xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 7b0bedd42192a2f6bcd6fc4b637d23892303a962)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.21";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 static int e1000g_alloc_rx_data(struct e1000g *);
96 static void e1000g_release_multicast(struct e1000g *);
97 static void e1000g_pch_limits(struct e1000g *);
98 static uint32_t e1000g_mtu2maxframe(uint32_t);
99 
100 /*
101  * Local routines
102  */
103 static boolean_t e1000g_reset_adapter(struct e1000g *);
104 static void e1000g_tx_clean(struct e1000g *);
105 static void e1000g_rx_clean(struct e1000g *);
106 static void e1000g_link_timer(void *);
107 static void e1000g_local_timer(void *);
108 static boolean_t e1000g_link_check(struct e1000g *);
109 static boolean_t e1000g_stall_check(struct e1000g *);
110 static void e1000g_smartspeed(struct e1000g *);
111 static void e1000g_get_conf(struct e1000g *);
112 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
113     int *);
114 static void enable_watchdog_timer(struct e1000g *);
115 static void disable_watchdog_timer(struct e1000g *);
116 static void start_watchdog_timer(struct e1000g *);
117 static void restart_watchdog_timer(struct e1000g *);
118 static void stop_watchdog_timer(struct e1000g *);
119 static void stop_link_timer(struct e1000g *);
120 static void stop_82547_timer(e1000g_tx_ring_t *);
121 static void e1000g_force_speed_duplex(struct e1000g *);
122 static void e1000g_setup_max_mtu(struct e1000g *);
123 static void e1000g_get_max_frame_size(struct e1000g *);
124 static boolean_t is_valid_mac_addr(uint8_t *);
125 static void e1000g_unattach(dev_info_t *, struct e1000g *);
126 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
154     const void *impl_data);
155 static void e1000g_fm_init(struct e1000g *Adapter);
156 static void e1000g_fm_fini(struct e1000g *Adapter);
157 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
158 static void e1000g_param_sync(struct e1000g *);
159 static void e1000g_get_driver_control(struct e1000_hw *);
160 static void e1000g_release_driver_control(struct e1000_hw *);
161 static void e1000g_restore_promisc(struct e1000g *Adapter);
162 
163 mac_priv_prop_t e1000g_priv_props[] = {
164 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
165 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
166 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
167 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
168 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
169 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
170 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
171 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
172 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
173 	{"_intr_adaptive", MAC_PROP_PERM_RW},
174 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
175 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
176 };
177 #define	E1000G_MAX_PRIV_PROPS	\
178 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
179 
180 
181 static struct cb_ops cb_ws_ops = {
182 	nulldev,		/* cb_open */
183 	nulldev,		/* cb_close */
184 	nodev,			/* cb_strategy */
185 	nodev,			/* cb_print */
186 	nodev,			/* cb_dump */
187 	nodev,			/* cb_read */
188 	nodev,			/* cb_write */
189 	nodev,			/* cb_ioctl */
190 	nodev,			/* cb_devmap */
191 	nodev,			/* cb_mmap */
192 	nodev,			/* cb_segmap */
193 	nochpoll,		/* cb_chpoll */
194 	ddi_prop_op,		/* cb_prop_op */
195 	NULL,			/* cb_stream */
196 	D_MP | D_HOTPLUG,	/* cb_flag */
197 	CB_REV,			/* cb_rev */
198 	nodev,			/* cb_aread */
199 	nodev			/* cb_awrite */
200 };
201 
202 static struct dev_ops ws_ops = {
203 	DEVO_REV,		/* devo_rev */
204 	0,			/* devo_refcnt */
205 	NULL,			/* devo_getinfo */
206 	nulldev,		/* devo_identify */
207 	nulldev,		/* devo_probe */
208 	e1000g_attach,		/* devo_attach */
209 	e1000g_detach,		/* devo_detach */
210 	nodev,			/* devo_reset */
211 	&cb_ws_ops,		/* devo_cb_ops */
212 	NULL,			/* devo_bus_ops */
213 	ddi_power,		/* devo_power */
214 	e1000g_quiesce		/* devo_quiesce */
215 };
216 
217 static struct modldrv modldrv = {
218 	&mod_driverops,		/* Type of module.  This one is a driver */
219 	ident,			/* Discription string */
220 	&ws_ops,		/* driver ops */
221 };
222 
223 static struct modlinkage modlinkage = {
224 	MODREV_1, &modldrv, NULL
225 };
226 
227 /* Access attributes for register mapping */
228 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
229 	DDI_DEVICE_ATTR_V1,
230 	DDI_STRUCTURE_LE_ACC,
231 	DDI_STRICTORDER_ACC,
232 	DDI_FLAGERR_ACC
233 };
234 
235 #define	E1000G_M_CALLBACK_FLAGS \
236 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
237 
238 static mac_callbacks_t e1000g_m_callbacks = {
239 	E1000G_M_CALLBACK_FLAGS,
240 	e1000g_m_stat,
241 	e1000g_m_start,
242 	e1000g_m_stop,
243 	e1000g_m_promisc,
244 	e1000g_m_multicst,
245 	NULL,
246 	e1000g_m_tx,
247 	e1000g_m_ioctl,
248 	e1000g_m_getcapab,
249 	NULL,
250 	NULL,
251 	e1000g_m_setprop,
252 	e1000g_m_getprop
253 };
254 
255 /*
256  * Global variables
257  */
258 uint32_t e1000g_mblks_pending = 0;
259 /*
260  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
261  * Here we maintain a private dev_info list if e1000g_force_detach is
262  * enabled. If we force the driver to detach while there are still some
263  * rx buffers retained in the upper layer, we have to keep a copy of the
264  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
265  * structure will be freed after the driver is detached. However when we
266  * finally free those rx buffers released by the upper layer, we need to
267  * refer to the dev_info to free the dma buffers. So we save a copy of
268  * the dev_info for this purpose. On x86 platform, we assume this copy
269  * of dev_info is always valid, but on SPARC platform, it could be invalid
270  * after the system board level DR operation. For this reason, the global
271  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
272  */
273 #ifdef __sparc
274 boolean_t e1000g_force_detach = B_FALSE;
275 #else
276 boolean_t e1000g_force_detach = B_TRUE;
277 #endif
278 private_devi_list_t *e1000g_private_devi_list = NULL;
279 
280 /*
281  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
282  * the private dev_info list, and to serialize the processing of rx buffer
283  * freeing and rx buffer recycling.
284  */
285 kmutex_t e1000g_rx_detach_lock;
286 /*
287  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
288  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
289  * If there are many e1000g instances, the system may run out of DVMA
290  * resources during the initialization of the instances, then the flag will
291  * be changed to "USE_DMA". Because different e1000g instances are initialized
292  * in parallel, we need to use this lock to protect the flag.
293  */
294 krwlock_t e1000g_dma_type_lock;
295 
296 /*
297  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
298  * Based on the information from Intel, the 82546 chipset has some hardware
299  * problem. When one port is being reset and the other port is trying to
300  * access the eeprom, it could cause system hang or panic. To workaround this
301  * hardware problem, we use a global mutex to prevent such operations from
302  * happening simultaneously on different instances. This workaround is applied
303  * to all the devices supported by this driver.
304  */
305 kmutex_t e1000g_nvm_lock;
306 
307 /*
308  * Loadable module configuration entry points for the driver
309  */
310 
311 /*
312  * _init - module initialization
313  */
314 int
315 _init(void)
316 {
317 	int status;
318 
319 	mac_init_ops(&ws_ops, WSNAME);
320 	status = mod_install(&modlinkage);
321 	if (status != DDI_SUCCESS)
322 		mac_fini_ops(&ws_ops);
323 	else {
324 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
325 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
326 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
327 	}
328 
329 	return (status);
330 }
331 
332 /*
333  * _fini - module finalization
334  */
335 int
336 _fini(void)
337 {
338 	int status;
339 
340 	if (e1000g_mblks_pending != 0)
341 		return (EBUSY);
342 
343 	status = mod_remove(&modlinkage);
344 	if (status == DDI_SUCCESS) {
345 		mac_fini_ops(&ws_ops);
346 
347 		if (e1000g_force_detach) {
348 			private_devi_list_t *devi_node;
349 
350 			mutex_enter(&e1000g_rx_detach_lock);
351 			while (e1000g_private_devi_list != NULL) {
352 				devi_node = e1000g_private_devi_list;
353 				e1000g_private_devi_list =
354 				    e1000g_private_devi_list->next;
355 
356 				kmem_free(devi_node->priv_dip,
357 				    sizeof (struct dev_info));
358 				kmem_free(devi_node,
359 				    sizeof (private_devi_list_t));
360 			}
361 			mutex_exit(&e1000g_rx_detach_lock);
362 		}
363 
364 		mutex_destroy(&e1000g_rx_detach_lock);
365 		rw_destroy(&e1000g_dma_type_lock);
366 		mutex_destroy(&e1000g_nvm_lock);
367 	}
368 
369 	return (status);
370 }
371 
372 /*
373  * _info - module information
374  */
375 int
376 _info(struct modinfo *modinfop)
377 {
378 	return (mod_info(&modlinkage, modinfop));
379 }
380 
381 /*
382  * e1000g_attach - driver attach
383  *
384  * This function is the device-specific initialization entry
385  * point. This entry point is required and must be written.
386  * The DDI_ATTACH command must be provided in the attach entry
387  * point. When attach() is called with cmd set to DDI_ATTACH,
388  * all normal kernel services (such as kmem_alloc(9F)) are
389  * available for use by the driver.
390  *
391  * The attach() function will be called once for each instance
392  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
393  * Until attach() succeeds, the only driver entry points which
394  * may be called are open(9E) and getinfo(9E).
395  */
396 static int
397 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
398 {
399 	struct e1000g *Adapter;
400 	struct e1000_hw *hw;
401 	struct e1000g_osdep *osdep;
402 	int instance;
403 
404 	switch (cmd) {
405 	default:
406 		e1000g_log(NULL, CE_WARN,
407 		    "Unsupported command send to e1000g_attach... ");
408 		return (DDI_FAILURE);
409 
410 	case DDI_RESUME:
411 		return (e1000g_resume(devinfo));
412 
413 	case DDI_ATTACH:
414 		break;
415 	}
416 
417 	/*
418 	 * get device instance number
419 	 */
420 	instance = ddi_get_instance(devinfo);
421 
422 	/*
423 	 * Allocate soft data structure
424 	 */
425 	Adapter =
426 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
427 
428 	Adapter->dip = devinfo;
429 	Adapter->instance = instance;
430 	Adapter->tx_ring->adapter = Adapter;
431 	Adapter->rx_ring->adapter = Adapter;
432 
433 	hw = &Adapter->shared;
434 	osdep = &Adapter->osdep;
435 	hw->back = osdep;
436 	osdep->adapter = Adapter;
437 
438 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
439 
440 	/*
441 	 * Initialize for fma support
442 	 */
443 	(void) e1000g_get_prop(Adapter, "fm-capable",
444 	    0, 0x0f,
445 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
446 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
447 	    &Adapter->fm_capabilities);
448 	e1000g_fm_init(Adapter);
449 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
450 
451 	/*
452 	 * PCI Configure
453 	 */
454 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
455 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
456 		goto attach_fail;
457 	}
458 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
459 
460 	/*
461 	 * Setup hardware
462 	 */
463 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
464 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
465 		goto attach_fail;
466 	}
467 
468 	/*
469 	 * Map in the device registers.
470 	 */
471 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
472 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
473 		goto attach_fail;
474 	}
475 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
476 
477 	/*
478 	 * Initialize driver parameters
479 	 */
480 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
481 		goto attach_fail;
482 	}
483 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
484 
485 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
486 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
487 		goto attach_fail;
488 	}
489 
490 	/*
491 	 * Initialize interrupts
492 	 */
493 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
494 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
495 		goto attach_fail;
496 	}
497 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
498 
499 	/*
500 	 * Initialize mutex's for this device.
501 	 * Do this before enabling the interrupt handler and
502 	 * register the softint to avoid the condition where
503 	 * interrupt handler can try using uninitialized mutex
504 	 */
505 	e1000g_init_locks(Adapter);
506 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
507 
508 	/*
509 	 * Initialize Driver Counters
510 	 */
511 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
512 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
513 		goto attach_fail;
514 	}
515 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
516 
517 	/*
518 	 * Initialize chip hardware and software structures
519 	 */
520 	rw_enter(&Adapter->chip_lock, RW_WRITER);
521 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
522 		rw_exit(&Adapter->chip_lock);
523 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
524 		goto attach_fail;
525 	}
526 	rw_exit(&Adapter->chip_lock);
527 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
528 
529 	/*
530 	 * Register the driver to the MAC
531 	 */
532 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
533 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
534 		goto attach_fail;
535 	}
536 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
537 
538 	/*
539 	 * Now that mutex locks are initialized, and the chip is also
540 	 * initialized, enable interrupts.
541 	 */
542 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
543 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
544 		goto attach_fail;
545 	}
546 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
547 
548 	/*
549 	 * If e1000g_force_detach is enabled, in global private dip list,
550 	 * we will create a new entry, which maintains the priv_dip for DR
551 	 * supports after driver detached.
552 	 */
553 	if (e1000g_force_detach) {
554 		private_devi_list_t *devi_node;
555 
556 		Adapter->priv_dip =
557 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
558 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
559 		    sizeof (struct dev_info));
560 
561 		devi_node =
562 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
563 
564 		mutex_enter(&e1000g_rx_detach_lock);
565 		devi_node->priv_dip = Adapter->priv_dip;
566 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
567 		devi_node->pending_rx_count = 0;
568 
569 		Adapter->priv_devi_node = devi_node;
570 
571 		if (e1000g_private_devi_list == NULL) {
572 			devi_node->prev = NULL;
573 			devi_node->next = NULL;
574 			e1000g_private_devi_list = devi_node;
575 		} else {
576 			devi_node->prev = NULL;
577 			devi_node->next = e1000g_private_devi_list;
578 			e1000g_private_devi_list->prev = devi_node;
579 			e1000g_private_devi_list = devi_node;
580 		}
581 		mutex_exit(&e1000g_rx_detach_lock);
582 	}
583 
584 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
585 	Adapter->e1000g_state = E1000G_INITIALIZED;
586 
587 	return (DDI_SUCCESS);
588 
589 attach_fail:
590 	e1000g_unattach(devinfo, Adapter);
591 	return (DDI_FAILURE);
592 }
593 
594 static int
595 e1000g_register_mac(struct e1000g *Adapter)
596 {
597 	struct e1000_hw *hw = &Adapter->shared;
598 	mac_register_t *mac;
599 	int err;
600 
601 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
602 		return (DDI_FAILURE);
603 
604 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
605 	mac->m_driver = Adapter;
606 	mac->m_dip = Adapter->dip;
607 	mac->m_src_addr = hw->mac.addr;
608 	mac->m_callbacks = &e1000g_m_callbacks;
609 	mac->m_min_sdu = 0;
610 	mac->m_max_sdu = Adapter->default_mtu;
611 	mac->m_margin = VLAN_TAGSZ;
612 	mac->m_priv_props = e1000g_priv_props;
613 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
614 	mac->m_v12n = MAC_VIRT_LEVEL1;
615 
616 	err = mac_register(mac, &Adapter->mh);
617 	mac_free(mac);
618 
619 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
620 }
621 
622 static int
623 e1000g_identify_hardware(struct e1000g *Adapter)
624 {
625 	struct e1000_hw *hw = &Adapter->shared;
626 	struct e1000g_osdep *osdep = &Adapter->osdep;
627 
628 	/* Get the device id */
629 	hw->vendor_id =
630 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
631 	hw->device_id =
632 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
633 	hw->revision_id =
634 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
635 	hw->subsystem_device_id =
636 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
637 	hw->subsystem_vendor_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
639 
640 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
641 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
642 		    "MAC type could not be set properly.");
643 		return (DDI_FAILURE);
644 	}
645 
646 	return (DDI_SUCCESS);
647 }
648 
649 static int
650 e1000g_regs_map(struct e1000g *Adapter)
651 {
652 	dev_info_t *devinfo = Adapter->dip;
653 	struct e1000_hw *hw = &Adapter->shared;
654 	struct e1000g_osdep *osdep = &Adapter->osdep;
655 	off_t mem_size;
656 	bar_info_t bar_info;
657 	int offset, rnumber;
658 
659 	rnumber = ADAPTER_REG_SET;
660 	/* Get size of adapter register memory */
661 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
662 	    DDI_SUCCESS) {
663 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
664 		    "ddi_dev_regsize for registers failed");
665 		return (DDI_FAILURE);
666 	}
667 
668 	/* Map adapter register memory */
669 	if ((ddi_regs_map_setup(devinfo, rnumber,
670 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
671 	    &osdep->reg_handle)) != DDI_SUCCESS) {
672 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
673 		    "ddi_regs_map_setup for registers failed");
674 		goto regs_map_fail;
675 	}
676 
677 	/* ICH needs to map flash memory */
678 	switch (hw->mac.type) {
679 	case e1000_ich8lan:
680 	case e1000_ich9lan:
681 	case e1000_ich10lan:
682 	case e1000_pchlan:
683 		rnumber = ICH_FLASH_REG_SET;
684 
685 		/* get flash size */
686 		if (ddi_dev_regsize(devinfo, rnumber,
687 		    &mem_size) != DDI_SUCCESS) {
688 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
689 			    "ddi_dev_regsize for ICH flash failed");
690 			goto regs_map_fail;
691 		}
692 
693 		/* map flash in */
694 		if (ddi_regs_map_setup(devinfo, rnumber,
695 		    (caddr_t *)&hw->flash_address, 0,
696 		    mem_size, &e1000g_regs_acc_attr,
697 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
698 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
699 			    "ddi_regs_map_setup for ICH flash failed");
700 			goto regs_map_fail;
701 		}
702 		break;
703 	default:
704 		break;
705 	}
706 
707 	/* map io space */
708 	switch (hw->mac.type) {
709 	case e1000_82544:
710 	case e1000_82540:
711 	case e1000_82545:
712 	case e1000_82546:
713 	case e1000_82541:
714 	case e1000_82541_rev_2:
715 		/* find the IO bar */
716 		rnumber = -1;
717 		for (offset = PCI_CONF_BASE1;
718 		    offset <= PCI_CONF_BASE5; offset += 4) {
719 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
720 			    != DDI_SUCCESS)
721 				continue;
722 			if (bar_info.type == E1000G_BAR_IO) {
723 				rnumber = bar_info.rnumber;
724 				break;
725 			}
726 		}
727 
728 		if (rnumber < 0) {
729 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
730 			    "No io space is found");
731 			goto regs_map_fail;
732 		}
733 
734 		/* get io space size */
735 		if (ddi_dev_regsize(devinfo, rnumber,
736 		    &mem_size) != DDI_SUCCESS) {
737 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
738 			    "ddi_dev_regsize for io space failed");
739 			goto regs_map_fail;
740 		}
741 
742 		/* map io space */
743 		if ((ddi_regs_map_setup(devinfo, rnumber,
744 		    (caddr_t *)&hw->io_base, 0, mem_size,
745 		    &e1000g_regs_acc_attr,
746 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
747 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
748 			    "ddi_regs_map_setup for io space failed");
749 			goto regs_map_fail;
750 		}
751 		break;
752 	default:
753 		hw->io_base = 0;
754 		break;
755 	}
756 
757 	return (DDI_SUCCESS);
758 
759 regs_map_fail:
760 	if (osdep->reg_handle != NULL)
761 		ddi_regs_map_free(&osdep->reg_handle);
762 	if (osdep->ich_flash_handle != NULL)
763 		ddi_regs_map_free(&osdep->ich_flash_handle);
764 	return (DDI_FAILURE);
765 }
766 
767 static int
768 e1000g_set_driver_params(struct e1000g *Adapter)
769 {
770 	struct e1000_hw *hw;
771 
772 	hw = &Adapter->shared;
773 
774 	/* Set MAC type and initialize hardware functions */
775 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
776 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
777 		    "Could not setup hardware functions");
778 		return (DDI_FAILURE);
779 	}
780 
781 	/* Get bus information */
782 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
783 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
784 		    "Could not get bus information");
785 		return (DDI_FAILURE);
786 	}
787 
788 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
789 
790 	hw->mac.autoneg_failed = B_TRUE;
791 
792 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
793 	hw->phy.autoneg_wait_to_complete = B_FALSE;
794 
795 	/* Adaptive IFS related changes */
796 	hw->mac.adaptive_ifs = B_TRUE;
797 
798 	/* Enable phy init script for IGP phy of 82541/82547 */
799 	if ((hw->mac.type == e1000_82547) ||
800 	    (hw->mac.type == e1000_82541) ||
801 	    (hw->mac.type == e1000_82547_rev_2) ||
802 	    (hw->mac.type == e1000_82541_rev_2))
803 		e1000_init_script_state_82541(hw, B_TRUE);
804 
805 	/* Enable the TTL workaround for 82541/82547 */
806 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
807 
808 #ifdef __sparc
809 	Adapter->strip_crc = B_TRUE;
810 #else
811 	Adapter->strip_crc = B_FALSE;
812 #endif
813 
814 	/* setup the maximum MTU size of the chip */
815 	e1000g_setup_max_mtu(Adapter);
816 
817 	/* Get speed/duplex settings in conf file */
818 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
819 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
820 	e1000g_force_speed_duplex(Adapter);
821 
822 	/* Get Jumbo Frames settings in conf file */
823 	e1000g_get_max_frame_size(Adapter);
824 
825 	/* Get conf file properties */
826 	e1000g_get_conf(Adapter);
827 
828 	/* enforce PCH limits */
829 	e1000g_pch_limits(Adapter);
830 
831 	/* Set Rx/Tx buffer size */
832 	e1000g_set_bufsize(Adapter);
833 
834 	/* Master Latency Timer */
835 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
836 
837 	/* copper options */
838 	if (hw->phy.media_type == e1000_media_type_copper) {
839 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
840 		hw->phy.disable_polarity_correction = B_FALSE;
841 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
842 	}
843 
844 	/* The initial link state should be "unknown" */
845 	Adapter->link_state = LINK_STATE_UNKNOWN;
846 
847 	/* Initialize rx parameters */
848 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
849 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
850 
851 	/* Initialize tx parameters */
852 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
853 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
854 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
855 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
856 
857 	/* Initialize rx parameters */
858 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
859 
860 	return (DDI_SUCCESS);
861 }
862 
863 static void
864 e1000g_setup_max_mtu(struct e1000g *Adapter)
865 {
866 	struct e1000_mac_info *mac = &Adapter->shared.mac;
867 	struct e1000_phy_info *phy = &Adapter->shared.phy;
868 
869 	switch (mac->type) {
870 	/* types that do not support jumbo frames */
871 	case e1000_ich8lan:
872 	case e1000_82573:
873 	case e1000_82583:
874 		Adapter->max_mtu = ETHERMTU;
875 		break;
876 	/* ich9 supports jumbo frames except on one phy type */
877 	case e1000_ich9lan:
878 		if (phy->type == e1000_phy_ife)
879 			Adapter->max_mtu = ETHERMTU;
880 		else
881 			Adapter->max_mtu = MAXIMUM_MTU_9K;
882 		break;
883 	/* pch can do jumbo frames up to 4K */
884 	case e1000_pchlan:
885 		Adapter->max_mtu = MAXIMUM_MTU_4K;
886 		break;
887 	/* types with a special limit */
888 	case e1000_82571:
889 	case e1000_82572:
890 	case e1000_82574:
891 	case e1000_80003es2lan:
892 	case e1000_ich10lan:
893 		Adapter->max_mtu = MAXIMUM_MTU_9K;
894 		break;
895 	/* default limit is 16K */
896 	default:
897 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
898 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
899 		    E1000G_IPALIGNPRESERVEROOM;
900 		break;
901 	}
902 }
903 
904 static void
905 e1000g_set_bufsize(struct e1000g *Adapter)
906 {
907 	struct e1000_mac_info *mac = &Adapter->shared.mac;
908 	uint64_t rx_size;
909 	uint64_t tx_size;
910 
911 	dev_info_t *devinfo = Adapter->dip;
912 #ifdef __sparc
913 	ulong_t iommu_pagesize;
914 #endif
915 	/* Get the system page size */
916 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
917 
918 #ifdef __sparc
919 	iommu_pagesize = dvma_pagesize(devinfo);
920 	if (iommu_pagesize != 0) {
921 		if (Adapter->sys_page_sz == iommu_pagesize) {
922 			if (iommu_pagesize > 0x4000)
923 				Adapter->sys_page_sz = 0x4000;
924 		} else {
925 			if (Adapter->sys_page_sz > iommu_pagesize)
926 				Adapter->sys_page_sz = iommu_pagesize;
927 		}
928 	}
929 	if (Adapter->lso_enable) {
930 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
931 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
932 	} else {
933 		Adapter->dvma_page_num = Adapter->max_frame_size /
934 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
935 	}
936 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
937 #endif
938 
939 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
940 
941 	if (Adapter->mem_workaround_82546 &&
942 	    ((mac->type == e1000_82545) ||
943 	    (mac->type == e1000_82546) ||
944 	    (mac->type == e1000_82546_rev_3))) {
945 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
946 	} else {
947 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
948 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
949 		    (rx_size <= FRAME_SIZE_UPTO_4K))
950 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
951 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
952 		    (rx_size <= FRAME_SIZE_UPTO_8K))
953 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
954 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
955 		    (rx_size <= FRAME_SIZE_UPTO_16K))
956 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
957 		else
958 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
959 	}
960 
961 	tx_size = Adapter->max_frame_size;
962 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
963 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
964 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
965 	    (tx_size <= FRAME_SIZE_UPTO_8K))
966 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
967 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
968 	    (tx_size <= FRAME_SIZE_UPTO_16K))
969 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
970 	else
971 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
972 
973 	/*
974 	 * For Wiseman adapters we have an requirement of having receive
975 	 * buffers aligned at 256 byte boundary. Since Livengood does not
976 	 * require this and forcing it for all hardwares will have
977 	 * performance implications, I am making it applicable only for
978 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
979 	 * it is okay to have normal frames...but it does involve a
980 	 * potential risk where we may loose data if buffer is not
981 	 * aligned...so all wiseman boards to have 256 byte aligned
982 	 * buffers
983 	 */
984 	if (mac->type < e1000_82543)
985 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
986 	else
987 		Adapter->rx_buf_align = 1;
988 }
989 
990 /*
991  * e1000g_detach - driver detach
992  *
993  * The detach() function is the complement of the attach routine.
