xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision c7a079a873b863c236656bd0db7b2cf390841b4d)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet 5.2.13";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.2.13";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 
57 /*
58  * init and intr routines prototype
59  */
60 static int e1000g_resume(dev_info_t *);
61 static int e1000g_suspend(dev_info_t *);
62 static uint_t e1000g_intr_pciexpress(caddr_t);
63 static uint_t e1000g_intr(caddr_t);
64 static void e1000g_intr_work(struct e1000g *, uint32_t);
65 #pragma inline(e1000g_intr_work)
66 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
67 #pragma inline(e1000g_get_itr)
68 static int e1000g_init(struct e1000g *);
69 static int e1000g_start(struct e1000g *, boolean_t);
70 static void e1000g_stop(struct e1000g *, boolean_t);
71 static int e1000g_m_start(void *);
72 static void e1000g_m_stop(void *);
73 static int e1000g_m_promisc(void *, boolean_t);
74 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
75 static int e1000g_m_unicst(void *, const uint8_t *);
76 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
77 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
78 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
79 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
80 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
81 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
82 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
83     uint_t, const void *);
84 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
85     uint_t, uint_t, void *);
86 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
87     const void *);
88 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
89     uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
101 
102 /*
103  * Local routines
104  */
105 static void e1000g_tx_clean(struct e1000g *);
106 static void e1000g_rx_clean(struct e1000g *);
107 static void e1000g_link_timer(void *);
108 static void e1000g_local_timer(void *);
109 static boolean_t e1000g_link_check(struct e1000g *);
110 static boolean_t e1000g_stall_check(struct e1000g *);
111 static void e1000g_smartspeed(struct e1000g *);
112 static void e1000g_get_conf(struct e1000g *);
113 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
114 static void enable_watchdog_timer(struct e1000g *);
115 static void disable_watchdog_timer(struct e1000g *);
116 static void start_watchdog_timer(struct e1000g *);
117 static void restart_watchdog_timer(struct e1000g *);
118 static void stop_watchdog_timer(struct e1000g *);
119 static void stop_link_timer(struct e1000g *);
120 static void stop_82547_timer(e1000g_tx_ring_t *);
121 static void e1000g_force_speed_duplex(struct e1000g *);
122 static void e1000g_get_max_frame_size(struct e1000g *);
123 static boolean_t is_valid_mac_addr(uint8_t *);
124 static void e1000g_unattach(dev_info_t *, struct e1000g *);
125 #ifdef E1000G_DEBUG
126 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
127 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
128 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
130 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
131     struct iocblk *, mblk_t *);
132 #endif
133 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
134     struct iocblk *, mblk_t *);
135 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
136 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
137 static void e1000g_set_internal_loopback(struct e1000g *);
138 static void e1000g_set_external_loopback_1000(struct e1000g *);
139 static void e1000g_set_external_loopback_100(struct e1000g *);
140 static void e1000g_set_external_loopback_10(struct e1000g *);
141 static int e1000g_add_intrs(struct e1000g *);
142 static int e1000g_intr_add(struct e1000g *, int);
143 static int e1000g_rem_intrs(struct e1000g *);
144 static int e1000g_enable_intrs(struct e1000g *);
145 static int e1000g_disable_intrs(struct e1000g *);
146 static boolean_t e1000g_link_up(struct e1000g *);
147 #ifdef __sparc
148 static boolean_t e1000g_find_mac_address(struct e1000g *);
149 #endif
150 static void e1000g_get_phy_state(struct e1000g *);
151 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
152 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
153     const void *impl_data);
154 static void e1000g_fm_init(struct e1000g *Adapter);
155 static void e1000g_fm_fini(struct e1000g *Adapter);
156 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
157 static void e1000g_param_sync(struct e1000g *);
158 static void e1000g_get_driver_control(struct e1000_hw *);
159 static void e1000g_release_driver_control(struct e1000_hw *);
160 
161 mac_priv_prop_t e1000g_priv_props[] = {
162 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
164 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
167 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
168 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
169 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
170 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
171 	{"_intr_adaptive", MAC_PROP_PERM_RW},
172 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
173 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
174 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
175 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
176 };
177 #define	E1000G_MAX_PRIV_PROPS	\
178 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
179 
180 
181 static struct cb_ops cb_ws_ops = {
182 	nulldev,		/* cb_open */
183 	nulldev,		/* cb_close */
184 	nodev,			/* cb_strategy */
185 	nodev,			/* cb_print */
186 	nodev,			/* cb_dump */
187 	nodev,			/* cb_read */
188 	nodev,			/* cb_write */
189 	nodev,			/* cb_ioctl */
190 	nodev,			/* cb_devmap */
191 	nodev,			/* cb_mmap */
192 	nodev,			/* cb_segmap */
193 	nochpoll,		/* cb_chpoll */
194 	ddi_prop_op,		/* cb_prop_op */
195 	NULL,			/* cb_stream */
196 	D_MP | D_HOTPLUG,	/* cb_flag */
197 	CB_REV,			/* cb_rev */
198 	nodev,			/* cb_aread */
199 	nodev			/* cb_awrite */
200 };
201 
202 static struct dev_ops ws_ops = {
203 	DEVO_REV,		/* devo_rev */
204 	0,			/* devo_refcnt */
205 	NULL,			/* devo_getinfo */
206 	nulldev,		/* devo_identify */
207 	nulldev,		/* devo_probe */
208 	e1000g_attach,		/* devo_attach */
209 	e1000g_detach,		/* devo_detach */
210 	nodev,			/* devo_reset */
211 	&cb_ws_ops,		/* devo_cb_ops */
212 	NULL,			/* devo_bus_ops */
213 	ddi_power		/* devo_power */
214 };
215 
216 static struct modldrv modldrv = {
217 	&mod_driverops,		/* Type of module.  This one is a driver */
218 	ident,			/* Discription string */
219 	&ws_ops,		/* driver ops */
220 };
221 
222 static struct modlinkage modlinkage = {
223 	MODREV_1, &modldrv, NULL
224 };
225 
226 /* Access attributes for register mapping */
227 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_STRUCTURE_LE_ACC,
230 	DDI_STRICTORDER_ACC,
231 	DDI_FLAGERR_ACC
232 };
233 
234 #define	E1000G_M_CALLBACK_FLAGS \
235 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
236 
237 static mac_callbacks_t e1000g_m_callbacks = {
238 	E1000G_M_CALLBACK_FLAGS,
239 	e1000g_m_stat,
240 	e1000g_m_start,
241 	e1000g_m_stop,
242 	e1000g_m_promisc,
243 	e1000g_m_multicst,
244 	e1000g_m_unicst,
245 	e1000g_m_tx,
246 	NULL,
247 	e1000g_m_ioctl,
248 	e1000g_m_getcapab,
249 	NULL,
250 	NULL,
251 	e1000g_m_setprop,
252 	e1000g_m_getprop
253 };
254 
255 /*
256  * Global variables
257  */
258 uint32_t e1000g_mblks_pending = 0;
259 /*
260  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
261  * Here we maintain a private dev_info list if e1000g_force_detach is
262  * enabled. If we force the driver to detach while there are still some
263  * rx buffers retained in the upper layer, we have to keep a copy of the
264  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
265  * structure will be freed after the driver is detached. However when we
266  * finally free those rx buffers released by the upper layer, we need to
267  * refer to the dev_info to free the dma buffers. So we save a copy of
268  * the dev_info for this purpose. On x86 platform, we assume this copy
269  * of dev_info is always valid, but on SPARC platform, it could be invalid
270  * after the system board level DR operation. For this reason, the global
271  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
272  */
273 #ifdef __sparc
274 boolean_t e1000g_force_detach = B_FALSE;
275 #else
276 boolean_t e1000g_force_detach = B_TRUE;
277 #endif
278 private_devi_list_t *e1000g_private_devi_list = NULL;
279 
280 /*
281  * The rwlock is defined to protect the whole processing of rx recycling
282  * and the rx packets release in detach processing to make them mutually
283  * exclusive.
284  * The rx recycling processes different rx packets in different threads,
285  * so it will be protected with RW_READER and it won't block any other rx
286  * recycling threads.
287  * While the detach processing will be protected with RW_WRITER to make
288  * it mutually exclusive with the rx recycling.
289  */
290 krwlock_t e1000g_rx_detach_lock;
291 /*
292  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294  * If there are many e1000g instances, the system may run out of DVMA
295  * resources during the initialization of the instances, then the flag will
296  * be changed to "USE_DMA". Because different e1000g instances are initialized
297  * in parallel, we need to use this lock to protect the flag.
298  */
299 krwlock_t e1000g_dma_type_lock;
300 
301 /*
302  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
303  * Based on the information from Intel, the 82546 chipset has some hardware
304  * problem. When one port is being reset and the other port is trying to
305  * access the eeprom, it could cause system hang or panic. To workaround this
306  * hardware problem, we use a global mutex to prevent such operations from
307  * happening simultaneously on different instances. This workaround is applied
308  * to all the devices supported by this driver.
309  */
310 kmutex_t e1000g_nvm_lock;
311 
312 /*
313  * Loadable module configuration entry points for the driver
314  */
315 
316 /*
317  * _init - module initialization
318  */
319 int
320 _init(void)
321 {
322 	int status;
323 
324 	mac_init_ops(&ws_ops, WSNAME);
325 	status = mod_install(&modlinkage);
326 	if (status != DDI_SUCCESS)
327 		mac_fini_ops(&ws_ops);
328 	else {
329 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
330 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
331 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
332 	}
333 
334 	return (status);
335 }
336 
337 /*
338  * _fini - module finalization
339  */
340 int
341 _fini(void)
342 {
343 	int status;
344 
345 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
346 	if (e1000g_mblks_pending != 0) {
347 		rw_exit(&e1000g_rx_detach_lock);
348 		return (EBUSY);
349 	}
350 	rw_exit(&e1000g_rx_detach_lock);
351 
352 	status = mod_remove(&modlinkage);
353 	if (status == DDI_SUCCESS) {
354 		mac_fini_ops(&ws_ops);
355 
356 		if (e1000g_force_detach) {
357 			private_devi_list_t *devi_node;
358 
359 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
360 			while (e1000g_private_devi_list != NULL) {
361 				devi_node = e1000g_private_devi_list;
362 				e1000g_private_devi_list =
363 				    e1000g_private_devi_list->next;
364 
365 				kmem_free(devi_node->priv_dip,
366 				    sizeof (struct dev_info));
367 				kmem_free(devi_node,
368 				    sizeof (private_devi_list_t));
369 			}
370 			rw_exit(&e1000g_rx_detach_lock);
371 		}
372 
373 		rw_destroy(&e1000g_rx_detach_lock);
374 		rw_destroy(&e1000g_dma_type_lock);
375 		mutex_destroy(&e1000g_nvm_lock);
376 	}
377 
378 	return (status);
379 }
380 
381 /*
382  * _info - module information
383  */
384 int
385 _info(struct modinfo *modinfop)
386 {
387 	return (mod_info(&modlinkage, modinfop));
388 }
389 
390 /*
391  * e1000g_attach - driver attach
392  *
393  * This function is the device-specific initialization entry
394  * point. This entry point is required and must be written.
395  * The DDI_ATTACH command must be provided in the attach entry
396  * point. When attach() is called with cmd set to DDI_ATTACH,
397  * all normal kernel services (such as kmem_alloc(9F)) are
398  * available for use by the driver.
399  *
400  * The attach() function will be called once for each instance
401  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
402  * Until attach() succeeds, the only driver entry points which
403  * may be called are open(9E) and getinfo(9E).
404  */
405 static int
406 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
407 {
408 	struct e1000g *Adapter;
409 	struct e1000_hw *hw;
410 	struct e1000g_osdep *osdep;
411 	int instance;
412 
413 	switch (cmd) {
414 	default:
415 		e1000g_log(NULL, CE_WARN,
416 		    "Unsupported command send to e1000g_attach... ");
417 		return (DDI_FAILURE);
418 
419 	case DDI_RESUME:
420 		return (e1000g_resume(devinfo));
421 
422 	case DDI_ATTACH:
423 		break;
424 	}
425 
426 	/*
427 	 * get device instance number
428 	 */
429 	instance = ddi_get_instance(devinfo);
430 
431 	/*
432 	 * Allocate soft data structure
433 	 */
434 	Adapter =
435 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
436 
437 	Adapter->dip = devinfo;
438 	Adapter->instance = instance;
439 	Adapter->tx_ring->adapter = Adapter;
440 	Adapter->rx_ring->adapter = Adapter;
441 
442 	hw = &Adapter->shared;
443 	osdep = &Adapter->osdep;
444 	hw->back = osdep;
445 	osdep->adapter = Adapter;
446 
447 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
448 
449 	/*
450 	 * Initialize for fma support
451 	 */
452 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
453 	    0, 0x0f,
454 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
455 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
456 	e1000g_fm_init(Adapter);
457 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
458 
459 	/*
460 	 * PCI Configure
461 	 */
462 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
463 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
464 		goto attach_fail;
465 	}
466 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
467 
468 	/*
469 	 * Setup hardware
470 	 */
471 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
472 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
473 		goto attach_fail;
474 	}
475 
476 	/*
477 	 * Map in the device registers.
478 	 */
479 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
480 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
481 		goto attach_fail;
482 	}
483 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
484 
485 	/*
486 	 * Initialize driver parameters
487 	 */
488 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
489 		goto attach_fail;
490 	}
491 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
492 
493 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
494 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
495 		goto attach_fail;
496 	}
497 
498 	/*
499 	 * Initialize interrupts
500 	 */
501 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
502 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
503 		goto attach_fail;
504 	}
505 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
506 
507 	/*
508 	 * Initialize mutex's for this device.
509 	 * Do this before enabling the interrupt handler and
510 	 * register the softint to avoid the condition where
511 	 * interrupt handler can try using uninitialized mutex
512 	 */
513 	e1000g_init_locks(Adapter);
514 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
515 
516 	/*
517 	 * Initialize Driver Counters
518 	 */
519 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
520 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
521 		goto attach_fail;
522 	}
523 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
524 
525 	/*
526 	 * Initialize chip hardware and software structures
527 	 */
528 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
529 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
530 		goto attach_fail;
531 	}
532 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
533 
534 	/*
535 	 * Register the driver to the MAC
536 	 */
537 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
538 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
539 		goto attach_fail;
540 	}
541 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
542 
543 	/*
544 	 * Now that mutex locks are initialized, and the chip is also
545 	 * initialized, enable interrupts.
546 	 */
547 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
548 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
549 		goto attach_fail;
550 	}
551 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
552 
553 	/*
554 	 * If e1000g_force_detach is enabled, in global private dip list,
555 	 * we will create a new entry, which maintains the priv_dip for DR
556 	 * supports after driver detached.
557 	 */
558 	if (e1000g_force_detach) {
559 		private_devi_list_t *devi_node;
560 
561 		Adapter->priv_dip =
562 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
563 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
564 		    sizeof (struct dev_info));
565 
566 		devi_node =
567 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
568 
569 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
570 		devi_node->priv_dip = Adapter->priv_dip;
571 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
572 		devi_node->next = e1000g_private_devi_list;
573 		e1000g_private_devi_list = devi_node;
574 		rw_exit(&e1000g_rx_detach_lock);
575 	}
576 
577 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
578 
579 	return (DDI_SUCCESS);
580 
581 attach_fail:
582 	e1000g_unattach(devinfo, Adapter);
583 	return (DDI_FAILURE);
584 }
585 
586 static int
587 e1000g_register_mac(struct e1000g *Adapter)
588 {
589 	struct e1000_hw *hw = &Adapter->shared;
590 	mac_register_t *mac;
591 	int err;
592 
593 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
594 		return (DDI_FAILURE);
595 
596 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
597 	mac->m_driver = Adapter;
598 	mac->m_dip = Adapter->dip;
599 	mac->m_src_addr = hw->mac.addr;
600 	mac->m_callbacks = &e1000g_m_callbacks;
601 	mac->m_min_sdu = 0;
602 	mac->m_max_sdu = Adapter->default_mtu;
603 	mac->m_margin = VLAN_TAGSZ;
604 	mac->m_priv_props = e1000g_priv_props;
605 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
606 
607 	err = mac_register(mac, &Adapter->mh);
608 	mac_free(mac);
609 
610 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
611 }
612 
613 static int
614 e1000g_identify_hardware(struct e1000g *Adapter)
615 {
616 	struct e1000_hw *hw = &Adapter->shared;
617 	struct e1000g_osdep *osdep = &Adapter->osdep;
618 
619 	/* Get the device id */
620 	hw->vendor_id =
621 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
622 	hw->device_id =
623 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
624 	hw->revision_id =
625 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
626 	hw->subsystem_device_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
628 	hw->subsystem_vendor_id =
629 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
630 
631 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
632 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
633 		    "MAC type could not be set properly.");
634 		return (DDI_FAILURE);
635 	}
636 
637 	return (DDI_SUCCESS);
638 }
639 
640 static int
641 e1000g_regs_map(struct e1000g *Adapter)
642 {
643 	dev_info_t *devinfo = Adapter->dip;
644 	struct e1000_hw *hw = &Adapter->shared;
645 	struct e1000g_osdep *osdep = &Adapter->osdep;
646 	off_t mem_size;
647 
648 	/* Get size of adapter register memory */
649 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
650 	    DDI_SUCCESS) {
651 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
652 		    "ddi_dev_regsize for registers failed");
653 		return (DDI_FAILURE);
654 	}
655 
656 	/* Map adapter register memory */
657 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
658 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
659 	    &osdep->reg_handle)) != DDI_SUCCESS) {
660 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
661 		    "ddi_regs_map_setup for registers failed");
662 		goto regs_map_fail;
663 	}
664 
665 	/* ICH needs to map flash memory */
666 	if (hw->mac.type == e1000_ich8lan ||
667 	    hw->mac.type == e1000_ich9lan ||
668 	    hw->mac.type == e1000_ich10lan) {
669 		/* get flash size */
670 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
671 		    &mem_size) != DDI_SUCCESS) {
672 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
673 			    "ddi_dev_regsize for ICH flash failed");
674 			goto regs_map_fail;
675 		}
676 
677 		/* map flash in */
678 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
679 		    (caddr_t *)&hw->flash_address, 0,
680 		    mem_size, &e1000g_regs_acc_attr,
681 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
682 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
683 			    "ddi_regs_map_setup for ICH flash failed");
684 			goto regs_map_fail;
685 		}
686 	}
687 
688 	return (DDI_SUCCESS);
689 
690 regs_map_fail:
691 	if (osdep->reg_handle != NULL)
692 		ddi_regs_map_free(&osdep->reg_handle);
693 
694 	return (DDI_FAILURE);
695 }
696 
697 static int
698 e1000g_set_driver_params(struct e1000g *Adapter)
699 {
700 	struct e1000_hw *hw;
701 	uint32_t mem_bar, io_bar, bar64;
702 
703 	hw = &Adapter->shared;
704 
705 	/* Set MAC type and initialize hardware functions */
706 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
707 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
708 		    "Could not setup hardware functions");
709 		return (DDI_FAILURE);
710 	}
711 
712 	/* Get bus information */
713 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
714 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
715 		    "Could not get bus information");
716 		return (DDI_FAILURE);
717 	}
718 
719 	/* get mem_base addr */
720 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
721 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
722 
723 	/* get io_base addr */
724 	if (hw->mac.type >= e1000_82544) {
725 		if (bar64) {
726 			/* IO BAR is different for 64 bit BAR mode */
727 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
728 			    PCI_CONF_BASE4);
729 		} else {
730 			/* normal 32-bit BAR mode */
731 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
732 			    PCI_CONF_BASE2);
733 		}
734 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
735 	} else {
736 		/* no I/O access for adapters prior to 82544 */
737 		hw->io_base = 0x0;
738 	}
739 
740 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
741 
742 	hw->mac.autoneg_failed = B_TRUE;
743 
744 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
745 	hw->phy.autoneg_wait_to_complete = B_FALSE;
746 
747 	/* Adaptive IFS related changes */
748 	hw->mac.adaptive_ifs = B_TRUE;
749 
750 	/* Enable phy init script for IGP phy of 82541/82547 */
751 	if ((hw->mac.type == e1000_82547) ||
752 	    (hw->mac.type == e1000_82541) ||
753 	    (hw->mac.type == e1000_82547_rev_2) ||
754 	    (hw->mac.type == e1000_82541_rev_2))
755 		e1000_init_script_state_82541(hw, B_TRUE);
756 
757 	/* Enable the TTL workaround for 82541/82547 */
758 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
759 
760 #ifdef __sparc
761 	Adapter->strip_crc = B_TRUE;
762 #else
763 	Adapter->strip_crc = B_FALSE;
764 #endif
765 
766 	/* Get conf file properties */
767 	e1000g_get_conf(Adapter);
768 
769 	/* Get speed/duplex settings in conf file */
770 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
771 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
772 	e1000g_force_speed_duplex(Adapter);
773 
774 	/* Get Jumbo Frames settings in conf file */
775 	e1000g_get_max_frame_size(Adapter);
776 
777 	/* Set Rx/Tx buffer size */
778 	e1000g_set_bufsize(Adapter);
779 
780 	/* Master Latency Timer */
781 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
782 
783 	/* copper options */
784 	if (hw->phy.media_type == e1000_media_type_copper) {
785 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
786 		hw->phy.disable_polarity_correction = B_FALSE;
787 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
788 	}
789 
790 	/* The initial link state should be "unknown" */
791 	Adapter->link_state = LINK_STATE_UNKNOWN;
792 
793 	/* Initialize rx parameters */
794 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
795 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
796 
797 	/* Initialize tx parameters */
798 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
799 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
800 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
801 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
802 
803 	/* Initialize rx parameters */
804 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
805 
806 	return (DDI_SUCCESS);
807 }
808 
809 static void
810 e1000g_set_bufsize(struct e1000g *Adapter)
811 {
812 	struct e1000_mac_info *mac = &Adapter->shared.mac;
813 	uint64_t rx_size;
814 	uint64_t tx_size;
815 
816 #ifdef __sparc
817 	dev_info_t *devinfo = Adapter->dip;
818 	ulong_t iommu_pagesize;
819 
820 	/* Get the system page size */
821 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
822 	iommu_pagesize = dvma_pagesize(devinfo);
823 	if (iommu_pagesize != 0) {
824 		if (Adapter->sys_page_sz == iommu_pagesize) {
825 			if (iommu_pagesize > 0x4000)
826 				Adapter->sys_page_sz = 0x4000;
827 		} else {
828 			if (Adapter->sys_page_sz > iommu_pagesize)
829 				Adapter->sys_page_sz = iommu_pagesize;
830 		}
831 	}
832 	if (Adapter->lso_enable) {
833 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
834 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
835 	} else {
836 		Adapter->dvma_page_num = Adapter->max_frame_size /
837 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
838 	}
839 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
840 #endif
841 
842 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
843 
844 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
845 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
846 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
847 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
848 	    (rx_size <= FRAME_SIZE_UPTO_8K))
849 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
850 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
851 	    (rx_size <= FRAME_SIZE_UPTO_16K))
852 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
853 	else
854 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
855 
856 	tx_size = Adapter->max_frame_size;
857 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
858 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
859 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
860 	    (tx_size <= FRAME_SIZE_UPTO_8K))
861 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
862 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
863 	    (tx_size <= FRAME_SIZE_UPTO_16K))
864 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
865 	else
866 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
867 
868 	/*
869 	 * For Wiseman adapters we have an requirement of having receive
870 	 * buffers aligned at 256 byte boundary. Since Livengood does not
871 	 * require this and forcing it for all hardwares will have
872 	 * performance implications, I am making it applicable only for
873 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
874 	 * it is okay to have normal frames...but it does involve a
875 	 * potential risk where we may loose data if buffer is not
876 	 * aligned...so all wiseman boards to have 256 byte aligned
877 	 * buffers
878 	 */
879 	if (mac->type < e1000_82543)
880 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
881 	else
882 		Adapter->rx_buf_align = 1;
883 }
884 
885 /*
886  * e1000g_detach - driver detach
887  *
888  * The detach() function is the complement of the attach routine.
