xref: /titanic_50/usr/src/uts/common/io/dmfe/dmfe_main.c (revision 9e765c33c4dfc2dff414f25e1aa96208c482839b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 #include <sys/types.h>
28 #include <sys/sunddi.h>
29 #include <sys/policy.h>
30 #include <sys/sdt.h>
31 #include "dmfe_impl.h"
32 
33 /*
34  * This is the string displayed by modinfo, etc.
35  */
36 static char dmfe_ident[] = "Davicom DM9102 Ethernet";
37 
38 
39 /*
40  * NOTES:
41  *
42  * #defines:
43  *
44  *	DMFE_PCI_RNUMBER is the register-set number to use for the operating
45  *	registers.  On an OBP-based machine, regset 0 refers to CONFIG space,
46  *	regset 1 will be the operating registers in I/O space, and regset 2
47  *	will be the operating registers in MEMORY space (preferred).  If an
48  *	expansion ROM is fitted, it may appear as a further register set.
49  *
50  *	DMFE_SLOP defines the amount by which the chip may read beyond
51  *	the end of a buffer or descriptor, apparently 6-8 dwords :(
52  *	We have to make sure this doesn't cause it to access unallocated
53  *	or unmapped memory.
54  *
55  *	DMFE_BUF_SIZE must be at least (ETHERMAX + ETHERFCSL + DMFE_SLOP)
56  *	rounded up to a multiple of 4.  Here we choose a power of two for
57  *	speed & simplicity at the cost of a bit more memory.
58  *
59  *	However, the buffer length field in the TX/RX descriptors is only
60  *	eleven bits, so even though we allocate DMFE_BUF_SIZE (2048) bytes
61  *	per buffer, we tell the chip that they're only DMFE_BUF_SIZE_1
62  *	(2000) bytes each.
63  *
64  *	DMFE_DMA_MODE defines the mode (STREAMING/CONSISTENT) used for
65  *	the data buffers.  The descriptors are always set up in CONSISTENT
66  *	mode.
67  *
68  *	DMFE_HEADROOM defines how much space we'll leave in allocated
69  *	mblks before the first valid data byte.  This should be chosen
70  *	to be 2 modulo 4, so that once the ethernet header (14 bytes)
71  *	has been stripped off, the packet data will be 4-byte aligned.
72  *	The remaining space can be used by upstream modules to prepend
73  *	any headers required.
74  *
75  * Patchable globals:
76  *
77  *	dmfe_bus_modes: the bus mode bits to be put into CSR0.
78  *		Setting READ_MULTIPLE in this register seems to cause
79  *		the chip to generate a READ LINE command with a parity
80  *		error!  Don't do it!
81  *
82  *	dmfe_setup_desc1: the value to be put into descriptor word 1
83  *		when sending a SETUP packet.
84  *
85  *		Setting TX_LAST_DESC in desc1 in a setup packet seems
86  *		to make the chip spontaneously reset internally - it
87  *		attempts to give back the setup packet descriptor by
88  *		writing to PCI address 00000000 - which may or may not
89  *		get a MASTER ABORT - after which most of its registers
90  *		seem to have either default values or garbage!
91  *
92  *		TX_FIRST_DESC doesn't seem to have the same effect but
93  *		it isn't needed on a setup packet so we'll leave it out
94  *		too, just in case it has some other wierd side-effect.
95  *
96  *		The default hardware packet filtering mode is now
97  *		HASH_AND_PERFECT (imperfect filtering of multicast
98  *		packets and perfect filtering of unicast packets).
99  *		If this is found not to work reliably, setting the
100  *		TX_FILTER_TYPE1 bit will cause a switchover to using
101  *		HASH_ONLY mode (imperfect filtering of *all* packets).
102  *		Software will then perform the additional filtering
103  *		as required.
104  */
105 
106 #define	DMFE_PCI_RNUMBER	2
107 #define	DMFE_SLOP		(8*sizeof (uint32_t))
108 #define	DMFE_BUF_SIZE		2048
109 #define	DMFE_BUF_SIZE_1		2000
110 #define	DMFE_DMA_MODE		DDI_DMA_STREAMING
111 #define	DMFE_HEADROOM		34
112 
113 static uint32_t dmfe_bus_modes = TX_POLL_INTVL | CACHE_ALIGN;
114 static uint32_t dmfe_setup_desc1 = TX_SETUP_PACKET | SETUPBUF_SIZE |
115 					TX_FILTER_TYPE0;
116 
117 /*
118  * Some tunable parameters ...
119  *	Number of RX/TX ring entries (128/128)
120  *	Minimum number of TX ring slots to keep free (1)
121  *	Low-water mark at which to try to reclaim TX ring slots (1)
122  *	How often to take a TX-done interrupt (twice per ring cycle)
123  *	Whether to reclaim TX ring entries on a TX-done interrupt (no)
124  */
125 
126 #define	DMFE_TX_DESC		128	/* Should be a multiple of 4 <= 256 */
127 #define	DMFE_RX_DESC		128	/* Should be a multiple of 4 <= 256 */
128 
129 static uint32_t dmfe_rx_desc = DMFE_RX_DESC;
130 static uint32_t dmfe_tx_desc = DMFE_TX_DESC;
131 static uint32_t dmfe_tx_min_free = 1;
132 static uint32_t dmfe_tx_reclaim_level = 1;
133 static uint32_t dmfe_tx_int_factor = (DMFE_TX_DESC / 2) - 1;
134 static boolean_t dmfe_reclaim_on_done = B_FALSE;
135 
136 /*
137  * Time-related parameters:
138  *
139  *	We use a cyclic to provide a periodic callback; this is then used
140  * 	to check for TX-stall and poll the link status register.
141  *
142  *	DMFE_TICK is the interval between cyclic callbacks, in microseconds.
143  *
144  *	TX_STALL_TIME_100 is the timeout in microseconds between passing
145  *	a packet to the chip for transmission and seeing that it's gone,
146  *	when running at 100Mb/s.  If we haven't reclaimed at least one
147  *	descriptor in this time we assume the transmitter has stalled
148  *	and reset the chip.
149  *
150  *	TX_STALL_TIME_10 is the equivalent timeout when running at 10Mb/s.
151  *
152  * Patchable globals:
153  *
154  *	dmfe_tick_us:		DMFE_TICK
155  *	dmfe_tx100_stall_us:	TX_STALL_TIME_100
156  *	dmfe_tx10_stall_us:	TX_STALL_TIME_10
157  *
158  * These are then used in _init() to calculate:
159  *
160  *	stall_100_tix[]: number of consecutive cyclic callbacks without a
161  *			 reclaim before the TX process is considered stalled,
162  *			 when running at 100Mb/s.  The elements are indexed
163  *			 by transmit-engine-state.
164  *	stall_10_tix[]:	 number of consecutive cyclic callbacks without a
165  *			 reclaim before the TX process is considered stalled,
166  *			 when running at 10Mb/s.  The elements are indexed
167  *			 by transmit-engine-state.
168  */
169 
170 #define	DMFE_TICK		25000		/* microseconds		*/
171 #define	TX_STALL_TIME_100	50000		/* microseconds		*/
172 #define	TX_STALL_TIME_10	200000		/* microseconds		*/
173 
174 static uint32_t dmfe_tick_us = DMFE_TICK;
175 static uint32_t dmfe_tx100_stall_us = TX_STALL_TIME_100;
176 static uint32_t dmfe_tx10_stall_us = TX_STALL_TIME_10;
177 
178 /*
179  * Calculated from above in _init()
180  */
181 
182 static uint32_t stall_100_tix[TX_PROCESS_MAX_STATE+1];
183 static uint32_t stall_10_tix[TX_PROCESS_MAX_STATE+1];
184 
185 /*
186  * Property names
187  */
188 static char localmac_propname[] = "local-mac-address";
189 static char opmode_propname[] = "opmode-reg-value";
190 
191 static int		dmfe_m_start(void *);
192 static void		dmfe_m_stop(void *);
193 static int		dmfe_m_promisc(void *, boolean_t);
194 static int		dmfe_m_multicst(void *, boolean_t, const uint8_t *);
195 static int		dmfe_m_unicst(void *, const uint8_t *);
196 static void		dmfe_m_ioctl(void *, queue_t *, mblk_t *);
197 static mblk_t		*dmfe_m_tx(void *, mblk_t *);
198 static int 		dmfe_m_stat(void *, uint_t, uint64_t *);
199 static int		dmfe_m_getprop(void *, const char *, mac_prop_id_t,
200     uint_t, uint_t, void *, uint_t *);
201 static int		dmfe_m_setprop(void *, const char *, mac_prop_id_t,
202     uint_t,  const void *);
203 
204 static mac_callbacks_t dmfe_m_callbacks = {
205 	(MC_IOCTL | MC_SETPROP | MC_GETPROP),
206 	dmfe_m_stat,
207 	dmfe_m_start,
208 	dmfe_m_stop,
209 	dmfe_m_promisc,
210 	dmfe_m_multicst,
211 	dmfe_m_unicst,
212 	dmfe_m_tx,
213 	dmfe_m_ioctl,
214 	NULL,	/* getcapab */
215 	NULL,	/* open */
216 	NULL,	/* close */
217 	dmfe_m_setprop,
218 	dmfe_m_getprop
219 };
220 
221 
222 /*
223  * Describes the chip's DMA engine
224  */
225 static ddi_dma_attr_t dma_attr = {
226 	DMA_ATTR_V0,		/* dma_attr version */
227 	0,			/* dma_attr_addr_lo */
228 	(uint32_t)0xFFFFFFFF,	/* dma_attr_addr_hi */
229 	0x0FFFFFF,		/* dma_attr_count_max */
230 	0x20,			/* dma_attr_align */
231 	0x7F,			/* dma_attr_burstsizes */
232 	1,			/* dma_attr_minxfer */
233 	(uint32_t)0xFFFFFFFF,	/* dma_attr_maxxfer */
234 	(uint32_t)0xFFFFFFFF,	/* dma_attr_seg */
235 	1,			/* dma_attr_sgllen */
236 	1,			/* dma_attr_granular */
237 	0			/* dma_attr_flags */
238 };
239 
240 /*
241  * DMA access attributes for registers and descriptors
242  */
243 static ddi_device_acc_attr_t dmfe_reg_accattr = {
244 	DDI_DEVICE_ATTR_V0,
245 	DDI_STRUCTURE_LE_ACC,
246 	DDI_STRICTORDER_ACC
247 };
248 
249 /*
250  * DMA access attributes for data: NOT to be byte swapped.
