xref: /titanic_50/usr/src/uts/common/io/e1000api/e1000_api.c (revision 4f364e7c95ee7fd9d5bbeddc1940e92405bb0e72)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2013, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 		mac->type = e1000_pch_lpt;
297 		break;
298 	case E1000_DEV_ID_82575EB_COPPER:
299 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
300 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
301 		mac->type = e1000_82575;
302 		break;
303 	case E1000_DEV_ID_82576:
304 	case E1000_DEV_ID_82576_FIBER:
305 	case E1000_DEV_ID_82576_SERDES:
306 	case E1000_DEV_ID_82576_QUAD_COPPER:
307 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
308 	case E1000_DEV_ID_82576_NS:
309 	case E1000_DEV_ID_82576_NS_SERDES:
310 	case E1000_DEV_ID_82576_SERDES_QUAD:
311 		mac->type = e1000_82576;
312 		break;
313 	case E1000_DEV_ID_82580_COPPER:
314 	case E1000_DEV_ID_82580_FIBER:
315 	case E1000_DEV_ID_82580_SERDES:
316 	case E1000_DEV_ID_82580_SGMII:
317 	case E1000_DEV_ID_82580_COPPER_DUAL:
318 	case E1000_DEV_ID_82580_QUAD_FIBER:
319 	case E1000_DEV_ID_DH89XXCC_SGMII:
320 	case E1000_DEV_ID_DH89XXCC_SERDES:
321 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
322 	case E1000_DEV_ID_DH89XXCC_SFP:
323 		mac->type = e1000_82580;
324 		break;
325 	case E1000_DEV_ID_I350_COPPER:
326 	case E1000_DEV_ID_I350_FIBER:
327 	case E1000_DEV_ID_I350_SERDES:
328 	case E1000_DEV_ID_I350_SGMII:
329 	case E1000_DEV_ID_I350_DA4:
330 		mac->type = e1000_i350;
331 		break;
332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW)
333 	case E1000_DEV_ID_I210_NVMLESS:
334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */
335 	case E1000_DEV_ID_I210_COPPER:
336 	case E1000_DEV_ID_I210_COPPER_OEM1:
337 	case E1000_DEV_ID_I210_COPPER_IT:
338 	case E1000_DEV_ID_I210_FIBER:
339 	case E1000_DEV_ID_I210_SERDES:
340 	case E1000_DEV_ID_I210_SGMII:
341 		mac->type = e1000_i210;
342 		break;
343 	case E1000_DEV_ID_I211_COPPER:
344 		mac->type = e1000_i211;
345 		break;
346 	case E1000_DEV_ID_82576_VF:
347 	case E1000_DEV_ID_82576_VF_HV:
348 		mac->type = e1000_vfadapt;
349 		break;
350 	case E1000_DEV_ID_I350_VF:
351 	case E1000_DEV_ID_I350_VF_HV:
352 		mac->type = e1000_vfadapt_i350;
353 		break;
354 
355 	default:
356 		/* Should never have loaded on this device */
357 		ret_val = -E1000_ERR_MAC_INIT;
358 		break;
359 	}
360 
361 	return ret_val;
362 }
363 
364 /**
365  *  e1000_setup_init_funcs - Initializes function pointers
366  *  @hw: pointer to the HW structure
367  *  @init_device: TRUE will initialize the rest of the function pointers
368  *		  getting the device ready for use.  FALSE will only set
369  *		  MAC type and the function pointers for the other init
370  *		  functions.  Passing FALSE will not generate any hardware
371  *		  reads or writes.
372  *
373  *  This function must be called by a driver in order to use the rest
374  *  of the 'shared' code files. Called by drivers only.
375  **/
376 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
377 {
378 	s32 ret_val;
379 
380 	/* Can't do much good without knowing the MAC type. */
381 	ret_val = e1000_set_mac_type(hw);
382 	if (ret_val) {
383 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
384 		goto out;
385 	}
386 
387 	if (!hw->hw_addr) {
388 		DEBUGOUT("ERROR: Registers not mapped\n");
389 		ret_val = -E1000_ERR_CONFIG;
390 		goto out;
391 	}
392 
393 	/*
394 	 * Init function pointers to generic implementations. We do this first
395 	 * allowing a driver module to override it afterward.
