xref: /titanic_50/usr/src/uts/common/io/idm/idm_impl.c (revision 42cac157f878fbb7ae190eb0339c6932f3192b87)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/conf.h>
28 #include <sys/file.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/cpuvar.h>
32 #include <sys/sdt.h>
33 
34 #include <sys/socket.h>
35 #include <sys/strsubr.h>
36 #include <sys/socketvar.h>
37 #include <sys/sysmacros.h>
38 
39 #include <sys/idm/idm.h>
40 #include <sys/idm/idm_so.h>
41 #include <hd_crc.h>
42 
43 extern idm_transport_t  idm_transport_list[];
44 /*
45  * -1 - uninitialized
46  * 0  - applicable
47  * others - NA
48  */
49 static int iscsi_crc32_hd = -1;
50 
51 void
52 idm_pdu_rx(idm_conn_t *ic, idm_pdu_t *pdu)
53 {
54 	iscsi_async_evt_hdr_t *async_evt;
55 
56 	/*
57 	 * If we are in full-featured mode then route SCSI-related
58 	 * commands to the appropriate function vector
59 	 */
60 	ic->ic_timestamp = ddi_get_lbolt();
61 	mutex_enter(&ic->ic_state_mutex);
62 	if (ic->ic_ffp && ic->ic_pdu_events == 0) {
63 		mutex_exit(&ic->ic_state_mutex);
64 
65 		if (idm_pdu_rx_forward_ffp(ic, pdu) == B_TRUE) {
66 			/* Forwarded SCSI-related commands */
67 			return;
68 		}
69 		mutex_enter(&ic->ic_state_mutex);
70 	}
71 
72 	/*
73 	 * If we get here with a SCSI-related PDU then we are not in
74 	 * full-feature mode and the PDU is a protocol error (SCSI command
75 	 * PDU's may sometimes be an exception, see below).  All
76 	 * non-SCSI PDU's get treated them the same regardless of whether
77 	 * we are in full-feature mode.
78 	 *
79 	 * Look at the opcode and in some cases the PDU status and
80 	 * determine the appropriate event to send to the connection
81 	 * state machine.  Generate the event, passing the PDU as data.
82 	 * If the current connection state allows reception of the event
83 	 * the PDU will be submitted to the IDM client for processing,
84 	 * otherwise the PDU will be dropped.
85 	 */
86 	switch (IDM_PDU_OPCODE(pdu)) {
87 	case ISCSI_OP_LOGIN_CMD:
88 		DTRACE_ISCSI_2(login__command, idm_conn_t *, ic,
89 		    iscsi_login_hdr_t *, (iscsi_login_hdr_t *)pdu->isp_hdr);
90 		idm_conn_rx_pdu_event(ic, CE_LOGIN_RCV, (uintptr_t)pdu);
91 		break;
92 	case ISCSI_OP_LOGIN_RSP:
93 		idm_parse_login_rsp(ic, pdu, /* RX */ B_TRUE);
94 		break;
95 	case ISCSI_OP_LOGOUT_CMD:
96 		DTRACE_ISCSI_2(logout__command, idm_conn_t *, ic,
97 		    iscsi_logout_hdr_t *,
98 		    (iscsi_logout_hdr_t *)pdu->isp_hdr);
99 		idm_parse_logout_req(ic, pdu, /* RX */ B_TRUE);
100 		break;
101 	case ISCSI_OP_LOGOUT_RSP:
102 		idm_parse_logout_rsp(ic, pdu, /* RX */ B_TRUE);
103 		break;
104 	case ISCSI_OP_ASYNC_EVENT:
105 		async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr;
106 		switch (async_evt->async_event) {
107 		case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT:
108 			idm_conn_rx_pdu_event(ic, CE_ASYNC_LOGOUT_RCV,
109 			    (uintptr_t)pdu);
110 			break;
111 		case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION:
112 			idm_conn_rx_pdu_event(ic, CE_ASYNC_DROP_CONN_RCV,
113 			    (uintptr_t)pdu);
114 			break;
115 		case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS:
116 			idm_conn_rx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_RCV,
117 			    (uintptr_t)pdu);
118 			break;
119 		case ISCSI_ASYNC_EVENT_SCSI_EVENT:
120 		case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION:
121 		default:
122 			idm_conn_rx_pdu_event(ic, CE_MISC_RX,
123 			    (uintptr_t)pdu);
124 			break;
125 		}
126 		break;
127 	case ISCSI_OP_SCSI_CMD:
128 		/*
129 		 * Consider this scenario:  We are a target connection
130 		 * in "in login" state and a "login success sent" event has
131 		 * been generated but not yet handled.  Since we've sent
132 		 * the login response but we haven't actually transitioned
133 		 * to FFP mode we might conceivably receive a SCSI command
134 		 * from the initiator before we are ready.  We are actually
135 		 * in FFP we just don't know it yet -- to address this we
136 		 * can generate an event corresponding to the SCSI command.
137 		 * At the point when the event is handled by the state
138 		 * machine the login request will have been handled and we
139 		 * should be in FFP.  If we are not in FFP by that time
140 		 * we can reject the SCSI command with a protocol error.
141 		 *
142 		 * This scenario only applies to the target.
