xref: /titanic_50/usr/src/uts/common/io/e1000api/e1000_phy.c (revision da5577f07f6199b51ea374581248790c288e827b)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 					  u16 *data, bool read, bool page_set);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 					  u16 *data, bool read);
43 
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] = {
46 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 		(sizeof(e1000_m88_cable_length_table) / \
49 		 sizeof(e1000_m88_cable_length_table[0]))
50 
51 static const u16 e1000_igp_2_cable_length_table[] = {
52 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
53 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
54 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
55 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
56 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
57 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
58 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59 	124};
60 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
61 		(sizeof(e1000_igp_2_cable_length_table) / \
62 		 sizeof(e1000_igp_2_cable_length_table[0]))
63 
64 /**
65  *  e1000_init_phy_ops_generic - Initialize PHY function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  Setups up the function pointers to no-op functions
69  **/
70 void e1000_init_phy_ops_generic(struct e1000_hw *hw)
71 {
72 	struct e1000_phy_info *phy = &hw->phy;
73 	DEBUGFUNC("e1000_init_phy_ops_generic");
74 
75 	/* Initialize function pointers */
76 	phy->ops.init_params = e1000_null_ops_generic;
77 	phy->ops.acquire = e1000_null_ops_generic;
78 	phy->ops.check_polarity = e1000_null_ops_generic;
79 	phy->ops.check_reset_block = e1000_null_ops_generic;
80 	phy->ops.commit = e1000_null_ops_generic;
81 	phy->ops.force_speed_duplex = e1000_null_ops_generic;
82 	phy->ops.get_cfg_done = e1000_null_ops_generic;
83 	phy->ops.get_cable_length = e1000_null_ops_generic;
84 	phy->ops.get_info = e1000_null_ops_generic;
85 	phy->ops.set_page = e1000_null_set_page;
86 	phy->ops.read_reg = e1000_null_read_reg;
87 	phy->ops.read_reg_locked = e1000_null_read_reg;
88 	phy->ops.read_reg_page = e1000_null_read_reg;
89 	phy->ops.release = e1000_null_phy_generic;
90 	phy->ops.reset = e1000_null_ops_generic;
91 	phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
92 	phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
93 	phy->ops.write_reg = e1000_null_write_reg;
94 	phy->ops.write_reg_locked = e1000_null_write_reg;
95 	phy->ops.write_reg_page = e1000_null_write_reg;
96 	phy->ops.power_up = e1000_null_phy_generic;
97 	phy->ops.power_down = e1000_null_phy_generic;
98 	phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
99 	phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
100 	phy->ops.cfg_on_link_up = e1000_null_ops_generic;
101 }
102 
103 /**
104  *  e1000_null_set_page - No-op function, return 0
105  *  @hw: pointer to the HW structure
106  **/
107 s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
108 			u16 E1000_UNUSEDARG data)
109 {
110 	DEBUGFUNC("e1000_null_set_page");
111 	return E1000_SUCCESS;
112 }
113 
114 /**
115  *  e1000_null_read_reg - No-op function, return 0
116  *  @hw: pointer to the HW structure
117  **/
118 s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
119 			u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
120 {
121 	DEBUGFUNC("e1000_null_read_reg");
122 	return E1000_SUCCESS;
123 }
124 
125 /**
126  *  e1000_null_phy_generic - No-op function, return void
127  *  @hw: pointer to the HW structure
128  **/
129 void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
130 {
131 	DEBUGFUNC("e1000_null_phy_generic");
132 	return;
133 }
134 
135 /**
136  *  e1000_null_lplu_state - No-op function, return 0
137  *  @hw: pointer to the HW structure
138  **/
139 s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
140 			  bool E1000_UNUSEDARG active)
141 {
142 	DEBUGFUNC("e1000_null_lplu_state");
143 	return E1000_SUCCESS;
144 }
145 
146 /**
147  *  e1000_null_write_reg - No-op function, return 0
148  *  @hw: pointer to the HW structure
149  **/
150 s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
151 			 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
152 {
153 	DEBUGFUNC("e1000_null_write_reg");
154 	return E1000_SUCCESS;
155 }
156 
157 /**
158  *  e1000_read_i2c_byte_null - No-op function, return 0
159  *  @hw: pointer to hardware structure
160  *  @byte_offset: byte offset to write
161  *  @dev_addr: device address
162  *  @data: data value read
163  *
164  **/
165 s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
166 			     u8 E1000_UNUSEDARG byte_offset,
167 			     u8 E1000_UNUSEDARG dev_addr,
168 			     u8 E1000_UNUSEDARG *data)
169 {
170 	DEBUGFUNC("e1000_read_i2c_byte_null");
171 	return E1000_SUCCESS;
172 }
173 
174 /**
175  *  e1000_write_i2c_byte_null - No-op function, return 0
176  *  @hw: pointer to hardware structure
177  *  @byte_offset: byte offset to write
178  *  @dev_addr: device address
179  *  @data: data value to write
180  *
181  **/
182 s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
183 			      u8 E1000_UNUSEDARG byte_offset,
184 			      u8 E1000_UNUSEDARG dev_addr,
185 			      u8 E1000_UNUSEDARG data)
186 {
187 	DEBUGFUNC("e1000_write_i2c_byte_null");
188 	return E1000_SUCCESS;
189 }
190 
191 /**
192  *  e1000_check_reset_block_generic - Check if PHY reset is blocked
193  *  @hw: pointer to the HW structure
194  *
195  *  Read the PHY management control register and check whether a PHY reset
196  *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
197  *  return E1000_BLK_PHY_RESET (12).
198  **/
199 s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
200 {
201 	u32 manc;
202 
203 	DEBUGFUNC("e1000_check_reset_block");
204 
205 	manc = E1000_READ_REG(hw, E1000_MANC);
206 
207 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
208 	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
209 }
210 
211 /**
212  *  e1000_get_phy_id - Retrieve the PHY ID and revision
213  *  @hw: pointer to the HW structure
214  *
215  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
216  *  revision in the hardware structure.
217  **/
218 s32 e1000_get_phy_id(struct e1000_hw *hw)
219 {
220 	struct e1000_phy_info *phy = &hw->phy;
221 	s32 ret_val = E1000_SUCCESS;
222 	u16 phy_id;
223 	u16 retry_count = 0;
224 
225 	DEBUGFUNC("e1000_get_phy_id");
226 
227 	if (!phy->ops.read_reg)
228 		return E1000_SUCCESS;
229 
230 	while (retry_count < 2) {
231 		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
232 		if (ret_val)
233 			return ret_val;
234 
235 		phy->id = (u32)(phy_id << 16);
236 		usec_delay(20);
237 		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
238 		if (ret_val)
239 			return ret_val;
240 
241 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
242 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
243 
244 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
245 			return E1000_SUCCESS;
246 
247 		retry_count++;
248 	}
249 
250 	return E1000_SUCCESS;
251 }
252 
253 /**
254  *  e1000_phy_reset_dsp_generic - Reset PHY DSP
255  *  @hw: pointer to the HW structure
256  *
257  *  Reset the digital signal processor.
258  **/
259 s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
260 {
261 	s32 ret_val;
262 
263 	DEBUGFUNC("e1000_phy_reset_dsp_generic");
264 
265 	if (!hw->phy.ops.write_reg)
266 		return E1000_SUCCESS;
267 
268 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
269 	if (ret_val)
270 		return ret_val;
271 
272 	return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
273 }
274 
275 /**
276  *  e1000_read_phy_reg_mdic - Read MDI control register
277  *  @hw: pointer to the HW structure
278  *  @offset: register offset to be read
279  *  @data: pointer to the read data
280  *
281  *  Reads the MDI control register in the PHY at offset and stores the
282  *  information read to data.
283  **/
284 s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
285 {
286 	struct e1000_phy_info *phy = &hw->phy;
287 	u32 i, mdic = 0;
288 
289 	DEBUGFUNC("e1000_read_phy_reg_mdic");
290 
291 	if (offset > MAX_PHY_REG_ADDRESS) {
292 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
293 		return -E1000_ERR_PARAM;
294 	}
295 
296 	/* Set up Op-code, Phy Address, and register offset in the MDI
297 	 * Control register.  The MAC will take care of interfacing with the
298 	 * PHY to retrieve the desired data.
299 	 */
300 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
301 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
302 		(E1000_MDIC_OP_READ));
303 
304 	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
305 
306 	/* Poll the ready bit to see if the MDI read completed
307 	 * Increasing the time out as testing showed failures with
308 	 * the lower time out
309 	 */
310 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
311 		usec_delay_irq(50);
312 		mdic = E1000_READ_REG(hw, E1000_MDIC);
313 		if (mdic & E1000_MDIC_READY)
314 			break;
315 	}
316 	if (!(mdic & E1000_MDIC_READY)) {
317 		DEBUGOUT("MDI Read did not complete\n");
318 		return -E1000_ERR_PHY;
319 	}
320 	if (mdic & E1000_MDIC_ERROR) {
321 		DEBUGOUT("MDI Error\n");
322 		return -E1000_ERR_PHY;
323 	}
324 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
325 		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
326 			  offset,
327 			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
328 		return -E1000_ERR_PHY;
329 	}
330 	*data = (u16) mdic;
331 
332 	/* Allow some time after each MDIC transaction to avoid
333 	 * reading duplicate data in the next MDIC transaction.
334 	 */
335 	if (hw->mac.type == e1000_pch2lan)
336 		usec_delay_irq(100);
337 
338 	return E1000_SUCCESS;
339 }
340 
341 /**
342  *  e1000_write_phy_reg_mdic - Write MDI control register
343  *  @hw: pointer to the HW structure
344  *  @offset: register offset to write to
345  *  @data: data to write to register at offset
346  *
347  *  Writes data to MDI control register in the PHY at offset.
348  **/
349 s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
350 {
351 	struct e1000_phy_info *phy = &hw->phy;
352 	u32 i, mdic = 0;
353 
354 	DEBUGFUNC("e1000_write_phy_reg_mdic");
355 
356 	if (offset > MAX_PHY_REG_ADDRESS) {
357 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
358 		return -E1000_ERR_PARAM;
359 	}
360 
361 	/* Set up Op-code, Phy Address, and register offset in the MDI
362 	 * Control register.  The MAC will take care of interfacing with the
363 	 * PHY to retrieve the desired data.
364 	 */
365 	mdic = (((u32)data) |
366 		(offset << E1000_MDIC_REG_SHIFT) |
367 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
368 		(E1000_MDIC_OP_WRITE));
369 
370 	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
371 
372 	/* Poll the ready bit to see if the MDI read completed
373 	 * Increasing the time out as testing showed failures with
374 	 * the lower time out
375 	 */
376 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
377 		usec_delay_irq(50);
378 		mdic = E1000_READ_REG(hw, E1000_MDIC);
379 		if (mdic & E1000_MDIC_READY)
380 			break;
381 	}
382 	if (!(mdic & E1000_MDIC_READY)) {
383 		DEBUGOUT("MDI Write did not complete\n");
384 		return -E1000_ERR_PHY;
385 	}
386 	if (mdic & E1000_MDIC_ERROR) {
387 		DEBUGOUT("MDI Error\n");
388 		return -E1000_ERR_PHY;
389 	}
390 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
391 		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
392 			  offset,
393 			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
394 		return -E1000_ERR_PHY;
395 	}
396 
397 	/* Allow some time after each MDIC transaction to avoid
398 	 * reading duplicate data in the next MDIC transaction.
399 	 */
400 	if (hw->mac.type == e1000_pch2lan)
401 		usec_delay_irq(100);
402 
403 	return E1000_SUCCESS;
404 }
405 
406 /**
407  *  e1000_read_phy_reg_i2c - Read PHY register using i2c
408  *  @hw: pointer to the HW structure
409  *  @offset: register offset to be read
410  *  @data: pointer to the read data
411  *
412  *  Reads the PHY register at offset using the i2c interface and stores the
413  *  retrieved information in data.
414  **/
415 s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
416 {
417 	struct e1000_phy_info *phy = &hw->phy;
418 	u32 i, i2ccmd = 0;
419 
420 	DEBUGFUNC("e1000_read_phy_reg_i2c");
421 
422 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
423 	 * register.  The MAC will take care of interfacing with the
424 	 * PHY to retrieve the desired data.
425 	 */
426 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
427 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
428 		  (E1000_I2CCMD_OPCODE_READ));
429 
430 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
431 
432 	/* Poll the ready bit to see if the I2C read completed */
433 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
434 		usec_delay(50);
435 		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
436 		if (i2ccmd & E1000_I2CCMD_READY)
437 			break;
438 	}
439 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
440 		DEBUGOUT("I2CCMD Read did not complete\n");
441 		return -E1000_ERR_PHY;
442 	}
443 	if (i2ccmd & E1000_I2CCMD_ERROR) {
444 		DEBUGOUT("I2CCMD Error bit set\n");
445 		return -E1000_ERR_PHY;
446 	}
447 
448 	/* Need to byte-swap the 16-bit value. */
449 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
450 
451 	return E1000_SUCCESS;
452 }
453 
454 /**
455  *  e1000_write_phy_reg_i2c - Write PHY register using i2c
456  *  @hw: pointer to the HW structure
457  *  @offset: register offset to write to
458  *  @data: data to write at register offset
459  *
460  *  Writes the data to PHY register at the offset using the i2c interface.
461  **/
462 s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
463 {
464 	struct e1000_phy_info *phy = &hw->phy;
465 	u32 i, i2ccmd = 0;
466 	u16 phy_data_swapped;
467 
468 	DEBUGFUNC("e1000_write_phy_reg_i2c");
469 
470 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
471 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
472 		DEBUGOUT1("PHY I2C Address %d is out of range.\n",
473 			  hw->phy.addr);
474 		return -E1000_ERR_CONFIG;
475 	}
476 
477 	/* Swap the data bytes for the I2C interface */
478 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
479 
480 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
481 	 * register.  The MAC will take care of interfacing with the
482 	 * PHY to retrieve the desired data.
483 	 */
484 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
485 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
486 		  E1000_I2CCMD_OPCODE_WRITE |
487 		  phy_data_swapped);
488 
489 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
490 
491 	/* Poll the ready bit to see if the I2C read completed */
492 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
493 		usec_delay(50);
494 		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
495 		if (i2ccmd & E1000_I2CCMD_READY)
496 			break;
497 	}
498 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
499 		DEBUGOUT("I2CCMD Write did not complete\n");
500 		return -E1000_ERR_PHY;
501 	}
502 	if (i2ccmd & E1000_I2CCMD_ERROR) {
503 		DEBUGOUT("I2CCMD Error bit set\n");
504 		return -E1000_ERR_PHY;
505 	}
506 
507 	return E1000_SUCCESS;
508 }
509 
510 /**
511  *  e1000_read_sfp_data_byte - Reads SFP module data.
512  *  @hw: pointer to the HW structure
513  *  @offset: byte location offset to be read
514  *  @data: read data buffer pointer
515  *
516  *  Reads one byte from SFP module data stored
517  *  in SFP resided EEPROM memory or SFP diagnostic area.
518  *  Function should be called with
519  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
520  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
521  *  access
522  **/
523 s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
524 {
525 	u32 i = 0;
526 	u32 i2ccmd = 0;
527 	u32 data_local = 0;
528 
529 	DEBUGFUNC("e1000_read_sfp_data_byte");
530 
531 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
532 		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
533 		return -E1000_ERR_PHY;
534 	}
535 
536 	/* Set up Op-code, EEPROM Address,in the I2CCMD
537 	 * register. The MAC will take care of interfacing with the
538 	 * EEPROM to retrieve the desired data.
