xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision 355518542cbbe7ea7378c1ec2cc282d465467484)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:  e1000g_stat.c						*
30  *									*
31  * Abstract: Functions for processing statistics			*
32  *									*
33  * **********************************************************************
34  */
35 #include "e1000g_sw.h"
36 #include "e1000g_debug.h"
37 
38 static int e1000g_update_stats(kstat_t *ksp, int rw);
39 
40 /*
41  * e1000_tbi_adjust_stats
42  *
43  * Adjusts statistic counters when a frame is accepted
44  * under the TBI workaround. This function has been
45  * adapted for Solaris from shared code.
46  */
47 void
48 e1000_tbi_adjust_stats(struct e1000g *Adapter,
49     uint32_t frame_len, uint8_t *mac_addr)
50 {
51 	uint32_t carry_bit;
52 	p_e1000g_stat_t e1000g_ksp;
53 
54 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
55 
56 	/* First adjust the frame length */
57 	frame_len--;
58 
59 	/*
60 	 * We need to adjust the statistics counters, since the hardware
61 	 * counters overcount this packet as a CRC error and undercount
62 	 * the packet as a good packet
63 	 */
64 	/* This packet should not be counted as a CRC error */
65 	e1000g_ksp->Crcerrs.value.ul--;
66 	/* This packet does count as a Good Packet Received */
67 	e1000g_ksp->Gprc.value.ul++;
68 
69 	/*
70 	 * Adjust the Good Octets received counters
71 	 */
72 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
73 	e1000g_ksp->Gorl.value.ul += frame_len;
74 	/*
75 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
76 	 * Received Count) was one before the addition,
77 	 * AND it is zero after, then we lost the carry out,
78 	 * need to add one to Gorch (Good Octets Received Count High).
79 	 * This could be simplified if all environments supported
80 	 * 64-bit integers.
81 	 */
82 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
83 		e1000g_ksp->Gorh.value.ul++;
84 	}
85 	/*
86 	 * Is this a broadcast or multicast?  Check broadcast first,
87 	 * since the test for a multicast frame will test positive on
88 	 * a broadcast frame.
89 	 */
90 	if ((mac_addr[0] == (uint8_t)0xff) &&
91 	    (mac_addr[1] == (uint8_t)0xff)) {
92 		/*
93 		 * Broadcast packet
94 		 */
95 		e1000g_ksp->Bprc.value.ul++;
96 	} else if (*mac_addr & 0x01) {
97 		/*
98 		 * Multicast packet
99 		 */
100 		e1000g_ksp->Mprc.value.ul++;
101 	}
102 
103 	if (frame_len == Adapter->max_frame_size) {
104 		/*
105 		 * In this case, the hardware has overcounted the number of
106 		 * oversize frames.
107 		 */
108 		if (e1000g_ksp->Roc.value.ul > 0)
109 			e1000g_ksp->Roc.value.ul--;
110 	}
111 
112 #ifdef E1000G_DEBUG
113 	/*
114 	 * Adjust the bin counters when the extra byte put the frame in the
115 	 * wrong bin. Remember that the frame_len was adjusted above.
116 	 */
117 	if (frame_len == 64) {
118 		e1000g_ksp->Prc64.value.ul++;
119 		e1000g_ksp->Prc127.value.ul--;
120 	} else if (frame_len == 127) {
121 		e1000g_ksp->Prc127.value.ul++;
122 		e1000g_ksp->Prc255.value.ul--;
123 	} else if (frame_len == 255) {
124 		e1000g_ksp->Prc255.value.ul++;
125 		e1000g_ksp->Prc511.value.ul--;
126 	} else if (frame_len == 511) {
127 		e1000g_ksp->Prc511.value.ul++;
128 		e1000g_ksp->Prc1023.value.ul--;
129 	} else if (frame_len == 1023) {
130 		e1000g_ksp->Prc1023.value.ul++;
131 		e1000g_ksp->Prc1522.value.ul--;
132 	} else if (frame_len == 1522) {
133 		e1000g_ksp->Prc1522.value.ul++;
134 	}
135 #endif
136 }
137 
138 
139 /*
140  * e1000g_update_stats - update driver private kstat counters
141  *
142  * This routine will dump and reset the e1000's internal
143  * statistics counters. The current stats dump values will
144  * be sent to the kernel status area.