251  */
252 static ddi_device_acc_attr_t dmfe_data_accattr = {
253 	DDI_DEVICE_ATTR_V0,
254 	DDI_NEVERSWAP_ACC,
255 	DDI_STRICTORDER_ACC
256 };
257 
258 static uchar_t dmfe_broadcast_addr[ETHERADDRL] = {
259 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
260 };
261 
262 
263 /*
264  * ========== Lowest-level chip register & ring access routines ==========
265  */
266 
267 /*
268  * I/O register get/put routines
269  */
270 uint32_t
271 dmfe_chip_get32(dmfe_t *dmfep, off_t offset)
272 {
273 	uint32_t *addr;
274 
275 	addr = (void *)(dmfep->io_reg + offset);
276 	return (ddi_get32(dmfep->io_handle, addr));
277 }
278 
279 void
280 dmfe_chip_put32(dmfe_t *dmfep, off_t offset, uint32_t value)
281 {
282 	uint32_t *addr;
283 
284 	addr = (void *)(dmfep->io_reg + offset);
285 	ddi_put32(dmfep->io_handle, addr, value);
286 }
287 
288 /*
289  * TX/RX ring get/put routines
290  */
291 static uint32_t
292 dmfe_ring_get32(dma_area_t *dma_p, uint_t index, uint_t offset)
293 {
294 	uint32_t *addr;
295 
296 	addr = (void *)dma_p->mem_va;
297 	return (ddi_get32(dma_p->acc_hdl, addr + index*DESC_SIZE + offset));
298 }
299 
300 static void
301 dmfe_ring_put32(dma_area_t *dma_p, uint_t index, uint_t offset, uint32_t value)
302 {
303 	uint32_t *addr;
304 
305 	addr = (void *)dma_p->mem_va;
306 	ddi_put32(dma_p->acc_hdl, addr + index*DESC_SIZE + offset, value);
307 }
308 
309 /*
310  * Setup buffer get/put routines
311  */
312 static uint32_t
313 dmfe_setup_get32(dma_area_t *dma_p, uint_t index)
314 {
315 	uint32_t *addr;
316 
317 	addr = (void *)dma_p->setup_va;
318 	return (ddi_get32(dma_p->acc_hdl, addr + index));
319 }
320 
321 static void
322 dmfe_setup_put32(dma_area_t *dma_p, uint_t index, uint32_t value)
323 {
324 	uint32_t *addr;
325 
326 	addr = (void *)dma_p->setup_va;
327 	ddi_put32(dma_p->acc_hdl, addr + index, value);
328 }
329 
330 
331 /*
332  * ========== Low-level chip & ring buffer manipulation ==========
333  */
334 
335 /*
336  * dmfe_set_opmode() -- function to set operating mode
337  */
338 static void
339 dmfe_set_opmode(dmfe_t *dmfep)
340 {
341 	ASSERT(mutex_owned(dmfep->oplock));
342 
343 	dmfe_chip_put32(dmfep, OPN_MODE_REG, dmfep->opmode);
344 	drv_usecwait(10);
345 }
346 
347 /*
348  * dmfe_stop_chip() -- stop all chip processing & optionally reset the h/w
349  */
350 static void
351 dmfe_stop_chip(dmfe_t *dmfep, enum chip_state newstate)
352 {
353 	ASSERT(mutex_owned(dmfep->oplock));
354 
355 	/*
356 	 * Stop the chip:
357 	 *	disable all interrupts
358 	 *	stop TX/RX processes
359 	 *	clear the status bits for TX/RX stopped
360 	 * If required, reset the chip
361 	 * Record the new state
362 	 */
363 	dmfe_chip_put32(dmfep, INT_MASK_REG, 0);
364 	dmfep->opmode &= ~(START_TRANSMIT | START_RECEIVE);
365 	dmfe_set_opmode(dmfep);
366 	dmfe_chip_put32(dmfep, STATUS_REG, TX_STOPPED_INT | RX_STOPPED_INT);
367 
368 	switch (newstate) {
369 	default:
370 		ASSERT(!"can't get here");
371 		return;
372 
373 	case CHIP_STOPPED:
374 	case CHIP_ERROR:
375 		break;
376 
377 	case CHIP_RESET:
378 		dmfe_chip_put32(dmfep, BUS_MODE_REG, SW_RESET);
379 		drv_usecwait(10);
380 		dmfe_chip_put32(dmfep, BUS_MODE_REG, 0);
381 		drv_usecwait(10);
382 		dmfe_chip_put32(dmfep, BUS_MODE_REG, dmfe_bus_modes);
383 		break;
384 	}
385 
386 	dmfep->chip_state = newstate;
387 }
388 
389 /*
390  * Initialize transmit and receive descriptor rings, and
391  * set the chip to point to the first entry in each ring
392  */
393 static void
394 dmfe_init_rings(dmfe_t *dmfep)
395 {
396 	dma_area_t *descp;
397 	uint32_t pstart;
398 	uint32_t pnext;
399 	uint32_t pbuff;
400 	uint32_t desc1;
401 	int i;
402 
403 	/*
404 	 * You need all the locks in order to rewrite the descriptor rings
405 	 */
406 	ASSERT(mutex_owned(dmfep->oplock));
407 	ASSERT(mutex_owned(dmfep->rxlock));
408 	ASSERT(mutex_owned(dmfep->txlock));
409 
410 	/*
411 	 * Program the RX ring entries
412 	 */
413 	descp = &dmfep->rx_desc;
414 	pstart = descp->mem_dvma;
415 	pnext = pstart + sizeof (struct rx_desc_type);
416 	pbuff = dmfep->rx_buff.mem_dvma;
417 	desc1 = RX_CHAINING | DMFE_BUF_SIZE_1;
418 
419 	for (i = 0; i < dmfep->rx.n_desc; ++i) {
420 		dmfe_ring_put32(descp, i, RD_NEXT, pnext);
421 		dmfe_ring_put32(descp, i, BUFFER1, pbuff);
422 		dmfe_ring_put32(descp, i, DESC1, desc1);
423 		dmfe_ring_put32(descp, i, DESC0, RX_OWN);
424 
425 		pnext += sizeof (struct rx_desc_type);
426 		pbuff += DMFE_BUF_SIZE;
427 	}
428 
429 	/*
430 	 * Fix up last entry & sync
431 	 */
432 	dmfe_ring_put32(descp, --i, RD_NEXT, pstart);
433 	DMA_SYNC(descp, DDI_DMA_SYNC_FORDEV);
434 	dmfep->rx.next_free = 0;
435 
436 	/*
437 	 * Set the base address of the RX descriptor list in CSR3
438 	 */
439 	dmfe_chip_put32(dmfep, RX_BASE_ADDR_REG, descp->mem_dvma);
440 
441 	/*
442 	 * Program the TX ring entries
443 	 */
444 	descp = &dmfep->tx_desc;
445 	pstart = descp->mem_dvma;
446 	pnext = pstart + sizeof (struct tx_desc_type);
447 	pbuff = dmfep->tx_buff.mem_dvma;
448 	desc1 = TX_CHAINING;
449 
450 	for (i = 0; i < dmfep->tx.n_desc; ++i) {
451 		dmfe_ring_put32(descp, i, TD_NEXT, pnext);
452 		dmfe_ring_put32(descp, i, BUFFER1, pbuff);
453 		dmfe_ring_put32(descp, i, DESC1, desc1);
454 		dmfe_ring_put32(descp, i, DESC0, 0);
455 
456 		pnext += sizeof (struct tx_desc_type);
457 		pbuff += DMFE_BUF_SIZE;
458 	}
459 
460 	/*
461 	 * Fix up last entry & sync
462 	 */
463 	dmfe_ring_put32(descp, --i, TD_NEXT, pstart);
464 	DMA_SYNC(descp, DDI_DMA_SYNC_FORDEV);
465 	dmfep->tx.n_free = dmfep->tx.n_desc;
466 	dmfep->tx.next_free = dmfep->tx.next_busy = 0;
467 
468 	/*
469 	 * Set the base address of the TX descrptor list in CSR4
470 	 */
471 	dmfe_chip_put32(dmfep, TX_BASE_ADDR_REG, descp->mem_dvma);
472 }
473 
474 /*
475  * dmfe_start_chip() -- start the chip transmitting and/or receiving
476  */
477 static void
478 dmfe_start_chip(dmfe_t *dmfep, int mode)
479 {
480 	ASSERT(mutex_owned(dmfep->oplock));
481 
482 	dmfep->opmode |= mode;
483 	dmfe_set_opmode(dmfep);
484 
485 	dmfe_chip_put32(dmfep, W_J_TIMER_REG, 0);
486 	/*
487 	 * Enable VLAN length mode (allows packets to be 4 bytes Longer).
488 	 */
489 	dmfe_chip_put32(dmfep, W_J_TIMER_REG, VLAN_ENABLE);
490 
491 	/*
492 	 * Clear any pending process-stopped interrupts
493 	 */
494 	dmfe_chip_put32(dmfep, STATUS_REG, TX_STOPPED_INT | RX_STOPPED_INT);
495 	dmfep->chip_state = mode & START_RECEIVE ? CHIP_TX_RX :
496 	    mode & START_TRANSMIT ? CHIP_TX_ONLY : CHIP_STOPPED;
497 }
498 
499 /*
500  * dmfe_enable_interrupts() -- enable our favourite set of interrupts.
501  *
502  * Normal interrupts:
503  *	We always enable:
504  *		RX_PKTDONE_INT		(packet received)
505  *		TX_PKTDONE_INT		(TX complete)
506  *	We never enable:
507  *		TX_ALLDONE_INT		(next TX buffer not ready)
508  *
509  * Abnormal interrupts:
510  *	We always enable:
511  *		RX_STOPPED_INT
512  *		TX_STOPPED_INT
513  *		SYSTEM_ERR_INT
514  *		RX_UNAVAIL_INT
515  *	We never enable:
516  *		RX_EARLY_INT
517  *		RX_WATCHDOG_INT
518  *		TX_JABBER_INT
519  *		TX_EARLY_INT
520  *		TX_UNDERFLOW_INT
521  *		GP_TIMER_INT		(not valid in -9 chips)
522  *		LINK_STATUS_INT		(not valid in -9 chips)
523  */
524 static void
525 dmfe_enable_interrupts(dmfe_t *dmfep)
526 {
527 	ASSERT(mutex_owned(dmfep->oplock));
528 
529 	/*
530 	 * Put 'the standard set of interrupts' in the interrupt mask register
531 	 */
532 	dmfep->imask =	RX_PKTDONE_INT | TX_PKTDONE_INT |
533 	    RX_STOPPED_INT | TX_STOPPED_INT | RX_UNAVAIL_INT | SYSTEM_ERR_INT;
534 
535 	dmfe_chip_put32(dmfep, INT_MASK_REG,
536 	    NORMAL_SUMMARY_INT | ABNORMAL_SUMMARY_INT | dmfep->imask);
537 	dmfep->chip_state = CHIP_RUNNING;
538 }
539 
540 /*
541  * ========== RX side routines ==========
542  */
543 
544 /*
545  * Function to update receive statistics on various errors
546  */
547 static void
548 dmfe_update_rx_stats(dmfe_t *dmfep, uint32_t desc0)
549 {
550 	ASSERT(mutex_owned(dmfep->rxlock));
551 
552 	/*
553 	 * The error summary bit and the error bits that it summarises
554 	 * are only valid if this is the last fragment.  Therefore, a
555 	 * fragment only contributes to the error statistics if both
556 	 * the last-fragment and error summary bits are set.
557 	 */
558 	if (((RX_LAST_DESC | RX_ERR_SUMMARY) & ~desc0) == 0) {
559 		dmfep->rx_stats_ierrors += 1;
560 
561 		/*
562 		 * There are some other error bits in the descriptor for
563 		 * which there don't seem to be appropriate MAC statistics,
564 		 * notably RX_COLLISION and perhaps RX_DESC_ERR.  The
565 		 * latter may not be possible if it is supposed to indicate
566 		 * that one buffer has been filled with a partial packet
567 		 * and the next buffer required for the rest of the packet
568 		 * was not available, as all our buffers are more than large
569 		 * enough for a whole packet without fragmenting.
570 		 */
571 
572 		if (desc0 & RX_OVERFLOW) {
573 			dmfep->rx_stats_overflow += 1;
574 
575 		} else if (desc0 & RX_RUNT_FRAME)
576 			dmfep->rx_stats_short += 1;
577 
578 		if (desc0 & RX_CRC)
579 			dmfep->rx_stats_fcs += 1;
580 
581 		if (desc0 & RX_FRAME2LONG)
582 			dmfep->rx_stats_toolong += 1;
583 	}
584 
585 	/*
586 	 * A receive watchdog timeout is counted as a MAC-level receive
587 	 * error.  Strangely, it doesn't set the packet error summary bit,
588 	 * according to the chip data sheet :-?
589 	 */
590 	if (desc0 & RX_RCV_WD_TO)
591 		dmfep->rx_stats_macrcv_errors += 1;
592 
593 	if (desc0 & RX_DRIBBLING)
594 		dmfep->rx_stats_align += 1;
595 
596 	if (desc0 & RX_MII_ERR)
597 		dmfep->rx_stats_macrcv_errors += 1;
598 }
599 
600 /*
601  * Receive incoming packet(s) and pass them up ...
602  */
603 static mblk_t *
604 dmfe_getp(dmfe_t *dmfep)
605 {
606 	dma_area_t *descp;
607 	mblk_t **tail;
608 	mblk_t *head;
609 	mblk_t *mp;
610 	char *rxb;
611 	uchar_t *dp;
612 	uint32_t desc0;
613 	uint32_t misses;
614 	int packet_length;
615 	int index;
616 
617 	mutex_enter(dmfep->rxlock);
618 
619 	/*
620 	 * Update the missed frame statistic from the on-chip counter.
621 	 */
622 	misses = dmfe_chip_get32(dmfep, MISSED_FRAME_REG);
623 	dmfep->rx_stats_norcvbuf += (misses & MISSED_FRAME_MASK);
624 
625 	/*
626 	 * sync (all) receive descriptors before inspecting them
627 	 */
628 	descp = &dmfep->rx_desc;
629 	DMA_SYNC(descp, DDI_DMA_SYNC_FORKERNEL);
630 
631 	/*
632 	 * We should own at least one RX entry, since we've had a
633 	 * receive interrupt, but let's not be dogmatic about it.
634 	 */
635 	index = dmfep->rx.next_free;
636 	desc0 = dmfe_ring_get32(descp, index, DESC0);
637 
638 	DTRACE_PROBE1(rx__start, uint32_t, desc0);
639 	for (head = NULL, tail = &head; (desc0 & RX_OWN) == 0; ) {
640 		/*
641 		 * Maintain statistics for every descriptor returned
642 		 * to us by the chip ...
643 		 */
644 		dmfe_update_rx_stats(dmfep, desc0);
645 
646 		/*
647 		 * Check that the entry has both "packet start" and
648 		 * "packet end" flags.  We really shouldn't get packet
649 		 * fragments, 'cos all the RX buffers are bigger than
650 		 * the largest valid packet.  So we'll just drop any
651 		 * fragments we find & skip on to the next entry.
652 		 */
653 		if (((RX_FIRST_DESC | RX_LAST_DESC) & ~desc0) != 0) {
654 			DTRACE_PROBE1(rx__frag, uint32_t, desc0);
655 			goto skip;
656 		}
657 
658 		/*
659 		 * A whole packet in one buffer.  We have to check error
660 		 * status and packet length before forwarding it upstream.
661 		 */
662 		if (desc0 & RX_ERR_SUMMARY) {
663 			DTRACE_PROBE1(rx__err, uint32_t, desc0);
664 			goto skip;
665 		}
666 
667 		packet_length = (desc0 >> 16) & 0x3fff;
668 		if (packet_length > DMFE_MAX_PKT_SIZE) {
669 			DTRACE_PROBE1(rx__toobig, int, packet_length);
670 			goto skip;
671 		} else if (packet_length < ETHERMIN) {
672 			/*
673 			 * Note that VLAN packet would be even larger,
674 			 * but we don't worry about dropping runt VLAN
675 			 * frames.
676 			 *
677 			 * This check is probably redundant, as well,
678 			 * since the hardware should drop RUNT frames.
679 			 */
680 			DTRACE_PROBE1(rx__runt, int, packet_length);
681 			goto skip;
682 		}
683 
684 		/*
685 		 * Sync the data, so we can examine it; then check that
686 		 * the packet is really intended for us (remember that
687 		 * if we're using Imperfect Filtering, then the chip will
688 		 * receive unicast packets sent to stations whose addresses
689 		 * just happen to hash to the same value as our own; we
690 		 * discard these here so they don't get sent upstream ...)
691 		 */
692 		(void) ddi_dma_sync(dmfep->rx_buff.dma_hdl,
693 		    index * DMFE_BUF_SIZE, DMFE_BUF_SIZE,
694 		    DDI_DMA_SYNC_FORKERNEL);
695 		rxb = &dmfep->rx_buff.mem_va[index*DMFE_BUF_SIZE];
696 
697 
698 		/*
699 		 * We do not bother to check that the packet is really for
700 		 * us, we let the MAC framework make that check instead.
701 		 * This is especially important if we ever want to support
702 		 * multiple MAC addresses.
703 		 */
704 
705 		/*
706 		 * Packet looks good; get a buffer to copy it into.  We
707 		 * allow some space at the front of the allocated buffer
708 		 * (HEADROOM) in case any upstream modules want to prepend
709 		 * some sort of header.  The value has been carefully chosen
710 		 * So that it also has the side-effect of making the packet
711 		 * *contents* 4-byte aligned, as required by NCA!
