xref: /titanic_50/usr/src/uts/common/io/iwk/iwk2.c (revision 0b32bb8bde09d49065e395405874016d9a227861)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2007, Intel Corporation
8  * All rights reserved.
9  */
10 
11 /*
12  * Copyright (c) 2006
13  * Copyright (c) 2007
14  *	Damien Bergamini <damien.bergamini@free.fr>
15  *
16  * Permission to use, copy, modify, and distribute this software for any
17  * purpose with or without fee is hereby granted, provided that the above
18  * copyright notice and this permission notice appear in all copies.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
21  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
23  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
25  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
26  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
27  */
28 
29 /*
30  * Driver for Intel PRO/Wireless 4965AGN(kedron) 802.11 network adapters.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/byteorder.h>
35 #include <sys/conf.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stat.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/strsubr.h>
41 #include <sys/ethernet.h>
42 #include <inet/common.h>
43 #include <inet/nd.h>
44 #include <inet/mi.h>
45 #include <sys/note.h>
46 #include <sys/stream.h>
47 #include <sys/strsun.h>
48 #include <sys/modctl.h>
49 #include <sys/devops.h>
50 #include <sys/dlpi.h>
51 #include <sys/mac_provider.h>
52 #include <sys/mac_wifi.h>
53 #include <sys/net80211.h>
54 #include <sys/net80211_proto.h>
55 #include <sys/varargs.h>
56 #include <sys/policy.h>
57 #include <sys/pci.h>
58 
59 #include "iwk_calibration.h"
60 #include "iwk_hw.h"
61 #include "iwk_eeprom.h"
62 #include "iwk2_var.h"
63 #include <inet/wifi_ioctl.h>
64 
65 #ifdef DEBUG
66 #define	IWK_DEBUG_80211		(1 << 0)
67 #define	IWK_DEBUG_CMD		(1 << 1)
68 #define	IWK_DEBUG_DMA		(1 << 2)
69 #define	IWK_DEBUG_EEPROM	(1 << 3)
70 #define	IWK_DEBUG_FW		(1 << 4)
71 #define	IWK_DEBUG_HW		(1 << 5)
72 #define	IWK_DEBUG_INTR		(1 << 6)
73 #define	IWK_DEBUG_MRR		(1 << 7)
74 #define	IWK_DEBUG_PIO		(1 << 8)
75 #define	IWK_DEBUG_RX		(1 << 9)
76 #define	IWK_DEBUG_SCAN		(1 << 10)
77 #define	IWK_DEBUG_TX		(1 << 11)
78 #define	IWK_DEBUG_RATECTL	(1 << 12)
79 #define	IWK_DEBUG_RADIO		(1 << 13)
80 #define	IWK_DEBUG_RESUME	(1 << 14)
81 #define	IWK_DEBUG_CALIBRATION	(1 << 15)
82 uint32_t iwk_dbg_flags = 0;
83 #define	IWK_DBG(x) \
84 	iwk_dbg x
85 #else
86 #define	IWK_DBG(x)
87 #endif
88 
89 static void	*iwk_soft_state_p = NULL;
90 static uint8_t iwk_fw_bin [] = {
91 #include "fw-iw/iw4965.ucode.hex"
92 };
93 
94 /* DMA attributes for a shared page */
95 static ddi_dma_attr_t sh_dma_attr = {
96 	DMA_ATTR_V0,	/* version of this structure */
97 	0,		/* lowest usable address */
98 	0xffffffffU,	/* highest usable address */
99 	0xffffffffU,	/* maximum DMAable byte count */
100 	0x1000,		/* alignment in bytes */
101 	0x1000,		/* burst sizes (any?) */
102 	1,		/* minimum transfer */
103 	0xffffffffU,	/* maximum transfer */
104 	0xffffffffU,	/* maximum segment length */
105 	1,		/* maximum number of segments */
106 	1,		/* granularity */
107 	0,		/* flags (reserved) */
108 };
109 
110 /* DMA attributes for a keep warm DRAM descriptor */
111 static ddi_dma_attr_t kw_dma_attr = {
112 	DMA_ATTR_V0,	/* version of this structure */
113 	0,		/* lowest usable address */
114 	0xffffffffU,	/* highest usable address */
115 	0xffffffffU,	/* maximum DMAable byte count */
116 	0x1000,		/* alignment in bytes */
117 	0x1000,		/* burst sizes (any?) */
118 	1,		/* minimum transfer */
119 	0xffffffffU,	/* maximum transfer */
120 	0xffffffffU,	/* maximum segment length */
121 	1,		/* maximum number of segments */
122 	1,		/* granularity */
123 	0,		/* flags (reserved) */
124 };
125 
126 /* DMA attributes for a ring descriptor */
127 static ddi_dma_attr_t ring_desc_dma_attr = {
128 	DMA_ATTR_V0,	/* version of this structure */
129 	0,		/* lowest usable address */
130 	0xffffffffU,	/* highest usable address */
131 	0xffffffffU,	/* maximum DMAable byte count */
132 	0x100,		/* alignment in bytes */
133 	0x100,		/* burst sizes (any?) */
134 	1,		/* minimum transfer */
135 	0xffffffffU,	/* maximum transfer */
136 	0xffffffffU,	/* maximum segment length */
137 	1,		/* maximum number of segments */
138 	1,		/* granularity */
139 	0,		/* flags (reserved) */
140 };
141 
142 /* DMA attributes for a cmd */
143 static ddi_dma_attr_t cmd_dma_attr = {
144 	DMA_ATTR_V0,	/* version of this structure */
145 	0,		/* lowest usable address */
146 	0xffffffffU,	/* highest usable address */
147 	0xffffffffU,	/* maximum DMAable byte count */
148 	4,		/* alignment in bytes */
149 	0x100,		/* burst sizes (any?) */
150 	1,		/* minimum transfer */
151 	0xffffffffU,	/* maximum transfer */
152 	0xffffffffU,	/* maximum segment length */
153 	1,		/* maximum number of segments */
154 	1,		/* granularity */
155 	0,		/* flags (reserved) */
156 };
157 
158 /* DMA attributes for a rx buffer */
159 static ddi_dma_attr_t rx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	0x100,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /*
175  * DMA attributes for a tx buffer.
176  * the maximum number of segments is 4 for the hardware.
177  * now all the wifi drivers put the whole frame in a single
178  * descriptor, so we define the maximum  number of segments 1,
179  * just the same as the rx_buffer. we consider leverage the HW
180  * ability in the future, that is why we don't define rx and tx
181  * buffer_dma_attr as the same.
182  */
183 static ddi_dma_attr_t tx_buffer_dma_attr = {
184 	DMA_ATTR_V0,	/* version of this structure */
185 	0,		/* lowest usable address */
186 	0xffffffffU,	/* highest usable address */
187 	0xffffffffU,	/* maximum DMAable byte count */
188 	4,		/* alignment in bytes */
189 	0x100,		/* burst sizes (any?) */
190 	1,		/* minimum transfer */
191 	0xffffffffU,	/* maximum transfer */
192 	0xffffffffU,	/* maximum segment length */
193 	1,		/* maximum number of segments */
194 	1,		/* granularity */
195 	0,		/* flags (reserved) */
196 };
197 
198 /* DMA attributes for text and data part in the firmware */
199 static ddi_dma_attr_t fw_dma_attr = {
200 	DMA_ATTR_V0,	/* version of this structure */
201 	0,		/* lowest usable address */
202 	0xffffffffU,	/* highest usable address */
203 	0x7fffffff,	/* maximum DMAable byte count */
204 	0x10,		/* alignment in bytes */
205 	0x100,		/* burst sizes (any?) */
206 	1,		/* minimum transfer */
207 	0xffffffffU,	/* maximum transfer */
208 	0xffffffffU,	/* maximum segment length */
209 	1,		/* maximum number of segments */
210 	1,		/* granularity */
211 	0,		/* flags (reserved) */
212 };
213 
214 
215 /* regs access attributes */
216 static ddi_device_acc_attr_t iwk_reg_accattr = {
217 	DDI_DEVICE_ATTR_V0,
218 	DDI_STRUCTURE_LE_ACC,
219 	DDI_STRICTORDER_ACC,
220 	DDI_DEFAULT_ACC
221 };
222 
223 /* DMA access attributes */
224 static ddi_device_acc_attr_t iwk_dma_accattr = {
225 	DDI_DEVICE_ATTR_V0,
226 	DDI_NEVERSWAP_ACC,
227 	DDI_STRICTORDER_ACC,
228 	DDI_DEFAULT_ACC
229 };
230 
231 static int	iwk_ring_init(iwk_sc_t *);
232 static void	iwk_ring_free(iwk_sc_t *);
233 static int	iwk_alloc_shared(iwk_sc_t *);
234 static void	iwk_free_shared(iwk_sc_t *);
235 static int	iwk_alloc_kw(iwk_sc_t *);
236 static void	iwk_free_kw(iwk_sc_t *);
237 static int	iwk_alloc_fw_dma(iwk_sc_t *);
238 static void	iwk_free_fw_dma(iwk_sc_t *);
239 static int	iwk_alloc_rx_ring(iwk_sc_t *);
240 static void	iwk_reset_rx_ring(iwk_sc_t *);
241 static void	iwk_free_rx_ring(iwk_sc_t *);
242 static int	iwk_alloc_tx_ring(iwk_sc_t *, iwk_tx_ring_t *,
243     int, int);
244 static void	iwk_reset_tx_ring(iwk_sc_t *, iwk_tx_ring_t *);
245 static void	iwk_free_tx_ring(iwk_sc_t *, iwk_tx_ring_t *);
246 
247 static ieee80211_node_t *iwk_node_alloc(ieee80211com_t *);
248 static void	iwk_node_free(ieee80211_node_t *);
249 static int	iwk_newstate(ieee80211com_t *, enum ieee80211_state, int);
250 static int	iwk_key_set(ieee80211com_t *, const struct ieee80211_key *,
251     const uint8_t mac[IEEE80211_ADDR_LEN]);
252 static void	iwk_mac_access_enter(iwk_sc_t *);
253 static void	iwk_mac_access_exit(iwk_sc_t *);
254 static uint32_t	iwk_reg_read(iwk_sc_t *, uint32_t);
255 static void	iwk_reg_write(iwk_sc_t *, uint32_t, uint32_t);
256 static void	iwk_reg_write_region_4(iwk_sc_t *, uint32_t,
257 		    uint32_t *, int);
258 static int	iwk_load_firmware(iwk_sc_t *);
259 static void	iwk_rx_intr(iwk_sc_t *, iwk_rx_desc_t *,
260 		    iwk_rx_data_t *);
261 static void	iwk_tx_intr(iwk_sc_t *, iwk_rx_desc_t *,
262 		    iwk_rx_data_t *);
263 static void	iwk_cmd_intr(iwk_sc_t *, iwk_rx_desc_t *);
264 static uint_t   iwk_intr(caddr_t, caddr_t);
265 static int	iwk_eep_load(iwk_sc_t *sc);
266 static void	iwk_get_mac_from_eep(iwk_sc_t *sc);
267 static int	iwk_eep_sem_down(iwk_sc_t *sc);
268 static void	iwk_eep_sem_up(iwk_sc_t *sc);
269 static uint_t   iwk_rx_softintr(caddr_t, caddr_t);
270 static uint8_t	iwk_rate_to_plcp(int);
271 static int	iwk_cmd(iwk_sc_t *, int, const void *, int, int);
272 static void	iwk_set_led(iwk_sc_t *, uint8_t, uint8_t, uint8_t);
273 static int	iwk_hw_set_before_auth(iwk_sc_t *);
274 static int	iwk_scan(iwk_sc_t *);
275 static int	iwk_config(iwk_sc_t *);
276 static void	iwk_stop_master(iwk_sc_t *);
277 static int	iwk_power_up(iwk_sc_t *);
278 static int	iwk_preinit(iwk_sc_t *);
279 static int	iwk_init(iwk_sc_t *);
280 static void	iwk_stop(iwk_sc_t *);
281 static void	iwk_amrr_init(iwk_amrr_t *);
282 static void	iwk_amrr_timeout(iwk_sc_t *);
283 static void	iwk_amrr_ratectl(void *, ieee80211_node_t *);
284 static int32_t	iwk_curr_tempera(iwk_sc_t *sc);
285 static int	iwk_tx_power_calibration(iwk_sc_t *sc);
286 static inline int	iwk_is_24G_band(iwk_sc_t *sc);
287 static inline int	iwk_is_fat_channel(iwk_sc_t *sc);
288 static int	iwk_txpower_grp(uint16_t channel);
289 static struct	iwk_eep_channel *iwk_get_eep_channel(iwk_sc_t *sc,
290     uint16_t channel,
291     int is_24G, int is_fat, int is_hi_chan);
292 static int32_t	iwk_band_number(iwk_sc_t *sc, uint16_t channel);
293 static int	iwk_division(int32_t num, int32_t denom, int32_t *res);
294 static int32_t	iwk_interpolate_value(int32_t x, int32_t x1, int32_t y1,
295     int32_t x2, int32_t y2);
296 static int	iwk_channel_interpolate(iwk_sc_t *sc, uint16_t channel,
297     struct iwk_eep_calib_channel_info *chan_info);
298 static int32_t	iwk_voltage_compensation(int32_t eep_voltage,
299     int32_t curr_voltage);
300 static int32_t	iwk_min_power_index(int32_t rate_pow_idx, int32_t is_24G);
301 static int	iwk_txpower_table_cmd_init(iwk_sc_t *sc,
302     struct iwk_tx_power_db *tp_db);
303 static void	iwk_statistics_notify(iwk_sc_t *sc, iwk_rx_desc_t *desc);
304 static int	iwk_is_associated(iwk_sc_t *sc);
305 static int	iwk_rxgain_diff_init(iwk_sc_t *sc);
306 static int	iwk_rxgain_diff(iwk_sc_t *sc);
307 static int	iwk_rx_sens_init(iwk_sc_t *sc);
308 static int	iwk_rx_sens(iwk_sc_t *sc);
309 static int	iwk_cck_sens(iwk_sc_t *sc, uint32_t actual_rx_time);
310 static int	iwk_ofdm_sens(iwk_sc_t *sc, uint32_t actual_rx_time);
311 
312 static void	iwk_write_event_log(iwk_sc_t *);
313 static void	iwk_write_error_log(iwk_sc_t *);
314 
315 static int	iwk_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
316 static int	iwk_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
317 static int	iwk_quiesce(dev_info_t *dip);
318 
319 /*
320  * GLD specific operations
321  */
322 static int	iwk_m_stat(void *arg, uint_t stat, uint64_t *val);
323 static int	iwk_m_start(void *arg);
324 static void	iwk_m_stop(void *arg);
325 static int	iwk_m_unicst(void *arg, const uint8_t *macaddr);
326 static int	iwk_m_multicst(void *arg, boolean_t add, const uint8_t *m);
327 static int	iwk_m_promisc(void *arg, boolean_t on);
328 static mblk_t 	*iwk_m_tx(void *arg, mblk_t *mp);
329 static void	iwk_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
330 static int	iwk_m_setprop(void *arg, const char *pr_name,
331 	mac_prop_id_t wldp_pr_name, uint_t wldp_length, const void *wldp_buf);
332 static int	iwk_m_getprop(void *arg, const char *pr_name,
333 	mac_prop_id_t wldp_pr_name, uint_t pr_flags, uint_t wldp_length,
334 	void *wldp_buf, uint_t *perm);
335 static void	iwk_destroy_locks(iwk_sc_t *sc);
336 static int	iwk_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
337 static void	iwk_thread(iwk_sc_t *sc);
338 
339 /*
340  * Supported rates for 802.11b/g modes (in 500Kbps unit).
341  * 11a and 11n support will be added later.
342  */
343 static const struct ieee80211_rateset iwk_rateset_11b =
344 	{ 4, { 2, 4, 11, 22 } };
345 
346 static const struct ieee80211_rateset iwk_rateset_11g =
347 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
348 
349 /*
350  * For mfthread only
351  */
352 extern pri_t minclsyspri;
353 
354 #define	DRV_NAME_4965	"iwk"
355 
356 /*
357  * Module Loading Data & Entry Points
358  */
359 DDI_DEFINE_STREAM_OPS(iwk_devops, nulldev, nulldev, iwk_attach,
360     iwk_detach, nodev, NULL, D_MP, NULL, iwk_quiesce);
361 
362 static struct modldrv iwk_modldrv = {
363 	&mod_driverops,
364 	"Intel(R) 4965AGN driver(N)",
365 	&iwk_devops
366 };
367 
368 static struct modlinkage iwk_modlinkage = {
369 	MODREV_1,
370 	&iwk_modldrv,
371 	NULL
372 };
373 
374 int
375 _init(void)
376 {
377 	int	status;
378 
379 	status = ddi_soft_state_init(&iwk_soft_state_p,
380 	    sizeof (iwk_sc_t), 1);
381 	if (status != DDI_SUCCESS)
382 		return (status);
383 
384 	mac_init_ops(&iwk_devops, DRV_NAME_4965);
385 	status = mod_install(&iwk_modlinkage);
386 	if (status != DDI_SUCCESS) {
387 		mac_fini_ops(&iwk_devops);
388 		ddi_soft_state_fini(&iwk_soft_state_p);
389 	}
390 
391 	return (status);
392 }
393 
394 int
395 _fini(void)
396 {
397 	int status;
398 
399 	status = mod_remove(&iwk_modlinkage);
400 	if (status == DDI_SUCCESS) {
401 		mac_fini_ops(&iwk_devops);
402 		ddi_soft_state_fini(&iwk_soft_state_p);
403 	}
404 
405 	return (status);
406 }
407 
408 int
409 _info(struct modinfo *mip)
410 {
411 	return (mod_info(&iwk_modlinkage, mip));
412 }
413 
414 /*
415  * Mac Call Back entries
416  */
417 mac_callbacks_t	iwk_m_callbacks = {
418 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
419 	iwk_m_stat,
420 	iwk_m_start,
421 	iwk_m_stop,
422 	iwk_m_promisc,
423 	iwk_m_multicst,
424 	iwk_m_unicst,
425 	iwk_m_tx,
426 	iwk_m_ioctl,
427 	NULL,
428 	NULL,
429 	NULL,
430 	iwk_m_setprop,
431 	iwk_m_getprop
432 };
433 
434 #ifdef DEBUG
435 void
436 iwk_dbg(uint32_t flags, const char *fmt, ...)
437 {
438 	va_list	ap;
439 
440 	if (flags & iwk_dbg_flags) {
441 		va_start(ap, fmt);
442 		vcmn_err(CE_NOTE, fmt, ap);
443 		va_end(ap);
444 	}
445 }
446 #endif
447 
448 /*
449  * device operations
450  */
451 int
452 iwk_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
453 {
454 	iwk_sc_t		*sc;
455 	ieee80211com_t	*ic;
456 	int			instance, err, i;
457 	char			strbuf[32];
458 	wifi_data_t		wd = { 0 };
459 	mac_register_t		*macp;
460 
461 	int			intr_type;
462 	int			intr_count;
463 	int			intr_actual;
464 
465 	switch (cmd) {
466 	case DDI_ATTACH:
467 		break;
468 	case DDI_RESUME:
469 		sc = ddi_get_soft_state(iwk_soft_state_p,
470 		    ddi_get_instance(dip));
471 		ASSERT(sc != NULL);
472 		mutex_enter(&sc->sc_glock);
473 		sc->sc_flags &= ~IWK_F_SUSPEND;
474 		mutex_exit(&sc->sc_glock);
475 		if (sc->sc_flags & IWK_F_RUNNING) {
476 			(void) iwk_init(sc);
477 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
478 		}
479 		IWK_DBG((IWK_DEBUG_RESUME, "iwk: resume\n"));
480 		return (DDI_SUCCESS);
481 	default:
482 		err = DDI_FAILURE;
483 		goto attach_fail1;
484 	}
485 
486 	instance = ddi_get_instance(dip);
487 	err = ddi_soft_state_zalloc(iwk_soft_state_p, instance);
488 	if (err != DDI_SUCCESS) {
489 		cmn_err(CE_WARN,
490 		    "iwk_attach(): failed to allocate soft state\n");
491 		goto attach_fail1;
492 	}
493 	sc = ddi_get_soft_state(iwk_soft_state_p, instance);
494 	sc->sc_dip = dip;
495 
496 	err = ddi_regs_map_setup(dip, 0, &sc->sc_cfg_base, 0, 0,
497 	    &iwk_reg_accattr, &sc->sc_cfg_handle);
498 	if (err != DDI_SUCCESS) {
499 		cmn_err(CE_WARN,
500 		    "iwk_attach(): failed to map config spaces regs\n");
501 		goto attach_fail2;
502 	}
503 	sc->sc_rev = ddi_get8(sc->sc_cfg_handle,
504 	    (uint8_t *)(sc->sc_cfg_base + PCI_CONF_REVID));
505 	ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0x41), 0);
506 	sc->sc_clsz = ddi_get16(sc->sc_cfg_handle,
507 	    (uint16_t *)(sc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
508 	if (!sc->sc_clsz)
509 		sc->sc_clsz = 16;
510 	sc->sc_clsz = (sc->sc_clsz << 2);
511 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
512 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
513 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
514 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
515 	/*
516 	 * Map operating registers
517 	 */
518 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
519 	    0, 0, &iwk_reg_accattr, &sc->sc_handle);
520 	if (err != DDI_SUCCESS) {
521 		cmn_err(CE_WARN,
522 		    "iwk_attach(): failed to map device regs\n");
523 		goto attach_fail2a;
524 	}
525 
526 	err = ddi_intr_get_supported_types(dip, &intr_type);
527 	if ((err != DDI_SUCCESS) || (!(intr_type & DDI_INTR_TYPE_FIXED))) {
528 		cmn_err(CE_WARN, "iwk_attach(): "
529 		    "Fixed type interrupt is not supported\n");
530 		goto attach_fail_intr_a;
531 	}
532 
533 	err = ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED, &intr_count);
534 	if ((err != DDI_SUCCESS) || (intr_count != 1)) {
535 		cmn_err(CE_WARN, "iwk_attach(): "
536 		    "No fixed interrupts\n");
537 		goto attach_fail_intr_a;
538 	}
539 
540 	sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
541 
542 	err = ddi_intr_alloc(dip, sc->sc_intr_htable, DDI_INTR_TYPE_FIXED, 0,
543 	    intr_count, &intr_actual, 0);
544 	if ((err != DDI_SUCCESS) || (intr_actual != 1)) {
545 		cmn_err(CE_WARN, "iwk_attach(): "
546 		    "ddi_intr_alloc() failed 0x%x\n", err);
547 		goto attach_fail_intr_b;
548 	}
549 
550 	err = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
551 	if (err != DDI_SUCCESS) {
552 		cmn_err(CE_WARN, "iwk_attach(): "
553 		    "ddi_intr_get_pri() failed 0x%x\n", err);
554 		goto attach_fail_intr_c;
555 	}
556 
557 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER,
558 	    DDI_INTR_PRI(sc->sc_intr_pri));
559 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER,
560 	    DDI_INTR_PRI(sc->sc_intr_pri));
561 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
562 	    DDI_INTR_PRI(sc->sc_intr_pri));
563 
564 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
565 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
566 	cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
567 	/*
568 	 * initialize the mfthread
569 	 */
570 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
571 	sc->sc_mf_thread = NULL;
572 	sc->sc_mf_thread_switch = 0;
573 
574 	/*
575 	 * Allocate shared page.
576 	 */
577 	err = iwk_alloc_shared(sc);
578 	if (err != DDI_SUCCESS) {
579 		cmn_err(CE_WARN, "iwk_attach(): "
580 		    "failed to allocate shared page\n");
581 		goto attach_fail3;
582 	}
583 
584 	/*
585 	 * Allocate keep warm page.
586 	 */
587 	err = iwk_alloc_kw(sc);
588 	if (err != DDI_SUCCESS) {
589 		cmn_err(CE_WARN, "iwk_attach(): "
590 		    "failed to allocate keep warm page\n");
591 		goto attach_fail3a;
592 	}
593 
594 	/*
595 	 * Do some necessary hardware initializations.
596 	 */
597 	err = iwk_preinit(sc);
598 	if (err != DDI_SUCCESS) {
599 		cmn_err(CE_WARN, "iwk_attach(): "
600 		    "failed to init hardware\n");
601 		goto attach_fail4;
602 	}
603 
604 	/* initialize EEPROM */
605 	err = iwk_eep_load(sc);  /* get hardware configurations from eeprom */
606 	if (err != 0) {
607 		cmn_err(CE_WARN, "iwk_attach(): failed to load eeprom\n");
608 		goto attach_fail4;
609 	}
610 
611 	if (sc->sc_eep_map.calib_version < EEP_TX_POWER_VERSION_NEW) {
612 		cmn_err(CE_WARN, "older EEPROM detected\n");
613 		goto attach_fail4;
614 	}
615 
616 	iwk_get_mac_from_eep(sc);
617 
618 	err = iwk_ring_init(sc);
619 	if (err != DDI_SUCCESS) {
620 		cmn_err(CE_WARN, "iwk_attach(): "
621 		    "failed to allocate and initialize ring\n");
622 		goto attach_fail4;
623 	}
624 
625 	sc->sc_hdr = (iwk_firmware_hdr_t *)iwk_fw_bin;
626 
627 	err = iwk_alloc_fw_dma(sc);
628 	if (err != DDI_SUCCESS) {
629 		cmn_err(CE_WARN, "iwk_attach(): "
630 		    "failed to allocate firmware dma\n");
631 		goto attach_fail5;
632 	}
633 
634 	/*
635 	 * Initialize the wifi part, which will be used by
636 	 * generic layer
637 	 */
638 	ic = &sc->sc_ic;
639 	ic->ic_phytype  = IEEE80211_T_OFDM;
640 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
641 	ic->ic_state    = IEEE80211_S_INIT;
642 	ic->ic_maxrssi  = 100; /* experimental number */
643 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
644 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
645 	/*
646 	 * use software WEP and TKIP, hardware CCMP;
647 	 */
648 	ic->ic_caps |= IEEE80211_C_AES_CCM;
649 	/*
650 	 * Support WPA/WPA2
651 	 */
652 	ic->ic_caps |= IEEE80211_C_WPA;
653 
654 	/* set supported .11b and .11g rates */
655 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwk_rateset_11b;
656 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwk_rateset_11g;
657 
658 	/* set supported .11b and .11g channels (1 through 11) */
659 	for (i = 1; i <= 11; i++) {
660 		ic->ic_sup_channels[i].ich_freq =
661 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
662 		ic->ic_sup_channels[i].ich_flags =
663 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
664 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
665 		    IEEE80211_CHAN_PASSIVE;
666 	}
667 
668 	ic->ic_xmit = iwk_send;
669 	/*
670 	 * init Wifi layer
671 	 */
672 	ieee80211_attach(ic);
673 
674 	/*
675 	 * different instance has different WPA door
676 	 */
677 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
678 	    ddi_driver_name(dip),
679 	    ddi_get_instance(dip));
680 
681 	/*
682 	 * Override 80211 default routines
683 	 */
684 	sc->sc_newstate = ic->ic_newstate;
685 	ic->ic_newstate = iwk_newstate;
686 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
687 	ic->ic_node_alloc = iwk_node_alloc;
688 	ic->ic_node_free = iwk_node_free;
689 	ic->ic_crypto.cs_key_set = iwk_key_set;
690 	ieee80211_media_init(ic);
691 	/*
692 	 * initialize default tx key
693 	 */
694 	ic->ic_def_txkey = 0;
695 	err = ddi_intr_add_softint(dip, &sc->sc_soft_hdl, DDI_INTR_SOFTPRI_MAX,
696 	    iwk_rx_softintr, (caddr_t)sc);
697 	if (err != DDI_SUCCESS) {
698 		cmn_err(CE_WARN, "iwk_attach(): "
699 		    "add soft interrupt failed\n");
700 		goto attach_fail7;
701 	}
702 
703 	/*
704 	 * Add the interrupt handler
705 	 */
706 	err = ddi_intr_add_handler(sc->sc_intr_htable[0], iwk_intr,
707 	    (caddr_t)sc, NULL);
708 	if (err != DDI_SUCCESS) {
709 		cmn_err(CE_WARN, "iwk_attach(): "
710 		    "ddi_intr_add_handle() failed\n");
711 		goto attach_fail8;
712 	}
713 
714 	err = ddi_intr_enable(sc->sc_intr_htable[0]);
715 	if (err != DDI_SUCCESS) {
716 		cmn_err(CE_WARN, "iwk_attach(): "
717 		    "ddi_intr_enable() failed\n");
718 		goto attach_fail_intr_d;
719 	}
720 
721 	/*
722 	 * Initialize pointer to device specific functions
723 	 */
724 	wd.wd_secalloc = WIFI_SEC_NONE;
725 	wd.wd_opmode = ic->ic_opmode;
726 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
727 
728 	macp = mac_alloc(MAC_VERSION);
729 	if (err != DDI_SUCCESS) {
730 		cmn_err(CE_WARN,
731 		    "iwk_attach(): failed to do mac_alloc()\n");
732 		goto attach_fail9;
733 	}
734 
735 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
736 	macp->m_driver		= sc;
737 	macp->m_dip		= dip;
738 	macp->m_src_addr	= ic->ic_macaddr;
739 	macp->m_callbacks	= &iwk_m_callbacks;
740 	macp->m_min_sdu		= 0;
741 	macp->m_max_sdu		= IEEE80211_MTU;
742 	macp->m_pdata		= &wd;
743 	macp->m_pdata_size	= sizeof (wd);
744 
745 	/*
746 	 * Register the macp to mac
747 	 */
748 	err = mac_register(macp, &ic->ic_mach);
749 	mac_free(macp);
750 	if (err != DDI_SUCCESS) {
751 		cmn_err(CE_WARN,
752 		    "iwk_attach(): failed to do mac_register()\n");
753 		goto attach_fail9;
754 	}
755 
756 	/*
757 	 * Create minor node of type DDI_NT_NET_WIFI
758 	 */
759 	(void) snprintf(strbuf, sizeof (strbuf), DRV_NAME_4965"%d", instance);
760 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
761 	    instance + 1, DDI_NT_NET_WIFI, 0);
762 	if (err != DDI_SUCCESS)
763 		cmn_err(CE_WARN,
764 		    "iwk_attach(): failed to do ddi_create_minor_node()\n");
765 
766 	/*
767 	 * Notify link is down now
768 	 */
769 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
770 
771 	/*
772 	 * create the mf thread to handle the link status,
773 	 * recovery fatal error, etc.
