xref: /titanic_50/usr/src/uts/common/io/devinfo.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * driver for accessing kernel devinfo tree.
31  */
32 #include <sys/types.h>
33 #include <sys/pathname.h>
34 #include <sys/debug.h>
35 #include <sys/autoconf.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/kmem.h>
39 #include <sys/modctl.h>
40 #include <sys/stat.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/sunldi_impl.h>
44 #include <sys/sunndi.h>
45 #include <sys/esunddi.h>
46 #include <sys/sunmdi.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/mdi_impldefs.h>
50 #include <sys/devinfo_impl.h>
51 #include <sys/thread.h>
52 #include <sys/modhash.h>
53 #include <sys/bitmap.h>
54 #include <util/qsort.h>
55 #include <sys/disp.h>
56 #include <sys/kobj.h>
57 #include <sys/crc32.h>
58 
59 
60 #ifdef DEBUG
61 static int di_debug;
62 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
63 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
64 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
65 #else
66 #define	dcmn_err(args) /* nothing */
67 #define	dcmn_err2(args) /* nothing */
68 #define	dcmn_err3(args) /* nothing */
69 #endif
70 
71 /*
72  * We partition the space of devinfo minor nodes equally between the full and
73  * unprivileged versions of the driver.  The even-numbered minor nodes are the
74  * full version, while the odd-numbered ones are the read-only version.
75  */
76 static int di_max_opens = 32;
77 
78 #define	DI_FULL_PARENT		0
79 #define	DI_READONLY_PARENT	1
80 #define	DI_NODE_SPECIES		2
81 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
82 
83 #define	IOC_IDLE	0	/* snapshot ioctl states */
84 #define	IOC_SNAP	1	/* snapshot in progress */
85 #define	IOC_DONE	2	/* snapshot done, but not copied out */
86 #define	IOC_COPY	3	/* copyout in progress */
87 
88 /*
89  * Keep max alignment so we can move snapshot to different platforms
90  */
91 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
92 
93 /*
94  * To avoid wasting memory, make a linked list of memory chunks.
95  * Size of each chunk is buf_size.
96  */
97 struct di_mem {
98 	struct di_mem *next;	/* link to next chunk */
99 	char *buf;		/* contiguous kernel memory */
100 	size_t buf_size;	/* size of buf in bytes */
101 	devmap_cookie_t cook;	/* cookie from ddi_umem_alloc */
102 };
103 
104 /*
105  * This is a stack for walking the tree without using recursion.
106  * When the devinfo tree height is above some small size, one
107  * gets watchdog resets on sun4m.
108  */
109 struct di_stack {
110 	void		*offset[MAX_TREE_DEPTH];
111 	struct dev_info *dip[MAX_TREE_DEPTH];
112 	int		circ[MAX_TREE_DEPTH];
113 	int		depth;	/* depth of current node to be copied */
114 };
115 
116 #define	TOP_OFFSET(stack)	\
117 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
118 #define	TOP_NODE(stack)		\
119 	((stack)->dip[(stack)->depth - 1])
120 #define	PARENT_OFFSET(stack)	\
121 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
122 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
123 #define	POP_STACK(stack)	{ \
124 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
125 		(stack)->circ[(stack)->depth - 1]); \
126 	((stack)->depth--); \
127 }
128 #define	PUSH_STACK(stack, node, offp)	{ \
129 	ASSERT(node != NULL); \
130 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
131 	(stack)->dip[(stack)->depth] = (node); \
132 	(stack)->offset[(stack)->depth] = (void *)(offp); \
133 	((stack)->depth)++; \
134 }
135 
136 #define	DI_ALL_PTR(s)	((struct di_all *)di_mem_addr((s), 0))
137 
138 /*
139  * With devfs, the device tree has no global locks. The device tree is
140  * dynamic and dips may come and go if they are not locked locally. Under
141  * these conditions, pointers are no longer reliable as unique IDs.
142  * Specifically, these pointers cannot be used as keys for hash tables
143  * as the same devinfo structure may be freed in one part of the tree only
144  * to be allocated as the structure for a different device in another
145  * part of the tree. This can happen if DR and the snapshot are
146  * happening concurrently.
147  * The following data structures act as keys for devinfo nodes and
148  * pathinfo nodes.
