xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 4a6822d07d6d3f9ffe6907ef5f10d11dcadd75c6)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include "e1000g_sw.h"
47 #include "e1000g_debug.h"
48 
49 #define	E1000_RX_INTPT_TIME	128
50 #define	E1000_RX_PKT_CNT	8
51 
52 static char ident[] = "Intel PRO/1000 Ethernet 5.2.0";
53 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
54 static char e1000g_version[] = "Driver Ver. 5.2.0";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 
62 /*
63  * init and intr routines prototype
64  */
65 static int e1000g_resume(dev_info_t *);
66 static int e1000g_suspend(dev_info_t *);
67 static uint_t e1000g_intr_pciexpress(caddr_t);
68 static uint_t e1000g_intr(caddr_t);
69 static void e1000g_intr_work(struct e1000g *, uint32_t);
70 #pragma inline(e1000g_intr_work)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_unicst(void *, const uint8_t *);
79 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
81 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
82 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
83 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
84 static void e1000g_m_blank(void *, time_t, uint32_t);
85 static void e1000g_m_resources(void *);
86 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
87 static void e1000g_init_locks(struct e1000g *);
88 static void e1000g_destroy_locks(struct e1000g *);
89 static int e1000g_identify_hardware(struct e1000g *);
90 static int e1000g_regs_map(struct e1000g *);
91 static int e1000g_set_driver_params(struct e1000g *);
92 static int e1000g_register_mac(struct e1000g *);
93 static boolean_t e1000g_rx_drain(struct e1000g *);
94 static boolean_t e1000g_tx_drain(struct e1000g *);
95 static void e1000g_init_unicst(struct e1000g *);
96 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
97 
98 /*
99  * Local routines
100  */
101 static void e1000g_tx_clean(struct e1000g *);
102 static void e1000g_rx_clean(struct e1000g *);
103 static void e1000g_link_timer(void *);
104 static void e1000g_local_timer(void *);
105 static boolean_t e1000g_link_check(struct e1000g *);
106 static boolean_t e1000g_stall_check(struct e1000g *);
107 static void e1000g_smartspeed(struct e1000g *);
108 static void e1000g_get_conf(struct e1000g *);
109 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
110 static void enable_watchdog_timer(struct e1000g *);
111 static void disable_watchdog_timer(struct e1000g *);
112 static void start_watchdog_timer(struct e1000g *);
113 static void restart_watchdog_timer(struct e1000g *);
114 static void stop_watchdog_timer(struct e1000g *);
115 static void stop_link_timer(struct e1000g *);
116 static void stop_82547_timer(e1000g_tx_ring_t *);
117 static void e1000g_force_speed_duplex(struct e1000g *);
118 static void e1000g_get_max_frame_size(struct e1000g *);
119 static boolean_t is_valid_mac_addr(uint8_t *);
120 static void e1000g_unattach(dev_info_t *, struct e1000g *);
121 #ifdef E1000G_DEBUG
122 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
123 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
124 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
125 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
126 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
127     struct iocblk *, mblk_t *);
128 #endif
129 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
130     struct iocblk *, mblk_t *);
131 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
132 static void e1000g_set_internal_loopback(struct e1000g *);
133 static void e1000g_set_external_loopback_1000(struct e1000g *);
134 static void e1000g_set_external_loopback_100(struct e1000g *);
135 static void e1000g_set_external_loopback_10(struct e1000g *);
136 static int e1000g_add_intrs(struct e1000g *);
137 static int e1000g_intr_add(struct e1000g *, int);
138 static int e1000g_rem_intrs(struct e1000g *);
139 static int e1000g_enable_intrs(struct e1000g *);
140 static int e1000g_disable_intrs(struct e1000g *);
141 static boolean_t e1000g_link_up(struct e1000g *);
142 #ifdef __sparc
143 static boolean_t e1000g_find_mac_address(struct e1000g *);
144 #endif
145 
146 static struct cb_ops cb_ws_ops = {
147 	nulldev,		/* cb_open */
148 	nulldev,		/* cb_close */
149 	nodev,			/* cb_strategy */
150 	nodev,			/* cb_print */
151 	nodev,			/* cb_dump */
152 	nodev,			/* cb_read */
153 	nodev,			/* cb_write */
154 	nodev,			/* cb_ioctl */
155 	nodev,			/* cb_devmap */
156 	nodev,			/* cb_mmap */
157 	nodev,			/* cb_segmap */
158 	nochpoll,		/* cb_chpoll */
159 	ddi_prop_op,		/* cb_prop_op */
160 	NULL,			/* cb_stream */
161 	D_MP | D_HOTPLUG,	/* cb_flag */
162 	CB_REV,			/* cb_rev */
163 	nodev,			/* cb_aread */
164 	nodev			/* cb_awrite */
165 };
166 
167 static struct dev_ops ws_ops = {
168 	DEVO_REV,		/* devo_rev */
169 	0,			/* devo_refcnt */
170 	NULL,			/* devo_getinfo */
171 	nulldev,		/* devo_identify */
172 	nulldev,		/* devo_probe */
173 	e1000g_attach,		/* devo_attach */
174 	e1000g_detach,		/* devo_detach */
175 	nodev,			/* devo_reset */
176 	&cb_ws_ops,		/* devo_cb_ops */
177 	NULL,			/* devo_bus_ops */
178 	ddi_power		/* devo_power */
179 };
180 
181 static struct modldrv modldrv = {
182 	&mod_driverops,		/* Type of module.  This one is a driver */
183 	ident,			/* Discription string */
184 	&ws_ops,		/* driver ops */
185 };
186 
187 static struct modlinkage modlinkage = {
188 	MODREV_1, &modldrv, NULL
189 };
190 
191 /* Access attributes for register mapping */
192 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
193 	DDI_DEVICE_ATTR_V0,
194 	DDI_STRUCTURE_LE_ACC,
195 	DDI_STRICTORDER_ACC,
196 };
197 
198 #define	E1000G_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
199 
200 static mac_callbacks_t e1000g_m_callbacks = {
201 	E1000G_M_CALLBACK_FLAGS,
202 	e1000g_m_stat,
203 	e1000g_m_start,
204 	e1000g_m_stop,
205 	e1000g_m_promisc,
206 	e1000g_m_multicst,
207 	e1000g_m_unicst,
208 	e1000g_m_tx,
209 	e1000g_m_resources,
210 	e1000g_m_ioctl,
211 	e1000g_m_getcapab
212 };
213 
214 /*
215  * Global variables
216  */
217 uint32_t e1000g_mblks_pending = 0;
218 /*
219  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
220  * Here we maintain a private dev_info list if e1000g_force_detach is
221  * enabled. If we force the driver to detach while there are still some
222  * rx buffers retained in the upper layer, we have to keep a copy of the
223  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
224  * structure will be freed after the driver is detached. However when we
225  * finally free those rx buffers released by the upper layer, we need to
226  * refer to the dev_info to free the dma buffers. So we save a copy of
227  * the dev_info for this purpose. On x86 platform, we assume this copy
228  * of dev_info is always valid, but on SPARC platform, it could be invalid
229  * after the system board level DR operation. For this reason, the global
230  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
231  */
232 #ifdef __sparc
233 boolean_t e1000g_force_detach = B_FALSE;
234 #else
235 boolean_t e1000g_force_detach = B_TRUE;
236 #endif
237 private_devi_list_t *e1000g_private_devi_list = NULL;
238 
239 /*
240  * The rwlock is defined to protect the whole processing of rx recycling
241  * and the rx packets release in detach processing to make them mutually
242  * exclusive.
243  * The rx recycling processes different rx packets in different threads,
244  * so it will be protected with RW_READER and it won't block any other rx
245  * recycling threads.
246  * While the detach processing will be protected with RW_WRITER to make
247  * it mutually exclusive with the rx recycling.
248  */
249 krwlock_t e1000g_rx_detach_lock;
250 /*
251  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
252  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
253  * If there are many e1000g instances, the system may run out of DVMA
254  * resources during the initialization of the instances, then the flag will
255  * be changed to "USE_DMA". Because different e1000g instances are initialized
256  * in parallel, we need to use this lock to protect the flag.
257  */
258 krwlock_t e1000g_dma_type_lock;
259 
260 
261 /*
262  * Loadable module configuration entry points for the driver
263  */
264 
265 /*
266  * _init - module initialization
267  */
268 int
269 _init(void)
270 {
271 	int status;
272 
273 	mac_init_ops(&ws_ops, WSNAME);
274 	status = mod_install(&modlinkage);
275 	if (status != DDI_SUCCESS)
276 		mac_fini_ops(&ws_ops);
277 	else {
278 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
279 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
280 	}
281 
282 	return (status);
283 }
284 
285 /*
286  * _fini - module finalization
287  */
288 int
289 _fini(void)
290 {
291 	int status;
292 
293 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
294 	if (e1000g_mblks_pending != 0) {
295 		rw_exit(&e1000g_rx_detach_lock);
296 		return (EBUSY);
297 	}
298 	rw_exit(&e1000g_rx_detach_lock);
299 
300 	status = mod_remove(&modlinkage);
301 	if (status == DDI_SUCCESS) {
302 		mac_fini_ops(&ws_ops);
303 
304 		if (e1000g_force_detach) {
305 			private_devi_list_t *devi_node;
306 
307 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
308 			while (e1000g_private_devi_list != NULL) {
309 				devi_node = e1000g_private_devi_list;
310 				e1000g_private_devi_list =
311 				    e1000g_private_devi_list->next;
312 
313 				kmem_free(devi_node->priv_dip,
314 				    sizeof (struct dev_info));
315 				kmem_free(devi_node,
316 				    sizeof (private_devi_list_t));
317 			}
318 			rw_exit(&e1000g_rx_detach_lock);
319 		}
320 
321 		rw_destroy(&e1000g_rx_detach_lock);
322 		rw_destroy(&e1000g_dma_type_lock);
323 	}
324 
325 	return (status);
326 }
327 
328 /*
329  * _info - module information
330  */
331 int
332 _info(struct modinfo *modinfop)
333 {
334 	return (mod_info(&modlinkage, modinfop));
335 }
336 
337 /*
338  * e1000g_attach - driver attach
339  *
340  * This function is the device-specific initialization entry
341  * point. This entry point is required and must be written.
342  * The DDI_ATTACH command must be provided in the attach entry
343  * point. When attach() is called with cmd set to DDI_ATTACH,
344  * all normal kernel services (such as kmem_alloc(9F)) are
345  * available for use by the driver.
346  *
347  * The attach() function will be called once for each instance
348  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
349  * Until attach() succeeds, the only driver entry points which
350  * may be called are open(9E) and getinfo(9E).
351  */
352 static int
353 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
354 {
355 	struct e1000g *Adapter;
356 	struct e1000_hw *hw;
357 	struct e1000g_osdep *osdep;
358 	int instance;
359 
360 	switch (cmd) {
361 	default:
362 		e1000g_log(NULL, CE_WARN,
363 		    "Unsupported command send to e1000g_attach... ");
364 		return (DDI_FAILURE);
365 
366 	case DDI_RESUME:
367 		return (e1000g_resume(devinfo));
368 
369 	case DDI_ATTACH:
370 		break;
371 	}
372 
373 	/*
374 	 * get device instance number
375 	 */
376 	instance = ddi_get_instance(devinfo);
377 
378 	/*
379 	 * Allocate soft data structure
380 	 */
381 	Adapter =
382 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
383 
384 	Adapter->dip = devinfo;
385 	Adapter->instance = instance;
386 	Adapter->tx_ring->adapter = Adapter;
387 	Adapter->rx_ring->adapter = Adapter;
388 
389 	hw = &Adapter->shared;
390 	osdep = &Adapter->osdep;
391 	hw->back = osdep;
392 	osdep->adapter = Adapter;
393 
394 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
395 
396 	if (e1000g_force_detach) {
397 		private_devi_list_t *devi_node;
398 
399 		Adapter->priv_dip =
400 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
401 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
402 		    sizeof (struct dev_info));
403 
404 		devi_node =
405 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
406 
407 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
408 		devi_node->dip = devinfo;
409 		devi_node->priv_dip = Adapter->priv_dip;
410 		devi_node->next = e1000g_private_devi_list;
411 		e1000g_private_devi_list = devi_node;
412 		rw_exit(&e1000g_rx_detach_lock);
413 	}
414 
415 	/*
416 	 * PCI Configure
417 	 */
418 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
419 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
420 		goto attach_fail;
421 	}
422 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
423 
424 	/*
425 	 * Setup hardware
426 	 */
427 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
428 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
429 		goto attach_fail;
430 	}
431 
432 	/*
433 	 * Map in the device registers.
434 	 */
435 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
436 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
437 		goto attach_fail;
438 	}
439 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
440 
441 	/*
442 	 * Initialize driver parameters
443 	 */
444 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
445 		goto attach_fail;
446 	}
447 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
448 
449 	/*
450 	 * Initialize interrupts
451 	 */
452 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
453 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
454 		goto attach_fail;
455 	}
456 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
457 
458 	/*
459 	 * Initialize mutex's for this device.
460 	 * Do this before enabling the interrupt handler and
461 	 * register the softint to avoid the condition where
462 	 * interrupt handler can try using uninitialized mutex
463 	 */
464 	e1000g_init_locks(Adapter);
465 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
466 
467 	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
468 	if (ddi_intr_add_softint(devinfo,
469 	    &Adapter->tx_softint_handle, Adapter->tx_softint_pri,
470 	    e1000g_tx_softint_worker, (caddr_t)Adapter) != DDI_SUCCESS) {
471 		e1000g_log(Adapter, CE_WARN, "Add soft intr failed");
472 		goto attach_fail;
473 	}
474 	Adapter->attach_progress |= ATTACH_PROGRESS_SOFT_INTR;
475 
476 	/*
477 	 * Initialize Driver Counters
478 	 */
479 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
480 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
481 		goto attach_fail;
482 	}
483 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
484 
485 	/*
486 	 * Initialize chip hardware and software structures
487 	 */
488 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
489 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
490 		goto attach_fail;
491 	}
492 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
493 
494 	/*
495 	 * Initialize NDD parameters
496 	 */
497 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
498 		e1000g_log(Adapter, CE_WARN, "Init ndd failed");
499 		goto attach_fail;
500 	}
501 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
502 
503 	/*
504 	 * Register the driver to the MAC
505 	 */
506 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
507 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
508 		goto attach_fail;
509 	}
510 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
511 
512 	/*
513 	 * Now that mutex locks are initialized, and the chip is also
514 	 * initialized, enable interrupts.
515 	 */
516 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
517 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
518 		goto attach_fail;
519 	}
520 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
521 
522 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
523 
524 	return (DDI_SUCCESS);
525 
526 attach_fail:
527 	e1000g_unattach(devinfo, Adapter);
528 	return (DDI_FAILURE);
529 }
530 
531 static int
532 e1000g_register_mac(struct e1000g *Adapter)
533 {
534 	struct e1000_hw *hw = &Adapter->shared;
535 	mac_register_t *mac;
536 	int err;
537 
538 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
539 		return (DDI_FAILURE);
540 
541 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
542 	mac->m_driver = Adapter;
543 	mac->m_dip = Adapter->dip;
544 	mac->m_src_addr = hw->mac.addr;
545 	mac->m_callbacks = &e1000g_m_callbacks;
546 	mac->m_min_sdu = 0;
547 	mac->m_max_sdu =
548 	    (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K) ?
549 	    hw->mac.max_frame_size - 256 :
550 	    (hw->mac.max_frame_size != ETHERMAX) ?
