xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision 3eae19d9cf3390cf5b75e10c9c1945fd36ad856a)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:  e1000g_stat.c						*
32  *									*
33  * Abstract: Functions for processing statistics			*
34  *									*
35  * **********************************************************************
36  */
37 #include "e1000g_sw.h"
38 #include "e1000g_debug.h"
39 
40 static int e1000g_update_stats(kstat_t *ksp, int rw);
41 
42 /*
43  * e1000_tbi_adjust_stats
44  *
45  * Adjusts statistic counters when a frame is accepted
46  * under the TBI workaround. This function has been
47  * adapted for Solaris from shared code.
48  */
49 void
50 e1000_tbi_adjust_stats(struct e1000g *Adapter,
51     uint32_t frame_len, uint8_t *mac_addr)
52 {
53 	struct e1000_hw *hw = &Adapter->shared;
54 	uint32_t carry_bit;
55 	p_e1000g_stat_t e1000g_ksp;
56 
57 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
58 
59 	/* First adjust the frame length */
60 	frame_len--;
61 
62 	/*
63 	 * We need to adjust the statistics counters, since the hardware
64 	 * counters overcount this packet as a CRC error and undercount
65 	 * the packet as a good packet
66 	 */
67 	/* This packet should not be counted as a CRC error */
68 	e1000g_ksp->Crcerrs.value.ul--;
69 	/* This packet does count as a Good Packet Received */
70 	e1000g_ksp->Gprc.value.ul++;
71 
72 	/*
73 	 * Adjust the Good Octets received counters
74 	 */
75 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
76 	e1000g_ksp->Gorl.value.ul += frame_len;
77 	/*
78 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
79 	 * Received Count) was one before the addition,
80 	 * AND it is zero after, then we lost the carry out,
81 	 * need to add one to Gorch (Good Octets Received Count High).
82 	 * This could be simplified if all environments supported
83 	 * 64-bit integers.
84 	 */
85 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
86 		e1000g_ksp->Gorh.value.ul++;
87 	}
88 	/*
89 	 * Is this a broadcast or multicast?  Check broadcast first,
90 	 * since the test for a multicast frame will test positive on
91 	 * a broadcast frame.
92 	 */
93 	if ((mac_addr[0] == (uint8_t)0xff) &&
94 	    (mac_addr[1] == (uint8_t)0xff)) {
95 		/*
96 		 * Broadcast packet
97 		 */
98 		e1000g_ksp->Bprc.value.ul++;
99 	} else if (*mac_addr & 0x01) {
100 		/*
101 		 * Multicast packet
102 		 */
103 		e1000g_ksp->Mprc.value.ul++;
104 	}
105 
106 	if (frame_len == hw->mac.max_frame_size) {
107 		/*
108 		 * In this case, the hardware has overcounted the number of
109 		 * oversize frames.
110 		 */
111 		if (e1000g_ksp->Roc.value.ul > 0)
112 			e1000g_ksp->Roc.value.ul--;
113 	}
114 
115 	/*
116 	 * Adjust the bin counters when the extra byte put the frame in the
117 	 * wrong bin. Remember that the frame_len was adjusted above.
118 	 */
119 	if (frame_len == 64) {
120 		e1000g_ksp->Prc64.value.ul++;
121 		e1000g_ksp->Prc127.value.ul--;
122 	} else if (frame_len == 127) {
123 		e1000g_ksp->Prc127.value.ul++;
124 		e1000g_ksp->Prc255.value.ul--;
125 	} else if (frame_len == 255) {
126 		e1000g_ksp->Prc255.value.ul++;
127 		e1000g_ksp->Prc511.value.ul--;
128 	} else if (frame_len == 511) {
129 		e1000g_ksp->Prc511.value.ul++;
130 		e1000g_ksp->Prc1023.value.ul--;
131 	} else if (frame_len == 1023) {
132 		e1000g_ksp->Prc1023.value.ul++;
133 		e1000g_ksp->Prc1522.value.ul--;
134 	} else if (frame_len == 1522) {
135 		e1000g_ksp->Prc1522.value.ul++;
136 	}
137 }
138 
139 
140 /*
141  * e1000g_update_stats - update driver private kstat counters
142  *
143  * This routine will dump and reset the e1000's internal
144  * statistics counters. The current stats dump values will
145  * be sent to the kernel status area.
