xref: /titanic_50/usr/src/uts/common/io/devinfo.c (revision f7209cf2d2e114162cab4b5252c05118a6b7e54a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * driver for accessing kernel devinfo tree.
30  */
31 #include <sys/types.h>
32 #include <sys/pathname.h>
33 #include <sys/debug.h>
34 #include <sys/autoconf.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/kmem.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunldi_impl.h>
43 #include <sys/sunndi.h>
44 #include <sys/esunddi.h>
45 #include <sys/sunmdi.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ndi_impldefs.h>
48 #include <sys/mdi_impldefs.h>
49 #include <sys/devinfo_impl.h>
50 #include <sys/thread.h>
51 #include <sys/modhash.h>
52 #include <sys/bitmap.h>
53 #include <util/qsort.h>
54 #include <sys/disp.h>
55 #include <sys/kobj.h>
56 #include <sys/crc32.h>
57 
58 
59 #ifdef DEBUG
60 static int di_debug;
61 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
62 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
63 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
64 #else
65 #define	dcmn_err(args) /* nothing */
66 #define	dcmn_err2(args) /* nothing */
67 #define	dcmn_err3(args) /* nothing */
68 #endif
69 
70 /*
71  * We partition the space of devinfo minor nodes equally between the full and
72  * unprivileged versions of the driver.  The even-numbered minor nodes are the
73  * full version, while the odd-numbered ones are the read-only version.
74  */
75 static int di_max_opens = 32;
76 
77 #define	DI_FULL_PARENT		0
78 #define	DI_READONLY_PARENT	1
79 #define	DI_NODE_SPECIES		2
80 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
81 
82 #define	IOC_IDLE	0	/* snapshot ioctl states */
83 #define	IOC_SNAP	1	/* snapshot in progress */
84 #define	IOC_DONE	2	/* snapshot done, but not copied out */
85 #define	IOC_COPY	3	/* copyout in progress */
86 
87 /*
88  * Keep max alignment so we can move snapshot to different platforms
89  */
90 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
91 
92 /*
93  * To avoid wasting memory, make a linked list of memory chunks.
94  * Size of each chunk is buf_size.
95  */
96 struct di_mem {
97 	struct di_mem *next;	/* link to next chunk */
98 	char *buf;		/* contiguous kernel memory */
99 	size_t buf_size;	/* size of buf in bytes */
100 	devmap_cookie_t cook;	/* cookie from ddi_umem_alloc */
101 };
102 
103 /*
104  * This is a stack for walking the tree without using recursion.
105  * When the devinfo tree height is above some small size, one
106  * gets watchdog resets on sun4m.
107  */
108 struct di_stack {
109 	void		*offset[MAX_TREE_DEPTH];
110 	struct dev_info *dip[MAX_TREE_DEPTH];
111 	int		circ[MAX_TREE_DEPTH];
112 	int		depth;	/* depth of current node to be copied */
113 };
114 
115 #define	TOP_OFFSET(stack)	\
116 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
117 #define	TOP_NODE(stack)		\
118 	((stack)->dip[(stack)->depth - 1])
119 #define	PARENT_OFFSET(stack)	\
120 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
121 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
122 #define	POP_STACK(stack)	{ \
123 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
124 		(stack)->circ[(stack)->depth - 1]); \
125 	((stack)->depth--); \
126 }
127 #define	PUSH_STACK(stack, node, offp)	{ \
128 	ASSERT(node != NULL); \
129 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
130 	(stack)->dip[(stack)->depth] = (node); \
131 	(stack)->offset[(stack)->depth] = (void *)(offp); \
132 	((stack)->depth)++; \
133 }
134 
135 #define	DI_ALL_PTR(s)	((struct di_all *)di_mem_addr((s), 0))
136 
137 /*
138  * With devfs, the device tree has no global locks. The device tree is
139  * dynamic and dips may come and go if they are not locked locally. Under
140  * these conditions, pointers are no longer reliable as unique IDs.
141  * Specifically, these pointers cannot be used as keys for hash tables
142  * as the same devinfo structure may be freed in one part of the tree only
143  * to be allocated as the structure for a different device in another
144  * part of the tree. This can happen if DR and the snapshot are
145  * happening concurrently.
146  * The following data structures act as keys for devinfo nodes and
147  * pathinfo nodes.
148  */
149 
150 enum di_ktype {
151 	DI_DKEY = 1,
152 	DI_PKEY = 2
153 };
154 
155 struct di_dkey {
156 	dev_info_t	*dk_dip;
157 	major_t		dk_major;
158 	int		dk_inst;
159 	pnode_t		dk_nodeid;
160 };
161 
162 struct di_pkey {
163 	mdi_pathinfo_t	*pk_pip;
164 	char		*pk_path_addr;
165 	dev_info_t	*pk_client;
166 	dev_info_t	*pk_phci;
167 };
168 
169 struct di_key {
170 	enum di_ktype	k_type;
171 	union {
172 		struct di_dkey dkey;
173 		struct di_pkey pkey;
174 	} k_u;
175 };
176 
177 
178 struct i_lnode;
179 
180 typedef struct i_link {
181 	/*
182 	 * If a di_link struct representing this i_link struct makes it
183 	 * into the snapshot, then self will point to the offset of
184 	 * the di_link struct in the snapshot
185 	 */
186 	di_off_t	self;
187 
188 	int		spec_type;	/* block or char access type */
189 	struct i_lnode	*src_lnode;	/* src i_lnode */
190 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
191 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
192 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
193 } i_link_t;
194 
195 typedef struct i_lnode {
196 	/*
197 	 * If a di_lnode struct representing this i_lnode struct makes it
198 	 * into the snapshot, then self will point to the offset of
199 	 * the di_lnode struct in the snapshot
200 	 */
201 	di_off_t	self;
202 
203 	/*
204 	 * used for hashing and comparing i_lnodes
205 	 */
206 	int		modid;
207 
208 	/*
209 	 * public information describing a link endpoint
210 	 */
211 	struct di_node	*di_node;	/* di_node in snapshot */
212 	dev_t		devt;		/* devt */
213 
214 	/*
215 	 * i_link ptr to links coming into this i_lnode node
216 	 * (this i_lnode is the target of these i_links)
217 	 */
218 	i_link_t	*link_in;
219 
220 	/*
221 	 * i_link ptr to links going out of this i_lnode node
222 	 * (this i_lnode is the source of these i_links)
223 	 */
224 	i_link_t	*link_out;
225 } i_lnode_t;
226 
227 /*
228  * Soft state associated with each instance of driver open.
229  */
230 static struct di_state {
231 	di_off_t mem_size;	/* total # bytes in memlist	*/
232 	struct di_mem *memlist;	/* head of memlist		*/
233 	uint_t command;		/* command from ioctl		*/
234 	int di_iocstate;	/* snapshot ioctl state		*/
235 	mod_hash_t *reg_dip_hash;
236 	mod_hash_t *reg_pip_hash;
237 	int lnode_count;
238 	int link_count;
239 
240 	mod_hash_t *lnode_hash;
241 	mod_hash_t *link_hash;
242 } **di_states;
243 
244 static kmutex_t di_lock;	/* serialize instance assignment */
245 
246 typedef enum {
247 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
248 	DI_ERR,
249 	DI_INFO,
250 	DI_TRACE,
251 	DI_TRACE1,
252 	DI_TRACE2
253 } di_cache_debug_t;
254 
255 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
256 
257 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
258 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
259 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
260 
261 /*
262  * Check that whole device tree is being configured as a pre-condition for
263  * cleaning up /etc/devices files.
264  */
265 #define	DEVICES_FILES_CLEANABLE(st)	\
266 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
267 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
268 
269 #define	CACHE_DEBUG(args)	\
270 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
271 
272 static struct phci_walk_arg {
273 	di_off_t	off;
274 	struct di_state	*st;
275 } phci_walk_arg_t;
276 
277 static int di_open(dev_t *, int, int, cred_t *);
278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
279 static int di_close(dev_t, int, int, cred_t *);
280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
281 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
282 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
283 
284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
285 static di_off_t di_snapshot_and_clean(struct di_state *);
286 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
288 static di_off_t di_copynode(struct di_stack *, struct di_state *);
289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
290     struct di_state *);
291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *,
294     struct di_state *, struct dev_info *, int);
295 static void di_allocmem(struct di_state *, size_t);
296 static void di_freemem(struct di_state *);
297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
299 static caddr_t di_mem_addr(struct di_state *, di_off_t);
300 static int di_setstate(struct di_state *, int);
301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
304     struct di_state *, int);
305 static di_off_t di_getlink_data(di_off_t, struct di_state *);
306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
307 
308 static int cache_args_valid(struct di_state *st, int *error);
309 static int snapshot_is_cacheable(struct di_state *st);
310 static int di_cache_lookup(struct di_state *st);
311 static int di_cache_update(struct di_state *st);
312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
314 int build_phci_list(dev_info_t *ph_devinfo, void *arg);
315 
316 static struct cb_ops di_cb_ops = {
317 	di_open,		/* open */
318 	di_close,		/* close */
319 	nodev,			/* strategy */
320 	nodev,			/* print */
321 	nodev,			/* dump */
322 	nodev,			/* read */
323 	nodev,			/* write */
324 	di_ioctl,		/* ioctl */
325 	nodev,			/* devmap */
326 	nodev,			/* mmap */
327 	nodev,			/* segmap */
328 	nochpoll,		/* poll */
329 	ddi_prop_op,		/* prop_op */
330 	NULL,			/* streamtab  */
331 	D_NEW | D_MP		/* Driver compatibility flag */
332 };
333 
334 static struct dev_ops di_ops = {
335 	DEVO_REV,		/* devo_rev, */
336 	0,			/* refcnt  */
337 	di_info,		/* info */
338 	nulldev,		/* identify */
339 	nulldev,		/* probe */
340 	di_attach,		/* attach */
341 	di_detach,		/* detach */
342 	nodev,			/* reset */
343 	&di_cb_ops,		/* driver operations */
344 	NULL			/* bus operations */
345 };
346 
347 /*
348  * Module linkage information for the kernel.
349  */
350 static struct modldrv modldrv = {
351 	&mod_driverops,
352 	"DEVINFO Driver %I%",
353 	&di_ops
354 };
355 
356 static struct modlinkage modlinkage = {
357 	MODREV_1,
358 	&modldrv,
359 	NULL
360 };
361 
362 int
363 _init(void)
364 {
365 	int	error;
366 
367 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
368 
369 	error = mod_install(&modlinkage);
370 	if (error != 0) {
371 		mutex_destroy(&di_lock);
372 		return (error);
373 	}
374 
375 	return (0);
376 }
377 
378 int
379 _info(struct modinfo *modinfop)
380 {
381 	return (mod_info(&modlinkage, modinfop));
382 }
383 
384 int
385 _fini(void)
386 {
387 	int	error;
388 
389 	error = mod_remove(&modlinkage);
390 	if (error != 0) {
391 		return (error);
392 	}
393 
394 	mutex_destroy(&di_lock);
395 	return (0);
396 }
397 
398 static dev_info_t *di_dip;
399 
400 /*ARGSUSED*/
401 static int
402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
403 {
404 	int error = DDI_FAILURE;
405 
406 	switch (infocmd) {
407 	case DDI_INFO_DEVT2DEVINFO:
408 		*result = (void *)di_dip;
409 		error = DDI_SUCCESS;
410 		break;
411 	case DDI_INFO_DEVT2INSTANCE:
412 		/*
413 		 * All dev_t's map to the same, single instance.
414 		 */
415 		*result = (void *)0;
416 		error = DDI_SUCCESS;
417 		break;
418 	default:
419 		break;
420 	}
421 
422 	return (error);
423 }
424 
425 static int
426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
427 {
428 	int error = DDI_FAILURE;
429 
430 	switch (cmd) {
431 	case DDI_ATTACH:
432 		di_states = kmem_zalloc(
433 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
434 
435 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
436 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
437 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
438 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
439 			kmem_free(di_states,
440 			    di_max_opens * sizeof (struct di_state *));
441 			ddi_remove_minor_node(dip, NULL);
442 			error = DDI_FAILURE;
443 		} else {
444 			di_dip = dip;
445 			ddi_report_dev(dip);
446 
447 			error = DDI_SUCCESS;
448 		}
449 		break;
450 	default:
451 		error = DDI_FAILURE;
452 		break;
453 	}
454 
455 	return (error);
456 }
457 
458 static int
459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
460 {
461 	int error = DDI_FAILURE;
462 
463 	switch (cmd) {
464 	case DDI_DETACH:
465 		ddi_remove_minor_node(dip, NULL);
466 		di_dip = NULL;
467 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
468 
469 		error = DDI_SUCCESS;
470 		break;
471 	default:
472 		error = DDI_FAILURE;
473 		break;
474 	}
475 
476 	return (error);
477 }
478 
479 /*
480  * Allow multiple opens by tweaking the dev_t such that it looks like each
481  * open is getting a different minor device.  Each minor gets a separate
482  * entry in the di_states[] table.  Based on the original minor number, we
483  * discriminate opens of the full and read-only nodes.  If all of the instances
484  * of the selected minor node are currently open, we return EAGAIN.
485  */
486 /*ARGSUSED*/
487 static int
488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
489 {
490 	int m;
491 	minor_t minor_parent = getminor(*devp);
492 
493 	if (minor_parent != DI_FULL_PARENT &&
494 	    minor_parent != DI_READONLY_PARENT)
495 		return (ENXIO);
496 
497 	mutex_enter(&di_lock);
498 
499 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
500 		if (di_states[m] != NULL)
501 			continue;
502 
503 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
504 		break;	/* It's ours. */
505 	}
506 
507 	if (m >= di_max_opens) {
508 		/*
509 		 * maximum open instance for device reached
510 		 */
511 		mutex_exit(&di_lock);
512 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
513 		return (EAGAIN);
514 	}
515 	mutex_exit(&di_lock);
516 
517 	ASSERT(m < di_max_opens);
518 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
519 
520 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
521 		(void *)curthread, m + DI_NODE_SPECIES));
522 
523 	return (0);
524 }
525 
526 /*ARGSUSED*/
527 static int
528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
529 {
530 	struct di_state *st;
531 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
532 
533 	if (m < 0) {
534 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
535 		    m + DI_NODE_SPECIES);
536 		return (ENXIO);
537 	}
538 
539 	st = di_states[m];
540 	ASSERT(m < di_max_opens && st != NULL);
541 
542 	di_freemem(st);
543 	kmem_free(st, sizeof (struct di_state));
544 
545 	/*
546 	 * empty slot in state table
547 	 */
548 	mutex_enter(&di_lock);
549 	di_states[m] = NULL;
550 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
551 		(void *)curthread, m + DI_NODE_SPECIES));
552 	mutex_exit(&di_lock);
553 
554 	return (0);
555 }
556 
557 
558 /*ARGSUSED*/
559 static int
560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
561 {
562 	int rv, error;
563 	di_off_t off;
564 	struct di_all *all;
565 	struct di_state *st;
566 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
567 
568 	major_t i;
569 	char *drv_name;
570 	size_t map_size, size;
571 	struct di_mem *dcp;
572 	int ndi_flags;
573 
574 	if (m < 0 || m >= di_max_opens) {
575 		return (ENXIO);
576 	}
577 
578 	st = di_states[m];
579 	ASSERT(st != NULL);
580 
581 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
582 
583 	switch (cmd) {
584 	case DINFOIDENT:
585 		/*
586 		 * This is called from di_init to verify that the driver
587 		 * opened is indeed devinfo. The purpose is to guard against
588 		 * sending ioctl to an unknown driver in case of an
589 		 * unresolved major number conflict during bfu.
