1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * MAC Services Module 31 */ 32 33 #include <sys/types.h> 34 #include <sys/conf.h> 35 #include <sys/id_space.h> 36 #include <sys/esunddi.h> 37 #include <sys/stat.h> 38 #include <sys/mkdev.h> 39 #include <sys/stream.h> 40 #include <sys/strsun.h> 41 #include <sys/strsubr.h> 42 #include <sys/dlpi.h> 43 #include <sys/dls.h> 44 #include <sys/modhash.h> 45 #include <sys/vlan.h> 46 #include <sys/mac.h> 47 #include <sys/mac_impl.h> 48 #include <sys/dld.h> 49 #include <sys/modctl.h> 50 #include <sys/fs/dv_node.h> 51 #include <sys/thread.h> 52 #include <sys/proc.h> 53 #include <sys/callb.h> 54 #include <sys/cpuvar.h> 55 #include <sys/atomic.h> 56 #include <sys/sdt.h> 57 #include <inet/nd.h> 58 #include <sys/ethernet.h> 59 60 #define IMPL_HASHSZ 67 /* prime */ 61 62 static kmem_cache_t *i_mac_impl_cachep; 63 static mod_hash_t *i_mac_impl_hash; 64 krwlock_t i_mac_impl_lock; 65 uint_t i_mac_impl_count; 66 static kmem_cache_t *mac_vnic_tx_cache; 67 static id_space_t *minor_ids; 68 static uint32_t minor_count; 69 70 #define MACTYPE_KMODDIR "mac" 71 #define MACTYPE_HASHSZ 67 72 static mod_hash_t *i_mactype_hash; 73 /* 74 * i_mactype_lock synchronizes threads that obtain references to mactype_t 75 * structures through i_mactype_getplugin(). 76 */ 77 static kmutex_t i_mactype_lock; 78 79 static void i_mac_notify_thread(void *); 80 static mblk_t *mac_vnic_tx(void *, mblk_t *); 81 static mblk_t *mac_vnic_txloop(void *, mblk_t *); 82 static void mac_register_priv_prop(mac_impl_t *, mac_priv_prop_t *, uint_t); 83 84 /* 85 * Private functions. 86 */ 87 88 /*ARGSUSED*/ 89 static int 90 i_mac_constructor(void *buf, void *arg, int kmflag) 91 { 92 mac_impl_t *mip = buf; 93 94 bzero(buf, sizeof (mac_impl_t)); 95 96 mip->mi_linkstate = LINK_STATE_UNKNOWN; 97 98 rw_init(&mip->mi_state_lock, NULL, RW_DRIVER, NULL); 99 rw_init(&mip->mi_gen_lock, NULL, RW_DRIVER, NULL); 100 rw_init(&mip->mi_data_lock, NULL, RW_DRIVER, NULL); 101 rw_init(&mip->mi_notify_lock, NULL, RW_DRIVER, NULL); 102 rw_init(&mip->mi_rx_lock, NULL, RW_DRIVER, NULL); 103 rw_init(&mip->mi_tx_lock, NULL, RW_DRIVER, NULL); 104 rw_init(&mip->mi_resource_lock, NULL, RW_DRIVER, NULL); 105 mutex_init(&mip->mi_activelink_lock, NULL, MUTEX_DEFAULT, NULL); 106 mutex_init(&mip->mi_notify_bits_lock, NULL, MUTEX_DRIVER, NULL); 107 cv_init(&mip->mi_notify_cv, NULL, CV_DRIVER, NULL); 108 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 109 cv_init(&mip->mi_rx_cv, NULL, CV_DRIVER, NULL); 110 return (0); 111 } 112 113 /*ARGSUSED*/ 114 static void 115 i_mac_destructor(void *buf, void *arg) 116 { 117 mac_impl_t *mip = buf; 118 119 ASSERT(mip->mi_ref == 0); 120 ASSERT(!mip->mi_exclusive); 121 ASSERT(mip->mi_active == 0); 122 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 123 ASSERT(mip->mi_devpromisc == 0); 124 ASSERT(mip->mi_promisc == 0); 125 ASSERT(mip->mi_mmap == NULL); 126 ASSERT(mip->mi_mmrp == NULL); 127 ASSERT(mip->mi_mnfp == NULL); 128 ASSERT(mip->mi_resource_add == NULL); 129 ASSERT(mip->mi_ksp == NULL); 130 ASSERT(mip->mi_kstat_count == 0); 131 ASSERT(mip->mi_notify_bits == 0); 132 ASSERT(mip->mi_notify_thread == NULL); 133 134 rw_destroy(&mip->mi_gen_lock); 135 rw_destroy(&mip->mi_state_lock); 136 rw_destroy(&mip->mi_data_lock); 137 rw_destroy(&mip->mi_notify_lock); 138 rw_destroy(&mip->mi_rx_lock); 139 rw_destroy(&mip->mi_tx_lock); 140 rw_destroy(&mip->mi_resource_lock); 141 mutex_destroy(&mip->mi_activelink_lock); 142 mutex_destroy(&mip->mi_notify_bits_lock); 143 cv_destroy(&mip->mi_notify_cv); 144 mutex_destroy(&mip->mi_lock); 145 cv_destroy(&mip->mi_rx_cv); 146 } 147 148 /* 149 * mac_vnic_tx_t kmem cache support functions. 150 */ 151 152 /* ARGSUSED */ 153 static int 154 i_mac_vnic_tx_ctor(void *buf, void *arg, int mkflag) 155 { 156 mac_vnic_tx_t *vnic_tx = buf; 157 158 bzero(buf, sizeof (mac_vnic_tx_t)); 159 mutex_init(&vnic_tx->mv_lock, NULL, MUTEX_DRIVER, NULL); 160 cv_init(&vnic_tx->mv_cv, NULL, CV_DRIVER, NULL); 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static void 166 i_mac_vnic_tx_dtor(void *buf, void *arg) 167 { 168 mac_vnic_tx_t *vnic_tx = buf; 169 170 ASSERT(vnic_tx->mv_refs == 0); 171 mutex_destroy(&vnic_tx->mv_lock); 172 cv_destroy(&vnic_tx->mv_cv); 173 } 174 175 static void 176 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 177 { 178 rw_enter(&i_mac_impl_lock, RW_READER); 179 if (mip->mi_disabled) 180 goto exit; 181 182 /* 183 * Guard against incorrect notifications. (Running a newer 184 * mac client against an older implementation?) 185 */ 186 if (type >= MAC_NNOTE) 187 goto exit; 188 189 mutex_enter(&mip->mi_notify_bits_lock); 190 mip->mi_notify_bits |= (1 << type); 191 cv_broadcast(&mip->mi_notify_cv); 192 mutex_exit(&mip->mi_notify_bits_lock); 193 194 exit: 195 rw_exit(&i_mac_impl_lock); 196 } 197 198 static void 199 i_mac_log_link_state(mac_impl_t *mip) 200 { 201 /* 202 * If no change, then it is not interesting. 203 */ 204 if (mip->mi_lastlinkstate == mip->mi_linkstate) 205 return; 206 207 switch (mip->mi_linkstate) { 208 case LINK_STATE_UP: 209 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 210 char det[200]; 211 212 mip->mi_type->mt_ops.mtops_link_details(det, 213 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 214 215 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 216 } else { 217 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 218 } 219 break; 220 221 case LINK_STATE_DOWN: 222 /* 223 * Only transitions from UP to DOWN are interesting 224 */ 225 if (mip->mi_lastlinkstate != LINK_STATE_UNKNOWN) 226 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 227 break; 228 229 case LINK_STATE_UNKNOWN: 230 /* 231 * This case is normally not interesting. 232 */ 233 break; 234 } 235 mip->mi_lastlinkstate = mip->mi_linkstate; 236 } 237 238 static void 239 i_mac_notify_thread(void *arg) 240 { 241 mac_impl_t *mip = arg; 242 callb_cpr_t cprinfo; 243 244 CALLB_CPR_INIT(&cprinfo, &mip->mi_notify_bits_lock, callb_generic_cpr, 245 "i_mac_notify_thread"); 246 247 mutex_enter(&mip->mi_notify_bits_lock); 248 for (;;) { 249 uint32_t bits; 250 uint32_t type; 251 252 bits = mip->mi_notify_bits; 253 if (bits == 0) { 254 CALLB_CPR_SAFE_BEGIN(&cprinfo); 255 cv_wait(&mip->mi_notify_cv, &mip->mi_notify_bits_lock); 256 CALLB_CPR_SAFE_END(&cprinfo, &mip->mi_notify_bits_lock); 257 continue; 258 } 259 mip->mi_notify_bits = 0; 260 261 if ((bits & (1 << MAC_NNOTE)) != 0) { 262 /* request to quit */ 263 ASSERT(mip->mi_disabled); 264 break; 265 } 266 267 mutex_exit(&mip->mi_notify_bits_lock); 268 269 /* 270 * Log link changes. 271 */ 272 if ((bits & (1 << MAC_NOTE_LINK)) != 0) 273 i_mac_log_link_state(mip); 274 275 /* 276 * Do notification callbacks for each notification type. 277 */ 278 for (type = 0; type < MAC_NNOTE; type++) { 279 mac_notify_fn_t *mnfp; 280 281 if ((bits & (1 << type)) == 0) { 282 continue; 283 } 284 285 /* 286 * Walk the list of notifications. 287 */ 288 rw_enter(&mip->mi_notify_lock, RW_READER); 289 for (mnfp = mip->mi_mnfp; mnfp != NULL; 290 mnfp = mnfp->mnf_nextp) { 291 292 mnfp->mnf_fn(mnfp->mnf_arg, type); 293 } 294 rw_exit(&mip->mi_notify_lock); 295 } 296 297 mutex_enter(&mip->mi_notify_bits_lock); 298 } 299 300 mip->mi_notify_thread = NULL; 301 cv_broadcast(&mip->mi_notify_cv); 302 303 CALLB_CPR_EXIT(&cprinfo); 304 305 thread_exit(); 306 } 307 308 static mactype_t * 309 i_mactype_getplugin(const char *pname) 310 { 311 mactype_t *mtype = NULL; 312 boolean_t tried_modload = B_FALSE; 313 314 mutex_enter(&i_mactype_lock); 315 316 find_registered_mactype: 317 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 318 (mod_hash_val_t *)&mtype) != 0) { 319 if (!tried_modload) { 320 /* 321 * If the plugin has not yet been loaded, then 322 * attempt to load it now. If modload() succeeds, 323 * the plugin should have registered using 324 * mactype_register(), in which case we can go back 325 * and attempt to find it again. 326 */ 327 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 328 tried_modload = B_TRUE; 329 goto find_registered_mactype; 330 } 331 } 332 } else { 333 /* 334 * Note that there's no danger that the plugin we've loaded 335 * could be unloaded between the modload() step and the 336 * reference count bump here, as we're holding 337 * i_mactype_lock, which mactype_unregister() also holds. 338 */ 339 atomic_inc_32(&mtype->mt_ref); 340 } 341 342 mutex_exit(&i_mactype_lock); 343 return (mtype); 344 } 345 346 /* 347 * Module initialization functions. 348 */ 349 350 void 351 mac_init(void) 352 { 353 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 354 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 355 NULL, NULL, NULL, 0); 356 ASSERT(i_mac_impl_cachep != NULL); 357 358 mac_vnic_tx_cache = kmem_cache_create("mac_vnic_tx_cache", 359 sizeof (mac_vnic_tx_t), 0, i_mac_vnic_tx_ctor, i_mac_vnic_tx_dtor, 360 NULL, NULL, NULL, 0); 361 ASSERT(mac_vnic_tx_cache != NULL); 362 363 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 364 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 365 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 366 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 367 i_mac_impl_count = 0; 368 369 i_mactype_hash = mod_hash_create_extended("mactype_hash", 370 MACTYPE_HASHSZ, 371 mod_hash_null_keydtor, mod_hash_null_valdtor, 372 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 373 374 /* 375 * Allocate an id space to manage minor numbers. The range of the 376 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 377 * minor number is MAXMIN, but id_t is type of integer and does not 378 * allow MAXMIN). 