xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision 2df1fe9ca32bb227b9158c67f5c00b54c20b10fd)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:  e1000g_stat.c						*
32  *									*
33  * Abstract: Functions for processing statistics			*
34  *									*
35  * **********************************************************************
36  */
37 #include "e1000g_sw.h"
38 #include "e1000g_debug.h"
39 
40 static int e1000g_update_stats(kstat_t *ksp, int rw);
41 
42 /*
43  * e1000_tbi_adjust_stats
44  *
45  * Adjusts statistic counters when a frame is accepted
46  * under the TBI workaround. This function has been
47  * adapted for Solaris from shared code.
48  */
49 void
50 e1000_tbi_adjust_stats(struct e1000g *Adapter,
51     uint32_t frame_len, uint8_t *mac_addr)
52 {
53 	struct e1000_hw *hw = &Adapter->shared;
54 	uint32_t carry_bit;
55 	p_e1000g_stat_t e1000g_ksp;
56 
57 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
58 
59 	/* First adjust the frame length */
60 	frame_len--;
61 
62 	/*
63 	 * We need to adjust the statistics counters, since the hardware
64 	 * counters overcount this packet as a CRC error and undercount
65 	 * the packet as a good packet
66 	 */
67 	/* This packet should not be counted as a CRC error */
68 	e1000g_ksp->Crcerrs.value.ul--;
69 	/* This packet does count as a Good Packet Received */
70 	e1000g_ksp->Gprc.value.ul++;
71 
72 	/*
73 	 * Adjust the Good Octets received counters
74 	 */
75 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
76 	e1000g_ksp->Gorl.value.ul += frame_len;
77 	/*
78 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
79 	 * Received Count) was one before the addition,
80 	 * AND it is zero after, then we lost the carry out,
81 	 * need to add one to Gorch (Good Octets Received Count High).
82 	 * This could be simplified if all environments supported
83 	 * 64-bit integers.
84 	 */
85 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
86 		e1000g_ksp->Gorh.value.ul++;
87 	}
88 	/*
89 	 * Is this a broadcast or multicast?  Check broadcast first,
90 	 * since the test for a multicast frame will test positive on
91 	 * a broadcast frame.
92 	 */
93 	if ((mac_addr[0] == (uint8_t)0xff) &&
94 	    (mac_addr[1] == (uint8_t)0xff)) {
95 		/*
96 		 * Broadcast packet
97 		 */
98 		e1000g_ksp->Bprc.value.ul++;
99 	} else if (*mac_addr & 0x01) {
100 		/*
101 		 * Multicast packet
102 		 */
103 		e1000g_ksp->Mprc.value.ul++;
104 	}
105 
106 	if (frame_len == hw->mac.max_frame_size) {
107 		/*
108 		 * In this case, the hardware has overcounted the number of
109 		 * oversize frames.
110 		 */
111 		if (e1000g_ksp->Roc.value.ul > 0)
112 			e1000g_ksp->Roc.value.ul--;
113 	}
114 
115 	/*
116 	 * Adjust the bin counters when the extra byte put the frame in the
117 	 * wrong bin. Remember that the frame_len was adjusted above.
118 	 */
119 	if (frame_len == 64) {
120 		e1000g_ksp->Prc64.value.ul++;
121 		e1000g_ksp->Prc127.value.ul--;
122 	} else if (frame_len == 127) {
123 		e1000g_ksp->Prc127.value.ul++;
124 		e1000g_ksp->Prc255.value.ul--;
125 	} else if (frame_len == 255) {
126 		e1000g_ksp->Prc255.value.ul++;
127 		e1000g_ksp->Prc511.value.ul--;
128 	} else if (frame_len == 511) {
129 		e1000g_ksp->Prc511.value.ul++;
130 		e1000g_ksp->Prc1023.value.ul--;
131 	} else if (frame_len == 1023) {
132 		e1000g_ksp->Prc1023.value.ul++;
133 		e1000g_ksp->Prc1522.value.ul--;
134 	} else if (frame_len == 1522) {
135 		e1000g_ksp->Prc1522.value.ul++;
136 	}
137 }
138 
139 
140 /*
141  * e1000g_update_stats - update driver private kstat counters
142  *
143  * This routine will dump and reset the e1000's internal
144  * statistics counters. The current stats dump values will
145  * be sent to the kernel status area.