551 	    hw->mac.max_frame_size - 24 : ETHERMTU;
552 
553 	err = mac_register(mac, &Adapter->mh);
554 	mac_free(mac);
555 
556 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
557 }
558 
559 static int
560 e1000g_identify_hardware(struct e1000g *Adapter)
561 {
562 	struct e1000_hw *hw = &Adapter->shared;
563 	struct e1000g_osdep *osdep = &Adapter->osdep;
564 
565 	/* Get the device id */
566 	hw->vendor_id =
567 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
568 	hw->device_id =
569 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
570 	hw->revision_id =
571 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
572 	hw->subsystem_device_id =
573 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
574 	hw->subsystem_vendor_id =
575 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
576 
577 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
578 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
579 		    "MAC type could not be set properly.");
580 		return (DDI_FAILURE);
581 	}
582 
583 	return (DDI_SUCCESS);
584 }
585 
586 static int
587 e1000g_regs_map(struct e1000g *Adapter)
588 {
589 	dev_info_t *devinfo = Adapter->dip;
590 	struct e1000_hw *hw = &Adapter->shared;
591 	struct e1000g_osdep *osdep = &Adapter->osdep;
592 	off_t mem_size;
593 
594 	/*
595 	 * first get the size of device register to be mapped. The
596 	 * second parameter is the register we are interested. I our
597 	 * wiseman 0 is for config registers and 1 is for memory mapped
598 	 * registers Mem size should have memory mapped region size
599 	 */
600 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
601 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
602 		    "ddi_dev_regsize for registers failed");
603 		return (DDI_FAILURE);
604 	}
605 
606 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
607 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
608 	    &osdep->reg_handle)) != DDI_SUCCESS) {
609 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
610 		    "ddi_regs_map_setup for registers failed");
611 		goto regs_map_fail;
612 	}
613 
614 	/* ICH needs to map flash memory */
615 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
616 		/* get flash size */
617 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
618 		    &mem_size) != DDI_SUCCESS) {
619 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
620 			    "ddi_dev_regsize for ICH flash failed");
621 			goto regs_map_fail;
622 		}
623 
624 		/* map flash in */
625 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
626 		    (caddr_t *)&hw->flash_address, 0,
627 		    mem_size, &e1000g_regs_acc_attr,
628 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
629 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
630 			    "ddi_regs_map_setup for ICH flash failed");
631 			goto regs_map_fail;
632 		}
633 	}
634 
635 	return (DDI_SUCCESS);
636 
637 regs_map_fail:
638 	if (osdep->reg_handle != NULL)
639 		ddi_regs_map_free(&osdep->reg_handle);
640 
641 	return (DDI_FAILURE);
642 }
643 
644 static int
645 e1000g_set_driver_params(struct e1000g *Adapter)
646 {
647 	struct e1000_hw *hw;
648 	e1000g_tx_ring_t *tx_ring;
649 	uint32_t mem_bar, io_bar, bar64;
650 #ifdef __sparc
651 	dev_info_t *devinfo = Adapter->dip;
652 	ulong_t iommu_pagesize;
653 #endif
654 
655 	hw = &Adapter->shared;
656 
657 	/* Set MAC type and initialize hardware functions */
658 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
659 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
660 		    "Could not setup hardware functions");
661 		return (DDI_FAILURE);
662 	}
663 
664 	/* Get bus information */
665 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
666 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
667 		    "Could not get bus information");
668 		return (DDI_FAILURE);
669 	}
670 
671 	/* get mem_base addr */
672 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
673 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
674 
675 	/* get io_base addr */
676 	if (hw->mac.type >= e1000_82544) {
677 		if (bar64) {
678 			/* IO BAR is different for 64 bit BAR mode */
679 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
680 			    PCI_CONF_BASE4);
681 		} else {
682 			/* normal 32-bit BAR mode */
683 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
684 			    PCI_CONF_BASE2);
685 		}
686 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
687 	} else {
688 		/* no I/O access for adapters prior to 82544 */
689 		hw->io_base = 0x0;
690 	}
691 
692 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
693 
694 	hw->mac.autoneg_failed = B_TRUE;
695 
696 	/* Set the wait_for_link flag to B_FALSE */
697 	hw->phy.wait_for_link = B_FALSE;
698 
699 	/* Adaptive IFS related changes */
700 	hw->mac.adaptive_ifs = B_TRUE;
701 
702 	/* Enable phy init script for IGP phy of 82541/82547 */
703 	if ((hw->mac.type == e1000_82547) ||
704 	    (hw->mac.type == e1000_82541) ||
705 	    (hw->mac.type == e1000_82547_rev_2) ||
706 	    (hw->mac.type == e1000_82541_rev_2))
707 		e1000_init_script_state_82541(hw, B_TRUE);
708 
709 	/* Enable the TTL workaround for 82541/82547 */
710 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
711 
712 #ifdef __sparc
713 	Adapter->strip_crc = B_TRUE;
714 #else
715 	Adapter->strip_crc = B_FALSE;
716 #endif
717 
718 	/* Get conf file properties */
719 	e1000g_get_conf(Adapter);
720 
721 	/* Get speed/duplex settings in conf file */
722 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
723 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
724 	e1000g_force_speed_duplex(Adapter);
725 
726 	/* Get Jumbo Frames settings in conf file */
727 	e1000g_get_max_frame_size(Adapter);
728 	hw->mac.min_frame_size =
729 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
730 
731 #ifdef __sparc
732 	/* Get the system page size */
733 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
734 	iommu_pagesize = dvma_pagesize(devinfo);
735 	if (iommu_pagesize != 0) {
736 		if (Adapter->sys_page_sz == iommu_pagesize) {
737 			if (iommu_pagesize > 0x4000)
738 				Adapter->sys_page_sz = 0x4000;
739 		} else {
740 			if (Adapter->sys_page_sz > iommu_pagesize)
741 				Adapter->sys_page_sz = iommu_pagesize;
742 		}
743 	}
744 	Adapter->dvma_page_num = hw->mac.max_frame_size /
745 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
746 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
747 #endif
748 
749 	/* Set Rx/Tx buffer size */
750 	switch (hw->mac.max_frame_size) {
751 	case ETHERMAX:
752 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
753 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
754 		break;
755 	case FRAME_SIZE_UPTO_4K:
756 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
757 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
758 		break;
759 	case FRAME_SIZE_UPTO_8K:
760 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
761 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
762 		break;
763 	case FRAME_SIZE_UPTO_9K:
764 	case FRAME_SIZE_UPTO_16K:
765 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
766 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
767 		break;
768 	default:
769 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
770 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
771 		break;
772 	}
773 	Adapter->rx_buffer_size += E1000G_IPALIGNPRESERVEROOM;
774 
775 #ifndef NO_82542_SUPPORT
776 	/*
777 	 * For Wiseman adapters we have an requirement of having receive
778 	 * buffers aligned at 256 byte boundary. Since Livengood does not
779 	 * require this and forcing it for all hardwares will have
780 	 * performance implications, I am making it applicable only for
781 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
782 	 * it is okay to have normal frames...but it does involve a
783 	 * potential risk where we may loose data if buffer is not
784 	 * aligned...so all wiseman boards to have 256 byte aligned
785 	 * buffers
786 	 */
787 	if (hw->mac.type < e1000_82543)
788 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
789 	else
790 		Adapter->rx_buf_align = 1;
791 #endif
792 
793 	/* Master Latency Timer */
794 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
795 
796 	/* copper options */
797 	if (hw->media_type == e1000_media_type_copper) {
798 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
799 		hw->phy.disable_polarity_correction = B_FALSE;
800 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
801 	}
802 
803 	/* The initial link state should be "unknown" */
804 	Adapter->link_state = LINK_STATE_UNKNOWN;
805 
806 	/* Initialize tx parameters */
807 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
808 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
809 
810 	tx_ring = Adapter->tx_ring;
811 	tx_ring->recycle_low_water = DEFAULT_TX_RECYCLE_LOW_WATER;
812 	tx_ring->recycle_num = DEFAULT_TX_RECYCLE_NUM;
813 	tx_ring->frags_limit =
814 	    (hw->mac.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
815 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
816 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
817 
818 	/* Initialize rx parameters */
819 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
820 
821 	return (DDI_SUCCESS);
822 }
823 
824 /*
825  * e1000g_detach - driver detach
826  *
827  * The detach() function is the complement of the attach routine.
828  * If cmd is set to DDI_DETACH, detach() is used to remove  the
829  * state  associated  with  a  given  instance of a device node
830  * prior to the removal of that instance from the system.
831  *
832  * The detach() function will be called once for each  instance
833  * of the device for which there has been a successful attach()
834  * once there are no longer  any  opens  on  the  device.
835  *
836  * Interrupts routine are disabled, All memory allocated by this
837  * driver are freed.
838  */
839 static int
840 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
841 {
842 	struct e1000g *Adapter;
843 
844 	switch (cmd) {
845 	default:
846 		return (DDI_FAILURE);
847 
848 	case DDI_SUSPEND:
849 		return (e1000g_suspend(devinfo));
850 
851 	case DDI_DETACH:
852 		break;
853 	}
854 
855 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
856 	if (Adapter == NULL)
857 		return (DDI_FAILURE);
858 
859 	if (mac_unregister(Adapter->mh) != 0) {
860 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
861 		return (DDI_FAILURE);
862 	}
863 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
864 
865 	if (Adapter->started)
866 		e1000g_stop(Adapter, B_TRUE);
867 
868 	if (!e1000g_rx_drain(Adapter)) {
869 		if (!e1000g_force_detach)
870 			return (DDI_FAILURE);
871 	}
872 
873 	e1000g_unattach(devinfo, Adapter);
874 
875 	return (DDI_SUCCESS);
876 }
877 
878 static void
879 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
880 {
881 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
882 		(void) e1000g_disable_intrs(Adapter);
883 	}
884 
885 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
886 		(void) mac_unregister(Adapter->mh);
887 	}
888 
889 	if (Adapter->attach_progress & ATTACH_PROGRESS_NDD) {
890 		e1000g_nd_cleanup(Adapter);
891 	}
892 
893 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
894 		(void) e1000g_rem_intrs(Adapter);
895 	}
896 
897 	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFT_INTR) {
898 		(void) ddi_intr_remove_softint(Adapter->tx_softint_handle);
899 	}
900 
901 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
902 		(void) ddi_prop_remove_all(devinfo);
903 	}
904 
905 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
906 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
907 	}
908 
909 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
910 		stop_link_timer(Adapter);
911 		e1000_reset_hw(&Adapter->shared);
912 	}
913 
914 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
915 		if (Adapter->osdep.reg_handle != NULL)
916 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
917 		if (Adapter->osdep.ich_flash_handle != NULL)
918 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
919 	}
920 
921 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
922 		if (Adapter->osdep.cfg_handle != NULL)
923 			pci_config_teardown(&Adapter->osdep.cfg_handle);
924 	}
925 
926 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
927 		e1000g_destroy_locks(Adapter);
928 	}
929 
930 	e1000_remove_device(&Adapter->shared);
931 
932 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
933 
934 	/*
935 	 * Another hotplug spec requirement,
936 	 * run ddi_set_driver_private(devinfo, null);
937 	 */
938 	ddi_set_driver_private(devinfo, NULL);
939 }
940 
941 static void
942 e1000g_init_locks(struct e1000g *Adapter)
943 {
944 	e1000g_tx_ring_t *tx_ring;
945 	e1000g_rx_ring_t *rx_ring;
946 
947 	rw_init(&Adapter->chip_lock, NULL,
948 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
949 	mutex_init(&Adapter->link_lock, NULL,
950 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
951 	mutex_init(&Adapter->watchdog_lock, NULL,
952 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
953 
954 	tx_ring = Adapter->tx_ring;
955 
956 	mutex_init(&tx_ring->tx_lock, NULL,
957 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
958 	mutex_init(&tx_ring->usedlist_lock, NULL,
959 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
960 	mutex_init(&tx_ring->freelist_lock, NULL,
961 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
962 	mutex_init(&tx_ring->mblks_lock, NULL,
963 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
964 
965 	rx_ring = Adapter->rx_ring;
966 
967 	mutex_init(&rx_ring->rx_lock, NULL,
968 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
969 	mutex_init(&rx_ring->freelist_lock, NULL,
970 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
971 }
972 
973 static void
974 e1000g_destroy_locks(struct e1000g *Adapter)
975 {
976 	e1000g_tx_ring_t *tx_ring;
977 	e1000g_rx_ring_t *rx_ring;
978 
979 	tx_ring = Adapter->tx_ring;
980 	mutex_destroy(&tx_ring->tx_lock);
981 	mutex_destroy(&tx_ring->usedlist_lock);
982 	mutex_destroy(&tx_ring->freelist_lock);
983 	mutex_destroy(&tx_ring->mblks_lock);
984 
985 	rx_ring = Adapter->rx_ring;
986 	mutex_destroy(&rx_ring->rx_lock);
987 	mutex_destroy(&rx_ring->freelist_lock);
988 
989 	mutex_destroy(&Adapter->link_lock);
990 	mutex_destroy(&Adapter->watchdog_lock);
991 	rw_destroy(&Adapter->chip_lock);
992 }
993 
994 static int
995 e1000g_resume(dev_info_t *devinfo)
996 {
997 	struct e1000g *Adapter;
998 
999 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1000 	if (Adapter == NULL)
1001 		return (DDI_FAILURE);
1002 
1003 	if (e1000g_start(Adapter, B_TRUE))
1004 		return (DDI_FAILURE);
1005 
1006 	return (DDI_SUCCESS);
1007 }
1008 
1009 static int
1010 e1000g_suspend(dev_info_t *devinfo)
1011 {
1012 	struct e1000g *Adapter;
1013 
1014 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1015 	if (Adapter == NULL)
1016 		return (DDI_FAILURE);
1017 
1018 	e1000g_stop(Adapter, B_TRUE);
1019 
1020 	return (DDI_SUCCESS);
1021 }
1022 
1023 static int
1024 e1000g_init(struct e1000g *Adapter)
1025 {
1026 	uint32_t pba;
1027 	uint32_t high_water;
1028 	struct e1000_hw *hw;
1029 	clock_t link_timeout;
1030 
1031 	hw = &Adapter->shared;
1032 
1033 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1034 
1035 	/*
1036 	 * reset to put the hardware in a known state
1037 	 * before we try to do anything with the eeprom
1038 	 */
1039 	(void) e1000_reset_hw(hw);
1040 
1041 	if (e1000_validate_nvm_checksum(hw) < 0) {
1042 		/*
1043 		 * Some PCI-E parts fail the first check due to
1044 		 * the link being in sleep state.  Call it again,
1045 		 * if it fails a second time its a real issue.
1046 		 */
1047 		if (e1000_validate_nvm_checksum(hw) < 0) {
1048 			e1000g_log(Adapter, CE_WARN,
1049 			    "Invalid NVM checksum. Please contact "
1050 			    "the vendor to update the NVM.");
1051 			goto init_fail;
1052 		}
1053 	}
1054 
1055 #ifdef __sparc
1056 	/*
1057 	 * Firstly, we try to get the local ethernet address from OBP. If
1058 	 * fail, we get from EEPROM of NIC card.
1059 	 */
1060 	if (!e1000g_find_mac_address(Adapter)) {
1061 		if (e1000_read_mac_addr(hw) < 0) {
1062 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1063 			goto init_fail;
1064 		}
1065 	}
1066 #else
1067 	/* Get the local ethernet address. */
1068 	if (e1000_read_mac_addr(hw) < 0) {
1069 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1070 		goto init_fail;
1071 	}
1072 #endif
1073 
1074 	/* check for valid mac address */
1075 	if (!is_valid_mac_addr(hw->mac.addr)) {
1076 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1077 		goto init_fail;
1078 	}
1079 
1080 	/* Set LAA state for 82571 chipset */
1081 	e1000_set_laa_state_82571(hw, B_TRUE);
1082 
1083 	/* Master Latency Timer implementation */
1084 	if (Adapter->master_latency_timer) {
1085 		pci_config_put8(Adapter->osdep.cfg_handle,
1086 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1087 	}
1088 
1089 	if (hw->mac.type < e1000_82547) {
1090 		/*
1091 		 * Total FIFO is 64K
1092 		 */
1093 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1094 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1095 		else
1096 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1097 	} else if (hw->mac.type >= e1000_82571 &&
1098 	    hw->mac.type <= e1000_82572) {
1099 		/*
1100 		 * Total FIFO is 48K
1101 		 */
1102 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1103 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1104 		else
1105 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1106 	} else if (hw->mac.type == e1000_ich8lan) {
1107 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1108 	} else if (hw->mac.type == e1000_ich9lan) {
1109 		pba = E1000_PBA_12K;
1110 	} else {
1111 		/*
1112 		 * Total FIFO is 40K
1113 		 */
1114 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1115 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1116 		else
1117 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1118 	}
1119 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1120 
1121 	/*
1122 	 * These parameters set thresholds for the adapter's generation(Tx)
1123 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1124 	 * settings.  Flow control is enabled or disabled in the configuration
1125 	 * file.