889  * If cmd is set to DDI_DETACH, detach() is used to remove  the
890  * state  associated  with  a  given  instance of a device node
891  * prior to the removal of that instance from the system.
892  *
893  * The detach() function will be called once for each  instance
894  * of the device for which there has been a successful attach()
895  * once there are no longer  any  opens  on  the  device.
896  *
897  * Interrupts routine are disabled, All memory allocated by this
898  * driver are freed.
899  */
900 static int
901 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
902 {
903 	struct e1000g *Adapter;
904 	boolean_t rx_drain;
905 
906 	switch (cmd) {
907 	default:
908 		return (DDI_FAILURE);
909 
910 	case DDI_SUSPEND:
911 		return (e1000g_suspend(devinfo));
912 
913 	case DDI_DETACH:
914 		break;
915 	}
916 
917 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
918 	if (Adapter == NULL)
919 		return (DDI_FAILURE);
920 
921 	if (mac_unregister(Adapter->mh) != 0) {
922 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
923 		return (DDI_FAILURE);
924 	}
925 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
926 
927 
928 	if (Adapter->chip_state != E1000G_STOP)
929 		e1000g_stop(Adapter, B_TRUE);
930 
931 	rx_drain = e1000g_rx_drain(Adapter);
932 
933 	/*
934 	 * If e1000g_force_detach is enabled, driver detach is safe.
935 	 * We will let e1000g_free_priv_devi_node routine determine
936 	 * whether we need to free the priv_dip entry for current
937 	 * driver instance.
938 	 */
939 	if (e1000g_force_detach) {
940 		e1000g_free_priv_devi_node(Adapter, rx_drain);
941 	} else {
942 		if (!rx_drain)
943 			return (DDI_FAILURE);
944 	}
945 
946 	e1000g_unattach(devinfo, Adapter);
947 
948 	return (DDI_SUCCESS);
949 }
950 
951 /*
952  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
953  *
954  * If free_flag is true, that indicates the upper layer is not holding
955  * the rx buffers, we could free the priv_dip entry safely.
956  *
957  * Otherwise, we have to keep this entry even after driver detached,
958  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
959  * so that driver could free it while all of rx buffers are returned
960  * by upper layer later.
961  */
962 static void
963 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
964 {
965 	private_devi_list_t *devi_node, *devi_del;
966 
967 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
968 	ASSERT(e1000g_private_devi_list != NULL);
969 	ASSERT(Adapter->priv_dip != NULL);
970 
971 	devi_node = e1000g_private_devi_list;
972 	if (devi_node->priv_dip == Adapter->priv_dip) {
973 		if (free_flag) {
974 			e1000g_private_devi_list =
975 			    devi_node->next;
976 			kmem_free(devi_node->priv_dip,
977 			    sizeof (struct dev_info));
978 			kmem_free(devi_node,
979 			    sizeof (private_devi_list_t));
980 		} else {
981 			ASSERT(e1000g_mblks_pending != 0);
982 			devi_node->flag =
983 			    E1000G_PRIV_DEVI_DETACH;
984 		}
985 		rw_exit(&e1000g_rx_detach_lock);
986 		return;
987 	}
988 
989 	devi_node = e1000g_private_devi_list;
990 	while (devi_node->next != NULL) {
991 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
992 			if (free_flag) {
993 				devi_del = devi_node->next;
994 				devi_node->next = devi_del->next;
995 				kmem_free(devi_del->priv_dip,
996 				    sizeof (struct dev_info));
997 				kmem_free(devi_del,
998 				    sizeof (private_devi_list_t));
999 			} else {
1000 				ASSERT(e1000g_mblks_pending != 0);
1001 				devi_node->next->flag =
1002 				    E1000G_PRIV_DEVI_DETACH;
1003 			}
1004 			break;
1005 		}
1006 		devi_node = devi_node->next;
1007 	}
1008 	rw_exit(&e1000g_rx_detach_lock);
1009 }
1010 
1011 static void
1012 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1013 {
1014 	int result;
1015 
1016 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1017 		(void) e1000g_disable_intrs(Adapter);
1018 	}
1019 
1020 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1021 		(void) mac_unregister(Adapter->mh);
1022 	}
1023 
1024 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1025 		(void) e1000g_rem_intrs(Adapter);
1026 	}
1027 
1028 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1029 		(void) ddi_prop_remove_all(devinfo);
1030 	}
1031 
1032 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1033 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1034 	}
1035 
1036 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1037 		stop_link_timer(Adapter);
1038 
1039 		mutex_enter(&e1000g_nvm_lock);
1040 		result = e1000_reset_hw(&Adapter->shared);
1041 		mutex_exit(&e1000g_nvm_lock);
1042 
1043 		if (result != E1000_SUCCESS) {
1044 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1045 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1046 		}
1047 	}
1048 
1049 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1050 		if (Adapter->osdep.reg_handle != NULL)
1051 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1052 		if (Adapter->osdep.ich_flash_handle != NULL)
1053 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1054 	}
1055 
1056 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1057 		if (Adapter->osdep.cfg_handle != NULL)
1058 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1059 	}
1060 
1061 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1062 		e1000g_destroy_locks(Adapter);
1063 	}
1064 
1065 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1066 		e1000g_fm_fini(Adapter);
1067 	}
1068 
1069 	e1000_remove_device(&Adapter->shared);
1070 
1071 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1072 
1073 	/*
1074 	 * Another hotplug spec requirement,
1075 	 * run ddi_set_driver_private(devinfo, null);
1076 	 */
1077 	ddi_set_driver_private(devinfo, NULL);
1078 }
1079 
1080 static void
1081 e1000g_init_locks(struct e1000g *Adapter)
1082 {
1083 	e1000g_tx_ring_t *tx_ring;
1084 	e1000g_rx_ring_t *rx_ring;
1085 
1086 	rw_init(&Adapter->chip_lock, NULL,
1087 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1088 	mutex_init(&Adapter->link_lock, NULL,
1089 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1090 	mutex_init(&Adapter->watchdog_lock, NULL,
1091 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1092 
1093 	tx_ring = Adapter->tx_ring;
1094 
1095 	mutex_init(&tx_ring->tx_lock, NULL,
1096 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1097 	mutex_init(&tx_ring->usedlist_lock, NULL,
1098 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1099 	mutex_init(&tx_ring->freelist_lock, NULL,
1100 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1101 
1102 	rx_ring = Adapter->rx_ring;
1103 
1104 	mutex_init(&rx_ring->rx_lock, NULL,
1105 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1106 	mutex_init(&rx_ring->freelist_lock, NULL,
1107 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1108 }
1109 
1110 static void
1111 e1000g_destroy_locks(struct e1000g *Adapter)
1112 {
1113 	e1000g_tx_ring_t *tx_ring;
1114 	e1000g_rx_ring_t *rx_ring;
1115 
1116 	tx_ring = Adapter->tx_ring;
1117 	mutex_destroy(&tx_ring->tx_lock);
1118 	mutex_destroy(&tx_ring->usedlist_lock);
1119 	mutex_destroy(&tx_ring->freelist_lock);
1120 
1121 	rx_ring = Adapter->rx_ring;
1122 	mutex_destroy(&rx_ring->rx_lock);
1123 	mutex_destroy(&rx_ring->freelist_lock);
1124 
1125 	mutex_destroy(&Adapter->link_lock);
1126 	mutex_destroy(&Adapter->watchdog_lock);
1127 	rw_destroy(&Adapter->chip_lock);
1128 }
1129 
1130 static int
1131 e1000g_resume(dev_info_t *devinfo)
1132 {
1133 	struct e1000g *Adapter;
1134 
1135 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1136 	if (Adapter == NULL)
1137 		return (DDI_FAILURE);
1138 
1139 	if (e1000g_start(Adapter, B_TRUE))
1140 		return (DDI_FAILURE);
1141 
1142 	return (DDI_SUCCESS);
1143 }
1144 
1145 static int
1146 e1000g_suspend(dev_info_t *devinfo)
1147 {
1148 	struct e1000g *Adapter;
1149 
1150 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1151 	if (Adapter == NULL)
1152 		return (DDI_FAILURE);
1153 
1154 	e1000g_stop(Adapter, B_TRUE);
1155 
1156 	return (DDI_SUCCESS);
1157 }
1158 
1159 static int
1160 e1000g_init(struct e1000g *Adapter)
1161 {
1162 	uint32_t pba;
1163 	uint32_t high_water;
1164 	struct e1000_hw *hw;
1165 	clock_t link_timeout;
1166 	int result;
1167 
1168 	hw = &Adapter->shared;
1169 
1170 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1171 
1172 	/*
1173 	 * reset to put the hardware in a known state
1174 	 * before we try to do anything with the eeprom
1175 	 */
1176 	mutex_enter(&e1000g_nvm_lock);
1177 	result = e1000_reset_hw(hw);
1178 	mutex_exit(&e1000g_nvm_lock);
1179 
1180 	if (result != E1000_SUCCESS) {
1181 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1182 		goto init_fail;
1183 	}
1184 
1185 	mutex_enter(&e1000g_nvm_lock);
1186 	result = e1000_validate_nvm_checksum(hw);
1187 	if (result < E1000_SUCCESS) {
1188 		/*
1189 		 * Some PCI-E parts fail the first check due to
1190 		 * the link being in sleep state.  Call it again,
1191 		 * if it fails a second time its a real issue.
1192 		 */
1193 		result = e1000_validate_nvm_checksum(hw);
1194 	}
1195 	mutex_exit(&e1000g_nvm_lock);
1196 
1197 	if (result < E1000_SUCCESS) {
1198 		e1000g_log(Adapter, CE_WARN,
1199 		    "Invalid NVM checksum. Please contact "
1200 		    "the vendor to update the NVM.");
1201 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1202 		goto init_fail;
1203 	}
1204 
1205 	result = 0;
1206 #ifdef __sparc
1207 	/*
1208 	 * First, we try to get the local ethernet address from OBP. If
1209 	 * failed, then we get it from the EEPROM of NIC card.
1210 	 */
1211 	result = e1000g_find_mac_address(Adapter);
1212 #endif
1213 	/* Get the local ethernet address. */
1214 	if (!result) {
1215 		mutex_enter(&e1000g_nvm_lock);
1216 		result = e1000_read_mac_addr(hw);
1217 		mutex_exit(&e1000g_nvm_lock);
1218 	}
1219 
1220 	if (result < E1000_SUCCESS) {
1221 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1222 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1223 		goto init_fail;
1224 	}
1225 
1226 	/* check for valid mac address */
1227 	if (!is_valid_mac_addr(hw->mac.addr)) {
1228 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1229 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1230 		goto init_fail;
1231 	}
1232 
1233 	/* Set LAA state for 82571 chipset */
1234 	e1000_set_laa_state_82571(hw, B_TRUE);
1235 
1236 	/* Master Latency Timer implementation */
1237 	if (Adapter->master_latency_timer) {
1238 		pci_config_put8(Adapter->osdep.cfg_handle,
1239 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1240 	}
1241 
1242 	if (hw->mac.type < e1000_82547) {
1243 		/*
1244 		 * Total FIFO is 64K
1245 		 */
1246 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1247 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1248 		else
1249 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1250 	} else if ((hw->mac.type == e1000_82571) ||
1251 	    (hw->mac.type == e1000_82572) ||
1252 	    (hw->mac.type == e1000_80003es2lan)) {
1253 		/*
1254 		 * Total FIFO is 48K
1255 		 */
1256 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1257 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1258 		else
1259 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1260 	} else if (hw->mac.type == e1000_82573) {
1261 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1262 	} else if (hw->mac.type == e1000_82574) {
1263 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1264 		pba = E1000_READ_REG(hw, E1000_PBA);
1265 	} else if (hw->mac.type == e1000_ich8lan) {
1266 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1267 	} else if (hw->mac.type == e1000_ich9lan) {
1268 		pba = E1000_PBA_10K;
1269 	} else if (hw->mac.type == e1000_ich10lan) {
1270 		pba = E1000_PBA_10K;
1271 	} else {
1272 		/*
1273 		 * Total FIFO is 40K
1274 		 */
1275 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1276 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1277 		else
1278 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1279 	}
1280 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1281 
1282 	/*
1283 	 * These parameters set thresholds for the adapter's generation(Tx)
1284 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1285 	 * settings.  Flow control is enabled or disabled in the configuration
1286 	 * file.
1287 	 * High-water mark is set down from the top of the rx fifo (not
1288 	 * sensitive to max_frame_size) and low-water is set just below
1289 	 * high-water mark.
1290 	 * The high water mark must be low enough to fit one full frame above
1291 	 * it in the rx FIFO.  Should be the lower of:
1292 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1293 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1294 	 * Rx FIFO size minus one full frame.
1295 	 */
1296 	high_water = min(((pba << 10) * 9 / 10),
1297 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan ||
1298 	    hw->mac.type == e1000_ich10lan) ?
1299 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1300 	    ((pba << 10) - Adapter->max_frame_size)));
1301 
1302 	hw->fc.high_water = high_water & 0xFFF8;
1303 	hw->fc.low_water = hw->fc.high_water - 8;
1304 
1305 	if (hw->mac.type == e1000_80003es2lan)
1306 		hw->fc.pause_time = 0xFFFF;
1307 	else
1308 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1309 	hw->fc.send_xon = B_TRUE;
1310 
1311 	/*
1312 	 * Reset the adapter hardware the second time.
1313 	 */
1314 	mutex_enter(&e1000g_nvm_lock);
1315 	result = e1000_reset_hw(hw);
1316 	mutex_exit(&e1000g_nvm_lock);
1317 
1318 	if (result != E1000_SUCCESS) {
1319 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1320 		goto init_fail;
1321 	}
1322 
1323 	/* disable wakeup control by default */
1324 	if (hw->mac.type >= e1000_82544)
1325 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1326 
1327 	/* MWI setup */
1328 	e1000_pci_set_mwi(hw);
1329 
1330 	/*
1331 	 * Configure/Initialize hardware
1332 	 */
1333 	mutex_enter(&e1000g_nvm_lock);
1334 	result = e1000_init_hw(hw);
1335 	mutex_exit(&e1000g_nvm_lock);
1336 
1337 	if (result < E1000_SUCCESS) {
1338 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1339 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1340 		goto init_fail;
1341 	}
1342 
1343 	/*
1344 	 * Restore LED settings to the default from EEPROM
1345 	 * to meet the standard for Sun platforms.
1346 	 */
1347 	(void) e1000_cleanup_led(hw);
1348 
1349 	/* Disable Smart Power Down */
1350 	phy_spd_state(hw, B_FALSE);
1351 
1352 	/* Make sure driver has control */
1353 	e1000g_get_driver_control(hw);
1354 
1355 	/*
1356 	 * Initialize unicast addresses.
