xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 25351652d920ae27c5a56c199da581033ce763f6)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.2.13";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
68 #pragma inline(e1000g_get_itr)
69 static int e1000g_init(struct e1000g *);
70 static int e1000g_start(struct e1000g *, boolean_t);
71 static void e1000g_stop(struct e1000g *, boolean_t);
72 static int e1000g_m_start(void *);
73 static void e1000g_m_stop(void *);
74 static int e1000g_m_promisc(void *, boolean_t);
75 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
76 static int e1000g_m_unicst(void *, const uint8_t *);
77 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
78 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
79 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
81 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
82 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
83 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
84     uint_t, const void *);
85 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
86     uint_t, uint_t, void *);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
90     uint_t, void *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
102 
103 /*
104  * Local routines
105  */
106 static boolean_t e1000g_reset_adapter(struct e1000g *);
107 static void e1000g_tx_clean(struct e1000g *);
108 static void e1000g_rx_clean(struct e1000g *);
109 static void e1000g_link_timer(void *);
110 static void e1000g_local_timer(void *);
111 static boolean_t e1000g_link_check(struct e1000g *);
112 static boolean_t e1000g_stall_check(struct e1000g *);
113 static void e1000g_smartspeed(struct e1000g *);
114 static void e1000g_get_conf(struct e1000g *);
115 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
116 static void enable_watchdog_timer(struct e1000g *);
117 static void disable_watchdog_timer(struct e1000g *);
118 static void start_watchdog_timer(struct e1000g *);
119 static void restart_watchdog_timer(struct e1000g *);
120 static void stop_watchdog_timer(struct e1000g *);
121 static void stop_link_timer(struct e1000g *);
122 static void stop_82547_timer(e1000g_tx_ring_t *);
123 static void e1000g_force_speed_duplex(struct e1000g *);
124 static void e1000g_get_max_frame_size(struct e1000g *);
125 static boolean_t is_valid_mac_addr(uint8_t *);
126 static void e1000g_unattach(dev_info_t *, struct e1000g *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 static void e1000g_get_driver_control(struct e1000_hw *);
161 static void e1000g_release_driver_control(struct e1000_hw *);
162 static void e1000g_restore_promisc(struct e1000g *Adapter);
163 
164 mac_priv_prop_t e1000g_priv_props[] = {
165 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
166 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
167 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
168 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
169 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
170 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
171 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
172 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
173 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
174 	{"_intr_adaptive", MAC_PROP_PERM_RW},
175 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
176 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
177 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
178 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
179 };
180 #define	E1000G_MAX_PRIV_PROPS	\
181 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
182 
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V0,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	e1000g_m_unicst,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop
257 };
258 
259 /*
260  * Global variables
261  */
262 uint32_t e1000g_mblks_pending = 0;
263 /*
264  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
265  * Here we maintain a private dev_info list if e1000g_force_detach is
266  * enabled. If we force the driver to detach while there are still some
267  * rx buffers retained in the upper layer, we have to keep a copy of the
268  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
269  * structure will be freed after the driver is detached. However when we
270  * finally free those rx buffers released by the upper layer, we need to
271  * refer to the dev_info to free the dma buffers. So we save a copy of
272  * the dev_info for this purpose. On x86 platform, we assume this copy
273  * of dev_info is always valid, but on SPARC platform, it could be invalid
274  * after the system board level DR operation. For this reason, the global
275  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
276  */
277 #ifdef __sparc
278 boolean_t e1000g_force_detach = B_FALSE;
279 #else
280 boolean_t e1000g_force_detach = B_TRUE;
281 #endif
282 private_devi_list_t *e1000g_private_devi_list = NULL;
283 
284 /*
285  * The rwlock is defined to protect the whole processing of rx recycling
286  * and the rx packets release in detach processing to make them mutually
287  * exclusive.
288  * The rx recycling processes different rx packets in different threads,
289  * so it will be protected with RW_READER and it won't block any other rx
290  * recycling threads.
291  * While the detach processing will be protected with RW_WRITER to make
292  * it mutually exclusive with the rx recycling.
293  */
294 krwlock_t e1000g_rx_detach_lock;
295 /*
296  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
297  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
298  * If there are many e1000g instances, the system may run out of DVMA
299  * resources during the initialization of the instances, then the flag will
300  * be changed to "USE_DMA". Because different e1000g instances are initialized
301  * in parallel, we need to use this lock to protect the flag.
302  */
303 krwlock_t e1000g_dma_type_lock;
304 
305 /*
306  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
307  * Based on the information from Intel, the 82546 chipset has some hardware
308  * problem. When one port is being reset and the other port is trying to
309  * access the eeprom, it could cause system hang or panic. To workaround this
310  * hardware problem, we use a global mutex to prevent such operations from
311  * happening simultaneously on different instances. This workaround is applied
312  * to all the devices supported by this driver.
313  */
314 kmutex_t e1000g_nvm_lock;
315 
316 /*
317  * Loadable module configuration entry points for the driver
318  */
319 
320 /*
321  * _init - module initialization
322  */
323 int
324 _init(void)
325 {
326 	int status;
327 
328 	mac_init_ops(&ws_ops, WSNAME);
329 	status = mod_install(&modlinkage);
330 	if (status != DDI_SUCCESS)
331 		mac_fini_ops(&ws_ops);
332 	else {
333 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
334 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
335 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
336 	}
337 
338 	return (status);
339 }
340 
341 /*
342  * _fini - module finalization
343  */
344 int
345 _fini(void)
346 {
347 	int status;
348 
349 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
350 	if (e1000g_mblks_pending != 0) {
351 		rw_exit(&e1000g_rx_detach_lock);
352 		return (EBUSY);
353 	}
354 	rw_exit(&e1000g_rx_detach_lock);
355 
356 	status = mod_remove(&modlinkage);
357 	if (status == DDI_SUCCESS) {
358 		mac_fini_ops(&ws_ops);
359 
360 		if (e1000g_force_detach) {
361 			private_devi_list_t *devi_node;
362 
363 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
364 			while (e1000g_private_devi_list != NULL) {
365 				devi_node = e1000g_private_devi_list;
366 				e1000g_private_devi_list =
367 				    e1000g_private_devi_list->next;
368 
369 				kmem_free(devi_node->priv_dip,
370 				    sizeof (struct dev_info));
371 				kmem_free(devi_node,
372 				    sizeof (private_devi_list_t));
373 			}
374 			rw_exit(&e1000g_rx_detach_lock);
375 		}
376 
377 		rw_destroy(&e1000g_rx_detach_lock);
378 		rw_destroy(&e1000g_dma_type_lock);
379 		mutex_destroy(&e1000g_nvm_lock);
380 	}
381 
382 	return (status);
383 }
384 
385 /*
386  * _info - module information
387  */
388 int
389 _info(struct modinfo *modinfop)
390 {
391 	return (mod_info(&modlinkage, modinfop));
392 }
393 
394 /*
395  * e1000g_attach - driver attach
396  *
397  * This function is the device-specific initialization entry
398  * point. This entry point is required and must be written.
399  * The DDI_ATTACH command must be provided in the attach entry
400  * point. When attach() is called with cmd set to DDI_ATTACH,
401  * all normal kernel services (such as kmem_alloc(9F)) are
402  * available for use by the driver.
403  *
404  * The attach() function will be called once for each instance
405  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
406  * Until attach() succeeds, the only driver entry points which
407  * may be called are open(9E) and getinfo(9E).
408  */
409 static int
410 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
411 {
412 	struct e1000g *Adapter;
413 	struct e1000_hw *hw;
414 	struct e1000g_osdep *osdep;
415 	int instance;
416 
417 	switch (cmd) {
418 	default:
419 		e1000g_log(NULL, CE_WARN,
420 		    "Unsupported command send to e1000g_attach... ");
421 		return (DDI_FAILURE);
422 
423 	case DDI_RESUME:
424 		return (e1000g_resume(devinfo));
425 
426 	case DDI_ATTACH:
427 		break;
428 	}
429 
430 	/*
431 	 * get device instance number
432 	 */
433 	instance = ddi_get_instance(devinfo);
434 
435 	/*
436 	 * Allocate soft data structure
437 	 */
438 	Adapter =
439 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
440 
441 	Adapter->dip = devinfo;
442 	Adapter->instance = instance;
443 	Adapter->tx_ring->adapter = Adapter;
444 	Adapter->rx_ring->adapter = Adapter;
445 
446 	hw = &Adapter->shared;
447 	osdep = &Adapter->osdep;
448 	hw->back = osdep;
449 	osdep->adapter = Adapter;
450 
451 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
452 
453 	/*
454 	 * Initialize for fma support
455 	 */
456 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
457 	    0, 0x0f,
458 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
459 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
460 	e1000g_fm_init(Adapter);
461 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
462 
463 	/*
464 	 * PCI Configure
465 	 */
466 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
467 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
468 		goto attach_fail;
469 	}
470 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
471 
472 	/*
473 	 * Setup hardware
474 	 */
475 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
476 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
477 		goto attach_fail;
478 	}
479 
480 	/*
481 	 * Map in the device registers.
482 	 */
483 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
484 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
485 		goto attach_fail;
486 	}
487 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
488 
489 	/*
490 	 * Initialize driver parameters
491 	 */
492 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
493 		goto attach_fail;
494 	}
495 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
496 
497 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
498 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
499 		goto attach_fail;
500 	}
501 
502 	/*
503 	 * Initialize interrupts
504 	 */
505 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 		goto attach_fail;
508 	}
509 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510 
511 	/*
512 	 * Initialize mutex's for this device.
513 	 * Do this before enabling the interrupt handler and
514 	 * register the softint to avoid the condition where
515 	 * interrupt handler can try using uninitialized mutex
516 	 */
517 	e1000g_init_locks(Adapter);
518 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519 
520 	/*
521 	 * Initialize Driver Counters
522 	 */
523 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 		goto attach_fail;
526 	}
527 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528 
529 	/*
530 	 * Initialize chip hardware and software structures
531 	 */
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
534 		goto attach_fail;
535 	}
536 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
537 
538 	/*
539 	 * Register the driver to the MAC
540 	 */
541 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
542 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
543 		goto attach_fail;
544 	}
545 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
546 
547 	/*
548 	 * Now that mutex locks are initialized, and the chip is also
549 	 * initialized, enable interrupts.
550 	 */
551 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
552 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
553 		goto attach_fail;
554 	}
555 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
556 
557 	/*
558 	 * If e1000g_force_detach is enabled, in global private dip list,
559 	 * we will create a new entry, which maintains the priv_dip for DR
560 	 * supports after driver detached.
561 	 */
562 	if (e1000g_force_detach) {
563 		private_devi_list_t *devi_node;
564 
565 		Adapter->priv_dip =
566 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
567 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
568 		    sizeof (struct dev_info));
569 
570 		devi_node =
571 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
572 
573 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
574 		devi_node->priv_dip = Adapter->priv_dip;
575 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
576 		devi_node->next = e1000g_private_devi_list;
577 		e1000g_private_devi_list = devi_node;
578 		rw_exit(&e1000g_rx_detach_lock);
579 	}
580 
581 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
582 
583 	return (DDI_SUCCESS);
584 
585 attach_fail:
586 	e1000g_unattach(devinfo, Adapter);
587 	return (DDI_FAILURE);
588 }
589 
590 static int
591 e1000g_register_mac(struct e1000g *Adapter)
592 {
593 	struct e1000_hw *hw = &Adapter->shared;
594 	mac_register_t *mac;
595 	int err;
596 
597 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
598 		return (DDI_FAILURE);
599 
600 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
601 	mac->m_driver = Adapter;
602 	mac->m_dip = Adapter->dip;
603 	mac->m_src_addr = hw->mac.addr;
604 	mac->m_callbacks = &e1000g_m_callbacks;
605 	mac->m_min_sdu = 0;
606 	mac->m_max_sdu = Adapter->default_mtu;
607 	mac->m_margin = VLAN_TAGSZ;
608 	mac->m_priv_props = e1000g_priv_props;
609 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
610 
611 	err = mac_register(mac, &Adapter->mh);
612 	mac_free(mac);
613 
614 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
615 }
616 
617 static int
618 e1000g_identify_hardware(struct e1000g *Adapter)
619 {
620 	struct e1000_hw *hw = &Adapter->shared;
621 	struct e1000g_osdep *osdep = &Adapter->osdep;
622 
623 	/* Get the device id */
624 	hw->vendor_id =
625 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
626 	hw->device_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
628 	hw->revision_id =
629 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
630 	hw->subsystem_device_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
632 	hw->subsystem_vendor_id =
633 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
634 
635 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
636 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
637 		    "MAC type could not be set properly.");
638 		return (DDI_FAILURE);
639 	}
640 
641 	return (DDI_SUCCESS);
642 }
643 
644 static int
645 e1000g_regs_map(struct e1000g *Adapter)
646 {
647 	dev_info_t *devinfo = Adapter->dip;
648 	struct e1000_hw *hw = &Adapter->shared;
649 	struct e1000g_osdep *osdep = &Adapter->osdep;
650 	off_t mem_size;
651 
652 	/* Get size of adapter register memory */
653 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
654 	    DDI_SUCCESS) {
655 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
656 		    "ddi_dev_regsize for registers failed");
657 		return (DDI_FAILURE);
658 	}
659 
660 	/* Map adapter register memory */
661 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
662 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
663 	    &osdep->reg_handle)) != DDI_SUCCESS) {
664 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
665 		    "ddi_regs_map_setup for registers failed");
666 		goto regs_map_fail;
667 	}
668 
669 	/* ICH needs to map flash memory */
670 	if (hw->mac.type == e1000_ich8lan ||
671 	    hw->mac.type == e1000_ich9lan ||
672 	    hw->mac.type == e1000_ich10lan) {
673 		/* get flash size */
674 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
675 		    &mem_size) != DDI_SUCCESS) {
676 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
677 			    "ddi_dev_regsize for ICH flash failed");
678 			goto regs_map_fail;
679 		}
680 
681 		/* map flash in */
682 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
683 		    (caddr_t *)&hw->flash_address, 0,
684 		    mem_size, &e1000g_regs_acc_attr,
685 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
686 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
687 			    "ddi_regs_map_setup for ICH flash failed");
688 			goto regs_map_fail;
689 		}
690 	}
691 
692 	return (DDI_SUCCESS);
693 
694 regs_map_fail:
695 	if (osdep->reg_handle != NULL)
696 		ddi_regs_map_free(&osdep->reg_handle);
697 
698 	return (DDI_FAILURE);
699 }
700 
701 static int
702 e1000g_set_driver_params(struct e1000g *Adapter)
703 {
704 	struct e1000_hw *hw;
705 	uint32_t mem_bar, io_bar, bar64;
706 
707 	hw = &Adapter->shared;
708 
709 	/* Set MAC type and initialize hardware functions */
710 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
711 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
712 		    "Could not setup hardware functions");
713 		return (DDI_FAILURE);
714 	}
715 
716 	/* Get bus information */
717 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
718 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
719 		    "Could not get bus information");
720 		return (DDI_FAILURE);
721 	}
722 
723 	/* get mem_base addr */
724 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
725 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
726 
727 	/* get io_base addr */
728 	if (hw->mac.type >= e1000_82544) {
729 		if (bar64) {
730 			/* IO BAR is different for 64 bit BAR mode */
731 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
732 			    PCI_CONF_BASE4);
733 		} else {
734 			/* normal 32-bit BAR mode */
735 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
736 			    PCI_CONF_BASE2);
737 		}
738 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
739 	} else {
740 		/* no I/O access for adapters prior to 82544 */
741 		hw->io_base = 0x0;
742 	}
743 
744 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
745 
746 	hw->mac.autoneg_failed = B_TRUE;
747 
748 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
749 	hw->phy.autoneg_wait_to_complete = B_FALSE;
750 
751 	/* Adaptive IFS related changes */
752 	hw->mac.adaptive_ifs = B_TRUE;
753 
754 	/* Enable phy init script for IGP phy of 82541/82547 */
755 	if ((hw->mac.type == e1000_82547) ||
756 	    (hw->mac.type == e1000_82541) ||
757 	    (hw->mac.type == e1000_82547_rev_2) ||
758 	    (hw->mac.type == e1000_82541_rev_2))
759 		e1000_init_script_state_82541(hw, B_TRUE);
760 
761 	/* Enable the TTL workaround for 82541/82547 */
762 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
763 
764 #ifdef __sparc
765 	Adapter->strip_crc = B_TRUE;
766 #else
767 	Adapter->strip_crc = B_FALSE;
768 #endif
769 
770 	/* Get conf file properties */
771 	e1000g_get_conf(Adapter);
772 
773 	/* Get speed/duplex settings in conf file */
774 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
775 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
776 	e1000g_force_speed_duplex(Adapter);
777 
778 	/* Get Jumbo Frames settings in conf file */
779 	e1000g_get_max_frame_size(Adapter);
780 
781 	/* Set Rx/Tx buffer size */
782 	e1000g_set_bufsize(Adapter);
783 
784 	/* Master Latency Timer */
785 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
786 
787 	/* copper options */
788 	if (hw->phy.media_type == e1000_media_type_copper) {
789 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
790 		hw->phy.disable_polarity_correction = B_FALSE;
791 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
792 	}
793 
794 	/* The initial link state should be "unknown" */
795 	Adapter->link_state = LINK_STATE_UNKNOWN;
796 
797 	/* Initialize rx parameters */
798 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
799 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
800 
801 	/* Initialize tx parameters */
802 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
803 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
804 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
805 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
806 
807 	/* Initialize rx parameters */
808 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
809 
810 	return (DDI_SUCCESS);
811 }
812 
813 static void
814 e1000g_set_bufsize(struct e1000g *Adapter)
815 {
816 	struct e1000_mac_info *mac = &Adapter->shared.mac;
817 	uint64_t rx_size;
818 	uint64_t tx_size;
819 
820 #ifdef __sparc
821 	dev_info_t *devinfo = Adapter->dip;
822 	ulong_t iommu_pagesize;
823 
824 	/* Get the system page size */
825 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
826 	iommu_pagesize = dvma_pagesize(devinfo);
827 	if (iommu_pagesize != 0) {
828 		if (Adapter->sys_page_sz == iommu_pagesize) {
829 			if (iommu_pagesize > 0x4000)
830 				Adapter->sys_page_sz = 0x4000;
831 		} else {
832 			if (Adapter->sys_page_sz > iommu_pagesize)
833 				Adapter->sys_page_sz = iommu_pagesize;
834 		}
835 	}
836 	if (Adapter->lso_enable) {
837 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
838 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
839 	} else {
840 		Adapter->dvma_page_num = Adapter->max_frame_size /
841 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
842 	}
843 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
844 #endif
845 
846 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
847 
848 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
849 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
850 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
851 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
852 	    (rx_size <= FRAME_SIZE_UPTO_8K))
853 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
854 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
855 	    (rx_size <= FRAME_SIZE_UPTO_16K))
856 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
857 	else
858 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
859 
860 	tx_size = Adapter->max_frame_size;
861 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
862 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
863 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
864 	    (tx_size <= FRAME_SIZE_UPTO_8K))
865 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
866 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
867 	    (tx_size <= FRAME_SIZE_UPTO_16K))
868 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
869 	else
870 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
871 
872 	/*
873 	 * For Wiseman adapters we have an requirement of having receive
874 	 * buffers aligned at 256 byte boundary. Since Livengood does not
875 	 * require this and forcing it for all hardwares will have
876 	 * performance implications, I am making it applicable only for
877 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
878 	 * it is okay to have normal frames...but it does involve a
879 	 * potential risk where we may loose data if buffer is not
880 	 * aligned...so all wiseman boards to have 256 byte aligned
881 	 * buffers
882 	 */
883 	if (mac->type < e1000_82543)
884 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
885 	else
886 		Adapter->rx_buf_align = 1;
887 }
888 
889 /*
890  * e1000g_detach - driver detach
891  *
892  * The detach() function is the complement of the attach routine.
893  * If cmd is set to DDI_DETACH, detach() is used to remove  the
894  * state  associated  with  a  given  instance of a device node
895  * prior to the removal of that instance from the system.
896  *
897  * The detach() function will be called once for each  instance
898  * of the device for which there has been a successful attach()
899  * once there are no longer  any  opens  on  the  device.