590 		 */
591 		*rvalp = DI_MAGIC;
592 		return (0);
593 
594 	case DINFOLODRV:
595 		/*
596 		 * Hold an installed driver and return the result
597 		 */
598 		if (DI_UNPRIVILEGED_NODE(m)) {
599 			/*
600 			 * Only the fully enabled instances may issue
601 			 * DINFOLDDRV.
602 			 */
603 			return (EACCES);
604 		}
605 
606 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
607 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
608 			kmem_free(drv_name, MAXNAMELEN);
609 			return (EFAULT);
610 		}
611 
612 		/*
613 		 * Some 3rd party driver's _init() walks the device tree,
614 		 * so we load the driver module before configuring driver.
615 		 */
616 		i = ddi_name_to_major(drv_name);
617 		if (ddi_hold_driver(i) == NULL) {
618 			kmem_free(drv_name, MAXNAMELEN);
619 			return (ENXIO);
620 		}
621 
622 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
623 
624 		/*
625 		 * i_ddi_load_drvconf() below will trigger a reprobe
626 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
627 		 * needed here.
628 		 */
629 		modunload_disable();
630 		(void) i_ddi_load_drvconf(i);
631 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
632 		kmem_free(drv_name, MAXNAMELEN);
633 		ddi_rele_driver(i);
634 		rv = i_ddi_devs_attached(i);
635 		modunload_enable();
636 
637 		i_ddi_di_cache_invalidate(KM_SLEEP);
638 
639 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
640 
641 	case DINFOUSRLD:
642 		/*
643 		 * The case for copying snapshot to userland
644 		 */
645 		if (di_setstate(st, IOC_COPY) == -1)
646 			return (EBUSY);
647 
648 		map_size = ((struct di_all *)di_mem_addr(st, 0))->map_size;
649 		if (map_size == 0) {
650 			(void) di_setstate(st, IOC_DONE);
651 			return (EFAULT);
652 		}
653 
654 		/*
655 		 * copyout the snapshot
656 		 */
657 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
658 
659 		/*
660 		 * Return the map size, so caller may do a sanity
661 		 * check against the return value of snapshot ioctl()
662 		 */
663 		*rvalp = (int)map_size;
664 
665 		/*
666 		 * Copy one chunk at a time
667 		 */
668 		off = 0;
669 		dcp = st->memlist;
670 		while (map_size) {
671 			size = dcp->buf_size;
672 			if (map_size <= size) {
673 				size = map_size;
674 			}
675 
676 			if (ddi_copyout(di_mem_addr(st, off),
677 			    (void *)(arg + off), size, mode) != 0) {
678 				(void) di_setstate(st, IOC_DONE);
679 				return (EFAULT);
680 			}
681 
682 			map_size -= size;
683 			off += size;
684 			dcp = dcp->next;
685 		}
686 
687 		di_freemem(st);
688 		(void) di_setstate(st, IOC_IDLE);
689 		return (0);
690 
691 	default:
692 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
693 			/*
694 			 * Invalid ioctl command
695 			 */
696 			return (ENOTTY);
697 		}
698 		/*
699 		 * take a snapshot
700 		 */
701 		st->command = cmd & DIIOC_MASK;
702 		/*FALLTHROUGH*/
703 	}
704 
705 	/*
706 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
707 	 * memory exhaustion by freeing any previously allocated snapshot and
708 	 * refusing the operation; otherwise we would be allowing ioctl(),
709 	 * ioctl(), ioctl(), ..., panic.
710 	 */
711 	if (di_setstate(st, IOC_SNAP) == -1)
712 		return (EBUSY);
713 
714 	size = sizeof (struct di_all) +
715 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
716 	if (size < PAGESIZE)
717 		size = PAGESIZE;
718 	di_allocmem(st, size);
719 
720 	all = (struct di_all *)di_mem_addr(st, 0);
721 	all->devcnt = devcnt;
722 	all->command = st->command;
723 	all->version = DI_SNAPSHOT_VERSION;
724 	all->top_vhci_devinfo = 0;	/* filled up by build_vhci_list. */
725 
726 	/*
727 	 * Note the endianness in case we need to transport snapshot
728 	 * over the network.
729 	 */
730 #if defined(_LITTLE_ENDIAN)
731 	all->endianness = DI_LITTLE_ENDIAN;
732 #else
733 	all->endianness = DI_BIG_ENDIAN;
734 #endif
735 
736 	/* Copyin ioctl args, store in the snapshot. */
737 	if (copyinstr((void *)arg, all->root_path,
738 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
739 		di_freemem(st);
740 		(void) di_setstate(st, IOC_IDLE);
741 		return (EFAULT);
742 	}
743 
744 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
745 		di_freemem(st);
746 		(void) di_setstate(st, IOC_IDLE);
747 		return (EINVAL);
748 	}
749 
750 	error = 0;
751 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
752 		di_freemem(st);
753 		(void) di_setstate(st, IOC_IDLE);
754 		return (error);
755 	}
756 
757 	off = DI_ALIGN(sizeof (struct di_all) + size);
758 
759 	/*
760 	 * Only the fully enabled version may force load drivers or read
761 	 * the parent private data from a driver.
762 	 */
763 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
764 	    DI_UNPRIVILEGED_NODE(m)) {
765 		di_freemem(st);
766 		(void) di_setstate(st, IOC_IDLE);
767 		return (EACCES);
768 	}
769 
770 	/* Do we need private data? */
771 	if (st->command & DINFOPRIVDATA) {
772 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
773 
774 #ifdef _MULTI_DATAMODEL
775 		switch (ddi_model_convert_from(mode & FMODELS)) {
776 		case DDI_MODEL_ILP32: {
777 			/*
778 			 * Cannot copy private data from 64-bit kernel
779 			 * to 32-bit app
780 			 */
781 			di_freemem(st);
782 			(void) di_setstate(st, IOC_IDLE);
783 			return (EINVAL);
784 		}
785 		case DDI_MODEL_NONE:
786 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
787 				di_freemem(st);
788 				(void) di_setstate(st, IOC_IDLE);
789 				return (EFAULT);
790 			}
791 			break;
792 		}
793 #else /* !_MULTI_DATAMODEL */
794 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
795 			di_freemem(st);
796 			(void) di_setstate(st, IOC_IDLE);
797 			return (EFAULT);
798 		}
799 #endif /* _MULTI_DATAMODEL */
800 	}
801 
802 	all->top_devinfo = DI_ALIGN(off);
803 
804 	/*
805 	 * For cache lookups we reallocate memory from scratch,
806 	 * so the value of "all" is no longer valid.
807 	 */
808 	all = NULL;
809 
810 	if (st->command & DINFOCACHE) {
811 		*rvalp = di_cache_lookup(st);
812 	} else if (snapshot_is_cacheable(st)) {
813 		DI_CACHE_LOCK(di_cache);
814 		*rvalp = di_cache_update(st);
815 		DI_CACHE_UNLOCK(di_cache);
816 	} else
817 		*rvalp = di_snapshot_and_clean(st);
818 
819 	if (*rvalp) {
820 		DI_ALL_PTR(st)->map_size = *rvalp;
821 		(void) di_setstate(st, IOC_DONE);
822 	} else {
823 		di_freemem(st);
824 		(void) di_setstate(st, IOC_IDLE);
825 	}
826 
827 	return (0);
828 }
829 
830 /*
831  * Get a chunk of memory >= size, for the snapshot
832  */
833 static void
834 di_allocmem(struct di_state *st, size_t size)
835 {
836 	struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem),
837 	    KM_SLEEP);
838 	/*
839 	 * Round up size to nearest power of 2. If it is less
840 	 * than st->mem_size, set it to st->mem_size (i.e.,
841 	 * the mem_size is doubled every time) to reduce the
842 	 * number of memory allocations.
843 	 */
844 	size_t tmp = 1;
845 	while (tmp < size) {
846 		tmp <<= 1;
847 	}
848 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
849 
850 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
851 	mem->buf_size = size;
852 
853 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
854 
855 	if (st->mem_size == 0) {	/* first chunk */
856 		st->memlist = mem;
857 	} else {
858 		/*
859 		 * locate end of linked list and add a chunk at the end
860 		 */
861 		struct di_mem *dcp = st->memlist;
862 		while (dcp->next != NULL) {
863 			dcp = dcp->next;
864 		}
865 
866 		dcp->next = mem;
867 	}
868 
869 	st->mem_size += size;
870 }
871 
872 /*
873  * Copy upto bufsiz bytes of the memlist to buf
874  */
875 static void
876 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
877 {
878 	struct di_mem *dcp;
879 	size_t copysz;
880 
881 	if (st->mem_size == 0) {
882 		ASSERT(st->memlist == NULL);
883 		return;
884 	}
885 
886 	copysz = 0;
887 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
888 
889 		ASSERT(bufsiz > 0);
890 
891 		if (bufsiz <= dcp->buf_size)
892 			copysz = bufsiz;
893 		else
894 			copysz = dcp->buf_size;
895 
896 		bcopy(dcp->buf, buf, copysz);
897 
898 		buf += copysz;
899 		bufsiz -= copysz;
900 
901 		if (bufsiz == 0)
902 			break;
903 	}
904 }
905 
906 /*
907  * Free all memory for the snapshot
908  */
909 static void
910 di_freemem(struct di_state *st)
911 {
912 	struct di_mem *dcp, *tmp;
913 
914 	dcmn_err2((CE_CONT, "di_freemem\n"));
915 
916 	if (st->mem_size) {
917 		dcp = st->memlist;
918 		while (dcp) {	/* traverse the linked list */
919 			tmp = dcp;
920 			dcp = dcp->next;
921 			ddi_umem_free(tmp->cook);
922 			kmem_free(tmp, sizeof (struct di_mem));
923 		}
924 		st->mem_size = 0;
925 		st->memlist = NULL;
926 	}
927 
928 	ASSERT(st->mem_size == 0);
929 	ASSERT(st->memlist == NULL);
930 }
931 
932 /*
933  * Copies cached data to the di_state structure.
934  * Returns:
935  *	- size of data copied, on SUCCESS
936  *	- 0 on failure
937  */
938 static int
939 di_cache2mem(struct di_cache *cache, struct di_state *st)
940 {
941 	caddr_t	pa;
942 
943 	ASSERT(st->mem_size == 0);
944 	ASSERT(st->memlist == NULL);
945 	ASSERT(!servicing_interrupt());
946 	ASSERT(DI_CACHE_LOCKED(*cache));
947 
948 	if (cache->cache_size == 0) {
949 		ASSERT(cache->cache_data == NULL);
950 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
951 		return (0);
952 	}
953 
954 	ASSERT(cache->cache_data);
955 
956 	di_allocmem(st, cache->cache_size);
957 
958 	pa = di_mem_addr(st, 0);
959 
960 	ASSERT(pa);
961 
962 	/*
963 	 * Verify that di_allocmem() allocates contiguous memory,
964 	 * so that it is safe to do straight bcopy()
965 	 */
966 	ASSERT(st->memlist != NULL);
967 	ASSERT(st->memlist->next == NULL);
968 	bcopy(cache->cache_data, pa, cache->cache_size);
969 
970 	return (cache->cache_size);
971 }
972 
973 /*
974  * Copies a snapshot from di_state to the cache
975  * Returns:
976  *	- 0 on failure
977  *	- size of copied data on success
978  */
979 static int
980 di_mem2cache(struct di_state *st, struct di_cache *cache)
981 {
982 	size_t map_size;
983 
984 	ASSERT(cache->cache_size == 0);
985 	ASSERT(cache->cache_data == NULL);
986 	ASSERT(!servicing_interrupt());
987 	ASSERT(DI_CACHE_LOCKED(*cache));
988 
989 	if (st->mem_size == 0) {
990 		ASSERT(st->memlist == NULL);
991 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
992 		return (0);
993 	}
994 
995 	ASSERT(st->memlist);
996 
997 	/*
998 	 * The size of the memory list may be much larger than the
999 	 * size of valid data (map_size). Cache only the valid data
1000 	 */
1001 	map_size = DI_ALL_PTR(st)->map_size;
1002 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1003 	    map_size > st->mem_size) {
1004 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1005 		return (0);
1006 	}
1007 
1008 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1009 	cache->cache_size = map_size;
1010 	di_copymem(st, cache->cache_data, cache->cache_size);
1011 
1012 	return (map_size);
1013 }
1014 
1015 /*
1016  * Make sure there is at least "size" bytes memory left before
1017  * going on. Otherwise, start on a new chunk.
1018  */
1019 static di_off_t
1020 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1021 {
1022 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1023 			off, (int)size));
1024 
1025 	/*
1026 	 * di_checkmem() shouldn't be called with a size of zero.
1027 	 * But in case it is, we want to make sure we return a valid
1028 	 * offset within the memlist and not an offset that points us
1029 	 * at the end of the memlist.
1030 	 */
1031 	if (size == 0) {
1032 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1033 		size = 1;
1034 	}
1035 
1036 	off = DI_ALIGN(off);
1037 	if ((st->mem_size - off) < size) {
1038 		off = st->mem_size;
1039 		di_allocmem(st, size);
1040 	}
1041 
1042 	return (off);
1043 }
1044 
1045 /*
1046  * Copy the private data format from ioctl arg.
1047  * On success, the ending offset is returned. On error 0 is returned.
1048  */
1049 static di_off_t
1050 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1051 {
1052 	di_off_t size;
1053 	struct di_priv_data *priv;
1054 	struct di_all *all = (struct di_all *)di_mem_addr(st, 0);
1055 
1056 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1057 		off, (void *)arg, mode));
1058 
1059 	/*
1060 	 * Copyin data and check version.
1061 	 * We only handle private data version 0.
1062 	 */
1063 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1064 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1065 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1066 		kmem_free(priv, sizeof (struct di_priv_data));
1067 		return (0);
1068 	}
1069 
1070 	/*
1071 	 * Save di_priv_data copied from userland in snapshot.