774 	 */
775 	sc->sc_mf_thread_switch = 1;
776 	if (sc->sc_mf_thread == NULL)
777 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
778 		    iwk_thread, sc, 0, &p0, TS_RUN, minclsyspri);
779 
780 	sc->sc_flags |= IWK_F_ATTACHED;
781 
782 	return (DDI_SUCCESS);
783 attach_fail9:
784 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
785 attach_fail_intr_d:
786 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
787 
788 attach_fail8:
789 	(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
790 	sc->sc_soft_hdl = NULL;
791 attach_fail7:
792 	ieee80211_detach(ic);
793 attach_fail6:
794 	iwk_free_fw_dma(sc);
795 attach_fail5:
796 	iwk_ring_free(sc);
797 attach_fail4:
798 	iwk_free_kw(sc);
799 attach_fail3a:
800 	iwk_free_shared(sc);
801 attach_fail3:
802 	iwk_destroy_locks(sc);
803 attach_fail_intr_c:
804 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
805 attach_fail_intr_b:
806 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
807 attach_fail_intr_a:
808 	ddi_regs_map_free(&sc->sc_handle);
809 attach_fail2a:
810 	ddi_regs_map_free(&sc->sc_cfg_handle);
811 attach_fail2:
812 	ddi_soft_state_free(iwk_soft_state_p, instance);
813 attach_fail1:
814 	return (err);
815 }
816 
817 int
818 iwk_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
819 {
820 	iwk_sc_t	*sc;
821 	int err;
822 
823 	sc = ddi_get_soft_state(iwk_soft_state_p, ddi_get_instance(dip));
824 	ASSERT(sc != NULL);
825 
826 	switch (cmd) {
827 	case DDI_DETACH:
828 		break;
829 	case DDI_SUSPEND:
830 		if (sc->sc_flags & IWK_F_RUNNING) {
831 			iwk_stop(sc);
832 		}
833 		mutex_enter(&sc->sc_glock);
834 		sc->sc_flags |= IWK_F_SUSPEND;
835 		mutex_exit(&sc->sc_glock);
836 		IWK_DBG((IWK_DEBUG_RESUME, "iwk: suspend\n"));
837 		return (DDI_SUCCESS);
838 	default:
839 		return (DDI_FAILURE);
840 	}
841 
842 	if (!(sc->sc_flags & IWK_F_ATTACHED))
843 		return (DDI_FAILURE);
844 
845 	err = mac_disable(sc->sc_ic.ic_mach);
846 	if (err != DDI_SUCCESS)
847 		return (err);
848 
849 	/*
850 	 * Destroy the mf_thread
851 	 */
852 	mutex_enter(&sc->sc_mt_lock);
853 	sc->sc_mf_thread_switch = 0;
854 	while (sc->sc_mf_thread != NULL) {
855 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
856 			break;
857 	}
858 	mutex_exit(&sc->sc_mt_lock);
859 
860 	iwk_stop(sc);
861 	DELAY(500000);
862 
863 	/*
864 	 * Unregiste from the MAC layer subsystem
865 	 */
866 	(void) mac_unregister(sc->sc_ic.ic_mach);
867 
868 	mutex_enter(&sc->sc_glock);
869 	iwk_free_fw_dma(sc);
870 	iwk_ring_free(sc);
871 	iwk_free_kw(sc);
872 	iwk_free_shared(sc);
873 	mutex_exit(&sc->sc_glock);
874 
875 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
876 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
877 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
878 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
879 
880 	(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
881 	sc->sc_soft_hdl = NULL;
882 
883 	/*
884 	 * detach ieee80211
885 	 */
886 	ieee80211_detach(&sc->sc_ic);
887 
888 	iwk_destroy_locks(sc);
889 
890 	ddi_regs_map_free(&sc->sc_handle);
891 	ddi_regs_map_free(&sc->sc_cfg_handle);
892 	ddi_remove_minor_node(dip, NULL);
893 	ddi_soft_state_free(iwk_soft_state_p, ddi_get_instance(dip));
894 
895 	return (DDI_SUCCESS);
896 }
897 
898 /*
899  * quiesce(9E) entry point.
900  *
901  * This function is called when the system is single-threaded at high
902  * PIL with preemption disabled. Therefore, this function must not be
903  * blocked.
904  *
905  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
906  * DDI_FAILURE indicates an error condition and should almost never happen.
907  */
908 int
909 iwk_quiesce(dev_info_t *dip)
910 {
911 	iwk_sc_t	*sc;
912 
913 	sc = ddi_get_soft_state(iwk_soft_state_p, ddi_get_instance(dip));
914 	ASSERT(sc != NULL);
915 
916 	/* no message prints and no lock accquisition */
917 #ifdef DEBUG
918 	iwk_dbg_flags = 0;
919 #endif
920 	sc->sc_flags |= IWK_F_QUIESCED;
921 
922 	iwk_stop(sc);
923 
924 	return (DDI_SUCCESS);
925 }
926 
927 static void
928 iwk_destroy_locks(iwk_sc_t *sc)
929 {
930 	cv_destroy(&sc->sc_mt_cv);
931 	mutex_destroy(&sc->sc_mt_lock);
932 	cv_destroy(&sc->sc_tx_cv);
933 	cv_destroy(&sc->sc_cmd_cv);
934 	cv_destroy(&sc->sc_fw_cv);
935 	mutex_destroy(&sc->sc_tx_lock);
936 	mutex_destroy(&sc->sc_glock);
937 }
938 
939 /*
940  * Allocate an area of memory and a DMA handle for accessing it
941  */
942 static int
943 iwk_alloc_dma_mem(iwk_sc_t *sc, size_t memsize,
944     ddi_dma_attr_t *dma_attr_p, ddi_device_acc_attr_t *acc_attr_p,
945     uint_t dma_flags, iwk_dma_t *dma_p)
946 {
947 	caddr_t vaddr;
948 	int err;
949 
950 	/*
951 	 * Allocate handle
952 	 */
953 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
954 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
955 	if (err != DDI_SUCCESS) {
956 		dma_p->dma_hdl = NULL;
957 		return (DDI_FAILURE);
958 	}
959 
960 	/*
961 	 * Allocate memory
962 	 */
963 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
964 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
965 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
966 	if (err != DDI_SUCCESS) {
967 		ddi_dma_free_handle(&dma_p->dma_hdl);
968 		dma_p->dma_hdl = NULL;
969 		dma_p->acc_hdl = NULL;
970 		return (DDI_FAILURE);
971 	}
972 
973 	/*
974 	 * Bind the two together
975 	 */
976 	dma_p->mem_va = vaddr;
977 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
978 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
979 	    &dma_p->cookie, &dma_p->ncookies);
980 	if (err != DDI_DMA_MAPPED) {
981 		ddi_dma_mem_free(&dma_p->acc_hdl);
982 		ddi_dma_free_handle(&dma_p->dma_hdl);
983 		dma_p->acc_hdl = NULL;
984 		dma_p->dma_hdl = NULL;
985 		return (DDI_FAILURE);
986 	}
987 
988 	dma_p->nslots = ~0U;
989 	dma_p->size = ~0U;
990 	dma_p->token = ~0U;
991 	dma_p->offset = 0;
992 	return (DDI_SUCCESS);
993 }
994 
995 /*
996  * Free one allocated area of DMAable memory
997  */
998 static void
999 iwk_free_dma_mem(iwk_dma_t *dma_p)
1000 {
1001 	if (dma_p->dma_hdl != NULL) {
1002 		if (dma_p->ncookies) {
1003 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1004 			dma_p->ncookies = 0;
1005 		}
1006 		ddi_dma_free_handle(&dma_p->dma_hdl);
1007 		dma_p->dma_hdl = NULL;
1008 	}
1009 
1010 	if (dma_p->acc_hdl != NULL) {
1011 		ddi_dma_mem_free(&dma_p->acc_hdl);
1012 		dma_p->acc_hdl = NULL;
1013 	}
1014 }
1015 
1016 /*
1017  *
1018  */
1019 static int
1020 iwk_alloc_fw_dma(iwk_sc_t *sc)
1021 {
1022 	int err = DDI_SUCCESS;
1023 	iwk_dma_t *dma_p;
1024 	char *t;
1025 
1026 	/*
1027 	 * firmware image layout:
1028 	 * |HDR|<-TEXT->|<-DATA->|<-INIT_TEXT->|<-INIT_DATA->|<-BOOT->|
1029 	 */
1030 	t = (char *)(sc->sc_hdr + 1);
1031 	err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
1032 	    &fw_dma_attr, &iwk_dma_accattr,
1033 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1034 	    &sc->sc_dma_fw_text);
1035 	dma_p = &sc->sc_dma_fw_text;
1036 	IWK_DBG((IWK_DEBUG_DMA, "text[ncookies:%d addr:%lx size:%lx]\n",
1037 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1038 	    dma_p->cookie.dmac_size));
1039 	if (err != DDI_SUCCESS) {
1040 		cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
1041 		    " text dma memory");
1042 		goto fail;
1043 	}
1044 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->textsz));
1045 
1046 	t += LE_32(sc->sc_hdr->textsz);
1047 	err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
1048 	    &fw_dma_attr, &iwk_dma_accattr,
1049 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1050 	    &sc->sc_dma_fw_data);
1051 	dma_p = &sc->sc_dma_fw_data;
1052 	IWK_DBG((IWK_DEBUG_DMA, "data[ncookies:%d addr:%lx size:%lx]\n",
1053 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1054 	    dma_p->cookie.dmac_size));
1055 	if (err != DDI_SUCCESS) {
1056 		cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
1057 		    " data dma memory");
1058 		goto fail;
1059 	}
1060 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
1061 
1062 	err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
1063 	    &fw_dma_attr, &iwk_dma_accattr,
1064 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1065 	    &sc->sc_dma_fw_data_bak);
1066 	dma_p = &sc->sc_dma_fw_data_bak;
1067 	IWK_DBG((IWK_DEBUG_DMA, "data_bak[ncookies:%d addr:%lx "
1068 	    "size:%lx]\n",
1069 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1070 	    dma_p->cookie.dmac_size));
1071 	if (err != DDI_SUCCESS) {
1072 		cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
1073 		    " data bakeup dma memory");
1074 		goto fail;
1075 	}
1076 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
1077 
1078 	t += LE_32(sc->sc_hdr->datasz);
1079 	err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_textsz),
1080 	    &fw_dma_attr, &iwk_dma_accattr,
1081 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1082 	    &sc->sc_dma_fw_init_text);
1083 	dma_p = &sc->sc_dma_fw_init_text;
1084 	IWK_DBG((IWK_DEBUG_DMA, "init_text[ncookies:%d addr:%lx "
1085 	    "size:%lx]\n",
1086 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1087 	    dma_p->cookie.dmac_size));
1088 	if (err != DDI_SUCCESS) {
1089 		cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
1090 		    "init text dma memory");
1091 		goto fail;
1092 	}
1093 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_textsz));
1094 
1095 	t += LE_32(sc->sc_hdr->init_textsz);
1096 	err = iwk_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_datasz),
1097 	    &fw_dma_attr, &iwk_dma_accattr,
1098 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1099 	    &sc->sc_dma_fw_init_data);
1100 	dma_p = &sc->sc_dma_fw_init_data;
1101 	IWK_DBG((IWK_DEBUG_DMA, "init_data[ncookies:%d addr:%lx "
1102 	    "size:%lx]\n",
1103 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1104 	    dma_p->cookie.dmac_size));
1105 	if (err != DDI_SUCCESS) {
1106 		cmn_err(CE_WARN, "iwk_alloc_fw_dma(): failed to alloc"
1107 		    "init data dma memory");
1108 		goto fail;
1109 	}
1110 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_datasz));
1111 
1112 	sc->sc_boot = t + LE_32(sc->sc_hdr->init_datasz);
1113 fail:
1114 	return (err);
1115 }
1116 
1117 static void
1118 iwk_free_fw_dma(iwk_sc_t *sc)
1119 {
1120 	iwk_free_dma_mem(&sc->sc_dma_fw_text);
1121 	iwk_free_dma_mem(&sc->sc_dma_fw_data);
1122 	iwk_free_dma_mem(&sc->sc_dma_fw_data_bak);
1123 	iwk_free_dma_mem(&sc->sc_dma_fw_init_text);
1124 	iwk_free_dma_mem(&sc->sc_dma_fw_init_data);
1125 }
1126 
1127 /*
1128  * Allocate a shared page between host and NIC.
1129  */
1130 static int
1131 iwk_alloc_shared(iwk_sc_t *sc)
1132 {
1133 	iwk_dma_t *dma_p;
1134 	int err = DDI_SUCCESS;
1135 
1136 	/* must be aligned on a 4K-page boundary */
1137 	err = iwk_alloc_dma_mem(sc, sizeof (iwk_shared_t),
1138 	    &sh_dma_attr, &iwk_dma_accattr,
1139 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1140 	    &sc->sc_dma_sh);
1141 	if (err != DDI_SUCCESS)
1142 		goto fail;
1143 	sc->sc_shared = (iwk_shared_t *)sc->sc_dma_sh.mem_va;
1144 
1145 	dma_p = &sc->sc_dma_sh;
1146 	IWK_DBG((IWK_DEBUG_DMA, "sh[ncookies:%d addr:%lx size:%lx]\n",
1147 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1148 	    dma_p->cookie.dmac_size));
1149 
1150 	return (err);
1151 fail:
1152 	iwk_free_shared(sc);
1153 	return (err);
1154 }
1155 
1156 static void
1157 iwk_free_shared(iwk_sc_t *sc)
1158 {
1159 	iwk_free_dma_mem(&sc->sc_dma_sh);
1160 }
1161 
1162 /*
1163  * Allocate a keep warm page.
1164  */
1165 static int
1166 iwk_alloc_kw(iwk_sc_t *sc)
1167 {
1168 	iwk_dma_t *dma_p;
1169 	int err = DDI_SUCCESS;
1170 
1171 	/* must be aligned on a 4K-page boundary */
1172 	err = iwk_alloc_dma_mem(sc, IWK_KW_SIZE,
1173 	    &kw_dma_attr, &iwk_dma_accattr,
1174 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1175 	    &sc->sc_dma_kw);
1176 	if (err != DDI_SUCCESS)
1177 		goto fail;
1178 
1179 	dma_p = &sc->sc_dma_kw;
1180 	IWK_DBG((IWK_DEBUG_DMA, "kw[ncookies:%d addr:%lx size:%lx]\n",
1181 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1182 	    dma_p->cookie.dmac_size));
1183 
1184 	return (err);
1185 fail:
1186 	iwk_free_kw(sc);
1187 	return (err);
1188 }
1189 
1190 static void
1191 iwk_free_kw(iwk_sc_t *sc)
1192 {
1193 	iwk_free_dma_mem(&sc->sc_dma_kw);
1194 }
1195 
1196 static int
1197 iwk_alloc_rx_ring(iwk_sc_t *sc)
1198 {
1199 	iwk_rx_ring_t *ring;
1200 	iwk_rx_data_t *data;
1201 	iwk_dma_t *dma_p;
1202 	int i, err = DDI_SUCCESS;
1203 
1204 	ring = &sc->sc_rxq;
1205 	ring->cur = 0;
1206 
1207 	err = iwk_alloc_dma_mem(sc, RX_QUEUE_SIZE * sizeof (uint32_t),
1208 	    &ring_desc_dma_attr, &iwk_dma_accattr,
1209 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1210 	    &ring->dma_desc);
1211 	if (err != DDI_SUCCESS) {
1212 		cmn_err(CE_WARN, "dma alloc rx ring desc failed\n");
1213 		goto fail;
1214 	}
1215 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
1216 	dma_p = &ring->dma_desc;
1217 	IWK_DBG((IWK_DEBUG_DMA, "rx bd[ncookies:%d addr:%lx size:%lx]\n",
1218 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1219 	    dma_p->cookie.dmac_size));
1220 
1221 	/*
1222 	 * Allocate Rx buffers.
1223 	 */
1224 	for (i = 0; i < RX_QUEUE_SIZE; i++) {
1225 		data = &ring->data[i];
1226 		err = iwk_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1227 		    &rx_buffer_dma_attr, &iwk_dma_accattr,
1228 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1229 		    &data->dma_data);
1230 		if (err != DDI_SUCCESS) {
1231 			cmn_err(CE_WARN, "dma alloc rx ring buf[%d] "
1232 			    "failed\n", i);
1233 			goto fail;
1234 		}
1235 		/*
1236 		 * the physical address bit [8-36] are used,
1237 		 * instead of bit [0-31] in 3945.
1238 		 */
1239 		ring->desc[i] = LE_32((uint32_t)
1240 		    (data->dma_data.cookie.dmac_address >> 8));
1241 	}
1242 	dma_p = &ring->data[0].dma_data;
1243 	IWK_DBG((IWK_DEBUG_DMA, "rx buffer[0][ncookies:%d addr:%lx "
1244 	    "size:%lx]\n",
1245 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1246 	    dma_p->cookie.dmac_size));
1247 
1248 	IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1249 
1250 	return (err);
1251 
1252 fail:
1253 	iwk_free_rx_ring(sc);
1254 	return (err);
1255 }
1256 
1257 static void
1258 iwk_reset_rx_ring(iwk_sc_t *sc)
1259 {
1260 	int n;
1261 
1262 	iwk_mac_access_enter(sc);
1263 	IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1264 	for (n = 0; n < 2000; n++) {
1265 		if (IWK_READ(sc, FH_MEM_RSSR_RX_STATUS_REG) & (1 << 24))
1266 			break;
1267 		DELAY(1000);
1268 	}
1269 
1270 	if (n == 2000)
1271 		IWK_DBG((IWK_DEBUG_DMA, "timeout resetting Rx ring\n"));
1272 
1273 	iwk_mac_access_exit(sc);
1274 
1275 	sc->sc_rxq.cur = 0;
1276 }
1277 
1278 static void
1279 iwk_free_rx_ring(iwk_sc_t *sc)
1280 {
1281 	int i;
1282 
1283 	for (i = 0; i < RX_QUEUE_SIZE; i++) {
1284 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1285 			IWK_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1286 			    DDI_DMA_SYNC_FORCPU);
1287 		iwk_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1288 	}
1289 
1290 	if (sc->sc_rxq.dma_desc.dma_hdl)
1291 		IWK_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1292 	iwk_free_dma_mem(&sc->sc_rxq.dma_desc);
1293 }
1294 
1295 static int
1296 iwk_alloc_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring,
1297     int slots, int qid)
1298 {
1299 	iwk_tx_data_t *data;
1300 	iwk_tx_desc_t *desc_h;
1301 	uint32_t paddr_desc_h;
1302 	iwk_cmd_t *cmd_h;
1303 	uint32_t paddr_cmd_h;
1304 	iwk_dma_t *dma_p;
1305 	int i, err = DDI_SUCCESS;
1306 
1307 	ring->qid = qid;
1308 	ring->count = TFD_QUEUE_SIZE_MAX;
1309 	ring->window = slots;
1310 	ring->queued = 0;
1311 	ring->cur = 0;
1312 
1313 	err = iwk_alloc_dma_mem(sc,
1314 	    TFD_QUEUE_SIZE_MAX * sizeof (iwk_tx_desc_t),
1315 	    &ring_desc_dma_attr, &iwk_dma_accattr,
1316 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1317 	    &ring->dma_desc);
1318 	if (err != DDI_SUCCESS) {
1319 		cmn_err(CE_WARN, "dma alloc tx ring desc[%d] "
1320 		    "failed\n", qid);
1321 		goto fail;
1322 	}
1323 	dma_p = &ring->dma_desc;
1324 	IWK_DBG((IWK_DEBUG_DMA, "tx bd[ncookies:%d addr:%lx size:%lx]\n",
1325 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1326 	    dma_p->cookie.dmac_size));
1327 
1328 	desc_h = (iwk_tx_desc_t *)ring->dma_desc.mem_va;
1329 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1330 
1331 	err = iwk_alloc_dma_mem(sc,
1332 	    TFD_QUEUE_SIZE_MAX * sizeof (iwk_cmd_t),
1333 	    &cmd_dma_attr, &iwk_dma_accattr,
1334 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1335 	    &ring->dma_cmd);
1336 	if (err != DDI_SUCCESS) {
1337 		cmn_err(CE_WARN, "dma alloc tx ring cmd[%d] "
1338 		    "failed\n", qid);
1339 		goto fail;
1340 	}
1341 	dma_p = &ring->dma_cmd;
1342 	IWK_DBG((IWK_DEBUG_DMA, "tx cmd[ncookies:%d addr:%lx size:%lx]\n",
1343 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1344 	    dma_p->cookie.dmac_size));
1345 
1346 	cmd_h = (iwk_cmd_t *)ring->dma_cmd.mem_va;
1347 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1348 
1349 	/*
1350 	 * Allocate Tx buffers.
1351 	 */
1352 	ring->data = kmem_zalloc(sizeof (iwk_tx_data_t) * TFD_QUEUE_SIZE_MAX,
1353 	    KM_NOSLEEP);
1354 	if (ring->data == NULL) {
1355 		cmn_err(CE_WARN, "could not allocate tx data slots\n");
1356 		goto fail;
1357 	}
1358 
1359 	for (i = 0; i < TFD_QUEUE_SIZE_MAX; i++) {
1360 		data = &ring->data[i];
1361 		err = iwk_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1362 		    &tx_buffer_dma_attr, &iwk_dma_accattr,
1363 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1364 		    &data->dma_data);
1365 		if (err != DDI_SUCCESS) {
1366 			cmn_err(CE_WARN, "dma alloc tx ring "
1367 			    "buf[%d] failed\n", i);
1368 			goto fail;
1369 		}
1370 
1371 		data->desc = desc_h + i;
1372 		data->paddr_desc = paddr_desc_h +
1373 		    _PTRDIFF(data->desc, desc_h);
1374 		data->cmd = cmd_h +  i; /* (i % slots); */
1375 		/* ((i % slots) * sizeof (iwk_cmd_t)); */
1376 		data->paddr_cmd = paddr_cmd_h +
1377 		    _PTRDIFF(data->cmd, cmd_h);
1378 	}
1379 	dma_p = &ring->data[0].dma_data;
1380 	IWK_DBG((IWK_DEBUG_DMA, "tx buffer[0][ncookies:%d addr:%lx "
1381 	    "size:%lx]\n",
1382 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1383 	    dma_p->cookie.dmac_size));
1384 
1385 	return (err);
1386 
1387 fail:
1388 	if (ring->data)
1389 		kmem_free(ring->data,
1390 		    sizeof (iwk_tx_data_t) * TFD_QUEUE_SIZE_MAX);
1391 	iwk_free_tx_ring(sc, ring);
1392 	return (err);
1393 }
1394 
1395 static void
1396 iwk_reset_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring)
1397 {
1398 	iwk_tx_data_t *data;
1399 	int i, n;
1400 
1401 	iwk_mac_access_enter(sc);
1402 
1403 	IWK_WRITE(sc, IWK_FH_TCSR_CHNL_TX_CONFIG_REG(ring->qid), 0);
1404 	for (n = 0; n < 200; n++) {
1405 		if (IWK_READ(sc, IWK_FH_TSSR_TX_STATUS_REG) &
1406 		    IWK_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ring->qid))
1407 			break;
1408 		DELAY(10);
1409 	}
1410 	if (n == 200) {
1411 		IWK_DBG((IWK_DEBUG_DMA, "timeout reset tx ring %d\n",
1412 		    ring->qid));
1413 	}
1414 	iwk_mac_access_exit(sc);
1415 
1416 	for (i = 0; i < ring->count; i++) {
1417 		data = &ring->data[i];
1418 		IWK_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1419 	}
1420 
1421 	ring->queued = 0;
1422 	ring->cur = 0;
1423 }
1424 
1425 /*ARGSUSED*/
1426 static void
1427 iwk_free_tx_ring(iwk_sc_t *sc, iwk_tx_ring_t *ring)
1428 {
1429 	int i;
1430 
1431 	if (ring->dma_desc.dma_hdl != NULL)
1432 		IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1433 	iwk_free_dma_mem(&ring->dma_desc);
1434 
1435 	if (ring->dma_cmd.dma_hdl != NULL)
1436 		IWK_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1437 	iwk_free_dma_mem(&ring->dma_cmd);
1438 
1439 	if (ring->data != NULL) {
1440 		for (i = 0; i < ring->count; i++) {
1441 			if (ring->data[i].dma_data.dma_hdl)
1442 				IWK_DMA_SYNC(ring->data[i].dma_data,
1443 				    DDI_DMA_SYNC_FORDEV);
1444 			iwk_free_dma_mem(&ring->data[i].dma_data);
1445 		}
1446 		kmem_free(ring->data, ring->count * sizeof (iwk_tx_data_t));
1447 	}
1448 }
1449 
1450 static int
1451 iwk_ring_init(iwk_sc_t *sc)
1452 {
1453 	int i, err = DDI_SUCCESS;
1454 
1455 	for (i = 0; i < IWK_NUM_QUEUES; i++) {
1456 		if (i == IWK_CMD_QUEUE_NUM)
1457 			continue;
1458 		err = iwk_alloc_tx_ring(sc, &sc->sc_txq[i], TFD_TX_CMD_SLOTS,
1459 		    i);
1460 		if (err != DDI_SUCCESS)
1461 			goto fail;
1462 	}
1463 	err = iwk_alloc_tx_ring(sc, &sc->sc_txq[IWK_CMD_QUEUE_NUM],
1464 	    TFD_CMD_SLOTS, IWK_CMD_QUEUE_NUM);
1465 	if (err != DDI_SUCCESS)
1466 		goto fail;
1467 	err = iwk_alloc_rx_ring(sc);
1468 	if (err != DDI_SUCCESS)
1469 		goto fail;
1470 	return (err);
1471 
1472 fail:
1473 	return (err);
1474 }
1475 
1476 static void
1477 iwk_ring_free(iwk_sc_t *sc)
1478 {
1479 	int i = IWK_NUM_QUEUES;
1480 
1481 	iwk_free_rx_ring(sc);
1482 	while (--i >= 0) {
1483 		iwk_free_tx_ring(sc, &sc->sc_txq[i]);
1484 	}
1485 }
1486 
1487 /* ARGSUSED */
1488 static ieee80211_node_t *
1489 iwk_node_alloc(ieee80211com_t *ic)
1490 {
1491 	iwk_amrr_t *amrr;
1492 
1493 	amrr = kmem_zalloc(sizeof (iwk_amrr_t), KM_SLEEP);
1494 	if (amrr != NULL)
1495 		iwk_amrr_init(amrr);
1496 	return (&amrr->in);
1497 }
1498 
1499 static void
1500 iwk_node_free(ieee80211_node_t *in)
1501 {
1502 	ieee80211com_t *ic = in->in_ic;
1503 
1504 	ic->ic_node_cleanup(in);
1505 	if (in->in_wpa_ie != NULL)
1506 		ieee80211_free(in->in_wpa_ie);
1507 	kmem_free(in, sizeof (iwk_amrr_t));
1508 }
1509 
1510 /*ARGSUSED*/
1511 static int
1512 iwk_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1513 {
1514 	iwk_sc_t *sc = (iwk_sc_t *)ic;
1515 	ieee80211_node_t *in = ic->ic_bss;
1516 	enum ieee80211_state ostate = ic->ic_state;
1517 	int i, err = IWK_SUCCESS;
1518 
1519 	mutex_enter(&sc->sc_glock);
1520 	switch (nstate) {
1521 	case IEEE80211_S_SCAN:
1522 		switch (ostate) {
1523 		case IEEE80211_S_INIT:
1524 		{
1525 			iwk_add_sta_t node;
1526 
1527 			sc->sc_flags |= IWK_F_SCANNING;
1528 			iwk_set_led(sc, 2, 10, 2);
1529 
1530 			/*
1531 			 * clear association to receive beacons from
1532 			 * all BSS'es
1533 			 */
1534 			sc->sc_config.assoc_id = 0;
1535 			sc->sc_config.filter_flags &=
1536 			    ~LE_32(RXON_FILTER_ASSOC_MSK);
1537 
1538 			IWK_DBG((IWK_DEBUG_80211, "config chan %d "
1539 			    "flags %x filter_flags %x\n", sc->sc_config.chan,
1540 			    sc->sc_config.flags, sc->sc_config.filter_flags));
1541 
1542 			err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
1543 			    sizeof (iwk_rxon_cmd_t), 1);
1544 			if (err != IWK_SUCCESS) {
1545 				cmn_err(CE_WARN,
1546 				    "could not clear association\n");
1547 				sc->sc_flags &= ~IWK_F_SCANNING;
1548 				mutex_exit(&sc->sc_glock);
1549 				return (err);
1550 			}
1551 
1552 			/* add broadcast node to send probe request */
1553 			(void) memset(&node, 0, sizeof (node));
1554 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1555 			node.id = IWK_BROADCAST_ID;
1556 			err = iwk_cmd(sc, REPLY_ADD_STA, &node,
1557 			    sizeof (node), 1);
1558 			if (err != IWK_SUCCESS) {
1559 				cmn_err(CE_WARN, "could not add "
1560 				    "broadcast node\n");
1561 				sc->sc_flags &= ~IWK_F_SCANNING;
1562 				mutex_exit(&sc->sc_glock);
1563 				return (err);
1564 			}
1565 			break;
1566 		}
1567 		case IEEE80211_S_SCAN:
1568 			mutex_exit(&sc->sc_glock);
1569 			/* step to next channel before actual FW scan */
1570 			err = sc->sc_newstate(ic, nstate, arg);
1571 			mutex_enter(&sc->sc_glock);
1572 			if ((err != 0) || ((err = iwk_scan(sc)) != 0)) {
1573 				cmn_err(CE_WARN,
1574 				    "could not initiate scan\n");
1575 				sc->sc_flags &= ~IWK_F_SCANNING;
1576 				ieee80211_cancel_scan(ic);
1577 			}
1578 			mutex_exit(&sc->sc_glock);
1579 			return (err);
1580 		default:
1581 			break;
1582 
1583 		}
1584 		sc->sc_clk = 0;
1585 		break;
1586 
1587 	case IEEE80211_S_AUTH:
1588 		if (ostate == IEEE80211_S_SCAN) {
1589 			sc->sc_flags &= ~IWK_F_SCANNING;
1590 		}
1591 
1592 		/* reset state to handle reassociations correctly */
1593 		sc->sc_config.assoc_id = 0;
1594 		sc->sc_config.filter_flags &= ~LE_32(RXON_FILTER_ASSOC_MSK);
1595 
1596 		/*
1597 		 * before sending authentication and association request frame,
1598 		 * we need do something in the hardware, such as setting the
1599 		 * channel same to the target AP...