994  * If cmd is set to DDI_DETACH, detach() is used to remove  the
995  * state  associated  with  a  given  instance of a device node
996  * prior to the removal of that instance from the system.
997  *
998  * The detach() function will be called once for each  instance
999  * of the device for which there has been a successful attach()
1000  * once there are no longer  any  opens  on  the  device.
1001  *
1002  * Interrupts routine are disabled, All memory allocated by this
1003  * driver are freed.
1004  */
1005 static int
1006 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1007 {
1008 	struct e1000g *Adapter;
1009 	boolean_t rx_drain;
1010 
1011 	switch (cmd) {
1012 	default:
1013 		return (DDI_FAILURE);
1014 
1015 	case DDI_SUSPEND:
1016 		return (e1000g_suspend(devinfo));
1017 
1018 	case DDI_DETACH:
1019 		break;
1020 	}
1021 
1022 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1023 	if (Adapter == NULL)
1024 		return (DDI_FAILURE);
1025 
1026 	rx_drain = e1000g_rx_drain(Adapter);
1027 	if (!rx_drain && !e1000g_force_detach)
1028 		return (DDI_FAILURE);
1029 
1030 	if (mac_unregister(Adapter->mh) != 0) {
1031 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1032 		return (DDI_FAILURE);
1033 	}
1034 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1035 
1036 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1037 
1038 	if (!e1000g_force_detach && !rx_drain)
1039 		return (DDI_FAILURE);
1040 
1041 	e1000g_unattach(devinfo, Adapter);
1042 
1043 	return (DDI_SUCCESS);
1044 }
1045 
1046 /*
1047  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1048  */
1049 void
1050 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1051 {
1052 	ASSERT(e1000g_private_devi_list != NULL);
1053 	ASSERT(devi_node != NULL);
1054 
1055 	if (devi_node->prev != NULL)
1056 		devi_node->prev->next = devi_node->next;
1057 	if (devi_node->next != NULL)
1058 		devi_node->next->prev = devi_node->prev;
1059 	if (devi_node == e1000g_private_devi_list)
1060 		e1000g_private_devi_list = devi_node->next;
1061 
1062 	kmem_free(devi_node->priv_dip,
1063 	    sizeof (struct dev_info));
1064 	kmem_free(devi_node,
1065 	    sizeof (private_devi_list_t));
1066 }
1067 
1068 static void
1069 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1070 {
1071 	private_devi_list_t *devi_node;
1072 	int result;
1073 
1074 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1075 		(void) e1000g_disable_intrs(Adapter);
1076 	}
1077 
1078 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1079 		(void) mac_unregister(Adapter->mh);
1080 	}
1081 
1082 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1083 		(void) e1000g_rem_intrs(Adapter);
1084 	}
1085 
1086 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1087 		(void) ddi_prop_remove_all(devinfo);
1088 	}
1089 
1090 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1091 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1092 	}
1093 
1094 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1095 		stop_link_timer(Adapter);
1096 
1097 		mutex_enter(&e1000g_nvm_lock);
1098 		result = e1000_reset_hw(&Adapter->shared);
1099 		mutex_exit(&e1000g_nvm_lock);
1100 
1101 		if (result != E1000_SUCCESS) {
1102 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1103 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1104 		}
1105 	}
1106 
1107 	e1000g_release_multicast(Adapter);
1108 
1109 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1110 		if (Adapter->osdep.reg_handle != NULL)
1111 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1112 		if (Adapter->osdep.ich_flash_handle != NULL)
1113 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1114 		if (Adapter->osdep.io_reg_handle != NULL)
1115 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1116 	}
1117 
1118 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1119 		if (Adapter->osdep.cfg_handle != NULL)
1120 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1121 	}
1122 
1123 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1124 		e1000g_destroy_locks(Adapter);
1125 	}
1126 
1127 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1128 		e1000g_fm_fini(Adapter);
1129 	}
1130 
1131 	mutex_enter(&e1000g_rx_detach_lock);
1132 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1133 		devi_node = Adapter->priv_devi_node;
1134 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1135 
1136 		if (devi_node->pending_rx_count == 0) {
1137 			e1000g_free_priv_devi_node(devi_node);
1138 		}
1139 	}
1140 	mutex_exit(&e1000g_rx_detach_lock);
1141 
1142 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1143 
1144 	/*
1145 	 * Another hotplug spec requirement,
1146 	 * run ddi_set_driver_private(devinfo, null);
1147 	 */
1148 	ddi_set_driver_private(devinfo, NULL);
1149 }
1150 
1151 /*
1152  * Get the BAR type and rnumber for a given PCI BAR offset
1153  */
1154 static int
1155 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1156 {
1157 	pci_regspec_t *regs;
1158 	uint_t regs_length;
1159 	int type, rnumber;
1160 
1161 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1162 	    (bar_offset <= PCI_CONF_BASE5));
1163 
1164 	/*
1165 	 * Get the DDI "reg" property
1166 	 */
1167 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1168 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1169 	    &regs_length) != DDI_PROP_SUCCESS) {
1170 		return (DDI_FAILURE);
1171 	}
1172 
1173 	/*
1174 	 * Check the BAR offset
1175 	 */
1176 	for (rnumber = 0; rnumber < regs_length; ++rnumber) {
1177 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1178 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1179 			break;
1180 		}
1181 	}
1182 
1183 	ddi_prop_free(regs);
1184 
1185 	if (rnumber >= regs_length)
1186 		return (DDI_FAILURE);
1187 
1188 	switch (type) {
1189 	case PCI_ADDR_CONFIG:
1190 		bar_info->type = E1000G_BAR_CONFIG;
1191 		break;
1192 	case PCI_ADDR_IO:
1193 		bar_info->type = E1000G_BAR_IO;
1194 		break;
1195 	case PCI_ADDR_MEM32:
1196 		bar_info->type = E1000G_BAR_MEM32;
1197 		break;
1198 	case PCI_ADDR_MEM64:
1199 		bar_info->type = E1000G_BAR_MEM64;
1200 		break;
1201 	default:
1202 		return (DDI_FAILURE);
1203 	}
1204 	bar_info->rnumber = rnumber;
1205 	return (DDI_SUCCESS);
1206 }
1207 
1208 static void
1209 e1000g_init_locks(struct e1000g *Adapter)
1210 {
1211 	e1000g_tx_ring_t *tx_ring;
1212 	e1000g_rx_ring_t *rx_ring;
1213 
1214 	rw_init(&Adapter->chip_lock, NULL,
1215 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1216 	mutex_init(&Adapter->link_lock, NULL,
1217 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1218 	mutex_init(&Adapter->watchdog_lock, NULL,
1219 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1220 
1221 	tx_ring = Adapter->tx_ring;
1222 
1223 	mutex_init(&tx_ring->tx_lock, NULL,
1224 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1225 	mutex_init(&tx_ring->usedlist_lock, NULL,
1226 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1227 	mutex_init(&tx_ring->freelist_lock, NULL,
1228 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1229 
1230 	rx_ring = Adapter->rx_ring;
1231 
1232 	mutex_init(&rx_ring->rx_lock, NULL,
1233 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1234 }
1235 
1236 static void
1237 e1000g_destroy_locks(struct e1000g *Adapter)
1238 {
1239 	e1000g_tx_ring_t *tx_ring;
1240 	e1000g_rx_ring_t *rx_ring;
1241 
1242 	tx_ring = Adapter->tx_ring;
1243 	mutex_destroy(&tx_ring->tx_lock);
1244 	mutex_destroy(&tx_ring->usedlist_lock);
1245 	mutex_destroy(&tx_ring->freelist_lock);
1246 
1247 	rx_ring = Adapter->rx_ring;
1248 	mutex_destroy(&rx_ring->rx_lock);
1249 
1250 	mutex_destroy(&Adapter->link_lock);
1251 	mutex_destroy(&Adapter->watchdog_lock);
1252 	rw_destroy(&Adapter->chip_lock);
1253 
1254 	/* destory mutex initialized in shared code */
1255 	e1000_destroy_hw_mutex(&Adapter->shared);
1256 }
1257 
1258 static int
1259 e1000g_resume(dev_info_t *devinfo)
1260 {
1261 	struct e1000g *Adapter;
1262 
1263 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1264 	if (Adapter == NULL)
1265 		e1000g_log(Adapter, CE_PANIC,
1266 		    "Instance pointer is null\n");
1267 
1268 	if (Adapter->dip != devinfo)
1269 		e1000g_log(Adapter, CE_PANIC,
1270 		    "Devinfo is not the same as saved devinfo\n");
1271 
1272 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1273 
1274 	if (Adapter->e1000g_state & E1000G_STARTED) {
1275 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1276 			rw_exit(&Adapter->chip_lock);
1277 			/*
1278 			 * We note the failure, but return success, as the
1279 			 * system is still usable without this controller.
1280 			 */
1281 			e1000g_log(Adapter, CE_WARN,
1282 			    "e1000g_resume: failed to restart controller\n");
1283 			return (DDI_SUCCESS);
1284 		}
1285 		/* Enable and start the watchdog timer */
1286 		enable_watchdog_timer(Adapter);
1287 	}
1288 
1289 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1290 
1291 	rw_exit(&Adapter->chip_lock);
1292 
1293 	return (DDI_SUCCESS);
1294 }
1295 
1296 static int
1297 e1000g_suspend(dev_info_t *devinfo)
1298 {
1299 	struct e1000g *Adapter;
1300 
1301 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1302 	if (Adapter == NULL)
1303 		return (DDI_FAILURE);
1304 
1305 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1306 
1307 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1308 
1309 	/* if the port isn't plumbed, we can simply return */
1310 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1311 		rw_exit(&Adapter->chip_lock);
1312 		return (DDI_SUCCESS);
1313 	}
1314 
1315 	e1000g_stop(Adapter, B_FALSE);
1316 
1317 	rw_exit(&Adapter->chip_lock);
1318 
1319 	/* Disable and stop all the timers */
1320 	disable_watchdog_timer(Adapter);
1321 	stop_link_timer(Adapter);
1322 	stop_82547_timer(Adapter->tx_ring);
1323 
1324 	return (DDI_SUCCESS);
1325 }
1326 
1327 static int
1328 e1000g_init(struct e1000g *Adapter)
1329 {
1330 	uint32_t pba;
1331 	uint32_t high_water;
1332 	struct e1000_hw *hw;
1333 	clock_t link_timeout;
1334 	int result;
1335 
1336 	hw = &Adapter->shared;
1337 
1338 	/*
1339 	 * reset to put the hardware in a known state
1340 	 * before we try to do anything with the eeprom
1341 	 */
1342 	mutex_enter(&e1000g_nvm_lock);
1343 	result = e1000_reset_hw(hw);
1344 	mutex_exit(&e1000g_nvm_lock);
1345 
1346 	if (result != E1000_SUCCESS) {
1347 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1348 		goto init_fail;
1349 	}
1350 
1351 	mutex_enter(&e1000g_nvm_lock);
1352 	result = e1000_validate_nvm_checksum(hw);
1353 	if (result < E1000_SUCCESS) {
1354 		/*
1355 		 * Some PCI-E parts fail the first check due to
1356 		 * the link being in sleep state.  Call it again,
1357 		 * if it fails a second time its a real issue.
1358 		 */
1359 		result = e1000_validate_nvm_checksum(hw);
1360 	}
1361 	mutex_exit(&e1000g_nvm_lock);
1362 
1363 	if (result < E1000_SUCCESS) {
1364 		e1000g_log(Adapter, CE_WARN,
1365 		    "Invalid NVM checksum. Please contact "
1366 		    "the vendor to update the NVM.");
1367 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1368 		goto init_fail;
1369 	}
1370 
1371 	result = 0;
1372 #ifdef __sparc
1373 	/*
1374 	 * First, we try to get the local ethernet address from OBP. If
1375 	 * failed, then we get it from the EEPROM of NIC card.
1376 	 */
1377 	result = e1000g_find_mac_address(Adapter);
1378 #endif
1379 	/* Get the local ethernet address. */
1380 	if (!result) {
1381 		mutex_enter(&e1000g_nvm_lock);
1382 		result = e1000_read_mac_addr(hw);
1383 		mutex_exit(&e1000g_nvm_lock);
1384 	}
1385 
1386 	if (result < E1000_SUCCESS) {
1387 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1388 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1389 		goto init_fail;
1390 	}
1391 
1392 	/* check for valid mac address */
1393 	if (!is_valid_mac_addr(hw->mac.addr)) {
1394 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1395 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1396 		goto init_fail;
1397 	}
1398 
1399 	/* Set LAA state for 82571 chipset */
1400 	e1000_set_laa_state_82571(hw, B_TRUE);
1401 
1402 	/* Master Latency Timer implementation */
1403 	if (Adapter->master_latency_timer) {
1404 		pci_config_put8(Adapter->osdep.cfg_handle,
1405 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1406 	}
1407 
1408 	if (hw->mac.type < e1000_82547) {
1409 		/*
1410 		 * Total FIFO is 64K
1411 		 */
1412 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1413 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1414 		else
1415 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1416 	} else if ((hw->mac.type == e1000_82571) ||
1417 	    (hw->mac.type == e1000_82572) ||
1418 	    (hw->mac.type == e1000_80003es2lan)) {
1419 		/*
1420 		 * Total FIFO is 48K
1421 		 */
1422 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1423 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1424 		else
1425 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1426 	} else if (hw->mac.type == e1000_82573) {
1427 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1428 	} else if (hw->mac.type == e1000_82574) {
1429 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1430 		pba = E1000_READ_REG(hw, E1000_PBA);
1431 	} else if (hw->mac.type == e1000_ich8lan) {
1432 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1433 	} else if (hw->mac.type == e1000_ich9lan) {
1434 		pba = E1000_PBA_10K;
1435 	} else if (hw->mac.type == e1000_ich10lan) {
1436 		pba = E1000_PBA_10K;
1437 	} else if (hw->mac.type == e1000_pchlan) {
1438 		pba = E1000_PBA_26K;
1439 	} else {
1440 		/*
1441 		 * Total FIFO is 40K
1442 		 */
1443 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1444 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1445 		else
1446 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1447 	}
1448 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1449 
1450 	/*
1451 	 * These parameters set thresholds for the adapter's generation(Tx)
1452 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1453 	 * settings.  Flow control is enabled or disabled in the configuration
1454 	 * file.
1455 	 * High-water mark is set down from the top of the rx fifo (not
1456 	 * sensitive to max_frame_size) and low-water is set just below
1457 	 * high-water mark.
1458 	 * The high water mark must be low enough to fit one full frame above
1459 	 * it in the rx FIFO.  Should be the lower of:
1460 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1461 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1462 	 * Rx FIFO size minus one full frame.
1463 	 */
1464 	high_water = min(((pba << 10) * 9 / 10),
1465 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1466 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1467 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1468 	    ((pba << 10) - Adapter->max_frame_size)));
1469 
1470 	hw->fc.high_water = high_water & 0xFFF8;
1471 	hw->fc.low_water = hw->fc.high_water - 8;
1472 
1473 	if (hw->mac.type == e1000_80003es2lan)
1474 		hw->fc.pause_time = 0xFFFF;
1475 	else
1476 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1477 	hw->fc.send_xon = B_TRUE;
1478 
1479 	/*
1480 	 * Reset the adapter hardware the second time.
1481 	 */
1482 	mutex_enter(&e1000g_nvm_lock);
1483 	result = e1000_reset_hw(hw);
1484 	mutex_exit(&e1000g_nvm_lock);
1485 
1486 	if (result != E1000_SUCCESS) {
1487 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1488 		goto init_fail;
1489 	}
1490 
1491 	/* disable wakeup control by default */
1492 	if (hw->mac.type >= e1000_82544)
1493 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1494 
1495 	/*
1496 	 * MWI should be disabled on 82546.
1497 	 */
1498 	if (hw->mac.type == e1000_82546)
1499 		e1000_pci_clear_mwi(hw);
1500 	else
1501 		e1000_pci_set_mwi(hw);
1502 
1503 	/*
1504 	 * Configure/Initialize hardware
1505 	 */
1506 	mutex_enter(&e1000g_nvm_lock);
1507 	result = e1000_init_hw(hw);
1508 	mutex_exit(&e1000g_nvm_lock);
1509 
1510 	if (result < E1000_SUCCESS) {
1511 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1512 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1513 		goto init_fail;
1514 	}
1515 
1516 	/*
1517 	 * Restore LED settings to the default from EEPROM
1518 	 * to meet the standard for Sun platforms.
1519 	 */
1520 	(void) e1000_cleanup_led(hw);
1521 
1522 	/* Disable Smart Power Down */
1523 	phy_spd_state(hw, B_FALSE);
1524 
1525 	/* Make sure driver has control */
1526 	e1000g_get_driver_control(hw);
1527 
1528 	/*
1529 	 * Initialize unicast addresses.
1530 	 */
1531 	e1000g_init_unicst(Adapter);
1532 
1533 	/*
1534 	 * Setup and initialize the mctable structures.  After this routine
1535 	 * completes  Multicast table will be set
1536 	 */
1537 	e1000_update_mc_addr_list(hw,
1538 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1539 	msec_delay(5);
1540 
1541 	/*
1542 	 * Implement Adaptive IFS
1543 	 */
1544 	e1000_reset_adaptive(hw);
1545 
1546 	/* Setup Interrupt Throttling Register */
1547 	if (hw->mac.type >= e1000_82540) {
1548 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1549 	} else
1550 		Adapter->intr_adaptive = B_FALSE;
1551 
1552 	/* Start the timer for link setup */
1553 	if (hw->mac.autoneg)
1554 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1555 	else
1556 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1557 
1558 	mutex_enter(&Adapter->link_lock);
1559 	if (hw->phy.autoneg_wait_to_complete) {
1560 		Adapter->link_complete = B_TRUE;
1561 	} else {
1562 		Adapter->link_complete = B_FALSE;
1563 		Adapter->link_tid = timeout(e1000g_link_timer,
1564 		    (void *)Adapter, link_timeout);
1565 	}
1566 	mutex_exit(&Adapter->link_lock);
1567 
1568 	/* Save the state of the phy */
1569 	e1000g_get_phy_state(Adapter);
1570 
1571 	e1000g_param_sync(Adapter);
1572 
1573 	Adapter->init_count++;
1574 
1575 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1576 		goto init_fail;
1577 	}
1578 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1579 		goto init_fail;
1580 	}
1581 
1582 	Adapter->poll_mode = e1000g_poll_mode;
1583 
1584 	return (DDI_SUCCESS);
1585 
1586 init_fail:
1587 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1588 	return (DDI_FAILURE);
1589 }
1590 
1591 static int
1592 e1000g_alloc_rx_data(struct e1000g *Adapter)
1593 {
1594 	e1000g_rx_ring_t *rx_ring;
1595 	e1000g_rx_data_t *rx_data;
1596 
1597 	rx_ring = Adapter->rx_ring;
1598 
1599 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1600 
1601 	if (rx_data == NULL)
1602 		return (DDI_FAILURE);
1603 
1604 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1605 	rx_data->rx_ring = rx_ring;
1606 
1607 	mutex_init(&rx_data->freelist_lock, NULL,
1608 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1609 	mutex_init(&rx_data->recycle_lock, NULL,
1610 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1611 
1612 	rx_ring->rx_data = rx_data;
1613 
1614 	return (DDI_SUCCESS);
1615 }
1616 
1617 void
1618 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1619 {
1620 	rx_sw_packet_t *packet, *next_packet;
1621 
1622 	if (rx_data == NULL)
1623 		return;
1624 
1625 	packet = rx_data->packet_area;
1626 	while (packet != NULL) {
1627 		next_packet = packet->next;
1628 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1629 		packet = next_packet;
1630 	}
1631 	rx_data->packet_area = NULL;
1632 }
1633 
1634 void
1635 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1636 {
1637 	if (rx_data == NULL)
1638 		return;
1639 
1640 	mutex_destroy(&rx_data->freelist_lock);
1641 	mutex_destroy(&rx_data->recycle_lock);
1642 
1643 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1644 }
1645 
1646 /*
1647  * Check if the link is up
1648  */
1649 static boolean_t
1650 e1000g_link_up(struct e1000g *Adapter)
1651 {
1652 	struct e1000_hw *hw = &Adapter->shared;
1653 	boolean_t link_up = B_FALSE;
1654 
1655 	/*
1656 	 * get_link_status is set in the interrupt handler on link-status-change
1657 	 * or rx sequence error interrupt.  get_link_status will stay
1658 	 * false until the e1000_check_for_link establishes link only
1659 	 * for copper adapters.