1072 	 */
1073 	all->pd_version = priv->version;
1074 	all->n_ppdata = priv->n_parent;
1075 	all->n_dpdata = priv->n_driver;
1076 
1077 	/*
1078 	 * copyin private data format, modify offset accordingly
1079 	 */
1080 	if (all->n_ppdata) {	/* parent private data format */
1081 		/*
1082 		 * check memory
1083 		 */
1084 		size = all->n_ppdata * sizeof (struct di_priv_format);
1085 		off = di_checkmem(st, off, size);
1086 		all->ppdata_format = off;
1087 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1088 		    mode) != 0) {
1089 			kmem_free(priv, sizeof (struct di_priv_data));
1090 			return (0);
1091 		}
1092 
1093 		off += size;
1094 	}
1095 
1096 	if (all->n_dpdata) {	/* driver private data format */
1097 		/*
1098 		 * check memory
1099 		 */
1100 		size = all->n_dpdata * sizeof (struct di_priv_format);
1101 		off = di_checkmem(st, off, size);
1102 		all->dpdata_format = off;
1103 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1104 		    mode) != 0) {
1105 			kmem_free(priv, sizeof (struct di_priv_data));
1106 			return (0);
1107 		}
1108 
1109 		off += size;
1110 	}
1111 
1112 	kmem_free(priv, sizeof (struct di_priv_data));
1113 	return (off);
1114 }
1115 
1116 /*
1117  * Return the real address based on the offset (off) within snapshot
1118  */
1119 static caddr_t
1120 di_mem_addr(struct di_state *st, di_off_t off)
1121 {
1122 	struct di_mem *dcp = st->memlist;
1123 
1124 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1125 		(void *)dcp, off));
1126 
1127 	ASSERT(off < st->mem_size);
1128 
1129 	while (off >= dcp->buf_size) {
1130 		off -= dcp->buf_size;
1131 		dcp = dcp->next;
1132 	}
1133 
1134 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1135 		off, (void *)(dcp->buf + off)));
1136 
1137 	return (dcp->buf + off);
1138 }
1139 
1140 /*
1141  * Ideally we would use the whole key to derive the hash
1142  * value. However, the probability that two keys will
1143  * have the same dip (or pip) is very low, so
1144  * hashing by dip (or pip) pointer should suffice.
1145  */
1146 static uint_t
1147 di_hash_byptr(void *arg, mod_hash_key_t key)
1148 {
1149 	struct di_key *dik = key;
1150 	size_t rshift;
1151 	void *ptr;
1152 
1153 	ASSERT(arg == NULL);
1154 
1155 	switch (dik->k_type) {
1156 	case DI_DKEY:
1157 		ptr = dik->k_u.dkey.dk_dip;
1158 		rshift = highbit(sizeof (struct dev_info));
1159 		break;
1160 	case DI_PKEY:
1161 		ptr = dik->k_u.pkey.pk_pip;
1162 		rshift = highbit(sizeof (struct mdi_pathinfo));
1163 		break;
1164 	default:
1165 		panic("devinfo: unknown key type");
1166 		/*NOTREACHED*/
1167 	}
1168 	return (mod_hash_byptr((void *)rshift, ptr));
1169 }
1170 
1171 static void
1172 di_key_dtor(mod_hash_key_t key)
1173 {
1174 	char		*path_addr;
1175 	struct di_key	*dik = key;
1176 
1177 	switch (dik->k_type) {
1178 	case DI_DKEY:
1179 		break;
1180 	case DI_PKEY:
1181 		path_addr = dik->k_u.pkey.pk_path_addr;
1182 		if (path_addr)
1183 			kmem_free(path_addr, strlen(path_addr) + 1);
1184 		break;
1185 	default:
1186 		panic("devinfo: unknown key type");
1187 		/*NOTREACHED*/
1188 	}
1189 
1190 	kmem_free(dik, sizeof (struct di_key));
1191 }
1192 
1193 static int
1194 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1195 {
1196 	if (dk1->dk_dip !=  dk2->dk_dip)
1197 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1198 
1199 	if (dk1->dk_major != -1 && dk2->dk_major != -1) {
1200 		if (dk1->dk_major !=  dk2->dk_major)
1201 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1202 
1203 		if (dk1->dk_inst !=  dk2->dk_inst)
1204 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1205 	}
1206 
1207 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1208 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1209 
1210 	return (0);
1211 }
1212 
1213 static int
1214 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1215 {
1216 	char *p1, *p2;
1217 	int rv;
1218 
1219 	if (pk1->pk_pip !=  pk2->pk_pip)
1220 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1221 
1222 	p1 = pk1->pk_path_addr;
1223 	p2 = pk2->pk_path_addr;
1224 
1225 	p1 = p1 ? p1 : "";
1226 	p2 = p2 ? p2 : "";
1227 
1228 	rv = strcmp(p1, p2);
1229 	if (rv)
1230 		return (rv > 0  ? 1 : -1);
1231 
1232 	if (pk1->pk_client !=  pk2->pk_client)
1233 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1234 
1235 	if (pk1->pk_phci !=  pk2->pk_phci)
1236 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1237 
1238 	return (0);
1239 }
1240 
1241 static int
1242 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1243 {
1244 	struct di_key *dik1, *dik2;
1245 
1246 	dik1 = key1;
1247 	dik2 = key2;
1248 
1249 	if (dik1->k_type != dik2->k_type) {
1250 		panic("devinfo: mismatched keys");
1251 		/*NOTREACHED*/
1252 	}
1253 
1254 	switch (dik1->k_type) {
1255 	case DI_DKEY:
1256 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1257 	case DI_PKEY:
1258 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1259 	default:
1260 		panic("devinfo: unknown key type");
1261 		/*NOTREACHED*/
1262 	}
1263 }
1264 
1265 /*
1266  * This is the main function that takes a snapshot
1267  */
1268 static di_off_t
1269 di_snapshot(struct di_state *st)
1270 {
1271 	di_off_t off;
1272 	struct di_all *all;
1273 	dev_info_t *rootnode;
1274 	char buf[80];
1275 	int plen;
1276 	char *path;
1277 	vnode_t *vp;
1278 
1279 	all = (struct di_all *)di_mem_addr(st, 0);
1280 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1281 
1282 	/*
1283 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1284 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1285 	 * path against an invalid path results in panic.  The lookupnameat
1286 	 * is done relative to rootdir without a leading '/' on "devices/"
1287 	 * to force the lookup to occur in the global zone.
1288 	 */
1289 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1290 	path = kmem_alloc(plen, KM_SLEEP);
1291 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1292 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1293 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1294 		    all->root_path));
1295 		kmem_free(path, plen);
1296 		return (0);
1297 	}
1298 	kmem_free(path, plen);
1299 	VN_RELE(vp);
1300 
1301 	/*
1302 	 * Hold the devinfo node referred by the path.
1303 	 */
1304 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1305 	if (rootnode == NULL) {
1306 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1307 		    all->root_path));
1308 		return (0);
1309 	}
1310 
1311 	(void) snprintf(buf, sizeof (buf),
1312 	    "devinfo registered dips (statep=%p)", (void *)st);
1313 
1314 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1315 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1316 	    NULL, di_key_cmp, KM_SLEEP);
1317 
1318 
1319 	(void) snprintf(buf, sizeof (buf),
1320 	    "devinfo registered pips (statep=%p)", (void *)st);
1321 
1322 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1323 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1324 	    NULL, di_key_cmp, KM_SLEEP);
1325 
1326 	/*
1327 	 * copy the device tree
1328 	 */
1329 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1330 
1331 	if (DINFOPATH & st->command) {
1332 		mdi_walk_vhcis(build_vhci_list, st);
1333 	}
1334 
1335 	ddi_release_devi(rootnode);
1336 
1337 	/*
1338 	 * copy the devnames array
1339 	 */
1340 	all->devnames = off;
1341 	off = di_copydevnm(&all->devnames, st);
1342 
1343 
1344 	/* initialize the hash tables */
1345 	st->lnode_count = 0;
1346 	st->link_count = 0;
1347 
1348 	if (DINFOLYR & st->command) {
1349 		off = di_getlink_data(off, st);
1350 	}
1351 
1352 	/*
1353 	 * Free up hash tables
1354 	 */
1355 	mod_hash_destroy_hash(st->reg_dip_hash);
1356 	mod_hash_destroy_hash(st->reg_pip_hash);
1357 
1358 	/*
1359 	 * Record the timestamp now that we are done with snapshot.
1360 	 *
1361 	 * We compute the checksum later and then only if we cache
1362 	 * the snapshot, since checksumming adds some overhead.
1363 	 * The checksum is checked later if we read the cache file.
1364 	 * from disk.
1365 	 *
1366 	 * Set checksum field to 0 as CRC is calculated with that
1367 	 * field set to 0.
1368 	 */
1369 	all->snapshot_time = ddi_get_time();
1370 	all->cache_checksum = 0;
1371 
1372 	return (off);
1373 }
1374 
1375 /*
1376  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1377  */
1378 static di_off_t
1379 di_snapshot_and_clean(struct di_state *st)
1380 {
1381 	di_off_t	off;
1382 
1383 	modunload_disable();
1384 	off = di_snapshot(st);
1385 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1386 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1387 		/*
1388 		 * Cleanup /etc/devices files:
1389 		 * In order to accurately account for the system configuration
1390 		 * in /etc/devices files, the appropriate drivers must be
1391 		 * fully configured before the cleanup starts.
1392 		 * So enable modunload only after the cleanup.
1393 		 */
1394 		i_ddi_clean_devices_files();
1395 	}
1396 	modunload_enable();
1397 
1398 	return (off);
1399 }
1400 
1401 /*
1402  * construct vhci linkage in the snapshot.
1403  */
1404 int
1405 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1406 {
1407 	struct di_all *all;
1408 	struct di_node *me;
1409 	struct di_state *st;
1410 	di_off_t off;
1411 	struct phci_walk_arg pwa;
1412 
1413 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1414 
1415 	dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n",
1416 		DEVI(vh_devinfo)->devi_node_name,
1417 		DEVI(vh_devinfo)->devi_instance));
1418 
1419 	st = (struct di_state *)arg;
1420 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1421 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1422 		return (DDI_WALK_TERMINATE);
1423 	}
1424 
1425 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1426 		st->mem_size, off));
1427 
1428 	all = (struct di_all *)di_mem_addr(st, 0);
1429 	if (all->top_vhci_devinfo == 0) {
1430 		all->top_vhci_devinfo = off;
1431 	} else {
1432 		me = (struct di_node *)di_mem_addr(st, all->top_vhci_devinfo);
1433 
1434 		while (me->next_vhci != 0) {
1435 			me = (struct di_node *)di_mem_addr(st, me->next_vhci);
1436 		}
1437 
1438 		me->next_vhci = off;
1439 	}
1440 
1441 	pwa.off = off;
1442 	pwa.st = st;
1443 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1444 
1445 	return (DDI_WALK_CONTINUE);
1446 }
1447 
1448 /*
1449  * construct phci linkage for the given vhci in the snapshot.
1450  */
1451 int
1452 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1453 {
1454 	struct di_node *vh_di_node;
1455 	struct di_node *me;
1456 	struct phci_walk_arg *pwa;
1457 	di_off_t off;
1458 
1459 	pwa = (struct phci_walk_arg *)arg;
1460 
1461 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1462 		pwa->off));
1463 
1464 	vh_di_node = (struct di_node *)di_mem_addr(pwa->st, pwa->off);
1465 
1466 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1467 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1468 		return (DDI_WALK_TERMINATE);
1469 	}
1470 
1471 	dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n",
1472 		DEVI(ph_devinfo)->devi_node_name,
1473 		DEVI(ph_devinfo)->devi_instance, off));
1474 
1475 	if (vh_di_node->top_phci == 0) {
1476 		vh_di_node->top_phci = off;
1477 		return (DDI_WALK_CONTINUE);
1478 	}
1479 
1480 	me = (struct di_node *)di_mem_addr(pwa->st, vh_di_node->top_phci);
1481 
1482 	while (me->next_phci != 0) {
1483 		me = (struct di_node *)di_mem_addr(pwa->st, me->next_phci);
1484 	}
1485 	me->next_phci = off;
1486 
1487 	return (DDI_WALK_CONTINUE);
1488 }
1489 
1490 /*
1491  * Assumes all devinfo nodes in device tree have been snapshotted
1492  */
1493 static void
1494 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p)
1495 {
1496 	struct dev_info *node;
1497 	struct di_node *me;
1498 	di_off_t off;
1499 
1500 	ASSERT(mutex_owned(&dnp->dn_lock));
1501 
1502 	node = DEVI(dnp->dn_head);
1503 	for (; node; node = node->devi_next) {
1504 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1505 			continue;
1506 
1507 		ASSERT(off > 0);
1508 		me = (struct di_node *)di_mem_addr(st, off);
1509 		ASSERT(me->next == 0 || me->next == -1);
1510 		/*
1511 		 * Only nodes which were BOUND when they were
1512 		 * snapshotted will be added to per-driver list.
1513 		 */
1514 		if (me->next != -1)
1515 			continue;
1516 
1517 		*poff_p = off;
1518 		poff_p = &me->next;
1519 	}
1520 
1521 	*poff_p = 0;
1522 }
1523 
1524 /*
1525  * Copy the devnames array, so we have a list of drivers in the snapshot.
1526  * Also makes it possible to locate the per-driver devinfo nodes.
1527  */
1528 static di_off_t
1529 di_copydevnm(di_off_t *off_p, struct di_state *st)
1530 {
1531 	int i;
1532 	di_off_t off;
1533 	size_t size;
1534 	struct di_devnm *dnp;
1535 
1536 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1537 
1538 	/*
1539 	 * make sure there is some allocated memory
1540 	 */
1541 	size = devcnt * sizeof (struct di_devnm);
1542 	off = di_checkmem(st, *off_p, size);
1543 	*off_p = off;
1544 
1545 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1546 		devcnt, off));
1547 
1548 	dnp = (struct di_devnm *)di_mem_addr(st, off);
1549 	off += size;
1550 
1551 	for (i = 0; i < devcnt; i++) {
1552 		if (devnamesp[i].dn_name == NULL) {
1553 			continue;
1554 		}
1555 
1556 		/*
1557 		 * dn_name is not freed during driver unload or removal.
1558 		 *
1559 		 * There is a race condition when make_devname() changes
1560 		 * dn_name during our strcpy. This should be rare since
1561 		 * only add_drv does this. At any rate, we never had a
1562 		 * problem with ddi_name_to_major(), which should have
1563 		 * the same problem.
