xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 5c44817c0d1a2b9b02dbbf343823da0b064f0ee7)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include <sys/dld.h>
47 #include "e1000g_sw.h"
48 #include "e1000g_debug.h"
49 
50 static char ident[] = "Intel PRO/1000 Ethernet 5.2.8";
51 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
52 static char e1000g_version[] = "Driver Ver. 5.2.8";
53 
54 /*
55  * Proto types for DDI entry points
56  */
57 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
58 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
59 
60 /*
61  * init and intr routines prototype
62  */
63 static int e1000g_resume(dev_info_t *);
64 static int e1000g_suspend(dev_info_t *);
65 static uint_t e1000g_intr_pciexpress(caddr_t);
66 static uint_t e1000g_intr(caddr_t);
67 static void e1000g_intr_work(struct e1000g *, uint32_t);
68 #pragma inline(e1000g_intr_work)
69 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
70 #pragma inline(e1000g_get_itr)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_unicst(void *, const uint8_t *);
79 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
81 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
82 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
83 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
84 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
85 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
86     uint_t, const void *);
87 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
88     uint_t, uint_t, void *);
89 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
90     const void *);
91 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
92     uint_t, void *);
93 static void e1000g_init_locks(struct e1000g *);
94 static void e1000g_destroy_locks(struct e1000g *);
95 static int e1000g_identify_hardware(struct e1000g *);
96 static int e1000g_regs_map(struct e1000g *);
97 static int e1000g_set_driver_params(struct e1000g *);
98 static void e1000g_set_bufsize(struct e1000g *);
99 static int e1000g_register_mac(struct e1000g *);
100 static boolean_t e1000g_rx_drain(struct e1000g *);
101 static boolean_t e1000g_tx_drain(struct e1000g *);
102 static void e1000g_init_unicst(struct e1000g *);
103 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
104 
105 /*
106  * Local routines
107  */
108 static void e1000g_tx_clean(struct e1000g *);
109 static void e1000g_rx_clean(struct e1000g *);
110 static void e1000g_link_timer(void *);
111 static void e1000g_local_timer(void *);
112 static boolean_t e1000g_link_check(struct e1000g *);
113 static boolean_t e1000g_stall_check(struct e1000g *);
114 static void e1000g_smartspeed(struct e1000g *);
115 static void e1000g_get_conf(struct e1000g *);
116 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
117 static void enable_watchdog_timer(struct e1000g *);
118 static void disable_watchdog_timer(struct e1000g *);
119 static void start_watchdog_timer(struct e1000g *);
120 static void restart_watchdog_timer(struct e1000g *);
121 static void stop_watchdog_timer(struct e1000g *);
122 static void stop_link_timer(struct e1000g *);
123 static void stop_82547_timer(e1000g_tx_ring_t *);
124 static void e1000g_force_speed_duplex(struct e1000g *);
125 static void e1000g_get_max_frame_size(struct e1000g *);
126 static boolean_t is_valid_mac_addr(uint8_t *);
127 static void e1000g_unattach(dev_info_t *, struct e1000g *);
128 #ifdef E1000G_DEBUG
129 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
133 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
134     struct iocblk *, mblk_t *);
135 #endif
136 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
137     struct iocblk *, mblk_t *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 
161 mac_priv_prop_t e1000g_priv_props[] = {
162 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
164 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
167 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
168 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
169 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
170 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
171 	{"_intr_adaptive", MAC_PROP_PERM_RW},
172 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
173 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
174 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
175 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
176 };
177 #define	E1000G_MAX_PRIV_PROPS	\
178 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
179 
180 
181 static struct cb_ops cb_ws_ops = {
182 	nulldev,		/* cb_open */
183 	nulldev,		/* cb_close */
184 	nodev,			/* cb_strategy */
185 	nodev,			/* cb_print */
186 	nodev,			/* cb_dump */
187 	nodev,			/* cb_read */
188 	nodev,			/* cb_write */
189 	nodev,			/* cb_ioctl */
190 	nodev,			/* cb_devmap */
191 	nodev,			/* cb_mmap */
192 	nodev,			/* cb_segmap */
193 	nochpoll,		/* cb_chpoll */
194 	ddi_prop_op,		/* cb_prop_op */
195 	NULL,			/* cb_stream */
196 	D_MP | D_HOTPLUG,	/* cb_flag */
197 	CB_REV,			/* cb_rev */
198 	nodev,			/* cb_aread */
199 	nodev			/* cb_awrite */
200 };
201 
202 static struct dev_ops ws_ops = {
203 	DEVO_REV,		/* devo_rev */
204 	0,			/* devo_refcnt */
205 	NULL,			/* devo_getinfo */
206 	nulldev,		/* devo_identify */
207 	nulldev,		/* devo_probe */
208 	e1000g_attach,		/* devo_attach */
209 	e1000g_detach,		/* devo_detach */
210 	nodev,			/* devo_reset */
211 	&cb_ws_ops,		/* devo_cb_ops */
212 	NULL,			/* devo_bus_ops */
213 	ddi_power		/* devo_power */
214 };
215 
216 static struct modldrv modldrv = {
217 	&mod_driverops,		/* Type of module.  This one is a driver */
218 	ident,			/* Discription string */
219 	&ws_ops,		/* driver ops */
220 };
221 
222 static struct modlinkage modlinkage = {
223 	MODREV_1, &modldrv, NULL
224 };
225 
226 /* Access attributes for register mapping */
227 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_STRUCTURE_LE_ACC,
230 	DDI_STRICTORDER_ACC,
231 	DDI_FLAGERR_ACC
232 };
233 
234 #define	E1000G_M_CALLBACK_FLAGS \
235 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
236 
237 static mac_callbacks_t e1000g_m_callbacks = {
238 	E1000G_M_CALLBACK_FLAGS,
239 	e1000g_m_stat,
240 	e1000g_m_start,
241 	e1000g_m_stop,
242 	e1000g_m_promisc,
243 	e1000g_m_multicst,
244 	e1000g_m_unicst,
245 	e1000g_m_tx,
246 	NULL,
247 	e1000g_m_ioctl,
248 	e1000g_m_getcapab,
249 	NULL,
250 	NULL,
251 	e1000g_m_setprop,
252 	e1000g_m_getprop
253 };
254 
255 /*
256  * Global variables
257  */
258 uint32_t e1000g_mblks_pending = 0;
259 /*
260  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
261  * Here we maintain a private dev_info list if e1000g_force_detach is
262  * enabled. If we force the driver to detach while there are still some
263  * rx buffers retained in the upper layer, we have to keep a copy of the
264  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
265  * structure will be freed after the driver is detached. However when we
266  * finally free those rx buffers released by the upper layer, we need to
267  * refer to the dev_info to free the dma buffers. So we save a copy of
268  * the dev_info for this purpose. On x86 platform, we assume this copy
269  * of dev_info is always valid, but on SPARC platform, it could be invalid
270  * after the system board level DR operation. For this reason, the global
271  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
272  */
273 #ifdef __sparc
274 boolean_t e1000g_force_detach = B_FALSE;
275 #else
276 boolean_t e1000g_force_detach = B_TRUE;
277 #endif
278 private_devi_list_t *e1000g_private_devi_list = NULL;
279 
280 /*
281  * The rwlock is defined to protect the whole processing of rx recycling
282  * and the rx packets release in detach processing to make them mutually
283  * exclusive.
284  * The rx recycling processes different rx packets in different threads,
285  * so it will be protected with RW_READER and it won't block any other rx
286  * recycling threads.
287  * While the detach processing will be protected with RW_WRITER to make
288  * it mutually exclusive with the rx recycling.
289  */
290 krwlock_t e1000g_rx_detach_lock;
291 /*
292  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294  * If there are many e1000g instances, the system may run out of DVMA
295  * resources during the initialization of the instances, then the flag will
296  * be changed to "USE_DMA". Because different e1000g instances are initialized
297  * in parallel, we need to use this lock to protect the flag.
298  */
299 krwlock_t e1000g_dma_type_lock;
300 
301 
302 /*
303  * Loadable module configuration entry points for the driver
304  */
305 
306 /*
307  * _init - module initialization
308  */
309 int
310 _init(void)
311 {
312 	int status;
313 
314 	mac_init_ops(&ws_ops, WSNAME);
315 	status = mod_install(&modlinkage);
316 	if (status != DDI_SUCCESS)
317 		mac_fini_ops(&ws_ops);
318 	else {
319 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
320 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
321 	}
322 
323 	return (status);
324 }
325 
326 /*
327  * _fini - module finalization
328  */
329 int
330 _fini(void)
331 {
332 	int status;
333 
334 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
335 	if (e1000g_mblks_pending != 0) {
336 		rw_exit(&e1000g_rx_detach_lock);
337 		return (EBUSY);
338 	}
339 	rw_exit(&e1000g_rx_detach_lock);
340 
341 	status = mod_remove(&modlinkage);
342 	if (status == DDI_SUCCESS) {
343 		mac_fini_ops(&ws_ops);
344 
345 		if (e1000g_force_detach) {
346 			private_devi_list_t *devi_node;
347 
348 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
349 			while (e1000g_private_devi_list != NULL) {
350 				devi_node = e1000g_private_devi_list;
351 				e1000g_private_devi_list =
352 				    e1000g_private_devi_list->next;
353 
354 				kmem_free(devi_node->priv_dip,
355 				    sizeof (struct dev_info));
356 				kmem_free(devi_node,
357 				    sizeof (private_devi_list_t));
358 			}
359 			rw_exit(&e1000g_rx_detach_lock);
360 		}
361 
362 		rw_destroy(&e1000g_rx_detach_lock);
363 		rw_destroy(&e1000g_dma_type_lock);
364 	}
365 
366 	return (status);
367 }
368 
369 /*
370  * _info - module information
371  */
372 int
373 _info(struct modinfo *modinfop)
374 {
375 	return (mod_info(&modlinkage, modinfop));
376 }
377 
378 /*
379  * e1000g_attach - driver attach
380  *
381  * This function is the device-specific initialization entry
382  * point. This entry point is required and must be written.
383  * The DDI_ATTACH command must be provided in the attach entry
384  * point. When attach() is called with cmd set to DDI_ATTACH,
385  * all normal kernel services (such as kmem_alloc(9F)) are
386  * available for use by the driver.
387  *
388  * The attach() function will be called once for each instance
389  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
390  * Until attach() succeeds, the only driver entry points which
391  * may be called are open(9E) and getinfo(9E).
392  */
393 static int
394 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
395 {
396 	struct e1000g *Adapter;
397 	struct e1000_hw *hw;
398 	struct e1000g_osdep *osdep;
399 	int instance;
400 
401 	switch (cmd) {
402 	default:
403 		e1000g_log(NULL, CE_WARN,
404 		    "Unsupported command send to e1000g_attach... ");
405 		return (DDI_FAILURE);
406 
407 	case DDI_RESUME:
408 		return (e1000g_resume(devinfo));
409 
410 	case DDI_ATTACH:
411 		break;
412 	}
413 
414 	/*
415 	 * get device instance number
416 	 */
417 	instance = ddi_get_instance(devinfo);
418 
419 	/*
420 	 * Allocate soft data structure
421 	 */
422 	Adapter =
423 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
424 
425 	Adapter->dip = devinfo;
426 	Adapter->instance = instance;
427 	Adapter->tx_ring->adapter = Adapter;
428 	Adapter->rx_ring->adapter = Adapter;
429 
430 	hw = &Adapter->shared;
431 	osdep = &Adapter->osdep;
432 	hw->back = osdep;
433 	osdep->adapter = Adapter;
434 
435 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
436 
437 	/*
438 	 * Initialize for fma support
439 	 */
440 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
441 	    0, 0x0f,
442 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
443 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
444 	e1000g_fm_init(Adapter);
445 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
446 
447 	/*
448 	 * PCI Configure
449 	 */
450 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
451 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
452 		goto attach_fail;
453 	}
454 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
455 
456 	/*
457 	 * Setup hardware
458 	 */
459 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
460 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
461 		goto attach_fail;
462 	}
463 
464 	/*
465 	 * Map in the device registers.
466 	 */
467 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
468 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
469 		goto attach_fail;
470 	}
471 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
472 
473 	/*
474 	 * Initialize driver parameters
475 	 */
476 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
477 		goto attach_fail;
478 	}
479 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
480 
481 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
482 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
483 		goto attach_fail;
484 	}
485 
486 	/*
487 	 * Initialize interrupts
488 	 */
489 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
490 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
491 		goto attach_fail;
492 	}
493 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
494 
495 	/*
496 	 * Initialize mutex's for this device.
497 	 * Do this before enabling the interrupt handler and
498 	 * register the softint to avoid the condition where
499 	 * interrupt handler can try using uninitialized mutex
500 	 */
501 	e1000g_init_locks(Adapter);
502 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
503 
504 	/*
505 	 * Initialize Driver Counters
506 	 */
507 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
508 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
509 		goto attach_fail;
510 	}
511 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
512 
513 	/*
514 	 * Initialize chip hardware and software structures
515 	 */
516 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
517 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
518 		goto attach_fail;
519 	}
520 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
521 
522 	/*
523 	 * Register the driver to the MAC
524 	 */
525 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
526 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
527 		goto attach_fail;
528 	}
529 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
530 
531 	/*
532 	 * Now that mutex locks are initialized, and the chip is also
533 	 * initialized, enable interrupts.
534 	 */
535 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
536 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
537 		goto attach_fail;
538 	}
539 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
540 
541 	/*
542 	 * If e1000g_force_detach is enabled, in global private dip list,
543 	 * we will create a new entry, which maintains the priv_dip for DR
544 	 * supports after driver detached.
545 	 */
546 	if (e1000g_force_detach) {
547 		private_devi_list_t *devi_node;
548 
549 		Adapter->priv_dip =
550 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
551 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
552 		    sizeof (struct dev_info));
553 
554 		devi_node =
555 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
556 
557 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
558 		devi_node->priv_dip = Adapter->priv_dip;
559 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
560 		devi_node->next = e1000g_private_devi_list;
561 		e1000g_private_devi_list = devi_node;
562 		rw_exit(&e1000g_rx_detach_lock);
563 	}
564 
565 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
566 
567 	return (DDI_SUCCESS);
568 
569 attach_fail:
570 	e1000g_unattach(devinfo, Adapter);
571 	return (DDI_FAILURE);
572 }
573 
574 static int
575 e1000g_register_mac(struct e1000g *Adapter)
576 {
577 	struct e1000_hw *hw = &Adapter->shared;
578 	mac_register_t *mac;
579 	int err;
580 
581 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
582 		return (DDI_FAILURE);
583 
584 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
585 	mac->m_driver = Adapter;
586 	mac->m_dip = Adapter->dip;
587 	mac->m_src_addr = hw->mac.addr;
588 	mac->m_callbacks = &e1000g_m_callbacks;
589 	mac->m_min_sdu = 0;
590 	mac->m_max_sdu = Adapter->default_mtu;
591 	mac->m_margin = VLAN_TAGSZ;
592 	mac->m_priv_props = e1000g_priv_props;
593 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
594 
595 	err = mac_register(mac, &Adapter->mh);
596 	mac_free(mac);
597 
598 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
599 }
600 
601 static int
602 e1000g_identify_hardware(struct e1000g *Adapter)
603 {
604 	struct e1000_hw *hw = &Adapter->shared;
605 	struct e1000g_osdep *osdep = &Adapter->osdep;
606 
607 	/* Get the device id */
608 	hw->vendor_id =
609 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
610 	hw->device_id =
611 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
612 	hw->revision_id =
613 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
614 	hw->subsystem_device_id =
615 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
616 	hw->subsystem_vendor_id =
617 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
618 
619 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
620 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
621 		    "MAC type could not be set properly.");
622 		return (DDI_FAILURE);
623 	}
624 
625 	return (DDI_SUCCESS);
626 }
627 
628 static int
629 e1000g_regs_map(struct e1000g *Adapter)
630 {
631 	dev_info_t *devinfo = Adapter->dip;
632 	struct e1000_hw *hw = &Adapter->shared;
633 	struct e1000g_osdep *osdep = &Adapter->osdep;
634 	off_t mem_size;
635 
636 	/*
637 	 * first get the size of device register to be mapped. The
638 	 * second parameter is the register we are interested. I our
639 	 * wiseman 0 is for config registers and 1 is for memory mapped
640 	 * registers Mem size should have memory mapped region size
641 	 */
642 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
643 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
644 		    "ddi_dev_regsize for registers failed");
645 		return (DDI_FAILURE);
646 	}
647 
648 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
649 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
650 	    &osdep->reg_handle)) != DDI_SUCCESS) {
651 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
652 		    "ddi_regs_map_setup for registers failed");
653 		goto regs_map_fail;
654 	}
655 
656 	/* ICH needs to map flash memory */
657 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
658 		/* get flash size */
659 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
660 		    &mem_size) != DDI_SUCCESS) {
661 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
662 			    "ddi_dev_regsize for ICH flash failed");
663 			goto regs_map_fail;
664 		}
665 
666 		/* map flash in */
667 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
668 		    (caddr_t *)&hw->flash_address, 0,
669 		    mem_size, &e1000g_regs_acc_attr,
670 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
671 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 			    "ddi_regs_map_setup for ICH flash failed");
673 			goto regs_map_fail;
674 		}
675 	}
676 
677 	return (DDI_SUCCESS);
678 
679 regs_map_fail:
680 	if (osdep->reg_handle != NULL)
681 		ddi_regs_map_free(&osdep->reg_handle);
682 
683 	return (DDI_FAILURE);
684 }
685 
686 static int
687 e1000g_set_driver_params(struct e1000g *Adapter)
688 {
689 	struct e1000_hw *hw;
690 	e1000g_tx_ring_t *tx_ring;
691 	uint32_t mem_bar, io_bar, bar64;
692 
693 	hw = &Adapter->shared;
694 
695 	/* Set MAC type and initialize hardware functions */
696 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
697 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
698 		    "Could not setup hardware functions");
699 		return (DDI_FAILURE);
700 	}
701 
702 	/* Get bus information */
703 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
704 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
705 		    "Could not get bus information");
706 		return (DDI_FAILURE);
707 	}
708 
709 	/* get mem_base addr */
710 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
711 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
712 
713 	/* get io_base addr */
714 	if (hw->mac.type >= e1000_82544) {
715 		if (bar64) {
716 			/* IO BAR is different for 64 bit BAR mode */
717 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
718 			    PCI_CONF_BASE4);
719 		} else {
720 			/* normal 32-bit BAR mode */
721 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
722 			    PCI_CONF_BASE2);
723 		}
724 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
725 	} else {
726 		/* no I/O access for adapters prior to 82544 */
727 		hw->io_base = 0x0;
728 	}
729 
730 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
731 
732 	hw->mac.autoneg_failed = B_TRUE;
733 
734 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
735 	hw->phy.autoneg_wait_to_complete = B_FALSE;
736 
737 	/* Adaptive IFS related changes */
738 	hw->mac.adaptive_ifs = B_TRUE;
739 
740 	/* Enable phy init script for IGP phy of 82541/82547 */
741 	if ((hw->mac.type == e1000_82547) ||
742 	    (hw->mac.type == e1000_82541) ||
743 	    (hw->mac.type == e1000_82547_rev_2) ||
744 	    (hw->mac.type == e1000_82541_rev_2))
745 		e1000_init_script_state_82541(hw, B_TRUE);
746 
747 	/* Enable the TTL workaround for 82541/82547 */
748 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
749 
750 #ifdef __sparc
751 	Adapter->strip_crc = B_TRUE;
752 #else
753 	Adapter->strip_crc = B_FALSE;
754 #endif
755 
756 	/* Get conf file properties */
757 	e1000g_get_conf(Adapter);
758 
759 	/* Get speed/duplex settings in conf file */
760 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
761 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
762 	e1000g_force_speed_duplex(Adapter);
763 
764 	/* Get Jumbo Frames settings in conf file */
765 	e1000g_get_max_frame_size(Adapter);
766 
767 	/* Set Rx/Tx buffer size */
768 	e1000g_set_bufsize(Adapter);
769 
770 	/* Master Latency Timer */
771 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
772 
773 	/* copper options */
774 	if (hw->phy.media_type == e1000_media_type_copper) {
775 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
776 		hw->phy.disable_polarity_correction = B_FALSE;
777 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
778 	}
779 
780 	/* The initial link state should be "unknown" */
781 	Adapter->link_state = LINK_STATE_UNKNOWN;
782 
783 	/* Initialize rx parameters */
784 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
785 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
786 
787 	/* Initialize tx parameters */
788 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
789 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
790 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
791 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
792 
793 	tx_ring = Adapter->tx_ring;
794 	tx_ring->frags_limit =
795 	    (Adapter->max_frame_size / Adapter->tx_bcopy_thresh) + 2;
796 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
797 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
798 
799 	/* Initialize rx parameters */
800 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
801 
802 	return (DDI_SUCCESS);
803 }
804 
805 static void
806 e1000g_set_bufsize(struct e1000g *Adapter)
807 {
808 	struct e1000_mac_info *mac = &Adapter->shared.mac;
809 	uint64_t rx_size;
810 	uint64_t tx_size;
811 
812 #ifdef __sparc
813 	dev_info_t *devinfo = Adapter->dip;
814 	ulong_t iommu_pagesize;
815 
816 	/* Get the system page size */
817 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
818 	iommu_pagesize = dvma_pagesize(devinfo);
819 	if (iommu_pagesize != 0) {
820 		if (Adapter->sys_page_sz == iommu_pagesize) {
821 			if (iommu_pagesize > 0x4000)
822 				Adapter->sys_page_sz = 0x4000;
823 		} else {
824 			if (Adapter->sys_page_sz > iommu_pagesize)
825 				Adapter->sys_page_sz = iommu_pagesize;
826 		}
827 	}
828 	Adapter->dvma_page_num = Adapter->max_frame_size /
829 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
830 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
831 #endif
832 
833 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
834 
835 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
836 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
837 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
838 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
839 	    (rx_size <= FRAME_SIZE_UPTO_8K))
840 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
841 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
842 	    (rx_size <= FRAME_SIZE_UPTO_16K))
843 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
844 	else
845 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
846 
847 	tx_size = Adapter->max_frame_size;
848 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
849 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
850 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
851 	    (tx_size <= FRAME_SIZE_UPTO_8K))
852 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
853 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
854 	    (tx_size <= FRAME_SIZE_UPTO_16K))
855 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
856 	else
857 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
858 
859 	/*
860 	 * For Wiseman adapters we have an requirement of having receive
861 	 * buffers aligned at 256 byte boundary. Since Livengood does not
862 	 * require this and forcing it for all hardwares will have
863 	 * performance implications, I am making it applicable only for
864 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
865 	 * it is okay to have normal frames...but it does involve a
866 	 * potential risk where we may loose data if buffer is not
867 	 * aligned...so all wiseman boards to have 256 byte aligned
868 	 * buffers
869 	 */
870 	if (mac->type < e1000_82543)
871 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
872 	else
873 		Adapter->rx_buf_align = 1;
874 }
875 
876 /*
877  * e1000g_detach - driver detach
878  *
879  * The detach() function is the complement of the attach routine.