1660 	 */
1661 	switch (hw->phy.media_type) {
1662 	case e1000_media_type_copper:
1663 		if (hw->mac.get_link_status) {
1664 			(void) e1000_check_for_link(hw);
1665 			link_up = !hw->mac.get_link_status;
1666 		} else {
1667 			link_up = B_TRUE;
1668 		}
1669 		break;
1670 	case e1000_media_type_fiber:
1671 		(void) e1000_check_for_link(hw);
1672 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1673 		    E1000_STATUS_LU);
1674 		break;
1675 	case e1000_media_type_internal_serdes:
1676 		(void) e1000_check_for_link(hw);
1677 		link_up = hw->mac.serdes_has_link;
1678 		break;
1679 	}
1680 
1681 	return (link_up);
1682 }
1683 
1684 static void
1685 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1686 {
1687 	struct iocblk *iocp;
1688 	struct e1000g *e1000gp;
1689 	enum ioc_reply status;
1690 
1691 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1692 	iocp->ioc_error = 0;
1693 	e1000gp = (struct e1000g *)arg;
1694 
1695 	ASSERT(e1000gp);
1696 	if (e1000gp == NULL) {
1697 		miocnak(q, mp, 0, EINVAL);
1698 		return;
1699 	}
1700 
1701 	rw_enter(&e1000gp->chip_lock, RW_READER);
1702 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1703 		rw_exit(&e1000gp->chip_lock);
1704 		miocnak(q, mp, 0, EINVAL);
1705 		return;
1706 	}
1707 	rw_exit(&e1000gp->chip_lock);
1708 
1709 	switch (iocp->ioc_cmd) {
1710 
1711 	case LB_GET_INFO_SIZE:
1712 	case LB_GET_INFO:
1713 	case LB_GET_MODE:
1714 	case LB_SET_MODE:
1715 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1716 		break;
1717 
1718 
1719 #ifdef E1000G_DEBUG
1720 	case E1000G_IOC_REG_PEEK:
1721 	case E1000G_IOC_REG_POKE:
1722 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1723 		break;
1724 	case E1000G_IOC_CHIP_RESET:
1725 		e1000gp->reset_count++;
1726 		if (e1000g_reset_adapter(e1000gp))
1727 			status = IOC_ACK;
1728 		else
1729 			status = IOC_INVAL;
1730 		break;
1731 #endif
1732 	default:
1733 		status = IOC_INVAL;
1734 		break;
1735 	}
1736 
1737 	/*
1738 	 * Decide how to reply
1739 	 */
1740 	switch (status) {
1741 	default:
1742 	case IOC_INVAL:
1743 		/*
1744 		 * Error, reply with a NAK and EINVAL or the specified error
1745 		 */
1746 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1747 		    EINVAL : iocp->ioc_error);
1748 		break;
1749 
1750 	case IOC_DONE:
1751 		/*
1752 		 * OK, reply already sent
1753 		 */
1754 		break;
1755 
1756 	case IOC_ACK:
1757 		/*
1758 		 * OK, reply with an ACK
1759 		 */
1760 		miocack(q, mp, 0, 0);
1761 		break;
1762 
1763 	case IOC_REPLY:
1764 		/*
1765 		 * OK, send prepared reply as ACK or NAK
1766 		 */
1767 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1768 		    M_IOCACK : M_IOCNAK;
1769 		qreply(q, mp);
1770 		break;
1771 	}
1772 }
1773 
1774 /*
1775  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1776  * capable of supporting only one interrupt and we shouldn't disable
1777  * the physical interrupt. In this case we let the interrupt come and
1778  * we queue the packets in the rx ring itself in case we are in polling
1779  * mode (better latency but slightly lower performance and a very
1780  * high intrrupt count in mpstat which is harmless).
1781  *
1782  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1783  * which can be disabled in poll mode. This gives better overall
1784  * throughput (compared to the mode above), shows very low interrupt
1785  * count but has slightly higher latency since we pick the packets when
1786  * the poll thread does polling.
1787  *
1788  * Currently, this flag should be enabled only while doing performance
1789  * measurement or when it can be guaranteed that entire NIC going
1790  * in poll mode will not harm any traffic like cluster heartbeat etc.
1791  */
1792 int e1000g_poll_mode = 0;
1793 
1794 /*
1795  * Called from the upper layers when driver is in polling mode to
1796  * pick up any queued packets. Care should be taken to not block
1797  * this thread.
1798  */
1799 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1800 {
1801 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1802 	mblk_t			*mp = NULL;
1803 	mblk_t			*tail;
1804 	struct e1000g 		*adapter;
1805 
1806 	adapter = rx_ring->adapter;
1807 
1808 	rw_enter(&adapter->chip_lock, RW_READER);
1809 
1810 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1811 		rw_exit(&adapter->chip_lock);
1812 		return (NULL);
1813 	}
1814 
1815 	mutex_enter(&rx_ring->rx_lock);
1816 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1817 	mutex_exit(&rx_ring->rx_lock);
1818 	rw_exit(&adapter->chip_lock);
1819 	return (mp);
1820 }
1821 
1822 static int
1823 e1000g_m_start(void *arg)
1824 {
1825 	struct e1000g *Adapter = (struct e1000g *)arg;
1826 
1827 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1828 
1829 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1830 		rw_exit(&Adapter->chip_lock);
1831 		return (ECANCELED);
1832 	}
1833 
1834 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1835 		rw_exit(&Adapter->chip_lock);
1836 		return (ENOTACTIVE);
1837 	}
1838 
1839 	Adapter->e1000g_state |= E1000G_STARTED;
1840 
1841 	rw_exit(&Adapter->chip_lock);
1842 
1843 	/* Enable and start the watchdog timer */
1844 	enable_watchdog_timer(Adapter);
1845 
1846 	return (0);
1847 }
1848 
1849 static int
1850 e1000g_start(struct e1000g *Adapter, boolean_t global)
1851 {
1852 	e1000g_rx_data_t *rx_data;
1853 
1854 	if (global) {
1855 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1856 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1857 			goto start_fail;
1858 		}
1859 
1860 		/* Allocate dma resources for descriptors and buffers */
1861 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1862 			e1000g_log(Adapter, CE_WARN,
1863 			    "Alloc DMA resources failed");
1864 			goto start_fail;
1865 		}
1866 		Adapter->rx_buffer_setup = B_FALSE;
1867 	}
1868 
1869 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1870 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1871 			e1000g_log(Adapter, CE_WARN,
1872 			    "Adapter initialization failed");
1873 			goto start_fail;
1874 		}
1875 	}
1876 
1877 	/* Setup and initialize the transmit structures */
1878 	e1000g_tx_setup(Adapter);
1879 	msec_delay(5);
1880 
1881 	/* Setup and initialize the receive structures */
1882 	e1000g_rx_setup(Adapter);
1883 	msec_delay(5);
1884 
1885 	/* Restore the e1000g promiscuous mode */
1886 	e1000g_restore_promisc(Adapter);
1887 
1888 	e1000g_mask_interrupt(Adapter);
1889 
1890 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1891 
1892 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1893 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1894 		goto start_fail;
1895 	}
1896 
1897 	return (DDI_SUCCESS);
1898 
1899 start_fail:
1900 	rx_data = Adapter->rx_ring->rx_data;
1901 
1902 	if (global) {
1903 		e1000g_release_dma_resources(Adapter);
1904 		e1000g_free_rx_pending_buffers(rx_data);
1905 		e1000g_free_rx_data(rx_data);
1906 	}
1907 
1908 	mutex_enter(&e1000g_nvm_lock);
1909 	(void) e1000_reset_hw(&Adapter->shared);
1910 	mutex_exit(&e1000g_nvm_lock);
1911 
1912 	return (DDI_FAILURE);
1913 }
1914 
1915 static void
1916 e1000g_m_stop(void *arg)
1917 {
1918 	struct e1000g *Adapter = (struct e1000g *)arg;
1919 
1920 	/* Drain tx sessions */
1921 	(void) e1000g_tx_drain(Adapter);
1922 
1923 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1924 
1925 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1926 		rw_exit(&Adapter->chip_lock);
1927 		return;
1928 	}
1929 	Adapter->e1000g_state &= ~E1000G_STARTED;
1930 	e1000g_stop(Adapter, B_TRUE);
1931 
1932 	rw_exit(&Adapter->chip_lock);
1933 
1934 	/* Disable and stop all the timers */
1935 	disable_watchdog_timer(Adapter);
1936 	stop_link_timer(Adapter);
1937 	stop_82547_timer(Adapter->tx_ring);
1938 }
1939 
1940 static void
1941 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1942 {
1943 	private_devi_list_t *devi_node;
1944 	e1000g_rx_data_t *rx_data;
1945 	int result;
1946 
1947 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1948 
1949 	/* Stop the chip and release pending resources */
1950 
1951 	/* Tell firmware driver is no longer in control */
1952 	e1000g_release_driver_control(&Adapter->shared);
1953 
1954 	e1000g_clear_all_interrupts(Adapter);
1955 
1956 	mutex_enter(&e1000g_nvm_lock);
1957 	result = e1000_reset_hw(&Adapter->shared);
1958 	mutex_exit(&e1000g_nvm_lock);
1959 
1960 	if (result != E1000_SUCCESS) {
1961 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1962 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1963 	}
1964 
1965 	/* Release resources still held by the TX descriptors */
1966 	e1000g_tx_clean(Adapter);
1967 
1968 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1969 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1970 
1971 	/* Clean the pending rx jumbo packet fragment */
1972 	e1000g_rx_clean(Adapter);
1973 
1974 	if (global) {
1975 		e1000g_release_dma_resources(Adapter);
1976 
1977 		mutex_enter(&e1000g_rx_detach_lock);
1978 		rx_data = Adapter->rx_ring->rx_data;
1979 		rx_data->flag |= E1000G_RX_STOPPED;
1980 
1981 		if (rx_data->pending_count == 0) {
1982 			e1000g_free_rx_pending_buffers(rx_data);
1983 			e1000g_free_rx_data(rx_data);
1984 		} else {
1985 			devi_node = rx_data->priv_devi_node;
1986 			if (devi_node != NULL)
1987 				atomic_inc_32(&devi_node->pending_rx_count);
1988 			else
1989 				atomic_inc_32(&Adapter->pending_rx_count);
1990 		}
1991 		mutex_exit(&e1000g_rx_detach_lock);
1992 	}
1993 
1994 	if (Adapter->link_state == LINK_STATE_UP) {
1995 		Adapter->link_state = LINK_STATE_UNKNOWN;
1996 		if (!Adapter->reset_flag)
1997 			mac_link_update(Adapter->mh, Adapter->link_state);
1998 	}
1999 }
2000 
2001 static void
2002 e1000g_rx_clean(struct e1000g *Adapter)
2003 {
2004 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2005 
2006 	if (rx_data == NULL)
2007 		return;
2008 
2009 	if (rx_data->rx_mblk != NULL) {
2010 		freemsg(rx_data->rx_mblk);
2011 		rx_data->rx_mblk = NULL;
2012 		rx_data->rx_mblk_tail = NULL;
2013 		rx_data->rx_mblk_len = 0;
2014 	}
2015 }
2016 
2017 static void
2018 e1000g_tx_clean(struct e1000g *Adapter)
2019 {
2020 	e1000g_tx_ring_t *tx_ring;
2021 	p_tx_sw_packet_t packet;
2022 	mblk_t *mp;
2023 	mblk_t *nmp;
2024 	uint32_t packet_count;
2025 
2026 	tx_ring = Adapter->tx_ring;
2027 
2028 	/*
2029 	 * Here we don't need to protect the lists using
2030 	 * the usedlist_lock and freelist_lock, for they
2031 	 * have been protected by the chip_lock.
2032 	 */
2033 	mp = NULL;
2034 	nmp = NULL;
2035 	packet_count = 0;
2036 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2037 	while (packet != NULL) {
2038 		if (packet->mp != NULL) {
2039 			/* Assemble the message chain */
2040 			if (mp == NULL) {
2041 				mp = packet->mp;
2042 				nmp = packet->mp;
2043 			} else {
2044 				nmp->b_next = packet->mp;
2045 				nmp = packet->mp;
2046 			}
2047 			/* Disconnect the message from the sw packet */
2048 			packet->mp = NULL;
2049 		}
2050 
2051 		e1000g_free_tx_swpkt(packet);
2052 		packet_count++;
2053 
2054 		packet = (p_tx_sw_packet_t)
2055 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2056 	}
2057 
2058 	if (mp != NULL)
2059 		freemsgchain(mp);
2060 
2061 	if (packet_count > 0) {
2062 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2063 		QUEUE_INIT_LIST(&tx_ring->used_list);
2064 
2065 		/* Setup TX descriptor pointers */
2066 		tx_ring->tbd_next = tx_ring->tbd_first;
2067 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2068 
2069 		/* Setup our HW Tx Head & Tail descriptor pointers */
2070 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2071 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2072 	}
2073 }
2074 
2075 static boolean_t
2076 e1000g_tx_drain(struct e1000g *Adapter)
2077 {
2078 	int i;
2079 	boolean_t done;
2080 	e1000g_tx_ring_t *tx_ring;
2081 
2082 	tx_ring = Adapter->tx_ring;
2083 
2084 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2085 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2086 		mutex_enter(&tx_ring->usedlist_lock);
2087 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2088 		mutex_exit(&tx_ring->usedlist_lock);
2089 
2090 		if (done)
2091 			break;
2092 
2093 		msec_delay(1);
2094 	}
2095 
2096 	return (done);
2097 }
2098 
2099 static boolean_t
2100 e1000g_rx_drain(struct e1000g *Adapter)
2101 {
2102 	int i;
2103 	boolean_t done;
2104 
2105 	/*
2106 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2107 	 */
2108 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2109 		done = (Adapter->pending_rx_count == 0);
2110 
2111 		if (done)
2112 			break;
2113 
2114 		msec_delay(1);
2115 	}
2116 
2117 	return (done);
2118 }
2119 
2120 static boolean_t
2121 e1000g_reset_adapter(struct e1000g *Adapter)
2122 {
2123 	/* Disable and stop all the timers */
2124 	disable_watchdog_timer(Adapter);
2125 	stop_link_timer(Adapter);
2126 	stop_82547_timer(Adapter->tx_ring);
2127 
2128 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2129 
2130 	if (Adapter->stall_flag) {
2131 		Adapter->stall_flag = B_FALSE;
2132 		Adapter->reset_flag = B_TRUE;
2133 	}
2134 
2135 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2136 		rw_exit(&Adapter->chip_lock);
2137 		return (B_TRUE);
2138 	}
2139 
2140 	e1000g_stop(Adapter, B_FALSE);
2141 
2142 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2143 		rw_exit(&Adapter->chip_lock);
2144 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2145 			return (B_FALSE);
2146 	}
2147 
2148 	rw_exit(&Adapter->chip_lock);
2149 
2150 	/* Enable and start the watchdog timer */
2151 	enable_watchdog_timer(Adapter);
2152 
2153 	return (B_TRUE);
2154 }
2155 
2156 boolean_t
2157 e1000g_global_reset(struct e1000g *Adapter)
2158 {
2159 	/* Disable and stop all the timers */
2160 	disable_watchdog_timer(Adapter);
2161 	stop_link_timer(Adapter);
2162 	stop_82547_timer(Adapter->tx_ring);
2163 
2164 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2165 
2166 	e1000g_stop(Adapter, B_TRUE);
2167 
2168 	Adapter->init_count = 0;
2169 
2170 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2171 		rw_exit(&Adapter->chip_lock);
2172 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2173 		return (B_FALSE);
2174 	}
2175 
2176 	rw_exit(&Adapter->chip_lock);
2177 
2178 	/* Enable and start the watchdog timer */
2179 	enable_watchdog_timer(Adapter);
2180 
2181 	return (B_TRUE);
2182 }
2183 
2184 /*
2185  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2186  *
2187  * This interrupt service routine is for PCI-Express adapters.
2188  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2189  * bit is set.
2190  */
2191 static uint_t
2192 e1000g_intr_pciexpress(caddr_t arg)
2193 {
2194 	struct e1000g *Adapter;
2195 	uint32_t icr;
2196 
2197 	Adapter = (struct e1000g *)(uintptr_t)arg;
2198 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2199 
2200 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2201 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2202 		return (DDI_INTR_CLAIMED);
2203 	}
2204 
2205 	if (icr & E1000_ICR_INT_ASSERTED) {
2206 		/*
2207 		 * E1000_ICR_INT_ASSERTED bit was set:
2208 		 * Read(Clear) the ICR, claim this interrupt,
2209 		 * look for work to do.
2210 		 */
2211 		e1000g_intr_work(Adapter, icr);
2212 		return (DDI_INTR_CLAIMED);
2213 	} else {
2214 		/*
2215 		 * E1000_ICR_INT_ASSERTED bit was not set:
2216 		 * Don't claim this interrupt, return immediately.
2217 		 */
2218 		return (DDI_INTR_UNCLAIMED);
2219 	}
2220 }
2221 
2222 /*
2223  * e1000g_intr - ISR for PCI/PCI-X chipsets
2224  *
2225  * This interrupt service routine is for PCI/PCI-X adapters.
2226  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2227  * bit is set or not.
2228  */
2229 static uint_t
2230 e1000g_intr(caddr_t arg)
2231 {
2232 	struct e1000g *Adapter;
2233 	uint32_t icr;
2234 
2235 	Adapter = (struct e1000g *)(uintptr_t)arg;
2236 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2237 
2238 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2239 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2240 		return (DDI_INTR_CLAIMED);
2241 	}
2242 
2243 	if (icr) {
2244 		/*
2245 		 * Any bit was set in ICR:
2246 		 * Read(Clear) the ICR, claim this interrupt,
2247 		 * look for work to do.
2248 		 */
2249 		e1000g_intr_work(Adapter, icr);
2250 		return (DDI_INTR_CLAIMED);
2251 	} else {
2252 		/*
2253 		 * No bit was set in ICR:
2254 		 * Don't claim this interrupt, return immediately.
2255 		 */
2256 		return (DDI_INTR_UNCLAIMED);
2257 	}
2258 }
2259 
2260 /*
2261  * e1000g_intr_work - actual processing of ISR
2262  *
2263  * Read(clear) the ICR contents and call appropriate interrupt
2264  * processing routines.
2265  */
2266 static void
2267 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2268 {
2269 	struct e1000_hw *hw;
2270 	hw = &Adapter->shared;
2271 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2272 
2273 	Adapter->rx_pkt_cnt = 0;
2274 	Adapter->tx_pkt_cnt = 0;
2275 
2276 	rw_enter(&Adapter->chip_lock, RW_READER);
2277 
2278 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2279 		rw_exit(&Adapter->chip_lock);
2280 		return;
2281 	}
2282 	/*
2283 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2284 	 * ensure the receive routine will not execute when the adapter is
2285 	 * being reset.
2286 	 */
2287 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2288 		rw_exit(&Adapter->chip_lock);
2289 		return;
2290 	}
2291 
2292 	if (icr & E1000_ICR_RXT0) {
2293 		mblk_t			*mp = NULL;
2294 		mblk_t			*tail = NULL;
2295 		e1000g_rx_ring_t	*rx_ring;
2296 
2297 		rx_ring = Adapter->rx_ring;
2298 		mutex_enter(&rx_ring->rx_lock);
2299 		/*
2300 		 * Sometimes with legacy interrupts, it possible that
2301 		 * there is a single interrupt for Rx/Tx. In which
2302 		 * case, if poll flag is set, we shouldn't really
2303 		 * be doing Rx processing.
2304 		 */
2305 		if (!rx_ring->poll_flag)
2306 			mp = e1000g_receive(rx_ring, &tail,
2307 			    E1000G_CHAIN_NO_LIMIT);
2308 		mutex_exit(&rx_ring->rx_lock);
2309 		rw_exit(&Adapter->chip_lock);
2310 		if (mp != NULL)
2311 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2312 			    mp, rx_ring->ring_gen_num);
2313 	} else
2314 		rw_exit(&Adapter->chip_lock);
2315 
2316 	if (icr & E1000_ICR_TXDW) {
2317 		if (!Adapter->tx_intr_enable)
2318 			e1000g_clear_tx_interrupt(Adapter);
2319 
2320 		/* Recycle the tx descriptors */
2321 		rw_enter(&Adapter->chip_lock, RW_READER);
2322 		(void) e1000g_recycle(tx_ring);
2323 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2324 		rw_exit(&Adapter->chip_lock);
2325 
2326 		if (tx_ring->resched_needed &&
2327 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2328 			tx_ring->resched_needed = B_FALSE;
2329 			mac_tx_update(Adapter->mh);
2330 			E1000G_STAT(tx_ring->stat_reschedule);
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2336 	 * are checked to detect that the cable has been pulled out. For
2337 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2338 	 * are an indication that cable is not connected.
2339 	 */
2340 	if ((icr & E1000_ICR_RXSEQ) ||
2341 	    (icr & E1000_ICR_LSC) ||
2342 	    (icr & E1000_ICR_GPI_EN1)) {
2343 		boolean_t link_changed;
2344 		timeout_id_t tid = 0;
2345 
2346 		stop_watchdog_timer(Adapter);
2347 
2348 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2349 
2350 		/*
2351 		 * Because we got a link-status-change interrupt, force
2352 		 * e1000_check_for_link() to look at phy
2353 		 */
2354 		Adapter->shared.mac.get_link_status = B_TRUE;
2355 
2356 		/* e1000g_link_check takes care of link status change */
2357 		link_changed = e1000g_link_check(Adapter);
2358 
2359 		/* Get new phy state */
2360 		e1000g_get_phy_state(Adapter);
2361 
2362 		/*
2363 		 * If the link timer has not timed out, we'll not notify
2364 		 * the upper layer with any link state until the link is up.
2365 		 */
2366 		if (link_changed && !Adapter->link_complete) {
2367 			if (Adapter->link_state == LINK_STATE_UP) {
2368 				mutex_enter(&Adapter->link_lock);
2369 				Adapter->link_complete = B_TRUE;
2370 				tid = Adapter->link_tid;
2371 				Adapter->link_tid = 0;
2372 				mutex_exit(&Adapter->link_lock);
2373 			} else {
2374 				link_changed = B_FALSE;
2375 			}
2376 		}
2377 		rw_exit(&Adapter->chip_lock);
2378 
2379 		if (link_changed) {
2380 			if (tid != 0)
2381 				(void) untimeout(tid);
2382 
2383 			/*
2384 			 * Workaround for esb2. Data stuck in fifo on a link
2385 			 * down event. Stop receiver here and reset in watchdog.
2386 			 */
2387 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2388 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2389 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2390 				E1000_WRITE_REG(hw, E1000_RCTL,
2391 				    rctl & ~E1000_RCTL_EN);
2392 				e1000g_log(Adapter, CE_WARN,
2393 				    "ESB2 receiver disabled");
2394 				Adapter->esb2_workaround = B_TRUE;
2395 			}
2396 			if (!Adapter->reset_flag)
2397 				mac_link_update(Adapter->mh,
2398 				    Adapter->link_state);
2399 			if (Adapter->link_state == LINK_STATE_UP)
2400 				Adapter->reset_flag = B_FALSE;
2401 		}
2402 
2403 		start_watchdog_timer(Adapter);
2404 	}
2405 }
2406 
2407 static void
2408 e1000g_init_unicst(struct e1000g *Adapter)
2409 {
2410 	struct e1000_hw *hw;
2411 	int slot;
2412 
2413 	hw = &Adapter->shared;
2414 
2415 	if (Adapter->init_count == 0) {
2416 		/* Initialize the multiple unicast addresses */
2417 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2418 
2419 		/* Workaround for an erratum of 82571 chipst */
2420 		if ((hw->mac.type == e1000_82571) &&
2421 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2422 			Adapter->unicst_total--;
2423 
2424 		Adapter->unicst_avail = Adapter->unicst_total;
2425 
2426 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2427 			/* Clear both the flag and MAC address */
2428 			Adapter->unicst_addr[slot].reg.high = 0;
2429 			Adapter->unicst_addr[slot].reg.low = 0;
2430 		}
2431 	} else {
2432 		/* Workaround for an erratum of 82571 chipst */
2433 		if ((hw->mac.type == e1000_82571) &&
2434 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2435 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2436 
2437 		/* Re-configure the RAR registers */
2438 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2439 			if (Adapter->unicst_addr[slot].mac.set == 1)
2440 				e1000_rar_set(hw,
2441 				    Adapter->unicst_addr[slot].mac.addr, slot);
2442 	}
2443 
2444 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2445 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2446 }
2447 
2448 static int
2449 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2450     int slot)
2451 {
2452 	struct e1000_hw *hw;
2453 
2454 	hw = &Adapter->shared;
2455 
2456 	/*
2457 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2458 	 * that requires the receiver to be in reset when any of the
2459 	 * receive address registers (RAR regs) are accessed.  The first
2460 	 * rev of Wiseman silicon also requires MWI to be disabled when
2461 	 * a global reset or a receive reset is issued.  So before we
2462 	 * initialize the RARs, we check the rev of the Wiseman controller
2463 	 * and work around any necessary HW errata.