1600 		 */
1601 		if ((err = iwk_hw_set_before_auth(sc)) != 0) {
1602 			cmn_err(CE_WARN, "could not setup firmware for "
1603 			    "authentication\n");
1604 			mutex_exit(&sc->sc_glock);
1605 			return (err);
1606 		}
1607 		break;
1608 
1609 	case IEEE80211_S_RUN:
1610 		if (ostate == IEEE80211_S_SCAN) {
1611 			sc->sc_flags &= ~IWK_F_SCANNING;
1612 		}
1613 
1614 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1615 			/* let LED blink when monitoring */
1616 			iwk_set_led(sc, 2, 10, 10);
1617 			break;
1618 		}
1619 		IWK_DBG((IWK_DEBUG_80211, "iwk: associated."));
1620 
1621 		/* none IBSS mode */
1622 		if (ic->ic_opmode != IEEE80211_M_IBSS) {
1623 			/* update adapter's configuration */
1624 			if (sc->sc_assoc_id != in->in_associd) {
1625 				cmn_err(CE_WARN,
1626 				    "associate ID mismatch: expected %d, "
1627 				    "got %d\n",
1628 				    in->in_associd, sc->sc_assoc_id);
1629 			}
1630 			sc->sc_config.assoc_id = in->in_associd & 0x3fff;
1631 			/*
1632 			 * short preamble/slot time are
1633 			 * negotiated when associating
1634 			 */
1635 			sc->sc_config.flags &=
1636 			    ~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
1637 			    RXON_FLG_SHORT_SLOT_MSK);
1638 
1639 			if (ic->ic_flags & IEEE80211_F_SHSLOT)
1640 				sc->sc_config.flags |=
1641 				    LE_32(RXON_FLG_SHORT_SLOT_MSK);
1642 
1643 			if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1644 				sc->sc_config.flags |=
1645 				    LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
1646 
1647 			sc->sc_config.filter_flags |=
1648 			    LE_32(RXON_FILTER_ASSOC_MSK);
1649 
1650 			if (ic->ic_opmode != IEEE80211_M_STA)
1651 				sc->sc_config.filter_flags |=
1652 				    LE_32(RXON_FILTER_BCON_AWARE_MSK);
1653 
1654 			IWK_DBG((IWK_DEBUG_80211, "config chan %d flags %x"
1655 			    " filter_flags %x\n",
1656 			    sc->sc_config.chan, sc->sc_config.flags,
1657 			    sc->sc_config.filter_flags));
1658 			err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
1659 			    sizeof (iwk_rxon_cmd_t), 1);
1660 			if (err != IWK_SUCCESS) {
1661 				cmn_err(CE_WARN, "could not update "
1662 				    "configuration\n");
1663 				mutex_exit(&sc->sc_glock);
1664 				return (err);
1665 			}
1666 		}
1667 
1668 		/* obtain current temperature of chipset */
1669 		sc->sc_tempera = iwk_curr_tempera(sc);
1670 
1671 		/*
1672 		 * make Tx power calibration to determine
1673 		 * the gains of DSP and radio
1674 		 */
1675 		err = iwk_tx_power_calibration(sc);
1676 		if (err) {
1677 			cmn_err(CE_WARN, "iwk_newstate(): "
1678 			    "failed to set tx power table\n");
1679 			return (err);
1680 		}
1681 
1682 		/* start automatic rate control */
1683 		mutex_enter(&sc->sc_mt_lock);
1684 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1685 			sc->sc_flags |= IWK_F_RATE_AUTO_CTL;
1686 			/* set rate to some reasonable initial value */
1687 			i = in->in_rates.ir_nrates - 1;
1688 			while (i > 0 && IEEE80211_RATE(i) > 72)
1689 				i--;
1690 			in->in_txrate = i;
1691 		} else {
1692 			sc->sc_flags &= ~IWK_F_RATE_AUTO_CTL;
1693 		}
1694 		mutex_exit(&sc->sc_mt_lock);
1695 
1696 		/* set LED on after associated */
1697 		iwk_set_led(sc, 2, 0, 1);
1698 		break;
1699 
1700 	case IEEE80211_S_INIT:
1701 		if (ostate == IEEE80211_S_SCAN) {
1702 			sc->sc_flags &= ~IWK_F_SCANNING;
1703 		}
1704 
1705 		/* set LED off after init */
1706 		iwk_set_led(sc, 2, 1, 0);
1707 		break;
1708 	case IEEE80211_S_ASSOC:
1709 		if (ostate == IEEE80211_S_SCAN) {
1710 			sc->sc_flags &= ~IWK_F_SCANNING;
1711 		}
1712 
1713 		break;
1714 	}
1715 
1716 	mutex_exit(&sc->sc_glock);
1717 
1718 	err = sc->sc_newstate(ic, nstate, arg);
1719 
1720 	if (nstate == IEEE80211_S_RUN) {
1721 
1722 		mutex_enter(&sc->sc_glock);
1723 
1724 		/*
1725 		 * make initialization for Receiver
1726 		 * sensitivity calibration
1727 		 */
1728 		err = iwk_rx_sens_init(sc);
1729 		if (err) {
1730 			cmn_err(CE_WARN, "iwk_newstate(): "
1731 			    "failed to init RX sensitivity\n");
1732 			mutex_exit(&sc->sc_glock);
1733 			return (err);
1734 		}
1735 
1736 		/* make initialization for Receiver gain balance */
1737 		err = iwk_rxgain_diff_init(sc);
1738 		if (err) {
1739 			cmn_err(CE_WARN, "iwk_newstate(): "
1740 			    "failed to init phy calibration\n");
1741 			mutex_exit(&sc->sc_glock);
1742 			return (err);
1743 		}
1744 
1745 		mutex_exit(&sc->sc_glock);
1746 
1747 	}
1748 
1749 	return (err);
1750 }
1751 
1752 /*ARGSUSED*/
1753 static int iwk_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1754     const uint8_t mac[IEEE80211_ADDR_LEN])
1755 {
1756 	iwk_sc_t *sc = (iwk_sc_t *)ic;
1757 	iwk_add_sta_t node;
1758 	int err;
1759 
1760 	switch (k->wk_cipher->ic_cipher) {
1761 	case IEEE80211_CIPHER_WEP:
1762 	case IEEE80211_CIPHER_TKIP:
1763 		return (1); /* sofeware do it. */
1764 	case IEEE80211_CIPHER_AES_CCM:
1765 		break;
1766 	default:
1767 		return (0);
1768 	}
1769 	sc->sc_config.filter_flags &= ~(RXON_FILTER_DIS_DECRYPT_MSK |
1770 	    RXON_FILTER_DIS_GRP_DECRYPT_MSK);
1771 
1772 	mutex_enter(&sc->sc_glock);
1773 
1774 	/* update ap/multicast node */
1775 	(void) memset(&node, 0, sizeof (node));
1776 	if (IEEE80211_IS_MULTICAST(mac)) {
1777 		(void) memset(node.bssid, 0xff, 6);
1778 		node.id = IWK_BROADCAST_ID;
1779 	} else {
1780 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1781 		node.id = IWK_AP_ID;
1782 	}
1783 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1784 		node.key_flags = 0;
1785 		node.keyp = k->wk_keyix;
1786 	} else {
1787 		node.key_flags = (1 << 14);
1788 		node.keyp = k->wk_keyix + 4;
1789 	}
1790 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1791 	node.key_flags |= (STA_KEY_FLG_CCMP | (1 << 3) | (k->wk_keyix << 8));
1792 	node.sta_mask = STA_MODIFY_KEY_MASK;
1793 	node.control = 1;
1794 	err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
1795 	if (err != IWK_SUCCESS) {
1796 		cmn_err(CE_WARN, "iwk_key_set():"
1797 		    "failed to update ap node\n");
1798 		mutex_exit(&sc->sc_glock);
1799 		return (0);
1800 	}
1801 	mutex_exit(&sc->sc_glock);
1802 	return (1);
1803 }
1804 
1805 /*
1806  * exclusive access to mac begin.
1807  */
1808 static void
1809 iwk_mac_access_enter(iwk_sc_t *sc)
1810 {
1811 	uint32_t tmp;
1812 	int n;
1813 
1814 	tmp = IWK_READ(sc, CSR_GP_CNTRL);
1815 	IWK_WRITE(sc, CSR_GP_CNTRL,
1816 	    tmp | CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1817 
1818 	/* wait until we succeed */
1819 	for (n = 0; n < 1000; n++) {
1820 		if ((IWK_READ(sc, CSR_GP_CNTRL) &
1821 		    (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
1822 		    CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP)) ==
1823 		    CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN)
1824 			break;
1825 		DELAY(10);
1826 	}
1827 	if (n == 1000)
1828 		IWK_DBG((IWK_DEBUG_PIO, "could not lock memory\n"));
1829 }
1830 
1831 /*
1832  * exclusive access to mac end.
1833  */
1834 static void
1835 iwk_mac_access_exit(iwk_sc_t *sc)
1836 {
1837 	uint32_t tmp = IWK_READ(sc, CSR_GP_CNTRL);
1838 	IWK_WRITE(sc, CSR_GP_CNTRL,
1839 	    tmp & ~CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1840 }
1841 
1842 static uint32_t
1843 iwk_mem_read(iwk_sc_t *sc, uint32_t addr)
1844 {
1845 	IWK_WRITE(sc, HBUS_TARG_MEM_RADDR, addr);
1846 	return (IWK_READ(sc, HBUS_TARG_MEM_RDAT));
1847 }
1848 
1849 static void
1850 iwk_mem_write(iwk_sc_t *sc, uint32_t addr, uint32_t data)
1851 {
1852 	IWK_WRITE(sc, HBUS_TARG_MEM_WADDR, addr);
1853 	IWK_WRITE(sc, HBUS_TARG_MEM_WDAT, data);
1854 }
1855 
1856 static uint32_t
1857 iwk_reg_read(iwk_sc_t *sc, uint32_t addr)
1858 {
1859 	IWK_WRITE(sc, HBUS_TARG_PRPH_RADDR, addr | (3 << 24));
1860 	return (IWK_READ(sc, HBUS_TARG_PRPH_RDAT));
1861 }
1862 
1863 static void
1864 iwk_reg_write(iwk_sc_t *sc, uint32_t addr, uint32_t data)
1865 {
1866 	IWK_WRITE(sc, HBUS_TARG_PRPH_WADDR, addr | (3 << 24));
1867 	IWK_WRITE(sc, HBUS_TARG_PRPH_WDAT, data);
1868 }
1869 
1870 static void
1871 iwk_reg_write_region_4(iwk_sc_t *sc, uint32_t addr,
1872     uint32_t *data, int wlen)
1873 {
1874 	for (; wlen > 0; wlen--, data++, addr += 4)
1875 		iwk_reg_write(sc, addr, *data);
1876 }
1877 
1878 
1879 /*
1880  * ucode load/initialization steps:
1881  * 1)  load Bootstrap State Machine (BSM) with "bootstrap" uCode image.
1882  * BSM contains a small memory that *always* stays powered up, so it can
1883  * retain the bootstrap program even when the card is in a power-saving
1884  * power-down state.  The BSM loads the small program into ARC processor's
1885  * instruction memory when triggered by power-up.
1886  * 2)  load Initialize image via bootstrap program.
1887  * The Initialize image sets up regulatory and calibration data for the
1888  * Runtime/Protocol uCode. This sends a REPLY_ALIVE notification when completed.
1889  * The 4965 reply contains calibration data for temperature, voltage and tx gain
1890  * correction.
1891  */
1892 static int
1893 iwk_load_firmware(iwk_sc_t *sc)
1894 {
1895 	uint32_t *boot_fw = (uint32_t *)sc->sc_boot;
1896 	uint32_t size = sc->sc_hdr->bootsz;
1897 	int n, err = IWK_SUCCESS;
1898 
1899 	/*
1900 	 * The physical address bit [4-35] of the initialize uCode.
1901 	 * In the initialize alive notify interrupt the physical address of
1902 	 * the runtime ucode will be set for loading.
1903 	 */
1904 	iwk_mac_access_enter(sc);
1905 
1906 	iwk_reg_write(sc, BSM_DRAM_INST_PTR_REG,
1907 	    sc->sc_dma_fw_init_text.cookie.dmac_address >> 4);
1908 	iwk_reg_write(sc, BSM_DRAM_DATA_PTR_REG,
1909 	    sc->sc_dma_fw_init_data.cookie.dmac_address >> 4);
1910 	iwk_reg_write(sc, BSM_DRAM_INST_BYTECOUNT_REG,
1911 	    sc->sc_dma_fw_init_text.cookie.dmac_size);
1912 	iwk_reg_write(sc, BSM_DRAM_DATA_BYTECOUNT_REG,
1913 	    sc->sc_dma_fw_init_data.cookie.dmac_size);
1914 
1915 	/* load bootstrap code into BSM memory */
1916 	iwk_reg_write_region_4(sc, BSM_SRAM_LOWER_BOUND, boot_fw,
1917 	    size / sizeof (uint32_t));
1918 
1919 	iwk_reg_write(sc, BSM_WR_MEM_SRC_REG, 0);
1920 	iwk_reg_write(sc, BSM_WR_MEM_DST_REG, RTC_INST_LOWER_BOUND);
1921 	iwk_reg_write(sc, BSM_WR_DWCOUNT_REG, size / sizeof (uint32_t));
1922 
1923 	/*
1924 	 * prepare to load initialize uCode
1925 	 */
1926 	iwk_reg_write(sc, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
1927 
1928 	/* wait while the adapter is busy loading the firmware */
1929 	for (n = 0; n < 1000; n++) {
1930 		if (!(iwk_reg_read(sc, BSM_WR_CTRL_REG) &
1931 		    BSM_WR_CTRL_REG_BIT_START))
1932 			break;
1933 		DELAY(10);
1934 	}
1935 	if (n == 1000) {
1936 		cmn_err(CE_WARN, "timeout transferring firmware\n");
1937 		err = ETIMEDOUT;
1938 		return (err);
1939 	}
1940 
1941 	/* for future power-save mode use */
1942 	iwk_reg_write(sc, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
1943 
1944 	iwk_mac_access_exit(sc);
1945 
1946 	return (err);
1947 }
1948 
1949 /*ARGSUSED*/
1950 static void
1951 iwk_rx_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc, iwk_rx_data_t *data)
1952 {
1953 	ieee80211com_t *ic = &sc->sc_ic;
1954 	iwk_rx_ring_t *ring = &sc->sc_rxq;
1955 	iwk_rx_phy_res_t *stat;
1956 	ieee80211_node_t *in;
1957 	uint32_t *tail;
1958 	struct ieee80211_frame *wh;
1959 	mblk_t *mp;
1960 	uint16_t len, rssi, mrssi, agc;
1961 	int16_t t;
1962 	uint32_t ants, i;
1963 	struct iwk_rx_non_cfg_phy *phyinfo;
1964 
1965 	/* assuming not 11n here. cope with 11n in phase-II */
1966 	stat = (iwk_rx_phy_res_t *)(desc + 1);
1967 	if (stat->cfg_phy_cnt > 20) {
1968 		return;
1969 	}
1970 
1971 	phyinfo = (struct iwk_rx_non_cfg_phy *)stat->non_cfg_phy;
1972 	agc = (phyinfo->agc_info & IWK_AGC_DB_MASK) >> IWK_AGC_DB_POS;
1973 	mrssi = 0;
1974 	ants = (stat->phy_flags & RX_PHY_FLAGS_ANTENNAE_MASK) >>
1975 	    RX_PHY_FLAGS_ANTENNAE_OFFSET;
1976 	for (i = 0; i < 3; i++) {
1977 		if (ants & (1 << i))
1978 			mrssi = MAX(mrssi, phyinfo->rssi_info[i << 1]);
1979 	}
1980 	t = mrssi - agc - 44; /* t is the dBM value */
1981 	/*
1982 	 * convert dBm to percentage ???
1983 	 */
1984 	rssi = (100 * 75 * 75 - (-20 - t) * (15 * 75 + 62 * (-20 - t))) /
1985 	    (75 * 75);
1986 	if (rssi > 100)
1987 		rssi = 100;
1988 	if (rssi < 1)
1989 		rssi = 1;
1990 	len = stat->byte_count;
1991 	tail = (uint32_t *)((uint8_t *)(stat + 1) + stat->cfg_phy_cnt + len);
1992 
1993 	IWK_DBG((IWK_DEBUG_RX, "rx intr: idx=%d phy_len=%x len=%d "
1994 	    "rate=%x chan=%d tstamp=%x non_cfg_phy_count=%x "
1995 	    "cfg_phy_count=%x tail=%x", ring->cur, sizeof (*stat),
1996 	    len, stat->rate.r.s.rate, stat->channel,
1997 	    LE_32(stat->timestampl), stat->non_cfg_phy_cnt,
1998 	    stat->cfg_phy_cnt, LE_32(*tail)));
1999 
2000 	if ((len < 16) || (len > sc->sc_dmabuf_sz)) {
2001 		IWK_DBG((IWK_DEBUG_RX, "rx frame oversize\n"));
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * discard Rx frames with bad CRC
2007 	 */
2008 	if ((LE_32(*tail) &
2009 	    (RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) !=
2010 	    (RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) {
2011 		IWK_DBG((IWK_DEBUG_RX, "rx crc error tail: %x\n",
2012 		    LE_32(*tail)));
2013 		sc->sc_rx_err++;
2014 		return;
2015 	}
2016 
2017 	wh = (struct ieee80211_frame *)
2018 	    ((uint8_t *)(stat + 1)+ stat->cfg_phy_cnt);
2019 	if (*(uint8_t *)wh == IEEE80211_FC0_SUBTYPE_ASSOC_RESP) {
2020 		sc->sc_assoc_id = *((uint16_t *)(wh + 1) + 2);
2021 		IWK_DBG((IWK_DEBUG_RX, "rx : association id = %x\n",
2022 		    sc->sc_assoc_id));
2023 	}
2024 #ifdef DEBUG
2025 	if (iwk_dbg_flags & IWK_DEBUG_RX)
2026 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
2027 #endif
2028 	in = ieee80211_find_rxnode(ic, wh);
2029 	mp = allocb(len, BPRI_MED);
2030 	if (mp) {
2031 		(void) memcpy(mp->b_wptr, wh, len);
2032 		mp->b_wptr += len;
2033 
2034 		/* send the frame to the 802.11 layer */
2035 		(void) ieee80211_input(ic, mp, in, rssi, 0);
2036 	} else {
2037 		sc->sc_rx_nobuf++;
2038 		IWK_DBG((IWK_DEBUG_RX,
2039 		    "iwk_rx_intr(): alloc rx buf failed\n"));
2040 	}
2041 	/* release node reference */
2042 	ieee80211_free_node(in);
2043 }
2044 
2045 /*ARGSUSED*/
2046 static void
2047 iwk_tx_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc, iwk_rx_data_t *data)
2048 {
2049 	ieee80211com_t *ic = &sc->sc_ic;
2050 	iwk_tx_ring_t *ring = &sc->sc_txq[desc->hdr.qid & 0x3];
2051 	iwk_tx_stat_t *stat = (iwk_tx_stat_t *)(desc + 1);
2052 	iwk_amrr_t *amrr = (iwk_amrr_t *)ic->ic_bss;
2053 
2054 	IWK_DBG((IWK_DEBUG_TX, "tx done: qid=%d idx=%d"
2055 	    " retries=%d frame_count=%x nkill=%d "
2056 	    "rate=%x duration=%d status=%x\n",
2057 	    desc->hdr.qid, desc->hdr.idx, stat->ntries, stat->frame_count,
2058 	    stat->bt_kill_count, stat->rate.r.s.rate,
2059 	    LE_32(stat->duration), LE_32(stat->status)));
2060 
2061 	amrr->txcnt++;
2062 	IWK_DBG((IWK_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
2063 	if (stat->ntries > 0) {
2064 		amrr->retrycnt++;
2065 		sc->sc_tx_retries++;
2066 		IWK_DBG((IWK_DEBUG_TX, "tx: %d retries\n",
2067 		    sc->sc_tx_retries));
2068 	}
2069 
2070 	sc->sc_tx_timer = 0;
2071 
2072 	mutex_enter(&sc->sc_tx_lock);
2073 	ring->queued--;
2074 	if (ring->queued < 0)
2075 		ring->queued = 0;
2076 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
2077 		sc->sc_need_reschedule = 0;
2078 		mutex_exit(&sc->sc_tx_lock);
2079 		mac_tx_update(ic->ic_mach);
2080 		mutex_enter(&sc->sc_tx_lock);
2081 	}
2082 	mutex_exit(&sc->sc_tx_lock);
2083 }
2084 
2085 static void
2086 iwk_cmd_intr(iwk_sc_t *sc, iwk_rx_desc_t *desc)
2087 {
2088 	if ((desc->hdr.qid & 7) != 4) {
2089 		return;
2090 	}
2091 	mutex_enter(&sc->sc_glock);
2092 	sc->sc_flags |= IWK_F_CMD_DONE;
2093 	cv_signal(&sc->sc_cmd_cv);
2094 	mutex_exit(&sc->sc_glock);
2095 	IWK_DBG((IWK_DEBUG_CMD, "rx cmd: "
2096 	    "qid=%x idx=%d flags=%x type=0x%x\n",
2097 	    desc->hdr.qid, desc->hdr.idx, desc->hdr.flags,
2098 	    desc->hdr.type));
2099 }
2100 
2101 static void
2102 iwk_ucode_alive(iwk_sc_t *sc, iwk_rx_desc_t *desc)
2103 {
2104 	uint32_t base, i;
2105 	struct iwk_alive_resp *ar =
2106 	    (struct iwk_alive_resp *)(desc + 1);
2107 
2108 	/* the microcontroller is ready */
2109 	IWK_DBG((IWK_DEBUG_FW,
2110 	    "microcode alive notification minor: %x major: %x type:"
2111 	    " %x subtype: %x\n",
2112 	    ar->ucode_minor, ar->ucode_minor, ar->ver_type, ar->ver_subtype));
2113 
2114 	if (LE_32(ar->is_valid) != UCODE_VALID_OK) {
2115 		IWK_DBG((IWK_DEBUG_FW,
2116 		    "microcontroller initialization failed\n"));
2117 	}
2118 	if (ar->ver_subtype == INITIALIZE_SUBTYPE) {
2119 		IWK_DBG((IWK_DEBUG_FW,
2120 		    "initialization alive received.\n"));
2121 		(void) memcpy(&sc->sc_card_alive_init, ar,
2122 		    sizeof (struct iwk_init_alive_resp));
2123 		/* XXX get temperature */
2124 		iwk_mac_access_enter(sc);
2125 		iwk_reg_write(sc, BSM_DRAM_INST_PTR_REG,
2126 		    sc->sc_dma_fw_text.cookie.dmac_address >> 4);
2127 		iwk_reg_write(sc, BSM_DRAM_DATA_PTR_REG,
2128 		    sc->sc_dma_fw_data_bak.cookie.dmac_address >> 4);
2129 		iwk_reg_write(sc, BSM_DRAM_DATA_BYTECOUNT_REG,
2130 		    sc->sc_dma_fw_data.cookie.dmac_size);
2131 		iwk_reg_write(sc, BSM_DRAM_INST_BYTECOUNT_REG,
2132 		    sc->sc_dma_fw_text.cookie.dmac_size | 0x80000000);
2133 		iwk_mac_access_exit(sc);
2134 	} else {
2135 		IWK_DBG((IWK_DEBUG_FW, "runtime alive received.\n"));
2136 		(void) memcpy(&sc->sc_card_alive_run, ar,
2137 		    sizeof (struct iwk_alive_resp));
2138 
2139 		/*
2140 		 * Init SCD related registers to make Tx work. XXX
2141 		 */
2142 		iwk_mac_access_enter(sc);
2143 
2144 		/* read sram address of data base */
2145 		sc->sc_scd_base = iwk_reg_read(sc, SCD_SRAM_BASE_ADDR);
2146 
2147 		/* clear and init SCD_CONTEXT_DATA_OFFSET area. 128 bytes */
2148 		for (base = sc->sc_scd_base + SCD_CONTEXT_DATA_OFFSET, i = 0;
2149 		    i < 128; i += 4)
2150 			iwk_mem_write(sc, base + i, 0);
2151 
2152 		/* clear and init SCD_TX_STTS_BITMAP_OFFSET area. 256 bytes */
2153 		for (base = sc->sc_scd_base + SCD_TX_STTS_BITMAP_OFFSET;
2154 		    i < 256; i += 4)
2155 			iwk_mem_write(sc, base + i, 0);
2156 
2157 		/* clear and init SCD_TRANSLATE_TBL_OFFSET area. 32 bytes */
2158 		for (base = sc->sc_scd_base + SCD_TRANSLATE_TBL_OFFSET;
2159 		    i < sizeof (uint16_t) * IWK_NUM_QUEUES; i += 4)
2160 			iwk_mem_write(sc, base + i, 0);
2161 
2162 		iwk_reg_write(sc, SCD_DRAM_BASE_ADDR,
2163 		    sc->sc_dma_sh.cookie.dmac_address >> 10);
2164 		iwk_reg_write(sc, SCD_QUEUECHAIN_SEL, 0);
2165 
2166 		/* initiate the tx queues */
2167 		for (i = 0; i < IWK_NUM_QUEUES; i++) {
2168 			iwk_reg_write(sc, SCD_QUEUE_RDPTR(i), 0);
2169 			IWK_WRITE(sc, HBUS_TARG_WRPTR, (i << 8));
2170 			iwk_mem_write(sc, sc->sc_scd_base +
2171 			    SCD_CONTEXT_QUEUE_OFFSET(i),
2172 			    (SCD_WIN_SIZE & 0x7f));
2173 			iwk_mem_write(sc, sc->sc_scd_base +
2174 			    SCD_CONTEXT_QUEUE_OFFSET(i) + sizeof (uint32_t),
2175 			    (SCD_FRAME_LIMIT & 0x7f) << 16);
2176 		}
2177 		/* interrupt enable on each queue0-7 */
2178 		iwk_reg_write(sc, SCD_INTERRUPT_MASK,
2179 		    (1 << IWK_NUM_QUEUES) - 1);
2180 		/* enable  each channel 0-7 */
2181 		iwk_reg_write(sc, SCD_TXFACT,
2182 		    SCD_TXFACT_REG_TXFIFO_MASK(0, 7));
2183 		/*
2184 		 * queue 0-7 maps to FIFO 0-7 and
2185 		 * all queues work under FIFO mode (none-scheduler-ack)
2186 		 */
2187 		for (i = 0; i < 7; i++) {
2188 			iwk_reg_write(sc,
2189 			    SCD_QUEUE_STATUS_BITS(i),
2190 			    (1 << SCD_QUEUE_STTS_REG_POS_ACTIVE)|
2191 			    (i << SCD_QUEUE_STTS_REG_POS_TXF)|
2192 			    SCD_QUEUE_STTS_REG_MSK);
2193 		}
2194 		iwk_mac_access_exit(sc);
2195 
2196 		sc->sc_flags |= IWK_F_FW_INIT;
2197 		cv_signal(&sc->sc_fw_cv);
2198 	}
2199 
2200 }
2201 
2202 static uint_t
2203 /* LINTED: argument unused in function: unused */
2204 iwk_rx_softintr(caddr_t arg, caddr_t unused)
2205 {
2206 	iwk_sc_t *sc = (iwk_sc_t *)arg;
2207 	ieee80211com_t *ic = &sc->sc_ic;
2208 	iwk_rx_desc_t *desc;
2209 	iwk_rx_data_t *data;
2210 	uint32_t index;
2211 
2212 	mutex_enter(&sc->sc_glock);
2213 	if (sc->sc_rx_softint_pending != 1) {
2214 		mutex_exit(&sc->sc_glock);
2215 		return (DDI_INTR_UNCLAIMED);
2216 	}
2217 	/* disable interrupts */
2218 	IWK_WRITE(sc, CSR_INT_MASK, 0);
2219 	mutex_exit(&sc->sc_glock);
2220 
2221 	/*
2222 	 * firmware has moved the index of the rx queue, driver get it,
2223 	 * and deal with it.