143 		 *
144 		 * Handle dtrace probe in iscsit so we can find all the
145 		 * pieces of the CDB
146 		 */
147 		idm_conn_rx_pdu_event(ic, CE_MISC_RX, (uintptr_t)pdu);
148 		break;
149 	case ISCSI_OP_SCSI_DATA:
150 		DTRACE_ISCSI_2(data__receive, idm_conn_t *, ic,
151 		    iscsi_data_hdr_t *,
152 		    (iscsi_data_hdr_t *)pdu->isp_hdr);
153 		idm_conn_rx_pdu_event(ic, CE_MISC_RX, (uintptr_t)pdu);
154 		break;
155 	case ISCSI_OP_SCSI_TASK_MGT_MSG:
156 		DTRACE_ISCSI_2(task__command, idm_conn_t *, ic,
157 		    iscsi_scsi_task_mgt_hdr_t *,
158 		    (iscsi_scsi_task_mgt_hdr_t *)pdu->isp_hdr);
159 		idm_conn_rx_pdu_event(ic, CE_MISC_RX, (uintptr_t)pdu);
160 		break;
161 	case ISCSI_OP_NOOP_OUT:
162 		DTRACE_ISCSI_2(nop__receive, idm_conn_t *, ic,
163 		    iscsi_nop_out_hdr_t *,
164 		    (iscsi_nop_out_hdr_t *)pdu->isp_hdr);
165 		idm_conn_rx_pdu_event(ic, CE_MISC_RX, (uintptr_t)pdu);
166 		break;
167 	case ISCSI_OP_TEXT_CMD:
168 		DTRACE_ISCSI_2(text__command, idm_conn_t *, ic,
169 		    iscsi_text_hdr_t *,
170 		    (iscsi_text_hdr_t *)pdu->isp_hdr);
171 		idm_conn_rx_pdu_event(ic, CE_MISC_RX, (uintptr_t)pdu);
172 		break;
173 	/* Initiator PDU's */
174 	case ISCSI_OP_SCSI_DATA_RSP:
175 	case ISCSI_OP_RTT_RSP:
176 	case ISCSI_OP_SNACK_CMD:
177 	case ISCSI_OP_NOOP_IN:
178 	case ISCSI_OP_TEXT_RSP:
179 	case ISCSI_OP_REJECT_MSG:
180 	case ISCSI_OP_SCSI_TASK_MGT_RSP:
181 		/* Validate received PDU against current state */
182 		idm_conn_rx_pdu_event(ic, CE_MISC_RX,
183 		    (uintptr_t)pdu);
184 		break;
185 	}
186 	mutex_exit(&ic->ic_state_mutex);
187 }
188 
189 void
190 idm_pdu_tx_forward(idm_conn_t *ic, idm_pdu_t *pdu)
191 {
192 	(*ic->ic_transport_ops->it_tx_pdu)(ic, pdu);
193 }
194 
195 boolean_t
196 idm_pdu_rx_forward_ffp(idm_conn_t *ic, idm_pdu_t *pdu)
197 {
198 	/*
199 	 * If this is an FFP request, call the appropriate handler
200 	 * and return B_TRUE, otherwise return B_FALSE.
201 	 */
202 	switch (IDM_PDU_OPCODE(pdu)) {
203 	case ISCSI_OP_SCSI_CMD:
204 		(*ic->ic_conn_ops.icb_rx_scsi_cmd)(ic, pdu);
205 		return (B_TRUE);
206 	case ISCSI_OP_SCSI_DATA:
207 		DTRACE_ISCSI_2(data__receive, idm_conn_t *, ic,
208 		    iscsi_data_hdr_t *,
209 		    (iscsi_data_hdr_t *)pdu->isp_hdr);
210 		(*ic->ic_transport_ops->it_rx_dataout)(ic, pdu);
211 		return (B_TRUE);
212 	case ISCSI_OP_SCSI_TASK_MGT_MSG:
213 		DTRACE_ISCSI_2(task__command, idm_conn_t *, ic,
214 		    iscsi_scsi_task_mgt_hdr_t *,
215 		    (iscsi_scsi_task_mgt_hdr_t *)pdu->isp_hdr);
216 		(*ic->ic_conn_ops.icb_rx_misc)(ic, pdu);
217 		return (B_TRUE);
218 	case ISCSI_OP_NOOP_OUT:
219 		DTRACE_ISCSI_2(nop__receive, idm_conn_t *, ic,
220 		    iscsi_nop_out_hdr_t *,
221 		    (iscsi_nop_out_hdr_t *)pdu->isp_hdr);
222 		(*ic->ic_conn_ops.icb_rx_misc)(ic, pdu);
223 		return (B_TRUE);
224 	case ISCSI_OP_TEXT_CMD:
225 		DTRACE_ISCSI_2(text__command, idm_conn_t *, ic,
226 		    iscsi_text_hdr_t *,
227 		    (iscsi_text_hdr_t *)pdu->isp_hdr);
228 		(*ic->ic_conn_ops.icb_rx_misc)(ic, pdu);
229 		return (B_TRUE);
230 		/* Initiator only */
231 	case ISCSI_OP_SCSI_RSP:
232 		(*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu);
233 		return (B_TRUE);
234 	case ISCSI_OP_SCSI_DATA_RSP:
235 		(*ic->ic_transport_ops->it_rx_datain)(ic, pdu);
236 		return (B_TRUE);
237 	case ISCSI_OP_RTT_RSP:
238 		(*ic->ic_transport_ops->it_rx_rtt)(ic, pdu);
239 		return (B_TRUE);
240 	case ISCSI_OP_SCSI_TASK_MGT_RSP:
241 	case ISCSI_OP_TEXT_RSP:
242 	case ISCSI_OP_NOOP_IN:
243 		(*ic->ic_conn_ops.icb_rx_misc)(ic, pdu);
244 		return (B_TRUE);
245 	default:
246 		return (B_FALSE);
247 	}
248 	/*NOTREACHED*/
249 }
250 
251 void
252 idm_pdu_rx_forward(idm_conn_t *ic, idm_pdu_t *pdu)
253 {
254 	/*
255 	 * Some PDU's specific to FFP get special handling.  This function
256 	 * will normally never be called in FFP with an FFP PDU since this
257 	 * is a slow path but in can happen on the target side during
258 	 * the transition to FFP.  We primarily call
259 	 * idm_pdu_rx_forward_ffp here to avoid code duplication.
260 	 */
261 	if (idm_pdu_rx_forward_ffp(ic, pdu) == B_FALSE) {
262 		/*
263 		 * Non-FFP PDU, use generic RC handler
264 		 */
265 		(*ic->ic_conn_ops.icb_rx_misc)(ic, pdu);
266 	}
267 }
268 
269 void
270 idm_parse_login_rsp(idm_conn_t *ic, idm_pdu_t *login_rsp_pdu, boolean_t rx)
271 {
272 	iscsi_login_rsp_hdr_t	*login_rsp =
273 	    (iscsi_login_rsp_hdr_t *)login_rsp_pdu->isp_hdr;
274 	idm_conn_event_t	new_event;
275 
276 	if (login_rsp->status_class == ISCSI_STATUS_CLASS_SUCCESS) {
277 		if (!(login_rsp->flags & ISCSI_FLAG_LOGIN_CONTINUE) &&
278 		    (login_rsp->flags & ISCSI_FLAG_LOGIN_TRANSIT) &&
279 		    (ISCSI_LOGIN_NEXT_STAGE(login_rsp->flags) ==
280 		    ISCSI_FULL_FEATURE_PHASE)) {
281 			new_event = (rx ? CE_LOGIN_SUCCESS_RCV :
282 			    CE_LOGIN_SUCCESS_SND);
283 		} else {
284 			new_event = (rx ? CE_MISC_RX : CE_MISC_TX);
285 		}
286 	} else {
287 		new_event = (rx ? CE_LOGIN_FAIL_RCV : CE_LOGIN_FAIL_SND);
288 	}
289 
290 	if (rx) {
291 		idm_conn_rx_pdu_event(ic, new_event, (uintptr_t)login_rsp_pdu);
292 	} else {
293 		idm_conn_tx_pdu_event(ic, new_event, (uintptr_t)login_rsp_pdu);
294 	}
295 }
296 
297 
298 void
299 idm_parse_logout_req(idm_conn_t *ic, idm_pdu_t *logout_req_pdu, boolean_t rx)
300 {
301 	iscsi_logout_hdr_t 	*logout_req =
302 	    (iscsi_logout_hdr_t *)logout_req_pdu->isp_hdr;
303 	idm_conn_event_t	new_event;
304 	uint8_t			reason =
305 	    (logout_req->flags & ISCSI_FLAG_LOGOUT_REASON_MASK);
306 
307 	/*
308 	 *	For a normal logout (close connection or close session) IDM
309 	 *	will terminate processing of all tasks completing the tasks
310 	 *	back to the client with a status indicating the connection
311 	 *	was logged out.  These tasks do not get completed.
