xref: /titanic_50/usr/src/uts/common/io/igb/igb_main.c (revision 35a5a3587fd94b666239c157d3722745250ccbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at:
10  *	http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When using or redistributing this file, you may do so under the
15  * License only. No other modification of this header is permitted.
16  *
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include "igb_sw.h"
30 
31 static char ident[] = "Intel 1Gb Ethernet";
32 static char igb_version[] = "igb 1.1.9";
33 
34 /*
35  * Local function protoypes
36  */
37 static int igb_register_mac(igb_t *);
38 static int igb_identify_hardware(igb_t *);
39 static int igb_regs_map(igb_t *);
40 static void igb_init_properties(igb_t *);
41 static int igb_init_driver_settings(igb_t *);
42 static void igb_init_locks(igb_t *);
43 static void igb_destroy_locks(igb_t *);
44 static int igb_init_mac_address(igb_t *);
45 static int igb_init(igb_t *);
46 static int igb_init_adapter(igb_t *);
47 static void igb_stop_adapter(igb_t *);
48 static int igb_reset(igb_t *);
49 static void igb_tx_clean(igb_t *);
50 static boolean_t igb_tx_drain(igb_t *);
51 static boolean_t igb_rx_drain(igb_t *);
52 static int igb_alloc_rings(igb_t *);
53 static void igb_free_rings(igb_t *);
54 static void igb_setup_rings(igb_t *);
55 static void igb_setup_rx(igb_t *);
56 static void igb_setup_tx(igb_t *);
57 static void igb_setup_rx_ring(igb_rx_ring_t *);
58 static void igb_setup_tx_ring(igb_tx_ring_t *);
59 static void igb_setup_rss(igb_t *);
60 static void igb_setup_mac_rss_classify(igb_t *);
61 static void igb_setup_mac_classify(igb_t *);
62 static void igb_init_unicst(igb_t *);
63 static void igb_setup_multicst(igb_t *);
64 static void igb_get_phy_state(igb_t *);
65 static void igb_get_conf(igb_t *);
66 static int igb_get_prop(igb_t *, char *, int, int, int);
67 static boolean_t igb_is_link_up(igb_t *);
68 static boolean_t igb_link_check(igb_t *);
69 static void igb_local_timer(void *);
70 static void igb_arm_watchdog_timer(igb_t *);
71 static void igb_start_watchdog_timer(igb_t *);
72 static void igb_restart_watchdog_timer(igb_t *);
73 static void igb_stop_watchdog_timer(igb_t *);
74 static void igb_disable_adapter_interrupts(igb_t *);
75 static void igb_enable_adapter_interrupts_82575(igb_t *);
76 static void igb_enable_adapter_interrupts_82576(igb_t *);
77 static void igb_enable_adapter_interrupts_82580(igb_t *);
78 static boolean_t is_valid_mac_addr(uint8_t *);
79 static boolean_t igb_stall_check(igb_t *);
80 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
81 static void igb_set_external_loopback(igb_t *);
82 static void igb_set_internal_mac_loopback(igb_t *);
83 static void igb_set_internal_phy_loopback(igb_t *);
84 static void igb_set_internal_serdes_loopback(igb_t *);
85 static boolean_t igb_find_mac_address(igb_t *);
86 static int igb_alloc_intrs(igb_t *);
87 static int igb_alloc_intr_handles(igb_t *, int);
88 static int igb_add_intr_handlers(igb_t *);
89 static void igb_rem_intr_handlers(igb_t *);
90 static void igb_rem_intrs(igb_t *);
91 static int igb_enable_intrs(igb_t *);
92 static int igb_disable_intrs(igb_t *);
93 static void igb_setup_msix_82575(igb_t *);
94 static void igb_setup_msix_82576(igb_t *);
95 static void igb_setup_msix_82580(igb_t *);
96 static uint_t igb_intr_legacy(void *, void *);
97 static uint_t igb_intr_msi(void *, void *);
98 static uint_t igb_intr_rx(void *, void *);
99 static uint_t igb_intr_tx(void *, void *);
100 static uint_t igb_intr_tx_other(void *, void *);
101 static void igb_intr_rx_work(igb_rx_ring_t *);
102 static void igb_intr_tx_work(igb_tx_ring_t *);
103 static void igb_intr_link_work(igb_t *);
104 static void igb_get_driver_control(struct e1000_hw *);
105 static void igb_release_driver_control(struct e1000_hw *);
106 
107 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
108 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
109 static int igb_resume(dev_info_t *);
110 static int igb_suspend(dev_info_t *);
111 static int igb_quiesce(dev_info_t *);
112 static void igb_unconfigure(dev_info_t *, igb_t *);
113 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
114     const void *);
115 static void igb_fm_init(igb_t *);
116 static void igb_fm_fini(igb_t *);
117 static void igb_release_multicast(igb_t *);
118 
119 static struct cb_ops igb_cb_ops = {
120 	nulldev,		/* cb_open */
121 	nulldev,		/* cb_close */
122 	nodev,			/* cb_strategy */
123 	nodev,			/* cb_print */
124 	nodev,			/* cb_dump */
125 	nodev,			/* cb_read */
126 	nodev,			/* cb_write */
127 	nodev,			/* cb_ioctl */
128 	nodev,			/* cb_devmap */
129 	nodev,			/* cb_mmap */
130 	nodev,			/* cb_segmap */
131 	nochpoll,		/* cb_chpoll */
132 	ddi_prop_op,		/* cb_prop_op */
133 	NULL,			/* cb_stream */
134 	D_MP | D_HOTPLUG,	/* cb_flag */
135 	CB_REV,			/* cb_rev */
136 	nodev,			/* cb_aread */
137 	nodev			/* cb_awrite */
138 };
139 
140 static struct dev_ops igb_dev_ops = {
141 	DEVO_REV,		/* devo_rev */
142 	0,			/* devo_refcnt */
143 	NULL,			/* devo_getinfo */
144 	nulldev,		/* devo_identify */
145 	nulldev,		/* devo_probe */
146 	igb_attach,		/* devo_attach */
147 	igb_detach,		/* devo_detach */
148 	nodev,			/* devo_reset */
149 	&igb_cb_ops,		/* devo_cb_ops */
150 	NULL,			/* devo_bus_ops */
151 	ddi_power,		/* devo_power */
152 	igb_quiesce,	/* devo_quiesce */
153 };
154 
155 static struct modldrv igb_modldrv = {
156 	&mod_driverops,		/* Type of module.  This one is a driver */
157 	ident,			/* Discription string */
158 	&igb_dev_ops,		/* driver ops */
159 };
160 
161 static struct modlinkage igb_modlinkage = {
162 	MODREV_1, &igb_modldrv, NULL
163 };
164 
165 /* Access attributes for register mapping */
166 ddi_device_acc_attr_t igb_regs_acc_attr = {
167 	DDI_DEVICE_ATTR_V0,
168 	DDI_STRUCTURE_LE_ACC,
169 	DDI_STRICTORDER_ACC,
170 	DDI_FLAGERR_ACC
171 };
172 
173 #define	IGB_M_CALLBACK_FLAGS	(MC_IOCTL | MC_GETCAPAB)
174 
175 static mac_callbacks_t igb_m_callbacks = {
176 	IGB_M_CALLBACK_FLAGS,
177 	igb_m_stat,
178 	igb_m_start,
179 	igb_m_stop,
180 	igb_m_promisc,
181 	igb_m_multicst,
182 	NULL,
183 	NULL,
184 	igb_m_ioctl,
185 	igb_m_getcapab
186 };
187 
188 /*
189  * Initialize capabilities of each supported adapter type
190  */
191 static adapter_info_t igb_82575_cap = {
192 	/* limits */
193 	4,		/* maximum number of rx queues */
194 	1,		/* minimum number of rx queues */
195 	4,		/* default number of rx queues */
196 	4,		/* maximum number of tx queues */
197 	1,		/* minimum number of tx queues */
198 	4,		/* default number of tx queues */
199 	65535,		/* maximum interrupt throttle rate */
200 	0,		/* minimum interrupt throttle rate */
201 	200,		/* default interrupt throttle rate */
202 
203 	/* function pointers */
204 	igb_enable_adapter_interrupts_82575,
205 	igb_setup_msix_82575,
206 
207 	/* capabilities */
208 	(IGB_FLAG_HAS_DCA |	/* capability flags */
209 	IGB_FLAG_VMDQ_POOL),
210 
211 	0xffc00000		/* mask for RXDCTL register */
212 };
213 
214 static adapter_info_t igb_82576_cap = {
215 	/* limits */
216 	16,		/* maximum number of rx queues */
217 	1,		/* minimum number of rx queues */
218 	4,		/* default number of rx queues */
219 	16,		/* maximum number of tx queues */
220 	1,		/* minimum number of tx queues */
221 	4,		/* default number of tx queues */
222 	65535,		/* maximum interrupt throttle rate */
223 	0,		/* minimum interrupt throttle rate */
224 	200,		/* default interrupt throttle rate */
225 
226 	/* function pointers */
227 	igb_enable_adapter_interrupts_82576,
228 	igb_setup_msix_82576,
229 
230 	/* capabilities */
231 	(IGB_FLAG_HAS_DCA |	/* capability flags */
232 	IGB_FLAG_VMDQ_POOL |
233 	IGB_FLAG_NEED_CTX_IDX),
234 
235 	0xffe00000		/* mask for RXDCTL register */
236 };
237 
238 static adapter_info_t igb_82580_cap = {
239 	/* limits */
240 	8,		/* maximum number of rx queues */
241 	1,		/* minimum number of rx queues */
242 	4,		/* default number of rx queues */
243 	8,		/* maximum number of tx queues */
244 	1,		/* minimum number of tx queues */
245 	4,		/* default number of tx queues */
246 	65535,		/* maximum interrupt throttle rate */
247 	0,		/* minimum interrupt throttle rate */
248 	200,		/* default interrupt throttle rate */
249 
250 	/* function pointers */
251 	igb_enable_adapter_interrupts_82580,
252 	igb_setup_msix_82580,
253 
254 	/* capabilities */
255 	(IGB_FLAG_HAS_DCA |	/* capability flags */
256 	IGB_FLAG_VMDQ_POOL |
257 	IGB_FLAG_NEED_CTX_IDX),
258 
259 	0xffe00000		/* mask for RXDCTL register */
260 };
261 
262 /*
263  * Module Initialization Functions
264  */
265 
266 int
267 _init(void)
268 {
269 	int status;
270 
271 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
272 
273 	status = mod_install(&igb_modlinkage);
274 
275 	if (status != DDI_SUCCESS) {
276 		mac_fini_ops(&igb_dev_ops);
277 	}
278 
279 	return (status);
280 }
281 
282 int
283 _fini(void)
284 {
285 	int status;
286 
287 	status = mod_remove(&igb_modlinkage);
288 
289 	if (status == DDI_SUCCESS) {
290 		mac_fini_ops(&igb_dev_ops);
291 	}
292 
293 	return (status);
294 
295 }
296 
297 int
298 _info(struct modinfo *modinfop)
299 {
300 	int status;
301 
302 	status = mod_info(&igb_modlinkage, modinfop);
303 
304 	return (status);
305 }
306 
307 /*
308  * igb_attach - driver attach
309  *
310  * This function is the device specific initialization entry
311  * point. This entry point is required and must be written.
312  * The DDI_ATTACH command must be provided in the attach entry
313  * point. When attach() is called with cmd set to DDI_ATTACH,
314  * all normal kernel services (such as kmem_alloc(9F)) are
315  * available for use by the driver.
316  *
317  * The attach() function will be called once for each instance
318  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
319  * Until attach() succeeds, the only driver entry points which
320  * may be called are open(9E) and getinfo(9E).
321  */
322 static int
323 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
324 {
325 	igb_t *igb;
326 	struct igb_osdep *osdep;
327 	struct e1000_hw *hw;
328 	int instance;
329 
330 	/*
331 	 * Check the command and perform corresponding operations
332 	 */
333 	switch (cmd) {
334 	default:
335 		return (DDI_FAILURE);
336 
337 	case DDI_RESUME:
338 		return (igb_resume(devinfo));
339 
340 	case DDI_ATTACH:
341 		break;
342 	}
343 
344 	/* Get the device instance */
345 	instance = ddi_get_instance(devinfo);
346 
347 	/* Allocate memory for the instance data structure */
348 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
349 
350 	igb->dip = devinfo;
351 	igb->instance = instance;
352 
353 	hw = &igb->hw;
354 	osdep = &igb->osdep;
355 	hw->back = osdep;
356 	osdep->igb = igb;
357 
358 	/* Attach the instance pointer to the dev_info data structure */
359 	ddi_set_driver_private(devinfo, igb);
360 
361 
362 	/* Initialize for fma support */
363 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
364 	    0, 0x0f,
365 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
366 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
367 	igb_fm_init(igb);
368 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
369 
370 	/*
371 	 * Map PCI config space registers
372 	 */
373 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
374 		igb_error(igb, "Failed to map PCI configurations");
375 		goto attach_fail;
376 	}
377 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
378 
379 	/*
380 	 * Identify the chipset family
381 	 */
382 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
383 		igb_error(igb, "Failed to identify hardware");
384 		goto attach_fail;
385 	}
386 
387 	/*
388 	 * Map device registers
389 	 */
390 	if (igb_regs_map(igb) != IGB_SUCCESS) {
391 		igb_error(igb, "Failed to map device registers");
392 		goto attach_fail;
393 	}
394 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
395 
396 	/*
397 	 * Initialize driver parameters
398 	 */
399 	igb_init_properties(igb);
400 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
401 
402 	/*
403 	 * Allocate interrupts
404 	 */
405 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
406 		igb_error(igb, "Failed to allocate interrupts");
407 		goto attach_fail;
408 	}
409 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
410 
411 	/*
412 	 * Allocate rx/tx rings based on the ring numbers.
413 	 * The actual numbers of rx/tx rings are decided by the number of
414 	 * allocated interrupt vectors, so we should allocate the rings after
415 	 * interrupts are allocated.
416 	 */
417 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
418 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
419 		goto attach_fail;
420 	}
421 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
422 
423 	/*
424 	 * Add interrupt handlers
425 	 */
426 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
427 		igb_error(igb, "Failed to add interrupt handlers");
428 		goto attach_fail;
429 	}
430 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
431 
432 	/*
433 	 * Initialize driver parameters
434 	 */
435 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
436 		igb_error(igb, "Failed to initialize driver settings");
437 		goto attach_fail;
438 	}
439 
440 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
441 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
442 		goto attach_fail;
443 	}
444 
445 	/*
446 	 * Initialize mutexes for this device.
447 	 * Do this before enabling the interrupt handler and
448 	 * register the softint to avoid the condition where
449 	 * interrupt handler can try using uninitialized mutex
450 	 */
451 	igb_init_locks(igb);
452 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
453 
454 	/*
455 	 * Allocate DMA resources
456 	 */
457 	if (igb_alloc_dma(igb) != IGB_SUCCESS) {
458 		igb_error(igb, "Failed to allocate DMA resources");
459 		goto attach_fail;
460 	}
461 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_DMA;
462 
463 	/*
464 	 * Initialize the adapter and setup the rx/tx rings
465 	 */
466 	if (igb_init(igb) != IGB_SUCCESS) {
467 		igb_error(igb, "Failed to initialize adapter");
468 		goto attach_fail;
469 	}
470 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
471 
472 	/*
473 	 * Initialize statistics
474 	 */
475 	if (igb_init_stats(igb) != IGB_SUCCESS) {
476 		igb_error(igb, "Failed to initialize statistics");
477 		goto attach_fail;
478 	}
479 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
480 
481 	/*
482 	 * Initialize NDD parameters
483 	 */
484 	if (igb_nd_init(igb) != IGB_SUCCESS) {
485 		igb_error(igb, "Failed to initialize ndd");
486 		goto attach_fail;
487 	}
488 	igb->attach_progress |= ATTACH_PROGRESS_NDD;
489 
490 	/*
491 	 * Register the driver to the MAC
492 	 */
493 	if (igb_register_mac(igb) != IGB_SUCCESS) {
494 		igb_error(igb, "Failed to register MAC");
495 		goto attach_fail;
496 	}
497 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
498 
499 	/*
500 	 * Now that mutex locks are initialized, and the chip is also
501 	 * initialized, enable interrupts.
502 	 */
503 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
504 		igb_error(igb, "Failed to enable DDI interrupts");
505 		goto attach_fail;
506 	}
507 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
508 
509 	igb_log(igb, "%s", igb_version);
510 	igb->igb_state |= IGB_INITIALIZED;
511 
512 	return (DDI_SUCCESS);
513 
514 attach_fail:
515 	igb_unconfigure(devinfo, igb);
516 	return (DDI_FAILURE);
517 }
518 
519 /*
520  * igb_detach - driver detach
521  *
522  * The detach() function is the complement of the attach routine.
523  * If cmd is set to DDI_DETACH, detach() is used to remove  the
524  * state  associated  with  a  given  instance of a device node
525  * prior to the removal of that instance from the system.
526  *
527  * The detach() function will be called once for each  instance
528  * of the device for which there has been a successful attach()
529  * once there are no longer  any  opens  on  the  device.
530  *
531  * Interrupts routine are disabled, All memory allocated by this
532  * driver are freed.
533  */
534 static int
535 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
536 {
537 	igb_t *igb;
538 
539 	/*
540 	 * Check detach command
541 	 */
542 	switch (cmd) {
543 	default:
544 		return (DDI_FAILURE);
545 
546 	case DDI_SUSPEND:
547 		return (igb_suspend(devinfo));
548 
549 	case DDI_DETACH:
550 		break;
551 	}
552 
553 
554 	/*
555 	 * Get the pointer to the driver private data structure
556 	 */
557 	igb = (igb_t *)ddi_get_driver_private(devinfo);
558 	if (igb == NULL)
559 		return (DDI_FAILURE);
560 
561 	/*
562 	 * Unregister MAC. If failed, we have to fail the detach
563 	 */
564 	if (mac_unregister(igb->mac_hdl) != 0) {
565 		igb_error(igb, "Failed to unregister MAC");
566 		return (DDI_FAILURE);
567 	}
568 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
569 
570 	/*
571 	 * If the device is still running, it needs to be stopped first.
572 	 * This check is necessary because under some specific circumstances,
573 	 * the detach routine can be called without stopping the interface
574 	 * first.
575 	 */
576 	mutex_enter(&igb->gen_lock);
577 	if (igb->igb_state & IGB_STARTED) {
578 		igb->igb_state &= ~IGB_STARTED;
579 		igb_stop(igb);
580 		mutex_exit(&igb->gen_lock);
581 		/* Disable and stop the watchdog timer */
582 		igb_disable_watchdog_timer(igb);
583 	} else
584 		mutex_exit(&igb->gen_lock);
585 
586 	/*
587 	 * Check if there are still rx buffers held by the upper layer.
