xref: /titanic_50/usr/src/uts/common/io/iwh/iwh.c (revision 37ffaf8335982d89ab569e9a1020419e32003404)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2008, Intel Corporation
8  * All rights reserved.
9  */
10 
11 /*
12  * Copyright (c) 2006
13  * Copyright (c) 2007
14  *	Damien Bergamini <damien.bergamini@free.fr>
15  *
16  * Permission to use, copy, modify, and distribute this software for any
17  * purpose with or without fee is hereby granted, provided that the above
18  * copyright notice and this permission notice appear in all copies.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
21  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
23  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
25  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
26  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
27  */
28 
29 /*
30  * Intel(R) WiFi Link 5100/5300 Driver
31  */
32 
33 #include <sys/types.h>
34 #include <sys/byteorder.h>
35 #include <sys/conf.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stat.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/strsubr.h>
41 #include <sys/ethernet.h>
42 #include <inet/common.h>
43 #include <inet/nd.h>
44 #include <inet/mi.h>
45 #include <sys/note.h>
46 #include <sys/stream.h>
47 #include <sys/strsun.h>
48 #include <sys/modctl.h>
49 #include <sys/devops.h>
50 #include <sys/dlpi.h>
51 #include <sys/mac_provider.h>
52 #include <sys/mac_wifi.h>
53 #include <sys/net80211.h>
54 #include <sys/net80211_proto.h>
55 #include <sys/varargs.h>
56 #include <sys/policy.h>
57 #include <sys/pci.h>
58 
59 #include "iwh_calibration.h"
60 #include "iwh_hw.h"
61 #include "iwh_eeprom.h"
62 #include "iwh_var.h"
63 #include <inet/wifi_ioctl.h>
64 
65 #ifdef DEBUG
66 #define	IWH_DEBUG_80211		(1 << 0)
67 #define	IWH_DEBUG_CMD		(1 << 1)
68 #define	IWH_DEBUG_DMA		(1 << 2)
69 #define	IWH_DEBUG_EEPROM	(1 << 3)
70 #define	IWH_DEBUG_FW		(1 << 4)
71 #define	IWH_DEBUG_HW		(1 << 5)
72 #define	IWH_DEBUG_INTR		(1 << 6)
73 #define	IWH_DEBUG_MRR		(1 << 7)
74 #define	IWH_DEBUG_PIO		(1 << 8)
75 #define	IWH_DEBUG_RX		(1 << 9)
76 #define	IWH_DEBUG_SCAN		(1 << 10)
77 #define	IWH_DEBUG_TX		(1 << 11)
78 #define	IWH_DEBUG_RATECTL	(1 << 12)
79 #define	IWH_DEBUG_RADIO		(1 << 13)
80 #define	IWH_DEBUG_RESUME	(1 << 14)
81 #define	IWH_DEBUG_CALIBRATION	(1 << 15)
82 /*
83  * if want to see debug message of a given section,
84  * please set this flag to one of above values
85  */
86 uint32_t iwh_dbg_flags = 0;
87 #define	IWH_DBG(x) \
88 	iwh_dbg x
89 #else
90 #define	IWH_DBG(x)
91 #endif
92 
93 static void	*iwh_soft_state_p = NULL;
94 
95 /*
96  * ucode will be compiled into driver image
97  */
98 static uint8_t iwh_fw_bin [] = {
99 #include "fw-iw/iwh.ucode"
100 };
101 
102 /*
103  * DMA attributes for a shared page
104  */
105 static ddi_dma_attr_t sh_dma_attr = {
106 	DMA_ATTR_V0,	/* version of this structure */
107 	0,		/* lowest usable address */
108 	0xffffffffU,	/* highest usable address */
109 	0xffffffffU,	/* maximum DMAable byte count */
110 	0x1000,		/* alignment in bytes */
111 	0x1000,		/* burst sizes (any?) */
112 	1,		/* minimum transfer */
113 	0xffffffffU,	/* maximum transfer */
114 	0xffffffffU,	/* maximum segment length */
115 	1,		/* maximum number of segments */
116 	1,		/* granularity */
117 	0,		/* flags (reserved) */
118 };
119 
120 /*
121  * DMA attributes for a keep warm DRAM descriptor
122  */
123 static ddi_dma_attr_t kw_dma_attr = {
124 	DMA_ATTR_V0,	/* version of this structure */
125 	0,		/* lowest usable address */
126 	0xffffffffU,	/* highest usable address */
127 	0xffffffffU,	/* maximum DMAable byte count */
128 	0x1000,		/* alignment in bytes */
129 	0x1000,		/* burst sizes (any?) */
130 	1,		/* minimum transfer */
131 	0xffffffffU,	/* maximum transfer */
132 	0xffffffffU,	/* maximum segment length */
133 	1,		/* maximum number of segments */
134 	1,		/* granularity */
135 	0,		/* flags (reserved) */
136 };
137 
138 /*
139  * DMA attributes for a ring descriptor
140  */
141 static ddi_dma_attr_t ring_desc_dma_attr = {
142 	DMA_ATTR_V0,	/* version of this structure */
143 	0,		/* lowest usable address */
144 	0xffffffffU,	/* highest usable address */
145 	0xffffffffU,	/* maximum DMAable byte count */
146 	0x100,		/* alignment in bytes */
147 	0x100,		/* burst sizes (any?) */
148 	1,		/* minimum transfer */
149 	0xffffffffU,	/* maximum transfer */
150 	0xffffffffU,	/* maximum segment length */
151 	1,		/* maximum number of segments */
152 	1,		/* granularity */
153 	0,		/* flags (reserved) */
154 };
155 
156 /*
157  * DMA attributes for a cmd
158  */
159 static ddi_dma_attr_t cmd_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	4,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /*
175  * DMA attributes for a rx buffer
176  */
177 static ddi_dma_attr_t rx_buffer_dma_attr = {
178 	DMA_ATTR_V0,	/* version of this structure */
179 	0,		/* lowest usable address */
180 	0xffffffffU,	/* highest usable address */
181 	0xffffffffU,	/* maximum DMAable byte count */
182 	0x100,		/* alignment in bytes */
183 	0x100,		/* burst sizes (any?) */
184 	1,		/* minimum transfer */
185 	0xffffffffU,	/* maximum transfer */
186 	0xffffffffU,	/* maximum segment length */
187 	1,		/* maximum number of segments */
188 	1,		/* granularity */
189 	0,		/* flags (reserved) */
190 };
191 
192 /*
193  * DMA attributes for a tx buffer.
194  * the maximum number of segments is 4 for the hardware.
195  * now all the wifi drivers put the whole frame in a single
196  * descriptor, so we define the maximum  number of segments 1,
197  * just the same as the rx_buffer. we consider leverage the HW
198  * ability in the future, that is why we don't define rx and tx
199  * buffer_dma_attr as the same.
200  */
201 static ddi_dma_attr_t tx_buffer_dma_attr = {
202 	DMA_ATTR_V0,	/* version of this structure */
203 	0,		/* lowest usable address */
204 	0xffffffffU,	/* highest usable address */
205 	0xffffffffU,	/* maximum DMAable byte count */
206 	4,		/* alignment in bytes */
207 	0x100,		/* burst sizes (any?) */
208 	1,		/* minimum transfer */
209 	0xffffffffU,	/* maximum transfer */
210 	0xffffffffU,	/* maximum segment length */
211 	1,		/* maximum number of segments */
212 	1,		/* granularity */
213 	0,		/* flags (reserved) */
214 };
215 
216 /*
217  * DMA attributes for text and data part in the firmware
218  */
219 static ddi_dma_attr_t fw_dma_attr = {
220 	DMA_ATTR_V0,	/* version of this structure */
221 	0,		/* lowest usable address */
222 	0xffffffffU,	/* highest usable address */
223 	0x7fffffff,	/* maximum DMAable byte count */
224 	0x10,		/* alignment in bytes */
225 	0x100,		/* burst sizes (any?) */
226 	1,		/* minimum transfer */
227 	0xffffffffU,	/* maximum transfer */
228 	0xffffffffU,	/* maximum segment length */
229 	1,		/* maximum number of segments */
230 	1,		/* granularity */
231 	0,		/* flags (reserved) */
232 };
233 
234 
235 /*
236  * regs access attributes
237  */
238 static ddi_device_acc_attr_t iwh_reg_accattr = {
239 	DDI_DEVICE_ATTR_V0,
240 	DDI_STRUCTURE_LE_ACC,
241 	DDI_STRICTORDER_ACC,
242 	DDI_DEFAULT_ACC
243 };
244 
245 /*
246  * DMA access attributes
247  */
248 static ddi_device_acc_attr_t iwh_dma_accattr = {
249 	DDI_DEVICE_ATTR_V0,
250 	DDI_NEVERSWAP_ACC,
251 	DDI_STRICTORDER_ACC,
252 	DDI_DEFAULT_ACC
253 };
254 
255 static int	iwh_ring_init(iwh_sc_t *);
256 static void	iwh_ring_free(iwh_sc_t *);
257 static int	iwh_alloc_shared(iwh_sc_t *);
258 static void	iwh_free_shared(iwh_sc_t *);
259 static int	iwh_alloc_kw(iwh_sc_t *);
260 static void	iwh_free_kw(iwh_sc_t *);
261 static int	iwh_alloc_fw_dma(iwh_sc_t *);
262 static void	iwh_free_fw_dma(iwh_sc_t *);
263 static int	iwh_alloc_rx_ring(iwh_sc_t *);
264 static void	iwh_reset_rx_ring(iwh_sc_t *);
265 static void	iwh_free_rx_ring(iwh_sc_t *);
266 static int	iwh_alloc_tx_ring(iwh_sc_t *, iwh_tx_ring_t *,
267     int, int);
268 static void	iwh_reset_tx_ring(iwh_sc_t *, iwh_tx_ring_t *);
269 static void	iwh_free_tx_ring(iwh_tx_ring_t *);
270 static ieee80211_node_t *iwh_node_alloc(ieee80211com_t *);
271 static void	iwh_node_free(ieee80211_node_t *);
272 static int	iwh_newstate(ieee80211com_t *, enum ieee80211_state, int);
273 static void	iwh_mac_access_enter(iwh_sc_t *);
274 static void	iwh_mac_access_exit(iwh_sc_t *);
275 static uint32_t	iwh_reg_read(iwh_sc_t *, uint32_t);
276 static void	iwh_reg_write(iwh_sc_t *, uint32_t, uint32_t);
277 static int	iwh_load_init_firmware(iwh_sc_t *);
278 static int	iwh_load_run_firmware(iwh_sc_t *);
279 static void	iwh_tx_intr(iwh_sc_t *, iwh_rx_desc_t *);
280 static void	iwh_cmd_intr(iwh_sc_t *, iwh_rx_desc_t *);
281 static uint_t   iwh_intr(caddr_t, caddr_t);
282 static int	iwh_eep_load(iwh_sc_t *);
283 static void	iwh_get_mac_from_eep(iwh_sc_t *);
284 static int	iwh_eep_sem_down(iwh_sc_t *);
285 static void	iwh_eep_sem_up(iwh_sc_t *);
286 static uint_t   iwh_rx_softintr(caddr_t, caddr_t);
287 static uint8_t	iwh_rate_to_plcp(int);
288 static int	iwh_cmd(iwh_sc_t *, int, const void *, int, int);
289 static void	iwh_set_led(iwh_sc_t *, uint8_t, uint8_t, uint8_t);
290 static int	iwh_hw_set_before_auth(iwh_sc_t *);
291 static int	iwh_scan(iwh_sc_t *);
292 static int	iwh_config(iwh_sc_t *);
293 static void	iwh_stop_master(iwh_sc_t *);
294 static int	iwh_power_up(iwh_sc_t *);
295 static int	iwh_preinit(iwh_sc_t *);
296 static int	iwh_init(iwh_sc_t *);
297 static void	iwh_stop(iwh_sc_t *);
298 static int	iwh_quiesce(dev_info_t *t);
299 static void	iwh_amrr_init(iwh_amrr_t *);
300 static void	iwh_amrr_timeout(iwh_sc_t *);
301 static void	iwh_amrr_ratectl(void *, ieee80211_node_t *);
302 static void	iwh_ucode_alive(iwh_sc_t *, iwh_rx_desc_t *);
303 static void	iwh_rx_phy_intr(iwh_sc_t *, iwh_rx_desc_t *);
304 static void	iwh_rx_mpdu_intr(iwh_sc_t *, iwh_rx_desc_t *);
305 static void	iwh_release_calib_buffer(iwh_sc_t *);
306 static int	iwh_init_common(iwh_sc_t *);
307 static uint8_t	*iwh_eep_addr_trans(iwh_sc_t *, uint32_t);
308 static int	iwh_put_seg_fw(iwh_sc_t *, uint32_t, uint32_t, uint32_t);
309 static	int	iwh_alive_common(iwh_sc_t *);
310 static void	iwh_save_calib_result(iwh_sc_t *, iwh_rx_desc_t *);
311 static int	iwh_tx_power_table(iwh_sc_t *, int);
312 static int	iwh_attach(dev_info_t *, ddi_attach_cmd_t);
313 static int	iwh_detach(dev_info_t *, ddi_detach_cmd_t);
314 static void	iwh_destroy_locks(iwh_sc_t *);
315 static int	iwh_send(ieee80211com_t *, mblk_t *, uint8_t);
316 static void	iwh_thread(iwh_sc_t *);
317 /*
318  * GLD specific operations
319  */
320 static int	iwh_m_stat(void *, uint_t, uint64_t *);
321 static int	iwh_m_start(void *);
322 static void	iwh_m_stop(void *);
323 static int	iwh_m_unicst(void *, const uint8_t *);
324 static int	iwh_m_multicst(void *, boolean_t, const uint8_t *);
325 static int	iwh_m_promisc(void *, boolean_t);
326 static mblk_t	*iwh_m_tx(void *, mblk_t *);
327 static void	iwh_m_ioctl(void *, queue_t *, mblk_t *);
328 static int	iwh_m_setprop(void *arg, const char *pr_name,
329     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
330 static int	iwh_m_getprop(void *arg, const char *pr_name,
331     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_length,
332     void *wldp_buf, uint_t *perm);
333 
334 /*
335  * Supported rates for 802.11b/g modes (in 500Kbps unit).
336  * 11n support will be added later.
337  */
338 static const struct ieee80211_rateset iwh_rateset_11b =
339 	{ 4, { 2, 4, 11, 22 } };
340 
341 static const struct ieee80211_rateset iwh_rateset_11g =
342 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
343 
344 /*
345  * For mfthread only
346  */
347 extern pri_t minclsyspri;
348 
349 #define	DRV_NAME_SP	"iwh"
350 
351 /*
352  * Module Loading Data & Entry Points
353  */
354 DDI_DEFINE_STREAM_OPS(iwh_devops, nulldev, nulldev, iwh_attach,
355     iwh_detach, nodev, NULL, D_MP, NULL, iwh_quiesce);
356 
357 static struct modldrv iwh_modldrv = {
358 	&mod_driverops,
359 	"Intel(R) ShirleyPeak driver(N)",
360 	&iwh_devops
361 };
362 
363 static struct modlinkage iwh_modlinkage = {
364 	MODREV_1,
365 	&iwh_modldrv,
366 	NULL
367 };
368 
369 int
370 _init(void)
371 {
372 	int	status;
373 
374 	status = ddi_soft_state_init(&iwh_soft_state_p,
375 	    sizeof (iwh_sc_t), 1);
376 	if (status != DDI_SUCCESS) {
377 		return (status);
378 	}
379 
380 	mac_init_ops(&iwh_devops, DRV_NAME_SP);
381 	status = mod_install(&iwh_modlinkage);
382 	if (status != DDI_SUCCESS) {
383 		mac_fini_ops(&iwh_devops);
384 		ddi_soft_state_fini(&iwh_soft_state_p);
385 	}
386 
387 	return (status);
388 }
389 
390 int
391 _fini(void)
392 {
393 	int status;
394 
395 	status = mod_remove(&iwh_modlinkage);
396 	if (DDI_SUCCESS == status) {
397 		mac_fini_ops(&iwh_devops);
398 		ddi_soft_state_fini(&iwh_soft_state_p);
399 	}
400 
401 	return (status);
402 }
403 
404 int
405 _info(struct modinfo *mip)
406 {
407 	return (mod_info(&iwh_modlinkage, mip));
408 }
409 
410 /*
411  * Mac Call Back entries
412  */
413 mac_callbacks_t	iwh_m_callbacks = {
414 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
415 	iwh_m_stat,
416 	iwh_m_start,
417 	iwh_m_stop,
418 	iwh_m_promisc,
419 	iwh_m_multicst,
420 	iwh_m_unicst,
421 	iwh_m_tx,
422 	iwh_m_ioctl,
423 	NULL,
424 	NULL,
425 	NULL,
426 	iwh_m_setprop,
427 	iwh_m_getprop
428 };
429 
430 #ifdef DEBUG
431 void
432 iwh_dbg(uint32_t flags, const char *fmt, ...)
433 {
434 	va_list	ap;
435 
436 	if (flags & iwh_dbg_flags) {
437 		va_start(ap, fmt);
438 		vcmn_err(CE_NOTE, fmt, ap);
439 		va_end(ap);
440 	}
441 }
442 #endif
443 
444 /*
445  * device operations
446  */
447 int
448 iwh_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
449 {
450 	iwh_sc_t		*sc;
451 	ieee80211com_t	*ic;
452 	int			instance, err, i;
453 	char			strbuf[32];
454 	wifi_data_t		wd = { 0 };
455 	mac_register_t		*macp;
456 	int			intr_type;
457 	int			intr_count;
458 	int			intr_actual;
459 
460 	switch (cmd) {
461 	case DDI_ATTACH:
462 		break;
463 	case DDI_RESUME:
464 		sc = ddi_get_soft_state(iwh_soft_state_p,
465 		    ddi_get_instance(dip));
466 		ASSERT(sc != NULL);
467 		if (sc->sc_flags & IWH_F_RUNNING)
468 			(void) iwh_init(sc);
469 
470 		mutex_enter(&sc->sc_glock);
471 		sc->sc_flags &= ~IWH_F_SUSPEND;
472 		sc->sc_flags |= IWH_F_LAZY_RESUME;
473 		mutex_exit(&sc->sc_glock);
474 
475 		IWH_DBG((IWH_DEBUG_RESUME, "iwh: resume\n"));
476 		return (DDI_SUCCESS);
477 	default:
478 		err = DDI_FAILURE;
479 		goto attach_fail1;
480 	}
481 
482 
483 	instance = ddi_get_instance(dip);
484 	err = ddi_soft_state_zalloc(iwh_soft_state_p, instance);
485 	if (err != DDI_SUCCESS) {
486 		cmn_err(CE_WARN, "iwh_attach(): "
487 		    "failed to allocate soft state\n");
488 		goto attach_fail1;
489 	}
490 	sc = ddi_get_soft_state(iwh_soft_state_p, instance);
491 	sc->sc_dip = dip;
492 
493 	/*
494 	 * map configure space
495 	 */
496 	err = ddi_regs_map_setup(dip, 0, &sc->sc_cfg_base, 0, 0,
497 	    &iwh_reg_accattr, &sc->sc_cfg_handle);
498 	if (err != DDI_SUCCESS) {
499 		cmn_err(CE_WARN, "iwh_attach(): "
500 		    "failed to map config spaces regs\n");
501 		goto attach_fail2;
502 	}
503 
504 
505 	sc->sc_rev = ddi_get8(sc->sc_cfg_handle,
506 	    (uint8_t *)(sc->sc_cfg_base + PCI_CONF_REVID));
507 
508 	/*
509 	 * keep from disturbing C3 state of CPU
510 	 */
511 	ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0x41), 0);
512 	sc->sc_clsz = ddi_get16(sc->sc_cfg_handle,
513 	    (uint16_t *)(sc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
514 	if (!sc->sc_clsz) {
515 		sc->sc_clsz = 16;
516 	}
517 
518 	/*
519 	 * determine the size of buffer for frame and command to ucode
520 	 */
521 	sc->sc_clsz = (sc->sc_clsz << 2);
522 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
523 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
524 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
525 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
526 
527 	/*
528 	 * Map operating registers
529 	 */
530 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
531 	    0, 0, &iwh_reg_accattr, &sc->sc_handle);
532 	if (err != DDI_SUCCESS) {
533 		cmn_err(CE_WARN, "iwh_attach(): "
534 		    "failed to map device regs\n");
535 		goto attach_fail3;
536 	}
537 
538 	/*
539 	 * this is used to differentiate type of hardware
540 	 */
541 	sc->sc_hw_rev = IWH_READ(sc, CSR_HW_REV);
542 
543 	err = ddi_intr_get_supported_types(dip, &intr_type);
544 	if ((err != DDI_SUCCESS) || (!(intr_type & DDI_INTR_TYPE_FIXED))) {
545 		cmn_err(CE_WARN, "iwh_attach(): "
546 		    "fixed type interrupt is not supported\n");
547 		goto attach_fail4;
548 	}
549 
550 	err = ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED, &intr_count);
551 	if ((err != DDI_SUCCESS) || (intr_count != 1)) {
552 		cmn_err(CE_WARN, "iwh_attach(): "
553 		    "no fixed interrupts\n");
554 		goto attach_fail4;
555 	}
556 
557 	sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
558 
559 	err = ddi_intr_alloc(dip, sc->sc_intr_htable, DDI_INTR_TYPE_FIXED, 0,
560 	    intr_count, &intr_actual, 0);
561 	if ((err != DDI_SUCCESS) || (intr_actual != 1)) {
562 		cmn_err(CE_WARN, "iwh_attach(): "
563 		    "ddi_intr_alloc() failed 0x%x\n", err);
564 		goto attach_fail5;
565 	}
566 
567 	err = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
568 	if (err != DDI_SUCCESS) {
569 		cmn_err(CE_WARN, "iwh_attach(): "
570 		    "ddi_intr_get_pri() failed 0x%x\n", err);
571 		goto attach_fail6;
572 	}
573 
574 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER,
575 	    DDI_INTR_PRI(sc->sc_intr_pri));
576 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER,
577 	    DDI_INTR_PRI(sc->sc_intr_pri));
578 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
579 	    DDI_INTR_PRI(sc->sc_intr_pri));
580 	mutex_init(&sc->sc_ucode_lock, NULL, MUTEX_DRIVER,
581 	    DDI_INTR_PRI(sc->sc_intr_pri));
582 
583 
584 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
585 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
586 	cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
587 	cv_init(&sc->sc_put_seg_cv, NULL, CV_DRIVER, NULL);
588 	cv_init(&sc->sc_ucode_cv, NULL, CV_DRIVER, NULL);
589 
590 	/*
591 	 * initialize the mfthread
592 	 */
593 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
594 	sc->sc_mf_thread = NULL;
595 	sc->sc_mf_thread_switch = 0;
596 
597 	/*
598 	 * Allocate shared buffer for communication between driver and ucode.
599 	 */
600 	err = iwh_alloc_shared(sc);
601 	if (err != DDI_SUCCESS) {
602 		cmn_err(CE_WARN, "iwh_attach(): "
603 		    "failed to allocate shared page\n");
604 		goto attach_fail7;
605 	}
606 
607 	(void) memset(sc->sc_shared, 0, sizeof (iwh_shared_t));
608 
609 	/*
610 	 * Allocate keep warm page.
611 	 */
612 	err = iwh_alloc_kw(sc);
613 	if (err != DDI_SUCCESS) {
614 		cmn_err(CE_WARN, "iwh_attach(): "
615 		    "failed to allocate keep warm page\n");
616 		goto attach_fail8;
617 	}
618 
619 	/*
620 	 * Do some necessary hardware initializations.
