1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/conf.h> 27 #include <sys/stat.h> 28 #include <sys/file.h> 29 #include <sys/ddi.h> 30 #include <sys/sunddi.h> 31 #include <sys/modctl.h> 32 #include <sys/priv.h> 33 #include <sys/cpuvar.h> 34 #include <sys/socket.h> 35 #include <sys/strsubr.h> 36 #include <sys/sysmacros.h> 37 #include <sys/sdt.h> 38 #include <netinet/tcp.h> 39 #include <inet/tcp.h> 40 #include <sys/socketvar.h> 41 #include <sys/pathname.h> 42 #include <sys/fs/snode.h> 43 #include <sys/fs/dv_node.h> 44 #include <sys/vnode.h> 45 #include <netinet/in.h> 46 #include <net/if.h> 47 #include <sys/sockio.h> 48 #include <sys/ksocket.h> 49 #include <sys/filio.h> /* FIONBIO */ 50 #include <sys/iscsi_protocol.h> 51 #include <sys/idm/idm.h> 52 #include <sys/idm/idm_so.h> 53 #include <sys/idm/idm_text.h> 54 55 #define IN_PROGRESS_DELAY 1 56 57 /* 58 * in6addr_any is currently all zeroes, but use the macro in case this 59 * ever changes. 60 */ 61 static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 62 63 static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 64 static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 65 static void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 66 67 static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so); 68 static void idm_so_conn_destroy_common(idm_conn_t *ic); 69 static void idm_so_conn_connect_common(idm_conn_t *ic); 70 71 static void idm_set_ini_preconnect_options(idm_so_conn_t *sc, 72 boolean_t boot_conn); 73 static void idm_set_ini_postconnect_options(idm_so_conn_t *sc); 74 static void idm_set_tgt_connect_options(ksocket_t so); 75 static idm_status_t idm_i_so_tx(idm_pdu_t *pdu); 76 77 static idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu); 78 static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, 79 idm_buf_t *idb, uint32_t offset, uint32_t length); 80 static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb); 81 static idm_status_t idm_so_send_buf_region(idm_task_t *idt, 82 idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length); 83 84 static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, 85 uint32_t ro, uint32_t dlength); 86 87 static idm_status_t idm_so_handle_digest(idm_conn_t *it, 88 nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx); 89 90 static void idm_so_socket_set_nonblock(struct sonode *node); 91 static void idm_so_socket_set_block(struct sonode *node); 92 93 /* 94 * Transport ops prototypes 95 */ 96 static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu); 97 static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb); 98 static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb); 99 static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu); 100 static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu); 101 static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu); 102 static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt); 103 static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it, 104 nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl); 105 static void idm_so_notice_key_values(idm_conn_t *it, 106 nvlist_t *negotiated_nvl); 107 static kv_status_t idm_so_declare_key_values(idm_conn_t *it, 108 nvlist_t *config_nvl, nvlist_t *outgoing_nvl); 109 static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic, 110 idm_transport_caps_t *caps); 111 static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen); 112 static void idm_so_buf_free(idm_buf_t *idb); 113 static idm_status_t idm_so_buf_setup(idm_buf_t *idb); 114 static void idm_so_buf_teardown(idm_buf_t *idb); 115 static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is); 116 static void idm_so_tgt_svc_destroy(idm_svc_t *is); 117 static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is); 118 static void idm_so_tgt_svc_offline(idm_svc_t *is); 119 static void idm_so_tgt_conn_destroy(idm_conn_t *ic); 120 static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic); 121 static void idm_so_conn_disconnect(idm_conn_t *ic); 122 static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic); 123 static void idm_so_ini_conn_destroy(idm_conn_t *ic); 124 static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic); 125 126 /* 127 * IDM Native Sockets transport operations 128 */ 129 static 130 idm_transport_ops_t idm_so_transport_ops = { 131 idm_so_tx, /* it_tx_pdu */ 132 idm_so_buf_tx_to_ini, /* it_buf_tx_to_ini */ 133 idm_so_buf_rx_from_ini, /* it_buf_rx_from_ini */ 134 idm_so_rx_datain, /* it_rx_datain */ 135 idm_so_rx_rtt, /* it_rx_rtt */ 136 idm_so_rx_dataout, /* it_rx_dataout */ 137 NULL, /* it_alloc_conn_rsrc */ 138 NULL, /* it_free_conn_rsrc */ 139 NULL, /* it_tgt_enable_datamover */ 140 NULL, /* it_ini_enable_datamover */ 141 NULL, /* it_conn_terminate */ 142 idm_so_free_task_rsrc, /* it_free_task_rsrc */ 143 idm_so_negotiate_key_values, /* it_negotiate_key_values */ 144 idm_so_notice_key_values, /* it_notice_key_values */ 145 idm_so_conn_is_capable, /* it_conn_is_capable */ 146 idm_so_buf_alloc, /* it_buf_alloc */ 147 idm_so_buf_free, /* it_buf_free */ 148 idm_so_buf_setup, /* it_buf_setup */ 149 idm_so_buf_teardown, /* it_buf_teardown */ 150 idm_so_tgt_svc_create, /* it_tgt_svc_create */ 151 idm_so_tgt_svc_destroy, /* it_tgt_svc_destroy */ 152 idm_so_tgt_svc_online, /* it_tgt_svc_online */ 153 idm_so_tgt_svc_offline, /* it_tgt_svc_offline */ 154 idm_so_tgt_conn_destroy, /* it_tgt_conn_destroy */ 155 idm_so_tgt_conn_connect, /* it_tgt_conn_connect */ 156 idm_so_conn_disconnect, /* it_tgt_conn_disconnect */ 157 idm_so_ini_conn_create, /* it_ini_conn_create */ 158 idm_so_ini_conn_destroy, /* it_ini_conn_destroy */ 159 idm_so_ini_conn_connect, /* it_ini_conn_connect */ 160 idm_so_conn_disconnect, /* it_ini_conn_disconnect */ 161 idm_so_declare_key_values /* it_declare_key_values */ 162 }; 163 164 kmutex_t idm_so_timed_socket_mutex; 165 /* 166 * idm_so_init() 167 * Sockets transport initialization 168 */ 169 void 170 idm_so_init(idm_transport_t *it) 171 { 172 /* Cache for IDM Data and R2T Transmit PDU's */ 173 idm.idm_sotx_pdu_cache = kmem_cache_create("idm_tx_pdu_cache", 174 sizeof (idm_pdu_t) + sizeof (iscsi_hdr_t), 8, 175 &idm_sotx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); 176 177 /* Cache for IDM Receive PDU's */ 178 idm.idm_sorx_pdu_cache = kmem_cache_create("idm_rx_pdu_cache", 179 sizeof (idm_pdu_t) + IDM_SORX_CACHE_HDRLEN, 8, 180 &idm_sorx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); 181 182 /* 128k buffer cache */ 183 idm.idm_so_128k_buf_cache = kmem_cache_create("idm_128k_buf_cache", 184 IDM_SO_BUF_CACHE_UB, 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); 185 186 /* Set the sockets transport ops */ 187 it->it_ops = &idm_so_transport_ops; 188 189 mutex_init(&idm_so_timed_socket_mutex, NULL, MUTEX_DEFAULT, NULL); 190 191 } 192 193 /* 194 * idm_so_fini() 195 * Sockets transport teardown 196 */ 197 void 198 idm_so_fini(void) 199 { 200 kmem_cache_destroy(idm.idm_so_128k_buf_cache); 201 kmem_cache_destroy(idm.idm_sotx_pdu_cache); 202 kmem_cache_destroy(idm.idm_sorx_pdu_cache); 203 mutex_destroy(&idm_so_timed_socket_mutex); 204 } 205 206 ksocket_t 207 idm_socreate(int domain, int type, int protocol) 208 { 209 ksocket_t ks; 210 211 if (!ksocket_socket(&ks, domain, type, protocol, KSOCKET_NOSLEEP, 212 CRED())) { 213 return (ks); 214 } else { 215 return (NULL); 216 } 217 } 218 219 /* 220 * idm_soshutdown will disconnect the socket and prevent subsequent PDU 221 * reception and transmission. The sonode still exists but its state 222 * gets modified to indicate it is no longer connected. Calls to 223 * idm_sorecv/idm_iov_sorecv will return so idm_soshutdown can be used 224 * regain control of a thread stuck in idm_sorecv. 225 */ 226 void 227 idm_soshutdown(ksocket_t so) 228 { 229 (void) ksocket_shutdown(so, SHUT_RDWR, CRED()); 230 } 231 232 /* 233 * idm_sodestroy releases all resources associated with a socket previously 234 * created with idm_socreate. The socket must be shutdown using 235 * idm_soshutdown before the socket is destroyed with idm_sodestroy, 236 * otherwise undefined behavior will result. 237 */ 238 void 239 idm_sodestroy(ksocket_t ks) 240 { 241 (void) ksocket_close(ks, CRED()); 242 } 243 244 /* 245 * Function to compare two addresses in sockaddr_storage format 246 */ 247 248 int 249 idm_ss_compare(const struct sockaddr_storage *cmp_ss1, 250 const struct sockaddr_storage *cmp_ss2, 251 boolean_t v4_mapped_as_v4, 252 boolean_t compare_ports) 253 { 254 struct sockaddr_storage mapped_v4_ss1, mapped_v4_ss2; 255 const struct sockaddr_storage *ss1, *ss2; 256 struct in_addr *in1, *in2; 257 struct in6_addr *in61, *in62; 258 int i; 259 260 /* 261 * Normalize V4-mapped IPv6 addresses into V4 format if 262 * v4_mapped_as_v4 is B_TRUE. 263 */ 264 ss1 = cmp_ss1; 265 ss2 = cmp_ss2; 266 if (v4_mapped_as_v4 && (ss1->ss_family == AF_INET6)) { 267 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; 268 if (IN6_IS_ADDR_V4MAPPED(in61)) { 269 bzero(&mapped_v4_ss1, sizeof (mapped_v4_ss1)); 270 mapped_v4_ss1.ss_family = AF_INET; 271 ((struct sockaddr_in *)&mapped_v4_ss1)->sin_port = 272 ((struct sockaddr_in *)ss1)->sin_port; 273 IN6_V4MAPPED_TO_INADDR(in61, 274 &((struct sockaddr_in *)&mapped_v4_ss1)->sin_addr); 275 ss1 = &mapped_v4_ss1; 276 } 277 } 278 ss2 = cmp_ss2; 279 if (v4_mapped_as_v4 && (ss2->ss_family == AF_INET6)) { 280 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; 281 if (IN6_IS_ADDR_V4MAPPED(in62)) { 282 bzero(&mapped_v4_ss2, sizeof (mapped_v4_ss2)); 283 mapped_v4_ss2.ss_family = AF_INET; 284 ((struct sockaddr_in *)&mapped_v4_ss2)->sin_port = 285 ((struct sockaddr_in *)ss2)->sin_port; 286 IN6_V4MAPPED_TO_INADDR(in62, 287 &((struct sockaddr_in *)&mapped_v4_ss2)->sin_addr); 288 ss2 = &mapped_v4_ss2; 289 } 290 } 291 292 /* 293 * Compare ports, then address family, then ip address 294 */ 295 if (compare_ports && 296 (((struct sockaddr_in *)ss1)->sin_port != 297 ((struct sockaddr_in *)ss2)->sin_port)) { 298 if (((struct sockaddr_in *)ss1)->sin_port > 299 ((struct sockaddr_in *)ss2)->sin_port) 300 return (1); 301 else 302 return (-1); 303 } 304 305 /* 306 * ports are the same 307 */ 308 if (ss1->ss_family != ss2->ss_family) { 309 if (ss1->ss_family == AF_INET) 310 return (1); 311 else 312 return (-1); 313 } 314 315 /* 316 * address families are the same 317 */ 318 if (ss1->ss_family == AF_INET) { 319 in1 = &((struct sockaddr_in *)ss1)->sin_addr; 320 in2 = &((struct sockaddr_in *)ss2)->sin_addr; 321 322 if (in1->s_addr > in2->s_addr) 323 return (1); 324 else if (in1->s_addr < in2->s_addr) 325 return (-1); 326 else 327 return (0); 328 } else if (ss1->ss_family == AF_INET6) { 329 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; 330 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; 331 332 for (i = 0; i < 4; i++) { 333 if (in61->s6_addr32[i] > in62->s6_addr32[i]) 334 return (1); 335 else if (in61->s6_addr32[i] < in62->s6_addr32[i]) 336 return (-1); 337 } 338 return (0); 339 } 340 341 return (1); 342 } 343 344 /* 345 * IP address filter functions to flag addresses that should not 346 * go out to initiators through discovery. 