2224 	 */
2225 	index = LE_32(sc->sc_shared->val0) & 0xfff;
2226 
2227 	while (sc->sc_rxq.cur != index) {
2228 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
2229 		desc = (iwk_rx_desc_t *)data->dma_data.mem_va;
2230 
2231 		IWK_DBG((IWK_DEBUG_INTR, "rx notification index = %d"
2232 		    " cur = %d qid=%x idx=%d flags=%x type=%x len=%d\n",
2233 		    index, sc->sc_rxq.cur, desc->hdr.qid, desc->hdr.idx,
2234 		    desc->hdr.flags, desc->hdr.type, LE_32(desc->len)));
2235 
2236 		/* a command other than a tx need to be replied */
2237 		if (!(desc->hdr.qid & 0x80) &&
2238 		    (desc->hdr.type != REPLY_RX_PHY_CMD) &&
2239 		    (desc->hdr.type != REPLY_TX) &&
2240 		    (desc->hdr.type != REPLY_TX_PWR_TABLE_CMD) &&
2241 		    (desc->hdr.type != REPLY_PHY_CALIBRATION_CMD) &&
2242 		    (desc->hdr.type != SENSITIVITY_CMD))
2243 			iwk_cmd_intr(sc, desc);
2244 
2245 		switch (desc->hdr.type) {
2246 		case REPLY_4965_RX:
2247 			iwk_rx_intr(sc, desc, data);
2248 			break;
2249 
2250 		case REPLY_TX:
2251 			iwk_tx_intr(sc, desc, data);
2252 			break;
2253 
2254 		case REPLY_ALIVE:
2255 			iwk_ucode_alive(sc, desc);
2256 			break;
2257 
2258 		case CARD_STATE_NOTIFICATION:
2259 		{
2260 			uint32_t *status = (uint32_t *)(desc + 1);
2261 
2262 			IWK_DBG((IWK_DEBUG_RADIO, "state changed to %x\n",
2263 			    LE_32(*status)));
2264 
2265 			if (LE_32(*status) & 1) {
2266 				/*
2267 				 * the radio button has to be pushed(OFF). It
2268 				 * is considered as a hw error, the
2269 				 * iwk_thread() tries to recover it after the
2270 				 * button is pushed again(ON)
2271 				 */
2272 				cmn_err(CE_NOTE,
2273 				    "iwk_rx_softintr(): "
2274 				    "Radio transmitter is off\n");
2275 				sc->sc_ostate = sc->sc_ic.ic_state;
2276 				ieee80211_new_state(&sc->sc_ic,
2277 				    IEEE80211_S_INIT, -1);
2278 				sc->sc_flags |=
2279 				    (IWK_F_HW_ERR_RECOVER | IWK_F_RADIO_OFF);
2280 			}
2281 			break;
2282 		}
2283 		case SCAN_START_NOTIFICATION:
2284 		{
2285 			iwk_start_scan_t *scan =
2286 			    (iwk_start_scan_t *)(desc + 1);
2287 
2288 			IWK_DBG((IWK_DEBUG_SCAN,
2289 			    "scanning channel %d status %x\n",
2290 			    scan->chan, LE_32(scan->status)));
2291 
2292 			ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
2293 			break;
2294 		}
2295 		case SCAN_COMPLETE_NOTIFICATION:
2296 		{
2297 			iwk_stop_scan_t *scan =
2298 			    (iwk_stop_scan_t *)(desc + 1);
2299 
2300 			IWK_DBG((IWK_DEBUG_SCAN,
2301 			    "completed channel %d (burst of %d) status %02x\n",
2302 			    scan->chan, scan->nchan, scan->status));
2303 
2304 			sc->sc_scan_pending++;
2305 			break;
2306 		}
2307 		case STATISTICS_NOTIFICATION:
2308 			/* handle statistics notification */
2309 			iwk_statistics_notify(sc, desc);
2310 			break;
2311 		}
2312 
2313 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % RX_QUEUE_SIZE;
2314 	}
2315 
2316 	/*
2317 	 * driver dealt with what reveived in rx queue and tell the information
2318 	 * to the firmware.
2319 	 */
2320 	index = (index == 0) ? RX_QUEUE_SIZE - 1 : index - 1;
2321 	IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, index & (~7));
2322 
2323 	mutex_enter(&sc->sc_glock);
2324 	/* re-enable interrupts */
2325 	IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
2326 	sc->sc_rx_softint_pending = 0;
2327 	mutex_exit(&sc->sc_glock);
2328 
2329 	return (DDI_INTR_CLAIMED);
2330 }
2331 
2332 static uint_t
2333 /* LINTED: argument unused in function: unused */
2334 iwk_intr(caddr_t arg, caddr_t unused)
2335 {
2336 	iwk_sc_t *sc = (iwk_sc_t *)arg;
2337 	uint32_t r, rfh;
2338 
2339 	mutex_enter(&sc->sc_glock);
2340 
2341 	if (sc->sc_flags & IWK_F_SUSPEND) {
2342 		mutex_exit(&sc->sc_glock);
2343 		return (DDI_INTR_UNCLAIMED);
2344 	}
2345 
2346 	r = IWK_READ(sc, CSR_INT);
2347 	if (r == 0 || r == 0xffffffff) {
2348 		mutex_exit(&sc->sc_glock);
2349 		return (DDI_INTR_UNCLAIMED);
2350 	}
2351 
2352 	IWK_DBG((IWK_DEBUG_INTR, "interrupt reg %x\n", r));
2353 
2354 	rfh = IWK_READ(sc, CSR_FH_INT_STATUS);
2355 	IWK_DBG((IWK_DEBUG_INTR, "FH interrupt reg %x\n", rfh));
2356 	/* disable interrupts */
2357 	IWK_WRITE(sc, CSR_INT_MASK, 0);
2358 	/* ack interrupts */
2359 	IWK_WRITE(sc, CSR_INT, r);
2360 	IWK_WRITE(sc, CSR_FH_INT_STATUS, rfh);
2361 
2362 	if (sc->sc_soft_hdl == NULL) {
2363 		mutex_exit(&sc->sc_glock);
2364 		return (DDI_INTR_CLAIMED);
2365 	}
2366 	if (r & (BIT_INT_SWERROR | BIT_INT_ERR)) {
2367 		cmn_err(CE_WARN, "fatal firmware error\n");
2368 		mutex_exit(&sc->sc_glock);
2369 #ifdef DEBUG
2370 		/* dump event and error logs to dmesg */
2371 		iwk_write_error_log(sc);
2372 		iwk_write_event_log(sc);
2373 #endif /* DEBUG */
2374 		iwk_stop(sc);
2375 		sc->sc_ostate = sc->sc_ic.ic_state;
2376 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2377 		sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
2378 		return (DDI_INTR_CLAIMED);
2379 	}
2380 
2381 	if (r & BIT_INT_RF_KILL) {
2382 		IWK_DBG((IWK_DEBUG_RADIO, "RF kill\n"));
2383 	}
2384 
2385 	if ((r & (BIT_INT_FH_RX | BIT_INT_SW_RX)) ||
2386 	    (rfh & FH_INT_RX_MASK)) {
2387 		sc->sc_rx_softint_pending = 1;
2388 		(void) ddi_intr_trigger_softint(sc->sc_soft_hdl, NULL);
2389 	}
2390 
2391 	if (r & BIT_INT_ALIVE)	{
2392 		IWK_DBG((IWK_DEBUG_FW, "firmware initialized.\n"));
2393 	}
2394 
2395 	/* re-enable interrupts */
2396 	IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
2397 	mutex_exit(&sc->sc_glock);
2398 
2399 	return (DDI_INTR_CLAIMED);
2400 }
2401 
2402 static uint8_t
2403 iwk_rate_to_plcp(int rate)
2404 {
2405 	uint8_t ret;
2406 
2407 	switch (rate) {
2408 	/* CCK rates */
2409 	case 2:
2410 		ret = 0xa;
2411 		break;
2412 	case 4:
2413 		ret = 0x14;
2414 		break;
2415 	case 11:
2416 		ret = 0x37;
2417 		break;
2418 	case 22:
2419 		ret = 0x6e;
2420 		break;
2421 	/* OFDM rates */
2422 	case 12:
2423 		ret = 0xd;
2424 		break;
2425 	case 18:
2426 		ret = 0xf;
2427 		break;
2428 	case 24:
2429 		ret = 0x5;
2430 		break;
2431 	case 36:
2432 		ret = 0x7;
2433 		break;
2434 	case 48:
2435 		ret = 0x9;
2436 		break;
2437 	case 72:
2438 		ret = 0xb;
2439 		break;
2440 	case 96:
2441 		ret = 0x1;
2442 		break;
2443 	case 108:
2444 		ret = 0x3;
2445 		break;
2446 	default:
2447 		ret = 0;
2448 		break;
2449 	}
2450 	return (ret);
2451 }
2452 
2453 static mblk_t *
2454 iwk_m_tx(void *arg, mblk_t *mp)
2455 {
2456 	iwk_sc_t	*sc = (iwk_sc_t *)arg;
2457 	ieee80211com_t	*ic = &sc->sc_ic;
2458 	mblk_t			*next;
2459 
2460 	if (sc->sc_flags & IWK_F_SUSPEND) {
2461 		freemsgchain(mp);
2462 		return (NULL);
2463 	}
2464 
2465 	if (ic->ic_state != IEEE80211_S_RUN) {
2466 		freemsgchain(mp);
2467 		return (NULL);
2468 	}
2469 
2470 	while (mp != NULL) {
2471 		next = mp->b_next;
2472 		mp->b_next = NULL;
2473 		if (iwk_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2474 			mp->b_next = next;
2475 			break;
2476 		}
2477 		mp = next;
2478 	}
2479 	return (mp);
2480 }
2481 
2482 /* ARGSUSED */
2483 static int
2484 iwk_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2485 {
2486 	iwk_sc_t *sc = (iwk_sc_t *)ic;
2487 	iwk_tx_ring_t *ring;
2488 	iwk_tx_desc_t *desc;
2489 	iwk_tx_data_t *data;
2490 	iwk_cmd_t *cmd;
2491 	iwk_tx_cmd_t *tx;
2492 	ieee80211_node_t *in;
2493 	struct ieee80211_frame *wh;
2494 	struct ieee80211_key *k = NULL;
2495 	mblk_t *m, *m0;
2496 	int rate, hdrlen, len, len0, mblen, off, err = IWK_SUCCESS;
2497 	uint16_t masks = 0;
2498 
2499 	ring = &sc->sc_txq[0];
2500 	data = &ring->data[ring->cur];
2501 	desc = data->desc;
2502 	cmd = data->cmd;
2503 	bzero(desc, sizeof (*desc));
2504 	bzero(cmd, sizeof (*cmd));
2505 
2506 	mutex_enter(&sc->sc_tx_lock);
2507 	if (sc->sc_flags & IWK_F_SUSPEND) {
2508 		mutex_exit(&sc->sc_tx_lock);
2509 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2510 		    IEEE80211_FC0_TYPE_DATA) {
2511 			freemsg(mp);
2512 		}
2513 		err = IWK_FAIL;
2514 		goto exit;
2515 	}
2516 
2517 	if (ring->queued > ring->count - 64) {
2518 		IWK_DBG((IWK_DEBUG_TX, "iwk_send(): no txbuf\n"));
2519 		sc->sc_need_reschedule = 1;
2520 		mutex_exit(&sc->sc_tx_lock);
2521 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2522 		    IEEE80211_FC0_TYPE_DATA) {
2523 			freemsg(mp);
2524 		}
2525 		sc->sc_tx_nobuf++;
2526 		err = IWK_FAIL;
2527 		goto exit;
2528 	}
2529 	mutex_exit(&sc->sc_tx_lock);
2530 
2531 	hdrlen = sizeof (struct ieee80211_frame);
2532 
2533 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2534 	if (m == NULL) { /* can not alloc buf, drop this package */
2535 		cmn_err(CE_WARN,
2536 		    "iwk_send(): failed to allocate msgbuf\n");
2537 		freemsg(mp);
2538 		err = IWK_SUCCESS;
2539 		goto exit;
2540 	}
2541 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2542 		mblen = MBLKL(m0);
2543 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2544 		off += mblen;
2545 	}
2546 	m->b_wptr += off;
2547 	freemsg(mp);
2548 
2549 	wh = (struct ieee80211_frame *)m->b_rptr;
2550 
2551 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2552 	if (in == NULL) {
2553 		cmn_err(CE_WARN, "iwk_send(): failed to find tx node\n");
2554 		freemsg(m);
2555 		sc->sc_tx_err++;
2556 		err = IWK_SUCCESS;
2557 		goto exit;
2558 	}
2559 	(void) ieee80211_encap(ic, m, in);
2560 
2561 	cmd->hdr.type = REPLY_TX;
2562 	cmd->hdr.flags = 0;
2563 	cmd->hdr.qid = ring->qid;
2564 	cmd->hdr.idx = ring->cur;
2565 
2566 	tx = (iwk_tx_cmd_t *)cmd->data;
2567 	tx->tx_flags = 0;
2568 
2569 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2570 		tx->tx_flags &= ~(LE_32(TX_CMD_FLG_ACK_MSK));
2571 	} else {
2572 		tx->tx_flags |= LE_32(TX_CMD_FLG_ACK_MSK);
2573 	}
2574 
2575 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2576 		k = ieee80211_crypto_encap(ic, m);
2577 		if (k == NULL) {
2578 			freemsg(m);
2579 			sc->sc_tx_err++;
2580 			err = IWK_SUCCESS;
2581 			goto exit;
2582 		}
2583 
2584 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2585 			tx->sec_ctl = 2; /* for CCMP */
2586 			tx->tx_flags |= LE_32(TX_CMD_FLG_ACK_MSK);
2587 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2588 		}
2589 
2590 		/* packet header may have moved, reset our local pointer */
2591 		wh = (struct ieee80211_frame *)m->b_rptr;
2592 	}
2593 
2594 	len = msgdsize(m);
2595 
2596 #ifdef DEBUG
2597 	if (iwk_dbg_flags & IWK_DEBUG_TX)
2598 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2599 #endif
2600 
2601 	/* pickup a rate */
2602 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2603 	    IEEE80211_FC0_TYPE_MGT) {
2604 		/* mgmt frames are sent at 1M */
2605 		rate = in->in_rates.ir_rates[0];
2606 	} else {
2607 		/*
2608 		 * do it here for the software way rate control.
2609 		 * later for rate scaling in hardware.
2610 		 * maybe like the following, for management frame:
2611 		 * tx->initial_rate_index = LINK_QUAL_MAX_RETRY_NUM - 1;
2612 		 * for data frame:
2613 		 * tx->tx_flags |= (LE_32(TX_CMD_FLG_STA_RATE_MSK));
2614 		 * rate = in->in_rates.ir_rates[in->in_txrate];
2615 		 * tx->initial_rate_index = 1;
2616 		 *
2617 		 * now the txrate is determined in tx cmd flags, set to the
2618 		 * max value 54M for 11g and 11M for 11b.
2619 		 */
2620 
2621 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2622 			rate = ic->ic_fixed_rate;
2623 		} else {
2624 			rate = in->in_rates.ir_rates[in->in_txrate];
2625 		}
2626 	}
2627 	rate &= IEEE80211_RATE_VAL;
2628 	IWK_DBG((IWK_DEBUG_TX, "tx rate[%d of %d] = %x",
2629 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2630 
2631 	tx->tx_flags |= (LE_32(TX_CMD_FLG_SEQ_CTL_MSK));
2632 
2633 	len0 = roundup(4 + sizeof (iwk_tx_cmd_t) + hdrlen, 4);
2634 	if (len0 != (4 + sizeof (iwk_tx_cmd_t) + hdrlen))
2635 		tx->tx_flags |= TX_CMD_FLG_MH_PAD_MSK;
2636 
2637 	/* retrieve destination node's id */
2638 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2639 		tx->sta_id = IWK_BROADCAST_ID;
2640 	} else {
2641 		if (ic->ic_opmode != IEEE80211_M_IBSS)
2642 			tx->sta_id = IWK_AP_ID;
2643 	}
2644 
2645 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2646 	    IEEE80211_FC0_TYPE_MGT) {
2647 		/* tell h/w to set timestamp in probe responses */
2648 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2649 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2650 			tx->tx_flags |= LE_32(TX_CMD_FLG_TSF_MSK);
2651 
2652 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2653 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2654 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2655 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2656 			tx->timeout.pm_frame_timeout = 3;
2657 		else
2658 			tx->timeout.pm_frame_timeout = 2;
2659 	} else
2660 		tx->timeout.pm_frame_timeout = 0;
2661 	if (rate == 2 || rate == 4 || rate == 11 || rate == 22)
2662 		masks |= RATE_MCS_CCK_MSK;
2663 
2664 	masks |= RATE_MCS_ANT_B_MSK;
2665 	tx->rate.r.rate_n_flags = (iwk_rate_to_plcp(rate) | masks);
2666 
2667 	IWK_DBG((IWK_DEBUG_TX, "tx flag = %x",
2668 	    tx->tx_flags));
2669 
2670 	tx->rts_retry_limit = 60;
2671 	tx->data_retry_limit = 15;
2672 
2673 	tx->stop_time.life_time  = LE_32(0xffffffff);
2674 
2675 	tx->len = LE_16(len);
2676 
2677 	tx->dram_lsb_ptr =
2678 	    data->paddr_cmd + 4 + offsetof(iwk_tx_cmd_t, scratch);
2679 	tx->dram_msb_ptr = 0;
2680 	tx->driver_txop = 0;
2681 	tx->next_frame_len = 0;
2682 
2683 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2684 	m->b_rptr += hdrlen;
2685 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2686 
2687 	IWK_DBG((IWK_DEBUG_TX, "sending data: qid=%d idx=%d len=%d",
2688 	    ring->qid, ring->cur, len));
2689 
2690 	/*
2691 	 * first segment includes the tx cmd plus the 802.11 header,
2692 	 * the second includes the remaining of the 802.11 frame.
2693 	 */
2694 	desc->val0 = LE_32(2 << 24);
2695 	desc->pa[0].tb1_addr = LE_32(data->paddr_cmd);
2696 	desc->pa[0].val1 = ((len0 << 4) & 0xfff0) |
2697 	    ((data->dma_data.cookie.dmac_address & 0xffff) << 16);
2698 	desc->pa[0].val2 =
2699 	    ((data->dma_data.cookie.dmac_address & 0xffff0000) >> 16) |
2700 	    ((len - hdrlen) << 20);
2701 	IWK_DBG((IWK_DEBUG_TX, "phy addr1 = 0x%x phy addr2 = 0x%x "
2702 	    "len1 = 0x%x, len2 = 0x%x val1 = 0x%x val2 = 0x%x",
2703 	    data->paddr_cmd, data->dma_data.cookie.dmac_address,
2704 	    len0, len - hdrlen, desc->pa[0].val1, desc->pa[0].val2));
2705 
2706 	mutex_enter(&sc->sc_tx_lock);
2707 	ring->queued++;
2708 	mutex_exit(&sc->sc_tx_lock);
2709 
2710 	/* kick ring */
2711 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
2712 	    tfd_offset[ring->cur].val = 8 + len;
2713 	if (ring->cur < IWK_MAX_WIN_SIZE) {
2714 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
2715 		    tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8 + len;
2716 	}
2717 
2718 	IWK_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2719 	IWK_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2720 
2721 	ring->cur = (ring->cur + 1) % ring->count;
2722 	IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2723 	freemsg(m);
2724 	/* release node reference */
2725 	ieee80211_free_node(in);
2726 
2727 	ic->ic_stats.is_tx_bytes += len;
2728 	ic->ic_stats.is_tx_frags++;
2729 
2730 	if (sc->sc_tx_timer == 0)
2731 		sc->sc_tx_timer = 10;
2732 exit:
2733 	return (err);
2734 }
2735 
2736 static void
2737 iwk_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2738 {
2739 	iwk_sc_t	*sc  = (iwk_sc_t *)arg;
2740 	ieee80211com_t	*ic = &sc->sc_ic;
2741 	int		err;
2742 
2743 	err = ieee80211_ioctl(ic, wq, mp);
2744 
2745 	if (err == ENETRESET) {
2746 		/*
2747 		 * This is special for the hidden AP connection.
2748 		 * In any case, we should make sure only one 'scan'
2749 		 * in the driver for a 'connect' CLI command. So
2750 		 * when connecting to a hidden AP, the scan is just
2751 		 * sent out to the air when we know the desired
2752 		 * essid of the AP we want to connect.
2753 		 */
2754 		if (ic->ic_des_esslen) {
2755 			if (sc->sc_flags & IWK_F_RUNNING) {
2756 				iwk_m_stop(sc);
2757 				(void) iwk_m_start(sc);
2758 				(void) ieee80211_new_state(ic,
2759 				    IEEE80211_S_SCAN, -1);
2760 			}
2761 		}
2762 	}
2763 }
2764 
2765 /*
2766  * callback functions for set/get properties
2767  */
2768 /* ARGSUSED */
2769 static int
2770 iwk_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2771     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2772 {
2773 	int		err = 0;
2774 	iwk_sc_t	*sc = (iwk_sc_t *)arg;
2775 
2776 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
2777 	    pr_flags, wldp_length, wldp_buf, perm);
2778 
2779 	return (err);
2780 }
2781 static int
2782 iwk_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2783     uint_t wldp_length, const void *wldp_buf)
2784 {
2785 	int		err;
2786 	iwk_sc_t	*sc = (iwk_sc_t *)arg;
2787 	ieee80211com_t	*ic = &sc->sc_ic;
2788 
2789 	err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
2790 	    wldp_buf);
2791 
2792 	if (err == ENETRESET) {
2793 		if (ic->ic_des_esslen) {
2794 			if (sc->sc_flags & IWK_F_RUNNING) {
2795 				iwk_m_stop(sc);
2796 				(void) iwk_m_start(sc);
2797 				(void) ieee80211_new_state(ic,
2798 				    IEEE80211_S_SCAN, -1);
2799 			}
2800 		}
2801 		err = 0;
2802 	}
2803 
2804 	return (err);
2805 }
2806 
2807 /*ARGSUSED*/
2808 static int
2809 iwk_m_stat(void *arg, uint_t stat, uint64_t *val)
2810 {
2811 	iwk_sc_t	*sc  = (iwk_sc_t *)arg;
2812 	ieee80211com_t	*ic = &sc->sc_ic;
2813 	ieee80211_node_t *in = ic->ic_bss;
2814 	struct ieee80211_rateset *rs = &in->in_rates;
2815 
2816 	mutex_enter(&sc->sc_glock);
2817 	switch (stat) {
2818 	case MAC_STAT_IFSPEED:
2819 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2820 		    (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
2821 		    : ic->ic_fixed_rate) /2 * 1000000;
2822 		break;
2823 	case MAC_STAT_NOXMTBUF:
2824 		*val = sc->sc_tx_nobuf;
2825 		break;
2826 	case MAC_STAT_NORCVBUF:
2827 		*val = sc->sc_rx_nobuf;
2828 		break;
2829 	case MAC_STAT_IERRORS:
2830 		*val = sc->sc_rx_err;
2831 		break;
2832 	case MAC_STAT_RBYTES:
2833 		*val = ic->ic_stats.is_rx_bytes;
2834 		break;
2835 	case MAC_STAT_IPACKETS:
2836 		*val = ic->ic_stats.is_rx_frags;
2837 		break;
2838 	case MAC_STAT_OBYTES:
2839 		*val = ic->ic_stats.is_tx_bytes;
2840 		break;
2841 	case MAC_STAT_OPACKETS:
2842 		*val = ic->ic_stats.is_tx_frags;
2843 		break;
2844 	case MAC_STAT_OERRORS:
2845 	case WIFI_STAT_TX_FAILED:
2846 		*val = sc->sc_tx_err;
2847 		break;
2848 	case WIFI_STAT_TX_RETRANS:
2849 		*val = sc->sc_tx_retries;
2850 		break;
2851 	case WIFI_STAT_FCS_ERRORS:
2852 	case WIFI_STAT_WEP_ERRORS:
2853 	case WIFI_STAT_TX_FRAGS:
2854 	case WIFI_STAT_MCAST_TX:
2855 	case WIFI_STAT_RTS_SUCCESS:
2856 	case WIFI_STAT_RTS_FAILURE:
2857 	case WIFI_STAT_ACK_FAILURE:
2858 	case WIFI_STAT_RX_FRAGS:
2859 	case WIFI_STAT_MCAST_RX:
2860 	case WIFI_STAT_RX_DUPS:
2861 		mutex_exit(&sc->sc_glock);
2862 		return (ieee80211_stat(ic, stat, val));
2863 	default:
2864 		mutex_exit(&sc->sc_glock);
2865 		return (ENOTSUP);
2866 	}
2867 	mutex_exit(&sc->sc_glock);
2868 
2869 	return (IWK_SUCCESS);
2870 
2871 }
2872 
2873 static int
2874 iwk_m_start(void *arg)
2875 {
2876 	iwk_sc_t *sc = (iwk_sc_t *)arg;
2877 	ieee80211com_t	*ic = &sc->sc_ic;
2878 	int err;
2879 
2880 	err = iwk_init(sc);
2881 
2882 	if (err != IWK_SUCCESS) {
2883 		/*
2884 		 * The hw init err(eg. RF is OFF). Return Success to make
2885 		 * the 'plumb' succeed. The iwk_thread() tries to re-init
2886 		 * background.