588 	 * If so, fail the detach.
589 	 */
590 	if (!igb_rx_drain(igb))
591 		return (DDI_FAILURE);
592 
593 	/*
594 	 * Do the remaining unconfigure routines
595 	 */
596 	igb_unconfigure(devinfo, igb);
597 
598 	return (DDI_SUCCESS);
599 }
600 
601 /*
602  * quiesce(9E) entry point.
603  *
604  * This function is called when the system is single-threaded at high
605  * PIL with preemption disabled. Therefore, this function must not be
606  * blocked.
607  *
608  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
609  * DDI_FAILURE indicates an error condition and should almost never happen.
610  */
611 static int
612 igb_quiesce(dev_info_t *devinfo)
613 {
614 	igb_t *igb;
615 	struct e1000_hw *hw;
616 
617 	igb = (igb_t *)ddi_get_driver_private(devinfo);
618 
619 	if (igb == NULL)
620 		return (DDI_FAILURE);
621 
622 	hw = &igb->hw;
623 
624 	/*
625 	 * Disable the adapter interrupts
626 	 */
627 	igb_disable_adapter_interrupts(igb);
628 
629 	/* Tell firmware driver is no longer in control */
630 	igb_release_driver_control(hw);
631 
632 	/*
633 	 * Reset the chipset
634 	 */
635 	(void) e1000_reset_hw(hw);
636 
637 	/*
638 	 * Reset PHY if possible
639 	 */
640 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
641 		(void) e1000_phy_hw_reset(hw);
642 
643 	return (DDI_SUCCESS);
644 }
645 
646 /*
647  * igb_unconfigure - release all resources held by this instance
648  */
649 static void
650 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
651 {
652 	/*
653 	 * Disable interrupt
654 	 */
655 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
656 		(void) igb_disable_intrs(igb);
657 	}
658 
659 	/*
660 	 * Unregister MAC
661 	 */
662 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
663 		(void) mac_unregister(igb->mac_hdl);
664 	}
665 
666 	/*
667 	 * Free ndd parameters
668 	 */
669 	if (igb->attach_progress & ATTACH_PROGRESS_NDD) {
670 		igb_nd_cleanup(igb);
671 	}
672 
673 	/*
674 	 * Free statistics
675 	 */
676 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
677 		kstat_delete((kstat_t *)igb->igb_ks);
678 	}
679 
680 	/*
681 	 * Remove interrupt handlers
682 	 */
683 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
684 		igb_rem_intr_handlers(igb);
685 	}
686 
687 	/*
688 	 * Remove interrupts
689 	 */
690 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
691 		igb_rem_intrs(igb);
692 	}
693 
694 	/*
695 	 * Remove driver properties
696 	 */
697 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
698 		(void) ddi_prop_remove_all(devinfo);
699 	}
700 
701 	/*
702 	 * Release the DMA resources of rx/tx rings
703 	 */
704 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_DMA) {
705 		igb_free_dma(igb);
706 	}
707 
708 	/*
709 	 * Stop the adapter
710 	 */
711 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
712 		mutex_enter(&igb->gen_lock);
713 		igb_stop_adapter(igb);
714 		mutex_exit(&igb->gen_lock);
715 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
716 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
717 	}
718 
719 	/*
720 	 * Free multicast table
721 	 */
722 	igb_release_multicast(igb);
723 
724 	/*
725 	 * Free register handle
726 	 */
727 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
728 		if (igb->osdep.reg_handle != NULL)
729 			ddi_regs_map_free(&igb->osdep.reg_handle);
730 	}
731 
732 	/*
733 	 * Free PCI config handle
734 	 */
735 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
736 		if (igb->osdep.cfg_handle != NULL)
737 			pci_config_teardown(&igb->osdep.cfg_handle);
738 	}
739 
740 	/*
741 	 * Free locks
742 	 */
743 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
744 		igb_destroy_locks(igb);
745 	}
746 
747 	/*
748 	 * Free the rx/tx rings
749 	 */
750 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
751 		igb_free_rings(igb);
752 	}
753 
754 	/*
755 	 * Remove FMA
756 	 */
757 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
758 		igb_fm_fini(igb);
759 	}
760 
761 	/*
762 	 * Free the driver data structure
763 	 */
764 	kmem_free(igb, sizeof (igb_t));
765 
766 	ddi_set_driver_private(devinfo, NULL);
767 }
768 
769 /*
770  * igb_register_mac - Register the driver and its function pointers with
771  * the GLD interface
772  */
773 static int
774 igb_register_mac(igb_t *igb)
775 {
776 	struct e1000_hw *hw = &igb->hw;
777 	mac_register_t *mac;
778 	int status;
779 
780 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
781 		return (IGB_FAILURE);
782 
783 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
784 	mac->m_driver = igb;
785 	mac->m_dip = igb->dip;
786 	mac->m_src_addr = hw->mac.addr;
787 	mac->m_callbacks = &igb_m_callbacks;
788 	mac->m_min_sdu = 0;
789 	mac->m_max_sdu = igb->max_frame_size -
790 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
791 	mac->m_margin = VLAN_TAGSZ;
792 	mac->m_v12n = MAC_VIRT_LEVEL1;
793 
794 	status = mac_register(mac, &igb->mac_hdl);
795 
796 	mac_free(mac);
797 
798 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
799 }
800 
801 /*
802  * igb_identify_hardware - Identify the type of the chipset
803  */
804 static int
805 igb_identify_hardware(igb_t *igb)
806 {
807 	struct e1000_hw *hw = &igb->hw;
808 	struct igb_osdep *osdep = &igb->osdep;
809 
810 	/*
811 	 * Get the device id
812 	 */
813 	hw->vendor_id =
814 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
815 	hw->device_id =
816 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
817 	hw->revision_id =
818 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
819 	hw->subsystem_device_id =
820 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
821 	hw->subsystem_vendor_id =
822 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
823 
824 	/*
825 	 * Set the mac type of the adapter based on the device id
826 	 */
827 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
828 		return (IGB_FAILURE);
829 	}
830 
831 	/*
832 	 * Install adapter capabilities based on mac type
833 	 */
834 	switch (hw->mac.type) {
835 	case e1000_82575:
836 		igb->capab = &igb_82575_cap;
837 		break;
838 	case e1000_82576:
839 		igb->capab = &igb_82576_cap;
840 		break;
841 	case e1000_82580:
842 		igb->capab = &igb_82580_cap;
843 		break;
844 	default:
845 		return (IGB_FAILURE);
846 	}
847 
848 	return (IGB_SUCCESS);
849 }
850 
851 /*
852  * igb_regs_map - Map the device registers
853  */
854 static int
855 igb_regs_map(igb_t *igb)
856 {
857 	dev_info_t *devinfo = igb->dip;
858 	struct e1000_hw *hw = &igb->hw;
859 	struct igb_osdep *osdep = &igb->osdep;
860 	off_t mem_size;
861 
862 	/*
863 	 * First get the size of device registers to be mapped.
864 	 */
865 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
866 	    DDI_SUCCESS) {
867 		return (IGB_FAILURE);
868 	}
869 
870 	/*
871 	 * Call ddi_regs_map_setup() to map registers
872 	 */
873 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
874 	    (caddr_t *)&hw->hw_addr, 0,
875 	    mem_size, &igb_regs_acc_attr,
876 	    &osdep->reg_handle)) != DDI_SUCCESS) {
877 		return (IGB_FAILURE);
878 	}
879 
880 	return (IGB_SUCCESS);
881 }
882 
883 /*
884  * igb_init_properties - Initialize driver properties
885  */
886 static void
887 igb_init_properties(igb_t *igb)
888 {
889 	/*
890 	 * Get conf file properties, including link settings
891 	 * jumbo frames, ring number, descriptor number, etc.
892 	 */
893 	igb_get_conf(igb);
894 }
895 
896 /*
897  * igb_init_driver_settings - Initialize driver settings
898  *
899  * The settings include hardware function pointers, bus information,
900  * rx/tx rings settings, link state, and any other parameters that
901  * need to be setup during driver initialization.
902  */
903 static int
904 igb_init_driver_settings(igb_t *igb)
905 {
906 	struct e1000_hw *hw = &igb->hw;
907 	igb_rx_ring_t *rx_ring;
908 	igb_tx_ring_t *tx_ring;
909 	uint32_t rx_size;
910 	uint32_t tx_size;
911 	int i;
912 
913 	/*
914 	 * Initialize chipset specific hardware function pointers
915 	 */
916 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
917 		return (IGB_FAILURE);
918 	}
919 
920 	/*
921 	 * Get bus information
922 	 */
923 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
924 		return (IGB_FAILURE);
925 	}
926 
927 	/*
928 	 * Get the system page size
929 	 */
930 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
931 
932 	/*
933 	 * Set rx buffer size
934 	 * The IP header alignment room is counted in the calculation.
935 	 * The rx buffer size is in unit of 1K that is required by the
936 	 * chipset hardware.
937 	 */
938 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
939 	igb->rx_buf_size = ((rx_size >> 10) +
940 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
941 
942 	/*
943 	 * Set tx buffer size
944 	 */
945 	tx_size = igb->max_frame_size;
946 	igb->tx_buf_size = ((tx_size >> 10) +
947 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
948 
949 	/*
950 	 * Initialize rx/tx rings parameters
951 	 */
952 	for (i = 0; i < igb->num_rx_rings; i++) {
953 		rx_ring = &igb->rx_rings[i];
954 		rx_ring->index = i;
955 		rx_ring->igb = igb;
956 
957 		rx_ring->ring_size = igb->rx_ring_size;
958 		rx_ring->free_list_size = igb->rx_ring_size;
959 		rx_ring->copy_thresh = igb->rx_copy_thresh;
960 		rx_ring->limit_per_intr = igb->rx_limit_per_intr;
961 	}
962 
963 	for (i = 0; i < igb->num_tx_rings; i++) {
964 		tx_ring = &igb->tx_rings[i];
965 		tx_ring->index = i;
966 		tx_ring->igb = igb;
967 		if (igb->tx_head_wb_enable)
968 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
969 		else
970 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
971 
972 		tx_ring->ring_size = igb->tx_ring_size;
973 		tx_ring->free_list_size = igb->tx_ring_size +
974 		    (igb->tx_ring_size >> 1);
975 		tx_ring->copy_thresh = igb->tx_copy_thresh;
976 		tx_ring->recycle_thresh = igb->tx_recycle_thresh;
977 		tx_ring->overload_thresh = igb->tx_overload_thresh;
978 		tx_ring->resched_thresh = igb->tx_resched_thresh;
979 	}
980 
981 	/*
982 	 * Initialize values of interrupt throttling rates
983 	 */
984 	for (i = 1; i < MAX_NUM_EITR; i++)
985 		igb->intr_throttling[i] = igb->intr_throttling[0];
986 
987 	/*
988 	 * The initial link state should be "unknown"
989 	 */
990 	igb->link_state = LINK_STATE_UNKNOWN;
991 
992 	return (IGB_SUCCESS);
993 }
994 
995 /*
996  * igb_init_locks - Initialize locks
997  */
998 static void
999 igb_init_locks(igb_t *igb)
1000 {
1001 	igb_rx_ring_t *rx_ring;
1002 	igb_tx_ring_t *tx_ring;
1003 	int i;
1004 
1005 	for (i = 0; i < igb->num_rx_rings; i++) {
1006 		rx_ring = &igb->rx_rings[i];
1007 		mutex_init(&rx_ring->rx_lock, NULL,
1008 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1009 		mutex_init(&rx_ring->recycle_lock, NULL,
1010 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1011 	}
1012 
1013 	for (i = 0; i < igb->num_tx_rings; i++) {
1014 		tx_ring = &igb->tx_rings[i];
1015 		mutex_init(&tx_ring->tx_lock, NULL,
1016 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1017 		mutex_init(&tx_ring->recycle_lock, NULL,
1018 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1019 		mutex_init(&tx_ring->tcb_head_lock, NULL,
1020 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1021 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1022 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1023 	}
1024 
1025 	mutex_init(&igb->gen_lock, NULL,
1026 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1027 
1028 	mutex_init(&igb->watchdog_lock, NULL,
1029 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1030 }
1031 
1032 /*
1033  * igb_destroy_locks - Destroy locks
1034  */
1035 static void
1036 igb_destroy_locks(igb_t *igb)
1037 {
1038 	igb_rx_ring_t *rx_ring;
1039 	igb_tx_ring_t *tx_ring;
1040 	int i;
1041 
1042 	for (i = 0; i < igb->num_rx_rings; i++) {
1043 		rx_ring = &igb->rx_rings[i];
1044 		mutex_destroy(&rx_ring->rx_lock);
1045 		mutex_destroy(&rx_ring->recycle_lock);
1046 	}
1047 
1048 	for (i = 0; i < igb->num_tx_rings; i++) {
1049 		tx_ring = &igb->tx_rings[i];
1050 		mutex_destroy(&tx_ring->tx_lock);
1051 		mutex_destroy(&tx_ring->recycle_lock);
1052 		mutex_destroy(&tx_ring->tcb_head_lock);
1053 		mutex_destroy(&tx_ring->tcb_tail_lock);
1054 	}
1055 
1056 	mutex_destroy(&igb->gen_lock);
1057 	mutex_destroy(&igb->watchdog_lock);
1058 }
1059 
1060 static int
1061 igb_resume(dev_info_t *devinfo)
1062 {
1063 	igb_t *igb;
1064 
1065 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1066 	if (igb == NULL)
1067 		return (DDI_FAILURE);
1068 
1069 	mutex_enter(&igb->gen_lock);
1070 
1071 	if (igb->igb_state & IGB_STARTED) {
1072 		if (igb_start(igb) != IGB_SUCCESS) {
1073 			mutex_exit(&igb->gen_lock);
1074 			return (DDI_FAILURE);
1075 		}
1076 
1077 		/*
1078 		 * Enable and start the watchdog timer
1079 		 */
1080 		igb_enable_watchdog_timer(igb);
1081 	}
1082 
1083 	igb->igb_state &= ~IGB_SUSPENDED;
1084 
1085 	mutex_exit(&igb->gen_lock);
1086 
1087 	return (DDI_SUCCESS);
1088 }
1089 
1090 static int
1091 igb_suspend(dev_info_t *devinfo)
1092 {
1093 	igb_t *igb;
1094 
1095 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1096 	if (igb == NULL)
1097 		return (DDI_FAILURE);
1098 
1099 	mutex_enter(&igb->gen_lock);
1100 
1101 	igb->igb_state |= IGB_SUSPENDED;
1102 
1103 	if (!(igb->igb_state & IGB_STARTED)) {
1104 		mutex_exit(&igb->gen_lock);
1105 		return (DDI_SUCCESS);
1106 	}
1107 
1108 	igb_stop(igb);
1109 
1110 	mutex_exit(&igb->gen_lock);
1111 
1112 	/*
1113 	 * Disable and stop the watchdog timer
1114 	 */
1115 	igb_disable_watchdog_timer(igb);
1116 
1117 	return (DDI_SUCCESS);
1118 }
1119 
1120 static int
1121 igb_init(igb_t *igb)
1122 {
1123 	int i;
1124 
1125 	mutex_enter(&igb->gen_lock);
1126 
1127 	/*
1128 	 * Initilize the adapter
1129 	 */
1130 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1131 		mutex_exit(&igb->gen_lock);
1132 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1133 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1134 		return (IGB_FAILURE);
1135 	}
1136 
1137 	/*
1138 	 * Setup the rx/tx rings
1139 	 */
1140 	for (i = 0; i < igb->num_rx_rings; i++)
1141 		mutex_enter(&igb->rx_rings[i].rx_lock);
1142 	for (i = 0; i < igb->num_tx_rings; i++)
1143 		mutex_enter(&igb->tx_rings[i].tx_lock);
1144 
1145 	igb_setup_rings(igb);
1146 
1147 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1148 		mutex_exit(&igb->tx_rings[i].tx_lock);
1149 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1150 		mutex_exit(&igb->rx_rings[i].rx_lock);
1151 
1152 	mutex_exit(&igb->gen_lock);
1153 
1154 	return (IGB_SUCCESS);
1155 }
1156 
1157 /*
1158  * igb_init_mac_address - Initialize the default MAC address
1159  *
1160  * On success, the MAC address is entered in the igb->hw.mac.addr
1161  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1162  * address register.
1163  *
1164  * Important side effects:
1165  * 1. adapter is reset - this is required to put it in a known state.
1166  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1167  * MAC address and all default settings are stored, so a valid checksum
1168  * is required.
1169  */
1170 static int
1171 igb_init_mac_address(igb_t *igb)
1172 {
1173 	struct e1000_hw *hw = &igb->hw;
1174 
1175 	ASSERT(mutex_owned(&igb->gen_lock));
1176 
1177 	/*
1178 	 * Reset chipset to put the hardware in a known state
1179 	 * before we try to get MAC address from NVM.
1180 	 */
1181 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1182 		igb_error(igb, "Adapter reset failed.");
1183 		goto init_mac_fail;
1184 	}
1185 
1186 	/*
1187 	 * NVM validation
1188 	 */
1189 	if (e1000_validate_nvm_checksum(hw) < 0) {
1190 		/*
1191 		 * Some PCI-E parts fail the first check due to
1192 		 * the link being in sleep state.  Call it again,
1193 		 * if it fails a second time its a real issue.
1194 		 */
1195 		if (e1000_validate_nvm_checksum(hw) < 0) {
1196 			igb_error(igb,
1197 			    "Invalid NVM checksum. Please contact "
1198 			    "the vendor to update the NVM.");
1199 			goto init_mac_fail;
1200 		}
1201 	}
1202 
1203 	/*
1204 	 * Get the mac address
1205 	 * This function should handle SPARC case correctly.
1206 	 */
1207 	if (!igb_find_mac_address(igb)) {
1208 		igb_error(igb, "Failed to get the mac address");
1209 		goto init_mac_fail;
1210 	}
1211 
1212 	/* Validate mac address */
1213 	if (!is_valid_mac_addr(hw->mac.addr)) {
1214 		igb_error(igb, "Invalid mac address");
1215 		goto init_mac_fail;
1216 	}
1217 
1218 	return (IGB_SUCCESS);
1219 
1220 init_mac_fail:
1221 	return (IGB_FAILURE);
1222 }
1223 
1224 /*
1225  * igb_init_adapter - Initialize the adapter
1226  */
1227 static int
1228 igb_init_adapter(igb_t *igb)
1229 {
1230 	struct e1000_hw *hw = &igb->hw;
1231 	uint32_t pba;
1232 	uint32_t high_water;
1233 	int i;
1234 
1235 	ASSERT(mutex_owned(&igb->gen_lock));
1236 
1237 	/*
1238 	 * In order to obtain the default MAC address, this will reset the
1239 	 * adapter and validate the NVM that the address and many other
1240 	 * default settings come from.
