1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * lofi (loopback file) driver - allows you to attach a file to a device, 27 * which can then be accessed through that device. The simple model is that 28 * you tell lofi to open a file, and then use the block device you get as 29 * you would any block device. lofi translates access to the block device 30 * into I/O on the underlying file. This is mostly useful for 31 * mounting images of filesystems. 32 * 33 * lofi is controlled through /dev/lofictl - this is the only device exported 34 * during attach, and is minor number 0. lofiadm communicates with lofi through 35 * ioctls on this device. When a file is attached to lofi, block and character 36 * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices 37 * are identified by their minor number, and the minor number is also used 38 * as the name in /dev/lofi. If we ever decide to support virtual disks, 39 * we'll have to divide the minor number space to identify fdisk partitions 40 * and slices, and the name will then be the minor number shifted down a 41 * few bits. Minor devices are tracked with state structures handled with 42 * ddi_soft_state(9F) for simplicity. 43 * 44 * A file attached to lofi is opened when attached and not closed until 45 * explicitly detached from lofi. This seems more sensible than deferring 46 * the open until the /dev/lofi device is opened, for a number of reasons. 47 * One is that any failure is likely to be noticed by the person (or script) 48 * running lofiadm. Another is that it would be a security problem if the 49 * file was replaced by another one after being added but before being opened. 50 * 51 * The only hard part about lofi is the ioctls. In order to support things 52 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 53 * So it has to fake disk geometry and partition information. More may need 54 * to be faked if your favorite utility doesn't work and you think it should 55 * (fdformat doesn't work because it really wants to know the type of floppy 56 * controller to talk to, and that didn't seem easy to fake. Or possibly even 57 * necessary, since we have mkfs_pcfs now). 58 * 59 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 60 * support simulation of hotplug events, an optional force flag is provided. 61 * If a lofi device is open when a force detach is requested, then the 62 * underlying file is closed and any subsequent operations return EIO. When the 63 * device is closed for the last time, it will be cleaned up at that time. In 64 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 65 * detached but not removed. 66 * 67 * Known problems: 68 * 69 * UFS logging. Mounting a UFS filesystem image "logging" 70 * works for basic copy testing but wedges during a build of ON through 71 * that image. Some deadlock in lufs holding the log mutex and then 72 * getting stuck on a buf. So for now, don't do that. 73 * 74 * Direct I/O. Since the filesystem data is being cached in the buffer 75 * cache, _and_ again in the underlying filesystem, it's tempting to 76 * enable direct I/O on the underlying file. Don't, because that deadlocks. 77 * I think to fix the cache-twice problem we might need filesystem support. 78 * 79 * lofi on itself. The simple lock strategy (lofi_lock) precludes this 80 * because you'll be in lofi_ioctl, holding the lock when you open the 81 * file, which, if it's lofi, will grab lofi_lock. We prevent this for 82 * now, though not using ddi_soft_state(9F) would make it possible to 83 * do. Though it would still be silly. 84 * 85 * Interesting things to do: 86 * 87 * Allow multiple files for each device. A poor-man's metadisk, basically. 88 * 89 * Pass-through ioctls on block devices. You can (though it's not 90 * documented), give lofi a block device as a file name. Then we shouldn't 91 * need to fake a geometry, however, it may be relevant if you're replacing 92 * metadisk, or using lofi to get crypto. 93 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 94 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 95 * In fact this even makes sense if you have lofi "above" metadisk. 96 * 97 * Encryption: 98 * Each lofi device can have its own symmetric key and cipher. 99 * They are passed to us by lofiadm(1m) in the correct format for use 100 * with the misc/kcf crypto_* routines. 101 * 102 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 103 * on the "master" key held in the lsp and the block number of the buffer. 104 */ 105 106 #include <sys/types.h> 107 #include <netinet/in.h> 108 #include <sys/sysmacros.h> 109 #include <sys/uio.h> 110 #include <sys/kmem.h> 111 #include <sys/cred.h> 112 #include <sys/mman.h> 113 #include <sys/errno.h> 114 #include <sys/aio_req.h> 115 #include <sys/stat.h> 116 #include <sys/file.h> 117 #include <sys/modctl.h> 118 #include <sys/conf.h> 119 #include <sys/debug.h> 120 #include <sys/vnode.h> 121 #include <sys/lofi.h> 122 #include <sys/fcntl.h> 123 #include <sys/pathname.h> 124 #include <sys/filio.h> 125 #include <sys/fdio.h> 126 #include <sys/open.h> 127 #include <sys/disp.h> 128 #include <vm/seg_map.h> 129 #include <sys/ddi.h> 130 #include <sys/sunddi.h> 131 #include <sys/zmod.h> 132 #include <sys/crypto/common.h> 133 #include <sys/crypto/api.h> 134 #include <LzmaDec.h> 135 136 /* 137 * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h. 138 * Crypto metadata, if it exists, is located at the end of the boot block 139 * (BBOFF + BBSIZE, which is SBOFF). The super block and everything after 140 * is offset by the size of the crypto metadata which is handled by 141 * lsp->ls_crypto_offset. 142 */ 143 #define CRYOFF ((off_t)8192) 144 145 #define NBLOCKS_PROP_NAME "Nblocks" 146 #define SIZE_PROP_NAME "Size" 147 148 #define SETUP_C_DATA(cd, buf, len) \ 149 (cd).cd_format = CRYPTO_DATA_RAW; \ 150 (cd).cd_offset = 0; \ 151 (cd).cd_miscdata = NULL; \ 152 (cd).cd_length = (len); \ 153 (cd).cd_raw.iov_base = (buf); \ 154 (cd).cd_raw.iov_len = (len); 155 156 #define UIO_CHECK(uio) \ 157 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 158 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 159 return (EINVAL); \ 160 } 161 162 static dev_info_t *lofi_dip = NULL; 163 static void *lofi_statep = NULL; 164 static kmutex_t lofi_lock; /* state lock */ 165 166 /* 167 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 168 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 169 * high. If we want to be assured that the underlying device is always busy, 170 * we must be sure that the number of bytes enqueued when the number of 171 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 172 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 173 * set maxalloc to be the maximum throughput (in bytes per second) of the 174 * underlying device divided by the minimum I/O size. We assume a realistic 175 * maximum throughput of one hundred megabytes per second; we set maxalloc on 176 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 177 */ 178 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 179 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 180 181 uint32_t lofi_max_files = LOFI_MAX_FILES; 182 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 183 184 /* 185 * To avoid decompressing data in a compressed segment multiple times 186 * when accessing small parts of a segment's data, we cache and reuse 187 * the uncompressed segment's data. 188 * 189 * A single cached segment is sufficient to avoid lots of duplicate 190 * segment decompress operations. A small cache size also reduces the 191 * memory footprint. 192 * 193 * lofi_max_comp_cache is the maximum number of decompressed data segments 194 * cached for each compressed lofi image. It can be set to 0 to disable 195 * caching. 196 */ 197 198 uint32_t lofi_max_comp_cache = 1; 199 200 static int gzip_decompress(void *src, size_t srclen, void *dst, 201 size_t *destlen, int level); 202 203 static int lzma_decompress(void *src, size_t srclen, void *dst, 204 size_t *dstlen, int level); 205 206 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 207 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 208 {gzip_decompress, NULL, 6, "gzip-6"}, 209 {gzip_decompress, NULL, 9, "gzip-9"}, 210 {lzma_decompress, NULL, 0, "lzma"} 211 }; 212 213 /*ARGSUSED*/ 214 static void 215 *SzAlloc(void *p, size_t size) 216 { 217 return (kmem_alloc(size, KM_SLEEP)); 218 } 219 220 /*ARGSUSED*/ 221 static void 222 SzFree(void *p, void *address, size_t size) 223 { 224 kmem_free(address, size); 225 } 226 227 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 228 229 /* 230 * Free data referenced by the linked list of cached uncompressed 231 * segments. 