379 */ 380 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 381 ASSERT(minor_ids != NULL); 382 minor_count = 0; 383 } 384 385 int 386 mac_fini(void) 387 { 388 if (i_mac_impl_count > 0 || minor_count > 0) 389 return (EBUSY); 390 391 id_space_destroy(minor_ids); 392 393 mod_hash_destroy_hash(i_mac_impl_hash); 394 rw_destroy(&i_mac_impl_lock); 395 396 kmem_cache_destroy(i_mac_impl_cachep); 397 kmem_cache_destroy(mac_vnic_tx_cache); 398 399 mod_hash_destroy_hash(i_mactype_hash); 400 return (0); 401 } 402 403 /* 404 * Client functions. 405 */ 406 407 static int 408 mac_hold(const char *macname, mac_impl_t **pmip) 409 { 410 mac_impl_t *mip; 411 int err; 412 413 /* 414 * Check the device name length to make sure it won't overflow our 415 * buffer. 416 */ 417 if (strlen(macname) >= MAXNAMELEN) 418 return (EINVAL); 419 420 /* 421 * Look up its entry in the global hash table. 422 */ 423 rw_enter(&i_mac_impl_lock, RW_WRITER); 424 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 425 (mod_hash_val_t *)&mip); 426 427 if (err != 0) { 428 rw_exit(&i_mac_impl_lock); 429 return (ENOENT); 430 } 431 432 if (mip->mi_disabled) { 433 rw_exit(&i_mac_impl_lock); 434 return (ENOENT); 435 } 436 437 if (mip->mi_exclusive) { 438 rw_exit(&i_mac_impl_lock); 439 return (EBUSY); 440 } 441 442 mip->mi_ref++; 443 rw_exit(&i_mac_impl_lock); 444 445 *pmip = mip; 446 return (0); 447 } 448 449 static void 450 mac_rele(mac_impl_t *mip) 451 { 452 rw_enter(&i_mac_impl_lock, RW_WRITER); 453 ASSERT(mip->mi_ref != 0); 454 if (--mip->mi_ref == 0) 455 ASSERT(!mip->mi_activelink); 456 rw_exit(&i_mac_impl_lock); 457 } 458 459 int 460 mac_hold_exclusive(mac_handle_t mh) 461 { 462 mac_impl_t *mip = (mac_impl_t *)mh; 463 464 /* 465 * Look up its entry in the global hash table. 466 */ 467 rw_enter(&i_mac_impl_lock, RW_WRITER); 468 if (mip->mi_disabled) { 469 rw_exit(&i_mac_impl_lock); 470 return (ENOENT); 471 } 472 473 if (mip->mi_ref != 0) { 474 rw_exit(&i_mac_impl_lock); 475 return (EBUSY); 476 } 477 478 ASSERT(!mip->mi_exclusive); 479 480 mip->mi_ref++; 481 mip->mi_exclusive = B_TRUE; 482 rw_exit(&i_mac_impl_lock); 483 return (0); 484 } 485 486 void 487 mac_rele_exclusive(mac_handle_t mh) 488 { 489 mac_impl_t *mip = (mac_impl_t *)mh; 490 491 /* 492 * Look up its entry in the global hash table. 493 */ 494 rw_enter(&i_mac_impl_lock, RW_WRITER); 495 ASSERT(mip->mi_ref == 1 && mip->mi_exclusive); 496 mip->mi_ref--; 497 mip->mi_exclusive = B_FALSE; 498 rw_exit(&i_mac_impl_lock); 499 } 500 501 int 502 mac_open(const char *macname, mac_handle_t *mhp) 503 { 504 mac_impl_t *mip; 505 int err; 506 507 /* 508 * Look up its entry in the global hash table. 509 */ 510 if ((err = mac_hold(macname, &mip)) != 0) 511 return (err); 512 513 /* 514 * Hold the dip associated to the MAC to prevent it from being 515 * detached. For a softmac, its underlying dip is held by the 516 * mi_open() callback. 517 * 518 * This is done to be more tolerant with some defective drivers, 519 * which incorrectly handle mac_unregister() failure in their 520 * xxx_detach() routine. For example, some drivers ignore the 521 * failure of mac_unregister() and free all resources that 522 * that are needed for data transmition. 523 */ 524 e_ddi_hold_devi(mip->mi_dip); 525 526 rw_enter(&mip->mi_gen_lock, RW_WRITER); 527 528 if ((mip->mi_oref != 0) || 529 !(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 530 goto done; 531 } 532 533 /* 534 * Note that we do not hold i_mac_impl_lock when calling the 535 * mc_open() callback function to avoid deadlock with the 536 * i_mac_notify() function. 537 */ 538 if ((err = mip->mi_open(mip->mi_driver)) != 0) { 539 rw_exit(&mip->mi_gen_lock); 540 ddi_release_devi(mip->mi_dip); 541 mac_rele(mip); 542 return (err); 543 } 544 545 done: 546 mip->mi_oref++; 547 rw_exit(&mip->mi_gen_lock); 548 *mhp = (mac_handle_t)mip; 549 return (0); 550 } 551 552 int 553 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 554 { 555 dls_dl_handle_t dlh; 556 int err; 557 558 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 559 return (err); 560 561 if (dls_devnet_vid(dlh) != VLAN_ID_NONE) { 562 err = EINVAL; 563 goto done; 564 } 565 566 err = mac_open(dls_devnet_mac(dlh), mhp); 567 568 done: 569 dls_devnet_rele_tmp(dlh); 570 return (err); 571 } 572 573 int 574 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 575 { 576 datalink_id_t linkid; 577 int err; 578 579 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 580 return (err); 581 return (mac_open_by_linkid(linkid, mhp)); 582 } 583 584 void 585 mac_close(mac_handle_t mh) 586 { 587 mac_impl_t *mip = (mac_impl_t *)mh; 588 589 rw_enter(&mip->mi_gen_lock, RW_WRITER); 590 591 ASSERT(mip->mi_oref != 0); 592 if (--mip->mi_oref == 0) { 593 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 594 mip->mi_close(mip->mi_driver); 595 } 596 rw_exit(&mip->mi_gen_lock); 597 598 ddi_release_devi(mip->mi_dip); 599 mac_rele(mip); 600 } 601 602 const mac_info_t * 603 mac_info(mac_handle_t mh) 604 { 605 return (&((mac_impl_t *)mh)->mi_info); 606 } 607 608 dev_info_t * 609 mac_devinfo_get(mac_handle_t mh) 610 { 611 return (((mac_impl_t *)mh)->mi_dip); 612 } 613 614 const char * 615 mac_name(mac_handle_t mh) 616 { 617 return (((mac_impl_t *)mh)->mi_name); 618 } 619 620 minor_t 621 mac_minor(mac_handle_t mh) 622 { 623 return (((mac_impl_t *)mh)->mi_minor); 624 } 625 626 uint64_t 627 mac_stat_get(mac_handle_t mh, uint_t stat) 628 { 629 mac_impl_t *mip = (mac_impl_t *)mh; 630 uint64_t val; 631 int ret; 632 633 /* 634 * The range of stat determines where it is maintained. Stat 635 * values from 0 up to (but not including) MAC_STAT_MIN are 636 * mainteined by the mac module itself. Everything else is 637 * maintained by the driver. 638 */ 639 if (stat < MAC_STAT_MIN) { 640 /* These stats are maintained by the mac module itself. */ 641 switch (stat) { 642 case MAC_STAT_LINK_STATE: 643 return (mip->mi_linkstate); 644 case MAC_STAT_LINK_UP: 645 return (mip->mi_linkstate == LINK_STATE_UP); 646 case MAC_STAT_PROMISC: 647 return (mip->mi_devpromisc != 0); 648 default: 649 ASSERT(B_FALSE); 650 } 651 } 652 653 /* 654 * Call the driver to get the given statistic. 655 */ 656 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 657 if (ret != 0) { 658 /* 659 * The driver doesn't support this statistic. Get the 660 * statistic's default value. 661 */ 662 val = mac_stat_default(mip, stat); 663 } 664 return (val); 665 } 666 667 int 668 mac_start(mac_handle_t mh) 669 { 670 mac_impl_t *mip = (mac_impl_t *)mh; 671 int err; 672 673 ASSERT(mip->mi_start != NULL); 674 675 rw_enter(&(mip->mi_state_lock), RW_WRITER); 676 677 /* 678 * Check whether the device is already started. 679 */ 680 if (mip->mi_active++ != 0) { 681 /* 682 * It's already started so there's nothing more to do. 683 */ 684 err = 0; 685 goto done; 686 } 687 688 /* 689 * Start the device. 690 */ 691 if ((err = mip->mi_start(mip->mi_driver)) != 0) 692 --mip->mi_active; 693 694 done: 695 rw_exit(&(mip->mi_state_lock)); 696 return (err); 697 } 698 699 void 700 mac_stop(mac_handle_t mh) 701 { 702 mac_impl_t *mip = (mac_impl_t *)mh; 703 704 ASSERT(mip->mi_stop != NULL); 705 706 rw_enter(&(mip->mi_state_lock), RW_WRITER); 707 708 /* 709 * Check whether the device is still needed. 710 */ 711 ASSERT(mip->mi_active != 0); 712 if (--mip->mi_active != 0) { 713 /* 714 * It's still needed so there's nothing more to do. 715 */ 716 goto done; 717 } 718 719 /* 720 * Stop the device. 721 */ 722 mip->mi_stop(mip->mi_driver); 723 724 done: 725 rw_exit(&(mip->mi_state_lock)); 726 } 727 728 int 729 mac_multicst_add(mac_handle_t mh, const uint8_t *addr) 730 { 731 mac_impl_t *mip = (mac_impl_t *)mh; 732 mac_multicst_addr_t **pp; 733 mac_multicst_addr_t *p; 734 int err; 735 736 ASSERT(mip->mi_multicst != NULL); 737 738 /* 739 * Verify the address. 740 */ 741 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 742 mip->mi_pdata)) != 0) { 743 return (err); 744 } 745 746 /* 747 * Check whether the given address is already enabled. 748 */ 749 rw_enter(&(mip->mi_data_lock), RW_WRITER); 750 for (pp = &(mip->mi_mmap); (p = *pp) != NULL; pp = &(p->mma_nextp)) { 751 if (bcmp(p->mma_addr, addr, mip->mi_type->mt_addr_length) == 752 0) { 753 /* 754 * The address is already enabled so just bump the 755 * reference count. 756 */ 757 p->mma_ref++; 758 err = 0; 759 goto done; 760 } 761 } 762 763 /* 764 * Allocate a new list entry. 765 */ 766 if ((p = kmem_zalloc(sizeof (mac_multicst_addr_t), 767 KM_NOSLEEP)) == NULL) { 768 err = ENOMEM; 769 goto done; 770 } 771 772 /* 773 * Enable a new multicast address. 774 */ 775 if ((err = mip->mi_multicst(mip->mi_driver, B_TRUE, addr)) != 0) { 776 kmem_free(p, sizeof (mac_multicst_addr_t)); 777 goto done; 778 } 779 780 /* 781 * Add the address to the list of enabled addresses. 782 */ 783 bcopy(addr, p->mma_addr, mip->mi_type->mt_addr_length); 784 p->mma_ref++; 785 *pp = p; 786 787 done: 788 rw_exit(&(mip->mi_data_lock)); 789 return (err); 790 } 791 792 int 793 mac_multicst_remove(mac_handle_t mh, const uint8_t *addr) 794 { 795 mac_impl_t *mip = (mac_impl_t *)mh; 796 mac_multicst_addr_t **pp; 797 mac_multicst_addr_t *p; 798 int err; 799 800 ASSERT(mip->mi_multicst != NULL); 801 802 /* 803 * Find the entry in the list for the given address. 804 */ 805 rw_enter(&(mip->mi_data_lock), RW_WRITER); 806 for (pp = &(mip->mi_mmap); (p = *pp) != NULL; pp = &(p->mma_nextp)) { 807 if (bcmp(p->mma_addr, addr, mip->mi_type->mt_addr_length) == 808 0) { 809 if (--p->mma_ref == 0) 810 break; 811 812 /* 813 * There is still a reference to this address so 814 * there's nothing more to do. 815 */ 816 err = 0; 817 goto done; 818 } 819 } 820 821 /* 822 * We did not find an entry for the given address so it is not 823 * currently enabled. 