146  */
147 static int
148 e1000g_update_stats(kstat_t *ksp, int rw)
149 {
150 	struct e1000g *Adapter;
151 	struct e1000_hw *hw;
152 	p_e1000g_stat_t e1000g_ksp;
153 	e1000g_tx_ring_t *tx_ring;
154 	e1000g_rx_ring_t *rx_ring;
155 	uint64_t val;
156 	uint32_t low_val, high_val;
157 
158 	if (rw == KSTAT_WRITE)
159 		return (EACCES);
160 
161 	Adapter = (struct e1000g *)ksp->ks_private;
162 	ASSERT(Adapter != NULL);
163 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
164 	ASSERT(e1000g_ksp != NULL);
165 	hw = &Adapter->shared;
166 
167 	tx_ring = Adapter->tx_ring;
168 	rx_ring = Adapter->rx_ring;
169 
170 	rw_enter(&Adapter->chip_lock, RW_WRITER);
171 
172 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
173 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
174 
175 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
176 	e1000g_ksp->rx_esballoc_fail.value.ul = rx_ring->stat_esballoc_fail;
177 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
178 	e1000g_ksp->rx_exceed_pkt.value.ul = rx_ring->stat_exceed_pkt;
179 
180 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
181 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
182 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
183 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
184 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
185 
186 #ifdef E1000G_DEBUG
187 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
188 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
189 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
190 	e1000g_ksp->rx_avail_freepkt.value.ul = rx_ring->avail_freepkt;
191 
192 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
193 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
194 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
195 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
196 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
197 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
198 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
199 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
200 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
201 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
202 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
203 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
204 #endif
205 
206 	/*
207 	 * Standard Stats
208 	 */
209 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
210 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
211 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
212 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
213 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
214 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
215 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
216 
217 	if ((hw->mac.type != e1000_ich8lan) &&
218 	    (hw->mac.type != e1000_ich9lan)) {
219 		e1000g_ksp->Symerrs.value.ul +=
220 		    E1000_READ_REG(hw, E1000_SYMERRS);
221 
222 		e1000g_ksp->Prc64.value.ul +=
223 		    E1000_READ_REG(hw, E1000_PRC64);
224 		e1000g_ksp->Prc127.value.ul +=
225 		    E1000_READ_REG(hw, E1000_PRC127);
226 		e1000g_ksp->Prc255.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC255);
228 		e1000g_ksp->Prc511.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC511);
230 		e1000g_ksp->Prc1023.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC1023);
232 		e1000g_ksp->Prc1522.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC1522);
234 
235 		e1000g_ksp->Ptc64.value.ul +=
236 		    E1000_READ_REG(hw, E1000_PTC64);
237 		e1000g_ksp->Ptc127.value.ul +=
238 		    E1000_READ_REG(hw, E1000_PTC127);
239 		e1000g_ksp->Ptc255.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC255);
241 		e1000g_ksp->Ptc511.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC511);
243 		e1000g_ksp->Ptc1023.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC1023);
245 		e1000g_ksp->Ptc1522.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC1522);
247 	}
248 
249 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
250 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
251 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
252 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
253 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
254 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
255 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
256 	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
257 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
258 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
259 
260 	/*
261 	 * Adaptive Calculations
262 	 */
263 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
264 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
265 
266 	/*
267 	 * The 64-bit register will reset whenever the upper
268 	 * 32 bits are read. So we need to read the lower
269 	 * 32 bits first, then read the upper 32 bits.