900  *
901  * Interrupts routine are disabled, All memory allocated by this
902  * driver are freed.
903  */
904 static int
905 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
906 {
907 	struct e1000g *Adapter;
908 	boolean_t rx_drain;
909 
910 	switch (cmd) {
911 	default:
912 		return (DDI_FAILURE);
913 
914 	case DDI_SUSPEND:
915 		return (e1000g_suspend(devinfo));
916 
917 	case DDI_DETACH:
918 		break;
919 	}
920 
921 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
922 	if (Adapter == NULL)
923 		return (DDI_FAILURE);
924 
925 	if (mac_unregister(Adapter->mh) != 0) {
926 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
927 		return (DDI_FAILURE);
928 	}
929 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
930 
931 
932 	if (Adapter->chip_state != E1000G_STOP)
933 		e1000g_stop(Adapter, B_TRUE);
934 
935 	rx_drain = e1000g_rx_drain(Adapter);
936 
937 	/*
938 	 * If e1000g_force_detach is enabled, driver detach is safe.
939 	 * We will let e1000g_free_priv_devi_node routine determine
940 	 * whether we need to free the priv_dip entry for current
941 	 * driver instance.
942 	 */
943 	if (e1000g_force_detach) {
944 		e1000g_free_priv_devi_node(Adapter, rx_drain);
945 	} else {
946 		if (!rx_drain)
947 			return (DDI_FAILURE);
948 	}
949 
950 	e1000g_unattach(devinfo, Adapter);
951 
952 	return (DDI_SUCCESS);
953 }
954 
955 /*
956  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
957  *
958  * If free_flag is true, that indicates the upper layer is not holding
959  * the rx buffers, we could free the priv_dip entry safely.
960  *
961  * Otherwise, we have to keep this entry even after driver detached,
962  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
963  * so that driver could free it while all of rx buffers are returned
964  * by upper layer later.
965  */
966 static void
967 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
968 {
969 	private_devi_list_t *devi_node, *devi_del;
970 
971 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
972 	ASSERT(e1000g_private_devi_list != NULL);
973 	ASSERT(Adapter->priv_dip != NULL);
974 
975 	devi_node = e1000g_private_devi_list;
976 	if (devi_node->priv_dip == Adapter->priv_dip) {
977 		if (free_flag) {
978 			e1000g_private_devi_list =
979 			    devi_node->next;
980 			kmem_free(devi_node->priv_dip,
981 			    sizeof (struct dev_info));
982 			kmem_free(devi_node,
983 			    sizeof (private_devi_list_t));
984 		} else {
985 			ASSERT(e1000g_mblks_pending != 0);
986 			devi_node->flag =
987 			    E1000G_PRIV_DEVI_DETACH;
988 		}
989 		rw_exit(&e1000g_rx_detach_lock);
990 		return;
991 	}
992 
993 	devi_node = e1000g_private_devi_list;
994 	while (devi_node->next != NULL) {
995 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
996 			if (free_flag) {
997 				devi_del = devi_node->next;
998 				devi_node->next = devi_del->next;
999 				kmem_free(devi_del->priv_dip,
1000 				    sizeof (struct dev_info));
1001 				kmem_free(devi_del,
1002 				    sizeof (private_devi_list_t));
1003 			} else {
1004 				ASSERT(e1000g_mblks_pending != 0);
1005 				devi_node->next->flag =
1006 				    E1000G_PRIV_DEVI_DETACH;
1007 			}
1008 			break;
1009 		}
1010 		devi_node = devi_node->next;
1011 	}
1012 	rw_exit(&e1000g_rx_detach_lock);
1013 }
1014 
1015 static void
1016 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1017 {
1018 	int result;
1019 
1020 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1021 		(void) e1000g_disable_intrs(Adapter);
1022 	}
1023 
1024 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1025 		(void) mac_unregister(Adapter->mh);
1026 	}
1027 
1028 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1029 		(void) e1000g_rem_intrs(Adapter);
1030 	}
1031 
1032 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1033 		(void) ddi_prop_remove_all(devinfo);
1034 	}
1035 
1036 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1037 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1038 	}
1039 
1040 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1041 		stop_link_timer(Adapter);
1042 
1043 		mutex_enter(&e1000g_nvm_lock);
1044 		result = e1000_reset_hw(&Adapter->shared);
1045 		mutex_exit(&e1000g_nvm_lock);
1046 
1047 		if (result != E1000_SUCCESS) {
1048 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1049 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1050 		}
1051 	}
1052 
1053 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1054 		if (Adapter->osdep.reg_handle != NULL)
1055 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1056 		if (Adapter->osdep.ich_flash_handle != NULL)
1057 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1058 	}
1059 
1060 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1061 		if (Adapter->osdep.cfg_handle != NULL)
1062 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1063 	}
1064 
1065 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1066 		e1000g_destroy_locks(Adapter);
1067 	}
1068 
1069 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1070 		e1000g_fm_fini(Adapter);
1071 	}
1072 
1073 	e1000_remove_device(&Adapter->shared);
1074 
1075 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1076 
1077 	/*
1078 	 * Another hotplug spec requirement,
1079 	 * run ddi_set_driver_private(devinfo, null);
1080 	 */
1081 	ddi_set_driver_private(devinfo, NULL);
1082 }
1083 
1084 static void
1085 e1000g_init_locks(struct e1000g *Adapter)
1086 {
1087 	e1000g_tx_ring_t *tx_ring;
1088 	e1000g_rx_ring_t *rx_ring;
1089 
1090 	rw_init(&Adapter->chip_lock, NULL,
1091 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1092 	mutex_init(&Adapter->link_lock, NULL,
1093 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1094 	mutex_init(&Adapter->watchdog_lock, NULL,
1095 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1096 
1097 	tx_ring = Adapter->tx_ring;
1098 
1099 	mutex_init(&tx_ring->tx_lock, NULL,
1100 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1101 	mutex_init(&tx_ring->usedlist_lock, NULL,
1102 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1103 	mutex_init(&tx_ring->freelist_lock, NULL,
1104 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 
1106 	rx_ring = Adapter->rx_ring;
1107 
1108 	mutex_init(&rx_ring->rx_lock, NULL,
1109 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1110 	mutex_init(&rx_ring->freelist_lock, NULL,
1111 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1112 }
1113 
1114 static void
1115 e1000g_destroy_locks(struct e1000g *Adapter)
1116 {
1117 	e1000g_tx_ring_t *tx_ring;
1118 	e1000g_rx_ring_t *rx_ring;
1119 
1120 	tx_ring = Adapter->tx_ring;
1121 	mutex_destroy(&tx_ring->tx_lock);
1122 	mutex_destroy(&tx_ring->usedlist_lock);
1123 	mutex_destroy(&tx_ring->freelist_lock);
1124 
1125 	rx_ring = Adapter->rx_ring;
1126 	mutex_destroy(&rx_ring->rx_lock);
1127 	mutex_destroy(&rx_ring->freelist_lock);
1128 
1129 	mutex_destroy(&Adapter->link_lock);
1130 	mutex_destroy(&Adapter->watchdog_lock);
1131 	rw_destroy(&Adapter->chip_lock);
1132 }
1133 
1134 static int
1135 e1000g_resume(dev_info_t *devinfo)
1136 {
1137 	struct e1000g *Adapter;
1138 
1139 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1140 	if (Adapter == NULL)
1141 		return (DDI_FAILURE);
1142 
1143 	if (e1000g_start(Adapter, B_TRUE))
1144 		return (DDI_FAILURE);
1145 
1146 	return (DDI_SUCCESS);
1147 }
1148 
1149 static int
1150 e1000g_suspend(dev_info_t *devinfo)
1151 {
1152 	struct e1000g *Adapter;
1153 
1154 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1155 	if (Adapter == NULL)
1156 		return (DDI_FAILURE);
1157 
1158 	e1000g_stop(Adapter, B_TRUE);
1159 
1160 	return (DDI_SUCCESS);
1161 }
1162 
1163 static int
1164 e1000g_init(struct e1000g *Adapter)
1165 {
1166 	uint32_t pba;
1167 	uint32_t high_water;
1168 	struct e1000_hw *hw;
1169 	clock_t link_timeout;
1170 	int result;
1171 
1172 	hw = &Adapter->shared;
1173 
1174 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1175 
1176 	/*
1177 	 * reset to put the hardware in a known state
1178 	 * before we try to do anything with the eeprom
1179 	 */
1180 	mutex_enter(&e1000g_nvm_lock);
1181 	result = e1000_reset_hw(hw);
1182 	mutex_exit(&e1000g_nvm_lock);
1183 
1184 	if (result != E1000_SUCCESS) {
1185 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1186 		goto init_fail;
1187 	}
1188 
1189 	mutex_enter(&e1000g_nvm_lock);
1190 	result = e1000_validate_nvm_checksum(hw);
1191 	if (result < E1000_SUCCESS) {
1192 		/*
1193 		 * Some PCI-E parts fail the first check due to
1194 		 * the link being in sleep state.  Call it again,
1195 		 * if it fails a second time its a real issue.
1196 		 */
1197 		result = e1000_validate_nvm_checksum(hw);
1198 	}
1199 	mutex_exit(&e1000g_nvm_lock);
1200 
1201 	if (result < E1000_SUCCESS) {
1202 		e1000g_log(Adapter, CE_WARN,
1203 		    "Invalid NVM checksum. Please contact "
1204 		    "the vendor to update the NVM.");
1205 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1206 		goto init_fail;
1207 	}
1208 
1209 	result = 0;
1210 #ifdef __sparc
1211 	/*
1212 	 * First, we try to get the local ethernet address from OBP. If
1213 	 * failed, then we get it from the EEPROM of NIC card.
1214 	 */
1215 	result = e1000g_find_mac_address(Adapter);
1216 #endif
1217 	/* Get the local ethernet address. */
1218 	if (!result) {
1219 		mutex_enter(&e1000g_nvm_lock);
1220 		result = e1000_read_mac_addr(hw);
1221 		mutex_exit(&e1000g_nvm_lock);
1222 	}
1223 
1224 	if (result < E1000_SUCCESS) {
1225 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1226 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1227 		goto init_fail;
1228 	}
1229 
1230 	/* check for valid mac address */
1231 	if (!is_valid_mac_addr(hw->mac.addr)) {
1232 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1233 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1234 		goto init_fail;
1235 	}
1236 
1237 	/* Set LAA state for 82571 chipset */
1238 	e1000_set_laa_state_82571(hw, B_TRUE);
1239 
1240 	/* Master Latency Timer implementation */
1241 	if (Adapter->master_latency_timer) {
1242 		pci_config_put8(Adapter->osdep.cfg_handle,
1243 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1244 	}
1245 
1246 	if (hw->mac.type < e1000_82547) {
1247 		/*
1248 		 * Total FIFO is 64K
1249 		 */
1250 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1251 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1252 		else
1253 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1254 	} else if ((hw->mac.type == e1000_82571) ||
1255 	    (hw->mac.type == e1000_82572) ||
1256 	    (hw->mac.type == e1000_80003es2lan)) {
1257 		/*
1258 		 * Total FIFO is 48K
1259 		 */
1260 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1261 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1262 		else
1263 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1264 	} else if (hw->mac.type == e1000_82573) {
1265 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1266 	} else if (hw->mac.type == e1000_82574) {
1267 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1268 		pba = E1000_READ_REG(hw, E1000_PBA);
1269 	} else if (hw->mac.type == e1000_ich8lan) {
1270 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1271 	} else if (hw->mac.type == e1000_ich9lan) {
1272 		pba = E1000_PBA_10K;
1273 	} else if (hw->mac.type == e1000_ich10lan) {
1274 		pba = E1000_PBA_10K;
1275 	} else {
1276 		/*
1277 		 * Total FIFO is 40K
1278 		 */
1279 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1280 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1281 		else
1282 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1283 	}
1284 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1285 
1286 	/*
1287 	 * These parameters set thresholds for the adapter's generation(Tx)
1288 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1289 	 * settings.  Flow control is enabled or disabled in the configuration
1290 	 * file.
1291 	 * High-water mark is set down from the top of the rx fifo (not
1292 	 * sensitive to max_frame_size) and low-water is set just below
1293 	 * high-water mark.
1294 	 * The high water mark must be low enough to fit one full frame above
1295 	 * it in the rx FIFO.  Should be the lower of:
1296 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1297 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1298 	 * Rx FIFO size minus one full frame.
1299 	 */
1300 	high_water = min(((pba << 10) * 9 / 10),
1301 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan ||
1302 	    hw->mac.type == e1000_ich10lan) ?
1303 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1304 	    ((pba << 10) - Adapter->max_frame_size)));
1305 
1306 	hw->fc.high_water = high_water & 0xFFF8;
1307 	hw->fc.low_water = hw->fc.high_water - 8;
1308 
1309 	if (hw->mac.type == e1000_80003es2lan)
1310 		hw->fc.pause_time = 0xFFFF;
1311 	else
1312 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1313 	hw->fc.send_xon = B_TRUE;
1314 
1315 	/*
1316 	 * Reset the adapter hardware the second time.
1317 	 */
1318 	mutex_enter(&e1000g_nvm_lock);
1319 	result = e1000_reset_hw(hw);
1320 	mutex_exit(&e1000g_nvm_lock);
1321 
1322 	if (result != E1000_SUCCESS) {
1323 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1324 		goto init_fail;
1325 	}
1326 
1327 	/* disable wakeup control by default */
1328 	if (hw->mac.type >= e1000_82544)
1329 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1330 
1331 	/* MWI setup */
1332 	e1000_pci_set_mwi(hw);
1333 
1334 	/*
1335 	 * Configure/Initialize hardware
1336 	 */
1337 	mutex_enter(&e1000g_nvm_lock);
1338 	result = e1000_init_hw(hw);
1339 	mutex_exit(&e1000g_nvm_lock);
1340 
1341 	if (result < E1000_SUCCESS) {
1342 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1343 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1344 		goto init_fail;
1345 	}
1346 
1347 	/*
1348 	 * Restore LED settings to the default from EEPROM
1349 	 * to meet the standard for Sun platforms.
1350 	 */
1351 	(void) e1000_cleanup_led(hw);
1352 
1353 	/* Disable Smart Power Down */
1354 	phy_spd_state(hw, B_FALSE);
1355 
1356 	/* Make sure driver has control */
1357 	e1000g_get_driver_control(hw);
1358 
1359 	/*
1360 	 * Initialize unicast addresses.
1361 	 */
1362 	e1000g_init_unicst(Adapter);
1363 
1364 	/*
1365 	 * Setup and initialize the mctable structures.  After this routine
1366 	 * completes  Multicast table will be set
1367 	 */
1368 	e1000g_setup_multicast(Adapter);
1369 	msec_delay(5);
1370 
1371 	/*
1372 	 * Implement Adaptive IFS
1373 	 */
1374 	e1000_reset_adaptive(hw);
1375 
1376 	/* Setup Interrupt Throttling Register */
1377 	if (hw->mac.type >= e1000_82540) {
1378 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1379 	} else
1380 		Adapter->intr_adaptive = B_FALSE;
1381 
1382 	/* Start the timer for link setup */
1383 	if (hw->mac.autoneg)
1384 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1385 	else
1386 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1387 
1388 	mutex_enter(&Adapter->link_lock);
1389 	if (hw->phy.autoneg_wait_to_complete) {
1390 		Adapter->link_complete = B_TRUE;
1391 	} else {
1392 		Adapter->link_complete = B_FALSE;
1393 		Adapter->link_tid = timeout(e1000g_link_timer,
1394 		    (void *)Adapter, link_timeout);
1395 	}
1396 	mutex_exit(&Adapter->link_lock);
1397 
1398 	/* Enable PCI-Ex master */
1399 	if (hw->bus.type == e1000_bus_type_pci_express) {
1400 		e1000_enable_pciex_master(hw);
1401 	}
1402 
1403 	/* Save the state of the phy */
1404 	e1000g_get_phy_state(Adapter);
1405 
1406 	e1000g_param_sync(Adapter);
1407 
1408 	Adapter->init_count++;
1409 
1410 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1411 		goto init_fail;
1412 	}
1413 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1414 		goto init_fail;
1415 	}
1416 
1417 	rw_exit(&Adapter->chip_lock);
1418 
1419 	return (DDI_SUCCESS);
1420 
1421 init_fail:
1422 	rw_exit(&Adapter->chip_lock);
1423 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1424 	return (DDI_FAILURE);
1425 }
1426 
1427 /*
1428  * Check if the link is up
1429  */
1430 static boolean_t
1431 e1000g_link_up(struct e1000g *Adapter)
1432 {
1433 	struct e1000_hw *hw;
1434 	boolean_t link_up;
1435 
1436 	hw = &Adapter->shared;
1437 
1438 	(void) e1000_check_for_link(hw);
1439 
1440 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1441 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1442 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1443 	    (hw->mac.serdes_has_link))) {
1444 		link_up = B_TRUE;
1445 	} else {
1446 		link_up = B_FALSE;
1447 	}
1448 
1449 	return (link_up);
1450 }
1451 
1452 static void
1453 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1454 {
1455 	struct iocblk *iocp;
1456 	struct e1000g *e1000gp;
1457 	enum ioc_reply status;
1458 
1459 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1460 	iocp->ioc_error = 0;
1461 	e1000gp = (struct e1000g *)arg;
1462 
1463 	ASSERT(e1000gp);
1464 	if (e1000gp == NULL) {
1465 		miocnak(q, mp, 0, EINVAL);
1466 		return;
1467 	}
1468 
1469 	switch (iocp->ioc_cmd) {
1470 
1471 	case LB_GET_INFO_SIZE:
1472 	case LB_GET_INFO:
1473 	case LB_GET_MODE:
1474 	case LB_SET_MODE:
1475 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1476 		break;
1477 
1478 
1479 #ifdef E1000G_DEBUG
1480 	case E1000G_IOC_REG_PEEK:
1481 	case E1000G_IOC_REG_POKE:
1482 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1483 		break;
1484 	case E1000G_IOC_CHIP_RESET:
1485 		e1000gp->reset_count++;
1486 		if (e1000g_reset_adapter(e1000gp))
1487 			status = IOC_ACK;
1488 		else
1489 			status = IOC_INVAL;
1490 		break;
1491 #endif
1492 	default:
1493 		status = IOC_INVAL;
1494 		break;
1495 	}
1496 
1497 	/*
1498 	 * Decide how to reply
1499 	 */
1500 	switch (status) {
1501 	default:
1502 	case IOC_INVAL:
1503 		/*
1504 		 * Error, reply with a NAK and EINVAL or the specified error
1505 		 */
1506 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1507 		    EINVAL : iocp->ioc_error);
1508 		break;
1509 
1510 	case IOC_DONE:
1511 		/*
1512 		 * OK, reply already sent
1513 		 */
1514 		break;
1515 
1516 	case IOC_ACK:
1517 		/*
1518 		 * OK, reply with an ACK
1519 		 */
1520 		miocack(q, mp, 0, 0);
1521 		break;
1522 
1523 	case IOC_REPLY:
1524 		/*
1525 		 * OK, send prepared reply as ACK or NAK
1526 		 */
1527 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1528 		    M_IOCACK : M_IOCNAK;
1529 		qreply(q, mp);
1530 		break;
1531 	}
1532 }
1533 
1534 static int
1535 e1000g_m_start(void *arg)
1536 {
1537 	struct e1000g *Adapter = (struct e1000g *)arg;
1538 
1539 	return (e1000g_start(Adapter, B_TRUE));
1540 }
1541 
1542 static int
1543 e1000g_start(struct e1000g *Adapter, boolean_t global)
1544 {
1545 	if (global) {
1546 		/* Allocate dma resources for descriptors and buffers */
1547 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1548 			e1000g_log(Adapter, CE_WARN,
1549 			    "Alloc DMA resources failed");
1550 			return (ENOTACTIVE);
1551 		}
1552 		Adapter->rx_buffer_setup = B_FALSE;
1553 	}
1554 
1555 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1556 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1557 			e1000g_log(Adapter, CE_WARN,
1558 			    "Adapter initialization failed");
1559 			if (global)
1560 				e1000g_release_dma_resources(Adapter);
1561 			return (ENOTACTIVE);
1562 		}
1563 	}
1564 
1565 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1566 
1567 	/* Setup and initialize the transmit structures */
1568 	e1000g_tx_setup(Adapter);
1569 	msec_delay(5);
1570 
1571 	/* Setup and initialize the receive structures */
1572 	e1000g_rx_setup(Adapter);
1573 	msec_delay(5);
1574 
1575 	/* Restore the e1000g promiscuous mode */
1576 	e1000g_restore_promisc(Adapter);
1577 
1578 	e1000g_mask_interrupt(Adapter);
1579 
1580 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1581 		rw_exit(&Adapter->chip_lock);
1582 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1583 		return (ENOTACTIVE);
1584 	}
1585 
1586 	Adapter->chip_state = E1000G_START;
1587 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1588 
1589 	rw_exit(&Adapter->chip_lock);
1590 
1591 	/* Enable and start the watchdog timer */
1592 	enable_watchdog_timer(Adapter);
1593 
1594 	return (0);
1595 }
1596 
1597 static void
1598 e1000g_m_stop(void *arg)
1599 {
1600 	struct e1000g *Adapter = (struct e1000g *)arg;
1601 
1602 	e1000g_stop(Adapter, B_TRUE);
1603 }
1604 
1605 static void
1606 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1607 {
1608 	int result;
1609 
1610 	/* Set stop flags */
1611 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1612 
1613 	Adapter->chip_state = E1000G_STOP;
1614 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1615 
1616 	rw_exit(&Adapter->chip_lock);
1617 
1618 	/* Drain tx sessions */
1619 	(void) e1000g_tx_drain(Adapter);
1620 
1621 	/* Disable and stop all the timers */
1622 	disable_watchdog_timer(Adapter);
1623 	stop_link_timer(Adapter);
1624 	stop_82547_timer(Adapter->tx_ring);
1625 
1626 	/* Stop the chip and release pending resources */
1627 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1628 
1629 	/* Tell firmware driver is no longer in control */
1630 	e1000g_release_driver_control(&Adapter->shared);
1631 
1632 	e1000g_clear_all_interrupts(Adapter);
1633 
1634 	mutex_enter(&e1000g_nvm_lock);
1635 	result = e1000_reset_hw(&Adapter->shared);
1636 	mutex_exit(&e1000g_nvm_lock);
1637 
1638 	if (result != E1000_SUCCESS) {
1639 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1640 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1641 	}
1642 
1643 	/* Release resources still held by the TX descriptors */
1644 	e1000g_tx_clean(Adapter);
1645 
1646 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1647 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1648 
1649 	/* Clean the pending rx jumbo packet fragment */
1650 	e1000g_rx_clean(Adapter);
1651 
1652 	rw_exit(&Adapter->chip_lock);
1653 
1654 	if (global)
1655 		e1000g_release_dma_resources(Adapter);
1656 }
1657 
1658 static void
1659 e1000g_rx_clean(struct e1000g *Adapter)
1660 {
1661 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1662 
1663 	if (rx_ring->rx_mblk != NULL) {
1664 		freemsg(rx_ring->rx_mblk);
1665 		rx_ring->rx_mblk = NULL;
1666 		rx_ring->rx_mblk_tail = NULL;
1667 		rx_ring->rx_mblk_len = 0;
1668 	}
1669 }
1670 
1671 static void
1672 e1000g_tx_clean(struct e1000g *Adapter)
1673 {
1674 	e1000g_tx_ring_t *tx_ring;
1675 	p_tx_sw_packet_t packet;
1676 	mblk_t *mp;
1677 	mblk_t *nmp;
1678 	uint32_t packet_count;
1679 
1680 	tx_ring = Adapter->tx_ring;
1681 
1682 	/*
1683 	 * Here we don't need to protect the lists using
1684 	 * the usedlist_lock and freelist_lock, for they
1685 	 * have been protected by the chip_lock.