145  */
146 static int
147 e1000g_update_stats(kstat_t *ksp, int rw)
148 {
149 	struct e1000g *Adapter;
150 	struct e1000_hw *hw;
151 	p_e1000g_stat_t e1000g_ksp;
152 	e1000g_tx_ring_t *tx_ring;
153 	e1000g_rx_ring_t *rx_ring;
154 	uint64_t val;
155 	uint32_t low_val, high_val;
156 
157 	if (rw == KSTAT_WRITE)
158 		return (EACCES);
159 
160 	Adapter = (struct e1000g *)ksp->ks_private;
161 	ASSERT(Adapter != NULL);
162 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
163 	ASSERT(e1000g_ksp != NULL);
164 	hw = &Adapter->shared;
165 
166 	tx_ring = Adapter->tx_ring;
167 	rx_ring = Adapter->rx_ring;
168 
169 	rw_enter(&Adapter->chip_lock, RW_WRITER);
170 
171 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
172 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
173 
174 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
175 	e1000g_ksp->rx_esballoc_fail.value.ul = rx_ring->stat_esballoc_fail;
176 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
177 
178 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
179 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
180 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
181 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
182 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
183 
184 #ifdef E1000G_DEBUG
185 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
186 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
187 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
188 	e1000g_ksp->rx_avail_freepkt.value.ul = rx_ring->avail_freepkt;
189 
190 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
191 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
192 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
193 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
194 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
195 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
196 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
197 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
198 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
199 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
200 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
201 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
202 #endif
203 
204 	/*
205 	 * Standard Stats
206 	 */
207 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
208 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
209 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
210 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
211 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
212 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
213 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
214 
215 	if ((hw->mac.type != e1000_ich8lan) &&
216 	    (hw->mac.type != e1000_ich9lan)) {
217 		e1000g_ksp->Symerrs.value.ul +=
218 		    E1000_READ_REG(hw, E1000_SYMERRS);
219 #ifdef E1000G_DEBUG
220 		e1000g_ksp->Prc64.value.ul +=
221 		    E1000_READ_REG(hw, E1000_PRC64);
222 		e1000g_ksp->Prc127.value.ul +=
223 		    E1000_READ_REG(hw, E1000_PRC127);
224 		e1000g_ksp->Prc255.value.ul +=
225 		    E1000_READ_REG(hw, E1000_PRC255);
226 		e1000g_ksp->Prc511.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC511);
228 		e1000g_ksp->Prc1023.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC1023);
230 		e1000g_ksp->Prc1522.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC1522);
232 
233 		e1000g_ksp->Ptc64.value.ul +=
234 		    E1000_READ_REG(hw, E1000_PTC64);
235 		e1000g_ksp->Ptc127.value.ul +=
236 		    E1000_READ_REG(hw, E1000_PTC127);
237 		e1000g_ksp->Ptc255.value.ul +=
238 		    E1000_READ_REG(hw, E1000_PTC255);
239 		e1000g_ksp->Ptc511.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC511);
241 		e1000g_ksp->Ptc1023.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC1023);
243 		e1000g_ksp->Ptc1522.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC1522);
245 #endif
246 	}
247 
248 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
249 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
250 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
251 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
252 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
253 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
254 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
255 	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
256 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
257 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
258 
259 	/*
260 	 * Adaptive Calculations
261 	 */
262 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
263 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
264 
265 	/*
266 	 * The 64-bit register will reset whenever the upper
267 	 * 32 bits are read. So we need to read the lower
268 	 * 32 bits first, then read the upper 32 bits.