621 	 */
622 	err = iwh_preinit(sc);
623 	if (err != IWH_SUCCESS) {
624 		cmn_err(CE_WARN, "iwh_attach(): "
625 		    "failed to initialize hardware\n");
626 		goto attach_fail9;
627 	}
628 
629 	/*
630 	 * get hardware configurations from eeprom
631 	 */
632 	err = iwh_eep_load(sc);
633 	if (err != 0) {
634 		cmn_err(CE_WARN, "iwh_attach(): "
635 		    "failed to load eeprom\n");
636 		goto attach_fail9;
637 	}
638 
639 	if (IWH_READ_EEP_SHORT(sc, EEP_VERSION) < 0x011a) {
640 		IWH_DBG((IWH_DEBUG_EEPROM, "unsupported eeprom detected"));
641 		goto attach_fail9;
642 	}
643 
644 	/*
645 	 * get MAC address of this chipset
646 	 */
647 	iwh_get_mac_from_eep(sc);
648 
649 	/*
650 	 * calibration information from EEPROM
651 	 */
652 	sc->sc_eep_calib = (struct iwh_eep_calibration *)
653 	    iwh_eep_addr_trans(sc, EEP_CALIBRATION);
654 
655 	/*
656 	 * initialize TX and RX ring buffers
657 	 */
658 	err = iwh_ring_init(sc);
659 	if (err != DDI_SUCCESS) {
660 		cmn_err(CE_WARN, "iwh_attach(): "
661 		    "failed to allocate and initialize ring\n");
662 		goto attach_fail9;
663 	}
664 
665 	sc->sc_hdr = (iwh_firmware_hdr_t *)iwh_fw_bin;
666 
667 	/*
668 	 * copy ucode to dma buffer
669 	 */
670 	err = iwh_alloc_fw_dma(sc);
671 	if (err != DDI_SUCCESS) {
672 		cmn_err(CE_WARN, "iwh_attach(): "
673 		    "failed to allocate firmware dma\n");
674 		goto attach_fail10;
675 	}
676 
677 	/*
678 	 * Initialize the wifi part, which will be used by
679 	 * 802.11 module
680 	 */
681 	ic = &sc->sc_ic;
682 	ic->ic_phytype  = IEEE80211_T_OFDM;
683 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
684 	ic->ic_state    = IEEE80211_S_INIT;
685 	ic->ic_maxrssi  = 100; /* experimental number */
686 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
687 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
688 
689 	/*
690 	 * Support WPA/WPA2
691 	 */
692 	ic->ic_caps |= IEEE80211_C_WPA;
693 
694 	/*
695 	 * set supported .11b and .11g rates
696 	 */
697 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwh_rateset_11b;
698 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwh_rateset_11g;
699 
700 	/*
701 	 * set supported .11b and .11g channels (1 through 11)
702 	 */
703 	for (i = 1; i <= 11; i++) {
704 		ic->ic_sup_channels[i].ich_freq =
705 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
706 		ic->ic_sup_channels[i].ich_flags =
707 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
708 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
709 		    IEEE80211_CHAN_PASSIVE;
710 	}
711 
712 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
713 	ic->ic_xmit = iwh_send;
714 
715 	/*
716 	 * attach to 802.11 module
717 	 */
718 	ieee80211_attach(ic);
719 
720 	/*
721 	 * different instance has different WPA door
722 	 */
723 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
724 	    ddi_driver_name(dip),
725 	    ddi_get_instance(dip));
726 
727 	/*
728 	 * Override 80211 default routines
729 	 */
730 	sc->sc_newstate = ic->ic_newstate;
731 	ic->ic_newstate = iwh_newstate;
732 	ic->ic_node_alloc = iwh_node_alloc;
733 	ic->ic_node_free = iwh_node_free;
734 
735 	/*
736 	 * initialize 802.11 module
737 	 */
738 	ieee80211_media_init(ic);
739 
740 	/*
741 	 * initialize default tx key
742 	 */
743 	ic->ic_def_txkey = 0;
744 
745 	err = ddi_intr_add_softint(dip, &sc->sc_soft_hdl, DDI_INTR_SOFTPRI_MAX,
746 	    iwh_rx_softintr, (caddr_t)sc);
747 	if (err != DDI_SUCCESS) {
748 		cmn_err(CE_WARN, "iwh_attach(): "
749 		    "add soft interrupt failed\n");
750 		goto attach_fail12;
751 	}
752 
753 	err = ddi_intr_add_handler(sc->sc_intr_htable[0], iwh_intr,
754 	    (caddr_t)sc, NULL);
755 	if (err != DDI_SUCCESS) {
756 		cmn_err(CE_WARN, "iwh_attach(): "
757 		    "ddi_intr_add_handle() failed\n");
758 		goto attach_fail13;
759 	}
760 
761 	err = ddi_intr_enable(sc->sc_intr_htable[0]);
762 	if (err != DDI_SUCCESS) {
763 		cmn_err(CE_WARN, "iwh_attach(): "
764 		    "ddi_intr_enable() failed\n");
765 		goto attach_fail14;
766 	}
767 
768 	/*
769 	 * Initialize pointer to device specific functions
770 	 */
771 	wd.wd_secalloc = WIFI_SEC_NONE;
772 	wd.wd_opmode = ic->ic_opmode;
773 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
774 
775 	/*
776 	 * create relation to GLD
777 	 */
778 	macp = mac_alloc(MAC_VERSION);
779 	if (err != DDI_SUCCESS) {
780 		cmn_err(CE_WARN, "iwh_attach(): "
781 		    "failed to do mac_alloc()\n");
782 		goto attach_fail15;
783 	}
784 
785 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
786 	macp->m_driver		= sc;
787 	macp->m_dip		= dip;
788 	macp->m_src_addr	= ic->ic_macaddr;
789 	macp->m_callbacks	= &iwh_m_callbacks;
790 	macp->m_min_sdu		= 0;
791 	macp->m_max_sdu		= IEEE80211_MTU;
792 	macp->m_pdata		= &wd;
793 	macp->m_pdata_size	= sizeof (wd);
794 
795 	/*
796 	 * Register the macp to mac
797 	 */
798 	err = mac_register(macp, &ic->ic_mach);
799 	mac_free(macp);
800 	if (err != DDI_SUCCESS) {
801 		cmn_err(CE_WARN, "iwh_attach(): "
802 		    "failed to do mac_register()\n");
803 		goto attach_fail15;
804 	}
805 
806 	/*
807 	 * Create minor node of type DDI_NT_NET_WIFI
808 	 */
809 	(void) snprintf(strbuf, sizeof (strbuf), DRV_NAME_SP"%d", instance);
810 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
811 	    instance + 1, DDI_NT_NET_WIFI, 0);
812 	if (err != DDI_SUCCESS)
813 		cmn_err(CE_WARN, "iwh_attach(): "
814 		    "failed to do ddi_create_minor_node()\n");
815 
816 	/*
817 	 * Notify link is down now
818 	 */
819 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
820 
821 	/*
822 	 * create the mf thread to handle the link status,
823 	 * recovery fatal error, etc.
824 	 */
825 	sc->sc_mf_thread_switch = 1;
826 	if (NULL == sc->sc_mf_thread) {
827 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
828 		    iwh_thread, sc, 0, &p0, TS_RUN, minclsyspri);
829 	}
830 
831 	sc->sc_flags |= IWH_F_ATTACHED;
832 
833 	return (DDI_SUCCESS);
834 
835 attach_fail15:
836 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
837 
838 attach_fail14:
839 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
840 
841 attach_fail13:
842 	(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
843 	sc->sc_soft_hdl = NULL;
844 
845 attach_fail12:
846 	ieee80211_detach(ic);
847 
848 attach_fail11:
849 	iwh_free_fw_dma(sc);
850 
851 attach_fail10:
852 	iwh_ring_free(sc);
853 
854 attach_fail9:
855 	iwh_free_kw(sc);
856 
857 attach_fail8:
858 	iwh_free_shared(sc);
859 
860 attach_fail7:
861 	iwh_destroy_locks(sc);
862 
863 attach_fail6:
864 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
865 
866 attach_fail5:
867 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
868 
869 attach_fail4:
870 	ddi_regs_map_free(&sc->sc_handle);
871 
872 attach_fail3:
873 	ddi_regs_map_free(&sc->sc_cfg_handle);
874 
875 attach_fail2:
876 	ddi_soft_state_free(iwh_soft_state_p, instance);
877 
878 attach_fail1:
879 	return (err);
880 }
881 
882 int
883 iwh_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
884 {
885 	iwh_sc_t *sc;
886 	int err;
887 
888 	sc = ddi_get_soft_state(iwh_soft_state_p, ddi_get_instance(dip));
889 	ASSERT(sc != NULL);
890 
891 	switch (cmd) {
892 	case DDI_DETACH:
893 		break;
894 	case DDI_SUSPEND:
895 		mutex_enter(&sc->sc_glock);
896 		sc->sc_flags |= IWH_F_SUSPEND;
897 		mutex_exit(&sc->sc_glock);
898 
899 		if (sc->sc_flags & IWH_F_RUNNING) {
900 			iwh_stop(sc);
901 		}
902 
903 		IWH_DBG((IWH_DEBUG_RESUME, "iwh: suspend\n"));
904 		return (DDI_SUCCESS);
905 	default:
906 		return (DDI_FAILURE);
907 	}
908 
909 	if (!(sc->sc_flags & IWH_F_ATTACHED)) {
910 		return (DDI_FAILURE);
911 	}
912 	err = mac_disable(sc->sc_ic.ic_mach);
913 	if (err != DDI_SUCCESS)
914 		return (err);
915 
916 	/*
917 	 * Destroy the mf_thread
918 	 */
919 	mutex_enter(&sc->sc_mt_lock);
920 	sc->sc_mf_thread_switch = 0;
921 	while (sc->sc_mf_thread != NULL) {
922 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0) {
923 			break;
924 		}
925 	}
926 
927 	mutex_exit(&sc->sc_mt_lock);
928 
929 	/*
930 	 * stop chipset
931 	 */
932 	iwh_stop(sc);
933 
934 	DELAY(500000);
935 
936 	/*
937 	 * release buffer for calibration
938 	 */
939 	iwh_release_calib_buffer(sc);
940 
941 	/*
942 	 * Unregiste from GLD
943 	 */
944 	(void) mac_unregister(sc->sc_ic.ic_mach);
945 
946 	mutex_enter(&sc->sc_glock);
947 	iwh_free_fw_dma(sc);
948 	iwh_ring_free(sc);
949 	iwh_free_kw(sc);
950 	iwh_free_shared(sc);
951 	mutex_exit(&sc->sc_glock);
952 
953 
954 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
955 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
956 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
957 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
958 
959 	(void) ddi_intr_remove_softint(sc->sc_soft_hdl);
960 	sc->sc_soft_hdl = NULL;
961 
962 
963 	/*
964 	 * detach from 80211 module
965 	 */
966 	ieee80211_detach(&sc->sc_ic);
967 
968 	iwh_destroy_locks(sc);
969 
970 	ddi_regs_map_free(&sc->sc_handle);
971 	ddi_regs_map_free(&sc->sc_cfg_handle);
972 	ddi_remove_minor_node(dip, NULL);
973 	ddi_soft_state_free(iwh_soft_state_p, ddi_get_instance(dip));
974 
975 	return (DDI_SUCCESS);
976 }
977 
978 /*
979  * destroy all locks
980  */
981 static void
982 iwh_destroy_locks(iwh_sc_t *sc)
983 {
984 	cv_destroy(&sc->sc_mt_cv);
985 	cv_destroy(&sc->sc_tx_cv);
986 	cv_destroy(&sc->sc_cmd_cv);
987 	cv_destroy(&sc->sc_fw_cv);
988 	cv_destroy(&sc->sc_put_seg_cv);
989 	cv_destroy(&sc->sc_ucode_cv);
990 	mutex_destroy(&sc->sc_mt_lock);
991 	mutex_destroy(&sc->sc_tx_lock);
992 	mutex_destroy(&sc->sc_glock);
993 	mutex_destroy(&sc->sc_ucode_lock);
994 }
995 
996 /*
997  * Allocate an area of memory and a DMA handle for accessing it
998  */
999 static int
1000 iwh_alloc_dma_mem(iwh_sc_t *sc, size_t memsize,
1001     ddi_dma_attr_t *dma_attr_p, ddi_device_acc_attr_t *acc_attr_p,
1002     uint_t dma_flags, iwh_dma_t *dma_p)
1003 {
1004 	caddr_t vaddr;
1005 	int err;
1006 
1007 	/*
1008 	 * Allocate handle
1009 	 */
1010 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
1011 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
1012 	if (err != DDI_SUCCESS) {
1013 		dma_p->dma_hdl = NULL;
1014 		return (DDI_FAILURE);
1015 	}
1016 
1017 	/*
1018 	 * Allocate memory
1019 	 */
1020 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
1021 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
1022 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
1023 	if (err != DDI_SUCCESS) {
1024 		ddi_dma_free_handle(&dma_p->dma_hdl);
1025 		dma_p->dma_hdl = NULL;
1026 		dma_p->acc_hdl = NULL;
1027 		return (DDI_FAILURE);
1028 	}
1029 
1030 	/*
1031 	 * Bind the two together
1032 	 */
1033 	dma_p->mem_va = vaddr;
1034 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1035 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
1036 	    &dma_p->cookie, &dma_p->ncookies);
1037 	if (err != DDI_DMA_MAPPED) {
1038 		ddi_dma_mem_free(&dma_p->acc_hdl);
1039 		ddi_dma_free_handle(&dma_p->dma_hdl);
1040 		dma_p->acc_hdl = NULL;
1041 		dma_p->dma_hdl = NULL;
1042 		return (DDI_FAILURE);
1043 	}
1044 
1045 	dma_p->nslots = ~0U;
1046 	dma_p->size = ~0U;
1047 	dma_p->token = ~0U;
1048 	dma_p->offset = 0;
1049 	return (DDI_SUCCESS);
1050 }
1051 
1052 /*
1053  * Free one allocated area of DMAable memory
1054  */
1055 static void
1056 iwh_free_dma_mem(iwh_dma_t *dma_p)
1057 {
1058 	if (dma_p->dma_hdl != NULL) {
1059 		if (dma_p->ncookies) {
1060 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1061 			dma_p->ncookies = 0;
1062 		}
1063 		ddi_dma_free_handle(&dma_p->dma_hdl);
1064 		dma_p->dma_hdl = NULL;
1065 	}
1066 
1067 	if (dma_p->acc_hdl != NULL) {
1068 		ddi_dma_mem_free(&dma_p->acc_hdl);
1069 		dma_p->acc_hdl = NULL;
1070 	}
1071 }
1072 
1073 /*
1074  * copy ucode into dma buffers
1075  */
1076 static int
1077 iwh_alloc_fw_dma(iwh_sc_t *sc)
1078 {
1079 	int err = DDI_SUCCESS;
1080 	iwh_dma_t *dma_p;
1081 	char *t;
1082 
1083 	/*
1084 	 * firmware image layout:
1085 	 * |HDR|<-TEXT->|<-DATA->|<-INIT_TEXT->|<-INIT_DATA->|<-BOOT->|
1086 	 */
1087 
1088 	/*
1089 	 * copy text of runtime ucode
1090 	 */
1091 	t = (char *)(sc->sc_hdr + 1);
1092 	err = iwh_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
1093 	    &fw_dma_attr, &iwh_dma_accattr,
1094 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1095 	    &sc->sc_dma_fw_text);
1096 
1097 	dma_p = &sc->sc_dma_fw_text;
1098 
1099 	IWH_DBG((IWH_DEBUG_DMA, "text[ncookies:%d addr:%lx size:%lx]\n",
1100 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1101 	    dma_p->cookie.dmac_size));
1102 
1103 	if (err != DDI_SUCCESS) {
1104 		cmn_err(CE_WARN, "iwh_alloc_fw_dma(): "
1105 		    "failed to allocate text dma memory.\n");
1106 		goto fail;
1107 	}
1108 
1109 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->textsz));
1110 
1111 	/*
1112 	 * copy data and bak-data of runtime ucode
1113 	 */
1114 	t += LE_32(sc->sc_hdr->textsz);
1115 	err = iwh_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
1116 	    &fw_dma_attr, &iwh_dma_accattr,
1117 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1118 	    &sc->sc_dma_fw_data);
1119 
1120 	dma_p = &sc->sc_dma_fw_data;
1121 
1122 	IWH_DBG((IWH_DEBUG_DMA, "data[ncookies:%d addr:%lx size:%lx]\n",
1123 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1124 	    dma_p->cookie.dmac_size));
1125 
1126 	if (err != DDI_SUCCESS) {
1127 		cmn_err(CE_WARN, "iwh_alloc_fw_dma(): "
1128 		    "failed to allocate data dma memory\n");
1129 		goto fail;
1130 	}
1131 
1132 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
1133 
1134 	err = iwh_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
1135 	    &fw_dma_attr, &iwh_dma_accattr,
1136 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1137 	    &sc->sc_dma_fw_data_bak);
1138 
1139 	dma_p = &sc->sc_dma_fw_data_bak;
1140 
1141 	IWH_DBG((IWH_DEBUG_DMA, "data_bak[ncookies:%d addr:%lx "
1142 	    "size:%lx]\n",
1143 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1144 	    dma_p->cookie.dmac_size));
1145 
1146 	if (err != DDI_SUCCESS) {
1147 		cmn_err(CE_WARN, "iwh_alloc_fw_dma(): "
1148 		    "failed to allocate data bakup dma memory\n");
1149 		goto fail;
1150 	}
1151 
1152 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->datasz));
1153 
1154 	/*
1155 	 * copy text of init ucode
1156 	 */
1157 	t += LE_32(sc->sc_hdr->datasz);
1158 	err = iwh_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_textsz),
1159 	    &fw_dma_attr, &iwh_dma_accattr,
1160 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1161 	    &sc->sc_dma_fw_init_text);
1162 
1163 	dma_p = &sc->sc_dma_fw_init_text;
1164 
1165 	IWH_DBG((IWH_DEBUG_DMA, "init_text[ncookies:%d addr:%lx "
1166 	    "size:%lx]\n",
1167 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1168 	    dma_p->cookie.dmac_size));
1169 
1170 	if (err != DDI_SUCCESS) {
1171 		cmn_err(CE_WARN, "iwh_alloc_fw_dma(): "
1172 		    "failed to allocate init text dma memory\n");
1173 		goto fail;
1174 	}
1175 
1176 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_textsz));
1177 
1178 	/*
1179 	 * copy data of init ucode
1180 	 */
1181 	t += LE_32(sc->sc_hdr->init_textsz);
1182 	err = iwh_alloc_dma_mem(sc, LE_32(sc->sc_hdr->init_datasz),
1183 	    &fw_dma_attr, &iwh_dma_accattr,
1184 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1185 	    &sc->sc_dma_fw_init_data);
1186 
1187 	dma_p = &sc->sc_dma_fw_init_data;
1188 
1189 	IWH_DBG((IWH_DEBUG_DMA, "init_data[ncookies:%d addr:%lx "
1190 	    "size:%lx]\n",
1191 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1192 	    dma_p->cookie.dmac_size));
1193 
1194 	if (err != DDI_SUCCESS) {
1195 		cmn_err(CE_WARN, "iwh_alloc_fw_dma(): "
1196 		    "failed to allocate init data dma memory\n");
1197 		goto fail;
1198 	}
1199 
1200 	(void) memcpy(dma_p->mem_va, t, LE_32(sc->sc_hdr->init_datasz));
1201 
1202 	sc->sc_boot = t + LE_32(sc->sc_hdr->init_datasz);
1203 fail:
1204 	return (err);
1205 }
1206 
1207 static void
1208 iwh_free_fw_dma(iwh_sc_t *sc)
1209 {
1210 	iwh_free_dma_mem(&sc->sc_dma_fw_text);
1211 	iwh_free_dma_mem(&sc->sc_dma_fw_data);
1212 	iwh_free_dma_mem(&sc->sc_dma_fw_data_bak);
1213 	iwh_free_dma_mem(&sc->sc_dma_fw_init_text);
1214 	iwh_free_dma_mem(&sc->sc_dma_fw_init_data);
1215 }
1216 
1217 /*
1218  * Allocate a shared buffer between host and NIC.
1219  */
1220 static int
1221 iwh_alloc_shared(iwh_sc_t *sc)
1222 {
1223 #ifdef	DEBUG
1224 	iwh_dma_t *dma_p;
1225 #endif
1226 	int err = DDI_SUCCESS;
1227 
1228 	/*
1229 	 * must be aligned on a 4K-page boundary
1230 	 */
1231 	err = iwh_alloc_dma_mem(sc, sizeof (iwh_shared_t),
1232 	    &sh_dma_attr, &iwh_dma_accattr,
1233 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1234 	    &sc->sc_dma_sh);
1235 	if (err != DDI_SUCCESS) {
1236 		goto fail;
1237 	}
1238 
1239 	sc->sc_shared = (iwh_shared_t *)sc->sc_dma_sh.mem_va;
1240 
1241 #ifdef	DEBUG
1242 	dma_p = &sc->sc_dma_sh;
1243 #endif
1244 	IWH_DBG((IWH_DEBUG_DMA, "sh[ncookies:%d addr:%lx size:%lx]\n",
1245 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1246 	    dma_p->cookie.dmac_size));
1247 
1248 	return (err);
1249 fail:
1250 	iwh_free_shared(sc);
1251 	return (err);
1252 }
1253 
1254 static void
1255 iwh_free_shared(iwh_sc_t *sc)
1256 {
1257 	iwh_free_dma_mem(&sc->sc_dma_sh);
1258 }
1259 
1260 /*
1261  * Allocate a keep warm page.
1262  */
1263 static int
1264 iwh_alloc_kw(iwh_sc_t *sc)
1265 {
1266 #ifdef	DEBUG
1267 	iwh_dma_t *dma_p;
1268 #endif
1269 	int err = DDI_SUCCESS;
1270 
1271 	/*
1272 	 * must be aligned on a 4K-page boundary
1273 	 */
1274 	err = iwh_alloc_dma_mem(sc, IWH_KW_SIZE,
1275 	    &kw_dma_attr, &iwh_dma_accattr,
1276 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1277 	    &sc->sc_dma_kw);
1278 	if (err != DDI_SUCCESS) {
1279 		goto fail;
1280 	}
1281 
1282 #ifdef	DEBUG
1283 	dma_p = &sc->sc_dma_kw;
1284 #endif
1285 	IWH_DBG((IWH_DEBUG_DMA, "kw[ncookies:%d addr:%lx size:%lx]\n",
1286 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1287 	    dma_p->cookie.dmac_size));
1288 
1289 	return (err);
1290 fail:
1291 	iwh_free_kw(sc);
1292 	return (err);
1293 }
1294 
1295 static void
1296 iwh_free_kw(iwh_sc_t *sc)
1297 {
1298 	iwh_free_dma_mem(&sc->sc_dma_kw);
1299 }
1300 
1301 /*
1302  * initialize RX ring buffers
1303  */
1304 static int
1305 iwh_alloc_rx_ring(iwh_sc_t *sc)
1306 {
1307 	iwh_rx_ring_t *ring;
1308 	iwh_rx_data_t *data;
1309 #ifdef	DEBUG
1310 	iwh_dma_t *dma_p;
1311 #endif
1312 	int i, err = DDI_SUCCESS;
1313 
1314 	ring = &sc->sc_rxq;
1315 	ring->cur = 0;
1316 
1317 	/*
1318 	 * allocate RX description ring buffer
1319 	 */
1320 	err = iwh_alloc_dma_mem(sc, RX_QUEUE_SIZE * sizeof (uint32_t),
1321 	    &ring_desc_dma_attr, &iwh_dma_accattr,
1322 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1323 	    &ring->dma_desc);
1324 	if (err != DDI_SUCCESS) {
1325 		IWH_DBG((IWH_DEBUG_DMA, "dma alloc rx ring desc "
1326 		    "failed\n"));
1327 		goto fail;
1328 	}
1329 
1330 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
1331 #ifdef	DEBUG
1332 	dma_p = &ring->dma_desc;
1333 #endif
1334 	IWH_DBG((IWH_DEBUG_DMA, "rx bd[ncookies:%d addr:%lx size:%lx]\n",
1335 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1336 	    dma_p->cookie.dmac_size));
1337 
1338 	/*
1339 	 * Allocate Rx frame buffers.
1340 	 */
1341 	for (i = 0; i < RX_QUEUE_SIZE; i++) {
1342 		data = &ring->data[i];
1343 		err = iwh_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1344 		    &rx_buffer_dma_attr, &iwh_dma_accattr,
1345 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1346 		    &data->dma_data);
1347 		if (err != DDI_SUCCESS) {
1348 			IWH_DBG((IWH_DEBUG_DMA, "dma alloc rx ring "
1349 			    "buf[%d] failed\n", i));
1350 			goto fail;
1351 		}
1352 		/*
1353 		 * the physical address bit [8-36] are used,
1354 		 * instead of bit [0-31] in 3945.