232 */ 233 static void 234 lofi_free_comp_cache(struct lofi_state *lsp) 235 { 236 struct lofi_comp_cache *lc; 237 238 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 239 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 240 kmem_free(lc, sizeof (struct lofi_comp_cache)); 241 lsp->ls_comp_cache_count--; 242 } 243 ASSERT(lsp->ls_comp_cache_count == 0); 244 } 245 246 static int 247 lofi_busy(void) 248 { 249 minor_t minor; 250 251 /* 252 * We need to make sure no mappings exist - mod_remove won't 253 * help because the device isn't open. 254 */ 255 mutex_enter(&lofi_lock); 256 for (minor = 1; minor <= lofi_max_files; minor++) { 257 if (ddi_get_soft_state(lofi_statep, minor) != NULL) { 258 mutex_exit(&lofi_lock); 259 return (EBUSY); 260 } 261 } 262 mutex_exit(&lofi_lock); 263 return (0); 264 } 265 266 static int 267 is_opened(struct lofi_state *lsp) 268 { 269 ASSERT(mutex_owned(&lofi_lock)); 270 return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count); 271 } 272 273 static int 274 mark_opened(struct lofi_state *lsp, int otyp) 275 { 276 ASSERT(mutex_owned(&lofi_lock)); 277 switch (otyp) { 278 case OTYP_CHR: 279 lsp->ls_chr_open = 1; 280 break; 281 case OTYP_BLK: 282 lsp->ls_blk_open = 1; 283 break; 284 case OTYP_LYR: 285 lsp->ls_lyr_open_count++; 286 break; 287 default: 288 return (-1); 289 } 290 return (0); 291 } 292 293 static void 294 mark_closed(struct lofi_state *lsp, int otyp) 295 { 296 ASSERT(mutex_owned(&lofi_lock)); 297 switch (otyp) { 298 case OTYP_CHR: 299 lsp->ls_chr_open = 0; 300 break; 301 case OTYP_BLK: 302 lsp->ls_blk_open = 0; 303 break; 304 case OTYP_LYR: 305 lsp->ls_lyr_open_count--; 306 break; 307 default: 308 break; 309 } 310 } 311 312 static void 313 lofi_free_crypto(struct lofi_state *lsp) 314 { 315 ASSERT(mutex_owned(&lofi_lock)); 316 317 if (lsp->ls_crypto_enabled) { 318 /* 319 * Clean up the crypto state so that it doesn't hang around 320 * in memory after we are done with it. 321 */ 322 bzero(lsp->ls_key.ck_data, 323 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 324 kmem_free(lsp->ls_key.ck_data, 325 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 326 lsp->ls_key.ck_data = NULL; 327 lsp->ls_key.ck_length = 0; 328 329 if (lsp->ls_mech.cm_param != NULL) { 330 kmem_free(lsp->ls_mech.cm_param, 331 lsp->ls_mech.cm_param_len); 332 lsp->ls_mech.cm_param = NULL; 333 lsp->ls_mech.cm_param_len = 0; 334 } 335 336 if (lsp->ls_iv_mech.cm_param != NULL) { 337 kmem_free(lsp->ls_iv_mech.cm_param, 338 lsp->ls_iv_mech.cm_param_len); 339 lsp->ls_iv_mech.cm_param = NULL; 340 lsp->ls_iv_mech.cm_param_len = 0; 341 } 342 343 mutex_destroy(&lsp->ls_crypto_lock); 344 } 345 } 346 347 static void 348 lofi_free_handle(dev_t dev, minor_t minor, struct lofi_state *lsp, 349 cred_t *credp) 350 { 351 dev_t newdev; 352 char namebuf[50]; 353 354 ASSERT(mutex_owned(&lofi_lock)); 355 356 lofi_free_crypto(lsp); 357 358 if (lsp->ls_vp) { 359 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 360 1, 0, credp, NULL); 361 VN_RELE(lsp->ls_vp); 362 lsp->ls_vp = NULL; 363 } 364 365 newdev = makedevice(getmajor(dev), minor); 366 (void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME); 367 (void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME); 368 369 (void) snprintf(namebuf, sizeof (namebuf), "%d", minor); 370 ddi_remove_minor_node(lofi_dip, namebuf); 371 (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor); 372 ddi_remove_minor_node(lofi_dip, namebuf); 373 374 kmem_free(lsp->ls_filename, lsp->ls_filename_sz); 375 taskq_destroy(lsp->ls_taskq); 376 if (lsp->ls_kstat) { 377 kstat_delete(lsp->ls_kstat); 378 mutex_destroy(&lsp->ls_kstat_lock); 379 } 380 381 /* 382 * Free cached decompressed segment data 383 */ 384 lofi_free_comp_cache(lsp); 385 list_destroy(&lsp->ls_comp_cache); 386 mutex_destroy(&lsp->ls_comp_cache_lock); 387 388 if (lsp->ls_uncomp_seg_sz > 0) { 389 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 390 lsp->ls_uncomp_seg_sz = 0; 391 } 392 393 mutex_destroy(&lsp->ls_vp_lock); 394 395 ddi_soft_state_free(lofi_statep, minor); 396 } 397 398 /*ARGSUSED*/ 399 static int 400 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 401 { 402 minor_t minor; 403 struct lofi_state *lsp; 404 405 mutex_enter(&lofi_lock); 406 minor = getminor(*devp); 407 if (minor == 0) { 408 /* master control device */ 409 /* must be opened exclusively */ 410 if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) { 411 mutex_exit(&lofi_lock); 412 return (EINVAL); 413 } 414 lsp = ddi_get_soft_state(lofi_statep, 0); 415 if (lsp == NULL) { 416 mutex_exit(&lofi_lock); 417 return (ENXIO); 418 } 419 if (is_opened(lsp)) { 420 mutex_exit(&lofi_lock); 421 return (EBUSY); 422 } 423 (void) mark_opened(lsp, OTYP_CHR); 424 mutex_exit(&lofi_lock); 425 return (0); 426 } 427 428 /* otherwise, the mapping should already exist */ 429 lsp = ddi_get_soft_state(lofi_statep, minor); 430 if (lsp == NULL) { 431 mutex_exit(&lofi_lock); 432 return (EINVAL); 433 } 434 435 if (lsp->ls_vp == NULL) { 436 mutex_exit(&lofi_lock); 437 return (ENXIO); 438 } 439 440 if (mark_opened(lsp, otyp) == -1) { 441 mutex_exit(&lofi_lock); 442 return (EINVAL); 443 } 444 445 mutex_exit(&lofi_lock); 446 return (0); 447 } 448 449 /*ARGSUSED*/ 450 static int 451 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 452 { 453 minor_t minor; 454 struct lofi_state *lsp; 455 456 mutex_enter(&lofi_lock); 457 minor = getminor(dev); 458 lsp = ddi_get_soft_state(lofi_statep, minor); 459 if (lsp == NULL) { 460 mutex_exit(&lofi_lock); 461 return (EINVAL); 462 } 463 mark_closed(lsp, otyp); 464 465 /* 466 * If we forcibly closed the underlying device (li_force), or 467 * asked for cleanup (li_cleanup), finish up if we're the last 468 * out of the door. 469 */ 470 if (minor != 0 && !is_opened(lsp) && 471 (lsp->ls_cleanup || lsp->ls_vp == NULL)) 472 lofi_free_handle(dev, minor, lsp, credp); 473 474 mutex_exit(&lofi_lock); 475 return (0); 476 } 477 478 /* 479 * Sets the mechanism's initialization vector (IV) if one is needed. 480 * The IV is computed from the data block number. lsp->ls_mech is 481 * altered so that: 482 * lsp->ls_mech.cm_param_len is set to the IV len. 483 * lsp->ls_mech.cm_param is set to the IV. 484 */ 485 static int 486 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 487 { 488 int ret; 489 crypto_data_t cdata; 490 char *iv; 491 size_t iv_len; 492 size_t min; 493 void *data; 494 size_t datasz; 495 496 ASSERT(mutex_owned(&lsp->ls_crypto_lock)); 497 498 if (lsp == NULL) 499 return (CRYPTO_DEVICE_ERROR); 500 501 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 502 if (lsp->ls_iv_type == IVM_NONE) { 503 return (CRYPTO_SUCCESS); 504 } 505 506 /* 507 * if kmem already alloced from previous call and it's the same size 508 * we need now, just recycle it; allocate new kmem only if we have to 509 */ 510 if (lsp->ls_mech.cm_param == NULL || 511 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 512 iv_len = lsp->ls_iv_len; 513 iv = kmem_zalloc(iv_len, KM_SLEEP); 514 } else { 515 iv_len = lsp->ls_mech.cm_param_len; 516 iv = lsp->ls_mech.cm_param; 517 bzero(iv, iv_len); 518 } 519 520 switch (lsp->ls_iv_type) { 521 case IVM_ENC_BLKNO: 522 /* iv is not static, lblkno changes each time */ 523 data = &lblkno; 524 datasz = sizeof (lblkno); 525 break; 526 default: 527 data = 0; 528 datasz = 0; 529 break; 530 } 531 532 /* 533 * write blkno into the iv buffer padded on the left in case 534 * blkno ever grows bigger than its current longlong_t size 535 * or a variation other than blkno is used for the iv data 536 */ 537 min = MIN(datasz, iv_len); 538 bcopy(data, iv + (iv_len - min), min); 539 540 /* encrypt the data in-place to get the IV */ 541 SETUP_C_DATA(cdata, iv, iv_len); 542 543 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 544 NULL, NULL, NULL); 545 if (ret != CRYPTO_SUCCESS) { 546 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 547 lblkno, ret); 548 if (lsp->ls_mech.cm_param != iv) 549 kmem_free(iv, iv_len); 550 551 return (ret); 552 } 553 554 /* clean up the iv from the last computation */ 555 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 556 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 557 558 lsp->ls_mech.cm_param_len = iv_len; 559 lsp->ls_mech.cm_param = iv; 560 561 return (CRYPTO_SUCCESS); 562 } 563 564 /* 565 * Performs encryption and decryption of a chunk of data of size "len", 566 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 567 * DEV_BSIZE. 568 */ 569 static int 570 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 571 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 572 { 573 crypto_data_t cdata; 574 crypto_data_t wdata; 575 int ret; 576 longlong_t lblkno = bp->b_lblkno; 577 578 mutex_enter(&lsp->ls_crypto_lock); 579 580 /* 581 * though we could encrypt/decrypt entire "len" chunk of data, we need 582 * to break it into DEV_BSIZE pieces to capture blkno incrementing 583 */ 584 SETUP_C_DATA(cdata, plaintext, len); 585 cdata.cd_length = DEV_BSIZE; 586 if (ciphertext != NULL) { /* not in-place crypto */ 587 SETUP_C_DATA(wdata, ciphertext, len); 588 wdata.cd_length = DEV_BSIZE; 589 } 590 591 do { 592 ret = lofi_blk_mech(lsp, lblkno); 593 if (ret != CRYPTO_SUCCESS) 594 continue; 595 596 if (op_encrypt) { 597 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 598 &lsp->ls_key, NULL, 599 ((ciphertext != NULL) ? &wdata : NULL), NULL); 600 } else { 601 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 602 &lsp->ls_key, NULL, 603 ((ciphertext != NULL) ? &wdata : NULL), NULL); 604 } 605 606 cdata.cd_offset += DEV_BSIZE; 607 if (ciphertext != NULL) 608 wdata.cd_offset += DEV_BSIZE; 609 lblkno++; 610 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 611 612 mutex_exit(&lsp->ls_crypto_lock); 613 614 if (ret != CRYPTO_SUCCESS) { 615 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 616 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 617 lblkno, ret); 618 } 619 620 return (ret); 621 } 622 623 #define RDWR_RAW 1 624 #define RDWR_BCOPY 2 625 626 static int 627 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 628 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 629 { 630 ssize_t resid; 631 int isread; 632 int error; 633 634 /* 635 * Handles reads/writes for both plain and encrypted lofi 636 * Note: offset is already shifted by lsp->ls_crypto_offset 637 * when it gets here. 638 */ 639 640 isread = bp->b_flags & B_READ; 641 if (isread) { 642 if (method == RDWR_BCOPY) { 643 /* DO NOT update bp->b_resid for bcopy */ 644 bcopy(bcopy_locn, bufaddr, len); 645 error = 0; 646 } else { /* RDWR_RAW */ 647 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 648 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 649 &resid); 650 bp->b_resid = resid; 651 } 652 if (lsp->ls_crypto_enabled && error == 0) { 653 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 654 B_FALSE) != CRYPTO_SUCCESS) { 655 /* 656 * XXX: original code