1241 	 */
1242 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1243 		igb_error(igb, "Failed to initialize MAC address");
1244 		goto init_adapter_fail;
1245 	}
1246 
1247 	/*
1248 	 * Setup flow control
1249 	 *
1250 	 * These parameters set thresholds for the adapter's generation(Tx)
1251 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1252 	 * settings.  Flow control is enabled or disabled in the configuration
1253 	 * file.
1254 	 * High-water mark is set down from the top of the rx fifo (not
1255 	 * sensitive to max_frame_size) and low-water is set just below
1256 	 * high-water mark.
1257 	 * The high water mark must be low enough to fit one full frame above
1258 	 * it in the rx FIFO.  Should be the lower of:
1259 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1260 	 * frame.
1261 	 */
1262 	/*
1263 	 * The default setting of PBA is correct for 82575 and other supported
1264 	 * adapters do not have the E1000_PBA register, so PBA value is only
1265 	 * used for calculation here and is never written to the adapter.
1266 	 */
1267 	if (hw->mac.type == e1000_82575) {
1268 		pba = E1000_PBA_34K;
1269 	} else {
1270 		pba = E1000_PBA_64K;
1271 	}
1272 
1273 	high_water = min(((pba << 10) * 9 / 10),
1274 	    ((pba << 10) - igb->max_frame_size));
1275 
1276 	if (hw->mac.type == e1000_82575) {
1277 		/* 8-byte granularity */
1278 		hw->fc.high_water = high_water & 0xFFF8;
1279 		hw->fc.low_water = hw->fc.high_water - 8;
1280 	} else {
1281 		/* 16-byte granularity */
1282 		hw->fc.high_water = high_water & 0xFFF0;
1283 		hw->fc.low_water = hw->fc.high_water - 16;
1284 	}
1285 
1286 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1287 	hw->fc.send_xon = B_TRUE;
1288 
1289 	(void) e1000_validate_mdi_setting(hw);
1290 
1291 	/*
1292 	 * Reset the chipset hardware the second time to put PBA settings
1293 	 * into effect.
1294 	 */
1295 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1296 		igb_error(igb, "Second reset failed");
1297 		goto init_adapter_fail;
1298 	}
1299 
1300 	/*
1301 	 * Don't wait for auto-negotiation to complete
1302 	 */
1303 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1304 
1305 	/*
1306 	 * Copper options
1307 	 */
1308 	if (hw->phy.media_type == e1000_media_type_copper) {
1309 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1310 		hw->phy.disable_polarity_correction = B_FALSE;
1311 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1312 	}
1313 
1314 	/*
1315 	 * Initialize link settings
1316 	 */
1317 	(void) igb_setup_link(igb, B_FALSE);
1318 
1319 	/*
1320 	 * Configure/Initialize hardware
1321 	 */
1322 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1323 		igb_error(igb, "Failed to initialize hardware");
1324 		goto init_adapter_fail;
1325 	}
1326 
1327 	/*
1328 	 * Disable wakeup control by default
1329 	 */
1330 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1331 
1332 	/*
1333 	 * Record phy info in hw struct
1334 	 */
1335 	(void) e1000_get_phy_info(hw);
1336 
1337 	/*
1338 	 * Make sure driver has control
1339 	 */
1340 	igb_get_driver_control(hw);
1341 
1342 	/*
1343 	 * Restore LED settings to the default from EEPROM
1344 	 * to meet the standard for Sun platforms.
1345 	 */
1346 	(void) e1000_cleanup_led(hw);
1347 
1348 	/*
1349 	 * Setup MSI-X interrupts
1350 	 */
1351 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1352 		igb->capab->setup_msix(igb);
1353 
1354 	/*
1355 	 * Initialize unicast addresses.
1356 	 */
1357 	igb_init_unicst(igb);
1358 
1359 	/*
1360 	 * Setup and initialize the mctable structures.
1361 	 */
1362 	igb_setup_multicst(igb);
1363 
1364 	/*
1365 	 * Set interrupt throttling rate
1366 	 */
1367 	for (i = 0; i < igb->intr_cnt; i++)
1368 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1369 
1370 	/*
1371 	 * Save the state of the phy
1372 	 */
1373 	igb_get_phy_state(igb);
1374 
1375 	return (IGB_SUCCESS);
1376 
1377 init_adapter_fail:
1378 	/*
1379 	 * Reset PHY if possible
1380 	 */
1381 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1382 		(void) e1000_phy_hw_reset(hw);
1383 
1384 	return (IGB_FAILURE);
1385 }
1386 
1387 /*
1388  * igb_stop_adapter - Stop the adapter
1389  */
1390 static void
1391 igb_stop_adapter(igb_t *igb)
1392 {
1393 	struct e1000_hw *hw = &igb->hw;
1394 
1395 	ASSERT(mutex_owned(&igb->gen_lock));
1396 
1397 	/* Tell firmware driver is no longer in control */
1398 	igb_release_driver_control(hw);
1399 
1400 	/*
1401 	 * Reset the chipset
1402 	 */
1403 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1404 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1405 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1406 	}
1407 
1408 	/*
1409 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1410 	 */
1411 }
1412 
1413 /*
1414  * igb_reset - Reset the chipset and restart the driver.
1415  *
1416  * It involves stopping and re-starting the chipset,
1417  * and re-configuring the rx/tx rings.
1418  */
1419 static int
1420 igb_reset(igb_t *igb)
1421 {
1422 	int i;
1423 
1424 	mutex_enter(&igb->gen_lock);
1425 
1426 	ASSERT(igb->igb_state & IGB_STARTED);
1427 
1428 	/*
1429 	 * Disable the adapter interrupts to stop any rx/tx activities
1430 	 * before draining pending data and resetting hardware.
1431 	 */
1432 	igb_disable_adapter_interrupts(igb);
1433 
1434 	/*
1435 	 * Drain the pending transmit packets
1436 	 */
1437 	(void) igb_tx_drain(igb);
1438 
1439 	for (i = 0; i < igb->num_rx_rings; i++)
1440 		mutex_enter(&igb->rx_rings[i].rx_lock);
1441 	for (i = 0; i < igb->num_tx_rings; i++)
1442 		mutex_enter(&igb->tx_rings[i].tx_lock);
1443 
1444 	/*
1445 	 * Stop the adapter
1446 	 */
1447 	igb_stop_adapter(igb);
1448 
1449 	/*
1450 	 * Clean the pending tx data/resources
1451 	 */
1452 	igb_tx_clean(igb);
1453 
1454 	/*
1455 	 * Start the adapter
1456 	 */
1457 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1458 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1459 		goto reset_failure;
1460 	}
1461 
1462 	/*
1463 	 * Setup the rx/tx rings
1464 	 */
1465 	igb_setup_rings(igb);
1466 
1467 	/*
1468 	 * Enable adapter interrupts
1469 	 * The interrupts must be enabled after the driver state is START
1470 	 */
1471 	igb->capab->enable_intr(igb);
1472 
1473 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1474 		goto reset_failure;
1475 
1476 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1477 		goto reset_failure;
1478 
1479 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1480 		mutex_exit(&igb->tx_rings[i].tx_lock);
1481 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1482 		mutex_exit(&igb->rx_rings[i].rx_lock);
1483 
1484 	mutex_exit(&igb->gen_lock);
1485 
1486 	return (IGB_SUCCESS);
1487 
1488 reset_failure:
1489 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1490 		mutex_exit(&igb->tx_rings[i].tx_lock);
1491 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1492 		mutex_exit(&igb->rx_rings[i].rx_lock);
1493 
1494 	mutex_exit(&igb->gen_lock);
1495 
1496 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1497 
1498 	return (IGB_FAILURE);
1499 }
1500 
1501 /*
1502  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1503  */
1504 static void
1505 igb_tx_clean(igb_t *igb)
1506 {
1507 	igb_tx_ring_t *tx_ring;
1508 	tx_control_block_t *tcb;
1509 	link_list_t pending_list;
1510 	uint32_t desc_num;
1511 	int i, j;
1512 
1513 	LINK_LIST_INIT(&pending_list);
1514 
1515 	for (i = 0; i < igb->num_tx_rings; i++) {
1516 		tx_ring = &igb->tx_rings[i];
1517 
1518 		mutex_enter(&tx_ring->recycle_lock);
1519 
1520 		/*
1521 		 * Clean the pending tx data - the pending packets in the
1522 		 * work_list that have no chances to be transmitted again.
1523 		 *
1524 		 * We must ensure the chipset is stopped or the link is down
1525 		 * before cleaning the transmit packets.
1526 		 */
1527 		desc_num = 0;
1528 		for (j = 0; j < tx_ring->ring_size; j++) {
1529 			tcb = tx_ring->work_list[j];
1530 			if (tcb != NULL) {
1531 				desc_num += tcb->desc_num;
1532 
1533 				tx_ring->work_list[j] = NULL;
1534 
1535 				igb_free_tcb(tcb);
1536 
1537 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1538 			}
1539 		}
1540 
1541 		if (desc_num > 0) {
1542 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1543 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1544 
1545 			/*
1546 			 * Reset the head and tail pointers of the tbd ring;
1547 			 * Reset the head write-back if it is enabled.
1548 			 */
1549 			tx_ring->tbd_head = 0;
1550 			tx_ring->tbd_tail = 0;
1551 			if (igb->tx_head_wb_enable)
1552 				*tx_ring->tbd_head_wb = 0;
1553 
1554 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1555 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1556 		}
1557 
1558 		mutex_exit(&tx_ring->recycle_lock);
1559 
1560 		/*
1561 		 * Add the tx control blocks in the pending list to
1562 		 * the free list.
1563 		 */
1564 		igb_put_free_list(tx_ring, &pending_list);
1565 	}
1566 }
1567 
1568 /*
1569  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1570  */
1571 static boolean_t
1572 igb_tx_drain(igb_t *igb)
1573 {
1574 	igb_tx_ring_t *tx_ring;
1575 	boolean_t done;
1576 	int i, j;
1577 
1578 	/*
1579 	 * Wait for a specific time to allow pending tx packets
1580 	 * to be transmitted.
1581 	 *
1582 	 * Check the counter tbd_free to see if transmission is done.
1583 	 * No lock protection is needed here.
1584 	 *
1585 	 * Return B_TRUE if all pending packets have been transmitted;
1586 	 * Otherwise return B_FALSE;
1587 	 */
1588 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1589 
1590 		done = B_TRUE;
1591 		for (j = 0; j < igb->num_tx_rings; j++) {
1592 			tx_ring = &igb->tx_rings[j];
1593 			done = done &&
1594 			    (tx_ring->tbd_free == tx_ring->ring_size);
1595 		}
1596 
1597 		if (done)
1598 			break;
1599 
1600 		msec_delay(1);
1601 	}
1602 
1603 	return (done);
1604 }
1605 
1606 /*
1607  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1608  */
1609 static boolean_t
1610 igb_rx_drain(igb_t *igb)
1611 {
1612 	igb_rx_ring_t *rx_ring;
1613 	boolean_t done;
1614 	int i, j;
1615 
1616 	/*
1617 	 * Polling the rx free list to check if those rx buffers held by
1618 	 * the upper layer are released.
1619 	 *
1620 	 * Check the counter rcb_free to see if all pending buffers are
1621 	 * released. No lock protection is needed here.
1622 	 *
1623 	 * Return B_TRUE if all pending buffers have been released;
1624 	 * Otherwise return B_FALSE;
1625 	 */
1626 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1627 
1628 		done = B_TRUE;
1629 		for (j = 0; j < igb->num_rx_rings; j++) {
1630 			rx_ring = &igb->rx_rings[j];
1631 			done = done &&
1632 			    (rx_ring->rcb_free == rx_ring->free_list_size);
1633 		}
1634 
1635 		if (done)
1636 			break;
1637 
1638 		msec_delay(1);
1639 	}
1640 
1641 	return (done);
1642 }
1643 
1644 /*
1645  * igb_start - Start the driver/chipset
1646  */
1647 int
1648 igb_start(igb_t *igb)
1649 {
1650 	int i;
1651 
1652 	ASSERT(mutex_owned(&igb->gen_lock));
1653 
1654 	for (i = 0; i < igb->num_rx_rings; i++)
1655 		mutex_enter(&igb->rx_rings[i].rx_lock);
1656 	for (i = 0; i < igb->num_tx_rings; i++)
1657 		mutex_enter(&igb->tx_rings[i].tx_lock);
1658 
1659 	/*
1660 	 * Start the adapter
1661 	 */
1662 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1663 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1664 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1665 			goto start_failure;
1666 		}
1667 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1668 
1669 		/*
1670 		 * Setup the rx/tx rings
1671 		 */
1672 		igb_setup_rings(igb);
1673 	}
1674 
1675 	/*
1676 	 * Enable adapter interrupts
1677 	 * The interrupts must be enabled after the driver state is START
1678 	 */
1679 	igb->capab->enable_intr(igb);
1680 
1681 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1682 		goto start_failure;
1683 
1684 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1685 		goto start_failure;
1686 
1687 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1688 		mutex_exit(&igb->tx_rings[i].tx_lock);
1689 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1690 		mutex_exit(&igb->rx_rings[i].rx_lock);
1691 
1692 	return (IGB_SUCCESS);
1693 
1694 start_failure:
1695 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1696 		mutex_exit(&igb->tx_rings[i].tx_lock);
1697 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1698 		mutex_exit(&igb->rx_rings[i].rx_lock);
1699 
1700 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1701 
1702 	return (IGB_FAILURE);
1703 }
1704 
1705 /*
1706  * igb_stop - Stop the driver/chipset
1707  */
1708 void
1709 igb_stop(igb_t *igb)
1710 {
1711 	int i;
1712 
1713 	ASSERT(mutex_owned(&igb->gen_lock));
1714 
1715 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1716 
1717 	/*
1718 	 * Disable the adapter interrupts
1719 	 */
1720 	igb_disable_adapter_interrupts(igb);
1721 
1722 	/*
1723 	 * Drain the pending tx packets
1724 	 */
1725 	(void) igb_tx_drain(igb);
1726 
1727 	for (i = 0; i < igb->num_rx_rings; i++)
1728 		mutex_enter(&igb->rx_rings[i].rx_lock);
1729 	for (i = 0; i < igb->num_tx_rings; i++)
1730 		mutex_enter(&igb->tx_rings[i].tx_lock);
1731 
1732 	/*
1733 	 * Stop the adapter
1734 	 */
1735 	igb_stop_adapter(igb);
1736 
1737 	/*
1738 	 * Clean the pending tx data/resources
1739 	 */
1740 	igb_tx_clean(igb);
1741 
1742 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1743 		mutex_exit(&igb->tx_rings[i].tx_lock);
1744 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1745 		mutex_exit(&igb->rx_rings[i].rx_lock);
1746 
1747 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1748 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1749 }
1750 
1751 /*
1752  * igb_alloc_rings - Allocate memory space for rx/tx rings
1753  */
1754 static int
1755 igb_alloc_rings(igb_t *igb)
1756 {
1757 	/*
1758 	 * Allocate memory space for rx rings
1759 	 */
1760 	igb->rx_rings = kmem_zalloc(
1761 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1762 	    KM_NOSLEEP);
1763 
1764 	if (igb->rx_rings == NULL) {
1765 		return (IGB_FAILURE);
1766 	}
1767 
1768 	/*
1769 	 * Allocate memory space for tx rings
1770 	 */
1771 	igb->tx_rings = kmem_zalloc(
1772 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1773 	    KM_NOSLEEP);
1774 
1775 	if (igb->tx_rings == NULL) {
1776 		kmem_free(igb->rx_rings,
1777 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1778 		igb->rx_rings = NULL;
1779 		return (IGB_FAILURE);
1780 	}
1781 
1782 	/*
1783 	 * Allocate memory space for rx ring groups
1784 	 */
1785 	igb->rx_groups = kmem_zalloc(
1786 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1787 	    KM_NOSLEEP);
1788 
1789 	if (igb->rx_groups == NULL) {
1790 		kmem_free(igb->rx_rings,
1791 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1792 		kmem_free(igb->tx_rings,
1793 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1794 		igb->rx_rings = NULL;
1795 		igb->tx_rings = NULL;
1796 		return (IGB_FAILURE);
1797 	}
1798 
1799 	return (IGB_SUCCESS);
1800 }
1801 
1802 /*
1803  * igb_free_rings - Free the memory space of rx/tx rings.