1564 		 */
1565 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1566 			devnamesp[i].dn_name, devnamesp[i].dn_instance,
1567 			off));
1568 
1569 		off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1);
1570 		dnp[i].name = off;
1571 		(void) strcpy((char *)di_mem_addr(st, off),
1572 			devnamesp[i].dn_name);
1573 		off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1);
1574 
1575 		mutex_enter(&devnamesp[i].dn_lock);
1576 
1577 		/*
1578 		 * Snapshot per-driver node list
1579 		 */
1580 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1581 
1582 		/*
1583 		 * This is not used by libdevinfo, leave it for now
1584 		 */
1585 		dnp[i].flags = devnamesp[i].dn_flags;
1586 		dnp[i].instance = devnamesp[i].dn_instance;
1587 
1588 		/*
1589 		 * get global properties
1590 		 */
1591 		if ((DINFOPROP & st->command) &&
1592 		    devnamesp[i].dn_global_prop_ptr) {
1593 			dnp[i].global_prop = off;
1594 			off = di_getprop(
1595 			    devnamesp[i].dn_global_prop_ptr->prop_list,
1596 			    &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST);
1597 		}
1598 
1599 		/*
1600 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1601 		 */
1602 		if (CB_DRV_INSTALLED(devopsp[i])) {
1603 			if (devopsp[i]->devo_cb_ops) {
1604 				dnp[i].ops |= DI_CB_OPS;
1605 				if (devopsp[i]->devo_cb_ops->cb_str)
1606 					dnp[i].ops |= DI_STREAM_OPS;
1607 			}
1608 			if (NEXUS_DRV(devopsp[i])) {
1609 				dnp[i].ops |= DI_BUS_OPS;
1610 			}
1611 		}
1612 
1613 		mutex_exit(&devnamesp[i].dn_lock);
1614 	}
1615 
1616 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1617 
1618 	return (off);
1619 }
1620 
1621 /*
1622  * Copy the kernel devinfo tree. The tree and the devnames array forms
1623  * the entire snapshot (see also di_copydevnm).
1624  */
1625 static di_off_t
1626 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1627 {
1628 	di_off_t off;
1629 	struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1630 
1631 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1632 		(void *)root, *off_p));
1633 
1634 	/* force attach drivers */
1635 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1636 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1637 		(void) ndi_devi_config((dev_info_t *)root,
1638 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1639 		    NDI_DRV_CONF_REPROBE);
1640 	}
1641 
1642 	/*
1643 	 * Push top_devinfo onto a stack
1644 	 *
1645 	 * The stack is necessary to avoid recursion, which can overrun
1646 	 * the kernel stack.
1647 	 */
1648 	PUSH_STACK(dsp, root, off_p);
1649 
1650 	/*
1651 	 * As long as there is a node on the stack, copy the node.
1652 	 * di_copynode() is responsible for pushing and popping
1653 	 * child and sibling nodes on the stack.
1654 	 */
1655 	while (!EMPTY_STACK(dsp)) {
1656 		off = di_copynode(dsp, st);
1657 	}
1658 
1659 	/*
1660 	 * Free the stack structure
1661 	 */
1662 	kmem_free(dsp, sizeof (struct di_stack));
1663 
1664 	return (off);
1665 }
1666 
1667 /*
1668  * This is the core function, which copies all data associated with a single
1669  * node into the snapshot. The amount of information is determined by the
1670  * ioctl command.
1671  */
1672 static di_off_t
1673 di_copynode(struct di_stack *dsp, struct di_state *st)
1674 {
1675 	di_off_t off;
1676 	struct di_node *me;
1677 	struct dev_info *node;
1678 
1679 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n",
1680 			dsp->depth));
1681 
1682 	node = TOP_NODE(dsp);
1683 
1684 	ASSERT(node != NULL);
1685 
1686 	/*
1687 	 * check memory usage, and fix offsets accordingly.
1688 	 */
1689 	off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node));
1690 	*(TOP_OFFSET(dsp)) = off;
1691 	me = DI_NODE(di_mem_addr(st, off));
1692 
1693 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1694 			node->devi_node_name, node->devi_instance, off));
1695 
1696 	/*
1697 	 * Node parameters:
1698 	 * self		-- offset of current node within snapshot
1699 	 * nodeid	-- pointer to PROM node (tri-valued)
1700 	 * state	-- hot plugging device state
1701 	 * node_state	-- devinfo node state (CF1, CF2, etc.)
1702 	 */
1703 	me->self = off;
1704 	me->instance = node->devi_instance;
1705 	me->nodeid = node->devi_nodeid;
1706 	me->node_class = node->devi_node_class;
1707 	me->attributes = node->devi_node_attributes;
1708 	me->state = node->devi_state;
1709 	me->node_state = node->devi_node_state;
1710 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1711 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1712 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1713 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1714 	me->user_private_data = NULL;
1715 
1716 	/*
1717 	 * Get parent's offset in snapshot from the stack
1718 	 * and store it in the current node
1719 	 */
1720 	if (dsp->depth > 1) {
1721 		me->parent = *(PARENT_OFFSET(dsp));
1722 	}
1723 
1724 	/*
1725 	 * Save the offset of this di_node in a hash table.
1726 	 * This is used later to resolve references to this
1727 	 * dip from other parts of the tree (per-driver list,
1728 	 * multipathing linkages, layered usage linkages).
1729 	 * The key used for the hash table is derived from
1730 	 * information in the dip.
1731 	 */
1732 	di_register_dip(st, (dev_info_t *)node, me->self);
1733 
1734 	/*
1735 	 * increment offset
1736 	 */
1737 	off += sizeof (struct di_node);
1738 
1739 #ifdef	DEVID_COMPATIBILITY
1740 	/* check for devid as property marker */
1741 	if (node->devi_devid) {
1742 		ddi_devid_t	devid;
1743 		char 		*devidstr;
1744 		int		devid_size;
1745 
1746 		/*
1747 		 * The devid is now represented as a property.
1748 		 * For micro release compatibility with di_devid interface
1749 		 * in libdevinfo we must return it as a binary structure in'
1750 		 * the snapshot.  When di_devid is removed from libdevinfo
1751 		 * in a future release (and devi_devid is deleted) then
1752 		 * code related to DEVID_COMPATIBILITY can be removed.
1753 		 */
1754 		ASSERT(node->devi_devid == DEVID_COMPATIBILITY);
1755 /* XXX should be DDI_DEV_T_NONE! */
1756 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node,
1757 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) ==
1758 		    DDI_PROP_SUCCESS) {
1759 			if (ddi_devid_str_decode(devidstr, &devid, NULL) ==
1760 			    DDI_SUCCESS) {
1761 				devid_size = ddi_devid_sizeof(devid);
1762 				off = di_checkmem(st, off, devid_size);
1763 				me->devid = off;
1764 				bcopy(devid,
1765 				    di_mem_addr(st, off), devid_size);
1766 				off += devid_size;
1767 				ddi_devid_free(devid);
1768 			}
1769 			ddi_prop_free(devidstr);
1770 		}
1771 	}
1772 #endif	/* DEVID_COMPATIBILITY */
1773 
1774 	if (node->devi_node_name) {
1775 		off = di_checkmem(st, off, strlen(node->devi_node_name) + 1);
1776 		me->node_name = off;
1777 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1778 		off += strlen(node->devi_node_name) + 1;
1779 	}
1780 
1781 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1782 		off = di_checkmem(st, off, node->devi_compat_length);
1783 		me->compat_names = off;
1784 		me->compat_length = node->devi_compat_length;
1785 		bcopy(node->devi_compat_names, di_mem_addr(st, off),
1786 			node->devi_compat_length);
1787 		off += node->devi_compat_length;
1788 	}
1789 
1790 	if (node->devi_addr) {
1791 		off = di_checkmem(st, off, strlen(node->devi_addr) + 1);
1792 		me->address = off;
1793 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1794 		off += strlen(node->devi_addr) + 1;
1795 	}
1796 
1797 	if (node->devi_binding_name) {
1798 		off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1);
1799 		me->bind_name = off;
1800 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1801 		off += strlen(node->devi_binding_name) + 1;
1802 	}
1803 
1804 	me->drv_major = node->devi_major;
1805 
1806 	/*
1807 	 * If the dip is BOUND, set the next pointer of the
1808 	 * per-instance list to -1, indicating that it is yet to be resolved.
1809 	 * This will be resolved later in snap_driver_list().
1810 	 */
1811 	if (me->drv_major != -1) {
1812 		me->next = -1;
1813 	} else {
1814 		me->next = 0;
1815 	}
1816 
1817 	/*
1818 	 * An optimization to skip mutex_enter when not needed.
1819 	 */
1820 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1821 		goto priv_data;
1822 	}
1823 
1824 	/*
1825 	 * Grab current per dev_info node lock to
1826 	 * get minor data and properties.
1827 	 */
1828 	mutex_enter(&(node->devi_lock));
1829 
1830 	if (!(DINFOMINOR & st->command)) {
1831 		goto path;
1832 	}
1833 
1834 	if (node->devi_minor) {		/* minor data */
1835 		me->minor_data = DI_ALIGN(off);
1836 		off = di_getmdata(node->devi_minor, &me->minor_data,
1837 		    me->self, st);
1838 	}
1839 
1840 path:
1841 	if (!(DINFOPATH & st->command)) {
1842 		goto property;
1843 	}
1844 
1845 	if (MDI_VHCI(node)) {
1846 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1847 	}
1848 
1849 	if (MDI_CLIENT(node)) {
1850 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1851 		me->multipath_client = DI_ALIGN(off);
1852 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1853 		    me->self, st, 1);
1854 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1855 		    "component type = %d.  off=%d",
1856 		    me->multipath_client,
1857 		    (void *)node, node->devi_mdi_component, off));
1858 	}
1859 
1860 	if (MDI_PHCI(node)) {
1861 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1862 		me->multipath_phci = DI_ALIGN(off);
1863 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1864 		    me->self, st, 0);
1865 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1866 		    "component type = %d.  off=%d",
1867 		    me->multipath_phci,
1868 		    (void *)node, node->devi_mdi_component, off));
1869 	}
1870 
1871 property:
1872 	if (!(DINFOPROP & st->command)) {
1873 		goto unlock;
1874 	}
1875 
1876 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1877 		me->drv_prop = DI_ALIGN(off);
1878 		off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st,
1879 			node, DI_PROP_DRV_LIST);
1880 	}
1881 
1882 	if (node->devi_sys_prop_ptr) {	/* system property list */
1883 		me->sys_prop = DI_ALIGN(off);
1884 		off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st,
1885 			node, DI_PROP_SYS_LIST);
1886 	}
1887 
1888 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1889 		me->hw_prop = DI_ALIGN(off);
1890 		off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st,
1891 			node, DI_PROP_HW_LIST);
1892 	}
1893 
1894 	if (node->devi_global_prop_list == NULL) {
1895 		me->glob_prop = (di_off_t)-1;	/* not global property */
1896 	} else {
1897 		/*
1898 		 * Make copy of global property list if this devinfo refers
1899 		 * global properties different from what's on the devnames
1900 		 * array. It can happen if there has been a forced
1901 		 * driver.conf update. See mod_drv(1M).
1902 		 */
1903 		ASSERT(me->drv_major != -1);
1904 		if (node->devi_global_prop_list !=
1905 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1906 			me->glob_prop = DI_ALIGN(off);
1907 			off = di_getprop(node->devi_global_prop_list->prop_list,
1908 			    &me->glob_prop, st, node, DI_PROP_GLB_LIST);
1909 		}
1910 	}
1911 
1912 unlock:
1913 	/*
1914 	 * release current per dev_info node lock
1915 	 */
1916 	mutex_exit(&(node->devi_lock));
1917 
1918 priv_data:
1919 	if (!(DINFOPRIVDATA & st->command)) {
1920 		goto pm_info;
1921 	}
1922 
1923 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1924 		me->parent_data = DI_ALIGN(off);
1925 		off = di_getppdata(node, &me->parent_data, st);
1926 	}
1927 
1928 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1929 		me->driver_data = DI_ALIGN(off);
1930 		off = di_getdpdata(node, &me->driver_data, st);
1931 	}
1932 
1933 pm_info: /* NOT implemented */
1934 
1935 subtree:
1936 	if (!(DINFOSUBTREE & st->command)) {
1937 		POP_STACK(dsp);
1938 		return (DI_ALIGN(off));
1939 	}
1940 
1941 child:
1942 	/*
1943 	 * If there is a child--push child onto stack.
1944 	 * Hold the parent busy while doing so.
1945 	 */
1946 	if (node->devi_child) {
1947 		me->child = DI_ALIGN(off);
1948 		PUSH_STACK(dsp, node->devi_child, &me->child);
1949 		return (me->child);
1950 	}
1951 
1952 sibling:
1953 	/*
1954 	 * no child node, unroll the stack till a sibling of
1955 	 * a parent node is found or root node is reached
1956 	 */
1957 	POP_STACK(dsp);
1958 	while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) {
1959 		node = TOP_NODE(dsp);
1960 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1961 		POP_STACK(dsp);
1962 	}
1963 
1964 	if (!EMPTY_STACK(dsp)) {
1965 		/*
1966 		 * a sibling is found, replace top of stack by its sibling
1967 		 */
1968 		me->sibling = DI_ALIGN(off);
1969 		PUSH_STACK(dsp, node->devi_sibling, &me->sibling);
1970 		return (me->sibling);
1971 	}
1972 
1973 	/*
1974 	 * DONE with all nodes
1975 	 */
1976 	return (DI_ALIGN(off));
1977 }
1978 
1979 static i_lnode_t *
1980 i_lnode_alloc(int modid)
1981 {
1982 	i_lnode_t	*i_lnode;
1983 
1984 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1985 
1986 	ASSERT(modid != -1);
1987 	i_lnode->modid = modid;
1988 
1989 	return (i_lnode);
1990 }
1991 
1992 static void
1993 i_lnode_free(i_lnode_t *i_lnode)
1994 {
1995 	kmem_free(i_lnode, sizeof (i_lnode_t));
1996 }
1997 
1998 static void
1999 i_lnode_check_free(i_lnode_t *i_lnode)
2000 {
2001 	/* This lnode and its dip must have been snapshotted */
2002 	ASSERT(i_lnode->self > 0);
2003 	ASSERT(i_lnode->di_node->self > 0);
2004 
2005 	/* at least 1 link (in or out) must exist for this lnode */
2006 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2007 
2008 	i_lnode_free(i_lnode);
2009 }
2010 
2011 static i_link_t *
2012 i_link_alloc(int spec_type)
2013 {
2014 	i_link_t *i_link;
2015 
2016 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2017 	i_link->spec_type = spec_type;
2018 
2019 	return (i_link);
2020 }
2021 
2022 static void
2023 i_link_check_free(i_link_t *i_link)
2024 {
2025 	/* This link must have been snapshotted */
2026 	ASSERT(i_link->self > 0);
2027 
2028 	/* Both endpoint lnodes must exist for this link */
2029 	ASSERT(i_link->src_lnode);
2030 	ASSERT(i_link->tgt_lnode);
2031 
2032 	kmem_free(i_link, sizeof (i_link_t));
2033 }
2034 
2035 /*ARGSUSED*/
2036 static uint_t
2037 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2038 {
2039 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2040 	struct di_node	*ptr;
2041 	dev_t		dev;
2042 
2043 	dev = i_lnode->devt;
2044 	if (dev != DDI_DEV_T_NONE)
2045 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2046 
2047 	ptr = i_lnode->di_node;
2048 	ASSERT(ptr->self > 0);
2049 	if (ptr) {
2050 		uintptr_t k = (uintptr_t)ptr;
2051 		k >>= (int)highbit(sizeof (struct di_node));
2052 		return ((uint_t)k);
2053 	}
2054 
2055 	return (i_lnode->modid);
2056 }
2057 
2058 static int
2059 i_lnode_cmp(void *arg1, void *arg2)
2060 {
2061 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2062 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2063 
2064 	if (i_lnode1->modid != i_lnode2->modid) {
2065 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2066 	}
2067 
2068 	if (i_lnode1->di_node != i_lnode2->di_node)
2069 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2070 
2071 	if (i_lnode1->devt != i_lnode2->devt)
2072 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2073 
2074 	return (0);
2075 }
2076 
2077 /*
2078  * An lnode represents a {dip, dev_t} tuple. A link represents a
2079  * {src_lnode, tgt_lnode, spec_type} tuple.