1357 	 */
1358 	e1000g_init_unicst(Adapter);
1359 
1360 	/*
1361 	 * Setup and initialize the mctable structures.  After this routine
1362 	 * completes  Multicast table will be set
1363 	 */
1364 	e1000g_setup_multicast(Adapter);
1365 	msec_delay(5);
1366 
1367 	/*
1368 	 * Implement Adaptive IFS
1369 	 */
1370 	e1000_reset_adaptive(hw);
1371 
1372 	/* Setup Interrupt Throttling Register */
1373 	if (hw->mac.type >= e1000_82540) {
1374 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1375 	} else
1376 		Adapter->intr_adaptive = B_FALSE;
1377 
1378 	/* Start the timer for link setup */
1379 	if (hw->mac.autoneg)
1380 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1381 	else
1382 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1383 
1384 	mutex_enter(&Adapter->link_lock);
1385 	if (hw->phy.autoneg_wait_to_complete) {
1386 		Adapter->link_complete = B_TRUE;
1387 	} else {
1388 		Adapter->link_complete = B_FALSE;
1389 		Adapter->link_tid = timeout(e1000g_link_timer,
1390 		    (void *)Adapter, link_timeout);
1391 	}
1392 	mutex_exit(&Adapter->link_lock);
1393 
1394 	/* Enable PCI-Ex master */
1395 	if (hw->bus.type == e1000_bus_type_pci_express) {
1396 		e1000_enable_pciex_master(hw);
1397 	}
1398 
1399 	/* Save the state of the phy */
1400 	e1000g_get_phy_state(Adapter);
1401 
1402 	e1000g_param_sync(Adapter);
1403 
1404 	Adapter->init_count++;
1405 
1406 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1407 		goto init_fail;
1408 	}
1409 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1410 		goto init_fail;
1411 	}
1412 
1413 	rw_exit(&Adapter->chip_lock);
1414 
1415 	return (DDI_SUCCESS);
1416 
1417 init_fail:
1418 	rw_exit(&Adapter->chip_lock);
1419 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1420 	return (DDI_FAILURE);
1421 }
1422 
1423 /*
1424  * Check if the link is up
1425  */
1426 static boolean_t
1427 e1000g_link_up(struct e1000g *Adapter)
1428 {
1429 	struct e1000_hw *hw;
1430 	boolean_t link_up;
1431 
1432 	hw = &Adapter->shared;
1433 
1434 	(void) e1000_check_for_link(hw);
1435 
1436 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1437 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1438 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1439 	    (hw->mac.serdes_has_link))) {
1440 		link_up = B_TRUE;
1441 	} else {
1442 		link_up = B_FALSE;
1443 	}
1444 
1445 	return (link_up);
1446 }
1447 
1448 static void
1449 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1450 {
1451 	struct iocblk *iocp;
1452 	struct e1000g *e1000gp;
1453 	enum ioc_reply status;
1454 
1455 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1456 	iocp->ioc_error = 0;
1457 	e1000gp = (struct e1000g *)arg;
1458 
1459 	ASSERT(e1000gp);
1460 	if (e1000gp == NULL) {
1461 		miocnak(q, mp, 0, EINVAL);
1462 		return;
1463 	}
1464 
1465 	switch (iocp->ioc_cmd) {
1466 
1467 	case LB_GET_INFO_SIZE:
1468 	case LB_GET_INFO:
1469 	case LB_GET_MODE:
1470 	case LB_SET_MODE:
1471 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1472 		break;
1473 
1474 
1475 #ifdef E1000G_DEBUG
1476 	case E1000G_IOC_REG_PEEK:
1477 	case E1000G_IOC_REG_POKE:
1478 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1479 		break;
1480 	case E1000G_IOC_CHIP_RESET:
1481 		e1000gp->reset_count++;
1482 		if (e1000g_reset(e1000gp))
1483 			status = IOC_ACK;
1484 		else
1485 			status = IOC_INVAL;
1486 		break;
1487 #endif
1488 	default:
1489 		status = IOC_INVAL;
1490 		break;
1491 	}
1492 
1493 	/*
1494 	 * Decide how to reply
1495 	 */
1496 	switch (status) {
1497 	default:
1498 	case IOC_INVAL:
1499 		/*
1500 		 * Error, reply with a NAK and EINVAL or the specified error
1501 		 */
1502 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1503 		    EINVAL : iocp->ioc_error);
1504 		break;
1505 
1506 	case IOC_DONE:
1507 		/*
1508 		 * OK, reply already sent
1509 		 */
1510 		break;
1511 
1512 	case IOC_ACK:
1513 		/*
1514 		 * OK, reply with an ACK
1515 		 */
1516 		miocack(q, mp, 0, 0);
1517 		break;
1518 
1519 	case IOC_REPLY:
1520 		/*
1521 		 * OK, send prepared reply as ACK or NAK
1522 		 */
1523 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1524 		    M_IOCACK : M_IOCNAK;
1525 		qreply(q, mp);
1526 		break;
1527 	}
1528 }
1529 
1530 static int
1531 e1000g_m_start(void *arg)
1532 {
1533 	struct e1000g *Adapter = (struct e1000g *)arg;
1534 
1535 	return (e1000g_start(Adapter, B_TRUE));
1536 }
1537 
1538 static int
1539 e1000g_start(struct e1000g *Adapter, boolean_t global)
1540 {
1541 	if (global) {
1542 		/* Allocate dma resources for descriptors and buffers */
1543 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1544 			e1000g_log(Adapter, CE_WARN,
1545 			    "Alloc DMA resources failed");
1546 			return (ENOTACTIVE);
1547 		}
1548 		Adapter->rx_buffer_setup = B_FALSE;
1549 	}
1550 
1551 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1552 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1553 			e1000g_log(Adapter, CE_WARN,
1554 			    "Adapter initialization failed");
1555 			if (global)
1556 				e1000g_release_dma_resources(Adapter);
1557 			return (ENOTACTIVE);
1558 		}
1559 	}
1560 
1561 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1562 
1563 	/* Setup and initialize the transmit structures */
1564 	e1000g_tx_setup(Adapter);
1565 	msec_delay(5);
1566 
1567 	/* Setup and initialize the receive structures */
1568 	e1000g_rx_setup(Adapter);
1569 	msec_delay(5);
1570 
1571 	e1000g_mask_interrupt(Adapter);
1572 
1573 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1574 		rw_exit(&Adapter->chip_lock);
1575 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1576 		return (ENOTACTIVE);
1577 	}
1578 
1579 	Adapter->chip_state = E1000G_START;
1580 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1581 
1582 	rw_exit(&Adapter->chip_lock);
1583 
1584 	/* Enable and start the watchdog timer */
1585 	enable_watchdog_timer(Adapter);
1586 
1587 	return (0);
1588 }
1589 
1590 static void
1591 e1000g_m_stop(void *arg)
1592 {
1593 	struct e1000g *Adapter = (struct e1000g *)arg;
1594 
1595 	e1000g_stop(Adapter, B_TRUE);
1596 }
1597 
1598 static void
1599 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1600 {
1601 	int result;
1602 
1603 	/* Set stop flags */
1604 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1605 
1606 	Adapter->chip_state = E1000G_STOP;
1607 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1608 
1609 	rw_exit(&Adapter->chip_lock);
1610 
1611 	/* Drain tx sessions */
1612 	(void) e1000g_tx_drain(Adapter);
1613 
1614 	/* Disable and stop all the timers */
1615 	disable_watchdog_timer(Adapter);
1616 	stop_link_timer(Adapter);
1617 	stop_82547_timer(Adapter->tx_ring);
1618 
1619 	/* Stop the chip and release pending resources */
1620 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1621 
1622 	/* Tell firmware driver is no longer in control */
1623 	e1000g_release_driver_control(&Adapter->shared);
1624 
1625 	e1000g_clear_all_interrupts(Adapter);
1626 
1627 	mutex_enter(&e1000g_nvm_lock);
1628 	result = e1000_reset_hw(&Adapter->shared);
1629 	mutex_exit(&e1000g_nvm_lock);
1630 
1631 	if (result != E1000_SUCCESS) {
1632 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1633 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1634 	}
1635 
1636 	/* Release resources still held by the TX descriptors */
1637 	e1000g_tx_clean(Adapter);
1638 
1639 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1640 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1641 
1642 	/* Clean the pending rx jumbo packet fragment */
1643 	e1000g_rx_clean(Adapter);
1644 
1645 	rw_exit(&Adapter->chip_lock);
1646 
1647 	if (global)
1648 		e1000g_release_dma_resources(Adapter);
1649 }
1650 
1651 static void
1652 e1000g_rx_clean(struct e1000g *Adapter)
1653 {
1654 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1655 
1656 	if (rx_ring->rx_mblk != NULL) {
1657 		freemsg(rx_ring->rx_mblk);
1658 		rx_ring->rx_mblk = NULL;
1659 		rx_ring->rx_mblk_tail = NULL;
1660 		rx_ring->rx_mblk_len = 0;
1661 	}
1662 }
1663 
1664 static void
1665 e1000g_tx_clean(struct e1000g *Adapter)
1666 {
1667 	e1000g_tx_ring_t *tx_ring;
1668 	p_tx_sw_packet_t packet;
1669 	mblk_t *mp;
1670 	mblk_t *nmp;
1671 	uint32_t packet_count;
1672 
1673 	tx_ring = Adapter->tx_ring;
1674 
1675 	/*
1676 	 * Here we don't need to protect the lists using
1677 	 * the usedlist_lock and freelist_lock, for they
1678 	 * have been protected by the chip_lock.
1679 	 */
1680 	mp = NULL;
1681 	nmp = NULL;
1682 	packet_count = 0;
1683 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1684 	while (packet != NULL) {
1685 		if (packet->mp != NULL) {
1686 			/* Assemble the message chain */
1687 			if (mp == NULL) {
1688 				mp = packet->mp;
1689 				nmp = packet->mp;
1690 			} else {
1691 				nmp->b_next = packet->mp;
1692 				nmp = packet->mp;
1693 			}
1694 			/* Disconnect the message from the sw packet */
1695 			packet->mp = NULL;
1696 		}
1697 
1698 		e1000g_free_tx_swpkt(packet);
1699 		packet_count++;
1700 
1701 		packet = (p_tx_sw_packet_t)
1702 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1703 	}
1704 
1705 	if (mp != NULL)
1706 		freemsgchain(mp);
1707 
1708 	if (packet_count > 0) {
1709 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1710 		QUEUE_INIT_LIST(&tx_ring->used_list);
1711 
1712 		/* Setup TX descriptor pointers */
1713 		tx_ring->tbd_next = tx_ring->tbd_first;
1714 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1715 
1716 		/* Setup our HW Tx Head & Tail descriptor pointers */
1717 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1718 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1719 	}
1720 }
1721 
1722 static boolean_t
1723 e1000g_tx_drain(struct e1000g *Adapter)
1724 {
1725 	int i;
1726 	boolean_t done;
1727 	e1000g_tx_ring_t *tx_ring;
1728 
1729 	tx_ring = Adapter->tx_ring;
1730 
1731 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1732 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1733 		mutex_enter(&tx_ring->usedlist_lock);
1734 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1735 		mutex_exit(&tx_ring->usedlist_lock);
1736 
1737 		if (done)
1738 			break;
1739 
1740 		msec_delay(1);
1741 	}
1742 
1743 	return (done);
1744 }
1745 
1746 static boolean_t
1747 e1000g_rx_drain(struct e1000g *Adapter)
1748 {
1749 	e1000g_rx_ring_t *rx_ring;
1750 	p_rx_sw_packet_t packet;
1751 	boolean_t done;
1752 
1753 	rx_ring = Adapter->rx_ring;
1754 	done = B_TRUE;
1755 
1756 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1757 
1758 	while (rx_ring->pending_list != NULL) {
1759 		packet = rx_ring->pending_list;
1760 		rx_ring->pending_list =
1761 		    rx_ring->pending_list->next;
1762 
1763 		if (packet->flag == E1000G_RX_SW_STOP) {
1764 			packet->flag = E1000G_RX_SW_DETACH;
1765 			done = B_FALSE;
1766 		} else {
1767 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1768 			ASSERT(packet->mp == NULL);
1769 			e1000g_free_rx_sw_packet(packet);
1770 		}
1771 	}
1772 
1773 	rw_exit(&e1000g_rx_detach_lock);
1774 
1775 	return (done);
1776 }
1777 
1778 boolean_t
1779 e1000g_reset(struct e1000g *Adapter)
1780 {
1781 	e1000g_stop(Adapter, B_FALSE);
1782 
1783 	if (e1000g_start(Adapter, B_FALSE)) {
1784 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1785 		return (B_FALSE);
1786 	}
1787 
1788 	return (B_TRUE);
1789 }
1790 
1791 boolean_t
1792 e1000g_global_reset(struct e1000g *Adapter)
1793 {
1794 	e1000g_stop(Adapter, B_TRUE);
1795 
1796 	Adapter->init_count = 0;
1797 
1798 	if (e1000g_start(Adapter, B_TRUE)) {
1799 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1800 		return (B_FALSE);
1801 	}
1802 
1803 	return (B_TRUE);
1804 }
1805 
1806 /*
1807  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1808  *
1809  * This interrupt service routine is for PCI-Express adapters.
1810  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1811  * bit is set.
1812  */
1813 static uint_t
1814 e1000g_intr_pciexpress(caddr_t arg)
1815 {
1816 	struct e1000g *Adapter;
1817 	uint32_t icr;
1818 
1819 	Adapter = (struct e1000g *)(uintptr_t)arg;
1820 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1821 
1822 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1823 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1824 
1825 	if (icr & E1000_ICR_INT_ASSERTED) {
1826 		/*
1827 		 * E1000_ICR_INT_ASSERTED bit was set:
1828 		 * Read(Clear) the ICR, claim this interrupt,
1829 		 * look for work to do.
1830 		 */
1831 		e1000g_intr_work(Adapter, icr);
1832 		return (DDI_INTR_CLAIMED);
1833 	} else {
1834 		/*
1835 		 * E1000_ICR_INT_ASSERTED bit was not set:
1836 		 * Don't claim this interrupt, return immediately.
1837 		 */
1838 		return (DDI_INTR_UNCLAIMED);
1839 	}
1840 }
1841 
1842 /*
1843  * e1000g_intr - ISR for PCI/PCI-X chipsets
1844  *
1845  * This interrupt service routine is for PCI/PCI-X adapters.
1846  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1847  * bit is set or not.
1848  */
1849 static uint_t
1850 e1000g_intr(caddr_t arg)
1851 {
1852 	struct e1000g *Adapter;
1853 	uint32_t icr;
1854 
1855 	Adapter = (struct e1000g *)(uintptr_t)arg;
1856 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1857 
1858 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1859 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1860 
1861 	if (icr) {
1862 		/*
1863 		 * Any bit was set in ICR:
1864 		 * Read(Clear) the ICR, claim this interrupt,
1865 		 * look for work to do.
1866 		 */
1867 		e1000g_intr_work(Adapter, icr);
1868 		return (DDI_INTR_CLAIMED);
1869 	} else {
1870 		/*
1871 		 * No bit was set in ICR:
1872 		 * Don't claim this interrupt, return immediately.
1873 		 */
1874 		return (DDI_INTR_UNCLAIMED);
1875 	}
1876 }
1877 
1878 /*
1879  * e1000g_intr_work - actual processing of ISR
1880  *
1881  * Read(clear) the ICR contents and call appropriate interrupt
1882  * processing routines.
1883  */
1884 static void
1885 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1886 {
1887 	struct e1000_hw *hw;
1888 	hw = &Adapter->shared;
1889 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1890 	uint32_t itr;
1891 
1892 	Adapter->rx_pkt_cnt = 0;
1893 	Adapter->tx_pkt_cnt = 0;
1894 
1895 	rw_enter(&Adapter->chip_lock, RW_READER);
1896 	/*
1897 	 * Here we need to check the "chip_state" flag within the chip_lock to
1898 	 * ensure the receive routine will not execute when the adapter is
1899 	 * being reset.
1900 	 */
1901 	if (Adapter->chip_state != E1000G_START) {
1902 		rw_exit(&Adapter->chip_lock);
1903 		return;
1904 	}
1905 
1906 	if (icr & E1000_ICR_RXT0) {
1907 		mblk_t *mp;
1908 
1909 		mutex_enter(&Adapter->rx_ring->rx_lock);
1910 		mp = e1000g_receive(Adapter);
1911 		mutex_exit(&Adapter->rx_ring->rx_lock);
1912 
1913 		rw_exit(&Adapter->chip_lock);
1914 
1915 		if (mp != NULL)
1916 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1917 	} else
1918 		rw_exit(&Adapter->chip_lock);
1919 
1920 	if (icr & E1000_ICR_TXDW) {
1921 		if (!Adapter->tx_intr_enable)
1922 			e1000g_clear_tx_interrupt(Adapter);
1923 
1924 		/* Recycle the tx descriptors */
1925 		rw_enter(&Adapter->chip_lock, RW_READER);
1926 		(void) e1000g_recycle(tx_ring);
1927 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1928 		rw_exit(&Adapter->chip_lock);
1929 
1930 		/* Schedule the re-transmit */
1931 		if (tx_ring->resched_needed &&
1932 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1933 			tx_ring->resched_needed = B_FALSE;
1934 			mac_tx_update(Adapter->mh);
1935 			E1000G_STAT(tx_ring->stat_reschedule);
1936 		}
1937 	}
1938 
1939 	if (Adapter->intr_adaptive) {
1940 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1941 		    Adapter->intr_throttling_rate);
1942 		if (itr) {
1943 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1944 			Adapter->intr_throttling_rate = itr;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1950 	 * are checked to detect that the cable has been pulled out. For
1951 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1952 	 * are an indication that cable is not connected.
1953 	 */
1954 	if ((icr & E1000_ICR_RXSEQ) ||
1955 	    (icr & E1000_ICR_LSC) ||
1956 	    (icr & E1000_ICR_GPI_EN1)) {
1957 		boolean_t link_changed;
1958 		timeout_id_t tid = 0;
1959 
1960 		stop_watchdog_timer(Adapter);
1961 
1962 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1963 
1964 		/*
1965 		 * Because we got a link-status-change interrupt, force
1966 		 * e1000_check_for_link() to look at phy
1967 		 */
1968 		Adapter->shared.mac.get_link_status = B_TRUE;
1969 
1970 		/* e1000g_link_check takes care of link status change */
1971 		link_changed = e1000g_link_check(Adapter);
1972 
1973 		/* Get new phy state */
1974 		e1000g_get_phy_state(Adapter);
1975 
1976 		/*
1977 		 * If the link timer has not timed out, we'll not notify
1978 		 * the upper layer with any link state until the link is up.
1979 		 */
1980 		if (link_changed && !Adapter->link_complete) {
1981 			if (Adapter->link_state == LINK_STATE_UP) {
1982 				mutex_enter(&Adapter->link_lock);
1983 				Adapter->link_complete = B_TRUE;
1984 				tid = Adapter->link_tid;
1985 				Adapter->link_tid = 0;
1986 				mutex_exit(&Adapter->link_lock);
1987 			} else {
1988 				link_changed = B_FALSE;
1989 			}
1990 		}
1991 		rw_exit(&Adapter->chip_lock);
1992 
1993 		if (link_changed) {
1994 			if (tid != 0)
1995 				(void) untimeout(tid);
1996 
1997 			/*
1998 			 * Workaround for esb2. Data stuck in fifo on a link
1999 			 * down event. Stop receiver here and reset in watchdog.
2000 			 */
2001 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2002 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2003 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2004 				E1000_WRITE_REG(hw, E1000_RCTL,
2005 				    rctl & ~E1000_RCTL_EN);
2006 				e1000g_log(Adapter, CE_WARN,
2007 				    "ESB2 receiver disabled");
2008 				Adapter->esb2_workaround = B_TRUE;
2009 			}
2010 
2011 			mac_link_update(Adapter->mh, Adapter->link_state);
2012 		}
2013 
2014 		start_watchdog_timer(Adapter);
2015 	}
2016 }
2017 
2018 static uint32_t
2019 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2020 {
2021 	uint32_t new_itr;
2022 
2023 	/*
2024 	 * Determine a propper itr according to rx/tx packet count
2025 	 * per interrupt, the value of itr are based on document
2026 	 * and testing.
2027 	 */
2028 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2029 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2030 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2031 		goto itr_done;
2032 	}
2033 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2034 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2035 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2036 		goto itr_done;
2037 	}
2038 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2039 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2040 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2041 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2042 	} else
2043 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2044 
2045 itr_done:
2046 	if (cur_itr == new_itr)
2047 		return (0);
2048 	else
2049 		return (new_itr);
2050 }
2051 
2052 static void
2053 e1000g_init_unicst(struct e1000g *Adapter)
2054 {
2055 	struct e1000_hw *hw;
2056 	int slot;
2057 
2058 	hw = &Adapter->shared;
2059 
2060 	if (!Adapter->unicst_init) {
2061 		/* Initialize the multiple unicast addresses */
2062 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2063 
2064 		if ((hw->mac.type == e1000_82571) &&
2065 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2066 			Adapter->unicst_total--;
2067 
2068 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2069 
2070 		/* Store the default mac address */
2071 		e1000_rar_set(hw, hw->mac.addr, 0);
2072 		if ((hw->mac.type == e1000_82571) &&
2073 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2074 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2075 
2076 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2077 		    ETHERADDRL);
2078 		Adapter->unicst_addr[0].mac.set = 1;
2079 
2080 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2081 			Adapter->unicst_addr[slot].mac.set = 0;
2082 
2083 		Adapter->unicst_init = B_TRUE;
2084 	} else {
2085 		/* Recover the default mac address */
2086 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2087 		    ETHERADDRL);
2088 
2089 		/* Store the default mac address */
2090 		e1000_rar_set(hw, hw->mac.addr, 0);
2091 		if ((hw->mac.type == e1000_82571) &&
2092 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2093 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2094 
2095 		/* Re-configure the RAR registers */
2096 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2097 			e1000_rar_set(hw,
2098 			    Adapter->unicst_addr[slot].mac.addr, slot);
2099 	}
2100 
2101 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2102 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2103 }
2104 
2105 static int
2106 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2107 {
2108 	struct e1000g *Adapter;
2109 
2110 	Adapter = (struct e1000g *)arg;
2111 
2112 	/* Store the default MAC address */
2113 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2114 
2115 	/* Set MAC address in address slot 0, which is the default address */
2116 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2117 }
2118 
2119 static int
2120 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2121     mac_addr_slot_t slot)
2122 {
2123 	struct e1000_hw *hw;
2124 
2125 	hw = &Adapter->shared;
2126 
2127 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2128 
2129 	/*
2130 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2131 	 * that requires the receiver to be in reset when any of the
2132 	 * receive address registers (RAR regs) are accessed.  The first
2133 	 * rev of Wiseman silicon also requires MWI to be disabled when
2134 	 * a global reset or a receive reset is issued.  So before we
2135 	 * initialize the RARs, we check the rev of the Wiseman controller
2136 	 * and work around any necessary HW errata.