didn't set residual 657 * back to len because no error was expected 658 * from bcopy() if encryption is not enabled 659 */ 660 if (method != RDWR_BCOPY) 661 bp->b_resid = len; 662 error = EIO; 663 } 664 } 665 return (error); 666 } else { 667 void *iobuf = bufaddr; 668 669 if (lsp->ls_crypto_enabled) { 670 /* don't do in-place crypto to keep bufaddr intact */ 671 iobuf = kmem_alloc(len, KM_SLEEP); 672 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 673 B_TRUE) != CRYPTO_SUCCESS) { 674 kmem_free(iobuf, len); 675 if (method != RDWR_BCOPY) 676 bp->b_resid = len; 677 return (EIO); 678 } 679 } 680 if (method == RDWR_BCOPY) { 681 /* DO NOT update bp->b_resid for bcopy */ 682 bcopy(iobuf, bcopy_locn, len); 683 error = 0; 684 } else { /* RDWR_RAW */ 685 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 686 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 687 &resid); 688 bp->b_resid = resid; 689 } 690 if (lsp->ls_crypto_enabled) { 691 kmem_free(iobuf, len); 692 } 693 return (error); 694 } 695 } 696 697 static int 698 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 699 struct lofi_state *lsp) 700 { 701 int error; 702 offset_t alignedoffset, mapoffset; 703 size_t xfersize; 704 int isread; 705 int smflags; 706 caddr_t mapaddr; 707 size_t len; 708 enum seg_rw srw; 709 int save_error; 710 711 /* 712 * Note: offset is already shifted by lsp->ls_crypto_offset 713 * when it gets here. 714 */ 715 if (lsp->ls_crypto_enabled) 716 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 717 718 /* 719 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 720 * an 8K boundary, but the buf transfer address may not be 721 * aligned on more than a 512-byte boundary (we don't enforce 722 * that even though we could). This matters since the initial 723 * part of the transfer may not start at offset 0 within the 724 * segmap'd chunk. So we have to compensate for that with 725 * 'mapoffset'. Subsequent chunks always start off at the 726 * beginning, and the last is capped by b_resid 727 * 728 * Visually, where "|" represents page map boundaries: 729 * alignedoffset (mapaddr begins at this segmap boundary) 730 * | offset (from beginning of file) 731 * | | len 732 * v v v 733 * ===|====X========|====...======|========X====|==== 734 * /-------------...---------------/ 735 * ^ bp->b_bcount/bp->b_resid at start 736 * /----/--------/----...------/--------/ 737 * ^ ^ ^ ^ ^ 738 * | | | | nth xfersize (<= MAXBSIZE) 739 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 740 * | 1st xfersize (<= MAXBSIZE) 741 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 742 * 743 * Notes: "alignedoffset" is "offset" rounded down to nearest 744 * MAXBSIZE boundary. "len" is next page boundary of size 745 * PAGESIZE after "alignedoffset". 746 */ 747 mapoffset = offset & MAXBOFFSET; 748 alignedoffset = offset - mapoffset; 749 bp->b_resid = bp->b_bcount; 750 isread = bp->b_flags & B_READ; 751 srw = isread ? S_READ : S_WRITE; 752 do { 753 xfersize = MIN(lsp->ls_vp_comp_size - offset, 754 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 755 len = roundup(mapoffset + xfersize, PAGESIZE); 756 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 757 alignedoffset, MAXBSIZE, 1, srw); 758 /* 759 * Now fault in the pages. This lets us check 760 * for errors before we reference mapaddr and 761 * try to resolve the fault in bcopy (which would 762 * panic instead). And this can easily happen, 763 * particularly if you've lofi'd a file over NFS 764 * and someone deletes the file on the server. 765 */ 766 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 767 len, F_SOFTLOCK, srw); 768 if (error) { 769 (void) segmap_release(segkmap, mapaddr, 0); 770 if (FC_CODE(error) == FC_OBJERR) 771 error = FC_ERRNO(error); 772 else 773 error = EIO; 774 break; 775 } 776 /* error may be non-zero for encrypted lofi */ 777 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 778 RDWR_BCOPY, mapaddr + mapoffset); 779 if (error == 0) { 780 bp->b_resid -= xfersize; 781 bufaddr += xfersize; 782 offset += xfersize; 783 } 784 smflags = 0; 785 if (isread) { 786 smflags |= SM_FREE; 787 /* 788 * If we're reading an entire page starting 789 * at a page boundary, there's a good chance 790 * we won't need it again. Put it on the 791 * head of the freelist. 792 */ 793 if (mapoffset == 0 && xfersize == MAXBSIZE) 794 smflags |= SM_DONTNEED; 795 } else { 796 /* 797 * Write back good pages, it is okay to 798 * always release asynchronous here as we'll 799 * follow with VOP_FSYNC for B_SYNC buffers. 800 */ 801 if (error == 0) 802 smflags |= SM_WRITE | SM_ASYNC; 803 } 804 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 805 len, F_SOFTUNLOCK, srw); 806 save_error = segmap_release(segkmap, mapaddr, smflags); 807 if (error == 0) 808 error = save_error; 809 /* only the first map may start partial */ 810 mapoffset = 0; 811 alignedoffset += MAXBSIZE; 812 } while ((error == 0) && (bp->b_resid > 0) && 813 (offset < lsp->ls_vp_comp_size)); 814 815 return (error); 816 } 817 818 /* 819 * Check if segment seg_index is present in the decompressed segment 820 * data cache. 821 * 822 * Returns a pointer to the decompressed segment data cache entry if 823 * found, and NULL when decompressed data for this segment is not yet 824 * cached. 825 */ 826 static struct lofi_comp_cache * 827 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 828 { 829 struct lofi_comp_cache *lc; 830 831 ASSERT(mutex_owned(&lsp->ls_comp_cache_lock)); 832 833 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 834 lc = list_next(&lsp->ls_comp_cache, lc)) { 835 if (lc->lc_index == seg_index) { 836 /* 837 * Decompressed segment data was found in the 838 * cache. 839 * 840 * The cache uses an LRU replacement strategy; 841 * move the entry to head of list. 842 */ 843 list_remove(&lsp->ls_comp_cache, lc); 844 list_insert_head(&lsp->ls_comp_cache, lc); 845 return (lc); 846 } 847 } 848 return (NULL); 849 } 850 851 /* 852 * Add the data for a decompressed segment at segment index 853 * seg_index to the cache of the decompressed segments. 854 * 855 * Returns a pointer to the cache element structure in case 856 * the data was added to the cache; returns NULL when the data 857 * wasn't cached. 858 */ 859 static struct lofi_comp_cache * 860 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 861 uchar_t *data) 862 { 863 struct lofi_comp_cache *lc; 864 865 ASSERT(mutex_owned(&lsp->ls_comp_cache_lock)); 866 867 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 868 lc = list_remove_tail(&lsp->ls_comp_cache); 869 ASSERT(lc != NULL); 870 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 871 kmem_free(lc, sizeof (struct lofi_comp_cache)); 872 lsp->ls_comp_cache_count--; 873 } 874 875 /* 876 * Do not cache when disabled by tunable variable 877 */ 878 if (lofi_max_comp_cache == 0) 879 return (NULL); 880 881 /* 882 * When the cache has not yet reached the maximum allowed 883 * number of segments, allocate a new cache element. 884 * Otherwise the cache is full; reuse the last list element 885 * (LRU) for caching the decompressed segment data. 886 * 887 * The cache element for the new decompressed segment data is 888 * added to the head of the list. 889 */ 890 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 891 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 892 lc->lc_data = NULL; 893 list_insert_head(&lsp->ls_comp_cache, lc); 894 lsp->ls_comp_cache_count++; 895 } else { 896 lc = list_remove_tail(&lsp->ls_comp_cache); 897 if (lc == NULL) 898 return (NULL); 899 list_insert_head(&lsp->ls_comp_cache, lc); 900 } 901 902 /* 903 * Free old uncompressed segment data when reusing a cache 904 * entry. 905 */ 906 if (lc->lc_data != NULL) 907 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 908 909 lc->lc_data = data; 910 lc->lc_index = seg_index; 911 return (lc); 912 } 913 914 915 /*ARGSUSED*/ 916 static int 917 gzip_decompress(void *src, size_t srclen, void *dst, 918 size_t *dstlen, int level) 919 { 920 ASSERT(*dstlen >= srclen); 921 922 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 923 return (-1); 924 return (0); 925 } 926 927 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 928 /*ARGSUSED*/ 929 static int 930 lzma_decompress(void *src, size_t srclen, void *dst, 931 size_t *dstlen, int level) 932 { 933 size_t insizepure; 934 void *actual_src; 935 ELzmaStatus status; 936 937 insizepure = srclen - LZMA_HEADER_SIZE; 938 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 939 940 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 941 (const Byte *)actual_src, &insizepure, 942 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 943 &g_Alloc) != SZ_OK) { 944 return (-1); 945 } 946 return (0); 947 } 948 949 /* 950 * This is basically what strategy used to be before we found we 951 * needed task queues. 952 */ 953 static void 954 lofi_strategy_task(void *arg) 955 { 956 struct buf *bp = (struct buf *)arg; 957 int error; 958 int syncflag = 0; 959 struct lofi_state *lsp; 960 offset_t offset; 961 caddr_t bufaddr; 962 size_t len; 963 size_t xfersize; 964 boolean_t bufinited = B_FALSE; 965 966 lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); 967 if (lsp == NULL) { 968 error = ENXIO; 969 goto errout; 970 } 971 if (lsp->ls_kstat) { 972 mutex_enter(lsp->ls_kstat->ks_lock); 973 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 974 mutex_exit(lsp->ls_kstat->ks_lock); 975 } 976 bp_mapin(bp); 977 bufaddr = bp->b_un.b_addr; 978 offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ 979 if (lsp->ls_crypto_enabled) { 980 /* encrypted data really begins after crypto header */ 981 offset += lsp->ls_crypto_offset; 982 } 983 len = bp->b_bcount; 984 bufinited = B_TRUE; 985 986 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 987 error = EIO; 988 goto errout; 989 } 990 991 /* 992 * If we're writing and the buffer was not B_ASYNC 993 * we'll follow up with a VOP_FSYNC() to force any 994 * asynchronous I/O to stable storage. 