xref: /titanic_50/usr/src/uts/common/io/e1000api/e1000_api.c (revision 53548f91e84cd97a638c23b5b295cc69089a5030)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 	case E1000_DEV_ID_PCH_I218_LM2:
297 	case E1000_DEV_ID_PCH_I218_V2:
298 	case E1000_DEV_ID_PCH_I218_LM3:
299 	case E1000_DEV_ID_PCH_I218_V3:
300 		mac->type = e1000_pch_lpt;
301 		break;
302 	case E1000_DEV_ID_PCH_SPT_I219_LM:
303 	case E1000_DEV_ID_PCH_SPT_I219_V:
304 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 	case E1000_DEV_ID_PCH_SPT_I219_V2:
306 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 		mac->type = e1000_pch_spt;
308 		break;
309 	case E1000_DEV_ID_82575EB_COPPER:
310 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
311 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
312 		mac->type = e1000_82575;
313 		break;
314 	case E1000_DEV_ID_82576:
315 	case E1000_DEV_ID_82576_FIBER:
316 	case E1000_DEV_ID_82576_SERDES:
317 	case E1000_DEV_ID_82576_QUAD_COPPER:
318 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
319 	case E1000_DEV_ID_82576_NS:
320 	case E1000_DEV_ID_82576_NS_SERDES:
321 	case E1000_DEV_ID_82576_SERDES_QUAD:
322 		mac->type = e1000_82576;
323 		break;
324 	case E1000_DEV_ID_82580_COPPER:
325 	case E1000_DEV_ID_82580_FIBER:
326 	case E1000_DEV_ID_82580_SERDES:
327 	case E1000_DEV_ID_82580_SGMII:
328 	case E1000_DEV_ID_82580_COPPER_DUAL:
329 	case E1000_DEV_ID_82580_QUAD_FIBER:
330 	case E1000_DEV_ID_DH89XXCC_SGMII:
331 	case E1000_DEV_ID_DH89XXCC_SERDES:
332 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
333 	case E1000_DEV_ID_DH89XXCC_SFP:
334 		mac->type = e1000_82580;
335 		break;
336 	case E1000_DEV_ID_I350_COPPER:
337 	case E1000_DEV_ID_I350_FIBER:
338 	case E1000_DEV_ID_I350_SERDES:
339 	case E1000_DEV_ID_I350_SGMII:
340 	case E1000_DEV_ID_I350_DA4:
341 		mac->type = e1000_i350;
342 		break;
343 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
344 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
345 	case E1000_DEV_ID_I210_COPPER:
346 	case E1000_DEV_ID_I210_COPPER_OEM1:
347 	case E1000_DEV_ID_I210_COPPER_IT:
348 	case E1000_DEV_ID_I210_FIBER:
349 	case E1000_DEV_ID_I210_SERDES:
350 	case E1000_DEV_ID_I210_SGMII:
351 		mac->type = e1000_i210;
352 		break;
353 	case E1000_DEV_ID_I211_COPPER:
354 		mac->type = e1000_i211;
355 		break;
356 	case E1000_DEV_ID_82576_VF:
357 	case E1000_DEV_ID_82576_VF_HV:
358 		mac->type = e1000_vfadapt;
359 		break;
360 	case E1000_DEV_ID_I350_VF:
361 	case E1000_DEV_ID_I350_VF_HV:
362 		mac->type = e1000_vfadapt_i350;
363 		break;
364 
365 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
366 	case E1000_DEV_ID_I354_SGMII:
367 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
368 		mac->type = e1000_i354;
369 		break;
370 	default:
371 		/* Should never have loaded on this device */
372 		ret_val = -E1000_ERR_MAC_INIT;
373 		break;
374 	}
375 
376 	return ret_val;
377 }
378 
379 /**
380  *  e1000_setup_init_funcs - Initializes function pointers
381  *  @hw: pointer to the HW structure
382  *  @init_device: TRUE will initialize the rest of the function pointers
383  *		  getting the device ready for use.  FALSE will only set
384  *		  MAC type and the function pointers for the other init
385  *		  functions.  Passing FALSE will not generate any hardware
386  *		  reads or writes.
387  *
388  *  This function must be called by a driver in order to use the rest
389  *  of the 'shared' code files. Called by drivers only.