712 		 */
713 		mp = allocb(DMFE_HEADROOM + packet_length, 0);
714 		if (mp == NULL) {
715 			DTRACE_PROBE(rx__no__buf);
716 			dmfep->rx_stats_norcvbuf += 1;
717 			goto skip;
718 		}
719 
720 		/*
721 		 * Account for statistics of good packets.
722 		 */
723 		dmfep->rx_stats_ipackets += 1;
724 		dmfep->rx_stats_rbytes += packet_length;
725 		if (desc0 & RX_MULTI_FRAME) {
726 			if (bcmp(rxb, dmfe_broadcast_addr, ETHERADDRL)) {
727 				dmfep->rx_stats_multi += 1;
728 			} else {
729 				dmfep->rx_stats_bcast += 1;
730 			}
731 		}
732 
733 		/*
734 		 * Copy the packet into the STREAMS buffer
735 		 */
736 		dp = mp->b_rptr += DMFE_HEADROOM;
737 		mp->b_cont = mp->b_next = NULL;
738 
739 		/*
740 		 * Don't worry about stripping the vlan tag, the MAC
741 		 * layer will take care of that for us.
742 		 */
743 		bcopy(rxb, dp, packet_length);
744 
745 		/*
746 		 * Fix up the packet length, and link it to the chain
747 		 */
748 		mp->b_wptr = mp->b_rptr + packet_length - ETHERFCSL;
749 		*tail = mp;
750 		tail = &mp->b_next;
751 
752 	skip:
753 		/*
754 		 * Return ownership of ring entry & advance to next
755 		 */
756 		dmfe_ring_put32(descp, index, DESC0, RX_OWN);
757 		index = NEXT(index, dmfep->rx.n_desc);
758 		desc0 = dmfe_ring_get32(descp, index, DESC0);
759 	}
760 
761 	/*
762 	 * Remember where to start looking next time ...
763 	 */
764 	dmfep->rx.next_free = index;
765 
766 	/*
767 	 * sync the receive descriptors that we've given back
768 	 * (actually, we sync all of them for simplicity), and
769 	 * wake the chip in case it had suspended receive
770 	 */
771 	DMA_SYNC(descp, DDI_DMA_SYNC_FORDEV);
772 	dmfe_chip_put32(dmfep, RX_POLL_REG, 0);
773 
774 	mutex_exit(dmfep->rxlock);
775 	return (head);
776 }
777 
778 /*
779  * ========== Primary TX side routines ==========
780  */
781 
782 /*
783  *	TX ring management:
784  *
785  *	There are <tx.n_desc> entries in the ring, of which those from
786  *	<tx.next_free> round to but not including <tx.next_busy> must
787  *	be owned by the CPU.  The number of such entries should equal
788  *	<tx.n_free>; but there may also be some more entries which the
789  *	chip has given back but which we haven't yet accounted for.
790  *	The routine dmfe_reclaim_tx_desc() adjusts the indexes & counts
791  *	as it discovers such entries.
792  *
793  *	Initially, or when the ring is entirely free:
794  *		C = Owned by CPU
795  *		D = Owned by Davicom (DMFE) chip
796  *
797  *	tx.next_free					tx.n_desc = 16
798  *	  |
799  *	  v
800  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
801  *	| C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
802  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
803  *	  ^
804  *	  |
805  *	tx.next_busy					tx.n_free = 16
806  *
807  *	On entry to reclaim() during normal use:
808  *
809  *					tx.next_free	tx.n_desc = 16
810  *					      |
811  *					      v
812  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
813  *	| C | C | C | C | C | C | D | D | D | C | C | C | C | C | C | C |
814  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
815  *		  ^
816  *		  |
817  *		tx.next_busy				tx.n_free = 9
818  *
819  *	On exit from reclaim():
820  *
821  *					tx.next_free	tx.n_desc = 16
822  *					      |
823  *					      v
824  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
825  *	| C | C | C | C | C | C | D | D | D | C | C | C | C | C | C | C |
826  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
827  *				  ^
828  *				  |
829  *			     tx.next_busy		tx.n_free = 13
830  *
831  *	The ring is considered "full" when only one entry is owned by
832  *	the CPU; thus <tx.n_free> should always be >= 1.
833  *
834  *			tx.next_free			tx.n_desc = 16
835  *			      |
836  *			      v
837  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
838  *	| D | D | D | D | D | C | D | D | D | D | D | D | D | D | D | D |
839  *	+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
840  *				  ^
841  *				  |
842  *			     tx.next_busy		tx.n_free = 1
843  */
844 
845 /*
846  * Function to update transmit statistics on various errors
847  */
848 static void
849 dmfe_update_tx_stats(dmfe_t *dmfep, int index, uint32_t desc0, uint32_t desc1)
850 {
851 	uint32_t collisions;
852 	uint32_t errbits;
853 	uint32_t errsum;
854 
855 	ASSERT(mutex_owned(dmfep->txlock));
856 
857 	collisions = ((desc0 >> 3) & 0x0f);
858 	errsum = desc0 & TX_ERR_SUMMARY;
859 	errbits = desc0 & (TX_UNDERFLOW | TX_LATE_COLL | TX_CARRIER_LOSS |
860 	    TX_NO_CARRIER | TX_EXCESS_COLL | TX_JABBER_TO);
861 	if ((errsum == 0) != (errbits == 0)) {
862 		dmfe_log(dmfep, "dubious TX error status 0x%x", desc0);
863 		desc0 |= TX_ERR_SUMMARY;
864 	}
865 
866 	if (desc0 & TX_ERR_SUMMARY) {
867 		dmfep->tx_stats_oerrors += 1;
868 
869 		/*
870 		 * If we ever see a transmit jabber timeout, we count it
871 		 * as a MAC-level transmit error; but we probably won't
872 		 * see it as it causes an Abnormal interrupt and we reset
873 		 * the chip in order to recover
874 		 */
875 		if (desc0 & TX_JABBER_TO) {
876 			dmfep->tx_stats_macxmt_errors += 1;
877 			dmfep->tx_stats_jabber += 1;
878 		}
879 
880 		if (desc0 & TX_UNDERFLOW)
881 			dmfep->tx_stats_underflow += 1;
882 		else if (desc0 & TX_LATE_COLL)
883 			dmfep->tx_stats_xmtlatecoll += 1;
884 
885 		if (desc0 & (TX_CARRIER_LOSS | TX_NO_CARRIER))
886 			dmfep->tx_stats_nocarrier += 1;
887 
888 		if (desc0 & TX_EXCESS_COLL) {
889 			dmfep->tx_stats_excoll += 1;
890 			collisions = 16;
891 		}
892 	} else {
893 		int	bit = index % NBBY;
894 		int	byt = index / NBBY;
895 
896 		if (dmfep->tx_mcast[byt] & bit) {
897 			dmfep->tx_mcast[byt] &= ~bit;
898 			dmfep->tx_stats_multi += 1;
899 
900 		} else if (dmfep->tx_bcast[byt] & bit) {
901 			dmfep->tx_bcast[byt] &= ~bit;
902 			dmfep->tx_stats_bcast += 1;
903 		}
904 
905 		dmfep->tx_stats_opackets += 1;
906 		dmfep->tx_stats_obytes += desc1 & TX_BUFFER_SIZE1;
907 	}
908 
909 	if (collisions == 1)
910 		dmfep->tx_stats_first_coll += 1;
911 	else if (collisions != 0)
912 		dmfep->tx_stats_multi_coll += 1;
913 	dmfep->tx_stats_collisions += collisions;
914 
915 	if (desc0 & TX_DEFERRED)
916 		dmfep->tx_stats_defer += 1;
917 }
918 
919 /*
920  * Reclaim all the ring entries that the chip has returned to us ...
921  *
922  * Returns B_FALSE if no entries could be reclaimed.  Otherwise, reclaims
923  * as many as possible, restarts the TX stall timeout, and returns B_TRUE.
924  */
925 static boolean_t
926 dmfe_reclaim_tx_desc(dmfe_t *dmfep)
927 {
928 	dma_area_t *descp;
929 	uint32_t desc0;
930 	uint32_t desc1;
931 	int i;
932 
933 	ASSERT(mutex_owned(dmfep->txlock));
934 
935 	/*
936 	 * sync transmit descriptor ring before looking at it
937 	 */
938 	descp = &dmfep->tx_desc;
939 	DMA_SYNC(descp, DDI_DMA_SYNC_FORKERNEL);
940 
941 	/*
942 	 * Early exit if there are no descriptors to reclaim, either
943 	 * because they're all reclaimed already, or because the next
944 	 * one is still owned by the chip ...
945 	 */
946 	i = dmfep->tx.next_busy;
947 	if (i == dmfep->tx.next_free)
948 		return (B_FALSE);
949 	desc0 = dmfe_ring_get32(descp, i, DESC0);
950 	if (desc0 & TX_OWN)
951 		return (B_FALSE);
952 
953 	/*
954 	 * Reclaim as many descriptors as possible ...
955 	 */
956 	for (;;) {
957 		desc1 = dmfe_ring_get32(descp, i, DESC1);
958 		ASSERT((desc1 & (TX_SETUP_PACKET | TX_LAST_DESC)) != 0);
959 
960 		if ((desc1 & TX_SETUP_PACKET) == 0) {
961 			/*
962 			 * Regular packet - just update stats
963 			 */
964 			dmfe_update_tx_stats(dmfep, i, desc0, desc1);
965 		}
966 
967 		/*
968 		 * Update count & index; we're all done if the ring is
969 		 * now fully reclaimed, or the next entry if still owned
970 		 * by the chip ...
971 		 */
972 		dmfep->tx.n_free += 1;
973 		i = NEXT(i, dmfep->tx.n_desc);
974 		if (i == dmfep->tx.next_free)
975 			break;
976 		desc0 = dmfe_ring_get32(descp, i, DESC0);
977 		if (desc0 & TX_OWN)
978 			break;
979 	}
980 
981 	dmfep->tx.next_busy = i;
982 	dmfep->tx_pending_tix = 0;
983 	return (B_TRUE);
984 }
985 
986 /*
987  * Send the message in the message block chain <mp>.
988  *
989  * The message is freed if and only if its contents are successfully copied
990  * and queued for transmission (so that the return value is B_TRUE).
991  * If we can't queue the message, the return value is B_FALSE and
992  * the message is *not* freed.
993  *
994  * This routine handles the special case of <mp> == NULL, which indicates
995  * that we want to "send" the special "setup packet" allocated during
996  * startup.  We have to use some different flags in the packet descriptor
997  * to say its a setup packet (from the global <dmfe_setup_desc1>), and the
998  * setup packet *isn't* freed after use.
999  */
1000 static boolean_t
1001 dmfe_send_msg(dmfe_t *dmfep, mblk_t *mp)
1002 {
1003 	dma_area_t *descp;
1004 	mblk_t *bp;
1005 	char *txb;
1006 	uint32_t desc1;
1007 	uint32_t index;
1008 	size_t totlen;
1009 	size_t mblen;
1010 	uint32_t paddr;
1011 
1012 	/*
1013 	 * If the number of free slots is below the reclaim threshold
1014 	 * (soft limit), we'll try to reclaim some.  If we fail, and
1015 	 * the number of free slots is also below the minimum required
1016 	 * (the hard limit, usually 1), then we can't send the packet.
1017 	 */
1018 	mutex_enter(dmfep->txlock);
1019 	if (dmfep->suspended)
1020 		return (B_FALSE);
1021 
1022 	if (dmfep->tx.n_free <= dmfe_tx_reclaim_level &&
1023 	    dmfe_reclaim_tx_desc(dmfep) == B_FALSE &&
1024 	    dmfep->tx.n_free <= dmfe_tx_min_free) {
1025 		/*
1026 		 * Resource shortage - return B_FALSE so the packet
1027 		 * will be queued for retry after the next TX-done
1028 		 * interrupt.
1029 		 */
1030 		mutex_exit(dmfep->txlock);
1031 		DTRACE_PROBE(tx__no__desc);
1032 		return (B_FALSE);
1033 	}
1034 
1035 	/*
1036 	 * There's a slot available, so claim it by incrementing
1037 	 * the next-free index and decrementing the free count.
1038 	 * If the ring is currently empty, we also restart the
1039 	 * stall-detect timer.  The ASSERTions check that our
1040 	 * invariants still hold:
1041 	 *	the next-free index must not match the next-busy index
1042 	 *	there must still be at least one free entry
1043 	 * After this, we now have exclusive ownership of the ring
1044 	 * entry (and matching buffer) indicated by <index>, so we
1045 	 * don't need to hold the TX lock any longer
1046 	 */
1047 	index = dmfep->tx.next_free;
1048 	dmfep->tx.next_free = NEXT(index, dmfep->tx.n_desc);
1049 	ASSERT(dmfep->tx.next_free != dmfep->tx.next_busy);
1050 	if (dmfep->tx.n_free-- == dmfep->tx.n_desc)
1051 		dmfep->tx_pending_tix = 0;
1052 	ASSERT(dmfep->tx.n_free >= 1);
1053 	mutex_exit(dmfep->txlock);
1054 
1055 	/*
1056 	 * Check the ownership of the ring entry ...
1057 	 */
1058 	descp = &dmfep->tx_desc;
1059 	ASSERT((dmfe_ring_get32(descp, index, DESC0) & TX_OWN) == 0);
1060 
1061 	if (mp == NULL) {
1062 		/*
1063 		 * Indicates we should send a SETUP packet, which we do by
1064 		 * temporarily switching the BUFFER1 pointer in the ring
1065 		 * entry.  The reclaim routine will restore BUFFER1 to its
1066 		 * usual value.
1067 		 *
1068 		 * Note that as the setup packet is tagged on the end of
1069 		 * the TX ring, when we sync the descriptor we're also
1070 		 * implicitly syncing the setup packet - hence, we don't
1071 		 * need a separate ddi_dma_sync() call here.
1072 		 */
1073 		desc1 = dmfe_setup_desc1;
1074 		paddr = descp->setup_dvma;
1075 	} else {
1076 		/*
1077 		 * A regular packet; we copy the data into a pre-mapped
1078 		 * buffer, which avoids the overhead (and complication)
1079 		 * of mapping/unmapping STREAMS buffers and keeping hold
1080 		 * of them until the DMA has completed.