995 */ 996 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 997 syncflag = FSYNC; 998 999 /* 1000 * We used to always use vn_rdwr here, but we cannot do that because 1001 * we might decide to read or write from the the underlying 1002 * file during this call, which would be a deadlock because 1003 * we have the rw_lock. So instead we page, unless it's not 1004 * mapable or it's a character device or it's an encrypted lofi. 1005 */ 1006 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1007 lsp->ls_crypto_enabled) { 1008 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1009 NULL); 1010 } else if (lsp->ls_uncomp_seg_sz == 0) { 1011 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1012 } else { 1013 uchar_t *compressed_seg = NULL, *cmpbuf; 1014 uchar_t *uncompressed_seg = NULL; 1015 lofi_compress_info_t *li; 1016 size_t oblkcount; 1017 ulong_t seglen; 1018 uint64_t sblkno, eblkno, cmpbytes; 1019 uint64_t uncompressed_seg_index; 1020 struct lofi_comp_cache *lc; 1021 offset_t sblkoff, eblkoff; 1022 u_offset_t salign, ealign; 1023 u_offset_t sdiff; 1024 uint32_t comp_data_sz; 1025 uint64_t i; 1026 1027 /* 1028 * From here on we're dealing primarily with compressed files 1029 */ 1030 ASSERT(!lsp->ls_crypto_enabled); 1031 1032 /* 1033 * Compressed files can only be read from and 1034 * not written to 1035 */ 1036 if (!(bp->b_flags & B_READ)) { 1037 bp->b_resid = bp->b_bcount; 1038 error = EROFS; 1039 goto done; 1040 } 1041 1042 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1043 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1044 /* 1045 * Compute starting and ending compressed segment numbers 1046 * We use only bitwise operations avoiding division and 1047 * modulus because we enforce the compression segment size 1048 * to a power of 2 1049 */ 1050 sblkno = offset >> lsp->ls_comp_seg_shift; 1051 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1052 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1053 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1054 1055 /* 1056 * Check the decompressed segment cache. 1057 * 1058 * The cache is used only when the requested data 1059 * is within a segment. Requests that cross 1060 * segment boundaries bypass the cache. 1061 */ 1062 if (sblkno == eblkno || 1063 (sblkno + 1 == eblkno && eblkoff == 0)) { 1064 /* 1065 * Request doesn't cross a segment boundary, 1066 * now check the cache. 1067 */ 1068 mutex_enter(&lsp->ls_comp_cache_lock); 1069 lc = lofi_find_comp_data(lsp, sblkno); 1070 if (lc != NULL) { 1071 /* 1072 * We've found the decompressed segment 1073 * data in the cache; reuse it. 1074 */ 1075 bcopy(lc->lc_data + sblkoff, bufaddr, 1076 bp->b_bcount); 1077 mutex_exit(&lsp->ls_comp_cache_lock); 1078 bp->b_resid = 0; 1079 error = 0; 1080 goto done; 1081 } 1082 mutex_exit(&lsp->ls_comp_cache_lock); 1083 } 1084 1085 /* 1086 * Align start offset to block boundary for segmap 1087 */ 1088 salign = lsp->ls_comp_seg_index[sblkno]; 1089 sdiff = salign & (DEV_BSIZE - 1); 1090 salign -= sdiff; 1091 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1092 /* 1093 * We're dealing with the last segment of 1094 * the compressed file -- the size of this 1095 * segment *may not* be the same as the 1096 * segment size for the file 1097 */ 1098 eblkoff = (offset + bp->b_bcount) & 1099 (lsp->ls_uncomp_last_seg_sz - 1); 1100 ealign = lsp->ls_vp_comp_size; 1101 } else { 1102 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1103 } 1104 1105 /* 1106 * Preserve original request paramaters 1107 */ 1108 oblkcount = bp->b_bcount; 1109 1110 /* 1111 * Assign the calculated parameters 1112 */ 1113 comp_data_sz = ealign - salign; 1114 bp->b_bcount = comp_data_sz; 1115 1116 /* 1117 * Allocate fixed size memory blocks to hold compressed 1118 * segments and one uncompressed segment since we 1119 * uncompress segments one at a time 1120 */ 1121 compressed_seg = kmem_alloc(bp->b_bcount, KM_SLEEP); 1122 uncompressed_seg = kmem_alloc(lsp->ls_uncomp_seg_sz, KM_SLEEP); 1123 /* 1124 * Map in the calculated number of blocks 1125 */ 1126 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1127 bp, lsp); 1128 1129 bp->b_bcount = oblkcount; 1130 bp->b_resid = oblkcount; 1131 if (error != 0) 1132 goto done; 1133 1134 /* 1135 * We have the compressed blocks, now uncompress them 1136 */ 1137 cmpbuf = compressed_seg + sdiff; 1138 for (i = sblkno; i <= eblkno; i++) { 1139 ASSERT(i < lsp->ls_comp_index_sz - 1); 1140 1141 /* 1142 * The last segment is special in that it is 1143 * most likely not going to be the same 1144 * (uncompressed) size as the other segments. 1145 */ 1146 if (i == (lsp->ls_comp_index_sz - 2)) { 1147 seglen = lsp->ls_uncomp_last_seg_sz; 1148 } else { 1149 seglen = lsp->ls_uncomp_seg_sz; 1150 } 1151 1152 /* 1153 * Each of the segment index entries contains 1154 * the starting block number for that segment. 1155 * The number of compressed bytes in a segment 1156 * is thus the difference between the starting 1157 * block number of this segment and the starting 1158 * block number of the next segment. 1159 */ 1160 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1161 lsp->ls_comp_seg_index[i]; 1162 1163 /* 1164 * The first byte in a compressed segment is a flag 1165 * that indicates whether this segment is compressed 1166 * at all 1167 */ 1168 if (*cmpbuf == UNCOMPRESSED) { 1169 bcopy((cmpbuf + SEGHDR), uncompressed_seg, 1170 (cmpbytes - SEGHDR)); 1171 } else { 1172 if (li->l_decompress((cmpbuf + SEGHDR), 1173 (cmpbytes - SEGHDR), uncompressed_seg, 1174 &seglen, li->l_level) != 0) { 1175 error = EIO; 1176 goto done; 1177 } 1178 } 1179 1180 uncompressed_seg_index = i; 1181 1182 /* 1183 * Determine how much uncompressed data we 1184 * have to copy and copy it 1185 */ 1186 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1187 if (i == eblkno) 1188 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1189 1190 bcopy((uncompressed_seg + sblkoff), bufaddr, xfersize); 1191 1192 cmpbuf += cmpbytes; 1193 bufaddr += xfersize; 1194 bp->b_resid -= xfersize; 1195 sblkoff = 0; 1196 1197 if (bp->b_resid == 0) 1198 break; 1199 } 1200 1201 /* 1202 * Add the data for the last decopressed segment to 1203 * the cache. 1204 * 1205 * In case the uncompressed segment data was added to (and 1206 * is referenced by) the cache, make sure we don't free it 1207 * here. 1208 */ 1209 mutex_enter(&lsp->ls_comp_cache_lock); 1210 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1211 uncompressed_seg)) != NULL) { 1212 uncompressed_seg = NULL; 1213 } 1214 mutex_exit(&lsp->ls_comp_cache_lock); 1215 1216 done: 1217 if (compressed_seg != NULL) 1218 kmem_free(compressed_seg, comp_data_sz); 1219 if (uncompressed_seg != NULL) 1220 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1221 } /* end of handling compressed files */ 1222 1223 if ((error == 0) && (syncflag != 0)) 1224 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1225 1226 errout: 1227 if (bufinited && lsp->ls_kstat) { 1228 size_t n_done = bp->b_bcount - bp->b_resid; 1229 kstat_io_t *kioptr; 1230 1231 mutex_enter(lsp->ls_kstat->ks_lock); 1232 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1233 if (bp->b_flags & B_READ) { 1234 kioptr->nread += n_done; 1235 kioptr->reads++; 1236 } else { 1237 kioptr->nwritten += n_done; 1238 kioptr->writes++; 1239 } 1240 kstat_runq_exit(kioptr); 1241 mutex_exit(lsp->ls_kstat->ks_lock); 1242 } 1243 1244 mutex_enter(&lsp->ls_vp_lock); 1245 if (--lsp->ls_vp_iocount == 0) 1246 cv_broadcast(&lsp->ls_vp_cv); 1247 mutex_exit(&lsp->ls_vp_lock); 1248 1249 bioerror(bp, error); 1250 biodone(bp); 1251 } 1252 1253 static int 1254 lofi_strategy(struct buf *bp) 1255 { 1256 struct lofi_state *lsp; 1257 offset_t offset; 1258 1259 /* 1260 * We cannot just do I/O here, because the current thread 1261 * _might_ end up back in here because the underlying filesystem 1262 * wants a buffer, which eventually gets into bio_recycle and 1263 * might call into lofi to write out a delayed-write buffer. 1264 * This is bad if the filesystem above lofi is the same as below. 1265 * 1266 * We could come up with a complex strategy using threads to 1267 * do the I/O asynchronously, or we could use task queues. task 1268 * queues were incredibly easy so they win. 1269 */ 1270 lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); 1271 if (lsp == NULL) { 1272 bioerror(bp, ENXIO); 1273 biodone(bp); 1274 return (0); 1275 } 1276 1277 mutex_enter(&lsp->ls_vp_lock); 1278 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1279 bioerror(bp, EIO); 1280 biodone(bp); 1281 mutex_exit(&lsp->ls_vp_lock); 1282 return (0); 1283 } 1284 1285 offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ 1286 if (lsp->ls_crypto_enabled) { 1287 /* encrypted data really begins after crypto header */ 1288 offset += lsp->ls_crypto_offset; 1289 } 1290 if (offset == lsp->ls_vp_size) { 1291 /* EOF */ 1292 if ((bp->b_flags & B_READ) != 0) { 1293 bp->b_resid = bp->b_bcount; 1294 bioerror(bp, 0); 1295 } else { 1296 /* writes should fail */ 1297 bioerror(bp, ENXIO); 1298 } 1299 biodone(bp); 1300 mutex_exit(&lsp->ls_vp_lock); 1301 return (0); 1302 } 1303 if (offset > lsp->ls_vp_size) { 1304 bioerror(bp, ENXIO); 1305 biodone(bp); 1306 mutex_exit(&lsp->ls_vp_lock); 1307 return (0); 1308 } 1309 lsp->ls_vp_iocount++; 1310 mutex_exit(&lsp->ls_vp_lock); 1311 1312 if (lsp->ls_kstat) { 1313 mutex_enter(lsp->ls_kstat->ks_lock); 1314 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1315 mutex_exit(lsp->ls_kstat->ks_lock); 1316 } 1317 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1318 return (0); 1319 } 1320 1321 /*ARGSUSED2*/ 1322 static int 1323 