390  **/
391 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
392 {
393 	s32 ret_val;
394 
395 	/* Can't do much good without knowing the MAC type. */
396 	ret_val = e1000_set_mac_type(hw);
397 	if (ret_val) {
398 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
399 		goto out;
400 	}
401 
402 	if (!hw->hw_addr) {
403 		DEBUGOUT("ERROR: Registers not mapped\n");
404 		ret_val = -E1000_ERR_CONFIG;
405 		goto out;
406 	}
407 
408 	/*
409 	 * Init function pointers to generic implementations. We do this first
410 	 * allowing a driver module to override it afterward.
411 	 */
412 	e1000_init_mac_ops_generic(hw);
413 	e1000_init_phy_ops_generic(hw);
414 	e1000_init_nvm_ops_generic(hw);
415 	e1000_init_mbx_ops_generic(hw);
416 
417 	/*
418 	 * Set up the init function pointers. These are functions within the
419 	 * adapter family file that sets up function pointers for the rest of
420 	 * the functions in that family.
421 	 */
422 	switch (hw->mac.type) {
423 	case e1000_82542:
424 		e1000_init_function_pointers_82542(hw);
425 		break;
426 	case e1000_82543:
427 	case e1000_82544:
428 		e1000_init_function_pointers_82543(hw);
429 		break;
430 	case e1000_82540:
431 	case e1000_82545:
432 	case e1000_82545_rev_3:
433 	case e1000_82546:
434 	case e1000_82546_rev_3:
435 		e1000_init_function_pointers_82540(hw);
436 		break;
437 	case e1000_82541:
438 	case e1000_82541_rev_2:
439 	case e1000_82547:
440 	case e1000_82547_rev_2:
441 		e1000_init_function_pointers_82541(hw);
442 		break;
443 	case e1000_82571:
444 	case e1000_82572:
445 	case e1000_82573:
446 	case e1000_82574:
447 	case e1000_82583:
448 		e1000_init_function_pointers_82571(hw);
449 		break;
450 	case e1000_80003es2lan:
451 		e1000_init_function_pointers_80003es2lan(hw);
452 		break;
453 	case e1000_ich8lan:
454 	case e1000_ich9lan:
455 	case e1000_ich10lan:
456 	case e1000_pchlan:
457 	case e1000_pch2lan:
458 	case e1000_pch_lpt:
459 	case e1000_pch_spt:
460 		e1000_init_function_pointers_ich8lan(hw);
461 		break;
462 	case e1000_82575:
463 	case e1000_82576:
464 	case e1000_82580:
465 	case e1000_i350:
466 	case e1000_i354:
467 		e1000_init_function_pointers_82575(hw);
468 		break;
469 	case e1000_i210:
470 	case e1000_i211:
471 		e1000_init_function_pointers_i210(hw);
472 		break;
473 	case e1000_vfadapt:
474 		e1000_init_function_pointers_vf(hw);
475 		break;
476 	case e1000_vfadapt_i350:
477 		e1000_init_function_pointers_vf(hw);
478 		break;
479 	default:
480 		DEBUGOUT("Hardware not supported\n");
481 		ret_val = -E1000_ERR_CONFIG;
482 		break;
483 	}
484 
485 	/*
486 	 * Initialize the rest of the function pointers. These require some
487 	 * register reads/writes in some cases.
488 	 */
489 	if (!(ret_val) && init_device) {
490 		ret_val = e1000_init_mac_params(hw);
491 		if (ret_val)
492 			goto out;
493 
494 		ret_val = e1000_init_nvm_params(hw);
495 		if (ret_val)
496 			goto out;
497 
498 		ret_val = e1000_init_phy_params(hw);
499 		if (ret_val)
500 			goto out;
501 
502 		ret_val = e1000_init_mbx_params(hw);
503 		if (ret_val)
504 			goto out;
505 	}
506 
507 out:
508 	return ret_val;
509 }
510 
511 /**
512  *  e1000_get_bus_info - Obtain bus information for adapter
513  *  @hw: pointer to the HW structure
514  *
515  *  This will obtain information about the HW bus for which the
516  *  adapter is attached and stores it in the hw structure. This is a
517  *  function pointer entry point called by drivers.
518  **/
519 s32 e1000_get_bus_info(struct e1000_hw *hw)
520 {
521 	if (hw->mac.ops.get_bus_info)
522 		return hw->mac.ops.get_bus_info(hw);
523 
524 	return E1000_SUCCESS;
525 }
526 
527 /**
528  *  e1000_clear_vfta - Clear VLAN filter table
529  *  @hw: pointer to the HW structure
530  *
531  *  This clears the VLAN filter table on the adapter. This is a function
532  *  pointer entry point called by drivers.