824 */ 825 if (p == NULL) { 826 err = ENOENT; 827 goto done; 828 } 829 ASSERT(p->mma_ref == 0); 830 831 /* 832 * Disable the multicast address. 833 */ 834 if ((err = mip->mi_multicst(mip->mi_driver, B_FALSE, addr)) != 0) { 835 p->mma_ref++; 836 goto done; 837 } 838 839 /* 840 * Remove it from the list. 841 */ 842 *pp = p->mma_nextp; 843 kmem_free(p, sizeof (mac_multicst_addr_t)); 844 845 done: 846 rw_exit(&(mip->mi_data_lock)); 847 return (err); 848 } 849 850 /* 851 * mac_unicst_verify: Verifies the passed address. It fails 852 * if the passed address is a group address or has incorrect length. 853 */ 854 boolean_t 855 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 856 { 857 mac_impl_t *mip = (mac_impl_t *)mh; 858 859 /* 860 * Verify the address. 861 */ 862 if ((len != mip->mi_type->mt_addr_length) || 863 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 864 mip->mi_pdata)) != 0) { 865 return (B_FALSE); 866 } else { 867 return (B_TRUE); 868 } 869 } 870 871 int 872 mac_unicst_set(mac_handle_t mh, const uint8_t *addr) 873 { 874 mac_impl_t *mip = (mac_impl_t *)mh; 875 int err; 876 boolean_t notify = B_FALSE; 877 878 ASSERT(mip->mi_unicst != NULL); 879 880 /* 881 * Verify the address. 882 */ 883 if ((err = mip->mi_type->mt_ops.mtops_unicst_verify(addr, 884 mip->mi_pdata)) != 0) { 885 return (err); 886 } 887 888 /* 889 * Program the new unicast address. 890 */ 891 rw_enter(&(mip->mi_data_lock), RW_WRITER); 892 893 /* 894 * If address doesn't change, do nothing. 895 * This check is necessary otherwise it may call into mac_unicst_set 896 * recursively. 897 */ 898 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) 899 goto done; 900 901 if ((err = mip->mi_unicst(mip->mi_driver, addr)) != 0) 902 goto done; 903 904 /* 905 * Save the address and flag that we need to send a notification. 906 */ 907 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 908 notify = B_TRUE; 909 910 done: 911 rw_exit(&(mip->mi_data_lock)); 912 913 if (notify) 914 i_mac_notify(mip, MAC_NOTE_UNICST); 915 916 return (err); 917 } 918 919 void 920 mac_unicst_get(mac_handle_t mh, uint8_t *addr) 921 { 922 mac_impl_t *mip = (mac_impl_t *)mh; 923 924 /* 925 * Copy out the current unicast source address. 926 */ 927 rw_enter(&(mip->mi_data_lock), RW_READER); 928 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 929 rw_exit(&(mip->mi_data_lock)); 930 } 931 932 void 933 mac_dest_get(mac_handle_t mh, uint8_t *addr) 934 { 935 mac_impl_t *mip = (mac_impl_t *)mh; 936 937 /* 938 * Copy out the current destination address. 939 */ 940 rw_enter(&(mip->mi_data_lock), RW_READER); 941 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 942 rw_exit(&(mip->mi_data_lock)); 943 } 944 945 int 946 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 947 { 948 mac_impl_t *mip = (mac_impl_t *)mh; 949 int err = 0; 950 951 ASSERT(mip->mi_setpromisc != NULL); 952 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 953 954 /* 955 * Determine whether we should enable or disable promiscuous mode. 956 * For details on the distinction between "device promiscuous mode" 957 * and "MAC promiscuous mode", see PSARC/2005/289. 958 */ 959 rw_enter(&(mip->mi_data_lock), RW_WRITER); 960 if (on) { 961 /* 962 * Enable promiscuous mode on the device if not yet enabled. 963 */ 964 if (mip->mi_devpromisc++ == 0) { 965 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 966 if (err != 0) { 967 mip->mi_devpromisc--; 968 goto done; 969 } 970 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 971 } 972 973 /* 974 * Enable promiscuous mode on the MAC if not yet enabled. 975 */ 976 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 977 i_mac_notify(mip, MAC_NOTE_PROMISC); 978 } else { 979 if (mip->mi_devpromisc == 0) { 980 err = EPROTO; 981 goto done; 982 } 983 /* 984 * Disable promiscuous mode on the device if this is the last 985 * enabling. 986 */ 987 if (--mip->mi_devpromisc == 0) { 988 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 989 if (err != 0) { 990 mip->mi_devpromisc++; 991 goto done; 992 } 993 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 994 } 995 996 /* 997 * Disable promiscuous mode on the MAC if this is the last 998 * enabling. 999 */ 1000 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1001 i_mac_notify(mip, MAC_NOTE_PROMISC); 1002 } 1003 1004 done: 1005 rw_exit(&(mip->mi_data_lock)); 1006 return (err); 1007 } 1008 1009 boolean_t 1010 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1011 { 1012 mac_impl_t *mip = (mac_impl_t *)mh; 1013 1014 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1015 1016 /* 1017 * Return the current promiscuity. 1018 */ 1019 if (ptype == MAC_DEVPROMISC) 1020 return (mip->mi_devpromisc != 0); 1021 else 1022 return (mip->mi_promisc != 0); 1023 } 1024 1025 void 1026 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 1027 { 1028 mac_impl_t *mip = (mac_impl_t *)mh; 1029 1030 if (min_sdu != NULL) 1031 *min_sdu = mip->mi_sdu_min; 1032 if (max_sdu != NULL) 1033 *max_sdu = mip->mi_sdu_max; 1034 } 1035 1036 void 1037 mac_resources(mac_handle_t mh) 1038 { 1039 mac_impl_t *mip = (mac_impl_t *)mh; 1040 1041 /* 1042 * If the driver supports resource registration, call the driver to 1043 * ask it to register its resources. 1044 */ 1045 if (mip->mi_callbacks->mc_callbacks & MC_RESOURCES) 1046 mip->mi_resources(mip->mi_driver); 1047 } 1048 1049 void 1050 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 1051 { 1052 mac_impl_t *mip = (mac_impl_t *)mh; 1053 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 1054 1055 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 1056 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 1057 /* 1058 * If ndd props were registered, call them. 1059 * Note that ndd ioctls are Obsolete 1060 */ 1061 mac_ndd_ioctl(mip, wq, bp); 1062 return; 1063 } 1064 1065 /* 1066 * Call the driver to handle the ioctl. The driver may not support 1067 * any ioctls, in which case we reply with a NAK on its behalf. 1068 */ 1069 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 1070 mip->mi_ioctl(mip->mi_driver, wq, bp); 1071 else 1072 miocnak(wq, bp, 0, EINVAL); 1073 } 1074 1075 const mac_txinfo_t * 1076 mac_do_tx_get(mac_handle_t mh, boolean_t is_vnic) 1077 { 1078 mac_impl_t *mip = (mac_impl_t *)mh; 1079 mac_txinfo_t *mtp; 1080 1081 /* 1082 * Grab the lock to prevent us from racing with MAC_PROMISC being 1083 * changed. This is sufficient since MAC clients are careful to always 1084 * call mac_txloop_add() prior to enabling MAC_PROMISC, and to disable 1085 * MAC_PROMISC prior to calling mac_txloop_remove(). 1086 */ 1087 rw_enter(&mip->mi_tx_lock, RW_READER); 1088 1089 if (mac_promisc_get(mh, MAC_PROMISC)) { 1090 ASSERT(mip->mi_mtfp != NULL); 1091 if (mip->mi_vnic_present && !is_vnic) { 1092 mtp = &mip->mi_vnic_txloopinfo; 1093 } else { 1094 mtp = &mip->mi_txloopinfo; 1095 } 1096 } else { 1097 if (mip->mi_vnic_present && !is_vnic) { 1098 mtp = &mip->mi_vnic_txinfo; 1099 } else { 1100 /* 1101 * Note that we cannot ASSERT() that mip->mi_mtfp is 1102 * NULL, because to satisfy the above ASSERT(), we 1103 * have to disable MAC_PROMISC prior to calling 1104 * mac_txloop_remove(). 1105 */ 1106 mtp = &mip->mi_txinfo; 1107 } 1108 } 1109 1110 rw_exit(&mip->mi_tx_lock); 1111 return (mtp); 1112 } 1113 1114 /* 1115 * Invoked by VNIC to obtain the transmit entry point. 1116 */ 1117 const mac_txinfo_t * 1118 mac_vnic_tx_get(mac_handle_t mh) 1119 { 1120 return (mac_do_tx_get(mh, B_TRUE)); 1121 } 1122 1123 /* 1124 * Invoked by any non-VNIC client to obtain the transmit entry point. 1125 * If a VNIC is present, the VNIC transmit function provided by the VNIC 1126 * will be returned to the MAC client. 1127 */ 1128 const mac_txinfo_t * 1129 mac_tx_get(mac_handle_t mh) 1130 { 1131 return (mac_do_tx_get(mh, B_FALSE)); 1132 } 1133 1134 link_state_t 1135 mac_link_get(mac_handle_t mh) 1136 { 1137 return (((mac_impl_t *)mh)->mi_linkstate); 1138 } 1139 1140 mac_notify_handle_t 1141 mac_notify_add(mac_handle_t mh, mac_notify_t notify, void *arg) 1142 { 1143 mac_impl_t *mip = (mac_impl_t *)mh; 1144 mac_notify_fn_t *mnfp; 1145 1146 mnfp = kmem_zalloc(sizeof (mac_notify_fn_t), KM_SLEEP); 1147 mnfp->mnf_fn = notify; 1148 mnfp->mnf_arg = arg; 1149 1150 /* 1151 * Add it to the head of the 'notify' callback list. 1152 */ 1153 rw_enter(&mip->mi_notify_lock, RW_WRITER); 1154 mnfp->mnf_nextp = mip->mi_mnfp; 1155 mip->mi_mnfp = mnfp; 1156 rw_exit(&mip->mi_notify_lock); 1157 1158 return ((mac_notify_handle_t)mnfp); 1159 } 1160 1161 void 1162 mac_notify_remove(mac_handle_t mh, mac_notify_handle_t mnh) 1163 { 1164 mac_impl_t *mip = (mac_impl_t *)mh; 1165 mac_notify_fn_t *mnfp = (mac_notify_fn_t *)mnh; 1166 mac_notify_fn_t **pp; 1167 mac_notify_fn_t *p; 1168 1169 /* 1170 * Search the 'notify' callback list for the function closure. 1171 */ 1172 rw_enter(&mip->mi_notify_lock, RW_WRITER); 1173 for (pp = &(mip->mi_mnfp); (p = *pp) != NULL; 1174 pp = &(p->mnf_nextp)) { 1175 if (p == mnfp) 1176 break; 1177 } 1178 ASSERT(p != NULL); 1179 1180 /* 1181 * Remove it from the list. 1182 */ 1183 *pp = p->mnf_nextp; 1184 rw_exit(&mip->mi_notify_lock); 1185 1186 /* 1187 * Free it. 1188 */ 1189 kmem_free(mnfp, sizeof (mac_notify_fn_t)); 1190 } 1191 1192 void 1193 mac_notify(mac_handle_t mh) 1194 { 1195 mac_impl_t *mip = (mac_impl_t *)mh; 1196 mac_notify_type_t type; 1197 1198 for (type = 0; type < MAC_NNOTE; type++) 1199 i_mac_notify(mip, type); 1200 } 1201 1202 /* 1203 * Register a receive function for this mac. 1204 * More information on this function's interaction with mac_rx() 1205 * can be found atop mac_rx(). 