1 /* 2 * This file is provided under a CDDLv1 license. When using or 3 * redistributing this file, you may do so under this license. 4 * In redistributing this file this license must be included 5 * and no other modification of this header file is permitted. 6 * 7 * CDDL LICENSE SUMMARY 8 * 9 * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved. 10 * 11 * The contents of this file are subject to the terms of Version 12 * 1.0 of the Common Development and Distribution License (the "License"). 13 * 14 * You should have received a copy of the License with this software. 15 * You can obtain a copy of the License at 16 * http://www.opensolaris.org/os/licensing. 17 * See the License for the specific language governing permissions 18 * and limitations under the License. 19 */ 20 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ********************************************************************** 28 * * 29 * Module Name: * 30 * e1000g_rx.c * 31 * * 32 * Abstract: * 33 * This file contains some routines that take care of Receive * 34 * interrupt and also for the received packets it sends up to * 35 * upper layer. * 36 * It tries to do a zero copy if free buffers are available in * 37 * the pool. * 38 * * 39 * ********************************************************************** 40 */ 41 42 #include "e1000g_sw.h" 43 #include "e1000g_debug.h" 44 45 static p_rx_sw_packet_t e1000g_get_buf(e1000g_rx_ring_t *rx_ring); 46 #pragma inline(e1000g_get_buf) 47 static void e1000g_priv_devi_list_clean(); 48 49 /* 50 * e1000g_rxfree_func - the call-back function to reclaim rx buffer 51 * 52 * This function is called when an mp is freed by the user thru 53 * freeb call (Only for mp constructed through desballoc call) 54 * It returns back the freed buffer to the freelist 55 */ 56 void 57 e1000g_rxfree_func(p_rx_sw_packet_t packet) 58 { 59 e1000g_rx_ring_t *rx_ring; 60 61 rx_ring = (e1000g_rx_ring_t *)(uintptr_t)packet->rx_ring; 62 63 /* 64 * Here the rx recycling processes different rx packets in different 65 * threads, so we protect it with RW_READER to ensure it won't block 66 * other rx recycling threads. 67 */ 68 rw_enter(&e1000g_rx_detach_lock, RW_READER); 69 70 if (packet->flag == E1000G_RX_SW_FREE) { 71 rw_exit(&e1000g_rx_detach_lock); 72 return; 73 } 74 75 if (packet->flag == E1000G_RX_SW_STOP) { 76 packet->flag = E1000G_RX_SW_FREE; 77 rw_exit(&e1000g_rx_detach_lock); 78 79 rw_enter(&e1000g_rx_detach_lock, RW_WRITER); 80 rx_ring->pending_count--; 81 e1000g_mblks_pending--; 82 83 if (rx_ring->pending_count == 0) { 84 while (rx_ring->pending_list != NULL) { 85 packet = rx_ring->pending_list; 86 rx_ring->pending_list = 87 rx_ring->pending_list->next; 88 89 ASSERT(packet->mp == NULL); 90 e1000g_free_rx_sw_packet(packet); 91 } 92 } 93 94 /* 95 * If e1000g_force_detach is enabled, we need to clean up 96 * the idle priv_dip entries in the private dip list while 97 * e1000g_mblks_pending is zero. 98 */ 99 if (e1000g_force_detach && (e1000g_mblks_pending == 0)) 100 e1000g_priv_devi_list_clean(); 101 rw_exit(&e1000g_rx_detach_lock); 102 return; 103 } 104 105 if (packet->flag == E1000G_RX_SW_DETACH) { 106 packet->flag = E1000G_RX_SW_FREE; 107 rw_exit(&e1000g_rx_detach_lock); 108 109 ASSERT(packet->mp == NULL); 110 e1000g_free_rx_sw_packet(packet); 111 112 /* 113 * Here the e1000g_mblks_pending may be modified by different 114 * rx recycling threads simultaneously, so we need to protect 115 * it with RW_WRITER. 