146  */
147 static int
148 e1000g_update_stats(kstat_t *ksp, int rw)
149 {
150 	struct e1000g *Adapter;
151 	struct e1000_hw *hw;
152 	p_e1000g_stat_t e1000g_ksp;
153 	e1000g_tx_ring_t *tx_ring;
154 	e1000g_rx_ring_t *rx_ring;
155 	uint64_t val;
156 	uint32_t low_val, high_val;
157 
158 	if (rw == KSTAT_WRITE)
159 		return (EACCES);
160 
161 	Adapter = (struct e1000g *)ksp->ks_private;
162 	ASSERT(Adapter != NULL);
163 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
164 	ASSERT(e1000g_ksp != NULL);
165 	hw = &Adapter->shared;
166 
167 	tx_ring = Adapter->tx_ring;
168 	rx_ring = Adapter->rx_ring;
169 
170 	rw_enter(&Adapter->chip_lock, RW_WRITER);
171 
172 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
173 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
174 
175 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
176 	e1000g_ksp->rx_esballoc_fail.value.ul = rx_ring->stat_esballoc_fail;
177 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
178 	e1000g_ksp->rx_exceed_pkt.value.ul = rx_ring->stat_exceed_pkt;
179 
180 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
181 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
182 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
183 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
184 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
185 
186 #ifdef E1000G_DEBUG
187 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
188 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
189 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
190 	e1000g_ksp->rx_avail_freepkt.value.ul = rx_ring->avail_freepkt;
191 
192 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
193 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
194 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
195 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
196 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
197 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
198 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
199 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
200 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
201 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
202 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
203 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
204 #endif
205 
206 	/*
207 	 * Standard Stats
208 	 */
209 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
210 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
211 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
212 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
213 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
214 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
215 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
216 
217 	if ((hw->mac.type != e1000_ich8lan) &&
218 	    (hw->mac.type != e1000_ich9lan)) {
219 		e1000g_ksp->Symerrs.value.ul +=
220 		    E1000_READ_REG(hw, E1000_SYMERRS);
221 
222 		e1000g_ksp->Prc64.value.ul +=
223 		    E1000_READ_REG(hw, E1000_PRC64);
224 		e1000g_ksp->Prc127.value.ul +=
225 		    E1000_READ_REG(hw, E1000_PRC127);
226 		e1000g_ksp->Prc255.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC255);
228 		e1000g_ksp->Prc511.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC511);
230 		e1000g_ksp->Prc1023.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC1023);
232 		e1000g_ksp->Prc1522.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC1522);
234 
235 		e1000g_ksp->Ptc64.value.ul +=
236 		    E1000_READ_REG(hw, E1000_PTC64);
237 		e1000g_ksp->Ptc127.value.ul +=
238 		    E1000_READ_REG(hw, E1000_PTC127);
239 		e1000g_ksp->Ptc255.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC255);
241 		e1000g_ksp->Ptc511.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC511);
243 		e1000g_ksp->Ptc1023.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC1023);
245 		e1000g_ksp->Ptc1522.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC1522);
247 	}
248 
249 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
250 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
251 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
252 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
253 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
254 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
255 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
256 	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
257 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
258 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
259 
260 	/*
261 	 * Adaptive Calculations
262 	 */
263 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
264 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
265 
266 	/*
267 	 * The 64-bit register will reset whenever the upper
268 	 * 32 bits are read. So we need to read the lower
269 	 * 32 bits first, then read the upper 32 bits.
