xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision dd52495f0d9ba8ff6d84921ec0500be837896554)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:  e1000g_stat.c						*
30  *									*
31  * Abstract: Functions for processing statistics			*
32  *									*
33  * **********************************************************************
34  */
35 #include "e1000g_sw.h"
36 #include "e1000g_debug.h"
37 
38 static int e1000g_update_stats(kstat_t *ksp, int rw);
39 
40 /*
41  * e1000_tbi_adjust_stats
42  *
43  * Adjusts statistic counters when a frame is accepted
44  * under the TBI workaround. This function has been
45  * adapted for Solaris from shared code.
46  */
47 void
48 e1000_tbi_adjust_stats(struct e1000g *Adapter,
49     uint32_t frame_len, uint8_t *mac_addr)
50 {
51 	uint32_t carry_bit;
52 	p_e1000g_stat_t e1000g_ksp;
53 
54 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
55 
56 	/* First adjust the frame length */
57 	frame_len--;
58 
59 	/*
60 	 * We need to adjust the statistics counters, since the hardware
61 	 * counters overcount this packet as a CRC error and undercount
62 	 * the packet as a good packet
63 	 */
64 	/* This packet should not be counted as a CRC error */
65 	e1000g_ksp->Crcerrs.value.ul--;
66 	/* This packet does count as a Good Packet Received */
67 	e1000g_ksp->Gprc.value.ul++;
68 
69 	/*
70 	 * Adjust the Good Octets received counters
71 	 */
72 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
73 	e1000g_ksp->Gorl.value.ul += frame_len;
74 	/*
75 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
76 	 * Received Count) was one before the addition,
77 	 * AND it is zero after, then we lost the carry out,
78 	 * need to add one to Gorch (Good Octets Received Count High).
79 	 * This could be simplified if all environments supported
80 	 * 64-bit integers.
81 	 */
82 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
83 		e1000g_ksp->Gorh.value.ul++;
84 	}
85 	/*
86 	 * Is this a broadcast or multicast?  Check broadcast first,
87 	 * since the test for a multicast frame will test positive on
88 	 * a broadcast frame.
89 	 */
90 	if ((mac_addr[0] == (uint8_t)0xff) &&
91 	    (mac_addr[1] == (uint8_t)0xff)) {
92 		/*
93 		 * Broadcast packet
94 		 */
95 		e1000g_ksp->Bprc.value.ul++;
96 	} else if (*mac_addr & 0x01) {
97 		/*
98 		 * Multicast packet
99 		 */
100 		e1000g_ksp->Mprc.value.ul++;
101 	}
102 
103 	if (frame_len == Adapter->max_frame_size) {
104 		/*
105 		 * In this case, the hardware has overcounted the number of
106 		 * oversize frames.
107 		 */
108 		if (e1000g_ksp->Roc.value.ul > 0)
109 			e1000g_ksp->Roc.value.ul--;
110 	}
111 
112 #ifdef E1000G_DEBUG
113 	/*
114 	 * Adjust the bin counters when the extra byte put the frame in the
115 	 * wrong bin. Remember that the frame_len was adjusted above.
116 	 */
117 	if (frame_len == 64) {
118 		e1000g_ksp->Prc64.value.ul++;
119 		e1000g_ksp->Prc127.value.ul--;
120 	} else if (frame_len == 127) {
121 		e1000g_ksp->Prc127.value.ul++;
122 		e1000g_ksp->Prc255.value.ul--;
123 	} else if (frame_len == 255) {
124 		e1000g_ksp->Prc255.value.ul++;
125 		e1000g_ksp->Prc511.value.ul--;
126 	} else if (frame_len == 511) {
127 		e1000g_ksp->Prc511.value.ul++;
128 		e1000g_ksp->Prc1023.value.ul--;
129 	} else if (frame_len == 1023) {
130 		e1000g_ksp->Prc1023.value.ul++;
131 		e1000g_ksp->Prc1522.value.ul--;
132 	} else if (frame_len == 1522) {
133 		e1000g_ksp->Prc1522.value.ul++;
134 	}
135 #endif
136 }
137 
138 
139 /*
140  * e1000g_update_stats - update driver private kstat counters
141  *
142  * This routine will dump and reset the e1000's internal
143  * statistics counters. The current stats dump values will
144  * be sent to the kernel status area.
