xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 0e7515250c8395f368aa45fb9acae7c4f8f8b786)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.4";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 static int e1000g_alloc_rx_data(struct e1000g *);
96 
97 /*
98  * Local routines
99  */
100 static boolean_t e1000g_reset_adapter(struct e1000g *);
101 static void e1000g_tx_clean(struct e1000g *);
102 static void e1000g_rx_clean(struct e1000g *);
103 static void e1000g_link_timer(void *);
104 static void e1000g_local_timer(void *);
105 static boolean_t e1000g_link_check(struct e1000g *);
106 static boolean_t e1000g_stall_check(struct e1000g *);
107 static void e1000g_smartspeed(struct e1000g *);
108 static void e1000g_get_conf(struct e1000g *);
109 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
110 static void enable_watchdog_timer(struct e1000g *);
111 static void disable_watchdog_timer(struct e1000g *);
112 static void start_watchdog_timer(struct e1000g *);
113 static void restart_watchdog_timer(struct e1000g *);
114 static void stop_watchdog_timer(struct e1000g *);
115 static void stop_link_timer(struct e1000g *);
116 static void stop_82547_timer(e1000g_tx_ring_t *);
117 static void e1000g_force_speed_duplex(struct e1000g *);
118 static void e1000g_get_max_frame_size(struct e1000g *);
119 static boolean_t is_valid_mac_addr(uint8_t *);
120 static void e1000g_unattach(dev_info_t *, struct e1000g *);
121 #ifdef E1000G_DEBUG
122 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
123 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
124 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
125 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
126 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
127     struct iocblk *, mblk_t *);
128 #endif
129 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
130     struct iocblk *, mblk_t *);
131 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
132 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
133 static void e1000g_set_internal_loopback(struct e1000g *);
134 static void e1000g_set_external_loopback_1000(struct e1000g *);
135 static void e1000g_set_external_loopback_100(struct e1000g *);
136 static void e1000g_set_external_loopback_10(struct e1000g *);
137 static int e1000g_add_intrs(struct e1000g *);
138 static int e1000g_intr_add(struct e1000g *, int);
139 static int e1000g_rem_intrs(struct e1000g *);
140 static int e1000g_enable_intrs(struct e1000g *);
141 static int e1000g_disable_intrs(struct e1000g *);
142 static boolean_t e1000g_link_up(struct e1000g *);
143 #ifdef __sparc
144 static boolean_t e1000g_find_mac_address(struct e1000g *);
145 #endif
146 static void e1000g_get_phy_state(struct e1000g *);
147 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
148     const void *impl_data);
149 static void e1000g_fm_init(struct e1000g *Adapter);
150 static void e1000g_fm_fini(struct e1000g *Adapter);
151 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
152 static void e1000g_param_sync(struct e1000g *);
153 static void e1000g_get_driver_control(struct e1000_hw *);
154 static void e1000g_release_driver_control(struct e1000_hw *);
155 static void e1000g_restore_promisc(struct e1000g *Adapter);
156 
157 mac_priv_prop_t e1000g_priv_props[] = {
158 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
159 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
160 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
161 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
162 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
164 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
167 	{"_intr_adaptive", MAC_PROP_PERM_RW},
168 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
169 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
170 };
171 #define	E1000G_MAX_PRIV_PROPS	\
172 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
173 
174 
175 static struct cb_ops cb_ws_ops = {
176 	nulldev,		/* cb_open */
177 	nulldev,		/* cb_close */
178 	nodev,			/* cb_strategy */
179 	nodev,			/* cb_print */
180 	nodev,			/* cb_dump */
181 	nodev,			/* cb_read */
182 	nodev,			/* cb_write */
183 	nodev,			/* cb_ioctl */
184 	nodev,			/* cb_devmap */
185 	nodev,			/* cb_mmap */
186 	nodev,			/* cb_segmap */
187 	nochpoll,		/* cb_chpoll */
188 	ddi_prop_op,		/* cb_prop_op */
189 	NULL,			/* cb_stream */
190 	D_MP | D_HOTPLUG,	/* cb_flag */
191 	CB_REV,			/* cb_rev */
192 	nodev,			/* cb_aread */
193 	nodev			/* cb_awrite */
194 };
195 
196 static struct dev_ops ws_ops = {
197 	DEVO_REV,		/* devo_rev */
198 	0,			/* devo_refcnt */
199 	NULL,			/* devo_getinfo */
200 	nulldev,		/* devo_identify */
201 	nulldev,		/* devo_probe */
202 	e1000g_attach,		/* devo_attach */
203 	e1000g_detach,		/* devo_detach */
204 	nodev,			/* devo_reset */
205 	&cb_ws_ops,		/* devo_cb_ops */
206 	NULL,			/* devo_bus_ops */
207 	ddi_power,		/* devo_power */
208 	e1000g_quiesce		/* devo_quiesce */
209 };
210 
211 static struct modldrv modldrv = {
212 	&mod_driverops,		/* Type of module.  This one is a driver */
213 	ident,			/* Discription string */
214 	&ws_ops,		/* driver ops */
215 };
216 
217 static struct modlinkage modlinkage = {
218 	MODREV_1, &modldrv, NULL
219 };
220 
221 /* Access attributes for register mapping */
222 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
223 	DDI_DEVICE_ATTR_V0,
224 	DDI_STRUCTURE_LE_ACC,
225 	DDI_STRICTORDER_ACC,
226 	DDI_FLAGERR_ACC
227 };
228 
229 #define	E1000G_M_CALLBACK_FLAGS \
230 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
231 
232 static mac_callbacks_t e1000g_m_callbacks = {
233 	E1000G_M_CALLBACK_FLAGS,
234 	e1000g_m_stat,
235 	e1000g_m_start,
236 	e1000g_m_stop,
237 	e1000g_m_promisc,
238 	e1000g_m_multicst,
239 	NULL,
240 	e1000g_m_tx,
241 	e1000g_m_ioctl,
242 	e1000g_m_getcapab,
243 	NULL,
244 	NULL,
245 	e1000g_m_setprop,
246 	e1000g_m_getprop
247 };
248 
249 /*
250  * Global variables
251  */
252 uint32_t e1000g_mblks_pending = 0;
253 /*
254  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
255  * Here we maintain a private dev_info list if e1000g_force_detach is
256  * enabled. If we force the driver to detach while there are still some
257  * rx buffers retained in the upper layer, we have to keep a copy of the
258  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
259  * structure will be freed after the driver is detached. However when we
260  * finally free those rx buffers released by the upper layer, we need to
261  * refer to the dev_info to free the dma buffers. So we save a copy of
262  * the dev_info for this purpose. On x86 platform, we assume this copy
263  * of dev_info is always valid, but on SPARC platform, it could be invalid
264  * after the system board level DR operation. For this reason, the global
265  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
266  */
267 #ifdef __sparc
268 boolean_t e1000g_force_detach = B_FALSE;
269 #else
270 boolean_t e1000g_force_detach = B_TRUE;
271 #endif
272 private_devi_list_t *e1000g_private_devi_list = NULL;
273 
274 /*
275  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
276  * the private dev_info list, and to serialize the processing of rx buffer
277  * freeing and rx buffer recycling.
278  */
279 kmutex_t e1000g_rx_detach_lock;
280 /*
281  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
282  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
283  * If there are many e1000g instances, the system may run out of DVMA
284  * resources during the initialization of the instances, then the flag will
285  * be changed to "USE_DMA". Because different e1000g instances are initialized
286  * in parallel, we need to use this lock to protect the flag.
287  */
288 krwlock_t e1000g_dma_type_lock;
289 
290 /*
291  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
292  * Based on the information from Intel, the 82546 chipset has some hardware
293  * problem. When one port is being reset and the other port is trying to
294  * access the eeprom, it could cause system hang or panic. To workaround this
295  * hardware problem, we use a global mutex to prevent such operations from
296  * happening simultaneously on different instances. This workaround is applied
297  * to all the devices supported by this driver.
298  */
299 kmutex_t e1000g_nvm_lock;
300 
301 /*
302  * Loadable module configuration entry points for the driver
303  */
304 
305 /*
306  * _init - module initialization
307  */
308 int
309 _init(void)
310 {
311 	int status;
312 
313 	mac_init_ops(&ws_ops, WSNAME);
314 	status = mod_install(&modlinkage);
315 	if (status != DDI_SUCCESS)
316 		mac_fini_ops(&ws_ops);
317 	else {
318 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
319 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
320 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
321 	}
322 
323 	return (status);
324 }
325 
326 /*
327  * _fini - module finalization
328  */
329 int
330 _fini(void)
331 {
332 	int status;
333 
334 	if (e1000g_mblks_pending != 0)
335 		return (EBUSY);
336 
337 	status = mod_remove(&modlinkage);
338 	if (status == DDI_SUCCESS) {
339 		mac_fini_ops(&ws_ops);
340 
341 		if (e1000g_force_detach) {
342 			private_devi_list_t *devi_node;
343 
344 			mutex_enter(&e1000g_rx_detach_lock);
345 			while (e1000g_private_devi_list != NULL) {
346 				devi_node = e1000g_private_devi_list;
347 				e1000g_private_devi_list =
348 				    e1000g_private_devi_list->next;
349 
350 				kmem_free(devi_node->priv_dip,
351 				    sizeof (struct dev_info));
352 				kmem_free(devi_node,
353 				    sizeof (private_devi_list_t));
354 			}
355 			mutex_exit(&e1000g_rx_detach_lock);
356 		}
357 
358 		mutex_destroy(&e1000g_rx_detach_lock);
359 		rw_destroy(&e1000g_dma_type_lock);
360 		mutex_destroy(&e1000g_nvm_lock);
361 	}
362 
363 	return (status);
364 }
365 
366 /*
367  * _info - module information
368  */
369 int
370 _info(struct modinfo *modinfop)
371 {
372 	return (mod_info(&modlinkage, modinfop));
373 }
374 
375 /*
376  * e1000g_attach - driver attach
377  *
378  * This function is the device-specific initialization entry
379  * point. This entry point is required and must be written.
380  * The DDI_ATTACH command must be provided in the attach entry
381  * point. When attach() is called with cmd set to DDI_ATTACH,
382  * all normal kernel services (such as kmem_alloc(9F)) are
383  * available for use by the driver.
384  *
385  * The attach() function will be called once for each instance
386  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
387  * Until attach() succeeds, the only driver entry points which
388  * may be called are open(9E) and getinfo(9E).
389  */
390 static int
391 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
392 {
393 	struct e1000g *Adapter;
394 	struct e1000_hw *hw;
395 	struct e1000g_osdep *osdep;
396 	int instance;
397 
398 	switch (cmd) {
399 	default:
400 		e1000g_log(NULL, CE_WARN,
401 		    "Unsupported command send to e1000g_attach... ");
402 		return (DDI_FAILURE);
403 
404 	case DDI_RESUME:
405 		return (e1000g_resume(devinfo));
406 
407 	case DDI_ATTACH:
408 		break;
409 	}
410 
411 	/*
412 	 * get device instance number
413 	 */
414 	instance = ddi_get_instance(devinfo);
415 
416 	/*
417 	 * Allocate soft data structure
418 	 */
419 	Adapter =
420 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
421 
422 	Adapter->dip = devinfo;
423 	Adapter->instance = instance;
424 	Adapter->tx_ring->adapter = Adapter;
425 	Adapter->rx_ring->adapter = Adapter;
426 
427 	hw = &Adapter->shared;
428 	osdep = &Adapter->osdep;
429 	hw->back = osdep;
430 	osdep->adapter = Adapter;
431 
432 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
433 
434 	/*
435 	 * Initialize for fma support
436 	 */
437 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
438 	    0, 0x0f,
439 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
440 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
441 	e1000g_fm_init(Adapter);
442 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
443 
444 	/*
445 	 * PCI Configure
446 	 */
447 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
448 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
449 		goto attach_fail;
450 	}
451 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
452 
453 	/*
454 	 * Setup hardware
455 	 */
456 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
457 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
458 		goto attach_fail;
459 	}
460 
461 	/*
462 	 * Map in the device registers.
463 	 */
464 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
465 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
466 		goto attach_fail;
467 	}
468 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
469 
470 	/*
471 	 * Initialize driver parameters
472 	 */
473 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
474 		goto attach_fail;
475 	}
476 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
477 
478 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
479 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
480 		goto attach_fail;
481 	}
482 
483 	/*
484 	 * Initialize interrupts
485 	 */
486 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
487 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
488 		goto attach_fail;
489 	}
490 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
491 
492 	/*
493 	 * Initialize mutex's for this device.
494 	 * Do this before enabling the interrupt handler and
495 	 * register the softint to avoid the condition where
496 	 * interrupt handler can try using uninitialized mutex
497 	 */
498 	e1000g_init_locks(Adapter);
499 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
500 
501 	/*
502 	 * Initialize Driver Counters
503 	 */
504 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
505 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
506 		goto attach_fail;
507 	}
508 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
509 
510 	/*
511 	 * Initialize chip hardware and software structures
512 	 */
513 	rw_enter(&Adapter->chip_lock, RW_WRITER);
514 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
515 		rw_exit(&Adapter->chip_lock);
516 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
517 		goto attach_fail;
518 	}
519 	rw_exit(&Adapter->chip_lock);
520 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
521 
522 	/*
523 	 * Register the driver to the MAC
524 	 */
525 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
526 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
527 		goto attach_fail;
528 	}
529 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
530 
531 	/*
532 	 * Now that mutex locks are initialized, and the chip is also
533 	 * initialized, enable interrupts.
534 	 */
535 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
536 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
537 		goto attach_fail;
538 	}
539 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
540 
541 	/*
542 	 * If e1000g_force_detach is enabled, in global private dip list,
543 	 * we will create a new entry, which maintains the priv_dip for DR
544 	 * supports after driver detached.
545 	 */
546 	if (e1000g_force_detach) {
547 		private_devi_list_t *devi_node;
548 
549 		Adapter->priv_dip =
550 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
551 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
552 		    sizeof (struct dev_info));
553 
554 		devi_node =
555 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
556 
557 		mutex_enter(&e1000g_rx_detach_lock);
558 		devi_node->priv_dip = Adapter->priv_dip;
559 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
560 		devi_node->pending_rx_count = 0;
561 
562 		Adapter->priv_devi_node = devi_node;
563 
564 		if (e1000g_private_devi_list == NULL) {
565 			devi_node->prev = NULL;
566 			devi_node->next = NULL;
567 			e1000g_private_devi_list = devi_node;
568 		} else {
569 			devi_node->prev = NULL;
570 			devi_node->next = e1000g_private_devi_list;
571 			e1000g_private_devi_list->prev = devi_node;
572 			e1000g_private_devi_list = devi_node;
573 		}
574 		mutex_exit(&e1000g_rx_detach_lock);
575 	}
576 
577 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
578 	Adapter->e1000g_state = E1000G_INITIALIZED;
579 
580 	return (DDI_SUCCESS);
581 
582 attach_fail:
583 	e1000g_unattach(devinfo, Adapter);
584 	return (DDI_FAILURE);
585 }
586 
587 static int
588 e1000g_register_mac(struct e1000g *Adapter)
589 {
590 	struct e1000_hw *hw = &Adapter->shared;
591 	mac_register_t *mac;
592 	int err;
593 
594 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
595 		return (DDI_FAILURE);
596 
597 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
598 	mac->m_driver = Adapter;
599 	mac->m_dip = Adapter->dip;
600 	mac->m_src_addr = hw->mac.addr;
601 	mac->m_callbacks = &e1000g_m_callbacks;
602 	mac->m_min_sdu = 0;
603 	mac->m_max_sdu = Adapter->default_mtu;
604 	mac->m_margin = VLAN_TAGSZ;
605 	mac->m_priv_props = e1000g_priv_props;
606 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
607 	mac->m_v12n = MAC_VIRT_LEVEL1;
608 
609 	err = mac_register(mac, &Adapter->mh);
610 	mac_free(mac);
611 
612 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
613 }
614 
615 static int
616 e1000g_identify_hardware(struct e1000g *Adapter)
617 {
618 	struct e1000_hw *hw = &Adapter->shared;
619 	struct e1000g_osdep *osdep = &Adapter->osdep;
620 
621 	/* Get the device id */
622 	hw->vendor_id =
623 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
624 	hw->device_id =
625 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
626 	hw->revision_id =
627 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
628 	hw->subsystem_device_id =
629 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
630 	hw->subsystem_vendor_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
632 
633 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
634 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
635 		    "MAC type could not be set properly.");
636 		return (DDI_FAILURE);
637 	}
638 
639 	return (DDI_SUCCESS);
640 }
641 
642 static int
643 e1000g_regs_map(struct e1000g *Adapter)
644 {
645 	dev_info_t *devinfo = Adapter->dip;
646 	struct e1000_hw *hw = &Adapter->shared;
647 	struct e1000g_osdep *osdep = &Adapter->osdep;
648 	off_t mem_size;
649 
650 	/* Get size of adapter register memory */
651 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
652 	    DDI_SUCCESS) {
653 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
654 		    "ddi_dev_regsize for registers failed");
655 		return (DDI_FAILURE);
656 	}
657 
658 	/* Map adapter register memory */
659 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
660 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
661 	    &osdep->reg_handle)) != DDI_SUCCESS) {
662 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
663 		    "ddi_regs_map_setup for registers failed");
664 		goto regs_map_fail;
665 	}
666 
667 	/* ICH needs to map flash memory */
668 	if (hw->mac.type == e1000_ich8lan ||
669 	    hw->mac.type == e1000_ich9lan ||
670 	    hw->mac.type == e1000_ich10lan) {
671 		/* get flash size */
672 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
673 		    &mem_size) != DDI_SUCCESS) {
674 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
675 			    "ddi_dev_regsize for ICH flash failed");
676 			goto regs_map_fail;
677 		}
678 
679 		/* map flash in */
680 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
681 		    (caddr_t *)&hw->flash_address, 0,
682 		    mem_size, &e1000g_regs_acc_attr,
683 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
684 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
685 			    "ddi_regs_map_setup for ICH flash failed");
686 			goto regs_map_fail;
687 		}
688 	}
689 
690 	return (DDI_SUCCESS);
691 
692 regs_map_fail:
693 	if (osdep->reg_handle != NULL)
694 		ddi_regs_map_free(&osdep->reg_handle);
695 
696 	return (DDI_FAILURE);
697 }
698 
699 static int
700 e1000g_set_driver_params(struct e1000g *Adapter)
701 {
702 	struct e1000_hw *hw;
703 	uint32_t mem_bar, io_bar, bar64;
704 
705 	hw = &Adapter->shared;
706 
707 	/* Set MAC type and initialize hardware functions */
708 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
709 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
710 		    "Could not setup hardware functions");
711 		return (DDI_FAILURE);
712 	}
713 
714 	/* Get bus information */
715 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
716 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
717 		    "Could not get bus information");
718 		return (DDI_FAILURE);
719 	}
720 
721 	/* get mem_base addr */
722 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
723 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
724 
725 	/* get io_base addr */
726 	if (hw->mac.type >= e1000_82544) {
727 		if (bar64) {
728 			/* IO BAR is different for 64 bit BAR mode */
729 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
730 			    PCI_CONF_BASE4);
731 		} else {
732 			/* normal 32-bit BAR mode */
733 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
734 			    PCI_CONF_BASE2);
735 		}
736 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
737 	} else {
738 		/* no I/O access for adapters prior to 82544 */
739 		hw->io_base = 0x0;
740 	}
741 
742 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
743 
744 	hw->mac.autoneg_failed = B_TRUE;
745 
746 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
747 	hw->phy.autoneg_wait_to_complete = B_FALSE;
748 
749 	/* Adaptive IFS related changes */
750 	hw->mac.adaptive_ifs = B_TRUE;
751 
752 	/* Enable phy init script for IGP phy of 82541/82547 */
753 	if ((hw->mac.type == e1000_82547) ||
754 	    (hw->mac.type == e1000_82541) ||
755 	    (hw->mac.type == e1000_82547_rev_2) ||
756 	    (hw->mac.type == e1000_82541_rev_2))
757 		e1000_init_script_state_82541(hw, B_TRUE);
758 
759 	/* Enable the TTL workaround for 82541/82547 */
760 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
761 
762 #ifdef __sparc
763 	Adapter->strip_crc = B_TRUE;
764 #else
765 	Adapter->strip_crc = B_FALSE;
766 #endif
767 
768 	/* Get conf file properties */
769 	e1000g_get_conf(Adapter);
770 
771 	/* Get speed/duplex settings in conf file */
772 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
773 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
774 	e1000g_force_speed_duplex(Adapter);
775 
776 	/* Get Jumbo Frames settings in conf file */
777 	e1000g_get_max_frame_size(Adapter);
778 
779 	/* Set Rx/Tx buffer size */
780 	e1000g_set_bufsize(Adapter);
781 
782 	/* Master Latency Timer */
783 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
784 
785 	/* copper options */
786 	if (hw->phy.media_type == e1000_media_type_copper) {
787 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
788 		hw->phy.disable_polarity_correction = B_FALSE;
789 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
790 	}
791 
792 	/* The initial link state should be "unknown" */
793 	Adapter->link_state = LINK_STATE_UNKNOWN;
794 
795 	/* Initialize rx parameters */
796 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
797 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
798 
799 	/* Initialize tx parameters */
800 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
801 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
802 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
803 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
804 
805 	/* Initialize rx parameters */
806 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
807 
808 	return (DDI_SUCCESS);
809 }
810 
811 static void
812 e1000g_set_bufsize(struct e1000g *Adapter)
813 {
814 	struct e1000_mac_info *mac = &Adapter->shared.mac;
815 	uint64_t rx_size;
816 	uint64_t tx_size;
817 
818 	dev_info_t *devinfo = Adapter->dip;
819 #ifdef __sparc
820 	ulong_t iommu_pagesize;
821 #endif
822 	/* Get the system page size */
823 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
824 
825 #ifdef __sparc
826 	iommu_pagesize = dvma_pagesize(devinfo);
827 	if (iommu_pagesize != 0) {
828 		if (Adapter->sys_page_sz == iommu_pagesize) {
829 			if (iommu_pagesize > 0x4000)
830 				Adapter->sys_page_sz = 0x4000;
831 		} else {
832 			if (Adapter->sys_page_sz > iommu_pagesize)
833 				Adapter->sys_page_sz = iommu_pagesize;
834 		}
835 	}
836 	if (Adapter->lso_enable) {
837 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
838 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
839 	} else {
840 		Adapter->dvma_page_num = Adapter->max_frame_size /
841 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
842 	}
843 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
844 #endif
845 
846 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
847 
848 	if (Adapter->mem_workaround_82546 &&
849 	    ((mac->type == e1000_82545) ||
850 	    (mac->type == e1000_82546) ||
851 	    (mac->type == e1000_82546_rev_3))) {
852 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
853 	} else {
854 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
855 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
856 		    (rx_size <= FRAME_SIZE_UPTO_4K))
857 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
858 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
859 		    (rx_size <= FRAME_SIZE_UPTO_8K))
860 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
861 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
862 		    (rx_size <= FRAME_SIZE_UPTO_16K))
863 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
864 		else
865 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
866 	}
867 
868 	tx_size = Adapter->max_frame_size;
869 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
870 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
871 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
872 	    (tx_size <= FRAME_SIZE_UPTO_8K))
873 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
874 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
875 	    (tx_size <= FRAME_SIZE_UPTO_16K))
876 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
877 	else
878 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
879 
880 	/*
881 	 * For Wiseman adapters we have an requirement of having receive
882 	 * buffers aligned at 256 byte boundary. Since Livengood does not
883 	 * require this and forcing it for all hardwares will have
884 	 * performance implications, I am making it applicable only for
885 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
886 	 * it is okay to have normal frames...but it does involve a
887 	 * potential risk where we may loose data if buffer is not
888 	 * aligned...so all wiseman boards to have 256 byte aligned
889 	 * buffers
890 	 */
891 	if (mac->type < e1000_82543)
892 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
893 	else
894 		Adapter->rx_buf_align = 1;
895 }
896 
897 /*
898  * e1000g_detach - driver detach
899  *
900  * The detach() function is the complement of the attach routine.