2887 		 */
2888 		cmn_err(CE_WARN, "iwk_m_start(): failed to initialize "
2889 		    "hardware\n");
2890 		mutex_enter(&sc->sc_glock);
2891 		sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
2892 		mutex_exit(&sc->sc_glock);
2893 		return (IWK_SUCCESS);
2894 	}
2895 
2896 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2897 
2898 	mutex_enter(&sc->sc_glock);
2899 	sc->sc_flags |= IWK_F_RUNNING;
2900 	mutex_exit(&sc->sc_glock);
2901 
2902 	return (IWK_SUCCESS);
2903 }
2904 
2905 static void
2906 iwk_m_stop(void *arg)
2907 {
2908 	iwk_sc_t *sc = (iwk_sc_t *)arg;
2909 	ieee80211com_t	*ic = &sc->sc_ic;
2910 
2911 	iwk_stop(sc);
2912 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2913 	mutex_enter(&sc->sc_mt_lock);
2914 	sc->sc_flags &= ~IWK_F_HW_ERR_RECOVER;
2915 	sc->sc_flags &= ~IWK_F_RATE_AUTO_CTL;
2916 	mutex_exit(&sc->sc_mt_lock);
2917 	mutex_enter(&sc->sc_glock);
2918 	sc->sc_flags &= ~IWK_F_RUNNING;
2919 	sc->sc_flags &= ~IWK_F_SCANNING;
2920 	mutex_exit(&sc->sc_glock);
2921 }
2922 
2923 /*ARGSUSED*/
2924 static int
2925 iwk_m_unicst(void *arg, const uint8_t *macaddr)
2926 {
2927 	iwk_sc_t *sc = (iwk_sc_t *)arg;
2928 	ieee80211com_t	*ic = &sc->sc_ic;
2929 	int err;
2930 
2931 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2932 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2933 		mutex_enter(&sc->sc_glock);
2934 		err = iwk_config(sc);
2935 		mutex_exit(&sc->sc_glock);
2936 		if (err != IWK_SUCCESS) {
2937 			cmn_err(CE_WARN,
2938 			    "iwk_m_unicst(): "
2939 			    "failed to configure device\n");
2940 			goto fail;
2941 		}
2942 	}
2943 	return (IWK_SUCCESS);
2944 fail:
2945 	return (err);
2946 }
2947 
2948 /*ARGSUSED*/
2949 static int
2950 iwk_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2951 {
2952 	return (IWK_SUCCESS);
2953 }
2954 
2955 /*ARGSUSED*/
2956 static int
2957 iwk_m_promisc(void *arg, boolean_t on)
2958 {
2959 	return (IWK_SUCCESS);
2960 }
2961 
2962 static void
2963 iwk_thread(iwk_sc_t *sc)
2964 {
2965 	ieee80211com_t	*ic = &sc->sc_ic;
2966 	clock_t clk;
2967 	int times = 0, err, n = 0, timeout = 0;
2968 	uint32_t tmp;
2969 
2970 	mutex_enter(&sc->sc_mt_lock);
2971 	while (sc->sc_mf_thread_switch) {
2972 		tmp = IWK_READ(sc, CSR_GP_CNTRL);
2973 		if (tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) {
2974 			sc->sc_flags &= ~IWK_F_RADIO_OFF;
2975 		} else {
2976 			sc->sc_flags |= IWK_F_RADIO_OFF;
2977 		}
2978 		/*
2979 		 * If in SUSPEND or the RF is OFF, do nothing
2980 		 */
2981 		if ((sc->sc_flags & IWK_F_SUSPEND) ||
2982 		    (sc->sc_flags & IWK_F_RADIO_OFF)) {
2983 			mutex_exit(&sc->sc_mt_lock);
2984 			delay(drv_usectohz(100000));
2985 			mutex_enter(&sc->sc_mt_lock);
2986 			continue;
2987 		}
2988 
2989 		/*
2990 		 * recovery fatal error
2991 		 */
2992 		if (ic->ic_mach &&
2993 		    (sc->sc_flags & IWK_F_HW_ERR_RECOVER)) {
2994 
2995 			IWK_DBG((IWK_DEBUG_FW,
2996 			    "iwk_thread(): "
2997 			    "try to recover fatal hw error: %d\n", times++));
2998 
2999 			iwk_stop(sc);
3000 
3001 			mutex_exit(&sc->sc_mt_lock);
3002 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3003 			delay(drv_usectohz(2000000 + n*500000));
3004 			mutex_enter(&sc->sc_mt_lock);
3005 
3006 			err = iwk_init(sc);
3007 			if (err != IWK_SUCCESS) {
3008 				n++;
3009 				if (n < 20)
3010 					continue;
3011 			}
3012 			n = 0;
3013 			if (!err)
3014 				sc->sc_flags |= IWK_F_RUNNING;
3015 			sc->sc_flags &= ~IWK_F_HW_ERR_RECOVER;
3016 			mutex_exit(&sc->sc_mt_lock);
3017 			delay(drv_usectohz(2000000));
3018 			if (sc->sc_ostate != IEEE80211_S_INIT)
3019 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
3020 			mutex_enter(&sc->sc_mt_lock);
3021 		}
3022 
3023 		if (ic->ic_mach &&
3024 		    (sc->sc_flags & IWK_F_SCANNING) && sc->sc_scan_pending) {
3025 
3026 			IWK_DBG((IWK_DEBUG_SCAN,
3027 			    "iwk_thread(): "
3028 			    "wait for probe response\n"));
3029 
3030 			sc->sc_scan_pending--;
3031 			mutex_exit(&sc->sc_mt_lock);
3032 			delay(drv_usectohz(200000));
3033 			ieee80211_next_scan(ic);
3034 			mutex_enter(&sc->sc_mt_lock);
3035 		}
3036 
3037 		/*
3038 		 * rate ctl
3039 		 */
3040 		if (ic->ic_mach &&
3041 		    (sc->sc_flags & IWK_F_RATE_AUTO_CTL)) {
3042 			clk = ddi_get_lbolt();
3043 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
3044 				iwk_amrr_timeout(sc);
3045 			}
3046 		}
3047 
3048 		mutex_exit(&sc->sc_mt_lock);
3049 		delay(drv_usectohz(100000));
3050 		mutex_enter(&sc->sc_mt_lock);
3051 
3052 		if (sc->sc_tx_timer) {
3053 			timeout++;
3054 			if (timeout == 10) {
3055 				sc->sc_tx_timer--;
3056 				if (sc->sc_tx_timer == 0) {
3057 					sc->sc_flags |= IWK_F_HW_ERR_RECOVER;
3058 					sc->sc_ostate = IEEE80211_S_RUN;
3059 					IWK_DBG((IWK_DEBUG_FW,
3060 					    "iwk_thread(): try to recover from"
3061 					    " 'send fail\n"));
3062 				}
3063 				timeout = 0;
3064 			}
3065 		}
3066 
3067 	}
3068 	sc->sc_mf_thread = NULL;
3069 	cv_signal(&sc->sc_mt_cv);
3070 	mutex_exit(&sc->sc_mt_lock);
3071 }
3072 
3073 
3074 /*
3075  * Send a command to the firmware.
3076  */
3077 static int
3078 iwk_cmd(iwk_sc_t *sc, int code, const void *buf, int size, int async)
3079 {
3080 	iwk_tx_ring_t *ring = &sc->sc_txq[IWK_CMD_QUEUE_NUM];
3081 	iwk_tx_desc_t *desc;
3082 	iwk_cmd_t *cmd;
3083 	clock_t clk;
3084 
3085 	ASSERT(size <= sizeof (cmd->data));
3086 	ASSERT(mutex_owned(&sc->sc_glock));
3087 
3088 	IWK_DBG((IWK_DEBUG_CMD, "iwk_cmd() code[%d]", code));
3089 	desc = ring->data[ring->cur].desc;
3090 	cmd = ring->data[ring->cur].cmd;
3091 
3092 	cmd->hdr.type = (uint8_t)code;
3093 	cmd->hdr.flags = 0;
3094 	cmd->hdr.qid = ring->qid;
3095 	cmd->hdr.idx = ring->cur;
3096 	(void) memcpy(cmd->data, buf, size);
3097 	(void) memset(desc, 0, sizeof (*desc));
3098 
3099 	desc->val0 = LE_32(1 << 24);
3100 	desc->pa[0].tb1_addr =
3101 	    (uint32_t)(ring->data[ring->cur].paddr_cmd & 0xffffffff);
3102 	desc->pa[0].val1 = ((4 + size) << 4) & 0xfff0;
3103 
3104 	/* kick cmd ring XXX */
3105 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3106 	    tfd_offset[ring->cur].val = 8;
3107 	if (ring->cur < IWK_MAX_WIN_SIZE) {
3108 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3109 		    tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8;
3110 	}
3111 	ring->cur = (ring->cur + 1) % ring->count;
3112 	IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3113 
3114 	if (async)
3115 		return (IWK_SUCCESS);
3116 	else {
3117 		sc->sc_flags &= ~IWK_F_CMD_DONE;
3118 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
3119 		while (!(sc->sc_flags & IWK_F_CMD_DONE)) {
3120 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk) <
3121 			    0)
3122 				break;
3123 		}
3124 		if (sc->sc_flags & IWK_F_CMD_DONE)
3125 			return (IWK_SUCCESS);
3126 		else
3127 			return (IWK_FAIL);
3128 	}
3129 }
3130 
3131 static void
3132 iwk_set_led(iwk_sc_t *sc, uint8_t id, uint8_t off, uint8_t on)
3133 {
3134 	iwk_led_cmd_t led;
3135 
3136 	led.interval = LE_32(100000);	/* unit: 100ms */
3137 	led.id = id;
3138 	led.off = off;
3139 	led.on = on;
3140 
3141 	(void) iwk_cmd(sc, REPLY_LEDS_CMD, &led, sizeof (led), 1);
3142 }
3143 
3144 static int
3145 iwk_hw_set_before_auth(iwk_sc_t *sc)
3146 {
3147 	ieee80211com_t *ic = &sc->sc_ic;
3148 	ieee80211_node_t *in = ic->ic_bss;
3149 	iwk_add_sta_t node;
3150 	iwk_link_quality_cmd_t link_quality;
3151 	struct ieee80211_rateset rs;
3152 	uint16_t masks = 0, rate;
3153 	int i, err;
3154 
3155 	/* update adapter's configuration according the info of target AP */
3156 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
3157 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
3158 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
3159 		sc->sc_config.cck_basic_rates  = 0x03;
3160 		sc->sc_config.ofdm_basic_rates = 0;
3161 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
3162 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
3163 		sc->sc_config.cck_basic_rates  = 0;
3164 		sc->sc_config.ofdm_basic_rates = 0x15;
3165 	} else { /* assume 802.11b/g */
3166 		sc->sc_config.cck_basic_rates  = 0x0f;
3167 		sc->sc_config.ofdm_basic_rates = 0xff;
3168 	}
3169 
3170 	sc->sc_config.flags &= ~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
3171 	    RXON_FLG_SHORT_SLOT_MSK);
3172 
3173 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3174 		sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_SLOT_MSK);
3175 	else
3176 		sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_SLOT_MSK);
3177 
3178 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3179 		sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
3180 	else
3181 		sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_PREAMBLE_MSK);
3182 
3183 	IWK_DBG((IWK_DEBUG_80211, "config chan %d flags %x "
3184 	    "filter_flags %x  cck %x ofdm %x"
3185 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
3186 	    sc->sc_config.chan, sc->sc_config.flags,
3187 	    sc->sc_config.filter_flags,
3188 	    sc->sc_config.cck_basic_rates, sc->sc_config.ofdm_basic_rates,
3189 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
3190 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
3191 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
3192 	err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
3193 	    sizeof (iwk_rxon_cmd_t), 1);
3194 	if (err != IWK_SUCCESS) {
3195 		cmn_err(CE_WARN, "iwk_hw_set_before_auth():"
3196 		    " failed to config chan%d\n",
3197 		    sc->sc_config.chan);
3198 		return (err);
3199 	}
3200 
3201 	/* obtain current temperature of chipset */
3202 	sc->sc_tempera = iwk_curr_tempera(sc);
3203 
3204 	/* make Tx power calibration to determine the gains of DSP and radio */
3205 	err = iwk_tx_power_calibration(sc);
3206 	if (err) {
3207 		cmn_err(CE_WARN, "iwk_hw_set_before_auth():"
3208 		    "failed to set tx power table\n");
3209 		return (err);
3210 	}
3211 
3212 	/* add default AP node */
3213 	(void) memset(&node, 0, sizeof (node));
3214 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
3215 	node.id = IWK_AP_ID;
3216 	err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
3217 	if (err != IWK_SUCCESS) {
3218 		cmn_err(CE_WARN, "iwk_hw_set_before_auth(): "
3219 		    "failed to add BSS node\n");
3220 		return (err);
3221 	}
3222 
3223 	/* TX_LINK_QUALITY cmd ? */
3224 	(void) memset(&link_quality, 0, sizeof (link_quality));
3225 	rs = ic->ic_sup_rates[ieee80211_chan2mode(ic, ic->ic_curchan)];
3226 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
3227 		if (i < rs.ir_nrates)
3228 			rate = rs.ir_rates[rs.ir_nrates - i];
3229 		else
3230 			rate = 2;
3231 		if (rate == 2 || rate == 4 || rate == 11 || rate == 22)
3232 			masks |= RATE_MCS_CCK_MSK;
3233 		masks |= RATE_MCS_ANT_B_MSK;
3234 		masks &= ~RATE_MCS_ANT_A_MSK;
3235 		link_quality.rate_n_flags[i] =
3236 		    iwk_rate_to_plcp(rate) | masks;
3237 	}
3238 
3239 	link_quality.general_params.single_stream_ant_msk = 2;
3240 	link_quality.general_params.dual_stream_ant_msk = 3;
3241 	link_quality.agg_params.agg_dis_start_th = 3;
3242 	link_quality.agg_params.agg_time_limit = LE_16(4000);
3243 	link_quality.sta_id = IWK_AP_ID;
3244 	err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
3245 	    sizeof (link_quality), 1);
3246 	if (err != IWK_SUCCESS) {
3247 		cmn_err(CE_WARN, "iwk_hw_set_before_auth(): "
3248 		    "failed to config link quality table\n");
3249 		return (err);
3250 	}
3251 
3252 	return (IWK_SUCCESS);
3253 }
3254 
3255 /*
3256  * Send a scan request(assembly scan cmd) to the firmware.
3257  */
3258 static int
3259 iwk_scan(iwk_sc_t *sc)
3260 {
3261 	ieee80211com_t *ic = &sc->sc_ic;
3262 	iwk_tx_ring_t *ring = &sc->sc_txq[IWK_CMD_QUEUE_NUM];
3263 	iwk_tx_desc_t *desc;
3264 	iwk_tx_data_t *data;
3265 	iwk_cmd_t *cmd;
3266 	iwk_scan_hdr_t *hdr;
3267 	iwk_scan_chan_t *chan;
3268 	struct ieee80211_frame *wh;
3269 	ieee80211_node_t *in = ic->ic_bss;
3270 	uint8_t essid[IEEE80211_NWID_LEN+1];
3271 	struct ieee80211_rateset *rs;
3272 	enum ieee80211_phymode mode;
3273 	uint8_t *frm;
3274 	int i, pktlen, nrates;
3275 
3276 	data = &ring->data[ring->cur];
3277 	desc = data->desc;
3278 	cmd = (iwk_cmd_t *)data->dma_data.mem_va;
3279 
3280 	cmd->hdr.type = REPLY_SCAN_CMD;
3281 	cmd->hdr.flags = 0;
3282 	cmd->hdr.qid = ring->qid;
3283 	cmd->hdr.idx = ring->cur | 0x40;
3284 
3285 	hdr = (iwk_scan_hdr_t *)cmd->data;
3286 	(void) memset(hdr, 0, sizeof (iwk_scan_hdr_t));
3287 	hdr->nchan = 1;
3288 	hdr->quiet_time = LE_16(50);
3289 	hdr->quiet_plcp_th = LE_16(1);
3290 
3291 	hdr->flags = RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK;
3292 	hdr->rx_chain = RXON_RX_CHAIN_DRIVER_FORCE_MSK |
3293 	    LE_16((0x7 << RXON_RX_CHAIN_VALID_POS) |
3294 	    (0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) |
3295 	    (0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
3296 
3297 	hdr->tx_cmd.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK;
3298 	hdr->tx_cmd.sta_id = IWK_BROADCAST_ID;
3299 	hdr->tx_cmd.stop_time.life_time = 0xffffffff;
3300 	hdr->tx_cmd.tx_flags |= (0x200);
3301 	hdr->tx_cmd.rate.r.rate_n_flags = iwk_rate_to_plcp(2);
3302 	hdr->tx_cmd.rate.r.rate_n_flags |=
3303 	    (RATE_MCS_ANT_B_MSK|RATE_MCS_CCK_MSK);
3304 	hdr->direct_scan[0].len = ic->ic_des_esslen;
3305 	hdr->direct_scan[0].id  = IEEE80211_ELEMID_SSID;
3306 
3307 	if (ic->ic_des_esslen) {
3308 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
3309 		essid[ic->ic_des_esslen] = '\0';
3310 		IWK_DBG((IWK_DEBUG_SCAN, "directed scan %s\n", essid));
3311 
3312 		bcopy(ic->ic_des_essid, hdr->direct_scan[0].ssid,
3313 		    ic->ic_des_esslen);
3314 	} else {
3315 		bzero(hdr->direct_scan[0].ssid,
3316 		    sizeof (hdr->direct_scan[0].ssid));
3317 	}
3318 	/*
3319 	 * a probe request frame is required after the REPLY_SCAN_CMD
3320 	 */
3321 	wh = (struct ieee80211_frame *)(hdr + 1);
3322 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3323 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3324 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3325 	(void) memset(wh->i_addr1, 0xff, 6);
3326 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
3327 	(void) memset(wh->i_addr3, 0xff, 6);
3328 	*(uint16_t *)&wh->i_dur[0] = 0;
3329 	*(uint16_t *)&wh->i_seq[0] = 0;
3330 
3331 	frm = (uint8_t *)(wh + 1);
3332 
3333 	/* essid IE */
3334 	if (in->in_esslen) {
3335 		bcopy(in->in_essid, essid, in->in_esslen);
3336 		essid[in->in_esslen] = '\0';
3337 		IWK_DBG((IWK_DEBUG_SCAN, "probe with ESSID %s\n",
3338 		    essid));
3339 	}
3340 	*frm++ = IEEE80211_ELEMID_SSID;
3341 	*frm++ = in->in_esslen;
3342 	(void) memcpy(frm, in->in_essid, in->in_esslen);
3343 	frm += in->in_esslen;
3344 
3345 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
3346 	rs = &ic->ic_sup_rates[mode];
3347 
3348 	/* supported rates IE */
3349 	*frm++ = IEEE80211_ELEMID_RATES;
3350 	nrates = rs->ir_nrates;
3351 	if (nrates > IEEE80211_RATE_SIZE)
3352 		nrates = IEEE80211_RATE_SIZE;
3353 	*frm++ = (uint8_t)nrates;
3354 	(void) memcpy(frm, rs->ir_rates, nrates);
3355 	frm += nrates;
3356 
3357 	/* supported xrates IE */
3358 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
3359 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
3360 		*frm++ = IEEE80211_ELEMID_XRATES;
3361 		*frm++ = (uint8_t)nrates;
3362 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
3363 		frm += nrates;
3364 	}
3365 
3366 	/* optionnal IE (usually for wpa) */
3367 	if (ic->ic_opt_ie != NULL) {
3368 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
3369 		frm += ic->ic_opt_ie_len;
3370 	}
3371 
3372 	/* setup length of probe request */
3373 	hdr->tx_cmd.len = LE_16(_PTRDIFF(frm, wh));
3374 	hdr->len = hdr->nchan * sizeof (iwk_scan_chan_t) +
3375 	    hdr->tx_cmd.len + sizeof (iwk_scan_hdr_t);
3376 
3377 	/*
3378 	 * the attribute of the scan channels are required after the probe
3379 	 * request frame.
3380 	 */
3381 	chan = (iwk_scan_chan_t *)frm;
3382 	for (i = 1; i <= hdr->nchan; i++, chan++) {
3383 		if (ic->ic_des_esslen) {
3384 			chan->type = 3;
3385 		} else {
3386 			chan->type = 1;
3387 		}
3388 
3389 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3390 		chan->tpc.tx_gain = 0x3f;
3391 		chan->tpc.dsp_atten = 110;
3392 		chan->active_dwell = LE_16(50);
3393 		chan->passive_dwell = LE_16(120);
3394 
3395 		frm += sizeof (iwk_scan_chan_t);
3396 	}
3397 
3398 	pktlen = _PTRDIFF(frm, cmd);
3399 
3400 	(void) memset(desc, 0, sizeof (*desc));
3401 	desc->val0 = LE_32(1 << 24);
3402 	desc->pa[0].tb1_addr =
3403 	    (uint32_t)(data->dma_data.cookie.dmac_address & 0xffffffff);
3404 	desc->pa[0].val1 = (pktlen << 4) & 0xfff0;
3405 
3406 	/*
3407 	 * maybe for cmd, filling the byte cnt table is not necessary.
3408 	 * anyway, we fill it here.
3409 	 */
3410 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3411 	    tfd_offset[ring->cur].val = 8;
3412 	if (ring->cur < IWK_MAX_WIN_SIZE) {
3413 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3414 		    tfd_offset[IWK_QUEUE_SIZE + ring->cur].val = 8;
3415 	}
3416 
3417 	/* kick cmd ring */
3418 	ring->cur = (ring->cur + 1) % ring->count;
3419 	IWK_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3420 
3421 	return (IWK_SUCCESS);
3422 }
3423 
3424 static int
3425 iwk_config(iwk_sc_t *sc)
3426 {
3427 	ieee80211com_t *ic = &sc->sc_ic;
3428 	iwk_powertable_cmd_t powertable;
3429 	iwk_bt_cmd_t bt;
3430 	iwk_add_sta_t node;
3431 	iwk_link_quality_cmd_t link_quality;
3432 	int i, err;
3433 	uint16_t masks = 0;
3434 
3435 	/*
3436 	 * set power mode. Disable power management at present, do it later
3437 	 */
3438 	(void) memset(&powertable, 0, sizeof (powertable));
3439 	powertable.flags = LE_16(0x8);
3440 	err = iwk_cmd(sc, POWER_TABLE_CMD, &powertable,
3441 	    sizeof (powertable), 0);
3442 	if (err != IWK_SUCCESS) {
3443 		cmn_err(CE_WARN, "iwk_config(): failed to set power mode\n");
3444 		return (err);
3445 	}
3446 
3447 	/* configure bt coexistence */
3448 	(void) memset(&bt, 0, sizeof (bt));
3449 	bt.flags = 3;
3450 	bt.lead_time = 0xaa;
3451 	bt.max_kill = 1;
3452 	err = iwk_cmd(sc, REPLY_BT_CONFIG, &bt,
3453 	    sizeof (bt), 0);
3454 	if (err != IWK_SUCCESS) {
3455 		cmn_err(CE_WARN,
3456 		    "iwk_config(): "
3457 		    "failed to configurate bt coexistence\n");
3458 		return (err);
3459 	}
3460 
3461 	/* configure rxon */
3462 	(void) memset(&sc->sc_config, 0, sizeof (iwk_rxon_cmd_t));
3463 	IEEE80211_ADDR_COPY(sc->sc_config.node_addr, ic->ic_macaddr);
3464 	IEEE80211_ADDR_COPY(sc->sc_config.wlap_bssid, ic->ic_macaddr);
3465 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3466 	sc->sc_config.flags = (RXON_FLG_TSF2HOST_MSK |
3467 	    RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_BAND_24G_MSK);
3468 	sc->sc_config.flags &= (~RXON_FLG_CCK_MSK);
3469 	switch (ic->ic_opmode) {
3470 	case IEEE80211_M_STA:
3471 		sc->sc_config.dev_type = RXON_DEV_TYPE_ESS;
3472 		sc->sc_config.filter_flags |= LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
3473 		    RXON_FILTER_DIS_DECRYPT_MSK |
3474 		    RXON_FILTER_DIS_GRP_DECRYPT_MSK);
3475 		break;
3476 	case IEEE80211_M_AHDEMO:
3477 		sc->sc_config.dev_type = RXON_DEV_TYPE_IBSS;
3478 		sc->sc_config.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
3479 		sc->sc_config.filter_flags = LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
3480 		    RXON_FILTER_DIS_DECRYPT_MSK |
3481 		    RXON_FILTER_DIS_GRP_DECRYPT_MSK);
3482 		break;
3483 	case IEEE80211_M_HOSTAP:
3484 		sc->sc_config.dev_type = RXON_DEV_TYPE_AP;
3485 		break;
3486 	case IEEE80211_M_MONITOR:
3487 		sc->sc_config.dev_type = RXON_DEV_TYPE_SNIFFER;
3488 		sc->sc_config.filter_flags |= LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
3489 		    RXON_FILTER_CTL2HOST_MSK | RXON_FILTER_PROMISC_MSK);
3490 		break;
3491 	}
3492 	sc->sc_config.cck_basic_rates  = 0x0f;
3493 	sc->sc_config.ofdm_basic_rates = 0xff;
3494 
3495 	sc->sc_config.ofdm_ht_single_stream_basic_rates = 0xff;
3496 	sc->sc_config.ofdm_ht_dual_stream_basic_rates = 0xff;
3497 
3498 	/* set antenna */
3499 
3500 	sc->sc_config.rx_chain = RXON_RX_CHAIN_DRIVER_FORCE_MSK |
3501 	    LE_16((0x7 << RXON_RX_CHAIN_VALID_POS) |
3502 	    (0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) |
3503 	    (0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
3504 
3505 	err = iwk_cmd(sc, REPLY_RXON, &sc->sc_config,
3506 	    sizeof (iwk_rxon_cmd_t), 0);
3507 	if (err != IWK_SUCCESS) {
3508 		cmn_err(CE_WARN, "iwk_config(): "
3509 		    "failed to set configure command\n");
3510 		return (err);
3511 	}
3512 	/* obtain current temperature of chipset */
3513 	sc->sc_tempera = iwk_curr_tempera(sc);
3514 
3515 	/* make Tx power calibration to determine the gains of DSP and radio */
3516 	err = iwk_tx_power_calibration(sc);
3517 	if (err) {
3518 		cmn_err(CE_WARN, "iwk_config(): "
3519 		    "failed to set tx power table\n");
3520 		return (err);
3521 	}
3522 
3523 	/* add broadcast node so that we can send broadcast frame */
3524 	(void) memset(&node, 0, sizeof (node));
3525 	(void) memset(node.bssid, 0xff, 6);
3526 	node.id = IWK_BROADCAST_ID;
3527 	err = iwk_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 0);
3528 	if (err != IWK_SUCCESS) {
3529 		cmn_err(CE_WARN, "iwk_config(): "
3530 		    "failed to add broadcast node\n");
3531 		return (err);
3532 	}
3533 
3534 	/* TX_LINK_QUALITY cmd ? */
3535 	(void) memset(&link_quality, 0, sizeof (link_quality));
3536 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
3537 		masks |= RATE_MCS_CCK_MSK;
3538 		masks |= RATE_MCS_ANT_B_MSK;
3539 		masks &= ~RATE_MCS_ANT_A_MSK;
3540 		link_quality.rate_n_flags[i] = iwk_rate_to_plcp(2) | masks;
3541 	}
3542 
3543 	link_quality.general_params.single_stream_ant_msk = 2;
3544 	link_quality.general_params.dual_stream_ant_msk = 3;
3545 	link_quality.agg_params.agg_dis_start_th = 3;
3546 	link_quality.agg_params.agg_time_limit = LE_16(4000);
3547 	link_quality.sta_id = IWK_BROADCAST_ID;
3548 	err = iwk_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
3549 	    sizeof (link_quality), 0);
3550 	if (err != IWK_SUCCESS) {
3551 		cmn_err(CE_WARN, "iwk_config(): "
3552 		    "failed to config link quality table\n");
3553 		return (err);
3554 	}
3555 
3556 	return (IWK_SUCCESS);
3557 }
3558 
3559 static void
3560 iwk_stop_master(iwk_sc_t *sc)
3561 {
3562 	uint32_t tmp;
3563 	int n;
3564 
3565 	tmp = IWK_READ(sc, CSR_RESET);
3566 	IWK_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_STOP_MASTER);
3567 
3568 	tmp = IWK_READ(sc, CSR_GP_CNTRL);
3569 	if ((tmp & CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE) ==
3570 	    CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE)
3571 		return;
3572 
3573 	for (n = 0; n < 2000; n++) {
3574 		if (IWK_READ(sc, CSR_RESET) &
3575 		    CSR_RESET_REG_FLAG_MASTER_DISABLED)
3576 			break;
3577 		DELAY(1000);
3578 	}
3579 	if (n == 2000)
3580 		IWK_DBG((IWK_DEBUG_HW,
3581 		    "timeout waiting for master stop\n"));
3582 }
3583 
3584 static int
3585 iwk_power_up(iwk_sc_t *sc)
3586 {
3587 	uint32_t tmp;
3588 
3589 	iwk_mac_access_enter(sc);
3590 	tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
3591 	tmp &= ~APMG_PS_CTRL_REG_MSK_POWER_SRC;
3592 	tmp |= APMG_PS_CTRL_REG_VAL_POWER_SRC_VMAIN;
3593 	iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
3594 	iwk_mac_access_exit(sc);
3595 
3596 	DELAY(5000);
3597 	return (IWK_SUCCESS);
3598 }
3599 
3600 static int
3601 iwk_preinit(iwk_sc_t *sc)
3602 {
3603 	uint32_t tmp;
3604 	int n;
3605 	uint8_t vlink;
3606 
3607 	/* clear any pending interrupts */
3608 	IWK_WRITE(sc, CSR_INT, 0xffffffff);
3609 
3610 	tmp = IWK_READ(sc, CSR_GIO_CHICKEN_BITS);
3611 	IWK_WRITE(sc, CSR_GIO_CHICKEN_BITS,
3612 	    tmp | CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
3613 
3614 	tmp = IWK_READ(sc, CSR_GP_CNTRL);
3615 	IWK_WRITE(sc, CSR_GP_CNTRL, tmp | CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
3616 
3617 	/* wait for clock ready */
3618 	for (n = 0; n < 1000; n++) {
3619 		if (IWK_READ(sc, CSR_GP_CNTRL) &
3620 		    CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY)
3621 			break;
3622 		DELAY(10);
3623 	}
3624 	if (n == 1000) {
3625 		cmn_err(CE_WARN,
3626 		    "iwk_preinit(): timeout waiting for clock ready\n");
3627 		return (ETIMEDOUT);
3628 	}
3629 	iwk_mac_access_enter(sc);
3630 	tmp = iwk_reg_read(sc, APMG_CLK_CTRL_REG);
3631 	iwk_reg_write(sc, APMG_CLK_CTRL_REG, tmp |
3632 	    APMG_CLK_REG_VAL_DMA_CLK_RQT | APMG_CLK_REG_VAL_BSM_CLK_RQT);
3633 
3634 	DELAY(20);
3635 	tmp = iwk_reg_read(sc, ALM_APMG_PCIDEV_STT);
3636 	iwk_reg_write(sc, ALM_APMG_PCIDEV_STT, tmp |
3637 	    APMG_DEV_STATE_REG_VAL_L1_ACTIVE_DISABLE);
3638 	iwk_mac_access_exit(sc);
3639 
3640 	IWK_WRITE(sc, CSR_INT_COALESCING, 512 / 32); /* ??? */
3641 
3642 	(void) iwk_power_up(sc);
3643 
3644 	if ((sc->sc_rev & 0x80) == 0x80 && (sc->sc_rev & 0x7f) < 8) {
3645 		tmp = ddi_get32(sc->sc_cfg_handle,
3646 		    (uint32_t *)(sc->sc_cfg_base + 0xe8));
3647 		ddi_put32(sc->sc_cfg_handle,
3648 		    (uint32_t *)(sc->sc_cfg_base + 0xe8),
3649 		    tmp & ~(1 << 11));
3650 	}
3651 
3652 
3653 	vlink = ddi_get8(sc->sc_cfg_handle,
3654 	    (uint8_t *)(sc->sc_cfg_base + 0xf0));
3655 	ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0xf0),
3656 	    vlink & ~2);
3657 
3658 	tmp = IWK_READ(sc, CSR_SW_VER);
3659 	tmp |= CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
3660 	    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI |
3661 	    CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R;
3662 	IWK_WRITE(sc, CSR_SW_VER, tmp);
3663 
3664 	/* make sure power supply on each part of the hardware */
3665 	iwk_mac_access_enter(sc);
3666 	tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
3667 	tmp |= APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
3668 	iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
3669 	DELAY(5);
3670 	tmp = iwk_reg_read(sc, ALM_APMG_PS_CTL);
3671 	tmp &= ~APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
3672 	iwk_reg_write(sc, ALM_APMG_PS_CTL, tmp);
3673 	iwk_mac_access_exit(sc);
3674 	return (IWK_SUCCESS);
3675 }
3676 
3677 /*
3678  * set up semphore flag to own EEPROM
3679  */
3680 static int iwk_eep_sem_down(iwk_sc_t *sc)
3681 {
3682 	int count1, count2;
3683 	uint32_t tmp;
3684 
3685 	for (count1 = 0; count1 < 1000; count1++) {
3686 		tmp = IWK_READ(sc, CSR_HW_IF_CONFIG_REG);
3687 		IWK_WRITE(sc, CSR_HW_IF_CONFIG_REG,
3688 		    tmp | CSR_HW_IF_CONFIG_REG_EEP_SEM);
3689 
3690 		for (count2 = 0; count2 < 2; count2++) {
3691 			if (IWK_READ(sc, CSR_HW_IF_CONFIG_REG) &
3692 			    CSR_HW_IF_CONFIG_REG_EEP_SEM)
3693 				return (IWK_SUCCESS);
3694 			DELAY(10000);
3695 		}
3696 	}
3697 	return (IWK_FAIL);
3698 }
3699 
3700 /*
3701  * reset semphore flag to release EEPROM
3702  */
3703 static void iwk_eep_sem_up(iwk_sc_t *sc)
3704 {
3705 	uint32_t tmp;
3706 
3707 	tmp = IWK_READ(sc, CSR_HW_IF_CONFIG_REG);
3708 	IWK_WRITE(sc, CSR_HW_IF_CONFIG_REG,
3709 	    tmp & (~CSR_HW_IF_CONFIG_REG_EEP_SEM));
3710 }
3711 
3712 /*
3713  * This function load all infomation in eeprom into iwk_eep
3714  * structure in iwk_sc_t structure
3715  */
3716 static int iwk_eep_load(iwk_sc_t *sc)
3717 {
3718 	int i, rr;
3719 	uint32_t rv, tmp, eep_gp;
3720 	uint16_t addr, eep_sz = sizeof (sc->sc_eep_map);
3721 	uint16_t *eep_p = (uint16_t *)&sc->sc_eep_map;
3722 
3723 	/* read eeprom gp register in CSR */
3724 	eep_gp = IWK_READ(sc, CSR_EEPROM_GP);
3725 	if ((eep_gp & CSR_EEPROM_GP_VALID_MSK) ==
3726 	    CSR_EEPROM_GP_BAD_SIGNATURE) {
3727 		cmn_err(CE_WARN, "EEPROM not found\n");
3728 		return (IWK_FAIL);
3729 	}
3730 
3731 	rr = iwk_eep_sem_down(sc);
3732 	if (rr != 0) {
3733 		cmn_err(CE_WARN, "failed to own EEPROM\n");
3734 		return (IWK_FAIL);
3735 	}
3736 
3737 	for (addr = 0; addr < eep_sz; addr += 2) {
3738 		IWK_WRITE(sc, CSR_EEPROM_REG, addr<<1);
3739 		tmp = IWK_READ(sc, CSR_EEPROM_REG);
3740 		IWK_WRITE(sc, CSR_EEPROM_REG, tmp & ~(0x2));
3741 
3742 		for (i = 0; i < 10; i++) {
3743 			rv = IWK_READ(sc, CSR_EEPROM_REG);
3744 			if (rv & 1)
3745 				break;
3746 			DELAY(10);
3747 		}
3748 
3749 		if (!(rv & 1)) {
3750 			cmn_err(CE_WARN, "time out when read EEPROM\n");
3751 			iwk_eep_sem_up(sc);
3752 			return (IWK_FAIL);
3753 		}
3754 
3755 		eep_p[addr/2] = rv >> 16;
3756 	}
3757 
3758 	iwk_eep_sem_up(sc);
3759 	return (IWK_SUCCESS);
3760 }
3761 
3762 /*
3763  * init mac address in ieee80211com_t struct
3764  */
3765 static void iwk_get_mac_from_eep(iwk_sc_t *sc)
3766 {
3767 	ieee80211com_t *ic = &sc->sc_ic;
3768 	struct iwk_eep *ep = &sc->sc_eep_map;
3769 
3770 	IEEE80211_ADDR_COPY(ic->ic_macaddr, ep->mac_address);
3771 
3772 	IWK_DBG((IWK_DEBUG_EEPROM, "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
3773 	    ic->ic_macaddr[0], ic->ic_macaddr[1], ic->ic_macaddr[2],
3774 	    ic->ic_macaddr[3], ic->ic_macaddr[4], ic->ic_macaddr[5]));
3775 }
3776 
3777 static int
3778 iwk_init(iwk_sc_t *sc)
3779 {
3780 	int qid, n, err;
3781 	clock_t clk;
3782 	uint32_t tmp;
3783 
3784 	mutex_enter(&sc->sc_glock);
3785 	sc->sc_flags &= ~IWK_F_FW_INIT;
3786 
3787 	(void) iwk_preinit(sc);
3788 
3789 	tmp = IWK_READ(sc, CSR_GP_CNTRL);
3790 	if (!(tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) {
3791 		cmn_err(CE_WARN, "iwk_init(): Radio transmitter is off\n");
3792 		goto fail1;
3793 	}
3794 
3795 	/* init Rx ring */
3796 	iwk_mac_access_enter(sc);
3797 	IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
3798 
3799 	IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
3800 	IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
3801 	    sc->sc_rxq.dma_desc.cookie.dmac_address >> 8);
3802 
3803 	IWK_WRITE(sc, FH_RSCSR_CHNL0_STTS_WPTR_REG,
3804 	    ((uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3805 	    offsetof(struct iwk_shared, val0)) >> 4));
3806 
3807 	IWK_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG,
3808 	    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
3809 	    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
3810 	    IWK_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
3811 	    (RX_QUEUE_SIZE_LOG <<
3812 	    FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT));
3813 	iwk_mac_access_exit(sc);
3814 	IWK_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG,
3815 	    (RX_QUEUE_SIZE - 1) & ~0x7);
3816 
3817 	/* init Tx rings */
3818 	iwk_mac_access_enter(sc);
3819 	iwk_reg_write(sc, SCD_TXFACT, 0);
3820 
3821 	/* keep warm page */
3822 	iwk_reg_write(sc, IWK_FH_KW_MEM_ADDR_REG,
3823 	    sc->sc_dma_kw.cookie.dmac_address >> 4);
3824 
3825 	for (qid = 0; qid < IWK_NUM_QUEUES; qid++) {
3826 		IWK_WRITE(sc, FH_MEM_CBBC_QUEUE(qid),
3827 		    sc->sc_txq[qid].dma_desc.cookie.dmac_address >> 8);
3828 		IWK_WRITE(sc, IWK_FH_TCSR_CHNL_TX_CONFIG_REG(qid),
3829 		    IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
3830 		    IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL);
3831 	}
3832 	iwk_mac_access_exit(sc);
3833 
3834 	/* clear "radio off" and "disable command" bits */
3835 	IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
3836 	IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR,
3837 	    CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
3838 
3839 	/* clear any pending interrupts */
3840 	IWK_WRITE(sc, CSR_INT, 0xffffffff);
3841 
3842 	/* enable interrupts */
3843 	IWK_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
3844 
3845 	IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
3846 	IWK_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
3847 
3848 	/*
3849 	 * backup ucode data part for future use.