2080  * The following callback assumes that LDI framework ref-counts the
2081  * src_dip and tgt_dip while invoking this callback.
2082  */
2083 static int
2084 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2085 {
2086 	struct di_state	*st = (struct di_state *)arg;
2087 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2088 	i_link_t	**i_link_next, *i_link;
2089 	di_off_t	soff, toff;
2090 	mod_hash_val_t	nodep = NULL;
2091 	int		res;
2092 
2093 	/*
2094 	 * if the source or target of this device usage information doesn't
2095 	 * corrospond to a device node then we don't report it via
2096 	 * libdevinfo so return.
2097 	 */
2098 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2099 		return (LDI_USAGE_CONTINUE);
2100 
2101 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2102 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2103 
2104 	/*
2105 	 * Skip the ldi_usage if either src or tgt dip is not in the
2106 	 * snapshot. This saves us from pruning bad lnodes/links later.
2107 	 */
2108 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2109 		return (LDI_USAGE_CONTINUE);
2110 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2111 		return (LDI_USAGE_CONTINUE);
2112 
2113 	ASSERT(soff > 0);
2114 	ASSERT(toff > 0);
2115 
2116 	/*
2117 	 * allocate an i_lnode and add it to the lnode hash
2118 	 * if it is not already present. For this particular
2119 	 * link the lnode is a source, but it may
2120 	 * participate as tgt or src in any number of layered
2121 	 * operations - so it may already be in the hash.
2122 	 */
2123 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2124 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, soff);
2125 	i_lnode->devt = ldi_usage->src_devt;
2126 
2127 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2128 	if (res == MH_ERR_NOTFOUND) {
2129 		/*
2130 		 * new i_lnode
2131 		 * add it to the hash and increment the lnode count
2132 		 */
2133 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2134 		ASSERT(res == 0);
2135 		st->lnode_count++;
2136 		src_lnode = i_lnode;
2137 	} else {
2138 		/* this i_lnode already exists in the lnode_hash */
2139 		i_lnode_free(i_lnode);
2140 		src_lnode = (i_lnode_t *)nodep;
2141 	}
2142 
2143 	/*
2144 	 * allocate a tgt i_lnode and add it to the lnode hash
2145 	 */
2146 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2147 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, toff);
2148 	i_lnode->devt = ldi_usage->tgt_devt;
2149 
2150 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2151 	if (res == MH_ERR_NOTFOUND) {
2152 		/*
2153 		 * new i_lnode
2154 		 * add it to the hash and increment the lnode count
2155 		 */
2156 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2157 		ASSERT(res == 0);
2158 		st->lnode_count++;
2159 		tgt_lnode = i_lnode;
2160 	} else {
2161 		/* this i_lnode already exists in the lnode_hash */
2162 		i_lnode_free(i_lnode);
2163 		tgt_lnode = (i_lnode_t *)nodep;
2164 	}
2165 
2166 	/*
2167 	 * allocate a i_link
2168 	 */
2169 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2170 	i_link->src_lnode = src_lnode;
2171 	i_link->tgt_lnode = tgt_lnode;
2172 
2173 	/*
2174 	 * add this link onto the src i_lnodes outbound i_link list
2175 	 */
2176 	i_link_next = &(src_lnode->link_out);
2177 	while (*i_link_next != NULL) {
2178 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2179 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2180 			/* this link already exists */
2181 			kmem_free(i_link, sizeof (i_link_t));
2182 			return (LDI_USAGE_CONTINUE);
2183 		}
2184 		i_link_next = &((*i_link_next)->src_link_next);
2185 	}
2186 	*i_link_next = i_link;
2187 
2188 	/*
2189 	 * add this link onto the tgt i_lnodes inbound i_link list
2190 	 */
2191 	i_link_next = &(tgt_lnode->link_in);
2192 	while (*i_link_next != NULL) {
2193 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2194 		i_link_next = &((*i_link_next)->tgt_link_next);
2195 	}
2196 	*i_link_next = i_link;
2197 
2198 	/*
2199 	 * add this i_link to the link hash
2200 	 */
2201 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2202 	ASSERT(res == 0);
2203 	st->link_count++;
2204 
2205 	return (LDI_USAGE_CONTINUE);
2206 }
2207 
2208 struct i_layer_data {
2209 	struct di_state	*st;
2210 	int		lnode_count;
2211 	int		link_count;
2212 	di_off_t	lnode_off;
2213 	di_off_t 	link_off;
2214 };
2215 
2216 /*ARGSUSED*/
2217 static uint_t
2218 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2219 {
2220 	i_link_t		*i_link  = (i_link_t *)key;
2221 	struct i_layer_data	*data = arg;
2222 	struct di_link		*me;
2223 	struct di_lnode		*melnode;
2224 	struct di_node		*medinode;
2225 
2226 	ASSERT(i_link->self == 0);
2227 
2228 	i_link->self = data->link_off +
2229 	    (data->link_count * sizeof (struct di_link));
2230 	data->link_count++;
2231 
2232 	ASSERT(data->link_off > 0 && data->link_count > 0);
2233 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2234 	ASSERT(data->link_count <= data->st->link_count);
2235 
2236 	/* fill in fields for the di_link snapshot */
2237 	me = (struct di_link *)di_mem_addr(data->st, i_link->self);
2238 	me->self = i_link->self;
2239 	me->spec_type = i_link->spec_type;
2240 
2241 	/*
2242 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2243 	 * are created during the LDI table walk. Since we are
2244 	 * walking the link hash, the lnode hash has already been
2245 	 * walked and the lnodes have been snapshotted. Save lnode
2246 	 * offsets.
2247 	 */
2248 	me->src_lnode = i_link->src_lnode->self;
2249 	me->tgt_lnode = i_link->tgt_lnode->self;
2250 
2251 	/*
2252 	 * Save this link's offset in the src_lnode snapshot's link_out
2253 	 * field
2254 	 */
2255 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->src_lnode);
2256 	me->src_link_next = melnode->link_out;
2257 	melnode->link_out = me->self;
2258 
2259 	/*
2260 	 * Put this link on the tgt_lnode's link_in field
2261 	 */
2262 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->tgt_lnode);
2263 	me->tgt_link_next = melnode->link_in;
2264 	melnode->link_in = me->self;
2265 
2266 	/*
2267 	 * An i_lnode_t is only created if the corresponding dip exists
2268 	 * in the snapshot. A pointer to the di_node is saved in the
2269 	 * i_lnode_t when it is allocated. For this link, get the di_node
2270 	 * for the source lnode. Then put the link on the di_node's list
2271 	 * of src links
2272 	 */
2273 	medinode = i_link->src_lnode->di_node;
2274 	me->src_node_next = medinode->src_links;
2275 	medinode->src_links = me->self;
2276 
2277 	/*
2278 	 * Put this link on the tgt_links list of the target
2279 	 * dip.
2280 	 */
2281 	medinode = i_link->tgt_lnode->di_node;
2282 	me->tgt_node_next = medinode->tgt_links;
2283 	medinode->tgt_links = me->self;
2284 
2285 	return (MH_WALK_CONTINUE);
2286 }
2287 
2288 /*ARGSUSED*/
2289 static uint_t
2290 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2291 {
2292 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2293 	struct i_layer_data	*data = arg;
2294 	struct di_lnode		*me;
2295 	struct di_node		*medinode;
2296 
2297 	ASSERT(i_lnode->self == 0);
2298 
2299 	i_lnode->self = data->lnode_off +
2300 	    (data->lnode_count * sizeof (struct di_lnode));
2301 	data->lnode_count++;
2302 
2303 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2304 	ASSERT(data->link_count == 0); /* links not done yet */
2305 	ASSERT(data->lnode_count <= data->st->lnode_count);
2306 
2307 	/* fill in fields for the di_lnode snapshot */
2308 	me = (struct di_lnode *)di_mem_addr(data->st, i_lnode->self);
2309 	me->self = i_lnode->self;
2310 
2311 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2312 		me->dev_major = (major_t)-1;
2313 		me->dev_minor = (minor_t)-1;
2314 	} else {
2315 		me->dev_major = getmajor(i_lnode->devt);
2316 		me->dev_minor = getminor(i_lnode->devt);
2317 	}
2318 
2319 	/*
2320 	 * The dip corresponding to this lnode must exist in
2321 	 * the snapshot or we wouldn't have created the i_lnode_t
2322 	 * during LDI walk. Save the offset of the dip.
2323 	 */
2324 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2325 	me->node = i_lnode->di_node->self;
2326 
2327 	/*
2328 	 * There must be at least one link in or out of this lnode
2329 	 * or we wouldn't have created it. These fields will be set
2330 	 * during the link hash walk.
2331 	 */
2332 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2333 
2334 	/*
2335 	 * set the offset of the devinfo node associated with this
2336 	 * lnode. Also update the node_next next pointer.  this pointer
2337 	 * is set if there are multiple lnodes associated with the same
2338 	 * devinfo node.  (could occure when multiple minor nodes
2339 	 * are open for one device, etc.)
2340 	 */
2341 	medinode = i_lnode->di_node;
2342 	me->node_next = medinode->lnodes;
2343 	medinode->lnodes = me->self;
2344 
2345 	return (MH_WALK_CONTINUE);
2346 }
2347 
2348 static di_off_t
2349 di_getlink_data(di_off_t off, struct di_state *st)
2350 {
2351 	struct i_layer_data data = {0};
2352 	size_t size;
2353 
2354 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2355 
2356 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2357 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2358 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2359 
2360 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2361 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2362 
2363 	/* get driver layering information */
2364 	(void) ldi_usage_walker(st, di_ldi_callback);
2365 
2366 	/* check if there is any link data to include in the snapshot */
2367 	if (st->lnode_count == 0) {
2368 		ASSERT(st->link_count == 0);
2369 		goto out;
2370 	}
2371 
2372 	ASSERT(st->link_count != 0);
2373 
2374 	/* get a pointer to snapshot memory for all the di_lnodes */
2375 	size = sizeof (struct di_lnode) * st->lnode_count;
2376 	data.lnode_off = off = di_checkmem(st, off, size);
2377 	off += DI_ALIGN(size);
2378 
2379 	/* get a pointer to snapshot memory for all the di_links */
2380 	size = sizeof (struct di_link) * st->link_count;
2381 	data.link_off = off = di_checkmem(st, off, size);
2382 	off += DI_ALIGN(size);
2383 
2384 	data.lnode_count = data.link_count = 0;
2385 	data.st = st;
2386 
2387 	/*
2388 	 * We have lnodes and links that will go into the
2389 	 * snapshot, so let's walk the respective hashes
2390 	 * and snapshot them. The various linkages are
2391 	 * also set up during the walk.
2392 	 */
2393 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2394 	ASSERT(data.lnode_count == st->lnode_count);
2395 
2396 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2397 	ASSERT(data.link_count == st->link_count);
2398 
2399 out:
2400 	/* free up the i_lnodes and i_links used to create the snapshot */
2401 	mod_hash_destroy_hash(st->lnode_hash);
2402 	mod_hash_destroy_hash(st->link_hash);
2403 	st->lnode_count = 0;
2404 	st->link_count = 0;
2405 
2406 	return (off);
2407 }
2408 
2409 
2410 /*
2411  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2412  * It is called from di_copynode with devi_lock held.
2413  */
2414 static di_off_t
2415 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2416 	struct di_state *st)
2417 {
2418 	di_off_t off;
2419 	struct di_minor *me;
2420 
2421 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2422 
2423 	/*
2424 	 * check memory first
2425 	 */
2426 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2427 	*off_p = off;
2428 
2429 	do {
2430 		me = (struct di_minor *)di_mem_addr(st, off);
2431 		me->self = off;
2432 		me->type = mnode->type;
2433 		me->node = node;
2434 		me->user_private_data = NULL;
2435 
2436 		off += DI_ALIGN(sizeof (struct di_minor));
2437 
2438 		/*
2439 		 * Split dev_t to major/minor, so it works for
2440 		 * both ILP32 and LP64 model
2441 		 */
2442 		me->dev_major = getmajor(mnode->ddm_dev);
2443 		me->dev_minor = getminor(mnode->ddm_dev);
2444 		me->spec_type = mnode->ddm_spec_type;
2445 
2446 		if (mnode->ddm_name) {
2447 			off = di_checkmem(st, off,
2448 				strlen(mnode->ddm_name) + 1);
2449 			me->name = off;
2450 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2451 			off += DI_ALIGN(strlen(mnode->ddm_name) + 1);
2452 		}
2453 
2454 		if (mnode->ddm_node_type) {
2455 			off = di_checkmem(st, off,
2456 				strlen(mnode->ddm_node_type) + 1);
2457 			me->node_type = off;
2458 			(void) strcpy(di_mem_addr(st, off),
2459 					mnode->ddm_node_type);
2460 			off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1);
2461 		}
2462 
2463 		off = di_checkmem(st, off, sizeof (struct di_minor));
2464 		me->next = off;
2465 		mnode = mnode->next;
2466 	} while (mnode);
2467 
2468 	me->next = 0;
2469 
2470 	return (off);
2471 }
2472 
2473 /*
2474  * di_register_dip(), di_find_dip(): The dip must be protected
2475  * from deallocation when using these routines - this can either
2476  * be a reference count, a busy hold or a per-driver lock.
2477  */
2478 
2479 static void
2480 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2481 {
2482 	struct dev_info *node = DEVI(dip);
2483 	struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2484 	struct di_dkey *dk;
2485 
2486 	ASSERT(dip);
2487 	ASSERT(off > 0);
2488 
2489 	key->k_type = DI_DKEY;
2490 	dk = &(key->k_u.dkey);
2491 
2492 	dk->dk_dip = dip;
2493 	dk->dk_major = node->devi_major;
2494 	dk->dk_inst = node->devi_instance;
2495 	dk->dk_nodeid = node->devi_nodeid;
2496 
2497 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2498 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2499 		panic(
2500 		    "duplicate devinfo (%p) registered during device "
2501 		    "tree walk", (void *)dip);
2502 	}
2503 }
2504 
2505 
2506 static int
2507 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2508 {
2509 	/*
2510 	 * uintptr_t must be used because it matches the size of void *;
2511 	 * mod_hash expects clients to place results into pointer-size
2512 	 * containers; since di_off_t is always a 32-bit offset, alignment
2513 	 * would otherwise be broken on 64-bit kernels.