312 	 *
313 	 *	For a "close connection for recovery logout) IDM suspends
314 	 *	processing of all tasks and completes them back to the client
315 	 *	with a status indicating connection was logged out for
316 	 *	recovery.  Both initiator and target hang onto these tasks.
317 	 *	When we add ERL2 support IDM will need to provide mechanisms
318 	 *	to change the task and buffer associations to a new connection.
319 	 *
320 	 *	This code doesn't address the possibility of MC/S.  We'll
321 	 *	need to decide how the separate connections get handled
322 	 *	in that case.  One simple option is to make the client
323 	 *	generate the events for the other connections.
324 	 */
325 	if (reason == ISCSI_LOGOUT_REASON_CLOSE_SESSION) {
326 		new_event =
327 		    (rx ? CE_LOGOUT_SESSION_RCV : CE_LOGOUT_SESSION_SND);
328 	} else if ((reason == ISCSI_LOGOUT_REASON_CLOSE_CONNECTION) ||
329 	    (reason == ISCSI_LOGOUT_REASON_RECOVERY)) {
330 		/* Check logout CID against this connection's CID */
331 		if (ntohs(logout_req->cid) == ic->ic_login_cid) {
332 			/* Logout is for this connection */
333 			new_event = (rx ? CE_LOGOUT_THIS_CONN_RCV :
334 			    CE_LOGOUT_THIS_CONN_SND);
335 		} else {
336 			/*
337 			 * Logout affects another connection.  This is not
338 			 * a relevant event for this connection so we'll
339 			 * just treat it as a normal PDU event.  Client
340 			 * will need to lookup the other connection and
341 			 * generate the event.
342 			 */
343 			new_event = (rx ? CE_MISC_RX : CE_MISC_TX);
344 		}
345 	} else {
346 		/* Invalid reason code */
347 		new_event = (rx ? CE_RX_PROTOCOL_ERROR : CE_TX_PROTOCOL_ERROR);
348 	}
349 
350 	if (rx) {
351 		idm_conn_rx_pdu_event(ic, new_event, (uintptr_t)logout_req_pdu);
352 	} else {
353 		idm_conn_tx_pdu_event(ic, new_event, (uintptr_t)logout_req_pdu);
354 	}
355 }
356 
357 
358 
359 void
360 idm_parse_logout_rsp(idm_conn_t *ic, idm_pdu_t *logout_rsp_pdu, boolean_t rx)
361 {
362 	idm_conn_event_t	new_event;
363 	iscsi_logout_rsp_hdr_t *logout_rsp =
364 	    (iscsi_logout_rsp_hdr_t *)logout_rsp_pdu->isp_hdr;
365 
366 	if (logout_rsp->response == ISCSI_STATUS_CLASS_SUCCESS) {
367 		new_event = rx ? CE_LOGOUT_SUCCESS_RCV : CE_LOGOUT_SUCCESS_SND;
368 	} else {
369 		new_event = rx ? CE_LOGOUT_FAIL_RCV : CE_LOGOUT_FAIL_SND;
370 	}
371 
372 	if (rx) {
373 		idm_conn_rx_pdu_event(ic, new_event, (uintptr_t)logout_rsp_pdu);
374 	} else {
375 		idm_conn_tx_pdu_event(ic, new_event, (uintptr_t)logout_rsp_pdu);
376 	}
377 }
378 
379 /*
380  * idm_svc_conn_create()
381  * Transport-agnostic service connection creation, invoked from the transport
382  * layer.
383  */
384 idm_status_t
385 idm_svc_conn_create(idm_svc_t *is, idm_transport_type_t tt,
386     idm_conn_t **ic_result)
387 {
388 	idm_conn_t	*ic;
389 	idm_status_t	rc;
390 
391 	/*
392 	 * Skip some work if we can already tell we are going offline.
393 	 * Otherwise we will destroy this connection later as part of
394 	 * shutting down the svc.