901  * If cmd is set to DDI_DETACH, detach() is used to remove  the
902  * state  associated  with  a  given  instance of a device node
903  * prior to the removal of that instance from the system.
904  *
905  * The detach() function will be called once for each  instance
906  * of the device for which there has been a successful attach()
907  * once there are no longer  any  opens  on  the  device.
908  *
909  * Interrupts routine are disabled, All memory allocated by this
910  * driver are freed.
911  */
912 static int
913 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
914 {
915 	struct e1000g *Adapter;
916 	boolean_t rx_drain;
917 
918 	switch (cmd) {
919 	default:
920 		return (DDI_FAILURE);
921 
922 	case DDI_SUSPEND:
923 		return (e1000g_suspend(devinfo));
924 
925 	case DDI_DETACH:
926 		break;
927 	}
928 
929 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
930 	if (Adapter == NULL)
931 		return (DDI_FAILURE);
932 
933 	rx_drain = e1000g_rx_drain(Adapter);
934 	if (!rx_drain && !e1000g_force_detach)
935 		return (DDI_FAILURE);
936 
937 	if (mac_unregister(Adapter->mh) != 0) {
938 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
939 		return (DDI_FAILURE);
940 	}
941 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
942 
943 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
944 
945 	if (!e1000g_force_detach && !rx_drain)
946 		return (DDI_FAILURE);
947 
948 	e1000g_unattach(devinfo, Adapter);
949 
950 	return (DDI_SUCCESS);
951 }
952 
953 /*
954  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
955  */
956 void
957 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
958 {
959 	ASSERT(e1000g_private_devi_list != NULL);
960 	ASSERT(devi_node != NULL);
961 
962 	if (devi_node->prev != NULL)
963 		devi_node->prev->next = devi_node->next;
964 	if (devi_node->next != NULL)
965 		devi_node->next->prev = devi_node->prev;
966 	if (devi_node == e1000g_private_devi_list)
967 		e1000g_private_devi_list = devi_node->next;
968 
969 	kmem_free(devi_node->priv_dip,
970 	    sizeof (struct dev_info));
971 	kmem_free(devi_node,
972 	    sizeof (private_devi_list_t));
973 }
974 
975 static void
976 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
977 {
978 	private_devi_list_t *devi_node;
979 	int result;
980 
981 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
982 		(void) e1000g_disable_intrs(Adapter);
983 	}
984 
985 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
986 		(void) mac_unregister(Adapter->mh);
987 	}
988 
989 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
990 		(void) e1000g_rem_intrs(Adapter);
991 	}
992 
993 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
994 		(void) ddi_prop_remove_all(devinfo);
995 	}
996 
997 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
998 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
999 	}
1000 
1001 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1002 		stop_link_timer(Adapter);
1003 
1004 		mutex_enter(&e1000g_nvm_lock);
1005 		result = e1000_reset_hw(&Adapter->shared);
1006 		mutex_exit(&e1000g_nvm_lock);
1007 
1008 		if (result != E1000_SUCCESS) {
1009 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1010 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1011 		}
1012 	}
1013 
1014 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1015 		if (Adapter->osdep.reg_handle != NULL)
1016 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1017 		if (Adapter->osdep.ich_flash_handle != NULL)
1018 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1019 	}
1020 
1021 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1022 		if (Adapter->osdep.cfg_handle != NULL)
1023 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1024 	}
1025 
1026 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1027 		e1000g_destroy_locks(Adapter);
1028 	}
1029 
1030 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1031 		e1000g_fm_fini(Adapter);
1032 	}
1033 
1034 	mutex_enter(&e1000g_rx_detach_lock);
1035 	if (e1000g_force_detach) {
1036 		devi_node = Adapter->priv_devi_node;
1037 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1038 
1039 		if (devi_node->pending_rx_count == 0) {
1040 			e1000g_free_priv_devi_node(devi_node);
1041 		}
1042 	}
1043 	mutex_exit(&e1000g_rx_detach_lock);
1044 
1045 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1046 
1047 	/*
1048 	 * Another hotplug spec requirement,
1049 	 * run ddi_set_driver_private(devinfo, null);
1050 	 */
1051 	ddi_set_driver_private(devinfo, NULL);
1052 }
1053 
1054 static void
1055 e1000g_init_locks(struct e1000g *Adapter)
1056 {
1057 	e1000g_tx_ring_t *tx_ring;
1058 	e1000g_rx_ring_t *rx_ring;
1059 
1060 	rw_init(&Adapter->chip_lock, NULL,
1061 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1062 	mutex_init(&Adapter->link_lock, NULL,
1063 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1064 	mutex_init(&Adapter->watchdog_lock, NULL,
1065 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1066 
1067 	tx_ring = Adapter->tx_ring;
1068 
1069 	mutex_init(&tx_ring->tx_lock, NULL,
1070 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1071 	mutex_init(&tx_ring->usedlist_lock, NULL,
1072 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1073 	mutex_init(&tx_ring->freelist_lock, NULL,
1074 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1075 
1076 	rx_ring = Adapter->rx_ring;
1077 
1078 	mutex_init(&rx_ring->rx_lock, NULL,
1079 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1080 }
1081 
1082 static void
1083 e1000g_destroy_locks(struct e1000g *Adapter)
1084 {
1085 	e1000g_tx_ring_t *tx_ring;
1086 	e1000g_rx_ring_t *rx_ring;
1087 
1088 	tx_ring = Adapter->tx_ring;
1089 	mutex_destroy(&tx_ring->tx_lock);
1090 	mutex_destroy(&tx_ring->usedlist_lock);
1091 	mutex_destroy(&tx_ring->freelist_lock);
1092 
1093 	rx_ring = Adapter->rx_ring;
1094 	mutex_destroy(&rx_ring->rx_lock);
1095 
1096 	mutex_destroy(&Adapter->link_lock);
1097 	mutex_destroy(&Adapter->watchdog_lock);
1098 	rw_destroy(&Adapter->chip_lock);
1099 }
1100 
1101 static int
1102 e1000g_resume(dev_info_t *devinfo)
1103 {
1104 	struct e1000g *Adapter;
1105 
1106 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1107 	if (Adapter == NULL)
1108 		e1000g_log(Adapter, CE_PANIC,
1109 		    "Instance pointer is null\n");
1110 
1111 	if (Adapter->dip != devinfo)
1112 		e1000g_log(Adapter, CE_PANIC,
1113 		    "Devinfo is not the same as saved devinfo\n");
1114 
1115 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1116 
1117 	if (Adapter->e1000g_state & E1000G_STARTED) {
1118 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1119 			rw_exit(&Adapter->chip_lock);
1120 			/*
1121 			 * We note the failure, but return success, as the
1122 			 * system is still usable without this controller.
1123 			 */
1124 			e1000g_log(Adapter, CE_WARN,
1125 			    "e1000g_resume: failed to restart controller\n");
1126 			return (DDI_SUCCESS);
1127 		}
1128 		/* Enable and start the watchdog timer */
1129 		enable_watchdog_timer(Adapter);
1130 	}
1131 
1132 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1133 
1134 	rw_exit(&Adapter->chip_lock);
1135 
1136 	return (DDI_SUCCESS);
1137 }
1138 
1139 static int
1140 e1000g_suspend(dev_info_t *devinfo)
1141 {
1142 	struct e1000g *Adapter;
1143 
1144 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1145 	if (Adapter == NULL)
1146 		return (DDI_FAILURE);
1147 
1148 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1149 
1150 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1151 
1152 	/* if the port isn't plumbed, we can simply return */
1153 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1154 		rw_exit(&Adapter->chip_lock);
1155 		return (DDI_SUCCESS);
1156 	}
1157 
1158 	e1000g_stop(Adapter, B_FALSE);
1159 
1160 	rw_exit(&Adapter->chip_lock);
1161 
1162 	/* Disable and stop all the timers */
1163 	disable_watchdog_timer(Adapter);
1164 	stop_link_timer(Adapter);
1165 	stop_82547_timer(Adapter->tx_ring);
1166 
1167 	return (DDI_SUCCESS);
1168 }
1169 
1170 static int
1171 e1000g_init(struct e1000g *Adapter)
1172 {
1173 	uint32_t pba;
1174 	uint32_t high_water;
1175 	struct e1000_hw *hw;
1176 	clock_t link_timeout;
1177 	int result;
1178 
1179 	hw = &Adapter->shared;
1180 
1181 	/*
1182 	 * reset to put the hardware in a known state
1183 	 * before we try to do anything with the eeprom
1184 	 */
1185 	mutex_enter(&e1000g_nvm_lock);
1186 	result = e1000_reset_hw(hw);
1187 	mutex_exit(&e1000g_nvm_lock);
1188 
1189 	if (result != E1000_SUCCESS) {
1190 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1191 		goto init_fail;
1192 	}
1193 
1194 	mutex_enter(&e1000g_nvm_lock);
1195 	result = e1000_validate_nvm_checksum(hw);
1196 	if (result < E1000_SUCCESS) {
1197 		/*
1198 		 * Some PCI-E parts fail the first check due to
1199 		 * the link being in sleep state.  Call it again,
1200 		 * if it fails a second time its a real issue.
1201 		 */
1202 		result = e1000_validate_nvm_checksum(hw);
1203 	}
1204 	mutex_exit(&e1000g_nvm_lock);
1205 
1206 	if (result < E1000_SUCCESS) {
1207 		e1000g_log(Adapter, CE_WARN,
1208 		    "Invalid NVM checksum. Please contact "
1209 		    "the vendor to update the NVM.");
1210 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1211 		goto init_fail;
1212 	}
1213 
1214 	result = 0;
1215 #ifdef __sparc
1216 	/*
1217 	 * First, we try to get the local ethernet address from OBP. If
1218 	 * failed, then we get it from the EEPROM of NIC card.
1219 	 */
1220 	result = e1000g_find_mac_address(Adapter);
1221 #endif
1222 	/* Get the local ethernet address. */
1223 	if (!result) {
1224 		mutex_enter(&e1000g_nvm_lock);
1225 		result = e1000_read_mac_addr(hw);
1226 		mutex_exit(&e1000g_nvm_lock);
1227 	}
1228 
1229 	if (result < E1000_SUCCESS) {
1230 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1231 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1232 		goto init_fail;
1233 	}
1234 
1235 	/* check for valid mac address */
1236 	if (!is_valid_mac_addr(hw->mac.addr)) {
1237 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1238 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1239 		goto init_fail;
1240 	}
1241 
1242 	/* Set LAA state for 82571 chipset */
1243 	e1000_set_laa_state_82571(hw, B_TRUE);
1244 
1245 	/* Master Latency Timer implementation */
1246 	if (Adapter->master_latency_timer) {
1247 		pci_config_put8(Adapter->osdep.cfg_handle,
1248 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1249 	}
1250 
1251 	if (hw->mac.type < e1000_82547) {
1252 		/*
1253 		 * Total FIFO is 64K
1254 		 */
1255 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1256 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1257 		else
1258 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1259 	} else if ((hw->mac.type == e1000_82571) ||
1260 	    (hw->mac.type == e1000_82572) ||
1261 	    (hw->mac.type == e1000_80003es2lan)) {
1262 		/*
1263 		 * Total FIFO is 48K
1264 		 */
1265 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1266 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1267 		else
1268 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1269 	} else if (hw->mac.type == e1000_82573) {
1270 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1271 	} else if (hw->mac.type == e1000_82574) {
1272 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1273 		pba = E1000_READ_REG(hw, E1000_PBA);
1274 	} else if (hw->mac.type == e1000_ich8lan) {
1275 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1276 	} else if (hw->mac.type == e1000_ich9lan) {
1277 		pba = E1000_PBA_10K;
1278 	} else if (hw->mac.type == e1000_ich10lan) {
1279 		pba = E1000_PBA_10K;
1280 	} else {
1281 		/*
1282 		 * Total FIFO is 40K
1283 		 */
1284 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1285 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1286 		else
1287 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1288 	}
1289 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1290 
1291 	/*
1292 	 * These parameters set thresholds for the adapter's generation(Tx)
1293 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1294 	 * settings.  Flow control is enabled or disabled in the configuration
1295 	 * file.
1296 	 * High-water mark is set down from the top of the rx fifo (not
1297 	 * sensitive to max_frame_size) and low-water is set just below
1298 	 * high-water mark.
1299 	 * The high water mark must be low enough to fit one full frame above
1300 	 * it in the rx FIFO.  Should be the lower of:
1301 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1302 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1303 	 * Rx FIFO size minus one full frame.
1304 	 */
1305 	high_water = min(((pba << 10) * 9 / 10),
1306 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1307 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1308 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1309 	    ((pba << 10) - Adapter->max_frame_size)));
1310 
1311 	hw->fc.high_water = high_water & 0xFFF8;
1312 	hw->fc.low_water = hw->fc.high_water - 8;
1313 
1314 	if (hw->mac.type == e1000_80003es2lan)
1315 		hw->fc.pause_time = 0xFFFF;
1316 	else
1317 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1318 	hw->fc.send_xon = B_TRUE;
1319 
1320 	/*
1321 	 * Reset the adapter hardware the second time.
1322 	 */
1323 	mutex_enter(&e1000g_nvm_lock);
1324 	result = e1000_reset_hw(hw);
1325 	mutex_exit(&e1000g_nvm_lock);
1326 
1327 	if (result != E1000_SUCCESS) {
1328 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1329 		goto init_fail;
1330 	}
1331 
1332 	/* disable wakeup control by default */
1333 	if (hw->mac.type >= e1000_82544)
1334 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1335 
1336 	/*
1337 	 * MWI should be disabled on 82546.
1338 	 */
1339 	if (hw->mac.type == e1000_82546)
1340 		e1000_pci_clear_mwi(hw);
1341 	else
1342 		e1000_pci_set_mwi(hw);
1343 
1344 	/*
1345 	 * Configure/Initialize hardware
1346 	 */
1347 	mutex_enter(&e1000g_nvm_lock);
1348 	result = e1000_init_hw(hw);
1349 	mutex_exit(&e1000g_nvm_lock);
1350 
1351 	if (result < E1000_SUCCESS) {
1352 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1353 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1354 		goto init_fail;
1355 	}
1356 
1357 	/*
1358 	 * Restore LED settings to the default from EEPROM
1359 	 * to meet the standard for Sun platforms.
1360 	 */
1361 	if ((hw->mac.type != e1000_82541) &&
1362 	    (hw->mac.type != e1000_82541_rev_2) &&
1363 	    (hw->mac.type != e1000_82547) &&
1364 	    (hw->mac.type != e1000_82547_rev_2))
1365 		(void) e1000_cleanup_led(hw);
1366 
1367 	/* Disable Smart Power Down */
1368 	phy_spd_state(hw, B_FALSE);
1369 
1370 	/* Make sure driver has control */
1371 	e1000g_get_driver_control(hw);
1372 
1373 	/*
1374 	 * Initialize unicast addresses.
1375 	 */
1376 	e1000g_init_unicst(Adapter);
1377 
1378 	/*
1379 	 * Setup and initialize the mctable structures.  After this routine
1380 	 * completes  Multicast table will be set
1381 	 */
1382 	e1000g_setup_multicast(Adapter);
1383 	msec_delay(5);
1384 
1385 	/*
1386 	 * Implement Adaptive IFS
1387 	 */
1388 	e1000_reset_adaptive(hw);
1389 
1390 	/* Setup Interrupt Throttling Register */
1391 	if (hw->mac.type >= e1000_82540) {
1392 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1393 	} else
1394 		Adapter->intr_adaptive = B_FALSE;
1395 
1396 	/* Start the timer for link setup */
1397 	if (hw->mac.autoneg)
1398 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1399 	else
1400 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1401 
1402 	mutex_enter(&Adapter->link_lock);
1403 	if (hw->phy.autoneg_wait_to_complete) {
1404 		Adapter->link_complete = B_TRUE;
1405 	} else {
1406 		Adapter->link_complete = B_FALSE;
1407 		Adapter->link_tid = timeout(e1000g_link_timer,
1408 		    (void *)Adapter, link_timeout);
1409 	}
1410 	mutex_exit(&Adapter->link_lock);
1411 
1412 	/* Enable PCI-Ex master */
1413 	if (hw->bus.type == e1000_bus_type_pci_express) {
1414 		e1000_enable_pciex_master(hw);
1415 	}
1416 
1417 	/* Save the state of the phy */
1418 	e1000g_get_phy_state(Adapter);
1419 
1420 	e1000g_param_sync(Adapter);
1421 
1422 	Adapter->init_count++;
1423 
1424 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1425 		goto init_fail;
1426 	}
1427 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1428 		goto init_fail;
1429 	}
1430 
1431 	Adapter->poll_mode = e1000g_poll_mode;
1432 
1433 	return (DDI_SUCCESS);
1434 
1435 init_fail:
1436 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1437 	return (DDI_FAILURE);
1438 }
1439 
1440 static int
1441 e1000g_alloc_rx_data(struct e1000g *Adapter)
1442 {
1443 	e1000g_rx_ring_t *rx_ring;
1444 	e1000g_rx_data_t *rx_data;
1445 
1446 	rx_ring = Adapter->rx_ring;
1447 
1448 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1449 
1450 	if (rx_data == NULL)
1451 		return (DDI_FAILURE);
1452 
1453 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1454 	rx_data->rx_ring = rx_ring;
1455 
1456 	mutex_init(&rx_data->freelist_lock, NULL,
1457 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1458 	mutex_init(&rx_data->recycle_lock, NULL,
1459 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1460 
1461 	rx_ring->rx_data = rx_data;
1462 
1463 	return (DDI_SUCCESS);
1464 }
1465 
1466 void
1467 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1468 {
1469 	rx_sw_packet_t *packet, *next_packet;
1470 
1471 	if (rx_data == NULL)
1472 		return;
1473 
1474 	packet = rx_data->packet_area;
1475 	while (packet != NULL) {
1476 		next_packet = packet->next;
1477 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1478 		packet = next_packet;
1479 	}
1480 	rx_data->packet_area = NULL;
1481 }
1482 
1483 void
1484 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1485 {
1486 	if (rx_data == NULL)
1487 		return;
1488 
1489 	mutex_destroy(&rx_data->freelist_lock);
1490 	mutex_destroy(&rx_data->recycle_lock);
1491 
1492 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1493 }
1494 
1495 /*
1496  * Check if the link is up
1497  */
1498 static boolean_t
1499 e1000g_link_up(struct e1000g *Adapter)
1500 {
1501 	struct e1000_hw *hw;
1502 	boolean_t link_up;
1503 
1504 	hw = &Adapter->shared;
1505 
1506 	(void) e1000_check_for_link(hw);
1507 
1508 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1509 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1510 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1511 	    (hw->mac.serdes_has_link))) {
1512 		link_up = B_TRUE;
1513 	} else {
1514 		link_up = B_FALSE;
1515 	}
1516 
1517 	return (link_up);
1518 }
1519 
1520 static void
1521 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1522 {
1523 	struct iocblk *iocp;
1524 	struct e1000g *e1000gp;
1525 	enum ioc_reply status;
1526 
1527 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1528 	iocp->ioc_error = 0;
1529 	e1000gp = (struct e1000g *)arg;
1530 
1531 	ASSERT(e1000gp);
1532 	if (e1000gp == NULL) {
1533 		miocnak(q, mp, 0, EINVAL);
1534 		return;
1535 	}
1536 
1537 	rw_enter(&e1000gp->chip_lock, RW_READER);
1538 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1539 		rw_exit(&e1000gp->chip_lock);
1540 		miocnak(q, mp, 0, EINVAL);
1541 		return;
1542 	}
1543 	rw_exit(&e1000gp->chip_lock);
1544 
1545 	switch (iocp->ioc_cmd) {
1546 
1547 	case LB_GET_INFO_SIZE:
1548 	case LB_GET_INFO:
1549 	case LB_GET_MODE:
1550 	case LB_SET_MODE:
1551 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1552 		break;
1553 
1554 
1555 #ifdef E1000G_DEBUG
1556 	case E1000G_IOC_REG_PEEK:
1557 	case E1000G_IOC_REG_POKE:
1558 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1559 		break;
1560 	case E1000G_IOC_CHIP_RESET:
1561 		e1000gp->reset_count++;
1562 		if (e1000g_reset_adapter(e1000gp))
1563 			status = IOC_ACK;
1564 		else
1565 			status = IOC_INVAL;
1566 		break;
1567 #endif
1568 	default:
1569 		status = IOC_INVAL;
1570 		break;
1571 	}
1572 
1573 	/*
1574 	 * Decide how to reply
1575 	 */
1576 	switch (status) {
1577 	default:
1578 	case IOC_INVAL:
1579 		/*
1580 		 * Error, reply with a NAK and EINVAL or the specified error
1581 		 */
1582 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1583 		    EINVAL : iocp->ioc_error);
1584 		break;
1585 
1586 	case IOC_DONE:
1587 		/*
1588 		 * OK, reply already sent
1589 		 */
1590 		break;
1591 
1592 	case IOC_ACK:
1593 		/*
1594 		 * OK, reply with an ACK
1595 		 */
1596 		miocack(q, mp, 0, 0);
1597 		break;
1598 
1599 	case IOC_REPLY:
1600 		/*
1601 		 * OK, send prepared reply as ACK or NAK
1602 		 */
1603 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1604 		    M_IOCACK : M_IOCNAK;
1605 		qreply(q, mp);
1606 		break;
1607 	}
1608 }
1609 
1610 /*
1611  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1612  * capable of supporting only one interrupt and we shouldn't disable
1613  * the physical interrupt. In this case we let the interrupt come and
1614  * we queue the packets in the rx ring itself in case we are in polling
1615  * mode (better latency but slightly lower performance and a very
1616  * high intrrupt count in mpstat which is harmless).