1126 	 * High-water mark is set down from the top of the rx fifo (not
1127 	 * sensitive to max_frame_size) and low-water is set just below
1128 	 * high-water mark.
1129 	 * The high water mark must be low enough to fit one full frame above
1130 	 * it in the rx FIFO.  Should be the lower of:
1131 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1132 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1133 	 * Rx FIFO size minus one full frame.
1134 	 */
1135 	high_water = min(((pba << 10) * 9 / 10),
1136 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1137 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1138 	    ((pba << 10) - hw->mac.max_frame_size)));
1139 
1140 	hw->mac.fc_high_water = high_water & 0xFFF8;
1141 	hw->mac.fc_low_water = hw->mac.fc_high_water - 8;
1142 
1143 	if (hw->mac.type == e1000_80003es2lan)
1144 		hw->mac.fc_pause_time = 0xFFFF;
1145 	else
1146 		hw->mac.fc_pause_time = E1000_FC_PAUSE_TIME;
1147 	hw->mac.fc_send_xon = B_TRUE;
1148 	hw->mac.fc = hw->mac.original_fc;
1149 
1150 	/*
1151 	 * Reset the adapter hardware the second time.
1152 	 */
1153 	(void) e1000_reset_hw(hw);
1154 
1155 	/* disable wakeup control by default */
1156 	if (hw->mac.type >= e1000_82544)
1157 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1158 
1159 	/* MWI setup */
1160 	e1000_pci_set_mwi(hw);
1161 
1162 	/*
1163 	 * Configure/Initialize hardware
1164 	 */
1165 	if (e1000_init_hw(hw) < 0) {
1166 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1167 		goto init_fail;
1168 	}
1169 
1170 	/* Disable Smart Power Down */
1171 	phy_spd_state(hw, B_FALSE);
1172 
1173 	/*
1174 	 * Initialize unicast addresses.
1175 	 */
1176 	e1000g_init_unicst(Adapter);
1177 
1178 	/*
1179 	 * Setup and initialize the mctable structures.  After this routine
1180 	 * completes  Multicast table will be set
1181 	 */
1182 	e1000g_setup_multicast(Adapter);
1183 	msec_delay(5);
1184 
1185 	/*
1186 	 * Implement Adaptive IFS
1187 	 */
1188 	e1000_reset_adaptive(hw);
1189 
1190 	/* Setup Interrupt Throttling Register */
1191 	E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1192 
1193 	/* Start the timer for link setup */
1194 	if (hw->mac.autoneg)
1195 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1196 	else
1197 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1198 
1199 	mutex_enter(&Adapter->link_lock);
1200 	if (hw->phy.wait_for_link) {
1201 		Adapter->link_complete = B_TRUE;
1202 	} else {
1203 		Adapter->link_complete = B_FALSE;
1204 		Adapter->link_tid = timeout(e1000g_link_timer,
1205 		    (void *)Adapter, link_timeout);
1206 	}
1207 	mutex_exit(&Adapter->link_lock);
1208 
1209 	/* Enable PCI-Ex master */
1210 	if (hw->bus.type == e1000_bus_type_pci_express) {
1211 		e1000_enable_pciex_master(hw);
1212 	}
1213 
1214 	Adapter->init_count++;
1215 
1216 	rw_exit(&Adapter->chip_lock);
1217 
1218 	return (DDI_SUCCESS);
1219 
1220 init_fail:
1221 	rw_exit(&Adapter->chip_lock);
1222 	return (DDI_FAILURE);
1223 }
1224 
1225 /*
1226  * Check if the link is up
1227  */
1228 static boolean_t
1229 e1000g_link_up(struct e1000g *Adapter)
1230 {
1231 	struct e1000_hw *hw;
1232 	boolean_t link_up;
1233 
1234 	hw = &Adapter->shared;
1235 
1236 	/* Ensure this is set to get accurate copper link status */
1237 	hw->mac.get_link_status = B_TRUE;
1238 
1239 	e1000_check_for_link(hw);
1240 
1241 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1242 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1243 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1244 	    (hw->mac.serdes_has_link))) {
1245 		link_up = B_TRUE;
1246 	} else {
1247 		link_up = B_FALSE;
1248 	}
1249 
1250 	return (link_up);
1251 }
1252 
1253 static void
1254 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1255 {
1256 	struct iocblk *iocp;
1257 	struct e1000g *e1000gp;
1258 	enum ioc_reply status;
1259 	int err;
1260 
1261 	iocp = (struct iocblk *)mp->b_rptr;
1262 	iocp->ioc_error = 0;
1263 	e1000gp = (struct e1000g *)arg;
1264 
1265 	ASSERT(e1000gp);
1266 	if (e1000gp == NULL) {
1267 		miocnak(q, mp, 0, EINVAL);
1268 		return;
1269 	}
1270 
1271 	switch (iocp->ioc_cmd) {
1272 
1273 	case LB_GET_INFO_SIZE:
1274 	case LB_GET_INFO:
1275 	case LB_GET_MODE:
1276 	case LB_SET_MODE:
1277 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1278 		break;
1279 
1280 	case ND_GET:
1281 	case ND_SET:
1282 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
1283 		break;
1284 
1285 #ifdef E1000G_DEBUG
1286 	case E1000G_IOC_REG_PEEK:
1287 	case E1000G_IOC_REG_POKE:
1288 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1289 		break;
1290 	case E1000G_IOC_CHIP_RESET:
1291 		e1000gp->reset_count++;
1292 		if (e1000g_reset(e1000gp))
1293 			status = IOC_ACK;
1294 		else
1295 			status = IOC_INVAL;
1296 		break;
1297 #endif
1298 	default:
1299 		status = IOC_INVAL;
1300 		break;
1301 	}
1302 
1303 	/*
1304 	 * Decide how to reply
1305 	 */
1306 	switch (status) {
1307 	default:
1308 	case IOC_INVAL:
1309 		/*
1310 		 * Error, reply with a NAK and EINVAL or the specified error
1311 		 */
1312 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1313 		    EINVAL : iocp->ioc_error);
1314 		break;
1315 
1316 	case IOC_DONE:
1317 		/*
1318 		 * OK, reply already sent
1319 		 */
1320 		break;
1321 
1322 	case IOC_ACK:
1323 		/*
1324 		 * OK, reply with an ACK
1325 		 */
1326 		miocack(q, mp, 0, 0);
1327 		break;
1328 
1329 	case IOC_REPLY:
1330 		/*
1331 		 * OK, send prepared reply as ACK or NAK
1332 		 */
1333 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1334 		    M_IOCACK : M_IOCNAK;
1335 		qreply(q, mp);
1336 		break;
1337 	}
1338 }
1339 
1340 static void e1000g_m_blank(void *arg, time_t ticks, uint32_t count)
1341 {
1342 	struct e1000g *Adapter;
1343 
1344 	Adapter = (struct e1000g *)arg;
1345 
1346 	/*
1347 	 * Adjust ITR (Interrupt Throttling Register) to coalesce
1348 	 * interrupts. This formula and its coefficient come from
1349 	 * our experiments.
1350 	 */
1351 	if (Adapter->intr_adaptive) {
1352 		Adapter->intr_throttling_rate = count << 5;
1353 		E1000_WRITE_REG(&Adapter->shared, E1000_ITR,
1354 		    Adapter->intr_throttling_rate);
1355 	}
1356 }
1357 
1358 static void
1359 e1000g_m_resources(void *arg)
1360 {
1361 	struct e1000g *adapter = (struct e1000g *)arg;
1362 	mac_rx_fifo_t mrf;
1363 
1364 	mrf.mrf_type = MAC_RX_FIFO;
1365 	mrf.mrf_blank = e1000g_m_blank;
1366 	mrf.mrf_arg = (void *)adapter;
1367 	mrf.mrf_normal_blank_time = E1000_RX_INTPT_TIME;
1368 	mrf.mrf_normal_pkt_count = E1000_RX_PKT_CNT;
1369 
1370 	adapter->mrh = mac_resource_add(adapter->mh, (mac_resource_t *)&mrf);
1371 }
1372 
1373 static int
1374 e1000g_m_start(void *arg)
1375 {
1376 	struct e1000g *Adapter = (struct e1000g *)arg;
1377 
1378 	return (e1000g_start(Adapter, B_TRUE));
1379 }
1380 
1381 static int
1382 e1000g_start(struct e1000g *Adapter, boolean_t global)
1383 {
1384 	if (global) {
1385 		/* Allocate dma resources for descriptors and buffers */
1386 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1387 			e1000g_log(Adapter, CE_WARN,
1388 			    "Alloc DMA resources failed");
1389 			return (ENOTACTIVE);
1390 		}
1391 		Adapter->rx_buffer_setup = B_FALSE;
1392 	}
1393 
1394 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1395 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1396 			e1000g_log(Adapter, CE_WARN,
1397 			    "Adapter initialization failed");
1398 			if (global)
1399 				e1000g_release_dma_resources(Adapter);
1400 			return (ENOTACTIVE);
1401 		}
1402 	}
1403 
1404 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1405 
1406 	/* Setup and initialize the transmit structures */
1407 	e1000g_tx_setup(Adapter);
1408 	msec_delay(5);
1409 
1410 	/* Setup and initialize the receive structures */
1411 	e1000g_rx_setup(Adapter);
1412 	msec_delay(5);
1413 
1414 	e1000g_mask_interrupt(Adapter);
1415 	if (Adapter->tx_intr_enable)
1416 		e1000g_mask_tx_interrupt(Adapter);
1417 
1418 	Adapter->started = B_TRUE;
1419 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1420 
1421 	rw_exit(&Adapter->chip_lock);
1422 
1423 	/* Enable and start the watchdog timer */
1424 	enable_watchdog_timer(Adapter);
1425 
1426 	return (0);
1427 }
1428 
1429 static void
1430 e1000g_m_stop(void *arg)
1431 {
1432 	struct e1000g *Adapter = (struct e1000g *)arg;
1433 
1434 	e1000g_stop(Adapter, B_TRUE);
1435 }
1436 
1437 static void
1438 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1439 {
1440 	/* Set stop flags */
1441 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1442 
1443 	Adapter->started = B_FALSE;
1444 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1445 
1446 	rw_exit(&Adapter->chip_lock);
1447 
1448 	/* Drain tx sessions */
1449 	(void) e1000g_tx_drain(Adapter);
1450 
1451 	/* Disable and stop all the timers */
1452 	disable_watchdog_timer(Adapter);
1453 	stop_link_timer(Adapter);
1454 	stop_82547_timer(Adapter->tx_ring);
1455 
1456 	/* Stop the chip and release pending resources */
1457 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1458 
1459 	e1000g_clear_all_interrupts(Adapter);
1460 	e1000_reset_hw(&Adapter->shared);
1461 
1462 	/* Release resources still held by the TX descriptors */
1463 	e1000g_tx_clean(Adapter);
1464 
1465 	/* Clean the pending rx jumbo packet fragment */
1466 	e1000g_rx_clean(Adapter);
1467 
1468 	rw_exit(&Adapter->chip_lock);
1469 
1470 	if (global)
1471 		e1000g_release_dma_resources(Adapter);
1472 }
1473 
1474 static void
1475 e1000g_rx_clean(struct e1000g *Adapter)
1476 {
1477 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1478 
1479 	if (rx_ring->rx_mblk != NULL) {
1480 		freemsg(rx_ring->rx_mblk);
1481 		rx_ring->rx_mblk = NULL;
1482 		rx_ring->rx_mblk_tail = NULL;
1483 		rx_ring->rx_mblk_len = 0;
1484 	}
1485 }
1486 
1487 static void
1488 e1000g_tx_clean(struct e1000g *Adapter)
1489 {
1490 	e1000g_tx_ring_t *tx_ring;
1491 	p_tx_sw_packet_t packet;
1492 	mblk_t *mp;
1493 	mblk_t *nmp;
1494 	uint32_t packet_count;
1495 
1496 	tx_ring = Adapter->tx_ring;
1497 
1498 	/*
1499 	 * Here we don't need to protect the lists using
1500 	 * the usedlist_lock and freelist_lock, for they
1501 	 * have been protected by the chip_lock.
1502 	 */
1503 	mp = NULL;
1504 	nmp = NULL;
1505 	packet_count = 0;
1506 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1507 	while (packet != NULL) {
1508 		if (packet->mp != NULL) {
1509 			/* Assemble the message chain */
1510 			if (mp == NULL) {
1511 				mp = packet->mp;
1512 				nmp = packet->mp;
1513 			} else {
1514 				nmp->b_next = packet->mp;
1515 				nmp = packet->mp;
1516 			}
1517 			/* Disconnect the message from the sw packet */
1518 			packet->mp = NULL;
1519 		}
1520 
1521 		e1000g_free_tx_swpkt(packet);
1522 		packet_count++;
1523 
1524 		packet = (p_tx_sw_packet_t)
1525 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1526 	}
1527 
1528 	if (mp != NULL) {
1529 		mutex_enter(&tx_ring->mblks_lock);
1530 		if (tx_ring->mblks.head == NULL) {
1531 			tx_ring->mblks.head = mp;
1532 			tx_ring->mblks.tail = nmp;
1533 		} else {
1534 			tx_ring->mblks.tail->b_next = mp;
1535 			tx_ring->mblks.tail = nmp;
1536 		}
1537 		mutex_exit(&tx_ring->mblks_lock);
1538 	}
1539 
1540 	ddi_intr_trigger_softint(Adapter->tx_softint_handle, NULL);
1541 
1542 	if (packet_count > 0) {
1543 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1544 		QUEUE_INIT_LIST(&tx_ring->used_list);
1545 
1546 		/* Setup TX descriptor pointers */
1547 		tx_ring->tbd_next = tx_ring->tbd_first;
1548 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1549 
1550 		/* Setup our HW Tx Head & Tail descriptor pointers */
1551 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH, 0);
1552 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT, 0);
1553 	}
1554 }
1555 
1556 static boolean_t
1557 e1000g_tx_drain(struct e1000g *Adapter)
1558 {
1559 	int i;
1560 	boolean_t done;
1561 	e1000g_tx_ring_t *tx_ring;
1562 
1563 	tx_ring = Adapter->tx_ring;
1564 
1565 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1566 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1567 		mutex_enter(&tx_ring->usedlist_lock);
1568 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1569 		mutex_exit(&tx_ring->usedlist_lock);
1570 
1571 		if (done)
1572 			break;
1573 
1574 		msec_delay(1);
1575 	}
1576 
1577 	return (done);
1578 }
1579 
1580 static boolean_t
1581 e1000g_rx_drain(struct e1000g *Adapter)
1582 {
1583 	e1000g_rx_ring_t *rx_ring;
1584 	p_rx_sw_packet_t packet;
1585 	boolean_t done;
1586 
1587 	rx_ring = Adapter->rx_ring;
1588 	done = B_TRUE;
1589 
1590 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1591 
1592 	while (rx_ring->pending_list != NULL) {
1593 		packet = rx_ring->pending_list;
1594 		rx_ring->pending_list =
1595 		    rx_ring->pending_list->next;
1596 
1597 		if (packet->flag == E1000G_RX_SW_STOP) {
1598 			packet->flag = E1000G_RX_SW_DETACH;
1599 			done = B_FALSE;
1600 		} else {
1601 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1602 			ASSERT(packet->mp == NULL);
1603 			e1000g_free_rx_sw_packet(packet);
1604 		}
1605 	}
1606 
1607 	rw_exit(&e1000g_rx_detach_lock);
1608 
1609 	return (done);
1610 }
1611 
1612 boolean_t
1613 e1000g_reset(struct e1000g *Adapter)
1614 {
1615 	e1000g_stop(Adapter, B_FALSE);
1616 
1617 	if (e1000g_start(Adapter, B_FALSE)) {
1618 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1619 		return (B_FALSE);
1620 	}
1621 
1622 	return (B_TRUE);
1623 }
1624 
1625 /*
1626  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1627  *
1628  * This interrupt service routine is for PCI-Express adapters.