880  * If cmd is set to DDI_DETACH, detach() is used to remove  the
881  * state  associated  with  a  given  instance of a device node
882  * prior to the removal of that instance from the system.
883  *
884  * The detach() function will be called once for each  instance
885  * of the device for which there has been a successful attach()
886  * once there are no longer  any  opens  on  the  device.
887  *
888  * Interrupts routine are disabled, All memory allocated by this
889  * driver are freed.
890  */
891 static int
892 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
893 {
894 	struct e1000g *Adapter;
895 	boolean_t rx_drain;
896 
897 	switch (cmd) {
898 	default:
899 		return (DDI_FAILURE);
900 
901 	case DDI_SUSPEND:
902 		return (e1000g_suspend(devinfo));
903 
904 	case DDI_DETACH:
905 		break;
906 	}
907 
908 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
909 	if (Adapter == NULL)
910 		return (DDI_FAILURE);
911 
912 	if (mac_unregister(Adapter->mh) != 0) {
913 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
914 		return (DDI_FAILURE);
915 	}
916 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
917 
918 
919 	if (Adapter->chip_state != E1000G_STOP)
920 		e1000g_stop(Adapter, B_TRUE);
921 
922 	rx_drain = e1000g_rx_drain(Adapter);
923 
924 	/*
925 	 * If e1000g_force_detach is enabled, driver detach is safe.
926 	 * We will let e1000g_free_priv_devi_node routine determine
927 	 * whether we need to free the priv_dip entry for current
928 	 * driver instance.
929 	 */
930 	if (e1000g_force_detach) {
931 		e1000g_free_priv_devi_node(Adapter, rx_drain);
932 	} else {
933 		if (!rx_drain)
934 			return (DDI_FAILURE);
935 	}
936 
937 	e1000g_unattach(devinfo, Adapter);
938 
939 	return (DDI_SUCCESS);
940 }
941 
942 /*
943  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
944  *
945  * If free_flag is true, that indicates the upper layer is not holding
946  * the rx buffers, we could free the priv_dip entry safely.
947  *
948  * Otherwise, we have to keep this entry even after driver detached,
949  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
950  * so that driver could free it while all of rx buffers are returned
951  * by upper layer later.
952  */
953 static void
954 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
955 {
956 	private_devi_list_t *devi_node, *devi_del;
957 
958 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
959 	ASSERT(e1000g_private_devi_list != NULL);
960 	ASSERT(Adapter->priv_dip != NULL);
961 
962 	devi_node = e1000g_private_devi_list;
963 	if (devi_node->priv_dip == Adapter->priv_dip) {
964 		if (free_flag) {
965 			e1000g_private_devi_list =
966 			    devi_node->next;
967 			kmem_free(devi_node->priv_dip,
968 			    sizeof (struct dev_info));
969 			kmem_free(devi_node,
970 			    sizeof (private_devi_list_t));
971 		} else {
972 			ASSERT(e1000g_mblks_pending != 0);
973 			devi_node->flag =
974 			    E1000G_PRIV_DEVI_DETACH;
975 		}
976 		rw_exit(&e1000g_rx_detach_lock);
977 		return;
978 	}
979 
980 	devi_node = e1000g_private_devi_list;
981 	while (devi_node->next != NULL) {
982 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
983 			if (free_flag) {
984 				devi_del = devi_node->next;
985 				devi_node->next = devi_del->next;
986 				kmem_free(devi_del->priv_dip,
987 				    sizeof (struct dev_info));
988 				kmem_free(devi_del,
989 				    sizeof (private_devi_list_t));
990 			} else {
991 				ASSERT(e1000g_mblks_pending != 0);
992 				devi_node->next->flag =
993 				    E1000G_PRIV_DEVI_DETACH;
994 			}
995 			break;
996 		}
997 		devi_node = devi_node->next;
998 	}
999 	rw_exit(&e1000g_rx_detach_lock);
1000 }
1001 
1002 static void
1003 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1004 {
1005 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1006 		(void) e1000g_disable_intrs(Adapter);
1007 	}
1008 
1009 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1010 		(void) mac_unregister(Adapter->mh);
1011 	}
1012 
1013 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1014 		(void) e1000g_rem_intrs(Adapter);
1015 	}
1016 
1017 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1018 		(void) ddi_prop_remove_all(devinfo);
1019 	}
1020 
1021 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1022 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1023 	}
1024 
1025 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1026 		stop_link_timer(Adapter);
1027 		if (e1000_reset_hw(&Adapter->shared) != 0) {
1028 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1029 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1030 		}
1031 	}
1032 
1033 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1034 		if (Adapter->osdep.reg_handle != NULL)
1035 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1036 		if (Adapter->osdep.ich_flash_handle != NULL)
1037 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1038 	}
1039 
1040 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1041 		if (Adapter->osdep.cfg_handle != NULL)
1042 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1043 	}
1044 
1045 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1046 		e1000g_destroy_locks(Adapter);
1047 	}
1048 
1049 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1050 		e1000g_fm_fini(Adapter);
1051 	}
1052 
1053 	e1000_remove_device(&Adapter->shared);
1054 
1055 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1056 
1057 	/*
1058 	 * Another hotplug spec requirement,
1059 	 * run ddi_set_driver_private(devinfo, null);
1060 	 */
1061 	ddi_set_driver_private(devinfo, NULL);
1062 }
1063 
1064 static void
1065 e1000g_init_locks(struct e1000g *Adapter)
1066 {
1067 	e1000g_tx_ring_t *tx_ring;
1068 	e1000g_rx_ring_t *rx_ring;
1069 
1070 	rw_init(&Adapter->chip_lock, NULL,
1071 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1072 	mutex_init(&Adapter->link_lock, NULL,
1073 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1074 	mutex_init(&Adapter->watchdog_lock, NULL,
1075 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1076 
1077 	tx_ring = Adapter->tx_ring;
1078 
1079 	mutex_init(&tx_ring->tx_lock, NULL,
1080 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1081 	mutex_init(&tx_ring->usedlist_lock, NULL,
1082 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1083 	mutex_init(&tx_ring->freelist_lock, NULL,
1084 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1085 
1086 	rx_ring = Adapter->rx_ring;
1087 
1088 	mutex_init(&rx_ring->freelist_lock, NULL,
1089 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1090 }
1091 
1092 static void
1093 e1000g_destroy_locks(struct e1000g *Adapter)
1094 {
1095 	e1000g_tx_ring_t *tx_ring;
1096 	e1000g_rx_ring_t *rx_ring;
1097 
1098 	tx_ring = Adapter->tx_ring;
1099 	mutex_destroy(&tx_ring->tx_lock);
1100 	mutex_destroy(&tx_ring->usedlist_lock);
1101 	mutex_destroy(&tx_ring->freelist_lock);
1102 
1103 	rx_ring = Adapter->rx_ring;
1104 	mutex_destroy(&rx_ring->freelist_lock);
1105 
1106 	mutex_destroy(&Adapter->link_lock);
1107 	mutex_destroy(&Adapter->watchdog_lock);
1108 	rw_destroy(&Adapter->chip_lock);
1109 }
1110 
1111 static int
1112 e1000g_resume(dev_info_t *devinfo)
1113 {
1114 	struct e1000g *Adapter;
1115 
1116 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1117 	if (Adapter == NULL)
1118 		return (DDI_FAILURE);
1119 
1120 	if (e1000g_start(Adapter, B_TRUE))
1121 		return (DDI_FAILURE);
1122 
1123 	return (DDI_SUCCESS);
1124 }
1125 
1126 static int
1127 e1000g_suspend(dev_info_t *devinfo)
1128 {
1129 	struct e1000g *Adapter;
1130 
1131 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1132 	if (Adapter == NULL)
1133 		return (DDI_FAILURE);
1134 
1135 	e1000g_stop(Adapter, B_TRUE);
1136 
1137 	return (DDI_SUCCESS);
1138 }
1139 
1140 static int
1141 e1000g_init(struct e1000g *Adapter)
1142 {
1143 	uint32_t pba;
1144 	uint32_t high_water;
1145 	struct e1000_hw *hw;
1146 	clock_t link_timeout;
1147 
1148 	hw = &Adapter->shared;
1149 
1150 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1151 
1152 	/*
1153 	 * reset to put the hardware in a known state
1154 	 * before we try to do anything with the eeprom
1155 	 */
1156 	if (e1000_reset_hw(hw) != 0) {
1157 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1158 		goto init_fail;
1159 	}
1160 
1161 	if (e1000_validate_nvm_checksum(hw) < 0) {
1162 		/*
1163 		 * Some PCI-E parts fail the first check due to
1164 		 * the link being in sleep state.  Call it again,
1165 		 * if it fails a second time its a real issue.
1166 		 */
1167 		if (e1000_validate_nvm_checksum(hw) < 0) {
1168 			e1000g_log(Adapter, CE_WARN,
1169 			    "Invalid NVM checksum. Please contact "
1170 			    "the vendor to update the NVM.");
1171 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1172 			goto init_fail;
1173 		}
1174 	}
1175 
1176 #ifdef __sparc
1177 	/*
1178 	 * Firstly, we try to get the local ethernet address from OBP. If
1179 	 * fail, we get from EEPROM of NIC card.
1180 	 */
1181 	if (!e1000g_find_mac_address(Adapter)) {
1182 		if (e1000_read_mac_addr(hw) < 0) {
1183 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1184 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1185 			goto init_fail;
1186 		}
1187 	}
1188 #else
1189 	/* Get the local ethernet address. */
1190 	if (e1000_read_mac_addr(hw) < 0) {
1191 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1192 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1193 		goto init_fail;
1194 	}
1195 #endif
1196 
1197 	/* check for valid mac address */
1198 	if (!is_valid_mac_addr(hw->mac.addr)) {
1199 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1200 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1201 		goto init_fail;
1202 	}
1203 
1204 	/* Set LAA state for 82571 chipset */
1205 	e1000_set_laa_state_82571(hw, B_TRUE);
1206 
1207 	/* Master Latency Timer implementation */
1208 	if (Adapter->master_latency_timer) {
1209 		pci_config_put8(Adapter->osdep.cfg_handle,
1210 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1211 	}
1212 
1213 	if (hw->mac.type < e1000_82547) {
1214 		/*
1215 		 * Total FIFO is 64K
1216 		 */
1217 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1218 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1219 		else
1220 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1221 	} else if (hw->mac.type >= e1000_82571 &&
1222 	    hw->mac.type <= e1000_82572) {
1223 		/*
1224 		 * Total FIFO is 48K
1225 		 */
1226 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1227 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1228 		else
1229 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1230 	} else if (hw->mac.type == e1000_ich8lan) {
1231 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1232 	} else if (hw->mac.type == e1000_ich9lan) {
1233 		pba = E1000_PBA_12K;
1234 	} else {
1235 		/*
1236 		 * Total FIFO is 40K
1237 		 */
1238 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1239 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1240 		else
1241 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1242 	}
1243 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1244 
1245 	/*
1246 	 * These parameters set thresholds for the adapter's generation(Tx)
1247 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1248 	 * settings.  Flow control is enabled or disabled in the configuration
1249 	 * file.
1250 	 * High-water mark is set down from the top of the rx fifo (not
1251 	 * sensitive to max_frame_size) and low-water is set just below
1252 	 * high-water mark.
1253 	 * The high water mark must be low enough to fit one full frame above
1254 	 * it in the rx FIFO.  Should be the lower of:
1255 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1256 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1257 	 * Rx FIFO size minus one full frame.
1258 	 */
1259 	high_water = min(((pba << 10) * 9 / 10),
1260 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1261 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1262 	    ((pba << 10) - Adapter->max_frame_size)));
1263 
1264 	hw->fc.high_water = high_water & 0xFFF8;
1265 	hw->fc.low_water = hw->fc.high_water - 8;
1266 
1267 	if (hw->mac.type == e1000_80003es2lan)
1268 		hw->fc.pause_time = 0xFFFF;
1269 	else
1270 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1271 	hw->fc.send_xon = B_TRUE;
1272 
1273 	/*
1274 	 * Reset the adapter hardware the second time.
1275 	 */
1276 	if (e1000_reset_hw(hw) != 0) {
1277 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1278 		goto init_fail;
1279 	}
1280 
1281 	/* disable wakeup control by default */
1282 	if (hw->mac.type >= e1000_82544)
1283 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1284 
1285 	/* MWI setup */
1286 	e1000_pci_set_mwi(hw);
1287 
1288 	/*
1289 	 * Configure/Initialize hardware
1290 	 */
1291 	if (e1000_init_hw(hw) < 0) {
1292 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1293 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1294 		goto init_fail;
1295 	}
1296 
1297 	/* Disable Smart Power Down */
1298 	phy_spd_state(hw, B_FALSE);
1299 
1300 	/* Make sure driver has control */
1301 	e1000g_get_driver_control(hw);
1302 
1303 	/*
1304 	 * Initialize unicast addresses.