269 	 */
270 	low_val = E1000_READ_REG(hw, E1000_GORCL);
271 	high_val = E1000_READ_REG(hw, E1000_GORCH);
272 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
273 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
274 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
275 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
276 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
277 
278 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
279 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
280 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
281 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
282 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
283 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
284 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
285 
286 	low_val = E1000_READ_REG(hw, E1000_TORL);
287 	high_val = E1000_READ_REG(hw, E1000_TORH);
288 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
289 	    (uint64_t)e1000g_ksp->Torl.value.ul;
290 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
291 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
292 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
293 
294 	low_val = E1000_READ_REG(hw, E1000_TOTL);
295 	high_val = E1000_READ_REG(hw, E1000_TOTH);
296 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
297 	    (uint64_t)e1000g_ksp->Totl.value.ul;
298 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
299 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
300 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
301 
302 	rw_exit(&Adapter->chip_lock);
303 
304 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
305 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
306 
307 	return (0);
308 }
309 
310 int
311 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
312 {
313 	struct e1000g *Adapter = (struct e1000g *)arg;
314 	struct e1000_hw *hw = &Adapter->shared;
315 	p_e1000g_stat_t e1000g_ksp;
316 	uint32_t low_val, high_val;
317 
318 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
319 
320 	rw_enter(&Adapter->chip_lock, RW_READER);
321 
322 	switch (stat) {
323 	case MAC_STAT_IFSPEED:
324 		*val = Adapter->link_speed * 1000000ull;
325 		break;
326 
327 	case MAC_STAT_MULTIRCV:
328 		e1000g_ksp->Mprc.value.ul +=
329 		    E1000_READ_REG(hw, E1000_MPRC);
330 		*val = e1000g_ksp->Mprc.value.ul;
331 		break;
332 
333 	case MAC_STAT_BRDCSTRCV:
334 		e1000g_ksp->Bprc.value.ul +=
335 		    E1000_READ_REG(hw, E1000_BPRC);
336 		*val = e1000g_ksp->Bprc.value.ul;
337 		break;
338 
339 	case MAC_STAT_MULTIXMT:
340 		e1000g_ksp->Mptc.value.ul +=
341 		    E1000_READ_REG(hw, E1000_MPTC);
342 		*val = e1000g_ksp->Mptc.value.ul;
343 		break;
344 
345 	case MAC_STAT_BRDCSTXMT:
346 		e1000g_ksp->Bptc.value.ul +=
347 		    E1000_READ_REG(hw, E1000_BPTC);
348 		*val = e1000g_ksp->Bptc.value.ul;
349 		break;
350 
351 	case MAC_STAT_NORCVBUF:
352 		e1000g_ksp->Rnbc.value.ul +=
353 		    E1000_READ_REG(hw, E1000_RNBC);
354 		*val = e1000g_ksp->Rnbc.value.ul;
355 		break;
356 
357 	case MAC_STAT_IERRORS:
358 		e1000g_ksp->Rxerrc.value.ul +=
359 		    E1000_READ_REG(hw, E1000_RXERRC);
360 		e1000g_ksp->Algnerrc.value.ul +=
361 		    E1000_READ_REG(hw, E1000_ALGNERRC);
362 		e1000g_ksp->Rlec.value.ul +=
363 		    E1000_READ_REG(hw, E1000_RLEC);
364 		e1000g_ksp->Crcerrs.value.ul +=
365 		    E1000_READ_REG(hw, E1000_CRCERRS);
366 		e1000g_ksp->Cexterr.value.ul +=
367 		    E1000_READ_REG(hw, E1000_CEXTERR);
368 		*val = e1000g_ksp->Rxerrc.value.ul +
369 		    e1000g_ksp->Algnerrc.value.ul +
370 		    e1000g_ksp->Rlec.value.ul +
371 		    e1000g_ksp->Crcerrs.value.ul +
372 		    e1000g_ksp->Cexterr.value.ul;
373 		break;
374 
375 	case MAC_STAT_NOXMTBUF:
376 		*val = Adapter->tx_ring->stat_no_desc;
377 		break;
378 
379 	case MAC_STAT_OERRORS:
380 		e1000g_ksp->Ecol.value.ul +=
381 		    E1000_READ_REG(hw, E1000_ECOL);
382 		*val = e1000g_ksp->Ecol.value.ul;
383 		break;
384 
385 	case MAC_STAT_COLLISIONS:
386 		e1000g_ksp->Colc.value.ul +=
387 		    E1000_READ_REG(hw, E1000_COLC);
388 		*val = e1000g_ksp->Colc.value.ul;
389 		break;
390 
391 	case MAC_STAT_RBYTES:
392 		/*
393 		 * The 64-bit register will reset whenever the upper
394 		 * 32 bits are read. So we need to read the lower
395 		 * 32 bits first, then read the upper 32 bits.