1617  *
1618  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1619  * which can be disabled in poll mode. This gives better overall
1620  * throughput (compared to the mode above), shows very low interrupt
1621  * count but has slightly higher latency since we pick the packets when
1622  * the poll thread does polling.
1623  *
1624  * Currently, this flag should be enabled only while doing performance
1625  * measurement or when it can be guaranteed that entire NIC going
1626  * in poll mode will not harm any traffic like cluster heartbeat etc.
1627  */
1628 int e1000g_poll_mode = 0;
1629 
1630 /*
1631  * Called from the upper layers when driver is in polling mode to
1632  * pick up any queued packets. Care should be taken to not block
1633  * this thread.
1634  */
1635 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1636 {
1637 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1638 	mblk_t			*mp = NULL;
1639 	mblk_t			*tail;
1640 	struct e1000g 		*adapter;
1641 
1642 	adapter = rx_ring->adapter;
1643 
1644 	rw_enter(&adapter->chip_lock, RW_READER);
1645 
1646 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1647 		rw_exit(&adapter->chip_lock);
1648 		return (NULL);
1649 	}
1650 
1651 	mutex_enter(&rx_ring->rx_lock);
1652 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1653 	mutex_exit(&rx_ring->rx_lock);
1654 	rw_exit(&adapter->chip_lock);
1655 	return (mp);
1656 }
1657 
1658 static int
1659 e1000g_m_start(void *arg)
1660 {
1661 	struct e1000g *Adapter = (struct e1000g *)arg;
1662 
1663 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1664 
1665 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1666 		rw_exit(&Adapter->chip_lock);
1667 		return (ECANCELED);
1668 	}
1669 
1670 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1671 		rw_exit(&Adapter->chip_lock);
1672 		return (ENOTACTIVE);
1673 	}
1674 
1675 	Adapter->e1000g_state |= E1000G_STARTED;
1676 
1677 	rw_exit(&Adapter->chip_lock);
1678 
1679 	/* Enable and start the watchdog timer */
1680 	enable_watchdog_timer(Adapter);
1681 
1682 	return (0);
1683 }
1684 
1685 static int
1686 e1000g_start(struct e1000g *Adapter, boolean_t global)
1687 {
1688 	e1000g_rx_data_t *rx_data;
1689 
1690 	if (global) {
1691 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1692 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1693 			goto start_fail;
1694 		}
1695 
1696 		/* Allocate dma resources for descriptors and buffers */
1697 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1698 			e1000g_log(Adapter, CE_WARN,
1699 			    "Alloc DMA resources failed");
1700 			goto start_fail;
1701 		}
1702 		Adapter->rx_buffer_setup = B_FALSE;
1703 	}
1704 
1705 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1706 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1707 			e1000g_log(Adapter, CE_WARN,
1708 			    "Adapter initialization failed");
1709 			goto start_fail;
1710 		}
1711 	}
1712 
1713 	/* Setup and initialize the transmit structures */
1714 	e1000g_tx_setup(Adapter);
1715 	msec_delay(5);
1716 
1717 	/* Setup and initialize the receive structures */
1718 	e1000g_rx_setup(Adapter);
1719 	msec_delay(5);
1720 
1721 	/* Restore the e1000g promiscuous mode */
1722 	e1000g_restore_promisc(Adapter);
1723 
1724 	e1000g_mask_interrupt(Adapter);
1725 
1726 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1727 
1728 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1729 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1730 		goto start_fail;
1731 	}
1732 
1733 	return (DDI_SUCCESS);
1734 
1735 start_fail:
1736 	rx_data = Adapter->rx_ring->rx_data;
1737 
1738 	if (global) {
1739 		e1000g_release_dma_resources(Adapter);
1740 		e1000g_free_rx_pending_buffers(rx_data);
1741 		e1000g_free_rx_data(rx_data);
1742 	}
1743 
1744 	mutex_enter(&e1000g_nvm_lock);
1745 	(void) e1000_reset_hw(&Adapter->shared);
1746 	mutex_exit(&e1000g_nvm_lock);
1747 
1748 	return (DDI_FAILURE);
1749 }
1750 
1751 static void
1752 e1000g_m_stop(void *arg)
1753 {
1754 	struct e1000g *Adapter = (struct e1000g *)arg;
1755 
1756 	/* Drain tx sessions */
1757 	(void) e1000g_tx_drain(Adapter);
1758 
1759 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1760 
1761 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1762 		rw_exit(&Adapter->chip_lock);
1763 		return;
1764 	}
1765 	Adapter->e1000g_state &= ~E1000G_STARTED;
1766 	e1000g_stop(Adapter, B_TRUE);
1767 
1768 	rw_exit(&Adapter->chip_lock);
1769 
1770 	/* Disable and stop all the timers */
1771 	disable_watchdog_timer(Adapter);
1772 	stop_link_timer(Adapter);
1773 	stop_82547_timer(Adapter->tx_ring);
1774 }
1775 
1776 static void
1777 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1778 {
1779 	private_devi_list_t *devi_node;
1780 	e1000g_rx_data_t *rx_data;
1781 	int result;
1782 
1783 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1784 
1785 	/* Stop the chip and release pending resources */
1786 
1787 	/* Tell firmware driver is no longer in control */
1788 	e1000g_release_driver_control(&Adapter->shared);
1789 
1790 	e1000g_clear_all_interrupts(Adapter);
1791 
1792 	mutex_enter(&e1000g_nvm_lock);
1793 	result = e1000_reset_hw(&Adapter->shared);
1794 	mutex_exit(&e1000g_nvm_lock);
1795 
1796 	if (result != E1000_SUCCESS) {
1797 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1798 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1799 	}
1800 
1801 	/* Release resources still held by the TX descriptors */
1802 	e1000g_tx_clean(Adapter);
1803 
1804 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1805 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1806 
1807 	/* Clean the pending rx jumbo packet fragment */
1808 	e1000g_rx_clean(Adapter);
1809 
1810 	if (global) {
1811 		e1000g_release_dma_resources(Adapter);
1812 
1813 		mutex_enter(&e1000g_rx_detach_lock);
1814 		rx_data = Adapter->rx_ring->rx_data;
1815 		rx_data->flag |= E1000G_RX_STOPPED;
1816 
1817 		if (rx_data->pending_count == 0) {
1818 			e1000g_free_rx_pending_buffers(rx_data);
1819 			e1000g_free_rx_data(rx_data);
1820 		} else {
1821 			devi_node = rx_data->priv_devi_node;
1822 			if (devi_node != NULL)
1823 				atomic_inc_32(&devi_node->pending_rx_count);
1824 			else
1825 				atomic_inc_32(&Adapter->pending_rx_count);
1826 		}
1827 		mutex_exit(&e1000g_rx_detach_lock);
1828 	}
1829 }
1830 
1831 static void
1832 e1000g_rx_clean(struct e1000g *Adapter)
1833 {
1834 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
1835 
1836 	if (rx_data == NULL)
1837 		return;
1838 
1839 	if (rx_data->rx_mblk != NULL) {
1840 		freemsg(rx_data->rx_mblk);
1841 		rx_data->rx_mblk = NULL;
1842 		rx_data->rx_mblk_tail = NULL;
1843 		rx_data->rx_mblk_len = 0;
1844 	}
1845 }
1846 
1847 static void
1848 e1000g_tx_clean(struct e1000g *Adapter)
1849 {
1850 	e1000g_tx_ring_t *tx_ring;
1851 	p_tx_sw_packet_t packet;
1852 	mblk_t *mp;
1853 	mblk_t *nmp;
1854 	uint32_t packet_count;
1855 
1856 	tx_ring = Adapter->tx_ring;
1857 
1858 	/*
1859 	 * Here we don't need to protect the lists using
1860 	 * the usedlist_lock and freelist_lock, for they
1861 	 * have been protected by the chip_lock.
1862 	 */
1863 	mp = NULL;
1864 	nmp = NULL;
1865 	packet_count = 0;
1866 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1867 	while (packet != NULL) {
1868 		if (packet->mp != NULL) {
1869 			/* Assemble the message chain */
1870 			if (mp == NULL) {
1871 				mp = packet->mp;
1872 				nmp = packet->mp;
1873 			} else {
1874 				nmp->b_next = packet->mp;
1875 				nmp = packet->mp;
1876 			}
1877 			/* Disconnect the message from the sw packet */
1878 			packet->mp = NULL;
1879 		}
1880 
1881 		e1000g_free_tx_swpkt(packet);
1882 		packet_count++;
1883 
1884 		packet = (p_tx_sw_packet_t)
1885 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1886 	}
1887 
1888 	if (mp != NULL)
1889 		freemsgchain(mp);
1890 
1891 	if (packet_count > 0) {
1892 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1893 		QUEUE_INIT_LIST(&tx_ring->used_list);
1894 
1895 		/* Setup TX descriptor pointers */
1896 		tx_ring->tbd_next = tx_ring->tbd_first;
1897 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1898 
1899 		/* Setup our HW Tx Head & Tail descriptor pointers */
1900 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1901 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1902 	}
1903 }
1904 
1905 static boolean_t
1906 e1000g_tx_drain(struct e1000g *Adapter)
1907 {
1908 	int i;
1909 	boolean_t done;
1910 	e1000g_tx_ring_t *tx_ring;
1911 
1912 	tx_ring = Adapter->tx_ring;
1913 
1914 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1915 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1916 		mutex_enter(&tx_ring->usedlist_lock);
1917 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1918 		mutex_exit(&tx_ring->usedlist_lock);
1919 
1920 		if (done)
1921 			break;
1922 
1923 		msec_delay(1);
1924 	}
1925 
1926 	return (done);
1927 }
1928 
1929 static boolean_t
1930 e1000g_rx_drain(struct e1000g *Adapter)
1931 {
1932 	int i;
1933 	boolean_t done;
1934 
1935 	/*
1936 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
1937 	 */
1938 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1939 		done = (Adapter->pending_rx_count == 0);
1940 
1941 		if (done)
1942 			break;
1943 
1944 		msec_delay(1);
1945 	}
1946 
1947 	return (done);
1948 }
1949 
1950 static boolean_t
1951 e1000g_reset_adapter(struct e1000g *Adapter)
1952 {
1953 	/* Disable and stop all the timers */
1954 	disable_watchdog_timer(Adapter);
1955 	stop_link_timer(Adapter);
1956 	stop_82547_timer(Adapter->tx_ring);
1957 
1958 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1959 
1960 	e1000g_stop(Adapter, B_FALSE);
1961 
1962 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1963 		rw_exit(&Adapter->chip_lock);
1964 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1965 			return (B_FALSE);
1966 	}
1967 
1968 	rw_exit(&Adapter->chip_lock);
1969 
1970 	/* Enable and start the watchdog timer */
1971 	enable_watchdog_timer(Adapter);
1972 
1973 	return (B_TRUE);
1974 }
1975 
1976 boolean_t
1977 e1000g_global_reset(struct e1000g *Adapter)
1978 {
1979 	/* Disable and stop all the timers */
1980 	disable_watchdog_timer(Adapter);
1981 	stop_link_timer(Adapter);
1982 	stop_82547_timer(Adapter->tx_ring);
1983 
1984 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1985 
1986 	e1000g_stop(Adapter, B_TRUE);
1987 
1988 	Adapter->init_count = 0;
1989 
1990 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1991 		rw_exit(&Adapter->chip_lock);
1992 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1993 		return (B_FALSE);
1994 	}
1995 
1996 	rw_exit(&Adapter->chip_lock);
1997 
1998 	/* Enable and start the watchdog timer */
1999 	enable_watchdog_timer(Adapter);
2000 
2001 	return (B_TRUE);
2002 }
2003 
2004 /*
2005  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2006  *
2007  * This interrupt service routine is for PCI-Express adapters.
2008  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2009  * bit is set.
2010  */
2011 static uint_t
2012 e1000g_intr_pciexpress(caddr_t arg)
2013 {
2014 	struct e1000g *Adapter;
2015 	uint32_t icr;
2016 
2017 	Adapter = (struct e1000g *)(uintptr_t)arg;
2018 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2019 
2020 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2021 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2022 
2023 	if (icr & E1000_ICR_INT_ASSERTED) {
2024 		/*
2025 		 * E1000_ICR_INT_ASSERTED bit was set:
2026 		 * Read(Clear) the ICR, claim this interrupt,
2027 		 * look for work to do.
2028 		 */
2029 		e1000g_intr_work(Adapter, icr);
2030 		return (DDI_INTR_CLAIMED);
2031 	} else {
2032 		/*
2033 		 * E1000_ICR_INT_ASSERTED bit was not set:
2034 		 * Don't claim this interrupt, return immediately.
2035 		 */
2036 		return (DDI_INTR_UNCLAIMED);
2037 	}
2038 }
2039 
2040 /*
2041  * e1000g_intr - ISR for PCI/PCI-X chipsets
2042  *
2043  * This interrupt service routine is for PCI/PCI-X adapters.
2044  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2045  * bit is set or not.
2046  */
2047 static uint_t
2048 e1000g_intr(caddr_t arg)
2049 {
2050 	struct e1000g *Adapter;
2051 	uint32_t icr;
2052 
2053 	Adapter = (struct e1000g *)(uintptr_t)arg;
2054 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2055 
2056 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2057 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2058 
2059 	if (icr) {
2060 		/*
2061 		 * Any bit was set in ICR:
2062 		 * Read(Clear) the ICR, claim this interrupt,
2063 		 * look for work to do.
2064 		 */
2065 		e1000g_intr_work(Adapter, icr);
2066 		return (DDI_INTR_CLAIMED);
2067 	} else {
2068 		/*
2069 		 * No bit was set in ICR:
2070 		 * Don't claim this interrupt, return immediately.
2071 		 */
2072 		return (DDI_INTR_UNCLAIMED);
2073 	}
2074 }
2075 
2076 /*
2077  * e1000g_intr_work - actual processing of ISR
2078  *
2079  * Read(clear) the ICR contents and call appropriate interrupt
2080  * processing routines.
2081  */
2082 static void
2083 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2084 {
2085 	struct e1000_hw *hw;
2086 	hw = &Adapter->shared;
2087 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2088 
2089 	Adapter->rx_pkt_cnt = 0;
2090 	Adapter->tx_pkt_cnt = 0;
2091 
2092 	rw_enter(&Adapter->chip_lock, RW_READER);
2093 
2094 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2095 		rw_exit(&Adapter->chip_lock);
2096 		return;
2097 	}
2098 	/*
2099 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2100 	 * ensure the receive routine will not execute when the adapter is
2101 	 * being reset.
2102 	 */
2103 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2104 		rw_exit(&Adapter->chip_lock);
2105 		return;
2106 	}
2107 
2108 	if (icr & E1000_ICR_RXT0) {
2109 		mblk_t			*mp = NULL;
2110 		mblk_t			*tail = NULL;
2111 		e1000g_rx_ring_t	*rx_ring;
2112 
2113 		rx_ring = Adapter->rx_ring;
2114 		mutex_enter(&rx_ring->rx_lock);
2115 		/*
2116 		 * Sometimes with legacy interrupts, it possible that
2117 		 * there is a single interrupt for Rx/Tx. In which
2118 		 * case, if poll flag is set, we shouldn't really
2119 		 * be doing Rx processing.
2120 		 */
2121 		if (!rx_ring->poll_flag)
2122 			mp = e1000g_receive(rx_ring, &tail,
2123 			    E1000G_CHAIN_NO_LIMIT);
2124 		mutex_exit(&rx_ring->rx_lock);
2125 		rw_exit(&Adapter->chip_lock);
2126 		if (mp != NULL)
2127 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2128 			    mp, rx_ring->ring_gen_num);
2129 	} else
2130 		rw_exit(&Adapter->chip_lock);
2131 
2132 	if (icr & E1000_ICR_TXDW) {
2133 		if (!Adapter->tx_intr_enable)
2134 			e1000g_clear_tx_interrupt(Adapter);
2135 
2136 		/* Recycle the tx descriptors */
2137 		rw_enter(&Adapter->chip_lock, RW_READER);
2138 		(void) e1000g_recycle(tx_ring);
2139 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2140 		rw_exit(&Adapter->chip_lock);
2141 
2142 		if (tx_ring->resched_needed &&
2143 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2144 			tx_ring->resched_needed = B_FALSE;
2145 			mac_tx_update(Adapter->mh);
2146 			E1000G_STAT(tx_ring->stat_reschedule);
2147 		}
2148 	}
2149 
2150 	/*
2151 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2152 	 * are checked to detect that the cable has been pulled out. For
2153 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2154 	 * are an indication that cable is not connected.
2155 	 */
2156 	if ((icr & E1000_ICR_RXSEQ) ||
2157 	    (icr & E1000_ICR_LSC) ||
2158 	    (icr & E1000_ICR_GPI_EN1)) {
2159 		boolean_t link_changed;
2160 		timeout_id_t tid = 0;
2161 
2162 		stop_watchdog_timer(Adapter);
2163 
2164 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2165 
2166 		/*
2167 		 * Because we got a link-status-change interrupt, force
2168 		 * e1000_check_for_link() to look at phy
2169 		 */
2170 		Adapter->shared.mac.get_link_status = B_TRUE;
2171 
2172 		/* e1000g_link_check takes care of link status change */
2173 		link_changed = e1000g_link_check(Adapter);
2174 
2175 		/* Get new phy state */
2176 		e1000g_get_phy_state(Adapter);
2177 
2178 		/*
2179 		 * If the link timer has not timed out, we'll not notify
2180 		 * the upper layer with any link state until the link is up.
2181 		 */
2182 		if (link_changed && !Adapter->link_complete) {
2183 			if (Adapter->link_state == LINK_STATE_UP) {
2184 				mutex_enter(&Adapter->link_lock);
2185 				Adapter->link_complete = B_TRUE;
2186 				tid = Adapter->link_tid;
2187 				Adapter->link_tid = 0;
2188 				mutex_exit(&Adapter->link_lock);
2189 			} else {
2190 				link_changed = B_FALSE;
2191 			}
2192 		}
2193 		rw_exit(&Adapter->chip_lock);
2194 
2195 		if (link_changed) {
2196 			if (tid != 0)
2197 				(void) untimeout(tid);
2198 
2199 			/*
2200 			 * Workaround for esb2. Data stuck in fifo on a link
2201 			 * down event. Stop receiver here and reset in watchdog.
2202 			 */
2203 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2204 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2205 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2206 				E1000_WRITE_REG(hw, E1000_RCTL,
2207 				    rctl & ~E1000_RCTL_EN);
2208 				e1000g_log(Adapter, CE_WARN,
2209 				    "ESB2 receiver disabled");
2210 				Adapter->esb2_workaround = B_TRUE;
2211 			}
2212 			if (!Adapter->reset_flag)
2213 				mac_link_update(Adapter->mh,
2214 				    Adapter->link_state);
2215 			if (Adapter->link_state == LINK_STATE_UP)
2216 				Adapter->reset_flag = B_FALSE;
2217 		}
2218 
2219 		start_watchdog_timer(Adapter);
2220 	}
2221 }
2222 
2223 static void
2224 e1000g_init_unicst(struct e1000g *Adapter)
2225 {
2226 	struct e1000_hw *hw;
2227 	int slot;
2228 
2229 	hw = &Adapter->shared;
2230 
2231 	if (Adapter->init_count == 0) {
2232 		/* Initialize the multiple unicast addresses */
2233 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2234 
2235 		/* Workaround for an erratum of 82571 chipst */
2236 		if ((hw->mac.type == e1000_82571) &&
2237 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2238 			Adapter->unicst_total--;
2239 
2240 		Adapter->unicst_avail = Adapter->unicst_total;
2241 
2242 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2243 			/* Clear both the flag and MAC address */
2244 			Adapter->unicst_addr[slot].reg.high = 0;
2245 			Adapter->unicst_addr[slot].reg.low = 0;
2246 		}
2247 	} else {
2248 		/* Workaround for an erratum of 82571 chipst */
2249 		if ((hw->mac.type == e1000_82571) &&
2250 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2251 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2252 
2253 		/* Re-configure the RAR registers */
2254 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2255 			if (Adapter->unicst_addr[slot].mac.set == 1)
2256 				e1000_rar_set(hw,
2257 				    Adapter->unicst_addr[slot].mac.addr, slot);
2258 	}
2259 
2260 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2261 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2262 }
2263 
2264 static int
2265 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2266     int slot)
2267 {
2268 	struct e1000_hw *hw;
2269 
2270 	hw = &Adapter->shared;
2271 
2272 	/*
2273 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2274 	 * that requires the receiver to be in reset when any of the
2275 	 * receive address registers (RAR regs) are accessed.  The first
2276 	 * rev of Wiseman silicon also requires MWI to be disabled when
2277 	 * a global reset or a receive reset is issued.  So before we
2278 	 * initialize the RARs, we check the rev of the Wiseman controller
2279 	 * and work around any necessary HW errata.
