095 
2096 	/*
2097 	 * We would have initialized subflows etc. only if we brought up
2098 	 * the primary client and set the unicast unicast address etc.
2099 	 * Deactivate the flows. The flow entry will be removed from the
2100 	 * active flow tables, and the associated SRS, softrings etc will
2101 	 * be deleted. But the flow entry itself won't be destroyed, instead
2102 	 * it will continue to be archived off the  the global flow hash
2103 	 * list, for a possible future activation when say IP is plumbed
2104 	 * again.
2105 	 */
2106 	mac_link_release_flows(mch);
2107 
2108 	mip->mi_nactiveclients--;
2109 	mac_update_single_active_client(mip);
2110 
2111 	/* Tear down the Data path */
2112 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2113 
2114 	/*
2115 	 * Prevent any future access to the flow entry through the mci_flent
2116 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2117 	 * mac_bcast_send is also under mi_rw_lock.
2118 	 */
2119 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2120 	flent = mcip->mci_flent;
2121 	mac_client_remove_flow_from_list(mcip, flent);
2122 
2123 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2124 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2125 
2126 	/*
2127 	 * This is the last unicast address being removed and there shouldn't
2128 	 * be any outbound data threads at this point coming down from mac
2129 	 * clients. We have waited for the data threads to finish before
2130 	 * starting dld_str_detach. Non-data threads must access TX SRS
2131 	 * under mi_rw_lock.
2132 	 */
2133 	rw_exit(&mip->mi_rw_lock);
2134 
2135 	/*
2136 	 * Update the multicast group for this vid.
2137 	 */
2138 	mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent,
2139 	    B_FALSE);
2140 
2141 	/*
2142 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2143 	 * contain other flags, such as FE_CONDEMNED, which we need to
2144 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2145 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2146 	 * path). We just clear the stats and reset the initial callback
2147 	 * function, the rest will be set when we call mac_flow_create,
2148 	 * if at all.
2149 	 */
2150 	mutex_enter(&flent->fe_lock);
2151 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2152 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2153 	flent->fe_flags = FE_MC_NO_DATAPATH;
2154 	flow_stat_destroy(flent);
2155 
2156 	/* Initialize the receiver function to a safe routine */
2157 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2158 	flent->fe_cb_arg1 = NULL;
2159 	flent->fe_cb_arg2 = NULL;
2160 
2161 	flent->fe_index = -1;
2162 	mutex_exit(&flent->fe_lock);
2163 
2164 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2165 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2166 		    muip->mui_vid);
2167 	}
2168 
2169 	if (mip->mi_nactiveclients == 1) {
2170 		mac_capab_update((mac_handle_t)mip);
2171 		mac_virtual_link_update(mip);
2172 	}
2173 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
2174 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2175 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2176 
2177 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2178 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2179 
2180 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2181 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2182 
2183 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2184 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2185 
2186 	mac_stop((mac_handle_t)mip);
2187 
2188 	i_mac_perim_exit(mip);
2189 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2190 	return (0);
2191 }
2192 
2193 /*
2194  * Multicast add function invoked by MAC clients.
2195  */
2196 int
2197 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2198 {
2199 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2200 	mac_impl_t		*mip = mcip->mci_mip;
2201 	flow_entry_t		*flent = mcip->mci_flent_list;
2202 	flow_entry_t		*prev_fe = NULL;
2203 	uint16_t		vid;
2204 	int			err = 0;
2205 
2206 	/* Verify the address is a valid multicast address */
2207 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2208 	    mip->mi_pdata)) != 0)
2209 		return (err);
2210 
2211 	i_mac_perim_enter(mip);
2212 	while (flent != NULL) {
2213 		vid = i_mac_flow_vid(flent);
2214 
2215 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2216 		    MAC_ADDRTYPE_MULTICAST);
2217 		if (err != 0)
2218 			break;
2219 		prev_fe = flent;
2220 		flent = flent->fe_client_next;
2221 	}
2222 
2223 	/*
2224 	 * If we failed adding, then undo all, rather than partial
2225 	 * success.
2226 	 */
2227 	if (flent != NULL && prev_fe != NULL) {
2228 		flent = mcip->mci_flent_list;
2229 		while (flent != prev_fe->fe_client_next) {
2230 			vid = i_mac_flow_vid(flent);
2231 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2232 			flent = flent->fe_client_next;
2233 		}
2234 	}
2235 	i_mac_perim_exit(mip);
2236 	return (err);
2237 }
2238 
2239 /*
2240  * Multicast delete function invoked by MAC clients.
2241  */
2242 void
2243 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2244 {
2245 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2246 	mac_impl_t		*mip = mcip->mci_mip;
2247 	flow_entry_t		*flent;
2248 	uint16_t		vid;
2249 
2250 	i_mac_perim_enter(mip);
2251 	for (flent = mcip->mci_flent_list; flent != NULL;
2252 	    flent = flent->fe_client_next) {
2253 		vid = i_mac_flow_vid(flent);
2254 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2255 	}
2256 	i_mac_perim_exit(mip);
2257 }
2258 
2259 /*
2260  * When a MAC client desires to capture packets on an interface,
2261  * it registers a promiscuous call back with mac_promisc_add().
2262  * There are three types of promiscuous callbacks:
2263  *
2264  * * MAC_CLIENT_PROMISC_ALL
2265  *   Captures all packets sent and received by the MAC client,
2266  *   the physical interface, as well as all other MAC clients
2267  *   defined on top of the same MAC.
2268  *
2269  * * MAC_CLIENT_PROMISC_FILTERED
2270  *   Captures all packets sent and received by the MAC client,
2271  *   plus all multicast traffic sent and received by the phyisical
2272  *   interface and the other MAC clients.
2273  *
2274  * * MAC_CLIENT_PROMISC_MULTI
2275  *   Captures all broadcast and multicast packets sent and
2276  *   received by the MAC clients as well as the physical interface.
2277  *
2278  * In all cases, the underlying MAC is put in promiscuous mode.
2279  */
2280 int
2281 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2282     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2283 {
2284 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2285 	mac_impl_t *mip = mcip->mci_mip;
2286 	mac_promisc_impl_t *mpip;
2287 	mac_cb_info_t	*mcbi;
2288 	int rc;
2289 
2290 	i_mac_perim_enter(mip);
2291 
2292 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2293 		i_mac_perim_exit(mip);
2294 		return (rc);
2295 	}
2296 
2297 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2298 	    type == MAC_CLIENT_PROMISC_ALL) {
2299 		/*
2300 		 * The function is being invoked by the upper MAC client
2301 		 * of a VNIC. The VNIC should only see the traffic
2302 		 * it is entitled to.
2303 		 */
2304 		type = MAC_CLIENT_PROMISC_FILTERED;
2305 	}
2306 
2307 
2308 	/*
2309 	 * Turn on promiscuous mode for the underlying NIC.
2310 	 * This is needed even for filtered callbacks which
2311 	 * expect to receive all multicast traffic on the wire.