539 	 */
540 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
541 		  E1000_I2CCMD_OPCODE_READ);
542 
543 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
544 
545 	/* Poll the ready bit to see if the I2C read completed */
546 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
547 		usec_delay(50);
548 		data_local = E1000_READ_REG(hw, E1000_I2CCMD);
549 		if (data_local & E1000_I2CCMD_READY)
550 			break;
551 	}
552 	if (!(data_local & E1000_I2CCMD_READY)) {
553 		DEBUGOUT("I2CCMD Read did not complete\n");
554 		return -E1000_ERR_PHY;
555 	}
556 	if (data_local & E1000_I2CCMD_ERROR) {
557 		DEBUGOUT("I2CCMD Error bit set\n");
558 		return -E1000_ERR_PHY;
559 	}
560 	*data = (u8) data_local & 0xFF;
561 
562 	return E1000_SUCCESS;
563 }
564 
565 /**
566  *  e1000_write_sfp_data_byte - Writes SFP module data.
567  *  @hw: pointer to the HW structure
568  *  @offset: byte location offset to write to
569  *  @data: data to write
570  *
571  *  Writes one byte to SFP module data stored
572  *  in SFP resided EEPROM memory or SFP diagnostic area.
573  *  Function should be called with
574  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
575  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
576  *  access
577  **/
578 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
579 {
580 	u32 i = 0;
581 	u32 i2ccmd = 0;
582 	u32 data_local = 0;
583 
584 	DEBUGFUNC("e1000_write_sfp_data_byte");
585 
586 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
587 		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
588 		return -E1000_ERR_PHY;
589 	}
590 	/* The programming interface is 16 bits wide
591 	 * so we need to read the whole word first
592 	 * then update appropriate byte lane and write
593 	 * the updated word back.
594 	 */
595 	/* Set up Op-code, EEPROM Address,in the I2CCMD
596 	 * register. The MAC will take care of interfacing
597 	 * with an EEPROM to write the data given.
598 	 */
599 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
600 		  E1000_I2CCMD_OPCODE_READ);
601 	/* Set a command to read single word */
602 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
603 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
604 		usec_delay(50);
605 		/* Poll the ready bit to see if lastly
606 		 * launched I2C operation completed
607 		 */
608 		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
609 		if (i2ccmd & E1000_I2CCMD_READY) {
610 			/* Check if this is READ or WRITE phase */
611 			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
612 			    E1000_I2CCMD_OPCODE_READ) {
613 				/* Write the selected byte
614 				 * lane and update whole word
615 				 */
616 				data_local = i2ccmd & 0xFF00;
617 				data_local |= data;
618 				i2ccmd = ((offset <<
619 					E1000_I2CCMD_REG_ADDR_SHIFT) |
620 					E1000_I2CCMD_OPCODE_WRITE | data_local);
621 				E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
622 			} else {
623 				break;
624 			}
625 		}
626 	}
627 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
628 		DEBUGOUT("I2CCMD Write did not complete\n");
629 		return -E1000_ERR_PHY;
630 	}
631 	if (i2ccmd & E1000_I2CCMD_ERROR) {
632 		DEBUGOUT("I2CCMD Error bit set\n");
633 		return -E1000_ERR_PHY;
634 	}
635 	return E1000_SUCCESS;
636 }
637 
638 /**
639  *  e1000_read_phy_reg_m88 - Read m88 PHY register
640  *  @hw: pointer to the HW structure
641  *  @offset: register offset to be read
642  *  @data: pointer to the read data
643  *
644  *  Acquires semaphore, if necessary, then reads the PHY register at offset
645  *  and storing the retrieved information in data.  Release any acquired
646  *  semaphores before exiting.
647  **/
648 s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
649 {
650 	s32 ret_val;
651 
652 	DEBUGFUNC("e1000_read_phy_reg_m88");
653 
654 	if (!hw->phy.ops.acquire)
655 		return E1000_SUCCESS;
656 
657 	ret_val = hw->phy.ops.acquire(hw);
658 	if (ret_val)
659 		return ret_val;
660 
661 	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
662 					  data);
663 
664 	hw->phy.ops.release(hw);
665 
666 	return ret_val;
667 }
668 
669 /**
670  *  e1000_write_phy_reg_m88 - Write m88 PHY register
671  *  @hw: pointer to the HW structure
672  *  @offset: register offset to write to
673  *  @data: data to write at register offset
674  *
675  *  Acquires semaphore, if necessary, then writes the data to PHY register
676  *  at the offset.  Release any acquired semaphores before exiting.
677  **/
678 s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
679 {
680 	s32 ret_val;
681 
682 	DEBUGFUNC("e1000_write_phy_reg_m88");
683 
684 	if (!hw->phy.ops.acquire)
685 		return E1000_SUCCESS;
686 
687 	ret_val = hw->phy.ops.acquire(hw);
688 	if (ret_val)
689 		return ret_val;
690 
691 	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
692 					   data);
693 
694 	hw->phy.ops.release(hw);
695 
696 	return ret_val;
697 }
698 
699 /**
700  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
701  *  @hw: pointer to the HW structure
702  *  @page: page to set (shifted left when necessary)
703  *
704  *  Sets PHY page required for PHY register access.  Assumes semaphore is
705  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
706  *  must set it appropriately (if necessary) after this function returns.
707  **/
708 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
709 {
710 	DEBUGFUNC("e1000_set_page_igp");
711 
712 	DEBUGOUT1("Setting page 0x%x\n", page);
713 
714 	hw->phy.addr = 1;
715 
716 	return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
717 }
718 
719 /**
720  *  __e1000_read_phy_reg_igp - Read igp PHY register
721  *  @hw: pointer to the HW structure
722  *  @offset: register offset to be read
723  *  @data: pointer to the read data
724  *  @locked: semaphore has already been acquired or not
725  *
726  *  Acquires semaphore, if necessary, then reads the PHY register at offset
727  *  and stores the retrieved information in data.  Release any acquired
728  *  semaphores before exiting.
729  **/
730 static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
731 				    bool locked)
732 {
733 	s32 ret_val = E1000_SUCCESS;
734 
735 	DEBUGFUNC("__e1000_read_phy_reg_igp");
736 
737 	if (!locked) {
738 		if (!hw->phy.ops.acquire)
739 			return E1000_SUCCESS;
740 
741 		ret_val = hw->phy.ops.acquire(hw);
742 		if (ret_val)
743 			return ret_val;
744 	}
745 
746 	if (offset > MAX_PHY_MULTI_PAGE_REG)
747 		ret_val = e1000_write_phy_reg_mdic(hw,
748 						   IGP01E1000_PHY_PAGE_SELECT,
749 						   (u16)offset);
750 	if (!ret_val)
751 		ret_val = e1000_read_phy_reg_mdic(hw,
752 						  MAX_PHY_REG_ADDRESS & offset,
753 						  data);
754 	if (!locked)
755 		hw->phy.ops.release(hw);
756 
757 	return ret_val;
758 }
759 
760 /**
761  *  e1000_read_phy_reg_igp - Read igp PHY register
762  *  @hw: pointer to the HW structure
763  *  @offset: register offset to be read
764  *  @data: pointer to the read data
765  *
766  *  Acquires semaphore then reads the PHY register at offset and stores the
767  *  retrieved information in data.
768  *  Release the acquired semaphore before exiting.
769  **/
770 s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
771 {
772 	return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
773 }
774 
775 /**
776  *  e1000_read_phy_reg_igp_locked - Read igp PHY register
777  *  @hw: pointer to the HW structure
778  *  @offset: register offset to be read
779  *  @data: pointer to the read data
780  *
781  *  Reads the PHY register at offset and stores the retrieved information
782  *  in data.  Assumes semaphore already acquired.
783  **/
784 s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
785 {
786 	return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
787 }
788 
789 /**
790  *  e1000_write_phy_reg_igp - Write igp PHY register
791  *  @hw: pointer to the HW structure
792  *  @offset: register offset to write to
793  *  @data: data to write at register offset
794  *  @locked: semaphore has already been acquired or not
795  *
796  *  Acquires semaphore, if necessary, then writes the data to PHY register
797  *  at the offset.  Release any acquired semaphores before exiting.
798  **/
799 static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
800 				     bool locked)
801 {
802 	s32 ret_val = E1000_SUCCESS;
803 
804 	DEBUGFUNC("e1000_write_phy_reg_igp");
805 
806 	if (!locked) {
807 		if (!hw->phy.ops.acquire)
808 			return E1000_SUCCESS;
809 
810 		ret_val = hw->phy.ops.acquire(hw);
811 		if (ret_val)
812 			return ret_val;
813 	}
814 
815 	if (offset > MAX_PHY_MULTI_PAGE_REG)
816 		ret_val = e1000_write_phy_reg_mdic(hw,
817 						   IGP01E1000_PHY_PAGE_SELECT,
818 						   (u16)offset);
819 	if (!ret_val)
820 		ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
821 						       offset,
822 						   data);
823 	if (!locked)
824 		hw->phy.ops.release(hw);
825 
826 	return ret_val;
827 }
828 
829 /**
830  *  e1000_write_phy_reg_igp - Write igp PHY register
831  *  @hw: pointer to the HW structure
832  *  @offset: register offset to write to
833  *  @data: data to write at register offset
834  *
835  *  Acquires semaphore then writes the data to PHY register
836  *  at the offset.  Release any acquired semaphores before exiting.
837  **/
838 s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
839 {
840 	return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
841 }
842 
843 /**
844  *  e1000_write_phy_reg_igp_locked - Write igp PHY register
845  *  @hw: pointer to the HW structure
846  *  @offset: register offset to write to
847  *  @data: data to write at register offset
848  *
849  *  Writes the data to PHY register at the offset.
850  *  Assumes semaphore already acquired.
851  **/
852 s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
853 {
854 	return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
855 }
856 
857 /**
858  *  __e1000_read_kmrn_reg - Read kumeran register
859  *  @hw: pointer to the HW structure
860  *  @offset: register offset to be read
861  *  @data: pointer to the read data
862  *  @locked: semaphore has already been acquired or not
863  *
864  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
865  *  using the kumeran interface.  The information retrieved is stored in data.
866  *  Release any acquired semaphores before exiting.
867  **/
868 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
869 				 bool locked)
870 {
871 	u32 kmrnctrlsta;
872 
873 	DEBUGFUNC("__e1000_read_kmrn_reg");
874 
875 	if (!locked) {
876 		s32 ret_val = E1000_SUCCESS;
877 
878 		if (!hw->phy.ops.acquire)
879 			return E1000_SUCCESS;
880 
881 		ret_val = hw->phy.ops.acquire(hw);
882 		if (ret_val)
883 			return ret_val;
884 	}
885 
886 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
887 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
888 	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
889 	E1000_WRITE_FLUSH(hw);
890 
891 	usec_delay(2);
892 
893 	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
894 	*data = (u16)kmrnctrlsta;
895 
896 	if (!locked)
897 		hw->phy.ops.release(hw);
898 
899 	return E1000_SUCCESS;
900 }
901 
902 /**
903  *  e1000_read_kmrn_reg_generic -  Read kumeran register
904  *  @hw: pointer to the HW structure
905  *  @offset: register offset to be read
906  *  @data: pointer to the read data
907  *
908  *  Acquires semaphore then reads the PHY register at offset using the
909  *  kumeran interface.  The information retrieved is stored in data.
910  *  Release the acquired semaphore before exiting.
911  **/
912 s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
913 {
914 	return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
915 }
916 
917 /**
918  *  e1000_read_kmrn_reg_locked -  Read kumeran register
919  *  @hw: pointer to the HW structure
920  *  @offset: register offset to be read
921  *  @data: pointer to the read data
922  *
923  *  Reads the PHY register at offset using the kumeran interface.  The
924  *  information retrieved is stored in data.
925  *  Assumes semaphore already acquired.
926  **/
927 s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
928 {
929 	return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
930 }
931 
932 /**
933  *  __e1000_write_kmrn_reg - Write kumeran register
934  *  @hw: pointer to the HW structure
935  *  @offset: register offset to write to
936  *  @data: data to write at register offset
937  *  @locked: semaphore has already been acquired or not
938  *
939  *  Acquires semaphore, if necessary.  Then write the data to PHY register
940  *  at the offset using the kumeran interface.  Release any acquired semaphores
941  *  before exiting.
942  **/
943 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
944 				  bool locked)
945 {
946 	u32 kmrnctrlsta;
947 
948 	DEBUGFUNC("e1000_write_kmrn_reg_generic");
949 
950 	if (!locked) {
951 		s32 ret_val = E1000_SUCCESS;
952 
953 		if (!hw->phy.ops.acquire)
954 			return E1000_SUCCESS;
955 
956 		ret_val = hw->phy.ops.acquire(hw);
957 		if (ret_val)
958 			return ret_val;
959 	}
960 
961 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
962 		       E1000_KMRNCTRLSTA_OFFSET) | data;
963 	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
964 	E1000_WRITE_FLUSH(hw);
965 
966 	usec_delay(2);
967 
968 	if (!locked)
969 		hw->phy.ops.release(hw);
970 
971 	return E1000_SUCCESS;
972 }
973 
974 /**
975  *  e1000_write_kmrn_reg_generic -  Write kumeran register
976  *  @hw: pointer to the HW structure
977  *  @offset: register offset to write to
978  *  @data: data to write at register offset
979  *
980  *  Acquires semaphore then writes the data to the PHY register at the offset
981  *  using the kumeran interface.  Release the acquired semaphore before exiting.
982  **/
983 s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
984 {
985 	return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
986 }
987 
988 /**
989  *  e1000_write_kmrn_reg_locked -  Write kumeran register
990  *  @hw: pointer to the HW structure
991  *  @offset: register offset to write to
992  *  @data: data to write at register offset
993  *
994  *  Write the data to PHY register at the offset using the kumeran interface.
995  *  Assumes semaphore already acquired.
996  **/
997 s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
998 {
999 	return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
1000 }
1001 
1002 /**
1003  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
1004  *  @hw: pointer to the HW structure
1005  *
1006  *  Sets up Master/slave mode
1007  **/
1008 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
1009 {
1010 	s32 ret_val;
1011 	u16 phy_data;
1012 
1013 	/* Resolve Master/Slave mode */
1014 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
1015 	if (ret_val)
1016 		return ret_val;
1017 
1018 	/* load defaults for future use */
1019 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
1020 				   ((phy_data & CR_1000T_MS_VALUE) ?
1021 				    e1000_ms_force_master :
1022 				    e1000_ms_force_slave) : e1000_ms_auto;
1023 
1024 	switch (hw->phy.ms_type) {
1025 	case e1000_ms_force_master:
1026 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1027 		break;
1028 	case e1000_ms_force_slave:
1029 		phy_data |= CR_1000T_MS_ENABLE;
1030 		phy_data &= ~(CR_1000T_MS_VALUE);
1031 		break;
1032 	case e1000_ms_auto:
1033 		phy_data &= ~CR_1000T_MS_ENABLE;
1034 		/* fall-through */
1035 	default:
1036 		break;
1037 	}
1038 
1039 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
1040 }
1041 
1042 /**
1043  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
1044  *  @hw: pointer to the HW structure
1045  *
1046  *  Sets up Carrier-sense on Transmit and downshift values.