1206 */ 1207 mac_rx_handle_t 1208 mac_do_rx_add(mac_handle_t mh, mac_rx_t rx, void *arg, boolean_t is_active) 1209 { 1210 mac_impl_t *mip = (mac_impl_t *)mh; 1211 mac_rx_fn_t *mrfp; 1212 1213 mrfp = kmem_zalloc(sizeof (mac_rx_fn_t), KM_SLEEP); 1214 mrfp->mrf_fn = rx; 1215 mrfp->mrf_arg = arg; 1216 mrfp->mrf_active = is_active; 1217 1218 /* 1219 * Add it to the head of the 'rx' callback list. 1220 */ 1221 rw_enter(&(mip->mi_rx_lock), RW_WRITER); 1222 1223 /* 1224 * mac_rx() will only call callbacks that are marked inuse. 1225 */ 1226 mrfp->mrf_inuse = B_TRUE; 1227 mrfp->mrf_nextp = mip->mi_mrfp; 1228 1229 /* 1230 * mac_rx() could be traversing the remainder of the list 1231 * and miss the new callback we're adding here. This is not a problem 1232 * because we do not guarantee the callback to take effect immediately 1233 * after mac_rx_add() returns. 1234 */ 1235 mip->mi_mrfp = mrfp; 1236 rw_exit(&(mip->mi_rx_lock)); 1237 1238 return ((mac_rx_handle_t)mrfp); 1239 } 1240 1241 mac_rx_handle_t 1242 mac_rx_add(mac_handle_t mh, mac_rx_t rx, void *arg) 1243 { 1244 return (mac_do_rx_add(mh, rx, arg, B_FALSE)); 1245 } 1246 1247 mac_rx_handle_t 1248 mac_active_rx_add(mac_handle_t mh, mac_rx_t rx, void *arg) 1249 { 1250 return (mac_do_rx_add(mh, rx, arg, B_TRUE)); 1251 } 1252 1253 /* 1254 * Unregister a receive function for this mac. 1255 * This function does not block if wait is B_FALSE. This is useful 1256 * for clients who call mac_rx_remove() from a non-blockable context. 1257 * More information on this function's interaction with mac_rx() 1258 * can be found atop mac_rx(). 1259 */ 1260 void 1261 mac_rx_remove(mac_handle_t mh, mac_rx_handle_t mrh, boolean_t wait) 1262 { 1263 mac_impl_t *mip = (mac_impl_t *)mh; 1264 mac_rx_fn_t *mrfp = (mac_rx_fn_t *)mrh; 1265 mac_rx_fn_t **pp; 1266 mac_rx_fn_t *p; 1267 1268 /* 1269 * Search the 'rx' callback list for the function closure. 1270 */ 1271 rw_enter(&mip->mi_rx_lock, RW_WRITER); 1272 for (pp = &(mip->mi_mrfp); (p = *pp) != NULL; pp = &(p->mrf_nextp)) { 1273 if (p == mrfp) 1274 break; 1275 } 1276 ASSERT(p != NULL); 1277 1278 /* 1279 * If mac_rx() is running, mark callback for deletion 1280 * and return (if wait is false), or wait until mac_rx() 1281 * exits (if wait is true). 1282 */ 1283 if (mip->mi_rx_ref > 0) { 1284 DTRACE_PROBE1(defer_delete, mac_impl_t *, mip); 1285 p->mrf_inuse = B_FALSE; 1286 mutex_enter(&mip->mi_lock); 1287 mip->mi_rx_removed++; 1288 mutex_exit(&mip->mi_lock); 1289 1290 rw_exit(&mip->mi_rx_lock); 1291 if (wait) 1292 mac_rx_remove_wait(mh); 1293 return; 1294 } 1295 1296 /* Remove it from the list. */ 1297 *pp = p->mrf_nextp; 1298 kmem_free(mrfp, sizeof (mac_rx_fn_t)); 1299 rw_exit(&mip->mi_rx_lock); 1300 } 1301 1302 /* 1303 * Wait for all pending callback removals to be completed by mac_rx(). 1304 * Note that if we call mac_rx_remove() immediately before this, there is no 1305 * guarantee we would wait *only* on the callback that we specified. 1306 * mac_rx_remove() could have been called by other threads and we would have 1307 * to wait for other marked callbacks to be removed as well. 1308 */ 1309 void 1310 mac_rx_remove_wait(mac_handle_t mh) 1311 { 1312 mac_impl_t *mip = (mac_impl_t *)mh; 1313 1314 mutex_enter(&mip->mi_lock); 1315 while (mip->mi_rx_removed > 0) { 1316 DTRACE_PROBE1(need_wait, mac_impl_t *, mip); 1317 cv_wait(&mip->mi_rx_cv, &mip->mi_lock); 1318 } 1319 mutex_exit(&mip->mi_lock); 1320 } 1321 1322 mac_txloop_handle_t 1323 mac_txloop_add(mac_handle_t mh, mac_txloop_t tx, void *arg) 1324 { 1325 mac_impl_t *mip = (mac_impl_t *)mh; 1326 mac_txloop_fn_t *mtfp; 1327 1328 mtfp = kmem_zalloc(sizeof (mac_txloop_fn_t), KM_SLEEP); 1329 mtfp->mtf_fn = tx; 1330 mtfp->mtf_arg = arg; 1331 1332 /* 1333 * Add it to the head of the 'tx' callback list. 1334 */ 1335 rw_enter(&(mip->mi_tx_lock), RW_WRITER); 1336 mtfp->mtf_nextp = mip->mi_mtfp; 1337 mip->mi_mtfp = mtfp; 1338 rw_exit(&(mip->mi_tx_lock)); 1339 1340 return ((mac_txloop_handle_t)mtfp); 1341 } 1342 1343 /* 1344 * Unregister a transmit function for this mac. This removes the function 1345 * from the list of transmit functions for this mac. 1346 */ 1347 void 1348 mac_txloop_remove(mac_handle_t mh, mac_txloop_handle_t mth) 1349 { 1350 mac_impl_t *mip = (mac_impl_t *)mh; 1351 mac_txloop_fn_t *mtfp = (mac_txloop_fn_t *)mth; 1352 mac_txloop_fn_t **pp; 1353 mac_txloop_fn_t *p; 1354 1355 /* 1356 * Search the 'tx' callback list for the function. 1357 */ 1358 rw_enter(&(mip->mi_tx_lock), RW_WRITER); 1359 for (pp = &(mip->mi_mtfp); (p = *pp) != NULL; pp = &(p->mtf_nextp)) { 1360 if (p == mtfp) 1361 break; 1362 } 1363 ASSERT(p != NULL); 1364 1365 /* Remove it from the list. */ 1366 *pp = p->mtf_nextp; 1367 kmem_free(mtfp, sizeof (mac_txloop_fn_t)); 1368 rw_exit(&(mip->mi_tx_lock)); 1369 } 1370 1371 void 1372 mac_resource_set(mac_handle_t mh, mac_resource_add_t add, void *arg) 1373 { 1374 mac_impl_t *mip = (mac_impl_t *)mh; 1375 1376 /* 1377 * Update the 'resource_add' callbacks. 1378 */ 1379 rw_enter(&(mip->mi_resource_lock), RW_WRITER); 1380 mip->mi_resource_add = add; 1381 mip->mi_resource_add_arg = arg; 1382 rw_exit(&(mip->mi_resource_lock)); 1383 } 1384 1385 /* 1386 * Driver support functions. 1387 */ 1388 1389 mac_register_t * 1390 mac_alloc(uint_t mac_version) 1391 { 1392 mac_register_t *mregp; 1393 1394 /* 1395 * Make sure there isn't a version mismatch between the driver and 1396 * the framework. In the future, if multiple versions are 1397 * supported, this check could become more sophisticated. 1398 */ 1399 if (mac_version != MAC_VERSION) 1400 return (NULL); 1401 1402 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 1403 mregp->m_version = mac_version; 1404 return (mregp); 1405 } 1406 1407 void 1408 mac_free(mac_register_t *mregp) 1409 { 1410 kmem_free(mregp, sizeof (mac_register_t)); 1411 } 1412 1413 /* 1414 * Allocate a minor number. 1415 */ 1416 minor_t 1417 mac_minor_hold(boolean_t sleep) 1418 { 1419 minor_t minor; 1420 1421 /* 1422 * Grab a value from the arena. 1423 */ 1424 atomic_add_32(&minor_count, 1); 1425 1426 if (sleep) 1427 minor = (uint_t)id_alloc(minor_ids); 1428 else 1429 minor = (uint_t)id_alloc_nosleep(minor_ids); 1430 1431 if (minor == 0) { 1432 atomic_add_32(&minor_count, -1); 1433 return (0); 1434 } 1435 1436 return (minor); 1437 } 1438 1439 /* 1440 * Release a previously allocated minor number. 1441 */ 1442 void 1443 mac_minor_rele(minor_t minor) 1444 { 1445 /* 1446 * Return the value to the arena. 1447 */ 1448 id_free(minor_ids, minor); 1449 atomic_add_32(&minor_count, -1); 1450 } 1451 1452 uint32_t 1453 mac_no_notification(mac_handle_t mh) 1454 { 1455 mac_impl_t *mip = (mac_impl_t *)mh; 1456 return (mip->mi_unsup_note); 1457 } 1458 1459 boolean_t 1460 mac_is_legacy(mac_handle_t mh) 1461 { 1462 mac_impl_t *mip = (mac_impl_t *)mh; 1463 return (mip->mi_legacy); 1464 } 1465 1466 /* 1467 * mac_register() is how drivers register new MACs with the GLDv3 1468 * framework. The mregp argument is allocated by drivers using the 1469 * mac_alloc() function, and can be freed using mac_free() immediately upon 1470 * return from mac_register(). Upon success (0 return value), the mhp 1471 * opaque pointer becomes the driver's handle to its MAC interface, and is 1472 * the argument to all other mac module entry points. 1473 */ 1474 int 1475 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 1476 { 1477 mac_impl_t *mip; 1478 mactype_t *mtype; 1479 int err = EINVAL; 1480 struct devnames *dnp = NULL; 1481 uint_t instance; 1482 boolean_t style1_created = B_FALSE; 1483 boolean_t style2_created = B_FALSE; 1484 mac_capab_legacy_t legacy; 1485 char *driver; 1486 minor_t minor = 0; 1487 1488 /* Find the required MAC-Type plugin. */ 1489 if ((mtype = i_mactype_getplugin(mregp->m_type_ident)) == NULL) 1490 return (EINVAL); 1491 1492 /* Create a mac_impl_t to represent this MAC. */ 1493 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 1494 1495 /* 1496 * The mac is not ready for open yet. 1497 */ 1498 mip->mi_disabled = B_TRUE; 1499 1500 /* 1501 * When a mac is registered, the m_instance field can be set to: 1502 * 1503 * 0: Get the mac's instance number from m_dip. 1504 * This is usually used for physical device dips. 1505 * 1506 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 1507 * For example, when an aggregation is created with the key option, 1508 * "key" will be used as the instance number. 1509 * 1510 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 1511 * This is often used when a MAC of a virtual link is registered 1512 * (e.g., aggregation when "key" is not specified, or vnic). 1513 * 1514 * Note that the instance number is used to derive the mi_minor field 1515 * of mac_impl_t, which will then be used to derive the name of kstats 1516 * and the devfs nodes. The first 2 cases are needed to preserve 1517 * backward compatibility. 1518 */ 1519 switch (mregp->m_instance) { 1520 case 0: 1521 instance = ddi_get_instance(mregp->m_dip); 1522 break; 1523 case ((uint_t)-1): 1524 minor = mac_minor_hold(B_TRUE); 1525 if (minor == 0) { 1526 err = ENOSPC; 1527 goto fail; 1528 } 1529 instance = minor - 1; 1530 break; 1531 default: 1532 instance = mregp->m_instance; 1533 if (instance >= MAC_MAX_MINOR) { 1534 err = EINVAL; 1535 goto fail; 1536 } 1537 break; 1538 } 1539 1540 mip->mi_minor = (minor_t)(instance + 1); 1541 mip->mi_dip = mregp->m_dip; 1542 1543 driver = (char *)ddi_driver_name(mip->mi_dip); 1544 1545 /* Construct the MAC name as <drvname><instance> */ 1546 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 1547 driver, instance); 1548 1549 mip->mi_driver = mregp->m_driver; 1550 1551 mip->mi_type = mtype; 1552 mip->mi_margin = mregp->m_margin; 1553 mip->mi_info.mi_media = mtype->mt_type; 1554 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 1555 if (mregp->m_max_sdu <= mregp->m_min_sdu) 1556 goto fail; 1557 mip->mi_sdu_min = mregp->m_min_sdu; 1558 mip->mi_sdu_max = mregp->m_max_sdu; 1559 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 1560 /* 1561 * If the media supports a broadcast address, cache a pointer to it 1562 * in the mac_info_t so that upper layers can use it. 1563 */ 1564 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 1565 1566 /* 1567 * Copy the unicast source address into the mac_info_t, but only if 1568 * the MAC-Type defines a non-zero address length. We need to 1569 * handle MAC-Types that have an address length of 0 1570 * (point-to-point protocol MACs for example). 