1355 		 */
1356 		ring->desc[i] = LE_32((uint32_t)
1357 		    (data->dma_data.cookie.dmac_address >> 8));
1358 	}
1359 
1360 #ifdef	DEBUG
1361 	dma_p = &ring->data[0].dma_data;
1362 #endif
1363 	IWH_DBG((IWH_DEBUG_DMA, "rx buffer[0][ncookies:%d addr:%lx "
1364 	    "size:%lx]\n",
1365 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1366 	    dma_p->cookie.dmac_size));
1367 
1368 	IWH_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1369 
1370 	return (err);
1371 
1372 fail:
1373 	iwh_free_rx_ring(sc);
1374 	return (err);
1375 }
1376 
1377 /*
1378  * disable RX ring
1379  */
1380 static void
1381 iwh_reset_rx_ring(iwh_sc_t *sc)
1382 {
1383 	int n;
1384 
1385 	iwh_mac_access_enter(sc);
1386 	IWH_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1387 	for (n = 0; n < 2000; n++) {
1388 		if (IWH_READ(sc, FH_MEM_RSSR_RX_STATUS_REG) & (1 << 24)) {
1389 			break;
1390 		}
1391 		DELAY(1000);
1392 	}
1393 #ifdef DEBUG
1394 	if (2000 == n) {
1395 		IWH_DBG((IWH_DEBUG_DMA, "timeout resetting Rx ring\n"));
1396 	}
1397 #endif
1398 	iwh_mac_access_exit(sc);
1399 
1400 	sc->sc_rxq.cur = 0;
1401 }
1402 
1403 static void
1404 iwh_free_rx_ring(iwh_sc_t *sc)
1405 {
1406 	int i;
1407 
1408 	for (i = 0; i < RX_QUEUE_SIZE; i++) {
1409 		if (sc->sc_rxq.data[i].dma_data.dma_hdl) {
1410 			IWH_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1411 			    DDI_DMA_SYNC_FORCPU);
1412 		}
1413 
1414 		iwh_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1415 	}
1416 
1417 	if (sc->sc_rxq.dma_desc.dma_hdl) {
1418 		IWH_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1419 	}
1420 
1421 	iwh_free_dma_mem(&sc->sc_rxq.dma_desc);
1422 }
1423 
1424 /*
1425  * initialize TX ring buffers
1426  */
1427 static int
1428 iwh_alloc_tx_ring(iwh_sc_t *sc, iwh_tx_ring_t *ring,
1429     int slots, int qid)
1430 {
1431 	iwh_tx_data_t *data;
1432 	iwh_tx_desc_t *desc_h;
1433 	uint32_t paddr_desc_h;
1434 	iwh_cmd_t *cmd_h;
1435 	uint32_t paddr_cmd_h;
1436 #ifdef	DEBUG
1437 	iwh_dma_t *dma_p;
1438 #endif
1439 	int i, err = DDI_SUCCESS;
1440 
1441 	ring->qid = qid;
1442 	ring->count = TFD_QUEUE_SIZE_MAX;
1443 	ring->window = slots;
1444 	ring->queued = 0;
1445 	ring->cur = 0;
1446 
1447 	/*
1448 	 * allocate buffer for TX descriptor ring
1449 	 */
1450 	err = iwh_alloc_dma_mem(sc,
1451 	    TFD_QUEUE_SIZE_MAX * sizeof (iwh_tx_desc_t),
1452 	    &ring_desc_dma_attr, &iwh_dma_accattr,
1453 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1454 	    &ring->dma_desc);
1455 	if (err != DDI_SUCCESS) {
1456 		IWH_DBG((IWH_DEBUG_DMA, "dma alloc tx ring desc[%d]"
1457 		    " failed\n", qid));
1458 		goto fail;
1459 	}
1460 
1461 #ifdef	DEBUG
1462 	dma_p = &ring->dma_desc;
1463 #endif
1464 	IWH_DBG((IWH_DEBUG_DMA, "tx bd[ncookies:%d addr:%lx size:%lx]\n",
1465 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1466 	    dma_p->cookie.dmac_size));
1467 
1468 	desc_h = (iwh_tx_desc_t *)ring->dma_desc.mem_va;
1469 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1470 
1471 	/*
1472 	 * allocate buffer for ucode command
1473 	 */
1474 	err = iwh_alloc_dma_mem(sc,
1475 	    TFD_QUEUE_SIZE_MAX * sizeof (iwh_cmd_t),
1476 	    &cmd_dma_attr, &iwh_dma_accattr,
1477 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1478 	    &ring->dma_cmd);
1479 	if (err != DDI_SUCCESS) {
1480 		IWH_DBG((IWH_DEBUG_DMA, "dma alloc tx ring cmd[%d]"
1481 		    " failed\n", qid));
1482 		goto fail;
1483 	}
1484 
1485 #ifdef	DEBUG
1486 	dma_p = &ring->dma_cmd;
1487 #endif
1488 	IWH_DBG((IWH_DEBUG_DMA, "tx cmd[ncookies:%d addr:%lx size:%lx]\n",
1489 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1490 	    dma_p->cookie.dmac_size));
1491 
1492 	cmd_h = (iwh_cmd_t *)ring->dma_cmd.mem_va;
1493 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1494 
1495 	/*
1496 	 * Allocate Tx frame buffers.
1497 	 */
1498 	ring->data = kmem_zalloc(sizeof (iwh_tx_data_t) * TFD_QUEUE_SIZE_MAX,
1499 	    KM_NOSLEEP);
1500 	if (NULL == ring->data) {
1501 		IWH_DBG((IWH_DEBUG_DMA, "could not allocate "
1502 		    "tx data slots\n"));
1503 		goto fail;
1504 	}
1505 
1506 	for (i = 0; i < TFD_QUEUE_SIZE_MAX; i++) {
1507 		data = &ring->data[i];
1508 		err = iwh_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1509 		    &tx_buffer_dma_attr, &iwh_dma_accattr,
1510 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1511 		    &data->dma_data);
1512 		if (err != DDI_SUCCESS) {
1513 			IWH_DBG((IWH_DEBUG_DMA, "dma alloc tx "
1514 			    "ring buf[%d] failed\n", i));
1515 			goto fail;
1516 		}
1517 
1518 		data->desc = desc_h + i;
1519 		data->paddr_desc = paddr_desc_h +
1520 		    _PTRDIFF(data->desc, desc_h);
1521 		data->cmd = cmd_h +  i; /* (i % slots); */
1522 		data->paddr_cmd = paddr_cmd_h +
1523 		    _PTRDIFF(data->cmd, cmd_h);
1524 		    /* ((i % slots) * sizeof (iwh_cmd_t)); */
1525 	}
1526 #ifdef	DEBUG
1527 	dma_p = &ring->data[0].dma_data;
1528 #endif
1529 	IWH_DBG((IWH_DEBUG_DMA, "tx buffer[0][ncookies:%d addr:%lx "
1530 	    "size:%lx]\n",
1531 	    dma_p->ncookies, dma_p->cookie.dmac_address,
1532 	    dma_p->cookie.dmac_size));
1533 
1534 	return (err);
1535 
1536 fail:
1537 	if (ring->data) {
1538 		kmem_free(ring->data,
1539 		    sizeof (iwh_tx_data_t) * TFD_QUEUE_SIZE_MAX);
1540 	}
1541 
1542 	iwh_free_tx_ring(ring);
1543 
1544 	return (err);
1545 }
1546 
1547 /*
1548  * disable TX ring
1549  */
1550 static void
1551 iwh_reset_tx_ring(iwh_sc_t *sc, iwh_tx_ring_t *ring)
1552 {
1553 	iwh_tx_data_t *data;
1554 	int i, n;
1555 
1556 	iwh_mac_access_enter(sc);
1557 
1558 	IWH_WRITE(sc, IWH_FH_TCSR_CHNL_TX_CONFIG_REG(ring->qid), 0);
1559 	for (n = 0; n < 200; n++) {
1560 		if (IWH_READ(sc, IWH_FH_TSSR_TX_STATUS_REG) &
1561 		    IWH_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ring->qid)) {
1562 			break;
1563 		}
1564 		DELAY(10);
1565 	}
1566 	if (200 == n) {
1567 		IWH_DBG((IWH_DEBUG_DMA, "timeout reset tx ring %d\n",
1568 		    ring->qid));
1569 	}
1570 	iwh_mac_access_exit(sc);
1571 
1572 	/* by pass, if it's quiesce */
1573 	if (!(sc->sc_flags & IWH_F_QUIESCED)) {
1574 		for (i = 0; i < ring->count; i++) {
1575 			data = &ring->data[i];
1576 			IWH_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1577 		}
1578 	}
1579 
1580 	ring->queued = 0;
1581 	ring->cur = 0;
1582 }
1583 
1584 static void
1585 iwh_free_tx_ring(iwh_tx_ring_t *ring)
1586 {
1587 	int i;
1588 
1589 	if (ring->dma_desc.dma_hdl != NULL) {
1590 		IWH_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1591 	}
1592 	iwh_free_dma_mem(&ring->dma_desc);
1593 
1594 	if (ring->dma_cmd.dma_hdl != NULL) {
1595 		IWH_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1596 	}
1597 	iwh_free_dma_mem(&ring->dma_cmd);
1598 
1599 	if (ring->data != NULL) {
1600 		for (i = 0; i < ring->count; i++) {
1601 			if (ring->data[i].dma_data.dma_hdl) {
1602 				IWH_DMA_SYNC(ring->data[i].dma_data,
1603 				    DDI_DMA_SYNC_FORDEV);
1604 			}
1605 			iwh_free_dma_mem(&ring->data[i].dma_data);
1606 		}
1607 		kmem_free(ring->data, ring->count * sizeof (iwh_tx_data_t));
1608 	}
1609 }
1610 
1611 /*
1612  * initialize TX and RX ring
1613  */
1614 static int
1615 iwh_ring_init(iwh_sc_t *sc)
1616 {
1617 	int i, err = DDI_SUCCESS;
1618 
1619 	for (i = 0; i < IWH_NUM_QUEUES; i++) {
1620 		if (IWH_CMD_QUEUE_NUM == i) {
1621 			continue;
1622 		}
1623 
1624 		err = iwh_alloc_tx_ring(sc, &sc->sc_txq[i], TFD_TX_CMD_SLOTS,
1625 		    i);
1626 		if (err != DDI_SUCCESS) {
1627 			goto fail;
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * initialize command queue
1633 	 */
1634 	err = iwh_alloc_tx_ring(sc, &sc->sc_txq[IWH_CMD_QUEUE_NUM],
1635 	    TFD_CMD_SLOTS, IWH_CMD_QUEUE_NUM);
1636 	if (err != DDI_SUCCESS) {
1637 		goto fail;
1638 	}
1639 
1640 	err = iwh_alloc_rx_ring(sc);
1641 	if (err != DDI_SUCCESS) {
1642 		goto fail;
1643 	}
1644 
1645 	return (err);
1646 
1647 fail:
1648 	return (err);
1649 }
1650 
1651 static void
1652 iwh_ring_free(iwh_sc_t *sc)
1653 {
1654 	int i = IWH_NUM_QUEUES;
1655 
1656 	iwh_free_rx_ring(sc);
1657 	while (--i >= 0) {
1658 		iwh_free_tx_ring(&sc->sc_txq[i]);
1659 	}
1660 }
1661 
1662 /*
1663  * allocate buffer for a node
1664  */
1665 /*ARGSUSED*/
1666 static ieee80211_node_t *
1667 iwh_node_alloc(ieee80211com_t *ic)
1668 {
1669 	iwh_amrr_t *amrr;
1670 
1671 	amrr = kmem_zalloc(sizeof (iwh_amrr_t), KM_SLEEP);
1672 	if (amrr != NULL) {
1673 		iwh_amrr_init(amrr);
1674 	}
1675 
1676 	return (&amrr->in);
1677 }
1678 
1679 static void
1680 iwh_node_free(ieee80211_node_t *in)
1681 {
1682 	ieee80211com_t *ic = in->in_ic;
1683 
1684 	ic->ic_node_cleanup(in);
1685 	if (in->in_wpa_ie != NULL) {
1686 		ieee80211_free(in->in_wpa_ie);
1687 	}
1688 
1689 	kmem_free(in, sizeof (iwh_amrr_t));
1690 }
1691 
1692 /*
1693  * change station's state. this function will be invoked by 80211 module
1694  * when need to change staton's state.
1695  */
1696 static int
1697 iwh_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1698 {
1699 	iwh_sc_t *sc = (iwh_sc_t *)ic;
1700 	ieee80211_node_t *in = ic->ic_bss;
1701 	enum ieee80211_state ostate = ic->ic_state;
1702 	int i, err = IWH_SUCCESS;
1703 
1704 	mutex_enter(&sc->sc_glock);
1705 
1706 	switch (nstate) {
1707 	case IEEE80211_S_SCAN:
1708 		switch (ostate) {
1709 		case IEEE80211_S_INIT:
1710 		{
1711 			iwh_add_sta_t node;
1712 			sc->sc_flags |= IWH_F_SCANNING;
1713 			iwh_set_led(sc, 2, 10, 2);
1714 
1715 			/*
1716 			 * clear association to receive beacons from
1717 			 * all BSS'es
1718 			 */
1719 			sc->sc_config.assoc_id = 0;
1720 			sc->sc_config.filter_flags &=
1721 			    ~LE_32(RXON_FILTER_ASSOC_MSK);
1722 
1723 			IWH_DBG((IWH_DEBUG_80211, "config chan %d "
1724 			    "flags %x filter_flags %x\n", sc->sc_config.chan,
1725 			    sc->sc_config.flags, sc->sc_config.filter_flags));
1726 
1727 			err = iwh_cmd(sc, REPLY_RXON, &sc->sc_config,
1728 			    sizeof (iwh_rxon_cmd_t), 1);
1729 			if (err != IWH_SUCCESS) {
1730 				cmn_err(CE_WARN,
1731 				    "could not clear association\n");
1732 				sc->sc_flags &= ~IWH_F_SCANNING;
1733 				mutex_exit(&sc->sc_glock);
1734 				return (err);
1735 			}
1736 
1737 			/* add broadcast node to send probe request */
1738 			(void) memset(&node, 0, sizeof (node));
1739 			(void) memset(&node.sta.addr, 0xff, IEEE80211_ADDR_LEN);
1740 			node.sta.sta_id = IWH_BROADCAST_ID;
1741 			err = iwh_cmd(sc, REPLY_ADD_STA, &node,
1742 			    sizeof (node), 1);
1743 			if (err != IWH_SUCCESS) {
1744 				cmn_err(CE_WARN, "could not add "
1745 				    "broadcast node\n");
1746 				sc->sc_flags &= ~IWH_F_SCANNING;
1747 				mutex_exit(&sc->sc_glock);
1748 				return (err);
1749 			}
1750 			break;
1751 		}
1752 		case IEEE80211_S_SCAN:
1753 			mutex_exit(&sc->sc_glock);
1754 			/* step to next channel before actual FW scan */
1755 			err = sc->sc_newstate(ic, nstate, arg);
1756 			mutex_enter(&sc->sc_glock);
1757 			if ((err != 0) || ((err = iwh_scan(sc)) != 0)) {
1758 				cmn_err(CE_WARN,
1759 				    "could not initiate scan\n");
1760 				sc->sc_flags &= ~IWH_F_SCANNING;
1761 				ieee80211_cancel_scan(ic);
1762 			}
1763 			mutex_exit(&sc->sc_glock);
1764 			return (err);
1765 		default:
1766 			break;
1767 		}
1768 		sc->sc_clk = 0;
1769 		break;
1770 
1771 	case IEEE80211_S_AUTH:
1772 		if (ostate == IEEE80211_S_SCAN) {
1773 			sc->sc_flags &= ~IWH_F_SCANNING;
1774 		}
1775 
1776 		/*
1777 		 * reset state to handle reassociations correctly
1778 		 */
1779 		sc->sc_config.assoc_id = 0;
1780 		sc->sc_config.filter_flags &= ~LE_32(RXON_FILTER_ASSOC_MSK);
1781 
1782 		/*
1783 		 * before sending authentication and association request frame,
1784 		 * we need do something in the hardware, such as setting the
1785 		 * channel same to the target AP...
1786 		 */
1787 		if ((err = iwh_hw_set_before_auth(sc)) != 0) {
1788 			IWH_DBG((IWH_DEBUG_80211,
1789 			    "could not send authentication request\n"));
1790 			mutex_exit(&sc->sc_glock);
1791 			return (err);
1792 		}
1793 		break;
1794 
1795 	case IEEE80211_S_RUN:
1796 		if (ostate == IEEE80211_S_SCAN) {
1797 			sc->sc_flags &= ~IWH_F_SCANNING;
1798 		}
1799 
1800 		if (IEEE80211_M_MONITOR == ic->ic_opmode) {
1801 			/* let LED blink when monitoring */
1802 			iwh_set_led(sc, 2, 10, 10);
1803 			break;
1804 		}
1805 
1806 		IWH_DBG((IWH_DEBUG_80211, "iwh: associated."));
1807 
1808 		/*
1809 		 * update adapter's configuration
1810 		 */
1811 		if (sc->sc_assoc_id != in->in_associd) {
1812 			cmn_err(CE_WARN,
1813 			    "associate ID mismatch: expected %d, "
1814 			    "got %d\n",
1815 			    in->in_associd, sc->sc_assoc_id);
1816 		}
1817 		sc->sc_config.assoc_id = in->in_associd & 0x3fff;
1818 
1819 		/*
1820 		 * short preamble/slot time are
1821 		 * negotiated when associating
1822 		 */
1823 		sc->sc_config.flags &=
1824 		    ~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
1825 		    RXON_FLG_SHORT_SLOT_MSK);
1826 
1827 		if (ic->ic_flags & IEEE80211_F_SHSLOT) {
1828 			sc->sc_config.flags |=
1829 			    LE_32(RXON_FLG_SHORT_SLOT_MSK);
1830 		}
1831 
1832 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
1833 			sc->sc_config.flags |=
1834 			    LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
1835 		}
1836 
1837 		sc->sc_config.filter_flags |=
1838 		    LE_32(RXON_FILTER_ASSOC_MSK);
1839 
1840 		if (ic->ic_opmode != IEEE80211_M_STA) {
1841 			sc->sc_config.filter_flags |=
1842 			    LE_32(RXON_FILTER_BCON_AWARE_MSK);
1843 		}
1844 
1845 		IWH_DBG((IWH_DEBUG_80211, "config chan %d flags %x"
1846 		    " filter_flags %x\n",
1847 		    sc->sc_config.chan, sc->sc_config.flags,
1848 		    sc->sc_config.filter_flags));
1849 
1850 		err = iwh_cmd(sc, REPLY_RXON, &sc->sc_config,
1851 		    sizeof (iwh_rxon_cmd_t), 1);
1852 		if (err != IWH_SUCCESS) {
1853 			IWH_DBG((IWH_DEBUG_80211,
1854 			    "could not update configuration\n"));
1855 			mutex_exit(&sc->sc_glock);
1856 			return (err);
1857 		}
1858 
1859 		/*
1860 		 * send tx power talbe command
1861 		 */
1862 		err = iwh_tx_power_table(sc, 1);
1863 		if (err != IWH_SUCCESS) {
1864 			cmn_err(CE_WARN, "iwh_config(): "
1865 			    "failed to set tx power table.\n");
1866 			return (err);
1867 		}
1868 
1869 		/*
1870 		 * start automatic rate control
1871 		 */
1872 		mutex_enter(&sc->sc_mt_lock);
1873 		if (IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) {
1874 			sc->sc_flags |= IWH_F_RATE_AUTO_CTL;
1875 			/*
1876 			 * set rate to some reasonable initial value
1877 			 */
1878 			i = in->in_rates.ir_nrates - 1;
1879 			while (i > 0 && IEEE80211_RATE(i) > 72) {
1880 				i--;
1881 			}
1882 			in->in_txrate = i;
1883 		} else {
1884 			sc->sc_flags &= ~IWH_F_RATE_AUTO_CTL;
1885 		}
1886 
1887 		mutex_exit(&sc->sc_mt_lock);
1888 
1889 		/*
1890 		 * set LED on after associated
1891 		 */
1892 		iwh_set_led(sc, 2, 0, 1);
1893 		break;
1894 
1895 	case IEEE80211_S_INIT:
1896 		if (ostate == IEEE80211_S_SCAN) {
1897 			sc->sc_flags &= ~IWH_F_SCANNING;
1898 		}
1899 		/*
1900 		 * set LED off after init
1901 		 */
1902 		iwh_set_led(sc, 2, 1, 0);
1903 		break;
1904 
1905 	case IEEE80211_S_ASSOC:
1906 		if (ostate == IEEE80211_S_SCAN) {
1907 			sc->sc_flags &= ~IWH_F_SCANNING;
1908 		}
1909 		break;
1910 	}
1911 
1912 	mutex_exit(&sc->sc_glock);
1913 
1914 	return (sc->sc_newstate(ic, nstate, arg));
1915 }
1916 
1917 /*
1918  * exclusive access to mac begin.
1919  */
1920 static void
1921 iwh_mac_access_enter(iwh_sc_t *sc)
1922 {
1923 	uint32_t tmp;
1924 	int n;
1925 
1926 	tmp = IWH_READ(sc, CSR_GP_CNTRL);
1927 	IWH_WRITE(sc, CSR_GP_CNTRL,
1928 	    tmp | CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1929 
1930 	/* wait until we succeed */
1931 	for (n = 0; n < 1000; n++) {
1932 		if ((IWH_READ(sc, CSR_GP_CNTRL) &
1933 		    (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
1934 		    CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP)) ==
1935 		    CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN) {
1936 			break;
1937 		}
1938 		DELAY(10);
1939 	}
1940 
1941 #ifdef	DEBUG
1942 	if (1000 == n) {
1943 		IWH_DBG((IWH_DEBUG_PIO, "could not lock memory\n"));
1944 	}
1945 #endif
1946 }
1947 
1948 /*
1949  * exclusive access to mac end.
1950  */
1951 static void
1952 iwh_mac_access_exit(iwh_sc_t *sc)
1953 {
1954 	uint32_t tmp = IWH_READ(sc, CSR_GP_CNTRL);
1955 	IWH_WRITE(sc, CSR_GP_CNTRL,
1956 	    tmp & ~CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1957 }
1958 
1959 /*
1960  * this function defined here for future use.
1961  * static uint32_t
1962  * iwh_mem_read(iwh_sc_t *sc, uint32_t addr)
1963  * {
1964  * 	IWH_WRITE(sc, HBUS_TARG_MEM_RADDR, addr);
1965  * 	return (IWH_READ(sc, HBUS_TARG_MEM_RDAT));
1966  * }
1967  */
1968 
1969 /*
1970  * write mac memory
1971  */
1972 static void
1973 iwh_mem_write(iwh_sc_t *sc, uint32_t addr, uint32_t data)
1974 {
1975 	IWH_WRITE(sc, HBUS_TARG_MEM_WADDR, addr);
1976 	IWH_WRITE(sc, HBUS_TARG_MEM_WDAT, data);
1977 }
1978 
1979 /*
1980  * read mac register
1981  */
1982 static uint32_t
1983 iwh_reg_read(iwh_sc_t *sc, uint32_t addr)
1984 {
1985 	IWH_WRITE(sc, HBUS_TARG_PRPH_RADDR, addr | (3 << 24));
1986 	return (IWH_READ(sc, HBUS_TARG_PRPH_RDAT));
1987 }
1988 
1989 /*
1990  * write mac register
1991  */
1992 static void
1993 iwh_reg_write(iwh_sc_t *sc, uint32_t addr, uint32_t data)
1994 {
1995 	IWH_WRITE(sc, HBUS_TARG_PRPH_WADDR, addr | (3 << 24));
1996 	IWH_WRITE(sc, HBUS_TARG_PRPH_WDAT, data);
1997 }
1998 
1999 
2000 /*
2001  * steps of loading ucode:
2002  * load init ucode=>init alive=>calibrate=>
2003  * receive calibration result=>reinitialize NIC=>
2004  * load runtime ucode=>runtime alive=>
2005  * send calibration result=>running.