1629  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1630  * bit is set.
1631  */
1632 static uint_t
1633 e1000g_intr_pciexpress(caddr_t arg)
1634 {
1635 	struct e1000g *Adapter;
1636 	uint32_t icr;
1637 
1638 	Adapter = (struct e1000g *)arg;
1639 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1640 
1641 	if (icr & E1000_ICR_INT_ASSERTED) {
1642 		/*
1643 		 * E1000_ICR_INT_ASSERTED bit was set:
1644 		 * Read(Clear) the ICR, claim this interrupt,
1645 		 * look for work to do.
1646 		 */
1647 		e1000g_intr_work(Adapter, icr);
1648 		return (DDI_INTR_CLAIMED);
1649 	} else {
1650 		/*
1651 		 * E1000_ICR_INT_ASSERTED bit was not set:
1652 		 * Don't claim this interrupt, return immediately.
1653 		 */
1654 		return (DDI_INTR_UNCLAIMED);
1655 	}
1656 }
1657 
1658 /*
1659  * e1000g_intr - ISR for PCI/PCI-X chipsets
1660  *
1661  * This interrupt service routine is for PCI/PCI-X adapters.
1662  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1663  * bit is set or not.
1664  */
1665 static uint_t
1666 e1000g_intr(caddr_t arg)
1667 {
1668 	struct e1000g *Adapter;
1669 	uint32_t icr;
1670 
1671 	Adapter = (struct e1000g *)arg;
1672 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1673 
1674 	if (icr) {
1675 		/*
1676 		 * Any bit was set in ICR:
1677 		 * Read(Clear) the ICR, claim this interrupt,
1678 		 * look for work to do.
1679 		 */
1680 		e1000g_intr_work(Adapter, icr);
1681 		return (DDI_INTR_CLAIMED);
1682 	} else {
1683 		/*
1684 		 * No bit was set in ICR:
1685 		 * Don't claim this interrupt, return immediately.
1686 		 */
1687 		return (DDI_INTR_UNCLAIMED);
1688 	}
1689 }
1690 
1691 /*
1692  * e1000g_intr_work - actual processing of ISR
1693  *
1694  * Read(clear) the ICR contents and call appropriate interrupt
1695  * processing routines.
1696  */
1697 static void
1698 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1699 {
1700 	rw_enter(&Adapter->chip_lock, RW_READER);
1701 	/*
1702 	 * Here we need to check the "started" flag within the chip_lock to
1703 	 * ensure the receive routine will not execute when the adapter is
1704 	 * being reset.
1705 	 */
1706 	if (!Adapter->started) {
1707 		rw_exit(&Adapter->chip_lock);
1708 		return;
1709 	}
1710 
1711 	if (icr & E1000_ICR_RXT0) {
1712 		mblk_t *mp;
1713 
1714 		mutex_enter(&Adapter->rx_ring->rx_lock);
1715 		mp = e1000g_receive(Adapter);
1716 		mutex_exit(&Adapter->rx_ring->rx_lock);
1717 
1718 		rw_exit(&Adapter->chip_lock);
1719 
1720 		if (mp != NULL)
1721 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1722 	} else
1723 		rw_exit(&Adapter->chip_lock);
1724 
1725 	/*
1726 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1727 	 * are checked to detect that the cable has been pulled out. For
1728 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1729 	 * are an indication that cable is not connected.
1730 	 */
1731 	if ((icr & E1000_ICR_RXSEQ) ||
1732 	    (icr & E1000_ICR_LSC) ||
1733 	    (icr & E1000_ICR_GPI_EN1)) {
1734 		boolean_t link_changed;
1735 		timeout_id_t tid = 0;
1736 
1737 		stop_watchdog_timer(Adapter);
1738 
1739 		mutex_enter(&Adapter->link_lock);
1740 		/* e1000g_link_check takes care of link status change */
1741 		link_changed = e1000g_link_check(Adapter);
1742 		/*
1743 		 * If the link timer has not timed out, we'll not notify
1744 		 * the upper layer with any link state until the link is up.
1745 		 */
1746 		if (link_changed && !Adapter->link_complete) {
1747 			if (Adapter->link_state == LINK_STATE_UP) {
1748 				Adapter->link_complete = B_TRUE;
1749 				tid = Adapter->link_tid;
1750 				Adapter->link_tid = 0;
1751 			} else {
1752 				link_changed = B_FALSE;
1753 			}
1754 		}
1755 		mutex_exit(&Adapter->link_lock);
1756 
1757 		if (link_changed) {
1758 			if (tid != 0)
1759 				(void) untimeout(tid);
1760 
1761 			/*
1762 			 * Workaround for esb2. Data stuck in fifo on a link
1763 			 * down event. Reset the adapter to recover it.
1764 			 */
1765 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1766 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1767 				(void) e1000g_reset(Adapter);
1768 
1769 			mac_link_update(Adapter->mh, Adapter->link_state);
1770 		}
1771 
1772 		start_watchdog_timer(Adapter);
1773 	}
1774 
1775 	if (icr & E1000G_ICR_TX_INTR) {
1776 		e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1777 
1778 		if (!Adapter->tx_intr_enable)
1779 			e1000g_clear_tx_interrupt(Adapter);
1780 		/* Schedule the re-transmit */
1781 		if (tx_ring->resched_needed) {
1782 			E1000G_STAT(tx_ring->stat_reschedule);
1783 			tx_ring->resched_needed = B_FALSE;
1784 			mac_tx_update(Adapter->mh);
1785 		}
1786 		if (Adapter->tx_intr_enable) {
1787 			/* Recycle the tx descriptors */
1788 			rw_enter(&Adapter->chip_lock, RW_READER);
1789 			E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1790 			e1000g_recycle(tx_ring);
1791 			rw_exit(&Adapter->chip_lock);
1792 			/* Free the recycled messages */
1793 			ddi_intr_trigger_softint(Adapter->tx_softint_handle,
1794 			    NULL);
1795 		}
1796 	}
1797 }
1798 
1799 static void
1800 e1000g_init_unicst(struct e1000g *Adapter)
1801 {
1802 	struct e1000_hw *hw;
1803 	int slot;
1804 
1805 	hw = &Adapter->shared;
1806 
1807 	if (Adapter->init_count == 0) {
1808 		/* Initialize the multiple unicast addresses */
1809 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1810 
1811 		if ((hw->mac.type == e1000_82571) &&
1812 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1813 			Adapter->unicst_total--;
1814 
1815 		Adapter->unicst_avail = Adapter->unicst_total - 1;
1816 
1817 		/* Store the default mac address */
1818 		e1000_rar_set(hw, hw->mac.addr, 0);
1819 		if ((hw->mac.type == e1000_82571) &&
1820 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1821 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
1822 
1823 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
1824 		    ETHERADDRL);
1825 		Adapter->unicst_addr[0].mac.set = 1;
1826 
1827 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1828 			Adapter->unicst_addr[slot].mac.set = 0;
1829 	} else {
1830 		/* Recover the default mac address */
1831 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
1832 		    ETHERADDRL);
1833 
1834 		/* Store the default mac address */
1835 		e1000_rar_set(hw, hw->mac.addr, 0);
1836 		if ((hw->mac.type == e1000_82571) &&
1837 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1838 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
1839 
1840 		/* Re-configure the RAR registers */
1841 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1842 			e1000_rar_set(hw,
1843 			    Adapter->unicst_addr[slot].mac.addr, slot);
1844 	}
1845 }
1846 
1847 static int
1848 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
1849 {
1850 	struct e1000g *Adapter;
1851 
1852 	Adapter = (struct e1000g *)arg;
1853 
1854 	/* Store the default MAC address */
1855 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
1856 
1857 	/* Set MAC address in address slot 0, which is the default address */
1858 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
1859 }
1860 
1861 static int
1862 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
1863     mac_addr_slot_t slot)
1864 {
1865 	struct e1000_hw *hw;
1866 
1867 	hw = &Adapter->shared;
1868 
1869 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1870 
1871 #ifndef NO_82542_SUPPORT
1872 	/*
1873 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
1874 	 * that requires the receiver to be in reset when any of the
1875 	 * receive address registers (RAR regs) are accessed.  The first
1876 	 * rev of Wiseman silicon also requires MWI to be disabled when
1877 	 * a global reset or a receive reset is issued.  So before we
1878 	 * initialize the RARs, we check the rev of the Wiseman controller
1879 	 * and work around any necessary HW errata.
1880 	 */
1881 	if ((hw->mac.type == e1000_82542) &&
1882 	    (hw->revision_id == E1000_REVISION_2)) {
1883 		e1000_pci_clear_mwi(hw);
1884 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
1885 		msec_delay(5);
1886 	}
1887 #endif
1888 
1889 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
1890 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
1891 
1892 	if (slot == 0) {
1893 		if ((hw->mac.type == e1000_82571) &&
1894 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1895 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
1896 	}
1897 
1898 #ifndef NO_82542_SUPPORT
1899 	/*
1900 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
1901 	 * put the receive in reset, and disabled MWI, to work around some
1902 	 * HW errata.  Now we should take the receiver out of reset, and
1903 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
1904 	 */
1905 	if ((hw->mac.type == e1000_82542) &&
1906 	    (hw->revision_id == E1000_REVISION_2)) {
1907 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
1908 		msec_delay(1);
1909 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1910 			e1000_pci_set_mwi(hw);
1911 		e1000g_rx_setup(Adapter);
1912 	}
1913 #endif
1914 
1915 	rw_exit(&Adapter->chip_lock);
1916 
1917 	return (0);
1918 }
1919 
1920 /*
1921  * e1000g_m_unicst_add() - will find an unused address slot, set the
1922  * address value to the one specified, reserve that slot and enable
1923  * the NIC to start filtering on the new MAC address.
1924  * Returns 0 on success.
1925  */
1926 static int
1927 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
1928 {
1929 	struct e1000g *Adapter = (struct e1000g *)arg;
1930 	mac_addr_slot_t slot;
1931 	int err;
1932 
1933 	if (mac_unicst_verify(Adapter->mh,
1934 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
1935 		return (EINVAL);
1936 
1937 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1938 	if (Adapter->unicst_avail == 0) {
1939 		/* no slots available */
1940 		rw_exit(&Adapter->chip_lock);
1941 		return (ENOSPC);
1942 	}
1943 
1944 	/*
1945 	 * Primary/default address is in slot 0. The next addresses
1946 	 * are the multiple MAC addresses. So multiple MAC address 0
1947 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
1948 	 * MAC address resides in slot 1.
1949 	 */
1950 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
1951 		if (Adapter->unicst_addr[slot].mac.set == 0) {
1952 			Adapter->unicst_addr[slot].mac.set = 1;
1953 			break;
1954 		}
1955 	}
1956 
1957 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
1958 
1959 	Adapter->unicst_avail--;
1960 	rw_exit(&Adapter->chip_lock);
1961 
1962 	maddr->mma_slot = slot;
1963 
1964 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
1965 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1966 		Adapter->unicst_addr[slot].mac.set = 0;
1967 		Adapter->unicst_avail++;
1968 		rw_exit(&Adapter->chip_lock);
1969 	}
1970 
1971 	return (err);
1972 }
1973 
1974 /*
1975  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
1976  * call to e1000g_m_unicst_add(). The slot number that was returned in
1977  * e1000g_m_unicst_add() is passed in the call to remove the address.
1978  * Returns 0 on success.
1979  */
1980 static int
1981 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
1982 {
1983 	struct e1000g *Adapter = (struct e1000g *)arg;
1984 	int err;
1985 
1986 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
1987 		return (EINVAL);
1988 
1989 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1990 	if (Adapter->unicst_addr[slot].mac.set == 1) {
1991 		Adapter->unicst_addr[slot].mac.set = 0;
1992 		Adapter->unicst_avail++;
1993 		rw_exit(&Adapter->chip_lock);
1994 
1995 		/* Copy the default address to the passed slot */
1996 		if (err = e1000g_unicst_set(Adapter,
1997 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
1998 			rw_enter(&Adapter->chip_lock, RW_WRITER);
1999 			Adapter->unicst_addr[slot].mac.set = 1;
2000 			Adapter->unicst_avail--;
2001 			rw_exit(&Adapter->chip_lock);
2002 		}
2003 		return (err);
2004 	}
2005 	rw_exit(&Adapter->chip_lock);
2006 
2007 	return (EINVAL);
2008 }
2009 
2010 /*
2011  * e1000g_m_unicst_modify() - modifies the value of an address that
2012  * has been added by e1000g_m_unicst_add(). The new address, address
2013  * length and the slot number that was returned in the call to add
2014  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2015  * set to 0. Returns 0 on success.
2016  */
2017 static int
2018 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2019 {
2020 	struct e1000g *Adapter = (struct e1000g *)arg;
2021 	mac_addr_slot_t slot;
2022 
2023 	if (mac_unicst_verify(Adapter->mh,
2024 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2025 		return (EINVAL);
2026 
2027 	slot = maddr->mma_slot;
2028 
2029 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2030 		return (EINVAL);
2031 
2032 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2033 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2034 		rw_exit(&Adapter->chip_lock);
2035 
2036 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2037 	}
2038 	rw_exit(&Adapter->chip_lock);
2039 
2040 	return (EINVAL);
2041 }
2042 
2043 /*
2044  * e1000g_m_unicst_get() - will get the MAC address and all other
2045  * information related to the address slot passed in mac_multi_addr_t.
2046  * mma_flags should be set to 0 in the call.
2047  * On return, mma_flags can take the following values:
2048  * 1) MMAC_SLOT_UNUSED
2049  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2050  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2051  * 4) MMAC_SLOT_USED
2052  */
2053 static int
2054 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2055 {
2056 	struct e1000g *Adapter = (struct e1000g *)arg;
2057 	mac_addr_slot_t slot;
2058 
2059 	slot = maddr->mma_slot;
2060 
2061 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2062 		return (EINVAL);
2063 
2064 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2065 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2066 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2067 		    maddr->mma_addr, ETHERADDRL);
2068 		maddr->mma_flags = MMAC_SLOT_USED;
2069 	} else {
2070 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2071 	}
2072 	rw_exit(&Adapter->chip_lock);
2073 
2074 	return (0);
2075 }
2076 
2077 static int
2078 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2079 {
2080 	struct e1000_hw *hw = &Adapter->shared;
2081 	unsigned i;
2082 	int res = 0;
2083 
2084 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2085 
2086 	if ((multiaddr[0] & 01) == 0) {
2087 		res = EINVAL;
2088 		goto done;
2089 	}
2090 
2091 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2092 		res = ENOENT;
2093 		goto done;
2094 	}
2095 
2096 	bcopy(multiaddr,
2097 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2098 	Adapter->mcast_count++;
2099 
2100 	/*
2101 	 * Update the MC table in the hardware
2102 	 */
2103 	e1000g_clear_interrupt(Adapter);
2104 
2105 	e1000g_setup_multicast(Adapter);
2106 
2107 #ifndef NO_82542_SUPPORT
2108 	if ((hw->mac.type == e1000_82542) &&
2109 	    (hw->revision_id == E1000_REVISION_2))
2110 		e1000g_rx_setup(Adapter);
2111 #endif
2112 
2113 	e1000g_mask_interrupt(Adapter);
2114 
2115 done:
2116 	rw_exit(&Adapter->chip_lock);
2117 	return (res);
2118 }
2119 
2120 static int
2121 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2122 {
2123 	struct e1000_hw *hw = &Adapter->shared;
2124 	unsigned i;
2125 
2126 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2127 
2128 	for (i = 0; i < Adapter->mcast_count; i++) {
2129 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2130 		    ETHERADDRL) == 0) {
2131 			for (i++; i < Adapter->mcast_count; i++) {
2132 				Adapter->mcast_table[i - 1] =
2133 				    Adapter->mcast_table[i];
2134 			}
2135 			Adapter->mcast_count--;
2136 			break;
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * Update the MC table in the hardware
2142 	 */
2143 	e1000g_clear_interrupt(Adapter);
2144 
2145 	e1000g_setup_multicast(Adapter);
2146 
2147 #ifndef NO_82542_SUPPORT
2148 	if ((hw->mac.type == e1000_82542) &&
2149 	    (hw->revision_id == E1000_REVISION_2))
2150 		e1000g_rx_setup(Adapter);
2151 #endif
2152 
2153 	e1000g_mask_interrupt(Adapter);
2154 
2155 done:
2156 	rw_exit(&Adapter->chip_lock);
2157 	return (0);
2158 }
2159 
2160 /*
2161  * e1000g_setup_multicast - setup multicast data structures
2162  *
2163  * This routine initializes all of the multicast related structures.