1686 	 */
1687 	mp = NULL;
1688 	nmp = NULL;
1689 	packet_count = 0;
1690 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1691 	while (packet != NULL) {
1692 		if (packet->mp != NULL) {
1693 			/* Assemble the message chain */
1694 			if (mp == NULL) {
1695 				mp = packet->mp;
1696 				nmp = packet->mp;
1697 			} else {
1698 				nmp->b_next = packet->mp;
1699 				nmp = packet->mp;
1700 			}
1701 			/* Disconnect the message from the sw packet */
1702 			packet->mp = NULL;
1703 		}
1704 
1705 		e1000g_free_tx_swpkt(packet);
1706 		packet_count++;
1707 
1708 		packet = (p_tx_sw_packet_t)
1709 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1710 	}
1711 
1712 	if (mp != NULL)
1713 		freemsgchain(mp);
1714 
1715 	if (packet_count > 0) {
1716 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1717 		QUEUE_INIT_LIST(&tx_ring->used_list);
1718 
1719 		/* Setup TX descriptor pointers */
1720 		tx_ring->tbd_next = tx_ring->tbd_first;
1721 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1722 
1723 		/* Setup our HW Tx Head & Tail descriptor pointers */
1724 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1725 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1726 	}
1727 }
1728 
1729 static boolean_t
1730 e1000g_tx_drain(struct e1000g *Adapter)
1731 {
1732 	int i;
1733 	boolean_t done;
1734 	e1000g_tx_ring_t *tx_ring;
1735 
1736 	tx_ring = Adapter->tx_ring;
1737 
1738 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1739 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1740 		mutex_enter(&tx_ring->usedlist_lock);
1741 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1742 		mutex_exit(&tx_ring->usedlist_lock);
1743 
1744 		if (done)
1745 			break;
1746 
1747 		msec_delay(1);
1748 	}
1749 
1750 	return (done);
1751 }
1752 
1753 static boolean_t
1754 e1000g_rx_drain(struct e1000g *Adapter)
1755 {
1756 	e1000g_rx_ring_t *rx_ring;
1757 	p_rx_sw_packet_t packet;
1758 	boolean_t done;
1759 
1760 	rx_ring = Adapter->rx_ring;
1761 	done = B_TRUE;
1762 
1763 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1764 
1765 	while (rx_ring->pending_list != NULL) {
1766 		packet = rx_ring->pending_list;
1767 		rx_ring->pending_list =
1768 		    rx_ring->pending_list->next;
1769 
1770 		if (packet->flag == E1000G_RX_SW_STOP) {
1771 			packet->flag = E1000G_RX_SW_DETACH;
1772 			done = B_FALSE;
1773 		} else {
1774 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1775 			ASSERT(packet->mp == NULL);
1776 			e1000g_free_rx_sw_packet(packet);
1777 		}
1778 	}
1779 
1780 	rw_exit(&e1000g_rx_detach_lock);
1781 
1782 	return (done);
1783 }
1784 
1785 static boolean_t
1786 e1000g_reset_adapter(struct e1000g *Adapter)
1787 {
1788 	e1000g_stop(Adapter, B_FALSE);
1789 
1790 	if (e1000g_start(Adapter, B_FALSE)) {
1791 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1792 		return (B_FALSE);
1793 	}
1794 
1795 	return (B_TRUE);
1796 }
1797 
1798 boolean_t
1799 e1000g_global_reset(struct e1000g *Adapter)
1800 {
1801 	e1000g_stop(Adapter, B_TRUE);
1802 
1803 	Adapter->init_count = 0;
1804 
1805 	if (e1000g_start(Adapter, B_TRUE)) {
1806 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1807 		return (B_FALSE);
1808 	}
1809 
1810 	return (B_TRUE);
1811 }
1812 
1813 /*
1814  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1815  *
1816  * This interrupt service routine is for PCI-Express adapters.
1817  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1818  * bit is set.
1819  */
1820 static uint_t
1821 e1000g_intr_pciexpress(caddr_t arg)
1822 {
1823 	struct e1000g *Adapter;
1824 	uint32_t icr;
1825 
1826 	Adapter = (struct e1000g *)(uintptr_t)arg;
1827 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1828 
1829 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1830 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1831 
1832 	if (icr & E1000_ICR_INT_ASSERTED) {
1833 		/*
1834 		 * E1000_ICR_INT_ASSERTED bit was set:
1835 		 * Read(Clear) the ICR, claim this interrupt,
1836 		 * look for work to do.
1837 		 */
1838 		e1000g_intr_work(Adapter, icr);
1839 		return (DDI_INTR_CLAIMED);
1840 	} else {
1841 		/*
1842 		 * E1000_ICR_INT_ASSERTED bit was not set:
1843 		 * Don't claim this interrupt, return immediately.
1844 		 */
1845 		return (DDI_INTR_UNCLAIMED);
1846 	}
1847 }
1848 
1849 /*
1850  * e1000g_intr - ISR for PCI/PCI-X chipsets
1851  *
1852  * This interrupt service routine is for PCI/PCI-X adapters.
1853  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1854  * bit is set or not.
1855  */
1856 static uint_t
1857 e1000g_intr(caddr_t arg)
1858 {
1859 	struct e1000g *Adapter;
1860 	uint32_t icr;
1861 
1862 	Adapter = (struct e1000g *)(uintptr_t)arg;
1863 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1864 
1865 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1866 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1867 
1868 	if (icr) {
1869 		/*
1870 		 * Any bit was set in ICR:
1871 		 * Read(Clear) the ICR, claim this interrupt,
1872 		 * look for work to do.
1873 		 */
1874 		e1000g_intr_work(Adapter, icr);
1875 		return (DDI_INTR_CLAIMED);
1876 	} else {
1877 		/*
1878 		 * No bit was set in ICR:
1879 		 * Don't claim this interrupt, return immediately.
1880 		 */
1881 		return (DDI_INTR_UNCLAIMED);
1882 	}
1883 }
1884 
1885 /*
1886  * e1000g_intr_work - actual processing of ISR
1887  *
1888  * Read(clear) the ICR contents and call appropriate interrupt
1889  * processing routines.
1890  */
1891 static void
1892 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1893 {
1894 	struct e1000_hw *hw;
1895 	hw = &Adapter->shared;
1896 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1897 	uint32_t itr;
1898 
1899 	Adapter->rx_pkt_cnt = 0;
1900 	Adapter->tx_pkt_cnt = 0;
1901 
1902 	rw_enter(&Adapter->chip_lock, RW_READER);
1903 	/*
1904 	 * Here we need to check the "chip_state" flag within the chip_lock to
1905 	 * ensure the receive routine will not execute when the adapter is
1906 	 * being reset.
1907 	 */
1908 	if (Adapter->chip_state != E1000G_START) {
1909 		rw_exit(&Adapter->chip_lock);
1910 		return;
1911 	}
1912 
1913 	if (icr & E1000_ICR_RXT0) {
1914 		mblk_t *mp;
1915 
1916 		mutex_enter(&Adapter->rx_ring->rx_lock);
1917 		mp = e1000g_receive(Adapter);
1918 		mutex_exit(&Adapter->rx_ring->rx_lock);
1919 
1920 		rw_exit(&Adapter->chip_lock);
1921 
1922 		if (mp != NULL)
1923 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1924 	} else
1925 		rw_exit(&Adapter->chip_lock);
1926 
1927 	if (icr & E1000_ICR_TXDW) {
1928 		if (!Adapter->tx_intr_enable)
1929 			e1000g_clear_tx_interrupt(Adapter);
1930 
1931 		/* Recycle the tx descriptors */
1932 		rw_enter(&Adapter->chip_lock, RW_READER);
1933 		(void) e1000g_recycle(tx_ring);
1934 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1935 		rw_exit(&Adapter->chip_lock);
1936 
1937 		/* Schedule the re-transmit */
1938 		if (tx_ring->resched_needed &&
1939 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1940 			tx_ring->resched_needed = B_FALSE;
1941 			mac_tx_update(Adapter->mh);
1942 			E1000G_STAT(tx_ring->stat_reschedule);
1943 		}
1944 	}
1945 
1946 	if (Adapter->intr_adaptive) {
1947 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1948 		    Adapter->intr_throttling_rate);
1949 		if (itr) {
1950 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1951 			Adapter->intr_throttling_rate = itr;
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1957 	 * are checked to detect that the cable has been pulled out. For
1958 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1959 	 * are an indication that cable is not connected.
1960 	 */
1961 	if ((icr & E1000_ICR_RXSEQ) ||
1962 	    (icr & E1000_ICR_LSC) ||
1963 	    (icr & E1000_ICR_GPI_EN1)) {
1964 		boolean_t link_changed;
1965 		timeout_id_t tid = 0;
1966 
1967 		stop_watchdog_timer(Adapter);
1968 
1969 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1970 
1971 		/*
1972 		 * Because we got a link-status-change interrupt, force
1973 		 * e1000_check_for_link() to look at phy
1974 		 */
1975 		Adapter->shared.mac.get_link_status = B_TRUE;
1976 
1977 		/* e1000g_link_check takes care of link status change */
1978 		link_changed = e1000g_link_check(Adapter);
1979 
1980 		/* Get new phy state */
1981 		e1000g_get_phy_state(Adapter);
1982 
1983 		/*
1984 		 * If the link timer has not timed out, we'll not notify
1985 		 * the upper layer with any link state until the link is up.
1986 		 */
1987 		if (link_changed && !Adapter->link_complete) {
1988 			if (Adapter->link_state == LINK_STATE_UP) {
1989 				mutex_enter(&Adapter->link_lock);
1990 				Adapter->link_complete = B_TRUE;
1991 				tid = Adapter->link_tid;
1992 				Adapter->link_tid = 0;
1993 				mutex_exit(&Adapter->link_lock);
1994 			} else {
1995 				link_changed = B_FALSE;
1996 			}
1997 		}
1998 		rw_exit(&Adapter->chip_lock);
1999 
2000 		if (link_changed) {
2001 			if (tid != 0)
2002 				(void) untimeout(tid);
2003 
2004 			/*
2005 			 * Workaround for esb2. Data stuck in fifo on a link
2006 			 * down event. Stop receiver here and reset in watchdog.
2007 			 */
2008 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2009 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2010 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2011 				E1000_WRITE_REG(hw, E1000_RCTL,
2012 				    rctl & ~E1000_RCTL_EN);
2013 				e1000g_log(Adapter, CE_WARN,
2014 				    "ESB2 receiver disabled");
2015 				Adapter->esb2_workaround = B_TRUE;
2016 			}
2017 
2018 			mac_link_update(Adapter->mh, Adapter->link_state);
2019 		}
2020 
2021 		start_watchdog_timer(Adapter);
2022 	}
2023 }
2024 
2025 static uint32_t
2026 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2027 {
2028 	uint32_t new_itr;
2029 
2030 	/*
2031 	 * Determine a propper itr according to rx/tx packet count
2032 	 * per interrupt, the value of itr are based on document
2033 	 * and testing.
2034 	 */
2035 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2036 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2037 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2038 		goto itr_done;
2039 	}
2040 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2041 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2042 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2043 		goto itr_done;
2044 	}
2045 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2046 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2047 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2048 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2049 	} else
2050 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2051 
2052 itr_done:
2053 	if (cur_itr == new_itr)
2054 		return (0);
2055 	else
2056 		return (new_itr);
2057 }
2058 
2059 static void
2060 e1000g_init_unicst(struct e1000g *Adapter)
2061 {
2062 	struct e1000_hw *hw;
2063 	int slot;
2064 
2065 	hw = &Adapter->shared;
2066 
2067 	if (!Adapter->unicst_init) {
2068 		/* Initialize the multiple unicast addresses */
2069 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2070 
2071 		if ((hw->mac.type == e1000_82571) &&
2072 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2073 			Adapter->unicst_total--;
2074 
2075 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2076 
2077 		/* Store the default mac address */
2078 		e1000_rar_set(hw, hw->mac.addr, 0);
2079 		if ((hw->mac.type == e1000_82571) &&
2080 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2081 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2082 
2083 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2084 		    ETHERADDRL);
2085 		Adapter->unicst_addr[0].mac.set = 1;
2086 
2087 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2088 			Adapter->unicst_addr[slot].mac.set = 0;
2089 
2090 		Adapter->unicst_init = B_TRUE;
2091 	} else {
2092 		/* Recover the default mac address */
2093 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2094 		    ETHERADDRL);
2095 
2096 		/* Store the default mac address */
2097 		e1000_rar_set(hw, hw->mac.addr, 0);
2098 		if ((hw->mac.type == e1000_82571) &&
2099 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2100 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2101 
2102 		/* Re-configure the RAR registers */
2103 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2104 			e1000_rar_set(hw,
2105 			    Adapter->unicst_addr[slot].mac.addr, slot);
2106 	}
2107 
2108 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2109 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2110 }
2111 
2112 static int
2113 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2114 {
2115 	struct e1000g *Adapter;
2116 
2117 	Adapter = (struct e1000g *)arg;
2118 
2119 	/* Store the default MAC address */
2120 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2121 
2122 	/* Set MAC address in address slot 0, which is the default address */
2123 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2124 }
2125 
2126 static int
2127 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2128     mac_addr_slot_t slot)
2129 {
2130 	struct e1000_hw *hw;
2131 
2132 	hw = &Adapter->shared;
2133 
2134 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2135 
2136 	/*
2137 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2138 	 * that requires the receiver to be in reset when any of the
2139 	 * receive address registers (RAR regs) are accessed.  The first
2140 	 * rev of Wiseman silicon also requires MWI to be disabled when
2141 	 * a global reset or a receive reset is issued.  So before we
2142 	 * initialize the RARs, we check the rev of the Wiseman controller
2143 	 * and work around any necessary HW errata.
2144 	 */
2145 	if ((hw->mac.type == e1000_82542) &&
2146 	    (hw->revision_id == E1000_REVISION_2)) {
2147 		e1000_pci_clear_mwi(hw);
2148 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2149 		msec_delay(5);
2150 	}
2151 
2152 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2153 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2154 
2155 	if (slot == 0) {
2156 		if ((hw->mac.type == e1000_82571) &&
2157 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2158 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2159 	}
2160 
2161 	/*
2162 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2163 	 * put the receive in reset, and disabled MWI, to work around some
2164 	 * HW errata.  Now we should take the receiver out of reset, and
2165 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2166 	 */
2167 	if ((hw->mac.type == e1000_82542) &&
2168 	    (hw->revision_id == E1000_REVISION_2)) {
2169 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2170 		msec_delay(1);
2171 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2172 			e1000_pci_set_mwi(hw);
2173 		e1000g_rx_setup(Adapter);
2174 	}
2175 
2176 	rw_exit(&Adapter->chip_lock);
2177 
2178 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2179 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2180 		return (EIO);
2181 	}
2182 
2183 	return (0);
2184 }
2185 
2186 /*
2187  * e1000g_m_unicst_add() - will find an unused address slot, set the
2188  * address value to the one specified, reserve that slot and enable
2189  * the NIC to start filtering on the new MAC address.
2190  * Returns 0 on success.
2191  */
2192 static int
2193 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2194 {
2195 	struct e1000g *Adapter = (struct e1000g *)arg;
2196 	mac_addr_slot_t slot;
2197 	int err;
2198 
2199 	if (mac_unicst_verify(Adapter->mh,
2200 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2201 		return (EINVAL);
2202 
2203 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2204 	if (Adapter->unicst_avail == 0) {
2205 		/* no slots available */
2206 		rw_exit(&Adapter->chip_lock);
2207 		return (ENOSPC);
2208 	}
2209 
2210 	/*
2211 	 * Primary/default address is in slot 0. The next addresses
2212 	 * are the multiple MAC addresses. So multiple MAC address 0
2213 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2214 	 * MAC address resides in slot 1.
2215 	 */
2216 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2217 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2218 			Adapter->unicst_addr[slot].mac.set = 1;
2219 			break;
2220 		}
2221 	}
2222 
2223 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2224 
2225 	Adapter->unicst_avail--;
2226 	rw_exit(&Adapter->chip_lock);
2227 
2228 	maddr->mma_slot = slot;
2229 
2230 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2231 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2232 		Adapter->unicst_addr[slot].mac.set = 0;
2233 		Adapter->unicst_avail++;
2234 		rw_exit(&Adapter->chip_lock);
2235 	}
2236 
2237 	return (err);
2238 }
2239 
2240 /*
2241  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2242  * call to e1000g_m_unicst_add(). The slot number that was returned in
2243  * e1000g_m_unicst_add() is passed in the call to remove the address.
2244  * Returns 0 on success.