1804  */
1805 static void
1806 igb_free_rings(igb_t *igb)
1807 {
1808 	if (igb->rx_rings != NULL) {
1809 		kmem_free(igb->rx_rings,
1810 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1811 		igb->rx_rings = NULL;
1812 	}
1813 
1814 	if (igb->tx_rings != NULL) {
1815 		kmem_free(igb->tx_rings,
1816 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1817 		igb->tx_rings = NULL;
1818 	}
1819 
1820 	if (igb->rx_groups != NULL) {
1821 		kmem_free(igb->rx_groups,
1822 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1823 		igb->rx_groups = NULL;
1824 	}
1825 }
1826 
1827 /*
1828  * igb_setup_rings - Setup rx/tx rings
1829  */
1830 static void
1831 igb_setup_rings(igb_t *igb)
1832 {
1833 	/*
1834 	 * Setup the rx/tx rings, including the following:
1835 	 *
1836 	 * 1. Setup the descriptor ring and the control block buffers;
1837 	 * 2. Initialize necessary registers for receive/transmit;
1838 	 * 3. Initialize software pointers/parameters for receive/transmit;
1839 	 */
1840 	igb_setup_rx(igb);
1841 
1842 	igb_setup_tx(igb);
1843 
1844 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1845 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1846 }
1847 
1848 static void
1849 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1850 {
1851 	igb_t *igb = rx_ring->igb;
1852 	struct e1000_hw *hw = &igb->hw;
1853 	rx_control_block_t *rcb;
1854 	union e1000_adv_rx_desc	*rbd;
1855 	uint32_t size;
1856 	uint32_t buf_low;
1857 	uint32_t buf_high;
1858 	uint32_t rxdctl;
1859 	int i;
1860 
1861 	ASSERT(mutex_owned(&rx_ring->rx_lock));
1862 	ASSERT(mutex_owned(&igb->gen_lock));
1863 
1864 	/*
1865 	 * Initialize descriptor ring with buffer addresses
1866 	 */
1867 	for (i = 0; i < igb->rx_ring_size; i++) {
1868 		rcb = rx_ring->work_list[i];
1869 		rbd = &rx_ring->rbd_ring[i];
1870 
1871 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1872 		rbd->read.hdr_addr = NULL;
1873 	}
1874 
1875 	/*
1876 	 * Initialize the base address registers
1877 	 */
1878 	buf_low = (uint32_t)rx_ring->rbd_area.dma_address;
1879 	buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32);
1880 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1881 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1882 
1883 	/*
1884 	 * Initialize the length register
1885 	 */
1886 	size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc);
1887 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1888 
1889 	/*
1890 	 * Initialize buffer size & descriptor type
1891 	 */
1892 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
1893 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
1894 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
1895 
1896 	/*
1897 	 * Setup the Receive Descriptor Control Register (RXDCTL)
1898 	 */
1899 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
1900 	rxdctl &= igb->capab->rxdctl_mask;
1901 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1902 	rxdctl |= 16;		/* pthresh */
1903 	rxdctl |= 8 << 8;	/* hthresh */
1904 	rxdctl |= 1 << 16;	/* wthresh */
1905 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
1906 
1907 	rx_ring->rbd_next = 0;
1908 
1909 	/*
1910 	 * Note: Considering the case that the chipset is being reset
1911 	 * and there are still some buffers held by the upper layer,
1912 	 * we should not reset the values of rcb_head, rcb_tail and
1913 	 * rcb_free;
1914 	 */
1915 	if (igb->igb_state == IGB_UNKNOWN) {
1916 		rx_ring->rcb_head = 0;
1917 		rx_ring->rcb_tail = 0;
1918 		rx_ring->rcb_free = rx_ring->free_list_size;
1919 	}
1920 }
1921 
1922 static void
1923 igb_setup_rx(igb_t *igb)
1924 {
1925 	igb_rx_ring_t *rx_ring;
1926 	igb_rx_group_t *rx_group;
1927 	struct e1000_hw *hw = &igb->hw;
1928 	uint32_t rctl, rxcsum;
1929 	uint32_t ring_per_group;
1930 	int i;
1931 
1932 	/*
1933 	 * Setup the Receive Control Register (RCTL), and enable the
1934 	 * receiver. The initial configuration is to: enable the receiver,
1935 	 * accept broadcasts, discard bad packets, accept long packets,
1936 	 * disable VLAN filter checking, and set receive buffer size to
1937 	 * 2k.  For 82575, also set the receive descriptor minimum
1938 	 * threshold size to 1/2 the ring.
1939 	 */
1940 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1941 
1942 	/*
1943 	 * Clear the field used for wakeup control.  This driver doesn't do
1944 	 * wakeup but leave this here for completeness.
1945 	 */
1946 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1947 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1948 
1949 	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
1950 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
1951 	    E1000_RCTL_LPE |		/* Large Packet Enable */
1952 					/* Multicast filter offset */
1953 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
1954 	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
1955 	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
1956 
1957 	for (i = 0; i < igb->num_rx_groups; i++) {
1958 		rx_group = &igb->rx_groups[i];
1959 		rx_group->index = i;
1960 		rx_group->igb = igb;
1961 	}
1962 
1963 	/*
1964 	 * Set up all rx descriptor rings - must be called before receive unit
1965 	 * enabled.
1966 	 */
1967 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
1968 	for (i = 0; i < igb->num_rx_rings; i++) {
1969 		rx_ring = &igb->rx_rings[i];
1970 		igb_setup_rx_ring(rx_ring);
1971 
1972 		/*
1973 		 * Map a ring to a group by assigning a group index
1974 		 */
1975 		rx_ring->group_index = i / ring_per_group;
1976 	}
1977 
1978 	/*
1979 	 * Setup the Rx Long Packet Max Length register
1980 	 */
1981 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
1982 
1983 	/*
1984 	 * Hardware checksum settings
1985 	 */
1986 	if (igb->rx_hcksum_enable) {
1987 		rxcsum =
1988 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
1989 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
1990 
1991 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1992 	}
1993 
1994 	/*
1995 	 * Setup classify and RSS for multiple receive queues
1996 	 */
1997 	switch (igb->vmdq_mode) {
1998 	case E1000_VMDQ_OFF:
1999 		/*
2000 		 * One ring group, only RSS is needed when more than
2001 		 * one ring enabled.
2002 		 */
2003 		if (igb->num_rx_rings > 1)
2004 			igb_setup_rss(igb);
2005 		break;
2006 	case E1000_VMDQ_MAC:
2007 		/*
2008 		 * Multiple groups, each group has one ring,
2009 		 * only the MAC classification is needed.
2010 		 */
2011 		igb_setup_mac_classify(igb);
2012 		break;
2013 	case E1000_VMDQ_MAC_RSS:
2014 		/*
2015 		 * Multiple groups and multiple rings, both
2016 		 * MAC classification and RSS are needed.
2017 		 */
2018 		igb_setup_mac_rss_classify(igb);
2019 		break;
2020 	}
2021 
2022 	/*
2023 	 * Enable the receive unit - must be done after all
2024 	 * the rx setup above.
2025 	 */
2026 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2027 
2028 	/*
2029 	 * Initialize all adapter ring head & tail pointers - must
2030 	 * be done after receive unit is enabled
2031 	 */
2032 	for (i = 0; i < igb->num_rx_rings; i++) {
2033 		rx_ring = &igb->rx_rings[i];
2034 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2035 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_ring->ring_size - 1);
2036 	}
2037 
2038 	/*
2039 	 * 82575 with manageability enabled needs a special flush to make
2040 	 * sure the fifos start clean.
2041 	 */
2042 	if ((hw->mac.type == e1000_82575) &&
2043 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2044 		e1000_rx_fifo_flush_82575(hw);
2045 	}
2046 }
2047 
2048 static void
2049 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2050 {
2051 	igb_t *igb = tx_ring->igb;
2052 	struct e1000_hw *hw = &igb->hw;
2053 	uint32_t size;
2054 	uint32_t buf_low;
2055 	uint32_t buf_high;
2056 	uint32_t reg_val;
2057 
2058 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2059 	ASSERT(mutex_owned(&igb->gen_lock));
2060 
2061 
2062 	/*
2063 	 * Initialize the length register
2064 	 */
2065 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2066 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2067 
2068 	/*
2069 	 * Initialize the base address registers
2070 	 */
2071 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2072 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2073 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2074 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2075 
2076 	/*
2077 	 * Setup head & tail pointers
2078 	 */
2079 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2080 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2081 
2082 	/*
2083 	 * Setup head write-back
2084 	 */
2085 	if (igb->tx_head_wb_enable) {
2086 		/*
2087 		 * The memory of the head write-back is allocated using
2088 		 * the extra tbd beyond the tail of the tbd ring.
2089 		 */
2090 		tx_ring->tbd_head_wb = (uint32_t *)
2091 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2092 		*tx_ring->tbd_head_wb = 0;
2093 
2094 		buf_low = (uint32_t)
2095 		    (tx_ring->tbd_area.dma_address + size);
2096 		buf_high = (uint32_t)
2097 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2098 
2099 		/* Set the head write-back enable bit */
2100 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2101 
2102 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2103 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2104 
2105 		/*
2106 		 * Turn off relaxed ordering for head write back or it will
2107 		 * cause problems with the tx recycling
2108 		 */
2109 		reg_val = E1000_READ_REG(hw,
2110 		    E1000_DCA_TXCTRL(tx_ring->index));
2111 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2112 		E1000_WRITE_REG(hw,
2113 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2114 	} else {
2115 		tx_ring->tbd_head_wb = NULL;
2116 	}
2117 
2118 	tx_ring->tbd_head = 0;
2119 	tx_ring->tbd_tail = 0;
2120 	tx_ring->tbd_free = tx_ring->ring_size;
2121 
2122 	/*
2123 	 * Note: for the case that the chipset is being reset, we should not
2124 	 * reset the values of tcb_head, tcb_tail. And considering there might
2125 	 * still be some packets kept in the pending_list, we should not assert
2126 	 * (tcb_free == free_list_size) here.
2127 	 */
2128 	if (igb->igb_state == IGB_UNKNOWN) {
2129 		tx_ring->tcb_head = 0;
2130 		tx_ring->tcb_tail = 0;
2131 		tx_ring->tcb_free = tx_ring->free_list_size;
2132 	}
2133 
2134 	/*
2135 	 * Enable TXDCTL per queue
2136 	 */
2137 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2138 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2139 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2140 
2141 	/*
2142 	 * Initialize hardware checksum offload settings
2143 	 */
2144 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2145 }
2146 
2147 static void
2148 igb_setup_tx(igb_t *igb)
2149 {
2150 	igb_tx_ring_t *tx_ring;
2151 	struct e1000_hw *hw = &igb->hw;
2152 	uint32_t reg_val;
2153 	int i;
2154 
2155 	for (i = 0; i < igb->num_tx_rings; i++) {
2156 		tx_ring = &igb->tx_rings[i];
2157 		igb_setup_tx_ring(tx_ring);
2158 	}
2159 
2160 	/*
2161 	 * Setup the Transmit Control Register (TCTL)
2162 	 */
2163 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2164 	reg_val &= ~E1000_TCTL_CT;
2165 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2166 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2167 
2168 	/* Enable transmits */
2169 	reg_val |= E1000_TCTL_EN;
2170 
2171 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2172 }
2173 
2174 /*
2175  * igb_setup_rss - Setup receive-side scaling feature
2176  */
2177 static void
2178 igb_setup_rss(igb_t *igb)
2179 {
2180 	struct e1000_hw *hw = &igb->hw;
2181 	uint32_t i, mrqc, rxcsum;
2182 	int shift = 0;
2183 	uint32_t random;
2184 	union e1000_reta {
2185 		uint32_t	dword;
2186 		uint8_t		bytes[4];
2187 	} reta;
2188 
2189 	/* Setup the Redirection Table */
2190 	if (hw->mac.type == e1000_82576) {
2191 		shift = 3;
2192 	} else if (hw->mac.type == e1000_82575) {
2193 		shift = 6;
2194 	}
2195 	for (i = 0; i < (32 * 4); i++) {
2196 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2197 		if ((i & 3) == 3) {
2198 			E1000_WRITE_REG(hw,
2199 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2200 		}
2201 	}
2202 
2203 	/* Fill out hash function seeds */
2204 	for (i = 0; i < 10; i++) {
2205 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2206 		    sizeof (uint32_t));
2207 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2208 	}
2209 
2210 	/* Setup the Multiple Receive Queue Control register */
2211 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2212 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2213 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2214 	    E1000_MRQC_RSS_FIELD_IPV6 |
2215 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2216 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2217 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2218 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2219 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2220 
2221 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2222 
2223 	/*
2224 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2225 	 *
2226 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2227 	 * checksum offloading provided by the 82575 chipset besides the IP
2228 	 * header checksum offloading and the TCP/UDP checksum offloading.
2229 	 * The Packet Checksum is by default computed over the entire packet
2230 	 * from the first byte of the DA through the last byte of the CRC,
2231 	 * including the Ethernet and IP headers.
2232 	 *
2233 	 * It is a hardware limitation that Packet Checksum is mutually
2234 	 * exclusive with RSS.
2235 	 */
2236 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2237 	rxcsum |= E1000_RXCSUM_PCSD;
2238 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2239 }
2240 
2241 /*
2242  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2243  */
2244 static void
2245 igb_setup_mac_rss_classify(igb_t *igb)
2246 {
2247 	struct e1000_hw *hw = &igb->hw;
2248 	uint32_t i, mrqc, vmdctl, rxcsum;
2249 	uint32_t ring_per_group;
2250 	int shift_group0, shift_group1;
2251 	uint32_t random;
2252 	union e1000_reta {
2253 		uint32_t	dword;
2254 		uint8_t		bytes[4];
2255 	} reta;
2256 
2257 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2258 
2259 	/* Setup the Redirection Table, it is shared between two groups */
2260 	shift_group0 = 2;
2261 	shift_group1 = 6;
2262 	for (i = 0; i < (32 * 4); i++) {
2263 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2264 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2265 		if ((i & 3) == 3) {
2266 			E1000_WRITE_REG(hw,
2267 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2268 		}
2269 	}
2270 
2271 	/* Fill out hash function seeds */
2272 	for (i = 0; i < 10; i++) {
2273 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2274 		    sizeof (uint32_t));
2275 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2276 	}
2277 
2278 	/*
2279 	 * Setup the Multiple Receive Queue Control register,
2280 	 * enable VMDq based on packet destination MAC address and RSS.
2281 	 */
2282 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2283 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2284 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2285 	    E1000_MRQC_RSS_FIELD_IPV6 |
2286 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2287 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2288 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2289 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2290 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2291 
2292 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2293 
2294 
2295 	/* Define the default group and default queues */
2296 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2297 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2298 
2299 	/*
2300 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2301 	 *
2302 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2303 	 * checksum offloading provided by the 82575 chipset besides the IP
2304 	 * header checksum offloading and the TCP/UDP checksum offloading.
2305 	 * The Packet Checksum is by default computed over the entire packet
2306 	 * from the first byte of the DA through the last byte of the CRC,
2307 	 * including the Ethernet and IP headers.
2308 	 *
2309 	 * It is a hardware limitation that Packet Checksum is mutually
2310 	 * exclusive with RSS.
2311 	 */
2312 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2313 	rxcsum |= E1000_RXCSUM_PCSD;
2314 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2315 }
2316 
2317 /*
2318  * igb_setup_mac_classify - Setup MAC classification feature
2319  */
2320 static void
2321 igb_setup_mac_classify(igb_t *igb)
2322 {
2323 	struct e1000_hw *hw = &igb->hw;
2324 	uint32_t mrqc, rxcsum;
2325 
2326 	/*
2327 	 * Setup the Multiple Receive Queue Control register,
2328 	 * enable VMDq based on packet destination MAC address.
2329 	 */
2330 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2331 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2332 
2333 	/*
2334 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2335 	 *
2336 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2337 	 * checksum offloading provided by the 82575 chipset besides the IP
2338 	 * header checksum offloading and the TCP/UDP checksum offloading.
2339 	 * The Packet Checksum is by default computed over the entire packet
2340 	 * from the first byte of the DA through the last byte of the CRC,
2341 	 * including the Ethernet and IP headers.
2342 	 *
2343 	 * It is a hardware limitation that Packet Checksum is mutually
2344 	 * exclusive with RSS.
2345 	 */
2346 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2347 	rxcsum |= E1000_RXCSUM_PCSD;
2348 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2349 
2350 }
2351 
2352 /*
2353  * igb_init_unicst - Initialize the unicast addresses
2354  */
2355 static void
2356 igb_init_unicst(igb_t *igb)
2357 {
2358 	struct e1000_hw *hw = &igb->hw;
2359 	int slot;
2360 
2361 	/*
2362 	 * Here we should consider two situations:
2363 	 *
2364 	 * 1. Chipset is initialized the first time
2365 	 *    Initialize the multiple unicast addresses, and
2366 	 *    save the default MAC address.
2367 	 *
2368 	 * 2. Chipset is reset
2369 	 *    Recover the multiple unicast addresses from the
2370 	 *    software data structure to the RAR registers.
2371 	 */
2372 
2373 	/*
2374 	 * Clear the default MAC address in the RAR0 rgister,
2375 	 * which is loaded from EEPROM when system boot or chipreset,
2376 	 * this will cause the conficts with add_mac/rem_mac entry
2377 	 * points when VMDq is enabled. For this reason, the RAR0
2378 	 * must be cleared for both cases mentioned above.
2379 	 */
2380 	e1000_rar_clear(hw, 0);
2381 
2382 	if (!igb->unicst_init) {
2383 
2384 		/* Initialize the multiple unicast addresses */
2385 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2386 		igb->unicst_avail = igb->unicst_total;
2387 
2388 		for (slot = 0; slot < igb->unicst_total; slot++)
2389 			igb->unicst_addr[slot].mac.set = 0;
2390 
2391 		igb->unicst_init = B_TRUE;
2392 	} else {
2393 		/* Re-configure the RAR registers */
2394 		for (slot = 0; slot < igb->unicst_total; slot++) {
2395 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2396 			    slot, igb->vmdq_mode,
2397 			    igb->unicst_addr[slot].mac.group_index);
2398 		}
2399 	}
2400 
2401 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2402 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2403 }
2404 
2405 /*
2406  * igb_unicst_find - Find the slot for the specified unicast address
2407  */
2408 int
2409 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2410 {
2411 	int slot;
2412 
2413 	ASSERT(mutex_owned(&igb->gen_lock));
2414 
2415 	for (slot = 0; slot < igb->unicst_total; slot++) {
2416 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2417 		    mac_addr, ETHERADDRL) == 0)
2418 			return (slot);
2419 	}
2420 
2421 	return (-1);
2422 }
2423 
2424 /*
2425  * igb_unicst_set - Set the unicast address to the specified slot
2426  */
2427 int
2428 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2429     int slot)
2430 {
2431 	struct e1000_hw *hw = &igb->hw;
2432 
2433 	ASSERT(mutex_owned(&igb->gen_lock));
2434 
2435 	/*
2436 	 * Save the unicast address in the software data structure
2437 	 */
2438 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2439 
2440 	/*
2441 	 * Set the unicast address to the RAR register
2442 	 */
2443 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2444 
2445 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2446 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2447 		return (EIO);
2448 	}
2449 
2450 	return (0);
2451 }
2452 
2453 /*
2454  * igb_multicst_add - Add a multicst address
2455  */
2456 int
2457 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2458 {
2459 	struct ether_addr *new_table;
2460 	size_t new_len;
2461 	size_t old_len;
2462 
2463 	ASSERT(mutex_owned(&igb->gen_lock));
2464 
2465 	if ((multiaddr[0] & 01) == 0) {
2466 		igb_error(igb, "Illegal multicast address");
2467 		return (EINVAL);
2468 	}
2469 
2470 	if (igb->mcast_count >= igb->mcast_max_num) {
2471 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2472 		    igb->mcast_max_num);
2473 		return (ENOENT);
2474 	}
2475 
2476 	if (igb->mcast_count == igb->mcast_alloc_count) {
2477 		old_len = igb->mcast_alloc_count *
2478 		    sizeof (struct ether_addr);
2479 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2480 		    sizeof (struct ether_addr);
2481 
2482 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2483 		if (new_table == NULL) {
2484 			igb_error(igb,
2485 			    "Not enough memory to alloc mcast table");
2486 			return (ENOMEM);
2487 		}
2488 
2489 		if (igb->mcast_table != NULL) {
2490 			bcopy(igb->mcast_table, new_table, old_len);
2491 			kmem_free(igb->mcast_table, old_len);
2492 		}
2493 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2494 		igb->mcast_table = new_table;
2495 	}
2496 
2497 	bcopy(multiaddr,
2498 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2499 	igb->mcast_count++;
2500 
2501 	/*
2502 	 * Update the multicast table in the hardware
2503 	 */
2504 	igb_setup_multicst(igb);
2505 
2506 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2507 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2508 		return (EIO);
2509 	}
2510 
2511 	return (0);
2512 }
2513 
2514 /*
2515  * igb_multicst_remove - Remove a multicst address
2516  */
2517 int
2518 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2519 {
2520 	struct ether_addr *new_table;
2521 	size_t new_len;
2522 	size_t old_len;
2523 	int i;
2524 
2525 	ASSERT(mutex_owned(&igb->gen_lock));
2526 
2527 	for (i = 0; i < igb->mcast_count; i++) {
2528 		if (bcmp(multiaddr, &igb->mcast_table[i],
2529 		    ETHERADDRL) == 0) {
2530 			for (i++; i < igb->mcast_count; i++) {
2531 				igb->mcast_table[i - 1] =
2532 				    igb->mcast_table[i];
2533 			}
2534 			igb->mcast_count--;
2535 			break;
2536 		}
2537 	}
2538 
2539 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2540 	    MCAST_ALLOC_COUNT) {
2541 		old_len = igb->mcast_alloc_count *
2542 		    sizeof (struct ether_addr);
2543 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2544 		    sizeof (struct ether_addr);
2545 
2546 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2547 		if (new_table != NULL) {
2548 			bcopy(igb->mcast_table, new_table, new_len);
2549 			kmem_free(igb->mcast_table, old_len);
2550 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2551 			igb->mcast_table = new_table;
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * Update the multicast table in the hardware
2557 	 */
2558 	igb_setup_multicst(igb);
2559 
2560 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2561 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2562 		return (EIO);
2563 	}
2564 
2565 	return (0);
2566 }
2567 
2568 static void
2569 igb_release_multicast(igb_t *igb)
2570 {
2571 	if (igb->mcast_table != NULL) {
2572 		kmem_free(igb->mcast_table,
2573 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2574 		igb->mcast_table = NULL;
2575 	}
2576 }
2577 
2578 /*
2579  * igb_setup_multicast - setup multicast data structures
2580  *
2581  * This routine initializes all of the multicast related structures
2582  * and save them in the hardware registers.