347 */ 348 static boolean_t 349 idm_v4_addr_okay(struct in_addr *in_addr) 350 { 351 in_addr_t addr = ntohl(in_addr->s_addr); 352 353 if ((INADDR_NONE == addr) || 354 (IN_MULTICAST(addr)) || 355 ((addr >> IN_CLASSA_NSHIFT) == 0) || 356 ((addr >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 357 return (B_FALSE); 358 } 359 return (B_TRUE); 360 } 361 362 static boolean_t 363 idm_v6_addr_okay(struct in6_addr *addr6) 364 { 365 366 if ((IN6_IS_ADDR_UNSPECIFIED(addr6)) || 367 (IN6_IS_ADDR_LOOPBACK(addr6)) || 368 (IN6_IS_ADDR_MULTICAST(addr6)) || 369 (IN6_IS_ADDR_V4MAPPED(addr6)) || 370 (IN6_IS_ADDR_V4COMPAT(addr6)) || 371 (IN6_IS_ADDR_LINKLOCAL(addr6))) { 372 return (B_FALSE); 373 } 374 return (B_TRUE); 375 } 376 377 /* 378 * idm_get_ipaddr will retrieve a list of IP Addresses which the host is 379 * configured with by sending down a sequence of kernel ioctl to IP STREAMS. 380 */ 381 int 382 idm_get_ipaddr(idm_addr_list_t **ipaddr_p) 383 { 384 ksocket_t so4, so6; 385 struct lifnum lifn; 386 struct lifconf lifc; 387 struct lifreq *lp; 388 int rval; 389 int numifs; 390 int bufsize; 391 void *buf; 392 int i, j, n, rc; 393 struct sockaddr_storage ss; 394 struct sockaddr_in *sin; 395 struct sockaddr_in6 *sin6; 396 idm_addr_t *ip; 397 idm_addr_list_t *ipaddr = NULL; 398 int size_ipaddr; 399 400 *ipaddr_p = NULL; 401 size_ipaddr = 0; 402 buf = NULL; 403 404 /* create an ipv4 and ipv6 UDP socket */ 405 if ((so6 = idm_socreate(PF_INET6, SOCK_DGRAM, 0)) == NULL) 406 return (0); 407 if ((so4 = idm_socreate(PF_INET, SOCK_DGRAM, 0)) == NULL) { 408 idm_sodestroy(so6); 409 return (0); 410 } 411 412 413 retry_count: 414 /* snapshot the current number of interfaces */ 415 lifn.lifn_family = PF_UNSPEC; 416 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; 417 lifn.lifn_count = 0; 418 /* use vp6 for ioctls with unspecified families by default */ 419 if (ksocket_ioctl(so6, SIOCGLIFNUM, (intptr_t)&lifn, &rval, CRED()) 420 != 0) { 421 goto cleanup; 422 } 423 424 numifs = lifn.lifn_count; 425 if (numifs <= 0) { 426 goto cleanup; 427 } 428 429 /* allocate extra room in case more interfaces appear */ 430 numifs += 10; 431 432 /* get the interface names and ip addresses */ 433 bufsize = numifs * sizeof (struct lifreq); 434 buf = kmem_alloc(bufsize, KM_SLEEP); 435 436 lifc.lifc_family = AF_UNSPEC; 437 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; 438 lifc.lifc_len = bufsize; 439 lifc.lifc_buf = buf; 440 rc = ksocket_ioctl(so6, SIOCGLIFCONF, (intptr_t)&lifc, &rval, CRED()); 441 if (rc != 0) { 442 goto cleanup; 443 } 444 /* if our extra room is used up, try again */ 445 if (bufsize <= lifc.lifc_len) { 446 kmem_free(buf, bufsize); 447 buf = NULL; 448 goto retry_count; 449 } 450 /* calc actual number of ifconfs */ 451 n = lifc.lifc_len / sizeof (struct lifreq); 452 453 /* get ip address */ 454 if (n > 0) { 455 size_ipaddr = sizeof (idm_addr_list_t) + 456 (n - 1) * sizeof (idm_addr_t); 457 ipaddr = kmem_zalloc(size_ipaddr, KM_SLEEP); 458 } else { 459 goto cleanup; 460 } 461 462 /* 463 * Examine the array of interfaces and filter uninteresting ones 464 */ 465 for (i = 0, j = 0, lp = lifc.lifc_req; i < n; i++, lp++) { 466 467 /* 468 * Copy the address as the SIOCGLIFFLAGS ioctl is destructive 469 */ 470 ss = lp->lifr_addr; 471 /* 472 * fetch the flags using the socket of the correct family 473 */ 474 switch (ss.ss_family) { 475 case AF_INET: 476 rc = ksocket_ioctl(so4, SIOCGLIFFLAGS, (intptr_t)lp, 477 &rval, CRED()); 478 break; 479 case AF_INET6: 480 rc = ksocket_ioctl(so6, SIOCGLIFFLAGS, (intptr_t)lp, 481 &rval, CRED()); 482 break; 483 default: 484 continue; 485 } 486 if (rc == 0) { 487 /* 488 * If we got the flags, skip uninteresting 489 * interfaces based on flags 490 */ 491 if ((lp->lifr_flags & IFF_UP) != IFF_UP) 492 continue; 493 if (lp->lifr_flags & 494 (IFF_ANYCAST|IFF_NOLOCAL|IFF_DEPRECATED)) 495 continue; 496 } 497 498 /* save ip address */ 499 ip = &ipaddr->al_addrs[j]; 500 switch (ss.ss_family) { 501 case AF_INET: 502 sin = (struct sockaddr_in *)&ss; 503 if (!idm_v4_addr_okay(&sin->sin_addr)) 504 continue; 505 ip->a_addr.i_addr.in4 = sin->sin_addr; 506 ip->a_addr.i_insize = sizeof (struct in_addr); 507 break; 508 case AF_INET6: 509 sin6 = (struct sockaddr_in6 *)&ss; 510 if (!idm_v6_addr_okay(&sin6->sin6_addr)) 511 continue; 512 ip->a_addr.i_addr.in6 = sin6->sin6_addr; 513 ip->a_addr.i_insize = sizeof (struct in6_addr); 514 break; 515 default: 516 continue; 517 } 518 j++; 519 } 520 521 if (j == 0) { 522 /* no valid ifaddr */ 523 kmem_free(ipaddr, size_ipaddr); 524 size_ipaddr = 0; 525 ipaddr = NULL; 526 } else { 527 ipaddr->al_out_cnt = j; 528 } 529 530 531 cleanup: 532 idm_sodestroy(so6); 533 idm_sodestroy(so4); 534 535 if (buf != NULL) 536 kmem_free(buf, bufsize); 537 538 *ipaddr_p = ipaddr; 539 return (size_ipaddr); 540 } 541 542 int 543 idm_sorecv(ksocket_t so, void *msg, size_t len) 544 { 545 iovec_t iov; 546 547 ASSERT(so != NULL); 548 ASSERT(len != 0); 549 550 /* 551 * Fill in iovec and receive data 552 */ 553 iov.iov_base = msg; 554 iov.iov_len = len; 555 556 return (idm_iov_sorecv(so, &iov, 1, len)); 557 } 558 559 /* 560 * idm_sosendto - Sends a buffered data on a non-connected socket. 561 * 562 * This function puts the data provided on the wire by calling sosendmsg. 563 * It will return only when all the data has been sent or if an error 564 * occurs. 565 * 566 * Returns 0 for success, the socket errno value if sosendmsg fails, and 567 * -1 if sosendmsg returns success but uio_resid != 0 568 */ 569 int 570 idm_sosendto(ksocket_t so, void *buff, size_t len, 571 struct sockaddr *name, socklen_t namelen) 572 { 573 struct msghdr msg; 574 struct iovec iov[1]; 575 int error; 576 size_t sent = 0; 577 578 iov[0].iov_base = buff; 579 iov[0].iov_len = len; 580 581 /* Initialization of the message header. */ 582 bzero(&msg, sizeof (msg)); 583 msg.msg_iov = iov; 584 msg.msg_iovlen = 1; 585 msg.msg_name = name; 586 msg.msg_namelen = namelen; 587 588 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) { 589 /* Data sent */ 590 if (sent == len) { 591 /* All data sent. Success. */ 592 return (0); 593 } else { 594 /* Not all data was sent. Failure */ 595 return (-1); 596 } 597 } 598 599 /* Send failed */ 600 return (error); 601 } 602 603 /* 604 * idm_iov_sosend - Sends an iovec on a connection. 605 * 606 * This function puts the data provided on the wire by calling sosendmsg. 607 * It will return only when all the data has been sent or if an error 608 * occurs. 609 * 610 * Returns 0 for success, the socket errno value if sosendmsg fails, and 611 * -1 if sosendmsg returns success but uio_resid != 0 612 */ 613 int 614 idm_iov_sosend(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) 615 { 616 struct msghdr msg; 617 int error; 618 size_t sent = 0; 619 620 ASSERT(iop != NULL); 621 622 /* Initialization of the message header. */ 623 bzero(&msg, sizeof (msg)); 624 msg.msg_iov = iop; 625 msg.msg_iovlen = iovlen; 626 627 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) 628 == 0) { 629 /* Data sent */ 630 if (sent == total_len) { 631 /* All data sent. Success. */ 632 return (0); 633 } else { 634 /* Not all data was sent. Failure */ 635 return (-1); 636 } 637 } 638 639 /* Send failed */ 640 return (error); 641 } 642 643 /* 644 * idm_iov_sorecv - Receives an iovec from a connection 645 * 646 * This function gets the data asked for from the socket. It will return 647 * only when all the requested data has been retrieved or if an error 648 * occurs. 649 * 650 * Returns 0 for success, the socket errno value if sorecvmsg fails, and 651 * -1 if sorecvmsg returns success but uio_resid != 0 652 */ 653 int 654 idm_iov_sorecv(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) 655 { 656 struct msghdr msg; 657 int error; 658 size_t recv; 659 int flags; 660 661 ASSERT(iop != NULL); 662 663 /* Initialization of the message header. */ 664 bzero(&msg, sizeof (msg)); 665 msg.msg_iov = iop; 666 msg.msg_iovlen = iovlen; 667 flags = MSG_WAITALL; 668 669 if ((error = ksocket_recvmsg(so, &msg, flags, &recv, CRED())) 670 == 0) { 671 /* Received data */ 672 if (recv == total_len) { 673 /* All requested data received. Success */ 674 return (0); 675 } else { 676 /* 677 * Not all data was received. The connection has 678 * probably failed. 679 */ 680 return (-1); 681 } 682 } 683 684 /* Receive failed */ 685 return (error); 686 } 687 688 static void 689 idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn) 690 { 691 int conn_abort = 10000; 692 int conn_notify = 2000; 693 int abort = 30000; 694 695 /* Pre-connect socket options */ 696 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 697 TCP_CONN_NOTIFY_THRESHOLD, (char *)&conn_notify, sizeof (int), 698 CRED()); 699 if (boot_conn == B_FALSE) { 700 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 701 TCP_CONN_ABORT_THRESHOLD, (char *)&conn_abort, sizeof (int), 702 CRED()); 703 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 704 TCP_ABORT_THRESHOLD, 705 (char *)&abort, sizeof (int), CRED()); 706 } 707 } 708 709 static void 710 idm_set_ini_postconnect_options(idm_so_conn_t *sc) 711 { 712 int32_t rcvbuf = IDM_RCVBUF_SIZE; 713 int32_t sndbuf = IDM_SNDBUF_SIZE; 714 const int on = 1; 715 716 /* Set postconnect options */ 717 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, TCP_NODELAY, 718 (char *)&on, sizeof (int), CRED()); 719 (void) ksocket_setsockopt(sc->ic_so, SOL_SOCKET, SO_RCVBUF, 720 (char *)&rcvbuf, sizeof (int), CRED()); 721 (void) ksocket_setsockopt(sc->ic_so, SOL_SOCKET, SO_SNDBUF, 722 (char *)&sndbuf, sizeof (int), CRED()); 723 } 724 725 static void 726 idm_set_tgt_connect_options(ksocket_t ks) 727 { 728 int32_t rcvbuf = IDM_RCVBUF_SIZE; 729 int32_t sndbuf = IDM_SNDBUF_SIZE; 730 const int on = 1; 731 732 /* Set connect options */ 733 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_RCVBUF, 734 (char *)&rcvbuf, sizeof (int), CRED()); 735 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_SNDBUF, 736 (char *)&sndbuf, sizeof (int), CRED()); 737 (void) ksocket_setsockopt(ks, IPPROTO_TCP, TCP_NODELAY, 738 (char *)&on, sizeof (on), CRED()); 739 } 740 741 static uint32_t 742 n2h24(const uchar_t *ptr) 743 { 744 return ((ptr[0] << 16) | (ptr[1] << 8) | ptr[2]); 745 } 746 747 748 static idm_status_t 749 idm_sorecvhdr(idm_conn_t *ic, idm_pdu_t *pdu) 750 { 751 iscsi_hdr_t *bhs; 752 uint32_t hdr_digest_crc; 753 uint32_t crc_calculated; 754 void *new_hdr; 755 int ahslen = 0; 756 int total_len = 0; 757 int iovlen = 0; 758 struct iovec iov[2]; 759 idm_so_conn_t *so_conn; 760 int rc; 761 762 so_conn = ic->ic_transport_private; 763 764 /* 765 * Read BHS 766 */ 767 bhs = pdu->isp_hdr; 768 rc = idm_sorecv(so_conn->ic_so, pdu->isp_hdr, sizeof (iscsi_hdr_t)); 769 if (rc != IDM_STATUS_SUCCESS) { 770 return (IDM_STATUS_FAIL); 771 } 772 773 /* 774 * Check actual AHS length against the amount available in the buffer 775 */ 776 pdu->isp_hdrlen = sizeof (iscsi_hdr_t) + 777 (bhs->hlength * sizeof (uint32_t)); 778 pdu->isp_datalen = n2h24(bhs->dlength); 779 if (ic->ic_conn_type == CONN_TYPE_TGT && 780 pdu->isp_datalen > ic->ic_conn_params.max_recv_dataseglen) { 781 IDM_CONN_LOG(CE_WARN, 782 "idm_sorecvhdr: exceeded the max data segment length"); 783 return (IDM_STATUS_FAIL); 784 } 785 if (bhs->hlength > IDM_SORX_CACHE_AHSLEN) { 786 /* Allocate a new header segment and change the callback */ 787 new_hdr = kmem_alloc(pdu->isp_hdrlen, KM_SLEEP); 788 bcopy(pdu->isp_hdr, new_hdr, sizeof (iscsi_hdr_t)); 789 pdu->isp_hdr = new_hdr; 790 pdu->isp_flags |= IDM_PDU_ADDL_HDR; 791 792 /* 793 * This callback will restore the expected values after 794 * the RX PDU has been processed. 795 */ 796 pdu->isp_callback = idm_sorx_addl_pdu_cb; 797 } 798 799 /* 800 * Setup receipt of additional header and header digest (if enabled). 