1571 */ 1572 if (mip->mi_type->mt_addr_length > 0) { 1573 if (mregp->m_src_addr == NULL) 1574 goto fail; 1575 mip->mi_info.mi_unicst_addr = 1576 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 1577 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 1578 mip->mi_type->mt_addr_length); 1579 1580 /* 1581 * Copy the fixed 'factory' MAC address from the immutable 1582 * info. This is taken to be the MAC address currently in 1583 * use. 1584 */ 1585 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 1586 mip->mi_type->mt_addr_length); 1587 /* Copy the destination address if one is provided. */ 1588 if (mregp->m_dst_addr != NULL) { 1589 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 1590 mip->mi_type->mt_addr_length); 1591 } 1592 } else if (mregp->m_src_addr != NULL) { 1593 goto fail; 1594 } 1595 1596 /* 1597 * The format of the m_pdata is specific to the plugin. It is 1598 * passed in as an argument to all of the plugin callbacks. The 1599 * driver can update this information by calling 1600 * mac_pdata_update(). 1601 */ 1602 if (mregp->m_pdata != NULL) { 1603 /* 1604 * Verify that the plugin supports MAC plugin data and that 1605 * the supplied data is valid. 1606 */ 1607 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 1608 goto fail; 1609 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 1610 mregp->m_pdata_size)) { 1611 goto fail; 1612 } 1613 mip->mi_pdata = kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 1614 bcopy(mregp->m_pdata, mip->mi_pdata, mregp->m_pdata_size); 1615 mip->mi_pdata_size = mregp->m_pdata_size; 1616 } 1617 1618 /* 1619 * Register the private properties. 1620 */ 1621 mac_register_priv_prop(mip, mregp->m_priv_props, 1622 mregp->m_priv_prop_count); 1623 1624 /* 1625 * Stash the driver callbacks into the mac_impl_t, but first sanity 1626 * check to make sure all mandatory callbacks are set. 1627 */ 1628 if (mregp->m_callbacks->mc_getstat == NULL || 1629 mregp->m_callbacks->mc_start == NULL || 1630 mregp->m_callbacks->mc_stop == NULL || 1631 mregp->m_callbacks->mc_setpromisc == NULL || 1632 mregp->m_callbacks->mc_multicst == NULL || 1633 mregp->m_callbacks->mc_unicst == NULL || 1634 mregp->m_callbacks->mc_tx == NULL) { 1635 goto fail; 1636 } 1637 mip->mi_callbacks = mregp->m_callbacks; 1638 1639 /* 1640 * Set up the possible transmit routines. 1641 */ 1642 mip->mi_txinfo.mt_fn = mip->mi_tx; 1643 mip->mi_txinfo.mt_arg = mip->mi_driver; 1644 1645 mip->mi_legacy = mac_capab_get((mac_handle_t)mip, 1646 MAC_CAPAB_LEGACY, &legacy); 1647 1648 if (mip->mi_legacy) { 1649 /* 1650 * Legacy device. Messages being sent will be looped back 1651 * by the underlying driver. Therefore the txloop function 1652 * pointer is the same as the tx function pointer. 1653 */ 1654 mip->mi_txloopinfo.mt_fn = mip->mi_txinfo.mt_fn; 1655 mip->mi_txloopinfo.mt_arg = mip->mi_txinfo.mt_arg; 1656 mip->mi_unsup_note = legacy.ml_unsup_note; 1657 mip->mi_phy_dev = legacy.ml_dev; 1658 } else { 1659 /* 1660 * Normal device. The framework needs to do the loopback. 1661 */ 1662 mip->mi_txloopinfo.mt_fn = mac_txloop; 1663 mip->mi_txloopinfo.mt_arg = mip; 1664 mip->mi_unsup_note = 0; 1665 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 1666 ddi_get_instance(mip->mi_dip) + 1); 1667 } 1668 1669 mip->mi_vnic_txinfo.mt_fn = mac_vnic_tx; 1670 mip->mi_vnic_txinfo.mt_arg = mip; 1671 1672 mip->mi_vnic_txloopinfo.mt_fn = mac_vnic_txloop; 1673 mip->mi_vnic_txloopinfo.mt_arg = mip; 1674 1675 /* 1676 * Allocate a notification thread. 1677 */ 1678 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 1679 mip, 0, &p0, TS_RUN, minclsyspri); 1680 if (mip->mi_notify_thread == NULL) 1681 goto fail; 1682 1683 /* 1684 * Initialize the kstats for this device. 1685 */ 1686 mac_stat_create(mip); 1687 1688 1689 /* set the gldv3 flag in dn_flags */ 1690 dnp = &devnamesp[ddi_driver_major(mip->mi_dip)]; 1691 LOCK_DEV_OPS(&dnp->dn_lock); 1692 dnp->dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 1693 UNLOCK_DEV_OPS(&dnp->dn_lock); 1694 1695 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 1696 /* Create a style-2 DLPI device */ 1697 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 1698 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 1699 goto fail; 1700 style2_created = B_TRUE; 1701 1702 /* Create a style-1 DLPI device */ 1703 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 1704 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 1705 goto fail; 1706 style1_created = B_TRUE; 1707 } 1708 1709 rw_enter(&i_mac_impl_lock, RW_WRITER); 1710 if (mod_hash_insert(i_mac_impl_hash, 1711 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 1712 1713 rw_exit(&i_mac_impl_lock); 1714 err = EEXIST; 1715 goto fail; 1716 } 1717 1718 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 1719 (mac_impl_t *), mip); 1720 1721 /* 1722 * Mark the MAC to be ready for open. 1723 */ 1724 mip->mi_disabled = B_FALSE; 1725 1726 rw_exit(&i_mac_impl_lock); 1727 1728 atomic_inc_32(&i_mac_impl_count); 1729 1730 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 1731 *mhp = (mac_handle_t)mip; 1732 return (0); 1733 1734 fail: 1735 if (style1_created) 1736 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 1737 1738 if (style2_created) 1739 ddi_remove_minor_node(mip->mi_dip, driver); 1740 1741 /* clean up notification thread */ 1742 if (mip->mi_notify_thread != NULL) { 1743 mutex_enter(&mip->mi_notify_bits_lock); 1744 mip->mi_notify_bits = (1 << MAC_NNOTE); 1745 cv_broadcast(&mip->mi_notify_cv); 1746 while (mip->mi_notify_bits != 0) 1747 cv_wait(&mip->mi_notify_cv, &mip->mi_notify_bits_lock); 1748 mutex_exit(&mip->mi_notify_bits_lock); 1749 } 1750 1751 if (mip->mi_info.mi_unicst_addr != NULL) { 1752 kmem_free(mip->mi_info.mi_unicst_addr, 1753 mip->mi_type->mt_addr_length); 1754 mip->mi_info.mi_unicst_addr = NULL; 1755 } 1756 1757 mac_stat_destroy(mip); 1758 1759 if (mip->mi_type != NULL) { 1760 atomic_dec_32(&mip->mi_type->mt_ref); 1761 mip->mi_type = NULL; 1762 } 1763 1764 if (mip->mi_pdata != NULL) { 1765 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 1766 mip->mi_pdata = NULL; 1767 mip->mi_pdata_size = 0; 1768 } 1769 1770 if (minor != 0) { 1771 ASSERT(minor > MAC_MAX_MINOR); 1772 mac_minor_rele(minor); 1773 } 1774 1775 kmem_cache_free(i_mac_impl_cachep, mip); 1776 return (err); 1777 } 1778 1779 int 1780 mac_disable(mac_handle_t mh) 1781 { 1782 mac_impl_t *mip = (mac_impl_t *)mh; 1783 1784 /* 1785 * See if there are any other references to this mac_t (e.g., VLAN's). 1786 * If not, set mi_disabled to prevent any new VLAN's from being 1787 * created while we're destroying this mac. 1788 */ 1789 rw_enter(&i_mac_impl_lock, RW_WRITER); 1790 if (mip->mi_ref > 0) { 1791 rw_exit(&i_mac_impl_lock); 1792 return (EBUSY); 1793 } 1794 mip->mi_disabled = B_TRUE; 1795 rw_exit(&i_mac_impl_lock); 1796 return (0); 1797 } 1798 1799 int 1800 mac_unregister(mac_handle_t mh) 1801 { 1802 int err; 1803 mac_impl_t *mip = (mac_impl_t *)mh; 1804 mod_hash_val_t val; 1805 mac_multicst_addr_t *p, *nextp; 1806 mac_margin_req_t *mmr, *nextmmr; 1807 mac_priv_prop_t *mpriv; 1808 1809 /* 1810 * See if there are any other references to this mac_t (e.g., VLAN's). 1811 * If not, set mi_disabled to prevent any new VLAN's from being 1812 * created while we're destroying this mac. Once mac_disable() returns 1813 * 0, the rest of mac_unregister() stuff should continue without 1814 * returning an error. 1815 */ 1816 if (!mip->mi_disabled) { 1817 if ((err = mac_disable(mh)) != 0) 1818 return (err); 1819 } 1820 1821 /* 1822 * Clean up notification thread (wait for it to exit). 1823 */ 1824 mutex_enter(&mip->mi_notify_bits_lock); 1825 mip->mi_notify_bits = (1 << MAC_NNOTE); 1826 cv_broadcast(&mip->mi_notify_cv); 1827 while (mip->mi_notify_bits != 0) 1828 cv_wait(&mip->mi_notify_cv, &mip->mi_notify_bits_lock); 1829 mutex_exit(&mip->mi_notify_bits_lock); 1830 1831 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 1832 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 1833 ddi_remove_minor_node(mip->mi_dip, 1834 (char *)ddi_driver_name(mip->mi_dip)); 1835 } 1836 1837 ASSERT(!mip->mi_activelink); 1838 1839 mac_stat_destroy(mip); 1840 1841 rw_enter(&i_mac_impl_lock, RW_WRITER); 1842 (void) mod_hash_remove(i_mac_impl_hash, 1843 (mod_hash_key_t)mip->mi_name, &val); 1844 ASSERT(mip == (mac_impl_t *)val); 1845 1846 ASSERT(i_mac_impl_count > 0); 1847 atomic_dec_32(&i_mac_impl_count); 1848 rw_exit(&i_mac_impl_lock); 1849 1850 if (mip->mi_pdata != NULL) 1851 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 1852 mip->mi_pdata = NULL; 1853 mip->mi_pdata_size = 0; 1854 1855 /* 1856 * Free the list of multicast addresses. 1857 */ 1858 for (p = mip->mi_mmap; p != NULL; p = nextp) { 1859 nextp = p->mma_nextp; 1860 kmem_free(p, sizeof (mac_multicst_addr_t)); 1861 } 1862 mip->mi_mmap = NULL; 1863 1864 /* 1865 * Free the list of margin request. 