2464 	 */
2465 	if ((hw->mac.type == e1000_82542) &&
2466 	    (hw->revision_id == E1000_REVISION_2)) {
2467 		e1000_pci_clear_mwi(hw);
2468 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2469 		msec_delay(5);
2470 	}
2471 	if (mac_addr == NULL) {
2472 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2473 		E1000_WRITE_FLUSH(hw);
2474 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2475 		E1000_WRITE_FLUSH(hw);
2476 		/* Clear both the flag and MAC address */
2477 		Adapter->unicst_addr[slot].reg.high = 0;
2478 		Adapter->unicst_addr[slot].reg.low = 0;
2479 	} else {
2480 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2481 		    ETHERADDRL);
2482 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2483 		Adapter->unicst_addr[slot].mac.set = 1;
2484 	}
2485 
2486 	/* Workaround for an erratum of 82571 chipst */
2487 	if (slot == 0) {
2488 		if ((hw->mac.type == e1000_82571) &&
2489 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2490 			if (mac_addr == NULL) {
2491 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2492 				    slot << 1, 0);
2493 				E1000_WRITE_FLUSH(hw);
2494 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2495 				    (slot << 1) + 1, 0);
2496 				E1000_WRITE_FLUSH(hw);
2497 			} else {
2498 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2499 				    LAST_RAR_ENTRY);
2500 			}
2501 	}
2502 
2503 	/*
2504 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2505 	 * put the receive in reset, and disabled MWI, to work around some
2506 	 * HW errata.  Now we should take the receiver out of reset, and
2507 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2508 	 */
2509 	if ((hw->mac.type == e1000_82542) &&
2510 	    (hw->revision_id == E1000_REVISION_2)) {
2511 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2512 		msec_delay(1);
2513 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2514 			e1000_pci_set_mwi(hw);
2515 		e1000g_rx_setup(Adapter);
2516 	}
2517 
2518 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2519 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2520 		return (EIO);
2521 	}
2522 
2523 	return (0);
2524 }
2525 
2526 static int
2527 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2528 {
2529 	struct e1000_hw *hw = &Adapter->shared;
2530 	struct ether_addr *newtable;
2531 	size_t new_len;
2532 	size_t old_len;
2533 	int res = 0;
2534 
2535 	if ((multiaddr[0] & 01) == 0) {
2536 		res = EINVAL;
2537 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2538 		goto done;
2539 	}
2540 
2541 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2542 		res = ENOENT;
2543 		e1000g_log(Adapter, CE_WARN,
2544 		    "Adapter requested more than %d mcast addresses",
2545 		    Adapter->mcast_max_num);
2546 		goto done;
2547 	}
2548 
2549 
2550 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2551 		old_len = Adapter->mcast_alloc_count *
2552 		    sizeof (struct ether_addr);
2553 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2554 		    sizeof (struct ether_addr);
2555 
2556 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2557 		if (newtable == NULL) {
2558 			res = ENOMEM;
2559 			e1000g_log(Adapter, CE_WARN,
2560 			    "Not enough memory to alloc mcast table");
2561 			goto done;
2562 		}
2563 
2564 		if (Adapter->mcast_table != NULL) {
2565 			bcopy(Adapter->mcast_table, newtable, old_len);
2566 			kmem_free(Adapter->mcast_table, old_len);
2567 		}
2568 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2569 		Adapter->mcast_table = newtable;
2570 	}
2571 
2572 	bcopy(multiaddr,
2573 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2574 	Adapter->mcast_count++;
2575 
2576 	/*
2577 	 * Update the MC table in the hardware
2578 	 */
2579 	e1000g_clear_interrupt(Adapter);
2580 
2581 	e1000_update_mc_addr_list(hw,
2582 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2583 
2584 	e1000g_mask_interrupt(Adapter);
2585 
2586 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2587 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2588 		res = EIO;
2589 	}
2590 
2591 done:
2592 	return (res);
2593 }
2594 
2595 static int
2596 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2597 {
2598 	struct e1000_hw *hw = &Adapter->shared;
2599 	struct ether_addr *newtable;
2600 	size_t new_len;
2601 	size_t old_len;
2602 	unsigned i;
2603 
2604 	for (i = 0; i < Adapter->mcast_count; i++) {
2605 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2606 		    ETHERADDRL) == 0) {
2607 			for (i++; i < Adapter->mcast_count; i++) {
2608 				Adapter->mcast_table[i - 1] =
2609 				    Adapter->mcast_table[i];
2610 			}
2611 			Adapter->mcast_count--;
2612 			break;
2613 		}
2614 	}
2615 
2616 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2617 	    MCAST_ALLOC_SIZE) {
2618 		old_len = Adapter->mcast_alloc_count *
2619 		    sizeof (struct ether_addr);
2620 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2621 		    sizeof (struct ether_addr);
2622 
2623 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2624 		if (newtable != NULL) {
2625 			bcopy(Adapter->mcast_table, newtable, new_len);
2626 			kmem_free(Adapter->mcast_table, old_len);
2627 
2628 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2629 			Adapter->mcast_table = newtable;
2630 		}
2631 	}
2632 
2633 	/*
2634 	 * Update the MC table in the hardware
2635 	 */
2636 	e1000g_clear_interrupt(Adapter);
2637 
2638 	e1000_update_mc_addr_list(hw,
2639 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2640 
2641 	e1000g_mask_interrupt(Adapter);
2642 
2643 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2644 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2645 		return (EIO);
2646 	}
2647 
2648 	return (0);
2649 }
2650 
2651 static void
2652 e1000g_release_multicast(struct e1000g *Adapter)
2653 {
2654 	if (Adapter->mcast_table != NULL) {
2655 		kmem_free(Adapter->mcast_table,
2656 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2657 		Adapter->mcast_table = NULL;
2658 	}
2659 }
2660 
2661 int
2662 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2663 {
2664 	struct e1000g *Adapter = (struct e1000g *)arg;
2665 	int result;
2666 
2667 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2668 
2669 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2670 		result = ECANCELED;
2671 		goto done;
2672 	}
2673 
2674 	result = (add) ? multicst_add(Adapter, addr)
2675 	    : multicst_remove(Adapter, addr);
2676 
2677 done:
2678 	rw_exit(&Adapter->chip_lock);
2679 	return (result);
2680 
2681 }
2682 
2683 int
2684 e1000g_m_promisc(void *arg, boolean_t on)
2685 {
2686 	struct e1000g *Adapter = (struct e1000g *)arg;
2687 	uint32_t rctl;
2688 
2689 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2690 
2691 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2692 		rw_exit(&Adapter->chip_lock);
2693 		return (ECANCELED);
2694 	}
2695 
2696 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2697 
2698 	if (on)
2699 		rctl |=
2700 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2701 	else
2702 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2703 
2704 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2705 
2706 	Adapter->e1000g_promisc = on;
2707 
2708 	rw_exit(&Adapter->chip_lock);
2709 
2710 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2711 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2712 		return (EIO);
2713 	}
2714 
2715 	return (0);
2716 }
2717 
2718 /*
2719  * Entry points to enable and disable interrupts at the granularity of
2720  * a group.
2721  * Turns the poll_mode for the whole adapter on and off to enable or
2722  * override the ring level polling control over the hardware interrupts.
2723  */
2724 static int
2725 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2726 {
2727 	struct e1000g		*adapter = (struct e1000g *)arg;
2728 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2729 
2730 	/*
2731 	 * Later interrupts at the granularity of the this ring will
2732 	 * invoke mac_rx() with NULL, indicating the need for another
2733 	 * software classification.
2734 	 * We have a single ring usable per adapter now, so we only need to
2735 	 * reset the rx handle for that one.
2736 	 * When more RX rings can be used, we should update each one of them.
2737 	 */
2738 	mutex_enter(&rx_ring->rx_lock);
2739 	rx_ring->mrh = NULL;
2740 	adapter->poll_mode = B_FALSE;
2741 	mutex_exit(&rx_ring->rx_lock);
2742 	return (0);
2743 }
2744 
2745 static int
2746 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2747 {
2748 	struct e1000g *adapter = (struct e1000g *)arg;
2749 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2750 
2751 	mutex_enter(&rx_ring->rx_lock);
2752 
2753 	/*
2754 	 * Later interrupts at the granularity of the this ring will
2755 	 * invoke mac_rx() with the handle for this ring;
2756 	 */
2757 	adapter->poll_mode = B_TRUE;
2758 	rx_ring->mrh = rx_ring->mrh_init;
2759 	mutex_exit(&rx_ring->rx_lock);
2760 	return (0);
2761 }
2762 
2763 /*
2764  * Entry points to enable and disable interrupts at the granularity of
2765  * a ring.
2766  * adapter poll_mode controls whether we actually proceed with hardware
2767  * interrupt toggling.
2768  */
2769 static int
2770 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2771 {
2772 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2773 	struct e1000g 		*adapter = rx_ring->adapter;
2774 	struct e1000_hw 	*hw = &adapter->shared;
2775 	uint32_t		intr_mask;
2776 
2777 	rw_enter(&adapter->chip_lock, RW_READER);
2778 
2779 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2780 		rw_exit(&adapter->chip_lock);
2781 		return (0);
2782 	}
2783 
2784 	mutex_enter(&rx_ring->rx_lock);
2785 	rx_ring->poll_flag = 0;
2786 	mutex_exit(&rx_ring->rx_lock);
2787 
2788 	/* Rx interrupt enabling for MSI and legacy */
2789 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2790 	intr_mask |= E1000_IMS_RXT0;
2791 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2792 	E1000_WRITE_FLUSH(hw);
2793 
2794 	/* Trigger a Rx interrupt to check Rx ring */
2795 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2796 	E1000_WRITE_FLUSH(hw);
2797 
2798 	rw_exit(&adapter->chip_lock);
2799 	return (0);
2800 }
2801 
2802 static int
2803 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2804 {
2805 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2806 	struct e1000g 		*adapter = rx_ring->adapter;
2807 	struct e1000_hw 	*hw = &adapter->shared;
2808 
2809 	rw_enter(&adapter->chip_lock, RW_READER);
2810 
2811 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2812 		rw_exit(&adapter->chip_lock);
2813 		return (0);
2814 	}
2815 	mutex_enter(&rx_ring->rx_lock);
2816 	rx_ring->poll_flag = 1;
2817 	mutex_exit(&rx_ring->rx_lock);
2818 
2819 	/* Rx interrupt disabling for MSI and legacy */
2820 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2821 	E1000_WRITE_FLUSH(hw);
2822 
2823 	rw_exit(&adapter->chip_lock);
2824 	return (0);
2825 }
2826 
2827 /*
2828  * e1000g_unicst_find - Find the slot for the specified unicast address
2829  */
2830 static int
2831 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2832 {
2833 	int slot;
2834 
2835 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2836 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2837 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2838 		    mac_addr, ETHERADDRL) == 0))
2839 				return (slot);
2840 	}
2841 
2842 	return (-1);
2843 }
2844 
2845 /*
2846  * Entry points to add and remove a MAC address to a ring group.
2847  * The caller takes care of adding and removing the MAC addresses
2848  * to the filter via these two routines.
2849  */
2850 
2851 static int
2852 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2853 {
2854 	struct e1000g *Adapter = (struct e1000g *)arg;
2855 	int slot, err;
2856 
2857 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2858 
2859 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2860 		rw_exit(&Adapter->chip_lock);
2861 		return (ECANCELED);
2862 	}
2863 
2864 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2865 		/* The same address is already in slot */
2866 		rw_exit(&Adapter->chip_lock);
2867 		return (0);
2868 	}
2869 
2870 	if (Adapter->unicst_avail == 0) {
2871 		/* no slots available */
2872 		rw_exit(&Adapter->chip_lock);
2873 		return (ENOSPC);
2874 	}
2875 
2876 	/* Search for a free slot */
2877 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2878 		if (Adapter->unicst_addr[slot].mac.set == 0)
2879 			break;
2880 	}
2881 	ASSERT(slot < Adapter->unicst_total);
2882 
2883 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2884 	if (err == 0)
2885 		Adapter->unicst_avail--;
2886 
2887 	rw_exit(&Adapter->chip_lock);
2888 
2889 	return (err);
2890 }
2891 
2892 static int
2893 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2894 {
2895 	struct e1000g *Adapter = (struct e1000g *)arg;
2896 	int slot, err;
2897 
2898 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2899 
2900 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2901 		rw_exit(&Adapter->chip_lock);
2902 		return (ECANCELED);
2903 	}
2904 
2905 	slot = e1000g_unicst_find(Adapter, mac_addr);
2906 	if (slot == -1) {
2907 		rw_exit(&Adapter->chip_lock);
2908 		return (EINVAL);
2909 	}
2910 
2911 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2912 
2913 	/* Clear this slot */
2914 	err = e1000g_unicst_set(Adapter, NULL, slot);
2915 	if (err == 0)
2916 		Adapter->unicst_avail++;
2917 
2918 	rw_exit(&Adapter->chip_lock);
2919 
2920 	return (err);
2921 }
2922 
2923 static int
2924 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2925 {
2926 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2927 
2928 	mutex_enter(&rx_ring->rx_lock);
2929 	rx_ring->ring_gen_num = mr_gen_num;
2930 	mutex_exit(&rx_ring->rx_lock);
2931 	return (0);
2932 }
2933 
2934 /*
2935  * Callback funtion for MAC layer to register all rings.
2936  *
2937  * The hardware supports a single group with currently only one ring
2938  * available.
2939  * Though not offering virtualization ability per se, exposing the
2940  * group/ring still enables the polling and interrupt toggling.
2941  */
2942 /* ARGSUSED */
2943 void
2944 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2945     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2946 {
2947 	struct e1000g *Adapter = (struct e1000g *)arg;
2948 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2949 	mac_intr_t *mintr;
2950 
2951 	/*
2952 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2953 	 * ask for any thing else.
2954 	 */
2955 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2956 
2957 	rx_ring->mrh = rx_ring->mrh_init = rh;
2958 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2959 	infop->mri_start = e1000g_ring_start;
2960 	infop->mri_stop = NULL;
2961 	infop->mri_poll = e1000g_poll_ring;
2962 
2963 	/* Ring level interrupts */
2964 	mintr = &infop->mri_intr;
2965 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2966 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2967 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2968 }
2969 
2970 /* ARGSUSED */
2971 static void
2972 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2973     mac_group_info_t *infop, mac_group_handle_t gh)
2974 {
2975 	struct e1000g *Adapter = (struct e1000g *)arg;
2976 	mac_intr_t *mintr;
2977 
2978 	/*
2979 	 * We advertised a single RX ring. Getting a request for anything else
2980 	 * signifies a bug in the MAC framework.
2981 	 */
2982 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2983 
2984 	Adapter->rx_group = gh;
2985 
2986 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2987 	infop->mgi_start = NULL;
2988 	infop->mgi_stop = NULL;
2989 	infop->mgi_addmac = e1000g_addmac;
2990 	infop->mgi_remmac = e1000g_remmac;
2991 	infop->mgi_count = 1;
2992 
2993 	/* Group level interrupts */
2994 	mintr = &infop->mgi_intr;
2995 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2996 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2997 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2998 }
2999 
3000 static boolean_t
3001 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3002 {
3003 	struct e1000g *Adapter = (struct e1000g *)arg;
3004 
3005 	switch (cap) {
3006 	case MAC_CAPAB_HCKSUM: {
3007 		uint32_t *txflags = cap_data;
3008 
3009 		if (Adapter->tx_hcksum_enable)
3010 			*txflags = HCKSUM_IPHDRCKSUM |
3011 			    HCKSUM_INET_PARTIAL;
3012 		else
3013 			return (B_FALSE);
3014 		break;
3015 	}
3016 
3017 	case MAC_CAPAB_LSO: {
3018 		mac_capab_lso_t *cap_lso = cap_data;
3019 
3020 		if (Adapter->lso_enable) {
3021 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3022 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3023 			    E1000_LSO_MAXLEN;
3024 		} else
3025 			return (B_FALSE);
3026 		break;
3027 	}
3028 	case MAC_CAPAB_RINGS: {
3029 		mac_capab_rings_t *cap_rings = cap_data;
3030 
3031 		/* No TX rings exposed yet */
3032 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3033 			return (B_FALSE);
3034 
3035 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3036 		cap_rings->mr_rnum = 1;
3037 		cap_rings->mr_gnum = 1;
3038 		cap_rings->mr_rget = e1000g_fill_ring;
3039 		cap_rings->mr_gget = e1000g_fill_group;
3040 		break;
3041 	}
3042 	default:
3043 		return (B_FALSE);
3044 	}
3045 	return (B_TRUE);
3046 }
3047 
3048 static boolean_t
3049 e1000g_param_locked(mac_prop_id_t pr_num)
3050 {
3051 	/*
3052 	 * All en_* parameters are locked (read-only) while
3053 	 * the device is in any sort of loopback mode ...
3054 	 */
3055 	switch (pr_num) {
3056 		case MAC_PROP_EN_1000FDX_CAP:
3057 		case MAC_PROP_EN_1000HDX_CAP:
3058 		case MAC_PROP_EN_100FDX_CAP:
3059 		case MAC_PROP_EN_100HDX_CAP:
3060 		case MAC_PROP_EN_10FDX_CAP:
3061 		case MAC_PROP_EN_10HDX_CAP:
3062 		case MAC_PROP_AUTONEG:
3063 		case MAC_PROP_FLOWCTRL:
3064 			return (B_TRUE);
3065 	}
3066 	return (B_FALSE);
3067 }
3068 
3069 /*
3070  * callback function for set/get of properties
3071  */
3072 static int
3073 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3074     uint_t pr_valsize, const void *pr_val)
3075 {
3076 	struct e1000g *Adapter = arg;
3077 	struct e1000_hw *hw = &Adapter->shared;
3078 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3079 	int err = 0;
3080 	link_flowctrl_t flowctrl;
3081 	uint32_t cur_mtu, new_mtu;
3082 
3083 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3084 
3085 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3086 		rw_exit(&Adapter->chip_lock);
3087 		return (ECANCELED);
3088 	}
3089 
3090 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3091 	    e1000g_param_locked(pr_num)) {
3092 		/*
3093 		 * All en_* parameters are locked (read-only)
3094 		 * while the device is in any sort of loopback mode.