1047  **/
1048 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
1049 {
1050 	s32 ret_val;
1051 	u16 phy_data;
1052 
1053 	DEBUGFUNC("e1000_copper_link_setup_82577");
1054 
1055 	if (hw->phy.type == e1000_phy_82580) {
1056 		ret_val = hw->phy.ops.reset(hw);
1057 		if (ret_val) {
1058 			DEBUGOUT("Error resetting the PHY.\n");
1059 			return ret_val;
1060 		}
1061 	}
1062 
1063 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1064 	ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
1065 	if (ret_val)
1066 		return ret_val;
1067 
1068 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
1069 
1070 	/* Enable downshift */
1071 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
1072 
1073 	ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
1074 	if (ret_val)
1075 		return ret_val;
1076 
1077 	/* Set MDI/MDIX mode */
1078 	ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
1079 	if (ret_val)
1080 		return ret_val;
1081 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
1082 	/* Options:
1083 	 *   0 - Auto (default)
1084 	 *   1 - MDI mode
1085 	 *   2 - MDI-X mode
1086 	 */
1087 	switch (hw->phy.mdix) {
1088 	case 1:
1089 		break;
1090 	case 2:
1091 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
1092 		break;
1093 	case 0:
1094 	default:
1095 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
1096 		break;
1097 	}
1098 	ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
1099 	if (ret_val)
1100 		return ret_val;
1101 
1102 	return e1000_set_master_slave_mode(hw);
1103 }
1104 
1105 /**
1106  *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
1110  *  and downshift values are set also.
1111  **/
1112 s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
1113 {
1114 	struct e1000_phy_info *phy = &hw->phy;
1115 	s32 ret_val;
1116 	u16 phy_data;
1117 
1118 	DEBUGFUNC("e1000_copper_link_setup_m88");
1119 
1120 
1121 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1122 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1123 	if (ret_val)
1124 		return ret_val;
1125 
1126 	/* For BM PHY this bit is downshift enable */
1127 	if (phy->type != e1000_phy_bm)
1128 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1129 
1130 	/* Options:
1131 	 *   MDI/MDI-X = 0 (default)
1132 	 *   0 - Auto for all speeds
1133 	 *   1 - MDI mode
1134 	 *   2 - MDI-X mode
1135 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1136 	 */
1137 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1138 
1139 	switch (phy->mdix) {
1140 	case 1:
1141 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1142 		break;
1143 	case 2:
1144 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1145 		break;
1146 	case 3:
1147 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1148 		break;
1149 	case 0:
1150 	default:
1151 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1152 		break;
1153 	}
1154 
1155 	/* Options:
1156 	 *   disable_polarity_correction = 0 (default)
1157 	 *       Automatic Correction for Reversed Cable Polarity
1158 	 *   0 - Disabled
1159 	 *   1 - Enabled
1160 	 */
1161 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1162 	if (phy->disable_polarity_correction)
1163 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1164 
1165 	/* Enable downshift on BM (disabled by default) */
1166 	if (phy->type == e1000_phy_bm) {
1167 		/* For 82574/82583, first disable then enable downshift */
1168 		if (phy->id == BME1000_E_PHY_ID_R2) {
1169 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
1170 			ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1171 						     phy_data);
1172 			if (ret_val)
1173 				return ret_val;
1174 			/* Commit the changes. */
1175 			ret_val = phy->ops.commit(hw);
1176 			if (ret_val) {
1177 				DEBUGOUT("Error committing the PHY changes\n");
1178 				return ret_val;
1179 			}
1180 		}
1181 
1182 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
1183 	}
1184 
1185 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1186 	if (ret_val)
1187 		return ret_val;
1188 
1189 	if ((phy->type == e1000_phy_m88) &&
1190 	    (phy->revision < E1000_REVISION_4) &&
1191 	    (phy->id != BME1000_E_PHY_ID_R2)) {
1192 		/* Force TX_CLK in the Extended PHY Specific Control Register
1193 		 * to 25MHz clock.
1194 		 */
1195 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1196 					    &phy_data);
1197 		if (ret_val)
1198 			return ret_val;
1199 
1200 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1201 
1202 		if ((phy->revision == E1000_REVISION_2) &&
1203 		    (phy->id == M88E1111_I_PHY_ID)) {
1204 			/* 82573L PHY - set the downshift counter to 5x. */
1205 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
1206 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1207 		} else {
1208 			/* Configure Master and Slave downshift values */
1209 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1210 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1211 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1212 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1213 		}
1214 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1215 					     phy_data);
1216 		if (ret_val)
1217 			return ret_val;
1218 	}
1219 
1220 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
1221 		/* Set PHY page 0, register 29 to 0x0003 */
1222 		ret_val = phy->ops.write_reg(hw, 29, 0x0003);
1223 		if (ret_val)
1224 			return ret_val;
1225 
1226 		/* Set PHY page 0, register 30 to 0x0000 */
1227 		ret_val = phy->ops.write_reg(hw, 30, 0x0000);
1228 		if (ret_val)
1229 			return ret_val;
1230 	}
1231 
1232 	/* Commit the changes. */
1233 	ret_val = phy->ops.commit(hw);
1234 	if (ret_val) {
1235 		DEBUGOUT("Error committing the PHY changes\n");
1236 		return ret_val;
1237 	}
1238 
1239 	if (phy->type == e1000_phy_82578) {
1240 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1241 					    &phy_data);
1242 		if (ret_val)
1243 			return ret_val;
1244 
1245 		/* 82578 PHY - set the downshift count to 1x. */
1246 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
1247 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
1248 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1249 					     phy_data);
1250 		if (ret_val)
1251 			return ret_val;
1252 	}
1253 
1254 	return E1000_SUCCESS;
1255 }
1256 
1257 /**
1258  *  e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
1259  *  @hw: pointer to the HW structure
1260  *
1261  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
1262  *  Also enables and sets the downshift parameters.
1263  **/
1264 s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
1265 {
1266 	struct e1000_phy_info *phy = &hw->phy;
1267 	s32 ret_val;
1268 	u16 phy_data;
1269 
1270 	DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
1271 
1272 
1273 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1274 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275 	if (ret_val)
1276 		return ret_val;
1277 
1278 	/* Options:
1279 	 *   MDI/MDI-X = 0 (default)
1280 	 *   0 - Auto for all speeds
1281 	 *   1 - MDI mode
1282 	 *   2 - MDI-X mode
1283 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1284 	 */
1285 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1286 
1287 	switch (phy->mdix) {
1288 	case 1:
1289 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1290 		break;
1291 	case 2:
1292 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1293 		break;
1294 	case 3:
1295 		/* M88E1112 does not support this mode) */
1296 		if (phy->id != M88E1112_E_PHY_ID) {
1297 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1298 			break;
1299 		}
1300 	case 0:
1301 	default:
1302 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1303 		break;
1304 	}
1305 
1306 	/* Options:
1307 	 *   disable_polarity_correction = 0 (default)
1308 	 *       Automatic Correction for Reversed Cable Polarity
1309 	 *   0 - Disabled
1310 	 *   1 - Enabled
1311 	 */
1312 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1313 	if (phy->disable_polarity_correction)
1314 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1315 
1316 	/* Enable downshift and setting it to X6 */
1317 	if (phy->id == M88E1543_E_PHY_ID) {
1318 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
1319 		ret_val =
1320 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1321 		if (ret_val)
1322 			return ret_val;
1323 
1324 		ret_val = phy->ops.commit(hw);
1325 		if (ret_val) {
1326 			DEBUGOUT("Error committing the PHY changes\n");
1327 			return ret_val;
1328 		}
1329 	}
1330 
1331 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
1332 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
1333 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
1334 
1335 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1336 	if (ret_val)
1337 		return ret_val;
1338 
1339 	/* Commit the changes. */
1340 	ret_val = phy->ops.commit(hw);
1341 	if (ret_val) {
1342 		DEBUGOUT("Error committing the PHY changes\n");
1343 		return ret_val;
1344 	}
1345 
1346 	ret_val = e1000_set_master_slave_mode(hw);
1347 	if (ret_val)
1348 		return ret_val;
1349 
1350 	return E1000_SUCCESS;
1351 }
1352 
1353 /**
1354  *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
1358  *  igp PHY's.
1359  **/
1360 s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
1361 {
1362 	struct e1000_phy_info *phy = &hw->phy;
1363 	s32 ret_val;
1364 	u16 data;
1365 
1366 	DEBUGFUNC("e1000_copper_link_setup_igp");
1367 
1368 
1369 	ret_val = hw->phy.ops.reset(hw);
1370 	if (ret_val) {
1371 		DEBUGOUT("Error resetting the PHY.\n");
1372 		return ret_val;
1373 	}
1374 
1375 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
1376 	 * timeout issues when LFS is enabled.
1377 	 */
1378 	msec_delay(100);
1379 
1380 	/* The NVM settings will configure LPLU in D3 for
1381 	 * non-IGP1 PHYs.
1382 	 */
1383 	if (phy->type == e1000_phy_igp) {
1384 		/* disable lplu d3 during driver init */
1385 		ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE);
1386 		if (ret_val) {
1387 			DEBUGOUT("Error Disabling LPLU D3\n");
1388 			return ret_val;
1389 		}
1390 	}
1391 
1392 	/* disable lplu d0 during driver init */
1393 	if (hw->phy.ops.set_d0_lplu_state) {
1394 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
1395 		if (ret_val) {
1396 			DEBUGOUT("Error Disabling LPLU D0\n");
1397 			return ret_val;
1398 		}
1399 	}
1400 	/* Configure mdi-mdix settings */
1401 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
1402 	if (ret_val)
1403 		return ret_val;
1404 
1405 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1406 
1407 	switch (phy->mdix) {
1408 	case 1:
1409 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1410 		break;
1411 	case 2:
1412 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1413 		break;
1414 	case 0:
1415 	default:
1416 		data |= IGP01E1000_PSCR_AUTO_MDIX;
1417 		break;
1418 	}
1419 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
1420 	if (ret_val)
1421 		return ret_val;
1422 
1423 	/* set auto-master slave resolution settings */
1424 	if (hw->mac.autoneg) {
1425 		/* when autonegotiation advertisement is only 1000Mbps then we
1426 		 * should disable SmartSpeed and enable Auto MasterSlave
1427 		 * resolution as hardware default.
1428 		 */
1429 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1430 			/* Disable SmartSpeed */
1431 			ret_val = phy->ops.read_reg(hw,
1432 						    IGP01E1000_PHY_PORT_CONFIG,
1433 						    &data);
1434 			if (ret_val)
1435 				return ret_val;
1436 
1437 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1438 			ret_val = phy->ops.write_reg(hw,
1439 						     IGP01E1000_PHY_PORT_CONFIG,
1440 						     data);
1441 			if (ret_val)
1442 				return ret_val;
1443 
1444 			/* Set auto Master/Slave resolution process */
1445 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1446 			if (ret_val)
1447 				return ret_val;
1448 
1449 			data &= ~CR_1000T_MS_ENABLE;
1450 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1451 			if (ret_val)
1452 				return ret_val;
1453 		}
1454 
1455 		ret_val = e1000_set_master_slave_mode(hw);
1456 	}
1457 
1458 	return ret_val;
1459 }
1460 
1461 /**
1462  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
1463  *  @hw: pointer to the HW structure
1464  *
1465  *  Reads the MII auto-neg advertisement register and/or the 1000T control
1466  *  register and if the PHY is already setup for auto-negotiation, then
1467  *  return successful.  Otherwise, setup advertisement and flow control to
1468  *  the appropriate values for the wanted auto-negotiation.
1469  **/
1470 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1471 {
1472 	struct e1000_phy_info *phy = &hw->phy;
1473 	s32 ret_val;
1474 	u16 mii_autoneg_adv_reg;
1475 	u16 mii_1000t_ctrl_reg = 0;
1476 
1477 	DEBUGFUNC("e1000_phy_setup_autoneg");
1478 
1479 	phy->autoneg_advertised &= phy->autoneg_mask;
1480 
1481 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1482 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1483 	if (ret_val)
1484 		return ret_val;
1485 
1486 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1487 		/* Read the MII 1000Base-T Control Register (Address 9). */
1488 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1489 					    &mii_1000t_ctrl_reg);
1490 		if (ret_val)
1491 			return ret_val;
1492 	}
1493 
1494 	/* Need to parse both autoneg_advertised and fc and set up
1495 	 * the appropriate PHY registers.  First we will parse for
1496 	 * autoneg_advertised software override.  Since we can advertise
1497 	 * a plethora of combinations, we need to check each bit
1498 	 * individually.
1499 	 */
1500 
1501 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1502 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1503 	 * the  1000Base-T Control Register (Address 9).
1504 	 */
1505 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1506 				 NWAY_AR_100TX_HD_CAPS |
1507 				 NWAY_AR_10T_FD_CAPS   |
1508 				 NWAY_AR_10T_HD_CAPS);
1509 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1510 
1511 	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1512 
1513 	/* Do we want to advertise 10 Mb Half Duplex? */
1514 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1515 		DEBUGOUT("Advertise 10mb Half duplex\n");
1516 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1517 	}
1518 
1519 	/* Do we want to advertise 10 Mb Full Duplex? */
1520 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1521 		DEBUGOUT("Advertise 10mb Full duplex\n");
1522 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1523 	}
1524 
1525 	/* Do we want to advertise 100 Mb Half Duplex? */
1526 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1527 		DEBUGOUT("Advertise 100mb Half duplex\n");
1528 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1529 	}
1530 
1531 	/* Do we want to advertise 100 Mb Full Duplex? */
1532 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1533 		DEBUGOUT("Advertise 100mb Full duplex\n");
1534 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1535 	}
1536 
1537 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1538 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1539 		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1540 
1541 	/* Do we want to advertise 1000 Mb Full Duplex? */
1542 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1543 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1544 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1545 	}
1546 
1547 	/* Check for a software override of the flow control settings, and
1548 	 * setup the PHY advertisement registers accordingly.  If
1549 	 * auto-negotiation is enabled, then software will have to set the
1550 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1551 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1552 	 * negotiation.
1553 	 *
1554 	 * The possible values of the "fc" parameter are:
1555 	 *      0:  Flow control is completely disabled
1556 	 *      1:  Rx flow control is enabled (we can receive pause frames
1557 	 *          but not send pause frames).
1558 	 *      2:  Tx flow control is enabled (we can send pause frames
1559 	 *          but we do not support receiving pause frames).
1560 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1561 	 *  other:  No software override.  The flow control configuration
1562 	 *          in the EEPROM is used.
1563 	 */
1564 	switch (hw->fc.current_mode) {
1565 	case e1000_fc_none:
1566 		/* Flow control (Rx & Tx) is completely disabled by a
1567 		 * software over-ride.
1568 		 */
1569 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1570 		break;
1571 	case e1000_fc_rx_pause:
1572 		/* Rx Flow control is enabled, and Tx Flow control is
1573 		 * disabled, by a software over-ride.
1574 		 *
1575 		 * Since there really isn't a way to advertise that we are
1576 		 * capable of Rx Pause ONLY, we will advertise that we
1577 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1578 		 * (in e1000_config_fc_after_link_up) we will disable the
1579 		 * hw's ability to send PAUSE frames.
1580 		 */
1581 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1582 		break;
1583 	case e1000_fc_tx_pause:
1584 		/* Tx Flow control is enabled, and Rx Flow control is
1585 		 * disabled, by a software over-ride.
1586 		 */
1587 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1588 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1589 		break;
1590 	case e1000_fc_full:
1591 		/* Flow control (both Rx and Tx) is enabled by a software
1592 		 * over-ride.
1593 		 */
1594 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1595 		break;
1596 	default:
1597 		DEBUGOUT("Flow control param set incorrectly\n");
1598 		return -E1000_ERR_CONFIG;
1599 	}
1600 
1601 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1602 	if (ret_val)
1603 		return ret_val;
1604 
1605 	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1606 
1607 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1608 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
1609 					     mii_1000t_ctrl_reg);
1610 
1611 	return ret_val;
1612 }
1613 
1614 /**
1615  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1616  *  @hw: pointer to the HW structure
1617  *
1618  *  Performs initial bounds checking on autoneg advertisement parameter, then
1619  *  configure to advertise the full capability.  Setup the PHY to autoneg
1620  *  and restart the negotiation process between the link partner.  If
1621  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1622  **/
1623 s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1624 {
1625 	struct e1000_phy_info *phy = &hw->phy;
1626 	s32 ret_val;
1627 	u16 phy_ctrl;
1628 
1629 	DEBUGFUNC("e1000_copper_link_autoneg");
1630 
1631 	/* Perform some bounds checking on the autoneg advertisement
1632 	 * parameter.