2583  */
2584 static void
2585 igb_setup_multicst(igb_t *igb)
2586 {
2587 	uint8_t *mc_addr_list;
2588 	uint32_t mc_addr_count;
2589 	struct e1000_hw *hw = &igb->hw;
2590 
2591 	ASSERT(mutex_owned(&igb->gen_lock));
2592 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2593 
2594 	mc_addr_list = (uint8_t *)igb->mcast_table;
2595 	mc_addr_count = igb->mcast_count;
2596 
2597 	/*
2598 	 * Update the multicase addresses to the MTA registers
2599 	 */
2600 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2601 }
2602 
2603 /*
2604  * igb_get_conf - Get driver configurations set in driver.conf
2605  *
2606  * This routine gets user-configured values out of the configuration
2607  * file igb.conf.
2608  *
2609  * For each configurable value, there is a minimum, a maximum, and a
2610  * default.
2611  * If user does not configure a value, use the default.
2612  * If user configures below the minimum, use the minumum.
2613  * If user configures above the maximum, use the maxumum.
2614  */
2615 static void
2616 igb_get_conf(igb_t *igb)
2617 {
2618 	struct e1000_hw *hw = &igb->hw;
2619 	uint32_t default_mtu;
2620 	uint32_t flow_control;
2621 	uint32_t ring_per_group;
2622 	int i;
2623 
2624 	/*
2625 	 * igb driver supports the following user configurations:
2626 	 *
2627 	 * Link configurations:
2628 	 *    adv_autoneg_cap
2629 	 *    adv_1000fdx_cap
2630 	 *    adv_100fdx_cap
2631 	 *    adv_100hdx_cap
2632 	 *    adv_10fdx_cap
2633 	 *    adv_10hdx_cap
2634 	 * Note: 1000hdx is not supported.
2635 	 *
2636 	 * Jumbo frame configuration:
2637 	 *    default_mtu
2638 	 *
2639 	 * Ethernet flow control configuration:
2640 	 *    flow_control
2641 	 *
2642 	 * Multiple rings configurations:
2643 	 *    tx_queue_number
2644 	 *    tx_ring_size
2645 	 *    rx_queue_number
2646 	 *    rx_ring_size
2647 	 *
2648 	 * Call igb_get_prop() to get the value for a specific
2649 	 * configuration parameter.
2650 	 */
2651 
2652 	/*
2653 	 * Link configurations
2654 	 */
2655 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2656 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2657 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2658 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2659 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2660 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2661 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2662 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2663 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2664 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2665 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2666 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2667 
2668 	/*
2669 	 * Jumbo frame configurations
2670 	 */
2671 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2672 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2673 
2674 	igb->max_frame_size = default_mtu +
2675 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2676 
2677 	/*
2678 	 * Ethernet flow control configuration
2679 	 */
2680 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2681 	    e1000_fc_none, 4, e1000_fc_full);
2682 	if (flow_control == 4)
2683 		flow_control = e1000_fc_default;
2684 
2685 	hw->fc.requested_mode = flow_control;
2686 
2687 	/*
2688 	 * Multiple rings configurations
2689 	 */
2690 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2691 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2692 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2693 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2694 
2695 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2696 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2697 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2698 	/*
2699 	 * Currently we do not support VMDq for 82576 and 82580.
2700 	 * If it is e1000_82576, set num_rx_groups to 1.
2701 	 */
2702 	if (hw->mac.type >= e1000_82576)
2703 		igb->num_rx_groups = 1;
2704 
2705 	if (igb->mr_enable) {
2706 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2707 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2708 	} else {
2709 		igb->num_tx_rings = 1;
2710 		igb->num_rx_rings = 1;
2711 
2712 		if (igb->num_rx_groups > 1) {
2713 			igb_error(igb,
2714 			    "Invalid rx groups number. Please enable multiple "
2715 			    "rings first");
2716 			igb->num_rx_groups = 1;
2717 		}
2718 	}
2719 
2720 	/*
2721 	 * Check the divisibility between rx rings and rx groups.
2722 	 */
2723 	for (i = igb->num_rx_groups; i > 0; i--) {
2724 		if ((igb->num_rx_rings % i) == 0)
2725 			break;
2726 	}
2727 	if (i != igb->num_rx_groups) {
2728 		igb_error(igb,
2729 		    "Invalid rx groups number. Downgrade the rx group "
2730 		    "number to %d.", i);
2731 		igb->num_rx_groups = i;
2732 	}
2733 
2734 	/*
2735 	 * Get the ring number per group.
2736 	 */
2737 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2738 
2739 	if (igb->num_rx_groups == 1) {
2740 		/*
2741 		 * One rx ring group, the rx ring number is num_rx_rings.
2742 		 */
2743 		igb->vmdq_mode = E1000_VMDQ_OFF;
2744 	} else if (ring_per_group == 1) {
2745 		/*
2746 		 * Multiple rx groups, each group has one rx ring.
2747 		 */
2748 		igb->vmdq_mode = E1000_VMDQ_MAC;
2749 	} else {
2750 		/*
2751 		 * Multiple groups and multiple rings.
2752 		 */
2753 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2754 	}
2755 
2756 	/*
2757 	 * Tunable used to force an interrupt type. The only use is
2758 	 * for testing of the lesser interrupt types.
2759 	 * 0 = don't force interrupt type
2760 	 * 1 = force interrupt type MSIX
2761 	 * 2 = force interrupt type MSI
2762 	 * 3 = force interrupt type Legacy
2763 	 */
2764 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2765 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2766 
2767 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2768 	    0, 1, 1);
2769 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2770 	    0, 1, 1);
2771 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2772 	    0, 1, 1);
2773 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2774 	    0, 1, 1);
2775 
2776 	/*
2777 	 * igb LSO needs the tx h/w checksum support.
2778 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2779 	 */
2780 	if (igb->tx_hcksum_enable == B_FALSE)
2781 		igb->lso_enable = B_FALSE;
2782 
2783 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2784 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2785 	    DEFAULT_TX_COPY_THRESHOLD);
2786 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2787 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2788 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2789 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2790 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2791 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2792 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2793 	    MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
2794 	    DEFAULT_TX_RESCHED_THRESHOLD);
2795 
2796 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2797 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2798 	    DEFAULT_RX_COPY_THRESHOLD);
2799 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2800 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2801 	    DEFAULT_RX_LIMIT_PER_INTR);
2802 
2803 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2804 	    igb->capab->min_intr_throttle,
2805 	    igb->capab->max_intr_throttle,
2806 	    igb->capab->def_intr_throttle);
2807 
2808 	/*
2809 	 * Max number of multicast addresses
2810 	 */
2811 	igb->mcast_max_num =
2812 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2813 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2814 }
2815 
2816 /*
2817  * igb_get_prop - Get a property value out of the configuration file igb.conf
2818  *
2819  * Caller provides the name of the property, a default value, a minimum
2820  * value, and a maximum value.
2821  *
2822  * Return configured value of the property, with default, minimum and
2823  * maximum properly applied.
2824  */
2825 static int
2826 igb_get_prop(igb_t *igb,
2827     char *propname,	/* name of the property */
2828     int minval,		/* minimum acceptable value */
2829     int maxval,		/* maximim acceptable value */
2830     int defval)		/* default value */
2831 {
2832 	int value;
2833 
2834 	/*
2835 	 * Call ddi_prop_get_int() to read the conf settings
2836 	 */
2837 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2838 	    DDI_PROP_DONTPASS, propname, defval);
2839 
2840 	if (value > maxval)
2841 		value = maxval;
2842 
2843 	if (value < minval)
2844 		value = minval;
2845 
2846 	return (value);
2847 }
2848 
2849 /*
2850  * igb_setup_link - Using the link properties to setup the link
2851  */
2852 int
2853 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2854 {
2855 	struct e1000_mac_info *mac;
2856 	struct e1000_phy_info *phy;
2857 	boolean_t invalid;
2858 
2859 	mac = &igb->hw.mac;
2860 	phy = &igb->hw.phy;
2861 	invalid = B_FALSE;
2862 
2863 	if (igb->param_adv_autoneg_cap == 1) {
2864 		mac->autoneg = B_TRUE;
2865 		phy->autoneg_advertised = 0;
2866 
2867 		/*
2868 		 * 1000hdx is not supported for autonegotiation
2869 		 */
2870 		if (igb->param_adv_1000fdx_cap == 1)
2871 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2872 
2873 		if (igb->param_adv_100fdx_cap == 1)
2874 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2875 
2876 		if (igb->param_adv_100hdx_cap == 1)
2877 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2878 
2879 		if (igb->param_adv_10fdx_cap == 1)
2880 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2881 
2882 		if (igb->param_adv_10hdx_cap == 1)
2883 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2884 
2885 		if (phy->autoneg_advertised == 0)
2886 			invalid = B_TRUE;
2887 	} else {
2888 		mac->autoneg = B_FALSE;
2889 
2890 		/*
2891 		 * 1000fdx and 1000hdx are not supported for forced link
2892 		 */
2893 		if (igb->param_adv_100fdx_cap == 1)
2894 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2895 		else if (igb->param_adv_100hdx_cap == 1)
2896 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2897 		else if (igb->param_adv_10fdx_cap == 1)
2898 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2899 		else if (igb->param_adv_10hdx_cap == 1)
2900 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2901 		else
2902 			invalid = B_TRUE;
2903 	}
2904 
2905 	if (invalid) {
2906 		igb_notice(igb, "Invalid link settings. Setup link to "
2907 		    "autonegotiation with full link capabilities.");
2908 		mac->autoneg = B_TRUE;
2909 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
2910 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
2911 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
2912 	}
2913 
2914 	if (setup_hw) {
2915 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
2916 			return (IGB_FAILURE);
2917 	}
2918 
2919 	return (IGB_SUCCESS);
2920 }
2921 
2922 
2923 /*
2924  * igb_is_link_up - Check if the link is up
2925  */
2926 static boolean_t
2927 igb_is_link_up(igb_t *igb)
2928 {
2929 	struct e1000_hw *hw = &igb->hw;
2930 	boolean_t link_up = B_FALSE;
2931 
2932 	ASSERT(mutex_owned(&igb->gen_lock));
2933 
2934 	/*
2935 	 * get_link_status is set in the interrupt handler on link-status-change
2936 	 * or rx sequence error interrupt.  get_link_status will stay
2937 	 * false until the e1000_check_for_link establishes link only
2938 	 * for copper adapters.
2939 	 */
2940 	switch (hw->phy.media_type) {
2941 	case e1000_media_type_copper:
2942 		if (hw->mac.get_link_status) {
2943 			(void) e1000_check_for_link(hw);
2944 			link_up = !hw->mac.get_link_status;
2945 		} else {
2946 			link_up = B_TRUE;
2947 		}
2948 		break;
2949 	case e1000_media_type_fiber:
2950 		(void) e1000_check_for_link(hw);
2951 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2952 		break;
2953 	case e1000_media_type_internal_serdes:
2954 		(void) e1000_check_for_link(hw);
2955 		link_up = hw->mac.serdes_has_link;
2956 		break;
2957 	}
2958 
2959 	return (link_up);
2960 }
2961 
2962 /*
2963  * igb_link_check - Link status processing
2964  */
2965 static boolean_t
2966 igb_link_check(igb_t *igb)
2967 {
2968 	struct e1000_hw *hw = &igb->hw;
2969 	uint16_t speed = 0, duplex = 0;
2970 	boolean_t link_changed = B_FALSE;
2971 
2972 	ASSERT(mutex_owned(&igb->gen_lock));
2973 
2974 	if (igb_is_link_up(igb)) {
2975 		/*
2976 		 * The Link is up, check whether it was marked as down earlier
2977 		 */
2978 		if (igb->link_state != LINK_STATE_UP) {
2979 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
2980 			igb->link_speed = speed;
2981 			igb->link_duplex = duplex;
2982 			igb->link_state = LINK_STATE_UP;
2983 			igb->link_down_timeout = 0;
2984 			link_changed = B_TRUE;
2985 		}
2986 	} else {
2987 		if (igb->link_state != LINK_STATE_DOWN) {
2988 			igb->link_speed = 0;
2989 			igb->link_duplex = 0;
2990 			igb->link_state = LINK_STATE_DOWN;
2991 			link_changed = B_TRUE;
2992 		}
2993 
2994 		if (igb->igb_state & IGB_STARTED) {
2995 			if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
2996 				igb->link_down_timeout++;
2997 			} else if (igb->link_down_timeout ==
2998 			    MAX_LINK_DOWN_TIMEOUT) {
2999 				igb_tx_clean(igb);
3000 				igb->link_down_timeout++;
3001 			}
3002 		}
3003 	}
3004 
3005 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
3006 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3007 
3008 	return (link_changed);
3009 }
3010 
3011 /*
3012  * igb_local_timer - driver watchdog function
3013  *
3014  * This function will handle the hardware stall check, link status
3015  * check and other routines.
3016  */
3017 static void
3018 igb_local_timer(void *arg)
3019 {
3020 	igb_t *igb = (igb_t *)arg;
3021 	boolean_t link_changed = B_FALSE;
3022 
3023 	if (igb_stall_check(igb))
3024 		igb->igb_state |= IGB_STALL;
3025 
3026 	if (igb->igb_state & IGB_STALL) {
3027 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3028 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3029 		igb->reset_count++;
3030 		igb->igb_state &= ~IGB_STALL;
3031 		if (igb_reset(igb) == IGB_SUCCESS)
3032 			ddi_fm_service_impact(igb->dip,
3033 			    DDI_SERVICE_RESTORED);
3034 	}
3035 
3036 	mutex_enter(&igb->gen_lock);
3037 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3038 		link_changed = igb_link_check(igb);
3039 	mutex_exit(&igb->gen_lock);
3040 
3041 	if (link_changed)
3042 		mac_link_update(igb->mac_hdl, igb->link_state);
3043 
3044 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
3045 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3046 
3047 	igb_restart_watchdog_timer(igb);
3048 }
3049 
3050 /*
3051  * igb_stall_check - check for transmit stall
3052  *
3053  * This function checks if the adapter is stalled (in transmit).
3054  *
3055  * It is called each time the watchdog timeout is invoked.
3056  * If the transmit descriptor reclaim continuously fails,
3057  * the watchdog value will increment by 1. If the watchdog
3058  * value exceeds the threshold, the igb is assumed to
3059  * have stalled and need to be reset.
3060  */
3061 static boolean_t
3062 igb_stall_check(igb_t *igb)
3063 {
3064 	igb_tx_ring_t *tx_ring;
3065 	struct e1000_hw *hw = &igb->hw;
3066 	boolean_t result;
3067 	int i;
3068 
3069 	if (igb->link_state != LINK_STATE_UP)
3070 		return (B_FALSE);
3071 
3072 	/*
3073 	 * If any tx ring is stalled, we'll reset the chipset
3074 	 */
3075 	result = B_FALSE;
3076 	for (i = 0; i < igb->num_tx_rings; i++) {
3077 		tx_ring = &igb->tx_rings[i];
3078 
3079 		if (tx_ring->recycle_fail > 0)
3080 			tx_ring->stall_watchdog++;
3081 		else
3082 			tx_ring->stall_watchdog = 0;
3083 
3084 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3085 			result = B_TRUE;
3086 			if (hw->mac.type == e1000_82580) {
3087 				hw->dev_spec._82575.global_device_reset
3088 				    = B_TRUE;
3089 			}
3090 			break;
3091 		}
3092 	}
3093 
3094 	if (result) {
3095 		tx_ring->stall_watchdog = 0;
3096 		tx_ring->recycle_fail = 0;
3097 	}
3098 
3099 	return (result);
3100 }
3101 
3102 
3103 /*
3104  * is_valid_mac_addr - Check if the mac address is valid
3105  */
3106 static boolean_t
3107 is_valid_mac_addr(uint8_t *mac_addr)
3108 {
3109 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3110 	const uint8_t addr_test2[6] =
3111 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3112 
3113 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3114 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3115 		return (B_FALSE);
3116 
3117 	return (B_TRUE);
3118 }
3119 
3120 static boolean_t
3121 igb_find_mac_address(igb_t *igb)
3122 {
3123 	struct e1000_hw *hw = &igb->hw;
3124 #ifdef __sparc
3125 	uchar_t *bytes;
3126 	struct ether_addr sysaddr;
3127 	uint_t nelts;
3128 	int err;
3129 	boolean_t found = B_FALSE;
3130 
3131 	/*
3132 	 * The "vendor's factory-set address" may already have
3133 	 * been extracted from the chip, but if the property
3134 	 * "local-mac-address" is set we use that instead.