396 	 */
397 	e1000_init_mac_ops_generic(hw);
398 	e1000_init_phy_ops_generic(hw);
399 	e1000_init_nvm_ops_generic(hw);
400 	e1000_init_mbx_ops_generic(hw);
401 
402 	/*
403 	 * Set up the init function pointers. These are functions within the
404 	 * adapter family file that sets up function pointers for the rest of
405 	 * the functions in that family.
406 	 */
407 	switch (hw->mac.type) {
408 	case e1000_82542:
409 		e1000_init_function_pointers_82542(hw);
410 		break;
411 	case e1000_82543:
412 	case e1000_82544:
413 		e1000_init_function_pointers_82543(hw);
414 		break;
415 	case e1000_82540:
416 	case e1000_82545:
417 	case e1000_82545_rev_3:
418 	case e1000_82546:
419 	case e1000_82546_rev_3:
420 		e1000_init_function_pointers_82540(hw);
421 		break;
422 	case e1000_82541:
423 	case e1000_82541_rev_2:
424 	case e1000_82547:
425 	case e1000_82547_rev_2:
426 		e1000_init_function_pointers_82541(hw);
427 		break;
428 	case e1000_82571:
429 	case e1000_82572:
430 	case e1000_82573:
431 	case e1000_82574:
432 	case e1000_82583:
433 		e1000_init_function_pointers_82571(hw);
434 		break;
435 	case e1000_80003es2lan:
436 		e1000_init_function_pointers_80003es2lan(hw);
437 		break;
438 	case e1000_ich8lan:
439 	case e1000_ich9lan:
440 	case e1000_ich10lan:
441 	case e1000_pchlan:
442 	case e1000_pch2lan:
443 	case e1000_pch_lpt:
444 		e1000_init_function_pointers_ich8lan(hw);
445 		break;
446 	case e1000_82575:
447 	case e1000_82576:
448 	case e1000_82580:
449 	case e1000_i350:
450 		e1000_init_function_pointers_82575(hw);
451 		break;
452 	case e1000_i210:
453 	case e1000_i211:
454 		e1000_init_function_pointers_i210(hw);
455 		break;
456 	case e1000_vfadapt:
457 		e1000_init_function_pointers_vf(hw);
458 		break;
459 	case e1000_vfadapt_i350:
460 		e1000_init_function_pointers_vf(hw);
461 		break;
462 	default:
463 		DEBUGOUT("Hardware not supported\n");
464 		ret_val = -E1000_ERR_CONFIG;
465 		break;
466 	}
467 
468 	/*
469 	 * Initialize the rest of the function pointers. These require some
470 	 * register reads/writes in some cases.
471 	 */
472 	if (!(ret_val) && init_device) {
473 		ret_val = e1000_init_mac_params(hw);
474 		if (ret_val)
475 			goto out;
476 
477 		ret_val = e1000_init_nvm_params(hw);
478 		if (ret_val)
479 			goto out;
480 
481 		ret_val = e1000_init_phy_params(hw);
482 		if (ret_val)
483 			goto out;
484 
485 		ret_val = e1000_init_mbx_params(hw);
486 		if (ret_val)
487 			goto out;
488 	}
489 
490 out:
491 	return ret_val;
492 }
493 
494 /**
495  *  e1000_get_bus_info - Obtain bus information for adapter
496  *  @hw: pointer to the HW structure
497  *
498  *  This will obtain information about the HW bus for which the
499  *  adapter is attached and stores it in the hw structure. This is a
500  *  function pointer entry point called by drivers.
501  **/
502 s32 e1000_get_bus_info(struct e1000_hw *hw)
503 {
504 	if (hw->mac.ops.get_bus_info)
505 		return hw->mac.ops.get_bus_info(hw);
506 
507 	return E1000_SUCCESS;
508 }
509 
510 /**
511  *  e1000_clear_vfta - Clear VLAN filter table
512  *  @hw: pointer to the HW structure
513  *
514  *  This clears the VLAN filter table on the adapter. This is a function
515  *  pointer entry point called by drivers.
516  **/
517 void e1000_clear_vfta(struct e1000_hw *hw)
518 {
519 	if (hw->mac.ops.clear_vfta)
520 		hw->mac.ops.clear_vfta(hw);
521 }
522 
523 /**
524  *  e1000_write_vfta - Write value to VLAN filter table
525  *  @hw: pointer to the HW structure
526  *  @offset: the 32-bit offset in which to write the value to.