1633 	 */
1634 	phy->autoneg_advertised &= phy->autoneg_mask;
1635 
1636 	/* If autoneg_advertised is zero, we assume it was not defaulted
1637 	 * by the calling code so we set to advertise full capability.
1638 	 */
1639 	if (!phy->autoneg_advertised)
1640 		phy->autoneg_advertised = phy->autoneg_mask;
1641 
1642 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1643 	ret_val = e1000_phy_setup_autoneg(hw);
1644 	if (ret_val) {
1645 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1646 		return ret_val;
1647 	}
1648 	DEBUGOUT("Restarting Auto-Neg\n");
1649 
1650 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1651 	 * the Auto Neg Restart bit in the PHY control register.
1652 	 */
1653 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1654 	if (ret_val)
1655 		return ret_val;
1656 
1657 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1658 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1659 	if (ret_val)
1660 		return ret_val;
1661 
1662 	/* Does the user want to wait for Auto-Neg to complete here, or
1663 	 * check at a later time (for example, callback routine).
1664 	 */
1665 	if (phy->autoneg_wait_to_complete) {
1666 		ret_val = e1000_wait_autoneg(hw);
1667 		if (ret_val) {
1668 			DEBUGOUT("Error while waiting for autoneg to complete\n");
1669 			return ret_val;
1670 		}
1671 	}
1672 
1673 	hw->mac.get_link_status = TRUE;
1674 
1675 	return ret_val;
1676 }
1677 
1678 /**
1679  *  e1000_setup_copper_link_generic - Configure copper link settings
1680  *  @hw: pointer to the HW structure
1681  *
1682  *  Calls the appropriate function to configure the link for auto-neg or forced
1683  *  speed and duplex.  Then we check for link, once link is established calls
1684  *  to configure collision distance and flow control are called.  If link is
1685  *  not established, we return -E1000_ERR_PHY (-2).
1686  **/
1687 s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
1688 {
1689 	s32 ret_val;
1690 	bool link;
1691 
1692 	DEBUGFUNC("e1000_setup_copper_link_generic");
1693 
1694 	if (hw->mac.autoneg) {
1695 		/* Setup autoneg and flow control advertisement and perform
1696 		 * autonegotiation.
1697 		 */
1698 		ret_val = e1000_copper_link_autoneg(hw);
1699 		if (ret_val)
1700 			return ret_val;
1701 	} else {
1702 		/* PHY will be set to 10H, 10F, 100H or 100F
1703 		 * depending on user settings.
1704 		 */
1705 		DEBUGOUT("Forcing Speed and Duplex\n");
1706 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1707 		if (ret_val) {
1708 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1709 			return ret_val;
1710 		}
1711 	}
1712 
1713 	/* Check link status. Wait up to 100 microseconds for link to become
1714 	 * valid.
1715 	 */
1716 	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1717 					     &link);
1718 	if (ret_val)
1719 		return ret_val;
1720 
1721 	if (link) {
1722 		DEBUGOUT("Valid link established!!!\n");
1723 		hw->mac.ops.config_collision_dist(hw);
1724 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1725 	} else {
1726 		DEBUGOUT("Unable to establish link!!!\n");
1727 	}
1728 
1729 	return ret_val;
1730 }
1731 
1732 /**
1733  *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1734  *  @hw: pointer to the HW structure
1735  *
1736  *  Calls the PHY setup function to force speed and duplex.  Clears the
1737  *  auto-crossover to force MDI manually.  Waits for link and returns
1738  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1739  **/
1740 s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1741 {
1742 	struct e1000_phy_info *phy = &hw->phy;
1743 	s32 ret_val;
1744 	u16 phy_data;
1745 	bool link;
1746 
1747 	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1748 
1749 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1750 	if (ret_val)
1751 		return ret_val;
1752 
1753 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1754 
1755 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1756 	if (ret_val)
1757 		return ret_val;
1758 
1759 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1760 	 * forced whenever speed and duplex are forced.
1761 	 */
1762 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1763 	if (ret_val)
1764 		return ret_val;
1765 
1766 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1767 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1768 
1769 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1770 	if (ret_val)
1771 		return ret_val;
1772 
1773 	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1774 
1775 	usec_delay(1);
1776 
1777 	if (phy->autoneg_wait_to_complete) {
1778 		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1779 
1780 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1781 						     100000, &link);
1782 		if (ret_val)
1783 			return ret_val;
1784 
1785 		if (!link)
1786 			DEBUGOUT("Link taking longer than expected.\n");
1787 
1788 		/* Try once more */
1789 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1790 						     100000, &link);
1791 	}
1792 
1793 	return ret_val;
1794 }
1795 
1796 /**
1797  *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1798  *  @hw: pointer to the HW structure
1799  *
1800  *  Calls the PHY setup function to force speed and duplex.  Clears the
1801  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1802  *  changes.  If time expires while waiting for link up, we reset the DSP.
1803  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1804  *  successful completion, else return corresponding error code.
1805  **/
1806 s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1807 {
1808 	struct e1000_phy_info *phy = &hw->phy;
1809 	s32 ret_val;
1810 	u16 phy_data;
1811 	bool link;
1812 
1813 	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1814 
1815 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1816 	if (phy->type != e1000_phy_i210) {
1817 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1818 		 * requires MDI forced whenever speed and duplex are forced.
1819 		 */
1820 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1821 					    &phy_data);
1822 		if (ret_val)
1823 			return ret_val;
1824 
1825 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1826 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1827 					     phy_data);
1828 		if (ret_val)
1829 			return ret_val;
1830 	}
1831 
1832 	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1833 
1834 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1835 	if (ret_val)
1836 		return ret_val;
1837 
1838 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1839 
1840 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1841 	if (ret_val)
1842 		return ret_val;
1843 
1844 	/* Reset the phy to commit changes. */
1845 	ret_val = hw->phy.ops.commit(hw);
1846 	if (ret_val)
1847 		return ret_val;
1848 
1849 	if (phy->autoneg_wait_to_complete) {
1850 		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1851 
1852 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1853 						     100000, &link);
1854 		if (ret_val)
1855 			return ret_val;
1856 
1857 		if (!link) {
1858 			bool reset_dsp = TRUE;
1859 
1860 			switch (hw->phy.id) {
1861 			case I347AT4_E_PHY_ID:
1862 			case M88E1340M_E_PHY_ID:
1863 			case M88E1112_E_PHY_ID:
1864 			case M88E1543_E_PHY_ID:
1865 			case M88E1512_E_PHY_ID:
1866 			case I210_I_PHY_ID:
1867 				reset_dsp = FALSE;
1868 				break;
1869 			default:
1870 				if (hw->phy.type != e1000_phy_m88)
1871 					reset_dsp = FALSE;
1872 				break;
1873 			}
1874 
1875 			if (!reset_dsp) {
1876 				DEBUGOUT("Link taking longer than expected.\n");
1877 			} else {
1878 				/* We didn't get link.
1879 				 * Reset the DSP and cross our fingers.
1880 				 */
1881 				ret_val = phy->ops.write_reg(hw,
1882 						M88E1000_PHY_PAGE_SELECT,
1883 						0x001d);
1884 				if (ret_val)
1885 					return ret_val;
1886 				ret_val = e1000_phy_reset_dsp_generic(hw);
1887 				if (ret_val)
1888 					return ret_val;
1889 			}
1890 		}
1891 
1892 		/* Try once more */
1893 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1894 						     100000, &link);
1895 		if (ret_val)
1896 			return ret_val;
1897 	}
1898 
1899 	if (hw->phy.type != e1000_phy_m88)
1900 		return E1000_SUCCESS;
1901 
1902 	if (hw->phy.id == I347AT4_E_PHY_ID ||
1903 		hw->phy.id == M88E1340M_E_PHY_ID ||
1904 		hw->phy.id == M88E1112_E_PHY_ID)
1905 		return E1000_SUCCESS;
1906 	if (hw->phy.id == I210_I_PHY_ID)
1907 		return E1000_SUCCESS;
1908 	if ((hw->phy.id == M88E1543_E_PHY_ID) ||
1909 	    (hw->phy.id == M88E1512_E_PHY_ID))
1910 		return E1000_SUCCESS;
1911 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1912 	if (ret_val)
1913 		return ret_val;
1914 
1915 	/* Resetting the phy means we need to re-force TX_CLK in the
1916 	 * Extended PHY Specific Control Register to 25MHz clock from
1917 	 * the reset value of 2.5MHz.
1918 	 */
1919 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1920 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1921 	if (ret_val)
1922 		return ret_val;
1923 
1924 	/* In addition, we must re-enable CRS on Tx for both half and full
1925 	 * duplex.
1926 	 */
1927 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1928 	if (ret_val)
1929 		return ret_val;
1930 
1931 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1932 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1933 
1934 	return ret_val;
1935 }
1936 
1937 /**
1938  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1939  *  @hw: pointer to the HW structure
1940  *
1941  *  Forces the speed and duplex settings of the PHY.
1942  *  This is a function pointer entry point only called by
1943  *  PHY setup routines.
1944  **/
1945 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1946 {
1947 	struct e1000_phy_info *phy = &hw->phy;
1948 	s32 ret_val;
1949 	u16 data;
1950 	bool link;
1951 
1952 	DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1953 
1954 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1955 	if (ret_val)
1956 		return ret_val;
1957 
1958 	e1000_phy_force_speed_duplex_setup(hw, &data);
1959 
1960 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1961 	if (ret_val)
1962 		return ret_val;
1963 
1964 	/* Disable MDI-X support for 10/100 */
1965 	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1966 	if (ret_val)
1967 		return ret_val;
1968 
1969 	data &= ~IFE_PMC_AUTO_MDIX;
1970 	data &= ~IFE_PMC_FORCE_MDIX;
1971 
1972 	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1973 	if (ret_val)
1974 		return ret_val;
1975 
1976 	DEBUGOUT1("IFE PMC: %X\n", data);
1977 
1978 	usec_delay(1);
1979 
1980 	if (phy->autoneg_wait_to_complete) {
1981 		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1982 
1983 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1984 						     100000, &link);
1985 		if (ret_val)
1986 			return ret_val;
1987 
1988 		if (!link)
1989 			DEBUGOUT("Link taking longer than expected.\n");
1990 
1991 		/* Try once more */
1992 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1993 						     100000, &link);
1994 		if (ret_val)
1995 			return ret_val;
1996 	}
1997 
1998 	return E1000_SUCCESS;
1999 }
2000 
2001 /**
2002  *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
2003  *  @hw: pointer to the HW structure
2004  *  @phy_ctrl: pointer to current value of PHY_CONTROL
2005  *
2006  *  Forces speed and duplex on the PHY by doing the following: disable flow
2007  *  control, force speed/duplex on the MAC, disable auto speed detection,
2008  *  disable auto-negotiation, configure duplex, configure speed, configure
2009  *  the collision distance, write configuration to CTRL register.  The
2010  *  caller must write to the PHY_CONTROL register for these settings to
2011  *  take affect.
2012  **/
2013 void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
2014 {
2015 	struct e1000_mac_info *mac = &hw->mac;
2016 	u32 ctrl;
2017 
2018 	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
2019 
2020 	/* Turn off flow control when forcing speed/duplex */
2021 	hw->fc.current_mode = e1000_fc_none;
2022 
2023 	/* Force speed/duplex on the mac */
2024 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2025 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2026 	ctrl &= ~E1000_CTRL_SPD_SEL;
2027 
2028 	/* Disable Auto Speed Detection */
2029 	ctrl &= ~E1000_CTRL_ASDE;
2030 
2031 	/* Disable autoneg on the phy */
2032 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
2033 
2034 	/* Forcing Full or Half Duplex? */
2035 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
2036 		ctrl &= ~E1000_CTRL_FD;
2037 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
2038 		DEBUGOUT("Half Duplex\n");
2039 	} else {
2040 		ctrl |= E1000_CTRL_FD;
2041 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
2042 		DEBUGOUT("Full Duplex\n");
2043 	}
2044 
2045 	/* Forcing 10mb or 100mb? */
2046 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
2047 		ctrl |= E1000_CTRL_SPD_100;
2048 		*phy_ctrl |= MII_CR_SPEED_100;
2049 		*phy_ctrl &= ~MII_CR_SPEED_1000;
2050 		DEBUGOUT("Forcing 100mb\n");
2051 	} else {
2052 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2053 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2054 		DEBUGOUT("Forcing 10mb\n");
2055 	}
2056 
2057 	hw->mac.ops.config_collision_dist(hw);
2058 
2059 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2060 }
2061 
2062 /**
2063  *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
2064  *  @hw: pointer to the HW structure
2065  *  @active: boolean used to enable/disable lplu
2066  *
2067  *  Success returns 0, Failure returns 1
2068  *
2069  *  The low power link up (lplu) state is set to the power management level D3
2070  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
2071  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2072  *  is used during Dx states where the power conservation is most important.
2073  *  During driver activity, SmartSpeed should be enabled so performance is
2074  *  maintained.
2075  **/
2076 s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
2077 {
2078 	struct e1000_phy_info *phy = &hw->phy;
2079 	s32 ret_val;
2080 	u16 data;
2081 
2082 	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
2083 
2084 	if (!hw->phy.ops.read_reg)
2085 		return E1000_SUCCESS;
2086 
2087 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
2088 	if (ret_val)
2089 		return ret_val;
2090 
2091 	if (!active) {
2092 		data &= ~IGP02E1000_PM_D3_LPLU;
2093 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2094 					     data);
2095 		if (ret_val)
2096 			return ret_val;
2097 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2098 		 * during Dx states where the power conservation is most
2099 		 * important.  During driver activity we should enable
2100 		 * SmartSpeed, so performance is maintained.
2101 		 */
2102 		if (phy->smart_speed == e1000_smart_speed_on) {
2103 			ret_val = phy->ops.read_reg(hw,
2104 						    IGP01E1000_PHY_PORT_CONFIG,
2105 						    &data);
2106 			if (ret_val)
2107 				return ret_val;
2108 
2109 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2110 			ret_val = phy->ops.write_reg(hw,
2111 						     IGP01E1000_PHY_PORT_CONFIG,
2112 						     data);
2113 			if (ret_val)
2114 				return ret_val;
2115 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2116 			ret_val = phy->ops.read_reg(hw,
2117 						    IGP01E1000_PHY_PORT_CONFIG,
2118 						    &data);
2119 			if (ret_val)
2120 				return ret_val;
2121 
2122 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2123 			ret_val = phy->ops.write_reg(hw,
2124 						     IGP01E1000_PHY_PORT_CONFIG,
2125 						     data);
2126 			if (ret_val)
2127 				return ret_val;
2128 		}
2129 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2130 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2131 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2132 		data |= IGP02E1000_PM_D3_LPLU;
2133 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2134 					     data);
2135 		if (ret_val)
2136 			return ret_val;
2137 
2138 		/* When LPLU is enabled, we should disable SmartSpeed */
2139 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2140 					    &data);
2141 		if (ret_val)
2142 			return ret_val;
2143 
2144 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2145 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2146 					     data);
2147 	}
2148 
2149 	return ret_val;
2150 }
2151 
2152 /**
2153  *  e1000_check_downshift_generic - Checks whether a downshift in speed occurred
2154  *  @hw: pointer to the HW structure
2155  *
2156  *  Success returns 0, Failure returns 1
2157  *
2158  *  A downshift is detected by querying the PHY link health.