116 */ 117 rw_enter(&e1000g_rx_detach_lock, RW_WRITER); 118 e1000g_mblks_pending--; 119 120 /* 121 * If e1000g_force_detach is enabled, we need to clean up 122 * the idle priv_dip entries in the private dip list while 123 * e1000g_mblks_pending is zero. 124 */ 125 if (e1000g_force_detach && (e1000g_mblks_pending == 0)) 126 e1000g_priv_devi_list_clean(); 127 rw_exit(&e1000g_rx_detach_lock); 128 return; 129 } 130 131 packet->flag = E1000G_RX_SW_FREE; 132 133 if (packet->mp == NULL) { 134 /* 135 * Allocate a mblk that binds to the data buffer 136 */ 137 packet->mp = desballoc((unsigned char *) 138 packet->rx_buf->address - E1000G_IPALIGNROOM, 139 packet->rx_buf->size + E1000G_IPALIGNROOM, 140 BPRI_MED, &packet->free_rtn); 141 142 if (packet->mp != NULL) { 143 packet->mp->b_rptr += E1000G_IPALIGNROOM; 144 packet->mp->b_wptr += E1000G_IPALIGNROOM; 145 } else { 146 E1000G_STAT(rx_ring->stat_esballoc_fail); 147 } 148 } 149 150 /* 151 * Enqueue the recycled packets in a recycle queue. When freelist 152 * dries up, move the entire chain of packets from recycle queue 153 * to freelist. This helps in avoiding per packet mutex contention 154 * around freelist. 155 */ 156 mutex_enter(&rx_ring->recycle_lock); 157 QUEUE_PUSH_TAIL(&rx_ring->recycle_list, &packet->Link); 158 rx_ring->recycle_freepkt++; 159 mutex_exit(&rx_ring->recycle_lock); 160 161 rw_exit(&e1000g_rx_detach_lock); 162 } 163 164 /* 165 * e1000g_priv_devi_list_clean - clean up e1000g_private_devi_list 166 * 167 * We will walk the e1000g_private_devi_list to free the entry marked 168 * with the E1000G_PRIV_DEVI_DETACH flag. 169 */ 170 static void 171 e1000g_priv_devi_list_clean() 172 { 173 private_devi_list_t *devi_node, *devi_del; 174 175 if (e1000g_private_devi_list == NULL) 176 return; 177 178 devi_node = e1000g_private_devi_list; 179 while ((devi_node != NULL) && 180 (devi_node->flag == E1000G_PRIV_DEVI_DETACH)) { 181 e1000g_private_devi_list = devi_node->next; 182 kmem_free(devi_node->priv_dip, 183 sizeof (struct dev_info)); 184 kmem_free(devi_node, 185 sizeof (private_devi_list_t)); 186 devi_node = e1000g_private_devi_list; 187 } 188 if (e1000g_private_devi_list == NULL) 189 return; 190 while (devi_node->next != NULL) { 191 if (devi_node->next->flag == E1000G_PRIV_DEVI_DETACH) { 192 devi_del = devi_node->next; 193 devi_node->next = devi_del->next; 194 kmem_free(devi_del->priv_dip, 195 sizeof (struct dev_info)); 196 kmem_free(devi_del, 197 sizeof (private_devi_list_t)); 198 } else { 199 devi_node = devi_node->next; 200 } 201 } 202 } 203 204 /* 205 * e1000g_rx_setup - setup rx data structures 206 * 207 * This routine initializes all of the receive related 208 * structures. This includes the receive descriptors, the 209 * actual receive buffers, and the rx_sw_packet software 210 * structures. 