2006  */
2007 static int
2008 iwh_load_init_firmware(iwh_sc_t *sc)
2009 {
2010 	int	err;
2011 	clock_t	clk;
2012 
2013 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2014 
2015 	/*
2016 	 * load init_text section of uCode to hardware
2017 	 */
2018 	err = iwh_put_seg_fw(sc, sc->sc_dma_fw_init_text.cookie.dmac_address,
2019 	    RTC_INST_LOWER_BOUND, sc->sc_dma_fw_init_text.cookie.dmac_size);
2020 	if (err != IWH_SUCCESS) {
2021 		cmn_err(CE_WARN, "iwh_load_init_firmware(): "
2022 		    "failed to write init uCode.\n");
2023 		return (err);
2024 	}
2025 
2026 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
2027 
2028 	/* wait loading init_text until completed or timeout */
2029 	while (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2030 		if (cv_timedwait(&sc->sc_put_seg_cv, &sc->sc_glock, clk) < 0) {
2031 			break;
2032 		}
2033 	}
2034 
2035 	if (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2036 		cmn_err(CE_WARN, "iwh_load_init_firmware(): "
2037 		    "timeout waiting for init uCode load.\n");
2038 		return (IWH_FAIL);
2039 	}
2040 
2041 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2042 
2043 	/*
2044 	 * load init_data section of uCode to hardware
2045 	 */
2046 	err = iwh_put_seg_fw(sc, sc->sc_dma_fw_init_data.cookie.dmac_address,
2047 	    RTC_DATA_LOWER_BOUND, sc->sc_dma_fw_init_data.cookie.dmac_size);
2048 	if (err != IWH_SUCCESS) {
2049 		cmn_err(CE_WARN, "iwh_load_init_firmware(): "
2050 		    "failed to write init_data uCode.\n");
2051 		return (err);
2052 	}
2053 
2054 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
2055 
2056 	/*
2057 	 * wait loading init_data until completed or timeout
2058 	 */
2059 	while (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2060 		if (cv_timedwait(&sc->sc_put_seg_cv, &sc->sc_glock, clk) < 0) {
2061 			break;
2062 		}
2063 	}
2064 
2065 	if (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2066 		cmn_err(CE_WARN, "iwh_load_init_firmware(): "
2067 		    "timeout waiting for init_data uCode load.\n");
2068 		return (IWH_FAIL);
2069 	}
2070 
2071 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2072 
2073 	return (err);
2074 }
2075 
2076 static int
2077 iwh_load_run_firmware(iwh_sc_t *sc)
2078 {
2079 	int	err;
2080 	clock_t	clk;
2081 
2082 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2083 
2084 	/*
2085 	 * load init_text section of uCode to hardware
2086 	 */
2087 	err = iwh_put_seg_fw(sc, sc->sc_dma_fw_text.cookie.dmac_address,
2088 	    RTC_INST_LOWER_BOUND, sc->sc_dma_fw_text.cookie.dmac_size);
2089 	if (err != IWH_SUCCESS) {
2090 		cmn_err(CE_WARN, "iwh_load_run_firmware(): "
2091 		    "failed to write run uCode.\n");
2092 		return (err);
2093 	}
2094 
2095 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
2096 
2097 	/* wait loading run_text until completed or timeout */
2098 	while (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2099 		if (cv_timedwait(&sc->sc_put_seg_cv, &sc->sc_glock, clk) < 0) {
2100 			break;
2101 		}
2102 	}
2103 
2104 	if (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2105 		cmn_err(CE_WARN, "iwh_load_run_firmware(): "
2106 		    "timeout waiting for run uCode load.\n");
2107 		return (IWH_FAIL);
2108 	}
2109 
2110 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2111 
2112 	/*
2113 	 * load run_data section of uCode to hardware
2114 	 */
2115 	err = iwh_put_seg_fw(sc, sc->sc_dma_fw_data_bak.cookie.dmac_address,
2116 	    RTC_DATA_LOWER_BOUND, sc->sc_dma_fw_data.cookie.dmac_size);
2117 	if (err != IWH_SUCCESS) {
2118 		cmn_err(CE_WARN, "iwh_load_run_firmware(): "
2119 		    "failed to write run_data uCode.\n");
2120 		return (err);
2121 	}
2122 
2123 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
2124 
2125 	/*
2126 	 * wait loading run_data until completed or timeout
2127 	 */
2128 	while (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2129 		if (cv_timedwait(&sc->sc_put_seg_cv, &sc->sc_glock, clk) < 0) {
2130 			break;
2131 		}
2132 	}
2133 
2134 	if (!(sc->sc_flags & IWH_F_PUT_SEG)) {
2135 		cmn_err(CE_WARN, "iwh_load_run_firmware(): "
2136 		    "timeout waiting for run_data uCode load.\n");
2137 		return (IWH_FAIL);
2138 	}
2139 
2140 	sc->sc_flags &= ~IWH_F_PUT_SEG;
2141 
2142 	return (err);
2143 }
2144 
2145 /*
2146  * this function will be invoked to receive phy information
2147  * when a frame is received.
2148  */
2149 static void
2150 iwh_rx_phy_intr(iwh_sc_t *sc, iwh_rx_desc_t *desc)
2151 {
2152 
2153 	sc->sc_rx_phy_res.flag = 1;
2154 
2155 	(void) memcpy(sc->sc_rx_phy_res.buf, (uint8_t *)(desc + 1),
2156 	    sizeof (iwh_rx_phy_res_t));
2157 }
2158 
2159 /*
2160  * this function will be invoked to receive body of frame when
2161  * a frame is received.
2162  */
2163 static void
2164 iwh_rx_mpdu_intr(iwh_sc_t *sc, iwh_rx_desc_t *desc)
2165 {
2166 	ieee80211com_t *ic = &sc->sc_ic;
2167 #ifdef	DEBUG
2168 	iwh_rx_ring_t *ring = &sc->sc_rxq;
2169 #endif
2170 	iwh_rx_phy_res_t *stat;
2171 	ieee80211_node_t *in;
2172 	uint32_t *tail;
2173 	struct ieee80211_frame *wh;
2174 	mblk_t *mp;
2175 	uint16_t len, rssi, agc;
2176 	int16_t t;
2177 	struct iwh_rx_non_cfg_phy *phyinfo;
2178 	uint32_t	temp;
2179 	uint32_t arssi, brssi, crssi, mrssi;
2180 	struct	iwh_rx_mpdu_body_size	*mpdu_size;
2181 
2182 	/*
2183 	 * assuming not 11n here. cope with 11n in phase-II
2184 	 */
2185 	mpdu_size = (struct iwh_rx_mpdu_body_size *)(desc + 1);
2186 	stat = (iwh_rx_phy_res_t *)sc->sc_rx_phy_res.buf;
2187 	if (stat->cfg_phy_cnt > 20) {
2188 		return;
2189 	}
2190 
2191 	phyinfo = (struct iwh_rx_non_cfg_phy *)stat->non_cfg_phy;
2192 	temp = phyinfo->non_cfg_phy[IWH_RX_RES_AGC_IDX];
2193 	agc = (temp & IWH_OFDM_AGC_MSK) >> IWH_OFDM_AGC_BIT_POS;
2194 
2195 	temp = phyinfo->non_cfg_phy[IWH_RX_RES_RSSI_AB_IDX];
2196 	arssi = (temp & IWH_OFDM_RSSI_A_MSK) >> IWH_OFDM_RSSI_A_BIT_POS;
2197 	brssi = (temp & IWH_OFDM_RSSI_B_MSK) >> IWH_OFDM_RSSI_B_BIT_POS;
2198 
2199 	temp = phyinfo->non_cfg_phy[IWH_RX_RES_RSSI_C_IDX];
2200 	crssi = (temp & IWH_OFDM_RSSI_C_MSK) >> IWH_OFDM_RSSI_C_BIT_POS;
2201 
2202 	mrssi = MAX(arssi, brssi);
2203 	mrssi = MAX(mrssi, crssi);
2204 
2205 	t = mrssi - agc - IWH_RSSI_OFFSET;
2206 	/*
2207 	 * convert dBm to percentage
2208 	 */
2209 	rssi = (100 * 75 * 75 - (-20 - t) * (15 * 75 + 62 * (-20 - t)))
2210 	    / (75 * 75);
2211 	if (rssi > 100) {
2212 		rssi = 100;
2213 	}
2214 	if (rssi < 1) {
2215 		rssi = 1;
2216 	}
2217 
2218 	/*
2219 	 * size of frame, not include FCS
2220 	 */
2221 	len = mpdu_size->byte_count;
2222 	tail = (uint32_t *)((uint8_t *)(desc + 1) +
2223 	    sizeof (struct iwh_rx_mpdu_body_size) + len);
2224 
2225 	IWH_DBG((IWH_DEBUG_RX, "rx intr: idx=%d phy_len=%x len=%d "
2226 	    "rate=%x chan=%d tstamp=%x non_cfg_phy_count=%x "
2227 	    "cfg_phy_count=%x tail=%x", ring->cur, sizeof (*stat),
2228 	    len, stat->rate.r.s.rate, stat->channel,
2229 	    LE_32(stat->timestampl), stat->non_cfg_phy_cnt,
2230 	    stat->cfg_phy_cnt, LE_32(*tail)));
2231 
2232 	if ((len < 16) || (len > sc->sc_dmabuf_sz)) {
2233 		IWH_DBG((IWH_DEBUG_RX, "rx frame oversize\n"));
2234 		return;
2235 	}
2236 
2237 	/*
2238 	 * discard Rx frames with bad CRC
2239 	 */
2240 	if ((LE_32(*tail) &
2241 	    (RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) !=
2242 	    (RX_RES_STATUS_NO_CRC32_ERROR | RX_RES_STATUS_NO_RXE_OVERFLOW)) {
2243 		IWH_DBG((IWH_DEBUG_RX, "rx crc error tail: %x\n",
2244 		    LE_32(*tail)));
2245 		sc->sc_rx_err++;
2246 		return;
2247 	}
2248 
2249 	wh = (struct ieee80211_frame *)
2250 	    ((uint8_t *)(desc + 1)+ sizeof (struct iwh_rx_mpdu_body_size));
2251 
2252 	if (IEEE80211_FC0_SUBTYPE_ASSOC_RESP == *(uint8_t *)wh) {
2253 		sc->sc_assoc_id = *((uint16_t *)(wh + 1) + 2);
2254 		IWH_DBG((IWH_DEBUG_RX, "rx : association id = %x\n",
2255 		    sc->sc_assoc_id));
2256 	}
2257 
2258 #ifdef DEBUG
2259 	if (iwh_dbg_flags & IWH_DEBUG_RX) {
2260 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
2261 	}
2262 #endif
2263 
2264 	in = ieee80211_find_rxnode(ic, wh);
2265 	mp = allocb(len, BPRI_MED);
2266 	if (mp) {
2267 		(void) memcpy(mp->b_wptr, wh, len);
2268 		mp->b_wptr += len;
2269 
2270 		/*
2271 		 * send the frame to the 802.11 layer
2272 		 */
2273 		(void) ieee80211_input(ic, mp, in, rssi, 0);
2274 	} else {
2275 		sc->sc_rx_nobuf++;
2276 		IWH_DBG((IWH_DEBUG_RX,
2277 		    "iwh_rx_mpdu_intr(): alloc rx buf failed\n"));
2278 	}
2279 
2280 	/*
2281 	 * release node reference
2282 	 */
2283 	ieee80211_free_node(in);
2284 }
2285 
2286 /*
2287  * process correlative affairs after a frame is sent.
2288  */
2289 static void
2290 iwh_tx_intr(iwh_sc_t *sc, iwh_rx_desc_t *desc)
2291 {
2292 	ieee80211com_t *ic = &sc->sc_ic;
2293 	iwh_tx_ring_t *ring = &sc->sc_txq[desc->hdr.qid & 0x3];
2294 	iwh_tx_stat_t *stat = (iwh_tx_stat_t *)(desc + 1);
2295 	iwh_amrr_t *amrr = (iwh_amrr_t *)ic->ic_bss;
2296 
2297 	amrr->txcnt++;
2298 	IWH_DBG((IWH_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
2299 
2300 	if (stat->ntries > 0) {
2301 		amrr->retrycnt++;
2302 		sc->sc_tx_retries++;
2303 		IWH_DBG((IWH_DEBUG_TX, "tx: %d retries\n",
2304 		    sc->sc_tx_retries));
2305 	}
2306 
2307 	sc->sc_tx_timer = 0;
2308 
2309 	mutex_enter(&sc->sc_tx_lock);
2310 
2311 	ring->queued--;
2312 	if (ring->queued < 0) {
2313 		ring->queued = 0;
2314 	}
2315 
2316 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
2317 		sc->sc_need_reschedule = 0;
2318 		mutex_exit(&sc->sc_tx_lock);
2319 		mac_tx_update(ic->ic_mach);
2320 		mutex_enter(&sc->sc_tx_lock);
2321 	}
2322 
2323 	mutex_exit(&sc->sc_tx_lock);
2324 }
2325 
2326 /*
2327  * inform a given command has been executed
2328  */
2329 static void
2330 iwh_cmd_intr(iwh_sc_t *sc, iwh_rx_desc_t *desc)
2331 {
2332 	if ((desc->hdr.qid & 7) != 4) {
2333 		return;
2334 	}
2335 
2336 	mutex_enter(&sc->sc_glock);
2337 
2338 	sc->sc_flags |= IWH_F_CMD_DONE;
2339 	cv_signal(&sc->sc_cmd_cv);
2340 
2341 	mutex_exit(&sc->sc_glock);
2342 
2343 	IWH_DBG((IWH_DEBUG_CMD, "rx cmd: "
2344 	    "qid=%x idx=%d flags=%x type=0x%x\n",
2345 	    desc->hdr.qid, desc->hdr.idx, desc->hdr.flags,
2346 	    desc->hdr.type));
2347 }
2348 
2349 /*
2350  * this function will be invoked when alive notification occur.
2351  */
2352 static void
2353 iwh_ucode_alive(iwh_sc_t *sc, iwh_rx_desc_t *desc)
2354 {
2355 	uint32_t rv;
2356 	struct iwh_calib_cfg_cmd cmd;
2357 	struct iwh_alive_resp *ar =
2358 	    (struct iwh_alive_resp *)(desc + 1);
2359 	struct iwh_calib_results *res_p = &sc->sc_calib_results;
2360 
2361 	/*
2362 	 * the microcontroller is ready
2363 	 */
2364 	IWH_DBG((IWH_DEBUG_FW,
2365 	    "microcode alive notification minor: %x major: %x type:"
2366 	    " %x subtype: %x\n",
2367 	    ar->ucode_minor, ar->ucode_minor, ar->ver_type, ar->ver_subtype));
2368 
2369 #ifdef	DEBUG
2370 	if (LE_32(ar->is_valid) != UCODE_VALID_OK) {
2371 		IWH_DBG((IWH_DEBUG_FW,
2372 		    "microcontroller initialization failed\n"));
2373 	}
2374 #endif
2375 
2376 	/*
2377 	 * determine if init alive or runtime alive.
2378 	 */
2379 	if (INITIALIZE_SUBTYPE == ar->ver_subtype) {
2380 		IWH_DBG((IWH_DEBUG_FW,
2381 		    "initialization alive received.\n"));
2382 
2383 		(void) memcpy(&sc->sc_card_alive_init, ar,
2384 		    sizeof (struct iwh_init_alive_resp));
2385 
2386 		/*
2387 		 * necessary configuration to NIC
2388 		 */
2389 		mutex_enter(&sc->sc_glock);
2390 
2391 		rv = iwh_alive_common(sc);
2392 		if (rv != IWH_SUCCESS) {
2393 			cmn_err(CE_WARN, "iwh_ucode_alive(): "
2394 			    "common alive process failed in init alive.\n");
2395 			mutex_exit(&sc->sc_glock);
2396 			return;
2397 		}
2398 
2399 		(void) memset(&cmd, 0, sizeof (cmd));
2400 
2401 		cmd.ucd_calib_cfg.once.is_enable = IWH_CALIB_INIT_CFG_ALL;
2402 		cmd.ucd_calib_cfg.once.start = IWH_CALIB_INIT_CFG_ALL;
2403 		cmd.ucd_calib_cfg.once.send_res = IWH_CALIB_INIT_CFG_ALL;
2404 		cmd.ucd_calib_cfg.flags = IWH_CALIB_INIT_CFG_ALL;
2405 
2406 		/*
2407 		 * require ucode execute calibration
2408 		 */
2409 		rv = iwh_cmd(sc, CALIBRATION_CFG_CMD, &cmd, sizeof (cmd), 1);
2410 		if (rv != IWH_SUCCESS) {
2411 			cmn_err(CE_WARN, "iwh_ucode_alive(): "
2412 			    "failed to send calibration configure command.\n");
2413 			mutex_exit(&sc->sc_glock);
2414 			return;
2415 		}
2416 
2417 		mutex_exit(&sc->sc_glock);
2418 
2419 	} else {	/* runtime alive */
2420 
2421 		IWH_DBG((IWH_DEBUG_FW, "runtime alive received.\n"));
2422 
2423 		(void) memcpy(&sc->sc_card_alive_run, ar,
2424 		    sizeof (struct iwh_alive_resp));
2425 
2426 		mutex_enter(&sc->sc_glock);
2427 
2428 		/*
2429 		 * necessary configuration to NIC
2430 		 */
2431 		rv = iwh_alive_common(sc);
2432 		if (rv != IWH_SUCCESS) {
2433 			cmn_err(CE_WARN, "iwh_ucode_alive(): "
2434 			    "common alive process failed in run alive.\n");
2435 			mutex_exit(&sc->sc_glock);
2436 			return;
2437 		}
2438 
2439 		/*
2440 		 * send the result of local oscilator calibration to uCode.
2441 		 */
2442 		if (res_p->lo_res != NULL) {
2443 			rv = iwh_cmd(sc, REPLY_PHY_CALIBRATION_CMD,
2444 			    res_p->lo_res, res_p->lo_res_len, 1);
2445 			if (rv != IWH_SUCCESS) {
2446 				cmn_err(CE_WARN, "iwh_ucode_alive(): "
2447 				    "failed to send local"
2448 				    "oscilator calibration command.\n");
2449 				mutex_exit(&sc->sc_glock);
2450 				return;
2451 			}
2452 
2453 			DELAY(1000);
2454 		}
2455 
2456 		/*
2457 		 * send the result of TX IQ calibration to uCode.
2458 		 */
2459 		if (res_p->tx_iq_res != NULL) {
2460 			rv = iwh_cmd(sc, REPLY_PHY_CALIBRATION_CMD,
2461 			    res_p->tx_iq_res, res_p->tx_iq_res_len, 1);
2462 			if (rv != IWH_SUCCESS) {
2463 				cmn_err(CE_WARN, "iwh_ucode_alive(): "
2464 				    "failed to send TX IQ"
2465 				    "calibration command.\n");
2466 				mutex_exit(&sc->sc_glock);
2467 				return;
2468 			}
2469 
2470 			DELAY(1000);
2471 		}
2472 
2473 		/*
2474 		 * sned the result of TX IQ perd calibration to uCode.
2475 		 */
2476 		if (res_p->tx_iq_perd_res != NULL) {
2477 			rv = iwh_cmd(sc, REPLY_PHY_CALIBRATION_CMD,
2478 			    res_p->tx_iq_perd_res,
2479 			    res_p->tx_iq_perd_res_len, 1);
2480 			if (rv != IWH_SUCCESS) {
2481 				cmn_err(CE_WARN, "iwh_ucode_alive(): "
2482 				    "failed to send TX IQ perd"
2483 				    "calibration command.\n");
2484 				mutex_exit(&sc->sc_glock);
2485 				return;
2486 			}
2487 
2488 			DELAY(1000);
2489 		}
2490 
2491 		mutex_exit(&sc->sc_glock);
2492 
2493 		sc->sc_flags |= IWH_F_FW_INIT;
2494 		cv_signal(&sc->sc_ucode_cv);
2495 	}
2496 
2497 }
2498 
2499 /*
2500  * deal with receiving frames, command response
2501  * and all notifications from ucode.
2502  */
2503 static uint_t
2504 /* LINTED: argument unused in function: unused */
2505 iwh_rx_softintr(caddr_t arg, caddr_t unused)
2506 {
2507 	iwh_sc_t *sc = (iwh_sc_t *)arg;
2508 	ieee80211com_t *ic = &sc->sc_ic;
2509 	iwh_rx_desc_t *desc;
2510 	iwh_rx_data_t *data;
2511 	uint32_t index;
2512 
2513 	mutex_enter(&sc->sc_glock);
2514 
2515 	if (sc->sc_rx_softint_pending != 1) {
2516 		mutex_exit(&sc->sc_glock);
2517 		return (DDI_INTR_UNCLAIMED);
2518 	}
2519 
2520 	/*
2521 	 * disable interrupts
2522 	 */
2523 	IWH_WRITE(sc, CSR_INT_MASK, 0);
2524 
2525 	mutex_exit(&sc->sc_glock);
2526 
2527 	/*
2528 	 * firmware has moved the index of the rx queue, driver get it,
2529 	 * and deal with it.
2530 	 */
2531 	index = LE_32(sc->sc_shared->val0) & 0xfff;
2532 
2533 	while (sc->sc_rxq.cur != index) {
2534 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
2535 		desc = (iwh_rx_desc_t *)data->dma_data.mem_va;
2536 
2537 		IWH_DBG((IWH_DEBUG_INTR, "rx notification index = %d"
2538 		    " cur = %d qid=%x idx=%d flags=%x type=%x len=%d\n",
2539 		    index, sc->sc_rxq.cur, desc->hdr.qid, desc->hdr.idx,
2540 		    desc->hdr.flags, desc->hdr.type, LE_32(desc->len)));
2541 
2542 		/*
2543 		 * a command other than a tx need to be replied
2544 		 */
2545 		if (!(desc->hdr.qid & 0x80) &&
2546 		    (desc->hdr.type != REPLY_RX_PHY_CMD) &&
2547 		    (desc->hdr.type != REPLY_RX_MPDU_CMD) &&
2548 		    (desc->hdr.type != REPLY_TX) &&
2549 		    (desc->hdr.type != REPLY_PHY_CALIBRATION_CMD)) {
2550 			iwh_cmd_intr(sc, desc);
2551 		}
2552 
2553 		switch (desc->hdr.type) {
2554 		case REPLY_RX_PHY_CMD:
2555 			iwh_rx_phy_intr(sc, desc);
2556 			break;
2557 
2558 		case REPLY_RX_MPDU_CMD:
2559 			iwh_rx_mpdu_intr(sc, desc);
2560 			break;
2561 
2562 		case REPLY_TX:
2563 			iwh_tx_intr(sc, desc);
2564 			break;
2565 
2566 		case REPLY_ALIVE:
2567 			iwh_ucode_alive(sc, desc);
2568 			break;
2569 
2570 		case CARD_STATE_NOTIFICATION:
2571 		{
2572 			uint32_t *status = (uint32_t *)(desc + 1);
2573 
2574 			IWH_DBG((IWH_DEBUG_RADIO, "state changed to %x\n",
2575 			    LE_32(*status)));
2576 
2577 			if (LE_32(*status) & 1) {
2578 				/*
2579 				 * the radio button has to be pushed(OFF). It
2580 				 * is considered as a hw error, the
2581 				 * iwh_thread() tries to recover it after the
2582 				 * button is pushed again(ON)
2583 				 */
2584 				cmn_err(CE_WARN, "iwh_rx_softintr(): "
2585 				    "radio transmitter is off\n");
2586 				sc->sc_ostate = sc->sc_ic.ic_state;
2587 				ieee80211_new_state(&sc->sc_ic,
2588 				    IEEE80211_S_INIT, -1);
2589 				sc->sc_flags |=
2590 				    (IWH_F_HW_ERR_RECOVER | IWH_F_RADIO_OFF);
2591 			}
2592 			break;
2593 		}
2594 
2595 		case SCAN_START_NOTIFICATION:
2596 		{
2597 			iwh_start_scan_t *scan =
2598 			    (iwh_start_scan_t *)(desc + 1);
2599 
2600 			IWH_DBG((IWH_DEBUG_SCAN,
2601 			    "scanning channel %d status %x\n",
2602 			    scan->chan, LE_32(scan->status)));
2603 
2604 			ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
2605 			break;
2606 		}
2607 
2608 		case SCAN_COMPLETE_NOTIFICATION:
2609 		{
2610 			iwh_stop_scan_t *scan =
2611 			    (iwh_stop_scan_t *)(desc + 1);
2612 
2613 			IWH_DBG((IWH_DEBUG_SCAN,
2614 			    "completed channel %d (burst of %d) status %02x\n",
2615 			    scan->chan, scan->nchan, scan->status));
2616 
2617 			sc->sc_scan_pending++;
2618 			break;
2619 		}
2620 
2621 		case STATISTICS_NOTIFICATION:
2622 		{
2623 			/*
2624 			 * handle statistics notification
2625 			 */
2626 			break;
2627 		}
2628 
2629 		case CALIBRATION_RES_NOTIFICATION:
2630 			iwh_save_calib_result(sc, desc);
2631 			break;
2632 
2633 		case CALIBRATION_COMPLETE_NOTIFICATION:
2634 			sc->sc_flags |= IWH_F_FW_INIT;
2635 			cv_signal(&sc->sc_ucode_cv);
2636 			break;
2637 		}
2638 
2639 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % RX_QUEUE_SIZE;
2640 	}
2641 
2642 	/*
2643 	 * driver dealt with what received in rx queue and tell the information
2644 	 * to the firmware.