1305 	 */
1306 	e1000g_init_unicst(Adapter);
1307 
1308 	/*
1309 	 * Setup and initialize the mctable structures.  After this routine
1310 	 * completes  Multicast table will be set
1311 	 */
1312 	e1000g_setup_multicast(Adapter);
1313 	msec_delay(5);
1314 
1315 	/*
1316 	 * Implement Adaptive IFS
1317 	 */
1318 	e1000_reset_adaptive(hw);
1319 
1320 	/* Setup Interrupt Throttling Register */
1321 	if (hw->mac.type >= e1000_82540) {
1322 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1323 	} else
1324 		Adapter->intr_adaptive = B_FALSE;
1325 
1326 	/* Start the timer for link setup */
1327 	if (hw->mac.autoneg)
1328 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1329 	else
1330 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1331 
1332 	mutex_enter(&Adapter->link_lock);
1333 	if (hw->phy.autoneg_wait_to_complete) {
1334 		Adapter->link_complete = B_TRUE;
1335 	} else {
1336 		Adapter->link_complete = B_FALSE;
1337 		Adapter->link_tid = timeout(e1000g_link_timer,
1338 		    (void *)Adapter, link_timeout);
1339 	}
1340 	mutex_exit(&Adapter->link_lock);
1341 
1342 	/* Enable PCI-Ex master */
1343 	if (hw->bus.type == e1000_bus_type_pci_express) {
1344 		e1000_enable_pciex_master(hw);
1345 	}
1346 
1347 	/* Save the state of the phy */
1348 	e1000g_get_phy_state(Adapter);
1349 
1350 	e1000g_param_sync(Adapter);
1351 
1352 	Adapter->init_count++;
1353 
1354 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1355 		goto init_fail;
1356 	}
1357 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1358 		goto init_fail;
1359 	}
1360 
1361 	rw_exit(&Adapter->chip_lock);
1362 
1363 	return (DDI_SUCCESS);
1364 
1365 init_fail:
1366 	rw_exit(&Adapter->chip_lock);
1367 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1368 	return (DDI_FAILURE);
1369 }
1370 
1371 /*
1372  * Check if the link is up
1373  */
1374 static boolean_t
1375 e1000g_link_up(struct e1000g *Adapter)
1376 {
1377 	struct e1000_hw *hw;
1378 	boolean_t link_up;
1379 
1380 	hw = &Adapter->shared;
1381 
1382 	e1000_check_for_link(hw);
1383 
1384 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1385 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1386 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1387 	    (hw->mac.serdes_has_link))) {
1388 		link_up = B_TRUE;
1389 	} else {
1390 		link_up = B_FALSE;
1391 	}
1392 
1393 	return (link_up);
1394 }
1395 
1396 static void
1397 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1398 {
1399 	struct iocblk *iocp;
1400 	struct e1000g *e1000gp;
1401 	enum ioc_reply status;
1402 	int err;
1403 
1404 	iocp = (struct iocblk *)mp->b_rptr;
1405 	iocp->ioc_error = 0;
1406 	e1000gp = (struct e1000g *)arg;
1407 
1408 	ASSERT(e1000gp);
1409 	if (e1000gp == NULL) {
1410 		miocnak(q, mp, 0, EINVAL);
1411 		return;
1412 	}
1413 
1414 	switch (iocp->ioc_cmd) {
1415 
1416 	case LB_GET_INFO_SIZE:
1417 	case LB_GET_INFO:
1418 	case LB_GET_MODE:
1419 	case LB_SET_MODE:
1420 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1421 		break;
1422 
1423 
1424 #ifdef E1000G_DEBUG
1425 	case E1000G_IOC_REG_PEEK:
1426 	case E1000G_IOC_REG_POKE:
1427 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1428 		break;
1429 	case E1000G_IOC_CHIP_RESET:
1430 		e1000gp->reset_count++;
1431 		if (e1000g_reset(e1000gp))
1432 			status = IOC_ACK;
1433 		else
1434 			status = IOC_INVAL;
1435 		break;
1436 #endif
1437 	default:
1438 		status = IOC_INVAL;
1439 		break;
1440 	}
1441 
1442 	/*
1443 	 * Decide how to reply
1444 	 */
1445 	switch (status) {
1446 	default:
1447 	case IOC_INVAL:
1448 		/*
1449 		 * Error, reply with a NAK and EINVAL or the specified error
1450 		 */
1451 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1452 		    EINVAL : iocp->ioc_error);
1453 		break;
1454 
1455 	case IOC_DONE:
1456 		/*
1457 		 * OK, reply already sent
1458 		 */
1459 		break;
1460 
1461 	case IOC_ACK:
1462 		/*
1463 		 * OK, reply with an ACK
1464 		 */
1465 		miocack(q, mp, 0, 0);
1466 		break;
1467 
1468 	case IOC_REPLY:
1469 		/*
1470 		 * OK, send prepared reply as ACK or NAK
1471 		 */
1472 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1473 		    M_IOCACK : M_IOCNAK;
1474 		qreply(q, mp);
1475 		break;
1476 	}
1477 }
1478 
1479 static int
1480 e1000g_m_start(void *arg)
1481 {
1482 	struct e1000g *Adapter = (struct e1000g *)arg;
1483 
1484 	return (e1000g_start(Adapter, B_TRUE));
1485 }
1486 
1487 static int
1488 e1000g_start(struct e1000g *Adapter, boolean_t global)
1489 {
1490 	if (global) {
1491 		/* Allocate dma resources for descriptors and buffers */
1492 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1493 			e1000g_log(Adapter, CE_WARN,
1494 			    "Alloc DMA resources failed");
1495 			return (ENOTACTIVE);
1496 		}
1497 		Adapter->rx_buffer_setup = B_FALSE;
1498 	}
1499 
1500 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1501 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1502 			e1000g_log(Adapter, CE_WARN,
1503 			    "Adapter initialization failed");
1504 			if (global)
1505 				e1000g_release_dma_resources(Adapter);
1506 			return (ENOTACTIVE);
1507 		}
1508 	}
1509 
1510 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1511 
1512 	/* Setup and initialize the transmit structures */
1513 	e1000g_tx_setup(Adapter);
1514 	msec_delay(5);
1515 
1516 	/* Setup and initialize the receive structures */
1517 	e1000g_rx_setup(Adapter);
1518 	msec_delay(5);
1519 
1520 	e1000g_mask_interrupt(Adapter);
1521 
1522 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1523 		rw_exit(&Adapter->chip_lock);
1524 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1525 		return (ENOTACTIVE);
1526 	}
1527 
1528 	Adapter->chip_state = E1000G_START;
1529 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1530 
1531 	rw_exit(&Adapter->chip_lock);
1532 
1533 	/* Enable and start the watchdog timer */
1534 	enable_watchdog_timer(Adapter);
1535 
1536 	return (0);
1537 }
1538 
1539 static void
1540 e1000g_m_stop(void *arg)
1541 {
1542 	struct e1000g *Adapter = (struct e1000g *)arg;
1543 
1544 	e1000g_stop(Adapter, B_TRUE);
1545 }
1546 
1547 static void
1548 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1549 {
1550 	/* Set stop flags */
1551 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1552 
1553 	Adapter->chip_state = E1000G_STOP;
1554 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1555 
1556 	rw_exit(&Adapter->chip_lock);
1557 
1558 	/* Drain tx sessions */
1559 	(void) e1000g_tx_drain(Adapter);
1560 
1561 	/* Disable and stop all the timers */
1562 	disable_watchdog_timer(Adapter);
1563 	stop_link_timer(Adapter);
1564 	stop_82547_timer(Adapter->tx_ring);
1565 
1566 	/* Stop the chip and release pending resources */
1567 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1568 
1569 	e1000g_clear_all_interrupts(Adapter);
1570 	if (e1000_reset_hw(&Adapter->shared) != 0) {
1571 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1572 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1573 	}
1574 
1575 	/* Release resources still held by the TX descriptors */
1576 	e1000g_tx_clean(Adapter);
1577 
1578 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1579 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1580 
1581 	/* Clean the pending rx jumbo packet fragment */
1582 	e1000g_rx_clean(Adapter);
1583 
1584 	rw_exit(&Adapter->chip_lock);
1585 
1586 	if (global)
1587 		e1000g_release_dma_resources(Adapter);
1588 }
1589 
1590 static void
1591 e1000g_rx_clean(struct e1000g *Adapter)
1592 {
1593 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1594 
1595 	if (rx_ring->rx_mblk != NULL) {
1596 		freemsg(rx_ring->rx_mblk);
1597 		rx_ring->rx_mblk = NULL;
1598 		rx_ring->rx_mblk_tail = NULL;
1599 		rx_ring->rx_mblk_len = 0;
1600 	}
1601 }
1602 
1603 static void
1604 e1000g_tx_clean(struct e1000g *Adapter)
1605 {
1606 	e1000g_tx_ring_t *tx_ring;
1607 	p_tx_sw_packet_t packet;
1608 	mblk_t *mp;
1609 	mblk_t *nmp;
1610 	uint32_t packet_count;
1611 
1612 	tx_ring = Adapter->tx_ring;
1613 
1614 	/*
1615 	 * Here we don't need to protect the lists using
1616 	 * the usedlist_lock and freelist_lock, for they
1617 	 * have been protected by the chip_lock.
1618 	 */
1619 	mp = NULL;
1620 	nmp = NULL;
1621 	packet_count = 0;
1622 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1623 	while (packet != NULL) {
1624 		if (packet->mp != NULL) {
1625 			/* Assemble the message chain */
1626 			if (mp == NULL) {
1627 				mp = packet->mp;
1628 				nmp = packet->mp;
1629 			} else {
1630 				nmp->b_next = packet->mp;
1631 				nmp = packet->mp;
1632 			}
1633 			/* Disconnect the message from the sw packet */
1634 			packet->mp = NULL;
1635 		}
1636 
1637 		e1000g_free_tx_swpkt(packet);
1638 		packet_count++;
1639 
1640 		packet = (p_tx_sw_packet_t)
1641 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1642 	}
1643 
1644 	if (mp != NULL)
1645 		freemsgchain(mp);
1646 
1647 	if (packet_count > 0) {
1648 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1649 		QUEUE_INIT_LIST(&tx_ring->used_list);
1650 
1651 		/* Setup TX descriptor pointers */
1652 		tx_ring->tbd_next = tx_ring->tbd_first;
1653 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1654 
1655 		/* Setup our HW Tx Head & Tail descriptor pointers */
1656 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1657 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1658 	}
1659 }
1660 
1661 static boolean_t
1662 e1000g_tx_drain(struct e1000g *Adapter)
1663 {
1664 	int i;
1665 	boolean_t done;
1666 	e1000g_tx_ring_t *tx_ring;
1667 
1668 	tx_ring = Adapter->tx_ring;
1669 
1670 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1671 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1672 		mutex_enter(&tx_ring->usedlist_lock);
1673 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1674 		mutex_exit(&tx_ring->usedlist_lock);
1675 
1676 		if (done)
1677 			break;
1678 
1679 		msec_delay(1);
1680 	}
1681 
1682 	return (done);
1683 }
1684 
1685 static boolean_t
1686 e1000g_rx_drain(struct e1000g *Adapter)
1687 {
1688 	e1000g_rx_ring_t *rx_ring;
1689 	p_rx_sw_packet_t packet;
1690 	boolean_t done;
1691 
1692 	rx_ring = Adapter->rx_ring;
1693 	done = B_TRUE;
1694 
1695 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1696 
1697 	while (rx_ring->pending_list != NULL) {
1698 		packet = rx_ring->pending_list;
1699 		rx_ring->pending_list =
1700 		    rx_ring->pending_list->next;
1701 
1702 		if (packet->flag == E1000G_RX_SW_STOP) {
1703 			packet->flag = E1000G_RX_SW_DETACH;
1704 			done = B_FALSE;
1705 		} else {
1706 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1707 			ASSERT(packet->mp == NULL);
1708 			e1000g_free_rx_sw_packet(packet);
1709 		}
1710 	}
1711 
1712 	rw_exit(&e1000g_rx_detach_lock);
1713 
1714 	return (done);
1715 }
1716 
1717 boolean_t
1718 e1000g_reset(struct e1000g *Adapter)
1719 {
1720 	e1000g_stop(Adapter, B_FALSE);
1721 
1722 	if (e1000g_start(Adapter, B_FALSE)) {
1723 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1724 		return (B_FALSE);
1725 	}
1726 
1727 	return (B_TRUE);
1728 }
1729 
1730 boolean_t
1731 e1000g_global_reset(struct e1000g *Adapter)
1732 {
1733 	e1000g_stop(Adapter, B_TRUE);
1734 
1735 	Adapter->init_count = 0;
1736 
1737 	if (e1000g_start(Adapter, B_TRUE)) {
1738 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1739 		return (B_FALSE);
1740 	}
1741 
1742 	return (B_TRUE);
1743 }
1744 
1745 /*
1746  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1747  *
1748  * This interrupt service routine is for PCI-Express adapters.
1749  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1750  * bit is set.
1751  */
1752 static uint_t
1753 e1000g_intr_pciexpress(caddr_t arg)
1754 {
1755 	struct e1000g *Adapter;
1756 	uint32_t icr;
1757 
1758 	Adapter = (struct e1000g *)arg;
1759 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1760 
1761 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1762 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1763 
1764 	if (icr & E1000_ICR_INT_ASSERTED) {
1765 		/*
1766 		 * E1000_ICR_INT_ASSERTED bit was set:
1767 		 * Read(Clear) the ICR, claim this interrupt,
1768 		 * look for work to do.
1769 		 */
1770 		e1000g_intr_work(Adapter, icr);
1771 		return (DDI_INTR_CLAIMED);
1772 	} else {
1773 		/*
1774 		 * E1000_ICR_INT_ASSERTED bit was not set:
1775 		 * Don't claim this interrupt, return immediately.
1776 		 */
1777 		return (DDI_INTR_UNCLAIMED);
1778 	}
1779 }
1780 
1781 /*
1782  * e1000g_intr - ISR for PCI/PCI-X chipsets
1783  *
1784  * This interrupt service routine is for PCI/PCI-X adapters.
1785  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1786  * bit is set or not.
1787  */
1788 static uint_t
1789 e1000g_intr(caddr_t arg)
1790 {
1791 	struct e1000g *Adapter;
1792 	uint32_t icr;
1793 
1794 	Adapter = (struct e1000g *)arg;
1795 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1796 
1797 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1798 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1799 
1800 	if (icr) {
1801 		/*
1802 		 * Any bit was set in ICR:
1803 		 * Read(Clear) the ICR, claim this interrupt,
1804 		 * look for work to do.
1805 		 */
1806 		e1000g_intr_work(Adapter, icr);
1807 		return (DDI_INTR_CLAIMED);
1808 	} else {
1809 		/*
1810 		 * No bit was set in ICR:
1811 		 * Don't claim this interrupt, return immediately.
1812 		 */
1813 		return (DDI_INTR_UNCLAIMED);
1814 	}
1815 }
1816 
1817 /*
1818  * e1000g_intr_work - actual processing of ISR
1819  *
1820  * Read(clear) the ICR contents and call appropriate interrupt
1821  * processing routines.
1822  */
1823 static void
1824 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1825 {
1826 	struct e1000_hw *hw;
1827 	hw = &Adapter->shared;
1828 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1829 	uint32_t itr;
1830 
1831 	Adapter->rx_pkt_cnt = 0;
1832 	Adapter->tx_pkt_cnt = 0;
1833 
1834 	rw_enter(&Adapter->chip_lock, RW_READER);
1835 	/*
1836 	 * Here we need to check the "chip_state" flag within the chip_lock to
1837 	 * ensure the receive routine will not execute when the adapter is
1838 	 * being reset.
1839 	 */
1840 	if (Adapter->chip_state != E1000G_START) {
1841 		rw_exit(&Adapter->chip_lock);
1842 		return;
1843 	}
1844 
1845 	if (icr & E1000_ICR_RXT0) {
1846 		mblk_t *mp;
1847 
1848 		mutex_enter(&Adapter->rx_ring->rx_lock);
1849 		mp = e1000g_receive(Adapter);
1850 		mutex_exit(&Adapter->rx_ring->rx_lock);
1851 
1852 		rw_exit(&Adapter->chip_lock);
1853 
1854 		if (mp != NULL)
1855 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1856 	} else
1857 		rw_exit(&Adapter->chip_lock);
1858 
1859 	if (icr & E1000_ICR_TXDW) {
1860 		if (!Adapter->tx_intr_enable)
1861 			e1000g_clear_tx_interrupt(Adapter);
1862 
1863 		/* Recycle the tx descriptors */
1864 		rw_enter(&Adapter->chip_lock, RW_READER);
1865 		e1000g_recycle(tx_ring);
1866 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1867 		rw_exit(&Adapter->chip_lock);
1868 
1869 		/* Schedule the re-transmit */
1870 		if (tx_ring->resched_needed &&
1871 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1872 			tx_ring->resched_needed = B_FALSE;
1873 			mac_tx_update(Adapter->mh);
1874 			E1000G_STAT(tx_ring->stat_reschedule);
1875 		}
1876 	}
1877 
1878 	if (Adapter->intr_adaptive) {
1879 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1880 		    Adapter->intr_throttling_rate);
1881 		if (itr) {
1882 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1883 			Adapter->intr_throttling_rate = itr;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1889 	 * are checked to detect that the cable has been pulled out. For
1890 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1891 	 * are an indication that cable is not connected.
1892 	 */
1893 	if ((icr & E1000_ICR_RXSEQ) ||
1894 	    (icr & E1000_ICR_LSC) ||
1895 	    (icr & E1000_ICR_GPI_EN1)) {
1896 		boolean_t link_changed;
1897 		timeout_id_t tid = 0;
1898 
1899 		stop_watchdog_timer(Adapter);
1900 
1901 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1902 
1903 		/*
1904 		 * Because we got a link-status-change interrupt, force
1905 		 * e1000_check_for_link() to look at phy
1906 		 */
1907 		Adapter->shared.mac.get_link_status = B_TRUE;
1908 
1909 		/* e1000g_link_check takes care of link status change */
1910 		link_changed = e1000g_link_check(Adapter);
1911 
1912 		/* Get new phy state */
1913 		e1000g_get_phy_state(Adapter);
1914 
1915 		/*
1916 		 * If the link timer has not timed out, we'll not notify
1917 		 * the upper layer with any link state until the link is up.
1918 		 */
1919 		if (link_changed && !Adapter->link_complete) {
1920 			if (Adapter->link_state == LINK_STATE_UP) {
1921 				mutex_enter(&Adapter->link_lock);
1922 				Adapter->link_complete = B_TRUE;
1923 				tid = Adapter->link_tid;
1924 				Adapter->link_tid = 0;
1925 				mutex_exit(&Adapter->link_lock);
1926 			} else {
1927 				link_changed = B_FALSE;
1928 			}
1929 		}
1930 		rw_exit(&Adapter->chip_lock);
1931 
1932 		if (link_changed) {
1933 			if (tid != 0)
1934 				(void) untimeout(tid);
1935 
1936 			/*
1937 			 * Workaround for esb2. Data stuck in fifo on a link
1938 			 * down event. Reset the adapter to recover it.
1939 			 */
1940 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1941 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1942 				(void) e1000g_reset(Adapter);
1943 
1944 			mac_link_update(Adapter->mh, Adapter->link_state);
1945 		}
1946 
1947 		start_watchdog_timer(Adapter);
1948 	}
1949 }
1950 
1951 static uint32_t
1952 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
1953 {
1954 	uint32_t new_itr;
1955 
1956 	/*
1957 	 * Determine a propper itr according to rx/tx packet count
1958 	 * per interrupt, the value of itr are based on document
1959 	 * and testing.
1960 	 */
1961 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
1962 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
1963 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1964 		goto itr_done;
1965 	}
1966 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
1967 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
1968 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1969 		goto itr_done;
1970 	}
1971 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
1972 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
1973 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
1974 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1975 	} else
1976 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1977 
1978 itr_done:
1979 	if (cur_itr == new_itr)
1980 		return (0);
1981 	else
1982 		return (new_itr);
1983 }
1984 
1985 static void
1986 e1000g_init_unicst(struct e1000g *Adapter)
1987 {
1988 	struct e1000_hw *hw;
1989 	int slot;
1990 
1991 	hw = &Adapter->shared;
1992 
1993 	if (!Adapter->unicst_init) {
1994 		/* Initialize the multiple unicast addresses */
1995 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1996 
1997 		if ((hw->mac.type == e1000_82571) &&
1998 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1999 			Adapter->unicst_total--;
2000 
2001 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2002 
2003 		/* Store the default mac address */
2004 		e1000_rar_set(hw, hw->mac.addr, 0);
2005 		if ((hw->mac.type == e1000_82571) &&
2006 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2007 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2008 
2009 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2010 		    ETHERADDRL);
2011 		Adapter->unicst_addr[0].mac.set = 1;
2012 
2013 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2014 			Adapter->unicst_addr[slot].mac.set = 0;
2015 
2016 		Adapter->unicst_init = B_TRUE;
2017 	} else {
2018 		/* Recover the default mac address */
2019 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2020 		    ETHERADDRL);
2021 
2022 		/* Store the default mac address */
2023 		e1000_rar_set(hw, hw->mac.addr, 0);
2024 		if ((hw->mac.type == e1000_82571) &&
2025 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2026 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2027 
2028 		/* Re-configure the RAR registers */
2029 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2030 			e1000_rar_set(hw,
2031 			    Adapter->unicst_addr[slot].mac.addr, slot);
2032 	}
2033 
2034 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2035 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2036 }
2037 
2038 static int
2039 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2040 {
2041 	struct e1000g *Adapter;
2042 
2043 	Adapter = (struct e1000g *)arg;
2044 
2045 	/* Store the default MAC address */
2046 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2047 
2048 	/* Set MAC address in address slot 0, which is the default address */
2049 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2050 }
2051 
2052 static int
2053 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2054     mac_addr_slot_t slot)
2055 {
2056 	struct e1000_hw *hw;
2057 
2058 	hw = &Adapter->shared;
2059 
2060 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2061 
2062 	/*
2063 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2064 	 * that requires the receiver to be in reset when any of the
2065 	 * receive address registers (RAR regs) are accessed.  The first
2066 	 * rev of Wiseman silicon also requires MWI to be disabled when
2067 	 * a global reset or a receive reset is issued.  So before we
2068 	 * initialize the RARs, we check the rev of the Wiseman controller
2069 	 * and work around any necessary HW errata.
2070 	 */
2071 	if ((hw->mac.type == e1000_82542) &&
2072 	    (hw->revision_id == E1000_REVISION_2)) {
2073 		e1000_pci_clear_mwi(hw);
2074 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2075 		msec_delay(5);
2076 	}
2077 
2078 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2079 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2080 
2081 	if (slot == 0) {
2082 		if ((hw->mac.type == e1000_82571) &&
2083 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2084 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2085 	}
2086 
2087 	/*
2088 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2089 	 * put the receive in reset, and disabled MWI, to work around some
2090 	 * HW errata.  Now we should take the receiver out of reset, and
2091 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2092 	 */
2093 	if ((hw->mac.type == e1000_82542) &&
2094 	    (hw->revision_id == E1000_REVISION_2)) {
2095 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2096 		msec_delay(1);
2097 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2098 			e1000_pci_set_mwi(hw);
2099 		e1000g_rx_setup(Adapter);
2100 	}
2101 
2102 	rw_exit(&Adapter->chip_lock);
2103 
2104 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2105 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2106 		return (EIO);
2107 	}
2108 
2109 	return (0);
2110 }
2111 
2112 /*
2113  * e1000g_m_unicst_add() - will find an unused address slot, set the
2114  * address value to the one specified, reserve that slot and enable
2115  * the NIC to start filtering on the new MAC address.