2280 	 */
2281 	if ((hw->mac.type == e1000_82542) &&
2282 	    (hw->revision_id == E1000_REVISION_2)) {
2283 		e1000_pci_clear_mwi(hw);
2284 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2285 		msec_delay(5);
2286 	}
2287 	if (mac_addr == NULL) {
2288 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2289 		E1000_WRITE_FLUSH(hw);
2290 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2291 		E1000_WRITE_FLUSH(hw);
2292 		/* Clear both the flag and MAC address */
2293 		Adapter->unicst_addr[slot].reg.high = 0;
2294 		Adapter->unicst_addr[slot].reg.low = 0;
2295 	} else {
2296 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2297 		    ETHERADDRL);
2298 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2299 		Adapter->unicst_addr[slot].mac.set = 1;
2300 	}
2301 
2302 	/* Workaround for an erratum of 82571 chipst */
2303 	if (slot == 0) {
2304 		if ((hw->mac.type == e1000_82571) &&
2305 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2306 			if (mac_addr == NULL) {
2307 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2308 				    slot << 1, 0);
2309 				E1000_WRITE_FLUSH(hw);
2310 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2311 				    (slot << 1) + 1, 0);
2312 				E1000_WRITE_FLUSH(hw);
2313 			} else {
2314 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2315 				    LAST_RAR_ENTRY);
2316 			}
2317 	}
2318 
2319 	/*
2320 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2321 	 * put the receive in reset, and disabled MWI, to work around some
2322 	 * HW errata.  Now we should take the receiver out of reset, and
2323 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2324 	 */
2325 	if ((hw->mac.type == e1000_82542) &&
2326 	    (hw->revision_id == E1000_REVISION_2)) {
2327 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2328 		msec_delay(1);
2329 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2330 			e1000_pci_set_mwi(hw);
2331 		e1000g_rx_setup(Adapter);
2332 	}
2333 
2334 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2335 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2336 		return (EIO);
2337 	}
2338 
2339 	return (0);
2340 }
2341 
2342 static int
2343 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2344 {
2345 	struct e1000_hw *hw = &Adapter->shared;
2346 	int res = 0;
2347 
2348 	if ((multiaddr[0] & 01) == 0) {
2349 		res = EINVAL;
2350 		goto done;
2351 	}
2352 
2353 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2354 		res = ENOENT;
2355 		goto done;
2356 	}
2357 
2358 	bcopy(multiaddr,
2359 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2360 	Adapter->mcast_count++;
2361 
2362 	/*
2363 	 * Update the MC table in the hardware
2364 	 */
2365 	e1000g_clear_interrupt(Adapter);
2366 
2367 	e1000g_setup_multicast(Adapter);
2368 
2369 	if ((hw->mac.type == e1000_82542) &&
2370 	    (hw->revision_id == E1000_REVISION_2))
2371 		e1000g_rx_setup(Adapter);
2372 
2373 	e1000g_mask_interrupt(Adapter);
2374 
2375 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2376 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2377 		res = EIO;
2378 	}
2379 
2380 done:
2381 	return (res);
2382 }
2383 
2384 static int
2385 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2386 {
2387 	struct e1000_hw *hw = &Adapter->shared;
2388 	unsigned i;
2389 
2390 	for (i = 0; i < Adapter->mcast_count; i++) {
2391 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2392 		    ETHERADDRL) == 0) {
2393 			for (i++; i < Adapter->mcast_count; i++) {
2394 				Adapter->mcast_table[i - 1] =
2395 				    Adapter->mcast_table[i];
2396 			}
2397 			Adapter->mcast_count--;
2398 			break;
2399 		}
2400 	}
2401 
2402 	/*
2403 	 * Update the MC table in the hardware
2404 	 */
2405 	e1000g_clear_interrupt(Adapter);
2406 
2407 	e1000g_setup_multicast(Adapter);
2408 
2409 	if ((hw->mac.type == e1000_82542) &&
2410 	    (hw->revision_id == E1000_REVISION_2))
2411 		e1000g_rx_setup(Adapter);
2412 
2413 	e1000g_mask_interrupt(Adapter);
2414 
2415 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2416 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2417 		return (EIO);
2418 	}
2419 
2420 	return (0);
2421 }
2422 
2423 /*
2424  * e1000g_setup_multicast - setup multicast data structures
2425  *
2426  * This routine initializes all of the multicast related structures.
2427  */
2428 void
2429 e1000g_setup_multicast(struct e1000g *Adapter)
2430 {
2431 	uint8_t *mc_addr_list;
2432 	uint32_t mc_addr_count;
2433 	uint32_t rctl;
2434 	struct e1000_hw *hw;
2435 
2436 	hw = &Adapter->shared;
2437 
2438 	/*
2439 	 * The e1000g has the ability to do perfect filtering of 16
2440 	 * addresses. The driver uses one of the e1000g's 16 receive
2441 	 * address registers for its node/network/mac/individual address.
2442 	 * So, we have room for up to 15 multicast addresses in the CAM,
2443 	 * additional MC addresses are handled by the MTA (Multicast Table
2444 	 * Array)
2445 	 */
2446 
2447 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2448 
2449 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2450 
2451 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2452 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2453 		    "Adapter requested more than %d MC Addresses.\n",
2454 		    MAX_NUM_MULTICAST_ADDRESSES);
2455 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2456 	} else {
2457 		/*
2458 		 * Set the number of MC addresses that we are being
2459 		 * requested to use
2460 		 */
2461 		mc_addr_count = Adapter->mcast_count;
2462 	}
2463 	/*
2464 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2465 	 * hang  while writing to the receive address registers if the receiver
2466 	 * is not in reset before writing to the registers. Updating the RAR
2467 	 * is done during the setting up of the multicast table, hence the
2468 	 * receiver has to be put in reset before updating the multicast table
2469 	 * and then taken out of reset at the end
2470 	 */
2471 	/*
2472 	 * if WMI was enabled then dis able it before issueing the global
2473 	 * reset to the hardware.
2474 	 */
2475 	/*
2476 	 * Only required for WISEMAN_2_0
2477 	 */
2478 	if ((hw->mac.type == e1000_82542) &&
2479 	    (hw->revision_id == E1000_REVISION_2)) {
2480 		e1000_pci_clear_mwi(hw);
2481 		/*
2482 		 * The e1000g must be in reset before changing any RA
2483 		 * registers. Reset receive unit.  The chip will remain in
2484 		 * the reset state until software explicitly restarts it.
2485 		 */
2486 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2487 		/* Allow receiver time to go in to reset */
2488 		msec_delay(5);
2489 	}
2490 
2491 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2492 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2493 
2494 	/*
2495 	 * Only for Wiseman_2_0
2496 	 * If MWI was enabled then re-enable it after issueing (as we
2497 	 * disabled it up there) the receive reset command.
2498 	 * Wainwright does not have a receive reset command and only thing
2499 	 * close to it is global reset which will require tx setup also
2500 	 */
2501 	if ((hw->mac.type == e1000_82542) &&
2502 	    (hw->revision_id == E1000_REVISION_2)) {
2503 		/*
2504 		 * if WMI was enabled then reenable it after issueing the
2505 		 * global or receive reset to the hardware.
2506 		 */
2507 
2508 		/*
2509 		 * Take receiver out of reset
2510 		 * clear E1000_RCTL_RST bit (and all others)
2511 		 */
2512 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2513 		msec_delay(5);
2514 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2515 			e1000_pci_set_mwi(hw);
2516 	}
2517 
2518 	/*
2519 	 * Restore original value
2520 	 */
2521 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2522 }
2523 
2524 int
2525 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2526 {
2527 	struct e1000g *Adapter = (struct e1000g *)arg;
2528 	int result;
2529 
2530 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2531 
2532 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2533 		result = ECANCELED;
2534 		goto done;
2535 	}
2536 
2537 	result = (add) ? multicst_add(Adapter, addr)
2538 	    : multicst_remove(Adapter, addr);
2539 
2540 done:
2541 	rw_exit(&Adapter->chip_lock);
2542 	return (result);
2543 
2544 }
2545 
2546 int
2547 e1000g_m_promisc(void *arg, boolean_t on)
2548 {
2549 	struct e1000g *Adapter = (struct e1000g *)arg;
2550 	uint32_t rctl;
2551 
2552 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2553 
2554 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2555 		rw_exit(&Adapter->chip_lock);
2556 		return (ECANCELED);
2557 	}
2558 
2559 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2560 
2561 	if (on)
2562 		rctl |=
2563 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2564 	else
2565 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2566 
2567 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2568 
2569 	Adapter->e1000g_promisc = on;
2570 
2571 	rw_exit(&Adapter->chip_lock);
2572 
2573 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2574 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2575 		return (EIO);
2576 	}
2577 
2578 	return (0);
2579 }
2580 
2581 /*
2582  * Entry points to enable and disable interrupts at the granularity of
2583  * a group.
2584  * Turns the poll_mode for the whole adapter on and off to enable or
2585  * override the ring level polling control over the hardware interrupts.
2586  */
2587 static int
2588 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2589 {
2590 	struct e1000g		*adapter = (struct e1000g *)arg;
2591 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2592 
2593 	/*
2594 	 * Later interrupts at the granularity of the this ring will
2595 	 * invoke mac_rx() with NULL, indicating the need for another
2596 	 * software classification.
2597 	 * We have a single ring usable per adapter now, so we only need to
2598 	 * reset the rx handle for that one.
2599 	 * When more RX rings can be used, we should update each one of them.
2600 	 */
2601 	mutex_enter(&rx_ring->rx_lock);
2602 	rx_ring->mrh = NULL;
2603 	adapter->poll_mode = B_FALSE;
2604 	mutex_exit(&rx_ring->rx_lock);
2605 	return (0);
2606 }
2607 
2608 static int
2609 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2610 {
2611 	struct e1000g *adapter = (struct e1000g *)arg;
2612 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2613 
2614 	mutex_enter(&rx_ring->rx_lock);
2615 
2616 	/*
2617 	 * Later interrupts at the granularity of the this ring will
2618 	 * invoke mac_rx() with the handle for this ring;
2619 	 */
2620 	adapter->poll_mode = B_TRUE;
2621 	rx_ring->mrh = rx_ring->mrh_init;
2622 	mutex_exit(&rx_ring->rx_lock);
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Entry points to enable and disable interrupts at the granularity of
2628  * a ring.
2629  * adapter poll_mode controls whether we actually proceed with hardware
2630  * interrupt toggling.
2631  */
2632 static int
2633 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2634 {
2635 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2636 	struct e1000g 		*adapter = rx_ring->adapter;
2637 	struct e1000_hw 	*hw = &adapter->shared;
2638 	uint32_t		intr_mask;
2639 
2640 	rw_enter(&adapter->chip_lock, RW_READER);
2641 
2642 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2643 		rw_exit(&adapter->chip_lock);
2644 		return (0);
2645 	}
2646 
2647 	mutex_enter(&rx_ring->rx_lock);
2648 	rx_ring->poll_flag = 0;
2649 	mutex_exit(&rx_ring->rx_lock);
2650 
2651 	/* Rx interrupt enabling for MSI and legacy */
2652 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2653 	intr_mask |= E1000_IMS_RXT0;
2654 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2655 	E1000_WRITE_FLUSH(hw);
2656 
2657 	/* Trigger a Rx interrupt to check Rx ring */
2658 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2659 	E1000_WRITE_FLUSH(hw);
2660 
2661 	rw_exit(&adapter->chip_lock);
2662 	return (0);
2663 }
2664 
2665 static int
2666 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2667 {
2668 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2669 	struct e1000g 		*adapter = rx_ring->adapter;
2670 	struct e1000_hw 	*hw = &adapter->shared;
2671 
2672 	rw_enter(&adapter->chip_lock, RW_READER);
2673 
2674 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2675 		rw_exit(&adapter->chip_lock);
2676 		return (0);
2677 	}
2678 	mutex_enter(&rx_ring->rx_lock);
2679 	rx_ring->poll_flag = 1;
2680 	mutex_exit(&rx_ring->rx_lock);
2681 
2682 	/* Rx interrupt disabling for MSI and legacy */
2683 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2684 	E1000_WRITE_FLUSH(hw);
2685 
2686 	rw_exit(&adapter->chip_lock);
2687 	return (0);
2688 }
2689 
2690 /*
2691  * e1000g_unicst_find - Find the slot for the specified unicast address
2692  */
2693 static int
2694 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2695 {
2696 	int slot;
2697 
2698 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2699 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2700 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2701 		    mac_addr, ETHERADDRL) == 0))
2702 				return (slot);
2703 	}
2704 
2705 	return (-1);
2706 }
2707 
2708 /*
2709  * Entry points to add and remove a MAC address to a ring group.
2710  * The caller takes care of adding and removing the MAC addresses
2711  * to the filter via these two routines.
2712  */
2713 
2714 static int
2715 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2716 {
2717 	struct e1000g *Adapter = (struct e1000g *)arg;
2718 	int slot, err;
2719 
2720 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2721 
2722 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2723 		rw_exit(&Adapter->chip_lock);
2724 		return (ECANCELED);
2725 	}
2726 
2727 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2728 		/* The same address is already in slot */
2729 		rw_exit(&Adapter->chip_lock);
2730 		return (0);
2731 	}
2732 
2733 	if (Adapter->unicst_avail == 0) {
2734 		/* no slots available */
2735 		rw_exit(&Adapter->chip_lock);
2736 		return (ENOSPC);
2737 	}
2738 
2739 	/* Search for a free slot */
2740 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2741 		if (Adapter->unicst_addr[slot].mac.set == 0)
2742 			break;
2743 	}
2744 	ASSERT(slot < Adapter->unicst_total);
2745 
2746 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2747 	if (err == 0)
2748 		Adapter->unicst_avail--;
2749 
2750 	rw_exit(&Adapter->chip_lock);
2751 
2752 	return (err);
2753 }
2754 
2755 static int
2756 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2757 {
2758 	struct e1000g *Adapter = (struct e1000g *)arg;
2759 	int slot, err;
2760 
2761 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2762 
2763 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2764 		rw_exit(&Adapter->chip_lock);
2765 		return (ECANCELED);
2766 	}
2767 
2768 	slot = e1000g_unicst_find(Adapter, mac_addr);
2769 	if (slot == -1) {
2770 		rw_exit(&Adapter->chip_lock);
2771 		return (EINVAL);
2772 	}
2773 
2774 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2775 
2776 	/* Clear this slot */
2777 	err = e1000g_unicst_set(Adapter, NULL, slot);
2778 	if (err == 0)
2779 		Adapter->unicst_avail++;
2780 
2781 	rw_exit(&Adapter->chip_lock);
2782 
2783 	return (err);
2784 }
2785 
2786 static int
2787 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2788 {
2789 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2790 
2791 	mutex_enter(&rx_ring->rx_lock);
2792 	rx_ring->ring_gen_num = mr_gen_num;
2793 	mutex_exit(&rx_ring->rx_lock);
2794 	return (0);
2795 }
2796 
2797 /*
2798  * Callback funtion for MAC layer to register all rings.
2799  *
2800  * The hardware supports a single group with currently only one ring
2801  * available.
2802  * Though not offering virtualization ability per se, exposing the
2803  * group/ring still enables the polling and interrupt toggling.
2804  */
2805 void
2806 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2807     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2808 {
2809 	struct e1000g *Adapter = (struct e1000g *)arg;
2810 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2811 	mac_intr_t *mintr;
2812 
2813 	/*
2814 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2815 	 * ask for any thing else.
2816 	 */
2817 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2818 
2819 	rx_ring->mrh = rx_ring->mrh_init = rh;
2820 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2821 	infop->mri_start = e1000g_ring_start;
2822 	infop->mri_stop = NULL;
2823 	infop->mri_poll = e1000g_poll_ring;
2824 
2825 	/* Ring level interrupts */
2826 	mintr = &infop->mri_intr;
2827 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2828 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2829 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2830 }
2831 
2832 static void
2833 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2834     mac_group_info_t *infop, mac_group_handle_t gh)
2835 {
2836 	struct e1000g *Adapter = (struct e1000g *)arg;
2837 	mac_intr_t *mintr;
2838 
2839 	/*
2840 	 * We advertised a single RX ring. Getting a request for anything else
2841 	 * signifies a bug in the MAC framework.
2842 	 */
2843 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2844 
2845 	Adapter->rx_group = gh;
2846 
2847 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2848 	infop->mgi_start = NULL;
2849 	infop->mgi_stop = NULL;
2850 	infop->mgi_addmac = e1000g_addmac;
2851 	infop->mgi_remmac = e1000g_remmac;
2852 	infop->mgi_count = 1;
2853 
2854 	/* Group level interrupts */
2855 	mintr = &infop->mgi_intr;
2856 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2857 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2858 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2859 }
2860 
2861 static boolean_t
2862 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2863 {
2864 	struct e1000g *Adapter = (struct e1000g *)arg;
2865 
2866 	switch (cap) {
2867 	case MAC_CAPAB_HCKSUM: {
2868 		uint32_t *txflags = cap_data;
2869 
2870 		if (Adapter->tx_hcksum_enable)
2871 			*txflags = HCKSUM_IPHDRCKSUM |
2872 			    HCKSUM_INET_PARTIAL;
2873 		else
2874 			return (B_FALSE);
2875 		break;
2876 	}
2877 
2878 	case MAC_CAPAB_LSO: {
2879 		mac_capab_lso_t *cap_lso = cap_data;
2880 
2881 		if (Adapter->lso_enable) {
2882 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2883 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2884 			    E1000_LSO_MAXLEN;
2885 		} else
2886 			return (B_FALSE);
2887 		break;
2888 	}
2889 	case MAC_CAPAB_RINGS: {
2890 		mac_capab_rings_t *cap_rings = cap_data;
2891 
2892 		/* No TX rings exposed yet */
2893 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
2894 			return (B_FALSE);
2895 
2896 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2897 		cap_rings->mr_rnum = 1;
2898 		cap_rings->mr_gnum = 1;
2899 		cap_rings->mr_rget = e1000g_fill_ring;
2900 		cap_rings->mr_gget = e1000g_fill_group;
2901 		break;
2902 	}
2903 	default:
2904 		return (B_FALSE);
2905 	}
2906 	return (B_TRUE);
2907 }
2908 
2909 static boolean_t
2910 e1000g_param_locked(mac_prop_id_t pr_num)
2911 {
2912 	/*
2913 	 * All en_* parameters are locked (read-only) while
2914 	 * the device is in any sort of loopback mode ...
2915 	 */
2916 	switch (pr_num) {
2917 		case MAC_PROP_EN_1000FDX_CAP:
2918 		case MAC_PROP_EN_1000HDX_CAP:
2919 		case MAC_PROP_EN_100FDX_CAP:
2920 		case MAC_PROP_EN_100HDX_CAP:
2921 		case MAC_PROP_EN_10FDX_CAP:
2922 		case MAC_PROP_EN_10HDX_CAP:
2923 		case MAC_PROP_AUTONEG:
2924 		case MAC_PROP_FLOWCTRL:
2925 			return (B_TRUE);
2926 	}
2927 	return (B_FALSE);
2928 }
2929 
2930 /*
2931  * callback function for set/get of properties
2932  */
2933 static int
2934 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2935     uint_t pr_valsize, const void *pr_val)
2936 {
2937 	struct e1000g *Adapter = arg;
2938 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2939 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2940 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2941 	int err = 0;
2942 	link_flowctrl_t flowctrl;
2943 	uint32_t cur_mtu, new_mtu;
2944 	uint64_t tmp = 0;
2945 
2946 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2947 
2948 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2949 		rw_exit(&Adapter->chip_lock);
2950 		return (ECANCELED);
2951 	}
2952 
2953 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2954 	    e1000g_param_locked(pr_num)) {
2955 		/*
2956 		 * All en_* parameters are locked (read-only)
2957 		 * while the device is in any sort of loopback mode.