2137 	 */
2138 	if ((hw->mac.type == e1000_82542) &&
2139 	    (hw->revision_id == E1000_REVISION_2)) {
2140 		e1000_pci_clear_mwi(hw);
2141 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2142 		msec_delay(5);
2143 	}
2144 
2145 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2146 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2147 
2148 	if (slot == 0) {
2149 		if ((hw->mac.type == e1000_82571) &&
2150 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2151 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2152 	}
2153 
2154 	/*
2155 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2156 	 * put the receive in reset, and disabled MWI, to work around some
2157 	 * HW errata.  Now we should take the receiver out of reset, and
2158 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2159 	 */
2160 	if ((hw->mac.type == e1000_82542) &&
2161 	    (hw->revision_id == E1000_REVISION_2)) {
2162 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2163 		msec_delay(1);
2164 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2165 			e1000_pci_set_mwi(hw);
2166 		e1000g_rx_setup(Adapter);
2167 	}
2168 
2169 	rw_exit(&Adapter->chip_lock);
2170 
2171 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2172 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2173 		return (EIO);
2174 	}
2175 
2176 	return (0);
2177 }
2178 
2179 /*
2180  * e1000g_m_unicst_add() - will find an unused address slot, set the
2181  * address value to the one specified, reserve that slot and enable
2182  * the NIC to start filtering on the new MAC address.
2183  * Returns 0 on success.
2184  */
2185 static int
2186 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2187 {
2188 	struct e1000g *Adapter = (struct e1000g *)arg;
2189 	mac_addr_slot_t slot;
2190 	int err;
2191 
2192 	if (mac_unicst_verify(Adapter->mh,
2193 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2194 		return (EINVAL);
2195 
2196 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2197 	if (Adapter->unicst_avail == 0) {
2198 		/* no slots available */
2199 		rw_exit(&Adapter->chip_lock);
2200 		return (ENOSPC);
2201 	}
2202 
2203 	/*
2204 	 * Primary/default address is in slot 0. The next addresses
2205 	 * are the multiple MAC addresses. So multiple MAC address 0
2206 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2207 	 * MAC address resides in slot 1.
2208 	 */
2209 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2210 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2211 			Adapter->unicst_addr[slot].mac.set = 1;
2212 			break;
2213 		}
2214 	}
2215 
2216 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2217 
2218 	Adapter->unicst_avail--;
2219 	rw_exit(&Adapter->chip_lock);
2220 
2221 	maddr->mma_slot = slot;
2222 
2223 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2224 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2225 		Adapter->unicst_addr[slot].mac.set = 0;
2226 		Adapter->unicst_avail++;
2227 		rw_exit(&Adapter->chip_lock);
2228 	}
2229 
2230 	return (err);
2231 }
2232 
2233 /*
2234  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2235  * call to e1000g_m_unicst_add(). The slot number that was returned in
2236  * e1000g_m_unicst_add() is passed in the call to remove the address.
2237  * Returns 0 on success.
2238  */
2239 static int
2240 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2241 {
2242 	struct e1000g *Adapter = (struct e1000g *)arg;
2243 	int err;
2244 
2245 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2246 		return (EINVAL);
2247 
2248 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2249 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2250 		Adapter->unicst_addr[slot].mac.set = 0;
2251 		Adapter->unicst_avail++;
2252 		rw_exit(&Adapter->chip_lock);
2253 
2254 		/* Copy the default address to the passed slot */
2255 		if ((err = e1000g_unicst_set(Adapter,
2256 		    Adapter->unicst_addr[0].mac.addr, slot)) != 0) {
2257 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2258 			Adapter->unicst_addr[slot].mac.set = 1;
2259 			Adapter->unicst_avail--;
2260 			rw_exit(&Adapter->chip_lock);
2261 		}
2262 		return (err);
2263 	}
2264 	rw_exit(&Adapter->chip_lock);
2265 
2266 	return (EINVAL);
2267 }
2268 
2269 /*
2270  * e1000g_m_unicst_modify() - modifies the value of an address that
2271  * has been added by e1000g_m_unicst_add(). The new address, address
2272  * length and the slot number that was returned in the call to add
2273  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2274  * set to 0. Returns 0 on success.
2275  */
2276 static int
2277 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2278 {
2279 	struct e1000g *Adapter = (struct e1000g *)arg;
2280 	mac_addr_slot_t slot;
2281 
2282 	if (mac_unicst_verify(Adapter->mh,
2283 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2284 		return (EINVAL);
2285 
2286 	slot = maddr->mma_slot;
2287 
2288 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2289 		return (EINVAL);
2290 
2291 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2292 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2293 		rw_exit(&Adapter->chip_lock);
2294 
2295 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2296 	}
2297 	rw_exit(&Adapter->chip_lock);
2298 
2299 	return (EINVAL);
2300 }
2301 
2302 /*
2303  * e1000g_m_unicst_get() - will get the MAC address and all other
2304  * information related to the address slot passed in mac_multi_addr_t.
2305  * mma_flags should be set to 0 in the call.
2306  * On return, mma_flags can take the following values:
2307  * 1) MMAC_SLOT_UNUSED
2308  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2309  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2310  * 4) MMAC_SLOT_USED
2311  */
2312 static int
2313 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2314 {
2315 	struct e1000g *Adapter = (struct e1000g *)arg;
2316 	mac_addr_slot_t slot;
2317 
2318 	slot = maddr->mma_slot;
2319 
2320 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2321 		return (EINVAL);
2322 
2323 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2324 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2325 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2326 		    maddr->mma_addr, ETHERADDRL);
2327 		maddr->mma_flags = MMAC_SLOT_USED;
2328 	} else {
2329 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2330 	}
2331 	rw_exit(&Adapter->chip_lock);
2332 
2333 	return (0);
2334 }
2335 
2336 static int
2337 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2338 {
2339 	struct e1000_hw *hw = &Adapter->shared;
2340 	int res = 0;
2341 
2342 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2343 
2344 	if ((multiaddr[0] & 01) == 0) {
2345 		res = EINVAL;
2346 		goto done;
2347 	}
2348 
2349 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2350 		res = ENOENT;
2351 		goto done;
2352 	}
2353 
2354 	bcopy(multiaddr,
2355 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2356 	Adapter->mcast_count++;
2357 
2358 	/*
2359 	 * Update the MC table in the hardware
2360 	 */
2361 	e1000g_clear_interrupt(Adapter);
2362 
2363 	e1000g_setup_multicast(Adapter);
2364 
2365 	if ((hw->mac.type == e1000_82542) &&
2366 	    (hw->revision_id == E1000_REVISION_2))
2367 		e1000g_rx_setup(Adapter);
2368 
2369 	e1000g_mask_interrupt(Adapter);
2370 
2371 done:
2372 	rw_exit(&Adapter->chip_lock);
2373 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2374 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2375 		res = EIO;
2376 	}
2377 
2378 	return (res);
2379 }
2380 
2381 static int
2382 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2383 {
2384 	struct e1000_hw *hw = &Adapter->shared;
2385 	unsigned i;
2386 
2387 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2388 
2389 	for (i = 0; i < Adapter->mcast_count; i++) {
2390 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2391 		    ETHERADDRL) == 0) {
2392 			for (i++; i < Adapter->mcast_count; i++) {
2393 				Adapter->mcast_table[i - 1] =
2394 				    Adapter->mcast_table[i];
2395 			}
2396 			Adapter->mcast_count--;
2397 			break;
2398 		}
2399 	}
2400 
2401 	/*
2402 	 * Update the MC table in the hardware
2403 	 */
2404 	e1000g_clear_interrupt(Adapter);
2405 
2406 	e1000g_setup_multicast(Adapter);
2407 
2408 	if ((hw->mac.type == e1000_82542) &&
2409 	    (hw->revision_id == E1000_REVISION_2))
2410 		e1000g_rx_setup(Adapter);
2411 
2412 	e1000g_mask_interrupt(Adapter);
2413 
2414 done:
2415 	rw_exit(&Adapter->chip_lock);
2416 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2417 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2418 		return (EIO);
2419 	}
2420 
2421 	return (0);
2422 }
2423 
2424 /*
2425  * e1000g_setup_multicast - setup multicast data structures
2426  *
2427  * This routine initializes all of the multicast related structures.
2428  */
2429 void
2430 e1000g_setup_multicast(struct e1000g *Adapter)
2431 {
2432 	uint8_t *mc_addr_list;
2433 	uint32_t mc_addr_count;
2434 	uint32_t rctl;
2435 	struct e1000_hw *hw;
2436 
2437 	hw = &Adapter->shared;
2438 
2439 	/*
2440 	 * The e1000g has the ability to do perfect filtering of 16
2441 	 * addresses. The driver uses one of the e1000g's 16 receive
2442 	 * address registers for its node/network/mac/individual address.
2443 	 * So, we have room for up to 15 multicast addresses in the CAM,
2444 	 * additional MC addresses are handled by the MTA (Multicast Table
2445 	 * Array)
2446 	 */
2447 
2448 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2449 
2450 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2451 
2452 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2453 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2454 		    "Adapter requested more than %d MC Addresses.\n",
2455 		    MAX_NUM_MULTICAST_ADDRESSES);
2456 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2457 	} else {
2458 		/*
2459 		 * Set the number of MC addresses that we are being
2460 		 * requested to use
2461 		 */
2462 		mc_addr_count = Adapter->mcast_count;
2463 	}
2464 	/*
2465 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2466 	 * hang  while writing to the receive address registers if the receiver
2467 	 * is not in reset before writing to the registers. Updating the RAR
2468 	 * is done during the setting up of the multicast table, hence the
2469 	 * receiver has to be put in reset before updating the multicast table
2470 	 * and then taken out of reset at the end
2471 	 */
2472 	/*
2473 	 * if WMI was enabled then dis able it before issueing the global
2474 	 * reset to the hardware.
2475 	 */
2476 	/*
2477 	 * Only required for WISEMAN_2_0
2478 	 */
2479 	if ((hw->mac.type == e1000_82542) &&
2480 	    (hw->revision_id == E1000_REVISION_2)) {
2481 		e1000_pci_clear_mwi(hw);
2482 		/*
2483 		 * The e1000g must be in reset before changing any RA
2484 		 * registers. Reset receive unit.  The chip will remain in
2485 		 * the reset state until software explicitly restarts it.
2486 		 */
2487 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2488 		/* Allow receiver time to go in to reset */
2489 		msec_delay(5);
2490 	}
2491 
2492 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2493 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2494 
2495 	/*
2496 	 * Only for Wiseman_2_0
2497 	 * If MWI was enabled then re-enable it after issueing (as we
2498 	 * disabled it up there) the receive reset command.
2499 	 * Wainwright does not have a receive reset command and only thing
2500 	 * close to it is global reset which will require tx setup also
2501 	 */
2502 	if ((hw->mac.type == e1000_82542) &&
2503 	    (hw->revision_id == E1000_REVISION_2)) {
2504 		/*
2505 		 * if WMI was enabled then reenable it after issueing the
2506 		 * global or receive reset to the hardware.
2507 		 */
2508 
2509 		/*
2510 		 * Take receiver out of reset
2511 		 * clear E1000_RCTL_RST bit (and all others)
2512 		 */
2513 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2514 		msec_delay(5);
2515 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2516 			e1000_pci_set_mwi(hw);
2517 	}
2518 
2519 	/*
2520 	 * Restore original value
2521 	 */
2522 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2523 }
2524 
2525 int
2526 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2527 {
2528 	struct e1000g *Adapter = (struct e1000g *)arg;
2529 
2530 	return ((add) ? multicst_add(Adapter, addr)
2531 	    : multicst_remove(Adapter, addr));
2532 }
2533 
2534 int
2535 e1000g_m_promisc(void *arg, boolean_t on)
2536 {
2537 	struct e1000g *Adapter = (struct e1000g *)arg;
2538 	uint32_t rctl;
2539 
2540 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2541 
2542 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2543 
2544 	if (on)
2545 		rctl |=
2546 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2547 	else
2548 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2549 
2550 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2551 
2552 	Adapter->e1000g_promisc = on;
2553 
2554 	rw_exit(&Adapter->chip_lock);
2555 
2556 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2557 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2558 		return (EIO);
2559 	}
2560 
2561 	return (0);
2562 }
2563 
2564 static boolean_t
2565 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2566 {
2567 	struct e1000g *Adapter = (struct e1000g *)arg;
2568 
2569 	switch (cap) {
2570 	case MAC_CAPAB_HCKSUM: {
2571 		uint32_t *txflags = cap_data;
2572 
2573 		if (Adapter->tx_hcksum_enable)
2574 			*txflags = HCKSUM_IPHDRCKSUM |
2575 			    HCKSUM_INET_PARTIAL;
2576 		else
2577 			return (B_FALSE);
2578 		break;
2579 	}
2580 	case MAC_CAPAB_POLL:
2581 		/*
2582 		 * There's nothing for us to fill in, simply returning
2583 		 * B_TRUE stating that we support polling is sufficient.
2584 		 */
2585 		break;
2586 
2587 	case MAC_CAPAB_MULTIADDRESS: {
2588 		multiaddress_capab_t *mmacp = cap_data;
2589 
2590 		/*
2591 		 * The number of MAC addresses made available by
2592 		 * this capability is one less than the total as
2593 		 * the primary address in slot 0 is counted in
2594 		 * the total.
2595 		 */
2596 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2597 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2598 		/* No multiple factory addresses, set mma_flag to 0 */
2599 		mmacp->maddr_flag = 0;
2600 		mmacp->maddr_handle = Adapter;
2601 		mmacp->maddr_add = e1000g_m_unicst_add;
2602 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2603 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2604 		mmacp->maddr_get = e1000g_m_unicst_get;
2605 		mmacp->maddr_reserve = NULL;
2606 		break;
2607 	}
2608 
2609 	case MAC_CAPAB_LSO: {
2610 		mac_capab_lso_t *cap_lso = cap_data;
2611 
2612 		if (Adapter->lso_enable) {
2613 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2614 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2615 			    E1000_LSO_MAXLEN;
2616 		} else
2617 			return (B_FALSE);
2618 		break;
2619 	}
2620 
2621 	default:
2622 		return (B_FALSE);
2623 	}
2624 	return (B_TRUE);
2625 }
2626 
2627 static boolean_t
2628 e1000g_param_locked(mac_prop_id_t pr_num)
2629 {
2630 	/*
2631 	 * All en_* parameters are locked (read-only) while
2632 	 * the device is in any sort of loopback mode ...
2633 	 */
2634 	switch (pr_num) {
2635 		case MAC_PROP_EN_1000FDX_CAP:
2636 		case MAC_PROP_EN_1000HDX_CAP:
2637 		case MAC_PROP_EN_100FDX_CAP:
2638 		case MAC_PROP_EN_100HDX_CAP:
2639 		case MAC_PROP_EN_10FDX_CAP:
2640 		case MAC_PROP_EN_10HDX_CAP:
2641 		case MAC_PROP_AUTONEG:
2642 		case MAC_PROP_FLOWCTRL:
2643 			return (B_TRUE);
2644 	}
2645 	return (B_FALSE);
2646 }
2647 
2648 /*
2649  * callback function for set/get of properties
2650  */
2651 static int
2652 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2653     uint_t pr_valsize, const void *pr_val)
2654 {
2655 	struct e1000g *Adapter = arg;
2656 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2657 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2658 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2659 	int err = 0;
2660 	link_flowctrl_t flowctrl;
2661 	uint32_t cur_mtu, new_mtu;
2662 	uint64_t tmp = 0;
2663 
2664 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2665 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2666 	    e1000g_param_locked(pr_num)) {
2667 		/*
2668 		 * All en_* parameters are locked (read-only)
2669 		 * while the device is in any sort of loopback mode.
2670 		 */
2671 		rw_exit(&Adapter->chip_lock);
2672 		return (EBUSY);
2673 	}
2674 
2675 	switch (pr_num) {
2676 		case MAC_PROP_EN_1000FDX_CAP:
2677 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2678 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2679 			goto reset;
2680 		case MAC_PROP_EN_1000HDX_CAP:
2681 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2682 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2683 			goto reset;
2684 		case MAC_PROP_EN_100FDX_CAP:
2685 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2686 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2687 			goto reset;
2688 		case MAC_PROP_EN_100HDX_CAP:
2689 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2690 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2691 			goto reset;
2692 		case MAC_PROP_EN_10FDX_CAP:
2693 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2694 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2695 			goto reset;
2696 		case MAC_PROP_EN_10HDX_CAP:
2697 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2698 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2699 			goto reset;
2700 		case MAC_PROP_AUTONEG:
2701 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2702 			goto reset;
2703 		case MAC_PROP_FLOWCTRL:
2704 			fc->send_xon = B_TRUE;
2705 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2706 
2707 			switch (flowctrl) {
2708 			default:
2709 				err = EINVAL;
2710 				break;
2711 			case LINK_FLOWCTRL_NONE:
2712 				fc->type = e1000_fc_none;
2713 				break;
2714 			case LINK_FLOWCTRL_RX:
2715 				fc->type = e1000_fc_rx_pause;
2716 				break;
2717 			case LINK_FLOWCTRL_TX:
2718 				fc->type = e1000_fc_tx_pause;
2719 				break;
2720 			case LINK_FLOWCTRL_BI:
2721 				fc->type = e1000_fc_full;
2722 				break;
2723 			}
2724 reset:
2725 			if (err == 0) {
2726 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2727 					err = EINVAL;
2728 			}
2729 			break;
2730 		case MAC_PROP_ADV_1000FDX_CAP:
2731 		case MAC_PROP_ADV_1000HDX_CAP:
2732 		case MAC_PROP_ADV_100FDX_CAP:
2733 		case MAC_PROP_ADV_100HDX_CAP:
2734 		case MAC_PROP_ADV_10FDX_CAP:
2735 		case MAC_PROP_ADV_10HDX_CAP:
2736 		case MAC_PROP_STATUS:
2737 		case MAC_PROP_SPEED:
2738 		case MAC_PROP_DUPLEX:
2739 			err = ENOTSUP; /* read-only prop. Can't set this. */
2740 			break;
2741 		case MAC_PROP_MTU:
2742 			cur_mtu = Adapter->default_mtu;
2743 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2744 			if (new_mtu == cur_mtu) {
2745 				err = 0;
2746 				break;
2747 			}
2748 
2749 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2750 			    ETHERFCSL;
2751 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2752 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2753 				err = EINVAL;
2754 				break;
2755 			}
2756 
2757 			/* ich8 does not support jumbo frames */
2758 			if ((mac->type == e1000_ich8lan) &&
2759 			    (tmp > DEFAULT_FRAME_SIZE)) {
2760 				err = EINVAL;
2761 				break;
2762 			}
2763 			/* ich9 does not do jumbo frames on one phy type */
2764 			if ((mac->type == e1000_ich9lan) &&
2765 			    (phy->type == e1000_phy_ife) &&
2766 			    (tmp > DEFAULT_FRAME_SIZE)) {
2767 				err = EINVAL;
2768 				break;
2769 			}
2770 			if (Adapter->chip_state != E1000G_STOP) {
2771 				err = EBUSY;
2772 				break;
2773 			}
2774 
2775 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2776 			if (err == 0) {
2777 				Adapter->max_frame_size = (uint32_t)tmp;
2778 				Adapter->default_mtu = new_mtu;
2779 				e1000g_set_bufsize(Adapter);
2780 			}
2781 			break;
2782 		case MAC_PROP_PRIVATE:
2783 			err = e1000g_set_priv_prop(Adapter, pr_name,
2784 			    pr_valsize, pr_val);
2785 			break;
2786 		default:
2787 			err = ENOTSUP;
2788 			break;
2789 	}
2790 	rw_exit(&Adapter->chip_lock);
2791 	return (err);
2792 }
2793 
2794 static int
2795 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2796     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2797 {
2798 	struct e1000g *Adapter = arg;
2799 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2800 	int err = 0;
2801 	link_flowctrl_t flowctrl;
2802 	uint64_t tmp = 0;
2803 
2804 	if (pr_valsize == 0)
2805 		return (EINVAL);
2806 
2807 	bzero(pr_val, pr_valsize);
2808 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2809 		return (e1000g_get_def_val(Adapter, pr_num,
2810 		    pr_valsize, pr_val));
2811 	}
2812 
2813 	switch (pr_num) {
2814 		case MAC_PROP_DUPLEX:
2815 			if (pr_valsize >= sizeof (link_duplex_t)) {
2816 				bcopy(&Adapter->link_duplex, pr_val,
2817 				    sizeof (link_duplex_t));
2818 			} else
2819 				err = EINVAL;
2820 			break;
2821 		case MAC_PROP_SPEED:
2822 			if (pr_valsize >= sizeof (uint64_t)) {
2823 				tmp = Adapter->link_speed * 1000000ull;
2824 				bcopy(&tmp, pr_val, sizeof (tmp));
2825 			} else
2826 				err = EINVAL;
2827 			break;
2828 		case MAC_PROP_AUTONEG:
2829 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2830 			break;
2831 		case MAC_PROP_FLOWCTRL:
2832 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2833 				switch (fc->type) {
2834 					case e1000_fc_none:
2835 						flowctrl = LINK_FLOWCTRL_NONE;
2836 						break;
2837 					case e1000_fc_rx_pause:
2838 						flowctrl = LINK_FLOWCTRL_RX;
2839 						break;
2840 					case e1000_fc_tx_pause:
2841 						flowctrl = LINK_FLOWCTRL_TX;
2842 						break;
2843 					case e1000_fc_full:
2844 						flowctrl = LINK_FLOWCTRL_BI;
2845 						break;
2846 				}
2847 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2848 			} else
2849 				err = EINVAL;
2850 			break;
2851 		case MAC_PROP_ADV_1000FDX_CAP:
2852 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2853 			break;
2854 		case MAC_PROP_EN_1000FDX_CAP:
2855 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2856 			break;
2857 		case MAC_PROP_ADV_1000HDX_CAP:
2858 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2859 			break;
2860 		case MAC_PROP_EN_1000HDX_CAP:
2861 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2862 			break;
2863 		case MAC_PROP_ADV_100FDX_CAP:
2864 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2865 			break;
2866 		case MAC_PROP_EN_100FDX_CAP:
2867 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2868 			break;
2869 		case MAC_PROP_ADV_100HDX_CAP:
2870 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2871 			break;
2872 		case MAC_PROP_EN_100HDX_CAP:
2873 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2874 			break;
2875 		case MAC_PROP_ADV_10FDX_CAP:
2876 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2877 			break;
2878 		case MAC_PROP_EN_10FDX_CAP:
2879 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2880 			break;
2881 		case MAC_PROP_ADV_10HDX_CAP:
2882 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2883 			break;
2884 		case MAC_PROP_EN_10HDX_CAP:
2885 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2886 			break;
2887 		case MAC_PROP_ADV_100T4_CAP:
2888 		case MAC_PROP_EN_100T4_CAP:
2889 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2890 			break;
2891 		case MAC_PROP_PRIVATE:
2892 			err = e1000g_get_priv_prop(Adapter, pr_name,
2893 			    pr_flags, pr_valsize, pr_val);
2894 			break;
2895 		default:
2896 			err = ENOTSUP;
2897 			break;
2898 	}
2899 	return (err);
2900 }
2901 
2902 /* ARGSUSED2 */
2903 static int
2904 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2905     uint_t pr_valsize, const void *pr_val)
2906 {
2907 	int err = 0;
2908 	long result;
2909 	struct e1000_hw *hw = &Adapter->shared;
2910 
2911 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2912 		if (pr_val == NULL) {
2913 			err = EINVAL;
2914 			return (err);
2915 		}
2916 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2917 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2918 		    result > MAX_TX_BCOPY_THRESHOLD)
2919 			err = EINVAL;
2920 		else {
2921 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2922 		}
2923 		return (err);
2924 	}
2925 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2926 		if (pr_val == NULL) {
2927 			err = EINVAL;
2928 			return (err);
2929 		}
2930 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2931 		if (result < 0 || result > 1)
2932 			err = EINVAL;