145  */
146 static int
147 e1000g_update_stats(kstat_t *ksp, int rw)
148 {
149 	struct e1000g *Adapter;
150 	struct e1000_hw *hw;
151 	p_e1000g_stat_t e1000g_ksp;
152 	e1000g_tx_ring_t *tx_ring;
153 	e1000g_rx_ring_t *rx_ring;
154 	e1000g_rx_data_t *rx_data;
155 	uint64_t val;
156 	uint32_t low_val, high_val;
157 
158 	if (rw == KSTAT_WRITE)
159 		return (EACCES);
160 
161 	Adapter = (struct e1000g *)ksp->ks_private;
162 	ASSERT(Adapter != NULL);
163 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
164 	ASSERT(e1000g_ksp != NULL);
165 	hw = &Adapter->shared;
166 
167 	tx_ring = Adapter->tx_ring;
168 	rx_ring = Adapter->rx_ring;
169 	rx_data = rx_ring->rx_data;
170 
171 	rw_enter(&Adapter->chip_lock, RW_WRITER);
172 
173 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
174 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
175 
176 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
177 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
178 	e1000g_ksp->rx_size_error.value.ul = rx_ring->stat_size_error;
179 
180 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
181 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
182 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
183 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
184 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
185 
186 #ifdef E1000G_DEBUG
187 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
188 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
189 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
190 	if (rx_data != NULL)
191 		e1000g_ksp->rx_avail_freepkt.value.ul = rx_data->avail_freepkt;
192 
193 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
194 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
195 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
196 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
197 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
198 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
199 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
200 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
201 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
202 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
203 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
204 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
205 #endif
206 
207 	/*
208 	 * Standard Stats
209 	 */
210 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
211 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
212 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
213 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
214 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
215 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
216 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
217 
218 	if ((hw->mac.type != e1000_ich8lan) &&
219 	    (hw->mac.type != e1000_ich9lan) &&
220 	    (hw->mac.type != e1000_ich10lan)) {
221 		e1000g_ksp->Symerrs.value.ul +=
222 		    E1000_READ_REG(hw, E1000_SYMERRS);
223 #ifdef E1000G_DEBUG
224 		e1000g_ksp->Prc64.value.ul +=
225 		    E1000_READ_REG(hw, E1000_PRC64);
226 		e1000g_ksp->Prc127.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC127);
228 		e1000g_ksp->Prc255.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC255);
230 		e1000g_ksp->Prc511.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC511);
232 		e1000g_ksp->Prc1023.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC1023);
234 		e1000g_ksp->Prc1522.value.ul +=
235 		    E1000_READ_REG(hw, E1000_PRC1522);
236 
237 		e1000g_ksp->Ptc64.value.ul +=
238 		    E1000_READ_REG(hw, E1000_PTC64);
239 		e1000g_ksp->Ptc127.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC127);
241 		e1000g_ksp->Ptc255.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC255);
243 		e1000g_ksp->Ptc511.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC511);
245 		e1000g_ksp->Ptc1023.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC1023);
247 		e1000g_ksp->Ptc1522.value.ul +=
248 		    E1000_READ_REG(hw, E1000_PTC1522);
249 #endif
250 	}
251 
252 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
253 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
254 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
255 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
256 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
257 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
258 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
259 	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
260 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
261 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
262 
263 	/*
264 	 * Adaptive Calculations
265 	 */
266 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
267 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
268 
269 	/*
270 	 * The 64-bit register will reset whenever the upper
271 	 * 32 bits are read. So we need to read the lower
272 	 * 32 bits first, then read the upper 32 bits.