2958 		 */
2959 		rw_exit(&Adapter->chip_lock);
2960 		return (EBUSY);
2961 	}
2962 
2963 	switch (pr_num) {
2964 		case MAC_PROP_EN_1000FDX_CAP:
2965 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2966 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2967 			goto reset;
2968 		case MAC_PROP_EN_100FDX_CAP:
2969 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2970 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2971 			goto reset;
2972 		case MAC_PROP_EN_100HDX_CAP:
2973 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2974 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2975 			goto reset;
2976 		case MAC_PROP_EN_10FDX_CAP:
2977 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2978 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2979 			goto reset;
2980 		case MAC_PROP_EN_10HDX_CAP:
2981 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2982 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2983 			goto reset;
2984 		case MAC_PROP_AUTONEG:
2985 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2986 			goto reset;
2987 		case MAC_PROP_FLOWCTRL:
2988 			fc->send_xon = B_TRUE;
2989 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2990 
2991 			switch (flowctrl) {
2992 			default:
2993 				err = EINVAL;
2994 				break;
2995 			case LINK_FLOWCTRL_NONE:
2996 				fc->requested_mode = e1000_fc_none;
2997 				break;
2998 			case LINK_FLOWCTRL_RX:
2999 				fc->requested_mode = e1000_fc_rx_pause;
3000 				break;
3001 			case LINK_FLOWCTRL_TX:
3002 				fc->requested_mode = e1000_fc_tx_pause;
3003 				break;
3004 			case LINK_FLOWCTRL_BI:
3005 				fc->requested_mode = e1000_fc_full;
3006 				break;
3007 			}
3008 reset:
3009 			if (err == 0) {
3010 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3011 					err = EINVAL;
3012 			}
3013 			break;
3014 		case MAC_PROP_ADV_1000FDX_CAP:
3015 		case MAC_PROP_ADV_1000HDX_CAP:
3016 		case MAC_PROP_ADV_100FDX_CAP:
3017 		case MAC_PROP_ADV_100HDX_CAP:
3018 		case MAC_PROP_ADV_10FDX_CAP:
3019 		case MAC_PROP_ADV_10HDX_CAP:
3020 		case MAC_PROP_EN_1000HDX_CAP:
3021 		case MAC_PROP_STATUS:
3022 		case MAC_PROP_SPEED:
3023 		case MAC_PROP_DUPLEX:
3024 			err = ENOTSUP; /* read-only prop. Can't set this. */
3025 			break;
3026 		case MAC_PROP_MTU:
3027 			cur_mtu = Adapter->default_mtu;
3028 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3029 			if (new_mtu == cur_mtu) {
3030 				err = 0;
3031 				break;
3032 			}
3033 
3034 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
3035 			    ETHERFCSL;
3036 			if ((tmp < DEFAULT_FRAME_SIZE) ||
3037 			    (tmp > MAXIMUM_FRAME_SIZE)) {
3038 				err = EINVAL;
3039 				break;
3040 			}
3041 
3042 			/* ich8 does not support jumbo frames */
3043 			if ((mac->type == e1000_ich8lan) &&
3044 			    (tmp > DEFAULT_FRAME_SIZE)) {
3045 				err = EINVAL;
3046 				break;
3047 			}
3048 			/* ich9 does not do jumbo frames on one phy type */
3049 			if ((mac->type == e1000_ich9lan) &&
3050 			    (phy->type == e1000_phy_ife) &&
3051 			    (tmp > DEFAULT_FRAME_SIZE)) {
3052 				err = EINVAL;
3053 				break;
3054 			}
3055 			if (Adapter->e1000g_state & E1000G_STARTED) {
3056 				err = EBUSY;
3057 				break;
3058 			}
3059 
3060 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3061 			if (err == 0) {
3062 				Adapter->max_frame_size = (uint32_t)tmp;
3063 				Adapter->default_mtu = new_mtu;
3064 				e1000g_set_bufsize(Adapter);
3065 			}
3066 			break;
3067 		case MAC_PROP_PRIVATE:
3068 			err = e1000g_set_priv_prop(Adapter, pr_name,
3069 			    pr_valsize, pr_val);
3070 			break;
3071 		default:
3072 			err = ENOTSUP;
3073 			break;
3074 	}
3075 	rw_exit(&Adapter->chip_lock);
3076 	return (err);
3077 }
3078 
3079 static int
3080 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3081     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3082 {
3083 	struct e1000g *Adapter = arg;
3084 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3085 	int err = 0;
3086 	link_flowctrl_t flowctrl;
3087 	uint64_t tmp = 0;
3088 
3089 	if (pr_valsize == 0)
3090 		return (EINVAL);
3091 
3092 	*perm = MAC_PROP_PERM_RW;
3093 
3094 	bzero(pr_val, pr_valsize);
3095 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3096 		return (e1000g_get_def_val(Adapter, pr_num,
3097 		    pr_valsize, pr_val));
3098 	}
3099 
3100 	switch (pr_num) {
3101 		case MAC_PROP_DUPLEX:
3102 			*perm = MAC_PROP_PERM_READ;
3103 			if (pr_valsize >= sizeof (link_duplex_t)) {
3104 				bcopy(&Adapter->link_duplex, pr_val,
3105 				    sizeof (link_duplex_t));
3106 			} else
3107 				err = EINVAL;
3108 			break;
3109 		case MAC_PROP_SPEED:
3110 			*perm = MAC_PROP_PERM_READ;
3111 			if (pr_valsize >= sizeof (uint64_t)) {
3112 				tmp = Adapter->link_speed * 1000000ull;
3113 				bcopy(&tmp, pr_val, sizeof (tmp));
3114 			} else
3115 				err = EINVAL;
3116 			break;
3117 		case MAC_PROP_AUTONEG:
3118 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3119 			break;
3120 		case MAC_PROP_FLOWCTRL:
3121 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3122 				switch (fc->current_mode) {
3123 					case e1000_fc_none:
3124 						flowctrl = LINK_FLOWCTRL_NONE;
3125 						break;
3126 					case e1000_fc_rx_pause:
3127 						flowctrl = LINK_FLOWCTRL_RX;
3128 						break;
3129 					case e1000_fc_tx_pause:
3130 						flowctrl = LINK_FLOWCTRL_TX;
3131 						break;
3132 					case e1000_fc_full:
3133 						flowctrl = LINK_FLOWCTRL_BI;
3134 						break;
3135 				}
3136 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3137 			} else
3138 				err = EINVAL;
3139 			break;
3140 		case MAC_PROP_ADV_1000FDX_CAP:
3141 			*perm = MAC_PROP_PERM_READ;
3142 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3143 			break;
3144 		case MAC_PROP_EN_1000FDX_CAP:
3145 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3146 			break;
3147 		case MAC_PROP_ADV_1000HDX_CAP:
3148 			*perm = MAC_PROP_PERM_READ;
3149 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3150 			break;
3151 		case MAC_PROP_EN_1000HDX_CAP:
3152 			*perm = MAC_PROP_PERM_READ;
3153 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3154 			break;
3155 		case MAC_PROP_ADV_100FDX_CAP:
3156 			*perm = MAC_PROP_PERM_READ;
3157 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3158 			break;
3159 		case MAC_PROP_EN_100FDX_CAP:
3160 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3161 			break;
3162 		case MAC_PROP_ADV_100HDX_CAP:
3163 			*perm = MAC_PROP_PERM_READ;
3164 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3165 			break;
3166 		case MAC_PROP_EN_100HDX_CAP:
3167 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3168 			break;
3169 		case MAC_PROP_ADV_10FDX_CAP:
3170 			*perm = MAC_PROP_PERM_READ;
3171 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3172 			break;
3173 		case MAC_PROP_EN_10FDX_CAP:
3174 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3175 			break;
3176 		case MAC_PROP_ADV_10HDX_CAP:
3177 			*perm = MAC_PROP_PERM_READ;
3178 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3179 			break;
3180 		case MAC_PROP_EN_10HDX_CAP:
3181 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3182 			break;
3183 		case MAC_PROP_ADV_100T4_CAP:
3184 		case MAC_PROP_EN_100T4_CAP:
3185 			*perm = MAC_PROP_PERM_READ;
3186 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3187 			break;
3188 		case MAC_PROP_PRIVATE:
3189 			err = e1000g_get_priv_prop(Adapter, pr_name,
3190 			    pr_flags, pr_valsize, pr_val, perm);
3191 			break;
3192 		default:
3193 			err = ENOTSUP;
3194 			break;
3195 	}
3196 	return (err);
3197 }
3198 
3199 /* ARGSUSED2 */
3200 static int
3201 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3202     uint_t pr_valsize, const void *pr_val)
3203 {
3204 	int err = 0;
3205 	long result;
3206 	struct e1000_hw *hw = &Adapter->shared;
3207 
3208 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3209 		if (pr_val == NULL) {
3210 			err = EINVAL;
3211 			return (err);
3212 		}
3213 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3214 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3215 		    result > MAX_TX_BCOPY_THRESHOLD)
3216 			err = EINVAL;
3217 		else {
3218 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3219 		}
3220 		return (err);
3221 	}
3222 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3223 		if (pr_val == NULL) {
3224 			err = EINVAL;
3225 			return (err);
3226 		}
3227 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3228 		if (result < 0 || result > 1)
3229 			err = EINVAL;
3230 		else {
3231 			Adapter->tx_intr_enable = (result == 1) ?
3232 			    B_TRUE: B_FALSE;
3233 			if (Adapter->tx_intr_enable)
3234 				e1000g_mask_tx_interrupt(Adapter);
3235 			else
3236 				e1000g_clear_tx_interrupt(Adapter);
3237 			if (e1000g_check_acc_handle(
3238 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3239 				ddi_fm_service_impact(Adapter->dip,
3240 				    DDI_SERVICE_DEGRADED);
3241 		}
3242 		return (err);
3243 	}
3244 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3245 		if (pr_val == NULL) {
3246 			err = EINVAL;
3247 			return (err);
3248 		}
3249 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3250 		if (result < MIN_TX_INTR_DELAY ||
3251 		    result > MAX_TX_INTR_DELAY)
3252 			err = EINVAL;
3253 		else {
3254 			Adapter->tx_intr_delay = (uint32_t)result;
3255 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3256 			if (e1000g_check_acc_handle(
3257 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3258 				ddi_fm_service_impact(Adapter->dip,
3259 				    DDI_SERVICE_DEGRADED);
3260 		}
3261 		return (err);
3262 	}
3263 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3264 		if (pr_val == NULL) {
3265 			err = EINVAL;
3266 			return (err);
3267 		}
3268 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3269 		if (result < MIN_TX_INTR_ABS_DELAY ||
3270 		    result > MAX_TX_INTR_ABS_DELAY)
3271 			err = EINVAL;
3272 		else {
3273 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3274 			E1000_WRITE_REG(hw, E1000_TADV,
3275 			    Adapter->tx_intr_abs_delay);
3276 			if (e1000g_check_acc_handle(
3277 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3278 				ddi_fm_service_impact(Adapter->dip,
3279 				    DDI_SERVICE_DEGRADED);
3280 		}
3281 		return (err);
3282 	}
3283 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3284 		if (pr_val == NULL) {
3285 			err = EINVAL;
3286 			return (err);
3287 		}
3288 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3289 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3290 		    result > MAX_RX_BCOPY_THRESHOLD)
3291 			err = EINVAL;
3292 		else
3293 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3294 		return (err);
3295 	}
3296 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3297 		if (pr_val == NULL) {
3298 			err = EINVAL;
3299 			return (err);
3300 		}
3301 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3302 		if (result < MIN_RX_LIMIT_ON_INTR ||
3303 		    result > MAX_RX_LIMIT_ON_INTR)
3304 			err = EINVAL;
3305 		else
3306 			Adapter->rx_limit_onintr = (uint32_t)result;
3307 		return (err);
3308 	}
3309 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3310 		if (pr_val == NULL) {
3311 			err = EINVAL;
3312 			return (err);
3313 		}
3314 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3315 		if (result < MIN_RX_INTR_DELAY ||
3316 		    result > MAX_RX_INTR_DELAY)
3317 			err = EINVAL;
3318 		else {
3319 			Adapter->rx_intr_delay = (uint32_t)result;
3320 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3321 			if (e1000g_check_acc_handle(
3322 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3323 				ddi_fm_service_impact(Adapter->dip,
3324 				    DDI_SERVICE_DEGRADED);
3325 		}
3326 		return (err);
3327 	}
3328 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3329 		if (pr_val == NULL) {
3330 			err = EINVAL;
3331 			return (err);
3332 		}
3333 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3334 		if (result < MIN_RX_INTR_ABS_DELAY ||
3335 		    result > MAX_RX_INTR_ABS_DELAY)
3336 			err = EINVAL;
3337 		else {
3338 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3339 			E1000_WRITE_REG(hw, E1000_RADV,
3340 			    Adapter->rx_intr_abs_delay);
3341 			if (e1000g_check_acc_handle(
3342 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3343 				ddi_fm_service_impact(Adapter->dip,
3344 				    DDI_SERVICE_DEGRADED);
3345 		}
3346 		return (err);
3347 	}
3348 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3349 		if (pr_val == NULL) {
3350 			err = EINVAL;
3351 			return (err);
3352 		}
3353 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3354 		if (result < MIN_INTR_THROTTLING ||
3355 		    result > MAX_INTR_THROTTLING)
3356 			err = EINVAL;
3357 		else {
3358 			if (hw->mac.type >= e1000_82540) {
3359 				Adapter->intr_throttling_rate =
3360 				    (uint32_t)result;
3361 				E1000_WRITE_REG(hw, E1000_ITR,
3362 				    Adapter->intr_throttling_rate);
3363 				if (e1000g_check_acc_handle(
3364 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3365 					ddi_fm_service_impact(Adapter->dip,
3366 					    DDI_SERVICE_DEGRADED);
3367 			} else
3368 				err = EINVAL;
3369 		}
3370 		return (err);
3371 	}
3372 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3373 		if (pr_val == NULL) {
3374 			err = EINVAL;
3375 			return (err);
3376 		}
3377 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3378 		if (result < 0 || result > 1)
3379 			err = EINVAL;
3380 		else {
3381 			if (hw->mac.type >= e1000_82540) {
3382 				Adapter->intr_adaptive = (result == 1) ?
3383 				    B_TRUE : B_FALSE;
3384 			} else {
3385 				err = EINVAL;
3386 			}
3387 		}
3388 		return (err);
3389 	}
3390 	return (ENOTSUP);
3391 }
3392 
3393 static int
3394 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3395     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3396 {
3397 	int err = ENOTSUP;
3398 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3399 	int value;
3400 
3401 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3402 		*perm = MAC_PROP_PERM_READ;
3403 		if (is_default)
3404 			goto done;
3405 		value = Adapter->param_adv_pause;
3406 		err = 0;
3407 		goto done;
3408 	}
3409 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3410 		*perm = MAC_PROP_PERM_READ;
3411 		if (is_default)
3412 			goto done;
3413 		value = Adapter->param_adv_asym_pause;
3414 		err = 0;
3415 		goto done;
3416 	}
3417 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3418 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3419 		    Adapter->tx_bcopy_thresh);
3420 		err = 0;
3421 		goto done;
3422 	}
3423 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3424 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3425 		    Adapter->tx_intr_enable);
3426 		err = 0;
3427 		goto done;
3428 	}
3429 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3430 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3431 		    Adapter->tx_intr_delay);
3432 		err = 0;
3433 		goto done;
3434 	}
3435 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3436 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3437 		    Adapter->tx_intr_abs_delay);
3438 		err = 0;
3439 		goto done;
3440 	}
3441 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3442 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3443 		    Adapter->rx_bcopy_thresh);
3444 		err = 0;
3445 		goto done;
3446 	}
3447 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3448 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3449 		    Adapter->rx_limit_onintr);
3450 		err = 0;
3451 		goto done;
3452 	}
3453 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3454 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3455 		    Adapter->rx_intr_delay);
3456 		err = 0;
3457 		goto done;
3458 	}
3459 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3460 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3461 		    Adapter->rx_intr_abs_delay);
3462 		err = 0;
3463 		goto done;
3464 	}
3465 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3466 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3467 		    Adapter->intr_throttling_rate);
3468 		err = 0;
3469 		goto done;
3470 	}
3471 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3472 		value = (is_default ? 1 : Adapter->intr_adaptive);
3473 		err = 0;
3474 		goto done;
3475 	}
3476 done:
3477 	if (err == 0) {
3478 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3479 	}
3480 	return (err);
3481 }
3482 
3483 /*
3484  * e1000g_get_conf - get configurations set in e1000g.conf
3485  * This routine gets user-configured values out of the configuration
3486  * file e1000g.conf.
3487  *
3488  * For each configurable value, there is a minimum, a maximum, and a
3489  * default.
3490  * If user does not configure a value, use the default.
3491  * If user configures below the minimum, use the minumum.
3492  * If user configures above the maximum, use the maxumum.
3493  */
3494 static void
3495 e1000g_get_conf(struct e1000g *Adapter)
3496 {
3497 	struct e1000_hw *hw = &Adapter->shared;
3498 	boolean_t tbi_compatibility = B_FALSE;
3499 
3500 	/*
3501 	 * get each configurable property from e1000g.conf
3502 	 */
3503 
3504 	/*
3505 	 * NumTxDescriptors
3506 	 */
3507 	Adapter->tx_desc_num =
3508 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3509 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3510 	    DEFAULT_NUM_TX_DESCRIPTOR);
3511 
3512 	/*
3513 	 * NumRxDescriptors
3514 	 */
3515 	Adapter->rx_desc_num =
3516 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3517 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3518 	    DEFAULT_NUM_RX_DESCRIPTOR);
3519 
3520 	/*
3521 	 * NumRxFreeList
3522 	 */
3523 	Adapter->rx_freelist_num =
3524 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3525 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3526 	    DEFAULT_NUM_RX_FREELIST);
3527 
3528 	/*
3529 	 * NumTxPacketList
3530 	 */
3531 	Adapter->tx_freelist_num =
3532 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3533 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3534 	    DEFAULT_NUM_TX_FREELIST);
3535 
3536 	/*
3537 	 * FlowControl
3538 	 */
3539 	hw->fc.send_xon = B_TRUE;
3540 	hw->fc.requested_mode =
3541 	    e1000g_get_prop(Adapter, "FlowControl",
3542 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3543 	/* 4 is the setting that says "let the eeprom decide" */
3544 	if (hw->fc.requested_mode == 4)
3545 		hw->fc.requested_mode = e1000_fc_default;
3546 
3547 	/*
3548 	 * Max Num Receive Packets on Interrupt
3549 	 */
3550 	Adapter->rx_limit_onintr =
3551 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3552 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3553 	    DEFAULT_RX_LIMIT_ON_INTR);
3554 
3555 	/*
3556 	 * PHY master slave setting
3557 	 */
3558 	hw->phy.ms_type =
3559 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3560 	    e1000_ms_hw_default, e1000_ms_auto,
3561 	    e1000_ms_hw_default);
3562 
3563 	/*
3564 	 * Parameter which controls TBI mode workaround, which is only
3565 	 * needed on certain switches such as Cisco 6500/Foundry
3566 	 */
3567 	tbi_compatibility =
3568 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3569 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3570 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3571 
3572 	/*
3573 	 * MSI Enable
3574 	 */
3575 	Adapter->msi_enable =
3576 	    e1000g_get_prop(Adapter, "MSIEnable",
3577 	    0, 1, DEFAULT_MSI_ENABLE);
3578 
3579 	/*
3580 	 * Interrupt Throttling Rate
3581 	 */
3582 	Adapter->intr_throttling_rate =
3583 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3584 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3585 	    DEFAULT_INTR_THROTTLING);
3586 
3587 	/*
3588 	 * Adaptive Interrupt Blanking Enable/Disable
3589 	 * It is enabled by default
3590 	 */
3591 	Adapter->intr_adaptive =
3592 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3593 	    B_TRUE : B_FALSE;
3594 
3595 	/*
3596 	 * Hardware checksum enable/disable parameter
3597 	 */
3598 	Adapter->tx_hcksum_enable =
3599 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3600 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3601 	/*
3602 	 * Checksum on/off selection via global parameters.
3603 	 *
3604 	 * If the chip is flagged as not capable of (correctly)
3605 	 * handling checksumming, we don't enable it on either
3606 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3607 	 * from the patchable global defaults.
3608 	 *
3609 	 * We advertise our capabilities only if TX offload is
3610 	 * enabled.  On receive, the stack will accept checksummed
3611 	 * packets anyway, even if we haven't said we can deliver
3612 	 * them.
3613 	 */
3614 	switch (hw->mac.type) {
3615 		case e1000_82540:
3616 		case e1000_82544:
3617 		case e1000_82545:
3618 		case e1000_82545_rev_3:
3619 		case e1000_82546:
3620 		case e1000_82546_rev_3:
3621 		case e1000_82571:
3622 		case e1000_82572:
3623 		case e1000_82573:
3624 		case e1000_80003es2lan:
3625 			break;
3626 		/*
3627 		 * For the following Intel PRO/1000 chipsets, we have not
3628 		 * tested the hardware checksum offload capability, so we
3629 		 * disable the capability for them.
3630 		 *	e1000_82542,
3631 		 *	e1000_82543,
3632 		 *	e1000_82541,
3633 		 *	e1000_82541_rev_2,
3634 		 *	e1000_82547,
3635 		 *	e1000_82547_rev_2,
3636 		 */
3637 		default:
3638 			Adapter->tx_hcksum_enable = B_FALSE;
3639 	}
3640 
3641 	/*
3642 	 * Large Send Offloading(LSO) Enable/Disable
3643 	 * If the tx hardware checksum is not enabled, LSO should be
3644 	 * disabled.
3645 	 */
3646 	Adapter->lso_enable =
3647 	    e1000g_get_prop(Adapter, "lso_enable",
3648 	    0, 1, DEFAULT_LSO_ENABLE);
3649 
3650 	switch (hw->mac.type) {
3651 		case e1000_82546:
3652 		case e1000_82546_rev_3:
3653 			if (Adapter->lso_enable)
3654 				Adapter->lso_premature_issue = B_TRUE;
3655 			/* FALLTHRU */
3656 		case e1000_82571:
3657 		case e1000_82572:
3658 		case e1000_82573:
3659 		case e1000_80003es2lan:
3660 			break;
3661 		default:
3662 			Adapter->lso_enable = B_FALSE;
3663 	}
3664 
3665 	if (!Adapter->tx_hcksum_enable) {
3666 		Adapter->lso_premature_issue = B_FALSE;
3667 		Adapter->lso_enable = B_FALSE;
3668 	}
3669 
3670 	/*
3671 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3672 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3673 	 * will not cross 64k boundary.
3674 	 */
3675 	Adapter->mem_workaround_82546 =
3676 	    e1000g_get_prop(Adapter, "mem_workaround_82546",
3677 	    0, 1, DEFAULT_MEM_WORKAROUND_82546);
3678 }
3679 
3680 /*
3681  * e1000g_get_prop - routine to read properties
3682  *
3683  * Get a user-configure property value out of the configuration
3684  * file e1000g.conf.
3685  *
3686  * Caller provides name of the property, a default value, a minimum
3687  * value, and a maximum value.
3688  *
3689  * Return configured value of the property, with default, minimum and
3690  * maximum properly applied.