2116  * Returns 0 on success.
2117  */
2118 static int
2119 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2120 {
2121 	struct e1000g *Adapter = (struct e1000g *)arg;
2122 	mac_addr_slot_t slot;
2123 	int err;
2124 
2125 	if (mac_unicst_verify(Adapter->mh,
2126 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2127 		return (EINVAL);
2128 
2129 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2130 	if (Adapter->unicst_avail == 0) {
2131 		/* no slots available */
2132 		rw_exit(&Adapter->chip_lock);
2133 		return (ENOSPC);
2134 	}
2135 
2136 	/*
2137 	 * Primary/default address is in slot 0. The next addresses
2138 	 * are the multiple MAC addresses. So multiple MAC address 0
2139 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2140 	 * MAC address resides in slot 1.
2141 	 */
2142 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2143 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2144 			Adapter->unicst_addr[slot].mac.set = 1;
2145 			break;
2146 		}
2147 	}
2148 
2149 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2150 
2151 	Adapter->unicst_avail--;
2152 	rw_exit(&Adapter->chip_lock);
2153 
2154 	maddr->mma_slot = slot;
2155 
2156 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2157 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2158 		Adapter->unicst_addr[slot].mac.set = 0;
2159 		Adapter->unicst_avail++;
2160 		rw_exit(&Adapter->chip_lock);
2161 	}
2162 
2163 	return (err);
2164 }
2165 
2166 /*
2167  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2168  * call to e1000g_m_unicst_add(). The slot number that was returned in
2169  * e1000g_m_unicst_add() is passed in the call to remove the address.
2170  * Returns 0 on success.
2171  */
2172 static int
2173 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2174 {
2175 	struct e1000g *Adapter = (struct e1000g *)arg;
2176 	int err;
2177 
2178 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2179 		return (EINVAL);
2180 
2181 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2182 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2183 		Adapter->unicst_addr[slot].mac.set = 0;
2184 		Adapter->unicst_avail++;
2185 		rw_exit(&Adapter->chip_lock);
2186 
2187 		/* Copy the default address to the passed slot */
2188 		if (err = e1000g_unicst_set(Adapter,
2189 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2190 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2191 			Adapter->unicst_addr[slot].mac.set = 1;
2192 			Adapter->unicst_avail--;
2193 			rw_exit(&Adapter->chip_lock);
2194 		}
2195 		return (err);
2196 	}
2197 	rw_exit(&Adapter->chip_lock);
2198 
2199 	return (EINVAL);
2200 }
2201 
2202 /*
2203  * e1000g_m_unicst_modify() - modifies the value of an address that
2204  * has been added by e1000g_m_unicst_add(). The new address, address
2205  * length and the slot number that was returned in the call to add
2206  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2207  * set to 0. Returns 0 on success.
2208  */
2209 static int
2210 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2211 {
2212 	struct e1000g *Adapter = (struct e1000g *)arg;
2213 	mac_addr_slot_t slot;
2214 
2215 	if (mac_unicst_verify(Adapter->mh,
2216 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2217 		return (EINVAL);
2218 
2219 	slot = maddr->mma_slot;
2220 
2221 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2222 		return (EINVAL);
2223 
2224 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2225 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2226 		rw_exit(&Adapter->chip_lock);
2227 
2228 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2229 	}
2230 	rw_exit(&Adapter->chip_lock);
2231 
2232 	return (EINVAL);
2233 }
2234 
2235 /*
2236  * e1000g_m_unicst_get() - will get the MAC address and all other
2237  * information related to the address slot passed in mac_multi_addr_t.
2238  * mma_flags should be set to 0 in the call.
2239  * On return, mma_flags can take the following values:
2240  * 1) MMAC_SLOT_UNUSED
2241  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2242  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2243  * 4) MMAC_SLOT_USED
2244  */
2245 static int
2246 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2247 {
2248 	struct e1000g *Adapter = (struct e1000g *)arg;
2249 	mac_addr_slot_t slot;
2250 
2251 	slot = maddr->mma_slot;
2252 
2253 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2254 		return (EINVAL);
2255 
2256 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2257 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2258 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2259 		    maddr->mma_addr, ETHERADDRL);
2260 		maddr->mma_flags = MMAC_SLOT_USED;
2261 	} else {
2262 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2263 	}
2264 	rw_exit(&Adapter->chip_lock);
2265 
2266 	return (0);
2267 }
2268 
2269 static int
2270 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2271 {
2272 	struct e1000_hw *hw = &Adapter->shared;
2273 	unsigned i;
2274 	int res = 0;
2275 
2276 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2277 
2278 	if ((multiaddr[0] & 01) == 0) {
2279 		res = EINVAL;
2280 		goto done;
2281 	}
2282 
2283 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2284 		res = ENOENT;
2285 		goto done;
2286 	}
2287 
2288 	bcopy(multiaddr,
2289 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2290 	Adapter->mcast_count++;
2291 
2292 	/*
2293 	 * Update the MC table in the hardware
2294 	 */
2295 	e1000g_clear_interrupt(Adapter);
2296 
2297 	e1000g_setup_multicast(Adapter);
2298 
2299 	if ((hw->mac.type == e1000_82542) &&
2300 	    (hw->revision_id == E1000_REVISION_2))
2301 		e1000g_rx_setup(Adapter);
2302 
2303 	e1000g_mask_interrupt(Adapter);
2304 
2305 done:
2306 	rw_exit(&Adapter->chip_lock);
2307 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2308 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2309 		res = EIO;
2310 	}
2311 
2312 	return (res);
2313 }
2314 
2315 static int
2316 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2317 {
2318 	struct e1000_hw *hw = &Adapter->shared;
2319 	unsigned i;
2320 
2321 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2322 
2323 	for (i = 0; i < Adapter->mcast_count; i++) {
2324 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2325 		    ETHERADDRL) == 0) {
2326 			for (i++; i < Adapter->mcast_count; i++) {
2327 				Adapter->mcast_table[i - 1] =
2328 				    Adapter->mcast_table[i];
2329 			}
2330 			Adapter->mcast_count--;
2331 			break;
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * Update the MC table in the hardware
2337 	 */
2338 	e1000g_clear_interrupt(Adapter);
2339 
2340 	e1000g_setup_multicast(Adapter);
2341 
2342 	if ((hw->mac.type == e1000_82542) &&
2343 	    (hw->revision_id == E1000_REVISION_2))
2344 		e1000g_rx_setup(Adapter);
2345 
2346 	e1000g_mask_interrupt(Adapter);
2347 
2348 done:
2349 	rw_exit(&Adapter->chip_lock);
2350 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2351 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2352 		return (EIO);
2353 	}
2354 
2355 	return (0);
2356 }
2357 
2358 /*
2359  * e1000g_setup_multicast - setup multicast data structures
2360  *
2361  * This routine initializes all of the multicast related structures.
2362  */
2363 void
2364 e1000g_setup_multicast(struct e1000g *Adapter)
2365 {
2366 	uint8_t *mc_addr_list;
2367 	uint32_t mc_addr_count;
2368 	uint32_t rctl;
2369 	struct e1000_hw *hw;
2370 
2371 	hw = &Adapter->shared;
2372 
2373 	/*
2374 	 * The e1000g has the ability to do perfect filtering of 16
2375 	 * addresses. The driver uses one of the e1000g's 16 receive
2376 	 * address registers for its node/network/mac/individual address.
2377 	 * So, we have room for up to 15 multicast addresses in the CAM,
2378 	 * additional MC addresses are handled by the MTA (Multicast Table
2379 	 * Array)
2380 	 */
2381 
2382 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2383 
2384 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2385 
2386 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2387 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2388 		    "Adapter requested more than %d MC Addresses.\n",
2389 		    MAX_NUM_MULTICAST_ADDRESSES);
2390 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2391 	} else {
2392 		/*
2393 		 * Set the number of MC addresses that we are being
2394 		 * requested to use
2395 		 */
2396 		mc_addr_count = Adapter->mcast_count;
2397 	}
2398 	/*
2399 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2400 	 * hang  while writing to the receive address registers if the receiver
2401 	 * is not in reset before writing to the registers. Updating the RAR
2402 	 * is done during the setting up of the multicast table, hence the
2403 	 * receiver has to be put in reset before updating the multicast table
2404 	 * and then taken out of reset at the end
2405 	 */
2406 	/*
2407 	 * if WMI was enabled then dis able it before issueing the global
2408 	 * reset to the hardware.
2409 	 */
2410 	/*
2411 	 * Only required for WISEMAN_2_0
2412 	 */
2413 	if ((hw->mac.type == e1000_82542) &&
2414 	    (hw->revision_id == E1000_REVISION_2)) {
2415 		e1000_pci_clear_mwi(hw);
2416 		/*
2417 		 * The e1000g must be in reset before changing any RA
2418 		 * registers. Reset receive unit.  The chip will remain in
2419 		 * the reset state until software explicitly restarts it.
2420 		 */
2421 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2422 		/* Allow receiver time to go in to reset */
2423 		msec_delay(5);
2424 	}
2425 
2426 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2427 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2428 
2429 	/*
2430 	 * Only for Wiseman_2_0
2431 	 * If MWI was enabled then re-enable it after issueing (as we
2432 	 * disabled it up there) the receive reset command.
2433 	 * Wainwright does not have a receive reset command and only thing
2434 	 * close to it is global reset which will require tx setup also
2435 	 */
2436 	if ((hw->mac.type == e1000_82542) &&
2437 	    (hw->revision_id == E1000_REVISION_2)) {
2438 		/*
2439 		 * if WMI was enabled then reenable it after issueing the
2440 		 * global or receive reset to the hardware.
2441 		 */
2442 
2443 		/*
2444 		 * Take receiver out of reset
2445 		 * clear E1000_RCTL_RST bit (and all others)
2446 		 */
2447 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2448 		msec_delay(5);
2449 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2450 			e1000_pci_set_mwi(hw);
2451 	}
2452 
2453 	/*
2454 	 * Restore original value
2455 	 */
2456 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2457 }
2458 
2459 int
2460 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2461 {
2462 	struct e1000g *Adapter = (struct e1000g *)arg;
2463 
2464 	return ((add) ? multicst_add(Adapter, addr)
2465 	    : multicst_remove(Adapter, addr));
2466 }
2467 
2468 int
2469 e1000g_m_promisc(void *arg, boolean_t on)
2470 {
2471 	struct e1000g *Adapter = (struct e1000g *)arg;
2472 	uint32_t rctl;
2473 
2474 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2475 
2476 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2477 
2478 	if (on)
2479 		rctl |=
2480 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2481 	else
2482 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2483 
2484 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2485 
2486 	Adapter->e1000g_promisc = on;
2487 
2488 	rw_exit(&Adapter->chip_lock);
2489 
2490 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2491 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2492 		return (EIO);
2493 	}
2494 
2495 	return (0);
2496 }
2497 
2498 static boolean_t
2499 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2500 {
2501 	struct e1000g *Adapter = (struct e1000g *)arg;
2502 	struct e1000_hw *hw = &Adapter->shared;
2503 
2504 	switch (cap) {
2505 	case MAC_CAPAB_HCKSUM: {
2506 		uint32_t *txflags = cap_data;
2507 		/*
2508 		 * Checksum on/off selection via global parameters.
2509 		 *
2510 		 * If the chip is flagged as not capable of (correctly)
2511 		 * handling checksumming, we don't enable it on either
2512 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2513 		 * from the patchable global defaults.
2514 		 *
2515 		 * We advertise our capabilities only if TX offload is
2516 		 * enabled.  On receive, the stack will accept checksummed
2517 		 * packets anyway, even if we haven't said we can deliver
2518 		 * them.
2519 		 */
2520 		switch (hw->mac.type) {
2521 		case e1000_82540:
2522 		case e1000_82544:
2523 		case e1000_82545:
2524 		case e1000_82545_rev_3:
2525 		case e1000_82546:
2526 		case e1000_82546_rev_3:
2527 		case e1000_82571:
2528 		case e1000_82572:
2529 		case e1000_82573:
2530 		case e1000_80003es2lan:
2531 			if (Adapter->tx_hcksum_enabled)
2532 				*txflags = HCKSUM_IPHDRCKSUM |
2533 				    HCKSUM_INET_PARTIAL;
2534 			else
2535 				return (B_FALSE);
2536 			break;
2537 
2538 		/*
2539 		 * For the following Intel PRO/1000 chipsets, we have not
2540 		 * tested the hardware checksum offload capability, so we
2541 		 * disable the capability for them.
2542 		 *	e1000_82542,
2543 		 *	e1000_82543,
2544 		 *	e1000_82541,
2545 		 *	e1000_82541_rev_2,
2546 		 *	e1000_82547,
2547 		 *	e1000_82547_rev_2,
2548 		 */
2549 		default:
2550 			return (B_FALSE);
2551 		}
2552 
2553 		break;
2554 	}
2555 	case MAC_CAPAB_POLL:
2556 		/*
2557 		 * There's nothing for us to fill in, simply returning
2558 		 * B_TRUE stating that we support polling is sufficient.
2559 		 */
2560 		break;
2561 
2562 	case MAC_CAPAB_MULTIADDRESS: {
2563 		multiaddress_capab_t *mmacp = cap_data;
2564 
2565 		/*
2566 		 * The number of MAC addresses made available by
2567 		 * this capability is one less than the total as
2568 		 * the primary address in slot 0 is counted in
2569 		 * the total.
2570 		 */
2571 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2572 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2573 		/* No multiple factory addresses, set mma_flag to 0 */
2574 		mmacp->maddr_flag = 0;
2575 		mmacp->maddr_handle = Adapter;
2576 		mmacp->maddr_add = e1000g_m_unicst_add;
2577 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2578 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2579 		mmacp->maddr_get = e1000g_m_unicst_get;
2580 		mmacp->maddr_reserve = NULL;
2581 		break;
2582 	}
2583 	default:
2584 		return (B_FALSE);
2585 	}
2586 	return (B_TRUE);
2587 }
2588 
2589 static boolean_t
2590 e1000g_param_locked(mac_prop_id_t pr_num)
2591 {
2592 	/*
2593 	 * All en_* parameters are locked (read-only) while
2594 	 * the device is in any sort of loopback mode ...
2595 	 */
2596 	switch (pr_num) {
2597 		case DLD_PROP_EN_1000FDX_CAP:
2598 		case DLD_PROP_EN_1000HDX_CAP:
2599 		case DLD_PROP_EN_100FDX_CAP:
2600 		case DLD_PROP_EN_100HDX_CAP:
2601 		case DLD_PROP_EN_10FDX_CAP:
2602 		case DLD_PROP_EN_10HDX_CAP:
2603 		case DLD_PROP_AUTONEG:
2604 		case DLD_PROP_FLOWCTRL:
2605 			return (B_TRUE);
2606 	}
2607 	return (B_FALSE);
2608 }
2609 
2610 /*
2611  * callback function for set/get of properties
2612  */
2613 static int
2614 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2615     uint_t pr_valsize, const void *pr_val)
2616 {
2617 	struct e1000g *Adapter = arg;
2618 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2619 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2620 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2621 	e1000g_tx_ring_t *tx_ring;
2622 	int err = 0;
2623 	link_flowctrl_t flowctrl;
2624 	uint32_t cur_mtu, new_mtu;
2625 	uint64_t tmp = 0;
2626 
2627 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2628 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2629 	    e1000g_param_locked(pr_num)) {
2630 		/*
2631 		 * All en_* parameters are locked (read-only)
2632 		 * while the device is in any sort of loopback mode.