2933 		else {
2934 			Adapter->tx_intr_enable = (result == 1) ?
2935 			    B_TRUE: B_FALSE;
2936 			if (Adapter->tx_intr_enable)
2937 				e1000g_mask_tx_interrupt(Adapter);
2938 			else
2939 				e1000g_clear_tx_interrupt(Adapter);
2940 			if (e1000g_check_acc_handle(
2941 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2942 				ddi_fm_service_impact(Adapter->dip,
2943 				    DDI_SERVICE_DEGRADED);
2944 		}
2945 		return (err);
2946 	}
2947 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2948 		if (pr_val == NULL) {
2949 			err = EINVAL;
2950 			return (err);
2951 		}
2952 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2953 		if (result < MIN_TX_INTR_DELAY ||
2954 		    result > MAX_TX_INTR_DELAY)
2955 			err = EINVAL;
2956 		else {
2957 			Adapter->tx_intr_delay = (uint32_t)result;
2958 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2959 			if (e1000g_check_acc_handle(
2960 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2961 				ddi_fm_service_impact(Adapter->dip,
2962 				    DDI_SERVICE_DEGRADED);
2963 		}
2964 		return (err);
2965 	}
2966 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2967 		if (pr_val == NULL) {
2968 			err = EINVAL;
2969 			return (err);
2970 		}
2971 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2972 		if (result < MIN_TX_INTR_ABS_DELAY ||
2973 		    result > MAX_TX_INTR_ABS_DELAY)
2974 			err = EINVAL;
2975 		else {
2976 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2977 			E1000_WRITE_REG(hw, E1000_TADV,
2978 			    Adapter->tx_intr_abs_delay);
2979 			if (e1000g_check_acc_handle(
2980 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2981 				ddi_fm_service_impact(Adapter->dip,
2982 				    DDI_SERVICE_DEGRADED);
2983 		}
2984 		return (err);
2985 	}
2986 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2987 		if (pr_val == NULL) {
2988 			err = EINVAL;
2989 			return (err);
2990 		}
2991 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2992 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2993 		    result > MAX_RX_BCOPY_THRESHOLD)
2994 			err = EINVAL;
2995 		else
2996 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2997 		return (err);
2998 	}
2999 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3000 		if (pr_val == NULL) {
3001 			err = EINVAL;
3002 			return (err);
3003 		}
3004 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3005 		if (result < MIN_RX_LIMIT_ON_INTR ||
3006 		    result > MAX_RX_LIMIT_ON_INTR)
3007 			err = EINVAL;
3008 		else
3009 			Adapter->rx_limit_onintr = (uint32_t)result;
3010 		return (err);
3011 	}
3012 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3013 		if (pr_val == NULL) {
3014 			err = EINVAL;
3015 			return (err);
3016 		}
3017 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3018 		if (result < MIN_RX_INTR_DELAY ||
3019 		    result > MAX_RX_INTR_DELAY)
3020 			err = EINVAL;
3021 		else {
3022 			Adapter->rx_intr_delay = (uint32_t)result;
3023 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3024 			if (e1000g_check_acc_handle(
3025 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3026 				ddi_fm_service_impact(Adapter->dip,
3027 				    DDI_SERVICE_DEGRADED);
3028 		}
3029 		return (err);
3030 	}
3031 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3032 		if (pr_val == NULL) {
3033 			err = EINVAL;
3034 			return (err);
3035 		}
3036 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3037 		if (result < MIN_RX_INTR_ABS_DELAY ||
3038 		    result > MAX_RX_INTR_ABS_DELAY)
3039 			err = EINVAL;
3040 		else {
3041 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3042 			E1000_WRITE_REG(hw, E1000_RADV,
3043 			    Adapter->rx_intr_abs_delay);
3044 			if (e1000g_check_acc_handle(
3045 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3046 				ddi_fm_service_impact(Adapter->dip,
3047 				    DDI_SERVICE_DEGRADED);
3048 		}
3049 		return (err);
3050 	}
3051 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3052 		if (pr_val == NULL) {
3053 			err = EINVAL;
3054 			return (err);
3055 		}
3056 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3057 		if (result < MIN_INTR_THROTTLING ||
3058 		    result > MAX_INTR_THROTTLING)
3059 			err = EINVAL;
3060 		else {
3061 			if (hw->mac.type >= e1000_82540) {
3062 				Adapter->intr_throttling_rate =
3063 				    (uint32_t)result;
3064 				E1000_WRITE_REG(hw, E1000_ITR,
3065 				    Adapter->intr_throttling_rate);
3066 				if (e1000g_check_acc_handle(
3067 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3068 					ddi_fm_service_impact(Adapter->dip,
3069 					    DDI_SERVICE_DEGRADED);
3070 			} else
3071 				err = EINVAL;
3072 		}
3073 		return (err);
3074 	}
3075 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3076 		if (pr_val == NULL) {
3077 			err = EINVAL;
3078 			return (err);
3079 		}
3080 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3081 		if (result < 0 || result > 1)
3082 			err = EINVAL;
3083 		else {
3084 			if (hw->mac.type >= e1000_82540) {
3085 				Adapter->intr_adaptive = (result == 1) ?
3086 				    B_TRUE : B_FALSE;
3087 			} else {
3088 				err = EINVAL;
3089 			}
3090 		}
3091 		return (err);
3092 	}
3093 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3094 		if (pr_val == NULL) {
3095 			err = EINVAL;
3096 			return (err);
3097 		}
3098 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3099 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3100 		    result > MAX_TX_RECYCLE_THRESHOLD)
3101 			err = EINVAL;
3102 		else
3103 			Adapter->tx_recycle_thresh = (uint32_t)result;
3104 		return (err);
3105 	}
3106 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3107 		if (pr_val == NULL) {
3108 			err = EINVAL;
3109 			return (err);
3110 		}
3111 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3112 		if (result < MIN_TX_RECYCLE_NUM ||
3113 		    result > MAX_TX_RECYCLE_NUM)
3114 			err = EINVAL;
3115 		else
3116 			Adapter->tx_recycle_num = (uint32_t)result;
3117 		return (err);
3118 	}
3119 	return (ENOTSUP);
3120 }
3121 
3122 static int
3123 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3124     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3125 {
3126 	int err = ENOTSUP;
3127 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3128 	int value;
3129 
3130 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3131 		if (is_default)
3132 			goto done;
3133 		value = Adapter->param_adv_pause;
3134 		err = 0;
3135 		goto done;
3136 	}
3137 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3138 		if (is_default)
3139 			goto done;
3140 		value = Adapter->param_adv_asym_pause;
3141 		err = 0;
3142 		goto done;
3143 	}
3144 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3145 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3146 		    Adapter->tx_bcopy_thresh);
3147 		err = 0;
3148 		goto done;
3149 	}
3150 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3151 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3152 		    Adapter->tx_intr_enable);
3153 		err = 0;
3154 		goto done;
3155 	}
3156 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3157 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3158 		    Adapter->tx_intr_delay);
3159 		err = 0;
3160 		goto done;
3161 	}
3162 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3163 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3164 		    Adapter->tx_intr_abs_delay);
3165 		err = 0;
3166 		goto done;
3167 	}
3168 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3169 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3170 		    Adapter->rx_bcopy_thresh);
3171 		err = 0;
3172 		goto done;
3173 	}
3174 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3175 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3176 		    Adapter->rx_limit_onintr);
3177 		err = 0;
3178 		goto done;
3179 	}
3180 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3181 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3182 		    Adapter->rx_intr_delay);
3183 		err = 0;
3184 		goto done;
3185 	}
3186 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3187 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3188 		    Adapter->rx_intr_abs_delay);
3189 		err = 0;
3190 		goto done;
3191 	}
3192 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3193 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3194 		    Adapter->intr_throttling_rate);
3195 		err = 0;
3196 		goto done;
3197 	}
3198 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3199 		value = (is_default ? 1 : Adapter->intr_adaptive);
3200 		err = 0;
3201 		goto done;
3202 	}
3203 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3204 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3205 		    Adapter->tx_recycle_thresh);
3206 		err = 0;
3207 		goto done;
3208 	}
3209 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3210 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3211 		    Adapter->tx_recycle_num);
3212 		err = 0;
3213 		goto done;
3214 	}
3215 done:
3216 	if (err == 0) {
3217 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3218 	}
3219 	return (err);
3220 }
3221 
3222 /*
3223  * e1000g_get_conf - get configurations set in e1000g.conf
3224  * This routine gets user-configured values out of the configuration
3225  * file e1000g.conf.
3226  *
3227  * For each configurable value, there is a minimum, a maximum, and a
3228  * default.
3229  * If user does not configure a value, use the default.
3230  * If user configures below the minimum, use the minumum.
3231  * If user configures above the maximum, use the maxumum.
3232  */
3233 static void
3234 e1000g_get_conf(struct e1000g *Adapter)
3235 {
3236 	struct e1000_hw *hw = &Adapter->shared;
3237 	boolean_t tbi_compatibility = B_FALSE;
3238 
3239 	/*
3240 	 * get each configurable property from e1000g.conf
3241 	 */
3242 
3243 	/*
3244 	 * NumTxDescriptors
3245 	 */
3246 	Adapter->tx_desc_num =
3247 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3248 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3249 	    DEFAULT_NUM_TX_DESCRIPTOR);
3250 
3251 	/*
3252 	 * NumRxDescriptors
3253 	 */
3254 	Adapter->rx_desc_num =
3255 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3256 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3257 	    DEFAULT_NUM_RX_DESCRIPTOR);
3258 
3259 	/*
3260 	 * NumRxFreeList
3261 	 */
3262 	Adapter->rx_freelist_num =
3263 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3264 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3265 	    DEFAULT_NUM_RX_FREELIST);
3266 
3267 	/*
3268 	 * NumTxPacketList
3269 	 */
3270 	Adapter->tx_freelist_num =
3271 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3272 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3273 	    DEFAULT_NUM_TX_FREELIST);
3274 
3275 	/*
3276 	 * FlowControl
3277 	 */
3278 	hw->fc.send_xon = B_TRUE;
3279 	hw->fc.type =
3280 	    e1000g_get_prop(Adapter, "FlowControl",
3281 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3282 	/* 4 is the setting that says "let the eeprom decide" */
3283 	if (hw->fc.type == 4)
3284 		hw->fc.type = e1000_fc_default;
3285 
3286 	/*
3287 	 * Max Num Receive Packets on Interrupt
3288 	 */
3289 	Adapter->rx_limit_onintr =
3290 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3291 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3292 	    DEFAULT_RX_LIMIT_ON_INTR);
3293 
3294 	/*
3295 	 * PHY master slave setting
3296 	 */
3297 	hw->phy.ms_type =
3298 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3299 	    e1000_ms_hw_default, e1000_ms_auto,
3300 	    e1000_ms_hw_default);
3301 
3302 	/*
3303 	 * Parameter which controls TBI mode workaround, which is only
3304 	 * needed on certain switches such as Cisco 6500/Foundry
3305 	 */
3306 	tbi_compatibility =
3307 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3308 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3309 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3310 
3311 	/*
3312 	 * MSI Enable
3313 	 */
3314 	Adapter->msi_enable =
3315 	    e1000g_get_prop(Adapter, "MSIEnable",
3316 	    0, 1, DEFAULT_MSI_ENABLE);
3317 
3318 	/*
3319 	 * Interrupt Throttling Rate
3320 	 */
3321 	Adapter->intr_throttling_rate =
3322 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3323 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3324 	    DEFAULT_INTR_THROTTLING);
3325 
3326 	/*
3327 	 * Adaptive Interrupt Blanking Enable/Disable
3328 	 * It is enabled by default
3329 	 */
3330 	Adapter->intr_adaptive =
3331 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3332 	    B_TRUE : B_FALSE;
3333 
3334 	/*
3335 	 * Tx recycle threshold
3336 	 */
3337 	Adapter->tx_recycle_thresh =
3338 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3339 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3340 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3341 
3342 	/*
3343 	 * Tx recycle descriptor number
3344 	 */
3345 	Adapter->tx_recycle_num =
3346 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3347 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3348 	    DEFAULT_TX_RECYCLE_NUM);
3349 
3350 	/*
3351 	 * Hardware checksum enable/disable parameter
3352 	 */
3353 	Adapter->tx_hcksum_enable =
3354 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3355 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3356 	/*
3357 	 * Checksum on/off selection via global parameters.
3358 	 *
3359 	 * If the chip is flagged as not capable of (correctly)
3360 	 * handling checksumming, we don't enable it on either
3361 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3362 	 * from the patchable global defaults.
3363 	 *
3364 	 * We advertise our capabilities only if TX offload is
3365 	 * enabled.  On receive, the stack will accept checksummed
3366 	 * packets anyway, even if we haven't said we can deliver
3367 	 * them.
3368 	 */
3369 	switch (hw->mac.type) {
3370 		case e1000_82540:
3371 		case e1000_82544:
3372 		case e1000_82545:
3373 		case e1000_82545_rev_3:
3374 		case e1000_82546:
3375 		case e1000_82546_rev_3:
3376 		case e1000_82571:
3377 		case e1000_82572:
3378 		case e1000_82573:
3379 		case e1000_80003es2lan:
3380 			break;
3381 		/*
3382 		 * For the following Intel PRO/1000 chipsets, we have not
3383 		 * tested the hardware checksum offload capability, so we
3384 		 * disable the capability for them.
3385 		 *	e1000_82542,
3386 		 *	e1000_82543,
3387 		 *	e1000_82541,
3388 		 *	e1000_82541_rev_2,
3389 		 *	e1000_82547,
3390 		 *	e1000_82547_rev_2,
3391 		 */
3392 		default:
3393 			Adapter->tx_hcksum_enable = B_FALSE;
3394 	}
3395 
3396 	/*
3397 	 * Large Send Offloading(LSO) Enable/Disable
3398 	 * If the tx hardware checksum is not enabled, LSO should be
3399 	 * disabled.
3400 	 */
3401 	Adapter->lso_enable =
3402 	    e1000g_get_prop(Adapter, "lso_enable",
3403 	    0, 1, DEFAULT_LSO_ENABLE);
3404 
3405 	switch (hw->mac.type) {
3406 		case e1000_82546:
3407 		case e1000_82546_rev_3:
3408 			if (Adapter->lso_enable)
3409 				Adapter->lso_premature_issue = B_TRUE;
3410 			/* FALLTHRU */
3411 		case e1000_82571:
3412 		case e1000_82572:
3413 		case e1000_82573:
3414 			break;
3415 		default:
3416 			Adapter->lso_enable = B_FALSE;
3417 	}
3418 
3419 	if (!Adapter->tx_hcksum_enable) {
3420 		Adapter->lso_premature_issue = B_FALSE;
3421 		Adapter->lso_enable = B_FALSE;
3422 	}
3423 }
3424 
3425 /*
3426  * e1000g_get_prop - routine to read properties
3427  *
3428  * Get a user-configure property value out of the configuration
3429  * file e1000g.conf.
3430  *
3431  * Caller provides name of the property, a default value, a minimum
3432  * value, and a maximum value.
3433  *
3434  * Return configured value of the property, with default, minimum and
3435  * maximum properly applied.
3436  */
3437 static int
3438 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3439     char *propname,		/* name of the property */
3440     int minval,			/* minimum acceptable value */
3441     int maxval,			/* maximim acceptable value */
3442     int defval)			/* default value */
3443 {
3444 	int propval;		/* value returned for requested property */
3445 	int *props;		/* point to array of properties returned */
3446 	uint_t nprops;		/* number of property value returned */
3447 
3448 	/*
3449 	 * get the array of properties from the config file
3450 	 */
3451 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3452 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3453 		/* got some properties, test if we got enough */
3454 		if (Adapter->instance < nprops) {
3455 			propval = props[Adapter->instance];
3456 		} else {
3457 			/* not enough properties configured */
3458 			propval = defval;
3459 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3460 			    "Not Enough %s values found in e1000g.conf"
3461 			    " - set to %d\n",
3462 			    propname, propval);
3463 		}
3464 
3465 		/* free memory allocated for properties */
3466 		ddi_prop_free(props);
3467 
3468 	} else {
3469 		propval = defval;
3470 	}
3471 
3472 	/*
3473 	 * enforce limits
3474 	 */
3475 	if (propval > maxval) {
3476 		propval = maxval;
3477 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3478 		    "Too High %s value in e1000g.conf - set to %d\n",
3479 		    propname, propval);
3480 	}
3481 
3482 	if (propval < minval) {
3483 		propval = minval;
3484 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3485 		    "Too Low %s value in e1000g.conf - set to %d\n",
3486 		    propname, propval);
3487 	}
3488 
3489 	return (propval);
3490 }
3491 
3492 static boolean_t
3493 e1000g_link_check(struct e1000g *Adapter)
3494 {
3495 	uint16_t speed, duplex, phydata;
3496 	boolean_t link_changed = B_FALSE;
3497 	struct e1000_hw *hw;
3498 	uint32_t reg_tarc;
3499 
3500 	hw = &Adapter->shared;
3501 
3502 	if (e1000g_link_up(Adapter)) {
3503 		/*
3504 		 * The Link is up, check whether it was marked as down earlier
3505 		 */
3506 		if (Adapter->link_state != LINK_STATE_UP) {
3507 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3508 			Adapter->link_speed = speed;
3509 			Adapter->link_duplex = duplex;
3510 			Adapter->link_state = LINK_STATE_UP;
3511 			link_changed = B_TRUE;
3512 
3513 			Adapter->tx_link_down_timeout = 0;
3514 
3515 			if ((hw->mac.type == e1000_82571) ||
3516 			    (hw->mac.type == e1000_82572)) {
3517 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3518 				if (speed == SPEED_1000)
3519 					reg_tarc |= (1 << 21);
3520 				else
3521 					reg_tarc &= ~(1 << 21);
3522 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3523 			}
3524 		}
3525 		Adapter->smartspeed = 0;
3526 	} else {
3527 		if (Adapter->link_state != LINK_STATE_DOWN) {
3528 			Adapter->link_speed = 0;
3529 			Adapter->link_duplex = 0;
3530 			Adapter->link_state = LINK_STATE_DOWN;
3531 			link_changed = B_TRUE;
3532 
3533 			/*
3534 			 * SmartSpeed workaround for Tabor/TanaX, When the
3535 			 * driver loses link disable auto master/slave
3536 			 * resolution.