396 		 */
397 		low_val = E1000_READ_REG(hw, E1000_TORL);
398 		high_val = E1000_READ_REG(hw, E1000_TORH);
399 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
400 		    (uint64_t)e1000g_ksp->Torl.value.ul;
401 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
402 
403 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
404 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
405 		break;
406 
407 	case MAC_STAT_IPACKETS:
408 		e1000g_ksp->Tpr.value.ul +=
409 		    E1000_READ_REG(hw, E1000_TPR);
410 		*val = e1000g_ksp->Tpr.value.ul;
411 		break;
412 
413 	case MAC_STAT_OBYTES:
414 		/*
415 		 * The 64-bit register will reset whenever the upper
416 		 * 32 bits are read. So we need to read the lower
417 		 * 32 bits first, then read the upper 32 bits.
418 		 */
419 		low_val = E1000_READ_REG(hw, E1000_TOTL);
420 		high_val = E1000_READ_REG(hw, E1000_TOTH);
421 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
422 		    (uint64_t)e1000g_ksp->Totl.value.ul;
423 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
424 
425 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
426 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
427 		break;
428 
429 	case MAC_STAT_OPACKETS:
430 		e1000g_ksp->Tpt.value.ul +=
431 		    E1000_READ_REG(hw, E1000_TPT);
432 		*val = e1000g_ksp->Tpt.value.ul;
433 		break;
434 
435 	case ETHER_STAT_ALIGN_ERRORS:
436 		e1000g_ksp->Algnerrc.value.ul +=
437 		    E1000_READ_REG(hw, E1000_ALGNERRC);
438 		*val = e1000g_ksp->Algnerrc.value.ul;
439 		break;
440 
441 	case ETHER_STAT_FCS_ERRORS:
442 		e1000g_ksp->Crcerrs.value.ul +=
443 		    E1000_READ_REG(hw, E1000_CRCERRS);
444 		*val = e1000g_ksp->Crcerrs.value.ul;
445 		break;
446 
447 	case ETHER_STAT_SQE_ERRORS:
448 		e1000g_ksp->Sec.value.ul +=
449 		    E1000_READ_REG(hw, E1000_SEC);
450 		*val = e1000g_ksp->Sec.value.ul;
451 		break;
452 
453 	case ETHER_STAT_CARRIER_ERRORS:
454 		e1000g_ksp->Cexterr.value.ul +=
455 		    E1000_READ_REG(hw, E1000_CEXTERR);
456 		*val = e1000g_ksp->Cexterr.value.ul;
457 		break;
458 
459 	case ETHER_STAT_EX_COLLISIONS:
460 		e1000g_ksp->Ecol.value.ul +=
461 		    E1000_READ_REG(hw, E1000_ECOL);
462 		*val = e1000g_ksp->Ecol.value.ul;
463 		break;
464 
465 	case ETHER_STAT_TX_LATE_COLLISIONS:
466 		e1000g_ksp->Latecol.value.ul +=
467 		    E1000_READ_REG(hw, E1000_LATECOL);
468 		*val = e1000g_ksp->Latecol.value.ul;
469 		break;
470 
471 	case ETHER_STAT_DEFER_XMTS:
472 		e1000g_ksp->Dc.value.ul +=
473 		    E1000_READ_REG(hw, E1000_DC);
474 		*val = e1000g_ksp->Dc.value.ul;
475 		break;
476 
477 	case ETHER_STAT_FIRST_COLLISIONS:
478 		e1000g_ksp->Scc.value.ul +=