2633 		 */
2634 		rw_exit(&Adapter->chip_lock);
2635 		return (EBUSY);
2636 	}
2637 
2638 	switch (pr_num) {
2639 		case DLD_PROP_EN_1000FDX_CAP:
2640 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2641 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2642 			goto reset;
2643 		case DLD_PROP_EN_1000HDX_CAP:
2644 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2645 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2646 			goto reset;
2647 		case DLD_PROP_EN_100FDX_CAP:
2648 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2649 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2650 			goto reset;
2651 		case DLD_PROP_EN_100HDX_CAP:
2652 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2653 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2654 			goto reset;
2655 		case DLD_PROP_EN_10FDX_CAP:
2656 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2657 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2658 			goto reset;
2659 		case DLD_PROP_EN_10HDX_CAP:
2660 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2661 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2662 			goto reset;
2663 		case DLD_PROP_AUTONEG:
2664 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2665 			goto reset;
2666 		case DLD_PROP_FLOWCTRL:
2667 			fc->send_xon = B_TRUE;
2668 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2669 
2670 			switch (flowctrl) {
2671 			default:
2672 				err = EINVAL;
2673 				break;
2674 			case LINK_FLOWCTRL_NONE:
2675 				fc->type = e1000_fc_none;
2676 				break;
2677 			case LINK_FLOWCTRL_RX:
2678 				fc->type = e1000_fc_rx_pause;
2679 				break;
2680 			case LINK_FLOWCTRL_TX:
2681 				fc->type = e1000_fc_tx_pause;
2682 				break;
2683 			case LINK_FLOWCTRL_BI:
2684 				fc->type = e1000_fc_full;
2685 				break;
2686 			}
2687 reset:
2688 			if (err == 0) {
2689 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2690 					err = EINVAL;
2691 			}
2692 			break;
2693 		case DLD_PROP_ADV_1000FDX_CAP:
2694 		case DLD_PROP_ADV_1000HDX_CAP:
2695 		case DLD_PROP_ADV_100FDX_CAP:
2696 		case DLD_PROP_ADV_100HDX_CAP:
2697 		case DLD_PROP_ADV_10FDX_CAP:
2698 		case DLD_PROP_ADV_10HDX_CAP:
2699 		case DLD_PROP_STATUS:
2700 		case DLD_PROP_SPEED:
2701 		case DLD_PROP_DUPLEX:
2702 			err = ENOTSUP; /* read-only prop. Can't set this. */
2703 			break;
2704 		case DLD_PROP_MTU:
2705 			cur_mtu = Adapter->default_mtu;
2706 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2707 			if (new_mtu == cur_mtu) {
2708 				err = 0;
2709 				break;
2710 			}
2711 
2712 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2713 			    ETHERFCSL;
2714 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2715 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2716 				err = EINVAL;
2717 				break;
2718 			}
2719 
2720 			/* ich8 doed not support jumbo frames */
2721 			if ((mac->type == e1000_ich8lan) &&
2722 			    (tmp > DEFAULT_FRAME_SIZE)) {
2723 				err = EINVAL;
2724 				break;
2725 			}
2726 			/* ich9 does not do jumbo frames on one phy type */
2727 			if ((mac->type == e1000_ich9lan) &&
2728 			    (phy->type == e1000_phy_ife) &&
2729 			    (tmp > DEFAULT_FRAME_SIZE)) {
2730 				err = EINVAL;
2731 				break;
2732 			}
2733 			if (Adapter->chip_state != E1000G_STOP) {
2734 				err = EBUSY;
2735 				break;
2736 			}
2737 
2738 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2739 			if (err == 0) {
2740 				Adapter->max_frame_size = tmp;
2741 				Adapter->default_mtu = new_mtu;
2742 				e1000g_set_bufsize(Adapter);
2743 				tx_ring = Adapter->tx_ring;
2744 				tx_ring->frags_limit =
2745 				    (Adapter->max_frame_size /
2746 				    Adapter->tx_bcopy_thresh) + 2;
2747 				if (tx_ring->frags_limit >
2748 				    (MAX_TX_DESC_PER_PACKET >> 1))
2749 				tx_ring->frags_limit =
2750 				    (MAX_TX_DESC_PER_PACKET >> 1);
2751 			}
2752 			break;
2753 		case DLD_PROP_PRIVATE:
2754 			err = e1000g_set_priv_prop(Adapter, pr_name,
2755 			    pr_valsize, pr_val);
2756 			break;
2757 		default:
2758 			err = ENOTSUP;
2759 			break;
2760 	}
2761 	rw_exit(&Adapter->chip_lock);
2762 	return (err);
2763 }
2764 
2765 static int
2766 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2767     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2768 {
2769 	struct e1000g *Adapter = arg;
2770 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2771 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2772 	int err = 0;
2773 	link_flowctrl_t flowctrl;
2774 	uint64_t tmp = 0;
2775 
2776 	if (pr_valsize == 0)
2777 		return (EINVAL);
2778 
2779 	bzero(pr_val, pr_valsize);
2780 	if ((pr_flags & DLD_DEFAULT) && (pr_num != DLD_PROP_PRIVATE)) {
2781 		return (e1000g_get_def_val(Adapter, pr_num,
2782 		    pr_valsize, pr_val));
2783 	}
2784 
2785 	switch (pr_num) {
2786 		case DLD_PROP_DUPLEX:
2787 			if (pr_valsize >= sizeof (link_duplex_t)) {
2788 				bcopy(&Adapter->link_duplex, pr_val,
2789 				    sizeof (link_duplex_t));
2790 			} else
2791 				err = EINVAL;
2792 			break;
2793 		case DLD_PROP_SPEED:
2794 			if (pr_valsize >= sizeof (uint64_t)) {
2795 				tmp = Adapter->link_speed * 1000000ull;
2796 				bcopy(&tmp, pr_val, sizeof (tmp));
2797 			} else
2798 				err = EINVAL;
2799 			break;
2800 		case DLD_PROP_AUTONEG:
2801 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2802 			break;
2803 		case DLD_PROP_FLOWCTRL:
2804 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2805 				switch (fc->type) {
2806 					case e1000_fc_none:
2807 						flowctrl = LINK_FLOWCTRL_NONE;
2808 						break;
2809 					case e1000_fc_rx_pause:
2810 						flowctrl = LINK_FLOWCTRL_RX;
2811 						break;
2812 					case e1000_fc_tx_pause:
2813 						flowctrl = LINK_FLOWCTRL_TX;
2814 						break;
2815 					case e1000_fc_full:
2816 						flowctrl = LINK_FLOWCTRL_BI;
2817 						break;
2818 				}
2819 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2820 			} else
2821 				err = EINVAL;
2822 			break;
2823 		case DLD_PROP_ADV_1000FDX_CAP:
2824 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2825 			break;
2826 		case DLD_PROP_EN_1000FDX_CAP:
2827 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2828 			break;
2829 		case DLD_PROP_ADV_1000HDX_CAP:
2830 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2831 			break;
2832 		case DLD_PROP_EN_1000HDX_CAP:
2833 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2834 			break;
2835 		case DLD_PROP_ADV_100FDX_CAP:
2836 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2837 			break;
2838 		case DLD_PROP_EN_100FDX_CAP:
2839 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2840 			break;
2841 		case DLD_PROP_ADV_100HDX_CAP:
2842 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2843 			break;
2844 		case DLD_PROP_EN_100HDX_CAP:
2845 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2846 			break;
2847 		case DLD_PROP_ADV_10FDX_CAP:
2848 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2849 			break;
2850 		case DLD_PROP_EN_10FDX_CAP:
2851 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2852 			break;
2853 		case DLD_PROP_ADV_10HDX_CAP:
2854 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2855 			break;
2856 		case DLD_PROP_EN_10HDX_CAP:
2857 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2858 			break;
2859 		case DLD_PROP_ADV_100T4_CAP:
2860 		case DLD_PROP_EN_100T4_CAP:
2861 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2862 			break;
2863 		case DLD_PROP_PRIVATE:
2864 			err = e1000g_get_priv_prop(Adapter, pr_name,
2865 			    pr_flags, pr_valsize, pr_val);
2866 			break;
2867 		default:
2868 			err = ENOTSUP;
2869 			break;
2870 	}
2871 	return (err);
2872 }
2873 
2874 /* ARGUSED */
2875 static int
2876 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2877     uint_t pr_valsize, const void *pr_val)
2878 {
2879 	int err = 0;
2880 	long result;
2881 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2882 	struct e1000_hw *hw = &Adapter->shared;
2883 
2884 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2885 		if (pr_val == NULL) {
2886 			err = EINVAL;
2887 			return (err);
2888 		}
2889 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2890 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2891 		    result > MAX_TX_BCOPY_THRESHOLD)
2892 			err = EINVAL;
2893 		else {
2894 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2895 			tx_ring->frags_limit =
2896 			    (Adapter->max_frame_size /
2897 			    Adapter->tx_bcopy_thresh) + 2;
2898 			if (tx_ring->frags_limit >
2899 			    (MAX_TX_DESC_PER_PACKET >> 1))
2900 				tx_ring->frags_limit =
2901 				    (MAX_TX_DESC_PER_PACKET >> 1);
2902 		}
2903 		return (err);
2904 	}
2905 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2906 		if (pr_val == NULL) {
2907 			err = EINVAL;
2908 			return (err);
2909 		}
2910 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2911 		if (result < 0 || result > 1)
2912 			err = EINVAL;
2913 		else {
2914 			Adapter->tx_intr_enable = (result == 1) ?
2915 			    B_TRUE: B_FALSE;
2916 			if (Adapter->tx_intr_enable)
2917 				e1000g_mask_tx_interrupt(Adapter);
2918 			else
2919 				e1000g_clear_tx_interrupt(Adapter);
2920 			if (e1000g_check_acc_handle(
2921 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2922 				ddi_fm_service_impact(Adapter->dip,
2923 				    DDI_SERVICE_DEGRADED);
2924 		}
2925 		return (err);
2926 	}
2927 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2928 		if (pr_val == NULL) {
2929 			err = EINVAL;
2930 			return (err);
2931 		}
2932 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2933 		if (result < MIN_TX_INTR_DELAY ||
2934 		    result > MAX_TX_INTR_DELAY)
2935 			err = EINVAL;
2936 		else {
2937 			Adapter->tx_intr_delay = (uint32_t)result;
2938 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2939 			if (e1000g_check_acc_handle(
2940 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2941 				ddi_fm_service_impact(Adapter->dip,
2942 				    DDI_SERVICE_DEGRADED);
2943 		}
2944 		return (err);
2945 	}
2946 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2947 		if (pr_val == NULL) {
2948 			err = EINVAL;
2949 			return (err);
2950 		}
2951 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2952 		if (result < MIN_TX_INTR_ABS_DELAY ||
2953 		    result > MAX_TX_INTR_ABS_DELAY)
2954 			err = EINVAL;
2955 		else {
2956 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2957 			E1000_WRITE_REG(hw, E1000_TADV,
2958 			    Adapter->tx_intr_abs_delay);
2959 			if (e1000g_check_acc_handle(
2960 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2961 				ddi_fm_service_impact(Adapter->dip,
2962 				    DDI_SERVICE_DEGRADED);
2963 		}
2964 		return (err);
2965 	}
2966 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2967 		if (pr_val == NULL) {
2968 			err = EINVAL;
2969 			return (err);
2970 		}
2971 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2972 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2973 		    result > MAX_RX_BCOPY_THRESHOLD)
2974 			err = EINVAL;
2975 		else
2976 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2977 		return (err);
2978 	}
2979 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
2980 		if (pr_val == NULL) {
2981 			err = EINVAL;
2982 			return (err);
2983 		}
2984 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2985 		if (result < MIN_RX_LIMIT_ON_INTR ||
2986 		    result > MAX_RX_LIMIT_ON_INTR)
2987 			err = EINVAL;
2988 		else
2989 			Adapter->rx_limit_onintr = (uint32_t)result;
2990 		return (err);
2991 	}
2992 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
2993 		if (pr_val == NULL) {
2994 			err = EINVAL;
2995 			return (err);
2996 		}
2997 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2998 		if (result < MIN_RX_INTR_DELAY ||
2999 		    result > MAX_RX_INTR_DELAY)
3000 			err = EINVAL;
3001 		else {
3002 			Adapter->rx_intr_delay = (uint32_t)result;
3003 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3004 			if (e1000g_check_acc_handle(
3005 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3006 				ddi_fm_service_impact(Adapter->dip,
3007 				    DDI_SERVICE_DEGRADED);
3008 		}
3009 		return (err);
3010 	}
3011 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3012 		if (pr_val == NULL) {
3013 			err = EINVAL;
3014 			return (err);
3015 		}
3016 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3017 		if (result < MIN_RX_INTR_ABS_DELAY ||
3018 		    result > MAX_RX_INTR_ABS_DELAY)
3019 			err = EINVAL;
3020 		else {
3021 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3022 			E1000_WRITE_REG(hw, E1000_RADV,
3023 			    Adapter->rx_intr_abs_delay);
3024 			if (e1000g_check_acc_handle(
3025 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3026 				ddi_fm_service_impact(Adapter->dip,
3027 				    DDI_SERVICE_DEGRADED);
3028 		}
3029 		return (err);
3030 	}
3031 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3032 		if (pr_val == NULL) {
3033 			err = EINVAL;
3034 			return (err);
3035 		}
3036 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3037 		if (result < MIN_INTR_THROTTLING ||
3038 		    result > MAX_INTR_THROTTLING)
3039 			err = EINVAL;
3040 		else {
3041 			if (hw->mac.type >= e1000_82540) {
3042 				Adapter->intr_throttling_rate =
3043 				    (uint32_t)result;
3044 				E1000_WRITE_REG(hw, E1000_ITR,
3045 				    Adapter->intr_throttling_rate);
3046 				if (e1000g_check_acc_handle(
3047 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3048 					ddi_fm_service_impact(Adapter->dip,
3049 					    DDI_SERVICE_DEGRADED);
3050 			} else
3051 				err = EINVAL;
3052 		}
3053 		return (err);
3054 	}
3055 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3056 		if (pr_val == NULL) {
3057 			err = EINVAL;
3058 			return (err);
3059 		}
3060 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3061 		if (result < 0 || result > 1)
3062 			err = EINVAL;
3063 		else {
3064 			if (hw->mac.type >= e1000_82540) {
3065 				Adapter->intr_adaptive = (result == 1) ?
3066 				    B_TRUE : B_FALSE;
3067 			} else {
3068 				err = EINVAL;
3069 			}
3070 		}
3071 		return (err);
3072 	}
3073 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3074 		if (pr_val == NULL) {
3075 			err = EINVAL;
3076 			return (err);
3077 		}
3078 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3079 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3080 		    result > MAX_TX_RECYCLE_THRESHOLD)
3081 			err = EINVAL;
3082 		else
3083 			Adapter->tx_recycle_thresh = (uint32_t)result;
3084 		return (err);
3085 	}
3086 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3087 		if (pr_val == NULL) {
3088 			err = EINVAL;
3089 			return (err);
3090 		}
3091 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3092 		if (result < MIN_TX_RECYCLE_NUM ||
3093 		    result > MAX_TX_RECYCLE_NUM)
3094 			err = EINVAL;
3095 		else
3096 			Adapter->tx_recycle_num = (uint32_t)result;
3097 		return (err);
3098 	}
3099 	return (ENOTSUP);
3100 }
3101 
3102 static int
3103 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3104     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3105 {
3106 	char valstr[MAXNAMELEN];
3107 	int err = ENOTSUP;
3108 	uint_t strsize;
3109 	boolean_t is_default = (pr_flags & DLD_DEFAULT);
3110 	int value;
3111 
3112 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3113 		if (is_default)
3114 			goto done;
3115 		value = Adapter->param_adv_pause;
3116 		err = 0;
3117 		goto done;
3118 	}
3119 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3120 		if (is_default)
3121 			goto done;
3122 		value = Adapter->param_adv_asym_pause;
3123 		err = 0;
3124 		goto done;
3125 	}
3126 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3127 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3128 		    Adapter->tx_bcopy_thresh);
3129 		err = 0;
3130 		goto done;
3131 	}
3132 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3133 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3134 		    Adapter->tx_intr_enable);
3135 		err = 0;
3136 		goto done;
3137 	}
3138 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3139 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3140 		    Adapter->tx_intr_delay);
3141 		err = 0;
3142 		goto done;
3143 	}
3144 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3145 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3146 		    Adapter->tx_intr_abs_delay);
3147 		err = 0;
3148 		goto done;
3149 	}
3150 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3151 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3152 		    Adapter->rx_bcopy_thresh);
3153 		err = 0;
3154 		goto done;
3155 	}
3156 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3157 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3158 		    Adapter->rx_limit_onintr);
3159 		err = 0;
3160 		goto done;
3161 	}
3162 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3163 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3164 		    Adapter->rx_intr_delay);
3165 		err = 0;
3166 		goto done;
3167 	}
3168 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3169 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3170 		    Adapter->rx_intr_abs_delay);
3171 		err = 0;
3172 		goto done;
3173 	}
3174 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3175 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3176 		    Adapter->intr_throttling_rate);
3177 		err = 0;
3178 		goto done;
3179 	}
3180 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3181 		value = (is_default ? 1 : Adapter->intr_adaptive);
3182 		err = 0;
3183 		goto done;
3184 	}
3185 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3186 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3187 		    Adapter->tx_recycle_thresh);
3188 		err = 0;
3189 		goto done;
3190 	}
3191 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3192 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3193 		    Adapter->tx_recycle_num);
3194 		err = 0;
3195 		goto done;
3196 	}
3197 done:
3198 	if (err == 0) {
3199 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3200 	}
3201 	return (err);
3202 }
3203 
3204 /*
3205  * e1000g_get_conf - get configurations set in e1000g.conf
3206  * This routine gets user-configured values out of the configuration
3207  * file e1000g.conf.
3208  *
3209  * For each configurable value, there is a minimum, a maximum, and a
3210  * default.
3211  * If user does not configure a value, use the default.
3212  * If user configures below the minimum, use the minumum.
3213  * If user configures above the maximum, use the maxumum.
3214  */
3215 static void
3216 e1000g_get_conf(struct e1000g *Adapter)
3217 {
3218 	struct e1000_hw *hw = &Adapter->shared;
3219 	boolean_t tbi_compatibility = B_FALSE;
3220 
3221 	/*
3222 	 * get each configurable property from e1000g.conf
3223 	 */
3224 
3225 	/*
3226 	 * NumTxDescriptors
3227 	 */
3228 	Adapter->tx_desc_num =
3229 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3230 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3231 	    DEFAULT_NUM_TX_DESCRIPTOR);
3232 
3233 	/*
3234 	 * NumRxDescriptors
3235 	 */
3236 	Adapter->rx_desc_num =
3237 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3238 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3239 	    DEFAULT_NUM_RX_DESCRIPTOR);
3240 
3241 	/*
3242 	 * NumRxFreeList
3243 	 */
3244 	Adapter->rx_freelist_num =
3245 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3246 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3247 	    DEFAULT_NUM_RX_FREELIST);
3248 
3249 	/*
3250 	 * NumTxPacketList
3251 	 */
3252 	Adapter->tx_freelist_num =
3253 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3254 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3255 	    DEFAULT_NUM_TX_FREELIST);
3256 
3257 	/*
3258 	 * FlowControl
3259 	 */
3260 	hw->fc.send_xon = B_TRUE;
3261 	hw->fc.type =
3262 	    e1000g_get_prop(Adapter, "FlowControl",
3263 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3264 	/* 4 is the setting that says "let the eeprom decide" */
3265 	if (hw->fc.type == 4)
3266 		hw->fc.type = e1000_fc_default;
3267 
3268 	/*
3269 	 * Max Num Receive Packets on Interrupt
3270 	 */
3271 	Adapter->rx_limit_onintr =
3272 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3273 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3274 	    DEFAULT_RX_LIMIT_ON_INTR);
3275 
3276 	/*
3277 	 * PHY master slave setting
3278 	 */
3279 	hw->phy.ms_type =
3280 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3281 	    e1000_ms_hw_default, e1000_ms_auto,
3282 	    e1000_ms_hw_default);
3283 
3284 	/*
3285 	 * Parameter which controls TBI mode workaround, which is only
3286 	 * needed on certain switches such as Cisco 6500/Foundry
3287 	 */
3288 	tbi_compatibility =
3289 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3290 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3291 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3292 
3293 	/*
3294 	 * MSI Enable
3295 	 */
3296 	Adapter->msi_enabled =
3297 	    e1000g_get_prop(Adapter, "MSIEnable",
3298 	    0, 1, DEFAULT_MSI_ENABLE);
3299 
3300 	/*
3301 	 * Interrupt Throttling Rate
3302 	 */
3303 	Adapter->intr_throttling_rate =
3304 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3305 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3306 	    DEFAULT_INTR_THROTTLING);
3307 
3308 	/*
3309 	 * Adaptive Interrupt Blanking Enable/Disable
3310 	 * It is enabled by default
3311 	 */
3312 	Adapter->intr_adaptive =
3313 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3314 	    B_TRUE : B_FALSE;
3315 
3316 	/*
3317 	 * Tx recycle threshold
3318 	 */
3319 	Adapter->tx_recycle_thresh =
3320 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3321 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3322 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3323 
3324 	/*
3325 	 * Tx recycle descriptor number
3326 	 */
3327 	Adapter->tx_recycle_num =
3328 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3329 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3330 	    DEFAULT_TX_RECYCLE_NUM);
3331 
3332 	/*
3333 	 * Hardware checksum enable/disable parameter
3334 	 */
3335 	Adapter->tx_hcksum_enabled =
3336 	    e1000g_get_prop(Adapter, "tx_hcksum_enabled",
3337 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3338 
3339 }
3340 
3341 /*
3342  * e1000g_get_prop - routine to read properties
3343  *
3344  * Get a user-configure property value out of the configuration
3345  * file e1000g.conf.
3346  *
3347  * Caller provides name of the property, a default value, a minimum
3348  * value, and a maximum value.
3349  *
3350  * Return configured value of the property, with default, minimum and
3351  * maximum properly applied.
3352  */
3353 static int
3354 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3355     char *propname,		/* name of the property */
3356     int minval,			/* minimum acceptable value */
3357     int maxval,			/* maximim acceptable value */
3358     int defval)			/* default value */
3359 {
3360 	int propval;		/* value returned for requested property */
3361 	int *props;		/* point to array of properties returned */
3362 	uint_t nprops;		/* number of property value returned */
3363 
3364 	/*
3365 	 * get the array of properties from the config file
3366 	 */
3367 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3368 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3369 		/* got some properties, test if we got enough */
3370 		if (Adapter->instance < nprops) {
3371 			propval = props[Adapter->instance];
3372 		} else {
3373 			/* not enough properties configured */
3374 			propval = defval;
3375 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3376 			    "Not Enough %s values found in e1000g.conf"
3377 			    " - set to %d\n",
3378 			    propname, propval);
3379 		}
3380 
3381 		/* free memory allocated for properties */
3382 		ddi_prop_free(props);
3383 
3384 	} else {
3385 		propval = defval;
3386 	}
3387 
3388 	/*
3389 	 * enforce limits
3390 	 */
3391 	if (propval > maxval) {
3392 		propval = maxval;
3393 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3394 		    "Too High %s value in e1000g.conf - set to %d\n",
3395 		    propname, propval);
3396 	}
3397 
3398 	if (propval < minval) {
3399 		propval = minval;
3400 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3401 		    "Too Low %s value in e1000g.conf - set to %d\n",
3402 		    propname, propval);
3403 	}
3404 
3405 	return (propval);
3406 }
3407 
3408 static boolean_t
3409 e1000g_link_check(struct e1000g *Adapter)
3410 {
3411 	uint16_t speed, duplex, phydata;
3412 	boolean_t link_changed = B_FALSE;
3413 	struct e1000_hw *hw;
3414 	uint32_t reg_tarc;
3415 
3416 	hw = &Adapter->shared;
3417 
3418 	if (e1000g_link_up(Adapter)) {
3419 		/*
3420 		 * The Link is up, check whether it was marked as down earlier
3421 		 */
3422 		if (Adapter->link_state != LINK_STATE_UP) {
3423 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3424 			Adapter->link_speed = speed;
3425 			Adapter->link_duplex = duplex;
3426 			Adapter->link_state = LINK_STATE_UP;
3427 			link_changed = B_TRUE;
3428 
3429 			Adapter->tx_link_down_timeout = 0;
3430 
3431 			if ((hw->mac.type == e1000_82571) ||
3432 			    (hw->mac.type == e1000_82572)) {
3433 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3434 				if (speed == SPEED_1000)
3435 					reg_tarc |= (1 << 21);
3436 				else
3437 					reg_tarc &= ~(1 << 21);
3438 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3439 			}
3440 		}
3441 		Adapter->smartspeed = 0;
3442 	} else {
3443 		if (Adapter->link_state != LINK_STATE_DOWN) {
3444 			Adapter->link_speed = 0;
3445 			Adapter->link_duplex = 0;
3446 			Adapter->link_state = LINK_STATE_DOWN;
3447 			link_changed = B_TRUE;
3448 
3449 			/*
3450 			 * SmartSpeed workaround for Tabor/TanaX, When the
3451 			 * driver loses link disable auto master/slave
3452 			 * resolution.