533  **/
534 void e1000_clear_vfta(struct e1000_hw *hw)
535 {
536 	if (hw->mac.ops.clear_vfta)
537 		hw->mac.ops.clear_vfta(hw);
538 }
539 
540 /**
541  *  e1000_write_vfta - Write value to VLAN filter table
542  *  @hw: pointer to the HW structure
543  *  @offset: the 32-bit offset in which to write the value to.
544  *  @value: the 32-bit value to write at location offset.
545  *
546  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
547  *  table. This is a function pointer entry point called by drivers.
548  **/
549 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
550 {
551 	if (hw->mac.ops.write_vfta)
552 		hw->mac.ops.write_vfta(hw, offset, value);
553 }
554 
555 /**
556  *  e1000_update_mc_addr_list - Update Multicast addresses
557  *  @hw: pointer to the HW structure
558  *  @mc_addr_list: array of multicast addresses to program
559  *  @mc_addr_count: number of multicast addresses to program
560  *
561  *  Updates the Multicast Table Array.
562  *  The caller must have a packed mc_addr_list of multicast addresses.
563  **/
564 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
565 			       u32 mc_addr_count)
566 {
567 	if (hw->mac.ops.update_mc_addr_list)
568 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
569 						mc_addr_count);
570 }
571 
572 /**
573  *  e1000_force_mac_fc - Force MAC flow control
574  *  @hw: pointer to the HW structure
575  *
576  *  Force the MAC's flow control settings. Currently no func pointer exists
577  *  and all implementations are handled in the generic version of this
578  *  function.
579  **/
580 s32 e1000_force_mac_fc(struct e1000_hw *hw)
581 {
582 	return e1000_force_mac_fc_generic(hw);
583 }
584 
585 /**
586  *  e1000_check_for_link - Check/Store link connection
587  *  @hw: pointer to the HW structure
588  *
589  *  This checks the link condition of the adapter and stores the
590  *  results in the hw->mac structure. This is a function pointer entry
591  *  point called by drivers.
592  **/
593 s32 e1000_check_for_link(struct e1000_hw *hw)
594 {
595 	if (hw->mac.ops.check_for_link)
596 		return hw->mac.ops.check_for_link(hw);
597 
598 	return -E1000_ERR_CONFIG;
599 }
600 
601 /**
602  *  e1000_check_mng_mode - Check management mode
603  *  @hw: pointer to the HW structure
604  *
605  *  This checks if the adapter has manageability enabled.
606  *  This is a function pointer entry point called by drivers.
607  **/
608 bool e1000_check_mng_mode(struct e1000_hw *hw)
609 {
610 	if (hw->mac.ops.check_mng_mode)
611 		return hw->mac.ops.check_mng_mode(hw);
612 
613 	return FALSE;
614 }
615 
616 /**
617  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
618  *  @hw: pointer to the HW structure
619  *  @buffer: pointer to the host interface
620  *  @length: size of the buffer
621  *
622  *  Writes the DHCP information to the host interface.
623  **/
624 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
625 {
626 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
627 }
628 
629 /**
630  *  e1000_reset_hw - Reset hardware
631  *  @hw: pointer to the HW structure
632  *
633  *  This resets the hardware into a known state. This is a function pointer
634  *  entry point called by drivers.
635  **/
636 s32 e1000_reset_hw(struct e1000_hw *hw)
637 {
638 	if (hw->mac.ops.reset_hw)
639 		return hw->mac.ops.reset_hw(hw);
640 
641 	return -E1000_ERR_CONFIG;
642 }
643 
644 /**
645  *  e1000_init_hw - Initialize hardware
646  *  @hw: pointer to the HW structure
647  *
648  *  This inits the hardware readying it for operation. This is a function
649  *  pointer entry point called by drivers.
650  **/
651 s32 e1000_init_hw(struct e1000_hw *hw)
652 {
653 	if (hw->mac.ops.init_hw)
654 		return hw->mac.ops.init_hw(hw);
655 
656 	return -E1000_ERR_CONFIG;
657 }
658 
659 /**
660  *  e1000_setup_link - Configures link and flow control
661  *  @hw: pointer to the HW structure
662  *
663  *  This configures link and flow control settings for the adapter. This
664  *  is a function pointer entry point called by drivers. While modules can
665  *  also call this, they probably call their own version of this function.