2312 	 *
2313 	 * Physical promiscuous mode should not be turned on if
2314 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2315 	 */
2316 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2317 		if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC))
2318 		    != 0) {
2319 			mac_stop((mac_handle_t)mip);
2320 			i_mac_perim_exit(mip);
2321 			return (rc);
2322 		}
2323 	}
2324 
2325 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2326 
2327 	mpip->mpi_type = type;
2328 	mpip->mpi_fn = fn;
2329 	mpip->mpi_arg = arg;
2330 	mpip->mpi_mcip = mcip;
2331 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2332 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2333 	mpip->mpi_strip_vlan_tag =
2334 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2335 
2336 	mcbi = &mip->mi_promisc_cb_info;
2337 	mutex_enter(mcbi->mcbi_lockp);
2338 
2339 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2340 	    &mpip->mpi_mci_link);
2341 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2342 	    &mpip->mpi_mi_link);
2343 
2344 	mutex_exit(mcbi->mcbi_lockp);
2345 
2346 	*mphp = (mac_promisc_handle_t)mpip;
2347 	i_mac_perim_exit(mip);
2348 	return (0);
2349 }
2350 
2351 /*
2352  * Remove a multicast address previously aded through mac_promisc_add().
2353  */
2354 int
2355 mac_promisc_remove(mac_promisc_handle_t mph)
2356 {
2357 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2358 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2359 	mac_impl_t *mip = mcip->mci_mip;
2360 	mac_cb_info_t *mcbi;
2361 	int rc = 0;
2362 
2363 	i_mac_perim_enter(mip);
2364 
2365 	/*
2366 	 * Even if the device can't be reset into normal mode, we still
2367 	 * need to clear the client promisc callbacks. The client may want
2368 	 * to close the mac end point and we can't have stale callbacks.
2369 	 */
2370 	if (!(mpip->mpi_no_phys)) {
2371 		rc = mac_promisc_set((mac_handle_t)mip, B_FALSE,
2372 		    MAC_DEVPROMISC);
2373 		if (rc != 0)
2374 			goto done;
2375 	}
2376 	mcbi = &mip->mi_promisc_cb_info;
2377 	mutex_enter(mcbi->mcbi_lockp);
2378 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2379 	    &mpip->mpi_mi_link)) {
2380 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2381 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2382 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2383 	} else {
2384 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2385 	}
2386 	mutex_exit(mcbi->mcbi_lockp);
2387 	mac_stop((mac_handle_t)mip);
2388 
2389 done:
2390 	i_mac_perim_exit(mip);
2391 	return (rc);
2392 }
2393 
2394 /*
2395  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2396  * that a control operation wants to quiesce the Tx data flow in which case
2397  * we return an error. Holding any of the per cpu locks ensures that the
2398  * mci_tx_flag won't change.
2399  *
2400  * 'CPU' must be accessed just once and used to compute the index into the
2401  * percpu array, and that index must be used for the entire duration of the
2402  * packet send operation. Note that the thread may be preempted and run on
2403  * another cpu any time and so we can't use 'CPU' more than once for the
2404  * operation.
2405  */
2406 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2407 {									\
2408 	(error) = 0;							\
2409 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2410 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2411 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2412 		(mytx)->pcpu_tx_refcnt++;				\
2413 	} else {							\
2414 		(error) = -1;						\
2415 	}								\
2416 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2417 }
2418 
2419 /*
2420  * Release the reference. If needed, signal any control operation waiting
2421  * for Tx quiescence. The wait and signal are always done using the
2422  * mci_tx_pcpu[0]'s lock
2423  */
2424 #define	MAC_TX_RELE(mcip, mytx) {					\
2425 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2426 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2427 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2428 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2429 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2430 		cv_signal(&(mcip)->mci_tx_cv);				\
2431 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2432 	} else {							\
2433 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2434 	}								\
2435 }
2436 
2437 /*
2438  * Bump the count of the number of active Tx threads. This is maintained as
2439  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2440  * a single mci_tx_lock may become contended. However a count of the total
2441  * number of Tx threads per client is needed in order to quiesce the Tx side
2442  * prior to reassigning a Tx ring dynamically to another client. The thread
2443  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2444  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2445  * its own percpu lock and increments its own refcnt.
2446  */
2447 void *
2448 mac_tx_hold(mac_client_handle_t mch)
2449 {
2450 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2451 	mac_tx_percpu_t	*mytx;
2452 	int error;
2453 
2454 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2455 	return (error == 0 ? (void *)mytx : NULL);
2456 }
2457 
2458 void
2459 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2460 {
2461 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2462 	mac_tx_percpu_t	*mytx = mytx_handle;
2463 
2464 	MAC_TX_RELE(mcip, mytx)
2465 }
2466 
2467 /*
2468  * Send function invoked by MAC clients.
2469  */
2470 mac_tx_cookie_t
2471 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2472     uint16_t flag, mblk_t **ret_mp)
2473 {
2474 	mac_tx_cookie_t		cookie;
2475 	int			error;
2476 	mac_tx_percpu_t		*mytx;
2477 	mac_soft_ring_set_t	*srs;
2478 	flow_entry_t		*flent;
2479 	boolean_t		is_subflow = B_FALSE;
2480 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2481 	mac_impl_t		*mip = mcip->mci_mip;
2482 	mac_srs_tx_t		*srs_tx;
2483 
2484 	/*
2485 	 * Check whether the active Tx threads count is bumped already.
2486 	 */
2487 	if (!(flag & MAC_TX_NO_HOLD)) {
2488 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2489 		if (error != 0) {
2490 			freemsgchain(mp_chain);
2491 			return (NULL);
2492 		}
2493 	}
2494 
2495 	if (mcip->mci_subflow_tab != NULL &&
2496 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2497 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2498 	    FLOW_OUTBOUND, &flent) == 0) {
2499 		/*
2500 		 * The main assumption here is that if in the event
2501 		 * we get a chain, all the packets will be classified
2502 		 * to the same Flow/SRS. If this changes for any
2503 		 * reason, the following logic should change as well.
2504 		 * I suppose the fanout_hint also assumes this .
2505 		 */
2506 		ASSERT(flent != NULL);
2507 		is_subflow = B_TRUE;
2508 	} else {
2509 		flent = mcip->mci_flent;
2510 	}
2511 
2512 	srs = flent->fe_tx_srs;
2513 	srs_tx = &srs->srs_tx;
2514 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2515 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2516 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2517 	    mp_chain->b_next == NULL) {
2518 		uint64_t	obytes;
2519 
2520 		/*
2521 		 * Since dls always opens the underlying MAC, nclients equals
2522 		 * to 1 means that the only active client is dls itself acting
2523 		 * as a primary client of the MAC instance. Since dls will not
2524 		 * send tagged packets in that case, and dls is trusted to send
2525 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2526 		 * check is required only if nclients is greater than 1.