479 		    E1000_READ_REG(hw, E1000_SCC);
480 		*val = e1000g_ksp->Scc.value.ul;
481 		break;
482 
483 	case ETHER_STAT_MULTI_COLLISIONS:
484 		e1000g_ksp->Mcc.value.ul +=
485 		    E1000_READ_REG(hw, E1000_MCC);
486 		*val = e1000g_ksp->Mcc.value.ul;
487 		break;
488 
489 	case ETHER_STAT_MACRCV_ERRORS:
490 		e1000g_ksp->Rxerrc.value.ul +=
491 		    E1000_READ_REG(hw, E1000_RXERRC);
492 		*val = e1000g_ksp->Rxerrc.value.ul;
493 		break;
494 
495 	case ETHER_STAT_MACXMT_ERRORS:
496 		e1000g_ksp->Ecol.value.ul +=
497 		    E1000_READ_REG(hw, E1000_ECOL);
498 		*val = e1000g_ksp->Ecol.value.ul;
499 		break;
500 
501 	case ETHER_STAT_TOOLONG_ERRORS:
502 		e1000g_ksp->Roc.value.ul +=
503 		    E1000_READ_REG(hw, E1000_ROC);
504 		*val = e1000g_ksp->Roc.value.ul;
505 		break;
506 
507 	case ETHER_STAT_XCVR_ADDR:
508 		/* The Internal PHY's MDI address for each MAC is 1 */
509 		*val = 1;
510 		break;
511 
512 	case ETHER_STAT_XCVR_ID:
513 		*val = hw->phy.id | hw->phy.revision;
514 		break;
515 
516 	case ETHER_STAT_XCVR_INUSE:
517 		switch (Adapter->link_speed) {
518 		case SPEED_1000:
519 			*val =
520 			    (hw->phy.media_type == e1000_media_type_copper) ?
521 			    XCVR_1000T : XCVR_1000X;
522 			break;
523 		case SPEED_100:
524 			*val =
525 			    (hw->phy.media_type == e1000_media_type_copper) ?
526 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
527 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
528 			break;
529 		case SPEED_10:
530 			*val = XCVR_10;
531 			break;
532 		default:
533 			*val = XCVR_NONE;
534 			break;
535 		}
536 		break;
537 
538 	case ETHER_STAT_CAP_1000FDX:
539 		*val = Adapter->param_1000fdx_cap;
540 		break;
541 
542 	case ETHER_STAT_CAP_1000HDX:
543 		*val = Adapter->param_1000hdx_cap;
544 		break;
545 
546 	case ETHER_STAT_CAP_100FDX:
547 		*val = Adapter->param_100fdx_cap;
548 		break;
549 
550 	case ETHER_STAT_CAP_100HDX:
551 		*val = Adapter->param_100hdx_cap;
552 		break;
553 
554 	case ETHER_STAT_CAP_10FDX:
555 		*val = Adapter->param_10fdx_cap;
556 		break;
557 
558 	case ETHER_STAT_CAP_10HDX:
559 		*val = Adapter->param_10hdx_cap;
560 		break;
561 
562 	case ETHER_STAT_CAP_ASMPAUSE:
563 		*val = Adapter->param_asym_pause_cap;
564 		break;
565 
566 	case ETHER_STAT_CAP_PAUSE:
567 		*val = Adapter->param_pause_cap;
568 		break;
569 
570 	case ETHER_STAT_CAP_AUTONEG:
571 		*val = Adapter->param_autoneg_cap;
572 		break;
573 
574 	case ETHER_STAT_ADV_CAP_1000FDX:
575 		*val = Adapter->param_adv_1000fdx;
576 		break;
577 
578 	case ETHER_STAT_ADV_CAP_1000HDX:
579 		*val = Adapter->param_adv_1000hdx;
580 		break;
581 
582 	case ETHER_STAT_ADV_CAP_100FDX:
583 		*val = Adapter->param_adv_100fdx;
584 		break;
585 
586 	case ETHER_STAT_ADV_CAP_100HDX:
587 		*val = Adapter->param_adv_100hdx;
588 		break;
589 
590 	case ETHER_STAT_ADV_CAP_10FDX:
591 		*val = Adapter->param_adv_10fdx;
592 		break;
593 
594 	case ETHER_STAT_ADV_CAP_10HDX:
595 		*val = Adapter->param_adv_10hdx;
596 		break;
597 
598 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
599 		*val = Adapter->param_adv_asym_pause;
600 		break;
601 
602 	case ETHER_STAT_ADV_CAP_PAUSE:
603 		*val = Adapter->param_adv_pause;
604 		break;
605 
606 	case ETHER_STAT_ADV_CAP_AUTONEG:
607 		*val = hw->mac.autoneg;
608 		break;
609 
610 	case ETHER_STAT_LP_CAP_1000FDX:
611 		*val = Adapter->param_lp_1000fdx;
612 		break;
613 
614 	case ETHER_STAT_LP_CAP_1000HDX:
615 		*val = Adapter->param_lp_1000hdx;
616 		break;
617 
618 	case ETHER_STAT_LP_CAP_100FDX:
619 		*val = Adapter->param_lp_100fdx;
620 		break;
621 
622 	case ETHER_STAT_LP_CAP_100HDX:
623 		*val = Adapter->param_lp_100hdx;
624 		break;
625 
626 	case ETHER_STAT_LP_CAP_10FDX:
627 		*val = Adapter->param_lp_10fdx;
628 		break;
629 
630 	case ETHER_STAT_LP_CAP_10HDX:
631 		*val = Adapter->param_lp_10hdx;
632 		break;
633 
634 	case ETHER_STAT_LP_CAP_ASMPAUSE:
635 		*val = Adapter->param_lp_asym_pause;
636 		break;
637 
638 	case ETHER_STAT_LP_CAP_PAUSE:
639 		*val = Adapter->param_lp_pause;
640 		break;
641 
642 	case ETHER_STAT_LP_CAP_AUTONEG:
643 		*val = Adapter->param_lp_autoneg;
644 		break;
645 
646 	case ETHER_STAT_LINK_ASMPAUSE:
647 		*val = Adapter->param_asym_pause_cap;
648 		break;
649 
650 	case ETHER_STAT_LINK_PAUSE:
651 		*val = Adapter->param_pause_cap;
652 		break;
653 
654 	case ETHER_STAT_LINK_AUTONEG:
655 		*val = hw->mac.autoneg;
656 		break;
657 
658 	case ETHER_STAT_LINK_DUPLEX:
659 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
660 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
661 		break;
662 
663 	case ETHER_STAT_CAP_100T4:
664 		*val = Adapter->param_100t4_cap;
665 		break;
666 
667 	case ETHER_STAT_ADV_CAP_100T4:
668 		*val = Adapter->param_adv_100t4;
669 		break;
670 
671 	case ETHER_STAT_LP_CAP_100T4:
672 		*val = Adapter->param_lp_100t4;
673 		break;
674 
675 	default:
676 		rw_exit(&Adapter->chip_lock);
677 		return (ENOTSUP);
678 	}
679 
680 	rw_exit(&Adapter->chip_lock);
681 
682 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
683 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
684 
685 	return (0);
686 }
687 
688 /*
689  * e1000g_init_stats - initialize kstat data structures
690  *
691  * This routine will create and initialize the driver private
692  * statistics counters.