2159  **/
2160 s32 e1000_check_downshift_generic(struct e1000_hw *hw)
2161 {
2162 	struct e1000_phy_info *phy = &hw->phy;
2163 	s32 ret_val;
2164 	u16 phy_data, offset, mask;
2165 
2166 	DEBUGFUNC("e1000_check_downshift_generic");
2167 
2168 	switch (phy->type) {
2169 	case e1000_phy_i210:
2170 	case e1000_phy_m88:
2171 	case e1000_phy_gg82563:
2172 	case e1000_phy_bm:
2173 	case e1000_phy_82578:
2174 		offset = M88E1000_PHY_SPEC_STATUS;
2175 		mask = M88E1000_PSSR_DOWNSHIFT;
2176 		break;
2177 	case e1000_phy_igp:
2178 	case e1000_phy_igp_2:
2179 	case e1000_phy_igp_3:
2180 		offset = IGP01E1000_PHY_LINK_HEALTH;
2181 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
2182 		break;
2183 	default:
2184 		/* speed downshift not supported */
2185 		phy->speed_downgraded = FALSE;
2186 		return E1000_SUCCESS;
2187 	}
2188 
2189 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2190 
2191 	if (!ret_val)
2192 		phy->speed_downgraded = !!(phy_data & mask);
2193 
2194 	return ret_val;
2195 }
2196 
2197 /**
2198  *  e1000_check_polarity_m88 - Checks the polarity.
2199  *  @hw: pointer to the HW structure
2200  *
2201  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2202  *
2203  *  Polarity is determined based on the PHY specific status register.
2204  **/
2205 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
2206 {
2207 	struct e1000_phy_info *phy = &hw->phy;
2208 	s32 ret_val;
2209 	u16 data;
2210 
2211 	DEBUGFUNC("e1000_check_polarity_m88");
2212 
2213 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
2214 
2215 	if (!ret_val)
2216 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
2217 				       ? e1000_rev_polarity_reversed
2218 				       : e1000_rev_polarity_normal);
2219 
2220 	return ret_val;
2221 }
2222 
2223 /**
2224  *  e1000_check_polarity_igp - Checks the polarity.
2225  *  @hw: pointer to the HW structure
2226  *
2227  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2228  *
2229  *  Polarity is determined based on the PHY port status register, and the
2230  *  current speed (since there is no polarity at 100Mbps).
2231  **/
2232 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
2233 {
2234 	struct e1000_phy_info *phy = &hw->phy;
2235 	s32 ret_val;
2236 	u16 data, offset, mask;
2237 
2238 	DEBUGFUNC("e1000_check_polarity_igp");
2239 
2240 	/* Polarity is determined based on the speed of
2241 	 * our connection.
2242 	 */
2243 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2244 	if (ret_val)
2245 		return ret_val;
2246 
2247 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2248 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2249 		offset = IGP01E1000_PHY_PCS_INIT_REG;
2250 		mask = IGP01E1000_PHY_POLARITY_MASK;
2251 	} else {
2252 		/* This really only applies to 10Mbps since
2253 		 * there is no polarity for 100Mbps (always 0).
2254 		 */
2255 		offset = IGP01E1000_PHY_PORT_STATUS;
2256 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
2257 	}
2258 
2259 	ret_val = phy->ops.read_reg(hw, offset, &data);
2260 
2261 	if (!ret_val)
2262 		phy->cable_polarity = ((data & mask)
2263 				       ? e1000_rev_polarity_reversed
2264 				       : e1000_rev_polarity_normal);
2265 
2266 	return ret_val;
2267 }
2268 
2269 /**
2270  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
2271  *  @hw: pointer to the HW structure
2272  *
2273  *  Polarity is determined on the polarity reversal feature being enabled.
2274  **/
2275 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
2276 {
2277 	struct e1000_phy_info *phy = &hw->phy;
2278 	s32 ret_val;
2279 	u16 phy_data, offset, mask;
2280 
2281 	DEBUGFUNC("e1000_check_polarity_ife");
2282 
2283 	/* Polarity is determined based on the reversal feature being enabled.
2284 	 */
2285 	if (phy->polarity_correction) {
2286 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
2287 		mask = IFE_PESC_POLARITY_REVERSED;
2288 	} else {
2289 		offset = IFE_PHY_SPECIAL_CONTROL;
2290 		mask = IFE_PSC_FORCE_POLARITY;
2291 	}
2292 
2293 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2294 
2295 	if (!ret_val)
2296 		phy->cable_polarity = ((phy_data & mask)
2297 				       ? e1000_rev_polarity_reversed
2298 				       : e1000_rev_polarity_normal);
2299 
2300 	return ret_val;
2301 }
2302 
2303 /**
2304  *  e1000_wait_autoneg - Wait for auto-neg completion
2305  *  @hw: pointer to the HW structure
2306  *
2307  *  Waits for auto-negotiation to complete or for the auto-negotiation time
2308  *  limit to expire, which ever happens first.
2309  **/
2310 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2311 {
2312 	s32 ret_val = E1000_SUCCESS;
2313 	u16 i, phy_status;
2314 
2315 	DEBUGFUNC("e1000_wait_autoneg");
2316 
2317 	if (!hw->phy.ops.read_reg)
2318 		return E1000_SUCCESS;
2319 
2320 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
2321 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
2322 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2323 		if (ret_val)
2324 			break;
2325 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2326 		if (ret_val)
2327 			break;
2328 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
2329 			break;
2330 		msec_delay(100);
2331 	}
2332 
2333 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
2334 	 * has completed.
2335 	 */
2336 	return ret_val;
2337 }
2338 
2339 /**
2340  *  e1000_phy_has_link_generic - Polls PHY for link
2341  *  @hw: pointer to the HW structure
2342  *  @iterations: number of times to poll for link
2343  *  @usec_interval: delay between polling attempts
2344  *  @success: pointer to whether polling was successful or not
2345  *
2346  *  Polls the PHY status register for link, 'iterations' number of times.
2347  **/
2348 s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
2349 			       u32 usec_interval, bool *success)
2350 {
2351 	s32 ret_val = E1000_SUCCESS;
2352 	u16 i, phy_status;
2353 
2354 	DEBUGFUNC("e1000_phy_has_link_generic");
2355 
2356 	if (!hw->phy.ops.read_reg)
2357 		return E1000_SUCCESS;
2358 
2359 	for (i = 0; i < iterations; i++) {
2360 		/* Some PHYs require the PHY_STATUS register to be read
2361 		 * twice due to the link bit being sticky.  No harm doing
2362 		 * it across the board.
2363 		 */
2364 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2365 		if (ret_val) {
2366 			/* If the first read fails, another entity may have
2367 			 * ownership of the resources, wait and try again to
2368 			 * see if they have relinquished the resources yet.
2369 			 */
2370 			if (usec_interval >= 1000)
2371 				msec_delay(usec_interval/1000);
2372 			else
2373 				usec_delay(usec_interval);
2374 		}
2375 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2376 		if (ret_val)
2377 			break;
2378 		if (phy_status & MII_SR_LINK_STATUS)
2379 			break;
2380 		if (usec_interval >= 1000)
2381 			msec_delay(usec_interval/1000);
2382 		else
2383 			usec_delay(usec_interval);
2384 	}
2385 
2386 	*success = (i < iterations);
2387 
2388 	return ret_val;
2389 }
2390 
2391 /**
2392  *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
2393  *  @hw: pointer to the HW structure
2394  *
2395  *  Reads the PHY specific status register to retrieve the cable length
2396  *  information.  The cable length is determined by averaging the minimum and
2397  *  maximum values to get the "average" cable length.  The m88 PHY has four
2398  *  possible cable length values, which are:
2399  *	Register Value		Cable Length
2400  *	0			< 50 meters
2401  *	1			50 - 80 meters
2402  *	2			80 - 110 meters
2403  *	3			110 - 140 meters
2404  *	4			> 140 meters
2405  **/
2406 s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
2407 {
2408 	struct e1000_phy_info *phy = &hw->phy;
2409 	s32 ret_val;
2410 	u16 phy_data, index;
2411 
2412 	DEBUGFUNC("e1000_get_cable_length_m88");
2413 
2414 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2415 	if (ret_val)
2416 		return ret_val;
2417 
2418 	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2419 		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
2420 
2421 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2422 		return -E1000_ERR_PHY;
2423 
2424 	phy->min_cable_length = e1000_m88_cable_length_table[index];
2425 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2426 
2427 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2428 
2429 	return E1000_SUCCESS;
2430 }
2431 
2432 s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
2433 {
2434 	struct e1000_phy_info *phy = &hw->phy;
2435 	s32 ret_val;
2436 	u16 phy_data, phy_data2, is_cm;
2437 	u16 index, default_page;
2438 
2439 	DEBUGFUNC("e1000_get_cable_length_m88_gen2");
2440 
2441 	switch (hw->phy.id) {
2442 	case I210_I_PHY_ID:
2443 		/* Get cable length from PHY Cable Diagnostics Control Reg */
2444 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2445 					    (I347AT4_PCDL + phy->addr),
2446 					    &phy_data);
2447 		if (ret_val)
2448 			return ret_val;
2449 
2450 		/* Check if the unit of cable length is meters or cm */
2451 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2452 					    I347AT4_PCDC, &phy_data2);
2453 		if (ret_val)
2454 			return ret_val;
2455 
2456 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2457 
2458 		/* Populate the phy structure with cable length in meters */
2459 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2460 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2461 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2462 		break;
2463 	case M88E1543_E_PHY_ID:
2464 	case M88E1512_E_PHY_ID:
2465 	case M88E1340M_E_PHY_ID:
2466 	case I347AT4_E_PHY_ID:
2467 		/* Remember the original page select and set it to 7 */
2468 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2469 					    &default_page);
2470 		if (ret_val)
2471 			return ret_val;
2472 
2473 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
2474 		if (ret_val)
2475 			return ret_val;
2476 
2477 		/* Get cable length from PHY Cable Diagnostics Control Reg */
2478 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
2479 					    &phy_data);
2480 		if (ret_val)
2481 			return ret_val;
2482 
2483 		/* Check if the unit of cable length is meters or cm */
2484 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
2485 		if (ret_val)
2486 			return ret_val;
2487 
2488 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2489 
2490 		/* Populate the phy structure with cable length in meters */
2491 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2492 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2493 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2494 
2495 		/* Reset the page select to its original value */
2496 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2497 					     default_page);
2498 		if (ret_val)
2499 			return ret_val;
2500 		break;
2501 
2502 	case M88E1112_E_PHY_ID:
2503 		/* Remember the original page select and set it to 5 */
2504 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2505 					    &default_page);
2506 		if (ret_val)
2507 			return ret_val;
2508 
2509 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
2510 		if (ret_val)
2511 			return ret_val;
2512 
2513 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
2514 					    &phy_data);
2515 		if (ret_val)
2516 			return ret_val;
2517 
2518 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2519 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2520 
2521 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2522 			return -E1000_ERR_PHY;
2523 
2524 		phy->min_cable_length = e1000_m88_cable_length_table[index];
2525 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2526 
2527 		phy->cable_length = (phy->min_cable_length +
2528 				     phy->max_cable_length) / 2;
2529 
2530 		/* Reset the page select to its original value */
2531 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2532 					     default_page);
2533 		if (ret_val)
2534 			return ret_val;
2535 
2536 		break;
2537 	default:
2538 		return -E1000_ERR_PHY;
2539 	}
2540 
2541 	return ret_val;
2542 }
2543 
2544 /**
2545  *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2546  *  @hw: pointer to the HW structure
2547  *
2548  *  The automatic gain control (agc) normalizes the amplitude of the
2549  *  received signal, adjusting for the attenuation produced by the
2550  *  cable.  By reading the AGC registers, which represent the
2551  *  combination of coarse and fine gain value, the value can be put
2552  *  into a lookup table to obtain the approximate cable length
2553  *  for each channel.
2554  **/
2555 s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
2556 {
2557 	struct e1000_phy_info *phy = &hw->phy;
2558 	s32 ret_val;
2559 	u16 phy_data, i, agc_value = 0;
2560 	u16 cur_agc_index, max_agc_index = 0;
2561 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
2562 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
2563 		IGP02E1000_PHY_AGC_A,
2564 		IGP02E1000_PHY_AGC_B,
2565 		IGP02E1000_PHY_AGC_C,
2566 		IGP02E1000_PHY_AGC_D
2567 	};
2568 
2569 	DEBUGFUNC("e1000_get_cable_length_igp_2");
2570 
2571 	/* Read the AGC registers for all channels */
2572 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
2573 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2574 		if (ret_val)
2575 			return ret_val;
2576 
2577 		/* Getting bits 15:9, which represent the combination of
2578 		 * coarse and fine gain values.  The result is a number
2579 		 * that can be put into the lookup table to obtain the
2580 		 * approximate cable length.
2581 		 */
2582 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
2583 				 IGP02E1000_AGC_LENGTH_MASK);
2584 
2585 		/* Array index bound check. */
2586 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
2587 		    (cur_agc_index == 0))
2588 			return -E1000_ERR_PHY;
2589 
2590 		/* Remove min & max AGC values from calculation. */
2591 		if (e1000_igp_2_cable_length_table[min_agc_index] >
2592 		    e1000_igp_2_cable_length_table[cur_agc_index])
2593 			min_agc_index = cur_agc_index;
2594 		if (e1000_igp_2_cable_length_table[max_agc_index] <
2595 		    e1000_igp_2_cable_length_table[cur_agc_index])
2596 			max_agc_index = cur_agc_index;
2597 
2598 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2599 	}
2600 
2601 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2602 		      e1000_igp_2_cable_length_table[max_agc_index]);
2603 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2604 
2605 	/* Calculate cable length with the error range of +/- 10 meters. */
2606 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2607 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
2608 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2609 
2610 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2611 
2612 	return E1000_SUCCESS;
2613 }
2614 
2615 /**
2616  *  e1000_get_phy_info_m88 - Retrieve PHY information
2617  *  @hw: pointer to the HW structure
2618  *
2619  *  Valid for only copper links.  Read the PHY status register (sticky read)
2620  *  to verify that link is up.  Read the PHY special control register to
2621  *  determine the polarity and 10base-T extended distance.  Read the PHY
2622  *  special status register to determine MDI/MDIx and current speed.  If
2623  *  speed is 1000, then determine cable length, local and remote receiver.
2624  **/
2625 s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
2626 {
2627 	struct e1000_phy_info *phy = &hw->phy;
2628 	s32  ret_val;
2629 	u16 phy_data;
2630 	bool link;
2631 
2632 	DEBUGFUNC("e1000_get_phy_info_m88");
2633 
2634 	if (phy->media_type != e1000_media_type_copper) {
2635 		DEBUGOUT("Phy info is only valid for copper media\n");
2636 		return -E1000_ERR_CONFIG;
2637 	}
2638 
2639 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2640 	if (ret_val)
2641 		return ret_val;
2642 
2643 	if (!link) {
2644 		DEBUGOUT("Phy info is only valid if link is up\n");
2645 		return -E1000_ERR_CONFIG;
2646 	}
2647 
2648 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2649 	if (ret_val)
2650 		return ret_val;
2651 
2652 	phy->polarity_correction = !!(phy_data &
2653 				      M88E1000_PSCR_POLARITY_REVERSAL);
2654 
2655 	ret_val = e1000_check_polarity_m88(hw);
2656 	if (ret_val)
2657 		return ret_val;
2658 
2659 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2660 	if (ret_val)
2661 		return ret_val;
2662 
2663 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2664 
2665 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2666 		ret_val = hw->phy.ops.get_cable_length(hw);
2667 		if (ret_val)
2668 			return ret_val;
2669 
2670 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2671 		if (ret_val)
2672 			return ret_val;
2673 
2674 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2675 				? e1000_1000t_rx_status_ok
2676 				: e1000_1000t_rx_status_not_ok;
2677 
2678 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2679 				 ? e1000_1000t_rx_status_ok
2680 				 : e1000_1000t_rx_status_not_ok;
2681 	} else {
2682 		/* Set values to "undefined" */
2683 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2684 		phy->local_rx = e1000_1000t_rx_status_undefined;
2685 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2686 	}
2687 
2688 	return ret_val;
2689 }
2690 
2691 /**
2692  *  e1000_get_phy_info_igp - Retrieve igp PHY information
2693  *  @hw: pointer to the HW structure
2694  *
2695  *  Read PHY status to determine if link is up.  If link is up, then
2696  *  set/determine 10base-T extended distance and polarity correction.  Read
2697  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2698  *  determine on the cable length, local and remote receiver.