2164  */
2165 void
2166 e1000g_setup_multicast(struct e1000g *Adapter)
2167 {
2168 	uint8_t *mc_addr_list;
2169 	uint32_t mc_addr_count;
2170 	uint32_t rctl;
2171 	struct e1000_hw *hw;
2172 
2173 	hw = &Adapter->shared;
2174 
2175 	/*
2176 	 * The e1000g has the ability to do perfect filtering of 16
2177 	 * addresses. The driver uses one of the e1000g's 16 receive
2178 	 * address registers for its node/network/mac/individual address.
2179 	 * So, we have room for up to 15 multicast addresses in the CAM,
2180 	 * additional MC addresses are handled by the MTA (Multicast Table
2181 	 * Array)
2182 	 */
2183 
2184 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2185 
2186 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2187 
2188 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2189 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2190 		    "Adapter requested more than %d MC Addresses.\n",
2191 		    MAX_NUM_MULTICAST_ADDRESSES);
2192 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2193 	} else {
2194 		/*
2195 		 * Set the number of MC addresses that we are being
2196 		 * requested to use
2197 		 */
2198 		mc_addr_count = Adapter->mcast_count;
2199 	}
2200 #ifndef NO_82542_SUPPORT
2201 	/*
2202 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2203 	 * hang  while writing to the receive address registers if the receiver
2204 	 * is not in reset before writing to the registers. Updating the RAR
2205 	 * is done during the setting up of the multicast table, hence the
2206 	 * receiver has to be put in reset before updating the multicast table
2207 	 * and then taken out of reset at the end
2208 	 */
2209 	/*
2210 	 * if WMI was enabled then dis able it before issueing the global
2211 	 * reset to the hardware.
2212 	 */
2213 	/*
2214 	 * Only required for WISEMAN_2_0
2215 	 */
2216 	if ((hw->mac.type == e1000_82542) &&
2217 	    (hw->revision_id == E1000_REVISION_2)) {
2218 		e1000_pci_clear_mwi(hw);
2219 		/*
2220 		 * The e1000g must be in reset before changing any RA
2221 		 * registers. Reset receive unit.  The chip will remain in
2222 		 * the reset state until software explicitly restarts it.
2223 		 */
2224 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2225 		/* Allow receiver time to go in to reset */
2226 		msec_delay(5);
2227 	}
2228 #endif
2229 
2230 	e1000_mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
2231 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2232 
2233 #ifndef NO_82542_SUPPORT
2234 	/*
2235 	 * Only for Wiseman_2_0
2236 	 * If MWI was enabled then re-enable it after issueing (as we
2237 	 * disabled it up there) the receive reset command.
2238 	 * Wainwright does not have a receive reset command and only thing
2239 	 * close to it is global reset which will require tx setup also
2240 	 */
2241 	if ((hw->mac.type == e1000_82542) &&
2242 	    (hw->revision_id == E1000_REVISION_2)) {
2243 		/*
2244 		 * if WMI was enabled then reenable it after issueing the
2245 		 * global or receive reset to the hardware.
2246 		 */
2247 
2248 		/*
2249 		 * Take receiver out of reset
2250 		 * clear E1000_RCTL_RST bit (and all others)
2251 		 */
2252 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2253 		msec_delay(5);
2254 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2255 			e1000_pci_set_mwi(hw);
2256 	}
2257 #endif
2258 
2259 	/*
2260 	 * Restore original value
2261 	 */
2262 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2263 }
2264 
2265 int
2266 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2267 {
2268 	struct e1000g *Adapter = (struct e1000g *)arg;
2269 
2270 	return ((add) ? multicst_add(Adapter, addr)
2271 	    : multicst_remove(Adapter, addr));
2272 }
2273 
2274 int
2275 e1000g_m_promisc(void *arg, boolean_t on)
2276 {
2277 	struct e1000g *Adapter = (struct e1000g *)arg;
2278 	uint32_t rctl;
2279 
2280 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2281 
2282 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2283 
2284 	if (on)
2285 		rctl |=
2286 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2287 	else
2288 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2289 
2290 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2291 
2292 	Adapter->e1000g_promisc = on;
2293 
2294 	rw_exit(&Adapter->chip_lock);
2295 
2296 	return (0);
2297 }
2298 
2299 static boolean_t
2300 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2301 {
2302 	struct e1000g *Adapter = (struct e1000g *)arg;
2303 	struct e1000_hw *hw = &Adapter->shared;
2304 
2305 	switch (cap) {
2306 	case MAC_CAPAB_HCKSUM: {
2307 		uint32_t *txflags = cap_data;
2308 		/*
2309 		 * Checksum on/off selection via global parameters.
2310 		 *
2311 		 * If the chip is flagged as not capable of (correctly)
2312 		 * handling checksumming, we don't enable it on either
2313 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2314 		 * from the patchable global defaults.
2315 		 *
2316 		 * We advertise our capabilities only if TX offload is
2317 		 * enabled.  On receive, the stack will accept checksummed
2318 		 * packets anyway, even if we haven't said we can deliver
2319 		 * them.
2320 		 */
2321 		switch (hw->mac.type) {
2322 		case e1000_82540:
2323 		case e1000_82544:
2324 		case e1000_82545:
2325 		case e1000_82545_rev_3:
2326 		case e1000_82546:
2327 		case e1000_82546_rev_3:
2328 		case e1000_82571:
2329 		case e1000_82572:
2330 		case e1000_82573:
2331 		case e1000_80003es2lan:
2332 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2333 			break;
2334 
2335 		/*
2336 		 * For the following Intel PRO/1000 chipsets, we have not
2337 		 * tested the hardware checksum offload capability, so we
2338 		 * disable the capability for them.
2339 		 *	e1000_82542,
2340 		 *	e1000_82543,
2341 		 *	e1000_82541,
2342 		 *	e1000_82541_rev_2,
2343 		 *	e1000_82547,
2344 		 *	e1000_82547_rev_2,
2345 		 */
2346 		default:
2347 			return (B_FALSE);
2348 		}
2349 
2350 		break;
2351 	}
2352 	case MAC_CAPAB_POLL:
2353 		/*
2354 		 * There's nothing for us to fill in, simply returning
2355 		 * B_TRUE stating that we support polling is sufficient.
2356 		 */
2357 		break;
2358 
2359 	case MAC_CAPAB_MULTIADDRESS: {
2360 		multiaddress_capab_t *mmacp = cap_data;
2361 
2362 		/*
2363 		 * The number of MAC addresses made available by
2364 		 * this capability is one less than the total as
2365 		 * the primary address in slot 0 is counted in
2366 		 * the total.
2367 		 */
2368 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2369 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2370 		/* No multiple factory addresses, set mma_flag to 0 */
2371 		mmacp->maddr_flag = 0;
2372 		mmacp->maddr_handle = Adapter;
2373 		mmacp->maddr_add = e1000g_m_unicst_add;
2374 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2375 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2376 		mmacp->maddr_get = e1000g_m_unicst_get;
2377 		mmacp->maddr_reserve = NULL;
2378 		break;
2379 	}
2380 	default:
2381 		return (B_FALSE);
2382 	}
2383 	return (B_TRUE);
2384 }
2385 
2386 /*
2387  * e1000g_get_conf - get configurations set in e1000g.conf
2388  *
2389  * This routine gets user-configured values out of the configuration
2390  * file e1000g.conf.
2391  *
2392  * For each configurable value, there is a minimum, a maximum, and a
2393  * default.
2394  * If user does not configure a value, use the default.
2395  * If user configures below the minimum, use the minumum.
2396  * If user configures above the maximum, use the maxumum.
2397  */
2398 static void
2399 e1000g_get_conf(struct e1000g *Adapter)
2400 {
2401 	struct e1000_hw *hw = &Adapter->shared;
2402 	boolean_t tbi_compatibility = B_FALSE;
2403 
2404 	/*
2405 	 * get each configurable property from e1000g.conf
2406 	 */
2407 
2408 	/*
2409 	 * NumTxDescriptors
2410 	 */
2411 	Adapter->tx_desc_num =
2412 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
2413 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
2414 	    DEFAULT_NUM_TX_DESCRIPTOR);
2415 
2416 	/*
2417 	 * NumRxDescriptors
2418 	 */
2419 	Adapter->rx_desc_num =
2420 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
2421 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
2422 	    DEFAULT_NUM_RX_DESCRIPTOR);
2423 
2424 	/*
2425 	 * NumRxFreeList
2426 	 */
2427 	Adapter->rx_freelist_num =
2428 	    e1000g_get_prop(Adapter, "NumRxFreeList",
2429 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
2430 	    DEFAULT_NUM_RX_FREELIST);
2431 
2432 	/*
2433 	 * NumTxPacketList
2434 	 */
2435 	Adapter->tx_freelist_num =
2436 	    e1000g_get_prop(Adapter, "NumTxPacketList",
2437 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
2438 	    DEFAULT_NUM_TX_FREELIST);
2439 
2440 	/*
2441 	 * FlowControl
2442 	 */
2443 	hw->mac.fc_send_xon = B_TRUE;
2444 	hw->mac.fc =
2445 	    e1000g_get_prop(Adapter, "FlowControl",
2446 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
2447 	/* 4 is the setting that says "let the eeprom decide" */
2448 	if (hw->mac.fc == 4)
2449 		hw->mac.fc = e1000_fc_default;
2450 
2451 	/*
2452 	 * Max Num Receive Packets on Interrupt
2453 	 */
2454 	Adapter->rx_limit_onintr =
2455 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
2456 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
2457 	    DEFAULT_RX_LIMIT_ON_INTR);
2458 
2459 	/*
2460 	 * PHY master slave setting
2461 	 */
2462 	hw->phy.ms_type =
2463 	    e1000g_get_prop(Adapter, "SetMasterSlave",
2464 	    e1000_ms_hw_default, e1000_ms_auto,
2465 	    e1000_ms_hw_default);
2466 
2467 	/*
2468 	 * Parameter which controls TBI mode workaround, which is only
2469 	 * needed on certain switches such as Cisco 6500/Foundry
2470 	 */
2471 	tbi_compatibility =
2472 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
2473 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
2474 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
2475 
2476 	/*
2477 	 * MSI Enable
2478 	 */
2479 	Adapter->msi_enabled =
2480 	    e1000g_get_prop(Adapter, "MSIEnable",
2481 	    0, 1, DEFAULT_MSI_ENABLE);
2482 
2483 	/*
2484 	 * Interrupt Throttling Rate
2485 	 */
2486 	Adapter->intr_throttling_rate =
2487 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
2488 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
2489 	    DEFAULT_INTR_THROTTLING);
2490 
2491 	/*
2492 	 * Adaptive Interrupt Blanking Enable/Disable
2493 	 * It is enabled by default
2494 	 */
2495 	Adapter->intr_adaptive =
2496 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
2497 	    B_TRUE : B_FALSE;
2498 }
2499 
2500 /*
2501  * e1000g_get_prop - routine to read properties
2502  *
2503  * Get a user-configure property value out of the configuration
2504  * file e1000g.conf.
2505  *
2506  * Caller provides name of the property, a default value, a minimum
2507  * value, and a maximum value.
2508  *
2509  * Return configured value of the property, with default, minimum and
2510  * maximum properly applied.
2511  */
2512 static int
2513 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
2514     char *propname,		/* name of the property */
2515     int minval,			/* minimum acceptable value */
2516     int maxval,			/* maximim acceptable value */
2517     int defval)			/* default value */
2518 {
2519 	int propval;		/* value returned for requested property */
2520 	int *props;		/* point to array of properties returned */
2521 	uint_t nprops;		/* number of property value returned */
2522 
2523 	/*
2524 	 * get the array of properties from the config file
2525 	 */
2526 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
2527 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
2528 		/* got some properties, test if we got enough */
2529 		if (Adapter->instance < nprops) {
2530 			propval = props[Adapter->instance];
2531 		} else {
2532 			/* not enough properties configured */
2533 			propval = defval;
2534 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2535 			    "Not Enough %s values found in e1000g.conf"
2536 			    " - set to %d\n",
2537 			    propname, propval);
2538 		}
2539 
2540 		/* free memory allocated for properties */
2541 		ddi_prop_free(props);
2542 
2543 	} else {
2544 		propval = defval;
2545 	}
2546 
2547 	/*
2548 	 * enforce limits
2549 	 */
2550 	if (propval > maxval) {
2551 		propval = maxval;
2552 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2553 		    "Too High %s value in e1000g.conf - set to %d\n",
2554 		    propname, propval);
2555 	}
2556 
2557 	if (propval < minval) {
2558 		propval = minval;
2559 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2560 		    "Too Low %s value in e1000g.conf - set to %d\n",
2561 		    propname, propval);
2562 	}
2563 
2564 	return (propval);
2565 }
2566 
2567 static boolean_t
2568 e1000g_link_check(struct e1000g *Adapter)
2569 {
2570 	uint16_t speed, duplex, phydata;
2571 	boolean_t link_changed = B_FALSE;
2572 	struct e1000_hw *hw;
2573 	uint32_t reg_tarc;
2574 
2575 	hw = &Adapter->shared;
2576 
2577 	if (e1000g_link_up(Adapter)) {
2578 		/*
2579 		 * The Link is up, check whether it was marked as down earlier
2580 		 */
2581 		if (Adapter->link_state != LINK_STATE_UP) {
2582 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
2583 			Adapter->link_speed = speed;
2584 			Adapter->link_duplex = duplex;
2585 			Adapter->link_state = LINK_STATE_UP;
2586 			link_changed = B_TRUE;
2587 
2588 			Adapter->tx_link_down_timeout = 0;
2589 
2590 			if ((hw->mac.type == e1000_82571) ||
2591 			    (hw->mac.type == e1000_82572)) {
2592 				reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
2593 				if (speed == SPEED_1000)
2594 					reg_tarc |= (1 << 21);
2595 				else
2596 					reg_tarc &= ~(1 << 21);
2597 				E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
2598 			}
2599 		}
2600 		Adapter->smartspeed = 0;
2601 	} else {
2602 		if (Adapter->link_state != LINK_STATE_DOWN) {
2603 			Adapter->link_speed = 0;
2604 			Adapter->link_duplex = 0;
2605 			Adapter->link_state = LINK_STATE_DOWN;
2606 			link_changed = B_TRUE;
2607 
2608 			/*
2609 			 * SmartSpeed workaround for Tabor/TanaX, When the
2610 			 * driver loses link disable auto master/slave
2611 			 * resolution.