211 */ 212 void 213 e1000g_rx_setup(struct e1000g *Adapter) 214 { 215 struct e1000_hw *hw; 216 p_rx_sw_packet_t packet; 217 struct e1000_rx_desc *descriptor; 218 uint32_t buf_low; 219 uint32_t buf_high; 220 uint32_t reg_val; 221 uint32_t rctl; 222 uint32_t rxdctl; 223 uint32_t ert; 224 int i; 225 int size; 226 e1000g_rx_ring_t *rx_ring; 227 228 hw = &Adapter->shared; 229 rx_ring = Adapter->rx_ring; 230 231 /* 232 * zero out all of the receive buffer descriptor memory 233 * assures any previous data or status is erased 234 */ 235 bzero(rx_ring->rbd_area, 236 sizeof (struct e1000_rx_desc) * Adapter->rx_desc_num); 237 238 if (!Adapter->rx_buffer_setup) { 239 /* Init the list of "Receive Buffer" */ 240 QUEUE_INIT_LIST(&rx_ring->recv_list); 241 242 /* Init the list of "Free Receive Buffer" */ 243 QUEUE_INIT_LIST(&rx_ring->free_list); 244 245 /* Init the list of "Free Receive Buffer" */ 246 QUEUE_INIT_LIST(&rx_ring->recycle_list); 247 /* 248 * Setup Receive list and the Free list. Note that 249 * the both were allocated in one packet area. 250 */ 251 packet = rx_ring->packet_area; 252 descriptor = rx_ring->rbd_first; 253 254 for (i = 0; i < Adapter->rx_desc_num; 255 i++, packet = packet->next, descriptor++) { 256 ASSERT(packet != NULL); 257 ASSERT(descriptor != NULL); 258 descriptor->buffer_addr = 259 packet->rx_buf->dma_address; 260 261 /* Add this rx_sw_packet to the receive list */ 262 QUEUE_PUSH_TAIL(&rx_ring->recv_list, 263 &packet->Link); 264 } 265 266 for (i = 0; i < Adapter->rx_freelist_num; 267 i++, packet = packet->next) { 268 ASSERT(packet != NULL); 269 /* Add this rx_sw_packet to the free list */ 270 QUEUE_PUSH_TAIL(&rx_ring->free_list, 271 &packet->Link); 272 } 273 rx_ring->avail_freepkt = Adapter->rx_freelist_num; 274 rx_ring->recycle_freepkt = 0; 275 276 Adapter->rx_buffer_setup = B_TRUE; 277 } else { 278 /* Setup the initial pointer to the first rx descriptor */ 279 packet = (p_rx_sw_packet_t) 280 QUEUE_GET_HEAD(&rx_ring->recv_list); 281 descriptor = rx_ring->rbd_first; 282 283 for (i = 0; i < Adapter->rx_desc_num; i++) { 284 ASSERT(packet != NULL); 285 ASSERT(descriptor != NULL); 286 descriptor->buffer_addr = 287 packet->rx_buf->dma_address; 288 289 /* Get next rx_sw_packet */ 290 packet = (p_rx_sw_packet_t) 291 QUEUE_GET_NEXT(&rx_ring->recv_list, &packet->Link); 292 descriptor++; 293 } 294 } 295 296 E1000_WRITE_REG(&Adapter->shared, E1000_RDTR, Adapter->rx_intr_delay); 297 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 298 "E1000_RDTR: 0x%x\n", Adapter->rx_intr_delay); 299 if (hw->mac.type >= e1000_82540) { 300 E1000_WRITE_REG(&Adapter->shared, E1000_RADV, 301 Adapter->rx_intr_abs_delay); 302 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 303 "E1000_RADV: 0x%x\n", Adapter->rx_intr_abs_delay); 304 } 305 306 /* 307 * Setup our descriptor pointers 308 */ 309 rx_ring->rbd_next = rx_ring->rbd_first; 310 311 size = Adapter->rx_desc_num * sizeof (struct e1000_rx_desc); 312 E1000_WRITE_REG(hw, E1000_RDLEN(0), size); 313 size = E1000_READ_REG(hw, E1000_RDLEN(0)); 314 315 /* To get lower order bits */ 316 buf_low = (uint32_t)rx_ring->rbd_dma_addr; 317 /* To get the higher order bits */ 318 buf_high = (uint32_t)(rx_ring->rbd_dma_addr >> 32); 319 320 E1000_WRITE_REG(hw, E1000_RDBAH(0), buf_high); 321 E1000_WRITE_REG(hw, E1000_RDBAL(0), buf_low); 322 323 /* 324 * Setup our HW Rx Head & Tail descriptor pointers 325 */ 326 E1000_WRITE_REG(hw, E1000_RDT(0), 327 (uint32_t)(rx_ring->rbd_last - rx_ring->rbd_first)); 328 E1000_WRITE_REG(hw, E1000_RDH(0), 0); 329 330 /* 331 * Setup the Receive Control Register (RCTL), and ENABLE the 332 * receiver. The initial configuration is to: Enable the receiver, 333 * accept broadcasts, discard bad packets (and long packets), 334 * disable VLAN filter checking, set the receive descriptor 