2527 		 */
2528 		if (mip->mi_nclients > 1) {
2529 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2530 				int	err = 0;
2531 
2532 				MAC_VID_CHECK(mcip, mp_chain, err);
2533 				if (err != 0) {
2534 					freemsg(mp_chain);
2535 					mcip->mci_stat_oerrors++;
2536 					goto done;
2537 				}
2538 			}
2539 			if (MAC_TAG_NEEDED(mcip)) {
2540 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2541 				    mac_client_vid(mch));
2542 				if (mp_chain == NULL) {
2543 					mcip->mci_stat_oerrors++;
2544 					goto done;
2545 				}
2546 			}
2547 		}
2548 
2549 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2550 		    msgdsize(mp_chain));
2551 
2552 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
2553 
2554 		if (mp_chain == NULL) {
2555 			cookie = NULL;
2556 			mcip->mci_stat_obytes += obytes;
2557 			mcip->mci_stat_opackets += 1;
2558 			if ((srs->srs_type & SRST_FLOW) != 0) {
2559 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2560 				FLOW_STAT_UPDATE(flent, opackets, 1);
2561 			}
2562 		} else {
2563 			mutex_enter(&srs->srs_lock);
2564 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2565 			    flag, ret_mp);
2566 			mutex_exit(&srs->srs_lock);
2567 		}
2568 	} else {
2569 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2570 	}
2571 
2572 done:
2573 	if (is_subflow)
2574 		FLOW_REFRELE(flent);
2575 
2576 	if (!(flag & MAC_TX_NO_HOLD))
2577 		MAC_TX_RELE(mcip, mytx);
2578 
2579 	return (cookie);
2580 }
2581 
2582 /*
2583  * mac_tx_is_blocked
2584  *
2585  * Given a cookie, it returns if the ring identified by the cookie is
2586  * flow-controlled or not. If NULL is passed in place of a cookie,
2587  * then it finds out if any of the underlying rings belonging to the
2588  * SRS is flow controlled or not and returns that status.
2589  */
2590 /* ARGSUSED */
2591 boolean_t
2592 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2593 {
2594 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2595 	mac_soft_ring_set_t *mac_srs;
2596 	mac_soft_ring_t *sringp;
2597 	boolean_t blocked = B_FALSE;
2598 	mac_tx_percpu_t *mytx;
2599 	int err;
2600 	int i;
2601 
2602 	/*
2603 	 * Bump the reference count so that mac_srs won't be deleted.
2604 	 * If the client is currently quiesced and we failed to bump
2605 	 * the reference, return B_TRUE so that flow control stays
2606 	 * as enabled.
2607 	 *
2608 	 * Flow control will then be disabled once the client is no
2609 	 * longer quiesced.
2610 	 */
2611 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2612 	if (err != 0)
2613 		return (B_TRUE);
2614 
2615 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2616 		MAC_TX_RELE(mcip, mytx);
2617 		return (B_FALSE);
2618 	}
2619 
2620 	mutex_enter(&mac_srs->srs_lock);
2621 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2622 		if (cookie != NULL) {
2623 			sringp = (mac_soft_ring_t *)cookie;
2624 			mutex_enter(&sringp->s_ring_lock);
2625 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2626 				blocked = B_TRUE;
2627 			mutex_exit(&sringp->s_ring_lock);
2628 		} else {
2629 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2630 				sringp = mac_srs->srs_oth_soft_rings[i];
2631 				mutex_enter(&sringp->s_ring_lock);
2632 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2633 					blocked = B_TRUE;
2634 					mutex_exit(&sringp->s_ring_lock);
2635 					break;
2636 				}
2637 				mutex_exit(&sringp->s_ring_lock);
2638 			}
2639 		}
2640 	} else {
2641 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2642 	}
2643 	mutex_exit(&mac_srs->srs_lock);
2644 	MAC_TX_RELE(mcip, mytx);
2645 	return (blocked);
2646 }
2647 
2648 /*
2649  * Check if the MAC client is the primary MAC client.
2650  */
2651 boolean_t
2652 mac_is_primary_client(mac_client_impl_t *mcip)
2653 {
2654 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2655 }
2656 
2657 void
2658 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2659 {
2660 	mac_impl_t	*mip = (mac_impl_t *)mh;
2661 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2662 
2663 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2664 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2665 		/*
2666 		 * If ndd props were registered, call them.
2667 		 * Note that ndd ioctls are Obsolete
2668 		 */
2669 		mac_ndd_ioctl(mip, wq, bp);
2670 		return;
2671 	}
2672 
2673 	/*
2674 	 * Call the driver to handle the ioctl.  The driver may not support
2675 	 * any ioctls, in which case we reply with a NAK on its behalf.
2676 	 */
2677 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2678 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2679 	else
2680 		miocnak(wq, bp, 0, EINVAL);
2681 }
2682 
2683 /*
2684  * Return the link state of the specified MAC instance.
2685  */
2686 link_state_t
2687 mac_link_get(mac_handle_t mh)
2688 {
2689 	return (((mac_impl_t *)mh)->mi_linkstate);
2690 }
2691 
2692 /*
2693  * Add a mac client specified notification callback. Please see the comments
2694  * above mac_callback_add() for general information about mac callback
2695  * addition/deletion in the presence of mac callback list walkers
2696  */
2697 mac_notify_handle_t
2698 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2699 {
2700 	mac_impl_t		*mip = (mac_impl_t *)mh;
2701 	mac_notify_cb_t		*mncb;
2702 	mac_cb_info_t		*mcbi;
2703 
2704 	/*
2705 	 * Allocate a notify callback structure, fill in the details and
2706 	 * use the mac callback list manipulation functions to chain into
2707 	 * the list of callbacks.
2708 	 */
2709 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
2710 	mncb->mncb_fn = notify_fn;
2711 	mncb->mncb_arg = arg;
2712 	mncb->mncb_mip = mip;
2713 	mncb->mncb_link.mcb_objp = mncb;
2714 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
2715 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
2716 
2717 	mcbi = &mip->mi_notify_cb_info;
2718 
2719 	i_mac_perim_enter(mip);
2720 	mutex_enter(mcbi->mcbi_lockp);
2721 
2722 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
2723 	    &mncb->mncb_link);
2724 
2725 	mutex_exit(mcbi->mcbi_lockp);
2726 	i_mac_perim_exit(mip);
2727 	return ((mac_notify_handle_t)mncb);
2728 }
2729 
2730 void
2731 mac_notify_remove_wait(mac_handle_t mh)
2732 {
2733 	mac_impl_t	*mip = (mac_impl_t *)mh;
2734 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
2735 
2736 	mutex_enter(mcbi->mcbi_lockp);
2737 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
2738 	mutex_exit(mcbi->mcbi_lockp);
2739 }
2740 
2741 /*
2742  * Remove a mac client specified notification callback
2743  */
2744 int
2745 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
2746 {
2747 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
2748 	mac_impl_t	*mip = mncb->mncb_mip;
2749 	mac_cb_info_t	*mcbi;
2750 	int		err = 0;
2751 
2752 	mcbi = &mip->mi_notify_cb_info;
2753 
2754 	i_mac_perim_enter(mip);
2755 	mutex_enter(mcbi->mcbi_lockp);
2756 
2757 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
2758 	/*
2759 	 * If there aren't any list walkers, the remove would succeed
2760 	 * inline, else we wait for the deferred remove to complete
2761 	 */
2762 	if (mac_callback_remove(&mip->mi_notify_cb_info,
2763 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
2764 		kmem_free(mncb, sizeof (mac_notify_cb_t));
2765 	} else {
2766 		err = EBUSY;
2767 	}
2768 
2769 	mutex_exit(mcbi->mcbi_lockp);
2770 	i_mac_perim_exit(mip);
2771 
2772 	/*
2773 	 * If we failed to remove the notification callback and "wait" is set
2774 	 * to be B_TRUE, wait for the callback to finish after we exit the
2775 	 * mac perimeter.