395 	 */
396 	mutex_enter(&is->is_mutex);
397 	if (!is->is_online) {
398 		mutex_exit(&is->is_mutex);
399 		return (IDM_STATUS_FAIL);
400 	}
401 	mutex_exit(&is->is_mutex);
402 
403 	ic = idm_conn_create_common(CONN_TYPE_TGT, tt,
404 	    &is->is_svc_req.sr_conn_ops);
405 	ic->ic_svc_binding = is;
406 
407 	/*
408 	 * Prepare connection state machine
409 	 */
410 	if ((rc = idm_conn_sm_init(ic)) != 0) {
411 		idm_conn_destroy_common(ic);
412 		return (rc);
413 	}
414 
415 
416 	*ic_result = ic;
417 
418 	mutex_enter(&idm.idm_global_mutex);
419 	list_insert_tail(&idm.idm_tgt_conn_list, ic);
420 	idm.idm_tgt_conn_count++;
421 	mutex_exit(&idm.idm_global_mutex);
422 
423 	return (IDM_STATUS_SUCCESS);
424 }
425 
426 void
427 idm_svc_conn_destroy(idm_conn_t *ic)
428 {
429 	mutex_enter(&idm.idm_global_mutex);
430 	list_remove(&idm.idm_tgt_conn_list, ic);
431 	idm.idm_tgt_conn_count--;
432 	mutex_exit(&idm.idm_global_mutex);
433 
434 	if (ic->ic_transport_private != NULL) {
435 		ic->ic_transport_ops->it_tgt_conn_destroy(ic);
436 	}
437 	idm_conn_destroy_common(ic);
438 }
439 
440 /*
441  * idm_conn_create_common()
442  *
443  * Allocate and initialize IDM connection context
444  */
445 idm_conn_t *
446 idm_conn_create_common(idm_conn_type_t conn_type, idm_transport_type_t tt,
447     idm_conn_ops_t *conn_ops)
448 {
449 	idm_conn_t		*ic;
450 	idm_transport_t		*it;
451 	idm_transport_type_t	type;
452 
453 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
454 		it = &idm_transport_list[type];
455 
456 		if ((it->it_ops != NULL) && (it->it_type == tt))
457 			break;
458 	}
459 	ASSERT(it->it_type == tt);
460 	if (it->it_type != tt)
461 		return (NULL);
462 
463 	ic = kmem_zalloc(sizeof (idm_conn_t), KM_SLEEP);
464 
465 	/* Initialize data */
466 	ic->ic_target_name[0] = '\0';
467 	ic->ic_initiator_name[0] = '\0';
468 	ic->ic_isid[0] = '\0';
469 	ic->ic_tsih[0] = '\0';
470 	ic->ic_conn_type = conn_type;
471 	ic->ic_conn_ops = *conn_ops;
472 	ic->ic_transport_ops = it->it_ops;
473 	ic->ic_transport_type = tt;
474 	ic->ic_transport_private = NULL; /* Set by transport service */
475 	ic->ic_internal_cid = idm_cid_alloc();
476 	if (ic->ic_internal_cid == 0) {
477 		kmem_free(ic, sizeof (idm_conn_t));
478 		return (NULL);
479 	}
480 	mutex_init(&ic->ic_mutex, NULL, MUTEX_DEFAULT, NULL);
481 	cv_init(&ic->ic_cv, NULL, CV_DEFAULT, NULL);
482 	idm_refcnt_init(&ic->ic_refcnt, ic);
483 
484 	return (ic);
485 }
486 
487 void
488 idm_conn_destroy_common(idm_conn_t *ic)
489 {
490 	idm_conn_sm_fini(ic);
491 	idm_refcnt_destroy(&ic->ic_refcnt);
492 	cv_destroy(&ic->ic_cv);
493 	mutex_destroy(&ic->ic_mutex);
494 	idm_cid_free(ic->ic_internal_cid);
495 
496 	kmem_free(ic, sizeof (idm_conn_t));
497 }
498 
499 /*
500  * Invoked from the SM as a result of client's invocation of
501  * idm_ini_conn_connect()
502  */
503 idm_status_t
504 idm_ini_conn_finish(idm_conn_t *ic)
505 {
506 	/* invoke transport-specific connection */
507 	return (ic->ic_transport_ops->it_ini_conn_connect(ic));
508 }
509 
510 idm_status_t
511 idm_tgt_conn_finish(idm_conn_t *ic)
512 {
513 	idm_status_t rc;
514 
515 	rc = idm_notify_client(ic, CN_CONNECT_ACCEPT, NULL);
516 	if (rc != IDM_STATUS_SUCCESS) {
517 		return (IDM_STATUS_REJECT);
518 	}
519 
520 	/* Target client is ready to receive a login, start connection */
521 	return (ic->ic_transport_ops->it_tgt_conn_connect(ic));
522 }
523 
524 idm_transport_t *
525 idm_transport_lookup(idm_conn_req_t *cr)
526 {
527 	idm_transport_type_t	type;
528 	idm_transport_t		*it;
529 	idm_transport_caps_t	caps;
530 
531 	/*
532 	 * Make sure all available transports are setup.  We call this now
533 	 * instead of at initialization time in case IB has become available
534 	 * since we started (hotplug, etc).
535 	 */
536 	idm_transport_setup(cr->cr_li, cr->cr_boot_conn);
537 
538 	/* Determine the transport for this connection */
539 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
540 		it = &idm_transport_list[type];
541 
542 		if (it->it_ops == NULL) {
543 			/* transport is not registered */
544 			continue;
545 		}
546 
547 		if (it->it_ops->it_conn_is_capable(cr, &caps)) {
548 			return (it);
549 		}
550 	}
551 
552 	ASSERT(0);
553 	return (NULL); /* Make gcc happy */
554 }
555 
556 void
557 idm_transport_setup(ldi_ident_t li, boolean_t boot_conn)
558 {
559 	idm_transport_type_t	type;
560 	idm_transport_t		*it;
561 	int			rc;
562 
563 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
564 		it = &idm_transport_list[type];
565 		/*
566 		 * We may want to store the LDI handle in the idm_svc_t
567 		 * and then allow multiple calls to ldi_open_by_name.  This
568 		 * would enable the LDI code to track who has the device open
569 		 * which could be useful in the case where we have multiple
570 		 * services and perhaps also have initiator and target opening
571 		 * the transport simultaneously.  For now we stick with the
572 		 * plan.
573 		 */
574 		if (it->it_ops == NULL) {
575 			/* transport is not ready, try to initialize it */
576 			if (it->it_type == IDM_TRANSPORT_TYPE_SOCKETS) {
577 				idm_so_init(it);
578 			} else {
579 				if (boot_conn == B_TRUE) {
580 					/*
581 					 * iSCSI boot doesn't need iSER.
582 					 * Open iSER here may drive IO to
583 					 * a failed session and cause
584 					 * deadlock
585 					 */
586 					continue;
587 				}
588 				rc = ldi_open_by_name(it->it_device_path,
589 				    FREAD | FWRITE, kcred, &it->it_ldi_hdl, li);
590 				/*
591 				 * If the open is successful we will have
592 				 * filled in the LDI handle in the transport
593 				 * table and we expect that the transport
594 				 * registered itself.
595 				 */
596 				if (rc != 0) {
597 					it->it_ldi_hdl = NULL;
598 				}
599 			}
600 		}
601 	}
602 }
603 
604 void
605 idm_transport_teardown()
606 {
607 	idm_transport_type_t	type;
608 	idm_transport_t		*it;
609 
610 	ASSERT(mutex_owned(&idm.idm_global_mutex));
611 
612 	/* Caller holds the IDM global mutex */
613 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
614 		it = &idm_transport_list[type];
615 		/* If we have an open LDI handle on this driver, close it */
616 		if (it->it_ldi_hdl != NULL) {
617 			(void) ldi_close(it->it_ldi_hdl, FNDELAY, kcred);
618 			it->it_ldi_hdl = NULL;
619 		}
620 	}
621 }
622 
623 /*
624  * ID pool code.  We use this to generate unique structure identifiers without
625  * searching the existing structures.  This avoids the need to lock entire
626  * sets of structures at inopportune times.  Adapted from the CIFS server code.
627  *
628  *    A pool of IDs is a pool of 16 bit numbers. It is implemented as a bitmap.
629  *    A bit set to '1' indicates that that particular value has been allocated.
630  *    The allocation process is done shifting a bit through the whole bitmap.