335 * minimum threshold size to 1/2, and the receive buffer size to 336 * 2k. 337 */ 338 rctl = E1000_RCTL_EN | /* Enable Receive Unit */ 339 E1000_RCTL_BAM | /* Accept Broadcast Packets */ 340 E1000_RCTL_LPE | /* Large Packet Enable bit */ 341 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) | 342 E1000_RCTL_RDMTS_HALF | 343 E1000_RCTL_LBM_NO; /* Loopback Mode = none */ 344 345 if (Adapter->strip_crc) 346 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC */ 347 348 if (Adapter->mem_workaround_82546 && 349 ((hw->mac.type == e1000_82545) || 350 (hw->mac.type == e1000_82546) || 351 (hw->mac.type == e1000_82546_rev_3))) { 352 rctl |= E1000_RCTL_SZ_2048; 353 } else { 354 if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_2K) && 355 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_4K)) 356 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 357 else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_4K) && 358 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_8K)) 359 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 360 else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) && 361 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_16K)) 362 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; 363 else 364 rctl |= E1000_RCTL_SZ_2048; 365 } 366 367 if (e1000_tbi_sbp_enabled_82543(hw)) 368 rctl |= E1000_RCTL_SBP; 369 370 /* 371 * Enable early receives on supported devices, only takes effect when 372 * packet size is equal or larger than the specified value (in 8 byte 373 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 374 */ 375 if ((hw->mac.type == e1000_82573) || 376 (hw->mac.type == e1000_82574) || 377 (hw->mac.type == e1000_ich9lan) || 378 (hw->mac.type == e1000_ich10lan)) { 379 380 ert = E1000_ERT_2048; 381 382 /* 383 * Special modification when ERT and 384 * jumbo frames are enabled 385 */ 386 if (Adapter->default_mtu > ETHERMTU) { 387 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 388 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 0x3); 389 ert |= (1 << 13); 390 } 391 392 E1000_WRITE_REG(hw, E1000_ERT, ert); 393 } 394 395 reg_val = 396 E1000_RXCSUM_TUOFL | /* TCP/UDP checksum offload Enable */ 397 E1000_RXCSUM_IPOFL; /* IP checksum offload Enable */ 398 399 E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val); 400 401 /* 402 * Workaround: Set bit 16 (IPv6_ExDIS) to disable the 403 * processing of received IPV6 extension headers 404 */ 405 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { 406 reg_val = E1000_READ_REG(hw, E1000_RFCTL); 407 reg_val |= (E1000_RFCTL_IPV6_EX_DIS | 408 E1000_RFCTL_NEW_IPV6_EXT_DIS); 409 E1000_WRITE_REG(hw, E1000_RFCTL, reg_val); 410 } 411 412 /* Write to enable the receive unit */ 413 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 414 } 415 416 /* 417 * e1000g_get_buf - get an rx sw packet from the free_list 418 */ 419 static p_rx_sw_packet_t 420 e1000g_get_buf(e1000g_rx_ring_t *rx_ring) 421 { 422 p_rx_sw_packet_t packet; 423 424 mutex_enter(&rx_ring->freelist_lock); 425 packet = (p_rx_sw_packet_t) 426 QUEUE_POP_HEAD(&rx_ring->free_list); 427 if (packet != NULL) { 428 rx_ring->avail_freepkt--; 429 } else { 430 /* 431 * If the freelist has no packets, check the recycle list 432 * to see if there are any available descriptor there. 