273 	 */
274 	low_val = E1000_READ_REG(hw, E1000_GORCL);
275 	high_val = E1000_READ_REG(hw, E1000_GORCH);
276 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
277 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
278 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
279 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
280 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
281 
282 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
283 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
284 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
285 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
286 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
287 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
288 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
289 
290 	low_val = E1000_READ_REG(hw, E1000_TORL);
291 	high_val = E1000_READ_REG(hw, E1000_TORH);
292 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
293 	    (uint64_t)e1000g_ksp->Torl.value.ul;
294 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
295 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
296 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
297 
298 	low_val = E1000_READ_REG(hw, E1000_TOTL);
299 	high_val = E1000_READ_REG(hw, E1000_TOTH);
300 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
301 	    (uint64_t)e1000g_ksp->Totl.value.ul;
302 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
303 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
304 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
305 
306 	rw_exit(&Adapter->chip_lock);
307 
308 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
309 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
310 
311 	return (0);
312 }
313 
314 int
315 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
316 {
317 	struct e1000g *Adapter = (struct e1000g *)arg;
318 	struct e1000_hw *hw = &Adapter->shared;
319 	p_e1000g_stat_t e1000g_ksp;
320 	uint32_t low_val, high_val;
321 
322 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
323 
324 	rw_enter(&Adapter->chip_lock, RW_READER);
325 
326 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
327 		rw_exit(&Adapter->chip_lock);
328 		return (ECANCELED);
329 	}
330 
331 	switch (stat) {
332 	case MAC_STAT_IFSPEED:
333 		*val = Adapter->link_speed * 1000000ull;
334 		break;
335 
336 	case MAC_STAT_MULTIRCV:
337 		e1000g_ksp->Mprc.value.ul +=
338 		    E1000_READ_REG(hw, E1000_MPRC);
339 		*val = e1000g_ksp->Mprc.value.ul;
340 		break;
341 
342 	case MAC_STAT_BRDCSTRCV:
343 		e1000g_ksp->Bprc.value.ul +=
344 		    E1000_READ_REG(hw, E1000_BPRC);
345 		*val = e1000g_ksp->Bprc.value.ul;
346 		break;
347 
348 	case MAC_STAT_MULTIXMT:
349 		e1000g_ksp->Mptc.value.ul +=
350 		    E1000_READ_REG(hw, E1000_MPTC);
351 		*val = e1000g_ksp->Mptc.value.ul;
352 		break;
353 
354 	case MAC_STAT_BRDCSTXMT:
355 		e1000g_ksp->Bptc.value.ul +=
356 		    E1000_READ_REG(hw, E1000_BPTC);
357 		*val = e1000g_ksp->Bptc.value.ul;
358 		break;
359 
360 	case MAC_STAT_NORCVBUF:
361 		e1000g_ksp->Rnbc.value.ul +=
362 		    E1000_READ_REG(hw, E1000_RNBC);
363 		*val = e1000g_ksp->Rnbc.value.ul;
364 		break;
365 
366 	case MAC_STAT_IERRORS:
367 		e1000g_ksp->Rxerrc.value.ul +=
368 		    E1000_READ_REG(hw, E1000_RXERRC);
369 		e1000g_ksp->Algnerrc.value.ul +=
370 		    E1000_READ_REG(hw, E1000_ALGNERRC);
371 		e1000g_ksp->Rlec.value.ul +=
372 		    E1000_READ_REG(hw, E1000_RLEC);
373 		e1000g_ksp->Crcerrs.value.ul +=
374 		    E1000_READ_REG(hw, E1000_CRCERRS);
375 		e1000g_ksp->Cexterr.value.ul +=
376 		    E1000_READ_REG(hw, E1000_CEXTERR);
377 		*val = e1000g_ksp->Rxerrc.value.ul +
378 		    e1000g_ksp->Algnerrc.value.ul +
379 		    e1000g_ksp->Rlec.value.ul +
380 		    e1000g_ksp->Crcerrs.value.ul +
381 		    e1000g_ksp->Cexterr.value.ul;
382 		break;
383 
384 	case MAC_STAT_NOXMTBUF:
385 		*val = Adapter->tx_ring->stat_no_desc;
386 		break;
387 
388 	case MAC_STAT_OERRORS:
389 		e1000g_ksp->Ecol.value.ul +=
390 		    E1000_READ_REG(hw, E1000_ECOL);
391 		*val = e1000g_ksp->Ecol.value.ul;
392 		break;
393 
394 	case MAC_STAT_COLLISIONS:
395 		e1000g_ksp->Colc.value.ul +=
396 		    E1000_READ_REG(hw, E1000_COLC);
397 		*val = e1000g_ksp->Colc.value.ul;
398 		break;
399 
400 	case MAC_STAT_RBYTES:
401 		/*
402 		 * The 64-bit register will reset whenever the upper
403 		 * 32 bits are read. So we need to read the lower
404 		 * 32 bits first, then read the upper 32 bits.