2612 			 */
2613 			if (hw->phy.type == e1000_phy_igp) {
2614 				e1000_read_phy_reg(hw,
2615 				    PHY_1000T_CTRL, &phydata);
2616 				phydata |= CR_1000T_MS_ENABLE;
2617 				e1000_write_phy_reg(hw,
2618 				    PHY_1000T_CTRL, phydata);
2619 			}
2620 		} else {
2621 			e1000g_smartspeed(Adapter);
2622 		}
2623 
2624 		if (Adapter->started) {
2625 			if (Adapter->tx_link_down_timeout <
2626 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2627 				Adapter->tx_link_down_timeout++;
2628 			} else if (Adapter->tx_link_down_timeout ==
2629 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2630 				rw_enter(&Adapter->chip_lock, RW_WRITER);
2631 				e1000g_tx_clean(Adapter);
2632 				rw_exit(&Adapter->chip_lock);
2633 				Adapter->tx_link_down_timeout++;
2634 			}
2635 		}
2636 	}
2637 
2638 	return (link_changed);
2639 }
2640 
2641 static void
2642 e1000g_local_timer(void *ws)
2643 {
2644 	struct e1000g *Adapter = (struct e1000g *)ws;
2645 	struct e1000_hw *hw;
2646 	e1000g_ether_addr_t ether_addr;
2647 	boolean_t link_changed;
2648 
2649 	hw = &Adapter->shared;
2650 
2651 	(void) e1000g_tx_freemsg(Adapter->tx_ring);
2652 
2653 	if (e1000g_stall_check(Adapter)) {
2654 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
2655 		    "Tx stall detected. Activate automatic recovery.\n");
2656 		Adapter->reset_count++;
2657 		(void) e1000g_reset(Adapter);
2658 	}
2659 
2660 	link_changed = B_FALSE;
2661 	mutex_enter(&Adapter->link_lock);
2662 	if (Adapter->link_complete)
2663 		link_changed = e1000g_link_check(Adapter);
2664 	mutex_exit(&Adapter->link_lock);
2665 
2666 	if (link_changed) {
2667 		/*
2668 		 * Workaround for esb2. Data stuck in fifo on a link
2669 		 * down event. Reset the adapter to recover it.
2670 		 */
2671 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
2672 		    (hw->mac.type == e1000_80003es2lan))
2673 			(void) e1000g_reset(Adapter);
2674 
2675 		mac_link_update(Adapter->mh, Adapter->link_state);
2676 	}
2677 
2678 	/*
2679 	 * With 82571 controllers, any locally administered address will
2680 	 * be overwritten when there is a reset on the other port.
2681 	 * Detect this circumstance and correct it.
2682 	 */
2683 	if ((hw->mac.type == e1000_82571) &&
2684 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
2685 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
2686 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
2687 
2688 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
2689 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
2690 
2691 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
2692 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
2693 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
2694 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
2695 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
2696 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
2697 			e1000_rar_set(hw, hw->mac.addr, 0);
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Long TTL workaround for 82541/82547
2703 	 */
2704 	e1000_igp_ttl_workaround_82547(hw);
2705 
2706 	/*
2707 	 * Check for Adaptive IFS settings If there are lots of collisions
2708 	 * change the value in steps...
2709 	 * These properties should only be set for 10/100
2710 	 */
2711 	if ((hw->media_type == e1000_media_type_copper) &&
2712 	    ((Adapter->link_speed == SPEED_100) ||
2713 	    (Adapter->link_speed == SPEED_10))) {
2714 		e1000_update_adaptive(hw);
2715 	}
2716 	/*
2717 	 * Set Timer Interrupts
2718 	 */
2719 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2720 
2721 	restart_watchdog_timer(Adapter);
2722 }
2723 
2724 /*
2725  * The function e1000g_link_timer() is called when the timer for link setup
2726  * is expired, which indicates the completion of the link setup. The link
2727  * state will not be updated until the link setup is completed. And the
2728  * link state will not be sent to the upper layer through mac_link_update()
2729  * in this function. It will be updated in the local timer routine or the
2730  * interrupt service routine after the interface is started (plumbed).
2731  */
2732 static void
2733 e1000g_link_timer(void *arg)
2734 {
2735 	struct e1000g *Adapter = (struct e1000g *)arg;
2736 
2737 	mutex_enter(&Adapter->link_lock);
2738 	Adapter->link_complete = B_TRUE;
2739 	Adapter->link_tid = 0;
2740 	mutex_exit(&Adapter->link_lock);
2741 }
2742 
2743 /*
2744  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
2745  *
2746  * This function read the forced speed and duplex for 10/100 Mbps speeds
2747  * and also for 1000 Mbps speeds from the e1000g.conf file
2748  */
2749 static void
2750 e1000g_force_speed_duplex(struct e1000g *Adapter)
2751 {
2752 	int forced;
2753 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2754 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2755 
2756 	/*
2757 	 * get value out of config file
2758 	 */
2759 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
2760 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
2761 
2762 	switch (forced) {
2763 	case GDIAG_10_HALF:
2764 		/*
2765 		 * Disable Auto Negotiation
2766 		 */
2767 		mac->autoneg = B_FALSE;
2768 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
2769 		break;
2770 	case GDIAG_10_FULL:
2771 		/*
2772 		 * Disable Auto Negotiation
2773 		 */
2774 		mac->autoneg = B_FALSE;
2775 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
2776 		break;
2777 	case GDIAG_100_HALF:
2778 		/*
2779 		 * Disable Auto Negotiation
2780 		 */
2781 		mac->autoneg = B_FALSE;
2782 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
2783 		break;
2784 	case GDIAG_100_FULL:
2785 		/*
2786 		 * Disable Auto Negotiation
2787 		 */
2788 		mac->autoneg = B_FALSE;
2789 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
2790 		break;
2791 	case GDIAG_1000_FULL:
2792 		/*
2793 		 * The gigabit spec requires autonegotiation.  Therefore,
2794 		 * when the user wants to force the speed to 1000Mbps, we
2795 		 * enable AutoNeg, but only allow the harware to advertise
2796 		 * 1000Mbps.  This is different from 10/100 operation, where
2797 		 * we are allowed to link without any negotiation.
2798 		 */
2799 		mac->autoneg = B_TRUE;
2800 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
2801 		break;
2802 	default:	/* obey the setting of AutoNegAdvertised */
2803 		mac->autoneg = B_TRUE;
2804 		phy->autoneg_advertised =
2805 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
2806 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
2807 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
2808 		break;
2809 	}	/* switch */
2810 }
2811 
2812 /*
2813  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
2814  *
2815  * This function reads MaxFrameSize from e1000g.conf
2816  */
2817 static void
2818 e1000g_get_max_frame_size(struct e1000g *Adapter)
2819 {
2820 	int max_frame;
2821 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2822 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2823 
2824 	/*
2825 	 * get value out of config file
2826 	 */
2827 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
2828 
2829 	switch (max_frame) {
2830 	case 0:
2831 		mac->max_frame_size = ETHERMAX;
2832 		break;
2833 	case 1:
2834 		mac->max_frame_size = FRAME_SIZE_UPTO_4K;
2835 		break;
2836 	case 2:
2837 		mac->max_frame_size = FRAME_SIZE_UPTO_8K;
2838 		break;
2839 	case 3:
2840 		if (mac->type < e1000_82571)
2841 			mac->max_frame_size = FRAME_SIZE_UPTO_16K;
2842 		else
2843 			mac->max_frame_size = FRAME_SIZE_UPTO_9K;
2844 		break;
2845 	default:
2846 		mac->max_frame_size = ETHERMAX;
2847 		break;
2848 	}	/* switch */
2849 
2850 	/* ich8 does not do jumbo frames */
2851 	if (mac->type == e1000_ich8lan) {
2852 		mac->max_frame_size = ETHERMAX;
2853 	}
2854 
2855 	/* ich9 does not do jumbo frames on one phy type */
2856 	if ((mac->type == e1000_ich9lan) &&
2857 	    (phy->type == e1000_phy_ife)) {
2858 		mac->max_frame_size = ETHERMAX;
2859 	}
2860 }
2861 
2862 static void
2863 arm_watchdog_timer(struct e1000g *Adapter)
2864 {
2865 	Adapter->watchdog_tid =
2866 	    timeout(e1000g_local_timer,
2867 	    (void *)Adapter, 1 * drv_usectohz(1000000));
2868 }
2869 #pragma inline(arm_watchdog_timer)
2870 
2871 static void
2872 enable_watchdog_timer(struct e1000g *Adapter)
2873 {
2874 	mutex_enter(&Adapter->watchdog_lock);
2875 
2876 	if (!Adapter->watchdog_timer_enabled) {
2877 		Adapter->watchdog_timer_enabled = B_TRUE;
2878 		Adapter->watchdog_timer_started = B_TRUE;
2879 		arm_watchdog_timer(Adapter);
2880 	}
2881 
2882 	mutex_exit(&Adapter->watchdog_lock);
2883 }
2884 
2885 static void
2886 disable_watchdog_timer(struct e1000g *Adapter)
2887 {
2888 	timeout_id_t tid;
2889 
2890 	mutex_enter(&Adapter->watchdog_lock);
2891 
2892 	Adapter->watchdog_timer_enabled = B_FALSE;
2893 	Adapter->watchdog_timer_started = B_FALSE;
2894 	tid = Adapter->watchdog_tid;
2895 	Adapter->watchdog_tid = 0;
2896 
2897 	mutex_exit(&Adapter->watchdog_lock);
2898 
2899 	if (tid != 0)
2900 		(void) untimeout(tid);
2901 }
2902 
2903 static void
2904 start_watchdog_timer(struct e1000g *Adapter)
2905 {
2906 	mutex_enter(&Adapter->watchdog_lock);
2907 
2908 	if (Adapter->watchdog_timer_enabled) {
2909 		if (!Adapter->watchdog_timer_started) {
2910 			Adapter->watchdog_timer_started = B_TRUE;
2911 			arm_watchdog_timer(Adapter);
2912 		}
2913 	}
2914 
2915 	mutex_exit(&Adapter->watchdog_lock);
2916 }
2917 
2918 static void
2919 restart_watchdog_timer(struct e1000g *Adapter)
2920 {
2921 	mutex_enter(&Adapter->watchdog_lock);
2922 
2923 	if (Adapter->watchdog_timer_started)
2924 		arm_watchdog_timer(Adapter);
2925 
2926 	mutex_exit(&Adapter->watchdog_lock);
2927 }
2928 
2929 static void
2930 stop_watchdog_timer(struct e1000g *Adapter)
2931 {
2932 	timeout_id_t tid;
2933 
2934 	mutex_enter(&Adapter->watchdog_lock);
2935 
2936 	Adapter->watchdog_timer_started = B_FALSE;
2937 	tid = Adapter->watchdog_tid;
2938 	Adapter->watchdog_tid = 0;
2939 
2940 	mutex_exit(&Adapter->watchdog_lock);
2941 
2942 	if (tid != 0)
2943 		(void) untimeout(tid);
2944 }
2945 
2946 static void
2947 stop_link_timer(struct e1000g *Adapter)
2948 {
2949 	timeout_id_t tid;
2950 
2951 	/* Disable the link timer */
2952 	mutex_enter(&Adapter->link_lock);
2953 
2954 	tid = Adapter->link_tid;
2955 	Adapter->link_tid = 0;
2956 
2957 	mutex_exit(&Adapter->link_lock);
2958 
2959 	if (tid != 0)
2960 		(void) untimeout(tid);
2961 }
2962 
2963 static void
2964 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
2965 {
2966 	timeout_id_t tid;
2967 
2968 	/* Disable the tx timer for 82547 chipset */
2969 	mutex_enter(&tx_ring->tx_lock);
2970 
2971 	tx_ring->timer_enable_82547 = B_FALSE;
2972 	tid = tx_ring->timer_id_82547;
2973 	tx_ring->timer_id_82547 = 0;
2974 
2975 	mutex_exit(&tx_ring->tx_lock);
2976 
2977 	if (tid != 0)
2978 		(void) untimeout(tid);
2979 }
2980 
2981 void
2982 e1000g_clear_interrupt(struct e1000g *Adapter)
2983 {
2984 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
2985 	    0xffffffff & ~E1000_IMS_RXSEQ);
2986 }
2987 
2988 void
2989 e1000g_mask_interrupt(struct e1000g *Adapter)
2990 {
2991 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
2992 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW & ~E1000_IMS_TXQE);
2993 }
2994 
2995 void
2996 e1000g_clear_all_interrupts(struct e1000g *Adapter)
2997 {
2998 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
2999 }
3000 
3001 void
3002 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3003 {
3004 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000G_IMS_TX_INTR);
3005 }
3006 
3007 void
3008 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3009 {
3010 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000G_IMS_TX_INTR);
3011 }
3012 
3013 static void
3014 e1000g_smartspeed(struct e1000g *Adapter)
3015 {
3016 	struct e1000_hw *hw = &Adapter->shared;
3017 	uint16_t phy_status;
3018 	uint16_t phy_ctrl;
3019 
3020 	/*
3021 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3022 	 * advertising 1000Full, we don't even use the workaround
3023 	 */
3024 	if ((hw->phy.type != e1000_phy_igp) ||
3025 	    !hw->mac.autoneg ||
3026 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3027 		return;
3028 
3029 	/*
3030 	 * True if this is the first call of this function or after every
3031 	 * 30 seconds of not having link
3032 	 */
3033 	if (Adapter->smartspeed == 0) {
3034 		/*
3035 		 * If Master/Slave config fault is asserted twice, we
3036 		 * assume back-to-back
3037 		 */
3038 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3039 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3040 			return;
3041 
3042 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3043 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3044 			return;
3045 		/*
3046 		 * We're assuming back-2-back because our status register
3047 		 * insists! there's a fault in the master/slave
3048 		 * relationship that was "negotiated"
3049 		 */
3050 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3051 		/*
3052 		 * Is the phy configured for manual configuration of
3053 		 * master/slave?
3054 		 */
3055 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
3056 			/*
3057 			 * Yes.  Then disable manual configuration (enable
3058 			 * auto configuration) of master/slave
3059 			 */
3060 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
3061 			e1000_write_phy_reg(hw,
3062 			    PHY_1000T_CTRL, phy_ctrl);
3063 			/*
3064 			 * Effectively starting the clock
3065 			 */
3066 			Adapter->smartspeed++;
3067 			/*
3068 			 * Restart autonegotiation
3069 			 */
3070 			if (!e1000_phy_setup_autoneg(hw) &&
3071 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3072 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3073 				    MII_CR_RESTART_AUTO_NEG);
3074 				e1000_write_phy_reg(hw,
3075 				    PHY_CONTROL, phy_ctrl);
3076 			}
3077 		}
3078 		return;
3079 		/*
3080 		 * Has 6 seconds transpired still without link? Remember,
3081 		 * you should reset the smartspeed counter once you obtain
3082 		 * link
3083 		 */
3084 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3085 		/*
3086 		 * Yes.  Remember, we did at the start determine that
3087 		 * there's a master/slave configuration fault, so we're
3088 		 * still assuming there's someone on the other end, but we
3089 		 * just haven't yet been able to talk to it. We then
3090 		 * re-enable auto configuration of master/slave to see if
3091 		 * we're running 2/3 pair cables.
3092 		 */
3093 		/*
3094 		 * If still no link, perhaps using 2/3 pair cable
3095 		 */
3096 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3097 		phy_ctrl |= CR_1000T_MS_ENABLE;
3098 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
3099 		/*
3100 		 * Restart autoneg with phy enabled for manual
3101 		 * configuration of master/slave
3102 		 */
3103 		if (!e1000_phy_setup_autoneg(hw) &&
3104 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3105 			phy_ctrl |=
3106 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3107 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3108 		}
3109 		/*
3110 		 * Hopefully, there are no more faults and we've obtained
3111 		 * link as a result.
3112 		 */
3113 	}
3114 	/*
3115 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
3116 	 * seconds)
3117 	 */
3118 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3119 		Adapter->smartspeed = 0;
3120 }
3121 
3122 static boolean_t
3123 is_valid_mac_addr(uint8_t *mac_addr)
3124 {
3125 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3126 	const uint8_t addr_test2[6] =
3127 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3128 
3129 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3130 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3131 		return (B_FALSE);
3132 
3133 	return (B_TRUE);
3134 }
3135 
3136 /*
3137  * e1000g_stall_check - check for tx stall
3138  *
3139  * This function checks if the adapter is stalled (in transmit).