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1324 { 1325 if (getminor(dev) == 0) 1326 return (EINVAL); 1327 UIO_CHECK(uio); 1328 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1329 } 1330 1331 /*ARGSUSED2*/ 1332 static int 1333 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1334 { 1335 if (getminor(dev) == 0) 1336 return (EINVAL); 1337 UIO_CHECK(uio); 1338 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1339 } 1340 1341 /*ARGSUSED2*/ 1342 static int 1343 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1344 { 1345 if (getminor(dev) == 0) 1346 return (EINVAL); 1347 UIO_CHECK(aio->aio_uio); 1348 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1349 } 1350 1351 /*ARGSUSED2*/ 1352 static int 1353 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1354 { 1355 if (getminor(dev) == 0) 1356 return (EINVAL); 1357 UIO_CHECK(aio->aio_uio); 1358 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1359 } 1360 1361 /*ARGSUSED*/ 1362 static int 1363 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1364 { 1365 switch (infocmd) { 1366 case DDI_INFO_DEVT2DEVINFO: 1367 *result = lofi_dip; 1368 return (DDI_SUCCESS); 1369 case DDI_INFO_DEVT2INSTANCE: 1370 *result = 0; 1371 return (DDI_SUCCESS); 1372 } 1373 return (DDI_FAILURE); 1374 } 1375 1376 static int 1377 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1378 { 1379 int error; 1380 1381 if (cmd != DDI_ATTACH) 1382 return (DDI_FAILURE); 1383 error = ddi_soft_state_zalloc(lofi_statep, 0); 1384 if (error == DDI_FAILURE) { 1385 return (DDI_FAILURE); 1386 } 1387 error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 1388 DDI_PSEUDO, NULL); 1389 if (error == DDI_FAILURE) { 1390 ddi_soft_state_free(lofi_statep, 0); 1391 return (DDI_FAILURE); 1392 } 1393 /* driver handles kernel-issued IOCTLs */ 1394 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1395 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1396 ddi_remove_minor_node(dip, NULL); 1397 ddi_soft_state_free(lofi_statep, 0); 1398 return (DDI_FAILURE); 1399 } 1400 lofi_dip = dip; 1401 ddi_report_dev(dip); 1402 return (DDI_SUCCESS); 1403 } 1404 1405 static int 1406 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1407 { 1408 if (cmd != DDI_DETACH) 1409 return (DDI_FAILURE); 1410 if (lofi_busy()) 1411 return (DDI_FAILURE); 1412 lofi_dip = NULL; 1413 ddi_remove_minor_node(dip, NULL); 1414 ddi_prop_remove_all(dip); 1415 ddi_soft_state_free(lofi_statep, 0); 1416 return (DDI_SUCCESS); 1417 } 1418 1419 /* 1420 * With addition of encryption, be careful that encryption key is wiped before 1421 * kernel memory structures are freed, and also that key is not accidentally 1422 * passed out into userland structures. 1423 */ 1424 static void 1425 free_lofi_ioctl(struct lofi_ioctl *klip) 1426 { 1427 /* Make sure this encryption key doesn't stick around */ 1428 bzero(klip->li_key, sizeof (klip->li_key)); 1429 kmem_free(klip, sizeof (struct lofi_ioctl)); 1430 } 1431 1432 /* 1433 * These two just simplify the rest of the ioctls that need to copyin/out 1434 * the lofi_ioctl structure. 1435 */ 1436 struct lofi_ioctl * 1437 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, int flag) 1438 { 1439 struct lofi_ioctl *klip; 1440 int error; 1441 1442 klip = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 1443 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 1444 if (error) { 1445 free_lofi_ioctl(klip); 1446 return (NULL); 1447 } 1448 1449 /* make sure filename is always null-terminated */ 1450 klip->li_filename[MAXPATHLEN-1] = '\0'; 1451 1452 /* validate minor number */ 1453 if (klip->li_minor > lofi_max_files) { 1454 free_lofi_ioctl(klip); 1455 cmn_err(CE_WARN, "attempt to map more than lofi_max_files (%d)", 1456 lofi_max_files); 1457 return (NULL); 1458 } 1459 return (klip); 1460 } 1461 1462 int 1463 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 1464 int flag) 1465 { 1466 int error; 1467 1468 /* 1469 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 1470 * This ensures that an attacker can't trivially find the 1471 * key for a mapping just by issuing the ioctl. 1472 * 1473 * It can still be found by poking around in kmem with mdb(1), 1474 * but there is no point in making it easy when the info isn't 1475 * of any use in this direction anyway. 1476 * 1477 * Either way we don't actually have the raw key stored in 1478 * a form that we can get it anyway, since we just used it 1479 * to create a ctx template and didn't keep "the original". 1480 */ 1481 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 1482 if (error) 1483 return (EFAULT); 1484 return (0); 1485 } 1486 1487 /* 1488 * Return the minor number 'filename' is mapped to, if it is. 1489 */ 1490 static int 1491 file_to_minor(char *filename) 1492 { 1493 minor_t minor; 1494 struct lofi_state *lsp; 1495 1496 ASSERT(mutex_owned(&lofi_lock)); 1497 for (minor = 1; minor <= lofi_max_files; minor++) { 1498 lsp = ddi_get_soft_state(lofi_statep, minor); 1499 if (lsp == NULL) 1500 continue; 1501 if (strcmp(lsp->ls_filename, filename) == 0) 1502 return (minor); 1503 } 1504 return (0); 1505 } 1506 1507 /* 1508 * lofiadm does some validation, but since Joe Random (or crashme) could 1509 * do our ioctls, we need to do some validation too. 1510 */ 1511 static int 1512 valid_filename(const char *filename) 1513 { 1514 static char *blkprefix = "/dev/" LOFI_BLOCK_NAME "/"; 1515 static char *charprefix = "/dev/" LOFI_CHAR_NAME "/"; 1516 1517 /* must be absolute path */ 1518 if (filename[0] != '/') 1519 return (0); 1520 /* must not be lofi */ 1521 if (strncmp(filename, blkprefix, strlen(blkprefix)) == 0) 1522 return (0); 1523 if (strncmp(filename, charprefix, strlen(charprefix)) == 0) 1524 return (0); 1525 return (1); 1526 } 1527 1528 /* 1529 * Fakes up a disk geometry, and one big partition, based on the size 1530 * of the file. This is needed because we allow newfs'ing the device, 1531 * and newfs will do several disk ioctls to figure out the geometry and 1532 * partition information. It uses that information to determine the parameters 1533 * to pass to mkfs. Geometry is pretty much irrelevant these days, but we 1534 * have to support it. 1535 */ 1536 static void 1537 fake_disk_geometry(struct lofi_state *lsp) 1538 { 1539 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 1540 1541 /* dk_geom - see dkio(7I) */ 1542 /* 1543 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 1544 * of sectors), but that breaks programs like fdisk which want to 1545 * partition a disk by cylinder. With one cylinder, you can't create 1546 * an fdisk partition and put pcfs on it for testing (hard to pick 1547 * a number between one and one). 1548 * 1549 * The cheezy floppy test is an attempt to not have too few cylinders 1550 * for a small file, or so many on a big file that you waste space 1551 * for backup superblocks or cylinder group structures. 1552 */ 1553 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 1554 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 1555 else 1556 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 1557 /* in case file file is < 100k */ 1558 if (lsp->ls_dkg.dkg_ncyl == 0) 1559 lsp->ls_dkg.dkg_ncyl = 1; 1560 lsp->ls_dkg.dkg_acyl = 0; 1561 lsp->ls_dkg.dkg_bcyl = 0; 1562 lsp->ls_dkg.dkg_nhead = 1; 1563 lsp->ls_dkg.dkg_obs1 = 0; 1564 lsp->ls_dkg.dkg_intrlv = 0; 1565 lsp->ls_dkg.dkg_obs2 = 0; 1566 lsp->ls_dkg.dkg_obs3 = 0; 1567 lsp->ls_dkg.dkg_apc = 0; 1568 lsp->ls_dkg.dkg_rpm = 7200; 1569 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl; 1570 lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl); 1571 lsp->ls_dkg.dkg_write_reinstruct = 0; 1572 lsp->ls_dkg.dkg_read_reinstruct = 0; 1573 1574 /* vtoc - see dkio(7I) */ 1575 bzero(&lsp->ls_vtoc, sizeof (struct vtoc)); 1576 lsp->ls_vtoc.v_sanity = VTOC_SANE; 1577 lsp->ls_vtoc.v_version = V_VERSION; 1578 (void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME, 1579 sizeof (lsp->ls_vtoc.v_volume)); 1580 lsp->ls_vtoc.v_sectorsz = DEV_BSIZE; 1581 lsp->ls_vtoc.v_nparts = 1; 1582 lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED; 1583 1584 /* 1585 * A compressed file is read-only, other files can 1586 * be read-write 1587 */ 1588 if (lsp->ls_uncomp_seg_sz > 0) { 1589 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY; 1590 } else { 1591 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT; 1592 } 1593 lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0; 1594 /* 1595 * The partition size cannot just be the number of sectors, because 1596 * that might not end on a cylinder boundary. And if that's the case, 1597 * newfs/mkfs will print a scary warning. So just figure the size 1598 * based on the number of cylinders and sectors/cylinder. 1599 */ 1600 lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 1601 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 1602 1603 /* dk_cinfo - see dkio(7I) */ 1604 bzero(&lsp->ls_ci, sizeof (struct dk_cinfo)); 1605 (void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME); 1606 lsp->ls_ci.dki_ctype = DKC_MD; 1607 lsp->ls_ci.dki_flags = 0; 1608 lsp->ls_ci.dki_cnum = 0; 1609 lsp->ls_ci.dki_addr = 0; 1610 lsp->ls_ci.dki_space = 0; 1611 lsp->ls_ci.dki_prio = 0; 1612 lsp->ls_ci.dki_vec = 0; 1613 (void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME); 1614 lsp->ls_ci.dki_unit = 0; 1615 lsp->ls_ci.dki_slave = 0; 1616 lsp->ls_ci.dki_partition = 0; 1617 /* 1618 * newfs uses this to set maxcontig. Must not be < 16, or it 1619 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 1620 * it by the block size. Then tunefs doesn't work because 1621 * maxcontig is 0. 1622 */ 1623 lsp->ls_ci.dki_maxtransfer = 16; 1624 } 1625 1626 /* 1627 * map in a compressed file 1628 * 1629 * Read in the header and the index that follows. 