527  *  @value: the 32-bit value to write at location offset.
528  *
529  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
530  *  table. This is a function pointer entry point called by drivers.
531  **/
532 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
533 {
534 	if (hw->mac.ops.write_vfta)
535 		hw->mac.ops.write_vfta(hw, offset, value);
536 }
537 
538 /**
539  *  e1000_update_mc_addr_list - Update Multicast addresses
540  *  @hw: pointer to the HW structure
541  *  @mc_addr_list: array of multicast addresses to program
542  *  @mc_addr_count: number of multicast addresses to program
543  *
544  *  Updates the Multicast Table Array.
545  *  The caller must have a packed mc_addr_list of multicast addresses.
546  **/
547 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
548 			       u32 mc_addr_count)
549 {
550 	if (hw->mac.ops.update_mc_addr_list)
551 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
552 						mc_addr_count);
553 }
554 
555 /**
556  *  e1000_force_mac_fc - Force MAC flow control
557  *  @hw: pointer to the HW structure
558  *
559  *  Force the MAC's flow control settings. Currently no func pointer exists
560  *  and all implementations are handled in the generic version of this
561  *  function.
562  **/
563 s32 e1000_force_mac_fc(struct e1000_hw *hw)
564 {
565 	return e1000_force_mac_fc_generic(hw);
566 }
567 
568 /**
569  *  e1000_check_for_link - Check/Store link connection
570  *  @hw: pointer to the HW structure
571  *
572  *  This checks the link condition of the adapter and stores the
573  *  results in the hw->mac structure. This is a function pointer entry
574  *  point called by drivers.
575  **/
576 s32 e1000_check_for_link(struct e1000_hw *hw)
577 {
578 	if (hw->mac.ops.check_for_link)
579 		return hw->mac.ops.check_for_link(hw);
580 
581 	return -E1000_ERR_CONFIG;
582 }
583 
584 /**
585  *  e1000_check_mng_mode - Check management mode
586  *  @hw: pointer to the HW structure
587  *
588  *  This checks if the adapter has manageability enabled.
589  *  This is a function pointer entry point called by drivers.
590  **/
591 bool e1000_check_mng_mode(struct e1000_hw *hw)
592 {
593 	if (hw->mac.ops.check_mng_mode)
594 		return hw->mac.ops.check_mng_mode(hw);
595 
596 	return FALSE;
597 }
598 
599 /**
600  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
601  *  @hw: pointer to the HW structure
602  *  @buffer: pointer to the host interface
603  *  @length: size of the buffer
604  *
605  *  Writes the DHCP information to the host interface.
606  **/
607 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
608 {
609 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
610 }
611 
612 /**
613  *  e1000_reset_hw - Reset hardware
614  *  @hw: pointer to the HW structure
615  *
616  *  This resets the hardware into a known state. This is a function pointer
617  *  entry point called by drivers.
618  **/
619 s32 e1000_reset_hw(struct e1000_hw *hw)
620 {
621 	if (hw->mac.ops.reset_hw)
622 		return hw->mac.ops.reset_hw(hw);
623 
624 	return -E1000_ERR_CONFIG;
625 }
626 
627 /**
628  *  e1000_init_hw - Initialize hardware
629  *  @hw: pointer to the HW structure
630  *
631  *  This inits the hardware readying it for operation. This is a function
632  *  pointer entry point called by drivers.
633  **/
634 s32 e1000_init_hw(struct e1000_hw *hw)
635 {
636 	if (hw->mac.ops.init_hw)
637 		return hw->mac.ops.init_hw(hw);
638 
639 	return -E1000_ERR_CONFIG;
640 }
641 
642 /**
643  *  e1000_setup_link - Configures link and flow control
644  *  @hw: pointer to the HW structure
645  *
646  *  This configures link and flow control settings for the adapter. This
647  *  is a function pointer entry point called by drivers. While modules can
648  *  also call this, they probably call their own version of this function.
649  **/
650 s32 e1000_setup_link(struct e1000_hw *hw)
651 {
652 	if (hw->mac.ops.setup_link)
653 		return hw->mac.ops.setup_link(hw);
654 
655 	return -E1000_ERR_CONFIG;
656 }
657 
658 /**
659  *  e1000_get_speed_and_duplex - Returns current speed and duplex
660  *  @hw: pointer to the HW structure
661  *  @speed: pointer to a 16-bit value to store the speed
662  *  @duplex: pointer to a 16-bit value to store the duplex.