3691  */
3692 static int
3693 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3694     char *propname,		/* name of the property */
3695     int minval,			/* minimum acceptable value */
3696     int maxval,			/* maximim acceptable value */
3697     int defval)			/* default value */
3698 {
3699 	int propval;		/* value returned for requested property */
3700 	int *props;		/* point to array of properties returned */
3701 	uint_t nprops;		/* number of property value returned */
3702 
3703 	/*
3704 	 * get the array of properties from the config file
3705 	 */
3706 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3707 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3708 		/* got some properties, test if we got enough */
3709 		if (Adapter->instance < nprops) {
3710 			propval = props[Adapter->instance];
3711 		} else {
3712 			/* not enough properties configured */
3713 			propval = defval;
3714 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3715 			    "Not Enough %s values found in e1000g.conf"
3716 			    " - set to %d\n",
3717 			    propname, propval);
3718 		}
3719 
3720 		/* free memory allocated for properties */
3721 		ddi_prop_free(props);
3722 
3723 	} else {
3724 		propval = defval;
3725 	}
3726 
3727 	/*
3728 	 * enforce limits
3729 	 */
3730 	if (propval > maxval) {
3731 		propval = maxval;
3732 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3733 		    "Too High %s value in e1000g.conf - set to %d\n",
3734 		    propname, propval);
3735 	}
3736 
3737 	if (propval < minval) {
3738 		propval = minval;
3739 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3740 		    "Too Low %s value in e1000g.conf - set to %d\n",
3741 		    propname, propval);
3742 	}
3743 
3744 	return (propval);
3745 }
3746 
3747 static boolean_t
3748 e1000g_link_check(struct e1000g *Adapter)
3749 {
3750 	uint16_t speed, duplex, phydata;
3751 	boolean_t link_changed = B_FALSE;
3752 	struct e1000_hw *hw;
3753 	uint32_t reg_tarc;
3754 
3755 	hw = &Adapter->shared;
3756 
3757 	if (e1000g_link_up(Adapter)) {
3758 		/*
3759 		 * The Link is up, check whether it was marked as down earlier
3760 		 */
3761 		if (Adapter->link_state != LINK_STATE_UP) {
3762 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3763 			Adapter->link_speed = speed;
3764 			Adapter->link_duplex = duplex;
3765 			Adapter->link_state = LINK_STATE_UP;
3766 			link_changed = B_TRUE;
3767 
3768 			if (Adapter->link_speed == SPEED_1000)
3769 				Adapter->stall_threshold = TX_STALL_TIME_2S;
3770 			else
3771 				Adapter->stall_threshold = TX_STALL_TIME_8S;
3772 
3773 			Adapter->tx_link_down_timeout = 0;
3774 
3775 			if ((hw->mac.type == e1000_82571) ||
3776 			    (hw->mac.type == e1000_82572)) {
3777 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3778 				if (speed == SPEED_1000)
3779 					reg_tarc |= (1 << 21);
3780 				else
3781 					reg_tarc &= ~(1 << 21);
3782 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3783 			}
3784 		}
3785 		Adapter->smartspeed = 0;
3786 	} else {
3787 		if (Adapter->link_state != LINK_STATE_DOWN) {
3788 			Adapter->link_speed = 0;
3789 			Adapter->link_duplex = 0;
3790 			Adapter->link_state = LINK_STATE_DOWN;
3791 			link_changed = B_TRUE;
3792 
3793 			/*
3794 			 * SmartSpeed workaround for Tabor/TanaX, When the
3795 			 * driver loses link disable auto master/slave
3796 			 * resolution.
3797 			 */
3798 			if (hw->phy.type == e1000_phy_igp) {
3799 				(void) e1000_read_phy_reg(hw,
3800 				    PHY_1000T_CTRL, &phydata);
3801 				phydata |= CR_1000T_MS_ENABLE;
3802 				(void) e1000_write_phy_reg(hw,
3803 				    PHY_1000T_CTRL, phydata);
3804 			}
3805 		} else {
3806 			e1000g_smartspeed(Adapter);
3807 		}
3808 
3809 		if (Adapter->e1000g_state & E1000G_STARTED) {
3810 			if (Adapter->tx_link_down_timeout <
3811 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3812 				Adapter->tx_link_down_timeout++;
3813 			} else if (Adapter->tx_link_down_timeout ==
3814 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3815 				e1000g_tx_clean(Adapter);
3816 				Adapter->tx_link_down_timeout++;
3817 			}
3818 		}
3819 	}
3820 
3821 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3822 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3823 
3824 	return (link_changed);
3825 }
3826 
3827 /*
3828  * e1000g_reset_link - Using the link properties to setup the link
3829  */
3830 int
3831 e1000g_reset_link(struct e1000g *Adapter)
3832 {
3833 	struct e1000_mac_info *mac;
3834 	struct e1000_phy_info *phy;
3835 	boolean_t invalid;
3836 
3837 	mac = &Adapter->shared.mac;
3838 	phy = &Adapter->shared.phy;
3839 	invalid = B_FALSE;
3840 
3841 	if (Adapter->param_adv_autoneg == 1) {
3842 		mac->autoneg = B_TRUE;
3843 		phy->autoneg_advertised = 0;
3844 
3845 		/*
3846 		 * 1000hdx is not supported for autonegotiation
3847 		 */
3848 		if (Adapter->param_adv_1000fdx == 1)
3849 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3850 
3851 		if (Adapter->param_adv_100fdx == 1)
3852 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3853 
3854 		if (Adapter->param_adv_100hdx == 1)
3855 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3856 
3857 		if (Adapter->param_adv_10fdx == 1)
3858 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3859 
3860 		if (Adapter->param_adv_10hdx == 1)
3861 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3862 
3863 		if (phy->autoneg_advertised == 0)
3864 			invalid = B_TRUE;
3865 	} else {
3866 		mac->autoneg = B_FALSE;
3867 
3868 		/*
3869 		 * 1000fdx and 1000hdx are not supported for forced link
3870 		 */
3871 		if (Adapter->param_adv_100fdx == 1)
3872 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3873 		else if (Adapter->param_adv_100hdx == 1)
3874 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3875 		else if (Adapter->param_adv_10fdx == 1)
3876 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3877 		else if (Adapter->param_adv_10hdx == 1)
3878 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3879 		else
3880 			invalid = B_TRUE;
3881 
3882 	}
3883 
3884 	if (invalid) {
3885 		e1000g_log(Adapter, CE_WARN,
3886 		    "Invalid link sets. Setup link to"
3887 		    "support autonegotiation with all link capabilities.");
3888 		mac->autoneg = B_TRUE;
3889 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3890 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3891 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3892 	}
3893 
3894 	return (e1000_setup_link(&Adapter->shared));
3895 }
3896 
3897 static void
3898 e1000g_timer_tx_resched(struct e1000g *Adapter)
3899 {
3900 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
3901 
3902 	rw_enter(&Adapter->chip_lock, RW_READER);
3903 
3904 	if (tx_ring->resched_needed &&
3905 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
3906 	    drv_usectohz(1000000)) &&
3907 	    (Adapter->e1000g_state & E1000G_STARTED) &&
3908 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
3909 		tx_ring->resched_needed = B_FALSE;
3910 		mac_tx_update(Adapter->mh);
3911 		E1000G_STAT(tx_ring->stat_reschedule);
3912 		E1000G_STAT(tx_ring->stat_timer_reschedule);
3913 	}
3914 
3915 	rw_exit(&Adapter->chip_lock);
3916 }
3917 
3918 static void
3919 e1000g_local_timer(void *ws)
3920 {
3921 	struct e1000g *Adapter = (struct e1000g *)ws;
3922 	struct e1000_hw *hw;
3923 	e1000g_ether_addr_t ether_addr;
3924 	boolean_t link_changed;
3925 
3926 	hw = &Adapter->shared;
3927 
3928 	if (Adapter->e1000g_state & E1000G_ERROR) {
3929 		rw_enter(&Adapter->chip_lock, RW_WRITER);
3930 		Adapter->e1000g_state &= ~E1000G_ERROR;
3931 		rw_exit(&Adapter->chip_lock);
3932 
3933 		Adapter->reset_count++;
3934 		if (e1000g_global_reset(Adapter)) {
3935 			ddi_fm_service_impact(Adapter->dip,
3936 			    DDI_SERVICE_RESTORED);
3937 			e1000g_timer_tx_resched(Adapter);
3938 		} else
3939 			ddi_fm_service_impact(Adapter->dip,
3940 			    DDI_SERVICE_LOST);
3941 		return;
3942 	}
3943 
3944 	if (e1000g_stall_check(Adapter)) {
3945 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3946 		    "Tx stall detected. Activate automatic recovery.\n");
3947 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3948 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
3949 		Adapter->reset_count++;
3950 		if (e1000g_reset_adapter(Adapter)) {
3951 			ddi_fm_service_impact(Adapter->dip,
3952 			    DDI_SERVICE_RESTORED);
3953 			e1000g_timer_tx_resched(Adapter);
3954 		}
3955 		return;
3956 	}
3957 
3958 	link_changed = B_FALSE;
3959 	rw_enter(&Adapter->chip_lock, RW_READER);
3960 	if (Adapter->link_complete)
3961 		link_changed = e1000g_link_check(Adapter);
3962 	rw_exit(&Adapter->chip_lock);
3963 
3964 	if (link_changed) {
3965 		if (!Adapter->reset_flag)
3966 			mac_link_update(Adapter->mh, Adapter->link_state);
3967 		if (Adapter->link_state == LINK_STATE_UP)
3968 			Adapter->reset_flag = B_FALSE;
3969 	}
3970 	/*
3971 	 * Workaround for esb2. Data stuck in fifo on a link
3972 	 * down event. Reset the adapter to recover it.
3973 	 */
3974 	if (Adapter->esb2_workaround) {
3975 		Adapter->esb2_workaround = B_FALSE;
3976 		(void) e1000g_reset_adapter(Adapter);
3977 		return;
3978 	}
3979 
3980 	/*
3981 	 * With 82571 controllers, any locally administered address will
3982 	 * be overwritten when there is a reset on the other port.
3983 	 * Detect this circumstance and correct it.
3984 	 */
3985 	if ((hw->mac.type == e1000_82571) &&
3986 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3987 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3988 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3989 
3990 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3991 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3992 
3993 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3994 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3995 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3996 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3997 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3998 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3999 			e1000_rar_set(hw, hw->mac.addr, 0);
4000 		}
4001 	}
4002 
4003 	/*
4004 	 * Long TTL workaround for 82541/82547
4005 	 */
4006 	(void) e1000_igp_ttl_workaround_82547(hw);
4007 
4008 	/*
4009 	 * Check for Adaptive IFS settings If there are lots of collisions
4010 	 * change the value in steps...
4011 	 * These properties should only be set for 10/100
4012 	 */
4013 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4014 	    ((Adapter->link_speed == SPEED_100) ||
4015 	    (Adapter->link_speed == SPEED_10))) {
4016 		e1000_update_adaptive(hw);
4017 	}
4018 	/*
4019 	 * Set Timer Interrupts
4020 	 */
4021 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4022 
4023 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4024 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4025 	else
4026 		e1000g_timer_tx_resched(Adapter);
4027 
4028 	restart_watchdog_timer(Adapter);
4029 }
4030 
4031 /*
4032  * The function e1000g_link_timer() is called when the timer for link setup
4033  * is expired, which indicates the completion of the link setup. The link
4034  * state will not be updated until the link setup is completed. And the
4035  * link state will not be sent to the upper layer through mac_link_update()
4036  * in this function. It will be updated in the local timer routine or the
4037  * interrupt service routine after the interface is started (plumbed).
4038  */
4039 static void
4040 e1000g_link_timer(void *arg)
4041 {
4042 	struct e1000g *Adapter = (struct e1000g *)arg;
4043 
4044 	mutex_enter(&Adapter->link_lock);
4045 	Adapter->link_complete = B_TRUE;
4046 	Adapter->link_tid = 0;
4047 	mutex_exit(&Adapter->link_lock);
4048 }
4049 
4050 /*
4051  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4052  *
4053  * This function read the forced speed and duplex for 10/100 Mbps speeds
4054  * and also for 1000 Mbps speeds from the e1000g.conf file
4055  */
4056 static void
4057 e1000g_force_speed_duplex(struct e1000g *Adapter)
4058 {
4059 	int forced;
4060 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4061 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4062 
4063 	/*
4064 	 * get value out of config file
4065 	 */
4066 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4067 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
4068 
4069 	switch (forced) {
4070 	case GDIAG_10_HALF:
4071 		/*
4072 		 * Disable Auto Negotiation
4073 		 */
4074 		mac->autoneg = B_FALSE;
4075 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4076 		break;
4077 	case GDIAG_10_FULL:
4078 		/*
4079 		 * Disable Auto Negotiation
4080 		 */
4081 		mac->autoneg = B_FALSE;
4082 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4083 		break;
4084 	case GDIAG_100_HALF:
4085 		/*
4086 		 * Disable Auto Negotiation
4087 		 */
4088 		mac->autoneg = B_FALSE;
4089 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4090 		break;
4091 	case GDIAG_100_FULL:
4092 		/*
4093 		 * Disable Auto Negotiation
4094 		 */
4095 		mac->autoneg = B_FALSE;
4096 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4097 		break;
4098 	case GDIAG_1000_FULL:
4099 		/*
4100 		 * The gigabit spec requires autonegotiation.  Therefore,
4101 		 * when the user wants to force the speed to 1000Mbps, we
4102 		 * enable AutoNeg, but only allow the harware to advertise
4103 		 * 1000Mbps.  This is different from 10/100 operation, where
4104 		 * we are allowed to link without any negotiation.
4105 		 */
4106 		mac->autoneg = B_TRUE;
4107 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4108 		break;
4109 	default:	/* obey the setting of AutoNegAdvertised */
4110 		mac->autoneg = B_TRUE;
4111 		phy->autoneg_advertised =
4112 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
4113 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4114 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
4115 		break;
4116 	}	/* switch */
4117 }
4118 
4119 /*
4120  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4121  *
4122  * This function reads MaxFrameSize from e1000g.conf
4123  */
4124 static void
4125 e1000g_get_max_frame_size(struct e1000g *Adapter)
4126 {
4127 	int max_frame;
4128 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4129 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4130 
4131 	/*
4132 	 * get value out of config file
4133 	 */
4134 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
4135 
4136 	switch (max_frame) {
4137 	case 0:
4138 		Adapter->default_mtu = ETHERMTU;
4139 		break;
4140 	/*
4141 	 * To avoid excessive memory allocation for rx buffers,
4142 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4143 	 */
4144 	case 1:
4145 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4146 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4147 		    E1000G_IPALIGNPRESERVEROOM;
4148 		break;
4149 	case 2:
4150 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4151 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4152 		    E1000G_IPALIGNPRESERVEROOM;
4153 		break;
4154 	case 3:
4155 		if (mac->type >= e1000_82571)
4156 			Adapter->default_mtu = MAXIMUM_MTU;
4157 		else
4158 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4159 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
4160 			    E1000G_IPALIGNPRESERVEROOM;
4161 		break;
4162 	default:
4163 		Adapter->default_mtu = ETHERMTU;
4164 		break;
4165 	}	/* switch */
4166 
4167 	Adapter->max_frame_size = Adapter->default_mtu +
4168 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
4169 
4170 	/* ich8 does not do jumbo frames */
4171 	if (mac->type == e1000_ich8lan) {
4172 		Adapter->default_mtu = ETHERMTU;
4173 		Adapter->max_frame_size = ETHERMTU +
4174 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4175 	}
4176 
4177 	/* ich9 does not do jumbo frames on one phy type */
4178 	if ((mac->type == e1000_ich9lan) &&
4179 	    (phy->type == e1000_phy_ife)) {
4180 		Adapter->default_mtu = ETHERMTU;
4181 		Adapter->max_frame_size = ETHERMTU +
4182 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4183 	}
4184 }
4185 
4186 static void
4187 arm_watchdog_timer(struct e1000g *Adapter)
4188 {
4189 	Adapter->watchdog_tid =
4190 	    timeout(e1000g_local_timer,
4191 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4192 }
4193 #pragma inline(arm_watchdog_timer)
4194 
4195 static void
4196 enable_watchdog_timer(struct e1000g *Adapter)
4197 {
4198 	mutex_enter(&Adapter->watchdog_lock);
4199 
4200 	if (!Adapter->watchdog_timer_enabled) {
4201 		Adapter->watchdog_timer_enabled = B_TRUE;
4202 		Adapter->watchdog_timer_started = B_TRUE;
4203 		arm_watchdog_timer(Adapter);
4204 	}
4205 
4206 	mutex_exit(&Adapter->watchdog_lock);
4207 }
4208 
4209 static void
4210 disable_watchdog_timer(struct e1000g *Adapter)
4211 {
4212 	timeout_id_t tid;
4213 
4214 	mutex_enter(&Adapter->watchdog_lock);
4215 
4216 	Adapter->watchdog_timer_enabled = B_FALSE;
4217 	Adapter->watchdog_timer_started = B_FALSE;
4218 	tid = Adapter->watchdog_tid;
4219 	Adapter->watchdog_tid = 0;
4220 
4221 	mutex_exit(&Adapter->watchdog_lock);
4222 
4223 	if (tid != 0)
4224 		(void) untimeout(tid);
4225 }
4226 
4227 static void
4228 start_watchdog_timer(struct e1000g *Adapter)
4229 {
4230 	mutex_enter(&Adapter->watchdog_lock);
4231 
4232 	if (Adapter->watchdog_timer_enabled) {
4233 		if (!Adapter->watchdog_timer_started) {
4234 			Adapter->watchdog_timer_started = B_TRUE;
4235 			arm_watchdog_timer(Adapter);
4236 		}
4237 	}
4238 
4239 	mutex_exit(&Adapter->watchdog_lock);
4240 }
4241 
4242 static void
4243 restart_watchdog_timer(struct e1000g *Adapter)
4244 {
4245 	mutex_enter(&Adapter->watchdog_lock);
4246 
4247 	if (Adapter->watchdog_timer_started)
4248 		arm_watchdog_timer(Adapter);
4249 
4250 	mutex_exit(&Adapter->watchdog_lock);
4251 }
4252 
4253 static void
4254 stop_watchdog_timer(struct e1000g *Adapter)
4255 {
4256 	timeout_id_t tid;
4257 
4258 	mutex_enter(&Adapter->watchdog_lock);
4259 
4260 	Adapter->watchdog_timer_started = B_FALSE;
4261 	tid = Adapter->watchdog_tid;
4262 	Adapter->watchdog_tid = 0;
4263 
4264 	mutex_exit(&Adapter->watchdog_lock);
4265 
4266 	if (tid != 0)
4267 		(void) untimeout(tid);
4268 }
4269 
4270 static void
4271 stop_link_timer(struct e1000g *Adapter)
4272 {
4273 	timeout_id_t tid;
4274 
4275 	/* Disable the link timer */
4276 	mutex_enter(&Adapter->link_lock);
4277 
4278 	tid = Adapter->link_tid;
4279 	Adapter->link_tid = 0;
4280 
4281 	mutex_exit(&Adapter->link_lock);
4282 
4283 	if (tid != 0)
4284 		(void) untimeout(tid);
4285 }
4286 
4287 static void
4288 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4289 {
4290 	timeout_id_t tid;
4291 
4292 	/* Disable the tx timer for 82547 chipset */
4293 	mutex_enter(&tx_ring->tx_lock);
4294 
4295 	tx_ring->timer_enable_82547 = B_FALSE;
4296 	tid = tx_ring->timer_id_82547;
4297 	tx_ring->timer_id_82547 = 0;
4298 
4299 	mutex_exit(&tx_ring->tx_lock);
4300 
4301 	if (tid != 0)
4302 		(void) untimeout(tid);
4303 }
4304 
4305 void
4306 e1000g_clear_interrupt(struct e1000g *Adapter)
4307 {
4308 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4309 	    0xffffffff & ~E1000_IMS_RXSEQ);
4310 }
4311 
4312 void
4313 e1000g_mask_interrupt(struct e1000g *Adapter)
4314 {
4315 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4316 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4317 
4318 	if (Adapter->tx_intr_enable)
4319 		e1000g_mask_tx_interrupt(Adapter);
4320 }
4321 
4322 /*
4323  * This routine is called by e1000g_quiesce(), therefore must not block.
4324  */
4325 void
4326 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4327 {
4328 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4329 }
4330 
4331 void
4332 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4333 {
4334 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4335 }
4336 
4337 void
4338 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4339 {
4340 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4341 }
4342 
4343 static void
4344 e1000g_smartspeed(struct e1000g *Adapter)
4345 {
4346 	struct e1000_hw *hw = &Adapter->shared;
4347 	uint16_t phy_status;
4348 	uint16_t phy_ctrl;
4349 
4350 	/*
4351 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4352 	 * advertising 1000Full, we don't even use the workaround
4353 	 */
4354 	if ((hw->phy.type != e1000_phy_igp) ||
4355 	    !hw->mac.autoneg ||
4356 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4357 		return;
4358 
4359 	/*
4360 	 * True if this is the first call of this function or after every
4361 	 * 30 seconds of not having link
4362 	 */
4363 	if (Adapter->smartspeed == 0) {
4364 		/*
4365 		 * If Master/Slave config fault is asserted twice, we
4366 		 * assume back-to-back
4367 		 */
4368 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4369 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4370 			return;
4371 
4372 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4373 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4374 			return;
4375 		/*
4376 		 * We're assuming back-2-back because our status register
4377 		 * insists! there's a fault in the master/slave
4378 		 * relationship that was "negotiated"
4379 		 */
4380 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4381 		/*
4382 		 * Is the phy configured for manual configuration of
4383 		 * master/slave?
4384 		 */
4385 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4386 			/*
4387 			 * Yes.  Then disable manual configuration (enable
4388 			 * auto configuration) of master/slave
4389 			 */
4390 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4391 			(void) e1000_write_phy_reg(hw,
4392 			    PHY_1000T_CTRL, phy_ctrl);
4393 			/*
4394 			 * Effectively starting the clock
4395 			 */
4396 			Adapter->smartspeed++;
4397 			/*
4398 			 * Restart autonegotiation
4399 			 */
4400 			if (!e1000_phy_setup_autoneg(hw) &&
4401 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4402 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4403 				    MII_CR_RESTART_AUTO_NEG);
4404 				(void) e1000_write_phy_reg(hw,
4405 				    PHY_CONTROL, phy_ctrl);
4406 			}
4407 		}
4408 		return;
4409 		/*
4410 		 * Has 6 seconds transpired still without link? Remember,
4411 		 * you should reset the smartspeed counter once you obtain
4412 		 * link
4413 		 */
4414 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4415 		/*
4416 		 * Yes.  Remember, we did at the start determine that
4417 		 * there's a master/slave configuration fault, so we're
4418 		 * still assuming there's someone on the other end, but we
4419 		 * just haven't yet been able to talk to it. We then
4420 		 * re-enable auto configuration of master/slave to see if
4421 		 * we're running 2/3 pair cables.
4422 		 */
4423 		/*
4424 		 * If still no link, perhaps using 2/3 pair cable
4425 		 */
4426 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4427 		phy_ctrl |= CR_1000T_MS_ENABLE;
4428 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4429 		/*
4430 		 * Restart autoneg with phy enabled for manual
4431 		 * configuration of master/slave
4432 		 */
4433 		if (!e1000_phy_setup_autoneg(hw) &&
4434 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4435 			phy_ctrl |=
4436 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4437 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4438 		}
4439 		/*
4440 		 * Hopefully, there are no more faults and we've obtained
4441 		 * link as a result.