1081 		 *
1082 		 * Because all buffers are the same size, and larger
1083 		 * than the longest single valid message, we don't have
1084 		 * to bother about splitting the message across multiple
1085 		 * buffers.
1086 		 */
1087 		txb = &dmfep->tx_buff.mem_va[index*DMFE_BUF_SIZE];
1088 		totlen = 0;
1089 		bp = mp;
1090 
1091 		/*
1092 		 * Copy all (remaining) mblks in the message ...
1093 		 */
1094 		for (; bp != NULL; bp = bp->b_cont) {
1095 			mblen = MBLKL(bp);
1096 			if ((totlen += mblen) <= DMFE_MAX_PKT_SIZE) {
1097 				bcopy(bp->b_rptr, txb, mblen);
1098 				txb += mblen;
1099 			}
1100 		}
1101 
1102 		/*
1103 		 * Is this a multicast or broadcast packet?  We do
1104 		 * this so that we can track statistics accurately
1105 		 * when we reclaim it.
1106 		 */
1107 		txb = &dmfep->tx_buff.mem_va[index*DMFE_BUF_SIZE];
1108 		if (txb[0] & 0x1) {
1109 			if (bcmp(txb, dmfe_broadcast_addr, ETHERADDRL) == 0) {
1110 				dmfep->tx_bcast[index / NBBY] |=
1111 				    (1 << (index % NBBY));
1112 			} else {
1113 				dmfep->tx_mcast[index / NBBY] |=
1114 				    (1 << (index % NBBY));
1115 			}
1116 		}
1117 
1118 		/*
1119 		 * We'e reached the end of the chain; and we should have
1120 		 * collected no more than DMFE_MAX_PKT_SIZE bytes into our
1121 		 * buffer.  Note that the <size> field in the descriptor is
1122 		 * only 11 bits, so bigger packets would be a problem!
1123 		 */
1124 		ASSERT(bp == NULL);
1125 		ASSERT(totlen <= DMFE_MAX_PKT_SIZE);
1126 		totlen &= TX_BUFFER_SIZE1;
1127 		desc1 = TX_FIRST_DESC | TX_LAST_DESC | totlen;
1128 		paddr = dmfep->tx_buff.mem_dvma + index*DMFE_BUF_SIZE;
1129 
1130 		(void) ddi_dma_sync(dmfep->tx_buff.dma_hdl,
1131 		    index * DMFE_BUF_SIZE, DMFE_BUF_SIZE, DDI_DMA_SYNC_FORDEV);
1132 	}
1133 
1134 	/*
1135 	 * Update ring descriptor entries, sync them, and wake up the
1136 	 * transmit process
1137 	 */
1138 	if ((index & dmfe_tx_int_factor) == 0)
1139 		desc1 |= TX_INT_ON_COMP;
1140 	desc1 |= TX_CHAINING;
1141 	dmfe_ring_put32(descp, index, BUFFER1, paddr);
1142 	dmfe_ring_put32(descp, index, DESC1, desc1);
1143 	dmfe_ring_put32(descp, index, DESC0, TX_OWN);
1144 	DMA_SYNC(descp, DDI_DMA_SYNC_FORDEV);
1145 	dmfe_chip_put32(dmfep, TX_POLL_REG, 0);
1146 
1147 	/*
1148 	 * Finally, free the message & return success
1149 	 */
1150 	if (mp)
1151 		freemsg(mp);
1152 	return (B_TRUE);
1153 }
1154 
1155 /*
1156  *	dmfe_m_tx() -- send a chain of packets
1157  *
1158  *	Called when packet(s) are ready to be transmitted. A pointer to an
1159  *	M_DATA message that contains the packet is passed to this routine.
1160  *	The complete LLC header is contained in the message's first message
1161  *	block, and the remainder of the packet is contained within
1162  *	additional M_DATA message blocks linked to the first message block.
1163  *
1164  *	Additional messages may be passed by linking with b_next.
1165  */
1166 static mblk_t *
1167 dmfe_m_tx(void *arg, mblk_t *mp)
1168 {
1169 	dmfe_t *dmfep = arg;			/* private device info	*/
1170 	mblk_t *next;
1171 
1172 	ASSERT(mp != NULL);
1173 	ASSERT(dmfep->mac_state == DMFE_MAC_STARTED);
1174 
1175 	if (dmfep->chip_state != CHIP_RUNNING)
1176 		return (mp);
1177 
1178 	while (mp != NULL) {
1179 		next = mp->b_next;
1180 		mp->b_next = NULL;
1181 		if (!dmfe_send_msg(dmfep, mp)) {
1182 			mp->b_next = next;
1183 			break;
1184 		}
1185 		mp = next;
1186 	}
1187 
1188 	return (mp);
1189 }
1190 
1191 /*
1192  * ========== Address-setting routines (TX-side) ==========
1193  */
1194 
1195 /*
1196  * Find the index of the relevant bit in the setup packet.
1197  * This must mirror the way the hardware will actually calculate it!
1198  */
1199 static uint32_t
1200 dmfe_hash_index(const uint8_t *address)
1201 {
1202 	uint32_t const POLY = HASH_POLY;
1203 	uint32_t crc = HASH_CRC;
1204 	uint32_t index;
1205 	uint32_t msb;
1206 	uchar_t currentbyte;
1207 	int byteslength;
1208 	int shift;
1209 	int bit;
1210 
1211 	for (byteslength = 0; byteslength < ETHERADDRL; ++byteslength) {
1212 		currentbyte = address[byteslength];
1213 		for (bit = 0; bit < 8; ++bit) {
1214 			msb = crc >> 31;
1215 			crc <<= 1;
1216 			if (msb ^ (currentbyte & 1)) {
1217 				crc ^= POLY;
1218 				crc |= 0x00000001;
1219 			}
1220 			currentbyte >>= 1;
1221 		}
1222 	}
1223 
1224 	for (index = 0, bit = 23, shift = 8; shift >= 0; ++bit, --shift)
1225 		index |= (((crc >> bit) & 1) << shift);
1226 
1227 	return (index);
1228 }
1229 
1230 /*
1231  * Find and set/clear the relevant bit in the setup packet hash table
1232  * This must mirror the way the hardware will actually interpret it!
1233  */
1234 static void
1235 dmfe_update_hash(dmfe_t *dmfep, uint32_t index, boolean_t val)
1236 {
1237 	dma_area_t *descp;
1238 	uint32_t tmp;
1239 
1240 	ASSERT(mutex_owned(dmfep->oplock));
1241 
1242 	descp = &dmfep->tx_desc;
1243 	tmp = dmfe_setup_get32(descp, index/16);
1244 	if (val)
1245 		tmp |= 1 << (index%16);
1246 	else
1247 		tmp &= ~(1 << (index%16));
1248 	dmfe_setup_put32(descp, index/16, tmp);
1249 }
1250 
1251 /*
1252  * Update the refcount for the bit in the setup packet corresponding
1253  * to the specified address; if it changes between zero & nonzero,
1254  * also update the bitmap itself & return B_TRUE, so that the caller
1255  * knows to re-send the setup packet.  Otherwise (only the refcount
1256  * changed), return B_FALSE
1257  */
1258 static boolean_t
1259 dmfe_update_mcast(dmfe_t *dmfep, const uint8_t *mca, boolean_t val)
1260 {
1261 	uint32_t index;
1262 	uint8_t *refp;
1263 	boolean_t change;
1264 
1265 	index = dmfe_hash_index(mca);
1266 	refp = &dmfep->mcast_refs[index];
1267 	change = (val ? (*refp)++ : --(*refp)) == 0;
1268 
1269 	if (change)
1270 		dmfe_update_hash(dmfep, index, val);
1271 
1272 	return (change);
1273 }
1274 
1275 /*
1276  * "Transmit" the (possibly updated) magic setup packet
1277  */
1278 static int
1279 dmfe_send_setup(dmfe_t *dmfep)
1280 {
1281 	int status;
1282 
1283 	ASSERT(mutex_owned(dmfep->oplock));
1284 
1285 	if (dmfep->suspended)
1286 		return (0);
1287 
1288 	/*
1289 	 * If the chip isn't running, we can't really send the setup frame
1290 	 * now but it doesn't matter, 'cos it will be sent when the transmit
1291 	 * process is restarted (see dmfe_start()).
1292 	 */
1293 	if ((dmfep->opmode & START_TRANSMIT) == 0)
1294 		return (0);
1295 
1296 	/*
1297 	 * "Send" the setup frame.  If it fails (e.g. no resources),
1298 	 * set a flag; then the factotum will retry the "send".  Once
1299 	 * it works, we can clear the flag no matter how many attempts
1300 	 * had previously failed.  We tell the caller that it worked
1301 	 * whether it did or not; after all, it *will* work eventually.
1302 	 */
1303 	status = dmfe_send_msg(dmfep, NULL);
1304 	dmfep->need_setup = status ? B_FALSE : B_TRUE;
1305 	return (0);
1306 }
1307 
1308 /*
1309  *	dmfe_m_unicst() -- set the physical network address
1310  */
1311 static int
1312 dmfe_m_unicst(void *arg, const uint8_t *macaddr)
1313 {
1314 	dmfe_t *dmfep = arg;
1315 	int status;
1316 	int index;
1317 
1318 	/*
1319 	 * Update our current address and send out a new setup packet
1320 	 *
1321 	 * Here we accommodate the use of HASH_ONLY or HASH_AND_PERFECT
1322 	 * filtering modes (we don't support PERFECT_ONLY or INVERSE modes).
1323 	 *
1324 	 * It is said that there is a bug in the 21140 where it fails to
1325 	 * receive packes addresses to the specified perfect filter address.
1326 	 * If the same bug is present in the DM9102A, the TX_FILTER_TYPE1
1327 	 * bit should be set in the module variable dmfe_setup_desc1.
1328 	 *
1329 	 * If TX_FILTER_TYPE1 is set, we will use HASH_ONLY filtering.
1330 	 * In this mode, *all* incoming addresses are hashed and looked
1331 	 * up in the bitmap described by the setup packet.  Therefore,
1332 	 * the bit representing the station address has to be added to
1333 	 * the table before sending it out.  If the address is changed,
1334 	 * the old entry should be removed before the new entry is made.
1335 	 *
1336 	 * NOTE: in this mode, unicast packets that are not intended for
1337 	 * this station may be received; it is up to software to filter
1338 	 * them out afterwards!
1339 	 *
1340 	 * If TX_FILTER_TYPE1 is *not* set, we will use HASH_AND_PERFECT
1341 	 * filtering.  In this mode, multicast addresses are hashed and
1342 	 * checked against the bitmap, while unicast addresses are simply
1343 	 * matched against the one physical address specified in the setup
1344 	 * packet.  This means that we shouldn't receive unicast packets
1345 	 * that aren't intended for us (but software still has to filter
1346 	 * multicast packets just the same).
1347 	 *
1348 	 * Whichever mode we're using, we have to enter the broadcast
1349 	 * address into the multicast filter map too, so we do this on
1350 	 * the first time through after attach or reset.
1351 	 */
1352 	mutex_enter(dmfep->oplock);
1353 
1354 	if (dmfep->addr_set && dmfe_setup_desc1 & TX_FILTER_TYPE1)
1355 		(void) dmfe_update_mcast(dmfep, dmfep->curr_addr, B_FALSE);
1356 	if (dmfe_setup_desc1 & TX_FILTER_TYPE1)
1357 		(void) dmfe_update_mcast(dmfep, macaddr, B_TRUE);
1358 	if (!dmfep->addr_set)
1359 		(void) dmfe_update_mcast(dmfep, dmfe_broadcast_addr, B_TRUE);
1360 
1361 	/*
1362 	 * Remember the new current address
1363 	 */
1364 	ethaddr_copy(macaddr, dmfep->curr_addr);
1365 	dmfep->addr_set = B_TRUE;
1366 
1367 	/*
1368 	 * Install the new physical address into the proper position in
1369 	 * the setup frame; this is only used if we select hash+perfect
1370 	 * filtering, but we'll put it in anyway.  The ugliness here is
1371 	 * down to the usual war of the egg :(
1372 	 */
1373 	for (index = 0; index < ETHERADDRL; index += 2)
1374 		dmfe_setup_put32(&dmfep->tx_desc, SETUPBUF_PHYS+index/2,
1375 		    (macaddr[index+1] << 8) | macaddr[index]);
1376 
1377 	/*
1378 	 * Finally, we're ready to "transmit" the setup frame
1379 	 */
1380 	status = dmfe_send_setup(dmfep);
1381 	mutex_exit(dmfep->oplock);
1382 
1383 	return (status);
1384 }
1385 
1386 /*
1387  *	dmfe_m_multicst() -- enable or disable a multicast address
1388  *
1389  *	Program the hardware to enable/disable the multicast address
1390  *	in "mca" (enable if add is true, otherwise disable it.)
1391  *	We keep a refcount for each bit in the map, so that it still
1392  *	works out properly if multiple addresses hash to the same bit.
1393  *	dmfe_update_mcast() tells us whether the map actually changed;
1394  *	if so, we have to re-"transmit" the magic setup packet.
1395  */
1396 static int
1397 dmfe_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1398 {
1399 	dmfe_t *dmfep = arg;			/* private device info	*/
1400 	int status = 0;
1401 
1402 	mutex_enter(dmfep->oplock);
1403 	if (dmfe_update_mcast(dmfep, mca, add))
1404 		status = dmfe_send_setup(dmfep);
1405 	mutex_exit(dmfep->oplock);
1406 
1407 	return (status);
1408 }
1409 
1410 
1411 /*
1412  * ========== Internal state management entry points ==========
1413  */
1414 
1415 /*
1416  * These routines provide all the functionality required by the
1417  * corresponding MAC layer entry points, but don't update the MAC layer state
1418  * so they can be called internally without disturbing our record
1419  * of what MAC layer thinks we should be doing ...