3135 	 *
3136 	 * We check whether it looks like an array of 6
3137 	 * bytes (which it should, if OBP set it).  If we can't
3138 	 * make sense of it this way, we'll ignore it.
3139 	 */
3140 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3141 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3142 	if (err == DDI_PROP_SUCCESS) {
3143 		if (nelts == ETHERADDRL) {
3144 			while (nelts--)
3145 				hw->mac.addr[nelts] = bytes[nelts];
3146 			found = B_TRUE;
3147 		}
3148 		ddi_prop_free(bytes);
3149 	}
3150 
3151 	/*
3152 	 * Look up the OBP property "local-mac-address?". If the user has set
3153 	 * 'local-mac-address? = false', use "the system address" instead.
3154 	 */
3155 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3156 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3157 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3158 			if (localetheraddr(NULL, &sysaddr) != 0) {
3159 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3160 				found = B_TRUE;
3161 			}
3162 		}
3163 		ddi_prop_free(bytes);
3164 	}
3165 
3166 	/*
3167 	 * Finally(!), if there's a valid "mac-address" property (created
3168 	 * if we netbooted from this interface), we must use this instead
3169 	 * of any of the above to ensure that the NFS/install server doesn't
3170 	 * get confused by the address changing as Solaris takes over!
3171 	 */
3172 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3173 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3174 	if (err == DDI_PROP_SUCCESS) {
3175 		if (nelts == ETHERADDRL) {
3176 			while (nelts--)
3177 				hw->mac.addr[nelts] = bytes[nelts];
3178 			found = B_TRUE;
3179 		}
3180 		ddi_prop_free(bytes);
3181 	}
3182 
3183 	if (found) {
3184 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3185 		return (B_TRUE);
3186 	}
3187 #endif
3188 
3189 	/*
3190 	 * Read the device MAC address from the EEPROM
3191 	 */
3192 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3193 		return (B_FALSE);
3194 
3195 	return (B_TRUE);
3196 }
3197 
3198 #pragma inline(igb_arm_watchdog_timer)
3199 
3200 static void
3201 igb_arm_watchdog_timer(igb_t *igb)
3202 {
3203 	/*
3204 	 * Fire a watchdog timer
3205 	 */
3206 	igb->watchdog_tid =
3207 	    timeout(igb_local_timer,
3208 	    (void *)igb, 1 * drv_usectohz(1000000));
3209 
3210 }
3211 
3212 /*
3213  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3214  */
3215 void
3216 igb_enable_watchdog_timer(igb_t *igb)
3217 {
3218 	mutex_enter(&igb->watchdog_lock);
3219 
3220 	if (!igb->watchdog_enable) {
3221 		igb->watchdog_enable = B_TRUE;
3222 		igb->watchdog_start = B_TRUE;
3223 		igb_arm_watchdog_timer(igb);
3224 	}
3225 
3226 	mutex_exit(&igb->watchdog_lock);
3227 
3228 }
3229 
3230 /*
3231  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3232  */
3233 void
3234 igb_disable_watchdog_timer(igb_t *igb)
3235 {
3236 	timeout_id_t tid;
3237 
3238 	mutex_enter(&igb->watchdog_lock);
3239 
3240 	igb->watchdog_enable = B_FALSE;
3241 	igb->watchdog_start = B_FALSE;
3242 	tid = igb->watchdog_tid;
3243 	igb->watchdog_tid = 0;
3244 
3245 	mutex_exit(&igb->watchdog_lock);
3246 
3247 	if (tid != 0)
3248 		(void) untimeout(tid);
3249 
3250 }
3251 
3252 /*
3253  * igb_start_watchdog_timer - Start the driver watchdog timer
3254  */
3255 static void
3256 igb_start_watchdog_timer(igb_t *igb)
3257 {
3258 	mutex_enter(&igb->watchdog_lock);
3259 
3260 	if (igb->watchdog_enable) {
3261 		if (!igb->watchdog_start) {
3262 			igb->watchdog_start = B_TRUE;
3263 			igb_arm_watchdog_timer(igb);
3264 		}
3265 	}
3266 
3267 	mutex_exit(&igb->watchdog_lock);
3268 }
3269 
3270 /*
3271  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3272  */
3273 static void
3274 igb_restart_watchdog_timer(igb_t *igb)
3275 {
3276 	mutex_enter(&igb->watchdog_lock);
3277 
3278 	if (igb->watchdog_start)
3279 		igb_arm_watchdog_timer(igb);
3280 
3281 	mutex_exit(&igb->watchdog_lock);
3282 }
3283 
3284 /*
3285  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3286  */
3287 static void
3288 igb_stop_watchdog_timer(igb_t *igb)
3289 {
3290 	timeout_id_t tid;
3291 
3292 	mutex_enter(&igb->watchdog_lock);
3293 
3294 	igb->watchdog_start = B_FALSE;
3295 	tid = igb->watchdog_tid;
3296 	igb->watchdog_tid = 0;
3297 
3298 	mutex_exit(&igb->watchdog_lock);
3299 
3300 	if (tid != 0)
3301 		(void) untimeout(tid);
3302 }
3303 
3304 /*
3305  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3306  */
3307 static void
3308 igb_disable_adapter_interrupts(igb_t *igb)
3309 {
3310 	struct e1000_hw *hw = &igb->hw;
3311 
3312 	/*
3313 	 * Set the IMC register to mask all the interrupts,
3314 	 * including the tx interrupts.
3315 	 */
3316 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3317 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3318 
3319 	/*
3320 	 * Additional disabling for MSI-X
3321 	 */
3322 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3323 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3324 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3325 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3326 	}
3327 
3328 	E1000_WRITE_FLUSH(hw);
3329 }
3330 
3331 /*
3332  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3333  */
3334 static void
3335 igb_enable_adapter_interrupts_82580(igb_t *igb)
3336 {
3337 	struct e1000_hw *hw = &igb->hw;
3338 
3339 	/* Clear any pending interrupts */
3340 	(void) E1000_READ_REG(hw, E1000_ICR);
3341 	igb->ims_mask |= E1000_IMS_DRSTA;
3342 
3343 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3344 
3345 		/* Interrupt enabling for MSI-X */
3346 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3347 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3348 		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3349 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3350 	} else { /* Interrupt enabling for MSI and legacy */
3351 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3352 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3353 		igb->ims_mask |= E1000_IMS_DRSTA;
3354 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3355 	}
3356 
3357 	/* Disable auto-mask for ICR interrupt bits */
3358 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3359 
3360 	E1000_WRITE_FLUSH(hw);
3361 }
3362 
3363 /*
3364  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3365  */
3366 static void
3367 igb_enable_adapter_interrupts_82576(igb_t *igb)
3368 {
3369 	struct e1000_hw *hw = &igb->hw;
3370 
3371 	/* Clear any pending interrupts */
3372 	(void) E1000_READ_REG(hw, E1000_ICR);
3373 
3374 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3375 
3376 		/* Interrupt enabling for MSI-X */
3377 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3378 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3379 		igb->ims_mask = E1000_IMS_LSC;
3380 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3381 	} else {
3382 		/* Interrupt enabling for MSI and legacy */
3383 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3384 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3385 		E1000_WRITE_REG(hw, E1000_IMS,
3386 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3387 	}
3388 
3389 	/* Disable auto-mask for ICR interrupt bits */
3390 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3391 
3392 	E1000_WRITE_FLUSH(hw);
3393 }
3394 
3395 /*
3396  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3397  */
3398 static void
3399 igb_enable_adapter_interrupts_82575(igb_t *igb)
3400 {
3401 	struct e1000_hw *hw = &igb->hw;
3402 	uint32_t reg;
3403 
3404 	/* Clear any pending interrupts */
3405 	(void) E1000_READ_REG(hw, E1000_ICR);
3406 
3407 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3408 		/* Interrupt enabling for MSI-X */
3409 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3410 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3411 		igb->ims_mask = E1000_IMS_LSC;
3412 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3413 
3414 		/* Enable MSI-X PBA support */
3415 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3416 		reg |= E1000_CTRL_EXT_PBA_CLR;
3417 
3418 		/* Non-selective interrupt clear-on-read */
3419 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3420 
3421 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3422 	} else {
3423 		/* Interrupt enabling for MSI and legacy */
3424 		igb->ims_mask = IMS_ENABLE_MASK;
3425 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3426 	}
3427 
3428 	E1000_WRITE_FLUSH(hw);
3429 }
3430 
3431 /*
3432  * Loopback Support
3433  */
3434 static lb_property_t lb_normal =
3435 	{ normal,	"normal",	IGB_LB_NONE		};
3436 static lb_property_t lb_external =
3437 	{ external,	"External",	IGB_LB_EXTERNAL		};
3438 static lb_property_t lb_mac =
3439 	{ internal,	"MAC",		IGB_LB_INTERNAL_MAC	};
3440 static lb_property_t lb_phy =
3441 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3442 static lb_property_t lb_serdes =
3443 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3444 
3445 enum ioc_reply
3446 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3447 {
3448 	lb_info_sz_t *lbsp;
3449 	lb_property_t *lbpp;
3450 	struct e1000_hw *hw;
3451 	uint32_t *lbmp;
3452 	uint32_t size;
3453 	uint32_t value;
3454 
3455 	hw = &igb->hw;
3456 
3457 	if (mp->b_cont == NULL)
3458 		return (IOC_INVAL);
3459 
3460 	switch (iocp->ioc_cmd) {
3461 	default:
3462 		return (IOC_INVAL);
3463 
3464 	case LB_GET_INFO_SIZE:
3465 		size = sizeof (lb_info_sz_t);
3466 		if (iocp->ioc_count != size)
3467 			return (IOC_INVAL);
3468 
3469 		value = sizeof (lb_normal);
3470 		value += sizeof (lb_mac);
3471 		if (hw->phy.media_type == e1000_media_type_copper)
3472 			value += sizeof (lb_phy);
3473 		else
3474 			value += sizeof (lb_serdes);
3475 		value += sizeof (lb_external);
3476 
3477 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3478 		*lbsp = value;
3479 		break;
3480 
3481 	case LB_GET_INFO:
3482 		value = sizeof (lb_normal);
3483 		value += sizeof (lb_mac);
3484 		if (hw->phy.media_type == e1000_media_type_copper)
3485 			value += sizeof (lb_phy);
3486 		else
3487 			value += sizeof (lb_serdes);
3488 		value += sizeof (lb_external);
3489 
3490 		size = value;
3491 		if (iocp->ioc_count != size)
3492 			return (IOC_INVAL);
3493 
3494 		value = 0;
3495 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3496 
3497 		lbpp[value++] = lb_normal;
3498 		lbpp[value++] = lb_mac;
3499 		if (hw->phy.media_type == e1000_media_type_copper)
3500 			lbpp[value++] = lb_phy;
3501 		else
3502 			lbpp[value++] = lb_serdes;
3503 		lbpp[value++] = lb_external;
3504 		break;
3505 
3506 	case LB_GET_MODE:
3507 		size = sizeof (uint32_t);
3508 		if (iocp->ioc_count != size)
3509 			return (IOC_INVAL);
3510 
3511 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3512 		*lbmp = igb->loopback_mode;
3513 		break;
3514 
3515 	case LB_SET_MODE:
3516 		size = 0;
3517 		if (iocp->ioc_count != sizeof (uint32_t))
3518 			return (IOC_INVAL);
3519 
3520 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3521 		if (!igb_set_loopback_mode(igb, *lbmp))
3522 			return (IOC_INVAL);
3523 		break;
3524 	}
3525 
3526 	iocp->ioc_count = size;
3527 	iocp->ioc_error = 0;
3528 
3529 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3530 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3531 		return (IOC_INVAL);
3532 	}
3533 
3534 	return (IOC_REPLY);
3535 }
3536 
3537 /*
3538  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3539  */
3540 static boolean_t
3541 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3542 {
3543 	struct e1000_hw *hw;
3544 
3545 	if (mode == igb->loopback_mode)
3546 		return (B_TRUE);
3547 
3548 	hw = &igb->hw;
3549 
3550 	igb->loopback_mode = mode;
3551 
3552 	if (mode == IGB_LB_NONE) {
3553 		/* Reset the chip */
3554 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3555 		(void) igb_reset(igb);
3556 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3557 		return (B_TRUE);
3558 	}
3559 
3560 	mutex_enter(&igb->gen_lock);
3561 
3562 	switch (mode) {
3563 	default:
3564 		mutex_exit(&igb->gen_lock);
3565 		return (B_FALSE);
3566 
3567 	case IGB_LB_EXTERNAL:
3568 		igb_set_external_loopback(igb);
3569 		break;
3570 
3571 	case IGB_LB_INTERNAL_MAC:
3572 		igb_set_internal_mac_loopback(igb);
3573 		break;
3574 
3575 	case IGB_LB_INTERNAL_PHY:
3576 		igb_set_internal_phy_loopback(igb);
3577 		break;
3578 
3579 	case IGB_LB_INTERNAL_SERDES:
3580 		igb_set_internal_serdes_loopback(igb);
3581 		break;
3582 	}
3583 
3584 	mutex_exit(&igb->gen_lock);
3585 
3586 	return (B_TRUE);
3587 }
3588 
3589 /*
3590  * igb_set_external_loopback - Set the external loopback mode
3591  */
3592 static void
3593 igb_set_external_loopback(igb_t *igb)
3594 {
3595 	struct e1000_hw *hw;
3596 
3597 	hw = &igb->hw;
3598 
3599 	/* Set phy to known state */
3600 	(void) e1000_phy_hw_reset(hw);
3601 
3602 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3603 	(void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
3604 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3605 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3606 }
3607 
3608 /*
3609  * igb_set_internal_mac_loopback - Set the internal MAC loopback mode
3610  */
3611 static void
3612 igb_set_internal_mac_loopback(igb_t *igb)
3613 {
3614 	struct e1000_hw *hw;
3615 	uint32_t ctrl;
3616 	uint32_t rctl;
3617 	uint32_t ctrl_ext;
3618 	uint16_t phy_ctrl;
3619 	uint16_t phy_status;
3620 
3621 	hw = &igb->hw;
3622 
3623 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3624 	phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
3625 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3626 
3627 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3628 
3629 	/* Set link mode to PHY (00b) in the Extended Control register */
3630 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3631 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3632 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3633 
3634 	/* Set the Device Control register */
3635 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3636 	if (!(phy_status & MII_SR_LINK_STATUS))
3637 		ctrl |= E1000_CTRL_ILOS; /* Set ILOS when the link is down */
3638 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3639 	ctrl |= (E1000_CTRL_SLU |	/* Force link up */
3640 	    E1000_CTRL_FRCSPD |		/* Force speed */
3641 	    E1000_CTRL_FRCDPX |		/* Force duplex */
3642 	    E1000_CTRL_SPD_1000 |	/* Force speed to 1000 */
3643 	    E1000_CTRL_FD);		/* Force full duplex */
3644 
3645 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3646 
3647 	/* Set the Receive Control register */
3648 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3649 	rctl &= ~E1000_RCTL_LBM_TCVR;
3650 	rctl |= E1000_RCTL_LBM_MAC;
3651 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3652 }
3653 
3654 /*
3655  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3656  */
3657 static void
3658 igb_set_internal_phy_loopback(igb_t *igb)
3659 {
3660 	struct e1000_hw *hw;
3661 	uint32_t ctrl_ext;
3662 	uint16_t phy_ctrl;
3663 	uint16_t phy_pconf;
3664 
3665 	hw = &igb->hw;
3666 
3667 	/* Set link mode to PHY (00b) in the Extended Control register */
3668 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3669 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3670 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3671 
3672 	/*
3673 	 * Set PHY control register (0x4140):
3674 	 *    Set full duplex mode
3675 	 *    Set loopback bit
3676 	 *    Clear auto-neg enable bit
3677 	 *    Set PHY speed
3678 	 */
3679 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3680 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3681 
3682 	/* Set the link disable bit in the Port Configuration register */
3683 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3684 	phy_pconf |= (uint16_t)1 << 14;
3685 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3686 }
3687 
3688 /*
3689  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3690  */
3691 static void
3692 igb_set_internal_serdes_loopback(igb_t *igb)
3693 {
3694 	struct e1000_hw *hw;
3695 	uint32_t ctrl_ext;
3696 	uint32_t ctrl;
3697 	uint32_t pcs_lctl;
3698 	uint32_t connsw;
3699 
3700 	hw = &igb->hw;
3701 
3702 	/* Set link mode to SerDes (11b) in the Extended Control register */
3703 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3704 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3705 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3706 
3707 	/* Configure the SerDes to loopback */
3708 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3709 
3710 	/* Set Device Control register */
3711 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3712 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3713 	    E1000_CTRL_SLU);		/* Force link up */
3714 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3715 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3716 	    E1000_CTRL_LRST);		/* Clear link reset */
3717 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3718 
3719 	/* Set PCS Link Control register */
3720 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3721 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3722 	    E1000_PCS_LCTL_FSD |
3723 	    E1000_PCS_LCTL_FDV_FULL |
3724 	    E1000_PCS_LCTL_FLV_LINK_UP);
3725 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3726 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3727 
3728 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3729 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3730 	connsw &= ~E1000_CONNSW_ENRGSRC;
3731 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3732 }
3733 
3734 #pragma inline(igb_intr_rx_work)
3735 /*
3736  * igb_intr_rx_work - rx processing of ISR
3737  */
3738 static void
3739 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3740 {
3741 	mblk_t *mp;
3742 
3743 	mutex_enter(&rx_ring->rx_lock);
3744 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3745 	mutex_exit(&rx_ring->rx_lock);
3746 
3747 	if (mp != NULL)
3748 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3749 		    rx_ring->ring_gen_num);
3750 }
3751 
3752 #pragma inline(igb_intr_tx_work)
3753 /*
3754  * igb_intr_tx_work - tx processing of ISR
3755  */
3756 static void
3757 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3758 {
3759 	/* Recycle the tx descriptors */
3760 	tx_ring->tx_recycle(tx_ring);
3761 
3762 	/* Schedule the re-transmit */
3763 	if (tx_ring->reschedule &&
3764 	    (tx_ring->tbd_free >= tx_ring->resched_thresh)) {
3765 		tx_ring->reschedule = B_FALSE;
3766 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3767 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3768 	}
3769 }
3770 
3771 #pragma inline(igb_intr_link_work)
3772 /*
3773  * igb_intr_link_work - link-status-change processing of ISR
3774  */
3775 static void
3776 igb_intr_link_work(igb_t *igb)
3777 {
3778 	boolean_t link_changed;
3779 
3780 	igb_stop_watchdog_timer(igb);
3781 
3782 	mutex_enter(&igb->gen_lock);
3783 
3784 	/*
3785 	 * Because we got a link-status-change interrupt, force
3786 	 * e1000_check_for_link() to look at phy
3787 	 */
3788 	igb->hw.mac.get_link_status = B_TRUE;
3789 
3790 	/* igb_link_check takes care of link status change */
3791 	link_changed = igb_link_check(igb);
3792 
3793 	/* Get new phy state */
3794 	igb_get_phy_state(igb);
3795 
3796 	mutex_exit(&igb->gen_lock);
3797 
3798 	if (link_changed)
3799 		mac_link_update(igb->mac_hdl, igb->link_state);
3800 
3801 	igb_start_watchdog_timer(igb);
3802 }
3803 
3804 /*
3805  * igb_intr_legacy - Interrupt handler for legacy interrupts
3806  */
3807 static uint_t
3808 igb_intr_legacy(void *arg1, void *arg2)
3809 {
3810 	igb_t *igb = (igb_t *)arg1;
3811 	igb_tx_ring_t *tx_ring;
3812 	uint32_t icr;
3813 	mblk_t *mp;
3814 	boolean_t tx_reschedule;
3815 	boolean_t link_changed;
3816 	uint_t result;
3817 
3818 	_NOTE(ARGUNUSED(arg2));
3819 
3820 	mutex_enter(&igb->gen_lock);
3821 
3822 	if (igb->igb_state & IGB_SUSPENDED) {
3823 		mutex_exit(&igb->gen_lock);
3824 		return (DDI_INTR_UNCLAIMED);
3825 	}
3826 
3827 	mp = NULL;
3828 	tx_reschedule = B_FALSE;
3829 	link_changed = B_FALSE;
3830 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3831 
3832 	if (icr & E1000_ICR_INT_ASSERTED) {
3833 		/*
3834 		 * E1000_ICR_INT_ASSERTED bit was set:
3835 		 * Read(Clear) the ICR, claim this interrupt,
3836 		 * look for work to do.