693  */
694 int
695 e1000g_init_stats(struct e1000g *Adapter)
696 {
697 	kstat_t *ksp;
698 	p_e1000g_stat_t e1000g_ksp;
699 
700 	/*
701 	 * Create and init kstat
702 	 */
703 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
704 	    "statistics", "net", KSTAT_TYPE_NAMED,
705 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
706 
707 	if (ksp == NULL) {
708 		e1000g_log(Adapter, CE_WARN,
709 		    "Could not create kernel statistics\n");
710 		return (DDI_FAILURE);
711 	}
712 
713 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
714 
715 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
716 
717 	/*
718 	 * Initialize all the statistics
719 	 */
720 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
721 	    KSTAT_DATA_ULONG);
722 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
723 	    KSTAT_DATA_ULONG);
724 
725 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
726 	    KSTAT_DATA_ULONG);
727 	kstat_named_init(&e1000g_ksp->rx_esballoc_fail, "Rx Desballoc Failure",
728 	    KSTAT_DATA_ULONG);
729 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
730 	    KSTAT_DATA_ULONG);
731 
732 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
733 	    KSTAT_DATA_ULONG);
734 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
735 	    KSTAT_DATA_ULONG);
736 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
737 	    KSTAT_DATA_ULONG);
738 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
739 	    KSTAT_DATA_ULONG);
740 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
741 	    KSTAT_DATA_ULONG);
742 
743 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
744 	    KSTAT_DATA_ULONG);
745 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
746 	    KSTAT_DATA_ULONG);
747 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
750 	    KSTAT_DATA_ULONG);
751 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
752 	    KSTAT_DATA_ULONG);
753 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
754 	    KSTAT_DATA_ULONG);
755 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
756 	    KSTAT_DATA_ULONG);
757 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
758 	    KSTAT_DATA_ULONG);
759 #ifdef E1000G_DEBUG
760 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
767 	    KSTAT_DATA_ULONG);
768 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
769 	    KSTAT_DATA_ULONG);
770 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
771 	    KSTAT_DATA_ULONG);
772 #endif
773 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
774 	    KSTAT_DATA_ULONG);
775 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
780 	    KSTAT_DATA_ULONG);
781 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
782 	    KSTAT_DATA_ULONG);
783 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
784 	    KSTAT_DATA_ULONG);
785 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
786 	    KSTAT_DATA_ULONG);
787 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
788 	    KSTAT_DATA_ULONG);
789 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
790 	    KSTAT_DATA_ULONG);
791 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
792 	    KSTAT_DATA_ULONG);
793 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
794 	    KSTAT_DATA_ULONG);
795 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
796 	    KSTAT_DATA_ULONG);
797 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
798 	    KSTAT_DATA_ULONG);
799 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
800 	    KSTAT_DATA_ULONG);
801 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
802 	    KSTAT_DATA_ULONG);
803 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
804 	    KSTAT_DATA_ULONG);
805 #ifdef E1000G_DEBUG
806 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
807 	    KSTAT_DATA_ULONG);
808 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
809 	    KSTAT_DATA_ULONG);
810 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
811 	    KSTAT_DATA_ULONG);
812 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
813 	    KSTAT_DATA_ULONG);
814 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
815 	    KSTAT_DATA_ULONG);
816 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
817 	    KSTAT_DATA_ULONG);
818 #endif
819 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
820 	    KSTAT_DATA_ULONG);
821 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
822 	    KSTAT_DATA_ULONG);
823 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
824 	    KSTAT_DATA_ULONG);
825 
826 #ifdef E1000G_DEBUG
827 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
828 	    KSTAT_DATA_ULONG);
829 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
830 	    KSTAT_DATA_ULONG);
831 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
832 	    KSTAT_DATA_ULONG);
833 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
834 	    KSTAT_DATA_ULONG);
835 
836 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
837 	    KSTAT_DATA_ULONG);
838 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
839 	    KSTAT_DATA_ULONG);
840 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
841 	    KSTAT_DATA_ULONG);
842 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
843 	    KSTAT_DATA_ULONG);
844 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
845 	    KSTAT_DATA_ULONG);
846 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
847 	    KSTAT_DATA_ULONG);
848 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
849 	    KSTAT_DATA_ULONG);
850 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
851 	    KSTAT_DATA_ULONG);
852 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
853 	    KSTAT_DATA_ULONG);
854 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
855 	    KSTAT_DATA_ULONG);
856 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
857 	    KSTAT_DATA_ULONG);
858 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
859 	    KSTAT_DATA_ULONG);
860 #endif
861 
862 	/*
863 	 * Function to provide kernel stat update on demand
864 	 */
865 	ksp->ks_update = e1000g_update_stats;
866 
867 	/*
868 	 * Pointer into provider's raw statistics
869 	 */
870 	ksp->ks_private = (void *)Adapter;
871 
872 	/*
873 	 * Add kstat to systems kstat chain
874 	 */
875 	kstat_install(ksp);
876 
877 	return (DDI_SUCCESS);
878 }
879