1630 * 1631 * The header is as follows - 1632 * 1633 * Signature (name of the compression algorithm) 1634 * Compression segment size (a multiple of 512) 1635 * Number of index entries 1636 * Size of the last block 1637 * The array containing the index entries 1638 * 1639 * The header information is always stored in 1640 * network byte order on disk. 1641 */ 1642 static int 1643 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 1644 { 1645 uint32_t index_sz, header_len, i; 1646 ssize_t resid; 1647 enum uio_rw rw; 1648 char *tbuf = buf; 1649 int error; 1650 1651 /* The signature has already been read */ 1652 tbuf += sizeof (lsp->ls_comp_algorithm); 1653 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 1654 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 1655 1656 /* 1657 * The compressed segment size must be a power of 2 1658 */ 1659 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 1660 !ISP2(lsp->ls_uncomp_seg_sz)) 1661 return (EINVAL); 1662 1663 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 1664 ; 1665 1666 lsp->ls_comp_seg_shift = i; 1667 1668 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 1669 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 1670 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 1671 1672 tbuf += sizeof (lsp->ls_comp_index_sz); 1673 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 1674 sizeof (lsp->ls_uncomp_last_seg_sz)); 1675 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 1676 1677 /* 1678 * Compute the total size of the uncompressed data 1679 * for use in fake_disk_geometry and other calculations. 1680 * Disk geometry has to be faked with respect to the 1681 * actual uncompressed data size rather than the 1682 * compressed file size. 1683 */ 1684 lsp->ls_vp_size = 1685 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 1686 + lsp->ls_uncomp_last_seg_sz; 1687 1688 /* 1689 * Index size is rounded up to DEV_BSIZE for ease 1690 * of segmapping 1691 */ 1692 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 1693 header_len = sizeof (lsp->ls_comp_algorithm) + 1694 sizeof (lsp->ls_uncomp_seg_sz) + 1695 sizeof (lsp->ls_comp_index_sz) + 1696 sizeof (lsp->ls_uncomp_last_seg_sz); 1697 lsp->ls_comp_offbase = header_len + index_sz; 1698 1699 index_sz += header_len; 1700 index_sz = roundup(index_sz, DEV_BSIZE); 1701 1702 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 1703 lsp->ls_comp_index_data_sz = index_sz; 1704 1705 /* 1706 * Read in the index -- this has a side-effect 1707 * of reading in the header as well 1708 */ 1709 rw = UIO_READ; 1710 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 1711 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 1712 1713 if (error != 0) 1714 return (error); 1715 1716 /* Skip the header, this is where the index really begins */ 1717 lsp->ls_comp_seg_index = 1718 /*LINTED*/ 1719 (uint64_t *)(lsp->ls_comp_index_data + header_len); 1720 1721 /* 1722 * Now recompute offsets in the index to account for 1723 * the header length 1724 */ 1725 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 1726 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 1727 BE_64(lsp->ls_comp_seg_index[i]); 1728 } 1729 1730 return (error); 1731 } 1732 1733 /* 1734 * Check to see if the passed in signature is a valid 1735 * one. If it is valid, return the index into 1736 * lofi_compress_table. 1737 * 1738 * Return -1 if it is invalid 1739 */ 1740 static int lofi_compress_select(char *signature) 1741 { 1742 int i; 1743 1744 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 1745 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 1746 return (i); 1747 } 1748 1749 return (-1); 1750 } 1751 1752 /* 1753 * map a file to a minor number. Return the minor number. 1754 */ 1755 static int 1756 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 1757 int *rvalp, struct cred *credp, int ioctl_flag) 1758 { 1759 minor_t newminor; 1760 struct lofi_state *lsp; 1761 struct lofi_ioctl *klip; 1762 int error; 1763 struct vnode *vp; 1764 int64_t Nblocks_prop_val; 1765 int64_t Size_prop_val; 1766 int compress_index; 1767 vattr_t vattr; 1768 int flag; 1769 enum vtype v_type; 1770 int zalloced = 0; 1771 dev_t newdev; 1772 char namebuf[50]; 1773 char buf[DEV_BSIZE]; 1774 char crybuf[DEV_BSIZE]; 1775 ssize_t resid; 1776 boolean_t need_vn_close = B_FALSE; 1777 boolean_t keycopied = B_FALSE; 1778 boolean_t need_size_update = B_FALSE; 1779 1780 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 1781 if (klip == NULL) 1782 return (EFAULT); 1783 1784 mutex_enter(&lofi_lock); 1785 1786 if (!valid_filename(klip->li_filename)) { 1787 error = EINVAL; 1788 goto out; 1789 } 1790 1791 if (file_to_minor(klip->li_filename) != 0) { 1792 error = EBUSY; 1793 goto out; 1794 } 1795 1796 if (pickminor) { 1797 /* Find a free one */ 1798 for (newminor = 1; newminor <= lofi_max_files; newminor++) 1799 if (ddi_get_soft_state(lofi_statep, newminor) == NULL) 1800 break; 1801 if (newminor >= lofi_max_files) { 1802 error = EAGAIN; 1803 goto out; 1804 } 1805 } else { 1806 newminor = klip->li_minor; 1807 if (ddi_get_soft_state(lofi_statep, newminor) != NULL) { 1808 error = EEXIST; 1809 goto out; 1810 } 1811 } 1812 1813 /* make sure it's valid */ 1814 error = lookupname(klip->li_filename, UIO_SYSSPACE, FOLLOW, 1815 NULLVPP, &vp); 1816 if (error) { 1817 goto out; 1818 } 1819 v_type = vp->v_type; 1820 VN_RELE(vp); 1821 if (!V_ISLOFIABLE(v_type)) { 1822 error = EINVAL; 1823 goto out; 1824 } 1825 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 1826 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 1827 if (error) { 1828 /* try read-only */ 1829 flag &= ~FWRITE; 1830 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 1831 &vp, 0, 0); 1832 if (error) { 1833 goto out; 1834 } 1835 } 1836 need_vn_close = B_TRUE; 1837 1838 vattr.va_mask = AT_SIZE; 1839 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 1840 if (error) { 1841 goto out; 1842 } 1843 /* the file needs to be a multiple of the block size */ 1844 if ((vattr.va_size % DEV_BSIZE) != 0) { 1845 error = EINVAL; 1846 goto out; 1847 } 1848 newdev = makedevice(getmajor(dev), newminor); 1849 Size_prop_val = vattr.va_size; 1850 if ((ddi_prop_update_int64(newdev, lofi_dip, 1851 SIZE_PROP_NAME, Size_prop_val)) != DDI_PROP_SUCCESS) { 1852 error = EINVAL; 1853 goto out; 1854 } 1855 Nblocks_prop_val = vattr.va_size / DEV_BSIZE; 1856 if ((ddi_prop_update_int64(newdev, lofi_dip, 1857 NBLOCKS_PROP_NAME, Nblocks_prop_val)) != DDI_PROP_SUCCESS) { 1858 error = EINVAL; 1859 goto propout; 1860 } 1861 error = ddi_soft_state_zalloc(lofi_statep, newminor); 1862 if (error == DDI_FAILURE) { 1863 error = ENOMEM; 1864 goto propout; 1865 } 1866 zalloced = 1; 1867 (void) snprintf(namebuf, sizeof (namebuf), "%d", newminor); 1868 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, newminor, 1869 DDI_PSEUDO, NULL); 1870 if (error != DDI_SUCCESS) { 1871 error = ENXIO; 1872 goto propout; 1873 } 1874 (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", newminor); 1875 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, newminor, 1876 DDI_PSEUDO, NULL); 1877 if (error != DDI_SUCCESS) { 1878 /* remove block node */ 1879 (void) snprintf(namebuf, sizeof (namebuf), "%d", newminor); 1880 ddi_remove_minor_node(lofi_dip, namebuf); 1881 error = ENXIO; 1882 goto propout; 1883 } 1884 lsp = ddi_get_soft_state(lofi_statep, newminor); 1885 lsp->ls_filename_sz = strlen(klip->li_filename) + 1; 1886 lsp->ls_filename = kmem_alloc(lsp->ls_filename_sz, KM_SLEEP); 1887 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 1888 LOFI_DRIVER_NAME, newminor); 1889 lsp->ls_taskq = taskq_create(namebuf, lofi_taskq_nthreads, 1890 minclsyspri, 1, lofi_taskq_maxalloc, 0); 1891 lsp->ls_kstat = kstat_create(LOFI_DRIVER_NAME, newminor, 1892 NULL, "disk", KSTAT_TYPE_IO, 1, 0); 1893 if (lsp->ls_kstat) { 1894 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1895 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1896 kstat_install(lsp->ls_kstat); 1897 } 1898 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1899 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1900 1901 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 1902 offsetof(struct lofi_comp_cache, lc_list)); 1903 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1904 1905 /* 1906 * save open mode so file can be closed properly and vnode counts 1907 * updated correctly. 1908 */ 1909 lsp->ls_openflag = flag; 1910 1911 /* 1912 * Try to handle stacked lofs vnodes. 1913 */ 1914 if (vp->v_type == VREG) { 1915 if (VOP_REALVP(vp, &lsp->ls_vp, NULL) != 0) { 1916 lsp->ls_vp = vp; 1917 } else { 1918 /* 1919 * Even though vp was obtained via vn_open(), we 1920 * can't call vn_close() on it, since lofs will 1921 * pass the VOP_CLOSE() on down to the realvp 1922 * (which we are about to use). Hence we merely 1923 * drop the reference to the lofs vnode and hold 1924 * the realvp so things behave as if we've 1925 * opened the realvp without any interaction 1926 * with lofs. 1927 */ 1928 VN_HOLD(lsp->ls_vp); 1929 VN_RELE(vp); 1930 } 1931 } else { 1932 lsp->ls_vp = vp; 1933 } 1934 lsp->ls_vp_size = vattr.va_size; 1935 (void) strcpy(lsp->ls_filename, klip->li_filename); 1936 if (rvalp) 1937 *rvalp = (int)newminor; 1938 klip->li_minor = newminor; 1939 1940 /* 1941 * Initialize crypto details for encrypted lofi 1942 */ 1943 if (klip->li_crypto_enabled) { 1944 int ret; 1945 1946 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 1947 1948 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 1949 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 1950 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 1951 klip->li_cipher, lsp->ls_filename); 1952 error = EINVAL; 1953 goto propout; 1954 } 1955 1956 /* this is just initialization here */ 1957 lsp->ls_mech.cm_param = NULL; 1958 lsp->ls_mech.cm_param_len = 0; 1959 1960 lsp->ls_iv_type = klip->li_iv_type; 1961 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 1962 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 1963 cmn_err(CE_WARN, "invalid iv cipher %s requested" 1964 " for %s", klip->li_iv_cipher, lsp->ls_filename); 1965 error = EINVAL; 1966 goto propout; 1967 } 1968 1969 /* iv mech must itself take a null iv */ 1970 lsp->ls_iv_mech.cm_param = NULL; 1971 lsp->ls_iv_mech.cm_param_len = 0; 1972 lsp->ls_iv_len = klip->li_iv_len; 1973 1974 /* 1975 * Create ctx using li_cipher & the raw li_key after checking 1976 * that it isn't a weak key. 1977 */ 1978 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 1979 lsp->ls_key.ck_length = klip->li_key_len; 1980 lsp->ls_key.ck_data = kmem_alloc( 1981 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 1982 bcopy(klip->li_key, lsp->ls_key.ck_data, 1983 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 1984 keycopied = B_TRUE; 1985 1986 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 1987 if (ret != CRYPTO_SUCCESS) { 1988 error = EINVAL; 1989 cmn_err(CE_WARN, "weak key check failed for cipher " 1990 "%s on file %s (0x%x)", klip->li_cipher, 1991 lsp->ls_filename, ret); 1992 goto propout; 1993 } 1994 } 1995 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 1996 1997 /* 1998 * Read the file signature to check if it is compressed or encrypted. 