801 */ 802 if (bhs->hlength > 0) { 803 iov[iovlen].iov_base = (caddr_t)(pdu->isp_hdr + 1); 804 ahslen = pdu->isp_hdrlen - sizeof (iscsi_hdr_t); 805 iov[iovlen].iov_len = ahslen; 806 total_len += iov[iovlen].iov_len; 807 iovlen++; 808 } 809 810 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { 811 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; 812 iov[iovlen].iov_len = sizeof (hdr_digest_crc); 813 total_len += iov[iovlen].iov_len; 814 iovlen++; 815 } 816 817 if ((iovlen != 0) && 818 (idm_iov_sorecv(so_conn->ic_so, &iov[0], iovlen, 819 total_len) != 0)) { 820 return (IDM_STATUS_FAIL); 821 } 822 823 /* 824 * Validate header digest if enabled 825 */ 826 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { 827 crc_calculated = idm_crc32c(pdu->isp_hdr, 828 sizeof (iscsi_hdr_t) + ahslen); 829 if (crc_calculated != hdr_digest_crc) { 830 /* Invalid Header Digest */ 831 return (IDM_STATUS_HEADER_DIGEST); 832 } 833 } 834 835 return (0); 836 } 837 838 /* 839 * idm_so_ini_conn_create() 840 * Allocate the sockets transport connection resources. 841 */ 842 static idm_status_t 843 idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic) 844 { 845 ksocket_t so; 846 idm_so_conn_t *so_conn; 847 idm_status_t idmrc; 848 849 so = idm_socreate(cr->cr_domain, cr->cr_type, 850 cr->cr_protocol); 851 if (so == NULL) { 852 return (IDM_STATUS_FAIL); 853 } 854 855 /* Bind the socket if configured to do so */ 856 if (cr->cr_bound) { 857 if (ksocket_bind(so, &cr->cr_bound_addr.sin, 858 SIZEOF_SOCKADDR(&cr->cr_bound_addr.sin), CRED()) != 0) { 859 idm_sodestroy(so); 860 return (IDM_STATUS_FAIL); 861 } 862 } 863 864 idmrc = idm_so_conn_create_common(ic, so); 865 if (idmrc != IDM_STATUS_SUCCESS) { 866 idm_soshutdown(so); 867 idm_sodestroy(so); 868 return (IDM_STATUS_FAIL); 869 } 870 871 so_conn = ic->ic_transport_private; 872 /* Set up socket options */ 873 idm_set_ini_preconnect_options(so_conn, cr->cr_boot_conn); 874 875 return (IDM_STATUS_SUCCESS); 876 } 877 878 /* 879 * idm_so_ini_conn_destroy() 880 * Tear down the sockets transport connection resources. 881 */ 882 static void 883 idm_so_ini_conn_destroy(idm_conn_t *ic) 884 { 885 idm_so_conn_destroy_common(ic); 886 } 887 888 /* 889 * idm_so_ini_conn_connect() 890 * Establish the connection referred to by the handle previously allocated via 891 * idm_so_ini_conn_create(). 892 */ 893 static idm_status_t 894 idm_so_ini_conn_connect(idm_conn_t *ic) 895 { 896 idm_so_conn_t *so_conn; 897 struct sonode *node = NULL; 898 int rc; 899 clock_t lbolt, conn_login_max, conn_login_interval; 900 boolean_t nonblock; 901 902 so_conn = ic->ic_transport_private; 903 nonblock = ic->ic_conn_params.nonblock_socket; 904 conn_login_max = ic->ic_conn_params.conn_login_max; 905 conn_login_interval = ddi_get_lbolt() + 906 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); 907 908 if (nonblock == B_TRUE) { 909 node = ((struct sonode *)(so_conn->ic_so)); 910 /* Set to none block socket mode */ 911 idm_so_socket_set_nonblock(node); 912 do { 913 rc = ksocket_connect(so_conn->ic_so, 914 &ic->ic_ini_dst_addr.sin, 915 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), 916 CRED()); 917 if (rc == 0 || rc == EISCONN) { 918 /* socket success or already success */ 919 rc = IDM_STATUS_SUCCESS; 920 break; 921 } 922 if ((rc == ETIMEDOUT) || (rc == ECONNREFUSED) || 923 (rc == ECONNRESET)) { 924 /* socket connection timeout or refuse */ 925 break; 926 } 927 lbolt = ddi_get_lbolt(); 928 if (lbolt > conn_login_max) { 929 /* 930 * Connection retry timeout, 931 * failed connect to target. 932 */ 933 break; 934 } 935 if (lbolt < conn_login_interval) { 936 if ((rc == EINPROGRESS) || (rc == EALREADY)) { 937 /* TCP connect still in progress */ 938 delay(SEC_TO_TICK(IN_PROGRESS_DELAY)); 939 continue; 940 } else { 941 delay(conn_login_interval - lbolt); 942 } 943 } 944 conn_login_interval = ddi_get_lbolt() + 945 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); 946 } while (rc != 0); 947 /* resume to nonblock mode */ 948 if (rc == IDM_STATUS_SUCCESS) { 949 idm_so_socket_set_block(node); 950 } 951 } else { 952 rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin, 953 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED()); 954 } 955 956 if (rc != 0) { 957 idm_soshutdown(so_conn->ic_so); 958 return (IDM_STATUS_FAIL); 959 } 960 961 idm_so_conn_connect_common(ic); 962 963 idm_set_ini_postconnect_options(so_conn); 964 965 return (IDM_STATUS_SUCCESS); 966 } 967 968 idm_status_t 969 idm_so_tgt_conn_create(idm_conn_t *ic, ksocket_t new_so) 970 { 971 idm_status_t idmrc; 972 973 idmrc = idm_so_conn_create_common(ic, new_so); 974 975 return (idmrc); 976 } 977 978 static void 979 idm_so_tgt_conn_destroy(idm_conn_t *ic) 980 { 981 idm_so_conn_destroy_common(ic); 982 } 983 984 /* 985 * idm_so_tgt_conn_connect() 986 * Establish the connection in ic, passed from idm_tgt_conn_finish(), which 987 * is invoked from the SM as a result of an inbound connection request. 988 */ 989 static idm_status_t 990 idm_so_tgt_conn_connect(idm_conn_t *ic) 991 { 992 idm_so_conn_connect_common(ic); 993 994 return (IDM_STATUS_SUCCESS); 995 } 996 997 static idm_status_t 998 idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so) 999 { 1000 idm_so_conn_t *so_conn; 1001 1002 so_conn = kmem_zalloc(sizeof (idm_so_conn_t), KM_SLEEP); 1003 so_conn->ic_so = new_so; 1004 1005 ic->ic_transport_private = so_conn; 1006 ic->ic_transport_hdrlen = 0; 1007 1008 /* Set the scoreboarding flag on this connection */ 1009 ic->ic_conn_flags |= IDM_CONN_USE_SCOREBOARD; 1010 ic->ic_conn_params.max_recv_dataseglen = 1011 ISCSI_DEFAULT_MAX_RECV_SEG_LEN; 1012 ic->ic_conn_params.max_xmit_dataseglen = 1013 ISCSI_DEFAULT_MAX_XMIT_SEG_LEN; 1014 1015 /* 1016 * Initialize tx thread mutex and list 1017 */ 1018 mutex_init(&so_conn->ic_tx_mutex, NULL, MUTEX_DEFAULT, NULL); 1019 cv_init(&so_conn->ic_tx_cv, NULL, CV_DEFAULT, NULL); 1020 list_create(&so_conn->ic_tx_list, sizeof (idm_pdu_t), 1021 offsetof(idm_pdu_t, idm_tx_link)); 1022 1023 return (IDM_STATUS_SUCCESS); 1024 } 1025 1026 static void 1027 idm_so_conn_destroy_common(idm_conn_t *ic) 1028 { 1029 idm_so_conn_t *so_conn = ic->ic_transport_private; 1030 1031 ic->ic_transport_private = NULL; 1032 idm_sodestroy(so_conn->ic_so); 1033 list_destroy(&so_conn->ic_tx_list); 1034 mutex_destroy(&so_conn->ic_tx_mutex); 1035 cv_destroy(&so_conn->ic_tx_cv); 1036 1037 kmem_free(so_conn, sizeof (idm_so_conn_t)); 1038 } 1039 1040 static void 1041 idm_so_conn_connect_common(idm_conn_t *ic) 1042 { 1043 idm_so_conn_t *so_conn; 1044 struct sockaddr_in6 t_addr; 1045 socklen_t t_addrlen = 0; 1046 1047 so_conn = ic->ic_transport_private; 1048 bzero(&t_addr, sizeof (struct sockaddr_in6)); 1049 t_addrlen = sizeof (struct sockaddr_in6); 1050 1051 /* Set the local and remote addresses in the idm conn handle */ 1052 ksocket_getsockname(so_conn->ic_so, (struct sockaddr *)&t_addr, 1053 &t_addrlen, CRED()); 1054 bcopy(&t_addr, &ic->ic_laddr, t_addrlen); 1055 ksocket_getpeername(so_conn->ic_so, (struct sockaddr *)&t_addr, 1056 &t_addrlen, CRED()); 1057 bcopy(&t_addr, &ic->ic_raddr, t_addrlen); 1058 1059 mutex_enter(&ic->ic_mutex); 1060 so_conn->ic_tx_thread = thread_create(NULL, 0, idm_sotx_thread, ic, 0, 1061 &p0, TS_RUN, minclsyspri); 1062 so_conn->ic_rx_thread = thread_create(NULL, 0, idm_sorx_thread, ic, 0, 1063 &p0, TS_RUN, minclsyspri); 1064 1065 while (!so_conn->ic_rx_thread_running || !so_conn->ic_tx_thread_running) 1066 cv_wait(&ic->ic_cv, &ic->ic_mutex); 1067 mutex_exit(&ic->ic_mutex); 1068 } 1069 1070 /* 1071 * idm_so_conn_disconnect() 1072 * Shutdown the socket connection and stop the thread 1073 */ 1074 static void 1075 idm_so_conn_disconnect(idm_conn_t *ic) 1076 { 1077 idm_so_conn_t *so_conn; 1078 1079 so_conn = ic->ic_transport_private; 1080 1081 mutex_enter(&ic->ic_mutex); 1082 so_conn->ic_rx_thread_running = B_FALSE; 1083 so_conn->ic_tx_thread_running = B_FALSE; 1084 /* We need to wakeup the TX thread */ 1085 mutex_enter(&so_conn->ic_tx_mutex); 1086 cv_signal(&so_conn->ic_tx_cv); 1087 mutex_exit(&so_conn->ic_tx_mutex); 1088 mutex_exit(&ic->ic_mutex); 1089 1090 /* This should wakeup the RX thread if it is sleeping */ 1091 idm_soshutdown(so_conn->ic_so); 1092 1093 thread_join(so_conn->ic_tx_thread_did); 1094 thread_join(so_conn->ic_rx_thread_did); 1095 } 1096 1097 /* 1098 * idm_so_tgt_svc_create() 1099 * Establish a service on an IP address and port. idm_svc_req_t contains 1100 * the service parameters. 1101 */ 1102 /*ARGSUSED*/ 1103 static idm_status_t 1104 idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is) 1105 { 1106 idm_so_svc_t *so_svc; 1107 1108 so_svc = kmem_zalloc(sizeof (idm_so_svc_t), KM_SLEEP); 1109 1110 /* Set the new sockets service in svc handle */ 1111 is->is_so_svc = (void *)so_svc; 1112 1113 return (IDM_STATUS_SUCCESS); 1114 } 1115 1116 /* 1117 * idm_so_tgt_svc_destroy() 1118 * Teardown sockets resources allocated in idm_so_tgt_svc_create() 1119 */ 1120 static void 1121 idm_so_tgt_svc_destroy(idm_svc_t *is) 1122 { 1123 /* the socket will have been torn down; free the service */ 1124 kmem_free(is->is_so_svc, sizeof (idm_so_svc_t)); 1125 } 1126 1127 /* 1128 * idm_so_tgt_svc_online() 1129 * Launch a watch thread on the svc allocated in idm_so_tgt_svc_create() 1130 */ 1131 1132 static idm_status_t 1133 idm_so_tgt_svc_online(idm_svc_t *is) 1134 { 1135 idm_so_svc_t *so_svc; 1136 idm_svc_req_t *sr = &is->is_svc_req; 1137 struct sockaddr_in6 sin6_ip; 1138 const uint32_t on = 1; 1139 const uint32_t off = 0; 1140 1141 mutex_enter(&is->is_mutex); 1142 so_svc = (idm_so_svc_t *)is->is_so_svc; 1143 1144 /* 1145 * Try creating an IPv6 socket first 1146 */ 1147 if ((so_svc->is_so = idm_socreate(PF_INET6, SOCK_STREAM, 0)) == NULL) { 1148 mutex_exit(&is->is_mutex); 1149 return (IDM_STATUS_FAIL); 1150 } else { 1151 bzero(&sin6_ip, sizeof (sin6_ip)); 1152 sin6_ip.sin6_family = AF_INET6; 1153 sin6_ip.sin6_port = htons(sr->sr_port); 1154 sin6_ip.sin6_addr = in6addr_any; 1155 1156 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, 1157 SO_REUSEADDR, (char *)&on, sizeof (on), CRED()); 1158 /* 1159 * Turn off SO_MAC_EXEMPT so future sobinds succeed 1160 */ 1161 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, 1162 SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED()); 1163 1164 if (ksocket_bind(so_svc->is_so, (struct sockaddr *)&sin6_ip, 1165 sizeof (sin6_ip), CRED()) != 0) { 1166 mutex_exit(&is->is_mutex); 1167 idm_sodestroy(so_svc->is_so); 1168 return (IDM_STATUS_FAIL); 1169 } 1170 } 1171 1172 idm_set_tgt_connect_options(so_svc->is_so); 1173 1174 if (ksocket_listen(so_svc->is_so, 5, CRED()) != 0) { 1175 mutex_exit(&is->is_mutex); 1176 idm_soshutdown(so_svc->is_so); 1177 idm_sodestroy(so_svc->is_so); 1178 return (IDM_STATUS_FAIL); 1179 } 1180 1181 /* Launch a watch thread */ 1182 so_svc->is_thread = thread_create(NULL, 0, idm_so_svc_port_watcher, 1183 is, 0, &p0, TS_RUN, minclsyspri); 1184 1185 if (so_svc->is_thread == NULL) { 1186 /* Failure to launch; teardown the socket */ 1187 mutex_exit(&is->is_mutex); 1188 idm_soshutdown(so_svc->is_so); 1189 idm_sodestroy(so_svc->is_so); 1190 return (IDM_STATUS_FAIL); 1191 } 1192 ksocket_hold(so_svc->is_so); 1193 /* Wait for the port watcher thread to start */ 1194 while (!so_svc->is_thread_running) 1195 cv_wait(&is->is_cv, &is->is_mutex); 1196 mutex_exit(&is->is_mutex); 1197 1198 return (IDM_STATUS_SUCCESS); 1199 } 1200 1201 /* 1202 * idm_so_tgt_svc_offline 1203 * 1204 * Stop listening on the IP address and port identified by idm_svc_t. 1205 */ 1206 static void 1207 idm_so_tgt_svc_offline(idm_svc_t *is) 1208 { 1209 idm_so_svc_t *so_svc; 1210 mutex_enter(&is->is_mutex); 1211 so_svc = (idm_so_svc_t *)is->is_so_svc; 1212 so_svc->is_thread_running = B_FALSE; 1213 mutex_exit(&is->is_mutex); 1214 1215 /* 1216 * Teardown socket 1217 */ 1218 idm_sodestroy(so_svc->is_so); 1219 1220 /* 1221 * Now we expect the port watcher thread to terminate 1222 */ 1223 thread_join(so_svc->is_thread_did); 1224 } 1225 1226 /* 1227 * Watch thread for target service connection establishment. 