4442 		 */
4443 	}
4444 	/*
4445 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4446 	 * seconds)
4447 	 */
4448 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4449 		Adapter->smartspeed = 0;
4450 }
4451 
4452 static boolean_t
4453 is_valid_mac_addr(uint8_t *mac_addr)
4454 {
4455 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4456 	const uint8_t addr_test2[6] =
4457 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4458 
4459 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4460 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4461 		return (B_FALSE);
4462 
4463 	return (B_TRUE);
4464 }
4465 
4466 /*
4467  * e1000g_stall_check - check for tx stall
4468  *
4469  * This function checks if the adapter is stalled (in transmit).
4470  *
4471  * It is called each time the watchdog timeout is invoked.
4472  * If the transmit descriptor reclaim continuously fails,
4473  * the watchdog value will increment by 1. If the watchdog
4474  * value exceeds the threshold, the adapter is assumed to
4475  * have stalled and need to be reset.
4476  */
4477 static boolean_t
4478 e1000g_stall_check(struct e1000g *Adapter)
4479 {
4480 	e1000g_tx_ring_t *tx_ring;
4481 
4482 	tx_ring = Adapter->tx_ring;
4483 
4484 	if (Adapter->link_state != LINK_STATE_UP)
4485 		return (B_FALSE);
4486 
4487 	(void) e1000g_recycle(tx_ring);
4488 
4489 	if (Adapter->stall_flag) {
4490 		Adapter->stall_flag = B_FALSE;
4491 		Adapter->reset_flag = B_TRUE;
4492 		return (B_TRUE);
4493 	}
4494 
4495 	return (B_FALSE);
4496 }
4497 
4498 #ifdef E1000G_DEBUG
4499 static enum ioc_reply
4500 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4501 {
4502 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4503 	e1000g_peekpoke_t *ppd;
4504 	uint64_t mem_va;
4505 	uint64_t maxoff;
4506 	boolean_t peek;
4507 
4508 	switch (iocp->ioc_cmd) {
4509 
4510 	case E1000G_IOC_REG_PEEK:
4511 		peek = B_TRUE;
4512 		break;
4513 
4514 	case E1000G_IOC_REG_POKE:
4515 		peek = B_FALSE;
4516 		break;
4517 
4518 	deault:
4519 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4520 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4521 		    iocp->ioc_cmd);
4522 		return (IOC_INVAL);
4523 	}
4524 
4525 	/*
4526 	 * Validate format of ioctl
4527 	 */
4528 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4529 		return (IOC_INVAL);
4530 	if (mp->b_cont == NULL)
4531 		return (IOC_INVAL);
4532 
4533 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4534 
4535 	/*
4536 	 * Validate request parameters
4537 	 */
4538 	switch (ppd->pp_acc_space) {
4539 
4540 	default:
4541 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4542 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4543 		    ppd->pp_acc_space);
4544 		return (IOC_INVAL);
4545 
4546 	case E1000G_PP_SPACE_REG:
4547 		/*
4548 		 * Memory-mapped I/O space
4549 		 */
4550 		ASSERT(ppd->pp_acc_size == 4);
4551 		if (ppd->pp_acc_size != 4)
4552 			return (IOC_INVAL);
4553 
4554 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4555 			return (IOC_INVAL);
4556 
4557 		mem_va = 0;
4558 		maxoff = 0x10000;
4559 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4560 		break;
4561 
4562 	case E1000G_PP_SPACE_E1000G:
4563 		/*
4564 		 * E1000g data structure!
4565 		 */
4566 		mem_va = (uintptr_t)e1000gp;
4567 		maxoff = sizeof (struct e1000g);
4568 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4569 		break;
4570 
4571 	}
4572 
4573 	if (ppd->pp_acc_offset >= maxoff)
4574 		return (IOC_INVAL);
4575 
4576 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4577 		return (IOC_INVAL);
4578 
4579 	/*
4580 	 * All OK - go!
4581 	 */
4582 	ppd->pp_acc_offset += mem_va;
4583 	(*ppfn)(e1000gp, ppd);
4584 	return (peek ? IOC_REPLY : IOC_ACK);
4585 }
4586 
4587 static void
4588 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4589 {
4590 	ddi_acc_handle_t handle;
4591 	uint32_t *regaddr;
4592 
4593 	handle = e1000gp->osdep.reg_handle;
4594 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4595 	    (uintptr_t)ppd->pp_acc_offset);
4596 
4597 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4598 }
4599 
4600 static void
4601 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4602 {
4603 	ddi_acc_handle_t handle;
4604 	uint32_t *regaddr;
4605 	uint32_t value;
4606 
4607 	handle = e1000gp->osdep.reg_handle;
4608 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4609 	    (uintptr_t)ppd->pp_acc_offset);
4610 	value = (uint32_t)ppd->pp_acc_data;
4611 
4612 	ddi_put32(handle, regaddr, value);
4613 }
4614 
4615 static void
4616 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4617 {
4618 	uint64_t value;
4619 	void *vaddr;
4620 
4621 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4622 
4623 	switch (ppd->pp_acc_size) {
4624 	case 1:
4625 		value = *(uint8_t *)vaddr;
4626 		break;
4627 
4628 	case 2:
4629 		value = *(uint16_t *)vaddr;
4630 		break;
4631 
4632 	case 4:
4633 		value = *(uint32_t *)vaddr;
4634 		break;
4635 
4636 	case 8:
4637 		value = *(uint64_t *)vaddr;
4638 		break;
4639 	}
4640 
4641 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4642 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4643 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4644 
4645 	ppd->pp_acc_data = value;
4646 }
4647 
4648 static void
4649 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4650 {
4651 	uint64_t value;
4652 	void *vaddr;
4653 
4654 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4655 	value = ppd->pp_acc_data;
4656 
4657 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4658 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4659 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4660 
4661 	switch (ppd->pp_acc_size) {
4662 	case 1:
4663 		*(uint8_t *)vaddr = (uint8_t)value;
4664 		break;
4665 
4666 	case 2:
4667 		*(uint16_t *)vaddr = (uint16_t)value;
4668 		break;
4669 
4670 	case 4:
4671 		*(uint32_t *)vaddr = (uint32_t)value;
4672 		break;
4673 
4674 	case 8:
4675 		*(uint64_t *)vaddr = (uint64_t)value;
4676 		break;
4677 	}
4678 }
4679 #endif
4680 
4681 /*
4682  * Loopback Support
4683  */
4684 static lb_property_t lb_normal =
4685 	{ normal,	"normal",	E1000G_LB_NONE		};
4686 static lb_property_t lb_external1000 =
4687 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4688 static lb_property_t lb_external100 =
4689 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4690 static lb_property_t lb_external10 =
4691 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4692 static lb_property_t lb_phy =
4693 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4694 
4695 static enum ioc_reply
4696 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4697 {
4698 	lb_info_sz_t *lbsp;
4699 	lb_property_t *lbpp;
4700 	struct e1000_hw *hw;
4701 	uint32_t *lbmp;
4702 	uint32_t size;
4703 	uint32_t value;
4704 
4705 	hw = &Adapter->shared;
4706 
4707 	if (mp->b_cont == NULL)
4708 		return (IOC_INVAL);
4709 
4710 	if (!e1000g_check_loopback_support(hw)) {
4711 		e1000g_log(NULL, CE_WARN,
4712 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4713 		return (IOC_INVAL);
4714 	}
4715 
4716 	switch (iocp->ioc_cmd) {
4717 	default:
4718 		return (IOC_INVAL);
4719 
4720 	case LB_GET_INFO_SIZE:
4721 		size = sizeof (lb_info_sz_t);
4722 		if (iocp->ioc_count != size)
4723 			return (IOC_INVAL);
4724 
4725 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4726 		e1000g_get_phy_state(Adapter);
4727 
4728 		/*
4729 		 * Workaround for hardware faults. In order to get a stable
4730 		 * state of phy, we will wait for a specific interval and
4731 		 * try again. The time delay is an experiential value based
4732 		 * on our testing.
4733 		 */
4734 		msec_delay(100);
4735 		e1000g_get_phy_state(Adapter);
4736 		rw_exit(&Adapter->chip_lock);
4737 
4738 		value = sizeof (lb_normal);
4739 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4740 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4741 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4742 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4743 			value += sizeof (lb_phy);
4744 			switch (hw->mac.type) {
4745 			case e1000_82571:
4746 			case e1000_82572:
4747 			case e1000_80003es2lan:
4748 				value += sizeof (lb_external1000);
4749 				break;
4750 			}
4751 		}
4752 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4753 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4754 			value += sizeof (lb_external100);
4755 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4756 			value += sizeof (lb_external10);
4757 
4758 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4759 		*lbsp = value;
4760 		break;
4761 
4762 	case LB_GET_INFO:
4763 		value = sizeof (lb_normal);
4764 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4765 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4766 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4767 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4768 			value += sizeof (lb_phy);
4769 			switch (hw->mac.type) {
4770 			case e1000_82571:
4771 			case e1000_82572:
4772 			case e1000_80003es2lan:
4773 				value += sizeof (lb_external1000);
4774 				break;
4775 			}
4776 		}
4777 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4778 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4779 			value += sizeof (lb_external100);
4780 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4781 			value += sizeof (lb_external10);
4782 
4783 		size = value;
4784 		if (iocp->ioc_count != size)
4785 			return (IOC_INVAL);
4786 
4787 		value = 0;
4788 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4789 		lbpp[value++] = lb_normal;
4790 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4791 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4792 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4793 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4794 			lbpp[value++] = lb_phy;
4795 			switch (hw->mac.type) {
4796 			case e1000_82571:
4797 			case e1000_82572:
4798 			case e1000_80003es2lan:
4799 				lbpp[value++] = lb_external1000;
4800 				break;
4801 			}
4802 		}
4803 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4804 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4805 			lbpp[value++] = lb_external100;
4806 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4807 			lbpp[value++] = lb_external10;
4808 		break;
4809 
4810 	case LB_GET_MODE:
4811 		size = sizeof (uint32_t);
4812 		if (iocp->ioc_count != size)
4813 			return (IOC_INVAL);
4814 
4815 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4816 		*lbmp = Adapter->loopback_mode;
4817 		break;
4818 
4819 	case LB_SET_MODE:
4820 		size = 0;
4821 		if (iocp->ioc_count != sizeof (uint32_t))
4822 			return (IOC_INVAL);
4823 
4824 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4825 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4826 			return (IOC_INVAL);
4827 		break;
4828 	}
4829 
4830 	iocp->ioc_count = size;
4831 	iocp->ioc_error = 0;
4832 
4833 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4834 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4835 		return (IOC_INVAL);
4836 	}
4837 
4838 	return (IOC_REPLY);
4839 }
4840 
4841 static boolean_t
4842 e1000g_check_loopback_support(struct e1000_hw *hw)
4843 {
4844 	switch (hw->mac.type) {
4845 	case e1000_82540:
4846 	case e1000_82545:
4847 	case e1000_82545_rev_3:
4848 	case e1000_82546:
4849 	case e1000_82546_rev_3:
4850 	case e1000_82541:
4851 	case e1000_82541_rev_2:
4852 	case e1000_82547:
4853 	case e1000_82547_rev_2:
4854 	case e1000_82571:
4855 	case e1000_82572:
4856 	case e1000_82573:
4857 	case e1000_82574:
4858 	case e1000_80003es2lan:
4859 	case e1000_ich9lan:
4860 	case e1000_ich10lan:
4861 		return (B_TRUE);
4862 	}
4863 	return (B_FALSE);
4864 }
4865 
4866 static boolean_t
4867 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4868 {
4869 	struct e1000_hw *hw;
4870 	int i, times;
4871 	boolean_t link_up;
4872 
4873 	if (mode == Adapter->loopback_mode)
4874 		return (B_TRUE);
4875 
4876 	hw = &Adapter->shared;
4877 	times = 0;
4878 
4879 	Adapter->loopback_mode = mode;
4880 
4881 	if (mode == E1000G_LB_NONE) {
4882 		/* Reset the chip */
4883 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4884 		(void) e1000g_reset_adapter(Adapter);
4885 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4886 		return (B_TRUE);
4887 	}
4888 
4889 again:
4890 
4891 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4892 
4893 	switch (mode) {
4894 	default:
4895 		rw_exit(&Adapter->chip_lock);
4896 		return (B_FALSE);
4897 
4898 	case E1000G_LB_EXTERNAL_1000:
4899 		e1000g_set_external_loopback_1000(Adapter);
4900 		break;
4901 
4902 	case E1000G_LB_EXTERNAL_100:
4903 		e1000g_set_external_loopback_100(Adapter);
4904 		break;
4905 
4906 	case E1000G_LB_EXTERNAL_10:
4907 		e1000g_set_external_loopback_10(Adapter);
4908 		break;
4909 
4910 	case E1000G_LB_INTERNAL_PHY:
4911 		e1000g_set_internal_loopback(Adapter);
4912 		break;
4913 	}
4914 
4915 	times++;
4916 
4917 	rw_exit(&Adapter->chip_lock);
4918 
4919 	/* Wait for link up */
4920 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4921 		msec_delay(100);
4922 
4923 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4924 
4925 	link_up = e1000g_link_up(Adapter);
4926 
4927 	rw_exit(&Adapter->chip_lock);
4928 
4929 	if (!link_up) {
4930 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4931 		    "Failed to get the link up");
4932 		if (times < 2) {
4933 			/* Reset the link */
4934 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4935 			    "Reset the link ...");
4936 			(void) e1000g_reset_adapter(Adapter);
4937 			goto again;
4938 		}
4939 	}
4940 
4941 	return (B_TRUE);
4942 }
4943 
4944 /*
4945  * The following loopback settings are from Intel's technical
4946  * document - "How To Loopback". All the register settings and
4947  * time delay values are directly inherited from the document
4948  * without more explanations available.
4949  */
4950 static void
4951 e1000g_set_internal_loopback(struct e1000g *Adapter)
4952 {
4953 	struct e1000_hw *hw;
4954 	uint32_t ctrl;
4955 	uint32_t status;
4956 	uint16_t phy_ctrl;
4957 	uint16_t phy_reg;
4958 	uint32_t txcw;
4959 
4960 	hw = &Adapter->shared;
4961 
4962 	/* Disable Smart Power Down */
4963 	phy_spd_state(hw, B_FALSE);
4964 
4965 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4966 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4967 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4968 
4969 	switch (hw->mac.type) {
4970 	case e1000_82540:
4971 	case e1000_82545:
4972 	case e1000_82545_rev_3:
4973 	case e1000_82546:
4974 	case e1000_82546_rev_3:
4975 	case e1000_82573:
4976 		/* Auto-MDI/MDIX off */
4977 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4978 		/* Reset PHY to update Auto-MDI/MDIX */
4979 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4980 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4981 		/* Reset PHY to auto-neg off and force 1000 */
4982 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4983 		    phy_ctrl | MII_CR_RESET);
4984 		/*
4985 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4986 		 * See comments above e1000g_set_internal_loopback() for the
4987 		 * background.
4988 		 */
4989 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4990 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4991 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4992 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4993 		break;
4994 	case e1000_80003es2lan:
4995 		/* Force Link Up */
4996 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4997 		    0x1CC);
4998 		/* Sets PCS loopback at 1Gbs */
4999 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5000 		    0x1046);
5001 		break;
5002 	}
5003 
5004 	/*
5005 	 * The following registers should be set for e1000_phy_bm phy type.
5006 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5007 	 * For others, we do not need to set these registers.
5008 	 */
5009 	if (hw->phy.type == e1000_phy_bm) {
5010 		/* Set Default MAC Interface speed to 1GB */
5011 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5012 		phy_reg &= ~0x0007;
5013 		phy_reg |= 0x006;
5014 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5015 		/* Assert SW reset for above settings to take effect */
5016 		(void) e1000_phy_commit(hw);
5017 		msec_delay(1);
5018 		/* Force Full Duplex */
5019 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5020 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5021 		    phy_reg | 0x000C);
5022 		/* Set Link Up (in force link) */
5023 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5024 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5025 		    phy_reg | 0x0040);
5026 		/* Force Link */
5027 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5028 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5029 		    phy_reg | 0x0040);
5030 		/* Set Early Link Enable */
5031 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5032 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5033 		    phy_reg | 0x0400);
5034 	}
5035 
5036 	/* Set loopback */
5037 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5038 
5039 	msec_delay(250);
5040 
5041 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5042 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5043 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5044 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5045 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5046 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5047 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5048 
5049 	switch (hw->mac.type) {
5050 	case e1000_82540:
5051 	case e1000_82545:
5052 	case e1000_82545_rev_3:
5053 	case e1000_82546:
5054 	case e1000_82546_rev_3:
5055 		/*
5056 		 * For some serdes we'll need to commit the writes now
5057 		 * so that the status is updated on link
5058 		 */
5059 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5060 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5061 			msec_delay(100);
5062 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5063 		}
5064 
5065 		if (hw->phy.media_type == e1000_media_type_copper) {
5066 			/* Invert Loss of Signal */
5067 			ctrl |= E1000_CTRL_ILOS;
5068 		} else {
5069 			/* Set ILOS on fiber nic if half duplex is detected */
5070 			status = E1000_READ_REG(hw, E1000_STATUS);
5071 			if ((status & E1000_STATUS_FD) == 0)
5072 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5073 		}
5074 		break;
5075 
5076 	case e1000_82571:
5077 	case e1000_82572:
5078 		/*
5079 		 * The fiber/SerDes versions of this adapter do not contain an
5080 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5081 		 * using SerDes analog loopback.
5082 		 */
5083 		if (hw->phy.media_type != e1000_media_type_copper) {
5084 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5085 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5086 			txcw &= ~((uint32_t)1 << 31);
5087 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5088 
5089 			/*
5090 			 * Write 0x410 to Serdes Control register
5091 			 * to enable Serdes analog loopback
5092 			 */
5093 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5094 			msec_delay(10);
5095 		}
5096 
5097 		status = E1000_READ_REG(hw, E1000_STATUS);
5098 		/* Set ILOS on fiber nic if half duplex is detected */
5099 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5100 		    ((status & E1000_STATUS_FD) == 0 ||
5101 		    (status & E1000_STATUS_LU) == 0))
5102 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5103 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5104 			ctrl |= E1000_CTRL_SLU;
5105 		break;
5106 
5107 	case e1000_82573:
5108 		ctrl |= E1000_CTRL_ILOS;
5109 		break;
5110 	case e1000_ich9lan:
5111 	case e1000_ich10lan:
5112 		ctrl |= E1000_CTRL_SLU;
5113 		break;
5114 	}
5115 	if (hw->phy.type == e1000_phy_bm)
5116 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5117 
5118 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5119 }
5120 
5121 static void
5122 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5123 {
5124 	struct e1000_hw *hw;
5125 	uint32_t rctl;
5126 	uint32_t ctrl_ext;
5127 	uint32_t ctrl;
5128 	uint32_t status;
5129 	uint32_t txcw;
5130 	uint16_t phydata;
5131 
5132 	hw = &Adapter->shared;
5133 
5134 	/* Disable Smart Power Down */
5135 	phy_spd_state(hw, B_FALSE);
5136 
5137 	switch (hw->mac.type) {
5138 	case e1000_82571:
5139 	case e1000_82572:
5140 		switch (hw->phy.media_type) {
5141 		case e1000_media_type_copper:
5142 			/* Force link up (Must be done before the PHY writes) */
5143 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5144 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5145 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5146 
5147 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5148 			rctl |= (E1000_RCTL_EN |
5149 			    E1000_RCTL_SBP |
5150 			    E1000_RCTL_UPE |
5151 			    E1000_RCTL_MPE |
5152 			    E1000_RCTL_LPE |
5153 			    E1000_RCTL_BAM);		/* 0x803E */
5154 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5155 
5156 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5157 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5158 			    E1000_CTRL_EXT_SDP6_DATA |
5159 			    E1000_CTRL_EXT_SDP7_DATA |
5160 			    E1000_CTRL_EXT_SDP4_DIR |
5161 			    E1000_CTRL_EXT_SDP6_DIR |
5162 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
5163 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5164 
5165 			/*
5166 			 * This sequence tunes the PHY's SDP and no customer
5167 			 * settable values. For background, see comments above
5168 			 * e1000g_set_internal_loopback().
5169 			 */
5170 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5171 			msec_delay(10);
5172 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5173 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5174 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5175 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5176 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5177 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5178 
5179 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5180 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5181 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5182 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5183 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5184 
5185 			msec_delay(50);
5186 			break;
5187 		case e1000_media_type_fiber:
5188 		case e1000_media_type_internal_serdes:
5189 			status = E1000_READ_REG(hw, E1000_STATUS);
5190 			if (((status & E1000_STATUS_LU) == 0) ||
5191 			    (hw->phy.media_type ==
5192 			    e1000_media_type_internal_serdes)) {
5193 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5194 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5195 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5196 			}
5197 
5198 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5199 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5200 			txcw &= ~((uint32_t)1 << 31);
5201 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5202 
5203 			/*
5204 			 * Write 0x410 to Serdes Control register
5205 			 * to enable Serdes analog loopback
5206 			 */
5207 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5208 			msec_delay(10);
5209 			break;
5210 		default:
5211 			break;
5212 		}
5213 		break;
5214 	case e1000_82574:
5215 	case e1000_80003es2lan:
5216 	case e1000_ich9lan:
5217 	case e1000_ich10lan:
5218 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5219 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5220 		    phydata | (1 << 5));
5221 		Adapter->param_adv_autoneg = 1;
5222 		Adapter->param_adv_1000fdx = 1;
5223 		(void) e1000g_reset_link(Adapter);
5224 		break;
5225 	}
5226 }
5227 
5228 static void
5229 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5230 {
5231 	struct e1000_hw *hw;
5232 	uint32_t ctrl;
5233 	uint16_t phy_ctrl;
5234 
5235 	hw = &Adapter->shared;
5236 
5237 	/* Disable Smart Power Down */
5238 	phy_spd_state(hw, B_FALSE);
5239 
5240 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5241 	    MII_CR_SPEED_100);
5242 
5243 	/* Force 100/FD, reset PHY */
5244 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5245 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5246 	msec_delay(10);
5247 
5248 	/* Force 100/FD */
5249 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5250 	    phy_ctrl);			/* 0x2100 */
5251 	msec_delay(10);
5252 
5253 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5254 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5255 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5256 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5257 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5258 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5259 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5260 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5261 
5262 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5263 }
5264 
5265 static void
5266 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5267 {
5268 	struct e1000_hw *hw;
5269 	uint32_t ctrl;
5270 	uint16_t phy_ctrl;
5271 
5272 	hw = &Adapter->shared;
5273 
5274 	/* Disable Smart Power Down */
5275 	phy_spd_state(hw, B_FALSE);
5276 
5277 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5278 	    MII_CR_SPEED_10);
5279 
5280 	/* Force 10/FD, reset PHY */
5281 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5282 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5283 	msec_delay(10);
5284 
5285 	/* Force 10/FD */
5286 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5287 	    phy_ctrl);			/* 0x0100 */
5288 	msec_delay(10);
5289 
5290 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5291 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5292 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5293 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5294 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5295 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5296 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5297 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5298 
5299 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5300 }
5301 
5302 #ifdef __sparc
5303 static boolean_t
5304 e1000g_find_mac_address(struct e1000g *Adapter)
5305 {
5306 	struct e1000_hw *hw = &Adapter->shared;
5307 	uchar_t *bytes;
5308 	struct ether_addr sysaddr;
5309 	uint_t nelts;
5310 	int err;
5311 	boolean_t found = B_FALSE;
5312 
5313 	/*
5314 	 * The "vendor's factory-set address" may already have
5315 	 * been extracted from the chip, but if the property
5316 	 * "local-mac-address" is set we use that instead.