1420  */
1421 
1422 /*
1423  *	dmfe_stop() -- stop processing, don't reset h/w or rings
1424  */
1425 static void
1426 dmfe_stop(dmfe_t *dmfep)
1427 {
1428 	ASSERT(mutex_owned(dmfep->oplock));
1429 
1430 	dmfe_stop_chip(dmfep, CHIP_STOPPED);
1431 }
1432 
1433 /*
1434  *	dmfe_reset() -- stop processing, reset h/w & rings to initial state
1435  */
1436 static void
1437 dmfe_reset(dmfe_t *dmfep)
1438 {
1439 	ASSERT(mutex_owned(dmfep->oplock));
1440 	ASSERT(mutex_owned(dmfep->rxlock));
1441 	ASSERT(mutex_owned(dmfep->txlock));
1442 
1443 	dmfe_stop_chip(dmfep, CHIP_RESET);
1444 	dmfe_init_rings(dmfep);
1445 }
1446 
1447 /*
1448  *	dmfe_start() -- start transmitting/receiving
1449  */
1450 static void
1451 dmfe_start(dmfe_t *dmfep)
1452 {
1453 	uint32_t gpsr;
1454 
1455 	ASSERT(mutex_owned(dmfep->oplock));
1456 
1457 	ASSERT(dmfep->chip_state == CHIP_RESET ||
1458 	    dmfep->chip_state == CHIP_STOPPED);
1459 
1460 	/*
1461 	 * Make opmode consistent with PHY duplex setting
1462 	 */
1463 	gpsr = dmfe_chip_get32(dmfep, PHY_STATUS_REG);
1464 	if (gpsr & GPS_FULL_DUPLEX)
1465 		dmfep->opmode |= FULL_DUPLEX;
1466 	else
1467 		dmfep->opmode &= ~FULL_DUPLEX;
1468 
1469 	/*
1470 	 * Start transmit processing
1471 	 * Set up the address filters
1472 	 * Start receive processing
1473 	 * Enable interrupts
1474 	 */
1475 	dmfe_start_chip(dmfep, START_TRANSMIT);
1476 	(void) dmfe_send_setup(dmfep);
1477 	drv_usecwait(10);
1478 	dmfe_start_chip(dmfep, START_RECEIVE);
1479 	dmfe_enable_interrupts(dmfep);
1480 }
1481 
1482 /*
1483  * dmfe_restart - restart transmitting/receiving after error or suspend
1484  */
1485 static void
1486 dmfe_restart(dmfe_t *dmfep)
1487 {
1488 	ASSERT(mutex_owned(dmfep->oplock));
1489 
1490 	/*
1491 	 * You need not only <oplock>, but also <rxlock> AND <txlock>
1492 	 * in order to reset the rings, but then <txlock> *mustn't*
1493 	 * be held across the call to dmfe_start()
1494 	 */
1495 	mutex_enter(dmfep->rxlock);
1496 	mutex_enter(dmfep->txlock);
1497 	dmfe_reset(dmfep);
1498 	mutex_exit(dmfep->txlock);
1499 	mutex_exit(dmfep->rxlock);
1500 	if (dmfep->mac_state == DMFE_MAC_STARTED) {
1501 		dmfe_start(dmfep);
1502 	}
1503 }
1504 
1505 
1506 /*
1507  * ========== MAC-required management entry points ==========
1508  */
1509 
1510 /*
1511  *	dmfe_m_stop() -- stop transmitting/receiving
1512  */
1513 static void
1514 dmfe_m_stop(void *arg)
1515 {
1516 	dmfe_t *dmfep = arg;			/* private device info	*/
1517 
1518 	/*
1519 	 * Just stop processing, then record new MAC state
1520 	 */
1521 	mii_stop(dmfep->mii);
1522 
1523 	mutex_enter(dmfep->oplock);
1524 	if (!dmfep->suspended)
1525 		dmfe_stop(dmfep);
1526 	dmfep->mac_state = DMFE_MAC_STOPPED;
1527 	mutex_exit(dmfep->oplock);
1528 }
1529 
1530 /*
1531  *	dmfe_m_start() -- start transmitting/receiving
1532  */
1533 static int
1534 dmfe_m_start(void *arg)
1535 {
1536 	dmfe_t *dmfep = arg;			/* private device info	*/
1537 
1538 	/*
1539 	 * Start processing and record new MAC state
1540 	 */
1541 	mutex_enter(dmfep->oplock);
1542 	if (!dmfep->suspended)
1543 		dmfe_start(dmfep);
1544 	dmfep->mac_state = DMFE_MAC_STARTED;
1545 	mutex_exit(dmfep->oplock);
1546 
1547 	mii_start(dmfep->mii);
1548 
1549 	return (0);
1550 }
1551 
1552 /*
1553  * dmfe_m_promisc() -- set or reset promiscuous mode on the board
1554  *
1555  *	Program the hardware to enable/disable promiscuous and/or
1556  *	receive-all-multicast modes.  Davicom don't document this
1557  *	clearly, but it looks like we can do this on-the-fly (i.e.
1558  *	without stopping & restarting the TX/RX processes).
1559  */
1560 static int
1561 dmfe_m_promisc(void *arg, boolean_t on)
1562 {
1563 	dmfe_t *dmfep = arg;
1564 
1565 	mutex_enter(dmfep->oplock);
1566 	dmfep->opmode &= ~(PROMISC_MODE | PASS_MULTICAST);
1567 	if (on)
1568 		dmfep->opmode |= PROMISC_MODE;
1569 	if (!dmfep->suspended)
1570 		dmfe_set_opmode(dmfep);
1571 	mutex_exit(dmfep->oplock);
1572 
1573 	return (0);
1574 }
1575 
1576 /*
1577  * ========== Factotum, implemented as a softint handler ==========
1578  */
1579 
1580 /*
1581  * The factotum is woken up when there's something to do that we'd rather
1582  * not do from inside a (high-level?) hardware interrupt handler.  Its
1583  * two main tasks are:
1584  *	reset & restart the chip after an error
1585  *	update & restart the chip after a link status change
1586  */
1587 static uint_t
1588 dmfe_factotum(caddr_t arg)
1589 {
1590 	dmfe_t *dmfep;
1591 
1592 	dmfep = (void *)arg;
1593 	ASSERT(dmfep->dmfe_guard == DMFE_GUARD);
1594 
1595 	mutex_enter(dmfep->oplock);
1596 	if (dmfep->suspended) {
1597 		mutex_exit(dmfep->oplock);
1598 		return (DDI_INTR_CLAIMED);
1599 	}
1600 
1601 	dmfep->factotum_flag = 0;
1602 	DRV_KS_INC(dmfep, KS_FACTOTUM_RUN);
1603 
1604 	/*
1605 	 * Check for chip error ...
1606 	 */
1607 	if (dmfep->chip_state == CHIP_ERROR) {
1608 		/*
1609 		 * Error recovery required: reset the chip and the rings,
1610 		 * then, if it's supposed to be running, kick it off again.
1611 		 */
1612 		DRV_KS_INC(dmfep, KS_RECOVERY);
1613 		dmfe_restart(dmfep);
1614 		mutex_exit(dmfep->oplock);
1615 
1616 		mii_reset(dmfep->mii);
1617 
1618 	} else if (dmfep->need_setup) {
1619 		(void) dmfe_send_setup(dmfep);
1620 		mutex_exit(dmfep->oplock);
1621 	}
1622 
1623 	return (DDI_INTR_CLAIMED);
1624 }
1625 
1626 static void
1627 dmfe_wake_factotum(dmfe_t *dmfep, int ks_id, const char *why)
1628 {
1629 	_NOTE(ARGUNUSED(why));
1630 	ASSERT(mutex_owned(dmfep->oplock));
1631 	DRV_KS_INC(dmfep, ks_id);
1632 
1633 	if (dmfep->factotum_flag++ == 0)
1634 		ddi_trigger_softintr(dmfep->factotum_id);
1635 }
1636 
1637 
1638 /*
1639  * ========== Periodic Tasks (Cyclic handler & friends) ==========
1640  */
1641 
1642 /*
1643  * Periodic tick tasks, run from the cyclic handler
1644  *
1645  * Check for TX stall; flag an error and wake the factotum if so.
1646  */
1647 static void
1648 dmfe_tick_stall_check(dmfe_t *dmfep, uint32_t gpsr, uint32_t istat)
1649 {
1650 	boolean_t tx_stall;
1651 	uint32_t tx_state;
1652 	uint32_t limit;
1653 
1654 	ASSERT(mutex_owned(dmfep->oplock));
1655 
1656 	/*
1657 	 * Check for transmit stall ...
1658 	 *
1659 	 * IF there's at least one packet in the ring, AND the timeout
1660 	 * has elapsed, AND we can't reclaim any descriptors, THEN we've
1661 	 * stalled; we return B_TRUE to trigger a reset-and-recover cycle.
1662 	 *
1663 	 * Note that the timeout limit is based on the transmit engine
1664 	 * state; we allow the transmitter longer to make progress in
1665 	 * some states than in others, based on observations of this
1666 	 * chip's actual behaviour in the lab.
1667 	 *
1668 	 * By observation, we find that on about 1 in 10000 passes through
1669 	 * here, the TX lock is already held.  In that case, we'll skip
1670 	 * the check on this pass rather than wait.  Most likely, the send
1671 	 * routine was holding the lock when the interrupt happened, and
1672 	 * we'll succeed next time through.  In the event of a real stall,
1673 	 * the TX ring will fill up, after which the send routine won't be
1674 	 * called any more and then we're sure to get in.
1675 	 */
1676 	tx_stall = B_FALSE;
1677 	if (mutex_tryenter(dmfep->txlock)) {
1678 		if (dmfep->tx.n_free < dmfep->tx.n_desc) {
1679 			tx_state = TX_PROCESS_STATE(istat);
1680 			if (gpsr & GPS_LINK_100)
1681 				limit = stall_100_tix[tx_state];
1682 			else
1683 				limit = stall_10_tix[tx_state];
1684 			if (++dmfep->tx_pending_tix >= limit &&
1685 			    dmfe_reclaim_tx_desc(dmfep) == B_FALSE) {
1686 				dmfe_log(dmfep, "TX stall detected "
1687 				    "after %d ticks in state %d; "
1688 				    "automatic recovery initiated",
1689 				    dmfep->tx_pending_tix, tx_state);
1690 				tx_stall = B_TRUE;
1691 			}
1692 		}
1693 		mutex_exit(dmfep->txlock);
1694 	}
1695 
1696 	if (tx_stall) {
1697 		dmfe_stop_chip(dmfep, CHIP_ERROR);
1698 		dmfe_wake_factotum(dmfep, KS_TX_STALL, "tick (TX stall)");
1699 	}
1700 }
1701 
1702 /*
1703  * Cyclic callback handler
1704  */
1705 static void
1706 dmfe_cyclic(void *arg)
1707 {
1708 	dmfe_t *dmfep = arg;			/* private device info */
1709 	uint32_t istat;
1710 	uint32_t gpsr;
1711 
1712 	/*
1713 	 * If the chip's not RUNNING, there's nothing to do.
1714 	 * If we can't get the mutex straight away, we'll just
1715 	 * skip this pass; we'll back back soon enough anyway.
1716 	 */
1717 	if (mutex_tryenter(dmfep->oplock) == 0)
1718 		return;
1719 	if ((dmfep->suspended) || (dmfep->chip_state != CHIP_RUNNING)) {
1720 		mutex_exit(dmfep->oplock);
1721 		return;
1722 	}
1723 
1724 	/*
1725 	 * Recheck chip state (it might have been stopped since we
1726 	 * checked above).  If still running, call each of the *tick*
1727 	 * tasks.  They will check for link change, TX stall, etc ...
1728 	 */
1729 	if (dmfep->chip_state == CHIP_RUNNING) {
1730 		istat = dmfe_chip_get32(dmfep, STATUS_REG);
1731 		gpsr = dmfe_chip_get32(dmfep, PHY_STATUS_REG);
1732 		dmfe_tick_stall_check(dmfep, gpsr, istat);
1733 	}
1734 
1735 	DRV_KS_INC(dmfep, KS_CYCLIC_RUN);
1736 	mutex_exit(dmfep->oplock);
1737 }
1738 
1739 /*
1740  * ========== Hardware interrupt handler ==========
1741  */
1742 
1743 /*
1744  *	dmfe_interrupt() -- handle chip interrupts
1745  */
1746 static uint_t
1747 dmfe_interrupt(caddr_t arg)
1748 {
1749 	dmfe_t *dmfep;			/* private device info */
1750 	uint32_t interrupts;
1751 	uint32_t istat;
1752 	const char *msg;
1753 	mblk_t *mp;
1754 	boolean_t warning_msg = B_TRUE;
1755 
1756 	dmfep = (void *)arg;
1757 
1758 	mutex_enter(dmfep->oplock);
1759 	if (dmfep->suspended) {
1760 		mutex_exit(dmfep->oplock);
1761 		return (DDI_INTR_UNCLAIMED);
1762 	}
1763 
1764 	/*
1765 	 * A quick check as to whether the interrupt was from this
1766 	 * device, before we even finish setting up all our local
1767 	 * variables.  Note that reading the interrupt status register
1768 	 * doesn't have any unpleasant side effects such as clearing
1769 	 * the bits read, so it's quite OK to re-read it once we have
1770 	 * determined that we are going to service this interrupt and
1771 	 * grabbed the mutexen.
1772 	 */
1773 	istat = dmfe_chip_get32(dmfep, STATUS_REG);
1774 	if ((istat & (NORMAL_SUMMARY_INT | ABNORMAL_SUMMARY_INT)) == 0) {
1775 
1776 		mutex_exit(dmfep->oplock);
1777 		return (DDI_INTR_UNCLAIMED);
1778 	}
1779 
1780 	DRV_KS_INC(dmfep, KS_INTERRUPT);
1781 
1782 	/*
1783 	 * Identify bits that represent enabled interrupts ...
1784 	 */
1785 	istat |= dmfe_chip_get32(dmfep, STATUS_REG);
1786 	interrupts = istat & dmfep->imask;
1787 	ASSERT(interrupts != 0);
1788 
1789 	DTRACE_PROBE1(intr, uint32_t, istat);
1790 
1791 	/*
1792 	 * Check for any interrupts other than TX/RX done.
1793 	 * If there are any, they are considered Abnormal
1794 	 * and will cause the chip to be reset.