270 	 */
271 	low_val = E1000_READ_REG(hw, E1000_GORCL);
272 	high_val = E1000_READ_REG(hw, E1000_GORCH);
273 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
274 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
275 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
276 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
277 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
278 
279 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
280 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
281 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
282 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
283 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
284 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
285 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
286 
287 	low_val = E1000_READ_REG(hw, E1000_TORL);
288 	high_val = E1000_READ_REG(hw, E1000_TORH);
289 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
290 	    (uint64_t)e1000g_ksp->Torl.value.ul;
291 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
292 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
293 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
294 
295 	low_val = E1000_READ_REG(hw, E1000_TOTL);
296 	high_val = E1000_READ_REG(hw, E1000_TOTH);
297 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
298 	    (uint64_t)e1000g_ksp->Totl.value.ul;
299 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
300 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
301 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
302 
303 	rw_exit(&Adapter->chip_lock);
304 
305 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
306 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
307 
308 	return (0);
309 }
310 
311 int
312 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
313 {
314 	struct e1000g *Adapter = (struct e1000g *)arg;
315 	struct e1000_hw *hw = &Adapter->shared;
316 	p_e1000g_stat_t e1000g_ksp;
317 	uint32_t low_val, high_val;
318 
319 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
320 
321 	rw_enter(&Adapter->chip_lock, RW_READER);
322 
323 	switch (stat) {
324 	case MAC_STAT_IFSPEED:
325 		*val = Adapter->link_speed * 1000000ull;
326 		break;
327 
328 	case MAC_STAT_MULTIRCV:
329 		e1000g_ksp->Mprc.value.ul +=
330 		    E1000_READ_REG(hw, E1000_MPRC);
331 		*val = e1000g_ksp->Mprc.value.ul;
332 		break;
333 
334 	case MAC_STAT_BRDCSTRCV:
335 		e1000g_ksp->Bprc.value.ul +=
336 		    E1000_READ_REG(hw, E1000_BPRC);
337 		*val = e1000g_ksp->Bprc.value.ul;
338 		break;
339 
340 	case MAC_STAT_MULTIXMT:
341 		e1000g_ksp->Mptc.value.ul +=
342 		    E1000_READ_REG(hw, E1000_MPTC);
343 		*val = e1000g_ksp->Mptc.value.ul;
344 		break;
345 
346 	case MAC_STAT_BRDCSTXMT:
347 		e1000g_ksp->Bptc.value.ul +=
348 		    E1000_READ_REG(hw, E1000_BPTC);
349 		*val = e1000g_ksp->Bptc.value.ul;
350 		break;
351 
352 	case MAC_STAT_NORCVBUF:
353 		e1000g_ksp->Rnbc.value.ul +=
354 		    E1000_READ_REG(hw, E1000_RNBC);
355 		*val = e1000g_ksp->Rnbc.value.ul;
356 		break;
357 
358 	case MAC_STAT_IERRORS:
359 		e1000g_ksp->Rxerrc.value.ul +=
360 		    E1000_READ_REG(hw, E1000_RXERRC);
361 		e1000g_ksp->Algnerrc.value.ul +=
362 		    E1000_READ_REG(hw, E1000_ALGNERRC);
363 		e1000g_ksp->Rlec.value.ul +=
364 		    E1000_READ_REG(hw, E1000_RLEC);
365 		e1000g_ksp->Crcerrs.value.ul +=
366 		    E1000_READ_REG(hw, E1000_CRCERRS);
367 		e1000g_ksp->Cexterr.value.ul +=
368 		    E1000_READ_REG(hw, E1000_CEXTERR);
369 		*val = e1000g_ksp->Rxerrc.value.ul +
370 		    e1000g_ksp->Algnerrc.value.ul +
371 		    e1000g_ksp->Rlec.value.ul +
372 		    e1000g_ksp->Crcerrs.value.ul +
373 		    e1000g_ksp->Cexterr.value.ul;
374 		break;
375 
376 	case MAC_STAT_NOXMTBUF:
377 		*val = Adapter->tx_ring->stat_no_desc;
378 		break;
379 
380 	case MAC_STAT_OERRORS:
381 		e1000g_ksp->Ecol.value.ul +=
382 		    E1000_READ_REG(hw, E1000_ECOL);
383 		*val = e1000g_ksp->Ecol.value.ul;
384 		break;
385 
386 	case MAC_STAT_COLLISIONS:
387 		e1000g_ksp->Colc.value.ul +=
388 		    E1000_READ_REG(hw, E1000_COLC);
389 		*val = e1000g_ksp->Colc.value.ul;
390 		break;
391 
392 	case MAC_STAT_RBYTES:
393 		/*
394 		 * The 64-bit register will reset whenever the upper
395 		 * 32 bits are read. So we need to read the lower
396 		 * 32 bits first, then read the upper 32 bits.