2776 	 */
2777 	if (err != 0 && wait) {
2778 		mac_notify_remove_wait((mac_handle_t)mip);
2779 		return (0);
2780 	}
2781 
2782 	return (err);
2783 }
2784 
2785 /*
2786  * Associate resource management callbacks with the specified MAC
2787  * clients.
2788  */
2789 
2790 void
2791 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
2792     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
2793     mac_resource_restart_t restart, mac_resource_bind_t bind,
2794     void *arg)
2795 {
2796 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2797 
2798 	mcip->mci_resource_add = add;
2799 	mcip->mci_resource_remove = remove;
2800 	mcip->mci_resource_quiesce = quiesce;
2801 	mcip->mci_resource_restart = restart;
2802 	mcip->mci_resource_bind = bind;
2803 	mcip->mci_resource_arg = arg;
2804 
2805 	if (arg == NULL)
2806 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
2807 }
2808 
2809 void
2810 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
2811 {
2812 	/* update the 'resource_add' callback */
2813 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
2814 }
2815 
2816 /*
2817  * Sets up the client resources and enable the polling interface over all the
2818  * SRS's and the soft rings of the client
2819  */
2820 void
2821 mac_client_poll_enable(mac_client_handle_t mch)
2822 {
2823 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2824 	mac_soft_ring_set_t	*mac_srs;
2825 	flow_entry_t		*flent;
2826 	int			i;
2827 
2828 	flent = mcip->mci_flent;
2829 	ASSERT(flent != NULL);
2830 
2831 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2832 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2833 		ASSERT(mac_srs->srs_mcip == mcip);
2834 		mac_srs_client_poll_enable(mcip, mac_srs);
2835 	}
2836 }
2837 
2838 /*
2839  * Tears down the client resources and disable the polling interface over all
2840  * the SRS's and the soft rings of the client
2841  */
2842 void
2843 mac_client_poll_disable(mac_client_handle_t mch)
2844 {
2845 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2846 	mac_soft_ring_set_t	*mac_srs;
2847 	flow_entry_t		*flent;
2848 	int			i;
2849 
2850 	flent = mcip->mci_flent;
2851 	ASSERT(flent != NULL);
2852 
2853 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2854 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2855 		ASSERT(mac_srs->srs_mcip == mcip);
2856 		mac_srs_client_poll_disable(mcip, mac_srs);
2857 	}
2858 }
2859 
2860 /*
2861  * Associate the CPUs specified by the given property with a MAC client.
2862  */
2863 int
2864 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2865 {
2866 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2867 	mac_impl_t *mip = mcip->mci_mip;
2868 	int err = 0;
2869 
2870 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2871 
2872 	if ((err = mac_validate_props(mrp)) != 0)
2873 		return (err);
2874 
2875 	if (MCIP_DATAPATH_SETUP(mcip))
2876 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
2877 
2878 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2879 	return (0);
2880 }
2881 
2882 /*
2883  * Apply the specified properties to the specified MAC client.
2884  */
2885 int
2886 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2887 {
2888 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2889 	mac_impl_t *mip = mcip->mci_mip;
2890 	int err = 0;
2891 
2892 	i_mac_perim_enter(mip);
2893 
2894 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
2895 		err = mac_resource_ctl_set(mch, mrp);
2896 		if (err != 0) {
2897 			i_mac_perim_exit(mip);
2898 			return (err);
2899 		}
2900 	}
2901 
2902 	if (mrp->mrp_mask & MRP_CPUS)
2903 		err = mac_cpu_set(mch, mrp);
2904 
2905 	i_mac_perim_exit(mip);
2906 	return (err);
2907 }
2908 
2909 /*
2910  * Return the properties currently associated with the specified MAC client.
2911  */
2912 void
2913 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2914 {
2915 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2916 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
2917 
2918 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
2919 }
2920 
2921 /*
2922  * Pass a copy of the specified packet to the promiscuous callbacks
2923  * of the specified MAC.
2924  *
2925  * If sender is NULL, the function is being invoked for a packet chain
2926  * received from the wire. If sender is non-NULL, it points to
2927  * the MAC client from which the packet is being sent.
2928  *
2929  * The packets are distributed to the promiscuous callbacks as follows:
2930  *
2931  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
2932  * - all broadcast and multicast packets are sent to the
2933  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
2934  *
2935  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
2936  * after classification by mac_rx_deliver().
2937  */
2938 
2939 static void
2940 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
2941     boolean_t loopback)
2942 {
2943 	mblk_t *mp_copy;
2944 
2945 	mp_copy = copymsg(mp);
2946 	if (mp_copy == NULL)
2947 		return;
2948 	mp_copy->b_next = NULL;
2949 
2950 	if (mpip->mpi_strip_vlan_tag) {
2951 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
2952 			return;
2953 	}
2954 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
2955 }
2956 
2957 /*
2958  * Return the VID of a packet. Zero if the packet is not tagged.
2959  */
2960 static uint16_t
2961 mac_ether_vid(mblk_t *mp)
2962 {
2963 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
2964 
2965 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
2966 		struct ether_vlan_header *t_evhp =
2967 		    (struct ether_vlan_header *)mp->b_rptr;
2968 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
2969 	}
2970 
2971 	return (0);
2972 }
2973 
2974 /*
2975  * Return whether the specified packet contains a multicast or broadcast
2976  * destination MAC address.
2977  */
2978 static boolean_t
2979 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
2980 {
2981 	mac_header_info_t hdr_info;
2982 
2983 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
2984 		return (B_FALSE);
2985 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
2986 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
2987 }
2988 
2989 /*
2990  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
2991  * "sender" points to the sender MAC client for outbound packets, and
2992  * is set to NULL for inbound packets.