433 */ 434 mutex_enter(&rx_ring->recycle_lock); 435 QUEUE_SWITCH(&rx_ring->free_list, &rx_ring->recycle_list); 436 rx_ring->avail_freepkt = rx_ring->recycle_freepkt; 437 rx_ring->recycle_freepkt = 0; 438 mutex_exit(&rx_ring->recycle_lock); 439 packet = (p_rx_sw_packet_t) 440 QUEUE_POP_HEAD(&rx_ring->free_list); 441 if (packet != NULL) 442 rx_ring->avail_freepkt--; 443 } 444 mutex_exit(&rx_ring->freelist_lock); 445 446 return (packet); 447 } 448 449 /* 450 * e1000g_receive - main receive routine 451 * 452 * This routine will process packets received in an interrupt 453 */ 454 mblk_t * 455 e1000g_receive(e1000g_rx_ring_t *rx_ring, mblk_t **tail, uint_t *sz) 456 { 457 struct e1000_hw *hw; 458 mblk_t *nmp; 459 mblk_t *ret_mp; 460 mblk_t *ret_nmp; 461 struct e1000_rx_desc *current_desc; 462 struct e1000_rx_desc *last_desc; 463 p_rx_sw_packet_t packet; 464 p_rx_sw_packet_t newpkt; 465 uint16_t length; 466 uint32_t pkt_count; 467 uint32_t desc_count; 468 boolean_t accept_frame; 469 boolean_t end_of_packet; 470 boolean_t need_copy; 471 struct e1000g *Adapter; 472 dma_buffer_t *rx_buf; 473 uint16_t cksumflags; 474 475 ret_mp = NULL; 476 ret_nmp = NULL; 477 pkt_count = 0; 478 desc_count = 0; 479 cksumflags = 0; 480 *sz = 0; 481 482 Adapter = rx_ring->adapter; 483 hw = &Adapter->shared; 484 485 /* Sync the Rx descriptor DMA buffers */ 486 (void) ddi_dma_sync(rx_ring->rbd_dma_handle, 487 0, 0, DDI_DMA_SYNC_FORKERNEL); 488 489 if (e1000g_check_dma_handle(rx_ring->rbd_dma_handle) != DDI_FM_OK) { 490 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 491 Adapter->chip_state = E1000G_ERROR; 492 } 493 494 current_desc = rx_ring->rbd_next; 495 if (!(current_desc->status & E1000_RXD_STAT_DD)) { 496 /* 497 * don't send anything up. just clear the RFD 498 */ 499 E1000G_DEBUG_STAT(rx_ring->stat_none); 500 return (ret_mp); 501 } 502 503 /* 504 * Loop through the receive descriptors starting at the last known 505 * descriptor owned by the hardware that begins a packet. 506 */ 507 while ((current_desc->status & E1000_RXD_STAT_DD) && 508 (pkt_count < Adapter->rx_limit_onintr)) { 509 510 desc_count++; 511 /* 512 * Now this can happen in Jumbo frame situation. 513 */ 514 if (current_desc->status & E1000_RXD_STAT_EOP) { 515 /* packet has EOP set */ 516 end_of_packet = B_TRUE; 517 } else { 518 /* 519 * If this received buffer does not have the 520 * End-Of-Packet bit set, the received packet 521 * will consume multiple buffers. We won't send this 522 * packet upstack till we get all the related buffers. 523 */ 524 end_of_packet = B_FALSE; 525 } 526 527 /* 528 * Get a pointer to the actual receive buffer 529 * The mp->b_rptr is mapped to The CurrentDescriptor 530 * Buffer Address. 531 */ 532 packet = 533 (p_rx_sw_packet_t)QUEUE_GET_HEAD(&rx_ring->recv_list); 534 ASSERT(packet != NULL); 535 536 rx_buf = packet->rx_buf; 537 538 length = current_desc->length; 539 540 #ifdef __sparc 541 if (packet->dma_type == USE_DVMA) 542 dvma_sync(rx_buf->dma_handle, 0, 543 DDI_DMA_SYNC_FORKERNEL); 544 else 545 (void) ddi_dma_sync(rx_buf->dma_handle, 546 E1000G_IPALIGNROOM, length, 547 DDI_DMA_SYNC_FORKERNEL); 548 #else 549 (void) ddi_dma_sync(rx_buf->dma_handle, 550 E1000G_IPALIGNROOM, length, 551 DDI_DMA_SYNC_FORKERNEL); 552 #endif 553 554 if (e1000g_check_dma_handle( 555 rx_buf->dma_handle) != DDI_FM_OK) { 556 ddi_fm_service_impact(Adapter->dip, 557 DDI_SERVICE_DEGRADED); 558 