2514 	 */
2515 	uintptr_t	offset;
2516 	struct		di_key key = {0};
2517 	struct		di_dkey *dk;
2518 
2519 	ASSERT(st->reg_dip_hash);
2520 	ASSERT(dip);
2521 	ASSERT(off_p);
2522 
2523 
2524 	key.k_type = DI_DKEY;
2525 	dk = &(key.k_u.dkey);
2526 
2527 	dk->dk_dip = dip;
2528 	dk->dk_major = DEVI(dip)->devi_major;
2529 	dk->dk_inst = DEVI(dip)->devi_instance;
2530 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2531 
2532 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2533 	    (mod_hash_val_t *)&offset) == 0) {
2534 		*off_p = (di_off_t)offset;
2535 		return (0);
2536 	} else {
2537 		return (-1);
2538 	}
2539 }
2540 
2541 /*
2542  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2543  * when using these routines. The caller must do this by protecting the
2544  * client(or phci)<->pip linkage while traversing the list and then holding the
2545  * pip when it is found in the list.
2546  */
2547 
2548 static void
2549 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2550 {
2551 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2552 	char		*path_addr;
2553 	struct di_pkey	*pk;
2554 
2555 	ASSERT(pip);
2556 	ASSERT(off > 0);
2557 
2558 	key->k_type = DI_PKEY;
2559 	pk = &(key->k_u.pkey);
2560 
2561 	pk->pk_pip = pip;
2562 	path_addr = mdi_pi_get_addr(pip);
2563 	if (path_addr)
2564 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2565 	pk->pk_client = mdi_pi_get_client(pip);
2566 	pk->pk_phci = mdi_pi_get_phci(pip);
2567 
2568 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2569 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2570 		panic(
2571 		    "duplicate pathinfo (%p) registered during device "
2572 		    "tree walk", (void *)pip);
2573 	}
2574 }
2575 
2576 /*
2577  * As with di_register_pip, the caller must hold or lock the pip
2578  */
2579 static int
2580 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2581 {
2582 	/*
2583 	 * uintptr_t must be used because it matches the size of void *;
2584 	 * mod_hash expects clients to place results into pointer-size
2585 	 * containers; since di_off_t is always a 32-bit offset, alignment
2586 	 * would otherwise be broken on 64-bit kernels.
2587 	 */
2588 	uintptr_t	offset;
2589 	struct di_key	key = {0};
2590 	struct di_pkey	*pk;
2591 
2592 	ASSERT(st->reg_pip_hash);
2593 	ASSERT(off_p);
2594 
2595 	if (pip == NULL) {
2596 		*off_p = 0;
2597 		return (0);
2598 	}
2599 
2600 	key.k_type = DI_PKEY;
2601 	pk = &(key.k_u.pkey);
2602 
2603 	pk->pk_pip = pip;
2604 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2605 	pk->pk_client = mdi_pi_get_client(pip);
2606 	pk->pk_phci = mdi_pi_get_phci(pip);
2607 
2608 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2609 	    (mod_hash_val_t *)&offset) == 0) {
2610 		*off_p = (di_off_t)offset;
2611 		return (0);
2612 	} else {
2613 		return (-1);
2614 	}
2615 }
2616 
2617 static di_path_state_t
2618 path_state_convert(mdi_pathinfo_state_t st)
2619 {
2620 	switch (st) {
2621 	case MDI_PATHINFO_STATE_ONLINE:
2622 		return (DI_PATH_STATE_ONLINE);
2623 	case MDI_PATHINFO_STATE_STANDBY:
2624 		return (DI_PATH_STATE_STANDBY);
2625 	case MDI_PATHINFO_STATE_OFFLINE:
2626 		return (DI_PATH_STATE_OFFLINE);
2627 	case MDI_PATHINFO_STATE_FAULT:
2628 		return (DI_PATH_STATE_FAULT);
2629 	default:
2630 		return (DI_PATH_STATE_UNKNOWN);
2631 	}
2632 }
2633 
2634 
2635 static di_off_t
2636 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p,
2637     struct di_state *st)
2638 {
2639 	nvpair_t *prop = NULL;
2640 	struct di_path_prop *me;
2641 
2642 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2643 		*off_p = 0;
2644 		return (off);
2645 	}
2646 
2647 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2648 	*off_p = off;
2649 
2650 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2651 		int delta = 0;
2652 
2653 		me = (struct di_path_prop *)di_mem_addr(st, off);
2654 		me->self = off;
2655 		off += sizeof (struct di_path_prop);
2656 
2657 		/*
2658 		 * property name
2659 		 */
2660 		off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1);
2661 		me->prop_name = off;
2662 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2663 		off += strlen(nvpair_name(prop)) + 1;
2664 
2665 		switch (nvpair_type(prop)) {
2666 		case DATA_TYPE_BYTE:
2667 		case DATA_TYPE_INT16:
2668 		case DATA_TYPE_UINT16:
2669 		case DATA_TYPE_INT32:
2670 		case DATA_TYPE_UINT32:
2671 			delta = sizeof (int32_t);
2672 			me->prop_type = DDI_PROP_TYPE_INT;
2673 			off = di_checkmem(st, off, delta);
2674 			(void) nvpair_value_int32(prop,
2675 			    (int32_t *)di_mem_addr(st, off));
2676 			break;
2677 
2678 		case DATA_TYPE_INT64:
2679 		case DATA_TYPE_UINT64:
2680 			delta = sizeof (int64_t);
2681 			me->prop_type = DDI_PROP_TYPE_INT64;
2682 			off = di_checkmem(st, off, delta);
2683 			(void) nvpair_value_int64(prop,
2684 			    (int64_t *)di_mem_addr(st, off));
2685 			break;
2686 
2687 		case DATA_TYPE_STRING:
2688 		{
2689 			char *str;
2690 			(void) nvpair_value_string(prop, &str);
2691 			delta = strlen(str) + 1;
2692 			me->prop_type = DDI_PROP_TYPE_STRING;
2693 			off = di_checkmem(st, off, delta);
2694 			(void) strcpy(di_mem_addr(st, off), str);
2695 			break;
2696 		}
2697 		case DATA_TYPE_BYTE_ARRAY:
2698 		case DATA_TYPE_INT16_ARRAY:
2699 		case DATA_TYPE_UINT16_ARRAY:
2700 		case DATA_TYPE_INT32_ARRAY:
2701 		case DATA_TYPE_UINT32_ARRAY:
2702 		case DATA_TYPE_INT64_ARRAY:
2703 		case DATA_TYPE_UINT64_ARRAY:
2704 		{
2705 			uchar_t *buf;
2706 			uint_t nelems;
2707 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2708 			delta = nelems;
2709 			me->prop_type = DDI_PROP_TYPE_BYTE;
2710 			if (nelems != 0) {
2711 				off = di_checkmem(st, off, delta);
2712 				bcopy(buf, di_mem_addr(st, off), nelems);
2713 			}
2714 			break;
2715 		}
2716 
2717 		default:	/* Unknown or unhandled type; skip it */
2718 			delta = 0;
2719 			break;
2720 		}
2721 
2722 		if (delta > 0) {
2723 			me->prop_data = off;
2724 		}
2725 
2726 		me->prop_len = delta;
2727 		off += delta;
2728 
2729 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2730 		me->prop_next = off;
2731 	}
2732 
2733 	me->prop_next = 0;
2734 	return (off);
2735 }
2736 
2737 
2738 static void
2739 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2740     int get_client)
2741 {
2742 	if (get_client) {
2743 		ASSERT(me->path_client == 0);
2744 		me->path_client = noff;
2745 		ASSERT(me->path_c_link == 0);
2746 		*off_pp = &me->path_c_link;
2747 		me->path_snap_state &=
2748 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2749 	} else {
2750 		ASSERT(me->path_phci == 0);
2751 		me->path_phci = noff;
2752 		ASSERT(me->path_p_link == 0);
2753 		*off_pp = &me->path_p_link;
2754 		me->path_snap_state &=
2755 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2756 	}
2757 }
2758 
2759 /*
2760  * poff_p: pointer to the linkage field. This links pips along the client|phci
2761  *	   linkage list.
2762  * noff  : Offset for the endpoint dip snapshot.
2763  */
2764 static di_off_t
2765 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff,
2766     struct di_state *st, int get_client)
2767 {
2768 	di_off_t off;
2769 	mdi_pathinfo_t *pip;
2770 	struct di_path *me;
2771 	mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2772 
2773 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2774 
2775 	/*
2776 	 * The naming of the following mdi_xyz() is unfortunately
2777 	 * non-intuitive. mdi_get_next_phci_path() follows the
2778 	 * client_link i.e. the list of pip's belonging to the
2779 	 * given client dip.
2780 	 */
2781 	if (get_client)
2782 		next_pip = &mdi_get_next_phci_path;
2783 	else
2784 		next_pip = &mdi_get_next_client_path;
2785 
2786 	off = *poff_p;
2787 
2788 	pip = NULL;
2789 	while (pip = (*next_pip)(dip, pip)) {
2790 		mdi_pathinfo_state_t state;
2791 		di_off_t stored_offset;
2792 
2793 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2794 
2795 		mdi_pi_lock(pip);
2796 
2797 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2798 			/*
2799 			 * We've already seen this pathinfo node so we need to
2800 			 * take care not to snap it again; However, one endpoint
2801 			 * and linkage will be set here. The other endpoint
2802 			 * and linkage has already been set when the pip was
2803 			 * first snapshotted i.e. when the other endpoint dip
2804 			 * was snapshotted.
2805 			 */
2806 			me = (struct di_path *)di_mem_addr(st, stored_offset);
2807 
2808 			*poff_p = stored_offset;
2809 
2810 			di_path_one_endpoint(me, noff, &poff_p, get_client);
2811 
2812 			/*
2813 			 * The other endpoint and linkage were set when this
2814 			 * pip was snapshotted. So we are done with both
2815 			 * endpoints and linkages.
2816 			 */
2817 			ASSERT(!(me->path_snap_state &
2818 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2819 			ASSERT(!(me->path_snap_state &
2820 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2821 
2822 			mdi_pi_unlock(pip);
2823 			continue;
2824 		}
2825 
2826 		/*
2827 		 * Now that we need to snapshot this pip, check memory
2828 		 */
2829 		off = di_checkmem(st, off, sizeof (struct di_path));
2830 		me = (struct di_path *)di_mem_addr(st, off);
2831 		me->self = off;
2832 		*poff_p = off;
2833 		off += sizeof (struct di_path);
2834 
2835 		me->path_snap_state =
2836 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2837 		me->path_snap_state |=
2838 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2839 
2840 		/*
2841 		 * Zero out fields as di_checkmem() doesn't guarantee
2842 		 * zero-filled memory
2843 		 */
2844 		me->path_client = me->path_phci = 0;
2845 		me->path_c_link = me->path_p_link = 0;
2846 
2847 		di_path_one_endpoint(me, noff, &poff_p, get_client);
2848 
2849 		/*
2850 		 * Note the existence of this pathinfo
2851 		 */
2852 		di_register_pip(st, pip, me->self);
2853 
2854 		state = mdi_pi_get_state(pip);
2855 		me->path_state = path_state_convert(state);
2856 
2857 		/*
2858 		 * Get intermediate addressing info.
2859 		 */
2860 		off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1);
2861 		me->path_addr = off;
2862 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2863 		off += strlen(mdi_pi_get_addr(pip)) + 1;
2864 
2865 		/*
2866 		 * Get path properties if props are to be included in the
2867 		 * snapshot
2868 		 */
2869 		if (DINFOPROP & st->command) {
2870 			off = di_path_getprop(pip, off, &me->path_prop, st);
2871 		} else {
2872 			me->path_prop = 0;
2873 		}
2874 
2875 		mdi_pi_unlock(pip);
2876 	}
2877 
2878 	*poff_p = 0;
2879 
2880 	return (off);
2881 }
2882 
2883 /*
2884  * Copy a list of properties attached to a devinfo node. Called from
2885  * di_copynode with devi_lock held. The major number is passed in case
2886  * we need to call driver's prop_op entry. The value of list indicates
2887  * which list we are copying. Possible values are:
2888  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
2889  */
2890 static di_off_t
2891 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st,
2892 	struct dev_info *dip, int list)
2893 {
2894 	dev_t dev;
2895 	int (*prop_op)();
2896 	int off, need_prop_op = 0;
2897 	int prop_op_fail = 0;
2898 	ddi_prop_t *propp = NULL;
2899 	struct di_prop *pp;
2900 	struct dev_ops *ops = NULL;
2901 	int prop_len;
2902 	caddr_t prop_val;
2903 
2904 
2905 	dcmn_err2((CE_CONT, "di_getprop:\n"));
2906 
2907 	ASSERT(st != NULL);
2908 
2909 	dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop));
2910 
2911 	/*
2912 	 * Figure out if we need to call driver's prop_op entry point.
2913 	 * The conditions are:
2914 	 *	-- driver property list
2915 	 *	-- driver must be attached and held
2916 	 *	-- driver's cb_prop_op != ddi_prop_op
2917 	 *		or parent's bus_prop_op != ddi_bus_prop_op
2918 	 */
2919 
2920 	if (list != DI_PROP_DRV_LIST) {
2921 		goto getprop;
2922 	}
2923 
2924 	/*
2925 	 * If driver is not attached or if major is -1, we ignore
2926 	 * the driver property list. No one should rely on such
2927 	 * properties.
2928 	 */
2929 	if (!i_ddi_devi_attached((dev_info_t *)dip)) {
2930 		off = *off_p;
2931 		*off_p = 0;
2932 		return (off);
2933 	}
2934 
2935 	/*
2936 	 * Now we have a driver which is held. We can examine entry points
2937 	 * and check the condition listed above.
2938 	 */
2939 	ops = dip->devi_ops;
2940 
2941 	/*
2942 	 * Some nexus drivers incorrectly set cb_prop_op to nodev,
2943 	 * nulldev or even NULL.
2944 	 */
2945 	if (ops && ops->devo_cb_ops &&
2946 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2947 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2948 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2949 	    (ops->devo_cb_ops->cb_prop_op != NULL)) {
2950 		need_prop_op = 1;
2951 	}
2952 
2953 getprop:
2954 	/*
2955 	 * check memory availability
2956 	 */
2957 	off = di_checkmem(st, *off_p, sizeof (struct di_prop));
2958 	*off_p = off;
2959 	/*
2960 	 * Now copy properties
2961 	 */
2962 	do {
2963 		pp = (struct di_prop *)di_mem_addr(st, off);
2964 		pp->self = off;
2965 		/*
2966 		 * Split dev_t to major/minor, so it works for
2967 		 * both ILP32 and LP64 model
2968 		 */
2969 		pp->dev_major = getmajor(prop->prop_dev);
2970 		pp->dev_minor = getminor(prop->prop_dev);
2971 		pp->prop_flags = prop->prop_flags;
2972 		pp->prop_list = list;
2973 
2974 		/*
2975 		 * property name
2976 		 */
2977 		off += sizeof (struct di_prop);
2978 		if (prop->prop_name) {
2979 			off = di_checkmem(st, off, strlen(prop->prop_name)
2980 			    + 1);
2981 			pp->prop_name = off;
2982 			(void) strcpy(di_mem_addr(st, off), prop->prop_name);
2983 			off += strlen(prop->prop_name) + 1;
2984 		}
2985 
2986 		/*
2987 		 * Set prop_len here. This may change later
2988 		 * if cb_prop_op returns a different length.