2645 	 */
2646 	index = (0 == index) ? RX_QUEUE_SIZE - 1 : index - 1;
2647 	IWH_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, index & (~7));
2648 
2649 	mutex_enter(&sc->sc_glock);
2650 
2651 	/*
2652 	 * re-enable interrupts
2653 	 */
2654 	IWH_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
2655 	sc->sc_rx_softint_pending = 0;
2656 
2657 	mutex_exit(&sc->sc_glock);
2658 
2659 	return (DDI_INTR_CLAIMED);
2660 }
2661 
2662 /*
2663  * the handle of interrupt
2664  */
2665 static uint_t
2666 /* LINTED: argument unused in function: unused */
2667 iwh_intr(caddr_t arg, caddr_t unused)
2668 {
2669 	iwh_sc_t *sc = (iwh_sc_t *)arg;
2670 	uint32_t r, rfh;
2671 
2672 	mutex_enter(&sc->sc_glock);
2673 
2674 	if (sc->sc_flags & IWH_F_SUSPEND) {
2675 		mutex_exit(&sc->sc_glock);
2676 		return (DDI_INTR_UNCLAIMED);
2677 	}
2678 	r = IWH_READ(sc, CSR_INT);
2679 	if (0 == r || 0xffffffff == r) {
2680 		mutex_exit(&sc->sc_glock);
2681 		return (DDI_INTR_UNCLAIMED);
2682 	}
2683 
2684 	IWH_DBG((IWH_DEBUG_INTR, "interrupt reg %x\n", r));
2685 
2686 	rfh = IWH_READ(sc, CSR_FH_INT_STATUS);
2687 
2688 	IWH_DBG((IWH_DEBUG_INTR, "FH interrupt reg %x\n", rfh));
2689 
2690 	/*
2691 	 * disable interrupts
2692 	 */
2693 	IWH_WRITE(sc, CSR_INT_MASK, 0);
2694 
2695 	/*
2696 	 * ack interrupts
2697 	 */
2698 	IWH_WRITE(sc, CSR_INT, r);
2699 	IWH_WRITE(sc, CSR_FH_INT_STATUS, rfh);
2700 
2701 	if (NULL == sc->sc_soft_hdl) {
2702 		mutex_exit(&sc->sc_glock);
2703 		return (DDI_INTR_CLAIMED);
2704 	}
2705 
2706 	if (r & (BIT_INT_SWERROR | BIT_INT_ERR)) {
2707 		IWH_DBG((IWH_DEBUG_FW, "fatal firmware error\n"));
2708 		mutex_exit(&sc->sc_glock);
2709 		iwh_stop(sc);
2710 		sc->sc_ostate = sc->sc_ic.ic_state;
2711 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2712 		sc->sc_flags |= IWH_F_HW_ERR_RECOVER;
2713 		return (DDI_INTR_CLAIMED);
2714 	}
2715 
2716 #ifdef	DEBUG
2717 	if (r & BIT_INT_RF_KILL) {
2718 		IWH_DBG((IWH_DEBUG_RADIO, "RF kill\n"));
2719 	}
2720 #endif
2721 
2722 	if ((r & (BIT_INT_FH_RX | BIT_INT_SW_RX)) ||
2723 	    (rfh & FH_INT_RX_MASK)) {
2724 		sc->sc_rx_softint_pending = 1;
2725 		(void) ddi_intr_trigger_softint(sc->sc_soft_hdl, NULL);
2726 	}
2727 
2728 	if (r & BIT_INT_FH_TX) {
2729 		sc->sc_flags |= IWH_F_PUT_SEG;
2730 		cv_signal(&sc->sc_put_seg_cv);
2731 	}
2732 
2733 #ifdef	DEBUG
2734 	if (r & BIT_INT_ALIVE)	{
2735 		IWH_DBG((IWH_DEBUG_FW, "firmware initialized.\n"));
2736 	}
2737 #endif
2738 
2739 	/*
2740 	 * re-enable interrupts
2741 	 */
2742 	IWH_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
2743 
2744 	mutex_exit(&sc->sc_glock);
2745 
2746 	return (DDI_INTR_CLAIMED);
2747 }
2748 
2749 static uint8_t
2750 iwh_rate_to_plcp(int rate)
2751 {
2752 	uint8_t ret;
2753 
2754 	switch (rate) {
2755 	/*
2756 	 * CCK rates
2757 	 */
2758 	case 2:
2759 		ret = 0xa;
2760 		break;
2761 
2762 	case 4:
2763 		ret = 0x14;
2764 		break;
2765 
2766 	case 11:
2767 		ret = 0x37;
2768 		break;
2769 
2770 	case 22:
2771 		ret = 0x6e;
2772 		break;
2773 
2774 	/*
2775 	 * OFDM rates
2776 	 */
2777 	case 12:
2778 		ret = 0xd;
2779 		break;
2780 
2781 	case 18:
2782 		ret = 0xf;
2783 		break;
2784 
2785 	case 24:
2786 		ret = 0x5;
2787 		break;
2788 
2789 	case 36:
2790 		ret = 0x7;
2791 		break;
2792 
2793 	case 48:
2794 		ret = 0x9;
2795 		break;
2796 
2797 	case 72:
2798 		ret = 0xb;
2799 		break;
2800 
2801 	case 96:
2802 		ret = 0x1;
2803 		break;
2804 
2805 	case 108:
2806 		ret = 0x3;
2807 		break;
2808 
2809 	default:
2810 		ret = 0;
2811 		break;
2812 	}
2813 
2814 	return (ret);
2815 }
2816 
2817 /*
2818  * invoked by GLD send frames
2819  */
2820 static mblk_t *
2821 iwh_m_tx(void *arg, mblk_t *mp)
2822 {
2823 	iwh_sc_t	*sc = (iwh_sc_t *)arg;
2824 	ieee80211com_t	*ic = &sc->sc_ic;
2825 	mblk_t		*next;
2826 
2827 	if (sc->sc_flags & IWH_F_SUSPEND) {
2828 		freemsgchain(mp);
2829 		return (NULL);
2830 	}
2831 
2832 	if (ic->ic_state != IEEE80211_S_RUN) {
2833 		freemsgchain(mp);
2834 		return (NULL);
2835 	}
2836 
2837 	while (mp != NULL) {
2838 		next = mp->b_next;
2839 		mp->b_next = NULL;
2840 		if (iwh_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2841 			mp->b_next = next;
2842 			break;
2843 		}
2844 		mp = next;
2845 	}
2846 
2847 	return (mp);
2848 }
2849 
2850 /*
2851  * send frames
2852  */
2853 static int
2854 iwh_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2855 {
2856 	iwh_sc_t *sc = (iwh_sc_t *)ic;
2857 	iwh_tx_ring_t *ring;
2858 	iwh_tx_desc_t *desc;
2859 	iwh_tx_data_t *data;
2860 	iwh_cmd_t *cmd;
2861 	iwh_tx_cmd_t *tx;
2862 	ieee80211_node_t *in;
2863 	struct ieee80211_frame *wh;
2864 	struct ieee80211_key *k = NULL;
2865 	mblk_t *m, *m0;
2866 	int rate, hdrlen, len, len0, mblen, off, err = IWH_SUCCESS;
2867 	uint16_t masks = 0;
2868 	uint32_t 	s_id = 0;
2869 
2870 	ring = &sc->sc_txq[0];
2871 	data = &ring->data[ring->cur];
2872 	desc = data->desc;
2873 	cmd = data->cmd;
2874 	bzero(desc, sizeof (*desc));
2875 	bzero(cmd, sizeof (*cmd));
2876 
2877 	mutex_enter(&sc->sc_tx_lock);
2878 	if (sc->sc_flags & IWH_F_SUSPEND) {
2879 		mutex_exit(&sc->sc_tx_lock);
2880 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2881 		    IEEE80211_FC0_TYPE_DATA) {
2882 			freemsg(mp);
2883 		}
2884 		err = IWH_FAIL;
2885 		goto exit;
2886 	}
2887 	if (ring->queued > ring->count - 64) {
2888 		IWH_DBG((IWH_DEBUG_TX, "iwh_send(): no txbuf\n"));
2889 
2890 		sc->sc_need_reschedule = 1;
2891 		mutex_exit(&sc->sc_tx_lock);
2892 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2893 		    IEEE80211_FC0_TYPE_DATA) {
2894 			freemsg(mp);
2895 		}
2896 		sc->sc_tx_nobuf++;
2897 		err = IWH_FAIL;
2898 		goto exit;
2899 	}
2900 
2901 	mutex_exit(&sc->sc_tx_lock);
2902 
2903 	hdrlen = sizeof (struct ieee80211_frame);
2904 
2905 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2906 	if (NULL == m) { /* can not alloc buf, drop this package */
2907 		cmn_err(CE_WARN, "iwh_send(): "
2908 		    "failed to allocate msgbuf\n");
2909 		freemsg(mp);
2910 		err = IWH_SUCCESS;
2911 		goto exit;
2912 	}
2913 
2914 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2915 		mblen = MBLKL(m0);
2916 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2917 		off += mblen;
2918 	}
2919 
2920 	m->b_wptr += off;
2921 
2922 	freemsg(mp);
2923 
2924 	wh = (struct ieee80211_frame *)m->b_rptr;
2925 
2926 	/*
2927 	 * determine send which AP or station in IBSS
2928 	 */
2929 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2930 	if (NULL == in) {
2931 		cmn_err(CE_WARN, "iwh_send(): "
2932 		    "failed to find tx node\n");
2933 		freemsg(m);
2934 		sc->sc_tx_err++;
2935 		err = IWH_SUCCESS;
2936 		goto exit;
2937 	}
2938 
2939 	(void) ieee80211_encap(ic, m, in);
2940 
2941 	cmd->hdr.type = REPLY_TX;
2942 	cmd->hdr.flags = 0;
2943 	cmd->hdr.qid = ring->qid;
2944 	cmd->hdr.idx = ring->cur;
2945 
2946 	tx = (iwh_tx_cmd_t *)cmd->data;
2947 	tx->tx_flags = 0;
2948 
2949 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2950 		tx->tx_flags &= ~(LE_32(TX_CMD_FLG_ACK_MSK));
2951 	} else {
2952 		tx->tx_flags |= LE_32(TX_CMD_FLG_ACK_MSK);
2953 	}
2954 
2955 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2956 		k = ieee80211_crypto_encap(ic, m);
2957 		if (NULL == k) {
2958 			freemsg(m);
2959 			sc->sc_tx_err++;
2960 			err = IWH_SUCCESS;
2961 			goto exit;
2962 		}
2963 
2964 		/* packet header may have moved, reset our local pointer */
2965 		wh = (struct ieee80211_frame *)m->b_rptr;
2966 	}
2967 
2968 	len = msgdsize(m);
2969 
2970 #ifdef DEBUG
2971 	if (iwh_dbg_flags & IWH_DEBUG_TX) {
2972 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2973 	}
2974 #endif
2975 
2976 	/*
2977 	 * pickup a rate
2978 	 */
2979 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2980 	    IEEE80211_FC0_TYPE_MGT) {
2981 		/*
2982 		 * mgmt frames are sent at 1M
2983 		 */
2984 		rate = in->in_rates.ir_rates[0];
2985 	} else {
2986 		/*
2987 		 * do it here for the software way rate control.
2988 		 * later for rate scaling in hardware.
2989 		 * maybe like the following, for management frame:
2990 		 * tx->initial_rate_index = LINK_QUAL_MAX_RETRY_NUM - 1;
2991 		 * for data frame:
2992 		 * tx->tx_flags |= (LE_32(TX_CMD_FLG_STA_RATE_MSK));
2993 		 * rate = in->in_rates.ir_rates[in->in_txrate];
2994 		 * tx->initial_rate_index = 1;
2995 		 *
2996 		 * now the txrate is determined in tx cmd flags, set to the
2997 		 * max value 54M for 11g and 11M for 11b.
2998 		 */
2999 
3000 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
3001 			rate = ic->ic_fixed_rate;
3002 		} else {
3003 			rate = in->in_rates.ir_rates[in->in_txrate];
3004 		}
3005 	}
3006 
3007 	rate &= IEEE80211_RATE_VAL;
3008 
3009 	IWH_DBG((IWH_DEBUG_TX, "tx rate[%d of %d] = %x",
3010 	    in->in_txrate, in->in_rates.ir_nrates, rate));
3011 
3012 	tx->tx_flags |= (LE_32(TX_CMD_FLG_SEQ_CTL_MSK));
3013 
3014 	len0 = roundup(4 + sizeof (iwh_tx_cmd_t) + hdrlen, 4);
3015 	if (len0 != (4 + sizeof (iwh_tx_cmd_t) + hdrlen)) {
3016 		tx->tx_flags |= TX_CMD_FLG_MH_PAD_MSK;
3017 	}
3018 
3019 	/*
3020 	 * retrieve destination node's id
3021 	 */
3022 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3023 		tx->sta_id = IWH_BROADCAST_ID;
3024 	} else {
3025 		tx->sta_id = IWH_AP_ID;
3026 	}
3027 
3028 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3029 	    IEEE80211_FC0_TYPE_MGT) {
3030 		/* tell h/w to set timestamp in probe responses */
3031 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3032 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
3033 			tx->tx_flags |= LE_32(TX_CMD_FLG_TSF_MSK);
3034 		}
3035 
3036 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3037 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
3038 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3039 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) {
3040 			tx->timeout.pm_frame_timeout = 3;
3041 		} else {
3042 			tx->timeout.pm_frame_timeout = 2;
3043 		}
3044 	} else {
3045 		tx->timeout.pm_frame_timeout = 0;
3046 	}
3047 
3048 	if (2 == rate || 4 == rate || 11 == rate || 22 == rate) {
3049 		masks |= RATE_MCS_CCK_MSK;
3050 	}
3051 
3052 	masks |= RATE_MCS_ANT_B_MSK;
3053 	tx->rate.r.rate_n_flags = (iwh_rate_to_plcp(rate) | masks);
3054 
3055 	IWH_DBG((IWH_DEBUG_TX, "tx flag = %x",
3056 	    tx->tx_flags));
3057 
3058 	tx->rts_retry_limit = 60;
3059 	tx->data_retry_limit = 15;
3060 
3061 	tx->stop_time.life_time  = LE_32(0xffffffff);
3062 
3063 	tx->len = LE_16(len);
3064 
3065 	tx->dram_lsb_ptr =
3066 	    data->paddr_cmd + 4 + offsetof(iwh_tx_cmd_t, scratch);
3067 	tx->dram_msb_ptr = 0;
3068 	tx->driver_txop = 0;
3069 	tx->next_frame_len = 0;
3070 
3071 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
3072 	m->b_rptr += hdrlen;
3073 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
3074 
3075 	IWH_DBG((IWH_DEBUG_TX, "sending data: qid=%d idx=%d len=%d",
3076 	    ring->qid, ring->cur, len));
3077 
3078 	/*
3079 	 * first segment includes the tx cmd plus the 802.11 header,
3080 	 * the second includes the remaining of the 802.11 frame.
3081 	 */
3082 	desc->val0 = LE_32(2 << 24);
3083 	desc->pa[0].tb1_addr = LE_32(data->paddr_cmd);
3084 	desc->pa[0].val1 = ((len0 << 4) & 0xfff0) |
3085 	    ((data->dma_data.cookie.dmac_address & 0xffff) << 16);
3086 	desc->pa[0].val2 =
3087 	    ((data->dma_data.cookie.dmac_address & 0xffff0000) >> 16) |
3088 	    ((len - hdrlen) << 20);
3089 	IWH_DBG((IWH_DEBUG_TX, "phy addr1 = 0x%x phy addr2 = 0x%x "
3090 	    "len1 = 0x%x, len2 = 0x%x val1 = 0x%x val2 = 0x%x",
3091 	    data->paddr_cmd, data->dma_data.cookie.dmac_address,
3092 	    len0, len - hdrlen, desc->pa[0].val1, desc->pa[0].val2));
3093 
3094 	mutex_enter(&sc->sc_tx_lock);
3095 	ring->queued++;
3096 	mutex_exit(&sc->sc_tx_lock);
3097 
3098 	/*
3099 	 * kick ring
3100 	 */
3101 	s_id = tx->sta_id;
3102 
3103 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3104 	    tfd_offset[ring->cur].val =
3105 	    (8 + len) | (s_id << 12);
3106 	if (ring->cur < IWH_MAX_WIN_SIZE) {
3107 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3108 		    tfd_offset[IWH_QUEUE_SIZE + ring->cur].val =
3109 		    (8 + len) | (s_id << 12);
3110 	}
3111 
3112 	IWH_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
3113 	IWH_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
3114 
3115 	ring->cur = (ring->cur + 1) % ring->count;
3116 	IWH_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3117 	freemsg(m);
3118 
3119 	/*
3120 	 * release node reference
3121 	 */
3122 	ieee80211_free_node(in);
3123 
3124 	ic->ic_stats.is_tx_bytes += len;
3125 	ic->ic_stats.is_tx_frags++;
3126 
3127 	if (0 == sc->sc_tx_timer) {
3128 		sc->sc_tx_timer = 10;
3129 	}
3130 
3131 exit:
3132 	return (err);
3133 }
3134 
3135 /*
3136  * invoked by GLD to deal with IOCTL affaires
3137  */
3138 static void
3139 iwh_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
3140 {
3141 	iwh_sc_t	*sc  = (iwh_sc_t *)arg;
3142 	ieee80211com_t	*ic = &sc->sc_ic;
3143 	int		err;
3144 
3145 	mutex_enter(&sc->sc_glock);
3146 	if (sc->sc_flags & (IWH_F_SUSPEND | IWH_F_HW_ERR_RECOVER)) {
3147 		miocnak(wq, mp, 0, ENXIO);
3148 		mutex_exit(&sc->sc_glock);
3149 		return;
3150 	}
3151 	mutex_exit(&sc->sc_glock);
3152 
3153 	err = ieee80211_ioctl(ic, wq, mp);
3154 	if (ENETRESET == err) {
3155 		/*
3156 		 * This is special for the hidden AP connection.
3157 		 * In any case, we should make sure only one 'scan'
3158 		 * in the driver for a 'connect' CLI command. So
3159 		 * when connecting to a hidden AP, the scan is just
3160 		 * sent out to the air when we know the desired
3161 		 * essid of the AP we want to connect.
3162 		 */
3163 		if (ic->ic_des_esslen) {
3164 			if (sc->sc_flags & IWH_F_RUNNING) {
3165 				iwh_m_stop(sc);
3166 				(void) iwh_m_start(sc);
3167 				(void) ieee80211_new_state(ic,
3168 				    IEEE80211_S_SCAN, -1);
3169 			}
3170 		}
3171 	}
3172 }
3173 
3174 /*
3175  * Call back functions for get/set proporty
3176  */
3177 static int
3178 iwh_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3179     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
3180 {
3181 	iwh_sc_t		*sc = (iwh_sc_t *)arg;
3182 	int			err = 0;
3183 
3184 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
3185 	    pr_flags, wldp_length, wldp_buf, perm);
3186 
3187 	return (err);
3188 }
3189 
3190 static int
3191 iwh_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3192     uint_t wldp_length, const void *wldp_buf)
3193 {
3194 	iwh_sc_t		*sc = (iwh_sc_t *)arg;
3195 	ieee80211com_t		*ic = &sc->sc_ic;
3196 	int			err;
3197 
3198 	mutex_enter(&sc->sc_glock);
3199 	if (sc->sc_flags & (IWH_F_SUSPEND | IWH_F_HW_ERR_RECOVER)) {
3200 		mutex_exit(&sc->sc_glock);
3201 		return (ENXIO);
3202 	}
3203 	mutex_exit(&sc->sc_glock);
3204 
3205 	err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
3206 	    wldp_buf);
3207 
3208 	if (err == ENETRESET) {
3209 		if (ic->ic_des_esslen) {
3210 			if (sc->sc_flags & IWH_F_RUNNING) {
3211 				iwh_m_stop(sc);
3212 				(void) iwh_m_start(sc);
3213 				(void) ieee80211_new_state(ic,
3214 				    IEEE80211_S_SCAN, -1);
3215 			}
3216 		}
3217 		err = 0;
3218 	}
3219 	return (err);
3220 }
3221 
3222 /*
3223  * invoked by GLD supply statistics NIC and driver
3224  */
3225 static int
3226 iwh_m_stat(void *arg, uint_t stat, uint64_t *val)
3227 {
3228 	iwh_sc_t	*sc  = (iwh_sc_t *)arg;
3229 	ieee80211com_t	*ic = &sc->sc_ic;
3230 	ieee80211_node_t *in;
3231 
3232 	mutex_enter(&sc->sc_glock);
3233 
3234 	switch (stat) {
3235 	case MAC_STAT_IFSPEED:
3236 		in = ic->ic_bss;
3237 		*val = ((IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) ?
3238 		    IEEE80211_RATE(in->in_txrate) :
3239 		    ic->ic_fixed_rate) / 2 * 1000000;
3240 		break;
3241 
3242 	case MAC_STAT_NOXMTBUF:
3243 		*val = sc->sc_tx_nobuf;
3244 		break;
3245 
3246 	case MAC_STAT_NORCVBUF:
3247 		*val = sc->sc_rx_nobuf;
3248 		break;
3249 
3250 	case MAC_STAT_IERRORS:
3251 		*val = sc->sc_rx_err;
3252 		break;
3253 
3254 	case MAC_STAT_RBYTES:
3255 		*val = ic->ic_stats.is_rx_bytes;
3256 		break;
3257 
3258 	case MAC_STAT_IPACKETS:
3259 		*val = ic->ic_stats.is_rx_frags;
3260 		break;
3261 
3262 	case MAC_STAT_OBYTES:
3263 		*val = ic->ic_stats.is_tx_bytes;
3264 		break;
3265 
3266 	case MAC_STAT_OPACKETS:
3267 		*val = ic->ic_stats.is_tx_frags;
3268 		break;
3269 
3270 	case MAC_STAT_OERRORS:
3271 	case WIFI_STAT_TX_FAILED:
3272 		*val = sc->sc_tx_err;
3273 		break;
3274 
3275 	case WIFI_STAT_TX_RETRANS:
3276 		*val = sc->sc_tx_retries;
3277 		break;
3278 
3279 	case WIFI_STAT_FCS_ERRORS:
3280 	case WIFI_STAT_WEP_ERRORS:
3281 	case WIFI_STAT_TX_FRAGS:
3282 	case WIFI_STAT_MCAST_TX:
3283 	case WIFI_STAT_RTS_SUCCESS:
3284 	case WIFI_STAT_RTS_FAILURE:
3285 	case WIFI_STAT_ACK_FAILURE:
3286 	case WIFI_STAT_RX_FRAGS:
3287 	case WIFI_STAT_MCAST_RX:
3288 	case WIFI_STAT_RX_DUPS:
3289 		mutex_exit(&sc->sc_glock);
3290 		return (ieee80211_stat(ic, stat, val));
3291 
3292 	default:
3293 		mutex_exit(&sc->sc_glock);
3294 		return (ENOTSUP);
3295 	}
3296 
3297 	mutex_exit(&sc->sc_glock);
3298 
3299 	return (IWH_SUCCESS);
3300 
3301 }
3302 
3303 /*
3304  * invoked by GLD to start or open NIC
3305  */
3306 static int
3307 iwh_m_start(void *arg)
3308 {
3309 	iwh_sc_t *sc = (iwh_sc_t *)arg;
3310 	ieee80211com_t	*ic = &sc->sc_ic;
3311 	int err;
3312 
3313 	err = iwh_init(sc);
3314 
3315 	if (err != IWH_SUCCESS) {
3316 		/*
3317 		 * The hw init err(eg. RF is OFF). Return Success to make
3318 		 * the 'plumb' succeed. The iwh_thread() tries to re-init
3319 		 * background.