270 	 */
271 	low_val = E1000_READ_REG(hw, E1000_GORCL);
272 	high_val = E1000_READ_REG(hw, E1000_GORCH);
273 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
274 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
275 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
276 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
277 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
278 
279 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
280 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
281 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
282 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
283 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
284 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
285 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
286 
287 	low_val = E1000_READ_REG(hw, E1000_TORL);
288 	high_val = E1000_READ_REG(hw, E1000_TORH);
289 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
290 	    (uint64_t)e1000g_ksp->Torl.value.ul;
291 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
292 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
293 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
294 
295 	low_val = E1000_READ_REG(hw, E1000_TOTL);
296 	high_val = E1000_READ_REG(hw, E1000_TOTH);
297 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
298 	    (uint64_t)e1000g_ksp->Totl.value.ul;
299 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
300 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
301 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
302 
303 	rw_exit(&Adapter->chip_lock);
304 
305 	return (0);
306 }
307 
308 int
309 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
310 {
311 	struct e1000g *Adapter = (struct e1000g *)arg;
312 	struct e1000_hw *hw = &Adapter->shared;
313 	p_e1000g_stat_t e1000g_ksp;
314 	uint32_t low_val, high_val;
315 	uint16_t phy_reg, phy_reg_2;
316 
317 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
318 
319 	rw_enter(&Adapter->chip_lock, RW_WRITER);
320 
321 	switch (stat) {
322 	case MAC_STAT_IFSPEED:
323 		*val = Adapter->link_speed * 1000000ull;
324 		break;
325 
326 	case MAC_STAT_MULTIRCV:
327 		e1000g_ksp->Mprc.value.ul +=
328 		    E1000_READ_REG(hw, E1000_MPRC);
329 		*val = e1000g_ksp->Mprc.value.ul;
330 		break;
331 
332 	case MAC_STAT_BRDCSTRCV:
333 		e1000g_ksp->Bprc.value.ul +=
334 		    E1000_READ_REG(hw, E1000_BPRC);
335 		*val = e1000g_ksp->Bprc.value.ul;
336 		break;
337 
338 	case MAC_STAT_MULTIXMT:
339 		e1000g_ksp->Mptc.value.ul +=
340 		    E1000_READ_REG(hw, E1000_MPTC);
341 		*val = e1000g_ksp->Mptc.value.ul;
342 		break;
343 
344 	case MAC_STAT_BRDCSTXMT:
345 		e1000g_ksp->Bptc.value.ul +=
346 		    E1000_READ_REG(hw, E1000_BPTC);
347 		*val = e1000g_ksp->Bptc.value.ul;
348 		break;
349 
350 	case MAC_STAT_NORCVBUF:
351 		e1000g_ksp->Rnbc.value.ul +=
352 		    E1000_READ_REG(hw, E1000_RNBC);
353 		*val = e1000g_ksp->Rnbc.value.ul;
354 		break;
355 
356 	case MAC_STAT_IERRORS:
357 		e1000g_ksp->Rxerrc.value.ul +=
358 		    E1000_READ_REG(hw, E1000_RXERRC);
359 		e1000g_ksp->Algnerrc.value.ul +=
360 		    E1000_READ_REG(hw, E1000_ALGNERRC);
361 		e1000g_ksp->Rlec.value.ul +=
362 		    E1000_READ_REG(hw, E1000_RLEC);
363 		e1000g_ksp->Crcerrs.value.ul +=
364 		    E1000_READ_REG(hw, E1000_CRCERRS);
365 		e1000g_ksp->Cexterr.value.ul +=
366 		    E1000_READ_REG(hw, E1000_CEXTERR);
367 		*val = e1000g_ksp->Rxerrc.value.ul +
368 		    e1000g_ksp->Algnerrc.value.ul +
369 		    e1000g_ksp->Rlec.value.ul +
370 		    e1000g_ksp->Crcerrs.value.ul +
371 		    e1000g_ksp->Cexterr.value.ul;
372 		break;
373 
374 	case MAC_STAT_NOXMTBUF:
375 		*val = Adapter->tx_ring->stat_no_desc;
376 		break;
377 
378 	case MAC_STAT_OERRORS:
379 		e1000g_ksp->Ecol.value.ul +=
380 		    E1000_READ_REG(hw, E1000_ECOL);
381 		*val = e1000g_ksp->Ecol.value.ul;
382 		break;
383 
384 	case MAC_STAT_COLLISIONS:
385 		e1000g_ksp->Colc.value.ul +=
386 		    E1000_READ_REG(hw, E1000_COLC);
387 		*val = e1000g_ksp->Colc.value.ul;
388 		break;
389 
390 	case MAC_STAT_RBYTES:
391 		/*
392 		 * The 64-bit register will reset whenever the upper
393 		 * 32 bits are read. So we need to read the lower
394 		 * 32 bits first, then read the upper 32 bits.