3453 			 */
3454 			if (hw->phy.type == e1000_phy_igp) {
3455 				e1000_read_phy_reg(hw,
3456 				    PHY_1000T_CTRL, &phydata);
3457 				phydata |= CR_1000T_MS_ENABLE;
3458 				e1000_write_phy_reg(hw,
3459 				    PHY_1000T_CTRL, phydata);
3460 			}
3461 		} else {
3462 			e1000g_smartspeed(Adapter);
3463 		}
3464 
3465 		if (Adapter->chip_state == E1000G_START) {
3466 			if (Adapter->tx_link_down_timeout <
3467 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3468 				Adapter->tx_link_down_timeout++;
3469 			} else if (Adapter->tx_link_down_timeout ==
3470 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3471 				e1000g_tx_clean(Adapter);
3472 				Adapter->tx_link_down_timeout++;
3473 			}
3474 		}
3475 	}
3476 
3477 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3478 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3479 
3480 	return (link_changed);
3481 }
3482 
3483 /*
3484  * e1000g_reset_link - Using the link properties to setup the link
3485  */
3486 int
3487 e1000g_reset_link(struct e1000g *Adapter)
3488 {
3489 	struct e1000_mac_info *mac;
3490 	struct e1000_phy_info *phy;
3491 	boolean_t invalid;
3492 
3493 	mac = &Adapter->shared.mac;
3494 	phy = &Adapter->shared.phy;
3495 	invalid = B_FALSE;
3496 
3497 	if (Adapter->param_adv_autoneg == 1) {
3498 		mac->autoneg = B_TRUE;
3499 		phy->autoneg_advertised = 0;
3500 
3501 		/*
3502 		 * 1000hdx is not supported for autonegotiation
3503 		 */
3504 		if (Adapter->param_adv_1000fdx == 1)
3505 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3506 
3507 		if (Adapter->param_adv_100fdx == 1)
3508 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3509 
3510 		if (Adapter->param_adv_100hdx == 1)
3511 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3512 
3513 		if (Adapter->param_adv_10fdx == 1)
3514 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3515 
3516 		if (Adapter->param_adv_10hdx == 1)
3517 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3518 
3519 		if (phy->autoneg_advertised == 0)
3520 			invalid = B_TRUE;
3521 	} else {
3522 		mac->autoneg = B_FALSE;
3523 
3524 		/*
3525 		 * 1000fdx and 1000hdx are not supported for forced link
3526 		 */
3527 		if (Adapter->param_adv_100fdx == 1)
3528 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3529 		else if (Adapter->param_adv_100hdx == 1)
3530 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3531 		else if (Adapter->param_adv_10fdx == 1)
3532 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3533 		else if (Adapter->param_adv_10hdx == 1)
3534 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3535 		else
3536 			invalid = B_TRUE;
3537 
3538 	}
3539 
3540 	if (invalid) {
3541 		e1000g_log(Adapter, CE_WARN,
3542 		    "Invalid link sets. Setup link to"
3543 		    "support autonegotiation with all link capabilities.");
3544 		mac->autoneg = B_TRUE;
3545 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3546 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3547 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3548 	}
3549 
3550 	return (e1000_setup_link(&Adapter->shared));
3551 }
3552 
3553 static void
3554 e1000g_local_timer(void *ws)
3555 {
3556 	struct e1000g *Adapter = (struct e1000g *)ws;
3557 	struct e1000_hw *hw;
3558 	e1000g_ether_addr_t ether_addr;
3559 	boolean_t link_changed;
3560 
3561 	hw = &Adapter->shared;
3562 
3563 	if (Adapter->chip_state == E1000G_ERROR) {
3564 		Adapter->reset_count++;
3565 		if (e1000g_global_reset(Adapter))
3566 			ddi_fm_service_impact(Adapter->dip,
3567 			    DDI_SERVICE_RESTORED);
3568 		else
3569 			ddi_fm_service_impact(Adapter->dip,
3570 			    DDI_SERVICE_LOST);
3571 		return;
3572 	}
3573 
3574 	if (e1000g_stall_check(Adapter)) {
3575 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3576 		    "Tx stall detected. Activate automatic recovery.\n");
3577 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3578 		Adapter->reset_count++;
3579 		if (e1000g_reset(Adapter))
3580 			ddi_fm_service_impact(Adapter->dip,
3581 			    DDI_SERVICE_RESTORED);
3582 		else
3583 			ddi_fm_service_impact(Adapter->dip,
3584 			    DDI_SERVICE_LOST);
3585 		return;
3586 	}
3587 
3588 	link_changed = B_FALSE;
3589 	rw_enter(&Adapter->chip_lock, RW_READER);
3590 	if (Adapter->link_complete)
3591 		link_changed = e1000g_link_check(Adapter);
3592 	rw_exit(&Adapter->chip_lock);
3593 
3594 	if (link_changed) {
3595 		/*
3596 		 * Workaround for esb2. Data stuck in fifo on a link
3597 		 * down event. Reset the adapter to recover it.
3598 		 */
3599 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
3600 		    (hw->mac.type == e1000_80003es2lan))
3601 			(void) e1000g_reset(Adapter);
3602 
3603 		mac_link_update(Adapter->mh, Adapter->link_state);
3604 	}
3605 
3606 	/*
3607 	 * With 82571 controllers, any locally administered address will
3608 	 * be overwritten when there is a reset on the other port.
3609 	 * Detect this circumstance and correct it.
3610 	 */
3611 	if ((hw->mac.type == e1000_82571) &&
3612 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3613 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3614 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3615 
3616 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3617 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3618 
3619 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3620 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3621 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3622 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3623 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3624 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3625 			e1000_rar_set(hw, hw->mac.addr, 0);
3626 		}
3627 	}
3628 
3629 	/*
3630 	 * Long TTL workaround for 82541/82547
3631 	 */
3632 	e1000_igp_ttl_workaround_82547(hw);
3633 
3634 	/*
3635 	 * Check for Adaptive IFS settings If there are lots of collisions
3636 	 * change the value in steps...
3637 	 * These properties should only be set for 10/100
3638 	 */
3639 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3640 	    ((Adapter->link_speed == SPEED_100) ||
3641 	    (Adapter->link_speed == SPEED_10))) {
3642 		e1000_update_adaptive(hw);
3643 	}
3644 	/*
3645 	 * Set Timer Interrupts
3646 	 */
3647 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3648 
3649 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3650 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3651 
3652 	restart_watchdog_timer(Adapter);
3653 }
3654 
3655 /*
3656  * The function e1000g_link_timer() is called when the timer for link setup
3657  * is expired, which indicates the completion of the link setup. The link
3658  * state will not be updated until the link setup is completed. And the
3659  * link state will not be sent to the upper layer through mac_link_update()
3660  * in this function. It will be updated in the local timer routine or the
3661  * interrupt service routine after the interface is started (plumbed).
3662  */
3663 static void
3664 e1000g_link_timer(void *arg)
3665 {
3666 	struct e1000g *Adapter = (struct e1000g *)arg;
3667 
3668 	mutex_enter(&Adapter->link_lock);
3669 	Adapter->link_complete = B_TRUE;
3670 	Adapter->link_tid = 0;
3671 	mutex_exit(&Adapter->link_lock);
3672 }
3673 
3674 /*
3675  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3676  *
3677  * This function read the forced speed and duplex for 10/100 Mbps speeds
3678  * and also for 1000 Mbps speeds from the e1000g.conf file
3679  */
3680 static void
3681 e1000g_force_speed_duplex(struct e1000g *Adapter)
3682 {
3683 	int forced;
3684 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3685 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3686 
3687 	/*
3688 	 * get value out of config file
3689 	 */
3690 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3691 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3692 
3693 	switch (forced) {
3694 	case GDIAG_10_HALF:
3695 		/*
3696 		 * Disable Auto Negotiation
3697 		 */
3698 		mac->autoneg = B_FALSE;
3699 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3700 		break;
3701 	case GDIAG_10_FULL:
3702 		/*
3703 		 * Disable Auto Negotiation
3704 		 */
3705 		mac->autoneg = B_FALSE;
3706 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3707 		break;
3708 	case GDIAG_100_HALF:
3709 		/*
3710 		 * Disable Auto Negotiation
3711 		 */
3712 		mac->autoneg = B_FALSE;
3713 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3714 		break;
3715 	case GDIAG_100_FULL:
3716 		/*
3717 		 * Disable Auto Negotiation
3718 		 */
3719 		mac->autoneg = B_FALSE;
3720 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3721 		break;
3722 	case GDIAG_1000_FULL:
3723 		/*
3724 		 * The gigabit spec requires autonegotiation.  Therefore,
3725 		 * when the user wants to force the speed to 1000Mbps, we
3726 		 * enable AutoNeg, but only allow the harware to advertise
3727 		 * 1000Mbps.  This is different from 10/100 operation, where
3728 		 * we are allowed to link without any negotiation.
3729 		 */
3730 		mac->autoneg = B_TRUE;
3731 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3732 		break;
3733 	default:	/* obey the setting of AutoNegAdvertised */
3734 		mac->autoneg = B_TRUE;
3735 		phy->autoneg_advertised =
3736 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3737 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3738 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3739 		break;
3740 	}	/* switch */
3741 }
3742 
3743 /*
3744  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3745  *
3746  * This function reads MaxFrameSize from e1000g.conf
3747  */
3748 static void
3749 e1000g_get_max_frame_size(struct e1000g *Adapter)
3750 {
3751 	int max_frame;
3752 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3753 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3754 
3755 	/*
3756 	 * get value out of config file
3757 	 */
3758 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3759 
3760 	switch (max_frame) {
3761 	case 0:
3762 		Adapter->default_mtu = ETHERMTU;
3763 		break;
3764 	/*
3765 	 * To avoid excessive memory allocation for rx buffers,
3766 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3767 	 */
3768 	case 1:
3769 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3770 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3771 		    E1000G_IPALIGNPRESERVEROOM;
3772 		break;
3773 	case 2:
3774 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3775 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3776 		    E1000G_IPALIGNPRESERVEROOM;
3777 		break;
3778 	case 3:
3779 		if (mac->type >= e1000_82571)
3780 			Adapter->default_mtu = MAXIMUM_MTU;
3781 		else
3782 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3783 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3784 			    E1000G_IPALIGNPRESERVEROOM;
3785 		break;
3786 	default:
3787 		Adapter->default_mtu = ETHERMTU;
3788 		break;
3789 	}	/* switch */
3790 
3791 	Adapter->max_frame_size = Adapter->default_mtu +
3792 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3793 
3794 	/* ich8 does not do jumbo frames */
3795 	if (mac->type == e1000_ich8lan) {
3796 		Adapter->max_frame_size = ETHERMAX;
3797 	}
3798 
3799 	/* ich9 does not do jumbo frames on one phy type */
3800 	if ((mac->type == e1000_ich9lan) &&
3801 	    (phy->type == e1000_phy_ife)) {
3802 		Adapter->max_frame_size = ETHERMAX;
3803 	}
3804 }
3805 
3806 static void
3807 arm_watchdog_timer(struct e1000g *Adapter)
3808 {
3809 	Adapter->watchdog_tid =
3810 	    timeout(e1000g_local_timer,
3811 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3812 }
3813 #pragma inline(arm_watchdog_timer)
3814 
3815 static void
3816 enable_watchdog_timer(struct e1000g *Adapter)
3817 {
3818 	mutex_enter(&Adapter->watchdog_lock);
3819 
3820 	if (!Adapter->watchdog_timer_enabled) {
3821 		Adapter->watchdog_timer_enabled = B_TRUE;
3822 		Adapter->watchdog_timer_started = B_TRUE;
3823 		arm_watchdog_timer(Adapter);
3824 	}
3825 
3826 	mutex_exit(&Adapter->watchdog_lock);
3827 }
3828 
3829 static void
3830 disable_watchdog_timer(struct e1000g *Adapter)
3831 {
3832 	timeout_id_t tid;
3833 
3834 	mutex_enter(&Adapter->watchdog_lock);
3835 
3836 	Adapter->watchdog_timer_enabled = B_FALSE;
3837 	Adapter->watchdog_timer_started = B_FALSE;
3838 	tid = Adapter->watchdog_tid;
3839 	Adapter->watchdog_tid = 0;
3840 
3841 	mutex_exit(&Adapter->watchdog_lock);
3842 
3843 	if (tid != 0)
3844 		(void) untimeout(tid);
3845 }
3846 
3847 static void
3848 start_watchdog_timer(struct e1000g *Adapter)
3849 {
3850 	mutex_enter(&Adapter->watchdog_lock);
3851 
3852 	if (Adapter->watchdog_timer_enabled) {
3853 		if (!Adapter->watchdog_timer_started) {
3854 			Adapter->watchdog_timer_started = B_TRUE;
3855 			arm_watchdog_timer(Adapter);
3856 		}
3857 	}
3858 
3859 	mutex_exit(&Adapter->watchdog_lock);
3860 }
3861 
3862 static void
3863 restart_watchdog_timer(struct e1000g *Adapter)
3864 {
3865 	mutex_enter(&Adapter->watchdog_lock);
3866 
3867 	if (Adapter->watchdog_timer_started)
3868 		arm_watchdog_timer(Adapter);
3869 
3870 	mutex_exit(&Adapter->watchdog_lock);
3871 }
3872 
3873 static void
3874 stop_watchdog_timer(struct e1000g *Adapter)
3875 {
3876 	timeout_id_t tid;
3877 
3878 	mutex_enter(&Adapter->watchdog_lock);
3879 
3880 	Adapter->watchdog_timer_started = B_FALSE;
3881 	tid = Adapter->watchdog_tid;
3882 	Adapter->watchdog_tid = 0;
3883 
3884 	mutex_exit(&Adapter->watchdog_lock);
3885 
3886 	if (tid != 0)
3887 		(void) untimeout(tid);
3888 }
3889 
3890 static void
3891 stop_link_timer(struct e1000g *Adapter)
3892 {
3893 	timeout_id_t tid;
3894 
3895 	/* Disable the link timer */
3896 	mutex_enter(&Adapter->link_lock);
3897 
3898 	tid = Adapter->link_tid;
3899 	Adapter->link_tid = 0;
3900 
3901 	mutex_exit(&Adapter->link_lock);
3902 
3903 	if (tid != 0)
3904 		(void) untimeout(tid);
3905 }
3906 
3907 static void
3908 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3909 {
3910 	timeout_id_t tid;
3911 
3912 	/* Disable the tx timer for 82547 chipset */
3913 	mutex_enter(&tx_ring->tx_lock);
3914 
3915 	tx_ring->timer_enable_82547 = B_FALSE;
3916 	tid = tx_ring->timer_id_82547;
3917 	tx_ring->timer_id_82547 = 0;
3918 
3919 	mutex_exit(&tx_ring->tx_lock);
3920 
3921 	if (tid != 0)
3922 		(void) untimeout(tid);
3923 }
3924 
3925 void
3926 e1000g_clear_interrupt(struct e1000g *Adapter)
3927 {
3928 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
3929 	    0xffffffff & ~E1000_IMS_RXSEQ);
3930 }
3931 
3932 void
3933 e1000g_mask_interrupt(struct e1000g *Adapter)
3934 {
3935 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
3936 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
3937 
3938 	if (Adapter->tx_intr_enable)
3939 		e1000g_mask_tx_interrupt(Adapter);
3940 }
3941 
3942 void
3943 e1000g_clear_all_interrupts(struct e1000g *Adapter)
3944 {
3945 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
3946 }
3947 
3948 void
3949 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3950 {
3951 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
3952 }
3953 
3954 void
3955 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3956 {
3957 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
3958 }
3959 
3960 static void
3961 e1000g_smartspeed(struct e1000g *Adapter)
3962 {
3963 	struct e1000_hw *hw = &Adapter->shared;
3964 	uint16_t phy_status;
3965 	uint16_t phy_ctrl;
3966 
3967 	/*
3968 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3969 	 * advertising 1000Full, we don't even use the workaround
3970 	 */
3971 	if ((hw->phy.type != e1000_phy_igp) ||
3972 	    !hw->mac.autoneg ||
3973 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3974 		return;
3975 
3976 	/*
3977 	 * True if this is the first call of this function or after every
3978 	 * 30 seconds of not having link
3979 	 */
3980 	if (Adapter->smartspeed == 0) {
3981 		/*
3982 		 * If Master/Slave config fault is asserted twice, we
3983 		 * assume back-to-back
3984 		 */
3985 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3986 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3987 			return;
3988 
3989 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3990 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3991 			return;
3992 		/*
3993 		 * We're assuming back-2-back because our status register
3994 		 * insists! there's a fault in the master/slave
3995 		 * relationship that was "negotiated"
3996 		 */
3997 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3998 		/*
3999 		 * Is the phy configured for manual configuration of
4000 		 * master/slave?
4001 		 */
4002 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4003 			/*
4004 			 * Yes.  Then disable manual configuration (enable
4005 			 * auto configuration) of master/slave
4006 			 */
4007 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4008 			e1000_write_phy_reg(hw,
4009 			    PHY_1000T_CTRL, phy_ctrl);
4010 			/*
4011 			 * Effectively starting the clock
4012 			 */
4013 			Adapter->smartspeed++;
4014 			/*
4015 			 * Restart autonegotiation
4016 			 */
4017 			if (!e1000_phy_setup_autoneg(hw) &&
4018 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4019 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4020 				    MII_CR_RESTART_AUTO_NEG);
4021 				e1000_write_phy_reg(hw,
4022 				    PHY_CONTROL, phy_ctrl);
4023 			}
4024 		}
4025 		return;
4026 		/*
4027 		 * Has 6 seconds transpired still without link? Remember,
4028 		 * you should reset the smartspeed counter once you obtain
4029 		 * link
4030 		 */
4031 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4032 		/*
4033 		 * Yes.  Remember, we did at the start determine that
4034 		 * there's a master/slave configuration fault, so we're
4035 		 * still assuming there's someone on the other end, but we
4036 		 * just haven't yet been able to talk to it. We then
4037 		 * re-enable auto configuration of master/slave to see if
4038 		 * we're running 2/3 pair cables.