631  *    The current position of that index bit is kept in the idm_idpool_t
632  *    structure and represented by a byte index (0 to buffer size minus 1) and
633  *    a bit index (0 to 7).
634  *
635  *    The pools start with a size of 8 bytes or 64 IDs. Each time the pool runs
636  *    out of IDs its current size is doubled until it reaches its maximum size
637  *    (8192 bytes or 65536 IDs). The IDs 0 and 65535 are never given out which
638  *    means that a pool can have a maximum number of 65534 IDs available.
639  */
640 
641 static int
642 idm_idpool_increment(
643     idm_idpool_t	*pool)
644 {
645 	uint8_t		*new_pool;
646 	uint32_t	new_size;
647 
648 	ASSERT(pool->id_magic == IDM_IDPOOL_MAGIC);
649 
650 	new_size = pool->id_size * 2;
651 	if (new_size <= IDM_IDPOOL_MAX_SIZE) {
652 		new_pool = kmem_alloc(new_size / 8, KM_NOSLEEP);
653 		if (new_pool) {
654 			bzero(new_pool, new_size / 8);
655 			bcopy(pool->id_pool, new_pool, pool->id_size / 8);
656 			kmem_free(pool->id_pool, pool->id_size / 8);
657 			pool->id_pool = new_pool;
658 			pool->id_free_counter += new_size - pool->id_size;
659 			pool->id_max_free_counter += new_size - pool->id_size;
660 			pool->id_size = new_size;
661 			pool->id_idx_msk = (new_size / 8) - 1;
662 			if (new_size >= IDM_IDPOOL_MAX_SIZE) {
663 				/* id -1 made unavailable */
664 				pool->id_pool[pool->id_idx_msk] = 0x80;
665 				pool->id_free_counter--;
666 				pool->id_max_free_counter--;
667 			}
668 			return (0);
669 		}
670 	}
671 	return (-1);
672 }
673 
674 /*
675  * idm_idpool_constructor
676  *
677  * This function initializes the pool structure provided.
678  */
679 
680 int
681 idm_idpool_create(idm_idpool_t *pool)
682 {
683 
684 	ASSERT(pool->id_magic != IDM_IDPOOL_MAGIC);
685 
686 	pool->id_size = IDM_IDPOOL_MIN_SIZE;
687 	pool->id_idx_msk = (IDM_IDPOOL_MIN_SIZE / 8) - 1;
688 	pool->id_free_counter = IDM_IDPOOL_MIN_SIZE - 1;
689 	pool->id_max_free_counter = IDM_IDPOOL_MIN_SIZE - 1;
690 	pool->id_bit = 0x02;
691 	pool->id_bit_idx = 1;
692 	pool->id_idx = 0;
693 	pool->id_pool = (uint8_t *)kmem_alloc((IDM_IDPOOL_MIN_SIZE / 8),
694 	    KM_SLEEP);
695 	bzero(pool->id_pool, (IDM_IDPOOL_MIN_SIZE / 8));
696 	/* -1 id made unavailable */
697 	pool->id_pool[0] = 0x01;		/* id 0 made unavailable */
698 	mutex_init(&pool->id_mutex, NULL, MUTEX_DEFAULT, NULL);
699 	pool->id_magic = IDM_IDPOOL_MAGIC;
700 	return (0);
701 }
702 
703 /*
704  * idm_idpool_destructor
705  *
706  * This function tears down and frees the resources associated with the
707  * pool provided.
708  */
709 
710 void
711 idm_idpool_destroy(idm_idpool_t *pool)
712 {
713 	ASSERT(pool->id_magic == IDM_IDPOOL_MAGIC);
714 	ASSERT(pool->id_free_counter == pool->id_max_free_counter);
715 	pool->id_magic = (uint32_t)~IDM_IDPOOL_MAGIC;
716 	mutex_destroy(&pool->id_mutex);
717 	kmem_free(pool->id_pool, (size_t)(pool->id_size / 8));
718 }
719 
720 /*
721  * idm_idpool_alloc
722  *
723  * This function allocates an ID from the pool provided.
724  */
725 int
726 idm_idpool_alloc(idm_idpool_t *pool, uint16_t *id)
727 {
728 	uint32_t	i;
729 	uint8_t		bit;
730 	uint8_t		bit_idx;
731 	uint8_t		byte;
732 
733 	ASSERT(pool->id_magic == IDM_IDPOOL_MAGIC);
734 
735 	mutex_enter(&pool->id_mutex);
736 	if ((pool->id_free_counter == 0) && idm_idpool_increment(pool)) {
737 		mutex_exit(&pool->id_mutex);
738 		return (-1);
739 	}
740 
741 	i = pool->id_size;
742 	while (i) {
743 		bit = pool->id_bit;
744 		bit_idx = pool->id_bit_idx;
745 		byte = pool->id_pool[pool->id_idx];
746 		while (bit) {
747 			if (byte & bit) {
748 				bit = bit << 1;
749 				bit_idx++;
750 				continue;
751 			}
752 			pool->id_pool[pool->id_idx] |= bit;
753 			*id = (uint16_t)(pool->id_idx * 8 + (uint32_t)bit_idx);
754 			pool->id_free_counter--;
755 			pool->id_bit = bit;
756 			pool->id_bit_idx = bit_idx;
757 			mutex_exit(&pool->id_mutex);
758 			return (0);
759 		}
760 		pool->id_bit = 1;
761 		pool->id_bit_idx = 0;
762 		pool->id_idx++;
763 		pool->id_idx &= pool->id_idx_msk;
764 		--i;
765 	}
766 	/*
767 	 * This section of code shouldn't be reached. If there are IDs
768 	 * available and none could be found there's a problem.
769 	 */
770 	ASSERT(0);
771 	mutex_exit(&pool->id_mutex);
772 	return (-1);
773 }
774 
775 /*
776  * idm_idpool_free
777  *
778  * This function frees the ID provided.
779  */
780 void
781 idm_idpool_free(idm_idpool_t *pool, uint16_t id)
782 {
783 	ASSERT(pool->id_magic == IDM_IDPOOL_MAGIC);
784 	ASSERT(id != 0);
785 	ASSERT(id != 0xFFFF);
786 
787 	mutex_enter(&pool->id_mutex);
788 	if (pool->id_pool[id >> 3] & (1 << (id & 7))) {
789 		pool->id_pool[id >> 3] &= ~(1 << (id & 7));
790 		pool->id_free_counter++;
791 		ASSERT(pool->id_free_counter <= pool->id_max_free_counter);
792 		mutex_exit(&pool->id_mutex);
793 		return;
794 	}
795 	/* Freeing a free ID. */
796 	ASSERT(0);
797 	mutex_exit(&pool->id_mutex);
798 }
799 
800 uint32_t
801 idm_cid_alloc(void)
802 {
803 	/*
804 	 * ID pool works with 16-bit identifiers right now.  That should
805 	 * be plenty since we will probably never have more than 2^16
806 	 * connections simultaneously.