1866 */ 1867 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 1868 nextmmr = mmr->mmr_nextp; 1869 kmem_free(mmr, sizeof (mac_margin_req_t)); 1870 } 1871 mip->mi_mmrp = NULL; 1872 1873 mip->mi_linkstate = LINK_STATE_UNKNOWN; 1874 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 1875 mip->mi_info.mi_unicst_addr = NULL; 1876 1877 atomic_dec_32(&mip->mi_type->mt_ref); 1878 mip->mi_type = NULL; 1879 1880 if (mip->mi_minor > MAC_MAX_MINOR) 1881 mac_minor_rele(mip->mi_minor); 1882 1883 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 1884 1885 mpriv = mip->mi_priv_prop; 1886 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 1887 1888 kmem_cache_free(i_mac_impl_cachep, mip); 1889 1890 return (0); 1891 } 1892 1893 /* 1894 * To avoid potential deadlocks, mac_rx() releases mi_rx_lock 1895 * before invoking its list of upcalls. This introduces races with 1896 * mac_rx_remove() and mac_rx_add(), who can potentially modify the 1897 * upcall list while mi_rx_lock is not being held. The race with 1898 * mac_rx_remove() is handled by incrementing mi_rx_ref upon entering 1899 * mac_rx(); a non-zero mi_rx_ref would tell mac_rx_remove() 1900 * to not modify the list but instead mark an upcall for deletion. 1901 * before mac_rx() exits, mi_rx_ref is decremented and if it 1902 * is 0, the marked upcalls will be removed from the list and freed. 1903 * The race with mac_rx_add() is harmless because mac_rx_add() only 1904 * prepends to the list and since mac_rx() saves the list head 1905 * before releasing mi_rx_lock, any prepended upcall won't be seen 1906 * until the next packet chain arrives. 1907 * 1908 * To minimize lock contention between multiple parallel invocations 1909 * of mac_rx(), mi_rx_lock is acquired as a READER lock. The 1910 * use of atomic operations ensures the sanity of mi_rx_ref. mi_rx_lock 1911 * will be upgraded to WRITER mode when there are marked upcalls to be 1912 * cleaned. 1913 */ 1914 static void 1915 mac_do_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain, 1916 boolean_t active_only) 1917 { 1918 mac_impl_t *mip = (mac_impl_t *)mh; 1919 mblk_t *bp = mp_chain; 1920 mac_rx_fn_t *mrfp; 1921 1922 /* 1923 * Call all registered receive functions. 1924 */ 1925 rw_enter(&mip->mi_rx_lock, RW_READER); 1926 if ((mrfp = mip->mi_mrfp) == NULL) { 1927 /* There are no registered receive functions. */ 1928 freemsgchain(bp); 1929 rw_exit(&mip->mi_rx_lock); 1930 return; 1931 } 1932 atomic_inc_32(&mip->mi_rx_ref); 1933 rw_exit(&mip->mi_rx_lock); 1934 1935 /* 1936 * Call registered receive functions. 1937 */ 1938 do { 1939 mblk_t *recv_bp; 1940 1941 if (active_only && !mrfp->mrf_active) { 1942 mrfp = mrfp->mrf_nextp; 1943 if (mrfp == NULL) { 1944 /* 1945 * We hit the last receiver, but it's not 1946 * active. 1947 */ 1948 freemsgchain(bp); 1949 } 1950 continue; 1951 } 1952 1953 recv_bp = (mrfp->mrf_nextp != NULL) ? copymsgchain(bp) : bp; 1954 if (recv_bp != NULL) { 1955 if (mrfp->mrf_inuse) { 1956 /* 1957 * Send bp itself and keep the copy. 1958 * If there's only one active receiver, 1959 * it should get the original message, 1960 * tagged with the hardware checksum flags. 1961 */ 1962 mrfp->mrf_fn(mrfp->mrf_arg, mrh, bp); 1963 bp = recv_bp; 1964 } else { 1965 freemsgchain(recv_bp); 1966 } 1967 } 1968 1969 mrfp = mrfp->mrf_nextp; 1970 } while (mrfp != NULL); 1971 1972 rw_enter(&mip->mi_rx_lock, RW_READER); 1973 if (atomic_dec_32_nv(&mip->mi_rx_ref) == 0 && mip->mi_rx_removed > 0) { 1974 mac_rx_fn_t **pp, *p; 1975 uint32_t cnt = 0; 1976 1977 DTRACE_PROBE1(delete_callbacks, mac_impl_t *, mip); 1978 1979 /* 1980 * Need to become exclusive before doing cleanup 1981 */ 1982 if (rw_tryupgrade(&mip->mi_rx_lock) == 0) { 1983 rw_exit(&mip->mi_rx_lock); 1984 rw_enter(&mip->mi_rx_lock, RW_WRITER); 1985 } 1986 1987 /* 1988 * We return if another thread has already entered and cleaned 1989 * up the list. 1990 */ 1991 if (mip->mi_rx_ref > 0 || mip->mi_rx_removed == 0) { 1992 rw_exit(&mip->mi_rx_lock); 1993 return; 1994 } 1995 1996 /* 1997 * Free removed callbacks. 1998 */ 1999 pp = &mip->mi_mrfp; 2000 while (*pp != NULL) { 2001 if (!(*pp)->mrf_inuse) { 2002 p = *pp; 2003 *pp = (*pp)->mrf_nextp; 2004 kmem_free(p, sizeof (*p)); 2005 cnt++; 2006 continue; 2007 } 2008 pp = &(*pp)->mrf_nextp; 2009 } 2010 2011 /* 2012 * Wake up mac_rx_remove_wait() 2013 */ 2014 mutex_enter(&mip->mi_lock); 2015 ASSERT(mip->mi_rx_removed == cnt); 2016 mip->mi_rx_removed = 0; 2017 cv_broadcast(&mip->mi_rx_cv); 2018 mutex_exit(&mip->mi_lock); 2019 } 2020 rw_exit(&mip->mi_rx_lock); 2021 } 2022 2023 void 2024 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2025 { 2026 mac_do_rx(mh, mrh, mp_chain, B_FALSE); 2027 } 2028 2029 /* 2030 * Send a packet chain up to the receive callbacks which declared 2031 * themselves as being active. 2032 */ 2033 void 2034 mac_active_rx(void *arg, mac_resource_handle_t mrh, mblk_t *mp_chain) 2035 { 2036 mac_do_rx(arg, mrh, mp_chain, B_TRUE); 2037 } 2038 2039 /* 2040 * Function passed to the active client sharing a VNIC. This function 2041 * is returned by mac_tx_get() when a VNIC is present. It invokes 2042 * the VNIC transmit entry point which was specified by the VNIC when 2043 * it called mac_vnic_set(). The VNIC transmit entry point will 2044 * pass the packets to the local VNICs and/or to the underlying VNICs 2045 * if needed. 2046 */ 2047 static mblk_t * 2048 mac_vnic_tx(void *arg, mblk_t *mp) 2049 { 2050 mac_impl_t *mip = arg; 2051 mac_txinfo_t *mtfp; 2052 mac_vnic_tx_t *mvt; 2053 2054 /* 2055 * There is a race between the notification of the VNIC 2056 * addition and removal, and the processing of the VNIC notification 2057 * by the MAC client. During this window, it is possible for 2058 * an active MAC client to contine invoking mac_vnic_tx() while 2059 * the VNIC has already been removed. So we cannot assume 2060 * that mi_vnic_present will always be true when mac_vnic_tx() 2061 * is invoked. 2062 */ 2063 rw_enter(&mip->mi_tx_lock, RW_READER); 2064 if (!mip->mi_vnic_present) { 2065 rw_exit(&mip->mi_tx_lock); 2066 freemsgchain(mp); 2067 return (NULL); 2068 } 2069 2070 ASSERT(mip->mi_vnic_tx != NULL); 2071 mvt = mip->mi_vnic_tx; 2072 MAC_VNIC_TXINFO_REFHOLD(mvt); 2073 rw_exit(&mip->mi_tx_lock); 2074 2075 mtfp = &mvt->mv_txinfo; 2076 mtfp->mt_fn(mtfp->mt_arg, mp); 2077 2078 MAC_VNIC_TXINFO_REFRELE(mvt); 2079 return (NULL); 2080 } 2081 2082 /* 2083 * Transmit function -- ONLY used when there are registered loopback listeners. 2084 */ 2085 mblk_t * 2086 mac_do_txloop(void *arg, mblk_t *bp, boolean_t call_vnic) 2087 { 2088 mac_impl_t *mip = arg; 2089 mac_txloop_fn_t *mtfp; 2090 mblk_t *loop_bp, *resid_bp, *next_bp; 2091 2092 if (call_vnic) { 2093 /* 2094 * In promiscous mode, a copy of the sent packet will 2095 * be sent to the client's promiscous receive entry 2096 * points via mac_vnic_tx()-> 2097 * mac_active_rx_promisc()->mac_rx_default(). 2098 */ 2099 return (mac_vnic_tx(arg, bp)); 2100 } 2101 2102 while (bp != NULL) { 2103 next_bp = bp->b_next; 2104 bp->b_next = NULL; 2105 2106 if ((loop_bp = copymsg(bp)) == NULL) 2107 goto noresources; 2108 2109 if ((resid_bp = mip->mi_tx(mip->mi_driver, bp)) != NULL) { 2110 ASSERT(resid_bp == bp); 2111 freemsg(loop_bp); 2112 goto noresources; 2113 } 2114 2115 rw_enter(&mip->mi_tx_lock, RW_READER); 2116 mtfp = mip->mi_mtfp; 2117 while (mtfp != NULL && loop_bp != NULL) { 2118 bp = loop_bp; 2119 2120 /* XXX counter bump if copymsg() fails? */ 2121 if (mtfp->mtf_nextp != NULL) 2122 loop_bp = copymsg(bp); 2123 else 2124 loop_bp = NULL; 2125 2126 mtfp->mtf_fn(mtfp->mtf_arg, bp); 2127 mtfp = mtfp->mtf_nextp; 2128 } 2129 rw_exit(&mip->mi_tx_lock); 2130 2131 /* 2132 * It's possible we've raced with the disabling of promiscuous 2133 * mode, in which case we can discard our copy. 2134 */ 2135 if (loop_bp != NULL) 2136 freemsg(loop_bp); 2137 2138 bp = next_bp; 2139 } 2140 2141 return (NULL); 2142 2143 noresources: 2144 bp->b_next = next_bp; 2145 return (bp); 2146 } 2147 2148 mblk_t * 2149 mac_txloop(void *arg, mblk_t *bp) 2150 { 2151 return (mac_do_txloop(arg, bp, B_FALSE)); 2152 } 2153 2154 static mblk_t * 2155 mac_vnic_txloop(void *arg, mblk_t *bp) 2156 { 2157 return (mac_do_txloop(arg, bp, B_TRUE)); 2158 } 2159 2160 void 2161 mac_link_update(mac_handle_t mh, link_state_t link) 2162 { 2163 mac_impl_t *mip = (mac_impl_t *)mh; 2164 2165 /* 2166 * Save the link state. 2167 */ 2168 mip->mi_linkstate = link; 2169 2170 /* 2171 * Send a MAC_NOTE_LINK notification. 2172 */ 2173 i_mac_notify(mip, MAC_NOTE_LINK); 2174 } 2175 2176 void 2177 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 2178 { 2179 mac_impl_t *mip = (mac_impl_t *)mh; 2180 2181 if (mip->mi_type->mt_addr_length == 0) 2182 return; 2183 2184 /* 2185 * If the address has not changed, do nothing. 2186 */ 2187 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) 2188 return; 2189 2190 /* 2191 * Save the address. 2192 */ 2193 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 2194 2195 /* 2196 * Send a MAC_NOTE_UNICST notification. 2197 */ 2198 i_mac_notify(mip, MAC_NOTE_UNICST); 2199 } 2200 2201 void 2202 mac_tx_update(mac_handle_t mh) 2203 { 2204 /* 2205 * Send a MAC_NOTE_TX notification. 2206 */ 2207 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_TX); 2208 } 2209 2210 void 2211 mac_resource_update(mac_handle_t mh) 2212 { 2213 /* 2214 * Send a MAC_NOTE_RESOURCE notification. 2215 */ 2216 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_RESOURCE); 2217 } 2218 2219 mac_resource_handle_t 2220 mac_resource_add(mac_handle_t mh, mac_resource_t *mrp) 2221 { 2222 mac_impl_t *mip = (mac_impl_t *)mh; 2223 mac_resource_handle_t mrh; 2224 mac_resource_add_t add; 2225 void *arg; 2226 2227 rw_enter(&mip->mi_resource_lock, RW_READER); 2228 add = mip->mi_resource_add; 2229 arg = mip->mi_resource_add_arg; 2230 2231 if (add != NULL) 2232 mrh = add(arg, mrp); 2233 else 2234 mrh = NULL; 2235 rw_exit(&mip->mi_resource_lock); 2236 2237 return (mrh); 2238 } 2239 2240 int 2241 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 2242 { 2243 mac_impl_t *mip = (mac_impl_t *)mh; 2244 2245 /* 2246 * Verify that the plugin supports MAC plugin data and that the 2247 * supplied data is valid. 