149  */
150 
151 enum di_ktype {
152 	DI_DKEY = 1,
153 	DI_PKEY = 2
154 };
155 
156 struct di_dkey {
157 	dev_info_t	*dk_dip;
158 	major_t		dk_major;
159 	int		dk_inst;
160 	dnode_t		dk_nodeid;
161 };
162 
163 struct di_pkey {
164 	mdi_pathinfo_t	*pk_pip;
165 	char		*pk_path_addr;
166 	dev_info_t	*pk_client;
167 	dev_info_t	*pk_phci;
168 };
169 
170 struct di_key {
171 	enum di_ktype	k_type;
172 	union {
173 		struct di_dkey dkey;
174 		struct di_pkey pkey;
175 	} k_u;
176 };
177 
178 
179 struct i_lnode;
180 
181 typedef struct i_link {
182 	/*
183 	 * If a di_link struct representing this i_link struct makes it
184 	 * into the snapshot, then self will point to the offset of
185 	 * the di_link struct in the snapshot
186 	 */
187 	di_off_t	self;
188 
189 	int		spec_type;	/* block or char access type */
190 	struct i_lnode	*src_lnode;	/* src i_lnode */
191 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
192 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
193 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
194 } i_link_t;
195 
196 typedef struct i_lnode {
197 	/*
198 	 * If a di_lnode struct representing this i_lnode struct makes it
199 	 * into the snapshot, then self will point to the offset of
200 	 * the di_lnode struct in the snapshot
201 	 */
202 	di_off_t	self;
203 
204 	/*
205 	 * used for hashing and comparing i_lnodes
206 	 */
207 	int		modid;
208 
209 	/*
210 	 * public information describing a link endpoint
211 	 */
212 	struct di_node	*di_node;	/* di_node in snapshot */
213 	dev_t		devt;		/* devt */
214 
215 	/*
216 	 * i_link ptr to links coming into this i_lnode node
217 	 * (this i_lnode is the target of these i_links)
218 	 */
219 	i_link_t	*link_in;
220 
221 	/*
222 	 * i_link ptr to links going out of this i_lnode node
223 	 * (this i_lnode is the source of these i_links)
224 	 */
225 	i_link_t	*link_out;
226 } i_lnode_t;
227 
228 /*
229  * Soft state associated with each instance of driver open.
230  */
231 static struct di_state {
232 	di_off_t mem_size;	/* total # bytes in memlist	*/
233 	struct di_mem *memlist;	/* head of memlist		*/
234 	uint_t command;		/* command from ioctl		*/
235 	int di_iocstate;	/* snapshot ioctl state		*/
236 	mod_hash_t *reg_dip_hash;
237 	mod_hash_t *reg_pip_hash;
238 	int lnode_count;
239 	int link_count;
240 
241 	mod_hash_t *lnode_hash;
242 	mod_hash_t *link_hash;
243 } **di_states;
244 
245 static kmutex_t di_lock;	/* serialize instance assignment */
246 
247 typedef enum {
248 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
249 	DI_ERR,
250 	DI_INFO,
251 	DI_TRACE,
252 	DI_TRACE1,
253 	DI_TRACE2
254 } di_cache_debug_t;
255 
256 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
257 
258 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
259 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
260 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
261 
262 #define	CACHE_DEBUG(args)	\
263 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
264 
265 static int di_open(dev_t *, int, int, cred_t *);
266 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
267 static int di_close(dev_t, int, int, cred_t *);
268 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
269 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
270 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
271 
272 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
273 static di_off_t di_snapshot(struct di_state *);
274 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
275 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
276 static di_off_t di_copynode(struct di_stack *, struct di_state *);
277 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
278     struct di_state *);
279 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
280 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
281 static di_off_t di_getprop(struct ddi_prop *, di_off_t *,
282     struct di_state *, struct dev_info *, int);
283 static void di_allocmem(struct di_state *, size_t);
284 static void di_freemem(struct di_state *);
285 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
286 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
287 static caddr_t di_mem_addr(struct di_state *, di_off_t);
288 static int di_setstate(struct di_state *, int);
289 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
290 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
291 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
292     struct di_state *, int);
293 static di_off_t di_getlink_data(di_off_t, struct di_state *);
294 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
295 
296 static int cache_args_valid(struct di_state *st, int *error);
297 static int snapshot_is_cacheable(struct di_state *st);
298 static int di_cache_lookup(struct di_state *st);
299 static int di_cache_update(struct di_state *st);
300 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
301 
302 static struct cb_ops di_cb_ops = {
303 	di_open,		/* open */
304 	di_close,		/* close */
305 	nodev,			/* strategy */
306 	nodev,			/* print */
307 	nodev,			/* dump */
308 	nodev,			/* read */
309 	nodev,			/* write */
310 	di_ioctl,		/* ioctl */
311 	nodev,			/* devmap */
312 	nodev,			/* mmap */
313 	nodev,			/* segmap */
314 	nochpoll,		/* poll */
315 	ddi_prop_op,		/* prop_op */
316 	NULL,			/* streamtab  */
317 	D_NEW | D_MP		/* Driver compatibility flag */
318 };
319 
320 static struct dev_ops di_ops = {
321 	DEVO_REV,		/* devo_rev, */
322 	0,			/* refcnt  */
323 	di_info,		/* info */
324 	nulldev,		/* identify */
325 	nulldev,		/* probe */
326 	di_attach,		/* attach */
327 	di_detach,		/* detach */
328 	nodev,			/* reset */
329 	&di_cb_ops,		/* driver operations */
330 	NULL			/* bus operations */
331 };
332 
333 /*
334  * Module linkage information for the kernel.