1795 	 */
1796 	if (interrupts & ~(RX_PKTDONE_INT | TX_PKTDONE_INT)) {
1797 		if (istat & ABNORMAL_SUMMARY_INT) {
1798 			/*
1799 			 * Any Abnormal interrupts will lead to us
1800 			 * resetting the chip, so we don't bother
1801 			 * to clear each interrupt individually.
1802 			 *
1803 			 * Our main task here is to identify the problem,
1804 			 * by pointing out the most significant unexpected
1805 			 * bit.  Additional bits may well be consequences
1806 			 * of the first problem, so we consider the possible
1807 			 * causes in order of severity.
1808 			 */
1809 			if (interrupts & SYSTEM_ERR_INT) {
1810 				switch (istat & SYSTEM_ERR_BITS) {
1811 				case SYSTEM_ERR_M_ABORT:
1812 					msg = "Bus Master Abort";
1813 					break;
1814 
1815 				case SYSTEM_ERR_T_ABORT:
1816 					msg = "Bus Target Abort";
1817 					break;
1818 
1819 				case SYSTEM_ERR_PARITY:
1820 					msg = "Parity Error";
1821 					break;
1822 
1823 				default:
1824 					msg = "Unknown System Bus Error";
1825 					break;
1826 				}
1827 			} else if (interrupts & RX_STOPPED_INT) {
1828 				msg = "RX process stopped";
1829 			} else if (interrupts & RX_UNAVAIL_INT) {
1830 				msg = "RX buffer unavailable";
1831 				warning_msg = B_FALSE;
1832 			} else if (interrupts & RX_WATCHDOG_INT) {
1833 				msg = "RX watchdog timeout?";
1834 			} else if (interrupts & RX_EARLY_INT) {
1835 				msg = "RX early interrupt?";
1836 			} else if (interrupts & TX_STOPPED_INT) {
1837 				msg = "TX process stopped";
1838 			} else if (interrupts & TX_JABBER_INT) {
1839 				msg = "TX jabber timeout";
1840 			} else if (interrupts & TX_UNDERFLOW_INT) {
1841 				msg = "TX underflow?";
1842 			} else if (interrupts & TX_EARLY_INT) {
1843 				msg = "TX early interrupt?";
1844 
1845 			} else if (interrupts & LINK_STATUS_INT) {
1846 				msg = "Link status change?";
1847 			} else if (interrupts & GP_TIMER_INT) {
1848 				msg = "Timer expired?";
1849 			}
1850 
1851 			if (warning_msg)
1852 				dmfe_warning(dmfep, "abnormal interrupt, "
1853 				    "status 0x%x: %s", istat, msg);
1854 
1855 			/*
1856 			 * We don't want to run the entire reinitialisation
1857 			 * code out of this (high-level?) interrupt, so we
1858 			 * simply STOP the chip, and wake up the factotum
1859 			 * to reinitalise it ...
1860 			 */
1861 			dmfe_stop_chip(dmfep, CHIP_ERROR);
1862 			dmfe_wake_factotum(dmfep, KS_CHIP_ERROR,
1863 			    "interrupt (error)");
1864 		} else {
1865 			/*
1866 			 * We shouldn't really get here (it would mean
1867 			 * there were some unprocessed enabled bits but
1868 			 * they weren't Abnormal?), but we'll check just
1869 			 * in case ...
1870 			 */
1871 			DTRACE_PROBE1(intr__unexpected, uint32_t, istat);
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * Acknowledge all the original bits - except in the case of an
1877 	 * error, when we leave them unacknowledged so that the recovery
1878 	 * code can see what was going on when the problem occurred ...
1879 	 */
1880 	if (dmfep->chip_state != CHIP_ERROR) {
1881 		(void) dmfe_chip_put32(dmfep, STATUS_REG, istat);
1882 		/*
1883 		 * Read-after-write forces completion on PCI bus.
1884 		 *
1885 		 */
1886 		(void) dmfe_chip_get32(dmfep, STATUS_REG);
1887 	}
1888 
1889 
1890 	/*
1891 	 * We've finished talking to the chip, so we can drop <oplock>
1892 	 * before handling the normal interrupts, which only involve
1893 	 * manipulation of descriptors ...
1894 	 */
1895 	mutex_exit(dmfep->oplock);
1896 
1897 	if (interrupts & RX_PKTDONE_INT)
1898 		if ((mp = dmfe_getp(dmfep)) != NULL)
1899 			mac_rx(dmfep->mh, NULL, mp);
1900 
1901 	if (interrupts & TX_PKTDONE_INT) {
1902 		/*
1903 		 * The only reason for taking this interrupt is to give
1904 		 * MAC a chance to schedule queued packets after a
1905 		 * ring-full condition.  To minimise the number of
1906 		 * redundant TX-Done interrupts, we only mark two of the
1907 		 * ring descriptors as 'interrupt-on-complete' - all the
1908 		 * others are simply handed back without an interrupt.
1909 		 */
1910 		if (dmfe_reclaim_on_done && mutex_tryenter(dmfep->txlock)) {
1911 			(void) dmfe_reclaim_tx_desc(dmfep);
1912 			mutex_exit(dmfep->txlock);
1913 		}
1914 		mac_tx_update(dmfep->mh);
1915 	}
1916 
1917 	return (DDI_INTR_CLAIMED);
1918 }
1919 
1920 /*
1921  * ========== Statistics update handler ==========
1922  */
1923 
1924 static int
1925 dmfe_m_stat(void *arg, uint_t stat, uint64_t *val)
1926 {
1927 	dmfe_t *dmfep = arg;
1928 	int rv = 0;
1929 
1930 	/* Let MII handle its own stats. */
1931 	if (mii_m_getstat(dmfep->mii, stat, val) == 0) {
1932 		return (0);
1933 	}
1934 
1935 	mutex_enter(dmfep->oplock);
1936 	mutex_enter(dmfep->rxlock);
1937 	mutex_enter(dmfep->txlock);
1938 
1939 	/* make sure we have all the stats collected */
1940 	(void) dmfe_reclaim_tx_desc(dmfep);
1941 
1942 	switch (stat) {
1943 
1944 	case MAC_STAT_IPACKETS:
1945 		*val = dmfep->rx_stats_ipackets;
1946 		break;
1947 
1948 	case MAC_STAT_MULTIRCV:
1949 		*val = dmfep->rx_stats_multi;
1950 		break;
1951 
1952 	case MAC_STAT_BRDCSTRCV:
1953 		*val = dmfep->rx_stats_bcast;
1954 		break;
1955 
1956 	case MAC_STAT_RBYTES:
1957 		*val = dmfep->rx_stats_rbytes;
1958 		break;
1959 
1960 	case MAC_STAT_IERRORS:
1961 		*val = dmfep->rx_stats_ierrors;
1962 		break;
1963 
1964 	case MAC_STAT_NORCVBUF:
1965 		*val = dmfep->rx_stats_norcvbuf;
1966 		break;
1967 
1968 	case MAC_STAT_COLLISIONS:
1969 		*val = dmfep->tx_stats_collisions;
1970 		break;
1971 
1972 	case MAC_STAT_OERRORS:
1973 		*val = dmfep->tx_stats_oerrors;
1974 		break;
1975 
1976 	case MAC_STAT_OPACKETS:
1977 		*val = dmfep->tx_stats_opackets;
1978 		break;
1979 
1980 	case MAC_STAT_MULTIXMT:
1981 		*val = dmfep->tx_stats_multi;
1982 		break;
1983 
1984 	case MAC_STAT_BRDCSTXMT:
1985 		*val = dmfep->tx_stats_bcast;
1986 		break;
1987 
1988 	case MAC_STAT_OBYTES:
1989 		*val = dmfep->tx_stats_obytes;
1990 		break;
1991 
1992 	case MAC_STAT_OVERFLOWS:
1993 		*val = dmfep->rx_stats_overflow;
1994 		break;
1995 
1996 	case MAC_STAT_UNDERFLOWS:
1997 		*val = dmfep->tx_stats_underflow;
1998 		break;
1999 
2000 	case ETHER_STAT_ALIGN_ERRORS:
2001 		*val = dmfep->rx_stats_align;
2002 		break;
2003 
2004 	case ETHER_STAT_FCS_ERRORS:
2005 		*val = dmfep->rx_stats_fcs;
2006 		break;
2007 
2008 	case ETHER_STAT_TOOLONG_ERRORS:
2009 		*val = dmfep->rx_stats_toolong;
2010 		break;
2011 
2012 	case ETHER_STAT_TOOSHORT_ERRORS:
2013 		*val = dmfep->rx_stats_short;
2014 		break;
2015 
2016 	case ETHER_STAT_MACRCV_ERRORS:
2017 		*val = dmfep->rx_stats_macrcv_errors;
2018 		break;
2019 
2020 	case ETHER_STAT_MACXMT_ERRORS:
2021 		*val = dmfep->tx_stats_macxmt_errors;
2022 		break;
2023 
2024 	case ETHER_STAT_JABBER_ERRORS:
2025 		*val = dmfep->tx_stats_jabber;
2026 		break;
2027 
2028 	case ETHER_STAT_CARRIER_ERRORS:
2029 		*val = dmfep->tx_stats_nocarrier;
2030 		break;
2031 
2032 	case ETHER_STAT_TX_LATE_COLLISIONS:
2033 		*val = dmfep->tx_stats_xmtlatecoll;
2034 		break;
2035 
2036 	case ETHER_STAT_EX_COLLISIONS:
2037 		*val = dmfep->tx_stats_excoll;
2038 		break;
2039 
2040 	case ETHER_STAT_DEFER_XMTS:
2041 		*val = dmfep->tx_stats_defer;
2042 		break;
2043 
2044 	case ETHER_STAT_FIRST_COLLISIONS:
2045 		*val = dmfep->tx_stats_first_coll;
2046 		break;
2047 
2048 	case ETHER_STAT_MULTI_COLLISIONS:
2049 		*val = dmfep->tx_stats_multi_coll;
2050 		break;
2051 
2052 	default:
2053 		rv = ENOTSUP;
2054 	}
2055 
2056 	mutex_exit(dmfep->txlock);
2057 	mutex_exit(dmfep->rxlock);
2058 	mutex_exit(dmfep->oplock);
2059 
2060 	return (rv);
2061 }
2062 
2063 /*
2064  * ========== Ioctl handler & subfunctions ==========
2065  */
2066 
2067 static lb_property_t dmfe_loopmodes[] = {
2068 	{ normal,	"normal",	0 },
2069 	{ internal,	"Internal",	1 },
2070 	{ external,	"External",	2 },
2071 };
2072 
2073 /*
2074  * Specific dmfe IOCTLs, the mac module handles the generic ones.
2075  * Unfortunately, the DM9102 doesn't seem to work well with MII based
2076  * loopback, so we have to do something special for it.
2077  */
2078 
2079 static void
2080 dmfe_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
2081 {
2082 	dmfe_t		*dmfep = arg;
2083 	struct iocblk	*iocp;
2084 	int		rv = 0;
2085 	lb_info_sz_t	sz;
2086 	int		cmd;
2087 	uint32_t	mode;
2088 
2089 	iocp = (void *)mp->b_rptr;
2090 	cmd = iocp->ioc_cmd;
2091 
2092 	if (mp->b_cont == NULL) {
2093 		/*
2094 		 * All of these ioctls need data!
2095 		 */
2096 		miocnak(wq, mp, 0, EINVAL);
2097 		return;
2098 	}
2099 
2100 	switch (cmd) {
2101 	case LB_GET_INFO_SIZE:
2102 		if (iocp->ioc_count != sizeof (sz)) {
2103 			rv = EINVAL;
2104 		} else {
2105 			sz = sizeof (dmfe_loopmodes);
2106 			bcopy(&sz, mp->b_cont->b_rptr, sizeof (sz));
2107 		}
2108 		break;
2109 
2110 	case LB_GET_INFO:
2111 		if (iocp->ioc_count != sizeof (dmfe_loopmodes)) {
2112 			rv = EINVAL;
2113 		} else {
2114 			bcopy(dmfe_loopmodes, mp->b_cont->b_rptr,
2115 			    iocp->ioc_count);
2116 		}
2117 		break;
2118 
2119 	case LB_GET_MODE:
2120 		if (iocp->ioc_count != sizeof (mode)) {
2121 			rv = EINVAL;
2122 		} else {
2123 			mutex_enter(dmfep->oplock);
2124 			switch (dmfep->opmode & LOOPBACK_MODE_MASK) {
2125 			case LOOPBACK_OFF:
2126 				mode = 0;
2127 				break;
2128 			case LOOPBACK_INTERNAL:
2129 				mode = 1;
2130 				break;
2131 			default:
2132 				mode = 2;
2133 				break;
2134 			}
2135 			mutex_exit(dmfep->oplock);
2136 			bcopy(&mode, mp->b_cont->b_rptr, sizeof (mode));
2137 		}
2138 		break;
2139 
2140 	case LB_SET_MODE:
2141 		rv = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
2142 		if (rv != 0)
2143 			break;
2144 		if (iocp->ioc_count != sizeof (mode)) {
2145 			rv = EINVAL;
2146 			break;
2147 		}
2148 		bcopy(mp->b_cont->b_rptr, &mode, sizeof (mode));
2149 
2150 		mutex_enter(dmfep->oplock);
2151 		dmfep->opmode &= ~LOOPBACK_MODE_MASK;
2152 		switch (mode) {
2153 		case 2:
2154 			dmfep->opmode |= LOOPBACK_PHY_D;
2155 			break;
2156 		case 1:
2157 			dmfep->opmode |= LOOPBACK_INTERNAL;
2158 			break;
2159 		default:
2160 			break;
2161 		}
2162 		if (!dmfep->suspended) {
2163 			dmfe_restart(dmfep);
2164 		}
2165 		mutex_exit(dmfep->oplock);
2166 		break;
2167 
2168 	default:
2169 		rv = EINVAL;
2170 		break;
2171 	}
2172 
2173 	if (rv == 0) {
2174 		miocack(wq, mp, iocp->ioc_count, 0);
2175 	} else {
2176 		miocnak(wq, mp, 0, rv);
2177 	}
2178 }
2179 
2180 int
2181 dmfe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags,
2182     uint_t sz, void *val, uint_t *perm)
2183 {
2184 	dmfe_t		*dmfep = arg;
2185 
2186 	return (mii_m_getprop(dmfep->mii, name, num, flags, sz, val, perm));
2187 }
2188 
2189 int
2190 dmfe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2191     const void *val)
2192 {
2193 	dmfe_t		*dmfep = arg;
2194 
2195 	return (mii_m_setprop(dmfep->mii, name, num, sz, val));
2196 }
2197 
2198 
2199 /*
2200  * ========== Per-instance setup/teardown code ==========
2201  */
2202 
2203 /*
2204  * Determine local MAC address & broadcast address for this interface
2205  */
2206 static void
2207 dmfe_find_mac_address(dmfe_t *dmfep)
2208 {
2209 	uchar_t *prop;
2210 	uint_t propsize;
2211 	int err;
2212 
2213 	/*
2214 	 * We have to find the "vendor's factory-set address".  This is
2215 	 * the value of the property "local-mac-address", as set by OBP
2216 	 * (or a .conf file!)