3537 			 */
3538 			if (hw->phy.type == e1000_phy_igp) {
3539 				(void) e1000_read_phy_reg(hw,
3540 				    PHY_1000T_CTRL, &phydata);
3541 				phydata |= CR_1000T_MS_ENABLE;
3542 				(void) e1000_write_phy_reg(hw,
3543 				    PHY_1000T_CTRL, phydata);
3544 			}
3545 		} else {
3546 			e1000g_smartspeed(Adapter);
3547 		}
3548 
3549 		if (Adapter->chip_state == E1000G_START) {
3550 			if (Adapter->tx_link_down_timeout <
3551 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3552 				Adapter->tx_link_down_timeout++;
3553 			} else if (Adapter->tx_link_down_timeout ==
3554 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3555 				e1000g_tx_clean(Adapter);
3556 				Adapter->tx_link_down_timeout++;
3557 			}
3558 		}
3559 	}
3560 
3561 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3562 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3563 
3564 	return (link_changed);
3565 }
3566 
3567 /*
3568  * e1000g_reset_link - Using the link properties to setup the link
3569  */
3570 int
3571 e1000g_reset_link(struct e1000g *Adapter)
3572 {
3573 	struct e1000_mac_info *mac;
3574 	struct e1000_phy_info *phy;
3575 	boolean_t invalid;
3576 
3577 	mac = &Adapter->shared.mac;
3578 	phy = &Adapter->shared.phy;
3579 	invalid = B_FALSE;
3580 
3581 	if (Adapter->param_adv_autoneg == 1) {
3582 		mac->autoneg = B_TRUE;
3583 		phy->autoneg_advertised = 0;
3584 
3585 		/*
3586 		 * 1000hdx is not supported for autonegotiation
3587 		 */
3588 		if (Adapter->param_adv_1000fdx == 1)
3589 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3590 
3591 		if (Adapter->param_adv_100fdx == 1)
3592 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3593 
3594 		if (Adapter->param_adv_100hdx == 1)
3595 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3596 
3597 		if (Adapter->param_adv_10fdx == 1)
3598 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3599 
3600 		if (Adapter->param_adv_10hdx == 1)
3601 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3602 
3603 		if (phy->autoneg_advertised == 0)
3604 			invalid = B_TRUE;
3605 	} else {
3606 		mac->autoneg = B_FALSE;
3607 
3608 		/*
3609 		 * 1000fdx and 1000hdx are not supported for forced link
3610 		 */
3611 		if (Adapter->param_adv_100fdx == 1)
3612 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3613 		else if (Adapter->param_adv_100hdx == 1)
3614 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3615 		else if (Adapter->param_adv_10fdx == 1)
3616 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3617 		else if (Adapter->param_adv_10hdx == 1)
3618 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3619 		else
3620 			invalid = B_TRUE;
3621 
3622 	}
3623 
3624 	if (invalid) {
3625 		e1000g_log(Adapter, CE_WARN,
3626 		    "Invalid link sets. Setup link to"
3627 		    "support autonegotiation with all link capabilities.");
3628 		mac->autoneg = B_TRUE;
3629 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3630 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3631 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3632 	}
3633 
3634 	return (e1000_setup_link(&Adapter->shared));
3635 }
3636 
3637 static void
3638 e1000g_local_timer(void *ws)
3639 {
3640 	struct e1000g *Adapter = (struct e1000g *)ws;
3641 	struct e1000_hw *hw;
3642 	e1000g_ether_addr_t ether_addr;
3643 	boolean_t link_changed;
3644 
3645 	hw = &Adapter->shared;
3646 
3647 	if (Adapter->chip_state == E1000G_ERROR) {
3648 		Adapter->reset_count++;
3649 		if (e1000g_global_reset(Adapter))
3650 			ddi_fm_service_impact(Adapter->dip,
3651 			    DDI_SERVICE_RESTORED);
3652 		else
3653 			ddi_fm_service_impact(Adapter->dip,
3654 			    DDI_SERVICE_LOST);
3655 		return;
3656 	}
3657 
3658 	if (e1000g_stall_check(Adapter)) {
3659 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3660 		    "Tx stall detected. Activate automatic recovery.\n");
3661 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3662 		Adapter->reset_count++;
3663 		if (e1000g_reset(Adapter))
3664 			ddi_fm_service_impact(Adapter->dip,
3665 			    DDI_SERVICE_RESTORED);
3666 		else
3667 			ddi_fm_service_impact(Adapter->dip,
3668 			    DDI_SERVICE_LOST);
3669 		return;
3670 	}
3671 
3672 	link_changed = B_FALSE;
3673 	rw_enter(&Adapter->chip_lock, RW_READER);
3674 	if (Adapter->link_complete)
3675 		link_changed = e1000g_link_check(Adapter);
3676 	rw_exit(&Adapter->chip_lock);
3677 
3678 	if (link_changed)
3679 		mac_link_update(Adapter->mh, Adapter->link_state);
3680 
3681 	/*
3682 	 * Workaround for esb2. Data stuck in fifo on a link
3683 	 * down event. Reset the adapter to recover it.
3684 	 */
3685 	if (Adapter->esb2_workaround) {
3686 		Adapter->esb2_workaround = B_FALSE;
3687 		(void) e1000g_reset(Adapter);
3688 	}
3689 
3690 	/*
3691 	 * With 82571 controllers, any locally administered address will
3692 	 * be overwritten when there is a reset on the other port.
3693 	 * Detect this circumstance and correct it.
3694 	 */
3695 	if ((hw->mac.type == e1000_82571) &&
3696 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3697 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3698 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3699 
3700 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3701 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3702 
3703 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3704 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3705 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3706 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3707 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3708 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3709 			e1000_rar_set(hw, hw->mac.addr, 0);
3710 		}
3711 	}
3712 
3713 	/*
3714 	 * Long TTL workaround for 82541/82547
3715 	 */
3716 	(void) e1000_igp_ttl_workaround_82547(hw);
3717 
3718 	/*
3719 	 * Check for Adaptive IFS settings If there are lots of collisions
3720 	 * change the value in steps...
3721 	 * These properties should only be set for 10/100
3722 	 */
3723 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3724 	    ((Adapter->link_speed == SPEED_100) ||
3725 	    (Adapter->link_speed == SPEED_10))) {
3726 		e1000_update_adaptive(hw);
3727 	}
3728 	/*
3729 	 * Set Timer Interrupts
3730 	 */
3731 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3732 
3733 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3734 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3735 
3736 	restart_watchdog_timer(Adapter);
3737 }
3738 
3739 /*
3740  * The function e1000g_link_timer() is called when the timer for link setup
3741  * is expired, which indicates the completion of the link setup. The link
3742  * state will not be updated until the link setup is completed. And the
3743  * link state will not be sent to the upper layer through mac_link_update()
3744  * in this function. It will be updated in the local timer routine or the
3745  * interrupt service routine after the interface is started (plumbed).
3746  */
3747 static void
3748 e1000g_link_timer(void *arg)
3749 {
3750 	struct e1000g *Adapter = (struct e1000g *)arg;
3751 
3752 	mutex_enter(&Adapter->link_lock);
3753 	Adapter->link_complete = B_TRUE;
3754 	Adapter->link_tid = 0;
3755 	mutex_exit(&Adapter->link_lock);
3756 }
3757 
3758 /*
3759  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3760  *
3761  * This function read the forced speed and duplex for 10/100 Mbps speeds
3762  * and also for 1000 Mbps speeds from the e1000g.conf file
3763  */
3764 static void
3765 e1000g_force_speed_duplex(struct e1000g *Adapter)
3766 {
3767 	int forced;
3768 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3769 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3770 
3771 	/*
3772 	 * get value out of config file
3773 	 */
3774 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3775 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3776 
3777 	switch (forced) {
3778 	case GDIAG_10_HALF:
3779 		/*
3780 		 * Disable Auto Negotiation
3781 		 */
3782 		mac->autoneg = B_FALSE;
3783 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3784 		break;
3785 	case GDIAG_10_FULL:
3786 		/*
3787 		 * Disable Auto Negotiation
3788 		 */
3789 		mac->autoneg = B_FALSE;
3790 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3791 		break;
3792 	case GDIAG_100_HALF:
3793 		/*
3794 		 * Disable Auto Negotiation
3795 		 */
3796 		mac->autoneg = B_FALSE;
3797 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3798 		break;
3799 	case GDIAG_100_FULL:
3800 		/*
3801 		 * Disable Auto Negotiation
3802 		 */
3803 		mac->autoneg = B_FALSE;
3804 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3805 		break;
3806 	case GDIAG_1000_FULL:
3807 		/*
3808 		 * The gigabit spec requires autonegotiation.  Therefore,
3809 		 * when the user wants to force the speed to 1000Mbps, we
3810 		 * enable AutoNeg, but only allow the harware to advertise
3811 		 * 1000Mbps.  This is different from 10/100 operation, where
3812 		 * we are allowed to link without any negotiation.
3813 		 */
3814 		mac->autoneg = B_TRUE;
3815 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3816 		break;
3817 	default:	/* obey the setting of AutoNegAdvertised */
3818 		mac->autoneg = B_TRUE;
3819 		phy->autoneg_advertised =
3820 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3821 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3822 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3823 		break;
3824 	}	/* switch */
3825 }
3826 
3827 /*
3828  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3829  *
3830  * This function reads MaxFrameSize from e1000g.conf
3831  */
3832 static void
3833 e1000g_get_max_frame_size(struct e1000g *Adapter)
3834 {
3835 	int max_frame;
3836 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3837 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3838 
3839 	/*
3840 	 * get value out of config file
3841 	 */
3842 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3843 
3844 	switch (max_frame) {
3845 	case 0:
3846 		Adapter->default_mtu = ETHERMTU;
3847 		break;
3848 	/*
3849 	 * To avoid excessive memory allocation for rx buffers,
3850 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3851 	 */
3852 	case 1:
3853 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3854 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3855 		    E1000G_IPALIGNPRESERVEROOM;
3856 		break;
3857 	case 2:
3858 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3859 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3860 		    E1000G_IPALIGNPRESERVEROOM;
3861 		break;
3862 	case 3:
3863 		if (mac->type >= e1000_82571)
3864 			Adapter->default_mtu = MAXIMUM_MTU;
3865 		else
3866 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3867 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3868 			    E1000G_IPALIGNPRESERVEROOM;
3869 		break;
3870 	default:
3871 		Adapter->default_mtu = ETHERMTU;
3872 		break;
3873 	}	/* switch */
3874 
3875 	Adapter->max_frame_size = Adapter->default_mtu +
3876 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3877 
3878 	/* ich8 does not do jumbo frames */
3879 	if (mac->type == e1000_ich8lan) {
3880 		Adapter->max_frame_size = ETHERMTU +
3881 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3882 	}
3883 
3884 	/* ich9 does not do jumbo frames on one phy type */
3885 	if ((mac->type == e1000_ich9lan) &&
3886 	    (phy->type == e1000_phy_ife)) {
3887 		Adapter->max_frame_size = ETHERMTU +
3888 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3889 	}
3890 }
3891 
3892 static void
3893 arm_watchdog_timer(struct e1000g *Adapter)
3894 {
3895 	Adapter->watchdog_tid =
3896 	    timeout(e1000g_local_timer,
3897 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3898 }
3899 #pragma inline(arm_watchdog_timer)
3900 
3901 static void
3902 enable_watchdog_timer(struct e1000g *Adapter)
3903 {
3904 	mutex_enter(&Adapter->watchdog_lock);
3905 
3906 	if (!Adapter->watchdog_timer_enabled) {
3907 		Adapter->watchdog_timer_enabled = B_TRUE;
3908 		Adapter->watchdog_timer_started = B_TRUE;
3909 		arm_watchdog_timer(Adapter);
3910 	}
3911 
3912 	mutex_exit(&Adapter->watchdog_lock);
3913 }
3914 
3915 static void
3916 disable_watchdog_timer(struct e1000g *Adapter)
3917 {
3918 	timeout_id_t tid;
3919 
3920 	mutex_enter(&Adapter->watchdog_lock);
3921 
3922 	Adapter->watchdog_timer_enabled = B_FALSE;
3923 	Adapter->watchdog_timer_started = B_FALSE;
3924 	tid = Adapter->watchdog_tid;
3925 	Adapter->watchdog_tid = 0;
3926 
3927 	mutex_exit(&Adapter->watchdog_lock);
3928 
3929 	if (tid != 0)
3930 		(void) untimeout(tid);
3931 }
3932 
3933 static void
3934 start_watchdog_timer(struct e1000g *Adapter)
3935 {
3936 	mutex_enter(&Adapter->watchdog_lock);
3937 
3938 	if (Adapter->watchdog_timer_enabled) {
3939 		if (!Adapter->watchdog_timer_started) {
3940 			Adapter->watchdog_timer_started = B_TRUE;
3941 			arm_watchdog_timer(Adapter);
3942 		}
3943 	}
3944 
3945 	mutex_exit(&Adapter->watchdog_lock);
3946 }
3947 
3948 static void
3949 restart_watchdog_timer(struct e1000g *Adapter)
3950 {
3951 	mutex_enter(&Adapter->watchdog_lock);
3952 
3953 	if (Adapter->watchdog_timer_started)
3954 		arm_watchdog_timer(Adapter);
3955 
3956 	mutex_exit(&Adapter->watchdog_lock);
3957 }
3958 
3959 static void
3960 stop_watchdog_timer(struct e1000g *Adapter)
3961 {
3962 	timeout_id_t tid;
3963 
3964 	mutex_enter(&Adapter->watchdog_lock);
3965 
3966 	Adapter->watchdog_timer_started = B_FALSE;
3967 	tid = Adapter->watchdog_tid;
3968 	Adapter->watchdog_tid = 0;
3969 
3970 	mutex_exit(&Adapter->watchdog_lock);
3971 
3972 	if (tid != 0)
3973 		(void) untimeout(tid);
3974 }
3975 
3976 static void
3977 stop_link_timer(struct e1000g *Adapter)
3978 {
3979 	timeout_id_t tid;
3980 
3981 	/* Disable the link timer */
3982 	mutex_enter(&Adapter->link_lock);
3983 
3984 	tid = Adapter->link_tid;
3985 	Adapter->link_tid = 0;
3986 
3987 	mutex_exit(&Adapter->link_lock);
3988 
3989 	if (tid != 0)
3990 		(void) untimeout(tid);
3991 }
3992 
3993 static void
3994 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3995 {
3996 	timeout_id_t tid;
3997 
3998 	/* Disable the tx timer for 82547 chipset */
3999 	mutex_enter(&tx_ring->tx_lock);
4000 
4001 	tx_ring->timer_enable_82547 = B_FALSE;
4002 	tid = tx_ring->timer_id_82547;
4003 	tx_ring->timer_id_82547 = 0;
4004 
4005 	mutex_exit(&tx_ring->tx_lock);
4006 
4007 	if (tid != 0)
4008 		(void) untimeout(tid);
4009 }
4010 
4011 void
4012 e1000g_clear_interrupt(struct e1000g *Adapter)
4013 {
4014 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4015 	    0xffffffff & ~E1000_IMS_RXSEQ);
4016 }
4017 
4018 void
4019 e1000g_mask_interrupt(struct e1000g *Adapter)
4020 {
4021 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4022 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4023 
4024 	if (Adapter->tx_intr_enable)
4025 		e1000g_mask_tx_interrupt(Adapter);
4026 }
4027 
4028 void
4029 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4030 {
4031 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4032 }
4033 
4034 void
4035 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4036 {
4037 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4038 }
4039 
4040 void
4041 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4042 {
4043 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4044 }
4045 
4046 static void
4047 e1000g_smartspeed(struct e1000g *Adapter)
4048 {
4049 	struct e1000_hw *hw = &Adapter->shared;
4050 	uint16_t phy_status;
4051 	uint16_t phy_ctrl;
4052 
4053 	/*
4054 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4055 	 * advertising 1000Full, we don't even use the workaround
4056 	 */
4057 	if ((hw->phy.type != e1000_phy_igp) ||
4058 	    !hw->mac.autoneg ||
4059 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4060 		return;
4061 
4062 	/*
4063 	 * True if this is the first call of this function or after every
4064 	 * 30 seconds of not having link
4065 	 */
4066 	if (Adapter->smartspeed == 0) {
4067 		/*
4068 		 * If Master/Slave config fault is asserted twice, we
4069 		 * assume back-to-back
4070 		 */
4071 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4072 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4073 			return;
4074 
4075 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4076 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4077 			return;
4078 		/*
4079 		 * We're assuming back-2-back because our status register
4080 		 * insists! there's a fault in the master/slave
4081 		 * relationship that was "negotiated"
4082 		 */
4083 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4084 		/*
4085 		 * Is the phy configured for manual configuration of
4086 		 * master/slave?
4087 		 */
4088 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4089 			/*
4090 			 * Yes.  Then disable manual configuration (enable
4091 			 * auto configuration) of master/slave
4092 			 */
4093 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4094 			(void) e1000_write_phy_reg(hw,
4095 			    PHY_1000T_CTRL, phy_ctrl);
4096 			/*
4097 			 * Effectively starting the clock
4098 			 */
4099 			Adapter->smartspeed++;
4100 			/*
4101 			 * Restart autonegotiation
4102 			 */
4103 			if (!e1000_phy_setup_autoneg(hw) &&
4104 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4105 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4106 				    MII_CR_RESTART_AUTO_NEG);
4107 				(void) e1000_write_phy_reg(hw,
4108 				    PHY_CONTROL, phy_ctrl);
4109 			}
4110 		}
4111 		return;
4112 		/*
4113 		 * Has 6 seconds transpired still without link? Remember,
4114 		 * you should reset the smartspeed counter once you obtain
4115 		 * link
4116 		 */
4117 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4118 		/*
4119 		 * Yes.  Remember, we did at the start determine that
4120 		 * there's a master/slave configuration fault, so we're
4121 		 * still assuming there's someone on the other end, but we
4122 		 * just haven't yet been able to talk to it. We then
4123 		 * re-enable auto configuration of master/slave to see if
4124 		 * we're running 2/3 pair cables.
4125 		 */
4126 		/*
4127 		 * If still no link, perhaps using 2/3 pair cable
4128 		 */
4129 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4130 		phy_ctrl |= CR_1000T_MS_ENABLE;
4131 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4132 		/*
4133 		 * Restart autoneg with phy enabled for manual
4134 		 * configuration of master/slave
4135 		 */
4136 		if (!e1000_phy_setup_autoneg(hw) &&
4137 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4138 			phy_ctrl |=
4139 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4140 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4141 		}
4142 		/*
4143 		 * Hopefully, there are no more faults and we've obtained
4144 		 * link as a result.
4145 		 */
4146 	}
4147 	/*
4148 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4149 	 * seconds)
4150 	 */
4151 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4152 		Adapter->smartspeed = 0;
4153 }
4154 
4155 static boolean_t
4156 is_valid_mac_addr(uint8_t *mac_addr)
4157 {
4158 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4159 	const uint8_t addr_test2[6] =
4160 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4161 
4162 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4163 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4164 		return (B_FALSE);
4165 
4166 	return (B_TRUE);
4167 }
4168 
4169 /*
4170  * e1000g_stall_check - check for tx stall
4171  *
4172  * This function checks if the adapter is stalled (in transmit).
4173  *
4174  * It is called each time the watchdog timeout is invoked.