405 		 */
406 		low_val = E1000_READ_REG(hw, E1000_TORL);
407 		high_val = E1000_READ_REG(hw, E1000_TORH);
408 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
409 		    (uint64_t)e1000g_ksp->Torl.value.ul;
410 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
411 
412 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
413 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
414 		break;
415 
416 	case MAC_STAT_IPACKETS:
417 		e1000g_ksp->Tpr.value.ul +=
418 		    E1000_READ_REG(hw, E1000_TPR);
419 		*val = e1000g_ksp->Tpr.value.ul;
420 		break;
421 
422 	case MAC_STAT_OBYTES:
423 		/*
424 		 * The 64-bit register will reset whenever the upper
425 		 * 32 bits are read. So we need to read the lower
426 		 * 32 bits first, then read the upper 32 bits.
427 		 */
428 		low_val = E1000_READ_REG(hw, E1000_TOTL);
429 		high_val = E1000_READ_REG(hw, E1000_TOTH);
430 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
431 		    (uint64_t)e1000g_ksp->Totl.value.ul;
432 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
433 
434 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
435 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
436 		break;
437 
438 	case MAC_STAT_OPACKETS:
439 		e1000g_ksp->Tpt.value.ul +=
440 		    E1000_READ_REG(hw, E1000_TPT);
441 		*val = e1000g_ksp->Tpt.value.ul;
442 		break;
443 
444 	case ETHER_STAT_ALIGN_ERRORS:
445 		e1000g_ksp->Algnerrc.value.ul +=
446 		    E1000_READ_REG(hw, E1000_ALGNERRC);
447 		*val = e1000g_ksp->Algnerrc.value.ul;
448 		break;
449 
450 	case ETHER_STAT_FCS_ERRORS:
451 		e1000g_ksp->Crcerrs.value.ul +=
452 		    E1000_READ_REG(hw, E1000_CRCERRS);
453 		*val = e1000g_ksp->Crcerrs.value.ul;
454 		break;
455 
456 	case ETHER_STAT_SQE_ERRORS:
457 		e1000g_ksp->Sec.value.ul +=
458 		    E1000_READ_REG(hw, E1000_SEC);
459 		*val = e1000g_ksp->Sec.value.ul;
460 		break;
461 
462 	case ETHER_STAT_CARRIER_ERRORS:
463 		e1000g_ksp->Cexterr.value.ul +=
464 		    E1000_READ_REG(hw, E1000_CEXTERR);
465 		*val = e1000g_ksp->Cexterr.value.ul;
466 		break;
467 
468 	case ETHER_STAT_EX_COLLISIONS:
469 		e1000g_ksp->Ecol.value.ul +=
470 		    E1000_READ_REG(hw, E1000_ECOL);
471 		*val = e1000g_ksp->Ecol.value.ul;
472 		break;
473 
474 	case ETHER_STAT_TX_LATE_COLLISIONS:
475 		e1000g_ksp->Latecol.value.ul +=
476 		    E1000_READ_REG(hw, E1000_LATECOL);
477 		*val = e1000g_ksp->Latecol.value.ul;
478 		break;
479 
480 	case ETHER_STAT_DEFER_XMTS:
481 		e1000g_ksp->Dc.value.ul +=
482 		    E1000_READ_REG(hw, E1000_DC);
483 		*val = e1000g_ksp->Dc.value.ul;
484 		break;
485 
486 	case ETHER_STAT_FIRST_COLLISIONS:
487 		e1000g_ksp->Scc.value.ul +=