2245  */
2246 static int
2247 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2248 {
2249 	struct e1000g *Adapter = (struct e1000g *)arg;
2250 	int err;
2251 
2252 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2253 		return (EINVAL);
2254 
2255 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2256 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2257 		Adapter->unicst_addr[slot].mac.set = 0;
2258 		Adapter->unicst_avail++;
2259 		rw_exit(&Adapter->chip_lock);
2260 
2261 		/* Copy the default address to the passed slot */
2262 		if ((err = e1000g_unicst_set(Adapter,
2263 		    Adapter->unicst_addr[0].mac.addr, slot)) != 0) {
2264 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2265 			Adapter->unicst_addr[slot].mac.set = 1;
2266 			Adapter->unicst_avail--;
2267 			rw_exit(&Adapter->chip_lock);
2268 		}
2269 		return (err);
2270 	}
2271 	rw_exit(&Adapter->chip_lock);
2272 
2273 	return (EINVAL);
2274 }
2275 
2276 /*
2277  * e1000g_m_unicst_modify() - modifies the value of an address that
2278  * has been added by e1000g_m_unicst_add(). The new address, address
2279  * length and the slot number that was returned in the call to add
2280  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2281  * set to 0. Returns 0 on success.
2282  */
2283 static int
2284 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2285 {
2286 	struct e1000g *Adapter = (struct e1000g *)arg;
2287 	mac_addr_slot_t slot;
2288 
2289 	if (mac_unicst_verify(Adapter->mh,
2290 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2291 		return (EINVAL);
2292 
2293 	slot = maddr->mma_slot;
2294 
2295 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2296 		return (EINVAL);
2297 
2298 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2299 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2300 		rw_exit(&Adapter->chip_lock);
2301 
2302 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2303 	}
2304 	rw_exit(&Adapter->chip_lock);
2305 
2306 	return (EINVAL);
2307 }
2308 
2309 /*
2310  * e1000g_m_unicst_get() - will get the MAC address and all other
2311  * information related to the address slot passed in mac_multi_addr_t.
2312  * mma_flags should be set to 0 in the call.
2313  * On return, mma_flags can take the following values:
2314  * 1) MMAC_SLOT_UNUSED
2315  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2316  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2317  * 4) MMAC_SLOT_USED
2318  */
2319 static int
2320 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2321 {
2322 	struct e1000g *Adapter = (struct e1000g *)arg;
2323 	mac_addr_slot_t slot;
2324 
2325 	slot = maddr->mma_slot;
2326 
2327 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2328 		return (EINVAL);
2329 
2330 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2331 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2332 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2333 		    maddr->mma_addr, ETHERADDRL);
2334 		maddr->mma_flags = MMAC_SLOT_USED;
2335 	} else {
2336 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2337 	}
2338 	rw_exit(&Adapter->chip_lock);
2339 
2340 	return (0);
2341 }
2342 
2343 static int
2344 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2345 {
2346 	struct e1000_hw *hw = &Adapter->shared;
2347 	int res = 0;
2348 
2349 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2350 
2351 	if ((multiaddr[0] & 01) == 0) {
2352 		res = EINVAL;
2353 		goto done;
2354 	}
2355 
2356 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2357 		res = ENOENT;
2358 		goto done;
2359 	}
2360 
2361 	bcopy(multiaddr,
2362 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2363 	Adapter->mcast_count++;
2364 
2365 	/*
2366 	 * Update the MC table in the hardware
2367 	 */
2368 	e1000g_clear_interrupt(Adapter);
2369 
2370 	e1000g_setup_multicast(Adapter);
2371 
2372 	if ((hw->mac.type == e1000_82542) &&
2373 	    (hw->revision_id == E1000_REVISION_2))
2374 		e1000g_rx_setup(Adapter);
2375 
2376 	e1000g_mask_interrupt(Adapter);
2377 
2378 done:
2379 	rw_exit(&Adapter->chip_lock);
2380 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2381 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2382 		res = EIO;
2383 	}
2384 
2385 	return (res);
2386 }
2387 
2388 static int
2389 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2390 {
2391 	struct e1000_hw *hw = &Adapter->shared;
2392 	unsigned i;
2393 
2394 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2395 
2396 	for (i = 0; i < Adapter->mcast_count; i++) {
2397 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2398 		    ETHERADDRL) == 0) {
2399 			for (i++; i < Adapter->mcast_count; i++) {
2400 				Adapter->mcast_table[i - 1] =
2401 				    Adapter->mcast_table[i];
2402 			}
2403 			Adapter->mcast_count--;
2404 			break;
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Update the MC table in the hardware
2410 	 */
2411 	e1000g_clear_interrupt(Adapter);
2412 
2413 	e1000g_setup_multicast(Adapter);
2414 
2415 	if ((hw->mac.type == e1000_82542) &&
2416 	    (hw->revision_id == E1000_REVISION_2))
2417 		e1000g_rx_setup(Adapter);
2418 
2419 	e1000g_mask_interrupt(Adapter);
2420 
2421 done:
2422 	rw_exit(&Adapter->chip_lock);
2423 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2424 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2425 		return (EIO);
2426 	}
2427 
2428 	return (0);
2429 }
2430 
2431 /*
2432  * e1000g_setup_multicast - setup multicast data structures
2433  *
2434  * This routine initializes all of the multicast related structures.
2435  */
2436 void
2437 e1000g_setup_multicast(struct e1000g *Adapter)
2438 {
2439 	uint8_t *mc_addr_list;
2440 	uint32_t mc_addr_count;
2441 	uint32_t rctl;
2442 	struct e1000_hw *hw;
2443 
2444 	hw = &Adapter->shared;
2445 
2446 	/*
2447 	 * The e1000g has the ability to do perfect filtering of 16
2448 	 * addresses. The driver uses one of the e1000g's 16 receive
2449 	 * address registers for its node/network/mac/individual address.
2450 	 * So, we have room for up to 15 multicast addresses in the CAM,
2451 	 * additional MC addresses are handled by the MTA (Multicast Table
2452 	 * Array)
2453 	 */
2454 
2455 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2456 
2457 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2458 
2459 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2460 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2461 		    "Adapter requested more than %d MC Addresses.\n",
2462 		    MAX_NUM_MULTICAST_ADDRESSES);
2463 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2464 	} else {
2465 		/*
2466 		 * Set the number of MC addresses that we are being
2467 		 * requested to use
2468 		 */
2469 		mc_addr_count = Adapter->mcast_count;
2470 	}
2471 	/*
2472 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2473 	 * hang  while writing to the receive address registers if the receiver
2474 	 * is not in reset before writing to the registers. Updating the RAR
2475 	 * is done during the setting up of the multicast table, hence the
2476 	 * receiver has to be put in reset before updating the multicast table
2477 	 * and then taken out of reset at the end
2478 	 */
2479 	/*
2480 	 * if WMI was enabled then dis able it before issueing the global
2481 	 * reset to the hardware.
2482 	 */
2483 	/*
2484 	 * Only required for WISEMAN_2_0
2485 	 */
2486 	if ((hw->mac.type == e1000_82542) &&
2487 	    (hw->revision_id == E1000_REVISION_2)) {
2488 		e1000_pci_clear_mwi(hw);
2489 		/*
2490 		 * The e1000g must be in reset before changing any RA
2491 		 * registers. Reset receive unit.  The chip will remain in
2492 		 * the reset state until software explicitly restarts it.
2493 		 */
2494 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2495 		/* Allow receiver time to go in to reset */
2496 		msec_delay(5);
2497 	}
2498 
2499 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2500 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2501 
2502 	/*
2503 	 * Only for Wiseman_2_0
2504 	 * If MWI was enabled then re-enable it after issueing (as we
2505 	 * disabled it up there) the receive reset command.
2506 	 * Wainwright does not have a receive reset command and only thing
2507 	 * close to it is global reset which will require tx setup also
2508 	 */
2509 	if ((hw->mac.type == e1000_82542) &&
2510 	    (hw->revision_id == E1000_REVISION_2)) {
2511 		/*
2512 		 * if WMI was enabled then reenable it after issueing the
2513 		 * global or receive reset to the hardware.
2514 		 */
2515 
2516 		/*
2517 		 * Take receiver out of reset
2518 		 * clear E1000_RCTL_RST bit (and all others)
2519 		 */
2520 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2521 		msec_delay(5);
2522 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2523 			e1000_pci_set_mwi(hw);
2524 	}
2525 
2526 	/*
2527 	 * Restore original value
2528 	 */
2529 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2530 }
2531 
2532 int
2533 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2534 {
2535 	struct e1000g *Adapter = (struct e1000g *)arg;
2536 
2537 	return ((add) ? multicst_add(Adapter, addr)
2538 	    : multicst_remove(Adapter, addr));
2539 }
2540 
2541 int
2542 e1000g_m_promisc(void *arg, boolean_t on)
2543 {
2544 	struct e1000g *Adapter = (struct e1000g *)arg;
2545 	uint32_t rctl;
2546 
2547 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2548 
2549 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2550 
2551 	if (on)
2552 		rctl |=
2553 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2554 	else
2555 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2556 
2557 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2558 
2559 	Adapter->e1000g_promisc = on;
2560 
2561 	rw_exit(&Adapter->chip_lock);
2562 
2563 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2564 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2565 		return (EIO);
2566 	}
2567 
2568 	return (0);
2569 }
2570 
2571 static boolean_t
2572 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2573 {
2574 	struct e1000g *Adapter = (struct e1000g *)arg;
2575 
2576 	switch (cap) {
2577 	case MAC_CAPAB_HCKSUM: {
2578 		uint32_t *txflags = cap_data;
2579 
2580 		if (Adapter->tx_hcksum_enable)
2581 			*txflags = HCKSUM_IPHDRCKSUM |
2582 			    HCKSUM_INET_PARTIAL;
2583 		else
2584 			return (B_FALSE);
2585 		break;
2586 	}
2587 	case MAC_CAPAB_POLL:
2588 		/*
2589 		 * There's nothing for us to fill in, simply returning
2590 		 * B_TRUE stating that we support polling is sufficient.
2591 		 */
2592 		break;
2593 
2594 	case MAC_CAPAB_MULTIADDRESS: {
2595 		multiaddress_capab_t *mmacp = cap_data;
2596 
2597 		/*
2598 		 * The number of MAC addresses made available by
2599 		 * this capability is one less than the total as
2600 		 * the primary address in slot 0 is counted in
2601 		 * the total.
2602 		 */
2603 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2604 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2605 		/* No multiple factory addresses, set mma_flag to 0 */
2606 		mmacp->maddr_flag = 0;
2607 		mmacp->maddr_handle = Adapter;
2608 		mmacp->maddr_add = e1000g_m_unicst_add;
2609 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2610 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2611 		mmacp->maddr_get = e1000g_m_unicst_get;
2612 		mmacp->maddr_reserve = NULL;
2613 		break;
2614 	}
2615 
2616 	case MAC_CAPAB_LSO: {
2617 		mac_capab_lso_t *cap_lso = cap_data;
2618 
2619 		if (Adapter->lso_enable) {
2620 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2621 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2622 			    E1000_LSO_MAXLEN;
2623 		} else
2624 			return (B_FALSE);
2625 		break;
2626 	}
2627 
2628 	default:
2629 		return (B_FALSE);
2630 	}
2631 	return (B_TRUE);
2632 }
2633 
2634 static boolean_t
2635 e1000g_param_locked(mac_prop_id_t pr_num)
2636 {
2637 	/*
2638 	 * All en_* parameters are locked (read-only) while
2639 	 * the device is in any sort of loopback mode ...
2640 	 */
2641 	switch (pr_num) {
2642 		case MAC_PROP_EN_1000FDX_CAP:
2643 		case MAC_PROP_EN_1000HDX_CAP:
2644 		case MAC_PROP_EN_100FDX_CAP:
2645 		case MAC_PROP_EN_100HDX_CAP:
2646 		case MAC_PROP_EN_10FDX_CAP:
2647 		case MAC_PROP_EN_10HDX_CAP:
2648 		case MAC_PROP_AUTONEG:
2649 		case MAC_PROP_FLOWCTRL:
2650 			return (B_TRUE);
2651 	}
2652 	return (B_FALSE);
2653 }
2654 
2655 /*
2656  * callback function for set/get of properties
2657  */
2658 static int
2659 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2660     uint_t pr_valsize, const void *pr_val)
2661 {
2662 	struct e1000g *Adapter = arg;
2663 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2664 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2665 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2666 	int err = 0;
2667 	link_flowctrl_t flowctrl;
2668 	uint32_t cur_mtu, new_mtu;
2669 	uint64_t tmp = 0;
2670 
2671 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2672 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2673 	    e1000g_param_locked(pr_num)) {
2674 		/*
2675 		 * All en_* parameters are locked (read-only)
2676 		 * while the device is in any sort of loopback mode.
2677 		 */
2678 		rw_exit(&Adapter->chip_lock);
2679 		return (EBUSY);
2680 	}
2681 
2682 	switch (pr_num) {
2683 		case MAC_PROP_EN_1000FDX_CAP:
2684 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2685 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2686 			goto reset;
2687 		case MAC_PROP_EN_1000HDX_CAP:
2688 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2689 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2690 			goto reset;
2691 		case MAC_PROP_EN_100FDX_CAP:
2692 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2693 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2694 			goto reset;
2695 		case MAC_PROP_EN_100HDX_CAP:
2696 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2697 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2698 			goto reset;
2699 		case MAC_PROP_EN_10FDX_CAP:
2700 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2701 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2702 			goto reset;
2703 		case MAC_PROP_EN_10HDX_CAP:
2704 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2705 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2706 			goto reset;
2707 		case MAC_PROP_AUTONEG:
2708 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2709 			goto reset;
2710 		case MAC_PROP_FLOWCTRL:
2711 			fc->send_xon = B_TRUE;
2712 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2713 
2714 			switch (flowctrl) {
2715 			default:
2716 				err = EINVAL;
2717 				break;
2718 			case LINK_FLOWCTRL_NONE:
2719 				fc->type = e1000_fc_none;
2720 				break;
2721 			case LINK_FLOWCTRL_RX:
2722 				fc->type = e1000_fc_rx_pause;
2723 				break;
2724 			case LINK_FLOWCTRL_TX:
2725 				fc->type = e1000_fc_tx_pause;
2726 				break;
2727 			case LINK_FLOWCTRL_BI:
2728 				fc->type = e1000_fc_full;
2729 				break;
2730 			}
2731 reset:
2732 			if (err == 0) {
2733 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2734 					err = EINVAL;
2735 			}
2736 			break;
2737 		case MAC_PROP_ADV_1000FDX_CAP:
2738 		case MAC_PROP_ADV_1000HDX_CAP:
2739 		case MAC_PROP_ADV_100FDX_CAP:
2740 		case MAC_PROP_ADV_100HDX_CAP:
2741 		case MAC_PROP_ADV_10FDX_CAP:
2742 		case MAC_PROP_ADV_10HDX_CAP:
2743 		case MAC_PROP_STATUS:
2744 		case MAC_PROP_SPEED:
2745 		case MAC_PROP_DUPLEX:
2746 			err = ENOTSUP; /* read-only prop. Can't set this. */
2747 			break;
2748 		case MAC_PROP_MTU:
2749 			cur_mtu = Adapter->default_mtu;
2750 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2751 			if (new_mtu == cur_mtu) {
2752 				err = 0;
2753 				break;
2754 			}
2755 
2756 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2757 			    ETHERFCSL;
2758 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2759 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2760 				err = EINVAL;
2761 				break;
2762 			}
2763 
2764 			/* ich8 does not support jumbo frames */
2765 			if ((mac->type == e1000_ich8lan) &&
2766 			    (tmp > DEFAULT_FRAME_SIZE)) {
2767 				err = EINVAL;
2768 				break;
2769 			}
2770 			/* ich9 does not do jumbo frames on one phy type */
2771 			if ((mac->type == e1000_ich9lan) &&
2772 			    (phy->type == e1000_phy_ife) &&
2773 			    (tmp > DEFAULT_FRAME_SIZE)) {
2774 				err = EINVAL;
2775 				break;
2776 			}
2777 			if (Adapter->chip_state != E1000G_STOP) {
2778 				err = EBUSY;
2779 				break;
2780 			}
2781 
2782 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2783 			if (err == 0) {
2784 				Adapter->max_frame_size = (uint32_t)tmp;
2785 				Adapter->default_mtu = new_mtu;
2786 				e1000g_set_bufsize(Adapter);
2787 			}
2788 			break;
2789 		case MAC_PROP_PRIVATE:
2790 			err = e1000g_set_priv_prop(Adapter, pr_name,
2791 			    pr_valsize, pr_val);
2792 			break;
2793 		default:
2794 			err = ENOTSUP;
2795 			break;
2796 	}
2797 	rw_exit(&Adapter->chip_lock);
2798 	return (err);
2799 }
2800 
2801 static int
2802 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2803     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2804 {
2805 	struct e1000g *Adapter = arg;
2806 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2807 	int err = 0;
2808 	link_flowctrl_t flowctrl;
2809 	uint64_t tmp = 0;
2810 
2811 	if (pr_valsize == 0)
2812 		return (EINVAL);
2813 
2814 	bzero(pr_val, pr_valsize);
2815 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2816 		return (e1000g_get_def_val(Adapter, pr_num,
2817 		    pr_valsize, pr_val));
2818 	}
2819 
2820 	switch (pr_num) {
2821 		case MAC_PROP_DUPLEX:
2822 			if (pr_valsize >= sizeof (link_duplex_t)) {
2823 				bcopy(&Adapter->link_duplex, pr_val,
2824 				    sizeof (link_duplex_t));
2825 			} else
2826 				err = EINVAL;
2827 			break;
2828 		case MAC_PROP_SPEED:
2829 			if (pr_valsize >= sizeof (uint64_t)) {
2830 				tmp = Adapter->link_speed * 1000000ull;
2831 				bcopy(&tmp, pr_val, sizeof (tmp));
2832 			} else
2833 				err = EINVAL;
2834 			break;
2835 		case MAC_PROP_AUTONEG:
2836 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2837 			break;
2838 		case MAC_PROP_FLOWCTRL:
2839 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2840 				switch (fc->type) {
2841 					case e1000_fc_none:
2842 						flowctrl = LINK_FLOWCTRL_NONE;
2843 						break;
2844 					case e1000_fc_rx_pause:
2845 						flowctrl = LINK_FLOWCTRL_RX;
2846 						break;
2847 					case e1000_fc_tx_pause:
2848 						flowctrl = LINK_FLOWCTRL_TX;
2849 						break;
2850 					case e1000_fc_full:
2851 						flowctrl = LINK_FLOWCTRL_BI;
2852 						break;
2853 				}
2854 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2855 			} else
2856 				err = EINVAL;
2857 			break;
2858 		case MAC_PROP_ADV_1000FDX_CAP:
2859 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2860 			break;
2861 		case MAC_PROP_EN_1000FDX_CAP:
2862 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2863 			break;
2864 		case MAC_PROP_ADV_1000HDX_CAP:
2865 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2866 			break;
2867 		case MAC_PROP_EN_1000HDX_CAP:
2868 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2869 			break;
2870 		case MAC_PROP_ADV_100FDX_CAP:
2871 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2872 			break;
2873 		case MAC_PROP_EN_100FDX_CAP:
2874 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2875 			break;
2876 		case MAC_PROP_ADV_100HDX_CAP:
2877 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2878 			break;
2879 		case MAC_PROP_EN_100HDX_CAP:
2880 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2881 			break;
2882 		case MAC_PROP_ADV_10FDX_CAP:
2883 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2884 			break;
2885 		case MAC_PROP_EN_10FDX_CAP:
2886 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2887 			break;
2888 		case MAC_PROP_ADV_10HDX_CAP:
2889 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2890 			break;
2891 		case MAC_PROP_EN_10HDX_CAP:
2892 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2893 			break;
2894 		case MAC_PROP_ADV_100T4_CAP:
2895 		case MAC_PROP_EN_100T4_CAP:
2896 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2897 			break;
2898 		case MAC_PROP_PRIVATE:
2899 			err = e1000g_get_priv_prop(Adapter, pr_name,
2900 			    pr_flags, pr_valsize, pr_val);
2901 			break;
2902 		default:
2903 			err = ENOTSUP;
2904 			break;
2905 	}
2906 	return (err);
2907 }
2908 
2909 /* ARGSUSED2 */
2910 static int
2911 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2912     uint_t pr_valsize, const void *pr_val)
2913 {
2914 	int err = 0;
2915 	long result;
2916 	struct e1000_hw *hw = &Adapter->shared;
2917 
2918 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2919 		if (pr_val == NULL) {
2920 			err = EINVAL;
2921 			return (err);
2922 		}
2923 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2924 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2925 		    result > MAX_TX_BCOPY_THRESHOLD)
2926 			err = EINVAL;
2927 		else {
2928 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2929 		}
2930 		return (err);
2931 	}
2932 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2933 		if (pr_val == NULL) {
2934 			err = EINVAL;
2935 			return (err);
2936 		}
2937 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2938 		if (result < 0 || result > 1)
2939 			err = EINVAL;