4175  * If the transmit descriptor reclaim continuously fails,
4176  * the watchdog value will increment by 1. If the watchdog
4177  * value exceeds the threshold, the adapter is assumed to
4178  * have stalled and need to be reset.
4179  */
4180 static boolean_t
4181 e1000g_stall_check(struct e1000g *Adapter)
4182 {
4183 	e1000g_tx_ring_t *tx_ring;
4184 
4185 	tx_ring = Adapter->tx_ring;
4186 
4187 	if (Adapter->link_state != LINK_STATE_UP)
4188 		return (B_FALSE);
4189 
4190 	if (tx_ring->recycle_fail > 0)
4191 		tx_ring->stall_watchdog++;
4192 	else
4193 		tx_ring->stall_watchdog = 0;
4194 
4195 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4196 		return (B_FALSE);
4197 
4198 	tx_ring->stall_watchdog = 0;
4199 	tx_ring->recycle_fail = 0;
4200 
4201 	return (B_TRUE);
4202 }
4203 
4204 #ifdef E1000G_DEBUG
4205 static enum ioc_reply
4206 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4207 {
4208 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4209 	e1000g_peekpoke_t *ppd;
4210 	uint64_t mem_va;
4211 	uint64_t maxoff;
4212 	boolean_t peek;
4213 
4214 	switch (iocp->ioc_cmd) {
4215 
4216 	case E1000G_IOC_REG_PEEK:
4217 		peek = B_TRUE;
4218 		break;
4219 
4220 	case E1000G_IOC_REG_POKE:
4221 		peek = B_FALSE;
4222 		break;
4223 
4224 	deault:
4225 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4226 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4227 		    iocp->ioc_cmd);
4228 		return (IOC_INVAL);
4229 	}
4230 
4231 	/*
4232 	 * Validate format of ioctl
4233 	 */
4234 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4235 		return (IOC_INVAL);
4236 	if (mp->b_cont == NULL)
4237 		return (IOC_INVAL);
4238 
4239 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4240 
4241 	/*
4242 	 * Validate request parameters
4243 	 */
4244 	switch (ppd->pp_acc_space) {
4245 
4246 	default:
4247 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4248 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4249 		    ppd->pp_acc_space);
4250 		return (IOC_INVAL);
4251 
4252 	case E1000G_PP_SPACE_REG:
4253 		/*
4254 		 * Memory-mapped I/O space
4255 		 */
4256 		ASSERT(ppd->pp_acc_size == 4);
4257 		if (ppd->pp_acc_size != 4)
4258 			return (IOC_INVAL);
4259 
4260 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4261 			return (IOC_INVAL);
4262 
4263 		mem_va = 0;
4264 		maxoff = 0x10000;
4265 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4266 		break;
4267 
4268 	case E1000G_PP_SPACE_E1000G:
4269 		/*
4270 		 * E1000g data structure!
4271 		 */
4272 		mem_va = (uintptr_t)e1000gp;
4273 		maxoff = sizeof (struct e1000g);
4274 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4275 		break;
4276 
4277 	}
4278 
4279 	if (ppd->pp_acc_offset >= maxoff)
4280 		return (IOC_INVAL);
4281 
4282 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4283 		return (IOC_INVAL);
4284 
4285 	/*
4286 	 * All OK - go!
4287 	 */
4288 	ppd->pp_acc_offset += mem_va;
4289 	(*ppfn)(e1000gp, ppd);
4290 	return (peek ? IOC_REPLY : IOC_ACK);
4291 }
4292 
4293 static void
4294 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4295 {
4296 	ddi_acc_handle_t handle;
4297 	uint32_t *regaddr;
4298 
4299 	handle = e1000gp->osdep.reg_handle;
4300 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4301 	    (uintptr_t)ppd->pp_acc_offset);
4302 
4303 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4304 }
4305 
4306 static void
4307 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4308 {
4309 	ddi_acc_handle_t handle;
4310 	uint32_t *regaddr;
4311 	uint32_t value;
4312 
4313 	handle = e1000gp->osdep.reg_handle;
4314 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4315 	    (uintptr_t)ppd->pp_acc_offset);
4316 	value = (uint32_t)ppd->pp_acc_data;
4317 
4318 	ddi_put32(handle, regaddr, value);
4319 }
4320 
4321 static void
4322 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4323 {
4324 	uint64_t value;
4325 	void *vaddr;
4326 
4327 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4328 
4329 	switch (ppd->pp_acc_size) {
4330 	case 1:
4331 		value = *(uint8_t *)vaddr;
4332 		break;
4333 
4334 	case 2:
4335 		value = *(uint16_t *)vaddr;
4336 		break;
4337 
4338 	case 4:
4339 		value = *(uint32_t *)vaddr;
4340 		break;
4341 
4342 	case 8:
4343 		value = *(uint64_t *)vaddr;
4344 		break;
4345 	}
4346 
4347 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4348 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4349 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4350 
4351 	ppd->pp_acc_data = value;
4352 }
4353 
4354 static void
4355 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4356 {
4357 	uint64_t value;
4358 	void *vaddr;
4359 
4360 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4361 	value = ppd->pp_acc_data;
4362 
4363 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4364 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4365 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4366 
4367 	switch (ppd->pp_acc_size) {
4368 	case 1:
4369 		*(uint8_t *)vaddr = (uint8_t)value;
4370 		break;
4371 
4372 	case 2:
4373 		*(uint16_t *)vaddr = (uint16_t)value;
4374 		break;
4375 
4376 	case 4:
4377 		*(uint32_t *)vaddr = (uint32_t)value;
4378 		break;
4379 
4380 	case 8:
4381 		*(uint64_t *)vaddr = (uint64_t)value;
4382 		break;
4383 	}
4384 }
4385 #endif
4386 
4387 /*
4388  * Loopback Support
4389  */
4390 static lb_property_t lb_normal =
4391 	{ normal,	"normal",	E1000G_LB_NONE		};
4392 static lb_property_t lb_external1000 =
4393 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4394 static lb_property_t lb_external100 =
4395 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4396 static lb_property_t lb_external10 =
4397 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4398 static lb_property_t lb_phy =
4399 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4400 
4401 static enum ioc_reply
4402 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4403 {
4404 	lb_info_sz_t *lbsp;
4405 	lb_property_t *lbpp;
4406 	struct e1000_hw *hw;
4407 	uint32_t *lbmp;
4408 	uint32_t size;
4409 	uint32_t value;
4410 
4411 	hw = &Adapter->shared;
4412 
4413 	if (mp->b_cont == NULL)
4414 		return (IOC_INVAL);
4415 
4416 	if (!e1000g_check_loopback_support(hw)) {
4417 		e1000g_log(NULL, CE_WARN,
4418 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4419 		return (IOC_INVAL);
4420 	}
4421 
4422 	switch (iocp->ioc_cmd) {
4423 	default:
4424 		return (IOC_INVAL);
4425 
4426 	case LB_GET_INFO_SIZE:
4427 		size = sizeof (lb_info_sz_t);
4428 		if (iocp->ioc_count != size)
4429 			return (IOC_INVAL);
4430 
4431 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4432 		e1000g_get_phy_state(Adapter);
4433 
4434 		/*
4435 		 * Workaround for hardware faults. In order to get a stable
4436 		 * state of phy, we will wait for a specific interval and
4437 		 * try again. The time delay is an experiential value based
4438 		 * on our testing.
4439 		 */
4440 		msec_delay(100);
4441 		e1000g_get_phy_state(Adapter);
4442 		rw_exit(&Adapter->chip_lock);
4443 
4444 		value = sizeof (lb_normal);
4445 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4446 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4447 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4448 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4449 			value += sizeof (lb_phy);
4450 			switch (hw->mac.type) {
4451 			case e1000_82571:
4452 			case e1000_82572:
4453 			case e1000_80003es2lan:
4454 				value += sizeof (lb_external1000);
4455 				break;
4456 			}
4457 		}
4458 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4459 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4460 			value += sizeof (lb_external100);
4461 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4462 			value += sizeof (lb_external10);
4463 
4464 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4465 		*lbsp = value;
4466 		break;
4467 
4468 	case LB_GET_INFO:
4469 		value = sizeof (lb_normal);
4470 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4471 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4472 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4473 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4474 			value += sizeof (lb_phy);
4475 			switch (hw->mac.type) {
4476 			case e1000_82571:
4477 			case e1000_82572:
4478 			case e1000_80003es2lan:
4479 				value += sizeof (lb_external1000);
4480 				break;
4481 			}
4482 		}
4483 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4484 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4485 			value += sizeof (lb_external100);
4486 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4487 			value += sizeof (lb_external10);
4488 
4489 		size = value;
4490 		if (iocp->ioc_count != size)
4491 			return (IOC_INVAL);
4492 
4493 		value = 0;
4494 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4495 		lbpp[value++] = lb_normal;
4496 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4497 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4498 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4499 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4500 			lbpp[value++] = lb_phy;
4501 			switch (hw->mac.type) {
4502 			case e1000_82571:
4503 			case e1000_82572:
4504 			case e1000_80003es2lan:
4505 				lbpp[value++] = lb_external1000;
4506 				break;
4507 			}
4508 		}
4509 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4510 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4511 			lbpp[value++] = lb_external100;
4512 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4513 			lbpp[value++] = lb_external10;
4514 		break;
4515 
4516 	case LB_GET_MODE:
4517 		size = sizeof (uint32_t);
4518 		if (iocp->ioc_count != size)
4519 			return (IOC_INVAL);
4520 
4521 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4522 		*lbmp = Adapter->loopback_mode;
4523 		break;
4524 
4525 	case LB_SET_MODE:
4526 		size = 0;
4527 		if (iocp->ioc_count != sizeof (uint32_t))
4528 			return (IOC_INVAL);
4529 
4530 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4531 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4532 			return (IOC_INVAL);
4533 		break;
4534 	}
4535 
4536 	iocp->ioc_count = size;
4537 	iocp->ioc_error = 0;
4538 
4539 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4540 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4541 		return (IOC_INVAL);
4542 	}
4543 
4544 	return (IOC_REPLY);
4545 }
4546 
4547 static boolean_t
4548 e1000g_check_loopback_support(struct e1000_hw *hw)
4549 {
4550 	switch (hw->mac.type) {
4551 	case e1000_82540:
4552 	case e1000_82545:
4553 	case e1000_82545_rev_3:
4554 	case e1000_82546:
4555 	case e1000_82546_rev_3:
4556 	case e1000_82541:
4557 	case e1000_82541_rev_2:
4558 	case e1000_82547:
4559 	case e1000_82547_rev_2:
4560 	case e1000_82571:
4561 	case e1000_82572:
4562 	case e1000_82573:
4563 	case e1000_80003es2lan:
4564 		return (B_TRUE);
4565 	}
4566 	return (B_FALSE);
4567 }
4568 
4569 static boolean_t
4570 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4571 {
4572 	struct e1000_hw *hw;
4573 	int i, times;
4574 	boolean_t link_up;
4575 
4576 	if (mode == Adapter->loopback_mode)
4577 		return (B_TRUE);
4578 
4579 	hw = &Adapter->shared;
4580 	times = 0;
4581 
4582 	Adapter->loopback_mode = mode;
4583 
4584 	if (mode == E1000G_LB_NONE) {
4585 		/* Reset the chip */
4586 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4587 		(void) e1000g_reset(Adapter);
4588 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4589 		return (B_TRUE);
4590 	}
4591 
4592 again:
4593 
4594 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4595 
4596 	switch (mode) {
4597 	default:
4598 		rw_exit(&Adapter->chip_lock);
4599 		return (B_FALSE);
4600 
4601 	case E1000G_LB_EXTERNAL_1000:
4602 		e1000g_set_external_loopback_1000(Adapter);
4603 		break;
4604 
4605 	case E1000G_LB_EXTERNAL_100:
4606 		e1000g_set_external_loopback_100(Adapter);
4607 		break;
4608 
4609 	case E1000G_LB_EXTERNAL_10:
4610 		e1000g_set_external_loopback_10(Adapter);
4611 		break;
4612 
4613 	case E1000G_LB_INTERNAL_PHY:
4614 		e1000g_set_internal_loopback(Adapter);
4615 		break;
4616 	}
4617 
4618 	times++;
4619 
4620 	rw_exit(&Adapter->chip_lock);
4621 
4622 	/* Wait for link up */
4623 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4624 		msec_delay(100);
4625 
4626 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4627 
4628 	link_up = e1000g_link_up(Adapter);
4629 
4630 	rw_exit(&Adapter->chip_lock);
4631 
4632 	if (!link_up) {
4633 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4634 		    "Failed to get the link up");
4635 		if (times < 2) {
4636 			/* Reset the link */
4637 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4638 			    "Reset the link ...");
4639 			(void) e1000g_reset(Adapter);
4640 			goto again;
4641 		}
4642 	}
4643 
4644 	return (B_TRUE);
4645 }
4646 
4647 /*
4648  * The following loopback settings are from Intel's technical
4649  * document - "How To Loopback". All the register settings and
4650  * time delay values are directly inherited from the document
4651  * without more explanations available.
4652  */
4653 static void
4654 e1000g_set_internal_loopback(struct e1000g *Adapter)
4655 {
4656 	struct e1000_hw *hw;
4657 	uint32_t ctrl;
4658 	uint32_t status;
4659 	uint16_t phy_ctrl;
4660 	uint32_t txcw;
4661 
4662 	hw = &Adapter->shared;
4663 
4664 	/* Disable Smart Power Down */
4665 	phy_spd_state(hw, B_FALSE);
4666 
4667 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4668 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4669 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4670 
4671 	switch (hw->mac.type) {
4672 	case e1000_82540:
4673 	case e1000_82545:
4674 	case e1000_82545_rev_3:
4675 	case e1000_82546:
4676 	case e1000_82546_rev_3:
4677 	case e1000_82573:
4678 		/* Auto-MDI/MDIX off */
4679 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4680 		/* Reset PHY to update Auto-MDI/MDIX */
4681 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4682 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4683 		/* Reset PHY to auto-neg off and force 1000 */
4684 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4685 		    phy_ctrl | MII_CR_RESET);
4686 		/*
4687 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4688 		 * See comments above e1000g_set_internal_loopback() for the
4689 		 * background.
4690 		 */
4691 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4692 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4693 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4694 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4695 		break;
4696 	case e1000_80003es2lan:
4697 		/* Force Link Up */
4698 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4699 		    0x1CC);
4700 		/* Sets PCS loopback at 1Gbs */
4701 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4702 		    0x1046);
4703 		break;
4704 	}
4705 
4706 	/* Set loopback */
4707 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4708 
4709 	msec_delay(250);
4710 
4711 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4712 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4713 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4714 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4715 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4716 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4717 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4718 
4719 	switch (hw->mac.type) {
4720 	case e1000_82540:
4721 	case e1000_82545:
4722 	case e1000_82545_rev_3:
4723 	case e1000_82546:
4724 	case e1000_82546_rev_3:
4725 		/*
4726 		 * For some serdes we'll need to commit the writes now
4727 		 * so that the status is updated on link
4728 		 */
4729 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4730 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4731 			msec_delay(100);
4732 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4733 		}
4734 
4735 		if (hw->phy.media_type == e1000_media_type_copper) {
4736 			/* Invert Loss of Signal */
4737 			ctrl |= E1000_CTRL_ILOS;
4738 		} else {
4739 			/* Set ILOS on fiber nic if half duplex is detected */
4740 			status = E1000_READ_REG(hw, E1000_STATUS);
4741 			if ((status & E1000_STATUS_FD) == 0)
4742 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4743 		}
4744 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4745 		break;
4746 
4747 	case e1000_82571:
4748 	case e1000_82572:
4749 		/*
4750 		 * The fiber/SerDes versions of this adapter do not contain an
4751 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4752 		 * using SerDes analog loopback.
4753 		 */
4754 		if (hw->phy.media_type != e1000_media_type_copper) {
4755 			status = E1000_READ_REG(hw, E1000_STATUS);
4756 			/* Set ILOS on fiber nic if half duplex is detected */
4757 			if (((status & E1000_STATUS_LU) == 0) ||
4758 			    ((status & E1000_STATUS_FD) == 0) ||
4759 			    (hw->phy.media_type ==
4760 			    e1000_media_type_internal_serdes))
4761 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4762 
4763 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4764 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4765 			txcw &= ~((uint32_t)1 << 31);
4766 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4767 
4768 			/*
4769 			 * Write 0x410 to Serdes Control register
4770 			 * to enable Serdes analog loopback
4771 			 */
4772 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4773 			msec_delay(10);
4774 		}
4775 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4776 		break;
4777 
4778 	case e1000_82573:
4779 		ctrl |= E1000_CTRL_ILOS;
4780 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4781 		break;
4782 	}
4783 }
4784 
4785 static void
4786 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4787 {
4788 	struct e1000_hw *hw;
4789 	uint32_t rctl;
4790 	uint32_t ctrl_ext;
4791 	uint32_t ctrl;
4792 	uint32_t status;
4793 	uint32_t txcw;
4794 	uint16_t phydata;
4795 
4796 	hw = &Adapter->shared;
4797 
4798 	/* Disable Smart Power Down */
4799 	phy_spd_state(hw, B_FALSE);
4800 
4801 	switch (hw->mac.type) {
4802 	case e1000_82571:
4803 	case e1000_82572:
4804 		switch (hw->phy.media_type) {
4805 		case e1000_media_type_copper:
4806 			/* Force link up (Must be done before the PHY writes) */
4807 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4808 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4809 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4810 
4811 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4812 			rctl |= (E1000_RCTL_EN |
4813 			    E1000_RCTL_SBP |
4814 			    E1000_RCTL_UPE |
4815 			    E1000_RCTL_MPE |
4816 			    E1000_RCTL_LPE |
4817 			    E1000_RCTL_BAM);		/* 0x803E */
4818 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4819 
4820 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4821 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4822 			    E1000_CTRL_EXT_SDP6_DATA |
4823 			    E1000_CTRL_EXT_SDP7_DATA |
4824 			    E1000_CTRL_EXT_SDP4_DIR |
4825 			    E1000_CTRL_EXT_SDP6_DIR |
4826 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4827 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4828 
4829 			/*
4830 			 * This sequence tunes the PHY's SDP and no customer
4831 			 * settable values. For background, see comments above
4832 			 * e1000g_set_internal_loopback().
4833 			 */
4834 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
4835 			msec_delay(10);
4836 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
4837 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
4838 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
4839 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
4840 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
4841 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
4842 
4843 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
4844 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4845 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4846 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4847 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4848 
4849 			msec_delay(50);
4850 			break;
4851 		case e1000_media_type_fiber:
4852 		case e1000_media_type_internal_serdes:
4853 			status = E1000_READ_REG(hw, E1000_STATUS);
4854 			if (((status & E1000_STATUS_LU) == 0) ||
4855 			    (hw->phy.media_type ==
4856 			    e1000_media_type_internal_serdes)) {
4857 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4858 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4859 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4860 			}
4861 
4862 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4863 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4864 			txcw &= ~((uint32_t)1 << 31);
4865 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4866 
4867 			/*
4868 			 * Write 0x410 to Serdes Control register
4869 			 * to enable Serdes analog loopback
4870 			 */
4871 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4872 			msec_delay(10);
4873 			break;
4874 		default:
4875 			break;
4876 		}
4877 		break;
4878 	case e1000_80003es2lan:
4879 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4880 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
4881 		    phydata | (1 << 5));
4882 		Adapter->param_adv_autoneg = 1;
4883 		Adapter->param_adv_1000fdx = 1;
4884 		(void) e1000g_reset_link(Adapter);
4885 		break;
4886 	}
4887 }
4888 
4889 static void
4890 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4891 {
4892 	struct e1000_hw *hw;
4893 	uint32_t ctrl;
4894 	uint16_t phy_ctrl;
4895 
4896 	hw = &Adapter->shared;
4897 
4898 	/* Disable Smart Power Down */
4899 	phy_spd_state(hw, B_FALSE);
4900 
4901 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4902 	    MII_CR_SPEED_100);
4903 
4904 	/* Force 100/FD, reset PHY */
4905 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4906 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4907 	msec_delay(10);
4908 
4909 	/* Force 100/FD */
4910 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4911 	    phy_ctrl);			/* 0x2100 */
4912 	msec_delay(10);
4913 
4914 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4915 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4916 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4917 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4918 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4919 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4920 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4921 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4922 
4923 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4924 }
4925 
4926 static void
4927 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4928 {
4929 	struct e1000_hw *hw;
4930 	uint32_t ctrl;
4931 	uint16_t phy_ctrl;
4932 
4933 	hw = &Adapter->shared;
4934 
4935 	/* Disable Smart Power Down */
4936 	phy_spd_state(hw, B_FALSE);
4937 
4938 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4939 	    MII_CR_SPEED_10);
4940 
4941 	/* Force 10/FD, reset PHY */
4942 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4943 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4944 	msec_delay(10);
4945 
4946 	/* Force 10/FD */
4947 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4948 	    phy_ctrl);			/* 0x0100 */
4949 	msec_delay(10);
4950 
4951 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4952 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4953 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4954 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4955 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4956 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4957 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4958 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4959 
4960 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4961 }
4962 
4963 #ifdef __sparc
4964 static boolean_t
4965 e1000g_find_mac_address(struct e1000g *Adapter)
4966 {
4967 	struct e1000_hw *hw = &Adapter->shared;
4968 	uchar_t *bytes;
4969 	struct ether_addr sysaddr;
4970 	uint_t nelts;
4971 	int err;
4972 	boolean_t found = B_FALSE;
4973 
4974 	/*
4975 	 * The "vendor's factory-set address" may already have
4976 	 * been extracted from the chip, but if the property
4977 	 * "local-mac-address" is set we use that instead.