3140  *
3141  * It is called each time the watchdog timeout is invoked.
3142  * If the transmit descriptor reclaim continuously fails,
3143  * the watchdog value will increment by 1. If the watchdog
3144  * value exceeds the threshold, the adapter is assumed to
3145  * have stalled and need to be reset.
3146  */
3147 static boolean_t
3148 e1000g_stall_check(struct e1000g *Adapter)
3149 {
3150 	e1000g_tx_ring_t *tx_ring;
3151 
3152 	tx_ring = Adapter->tx_ring;
3153 
3154 	if (Adapter->link_state != LINK_STATE_UP)
3155 		return (B_FALSE);
3156 
3157 	if (tx_ring->recycle_fail > 0)
3158 		tx_ring->stall_watchdog++;
3159 	else
3160 		tx_ring->stall_watchdog = 0;
3161 
3162 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
3163 		return (B_FALSE);
3164 
3165 	tx_ring->stall_watchdog = 0;
3166 	tx_ring->recycle_fail = 0;
3167 
3168 	return (B_TRUE);
3169 }
3170 
3171 #ifdef E1000G_DEBUG
3172 static enum ioc_reply
3173 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
3174 {
3175 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
3176 	e1000g_peekpoke_t *ppd;
3177 	uint64_t mem_va;
3178 	uint64_t maxoff;
3179 	boolean_t peek;
3180 
3181 	switch (iocp->ioc_cmd) {
3182 
3183 	case E1000G_IOC_REG_PEEK:
3184 		peek = B_TRUE;
3185 		break;
3186 
3187 	case E1000G_IOC_REG_POKE:
3188 		peek = B_FALSE;
3189 		break;
3190 
3191 	deault:
3192 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3193 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
3194 		    iocp->ioc_cmd);
3195 		return (IOC_INVAL);
3196 	}
3197 
3198 	/*
3199 	 * Validate format of ioctl
3200 	 */
3201 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
3202 		return (IOC_INVAL);
3203 	if (mp->b_cont == NULL)
3204 		return (IOC_INVAL);
3205 
3206 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
3207 
3208 	/*
3209 	 * Validate request parameters
3210 	 */
3211 	switch (ppd->pp_acc_space) {
3212 
3213 	default:
3214 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3215 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
3216 		    ppd->pp_acc_space);
3217 		return (IOC_INVAL);
3218 
3219 	case E1000G_PP_SPACE_REG:
3220 		/*
3221 		 * Memory-mapped I/O space
3222 		 */
3223 		ASSERT(ppd->pp_acc_size == 4);
3224 		if (ppd->pp_acc_size != 4)
3225 			return (IOC_INVAL);
3226 
3227 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
3228 			return (IOC_INVAL);
3229 
3230 		mem_va = 0;
3231 		maxoff = 0x10000;
3232 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
3233 		break;
3234 
3235 	case E1000G_PP_SPACE_E1000G:
3236 		/*
3237 		 * E1000g data structure!
3238 		 */
3239 		mem_va = (uintptr_t)e1000gp;
3240 		maxoff = sizeof (struct e1000g);
3241 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
3242 		break;
3243 
3244 	}
3245 
3246 	if (ppd->pp_acc_offset >= maxoff)
3247 		return (IOC_INVAL);
3248 
3249 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
3250 		return (IOC_INVAL);
3251 
3252 	/*
3253 	 * All OK - go!
3254 	 */
3255 	ppd->pp_acc_offset += mem_va;
3256 	(*ppfn)(e1000gp, ppd);
3257 	return (peek ? IOC_REPLY : IOC_ACK);
3258 }
3259 
3260 static void
3261 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3262 {
3263 	ddi_acc_handle_t handle;
3264 	uint32_t *regaddr;
3265 
3266 	handle = e1000gp->osdep.reg_handle;
3267 	regaddr =
3268 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3269 
3270 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
3271 }
3272 
3273 static void
3274 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3275 {
3276 	ddi_acc_handle_t handle;
3277 	uint32_t *regaddr;
3278 	uint32_t value;
3279 
3280 	handle = e1000gp->osdep.reg_handle;
3281 	regaddr =
3282 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3283 	value = (uint32_t)ppd->pp_acc_data;
3284 
3285 	ddi_put32(handle, regaddr, value);
3286 }
3287 
3288 static void
3289 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3290 {
3291 	uint64_t value;
3292 	void *vaddr;
3293 
3294 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3295 
3296 	switch (ppd->pp_acc_size) {
3297 	case 1:
3298 		value = *(uint8_t *)vaddr;
3299 		break;
3300 
3301 	case 2:
3302 		value = *(uint16_t *)vaddr;
3303 		break;
3304 
3305 	case 4:
3306 		value = *(uint32_t *)vaddr;
3307 		break;
3308 
3309 	case 8:
3310 		value = *(uint64_t *)vaddr;
3311 		break;
3312 	}
3313 
3314 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3315 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
3316 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3317 
3318 	ppd->pp_acc_data = value;
3319 }
3320 
3321 static void
3322 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3323 {
3324 	uint64_t value;
3325 	void *vaddr;
3326 
3327 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3328 	value = ppd->pp_acc_data;
3329 
3330 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3331 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
3332 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3333 
3334 	switch (ppd->pp_acc_size) {
3335 	case 1:
3336 		*(uint8_t *)vaddr = (uint8_t)value;
3337 		break;
3338 
3339 	case 2:
3340 		*(uint16_t *)vaddr = (uint16_t)value;
3341 		break;
3342 
3343 	case 4:
3344 		*(uint32_t *)vaddr = (uint32_t)value;
3345 		break;
3346 
3347 	case 8:
3348 		*(uint64_t *)vaddr = (uint64_t)value;
3349 		break;
3350 	}
3351 }
3352 #endif
3353 
3354 /*
3355  * Loopback Support
3356  */
3357 static lb_property_t lb_normal =
3358 	{ normal,	"normal",	E1000G_LB_NONE		};
3359 static lb_property_t lb_external1000 =
3360 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
3361 static lb_property_t lb_external100 =
3362 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
3363 static lb_property_t lb_external10 =
3364 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
3365 static lb_property_t lb_phy =
3366 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
3367 
3368 static enum ioc_reply
3369 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
3370 {
3371 	lb_info_sz_t *lbsp;
3372 	lb_property_t *lbpp;
3373 	struct e1000_hw *hw;
3374 	uint32_t *lbmp;
3375 	uint32_t size;
3376 	uint32_t value;
3377 	uint16_t phy_status;
3378 	uint16_t phy_ext_status;
3379 
3380 	hw = &Adapter->shared;
3381 
3382 	if (mp->b_cont == NULL)
3383 		return (IOC_INVAL);
3384 
3385 	switch (iocp->ioc_cmd) {
3386 	default:
3387 		return (IOC_INVAL);
3388 
3389 	case LB_GET_INFO_SIZE:
3390 		size = sizeof (lb_info_sz_t);
3391 		if (iocp->ioc_count != size)
3392 			return (IOC_INVAL);
3393 
3394 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3395 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3396 
3397 		value = sizeof (lb_normal);
3398 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3399 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3400 		    (hw->media_type == e1000_media_type_fiber) ||
3401 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3402 			value += sizeof (lb_phy);
3403 			switch (hw->mac.type) {
3404 			case e1000_82571:
3405 			case e1000_82572:
3406 				value += sizeof (lb_external1000);
3407 				break;
3408 			}
3409 		}
3410 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3411 		    (phy_status & MII_SR_100T2_FD_CAPS))
3412 			value += sizeof (lb_external100);
3413 		if (phy_status & MII_SR_10T_FD_CAPS)
3414 			value += sizeof (lb_external10);
3415 
3416 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
3417 		*lbsp = value;
3418 		break;
3419 
3420 	case LB_GET_INFO:
3421 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3422 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3423 
3424 		value = sizeof (lb_normal);
3425 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3426 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3427 		    (hw->media_type == e1000_media_type_fiber) ||
3428 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3429 			value += sizeof (lb_phy);
3430 			switch (hw->mac.type) {
3431 			case e1000_82571:
3432 			case e1000_82572:
3433 				value += sizeof (lb_external1000);
3434 				break;
3435 			}
3436 		}
3437 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3438 		    (phy_status & MII_SR_100T2_FD_CAPS))
3439 			value += sizeof (lb_external100);
3440 		if (phy_status & MII_SR_10T_FD_CAPS)
3441 			value += sizeof (lb_external10);
3442 
3443 		size = value;
3444 		if (iocp->ioc_count != size)
3445 			return (IOC_INVAL);
3446 
3447 		value = 0;
3448 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
3449 		lbpp[value++] = lb_normal;
3450 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3451 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3452 		    (hw->media_type == e1000_media_type_fiber) ||
3453 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3454 			lbpp[value++] = lb_phy;
3455 			switch (hw->mac.type) {
3456 			case e1000_82571:
3457 			case e1000_82572:
3458 				lbpp[value++] = lb_external1000;
3459 				break;
3460 			}
3461 		}
3462 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3463 		    (phy_status & MII_SR_100T2_FD_CAPS))
3464 			lbpp[value++] = lb_external100;
3465 		if (phy_status & MII_SR_10T_FD_CAPS)
3466 			lbpp[value++] = lb_external10;
3467 		break;
3468 
3469 	case LB_GET_MODE:
3470 		size = sizeof (uint32_t);
3471 		if (iocp->ioc_count != size)
3472 			return (IOC_INVAL);
3473 
3474 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3475 		*lbmp = Adapter->loopback_mode;
3476 		break;
3477 
3478 	case LB_SET_MODE:
3479 		size = 0;
3480 		if (iocp->ioc_count != sizeof (uint32_t))
3481 			return (IOC_INVAL);
3482 
3483 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3484 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
3485 			return (IOC_INVAL);
3486 		break;
3487 	}
3488 
3489 	iocp->ioc_count = size;
3490 	iocp->ioc_error = 0;
3491 
3492 	return (IOC_REPLY);
3493 }
3494 
3495 static boolean_t
3496 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
3497 {
3498 	struct e1000_hw *hw;
3499 #ifndef __sparc
3500 	uint32_t reg_rctl;
3501 #endif
3502 	int i, times;
3503 
3504 	if (mode == Adapter->loopback_mode)
3505 		return (B_TRUE);
3506 
3507 	hw = &Adapter->shared;
3508 	times = 0;
3509 
3510 again:
3511 	switch (mode) {
3512 	default:
3513 		return (B_FALSE);
3514 
3515 	case E1000G_LB_NONE:
3516 		/* Get original speed and duplex settings */
3517 		e1000g_force_speed_duplex(Adapter);
3518 		/* Reset the chip */
3519 		hw->phy.wait_for_link = B_TRUE;
3520 		(void) e1000g_reset(Adapter);
3521 		hw->phy.wait_for_link = B_FALSE;
3522 		break;
3523 
3524 	case E1000G_LB_EXTERNAL_1000:
3525 		e1000g_set_external_loopback_1000(Adapter);
3526 		break;
3527 
3528 	case E1000G_LB_EXTERNAL_100:
3529 		e1000g_set_external_loopback_100(Adapter);
3530 		break;
3531 
3532 	case E1000G_LB_EXTERNAL_10:
3533 		e1000g_set_external_loopback_10(Adapter);
3534 		break;
3535 
3536 	case E1000G_LB_INTERNAL_PHY:
3537 		e1000g_set_internal_loopback(Adapter);
3538 		break;
3539 	}
3540 
3541 	times++;
3542 
3543 	switch (mode) {
3544 	case E1000G_LB_EXTERNAL_1000:
3545 	case E1000G_LB_EXTERNAL_100:
3546 	case E1000G_LB_EXTERNAL_10:
3547 	case E1000G_LB_INTERNAL_PHY:
3548 		/* Wait for link up */
3549 		for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
3550 			msec_delay(100);
3551 
3552 		if (!e1000g_link_up(Adapter)) {
3553 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3554 			    "Failed to get the link up");
3555 			if (times < 2) {
3556 				/* Reset the link */
3557 				E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3558 				    "Reset the link ...");
3559 				(void) e1000g_reset(Adapter);
3560 				goto again;
3561 			}
3562 		}
3563 		break;
3564 	}
3565 
3566 	Adapter->loopback_mode = mode;
3567 
3568 	return (B_TRUE);
3569 }
3570 
3571 /*
3572  * The following loopback settings are from Intel's technical
3573  * document - "How To Loopback". All the register settings and
3574  * time delay values are directly inherited from the document
3575  * without more explanations available.
3576  */
3577 static void
3578 e1000g_set_internal_loopback(struct e1000g *Adapter)
3579 {
3580 	struct e1000_hw *hw;
3581 	uint32_t ctrl;
3582 	uint32_t status;
3583 	uint16_t phy_ctrl;
3584 
3585 	hw = &Adapter->shared;
3586 
3587 	/* Disable Smart Power Down */
3588 	phy_spd_state(hw, B_FALSE);
3589 
3590 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3591 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
3592 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
3593 
3594 	switch (hw->mac.type) {
3595 	case e1000_82540:
3596 	case e1000_82545:
3597 	case e1000_82545_rev_3:
3598 	case e1000_82546:
3599 	case e1000_82546_rev_3:
3600 	case e1000_82573:
3601 		/* Auto-MDI/MDIX off */
3602 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
3603 		/* Reset PHY to update Auto-MDI/MDIX */
3604 		e1000_write_phy_reg(hw, PHY_CONTROL,
3605 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
3606 		/* Reset PHY to auto-neg off and force 1000 */
3607 		e1000_write_phy_reg(hw, PHY_CONTROL,
3608 		    phy_ctrl | MII_CR_RESET);
3609 		break;
3610 	}
3611 
3612 	/* Set loopback */
3613 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
3614 
3615 	msec_delay(250);
3616 
3617 	/* Now set up the MAC to the same speed/duplex as the PHY. */
3618 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3619 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3620 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3621 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
3622 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
3623 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
3624 
3625 	switch (hw->mac.type) {
3626 	case e1000_82540:
3627 	case e1000_82545:
3628 	case e1000_82545_rev_3:
3629 	case e1000_82546:
3630 	case e1000_82546_rev_3:
3631 		/*
3632 		 * For some serdes we'll need to commit the writes now
3633 		 * so that the status is updated on link
3634 		 */
3635 		if (hw->media_type == e1000_media_type_internal_serdes) {
3636 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3637 			msec_delay(100);
3638 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
3639 		}
3640 
3641 		if (hw->media_type == e1000_media_type_copper) {
3642 			/* Invert Loss of Signal */
3643 			ctrl |= E1000_CTRL_ILOS;
3644 		} else {
3645 			/* Set ILOS on fiber nic if half duplex is detected */
3646 			status = E1000_READ_REG(hw, E1000_STATUS);
3647 			if ((status & E1000_STATUS_FD) == 0)
3648 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3649 		}
3650 		break;
3651 
3652 	case e1000_82571:
3653 	case e1000_82572:
3654 		if (hw->media_type != e1000_media_type_copper) {
3655 			/* Set ILOS on fiber nic if half duplex is detected */
3656 			status = E1000_READ_REG(hw, E1000_STATUS);
3657 			if ((status & E1000_STATUS_FD) == 0)
3658 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3659 		}
3660 		break;
3661 
3662 	case e1000_82573:
3663 		ctrl |= E1000_CTRL_ILOS;
3664 		break;
3665 	}
3666 
3667 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3668 
3669 	/*
3670 	 * Disable PHY receiver for 82540/545/546 and 82573 Family.
3671 	 * For background, see comments above e1000g_set_internal_loopback().