3320 		 */
3321 		mutex_enter(&sc->sc_glock);
3322 		sc->sc_flags |= IWH_F_HW_ERR_RECOVER;
3323 		mutex_exit(&sc->sc_glock);
3324 		return (IWH_SUCCESS);
3325 	}
3326 
3327 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3328 
3329 	mutex_enter(&sc->sc_glock);
3330 	sc->sc_flags |= IWH_F_RUNNING;
3331 	mutex_exit(&sc->sc_glock);
3332 
3333 	return (IWH_SUCCESS);
3334 }
3335 
3336 /*
3337  * invoked by GLD to stop or down NIC
3338  */
3339 static void
3340 iwh_m_stop(void *arg)
3341 {
3342 	iwh_sc_t *sc = (iwh_sc_t *)arg;
3343 	ieee80211com_t	*ic = &sc->sc_ic;
3344 
3345 	iwh_stop(sc);
3346 
3347 	/*
3348 	 * release buffer for calibration
3349 	 */
3350 	iwh_release_calib_buffer(sc);
3351 
3352 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3353 
3354 	mutex_enter(&sc->sc_mt_lock);
3355 
3356 	sc->sc_flags &= ~IWH_F_HW_ERR_RECOVER;
3357 	sc->sc_flags &= ~IWH_F_RATE_AUTO_CTL;
3358 	mutex_exit(&sc->sc_mt_lock);
3359 	mutex_enter(&sc->sc_glock);
3360 	sc->sc_flags &= ~IWH_F_RUNNING;
3361 	sc->sc_flags &= ~IWH_F_SCANNING;
3362 
3363 	mutex_exit(&sc->sc_glock);
3364 }
3365 
3366 /*
3367  * invoked by GLD to configure NIC
3368  */
3369 static int
3370 iwh_m_unicst(void *arg, const uint8_t *macaddr)
3371 {
3372 	iwh_sc_t *sc = (iwh_sc_t *)arg;
3373 	ieee80211com_t	*ic = &sc->sc_ic;
3374 	int err;
3375 
3376 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
3377 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
3378 		mutex_enter(&sc->sc_glock);
3379 		err = iwh_config(sc);
3380 		mutex_exit(&sc->sc_glock);
3381 		if (err != IWH_SUCCESS) {
3382 			cmn_err(CE_WARN, "iwh_m_unicst(): "
3383 			    "failed to configure device\n");
3384 			goto fail;
3385 		}
3386 	}
3387 
3388 	return (IWH_SUCCESS);
3389 
3390 fail:
3391 	return (err);
3392 }
3393 
3394 static int
3395 /* LINTED: argument unused in function: arg add m */
3396 iwh_m_multicst(void *arg, boolean_t add, const uint8_t *m)
3397 {
3398 	return (IWH_SUCCESS);
3399 }
3400 
3401 static int
3402 /* LINTED: argument unused in function: arg on */
3403 iwh_m_promisc(void *arg, boolean_t on)
3404 {
3405 	return (IWH_SUCCESS);
3406 }
3407 
3408 /*
3409  * kernel thread to deal with exceptional situation
3410  */
3411 static void
3412 iwh_thread(iwh_sc_t *sc)
3413 {
3414 	ieee80211com_t	*ic = &sc->sc_ic;
3415 	clock_t clk;
3416 	int err, n = 0, timeout = 0;
3417 	uint32_t tmp;
3418 #ifdef	DEBUG
3419 	int times = 0;
3420 #endif
3421 
3422 	mutex_enter(&sc->sc_mt_lock);
3423 
3424 	while (sc->sc_mf_thread_switch) {
3425 		tmp = IWH_READ(sc, CSR_GP_CNTRL);
3426 		if (tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) {
3427 			sc->sc_flags &= ~IWH_F_RADIO_OFF;
3428 		} else {
3429 			sc->sc_flags |= IWH_F_RADIO_OFF;
3430 		}
3431 
3432 		/*
3433 		 * If  in SUSPEND or the RF is OFF, do nothing.
3434 		 */
3435 		if ((sc->sc_flags & IWH_F_SUSPEND) ||
3436 		    (sc->sc_flags & IWH_F_RADIO_OFF)) {
3437 			mutex_exit(&sc->sc_mt_lock);
3438 			delay(drv_usectohz(100000));
3439 			mutex_enter(&sc->sc_mt_lock);
3440 			continue;
3441 		}
3442 
3443 		/*
3444 		 * recovery fatal error
3445 		 */
3446 		if (ic->ic_mach &&
3447 		    (sc->sc_flags & IWH_F_HW_ERR_RECOVER)) {
3448 
3449 			IWH_DBG((IWH_DEBUG_FW,
3450 			    "iwh_thread(): "
3451 			    "try to recover fatal hw error: %d\n", times++));
3452 
3453 			iwh_stop(sc);
3454 
3455 			mutex_exit(&sc->sc_mt_lock);
3456 
3457 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3458 			delay(drv_usectohz(2000000 + n*500000));
3459 
3460 			mutex_enter(&sc->sc_mt_lock);
3461 
3462 			err = iwh_init(sc);
3463 			if (err != IWH_SUCCESS) {
3464 				n++;
3465 				if (n < 20) {
3466 					continue;
3467 				}
3468 			}
3469 
3470 			n = 0;
3471 			if (!err) {
3472 				sc->sc_flags |= IWH_F_RUNNING;
3473 			}
3474 
3475 			sc->sc_flags &= ~IWH_F_HW_ERR_RECOVER;
3476 
3477 			mutex_exit(&sc->sc_mt_lock);
3478 
3479 			delay(drv_usectohz(2000000));
3480 
3481 			if (sc->sc_ostate != IEEE80211_S_INIT) {
3482 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
3483 			}
3484 
3485 			mutex_enter(&sc->sc_mt_lock);
3486 		}
3487 
3488 		if (ic->ic_mach && (sc->sc_flags & IWH_F_LAZY_RESUME)) {
3489 			IWH_DBG((IWH_DEBUG_RESUME,
3490 			    "iwh_thread(): "
3491 			    "lazy resume\n"));
3492 			sc->sc_flags &= ~IWH_F_LAZY_RESUME;
3493 			mutex_exit(&sc->sc_mt_lock);
3494 			/*
3495 			 * NB: under WPA mode, this call hangs (door problem?)
3496 			 * when called in iwh_attach() and iwh_detach() while
3497 			 * system is in the procedure of CPR. To be safe, let
3498 			 * the thread do this.
3499 			 */
3500 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3501 			mutex_enter(&sc->sc_mt_lock);
3502 		}
3503 
3504 		if (ic->ic_mach &&
3505 		    (sc->sc_flags & IWH_F_SCANNING) && sc->sc_scan_pending) {
3506 			IWH_DBG((IWH_DEBUG_SCAN,
3507 			    "iwh_thread(): "
3508 			    "wait for probe response\n"));
3509 
3510 			sc->sc_scan_pending--;
3511 			mutex_exit(&sc->sc_mt_lock);
3512 			delay(drv_usectohz(200000));
3513 			if (sc->sc_flags & IWH_F_SCANNING)
3514 				ieee80211_next_scan(ic);
3515 			mutex_enter(&sc->sc_mt_lock);
3516 		}
3517 
3518 		/*
3519 		 * rate ctl
3520 		 */
3521 		if (ic->ic_mach &&
3522 		    (sc->sc_flags & IWH_F_RATE_AUTO_CTL)) {
3523 			clk = ddi_get_lbolt();
3524 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
3525 				iwh_amrr_timeout(sc);
3526 			}
3527 		}
3528 
3529 		mutex_exit(&sc->sc_mt_lock);
3530 		delay(drv_usectohz(100000));
3531 		mutex_enter(&sc->sc_mt_lock);
3532 
3533 		if (sc->sc_tx_timer) {
3534 			timeout++;
3535 			if (10 == timeout) {
3536 				sc->sc_tx_timer--;
3537 				if (0 == sc->sc_tx_timer) {
3538 					sc->sc_flags |= IWH_F_HW_ERR_RECOVER;
3539 					sc->sc_ostate = IEEE80211_S_RUN;
3540 					IWH_DBG((IWH_DEBUG_FW,
3541 					    "iwh_thread(): try to recover from"
3542 					    " 'send fail\n"));
3543 				}
3544 				timeout = 0;
3545 			}
3546 		}
3547 
3548 	}
3549 
3550 	sc->sc_mf_thread = NULL;
3551 	cv_signal(&sc->sc_mt_cv);
3552 	mutex_exit(&sc->sc_mt_lock);
3553 }
3554 
3555 
3556 /*
3557  * Send a command to the ucode.
3558  */
3559 static int
3560 iwh_cmd(iwh_sc_t *sc, int code, const void *buf, int size, int async)
3561 {
3562 	iwh_tx_ring_t *ring = &sc->sc_txq[IWH_CMD_QUEUE_NUM];
3563 	iwh_tx_desc_t *desc;
3564 	iwh_cmd_t *cmd;
3565 
3566 	ASSERT(size <= sizeof (cmd->data));
3567 	ASSERT(mutex_owned(&sc->sc_glock));
3568 
3569 	IWH_DBG((IWH_DEBUG_CMD, "iwh_cmd() code[%d]", code));
3570 	desc = ring->data[ring->cur].desc;
3571 	cmd = ring->data[ring->cur].cmd;
3572 
3573 	cmd->hdr.type = (uint8_t)code;
3574 	cmd->hdr.flags = 0;
3575 	cmd->hdr.qid = ring->qid;
3576 	cmd->hdr.idx = ring->cur;
3577 	(void) memcpy(cmd->data, buf, size);
3578 	(void) memset(desc, 0, sizeof (*desc));
3579 
3580 	desc->val0 = LE_32(1 << 24);
3581 	desc->pa[0].tb1_addr =
3582 	    (uint32_t)(ring->data[ring->cur].paddr_cmd & 0xffffffff);
3583 	desc->pa[0].val1 = ((4 + size) << 4) & 0xfff0;
3584 
3585 	/*
3586 	 * kick cmd ring XXX
3587 	 */
3588 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3589 	    tfd_offset[ring->cur].val = 8;
3590 	if (ring->cur < IWH_MAX_WIN_SIZE) {
3591 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3592 		    tfd_offset[IWH_QUEUE_SIZE + ring->cur].val = 8;
3593 	}
3594 	ring->cur = (ring->cur + 1) % ring->count;
3595 	IWH_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3596 
3597 	if (async) {
3598 		return (IWH_SUCCESS);
3599 	} else {
3600 		clock_t clk;
3601 		sc->sc_flags &= ~IWH_F_CMD_DONE;
3602 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
3603 		while (!(sc->sc_flags & IWH_F_CMD_DONE)) {
3604 			if (cv_timedwait(&sc->sc_cmd_cv,
3605 			    &sc->sc_glock, clk) < 0) {
3606 				break;
3607 			}
3608 		}
3609 
3610 		if (sc->sc_flags & IWH_F_CMD_DONE) {
3611 			return (IWH_SUCCESS);
3612 		} else {
3613 			return (IWH_FAIL);
3614 		}
3615 	}
3616 }
3617 
3618 /*
3619  * require ucode seting led of NIC
3620  */
3621 static void
3622 iwh_set_led(iwh_sc_t *sc, uint8_t id, uint8_t off, uint8_t on)
3623 {
3624 	iwh_led_cmd_t led;
3625 
3626 	led.interval = LE_32(100000);	/* unit: 100ms */
3627 	led.id = id;
3628 	led.off = off;
3629 	led.on = on;
3630 
3631 	(void) iwh_cmd(sc, REPLY_LEDS_CMD, &led, sizeof (led), 1);
3632 }
3633 
3634 /*
3635  * necessary setting to NIC before authentication
3636  */
3637 static int
3638 iwh_hw_set_before_auth(iwh_sc_t *sc)
3639 {
3640 	ieee80211com_t *ic = &sc->sc_ic;
3641 	ieee80211_node_t *in = ic->ic_bss;
3642 	iwh_add_sta_t node;
3643 	iwh_link_quality_cmd_t link_quality;
3644 	struct ieee80211_rateset rs;
3645 	uint16_t masks = 0, rate;
3646 	int i, err;
3647 
3648 	/*
3649 	 * update adapter's configuration according
3650 	 * the info of target AP
3651 	 */
3652 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
3653 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
3654 	if (IEEE80211_MODE_11B == ic->ic_curmode) {
3655 		sc->sc_config.cck_basic_rates  = 0x03;
3656 		sc->sc_config.ofdm_basic_rates = 0;
3657 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
3658 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
3659 		sc->sc_config.cck_basic_rates  = 0;
3660 		sc->sc_config.ofdm_basic_rates = 0x15;
3661 	} else { /* assume 802.11b/g */
3662 		sc->sc_config.cck_basic_rates  = 0x0f;
3663 		sc->sc_config.ofdm_basic_rates = 0xff;
3664 	}
3665 
3666 	sc->sc_config.flags &= ~LE_32(RXON_FLG_SHORT_PREAMBLE_MSK |
3667 	    RXON_FLG_SHORT_SLOT_MSK);
3668 
3669 	if (ic->ic_flags & IEEE80211_F_SHSLOT) {
3670 		sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_SLOT_MSK);
3671 	} else {
3672 		sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_SLOT_MSK);
3673 	}
3674 
3675 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
3676 		sc->sc_config.flags |= LE_32(RXON_FLG_SHORT_PREAMBLE_MSK);
3677 	} else {
3678 		sc->sc_config.flags &= LE_32(~RXON_FLG_SHORT_PREAMBLE_MSK);
3679 	}
3680 
3681 	IWH_DBG((IWH_DEBUG_80211, "config chan %d flags %x "
3682 	    "filter_flags %x  cck %x ofdm %x"
3683 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
3684 	    sc->sc_config.chan, sc->sc_config.flags,
3685 	    sc->sc_config.filter_flags,
3686 	    sc->sc_config.cck_basic_rates, sc->sc_config.ofdm_basic_rates,
3687 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
3688 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
3689 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
3690 
3691 	err = iwh_cmd(sc, REPLY_RXON, &sc->sc_config,
3692 	    sizeof (iwh_rxon_cmd_t), 1);
3693 	if (err != IWH_SUCCESS) {
3694 		cmn_err(CE_WARN, "iwh_hw_set_before_auth(): "
3695 		    "failed to config chan%d\n", sc->sc_config.chan);
3696 		return (err);
3697 	}
3698 
3699 	err = iwh_tx_power_table(sc, 1);
3700 	if (err != IWH_SUCCESS) {
3701 		cmn_err(CE_WARN, "iwh_config(): "
3702 		    "failed to set tx power table.\n");
3703 		return (err);
3704 	}
3705 
3706 	/*
3707 	 * add default AP node
3708 	 */
3709 	(void) memset(&node, 0, sizeof (node));
3710 	IEEE80211_ADDR_COPY(node.sta.addr, in->in_bssid);
3711 	node.mode = 0;
3712 	node.sta.sta_id = IWH_AP_ID;
3713 	node.station_flags = 0;
3714 	err = iwh_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 1);
3715 	if (err != IWH_SUCCESS) {
3716 		cmn_err(CE_WARN, "iwh_hw_set_before_auth(): "
3717 		    "failed to add BSS node\n");
3718 		return (err);
3719 	}
3720 
3721 	/*
3722 	 * TX_LINK_QUALITY cmd
3723 	 */
3724 	(void) memset(&link_quality, 0, sizeof (link_quality));
3725 	rs = ic->ic_sup_rates[ieee80211_chan2mode(ic, ic->ic_curchan)];
3726 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
3727 		if (i < rs.ir_nrates) {
3728 			rate = rs.ir_rates[rs.ir_nrates - i];
3729 		} else {
3730 			rate = 2;
3731 		}
3732 
3733 		if (2 == rate || 4 == rate || 11 == rate || 22 == rate) {
3734 			masks |= RATE_MCS_CCK_MSK;
3735 		}
3736 		masks |= RATE_MCS_ANT_B_MSK;
3737 		masks &= ~RATE_MCS_ANT_A_MSK;
3738 		link_quality.rate_n_flags[i] =
3739 		    iwh_rate_to_plcp(rate) | masks;
3740 	}
3741 
3742 	link_quality.general_params.single_stream_ant_msk = 2;
3743 	link_quality.general_params.dual_stream_ant_msk = 3;
3744 	link_quality.agg_params.agg_dis_start_th = 3;
3745 	link_quality.agg_params.agg_time_limit = LE_16(4000);
3746 	link_quality.sta_id = IWH_AP_ID;
3747 	err = iwh_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
3748 	    sizeof (link_quality), 1);
3749 	if (err != IWH_SUCCESS) {
3750 		cmn_err(CE_WARN, "iwh_hw_set_before_auth(): "
3751 		    "failed to config link quality table\n");
3752 		return (err);
3753 	}
3754 
3755 	return (IWH_SUCCESS);
3756 }
3757 
3758 /*
3759  * Send a scan request(assembly scan cmd) to the firmware.
3760  */
3761 static int
3762 iwh_scan(iwh_sc_t *sc)
3763 {
3764 	ieee80211com_t *ic = &sc->sc_ic;
3765 	iwh_tx_ring_t *ring = &sc->sc_txq[IWH_CMD_QUEUE_NUM];
3766 	iwh_tx_desc_t *desc;
3767 	iwh_tx_data_t *data;
3768 	iwh_cmd_t *cmd;
3769 	iwh_scan_hdr_t *hdr;
3770 	iwh_scan_chan_t *chan;
3771 	struct ieee80211_frame *wh;
3772 	ieee80211_node_t *in = ic->ic_bss;
3773 	uint8_t essid[IEEE80211_NWID_LEN+1];
3774 	struct ieee80211_rateset *rs;
3775 	enum ieee80211_phymode mode;
3776 	uint8_t *frm;
3777 	int i, pktlen, nrates;
3778 
3779 	data = &ring->data[ring->cur];
3780 	desc = data->desc;
3781 	cmd = (iwh_cmd_t *)data->dma_data.mem_va;
3782 
3783 	cmd->hdr.type = REPLY_SCAN_CMD;
3784 	cmd->hdr.flags = 0;
3785 	cmd->hdr.qid = ring->qid;
3786 	cmd->hdr.idx = ring->cur | 0x40;
3787 
3788 	hdr = (iwh_scan_hdr_t *)cmd->data;
3789 	(void) memset(hdr, 0, sizeof (iwh_scan_hdr_t));
3790 	hdr->nchan = 1;
3791 	hdr->quiet_time = LE_16(50);
3792 	hdr->quiet_plcp_th = LE_16(1);
3793 
3794 	hdr->flags = RXON_FLG_BAND_24G_MSK;
3795 	hdr->rx_chain = RXON_RX_CHAIN_DRIVER_FORCE_MSK |
3796 	    LE_16((0x7 << RXON_RX_CHAIN_VALID_POS) |
3797 	    (0x2 << RXON_RX_CHAIN_FORCE_SEL_POS) |
3798 	    (0x2 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
3799 
3800 	hdr->tx_cmd.tx_flags = LE_32(TX_CMD_FLG_SEQ_CTL_MSK);
3801 	hdr->tx_cmd.sta_id = IWH_BROADCAST_ID;
3802 	hdr->tx_cmd.stop_time.life_time = 0xffffffff;
3803 	hdr->tx_cmd.rate.r.rate_n_flags = iwh_rate_to_plcp(2);
3804 	hdr->tx_cmd.rate.r.rate_n_flags |=
3805 	    (RATE_MCS_ANT_B_MSK |RATE_MCS_CCK_MSK);
3806 	hdr->direct_scan[0].len = ic->ic_des_esslen;
3807 	hdr->direct_scan[0].id  = IEEE80211_ELEMID_SSID;
3808 
3809 	hdr->filter_flags = RXON_FILTER_ACCEPT_GRP_MSK |
3810 	    RXON_FILTER_BCON_AWARE_MSK;
3811 
3812 	if (ic->ic_des_esslen) {
3813 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
3814 		essid[ic->ic_des_esslen] = '\0';
3815 		IWH_DBG((IWH_DEBUG_SCAN, "directed scan %s\n", essid));
3816 
3817 		bcopy(ic->ic_des_essid, hdr->direct_scan[0].ssid,
3818 		    ic->ic_des_esslen);
3819 	} else {
3820 		bzero(hdr->direct_scan[0].ssid,
3821 		    sizeof (hdr->direct_scan[0].ssid));
3822 	}
3823 
3824 	/*
3825 	 * a probe request frame is required after the REPLY_SCAN_CMD
3826 	 */
3827 	wh = (struct ieee80211_frame *)(hdr + 1);
3828 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3829 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3830 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3831 	(void) memset(wh->i_addr1, 0xff, 6);
3832 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
3833 	(void) memset(wh->i_addr3, 0xff, 6);
3834 	*(uint16_t *)&wh->i_dur[0] = 0;
3835 	*(uint16_t *)&wh->i_seq[0] = 0;
3836 
3837 	frm = (uint8_t *)(wh + 1);
3838 
3839 	/*
3840 	 * essid IE
3841 	 */
3842 	if (in->in_esslen) {
3843 		bcopy(in->in_essid, essid, in->in_esslen);
3844 		essid[in->in_esslen] = '\0';
3845 		IWH_DBG((IWH_DEBUG_SCAN, "probe with ESSID %s\n",
3846 		    essid));
3847 	}
3848 	*frm++ = IEEE80211_ELEMID_SSID;
3849 	*frm++ = in->in_esslen;
3850 	(void) memcpy(frm, in->in_essid, in->in_esslen);
3851 	frm += in->in_esslen;
3852 
3853 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
3854 	rs = &ic->ic_sup_rates[mode];
3855 
3856 	/*
3857 	 * supported rates IE
3858 	 */
3859 	*frm++ = IEEE80211_ELEMID_RATES;
3860 	nrates = rs->ir_nrates;
3861 	if (nrates > IEEE80211_RATE_SIZE) {
3862 		nrates = IEEE80211_RATE_SIZE;
3863 	}
3864 
3865 	*frm++ = (uint8_t)nrates;
3866 	(void) memcpy(frm, rs->ir_rates, nrates);
3867 	frm += nrates;
3868 
3869 	/*
3870 	 * supported xrates IE
3871 	 */
3872 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
3873 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
3874 		*frm++ = IEEE80211_ELEMID_XRATES;
3875 		*frm++ = (uint8_t)nrates;
3876 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
3877 		frm += nrates;
3878 	}
3879 
3880 	/*
3881 	 * optionnal IE (usually for wpa)
3882 	 */
3883 	if (ic->ic_opt_ie != NULL) {
3884 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
3885 		frm += ic->ic_opt_ie_len;
3886 	}
3887 
3888 	/* setup length of probe request */
3889 	hdr->tx_cmd.len = _PTRDIFF(frm, wh);
3890 	hdr->len = hdr->nchan * sizeof (iwh_scan_chan_t) +
3891 	    hdr->tx_cmd.len + sizeof (iwh_scan_hdr_t);
3892 
3893 	/*
3894 	 * the attribute of the scan channels are required after the probe
3895 	 * request frame.
3896 	 */
3897 	chan = (iwh_scan_chan_t *)frm;
3898 	for (i = 1; i <= hdr->nchan; i++, chan++) {
3899 		if (ic->ic_des_esslen) {
3900 			chan->type = 3;
3901 		} else {
3902 			chan->type = 1;
3903 		}
3904 
3905 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3906 		chan->tpc.tx_gain = 0x28;
3907 		chan->tpc.dsp_atten = 110;
3908 		chan->active_dwell = 50;
3909 		chan->passive_dwell = 120;
3910 
3911 		frm += sizeof (iwh_scan_chan_t);
3912 	}
3913 
3914 	pktlen = _PTRDIFF(frm, cmd);
3915 
3916 	(void) memset(desc, 0, sizeof (*desc));
3917 	desc->val0 = LE_32(1 << 24);
3918 	desc->pa[0].tb1_addr =
3919 	    (uint32_t)(data->dma_data.cookie.dmac_address & 0xffffffff);
3920 	desc->pa[0].val1 = (pktlen << 4) & 0xfff0;
3921 
3922 	/*
3923 	 * maybe for cmd, filling the byte cnt table is not necessary.
3924 	 * anyway, we fill it here.
3925 	 */
3926 	sc->sc_shared->queues_byte_cnt_tbls[ring->qid]
3927 	    .tfd_offset[ring->cur].val = 8;
3928 	if (ring->cur < IWH_MAX_WIN_SIZE) {
3929 		sc->sc_shared->queues_byte_cnt_tbls[ring->qid].
3930 		    tfd_offset[IWH_QUEUE_SIZE + ring->cur].val = 8;
3931 	}
3932 
3933 	/*
3934 	 * kick cmd ring
3935 	 */
3936 	ring->cur = (ring->cur + 1) % ring->count;
3937 	IWH_WRITE(sc, HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3938 
3939 	return (IWH_SUCCESS);
3940 }
3941 
3942 /*
3943  * configure NIC by using ucode commands after loading ucode.