395 		 */
396 		low_val = E1000_READ_REG(hw, E1000_TORL);
397 		high_val = E1000_READ_REG(hw, E1000_TORH);
398 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
399 		    (uint64_t)e1000g_ksp->Torl.value.ul;
400 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
401 
402 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
403 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
404 		break;
405 
406 	case MAC_STAT_IPACKETS:
407 		e1000g_ksp->Tpr.value.ul +=
408 		    E1000_READ_REG(hw, E1000_TPR);
409 		*val = e1000g_ksp->Tpr.value.ul;
410 		break;
411 
412 	case MAC_STAT_OBYTES:
413 		/*
414 		 * The 64-bit register will reset whenever the upper
415 		 * 32 bits are read. So we need to read the lower
416 		 * 32 bits first, then read the upper 32 bits.
417 		 */
418 		low_val = E1000_READ_REG(hw, E1000_TOTL);
419 		high_val = E1000_READ_REG(hw, E1000_TOTH);
420 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
421 		    (uint64_t)e1000g_ksp->Totl.value.ul;
422 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
423 
424 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
425 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
426 		break;
427 
428 	case MAC_STAT_OPACKETS:
429 		e1000g_ksp->Tpt.value.ul +=
430 		    E1000_READ_REG(hw, E1000_TPT);
431 		*val = e1000g_ksp->Tpt.value.ul;
432 		break;
433 
434 	case ETHER_STAT_ALIGN_ERRORS:
435 		e1000g_ksp->Algnerrc.value.ul +=
436 		    E1000_READ_REG(hw, E1000_ALGNERRC);
437 		*val = e1000g_ksp->Algnerrc.value.ul;
438 		break;
439 
440 	case ETHER_STAT_FCS_ERRORS:
441 		e1000g_ksp->Crcerrs.value.ul +=
442 		    E1000_READ_REG(hw, E1000_CRCERRS);
443 		*val = e1000g_ksp->Crcerrs.value.ul;
444 		break;
445 
446 	case ETHER_STAT_SQE_ERRORS:
447 		e1000g_ksp->Sec.value.ul +=
448 		    E1000_READ_REG(hw, E1000_SEC);
449 		*val = e1000g_ksp->Sec.value.ul;
450 		break;
451 
452 	case ETHER_STAT_CARRIER_ERRORS:
453 		e1000g_ksp->Cexterr.value.ul +=
454 		    E1000_READ_REG(hw, E1000_CEXTERR);
455 		*val = e1000g_ksp->Cexterr.value.ul;
456 		break;
457 
458 	case ETHER_STAT_EX_COLLISIONS:
459 		e1000g_ksp->Ecol.value.ul +=
460 		    E1000_READ_REG(hw, E1000_ECOL);
461 		*val = e1000g_ksp->Ecol.value.ul;
462 		break;
463 
464 	case ETHER_STAT_TX_LATE_COLLISIONS:
465 		e1000g_ksp->Latecol.value.ul +=
466 		    E1000_READ_REG(hw, E1000_LATECOL);
467 		*val = e1000g_ksp->Latecol.value.ul;
468 		break;
469 
470 	case ETHER_STAT_DEFER_XMTS:
471 		e1000g_ksp->Dc.value.ul +=
472 		    E1000_READ_REG(hw, E1000_DC);
473 		*val = e1000g_ksp->Dc.value.ul;
474 		break;
475 
476 	case ETHER_STAT_FIRST_COLLISIONS:
477 		e1000g_ksp->Scc.value.ul +=
478 		    E1000_READ_REG(hw, E1000_SCC);
479 		*val = e1000g_ksp->Scc.value.ul;
480 		break;
481 
482 	case ETHER_STAT_MULTI_COLLISIONS:
483 		e1000g_ksp->Mcc.value.ul +=
484 		    E1000_READ_REG(hw, E1000_MCC);
485 		*val = e1000g_ksp->Mcc.value.ul;
486 		break;
487 
488 	case ETHER_STAT_MACRCV_ERRORS:
489 		e1000g_ksp->Rxerrc.value.ul +=
490 		    E1000_READ_REG(hw, E1000_RXERRC);
491 		*val = e1000g_ksp->Rxerrc.value.ul;
492 		break;
493 
494 	case ETHER_STAT_MACXMT_ERRORS:
495 		e1000g_ksp->Ecol.value.ul +=
496 		    E1000_READ_REG(hw, E1000_ECOL);
497 		*val = e1000g_ksp->Ecol.value.ul;
498 		break;
499 
500 	case ETHER_STAT_TOOLONG_ERRORS:
501 		e1000g_ksp->Roc.value.ul +=
502 		    E1000_READ_REG(hw, E1000_ROC);
503 		*val = e1000g_ksp->Roc.value.ul;
504 		break;
505 