1228 */ 1229 void 1230 idm_so_svc_port_watcher(void *arg) 1231 { 1232 idm_svc_t *svc = arg; 1233 ksocket_t new_so; 1234 idm_conn_t *ic; 1235 idm_status_t idmrc; 1236 idm_so_svc_t *so_svc; 1237 int rc; 1238 const uint32_t off = 0; 1239 struct sockaddr_in6 t_addr; 1240 socklen_t t_addrlen; 1241 1242 bzero(&t_addr, sizeof (struct sockaddr_in6)); 1243 t_addrlen = sizeof (struct sockaddr_in6); 1244 mutex_enter(&svc->is_mutex); 1245 1246 so_svc = svc->is_so_svc; 1247 so_svc->is_thread_running = B_TRUE; 1248 so_svc->is_thread_did = so_svc->is_thread->t_did; 1249 1250 cv_signal(&svc->is_cv); 1251 1252 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) online", (void *)svc, 1253 svc->is_svc_req.sr_port); 1254 1255 while (so_svc->is_thread_running) { 1256 mutex_exit(&svc->is_mutex); 1257 1258 if ((rc = ksocket_accept(so_svc->is_so, 1259 (struct sockaddr *)&t_addr, &t_addrlen, 1260 &new_so, CRED())) != 0) { 1261 mutex_enter(&svc->is_mutex); 1262 if (rc == ECONNABORTED) 1263 continue; 1264 /* Connection problem */ 1265 break; 1266 } 1267 /* 1268 * Turn off SO_MAC_EXEMPT so future sobinds succeed 1269 */ 1270 (void) ksocket_setsockopt(new_so, SOL_SOCKET, SO_MAC_EXEMPT, 1271 (char *)&off, sizeof (off), CRED()); 1272 1273 idmrc = idm_svc_conn_create(svc, IDM_TRANSPORT_TYPE_SOCKETS, 1274 &ic); 1275 if (idmrc != IDM_STATUS_SUCCESS) { 1276 /* Drop connection */ 1277 idm_soshutdown(new_so); 1278 idm_sodestroy(new_so); 1279 mutex_enter(&svc->is_mutex); 1280 continue; 1281 } 1282 1283 idmrc = idm_so_tgt_conn_create(ic, new_so); 1284 if (idmrc != IDM_STATUS_SUCCESS) { 1285 idm_svc_conn_destroy(ic); 1286 idm_soshutdown(new_so); 1287 idm_sodestroy(new_so); 1288 mutex_enter(&svc->is_mutex); 1289 continue; 1290 } 1291 1292 /* 1293 * Kick the state machine. At CS_S3_XPT_UP the state machine 1294 * will notify the client (target) about the new connection. 1295 */ 1296 idm_conn_event(ic, CE_CONNECT_ACCEPT, NULL); 1297 1298 mutex_enter(&svc->is_mutex); 1299 } 1300 ksocket_rele(so_svc->is_so); 1301 so_svc->is_thread_running = B_FALSE; 1302 mutex_exit(&svc->is_mutex); 1303 1304 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) offline", (void *)svc, 1305 svc->is_svc_req.sr_port); 1306 1307 thread_exit(); 1308 } 1309 1310 /* 1311 * idm_so_free_task_rsrc() stops any ongoing processing of the task and 1312 * frees resources associated with the task. 1313 * 1314 * It's not clear that this should return idm_status_t. What do we do 1315 * if it fails? 1316 */ 1317 static idm_status_t 1318 idm_so_free_task_rsrc(idm_task_t *idt) 1319 { 1320 idm_buf_t *idb; 1321 1322 /* 1323 * There is nothing to cleanup on initiator connections 1324 */ 1325 if (IDM_CONN_ISINI(idt->idt_ic)) 1326 return (IDM_STATUS_SUCCESS); 1327 1328 /* 1329 * If this is a target connection, call idm_buf_rx_from_ini_done for 1330 * any buffer on the "outbufv" list with idb->idb_in_transport==B_TRUE. 1331 * 1332 * In addition, remove any buffers associated with this task from 1333 * the ic_tx_list. We'll do this by walking the idt_inbufv list, but 1334 * items don't actually get removed from that list (and completion 1335 * routines called) until idm_task_cleanup. 1336 */ 1337 mutex_enter(&idt->idt_mutex); 1338 1339 for (idb = list_head(&idt->idt_outbufv); idb != NULL; 1340 idb = list_next(&idt->idt_outbufv, idb)) { 1341 if (idb->idb_in_transport) { 1342 /* 1343 * idm_buf_rx_from_ini_done releases idt->idt_mutex 1344 */ 1345 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1346 uintptr_t, idb->idb_buf, 1347 uint32_t, idb->idb_bufoffset, 1348 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1349 uint32_t, idb->idb_xfer_len, 1350 int, XFER_BUF_RX_FROM_INI); 1351 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_ABORTED); 1352 mutex_enter(&idt->idt_mutex); 1353 } 1354 } 1355 1356 for (idb = list_head(&idt->idt_inbufv); idb != NULL; 1357 idb = list_next(&idt->idt_inbufv, idb)) { 1358 /* 1359 * We want to remove these items from the tx_list as well, 1360 * but knowing it's in the idt_inbufv list is not a guarantee 1361 * that it's in the tx_list. If it's on the tx list then 1362 * let idm_sotx_thread() clean it up. 1363 */ 1364 if (idb->idb_in_transport && !idb->idb_tx_thread) { 1365 /* 1366 * idm_buf_tx_to_ini_done releases idt->idt_mutex 1367 */ 1368 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1369 uintptr_t, idb->idb_buf, 1370 uint32_t, idb->idb_bufoffset, 1371 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1372 uint32_t, idb->idb_xfer_len, 1373 int, XFER_BUF_TX_TO_INI); 1374 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); 1375 mutex_enter(&idt->idt_mutex); 1376 } 1377 } 1378 1379 mutex_exit(&idt->idt_mutex); 1380 1381 return (IDM_STATUS_SUCCESS); 1382 } 1383 1384 /* 1385 * idm_so_negotiate_key_values() validates the key values for this connection 1386 */ 1387 /* ARGSUSED */ 1388 static kv_status_t 1389 idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl, 1390 nvlist_t *response_nvl, nvlist_t *negotiated_nvl) 1391 { 1392 /* All parameters are negotiated at the iscsit level */ 1393 return (KV_HANDLED); 1394 } 1395 1396 /* 1397 * idm_so_notice_key_values() activates the negotiated key values for 1398 * this connection. 1399 */ 1400 static void 1401 idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl) 1402 { 1403 char *nvp_name; 1404 nvpair_t *nvp; 1405 nvpair_t *next_nvp; 1406 int nvrc; 1407 idm_status_t idm_status; 1408 const idm_kv_xlate_t *ikvx; 1409 uint64_t num_val; 1410 1411 for (nvp = nvlist_next_nvpair(negotiated_nvl, NULL); 1412 nvp != NULL; nvp = next_nvp) { 1413 next_nvp = nvlist_next_nvpair(negotiated_nvl, nvp); 1414 nvp_name = nvpair_name(nvp); 1415 1416 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); 1417 switch (ikvx->ik_key_id) { 1418 case KI_HEADER_DIGEST: 1419 case KI_DATA_DIGEST: 1420 idm_status = idm_so_handle_digest(it, nvp, ikvx); 1421 ASSERT(idm_status == 0); 1422 1423 /* Remove processed item from negotiated_nvl list */ 1424 nvrc = nvlist_remove_all( 1425 negotiated_nvl, ikvx->ik_key_name); 1426 ASSERT(nvrc == 0); 1427 break; 1428 case KI_MAX_RECV_DATA_SEGMENT_LENGTH: 1429 /* 1430 * Just pass the value down to idm layer. 1431 * No need to remove it from negotiated_nvl list here. 1432 */ 1433 nvrc = nvpair_value_uint64(nvp, &num_val); 1434 ASSERT(nvrc == 0); 1435 it->ic_conn_params.max_xmit_dataseglen = 1436 (uint32_t)num_val; 1437 break; 1438 default: 1439 break; 1440 } 1441 } 1442 } 1443 1444 /* 1445 * idm_so_declare_key_values() declares the key values for this connection 1446 */ 1447 /* ARGSUSED */ 1448 static kv_status_t 1449 idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl, 1450 nvlist_t *outgoing_nvl) 1451 { 1452 char *nvp_name; 1453 nvpair_t *nvp; 1454 nvpair_t *next_nvp; 1455 kv_status_t kvrc; 1456 int nvrc = 0; 1457 const idm_kv_xlate_t *ikvx; 1458 uint64_t num_val; 1459 1460 for (nvp = nvlist_next_nvpair(config_nvl, NULL); 1461 nvp != NULL && nvrc == 0; nvp = next_nvp) { 1462 next_nvp = nvlist_next_nvpair(config_nvl, nvp); 1463 nvp_name = nvpair_name(nvp); 1464 1465 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); 1466 switch (ikvx->ik_key_id) { 1467 case KI_MAX_RECV_DATA_SEGMENT_LENGTH: 1468 if ((nvrc = nvpair_value_uint64(nvp, &num_val)) != 0) { 1469 break; 1470 } 1471 if (outgoing_nvl && 1472 (nvrc = nvlist_add_uint64(outgoing_nvl, 1473 nvp_name, num_val)) != 0) { 1474 break; 1475 } 1476 it->ic_conn_params.max_recv_dataseglen = 1477 (uint32_t)num_val; 1478 break; 1479 default: 1480 break; 1481 } 1482 } 1483 kvrc = idm_nvstat_to_kvstat(nvrc); 1484 return (kvrc); 1485 } 1486 1487 static idm_status_t 1488 idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice, 1489 const idm_kv_xlate_t *ikvx) 1490 { 1491 int nvrc; 1492 char *digest_choice_string; 1493 1494 nvrc = nvpair_value_string(digest_choice, 1495 &digest_choice_string); 1496 ASSERT(nvrc == 0); 1497 if (strcasecmp(digest_choice_string, "crc32c") == 0) { 1498 switch (ikvx->ik_key_id) { 1499 case KI_HEADER_DIGEST: 1500 it->ic_conn_flags |= IDM_CONN_HEADER_DIGEST; 1501 break; 1502 case KI_DATA_DIGEST: 1503 it->ic_conn_flags |= IDM_CONN_DATA_DIGEST; 1504 break; 1505 default: 1506 ASSERT(0); 1507 break; 1508 } 1509 } else if (strcasecmp(digest_choice_string, "none") == 0) { 1510 switch (ikvx->ik_key_id) { 1511 case KI_HEADER_DIGEST: 1512 it->ic_conn_flags &= ~IDM_CONN_HEADER_DIGEST; 1513 break; 1514 case KI_DATA_DIGEST: 1515 it->ic_conn_flags &= ~IDM_CONN_DATA_DIGEST; 1516 break; 1517 default: 1518 ASSERT(0); 1519 break; 1520 } 1521 } else { 1522 ASSERT(0); 1523 } 1524 1525 return (IDM_STATUS_SUCCESS); 1526 } 1527 1528 1529 /* 1530 * idm_so_conn_is_capable() verifies that the passed connection is provided 1531 * for by the sockets interface. 1532 */ 1533 /* ARGSUSED */ 1534 static boolean_t 1535 idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps) 1536 { 1537 return (B_TRUE); 1538 } 1539 1540 /* 1541 * idm_so_rx_datain() validates the Data Sequence number of the PDU. The 1542 * idm_sorecv_scsidata() function invoked earlier actually reads the data 1543 * off the socket into the appropriate buffers. 1544 */ 1545 static void 1546 idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu) 1547 { 1548 iscsi_data_hdr_t *bhs; 1549 idm_task_t *idt; 1550 idm_buf_t *idb; 1551 uint32_t datasn; 1552 size_t offset; 1553 iscsi_hdr_t *ihp = (iscsi_hdr_t *)pdu->isp_hdr; 1554 iscsi_data_rsp_hdr_t *idrhp = (iscsi_data_rsp_hdr_t *)ihp; 1555 1556 ASSERT(ic != NULL); 1557 ASSERT(pdu != NULL); 1558 1559 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1560 datasn = ntohl(bhs->datasn); 1561 offset = ntohl(bhs->offset); 1562 1563 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA_RSP); 1564 1565 /* 1566 * Look up the task corresponding to the initiator task tag 1567 * to get the buffers affiliated with the task. 1568 */ 1569 idt = idm_task_find(ic, bhs->itt, bhs->ttt); 1570 if (idt == NULL) { 1571 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find task"); 1572 idm_pdu_rx_protocol_error(ic, pdu); 1573 return; 1574 } 1575 1576 idb = pdu->isp_sorx_buf; 1577 if (idb == NULL) { 1578 IDM_CONN_LOG(CE_WARN, 1579 "idm_so_rx_datain: failed to find buffer"); 1580 idm_task_rele(idt); 1581 idm_pdu_rx_protocol_error(ic, pdu); 1582 return; 1583 } 1584 1585 /* 1586 * DataSN values should be sequential and should not have any gaps or 1587 * repetitions. Check the DataSN with the one stored in the task. 1588 */ 1589 if (datasn == idt->idt_exp_datasn) { 1590 idt->idt_exp_datasn++; /* keep track of DataSN received */ 1591 } else { 1592 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: datasn out of order"); 1593 idm_task_rele(idt); 1594 idm_pdu_rx_protocol_error(ic, pdu); 1595 return; 1596 } 1597 1598 /* 1599 * PDUs in a sequence should be in continuously increasing 1600 * address offset 1601 */ 1602 if (offset != idb->idb_exp_offset) { 1603 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: unexpected offset"); 1604 idm_task_rele(idt); 1605 idm_pdu_rx_protocol_error(ic, pdu); 1606 return; 1607 } 1608 /* Expected next relative buffer offset */ 1609 idb->idb_exp_offset += n2h24(bhs->dlength); 1610 idt->idt_rx_bytes += n2h24(bhs->dlength); 1611 1612 idm_task_rele(idt); 1613 1614 /* 1615 * For now call scsi_rsp which will process the data rsp 1616 * Revisit, need to provide an explicit client entry point for 1617 * phase collapse completions. 