397 		 */
398 		low_val = E1000_READ_REG(hw, E1000_TORL);
399 		high_val = E1000_READ_REG(hw, E1000_TORH);
400 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
401 		    (uint64_t)e1000g_ksp->Torl.value.ul;
402 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
403 
404 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
405 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
406 		break;
407 
408 	case MAC_STAT_IPACKETS:
409 		e1000g_ksp->Tpr.value.ul +=
410 		    E1000_READ_REG(hw, E1000_TPR);
411 		*val = e1000g_ksp->Tpr.value.ul;
412 		break;
413 
414 	case MAC_STAT_OBYTES:
415 		/*
416 		 * The 64-bit register will reset whenever the upper
417 		 * 32 bits are read. So we need to read the lower
418 		 * 32 bits first, then read the upper 32 bits.
419 		 */
420 		low_val = E1000_READ_REG(hw, E1000_TOTL);
421 		high_val = E1000_READ_REG(hw, E1000_TOTH);
422 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
423 		    (uint64_t)e1000g_ksp->Totl.value.ul;
424 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
425 
426 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
427 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
428 		break;
429 
430 	case MAC_STAT_OPACKETS:
431 		e1000g_ksp->Tpt.value.ul +=
432 		    E1000_READ_REG(hw, E1000_TPT);
433 		*val = e1000g_ksp->Tpt.value.ul;
434 		break;
435 
436 	case ETHER_STAT_ALIGN_ERRORS:
437 		e1000g_ksp->Algnerrc.value.ul +=
438 		    E1000_READ_REG(hw, E1000_ALGNERRC);
439 		*val = e1000g_ksp->Algnerrc.value.ul;
440 		break;
441 
442 	case ETHER_STAT_FCS_ERRORS:
443 		e1000g_ksp->Crcerrs.value.ul +=
444 		    E1000_READ_REG(hw, E1000_CRCERRS);
445 		*val = e1000g_ksp->Crcerrs.value.ul;
446 		break;
447 
448 	case ETHER_STAT_SQE_ERRORS:
449 		e1000g_ksp->Sec.value.ul +=
450 		    E1000_READ_REG(hw, E1000_SEC);
451 		*val = e1000g_ksp->Sec.value.ul;
452 		break;
453 
454 	case ETHER_STAT_CARRIER_ERRORS:
455 		e1000g_ksp->Cexterr.value.ul +=
456 		    E1000_READ_REG(hw, E1000_CEXTERR);
457 		*val = e1000g_ksp->Cexterr.value.ul;
458 		break;
459 
460 	case ETHER_STAT_EX_COLLISIONS:
461 		e1000g_ksp->Ecol.value.ul +=
462 		    E1000_READ_REG(hw, E1000_ECOL);
463 		*val = e1000g_ksp->Ecol.value.ul;
464 		break;
465 
466 	case ETHER_STAT_TX_LATE_COLLISIONS:
467 		e1000g_ksp->Latecol.value.ul +=
468 		    E1000_READ_REG(hw, E1000_LATECOL);
469 		*val = e1000g_ksp->Latecol.value.ul;
470 		break;
471 
472 	case ETHER_STAT_DEFER_XMTS:
473 		e1000g_ksp->Dc.value.ul +=
474 		    E1000_READ_REG(hw, E1000_DC);
475 		*val = e1000g_ksp->Dc.value.ul;
476 		break;
477 
478 	case ETHER_STAT_FIRST_COLLISIONS:
479 		e1000g_ksp->Scc.value.ul +=
480 		    E1000_READ_REG(hw, E1000_SCC);
481 		*val = e1000g_ksp->Scc.value.ul;
482 		break;
483 
484 	case ETHER_STAT_MULTI_COLLISIONS:
485 		e1000g_ksp->Mcc.value.ul +=
486 		    E1000_READ_REG(hw, E1000_MCC);
487 		*val = e1000g_ksp->Mcc.value.ul;
488 		break;
489 
490 	case ETHER_STAT_MACRCV_ERRORS:
491 		e1000g_ksp->Rxerrc.value.ul +=
492 		    E1000_READ_REG(hw, E1000_RXERRC);
493 		*val = e1000g_ksp->Rxerrc.value.ul;
494 		break;
495 
496 	case ETHER_STAT_MACXMT_ERRORS:
497 		e1000g_ksp->Ecol.value.ul +=
498 		    E1000_READ_REG(hw, E1000_ECOL);
499 		*val = e1000g_ksp->Ecol.value.ul;
500 		break;
501 
502 	case ETHER_STAT_TOOLONG_ERRORS:
503 		e1000g_ksp->Roc.value.ul +=
504 		    E1000_READ_REG(hw, E1000_ROC);
505 		*val = e1000g_ksp->Roc.value.ul;
506 		break;
507 
508 	case ETHER_STAT_XCVR_ADDR:
509 		/* The Internal PHY's MDI address for each MAC is 1 */
510 		*val = 1;
511 		break;
512 
513 	case ETHER_STAT_XCVR_ID:
514 		*val = hw->phy.id | hw->phy.revision;
515 		break;
516 
517 	case ETHER_STAT_XCVR_INUSE:
518 		switch (Adapter->link_speed) {
519 		case SPEED_1000:
520 			*val =
521 			    (hw->media_type == e1000_media_type_copper) ?