4039 		 */
4040 		/*
4041 		 * If still no link, perhaps using 2/3 pair cable
4042 		 */
4043 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4044 		phy_ctrl |= CR_1000T_MS_ENABLE;
4045 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4046 		/*
4047 		 * Restart autoneg with phy enabled for manual
4048 		 * configuration of master/slave
4049 		 */
4050 		if (!e1000_phy_setup_autoneg(hw) &&
4051 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4052 			phy_ctrl |=
4053 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4054 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4055 		}
4056 		/*
4057 		 * Hopefully, there are no more faults and we've obtained
4058 		 * link as a result.
4059 		 */
4060 	}
4061 	/*
4062 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4063 	 * seconds)
4064 	 */
4065 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4066 		Adapter->smartspeed = 0;
4067 }
4068 
4069 static boolean_t
4070 is_valid_mac_addr(uint8_t *mac_addr)
4071 {
4072 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4073 	const uint8_t addr_test2[6] =
4074 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4075 
4076 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4077 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4078 		return (B_FALSE);
4079 
4080 	return (B_TRUE);
4081 }
4082 
4083 /*
4084  * e1000g_stall_check - check for tx stall
4085  *
4086  * This function checks if the adapter is stalled (in transmit).
4087  *
4088  * It is called each time the watchdog timeout is invoked.
4089  * If the transmit descriptor reclaim continuously fails,
4090  * the watchdog value will increment by 1. If the watchdog
4091  * value exceeds the threshold, the adapter is assumed to
4092  * have stalled and need to be reset.
4093  */
4094 static boolean_t
4095 e1000g_stall_check(struct e1000g *Adapter)
4096 {
4097 	e1000g_tx_ring_t *tx_ring;
4098 
4099 	tx_ring = Adapter->tx_ring;
4100 
4101 	if (Adapter->link_state != LINK_STATE_UP)
4102 		return (B_FALSE);
4103 
4104 	if (tx_ring->recycle_fail > 0)
4105 		tx_ring->stall_watchdog++;
4106 	else
4107 		tx_ring->stall_watchdog = 0;
4108 
4109 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4110 		return (B_FALSE);
4111 
4112 	tx_ring->stall_watchdog = 0;
4113 	tx_ring->recycle_fail = 0;
4114 
4115 	return (B_TRUE);
4116 }
4117 
4118 #ifdef E1000G_DEBUG
4119 static enum ioc_reply
4120 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4121 {
4122 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4123 	e1000g_peekpoke_t *ppd;
4124 	uint64_t mem_va;
4125 	uint64_t maxoff;
4126 	boolean_t peek;
4127 
4128 	switch (iocp->ioc_cmd) {
4129 
4130 	case E1000G_IOC_REG_PEEK:
4131 		peek = B_TRUE;
4132 		break;
4133 
4134 	case E1000G_IOC_REG_POKE:
4135 		peek = B_FALSE;
4136 		break;
4137 
4138 	deault:
4139 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4140 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4141 		    iocp->ioc_cmd);
4142 		return (IOC_INVAL);
4143 	}
4144 
4145 	/*
4146 	 * Validate format of ioctl
4147 	 */
4148 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4149 		return (IOC_INVAL);
4150 	if (mp->b_cont == NULL)
4151 		return (IOC_INVAL);
4152 
4153 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
4154 
4155 	/*
4156 	 * Validate request parameters
4157 	 */
4158 	switch (ppd->pp_acc_space) {
4159 
4160 	default:
4161 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4162 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4163 		    ppd->pp_acc_space);
4164 		return (IOC_INVAL);
4165 
4166 	case E1000G_PP_SPACE_REG:
4167 		/*
4168 		 * Memory-mapped I/O space
4169 		 */
4170 		ASSERT(ppd->pp_acc_size == 4);
4171 		if (ppd->pp_acc_size != 4)
4172 			return (IOC_INVAL);
4173 
4174 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4175 			return (IOC_INVAL);
4176 
4177 		mem_va = 0;
4178 		maxoff = 0x10000;
4179 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4180 		break;
4181 
4182 	case E1000G_PP_SPACE_E1000G:
4183 		/*
4184 		 * E1000g data structure!
4185 		 */
4186 		mem_va = (uintptr_t)e1000gp;
4187 		maxoff = sizeof (struct e1000g);
4188 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4189 		break;
4190 
4191 	}
4192 
4193 	if (ppd->pp_acc_offset >= maxoff)
4194 		return (IOC_INVAL);
4195 
4196 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4197 		return (IOC_INVAL);
4198 
4199 	/*
4200 	 * All OK - go!
4201 	 */
4202 	ppd->pp_acc_offset += mem_va;
4203 	(*ppfn)(e1000gp, ppd);
4204 	return (peek ? IOC_REPLY : IOC_ACK);
4205 }
4206 
4207 static void
4208 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4209 {
4210 	ddi_acc_handle_t handle;
4211 	uint32_t *regaddr;
4212 
4213 	handle = e1000gp->osdep.reg_handle;
4214 	regaddr =
4215 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4216 
4217 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4218 }
4219 
4220 static void
4221 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4222 {
4223 	ddi_acc_handle_t handle;
4224 	uint32_t *regaddr;
4225 	uint32_t value;
4226 
4227 	handle = e1000gp->osdep.reg_handle;
4228 	regaddr =
4229 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4230 	value = (uint32_t)ppd->pp_acc_data;
4231 
4232 	ddi_put32(handle, regaddr, value);
4233 }
4234 
4235 static void
4236 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4237 {
4238 	uint64_t value;
4239 	void *vaddr;
4240 
4241 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4242 
4243 	switch (ppd->pp_acc_size) {
4244 	case 1:
4245 		value = *(uint8_t *)vaddr;
4246 		break;
4247 
4248 	case 2:
4249 		value = *(uint16_t *)vaddr;
4250 		break;
4251 
4252 	case 4:
4253 		value = *(uint32_t *)vaddr;
4254 		break;
4255 
4256 	case 8:
4257 		value = *(uint64_t *)vaddr;
4258 		break;
4259 	}
4260 
4261 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4262 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4263 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4264 
4265 	ppd->pp_acc_data = value;
4266 }
4267 
4268 static void
4269 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4270 {
4271 	uint64_t value;
4272 	void *vaddr;
4273 
4274 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4275 	value = ppd->pp_acc_data;
4276 
4277 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4278 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4279 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4280 
4281 	switch (ppd->pp_acc_size) {
4282 	case 1:
4283 		*(uint8_t *)vaddr = (uint8_t)value;
4284 		break;
4285 
4286 	case 2:
4287 		*(uint16_t *)vaddr = (uint16_t)value;
4288 		break;
4289 
4290 	case 4:
4291 		*(uint32_t *)vaddr = (uint32_t)value;
4292 		break;
4293 
4294 	case 8:
4295 		*(uint64_t *)vaddr = (uint64_t)value;
4296 		break;
4297 	}
4298 }
4299 #endif
4300 
4301 /*
4302  * Loopback Support
4303  */
4304 static lb_property_t lb_normal =
4305 	{ normal,	"normal",	E1000G_LB_NONE		};
4306 static lb_property_t lb_external1000 =
4307 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4308 static lb_property_t lb_external100 =
4309 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4310 static lb_property_t lb_external10 =
4311 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4312 static lb_property_t lb_phy =
4313 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4314 
4315 static enum ioc_reply
4316 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4317 {
4318 	lb_info_sz_t *lbsp;
4319 	lb_property_t *lbpp;
4320 	struct e1000_hw *hw;
4321 	uint32_t *lbmp;
4322 	uint32_t size;
4323 	uint32_t value;
4324 
4325 	hw = &Adapter->shared;
4326 
4327 	if (mp->b_cont == NULL)
4328 		return (IOC_INVAL);
4329 
4330 	switch (iocp->ioc_cmd) {
4331 	default:
4332 		return (IOC_INVAL);
4333 
4334 	case LB_GET_INFO_SIZE:
4335 		size = sizeof (lb_info_sz_t);
4336 		if (iocp->ioc_count != size)
4337 			return (IOC_INVAL);
4338 
4339 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4340 		e1000g_get_phy_state(Adapter);
4341 
4342 		/*
4343 		 * Workaround for hardware faults. In order to get a stable
4344 		 * state of phy, we will wait for a specific interval and
4345 		 * try again. The time delay is an experiential value based
4346 		 * on our testing.
4347 		 */
4348 		msec_delay(100);
4349 		e1000g_get_phy_state(Adapter);
4350 		rw_exit(&Adapter->chip_lock);
4351 
4352 		value = sizeof (lb_normal);
4353 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4354 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4355 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4356 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4357 			value += sizeof (lb_phy);
4358 			switch (hw->mac.type) {
4359 			case e1000_82571:
4360 			case e1000_82572:
4361 				value += sizeof (lb_external1000);
4362 				break;
4363 			}
4364 		}
4365 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4366 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4367 			value += sizeof (lb_external100);
4368 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4369 			value += sizeof (lb_external10);
4370 
4371 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
4372 		*lbsp = value;
4373 		break;
4374 
4375 	case LB_GET_INFO:
4376 		value = sizeof (lb_normal);
4377 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4378 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4379 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4380 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4381 			value += sizeof (lb_phy);
4382 			switch (hw->mac.type) {
4383 			case e1000_82571:
4384 			case e1000_82572:
4385 				value += sizeof (lb_external1000);
4386 				break;
4387 			}
4388 		}
4389 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4390 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4391 			value += sizeof (lb_external100);
4392 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4393 			value += sizeof (lb_external10);
4394 
4395 		size = value;
4396 		if (iocp->ioc_count != size)
4397 			return (IOC_INVAL);
4398 
4399 		value = 0;
4400 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
4401 		lbpp[value++] = lb_normal;
4402 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4403 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4404 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4405 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4406 			lbpp[value++] = lb_phy;
4407 			switch (hw->mac.type) {
4408 			case e1000_82571:
4409 			case e1000_82572:
4410 				lbpp[value++] = lb_external1000;
4411 				break;
4412 			}
4413 		}
4414 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4415 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4416 			lbpp[value++] = lb_external100;
4417 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4418 			lbpp[value++] = lb_external10;
4419 		break;
4420 
4421 	case LB_GET_MODE:
4422 		size = sizeof (uint32_t);
4423 		if (iocp->ioc_count != size)
4424 			return (IOC_INVAL);
4425 
4426 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4427 		*lbmp = Adapter->loopback_mode;
4428 		break;
4429 
4430 	case LB_SET_MODE:
4431 		size = 0;
4432 		if (iocp->ioc_count != sizeof (uint32_t))
4433 			return (IOC_INVAL);
4434 
4435 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4436 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4437 			return (IOC_INVAL);
4438 		break;
4439 	}
4440 
4441 	iocp->ioc_count = size;
4442 	iocp->ioc_error = 0;
4443 
4444 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4445 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4446 		return (IOC_INVAL);
4447 	}
4448 
4449 	return (IOC_REPLY);
4450 }
4451 
4452 static boolean_t
4453 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4454 {
4455 	struct e1000_hw *hw;
4456 	int i, times;
4457 	boolean_t link_up;
4458 
4459 	if (mode == Adapter->loopback_mode)
4460 		return (B_TRUE);
4461 
4462 	hw = &Adapter->shared;
4463 	times = 0;
4464 
4465 	Adapter->loopback_mode = mode;
4466 
4467 	if (mode == E1000G_LB_NONE) {
4468 		/* Reset the chip */
4469 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4470 		(void) e1000g_reset(Adapter);
4471 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4472 		return (B_TRUE);
4473 	}
4474 
4475 again:
4476 
4477 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4478 
4479 	switch (mode) {
4480 	default:
4481 		rw_exit(&Adapter->chip_lock);
4482 		return (B_FALSE);
4483 
4484 	case E1000G_LB_EXTERNAL_1000:
4485 		e1000g_set_external_loopback_1000(Adapter);
4486 		break;
4487 
4488 	case E1000G_LB_EXTERNAL_100:
4489 		e1000g_set_external_loopback_100(Adapter);
4490 		break;
4491 
4492 	case E1000G_LB_EXTERNAL_10:
4493 		e1000g_set_external_loopback_10(Adapter);
4494 		break;
4495 
4496 	case E1000G_LB_INTERNAL_PHY:
4497 		e1000g_set_internal_loopback(Adapter);
4498 		break;
4499 	}
4500 
4501 	times++;
4502 
4503 	rw_exit(&Adapter->chip_lock);
4504 
4505 	/* Wait for link up */
4506 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4507 		msec_delay(100);
4508 
4509 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4510 
4511 	link_up = e1000g_link_up(Adapter);
4512 
4513 	rw_exit(&Adapter->chip_lock);
4514 
4515 	if (!link_up) {
4516 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4517 		    "Failed to get the link up");
4518 		if (times < 2) {
4519 			/* Reset the link */
4520 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4521 			    "Reset the link ...");
4522 			(void) e1000g_reset(Adapter);
4523 			goto again;
4524 		}
4525 	}
4526 
4527 	return (B_TRUE);
4528 }
4529 
4530 /*
4531  * The following loopback settings are from Intel's technical
4532  * document - "How To Loopback". All the register settings and
4533  * time delay values are directly inherited from the document
4534  * without more explanations available.
4535  */
4536 static void
4537 e1000g_set_internal_loopback(struct e1000g *Adapter)
4538 {
4539 	struct e1000_hw *hw;
4540 	uint32_t ctrl;
4541 	uint32_t status;
4542 	uint16_t phy_ctrl;
4543 	uint32_t txcw;
4544 
4545 	hw = &Adapter->shared;
4546 
4547 	/* Disable Smart Power Down */
4548 	phy_spd_state(hw, B_FALSE);
4549 
4550 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4551 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4552 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4553 
4554 	switch (hw->mac.type) {
4555 	case e1000_82540:
4556 	case e1000_82545:
4557 	case e1000_82545_rev_3:
4558 	case e1000_82546:
4559 	case e1000_82546_rev_3:
4560 	case e1000_82573:
4561 		/* Auto-MDI/MDIX off */
4562 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4563 		/* Reset PHY to update Auto-MDI/MDIX */
4564 		e1000_write_phy_reg(hw, PHY_CONTROL,
4565 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4566 		/* Reset PHY to auto-neg off and force 1000 */
4567 		e1000_write_phy_reg(hw, PHY_CONTROL,
4568 		    phy_ctrl | MII_CR_RESET);
4569 		/*
4570 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4571 		 * See comments above e1000g_set_internal_loopback() for the
4572 		 * background.
4573 		 */
4574 		e1000_write_phy_reg(hw, 29, 0x001F);
4575 		e1000_write_phy_reg(hw, 30, 0x8FFC);
4576 		e1000_write_phy_reg(hw, 29, 0x001A);
4577 		e1000_write_phy_reg(hw, 30, 0x8FF0);
4578 		break;
4579 	}
4580 
4581 	/* Set loopback */
4582 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4583 
4584 	msec_delay(250);
4585 
4586 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4587 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4588 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4589 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4590 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4591 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4592 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4593 
4594 	switch (hw->mac.type) {
4595 	case e1000_82540:
4596 	case e1000_82545:
4597 	case e1000_82545_rev_3:
4598 	case e1000_82546:
4599 	case e1000_82546_rev_3:
4600 		/*
4601 		 * For some serdes we'll need to commit the writes now
4602 		 * so that the status is updated on link
4603 		 */
4604 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4605 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4606 			msec_delay(100);
4607 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4608 		}
4609 
4610 		if (hw->phy.media_type == e1000_media_type_copper) {
4611 			/* Invert Loss of Signal */
4612 			ctrl |= E1000_CTRL_ILOS;
4613 		} else {
4614 			/* Set ILOS on fiber nic if half duplex is detected */
4615 			status = E1000_READ_REG(hw, E1000_STATUS);
4616 			if ((status & E1000_STATUS_FD) == 0)
4617 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4618 		}
4619 		break;
4620 
4621 	case e1000_82571:
4622 	case e1000_82572:
4623 		/*
4624 		 * The fiber/SerDes versions of this adapter do not contain an
4625 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4626 		 * using SerDes analog loopback.
4627 		 */
4628 		if (hw->phy.media_type != e1000_media_type_copper) {
4629 			status = E1000_READ_REG(hw, E1000_STATUS);
4630 			/* Set ILOS on fiber nic if half duplex is detected */
4631 			if (((status & E1000_STATUS_LU) == 0) ||
4632 			    ((status & E1000_STATUS_FD) == 0) ||
4633 			    (hw->phy.media_type ==
4634 			    e1000_media_type_internal_serdes))
4635 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4636 
4637 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4638 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4639 			txcw &= ~((uint32_t)1 << 31);
4640 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4641 
4642 			/*
4643 			 * Write 0x410 to Serdes Control register
4644 			 * to enable Serdes analog loopback
4645 			 */
4646 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4647 			msec_delay(10);
4648 		}
4649 		break;
4650 
4651 	case e1000_82573:
4652 		ctrl |= E1000_CTRL_ILOS;
4653 		break;
4654 	}
4655 
4656 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4657 
4658 }
4659 
4660 static void
4661 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4662 {
4663 	struct e1000_hw *hw;
4664 	uint32_t rctl;
4665 	uint32_t ctrl_ext;
4666 	uint32_t ctrl;
4667 	uint32_t status;
4668 	uint32_t txcw;
4669 
4670 	hw = &Adapter->shared;
4671 
4672 	/* Disable Smart Power Down */
4673 	phy_spd_state(hw, B_FALSE);
4674 
4675 	switch (hw->phy.media_type) {
4676 	case e1000_media_type_copper:
4677 		/* Force link up (Must be done before the PHY writes) */
4678 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
4679 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4680 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4681 
4682 		rctl = E1000_READ_REG(hw, E1000_RCTL);
4683 		rctl |= (E1000_RCTL_EN |
4684 		    E1000_RCTL_SBP |
4685 		    E1000_RCTL_UPE |
4686 		    E1000_RCTL_MPE |
4687 		    E1000_RCTL_LPE |
4688 		    E1000_RCTL_BAM);		/* 0x803E */
4689 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4690 
4691 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4692 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4693 		    E1000_CTRL_EXT_SDP6_DATA |
4694 		    E1000_CTRL_EXT_SDP7_DATA |
4695 		    E1000_CTRL_EXT_SDP4_DIR |
4696 		    E1000_CTRL_EXT_SDP6_DIR |
4697 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4698 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4699 
4700 		/*
4701 		 * This sequence tunes the PHY's SDP and no customer
4702 		 * settable values. For background, see comments above
4703 		 * e1000g_set_internal_loopback().