488 		    E1000_READ_REG(hw, E1000_SCC);
489 		*val = e1000g_ksp->Scc.value.ul;
490 		break;
491 
492 	case ETHER_STAT_MULTI_COLLISIONS:
493 		e1000g_ksp->Mcc.value.ul +=
494 		    E1000_READ_REG(hw, E1000_MCC);
495 		*val = e1000g_ksp->Mcc.value.ul;
496 		break;
497 
498 	case ETHER_STAT_MACRCV_ERRORS:
499 		e1000g_ksp->Rxerrc.value.ul +=
500 		    E1000_READ_REG(hw, E1000_RXERRC);
501 		*val = e1000g_ksp->Rxerrc.value.ul;
502 		break;
503 
504 	case ETHER_STAT_MACXMT_ERRORS:
505 		e1000g_ksp->Ecol.value.ul +=
506 		    E1000_READ_REG(hw, E1000_ECOL);
507 		*val = e1000g_ksp->Ecol.value.ul;
508 		break;
509 
510 	case ETHER_STAT_TOOLONG_ERRORS:
511 		e1000g_ksp->Roc.value.ul +=
512 		    E1000_READ_REG(hw, E1000_ROC);
513 		*val = e1000g_ksp->Roc.value.ul;
514 		break;
515 
516 	case ETHER_STAT_XCVR_ADDR:
517 		/* The Internal PHY's MDI address for each MAC is 1 */
518 		*val = 1;
519 		break;
520 
521 	case ETHER_STAT_XCVR_ID:
522 		*val = hw->phy.id | hw->phy.revision;
523 		break;
524 
525 	case ETHER_STAT_XCVR_INUSE:
526 		switch (Adapter->link_speed) {
527 		case SPEED_1000:
528 			*val =
529 			    (hw->phy.media_type == e1000_media_type_copper) ?
530 			    XCVR_1000T : XCVR_1000X;
531 			break;
532 		case SPEED_100:
533 			*val =
534 			    (hw->phy.media_type == e1000_media_type_copper) ?
535 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
536 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
537 			break;
538 		case SPEED_10:
539 			*val = XCVR_10;
540 			break;
541 		default:
542 			*val = XCVR_NONE;
543 			break;
544 		}
545 		break;
546 
547 	case ETHER_STAT_CAP_1000FDX:
548 		*val = Adapter->param_1000fdx_cap;
549 		break;
550 
551 	case ETHER_STAT_CAP_1000HDX:
552 		*val = Adapter->param_1000hdx_cap;
553 		break;
554 
555 	case ETHER_STAT_CAP_100FDX:
556 		*val = Adapter->param_100fdx_cap;
557 		break;
558 
559 	case ETHER_STAT_CAP_100HDX:
560 		*val = Adapter->param_100hdx_cap;
561 		break;
562 
563 	case ETHER_STAT_CAP_10FDX:
564 		*val = Adapter->param_10fdx_cap;
565 		break;
566 
567 	case ETHER_STAT_CAP_10HDX:
568 		*val = Adapter->param_10hdx_cap;
569 		break;
570 
571 	case ETHER_STAT_CAP_ASMPAUSE:
572 		*val = Adapter->param_asym_pause_cap;
573 		break;
574 
575 	case ETHER_STAT_CAP_PAUSE:
576 		*val = Adapter->param_pause_cap;
577 		break;
578 
579 	case ETHER_STAT_CAP_AUTONEG:
580 		*val = Adapter->param_autoneg_cap;
581 		break;
582 
583 	case ETHER_STAT_ADV_CAP_1000FDX:
584 		*val = Adapter->param_adv_1000fdx;
585 		break;
586 
587 	case ETHER_STAT_ADV_CAP_1000HDX:
588 		*val = Adapter->param_adv_1000hdx;
589 		break;
590 
591 	case ETHER_STAT_ADV_CAP_100FDX:
592 		*val = Adapter->param_adv_100fdx;
593 		break;
594 
595 	case ETHER_STAT_ADV_CAP_100HDX:
596 		*val = Adapter->param_adv_100hdx;
597 		break;
598 
599 	case ETHER_STAT_ADV_CAP_10FDX:
600 		*val = Adapter->param_adv_10fdx;
601 		break;
602 
603 	case ETHER_STAT_ADV_CAP_10HDX:
604 		*val = Adapter->param_adv_10hdx;
605 		break;
606 
607 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
608 		*val = Adapter->param_adv_asym_pause;
609 		break;
610 
611 	case ETHER_STAT_ADV_CAP_PAUSE:
612 		*val = Adapter->param_adv_pause;
613 		break;
614 
615 	case ETHER_STAT_ADV_CAP_AUTONEG:
616 		*val = hw->mac.autoneg;
617 		break;
618 
619 	case ETHER_STAT_LP_CAP_1000FDX:
620 		*val = Adapter->param_lp_1000fdx;
621 		break;
622 
623 	case ETHER_STAT_LP_CAP_1000HDX:
624 		*val = Adapter->param_lp_1000hdx;
625 		break;
626 
627 	case ETHER_STAT_LP_CAP_100FDX:
628 		*val = Adapter->param_lp_100fdx;
629 		break;
630 
631 	case ETHER_STAT_LP_CAP_100HDX:
632 		*val = Adapter->param_lp_100hdx;
633 		break;
634 
635 	case ETHER_STAT_LP_CAP_10FDX:
636 		*val = Adapter->param_lp_10fdx;
637 		break;
638 
639 	case ETHER_STAT_LP_CAP_10HDX:
640 		*val = Adapter->param_lp_10hdx;
641 		break;
642 
643 	case ETHER_STAT_LP_CAP_ASMPAUSE:
644 		*val = Adapter->param_lp_asym_pause;
645 		break;
646 
647 	case ETHER_STAT_LP_CAP_PAUSE:
648 		*val = Adapter->param_lp_pause;
649 		break;
650 
651 	case ETHER_STAT_LP_CAP_AUTONEG:
652 		*val = Adapter->param_lp_autoneg;
653 		break;
654 
655 	case ETHER_STAT_LINK_ASMPAUSE:
656 		*val = Adapter->param_asym_pause_cap;
657 		break;
658 
659 	case ETHER_STAT_LINK_PAUSE:
660 		*val = Adapter->param_pause_cap;
661 		break;
662 
663 	case ETHER_STAT_LINK_AUTONEG:
664 		*val = hw->mac.autoneg;
665 		break;
666 
667 	case ETHER_STAT_LINK_DUPLEX:
668 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
669 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
670 		break;
671 
672 	case ETHER_STAT_CAP_100T4:
673 		*val = Adapter->param_100t4_cap;
674 		break;
675 
676 	case ETHER_STAT_ADV_CAP_100T4:
677 		*val = Adapter->param_adv_100t4;
678 		break;
679 
680 	case ETHER_STAT_LP_CAP_100T4:
681 		*val = Adapter->param_lp_100t4;
682 		break;
683 
684 	default:
685 		rw_exit(&Adapter->chip_lock);
686 		return (ENOTSUP);
687 	}
688 
689 	rw_exit(&Adapter->chip_lock);
690 
691 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
692 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
693 
694 	return (0);
695 }
696 
697 /*
698  * e1000g_init_stats - initialize kstat data structures
699  *
700  * This routine will create and initialize the driver private
701  * statistics counters.