1999 * Crypto signature is in a different location; both areas should 2000 * read to keep compression and encryption mutually exclusive. 2001 */ 2002 if (lsp->ls_crypto_enabled) { 2003 error = vn_rdwr(UIO_READ, lsp->ls_vp, crybuf, DEV_BSIZE, 2004 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2005 if (error != 0) 2006 goto propout; 2007 } 2008 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2009 0, RLIM64_INFINITY, kcred, &resid); 2010 if (error != 0) 2011 goto propout; 2012 2013 /* initialize these variables for all lofi files */ 2014 lsp->ls_uncomp_seg_sz = 0; 2015 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2016 lsp->ls_comp_algorithm[0] = '\0'; 2017 2018 /* encrypted lofi reads/writes shifted by crypto metadata size */ 2019 lsp->ls_crypto_offset = 0; 2020 2021 /* this is a compressed lofi */ 2022 if ((compress_index = lofi_compress_select(buf)) != -1) { 2023 2024 /* compression and encryption are mutually exclusive */ 2025 if (klip->li_crypto_enabled) { 2026 error = ENOTSUP; 2027 goto propout; 2028 } 2029 2030 /* initialize compression info for compressed lofi */ 2031 lsp->ls_comp_algorithm_index = compress_index; 2032 (void) strlcpy(lsp->ls_comp_algorithm, 2033 lofi_compress_table[compress_index].l_name, 2034 sizeof (lsp->ls_comp_algorithm)); 2035 2036 error = lofi_map_compressed_file(lsp, buf); 2037 if (error != 0) 2038 goto propout; 2039 need_size_update = B_TRUE; 2040 2041 /* this is an encrypted lofi */ 2042 } else if (strncmp(crybuf, lofi_crypto_magic, 2043 sizeof (lofi_crypto_magic)) == 0) { 2044 2045 char *marker = crybuf; 2046 2047 /* 2048 * This is the case where the header in the lofi image is 2049 * already initialized to indicate it is encrypted. 2050 * There is another case (see below) where encryption is 2051 * requested but the lofi image has never been used yet, 2052 * so the header needs to be written with encryption magic. 2053 */ 2054 2055 /* indicate this must be an encrypted lofi due to magic */ 2056 klip->li_crypto_enabled = B_TRUE; 2057 2058 /* 2059 * The encryption header information is laid out this way: 2060 * 6 bytes: hex "CFLOFI" 2061 * 2 bytes: version = 0 ... for now 2062 * 96 bytes: reserved1 (not implemented yet) 2063 * 4 bytes: data_sector = 2 ... for now 2064 * more... not implemented yet 2065 */ 2066 2067 /* copy the magic */ 2068 bcopy(marker, lsp->ls_crypto.magic, 2069 sizeof (lsp->ls_crypto.magic)); 2070 marker += sizeof (lsp->ls_crypto.magic); 2071 2072 /* read the encryption version number */ 2073 bcopy(marker, &(lsp->ls_crypto.version), 2074 sizeof (lsp->ls_crypto.version)); 2075 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2076 marker += sizeof (lsp->ls_crypto.version); 2077 2078 /* read a chunk of reserved data */ 2079 bcopy(marker, lsp->ls_crypto.reserved1, 2080 sizeof (lsp->ls_crypto.reserved1)); 2081 marker += sizeof (lsp->ls_crypto.reserved1); 2082 2083 /* read block number where encrypted data begins */ 2084 bcopy(marker, &(lsp->ls_crypto.data_sector), 2085 sizeof (lsp->ls_crypto.data_sector)); 2086 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2087 marker += sizeof (lsp->ls_crypto.data_sector); 2088 2089 /* and ignore the rest until it is implemented */ 2090 2091 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2092 need_size_update = B_TRUE; 2093 2094 /* neither compressed nor encrypted, BUT could be new encrypted lofi */ 2095 } else if (klip->li_crypto_enabled) { 2096 2097 /* 2098 * This is the case where encryption was requested but the 2099 * appears to be entirely blank where the encryption header 2100 * would have been in the lofi image. If it is blank, 2101 * assume it is a brand new lofi image and initialize the 2102 * header area with encryption magic and current version 2103 * header data. If it is not blank, that's an error. 2104 */ 2105 int i; 2106 char *marker; 2107 struct crypto_meta chead; 2108 2109 for (i = 0; i < sizeof (struct crypto_meta); i++) 2110 if (crybuf[i] != '\0') 2111 break; 2112 if (i != sizeof (struct crypto_meta)) { 2113 error = EINVAL; 2114 goto propout; 2115 } 2116 2117 /* nothing there, initialize as encrypted lofi */ 2118 marker = crybuf; 2119 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2120 marker += sizeof (lofi_crypto_magic); 2121 chead.version = htons(LOFI_CRYPTO_VERSION); 2122 bcopy(&(chead.version), marker, sizeof (chead.version)); 2123 marker += sizeof (chead.version); 2124 marker += sizeof (chead.reserved1); 2125 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2126 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2127 2128 /* write the header */ 2129 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, crybuf, DEV_BSIZE, 2130 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2131 if (error != 0) 2132 goto propout; 2133 2134 /* fix things up so it looks like we read this info */ 2135 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2136 sizeof (lofi_crypto_magic)); 2137 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2138 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2139 2140 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2141 need_size_update = B_TRUE; 2142 } 2143 2144 /* 2145 * Either lsp->ls_vp_size or lsp->ls_crypto_offset changed; 2146 * for encrypted lofi, advertise that it is somewhat shorter 2147 * due to embedded crypto metadata section 2148 */ 2149 if (need_size_update) { 2150 /* update DDI properties */ 2151 Size_prop_val = lsp->ls_vp_size - lsp->ls_crypto_offset; 2152 if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME, 2153 Size_prop_val)) != DDI_PROP_SUCCESS) { 2154 error = EINVAL; 2155 goto propout; 2156 } 2157 Nblocks_prop_val = 2158 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE; 2159 if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME, 2160 Nblocks_prop_val)) != DDI_PROP_SUCCESS) { 2161 error = EINVAL; 2162 goto propout; 2163 } 2164 } 2165 2166 fake_disk_geometry(lsp); 2167 mutex_exit(&lofi_lock); 2168 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2169 free_lofi_ioctl(klip); 2170 return (0); 2171 2172 propout: 2173 if (keycopied) { 2174 bzero(lsp->ls_key.ck_data, 2175 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2176 kmem_free(lsp->ls_key.ck_data, 2177 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2178 lsp->ls_key.ck_data = NULL; 2179 lsp->ls_key.ck_length = 0; 2180 } 2181 2182 if (zalloced) 2183 ddi_soft_state_free(lofi_statep, newminor); 2184 2185 (void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME); 2186 (void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME); 2187 2188 out: 2189 if (need_vn_close) { 2190 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2191 VN_RELE(vp); 2192 } 2193 2194 mutex_exit(&lofi_lock); 2195 free_lofi_ioctl(klip); 2196 return (error); 2197 } 2198 2199 /* 2200 * unmap a file. 2201 */ 2202 static int 2203 lofi_unmap_file(dev_t dev, struct lofi_ioctl *ulip, int byfilename, 2204 struct cred *credp, int ioctl_flag) 2205 { 2206 struct lofi_state *lsp; 2207 struct lofi_ioctl *klip; 2208 minor_t minor; 2209 2210 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 2211 if (klip == NULL) 2212 return (EFAULT); 2213 2214 mutex_enter(&lofi_lock); 2215 if (byfilename) { 2216 minor = file_to_minor(klip->li_filename); 2217 } else { 2218 minor = klip->li_minor; 2219 } 2220 if (minor == 0) { 2221 mutex_exit(&lofi_lock); 2222 free_lofi_ioctl(klip); 2223 return (ENXIO); 2224 } 2225 lsp = ddi_get_soft_state(lofi_statep, minor); 2226 if (lsp == NULL || lsp->ls_vp == NULL) { 2227 mutex_exit(&lofi_lock); 2228 free_lofi_ioctl(klip); 2229 return (ENXIO); 2230 } 2231 2232 /* 2233 * If it's still held open, we'll do one of three things: 2234 * 2235 * If no flag is set, just return EBUSY. 2236 * 2237 * If the 'cleanup' flag is set, unmap and remove the device when 2238 * the last user finishes. 2239 * 2240 * If the 'force' flag is set, then we forcibly close the underlying 2241 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 2242 * will return DKIO_DEV_GONE. When the device is last closed, the 2243 * device will be cleaned up appropriately. 2244 * 2245 * This is complicated by the fact that we may have outstanding 2246 * dispatched I/Os. Rather than having a single mutex to serialize all 2247 * I/O, we keep a count of the number of outstanding I/O requests 2248 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 2249 * should be dispatched (ls_vp_closereq). 