666  **/
667 s32 e1000_setup_link(struct e1000_hw *hw)
668 {
669 	if (hw->mac.ops.setup_link)
670 		return hw->mac.ops.setup_link(hw);
671 
672 	return -E1000_ERR_CONFIG;
673 }
674 
675 /**
676  *  e1000_get_speed_and_duplex - Returns current speed and duplex
677  *  @hw: pointer to the HW structure
678  *  @speed: pointer to a 16-bit value to store the speed
679  *  @duplex: pointer to a 16-bit value to store the duplex.
680  *
681  *  This returns the speed and duplex of the adapter in the two 'out'
682  *  variables passed in. This is a function pointer entry point called
683  *  by drivers.
684  **/
685 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
686 {
687 	if (hw->mac.ops.get_link_up_info)
688 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
689 
690 	return -E1000_ERR_CONFIG;
691 }
692 
693 /**
694  *  e1000_setup_led - Configures SW controllable LED
695  *  @hw: pointer to the HW structure
696  *
697  *  This prepares the SW controllable LED for use and saves the current state
698  *  of the LED so it can be later restored. This is a function pointer entry
699  *  point called by drivers.
700  **/
701 s32 e1000_setup_led(struct e1000_hw *hw)
702 {
703 	if (hw->mac.ops.setup_led)
704 		return hw->mac.ops.setup_led(hw);
705 
706 	return E1000_SUCCESS;
707 }
708 
709 /**
710  *  e1000_cleanup_led - Restores SW controllable LED
711  *  @hw: pointer to the HW structure
712  *
713  *  This restores the SW controllable LED to the value saved off by
714  *  e1000_setup_led. This is a function pointer entry point called by drivers.
715  **/
716 s32 e1000_cleanup_led(struct e1000_hw *hw)
717 {
718 	if (hw->mac.ops.cleanup_led)
719 		return hw->mac.ops.cleanup_led(hw);
720 
721 	return E1000_SUCCESS;
722 }
723 
724 /**
725  *  e1000_blink_led - Blink SW controllable LED
726  *  @hw: pointer to the HW structure
727  *
728  *  This starts the adapter LED blinking. Request the LED to be setup first
729  *  and cleaned up after. This is a function pointer entry point called by
730  *  drivers.
731  **/
732 s32 e1000_blink_led(struct e1000_hw *hw)
733 {
734 	if (hw->mac.ops.blink_led)
735 		return hw->mac.ops.blink_led(hw);
736 
737 	return E1000_SUCCESS;
738 }
739 
740 /**
741  *  e1000_id_led_init - store LED configurations in SW
742  *  @hw: pointer to the HW structure
743  *
744  *  Initializes the LED config in SW. This is a function pointer entry point
745  *  called by drivers.
746  **/
747 s32 e1000_id_led_init(struct e1000_hw *hw)
748 {
749 	if (hw->mac.ops.id_led_init)
750 		return hw->mac.ops.id_led_init(hw);
751 
752 	return E1000_SUCCESS;
753 }
754 
755 /**
756  *  e1000_led_on - Turn on SW controllable LED
757  *  @hw: pointer to the HW structure
758  *
759  *  Turns the SW defined LED on. This is a function pointer entry point
760  *  called by drivers.
761  **/
762 s32 e1000_led_on(struct e1000_hw *hw)
763 {
764 	if (hw->mac.ops.led_on)
765 		return hw->mac.ops.led_on(hw);
766 
767 	return E1000_SUCCESS;
768 }
769 
770 /**
771  *  e1000_led_off - Turn off SW controllable LED
772  *  @hw: pointer to the HW structure
773  *
774  *  Turns the SW defined LED off. This is a function pointer entry point
775  *  called by drivers.
776  **/
777 s32 e1000_led_off(struct e1000_hw *hw)
778 {
779 	if (hw->mac.ops.led_off)
780 		return hw->mac.ops.led_off(hw);
781 
782 	return E1000_SUCCESS;
783 }
784 
785 /**
786  *  e1000_reset_adaptive - Reset adaptive IFS
787  *  @hw: pointer to the HW structure
788  *
789  *  Resets the adaptive IFS. Currently no func pointer exists and all
790  *  implementations are handled in the generic version of this function.
791  **/
792 void e1000_reset_adaptive(struct e1000_hw *hw)
793 {
794 	e1000_reset_adaptive_generic(hw);
795 }
796 
797 /**
798  *  e1000_update_adaptive - Update adaptive IFS
799  *  @hw: pointer to the HW structure
800  *
801  *  Updates adapter IFS. Currently no func pointer exists and all
802  *  implementations are handled in the generic version of this function.