1618 */ 1619 if (((ihp->opcode & ISCSI_OPCODE_MASK) == ISCSI_OP_SCSI_DATA_RSP) && 1620 (idrhp->flags & ISCSI_FLAG_DATA_STATUS)) { 1621 (*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu); 1622 } 1623 1624 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1625 } 1626 1627 /* 1628 * The idm_so_rx_dataout() function is used by the iSCSI target to read 1629 * data from the Data-Out PDU sent by the iSCSI initiator. 1630 * 1631 * This function gets the Initiator Task Tag from the PDU BHS and looks up the 1632 * task to get the buffers associated with the PDU. A PDU might span buffers. 1633 * The data is then read into the respective buffer. 1634 */ 1635 static void 1636 idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu) 1637 { 1638 1639 iscsi_data_hdr_t *bhs; 1640 idm_task_t *idt; 1641 idm_buf_t *idb; 1642 size_t offset; 1643 1644 ASSERT(ic != NULL); 1645 ASSERT(pdu != NULL); 1646 1647 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1648 offset = ntohl(bhs->offset); 1649 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA); 1650 1651 /* 1652 * Look up the task corresponding to the initiator task tag 1653 * to get the buffers affiliated with the task. 1654 */ 1655 idt = idm_task_find(ic, bhs->itt, bhs->ttt); 1656 if (idt == NULL) { 1657 IDM_CONN_LOG(CE_WARN, 1658 "idm_so_rx_dataout: failed to find task"); 1659 idm_pdu_rx_protocol_error(ic, pdu); 1660 return; 1661 } 1662 1663 idb = pdu->isp_sorx_buf; 1664 if (idb == NULL) { 1665 IDM_CONN_LOG(CE_WARN, 1666 "idm_so_rx_dataout: failed to find buffer"); 1667 idm_task_rele(idt); 1668 idm_pdu_rx_protocol_error(ic, pdu); 1669 return; 1670 } 1671 1672 /* Keep track of data transferred - check data offsets */ 1673 if (offset != idb->idb_exp_offset) { 1674 IDM_CONN_LOG(CE_NOTE, "idm_so_rx_dataout: offset out of seq: " 1675 "%ld, %d", offset, idb->idb_exp_offset); 1676 idm_task_rele(idt); 1677 idm_pdu_rx_protocol_error(ic, pdu); 1678 return; 1679 } 1680 /* Expected next relative offset */ 1681 idb->idb_exp_offset += ntoh24(bhs->dlength); 1682 idt->idt_rx_bytes += n2h24(bhs->dlength); 1683 1684 /* 1685 * Call the buffer callback when the transfer is complete 1686 * 1687 * The connection state machine should only abort tasks after 1688 * shutting down the connection so we are assured that there 1689 * won't be a simultaneous attempt to abort this task at the 1690 * same time as we are processing this PDU (due to a connection 1691 * state change). 1692 */ 1693 if (bhs->flags & ISCSI_FLAG_FINAL) { 1694 /* 1695 * We only want to call idm_buf_rx_from_ini_done once 1696 * per transfer. It's possible that this task has 1697 * already been aborted in which case 1698 * idm_so_free_task_rsrc will call idm_buf_rx_from_ini_done 1699 * for each buffer with idb_in_transport==B_TRUE. To 1700 * close this window and ensure that this doesn't happen, 1701 * we'll clear idb->idb_in_transport now while holding 1702 * the task mutex. This is only really an issue for 1703 * SCSI task abort -- if tasks were being aborted because 1704 * of a connection state change the state machine would 1705 * have already stopped the receive thread. 1706 */ 1707 mutex_enter(&idt->idt_mutex); 1708 1709 /* 1710 * Release the task hold here (obtained in idm_task_find) 1711 * because the task may complete synchronously during 1712 * idm_buf_rx_from_ini_done. Since we still have an active 1713 * buffer we know there is at least one additional hold on idt. 1714 */ 1715 idm_task_rele(idt); 1716 1717 /* 1718 * idm_buf_rx_from_ini_done releases idt->idt_mutex 1719 */ 1720 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1721 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 1722 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1723 uint32_t, idb->idb_xfer_len, 1724 int, XFER_BUF_RX_FROM_INI); 1725 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_SUCCESS); 1726 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1727 return; 1728 } 1729 1730 idm_task_rele(idt); 1731 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1732 } 1733 1734 /* 1735 * The idm_so_rx_rtt() function is used by the iSCSI initiator to handle 1736 * the R2T PDU sent by the iSCSI target indicating that it is ready to 1737 * accept data. This gets the Initiator Task Tag (itt) from the PDU BHS 1738 * and looks up the task in the task tree using the itt to get the output 1739 * buffers associated the task. The R2T PDU contains the offset of the 1740 * requested data and the data length. This function then constructs a 1741 * sequence of iSCSI PDUs and outputs the requested data. Each Data-Out 1742 * PDU is associated with the R2T by the Target Transfer Tag (ttt). 1743 */ 1744 1745 static void 1746 idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu) 1747 { 1748 idm_task_t *idt; 1749 idm_buf_t *idb; 1750 iscsi_rtt_hdr_t *rtt_hdr; 1751 uint32_t data_offset; 1752 uint32_t data_length; 1753 1754 ASSERT(ic != NULL); 1755 ASSERT(pdu != NULL); 1756 1757 rtt_hdr = (iscsi_rtt_hdr_t *)pdu->isp_hdr; 1758 data_offset = ntohl(rtt_hdr->data_offset); 1759 data_length = ntohl(rtt_hdr->data_length); 1760 idt = idm_task_find(ic, rtt_hdr->itt, rtt_hdr->ttt); 1761 1762 if (idt == NULL) { 1763 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find task"); 1764 idm_pdu_rx_protocol_error(ic, pdu); 1765 return; 1766 } 1767 1768 /* Find the buffer bound to the task by the iSCSI initiator */ 1769 mutex_enter(&idt->idt_mutex); 1770 idb = idm_buf_find(&idt->idt_outbufv, data_offset); 1771 if (idb == NULL) { 1772 mutex_exit(&idt->idt_mutex); 1773 idm_task_rele(idt); 1774 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find buffer"); 1775 idm_pdu_rx_protocol_error(ic, pdu); 1776 return; 1777 } 1778 1779 /* return buffer contains this data */ 1780 if (data_offset + data_length > idb->idb_buflen) { 1781 /* Overflow */ 1782 mutex_exit(&idt->idt_mutex); 1783 idm_task_rele(idt); 1784 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: read from outside " 1785 "buffer"); 1786 idm_pdu_rx_protocol_error(ic, pdu); 1787 return; 1788 } 1789 1790 idt->idt_r2t_ttt = rtt_hdr->ttt; 1791 idt->idt_exp_datasn = 0; 1792 1793 idm_so_send_rtt_data(ic, idt, idb, data_offset, 1794 ntohl(rtt_hdr->data_length)); 1795 mutex_exit(&idt->idt_mutex); 1796 1797 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1798 idm_task_rele(idt); 1799 1800 } 1801 1802 idm_status_t 1803 idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu) 1804 { 1805 uint8_t pad[ISCSI_PAD_WORD_LEN]; 1806 int pad_len; 1807 uint32_t data_digest_crc; 1808 uint32_t crc_calculated; 1809 int total_len; 1810 idm_so_conn_t *so_conn; 1811 1812 so_conn = ic->ic_transport_private; 1813 1814 pad_len = ((ISCSI_PAD_WORD_LEN - 1815 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & 1816 (ISCSI_PAD_WORD_LEN - 1)); 1817 1818 ASSERT(pdu->isp_iovlen < (PDU_MAX_IOVLEN - 2)); /* pad + data digest */ 1819 1820 total_len = pdu->isp_datalen; 1821 1822 if (pad_len) { 1823 pdu->isp_iov[pdu->isp_iovlen].iov_base = (char *)&pad; 1824 pdu->isp_iov[pdu->isp_iovlen].iov_len = pad_len; 1825 total_len += pad_len; 1826 pdu->isp_iovlen++; 1827 } 1828 1829 /* setup data digest */ 1830 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { 1831 pdu->isp_iov[pdu->isp_iovlen].iov_base = 1832 (char *)&data_digest_crc; 1833 pdu->isp_iov[pdu->isp_iovlen].iov_len = 1834 sizeof (data_digest_crc); 1835 total_len += sizeof (data_digest_crc); 1836 pdu->isp_iovlen++; 1837 } 1838 1839 pdu->isp_data = (uint8_t *)(uintptr_t)pdu->isp_iov[0].iov_base; 1840 1841 if (idm_iov_sorecv(so_conn->ic_so, &pdu->isp_iov[0], 1842 pdu->isp_iovlen, total_len) != 0) { 1843 return (IDM_STATUS_IO); 1844 } 1845 1846 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { 1847 crc_calculated = idm_crc32c(pdu->isp_data, 1848 pdu->isp_datalen); 1849 if (pad_len) { 1850 crc_calculated = idm_crc32c_continued((char *)&pad, 1851 pad_len, crc_calculated); 1852 } 1853 if (crc_calculated != data_digest_crc) { 1854 IDM_CONN_LOG(CE_WARN, 1855 "idm_sorecvdata: " 1856 "CRC error: actual 0x%x, calc 0x%x", 1857 data_digest_crc, crc_calculated); 1858 1859 /* Invalid Data Digest */ 1860 return (IDM_STATUS_DATA_DIGEST); 1861 } 1862 } 1863 1864 return (IDM_STATUS_SUCCESS); 1865 } 1866 1867 /* 1868 * idm_sorecv_scsidata() is used to receive scsi data from the socket. The 1869 * Data-type PDU header must be read into the idm_pdu_t structure prior to 1870 * calling this function. 1871 */ 1872 idm_status_t 1873 idm_sorecv_scsidata(idm_conn_t *ic, idm_pdu_t *pdu) 1874 { 1875 iscsi_data_hdr_t *bhs; 1876 idm_task_t *task; 1877 uint32_t offset; 1878 uint8_t opcode; 1879 uint32_t dlength; 1880 list_t *buflst; 1881 uint32_t xfer_bytes; 1882 idm_status_t status; 1883 1884 ASSERT(ic != NULL); 1885 ASSERT(pdu != NULL); 1886 1887 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1888 1889 offset = ntohl(bhs->offset); 1890 opcode = bhs->opcode; 1891 dlength = n2h24(bhs->dlength); 1892 1893 ASSERT((opcode == ISCSI_OP_SCSI_DATA_RSP) || 1894 (opcode == ISCSI_OP_SCSI_DATA)); 1895 1896 /* 1897 * Successful lookup implicitly gets a "hold" on the task. This 1898 * hold must be released before leaving this function. At one 1899 * point we were caching this task context and retaining the hold 1900 * but it turned out to be very difficult to release the hold properly. 1901 * The task can be aborted and the connection shutdown between this 1902 * call and the subsequent expected call to idm_so_rx_datain/ 1903 * idm_so_rx_dataout (in which case those functions are not called). 1904 * Releasing the hold in the PDU callback doesn't work well either 1905 * because the whole task may be completed by then at which point 1906 * it is too late to release the hold -- for better or worse this 1907 * code doesn't wait on the refcnts during normal operation. 1908 * idm_task_find() is very fast and it is not a huge burden if we 1909 * have to do it twice. 1910 */ 1911 task = idm_task_find(ic, bhs->itt, bhs->ttt); 1912 if (task == NULL) { 1913 IDM_CONN_LOG(CE_WARN, 1914 "idm_sorecv_scsidata: could not find task"); 1915 return (IDM_STATUS_FAIL); 1916 } 1917 1918 mutex_enter(&task->idt_mutex); 1919 buflst = (opcode == ISCSI_OP_SCSI_DATA_RSP) ? 1920 &task->idt_inbufv : &task->idt_outbufv; 1921 pdu->isp_sorx_buf = idm_buf_find(buflst, offset); 1922 mutex_exit(&task->idt_mutex); 1923 1924 if (pdu->isp_sorx_buf == NULL) { 1925 idm_task_rele(task); 1926 IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find " 1927 "buffer for offset %x opcode=%x", 1928 offset, opcode); 1929 return (IDM_STATUS_FAIL); 1930 } 1931 1932 xfer_bytes = idm_fill_iov(pdu, pdu->isp_sorx_buf, offset, dlength); 1933 ASSERT(xfer_bytes != 0); 1934 if (xfer_bytes != dlength) { 1935 idm_task_rele(task); 1936 /* 1937 * Buffer overflow, connection error. The PDU data is still 1938 * sitting in the socket so we can't use the connection 1939 * again until that data is drained. 1940 */ 1941 return (IDM_STATUS_FAIL); 1942 } 1943 1944 status = idm_sorecvdata(ic, pdu); 1945 1946 idm_task_rele(task); 1947 1948 return (status); 1949 } 1950 1951 static uint32_t 1952 idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength) 1953 { 1954 uint32_t buf_ro = ro - idb->idb_bufoffset; 1955 uint32_t xfer_len = min(dlength, idb->idb_buflen - buf_ro); 1956 1957 ASSERT(ro >= idb->idb_bufoffset); 1958 1959 pdu->isp_iov[pdu->isp_iovlen].iov_base = 1960 (caddr_t)idb->idb_buf + buf_ro; 1961 pdu->isp_iov[pdu->isp_iovlen].iov_len = xfer_len; 1962 pdu->isp_iovlen++; 1963 1964 return (xfer_len); 1965 } 1966 1967 int 1968 idm_sorecv_nonscsidata(idm_conn_t *ic, idm_pdu_t *pdu) 1969 { 1970 pdu->isp_data = kmem_alloc(pdu->isp_datalen, KM_SLEEP); 1971 ASSERT(pdu->isp_data != NULL); 1972 1973 pdu->isp_databuflen = pdu->isp_datalen; 1974 pdu->isp_iov[0].iov_base = (caddr_t)pdu->isp_data; 1975 pdu->isp_iov[0].iov_len = pdu->isp_datalen; 1976 pdu->isp_iovlen = 1; 1977 /* 1978 * Since we are associating a new data buffer with this received 1979 * PDU we need to set a specific callback to free the data 1980 * after the PDU is processed. 