2699  **/
2700 s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
2701 {
2702 	struct e1000_phy_info *phy = &hw->phy;
2703 	s32 ret_val;
2704 	u16 data;
2705 	bool link;
2706 
2707 	DEBUGFUNC("e1000_get_phy_info_igp");
2708 
2709 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2710 	if (ret_val)
2711 		return ret_val;
2712 
2713 	if (!link) {
2714 		DEBUGOUT("Phy info is only valid if link is up\n");
2715 		return -E1000_ERR_CONFIG;
2716 	}
2717 
2718 	phy->polarity_correction = TRUE;
2719 
2720 	ret_val = e1000_check_polarity_igp(hw);
2721 	if (ret_val)
2722 		return ret_val;
2723 
2724 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2725 	if (ret_val)
2726 		return ret_val;
2727 
2728 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2729 
2730 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2731 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2732 		ret_val = phy->ops.get_cable_length(hw);
2733 		if (ret_val)
2734 			return ret_val;
2735 
2736 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2737 		if (ret_val)
2738 			return ret_val;
2739 
2740 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2741 				? e1000_1000t_rx_status_ok
2742 				: e1000_1000t_rx_status_not_ok;
2743 
2744 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2745 				 ? e1000_1000t_rx_status_ok
2746 				 : e1000_1000t_rx_status_not_ok;
2747 	} else {
2748 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2749 		phy->local_rx = e1000_1000t_rx_status_undefined;
2750 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2751 	}
2752 
2753 	return ret_val;
2754 }
2755 
2756 /**
2757  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2758  *  @hw: pointer to the HW structure
2759  *
2760  *  Populates "phy" structure with various feature states.
2761  **/
2762 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2763 {
2764 	struct e1000_phy_info *phy = &hw->phy;
2765 	s32 ret_val;
2766 	u16 data;
2767 	bool link;
2768 
2769 	DEBUGFUNC("e1000_get_phy_info_ife");
2770 
2771 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2772 	if (ret_val)
2773 		return ret_val;
2774 
2775 	if (!link) {
2776 		DEBUGOUT("Phy info is only valid if link is up\n");
2777 		return -E1000_ERR_CONFIG;
2778 	}
2779 
2780 	ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2781 	if (ret_val)
2782 		return ret_val;
2783 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2784 
2785 	if (phy->polarity_correction) {
2786 		ret_val = e1000_check_polarity_ife(hw);
2787 		if (ret_val)
2788 			return ret_val;
2789 	} else {
2790 		/* Polarity is forced */
2791 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2792 				       ? e1000_rev_polarity_reversed
2793 				       : e1000_rev_polarity_normal);
2794 	}
2795 
2796 	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
2797 	if (ret_val)
2798 		return ret_val;
2799 
2800 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2801 
2802 	/* The following parameters are undefined for 10/100 operation. */
2803 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2804 	phy->local_rx = e1000_1000t_rx_status_undefined;
2805 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2806 
2807 	return E1000_SUCCESS;
2808 }
2809 
2810 /**
2811  *  e1000_phy_sw_reset_generic - PHY software reset
2812  *  @hw: pointer to the HW structure
2813  *
2814  *  Does a software reset of the PHY by reading the PHY control register and
2815  *  setting/write the control register reset bit to the PHY.
2816  **/
2817 s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
2818 {
2819 	s32 ret_val;
2820 	u16 phy_ctrl;
2821 
2822 	DEBUGFUNC("e1000_phy_sw_reset_generic");
2823 
2824 	if (!hw->phy.ops.read_reg)
2825 		return E1000_SUCCESS;
2826 
2827 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2828 	if (ret_val)
2829 		return ret_val;
2830 
2831 	phy_ctrl |= MII_CR_RESET;
2832 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2833 	if (ret_val)
2834 		return ret_val;
2835 
2836 	usec_delay(1);
2837 
2838 	return ret_val;
2839 }
2840 
2841 /**
2842  *  e1000_phy_hw_reset_generic - PHY hardware reset
2843  *  @hw: pointer to the HW structure
2844  *
2845  *  Verify the reset block is not blocking us from resetting.  Acquire
2846  *  semaphore (if necessary) and read/set/write the device control reset
2847  *  bit in the PHY.  Wait the appropriate delay time for the device to
2848  *  reset and release the semaphore (if necessary).
2849  **/
2850 s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
2851 {
2852 	struct e1000_phy_info *phy = &hw->phy;
2853 	s32 ret_val;
2854 	u32 ctrl;
2855 
2856 	DEBUGFUNC("e1000_phy_hw_reset_generic");
2857 
2858 	if (phy->ops.check_reset_block) {
2859 		ret_val = phy->ops.check_reset_block(hw);
2860 		if (ret_val)
2861 			return E1000_SUCCESS;
2862 	}
2863 
2864 	ret_val = phy->ops.acquire(hw);
2865 	if (ret_val)
2866 		return ret_val;
2867 
2868 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2869 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2870 	E1000_WRITE_FLUSH(hw);
2871 
2872 	usec_delay(phy->reset_delay_us);
2873 
2874 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2875 	E1000_WRITE_FLUSH(hw);
2876 
2877 	usec_delay(150);
2878 
2879 	phy->ops.release(hw);
2880 
2881 	return phy->ops.get_cfg_done(hw);
2882 }
2883 
2884 /**
2885  *  e1000_get_cfg_done_generic - Generic configuration done
2886  *  @hw: pointer to the HW structure
2887  *
2888  *  Generic function to wait 10 milli-seconds for configuration to complete
2889  *  and return success.
2890  **/
2891 s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
2892 {
2893 	DEBUGFUNC("e1000_get_cfg_done_generic");
2894 
2895 	msec_delay_irq(10);
2896 
2897 	return E1000_SUCCESS;
2898 }
2899 
2900 /**
2901  *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2902  *  @hw: pointer to the HW structure
2903  *
2904  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2905  **/
2906 s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
2907 {
2908 	DEBUGOUT("Running IGP 3 PHY init script\n");
2909 
2910 	/* PHY init IGP 3 */
2911 	/* Enable rise/fall, 10-mode work in class-A */
2912 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2913 	/* Remove all caps from Replica path filter */
2914 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2915 	/* Bias trimming for ADC, AFE and Driver (Default) */
2916 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2917 	/* Increase Hybrid poly bias */
2918 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2919 	/* Add 4% to Tx amplitude in Gig mode */
2920 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2921 	/* Disable trimming (TTT) */
2922 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2923 	/* Poly DC correction to 94.6% + 2% for all channels */
2924 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2925 	/* ABS DC correction to 95.9% */
2926 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2927 	/* BG temp curve trim */
2928 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2929 	/* Increasing ADC OPAMP stage 1 currents to max */
2930 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2931 	/* Force 1000 ( required for enabling PHY regs configuration) */
2932 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2933 	/* Set upd_freq to 6 */
2934 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2935 	/* Disable NPDFE */
2936 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2937 	/* Disable adaptive fixed FFE (Default) */
2938 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2939 	/* Enable FFE hysteresis */
2940 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2941 	/* Fixed FFE for short cable lengths */
2942 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2943 	/* Fixed FFE for medium cable lengths */
2944 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2945 	/* Fixed FFE for long cable lengths */
2946 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2947 	/* Enable Adaptive Clip Threshold */
2948 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2949 	/* AHT reset limit to 1 */
2950 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2951 	/* Set AHT master delay to 127 msec */
2952 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2953 	/* Set scan bits for AHT */
2954 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2955 	/* Set AHT Preset bits */
2956 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2957 	/* Change integ_factor of channel A to 3 */
2958 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2959 	/* Change prop_factor of channels BCD to 8 */
2960 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2961 	/* Change cg_icount + enable integbp for channels BCD */
2962 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2963 	/* Change cg_icount + enable integbp + change prop_factor_master
2964 	 * to 8 for channel A
2965 	 */
2966 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2967 	/* Disable AHT in Slave mode on channel A */
2968 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2969 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2970 	 * Enable SPD+B2B
2971 	 */
2972 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2973 	/* Enable restart AN on an1000_dis change */
2974 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2975 	/* Enable wh_fifo read clock in 10/100 modes */
2976 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2977 	/* Restart AN, Speed selection is 1000 */
2978 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2979 
2980 	return E1000_SUCCESS;
2981 }
2982 
2983 /**
2984  *  e1000_get_phy_type_from_id - Get PHY type from id
2985  *  @phy_id: phy_id read from the phy
2986  *
2987  *  Returns the phy type from the id.
2988  **/
2989 enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
2990 {
2991 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2992 
2993 	switch (phy_id) {
2994 	case M88E1000_I_PHY_ID:
2995 	case M88E1000_E_PHY_ID:
2996 	case M88E1111_I_PHY_ID:
2997 	case M88E1011_I_PHY_ID:
2998 	case M88E1543_E_PHY_ID:
2999 	case M88E1512_E_PHY_ID:
3000 	case I347AT4_E_PHY_ID:
3001 	case M88E1112_E_PHY_ID:
3002 	case M88E1340M_E_PHY_ID:
3003 		phy_type = e1000_phy_m88;
3004 		break;
3005 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
3006 		phy_type = e1000_phy_igp_2;
3007 		break;
3008 	case GG82563_E_PHY_ID:
3009 		phy_type = e1000_phy_gg82563;
3010 		break;
3011 	case IGP03E1000_E_PHY_ID:
3012 		phy_type = e1000_phy_igp_3;
3013 		break;
3014 	case IFE_E_PHY_ID:
3015 	case IFE_PLUS_E_PHY_ID:
3016 	case IFE_C_E_PHY_ID:
3017 		phy_type = e1000_phy_ife;
3018 		break;
3019 	case BME1000_E_PHY_ID:
3020 	case BME1000_E_PHY_ID_R2:
3021 		phy_type = e1000_phy_bm;
3022 		break;
3023 	case I82578_E_PHY_ID:
3024 		phy_type = e1000_phy_82578;
3025 		break;
3026 	case I82577_E_PHY_ID:
3027 		phy_type = e1000_phy_82577;
3028 		break;
3029 	case I82579_E_PHY_ID:
3030 		phy_type = e1000_phy_82579;
3031 		break;
3032 	case I217_E_PHY_ID:
3033 		phy_type = e1000_phy_i217;
3034 		break;
3035 	case I82580_I_PHY_ID:
3036 		phy_type = e1000_phy_82580;
3037 		break;
3038 	case I210_I_PHY_ID:
3039 		phy_type = e1000_phy_i210;
3040 		break;
3041 	default:
3042 		phy_type = e1000_phy_unknown;
3043 		break;
3044 	}
3045 	return phy_type;
3046 }
3047 
3048 /**
3049  *  e1000_determine_phy_address - Determines PHY address.
3050  *  @hw: pointer to the HW structure
3051  *
3052  *  This uses a trial and error method to loop through possible PHY
3053  *  addresses. It tests each by reading the PHY ID registers and
3054  *  checking for a match.
3055  **/
3056 s32 e1000_determine_phy_address(struct e1000_hw *hw)
3057 {
3058 	u32 phy_addr = 0;
3059 	u32 i;
3060 	enum e1000_phy_type phy_type = e1000_phy_unknown;
3061 
3062 	hw->phy.id = phy_type;
3063 
3064 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
3065 		hw->phy.addr = phy_addr;
3066 		i = 0;
3067 
3068 		do {
3069 			e1000_get_phy_id(hw);
3070 			phy_type = e1000_get_phy_type_from_id(hw->phy.id);
3071 
3072 			/* If phy_type is valid, break - we found our
3073 			 * PHY address
3074 			 */
3075 			if (phy_type != e1000_phy_unknown)
3076 				return E1000_SUCCESS;
3077 
3078 			msec_delay(1);
3079 			i++;
3080 		} while (i < 10);
3081 	}
3082 
3083 	return -E1000_ERR_PHY_TYPE;
3084 }
3085 
3086 /**
3087  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
3088  *  @page: page to access
3089  *
3090  *  Returns the phy address for the page requested.
3091  **/
3092 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
3093 {
3094 	u32 phy_addr = 2;
3095 
3096 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
3097 		phy_addr = 1;
3098 
3099 	return phy_addr;
3100 }
3101 
3102 /**
3103  *  e1000_write_phy_reg_bm - Write BM PHY register
3104  *  @hw: pointer to the HW structure
3105  *  @offset: register offset to write to
3106  *  @data: data to write at register offset
3107  *
3108  *  Acquires semaphore, if necessary, then writes the data to PHY register
3109  *  at the offset.  Release any acquired semaphores before exiting.
3110  **/
3111 s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
3112 {
3113 	s32 ret_val;
3114 	u32 page = offset >> IGP_PAGE_SHIFT;
3115 
3116 	DEBUGFUNC("e1000_write_phy_reg_bm");
3117 
3118 	ret_val = hw->phy.ops.acquire(hw);
3119 	if (ret_val)
3120 		return ret_val;
3121 
3122 	/* Page 800 works differently than the rest so it has its own func */
3123 	if (page == BM_WUC_PAGE) {
3124 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3125 							 FALSE, FALSE);
3126 		goto release;
3127 	}
3128 
3129 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3130 
3131 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3132 		u32 page_shift, page_select;
3133 
3134 		/* Page select is register 31 for phy address 1 and 22 for
3135 		 * phy address 2 and 3. Page select is shifted only for
3136 		 * phy address 1.
3137 		 */
3138 		if (hw->phy.addr == 1) {
3139 			page_shift = IGP_PAGE_SHIFT;
3140 			page_select = IGP01E1000_PHY_PAGE_SELECT;
3141 		} else {
3142 			page_shift = 0;
3143 			page_select = BM_PHY_PAGE_SELECT;
3144 		}
3145 
3146 		/* Page is shifted left, PHY expects (page x 32) */
3147 		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3148 						   (page << page_shift));
3149 		if (ret_val)
3150 			goto release;
3151 	}
3152 
3153 	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3154 					   data);
3155 
3156 release:
3157 	hw->phy.ops.release(hw);
3158 	return ret_val;
3159 }
3160 
3161 /**
3162  *  e1000_read_phy_reg_bm - Read BM PHY register
3163  *  @hw: pointer to the HW structure
3164  *  @offset: register offset to be read
3165  *  @data: pointer to the read data
3166  *
3167  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3168  *  and storing the retrieved information in data.  Release any acquired
3169  *  semaphores before exiting.
3170  **/
3171 s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
3172 {
3173 	s32 ret_val;
3174 	u32 page = offset >> IGP_PAGE_SHIFT;
3175 
3176 	DEBUGFUNC("e1000_read_phy_reg_bm");
3177 
3178 	ret_val = hw->phy.ops.acquire(hw);
3179 	if (ret_val)
3180 		return ret_val;
3181 
3182 	/* Page 800 works differently than the rest so it has its own func */
3183 	if (page == BM_WUC_PAGE) {
3184 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3185 							 TRUE, FALSE);
3186 		goto release;
3187 	}
3188 
3189 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3190 
3191 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3192 		u32 page_shift, page_select;
3193 
3194 		/* Page select is register 31 for phy address 1 and 22 for
3195 		 * phy address 2 and 3. Page select is shifted only for
3196 		 * phy address 1.