803  **/
804 void e1000_update_adaptive(struct e1000_hw *hw)
805 {
806 	e1000_update_adaptive_generic(hw);
807 }
808 
809 /**
810  *  e1000_disable_pcie_master - Disable PCI-Express master access
811  *  @hw: pointer to the HW structure
812  *
813  *  Disables PCI-Express master access and verifies there are no pending
814  *  requests. Currently no func pointer exists and all implementations are
815  *  handled in the generic version of this function.
816  **/
817 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
818 {
819 	return e1000_disable_pcie_master_generic(hw);
820 }
821 
822 /**
823  *  e1000_config_collision_dist - Configure collision distance
824  *  @hw: pointer to the HW structure
825  *
826  *  Configures the collision distance to the default value and is used
827  *  during link setup.
828  **/
829 void e1000_config_collision_dist(struct e1000_hw *hw)
830 {
831 	if (hw->mac.ops.config_collision_dist)
832 		hw->mac.ops.config_collision_dist(hw);
833 }
834 
835 /**
836  *  e1000_rar_set - Sets a receive address register
837  *  @hw: pointer to the HW structure
838  *  @addr: address to set the RAR to
839  *  @index: the RAR to set
840  *
841  *  Sets a Receive Address Register (RAR) to the specified address.
842  **/
843 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
844 {
845 	if (hw->mac.ops.rar_set)
846 		return hw->mac.ops.rar_set(hw, addr, index);
847 
848 	return E1000_SUCCESS;
849 }
850 
851 /**
852  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
853  *  @hw: pointer to the HW structure
854  *
855  *  Ensures that the MDI/MDIX SW state is valid.
856  **/
857 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
858 {
859 	if (hw->mac.ops.validate_mdi_setting)
860 		return hw->mac.ops.validate_mdi_setting(hw);
861 
862 	return E1000_SUCCESS;
863 }
864 
865 /**
866  *  e1000_hash_mc_addr - Determines address location in multicast table
867  *  @hw: pointer to the HW structure
868  *  @mc_addr: Multicast address to hash.
869  *
870  *  This hashes an address to determine its location in the multicast
871  *  table. Currently no func pointer exists and all implementations
872  *  are handled in the generic version of this function.
873  **/
874 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
875 {
876 	return e1000_hash_mc_addr_generic(hw, mc_addr);
877 }
878 
879 /**
880  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
881  *  @hw: pointer to the HW structure
882  *
883  *  Enables packet filtering on transmit packets if manageability is enabled
884  *  and host interface is enabled.
885  *  Currently no func pointer exists and all implementations are handled in the
886  *  generic version of this function.
887  **/
888 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
889 {
890 	return e1000_enable_tx_pkt_filtering_generic(hw);
891 }
892 
893 /**
894  *  e1000_mng_host_if_write - Writes to the manageability host interface
895  *  @hw: pointer to the HW structure
896  *  @buffer: pointer to the host interface buffer
897  *  @length: size of the buffer
898  *  @offset: location in the buffer to write to
899  *  @sum: sum of the data (not checksum)
900  *
901  *  This function writes the buffer content at the offset given on the host if.
902  *  It also does alignment considerations to do the writes in most efficient
903  *  way.  Also fills up the sum of the buffer in *buffer parameter.
904  **/
905 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
906 			    u16 offset, u8 *sum)
907 {
908 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
909 }
910 
911 /**
912  *  e1000_mng_write_cmd_header - Writes manageability command header
913  *  @hw: pointer to the HW structure
914  *  @hdr: pointer to the host interface command header
915  *
916  *  Writes the command header after does the checksum calculation.
917  **/
918 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
919 			       struct e1000_host_mng_command_header *hdr)
920 {
921 	return e1000_mng_write_cmd_header_generic(hw, hdr);
922 }
923 
924 /**
925  *  e1000_mng_enable_host_if - Checks host interface is enabled
926  *  @hw: pointer to the HW structure
927  *
928  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
929  *
930  *  This function checks whether the HOST IF is enabled for command operation
931  *  and also checks whether the previous command is completed.  It busy waits
932  *  in case of previous command is not completed.
933  **/
934 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
935 {
936 	return e1000_mng_enable_host_if_generic(hw);
937 }
938 
939 /**
940  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
941  *  @hw: pointer to the HW structure
942  *  @itr: u32 indicating itr value
943  *
944  *  Set the OBFF timer based on the given interrupt rate.