5317 	 *
5318 	 * We check whether it looks like an array of 6
5319 	 * bytes (which it should, if OBP set it).  If we can't
5320 	 * make sense of it this way, we'll ignore it.
5321 	 */
5322 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5323 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5324 	if (err == DDI_PROP_SUCCESS) {
5325 		if (nelts == ETHERADDRL) {
5326 			while (nelts--)
5327 				hw->mac.addr[nelts] = bytes[nelts];
5328 			found = B_TRUE;
5329 		}
5330 		ddi_prop_free(bytes);
5331 	}
5332 
5333 	/*
5334 	 * Look up the OBP property "local-mac-address?". If the user has set
5335 	 * 'local-mac-address? = false', use "the system address" instead.
5336 	 */
5337 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5338 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5339 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5340 			if (localetheraddr(NULL, &sysaddr) != 0) {
5341 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5342 				found = B_TRUE;
5343 			}
5344 		}
5345 		ddi_prop_free(bytes);
5346 	}
5347 
5348 	/*
5349 	 * Finally(!), if there's a valid "mac-address" property (created
5350 	 * if we netbooted from this interface), we must use this instead
5351 	 * of any of the above to ensure that the NFS/install server doesn't
5352 	 * get confused by the address changing as Solaris takes over!
5353 	 */
5354 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5355 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5356 	if (err == DDI_PROP_SUCCESS) {
5357 		if (nelts == ETHERADDRL) {
5358 			while (nelts--)
5359 				hw->mac.addr[nelts] = bytes[nelts];
5360 			found = B_TRUE;
5361 		}
5362 		ddi_prop_free(bytes);
5363 	}
5364 
5365 	if (found) {
5366 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5367 		    ETHERADDRL);
5368 	}
5369 
5370 	return (found);
5371 }
5372 #endif
5373 
5374 static int
5375 e1000g_add_intrs(struct e1000g *Adapter)
5376 {
5377 	dev_info_t *devinfo;
5378 	int intr_types;
5379 	int rc;
5380 
5381 	devinfo = Adapter->dip;
5382 
5383 	/* Get supported interrupt types */
5384 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5385 
5386 	if (rc != DDI_SUCCESS) {
5387 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5388 		    "Get supported interrupt types failed: %d\n", rc);
5389 		return (DDI_FAILURE);
5390 	}
5391 
5392 	/*
5393 	 * Based on Intel Technical Advisory document (TA-160), there are some
5394 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5395 	 * that it supports MSI, but in fact has problems.
5396 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5397 	 * PCI/PCI-X NICs.
5398 	 */
5399 	if (Adapter->shared.mac.type < e1000_82571)
5400 		Adapter->msi_enable = B_FALSE;
5401 
5402 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5403 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5404 
5405 		if (rc != DDI_SUCCESS) {
5406 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5407 			    "Add MSI failed, trying Legacy interrupts\n");
5408 		} else {
5409 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5410 		}
5411 	}
5412 
5413 	if ((Adapter->intr_type == 0) &&
5414 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5415 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5416 
5417 		if (rc != DDI_SUCCESS) {
5418 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5419 			    "Add Legacy interrupts failed\n");
5420 			return (DDI_FAILURE);
5421 		}
5422 
5423 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5424 	}
5425 
5426 	if (Adapter->intr_type == 0) {
5427 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5428 		    "No interrupts registered\n");
5429 		return (DDI_FAILURE);
5430 	}
5431 
5432 	return (DDI_SUCCESS);
5433 }
5434 
5435 /*
5436  * e1000g_intr_add() handles MSI/Legacy interrupts
5437  */
5438 static int
5439 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5440 {
5441 	dev_info_t *devinfo;
5442 	int count, avail, actual;
5443 	int x, y, rc, inum = 0;
5444 	int flag;
5445 	ddi_intr_handler_t *intr_handler;
5446 
5447 	devinfo = Adapter->dip;
5448 
5449 	/* get number of interrupts */
5450 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5451 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5452 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5453 		    "Get interrupt number failed. Return: %d, count: %d\n",
5454 		    rc, count);
5455 		return (DDI_FAILURE);
5456 	}
5457 
5458 	/* get number of available interrupts */
5459 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5460 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5461 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5462 		    "Get interrupt available number failed. "
5463 		    "Return: %d, available: %d\n", rc, avail);
5464 		return (DDI_FAILURE);
5465 	}
5466 
5467 	if (avail < count) {
5468 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5469 		    "Interrupts count: %d, available: %d\n",
5470 		    count, avail);
5471 	}
5472 
5473 	/* Allocate an array of interrupt handles */
5474 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5475 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5476 
5477 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5478 	flag = DDI_INTR_ALLOC_NORMAL;
5479 
5480 	/* call ddi_intr_alloc() */
5481 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5482 	    count, &actual, flag);
5483 
5484 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5485 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5486 		    "Allocate interrupts failed: %d\n", rc);
5487 
5488 		kmem_free(Adapter->htable, Adapter->intr_size);
5489 		return (DDI_FAILURE);
5490 	}
5491 
5492 	if (actual < count) {
5493 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5494 		    "Interrupts requested: %d, received: %d\n",
5495 		    count, actual);
5496 	}
5497 
5498 	Adapter->intr_cnt = actual;
5499 
5500 	/* Get priority for first msi, assume remaining are all the same */
5501 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5502 
5503 	if (rc != DDI_SUCCESS) {
5504 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5505 		    "Get interrupt priority failed: %d\n", rc);
5506 
5507 		/* Free already allocated intr */
5508 		for (y = 0; y < actual; y++)
5509 			(void) ddi_intr_free(Adapter->htable[y]);
5510 
5511 		kmem_free(Adapter->htable, Adapter->intr_size);
5512 		return (DDI_FAILURE);
5513 	}
5514 
5515 	/*
5516 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5517 	 * use the interrupt service routine e1000g_intr_pciexpress()
5518 	 * to avoid interrupt stealing when sharing interrupt with other
5519 	 * devices.
5520 	 */
5521 	if (Adapter->shared.mac.type < e1000_82571)
5522 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5523 	else
5524 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5525 
5526 	/* Call ddi_intr_add_handler() */
5527 	for (x = 0; x < actual; x++) {
5528 		rc = ddi_intr_add_handler(Adapter->htable[x],
5529 		    intr_handler, (caddr_t)Adapter, NULL);
5530 
5531 		if (rc != DDI_SUCCESS) {
5532 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5533 			    "Add interrupt handler failed: %d\n", rc);
5534 
5535 			/* Remove already added handler */
5536 			for (y = 0; y < x; y++)
5537 				(void) ddi_intr_remove_handler(
5538 				    Adapter->htable[y]);
5539 
5540 			/* Free already allocated intr */
5541 			for (y = 0; y < actual; y++)
5542 				(void) ddi_intr_free(Adapter->htable[y]);
5543 
5544 			kmem_free(Adapter->htable, Adapter->intr_size);
5545 			return (DDI_FAILURE);
5546 		}
5547 	}
5548 
5549 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5550 
5551 	if (rc != DDI_SUCCESS) {
5552 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5553 		    "Get interrupt cap failed: %d\n", rc);
5554 
5555 		/* Free already allocated intr */
5556 		for (y = 0; y < actual; y++) {
5557 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5558 			(void) ddi_intr_free(Adapter->htable[y]);
5559 		}
5560 
5561 		kmem_free(Adapter->htable, Adapter->intr_size);
5562 		return (DDI_FAILURE);
5563 	}
5564 
5565 	return (DDI_SUCCESS);
5566 }
5567 
5568 static int
5569 e1000g_rem_intrs(struct e1000g *Adapter)
5570 {
5571 	int x;
5572 	int rc;
5573 
5574 	for (x = 0; x < Adapter->intr_cnt; x++) {
5575 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5576 		if (rc != DDI_SUCCESS) {
5577 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5578 			    "Remove intr handler failed: %d\n", rc);
5579 			return (DDI_FAILURE);
5580 		}
5581 
5582 		rc = ddi_intr_free(Adapter->htable[x]);
5583 		if (rc != DDI_SUCCESS) {
5584 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5585 			    "Free intr failed: %d\n", rc);
5586 			return (DDI_FAILURE);
5587 		}
5588 	}
5589 
5590 	kmem_free(Adapter->htable, Adapter->intr_size);
5591 
5592 	return (DDI_SUCCESS);
5593 }
5594 
5595 static int
5596 e1000g_enable_intrs(struct e1000g *Adapter)
5597 {
5598 	int x;
5599 	int rc;
5600 
5601 	/* Enable interrupts */
5602 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5603 		/* Call ddi_intr_block_enable() for MSI */
5604 		rc = ddi_intr_block_enable(Adapter->htable,
5605 		    Adapter->intr_cnt);
5606 		if (rc != DDI_SUCCESS) {
5607 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5608 			    "Enable block intr failed: %d\n", rc);
5609 			return (DDI_FAILURE);
5610 		}
5611 	} else {
5612 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5613 		for (x = 0; x < Adapter->intr_cnt; x++) {
5614 			rc = ddi_intr_enable(Adapter->htable[x]);
5615 			if (rc != DDI_SUCCESS) {
5616 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5617 				    "Enable intr failed: %d\n", rc);
5618 				return (DDI_FAILURE);
5619 			}
5620 		}
5621 	}
5622 
5623 	return (DDI_SUCCESS);
5624 }
5625 
5626 static int
5627 e1000g_disable_intrs(struct e1000g *Adapter)
5628 {
5629 	int x;
5630 	int rc;
5631 
5632 	/* Disable all interrupts */
5633 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5634 		rc = ddi_intr_block_disable(Adapter->htable,
5635 		    Adapter->intr_cnt);
5636 		if (rc != DDI_SUCCESS) {
5637 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5638 			    "Disable block intr failed: %d\n", rc);
5639 			return (DDI_FAILURE);
5640 		}
5641 	} else {
5642 		for (x = 0; x < Adapter->intr_cnt; x++) {
5643 			rc = ddi_intr_disable(Adapter->htable[x]);
5644 			if (rc != DDI_SUCCESS) {
5645 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5646 				    "Disable intr failed: %d\n", rc);
5647 				return (DDI_FAILURE);
5648 			}
5649 		}
5650 	}
5651 
5652 	return (DDI_SUCCESS);
5653 }
5654 
5655 /*
5656  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5657  */
5658 static void
5659 e1000g_get_phy_state(struct e1000g *Adapter)
5660 {
5661 	struct e1000_hw *hw = &Adapter->shared;
5662 
5663 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5664 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5665 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5666 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5667 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5668 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5669 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5670 	    &Adapter->phy_1000t_status);
5671 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5672 
5673 	Adapter->param_autoneg_cap =
5674 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5675 	Adapter->param_pause_cap =
5676 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5677 	Adapter->param_asym_pause_cap =
5678 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5679 	Adapter->param_1000fdx_cap =
5680 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5681 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5682 	Adapter->param_1000hdx_cap =
5683 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5684 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5685 	Adapter->param_100t4_cap =
5686 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5687 	Adapter->param_100fdx_cap =
5688 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5689 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5690 	Adapter->param_100hdx_cap =
5691 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5692 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5693 	Adapter->param_10fdx_cap =
5694 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5695 	Adapter->param_10hdx_cap =
5696 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5697 
5698 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5699 	Adapter->param_adv_pause =
5700 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5701 	Adapter->param_adv_asym_pause =
5702 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5703 	Adapter->param_adv_1000hdx =
5704 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5705 	Adapter->param_adv_100t4 =
5706 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5707 	if (Adapter->param_adv_autoneg == 1) {
5708 		Adapter->param_adv_1000fdx =
5709 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5710 		Adapter->param_adv_100fdx =
5711 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5712 		Adapter->param_adv_100hdx =
5713 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5714 		Adapter->param_adv_10fdx =
5715 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5716 		Adapter->param_adv_10hdx =
5717 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5718 	}
5719 
5720 	Adapter->param_lp_autoneg =
5721 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5722 	Adapter->param_lp_pause =
5723 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5724 	Adapter->param_lp_asym_pause =
5725 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5726 	Adapter->param_lp_1000fdx =
5727 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5728 	Adapter->param_lp_1000hdx =
5729 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5730 	Adapter->param_lp_100t4 =
5731 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5732 	Adapter->param_lp_100fdx =
5733 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5734 	Adapter->param_lp_100hdx =
5735 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5736 	Adapter->param_lp_10fdx =
5737 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5738 	Adapter->param_lp_10hdx =
5739 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5740 }
5741 
5742 /*
5743  * FMA support
5744  */
5745 
5746 int
5747 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5748 {
5749 	ddi_fm_error_t de;
5750 
5751 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5752 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5753 	return (de.fme_status);
5754 }
5755 
5756 int
5757 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5758 {
5759 	ddi_fm_error_t de;
5760 
5761 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5762 	return (de.fme_status);
5763 }
5764 
5765 /*
5766  * The IO fault service error handling callback function
5767  */
5768 /* ARGSUSED2 */
5769 static int
5770 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5771 {
5772 	/*
5773 	 * as the driver can always deal with an error in any dma or
5774 	 * access handle, we can just return the fme_status value.
5775 	 */
5776 	pci_ereport_post(dip, err, NULL);
5777 	return (err->fme_status);
5778 }
5779 
5780 static void
5781 e1000g_fm_init(struct e1000g *Adapter)
5782 {
5783 	ddi_iblock_cookie_t iblk;
5784 	int fma_acc_flag, fma_dma_flag;
5785 
5786 	/* Only register with IO Fault Services if we have some capability */
5787 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5788 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5789 		fma_acc_flag = 1;
5790 	} else {
5791 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5792 		fma_acc_flag = 0;
5793 	}
5794 
5795 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5796 		fma_dma_flag = 1;
5797 	} else {
5798 		fma_dma_flag = 0;
5799 	}
5800 
5801 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5802 
5803 	if (Adapter->fm_capabilities) {
5804 
5805 		/* Register capabilities with IO Fault Services */
5806 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5807 
5808 		/*
5809 		 * Initialize pci ereport capabilities if ereport capable
5810 		 */
5811 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5812 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5813 			pci_ereport_setup(Adapter->dip);
5814 
5815 		/*
5816 		 * Register error callback if error callback capable
5817 		 */
5818 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5819 			ddi_fm_handler_register(Adapter->dip,
5820 			    e1000g_fm_error_cb, (void*) Adapter);
5821 	}
5822 }
5823 
5824 static void
5825 e1000g_fm_fini(struct e1000g *Adapter)
5826 {
5827 	/* Only unregister FMA capabilities if we registered some */
5828 	if (Adapter->fm_capabilities) {
5829 
5830 		/*
5831 		 * Release any resources allocated by pci_ereport_setup()
5832 		 */
5833 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5834 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5835 			pci_ereport_teardown(Adapter->dip);
5836 
5837 		/*
5838 		 * Un-register error callback if error callback capable
5839 		 */
5840 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5841 			ddi_fm_handler_unregister(Adapter->dip);
5842 
5843 		/* Unregister from IO Fault Services */
5844 		ddi_fm_fini(Adapter->dip);
5845 	}
5846 }
5847 
5848 void
5849 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5850 {
5851 	uint64_t ena;
5852 	char buf[FM_MAX_CLASS];
5853 
5854 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5855 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5856 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5857 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5858 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5859 	}
5860 }
5861 
5862 /*
5863  * quiesce(9E) entry point.
5864  *
5865  * This function is called when the system is single-threaded at high
5866  * PIL with preemption disabled. Therefore, this function must not be
5867  * blocked.
5868  *
5869  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5870  * DDI_FAILURE indicates an error condition and should almost never happen.
5871  */
5872 static int
5873 e1000g_quiesce(dev_info_t *devinfo)
5874 {
5875 	struct e1000g *Adapter;
5876 
5877 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5878 
5879 	if (Adapter == NULL)
5880 		return (DDI_FAILURE);
5881 
5882 	e1000g_clear_all_interrupts(Adapter);
5883 
5884 	(void) e1000_reset_hw(&Adapter->shared);
5885 
5886 	/* Setup our HW Tx Head & Tail descriptor pointers */
5887 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5888 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5889 
5890 	/* Setup our HW Rx Head & Tail descriptor pointers */
5891 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5892 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5893 
5894 	return (DDI_SUCCESS);
5895 }
5896 
5897 static int
5898 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5899     uint_t pr_valsize, void *pr_val)
5900 {
5901 	link_flowctrl_t fl;
5902 	int err = 0;
5903 
5904 	ASSERT(pr_valsize > 0);
5905 	switch (pr_num) {
5906 	case MAC_PROP_AUTONEG:
5907 		*(uint8_t *)pr_val =
5908 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5909 		break;
5910 	case MAC_PROP_FLOWCTRL:
5911 		if (pr_valsize < sizeof (link_flowctrl_t))
5912 			return (EINVAL);
5913 		fl = LINK_FLOWCTRL_BI;
5914 		bcopy(&fl, pr_val, sizeof (fl));
5915 		break;
5916 	case MAC_PROP_ADV_1000FDX_CAP:
5917 	case MAC_PROP_EN_1000FDX_CAP:
5918 		*(uint8_t *)pr_val =
5919 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5920 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5921 		break;
5922 	case MAC_PROP_ADV_1000HDX_CAP:
5923 	case MAC_PROP_EN_1000HDX_CAP:
5924 		*(uint8_t *)pr_val =
5925 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5926 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5927 		break;
5928 	case MAC_PROP_ADV_100FDX_CAP:
5929 	case MAC_PROP_EN_100FDX_CAP:
5930 		*(uint8_t *)pr_val =
5931 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5932 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5933 		break;
5934 	case MAC_PROP_ADV_100HDX_CAP:
5935 	case MAC_PROP_EN_100HDX_CAP:
5936 		*(uint8_t *)pr_val =
5937 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5938 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5939 		break;
5940 	case MAC_PROP_ADV_10FDX_CAP:
5941 	case MAC_PROP_EN_10FDX_CAP:
5942 		*(uint8_t *)pr_val =
5943 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5944 		break;
5945 	case MAC_PROP_ADV_10HDX_CAP:
5946 	case MAC_PROP_EN_10HDX_CAP:
5947 		*(uint8_t *)pr_val =
5948 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5949 		break;
5950 	default:
5951 		err = ENOTSUP;
5952 		break;
5953 	}
5954 	return (err);
5955 }
5956 
5957 /*
5958  * synchronize the adv* and en* parameters.
5959  *
5960  * See comments in <sys/dld.h> for details of the *_en_*
5961  * parameters. The usage of ndd for setting adv parameters will
5962  * synchronize all the en parameters with the e1000g parameters,
5963  * implicitly disabling any settings made via dladm.
5964  */
5965 static void
5966 e1000g_param_sync(struct e1000g *Adapter)
5967 {
5968 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5969 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5970 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5971 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5972 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5973 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5974 }
5975 
5976 /*
5977  * e1000g_get_driver_control - tell manageability firmware that the driver
5978  * has control.
5979  */
5980 static void
5981 e1000g_get_driver_control(struct e1000_hw *hw)
5982 {
5983 	uint32_t ctrl_ext;
5984 	uint32_t swsm;
5985 
5986 	/* tell manageability firmware the driver has taken over */
5987 	switch (hw->mac.type) {
5988 	case e1000_82573:
5989 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5990 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5991 		break;
5992 	case e1000_82571:
5993 	case e1000_82572:
5994 	case e1000_82574:
5995 	case e1000_80003es2lan:
5996 	case e1000_ich8lan:
5997 	case e1000_ich9lan:
5998 	case e1000_ich10lan:
5999 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6000 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6001 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6002 		break;
6003 	default:
6004 		/* no manageability firmware: do nothing */
6005 		break;
6006 	}
6007 }
6008 
6009 /*
6010  * e1000g_release_driver_control - tell manageability firmware that the driver
6011  * has released control.
6012  */
6013 static void
6014 e1000g_release_driver_control(struct e1000_hw *hw)
6015 {
6016 	uint32_t ctrl_ext;
6017 	uint32_t swsm;
6018 
6019 	/* tell manageability firmware the driver has released control */
6020 	switch (hw->mac.type) {
6021 	case e1000_82573:
6022 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6023 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6024 		break;
6025 	case e1000_82571:
6026 	case e1000_82572:
6027 	case e1000_82574:
6028 	case e1000_80003es2lan:
6029 	case e1000_ich8lan:
6030 	case e1000_ich9lan:
6031 	case e1000_ich10lan:
6032 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6033 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6034 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6035 		break;
6036 	default:
6037 		/* no manageability firmware: do nothing */
6038 		break;
6039 	}
6040 }
6041 
6042 /*
6043  * Restore e1000g promiscuous mode.
6044  */
6045 static void
6046 e1000g_restore_promisc(struct e1000g *Adapter)
6047 {
6048 	if (Adapter->e1000g_promisc) {
6049 		uint32_t rctl;
6050 
6051 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6052 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6053 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6054 	}
6055 }
6056