663  *
664  *  This returns the speed and duplex of the adapter in the two 'out'
665  *  variables passed in. This is a function pointer entry point called
666  *  by drivers.
667  **/
668 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
669 {
670 	if (hw->mac.ops.get_link_up_info)
671 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
672 
673 	return -E1000_ERR_CONFIG;
674 }
675 
676 /**
677  *  e1000_setup_led - Configures SW controllable LED
678  *  @hw: pointer to the HW structure
679  *
680  *  This prepares the SW controllable LED for use and saves the current state
681  *  of the LED so it can be later restored. This is a function pointer entry
682  *  point called by drivers.
683  **/
684 s32 e1000_setup_led(struct e1000_hw *hw)
685 {
686 	if (hw->mac.ops.setup_led)
687 		return hw->mac.ops.setup_led(hw);
688 
689 	return E1000_SUCCESS;
690 }
691 
692 /**
693  *  e1000_cleanup_led - Restores SW controllable LED
694  *  @hw: pointer to the HW structure
695  *
696  *  This restores the SW controllable LED to the value saved off by
697  *  e1000_setup_led. This is a function pointer entry point called by drivers.
698  **/
699 s32 e1000_cleanup_led(struct e1000_hw *hw)
700 {
701 	if (hw->mac.ops.cleanup_led)
702 		return hw->mac.ops.cleanup_led(hw);
703 
704 	return E1000_SUCCESS;
705 }
706 
707 /**
708  *  e1000_blink_led - Blink SW controllable LED
709  *  @hw: pointer to the HW structure
710  *
711  *  This starts the adapter LED blinking. Request the LED to be setup first
712  *  and cleaned up after. This is a function pointer entry point called by
713  *  drivers.
714  **/
715 s32 e1000_blink_led(struct e1000_hw *hw)
716 {
717 	if (hw->mac.ops.blink_led)
718 		return hw->mac.ops.blink_led(hw);
719 
720 	return E1000_SUCCESS;
721 }
722 
723 /**
724  *  e1000_id_led_init - store LED configurations in SW
725  *  @hw: pointer to the HW structure
726  *
727  *  Initializes the LED config in SW. This is a function pointer entry point
728  *  called by drivers.
729  **/
730 s32 e1000_id_led_init(struct e1000_hw *hw)
731 {
732 	if (hw->mac.ops.id_led_init)
733 		return hw->mac.ops.id_led_init(hw);
734 
735 	return E1000_SUCCESS;
736 }
737 
738 /**
739  *  e1000_led_on - Turn on SW controllable LED
740  *  @hw: pointer to the HW structure
741  *
742  *  Turns the SW defined LED on. This is a function pointer entry point
743  *  called by drivers.
744  **/
745 s32 e1000_led_on(struct e1000_hw *hw)
746 {
747 	if (hw->mac.ops.led_on)
748 		return hw->mac.ops.led_on(hw);
749 
750 	return E1000_SUCCESS;
751 }
752 
753 /**
754  *  e1000_led_off - Turn off SW controllable LED
755  *  @hw: pointer to the HW structure
756  *
757  *  Turns the SW defined LED off. This is a function pointer entry point
758  *  called by drivers.
759  **/
760 s32 e1000_led_off(struct e1000_hw *hw)
761 {
762 	if (hw->mac.ops.led_off)
763 		return hw->mac.ops.led_off(hw);
764 
765 	return E1000_SUCCESS;
766 }
767 
768 /**
769  *  e1000_reset_adaptive - Reset adaptive IFS
770  *  @hw: pointer to the HW structure
771  *
772  *  Resets the adaptive IFS. Currently no func pointer exists and all
773  *  implementations are handled in the generic version of this function.
774  **/
775 void e1000_reset_adaptive(struct e1000_hw *hw)
776 {
777 	e1000_reset_adaptive_generic(hw);
778 }
779 
780 /**
781  *  e1000_update_adaptive - Update adaptive IFS
782  *  @hw: pointer to the HW structure
783  *
784  *  Updates adapter IFS. Currently no func pointer exists and all
785  *  implementations are handled in the generic version of this function.