2993  */
2994 void
2995 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
2996     mac_client_impl_t *sender)
2997 {
2998 	mac_promisc_impl_t *mpip;
2999 	mac_cb_t *mcb;
3000 	mblk_t *mp;
3001 	boolean_t is_mcast, is_sender;
3002 
3003 	MAC_PROMISC_WALKER_INC(mip);
3004 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3005 		is_mcast = mac_is_mcast(mip, mp);
3006 		/* send packet to interested callbacks */
3007 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3008 		    mcb = mcb->mcb_nextp) {
3009 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3010 			is_sender = (mpip->mpi_mcip == sender);
3011 
3012 			if (is_sender && mpip->mpi_no_tx_loop)
3013 				/*
3014 				 * The sender doesn't want to receive
3015 				 * copies of the packets it sends.
3016 				 */
3017 				continue;
3018 
3019 			/*
3020 			 * For an ethernet MAC, don't displatch a multicast
3021 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3022 			 * of the packet matches the VID of the client.
3023 			 */
3024 			if (is_mcast &&
3025 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3026 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3027 			    mac_ether_vid(mp)))
3028 				continue;
3029 
3030 			if (is_sender ||
3031 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3032 			    is_mcast)
3033 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3034 		}
3035 	}
3036 	MAC_PROMISC_WALKER_DCR(mip);
3037 }
3038 
3039 void
3040 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3041 {
3042 	mac_impl_t		*mip = mcip->mci_mip;
3043 	mac_promisc_impl_t	*mpip;
3044 	boolean_t		is_mcast;
3045 	mblk_t			*mp;
3046 	mac_cb_t		*mcb;
3047 
3048 	/*
3049 	 * The unicast packets for the MAC client still
3050 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3051 	 * promiscuous callbacks. The broadcast and multicast
3052 	 * packets were delivered from mac_rx().
3053 	 */
3054 	MAC_PROMISC_WALKER_INC(mip);
3055 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3056 		is_mcast = mac_is_mcast(mip, mp);
3057 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3058 		    mcb = mcb->mcb_nextp) {
3059 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3060 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3061 			    !is_mcast) {
3062 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3063 			}
3064 		}
3065 	}
3066 	MAC_PROMISC_WALKER_DCR(mip);
3067 }
3068 
3069 /*
3070  * Return the margin value currently assigned to the specified MAC instance.
3071  */
3072 void
3073 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3074 {
3075 	mac_impl_t *mip = (mac_impl_t *)mh;
3076 
3077 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3078 	*marginp = mip->mi_margin;
3079 	rw_exit(&(mip->mi_rw_lock));
3080 }
3081 
3082 /*
3083  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3084  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3085  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3086  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3087  * cannot disappear while we are accessing it.
3088  */
3089 typedef struct i_mac_info_state_s {
3090 	const char	*mi_name;
3091 	mac_info_t	*mi_infop;
3092 } i_mac_info_state_t;
3093 
3094 /*ARGSUSED*/
3095 static uint_t
3096 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3097 {
3098 	i_mac_info_state_t *statep = arg;
3099 	mac_impl_t *mip = (mac_impl_t *)val;
3100 
3101 	if (mip->mi_state_flags & MIS_DISABLED)
3102 		return (MH_WALK_CONTINUE);
3103 
3104 	if (strcmp(statep->mi_name,
3105 	    ddi_driver_name(mip->mi_dip)) != 0)
3106 		return (MH_WALK_CONTINUE);
3107 
3108 	statep->mi_infop = &mip->mi_info;
3109 	return (MH_WALK_TERMINATE);
3110 }
3111 
3112 boolean_t
3113 mac_info_get(const char *name, mac_info_t *minfop)
3114 {
3115 	i_mac_info_state_t state;
3116 
3117 	rw_enter(&i_mac_impl_lock, RW_READER);
3118 	state.mi_name = name;
3119 	state.mi_infop = NULL;
3120 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3121 	if (state.mi_infop == NULL) {
3122 		rw_exit(&i_mac_impl_lock);
3123 		return (B_FALSE);
3124 	}
3125 	*minfop = *state.mi_infop;
3126 	rw_exit(&i_mac_impl_lock);
3127 	return (B_TRUE);
3128 }
3129 
3130 /*
3131  * To get the capabilities that MAC layer cares about, such as rings, factory
3132  * mac address, vnic or not, it should directly invoke this function
3133  */
3134 boolean_t
3135 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3136 {
3137 	mac_impl_t *mip = (mac_impl_t *)mh;
3138 
3139 	if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3140 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3141 	else
3142 		return (B_FALSE);
3143 }
3144 
3145 /*
3146  * Capability query function. If number of active mac clients is greater than
3147  * 1, only limited capabilities can be advertised to the caller no matter the
3148  * driver has certain capability or not. Else, we query the driver to get the
3149  * capability.
3150  */
3151 boolean_t
3152 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3153 {
3154 	mac_impl_t *mip = (mac_impl_t *)mh;
3155 
3156 	/*
3157 	 * if mi_nactiveclients > 1, only MAC_CAPAB_HCKSUM,
3158 	 * MAC_CAPAB_NO_NATIVEVLAN, MAC_CAPAB_NO_ZCOPY can be advertised.