3095 		 */
3096 		rw_exit(&Adapter->chip_lock);
3097 		return (EBUSY);
3098 	}
3099 
3100 	switch (pr_num) {
3101 		case MAC_PROP_EN_1000FDX_CAP:
3102 			if (hw->phy.media_type != e1000_media_type_copper) {
3103 				err = ENOTSUP;
3104 				break;
3105 			}
3106 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3107 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3108 			goto reset;
3109 		case MAC_PROP_EN_100FDX_CAP:
3110 			if (hw->phy.media_type != e1000_media_type_copper) {
3111 				err = ENOTSUP;
3112 				break;
3113 			}
3114 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3115 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3116 			goto reset;
3117 		case MAC_PROP_EN_100HDX_CAP:
3118 			if (hw->phy.media_type != e1000_media_type_copper) {
3119 				err = ENOTSUP;
3120 				break;
3121 			}
3122 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3123 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3124 			goto reset;
3125 		case MAC_PROP_EN_10FDX_CAP:
3126 			if (hw->phy.media_type != e1000_media_type_copper) {
3127 				err = ENOTSUP;
3128 				break;
3129 			}
3130 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3131 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3132 			goto reset;
3133 		case MAC_PROP_EN_10HDX_CAP:
3134 			if (hw->phy.media_type != e1000_media_type_copper) {
3135 				err = ENOTSUP;
3136 				break;
3137 			}
3138 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3139 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3140 			goto reset;
3141 		case MAC_PROP_AUTONEG:
3142 			if (hw->phy.media_type != e1000_media_type_copper) {
3143 				err = ENOTSUP;
3144 				break;
3145 			}
3146 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3147 			goto reset;
3148 		case MAC_PROP_FLOWCTRL:
3149 			fc->send_xon = B_TRUE;
3150 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3151 
3152 			switch (flowctrl) {
3153 			default:
3154 				err = EINVAL;
3155 				break;
3156 			case LINK_FLOWCTRL_NONE:
3157 				fc->requested_mode = e1000_fc_none;
3158 				break;
3159 			case LINK_FLOWCTRL_RX:
3160 				fc->requested_mode = e1000_fc_rx_pause;
3161 				break;
3162 			case LINK_FLOWCTRL_TX:
3163 				fc->requested_mode = e1000_fc_tx_pause;
3164 				break;
3165 			case LINK_FLOWCTRL_BI:
3166 				fc->requested_mode = e1000_fc_full;
3167 				break;
3168 			}
3169 reset:
3170 			if (err == 0) {
3171 				/* check PCH limits & reset the link */
3172 				e1000g_pch_limits(Adapter);
3173 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3174 					err = EINVAL;
3175 			}
3176 			break;
3177 		case MAC_PROP_ADV_1000FDX_CAP:
3178 		case MAC_PROP_ADV_1000HDX_CAP:
3179 		case MAC_PROP_ADV_100FDX_CAP:
3180 		case MAC_PROP_ADV_100HDX_CAP:
3181 		case MAC_PROP_ADV_10FDX_CAP:
3182 		case MAC_PROP_ADV_10HDX_CAP:
3183 		case MAC_PROP_EN_1000HDX_CAP:
3184 		case MAC_PROP_STATUS:
3185 		case MAC_PROP_SPEED:
3186 		case MAC_PROP_DUPLEX:
3187 			err = ENOTSUP; /* read-only prop. Can't set this. */
3188 			break;
3189 		case MAC_PROP_MTU:
3190 			/* adapter must be stopped for an MTU change */
3191 			if (Adapter->e1000g_state & E1000G_STARTED) {
3192 				err = EBUSY;
3193 				break;
3194 			}
3195 
3196 			cur_mtu = Adapter->default_mtu;
3197 
3198 			/* get new requested MTU */
3199 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3200 			if (new_mtu == cur_mtu) {
3201 				err = 0;
3202 				break;
3203 			}
3204 
3205 			if ((new_mtu < DEFAULT_MTU) ||
3206 			    (new_mtu > Adapter->max_mtu)) {
3207 				err = EINVAL;
3208 				break;
3209 			}
3210 
3211 			/* inform MAC framework of new MTU */
3212 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3213 
3214 			if (err == 0) {
3215 				Adapter->default_mtu = new_mtu;
3216 				Adapter->max_frame_size =
3217 				    e1000g_mtu2maxframe(new_mtu);
3218 
3219 				/*
3220 				 * check PCH limits & set buffer sizes to
3221 				 * match new MTU
3222 				 */
3223 				e1000g_pch_limits(Adapter);
3224 				e1000g_set_bufsize(Adapter);
3225 
3226 				/*
3227 				 * decrease the number of descriptors and free
3228 				 * packets for jumbo frames to reduce tx/rx
3229 				 * resource consumption
3230 				 */
3231 				if (Adapter->max_frame_size >=
3232 				    (FRAME_SIZE_UPTO_4K -
3233 				    E1000G_IPALIGNPRESERVEROOM)) {
3234 
3235 					if (Adapter->tx_desc_num_flag == 0)
3236 						Adapter->tx_desc_num =
3237 						    DEFAULT_JUMBO_NUM_TX_DESC;
3238 
3239 					if (Adapter->rx_desc_num_flag == 0)
3240 						Adapter->rx_desc_num =
3241 						    DEFAULT_JUMBO_NUM_RX_DESC;
3242 
3243 					if (Adapter->tx_buf_num_flag == 0)
3244 						Adapter->tx_freelist_num =
3245 						    DEFAULT_JUMBO_NUM_TX_BUF;
3246 
3247 					if (Adapter->rx_buf_num_flag == 0)
3248 						Adapter->rx_freelist_num =
3249 						    DEFAULT_JUMBO_NUM_RX_BUF;
3250 				} else {
3251 					if (Adapter->tx_desc_num_flag == 0)
3252 						Adapter->tx_desc_num =
3253 						    DEFAULT_NUM_TX_DESCRIPTOR;
3254 
3255 					if (Adapter->rx_desc_num_flag == 0)
3256 						Adapter->rx_desc_num =
3257 						    DEFAULT_NUM_RX_DESCRIPTOR;
3258 
3259 					if (Adapter->tx_buf_num_flag == 0)
3260 						Adapter->tx_freelist_num =
3261 						    DEFAULT_NUM_TX_FREELIST;
3262 
3263 					if (Adapter->rx_buf_num_flag == 0)
3264 						Adapter->rx_freelist_num =
3265 						    DEFAULT_NUM_RX_FREELIST;
3266 				}
3267 			}
3268 			break;
3269 		case MAC_PROP_PRIVATE:
3270 			err = e1000g_set_priv_prop(Adapter, pr_name,
3271 			    pr_valsize, pr_val);
3272 			break;
3273 		default:
3274 			err = ENOTSUP;
3275 			break;
3276 	}
3277 	rw_exit(&Adapter->chip_lock);
3278 	return (err);
3279 }
3280 
3281 static int
3282 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3283     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3284 {
3285 	struct e1000g *Adapter = arg;
3286 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3287 	struct e1000_hw *hw = &Adapter->shared;
3288 	int err = 0;
3289 	link_flowctrl_t flowctrl;
3290 	uint64_t tmp = 0;
3291 
3292 	if (pr_valsize == 0)
3293 		return (EINVAL);
3294 
3295 	*perm = MAC_PROP_PERM_RW;
3296 
3297 	bzero(pr_val, pr_valsize);
3298 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3299 		return (e1000g_get_def_val(Adapter, pr_num,
3300 		    pr_valsize, pr_val));
3301 	}
3302 
3303 	switch (pr_num) {
3304 		case MAC_PROP_DUPLEX:
3305 			*perm = MAC_PROP_PERM_READ;
3306 			if (pr_valsize >= sizeof (link_duplex_t)) {
3307 				bcopy(&Adapter->link_duplex, pr_val,
3308 				    sizeof (link_duplex_t));
3309 			} else
3310 				err = EINVAL;
3311 			break;
3312 		case MAC_PROP_SPEED:
3313 			*perm = MAC_PROP_PERM_READ;
3314 			if (pr_valsize >= sizeof (uint64_t)) {
3315 				tmp = Adapter->link_speed * 1000000ull;
3316 				bcopy(&tmp, pr_val, sizeof (tmp));
3317 			} else
3318 				err = EINVAL;
3319 			break;
3320 		case MAC_PROP_AUTONEG:
3321 			if (hw->phy.media_type != e1000_media_type_copper)
3322 				*perm = MAC_PROP_PERM_READ;
3323 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3324 			break;
3325 		case MAC_PROP_FLOWCTRL:
3326 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3327 				switch (fc->current_mode) {
3328 					case e1000_fc_none:
3329 						flowctrl = LINK_FLOWCTRL_NONE;
3330 						break;
3331 					case e1000_fc_rx_pause:
3332 						flowctrl = LINK_FLOWCTRL_RX;
3333 						break;
3334 					case e1000_fc_tx_pause:
3335 						flowctrl = LINK_FLOWCTRL_TX;
3336 						break;
3337 					case e1000_fc_full:
3338 						flowctrl = LINK_FLOWCTRL_BI;
3339 						break;
3340 				}
3341 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3342 			} else
3343 				err = EINVAL;
3344 			break;
3345 		case MAC_PROP_ADV_1000FDX_CAP:
3346 			*perm = MAC_PROP_PERM_READ;
3347 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3348 			break;
3349 		case MAC_PROP_EN_1000FDX_CAP:
3350 			if (hw->phy.media_type != e1000_media_type_copper)
3351 				*perm = MAC_PROP_PERM_READ;
3352 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3353 			break;
3354 		case MAC_PROP_ADV_1000HDX_CAP:
3355 			*perm = MAC_PROP_PERM_READ;
3356 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3357 			break;
3358 		case MAC_PROP_EN_1000HDX_CAP:
3359 			*perm = MAC_PROP_PERM_READ;
3360 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3361 			break;
3362 		case MAC_PROP_ADV_100FDX_CAP:
3363 			*perm = MAC_PROP_PERM_READ;
3364 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3365 			break;
3366 		case MAC_PROP_EN_100FDX_CAP:
3367 			if (hw->phy.media_type != e1000_media_type_copper)
3368 				*perm = MAC_PROP_PERM_READ;
3369 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3370 			break;
3371 		case MAC_PROP_ADV_100HDX_CAP:
3372 			*perm = MAC_PROP_PERM_READ;
3373 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3374 			break;
3375 		case MAC_PROP_EN_100HDX_CAP:
3376 			if (hw->phy.media_type != e1000_media_type_copper)
3377 				*perm = MAC_PROP_PERM_READ;
3378 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3379 			break;
3380 		case MAC_PROP_ADV_10FDX_CAP:
3381 			*perm = MAC_PROP_PERM_READ;
3382 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3383 			break;
3384 		case MAC_PROP_EN_10FDX_CAP:
3385 			if (hw->phy.media_type != e1000_media_type_copper)
3386 				*perm = MAC_PROP_PERM_READ;
3387 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3388 			break;
3389 		case MAC_PROP_ADV_10HDX_CAP:
3390 			*perm = MAC_PROP_PERM_READ;
3391 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3392 			break;
3393 		case MAC_PROP_EN_10HDX_CAP:
3394 			if (hw->phy.media_type != e1000_media_type_copper)
3395 				*perm = MAC_PROP_PERM_READ;
3396 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3397 			break;
3398 		case MAC_PROP_ADV_100T4_CAP:
3399 		case MAC_PROP_EN_100T4_CAP:
3400 			*perm = MAC_PROP_PERM_READ;
3401 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3402 			break;
3403 		case MAC_PROP_PRIVATE:
3404 			err = e1000g_get_priv_prop(Adapter, pr_name,
3405 			    pr_flags, pr_valsize, pr_val, perm);
3406 			break;
3407 		case MAC_PROP_MTU: {
3408 			struct e1000_mac_info *mac = &Adapter->shared.mac;
3409 			struct e1000_phy_info *phy = &Adapter->shared.phy;
3410 			mac_propval_range_t range;
3411 
3412 			if (!(pr_flags & MAC_PROP_POSSIBLE))
3413 				return (ENOTSUP);
3414 			if (pr_valsize < sizeof (mac_propval_range_t))
3415 				return (EINVAL);
3416 			range.mpr_count = 1;
3417 			range.mpr_type = MAC_PROPVAL_UINT32;
3418 			range.range_uint32[0].mpur_min = DEFAULT_MTU;
3419 			range.range_uint32[0].mpur_max = Adapter->max_mtu;
3420 			/* following MAC type do not support jumbo frames */
3421 			if ((mac->type == e1000_ich8lan) ||
3422 			    ((mac->type == e1000_ich9lan) && (phy->type ==
3423 			    e1000_phy_ife))) {
3424 				range.range_uint32[0].mpur_max = DEFAULT_MTU;
3425 			}
3426 			bcopy(&range, pr_val, sizeof (range));
3427 			break;
3428 		}
3429 		default:
3430 			err = ENOTSUP;
3431 			break;
3432 	}
3433 	return (err);
3434 }
3435 
3436 /* ARGSUSED2 */
3437 static int
3438 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3439     uint_t pr_valsize, const void *pr_val)
3440 {
3441 	int err = 0;
3442 	long result;
3443 	struct e1000_hw *hw = &Adapter->shared;
3444 
3445 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3446 		if (pr_val == NULL) {
3447 			err = EINVAL;
3448 			return (err);
3449 		}
3450 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3451 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3452 		    result > MAX_TX_BCOPY_THRESHOLD)
3453 			err = EINVAL;
3454 		else {
3455 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3456 		}
3457 		return (err);
3458 	}
3459 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3460 		if (pr_val == NULL) {
3461 			err = EINVAL;
3462 			return (err);
3463 		}
3464 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3465 		if (result < 0 || result > 1)
3466 			err = EINVAL;
3467 		else {
3468 			Adapter->tx_intr_enable = (result == 1) ?
3469 			    B_TRUE: B_FALSE;
3470 			if (Adapter->tx_intr_enable)
3471 				e1000g_mask_tx_interrupt(Adapter);
3472 			else
3473 				e1000g_clear_tx_interrupt(Adapter);
3474 			if (e1000g_check_acc_handle(
3475 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3476 				ddi_fm_service_impact(Adapter->dip,
3477 				    DDI_SERVICE_DEGRADED);
3478 				err = EIO;
3479 			}
3480 		}
3481 		return (err);
3482 	}
3483 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3484 		if (pr_val == NULL) {
3485 			err = EINVAL;
3486 			return (err);
3487 		}
3488 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3489 		if (result < MIN_TX_INTR_DELAY ||
3490 		    result > MAX_TX_INTR_DELAY)
3491 			err = EINVAL;
3492 		else {
3493 			Adapter->tx_intr_delay = (uint32_t)result;
3494 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3495 			if (e1000g_check_acc_handle(
3496 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3497 				ddi_fm_service_impact(Adapter->dip,
3498 				    DDI_SERVICE_DEGRADED);
3499 				err = EIO;
3500 			}
3501 		}
3502 		return (err);
3503 	}
3504 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3505 		if (pr_val == NULL) {
3506 			err = EINVAL;
3507 			return (err);
3508 		}
3509 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3510 		if (result < MIN_TX_INTR_ABS_DELAY ||
3511 		    result > MAX_TX_INTR_ABS_DELAY)
3512 			err = EINVAL;
3513 		else {
3514 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3515 			E1000_WRITE_REG(hw, E1000_TADV,
3516 			    Adapter->tx_intr_abs_delay);
3517 			if (e1000g_check_acc_handle(
3518 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3519 				ddi_fm_service_impact(Adapter->dip,
3520 				    DDI_SERVICE_DEGRADED);
3521 				err = EIO;
3522 			}
3523 		}
3524 		return (err);
3525 	}
3526 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3527 		if (pr_val == NULL) {
3528 			err = EINVAL;
3529 			return (err);
3530 		}
3531 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3532 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3533 		    result > MAX_RX_BCOPY_THRESHOLD)
3534 			err = EINVAL;
3535 		else
3536 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3537 		return (err);
3538 	}
3539 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3540 		if (pr_val == NULL) {
3541 			err = EINVAL;
3542 			return (err);
3543 		}
3544 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3545 		if (result < MIN_RX_LIMIT_ON_INTR ||
3546 		    result > MAX_RX_LIMIT_ON_INTR)
3547 			err = EINVAL;
3548 		else
3549 			Adapter->rx_limit_onintr = (uint32_t)result;
3550 		return (err);
3551 	}
3552 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3553 		if (pr_val == NULL) {
3554 			err = EINVAL;
3555 			return (err);
3556 		}
3557 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3558 		if (result < MIN_RX_INTR_DELAY ||
3559 		    result > MAX_RX_INTR_DELAY)
3560 			err = EINVAL;
3561 		else {
3562 			Adapter->rx_intr_delay = (uint32_t)result;
3563 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3564 			if (e1000g_check_acc_handle(
3565 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3566 				ddi_fm_service_impact(Adapter->dip,
3567 				    DDI_SERVICE_DEGRADED);
3568 				err = EIO;
3569 			}
3570 		}
3571 		return (err);
3572 	}
3573 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3574 		if (pr_val == NULL) {
3575 			err = EINVAL;
3576 			return (err);
3577 		}
3578 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3579 		if (result < MIN_RX_INTR_ABS_DELAY ||
3580 		    result > MAX_RX_INTR_ABS_DELAY)
3581 			err = EINVAL;
3582 		else {
3583 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3584 			E1000_WRITE_REG(hw, E1000_RADV,
3585 			    Adapter->rx_intr_abs_delay);
3586 			if (e1000g_check_acc_handle(
3587 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3588 				ddi_fm_service_impact(Adapter->dip,
3589 				    DDI_SERVICE_DEGRADED);
3590 				err = EIO;
3591 			}
3592 		}
3593 		return (err);
3594 	}
3595 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3596 		if (pr_val == NULL) {
3597 			err = EINVAL;
3598 			return (err);
3599 		}
3600 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3601 		if (result < MIN_INTR_THROTTLING ||
3602 		    result > MAX_INTR_THROTTLING)
3603 			err = EINVAL;
3604 		else {
3605 			if (hw->mac.type >= e1000_82540) {
3606 				Adapter->intr_throttling_rate =
3607 				    (uint32_t)result;
3608 				E1000_WRITE_REG(hw, E1000_ITR,
3609 				    Adapter->intr_throttling_rate);
3610 				if (e1000g_check_acc_handle(
3611 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3612 					ddi_fm_service_impact(Adapter->dip,
3613 					    DDI_SERVICE_DEGRADED);
3614 					err = EIO;
3615 				}
3616 			} else
3617 				err = EINVAL;
3618 		}
3619 		return (err);
3620 	}
3621 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3622 		if (pr_val == NULL) {
3623 			err = EINVAL;
3624 			return (err);
3625 		}
3626 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3627 		if (result < 0 || result > 1)
3628 			err = EINVAL;
3629 		else {
3630 			if (hw->mac.type >= e1000_82540) {
3631 				Adapter->intr_adaptive = (result == 1) ?
3632 				    B_TRUE : B_FALSE;
3633 			} else {
3634 				err = EINVAL;
3635 			}
3636 		}
3637 		return (err);
3638 	}
3639 	return (ENOTSUP);
3640 }
3641 
3642 static int
3643 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3644     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3645 {
3646 	int err = ENOTSUP;
3647 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3648 	int value;
3649 
3650 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3651 		*perm = MAC_PROP_PERM_READ;
3652 		if (is_default)
3653 			goto done;
3654 		value = Adapter->param_adv_pause;
3655 		err = 0;
3656 		goto done;
3657 	}
3658 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3659 		*perm = MAC_PROP_PERM_READ;
3660 		if (is_default)
3661 			goto done;
3662 		value = Adapter->param_adv_asym_pause;
3663 		err = 0;
3664 		goto done;
3665 	}
3666 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3667 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3668 		    Adapter->tx_bcopy_thresh);
3669 		err = 0;
3670 		goto done;
3671 	}
3672 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3673 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3674 		    Adapter->tx_intr_enable);
3675 		err = 0;
3676 		goto done;
3677 	}
3678 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3679 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3680 		    Adapter->tx_intr_delay);
3681 		err = 0;
3682 		goto done;
3683 	}
3684 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3685 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3686 		    Adapter->tx_intr_abs_delay);
3687 		err = 0;
3688 		goto done;
3689 	}
3690 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3691 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3692 		    Adapter->rx_bcopy_thresh);
3693 		err = 0;
3694 		goto done;
3695 	}
3696 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3697 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3698 		    Adapter->rx_limit_onintr);
3699 		err = 0;
3700 		goto done;
3701 	}
3702 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3703 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3704 		    Adapter->rx_intr_delay);
3705 		err = 0;
3706 		goto done;
3707 	}
3708 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3709 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3710 		    Adapter->rx_intr_abs_delay);
3711 		err = 0;
3712 		goto done;
3713 	}
3714 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3715 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3716 		    Adapter->intr_throttling_rate);
3717 		err = 0;
3718 		goto done;
3719 	}
3720 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3721 		value = (is_default ? 1 : Adapter->intr_adaptive);
3722 		err = 0;
3723 		goto done;
3724 	}
3725 done:
3726 	if (err == 0) {
3727 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3728 	}
3729 	return (err);
3730 }
3731 
3732 /*
3733  * e1000g_get_conf - get configurations set in e1000g.conf
3734  * This routine gets user-configured values out of the configuration
3735  * file e1000g.conf.
3736  *
3737  * For each configurable value, there is a minimum, a maximum, and a
3738  * default.
3739  * If user does not configure a value, use the default.
3740  * If user configures below the minimum, use the minumum.
3741  * If user configures above the maximum, use the maxumum.
3742  */
3743 static void
3744 e1000g_get_conf(struct e1000g *Adapter)
3745 {
3746 	struct e1000_hw *hw = &Adapter->shared;
3747 	boolean_t tbi_compatibility = B_FALSE;
3748 	boolean_t is_jumbo = B_FALSE;
3749 	int propval;
3750 	/*
3751 	 * decrease the number of descriptors and free packets
3752 	 * for jumbo frames to reduce tx/rx resource consumption
3753 	 */
3754 	if (Adapter->max_frame_size >=
3755 	    (FRAME_SIZE_UPTO_4K -
3756 	    E1000G_IPALIGNPRESERVEROOM)) {
3757 		is_jumbo = B_TRUE;
3758 	}
3759 
3760 	/*
3761 	 * get each configurable property from e1000g.conf
3762 	 */
3763 
3764 	/*
3765 	 * NumTxDescriptors
3766 	 */
3767 	Adapter->tx_desc_num_flag =
3768 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3769 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3770 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3771 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3772 	Adapter->tx_desc_num = propval;
3773 
3774 	/*
3775 	 * NumRxDescriptors
3776 	 */
3777 	Adapter->rx_desc_num_flag =
3778 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3779 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3780 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3781 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3782 	Adapter->rx_desc_num = propval;
3783 
3784 	/*
3785 	 * NumRxFreeList
3786 	 */
3787 	Adapter->rx_buf_num_flag =
3788 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3789 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3790 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3791 	    : DEFAULT_NUM_RX_FREELIST, &propval);
3792 	Adapter->rx_freelist_num = propval;
3793 
3794 	/*
3795 	 * NumTxPacketList
3796 	 */
3797 	Adapter->tx_buf_num_flag =
3798 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3799 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3800 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3801 	    : DEFAULT_NUM_TX_FREELIST, &propval);
3802 	Adapter->tx_freelist_num = propval;
3803 
3804 	/*
3805 	 * FlowControl
3806 	 */
3807 	hw->fc.send_xon = B_TRUE;
3808 	(void) e1000g_get_prop(Adapter, "FlowControl",
3809 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3810 	hw->fc.requested_mode = propval;
3811 	/* 4 is the setting that says "let the eeprom decide" */
3812 	if (hw->fc.requested_mode == 4)
3813 		hw->fc.requested_mode = e1000_fc_default;
3814 
3815 	/*
3816 	 * Max Num Receive Packets on Interrupt
3817 	 */
3818 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3819 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3820 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
3821 	Adapter->rx_limit_onintr = propval;
3822 
3823 	/*
3824 	 * PHY master slave setting
3825 	 */
3826 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
3827 	    e1000_ms_hw_default, e1000_ms_auto,
3828 	    e1000_ms_hw_default, &propval);
3829 	hw->phy.ms_type = propval;
3830 
3831 	/*
3832 	 * Parameter which controls TBI mode workaround, which is only
3833 	 * needed on certain switches such as Cisco 6500/Foundry
3834 	 */
3835 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3836 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3837 	tbi_compatibility = (propval == 1);
3838 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3839 
3840 	/*
3841 	 * MSI Enable
3842 	 */
3843 	(void) e1000g_get_prop(Adapter, "MSIEnable",
3844 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
3845 	Adapter->msi_enable = (propval == 1);
3846 
3847 	/*
3848 	 * Interrupt Throttling Rate
3849 	 */
3850 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3851 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3852 	    DEFAULT_INTR_THROTTLING, &propval);
3853 	Adapter->intr_throttling_rate = propval;
3854 
3855 	/*
3856 	 * Adaptive Interrupt Blanking Enable/Disable
3857 	 * It is enabled by default
3858 	 */
3859 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3860 	    &propval);
3861 	Adapter->intr_adaptive = (propval == 1);
3862 
3863 	/*
3864 	 * Hardware checksum enable/disable parameter
3865 	 */
3866 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
3867 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
3868 	Adapter->tx_hcksum_enable = (propval == 1);
3869 	/*
3870 	 * Checksum on/off selection via global parameters.
3871 	 *
3872 	 * If the chip is flagged as not capable of (correctly)
3873 	 * handling checksumming, we don't enable it on either
3874 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3875 	 * from the patchable global defaults.
3876 	 *
3877 	 * We advertise our capabilities only if TX offload is
3878 	 * enabled.  On receive, the stack will accept checksummed
3879 	 * packets anyway, even if we haven't said we can deliver
3880 	 * them.
3881 	 */
3882 	switch (hw->mac.type) {
3883 		case e1000_82540:
3884 		case e1000_82544:
3885 		case e1000_82545:
3886 		case e1000_82545_rev_3:
3887 		case e1000_82546:
3888 		case e1000_82546_rev_3:
3889 		case e1000_82571:
3890 		case e1000_82572:
3891 		case e1000_82573:
3892 		case e1000_80003es2lan:
3893 			break;
3894 		/*
3895 		 * For the following Intel PRO/1000 chipsets, we have not
3896 		 * tested the hardware checksum offload capability, so we
3897 		 * disable the capability for them.
3898 		 *	e1000_82542,
3899 		 *	e1000_82543,
3900 		 *	e1000_82541,
3901 		 *	e1000_82541_rev_2,
3902 		 *	e1000_82547,
3903 		 *	e1000_82547_rev_2,
3904 		 */
3905 		default:
3906 			Adapter->tx_hcksum_enable = B_FALSE;
3907 	}
3908 
3909 	/*
3910 	 * Large Send Offloading(LSO) Enable/Disable
3911 	 * If the tx hardware checksum is not enabled, LSO should be
3912 	 * disabled.
3913 	 */
3914 	(void) e1000g_get_prop(Adapter, "lso_enable",
3915 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
3916 	Adapter->lso_enable = (propval == 1);
3917 
3918 	switch (hw->mac.type) {
3919 		case e1000_82546:
3920 		case e1000_82546_rev_3:
3921 			if (Adapter->lso_enable)
3922 				Adapter->lso_premature_issue = B_TRUE;
3923 			/* FALLTHRU */
3924 		case e1000_82571:
3925 		case e1000_82572:
3926 		case e1000_82573:
3927 		case e1000_80003es2lan:
3928 			break;
3929 		default:
3930 			Adapter->lso_enable = B_FALSE;
3931 	}
3932 
3933 	if (!Adapter->tx_hcksum_enable) {
3934 		Adapter->lso_premature_issue = B_FALSE;
3935 		Adapter->lso_enable = B_FALSE;
3936 	}
3937 
3938 	/*
3939 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3940 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3941 	 * will not cross 64k boundary.
3942 	 */
3943 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
3944 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
3945 	Adapter->mem_workaround_82546 = (propval == 1);
3946 
3947 	/*
3948 	 * Max number of multicast addresses
3949 	 */
3950 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
3951 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
3952 	    &propval);
3953 	Adapter->mcast_max_num = propval;
3954 }
3955 
3956 /*
3957  * e1000g_get_prop - routine to read properties
3958  *
3959  * Get a user-configure property value out of the configuration
3960  * file e1000g.conf.
3961  *
3962  * Caller provides name of the property, a default value, a minimum
3963  * value, a maximum value and a pointer to the returned property
3964  * value.
3965  *
3966  * Return B_TRUE if the configured value of the property is not a default
3967  * value, otherwise return B_FALSE.