1981 */ 1982 pdu->isp_flags |= IDM_PDU_ADDL_DATA; 1983 pdu->isp_callback = idm_sorx_addl_pdu_cb; 1984 1985 return (idm_sorecvdata(ic, pdu)); 1986 } 1987 1988 void 1989 idm_sorx_thread(void *arg) 1990 { 1991 boolean_t conn_failure = B_FALSE; 1992 idm_conn_t *ic = (idm_conn_t *)arg; 1993 idm_so_conn_t *so_conn; 1994 idm_pdu_t *pdu; 1995 idm_status_t rc; 1996 1997 idm_conn_hold(ic); 1998 1999 mutex_enter(&ic->ic_mutex); 2000 2001 so_conn = ic->ic_transport_private; 2002 so_conn->ic_rx_thread_running = B_TRUE; 2003 so_conn->ic_rx_thread_did = so_conn->ic_rx_thread->t_did; 2004 cv_signal(&ic->ic_cv); 2005 2006 while (so_conn->ic_rx_thread_running) { 2007 mutex_exit(&ic->ic_mutex); 2008 2009 /* 2010 * Get PDU with default header size (large enough for 2011 * BHS plus any anticipated AHS). PDU from 2012 * the cache will have all values set correctly 2013 * for sockets RX including callback. 2014 */ 2015 pdu = kmem_cache_alloc(idm.idm_sorx_pdu_cache, KM_SLEEP); 2016 pdu->isp_ic = ic; 2017 pdu->isp_flags = 0; 2018 pdu->isp_transport_hdrlen = 0; 2019 2020 if ((rc = idm_sorecvhdr(ic, pdu)) != 0) { 2021 /* 2022 * Call idm_pdu_complete so that we call the callback 2023 * and ensure any memory allocated in idm_sorecvhdr 2024 * gets freed up. 2025 */ 2026 idm_pdu_complete(pdu, IDM_STATUS_FAIL); 2027 2028 /* 2029 * If ic_rx_thread_running is still set then 2030 * this is some kind of connection problem 2031 * on the socket. In this case we want to 2032 * generate an event. Otherwise some other 2033 * thread closed the socket due to another 2034 * issue in which case we don't need to 2035 * generate an event. 2036 */ 2037 mutex_enter(&ic->ic_mutex); 2038 if (so_conn->ic_rx_thread_running) { 2039 conn_failure = B_TRUE; 2040 so_conn->ic_rx_thread_running = B_FALSE; 2041 } 2042 2043 continue; 2044 } 2045 2046 /* 2047 * Header has been read and validated. Now we need 2048 * to read the PDU data payload (if present). SCSI data 2049 * need to be transferred from the socket directly into 2050 * the associated transfer buffer for the SCSI task. 2051 */ 2052 if (pdu->isp_datalen != 0) { 2053 if ((IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA) || 2054 (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP)) { 2055 rc = idm_sorecv_scsidata(ic, pdu); 2056 /* 2057 * All SCSI errors are fatal to the 2058 * connection right now since we have no 2059 * place to put the data. What we need 2060 * is some kind of sink to dispose of unwanted 2061 * SCSI data. For example an invalid task tag 2062 * should not kill the connection (although 2063 * we may want to drop the connection). 2064 */ 2065 } else { 2066 /* 2067 * Not data PDUs so allocate a buffer for the 2068 * data segment and read the remaining data. 2069 */ 2070 rc = idm_sorecv_nonscsidata(ic, pdu); 2071 } 2072 if (rc != 0) { 2073 /* 2074 * Call idm_pdu_complete so that we call the 2075 * callback and ensure any memory allocated 2076 * in idm_sorecvhdr gets freed up. 2077 */ 2078 idm_pdu_complete(pdu, IDM_STATUS_FAIL); 2079 2080 /* 2081 * If ic_rx_thread_running is still set then 2082 * this is some kind of connection problem 2083 * on the socket. In this case we want to 2084 * generate an event. Otherwise some other 2085 * thread closed the socket due to another 2086 * issue in which case we don't need to 2087 * generate an event. 2088 */ 2089 mutex_enter(&ic->ic_mutex); 2090 if (so_conn->ic_rx_thread_running) { 2091 conn_failure = B_TRUE; 2092 so_conn->ic_rx_thread_running = B_FALSE; 2093 } 2094 continue; 2095 } 2096 } 2097 2098 /* 2099 * Process RX PDU 2100 */ 2101 idm_pdu_rx(ic, pdu); 2102 2103 mutex_enter(&ic->ic_mutex); 2104 } 2105 2106 mutex_exit(&ic->ic_mutex); 2107 2108 /* 2109 * If we dropped out of the RX processing loop because of 2110 * a socket problem or other connection failure (including 2111 * digest errors) then we need to generate a state machine 2112 * event to shut the connection down. 2113 * If the state machine is already in, for example, INIT_ERROR, this 2114 * event will get dropped, and the TX thread will never be notified 2115 * to shut down. To be safe, we'll just notify it here. 2116 */ 2117 if (conn_failure) { 2118 if (so_conn->ic_tx_thread_running) { 2119 so_conn->ic_tx_thread_running = B_FALSE; 2120 mutex_enter(&so_conn->ic_tx_mutex); 2121 cv_signal(&so_conn->ic_tx_cv); 2122 mutex_exit(&so_conn->ic_tx_mutex); 2123 } 2124 2125 idm_conn_event(ic, CE_TRANSPORT_FAIL, rc); 2126 } 2127 2128 idm_conn_rele(ic); 2129 2130 thread_exit(); 2131 } 2132 2133 /* 2134 * idm_so_tx 2135 * 2136 * This is the implementation of idm_transport_ops_t's it_tx_pdu entry 2137 * point. By definition, it is supposed to be fast. So, simply queue 2138 * the entry and return. The real work is done by idm_i_so_tx() via 2139 * idm_sotx_thread(). 2140 */ 2141 2142 static void 2143 idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu) 2144 { 2145 idm_so_conn_t *so_conn = ic->ic_transport_private; 2146 2147 ASSERT(pdu->isp_ic == ic); 2148 mutex_enter(&so_conn->ic_tx_mutex); 2149 2150 if (!so_conn->ic_tx_thread_running) { 2151 mutex_exit(&so_conn->ic_tx_mutex); 2152 idm_pdu_complete(pdu, IDM_STATUS_ABORTED); 2153 return; 2154 } 2155 2156 list_insert_tail(&so_conn->ic_tx_list, (void *)pdu); 2157 cv_signal(&so_conn->ic_tx_cv); 2158 mutex_exit(&so_conn->ic_tx_mutex); 2159 } 2160 2161 static idm_status_t 2162 idm_i_so_tx(idm_pdu_t *pdu) 2163 { 2164 idm_conn_t *ic = pdu->isp_ic; 2165 idm_status_t status = IDM_STATUS_SUCCESS; 2166 uint8_t pad[ISCSI_PAD_WORD_LEN]; 2167 int pad_len; 2168 uint32_t hdr_digest_crc; 2169 uint32_t data_digest_crc = 0; 2170 int total_len = 0; 2171 int iovlen = 0; 2172 struct iovec iov[6]; 2173 idm_so_conn_t *so_conn; 2174 2175 so_conn = ic->ic_transport_private; 2176 2177 /* Setup BHS */ 2178 iov[iovlen].iov_base = (caddr_t)pdu->isp_hdr; 2179 iov[iovlen].iov_len = pdu->isp_hdrlen; 2180 total_len += iov[iovlen].iov_len; 2181 iovlen++; 2182 2183 /* Setup header digest */ 2184 if (((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && 2185 (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST)) { 2186 hdr_digest_crc = idm_crc32c(pdu->isp_hdr, pdu->isp_hdrlen); 2187 2188 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; 2189 iov[iovlen].iov_len = sizeof (hdr_digest_crc); 2190 total_len += iov[iovlen].iov_len; 2191 iovlen++; 2192 } 2193 2194 /* Setup the data */ 2195 if (pdu->isp_datalen) { 2196 idm_task_t *idt; 2197 idm_buf_t *idb; 2198 iscsi_data_hdr_t *ihp; 2199 ihp = (iscsi_data_hdr_t *)pdu->isp_hdr; 2200 /* Write of immediate data */ 2201 if (ic->ic_ffp && 2202 (ihp->opcode == ISCSI_OP_SCSI_CMD || 2203 ihp->opcode == ISCSI_OP_SCSI_DATA)) { 2204 idt = idm_task_find(ic, ihp->itt, ihp->ttt); 2205 if (idt) { 2206 mutex_enter(&idt->idt_mutex); 2207 idb = idm_buf_find(&idt->idt_outbufv, 0); 2208 mutex_exit(&idt->idt_mutex); 2209 /* 2210 * If the initiator call to idm_buf_alloc 2211 * failed then we can get to this point 2212 * without a bound buffer. The associated 2213 * connection failure will clean things up 2214 * later. It would be nice to come up with 2215 * a cleaner way to handle this. In 2216 * particular it seems absurd to look up 2217 * the task and the buffer just to update 2218 * this counter. 2219 */ 2220 if (idb) 2221 idb->idb_xfer_len += pdu->isp_datalen; 2222 idm_task_rele(idt); 2223 } 2224 } 2225 2226 iov[iovlen].iov_base = (caddr_t)pdu->isp_data; 2227 iov[iovlen].iov_len = pdu->isp_datalen; 2228 total_len += iov[iovlen].iov_len; 2229 iovlen++; 2230 } 2231 2232 /* Setup the data pad if necessary */ 2233 pad_len = ((ISCSI_PAD_WORD_LEN - 2234 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & 2235 (ISCSI_PAD_WORD_LEN - 1)); 2236 2237 if (pad_len) { 2238 bzero(pad, sizeof (pad)); 2239 iov[iovlen].iov_base = (void *)&pad; 2240 iov[iovlen].iov_len = pad_len; 2241 total_len += iov[iovlen].iov_len; 2242 iovlen++; 2243 } 2244 2245 /* 2246 * Setup the data digest if enabled. Data-digest is not sent 2247 * for login-phase PDUs. 2248 */ 2249 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) && 2250 ((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && 2251 (pdu->isp_datalen || pad_len)) { 2252 /* 2253 * RFC3720/10.2.3: A zero-length Data Segment also 2254 * implies a zero-length data digest. 2255 */ 2256 if (pdu->isp_datalen) { 2257 data_digest_crc = idm_crc32c(pdu->isp_data, 2258 pdu->isp_datalen); 2259 } 2260 if (pad_len) { 2261 data_digest_crc = idm_crc32c_continued(&pad, 2262 pad_len, data_digest_crc); 2263 } 2264 2265 iov[iovlen].iov_base = (caddr_t)&data_digest_crc; 2266 iov[iovlen].iov_len = sizeof (data_digest_crc); 2267 total_len += iov[iovlen].iov_len; 2268 iovlen++; 2269 } 2270 2271 /* Transmit the PDU */ 2272 if (idm_iov_sosend(so_conn->ic_so, &iov[0], iovlen, 2273 total_len) != 0) { 2274 /* Set error status */ 2275 IDM_CONN_LOG(CE_WARN, 2276 "idm_so_tx: failed to transmit the PDU, so: %p ic: %p " 2277 "data: %p", (void *) so_conn->ic_so, (void *) ic, 2278 (void *) pdu->isp_data); 2279 status = IDM_STATUS_IO; 2280 } 2281 2282 /* 2283 * Success does not mean that the PDU actually reached the 2284 * remote node since it could get dropped along the way. 2285 */ 2286 idm_pdu_complete(pdu, status); 2287 2288 return (status); 2289 } 2290 2291 /* 2292 * The idm_so_buf_tx_to_ini() is used by the target iSCSI layer to transmit the 2293 * Data-In PDUs using sockets. Based on the negotiated MaxRecvDataSegmentLength, 2294 * the buffer is segmented into a sequence of Data-In PDUs, ordered by DataSN. 2295 * A target can invoke this function multiple times for a single read command 2296 * (identified by the same ITT) to split the input into several sequences. 2297 * 2298 * DataSN starts with 0 for the first data PDU of an input command and advances 2299 * by 1 for each subsequent data PDU. Each sequence will have its own F bit, 2300 * which is set to 1 for the last data PDU of a sequence. 2301 * 2302 * Scope for Prototype build: 2303 * The data PDUs within a sequence will be sent in order with the buffer offset 2304 * in increasing order. i.e. initiator and target must have negotiated the 2305 * "DataPDUInOrder" to "Yes". The order between sequences is not enforced. 2306 * 2307 * Caller holds idt->idt_mutex 2308 */ 2309 static idm_status_t 2310 idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb) 2311 { 2312 idm_so_conn_t *so_conn = idb->idb_ic->ic_transport_private; 2313 idm_pdu_t tmppdu; 2314 2315 ASSERT(mutex_owned(&idt->idt_mutex)); 2316 2317 /* 2318 * Put the idm_buf_t on the tx queue. It will be transmitted by 2319 * idm_sotx_thread. 2320 */ 2321 mutex_enter(&so_conn->ic_tx_mutex); 2322 2323 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, 2324 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2325 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2326 uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); 2327 2328 if (!so_conn->ic_tx_thread_running) { 2329 mutex_exit(&so_conn->ic_tx_mutex); 2330 /* 2331 * Don't release idt->idt_mutex since we're supposed to hold 2332 * in when calling idm_buf_tx_to_ini_done 2333 */ 2334 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 2335 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2336 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2337 uint32_t, idb->idb_xfer_len, 2338 int, XFER_BUF_TX_TO_INI); 2339 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); 2340 return (IDM_STATUS_FAIL); 2341 } 2342 2343 /* 2344 * Build a template for the data PDU headers we will use so that 2345 * the SN values will stay consistent with other PDU's we are 2346 * transmitting like R2T and SCSI status. 