3159 	 */
3160 	if (mip->mi_nactiveclients > 1) {
3161 		switch (cap) {
3162 		case MAC_CAPAB_HCKSUM:
3163 			return (i_mac_capab_get(mh, cap, cap_data));
3164 		case MAC_CAPAB_NO_NATIVEVLAN:
3165 		case MAC_CAPAB_NO_ZCOPY:
3166 			return (B_TRUE);
3167 		default:
3168 			return (B_FALSE);
3169 		}
3170 	}
3171 
3172 	/* else get capab from driver */
3173 	return (i_mac_capab_get(mh, cap, cap_data));
3174 }
3175 
3176 boolean_t
3177 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3178 {
3179 	mac_impl_t *mip = (mac_impl_t *)mh;
3180 
3181 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3182 	    mip->mi_pdata));
3183 }
3184 
3185 mblk_t *
3186 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3187     size_t extra_len)
3188 {
3189 	mac_impl_t *mip = (mac_impl_t *)mh;
3190 
3191 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3192 	    mip->mi_pdata, payload, extra_len));
3193 }
3194 
3195 int
3196 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3197 {
3198 	mac_impl_t *mip = (mac_impl_t *)mh;
3199 
3200 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3201 	    mhip));
3202 }
3203 
3204 mblk_t *
3205 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3206 {
3207 	mac_impl_t *mip = (mac_impl_t *)mh;
3208 
3209 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3210 		if (DB_REF(mp) > 1) {
3211 			mblk_t *newmp = copymsg(mp);
3212 			if (newmp == NULL)
3213 				return (NULL);
3214 			freemsg(mp);
3215 			mp = newmp;
3216 		}
3217 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3218 		    mip->mi_pdata));
3219 	}
3220 	return (mp);
3221 }
3222 
3223 mblk_t *
3224 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3225 {
3226 	mac_impl_t *mip = (mac_impl_t *)mh;
3227 
3228 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3229 		if (DB_REF(mp) > 1) {
3230 			mblk_t *newmp = copymsg(mp);
3231 			if (newmp == NULL)
3232 				return (NULL);
3233 			freemsg(mp);
3234 			mp = newmp;
3235 		}
3236 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3237 		    mip->mi_pdata));
3238 	}
3239 	return (mp);
3240 }
3241 
3242 uint_t
3243 mac_addr_len(mac_handle_t mh)
3244 {
3245 	mac_impl_t *mip = (mac_impl_t *)mh;
3246 
3247 	return (mip->mi_type->mt_addr_length);
3248 }
3249 
3250 /* True if a MAC is a VNIC */
3251 boolean_t
3252 mac_is_vnic(mac_handle_t mh)
3253 {
3254 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3255 }
3256 
3257 mac_handle_t
3258 mac_get_lower_mac_handle(mac_handle_t mh)
3259 {
3260 	mac_impl_t *mip = (mac_impl_t *)mh;
3261 
3262 	ASSERT(mac_is_vnic(mh));
3263 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3264 }
3265 
3266 void
3267 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3268     boolean_t is_user_flow)
3269 {
3270 	if (nmrp != NULL && cmrp != NULL) {
3271 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3272 			if (nmrp->mrp_priority == MPL_RESET) {
3273 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3274 				if (is_user_flow) {
3275 					cmrp->mrp_priority =
3276 					    MPL_SUBFLOW_DEFAULT;
3277 				} else {
3278 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3279 				}
3280 			} else {
3281 				cmrp->mrp_mask |= MRP_PRIORITY;
3282 				cmrp->mrp_priority = nmrp->mrp_priority;
3283 			}
3284 		}
3285 		if (nmrp->mrp_mask & MRP_MAXBW) {
3286 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3287 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3288 				cmrp->mrp_mask &= ~MRP_MAXBW;
3289 			else
3290 				cmrp->mrp_mask |= MRP_MAXBW;
3291 		}
3292 		if (nmrp->mrp_mask & MRP_CPUS)
3293 			MAC_COPY_CPUS(nmrp, cmrp);
3294 	}
3295 }
3296 
3297 /*
3298  * i_mac_set_resources:
3299  *
3300  * This routine associates properties with the primary MAC client of
3301  * the specified MAC instance.
3302  * - Cache the properties in mac_impl_t
3303  * - Apply the properties to the primary MAC client if exists
3304  */
3305 int
3306 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3307 {
3308 	mac_impl_t		*mip = (mac_impl_t *)mh;
3309 	mac_client_impl_t	*mcip;
3310 	int			err = 0;
3311 	mac_resource_props_t	tmrp;
3312 
3313 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3314 
3315 	err = mac_validate_props(mrp);
3316 	if (err != 0)
3317 		return (err);
3318 
3319 	/*
3320 	 * Since bind_cpu may be modified by mac_client_set_resources()
3321 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3322 	 * This allows us to cache only user edits in mip.
3323 	 */
3324 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3325 	mcip = mac_primary_client_handle(mip);
3326 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3327 		err =
3328 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3329 	}
3330 	/* if mac_client_set_resources failed, do not update the values */
3331 	if (err == 0)
3332 		mac_update_resources(mrp, &mip->mi_resource_props, B_FALSE);
3333 	return (err);
3334 }
3335 
3336 int
3337 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3338 {
3339 	int err;
3340 
3341 	i_mac_perim_enter((mac_impl_t *)mh);
3342 	err = i_mac_set_resources(mh, mrp);
3343 	i_mac_perim_exit((mac_impl_t *)mh);
3344 	return (err);
3345 }
3346 
3347 /*
3348  * Get the properties cached for the specified MAC instance.
3349  */
3350 void
3351 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3352 {
3353 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3354 	mac_client_impl_t	*mcip;
3355 
3356 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3357 		mcip = mac_primary_client_handle(mip);
3358 		if (mcip != NULL) {
3359 			mac_client_get_resources((mac_client_handle_t)mcip,
3360 			    mrp);
3361 			return;
3362 		}
3363 	}
3364 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3365 }
3366 
3367 /*
3368  * Rename a mac client, its flow, and the kstat.
3369  */
3370 int
3371 mac_rename_primary(mac_handle_t mh, const char *new_name)
3372 {
3373 	mac_impl_t		*mip = (mac_impl_t *)mh;
3374 	mac_client_impl_t	*cur_clnt = NULL;
3375 	flow_entry_t		*fep;
3376 
3377 	i_mac_perim_enter(mip);
3378 
3379 	/*
3380 	 * VNICs: we need to change the sys flow name and
3381 	 * the associated flow kstat.
3382 	 */
3383 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3384 		ASSERT(new_name != NULL);
3385 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3386 		goto done;
3387 	}
3388 	/*
3389 	 * This mac may itself be an aggr link, or it may have some client
3390 	 * which is an aggr port. For both cases, we need to change the
3391 	 * aggr port's mac client name, its flow name and the associated flow
3392 	 * kstat.
3393 	 */
3394 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3395 		mac_capab_aggr_t aggr_cap;
3396 		mac_rename_fn_t rename_fn;
3397 		boolean_t ret;
3398 
3399 		ASSERT(new_name != NULL);
3400 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3401 		    (void *)(&aggr_cap));
3402 		ASSERT(ret == B_TRUE);
3403 		rename_fn = aggr_cap.mca_rename_fn;
3404 		rename_fn(new_name, mip->mi_driver);
3405 		/*
3406 		 * The aggr's client name and kstat flow name will be
3407 		 * updated below, i.e. via mac_rename_flow_names.
3408 		 */
3409 	}
3410 
3411 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3412 	    cur_clnt = cur_clnt->mci_client_next) {
3413 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3414 			if (new_name != NULL) {
3415 				char *str_st = cur_clnt->mci_name;
3416 				char *str_del = strchr(str_st, '-');
3417 
3418 				ASSERT(str_del != NULL);
3419 				bzero(str_del + 1, MAXNAMELEN -
3420 				    (str_del - str_st + 1));
3421 				bcopy(new_name, str_del + 1,
3422 				    strlen(new_name));
3423 			}
3424 			fep = cur_clnt->mci_flent;
3425 			mac_rename_flow(fep, cur_clnt->mci_name);
3426 			break;
3427 		} else if (new_name != NULL &&
3428 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3429 			mac_rename_flow_names(cur_clnt, new_name);
3430 			break;
3431 		}
3432 	}
3433 
3434 done:
3435 	i_mac_perim_exit(mip);
3436 	return (0);
3437 }
3438 
3439 /*
3440  * Rename the MAC client's flow names
3441  */
3442 static void
3443 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3444 {
3445 	flow_entry_t	*flent;
3446 	uint16_t	vid;
3447 	char		flowname[MAXFLOWNAMELEN];
3448 	mac_impl_t	*mip = mcip->mci_mip;
3449 
3450 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3451 
3452 	/*
3453 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3454 	 * see a self-consistent value for mci_name
3455 	 */
3456 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3457 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3458 	rw_exit(&mip->mi_rw_lock);
3459 
3460 	mac_rename_flow(mcip->mci_flent, new_name);
3461 
3462 	if (mcip->mci_nflents == 1)
3463 		return;
3464 
3465 	/*
3466 	 * We have to rename all the others too, no stats to destroy for
3467 	 * these.