2250 * 2251 * We set the flag, wait for the number of outstanding I/Os to reach 0, 2252 * and then close the underlying vnode. 2253 */ 2254 if (is_opened(lsp)) { 2255 if (klip->li_force) { 2256 mutex_enter(&lsp->ls_vp_lock); 2257 lsp->ls_vp_closereq = B_TRUE; 2258 /* wake up any threads waiting on dkiocstate */ 2259 cv_broadcast(&lsp->ls_vp_cv); 2260 while (lsp->ls_vp_iocount > 0) 2261 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 2262 mutex_exit(&lsp->ls_vp_lock); 2263 lofi_free_handle(dev, minor, lsp, credp); 2264 2265 klip->li_minor = minor; 2266 mutex_exit(&lofi_lock); 2267 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2268 free_lofi_ioctl(klip); 2269 return (0); 2270 } else if (klip->li_cleanup) { 2271 lsp->ls_cleanup = 1; 2272 mutex_exit(&lofi_lock); 2273 free_lofi_ioctl(klip); 2274 return (0); 2275 } 2276 2277 mutex_exit(&lofi_lock); 2278 free_lofi_ioctl(klip); 2279 return (EBUSY); 2280 } 2281 2282 lofi_free_handle(dev, minor, lsp, credp); 2283 2284 klip->li_minor = minor; 2285 mutex_exit(&lofi_lock); 2286 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2287 free_lofi_ioctl(klip); 2288 return (0); 2289 } 2290 2291 /* 2292 * get the filename given the minor number, or the minor number given 2293 * the name. 2294 */ 2295 /*ARGSUSED*/ 2296 static int 2297 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 2298 struct cred *credp, int ioctl_flag) 2299 { 2300 struct lofi_state *lsp; 2301 struct lofi_ioctl *klip; 2302 int error; 2303 minor_t minor; 2304 2305 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 2306 if (klip == NULL) 2307 return (EFAULT); 2308 2309 switch (which) { 2310 case LOFI_GET_FILENAME: 2311 minor = klip->li_minor; 2312 if (minor == 0) { 2313 free_lofi_ioctl(klip); 2314 return (EINVAL); 2315 } 2316 2317 mutex_enter(&lofi_lock); 2318 lsp = ddi_get_soft_state(lofi_statep, minor); 2319 if (lsp == NULL) { 2320 mutex_exit(&lofi_lock); 2321 free_lofi_ioctl(klip); 2322 return (ENXIO); 2323 } 2324 (void) strcpy(klip->li_filename, lsp->ls_filename); 2325 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 2326 sizeof (klip->li_algorithm)); 2327 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 2328 mutex_exit(&lofi_lock); 2329 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2330 free_lofi_ioctl(klip); 2331 return (error); 2332 case LOFI_GET_MINOR: 2333 mutex_enter(&lofi_lock); 2334 klip->li_minor = file_to_minor(klip->li_filename); 2335 /* caller should not depend on klip->li_crypto_enabled here */ 2336 mutex_exit(&lofi_lock); 2337 if (klip->li_minor == 0) { 2338 free_lofi_ioctl(klip); 2339 return (ENOENT); 2340 } 2341 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2342 free_lofi_ioctl(klip); 2343 return (error); 2344 case LOFI_CHECK_COMPRESSED: 2345 mutex_enter(&lofi_lock); 2346 klip->li_minor = file_to_minor(klip->li_filename); 2347 mutex_exit(&lofi_lock); 2348 if (klip->li_minor == 0) { 2349 free_lofi_ioctl(klip); 2350 return (ENOENT); 2351 } 2352 mutex_enter(&lofi_lock); 2353 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor); 2354 if (lsp == NULL) { 2355 mutex_exit(&lofi_lock); 2356 free_lofi_ioctl(klip); 2357 return (ENXIO); 2358 } 2359 ASSERT(strcmp(klip->li_filename, lsp->ls_filename) == 0); 2360 2361 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 2362 sizeof (klip->li_algorithm)); 2363 mutex_exit(&lofi_lock); 2364 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2365 free_lofi_ioctl(klip); 2366 return (error); 2367 default: 2368 free_lofi_ioctl(klip); 2369 return (EINVAL); 2370 } 2371 2372 } 2373 2374 static int 2375 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 2376 int *rvalp) 2377 { 2378 int error; 2379 enum dkio_state dkstate; 2380 struct lofi_state *lsp; 2381 minor_t minor; 2382 2383 minor = getminor(dev); 2384 /* lofi ioctls only apply to the master device */ 2385 if (minor == 0) { 2386 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 2387 2388 /* 2389 * the query command only need read-access - i.e., normal 2390 * users are allowed to do those on the ctl device as 2391 * long as they can open it read-only. 2392 */ 2393 switch (cmd) { 2394 case LOFI_MAP_FILE: 2395 if ((flag & FWRITE) == 0) 2396 return (EPERM); 2397 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 2398 case LOFI_MAP_FILE_MINOR: 2399 if ((flag & FWRITE) == 0) 2400 return (EPERM); 2401 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 2402 case LOFI_UNMAP_FILE: 2403 if ((flag & FWRITE) == 0) 2404 return (EPERM); 2405 return (lofi_unmap_file(dev, lip, 1, credp, flag)); 2406 case LOFI_UNMAP_FILE_MINOR: 2407 if ((flag & FWRITE) == 0) 2408 return (EPERM); 2409 return (lofi_unmap_file(dev, lip, 0, credp, flag)); 2410 case LOFI_GET_FILENAME: 2411 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 2412 credp, flag)); 2413 case LOFI_GET_MINOR: 2414 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 2415 credp, flag)); 2416 case LOFI_GET_MAXMINOR: 2417 error = ddi_copyout(&lofi_max_files, &lip->li_minor, 2418 sizeof (lofi_max_files), flag); 2419 if (error) 2420 return (EFAULT); 2421 return (0); 2422 case LOFI_CHECK_COMPRESSED: 2423 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 2424 credp, flag)); 2425 default: 2426 break; 2427 } 2428 } 2429 2430 mutex_enter(&lofi_lock); 2431 lsp = ddi_get_soft_state(lofi_statep, minor); 2432 if (lsp == NULL || lsp->ls_vp_closereq) { 2433 mutex_exit(&lofi_lock); 2434 return (ENXIO); 2435 } 2436 mutex_exit(&lofi_lock); 2437 2438 /* 2439 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 2440 * EIO as if the device was no longer present. 2441 */ 2442 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 2443 return (EIO); 2444 2445 /* these are for faking out utilities like newfs */ 2446 switch (cmd) { 2447 case DKIOCGVTOC: 2448 switch (ddi_model_convert_from(flag & FMODELS)) { 2449 case DDI_MODEL_ILP32: { 2450 struct vtoc32 vtoc32; 2451 2452 vtoctovtoc32(lsp->ls_vtoc, vtoc32); 2453 if (ddi_copyout(&vtoc32, (void *)arg, 2454 sizeof (struct vtoc32), flag)) 2455 return (EFAULT); 2456 break; 2457 } 2458 2459 case DDI_MODEL_NONE: 2460 if (ddi_copyout(&lsp->ls_vtoc, (void *)arg, 2461 sizeof (struct vtoc), flag)) 2462 return (EFAULT); 2463 break; 2464 } 2465 return (0); 2466 case DKIOCINFO: 2467 error = ddi_copyout(&lsp->ls_ci, (void *)arg, 2468 sizeof (struct dk_cinfo), flag); 2469 if (error) 2470 return (EFAULT); 2471 return (0); 2472 case DKIOCG_VIRTGEOM: 2473 case DKIOCG_PHYGEOM: 2474 case DKIOCGGEOM: 2475 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 2476 sizeof (struct dk_geom), flag); 2477 if (error) 2478 return (EFAULT); 2479 return (0); 2480 case DKIOCSTATE: 2481 /* 2482 * Normally, lofi devices are always in the INSERTED state. If 2483 * a device is forcefully unmapped, then the device transitions 2484 * to the DKIO_DEV_GONE state. 2485 */ 2486 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 2487 flag) != 0) 2488 return (EFAULT); 2489 2490 mutex_enter(&lsp->ls_vp_lock); 2491 lsp->ls_vp_iocount++; 2492 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 2493 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 2494 !lsp->ls_vp_closereq) { 2495 /* 2496 * By virtue of having the device open, we know that 2497 * 'lsp' will remain valid when we return. 2498 */ 2499 if (!cv_wait_sig(&lsp->ls_vp_cv, 2500 &lsp->ls_vp_lock)) { 2501 lsp->ls_vp_iocount--; 2502 cv_broadcast(&lsp->ls_vp_cv); 2503 mutex_exit(&lsp->ls_vp_lock); 2504 return (EINTR); 2505 } 2506 } 2507 2508 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ? 2509 DKIO_INSERTED : DKIO_DEV_GONE); 2510 lsp->ls_vp_iocount--; 2511 cv_broadcast(&lsp->ls_vp_cv); 2512 mutex_exit(&lsp->ls_vp_lock); 2513 2514 if (ddi_copyout(&dkstate, (void *)arg, 2515 sizeof (dkstate), flag) != 0) 2516 return (EFAULT); 2517 return (0); 2518 default: 2519 return (ENOTTY); 2520 } 2521 } 2522 2523 static struct cb_ops lofi_cb_ops = { 2524 lofi_open, /* open */ 2525 lofi_close, /* close */ 2526 lofi_strategy, /* strategy */ 2527 nodev, /* print */ 2528 nodev, /* dump */ 2529 lofi_read, /* read */ 2530 lofi_write, /* write */ 2531 lofi_ioctl, /* ioctl */ 2532 nodev, /* devmap */ 2533 nodev, /* mmap */ 2534 nodev, /* segmap */ 2535 nochpoll, /* poll */ 2536 ddi_prop_op, /* prop_op */ 2537 0, /* streamtab */ 2538 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 2539 CB_REV, 2540 lofi_aread, 2541 lofi_awrite 2542 }; 2543 2544 static struct dev_ops lofi_ops = { 2545 DEVO_REV, /* devo_rev, */ 2546 0, /* refcnt */ 2547 lofi_info, /* info */ 2548 nulldev, /* identify */ 2549 nulldev, /* probe */ 2550 lofi_attach, /* attach */ 2551 lofi_detach, /* detach */ 2552 nodev, /* reset */ 2553 &lofi_cb_ops, /* driver operations */ 2554 NULL, /* no bus operations */ 2555 NULL, /* power */ 2556 ddi_quiesce_not_needed, /* quiesce */ 2557 }; 2558 2559 static struct modldrv modldrv = { 2560 &mod_driverops, 2561 "loopback file driver", 2562 &lofi_ops, 2563 }; 2564 2565 static struct modlinkage modlinkage = { 2566 MODREV_1, 2567 &modldrv, 2568 NULL 2569 }; 2570 2571 int 2572 _init(void) 2573 { 2574 int error; 2575 2576 error = ddi_soft_state_init(&lofi_statep, 2577 sizeof (struct lofi_state), 0); 2578 if (error) 2579 return (error); 2580 2581 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 2582 error = mod_install(&modlinkage); 2583 if (error) { 2584 mutex_destroy(&lofi_lock); 2585 ddi_soft_state_fini(&lofi_statep); 2586 } 2587 2588 return (error); 2589 } 2590 2591 int 2592 _fini(void) 2593 { 2594 int error; 2595 2596 if (lofi_busy()) 2597 return (EBUSY); 2598 2599 error = mod_remove(&modlinkage); 2600 if (error) 2601 return (error); 2602 2603 mutex_destroy(&lofi_lock); 2604 ddi_soft_state_fini(&lofi_statep); 2605 2606 return (error); 2607 } 2608 2609 int 2610 _info(struct modinfo *modinfop) 2611 { 2612 return (mod_info(&modlinkage, modinfop)); 2613 } 2614