506 	case ETHER_STAT_XCVR_ADDR:
507 		/* The Internal PHY's MDI address for each MAC is 1 */
508 		*val = 1;
509 		break;
510 
511 	case ETHER_STAT_XCVR_ID:
512 		e1000_read_phy_reg(hw, PHY_ID1, &phy_reg);
513 		e1000_read_phy_reg(hw, PHY_ID2, &phy_reg_2);
514 		*val = (uint32_t)((phy_reg << 16) | phy_reg_2);
515 		break;
516 
517 	case ETHER_STAT_XCVR_INUSE:
518 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
519 		switch (Adapter->link_speed) {
520 		case SPEED_1000:
521 			*val =
522 			    (hw->media_type == e1000_media_type_copper) ?
523 			    XCVR_1000T : XCVR_1000X;
524 			break;
525 		case SPEED_100:
526 			*val =
527 			    (hw->media_type == e1000_media_type_copper) ?
528 			    (phy_reg & MII_SR_100T4_CAPS) ?
529 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
530 			break;
531 		case SPEED_10:
532 			*val = XCVR_10;
533 			break;
534 		default:
535 			*val = XCVR_NONE;
536 			break;
537 		}
538 		break;
539 
540 	case ETHER_STAT_CAP_1000FDX:
541 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
542 		*val = ((phy_reg & IEEE_ESR_1000T_FD_CAPS) ||
543 		    (phy_reg & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
544 		break;
545 
546 	case ETHER_STAT_CAP_1000HDX:
547 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
548 		*val = ((phy_reg & IEEE_ESR_1000T_HD_CAPS) ||
549 		    (phy_reg & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
550 		break;
551 
552 	case ETHER_STAT_CAP_100FDX:
553 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
554 		*val = ((phy_reg & MII_SR_100X_FD_CAPS) ||
555 		    (phy_reg & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
556 		break;
557 
558 	case ETHER_STAT_CAP_100HDX:
559 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
560 		*val = ((phy_reg & MII_SR_100X_HD_CAPS) ||
561 		    (phy_reg & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
562 		break;
563 
564 	case ETHER_STAT_CAP_10FDX:
565 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
566 		*val = (phy_reg & MII_SR_10T_FD_CAPS) ? 1 : 0;
567 		break;
568 
569 	case ETHER_STAT_CAP_10HDX:
570 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
571 		*val = (phy_reg & MII_SR_10T_HD_CAPS) ? 1 : 0;
572 		break;
573 
574 	case ETHER_STAT_CAP_ASMPAUSE:
575 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
576 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
577 		break;
578 
579 	case ETHER_STAT_CAP_PAUSE:
580 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
581 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
582 		break;
583 
584 	case ETHER_STAT_CAP_AUTONEG:
585 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
586 		*val = (phy_reg & MII_SR_AUTONEG_CAPS) ? 1 : 0;
587 		break;
588 
589 	case ETHER_STAT_ADV_CAP_1000FDX:
590 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
591 		*val = (phy_reg & CR_1000T_FD_CAPS) ? 1 : 0;
592 		break;
593 
594 	case ETHER_STAT_ADV_CAP_1000HDX:
595 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
596 		*val = (phy_reg & CR_1000T_HD_CAPS) ? 1 : 0;
597 		break;
598 
599 	case ETHER_STAT_ADV_CAP_100FDX:
600 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
601 		*val = (phy_reg & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
602 		break;
603 
604 	case ETHER_STAT_ADV_CAP_100HDX:
605 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
606 		*val = (phy_reg & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
607 		break;
608 