3968  */
3969 static boolean_t
3970 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3971     char *propname,		/* name of the property */
3972     int minval,			/* minimum acceptable value */
3973     int maxval,			/* maximim acceptable value */
3974     int defval,			/* default value */
3975     int *propvalue)		/* property value return to caller */
3976 {
3977 	int propval;		/* value returned for requested property */
3978 	int *props;		/* point to array of properties returned */
3979 	uint_t nprops;		/* number of property value returned */
3980 	boolean_t ret = B_TRUE;
3981 
3982 	/*
3983 	 * get the array of properties from the config file
3984 	 */
3985 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3986 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3987 		/* got some properties, test if we got enough */
3988 		if (Adapter->instance < nprops) {
3989 			propval = props[Adapter->instance];
3990 		} else {
3991 			/* not enough properties configured */
3992 			propval = defval;
3993 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3994 			    "Not Enough %s values found in e1000g.conf"
3995 			    " - set to %d\n",
3996 			    propname, propval);
3997 			ret = B_FALSE;
3998 		}
3999 
4000 		/* free memory allocated for properties */
4001 		ddi_prop_free(props);
4002 
4003 	} else {
4004 		propval = defval;
4005 		ret = B_FALSE;
4006 	}
4007 
4008 	/*
4009 	 * enforce limits
4010 	 */
4011 	if (propval > maxval) {
4012 		propval = maxval;
4013 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4014 		    "Too High %s value in e1000g.conf - set to %d\n",
4015 		    propname, propval);
4016 	}
4017 
4018 	if (propval < minval) {
4019 		propval = minval;
4020 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4021 		    "Too Low %s value in e1000g.conf - set to %d\n",
4022 		    propname, propval);
4023 	}
4024 
4025 	*propvalue = propval;
4026 	return (ret);
4027 }
4028 
4029 static boolean_t
4030 e1000g_link_check(struct e1000g *Adapter)
4031 {
4032 	uint16_t speed, duplex, phydata;
4033 	boolean_t link_changed = B_FALSE;
4034 	struct e1000_hw *hw;
4035 	uint32_t reg_tarc;
4036 
4037 	hw = &Adapter->shared;
4038 
4039 	if (e1000g_link_up(Adapter)) {
4040 		/*
4041 		 * The Link is up, check whether it was marked as down earlier
4042 		 */
4043 		if (Adapter->link_state != LINK_STATE_UP) {
4044 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4045 			Adapter->link_speed = speed;
4046 			Adapter->link_duplex = duplex;
4047 			Adapter->link_state = LINK_STATE_UP;
4048 			link_changed = B_TRUE;
4049 
4050 			if (Adapter->link_speed == SPEED_1000)
4051 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4052 			else
4053 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4054 
4055 			Adapter->tx_link_down_timeout = 0;
4056 
4057 			if ((hw->mac.type == e1000_82571) ||
4058 			    (hw->mac.type == e1000_82572)) {
4059 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4060 				if (speed == SPEED_1000)
4061 					reg_tarc |= (1 << 21);
4062 				else
4063 					reg_tarc &= ~(1 << 21);
4064 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4065 			}
4066 		}
4067 		Adapter->smartspeed = 0;
4068 	} else {
4069 		if (Adapter->link_state != LINK_STATE_DOWN) {
4070 			Adapter->link_speed = 0;
4071 			Adapter->link_duplex = 0;
4072 			Adapter->link_state = LINK_STATE_DOWN;
4073 			link_changed = B_TRUE;
4074 
4075 			/*
4076 			 * SmartSpeed workaround for Tabor/TanaX, When the
4077 			 * driver loses link disable auto master/slave
4078 			 * resolution.
4079 			 */
4080 			if (hw->phy.type == e1000_phy_igp) {
4081 				(void) e1000_read_phy_reg(hw,
4082 				    PHY_1000T_CTRL, &phydata);
4083 				phydata |= CR_1000T_MS_ENABLE;
4084 				(void) e1000_write_phy_reg(hw,
4085 				    PHY_1000T_CTRL, phydata);
4086 			}
4087 		} else {
4088 			e1000g_smartspeed(Adapter);
4089 		}
4090 
4091 		if (Adapter->e1000g_state & E1000G_STARTED) {
4092 			if (Adapter->tx_link_down_timeout <
4093 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4094 				Adapter->tx_link_down_timeout++;
4095 			} else if (Adapter->tx_link_down_timeout ==
4096 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4097 				e1000g_tx_clean(Adapter);
4098 				Adapter->tx_link_down_timeout++;
4099 			}
4100 		}
4101 	}
4102 
4103 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4104 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4105 
4106 	return (link_changed);
4107 }
4108 
4109 /*
4110  * e1000g_reset_link - Using the link properties to setup the link
4111  */
4112 int
4113 e1000g_reset_link(struct e1000g *Adapter)
4114 {
4115 	struct e1000_mac_info *mac;
4116 	struct e1000_phy_info *phy;
4117 	struct e1000_hw *hw;
4118 	boolean_t invalid;
4119 
4120 	mac = &Adapter->shared.mac;
4121 	phy = &Adapter->shared.phy;
4122 	hw = &Adapter->shared;
4123 	invalid = B_FALSE;
4124 
4125 	if (hw->phy.media_type != e1000_media_type_copper)
4126 		goto out;
4127 
4128 	if (Adapter->param_adv_autoneg == 1) {
4129 		mac->autoneg = B_TRUE;
4130 		phy->autoneg_advertised = 0;
4131 
4132 		/*
4133 		 * 1000hdx is not supported for autonegotiation
4134 		 */
4135 		if (Adapter->param_adv_1000fdx == 1)
4136 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4137 
4138 		if (Adapter->param_adv_100fdx == 1)
4139 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4140 
4141 		if (Adapter->param_adv_100hdx == 1)
4142 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4143 
4144 		if (Adapter->param_adv_10fdx == 1)
4145 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4146 
4147 		if (Adapter->param_adv_10hdx == 1)
4148 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4149 
4150 		if (phy->autoneg_advertised == 0)
4151 			invalid = B_TRUE;
4152 	} else {
4153 		mac->autoneg = B_FALSE;
4154 
4155 		/*
4156 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4157 		 * supported for forced link
4158 		 */
4159 		if (Adapter->param_adv_100fdx == 1)
4160 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4161 		else if (Adapter->param_adv_100hdx == 1)
4162 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4163 		else if (Adapter->param_adv_10fdx == 1)
4164 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4165 		else if (Adapter->param_adv_10hdx == 1)
4166 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4167 		else
4168 			invalid = B_TRUE;
4169 
4170 	}
4171 
4172 	if (invalid) {
4173 		e1000g_log(Adapter, CE_WARN,
4174 		    "Invalid link settings. Setup link to "
4175 		    "support autonegotiation with all link capabilities.");
4176 		mac->autoneg = B_TRUE;
4177 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4178 	}
4179 
4180 out:
4181 	return (e1000_setup_link(&Adapter->shared));
4182 }
4183 
4184 static void
4185 e1000g_timer_tx_resched(struct e1000g *Adapter)
4186 {
4187 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4188 
4189 	rw_enter(&Adapter->chip_lock, RW_READER);
4190 
4191 	if (tx_ring->resched_needed &&
4192 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4193 	    drv_usectohz(1000000)) &&
4194 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4195 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4196 		tx_ring->resched_needed = B_FALSE;
4197 		mac_tx_update(Adapter->mh);
4198 		E1000G_STAT(tx_ring->stat_reschedule);
4199 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4200 	}
4201 
4202 	rw_exit(&Adapter->chip_lock);
4203 }
4204 
4205 static void
4206 e1000g_local_timer(void *ws)
4207 {
4208 	struct e1000g *Adapter = (struct e1000g *)ws;
4209 	struct e1000_hw *hw;
4210 	e1000g_ether_addr_t ether_addr;
4211 	boolean_t link_changed;
4212 
4213 	hw = &Adapter->shared;
4214 
4215 	if (Adapter->e1000g_state & E1000G_ERROR) {
4216 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4217 		Adapter->e1000g_state &= ~E1000G_ERROR;
4218 		rw_exit(&Adapter->chip_lock);
4219 
4220 		Adapter->reset_count++;
4221 		if (e1000g_global_reset(Adapter)) {
4222 			ddi_fm_service_impact(Adapter->dip,
4223 			    DDI_SERVICE_RESTORED);
4224 			e1000g_timer_tx_resched(Adapter);
4225 		} else
4226 			ddi_fm_service_impact(Adapter->dip,
4227 			    DDI_SERVICE_LOST);
4228 		return;
4229 	}
4230 
4231 	if (e1000g_stall_check(Adapter)) {
4232 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4233 		    "Tx stall detected. Activate automatic recovery.\n");
4234 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4235 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4236 		Adapter->reset_count++;
4237 		if (e1000g_reset_adapter(Adapter)) {
4238 			ddi_fm_service_impact(Adapter->dip,
4239 			    DDI_SERVICE_RESTORED);
4240 			e1000g_timer_tx_resched(Adapter);
4241 		}
4242 		return;
4243 	}
4244 
4245 	link_changed = B_FALSE;
4246 	rw_enter(&Adapter->chip_lock, RW_READER);
4247 	if (Adapter->link_complete)
4248 		link_changed = e1000g_link_check(Adapter);
4249 	rw_exit(&Adapter->chip_lock);
4250 
4251 	if (link_changed) {
4252 		if (!Adapter->reset_flag)
4253 			mac_link_update(Adapter->mh, Adapter->link_state);
4254 		if (Adapter->link_state == LINK_STATE_UP)
4255 			Adapter->reset_flag = B_FALSE;
4256 	}
4257 	/*
4258 	 * Workaround for esb2. Data stuck in fifo on a link
4259 	 * down event. Reset the adapter to recover it.
4260 	 */
4261 	if (Adapter->esb2_workaround) {
4262 		Adapter->esb2_workaround = B_FALSE;
4263 		(void) e1000g_reset_adapter(Adapter);
4264 		return;
4265 	}
4266 
4267 	/*
4268 	 * With 82571 controllers, any locally administered address will
4269 	 * be overwritten when there is a reset on the other port.
4270 	 * Detect this circumstance and correct it.
4271 	 */
4272 	if ((hw->mac.type == e1000_82571) &&
4273 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4274 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4275 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4276 
4277 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4278 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4279 
4280 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4281 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4282 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4283 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4284 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4285 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4286 			e1000_rar_set(hw, hw->mac.addr, 0);
4287 		}
4288 	}
4289 
4290 	/*
4291 	 * Long TTL workaround for 82541/82547
4292 	 */
4293 	(void) e1000_igp_ttl_workaround_82547(hw);
4294 
4295 	/*
4296 	 * Check for Adaptive IFS settings If there are lots of collisions
4297 	 * change the value in steps...
4298 	 * These properties should only be set for 10/100
4299 	 */
4300 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4301 	    ((Adapter->link_speed == SPEED_100) ||
4302 	    (Adapter->link_speed == SPEED_10))) {
4303 		e1000_update_adaptive(hw);
4304 	}
4305 	/*
4306 	 * Set Timer Interrupts
4307 	 */
4308 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4309 
4310 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4311 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4312 	else
4313 		e1000g_timer_tx_resched(Adapter);
4314 
4315 	restart_watchdog_timer(Adapter);
4316 }
4317 
4318 /*
4319  * The function e1000g_link_timer() is called when the timer for link setup
4320  * is expired, which indicates the completion of the link setup. The link
4321  * state will not be updated until the link setup is completed. And the
4322  * link state will not be sent to the upper layer through mac_link_update()
4323  * in this function. It will be updated in the local timer routine or the
4324  * interrupt service routine after the interface is started (plumbed).
4325  */
4326 static void
4327 e1000g_link_timer(void *arg)
4328 {
4329 	struct e1000g *Adapter = (struct e1000g *)arg;
4330 
4331 	mutex_enter(&Adapter->link_lock);
4332 	Adapter->link_complete = B_TRUE;
4333 	Adapter->link_tid = 0;
4334 	mutex_exit(&Adapter->link_lock);
4335 }
4336 
4337 /*
4338  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4339  *
4340  * This function read the forced speed and duplex for 10/100 Mbps speeds
4341  * and also for 1000 Mbps speeds from the e1000g.conf file
4342  */
4343 static void
4344 e1000g_force_speed_duplex(struct e1000g *Adapter)
4345 {
4346 	int forced;
4347 	int propval;
4348 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4349 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4350 
4351 	/*
4352 	 * get value out of config file
4353 	 */
4354 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4355 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4356 
4357 	switch (forced) {
4358 	case GDIAG_10_HALF:
4359 		/*
4360 		 * Disable Auto Negotiation
4361 		 */
4362 		mac->autoneg = B_FALSE;
4363 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4364 		break;
4365 	case GDIAG_10_FULL:
4366 		/*
4367 		 * Disable Auto Negotiation
4368 		 */
4369 		mac->autoneg = B_FALSE;
4370 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4371 		break;
4372 	case GDIAG_100_HALF:
4373 		/*
4374 		 * Disable Auto Negotiation
4375 		 */
4376 		mac->autoneg = B_FALSE;
4377 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4378 		break;
4379 	case GDIAG_100_FULL:
4380 		/*
4381 		 * Disable Auto Negotiation
4382 		 */
4383 		mac->autoneg = B_FALSE;
4384 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4385 		break;
4386 	case GDIAG_1000_FULL:
4387 		/*
4388 		 * The gigabit spec requires autonegotiation.  Therefore,
4389 		 * when the user wants to force the speed to 1000Mbps, we
4390 		 * enable AutoNeg, but only allow the harware to advertise
4391 		 * 1000Mbps.  This is different from 10/100 operation, where
4392 		 * we are allowed to link without any negotiation.
4393 		 */
4394 		mac->autoneg = B_TRUE;
4395 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4396 		break;
4397 	default:	/* obey the setting of AutoNegAdvertised */
4398 		mac->autoneg = B_TRUE;
4399 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4400 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4401 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4402 		phy->autoneg_advertised = (uint16_t)propval;
4403 		break;
4404 	}	/* switch */
4405 }
4406 
4407 /*
4408  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4409  *
4410  * This function reads MaxFrameSize from e1000g.conf
4411  */
4412 static void
4413 e1000g_get_max_frame_size(struct e1000g *Adapter)
4414 {
4415 	int max_frame;
4416 
4417 	/*
4418 	 * get value out of config file
4419 	 */
4420 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4421 	    &max_frame);
4422 
4423 	switch (max_frame) {
4424 	case 0:
4425 		Adapter->default_mtu = ETHERMTU;
4426 		break;
4427 	/*
4428 	 * To avoid excessive memory allocation for rx buffers,
4429 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4430 	 */
4431 	case 1:
4432 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4433 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4434 		    E1000G_IPALIGNPRESERVEROOM;
4435 		break;
4436 	case 2:
4437 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4438 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4439 		    E1000G_IPALIGNPRESERVEROOM;
4440 		break;
4441 	case 3:
4442 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4443 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4444 		    E1000G_IPALIGNPRESERVEROOM;
4445 		break;
4446 	default:
4447 		Adapter->default_mtu = ETHERMTU;
4448 		break;
4449 	}	/* switch */
4450 
4451 	/*
4452 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4453 	 * the MTU is set to the deivce's maximum value.
4454 	 */
4455 	if (Adapter->default_mtu > Adapter->max_mtu)
4456 		Adapter->default_mtu = Adapter->max_mtu;
4457 
4458 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4459 }
4460 
4461 /*
4462  * e1000g_pch_limits - Apply limits of the PCH silicon type
4463  *
4464  * At any frame size larger than the ethernet default,
4465  * prevent linking at 10/100 speeds.
4466  */
4467 static void
4468 e1000g_pch_limits(struct e1000g *Adapter)
4469 {
4470 	struct e1000_hw *hw = &Adapter->shared;
4471 
4472 	/* only applies to PCH silicon type */
4473 	if (hw->mac.type != e1000_pchlan)
4474 		return;
4475 
4476 	/* only applies to frames larger than ethernet default */
4477 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4478 		hw->mac.autoneg = B_TRUE;
4479 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4480 
4481 		Adapter->param_adv_autoneg = 1;
4482 		Adapter->param_adv_1000fdx = 1;
4483 
4484 		Adapter->param_adv_100fdx = 0;
4485 		Adapter->param_adv_100hdx = 0;
4486 		Adapter->param_adv_10fdx = 0;
4487 		Adapter->param_adv_10hdx = 0;
4488 
4489 		e1000g_param_sync(Adapter);
4490 	}
4491 }
4492 
4493 /*
4494  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4495  */
4496 static uint32_t
4497 e1000g_mtu2maxframe(uint32_t mtu)
4498 {
4499 	uint32_t maxframe;
4500 
4501 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4502 
4503 	return (maxframe);
4504 }
4505 
4506 static void
4507 arm_watchdog_timer(struct e1000g *Adapter)
4508 {
4509 	Adapter->watchdog_tid =
4510 	    timeout(e1000g_local_timer,
4511 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4512 }
4513 #pragma inline(arm_watchdog_timer)
4514 
4515 static void
4516 enable_watchdog_timer(struct e1000g *Adapter)
4517 {
4518 	mutex_enter(&Adapter->watchdog_lock);
4519 
4520 	if (!Adapter->watchdog_timer_enabled) {
4521 		Adapter->watchdog_timer_enabled = B_TRUE;
4522 		Adapter->watchdog_timer_started = B_TRUE;
4523 		arm_watchdog_timer(Adapter);
4524 	}
4525 
4526 	mutex_exit(&Adapter->watchdog_lock);
4527 }
4528 
4529 static void
4530 disable_watchdog_timer(struct e1000g *Adapter)
4531 {
4532 	timeout_id_t tid;
4533 
4534 	mutex_enter(&Adapter->watchdog_lock);
4535 
4536 	Adapter->watchdog_timer_enabled = B_FALSE;
4537 	Adapter->watchdog_timer_started = B_FALSE;
4538 	tid = Adapter->watchdog_tid;
4539 	Adapter->watchdog_tid = 0;
4540 
4541 	mutex_exit(&Adapter->watchdog_lock);
4542 
4543 	if (tid != 0)
4544 		(void) untimeout(tid);
4545 }
4546 
4547 static void
4548 start_watchdog_timer(struct e1000g *Adapter)
4549 {
4550 	mutex_enter(&Adapter->watchdog_lock);
4551 
4552 	if (Adapter->watchdog_timer_enabled) {
4553 		if (!Adapter->watchdog_timer_started) {
4554 			Adapter->watchdog_timer_started = B_TRUE;
4555 			arm_watchdog_timer(Adapter);
4556 		}
4557 	}
4558 
4559 	mutex_exit(&Adapter->watchdog_lock);
4560 }
4561 
4562 static void
4563 restart_watchdog_timer(struct e1000g *Adapter)
4564 {
4565 	mutex_enter(&Adapter->watchdog_lock);
4566 
4567 	if (Adapter->watchdog_timer_started)
4568 		arm_watchdog_timer(Adapter);
4569 
4570 	mutex_exit(&Adapter->watchdog_lock);
4571 }
4572 
4573 static void
4574 stop_watchdog_timer(struct e1000g *Adapter)
4575 {
4576 	timeout_id_t tid;
4577 
4578 	mutex_enter(&Adapter->watchdog_lock);
4579 
4580 	Adapter->watchdog_timer_started = B_FALSE;
4581 	tid = Adapter->watchdog_tid;
4582 	Adapter->watchdog_tid = 0;
4583 
4584 	mutex_exit(&Adapter->watchdog_lock);
4585 
4586 	if (tid != 0)
4587 		(void) untimeout(tid);
4588 }
4589 
4590 static void
4591 stop_link_timer(struct e1000g *Adapter)
4592 {
4593 	timeout_id_t tid;
4594 
4595 	/* Disable the link timer */
4596 	mutex_enter(&Adapter->link_lock);
4597 
4598 	tid = Adapter->link_tid;
4599 	Adapter->link_tid = 0;
4600 
4601 	mutex_exit(&Adapter->link_lock);
4602 
4603 	if (tid != 0)
4604 		(void) untimeout(tid);
4605 }
4606 
4607 static void
4608 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4609 {
4610 	timeout_id_t tid;
4611 
4612 	/* Disable the tx timer for 82547 chipset */
4613 	mutex_enter(&tx_ring->tx_lock);
4614 
4615 	tx_ring->timer_enable_82547 = B_FALSE;
4616 	tid = tx_ring->timer_id_82547;
4617 	tx_ring->timer_id_82547 = 0;
4618 
4619 	mutex_exit(&tx_ring->tx_lock);
4620 
4621 	if (tid != 0)
4622 		(void) untimeout(tid);
4623 }
4624 
4625 void
4626 e1000g_clear_interrupt(struct e1000g *Adapter)
4627 {
4628 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4629 	    0xffffffff & ~E1000_IMS_RXSEQ);
4630 }
4631 
4632 void
4633 e1000g_mask_interrupt(struct e1000g *Adapter)
4634 {
4635 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4636 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4637 
4638 	if (Adapter->tx_intr_enable)
4639 		e1000g_mask_tx_interrupt(Adapter);
4640 }
4641 
4642 /*
4643  * This routine is called by e1000g_quiesce(), therefore must not block.
4644  */
4645 void
4646 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4647 {
4648 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4649 }
4650 
4651 void
4652 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4653 {
4654 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4655 }
4656 
4657 void
4658 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4659 {
4660 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4661 }
4662 
4663 static void
4664 e1000g_smartspeed(struct e1000g *Adapter)
4665 {
4666 	struct e1000_hw *hw = &Adapter->shared;
4667 	uint16_t phy_status;
4668 	uint16_t phy_ctrl;
4669 
4670 	/*
4671 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4672 	 * advertising 1000Full, we don't even use the workaround
4673 	 */
4674 	if ((hw->phy.type != e1000_phy_igp) ||
4675 	    !hw->mac.autoneg ||
4676 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4677 		return;
4678 
4679 	/*
4680 	 * True if this is the first call of this function or after every
4681 	 * 30 seconds of not having link
4682 	 */
4683 	if (Adapter->smartspeed == 0) {
4684 		/*
4685 		 * If Master/Slave config fault is asserted twice, we
4686 		 * assume back-to-back
4687 		 */
4688 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4689 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4690 			return;
4691 
4692 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 			return;
4695 		/*
4696 		 * We're assuming back-2-back because our status register
4697 		 * insists! there's a fault in the master/slave
4698 		 * relationship that was "negotiated"
4699 		 */
4700 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4701 		/*
4702 		 * Is the phy configured for manual configuration of
4703 		 * master/slave?
4704 		 */
4705 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4706 			/*
4707 			 * Yes.  Then disable manual configuration (enable
4708 			 * auto configuration) of master/slave
4709 			 */
4710 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4711 			(void) e1000_write_phy_reg(hw,
4712 			    PHY_1000T_CTRL, phy_ctrl);
4713 			/*
4714 			 * Effectively starting the clock
4715 			 */
4716 			Adapter->smartspeed++;
4717 			/*
4718 			 * Restart autonegotiation
4719 			 */
4720 			if (!e1000_phy_setup_autoneg(hw) &&
4721 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4722 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 				    MII_CR_RESTART_AUTO_NEG);
4724 				(void) e1000_write_phy_reg(hw,
4725 				    PHY_CONTROL, phy_ctrl);
4726 			}
4727 		}
4728 		return;
4729 		/*
4730 		 * Has 6 seconds transpired still without link? Remember,
4731 		 * you should reset the smartspeed counter once you obtain
4732 		 * link
4733 		 */
4734 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4735 		/*
4736 		 * Yes.  Remember, we did at the start determine that
4737 		 * there's a master/slave configuration fault, so we're
4738 		 * still assuming there's someone on the other end, but we
4739 		 * just haven't yet been able to talk to it. We then
4740 		 * re-enable auto configuration of master/slave to see if
4741 		 * we're running 2/3 pair cables.
4742 		 */
4743 		/*
4744 		 * If still no link, perhaps using 2/3 pair cable
4745 		 */
4746 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4747 		phy_ctrl |= CR_1000T_MS_ENABLE;
4748 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4749 		/*
4750 		 * Restart autoneg with phy enabled for manual
4751 		 * configuration of master/slave
4752 		 */
4753 		if (!e1000_phy_setup_autoneg(hw) &&
4754 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4755 			phy_ctrl |=
4756 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4757 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4758 		}
4759 		/*
4760 		 * Hopefully, there are no more faults and we've obtained
4761 		 * link as a result.
4762 		 */
4763 	}
4764 	/*
4765 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4766 	 * seconds)
4767 	 */
4768 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4769 		Adapter->smartspeed = 0;
4770 }
4771 
4772 static boolean_t
4773 is_valid_mac_addr(uint8_t *mac_addr)
4774 {
4775 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4776 	const uint8_t addr_test2[6] =
4777 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4778 
4779 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4780 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4781 		return (B_FALSE);
4782 
4783 	return (B_TRUE);
4784 }
4785 
4786 /*
4787  * e1000g_stall_check - check for tx stall
4788  *
4789  * This function checks if the adapter is stalled (in transmit).