2347 */ 2348 bzero(&idb->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); 2349 tmppdu.isp_hdr = &idb->idb_data_hdr_tmpl; 2350 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, 2351 ISCSI_OP_SCSI_DATA_RSP); 2352 idb->idb_tx_thread = B_TRUE; 2353 list_insert_tail(&so_conn->ic_tx_list, (void *)idb); 2354 cv_signal(&so_conn->ic_tx_cv); 2355 mutex_exit(&so_conn->ic_tx_mutex); 2356 mutex_exit(&idt->idt_mutex); 2357 2358 /* 2359 * Returning success here indicates the transfer was successfully 2360 * dispatched -- it does not mean that the transfer completed 2361 * successfully. 2362 */ 2363 return (IDM_STATUS_SUCCESS); 2364 } 2365 2366 /* 2367 * The idm_so_buf_rx_from_ini() is used by the target iSCSI layer to specify the 2368 * data blocks it is ready to receive from the initiator in response to a WRITE 2369 * SCSI command. The target iSCSI layer passes the information about the desired 2370 * data blocks to the initiator in one R2T PDU. The receiving buffer, the buffer 2371 * offset and datalen are passed via the 'idb' argument. 2372 * 2373 * Scope for Prototype build: 2374 * R2Ts are required for any Data-Out PDU, i.e. initiator and target must have 2375 * negotiated the "InitialR2T" to "Yes". 2376 * 2377 * Caller holds idt->idt_mutex 2378 */ 2379 static idm_status_t 2380 idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb) 2381 { 2382 idm_pdu_t *pdu; 2383 iscsi_rtt_hdr_t *rtt; 2384 2385 ASSERT(mutex_owned(&idt->idt_mutex)); 2386 2387 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, 2388 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2389 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2390 uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI); 2391 2392 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); 2393 pdu->isp_ic = idt->idt_ic; 2394 bzero(pdu->isp_hdr, sizeof (iscsi_rtt_hdr_t)); 2395 2396 /* iSCSI layer fills the TTT, ITT, StatSN, ExpCmdSN, MaxCmdSN */ 2397 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, pdu, ISCSI_OP_RTT_RSP); 2398 2399 /* set the rttsn, rtt.flags, rtt.data_offset and rtt.data_length */ 2400 rtt = (iscsi_rtt_hdr_t *)(pdu->isp_hdr); 2401 2402 rtt->opcode = ISCSI_OP_RTT_RSP; 2403 rtt->flags = ISCSI_FLAG_FINAL; 2404 rtt->data_offset = htonl(idb->idb_bufoffset); 2405 rtt->data_length = htonl(idb->idb_xfer_len); 2406 rtt->rttsn = htonl(idt->idt_exp_rttsn++); 2407 2408 /* Keep track of buffer offsets */ 2409 idb->idb_exp_offset = idb->idb_bufoffset; 2410 mutex_exit(&idt->idt_mutex); 2411 2412 /* 2413 * Transmit the PDU. 2414 */ 2415 idm_pdu_tx(pdu); 2416 2417 return (IDM_STATUS_SUCCESS); 2418 } 2419 2420 static idm_status_t 2421 idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen) 2422 { 2423 if ((buflen > IDM_SO_BUF_CACHE_LB) && (buflen <= IDM_SO_BUF_CACHE_UB)) { 2424 idb->idb_buf = kmem_cache_alloc(idm.idm_so_128k_buf_cache, 2425 KM_NOSLEEP); 2426 idb->idb_buf_private = idm.idm_so_128k_buf_cache; 2427 } else { 2428 idb->idb_buf = kmem_alloc(buflen, KM_NOSLEEP); 2429 idb->idb_buf_private = NULL; 2430 } 2431 2432 if (idb->idb_buf == NULL) { 2433 IDM_CONN_LOG(CE_NOTE, 2434 "idm_so_buf_alloc: failed buffer allocation"); 2435 return (IDM_STATUS_FAIL); 2436 } 2437 2438 return (IDM_STATUS_SUCCESS); 2439 } 2440 2441 /* ARGSUSED */ 2442 static idm_status_t 2443 idm_so_buf_setup(idm_buf_t *idb) 2444 { 2445 /* Ensure bufalloc'd flag is unset */ 2446 idb->idb_bufalloc = B_FALSE; 2447 2448 return (IDM_STATUS_SUCCESS); 2449 } 2450 2451 /* ARGSUSED */ 2452 static void 2453 idm_so_buf_teardown(idm_buf_t *idb) 2454 { 2455 /* nothing to do here */ 2456 } 2457 2458 static void 2459 idm_so_buf_free(idm_buf_t *idb) 2460 { 2461 if (idb->idb_buf_private == NULL) { 2462 kmem_free(idb->idb_buf, idb->idb_buflen); 2463 } else { 2464 kmem_cache_free(idb->idb_buf_private, idb->idb_buf); 2465 } 2466 } 2467 2468 static void 2469 idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb, 2470 uint32_t offset, uint32_t length) 2471 { 2472 idm_so_conn_t *so_conn = ic->ic_transport_private; 2473 idm_pdu_t tmppdu; 2474 idm_buf_t *rtt_buf; 2475 2476 ASSERT(mutex_owned(&idt->idt_mutex)); 2477 2478 /* 2479 * Allocate a buffer to represent the RTT transfer. We could further 2480 * optimize this by allocating the buffers internally from an rtt 2481 * specific buffer cache since this is socket-specific code but for 2482 * now we will keep it simple. 2483 */ 2484 rtt_buf = idm_buf_alloc(ic, (uint8_t *)idb->idb_buf + offset, length); 2485 if (rtt_buf == NULL) { 2486 /* 2487 * If we're in FFP then the failure was likely a resource 2488 * allocation issue and we should close the connection by 2489 * sending a CE_TRANSPORT_FAIL event. 2490 * 2491 * If we're not in FFP then idm_buf_alloc will always 2492 * fail and the state is transitioning to "complete" anyway 2493 * so we won't bother to send an event. 2494 */ 2495 mutex_enter(&ic->ic_state_mutex); 2496 if (ic->ic_ffp) 2497 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, 2498 NULL, CT_NONE); 2499 mutex_exit(&ic->ic_state_mutex); 2500 return; 2501 } 2502 2503 rtt_buf->idb_buf_cb = NULL; 2504 rtt_buf->idb_cb_arg = NULL; 2505 rtt_buf->idb_bufoffset = offset; 2506 rtt_buf->idb_xfer_len = length; 2507 rtt_buf->idb_ic = idt->idt_ic; 2508 rtt_buf->idb_task_binding = idt; 2509 2510 /* 2511 * Put the idm_buf_t on the tx queue. It will be transmitted by 2512 * idm_sotx_thread. 2513 */ 2514 mutex_enter(&so_conn->ic_tx_mutex); 2515 2516 if (!so_conn->ic_tx_thread_running) { 2517 idm_buf_free(rtt_buf); 2518 mutex_exit(&so_conn->ic_tx_mutex); 2519 return; 2520 } 2521 2522 /* 2523 * This new buffer represents an additional reference on the task 2524 */ 2525 idm_task_hold(idt); 2526 2527 /* 2528 * Build a template for the data PDU headers we will use so that 2529 * the SN values will stay consistent with other PDU's we are 2530 * transmitting like R2T and SCSI status. 2531 */ 2532 bzero(&rtt_buf->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); 2533 tmppdu.isp_hdr = &rtt_buf->idb_data_hdr_tmpl; 2534 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, 2535 ISCSI_OP_SCSI_DATA); 2536 rtt_buf->idb_tx_thread = B_TRUE; 2537 rtt_buf->idb_in_transport = B_TRUE; 2538 list_insert_tail(&so_conn->ic_tx_list, (void *)rtt_buf); 2539 cv_signal(&so_conn->ic_tx_cv); 2540 mutex_exit(&so_conn->ic_tx_mutex); 2541 } 2542 2543 static void 2544 idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb) 2545 { 2546 /* 2547 * Don't worry about status -- we assume any error handling 2548 * is performed by the caller (idm_sotx_thread). 2549 */ 2550 idb->idb_in_transport = B_FALSE; 2551 idm_task_rele(idt); 2552 idm_buf_free(idb); 2553 } 2554 2555 static idm_status_t 2556 idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb, 2557 uint32_t buf_region_offset, uint32_t buf_region_length) 2558 { 2559 idm_conn_t *ic; 2560 uint32_t max_dataseglen; 2561 size_t remainder, chunk; 2562 uint32_t data_offset = buf_region_offset; 2563 iscsi_data_hdr_t *bhs; 2564 idm_pdu_t *pdu; 2565 idm_status_t tx_status; 2566 2567 ASSERT(mutex_owned(&idt->idt_mutex)); 2568 2569 ic = idt->idt_ic; 2570 2571 max_dataseglen = ic->ic_conn_params.max_xmit_dataseglen; 2572 remainder = buf_region_length; 2573 2574 while (remainder) { 2575 if (idt->idt_state != TASK_ACTIVE) { 2576 ASSERT((idt->idt_state != TASK_IDLE) && 2577 (idt->idt_state != TASK_COMPLETE)); 2578 return (IDM_STATUS_ABORTED); 2579 } 2580 2581 /* check to see if we need to chunk the data */ 2582 if (remainder > max_dataseglen) { 2583 chunk = max_dataseglen; 2584 } else { 2585 chunk = remainder; 2586 } 2587 2588 /* Data PDU headers will always be sizeof (iscsi_hdr_t) */ 2589 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); 2590 pdu->isp_ic = ic; 2591 2592 /* 2593 * We've already built a build a header template 2594 * to use during the transfer. Use this template so that 2595 * the SN values stay consistent with any unrelated PDU's 2596 * being transmitted. 2597 */ 2598 bcopy(&idb->idb_data_hdr_tmpl, pdu->isp_hdr, 2599 sizeof (iscsi_hdr_t)); 2600 2601 /* 2602 * Set DataSN, data offset, and flags in BHS 2603 * For the prototype build, A = 0, S = 0, U = 0 2604 */ 2605 bhs = (iscsi_data_hdr_t *)(pdu->isp_hdr); 2606 2607 bhs->datasn = htonl(idt->idt_exp_datasn++); 2608 2609 hton24(bhs->dlength, chunk); 2610 bhs->offset = htonl(idb->idb_bufoffset + data_offset); 2611 2612 if (chunk == remainder) { 2613 bhs->flags = ISCSI_FLAG_FINAL; /* F bit set to 1 */ 2614 } 2615 2616 /* Instrument the data-send DTrace probe. */ 2617 if (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP) { 2618 DTRACE_ISCSI_2(data__send, 2619 idm_conn_t *, idt->idt_ic, 2620 iscsi_data_rsp_hdr_t *, 2621 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr); 2622 } 2623 /* setup data */ 2624 pdu->isp_data = (uint8_t *)idb->idb_buf + data_offset; 2625 pdu->isp_datalen = (uint_t)chunk; 2626 remainder -= chunk; 2627 data_offset += chunk; 2628 2629 /* 2630 * Now that we're done working with idt_exp_datasn, 2631 * idt->idt_state and idb->idb_bufoffset we can release 2632 * the task lock -- don't want to hold it across the 2633 * call to idm_i_so_tx since we could block. 2634 */ 2635 mutex_exit(&idt->idt_mutex); 2636 2637 /* 2638 * Transmit the PDU. Call the internal routine directly 2639 * as there is already implicit ordering. 2640 */ 2641 if ((tx_status = idm_i_so_tx(pdu)) != IDM_STATUS_SUCCESS) { 2642 mutex_enter(&idt->idt_mutex); 2643 return (tx_status); 2644 } 2645 2646 mutex_enter(&idt->idt_mutex); 2647 idt->idt_tx_bytes += chunk; 2648 } 2649 2650 return (IDM_STATUS_SUCCESS); 2651 } 2652 2653 /* 2654 * TX PDU cache 2655 */ 2656 /* ARGSUSED */ 2657 int 2658 idm_sotx_pdu_constructor(void *hdl, void *arg, int flags) 2659 { 2660 idm_pdu_t *pdu = hdl; 2661 2662 bzero(pdu, sizeof (idm_pdu_t)); 2663 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ 2664 pdu->isp_hdrlen = sizeof (iscsi_hdr_t); 2665 pdu->isp_callback = idm_sotx_cache_pdu_cb; 2666 pdu->isp_magic = IDM_PDU_MAGIC; 2667 bzero(pdu->isp_hdr, sizeof (iscsi_hdr_t)); 2668 2669 return (0); 2670 } 2671 2672 /* ARGSUSED */ 2673 void 2674 idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2675 { 2676 /* reset values between use */ 2677 pdu->isp_datalen = 0; 2678 2679 kmem_cache_free(idm.idm_sotx_pdu_cache, pdu); 2680 } 2681 2682 /* 2683 * RX PDU cache 2684 */ 2685 /* ARGSUSED */ 2686 int 2687 idm_sorx_pdu_constructor(void *hdl, void *arg, int flags) 2688 { 2689 idm_pdu_t *pdu = hdl; 2690 2691 bzero(pdu, sizeof (idm_pdu_t)); 2692 pdu->isp_magic = IDM_PDU_MAGIC; 2693 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ 2694 pdu->isp_callback = idm_sorx_cache_pdu_cb; 2695 2696 return (0); 2697 } 2698 2699 /* ARGSUSED */ 2700 static void 2701 idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2702 { 2703 pdu->isp_iovlen = 0; 2704 pdu->isp_sorx_buf = 0; 2705 kmem_cache_free(idm.idm_sorx_pdu_cache, pdu); 2706 } 2707 2708 static void 2709 idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2710 { 2711 /* 2712 * We had to modify our cached RX PDU with a longer header buffer 2713 * and/or a longer data buffer. Release