4704 		 */
4705 		e1000_write_phy_reg(hw, 0x0, 0x140);
4706 		msec_delay(10);
4707 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
4708 		e1000_write_phy_reg(hw, 0x12, 0xC10);
4709 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
4710 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
4711 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
4712 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
4713 
4714 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
4715 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4716 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4717 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4718 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4719 
4720 		msec_delay(50);
4721 		break;
4722 	case e1000_media_type_fiber:
4723 	case e1000_media_type_internal_serdes:
4724 		status = E1000_READ_REG(hw, E1000_STATUS);
4725 		if (((status & E1000_STATUS_LU) == 0) ||
4726 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4727 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4728 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4729 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4730 		}
4731 
4732 		/* Disable autoneg by setting bit 31 of TXCW to zero */
4733 		txcw = E1000_READ_REG(hw, E1000_TXCW);
4734 		txcw &= ~((uint32_t)1 << 31);
4735 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4736 
4737 		/*
4738 		 * Write 0x410 to Serdes Control register
4739 		 * to enable Serdes analog loopback
4740 		 */
4741 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4742 		msec_delay(10);
4743 		break;
4744 	default:
4745 		break;
4746 	}
4747 }
4748 
4749 static void
4750 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4751 {
4752 	struct e1000_hw *hw;
4753 	uint32_t ctrl;
4754 	uint16_t phy_ctrl;
4755 
4756 	hw = &Adapter->shared;
4757 
4758 	/* Disable Smart Power Down */
4759 	phy_spd_state(hw, B_FALSE);
4760 
4761 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4762 	    MII_CR_SPEED_100);
4763 
4764 	/* Force 100/FD, reset PHY */
4765 	e1000_write_phy_reg(hw, PHY_CONTROL,
4766 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4767 	msec_delay(10);
4768 
4769 	/* Force 100/FD */
4770 	e1000_write_phy_reg(hw, PHY_CONTROL,
4771 	    phy_ctrl);			/* 0x2100 */
4772 	msec_delay(10);
4773 
4774 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4775 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4776 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4777 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4778 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4779 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4780 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4781 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4782 
4783 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4784 }
4785 
4786 static void
4787 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4788 {
4789 	struct e1000_hw *hw;
4790 	uint32_t ctrl;
4791 	uint16_t phy_ctrl;
4792 
4793 	hw = &Adapter->shared;
4794 
4795 	/* Disable Smart Power Down */
4796 	phy_spd_state(hw, B_FALSE);
4797 
4798 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4799 	    MII_CR_SPEED_10);
4800 
4801 	/* Force 10/FD, reset PHY */
4802 	e1000_write_phy_reg(hw, PHY_CONTROL,
4803 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4804 	msec_delay(10);
4805 
4806 	/* Force 10/FD */
4807 	e1000_write_phy_reg(hw, PHY_CONTROL,
4808 	    phy_ctrl);			/* 0x0100 */
4809 	msec_delay(10);
4810 
4811 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4812 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4813 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4814 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4815 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4816 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4817 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4818 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4819 
4820 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4821 }
4822 
4823 #ifdef __sparc
4824 static boolean_t
4825 e1000g_find_mac_address(struct e1000g *Adapter)
4826 {
4827 	struct e1000_hw *hw = &Adapter->shared;
4828 	uchar_t *bytes;
4829 	struct ether_addr sysaddr;
4830 	uint_t nelts;
4831 	int err;
4832 	boolean_t found = B_FALSE;
4833 
4834 	/*
4835 	 * The "vendor's factory-set address" may already have
4836 	 * been extracted from the chip, but if the property
4837 	 * "local-mac-address" is set we use that instead.
4838 	 *
4839 	 * We check whether it looks like an array of 6
4840 	 * bytes (which it should, if OBP set it).  If we can't
4841 	 * make sense of it this way, we'll ignore it.
4842 	 */
4843 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4844 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4845 	if (err == DDI_PROP_SUCCESS) {
4846 		if (nelts == ETHERADDRL) {
4847 			while (nelts--)
4848 				hw->mac.addr[nelts] = bytes[nelts];
4849 			found = B_TRUE;
4850 		}
4851 		ddi_prop_free(bytes);
4852 	}
4853 
4854 	/*
4855 	 * Look up the OBP property "local-mac-address?". If the user has set
4856 	 * 'local-mac-address? = false', use "the system address" instead.
4857 	 */
4858 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4859 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4860 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4861 			if (localetheraddr(NULL, &sysaddr) != 0) {
4862 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4863 				found = B_TRUE;
4864 			}
4865 		}
4866 		ddi_prop_free(bytes);
4867 	}
4868 
4869 	/*
4870 	 * Finally(!), if there's a valid "mac-address" property (created
4871 	 * if we netbooted from this interface), we must use this instead
4872 	 * of any of the above to ensure that the NFS/install server doesn't
4873 	 * get confused by the address changing as Solaris takes over!
4874 	 */
4875 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4876 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
4877 	if (err == DDI_PROP_SUCCESS) {
4878 		if (nelts == ETHERADDRL) {
4879 			while (nelts--)
4880 				hw->mac.addr[nelts] = bytes[nelts];
4881 			found = B_TRUE;
4882 		}
4883 		ddi_prop_free(bytes);
4884 	}
4885 
4886 	if (found) {
4887 		bcopy(hw->mac.addr, hw->mac.perm_addr,
4888 		    ETHERADDRL);
4889 	}
4890 
4891 	return (found);
4892 }
4893 #endif
4894 
4895 static int
4896 e1000g_add_intrs(struct e1000g *Adapter)
4897 {
4898 	dev_info_t *devinfo;
4899 	int intr_types;
4900 	int rc;
4901 
4902 	devinfo = Adapter->dip;
4903 
4904 	/* Get supported interrupt types */
4905 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4906 
4907 	if (rc != DDI_SUCCESS) {
4908 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4909 		    "Get supported interrupt types failed: %d\n", rc);
4910 		return (DDI_FAILURE);
4911 	}
4912 
4913 	/*
4914 	 * Based on Intel Technical Advisory document (TA-160), there are some
4915 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
4916 	 * that it supports MSI, but in fact has problems.
4917 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
4918 	 * PCI/PCI-X NICs.
4919 	 */
4920 	if (Adapter->shared.mac.type < e1000_82571)
4921 		Adapter->msi_enabled = B_FALSE;
4922 
4923 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
4924 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
4925 
4926 		if (rc != DDI_SUCCESS) {
4927 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4928 			    "Add MSI failed, trying Legacy interrupts\n");
4929 		} else {
4930 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
4931 		}
4932 	}
4933 
4934 	if ((Adapter->intr_type == 0) &&
4935 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
4936 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
4937 
4938 		if (rc != DDI_SUCCESS) {
4939 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4940 			    "Add Legacy interrupts failed\n");
4941 			return (DDI_FAILURE);
4942 		}
4943 
4944 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
4945 	}
4946 
4947 	if (Adapter->intr_type == 0) {
4948 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4949 		    "No interrupts registered\n");
4950 		return (DDI_FAILURE);
4951 	}
4952 
4953 	return (DDI_SUCCESS);
4954 }
4955 
4956 /*
4957  * e1000g_intr_add() handles MSI/Legacy interrupts
4958  */
4959 static int
4960 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
4961 {
4962 	dev_info_t *devinfo;
4963 	int count, avail, actual;
4964 	int x, y, rc, inum = 0;
4965 	int flag;
4966 	ddi_intr_handler_t *intr_handler;
4967 
4968 	devinfo = Adapter->dip;
4969 
4970 	/* get number of interrupts */
4971 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4972 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4973 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4974 		    "Get interrupt number failed. Return: %d, count: %d\n",
4975 		    rc, count);
4976 		return (DDI_FAILURE);
4977 	}
4978 
4979 	/* get number of available interrupts */
4980 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4981 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4982 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4983 		    "Get interrupt available number failed. "
4984 		    "Return: %d, available: %d\n", rc, avail);
4985 		return (DDI_FAILURE);
4986 	}
4987 
4988 	if (avail < count) {
4989 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4990 		    "Interrupts count: %d, available: %d\n",
4991 		    count, avail);
4992 	}
4993 
4994 	/* Allocate an array of interrupt handles */
4995 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4996 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4997 
4998 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4999 	flag = DDI_INTR_ALLOC_NORMAL;
5000 
5001 	/* call ddi_intr_alloc() */
5002 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5003 	    count, &actual, flag);
5004 
5005 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5006 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5007 		    "Allocate interrupts failed: %d\n", rc);
5008 
5009 		kmem_free(Adapter->htable, Adapter->intr_size);
5010 		return (DDI_FAILURE);
5011 	}
5012 
5013 	if (actual < count) {
5014 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5015 		    "Interrupts requested: %d, received: %d\n",
5016 		    count, actual);
5017 	}
5018 
5019 	Adapter->intr_cnt = actual;
5020 
5021 	/* Get priority for first msi, assume remaining are all the same */
5022 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5023 
5024 	if (rc != DDI_SUCCESS) {
5025 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5026 		    "Get interrupt priority failed: %d\n", rc);
5027 
5028 		/* Free already allocated intr */
5029 		for (y = 0; y < actual; y++)
5030 			(void) ddi_intr_free(Adapter->htable[y]);
5031 
5032 		kmem_free(Adapter->htable, Adapter->intr_size);
5033 		return (DDI_FAILURE);
5034 	}
5035 
5036 	/*
5037 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5038 	 * use the interrupt service routine e1000g_intr_pciexpress()
5039 	 * to avoid interrupt stealing when sharing interrupt with other
5040 	 * devices.
5041 	 */
5042 	if (Adapter->shared.mac.type < e1000_82571)
5043 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5044 	else
5045 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5046 
5047 	/* Call ddi_intr_add_handler() */
5048 	for (x = 0; x < actual; x++) {
5049 		rc = ddi_intr_add_handler(Adapter->htable[x],
5050 		    intr_handler, (caddr_t)Adapter, NULL);
5051 
5052 		if (rc != DDI_SUCCESS) {
5053 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5054 			    "Add interrupt handler failed: %d\n", rc);
5055 
5056 			/* Remove already added handler */
5057 			for (y = 0; y < x; y++)
5058 				(void) ddi_intr_remove_handler(
5059 				    Adapter->htable[y]);
5060 
5061 			/* Free already allocated intr */
5062 			for (y = 0; y < actual; y++)
5063 				(void) ddi_intr_free(Adapter->htable[y]);
5064 
5065 			kmem_free(Adapter->htable, Adapter->intr_size);
5066 			return (DDI_FAILURE);
5067 		}
5068 	}
5069 
5070 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5071 
5072 	if (rc != DDI_SUCCESS) {
5073 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5074 		    "Get interrupt cap failed: %d\n", rc);
5075 
5076 		/* Free already allocated intr */
5077 		for (y = 0; y < actual; y++) {
5078 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5079 			(void) ddi_intr_free(Adapter->htable[y]);
5080 		}
5081 
5082 		kmem_free(Adapter->htable, Adapter->intr_size);
5083 		return (DDI_FAILURE);
5084 	}
5085 
5086 	return (DDI_SUCCESS);
5087 }
5088 
5089 static int
5090 e1000g_rem_intrs(struct e1000g *Adapter)
5091 {
5092 	int x;
5093 	int rc;
5094 
5095 	for (x = 0; x < Adapter->intr_cnt; x++) {
5096 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5097 		if (rc != DDI_SUCCESS) {
5098 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5099 			    "Remove intr handler failed: %d\n", rc);
5100 			return (DDI_FAILURE);
5101 		}
5102 
5103 		rc = ddi_intr_free(Adapter->htable[x]);
5104 		if (rc != DDI_SUCCESS) {
5105 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5106 			    "Free intr failed: %d\n", rc);
5107 			return (DDI_FAILURE);
5108 		}
5109 	}
5110 
5111 	kmem_free(Adapter->htable, Adapter->intr_size);
5112 
5113 	return (DDI_SUCCESS);
5114 }
5115 
5116 static int
5117 e1000g_enable_intrs(struct e1000g *Adapter)
5118 {
5119 	int x;
5120 	int rc;
5121 
5122 	/* Enable interrupts */
5123 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5124 		/* Call ddi_intr_block_enable() for MSI */
5125 		rc = ddi_intr_block_enable(Adapter->htable,
5126 		    Adapter->intr_cnt);
5127 		if (rc != DDI_SUCCESS) {
5128 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5129 			    "Enable block intr failed: %d\n", rc);
5130 			return (DDI_FAILURE);
5131 		}
5132 	} else {
5133 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5134 		for (x = 0; x < Adapter->intr_cnt; x++) {
5135 			rc = ddi_intr_enable(Adapter->htable[x]);
5136 			if (rc != DDI_SUCCESS) {
5137 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5138 				    "Enable intr failed: %d\n", rc);
5139 				return (DDI_FAILURE);
5140 			}
5141 		}
5142 	}
5143 
5144 	return (DDI_SUCCESS);
5145 }
5146 
5147 static int
5148 e1000g_disable_intrs(struct e1000g *Adapter)
5149 {
5150 	int x;
5151 	int rc;
5152 
5153 	/* Disable all interrupts */
5154 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5155 		rc = ddi_intr_block_disable(Adapter->htable,
5156 		    Adapter->intr_cnt);
5157 		if (rc != DDI_SUCCESS) {
5158 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5159 			    "Disable block intr failed: %d\n", rc);
5160 			return (DDI_FAILURE);
5161 		}
5162 	} else {
5163 		for (x = 0; x < Adapter->intr_cnt; x++) {
5164 			rc = ddi_intr_disable(Adapter->htable[x]);
5165 			if (rc != DDI_SUCCESS) {
5166 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5167 				    "Disable intr failed: %d\n", rc);
5168 				return (DDI_FAILURE);
5169 			}
5170 		}
5171 	}
5172 
5173 	return (DDI_SUCCESS);
5174 }
5175 
5176 /*
5177  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5178  */
5179 static void
5180 e1000g_get_phy_state(struct e1000g *Adapter)
5181 {
5182 	struct e1000_hw *hw = &Adapter->shared;
5183 
5184 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5185 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5186 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5187 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5188 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5189 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5190 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
5191 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5192 
5193 	Adapter->param_autoneg_cap =
5194 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5195 	Adapter->param_pause_cap =
5196 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5197 	Adapter->param_asym_pause_cap =
5198 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5199 	Adapter->param_1000fdx_cap =
5200 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5201 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5202 	Adapter->param_1000hdx_cap =
5203 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5204 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5205 	Adapter->param_100t4_cap =
5206 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5207 	Adapter->param_100fdx_cap =
5208 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5209 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5210 	Adapter->param_100hdx_cap =
5211 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5212 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5213 	Adapter->param_10fdx_cap =
5214 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5215 	Adapter->param_10hdx_cap =
5216 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5217 
5218 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5219 	Adapter->param_adv_pause =
5220 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5221 	Adapter->param_adv_asym_pause =
5222 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5223 	Adapter->param_adv_1000hdx =
5224 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5225 	Adapter->param_adv_100t4 =
5226 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5227 	if (Adapter->param_adv_autoneg == 1) {
5228 		Adapter->param_adv_1000fdx =
5229 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5230 		Adapter->param_adv_100fdx =
5231 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5232 		Adapter->param_adv_100hdx =
5233 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5234 		Adapter->param_adv_10fdx =
5235 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5236 		Adapter->param_adv_10hdx =
5237 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5238 	}
5239 
5240 	Adapter->param_lp_autoneg =
5241 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5242 	Adapter->param_lp_pause =
5243 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5244 	Adapter->param_lp_asym_pause =
5245 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5246 	Adapter->param_lp_1000fdx =
5247 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5248 	Adapter->param_lp_1000hdx =
5249 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5250 	Adapter->param_lp_100t4 =
5251 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5252 	Adapter->param_lp_100fdx =
5253 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5254 	Adapter->param_lp_100hdx =
5255 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5256 	Adapter->param_lp_10fdx =
5257 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5258 	Adapter->param_lp_10hdx =
5259 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5260 }
5261 
5262 /*
5263  * FMA support
5264  */
5265 
5266 int
5267 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5268 {
5269 	ddi_fm_error_t de;
5270 
5271 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5272 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5273 	return (de.fme_status);
5274 }
5275 
5276 int
5277 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5278 {
5279 	ddi_fm_error_t de;
5280 
5281 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5282 	return (de.fme_status);
5283 }
5284 
5285 /*
5286  * The IO fault service error handling callback function
5287  */
5288 static int
5289 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5290 {
5291 	/*
5292 	 * as the driver can always deal with an error in any dma or
5293 	 * access handle, we can just return the fme_status value.
5294 	 */
5295 	pci_ereport_post(dip, err, NULL);
5296 	return (err->fme_status);
5297 }
5298 
5299 static void
5300 e1000g_fm_init(struct e1000g *Adapter)
5301 {
5302 	ddi_iblock_cookie_t iblk;
5303 	int fma_acc_flag, fma_dma_flag;
5304 
5305 	/* Only register with IO Fault Services if we have some capability */
5306 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5307 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5308 		fma_acc_flag = 1;
5309 	} else {
5310 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5311 		fma_acc_flag = 0;
5312 	}
5313 
5314 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5315 		fma_dma_flag = 1;
5316 	} else {
5317 		fma_dma_flag = 0;
5318 	}
5319 
5320 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5321 
5322 	if (Adapter->fm_capabilities) {
5323 
5324 		/* Register capabilities with IO Fault Services */
5325 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5326 
5327 		/*
5328 		 * Initialize pci ereport capabilities if ereport capable
5329 		 */
5330 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5331 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5332 			pci_ereport_setup(Adapter->dip);
5333 
5334 		/*
5335 		 * Register error callback if error callback capable
5336 		 */
5337 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5338 			ddi_fm_handler_register(Adapter->dip,
5339 			    e1000g_fm_error_cb, (void*) Adapter);
5340 	}
5341 }
5342 
5343 static void
5344 e1000g_fm_fini(struct e1000g *Adapter)
5345 {
5346 	/* Only unregister FMA capabilities if we registered some */
5347 	if (Adapter->fm_capabilities) {
5348 
5349 		/*
5350 		 * Release any resources allocated by pci_ereport_setup()
5351 		 */
5352 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5353 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5354 			pci_ereport_teardown(Adapter->dip);
5355 
5356 		/*
5357 		 * Un-register error callback if error callback capable
5358 		 */
5359 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5360 			ddi_fm_handler_unregister(Adapter->dip);
5361 
5362 		/* Unregister from IO Fault Services */
5363 		ddi_fm_fini(Adapter->dip);
5364 	}
5365 }
5366 
5367 void
5368 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5369 {
5370 	uint64_t ena;
5371 	char buf[FM_MAX_CLASS];
5372 
5373 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5374 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5375 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5376 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5377 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5378 	}
5379 }
5380 
5381 static int
5382 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5383     uint_t pr_valsize, void *pr_val)
5384 {
5385 	link_flowctrl_t fl;
5386 	uint32_t fc;
5387 	int err = 0;
5388 
5389 	ASSERT(pr_valsize > 0);
5390 	switch (pr_num) {
5391 	case DLD_PROP_AUTONEG:
5392 		*(uint8_t *)pr_val =
5393 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5394 		break;
5395 	case DLD_PROP_FLOWCTRL:
5396 		if (pr_valsize < sizeof (link_flowctrl_t))
5397 			return (EINVAL);
5398 		fl = LINK_FLOWCTRL_BI;
5399 		bcopy(&fl, pr_val, sizeof (fl));
5400 		break;
5401 	case DLD_PROP_ADV_1000FDX_CAP:
5402 	case DLD_PROP_EN_1000FDX_CAP:
5403 		*(uint8_t *)pr_val =
5404 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5405 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5406 		break;
5407 	case DLD_PROP_ADV_1000HDX_CAP:
5408 	case DLD_PROP_EN_1000HDX_CAP:
5409 		*(uint8_t *)pr_val =
5410 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5411 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5412 		break;
5413 	case DLD_PROP_ADV_100FDX_CAP:
5414 	case DLD_PROP_EN_100FDX_CAP:
5415 		*(uint8_t *)pr_val =
5416 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5417 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5418 	case DLD_PROP_ADV_100HDX_CAP:
5419 	case DLD_PROP_EN_100HDX_CAP:
5420 		*(uint8_t *)pr_val =
5421 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5422 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5423 		break;
5424 	case DLD_PROP_ADV_10FDX_CAP:
5425 	case DLD_PROP_EN_10FDX_CAP:
5426 		*(uint8_t *)pr_val =
5427 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5428 		break;
5429 	case DLD_PROP_ADV_10HDX_CAP:
5430 	case DLD_PROP_EN_10HDX_CAP:
5431 		*(uint8_t *)pr_val =
5432 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5433 		break;
5434 	default:
5435 		err = ENOTSUP;
5436 		break;
5437 	}
5438 	return (err);
5439 }
5440 
5441 /*
5442  * synchronize the adv* and en* parameters.
5443  *
5444  * See comments in <sys/dld.h> for details of the *_en_*
5445  * parameters. The usage of ndd for setting adv parameters will
5446  * synchronize all the en parameters with the e1000g parameters,
5447  * implicity disalbing any settings made via dladm.
5448  */
5449 static void
5450 e1000g_param_sync(struct e1000g *Adapter)
5451 {
5452 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5453 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5454 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5455 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5456 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5457 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5458 }
5459