2217 	 *
2218 	 * If the property is not there, then we try to find the factory
2219 	 * mac address from the devices serial EEPROM.
2220 	 */
2221 	bzero(dmfep->curr_addr, sizeof (dmfep->curr_addr));
2222 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dmfep->devinfo,
2223 	    DDI_PROP_DONTPASS, localmac_propname, &prop, &propsize);
2224 	if (err == DDI_PROP_SUCCESS) {
2225 		if (propsize == ETHERADDRL)
2226 			ethaddr_copy(prop, dmfep->curr_addr);
2227 		ddi_prop_free(prop);
2228 	} else {
2229 		/* no property set... check eeprom */
2230 		dmfe_read_eeprom(dmfep, EEPROM_EN_ADDR, dmfep->curr_addr,
2231 		    ETHERADDRL);
2232 	}
2233 }
2234 
2235 static int
2236 dmfe_alloc_dma_mem(dmfe_t *dmfep, size_t memsize,
2237 	size_t setup, size_t slop, ddi_device_acc_attr_t *attr_p,
2238 	uint_t dma_flags, dma_area_t *dma_p)
2239 {
2240 	ddi_dma_cookie_t dma_cookie;
2241 	uint_t ncookies;
2242 	int err;
2243 
2244 	/*
2245 	 * Allocate handle
2246 	 */
2247 	err = ddi_dma_alloc_handle(dmfep->devinfo, &dma_attr,
2248 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
2249 	if (err != DDI_SUCCESS) {
2250 		dmfe_error(dmfep, "DMA handle allocation failed");
2251 		return (DDI_FAILURE);
2252 	}
2253 
2254 	/*
2255 	 * Allocate memory
2256 	 */
2257 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize + setup + slop,
2258 	    attr_p, dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
2259 	    DDI_DMA_SLEEP, NULL,
2260 	    &dma_p->mem_va, &dma_p->alength, &dma_p->acc_hdl);
2261 	if (err != DDI_SUCCESS) {
2262 		dmfe_error(dmfep, "DMA memory allocation failed: %d", err);
2263 		return (DDI_FAILURE);
2264 	}
2265 
2266 	/*
2267 	 * Bind the two together
2268 	 */
2269 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
2270 	    dma_p->mem_va, dma_p->alength, dma_flags,
2271 	    DDI_DMA_SLEEP, NULL, &dma_cookie, &ncookies);
2272 	if (err != DDI_DMA_MAPPED) {
2273 		dmfe_error(dmfep, "DMA mapping failed: %d", err);
2274 		return (DDI_FAILURE);
2275 	}
2276 	if ((dma_p->ncookies = ncookies) != 1) {
2277 		dmfe_error(dmfep, "Too many DMA cookeis: %d", ncookies);
2278 		return (DDI_FAILURE);
2279 	}
2280 
2281 	dma_p->mem_dvma = dma_cookie.dmac_address;
2282 	if (setup > 0) {
2283 		dma_p->setup_dvma = dma_p->mem_dvma + memsize;
2284 		dma_p->setup_va = dma_p->mem_va + memsize;
2285 	} else {
2286 		dma_p->setup_dvma = 0;
2287 		dma_p->setup_va = NULL;
2288 	}
2289 
2290 	return (DDI_SUCCESS);
2291 }
2292 
2293 /*
2294  * This function allocates the transmit and receive buffers and descriptors.
2295  */
2296 static int
2297 dmfe_alloc_bufs(dmfe_t *dmfep)
2298 {
2299 	size_t memsize;
2300 	int err;
2301 
2302 	/*
2303 	 * Allocate memory & handles for TX descriptor ring
2304 	 */
2305 	memsize = dmfep->tx.n_desc * sizeof (struct tx_desc_type);
2306 	err = dmfe_alloc_dma_mem(dmfep, memsize, SETUPBUF_SIZE, DMFE_SLOP,
2307 	    &dmfe_reg_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2308 	    &dmfep->tx_desc);
2309 	if (err != DDI_SUCCESS) {
2310 		dmfe_error(dmfep, "TX descriptor allocation failed");
2311 		return (DDI_FAILURE);
2312 	}
2313 
2314 	/*
2315 	 * Allocate memory & handles for TX buffers
2316 	 */
2317 	memsize = dmfep->tx.n_desc * DMFE_BUF_SIZE;
2318 	err = dmfe_alloc_dma_mem(dmfep, memsize, 0, 0,
2319 	    &dmfe_data_accattr, DDI_DMA_WRITE | DMFE_DMA_MODE,
2320 	    &dmfep->tx_buff);
2321 	if (err != DDI_SUCCESS) {
2322 		dmfe_error(dmfep, "TX buffer allocation failed");
2323 		return (DDI_FAILURE);
2324 	}
2325 
2326 	/*
2327 	 * Allocate memory & handles for RX descriptor ring
2328 	 */
2329 	memsize = dmfep->rx.n_desc * sizeof (struct rx_desc_type);
2330 	err = dmfe_alloc_dma_mem(dmfep, memsize, 0, DMFE_SLOP,
2331 	    &dmfe_reg_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2332 	    &dmfep->rx_desc);
2333 	if (err != DDI_SUCCESS) {
2334 		dmfe_error(dmfep, "RX descriptor allocation failed");
2335 		return (DDI_FAILURE);
2336 	}
2337 
2338 	/*
2339 	 * Allocate memory & handles for RX buffers
2340 	 */
2341 	memsize = dmfep->rx.n_desc * DMFE_BUF_SIZE;
2342 	err = dmfe_alloc_dma_mem(dmfep, memsize, 0, 0,
2343 	    &dmfe_data_accattr, DDI_DMA_READ | DMFE_DMA_MODE, &dmfep->rx_buff);
2344 	if (err != DDI_SUCCESS) {
2345 		dmfe_error(dmfep, "RX buffer allocation failed");
2346 		return (DDI_FAILURE);
2347 	}
2348 
2349 	/*
2350 	 * Allocate bitmasks for tx packet type tracking
2351 	 */
2352 	dmfep->tx_mcast = kmem_zalloc(dmfep->tx.n_desc / NBBY, KM_SLEEP);
2353 	dmfep->tx_bcast = kmem_zalloc(dmfep->tx.n_desc / NBBY, KM_SLEEP);
2354 
2355 	return (DDI_SUCCESS);
2356 }
2357 
2358 static void
2359 dmfe_free_dma_mem(dma_area_t *dma_p)
2360 {
2361 	if (dma_p->dma_hdl != NULL) {
2362 		if (dma_p->ncookies) {
2363 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
2364 			dma_p->ncookies = 0;
2365 		}
2366 		ddi_dma_free_handle(&dma_p->dma_hdl);
2367 		dma_p->dma_hdl = NULL;
2368 		dma_p->mem_dvma = 0;
2369 		dma_p->setup_dvma = 0;
2370 	}
2371 
2372 	if (dma_p->acc_hdl != NULL) {
2373 		ddi_dma_mem_free(&dma_p->acc_hdl);
2374 		dma_p->acc_hdl = NULL;
2375 		dma_p->mem_va = NULL;
2376 		dma_p->setup_va = NULL;
2377 	}
2378 }
2379 
2380 /*
2381  * This routine frees the transmit and receive buffers and descriptors.
2382  * Make sure the chip is stopped before calling it!
2383  */
2384 static void
2385 dmfe_free_bufs(dmfe_t *dmfep)
2386 {
2387 	dmfe_free_dma_mem(&dmfep->rx_buff);
2388 	dmfe_free_dma_mem(&dmfep->rx_desc);
2389 	dmfe_free_dma_mem(&dmfep->tx_buff);
2390 	dmfe_free_dma_mem(&dmfep->tx_desc);
2391 	if (dmfep->tx_mcast)
2392 		kmem_free(dmfep->tx_mcast, dmfep->tx.n_desc / NBBY);
2393 	if (dmfep->tx_bcast)
2394 		kmem_free(dmfep->tx_bcast, dmfep->tx.n_desc / NBBY);
2395 }
2396 
2397 static void
2398 dmfe_unattach(dmfe_t *dmfep)
2399 {
2400 	/*
2401 	 * Clean up and free all DMFE data structures
2402 	 */
2403 	if (dmfep->cycid != NULL) {
2404 		ddi_periodic_delete(dmfep->cycid);
2405 		dmfep->cycid = NULL;
2406 	}
2407 
2408 	if (dmfep->ksp_drv != NULL)
2409 		kstat_delete(dmfep->ksp_drv);
2410 	if (dmfep->progress & PROGRESS_HWINT) {
2411 		ddi_remove_intr(dmfep->devinfo, 0, dmfep->iblk);
2412 	}
2413 	if (dmfep->progress & PROGRESS_SOFTINT)
2414 		ddi_remove_softintr(dmfep->factotum_id);
2415 	if (dmfep->mii != NULL)
2416 		mii_free(dmfep->mii);
2417 	if (dmfep->progress & PROGRESS_MUTEX) {
2418 		mutex_destroy(dmfep->txlock);
2419 		mutex_destroy(dmfep->rxlock);
2420 		mutex_destroy(dmfep->oplock);
2421 	}
2422 	dmfe_free_bufs(dmfep);
2423 	if (dmfep->io_handle != NULL)
2424 		ddi_regs_map_free(&dmfep->io_handle);
2425 
2426 	kmem_free(dmfep, sizeof (*dmfep));
2427 }
2428 
2429 static int
2430 dmfe_config_init(dmfe_t *dmfep, chip_id_t *idp)
2431 {
2432 	ddi_acc_handle_t handle;
2433 	uint32_t regval;
2434 
2435 	if (pci_config_setup(dmfep->devinfo, &handle) != DDI_SUCCESS)
2436 		return (DDI_FAILURE);
2437 
2438 	/*
2439 	 * Get vendor/device/revision.  We expect (but don't check) that
2440 	 * (vendorid == DAVICOM_VENDOR_ID) && (deviceid == DEVICE_ID_9102)
2441 	 */
2442 	idp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
2443 	idp->device = pci_config_get16(handle, PCI_CONF_DEVID);
2444 	idp->revision = pci_config_get8(handle, PCI_CONF_REVID);
2445 
2446 	/*
2447 	 * Turn on Bus Master Enable bit and ensure the device is not asleep
2448 	 */
2449 	regval = pci_config_get32(handle, PCI_CONF_COMM);
2450 	pci_config_put32(handle, PCI_CONF_COMM, (regval | PCI_COMM_ME));
2451 
2452 	regval = pci_config_get32(handle, PCI_DMFE_CONF_CFDD);
2453 	pci_config_put32(handle, PCI_DMFE_CONF_CFDD,
2454 	    regval & ~(CFDD_SLEEP | CFDD_SNOOZE));
2455 
2456 	pci_config_teardown(&handle);
2457 	return (DDI_SUCCESS);
2458 }
2459 
2460 struct ks_index {
2461 	int index;
2462 	char *name;
2463 };
2464 
2465 static const struct ks_index ks_drv_names[] = {
2466 	{	KS_INTERRUPT,			"intr"			},
2467 	{	KS_CYCLIC_RUN,			"cyclic_run"		},
2468 
2469 	{	KS_TX_STALL,			"tx_stall_detect"	},
2470 	{	KS_CHIP_ERROR,			"chip_error_interrupt"	},
2471 
2472 	{	KS_FACTOTUM_RUN,		"factotum_run"		},
2473 	{	KS_RECOVERY,			"factotum_recover"	},
2474 
2475 	{	-1,				NULL			}
2476 };
2477 
2478 static void
2479 dmfe_init_kstats(dmfe_t *dmfep, int instance)
2480 {
2481 	kstat_t *ksp;
2482 	kstat_named_t *knp;
2483 	const struct ks_index *ksip;
2484 
2485 	/* no need to create MII stats, the mac module already does it */
2486 
2487 	/* Create and initialise driver-defined kstats */
2488 	ksp = kstat_create(DRIVER_NAME, instance, "dmfe_events", "net",
2489 	    KSTAT_TYPE_NAMED, KS_DRV_COUNT, KSTAT_FLAG_PERSISTENT);
2490 	if (ksp != NULL) {
2491 		for (knp = ksp->ks_data, ksip = ks_drv_names;
2492 		    ksip->name != NULL; ++ksip) {
2493 			kstat_named_init(&knp[ksip->index], ksip->name,
2494 			    KSTAT_DATA_UINT64);
2495 		}
2496 		dmfep->ksp_drv = ksp;
2497 		dmfep->knp_drv = knp;
2498 		kstat_install(ksp);
2499 	} else {
2500 		dmfe_error(dmfep, "kstat_create() for dmfe_events failed");
2501 	}
2502 }
2503 
2504 static int
2505 dmfe_resume(dev_info_t *devinfo)
2506 {
2507 	dmfe_t *dmfep;				/* Our private data	*/
2508 	chip_id_t chipid;
2509 	boolean_t restart = B_FALSE;
2510 
2511 	dmfep = ddi_get_driver_private(devinfo);
2512 	if (dmfep == NULL)
2513 		return (DDI_FAILURE);
2514 
2515 	/*
2516 	 * Refuse to resume if the data structures aren't consistent
2517 	 */
2518 	if (dmfep->devinfo != devinfo)
2519 		return (DDI_FAILURE);
2520 
2521 	/*
2522 	 * Refuse to resume if the chip's changed its identity (*boggle*)
2523 	 */
2524 	if (dmfe_config_init(dmfep, &chipid) != DDI_SUCCESS)
2525 		return (DDI_FAILURE);
2526 	if (chipid.vendor != dmfep->chipid.vendor)
2527 		return (DDI_FAILURE);
2528 	if (chipid.device != dmfep->chipid.device)
2529 		return (DDI_FAILURE);
2530 	if (chipid.revision != dmfep->chipid.revision)
2531 		return (DDI_FAILURE);
2532 
2533 	mutex_enter(dmfep->oplock);
2534 	mutex_enter(dmfep->txlock);
2535 	dmfep->suspended = B_FALSE;
2536 	mutex_exit(dmfep->txlock);
2537 
2538 	/*
2539 	 * All OK, reinitialise h/w & kick off MAC scheduling
2540 	 */
2541 	if (dmfep->mac_state == DMFE_MAC_STARTED) {
2542 		dmfe_restart(dmfep);
2543 		restart = B_TRUE;
2544 	}
2545 	mutex_exit(dmfep->oplock);
2546 
2547 	if (restart) {
2548 		mii_resume(dmfep->mii);
2549 		mac_tx_update(dmfep->mh);
2550 	}
2551 	return (DDI_SUCCESS);
2552 }
2553 
2554 /*
2555  * attach(9E) -- Attach a device to the system
2556  *
2557  * Called once for each board successfully probed.