4790  *
4791  * It is called each time the watchdog timeout is invoked.
4792  * If the transmit descriptor reclaim continuously fails,
4793  * the watchdog value will increment by 1. If the watchdog
4794  * value exceeds the threshold, the adapter is assumed to
4795  * have stalled and need to be reset.
4796  */
4797 static boolean_t
4798 e1000g_stall_check(struct e1000g *Adapter)
4799 {
4800 	e1000g_tx_ring_t *tx_ring;
4801 
4802 	tx_ring = Adapter->tx_ring;
4803 
4804 	if (Adapter->link_state != LINK_STATE_UP)
4805 		return (B_FALSE);
4806 
4807 	(void) e1000g_recycle(tx_ring);
4808 
4809 	if (Adapter->stall_flag)
4810 		return (B_TRUE);
4811 
4812 	return (B_FALSE);
4813 }
4814 
4815 #ifdef E1000G_DEBUG
4816 static enum ioc_reply
4817 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4818 {
4819 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4820 	e1000g_peekpoke_t *ppd;
4821 	uint64_t mem_va;
4822 	uint64_t maxoff;
4823 	boolean_t peek;
4824 
4825 	switch (iocp->ioc_cmd) {
4826 
4827 	case E1000G_IOC_REG_PEEK:
4828 		peek = B_TRUE;
4829 		break;
4830 
4831 	case E1000G_IOC_REG_POKE:
4832 		peek = B_FALSE;
4833 		break;
4834 
4835 	deault:
4836 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4837 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4838 		    iocp->ioc_cmd);
4839 		return (IOC_INVAL);
4840 	}
4841 
4842 	/*
4843 	 * Validate format of ioctl
4844 	 */
4845 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4846 		return (IOC_INVAL);
4847 	if (mp->b_cont == NULL)
4848 		return (IOC_INVAL);
4849 
4850 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4851 
4852 	/*
4853 	 * Validate request parameters
4854 	 */
4855 	switch (ppd->pp_acc_space) {
4856 
4857 	default:
4858 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4859 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4860 		    ppd->pp_acc_space);
4861 		return (IOC_INVAL);
4862 
4863 	case E1000G_PP_SPACE_REG:
4864 		/*
4865 		 * Memory-mapped I/O space
4866 		 */
4867 		ASSERT(ppd->pp_acc_size == 4);
4868 		if (ppd->pp_acc_size != 4)
4869 			return (IOC_INVAL);
4870 
4871 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4872 			return (IOC_INVAL);
4873 
4874 		mem_va = 0;
4875 		maxoff = 0x10000;
4876 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4877 		break;
4878 
4879 	case E1000G_PP_SPACE_E1000G:
4880 		/*
4881 		 * E1000g data structure!
4882 		 */
4883 		mem_va = (uintptr_t)e1000gp;
4884 		maxoff = sizeof (struct e1000g);
4885 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4886 		break;
4887 
4888 	}
4889 
4890 	if (ppd->pp_acc_offset >= maxoff)
4891 		return (IOC_INVAL);
4892 
4893 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4894 		return (IOC_INVAL);
4895 
4896 	/*
4897 	 * All OK - go!
4898 	 */
4899 	ppd->pp_acc_offset += mem_va;
4900 	(*ppfn)(e1000gp, ppd);
4901 	return (peek ? IOC_REPLY : IOC_ACK);
4902 }
4903 
4904 static void
4905 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4906 {
4907 	ddi_acc_handle_t handle;
4908 	uint32_t *regaddr;
4909 
4910 	handle = e1000gp->osdep.reg_handle;
4911 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4912 	    (uintptr_t)ppd->pp_acc_offset);
4913 
4914 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4915 }
4916 
4917 static void
4918 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4919 {
4920 	ddi_acc_handle_t handle;
4921 	uint32_t *regaddr;
4922 	uint32_t value;
4923 
4924 	handle = e1000gp->osdep.reg_handle;
4925 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4926 	    (uintptr_t)ppd->pp_acc_offset);
4927 	value = (uint32_t)ppd->pp_acc_data;
4928 
4929 	ddi_put32(handle, regaddr, value);
4930 }
4931 
4932 static void
4933 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4934 {
4935 	uint64_t value;
4936 	void *vaddr;
4937 
4938 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4939 
4940 	switch (ppd->pp_acc_size) {
4941 	case 1:
4942 		value = *(uint8_t *)vaddr;
4943 		break;
4944 
4945 	case 2:
4946 		value = *(uint16_t *)vaddr;
4947 		break;
4948 
4949 	case 4:
4950 		value = *(uint32_t *)vaddr;
4951 		break;
4952 
4953 	case 8:
4954 		value = *(uint64_t *)vaddr;
4955 		break;
4956 	}
4957 
4958 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4959 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4960 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4961 
4962 	ppd->pp_acc_data = value;
4963 }
4964 
4965 static void
4966 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4967 {
4968 	uint64_t value;
4969 	void *vaddr;
4970 
4971 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4972 	value = ppd->pp_acc_data;
4973 
4974 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4975 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4976 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4977 
4978 	switch (ppd->pp_acc_size) {
4979 	case 1:
4980 		*(uint8_t *)vaddr = (uint8_t)value;
4981 		break;
4982 
4983 	case 2:
4984 		*(uint16_t *)vaddr = (uint16_t)value;
4985 		break;
4986 
4987 	case 4:
4988 		*(uint32_t *)vaddr = (uint32_t)value;
4989 		break;
4990 
4991 	case 8:
4992 		*(uint64_t *)vaddr = (uint64_t)value;
4993 		break;
4994 	}
4995 }
4996 #endif
4997 
4998 /*
4999  * Loopback Support
5000  */
5001 static lb_property_t lb_normal =
5002 	{ normal,	"normal",	E1000G_LB_NONE		};
5003 static lb_property_t lb_external1000 =
5004 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5005 static lb_property_t lb_external100 =
5006 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5007 static lb_property_t lb_external10 =
5008 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5009 static lb_property_t lb_phy =
5010 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5011 
5012 static enum ioc_reply
5013 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5014 {
5015 	lb_info_sz_t *lbsp;
5016 	lb_property_t *lbpp;
5017 	struct e1000_hw *hw;
5018 	uint32_t *lbmp;
5019 	uint32_t size;
5020 	uint32_t value;
5021 
5022 	hw = &Adapter->shared;
5023 
5024 	if (mp->b_cont == NULL)
5025 		return (IOC_INVAL);
5026 
5027 	if (!e1000g_check_loopback_support(hw)) {
5028 		e1000g_log(NULL, CE_WARN,
5029 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5030 		return (IOC_INVAL);
5031 	}
5032 
5033 	switch (iocp->ioc_cmd) {
5034 	default:
5035 		return (IOC_INVAL);
5036 
5037 	case LB_GET_INFO_SIZE:
5038 		size = sizeof (lb_info_sz_t);
5039 		if (iocp->ioc_count != size)
5040 			return (IOC_INVAL);
5041 
5042 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5043 		e1000g_get_phy_state(Adapter);
5044 
5045 		/*
5046 		 * Workaround for hardware faults. In order to get a stable
5047 		 * state of phy, we will wait for a specific interval and
5048 		 * try again. The time delay is an experiential value based
5049 		 * on our testing.
5050 		 */
5051 		msec_delay(100);
5052 		e1000g_get_phy_state(Adapter);
5053 		rw_exit(&Adapter->chip_lock);
5054 
5055 		value = sizeof (lb_normal);
5056 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5057 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5058 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5059 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5060 			value += sizeof (lb_phy);
5061 			switch (hw->mac.type) {
5062 			case e1000_82571:
5063 			case e1000_82572:
5064 			case e1000_80003es2lan:
5065 				value += sizeof (lb_external1000);
5066 				break;
5067 			}
5068 		}
5069 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5070 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5071 			value += sizeof (lb_external100);
5072 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5073 			value += sizeof (lb_external10);
5074 
5075 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5076 		*lbsp = value;
5077 		break;
5078 
5079 	case LB_GET_INFO:
5080 		value = sizeof (lb_normal);
5081 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5082 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5083 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5084 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5085 			value += sizeof (lb_phy);
5086 			switch (hw->mac.type) {
5087 			case e1000_82571:
5088 			case e1000_82572:
5089 			case e1000_80003es2lan:
5090 				value += sizeof (lb_external1000);
5091 				break;
5092 			}
5093 		}
5094 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5095 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5096 			value += sizeof (lb_external100);
5097 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5098 			value += sizeof (lb_external10);
5099 
5100 		size = value;
5101 		if (iocp->ioc_count != size)
5102 			return (IOC_INVAL);
5103 
5104 		value = 0;
5105 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5106 		lbpp[value++] = lb_normal;
5107 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5108 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5109 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5110 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5111 			lbpp[value++] = lb_phy;
5112 			switch (hw->mac.type) {
5113 			case e1000_82571:
5114 			case e1000_82572:
5115 			case e1000_80003es2lan:
5116 				lbpp[value++] = lb_external1000;
5117 				break;
5118 			}
5119 		}
5120 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5121 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5122 			lbpp[value++] = lb_external100;
5123 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5124 			lbpp[value++] = lb_external10;
5125 		break;
5126 
5127 	case LB_GET_MODE:
5128 		size = sizeof (uint32_t);
5129 		if (iocp->ioc_count != size)
5130 			return (IOC_INVAL);
5131 
5132 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5133 		*lbmp = Adapter->loopback_mode;
5134 		break;
5135 
5136 	case LB_SET_MODE:
5137 		size = 0;
5138 		if (iocp->ioc_count != sizeof (uint32_t))
5139 			return (IOC_INVAL);
5140 
5141 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5142 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5143 			return (IOC_INVAL);
5144 		break;
5145 	}
5146 
5147 	iocp->ioc_count = size;
5148 	iocp->ioc_error = 0;
5149 
5150 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5151 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5152 		return (IOC_INVAL);
5153 	}
5154 
5155 	return (IOC_REPLY);
5156 }
5157 
5158 static boolean_t
5159 e1000g_check_loopback_support(struct e1000_hw *hw)
5160 {
5161 	switch (hw->mac.type) {
5162 	case e1000_82540:
5163 	case e1000_82545:
5164 	case e1000_82545_rev_3:
5165 	case e1000_82546:
5166 	case e1000_82546_rev_3:
5167 	case e1000_82541:
5168 	case e1000_82541_rev_2:
5169 	case e1000_82547:
5170 	case e1000_82547_rev_2:
5171 	case e1000_82571:
5172 	case e1000_82572:
5173 	case e1000_82573:
5174 	case e1000_82574:
5175 	case e1000_80003es2lan:
5176 	case e1000_ich9lan:
5177 	case e1000_ich10lan:
5178 		return (B_TRUE);
5179 	}
5180 	return (B_FALSE);
5181 }
5182 
5183 static boolean_t
5184 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5185 {
5186 	struct e1000_hw *hw;
5187 	int i, times;
5188 	boolean_t link_up;
5189 
5190 	if (mode == Adapter->loopback_mode)
5191 		return (B_TRUE);
5192 
5193 	hw = &Adapter->shared;
5194 	times = 0;
5195 
5196 	Adapter->loopback_mode = mode;
5197 
5198 	if (mode == E1000G_LB_NONE) {
5199 		/* Reset the chip */
5200 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5201 		(void) e1000g_reset_adapter(Adapter);
5202 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5203 		return (B_TRUE);
5204 	}
5205 
5206 again:
5207 
5208 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5209 
5210 	switch (mode) {
5211 	default:
5212 		rw_exit(&Adapter->chip_lock);
5213 		return (B_FALSE);
5214 
5215 	case E1000G_LB_EXTERNAL_1000:
5216 		e1000g_set_external_loopback_1000(Adapter);
5217 		break;
5218 
5219 	case E1000G_LB_EXTERNAL_100:
5220 		e1000g_set_external_loopback_100(Adapter);
5221 		break;
5222 
5223 	case E1000G_LB_EXTERNAL_10:
5224 		e1000g_set_external_loopback_10(Adapter);
5225 		break;
5226 
5227 	case E1000G_LB_INTERNAL_PHY:
5228 		e1000g_set_internal_loopback(Adapter);
5229 		break;
5230 	}
5231 
5232 	times++;
5233 
5234 	rw_exit(&Adapter->chip_lock);
5235 
5236 	/* Wait for link up */
5237 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5238 		msec_delay(100);
5239 
5240 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5241 
5242 	link_up = e1000g_link_up(Adapter);
5243 
5244 	rw_exit(&Adapter->chip_lock);
5245 
5246 	if (!link_up) {
5247 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5248 		    "Failed to get the link up");
5249 		if (times < 2) {
5250 			/* Reset the link */
5251 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5252 			    "Reset the link ...");
5253 			(void) e1000g_reset_adapter(Adapter);
5254 			goto again;
5255 		}
5256 
5257 		/*
5258 		 * Reset driver to loopback none when set loopback failed
5259 		 * for the second time.
5260 		 */
5261 		Adapter->loopback_mode = E1000G_LB_NONE;
5262 
5263 		/* Reset the chip */
5264 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5265 		(void) e1000g_reset_adapter(Adapter);
5266 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5267 
5268 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5269 		    "Set loopback mode failed, reset to loopback none");
5270 
5271 		return (B_FALSE);
5272 	}
5273 
5274 	return (B_TRUE);
5275 }
5276 
5277 /*
5278  * The following loopback settings are from Intel's technical
5279  * document - "How To Loopback". All the register settings and
5280  * time delay values are directly inherited from the document
5281  * without more explanations available.
5282  */
5283 static void
5284 e1000g_set_internal_loopback(struct e1000g *Adapter)
5285 {
5286 	struct e1000_hw *hw;
5287 	uint32_t ctrl;
5288 	uint32_t status;
5289 	uint16_t phy_ctrl;
5290 	uint16_t phy_reg;
5291 	uint32_t txcw;
5292 
5293 	hw = &Adapter->shared;
5294 
5295 	/* Disable Smart Power Down */
5296 	phy_spd_state(hw, B_FALSE);
5297 
5298 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5299 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5300 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5301 
5302 	switch (hw->mac.type) {
5303 	case e1000_82540:
5304 	case e1000_82545:
5305 	case e1000_82545_rev_3:
5306 	case e1000_82546:
5307 	case e1000_82546_rev_3:
5308 	case e1000_82573:
5309 		/* Auto-MDI/MDIX off */
5310 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5311 		/* Reset PHY to update Auto-MDI/MDIX */
5312 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5313 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5314 		/* Reset PHY to auto-neg off and force 1000 */
5315 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5316 		    phy_ctrl | MII_CR_RESET);
5317 		/*
5318 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5319 		 * See comments above e1000g_set_internal_loopback() for the
5320 		 * background.
5321 		 */
5322 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5323 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5324 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5325 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5326 		break;
5327 	case e1000_80003es2lan:
5328 		/* Force Link Up */
5329 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5330 		    0x1CC);
5331 		/* Sets PCS loopback at 1Gbs */
5332 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5333 		    0x1046);
5334 		break;
5335 	}
5336 
5337 	/*
5338 	 * The following registers should be set for e1000_phy_bm phy type.
5339 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5340 	 * For others, we do not need to set these registers.
5341 	 */
5342 	if (hw->phy.type == e1000_phy_bm) {
5343 		/* Set Default MAC Interface speed to 1GB */
5344 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5345 		phy_reg &= ~0x0007;
5346 		phy_reg |= 0x006;
5347 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5348 		/* Assert SW reset for above settings to take effect */
5349 		(void) e1000_phy_commit(hw);
5350 		msec_delay(1);
5351 		/* Force Full Duplex */
5352 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5353 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5354 		    phy_reg | 0x000C);
5355 		/* Set Link Up (in force link) */
5356 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5357 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5358 		    phy_reg | 0x0040);
5359 		/* Force Link */
5360 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5361 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5362 		    phy_reg | 0x0040);
5363 		/* Set Early Link Enable */
5364 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5365 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5366 		    phy_reg | 0x0400);
5367 	}
5368 
5369 	/* Set loopback */
5370 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5371 
5372 	msec_delay(250);
5373 
5374 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5375 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5376 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5377 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5378 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5379 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5380 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5381 
5382 	switch (hw->mac.type) {
5383 	case e1000_82540:
5384 	case e1000_82545:
5385 	case e1000_82545_rev_3:
5386 	case e1000_82546:
5387 	case e1000_82546_rev_3:
5388 		/*
5389 		 * For some serdes we'll need to commit the writes now
5390 		 * so that the status is updated on link
5391 		 */
5392 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5393 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5394 			msec_delay(100);
5395 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5396 		}
5397 
5398 		if (hw->phy.media_type == e1000_media_type_copper) {
5399 			/* Invert Loss of Signal */
5400 			ctrl |= E1000_CTRL_ILOS;
5401 		} else {
5402 			/* Set ILOS on fiber nic if half duplex is detected */
5403 			status = E1000_READ_REG(hw, E1000_STATUS);
5404 			if ((status & E1000_STATUS_FD) == 0)
5405 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5406 		}
5407 		break;
5408 
5409 	case e1000_82571:
5410 	case e1000_82572:
5411 		/*
5412 		 * The fiber/SerDes versions of this adapter do not contain an
5413 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5414 		 * using SerDes analog loopback.
5415 		 */
5416 		if (hw->phy.media_type != e1000_media_type_copper) {
5417 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5418 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5419 			txcw &= ~((uint32_t)1 << 31);
5420 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5421 
5422 			/*
5423 			 * Write 0x410 to Serdes Control register
5424 			 * to enable Serdes analog loopback
5425 			 */
5426 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5427 			msec_delay(10);
5428 		}
5429 
5430 		status = E1000_READ_REG(hw, E1000_STATUS);
5431 		/* Set ILOS on fiber nic if half duplex is detected */
5432 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5433 		    ((status & E1000_STATUS_FD) == 0 ||
5434 		    (status & E1000_STATUS_LU) == 0))
5435 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5436 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5437 			ctrl |= E1000_CTRL_SLU;
5438 		break;
5439 
5440 	case e1000_82573:
5441 		ctrl |= E1000_CTRL_ILOS;
5442 		break;
5443 	case e1000_ich9lan:
5444 	case e1000_ich10lan:
5445 		ctrl |= E1000_CTRL_SLU;
5446 		break;
5447 	}
5448 	if (hw->phy.type == e1000_phy_bm)
5449 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5450 
5451 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5452 }
5453 
5454 static void
5455 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5456 {
5457 	struct e1000_hw *hw;
5458 	uint32_t rctl;
5459 	uint32_t ctrl_ext;
5460 	uint32_t ctrl;
5461 	uint32_t status;
5462 	uint32_t txcw;
5463 	uint16_t phydata;
5464 
5465 	hw = &Adapter->shared;
5466 
5467 	/* Disable Smart Power Down */
5468 	phy_spd_state(hw, B_FALSE);
5469 
5470 	switch (hw->mac.type) {
5471 	case e1000_82571:
5472 	case e1000_82572:
5473 		switch (hw->phy.media_type) {
5474 		case e1000_media_type_copper:
5475 			/* Force link up (Must be done before the PHY writes) */
5476 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5477 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5478 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5479 
5480 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5481 			rctl |= (E1000_RCTL_EN |
5482 			    E1000_RCTL_SBP |
5483 			    E1000_RCTL_UPE |
5484 			    E1000_RCTL_MPE |
5485 			    E1000_RCTL_LPE |
5486 			    E1000_RCTL_BAM);		/* 0x803E */
5487 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5488 
5489 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5490 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5491 			    E1000_CTRL_EXT_SDP6_DATA |
5492 			    E1000_CTRL_EXT_SDP3_DATA |
5493 			    E1000_CTRL_EXT_SDP4_DIR |
5494 			    E1000_CTRL_EXT_SDP6_DIR |
5495 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5496 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5497 
5498 			/*
5499 			 * This sequence tunes the PHY's SDP and no customer
5500 			 * settable values. For background, see comments above
5501 			 * e1000g_set_internal_loopback().
5502 			 */
5503 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5504 			msec_delay(10);
5505 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5506 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5507 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5508 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5509 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5510 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5511 
5512 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5513 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5514 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5515 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5516 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5517 
5518 			msec_delay(50);
5519 			break;
5520 		case e1000_media_type_fiber:
5521 		case e1000_media_type_internal_serdes:
5522 			status = E1000_READ_REG(hw, E1000_STATUS);
5523 			if (((status & E1000_STATUS_LU) == 0) ||
5524 			    (hw->phy.media_type ==
5525 			    e1000_media_type_internal_serdes)) {
5526 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5527 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5528 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5529 			}
5530 
5531 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5532 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5533 			txcw &= ~((uint32_t)1 << 31);
5534 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5535 
5536 			/*
5537 			 * Write 0x410 to Serdes Control register
5538 			 * to enable Serdes analog loopback
5539 			 */
5540 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5541 			msec_delay(10);
5542 			break;
5543 		default:
5544 			break;
5545 		}
5546 		break;
5547 	case e1000_82574:
5548 	case e1000_80003es2lan:
5549 	case e1000_ich9lan:
5550 	case e1000_ich10lan:
5551 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5552 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5553 		    phydata | (1 << 5));
5554 		Adapter->param_adv_autoneg = 1;
5555 		Adapter->param_adv_1000fdx = 1;
5556 		(void) e1000g_reset_link(Adapter);
5557 		break;
5558 	}
5559 }
5560 
5561 static void
5562 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5563 {
5564 	struct e1000_hw *hw;
5565 	uint32_t ctrl;
5566 	uint16_t phy_ctrl;
5567 
5568 	hw = &Adapter->shared;
5569 
5570 	/* Disable Smart Power Down */
5571 	phy_spd_state(hw, B_FALSE);
5572 
5573 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5574 	    MII_CR_SPEED_100);
5575 
5576 	/* Force 100/FD, reset PHY */
5577 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5578 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5579 	msec_delay(10);
5580 
5581 	/* Force 100/FD */
5582 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5583 	    phy_ctrl);			/* 0x2100 */
5584 	msec_delay(10);
5585 
5586 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5587 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5588 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5589 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5590 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5591 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5592 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5593 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5594 
5595 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5596 }
5597 
5598 static void
5599 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5600 {
5601 	struct e1000_hw *hw;
5602 	uint32_t ctrl;
5603 	uint16_t phy_ctrl;
5604 
5605 	hw = &Adapter->shared;
5606 
5607 	/* Disable Smart Power Down */
5608 	phy_spd_state(hw, B_FALSE);
5609 
5610 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5611 	    MII_CR_SPEED_10);
5612 
5613 	/* Force 10/FD, reset PHY */
5614 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5615 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5616 	msec_delay(10);
5617 
5618 	/* Force 10/FD */
5619 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5620 	    phy_ctrl);			/* 0x0100 */
5621 	msec_delay(10);
5622 
5623 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5624 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5625 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5626 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5627 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5628 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5629 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5630 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5631 
5632 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5633 }
5634 
5635 #ifdef __sparc
5636 static boolean_t
5637 e1000g_find_mac_address(struct e1000g *Adapter)
5638 {
5639 	struct e1000_hw *hw = &Adapter->shared;
5640 	uchar_t *bytes;
5641 	struct ether_addr sysaddr;
5642 	uint_t nelts;
5643 	int err;
5644 	boolean_t found = B_FALSE;
5645 
5646 	/*
5647 	 * The "vendor's factory-set address" may already have
5648 	 * been extracted from the chip, but if the property
5649 	 * "local-mac-address" is set we use that instead.
5650 	 *
5651 	 * We check whether it looks like an array of 6
5652 	 * bytes (which it should, if OBP set it).  If we can't
5653 	 * make sense of it this way, we'll ignore it.
5654 	 */
5655 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5656 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5657 	if (err == DDI_PROP_SUCCESS) {
5658 		if (nelts == ETHERADDRL) {
5659 			while (nelts--)
5660 				hw->mac.addr[nelts] = bytes[nelts];
5661 			found = B_TRUE;
5662 		}
5663 		ddi_prop_free(bytes);
5664 	}
5665 
5666 	/*
5667 	 * Look up the OBP property "local-mac-address?". If the user has set
5668 	 * 'local-mac-address? = false', use "the system address" instead.