2989 		 */
2990 		pp->prop_len = prop->prop_len;
2991 		if (!need_prop_op) {
2992 			if (prop->prop_val == NULL) {
2993 				dcmn_err((CE_WARN,
2994 				    "devinfo: property fault at %p",
2995 				    (void *)prop));
2996 				pp->prop_data = -1;
2997 			} else if (prop->prop_len != 0) {
2998 				off = di_checkmem(st, off, prop->prop_len);
2999 				pp->prop_data = off;
3000 				bcopy(prop->prop_val, di_mem_addr(st, off),
3001 				    prop->prop_len);
3002 				off += DI_ALIGN(pp->prop_len);
3003 			}
3004 		}
3005 
3006 		off = di_checkmem(st, off, sizeof (struct di_prop));
3007 		pp->next = off;
3008 		prop = prop->prop_next;
3009 	} while (prop);
3010 
3011 	pp->next = 0;
3012 
3013 	if (!need_prop_op) {
3014 		dcmn_err((CE_CONT, "finished property "
3015 		    "list at offset 0x%x\n", off));
3016 		return (off);
3017 	}
3018 
3019 	/*
3020 	 * If there is a need to call driver's prop_op entry,
3021 	 * we must release driver's devi_lock, because the
3022 	 * cb_prop_op entry point will grab it.
3023 	 *
3024 	 * The snapshot memory has already been allocated above,
3025 	 * which means the length of an active property should
3026 	 * remain fixed for this implementation to work.
3027 	 */
3028 
3029 
3030 	prop_op = ops->devo_cb_ops->cb_prop_op;
3031 	pp = (struct di_prop *)di_mem_addr(st, *off_p);
3032 
3033 	mutex_exit(&dip->devi_lock);
3034 
3035 	do {
3036 		int err;
3037 		struct di_prop *tmp;
3038 
3039 		if (pp->next) {
3040 			tmp = (struct di_prop *)
3041 			    di_mem_addr(st, pp->next);
3042 		} else {
3043 			tmp = NULL;
3044 		}
3045 
3046 		/*
3047 		 * call into driver's prop_op entry point
3048 		 *
3049 		 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY
3050 		 */
3051 		dev = makedevice(pp->dev_major, pp->dev_minor);
3052 		if (dev == DDI_DEV_T_NONE)
3053 			dev = DDI_DEV_T_ANY;
3054 
3055 		dcmn_err((CE_CONT, "call prop_op"
3056 		    "(%lx, %p, PROP_LEN_AND_VAL_BUF, "
3057 		    "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n",
3058 		    dev,
3059 		    (void *)dip,
3060 		    (char *)di_mem_addr(st, pp->prop_name),
3061 		    (void *)di_mem_addr(st, pp->prop_data),
3062 		    pp->prop_len));
3063 
3064 		if ((err = (*prop_op)(dev, (dev_info_t)dip,
3065 		    PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS,
3066 		    (char *)di_mem_addr(st, pp->prop_name),
3067 		    &prop_val, &prop_len)) != DDI_PROP_SUCCESS) {
3068 			if ((propp = i_ddi_prop_search(dev,
3069 			    (char *)di_mem_addr(st, pp->prop_name),
3070 			    (uint_t)pp->prop_flags,
3071 			    &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) {
3072 				pp->prop_len = propp->prop_len;
3073 				if (pp->prop_len != 0) {
3074 					off = di_checkmem(st, off,
3075 					    pp->prop_len);
3076 					pp->prop_data = off;
3077 					bcopy(propp->prop_val, di_mem_addr(st,
3078 					    pp->prop_data), propp->prop_len);
3079 					off += DI_ALIGN(pp->prop_len);
3080 				}
3081 			} else {
3082 				prop_op_fail = 1;
3083 			}
3084 		} else if (prop_len != 0) {
3085 			pp->prop_len = prop_len;
3086 			off = di_checkmem(st, off, prop_len);
3087 			pp->prop_data = off;
3088 			bcopy(prop_val, di_mem_addr(st, off), prop_len);
3089 			off += DI_ALIGN(prop_len);
3090 			kmem_free(prop_val, prop_len);
3091 		}
3092 
3093 		if (prop_op_fail) {
3094 			pp->prop_data = -1;
3095 			dcmn_err((CE_WARN, "devinfo: prop_op failure "
3096 			    "for \"%s\" err %d",
3097 			    di_mem_addr(st, pp->prop_name), err));
3098 		}
3099 
3100 		pp = tmp;
3101 
3102 	} while (pp);
3103 
3104 	mutex_enter(&dip->devi_lock);
3105 	dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off));
3106 	return (off);
3107 }
3108 
3109 /*
3110  * find private data format attached to a dip
3111  * parent = 1 to match driver name of parent dip (for parent private data)
3112  *	0 to match driver name of current dip (for driver private data)
3113  */
3114 #define	DI_MATCH_DRIVER	0
3115 #define	DI_MATCH_PARENT	1
3116 
3117 struct di_priv_format *
3118 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3119 {
3120 	int i, count, len;
3121 	char *drv_name;
3122 	major_t major;
3123 	struct di_all *all;
3124 	struct di_priv_format *form;
3125 
3126 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3127 		node->devi_node_name, match));
3128 
3129 	if (match == DI_MATCH_PARENT) {
3130 		node = DEVI(node->devi_parent);
3131 	}
3132 
3133 	if (node == NULL) {
3134 		return (NULL);
3135 	}
3136 
3137 	major = ddi_name_to_major(node->devi_binding_name);
3138 	if (major == (major_t)(-1)) {
3139 		return (NULL);
3140 	}
3141 
3142 	/*
3143 	 * Match the driver name.
3144 	 */
3145 	drv_name = ddi_major_to_name(major);
3146 	if ((drv_name == NULL) || *drv_name == '\0') {
3147 		return (NULL);
3148 	}
3149 
3150 	/* Now get the di_priv_format array */
3151 	all = (struct di_all *)di_mem_addr(st, 0);
3152 
3153 	if (match == DI_MATCH_PARENT) {
3154 		count = all->n_ppdata;
3155 		form = (struct di_priv_format *)
3156 			(di_mem_addr(st, 0) + all->ppdata_format);
3157 	} else {
3158 		count = all->n_dpdata;
3159 		form = (struct di_priv_format *)
3160 			((caddr_t)all + all->dpdata_format);
3161 	}
3162 
3163 	len = strlen(drv_name);
3164 	for (i = 0; i < count; i++) {
3165 		char *tmp;
3166 
3167 		tmp = form[i].drv_name;
3168 		while (tmp && (*tmp != '\0')) {
3169 			if (strncmp(drv_name, tmp, len) == 0) {
3170 				return (&form[i]);
3171 			}
3172 			/*
3173 			 * Move to next driver name, skipping a white space
3174 			 */
3175 			if (tmp = strchr(tmp, ' ')) {
3176 				tmp++;
3177 			}
3178 		}
3179 	}
3180 
3181 	return (NULL);
3182 }
3183 
3184 /*
3185  * The following functions copy data as specified by the format passed in.
3186  * To prevent invalid format from panicing the system, we call on_fault().
3187  * A return value of 0 indicates an error. Otherwise, the total offset
3188  * is returned.
3189  */
3190 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3191 
3192 static di_off_t
3193 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3194     void *data, di_off_t *off_p, struct di_state *st)
3195 {
3196 	caddr_t pa;
3197 	void *ptr;
3198 	int i, size, repeat;
3199 	di_off_t off, off0, *tmp;
3200 	char *path;
3201 
3202 	label_t ljb;
3203 
3204 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3205 
3206 	/*
3207 	 * check memory availability. Private data size is
3208 	 * limited to DI_MAX_PRIVDATA.
3209 	 */
3210 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3211 
3212 	if ((pdp->bytes <= 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3213 		goto failure;
3214 	}
3215 
3216 	if (!on_fault(&ljb)) {
3217 		/* copy the struct */
3218 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3219 		off0 = DI_ALIGN(pdp->bytes);
3220 
3221 		/* dereferencing pointers */
3222 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3223 
3224 			if (pdp->ptr[i].size == 0) {
3225 				goto success;	/* no more ptrs */
3226 			}
3227 
3228 			/*
3229 			 * first, get the pointer content
3230 			 */
3231 			if ((pdp->ptr[i].offset < 0) ||
3232 				(pdp->ptr[i].offset >
3233 				pdp->bytes - sizeof (char *)))
3234 				goto failure;	/* wrong offset */
3235 
3236 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3237 			tmp = (di_off_t *)pa;	/* to store off_t later */
3238 
3239 			ptr = *((void **) pa);	/* get pointer value */
3240 			if (ptr == NULL) {	/* if NULL pointer, go on */
3241 				continue;
3242 			}
3243 
3244 			/*
3245 			 * next, find the repeat count (array dimension)
3246 			 */
3247 			repeat = pdp->ptr[i].len_offset;
3248 
3249 			/*
3250 			 * Positive value indicates a fixed sized array.
3251 			 * 0 or negative value indicates variable sized array.
3252 			 *
3253 			 * For variable sized array, the variable must be
3254 			 * an int member of the structure, with an offset
3255 			 * equal to the absolution value of struct member.
3256 			 */
3257 			if (repeat > pdp->bytes - sizeof (int)) {
3258 				goto failure;	/* wrong offset */
3259 			}
3260 
3261 			if (repeat >= 0) {
3262 				repeat = *((int *)((caddr_t)data + repeat));
3263 			} else {
3264 				repeat = -repeat;
3265 			}
3266 
3267 			/*
3268 			 * next, get the size of the object to be copied
3269 			 */
3270 			size = pdp->ptr[i].size * repeat;
3271 
3272 			/*
3273 			 * Arbitrarily limit the total size of object to be
3274 			 * copied (1 byte to 1/4 page).
3275 			 */
3276 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3277 				goto failure;	/* wrong size or too big */
3278 			}
3279 
3280 			/*
3281 			 * Now copy the data
3282 			 */
3283 			*tmp = off0;
3284 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3285 			off0 += DI_ALIGN(size);
3286 		}
3287 	} else {
3288 		goto failure;
3289 	}
3290 
3291 success:
3292 	/*
3293 	 * success if reached here
3294 	 */
3295 	no_fault();
3296 	*off_p = off;
3297 
3298 	return (off + off0);
3299 	/*NOTREACHED*/
3300 
3301 failure:
3302 	/*
3303 	 * fault occurred
3304 	 */
3305 	no_fault();
3306 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3307 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3308 	    ddi_pathname((dev_info_t *)node, path), data);
3309 	kmem_free(path, MAXPATHLEN);
3310 	*off_p = -1;	/* set private data to indicate error */
3311 
3312 	return (off);
3313 }
3314 
3315 /*
3316  * get parent private data; on error, returns original offset
3317  */
3318 static di_off_t
3319 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3320 {
3321 	int off;
3322 	struct di_priv_format *ppdp;
3323 
3324 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3325 
3326 	/* find the parent data format */
3327 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3328 		off = *off_p;
3329 		*off_p = 0;	/* set parent data to none */
3330 		return (off);
3331 	}
3332 
3333 	return (di_getprvdata(ppdp, node,
3334 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3335 }
3336 
3337 /*
3338  * get parent private data; returns original offset
3339  */
3340 static di_off_t
3341 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3342 {
3343 	int off;
3344 	struct di_priv_format *dpdp;
3345 
3346 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3347 
3348 	/* find the parent data format */
3349 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3350 		off = *off_p;
3351 		*off_p = 0;	/* set driver data to none */
3352 		return (off);
3353 	}
3354 
3355 	return (di_getprvdata(dpdp, node,
3356 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3357 }
3358 
3359 /*
3360  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3361  * This function encapsulates the state machine:
3362  *
3363  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3364  *	|		SNAPSHOT		USRLD	 |
3365  *	--------------------------------------------------
3366  *
3367  * Returns 0 on success and -1 on failure
3368  */
3369 static int
3370 di_setstate(struct di_state *st, int new_state)
3371 {
3372 	int ret = 0;
3373 
3374 	mutex_enter(&di_lock);
3375 	switch (new_state) {
3376 	case IOC_IDLE:
3377 	case IOC_DONE:
3378 		break;
3379 	case IOC_SNAP:
3380 		if (st->di_iocstate != IOC_IDLE)
3381 			ret = -1;
3382 		break;
3383 	case IOC_COPY:
3384 		if (st->di_iocstate != IOC_DONE)
3385 			ret = -1;
3386 		break;
3387 	default:
3388 		ret = -1;
3389 	}
3390 
3391 	if (ret == 0)
3392 		st->di_iocstate = new_state;
3393 	else
3394 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3395 		    st->di_iocstate, new_state);
3396 	mutex_exit(&di_lock);
3397 	return (ret);
3398 }
3399 
3400 /*
3401  * We cannot assume the presence of the entire
3402  * snapshot in this routine. All we are guaranteed
3403  * is the di_all struct + 1 byte (for root_path)
3404  */
3405 static int
3406 header_plus_one_ok(struct di_all *all)
3407 {
3408 	/*
3409 	 * Refuse to read old versions
3410 	 */
3411 	if (all->version != DI_SNAPSHOT_VERSION) {
3412 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3413 		return (0);
3414 	}
3415 
3416 	if (all->cache_magic != DI_CACHE_MAGIC) {
3417 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3418 		return (0);
3419 	}
3420 
3421 	if (all->snapshot_time <= 0) {
3422 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3423 		return (0);
3424 	}
3425 
3426 	if (all->top_devinfo == 0) {
3427 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3428 		return (0);
3429 	}
3430 
3431 	if (all->map_size < sizeof (*all) + 1) {
3432 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3433 		return (0);
3434 	}
3435 
3436 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3437 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3438 		    all->root_path[0], all->root_path[1]));
3439 		return (0);
3440 	}
3441 
3442 	/*
3443 	 * We can't check checksum here as we just have the header
3444 	 */
3445 
3446 	return (1);
3447 }
3448 
3449 static int
3450 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3451 {
3452 	rlim64_t	rlimit;
3453 	ssize_t		resid;
3454 	int		error = 0;
3455 
3456 
3457 	rlimit = RLIM64_INFINITY;
3458 
3459 	while (len) {
3460 		resid = 0;
3461 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3462 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3463 
3464 		if (error || resid < 0) {
3465 			error = error ? error : EIO;
3466 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3467 			break;
3468 		}
3469 
3470 		/*
3471 		 * Check if we are making progress
3472 		 */
3473 		if (resid >= len) {
3474 			error = ENOSPC;
3475 			break;
3476 		}
3477 		buf += len - resid;
3478 		off += len - resid;
3479 		len = resid;
3480 	}
3481 
3482 	return (error);
3483 }
3484 
3485 extern int modrootloaded;
3486 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
3487 extern void mdi_vhci_walk_phcis(dev_info_t *,
3488 	int (*)(dev_info_t *, void *), void *);
3489 
3490 static void
3491 di_cache_write(struct di_cache *cache)
3492 {
3493 	struct di_all	*all;
3494 	struct vnode	*vp;
3495 	int		oflags;
3496 	size_t		map_size;
3497 	size_t		chunk;
3498 	offset_t	off;
3499 	int		error;
3500 	char		*buf;
3501 
3502 	ASSERT(DI_CACHE_LOCKED(*cache));
3503 	ASSERT(!servicing_interrupt());
3504 
3505 	if (cache->cache_size == 0) {
3506 		ASSERT(cache->cache_data == NULL);
3507 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3508 		return;
3509 	}
3510 
3511 	ASSERT(cache->cache_size > 0);
3512 	ASSERT(cache->cache_data);
3513 
3514 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3515 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3516 		return;
3517 	}
3518 
3519 	all = (struct di_all *)cache->cache_data;
3520 
3521 	if (!header_plus_one_ok(all)) {
3522 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3523 		return;
3524 	}
3525 
3526 	ASSERT(strcmp(all->root_path, "/") == 0);
3527 
3528 	/*
3529 	 * The cache_size is the total allocated memory for the cache.