609 	case ETHER_STAT_ADV_CAP_10FDX:
610 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
611 		*val = (phy_reg & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
612 		break;
613 
614 	case ETHER_STAT_ADV_CAP_10HDX:
615 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
616 		*val = (phy_reg & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
617 		break;
618 
619 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
620 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
621 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
622 		break;
623 
624 	case ETHER_STAT_ADV_CAP_PAUSE:
625 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
626 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
627 		break;
628 
629 	case ETHER_STAT_ADV_CAP_AUTONEG:
630 		*val = hw->mac.autoneg;
631 		break;
632 
633 	case ETHER_STAT_LP_CAP_1000FDX:
634 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
635 		*val = (phy_reg & SR_1000T_LP_FD_CAPS) ? 1 : 0;
636 		break;
637 
638 	case ETHER_STAT_LP_CAP_1000HDX:
639 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
640 		*val = (phy_reg & SR_1000T_LP_HD_CAPS) ? 1 : 0;
641 		break;
642 
643 	case ETHER_STAT_LP_CAP_100FDX:
644 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
645 		*val = (phy_reg & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
646 		break;
647 
648 	case ETHER_STAT_LP_CAP_100HDX:
649 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
650 		*val = (phy_reg & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
651 		break;
652 
653 	case ETHER_STAT_LP_CAP_10FDX:
654 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
655 		*val = (phy_reg & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
656 		break;
657 
658 	case ETHER_STAT_LP_CAP_10HDX:
659 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
660 		*val = (phy_reg & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
661 		break;
662 
663 	case ETHER_STAT_LP_CAP_ASMPAUSE:
664 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
665 		*val = (phy_reg & NWAY_LPAR_ASM_DIR) ? 1 : 0;
666 		break;
667 
668 	case ETHER_STAT_LP_CAP_PAUSE:
669 		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
670 		*val = (phy_reg & NWAY_LPAR_PAUSE) ? 1 : 0;
671 		break;
672 
673 	case ETHER_STAT_LP_CAP_AUTONEG:
674 		e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_reg);
675 		*val = (phy_reg & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
676 		break;
677 
678 	case ETHER_STAT_LINK_ASMPAUSE:
679 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
680 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
681 		break;
682 
683 	case ETHER_STAT_LINK_PAUSE:
684 		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
685 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
686 		break;
687 
688 	case ETHER_STAT_LINK_AUTONEG:
689 		e1000_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
690 		*val = (phy_reg & MII_CR_AUTO_NEG_EN) ? 1 : 0;
691 		break;
692 
693 	case ETHER_STAT_LINK_DUPLEX:
694 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
695 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
696 		break;
697 
698 	default:
699 		rw_exit(&Adapter->chip_lock);
700 		return (ENOTSUP);
701 	}
702 
703 	rw_exit(&Adapter->chip_lock);
704 
705 	return (0);
706 }
707 
708 /*
709  * e1000g_init_stats - initialize kstat data structures
710  *
711  * This routine will create and initialize the driver private
712  * statistics counters.