3837 		 */
3838 		ASSERT(igb->num_rx_rings == 1);
3839 		ASSERT(igb->num_tx_rings == 1);
3840 
3841 		/* Make sure all interrupt causes cleared */
3842 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3843 
3844 		if (icr & E1000_ICR_RXT0) {
3845 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3846 		}
3847 
3848 		if (icr & E1000_ICR_TXDW) {
3849 			tx_ring = &igb->tx_rings[0];
3850 
3851 			/* Recycle the tx descriptors */
3852 			tx_ring->tx_recycle(tx_ring);
3853 
3854 			/* Schedule the re-transmit */
3855 			tx_reschedule = (tx_ring->reschedule &&
3856 			    (tx_ring->tbd_free >= tx_ring->resched_thresh));
3857 		}
3858 
3859 		if (icr & E1000_ICR_LSC) {
3860 			/*
3861 			 * Because we got a link-status-change interrupt, force
3862 			 * e1000_check_for_link() to look at phy
3863 			 */
3864 			igb->hw.mac.get_link_status = B_TRUE;
3865 
3866 			/* igb_link_check takes care of link status change */
3867 			link_changed = igb_link_check(igb);
3868 
3869 			/* Get new phy state */
3870 			igb_get_phy_state(igb);
3871 		}
3872 
3873 		if (icr & E1000_ICR_DRSTA) {
3874 			/* 82580 Full Device Reset needed */
3875 			igb->igb_state |= IGB_STALL;
3876 		}
3877 
3878 		result = DDI_INTR_CLAIMED;
3879 	} else {
3880 		/*
3881 		 * E1000_ICR_INT_ASSERTED bit was not set:
3882 		 * Don't claim this interrupt.
3883 		 */
3884 		result = DDI_INTR_UNCLAIMED;
3885 	}
3886 
3887 	mutex_exit(&igb->gen_lock);
3888 
3889 	/*
3890 	 * Do the following work outside of the gen_lock
3891 	 */
3892 	if (mp != NULL)
3893 		mac_rx(igb->mac_hdl, NULL, mp);
3894 
3895 	if (tx_reschedule)  {
3896 		tx_ring->reschedule = B_FALSE;
3897 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
3898 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3899 	}
3900 
3901 	if (link_changed)
3902 		mac_link_update(igb->mac_hdl, igb->link_state);
3903 
3904 	return (result);
3905 }
3906 
3907 /*
3908  * igb_intr_msi - Interrupt handler for MSI
3909  */
3910 static uint_t
3911 igb_intr_msi(void *arg1, void *arg2)
3912 {
3913 	igb_t *igb = (igb_t *)arg1;
3914 	uint32_t icr;
3915 
3916 	_NOTE(ARGUNUSED(arg2));
3917 
3918 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3919 
3920 	/* Make sure all interrupt causes cleared */
3921 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3922 
3923 	/*
3924 	 * For MSI interrupt, we have only one vector,
3925 	 * so we have only one rx ring and one tx ring enabled.
3926 	 */
3927 	ASSERT(igb->num_rx_rings == 1);
3928 	ASSERT(igb->num_tx_rings == 1);
3929 
3930 	if (icr & E1000_ICR_RXT0) {
3931 		igb_intr_rx_work(&igb->rx_rings[0]);
3932 	}
3933 
3934 	if (icr & E1000_ICR_TXDW) {
3935 		igb_intr_tx_work(&igb->tx_rings[0]);
3936 	}
3937 
3938 	if (icr & E1000_ICR_LSC) {
3939 		igb_intr_link_work(igb);
3940 	}
3941 
3942 	if (icr & E1000_ICR_DRSTA) {
3943 		/* 82580 Full Device Reset needed */
3944 		igb->igb_state |= IGB_STALL;
3945 	}
3946 
3947 	return (DDI_INTR_CLAIMED);
3948 }
3949 
3950 /*
3951  * igb_intr_rx - Interrupt handler for rx
3952  */
3953 static uint_t
3954 igb_intr_rx(void *arg1, void *arg2)
3955 {
3956 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
3957 
3958 	_NOTE(ARGUNUSED(arg2));
3959 
3960 	/*
3961 	 * Only used via MSI-X vector so don't check cause bits
3962 	 * and only clean the given ring.
3963 	 */
3964 	igb_intr_rx_work(rx_ring);
3965 
3966 	return (DDI_INTR_CLAIMED);
3967 }
3968 
3969 /*
3970  * igb_intr_tx - Interrupt handler for tx
3971  */
3972 static uint_t
3973 igb_intr_tx(void *arg1, void *arg2)
3974 {
3975 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
3976 
3977 	_NOTE(ARGUNUSED(arg2));
3978 
3979 	/*
3980 	 * Only used via MSI-X vector so don't check cause bits
3981 	 * and only clean the given ring.
3982 	 */
3983 	igb_intr_tx_work(tx_ring);
3984 
3985 	return (DDI_INTR_CLAIMED);
3986 }
3987 
3988 /*
3989  * igb_intr_tx_other - Interrupt handler for both tx and other
3990  *
3991  */
3992 static uint_t
3993 igb_intr_tx_other(void *arg1, void *arg2)
3994 {
3995 	igb_t *igb = (igb_t *)arg1;
3996 	uint32_t icr;
3997 
3998 	_NOTE(ARGUNUSED(arg2));
3999 
4000 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4001 
4002 	/*
4003 	 * Look for tx reclaiming work first. Remember, in the
4004 	 * case of only interrupt sharing, only one tx ring is
4005 	 * used
4006 	 */
4007 	igb_intr_tx_work(&igb->tx_rings[0]);
4008 
4009 	/*
4010 	 * Check for "other" causes.
4011 	 */
4012 	if (icr & E1000_ICR_LSC) {
4013 		igb_intr_link_work(igb);
4014 	}
4015 
4016 	/*
4017 	 * The DOUTSYNC bit indicates a tx packet dropped because
4018 	 * DMA engine gets "out of sync". There isn't a real fix
4019 	 * for this. The Intel recommendation is to count the number
4020 	 * of occurrences so user can detect when it is happening.
4021 	 * The issue is non-fatal and there's no recovery action
4022 	 * available.
4023 	 */
4024 	if (icr & E1000_ICR_DOUTSYNC) {
4025 		IGB_STAT(igb->dout_sync);
4026 	}
4027 
4028 	if (icr & E1000_ICR_DRSTA) {
4029 		/* 82580 Full Device Reset needed */
4030 		igb->igb_state |= IGB_STALL;
4031 	}
4032 
4033 	return (DDI_INTR_CLAIMED);
4034 }
4035 
4036 /*
4037  * igb_alloc_intrs - Allocate interrupts for the driver
4038  *
4039  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4040  * if not successful, try Legacy.
4041  * igb->intr_force can be used to force sequence to start with
4042  * any of the 3 types.
4043  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4044  */
4045 static int
4046 igb_alloc_intrs(igb_t *igb)
4047 {
4048 	dev_info_t *devinfo;
4049 	int intr_types;
4050 	int rc;
4051 
4052 	devinfo = igb->dip;
4053 
4054 	/* Get supported interrupt types */
4055 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4056 
4057 	if (rc != DDI_SUCCESS) {
4058 		igb_log(igb,
4059 		    "Get supported interrupt types failed: %d", rc);
4060 		return (IGB_FAILURE);
4061 	}
4062 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4063 
4064 	igb->intr_type = 0;
4065 
4066 	/* Install MSI-X interrupts */
4067 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4068 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4069 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4070 
4071 		if (rc == IGB_SUCCESS)
4072 			return (IGB_SUCCESS);
4073 
4074 		igb_log(igb,
4075 		    "Allocate MSI-X failed, trying MSI interrupts...");
4076 	}
4077 
4078 	/* MSI-X not used, force rings to 1 */
4079 	igb->num_rx_rings = 1;
4080 	igb->num_tx_rings = 1;
4081 	igb_log(igb,
4082 	    "MSI-X not used, force rx and tx queue number to 1");
4083 
4084 	/* Install MSI interrupts */
4085 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4086 	    (igb->intr_force <= IGB_INTR_MSI)) {
4087 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4088 
4089 		if (rc == IGB_SUCCESS)
4090 			return (IGB_SUCCESS);
4091 
4092 		igb_log(igb,
4093 		    "Allocate MSI failed, trying Legacy interrupts...");
4094 	}
4095 
4096 	/* Install legacy interrupts */
4097 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4098 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4099 
4100 		if (rc == IGB_SUCCESS)
4101 			return (IGB_SUCCESS);
4102 
4103 		igb_log(igb,
4104 		    "Allocate Legacy interrupts failed");
4105 	}
4106 
4107 	/* If none of the 3 types succeeded, return failure */
4108 	return (IGB_FAILURE);
4109 }
4110 
4111 /*
4112  * igb_alloc_intr_handles - Allocate interrupt handles.
4113  *
4114  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4115  * if fewer than 2 handles are available, return failure.
4116  * Upon success, this sets the number of Rx rings to a number that
4117  * matches the handles available for Rx interrupts.
4118  */
4119 static int
4120 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4121 {
4122 	dev_info_t *devinfo;
4123 	int orig, request, count, avail, actual;
4124 	int diff, minimum;
4125 	int rc;
4126 
4127 	devinfo = igb->dip;
4128 
4129 	switch (intr_type) {
4130 	case DDI_INTR_TYPE_FIXED:
4131 		request = 1;	/* Request 1 legacy interrupt handle */
4132 		minimum = 1;
4133 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4134 		break;
4135 
4136 	case DDI_INTR_TYPE_MSI:
4137 		request = 1;	/* Request 1 MSI interrupt handle */
4138 		minimum = 1;
4139 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4140 		break;
4141 
4142 	case DDI_INTR_TYPE_MSIX:
4143 		/*
4144 		 * Number of vectors for the adapter is
4145 		 * # rx rings + # tx rings
4146 		 * One of tx vectors is for tx & other
4147 		 */
4148 		request = igb->num_rx_rings + igb->num_tx_rings;
4149 		orig = request;
4150 		minimum = 2;
4151 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4152 		break;
4153 
4154 	default:
4155 		igb_log(igb,
4156 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4157 		    intr_type);
4158 		return (IGB_FAILURE);
4159 	}
4160 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4161 	    request, minimum);
4162 
4163 	/*
4164 	 * Get number of supported interrupts
4165 	 */
4166 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4167 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4168 		igb_log(igb,
4169 		    "Get supported interrupt number failed. "
4170 		    "Return: %d, count: %d", rc, count);
4171 		return (IGB_FAILURE);
4172 	}
4173 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4174 
4175 	/*
4176 	 * Get number of available interrupts
4177 	 */
4178 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4179 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4180 		igb_log(igb,
4181 		    "Get available interrupt number failed. "
4182 		    "Return: %d, available: %d", rc, avail);
4183 		return (IGB_FAILURE);
4184 	}
4185 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4186 
4187 	if (avail < request) {
4188 		igb_log(igb, "Request %d handles, %d available",
4189 		    request, avail);
4190 		request = avail;
4191 	}
4192 
4193 	actual = 0;
4194 	igb->intr_cnt = 0;
4195 
4196 	/*
4197 	 * Allocate an array of interrupt handles
4198 	 */
4199 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4200 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4201 
4202 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4203 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4204 	if (rc != DDI_SUCCESS) {
4205 		igb_log(igb, "Allocate interrupts failed. "
4206 		    "return: %d, request: %d, actual: %d",
4207 		    rc, request, actual);
4208 		goto alloc_handle_fail;
4209 	}
4210 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4211 
4212 	igb->intr_cnt = actual;
4213 
4214 	if (actual < minimum) {
4215 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4216 		    actual);
4217 		goto alloc_handle_fail;
4218 	}
4219 
4220 	/*
4221 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4222 	 */
4223 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4224 		diff = orig - actual;
4225 		if (diff < igb->num_tx_rings) {
4226 			igb_log(igb,
4227 			    "MSI-X vectors force Tx queue number to %d",
4228 			    igb->num_tx_rings - diff);
4229 			igb->num_tx_rings -= diff;
4230 		} else {
4231 			igb_log(igb,
4232 			    "MSI-X vectors force Tx queue number to 1");
4233 			igb->num_tx_rings = 1;
4234 
4235 			igb_log(igb,
4236 			    "MSI-X vectors force Rx queue number to %d",
4237 			    actual - 1);
4238 			igb->num_rx_rings = actual - 1;
4239 		}
4240 	}
4241 
4242 	/*
4243 	 * Get priority for first vector, assume remaining are all the same
4244 	 */
4245 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4246 	if (rc != DDI_SUCCESS) {
4247 		igb_log(igb,
4248 		    "Get interrupt priority failed: %d", rc);
4249 		goto alloc_handle_fail;
4250 	}
4251 
4252 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4253 	if (rc != DDI_SUCCESS) {
4254 		igb_log(igb,
4255 		    "Get interrupt cap failed: %d", rc);
4256 		goto alloc_handle_fail;
4257 	}
4258 
4259 	igb->intr_type = intr_type;
4260 
4261 	return (IGB_SUCCESS);
4262 
4263 alloc_handle_fail:
4264 	igb_rem_intrs(igb);
4265 
4266 	return (IGB_FAILURE);
4267 }
4268 
4269 /*
4270  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4271  *
4272  * Before adding the interrupt handlers, the interrupt vectors have
4273  * been allocated, and the rx/tx rings have also been allocated.
4274  */
4275 static int
4276 igb_add_intr_handlers(igb_t *igb)
4277 {
4278 	igb_rx_ring_t *rx_ring;
4279 	igb_tx_ring_t *tx_ring;
4280 	int vector;
4281 	int rc;
4282 	int i;
4283 
4284 	vector = 0;
4285 
4286 	switch (igb->intr_type) {
4287 	case DDI_INTR_TYPE_MSIX:
4288 		/* Add interrupt handler for tx + other */
4289 		tx_ring = &igb->tx_rings[0];
4290 		rc = ddi_intr_add_handler(igb->htable[vector],
4291 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4292 		    (void *)igb, NULL);
4293 
4294 		if (rc != DDI_SUCCESS) {
4295 			igb_log(igb,
4296 			    "Add tx/other interrupt handler failed: %d", rc);
4297 			return (IGB_FAILURE);
4298 		}
4299 		tx_ring->intr_vector = vector;
4300 		vector++;
4301 
4302 		/* Add interrupt handler for each rx ring */
4303 		for (i = 0; i < igb->num_rx_rings; i++) {
4304 			rx_ring = &igb->rx_rings[i];
4305 
4306 			rc = ddi_intr_add_handler(igb->htable[vector],
4307 			    (ddi_intr_handler_t *)igb_intr_rx,
4308 			    (void *)rx_ring, NULL);
4309 
4310 			if (rc != DDI_SUCCESS) {
4311 				igb_log(igb,
4312 				    "Add rx interrupt handler failed. "
4313 				    "return: %d, rx ring: %d", rc, i);
4314 				for (vector--; vector >= 0; vector--) {
4315 					(void) ddi_intr_remove_handler(
4316 					    igb->htable[vector]);
4317 				}
4318 				return (IGB_FAILURE);
4319 			}
4320 
4321 			rx_ring->intr_vector = vector;
4322 
4323 			vector++;
4324 		}
4325 
4326 		/* Add interrupt handler for each tx ring from 2nd ring */
4327 		for (i = 1; i < igb->num_tx_rings; i++) {
4328 			tx_ring = &igb->tx_rings[i];
4329 
4330 			rc = ddi_intr_add_handler(igb->htable[vector],
4331 			    (ddi_intr_handler_t *)igb_intr_tx,
4332 			    (void *)tx_ring, NULL);
4333 
4334 			if (rc != DDI_SUCCESS) {
4335 				igb_log(igb,
4336 				    "Add tx interrupt handler failed. "
4337 				    "return: %d, tx ring: %d", rc, i);
4338 				for (vector--; vector >= 0; vector--) {
4339 					(void) ddi_intr_remove_handler(
4340 					    igb->htable[vector]);
4341 				}
4342 				return (IGB_FAILURE);
4343 			}
4344 
4345 			tx_ring->intr_vector = vector;
4346 
4347 			vector++;
4348 		}
4349 
4350 		break;
4351 
4352 	case DDI_INTR_TYPE_MSI:
4353 		/* Add interrupt handlers for the only vector */
4354 		rc = ddi_intr_add_handler(igb->htable[vector],
4355 		    (ddi_intr_handler_t *)igb_intr_msi,
4356 		    (void *)igb, NULL);
4357 
4358 		if (rc != DDI_SUCCESS) {
4359 			igb_log(igb,
4360 			    "Add MSI interrupt handler failed: %d", rc);
4361 			return (IGB_FAILURE);
4362 		}
4363 
4364 		rx_ring = &igb->rx_rings[0];
4365 		rx_ring->intr_vector = vector;
4366 
4367 		vector++;
4368 		break;
4369 
4370 	case DDI_INTR_TYPE_FIXED:
4371 		/* Add interrupt handlers for the only vector */
4372 		rc = ddi_intr_add_handler(igb->htable[vector],
4373 		    (ddi_intr_handler_t *)igb_intr_legacy,
4374 		    (void *)igb, NULL);
4375 
4376 		if (rc != DDI_SUCCESS) {
4377 			igb_log(igb,
4378 			    "Add legacy interrupt handler failed: %d", rc);
4379 			return (IGB_FAILURE);
4380 		}
4381 
4382 		rx_ring = &igb->rx_rings[0];
4383 		rx_ring->intr_vector = vector;
4384 
4385 		vector++;
4386 		break;
4387 
4388 	default:
4389 		return (IGB_FAILURE);
4390 	}
4391 
4392 	ASSERT(vector == igb->intr_cnt);
4393 
4394 	return (IGB_SUCCESS);
4395 }
4396 
4397 /*
4398  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4399  *
4400  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4401  */
4402 static void
4403 igb_setup_msix_82575(igb_t *igb)
4404 {
4405 	uint32_t eims = 0;
4406 	int i, vector;
4407 	struct e1000_hw *hw = &igb->hw;
4408 
4409 	/*
4410 	 * Set vector for tx ring 0 and other causes.