3530 	 * The map_size is the actual size of valid data in the cache.
3531 	 * map_size may be smaller than cache_size but cannot exceed
3532 	 * cache_size.
3533 	 */
3534 	if (all->map_size > cache->cache_size) {
3535 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3536 		    " Skipping write", all->map_size, cache->cache_size));
3537 		return;
3538 	}
3539 
3540 	/*
3541 	 * First unlink the temp file
3542 	 */
3543 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3544 	if (error && error != ENOENT) {
3545 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3546 		    DI_CACHE_TEMP, error));
3547 	}
3548 
3549 	if (error == EROFS) {
3550 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3551 		return;
3552 	}
3553 
3554 	vp = NULL;
3555 	oflags = (FCREAT|FWRITE);
3556 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3557 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3558 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3559 		    DI_CACHE_TEMP, error));
3560 		return;
3561 	}
3562 
3563 	ASSERT(vp);
3564 
3565 	/*
3566 	 * Paranoid: Check if the file is on a read-only FS
3567 	 */
3568 	if (vn_is_readonly(vp)) {
3569 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3570 		goto fail;
3571 	}
3572 
3573 	/*
3574 	 * Note that we only write map_size bytes to disk - this saves
3575 	 * space as the actual cache size may be larger than size of
3576 	 * valid data in the cache.
3577 	 * Another advantage is that it makes verification of size
3578 	 * easier when the file is read later.
3579 	 */
3580 	map_size = all->map_size;
3581 	off = 0;
3582 	buf = cache->cache_data;
3583 
3584 	while (map_size) {
3585 		ASSERT(map_size > 0);
3586 		/*
3587 		 * Write in chunks so that VM system
3588 		 * is not overwhelmed
3589 		 */
3590 		if (map_size > di_chunk * PAGESIZE)
3591 			chunk = di_chunk * PAGESIZE;
3592 		else
3593 			chunk = map_size;
3594 
3595 		error = chunk_write(vp, off, buf, chunk);
3596 		if (error) {
3597 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3598 			    off, error));
3599 			goto fail;
3600 		}
3601 
3602 		off += chunk;
3603 		buf += chunk;
3604 		map_size -= chunk;
3605 
3606 		/* Give pageout a chance to run */
3607 		delay(1);
3608 	}
3609 
3610 	/*
3611 	 * Now sync the file and close it
3612 	 */
3613 	if (error = VOP_FSYNC(vp, FSYNC, kcred)) {
3614 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3615 	}
3616 
3617 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) {
3618 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3619 		VN_RELE(vp);
3620 		return;
3621 	}
3622 
3623 	VN_RELE(vp);
3624 
3625 	/*
3626 	 * Now do the rename
3627 	 */
3628 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3629 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3630 		return;
3631 	}
3632 
3633 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3634 
3635 	return;
3636 
3637 fail:
3638 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred);
3639 	VN_RELE(vp);
3640 }
3641 
3642 
3643 /*
3644  * Since we could be called early in boot,
3645  * use kobj_read_file()
3646  */
3647 static void
3648 di_cache_read(struct di_cache *cache)
3649 {
3650 	struct _buf	*file;
3651 	struct di_all	*all;
3652 	int		n;
3653 	size_t		map_size, sz, chunk;
3654 	offset_t	off;
3655 	caddr_t		buf;
3656 	uint32_t	saved_crc, crc;
3657 
3658 	ASSERT(modrootloaded);
3659 	ASSERT(DI_CACHE_LOCKED(*cache));
3660 	ASSERT(cache->cache_data == NULL);
3661 	ASSERT(cache->cache_size == 0);
3662 	ASSERT(!servicing_interrupt());
3663 
3664 	file = kobj_open_file(DI_CACHE_FILE);
3665 	if (file == (struct _buf *)-1) {
3666 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3667 		    DI_CACHE_FILE, ENOENT));
3668 		return;
3669 	}
3670 
3671 	/*
3672 	 * Read in the header+root_path first. The root_path must be "/"
3673 	 */
3674 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3675 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3676 
3677 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3678 		kmem_free(all, sizeof (*all) + 1);
3679 		kobj_close_file(file);
3680 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3681 		return;
3682 	}
3683 
3684 	map_size = all->map_size;
3685 
3686 	kmem_free(all, sizeof (*all) + 1);
3687 
3688 	ASSERT(map_size >= sizeof (*all) + 1);
3689 
3690 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3691 	sz = map_size;
3692 	off = 0;
3693 	while (sz) {
3694 		/* Don't overload VM with large reads */
3695 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3696 		n = kobj_read_file(file, buf, chunk, off);
3697 		if (n != chunk) {
3698 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3699 			    DI_CACHE_FILE, off));
3700 			goto fail;
3701 		}
3702 		off += chunk;
3703 		buf += chunk;
3704 		sz -= chunk;
3705 	}
3706 
3707 	ASSERT(off == map_size);
3708 
3709 	/*
3710 	 * Read past expected EOF to verify size.
3711 	 */
3712 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3713 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3714 		goto fail;
3715 	}
3716 
3717 	all = (struct di_all *)di_cache.cache_data;
3718 	if (!header_plus_one_ok(all)) {
3719 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3720 		goto fail;
3721 	}
3722 
3723 	/*
3724 	 * Compute CRC with checksum field in the cache data set to 0
3725 	 */
3726 	saved_crc = all->cache_checksum;
3727 	all->cache_checksum = 0;
3728 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3729 	all->cache_checksum = saved_crc;
3730 
3731 	if (crc != all->cache_checksum) {
3732 		CACHE_DEBUG((DI_ERR,
3733 		    "%s: checksum error: expected=0x%x actual=0x%x",
3734 		    DI_CACHE_FILE, all->cache_checksum, crc));
3735 		goto fail;
3736 	}
3737 
3738 	if (all->map_size != map_size) {
3739 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3740 		goto fail;
3741 	}
3742 
3743 	kobj_close_file(file);
3744 
3745 	di_cache.cache_size = map_size;
3746 
3747 	return;
3748 
3749 fail:
3750 	kmem_free(di_cache.cache_data, map_size);
3751 	kobj_close_file(file);
3752 	di_cache.cache_data = NULL;
3753 	di_cache.cache_size = 0;
3754 }
3755 
3756 
3757 /*
3758  * Checks if arguments are valid for using the cache.
3759  */
3760 static int
3761 cache_args_valid(struct di_state *st, int *error)
3762 {
3763 	ASSERT(error);
3764 	ASSERT(st->mem_size > 0);
3765 	ASSERT(st->memlist != NULL);
3766 
3767 	if (!modrootloaded || !i_ddi_io_initialized()) {
3768 		CACHE_DEBUG((DI_ERR,
3769 		    "cache lookup failure: I/O subsystem not inited"));
3770 		*error = ENOTACTIVE;
3771 		return (0);
3772 	}
3773 
3774 	/*
3775 	 * No other flags allowed with DINFOCACHE
3776 	 */
3777 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3778 		CACHE_DEBUG((DI_ERR,
3779 		    "cache lookup failure: bad flags: 0x%x",
3780 		    st->command));
3781 		*error = EINVAL;
3782 		return (0);
3783 	}
3784 
3785 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3786 		CACHE_DEBUG((DI_ERR,
3787 		    "cache lookup failure: bad root: %s",
3788 		    DI_ALL_PTR(st)->root_path));
3789 		*error = EINVAL;
3790 		return (0);
3791 	}
3792 
3793 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3794 
3795 	*error = 0;
3796 
3797 	return (1);
3798 }
3799 
3800 static int
3801 snapshot_is_cacheable(struct di_state *st)
3802 {
3803 	ASSERT(st->mem_size > 0);
3804 	ASSERT(st->memlist != NULL);
3805 
3806 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
3807 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3808 		CACHE_DEBUG((DI_INFO,
3809 		    "not cacheable: incompatible flags: 0x%x",
3810 		    st->command));
3811 		return (0);
3812 	}
3813 
3814 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3815 		CACHE_DEBUG((DI_INFO,
3816 		    "not cacheable: incompatible root path: %s",
3817 		    DI_ALL_PTR(st)->root_path));
3818 		return (0);
3819 	}
3820 
3821 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3822 
3823 	return (1);
3824 }
3825 
3826 static int
3827 di_cache_lookup(struct di_state *st)
3828 {
3829 	size_t	rval;
3830 	int	cache_valid;
3831 
3832 	ASSERT(cache_args_valid(st, &cache_valid));
3833 	ASSERT(modrootloaded);
3834 
3835 	DI_CACHE_LOCK(di_cache);
3836 
3837 	/*
3838 	 * The following assignment determines the validity
3839 	 * of the cache as far as this snapshot is concerned.
3840 	 */
3841 	cache_valid = di_cache.cache_valid;
3842 
3843 	if (cache_valid && di_cache.cache_data == NULL) {
3844 		di_cache_read(&di_cache);
3845 		/* check for read or file error */
3846 		if (di_cache.cache_data == NULL)
3847 			cache_valid = 0;
3848 	}
3849 
3850 	if (cache_valid) {
3851 		/*
3852 		 * Ok, the cache was valid as of this particular
3853 		 * snapshot. Copy the cached snapshot. This is safe
3854 		 * to do as the cache cannot be freed (we hold the
3855 		 * cache lock). Free the memory allocated in di_state
3856 		 * up until this point - we will simply copy everything
3857 		 * in the cache.
3858 		 */
3859 
3860 		ASSERT(di_cache.cache_data != NULL);
3861 		ASSERT(di_cache.cache_size > 0);
3862 
3863 		di_freemem(st);
3864 
3865 		rval = 0;
3866 		if (di_cache2mem(&di_cache, st) > 0) {
3867 
3868 			ASSERT(DI_ALL_PTR(st));
3869 
3870 			/*
3871 			 * map_size is size of valid data in the
3872 			 * cached snapshot and may be less than
3873 			 * size of the cache.
3874 			 */
3875 			rval = DI_ALL_PTR(st)->map_size;
3876 
3877 			ASSERT(rval >= sizeof (struct di_all));
3878 			ASSERT(rval <= di_cache.cache_size);
3879 		}
3880 	} else {
3881 		/*
3882 		 * The cache isn't valid, we need to take a snapshot.
3883 		 * Set the command flags appropriately
3884 		 */
3885 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3886 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3887 		rval = di_cache_update(st);
3888 		st->command = (DINFOCACHE & DIIOC_MASK);
3889 	}
3890 
3891 	DI_CACHE_UNLOCK(di_cache);
3892 
3893 	/*
3894 	 * For cached snapshots, the devinfo driver always returns
3895 	 * a snapshot rooted at "/".
3896 	 */
3897 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3898 
3899 	return (rval);
3900 }
3901 
3902 /*
3903  * This is a forced update of the cache  - the previous state of the cache
3904  * may be:
3905  *	- unpopulated
3906  *	- populated and invalid
3907  *	- populated and valid
3908  */
3909 static int
3910 di_cache_update(struct di_state *st)
3911 {
3912 	int rval;
3913 	uint32_t crc;
3914 	struct di_all *all;
3915 
3916 	ASSERT(DI_CACHE_LOCKED(di_cache));
3917 	ASSERT(snapshot_is_cacheable(st));
3918 
3919 	/*
3920 	 * Free the in-core cache and the on-disk file (if they exist)
3921 	 */
3922 	i_ddi_di_cache_free(&di_cache);
3923 
3924 	/*
3925 	 * Set valid flag before taking the snapshot,
3926 	 * so that any invalidations that arrive
3927 	 * during or after the snapshot are not
3928 	 * removed by us.
3929 	 */
3930 	atomic_or_32(&di_cache.cache_valid, 1);
3931 
3932 	rval = di_snapshot_and_clean(st);
3933 
3934 	if (rval == 0) {
3935 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
3936 		return (0);
3937 	}
3938 
3939 	DI_ALL_PTR(st)->map_size = rval;
3940 
3941 	if (di_mem2cache(st, &di_cache) == 0) {
3942 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
3943 		return (0);
3944 	}
3945 
3946 	ASSERT(di_cache.cache_data);
3947 	ASSERT(di_cache.cache_size > 0);
3948 
3949 	/*
3950 	 * Now that we have cached the snapshot, compute its checksum.
3951 	 * The checksum is only computed over the valid data in the
3952 	 * cache, not the entire cache.
3953 	 * Also, set all the fields (except checksum) before computing
3954 	 * checksum.
3955 	 */
3956 	all = (struct di_all *)di_cache.cache_data;
3957 	all->cache_magic = DI_CACHE_MAGIC;
3958 	all->map_size = rval;
3959 
3960 	ASSERT(all->cache_checksum == 0);
3961 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
3962 	all->cache_checksum = crc;
3963 
3964 	di_cache_write(&di_cache);
3965 
3966 	return (rval);
3967 }
3968 
3969 static void
3970 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
3971 {
3972 	va_list	ap;
3973 
3974 	if (di_cache_debug <= DI_QUIET)
3975 		return;
3976 
3977 	if (di_cache_debug < msglevel)
3978 		return;
3979 
3980 	switch (msglevel) {
3981 		case DI_ERR:
3982 			msglevel = CE_WARN;
3983 			break;
3984 		case DI_INFO:
3985 		case DI_TRACE:
3986 		default:
3987 			msglevel = CE_NOTE;
3988 			break;
3989 	}
3990 
3991 	va_start(ap, fmt);
3992 	vcmn_err(msglevel, fmt, ap);
3993 	va_end(ap);
3994 }
3995