2940 		else {
2941 			Adapter->tx_intr_enable = (result == 1) ?
2942 			    B_TRUE: B_FALSE;
2943 			if (Adapter->tx_intr_enable)
2944 				e1000g_mask_tx_interrupt(Adapter);
2945 			else
2946 				e1000g_clear_tx_interrupt(Adapter);
2947 			if (e1000g_check_acc_handle(
2948 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2949 				ddi_fm_service_impact(Adapter->dip,
2950 				    DDI_SERVICE_DEGRADED);
2951 		}
2952 		return (err);
2953 	}
2954 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2955 		if (pr_val == NULL) {
2956 			err = EINVAL;
2957 			return (err);
2958 		}
2959 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2960 		if (result < MIN_TX_INTR_DELAY ||
2961 		    result > MAX_TX_INTR_DELAY)
2962 			err = EINVAL;
2963 		else {
2964 			Adapter->tx_intr_delay = (uint32_t)result;
2965 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2966 			if (e1000g_check_acc_handle(
2967 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2968 				ddi_fm_service_impact(Adapter->dip,
2969 				    DDI_SERVICE_DEGRADED);
2970 		}
2971 		return (err);
2972 	}
2973 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2974 		if (pr_val == NULL) {
2975 			err = EINVAL;
2976 			return (err);
2977 		}
2978 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2979 		if (result < MIN_TX_INTR_ABS_DELAY ||
2980 		    result > MAX_TX_INTR_ABS_DELAY)
2981 			err = EINVAL;
2982 		else {
2983 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2984 			E1000_WRITE_REG(hw, E1000_TADV,
2985 			    Adapter->tx_intr_abs_delay);
2986 			if (e1000g_check_acc_handle(
2987 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2988 				ddi_fm_service_impact(Adapter->dip,
2989 				    DDI_SERVICE_DEGRADED);
2990 		}
2991 		return (err);
2992 	}
2993 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2994 		if (pr_val == NULL) {
2995 			err = EINVAL;
2996 			return (err);
2997 		}
2998 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2999 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3000 		    result > MAX_RX_BCOPY_THRESHOLD)
3001 			err = EINVAL;
3002 		else
3003 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3004 		return (err);
3005 	}
3006 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3007 		if (pr_val == NULL) {
3008 			err = EINVAL;
3009 			return (err);
3010 		}
3011 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3012 		if (result < MIN_RX_LIMIT_ON_INTR ||
3013 		    result > MAX_RX_LIMIT_ON_INTR)
3014 			err = EINVAL;
3015 		else
3016 			Adapter->rx_limit_onintr = (uint32_t)result;
3017 		return (err);
3018 	}
3019 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3020 		if (pr_val == NULL) {
3021 			err = EINVAL;
3022 			return (err);
3023 		}
3024 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3025 		if (result < MIN_RX_INTR_DELAY ||
3026 		    result > MAX_RX_INTR_DELAY)
3027 			err = EINVAL;
3028 		else {
3029 			Adapter->rx_intr_delay = (uint32_t)result;
3030 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3031 			if (e1000g_check_acc_handle(
3032 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3033 				ddi_fm_service_impact(Adapter->dip,
3034 				    DDI_SERVICE_DEGRADED);
3035 		}
3036 		return (err);
3037 	}
3038 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3039 		if (pr_val == NULL) {
3040 			err = EINVAL;
3041 			return (err);
3042 		}
3043 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3044 		if (result < MIN_RX_INTR_ABS_DELAY ||
3045 		    result > MAX_RX_INTR_ABS_DELAY)
3046 			err = EINVAL;
3047 		else {
3048 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3049 			E1000_WRITE_REG(hw, E1000_RADV,
3050 			    Adapter->rx_intr_abs_delay);
3051 			if (e1000g_check_acc_handle(
3052 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3053 				ddi_fm_service_impact(Adapter->dip,
3054 				    DDI_SERVICE_DEGRADED);
3055 		}
3056 		return (err);
3057 	}
3058 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3059 		if (pr_val == NULL) {
3060 			err = EINVAL;
3061 			return (err);
3062 		}
3063 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3064 		if (result < MIN_INTR_THROTTLING ||
3065 		    result > MAX_INTR_THROTTLING)
3066 			err = EINVAL;
3067 		else {
3068 			if (hw->mac.type >= e1000_82540) {
3069 				Adapter->intr_throttling_rate =
3070 				    (uint32_t)result;
3071 				E1000_WRITE_REG(hw, E1000_ITR,
3072 				    Adapter->intr_throttling_rate);
3073 				if (e1000g_check_acc_handle(
3074 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3075 					ddi_fm_service_impact(Adapter->dip,
3076 					    DDI_SERVICE_DEGRADED);
3077 			} else
3078 				err = EINVAL;
3079 		}
3080 		return (err);
3081 	}
3082 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3083 		if (pr_val == NULL) {
3084 			err = EINVAL;
3085 			return (err);
3086 		}
3087 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3088 		if (result < 0 || result > 1)
3089 			err = EINVAL;
3090 		else {
3091 			if (hw->mac.type >= e1000_82540) {
3092 				Adapter->intr_adaptive = (result == 1) ?
3093 				    B_TRUE : B_FALSE;
3094 			} else {
3095 				err = EINVAL;
3096 			}
3097 		}
3098 		return (err);
3099 	}
3100 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3101 		if (pr_val == NULL) {
3102 			err = EINVAL;
3103 			return (err);
3104 		}
3105 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3106 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3107 		    result > MAX_TX_RECYCLE_THRESHOLD)
3108 			err = EINVAL;
3109 		else
3110 			Adapter->tx_recycle_thresh = (uint32_t)result;
3111 		return (err);
3112 	}
3113 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3114 		if (pr_val == NULL) {
3115 			err = EINVAL;
3116 			return (err);
3117 		}
3118 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3119 		if (result < MIN_TX_RECYCLE_NUM ||
3120 		    result > MAX_TX_RECYCLE_NUM)
3121 			err = EINVAL;
3122 		else
3123 			Adapter->tx_recycle_num = (uint32_t)result;
3124 		return (err);
3125 	}
3126 	return (ENOTSUP);
3127 }
3128 
3129 static int
3130 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3131     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3132 {
3133 	int err = ENOTSUP;
3134 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3135 	int value;
3136 
3137 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3138 		if (is_default)
3139 			goto done;
3140 		value = Adapter->param_adv_pause;
3141 		err = 0;
3142 		goto done;
3143 	}
3144 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3145 		if (is_default)
3146 			goto done;
3147 		value = Adapter->param_adv_asym_pause;
3148 		err = 0;
3149 		goto done;
3150 	}
3151 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3152 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3153 		    Adapter->tx_bcopy_thresh);
3154 		err = 0;
3155 		goto done;
3156 	}
3157 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3158 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3159 		    Adapter->tx_intr_enable);
3160 		err = 0;
3161 		goto done;
3162 	}
3163 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3164 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3165 		    Adapter->tx_intr_delay);
3166 		err = 0;
3167 		goto done;
3168 	}
3169 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3170 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3171 		    Adapter->tx_intr_abs_delay);
3172 		err = 0;
3173 		goto done;
3174 	}
3175 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3176 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3177 		    Adapter->rx_bcopy_thresh);
3178 		err = 0;
3179 		goto done;
3180 	}
3181 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3182 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3183 		    Adapter->rx_limit_onintr);
3184 		err = 0;
3185 		goto done;
3186 	}
3187 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3188 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3189 		    Adapter->rx_intr_delay);
3190 		err = 0;
3191 		goto done;
3192 	}
3193 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3194 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3195 		    Adapter->rx_intr_abs_delay);
3196 		err = 0;
3197 		goto done;
3198 	}
3199 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3200 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3201 		    Adapter->intr_throttling_rate);
3202 		err = 0;
3203 		goto done;
3204 	}
3205 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3206 		value = (is_default ? 1 : Adapter->intr_adaptive);
3207 		err = 0;
3208 		goto done;
3209 	}
3210 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3211 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3212 		    Adapter->tx_recycle_thresh);
3213 		err = 0;
3214 		goto done;
3215 	}
3216 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3217 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3218 		    Adapter->tx_recycle_num);
3219 		err = 0;
3220 		goto done;
3221 	}
3222 done:
3223 	if (err == 0) {
3224 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3225 	}
3226 	return (err);
3227 }
3228 
3229 /*
3230  * e1000g_get_conf - get configurations set in e1000g.conf
3231  * This routine gets user-configured values out of the configuration
3232  * file e1000g.conf.
3233  *
3234  * For each configurable value, there is a minimum, a maximum, and a
3235  * default.
3236  * If user does not configure a value, use the default.
3237  * If user configures below the minimum, use the minumum.
3238  * If user configures above the maximum, use the maxumum.
3239  */
3240 static void
3241 e1000g_get_conf(struct e1000g *Adapter)
3242 {
3243 	struct e1000_hw *hw = &Adapter->shared;
3244 	boolean_t tbi_compatibility = B_FALSE;
3245 
3246 	/*
3247 	 * get each configurable property from e1000g.conf
3248 	 */
3249 
3250 	/*
3251 	 * NumTxDescriptors
3252 	 */
3253 	Adapter->tx_desc_num =
3254 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3255 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3256 	    DEFAULT_NUM_TX_DESCRIPTOR);
3257 
3258 	/*
3259 	 * NumRxDescriptors
3260 	 */
3261 	Adapter->rx_desc_num =
3262 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3263 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3264 	    DEFAULT_NUM_RX_DESCRIPTOR);
3265 
3266 	/*
3267 	 * NumRxFreeList
3268 	 */
3269 	Adapter->rx_freelist_num =
3270 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3271 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3272 	    DEFAULT_NUM_RX_FREELIST);
3273 
3274 	/*
3275 	 * NumTxPacketList
3276 	 */
3277 	Adapter->tx_freelist_num =
3278 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3279 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3280 	    DEFAULT_NUM_TX_FREELIST);
3281 
3282 	/*
3283 	 * FlowControl
3284 	 */
3285 	hw->fc.send_xon = B_TRUE;
3286 	hw->fc.type =
3287 	    e1000g_get_prop(Adapter, "FlowControl",
3288 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3289 	/* 4 is the setting that says "let the eeprom decide" */
3290 	if (hw->fc.type == 4)
3291 		hw->fc.type = e1000_fc_default;
3292 
3293 	/*
3294 	 * Max Num Receive Packets on Interrupt
3295 	 */
3296 	Adapter->rx_limit_onintr =
3297 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3298 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3299 	    DEFAULT_RX_LIMIT_ON_INTR);
3300 
3301 	/*
3302 	 * PHY master slave setting
3303 	 */
3304 	hw->phy.ms_type =
3305 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3306 	    e1000_ms_hw_default, e1000_ms_auto,
3307 	    e1000_ms_hw_default);
3308 
3309 	/*
3310 	 * Parameter which controls TBI mode workaround, which is only
3311 	 * needed on certain switches such as Cisco 6500/Foundry
3312 	 */
3313 	tbi_compatibility =
3314 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3315 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3316 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3317 
3318 	/*
3319 	 * MSI Enable
3320 	 */
3321 	Adapter->msi_enable =
3322 	    e1000g_get_prop(Adapter, "MSIEnable",
3323 	    0, 1, DEFAULT_MSI_ENABLE);
3324 
3325 	/*
3326 	 * Interrupt Throttling Rate
3327 	 */
3328 	Adapter->intr_throttling_rate =
3329 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3330 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3331 	    DEFAULT_INTR_THROTTLING);
3332 
3333 	/*
3334 	 * Adaptive Interrupt Blanking Enable/Disable
3335 	 * It is enabled by default
3336 	 */
3337 	Adapter->intr_adaptive =
3338 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3339 	    B_TRUE : B_FALSE;
3340 
3341 	/*
3342 	 * Tx recycle threshold
3343 	 */
3344 	Adapter->tx_recycle_thresh =
3345 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3346 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3347 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3348 
3349 	/*
3350 	 * Tx recycle descriptor number
3351 	 */
3352 	Adapter->tx_recycle_num =
3353 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3354 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3355 	    DEFAULT_TX_RECYCLE_NUM);
3356 
3357 	/*
3358 	 * Hardware checksum enable/disable parameter
3359 	 */
3360 	Adapter->tx_hcksum_enable =
3361 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3362 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3363 	/*
3364 	 * Checksum on/off selection via global parameters.
3365 	 *
3366 	 * If the chip is flagged as not capable of (correctly)
3367 	 * handling checksumming, we don't enable it on either
3368 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3369 	 * from the patchable global defaults.
3370 	 *
3371 	 * We advertise our capabilities only if TX offload is
3372 	 * enabled.  On receive, the stack will accept checksummed
3373 	 * packets anyway, even if we haven't said we can deliver
3374 	 * them.
3375 	 */
3376 	switch (hw->mac.type) {
3377 		case e1000_82540:
3378 		case e1000_82544:
3379 		case e1000_82545:
3380 		case e1000_82545_rev_3:
3381 		case e1000_82546:
3382 		case e1000_82546_rev_3:
3383 		case e1000_82571:
3384 		case e1000_82572:
3385 		case e1000_82573:
3386 		case e1000_80003es2lan:
3387 			break;
3388 		/*
3389 		 * For the following Intel PRO/1000 chipsets, we have not
3390 		 * tested the hardware checksum offload capability, so we
3391 		 * disable the capability for them.
3392 		 *	e1000_82542,
3393 		 *	e1000_82543,
3394 		 *	e1000_82541,
3395 		 *	e1000_82541_rev_2,
3396 		 *	e1000_82547,
3397 		 *	e1000_82547_rev_2,
3398 		 */
3399 		default:
3400 			Adapter->tx_hcksum_enable = B_FALSE;
3401 	}
3402 
3403 	/*
3404 	 * Large Send Offloading(LSO) Enable/Disable
3405 	 * If the tx hardware checksum is not enabled, LSO should be
3406 	 * disabled.
3407 	 */
3408 	Adapter->lso_enable =
3409 	    e1000g_get_prop(Adapter, "lso_enable",
3410 	    0, 1, DEFAULT_LSO_ENABLE);
3411 
3412 	switch (hw->mac.type) {
3413 		case e1000_82546:
3414 		case e1000_82546_rev_3:
3415 			if (Adapter->lso_enable)
3416 				Adapter->lso_premature_issue = B_TRUE;
3417 			/* FALLTHRU */
3418 		case e1000_82571:
3419 		case e1000_82572:
3420 		case e1000_82573:
3421 			break;
3422 		default:
3423 			Adapter->lso_enable = B_FALSE;
3424 	}
3425 
3426 	if (!Adapter->tx_hcksum_enable) {
3427 		Adapter->lso_premature_issue = B_FALSE;
3428 		Adapter->lso_enable = B_FALSE;
3429 	}
3430 }
3431 
3432 /*
3433  * e1000g_get_prop - routine to read properties
3434  *
3435  * Get a user-configure property value out of the configuration
3436  * file e1000g.conf.
3437  *
3438  * Caller provides name of the property, a default value, a minimum
3439  * value, and a maximum value.
3440  *
3441  * Return configured value of the property, with default, minimum and
3442  * maximum properly applied.
3443  */
3444 static int
3445 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3446     char *propname,		/* name of the property */
3447     int minval,			/* minimum acceptable value */
3448     int maxval,			/* maximim acceptable value */
3449     int defval)			/* default value */
3450 {
3451 	int propval;		/* value returned for requested property */
3452 	int *props;		/* point to array of properties returned */
3453 	uint_t nprops;		/* number of property value returned */
3454 
3455 	/*
3456 	 * get the array of properties from the config file
3457 	 */
3458 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3459 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3460 		/* got some properties, test if we got enough */
3461 		if (Adapter->instance < nprops) {
3462 			propval = props[Adapter->instance];
3463 		} else {
3464 			/* not enough properties configured */
3465 			propval = defval;
3466 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3467 			    "Not Enough %s values found in e1000g.conf"
3468 			    " - set to %d\n",
3469 			    propname, propval);
3470 		}
3471 
3472 		/* free memory allocated for properties */
3473 		ddi_prop_free(props);
3474 
3475 	} else {
3476 		propval = defval;
3477 	}
3478 
3479 	/*
3480 	 * enforce limits
3481 	 */
3482 	if (propval > maxval) {
3483 		propval = maxval;
3484 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3485 		    "Too High %s value in e1000g.conf - set to %d\n",
3486 		    propname, propval);
3487 	}
3488 
3489 	if (propval < minval) {
3490 		propval = minval;
3491 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3492 		    "Too Low %s value in e1000g.conf - set to %d\n",
3493 		    propname, propval);
3494 	}
3495 
3496 	return (propval);
3497 }
3498 
3499 static boolean_t
3500 e1000g_link_check(struct e1000g *Adapter)
3501 {
3502 	uint16_t speed, duplex, phydata;
3503 	boolean_t link_changed = B_FALSE;
3504 	struct e1000_hw *hw;
3505 	uint32_t reg_tarc;
3506 
3507 	hw = &Adapter->shared;
3508 
3509 	if (e1000g_link_up(Adapter)) {
3510 		/*
3511 		 * The Link is up, check whether it was marked as down earlier
3512 		 */
3513 		if (Adapter->link_state != LINK_STATE_UP) {
3514 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3515 			Adapter->link_speed = speed;
3516 			Adapter->link_duplex = duplex;
3517 			Adapter->link_state = LINK_STATE_UP;
3518 			link_changed = B_TRUE;
3519 
3520 			Adapter->tx_link_down_timeout = 0;
3521 
3522 			if ((hw->mac.type == e1000_82571) ||
3523 			    (hw->mac.type == e1000_82572)) {
3524 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3525 				if (speed == SPEED_1000)
3526 					reg_tarc |= (1 << 21);
3527 				else
3528 					reg_tarc &= ~(1 << 21);
3529 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3530 			}
3531 		}
3532 		Adapter->smartspeed = 0;
3533 	} else {
3534 		if (Adapter->link_state != LINK_STATE_DOWN) {
3535 			Adapter->link_speed = 0;
3536 			Adapter->link_duplex = 0;
3537 			Adapter->link_state = LINK_STATE_DOWN;
3538 			link_changed = B_TRUE;
3539 
3540 			/*
3541 			 * SmartSpeed workaround for Tabor/TanaX, When the
3542 			 * driver loses link disable auto master/slave
3543 			 * resolution.