3672 	 */
3673 	switch (hw->mac.type) {
3674 	case e1000_82540:
3675 	case e1000_82545:
3676 	case e1000_82545_rev_3:
3677 	case e1000_82546:
3678 	case e1000_82546_rev_3:
3679 	case e1000_82573:
3680 		e1000_write_phy_reg(hw, 29, 0x001F);
3681 		e1000_write_phy_reg(hw, 30, 0x8FFC);
3682 		e1000_write_phy_reg(hw, 29, 0x001A);
3683 		e1000_write_phy_reg(hw, 30, 0x8FF0);
3684 		break;
3685 	}
3686 }
3687 
3688 static void
3689 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
3690 {
3691 	struct e1000_hw *hw;
3692 	uint32_t rctl;
3693 	uint32_t ctrl_ext;
3694 	uint32_t ctrl;
3695 	uint32_t status;
3696 	uint32_t txcw;
3697 
3698 	hw = &Adapter->shared;
3699 
3700 	/* Disable Smart Power Down */
3701 	phy_spd_state(hw, B_FALSE);
3702 
3703 	switch (hw->media_type) {
3704 	case e1000_media_type_copper:
3705 		/* Force link up (Must be done before the PHY writes) */
3706 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
3707 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
3708 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3709 
3710 		rctl = E1000_READ_REG(hw, E1000_RCTL);
3711 		rctl |= (E1000_RCTL_EN |
3712 		    E1000_RCTL_SBP |
3713 		    E1000_RCTL_UPE |
3714 		    E1000_RCTL_MPE |
3715 		    E1000_RCTL_LPE |
3716 		    E1000_RCTL_BAM);		/* 0x803E */
3717 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3718 
3719 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3720 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
3721 		    E1000_CTRL_EXT_SDP6_DATA |
3722 		    E1000_CTRL_EXT_SDP7_DATA |
3723 		    E1000_CTRL_EXT_SDP4_DIR |
3724 		    E1000_CTRL_EXT_SDP6_DIR |
3725 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
3726 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3727 
3728 		/*
3729 		 * This sequence tunes the PHY's SDP and no customer
3730 		 * settable values. For background, see comments above
3731 		 * e1000g_set_internal_loopback().
3732 		 */
3733 		e1000_write_phy_reg(hw, 0x0, 0x140);
3734 		msec_delay(10);
3735 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
3736 		e1000_write_phy_reg(hw, 0x12, 0xC10);
3737 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
3738 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
3739 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
3740 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
3741 
3742 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
3743 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
3744 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
3745 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
3746 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
3747 
3748 		msec_delay(50);
3749 		break;
3750 	case e1000_media_type_fiber:
3751 	case e1000_media_type_internal_serdes:
3752 		status = E1000_READ_REG(hw, E1000_STATUS);
3753 		if (((status & E1000_STATUS_LU) == 0) ||
3754 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3755 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
3756 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3757 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3758 		}
3759 
3760 		/* Disable autoneg by setting bit 31 of TXCW to zero */
3761 		txcw = E1000_READ_REG(hw, E1000_TXCW);
3762 		txcw &= ~((uint32_t)1 << 31);
3763 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
3764 
3765 		/*
3766 		 * Write 0x410 to Serdes Control register
3767 		 * to enable Serdes analog loopback
3768 		 */
3769 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
3770 		msec_delay(10);
3771 		break;
3772 	default:
3773 		break;
3774 	}
3775 }
3776 
3777 static void
3778 e1000g_set_external_loopback_100(struct e1000g *Adapter)
3779 {
3780 	struct e1000_hw *hw;
3781 	uint32_t ctrl;
3782 	uint16_t phy_ctrl;
3783 
3784 	hw = &Adapter->shared;
3785 
3786 	/* Disable Smart Power Down */
3787 	phy_spd_state(hw, B_FALSE);
3788 
3789 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3790 	    MII_CR_SPEED_100);
3791 
3792 	/* Force 100/FD, reset PHY */
3793 	e1000_write_phy_reg(hw, PHY_CONTROL,
3794 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
3795 	msec_delay(10);
3796 
3797 	/* Force 100/FD */
3798 	e1000_write_phy_reg(hw, PHY_CONTROL,
3799 	    phy_ctrl);			/* 0x2100 */
3800 	msec_delay(10);
3801 
3802 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3803 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3804 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3805 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3806 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
3807 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
3808 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
3809 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
3810 
3811 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3812 }
3813 
3814 static void
3815 e1000g_set_external_loopback_10(struct e1000g *Adapter)
3816 {
3817 	struct e1000_hw *hw;
3818 	uint32_t ctrl;
3819 	uint16_t phy_ctrl;
3820 
3821 	hw = &Adapter->shared;
3822 
3823 	/* Disable Smart Power Down */
3824 	phy_spd_state(hw, B_FALSE);
3825 
3826 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3827 	    MII_CR_SPEED_10);
3828 
3829 	/* Force 10/FD, reset PHY */
3830 	e1000_write_phy_reg(hw, PHY_CONTROL,
3831 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
3832 	msec_delay(10);
3833 
3834 	/* Force 10/FD */
3835 	e1000_write_phy_reg(hw, PHY_CONTROL,
3836 	    phy_ctrl);			/* 0x0100 */
3837 	msec_delay(10);
3838 
3839 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3840 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3841 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3842 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3843 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
3844 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
3845 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
3846 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
3847 
3848 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3849 }
3850 
3851 #ifdef __sparc
3852 static boolean_t
3853 e1000g_find_mac_address(struct e1000g *Adapter)
3854 {
3855 	struct e1000_hw *hw = &Adapter->shared;
3856 	uchar_t *bytes;
3857 	struct ether_addr sysaddr;
3858 	uint_t nelts;
3859 	int err;
3860 	boolean_t found = B_FALSE;
3861 
3862 	/*
3863 	 * The "vendor's factory-set address" may already have
3864 	 * been extracted from the chip, but if the property
3865 	 * "local-mac-address" is set we use that instead.
3866 	 *
3867 	 * We check whether it looks like an array of 6
3868 	 * bytes (which it should, if OBP set it).  If we can't
3869 	 * make sense of it this way, we'll ignore it.
3870 	 */
3871 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3872 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3873 	if (err == DDI_PROP_SUCCESS) {
3874 		if (nelts == ETHERADDRL) {
3875 			while (nelts--)
3876 				hw->mac.addr[nelts] = bytes[nelts];
3877 			found = B_TRUE;
3878 		}
3879 		ddi_prop_free(bytes);
3880 	}
3881 
3882 	/*
3883 	 * Look up the OBP property "local-mac-address?". If the user has set
3884 	 * 'local-mac-address? = false', use "the system address" instead.
3885 	 */
3886 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
3887 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3888 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3889 			if (localetheraddr(NULL, &sysaddr) != 0) {
3890 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3891 				found = B_TRUE;
3892 			}
3893 		}
3894 		ddi_prop_free(bytes);
3895 	}
3896 
3897 	/*
3898 	 * Finally(!), if there's a valid "mac-address" property (created
3899 	 * if we netbooted from this interface), we must use this instead
3900 	 * of any of the above to ensure that the NFS/install server doesn't
3901 	 * get confused by the address changing as Solaris takes over!
3902 	 */
3903 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3904 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3905 	if (err == DDI_PROP_SUCCESS) {
3906 		if (nelts == ETHERADDRL) {
3907 			while (nelts--)
3908 				hw->mac.addr[nelts] = bytes[nelts];
3909 			found = B_TRUE;
3910 		}
3911 		ddi_prop_free(bytes);
3912 	}
3913 
3914 	if (found) {
3915 		bcopy(hw->mac.addr, hw->mac.perm_addr,
3916 		    ETHERADDRL);
3917 	}
3918 
3919 	return (found);
3920 }
3921 #endif
3922 
3923 static int
3924 e1000g_add_intrs(struct e1000g *Adapter)
3925 {
3926 	dev_info_t *devinfo;
3927 	int intr_types;
3928 	int rc;
3929 
3930 	devinfo = Adapter->dip;
3931 
3932 	/* Get supported interrupt types */
3933 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
3934 
3935 	if (rc != DDI_SUCCESS) {
3936 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
3937 		    "Get supported interrupt types failed: %d\n", rc);
3938 		return (DDI_FAILURE);
3939 	}
3940 
3941 	/*
3942 	 * Based on Intel Technical Advisory document (TA-160), there are some
3943 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
3944 	 * that it supports MSI, but in fact has problems.
3945 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
3946 	 * PCI/PCI-X NICs.
3947 	 */
3948 	if (Adapter->shared.mac.type < e1000_82571)
3949 		Adapter->msi_enabled = B_FALSE;
3950 
3951 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
3952 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
3953 
3954 		if (rc != DDI_SUCCESS) {
3955 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
3956 			    "Add MSI failed, trying Legacy interrupts\n");
3957 		} else {
3958 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
3959 		}
3960 	}
3961 
3962 	if ((Adapter->intr_type == 0) &&
3963 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3964 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
3965 
3966 		if (rc != DDI_SUCCESS) {
3967 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
3968 			    "Add Legacy interrupts failed\n");
3969 			return (DDI_FAILURE);
3970 		}
3971 
3972 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
3973 	}
3974 
3975 	if (Adapter->intr_type == 0) {
3976 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
3977 		    "No interrupts registered\n");
3978 		return (DDI_FAILURE);
3979 	}
3980 
3981 	return (DDI_SUCCESS);
3982 }
3983 
3984 /*
3985  * e1000g_intr_add() handles MSI/Legacy interrupts
3986  */
3987 static int
3988 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
3989 {
3990 	dev_info_t *devinfo;
3991 	int count, avail, actual;
3992 	int x, y, rc, inum = 0;
3993 	int flag;
3994 	ddi_intr_handler_t *intr_handler;
3995 
3996 	devinfo = Adapter->dip;
3997 
3998 	/* get number of interrupts */
3999 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4000 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4001 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4002 		    "Get interrupt number failed. Return: %d, count: %d\n",
4003 		    rc, count);
4004 		return (DDI_FAILURE);
4005 	}
4006 
4007 	/* get number of available interrupts */
4008 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4009 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4010 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4011 		    "Get interrupt available number failed. "
4012 		    "Return: %d, available: %d\n", rc, avail);
4013 		return (DDI_FAILURE);
4014 	}
4015 
4016 	if (avail < count) {
4017 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4018 		    "Interrupts count: %d, available: %d\n",
4019 		    count, avail);
4020 	}
4021 
4022 	/* Allocate an array of interrupt handles */
4023 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4024 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4025 
4026 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4027 	flag = DDI_INTR_ALLOC_NORMAL;
4028 
4029 	/* call ddi_intr_alloc() */
4030 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
4031 	    count, &actual, flag);
4032 
4033 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4034 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4035 		    "Allocate interrupts failed: %d\n", rc);
4036 
4037 		kmem_free(Adapter->htable, Adapter->intr_size);
4038 		return (DDI_FAILURE);
4039 	}
4040 
4041 	if (actual < count) {
4042 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4043 		    "Interrupts requested: %d, received: %d\n",
4044 		    count, actual);
4045 	}
4046 
4047 	Adapter->intr_cnt = actual;
4048 
4049 	/* Get priority for first msi, assume remaining are all the same */
4050 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
4051 
4052 	if (rc != DDI_SUCCESS) {
4053 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4054 		    "Get interrupt priority failed: %d\n", rc);
4055 
4056 		/* Free already allocated intr */
4057 		for (y = 0; y < actual; y++)
4058 			(void) ddi_intr_free(Adapter->htable[y]);
4059 
4060 		kmem_free(Adapter->htable, Adapter->intr_size);
4061 		return (DDI_FAILURE);
4062 	}
4063 
4064 	/*
4065 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
4066 	 * use the interrupt service routine e1000g_intr_pciexpress()
4067 	 * to avoid interrupt stealing when sharing interrupt with other
4068 	 * devices.
4069 	 */
4070 	if (Adapter->shared.mac.type < e1000_82571)
4071 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
4072 	else
4073 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
4074 
4075 	/* Call ddi_intr_add_handler() */
4076 	for (x = 0; x < actual; x++) {
4077 		rc = ddi_intr_add_handler(Adapter->htable[x],
4078 		    intr_handler, (caddr_t)Adapter, NULL);
4079 
4080 		if (rc != DDI_SUCCESS) {
4081 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4082 			    "Add interrupt handler failed: %d\n", rc);
4083 
4084 			/* Remove already added handler */
4085 			for (y = 0; y < x; y++)
4086 				(void) ddi_intr_remove_handler(
4087 				    Adapter->htable[y]);
4088 
4089 			/* Free already allocated intr */
4090 			for (y = 0; y < actual; y++)
4091 				(void) ddi_intr_free(Adapter->htable[y]);
4092 
4093 			kmem_free(Adapter->htable, Adapter->intr_size);
4094 			return (DDI_FAILURE);
4095 		}
4096 	}
4097 
4098 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
4099 
4100 	if (rc != DDI_SUCCESS) {
4101 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4102 		    "Get interrupt cap failed: %d\n", rc);
4103 
4104 		/* Free already allocated intr */
4105 		for (y = 0; y < actual; y++) {
4106 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
4107 			(void) ddi_intr_free(Adapter->htable[y]);
4108 		}
4109 
4110 		kmem_free(Adapter->htable, Adapter->intr_size);
4111 		return (DDI_FAILURE);
4112 	}
4113 
4114 	return (DDI_SUCCESS);
4115 }
4116 
4117 static int
4118 e1000g_rem_intrs(struct e1000g *Adapter)
4119 {
4120 	int x;
4121 	int rc;
4122 
4123 	for (x = 0; x < Adapter->intr_cnt; x++) {
4124 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
4125 		if (rc != DDI_SUCCESS) {
4126 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4127 			    "Remove intr handler failed: %d\n", rc);
4128 			return (DDI_FAILURE);
4129 		}
4130 
4131 		rc = ddi_intr_free(Adapter->htable[x]);
4132 		if (rc != DDI_SUCCESS) {
4133 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4134 			    "Free intr failed: %d\n", rc);
4135 			return (DDI_FAILURE);
4136 		}
4137 	}
4138 
4139 	kmem_free(Adapter->htable, Adapter->intr_size);
4140 
4141 	return (DDI_SUCCESS);
4142 }
4143 
4144 static int
4145 e1000g_enable_intrs(struct e1000g *Adapter)
4146 {
4147 	int x;
4148 	int rc;
4149 
4150 	/* Enable interrupts */
4151 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4152 		/* Call ddi_intr_block_enable() for MSI */
4153 		rc = ddi_intr_block_enable(Adapter->htable,
4154 		    Adapter->intr_cnt);
4155 		if (rc != DDI_SUCCESS) {
4156 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4157 			    "Enable block intr failed: %d\n", rc);
4158 			return (DDI_FAILURE);
4159 		}
4160 	} else {
4161 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4162 		for (x = 0; x < Adapter->intr_cnt; x++) {
4163 			rc = ddi_intr_enable(Adapter->htable[x]);
4164 			if (rc != DDI_SUCCESS) {
4165 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4166 				    "Enable intr failed: %d\n", rc);
4167 				return (DDI_FAILURE);
4168 			}
4169 		}
4170 	}
4171 
4172 	return (DDI_SUCCESS);
4173 }
4174 
4175 static int
4176 e1000g_disable_intrs(struct e1000g *Adapter)
4177 {
4178 	int x;
4179 	int rc;
4180 
4181 	/* Disable all interrupts */
4182 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4183 		rc = ddi_intr_block_disable(Adapter->htable,
4184 		    Adapter->intr_cnt);
4185 		if (rc != DDI_SUCCESS) {
4186 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4187 			    "Disable block intr failed: %d\n", rc);
4188 			return (DDI_FAILURE);
4189 		}
4190 	} else {
4191 		for (x = 0; x < Adapter->intr_cnt; x++) {
4192 			rc = ddi_intr_disable(Adapter->htable[x]);
4193 			if (rc != DDI_SUCCESS) {
4194 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4195 				    "Disable intr failed: %d\n", rc);
4196 				return (DDI_FAILURE);
4197 			}
4198 		}
4199 	}
4200 
4201 	return (DDI_SUCCESS);
4202 }
4203