Adapter->chip_state = E1000G_ERROR; 559 } 560 561 accept_frame = (current_desc->errors == 0) || 562 ((current_desc->errors & 563 (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) != 0); 564 565 if (hw->mac.type == e1000_82543) { 566 unsigned char last_byte; 567 568 last_byte = 569 *((unsigned char *)rx_buf->address + length - 1); 570 571 if (TBI_ACCEPT(hw, 572 current_desc->status, current_desc->errors, 573 current_desc->length, last_byte, 574 Adapter->min_frame_size, Adapter->max_frame_size)) { 575 576 e1000_tbi_adjust_stats(Adapter, 577 length, hw->mac.addr); 578 579 length--; 580 accept_frame = B_TRUE; 581 } else if (e1000_tbi_sbp_enabled_82543(hw) && 582 (current_desc->errors == E1000_RXD_ERR_CE)) { 583 accept_frame = B_TRUE; 584 } 585 } 586 587 /* 588 * Indicate the packet to the NOS if it was good. 589 * Normally, hardware will discard bad packets for us. 590 * Check for the packet to be a valid Ethernet packet 591 */ 592 if (!accept_frame) { 593 /* 594 * error in incoming packet, either the packet is not a 595 * ethernet size packet, or the packet has an error. In 596 * either case, the packet will simply be discarded. 597 */ 598 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 599 "Process Receive Interrupts: Error in Packet\n"); 600 601 E1000G_STAT(rx_ring->stat_error); 602 /* 603 * Returning here as we are done here. There is 604 * no point in waiting for while loop to elapse 605 * and the things which were done. More efficient 606 * and less error prone... 607 */ 608 goto rx_drop; 609 } 610 611 /* 612 * If the Ethernet CRC is not stripped by the hardware, 613 * we need to strip it before sending it up to the stack. 614 */ 615 if (end_of_packet && !Adapter->strip_crc) { 616 if (length > ETHERFCSL) { 617 length -= ETHERFCSL; 618 } else { 619 /* 620 * If the fragment is smaller than the CRC, 621 * drop this fragment, do the processing of 622 * the end of the packet. 623 */ 624 ASSERT(rx_ring->rx_mblk_tail != NULL); 625 rx_ring->rx_mblk_tail->b_wptr -= 626 ETHERFCSL - length; 627 rx_ring->rx_mblk_len -= 628 ETHERFCSL - length; 629 630 QUEUE_POP_HEAD(&rx_ring->recv_list); 631 632 goto rx_end_of_packet; 633 } 634 } 635 636 need_copy = B_TRUE; 637 638 if (length <= Adapter->rx_bcopy_thresh) 639 goto rx_copy; 640 641 /* 642 * Get the pre-constructed mblk that was associated 643 * to the receive data buffer. 644 */ 645 if (packet->mp == NULL) { 646 packet->mp = desballoc((unsigned char *) 647 rx_buf->address - E1000G_IPALIGNROOM, 648 length + E1000G_IPALIGNROOM, 649 BPRI_MED, &packet->free_rtn); 650 651 if (packet->mp != NULL) { 652 packet->mp->b_rptr += E1000G_IPALIGNROOM; 653 packet->mp->b_wptr += E1000G_IPALIGNROOM; 654 } else { 655 E1000G_STAT(rx_ring->stat_esballoc_fail); 656 } 657 } 658 659 if (packet->mp != NULL) { 660 /* 661 * We have two sets of buffer pool. One associated with 662 * the Rxdescriptors and other a freelist buffer pool. 663 * Each time we get a good packet, Try to get a buffer 664 * from the freelist pool using e1000g_get_buf. If we 665 * get free buffer, then replace the descriptor buffer 666 * address with the free buffer we just got, and pass 667 * the pre-constructed mblk upstack. (note no copying) 668 * 669 * If we failed to get a free buffer, then try to 670 * allocate a new buffer(mp) and copy the recv buffer 671 * content to our newly allocated buffer(mp). Don't 672 * disturb the desriptor buffer address. (note copying) 673 */ 674 newpkt = e1000g_get_buf(rx_ring); 675 676 if (newpkt != NULL) { 677 /* 678 * Get the mblk associated to the data, 679 * and strip it off the sw packet. 