3850 	 */
3851 	(void) memcpy(sc->sc_dma_fw_data_bak.mem_va,
3852 	    sc->sc_dma_fw_data.mem_va,
3853 	    sc->sc_dma_fw_data.alength);
3854 
3855 	for (n = 0; n < 2; n++) {
3856 		/* load firmware init segment into NIC */
3857 		err = iwk_load_firmware(sc);
3858 		if (err != IWK_SUCCESS) {
3859 			cmn_err(CE_WARN, "iwk_init(): "
3860 			    "failed to setup boot firmware\n");
3861 			continue;
3862 		}
3863 
3864 		/* now press "execute" start running */
3865 		IWK_WRITE(sc, CSR_RESET, 0);
3866 		break;
3867 	}
3868 	if (n == 2) {
3869 		cmn_err(CE_WARN, "iwk_init(): failed to load firmware\n");
3870 		goto fail1;
3871 	}
3872 	/* ..and wait at most one second for adapter to initialize */
3873 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3874 	while (!(sc->sc_flags & IWK_F_FW_INIT)) {
3875 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3876 			break;
3877 	}
3878 	if (!(sc->sc_flags & IWK_F_FW_INIT)) {
3879 		cmn_err(CE_WARN,
3880 		    "iwk_init(): timeout waiting for firmware init\n");
3881 		goto fail1;
3882 	}
3883 
3884 	/*
3885 	 * at this point, the firmware is loaded OK, then config the hardware
3886 	 * with the ucode API, including rxon, txpower, etc.
3887 	 */
3888 	err = iwk_config(sc);
3889 	if (err) {
3890 		cmn_err(CE_WARN, "iwk_init(): failed to configure device\n");
3891 		goto fail1;
3892 	}
3893 
3894 	/* at this point, hardware may receive beacons :) */
3895 	mutex_exit(&sc->sc_glock);
3896 	return (IWK_SUCCESS);
3897 
3898 fail1:
3899 	err = IWK_FAIL;
3900 	mutex_exit(&sc->sc_glock);
3901 	return (err);
3902 }
3903 
3904 static void
3905 iwk_stop(iwk_sc_t *sc)
3906 {
3907 	uint32_t tmp;
3908 	int i;
3909 
3910 	if (!(sc->sc_flags & IWK_F_QUIESCED))
3911 		mutex_enter(&sc->sc_glock);
3912 
3913 	IWK_WRITE(sc, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET);
3914 	/* disable interrupts */
3915 	IWK_WRITE(sc, CSR_INT_MASK, 0);
3916 	IWK_WRITE(sc, CSR_INT, CSR_INI_SET_MASK);
3917 	IWK_WRITE(sc, CSR_FH_INT_STATUS, 0xffffffff);
3918 
3919 	/* reset all Tx rings */
3920 	for (i = 0; i < IWK_NUM_QUEUES; i++)
3921 		iwk_reset_tx_ring(sc, &sc->sc_txq[i]);
3922 
3923 	/* reset Rx ring */
3924 	iwk_reset_rx_ring(sc);
3925 
3926 	iwk_mac_access_enter(sc);
3927 	iwk_reg_write(sc, ALM_APMG_CLK_DIS, APMG_CLK_REG_VAL_DMA_CLK_RQT);
3928 	iwk_mac_access_exit(sc);
3929 
3930 	DELAY(5);
3931 
3932 	iwk_stop_master(sc);
3933 
3934 	sc->sc_tx_timer = 0;
3935 	tmp = IWK_READ(sc, CSR_RESET);
3936 	IWK_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_SW_RESET);
3937 
3938 	if (!(sc->sc_flags & IWK_F_QUIESCED))
3939 		mutex_exit(&sc->sc_glock);
3940 }
3941 
3942 /*
3943  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3944  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3945  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3946  * INRIA Sophia - Projet Planete
3947  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3948  */
3949 #define	is_success(amrr)	\
3950 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3951 #define	is_failure(amrr)	\
3952 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3953 #define	is_enough(amrr)		\
3954 	((amrr)->txcnt > 100)
3955 #define	is_min_rate(in)		\
3956 	((in)->in_txrate == 0)
3957 #define	is_max_rate(in)		\
3958 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3959 #define	increase_rate(in)	\
3960 	((in)->in_txrate++)
3961 #define	decrease_rate(in)	\
3962 	((in)->in_txrate--)
3963 #define	reset_cnt(amrr)		\
3964 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3965 
3966 #define	IWK_AMRR_MIN_SUCCESS_THRESHOLD	 1
3967 #define	IWK_AMRR_MAX_SUCCESS_THRESHOLD	15
3968 
3969 static void
3970 iwk_amrr_init(iwk_amrr_t *amrr)
3971 {
3972 	amrr->success = 0;
3973 	amrr->recovery = 0;
3974 	amrr->txcnt = amrr->retrycnt = 0;
3975 	amrr->success_threshold = IWK_AMRR_MIN_SUCCESS_THRESHOLD;
3976 }
3977 
3978 static void
3979 iwk_amrr_timeout(iwk_sc_t *sc)
3980 {
3981 	ieee80211com_t *ic = &sc->sc_ic;
3982 
3983 	IWK_DBG((IWK_DEBUG_RATECTL, "iwk_amrr_timeout() enter\n"));
3984 	if (ic->ic_opmode == IEEE80211_M_STA)
3985 		iwk_amrr_ratectl(NULL, ic->ic_bss);
3986 	else
3987 		ieee80211_iterate_nodes(&ic->ic_sta, iwk_amrr_ratectl, NULL);
3988 	sc->sc_clk = ddi_get_lbolt();
3989 }
3990 
3991 /* ARGSUSED */
3992 static void
3993 iwk_amrr_ratectl(void *arg, ieee80211_node_t *in)
3994 {
3995 	iwk_amrr_t *amrr = (iwk_amrr_t *)in;
3996 	int need_change = 0;
3997 
3998 	if (is_success(amrr) && is_enough(amrr)) {
3999 		amrr->success++;
4000 		if (amrr->success >= amrr->success_threshold &&
4001 		    !is_max_rate(in)) {
4002 			amrr->recovery = 1;
4003 			amrr->success = 0;
4004 			increase_rate(in);
4005 			IWK_DBG((IWK_DEBUG_RATECTL,
4006 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
4007 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
4008 			need_change = 1;
4009 		} else {
4010 			amrr->recovery = 0;
4011 		}
4012 	} else if (is_failure(amrr)) {
4013 		amrr->success = 0;
4014 		if (!is_min_rate(in)) {
4015 			if (amrr->recovery) {
4016 				amrr->success_threshold++;
4017 				if (amrr->success_threshold >
4018 				    IWK_AMRR_MAX_SUCCESS_THRESHOLD)
4019 					amrr->success_threshold =
4020 					    IWK_AMRR_MAX_SUCCESS_THRESHOLD;
4021 			} else {
4022 				amrr->success_threshold =
4023 				    IWK_AMRR_MIN_SUCCESS_THRESHOLD;
4024 			}
4025 			decrease_rate(in);
4026 			IWK_DBG((IWK_DEBUG_RATECTL,
4027 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
4028 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
4029 			need_change = 1;
4030 		}
4031 		amrr->recovery = 0;	/* paper is incorrect */
4032 	}
4033 
4034 	if (is_enough(amrr) || need_change)
4035 		reset_cnt(amrr);
4036 }
4037 
4038 /*
4039  * calculate 4965 chipset's kelvin temperature according to
4040  * the data of init alive and satistics notification.
4041  * The details is described in iwk_calibration.h file
4042  */
4043 static int32_t iwk_curr_tempera(iwk_sc_t *sc)
4044 {
4045 	int32_t  tempera;
4046 	int32_t  r1, r2, r3;
4047 	uint32_t  r4_u;
4048 	int32_t   r4_s;
4049 
4050 	if (iwk_is_fat_channel(sc)) {
4051 		r1 = (int32_t)(sc->sc_card_alive_init.therm_r1[1]);
4052 		r2 = (int32_t)(sc->sc_card_alive_init.therm_r2[1]);
4053 		r3 = (int32_t)(sc->sc_card_alive_init.therm_r3[1]);
4054 		r4_u = sc->sc_card_alive_init.therm_r4[1];
4055 	} else {
4056 		r1 = (int32_t)(sc->sc_card_alive_init.therm_r1[0]);
4057 		r2 = (int32_t)(sc->sc_card_alive_init.therm_r2[0]);
4058 		r3 = (int32_t)(sc->sc_card_alive_init.therm_r3[0]);
4059 		r4_u = sc->sc_card_alive_init.therm_r4[0];
4060 	}
4061 
4062 	if (sc->sc_flags & IWK_F_STATISTICS) {
4063 		r4_s = (int32_t)(sc->sc_statistics.general.temperature <<
4064 		    (31-23)) >> (31-23);
4065 	} else {
4066 		r4_s = (int32_t)(r4_u << (31-23)) >> (31-23);
4067 	}
4068 
4069 	IWK_DBG((IWK_DEBUG_CALIBRATION, "temperature R[1-4]: %d %d %d %d\n",
4070 	    r1, r2, r3, r4_s));
4071 
4072 	if (r3 == r1) {
4073 		cmn_err(CE_WARN, "iwk_curr_tempera(): "
4074 		    "failed to calculate temperature"
4075 		    "because r3 = r1\n");
4076 		return (DDI_FAILURE);
4077 	}
4078 
4079 	tempera = TEMPERATURE_CALIB_A_VAL * (r4_s - r2);
4080 	tempera /= (r3 - r1);
4081 	tempera = (tempera*97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
4082 
4083 	IWK_DBG((IWK_DEBUG_CALIBRATION, "calculated temperature: %dK, %dC\n",
4084 	    tempera, KELVIN_TO_CELSIUS(tempera)));
4085 
4086 	return (tempera);
4087 }
4088 
4089 /* Determine whether 4965 is using 2.4 GHz band */
4090 static inline int iwk_is_24G_band(iwk_sc_t *sc)
4091 {
4092 	return (sc->sc_config.flags & RXON_FLG_BAND_24G_MSK);
4093 }
4094 
4095 /* Determine whether 4965 is using fat channel */
4096 static inline int iwk_is_fat_channel(iwk_sc_t *sc)
4097 {
4098 	return ((sc->sc_config.flags & RXON_FLG_CHANNEL_MODE_PURE_40_MSK) ||
4099 	    (sc->sc_config.flags & RXON_FLG_CHANNEL_MODE_MIXED_MSK));
4100 }
4101 
4102 /*
4103  * In MIMO mode, determine which group 4965's current channel belong to.
4104  * For more infomation about "channel group",
4105  * please refer to iwk_calibration.h file
4106  */
4107 static int iwk_txpower_grp(uint16_t channel)
4108 {
4109 	if (channel >= CALIB_IWK_TX_ATTEN_GR5_FCH &&
4110 	    channel <= CALIB_IWK_TX_ATTEN_GR5_LCH) {
4111 		return (CALIB_CH_GROUP_5);
4112 	}
4113 
4114 	if (channel >= CALIB_IWK_TX_ATTEN_GR1_FCH &&
4115 	    channel <= CALIB_IWK_TX_ATTEN_GR1_LCH) {
4116 		return (CALIB_CH_GROUP_1);
4117 	}
4118 
4119 	if (channel >= CALIB_IWK_TX_ATTEN_GR2_FCH &&
4120 	    channel <= CALIB_IWK_TX_ATTEN_GR2_LCH) {
4121 		return (CALIB_CH_GROUP_2);
4122 	}
4123 
4124 	if (channel >= CALIB_IWK_TX_ATTEN_GR3_FCH &&
4125 	    channel <= CALIB_IWK_TX_ATTEN_GR3_LCH) {
4126 		return (CALIB_CH_GROUP_3);
4127 	}
4128 
4129 	if (channel >= CALIB_IWK_TX_ATTEN_GR4_FCH &&
4130 	    channel <= CALIB_IWK_TX_ATTEN_GR4_LCH) {
4131 		return (CALIB_CH_GROUP_4);
4132 	}
4133 
4134 	cmn_err(CE_WARN, "iwk_txpower_grp(): "
4135 	    "can't find txpower group for channel %d.\n", channel);
4136 
4137 	return (DDI_FAILURE);
4138 }
4139 
4140 /* 2.4 GHz */
4141 static uint16_t iwk_eep_band_1[14] = {
4142 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
4143 };
4144 
4145 /* 5.2 GHz bands */
4146 static uint16_t iwk_eep_band_2[13] = {
4147 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
4148 };
4149 
4150 static uint16_t iwk_eep_band_3[12] = {
4151 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
4152 };
4153 
4154 static uint16_t iwk_eep_band_4[11] = {
4155 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
4156 };
4157 
4158 static uint16_t iwk_eep_band_5[6] = {
4159 	145, 149, 153, 157, 161, 165
4160 };
4161 
4162 static uint16_t iwk_eep_band_6[7] = {
4163 	1, 2, 3, 4, 5, 6, 7
4164 };
4165 
4166 static uint16_t iwk_eep_band_7[11] = {
4167 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
4168 };
4169 
4170 /* Get regulatory data from eeprom for a given channel */
4171 static struct iwk_eep_channel *iwk_get_eep_channel(iwk_sc_t *sc,
4172     uint16_t channel,
4173     int is_24G, int is_fat, int is_hi_chan)
4174 {
4175 	int32_t i;
4176 	uint16_t chan;
4177 
4178 	if (is_fat) {  /* 11n mode */
4179 
4180 		if (is_hi_chan) {
4181 			chan = channel - 4;
4182 		} else {
4183 			chan = channel;
4184 		}
4185 
4186 		for (i = 0; i < 7; i++) {
4187 			if (iwk_eep_band_6[i] == chan) {
4188 				return (&sc->sc_eep_map.band_24_channels[i]);
4189 			}
4190 		}
4191 		for (i = 0; i < 11; i++) {
4192 			if (iwk_eep_band_7[i] == chan) {
4193 				return (&sc->sc_eep_map.band_52_channels[i]);
4194 			}
4195 		}
4196 	} else if (is_24G) {  /* 2.4 GHz band */
4197 		for (i = 0; i < 14; i++) {
4198 			if (iwk_eep_band_1[i] == channel) {
4199 				return (&sc->sc_eep_map.band_1_channels[i]);
4200 			}
4201 		}
4202 	} else {  /* 5 GHz band */
4203 		for (i = 0; i < 13; i++) {
4204 			if (iwk_eep_band_2[i] == channel) {
4205 				return (&sc->sc_eep_map.band_2_channels[i]);
4206 			}
4207 		}
4208 		for (i = 0; i < 12; i++) {
4209 			if (iwk_eep_band_3[i] == channel) {
4210 				return (&sc->sc_eep_map.band_3_channels[i]);
4211 			}
4212 		}
4213 		for (i = 0; i < 11; i++) {
4214 			if (iwk_eep_band_4[i] == channel) {
4215 				return (&sc->sc_eep_map.band_4_channels[i]);
4216 			}
4217 		}
4218 		for (i = 0; i < 6; i++) {
4219 			if (iwk_eep_band_5[i] == channel) {
4220 				return (&sc->sc_eep_map.band_5_channels[i]);
4221 			}
4222 		}
4223 	}
4224 
4225 	return (NULL);
4226 }
4227 
4228 /*
4229  * Determine which subband a given channel belongs
4230  * to in 2.4 GHz or 5 GHz band
4231  */
4232 static int32_t iwk_band_number(iwk_sc_t *sc, uint16_t channel)
4233 {
4234 	int32_t b_n = -1;
4235 
4236 	for (b_n = 0; b_n < EEP_TX_POWER_BANDS; b_n++) {
4237 		if (0 == sc->sc_eep_map.calib_info.band_info_tbl[b_n].ch_from) {
4238 			continue;
4239 		}
4240 
4241 		if ((channel >=
4242 		    (uint16_t)sc->sc_eep_map.calib_info.
4243 		    band_info_tbl[b_n].ch_from) &&
4244 		    (channel <=
4245 		    (uint16_t)sc->sc_eep_map.calib_info.
4246 		    band_info_tbl[b_n].ch_to)) {
4247 			break;
4248 		}
4249 	}
4250 
4251 	return (b_n);
4252 }
4253 
4254 /* Make a special division for interpolation operation */
4255 static int iwk_division(int32_t num, int32_t denom, int32_t *res)
4256 {
4257 	int32_t sign = 1;
4258 
4259 	if (num < 0) {
4260 		sign = -sign;
4261 		num = -num;
4262 	}
4263 
4264 	if (denom < 0) {
4265 		sign = -sign;
4266 		denom = -denom;
4267 	}
4268 
4269 	*res = ((num*2 + denom) / (denom*2)) * sign;
4270 
4271 	return (IWK_SUCCESS);
4272 }
4273 
4274 /* Make interpolation operation */
4275 static int32_t iwk_interpolate_value(int32_t x, int32_t x1, int32_t y1,
4276     int32_t x2, int32_t y2)
4277 {
4278 	int32_t val;
4279 
4280 	if (x2 == x1) {
4281 		return (y1);
4282 	} else {
4283 		(void) iwk_division((x2-x)*(y1-y2), (x2-x1), &val);
4284 		return (val + y2);
4285 	}
4286 }
4287 
4288 /* Get interpolation measurement data of a given channel for all chains. */
4289 static int iwk_channel_interpolate(iwk_sc_t *sc, uint16_t channel,
4290     struct iwk_eep_calib_channel_info *chan_info)
4291 {
4292 	int32_t ban_n;
4293 	uint32_t ch1_n, ch2_n;
4294 	int32_t c, m;
4295 	struct iwk_eep_calib_measure *m1_p, *m2_p, *m_p;
4296 
4297 	/* determine subband number */
4298 	ban_n = iwk_band_number(sc, channel);
4299 	if (ban_n >= EEP_TX_POWER_BANDS) {
4300 		return (DDI_FAILURE);
4301 	}
4302 
4303 	ch1_n =
4304 	    (uint32_t)sc->sc_eep_map.calib_info.band_info_tbl[ban_n].ch1.ch_num;
4305 	ch2_n =
4306 	    (uint32_t)sc->sc_eep_map.calib_info.band_info_tbl[ban_n].ch2.ch_num;
4307 
4308 	chan_info->ch_num = (uint8_t)channel;  /* given channel number */
4309 
4310 	/*
4311 	 * go through all chains on chipset
4312 	 */
4313 	for (c = 0; c < EEP_TX_POWER_TX_CHAINS; c++) {
4314 		/*
4315 		 * go through all factory measurements
4316 		 */
4317 		for (m = 0; m < EEP_TX_POWER_MEASUREMENTS; m++) {
4318 			m1_p =
4319 			    &(sc->sc_eep_map.calib_info.
4320 			    band_info_tbl[ban_n].ch1.measure[c][m]);
4321 			m2_p =
4322 			    &(sc->sc_eep_map.calib_info.band_info_tbl[ban_n].
4323 			    ch2.measure[c][m]);
4324 			m_p = &(chan_info->measure[c][m]);
4325 
4326 			/*
4327 			 * make interpolation to get actual
4328 			 * Tx power for given channel
4329 			 */
4330 			m_p->actual_pow = iwk_interpolate_value(channel,
4331 			    ch1_n, m1_p->actual_pow,
4332 			    ch2_n, m2_p->actual_pow);
4333 
4334 			/* make interpolation to get index into gain table */
4335 			m_p->gain_idx = iwk_interpolate_value(channel,
4336 			    ch1_n, m1_p->gain_idx,
4337 			    ch2_n, m2_p->gain_idx);
4338 
4339 			/* make interpolation to get chipset temperature */
4340 			m_p->temperature = iwk_interpolate_value(channel,
4341 			    ch1_n, m1_p->temperature,
4342 			    ch2_n, m2_p->temperature);
4343 
4344 			/*
4345 			 * make interpolation to get power
4346 			 * amp detector level
4347 			 */
4348 			m_p->pa_det = iwk_interpolate_value(channel, ch1_n,
4349 			    m1_p->pa_det,
4350 			    ch2_n, m2_p->pa_det);
4351 		}
4352 	}
4353 
4354 	return (IWK_SUCCESS);
4355 }
4356 
4357 /*
4358  * Calculate voltage compensation for Tx power. For more infomation,
4359  * please refer to iwk_calibration.h file
4360  */
4361 static int32_t iwk_voltage_compensation(int32_t eep_voltage,
4362     int32_t curr_voltage)
4363 {
4364 	int32_t vol_comp = 0;
4365 
4366 	if ((TX_POWER_IWK_ILLEGAL_VOLTAGE == eep_voltage) ||
4367 	    (TX_POWER_IWK_ILLEGAL_VOLTAGE == curr_voltage)) {
4368 		return (vol_comp);
4369 	}
4370 
4371 	(void) iwk_division(curr_voltage-eep_voltage,
4372 	    TX_POWER_IWK_VOLTAGE_CODES_PER_03V, &vol_comp);
4373 
4374 	if (curr_voltage > eep_voltage) {
4375 		vol_comp *= 2;
4376 	}
4377 	if ((vol_comp < -2) || (vol_comp > 2)) {
4378 		vol_comp = 0;
4379 	}
4380 
4381 	return (vol_comp);
4382 }
4383 
4384 /*
4385  * Thermal compensation values for txpower for various frequency ranges ...