945  **/
946 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
947 {
948 	if (hw->mac.ops.set_obff_timer)
949 		return hw->mac.ops.set_obff_timer(hw, itr);
950 
951 	return E1000_SUCCESS;
952 }
953 
954 /**
955  *  e1000_check_reset_block - Verifies PHY can be reset
956  *  @hw: pointer to the HW structure
957  *
958  *  Checks if the PHY is in a state that can be reset or if manageability
959  *  has it tied up. This is a function pointer entry point called by drivers.
960  **/
961 s32 e1000_check_reset_block(struct e1000_hw *hw)
962 {
963 	if (hw->phy.ops.check_reset_block)
964 		return hw->phy.ops.check_reset_block(hw);
965 
966 	return E1000_SUCCESS;
967 }
968 
969 /**
970  *  e1000_read_phy_reg - Reads PHY register
971  *  @hw: pointer to the HW structure
972  *  @offset: the register to read
973  *  @data: the buffer to store the 16-bit read.
974  *
975  *  Reads the PHY register and returns the value in data.
976  *  This is a function pointer entry point called by drivers.
977  **/
978 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
979 {
980 	if (hw->phy.ops.read_reg)
981 		return hw->phy.ops.read_reg(hw, offset, data);
982 
983 	return E1000_SUCCESS;
984 }
985 
986 /**
987  *  e1000_write_phy_reg - Writes PHY register
988  *  @hw: pointer to the HW structure
989  *  @offset: the register to write
990  *  @data: the value to write.
991  *
992  *  Writes the PHY register at offset with the value in data.
993  *  This is a function pointer entry point called by drivers.
994  **/
995 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
996 {
997 	if (hw->phy.ops.write_reg)
998 		return hw->phy.ops.write_reg(hw, offset, data);
999 
1000 	return E1000_SUCCESS;
1001 }
1002 
1003 /**
1004  *  e1000_release_phy - Generic release PHY
1005  *  @hw: pointer to the HW structure
1006  *
1007  *  Return if silicon family does not require a semaphore when accessing the
1008  *  PHY.
1009  **/
1010 void e1000_release_phy(struct e1000_hw *hw)
1011 {
1012 	if (hw->phy.ops.release)
1013 		hw->phy.ops.release(hw);
1014 }
1015 
1016 /**
1017  *  e1000_acquire_phy - Generic acquire PHY
1018  *  @hw: pointer to the HW structure
1019  *
1020  *  Return success if silicon family does not require a semaphore when
1021  *  accessing the PHY.
1022  **/
1023 s32 e1000_acquire_phy(struct e1000_hw *hw)
1024 {
1025 	if (hw->phy.ops.acquire)
1026 		return hw->phy.ops.acquire(hw);
1027 
1028 	return E1000_SUCCESS;
1029 }
1030 
1031 /**
1032  *  e1000_cfg_on_link_up - Configure PHY upon link up
1033  *  @hw: pointer to the HW structure
1034  **/
1035 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1036 {
1037 	if (hw->phy.ops.cfg_on_link_up)
1038 		return hw->phy.ops.cfg_on_link_up(hw);
1039 
1040 	return E1000_SUCCESS;
1041 }
1042 
1043 /**
1044  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1045  *  @hw: pointer to the HW structure
1046  *  @offset: the register to read
1047  *  @data: the location to store the 16-bit value read.
1048  *
1049  *  Reads a register out of the Kumeran interface. Currently no func pointer
1050  *  exists and all implementations are handled in the generic version of
1051  *  this function.
1052  **/
1053 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1054 {
1055 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1056 }
1057 
1058 /**
1059  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1060  *  @hw: pointer to the HW structure
1061  *  @offset: the register to write
1062  *  @data: the value to write.
1063  *
1064  *  Writes a register to the Kumeran interface. Currently no func pointer
1065  *  exists and all implementations are handled in the generic version of
1066  *  this function.
1067  **/
1068 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1069 {
1070 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1071 }
1072 
1073 /**
1074  *  e1000_get_cable_length - Retrieves cable length estimation
1075  *  @hw: pointer to the HW structure
1076  *
1077  *  This function estimates the cable length and stores them in
1078  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1079  *  entry point called by drivers.