807 	 */
808 	uint16_t cid16;
809 
810 	if (idm_idpool_alloc(&idm.idm_conn_id_pool, &cid16) == -1) {
811 		return (0); /* Fail */
812 	}
813 
814 	return ((uint32_t)cid16);
815 }
816 
817 void
818 idm_cid_free(uint32_t cid)
819 {
820 	idm_idpool_free(&idm.idm_conn_id_pool, (uint16_t)cid);
821 }
822 
823 
824 /*
825  * Code for generating the header and data digests
826  *
827  * This is the CRC-32C table
828  * Generated with:
829  * width = 32 bits
830  * poly = 0x1EDC6F41
831  * reflect input bytes = true
832  * reflect output bytes = true
833  */
834 
835 uint32_t idm_crc32c_table[256] =
836 {
837 	0x00000000, 0xF26B8303, 0xE13B70F7, 0x1350F3F4,
838 	0xC79A971F, 0x35F1141C, 0x26A1E7E8, 0xD4CA64EB,
839 	0x8AD958CF, 0x78B2DBCC, 0x6BE22838, 0x9989AB3B,
840 	0x4D43CFD0, 0xBF284CD3, 0xAC78BF27, 0x5E133C24,
841 	0x105EC76F, 0xE235446C, 0xF165B798, 0x030E349B,
842 	0xD7C45070, 0x25AFD373, 0x36FF2087, 0xC494A384,
843 	0x9A879FA0, 0x68EC1CA3, 0x7BBCEF57, 0x89D76C54,
844 	0x5D1D08BF, 0xAF768BBC, 0xBC267848, 0x4E4DFB4B,
845 	0x20BD8EDE, 0xD2D60DDD, 0xC186FE29, 0x33ED7D2A,
846 	0xE72719C1, 0x154C9AC2, 0x061C6936, 0xF477EA35,
847 	0xAA64D611, 0x580F5512, 0x4B5FA6E6, 0xB93425E5,
848 	0x6DFE410E, 0x9F95C20D, 0x8CC531F9, 0x7EAEB2FA,
849 	0x30E349B1, 0xC288CAB2, 0xD1D83946, 0x23B3BA45,
850 	0xF779DEAE, 0x05125DAD, 0x1642AE59, 0xE4292D5A,
851 	0xBA3A117E, 0x4851927D, 0x5B016189, 0xA96AE28A,
852 	0x7DA08661, 0x8FCB0562, 0x9C9BF696, 0x6EF07595,
853 	0x417B1DBC, 0xB3109EBF, 0xA0406D4B, 0x522BEE48,
854 	0x86E18AA3, 0x748A09A0, 0x67DAFA54, 0x95B17957,
855 	0xCBA24573, 0x39C9C670, 0x2A993584, 0xD8F2B687,
856 	0x0C38D26C, 0xFE53516F, 0xED03A29B, 0x1F682198,
857 	0x5125DAD3, 0xA34E59D0, 0xB01EAA24, 0x42752927,
858 	0x96BF4DCC, 0x64D4CECF, 0x77843D3B, 0x85EFBE38,
859 	0xDBFC821C, 0x2997011F, 0x3AC7F2EB, 0xC8AC71E8,
860 	0x1C661503, 0xEE0D9600, 0xFD5D65F4, 0x0F36E6F7,
861 	0x61C69362, 0x93AD1061, 0x80FDE395, 0x72966096,
862 	0xA65C047D, 0x5437877E, 0x4767748A, 0xB50CF789,
863 	0xEB1FCBAD, 0x197448AE, 0x0A24BB5A, 0xF84F3859,
864 	0x2C855CB2, 0xDEEEDFB1, 0xCDBE2C45, 0x3FD5AF46,
865 	0x7198540D, 0x83F3D70E, 0x90A324FA, 0x62C8A7F9,
866 	0xB602C312, 0x44694011, 0x5739B3E5, 0xA55230E6,
867 	0xFB410CC2, 0x092A8FC1, 0x1A7A7C35, 0xE811FF36,
868 	0x3CDB9BDD, 0xCEB018DE, 0xDDE0EB2A, 0x2F8B6829,
869 	0x82F63B78, 0x709DB87B, 0x63CD4B8F, 0x91A6C88C,
870 	0x456CAC67, 0xB7072F64, 0xA457DC90, 0x563C5F93,
871 	0x082F63B7, 0xFA44E0B4, 0xE9141340, 0x1B7F9043,
872 	0xCFB5F4A8, 0x3DDE77AB, 0x2E8E845F, 0xDCE5075C,
873 	0x92A8FC17, 0x60C37F14, 0x73938CE0, 0x81F80FE3,
874 	0x55326B08, 0xA759E80B, 0xB4091BFF, 0x466298FC,
875 	0x1871A4D8, 0xEA1A27DB, 0xF94AD42F, 0x0B21572C,
876 	0xDFEB33C7, 0x2D80B0C4, 0x3ED04330, 0xCCBBC033,
877 	0xA24BB5A6, 0x502036A5, 0x4370C551, 0xB11B4652,
878 	0x65D122B9, 0x97BAA1BA, 0x84EA524E, 0x7681D14D,
879 	0x2892ED69, 0xDAF96E6A, 0xC9A99D9E, 0x3BC21E9D,
880 	0xEF087A76, 0x1D63F975, 0x0E330A81, 0xFC588982,
881 	0xB21572C9, 0x407EF1CA, 0x532E023E, 0xA145813D,
882 	0x758FE5D6, 0x87E466D5, 0x94B49521, 0x66DF1622,
883 	0x38CC2A06, 0xCAA7A905, 0xD9F75AF1, 0x2B9CD9F2,
884 	0xFF56BD19, 0x0D3D3E1A, 0x1E6DCDEE, 0xEC064EED,
885 	0xC38D26C4, 0x31E6A5C7, 0x22B65633, 0xD0DDD530,
886 	0x0417B1DB, 0xF67C32D8, 0xE52CC12C, 0x1747422F,
887 	0x49547E0B, 0xBB3FFD08, 0xA86F0EFC, 0x5A048DFF,
888 	0x8ECEE914, 0x7CA56A17, 0x6FF599E3, 0x9D9E1AE0,
889 	0xD3D3E1AB, 0x21B862A8, 0x32E8915C, 0xC083125F,
890 	0x144976B4, 0xE622F5B7, 0xF5720643, 0x07198540,
891 	0x590AB964, 0xAB613A67, 0xB831C993, 0x4A5A4A90,
892 	0x9E902E7B, 0x6CFBAD78, 0x7FAB5E8C, 0x8DC0DD8F,
893 	0xE330A81A, 0x115B2B19, 0x020BD8ED, 0xF0605BEE,
894 	0x24AA3F05, 0xD6C1BC06, 0xC5914FF2, 0x37FACCF1,
895 	0x69E9F0D5, 0x9B8273D6, 0x88D28022, 0x7AB90321,
896 	0xAE7367CA, 0x5C18E4C9, 0x4F48173D, 0xBD23943E,
897 	0xF36E6F75, 0x0105EC76, 0x12551F82, 0xE03E9C81,
898 	0x34F4F86A, 0xC69F7B69, 0xD5CF889D, 0x27A40B9E,
899 	0x79B737BA, 0x8BDCB4B9, 0x988C474D, 0x6AE7C44E,
900 	0xBE2DA0A5, 0x4C4623A6, 0x5F16D052, 0xAD7D5351
901 };
902 
903 /*
904  * iscsi_crc32c - Steps through buffer one byte at at time, calculates
905  * reflected crc using table.