786  **/
787 void e1000_update_adaptive(struct e1000_hw *hw)
788 {
789 	e1000_update_adaptive_generic(hw);
790 }
791 
792 /**
793  *  e1000_disable_pcie_master - Disable PCI-Express master access
794  *  @hw: pointer to the HW structure
795  *
796  *  Disables PCI-Express master access and verifies there are no pending
797  *  requests. Currently no func pointer exists and all implementations are
798  *  handled in the generic version of this function.
799  **/
800 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
801 {
802 	return e1000_disable_pcie_master_generic(hw);
803 }
804 
805 /**
806  *  e1000_config_collision_dist - Configure collision distance
807  *  @hw: pointer to the HW structure
808  *
809  *  Configures the collision distance to the default value and is used
810  *  during link setup.
811  **/
812 void e1000_config_collision_dist(struct e1000_hw *hw)
813 {
814 	if (hw->mac.ops.config_collision_dist)
815 		hw->mac.ops.config_collision_dist(hw);
816 }
817 
818 /**
819  *  e1000_rar_set - Sets a receive address register
820  *  @hw: pointer to the HW structure
821  *  @addr: address to set the RAR to
822  *  @index: the RAR to set
823  *
824  *  Sets a Receive Address Register (RAR) to the specified address.
825  **/
826 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
827 {
828 	if (hw->mac.ops.rar_set)
829 		hw->mac.ops.rar_set(hw, addr, index);
830 }
831 
832 /**
833  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
834  *  @hw: pointer to the HW structure
835  *
836  *  Ensures that the MDI/MDIX SW state is valid.
837  **/
838 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
839 {
840 	if (hw->mac.ops.validate_mdi_setting)
841 		return hw->mac.ops.validate_mdi_setting(hw);
842 
843 	return E1000_SUCCESS;
844 }
845 
846 /**
847  *  e1000_hash_mc_addr - Determines address location in multicast table
848  *  @hw: pointer to the HW structure
849  *  @mc_addr: Multicast address to hash.
850  *
851  *  This hashes an address to determine its location in the multicast
852  *  table. Currently no func pointer exists and all implementations
853  *  are handled in the generic version of this function.
854  **/
855 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
856 {
857 	return e1000_hash_mc_addr_generic(hw, mc_addr);
858 }
859 
860 /**
861  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
862  *  @hw: pointer to the HW structure
863  *
864  *  Enables packet filtering on transmit packets if manageability is enabled
865  *  and host interface is enabled.
866  *  Currently no func pointer exists and all implementations are handled in the
867  *  generic version of this function.
868  **/
869 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
870 {
871 	return e1000_enable_tx_pkt_filtering_generic(hw);
872 }
873 
874 /**
875  *  e1000_mng_host_if_write - Writes to the manageability host interface
876  *  @hw: pointer to the HW structure
877  *  @buffer: pointer to the host interface buffer
878  *  @length: size of the buffer
879  *  @offset: location in the buffer to write to
880  *  @sum: sum of the data (not checksum)
881  *
882  *  This function writes the buffer content at the offset given on the host if.
883  *  It also does alignment considerations to do the writes in most efficient
884  *  way.  Also fills up the sum of the buffer in *buffer parameter.
885  **/
886 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
887 			    u16 offset, u8 *sum)
888 {
889 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
890 }
891 
892 /**
893  *  e1000_mng_write_cmd_header - Writes manageability command header
894  *  @hw: pointer to the HW structure
895  *  @hdr: pointer to the host interface command header
896  *
897  *  Writes the command header after does the checksum calculation.
898  **/
899 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
900 			       struct e1000_host_mng_command_header *hdr)
901 {
902 	return e1000_mng_write_cmd_header_generic(hw, hdr);
903 }
904 
905 /**
906  *  e1000_mng_enable_host_if - Checks host interface is enabled
907  *  @hw: pointer to the HW structure
908  *
909  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
910  *
911  *  This function checks whether the HOST IF is enabled for command operation
912  *  and also checks whether the previous command is completed.  It busy waits
913  *  in case of previous command is not completed.
914  **/
915 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
916 {
917 	return e1000_mng_enable_host_if_generic(hw);
918 }
919 
920 /**
921  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
922  *  @hw: pointer to the HW structure
923  *  @itr: u32 indicating itr value
924  *
925  *  Set the OBFF timer based on the given interrupt rate.