680 */ 681 nmp = packet->mp; 682 packet->mp = NULL; 683 packet->flag = E1000G_RX_SW_SENDUP; 684 685 /* 686 * Now replace old buffer with the new 687 * one we got from free list 688 * Both the RxSwPacket as well as the 689 * Receive Buffer Descriptor will now 690 * point to this new packet. 691 */ 692 packet = newpkt; 693 694 current_desc->buffer_addr = 695 newpkt->rx_buf->dma_address; 696 697 need_copy = B_FALSE; 698 } else { 699 E1000G_DEBUG_STAT(rx_ring->stat_no_freepkt); 700 } 701 } 702 703 rx_copy: 704 if (need_copy) { 705 /* 706 * No buffers available on free list, 707 * bcopy the data from the buffer and 708 * keep the original buffer. Dont want to 709 * do this.. Yack but no other way 710 */ 711 if ((nmp = allocb(length + E1000G_IPALIGNROOM, 712 BPRI_MED)) == NULL) { 713 /* 714 * The system has no buffers available 715 * to send up the incoming packet, hence 716 * the packet will have to be processed 717 * when there're more buffers available. 718 */ 719 E1000G_STAT(rx_ring->stat_allocb_fail); 720 goto rx_drop; 721 } 722 nmp->b_rptr += E1000G_IPALIGNROOM; 723 nmp->b_wptr += E1000G_IPALIGNROOM; 724 /* 725 * The free list did not have any buffers 726 * available, so, the received packet will 727 * have to be copied into a mp and the original 728 * buffer will have to be retained for future 729 * packet reception. 730 */ 731 bcopy(rx_buf->address, nmp->b_wptr, length); 732 } 733 734 /* 735 * The rx_sw_packet MUST be popped off the 736 * RxSwPacketList before either a putnext or freemsg 737 * is done on the mp that has now been created by the 738 * desballoc. If not, it is possible that the free 739 * routine will get called from the interrupt context 740 * and try to put this packet on the free list 741 */ 742 (p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_ring->recv_list); 743 744 ASSERT(nmp != NULL); 745 nmp->b_wptr += length; 746 747 if (rx_ring->rx_mblk == NULL) { 748 /* 749 * TCP/UDP checksum offload and 750 * IP checksum offload 751 */ 752 if (!(current_desc->status & E1000_RXD_STAT_IXSM)) { 753 /* 754 * Check TCP/UDP checksum 755 */ 756 if ((current_desc->status & 757 E1000_RXD_STAT_TCPCS) && 758 !(current_desc->errors & 759 E1000_RXD_ERR_TCPE)) 760 cksumflags |= HCK_FULLCKSUM | 761 HCK_FULLCKSUM_OK; 762 /* 763 * Check IP Checksum 764 */ 765 if ((current_desc->status & 766 E1000_RXD_STAT_IPCS) && 767 !(current_desc->errors & 768 E1000_RXD_ERR_IPE)) 769 cksumflags |= HCK_IPV4_HDRCKSUM; 770 } 771 } 772 773 /* 774 * We need to maintain our packet chain in the global 775 * Adapter structure, for the Rx processing can end 776 * with a fragment that has no EOP set. 777 */ 778 if (rx_ring->rx_mblk == NULL) { 779 /* Get the head of the message chain */ 780 rx_ring->rx_mblk = nmp; 781 rx_ring->rx_mblk_tail = nmp; 782 rx_ring->rx_mblk_len = length; 783 } else { /* Not the first packet */ 784 /* Continue adding buffers */ 785 rx_ring->rx_mblk_tail->b_cont = nmp; 786 rx_ring->rx_mblk_tail = nmp; 787 rx_ring->rx_mblk_len += length; 788 } 789 ASSERT(rx_ring->rx_mblk != NULL); 790 ASSERT(rx_ring->rx_mblk_tail != NULL); 791 ASSERT(rx_ring->rx_mblk_tail->b_cont == NULL); 792 793 /* 794 * Now this MP is ready to travel upwards but some more 795 * fragments are coming. 