906  */
907 uint32_t
908 idm_crc32c(void *address, unsigned long length)
909 {
910 	uint8_t *buffer = address;
911 	uint32_t crc = 0xffffffff, result;
912 #ifdef _BIG_ENDIAN
913 	uint8_t byte0, byte1, byte2, byte3;
914 #endif
915 
916 	ASSERT(address != NULL);
917 
918 	if (iscsi_crc32_hd == -1) {
919 		if (hd_crc32_avail((uint32_t *)idm_crc32c_table) == B_TRUE) {
920 			iscsi_crc32_hd = 0;
921 		} else {
922 			iscsi_crc32_hd = 1;
923 		}
924 	}
925 	if (iscsi_crc32_hd == 0)
926 		return (HW_CRC32(buffer, length, crc));
927 
928 	while (length--) {
929 		crc = idm_crc32c_table[(crc ^ *buffer++) & 0xFFL] ^
930 		    (crc >> 8);
931 	}
932 	result = crc ^ 0xffffffff;
933 
934 #ifdef	_BIG_ENDIAN
935 	byte0 = (uint8_t)(result & 0xFF);
936 	byte1 = (uint8_t)((result >> 8) & 0xFF);
937 	byte2 = (uint8_t)((result >> 16) & 0xFF);
938 	byte3 = (uint8_t)((result >> 24) & 0xFF);
939 	result = ((byte0 << 24) | (byte1 << 16) | (byte2 << 8) | byte3);
940 #endif	/* _BIG_ENDIAN */
941 
942 	return (result);
943 }
944 
945 
946 /*
947  * idm_crc32c_continued - Continues stepping through buffer one
948  * byte at at time, calculates reflected crc using table.
949  */
950 uint32_t
951 idm_crc32c_continued(void *address, unsigned long length, uint32_t crc)
952 {
953 	uint8_t *buffer = address;
954 	uint32_t result;
955 #ifdef	_BIG_ENDIAN
956 	uint8_t byte0, byte1, byte2, byte3;
957 #endif
958 
959 	ASSERT(address != NULL);
960 
961 	if (iscsi_crc32_hd == -1) {
962 		if (hd_crc32_avail((uint32_t *)idm_crc32c_table) == B_TRUE) {
963 			iscsi_crc32_hd = 0;
964 		} else {
965 			iscsi_crc32_hd = 1;
966 		}
967 	}
968 	if (iscsi_crc32_hd == 0)
969 		return (HW_CRC32_CONT(buffer, length, crc));
970 
971 
972 #ifdef	_BIG_ENDIAN
973 	byte0 = (uint8_t)((crc >> 24) & 0xFF);
974 	byte1 = (uint8_t)((crc >> 16) & 0xFF);
975 	byte2 = (uint8_t)((crc >> 8) & 0xFF);
976 	byte3 = (uint8_t)(crc & 0xFF);
977 	crc = ((byte3 << 24) | (byte2 << 16) | (byte1 << 8) | byte0);
978 #endif
979 
980 	crc = crc ^ 0xffffffff;
981 	while (length--) {
982 		crc = idm_crc32c_table[(crc ^ *buffer++) & 0xFFL] ^
983 		    (crc >> 8);
984 	}
985 	result = crc ^ 0xffffffff;
986 
987 #ifdef	_BIG_ENDIAN
988 	byte0 = (uint8_t)(result & 0xFF);
989 	byte1 = (uint8_t)((result >> 8) & 0xFF);
990 	byte2 = (uint8_t)((result >> 16) & 0xFF);
991 	byte3 = (uint8_t)((result >> 24) & 0xFF);
992 	result = ((byte0 << 24) | (byte1 << 16) | (byte2 << 8) | byte3);
993 #endif
994 	return (result);
995 }
996 
997 /* ARGSUSED */
998 int
999 idm_task_constructor(void *hdl, void *arg, int flags)
1000 {
1001 	idm_task_t *idt = (idm_task_t *)hdl;
1002 	uint32_t next_task;
1003 
1004 	mutex_init(&idt->idt_mutex, NULL, MUTEX_DEFAULT, NULL);
1005 
1006 	/* Find the next free task ID */
1007 	rw_enter(&idm.idm_taskid_table_lock, RW_WRITER);
1008 	next_task = idm.idm_taskid_next;
1009 	while (idm.idm_taskid_table[next_task]) {
1010 		next_task++;
1011 		if (next_task == idm.idm_taskid_max)
1012 			next_task = 0;
1013 		if (next_task == idm.idm_taskid_next) {
1014 			rw_exit(&idm.idm_taskid_table_lock);
1015 			return (-1);
1016 		}
1017 	}
1018 
1019 	idm.idm_taskid_table[next_task] = idt;
1020 	idm.idm_taskid_next = (next_task + 1) % idm.idm_taskid_max;
1021 	rw_exit(&idm.idm_taskid_table_lock);
1022 
1023 	idt->idt_tt = next_task;
1024 
1025 	list_create(&idt->idt_inbufv, sizeof (idm_buf_t),
1026 	    offsetof(idm_buf_t, idb_buflink));
1027 	list_create(&idt->idt_outbufv, sizeof (idm_buf_t),
1028 	    offsetof(idm_buf_t, idb_buflink));
1029 	idm_refcnt_init(&idt->idt_refcnt, idt);
1030 
1031 	/*
1032 	 * Set the transport header pointer explicitly.  This removes the
1033 	 * need for per-transport header allocation, which simplifies cache
1034 	 * init considerably.  If at a later date we have an additional IDM
1035 	 * transport that requires a different size, we'll revisit this.