926  **/
927 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
928 {
929 	if (hw->mac.ops.set_obff_timer)
930 		return hw->mac.ops.set_obff_timer(hw, itr);
931 
932 	return E1000_SUCCESS;
933 }
934 
935 /**
936  *  e1000_check_reset_block - Verifies PHY can be reset
937  *  @hw: pointer to the HW structure
938  *
939  *  Checks if the PHY is in a state that can be reset or if manageability
940  *  has it tied up. This is a function pointer entry point called by drivers.
941  **/
942 s32 e1000_check_reset_block(struct e1000_hw *hw)
943 {
944 	if (hw->phy.ops.check_reset_block)
945 		return hw->phy.ops.check_reset_block(hw);
946 
947 	return E1000_SUCCESS;
948 }
949 
950 /**
951  *  e1000_read_phy_reg - Reads PHY register
952  *  @hw: pointer to the HW structure
953  *  @offset: the register to read
954  *  @data: the buffer to store the 16-bit read.
955  *
956  *  Reads the PHY register and returns the value in data.
957  *  This is a function pointer entry point called by drivers.
958  **/
959 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
960 {
961 	if (hw->phy.ops.read_reg)
962 		return hw->phy.ops.read_reg(hw, offset, data);
963 
964 	return E1000_SUCCESS;
965 }
966 
967 /**
968  *  e1000_write_phy_reg - Writes PHY register
969  *  @hw: pointer to the HW structure
970  *  @offset: the register to write
971  *  @data: the value to write.
972  *
973  *  Writes the PHY register at offset with the value in data.
974  *  This is a function pointer entry point called by drivers.
975  **/
976 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
977 {
978 	if (hw->phy.ops.write_reg)
979 		return hw->phy.ops.write_reg(hw, offset, data);
980 
981 	return E1000_SUCCESS;
982 }
983 
984 /**
985  *  e1000_release_phy - Generic release PHY
986  *  @hw: pointer to the HW structure
987  *
988  *  Return if silicon family does not require a semaphore when accessing the
989  *  PHY.
990  **/
991 void e1000_release_phy(struct e1000_hw *hw)
992 {
993 	if (hw->phy.ops.release)
994 		hw->phy.ops.release(hw);
995 }
996 
997 /**
998  *  e1000_acquire_phy - Generic acquire PHY
999  *  @hw: pointer to the HW structure
1000  *
1001  *  Return success if silicon family does not require a semaphore when
1002  *  accessing the PHY.
1003  **/
1004 s32 e1000_acquire_phy(struct e1000_hw *hw)
1005 {
1006 	if (hw->phy.ops.acquire)
1007 		return hw->phy.ops.acquire(hw);
1008 
1009 	return E1000_SUCCESS;
1010 }
1011 
1012 /**
1013  *  e1000_cfg_on_link_up - Configure PHY upon link up
1014  *  @hw: pointer to the HW structure
1015  **/
1016 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1017 {
1018 	if (hw->phy.ops.cfg_on_link_up)
1019 		return hw->phy.ops.cfg_on_link_up(hw);
1020 
1021 	return E1000_SUCCESS;
1022 }
1023 
1024 /**
1025  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1026  *  @hw: pointer to the HW structure
1027  *  @offset: the register to read
1028  *  @data: the location to store the 16-bit value read.
1029  *
1030  *  Reads a register out of the Kumeran interface. Currently no func pointer
1031  *  exists and all implementations are handled in the generic version of
1032  *  this function.
1033  **/
1034 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1035 {
1036 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1037 }
1038 
1039 /**
1040  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1041  *  @hw: pointer to the HW structure
1042  *  @offset: the register to write
1043  *  @data: the value to write.
1044  *
1045  *  Writes a register to the Kumeran interface. Currently no func pointer
1046  *  exists and all implementations are handled in the generic version of
1047  *  this function.
1048  **/
1049 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1050 {
1051 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1052 }
1053 
1054 /**
1055  *  e1000_get_cable_length - Retrieves cable length estimation
1056  *  @hw: pointer to the HW structure
1057  *
1058  *  This function estimates the cable length and stores them in
1059  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1060  *  entry point called by drivers.