3197 		 */
3198 		if (hw->phy.addr == 1) {
3199 			page_shift = IGP_PAGE_SHIFT;
3200 			page_select = IGP01E1000_PHY_PAGE_SELECT;
3201 		} else {
3202 			page_shift = 0;
3203 			page_select = BM_PHY_PAGE_SELECT;
3204 		}
3205 
3206 		/* Page is shifted left, PHY expects (page x 32) */
3207 		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3208 						   (page << page_shift));
3209 		if (ret_val)
3210 			goto release;
3211 	}
3212 
3213 	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3214 					  data);
3215 release:
3216 	hw->phy.ops.release(hw);
3217 	return ret_val;
3218 }
3219 
3220 /**
3221  *  e1000_read_phy_reg_bm2 - Read BM PHY register
3222  *  @hw: pointer to the HW structure
3223  *  @offset: register offset to be read
3224  *  @data: pointer to the read data
3225  *
3226  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3227  *  and storing the retrieved information in data.  Release any acquired
3228  *  semaphores before exiting.
3229  **/
3230 s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
3231 {
3232 	s32 ret_val;
3233 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3234 
3235 	DEBUGFUNC("e1000_read_phy_reg_bm2");
3236 
3237 	ret_val = hw->phy.ops.acquire(hw);
3238 	if (ret_val)
3239 		return ret_val;
3240 
3241 	/* Page 800 works differently than the rest so it has its own func */
3242 	if (page == BM_WUC_PAGE) {
3243 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3244 							 TRUE, FALSE);
3245 		goto release;
3246 	}
3247 
3248 	hw->phy.addr = 1;
3249 
3250 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3251 		/* Page is shifted left, PHY expects (page x 32) */
3252 		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3253 						   page);
3254 
3255 		if (ret_val)
3256 			goto release;
3257 	}
3258 
3259 	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3260 					  data);
3261 release:
3262 	hw->phy.ops.release(hw);
3263 	return ret_val;
3264 }
3265 
3266 /**
3267  *  e1000_write_phy_reg_bm2 - Write BM PHY register
3268  *  @hw: pointer to the HW structure
3269  *  @offset: register offset to write to
3270  *  @data: data to write at register offset
3271  *
3272  *  Acquires semaphore, if necessary, then writes the data to PHY register
3273  *  at the offset.  Release any acquired semaphores before exiting.
3274  **/
3275 s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
3276 {
3277 	s32 ret_val;
3278 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3279 
3280 	DEBUGFUNC("e1000_write_phy_reg_bm2");
3281 
3282 	ret_val = hw->phy.ops.acquire(hw);
3283 	if (ret_val)
3284 		return ret_val;
3285 
3286 	/* Page 800 works differently than the rest so it has its own func */
3287 	if (page == BM_WUC_PAGE) {
3288 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3289 							 FALSE, FALSE);
3290 		goto release;
3291 	}
3292 
3293 	hw->phy.addr = 1;
3294 
3295 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3296 		/* Page is shifted left, PHY expects (page x 32) */
3297 		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3298 						   page);
3299 
3300 		if (ret_val)
3301 			goto release;
3302 	}
3303 
3304 	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3305 					   data);
3306 
3307 release:
3308 	hw->phy.ops.release(hw);
3309 	return ret_val;
3310 }
3311 
3312 /**
3313  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
3314  *  @hw: pointer to the HW structure
3315  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
3316  *
3317  *  Assumes semaphore already acquired and phy_reg points to a valid memory
3318  *  address to store contents of the BM_WUC_ENABLE_REG register.
3319  **/
3320 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3321 {
3322 	s32 ret_val;
3323 	u16 temp;
3324 
3325 	DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
3326 
3327 	if (!phy_reg)
3328 		return -E1000_ERR_PARAM;
3329 
3330 	/* All page select, port ctrl and wakeup registers use phy address 1 */
3331 	hw->phy.addr = 1;
3332 
3333 	/* Select Port Control Registers page */
3334 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3335 	if (ret_val) {
3336 		DEBUGOUT("Could not set Port Control page\n");
3337 		return ret_val;
3338 	}
3339 
3340 	ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
3341 	if (ret_val) {
3342 		DEBUGOUT2("Could not read PHY register %d.%d\n",
3343 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3344 		return ret_val;
3345 	}
3346 
3347 	/* Enable both PHY wakeup mode and Wakeup register page writes.
3348 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
3349 	 */
3350 	temp = *phy_reg;
3351 	temp |= BM_WUC_ENABLE_BIT;
3352 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
3353 
3354 	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
3355 	if (ret_val) {
3356 		DEBUGOUT2("Could not write PHY register %d.%d\n",
3357 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3358 		return ret_val;
3359 	}
3360 
3361 	/* Select Host Wakeup Registers page - caller now able to write
3362 	 * registers on the Wakeup registers page
3363 	 */
3364 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
3365 }
3366 
3367 /**
3368  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
3369  *  @hw: pointer to the HW structure
3370  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
3371  *
3372  *  Restore BM_WUC_ENABLE_REG to its original value.
3373  *
3374  *  Assumes semaphore already acquired and *phy_reg is the contents of the
3375  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
3376  *  caller.
3377  **/
3378 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3379 {
3380 	s32 ret_val;
3381 
3382 	DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
3383 
3384 	if (!phy_reg)
3385 		return -E1000_ERR_PARAM;
3386 
3387 	/* Select Port Control Registers page */
3388 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3389 	if (ret_val) {
3390 		DEBUGOUT("Could not set Port Control page\n");
3391 		return ret_val;
3392 	}
3393 
3394 	/* Restore 769.17 to its original value */
3395 	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
3396 	if (ret_val)
3397 		DEBUGOUT2("Could not restore PHY register %d.%d\n",
3398 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3399 
3400 	return ret_val;
3401 }
3402 
3403 /**
3404  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
3405  *  @hw: pointer to the HW structure
3406  *  @offset: register offset to be read or written
3407  *  @data: pointer to the data to read or write
3408  *  @read: determines if operation is read or write
3409  *  @page_set: BM_WUC_PAGE already set and access enabled
3410  *
3411  *  Read the PHY register at offset and store the retrieved information in
3412  *  data, or write data to PHY register at offset.  Note the procedure to
3413  *  access the PHY wakeup registers is different than reading the other PHY
3414  *  registers. It works as such:
3415  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
3416  *  2) Set page to 800 for host (801 if we were manageability)
3417  *  3) Write the address using the address opcode (0x11)
3418  *  4) Read or write the data using the data opcode (0x12)
3419  *  5) Restore 769.17.2 to its original value
3420  *
3421  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
3422  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
3423  *
3424  *  Assumes semaphore is already acquired.  When page_set==TRUE, assumes
3425  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
3426  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
3427  **/
3428 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
3429 					  u16 *data, bool read, bool page_set)
3430 {
3431 	s32 ret_val;
3432 	u16 reg, page;
3433 	u16 phy_reg = 0;
3434 
3435 	DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
3436 	reg = BM_PHY_REG_NUM(offset);
3437 	page = BM_PHY_REG_PAGE(offset);
3438 
3439 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
3440 	if ((hw->mac.type == e1000_pchlan) &&
3441 	   (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
3442 		DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
3443 			  page);
3444 
3445 	if (!page_set) {
3446 		/* Enable access to PHY wakeup registers */
3447 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3448 		if (ret_val) {
3449 			DEBUGOUT("Could not enable PHY wakeup reg access\n");
3450 			return ret_val;
3451 		}
3452 	}
3453 
3454 	DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
3455 
3456 	/* Write the Wakeup register page offset value using opcode 0x11 */
3457 	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
3458 	if (ret_val) {
3459 		DEBUGOUT1("Could not write address opcode to page %d\n", page);
3460 		return ret_val;
3461 	}
3462 
3463 	if (read) {
3464 		/* Read the Wakeup register page value using opcode 0x12 */
3465 		ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3466 						  data);
3467 	} else {
3468 		/* Write the Wakeup register page value using opcode 0x12 */
3469 		ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3470 						   *data);
3471 	}
3472 
3473 	if (ret_val) {
3474 		DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
3475 		return ret_val;
3476 	}
3477 
3478 	if (!page_set)
3479 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3480 
3481 	return ret_val;
3482 }
3483 
3484 /**
3485  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
3486  * @hw: pointer to the HW structure
3487  *
3488  * In the case of a PHY power down to save power, or to turn off link during a
3489  * driver unload, or wake on lan is not enabled, restore the link to previous
3490  * settings.
3491  **/
3492 void e1000_power_up_phy_copper(struct e1000_hw *hw)
3493 {
3494 	u16 mii_reg = 0;
3495 
3496 	/* The PHY will retain its settings across a power down/up cycle */
3497 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3498 	mii_reg &= ~MII_CR_POWER_DOWN;
3499 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3500 }
3501 
3502 /**
3503  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
3504  * @hw: pointer to the HW structure
3505  *
3506  * In the case of a PHY power down to save power, or to turn off link during a
3507  * driver unload, or wake on lan is not enabled, restore the link to previous
3508  * settings.
3509  **/
3510 void e1000_power_down_phy_copper(struct e1000_hw *hw)
3511 {
3512 	u16 mii_reg = 0;
3513 
3514 	/* The PHY will retain its settings across a power down/up cycle */
3515 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3516 	mii_reg |= MII_CR_POWER_DOWN;
3517 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3518 	msec_delay(1);
3519 }
3520 
3521 /**
3522  *  __e1000_read_phy_reg_hv -  Read HV PHY register
3523  *  @hw: pointer to the HW structure
3524  *  @offset: register offset to be read
3525  *  @data: pointer to the read data
3526  *  @locked: semaphore has already been acquired or not
3527  *
3528  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3529  *  and stores the retrieved information in data.  Release any acquired
3530  *  semaphore before exiting.
3531  **/
3532 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
3533 				   bool locked, bool page_set)
3534 {
3535 	s32 ret_val;
3536 	u16 page = BM_PHY_REG_PAGE(offset);
3537 	u16 reg = BM_PHY_REG_NUM(offset);
3538 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3539 
3540 	DEBUGFUNC("__e1000_read_phy_reg_hv");
3541 
3542 	if (!locked) {
3543 		ret_val = hw->phy.ops.acquire(hw);
3544 		if (ret_val)
3545 			return ret_val;
3546 	}
3547 
3548 	/* Page 800 works differently than the rest so it has its own func */
3549 	if (page == BM_WUC_PAGE) {
3550 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3551 							 TRUE, page_set);
3552 		goto out;
3553 	}
3554 
3555 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3556 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3557 							 data, TRUE);
3558 		goto out;
3559 	}
3560 
3561 	if (!page_set) {
3562 		if (page == HV_INTC_FC_PAGE_START)
3563 			page = 0;
3564 
3565 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3566 			/* Page is shifted left, PHY expects (page x 32) */
3567 			ret_val = e1000_set_page_igp(hw,
3568 						     (page << IGP_PAGE_SHIFT));
3569 
3570 			hw->phy.addr = phy_addr;
3571 
3572 			if (ret_val)
3573 				goto out;
3574 		}
3575 	}
3576 
3577 	DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3578 		  page << IGP_PAGE_SHIFT, reg);
3579 
3580 	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3581 					  data);
3582 out:
3583 	if (!locked)
3584 		hw->phy.ops.release(hw);
3585 
3586 	return ret_val;
3587 }
3588 
3589 /**
3590  *  e1000_read_phy_reg_hv -  Read HV PHY register
3591  *  @hw: pointer to the HW structure
3592  *  @offset: register offset to be read
3593  *  @data: pointer to the read data
3594  *
3595  *  Acquires semaphore then reads the PHY register at offset and stores
3596  *  the retrieved information in data.  Release the acquired semaphore
3597  *  before exiting.
3598  **/
3599 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3600 {
3601 	return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, FALSE);
3602 }
3603 
3604 /**
3605  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
3606  *  @hw: pointer to the HW structure
3607  *  @offset: register offset to be read
3608  *  @data: pointer to the read data
3609  *
3610  *  Reads the PHY register at offset and stores the retrieved information
3611  *  in data.  Assumes semaphore already acquired.
3612  **/
3613 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
3614 {
3615 	return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3616 }
3617 
3618 /**
3619  *  e1000_read_phy_reg_page_hv - Read HV PHY register
3620  *  @hw: pointer to the HW structure
3621  *  @offset: register offset to write to
3622  *  @data: data to write at register offset
3623  *
3624  *  Reads the PHY register at offset and stores the retrieved information
3625  *  in data.  Assumes semaphore already acquired and page already set.
3626  **/
3627 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3628 {
3629 	return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true);
3630 }
3631 
3632 /**
3633  *  __e1000_write_phy_reg_hv - Write HV PHY register
3634  *  @hw: pointer to the HW structure
3635  *  @offset: register offset to write to
3636  *  @data: data to write at register offset
3637  *  @locked: semaphore has already been acquired or not
3638  *
3639  *  Acquires semaphore, if necessary, then writes the data to PHY register
3640  *  at the offset.  Release any acquired semaphores before exiting.
3641  **/
3642 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
3643 				    bool locked, bool page_set)
3644 {
3645 	s32 ret_val;
3646 	u16 page = BM_PHY_REG_PAGE(offset);
3647 	u16 reg = BM_PHY_REG_NUM(offset);
3648 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3649 
3650 	DEBUGFUNC("__e1000_write_phy_reg_hv");
3651 
3652 	if (!locked) {
3653 		ret_val = hw->phy.ops.acquire(hw);
3654 		if (ret_val)
3655 			return ret_val;
3656 	}
3657 
3658 	/* Page 800 works differently than the rest so it has its own func */
3659 	if (page == BM_WUC_PAGE) {
3660 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3661 							 FALSE, page_set);
3662 		goto out;
3663 	}
3664 
3665 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3666 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3667 							 &data, FALSE);
3668 		goto out;
3669 	}
3670 
3671 	if (!page_set) {
3672 		if (page == HV_INTC_FC_PAGE_START)
3673 			page = 0;
3674 
3675 		/* Workaround MDIO accesses being disabled after entering IEEE
3676 		 * Power Down (when bit 11 of the PHY Control register is set)
3677 		 */
3678 		if ((hw->phy.type == e1000_phy_82578) &&
3679 		    (hw->phy.revision >= 1) &&
3680 		    (hw->phy.addr == 2) &&
3681 		    !(MAX_PHY_REG_ADDRESS & reg) &&
3682 		    (data & (1 << 11))) {
3683 			u16 data2 = 0x7EFF;
3684 			ret_val = e1000_access_phy_debug_regs_hv(hw,
3685 								 (1 << 6) | 0x3,
3686 								 &data2, FALSE);
3687 			if (ret_val)
3688 				goto out;
3689 		}
3690 
3691 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3692 			/* Page is shifted left, PHY expects (page x 32) */
3693 			ret_val = e1000_set_page_igp(hw,
3694 						     (page << IGP_PAGE_SHIFT));
3695 
3696 			hw->phy.addr = phy_addr;
3697 
3698 			if (ret_val)
3699 				goto out;
3700 		}
3701 	}
3702 
3703 	DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3704 		  page << IGP_PAGE_SHIFT, reg);
3705 
3706 	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3707 					   data);
3708 
3709 out:
3710 	if (!locked)
3711 		hw->phy.ops.release(hw);
3712 
3713 	return ret_val;
3714 }
3715 
3716 /**
3717  *  e1000_write_phy_reg_hv - Write HV PHY register
3718  *  @hw: pointer to the HW structure
3719  *  @offset: register offset to write to
3720  *  @data: data to write at register offset
3721  *
3722  *  Acquires semaphore then writes the data to PHY register at the offset.