335  */
336 static struct modldrv modldrv = {
337 	&mod_driverops,
338 	"DEVINFO Driver %I%",
339 	&di_ops
340 };
341 
342 static struct modlinkage modlinkage = {
343 	MODREV_1,
344 	&modldrv,
345 	NULL
346 };
347 
348 int
349 _init(void)
350 {
351 	int	error;
352 
353 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
354 
355 	error = mod_install(&modlinkage);
356 	if (error != 0) {
357 		mutex_destroy(&di_lock);
358 		return (error);
359 	}
360 
361 	return (0);
362 }
363 
364 int
365 _info(struct modinfo *modinfop)
366 {
367 	return (mod_info(&modlinkage, modinfop));
368 }
369 
370 int
371 _fini(void)
372 {
373 	int	error;
374 
375 	error = mod_remove(&modlinkage);
376 	if (error != 0) {
377 		return (error);
378 	}
379 
380 	mutex_destroy(&di_lock);
381 	return (0);
382 }
383 
384 static dev_info_t *di_dip;
385 
386 /*ARGSUSED*/
387 static int
388 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
389 {
390 	int error = DDI_FAILURE;
391 
392 	switch (infocmd) {
393 	case DDI_INFO_DEVT2DEVINFO:
394 		*result = (void *)di_dip;
395 		error = DDI_SUCCESS;
396 		break;
397 	case DDI_INFO_DEVT2INSTANCE:
398 		/*
399 		 * All dev_t's map to the same, single instance.
400 		 */
401 		*result = (void *)0;
402 		error = DDI_SUCCESS;
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	return (error);
409 }
410 
411 static int
412 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
413 {
414 	int error = DDI_FAILURE;
415 
416 	switch (cmd) {
417 	case DDI_ATTACH:
418 		di_states = kmem_zalloc(
419 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
420 
421 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
422 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
423 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
424 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
425 			kmem_free(di_states,
426 			    di_max_opens * sizeof (struct di_state *));
427 			ddi_remove_minor_node(dip, NULL);
428 			error = DDI_FAILURE;
429 		} else {
430 			di_dip = dip;
431 			ddi_report_dev(dip);
432 
433 			error = DDI_SUCCESS;
434 		}
435 		break;
436 	default:
437 		error = DDI_FAILURE;
438 		break;
439 	}
440 
441 	return (error);
442 }
443 
444 static int
445 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
446 {
447 	int error = DDI_FAILURE;
448 
449 	switch (cmd) {
450 	case DDI_DETACH:
451 		ddi_remove_minor_node(dip, NULL);
452 		di_dip = NULL;
453 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
454 
455 		error = DDI_SUCCESS;
456 		break;
457 	default:
458 		error = DDI_FAILURE;
459 		break;
460 	}
461 
462 	return (error);
463 }
464 
465 /*
466  * Allow multiple opens by tweaking the dev_t such that it looks like each
467  * open is getting a different minor device.  Each minor gets a separate
468  * entry in the di_states[] table.  Based on the original minor number, we
469  * discriminate opens of the full and read-only nodes.  If all of the instances
470  * of the selected minor node are currently open, we return EAGAIN.