1080  **/
1081 s32 e1000_get_cable_length(struct e1000_hw *hw)
1082 {
1083 	if (hw->phy.ops.get_cable_length)
1084 		return hw->phy.ops.get_cable_length(hw);
1085 
1086 	return E1000_SUCCESS;
1087 }
1088 
1089 /**
1090  *  e1000_get_phy_info - Retrieves PHY information from registers
1091  *  @hw: pointer to the HW structure
1092  *
1093  *  This function gets some information from various PHY registers and
1094  *  populates hw->phy values with it. This is a function pointer entry
1095  *  point called by drivers.
1096  **/
1097 s32 e1000_get_phy_info(struct e1000_hw *hw)
1098 {
1099 	if (hw->phy.ops.get_info)
1100 		return hw->phy.ops.get_info(hw);
1101 
1102 	return E1000_SUCCESS;
1103 }
1104 
1105 /**
1106  *  e1000_phy_hw_reset - Hard PHY reset
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  Performs a hard PHY reset. This is a function pointer entry point called
1110  *  by drivers.
1111  **/
1112 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1113 {
1114 	if (hw->phy.ops.reset)
1115 		return hw->phy.ops.reset(hw);
1116 
1117 	return E1000_SUCCESS;
1118 }
1119 
1120 /**
1121  *  e1000_phy_commit - Soft PHY reset
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Performs a soft PHY reset on those that apply. This is a function pointer
1125  *  entry point called by drivers.
1126  **/
1127 s32 e1000_phy_commit(struct e1000_hw *hw)
1128 {
1129 	if (hw->phy.ops.commit)
1130 		return hw->phy.ops.commit(hw);
1131 
1132 	return E1000_SUCCESS;
1133 }
1134 
1135 /**
1136  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1137  *  @hw: pointer to the HW structure
1138  *  @active: boolean used to enable/disable lplu
1139  *
1140  *  Success returns 0, Failure returns 1
1141  *
1142  *  The low power link up (lplu) state is set to the power management level D0
1143  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1144  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1145  *  is used during Dx states where the power conservation is most important.
1146  *  During driver activity, SmartSpeed should be enabled so performance is
1147  *  maintained.  This is a function pointer entry point called by drivers.
1148  **/
1149 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1150 {
1151 	if (hw->phy.ops.set_d0_lplu_state)
1152 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1153 
1154 	return E1000_SUCCESS;
1155 }
1156 
1157 /**
1158  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1159  *  @hw: pointer to the HW structure
1160  *  @active: boolean used to enable/disable lplu
1161  *
1162  *  Success returns 0, Failure returns 1
1163  *
1164  *  The low power link up (lplu) state is set to the power management level D3
1165  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1166  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1167  *  is used during Dx states where the power conservation is most important.
1168  *  During driver activity, SmartSpeed should be enabled so performance is
1169  *  maintained.  This is a function pointer entry point called by drivers.
1170  **/
1171 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1172 {
1173 	if (hw->phy.ops.set_d3_lplu_state)
1174 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1175 
1176 	return E1000_SUCCESS;
1177 }
1178 
1179 /**
1180  *  e1000_read_mac_addr - Reads MAC address
1181  *  @hw: pointer to the HW structure
1182  *
1183  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1184  *  Currently no func pointer exists and all implementations are handled in the
1185  *  generic version of this function.
1186  **/
1187 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1188 {
1189 	if (hw->mac.ops.read_mac_addr)
1190 		return hw->mac.ops.read_mac_addr(hw);
1191 
1192 	return e1000_read_mac_addr_generic(hw);
1193 }
1194 
1195 /**
1196  *  e1000_read_pba_string - Read device part number string
1197  *  @hw: pointer to the HW structure
1198  *  @pba_num: pointer to device part number
1199  *  @pba_num_size: size of part number buffer
1200  *
1201  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1202  *  the value in pba_num.
1203  *  Currently no func pointer exists and all implementations are handled in the
1204  *  generic version of this function.
1205  **/
1206 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1207 {
1208 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1209 }
1210 
1211 /**
1212  *  e1000_read_pba_length - Read device part number string length
1213  *  @hw: pointer to the HW structure
1214  *  @pba_num_size: size of part number buffer
1215  *
1216  *  Reads the product board assembly (PBA) number length from the EEPROM and
1217  *  stores the value in pba_num.
1218  *  Currently no func pointer exists and all implementations are handled in the
1219  *  generic version of this function.
1220  **/
1221 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1222 {
1223 	return e1000_read_pba_length_generic(hw, pba_num_size);
1224 }
1225 
1226 /**
1227  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1228  *  @hw: pointer to the HW structure
1229  *
1230  *  Validates the NVM checksum is correct. This is a function pointer entry
1231  *  point called by drivers.