4978 	 *
4979 	 * We check whether it looks like an array of 6
4980 	 * bytes (which it should, if OBP set it).  If we can't
4981 	 * make sense of it this way, we'll ignore it.
4982 	 */
4983 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4984 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4985 	if (err == DDI_PROP_SUCCESS) {
4986 		if (nelts == ETHERADDRL) {
4987 			while (nelts--)
4988 				hw->mac.addr[nelts] = bytes[nelts];
4989 			found = B_TRUE;
4990 		}
4991 		ddi_prop_free(bytes);
4992 	}
4993 
4994 	/*
4995 	 * Look up the OBP property "local-mac-address?". If the user has set
4996 	 * 'local-mac-address? = false', use "the system address" instead.
4997 	 */
4998 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4999 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5000 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5001 			if (localetheraddr(NULL, &sysaddr) != 0) {
5002 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5003 				found = B_TRUE;
5004 			}
5005 		}
5006 		ddi_prop_free(bytes);
5007 	}
5008 
5009 	/*
5010 	 * Finally(!), if there's a valid "mac-address" property (created
5011 	 * if we netbooted from this interface), we must use this instead
5012 	 * of any of the above to ensure that the NFS/install server doesn't
5013 	 * get confused by the address changing as Solaris takes over!
5014 	 */
5015 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5016 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5017 	if (err == DDI_PROP_SUCCESS) {
5018 		if (nelts == ETHERADDRL) {
5019 			while (nelts--)
5020 				hw->mac.addr[nelts] = bytes[nelts];
5021 			found = B_TRUE;
5022 		}
5023 		ddi_prop_free(bytes);
5024 	}
5025 
5026 	if (found) {
5027 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5028 		    ETHERADDRL);
5029 	}
5030 
5031 	return (found);
5032 }
5033 #endif
5034 
5035 static int
5036 e1000g_add_intrs(struct e1000g *Adapter)
5037 {
5038 	dev_info_t *devinfo;
5039 	int intr_types;
5040 	int rc;
5041 
5042 	devinfo = Adapter->dip;
5043 
5044 	/* Get supported interrupt types */
5045 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5046 
5047 	if (rc != DDI_SUCCESS) {
5048 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5049 		    "Get supported interrupt types failed: %d\n", rc);
5050 		return (DDI_FAILURE);
5051 	}
5052 
5053 	/*
5054 	 * Based on Intel Technical Advisory document (TA-160), there are some
5055 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5056 	 * that it supports MSI, but in fact has problems.
5057 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5058 	 * PCI/PCI-X NICs.
5059 	 */
5060 	if (Adapter->shared.mac.type < e1000_82571)
5061 		Adapter->msi_enable = B_FALSE;
5062 
5063 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5064 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5065 
5066 		if (rc != DDI_SUCCESS) {
5067 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5068 			    "Add MSI failed, trying Legacy interrupts\n");
5069 		} else {
5070 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5071 		}
5072 	}
5073 
5074 	if ((Adapter->intr_type == 0) &&
5075 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5076 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5077 
5078 		if (rc != DDI_SUCCESS) {
5079 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5080 			    "Add Legacy interrupts failed\n");
5081 			return (DDI_FAILURE);
5082 		}
5083 
5084 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5085 	}
5086 
5087 	if (Adapter->intr_type == 0) {
5088 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5089 		    "No interrupts registered\n");
5090 		return (DDI_FAILURE);
5091 	}
5092 
5093 	return (DDI_SUCCESS);
5094 }
5095 
5096 /*
5097  * e1000g_intr_add() handles MSI/Legacy interrupts
5098  */
5099 static int
5100 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5101 {
5102 	dev_info_t *devinfo;
5103 	int count, avail, actual;
5104 	int x, y, rc, inum = 0;
5105 	int flag;
5106 	ddi_intr_handler_t *intr_handler;
5107 
5108 	devinfo = Adapter->dip;
5109 
5110 	/* get number of interrupts */
5111 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5112 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5113 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5114 		    "Get interrupt number failed. Return: %d, count: %d\n",
5115 		    rc, count);
5116 		return (DDI_FAILURE);
5117 	}
5118 
5119 	/* get number of available interrupts */
5120 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5121 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5122 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5123 		    "Get interrupt available number failed. "
5124 		    "Return: %d, available: %d\n", rc, avail);
5125 		return (DDI_FAILURE);
5126 	}
5127 
5128 	if (avail < count) {
5129 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5130 		    "Interrupts count: %d, available: %d\n",
5131 		    count, avail);
5132 	}
5133 
5134 	/* Allocate an array of interrupt handles */
5135 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5136 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5137 
5138 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5139 	flag = DDI_INTR_ALLOC_NORMAL;
5140 
5141 	/* call ddi_intr_alloc() */
5142 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5143 	    count, &actual, flag);
5144 
5145 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5146 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5147 		    "Allocate interrupts failed: %d\n", rc);
5148 
5149 		kmem_free(Adapter->htable, Adapter->intr_size);
5150 		return (DDI_FAILURE);
5151 	}
5152 
5153 	if (actual < count) {
5154 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5155 		    "Interrupts requested: %d, received: %d\n",
5156 		    count, actual);
5157 	}
5158 
5159 	Adapter->intr_cnt = actual;
5160 
5161 	/* Get priority for first msi, assume remaining are all the same */
5162 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5163 
5164 	if (rc != DDI_SUCCESS) {
5165 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5166 		    "Get interrupt priority failed: %d\n", rc);
5167 
5168 		/* Free already allocated intr */
5169 		for (y = 0; y < actual; y++)
5170 			(void) ddi_intr_free(Adapter->htable[y]);
5171 
5172 		kmem_free(Adapter->htable, Adapter->intr_size);
5173 		return (DDI_FAILURE);
5174 	}
5175 
5176 	/*
5177 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5178 	 * use the interrupt service routine e1000g_intr_pciexpress()
5179 	 * to avoid interrupt stealing when sharing interrupt with other
5180 	 * devices.
5181 	 */
5182 	if (Adapter->shared.mac.type < e1000_82571)
5183 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5184 	else
5185 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5186 
5187 	/* Call ddi_intr_add_handler() */
5188 	for (x = 0; x < actual; x++) {
5189 		rc = ddi_intr_add_handler(Adapter->htable[x],
5190 		    intr_handler, (caddr_t)Adapter, NULL);
5191 
5192 		if (rc != DDI_SUCCESS) {
5193 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5194 			    "Add interrupt handler failed: %d\n", rc);
5195 
5196 			/* Remove already added handler */
5197 			for (y = 0; y < x; y++)
5198 				(void) ddi_intr_remove_handler(
5199 				    Adapter->htable[y]);
5200 
5201 			/* Free already allocated intr */
5202 			for (y = 0; y < actual; y++)
5203 				(void) ddi_intr_free(Adapter->htable[y]);
5204 
5205 			kmem_free(Adapter->htable, Adapter->intr_size);
5206 			return (DDI_FAILURE);
5207 		}
5208 	}
5209 
5210 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5211 
5212 	if (rc != DDI_SUCCESS) {
5213 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5214 		    "Get interrupt cap failed: %d\n", rc);
5215 
5216 		/* Free already allocated intr */
5217 		for (y = 0; y < actual; y++) {
5218 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5219 			(void) ddi_intr_free(Adapter->htable[y]);
5220 		}
5221 
5222 		kmem_free(Adapter->htable, Adapter->intr_size);
5223 		return (DDI_FAILURE);
5224 	}
5225 
5226 	return (DDI_SUCCESS);
5227 }
5228 
5229 static int
5230 e1000g_rem_intrs(struct e1000g *Adapter)
5231 {
5232 	int x;
5233 	int rc;
5234 
5235 	for (x = 0; x < Adapter->intr_cnt; x++) {
5236 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5237 		if (rc != DDI_SUCCESS) {
5238 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5239 			    "Remove intr handler failed: %d\n", rc);
5240 			return (DDI_FAILURE);
5241 		}
5242 
5243 		rc = ddi_intr_free(Adapter->htable[x]);
5244 		if (rc != DDI_SUCCESS) {
5245 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5246 			    "Free intr failed: %d\n", rc);
5247 			return (DDI_FAILURE);
5248 		}
5249 	}
5250 
5251 	kmem_free(Adapter->htable, Adapter->intr_size);
5252 
5253 	return (DDI_SUCCESS);
5254 }
5255 
5256 static int
5257 e1000g_enable_intrs(struct e1000g *Adapter)
5258 {
5259 	int x;
5260 	int rc;
5261 
5262 	/* Enable interrupts */
5263 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5264 		/* Call ddi_intr_block_enable() for MSI */
5265 		rc = ddi_intr_block_enable(Adapter->htable,
5266 		    Adapter->intr_cnt);
5267 		if (rc != DDI_SUCCESS) {
5268 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5269 			    "Enable block intr failed: %d\n", rc);
5270 			return (DDI_FAILURE);
5271 		}
5272 	} else {
5273 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5274 		for (x = 0; x < Adapter->intr_cnt; x++) {
5275 			rc = ddi_intr_enable(Adapter->htable[x]);
5276 			if (rc != DDI_SUCCESS) {
5277 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5278 				    "Enable intr failed: %d\n", rc);
5279 				return (DDI_FAILURE);
5280 			}
5281 		}
5282 	}
5283 
5284 	return (DDI_SUCCESS);
5285 }
5286 
5287 static int
5288 e1000g_disable_intrs(struct e1000g *Adapter)
5289 {
5290 	int x;
5291 	int rc;
5292 
5293 	/* Disable all interrupts */
5294 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5295 		rc = ddi_intr_block_disable(Adapter->htable,
5296 		    Adapter->intr_cnt);
5297 		if (rc != DDI_SUCCESS) {
5298 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5299 			    "Disable block intr failed: %d\n", rc);
5300 			return (DDI_FAILURE);
5301 		}
5302 	} else {
5303 		for (x = 0; x < Adapter->intr_cnt; x++) {
5304 			rc = ddi_intr_disable(Adapter->htable[x]);
5305 			if (rc != DDI_SUCCESS) {
5306 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5307 				    "Disable intr failed: %d\n", rc);
5308 				return (DDI_FAILURE);
5309 			}
5310 		}
5311 	}
5312 
5313 	return (DDI_SUCCESS);
5314 }
5315 
5316 /*
5317  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5318  */
5319 static void
5320 e1000g_get_phy_state(struct e1000g *Adapter)
5321 {
5322 	struct e1000_hw *hw = &Adapter->shared;
5323 
5324 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5325 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5326 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5327 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5328 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5329 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5330 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5331 	    &Adapter->phy_1000t_status);
5332 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5333 
5334 	Adapter->param_autoneg_cap =
5335 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5336 	Adapter->param_pause_cap =
5337 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5338 	Adapter->param_asym_pause_cap =
5339 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5340 	Adapter->param_1000fdx_cap =
5341 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5342 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5343 	Adapter->param_1000hdx_cap =
5344 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5345 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5346 	Adapter->param_100t4_cap =
5347 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5348 	Adapter->param_100fdx_cap =
5349 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5350 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5351 	Adapter->param_100hdx_cap =
5352 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5353 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5354 	Adapter->param_10fdx_cap =
5355 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5356 	Adapter->param_10hdx_cap =
5357 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5358 
5359 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5360 	Adapter->param_adv_pause =
5361 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5362 	Adapter->param_adv_asym_pause =
5363 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5364 	Adapter->param_adv_1000hdx =
5365 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5366 	Adapter->param_adv_100t4 =
5367 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5368 	if (Adapter->param_adv_autoneg == 1) {
5369 		Adapter->param_adv_1000fdx =
5370 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5371 		Adapter->param_adv_100fdx =
5372 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5373 		Adapter->param_adv_100hdx =
5374 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5375 		Adapter->param_adv_10fdx =
5376 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5377 		Adapter->param_adv_10hdx =
5378 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5379 	}
5380 
5381 	Adapter->param_lp_autoneg =
5382 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5383 	Adapter->param_lp_pause =
5384 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5385 	Adapter->param_lp_asym_pause =
5386 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5387 	Adapter->param_lp_1000fdx =
5388 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5389 	Adapter->param_lp_1000hdx =
5390 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5391 	Adapter->param_lp_100t4 =
5392 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5393 	Adapter->param_lp_100fdx =
5394 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5395 	Adapter->param_lp_100hdx =
5396 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5397 	Adapter->param_lp_10fdx =
5398 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5399 	Adapter->param_lp_10hdx =
5400 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5401 }
5402 
5403 /*
5404  * FMA support
5405  */
5406 
5407 int
5408 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5409 {
5410 	ddi_fm_error_t de;
5411 
5412 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5413 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5414 	return (de.fme_status);
5415 }
5416 
5417 int
5418 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5419 {
5420 	ddi_fm_error_t de;
5421 
5422 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5423 	return (de.fme_status);
5424 }
5425 
5426 /*
5427  * The IO fault service error handling callback function
5428  */
5429 /* ARGSUSED2 */
5430 static int
5431 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5432 {
5433 	/*
5434 	 * as the driver can always deal with an error in any dma or
5435 	 * access handle, we can just return the fme_status value.
5436 	 */
5437 	pci_ereport_post(dip, err, NULL);
5438 	return (err->fme_status);
5439 }
5440 
5441 static void
5442 e1000g_fm_init(struct e1000g *Adapter)
5443 {
5444 	ddi_iblock_cookie_t iblk;
5445 	int fma_acc_flag, fma_dma_flag;
5446 
5447 	/* Only register with IO Fault Services if we have some capability */
5448 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5449 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5450 		fma_acc_flag = 1;
5451 	} else {
5452 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5453 		fma_acc_flag = 0;
5454 	}
5455 
5456 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5457 		fma_dma_flag = 1;
5458 	} else {
5459 		fma_dma_flag = 0;
5460 	}
5461 
5462 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5463 
5464 	if (Adapter->fm_capabilities) {
5465 
5466 		/* Register capabilities with IO Fault Services */
5467 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5468 
5469 		/*
5470 		 * Initialize pci ereport capabilities if ereport capable
5471 		 */
5472 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5473 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5474 			pci_ereport_setup(Adapter->dip);
5475 
5476 		/*
5477 		 * Register error callback if error callback capable
5478 		 */
5479 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5480 			ddi_fm_handler_register(Adapter->dip,
5481 			    e1000g_fm_error_cb, (void*) Adapter);
5482 	}
5483 }
5484 
5485 static void
5486 e1000g_fm_fini(struct e1000g *Adapter)
5487 {
5488 	/* Only unregister FMA capabilities if we registered some */
5489 	if (Adapter->fm_capabilities) {
5490 
5491 		/*
5492 		 * Release any resources allocated by pci_ereport_setup()
5493 		 */
5494 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5495 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5496 			pci_ereport_teardown(Adapter->dip);
5497 
5498 		/*
5499 		 * Un-register error callback if error callback capable
5500 		 */
5501 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5502 			ddi_fm_handler_unregister(Adapter->dip);
5503 
5504 		/* Unregister from IO Fault Services */
5505 		ddi_fm_fini(Adapter->dip);
5506 	}
5507 }
5508 
5509 void
5510 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5511 {
5512 	uint64_t ena;
5513 	char buf[FM_MAX_CLASS];
5514 
5515 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5516 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5517 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5518 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5519 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5520 	}
5521 }
5522 
5523 static int
5524 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5525     uint_t pr_valsize, void *pr_val)
5526 {
5527 	link_flowctrl_t fl;
5528 	int err = 0;
5529 
5530 	ASSERT(pr_valsize > 0);
5531 	switch (pr_num) {
5532 	case MAC_PROP_AUTONEG:
5533 		*(uint8_t *)pr_val =
5534 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5535 		break;
5536 	case MAC_PROP_FLOWCTRL:
5537 		if (pr_valsize < sizeof (link_flowctrl_t))
5538 			return (EINVAL);
5539 		fl = LINK_FLOWCTRL_BI;
5540 		bcopy(&fl, pr_val, sizeof (fl));
5541 		break;
5542 	case MAC_PROP_ADV_1000FDX_CAP:
5543 	case MAC_PROP_EN_1000FDX_CAP:
5544 		*(uint8_t *)pr_val =
5545 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5546 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5547 		break;
5548 	case MAC_PROP_ADV_1000HDX_CAP:
5549 	case MAC_PROP_EN_1000HDX_CAP:
5550 		*(uint8_t *)pr_val =
5551 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5552 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5553 		break;
5554 	case MAC_PROP_ADV_100FDX_CAP:
5555 	case MAC_PROP_EN_100FDX_CAP:
5556 		*(uint8_t *)pr_val =
5557 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5558 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5559 		break;
5560 	case MAC_PROP_ADV_100HDX_CAP:
5561 	case MAC_PROP_EN_100HDX_CAP:
5562 		*(uint8_t *)pr_val =
5563 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5564 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5565 		break;
5566 	case MAC_PROP_ADV_10FDX_CAP:
5567 	case MAC_PROP_EN_10FDX_CAP:
5568 		*(uint8_t *)pr_val =
5569 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5570 		break;
5571 	case MAC_PROP_ADV_10HDX_CAP:
5572 	case MAC_PROP_EN_10HDX_CAP:
5573 		*(uint8_t *)pr_val =
5574 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5575 		break;
5576 	default:
5577 		err = ENOTSUP;
5578 		break;
5579 	}
5580 	return (err);
5581 }
5582 
5583 /*
5584  * synchronize the adv* and en* parameters.
5585  *
5586  * See comments in <sys/dld.h> for details of the *_en_*
5587  * parameters. The usage of ndd for setting adv parameters will
5588  * synchronize all the en parameters with the e1000g parameters,
5589  * implicitly disabling any settings made via dladm.
5590  */
5591 static void
5592 e1000g_param_sync(struct e1000g *Adapter)
5593 {
5594 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5595 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5596 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5597 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5598 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5599 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5600 }
5601 
5602 /*
5603  * e1000g_get_driver_control - tell manageability firmware that the driver
5604  * has control.
5605  */
5606 static void
5607 e1000g_get_driver_control(struct e1000_hw *hw)
5608 {
5609 	uint32_t ctrl_ext;
5610 	uint32_t swsm;
5611 
5612 	/* tell manageability firmware the driver has taken over */
5613 	switch (hw->mac.type) {
5614 	case e1000_82573:
5615 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5616 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5617 		break;
5618 	case e1000_82571:
5619 	case e1000_82572:
5620 	case e1000_82574:
5621 	case e1000_80003es2lan:
5622 	case e1000_ich8lan:
5623 	case e1000_ich9lan:
5624 	case e1000_ich10lan:
5625 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5626 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5627 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
5628 		break;
5629 	default:
5630 		/* no manageability firmware: do nothing */
5631 		break;
5632 	}
5633 }
5634 
5635 /*
5636  * e1000g_release_driver_control - tell manageability firmware that the driver
5637  * has released control.
5638  */
5639 static void
5640 e1000g_release_driver_control(struct e1000_hw *hw)
5641 {
5642 	uint32_t ctrl_ext;
5643 	uint32_t swsm;
5644 
5645 	/* tell manageability firmware the driver has released control */
5646 	switch (hw->mac.type) {
5647 	case e1000_82573:
5648 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5649 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
5650 		break;
5651 	case e1000_82571:
5652 	case e1000_82572:
5653 	case e1000_82574:
5654 	case e1000_80003es2lan:
5655 	case e1000_ich8lan:
5656 	case e1000_ich9lan:
5657 	case e1000_ich10lan:
5658 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5659 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5660 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
5661 		break;
5662 	default:
5663 		/* no manageability firmware: do nothing */
5664 		break;
5665 	}
5666 }
5667