3944  */
3945 static int
3946 iwh_config(iwh_sc_t *sc)
3947 {
3948 	ieee80211com_t *ic = &sc->sc_ic;
3949 	iwh_powertable_cmd_t powertable;
3950 	iwh_bt_cmd_t bt;
3951 	iwh_add_sta_t node;
3952 	iwh_rem_sta_t	rm_sta;
3953 	const uint8_t bcast[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
3954 	iwh_link_quality_cmd_t link_quality;
3955 	int i, err;
3956 	uint16_t masks = 0;
3957 
3958 	/*
3959 	 * set power mode. Disable power management at present, do it later
3960 	 */
3961 	(void) memset(&powertable, 0, sizeof (powertable));
3962 	powertable.flags = LE_16(0x8);
3963 	err = iwh_cmd(sc, POWER_TABLE_CMD, &powertable,
3964 	    sizeof (powertable), 0);
3965 	if (err != IWH_SUCCESS) {
3966 		cmn_err(CE_WARN, "iwh_config(): "
3967 		    "failed to set power mode\n");
3968 		return (err);
3969 	}
3970 
3971 	/*
3972 	 * configure bt coexistence
3973 	 */
3974 	(void) memset(&bt, 0, sizeof (bt));
3975 	bt.flags = 3;
3976 	bt.lead_time = 0xaa;
3977 	bt.max_kill = 1;
3978 	err = iwh_cmd(sc, REPLY_BT_CONFIG, &bt,
3979 	    sizeof (bt), 0);
3980 	if (err != IWH_SUCCESS) {
3981 		cmn_err(CE_WARN, "iwh_config(): "
3982 		    "failed to configurate bt coexistence\n");
3983 		return (err);
3984 	}
3985 
3986 	/*
3987 	 * configure rxon
3988 	 */
3989 	(void) memset(&sc->sc_config, 0, sizeof (iwh_rxon_cmd_t));
3990 	IEEE80211_ADDR_COPY(sc->sc_config.node_addr, ic->ic_macaddr);
3991 	IEEE80211_ADDR_COPY(sc->sc_config.wlap_bssid, ic->ic_macaddr);
3992 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3993 	sc->sc_config.flags = RXON_FLG_BAND_24G_MSK;
3994 
3995 	switch (ic->ic_opmode) {
3996 	case IEEE80211_M_STA:
3997 		sc->sc_config.dev_type = RXON_DEV_TYPE_ESS;
3998 		sc->sc_config.filter_flags |=
3999 		    LE_32(RXON_FILTER_DIS_DECRYPT_MSK |
4000 		    RXON_FILTER_DIS_GRP_DECRYPT_MSK);
4001 		break;
4002 
4003 	case IEEE80211_M_IBSS:
4004 	case IEEE80211_M_AHDEMO:
4005 		sc->sc_config.dev_type = RXON_DEV_TYPE_IBSS;
4006 
4007 		sc->sc_config.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
4008 		sc->sc_config.filter_flags = LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
4009 		    RXON_FILTER_DIS_DECRYPT_MSK |
4010 		    RXON_FILTER_DIS_GRP_DECRYPT_MSK);
4011 		break;
4012 
4013 	case IEEE80211_M_HOSTAP:
4014 		sc->sc_config.dev_type = RXON_DEV_TYPE_AP;
4015 		break;
4016 
4017 	case IEEE80211_M_MONITOR:
4018 		sc->sc_config.dev_type = RXON_DEV_TYPE_SNIFFER;
4019 		sc->sc_config.filter_flags |= LE_32(RXON_FILTER_ACCEPT_GRP_MSK |
4020 		    RXON_FILTER_CTL2HOST_MSK | RXON_FILTER_PROMISC_MSK);
4021 		break;
4022 	}
4023 
4024 	sc->sc_config.cck_basic_rates  = 0x0f;
4025 	sc->sc_config.ofdm_basic_rates = 0xff;
4026 
4027 	/*
4028 	 * set antenna
4029 	 */
4030 	sc->sc_config.rx_chain = RXON_RX_CHAIN_DRIVER_FORCE_MSK |
4031 	    LE_16((0x7 << RXON_RX_CHAIN_VALID_POS) |
4032 	    (0x2 << RXON_RX_CHAIN_FORCE_SEL_POS) |
4033 	    (0x2 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS));
4034 
4035 	err = iwh_cmd(sc, REPLY_RXON, &sc->sc_config,
4036 	    sizeof (iwh_rxon_cmd_t), 0);
4037 	if (err != IWH_SUCCESS) {
4038 		cmn_err(CE_WARN, "iwh_config(): "
4039 		    "failed to set configure command\n");
4040 		return (err);
4041 	}
4042 
4043 	/*
4044 	 * remove all nodes in NIC
4045 	 */
4046 	(void) memset(&rm_sta, 0, sizeof (rm_sta));
4047 	rm_sta.num_sta = 1;
4048 	(void) memcpy(rm_sta.addr, bcast, 6);
4049 
4050 	err = iwh_cmd(sc, REPLY_REMOVE_STA, &rm_sta, sizeof (iwh_rem_sta_t), 0);
4051 	if (err != IWH_SUCCESS) {
4052 		cmn_err(CE_WARN, "iwh_config(): "
4053 		    "failed to remove broadcast node in hardware.\n");
4054 		return (err);
4055 	}
4056 
4057 	/*
4058 	 * configure TX pwoer table
4059 	 */
4060 	err = iwh_tx_power_table(sc, 0);
4061 	if (err != IWH_SUCCESS) {
4062 		cmn_err(CE_WARN, "iwh_config(): "
4063 		    "failed to set tx power table.\n");
4064 		return (err);
4065 	}
4066 
4067 	/*
4068 	 * add broadcast node so that we can send broadcast frame
4069 	 */
4070 	(void) memset(&node, 0, sizeof (node));
4071 	(void) memset(node.sta.addr, 0xff, 6);
4072 	node.mode = 0;
4073 	node.sta.sta_id = IWH_BROADCAST_ID;
4074 	node.station_flags = 0;
4075 
4076 	err = iwh_cmd(sc, REPLY_ADD_STA, &node, sizeof (node), 0);
4077 	if (err != IWH_SUCCESS) {
4078 		cmn_err(CE_WARN, "iwh_config(): "
4079 		    "failed to add broadcast node\n");
4080 		return (err);
4081 	}
4082 
4083 	/*
4084 	 * TX_LINK_QUALITY cmd
4085 	 */
4086 	(void) memset(&link_quality, 0, sizeof (link_quality));
4087 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
4088 		masks |= RATE_MCS_CCK_MSK;
4089 		masks |= RATE_MCS_ANT_B_MSK;
4090 		masks &= ~RATE_MCS_ANT_A_MSK;
4091 		link_quality.rate_n_flags[i] = iwh_rate_to_plcp(2) | masks;
4092 	}
4093 
4094 	link_quality.general_params.single_stream_ant_msk = 2;
4095 	link_quality.general_params.dual_stream_ant_msk = 3;
4096 	link_quality.agg_params.agg_dis_start_th = 3;
4097 	link_quality.agg_params.agg_time_limit = LE_16(4000);
4098 	link_quality.sta_id = IWH_BROADCAST_ID;
4099 	err = iwh_cmd(sc, REPLY_TX_LINK_QUALITY_CMD, &link_quality,
4100 	    sizeof (link_quality), 0);
4101 	if (err != IWH_SUCCESS) {
4102 		cmn_err(CE_WARN, "iwh_config(): "
4103 		    "failed to config link quality table\n");
4104 		return (err);
4105 	}
4106 
4107 	return (IWH_SUCCESS);
4108 }
4109 
4110 /*
4111  * quiesce(9E) entry point.
4112  * This function is called when the system is single-threaded at high
4113  * PIL with preemption disabled. Therefore, this function must not be
4114  * blocked.
4115  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4116  * DDI_FAILURE indicates an error condition and should almost never happen.
4117  */
4118 static int
4119 iwh_quiesce(dev_info_t *dip)
4120 {
4121 	iwh_sc_t *sc;
4122 
4123 	sc = ddi_get_soft_state(iwh_soft_state_p, ddi_get_instance(dip));
4124 	if (sc == NULL)
4125 		return (DDI_FAILURE);
4126 
4127 #ifdef DEBUG
4128 	/* by pass any messages, if it's quiesce */
4129 	iwh_dbg_flags = 0;
4130 #endif
4131 
4132 	/*
4133 	 * No more blocking is allowed while we are in the
4134 	 * quiesce(9E) entry point.
4135 	 */
4136 	sc->sc_flags |= IWH_F_QUIESCED;
4137 
4138 	/*
4139 	 * Disable and mask all interrupts.
4140 	 */
4141 	iwh_stop(sc);
4142 
4143 	return (DDI_SUCCESS);
4144 }
4145 
4146 static void
4147 iwh_stop_master(iwh_sc_t *sc)
4148 {
4149 	uint32_t tmp;
4150 	int n;
4151 
4152 	tmp = IWH_READ(sc, CSR_RESET);
4153 	IWH_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_STOP_MASTER);
4154 
4155 	tmp = IWH_READ(sc, CSR_GP_CNTRL);
4156 	if ((tmp & CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE) ==
4157 	    CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE) {
4158 		return;
4159 	}
4160 
4161 	for (n = 0; n < 2000; n++) {
4162 		if (IWH_READ(sc, CSR_RESET) &
4163 		    CSR_RESET_REG_FLAG_MASTER_DISABLED) {
4164 			break;
4165 		}
4166 		DELAY(1000);
4167 	}
4168 
4169 #ifdef	DEBUG
4170 	if (2000 == n) {
4171 		IWH_DBG((IWH_DEBUG_HW,
4172 		    "timeout waiting for master stop\n"));
4173 	}
4174 #endif
4175 }
4176 
4177 static int
4178 iwh_power_up(iwh_sc_t *sc)
4179 {
4180 	uint32_t tmp;
4181 
4182 	iwh_mac_access_enter(sc);
4183 	tmp = iwh_reg_read(sc, ALM_APMG_PS_CTL);
4184 	tmp &= ~APMG_PS_CTRL_REG_MSK_POWER_SRC;
4185 	tmp |= APMG_PS_CTRL_REG_VAL_POWER_SRC_VMAIN;
4186 	iwh_reg_write(sc, ALM_APMG_PS_CTL, tmp);
4187 	iwh_mac_access_exit(sc);
4188 
4189 	DELAY(5000);
4190 	return (IWH_SUCCESS);
4191 }
4192 
4193 /*
4194  * hardware initialization
4195  */
4196 static int
4197 iwh_preinit(iwh_sc_t *sc)
4198 {
4199 	uint32_t tmp;
4200 	int n;
4201 	uint8_t vlink;
4202 	uint16_t	radio_cfg;
4203 
4204 	/*
4205 	 * clear any pending interrupts
4206 	 */
4207 	IWH_WRITE(sc, CSR_INT, 0xffffffff);
4208 
4209 	tmp = IWH_READ(sc, CSR_GIO_CHICKEN_BITS);
4210 	IWH_WRITE(sc, CSR_GIO_CHICKEN_BITS,
4211 	    tmp | CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4212 
4213 	tmp = IWH_READ(sc, CSR_ANA_PLL_CFG);
4214 	IWH_WRITE(sc, CSR_ANA_PLL_CFG, tmp | IWH_CSR_ANA_PLL_CFG);
4215 
4216 	tmp = IWH_READ(sc, CSR_GP_CNTRL);
4217 	IWH_WRITE(sc, CSR_GP_CNTRL, tmp | CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4218 
4219 	/*
4220 	 * wait for clock ready
4221 	 */
4222 	for (n = 0; n < 1000; n++) {
4223 		if (IWH_READ(sc, CSR_GP_CNTRL) &
4224 		    CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY) {
4225 			break;
4226 		}
4227 		DELAY(10);
4228 	}
4229 
4230 	if (1000 == n) {
4231 		return (ETIMEDOUT);
4232 	}
4233 
4234 	iwh_mac_access_enter(sc);
4235 
4236 	iwh_reg_write(sc, ALM_APMG_CLK_EN, APMG_CLK_REG_VAL_DMA_CLK_RQT);
4237 
4238 	DELAY(20);
4239 	tmp = iwh_reg_read(sc, ALM_APMG_PCIDEV_STT);
4240 	iwh_reg_write(sc, ALM_APMG_PCIDEV_STT, tmp |
4241 	    APMG_DEV_STATE_REG_VAL_L1_ACTIVE_DISABLE);
4242 	iwh_mac_access_exit(sc);
4243 
4244 	radio_cfg = IWH_READ_EEP_SHORT(sc, EEP_SP_RADIO_CONFIGURATION);
4245 	if (SP_RADIO_TYPE_MSK(radio_cfg) < SP_RADIO_TYPE_MAX) {
4246 		tmp = IWH_READ(sc, CSR_HW_IF_CONFIG_REG);
4247 		IWH_WRITE(sc, CSR_HW_IF_CONFIG_REG,
4248 		    tmp | SP_RADIO_TYPE_MSK(radio_cfg) |
4249 		    SP_RADIO_STEP_MSK(radio_cfg) |
4250 		    SP_RADIO_DASH_MSK(radio_cfg));
4251 	} else {
4252 		cmn_err(CE_WARN, "iwh_preinit(): "
4253 		    "radio configuration information in eeprom is wrong\n");
4254 		return (IWH_FAIL);
4255 	}
4256 
4257 
4258 	IWH_WRITE(sc, CSR_INT_COALESCING, 512 / 32);
4259 
4260 	(void) iwh_power_up(sc);
4261 
4262 	if ((sc->sc_rev & 0x80) == 0x80 && (sc->sc_rev & 0x7f) < 8) {
4263 		tmp = ddi_get32(sc->sc_cfg_handle,
4264 		    (uint32_t *)(sc->sc_cfg_base + 0xe8));
4265 		ddi_put32(sc->sc_cfg_handle,
4266 		    (uint32_t *)(sc->sc_cfg_base + 0xe8),
4267 		    tmp & ~(1 << 11));
4268 	}
4269 
4270 	vlink = ddi_get8(sc->sc_cfg_handle,
4271 	    (uint8_t *)(sc->sc_cfg_base + 0xf0));
4272 	ddi_put8(sc->sc_cfg_handle, (uint8_t *)(sc->sc_cfg_base + 0xf0),
4273 	    vlink & ~2);
4274 
4275 	tmp = IWH_READ(sc, CSR_SW_VER);
4276 	tmp |= CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
4277 	    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI;
4278 	IWH_WRITE(sc, CSR_SW_VER, tmp);
4279 
4280 	/*
4281 	 * make sure power supply on each part of the hardware
4282 	 */
4283 	iwh_mac_access_enter(sc);
4284 	tmp = iwh_reg_read(sc, ALM_APMG_PS_CTL);
4285 	tmp |= APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
4286 	iwh_reg_write(sc, ALM_APMG_PS_CTL, tmp);
4287 	DELAY(5);
4288 
4289 	tmp = iwh_reg_read(sc, ALM_APMG_PS_CTL);
4290 	tmp &= ~APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ;
4291 	iwh_reg_write(sc, ALM_APMG_PS_CTL, tmp);
4292 	iwh_mac_access_exit(sc);
4293 
4294 	return (IWH_SUCCESS);
4295 }
4296 
4297 /*
4298  * set up semphore flag to own EEPROM
4299  */
4300 static int
4301 iwh_eep_sem_down(iwh_sc_t *sc)
4302 {
4303 	int count1, count2;
4304 	uint32_t tmp;
4305 
4306 	for (count1 = 0; count1 < 1000; count1++) {
4307 		tmp = IWH_READ(sc, CSR_HW_IF_CONFIG_REG);
4308 		IWH_WRITE(sc, CSR_HW_IF_CONFIG_REG,
4309 		    tmp | CSR_HW_IF_CONFIG_REG_EEP_SEM);
4310 
4311 		for (count2 = 0; count2 < 2; count2++) {
4312 			if (IWH_READ(sc, CSR_HW_IF_CONFIG_REG) &
4313 			    CSR_HW_IF_CONFIG_REG_EEP_SEM) {
4314 				return (IWH_SUCCESS);
4315 			}
4316 			DELAY(10000);
4317 		}
4318 	}
4319 	return (IWH_FAIL);
4320 }
4321 
4322 /*
4323  * reset semphore flag to release EEPROM
4324  */
4325 static void
4326 iwh_eep_sem_up(iwh_sc_t *sc)
4327 {
4328 	uint32_t tmp;
4329 
4330 	tmp = IWH_READ(sc, CSR_HW_IF_CONFIG_REG);
4331 	IWH_WRITE(sc, CSR_HW_IF_CONFIG_REG,
4332 	    tmp & (~CSR_HW_IF_CONFIG_REG_EEP_SEM));
4333 }
4334 
4335 /*
4336  * This function read all infomation from eeprom
4337  */
4338 static int
4339 iwh_eep_load(iwh_sc_t *sc)
4340 {
4341 	int i, rr;
4342 	uint32_t rv, tmp, eep_gp;
4343 	uint16_t addr, eep_sz = sizeof (sc->sc_eep_map);
4344 	uint16_t *eep_p = (uint16_t *)&sc->sc_eep_map;
4345 
4346 	/*
4347 	 * read eeprom gp register in CSR
4348 	 */
4349 	eep_gp = IWH_READ(sc, CSR_EEPROM_GP);
4350 	if ((eep_gp & CSR_EEPROM_GP_VALID_MSK) ==
4351 	    CSR_EEPROM_GP_BAD_SIGNATURE) {
4352 		IWH_DBG((IWH_DEBUG_EEPROM, "not find eeprom\n"));
4353 		return (IWH_FAIL);
4354 	}
4355 
4356 	rr = iwh_eep_sem_down(sc);
4357 	if (rr != 0) {
4358 		IWH_DBG((IWH_DEBUG_EEPROM, "driver failed to own EEPROM\n"));
4359 		return (IWH_FAIL);
4360 	}
4361 
4362 	for (addr = 0; addr < eep_sz; addr += 2) {
4363 		IWH_WRITE(sc, CSR_EEPROM_REG, addr<<1);
4364 		tmp = IWH_READ(sc, CSR_EEPROM_REG);
4365 		IWH_WRITE(sc, CSR_EEPROM_REG, tmp & ~(0x2));
4366 
4367 		for (i = 0; i < 10; i++) {
4368 			rv = IWH_READ(sc, CSR_EEPROM_REG);
4369 			if (rv & 1) {
4370 				break;
4371 			}
4372 			DELAY(10);
4373 		}
4374 
4375 		if (!(rv & 1)) {
4376 			IWH_DBG((IWH_DEBUG_EEPROM,
4377 			    "time out when read eeprome\n"));
4378 			iwh_eep_sem_up(sc);
4379 			return (IWH_FAIL);
4380 		}
4381 
4382 		eep_p[addr/2] = rv >> 16;
4383 	}
4384 
4385 	iwh_eep_sem_up(sc);
4386 	return (IWH_SUCCESS);
4387 }
4388 
4389 /*
4390  * initialize mac address in ieee80211com_t struct
4391  */
4392 static void
4393 iwh_get_mac_from_eep(iwh_sc_t *sc)
4394 {
4395 	ieee80211com_t *ic = &sc->sc_ic;
4396 
4397 	IEEE80211_ADDR_COPY(ic->ic_macaddr, &sc->sc_eep_map[EEP_MAC_ADDRESS]);
4398 
4399 	IWH_DBG((IWH_DEBUG_EEPROM, "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
4400 	    ic->ic_macaddr[0], ic->ic_macaddr[1], ic->ic_macaddr[2],
4401 	    ic->ic_macaddr[3], ic->ic_macaddr[4], ic->ic_macaddr[5]));
4402 }
4403 
4404 /*
4405  * main initialization function
4406  */
4407 static int
4408 iwh_init(iwh_sc_t *sc)
4409 {
4410 	int n, err;
4411 	clock_t clk;
4412 
4413 	/*
4414 	 * release buffer for calibration
4415 	 */
4416 	iwh_release_calib_buffer(sc);
4417 
4418 	mutex_enter(&sc->sc_glock);
4419 	sc->sc_flags &= ~IWH_F_FW_INIT;
4420 
4421 	err = iwh_init_common(sc);
4422 	if (err != IWH_SUCCESS) {
4423 		cmn_err(CE_WARN, "iwh_init(): "
4424 		    "failed to initialize chipset\n");
4425 		mutex_exit(&sc->sc_glock);
4426 		return (IWH_FAIL);
4427 	}
4428 
4429 	/*
4430 	 * backup ucode data part for future use.
4431 	 */
4432 	(void) memcpy(sc->sc_dma_fw_data_bak.mem_va,
4433 	    sc->sc_dma_fw_data.mem_va,
4434 	    sc->sc_dma_fw_data.alength);
4435 
4436 	for (n = 0; n < 2; n++) {
4437 		/* load firmware init segment into NIC */
4438 		err = iwh_load_init_firmware(sc);
4439 		if (err != IWH_SUCCESS) {
4440 			cmn_err(CE_WARN, "iwh_init(): "
4441 			    "failed to setup init firmware\n");
4442 			continue;
4443 		}
4444 
4445 		/*
4446 		 * now press "execute" start running
4447 		 */
4448 		IWH_WRITE(sc, CSR_RESET, 0);
4449 		break;
4450 	}
4451 
4452 	mutex_exit(&sc->sc_glock);
4453 
4454 	if (2 == n) {
4455 		cmn_err(CE_WARN, "iwh_init(): "
4456 		    "failed to load init firmware\n");
4457 		return (IWH_FAIL);
4458 	}
4459 
4460 	mutex_enter(&sc->sc_ucode_lock);
4461 
4462 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
4463 	while (!(sc->sc_flags & IWH_F_FW_INIT)) {
4464 		if (cv_timedwait(&sc->sc_ucode_cv,
4465 		    &sc->sc_ucode_lock, clk) < 0) {
4466 			break;
4467 		}
4468 	}
4469 
4470 	if (!(sc->sc_flags & IWH_F_FW_INIT)) {
4471 		cmn_err(CE_WARN, "iwh_init(): "
4472 		    "failed to process init alive.\n");
4473 		mutex_exit(&sc->sc_ucode_lock);
4474 		return (IWH_FAIL);
4475 	}
4476 
4477 	mutex_exit(&sc->sc_ucode_lock);
4478 
4479 	/*
4480 	 * stop chipset for initializing chipset again
4481 	 */
4482 	iwh_stop(sc);
4483 
4484 	mutex_enter(&sc->sc_glock);
4485 	sc->sc_flags &= ~IWH_F_FW_INIT;
4486 
4487 	err = iwh_init_common(sc);
4488 	if (err != IWH_SUCCESS) {
4489 		cmn_err(CE_WARN, "iwh_init(): "
4490 		    "failed to initialize chipset\n");
4491 		mutex_exit(&sc->sc_glock);
4492 		return (IWH_FAIL);
4493 	}
4494 
4495 	for (n = 0; n < 2; n++) {
4496 		/*
4497 		 * load firmware run segment into NIC
4498 		 */
4499 		err = iwh_load_run_firmware(sc);
4500 		if (err != IWH_SUCCESS) {
4501 			cmn_err(CE_WARN, "iwh_init(): "
4502 			    "failed to setup run firmware\n");
4503 			continue;
4504 		}
4505 
4506 		/*
4507 		 * now press "execute" start running
4508 		 */
4509 		IWH_WRITE(sc, CSR_RESET, 0);
4510 		break;
4511 	}
4512 
4513 	mutex_exit(&sc->sc_glock);
4514 
4515 	if (2 == n) {
4516 		cmn_err(CE_WARN, "iwh_init(): "
4517 		    "failed to load run firmware\n");
4518 		return (IWH_FAIL);
4519 	}
4520 
4521 	mutex_enter(&sc->sc_ucode_lock);
4522 
4523 	clk = ddi_get_lbolt() + drv_usectohz(1000000);
4524 	while (!(sc->sc_flags & IWH_F_FW_INIT)) {
4525 		if (cv_timedwait(&sc->sc_ucode_cv,
4526 		    &sc->sc_ucode_lock, clk) < 0) {
4527 			break;
4528 		}
4529 	}
4530 
4531 	if (!(sc->sc_flags & IWH_F_FW_INIT)) {
4532 		cmn_err(CE_WARN, "iwh_init(): "
4533 		    "failed to process runtime alive.\n");
4534 		mutex_exit(&sc->sc_ucode_lock);
4535 		return (IWH_FAIL);
4536 	}
4537 
4538 	mutex_exit(&sc->sc_ucode_lock);
4539 
4540 	mutex_enter(&sc->sc_glock);
4541 	sc->sc_flags &= ~IWH_F_FW_INIT;
4542 
4543 	/*
4544 	 * at this point, the firmware is loaded OK, then config the hardware
4545 	 * with the ucode API, including rxon, txpower, etc.