713  */
714 int
715 e1000g_init_stats(struct e1000g *Adapter)
716 {
717 	kstat_t *ksp;
718 	p_e1000g_stat_t e1000g_ksp;
719 
720 	/*
721 	 * Create and init kstat
722 	 */
723 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
724 	    "statistics", "net", KSTAT_TYPE_NAMED,
725 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
726 
727 	if (ksp == NULL) {
728 		e1000g_log(Adapter, CE_WARN,
729 		    "Could not create kernel statistics\n");
730 		return (DDI_FAILURE);
731 	}
732 
733 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
734 
735 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
736 
737 	/*
738 	 * Initialize all the statistics
739 	 */
740 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
741 	    KSTAT_DATA_ULONG);
742 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
743 	    KSTAT_DATA_ULONG);
744 
745 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
746 	    KSTAT_DATA_ULONG);
747 	kstat_named_init(&e1000g_ksp->rx_esballoc_fail, "Rx Desballoc Failure",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->rx_exceed_pkt, "Rx Exceed Max Pkt Count",
750 	    KSTAT_DATA_ULONG);
751 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
752 	    KSTAT_DATA_ULONG);
753 
754 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
755 	    KSTAT_DATA_ULONG);
756 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
757 	    KSTAT_DATA_ULONG);
758 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
759 	    KSTAT_DATA_ULONG);
760 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
763 	    KSTAT_DATA_ULONG);
764 
765 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
766 	    KSTAT_DATA_ULONG);
767 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
768 	    KSTAT_DATA_ULONG);
769 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
770 	    KSTAT_DATA_ULONG);
771 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
772 	    KSTAT_DATA_ULONG);
773 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
774 	    KSTAT_DATA_ULONG);
775 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
780 	    KSTAT_DATA_ULONG);
781 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
782 	    KSTAT_DATA_ULONG);
783 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
784 	    KSTAT_DATA_ULONG);
785 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
786 	    KSTAT_DATA_ULONG);
787 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
788 	    KSTAT_DATA_ULONG);
789 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
790 	    KSTAT_DATA_ULONG);
791 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
792 	    KSTAT_DATA_ULONG);
793 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
794 	    KSTAT_DATA_ULONG);
795 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
796 	    KSTAT_DATA_ULONG);
797 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
798 	    KSTAT_DATA_ULONG);
799 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
800 	    KSTAT_DATA_ULONG);
801 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
802 	    KSTAT_DATA_ULONG);
803 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
804 	    KSTAT_DATA_ULONG);
805 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
806 	    KSTAT_DATA_ULONG);
807 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
808 	    KSTAT_DATA_ULONG);
809 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
810 	    KSTAT_DATA_ULONG);
811 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
812 	    KSTAT_DATA_ULONG);
813 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
814 	    KSTAT_DATA_ULONG);
815 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
816 	    KSTAT_DATA_ULONG);
817 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
818 	    KSTAT_DATA_ULONG);
819 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
820 	    KSTAT_DATA_ULONG);
821 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
822 	    KSTAT_DATA_ULONG);
823 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
824 	    KSTAT_DATA_ULONG);
825 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
826 	    KSTAT_DATA_ULONG);
827 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
828 	    KSTAT_DATA_ULONG);
829 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
830 	    KSTAT_DATA_ULONG);
831 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
832 	    KSTAT_DATA_ULONG);
833 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
834 	    KSTAT_DATA_ULONG);
835 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
836 	    KSTAT_DATA_ULONG);
837 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
838 	    KSTAT_DATA_ULONG);
839 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
840 	    KSTAT_DATA_ULONG);
841 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
842 	    KSTAT_DATA_ULONG);
843 
844 #ifdef E1000G_DEBUG
845 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
846 	    KSTAT_DATA_ULONG);
847 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
848 	    KSTAT_DATA_ULONG);
849 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
850 	    KSTAT_DATA_ULONG);
851 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
852 	    KSTAT_DATA_ULONG);
853 
854 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
855 	    KSTAT_DATA_ULONG);
856 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
857 	    KSTAT_DATA_ULONG);
858 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
859 	    KSTAT_DATA_ULONG);
860 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
861 	    KSTAT_DATA_ULONG);
862 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
863 	    KSTAT_DATA_ULONG);
864 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
865 	    KSTAT_DATA_ULONG);
866 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
867 	    KSTAT_DATA_ULONG);
868 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
869 	    KSTAT_DATA_ULONG);
870 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
871 	    KSTAT_DATA_ULONG);
872 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
873 	    KSTAT_DATA_ULONG);
874 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
875 	    KSTAT_DATA_ULONG);
876 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
877 	    KSTAT_DATA_ULONG);
878 #endif
879 
880 	/*
881 	 * Function to provide kernel stat update on demand
882 	 */
883 	ksp->ks_update = e1000g_update_stats;
884 
885 	/*
886 	 * Pointer into provider's raw statistics
887 	 */
888 	ksp->ks_private = (void *)Adapter;
889 
890 	/*
891 	 * Add kstat to systems kstat chain
892 	 */
893 	kstat_install(ksp);
894 
895 	return (DDI_SUCCESS);
896 }
897