4411 	 * NOTE assumption that it is vector 0.
4412 	 */
4413 	vector = 0;
4414 
4415 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4416 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4417 	vector++;
4418 
4419 	for (i = 0; i < igb->num_rx_rings; i++) {
4420 		/*
4421 		 * Set vector for each rx ring
4422 		 */
4423 		eims = (E1000_EICR_RX_QUEUE0 << i);
4424 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4425 
4426 		/*
4427 		 * Accumulate bits to enable in
4428 		 * igb_enable_adapter_interrupts_82575()
4429 		 */
4430 		igb->eims_mask |= eims;
4431 
4432 		vector++;
4433 	}
4434 
4435 	for (i = 1; i < igb->num_tx_rings; i++) {
4436 		/*
4437 		 * Set vector for each tx ring from 2nd tx ring
4438 		 */
4439 		eims = (E1000_EICR_TX_QUEUE0 << i);
4440 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4441 
4442 		/*
4443 		 * Accumulate bits to enable in
4444 		 * igb_enable_adapter_interrupts_82575()
4445 		 */
4446 		igb->eims_mask |= eims;
4447 
4448 		vector++;
4449 	}
4450 
4451 	ASSERT(vector == igb->intr_cnt);
4452 
4453 	/*
4454 	 * Disable IAM for ICR interrupt bits
4455 	 */
4456 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4457 	E1000_WRITE_FLUSH(hw);
4458 }
4459 
4460 /*
4461  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4462  *
4463  * 82576 uses a table based method for assigning vectors.  Each queue has a
4464  * single entry in the table to which we write a vector number along with a
4465  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4466  * take a different position in the 4-byte register depending on whether
4467  * they are numbered above or below 8.
4468  */
4469 static void
4470 igb_setup_msix_82576(igb_t *igb)
4471 {
4472 	struct e1000_hw *hw = &igb->hw;
4473 	uint32_t ivar, index, vector;
4474 	int i;
4475 
4476 	/* must enable msi-x capability before IVAR settings */
4477 	E1000_WRITE_REG(hw, E1000_GPIE,
4478 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4479 
4480 	/*
4481 	 * Set vector for tx ring 0 and other causes.
4482 	 * NOTE assumption that it is vector 0.
4483 	 * This is also interdependent with installation of interrupt service
4484 	 * routines in igb_add_intr_handlers().
4485 	 */
4486 
4487 	/* assign "other" causes to vector 0 */
4488 	vector = 0;
4489 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4490 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4491 
4492 	/* assign tx ring 0 to vector 0 */
4493 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4494 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4495 
4496 	/* prepare to enable tx & other interrupt causes */
4497 	igb->eims_mask = (1 << vector);
4498 
4499 	vector ++;
4500 	for (i = 0; i < igb->num_rx_rings; i++) {
4501 		/*
4502 		 * Set vector for each rx ring
4503 		 */
4504 		index = (i & 0x7);
4505 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4506 
4507 		if (i < 8) {
4508 			/* vector goes into low byte of register */
4509 			ivar = ivar & 0xFFFFFF00;
4510 			ivar |= (vector | E1000_IVAR_VALID);
4511 		} else {
4512 			/* vector goes into third byte of register */
4513 			ivar = ivar & 0xFF00FFFF;
4514 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4515 		}
4516 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4517 
4518 		/* Accumulate interrupt-cause bits to enable */
4519 		igb->eims_mask |= (1 << vector);
4520 
4521 		vector ++;
4522 	}
4523 
4524 	for (i = 1; i < igb->num_tx_rings; i++) {
4525 		/*
4526 		 * Set vector for each tx ring from 2nd tx ring.
4527 		 * Note assumption that tx vectors numericall follow rx vectors.
4528 		 */
4529 		index = (i & 0x7);
4530 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4531 
4532 		if (i < 8) {
4533 			/* vector goes into second byte of register */
4534 			ivar = ivar & 0xFFFF00FF;
4535 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4536 		} else {
4537 			/* vector goes into fourth byte of register */
4538 			ivar = ivar & 0x00FFFFFF;
4539 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4540 		}
4541 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4542 
4543 		/* Accumulate interrupt-cause bits to enable */
4544 		igb->eims_mask |= (1 << vector);
4545 
4546 		vector ++;
4547 	}
4548 
4549 	ASSERT(vector == igb->intr_cnt);
4550 }
4551 
4552 /*
4553  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4554  *
4555  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4556  * queue has a single entry in the table to which we write a vector number
4557  * along with a "valid" bit.  Vectors take a different position in the
4558  * register depending on * whether * they are numbered above or below 4.
4559  */
4560 static void
4561 igb_setup_msix_82580(igb_t *igb)
4562 {
4563 	struct e1000_hw *hw = &igb->hw;
4564 	uint32_t ivar, index, vector;
4565 	int i;
4566 
4567 	/* must enable msi-x capability before IVAR settings */
4568 	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4569 	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4570 	/*
4571 	 * Set vector for tx ring 0 and other causes.
4572 	 * NOTE assumption that it is vector 0.
4573 	 * This is also interdependent with installation of interrupt service
4574 	 * routines in igb_add_intr_handlers().
4575 	 */
4576 
4577 	/* assign "other" causes to vector 0 */
4578 	vector = 0;
4579 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4580 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4581 
4582 	/* assign tx ring 0 to vector 0 */
4583 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4584 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4585 
4586 	/* prepare to enable tx & other interrupt causes */
4587 	igb->eims_mask = (1 << vector);
4588 
4589 	vector ++;
4590 
4591 	for (i = 0; i < igb->num_rx_rings; i++) {
4592 		/*
4593 		 * Set vector for each rx ring
4594 		 */
4595 		index = (i >> 1);
4596 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4597 
4598 		if (i & 1) {
4599 			/* vector goes into third byte of register */
4600 			ivar = ivar & 0xFF00FFFF;
4601 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4602 		} else {
4603 			/* vector goes into low byte of register */
4604 			ivar = ivar & 0xFFFFFF00;
4605 			ivar |= (vector | E1000_IVAR_VALID);
4606 		}
4607 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4608 
4609 		/* Accumulate interrupt-cause bits to enable */
4610 		igb->eims_mask |= (1 << vector);
4611 
4612 		vector ++;
4613 	}
4614 
4615 	for (i = 1; i < igb->num_tx_rings; i++) {
4616 		/*
4617 		 * Set vector for each tx ring from 2nd tx ring.
4618 		 * Note assumption that tx vectors numericall follow rx vectors.
4619 		 */
4620 		index = (i >> 1);
4621 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4622 
4623 		if (i & 1) {
4624 			/* vector goes into high byte of register */
4625 			ivar = ivar & 0x00FFFFFF;
4626 			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4627 		} else {
4628 			/* vector goes into second byte of register */
4629 			ivar = ivar & 0xFFFF00FF;
4630 			ivar |= (vector | E1000_IVAR_VALID) << 8;
4631 		}
4632 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4633 
4634 		/* Accumulate interrupt-cause bits to enable */
4635 		igb->eims_mask |= (1 << vector);
4636 
4637 		vector ++;
4638 	}
4639 	ASSERT(vector == igb->intr_cnt);
4640 }
4641 
4642 /*
4643  * igb_rem_intr_handlers - remove the interrupt handlers
4644  */
4645 static void
4646 igb_rem_intr_handlers(igb_t *igb)
4647 {
4648 	int i;
4649 	int rc;
4650 
4651 	for (i = 0; i < igb->intr_cnt; i++) {
4652 		rc = ddi_intr_remove_handler(igb->htable[i]);
4653 		if (rc != DDI_SUCCESS) {
4654 			IGB_DEBUGLOG_1(igb,
4655 			    "Remove intr handler failed: %d", rc);
4656 		}
4657 	}
4658 }
4659 
4660 /*
4661  * igb_rem_intrs - remove the allocated interrupts
4662  */
4663 static void
4664 igb_rem_intrs(igb_t *igb)
4665 {
4666 	int i;
4667 	int rc;
4668 
4669 	for (i = 0; i < igb->intr_cnt; i++) {
4670 		rc = ddi_intr_free(igb->htable[i]);
4671 		if (rc != DDI_SUCCESS) {
4672 			IGB_DEBUGLOG_1(igb,
4673 			    "Free intr failed: %d", rc);
4674 		}
4675 	}
4676 
4677 	kmem_free(igb->htable, igb->intr_size);
4678 	igb->htable = NULL;
4679 }
4680 
4681 /*
4682  * igb_enable_intrs - enable all the ddi interrupts
4683  */
4684 static int
4685 igb_enable_intrs(igb_t *igb)
4686 {
4687 	int i;
4688 	int rc;
4689 
4690 	/* Enable interrupts */
4691 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4692 		/* Call ddi_intr_block_enable() for MSI */
4693 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4694 		if (rc != DDI_SUCCESS) {
4695 			igb_log(igb,
4696 			    "Enable block intr failed: %d", rc);
4697 			return (IGB_FAILURE);
4698 		}
4699 	} else {
4700 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4701 		for (i = 0; i < igb->intr_cnt; i++) {
4702 			rc = ddi_intr_enable(igb->htable[i]);
4703 			if (rc != DDI_SUCCESS) {
4704 				igb_log(igb,
4705 				    "Enable intr failed: %d", rc);
4706 				return (IGB_FAILURE);
4707 			}
4708 		}
4709 	}
4710 
4711 	return (IGB_SUCCESS);
4712 }
4713 
4714 /*
4715  * igb_disable_intrs - disable all the ddi interrupts
4716  */
4717 static int
4718 igb_disable_intrs(igb_t *igb)
4719 {
4720 	int i;
4721 	int rc;
4722 
4723 	/* Disable all interrupts */
4724 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4725 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4726 		if (rc != DDI_SUCCESS) {
4727 			igb_log(igb,
4728 			    "Disable block intr failed: %d", rc);
4729 			return (IGB_FAILURE);
4730 		}
4731 	} else {
4732 		for (i = 0; i < igb->intr_cnt; i++) {
4733 			rc = ddi_intr_disable(igb->htable[i]);
4734 			if (rc != DDI_SUCCESS) {
4735 				igb_log(igb,
4736 				    "Disable intr failed: %d", rc);
4737 				return (IGB_FAILURE);
4738 			}
4739 		}
4740 	}
4741 
4742 	return (IGB_SUCCESS);
4743 }
4744 
4745 /*
4746  * igb_get_phy_state - Get and save the parameters read from PHY registers
4747  */
4748 static void
4749 igb_get_phy_state(igb_t *igb)
4750 {
4751 	struct e1000_hw *hw = &igb->hw;
4752 	uint16_t phy_ctrl;
4753 	uint16_t phy_status;
4754 	uint16_t phy_an_adv;
4755 	uint16_t phy_an_exp;
4756 	uint16_t phy_ext_status;
4757 	uint16_t phy_1000t_ctrl;
4758 	uint16_t phy_1000t_status;
4759 	uint16_t phy_lp_able;
4760 
4761 	ASSERT(mutex_owned(&igb->gen_lock));
4762 
4763 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4764 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4765 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4766 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4767 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4768 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4769 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status);
4770 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4771 
4772 	igb->param_autoneg_cap =
4773 	    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4774 	igb->param_pause_cap =
4775 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4776 	igb->param_asym_pause_cap =
4777 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4778 	igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4779 	    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4780 	igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4781 	    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4782 	igb->param_100t4_cap =
4783 	    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4784 	igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4785 	    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4786 	igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4787 	    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4788 	igb->param_10fdx_cap =
4789 	    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4790 	igb->param_10hdx_cap =
4791 	    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4792 	igb->param_rem_fault =
4793 	    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4794 
4795 	igb->param_adv_autoneg_cap = hw->mac.autoneg;
4796 	igb->param_adv_pause_cap =
4797 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4798 	igb->param_adv_asym_pause_cap =
4799 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4800 	igb->param_adv_1000hdx_cap =
4801 	    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4802 	igb->param_adv_100t4_cap =
4803 	    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4804 	igb->param_adv_rem_fault =
4805 	    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4806 	if (igb->param_adv_autoneg_cap == 1) {
4807 		igb->param_adv_1000fdx_cap =
4808 		    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4809 		igb->param_adv_100fdx_cap =
4810 		    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4811 		igb->param_adv_100hdx_cap =
4812 		    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4813 		igb->param_adv_10fdx_cap =
4814 		    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4815 		igb->param_adv_10hdx_cap =
4816 		    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4817 	}
4818 
4819 	igb->param_lp_autoneg_cap =
4820 	    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4821 	igb->param_lp_pause_cap =
4822 	    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4823 	igb->param_lp_asym_pause_cap =
4824 	    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4825 	igb->param_lp_1000fdx_cap =
4826 	    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4827 	igb->param_lp_1000hdx_cap =
4828 	    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4829 	igb->param_lp_100t4_cap =
4830 	    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4831 	igb->param_lp_100fdx_cap =
4832 	    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4833 	igb->param_lp_100hdx_cap =
4834 	    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4835 	igb->param_lp_10fdx_cap =
4836 	    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4837 	igb->param_lp_10hdx_cap =
4838 	    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
4839 	igb->param_lp_rem_fault =
4840 	    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
4841 }
4842 
4843 /*
4844  * igb_get_driver_control
4845  */
4846 static void
4847 igb_get_driver_control(struct e1000_hw *hw)
4848 {
4849 	uint32_t ctrl_ext;
4850 
4851 	/* Notify firmware that driver is in control of device */
4852 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4853 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
4854 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4855 }
4856 
4857 /*
4858  * igb_release_driver_control
4859  */
4860 static void
4861 igb_release_driver_control(struct e1000_hw *hw)
4862 {
4863 	uint32_t ctrl_ext;
4864 
4865 	/* Notify firmware that driver is no longer in control of device */
4866 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4867 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
4868 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4869 }
4870 
4871 /*
4872  * igb_atomic_reserve - Atomic decrease operation
4873  */
4874 int
4875 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
4876 {
4877 	uint32_t oldval;
4878 	uint32_t newval;
4879 
4880 	/* ATOMICALLY */
4881 	do {
4882 		oldval = *count_p;
4883 		if (oldval < n)
4884 			return (-1);
4885 		newval = oldval - n;
4886 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
4887 
4888 	return (newval);
4889 }
4890 
4891 /*
4892  * FMA support
4893  */
4894 
4895 int
4896 igb_check_acc_handle(ddi_acc_handle_t handle)
4897 {
4898 	ddi_fm_error_t de;
4899 
4900 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4901 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
4902 	return (de.fme_status);
4903 }
4904 
4905 int
4906 igb_check_dma_handle(ddi_dma_handle_t handle)
4907 {
4908 	ddi_fm_error_t de;
4909 
4910 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4911 	return (de.fme_status);
4912 }
4913 
4914 /*
4915  * The IO fault service error handling callback function
4916  */
4917 /*ARGSUSED*/
4918 static int
4919 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4920 {
4921 	/*
4922 	 * as the driver can always deal with an error in any dma or
4923 	 * access handle, we can just return the fme_status value.
4924 	 */
4925 	pci_ereport_post(dip, err, NULL);
4926 	return (err->fme_status);
4927 }
4928 
4929 static void
4930 igb_fm_init(igb_t *igb)
4931 {
4932 	ddi_iblock_cookie_t iblk;
4933 	int fma_acc_flag, fma_dma_flag;
4934 
4935 	/* Only register with IO Fault Services if we have some capability */
4936 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
4937 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4938 		fma_acc_flag = 1;
4939 	} else {
4940 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4941 		fma_acc_flag = 0;
4942 	}
4943 
4944 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
4945 		fma_dma_flag = 1;
4946 	} else {
4947 		fma_dma_flag = 0;
4948 	}
4949 
4950 	(void) igb_set_fma_flags(fma_acc_flag, fma_dma_flag);
4951 
4952 	if (igb->fm_capabilities) {
4953 
4954 		/* Register capabilities with IO Fault Services */
4955 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
4956 
4957 		/*
4958 		 * Initialize pci ereport capabilities if ereport capable
4959 		 */
4960 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4961 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4962 			pci_ereport_setup(igb->dip);
4963 
4964 		/*
4965 		 * Register error callback if error callback capable
4966 		 */
4967 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4968 			ddi_fm_handler_register(igb->dip,
4969 			    igb_fm_error_cb, (void*) igb);
4970 	}
4971 }
4972 
4973 static void
4974 igb_fm_fini(igb_t *igb)
4975 {
4976 	/* Only unregister FMA capabilities if we registered some */
4977 	if (igb->fm_capabilities) {
4978 
4979 		/*
4980 		 * Release any resources allocated by pci_ereport_setup()
4981 		 */
4982 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4983 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4984 			pci_ereport_teardown(igb->dip);
4985 
4986 		/*
4987 		 * Un-register error callback if error callback capable
4988 		 */
4989 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4990 			ddi_fm_handler_unregister(igb->dip);
4991 
4992 		/* Unregister from IO Fault Services */
4993 		ddi_fm_fini(igb->dip);
4994 	}
4995 }
4996 
4997 void
4998 igb_fm_ereport(igb_t *igb, char *detail)
4999 {
5000 	uint64_t ena;
5001 	char buf[FM_MAX_CLASS];
5002 
5003 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5004 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5005 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5006 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5007 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5008 	}
5009 }
5010