3544 			 */
3545 			if (hw->phy.type == e1000_phy_igp) {
3546 				(void) e1000_read_phy_reg(hw,
3547 				    PHY_1000T_CTRL, &phydata);
3548 				phydata |= CR_1000T_MS_ENABLE;
3549 				(void) e1000_write_phy_reg(hw,
3550 				    PHY_1000T_CTRL, phydata);
3551 			}
3552 		} else {
3553 			e1000g_smartspeed(Adapter);
3554 		}
3555 
3556 		if (Adapter->chip_state == E1000G_START) {
3557 			if (Adapter->tx_link_down_timeout <
3558 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3559 				Adapter->tx_link_down_timeout++;
3560 			} else if (Adapter->tx_link_down_timeout ==
3561 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3562 				e1000g_tx_clean(Adapter);
3563 				Adapter->tx_link_down_timeout++;
3564 			}
3565 		}
3566 	}
3567 
3568 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3569 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3570 
3571 	return (link_changed);
3572 }
3573 
3574 /*
3575  * e1000g_reset_link - Using the link properties to setup the link
3576  */
3577 int
3578 e1000g_reset_link(struct e1000g *Adapter)
3579 {
3580 	struct e1000_mac_info *mac;
3581 	struct e1000_phy_info *phy;
3582 	boolean_t invalid;
3583 
3584 	mac = &Adapter->shared.mac;
3585 	phy = &Adapter->shared.phy;
3586 	invalid = B_FALSE;
3587 
3588 	if (Adapter->param_adv_autoneg == 1) {
3589 		mac->autoneg = B_TRUE;
3590 		phy->autoneg_advertised = 0;
3591 
3592 		/*
3593 		 * 1000hdx is not supported for autonegotiation
3594 		 */
3595 		if (Adapter->param_adv_1000fdx == 1)
3596 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3597 
3598 		if (Adapter->param_adv_100fdx == 1)
3599 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3600 
3601 		if (Adapter->param_adv_100hdx == 1)
3602 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3603 
3604 		if (Adapter->param_adv_10fdx == 1)
3605 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3606 
3607 		if (Adapter->param_adv_10hdx == 1)
3608 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3609 
3610 		if (phy->autoneg_advertised == 0)
3611 			invalid = B_TRUE;
3612 	} else {
3613 		mac->autoneg = B_FALSE;
3614 
3615 		/*
3616 		 * 1000fdx and 1000hdx are not supported for forced link
3617 		 */
3618 		if (Adapter->param_adv_100fdx == 1)
3619 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3620 		else if (Adapter->param_adv_100hdx == 1)
3621 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3622 		else if (Adapter->param_adv_10fdx == 1)
3623 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3624 		else if (Adapter->param_adv_10hdx == 1)
3625 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3626 		else
3627 			invalid = B_TRUE;
3628 
3629 	}
3630 
3631 	if (invalid) {
3632 		e1000g_log(Adapter, CE_WARN,
3633 		    "Invalid link sets. Setup link to"
3634 		    "support autonegotiation with all link capabilities.");
3635 		mac->autoneg = B_TRUE;
3636 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3637 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3638 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3639 	}
3640 
3641 	return (e1000_setup_link(&Adapter->shared));
3642 }
3643 
3644 static void
3645 e1000g_local_timer(void *ws)
3646 {
3647 	struct e1000g *Adapter = (struct e1000g *)ws;
3648 	struct e1000_hw *hw;
3649 	e1000g_ether_addr_t ether_addr;
3650 	boolean_t link_changed;
3651 
3652 	hw = &Adapter->shared;
3653 
3654 	if (Adapter->chip_state == E1000G_ERROR) {
3655 		Adapter->reset_count++;
3656 		if (e1000g_global_reset(Adapter))
3657 			ddi_fm_service_impact(Adapter->dip,
3658 			    DDI_SERVICE_RESTORED);
3659 		else
3660 			ddi_fm_service_impact(Adapter->dip,
3661 			    DDI_SERVICE_LOST);
3662 		return;
3663 	}
3664 
3665 	if (e1000g_stall_check(Adapter)) {
3666 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3667 		    "Tx stall detected. Activate automatic recovery.\n");
3668 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3669 		Adapter->reset_count++;
3670 		if (e1000g_reset_adapter(Adapter))
3671 			ddi_fm_service_impact(Adapter->dip,
3672 			    DDI_SERVICE_RESTORED);
3673 		else
3674 			ddi_fm_service_impact(Adapter->dip,
3675 			    DDI_SERVICE_LOST);
3676 		return;
3677 	}
3678 
3679 	link_changed = B_FALSE;
3680 	rw_enter(&Adapter->chip_lock, RW_READER);
3681 	if (Adapter->link_complete)
3682 		link_changed = e1000g_link_check(Adapter);
3683 	rw_exit(&Adapter->chip_lock);
3684 
3685 	if (link_changed)
3686 		mac_link_update(Adapter->mh, Adapter->link_state);
3687 
3688 	/*
3689 	 * Workaround for esb2. Data stuck in fifo on a link
3690 	 * down event. Reset the adapter to recover it.
3691 	 */
3692 	if (Adapter->esb2_workaround) {
3693 		Adapter->esb2_workaround = B_FALSE;
3694 		(void) e1000g_reset_adapter(Adapter);
3695 	}
3696 
3697 	/*
3698 	 * With 82571 controllers, any locally administered address will
3699 	 * be overwritten when there is a reset on the other port.
3700 	 * Detect this circumstance and correct it.
3701 	 */
3702 	if ((hw->mac.type == e1000_82571) &&
3703 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3704 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3705 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3706 
3707 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3708 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3709 
3710 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3711 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3712 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3713 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3714 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3715 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3716 			e1000_rar_set(hw, hw->mac.addr, 0);
3717 		}
3718 	}
3719 
3720 	/*
3721 	 * Long TTL workaround for 82541/82547
3722 	 */
3723 	(void) e1000_igp_ttl_workaround_82547(hw);
3724 
3725 	/*
3726 	 * Check for Adaptive IFS settings If there are lots of collisions
3727 	 * change the value in steps...
3728 	 * These properties should only be set for 10/100
3729 	 */
3730 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3731 	    ((Adapter->link_speed == SPEED_100) ||
3732 	    (Adapter->link_speed == SPEED_10))) {
3733 		e1000_update_adaptive(hw);
3734 	}
3735 	/*
3736 	 * Set Timer Interrupts
3737 	 */
3738 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3739 
3740 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3741 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3742 
3743 	restart_watchdog_timer(Adapter);
3744 }
3745 
3746 /*
3747  * The function e1000g_link_timer() is called when the timer for link setup
3748  * is expired, which indicates the completion of the link setup. The link
3749  * state will not be updated until the link setup is completed. And the
3750  * link state will not be sent to the upper layer through mac_link_update()
3751  * in this function. It will be updated in the local timer routine or the
3752  * interrupt service routine after the interface is started (plumbed).
3753  */
3754 static void
3755 e1000g_link_timer(void *arg)
3756 {
3757 	struct e1000g *Adapter = (struct e1000g *)arg;
3758 
3759 	mutex_enter(&Adapter->link_lock);
3760 	Adapter->link_complete = B_TRUE;
3761 	Adapter->link_tid = 0;
3762 	mutex_exit(&Adapter->link_lock);
3763 }
3764 
3765 /*
3766  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3767  *
3768  * This function read the forced speed and duplex for 10/100 Mbps speeds
3769  * and also for 1000 Mbps speeds from the e1000g.conf file
3770  */
3771 static void
3772 e1000g_force_speed_duplex(struct e1000g *Adapter)
3773 {
3774 	int forced;
3775 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3776 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3777 
3778 	/*
3779 	 * get value out of config file
3780 	 */
3781 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3782 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3783 
3784 	switch (forced) {
3785 	case GDIAG_10_HALF:
3786 		/*
3787 		 * Disable Auto Negotiation
3788 		 */
3789 		mac->autoneg = B_FALSE;
3790 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3791 		break;
3792 	case GDIAG_10_FULL:
3793 		/*
3794 		 * Disable Auto Negotiation
3795 		 */
3796 		mac->autoneg = B_FALSE;
3797 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3798 		break;
3799 	case GDIAG_100_HALF:
3800 		/*
3801 		 * Disable Auto Negotiation
3802 		 */
3803 		mac->autoneg = B_FALSE;
3804 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3805 		break;
3806 	case GDIAG_100_FULL:
3807 		/*
3808 		 * Disable Auto Negotiation
3809 		 */
3810 		mac->autoneg = B_FALSE;
3811 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3812 		break;
3813 	case GDIAG_1000_FULL:
3814 		/*
3815 		 * The gigabit spec requires autonegotiation.  Therefore,
3816 		 * when the user wants to force the speed to 1000Mbps, we
3817 		 * enable AutoNeg, but only allow the harware to advertise
3818 		 * 1000Mbps.  This is different from 10/100 operation, where
3819 		 * we are allowed to link without any negotiation.
3820 		 */
3821 		mac->autoneg = B_TRUE;
3822 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3823 		break;
3824 	default:	/* obey the setting of AutoNegAdvertised */
3825 		mac->autoneg = B_TRUE;
3826 		phy->autoneg_advertised =
3827 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3828 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3829 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3830 		break;
3831 	}	/* switch */
3832 }
3833 
3834 /*
3835  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3836  *
3837  * This function reads MaxFrameSize from e1000g.conf
3838  */
3839 static void
3840 e1000g_get_max_frame_size(struct e1000g *Adapter)
3841 {
3842 	int max_frame;
3843 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3844 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3845 
3846 	/*
3847 	 * get value out of config file
3848 	 */
3849 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3850 
3851 	switch (max_frame) {
3852 	case 0:
3853 		Adapter->default_mtu = ETHERMTU;
3854 		break;
3855 	/*
3856 	 * To avoid excessive memory allocation for rx buffers,
3857 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3858 	 */
3859 	case 1:
3860 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3861 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3862 		    E1000G_IPALIGNPRESERVEROOM;
3863 		break;
3864 	case 2:
3865 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3866 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3867 		    E1000G_IPALIGNPRESERVEROOM;
3868 		break;
3869 	case 3:
3870 		if (mac->type >= e1000_82571)
3871 			Adapter->default_mtu = MAXIMUM_MTU;
3872 		else
3873 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3874 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3875 			    E1000G_IPALIGNPRESERVEROOM;
3876 		break;
3877 	default:
3878 		Adapter->default_mtu = ETHERMTU;
3879 		break;
3880 	}	/* switch */
3881 
3882 	Adapter->max_frame_size = Adapter->default_mtu +
3883 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3884 
3885 	/* ich8 does not do jumbo frames */
3886 	if (mac->type == e1000_ich8lan) {
3887 		Adapter->max_frame_size = ETHERMTU +
3888 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3889 	}
3890 
3891 	/* ich9 does not do jumbo frames on one phy type */
3892 	if ((mac->type == e1000_ich9lan) &&
3893 	    (phy->type == e1000_phy_ife)) {
3894 		Adapter->max_frame_size = ETHERMTU +
3895 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3896 	}
3897 }
3898 
3899 static void
3900 arm_watchdog_timer(struct e1000g *Adapter)
3901 {
3902 	Adapter->watchdog_tid =
3903 	    timeout(e1000g_local_timer,
3904 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3905 }
3906 #pragma inline(arm_watchdog_timer)
3907 
3908 static void
3909 enable_watchdog_timer(struct e1000g *Adapter)
3910 {
3911 	mutex_enter(&Adapter->watchdog_lock);
3912 
3913 	if (!Adapter->watchdog_timer_enabled) {
3914 		Adapter->watchdog_timer_enabled = B_TRUE;
3915 		Adapter->watchdog_timer_started = B_TRUE;
3916 		arm_watchdog_timer(Adapter);
3917 	}
3918 
3919 	mutex_exit(&Adapter->watchdog_lock);
3920 }
3921 
3922 static void
3923 disable_watchdog_timer(struct e1000g *Adapter)
3924 {
3925 	timeout_id_t tid;
3926 
3927 	mutex_enter(&Adapter->watchdog_lock);
3928 
3929 	Adapter->watchdog_timer_enabled = B_FALSE;
3930 	Adapter->watchdog_timer_started = B_FALSE;
3931 	tid = Adapter->watchdog_tid;
3932 	Adapter->watchdog_tid = 0;
3933 
3934 	mutex_exit(&Adapter->watchdog_lock);
3935 
3936 	if (tid != 0)
3937 		(void) untimeout(tid);
3938 }
3939 
3940 static void
3941 start_watchdog_timer(struct e1000g *Adapter)
3942 {
3943 	mutex_enter(&Adapter->watchdog_lock);
3944 
3945 	if (Adapter->watchdog_timer_enabled) {
3946 		if (!Adapter->watchdog_timer_started) {
3947 			Adapter->watchdog_timer_started = B_TRUE;
3948 			arm_watchdog_timer(Adapter);
3949 		}
3950 	}
3951 
3952 	mutex_exit(&Adapter->watchdog_lock);
3953 }
3954 
3955 static void
3956 restart_watchdog_timer(struct e1000g *Adapter)
3957 {
3958 	mutex_enter(&Adapter->watchdog_lock);
3959 
3960 	if (Adapter->watchdog_timer_started)
3961 		arm_watchdog_timer(Adapter);
3962 
3963 	mutex_exit(&Adapter->watchdog_lock);
3964 }
3965 
3966 static void
3967 stop_watchdog_timer(struct e1000g *Adapter)
3968 {
3969 	timeout_id_t tid;
3970 
3971 	mutex_enter(&Adapter->watchdog_lock);
3972 
3973 	Adapter->watchdog_timer_started = B_FALSE;
3974 	tid = Adapter->watchdog_tid;
3975 	Adapter->watchdog_tid = 0;
3976 
3977 	mutex_exit(&Adapter->watchdog_lock);
3978 
3979 	if (tid != 0)
3980 		(void) untimeout(tid);
3981 }
3982 
3983 static void
3984 stop_link_timer(struct e1000g *Adapter)
3985 {
3986 	timeout_id_t tid;
3987 
3988 	/* Disable the link timer */
3989 	mutex_enter(&Adapter->link_lock);
3990 
3991 	tid = Adapter->link_tid;
3992 	Adapter->link_tid = 0;
3993 
3994 	mutex_exit(&Adapter->link_lock);
3995 
3996 	if (tid != 0)
3997 		(void) untimeout(tid);
3998 }
3999 
4000 static void
4001 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4002 {
4003 	timeout_id_t tid;
4004 
4005 	/* Disable the tx timer for 82547 chipset */
4006 	mutex_enter(&tx_ring->tx_lock);
4007 
4008 	tx_ring->timer_enable_82547 = B_FALSE;
4009 	tid = tx_ring->timer_id_82547;
4010 	tx_ring->timer_id_82547 = 0;
4011 
4012 	mutex_exit(&tx_ring->tx_lock);
4013 
4014 	if (tid != 0)
4015 		(void) untimeout(tid);
4016 }
4017 
4018 void
4019 e1000g_clear_interrupt(struct e1000g *Adapter)
4020 {
4021 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4022 	    0xffffffff & ~E1000_IMS_RXSEQ);
4023 }
4024 
4025 void
4026 e1000g_mask_interrupt(struct e1000g *Adapter)
4027 {
4028 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4029 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4030 
4031 	if (Adapter->tx_intr_enable)
4032 		e1000g_mask_tx_interrupt(Adapter);
4033 }
4034 
4035 /*
4036  * This routine is called by e1000g_quiesce(), therefore must not block.
4037  */
4038 void
4039 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4040 {
4041 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4042 }
4043 
4044 void
4045 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4046 {
4047 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4048 }
4049 
4050 void
4051 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4052 {
4053 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4054 }
4055 
4056 static void
4057 e1000g_smartspeed(struct e1000g *Adapter)
4058 {
4059 	struct e1000_hw *hw = &Adapter->shared;
4060 	uint16_t phy_status;
4061 	uint16_t phy_ctrl;
4062 
4063 	/*
4064 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4065 	 * advertising 1000Full, we don't even use the workaround
4066 	 */
4067 	if ((hw->phy.type != e1000_phy_igp) ||
4068 	    !hw->mac.autoneg ||
4069 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4070 		return;
4071 
4072 	/*
4073 	 * True if this is the first call of this function or after every
4074 	 * 30 seconds of not having link
4075 	 */
4076 	if (Adapter->smartspeed == 0) {
4077 		/*
4078 		 * If Master/Slave config fault is asserted twice, we
4079 		 * assume back-to-back
4080 		 */
4081 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4082 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4083 			return;
4084 
4085 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4086 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4087 			return;
4088 		/*
4089 		 * We're assuming back-2-back because our status register
4090 		 * insists! there's a fault in the master/slave
4091 		 * relationship that was "negotiated"
4092 		 */
4093 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4094 		/*
4095 		 * Is the phy configured for manual configuration of
4096 		 * master/slave?
4097 		 */
4098 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4099 			/*
4100 			 * Yes.  Then disable manual configuration (enable
4101 			 * auto configuration) of master/slave
4102 			 */
4103 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4104 			(void) e1000_write_phy_reg(hw,
4105 			    PHY_1000T_CTRL, phy_ctrl);
4106 			/*
4107 			 * Effectively starting the clock
4108 			 */
4109 			Adapter->smartspeed++;
4110 			/*
4111 			 * Restart autonegotiation
4112 			 */
4113 			if (!e1000_phy_setup_autoneg(hw) &&
4114 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4115 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4116 				    MII_CR_RESTART_AUTO_NEG);
4117 				(void) e1000_write_phy_reg(hw,
4118 				    PHY_CONTROL, phy_ctrl);
4119 			}
4120 		}
4121 		return;
4122 		/*
4123 		 * Has 6 seconds transpired still without link? Remember,
4124 		 * you should reset the smartspeed counter once you obtain
4125 		 * link
4126 		 */
4127 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4128 		/*
4129 		 * Yes.  Remember, we did at the start determine that
4130 		 * there's a master/slave configuration fault, so we're
4131 		 * still assuming there's someone on the other end, but we
4132 		 * just haven't yet been able to talk to it. We then
4133 		 * re-enable auto configuration of master/slave to see if
4134 		 * we're running 2/3 pair cables.
4135 		 */
4136 		/*
4137 		 * If still no link, perhaps using 2/3 pair cable
4138 		 */
4139 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4140 		phy_ctrl |= CR_1000T_MS_ENABLE;
4141 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4142 		/*
4143 		 * Restart autoneg with phy enabled for manual
4144 		 * configuration of master/slave
4145 		 */
4146 		if (!e1000_phy_setup_autoneg(hw) &&
4147 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4148 			phy_ctrl |=
4149 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4150 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4151 		}
4152 		/*
4153 		 * Hopefully, there are no more faults and we've obtained
4154 		 * link as a result.
4155 		 */
4156 	}
4157 	/*
4158 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4159 	 * seconds)
4160 	 */
4161 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4162 		Adapter->smartspeed = 0;
4163 }
4164 
4165 static boolean_t
4166 is_valid_mac_addr(uint8_t *mac_addr)
4167 {
4168 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4169 	const uint8_t addr_test2[6] =
4170 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4171 
4172 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4173 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4174 		return (B_FALSE);
4175 
4176 	return (B_TRUE);
4177 }
4178 
4179 /*
4180  * e1000g_stall_check - check for tx stall
4181  *
4182  * This function checks if the adapter is stalled (in transmit).
4183  *
4184  * It is called each time the watchdog timeout is invoked.
4185  * If the transmit descriptor reclaim continuously fails,
4186  * the watchdog value will increment by 1. If the watchdog
4187  * value exceeds the threshold, the adapter is assumed to
4188  * have stalled and need to be reset.
4189  */
4190 static boolean_t
4191 e1000g_stall_check(struct e1000g *Adapter)
4192 {
4193 	e1000g_tx_ring_t *tx_ring;
4194 
4195 	tx_ring = Adapter->tx_ring;
4196 
4197 	if (Adapter->link_state != LINK_STATE_UP)
4198 		return (B_FALSE);
4199 
4200 	if (tx_ring->recycle_fail > 0)
4201 		tx_ring->stall_watchdog++;
4202 	else
4203 		tx_ring->stall_watchdog = 0;
4204 
4205 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4206 		return (B_FALSE);
4207 
4208 	tx_ring->stall_watchdog = 0;
4209 	tx_ring->recycle_fail = 0;
4210 
4211 	return (B_TRUE);
4212 }
4213 
4214 #ifdef E1000G_DEBUG
4215 static enum ioc_reply
4216 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4217 {
4218 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4219 	e1000g_peekpoke_t *ppd;
4220 	uint64_t mem_va;
4221 	uint64_t maxoff;
4222 	boolean_t peek;
4223 
4224 	switch (iocp->ioc_cmd) {
4225 
4226 	case E1000G_IOC_REG_PEEK:
4227 		peek = B_TRUE;
4228 		break;
4229 
4230 	case E1000G_IOC_REG_POKE:
4231 		peek = B_FALSE;
4232 		break;
4233 
4234 	deault:
4235 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4236 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4237 		    iocp->ioc_cmd);
4238 		return (IOC_INVAL);
4239 	}
4240 
4241 	/*
4242 	 * Validate format of ioctl
4243 	 */
4244 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4245 		return (IOC_INVAL);
4246 	if (mp->b_cont == NULL)
4247 		return (IOC_INVAL);
4248 
4249 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4250 
4251 	/*
4252 	 * Validate request parameters
4253 	 */
4254 	switch (ppd->pp_acc_space) {
4255 
4256 	default:
4257 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4258 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4259 		    ppd->pp_acc_space);
4260 		return (IOC_INVAL);
4261 
4262 	case E1000G_PP_SPACE_REG:
4263 		/*
4264 		 * Memory-mapped I/O space
4265 		 */
4266 		ASSERT(ppd->pp_acc_size == 4);
4267 		if (ppd->pp_acc_size != 4)
4268 			return (IOC_INVAL);
4269 
4270 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4271 			return (IOC_INVAL);
4272 
4273 		mem_va = 0;
4274 		maxoff = 0x10000;
4275 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4276 		break;
4277 
4278 	case E1000G_PP_SPACE_E1000G:
4279 		/*
4280 		 * E1000g data structure!