1232  **/
1233 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1234 {
1235 	if (hw->nvm.ops.validate)
1236 		return hw->nvm.ops.validate(hw);
1237 
1238 	return -E1000_ERR_CONFIG;
1239 }
1240 
1241 /**
1242  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1243  *  @hw: pointer to the HW structure
1244  *
1245  *  Updates the NVM checksum. Currently no func pointer exists and all
1246  *  implementations are handled in the generic version of this function.
1247  **/
1248 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1249 {
1250 	if (hw->nvm.ops.update)
1251 		return hw->nvm.ops.update(hw);
1252 
1253 	return -E1000_ERR_CONFIG;
1254 }
1255 
1256 /**
1257  *  e1000_reload_nvm - Reloads EEPROM
1258  *  @hw: pointer to the HW structure
1259  *
1260  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1261  *  extended control register.
1262  **/
1263 void e1000_reload_nvm(struct e1000_hw *hw)
1264 {
1265 	if (hw->nvm.ops.reload)
1266 		hw->nvm.ops.reload(hw);
1267 }
1268 
1269 /**
1270  *  e1000_read_nvm - Reads NVM (EEPROM)
1271  *  @hw: pointer to the HW structure
1272  *  @offset: the word offset to read
1273  *  @words: number of 16-bit words to read
1274  *  @data: pointer to the properly sized buffer for the data.
1275  *
1276  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1277  *  pointer entry point called by drivers.
1278  **/
1279 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1280 {
1281 	if (hw->nvm.ops.read)
1282 		return hw->nvm.ops.read(hw, offset, words, data);
1283 
1284 	return -E1000_ERR_CONFIG;
1285 }
1286 
1287 /**
1288  *  e1000_write_nvm - Writes to NVM (EEPROM)
1289  *  @hw: pointer to the HW structure
1290  *  @offset: the word offset to read
1291  *  @words: number of 16-bit words to write
1292  *  @data: pointer to the properly sized buffer for the data.
1293  *
1294  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1295  *  pointer entry point called by drivers.
1296  **/
1297 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1298 {
1299 	if (hw->nvm.ops.write)
1300 		return hw->nvm.ops.write(hw, offset, words, data);
1301 
1302 	return E1000_SUCCESS;
1303 }
1304 
1305 /**
1306  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1307  *  @hw: pointer to the HW structure
1308  *  @reg: 32bit register offset
1309  *  @offset: the register to write
1310  *  @data: the value to write.
1311  *
1312  *  Writes the PHY register at offset with the value in data.
1313  *  This is a function pointer entry point called by drivers.
1314  **/
1315 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1316 			      u8 data)
1317 {
1318 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1319 }
1320 
1321 /**
1322  * e1000_power_up_phy - Restores link in case of PHY power down
1323  * @hw: pointer to the HW structure
1324  *
1325  * The phy may be powered down to save power, to turn off link when the
1326  * driver is unloaded, or wake on lan is not enabled (among others).
1327  **/
1328 void e1000_power_up_phy(struct e1000_hw *hw)
1329 {
1330 	if (hw->phy.ops.power_up)
1331 		hw->phy.ops.power_up(hw);
1332 
1333 	e1000_setup_link(hw);
1334 }
1335 
1336 /**
1337  * e1000_power_down_phy - Power down PHY
1338  * @hw: pointer to the HW structure
1339  *
1340  * The phy may be powered down to save power, to turn off link when the
1341  * driver is unloaded, or wake on lan is not enabled (among others).
1342  **/
1343 void e1000_power_down_phy(struct e1000_hw *hw)
1344 {
1345 	if (hw->phy.ops.power_down)
1346 		hw->phy.ops.power_down(hw);
1347 }
1348 
1349 /**
1350  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1351  *  @hw: pointer to the HW structure
1352  *
1353  *  Power on the optics and PCS.
1354  **/
1355 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1356 {
1357 	if (hw->mac.ops.power_up_serdes)
1358 		hw->mac.ops.power_up_serdes(hw);
1359 }
1360 
1361 /**
1362  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1363  *  @hw: pointer to the HW structure
1364  *
1365  *  Shutdown the optics and PCS on driver unload.
1366  **/
1367 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1368 {
1369 	if (hw->mac.ops.shutdown_serdes)
1370 		hw->mac.ops.shutdown_serdes(hw);
1371 }
1372 
1373