2558  */
2559 static int
2560 dmfe_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2561 {
2562 	mac_register_t *macp;
2563 	dmfe_t *dmfep;				/* Our private data	*/
2564 	uint32_t csr6;
2565 	int instance;
2566 	int err;
2567 
2568 	instance = ddi_get_instance(devinfo);
2569 
2570 	switch (cmd) {
2571 	default:
2572 		return (DDI_FAILURE);
2573 
2574 	case DDI_RESUME:
2575 		return (dmfe_resume(devinfo));
2576 
2577 	case DDI_ATTACH:
2578 		break;
2579 	}
2580 
2581 	dmfep = kmem_zalloc(sizeof (*dmfep), KM_SLEEP);
2582 	ddi_set_driver_private(devinfo, dmfep);
2583 	dmfep->devinfo = devinfo;
2584 	dmfep->dmfe_guard = DMFE_GUARD;
2585 
2586 	/*
2587 	 * Initialize more fields in DMFE private data
2588 	 * Determine the local MAC address
2589 	 */
2590 #if	DMFEDEBUG
2591 	dmfep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 0,
2592 	    debug_propname, dmfe_debug);
2593 #endif	/* DMFEDEBUG */
2594 	dmfep->cycid = NULL;
2595 	(void) snprintf(dmfep->ifname, sizeof (dmfep->ifname), "dmfe%d",
2596 	    instance);
2597 
2598 	/*
2599 	 * Check for custom "opmode-reg-value" property;
2600 	 * if none, use the defaults below for CSR6 ...
2601 	 */
2602 	csr6 = TX_THRESHOLD_HI | STORE_AND_FORWARD | EXT_MII_IF | OPN_25_MB1;
2603 	dmfep->opmode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2604 	    DDI_PROP_DONTPASS, opmode_propname, csr6);
2605 
2606 	/*
2607 	 * Read chip ID & set up config space command register(s)
2608 	 */
2609 	if (dmfe_config_init(dmfep, &dmfep->chipid) != DDI_SUCCESS) {
2610 		dmfe_error(dmfep, "dmfe_config_init() failed");
2611 		goto attach_fail;
2612 	}
2613 
2614 	/*
2615 	 * Map operating registers
2616 	 */
2617 	err = ddi_regs_map_setup(devinfo, DMFE_PCI_RNUMBER,
2618 	    &dmfep->io_reg, 0, 0, &dmfe_reg_accattr, &dmfep->io_handle);
2619 	if (err != DDI_SUCCESS) {
2620 		dmfe_error(dmfep, "ddi_regs_map_setup() failed");
2621 		goto attach_fail;
2622 	}
2623 
2624 	/*
2625 	 * Get our MAC address.
2626 	 */
2627 	dmfe_find_mac_address(dmfep);
2628 
2629 	/*
2630 	 * Allocate the TX and RX descriptors/buffers.
2631 	 */
2632 	dmfep->tx.n_desc = dmfe_tx_desc;
2633 	dmfep->rx.n_desc = dmfe_rx_desc;
2634 	err = dmfe_alloc_bufs(dmfep);
2635 	if (err != DDI_SUCCESS) {
2636 		goto attach_fail;
2637 	}
2638 
2639 	/*
2640 	 * Add the softint handler
2641 	 */
2642 	if (ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &dmfep->factotum_id,
2643 	    NULL, NULL, dmfe_factotum, (caddr_t)dmfep) != DDI_SUCCESS) {
2644 		dmfe_error(dmfep, "ddi_add_softintr() failed");
2645 		goto attach_fail;
2646 	}
2647 	dmfep->progress |= PROGRESS_SOFTINT;
2648 
2649 	/*
2650 	 * Add the h/w interrupt handler & initialise mutexen
2651 	 */
2652 	if (ddi_get_iblock_cookie(devinfo, 0, &dmfep->iblk) != DDI_SUCCESS) {
2653 		dmfe_error(dmfep, "ddi_get_iblock_cookie() failed");
2654 		goto attach_fail;
2655 	}
2656 
2657 	mutex_init(dmfep->milock, NULL, MUTEX_DRIVER, NULL);
2658 	mutex_init(dmfep->oplock, NULL, MUTEX_DRIVER, dmfep->iblk);
2659 	mutex_init(dmfep->rxlock, NULL, MUTEX_DRIVER, dmfep->iblk);
2660 	mutex_init(dmfep->txlock, NULL, MUTEX_DRIVER, dmfep->iblk);
2661 	dmfep->progress |= PROGRESS_MUTEX;
2662 
2663 	if (ddi_add_intr(devinfo, 0, NULL, NULL,
2664 	    dmfe_interrupt, (caddr_t)dmfep) != DDI_SUCCESS) {
2665 		dmfe_error(dmfep, "ddi_add_intr() failed");
2666 		goto attach_fail;
2667 	}
2668 	dmfep->progress |= PROGRESS_HWINT;
2669 
2670 	/*
2671 	 * Create & initialise named kstats
2672 	 */
2673 	dmfe_init_kstats(dmfep, instance);
2674 
2675 	/*
2676 	 * Reset & initialise the chip and the ring buffers
2677 	 * Initialise the (internal) PHY
2678 	 */
2679 	mutex_enter(dmfep->oplock);
2680 	mutex_enter(dmfep->rxlock);
2681 	mutex_enter(dmfep->txlock);
2682 
2683 	dmfe_reset(dmfep);
2684 
2685 	/*
2686 	 * Prepare the setup packet
2687 	 */
2688 	bzero(dmfep->tx_desc.setup_va, SETUPBUF_SIZE);
2689 	bzero(dmfep->mcast_refs, MCASTBUF_SIZE);
2690 	dmfep->addr_set = B_FALSE;
2691 	dmfep->opmode &= ~(PROMISC_MODE | PASS_MULTICAST);
2692 	dmfep->mac_state = DMFE_MAC_RESET;
2693 
2694 	mutex_exit(dmfep->txlock);
2695 	mutex_exit(dmfep->rxlock);
2696 	mutex_exit(dmfep->oplock);
2697 
2698 	if (dmfe_init_phy(dmfep) != B_TRUE)
2699 		goto attach_fail;
2700 
2701 	/*
2702 	 * Send a reasonable setup frame.  This configures our starting
2703 	 * address and the broadcast address.
2704 	 */
2705 	(void) dmfe_m_unicst(dmfep, dmfep->curr_addr);
2706 
2707 	/*
2708 	 * Initialize pointers to device specific functions which
2709 	 * will be used by the generic layer.
2710 	 */
2711 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2712 		goto attach_fail;
2713 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2714 	macp->m_driver = dmfep;
2715 	macp->m_dip = devinfo;
2716 	macp->m_src_addr = dmfep->curr_addr;
2717 	macp->m_callbacks = &dmfe_m_callbacks;
2718 	macp->m_min_sdu = 0;
2719 	macp->m_max_sdu = ETHERMTU;
2720 	macp->m_margin = VLAN_TAGSZ;
2721 
2722 	/*
2723 	 * Finally, we're ready to register ourselves with the MAC layer
2724 	 * interface; if this succeeds, we're all ready to start()
2725 	 */
2726 	err = mac_register(macp, &dmfep->mh);
2727 	mac_free(macp);
2728 	if (err != 0)
2729 		goto attach_fail;
2730 	ASSERT(dmfep->dmfe_guard == DMFE_GUARD);
2731 
2732 	/*
2733 	 * Install the cyclic callback that we use to check for link
2734 	 * status, transmit stall, etc. The cyclic callback (dmfe_cyclic())
2735 	 * is invoked in kernel context then.
2736 	 */
2737 	ASSERT(dmfep->cycid == NULL);
2738 	dmfep->cycid = ddi_periodic_add(dmfe_cyclic, dmfep,
2739 	    dmfe_tick_us * 1000, DDI_IPL_0);
2740 	return (DDI_SUCCESS);
2741 
2742 attach_fail:
2743 	dmfe_unattach(dmfep);
2744 	return (DDI_FAILURE);
2745 }
2746 
2747 /*
2748  *	dmfe_suspend() -- suspend transmit/receive for powerdown
2749  */
2750 static int
2751 dmfe_suspend(dmfe_t *dmfep)
2752 {
2753 	/*
2754 	 * Just stop processing ...
2755 	 */
2756 	mii_suspend(dmfep->mii);
2757 	mutex_enter(dmfep->oplock);
2758 	dmfe_stop(dmfep);
2759 
2760 	mutex_enter(dmfep->txlock);
2761 	dmfep->suspended = B_TRUE;
2762 	mutex_exit(dmfep->txlock);
2763 	mutex_exit(dmfep->oplock);
2764 
2765 	return (DDI_SUCCESS);
2766 }
2767 
2768 /*
2769  * detach(9E) -- Detach a device from the system
2770  */
2771 static int
2772 dmfe_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2773 {
2774 	dmfe_t *dmfep;
2775 
2776 	dmfep = ddi_get_driver_private(devinfo);
2777 
2778 	switch (cmd) {
2779 	default:
2780 		return (DDI_FAILURE);
2781 
2782 	case DDI_SUSPEND:
2783 		return (dmfe_suspend(dmfep));
2784 
2785 	case DDI_DETACH:
2786 		break;
2787 	}
2788 
2789 	/*
2790 	 * Unregister from the MAC subsystem.  This can fail, in
2791 	 * particular if there are DLPI style-2 streams still open -
2792 	 * in which case we just return failure without shutting
2793 	 * down chip operations.
2794 	 */
2795 	if (mac_unregister(dmfep->mh) != DDI_SUCCESS)
2796 		return (DDI_FAILURE);
2797 
2798 	/*
2799 	 * All activity stopped, so we can clean up & exit
2800 	 */
2801 	dmfe_unattach(dmfep);
2802 	return (DDI_SUCCESS);
2803 }
2804 
2805 
2806 /*
2807  * ========== Module Loading Data & Entry Points ==========
2808  */
2809 
2810 DDI_DEFINE_STREAM_OPS(dmfe_dev_ops, nulldev, nulldev, dmfe_attach, dmfe_detach,
2811 	nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
2812 
2813 static struct modldrv dmfe_modldrv = {
2814 	&mod_driverops,		/* Type of module.  This one is a driver */
2815 	dmfe_ident,		/* short description */
2816 	&dmfe_dev_ops		/* driver specific ops */
2817 };
2818 
2819 static struct modlinkage modlinkage = {
2820 	MODREV_1, (void *)&dmfe_modldrv, NULL
2821 };
2822 
2823 int
2824 _info(struct modinfo *modinfop)
2825 {
2826 	return (mod_info(&modlinkage, modinfop));
2827 }
2828 
2829 int
2830 _init(void)
2831 {
2832 	uint32_t tmp100;
2833 	uint32_t tmp10;
2834 	int i;
2835 	int status;
2836 
2837 	/* Calculate global timing parameters */
2838 	tmp100 = (dmfe_tx100_stall_us+dmfe_tick_us-1)/dmfe_tick_us;
2839 	tmp10 = (dmfe_tx10_stall_us+dmfe_tick_us-1)/dmfe_tick_us;
2840 
2841 	for (i = 0; i <= TX_PROCESS_MAX_STATE; ++i) {
2842 		switch (i) {
2843 		case TX_PROCESS_STATE(TX_PROCESS_FETCH_DATA):
2844 		case TX_PROCESS_STATE(TX_PROCESS_WAIT_END):
2845 			/*
2846 			 * The chip doesn't spontaneously recover from
2847 			 * a stall in these states, so we reset early
2848 			 */
2849 			stall_100_tix[i] = tmp100;
2850 			stall_10_tix[i] = tmp10;
2851 			break;
2852 
2853 		case TX_PROCESS_STATE(TX_PROCESS_SUSPEND):
2854 		default:
2855 			/*
2856 			 * The chip has been seen to spontaneously recover
2857 			 * after an apparent stall in the SUSPEND state,
2858 			 * so we'll allow it rather longer to do so.  As
2859 			 * stalls in other states have not been observed,
2860 			 * we'll use long timeouts for them too ...
2861 			 */
2862 			stall_100_tix[i] = tmp100 * 20;
2863 			stall_10_tix[i] = tmp10 * 20;
2864 			break;
2865 		}
2866 	}
2867 
2868 	mac_init_ops(&dmfe_dev_ops, "dmfe");
2869 	status = mod_install(&modlinkage);
2870 	if (status == DDI_SUCCESS)
2871 		dmfe_log_init();
2872 
2873 	return (status);
2874 }
2875 
2876 int
2877 _fini(void)
2878 {
2879 	int status;
2880 
2881 	status = mod_remove(&modlinkage);
2882 	if (status == DDI_SUCCESS) {
2883 		mac_fini_ops(&dmfe_dev_ops);
2884 		dmfe_log_fini();
2885 	}
2886 
2887 	return (status);
2888 }
2889