3468 	 */
3469 	for (flent = mcip->mci_flent_list; flent != NULL;
3470 	    flent = flent->fe_client_next) {
3471 		if (flent != mcip->mci_flent) {
3472 			vid = i_mac_flow_vid(flent);
3473 			(void) sprintf(flowname, "%s%u", new_name, vid);
3474 			mac_flow_set_name(flent, flowname);
3475 		}
3476 	}
3477 }
3478 
3479 
3480 /*
3481  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3482  * defined for the specified MAC client.
3483  */
3484 static void
3485 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3486 {
3487 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3488 	/*
3489 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3490 	 * using mi_rw_lock
3491 	 */
3492 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3493 
3494 	/* Add it to the head */
3495 	flent->fe_client_next = mcip->mci_flent_list;
3496 	mcip->mci_flent_list = flent;
3497 	mcip->mci_nflents++;
3498 
3499 	/*
3500 	 * Keep track of the number of non-zero VIDs addresses per MAC
3501 	 * client to avoid figuring it out in the data-path.
3502 	 */
3503 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3504 		mcip->mci_nvids++;
3505 
3506 	rw_exit(&mcip->mci_rw_lock);
3507 }
3508 
3509 /*
3510  * Remove a flow entry from the MAC client's list.
3511  */
3512 static void
3513 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3514 {
3515 	flow_entry_t	*fe = mcip->mci_flent_list;
3516 	flow_entry_t	*prev_fe = NULL;
3517 
3518 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3519 	/*
3520 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3521 	 * using mci_rw_lock
3522 	 */
3523 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3524 	while ((fe != NULL) && (fe != flent)) {
3525 		prev_fe = fe;
3526 		fe = fe->fe_client_next;
3527 	}
3528 
3529 	ASSERT(fe != NULL);
3530 	if (prev_fe == NULL) {
3531 		/* Deleting the first node */
3532 		mcip->mci_flent_list = fe->fe_client_next;
3533 	} else {
3534 		prev_fe->fe_client_next = fe->fe_client_next;
3535 	}
3536 	mcip->mci_nflents--;
3537 
3538 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3539 		mcip->mci_nvids--;
3540 
3541 	rw_exit(&mcip->mci_rw_lock);
3542 }
3543 
3544 /*
3545  * Check if the given VID belongs to this MAC client.
3546  */
3547 boolean_t
3548 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3549 {
3550 	flow_entry_t	*flent;
3551 	uint16_t	mci_vid;
3552 
3553 	/* The mci_flent_list is protected by mci_rw_lock */
3554 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3555 	for (flent = mcip->mci_flent_list; flent != NULL;
3556 	    flent = flent->fe_client_next) {
3557 		mci_vid = i_mac_flow_vid(flent);
3558 		if (vid == mci_vid) {
3559 			rw_exit(&mcip->mci_rw_lock);
3560 			return (B_TRUE);
3561 		}
3562 	}
3563 	rw_exit(&mcip->mci_rw_lock);
3564 	return (B_FALSE);
3565 }
3566 
3567 /*
3568  * Get the flow entry for the specified <MAC addr, VID> tuple.
3569  */
3570 static flow_entry_t *
3571 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3572 {
3573 	mac_address_t *map = mcip->mci_unicast;
3574 	flow_entry_t *flent;
3575 	uint16_t vid;
3576 	flow_desc_t flow_desc;
3577 
3578 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3579 
3580 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3581 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3582 		return (NULL);
3583 
3584 	for (flent = mcip->mci_flent_list; flent != NULL;
3585 	    flent = flent->fe_client_next) {
3586 		vid = i_mac_flow_vid(flent);
3587 		if (vid == muip->mui_vid) {
3588 			return (flent);
3589 		}
3590 	}
3591 
3592 	return (NULL);
3593 }
3594 
3595 /*
3596  * Since mci_flent has the SRSs, when we want to remove it, we replace
3597  * the flow_desc_t in mci_flent with that of an existing flent and then
3598  * remove that flent instead of mci_flent.
3599  */
3600 static flow_entry_t *
3601 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3602 {
3603 	flow_entry_t	*flent = mcip->mci_flent;
3604 	flow_tab_t	*ft = flent->fe_flow_tab;
3605 	flow_entry_t	*flent1;
3606 	flow_desc_t	fl_desc;
3607 	char		fl_name[MAXFLOWNAMELEN];
3608 	int		err;
3609 
3610 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3611 	ASSERT(mcip->mci_nflents > 1);
3612 
3613 	/* get the next flent following the primary flent  */
3614 	flent1 = mcip->mci_flent_list->fe_client_next;
3615 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3616 
3617 	/*
3618 	 * Remove the flent from the flow table before updating the
3619 	 * flow descriptor as the hash depends on the flow descriptor.
3620 	 * This also helps incoming packet classification avoid having
3621 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
3622 	 * flow table is done under the fe_lock so that log or stat functions
3623 	 * see a self-consistent fe_flow_desc. The name and desc are specific
3624 	 * to a flow, the rest are shared by all the clients, including
3625 	 * resource control etc.
3626 	 */
3627 	mac_flow_remove(ft, flent, B_TRUE);
3628 	mac_flow_remove(ft, flent1, B_TRUE);
3629 
3630 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
3631 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
3632 
3633 	/* update the primary flow entry */
3634 	mutex_enter(&flent->fe_lock);
3635 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
3636 	    sizeof (flow_desc_t));
3637 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
3638 	mutex_exit(&flent->fe_lock);
3639 
3640 	/* update the flow entry that is to be freed */
3641 	mutex_enter(&flent1->fe_lock);
3642 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
3643 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
3644 	mutex_exit(&flent1->fe_lock);
3645 
3646 	/* now reinsert the flow entries in the table */
3647 	err = mac_flow_add(ft, flent);
3648 	ASSERT(err == 0);
3649 
3650 	err = mac_flow_add(ft, flent1);
3651 	ASSERT(err == 0);
3652 
3653 	return (flent1);
3654 }
3655 
3656 /*
3657  * Return whether there is only one flow entry associated with this
3658  * MAC client.