1036 	 */
1037 	idt->idt_transport_hdr = (void *)(idt + 1); /* pointer arithmetic */
1038 	idt->idt_flags = 0;
1039 	return (0);
1040 }
1041 
1042 /* ARGSUSED */
1043 void
1044 idm_task_destructor(void *hdl, void *arg)
1045 {
1046 	idm_task_t *idt = (idm_task_t *)hdl;
1047 
1048 	/* Remove the task from the ID table */
1049 	rw_enter(&idm.idm_taskid_table_lock, RW_WRITER);
1050 	idm.idm_taskid_table[idt->idt_tt] = NULL;
1051 	rw_exit(&idm.idm_taskid_table_lock);
1052 
1053 	/* free the inbuf and outbuf */
1054 	idm_refcnt_destroy(&idt->idt_refcnt);
1055 	list_destroy(&idt->idt_inbufv);
1056 	list_destroy(&idt->idt_outbufv);
1057 
1058 	/*
1059 	 * The final call to idm_task_rele may happen with the task
1060 	 * mutex held which may invoke this destructor immediately.
1061 	 * Stall here until the task mutex owner lets go.
1062 	 */
1063 	mutex_enter(&idt->idt_mutex);
1064 	mutex_destroy(&idt->idt_mutex);
1065 }
1066 
1067 /*
1068  * idm_listbuf_insert searches from the back of the list looking for the
1069  * insertion point.
1070  */
1071 void
1072 idm_listbuf_insert(list_t *lst, idm_buf_t *buf)
1073 {
1074 	idm_buf_t	*idb;
1075 
1076 	/* iterate through the list to find the insertion point */
1077 	for (idb = list_tail(lst); idb != NULL; idb = list_prev(lst, idb)) {
1078 
1079 		if (idb->idb_bufoffset < buf->idb_bufoffset) {
1080 
1081 			list_insert_after(lst, idb, buf);
1082 			return;
1083 		}
1084 	}
1085 
1086 	/* add the buf to the head of the list */
1087 	list_insert_head(lst, buf);
1088 
1089 }
1090 
1091 /*ARGSUSED*/
1092 void
1093 idm_wd_thread(void *arg)
1094 {
1095 	idm_conn_t	*ic;
1096 	clock_t		wake_time = SEC_TO_TICK(IDM_WD_INTERVAL);
1097 	clock_t		idle_time;
1098 
1099 	/* Record the thread id for thread_join() */
1100 	idm.idm_wd_thread_did = curthread->t_did;
1101 	mutex_enter(&idm.idm_global_mutex);
1102 	idm.idm_wd_thread_running = B_TRUE;
1103 	cv_signal(&idm.idm_wd_cv);
1104 
1105 	while (idm.idm_wd_thread_running) {
1106 		for (ic = list_head(&idm.idm_tgt_conn_list);
1107 		    ic != NULL;
1108 		    ic = list_next(&idm.idm_tgt_conn_list, ic)) {
1109 			idle_time = ddi_get_lbolt() - ic->ic_timestamp;
1110 
1111 			/*
1112 			 * If this connection is in FFP then grab a hold
1113 			 * and check the various timeout thresholds.  Otherwise
1114 			 * the connection is closing and we should just
1115 			 * move on to the next one.
1116 			 */
1117 			mutex_enter(&ic->ic_state_mutex);
1118 			if (ic->ic_ffp) {
1119 				idm_conn_hold(ic);
1120 			} else {
1121 				mutex_exit(&ic->ic_state_mutex);
1122 				continue;
1123 			}
1124 
1125 			/*
1126 			 * If there hasn't been any activity on this
1127 			 * connection for the keepalive timeout period
1128 			 * and if the client has provided a keepalive
1129 			 * callback then call the keepalive callback.
1130 			 * This allows the client to take action to keep
1131 			 * the link alive (like send a nop PDU).
1132 			 */
1133 			if ((TICK_TO_SEC(idle_time) >=
1134 			    IDM_TRANSPORT_KEEPALIVE_IDLE_TIMEOUT) &&
1135 			    !ic->ic_keepalive) {
1136 				ic->ic_keepalive = B_TRUE;
1137 				if (ic->ic_conn_ops.icb_keepalive) {
1138 					mutex_exit(&ic->ic_state_mutex);
1139 					mutex_exit(&idm.idm_global_mutex);
1140 					(*ic->ic_conn_ops.icb_keepalive)(ic);
1141 					mutex_enter(&idm.idm_global_mutex);
1142 					mutex_enter(&ic->ic_state_mutex);
1143 				}
1144 			} else if ((TICK_TO_SEC(idle_time) <
1145 			    IDM_TRANSPORT_KEEPALIVE_IDLE_TIMEOUT)) {
1146 				/* Reset keepalive */
1147 				ic->ic_keepalive = B_FALSE;
1148 			}
1149 
1150 			/*
1151 			 * If there hasn't been any activity on this
1152 			 * connection for the failure timeout period then
1153 			 * drop the connection.  We expect the initiator
1154 			 * to keep the connection alive if it wants the
1155 			 * connection to stay open.
1156 			 *
1157 			 * If it turns out to be desireable to take a
1158 			 * more active role in maintaining the connect
1159 			 * we could add a client callback to send
1160 			 * a "keepalive" kind of message (no doubt a nop)
1161 			 * and fire that on a shorter timer.
1162 			 */
1163 			if (TICK_TO_SEC(idle_time) >
1164 			    IDM_TRANSPORT_FAIL_IDLE_TIMEOUT) {
1165 				mutex_exit(&ic->ic_state_mutex);
1166 				mutex_exit(&idm.idm_global_mutex);
1167 				IDM_SM_LOG(CE_WARN, "idm_wd_thread: "
1168 				    "conn %p idle for %d seconds, "
1169 				    "sending CE_TRANSPORT_FAIL",
1170 				    (void *)ic, (int)idle_time);
1171 				idm_conn_event(ic, CE_TRANSPORT_FAIL, NULL);
1172 				mutex_enter(&idm.idm_global_mutex);
1173 				mutex_enter(&ic->ic_state_mutex);
1174 			}
1175 
1176 			idm_conn_rele(ic);
1177 
1178 			mutex_exit(&ic->ic_state_mutex);
1179 		}
1180 
1181 		(void) cv_reltimedwait(&idm.idm_wd_cv, &idm.idm_global_mutex,
1182 		    wake_time, TR_CLOCK_TICK);
1183 	}
1184 	mutex_exit(&idm.idm_global_mutex);
1185 
1186 	thread_exit();
1187 }
1188