4281 		 */
4282 		mem_va = (uintptr_t)e1000gp;
4283 		maxoff = sizeof (struct e1000g);
4284 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4285 		break;
4286 
4287 	}
4288 
4289 	if (ppd->pp_acc_offset >= maxoff)
4290 		return (IOC_INVAL);
4291 
4292 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4293 		return (IOC_INVAL);
4294 
4295 	/*
4296 	 * All OK - go!
4297 	 */
4298 	ppd->pp_acc_offset += mem_va;
4299 	(*ppfn)(e1000gp, ppd);
4300 	return (peek ? IOC_REPLY : IOC_ACK);
4301 }
4302 
4303 static void
4304 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4305 {
4306 	ddi_acc_handle_t handle;
4307 	uint32_t *regaddr;
4308 
4309 	handle = e1000gp->osdep.reg_handle;
4310 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4311 	    (uintptr_t)ppd->pp_acc_offset);
4312 
4313 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4314 }
4315 
4316 static void
4317 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4318 {
4319 	ddi_acc_handle_t handle;
4320 	uint32_t *regaddr;
4321 	uint32_t value;
4322 
4323 	handle = e1000gp->osdep.reg_handle;
4324 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4325 	    (uintptr_t)ppd->pp_acc_offset);
4326 	value = (uint32_t)ppd->pp_acc_data;
4327 
4328 	ddi_put32(handle, regaddr, value);
4329 }
4330 
4331 static void
4332 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4333 {
4334 	uint64_t value;
4335 	void *vaddr;
4336 
4337 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4338 
4339 	switch (ppd->pp_acc_size) {
4340 	case 1:
4341 		value = *(uint8_t *)vaddr;
4342 		break;
4343 
4344 	case 2:
4345 		value = *(uint16_t *)vaddr;
4346 		break;
4347 
4348 	case 4:
4349 		value = *(uint32_t *)vaddr;
4350 		break;
4351 
4352 	case 8:
4353 		value = *(uint64_t *)vaddr;
4354 		break;
4355 	}
4356 
4357 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4358 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4359 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4360 
4361 	ppd->pp_acc_data = value;
4362 }
4363 
4364 static void
4365 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4366 {
4367 	uint64_t value;
4368 	void *vaddr;
4369 
4370 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4371 	value = ppd->pp_acc_data;
4372 
4373 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4374 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4375 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4376 
4377 	switch (ppd->pp_acc_size) {
4378 	case 1:
4379 		*(uint8_t *)vaddr = (uint8_t)value;
4380 		break;
4381 
4382 	case 2:
4383 		*(uint16_t *)vaddr = (uint16_t)value;
4384 		break;
4385 
4386 	case 4:
4387 		*(uint32_t *)vaddr = (uint32_t)value;
4388 		break;
4389 
4390 	case 8:
4391 		*(uint64_t *)vaddr = (uint64_t)value;
4392 		break;
4393 	}
4394 }
4395 #endif
4396 
4397 /*
4398  * Loopback Support
4399  */
4400 static lb_property_t lb_normal =
4401 	{ normal,	"normal",	E1000G_LB_NONE		};
4402 static lb_property_t lb_external1000 =
4403 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4404 static lb_property_t lb_external100 =
4405 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4406 static lb_property_t lb_external10 =
4407 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4408 static lb_property_t lb_phy =
4409 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4410 
4411 static enum ioc_reply
4412 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4413 {
4414 	lb_info_sz_t *lbsp;
4415 	lb_property_t *lbpp;
4416 	struct e1000_hw *hw;
4417 	uint32_t *lbmp;
4418 	uint32_t size;
4419 	uint32_t value;
4420 
4421 	hw = &Adapter->shared;
4422 
4423 	if (mp->b_cont == NULL)
4424 		return (IOC_INVAL);
4425 
4426 	if (!e1000g_check_loopback_support(hw)) {
4427 		e1000g_log(NULL, CE_WARN,
4428 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4429 		return (IOC_INVAL);
4430 	}
4431 
4432 	switch (iocp->ioc_cmd) {
4433 	default:
4434 		return (IOC_INVAL);
4435 
4436 	case LB_GET_INFO_SIZE:
4437 		size = sizeof (lb_info_sz_t);
4438 		if (iocp->ioc_count != size)
4439 			return (IOC_INVAL);
4440 
4441 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4442 		e1000g_get_phy_state(Adapter);
4443 
4444 		/*
4445 		 * Workaround for hardware faults. In order to get a stable
4446 		 * state of phy, we will wait for a specific interval and
4447 		 * try again. The time delay is an experiential value based
4448 		 * on our testing.
4449 		 */
4450 		msec_delay(100);
4451 		e1000g_get_phy_state(Adapter);
4452 		rw_exit(&Adapter->chip_lock);
4453 
4454 		value = sizeof (lb_normal);
4455 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4456 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4457 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4458 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4459 			value += sizeof (lb_phy);
4460 			switch (hw->mac.type) {
4461 			case e1000_82571:
4462 			case e1000_82572:
4463 			case e1000_80003es2lan:
4464 				value += sizeof (lb_external1000);
4465 				break;
4466 			}
4467 		}
4468 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4469 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4470 			value += sizeof (lb_external100);
4471 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4472 			value += sizeof (lb_external10);
4473 
4474 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4475 		*lbsp = value;
4476 		break;
4477 
4478 	case LB_GET_INFO:
4479 		value = sizeof (lb_normal);
4480 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4481 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4482 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4483 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4484 			value += sizeof (lb_phy);
4485 			switch (hw->mac.type) {
4486 			case e1000_82571:
4487 			case e1000_82572:
4488 			case e1000_80003es2lan:
4489 				value += sizeof (lb_external1000);
4490 				break;
4491 			}
4492 		}
4493 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4494 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4495 			value += sizeof (lb_external100);
4496 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4497 			value += sizeof (lb_external10);
4498 
4499 		size = value;
4500 		if (iocp->ioc_count != size)
4501 			return (IOC_INVAL);
4502 
4503 		value = 0;
4504 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4505 		lbpp[value++] = lb_normal;
4506 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4507 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4508 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4509 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4510 			lbpp[value++] = lb_phy;
4511 			switch (hw->mac.type) {
4512 			case e1000_82571:
4513 			case e1000_82572:
4514 			case e1000_80003es2lan:
4515 				lbpp[value++] = lb_external1000;
4516 				break;
4517 			}
4518 		}
4519 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4520 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4521 			lbpp[value++] = lb_external100;
4522 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4523 			lbpp[value++] = lb_external10;
4524 		break;
4525 
4526 	case LB_GET_MODE:
4527 		size = sizeof (uint32_t);
4528 		if (iocp->ioc_count != size)
4529 			return (IOC_INVAL);
4530 
4531 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4532 		*lbmp = Adapter->loopback_mode;
4533 		break;
4534 
4535 	case LB_SET_MODE:
4536 		size = 0;
4537 		if (iocp->ioc_count != sizeof (uint32_t))
4538 			return (IOC_INVAL);
4539 
4540 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4541 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4542 			return (IOC_INVAL);
4543 		break;
4544 	}
4545 
4546 	iocp->ioc_count = size;
4547 	iocp->ioc_error = 0;
4548 
4549 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4550 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4551 		return (IOC_INVAL);
4552 	}
4553 
4554 	return (IOC_REPLY);
4555 }
4556 
4557 static boolean_t
4558 e1000g_check_loopback_support(struct e1000_hw *hw)
4559 {
4560 	switch (hw->mac.type) {
4561 	case e1000_82540:
4562 	case e1000_82545:
4563 	case e1000_82545_rev_3:
4564 	case e1000_82546:
4565 	case e1000_82546_rev_3:
4566 	case e1000_82541:
4567 	case e1000_82541_rev_2:
4568 	case e1000_82547:
4569 	case e1000_82547_rev_2:
4570 	case e1000_82571:
4571 	case e1000_82572:
4572 	case e1000_82573:
4573 	case e1000_80003es2lan:
4574 		return (B_TRUE);
4575 	}
4576 	return (B_FALSE);
4577 }
4578 
4579 static boolean_t
4580 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4581 {
4582 	struct e1000_hw *hw;
4583 	int i, times;
4584 	boolean_t link_up;
4585 
4586 	if (mode == Adapter->loopback_mode)
4587 		return (B_TRUE);
4588 
4589 	hw = &Adapter->shared;
4590 	times = 0;
4591 
4592 	Adapter->loopback_mode = mode;
4593 
4594 	if (mode == E1000G_LB_NONE) {
4595 		/* Reset the chip */
4596 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4597 		(void) e1000g_reset_adapter(Adapter);
4598 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4599 		return (B_TRUE);
4600 	}
4601 
4602 again:
4603 
4604 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4605 
4606 	switch (mode) {
4607 	default:
4608 		rw_exit(&Adapter->chip_lock);
4609 		return (B_FALSE);
4610 
4611 	case E1000G_LB_EXTERNAL_1000:
4612 		e1000g_set_external_loopback_1000(Adapter);
4613 		break;
4614 
4615 	case E1000G_LB_EXTERNAL_100:
4616 		e1000g_set_external_loopback_100(Adapter);
4617 		break;
4618 
4619 	case E1000G_LB_EXTERNAL_10:
4620 		e1000g_set_external_loopback_10(Adapter);
4621 		break;
4622 
4623 	case E1000G_LB_INTERNAL_PHY:
4624 		e1000g_set_internal_loopback(Adapter);
4625 		break;
4626 	}
4627 
4628 	times++;
4629 
4630 	rw_exit(&Adapter->chip_lock);
4631 
4632 	/* Wait for link up */
4633 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4634 		msec_delay(100);
4635 
4636 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4637 
4638 	link_up = e1000g_link_up(Adapter);
4639 
4640 	rw_exit(&Adapter->chip_lock);
4641 
4642 	if (!link_up) {
4643 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4644 		    "Failed to get the link up");
4645 		if (times < 2) {
4646 			/* Reset the link */
4647 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4648 			    "Reset the link ...");
4649 			(void) e1000g_reset_adapter(Adapter);
4650 			goto again;
4651 		}
4652 	}
4653 
4654 	return (B_TRUE);
4655 }
4656 
4657 /*
4658  * The following loopback settings are from Intel's technical
4659  * document - "How To Loopback". All the register settings and
4660  * time delay values are directly inherited from the document
4661  * without more explanations available.
4662  */
4663 static void
4664 e1000g_set_internal_loopback(struct e1000g *Adapter)
4665 {
4666 	struct e1000_hw *hw;
4667 	uint32_t ctrl;
4668 	uint32_t status;
4669 	uint16_t phy_ctrl;
4670 	uint32_t txcw;
4671 
4672 	hw = &Adapter->shared;
4673 
4674 	/* Disable Smart Power Down */
4675 	phy_spd_state(hw, B_FALSE);
4676 
4677 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4678 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4679 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4680 
4681 	switch (hw->mac.type) {
4682 	case e1000_82540:
4683 	case e1000_82545:
4684 	case e1000_82545_rev_3:
4685 	case e1000_82546:
4686 	case e1000_82546_rev_3:
4687 	case e1000_82573:
4688 		/* Auto-MDI/MDIX off */
4689 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4690 		/* Reset PHY to update Auto-MDI/MDIX */
4691 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4692 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4693 		/* Reset PHY to auto-neg off and force 1000 */
4694 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4695 		    phy_ctrl | MII_CR_RESET);
4696 		/*
4697 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4698 		 * See comments above e1000g_set_internal_loopback() for the
4699 		 * background.
4700 		 */
4701 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4702 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4703 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4704 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4705 		break;
4706 	case e1000_80003es2lan:
4707 		/* Force Link Up */
4708 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4709 		    0x1CC);
4710 		/* Sets PCS loopback at 1Gbs */
4711 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4712 		    0x1046);
4713 		break;
4714 	}
4715 
4716 	/* Set loopback */
4717 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4718 
4719 	msec_delay(250);
4720 
4721 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4722 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4723 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4724 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4725 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4726 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4727 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4728 
4729 	switch (hw->mac.type) {
4730 	case e1000_82540:
4731 	case e1000_82545:
4732 	case e1000_82545_rev_3:
4733 	case e1000_82546:
4734 	case e1000_82546_rev_3:
4735 		/*
4736 		 * For some serdes we'll need to commit the writes now
4737 		 * so that the status is updated on link
4738 		 */
4739 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4740 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4741 			msec_delay(100);
4742 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4743 		}
4744 
4745 		if (hw->phy.media_type == e1000_media_type_copper) {
4746 			/* Invert Loss of Signal */
4747 			ctrl |= E1000_CTRL_ILOS;
4748 		} else {
4749 			/* Set ILOS on fiber nic if half duplex is detected */
4750 			status = E1000_READ_REG(hw, E1000_STATUS);
4751 			if ((status & E1000_STATUS_FD) == 0)
4752 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4753 		}
4754 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4755 		break;
4756 
4757 	case e1000_82571:
4758 	case e1000_82572:
4759 		/*
4760 		 * The fiber/SerDes versions of this adapter do not contain an
4761 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4762 		 * using SerDes analog loopback.
4763 		 */
4764 		if (hw->phy.media_type != e1000_media_type_copper) {
4765 			status = E1000_READ_REG(hw, E1000_STATUS);
4766 			/* Set ILOS on fiber nic if half duplex is detected */
4767 			if (((status & E1000_STATUS_LU) == 0) ||
4768 			    ((status & E1000_STATUS_FD) == 0) ||
4769 			    (hw->phy.media_type ==
4770 			    e1000_media_type_internal_serdes))
4771 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4772 
4773 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4774 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4775 			txcw &= ~((uint32_t)1 << 31);
4776 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4777 
4778 			/*
4779 			 * Write 0x410 to Serdes Control register
4780 			 * to enable Serdes analog loopback
4781 			 */
4782 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4783 			msec_delay(10);
4784 		}
4785 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4786 		break;
4787 
4788 	case e1000_82573:
4789 		ctrl |= E1000_CTRL_ILOS;
4790 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4791 		break;
4792 	}
4793 }
4794 
4795 static void
4796 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4797 {
4798 	struct e1000_hw *hw;
4799 	uint32_t rctl;
4800 	uint32_t ctrl_ext;
4801 	uint32_t ctrl;
4802 	uint32_t status;
4803 	uint32_t txcw;
4804 	uint16_t phydata;
4805 
4806 	hw = &Adapter->shared;
4807 
4808 	/* Disable Smart Power Down */
4809 	phy_spd_state(hw, B_FALSE);
4810 
4811 	switch (hw->mac.type) {
4812 	case e1000_82571:
4813 	case e1000_82572:
4814 		switch (hw->phy.media_type) {
4815 		case e1000_media_type_copper:
4816 			/* Force link up (Must be done before the PHY writes) */
4817 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4818 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4819 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4820 
4821 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4822 			rctl |= (E1000_RCTL_EN |
4823 			    E1000_RCTL_SBP |
4824 			    E1000_RCTL_UPE |
4825 			    E1000_RCTL_MPE |
4826 			    E1000_RCTL_LPE |
4827 			    E1000_RCTL_BAM);		/* 0x803E */
4828 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4829 
4830 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4831 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4832 			    E1000_CTRL_EXT_SDP6_DATA |
4833 			    E1000_CTRL_EXT_SDP7_DATA |
4834 			    E1000_CTRL_EXT_SDP4_DIR |
4835 			    E1000_CTRL_EXT_SDP6_DIR |
4836 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4837 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4838 
4839 			/*
4840 			 * This sequence tunes the PHY's SDP and no customer
4841 			 * settable values. For background, see comments above
4842 			 * e1000g_set_internal_loopback().
4843 			 */
4844 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
4845 			msec_delay(10);
4846 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
4847 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
4848 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
4849 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
4850 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
4851 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
4852 
4853 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
4854 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4855 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4856 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4857 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4858 
4859 			msec_delay(50);
4860 			break;
4861 		case e1000_media_type_fiber:
4862 		case e1000_media_type_internal_serdes:
4863 			status = E1000_READ_REG(hw, E1000_STATUS);
4864 			if (((status & E1000_STATUS_LU) == 0) ||
4865 			    (hw->phy.media_type ==
4866 			    e1000_media_type_internal_serdes)) {
4867 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4868 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4869 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4870 			}
4871 
4872 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4873 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4874 			txcw &= ~((uint32_t)1 << 31);
4875 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4876 
4877 			/*
4878 			 * Write 0x410 to Serdes Control register
4879 			 * to enable Serdes analog loopback
4880 			 */
4881 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4882 			msec_delay(10);
4883 			break;
4884 		default:
4885 			break;
4886 		}
4887 		break;
4888 	case e1000_80003es2lan:
4889 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4890 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
4891 		    phydata | (1 << 5));
4892 		Adapter->param_adv_autoneg = 1;
4893 		Adapter->param_adv_1000fdx = 1;
4894 		(void) e1000g_reset_link(Adapter);
4895 		break;
4896 	}
4897 }
4898 
4899 static void
4900 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4901 {
4902 	struct e1000_hw *hw;
4903 	uint32_t ctrl;
4904 	uint16_t phy_ctrl;
4905 
4906 	hw = &Adapter->shared;
4907 
4908 	/* Disable Smart Power Down */
4909 	phy_spd_state(hw, B_FALSE);
4910 
4911 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4912 	    MII_CR_SPEED_100);
4913 
4914 	/* Force 100/FD, reset PHY */
4915 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4916 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4917 	msec_delay(10);
4918 
4919 	/* Force 100/FD */
4920 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4921 	    phy_ctrl);			/* 0x2100 */
4922 	msec_delay(10);
4923 
4924 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4925 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4926 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4927 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4928 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4929 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4930 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4931 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4932 
4933 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4934 }
4935 
4936 static void
4937 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4938 {
4939 	struct e1000_hw *hw;
4940 	uint32_t ctrl;
4941 	uint16_t phy_ctrl;
4942 
4943 	hw = &Adapter->shared;
4944 
4945 	/* Disable Smart Power Down */
4946 	phy_spd_state(hw, B_FALSE);
4947 
4948 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4949 	    MII_CR_SPEED_10);
4950 
4951 	/* Force 10/FD, reset PHY */
4952 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4953 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4954 	msec_delay(10);
4955 
4956 	/* Force 10/FD */
4957 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4958 	    phy_ctrl);			/* 0x0100 */
4959 	msec_delay(10);
4960 
4961 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4962 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4963 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4964 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4965 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4966 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4967 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4968 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4969 
4970 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4971 }
4972 
4973 #ifdef __sparc
4974 static boolean_t
4975 e1000g_find_mac_address(struct e1000g *Adapter)
4976 {
4977 	struct e1000_hw *hw = &Adapter->shared;
4978 	uchar_t *bytes;
4979 	struct ether_addr sysaddr;
4980 	uint_t nelts;
4981 	int err;
4982 	boolean_t found = B_FALSE;
4983 
4984 	/*
4985 	 * The "vendor's factory-set address" may already have
4986 	 * been extracted from the chip, but if the property
4987 	 * "local-mac-address" is set we use that instead.
4988 	 *
4989 	 * We check whether it looks like an array of 6
4990 	 * bytes (which it should, if OBP set it).  If we can't
4991 	 * make sense of it this way, we'll ignore it.
4992 	 */
4993 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4994 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4995 	if (err == DDI_PROP_SUCCESS) {
4996 		if (nelts == ETHERADDRL) {
4997 			while (nelts--)
4998 				hw->mac.addr[nelts] = bytes[nelts];
4999 			found = B_TRUE;
5000 		}
5001 		ddi_prop_free(bytes);
5002 	}
5003 
5004 	/*
5005 	 * Look up the OBP property "local-mac-address?". If the user has set
5006 	 * 'local-mac-address? = false', use "the system address" instead.