4546 	 */
4547 	err = iwh_config(sc);
4548 	if (err) {
4549 		cmn_err(CE_WARN, "iwh_init(): "
4550 		    "failed to configure device\n");
4551 		mutex_exit(&sc->sc_glock);
4552 		return (IWH_FAIL);
4553 	}
4554 
4555 	/*
4556 	 * at this point, hardware may receive beacons :)
4557 	 */
4558 	mutex_exit(&sc->sc_glock);
4559 	return (IWH_SUCCESS);
4560 }
4561 
4562 /*
4563  * stop or disable NIC
4564  */
4565 static void
4566 iwh_stop(iwh_sc_t *sc)
4567 {
4568 	uint32_t tmp;
4569 	int i;
4570 
4571 	/* by pass if it's quiesced */
4572 	if (!(sc->sc_flags & IWH_F_QUIESCED))
4573 		mutex_enter(&sc->sc_glock);
4574 
4575 	IWH_WRITE(sc, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET);
4576 	/*
4577 	 * disable interrupts
4578 	 */
4579 	IWH_WRITE(sc, CSR_INT_MASK, 0);
4580 	IWH_WRITE(sc, CSR_INT, CSR_INI_SET_MASK);
4581 	IWH_WRITE(sc, CSR_FH_INT_STATUS, 0xffffffff);
4582 
4583 	/*
4584 	 * reset all Tx rings
4585 	 */
4586 	for (i = 0; i < IWH_NUM_QUEUES; i++) {
4587 		iwh_reset_tx_ring(sc, &sc->sc_txq[i]);
4588 	}
4589 
4590 	/*
4591 	 * reset Rx ring
4592 	 */
4593 	iwh_reset_rx_ring(sc);
4594 
4595 	iwh_mac_access_enter(sc);
4596 	iwh_reg_write(sc, ALM_APMG_CLK_DIS, APMG_CLK_REG_VAL_DMA_CLK_RQT);
4597 	iwh_mac_access_exit(sc);
4598 
4599 	DELAY(5);
4600 
4601 	iwh_stop_master(sc);
4602 
4603 	sc->sc_tx_timer = 0;
4604 	tmp = IWH_READ(sc, CSR_RESET);
4605 	IWH_WRITE(sc, CSR_RESET, tmp | CSR_RESET_REG_FLAG_SW_RESET);
4606 
4607 	/* by pass if it's quiesced */
4608 	if (!(sc->sc_flags & IWH_F_QUIESCED))
4609 		mutex_exit(&sc->sc_glock);
4610 }
4611 
4612 /*
4613  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
4614  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
4615  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
4616  * INRIA Sophia - Projet Planete
4617  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
4618  */
4619 #define	is_success(amrr)	\
4620 	((amrr)->retrycnt < (amrr)->txcnt / 10)
4621 #define	is_failure(amrr)	\
4622 	((amrr)->retrycnt > (amrr)->txcnt / 3)
4623 #define	is_enough(amrr)		\
4624 	((amrr)->txcnt > 100)
4625 #define	is_min_rate(in)		\
4626 	(0 == (in)->in_txrate)
4627 #define	is_max_rate(in)		\
4628 	((in)->in_rates.ir_nrates - 1 == (in)->in_txrate)
4629 #define	increase_rate(in)	\
4630 	((in)->in_txrate++)
4631 #define	decrease_rate(in)	\
4632 	((in)->in_txrate--)
4633 #define	reset_cnt(amrr)		\
4634 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
4635 
4636 #define	IWH_AMRR_MIN_SUCCESS_THRESHOLD	 1
4637 #define	IWH_AMRR_MAX_SUCCESS_THRESHOLD	15
4638 
4639 static void
4640 iwh_amrr_init(iwh_amrr_t *amrr)
4641 {
4642 	amrr->success = 0;
4643 	amrr->recovery = 0;
4644 	amrr->txcnt = amrr->retrycnt = 0;
4645 	amrr->success_threshold = IWH_AMRR_MIN_SUCCESS_THRESHOLD;
4646 }
4647 
4648 static void
4649 iwh_amrr_timeout(iwh_sc_t *sc)
4650 {
4651 	ieee80211com_t *ic = &sc->sc_ic;
4652 
4653 	IWH_DBG((IWH_DEBUG_RATECTL, "iwh_amrr_timeout() enter\n"));
4654 
4655 	if (IEEE80211_M_STA == ic->ic_opmode) {
4656 		iwh_amrr_ratectl(NULL, ic->ic_bss);
4657 	} else {
4658 		ieee80211_iterate_nodes(&ic->ic_sta, iwh_amrr_ratectl, NULL);
4659 	}
4660 
4661 	sc->sc_clk = ddi_get_lbolt();
4662 }
4663 
4664 static void
4665 /* LINTED: argument unused in function: arg */
4666 iwh_amrr_ratectl(void *arg, ieee80211_node_t *in)
4667 {
4668 	iwh_amrr_t *amrr = (iwh_amrr_t *)in;
4669 	int need_change = 0;
4670 
4671 	if (is_success(amrr) && is_enough(amrr)) {
4672 		amrr->success++;
4673 		if (amrr->success >= amrr->success_threshold &&
4674 		    !is_max_rate(in)) {
4675 			amrr->recovery = 1;
4676 			amrr->success = 0;
4677 			increase_rate(in);
4678 			IWH_DBG((IWH_DEBUG_RATECTL,
4679 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
4680 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
4681 			need_change = 1;
4682 		} else {
4683 			amrr->recovery = 0;
4684 		}
4685 	} else if (is_failure(amrr)) {
4686 		amrr->success = 0;
4687 		if (!is_min_rate(in)) {
4688 			if (amrr->recovery) {
4689 				amrr->success_threshold++;
4690 				if (amrr->success_threshold >
4691 				    IWH_AMRR_MAX_SUCCESS_THRESHOLD) {
4692 					amrr->success_threshold =
4693 					    IWH_AMRR_MAX_SUCCESS_THRESHOLD;
4694 				}
4695 			} else {
4696 				amrr->success_threshold =
4697 				    IWH_AMRR_MIN_SUCCESS_THRESHOLD;
4698 			}
4699 			decrease_rate(in);
4700 			IWH_DBG((IWH_DEBUG_RATECTL,
4701 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
4702 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
4703 			need_change = 1;
4704 		}
4705 		amrr->recovery = 0;	/* paper is incorrect */
4706 	}
4707 
4708 	if (is_enough(amrr) || need_change) {
4709 		reset_cnt(amrr);
4710 	}
4711 }
4712 
4713 /*
4714  * translate indirect address in eeprom to direct address
4715  * in eeprom and return address of entry whos indirect address
4716  * is indi_addr
4717  */
4718 static uint8_t *
4719 iwh_eep_addr_trans(iwh_sc_t *sc, uint32_t indi_addr)
4720 {
4721 	uint32_t	di_addr;
4722 	uint16_t	temp;
4723 
4724 	if (!(indi_addr & INDIRECT_ADDRESS)) {
4725 		di_addr = indi_addr;
4726 		return (&sc->sc_eep_map[di_addr]);
4727 	}
4728 
4729 	switch (indi_addr & INDIRECT_TYPE_MSK) {
4730 	case INDIRECT_GENERAL:
4731 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_GENERAL);
4732 		break;
4733 
4734 	case	INDIRECT_HOST:
4735 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_HOST);
4736 		break;
4737 
4738 	case	INDIRECT_REGULATORY:
4739 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_REGULATORY);
4740 		break;
4741 
4742 	case	INDIRECT_CALIBRATION:
4743 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_CALIBRATION);
4744 		break;
4745 
4746 	case	INDIRECT_PROCESS_ADJST:
4747 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_PROCESS_ADJST);
4748 		break;
4749 
4750 	case	INDIRECT_OTHERS:
4751 		temp = IWH_READ_EEP_SHORT(sc, EEP_LINK_OTHERS);
4752 		break;
4753 
4754 	default:
4755 		temp = 0;
4756 		cmn_err(CE_WARN, "iwh_eep_addr_trans(): "
4757 		    "incorrect indirect eeprom address.\n");
4758 		break;
4759 	}
4760 
4761 	di_addr = (indi_addr & ADDRESS_MSK) + (temp << 1);
4762 
4763 	return (&sc->sc_eep_map[di_addr]);
4764 }
4765 
4766 /*
4767  * loade a section of ucode into NIC
4768  */
4769 static int
4770 iwh_put_seg_fw(iwh_sc_t *sc, uint32_t addr_s, uint32_t addr_d, uint32_t len)
4771 {
4772 
4773 	iwh_mac_access_enter(sc);
4774 
4775 	IWH_WRITE(sc, IWH_FH_TCSR_CHNL_TX_CONFIG_REG(IWH_FH_SRVC_CHNL),
4776 	    IWH_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
4777 
4778 	IWH_WRITE(sc, IWH_FH_SRVC_CHNL_SRAM_ADDR_REG(IWH_FH_SRVC_CHNL), addr_d);
4779 
4780 	IWH_WRITE(sc, IWH_FH_TFDIB_CTRL0_REG(IWH_FH_SRVC_CHNL),
4781 	    (addr_s & FH_MEM_TFDIB_DRAM_ADDR_LSB_MASK));
4782 
4783 	IWH_WRITE(sc, IWH_FH_TFDIB_CTRL1_REG(IWH_FH_SRVC_CHNL), len);
4784 
4785 	IWH_WRITE(sc, IWH_FH_TCSR_CHNL_TX_BUF_STS_REG(IWH_FH_SRVC_CHNL),
4786 	    (1 << IWH_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
4787 	    (1 << IWH_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
4788 	    IWH_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
4789 
4790 	IWH_WRITE(sc, IWH_FH_TCSR_CHNL_TX_CONFIG_REG(IWH_FH_SRVC_CHNL),
4791 	    IWH_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
4792 	    IWH_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL |
4793 	    IWH_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
4794 
4795 	iwh_mac_access_exit(sc);
4796 
4797 	return (IWH_SUCCESS);
4798 }
4799 
4800 /*
4801  * necessary setting during alive notification
4802  */
4803 static int
4804 iwh_alive_common(iwh_sc_t *sc)
4805 {
4806 	uint32_t	base;
4807 	uint32_t	i;
4808 	iwh_wimax_coex_cmd_t	w_cmd;
4809 	iwh_calibration_crystal_cmd_t	c_cmd;
4810 	uint32_t	rv;
4811 
4812 	/*
4813 	 * initialize SCD related registers to make TX work.
4814 	 */
4815 	iwh_mac_access_enter(sc);
4816 
4817 	/*
4818 	 * read sram address of data base.
4819 	 */
4820 	sc->sc_scd_base = iwh_reg_read(sc, IWH_SCD_SRAM_BASE_ADDR);
4821 
4822 	for (base = sc->sc_scd_base + IWH_SCD_CONTEXT_DATA_OFFSET;
4823 	    base < sc->sc_scd_base + IWH_SCD_TX_STTS_BITMAP_OFFSET;
4824 	    base += 4) {
4825 		iwh_mem_write(sc, base, 0);
4826 	}
4827 
4828 	for (; base < sc->sc_scd_base + IWH_SCD_TRANSLATE_TBL_OFFSET;
4829 	    base += 4) {
4830 		iwh_mem_write(sc, base, 0);
4831 	}
4832 
4833 	for (i = 0; i < sizeof (uint16_t) * IWH_NUM_QUEUES; i += 4) {
4834 		iwh_mem_write(sc, base + i, 0);
4835 	}
4836 
4837 	iwh_reg_write(sc, IWH_SCD_DRAM_BASE_ADDR,
4838 	    sc->sc_dma_sh.cookie.dmac_address >> 10);
4839 
4840 	iwh_reg_write(sc, IWH_SCD_QUEUECHAIN_SEL,
4841 	    IWH_SCD_QUEUECHAIN_SEL_ALL(IWH_NUM_QUEUES));
4842 
4843 	iwh_reg_write(sc, IWH_SCD_AGGR_SEL, 0);
4844 
4845 	for (i = 0; i < IWH_NUM_QUEUES; i++) {
4846 		iwh_reg_write(sc, IWH_SCD_QUEUE_RDPTR(i), 0);
4847 		IWH_WRITE(sc, HBUS_TARG_WRPTR, 0 | (i << 8));
4848 		iwh_mem_write(sc, sc->sc_scd_base +
4849 		    IWH_SCD_CONTEXT_QUEUE_OFFSET(i), 0);
4850 		iwh_mem_write(sc, sc->sc_scd_base +
4851 		    IWH_SCD_CONTEXT_QUEUE_OFFSET(i) +
4852 		    sizeof (uint32_t),
4853 		    ((SCD_WIN_SIZE << IWH_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
4854 		    IWH_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
4855 		    ((SCD_FRAME_LIMIT <<
4856 		    IWH_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
4857 		    IWH_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
4858 	}
4859 
4860 	iwh_reg_write(sc, IWH_SCD_INTERRUPT_MASK, (1 << IWH_NUM_QUEUES) - 1);
4861 
4862 	iwh_reg_write(sc, (IWH_SCD_BASE + 0x10),
4863 	    SCD_TXFACT_REG_TXFIFO_MASK(0, 7));
4864 
4865 	IWH_WRITE(sc, HBUS_TARG_WRPTR, (IWH_CMD_QUEUE_NUM << 8));
4866 	iwh_reg_write(sc, IWH_SCD_QUEUE_RDPTR(IWH_CMD_QUEUE_NUM), 0);
4867 
4868 	/*
4869 	 * queue 0-7 map to FIFO 0-7 and
4870 	 * all queues work under FIFO mode(none-scheduler_ack)
4871 	 */
4872 	for (i = 0; i < 4; i++) {
4873 		iwh_reg_write(sc, IWH_SCD_QUEUE_STATUS_BITS(i),
4874 		    (1 << IWH_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
4875 		    ((3-i) << IWH_SCD_QUEUE_STTS_REG_POS_TXF) |
4876 		    (1 << IWH_SCD_QUEUE_STTS_REG_POS_WSL) |
4877 		    IWH_SCD_QUEUE_STTS_REG_MSK);
4878 	}
4879 
4880 	iwh_reg_write(sc, IWH_SCD_QUEUE_STATUS_BITS(IWH_CMD_QUEUE_NUM),
4881 	    (1 << IWH_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
4882 	    (IWH_CMD_FIFO_NUM << IWH_SCD_QUEUE_STTS_REG_POS_TXF) |
4883 	    (1 << IWH_SCD_QUEUE_STTS_REG_POS_WSL) |
4884 	    IWH_SCD_QUEUE_STTS_REG_MSK);
4885 
4886 	for (i = 5; i < 7; i++) {
4887 		iwh_reg_write(sc, IWH_SCD_QUEUE_STATUS_BITS(i),
4888 		    (1 << IWH_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
4889 		    (i << IWH_SCD_QUEUE_STTS_REG_POS_TXF) |
4890 		    (1 << IWH_SCD_QUEUE_STTS_REG_POS_WSL) |
4891 		    IWH_SCD_QUEUE_STTS_REG_MSK);
4892 	}
4893 
4894 	iwh_mac_access_exit(sc);
4895 
4896 	(void) memset(&w_cmd, 0, sizeof (w_cmd));
4897 
4898 	rv = iwh_cmd(sc, COEX_PRIORITY_TABLE_CMD, &w_cmd, sizeof (w_cmd), 1);
4899 	if (rv != IWH_SUCCESS) {
4900 		cmn_err(CE_WARN, "iwh_alive_common(): "
4901 		    "failed to send wimax coexist command.\n");
4902 		return (rv);
4903 	}
4904 
4905 	(void) memset(&c_cmd, 0, sizeof (c_cmd));
4906 
4907 	c_cmd.opCode = PHY_CALIBRATE_CRYSTAL_FRQ_CMD;
4908 	c_cmd.data.cap_pin1 = sc->sc_eep_calib->xtal_calib[0];
4909 	c_cmd.data.cap_pin2 = sc->sc_eep_calib->xtal_calib[1];
4910 
4911 	rv = iwh_cmd(sc, REPLY_PHY_CALIBRATION_CMD, &c_cmd, sizeof (c_cmd), 1);
4912 	if (rv != IWH_SUCCESS) {
4913 		cmn_err(CE_WARN, "iwh_alive_common(): "
4914 		    "failed to send crystal frq calibration command.\n");
4915 		return (rv);
4916 	}
4917 
4918 	/*
4919 	 * make sure crystal frequency calibration ready
4920 	 * before next operations.
4921 	 */
4922 	DELAY(1000);
4923 
4924 	return (IWH_SUCCESS);
4925 }
4926 
4927 /*
4928  * save results of calibration from ucode
4929  */
4930 static void
4931 iwh_save_calib_result(iwh_sc_t *sc, iwh_rx_desc_t *desc)
4932 {
4933 	struct iwh_calib_results *res_p = &sc->sc_calib_results;
4934 	struct iwh_calib_hdr *calib_hdr = (struct iwh_calib_hdr *)(desc + 1);
4935 	int len = desc->len;
4936 
4937 	/*
4938 	 * ensure the size of buffer is not too big
4939 	 */
4940 	len = (len & FH_RSCSR_FRAME_SIZE_MASK) - 4;
4941 
4942 	switch (calib_hdr->op_code) {
4943 	case PHY_CALIBRATE_LO_CMD:
4944 		if (NULL == res_p->lo_res) {
4945 			res_p->lo_res = kmem_alloc(len, KM_NOSLEEP);
4946 		}
4947 
4948 		if (NULL == res_p->lo_res) {
4949 			cmn_err(CE_WARN, "iwh_save_calib_result(): "
4950 			    "failed to allocate memory.\n");
4951 			return;
4952 		}
4953 
4954 		res_p->lo_res_len = len;
4955 		(void) memcpy(res_p->lo_res, calib_hdr, len);
4956 		break;
4957 
4958 	case PHY_CALIBRATE_TX_IQ_CMD:
4959 		if (NULL == res_p->tx_iq_res) {
4960 			res_p->tx_iq_res = kmem_alloc(len, KM_NOSLEEP);
4961 		}
4962 
4963 		if (NULL == res_p->tx_iq_res) {
4964 			cmn_err(CE_WARN, "iwh_save_calib_result(): "
4965 			    "failed to allocate memory.\n");
4966 			return;
4967 		}
4968 
4969 		res_p->tx_iq_res_len = len;
4970 		(void) memcpy(res_p->tx_iq_res, calib_hdr, len);
4971 		break;
4972 
4973 	case PHY_CALIBRATE_TX_IQ_PERD_CMD:
4974 		if (NULL == res_p->tx_iq_perd_res) {
4975 			res_p->tx_iq_perd_res = kmem_alloc(len, KM_NOSLEEP);
4976 		}
4977 
4978 		if (NULL == res_p->tx_iq_perd_res) {
4979 			cmn_err(CE_WARN, "iwh_save_calib_result(): "
4980 			    "failed to allocate memory.\n");
4981 		}
4982 
4983 		res_p->tx_iq_perd_res_len = len;
4984 		(void) memcpy(res_p->tx_iq_perd_res, calib_hdr, len);
4985 		break;
4986 
4987 	default:
4988 		cmn_err(CE_WARN, "iwh_save_calib_result(): "
4989 		    "incorrect calibration type.\n");
4990 		break;
4991 	}
4992 
4993 }
4994 
4995 /*
4996  * configure TX pwoer table
4997  */
4998 static int
4999 iwh_tx_power_table(iwh_sc_t *sc, int async)
5000 {
5001 	iwh_tx_power_table_cmd_t txpower;
5002 	int i, err;
5003 
5004 	(void) memset(&txpower, 0, sizeof (txpower));
5005 
5006 	txpower.band = 1; /* for 2.4G */
5007 	txpower.channel = sc->sc_config.chan;
5008 	txpower.pa_measurements = 1;
5009 	txpower.max_mcs = 23;
5010 
5011 	for (i = 0; i < 24; i++) {
5012 		txpower.db.ht_ofdm_power[i].s.radio_tx_gain[0] = 0x16;
5013 		txpower.db.ht_ofdm_power[i].s.radio_tx_gain[1] = 0x16;
5014 		txpower.db.ht_ofdm_power[i].s.radio_tx_gain[2] = 0x16;
5015 		txpower.db.ht_ofdm_power[i].s.dsp_predis_atten[0] = 0x6E;
5016 		txpower.db.ht_ofdm_power[i].s.dsp_predis_atten[1] = 0x6E;
5017 		txpower.db.ht_ofdm_power[i].s.dsp_predis_atten[2] = 0x6E;
5018 	}
5019 
5020 	for (i = 0; i < 2; i++) {
5021 		txpower.db.cck_power[i].s.radio_tx_gain[0] = 0x16;
5022 		txpower.db.cck_power[i].s.radio_tx_gain[1] = 0x16;
5023 		txpower.db.cck_power[i].s.radio_tx_gain[2] = 0x16;
5024 		txpower.db.cck_power[i].s.dsp_predis_atten[0] = 0x6E;
5025 		txpower.db.cck_power[i].s.dsp_predis_atten[1] = 0x6E;
5026 		txpower.db.cck_power[i].s.dsp_predis_atten[2] = 0x6E;
5027 	}
5028 
5029 	err = iwh_cmd(sc, REPLY_TX_PWR_TABLE_CMD, &txpower,
5030 	    sizeof (txpower), async);
5031 	if (err != IWH_SUCCESS) {
5032 		cmn_err(CE_WARN, "iwh_tx_power_table(): "
5033 		    "failed to set tx power table.\n");
5034 		return (err);
5035 	}
5036 
5037 	return (IWH_SUCCESS);
5038 }
5039 
5040 static void
5041 iwh_release_calib_buffer(iwh_sc_t *sc)
5042 {
5043 	if (sc->sc_calib_results.lo_res != NULL) {
5044 		kmem_free(sc->sc_calib_results.lo_res,
5045 		    sc->sc_calib_results.lo_res_len);
5046 		sc->sc_calib_results.lo_res = NULL;
5047 	}
5048 
5049 	if (sc->sc_calib_results.tx_iq_res != NULL) {
5050 		kmem_free(sc->sc_calib_results.tx_iq_res,
5051 		    sc->sc_calib_results.tx_iq_res_len);
5052 		sc->sc_calib_results.tx_iq_res = NULL;
5053 	}
5054 
5055 	if (sc->sc_calib_results.tx_iq_perd_res != NULL) {
5056 		kmem_free(sc->sc_calib_results.tx_iq_perd_res,
5057 		    sc->sc_calib_results.tx_iq_perd_res_len);
5058 		sc->sc_calib_results.tx_iq_perd_res = NULL;
5059 	}
5060 
5061 }
5062 
5063 /*
5064  * a section of intialization
5065  */
5066 static int
5067 iwh_init_common(iwh_sc_t *sc)
5068 {
5069 	int32_t	qid;
5070 	uint32_t tmp;
5071 
5072 	(void) iwh_preinit(sc);
5073 
5074 	tmp = IWH_READ(sc, CSR_GP_CNTRL);
5075 	if (!(tmp & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) {
5076 		cmn_err(CE_WARN, "iwh_init_common(): "
5077 		    "radio transmitter is off\n");
5078 		return (IWH_FAIL);
5079 	}
5080 
5081 	/*
5082 	 * init Rx ring
5083 	 */
5084 	iwh_mac_access_enter(sc);
5085 	IWH_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
5086 
5087 	IWH_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
5088 	IWH_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
5089 	    sc->sc_rxq.dma_desc.cookie.dmac_address >> 8);
5090 
5091 	IWH_WRITE(sc, FH_RSCSR_CHNL0_STTS_WPTR_REG,
5092 	    ((uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
5093 	    offsetof(struct iwh_shared, val0)) >> 4));
5094 
5095 	IWH_WRITE(sc, FH_MEM_RCSR_CHNL0_CONFIG_REG,
5096 	    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
5097 	    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
5098 	    IWH_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
5099 	    (RX_QUEUE_SIZE_LOG <<
5100 	    FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT));
5101 	iwh_mac_access_exit(sc);
5102 	IWH_WRITE(sc, FH_RSCSR_CHNL0_RBDCB_WPTR_REG,
5103 	    (RX_QUEUE_SIZE - 1) & ~0x7);
5104 
5105 	/*
5106 	 * init Tx rings
5107 	 */
5108 	iwh_mac_access_enter(sc);
5109 	iwh_reg_write(sc, IWH_SCD_TXFACT, 0);
5110 
5111 	/*
5112 	 * keep warm page
5113 	 */
5114 	IWH_WRITE(sc, IWH_FH_KW_MEM_ADDR_REG,
5115 	    sc->sc_dma_kw.cookie.dmac_address >> 4);
5116 
5117 	for (qid = 0; qid < IWH_NUM_QUEUES; qid++) {
5118 		IWH_WRITE(sc, FH_MEM_CBBC_QUEUE(qid),
5119 		    sc->sc_txq[qid].dma_desc.cookie.dmac_address >> 8);
5120 		IWH_WRITE(sc, IWH_FH_TCSR_CHNL_TX_CONFIG_REG(qid),
5121 		    IWH_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
5122 		    IWH_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL);
5123 	}
5124 
5125 	iwh_mac_access_exit(sc);
5126 
5127 	/*
5128 	 * clear "radio off" and "disable command" bits
5129 	 */
5130 	IWH_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
5131 	IWH_WRITE(sc, CSR_UCODE_DRV_GP1_CLR,
5132 	    CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
5133 
5134 	/*
5135 	 * clear any pending interrupts
5136 	 */
5137 	IWH_WRITE(sc, CSR_INT, 0xffffffff);
5138 
5139 	/*
5140 	 * enable interrupts
5141 	 */
5142 	IWH_WRITE(sc, CSR_INT_MASK, CSR_INI_SET_MASK);
5143 
5144 	IWH_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
5145 	IWH_WRITE(sc, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
5146 
5147 	return (IWH_SUCCESS);
5148 }
5149