702  */
703 int
704 e1000g_init_stats(struct e1000g *Adapter)
705 {
706 	kstat_t *ksp;
707 	p_e1000g_stat_t e1000g_ksp;
708 
709 	/*
710 	 * Create and init kstat
711 	 */
712 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
713 	    "statistics", "net", KSTAT_TYPE_NAMED,
714 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
715 
716 	if (ksp == NULL) {
717 		e1000g_log(Adapter, CE_WARN,
718 		    "Could not create kernel statistics\n");
719 		return (DDI_FAILURE);
720 	}
721 
722 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
723 
724 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
725 
726 	/*
727 	 * Initialize all the statistics
728 	 */
729 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
730 	    KSTAT_DATA_ULONG);
731 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
732 	    KSTAT_DATA_ULONG);
733 
734 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
735 	    KSTAT_DATA_ULONG);
736 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
737 	    KSTAT_DATA_ULONG);
738 	kstat_named_init(&e1000g_ksp->rx_size_error, "Rx Size Error",
739 	    KSTAT_DATA_ULONG);
740 
741 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
742 	    KSTAT_DATA_ULONG);
743 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
744 	    KSTAT_DATA_ULONG);
745 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
746 	    KSTAT_DATA_ULONG);
747 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
750 	    KSTAT_DATA_ULONG);
751 
752 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
753 	    KSTAT_DATA_ULONG);
754 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
755 	    KSTAT_DATA_ULONG);
756 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
757 	    KSTAT_DATA_ULONG);
758 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
759 	    KSTAT_DATA_ULONG);
760 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
767 	    KSTAT_DATA_ULONG);
768 #ifdef E1000G_DEBUG
769 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
770 	    KSTAT_DATA_ULONG);
771 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
772 	    KSTAT_DATA_ULONG);
773 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
774 	    KSTAT_DATA_ULONG);
775 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
780 	    KSTAT_DATA_ULONG);
781 #endif
782 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
783 	    KSTAT_DATA_ULONG);
784 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
785 	    KSTAT_DATA_ULONG);
786 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
787 	    KSTAT_DATA_ULONG);
788 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
789 	    KSTAT_DATA_ULONG);
790 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
791 	    KSTAT_DATA_ULONG);
792 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
793 	    KSTAT_DATA_ULONG);
794 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
795 	    KSTAT_DATA_ULONG);
796 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
797 	    KSTAT_DATA_ULONG);
798 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
799 	    KSTAT_DATA_ULONG);
800 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
801 	    KSTAT_DATA_ULONG);
802 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
803 	    KSTAT_DATA_ULONG);
804 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
805 	    KSTAT_DATA_ULONG);
806 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
807 	    KSTAT_DATA_ULONG);
808 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
809 	    KSTAT_DATA_ULONG);
810 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
811 	    KSTAT_DATA_ULONG);
812 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
813 	    KSTAT_DATA_ULONG);
814 #ifdef E1000G_DEBUG
815 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
816 	    KSTAT_DATA_ULONG);
817 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
818 	    KSTAT_DATA_ULONG);
819 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
820 	    KSTAT_DATA_ULONG);
821 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
822 	    KSTAT_DATA_ULONG);
823 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
824 	    KSTAT_DATA_ULONG);
825 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
826 	    KSTAT_DATA_ULONG);
827 #endif
828 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
829 	    KSTAT_DATA_ULONG);
830 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
831 	    KSTAT_DATA_ULONG);
832 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
833 	    KSTAT_DATA_ULONG);
834 
835 #ifdef E1000G_DEBUG
836 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
837 	    KSTAT_DATA_ULONG);
838 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
839 	    KSTAT_DATA_ULONG);
840 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
841 	    KSTAT_DATA_ULONG);
842 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
843 	    KSTAT_DATA_ULONG);
844 
845 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
846 	    KSTAT_DATA_ULONG);
847 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
848 	    KSTAT_DATA_ULONG);
849 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
850 	    KSTAT_DATA_ULONG);
851 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
852 	    KSTAT_DATA_ULONG);
853 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
854 	    KSTAT_DATA_ULONG);
855 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
856 	    KSTAT_DATA_ULONG);
857 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
858 	    KSTAT_DATA_ULONG);
859 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
860 	    KSTAT_DATA_ULONG);
861 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
862 	    KSTAT_DATA_ULONG);
863 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
864 	    KSTAT_DATA_ULONG);
865 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
866 	    KSTAT_DATA_ULONG);
867 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
868 	    KSTAT_DATA_ULONG);
869 #endif
870 
871 	/*
872 	 * Function to provide kernel stat update on demand
873 	 */
874 	ksp->ks_update = e1000g_update_stats;
875 
876 	/*
877 	 * Pointer into provider's raw statistics
878 	 */
879 	ksp->ks_private = (void *)Adapter;
880 
881 	/*
882 	 * Add kstat to systems kstat chain
883 	 */
884 	kstat_install(ksp);
885 
886 	return (DDI_SUCCESS);
887 }
888