5007 	 */
5008 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5009 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5010 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5011 			if (localetheraddr(NULL, &sysaddr) != 0) {
5012 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5013 				found = B_TRUE;
5014 			}
5015 		}
5016 		ddi_prop_free(bytes);
5017 	}
5018 
5019 	/*
5020 	 * Finally(!), if there's a valid "mac-address" property (created
5021 	 * if we netbooted from this interface), we must use this instead
5022 	 * of any of the above to ensure that the NFS/install server doesn't
5023 	 * get confused by the address changing as Solaris takes over!
5024 	 */
5025 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5026 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5027 	if (err == DDI_PROP_SUCCESS) {
5028 		if (nelts == ETHERADDRL) {
5029 			while (nelts--)
5030 				hw->mac.addr[nelts] = bytes[nelts];
5031 			found = B_TRUE;
5032 		}
5033 		ddi_prop_free(bytes);
5034 	}
5035 
5036 	if (found) {
5037 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5038 		    ETHERADDRL);
5039 	}
5040 
5041 	return (found);
5042 }
5043 #endif
5044 
5045 static int
5046 e1000g_add_intrs(struct e1000g *Adapter)
5047 {
5048 	dev_info_t *devinfo;
5049 	int intr_types;
5050 	int rc;
5051 
5052 	devinfo = Adapter->dip;
5053 
5054 	/* Get supported interrupt types */
5055 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5056 
5057 	if (rc != DDI_SUCCESS) {
5058 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5059 		    "Get supported interrupt types failed: %d\n", rc);
5060 		return (DDI_FAILURE);
5061 	}
5062 
5063 	/*
5064 	 * Based on Intel Technical Advisory document (TA-160), there are some
5065 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5066 	 * that it supports MSI, but in fact has problems.
5067 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5068 	 * PCI/PCI-X NICs.
5069 	 */
5070 	if (Adapter->shared.mac.type < e1000_82571)
5071 		Adapter->msi_enable = B_FALSE;
5072 
5073 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5074 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5075 
5076 		if (rc != DDI_SUCCESS) {
5077 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5078 			    "Add MSI failed, trying Legacy interrupts\n");
5079 		} else {
5080 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5081 		}
5082 	}
5083 
5084 	if ((Adapter->intr_type == 0) &&
5085 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5086 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5087 
5088 		if (rc != DDI_SUCCESS) {
5089 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5090 			    "Add Legacy interrupts failed\n");
5091 			return (DDI_FAILURE);
5092 		}
5093 
5094 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5095 	}
5096 
5097 	if (Adapter->intr_type == 0) {
5098 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5099 		    "No interrupts registered\n");
5100 		return (DDI_FAILURE);
5101 	}
5102 
5103 	return (DDI_SUCCESS);
5104 }
5105 
5106 /*
5107  * e1000g_intr_add() handles MSI/Legacy interrupts
5108  */
5109 static int
5110 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5111 {
5112 	dev_info_t *devinfo;
5113 	int count, avail, actual;
5114 	int x, y, rc, inum = 0;
5115 	int flag;
5116 	ddi_intr_handler_t *intr_handler;
5117 
5118 	devinfo = Adapter->dip;
5119 
5120 	/* get number of interrupts */
5121 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5122 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5123 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5124 		    "Get interrupt number failed. Return: %d, count: %d\n",
5125 		    rc, count);
5126 		return (DDI_FAILURE);
5127 	}
5128 
5129 	/* get number of available interrupts */
5130 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5131 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5132 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5133 		    "Get interrupt available number failed. "
5134 		    "Return: %d, available: %d\n", rc, avail);
5135 		return (DDI_FAILURE);
5136 	}
5137 
5138 	if (avail < count) {
5139 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5140 		    "Interrupts count: %d, available: %d\n",
5141 		    count, avail);
5142 	}
5143 
5144 	/* Allocate an array of interrupt handles */
5145 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5146 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5147 
5148 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5149 	flag = DDI_INTR_ALLOC_NORMAL;
5150 
5151 	/* call ddi_intr_alloc() */
5152 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5153 	    count, &actual, flag);
5154 
5155 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5156 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5157 		    "Allocate interrupts failed: %d\n", rc);
5158 
5159 		kmem_free(Adapter->htable, Adapter->intr_size);
5160 		return (DDI_FAILURE);
5161 	}
5162 
5163 	if (actual < count) {
5164 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5165 		    "Interrupts requested: %d, received: %d\n",
5166 		    count, actual);
5167 	}
5168 
5169 	Adapter->intr_cnt = actual;
5170 
5171 	/* Get priority for first msi, assume remaining are all the same */
5172 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5173 
5174 	if (rc != DDI_SUCCESS) {
5175 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5176 		    "Get interrupt priority failed: %d\n", rc);
5177 
5178 		/* Free already allocated intr */
5179 		for (y = 0; y < actual; y++)
5180 			(void) ddi_intr_free(Adapter->htable[y]);
5181 
5182 		kmem_free(Adapter->htable, Adapter->intr_size);
5183 		return (DDI_FAILURE);
5184 	}
5185 
5186 	/*
5187 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5188 	 * use the interrupt service routine e1000g_intr_pciexpress()
5189 	 * to avoid interrupt stealing when sharing interrupt with other
5190 	 * devices.
5191 	 */
5192 	if (Adapter->shared.mac.type < e1000_82571)
5193 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5194 	else
5195 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5196 
5197 	/* Call ddi_intr_add_handler() */
5198 	for (x = 0; x < actual; x++) {
5199 		rc = ddi_intr_add_handler(Adapter->htable[x],
5200 		    intr_handler, (caddr_t)Adapter, NULL);
5201 
5202 		if (rc != DDI_SUCCESS) {
5203 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5204 			    "Add interrupt handler failed: %d\n", rc);
5205 
5206 			/* Remove already added handler */
5207 			for (y = 0; y < x; y++)
5208 				(void) ddi_intr_remove_handler(
5209 				    Adapter->htable[y]);
5210 
5211 			/* Free already allocated intr */
5212 			for (y = 0; y < actual; y++)
5213 				(void) ddi_intr_free(Adapter->htable[y]);
5214 
5215 			kmem_free(Adapter->htable, Adapter->intr_size);
5216 			return (DDI_FAILURE);
5217 		}
5218 	}
5219 
5220 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5221 
5222 	if (rc != DDI_SUCCESS) {
5223 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5224 		    "Get interrupt cap failed: %d\n", rc);
5225 
5226 		/* Free already allocated intr */
5227 		for (y = 0; y < actual; y++) {
5228 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5229 			(void) ddi_intr_free(Adapter->htable[y]);
5230 		}
5231 
5232 		kmem_free(Adapter->htable, Adapter->intr_size);
5233 		return (DDI_FAILURE);
5234 	}
5235 
5236 	return (DDI_SUCCESS);
5237 }
5238 
5239 static int
5240 e1000g_rem_intrs(struct e1000g *Adapter)
5241 {
5242 	int x;
5243 	int rc;
5244 
5245 	for (x = 0; x < Adapter->intr_cnt; x++) {
5246 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5247 		if (rc != DDI_SUCCESS) {
5248 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5249 			    "Remove intr handler failed: %d\n", rc);
5250 			return (DDI_FAILURE);
5251 		}
5252 
5253 		rc = ddi_intr_free(Adapter->htable[x]);
5254 		if (rc != DDI_SUCCESS) {
5255 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5256 			    "Free intr failed: %d\n", rc);
5257 			return (DDI_FAILURE);
5258 		}
5259 	}
5260 
5261 	kmem_free(Adapter->htable, Adapter->intr_size);
5262 
5263 	return (DDI_SUCCESS);
5264 }
5265 
5266 static int
5267 e1000g_enable_intrs(struct e1000g *Adapter)
5268 {
5269 	int x;
5270 	int rc;
5271 
5272 	/* Enable interrupts */
5273 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5274 		/* Call ddi_intr_block_enable() for MSI */
5275 		rc = ddi_intr_block_enable(Adapter->htable,
5276 		    Adapter->intr_cnt);
5277 		if (rc != DDI_SUCCESS) {
5278 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5279 			    "Enable block intr failed: %d\n", rc);
5280 			return (DDI_FAILURE);
5281 		}
5282 	} else {
5283 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5284 		for (x = 0; x < Adapter->intr_cnt; x++) {
5285 			rc = ddi_intr_enable(Adapter->htable[x]);
5286 			if (rc != DDI_SUCCESS) {
5287 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5288 				    "Enable intr failed: %d\n", rc);
5289 				return (DDI_FAILURE);
5290 			}
5291 		}
5292 	}
5293 
5294 	return (DDI_SUCCESS);
5295 }
5296 
5297 static int
5298 e1000g_disable_intrs(struct e1000g *Adapter)
5299 {
5300 	int x;
5301 	int rc;
5302 
5303 	/* Disable all interrupts */
5304 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5305 		rc = ddi_intr_block_disable(Adapter->htable,
5306 		    Adapter->intr_cnt);
5307 		if (rc != DDI_SUCCESS) {
5308 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5309 			    "Disable block intr failed: %d\n", rc);
5310 			return (DDI_FAILURE);
5311 		}
5312 	} else {
5313 		for (x = 0; x < Adapter->intr_cnt; x++) {
5314 			rc = ddi_intr_disable(Adapter->htable[x]);
5315 			if (rc != DDI_SUCCESS) {
5316 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5317 				    "Disable intr failed: %d\n", rc);
5318 				return (DDI_FAILURE);
5319 			}
5320 		}
5321 	}
5322 
5323 	return (DDI_SUCCESS);
5324 }
5325 
5326 /*
5327  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5328  */
5329 static void
5330 e1000g_get_phy_state(struct e1000g *Adapter)
5331 {
5332 	struct e1000_hw *hw = &Adapter->shared;
5333 
5334 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5335 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5336 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5337 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5338 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5339 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5340 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5341 	    &Adapter->phy_1000t_status);
5342 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5343 
5344 	Adapter->param_autoneg_cap =
5345 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5346 	Adapter->param_pause_cap =
5347 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5348 	Adapter->param_asym_pause_cap =
5349 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5350 	Adapter->param_1000fdx_cap =
5351 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5352 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5353 	Adapter->param_1000hdx_cap =
5354 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5355 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5356 	Adapter->param_100t4_cap =
5357 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5358 	Adapter->param_100fdx_cap =
5359 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5360 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5361 	Adapter->param_100hdx_cap =
5362 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5363 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5364 	Adapter->param_10fdx_cap =
5365 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5366 	Adapter->param_10hdx_cap =
5367 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5368 
5369 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5370 	Adapter->param_adv_pause =
5371 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5372 	Adapter->param_adv_asym_pause =
5373 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5374 	Adapter->param_adv_1000hdx =
5375 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5376 	Adapter->param_adv_100t4 =
5377 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5378 	if (Adapter->param_adv_autoneg == 1) {
5379 		Adapter->param_adv_1000fdx =
5380 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5381 		Adapter->param_adv_100fdx =
5382 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5383 		Adapter->param_adv_100hdx =
5384 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5385 		Adapter->param_adv_10fdx =
5386 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5387 		Adapter->param_adv_10hdx =
5388 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5389 	}
5390 
5391 	Adapter->param_lp_autoneg =
5392 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5393 	Adapter->param_lp_pause =
5394 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5395 	Adapter->param_lp_asym_pause =
5396 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5397 	Adapter->param_lp_1000fdx =
5398 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5399 	Adapter->param_lp_1000hdx =
5400 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5401 	Adapter->param_lp_100t4 =
5402 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5403 	Adapter->param_lp_100fdx =
5404 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5405 	Adapter->param_lp_100hdx =
5406 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5407 	Adapter->param_lp_10fdx =
5408 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5409 	Adapter->param_lp_10hdx =
5410 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5411 }
5412 
5413 /*
5414  * FMA support
5415  */
5416 
5417 int
5418 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5419 {
5420 	ddi_fm_error_t de;
5421 
5422 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5423 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5424 	return (de.fme_status);
5425 }
5426 
5427 int
5428 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5429 {
5430 	ddi_fm_error_t de;
5431 
5432 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5433 	return (de.fme_status);
5434 }
5435 
5436 /*
5437  * The IO fault service error handling callback function
5438  */
5439 /* ARGSUSED2 */
5440 static int
5441 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5442 {
5443 	/*
5444 	 * as the driver can always deal with an error in any dma or
5445 	 * access handle, we can just return the fme_status value.
5446 	 */
5447 	pci_ereport_post(dip, err, NULL);
5448 	return (err->fme_status);
5449 }
5450 
5451 static void
5452 e1000g_fm_init(struct e1000g *Adapter)
5453 {
5454 	ddi_iblock_cookie_t iblk;
5455 	int fma_acc_flag, fma_dma_flag;
5456 
5457 	/* Only register with IO Fault Services if we have some capability */
5458 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5459 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5460 		fma_acc_flag = 1;
5461 	} else {
5462 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5463 		fma_acc_flag = 0;
5464 	}
5465 
5466 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5467 		fma_dma_flag = 1;
5468 	} else {
5469 		fma_dma_flag = 0;
5470 	}
5471 
5472 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5473 
5474 	if (Adapter->fm_capabilities) {
5475 
5476 		/* Register capabilities with IO Fault Services */
5477 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5478 
5479 		/*
5480 		 * Initialize pci ereport capabilities if ereport capable
5481 		 */
5482 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5483 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5484 			pci_ereport_setup(Adapter->dip);
5485 
5486 		/*
5487 		 * Register error callback if error callback capable
5488 		 */
5489 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5490 			ddi_fm_handler_register(Adapter->dip,
5491 			    e1000g_fm_error_cb, (void*) Adapter);
5492 	}
5493 }
5494 
5495 static void
5496 e1000g_fm_fini(struct e1000g *Adapter)
5497 {
5498 	/* Only unregister FMA capabilities if we registered some */
5499 	if (Adapter->fm_capabilities) {
5500 
5501 		/*
5502 		 * Release any resources allocated by pci_ereport_setup()
5503 		 */
5504 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5505 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5506 			pci_ereport_teardown(Adapter->dip);
5507 
5508 		/*
5509 		 * Un-register error callback if error callback capable
5510 		 */
5511 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5512 			ddi_fm_handler_unregister(Adapter->dip);
5513 
5514 		/* Unregister from IO Fault Services */
5515 		ddi_fm_fini(Adapter->dip);
5516 	}
5517 }
5518 
5519 void
5520 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5521 {
5522 	uint64_t ena;
5523 	char buf[FM_MAX_CLASS];
5524 
5525 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5526 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5527 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5528 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5529 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5530 	}
5531 }
5532 
5533 /*
5534  * quiesce(9E) entry point.
5535  *
5536  * This function is called when the system is single-threaded at high
5537  * PIL with preemption disabled. Therefore, this function must not be
5538  * blocked.
5539  *
5540  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5541  * DDI_FAILURE indicates an error condition and should almost never happen.
5542  */
5543 static int
5544 e1000g_quiesce(dev_info_t *devinfo)
5545 {
5546 	struct e1000g *Adapter;
5547 
5548 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5549 
5550 	if (Adapter == NULL)
5551 		return (DDI_FAILURE);
5552 
5553 	e1000g_clear_all_interrupts(Adapter);
5554 
5555 	(void) e1000_reset_hw(&Adapter->shared);
5556 
5557 	/* Setup our HW Tx Head & Tail descriptor pointers */
5558 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5559 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5560 
5561 	/* Setup our HW Rx Head & Tail descriptor pointers */
5562 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5563 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5564 
5565 	return (DDI_SUCCESS);
5566 }
5567 
5568 static int
5569 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5570     uint_t pr_valsize, void *pr_val)
5571 {
5572 	link_flowctrl_t fl;
5573 	int err = 0;
5574 
5575 	ASSERT(pr_valsize > 0);
5576 	switch (pr_num) {
5577 	case MAC_PROP_AUTONEG:
5578 		*(uint8_t *)pr_val =
5579 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5580 		break;
5581 	case MAC_PROP_FLOWCTRL:
5582 		if (pr_valsize < sizeof (link_flowctrl_t))
5583 			return (EINVAL);
5584 		fl = LINK_FLOWCTRL_BI;
5585 		bcopy(&fl, pr_val, sizeof (fl));
5586 		break;
5587 	case MAC_PROP_ADV_1000FDX_CAP:
5588 	case MAC_PROP_EN_1000FDX_CAP:
5589 		*(uint8_t *)pr_val =
5590 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5591 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5592 		break;
5593 	case MAC_PROP_ADV_1000HDX_CAP:
5594 	case MAC_PROP_EN_1000HDX_CAP:
5595 		*(uint8_t *)pr_val =
5596 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5597 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5598 		break;
5599 	case MAC_PROP_ADV_100FDX_CAP:
5600 	case MAC_PROP_EN_100FDX_CAP:
5601 		*(uint8_t *)pr_val =
5602 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5603 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5604 		break;
5605 	case MAC_PROP_ADV_100HDX_CAP:
5606 	case MAC_PROP_EN_100HDX_CAP:
5607 		*(uint8_t *)pr_val =
5608 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5609 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5610 		break;
5611 	case MAC_PROP_ADV_10FDX_CAP:
5612 	case MAC_PROP_EN_10FDX_CAP:
5613 		*(uint8_t *)pr_val =
5614 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5615 		break;
5616 	case MAC_PROP_ADV_10HDX_CAP:
5617 	case MAC_PROP_EN_10HDX_CAP:
5618 		*(uint8_t *)pr_val =
5619 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5620 		break;
5621 	default:
5622 		err = ENOTSUP;
5623 		break;
5624 	}
5625 	return (err);
5626 }
5627 
5628 /*
5629  * synchronize the adv* and en* parameters.
5630  *
5631  * See comments in <sys/dld.h> for details of the *_en_*
5632  * parameters. The usage of ndd for setting adv parameters will
5633  * synchronize all the en parameters with the e1000g parameters,
5634  * implicitly disabling any settings made via dladm.
5635  */
5636 static void
5637 e1000g_param_sync(struct e1000g *Adapter)
5638 {
5639 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5640 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5641 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5642 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5643 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5644 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5645 }
5646 
5647 /*
5648  * e1000g_get_driver_control - tell manageability firmware that the driver
5649  * has control.
5650  */
5651 static void
5652 e1000g_get_driver_control(struct e1000_hw *hw)
5653 {
5654 	uint32_t ctrl_ext;
5655 	uint32_t swsm;
5656 
5657 	/* tell manageability firmware the driver has taken over */
5658 	switch (hw->mac.type) {
5659 	case e1000_82573:
5660 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5661 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5662 		break;
5663 	case e1000_82571:
5664 	case e1000_82572:
5665 	case e1000_82574:
5666 	case e1000_80003es2lan:
5667 	case e1000_ich8lan:
5668 	case e1000_ich9lan:
5669 	case e1000_ich10lan:
5670 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5671 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5672 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
5673 		break;
5674 	default:
5675 		/* no manageability firmware: do nothing */
5676 		break;
5677 	}
5678 }
5679 
5680 /*
5681  * e1000g_release_driver_control - tell manageability firmware that the driver
5682  * has released control.
5683  */
5684 static void
5685 e1000g_release_driver_control(struct e1000_hw *hw)
5686 {
5687 	uint32_t ctrl_ext;
5688 	uint32_t swsm;
5689 
5690 	/* tell manageability firmware the driver has released control */
5691 	switch (hw->mac.type) {
5692 	case e1000_82573:
5693 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5694 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
5695 		break;
5696 	case e1000_82571:
5697 	case e1000_82572:
5698 	case e1000_82574:
5699 	case e1000_80003es2lan:
5700 	case e1000_ich8lan:
5701 	case e1000_ich9lan:
5702 	case e1000_ich10lan:
5703 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5704 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5705 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
5706 		break;
5707 	default:
5708 		/* no manageability firmware: do nothing */
5709 		break;
5710 	}
5711 }
5712 
5713 /*
5714  * Restore e1000g promiscuous mode.
5715  */
5716 static void
5717 e1000g_restore_promisc(struct e1000g *Adapter)
5718 {
5719 	if (Adapter->e1000g_promisc) {
5720 		uint32_t rctl;
5721 
5722 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
5723 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
5724 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
5725 	}
5726 }
5727