522 			    XCVR_1000T : XCVR_1000X;
523 			break;
524 		case SPEED_100:
525 			*val =
526 			    (hw->media_type == e1000_media_type_copper) ?
527 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
528 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
529 			break;
530 		case SPEED_10:
531 			*val = XCVR_10;
532 			break;
533 		default:
534 			*val = XCVR_NONE;
535 			break;
536 		}
537 		break;
538 
539 	case ETHER_STAT_CAP_1000FDX:
540 		*val = ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
541 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
542 		break;
543 
544 	case ETHER_STAT_CAP_1000HDX:
545 		*val = ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
546 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
547 		break;
548 
549 	case ETHER_STAT_CAP_100FDX:
550 		*val = ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
551 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
552 		break;
553 
554 	case ETHER_STAT_CAP_100HDX:
555 		*val = ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
556 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
557 		break;
558 
559 	case ETHER_STAT_CAP_10FDX:
560 		*val = (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
561 		break;
562 
563 	case ETHER_STAT_CAP_10HDX:
564 		*val = (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
565 		break;
566 
567 	case ETHER_STAT_CAP_ASMPAUSE:
568 		*val = (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
569 		break;
570 
571 	case ETHER_STAT_CAP_PAUSE:
572 		*val = (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
573 		break;
574 
575 	case ETHER_STAT_CAP_AUTONEG:
576 		*val = (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
577 		break;
578 
579 	case ETHER_STAT_ADV_CAP_1000FDX:
580 		*val = (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
581 		break;
582 
583 	case ETHER_STAT_ADV_CAP_1000HDX:
584 		*val = (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
585 		break;
586 
587 	case ETHER_STAT_ADV_CAP_100FDX:
588 		*val = (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
589 		break;
590 
591 	case ETHER_STAT_ADV_CAP_100HDX:
592 		*val = (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
593 		break;
594 
595 	case ETHER_STAT_ADV_CAP_10FDX:
596 		*val = (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
597 		break;
598 
599 	case ETHER_STAT_ADV_CAP_10HDX:
600 		*val = (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
601 		break;
602 
603 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
604 		*val = (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
605 		break;
606 
607 	case ETHER_STAT_ADV_CAP_PAUSE:
608 		*val = (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
609 		break;
610 
611 	case ETHER_STAT_ADV_CAP_AUTONEG:
612 		*val = hw->mac.autoneg;
613 		break;
614 
615 	case ETHER_STAT_LP_CAP_1000FDX:
616 		*val =
617 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
618 		break;
619 
620 	case ETHER_STAT_LP_CAP_1000HDX:
621 		*val =
622 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
623 		break;
624 
625 	case ETHER_STAT_LP_CAP_100FDX:
626 		*val = (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
627 		break;
628 
629 	case ETHER_STAT_LP_CAP_100HDX:
630 		*val = (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
631 		break;
632 
633 	case ETHER_STAT_LP_CAP_10FDX:
634 		*val = (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
635 		break;
636 
637 	case ETHER_STAT_LP_CAP_10HDX:
638 		*val = (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
639 		break;
640 
641 	case ETHER_STAT_LP_CAP_ASMPAUSE:
642 		*val = (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
643 		break;
644 
645 	case ETHER_STAT_LP_CAP_PAUSE:
646 		*val = (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
647 		break;
648 
649 	case ETHER_STAT_LP_CAP_AUTONEG:
650 		*val = (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
651 		break;
652 
653 	case ETHER_STAT_LINK_ASMPAUSE:
654 		*val = (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
655 		break;
656 
657 	case ETHER_STAT_LINK_PAUSE:
658 		*val = (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
659 		break;
660 
661 	case ETHER_STAT_LINK_AUTONEG:
662 		*val = (Adapter->phy_ctrl & MII_CR_AUTO_NEG_EN) ? 1 : 0;
663 		break;
664 
665 	case ETHER_STAT_LINK_DUPLEX:
666 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
667 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
668 		break;
669 
670 	default:
671 		rw_exit(&Adapter->chip_lock);
672 		return (ENOTSUP);
673 	}
674 
675 	rw_exit(&Adapter->chip_lock);
676 
677 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
678 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
679 
680 	return (0);
681 }
682 
683 /*
684  * e1000g_init_stats - initialize kstat data structures
685  *
686  * This routine will create and initialize the driver private
687  * statistics counters.
688  */
689 int
690 e1000g_init_stats(struct e1000g *Adapter)
691 {
692 	kstat_t *ksp;
693 	p_e1000g_stat_t e1000g_ksp;
694 
695 	/*
696 	 * Create and init kstat
697 	 */
698 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
699 	    "statistics", "net", KSTAT_TYPE_NAMED,
700 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
701 
702 	if (ksp == NULL) {
703 		e1000g_log(Adapter, CE_WARN,
704 		    "Could not create kernel statistics\n");
705 		return (DDI_FAILURE);
706 	}
707 
708 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
709 
710 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
711 
712 	/*
713 	 * Initialize all the statistics
714 	 */
715 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
716 	    KSTAT_DATA_ULONG);
717 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
718 	    KSTAT_DATA_ULONG);
719 
720 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
721 	    KSTAT_DATA_ULONG);
722 	kstat_named_init(&e1000g_ksp->rx_esballoc_fail, "Rx Desballoc Failure",
723 	    KSTAT_DATA_ULONG);
724 	kstat_named_init(&e1000g_ksp->rx_exceed_pkt, "Rx Exceed Max Pkt Count",
725 	    KSTAT_DATA_ULONG);
726 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
727 	    KSTAT_DATA_ULONG);
728 
729 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
730 	    KSTAT_DATA_ULONG);
731 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
732 	    KSTAT_DATA_ULONG);
733 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
734 	    KSTAT_DATA_ULONG);
735 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
736 	    KSTAT_DATA_ULONG);
737 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
738 	    KSTAT_DATA_ULONG);
739 
740 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
741 	    KSTAT_DATA_ULONG);
742 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
743 	    KSTAT_DATA_ULONG);
744 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
745 	    KSTAT_DATA_ULONG);
746 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
747 	    KSTAT_DATA_ULONG);
748 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
749 	    KSTAT_DATA_ULONG);
750 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
751 	    KSTAT_DATA_ULONG);
752 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
753 	    KSTAT_DATA_ULONG);
754 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
755 	    KSTAT_DATA_ULONG);
756 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
757 	    KSTAT_DATA_ULONG);
758 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
759 	    KSTAT_DATA_ULONG);
760 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
767 	    KSTAT_DATA_ULONG);
768 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
769 	    KSTAT_DATA_ULONG);
770 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