the new buffers and fix 2714 * the fields back to what we would expect for a cached RX PDU. 2715 */ 2716 if (pdu->isp_flags & IDM_PDU_ADDL_HDR) { 2717 kmem_free(pdu->isp_hdr, pdu->isp_hdrlen); 2718 } 2719 if (pdu->isp_flags & IDM_PDU_ADDL_DATA) { 2720 kmem_free(pdu->isp_data, pdu->isp_datalen); 2721 } 2722 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); 2723 pdu->isp_hdrlen = sizeof (iscsi_hdr_t); 2724 pdu->isp_data = NULL; 2725 pdu->isp_datalen = 0; 2726 pdu->isp_sorx_buf = 0; 2727 pdu->isp_callback = idm_sorx_cache_pdu_cb; 2728 idm_sorx_cache_pdu_cb(pdu, status); 2729 } 2730 2731 /* 2732 * This thread is only active when I/O is queued for transmit 2733 * because the socket is busy. 2734 */ 2735 void 2736 idm_sotx_thread(void *arg) 2737 { 2738 idm_conn_t *ic = arg; 2739 idm_tx_obj_t *object, *next; 2740 idm_so_conn_t *so_conn; 2741 idm_status_t status = IDM_STATUS_SUCCESS; 2742 2743 idm_conn_hold(ic); 2744 2745 mutex_enter(&ic->ic_mutex); 2746 so_conn = ic->ic_transport_private; 2747 so_conn->ic_tx_thread_running = B_TRUE; 2748 so_conn->ic_tx_thread_did = so_conn->ic_tx_thread->t_did; 2749 cv_signal(&ic->ic_cv); 2750 mutex_exit(&ic->ic_mutex); 2751 2752 mutex_enter(&so_conn->ic_tx_mutex); 2753 2754 while (so_conn->ic_tx_thread_running) { 2755 while (list_is_empty(&so_conn->ic_tx_list)) { 2756 DTRACE_PROBE1(soconn__tx__sleep, idm_conn_t *, ic); 2757 cv_wait(&so_conn->ic_tx_cv, &so_conn->ic_tx_mutex); 2758 DTRACE_PROBE1(soconn__tx__wakeup, idm_conn_t *, ic); 2759 2760 if (!so_conn->ic_tx_thread_running) { 2761 goto tx_bail; 2762 } 2763 } 2764 2765 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); 2766 list_remove(&so_conn->ic_tx_list, object); 2767 mutex_exit(&so_conn->ic_tx_mutex); 2768 2769 switch (object->idm_tx_obj_magic) { 2770 case IDM_PDU_MAGIC: 2771 DTRACE_PROBE2(soconn__tx__pdu, idm_conn_t *, ic, 2772 idm_pdu_t *, (idm_pdu_t *)object); 2773 2774 status = idm_i_so_tx((idm_pdu_t *)object); 2775 break; 2776 2777 case IDM_BUF_MAGIC: { 2778 idm_buf_t *idb = (idm_buf_t *)object; 2779 idm_task_t *idt = idb->idb_task_binding; 2780 2781 DTRACE_PROBE2(soconn__tx__buf, idm_conn_t *, ic, 2782 idm_buf_t *, idb); 2783 2784 mutex_enter(&idt->idt_mutex); 2785 status = idm_so_send_buf_region(idt, 2786 idb, 0, idb->idb_xfer_len); 2787 2788 /* 2789 * TX thread owns the buffer so we expect it to 2790 * be "in transport" 2791 */ 2792 ASSERT(idb->idb_in_transport); 2793 if (IDM_CONN_ISTGT(ic)) { 2794 /* 2795 * idm_buf_tx_to_ini_done releases 2796 * idt->idt_mutex 2797 */ 2798 DTRACE_ISCSI_8(xfer__done, 2799 idm_conn_t *, idt->idt_ic, 2800 uintptr_t, idb->idb_buf, 2801 uint32_t, idb->idb_bufoffset, 2802 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2803 uint32_t, idb->idb_xfer_len, 2804 int, XFER_BUF_TX_TO_INI); 2805 idm_buf_tx_to_ini_done(idt, idb, status); 2806 } else { 2807 idm_so_send_rtt_data_done(idt, idb); 2808 mutex_exit(&idt->idt_mutex); 2809 } 2810 break; 2811 } 2812 2813 default: 2814 IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unknown magic " 2815 "(0x%08x)", object->idm_tx_obj_magic); 2816 status = IDM_STATUS_FAIL; 2817 } 2818 2819 mutex_enter(&so_conn->ic_tx_mutex); 2820 2821 if (status != IDM_STATUS_SUCCESS) { 2822 so_conn->ic_tx_thread_running = B_FALSE; 2823 idm_conn_event(ic, CE_TRANSPORT_FAIL, status); 2824 } 2825 } 2826 2827 /* 2828 * Before we leave, we need to abort every item remaining in the 2829 * TX list. 2830 */ 2831 2832 tx_bail: 2833 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); 2834 2835 while (object != NULL) { 2836 next = list_next(&so_conn->ic_tx_list, object); 2837 2838 list_remove(&so_conn->ic_tx_list, object); 2839 switch (object->idm_tx_obj_magic) { 2840 case IDM_PDU_MAGIC: 2841 idm_pdu_complete((idm_pdu_t *)object, 2842 IDM_STATUS_ABORTED); 2843 break; 2844 2845 case IDM_BUF_MAGIC: { 2846 idm_buf_t *idb = (idm_buf_t *)object; 2847 idm_task_t *idt = idb->idb_task_binding; 2848 mutex_exit(&so_conn->ic_tx_mutex); 2849 mutex_enter(&idt->idt_mutex); 2850 /* 2851 * TX thread owns the buffer so we expect it to 2852 * be "in transport" 2853 */ 2854 ASSERT(idb->idb_in_transport); 2855 if (IDM_CONN_ISTGT(ic)) { 2856 /* 2857 * idm_buf_tx_to_ini_done releases 2858 * idt->idt_mutex 2859 */ 2860 DTRACE_ISCSI_8(xfer__done, 2861 idm_conn_t *, idt->idt_ic, 2862 uintptr_t, idb->idb_buf, 2863 uint32_t, idb->idb_bufoffset, 2864 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2865 uint32_t, idb->idb_xfer_len, 2866 int, XFER_BUF_TX_TO_INI); 2867 idm_buf_tx_to_ini_done(idt, idb, 2868 IDM_STATUS_ABORTED); 2869 } else { 2870 idm_so_send_rtt_data_done(idt, idb); 2871 mutex_exit(&idt->idt_mutex); 2872 } 2873 mutex_enter(&so_conn->ic_tx_mutex); 2874 break; 2875 } 2876 default: 2877 IDM_CONN_LOG(CE_WARN, 2878 "idm_sotx_thread: Unexpected magic " 2879 "(0x%08x)", object->idm_tx_obj_magic); 2880 } 2881 2882 object = next; 2883 } 2884 2885 mutex_exit(&so_conn->ic_tx_mutex); 2886 idm_conn_rele(ic); 2887 thread_exit(); 2888 /*NOTREACHED*/ 2889 } 2890 2891 static void 2892 idm_so_socket_set_nonblock(struct sonode *node) 2893 { 2894 (void) VOP_SETFL(node->so_vnode, node->so_flag, 2895 (node->so_state | FNONBLOCK), CRED(), NULL); 2896 } 2897 2898 static void 2899 idm_so_socket_set_block(struct sonode *node) 2900 { 2901 (void) VOP_SETFL(node->so_vnode, node->so_flag, 2902 (node->so_state & (~FNONBLOCK)), CRED(), NULL); 2903 } 2904 2905 2906 /* 2907 * Called by kernel sockets when the connection has been accepted or 2908 * rejected. In early volo, a "disconnect" callback was sent instead of 2909 * "connectfailed", so we check for both. 2910 */ 2911 /* ARGSUSED */ 2912 void 2913 idm_so_timed_socket_connect_cb(ksocket_t ks, 2914 ksocket_callback_event_t ev, void *arg, uintptr_t info) 2915 { 2916 idm_so_timed_socket_t *itp = arg; 2917 ASSERT(itp != NULL); 2918 ASSERT(ev == KSOCKET_EV_CONNECTED || 2919 ev == KSOCKET_EV_CONNECTFAILED || 2920 ev == KSOCKET_EV_DISCONNECTED); 2921 2922 mutex_enter(&idm_so_timed_socket_mutex); 2923 itp->it_callback_called = B_TRUE; 2924 if (ev == KSOCKET_EV_CONNECTED) { 2925 itp->it_socket_error_code = 0; 2926 } else { 2927 /* Make sure the error code is non-zero on error */ 2928 if (info == 0) 2929 info = ECONNRESET; 2930 itp->it_socket_error_code = (int)info; 2931 } 2932 cv_signal(&itp->it_cv); 2933 mutex_exit(&idm_so_timed_socket_mutex); 2934 } 2935 2936 int 2937 idm_so_timed_socket_connect(ksocket_t ks, 2938 struct sockaddr_storage *sa, int sa_sz, int login_max_usec) 2939 { 2940 clock_t conn_login_max; 2941 int rc, nonblocking, rval; 2942 idm_so_timed_socket_t it; 2943 ksocket_callbacks_t ks_cb; 2944 2945 conn_login_max = ddi_get_lbolt() + drv_usectohz(login_max_usec); 2946 2947 /* 2948 * Set to non-block socket mode, with callback on connect 2949 * Early volo used "disconnected" instead of "connectfailed", 2950 * so set callback to look for both. 2951 */ 2952 bzero(&it, sizeof (it)); 2953 ks_cb.ksock_cb_flags = KSOCKET_CB_CONNECTED | 2954 KSOCKET_CB_CONNECTFAILED | KSOCKET_CB_DISCONNECTED; 2955 ks_cb.ksock_cb_connected = idm_so_timed_socket_connect_cb; 2956 ks_cb.ksock_cb_connectfailed = idm_so_timed_socket_connect_cb; 2957 ks_cb.ksock_cb_disconnected = idm_so_timed_socket_connect_cb; 2958 cv_init(&it.it_cv, NULL, CV_DEFAULT, NULL); 2959 rc = ksocket_setcallbacks(ks, &ks_cb, &it, CRED()); 2960 if (rc != 0) 2961 return (rc); 2962 2963 /* Set to non-blocking mode */ 2964 nonblocking = 1; 2965 rc = ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, 2966 CRED()); 2967 if (rc != 0) 2968 goto cleanup; 2969 2970 bzero(&it, sizeof (it)); 2971 for (;;) { 2972 /* 2973 * Warning -- in a loopback scenario, the call to 2974 * the connect_cb can occur inside the call to 2975 * ksocket_connect. Do not hold the mutex around the 2976 * call to ksocket_connect. 2977 */ 2978 rc = ksocket_connect(ks, (struct sockaddr *)sa, sa_sz, CRED()); 2979 if (rc == 0 || rc == EISCONN) { 2980 /* socket success or already success */ 2981 rc = 0; 2982 break; 2983 } 2984 if ((rc != EINPROGRESS) && (rc != EALREADY)) { 2985 break; 2986 } 2987 2988 /* TCP connect still in progress. See if out of time. */ 2989 if (ddi_get_lbolt() > conn_login_max) { 2990 /* 2991 * Connection retry timeout, 2992 * failed connect to target. 2993 */ 2994 rc = ETIMEDOUT; 2995 break; 2996 } 2997 2998 /* 2999 * TCP connect still in progress. Sleep until callback. 3000 * Do NOT go to sleep if the callback already occurred! 3001 */ 3002 mutex_enter(&idm_so_timed_socket_mutex); 3003 if (!it.it_callback_called) { 3004 (void) cv_timedwait(&it.it_cv, 3005 &idm_so_timed_socket_mutex, conn_login_max); 3006 } 3007 if (it.it_callback_called) { 3008 rc = it.it_socket_error_code; 3009 mutex_exit(&idm_so_timed_socket_mutex); 3010 break; 3011 } 3012 /* If timer expires, go call ksocket_connect one last time. */ 3013 mutex_exit(&idm_so_timed_socket_mutex); 3014 } 3015 3016 /* resume blocking mode */ 3017 nonblocking = 0; 3018 (void) ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, 3019 CRED()); 3020 cleanup: 3021 ksocket_setcallbacks(ks, NULL, NULL, CRED()); 3022 cv_destroy(&it.it_cv); 3023 if (rc != 0) { 3024 idm_soshutdown(ks); 3025 } 3026 return (rc); 3027 } 3028 3029 3030 void 3031 idm_addr_to_sa(idm_addr_t *dportal, struct sockaddr_storage *sa) 3032 { 3033 int dp_addr_size; 3034 struct sockaddr_in *sin; 3035 struct sockaddr_in6 *sin6; 3036 3037 /* Build sockaddr_storage for this portal (idm_addr_t) */ 3038 bzero(sa, sizeof (*sa)); 3039 dp_addr_size = dportal->a_addr.i_insize; 3040 if (dp_addr_size == sizeof (struct in_addr)) { 3041 /* IPv4 */ 3042 sa->ss_family = AF_INET; 3043 sin = (struct sockaddr_in *)sa; 3044 sin->sin_port = htons(dportal->a_port); 3045 bcopy(&dportal->a_addr.i_addr.in4, 3046 &sin->sin_addr, sizeof (struct in_addr)); 3047 } else if (dp_addr_size == sizeof (struct in6_addr)) { 3048 /* IPv6 */ 3049 sa->ss_family = AF_INET6; 3050 sin6 = (struct sockaddr_in6 *)sa; 3051 sin6->sin6_port = htons(dportal->a_port); 3052 bcopy(&dportal->a_addr.i_addr.in6, 3053 &sin6->sin6_addr, sizeof (struct in6_addr)); 3054 } else { 3055 ASSERT(0); 3056 } 3057 } 3058 3059 3060 /* 3061 * return a human-readable form of a sockaddr_storage, in the form 3062 * [ip-address]:port. This is used in calls to logging functions. 3063 * If several calls to idm_sa_ntop are made within the same invocation 3064 * of a logging function, then each one needs its own buf. 3065 */ 3066 const char * 3067 idm_sa_ntop(const struct sockaddr_storage *sa, 3068 char *buf, size_t size) 3069 { 3070 static const char bogus_ip[] = "[0].-1"; 3071 char tmp[INET6_ADDRSTRLEN]; 3072 3073 switch (sa->ss_family) { 3074 case AF_INET6: 3075 { 3076 const struct sockaddr_in6 *in6 = 3077 (const struct sockaddr_in6 *) sa; 3078 3079 if (inet_ntop(in6->sin6_family, 3080 &in6->sin6_addr, tmp, sizeof (tmp)) == NULL) { 3081 goto err; 3082 } 3083 if (strlen(tmp) + sizeof ("[].65535") > size) { 3084 goto err; 3085 } 3086 /* struct sockaddr_storage gets port info from v4 loc */ 3087 (void) snprintf(buf, size, "[%s].%u", tmp, 3088 ntohs(in6->sin6_port)); 3089 return (buf); 3090 } 3091 case AF_INET: 3092 { 3093 const struct sockaddr_in *in = 3094 (const struct sockaddr_in *) sa; 3095 3096 if (inet_ntop(in->sin_family, &in->sin_addr, 3097 tmp, sizeof (tmp)) == NULL) { 3098 goto err; 3099 } 3100 if (strlen(tmp) + sizeof ("[].65535") > size) { 3101 goto err; 3102 } 3103 (void) snprintf(buf, size, "[%s].%u", tmp, 3104 ntohs(in->sin_port)); 3105 return (buf); 3106 } 3107 default: 3108 break; 3109 } 3110 err: 3111 (void) snprintf(buf, size, "%s", bogus_ip); 3112 return (buf); 3113 } 3114