2248 */ 2249 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 2250 return (EINVAL); 2251 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 2252 return (EINVAL); 2253 2254 if (mip->mi_pdata != NULL) 2255 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 2256 2257 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 2258 bcopy(mac_pdata, mip->mi_pdata, dsize); 2259 mip->mi_pdata_size = dsize; 2260 2261 /* 2262 * Since the MAC plugin data is used to construct MAC headers that 2263 * were cached in fast-path headers, we need to flush fast-path 2264 * information for links associated with this mac. 2265 */ 2266 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 2267 return (0); 2268 } 2269 2270 void 2271 mac_multicst_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2272 boolean_t add) 2273 { 2274 mac_impl_t *mip = (mac_impl_t *)mh; 2275 mac_multicst_addr_t *p; 2276 2277 /* 2278 * If no specific refresh function was given then default to the 2279 * driver's m_multicst entry point. 2280 */ 2281 if (refresh == NULL) { 2282 refresh = mip->mi_multicst; 2283 arg = mip->mi_driver; 2284 } 2285 ASSERT(refresh != NULL); 2286 2287 /* 2288 * Walk the multicast address list and call the refresh function for 2289 * each address. 2290 */ 2291 rw_enter(&(mip->mi_data_lock), RW_READER); 2292 for (p = mip->mi_mmap; p != NULL; p = p->mma_nextp) 2293 refresh(arg, add, p->mma_addr); 2294 rw_exit(&(mip->mi_data_lock)); 2295 } 2296 2297 void 2298 mac_unicst_refresh(mac_handle_t mh, mac_unicst_t refresh, void *arg) 2299 { 2300 mac_impl_t *mip = (mac_impl_t *)mh; 2301 /* 2302 * If no specific refresh function was given then default to the 2303 * driver's mi_unicst entry point. 2304 */ 2305 if (refresh == NULL) { 2306 refresh = mip->mi_unicst; 2307 arg = mip->mi_driver; 2308 } 2309 ASSERT(refresh != NULL); 2310 2311 /* 2312 * Call the refresh function with the current unicast address. 2313 */ 2314 refresh(arg, mip->mi_addr); 2315 } 2316 2317 void 2318 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2319 { 2320 mac_impl_t *mip = (mac_impl_t *)mh; 2321 2322 /* 2323 * If no specific refresh function was given then default to the 2324 * driver's m_promisc entry point. 2325 */ 2326 if (refresh == NULL) { 2327 refresh = mip->mi_setpromisc; 2328 arg = mip->mi_driver; 2329 } 2330 ASSERT(refresh != NULL); 2331 2332 /* 2333 * Call the refresh function with the current promiscuity. 2334 */ 2335 refresh(arg, (mip->mi_devpromisc != 0)); 2336 } 2337 2338 /* 2339 * The mac client requests that the mac not to change its margin size to 2340 * be less than the specified value. If "current" is B_TRUE, then the client 2341 * requests the mac not to change its margin size to be smaller than the 2342 * current size. Further, return the current margin size value in this case. 2343 * 2344 * We keep every requested size in an ordered list from largest to smallest. 2345 */ 2346 int 2347 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2348 { 2349 mac_impl_t *mip = (mac_impl_t *)mh; 2350 mac_margin_req_t **pp, *p; 2351 int err = 0; 2352 2353 rw_enter(&(mip->mi_data_lock), RW_WRITER); 2354 if (current) 2355 *marginp = mip->mi_margin; 2356 2357 /* 2358 * If the current margin value cannot satisfy the margin requested, 2359 * return ENOTSUP directly. 2360 */ 2361 if (*marginp > mip->mi_margin) { 2362 err = ENOTSUP; 2363 goto done; 2364 } 2365 2366 /* 2367 * Check whether the given margin is already in the list. If so, 2368 * bump the reference count. 2369 */ 2370 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2371 if (p->mmr_margin == *marginp) { 2372 /* 2373 * The margin requested is already in the list, 2374 * so just bump the reference count. 2375 */ 2376 p->mmr_ref++; 2377 goto done; 2378 } 2379 if (p->mmr_margin < *marginp) 2380 break; 2381 } 2382 2383 2384 if ((p = kmem_zalloc(sizeof (mac_margin_req_t), KM_NOSLEEP)) == NULL) { 2385 err = ENOMEM; 2386 goto done; 2387 } 2388 2389 p->mmr_margin = *marginp; 2390 p->mmr_ref++; 2391 p->mmr_nextp = *pp; 2392 *pp = p; 2393 2394 done: 2395 rw_exit(&(mip->mi_data_lock)); 2396 return (err); 2397 } 2398 2399 /* 2400 * The mac client requests to cancel its previous mac_margin_add() request. 2401 * We remove the requested margin size from the list. 2402 */ 2403 int 2404 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2405 { 2406 mac_impl_t *mip = (mac_impl_t *)mh; 2407 mac_margin_req_t **pp, *p; 2408 int err = 0; 2409 2410 rw_enter(&(mip->mi_data_lock), RW_WRITER); 2411 /* 2412 * Find the entry in the list for the given margin. 2413 */ 2414 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2415 if (p->mmr_margin == margin) { 2416 if (--p->mmr_ref == 0) 2417 break; 2418 2419 /* 2420 * There is still a reference to this address so 2421 * there's nothing more to do. 2422 */ 2423 goto done; 2424 } 2425 } 2426 2427 /* 2428 * We did not find an entry for the given margin. 2429 */ 2430 if (p == NULL) { 2431 err = ENOENT; 2432 goto done; 2433 } 2434 2435 ASSERT(p->mmr_ref == 0); 2436 2437 /* 2438 * Remove it from the list. 2439 */ 2440 *pp = p->mmr_nextp; 2441 kmem_free(p, sizeof (mac_margin_req_t)); 2442 done: 2443 rw_exit(&(mip->mi_data_lock)); 2444 return (err); 2445 } 2446 2447 /* 2448 * The mac client requests to get the mac's current margin value. 2449 */ 2450 void 2451 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 2452 { 2453 mac_impl_t *mip = (mac_impl_t *)mh; 2454 2455 rw_enter(&(mip->mi_data_lock), RW_READER); 2456 *marginp = mip->mi_margin; 2457 rw_exit(&(mip->mi_data_lock)); 2458 } 2459 2460 boolean_t 2461 mac_margin_update(mac_handle_t mh, uint32_t margin) 2462 { 2463 mac_impl_t *mip = (mac_impl_t *)mh; 2464 uint32_t margin_needed = 0; 2465 2466 rw_enter(&(mip->mi_data_lock), RW_WRITER); 2467 2468 if (mip->mi_mmrp != NULL) 2469 margin_needed = mip->mi_mmrp->mmr_margin; 2470 2471 if (margin_needed <= margin) 2472 mip->mi_margin = margin; 2473 2474 rw_exit(&(mip->mi_data_lock)); 2475 2476 if (margin_needed <= margin) 2477 i_mac_notify(mip, MAC_NOTE_MARGIN); 2478 2479 return (margin_needed <= margin); 2480 } 2481 2482 boolean_t 2483 mac_do_active_set(mac_handle_t mh, boolean_t shareable) 2484 { 2485 mac_impl_t *mip = (mac_impl_t *)mh; 2486 2487 mutex_enter(&mip->mi_activelink_lock); 2488 if (mip->mi_activelink) { 2489 mutex_exit(&mip->mi_activelink_lock); 2490 return (B_FALSE); 2491 } 2492 mip->mi_activelink = B_TRUE; 2493 mip->mi_shareable = shareable; 2494 mutex_exit(&mip->mi_activelink_lock); 2495 return (B_TRUE); 2496 } 2497 2498 /* 2499 * Called by MAC clients. By default, active MAC clients cannot 2500 * share the NIC with VNICs. 2501 */ 2502 boolean_t 2503 mac_active_set(mac_handle_t mh) 2504 { 2505 return (mac_do_active_set(mh, B_FALSE)); 2506 } 2507 2508 /* 2509 * Called by MAC clients which can share the NIC with VNICS, e.g. DLS. 2510 */ 2511 boolean_t 2512 mac_active_shareable_set(mac_handle_t mh) 2513 { 2514 return (mac_do_active_set(mh, B_TRUE)); 2515 } 2516 2517 void 2518 mac_active_clear(mac_handle_t mh) 2519 { 2520 mac_impl_t *mip = (mac_impl_t *)mh; 2521 2522 mutex_enter(&mip->mi_activelink_lock); 2523 ASSERT(mip->mi_activelink); 2524 mip->mi_activelink = B_FALSE; 2525 mutex_exit(&mip->mi_activelink_lock); 2526 } 2527 2528 boolean_t 2529 mac_vnic_set(mac_handle_t mh, mac_txinfo_t *tx_info, mac_getcapab_t getcapab_fn, 2530 void *getcapab_arg) 2531 { 2532 mac_impl_t *mip = (mac_impl_t *)mh; 2533 mac_vnic_tx_t *vnic_tx; 2534 2535 mutex_enter(&mip->mi_activelink_lock); 2536 rw_enter(&mip->mi_tx_lock, RW_WRITER); 2537 ASSERT(!mip->mi_vnic_present); 2538 2539 if (mip->mi_activelink && !mip->mi_shareable) { 2540 /* 2541 * The NIC is already used by an active client which cannot 2542 * share it with VNICs. 2543 */ 2544 rw_exit(&mip->mi_tx_lock); 2545 mutex_exit(&mip->mi_activelink_lock); 2546 return (B_FALSE); 2547 } 2548 2549 vnic_tx = kmem_cache_alloc(mac_vnic_tx_cache, KM_SLEEP); 2550 vnic_tx->mv_refs = 0; 2551 vnic_tx->mv_txinfo = *tx_info; 2552 vnic_tx->mv_clearing = B_FALSE; 2553 2554 mip->mi_vnic_present = B_TRUE; 2555 mip->mi_vnic_tx = vnic_tx; 2556 mip->mi_vnic_getcapab_fn = getcapab_fn; 2557 mip->mi_vnic_getcapab_arg = getcapab_arg; 2558 rw_exit(&mip->mi_tx_lock); 2559 mutex_exit(&mip->mi_activelink_lock); 2560 2561 i_mac_notify(mip, MAC_NOTE_VNIC); 2562 return (B_TRUE); 2563 } 2564 2565 void 2566 mac_vnic_clear(mac_handle_t mh) 2567 { 2568 mac_impl_t *mip = (mac_impl_t *)mh; 2569 mac_vnic_tx_t *vnic_tx; 2570 2571 rw_enter(&mip->mi_tx_lock, RW_WRITER); 2572 ASSERT(mip->mi_vnic_present); 2573 mip->mi_vnic_present = B_FALSE; 2574 /* 2575 * Setting mi_vnic_tx to NULL here under the lock guarantees 2576 * that no new references to the current VNIC transmit structure 2577 * will be taken by mac_vnic_tx(). This is a necessary condition 2578 * for safely waiting for the reference count to drop to 2579 * zero below. 2580 */ 2581 vnic_tx = mip->mi_vnic_tx; 2582 mip->mi_vnic_tx = NULL; 2583 mip->mi_vnic_getcapab_fn = NULL; 2584 mip->mi_vnic_getcapab_arg = NULL; 2585 rw_exit(&mip->mi_tx_lock); 2586 2587 i_mac_notify(mip, MAC_NOTE_VNIC); 2588 2589 /* 2590 * Wait for all TX calls referencing the VNIC transmit 2591 * entry point that was removed to complete. 