1061  **/
1062 s32 e1000_get_cable_length(struct e1000_hw *hw)
1063 {
1064 	if (hw->phy.ops.get_cable_length)
1065 		return hw->phy.ops.get_cable_length(hw);
1066 
1067 	return E1000_SUCCESS;
1068 }
1069 
1070 /**
1071  *  e1000_get_phy_info - Retrieves PHY information from registers
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  This function gets some information from various PHY registers and
1075  *  populates hw->phy values with it. This is a function pointer entry
1076  *  point called by drivers.
1077  **/
1078 s32 e1000_get_phy_info(struct e1000_hw *hw)
1079 {
1080 	if (hw->phy.ops.get_info)
1081 		return hw->phy.ops.get_info(hw);
1082 
1083 	return E1000_SUCCESS;
1084 }
1085 
1086 /**
1087  *  e1000_phy_hw_reset - Hard PHY reset
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  Performs a hard PHY reset. This is a function pointer entry point called
1091  *  by drivers.
1092  **/
1093 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1094 {
1095 	if (hw->phy.ops.reset)
1096 		return hw->phy.ops.reset(hw);
1097 
1098 	return E1000_SUCCESS;
1099 }
1100 
1101 /**
1102  *  e1000_phy_commit - Soft PHY reset
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Performs a soft PHY reset on those that apply. This is a function pointer
1106  *  entry point called by drivers.
1107  **/
1108 s32 e1000_phy_commit(struct e1000_hw *hw)
1109 {
1110 	if (hw->phy.ops.commit)
1111 		return hw->phy.ops.commit(hw);
1112 
1113 	return E1000_SUCCESS;
1114 }
1115 
1116 /**
1117  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1118  *  @hw: pointer to the HW structure
1119  *  @active: boolean used to enable/disable lplu
1120  *
1121  *  Success returns 0, Failure returns 1
1122  *
1123  *  The low power link up (lplu) state is set to the power management level D0
1124  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1125  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1126  *  is used during Dx states where the power conservation is most important.
1127  *  During driver activity, SmartSpeed should be enabled so performance is
1128  *  maintained.  This is a function pointer entry point called by drivers.
1129  **/
1130 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1131 {
1132 	if (hw->phy.ops.set_d0_lplu_state)
1133 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1134 
1135 	return E1000_SUCCESS;
1136 }
1137 
1138 /**
1139  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1140  *  @hw: pointer to the HW structure
1141  *  @active: boolean used to enable/disable lplu
1142  *
1143  *  Success returns 0, Failure returns 1
1144  *
1145  *  The low power link up (lplu) state is set to the power management level D3
1146  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1147  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1148  *  is used during Dx states where the power conservation is most important.
1149  *  During driver activity, SmartSpeed should be enabled so performance is
1150  *  maintained.  This is a function pointer entry point called by drivers.
1151  **/
1152 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1153 {
1154 	if (hw->phy.ops.set_d3_lplu_state)
1155 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1156 
1157 	return E1000_SUCCESS;
1158 }
1159 
1160 /**
1161  *  e1000_read_mac_addr - Reads MAC address
1162  *  @hw: pointer to the HW structure
1163  *
1164  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1165  *  Currently no func pointer exists and all implementations are handled in the
1166  *  generic version of this function.
1167  **/
1168 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1169 {
1170 	if (hw->mac.ops.read_mac_addr)
1171 		return hw->mac.ops.read_mac_addr(hw);
1172 
1173 	return e1000_read_mac_addr_generic(hw);
1174 }
1175 
1176 /**
1177  *  e1000_read_pba_string - Read device part number string
1178  *  @hw: pointer to the HW structure
1179  *  @pba_num: pointer to device part number
1180  *  @pba_num_size: size of part number buffer
1181  *
1182  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1183  *  the value in pba_num.
1184  *  Currently no func pointer exists and all implementations are handled in the
1185  *  generic version of this function.
1186  **/
1187 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1188 {
1189 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1190 }
1191 
1192 /**
1193  *  e1000_read_pba_length - Read device part number string length
1194  *  @hw: pointer to the HW structure
1195  *  @pba_num_size: size of part number buffer
1196  *
1197  *  Reads the product board assembly (PBA) number length from the EEPROM and
1198  *  stores the value in pba_num.
1199  *  Currently no func pointer exists and all implementations are handled in the
1200  *  generic version of this function.
1201  **/
1202 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1203 {
1204 	return e1000_read_pba_length_generic(hw, pba_num_size);
1205 }
1206 
1207 /**
1208  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Validates the NVM checksum is correct. This is a function pointer entry
1212  *  point called by drivers.