796 * We will send packet upwards as soon as we get EOP 797 * set on the packet. 798 */ 799 if (!end_of_packet) { 800 /* 801 * continue to get the next descriptor, 802 * Tail would be advanced at the end 803 */ 804 goto rx_next_desc; 805 } 806 807 rx_end_of_packet: 808 /* 809 * Found packet with EOP 810 * Process the last fragment. 811 */ 812 if (cksumflags != 0) { 813 (void) hcksum_assoc(rx_ring->rx_mblk, 814 NULL, NULL, 0, 0, 0, 0, cksumflags, 0); 815 cksumflags = 0; 816 } 817 818 /* 819 * Count packets that span multi-descriptors 820 */ 821 E1000G_DEBUG_STAT_COND(rx_ring->stat_multi_desc, 822 (rx_ring->rx_mblk->b_cont != NULL)); 823 824 /* 825 * Append to list to send upstream 826 */ 827 if (ret_mp == NULL) { 828 ret_mp = ret_nmp = rx_ring->rx_mblk; 829 } else { 830 ret_nmp->b_next = rx_ring->rx_mblk; 831 ret_nmp = rx_ring->rx_mblk; 832 } 833 ret_nmp->b_next = NULL; 834 *tail = ret_nmp; 835 *sz += length; 836 837 rx_ring->rx_mblk = NULL; 838 rx_ring->rx_mblk_tail = NULL; 839 rx_ring->rx_mblk_len = 0; 840 841 pkt_count++; 842 843 rx_next_desc: 844 /* 845 * Zero out the receive descriptors status 846 */ 847 current_desc->status = 0; 848 849 if (current_desc == rx_ring->rbd_last) 850 rx_ring->rbd_next = rx_ring->rbd_first; 851 else 852 rx_ring->rbd_next++; 853 854 last_desc = current_desc; 855 current_desc = rx_ring->rbd_next; 856 857 /* 858 * Put the buffer that we just indicated back 859 * at the end of our list 860 */ 861 QUEUE_PUSH_TAIL(&rx_ring->recv_list, 862 &packet->Link); 863 } /* while loop */ 864 865 /* Sync the Rx descriptor DMA buffers */ 866 (void) ddi_dma_sync(rx_ring->rbd_dma_handle, 867 0, 0, DDI_DMA_SYNC_FORDEV); 868 869 /* 870 * Advance the E1000's Receive Queue #0 "Tail Pointer". 871 */ 872 E1000_WRITE_REG(hw, E1000_RDT(0), 873 (uint32_t)(last_desc - rx_ring->rbd_first)); 874 875 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 876 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 877 Adapter->chip_state = E1000G_ERROR; 878 } 879 880 Adapter->rx_pkt_cnt = pkt_count; 881 882 return (ret_mp); 883 884 rx_drop: 885 /* 886 * Zero out the receive descriptors status 887 */ 888 current_desc->status = 0; 889 890 /* Sync the Rx descriptor DMA buffers */ 891 (void) ddi_dma_sync(rx_ring->rbd_dma_handle, 892 0, 0, DDI_DMA_SYNC_FORDEV); 893 894 if (current_desc == rx_ring->rbd_last) 895 rx_ring->rbd_next = rx_ring->rbd_first; 896 else 897 rx_ring->rbd_next++; 898 899 last_desc = current_desc; 900 901 (p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_ring->recv_list); 902 903 QUEUE_PUSH_TAIL(&rx_ring->recv_list, &packet->Link); 904 /* 905 * Reclaim all old buffers already allocated during 906 * Jumbo receives.....for incomplete reception 907 */ 908 if (rx_ring->rx_mblk != NULL) { 909 freemsg(rx_ring->rx_mblk); 910 rx_ring->rx_mblk = NULL; 911 rx_ring->rx_mblk_tail = NULL; 912 rx_ring->rx_mblk_len = 0; 913 } 914 /* 915 * Advance the E1000's Receive Queue #0 "Tail Pointer". 916 */ 917 E1000_WRITE_REG(hw, E1000_RDT(0), 918 (uint32_t)(last_desc - rx_ring->rbd_first)); 919 920 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 921 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 922 Adapter->chip_state = E1000G_ERROR; 923 } 924 925 return (ret_mp); 926 } 927