2592 */ 2593 mutex_enter(&vnic_tx->mv_lock); 2594 vnic_tx->mv_clearing = B_TRUE; 2595 while (vnic_tx->mv_refs > 0) 2596 cv_wait(&vnic_tx->mv_cv, &vnic_tx->mv_lock); 2597 mutex_exit(&vnic_tx->mv_lock); 2598 kmem_cache_free(mac_vnic_tx_cache, vnic_tx); 2599 } 2600 2601 /* 2602 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 2603 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 2604 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 2605 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 2606 * cannot disappear while we are accessing it. 2607 */ 2608 typedef struct i_mac_info_state_s { 2609 const char *mi_name; 2610 mac_info_t *mi_infop; 2611 } i_mac_info_state_t; 2612 2613 /*ARGSUSED*/ 2614 static uint_t 2615 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2616 { 2617 i_mac_info_state_t *statep = arg; 2618 mac_impl_t *mip = (mac_impl_t *)val; 2619 2620 if (mip->mi_disabled) 2621 return (MH_WALK_CONTINUE); 2622 2623 if (strcmp(statep->mi_name, 2624 ddi_driver_name(mip->mi_dip)) != 0) 2625 return (MH_WALK_CONTINUE); 2626 2627 statep->mi_infop = &mip->mi_info; 2628 return (MH_WALK_TERMINATE); 2629 } 2630 2631 boolean_t 2632 mac_info_get(const char *name, mac_info_t *minfop) 2633 { 2634 i_mac_info_state_t state; 2635 2636 rw_enter(&i_mac_impl_lock, RW_READER); 2637 state.mi_name = name; 2638 state.mi_infop = NULL; 2639 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 2640 if (state.mi_infop == NULL) { 2641 rw_exit(&i_mac_impl_lock); 2642 return (B_FALSE); 2643 } 2644 *minfop = *state.mi_infop; 2645 rw_exit(&i_mac_impl_lock); 2646 return (B_TRUE); 2647 } 2648 2649 boolean_t 2650 mac_do_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data, 2651 boolean_t is_vnic) 2652 { 2653 mac_impl_t *mip = (mac_impl_t *)mh; 2654 2655 if (!is_vnic) { 2656 rw_enter(&mip->mi_tx_lock, RW_READER); 2657 if (mip->mi_vnic_present) { 2658 boolean_t rv; 2659 2660 rv = mip->mi_vnic_getcapab_fn(mip->mi_vnic_getcapab_arg, 2661 cap, cap_data); 2662 rw_exit(&mip->mi_tx_lock); 2663 return (rv); 2664 } 2665 rw_exit(&mip->mi_tx_lock); 2666 } 2667 2668 if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 2669 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 2670 else 2671 return (B_FALSE); 2672 } 2673 2674 boolean_t 2675 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 2676 { 2677 return (mac_do_capab_get(mh, cap, cap_data, B_FALSE)); 2678 } 2679 2680 boolean_t 2681 mac_vnic_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 2682 { 2683 return (mac_do_capab_get(mh, cap, cap_data, B_TRUE)); 2684 } 2685 2686 boolean_t 2687 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 2688 { 2689 mac_impl_t *mip = (mac_impl_t *)mh; 2690 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 2691 mip->mi_pdata)); 2692 } 2693 2694 mblk_t * 2695 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 2696 size_t extra_len) 2697 { 2698 mac_impl_t *mip = (mac_impl_t *)mh; 2699 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap, 2700 mip->mi_pdata, payload, extra_len)); 2701 } 2702 2703 int 2704 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 2705 { 2706 mac_impl_t *mip = (mac_impl_t *)mh; 2707 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 2708 mhip)); 2709 } 2710 2711 mblk_t * 2712 mac_header_cook(mac_handle_t mh, mblk_t *mp) 2713 { 2714 mac_impl_t *mip = (mac_impl_t *)mh; 2715 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 2716 if (DB_REF(mp) > 1) { 2717 mblk_t *newmp = copymsg(mp); 2718 if (newmp == NULL) 2719 return (NULL); 2720 freemsg(mp); 2721 mp = newmp; 2722 } 2723 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 2724 mip->mi_pdata)); 2725 } 2726 return (mp); 2727 } 2728 2729 mblk_t * 2730 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 2731 { 2732 mac_impl_t *mip = (mac_impl_t *)mh; 2733 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 2734 if (DB_REF(mp) > 1) { 2735 mblk_t *newmp = copymsg(mp); 2736 if (newmp == NULL) 2737 return (NULL); 2738 freemsg(mp); 2739 mp = newmp; 2740 } 2741 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 2742 mip->mi_pdata)); 2743 } 2744 return (mp); 2745 } 2746 2747 void 2748 mac_init_ops(struct dev_ops *ops, const char *name) 2749 { 2750 dld_init_ops(ops, name); 2751 } 2752 2753 void 2754 mac_fini_ops(struct dev_ops *ops) 2755 { 2756 dld_fini_ops(ops); 2757 } 2758 2759 /* 2760 * MAC Type Plugin functions. 2761 */ 2762 2763 mactype_register_t * 2764 mactype_alloc(uint_t mactype_version) 2765 { 2766 mactype_register_t *mtrp; 2767 2768 /* 2769 * Make sure there isn't a version mismatch between the plugin and 2770 * the framework. In the future, if multiple versions are 2771 * supported, this check could become more sophisticated. 2772 */ 2773 if (mactype_version != MACTYPE_VERSION) 2774 return (NULL); 2775 2776 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2777 mtrp->mtr_version = mactype_version; 2778 return (mtrp); 2779 } 2780 2781 void 2782 mactype_free(mactype_register_t *mtrp) 2783 { 2784 kmem_free(mtrp, sizeof (mactype_register_t)); 2785 } 2786 2787 int 2788 mactype_register(mactype_register_t *mtrp) 2789 { 2790 mactype_t *mtp; 2791 mactype_ops_t *ops = mtrp->mtr_ops; 2792 2793 /* Do some sanity checking before we register this MAC type. */ 2794 if (mtrp->mtr_ident == NULL || ops == NULL) 2795 return (EINVAL); 2796 2797 /* 2798 * Verify that all mandatory callbacks are set in the ops 2799 * vector. 2800 */ 2801 if (ops->mtops_unicst_verify == NULL || 2802 ops->mtops_multicst_verify == NULL || 2803 ops->mtops_sap_verify == NULL || 2804 ops->mtops_header == NULL || 2805 ops->mtops_header_info == NULL) { 2806 return (EINVAL); 2807 } 2808 2809 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2810 mtp->mt_ident = mtrp->mtr_ident; 2811 mtp->mt_ops = *ops; 2812 mtp->mt_type = mtrp->mtr_mactype; 2813 mtp->mt_nativetype = mtrp->mtr_nativetype; 2814 mtp->mt_addr_length = mtrp->mtr_addrlen; 2815 if (mtrp->mtr_brdcst_addr != NULL) { 2816 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2817 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2818 mtrp->mtr_addrlen); 2819 } 2820 2821 mtp->mt_stats = mtrp->mtr_stats; 2822 mtp->mt_statcount = mtrp->mtr_statcount; 2823 2824 mtp->mt_mapping = mtrp->mtr_mapping; 2825 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2826 2827 if (mod_hash_insert(i_mactype_hash, 2828 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2829 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2830 kmem_free(mtp, sizeof (*mtp)); 2831 return (EEXIST); 2832 } 2833 return (0); 2834 } 2835 2836 int 2837 mactype_unregister(const char *ident) 2838 { 2839 mactype_t *mtp; 2840 mod_hash_val_t val; 2841 int err; 2842 2843 /* 2844 * Let's not allow MAC drivers to use this plugin while we're 2845 * trying to unregister it. Holding i_mactype_lock also prevents a 2846 * plugin from unregistering while a MAC driver is attempting to 2847 * hold a reference to it in i_mactype_getplugin(). 2848 */ 2849 mutex_enter(&i_mactype_lock); 2850 2851 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2852 (mod_hash_val_t *)&mtp)) != 0) { 2853 /* A plugin is trying to unregister, but it never registered. */ 2854 err = ENXIO; 2855 goto done; 2856 } 2857 2858 if (mtp->mt_ref != 0) { 2859 err = EBUSY; 2860 goto done; 2861 } 2862 2863 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2864 ASSERT(err == 0); 2865 if (err != 0) { 2866 /* This should never happen, thus the ASSERT() above. */ 2867 err = EINVAL; 2868 goto done; 2869 } 2870 ASSERT(mtp == (mactype_t *)val); 2871 2872 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2873 kmem_free(mtp, sizeof (mactype_t)); 2874 done: 2875 mutex_exit(&i_mactype_lock); 2876 return (err); 2877 } 2878 2879 int 2880 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2881 { 2882 int err = ENOTSUP; 2883 mac_impl_t *mip = (mac_impl_t *)mh; 2884 2885 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2886 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2887 macprop->mp_name, macprop->mp_id, valsize, val); 2888 } 2889 return (err); 2890 } 2891 2892 int 2893 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2894 { 2895 int err = ENOTSUP; 2896 mac_impl_t *mip = (mac_impl_t *)mh; 2897 uint32_t sdu; 2898 link_state_t link_state; 2899 2900 switch (macprop->mp_id) { 2901 case MAC_PROP_MTU: 2902 if (valsize < sizeof (sdu)) 2903 return (EINVAL); 2904 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2905 mac_sdu_get(mh, NULL, &sdu); 2906 bcopy(&sdu, val, sizeof (sdu)); 2907 return (0); 2908 } else { 2909 if (mip->mi_info.mi_media == DL_ETHER) { 2910 sdu = ETHERMTU; 2911 bcopy(&sdu, val, sizeof (sdu)); 2912 return (0); 2913 } 2914 /* 2915 * ask driver for its default. 2916 */ 2917 break; 2918 } 2919 case MAC_PROP_STATUS: 2920 if (valsize < sizeof (link_state)) 2921 return (EINVAL); 2922 link_state = mac_link_get(mh); 2923 bcopy(&link_state, val, sizeof (link_state)); 2924 return (0); 2925 default: 2926 break; 2927 } 2928 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 2929 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2930 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2931 valsize, val); 2932 } 2933 return (err); 2934 } 2935 2936 int 2937 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 2938 { 2939 mac_impl_t *mip = (mac_impl_t *)mh; 2940 2941 if (sdu_max <= mip->mi_sdu_min) 2942 return (EINVAL); 2943 mip->mi_sdu_max = sdu_max; 2944 2945 /* Send a MAC_NOTE_SDU_SIZE notification. */ 2946 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 2947 return (0); 2948 } 2949 2950 static void 2951 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2952 { 2953 mac_priv_prop_t *mpriv; 2954 2955 if (mpp == NULL) 2956 return; 2957 2958 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2959 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2960 mip->mi_priv_prop = mpriv; 2961 mip->mi_priv_prop_count = nprop; 2962 } 2963