3659  */
3660 static boolean_t
3661 mac_client_single_rcvr(mac_client_impl_t *mcip)
3662 {
3663 	return (mcip->mci_nflents == 1);
3664 }
3665 
3666 int
3667 mac_validate_props(mac_resource_props_t *mrp)
3668 {
3669 	if (mrp == NULL)
3670 		return (0);
3671 
3672 	if (mrp->mrp_mask & MRP_PRIORITY) {
3673 		mac_priority_level_t	pri = mrp->mrp_priority;
3674 
3675 		if (pri < MPL_LOW || pri > MPL_RESET)
3676 			return (EINVAL);
3677 	}
3678 
3679 	if (mrp->mrp_mask & MRP_MAXBW) {
3680 		uint64_t maxbw = mrp->mrp_maxbw;
3681 
3682 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
3683 			return (EINVAL);
3684 	}
3685 	if (mrp->mrp_mask & MRP_CPUS) {
3686 		int i;
3687 		mac_cpu_mode_t	fanout;
3688 
3689 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
3690 			return (EINVAL);
3691 
3692 		for (i = 0; i < mrp->mrp_ncpus; i++) {
3693 			cpu_t *cp;
3694 			int rv;
3695 
3696 			mutex_enter(&cpu_lock);
3697 			cp = cpu_get(mrp->mrp_cpu[i]);
3698 			if (cp != NULL)
3699 				rv = cpu_is_online(cp);
3700 			else
3701 				rv = 0;
3702 			mutex_exit(&cpu_lock);
3703 			if (rv == 0)
3704 				return (EINVAL);
3705 		}
3706 
3707 		fanout = mrp->mrp_fanout_mode;
3708 		if (fanout < 0 || fanout > MCM_CPUS)
3709 			return (EINVAL);
3710 	}
3711 	return (0);
3712 }
3713 
3714 /*
3715  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
3716  * underlying physical link is down. This is to allow MAC clients to
3717  * communicate with other clients.
3718  */
3719 void
3720 mac_virtual_link_update(mac_impl_t *mip)
3721 {
3722 	if (mip->mi_linkstate != LINK_STATE_UP)
3723 		i_mac_notify(mip, MAC_NOTE_LINK);
3724 }
3725 
3726 /*
3727  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
3728  * mac handle in the client.
3729  */
3730 void
3731 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
3732 {
3733 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3734 
3735 	mcip->mci_upper_mip = (mac_impl_t *)mh;
3736 }
3737 
3738 /*
3739  * Mark the mac as being used exclusively by the single mac client that is
3740  * doing some control operation on this mac. No further opens of this mac
3741  * will be allowed until this client calls mac_unmark_exclusive. The mac
3742  * client calling this function must already be in the mac perimeter
3743  */
3744 int
3745 mac_mark_exclusive(mac_handle_t mh)
3746 {
3747 	mac_impl_t	*mip = (mac_impl_t *)mh;
3748 
3749 	ASSERT(MAC_PERIM_HELD(mh));
3750 	/*
3751 	 * Look up its entry in the global hash table.
3752 	 */
3753 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3754 	if (mip->mi_state_flags & MIS_DISABLED) {
3755 		rw_exit(&i_mac_impl_lock);
3756 		return (ENOENT);
3757 	}
3758 
3759 	/*
3760 	 * A reference to mac is held even if the link is not plumbed.
3761 	 * In i_dls_link_create() we open the MAC interface and hold the
3762 	 * reference. There is an additional reference for the mac_open
3763 	 * done in acquiring the mac perimeter
3764 	 */
3765 	if (mip->mi_ref != 2) {
3766 		rw_exit(&i_mac_impl_lock);
3767 		return (EBUSY);
3768 	}
3769 
3770 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3771 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
3772 	rw_exit(&i_mac_impl_lock);
3773 	return (0);
3774 }
3775 
3776 void
3777 mac_unmark_exclusive(mac_handle_t mh)
3778 {
3779 	mac_impl_t	*mip = (mac_impl_t *)mh;
3780 
3781 	ASSERT(MAC_PERIM_HELD(mh));
3782 
3783 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3784 	/* 1 for the creation and another for the perimeter */
3785 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3786 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
3787 	rw_exit(&i_mac_impl_lock);
3788 }
3789 
3790 /*
3791  * Set the MTU for the specified device. The function returns EBUSY if
3792  * another MAC client prevents the caller to become the exclusive client.
3793  * Returns EAGAIN if the client is started.
3794  */
3795 int
3796 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
3797 {
3798 	mac_impl_t *mip = (mac_impl_t *)mh;
3799 	uint_t old_mtu;
3800 	int rv;
3801 	boolean_t exclusive = B_FALSE;
3802 
3803 	i_mac_perim_enter(mip);
3804 
3805 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
3806 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
3807 		rv = ENOTSUP;
3808 		goto bail;
3809 	}
3810 
3811 	if ((rv = mac_mark_exclusive(mh)) != 0)
3812 		goto bail;
3813 	exclusive = B_TRUE;
3814 
3815 	if (mip->mi_active > 0) {
3816 		/*
3817 		 * The MAC instance is started, for example due to the
3818 		 * presence of a promiscuous clients. Fail the operation
3819 		 * since the MAC's MTU cannot be changed while the NIC
3820 		 * is started.
3821 		 */
3822 		rv = EAGAIN;
3823 		goto bail;
3824 	}
3825 
3826 	mac_sdu_get(mh, NULL, &old_mtu);
3827 
3828 	if (old_mtu != new_mtu) {
3829 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3830 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
3831 	}
3832 
3833 bail:
3834 	if (exclusive)
3835 		mac_unmark_exclusive(mh);
3836 	i_mac_perim_exit(mip);
3837 
3838 	if (rv == 0 && old_mtu_arg != NULL)
3839 		*old_mtu_arg = old_mtu;
3840 	return (rv);
3841 }
3842 
3843 void
3844 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
3845     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
3846 {
3847 	mac_impl_t *mip = (mac_impl_t *)mh;
3848 	mac_grp_client_t *mcip;
3849 	uint_t i = 0, index = 0;
3850 
3851 	/* Revisit when we implement fully dynamic group allocation */
3852 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
3853 
3854 	rw_enter(&mip->mi_rw_lock, RW_READER);
3855 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
3856 	*type = mip->mi_rx_groups[grp_index].mrg_type;
3857 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
3858 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
3859 	    mcip = mcip->mgc_next) {
3860 		int name_len = strlen(mcip->mgc_client->mci_name);
3861 
3862 		/*
3863 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
3864 		 * names.
3865 		 * XXXX Formating the client name string needs to be moved
3866 		 * to user land when fixing the size of dhi_clnts in
3867 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
3868 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
3869 		 */
3870 		if (index + name_len >= MAXCLIENTNAMELEN) {
3871 			index = MAXCLIENTNAMELEN;
3872 			break;
3873 		}
3874 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
3875 		    name_len);
3876 		index += name_len;
3877 		clnts_name[index++] = ',';
3878 		i++;
3879 	}
3880 
3881 	/* Get rid of the last , */
3882 	if (index > 0)
3883 		clnts_name[index - 1] = '\0';
3884 	*n_clnts = i;
3885 	rw_exit(&mip->mi_rw_lock);
3886 }
3887 
3888 uint_t
3889 mac_hwgrp_num(mac_handle_t mh)
3890 {
3891 	mac_impl_t *mip = (mac_impl_t *)mh;
3892 
3893 	return (mip->mi_rx_group_count);
3894 }
3895