3723  *  Release the acquired semaphores before exiting.
3724  **/
3725 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3726 {
3727 	return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, FALSE);
3728 }
3729 
3730 /**
3731  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3732  *  @hw: pointer to the HW structure
3733  *  @offset: register offset to write to
3734  *  @data: data to write at register offset
3735  *
3736  *  Writes the data to PHY register at the offset.  Assumes semaphore
3737  *  already acquired.
3738  **/
3739 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3740 {
3741 	return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3742 }
3743 
3744 /**
3745  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3746  *  @hw: pointer to the HW structure
3747  *  @offset: register offset to write to
3748  *  @data: data to write at register offset
3749  *
3750  *  Writes the data to PHY register at the offset.  Assumes semaphore
3751  *  already acquired and page already set.
3752  **/
3753 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3754 {
3755 	return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true);
3756 }
3757 
3758 /**
3759  *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
3760  *  @page: page to be accessed
3761  **/
3762 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3763 {
3764 	u32 phy_addr = 2;
3765 
3766 	if (page >= HV_INTC_FC_PAGE_START)
3767 		phy_addr = 1;
3768 
3769 	return phy_addr;
3770 }
3771 
3772 /**
3773  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3774  *  @hw: pointer to the HW structure
3775  *  @offset: register offset to be read or written
3776  *  @data: pointer to the data to be read or written
3777  *  @read: determines if operation is read or write
3778  *
3779  *  Reads the PHY register at offset and stores the retreived information
3780  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3781  *  to access these regs uses the address port and data port to read/write.
3782  *  These accesses done with PHY address 2 and without using pages.
3783  **/
3784 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3785 					  u16 *data, bool read)
3786 {
3787 	s32 ret_val;
3788 	u32 addr_reg;
3789 	u32 data_reg;
3790 
3791 	DEBUGFUNC("e1000_access_phy_debug_regs_hv");
3792 
3793 	/* This takes care of the difference with desktop vs mobile phy */
3794 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3795 		    I82578_ADDR_REG : I82577_ADDR_REG);
3796 	data_reg = addr_reg + 1;
3797 
3798 	/* All operations in this function are phy address 2 */
3799 	hw->phy.addr = 2;
3800 
3801 	/* masking with 0x3F to remove the page from offset */
3802 	ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3803 	if (ret_val) {
3804 		DEBUGOUT("Could not write the Address Offset port register\n");
3805 		return ret_val;
3806 	}
3807 
3808 	/* Read or write the data value next */
3809 	if (read)
3810 		ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
3811 	else
3812 		ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
3813 
3814 	if (ret_val)
3815 		DEBUGOUT("Could not access the Data port register\n");
3816 
3817 	return ret_val;
3818 }
3819 
3820 /**
3821  *  e1000_link_stall_workaround_hv - Si workaround
3822  *  @hw: pointer to the HW structure
3823  *
3824  *  This function works around a Si bug where the link partner can get
3825  *  a link up indication before the PHY does.  If small packets are sent
3826  *  by the link partner they can be placed in the packet buffer without
3827  *  being properly accounted for by the PHY and will stall preventing
3828  *  further packets from being received.  The workaround is to clear the
3829  *  packet buffer after the PHY detects link up.
3830  **/
3831 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3832 {
3833 	s32 ret_val = E1000_SUCCESS;
3834 	u16 data;
3835 
3836 	DEBUGFUNC("e1000_link_stall_workaround_hv");
3837 
3838 	if (hw->phy.type != e1000_phy_82578)
3839 		return E1000_SUCCESS;
3840 
3841 	/* Do not apply workaround if in PHY loopback bit 14 set */
3842 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3843 	if (data & PHY_CONTROL_LB)
3844 		return E1000_SUCCESS;
3845 
3846 	/* check if link is up and at 1Gbps */
3847 	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3848 	if (ret_val)
3849 		return ret_val;
3850 
3851 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3852 		 BM_CS_STATUS_SPEED_MASK);
3853 
3854 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3855 		     BM_CS_STATUS_SPEED_1000))
3856 		return E1000_SUCCESS;
3857 
3858 	msec_delay(200);
3859 
3860 	/* flush the packets in the fifo buffer */
3861 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3862 					(HV_MUX_DATA_CTRL_GEN_TO_MAC |
3863 					 HV_MUX_DATA_CTRL_FORCE_SPEED));
3864 	if (ret_val)
3865 		return ret_val;
3866 
3867 	return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3868 				     HV_MUX_DATA_CTRL_GEN_TO_MAC);
3869 }
3870 
3871 /**
3872  *  e1000_check_polarity_82577 - Checks the polarity.
3873  *  @hw: pointer to the HW structure
3874  *
3875  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3876  *
3877  *  Polarity is determined based on the PHY specific status register.
3878  **/
3879 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3880 {
3881 	struct e1000_phy_info *phy = &hw->phy;
3882 	s32 ret_val;
3883 	u16 data;
3884 
3885 	DEBUGFUNC("e1000_check_polarity_82577");
3886 
3887 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3888 
3889 	if (!ret_val)
3890 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3891 				       ? e1000_rev_polarity_reversed
3892 				       : e1000_rev_polarity_normal);
3893 
3894 	return ret_val;
3895 }
3896 
3897 /**
3898  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3899  *  @hw: pointer to the HW structure
3900  *
3901  *  Calls the PHY setup function to force speed and duplex.
3902  **/
3903 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3904 {
3905 	struct e1000_phy_info *phy = &hw->phy;
3906 	s32 ret_val;
3907 	u16 phy_data;
3908 	bool link;
3909 
3910 	DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
3911 
3912 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3913 	if (ret_val)
3914 		return ret_val;
3915 
3916 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
3917 
3918 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3919 	if (ret_val)
3920 		return ret_val;
3921 
3922 	usec_delay(1);
3923 
3924 	if (phy->autoneg_wait_to_complete) {
3925 		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
3926 
3927 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3928 						     100000, &link);
3929 		if (ret_val)
3930 			return ret_val;
3931 
3932 		if (!link)
3933 			DEBUGOUT("Link taking longer than expected.\n");
3934 
3935 		/* Try once more */
3936 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3937 						     100000, &link);
3938 	}
3939 
3940 	return ret_val;
3941 }
3942 
3943 /**
3944  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3945  *  @hw: pointer to the HW structure
3946  *
3947  *  Read PHY status to determine if link is up.  If link is up, then
3948  *  set/determine 10base-T extended distance and polarity correction.  Read
3949  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3950  *  determine on the cable length, local and remote receiver.
3951  **/
3952 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3953 {
3954 	struct e1000_phy_info *phy = &hw->phy;
3955 	s32 ret_val;
3956 	u16 data;
3957 	bool link;
3958 
3959 	DEBUGFUNC("e1000_get_phy_info_82577");
3960 
3961 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
3962 	if (ret_val)
3963 		return ret_val;
3964 
3965 	if (!link) {
3966 		DEBUGOUT("Phy info is only valid if link is up\n");
3967 		return -E1000_ERR_CONFIG;
3968 	}
3969 
3970 	phy->polarity_correction = TRUE;
3971 
3972 	ret_val = e1000_check_polarity_82577(hw);
3973 	if (ret_val)
3974 		return ret_val;
3975 
3976 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3977 	if (ret_val)
3978 		return ret_val;
3979 
3980 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3981 
3982 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3983 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3984 		ret_val = hw->phy.ops.get_cable_length(hw);
3985 		if (ret_val)
3986 			return ret_val;
3987 
3988 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3989 		if (ret_val)
3990 			return ret_val;
3991 
3992 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3993 				? e1000_1000t_rx_status_ok
3994 				: e1000_1000t_rx_status_not_ok;
3995 
3996 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3997 				 ? e1000_1000t_rx_status_ok
3998 				 : e1000_1000t_rx_status_not_ok;
3999 	} else {
4000 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
4001 		phy->local_rx = e1000_1000t_rx_status_undefined;
4002 		phy->remote_rx = e1000_1000t_rx_status_undefined;
4003 	}
4004 
4005 	return E1000_SUCCESS;
4006 }
4007 
4008 /**
4009  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
4010  *  @hw: pointer to the HW structure
4011  *
4012  * Reads the diagnostic status register and verifies result is valid before
4013  * placing it in the phy_cable_length field.
4014  **/
4015 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
4016 {
4017 	struct e1000_phy_info *phy = &hw->phy;
4018 	s32 ret_val;
4019 	u16 phy_data, length;
4020 
4021 	DEBUGFUNC("e1000_get_cable_length_82577");
4022 
4023 	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
4024 	if (ret_val)
4025 		return ret_val;
4026 
4027 	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
4028 		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
4029 
4030 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
4031 		return -E1000_ERR_PHY;
4032 
4033 	phy->cable_length = length;
4034 
4035 	return E1000_SUCCESS;
4036 }
4037 
4038 /**
4039  *  e1000_write_phy_reg_gs40g - Write GS40G  PHY register
4040  *  @hw: pointer to the HW structure
4041  *  @offset: register offset to write to
4042  *  @data: data to write at register offset
4043  *
4044  *  Acquires semaphore, if necessary, then writes the data to PHY register
4045  *  at the offset.  Release any acquired semaphores before exiting.
4046  **/
4047 s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
4048 {
4049 	s32 ret_val;
4050 	u16 page = offset >> GS40G_PAGE_SHIFT;
4051 
4052 	DEBUGFUNC("e1000_write_phy_reg_gs40g");
4053 
4054 	offset = offset & GS40G_OFFSET_MASK;
4055 	ret_val = hw->phy.ops.acquire(hw);
4056 	if (ret_val)
4057 		return ret_val;
4058 
4059 	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4060 	if (ret_val)
4061 		goto release;
4062 	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
4063 
4064 release:
4065 	hw->phy.ops.release(hw);
4066 	return ret_val;
4067 }
4068 
4069 /**
4070  *  e1000_read_phy_reg_gs40g - Read GS40G  PHY register
4071  *  @hw: pointer to the HW structure
4072  *  @offset: lower half is register offset to read to
4073  *     upper half is page to use.
4074  *  @data: data to read at register offset
4075  *
4076  *  Acquires semaphore, if necessary, then reads the data in the PHY register
4077  *  at the offset.  Release any acquired semaphores before exiting.
4078  **/
4079 s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
4080 {
4081 	s32 ret_val;
4082 	u16 page = offset >> GS40G_PAGE_SHIFT;
4083 
4084 	DEBUGFUNC("e1000_read_phy_reg_gs40g");
4085 
4086 	offset = offset & GS40G_OFFSET_MASK;
4087 	ret_val = hw->phy.ops.acquire(hw);
4088 	if (ret_val)
4089 		return ret_val;
4090 
4091 	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4092 	if (ret_val)
4093 		goto release;
4094 	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
4095 
4096 release:
4097 	hw->phy.ops.release(hw);
4098 	return ret_val;
4099 }
4100 
4101 /**
4102  *  e1000_read_phy_reg_mphy - Read mPHY control register
4103  *  @hw: pointer to the HW structure
4104  *  @address: address to be read
4105  *  @data: pointer to the read data
4106  *
4107  *  Reads the mPHY control register in the PHY at offset and stores the
4108  *  information read to data.
4109  **/
4110 s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
4111 {
4112 	u32 mphy_ctrl = 0;
4113 	bool locked = FALSE;
4114 	bool ready;
4115 
4116 	DEBUGFUNC("e1000_read_phy_reg_mphy");
4117 
4118 	/* Check if mPHY is ready to read/write operations */
4119 	ready = e1000_is_mphy_ready(hw);
4120 	if (!ready)
4121 		return -E1000_ERR_PHY;
4122 
4123 	/* Check if mPHY access is disabled and enable it if so */
4124 	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4125 	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
4126 		locked = TRUE;
4127 		ready = e1000_is_mphy_ready(hw);
4128 		if (!ready)
4129 			return -E1000_ERR_PHY;
4130 		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
4131 		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4132 	}
4133 
4134 	/* Set the address that we want to read */
4135 	ready = e1000_is_mphy_ready(hw);
4136 	if (!ready)
4137 		return -E1000_ERR_PHY;
4138 
4139 	/* We mask address, because we want to use only current lane */
4140 	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
4141 		~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
4142 		(address & E1000_MPHY_ADDRESS_MASK);
4143 	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4144 
4145 	/* Read data from the address */
4146 	ready = e1000_is_mphy_ready(hw);
4147 	if (!ready)
4148 		return -E1000_ERR_PHY;
4149 	*data = E1000_READ_REG(hw, E1000_MPHY_DATA);
4150 
4151 	/* Disable access to mPHY if it was originally disabled */
4152 	if (locked)
4153 		ready = e1000_is_mphy_ready(hw);
4154 		if (!ready)
4155 			return -E1000_ERR_PHY;
4156 		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
4157 				E1000_MPHY_DIS_ACCESS);
4158 
4159 	return E1000_SUCCESS;
4160 }
4161 
4162 /**
4163  *  e1000_write_phy_reg_mphy - Write mPHY control register
4164  *  @hw: pointer to the HW structure
4165  *  @address: address to write to
4166  *  @data: data to write to register at offset
4167  *  @line_override: used when we want to use different line than default one
4168  *
4169  *  Writes data to mPHY control register.
4170  **/
4171 s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
4172 			     bool line_override)
4173 {
4174 	u32 mphy_ctrl = 0;
4175 	bool locked = FALSE;
4176 	bool ready;
4177 
4178 	DEBUGFUNC("e1000_write_phy_reg_mphy");
4179 
4180 	/* Check if mPHY is ready to read/write operations */
4181 	ready = e1000_is_mphy_ready(hw);
4182 	if (!ready)
4183 		return -E1000_ERR_PHY;
4184 
4185 	/* Check if mPHY access is disabled and enable it if so */
4186 	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4187 	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
4188 		locked = TRUE;
4189 		ready = e1000_is_mphy_ready(hw);
4190 		if (!ready)
4191 			return -E1000_ERR_PHY;
4192 		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
4193 		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4194 	}
4195 
4196 	/* Set the address that we want to read */
4197 	ready = e1000_is_mphy_ready(hw);
4198 	if (!ready)
4199 		return -E1000_ERR_PHY;
4200 
4201 	/* We mask address, because we want to use only current lane */
4202 	if (line_override)
4203 		mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
4204 	else
4205 		mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
4206 	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
4207 		(address & E1000_MPHY_ADDRESS_MASK);
4208 	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4209 
4210 	/* Read data from the address */
4211 	ready = e1000_is_mphy_ready(hw);
4212 	if (!ready)
4213 		return -E1000_ERR_PHY;
4214 	E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
4215 
4216 	/* Disable access to mPHY if it was originally disabled */
4217 	if (locked)
4218 		ready = e1000_is_mphy_ready(hw);
4219 		if (!ready)
4220 			return -E1000_ERR_PHY;
4221 		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
4222 				E1000_MPHY_DIS_ACCESS);
4223 
4224 	return E1000_SUCCESS;
4225 }
4226 
4227 /**
4228  *  e1000_is_mphy_ready - Check if mPHY control register is not busy
4229  *  @hw: pointer to the HW structure
4230  *
4231  *  Returns mPHY control register status.
4232  **/
4233 bool e1000_is_mphy_ready(struct e1000_hw *hw)
4234 {
4235 	u16 retry_count = 0;
4236 	u32 mphy_ctrl = 0;
4237 	bool ready = FALSE;
4238 
4239 	while (retry_count < 2) {
4240 		mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4241 		if (mphy_ctrl & E1000_MPHY_BUSY) {
4242 			usec_delay(20);
4243 			retry_count++;
4244 			continue;
4245 		}
4246 		ready = TRUE;
4247 		break;
4248 	}
4249 
4250 	if (!ready)
4251 		DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
4252 
4253 	return ready;
4254 }
4255