1213  **/
1214 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1215 {
1216 	if (hw->nvm.ops.validate)
1217 		return hw->nvm.ops.validate(hw);
1218 
1219 	return -E1000_ERR_CONFIG;
1220 }
1221 
1222 /**
1223  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1224  *  @hw: pointer to the HW structure
1225  *
1226  *  Updates the NVM checksum. Currently no func pointer exists and all
1227  *  implementations are handled in the generic version of this function.
1228  **/
1229 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1230 {
1231 	if (hw->nvm.ops.update)
1232 		return hw->nvm.ops.update(hw);
1233 
1234 	return -E1000_ERR_CONFIG;
1235 }
1236 
1237 /**
1238  *  e1000_reload_nvm - Reloads EEPROM
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1242  *  extended control register.
1243  **/
1244 void e1000_reload_nvm(struct e1000_hw *hw)
1245 {
1246 	if (hw->nvm.ops.reload)
1247 		hw->nvm.ops.reload(hw);
1248 }
1249 
1250 /**
1251  *  e1000_read_nvm - Reads NVM (EEPROM)
1252  *  @hw: pointer to the HW structure
1253  *  @offset: the word offset to read
1254  *  @words: number of 16-bit words to read
1255  *  @data: pointer to the properly sized buffer for the data.
1256  *
1257  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1258  *  pointer entry point called by drivers.
1259  **/
1260 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1261 {
1262 	if (hw->nvm.ops.read)
1263 		return hw->nvm.ops.read(hw, offset, words, data);
1264 
1265 	return -E1000_ERR_CONFIG;
1266 }
1267 
1268 /**
1269  *  e1000_write_nvm - Writes to NVM (EEPROM)
1270  *  @hw: pointer to the HW structure
1271  *  @offset: the word offset to read
1272  *  @words: number of 16-bit words to write
1273  *  @data: pointer to the properly sized buffer for the data.
1274  *
1275  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1276  *  pointer entry point called by drivers.
1277  **/
1278 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1279 {
1280 	if (hw->nvm.ops.write)
1281 		return hw->nvm.ops.write(hw, offset, words, data);
1282 
1283 	return E1000_SUCCESS;
1284 }
1285 
1286 /**
1287  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1288  *  @hw: pointer to the HW structure
1289  *  @reg: 32bit register offset
1290  *  @offset: the register to write
1291  *  @data: the value to write.
1292  *
1293  *  Writes the PHY register at offset with the value in data.
1294  *  This is a function pointer entry point called by drivers.
1295  **/
1296 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1297 			      u8 data)
1298 {
1299 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1300 }
1301 
1302 /**
1303  * e1000_power_up_phy - Restores link in case of PHY power down
1304  * @hw: pointer to the HW structure
1305  *
1306  * The phy may be powered down to save power, to turn off link when the
1307  * driver is unloaded, or wake on lan is not enabled (among others).
1308  **/
1309 void e1000_power_up_phy(struct e1000_hw *hw)
1310 {
1311 	if (hw->phy.ops.power_up)
1312 		hw->phy.ops.power_up(hw);
1313 
1314 	e1000_setup_link(hw);
1315 }
1316 
1317 /**
1318  * e1000_power_down_phy - Power down PHY
1319  * @hw: pointer to the HW structure
1320  *
1321  * The phy may be powered down to save power, to turn off link when the
1322  * driver is unloaded, or wake on lan is not enabled (among others).
1323  **/
1324 void e1000_power_down_phy(struct e1000_hw *hw)
1325 {
1326 	if (hw->phy.ops.power_down)
1327 		hw->phy.ops.power_down(hw);
1328 }
1329 
1330 /**
1331  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1332  *  @hw: pointer to the HW structure
1333  *
1334  *  Power on the optics and PCS.
1335  **/
1336 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1337 {
1338 	if (hw->mac.ops.power_up_serdes)
1339 		hw->mac.ops.power_up_serdes(hw);
1340 }
1341 
1342 /**
1343  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1344  *  @hw: pointer to the HW structure
1345  *
1346  *  Shutdown the optics and PCS on driver unload.
1347  **/
1348 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1349 {
1350 	if (hw->mac.ops.shutdown_serdes)
1351 		hw->mac.ops.shutdown_serdes(hw);
1352 }
1353 
1354