4386  * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust
4387  */
4388 static struct iwk_txpower_tempera_comp {
4389 	int32_t degrees_per_05db_a;
4390 	int32_t degrees_per_05db_a_denom;
4391 } txpower_tempera_comp_table[CALIB_CH_GROUP_MAX] = {
4392 	{9, 2},			/* group 0 5.2, ch  34-43 */
4393 	{4, 1},			/* group 1 5.2, ch  44-70 */
4394 	{4, 1},			/* group 2 5.2, ch  71-124 */
4395 	{4, 1},			/* group 3 5.2, ch 125-200 */
4396 	{3, 1}			/* group 4 2.4, ch   all */
4397 };
4398 
4399 /*
4400  * bit-rate-dependent table to prevent Tx distortion, in half-dB units,
4401  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates.
4402  */
4403 static int32_t back_off_table[] = {
4404 	10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
4405 	10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
4406 	10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
4407 	10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
4408 	10			/* CCK */
4409 };
4410 
4411 /* determine minimum Tx power index in gain table */
4412 static int32_t iwk_min_power_index(int32_t rate_pow_idx, int32_t is_24G)
4413 {
4414 	if ((!is_24G) && ((rate_pow_idx & 7) <= 4)) {
4415 		return (MIN_TX_GAIN_INDEX_52GHZ_EXT);
4416 	}
4417 
4418 	return (MIN_TX_GAIN_INDEX);
4419 }
4420 
4421 /*
4422  * Determine DSP and radio gain according to temperature and other factors.
4423  * This function is the majority of Tx power calibration
4424  */
4425 static int iwk_txpower_table_cmd_init(iwk_sc_t *sc,
4426     struct iwk_tx_power_db *tp_db)
4427 {
4428 	int is_24G, is_fat, is_high_chan, is_mimo;
4429 	int c, r;
4430 	int32_t target_power;
4431 	int32_t tx_grp = CALIB_CH_GROUP_MAX;
4432 	uint16_t channel;
4433 	uint8_t saturation_power;
4434 	int32_t regu_power;
4435 	int32_t curr_regu_power;
4436 	struct iwk_eep_channel *eep_chan_p;
4437 	struct iwk_eep_calib_channel_info eep_chan_calib;
4438 	int32_t eep_voltage, init_voltage;
4439 	int32_t voltage_compensation;
4440 	int32_t temperature;
4441 	int32_t degrees_per_05db_num;
4442 	int32_t degrees_per_05db_denom;
4443 	struct iwk_eep_calib_measure *measure_p;
4444 	int32_t interpo_temp;
4445 	int32_t power_limit;
4446 	int32_t atten_value;
4447 	int32_t tempera_comp[2];
4448 	int32_t interpo_gain_idx[2];
4449 	int32_t interpo_actual_pow[2];
4450 	union iwk_tx_power_dual_stream txpower_gains;
4451 	int32_t txpower_gains_idx;
4452 
4453 	channel = sc->sc_config.chan;
4454 
4455 	/* 2.4 GHz or 5 GHz band */
4456 	is_24G = iwk_is_24G_band(sc);
4457 
4458 	/* fat channel or not */
4459 	is_fat = iwk_is_fat_channel(sc);
4460 
4461 	/*
4462 	 * using low half channel number or high half channel number
4463 	 * identify fat channel
4464 	 */
4465 	if (is_fat && (sc->sc_config.flags &
4466 	    RXON_FLG_CONTROL_CHANNEL_LOC_HIGH_MSK)) {
4467 		is_high_chan = 1;
4468 	}
4469 
4470 	if ((channel > 0) && (channel < 200)) {
4471 		/* get regulatory channel data from eeprom */
4472 		eep_chan_p = iwk_get_eep_channel(sc, channel, is_24G,
4473 		    is_fat, is_high_chan);
4474 		if (NULL == eep_chan_p) {
4475 			cmn_err(CE_WARN,
4476 			    "iwk_txpower_table_cmd_init(): "
4477 			    "can't get channel infomation\n");
4478 			return (DDI_FAILURE);
4479 		}
4480 	} else {
4481 		cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
4482 		    "channel(%d) isn't in proper range\n",
4483 		    channel);
4484 		return (DDI_FAILURE);
4485 	}
4486 
4487 	/* initial value of Tx power */
4488 	sc->sc_user_txpower = (int32_t)eep_chan_p->max_power_avg;
4489 	if (sc->sc_user_txpower < IWK_TX_POWER_TARGET_POWER_MIN) {
4490 		cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
4491 		    "user TX power is too weak\n");
4492 		return (DDI_FAILURE);
4493 	} else if (sc->sc_user_txpower > IWK_TX_POWER_TARGET_POWER_MAX) {
4494 		cmn_err(CE_WARN, "iwk_txpower_table_cmd_init(): "
4495 		    "user TX power is too strong\n");
4496 		return (DDI_FAILURE);
4497 	}
4498 
4499 	target_power = 2 * sc->sc_user_txpower;
4500 
4501 	/* determine which group current channel belongs to */
4502 	tx_grp = iwk_txpower_grp(channel);
4503 	if (tx_grp < 0) {
4504 		return (tx_grp);
4505 	}
4506 
4507 
4508 	if (is_fat) {
4509 		if (is_high_chan) {
4510 			channel -= 2;
4511 		} else {
4512 			channel += 2;
4513 		}
4514 	}
4515 
4516 	/* determine saturation power */
4517 	if (is_24G) {
4518 		saturation_power =
4519 		    sc->sc_eep_map.calib_info.saturation_power24;
4520 	} else {
4521 		saturation_power =
4522 		    sc->sc_eep_map.calib_info.saturation_power52;
4523 	}
4524 
4525 	if (saturation_power < IWK_TX_POWER_SATURATION_MIN ||
4526 	    saturation_power > IWK_TX_POWER_SATURATION_MAX) {
4527 		if (is_24G) {
4528 			saturation_power = IWK_TX_POWER_DEFAULT_SATURATION_24;
4529 		} else {
4530 			saturation_power = IWK_TX_POWER_DEFAULT_SATURATION_52;
4531 		}
4532 	}
4533 
4534 	/* determine regulatory power */
4535 	regu_power = (int32_t)eep_chan_p->max_power_avg * 2;
4536 	if ((regu_power < IWK_TX_POWER_REGULATORY_MIN) ||
4537 	    (regu_power > IWK_TX_POWER_REGULATORY_MAX)) {
4538 		if (is_24G) {
4539 			regu_power = IWK_TX_POWER_DEFAULT_REGULATORY_24;
4540 		} else {
4541 			regu_power = IWK_TX_POWER_DEFAULT_REGULATORY_52;
4542 		}
4543 	}
4544 
4545 	/*
4546 	 * get measurement data for current channel
4547 	 * suach as temperature,index to gain table,actual Tx power
4548 	 */
4549 	(void) iwk_channel_interpolate(sc, channel, &eep_chan_calib);
4550 
4551 	eep_voltage = (int32_t)sc->sc_eep_map.calib_info.voltage;
4552 	init_voltage = (int32_t)sc->sc_card_alive_init.voltage;
4553 
4554 	/* calculate voltage compensation to Tx power */
4555 	voltage_compensation =
4556 	    iwk_voltage_compensation(eep_voltage, init_voltage);
4557 
4558 	if (sc->sc_tempera >= IWK_TX_POWER_TEMPERATURE_MIN) {
4559 		temperature = sc->sc_tempera;
4560 	} else {
4561 		temperature = IWK_TX_POWER_TEMPERATURE_MIN;
4562 	}
4563 	if (sc->sc_tempera <= IWK_TX_POWER_TEMPERATURE_MAX) {
4564 		temperature = sc->sc_tempera;
4565 	} else {
4566 		temperature = IWK_TX_POWER_TEMPERATURE_MAX;
4567 	}
4568 	temperature = KELVIN_TO_CELSIUS(temperature);
4569 
4570 	degrees_per_05db_num =
4571 	    txpower_tempera_comp_table[tx_grp].degrees_per_05db_a;
4572 	degrees_per_05db_denom =
4573 	    txpower_tempera_comp_table[tx_grp].degrees_per_05db_a_denom;
4574 
4575 	for (c = 0; c < 2; c++) {  /* go through all chains */
4576 		measure_p = &eep_chan_calib.measure[c][1];
4577 		interpo_temp = measure_p->temperature;
4578 
4579 		/* determine temperature compensation to Tx power */
4580 		(void) iwk_division(
4581 		    (temperature-interpo_temp)*degrees_per_05db_denom,
4582 		    degrees_per_05db_num, &tempera_comp[c]);
4583 
4584 		interpo_gain_idx[c] = measure_p->gain_idx;
4585 		interpo_actual_pow[c] = measure_p->actual_pow;
4586 	}
4587 
4588 	/*
4589 	 * go through all rate entries in Tx power table
4590 	 */
4591 	for (r = 0; r < POWER_TABLE_NUM_ENTRIES; r++) {
4592 		if (r & 0x8) {
4593 			/* need to lower regulatory power for MIMO mode */
4594 			curr_regu_power = regu_power -
4595 			    IWK_TX_POWER_MIMO_REGULATORY_COMPENSATION;
4596 			is_mimo = 1;
4597 		} else {
4598 			curr_regu_power = regu_power;
4599 			is_mimo = 0;
4600 		}
4601 
4602 		power_limit = saturation_power - back_off_table[r];
4603 		if (power_limit > curr_regu_power) {
4604 			/* final Tx power limit */
4605 			power_limit = curr_regu_power;
4606 		}
4607 
4608 		if (target_power > power_limit) {
4609 			target_power = power_limit; /* final target Tx power */
4610 		}
4611 
4612 		for (c = 0; c < 2; c++) {	  /* go through all Tx chains */
4613 			if (is_mimo) {
4614 				atten_value =
4615 				    sc->sc_card_alive_init.tx_atten[tx_grp][c];
4616 			} else {
4617 				atten_value = 0;
4618 			}
4619 
4620 			/*
4621 			 * calculate index in gain table
4622 			 * this step is very important
4623 			 */
4624 			txpower_gains_idx = interpo_gain_idx[c] -
4625 			    (target_power - interpo_actual_pow[c]) -
4626 			    tempera_comp[c] - voltage_compensation +
4627 			    atten_value;
4628 
4629 			if (txpower_gains_idx <
4630 			    iwk_min_power_index(r, is_24G)) {
4631 				txpower_gains_idx =
4632 				    iwk_min_power_index(r, is_24G);
4633 			}
4634 
4635 			if (!is_24G) {
4636 				/*
4637 				 * support negative index for 5 GHz
4638 				 * band
4639 				 */
4640 				txpower_gains_idx += 9;
4641 			}
4642 
4643 			if (POWER_TABLE_CCK_ENTRY == r) {
4644 				/* for CCK mode, make necessary attenuaton */
4645 				txpower_gains_idx +=
4646 				    IWK_TX_POWER_CCK_COMPENSATION_C_STEP;
4647 			}
4648 
4649 			if (txpower_gains_idx > 107) {
4650 				txpower_gains_idx = 107;
4651 			} else if (txpower_gains_idx < 0) {
4652 				txpower_gains_idx = 0;
4653 			}
4654 
4655 			/* search DSP and radio gains in gain table */
4656 			txpower_gains.s.radio_tx_gain[c] =
4657 			    gains_table[is_24G][txpower_gains_idx].radio;
4658 			txpower_gains.s.dsp_predis_atten[c] =
4659 			    gains_table[is_24G][txpower_gains_idx].dsp;
4660 
4661 			IWK_DBG((IWK_DEBUG_CALIBRATION,
4662 			    "rate_index: %d, "
4663 			    "gain_index %d, c: %d,is_mimo: %d\n",
4664 			    r, txpower_gains_idx, c, is_mimo));
4665 		}
4666 
4667 		/* initialize Tx power table */
4668 		if (r < POWER_TABLE_NUM_HT_OFDM_ENTRIES) {
4669 			tp_db->ht_ofdm_power[r].dw = txpower_gains.dw;
4670 		} else {
4671 			tp_db->legacy_cck_power.dw = txpower_gains.dw;
4672 		}
4673 	}
4674 
4675 	return (IWK_SUCCESS);
4676 }
4677 
4678 /*
4679  * make Tx power calibration to adjust Tx power.
4680  * This is completed by sending out Tx power table command.
4681  */
4682 static int iwk_tx_power_calibration(iwk_sc_t *sc)
4683 {
4684 	iwk_tx_power_table_cmd_t cmd;
4685 	int rv;
4686 
4687 	if (sc->sc_flags & IWK_F_SCANNING) {
4688 		return (IWK_SUCCESS);
4689 	}
4690 
4691 	/* necessary initialization to Tx power table command */
4692 	cmd.band = (uint8_t)iwk_is_24G_band(sc);
4693 	cmd.channel = sc->sc_config.chan;
4694 	cmd.channel_normal_width = 0;
4695 
4696 	/* initialize Tx power table */
4697 	rv = iwk_txpower_table_cmd_init(sc, &cmd.tx_power);
4698 	if (rv) {
4699 		cmn_err(CE_NOTE, "rv= %d\n", rv);
4700 		return (rv);
4701 	}
4702 
4703 	/* send out Tx power table command */
4704 	rv = iwk_cmd(sc, REPLY_TX_PWR_TABLE_CMD, &cmd, sizeof (cmd), 1);
4705 	if (rv) {
4706 		return (rv);
4707 	}
4708 
4709 	/* record current temperature */
4710 	sc->sc_last_tempera = sc->sc_tempera;
4711 
4712 	return (IWK_SUCCESS);
4713 }
4714 
4715 /* This function is the handler of statistics notification from uCode */
4716 static void iwk_statistics_notify(iwk_sc_t *sc, iwk_rx_desc_t *desc)
4717 {
4718 	int is_diff;
4719 	struct iwk_notif_statistics *statistics_p =
4720 	    (struct iwk_notif_statistics *)(desc + 1);
4721 
4722 	mutex_enter(&sc->sc_glock);
4723 
4724 	is_diff = (sc->sc_statistics.general.temperature !=
4725 	    statistics_p->general.temperature) ||
4726 	    ((sc->sc_statistics.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK) !=
4727 	    (statistics_p->flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK));
4728 
4729 	/* update statistics data */
4730 	(void) memcpy(&sc->sc_statistics, statistics_p,
4731 	    sizeof (struct iwk_notif_statistics));
4732 
4733 	sc->sc_flags |= IWK_F_STATISTICS;
4734 
4735 	if (!(sc->sc_flags & IWK_F_SCANNING)) {
4736 		/* make Receiver gain balance calibration */
4737 		(void) iwk_rxgain_diff(sc);
4738 
4739 		/* make Receiver sensitivity calibration */
4740 		(void) iwk_rx_sens(sc);
4741 	}
4742 
4743 
4744 	if (!is_diff) {
4745 		mutex_exit(&sc->sc_glock);
4746 		return;
4747 	}
4748 
4749 	/* calibration current temperature of 4965 chipset */
4750 	sc->sc_tempera = iwk_curr_tempera(sc);
4751 
4752 	/* distinct temperature change will trigger Tx power calibration */
4753 	if (((sc->sc_tempera - sc->sc_last_tempera) >= 3) ||
4754 	    ((sc->sc_last_tempera - sc->sc_tempera) >= 3)) {
4755 		/* make Tx power calibration */
4756 		(void) iwk_tx_power_calibration(sc);
4757 	}
4758 
4759 	mutex_exit(&sc->sc_glock);
4760 }
4761 
4762 /* Determine this station is in associated state or not */
4763 static int iwk_is_associated(iwk_sc_t *sc)
4764 {
4765 	return (sc->sc_config.filter_flags & RXON_FILTER_ASSOC_MSK);
4766 }
4767 
4768 /* Make necessary preparation for Receiver gain balance calibration */
4769 static int iwk_rxgain_diff_init(iwk_sc_t *sc)
4770 {
4771 	int i, rv;
4772 	struct iwk_calibration_cmd cmd;
4773 	struct iwk_rx_gain_diff *gain_diff_p;
4774 
4775 	gain_diff_p = &sc->sc_rxgain_diff;
4776 
4777 	(void) memset(gain_diff_p, 0, sizeof (struct iwk_rx_gain_diff));
4778 	(void) memset(&cmd, 0, sizeof (struct iwk_calibration_cmd));
4779 
4780 	for (i = 0; i < RX_CHAINS_NUM; i++) {
4781 		gain_diff_p->gain_diff_chain[i] = CHAIN_GAIN_DIFF_INIT_VAL;
4782 	}
4783 
4784 	if (iwk_is_associated(sc)) {
4785 		cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
4786 		cmd.diff_gain_a = 0;
4787 		cmd.diff_gain_b = 0;
4788 		cmd.diff_gain_c = 0;
4789 
4790 		/* assume the gains of every Rx chains is balanceable */
4791 		rv = iwk_cmd(sc, REPLY_PHY_CALIBRATION_CMD, &cmd,
4792 		    sizeof (cmd), 1);
4793 		if (rv) {
4794 			return (rv);
4795 		}
4796 
4797 		gain_diff_p->state = IWK_GAIN_DIFF_ACCUMULATE;
4798 	}
4799 
4800 	return (IWK_SUCCESS);
4801 }
4802 
4803 /*
4804  * make Receiver gain balance to balance Rx gain between Rx chains
4805  * and determine which chain is disconnected
4806  */
4807 static int iwk_rxgain_diff(iwk_sc_t *sc)
4808 {
4809 	int i, is_24G, rv;
4810 	int max_beacon_chain_n;
4811 	int min_noise_chain_n;
4812 	uint16_t channel_n;
4813 	int32_t beacon_diff;
4814 	int32_t noise_diff;
4815 	uint32_t noise_chain_a, noise_chain_b, noise_chain_c;
4816 	uint32_t beacon_chain_a, beacon_chain_b, beacon_chain_c;
4817 	struct iwk_calibration_cmd cmd;
4818 	uint32_t beacon_aver[RX_CHAINS_NUM] = {0xFFFFFFFF};
4819 	uint32_t noise_aver[RX_CHAINS_NUM] = {0xFFFFFFFF};
4820 	struct statistics_rx_non_phy *rx_general_p =
4821 	    &sc->sc_statistics.rx.general;
4822 	struct iwk_rx_gain_diff *gain_diff_p = &sc->sc_rxgain_diff;
4823 
4824 	if (INTERFERENCE_DATA_AVAILABLE !=
4825 	    rx_general_p->interference_data_flag) {
4826 		return (IWK_SUCCESS);
4827 	}
4828 
4829 	if (IWK_GAIN_DIFF_ACCUMULATE != gain_diff_p->state) {
4830 		return (IWK_SUCCESS);
4831 	}
4832 
4833 	is_24G = iwk_is_24G_band(sc);
4834 	channel_n = sc->sc_config.chan;	 /* channel number */
4835 
4836 	if ((channel_n != (sc->sc_statistics.flag >> 16)) ||
4837 	    ((STATISTICS_REPLY_FLG_BAND_24G_MSK ==
4838 	    (sc->sc_statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK)) &&
4839 	    !is_24G)) {
4840 		return (IWK_SUCCESS);
4841 	}
4842 
4843 	/* Rx chain's noise strength from statistics notification */
4844 	noise_chain_a = rx_general_p->beacon_silence_rssi_a & 0xFF;
4845 	noise_chain_b = rx_general_p->beacon_silence_rssi_b & 0xFF;
4846 	noise_chain_c = rx_general_p->beacon_silence_rssi_c & 0xFF;
4847 
4848 	/* Rx chain's beacon strength from statistics notification */
4849 	beacon_chain_a = rx_general_p->beacon_rssi_a & 0xFF;
4850 	beacon_chain_b = rx_general_p->beacon_rssi_b & 0xFF;
4851 	beacon_chain_c = rx_general_p->beacon_rssi_c & 0xFF;
4852 
4853 	gain_diff_p->beacon_count++;
4854 
4855 	/* accumulate chain's noise strength */
4856 	gain_diff_p->noise_stren_a += noise_chain_a;
4857 	gain_diff_p->noise_stren_b += noise_chain_b;
4858 	gain_diff_p->noise_stren_c += noise_chain_c;
4859 
4860 	/* accumulate chain's beacon strength */
4861 	gain_diff_p->beacon_stren_a += beacon_chain_a;
4862 	gain_diff_p->beacon_stren_b += beacon_chain_b;
4863 	gain_diff_p->beacon_stren_c += beacon_chain_c;
4864 
4865 	if (BEACON_NUM_20 == gain_diff_p->beacon_count) {
4866 		/* calculate average beacon strength */
4867 		beacon_aver[0] = (gain_diff_p->beacon_stren_a) / BEACON_NUM_20;
4868 		beacon_aver[1] = (gain_diff_p->beacon_stren_b) / BEACON_NUM_20;
4869 		beacon_aver[2] = (gain_diff_p->beacon_stren_c) / BEACON_NUM_20;
4870 
4871 		/* calculate average noise strength */
4872 		noise_aver[0] = (gain_diff_p->noise_stren_a) / BEACON_NUM_20;
4873 		noise_aver[1] = (gain_diff_p->noise_stren_b) / BEACON_NUM_20;
4874 		noise_aver[2] = (gain_diff_p->noise_stren_b) / BEACON_NUM_20;
4875 
4876 		/* determine maximum beacon strength among 3 chains */
4877 		if ((beacon_aver[0] >= beacon_aver[1]) &&
4878 		    (beacon_aver[0] >= beacon_aver[2])) {
4879 			max_beacon_chain_n = 0;
4880 			gain_diff_p->connected_chains = 1 << 0;
4881 		} else if (beacon_aver[1] >= beacon_aver[2]) {
4882 			max_beacon_chain_n = 1;
4883 			gain_diff_p->connected_chains = 1 << 1;
4884 		} else {
4885 			max_beacon_chain_n = 2;
4886 			gain_diff_p->connected_chains = 1 << 2;
4887 		}
4888 
4889 		/* determine which chain is disconnected */
4890 		for (i = 0; i < RX_CHAINS_NUM; i++) {
4891 			if (i != max_beacon_chain_n) {
4892 				beacon_diff = beacon_aver[max_beacon_chain_n] -
4893 				    beacon_aver[i];
4894 				if (beacon_diff > MAX_ALLOWED_DIFF) {
4895 					gain_diff_p->disconnect_chain[i] = 1;
4896 				} else {
4897 					gain_diff_p->connected_chains |=
4898 					    (1 << i);
4899 				}
4900 			}
4901 		}
4902 
4903 		/*
4904 		 * if chain A and B are both disconnected,
4905 		 * assume the stronger in beacon strength is connected
4906 		 */
4907 		if (gain_diff_p->disconnect_chain[0] &&
4908 		    gain_diff_p->disconnect_chain[1]) {
4909 			if (beacon_aver[0] >= beacon_aver[1]) {
4910 				gain_diff_p->disconnect_chain[0] = 0;
4911 				gain_diff_p->connected_chains |= (1 << 0);
4912 			} else {
4913 				gain_diff_p->disconnect_chain[1] = 0;
4914 				gain_diff_p->connected_chains |= (1 << 1);
4915 			}
4916 		}
4917 
4918 		/* determine minimum noise strength among 3 chains */
4919 		if (!gain_diff_p->disconnect_chain[0]) {
4920 			min_noise_chain_n = 0;
4921 
4922 			for (i = 0; i < RX_CHAINS_NUM; i++) {
4923 				if (!gain_diff_p->disconnect_chain[i] &&
4924 				    (noise_aver[i] <=
4925 				    noise_aver[min_noise_chain_n])) {
4926 					min_noise_chain_n = i;
4927 				}
4928 
4929 			}
4930 		} else {
4931 			min_noise_chain_n = 1;
4932 
4933 			for (i = 0; i < RX_CHAINS_NUM; i++) {
4934 				if (!gain_diff_p->disconnect_chain[i] &&
4935 				    (noise_aver[i] <=
4936 				    noise_aver[min_noise_chain_n])) {
4937 					min_noise_chain_n = i;
4938 				}
4939 			}
4940 		}
4941 
4942 		gain_diff_p->gain_diff_chain[min_noise_chain_n] = 0;
4943 
4944 		/* determine gain difference between chains */
4945 		for (i = 0; i < RX_CHAINS_NUM; i++) {
4946 			if (!gain_diff_p->disconnect_chain[i] &&
4947 			    (CHAIN_GAIN_DIFF_INIT_VAL ==
4948 			    gain_diff_p->gain_diff_chain[i])) {
4949 
4950 				noise_diff = noise_aver[i] -
4951 				    noise_aver[min_noise_chain_n];
4952 				gain_diff_p->gain_diff_chain[i] =
4953 				    (uint8_t)((noise_diff * 10) / 15);
4954 
4955 				if (gain_diff_p->gain_diff_chain[i] > 3) {
4956 					gain_diff_p->gain_diff_chain[i] = 3;
4957 				}
4958 
4959 				gain_diff_p->gain_diff_chain[i] |= (1 << 2);
4960 			} else {
4961 				gain_diff_p->gain_diff_chain[i] = 0;
4962 			}
4963 		}
4964 
4965 		if (!gain_diff_p->gain_diff_send) {
4966 			gain_diff_p->gain_diff_send = 1;
4967 
4968 			(void) memset(&cmd, 0, sizeof (cmd));
4969 
4970 			cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
4971 			cmd.diff_gain_a = gain_diff_p->gain_diff_chain[0];
4972 			cmd.diff_gain_b = gain_diff_p->gain_diff_chain[1];
4973 			cmd.diff_gain_c = gain_diff_p->gain_diff_chain[2];
4974 
4975 			/*
4976 			 * send out PHY calibration command to
4977 			 * adjust every chain's Rx gain
4978 			 */
4979 			rv = iwk_cmd(sc, REPLY_PHY_CALIBRATION_CMD,
4980 			    &cmd, sizeof (cmd), 1);
4981 			if (rv) {
4982 				return (rv);
4983 			}
4984 
4985 			gain_diff_p->state = IWK_GAIN_DIFF_CALIBRATED;
4986 		}
4987 
4988 		gain_diff_p->beacon_stren_a = 0;
4989 		gain_diff_p->beacon_stren_b = 0;
4990 		gain_diff_p->beacon_stren_c = 0;
4991 
4992 		gain_diff_p->noise_stren_a = 0;
4993 		gain_diff_p->noise_stren_b = 0;
4994 		gain_diff_p->noise_stren_c = 0;
4995 	}
4996 
4997 	return (IWK_SUCCESS);
4998 }
4999 
5000 /* Make necessary preparation for Receiver sensitivity calibration */
5001 static int iwk_rx_sens_init(iwk_sc_t *sc)
5002 {
5003 	int i, rv;
5004 	struct iwk_rx_sensitivity_cmd cmd;
5005 	struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
5006 
5007 	(void) memset(&cmd, 0, sizeof (struct iwk_rx_sensitivity_cmd));
5008 	(void) memset(rx_sens_p, 0, sizeof (struct iwk_rx_sensitivity));
5009 
5010 	rx_sens_p->auto_corr_ofdm_x4 = 90;
5011 	rx_sens_p->auto_corr_mrc_ofdm_x4 = 170;
5012 	rx_sens_p->auto_corr_ofdm_x1 = 105;
5013 	rx_sens_p->auto_corr_mrc_ofdm_x1 = 220;
5014 
5015 	rx_sens_p->auto_corr_cck_x4 = 125;
5016 	rx_sens_p->auto_corr_mrc_cck_x4 = 200;
5017 	rx_sens_p->min_energy_det_cck = 100;
5018 
5019 	rx_sens_p->flags &= (~IWK_SENSITIVITY_CALIB_ALLOW_MSK);
5020 	rx_sens_p->flags &= (~IWK_SENSITIVITY_OFDM_UPDATE_MSK);
5021 	rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
5022 
5023 	rx_sens_p->last_bad_plcp_cnt_ofdm = 0;
5024 	rx_sens_p->last_false_alarm_cnt_ofdm = 0;
5025 	rx_sens_p->last_bad_plcp_cnt_cck = 0;
5026 	rx_sens_p->last_false_alarm_cnt_cck = 0;
5027 
5028 	rx_sens_p->cck_curr_state = IWK_TOO_MANY_FALSE_ALARM;
5029 	rx_sens_p->cck_prev_state = IWK_TOO_MANY_FALSE_ALARM;
5030 	rx_sens_p->cck_no_false_alarm_num = 0;
5031 	rx_sens_p->cck_beacon_idx = 0;
5032 
5033 	for (i = 0; i < 10; i++) {
5034 		rx_sens_p->cck_beacon_min[i] = 0;
5035 	}
5036 
5037 	rx_sens_p->cck_noise_idx = 0;
5038 	rx_sens_p->cck_noise_ref = 0;
5039 
5040 	for (i = 0; i < 20; i++) {
5041 		rx_sens_p->cck_noise_max[i] = 0;
5042 	}
5043 
5044 	rx_sens_p->cck_noise_diff = 0;
5045 	rx_sens_p->cck_no_false_alarm_num = 0;
5046 
5047 	cmd.control = IWK_SENSITIVITY_CONTROL_WORK_TABLE;
5048 
5049 	cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
5050 	    rx_sens_p->auto_corr_ofdm_x4;
5051 	cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
5052 	    rx_sens_p->auto_corr_mrc_ofdm_x4;
5053 	cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
5054 	    rx_sens_p->auto_corr_ofdm_x1;
5055 	cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
5056 	    rx_sens_p->auto_corr_mrc_ofdm_x1;
5057 
5058 	cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
5059 	    rx_sens_p->auto_corr_cck_x4;
5060 	cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
5061 	    rx_sens_p->auto_corr_mrc_cck_x4;
5062 	cmd.table[MIN_ENERGY_CCK_DET_IDX] = rx_sens_p->min_energy_det_cck;
5063 
5064 	cmd.table[MIN_ENERGY_OFDM_DET_IDX] = 100;
5065 	cmd.table[BARKER_CORR_TH_ADD_MIN_IDX] = 190;
5066 	cmd.table[BARKER_CORR_TH_ADD_MIN_MRC_IDX] = 390;
5067 	cmd.table[PTAM_ENERGY_TH_IDX] = 62;
5068 
5069 	/* at first, set up Rx to maximum sensitivity */
5070 	rv = iwk_cmd(sc, SENSITIVITY_CMD, &cmd, sizeof (cmd), 1);
5071 	if (rv) {
5072 		cmn_err(CE_WARN, "iwk_rx_sens_init(): "
5073 		    "in the process of initialization, "
5074 		    "failed to send rx sensitivity command\n");
5075 		return (rv);
5076 	}
5077 
5078 	rx_sens_p->flags |= IWK_SENSITIVITY_CALIB_ALLOW_MSK;
5079 
5080 	return (IWK_SUCCESS);
5081 }
5082 
5083 /*
5084  * make Receiver sensitivity calibration to adjust every chain's Rx sensitivity.