771 	    KSTAT_DATA_ULONG);
772 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
773 	    KSTAT_DATA_ULONG);
774 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
775 	    KSTAT_DATA_ULONG);
776 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
777 	    KSTAT_DATA_ULONG);
778 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
779 	    KSTAT_DATA_ULONG);
780 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
781 	    KSTAT_DATA_ULONG);
782 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
783 	    KSTAT_DATA_ULONG);
784 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
785 	    KSTAT_DATA_ULONG);
786 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
787 	    KSTAT_DATA_ULONG);
788 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
789 	    KSTAT_DATA_ULONG);
790 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
791 	    KSTAT_DATA_ULONG);
792 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
793 	    KSTAT_DATA_ULONG);
794 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
795 	    KSTAT_DATA_ULONG);
796 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
797 	    KSTAT_DATA_ULONG);
798 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
799 	    KSTAT_DATA_ULONG);
800 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
801 	    KSTAT_DATA_ULONG);
802 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
803 	    KSTAT_DATA_ULONG);
804 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
805 	    KSTAT_DATA_ULONG);
806 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
807 	    KSTAT_DATA_ULONG);
808 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
809 	    KSTAT_DATA_ULONG);
810 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
811 	    KSTAT_DATA_ULONG);
812 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
813 	    KSTAT_DATA_ULONG);
814 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
815 	    KSTAT_DATA_ULONG);
816 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
817 	    KSTAT_DATA_ULONG);
818 
819 #ifdef E1000G_DEBUG
820 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
821 	    KSTAT_DATA_ULONG);
822 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
823 	    KSTAT_DATA_ULONG);
824 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
825 	    KSTAT_DATA_ULONG);
826 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
827 	    KSTAT_DATA_ULONG);
828 
829 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
830 	    KSTAT_DATA_ULONG);
831 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
832 	    KSTAT_DATA_ULONG);
833 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
834 	    KSTAT_DATA_ULONG);
835 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
836 	    KSTAT_DATA_ULONG);
837 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
838 	    KSTAT_DATA_ULONG);
839 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
840 	    KSTAT_DATA_ULONG);
841 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
842 	    KSTAT_DATA_ULONG);
843 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
844 	    KSTAT_DATA_ULONG);
845 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
846 	    KSTAT_DATA_ULONG);
847 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
848 	    KSTAT_DATA_ULONG);
849 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
850 	    KSTAT_DATA_ULONG);
851 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
852 	    KSTAT_DATA_ULONG);
853 #endif
854 
855 	/*
856 	 * Function to provide kernel stat update on demand
857 	 */
858 	ksp->ks_update = e1000g_update_stats;
859 
860 	/*
861 	 * Pointer into provider's raw statistics
862 	 */
863 	ksp->ks_private = (void *)Adapter;
864 
865 	/*
866 	 * Add kstat to systems kstat chain
867 	 */
868 	kstat_install(ksp);
869 
870 	return (DDI_SUCCESS);
871 }
872