5669 	 */
5670 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5671 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5672 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5673 			if (localetheraddr(NULL, &sysaddr) != 0) {
5674 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5675 				found = B_TRUE;
5676 			}
5677 		}
5678 		ddi_prop_free(bytes);
5679 	}
5680 
5681 	/*
5682 	 * Finally(!), if there's a valid "mac-address" property (created
5683 	 * if we netbooted from this interface), we must use this instead
5684 	 * of any of the above to ensure that the NFS/install server doesn't
5685 	 * get confused by the address changing as Solaris takes over!
5686 	 */
5687 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5688 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5689 	if (err == DDI_PROP_SUCCESS) {
5690 		if (nelts == ETHERADDRL) {
5691 			while (nelts--)
5692 				hw->mac.addr[nelts] = bytes[nelts];
5693 			found = B_TRUE;
5694 		}
5695 		ddi_prop_free(bytes);
5696 	}
5697 
5698 	if (found) {
5699 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5700 		    ETHERADDRL);
5701 	}
5702 
5703 	return (found);
5704 }
5705 #endif
5706 
5707 static int
5708 e1000g_add_intrs(struct e1000g *Adapter)
5709 {
5710 	dev_info_t *devinfo;
5711 	int intr_types;
5712 	int rc;
5713 
5714 	devinfo = Adapter->dip;
5715 
5716 	/* Get supported interrupt types */
5717 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5718 
5719 	if (rc != DDI_SUCCESS) {
5720 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5721 		    "Get supported interrupt types failed: %d\n", rc);
5722 		return (DDI_FAILURE);
5723 	}
5724 
5725 	/*
5726 	 * Based on Intel Technical Advisory document (TA-160), there are some
5727 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5728 	 * that it supports MSI, but in fact has problems.
5729 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5730 	 * PCI/PCI-X NICs.
5731 	 */
5732 	if (Adapter->shared.mac.type < e1000_82571)
5733 		Adapter->msi_enable = B_FALSE;
5734 
5735 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5736 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5737 
5738 		if (rc != DDI_SUCCESS) {
5739 			/* EMPTY */
5740 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5741 			    "Add MSI failed, trying Legacy interrupts\n");
5742 		} else {
5743 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5744 		}
5745 	}
5746 
5747 	if ((Adapter->intr_type == 0) &&
5748 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5749 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5750 
5751 		if (rc != DDI_SUCCESS) {
5752 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5753 			    "Add Legacy interrupts failed\n");
5754 			return (DDI_FAILURE);
5755 		}
5756 
5757 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5758 	}
5759 
5760 	if (Adapter->intr_type == 0) {
5761 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5762 		    "No interrupts registered\n");
5763 		return (DDI_FAILURE);
5764 	}
5765 
5766 	return (DDI_SUCCESS);
5767 }
5768 
5769 /*
5770  * e1000g_intr_add() handles MSI/Legacy interrupts
5771  */
5772 static int
5773 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5774 {
5775 	dev_info_t *devinfo;
5776 	int count, avail, actual;
5777 	int x, y, rc, inum = 0;
5778 	int flag;
5779 	ddi_intr_handler_t *intr_handler;
5780 
5781 	devinfo = Adapter->dip;
5782 
5783 	/* get number of interrupts */
5784 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5785 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5786 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5787 		    "Get interrupt number failed. Return: %d, count: %d\n",
5788 		    rc, count);
5789 		return (DDI_FAILURE);
5790 	}
5791 
5792 	/* get number of available interrupts */
5793 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5794 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5795 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5796 		    "Get interrupt available number failed. "
5797 		    "Return: %d, available: %d\n", rc, avail);
5798 		return (DDI_FAILURE);
5799 	}
5800 
5801 	if (avail < count) {
5802 		/* EMPTY */
5803 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5804 		    "Interrupts count: %d, available: %d\n",
5805 		    count, avail);
5806 	}
5807 
5808 	/* Allocate an array of interrupt handles */
5809 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5810 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5811 
5812 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5813 	flag = DDI_INTR_ALLOC_NORMAL;
5814 
5815 	/* call ddi_intr_alloc() */
5816 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5817 	    count, &actual, flag);
5818 
5819 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5820 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5821 		    "Allocate interrupts failed: %d\n", rc);
5822 
5823 		kmem_free(Adapter->htable, Adapter->intr_size);
5824 		return (DDI_FAILURE);
5825 	}
5826 
5827 	if (actual < count) {
5828 		/* EMPTY */
5829 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5830 		    "Interrupts requested: %d, received: %d\n",
5831 		    count, actual);
5832 	}
5833 
5834 	Adapter->intr_cnt = actual;
5835 
5836 	/* Get priority for first msi, assume remaining are all the same */
5837 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5838 
5839 	if (rc != DDI_SUCCESS) {
5840 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5841 		    "Get interrupt priority failed: %d\n", rc);
5842 
5843 		/* Free already allocated intr */
5844 		for (y = 0; y < actual; y++)
5845 			(void) ddi_intr_free(Adapter->htable[y]);
5846 
5847 		kmem_free(Adapter->htable, Adapter->intr_size);
5848 		return (DDI_FAILURE);
5849 	}
5850 
5851 	/*
5852 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5853 	 * use the interrupt service routine e1000g_intr_pciexpress()
5854 	 * to avoid interrupt stealing when sharing interrupt with other
5855 	 * devices.
5856 	 */
5857 	if (Adapter->shared.mac.type < e1000_82571)
5858 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5859 	else
5860 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5861 
5862 	/* Call ddi_intr_add_handler() */
5863 	for (x = 0; x < actual; x++) {
5864 		rc = ddi_intr_add_handler(Adapter->htable[x],
5865 		    intr_handler, (caddr_t)Adapter, NULL);
5866 
5867 		if (rc != DDI_SUCCESS) {
5868 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5869 			    "Add interrupt handler failed: %d\n", rc);
5870 
5871 			/* Remove already added handler */
5872 			for (y = 0; y < x; y++)
5873 				(void) ddi_intr_remove_handler(
5874 				    Adapter->htable[y]);
5875 
5876 			/* Free already allocated intr */
5877 			for (y = 0; y < actual; y++)
5878 				(void) ddi_intr_free(Adapter->htable[y]);
5879 
5880 			kmem_free(Adapter->htable, Adapter->intr_size);
5881 			return (DDI_FAILURE);
5882 		}
5883 	}
5884 
5885 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5886 
5887 	if (rc != DDI_SUCCESS) {
5888 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5889 		    "Get interrupt cap failed: %d\n", rc);
5890 
5891 		/* Free already allocated intr */
5892 		for (y = 0; y < actual; y++) {
5893 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5894 			(void) ddi_intr_free(Adapter->htable[y]);
5895 		}
5896 
5897 		kmem_free(Adapter->htable, Adapter->intr_size);
5898 		return (DDI_FAILURE);
5899 	}
5900 
5901 	return (DDI_SUCCESS);
5902 }
5903 
5904 static int
5905 e1000g_rem_intrs(struct e1000g *Adapter)
5906 {
5907 	int x;
5908 	int rc;
5909 
5910 	for (x = 0; x < Adapter->intr_cnt; x++) {
5911 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5912 		if (rc != DDI_SUCCESS) {
5913 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5914 			    "Remove intr handler failed: %d\n", rc);
5915 			return (DDI_FAILURE);
5916 		}
5917 
5918 		rc = ddi_intr_free(Adapter->htable[x]);
5919 		if (rc != DDI_SUCCESS) {
5920 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5921 			    "Free intr failed: %d\n", rc);
5922 			return (DDI_FAILURE);
5923 		}
5924 	}
5925 
5926 	kmem_free(Adapter->htable, Adapter->intr_size);
5927 
5928 	return (DDI_SUCCESS);
5929 }
5930 
5931 static int
5932 e1000g_enable_intrs(struct e1000g *Adapter)
5933 {
5934 	int x;
5935 	int rc;
5936 
5937 	/* Enable interrupts */
5938 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5939 		/* Call ddi_intr_block_enable() for MSI */
5940 		rc = ddi_intr_block_enable(Adapter->htable,
5941 		    Adapter->intr_cnt);
5942 		if (rc != DDI_SUCCESS) {
5943 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5944 			    "Enable block intr failed: %d\n", rc);
5945 			return (DDI_FAILURE);
5946 		}
5947 	} else {
5948 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5949 		for (x = 0; x < Adapter->intr_cnt; x++) {
5950 			rc = ddi_intr_enable(Adapter->htable[x]);
5951 			if (rc != DDI_SUCCESS) {
5952 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5953 				    "Enable intr failed: %d\n", rc);
5954 				return (DDI_FAILURE);
5955 			}
5956 		}
5957 	}
5958 
5959 	return (DDI_SUCCESS);
5960 }
5961 
5962 static int
5963 e1000g_disable_intrs(struct e1000g *Adapter)
5964 {
5965 	int x;
5966 	int rc;
5967 
5968 	/* Disable all interrupts */
5969 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5970 		rc = ddi_intr_block_disable(Adapter->htable,
5971 		    Adapter->intr_cnt);
5972 		if (rc != DDI_SUCCESS) {
5973 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5974 			    "Disable block intr failed: %d\n", rc);
5975 			return (DDI_FAILURE);
5976 		}
5977 	} else {
5978 		for (x = 0; x < Adapter->intr_cnt; x++) {
5979 			rc = ddi_intr_disable(Adapter->htable[x]);
5980 			if (rc != DDI_SUCCESS) {
5981 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5982 				    "Disable intr failed: %d\n", rc);
5983 				return (DDI_FAILURE);
5984 			}
5985 		}
5986 	}
5987 
5988 	return (DDI_SUCCESS);
5989 }
5990 
5991 /*
5992  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5993  */
5994 static void
5995 e1000g_get_phy_state(struct e1000g *Adapter)
5996 {
5997 	struct e1000_hw *hw = &Adapter->shared;
5998 
5999 	if (hw->phy.media_type == e1000_media_type_copper) {
6000 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6001 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6002 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6003 		    &Adapter->phy_an_adv);
6004 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6005 		    &Adapter->phy_an_exp);
6006 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6007 		    &Adapter->phy_ext_status);
6008 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6009 		    &Adapter->phy_1000t_ctrl);
6010 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6011 		    &Adapter->phy_1000t_status);
6012 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6013 		    &Adapter->phy_lp_able);
6014 
6015 		Adapter->param_autoneg_cap =
6016 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6017 		Adapter->param_pause_cap =
6018 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6019 		Adapter->param_asym_pause_cap =
6020 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6021 		Adapter->param_1000fdx_cap =
6022 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6023 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6024 		Adapter->param_1000hdx_cap =
6025 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6026 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6027 		Adapter->param_100t4_cap =
6028 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6029 		Adapter->param_100fdx_cap =
6030 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6031 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6032 		Adapter->param_100hdx_cap =
6033 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6034 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6035 		Adapter->param_10fdx_cap =
6036 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6037 		Adapter->param_10hdx_cap =
6038 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6039 
6040 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6041 		Adapter->param_adv_pause =
6042 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6043 		Adapter->param_adv_asym_pause =
6044 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6045 		Adapter->param_adv_1000hdx =
6046 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6047 		Adapter->param_adv_100t4 =
6048 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6049 		if (Adapter->param_adv_autoneg == 1) {
6050 			Adapter->param_adv_1000fdx =
6051 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6052 			    ? 1 : 0;
6053 			Adapter->param_adv_100fdx =
6054 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6055 			    ? 1 : 0;
6056 			Adapter->param_adv_100hdx =
6057 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6058 			    ? 1 : 0;
6059 			Adapter->param_adv_10fdx =
6060 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6061 			Adapter->param_adv_10hdx =
6062 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6063 		}
6064 
6065 		Adapter->param_lp_autoneg =
6066 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6067 		Adapter->param_lp_pause =
6068 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6069 		Adapter->param_lp_asym_pause =
6070 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6071 		Adapter->param_lp_1000fdx =
6072 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6073 		Adapter->param_lp_1000hdx =
6074 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6075 		Adapter->param_lp_100t4 =
6076 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6077 		Adapter->param_lp_100fdx =
6078 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6079 		Adapter->param_lp_100hdx =
6080 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6081 		Adapter->param_lp_10fdx =
6082 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6083 		Adapter->param_lp_10hdx =
6084 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6085 	} else {
6086 		/*
6087 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6088 		 * it can only work with 1Gig Full Duplex Link Partner.
6089 		 */
6090 		Adapter->param_autoneg_cap = 0;
6091 		Adapter->param_pause_cap = 1;
6092 		Adapter->param_asym_pause_cap = 1;
6093 		Adapter->param_1000fdx_cap = 1;
6094 		Adapter->param_1000hdx_cap = 0;
6095 		Adapter->param_100t4_cap = 0;
6096 		Adapter->param_100fdx_cap = 0;
6097 		Adapter->param_100hdx_cap = 0;
6098 		Adapter->param_10fdx_cap = 0;
6099 		Adapter->param_10hdx_cap = 0;
6100 
6101 		Adapter->param_adv_autoneg = 0;
6102 		Adapter->param_adv_pause = 1;
6103 		Adapter->param_adv_asym_pause = 1;
6104 		Adapter->param_adv_1000fdx = 1;
6105 		Adapter->param_adv_1000hdx = 0;
6106 		Adapter->param_adv_100t4 = 0;
6107 		Adapter->param_adv_100fdx = 0;
6108 		Adapter->param_adv_100hdx = 0;
6109 		Adapter->param_adv_10fdx = 0;
6110 		Adapter->param_adv_10hdx = 0;
6111 
6112 		Adapter->param_lp_autoneg = 0;
6113 		Adapter->param_lp_pause = 0;
6114 		Adapter->param_lp_asym_pause = 0;
6115 		Adapter->param_lp_1000fdx = 0;
6116 		Adapter->param_lp_1000hdx = 0;
6117 		Adapter->param_lp_100t4 = 0;
6118 		Adapter->param_lp_100fdx = 0;
6119 		Adapter->param_lp_100hdx = 0;
6120 		Adapter->param_lp_10fdx = 0;
6121 		Adapter->param_lp_10hdx = 0;
6122 	}
6123 }
6124 
6125 /*
6126  * FMA support
6127  */
6128 
6129 int
6130 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6131 {
6132 	ddi_fm_error_t de;
6133 
6134 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6135 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6136 	return (de.fme_status);
6137 }
6138 
6139 int
6140 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6141 {
6142 	ddi_fm_error_t de;
6143 
6144 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6145 	return (de.fme_status);
6146 }
6147 
6148 /*
6149  * The IO fault service error handling callback function
6150  */
6151 /* ARGSUSED2 */
6152 static int
6153 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6154 {
6155 	/*
6156 	 * as the driver can always deal with an error in any dma or
6157 	 * access handle, we can just return the fme_status value.
6158 	 */
6159 	pci_ereport_post(dip, err, NULL);
6160 	return (err->fme_status);
6161 }
6162 
6163 static void
6164 e1000g_fm_init(struct e1000g *Adapter)
6165 {
6166 	ddi_iblock_cookie_t iblk;
6167 	int fma_dma_flag;
6168 
6169 	/* Only register with IO Fault Services if we have some capability */
6170 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6171 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6172 	} else {
6173 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6174 	}
6175 
6176 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6177 		fma_dma_flag = 1;
6178 	} else {
6179 		fma_dma_flag = 0;
6180 	}
6181 
6182 	(void) e1000g_set_fma_flags(fma_dma_flag);
6183 
6184 	if (Adapter->fm_capabilities) {
6185 
6186 		/* Register capabilities with IO Fault Services */
6187 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6188 
6189 		/*
6190 		 * Initialize pci ereport capabilities if ereport capable
6191 		 */
6192 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6193 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6194 			pci_ereport_setup(Adapter->dip);
6195 
6196 		/*
6197 		 * Register error callback if error callback capable
6198 		 */
6199 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6200 			ddi_fm_handler_register(Adapter->dip,
6201 			    e1000g_fm_error_cb, (void*) Adapter);
6202 	}
6203 }
6204 
6205 static void
6206 e1000g_fm_fini(struct e1000g *Adapter)
6207 {
6208 	/* Only unregister FMA capabilities if we registered some */
6209 	if (Adapter->fm_capabilities) {
6210 
6211 		/*
6212 		 * Release any resources allocated by pci_ereport_setup()
6213 		 */
6214 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6215 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6216 			pci_ereport_teardown(Adapter->dip);
6217 
6218 		/*
6219 		 * Un-register error callback if error callback capable
6220 		 */
6221 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6222 			ddi_fm_handler_unregister(Adapter->dip);
6223 
6224 		/* Unregister from IO Fault Services */
6225 		mutex_enter(&e1000g_rx_detach_lock);
6226 		ddi_fm_fini(Adapter->dip);
6227 		if (Adapter->priv_dip != NULL) {
6228 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6229 		}
6230 		mutex_exit(&e1000g_rx_detach_lock);
6231 	}
6232 }
6233 
6234 void
6235 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6236 {
6237 	uint64_t ena;
6238 	char buf[FM_MAX_CLASS];
6239 
6240 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6241 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6242 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6243 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6244 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6245 	}
6246 }
6247 
6248 /*
6249  * quiesce(9E) entry point.
6250  *
6251  * This function is called when the system is single-threaded at high
6252  * PIL with preemption disabled. Therefore, this function must not be
6253  * blocked.
6254  *
6255  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6256  * DDI_FAILURE indicates an error condition and should almost never happen.
6257  */
6258 static int
6259 e1000g_quiesce(dev_info_t *devinfo)
6260 {
6261 	struct e1000g *Adapter;
6262 
6263 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6264 
6265 	if (Adapter == NULL)
6266 		return (DDI_FAILURE);
6267 
6268 	e1000g_clear_all_interrupts(Adapter);
6269 
6270 	(void) e1000_reset_hw(&Adapter->shared);
6271 
6272 	/* Setup our HW Tx Head & Tail descriptor pointers */
6273 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6274 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6275 
6276 	/* Setup our HW Rx Head & Tail descriptor pointers */
6277 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6278 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6279 
6280 	return (DDI_SUCCESS);
6281 }
6282 
6283 static int
6284 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
6285     uint_t pr_valsize, void *pr_val)
6286 {
6287 	link_flowctrl_t fl;
6288 	struct e1000_hw *hw = &Adapter->shared;
6289 	int err = 0;
6290 
6291 	ASSERT(pr_valsize > 0);
6292 	switch (pr_num) {
6293 	case MAC_PROP_AUTONEG:
6294 		if (hw->phy.media_type != e1000_media_type_copper)
6295 			*(uint8_t *)pr_val = 0;
6296 		else
6297 			*(uint8_t *)pr_val =
6298 			    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS)
6299 			    ? 1 : 0);
6300 		break;
6301 	case MAC_PROP_FLOWCTRL:
6302 		if (pr_valsize < sizeof (link_flowctrl_t))
6303 			return (EINVAL);
6304 		fl = LINK_FLOWCTRL_BI;
6305 		bcopy(&fl, pr_val, sizeof (fl));
6306 		break;
6307 	case MAC_PROP_ADV_1000FDX_CAP:
6308 	case MAC_PROP_EN_1000FDX_CAP:
6309 		if (hw->phy.media_type != e1000_media_type_copper)
6310 			*(uint8_t *)pr_val = 1;
6311 		else
6312 			*(uint8_t *)pr_val =
6313 			    ((Adapter->phy_ext_status &
6314 			    IEEE_ESR_1000T_FD_CAPS) ||
6315 			    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS))
6316 			    ? 1 : 0;
6317 		break;
6318 	case MAC_PROP_ADV_1000HDX_CAP:
6319 	case MAC_PROP_EN_1000HDX_CAP:
6320 		*(uint8_t *)pr_val = 0;
6321 		break;
6322 	case MAC_PROP_ADV_100FDX_CAP:
6323 	case MAC_PROP_EN_100FDX_CAP:
6324 		if (hw->phy.media_type != e1000_media_type_copper)
6325 			*(uint8_t *)pr_val = 0;
6326 		else
6327 			*(uint8_t *)pr_val =
6328 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6329 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
6330 			    ? 1 : 0;
6331 		break;
6332 	case MAC_PROP_ADV_100HDX_CAP:
6333 	case MAC_PROP_EN_100HDX_CAP:
6334 		if (hw->phy.media_type != e1000_media_type_copper)
6335 			*(uint8_t *)pr_val = 0;
6336 		else
6337 			*(uint8_t *)pr_val =
6338 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6339 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
6340 			    ? 1 : 0;
6341 		break;
6342 	case MAC_PROP_ADV_10FDX_CAP:
6343 	case MAC_PROP_EN_10FDX_CAP:
6344 		if (hw->phy.media_type != e1000_media_type_copper)
6345 			*(uint8_t *)pr_val = 0;
6346 		else
6347 			*(uint8_t *)pr_val =
6348 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6349 		break;
6350 	case MAC_PROP_ADV_10HDX_CAP:
6351 	case MAC_PROP_EN_10HDX_CAP:
6352 		if (hw->phy.media_type != e1000_media_type_copper)
6353 			*(uint8_t *)pr_val = 0;
6354 		else
6355 			*(uint8_t *)pr_val =
6356 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6357 		break;
6358 	default:
6359 		err = ENOTSUP;
6360 		break;
6361 	}
6362 	return (err);
6363 }
6364 
6365 /*
6366  * synchronize the adv* and en* parameters.
6367  *
6368  * See comments in <sys/dld.h> for details of the *_en_*
6369  * parameters. The usage of ndd for setting adv parameters will
6370  * synchronize all the en parameters with the e1000g parameters,
6371  * implicitly disabling any settings made via dladm.
6372  */
6373 static void
6374 e1000g_param_sync(struct e1000g *Adapter)
6375 {
6376 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6377 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6378 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6379 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6380 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6381 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6382 }
6383 
6384 /*
6385  * e1000g_get_driver_control - tell manageability firmware that the driver
6386  * has control.
6387  */
6388 static void
6389 e1000g_get_driver_control(struct e1000_hw *hw)
6390 {
6391 	uint32_t ctrl_ext;
6392 	uint32_t swsm;
6393 
6394 	/* tell manageability firmware the driver has taken over */
6395 	switch (hw->mac.type) {
6396 	case e1000_82573:
6397 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6398 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6399 		break;
6400 	case e1000_82571:
6401 	case e1000_82572:
6402 	case e1000_82574:
6403 	case e1000_80003es2lan:
6404 	case e1000_ich8lan:
6405 	case e1000_ich9lan:
6406 	case e1000_ich10lan:
6407 	case e1000_pchlan:
6408 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6409 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6410 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6411 		break;
6412 	default:
6413 		/* no manageability firmware: do nothing */
6414 		break;
6415 	}
6416 }
6417 
6418 /*
6419  * e1000g_release_driver_control - tell manageability firmware that the driver
6420  * has released control.
6421  */
6422 static void
6423 e1000g_release_driver_control(struct e1000_hw *hw)
6424 {
6425 	uint32_t ctrl_ext;
6426 	uint32_t swsm;
6427 
6428 	/* tell manageability firmware the driver has released control */
6429 	switch (hw->mac.type) {
6430 	case e1000_82573:
6431 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6432 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6433 		break;
6434 	case e1000_82571:
6435 	case e1000_82572:
6436 	case e1000_82574:
6437 	case e1000_80003es2lan:
6438 	case e1000_ich8lan:
6439 	case e1000_ich9lan:
6440 	case e1000_ich10lan:
6441 	case e1000_pchlan:
6442 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6443 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6444 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6445 		break;
6446 	default:
6447 		/* no manageability firmware: do nothing */
6448 		break;
6449 	}
6450 }
6451 
6452 /*
6453  * Restore e1000g promiscuous mode.
6454  */
6455 static void
6456 e1000g_restore_promisc(struct e1000g *Adapter)
6457 {
6458 	if (Adapter->e1000g_promisc) {
6459 		uint32_t rctl;
6460 
6461 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6462 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6463 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6464 	}
6465 }
6466