5085  * for more infomation, please refer to iwk_calibration.h file
5086  */
5087 static int iwk_rx_sens(iwk_sc_t *sc)
5088 {
5089 	int rv;
5090 	uint32_t actual_rx_time;
5091 	struct statistics_rx_non_phy *rx_general_p =
5092 	    &sc->sc_statistics.rx.general;
5093 	struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
5094 	struct iwk_rx_sensitivity_cmd cmd;
5095 
5096 	if (!(rx_sens_p->flags & IWK_SENSITIVITY_CALIB_ALLOW_MSK)) {
5097 		cmn_err(CE_WARN, "iwk_rx_sens(): "
5098 		    "sensitivity initialization has not finished.\n");
5099 		return (DDI_FAILURE);
5100 	}
5101 
5102 	if (INTERFERENCE_DATA_AVAILABLE !=
5103 	    rx_general_p->interference_data_flag) {
5104 		cmn_err(CE_WARN, "iwk_rx_sens(): "
5105 		    "can't make rx sensitivity calibration,"
5106 		    "because of invalid statistics\n");
5107 		return (DDI_FAILURE);
5108 	}
5109 
5110 	actual_rx_time = rx_general_p->channel_load;
5111 	if (!actual_rx_time) {
5112 		IWK_DBG((IWK_DEBUG_CALIBRATION, "iwk_rx_sens(): "
5113 		    "can't make rx sensitivity calibration,"
5114 		    "because has not enough rx time\n"));
5115 		return (DDI_FAILURE);
5116 	}
5117 
5118 	/* make Rx sensitivity calibration for OFDM mode */
5119 	rv = iwk_ofdm_sens(sc, actual_rx_time);
5120 	if (rv) {
5121 		return (rv);
5122 	}
5123 
5124 	/* make Rx sensitivity calibration for CCK mode */
5125 	rv = iwk_cck_sens(sc, actual_rx_time);
5126 	if (rv) {
5127 		return (rv);
5128 	}
5129 
5130 	/*
5131 	 * if the sum of false alarm had not changed, nothing will be done
5132 	 */
5133 	if ((!(rx_sens_p->flags & IWK_SENSITIVITY_OFDM_UPDATE_MSK)) &&
5134 	    (!(rx_sens_p->flags & IWK_SENSITIVITY_CCK_UPDATE_MSK))) {
5135 		return (IWK_SUCCESS);
5136 	}
5137 
5138 	cmd.control = IWK_SENSITIVITY_CONTROL_WORK_TABLE;
5139 
5140 	cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
5141 	    rx_sens_p->auto_corr_ofdm_x4;
5142 	cmd.table[AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
5143 	    rx_sens_p->auto_corr_mrc_ofdm_x4;
5144 	cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
5145 	    rx_sens_p->auto_corr_ofdm_x1;
5146 	cmd.table[AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
5147 	    rx_sens_p->auto_corr_mrc_ofdm_x1;
5148 
5149 	cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
5150 	    rx_sens_p->auto_corr_cck_x4;
5151 	cmd.table[AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
5152 	    rx_sens_p->auto_corr_mrc_cck_x4;
5153 	cmd.table[MIN_ENERGY_CCK_DET_IDX] =
5154 	    rx_sens_p->min_energy_det_cck;
5155 
5156 	cmd.table[MIN_ENERGY_OFDM_DET_IDX] = 100;
5157 	cmd.table[BARKER_CORR_TH_ADD_MIN_IDX] = 190;
5158 	cmd.table[BARKER_CORR_TH_ADD_MIN_MRC_IDX] = 390;
5159 	cmd.table[PTAM_ENERGY_TH_IDX] = 62;
5160 
5161 	/*
5162 	 * send sensitivity command to complete actual sensitivity calibration
5163 	 */
5164 	rv = iwk_cmd(sc, SENSITIVITY_CMD, &cmd, sizeof (cmd), 1);
5165 	if (rv) {
5166 		cmn_err(CE_WARN, "iwk_rx_sens(): "
5167 		    "fail to send rx sensitivity command\n");
5168 		return (rv);
5169 	}
5170 
5171 	return (IWK_SUCCESS);
5172 
5173 }
5174 
5175 /*
5176  * make Rx sensitivity calibration for CCK mode.
5177  * This is preparing parameters for Sensitivity command
5178  */
5179 static int iwk_cck_sens(iwk_sc_t *sc, uint32_t actual_rx_time)
5180 {
5181 	int i;
5182 	uint8_t noise_a, noise_b, noise_c;
5183 	uint8_t max_noise_abc, max_noise_20;
5184 	uint32_t beacon_a, beacon_b, beacon_c;
5185 	uint32_t min_beacon_abc, max_beacon_10;
5186 	uint32_t cck_fa, cck_bp;
5187 	uint32_t cck_sum_fa_bp;
5188 	uint32_t temp;
5189 	struct statistics_rx_non_phy *rx_general_p =
5190 	    &sc->sc_statistics.rx.general;
5191 	struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
5192 
5193 	cck_fa = sc->sc_statistics.rx.cck.false_alarm_cnt;
5194 	cck_bp = sc->sc_statistics.rx.cck.plcp_err;
5195 
5196 	/* accumulate false alarm */
5197 	if (rx_sens_p->last_false_alarm_cnt_cck > cck_fa) {
5198 		temp = rx_sens_p->last_false_alarm_cnt_cck;
5199 		rx_sens_p->last_false_alarm_cnt_cck = cck_fa;
5200 		cck_fa += (0xFFFFFFFF - temp);
5201 	} else {
5202 		cck_fa -= rx_sens_p->last_false_alarm_cnt_cck;
5203 		rx_sens_p->last_false_alarm_cnt_cck += cck_fa;
5204 	}
5205 
5206 	/* accumulate bad plcp */
5207 	if (rx_sens_p->last_bad_plcp_cnt_cck > cck_bp) {
5208 		temp = rx_sens_p->last_bad_plcp_cnt_cck;
5209 		rx_sens_p->last_bad_plcp_cnt_cck = cck_bp;
5210 		cck_bp += (0xFFFFFFFF - temp);
5211 	} else {
5212 		cck_bp -= rx_sens_p->last_bad_plcp_cnt_cck;
5213 		rx_sens_p->last_bad_plcp_cnt_cck += cck_bp;
5214 	}
5215 
5216 	/*
5217 	 * calculate relative value
5218 	 */
5219 	cck_sum_fa_bp = (cck_fa + cck_bp) * 200 * 1024;
5220 	rx_sens_p->cck_noise_diff = 0;
5221 
5222 	noise_a =
5223 	    (uint8_t)((rx_general_p->beacon_silence_rssi_a & 0xFF00) >> 8);
5224 	noise_b =
5225 	    (uint8_t)((rx_general_p->beacon_silence_rssi_b & 0xFF00) >> 8);
5226 	noise_c =
5227 	    (uint8_t)((rx_general_p->beacon_silence_rssi_c & 0xFF00) >> 8);
5228 
5229 	beacon_a = rx_general_p->beacon_energy_a;
5230 	beacon_b = rx_general_p->beacon_energy_b;
5231 	beacon_c = rx_general_p->beacon_energy_c;
5232 
5233 	/* determine maximum noise among 3 chains */
5234 	if ((noise_a >= noise_b) && (noise_a >= noise_c)) {
5235 		max_noise_abc = noise_a;
5236 	} else if (noise_b >= noise_c) {
5237 		max_noise_abc = noise_b;
5238 	} else {
5239 		max_noise_abc = noise_c;
5240 	}
5241 
5242 	/* record maximum noise among 3 chains */
5243 	rx_sens_p->cck_noise_max[rx_sens_p->cck_noise_idx] = max_noise_abc;
5244 	rx_sens_p->cck_noise_idx++;
5245 	if (rx_sens_p->cck_noise_idx >= 20) {
5246 		rx_sens_p->cck_noise_idx = 0;
5247 	}
5248 
5249 	/* determine maximum noise among 20 max noise */
5250 	max_noise_20 = rx_sens_p->cck_noise_max[0];
5251 	for (i = 0; i < 20; i++) {
5252 		if (rx_sens_p->cck_noise_max[i] >= max_noise_20) {
5253 			max_noise_20 = rx_sens_p->cck_noise_max[i];
5254 		}
5255 	}
5256 
5257 	/* determine minimum beacon among 3 chains */
5258 	if ((beacon_a <= beacon_b) && (beacon_a <= beacon_c)) {
5259 		min_beacon_abc = beacon_a;
5260 	} else if (beacon_b <= beacon_c) {
5261 		min_beacon_abc = beacon_b;
5262 	} else {
5263 		min_beacon_abc = beacon_c;
5264 	}
5265 
5266 	/* record miminum beacon among 3 chains */
5267 	rx_sens_p->cck_beacon_min[rx_sens_p->cck_beacon_idx] = min_beacon_abc;
5268 	rx_sens_p->cck_beacon_idx++;
5269 	if (rx_sens_p->cck_beacon_idx >= 10) {
5270 		rx_sens_p->cck_beacon_idx = 0;
5271 	}
5272 
5273 	/* determine maximum beacon among 10 miminum beacon among 3 chains */
5274 	max_beacon_10 = rx_sens_p->cck_beacon_min[0];
5275 	for (i = 0; i < 10; i++) {
5276 		if (rx_sens_p->cck_beacon_min[i] >= max_beacon_10) {
5277 			max_beacon_10 = rx_sens_p->cck_beacon_min[i];
5278 		}
5279 	}
5280 
5281 	/* add a little margin */
5282 	max_beacon_10 += 6;
5283 
5284 	/* record the count of having no false alarms */
5285 	if (cck_sum_fa_bp < (5 * actual_rx_time)) {
5286 		rx_sens_p->cck_no_false_alarm_num++;
5287 	} else {
5288 		rx_sens_p->cck_no_false_alarm_num = 0;
5289 	}
5290 
5291 	/*
5292 	 * adjust parameters in sensitivity command
5293 	 * according to different status.
5294 	 * for more infomation, please refer to iwk_calibration.h file
5295 	 */
5296 	if (cck_sum_fa_bp > (50 * actual_rx_time)) {
5297 		rx_sens_p->cck_curr_state = IWK_TOO_MANY_FALSE_ALARM;
5298 
5299 		if (rx_sens_p->auto_corr_cck_x4 > 160) {
5300 			rx_sens_p->cck_noise_ref = max_noise_20;
5301 
5302 			if (rx_sens_p->min_energy_det_cck > 2) {
5303 				rx_sens_p->min_energy_det_cck -= 2;
5304 			}
5305 		}
5306 
5307 		if (rx_sens_p->auto_corr_cck_x4 < 160) {
5308 			rx_sens_p->auto_corr_cck_x4 = 160 + 1;
5309 		} else {
5310 			if ((rx_sens_p->auto_corr_cck_x4 + 3) < 200) {
5311 				rx_sens_p->auto_corr_cck_x4 += 3;
5312 			} else {
5313 				rx_sens_p->auto_corr_cck_x4 = 200;
5314 			}
5315 		}
5316 
5317 		if ((rx_sens_p->auto_corr_mrc_cck_x4 + 3) < 400) {
5318 			rx_sens_p->auto_corr_mrc_cck_x4 += 3;
5319 		} else {
5320 			rx_sens_p->auto_corr_mrc_cck_x4 = 400;
5321 		}
5322 
5323 		rx_sens_p->flags |= IWK_SENSITIVITY_CCK_UPDATE_MSK;
5324 
5325 	} else if (cck_sum_fa_bp < (5 * actual_rx_time)) {
5326 		rx_sens_p->cck_curr_state = IWK_TOO_FEW_FALSE_ALARM;
5327 
5328 		rx_sens_p->cck_noise_diff = (int32_t)rx_sens_p->cck_noise_ref -
5329 		    (int32_t)max_noise_20;
5330 
5331 		if ((rx_sens_p->cck_prev_state != IWK_TOO_MANY_FALSE_ALARM) &&
5332 		    ((rx_sens_p->cck_noise_diff > 2) ||
5333 		    (rx_sens_p->cck_no_false_alarm_num > 100))) {
5334 			if ((rx_sens_p->min_energy_det_cck + 2) < 97) {
5335 				rx_sens_p->min_energy_det_cck += 2;
5336 			} else {
5337 				rx_sens_p->min_energy_det_cck = 97;
5338 			}
5339 
5340 			if ((rx_sens_p->auto_corr_cck_x4 - 3) > 125) {
5341 				rx_sens_p->auto_corr_cck_x4 -= 3;
5342 			} else {
5343 				rx_sens_p->auto_corr_cck_x4 = 125;
5344 			}
5345 
5346 			if ((rx_sens_p->auto_corr_mrc_cck_x4 -3) > 200) {
5347 				rx_sens_p->auto_corr_mrc_cck_x4 -= 3;
5348 			} else {
5349 				rx_sens_p->auto_corr_mrc_cck_x4 = 200;
5350 			}
5351 
5352 			rx_sens_p->flags |= IWK_SENSITIVITY_CCK_UPDATE_MSK;
5353 		} else {
5354 			rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
5355 		}
5356 	} else {
5357 		rx_sens_p->cck_curr_state = IWK_GOOD_RANGE_FALSE_ALARM;
5358 
5359 		rx_sens_p->cck_noise_ref = max_noise_20;
5360 
5361 		if (IWK_TOO_MANY_FALSE_ALARM == rx_sens_p->cck_prev_state) {
5362 			rx_sens_p->min_energy_det_cck -= 8;
5363 		}
5364 
5365 		rx_sens_p->flags &= (~IWK_SENSITIVITY_CCK_UPDATE_MSK);
5366 	}
5367 
5368 	if (rx_sens_p->min_energy_det_cck < max_beacon_10) {
5369 		rx_sens_p->min_energy_det_cck = (uint16_t)max_beacon_10;
5370 	}
5371 
5372 	rx_sens_p->cck_prev_state = rx_sens_p->cck_curr_state;
5373 
5374 	return (IWK_SUCCESS);
5375 }
5376 
5377 /*
5378  * make Rx sensitivity calibration for OFDM mode.
5379  * This is preparing parameters for Sensitivity command
5380  */
5381 static int iwk_ofdm_sens(iwk_sc_t *sc, uint32_t actual_rx_time)
5382 {
5383 	uint32_t temp;
5384 	uint16_t temp1;
5385 	uint32_t ofdm_fa, ofdm_bp;
5386 	uint32_t ofdm_sum_fa_bp;
5387 	struct iwk_rx_sensitivity *rx_sens_p = &sc->sc_rx_sens;
5388 
5389 	ofdm_fa = sc->sc_statistics.rx.ofdm.false_alarm_cnt;
5390 	ofdm_bp = sc->sc_statistics.rx.ofdm.plcp_err;
5391 
5392 	/* accumulate false alarm */
5393 	if (rx_sens_p->last_false_alarm_cnt_ofdm > ofdm_fa) {
5394 		temp = rx_sens_p->last_false_alarm_cnt_ofdm;
5395 		rx_sens_p->last_false_alarm_cnt_ofdm = ofdm_fa;
5396 		ofdm_fa += (0xFFFFFFFF - temp);
5397 	} else {
5398 		ofdm_fa -= rx_sens_p->last_false_alarm_cnt_ofdm;
5399 		rx_sens_p->last_false_alarm_cnt_ofdm += ofdm_fa;
5400 	}
5401 
5402 	/* accumulate bad plcp */
5403 	if (rx_sens_p->last_bad_plcp_cnt_ofdm > ofdm_bp) {
5404 		temp = rx_sens_p->last_bad_plcp_cnt_ofdm;
5405 		rx_sens_p->last_bad_plcp_cnt_ofdm = ofdm_bp;
5406 		ofdm_bp += (0xFFFFFFFF - temp);
5407 	} else {
5408 		ofdm_bp -= rx_sens_p->last_bad_plcp_cnt_ofdm;
5409 		rx_sens_p->last_bad_plcp_cnt_ofdm += ofdm_bp;
5410 	}
5411 
5412 	ofdm_sum_fa_bp = (ofdm_fa + ofdm_bp) * 200 * 1024; /* relative value */
5413 
5414 	/*
5415 	 * adjust parameter in sensitivity command according to different status
5416 	 */
5417 	if (ofdm_sum_fa_bp > (50 * actual_rx_time)) {
5418 		temp1 = rx_sens_p->auto_corr_ofdm_x4 + 1;
5419 		rx_sens_p->auto_corr_ofdm_x4 = (temp1 <= 120) ? temp1 : 120;
5420 
5421 		temp1 = rx_sens_p->auto_corr_mrc_ofdm_x4 + 1;
5422 		rx_sens_p->auto_corr_mrc_ofdm_x4 =
5423 		    (temp1 <= 210) ? temp1 : 210;
5424 
5425 		temp1 = rx_sens_p->auto_corr_ofdm_x1 + 1;
5426 		rx_sens_p->auto_corr_ofdm_x1 = (temp1 <= 140) ? temp1 : 140;
5427 
5428 		temp1 = rx_sens_p->auto_corr_mrc_ofdm_x1 + 1;
5429 		rx_sens_p->auto_corr_mrc_ofdm_x1 =
5430 		    (temp1 <= 270) ? temp1 : 270;
5431 
5432 		rx_sens_p->flags |= IWK_SENSITIVITY_OFDM_UPDATE_MSK;
5433 
5434 	} else if (ofdm_sum_fa_bp < (5 * actual_rx_time)) {
5435 		temp1 = rx_sens_p->auto_corr_ofdm_x4 - 1;
5436 		rx_sens_p->auto_corr_ofdm_x4 = (temp1 >= 85) ? temp1 : 85;
5437 
5438 		temp1 = rx_sens_p->auto_corr_mrc_ofdm_x4 - 1;
5439 		rx_sens_p->auto_corr_mrc_ofdm_x4 =
5440 		    (temp1 >= 170) ? temp1 : 170;
5441 
5442 		temp1 = rx_sens_p->auto_corr_ofdm_x1 - 1;
5443 		rx_sens_p->auto_corr_ofdm_x1 = (temp1 >= 105) ? temp1 : 105;
5444 
5445 		temp1 = rx_sens_p->auto_corr_mrc_ofdm_x1 - 1;
5446 		rx_sens_p->auto_corr_mrc_ofdm_x1 =
5447 		    (temp1 >= 220) ? temp1 : 220;
5448 
5449 		rx_sens_p->flags |= IWK_SENSITIVITY_OFDM_UPDATE_MSK;
5450 
5451 	} else {
5452 		rx_sens_p->flags &= (~IWK_SENSITIVITY_OFDM_UPDATE_MSK);
5453 	}
5454 
5455 	return (IWK_SUCCESS);
5456 }
5457 
5458 /*
5459  * 1)  log_event_table_ptr indicates base of the event log.  This traces
5460  *     a 256-entry history of uCode execution within a circular buffer.
5461  *     Its header format is:
5462  *
5463  *	uint32_t log_size;	log capacity (in number of entries)
5464  *	uint32_t type;	(1) timestamp with each entry, (0) no timestamp
5465  *	uint32_t wraps;	# times uCode has wrapped to top of circular buffer
5466  *      uint32_t write_index;	next circular buffer entry that uCode would fill
5467  *
5468  *     The header is followed by the circular buffer of log entries.  Entries
5469  *     with timestamps have the following format:
5470  *
5471  *	uint32_t event_id;     range 0 - 1500
5472  *	uint32_t timestamp;    low 32 bits of TSF (of network, if associated)
5473  *	uint32_t data;         event_id-specific data value
5474  *
5475  *     Entries without timestamps contain only event_id and data.
5476  */
5477 
5478 /*
5479  * iwk_write_event_log - Write event log to dmesg
5480  */
5481 static void iwk_write_event_log(iwk_sc_t *sc)
5482 {
5483 	uint32_t log_event_table_ptr;	/* Start address of event table */
5484 	uint32_t startptr;	/* Start address of log data */
5485 	uint32_t logptr;	/* address of log data entry */
5486 	uint32_t i, n, num_events;
5487 	uint32_t event_id, data1, data2; /* log data */
5488 
5489 	uint32_t log_size;   /* log capacity (in number of entries) */
5490 	uint32_t type;	/* (1)timestamp with each entry,(0) no timestamp */
5491 	uint32_t wraps;	/* # times uCode has wrapped to */
5492 			/* the top of circular buffer */
5493 	uint32_t idx; /* index of entry to be filled in next */
5494 
5495 	log_event_table_ptr = sc->sc_card_alive_run.log_event_table_ptr;
5496 	if (!(log_event_table_ptr)) {
5497 		IWK_DBG((IWK_DEBUG_EEPROM, "NULL event table pointer\n"));
5498 		return;
5499 	}
5500 
5501 	iwk_mac_access_enter(sc);
5502 
5503 	/* Read log header */
5504 	log_size = iwk_mem_read(sc, log_event_table_ptr);
5505 	log_event_table_ptr += sizeof (uint32_t); /* addr of "type" */
5506 	type = iwk_mem_read(sc, log_event_table_ptr);
5507 	log_event_table_ptr += sizeof (uint32_t); /* addr of "wraps" */
5508 	wraps = iwk_mem_read(sc, log_event_table_ptr);
5509 	log_event_table_ptr += sizeof (uint32_t); /* addr of "idx" */
5510 	idx = iwk_mem_read(sc, log_event_table_ptr);
5511 	startptr = log_event_table_ptr +
5512 	    sizeof (uint32_t); /* addr of start of log data */
5513 	if (!log_size & !wraps) {
5514 		IWK_DBG((IWK_DEBUG_EEPROM, "Empty log\n"));
5515 		iwk_mac_access_exit(sc);
5516 		return;
5517 	}
5518 
5519 	if (!wraps) {
5520 		num_events = idx;
5521 		logptr = startptr;
5522 	} else {
5523 		num_events = log_size - idx;
5524 		n = type ? 2 : 3;
5525 		logptr = startptr + (idx * n * sizeof (uint32_t));
5526 	}
5527 
5528 	for (i = 0; i < num_events; i++) {
5529 		event_id = iwk_mem_read(sc, logptr);
5530 		logptr += sizeof (uint32_t);
5531 		data1 = iwk_mem_read(sc, logptr);
5532 		logptr += sizeof (uint32_t);
5533 		if (type == 0) { /* no timestamp */
5534 			IWK_DBG((IWK_DEBUG_EEPROM, "Event ID=%d, Data=%x0x",
5535 			    event_id, data1));
5536 		} else { /* timestamp */
5537 			data2 = iwk_mem_read(sc, logptr);
5538 			printf("Time=%d, Event ID=%d, Data=0x%x\n",
5539 			    data1, event_id, data2);
5540 			IWK_DBG((IWK_DEBUG_EEPROM,
5541 			    "Time=%d, Event ID=%d, Data=0x%x\n",
5542 			    data1, event_id, data2));
5543 			logptr += sizeof (uint32_t);
5544 		}
5545 	}
5546 
5547 	/*
5548 	 * Print the wrapped around entries, if any
5549 	 */
5550 	if (wraps) {
5551 		logptr = startptr;
5552 		for (i = 0; i < idx; i++) {
5553 			event_id = iwk_mem_read(sc, logptr);
5554 			logptr += sizeof (uint32_t);
5555 			data1 = iwk_mem_read(sc, logptr);
5556 			logptr += sizeof (uint32_t);
5557 			if (type == 0) { /* no timestamp */
5558 				IWK_DBG((IWK_DEBUG_EEPROM,
5559 				    "Event ID=%d, Data=%x0x", event_id, data1));
5560 			} else { /* timestamp */
5561 				data2 = iwk_mem_read(sc, logptr);
5562 				IWK_DBG((IWK_DEBUG_EEPROM,
5563 				    "Time = %d, Event ID=%d, Data=0x%x\n",
5564 				    data1, event_id, data2));
5565 				logptr += sizeof (uint32_t);
5566 			}
5567 		}
5568 	}
5569 
5570 	iwk_mac_access_exit(sc);
5571 }
5572 
5573 /*
5574  * error_event_table_ptr indicates base of the error log.  This contains
5575  * information about any uCode error that occurs.  For 4965, the format is:
5576  *
5577  * uint32_t valid;        (nonzero) valid, (0) log is empty
5578  * uint32_t error_id;     type of error
5579  * uint32_t pc;           program counter
5580  * uint32_t blink1;       branch link
5581  * uint32_t blink2;       branch link
5582  * uint32_t ilink1;       interrupt link
5583  * uint32_t ilink2;       interrupt link
5584  * uint32_t data1;        error-specific data
5585  * uint32_t data2;        error-specific data
5586  * uint32_t line;         source code line of error
5587  * uint32_t bcon_time;    beacon timer
5588  * uint32_t tsf_low;      network timestamp function timer
5589  * uint32_t tsf_hi;       network timestamp function timer
5590  */
5591 /*
5592  * iwk_write_error_log - Write error log to dmesg
5593  */
5594 static void iwk_write_error_log(iwk_sc_t *sc)
5595 {
5596 	uint32_t err_ptr;	/* Start address of error log */
5597 	uint32_t valid;		/* is error log valid */
5598 
5599 	err_ptr = sc->sc_card_alive_run.error_event_table_ptr;
5600 	if (!(err_ptr)) {
5601 		IWK_DBG((IWK_DEBUG_EEPROM, "NULL error table pointer\n"));
5602 		return;
5603 	}
5604 
5605 	iwk_mac_access_enter(sc);
5606 
5607 	valid = iwk_mem_read(sc, err_ptr);
5608 	if (!(valid)) {
5609 		IWK_DBG((IWK_DEBUG_EEPROM, "Error data not valid\n"));
5610 		iwk_mac_access_exit(sc);
5611 		return;
5612 	}
5613 	err_ptr += sizeof (uint32_t);
5614 	IWK_DBG((IWK_DEBUG_EEPROM, "err=%d ", iwk_mem_read(sc, err_ptr)));
5615 	err_ptr += sizeof (uint32_t);
5616 	IWK_DBG((IWK_DEBUG_EEPROM, "pc=0x%X ", iwk_mem_read(sc, err_ptr)));
5617 	err_ptr += sizeof (uint32_t);
5618 	IWK_DBG((IWK_DEBUG_EEPROM,
5619 	    "branch link1=0x%X ", iwk_mem_read(sc, err_ptr)));
5620 	err_ptr += sizeof (uint32_t);
5621 	IWK_DBG((IWK_DEBUG_EEPROM,
5622 	    "branch link2=0x%X ", iwk_mem_read(sc, err_ptr)));
5623 	err_ptr += sizeof (uint32_t);
5624 	IWK_DBG((IWK_DEBUG_EEPROM,
5625 	    "interrupt link1=0x%X ", iwk_mem_read(sc, err_ptr)));
5626 	err_ptr += sizeof (uint32_t);
5627 	IWK_DBG((IWK_DEBUG_EEPROM,
5628 	    "interrupt link2=0x%X ", iwk_mem_read(sc, err_ptr)));
5629 	err_ptr += sizeof (uint32_t);
5630 	IWK_DBG((IWK_DEBUG_EEPROM, "data1=0x%X ", iwk_mem_read(sc, err_ptr)));
5631 	err_ptr += sizeof (uint32_t);
5632 	IWK_DBG((IWK_DEBUG_EEPROM, "data2=0x%X ", iwk_mem_read(sc, err_ptr)));
5633 	err_ptr += sizeof (uint32_t);
5634 	IWK_DBG((IWK_DEBUG_EEPROM, "line=%d ", iwk_mem_read(sc, err_ptr)));
5635 	err_ptr += sizeof (uint32_t);
5636 	IWK_DBG((IWK_DEBUG_EEPROM, "bcon_time=%d ", iwk_mem_read(sc, err_ptr)));
5637 	err_ptr += sizeof (uint32_t);
5638 	IWK_DBG((IWK_DEBUG_EEPROM, "tsf_low=%d ", iwk_mem_read(sc, err_ptr)));
5639 	err_ptr += sizeof (uint32_t);
5640 	IWK_DBG((IWK_DEBUG_EEPROM, "tsf_hi=%d\n", iwk_mem_read(sc, err_ptr)));
5641 
5642 	iwk_mac_access_exit(sc);
5643 }
5644