471  */
472 /*ARGSUSED*/
473 static int
474 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
475 {
476 	int m;
477 	minor_t minor_parent = getminor(*devp);
478 
479 	if (minor_parent != DI_FULL_PARENT &&
480 	    minor_parent != DI_READONLY_PARENT)
481 		return (ENXIO);
482 
483 	mutex_enter(&di_lock);
484 
485 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
486 		if (di_states[m] != NULL)
487 			continue;
488 
489 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
490 		break;	/* It's ours. */
491 	}
492 
493 	if (m >= di_max_opens) {
494 		/*
495 		 * maximum open instance for device reached
496 		 */
497 		mutex_exit(&di_lock);
498 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
499 		return (EAGAIN);
500 	}
501 	mutex_exit(&di_lock);
502 
503 	ASSERT(m < di_max_opens);
504 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
505 
506 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
507 		(void *)curthread, m + DI_NODE_SPECIES));
508 
509 	return (0);
510 }
511 
512 /*ARGSUSED*/
513 static int
514 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
515 {
516 	struct di_state *st;
517 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
518 
519 	if (m < 0) {
520 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
521 		    m + DI_NODE_SPECIES);
522 		return (ENXIO);
523 	}
524 
525 	st = di_states[m];
526 	ASSERT(m < di_max_opens && st != NULL);
527 
528 	di_freemem(st);
529 	kmem_free(st, sizeof (struct di_state));
530 
531 	/*
532 	 * empty slot in state table
533 	 */
534 	mutex_enter(&di_lock);
535 	di_states[m] = NULL;
536 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
537 		(void *)curthread, m + DI_NODE_SPECIES));
538 	mutex_exit(&di_lock);
539 
540 	return (0);
541 }
542 
543 
544 /*ARGSUSED*/
545 static int
546 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
547 {
548 	int rv, error;
549 	di_off_t off;
550 	struct di_all *all;
551 	struct di_state *st;
552 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
553 
554 	major_t i;
555 	char *drv_name;
556 	size_t map_size, size;
557 	struct di_mem *dcp;
558 	int ndi_flags;
559 
560 	if (m < 0 || m >= di_max_opens) {
561 		return (ENXIO);
562 	}
563 
564 	st = di_states[m];
565 	ASSERT(st != NULL);
566 
567 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
568 
569 	switch (cmd) {
570 	case DINFOIDENT:
571 		/*
572 		 * This is called from di_init to verify that the driver
573 		 * opened is indeed devinfo. The purpose is to guard against
574 		 * sending ioctl to an unknown driver in case of an
575 		 * unresolved major number conflict during bfu.
576 		 */
577 		*rvalp = DI_MAGIC;
578 		return (0);
579 
580 	case DINFOLODRV:
581 		/*
582 		 * Hold an installed driver and return the result
583 		 */
584 		if (DI_UNPRIVILEGED_NODE(m)) {
585 			/*
586 			 * Only the fully enabled instances may issue
587 			 * DINFOLDDRV.
588 			 */
589 			return (EACCES);
590 		}
591 
592 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
593 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
594 			kmem_free(drv_name, MAXNAMELEN);
595 			return (EFAULT);
596 		}
597 
598 		/*
599 		 * Some 3rd party driver's _init() walks the device tree,
600 		 * so we load the driver module before configuring driver.
601 		 */
602 		i = ddi_name_to_major(drv_name);
603 		if (ddi_hold_driver(i) == NULL) {
604 			kmem_free(drv_name, MAXNAMELEN);
605 			return (ENXIO);
606 		}
607 
608 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
609 
610 		/*
611 		 * i_ddi_load_drvconf() below will trigger a reprobe
612 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
613 		 * needed here.
614 		 */
615 		modunload_disable();
616 		(void) i_ddi_load_drvconf(i);
617 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
618 		kmem_free(drv_name, MAXNAMELEN);
619 		ddi_rele_driver(i);
620 		rv = i_ddi_devs_attached(i);
621 		modunload_enable();
622 
623 		i_ddi_di_cache_invalidate(KM_SLEEP);
624 
625 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
626 
627 	case DINFOUSRLD:
628 		/*
629 		 * The case for copying snapshot to userland
630 		 */
631 		if (di_setstate(st, IOC_COPY) == -1)
632 			return (EBUSY);
633 
634 		map_size = ((struct di_all *)di_mem_addr(st, 0))->map_size;
635 		if (map_size == 0) {
636 			(void) di_setstate(st, IOC_DONE);
637 			return (EFAULT);
638 		}
639 
640 		/*
641 		 * copyout the snapshot
642 		 */
643 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
644 
645 		/*
646 		 * Return the map size, so caller may do a sanity
647 		 * check against the return value of snapshot ioctl()
648 		 */
649 		*rvalp = (int)map_size;
650 
651 		/*
652 		 * Copy one chunk at a time
653 		 */
654 		off = 0;
655 		dcp = st->memlist;
656 		while (map_size) {
657 			size = dcp->buf_size;
658 			if (map_size <= size) {
659 				size = map_size;
660 			}
661 
662 			if (ddi_copyout(di_mem_addr(st, off),
663 			    (void *)(arg + off), size, mode) != 0) {
664 				(void) di_setstate(st, IOC_DONE);
665 				return (EFAULT);
666 			}
667 
668 			map_size -= size;
669 			off += size;
670 			dcp = dcp->next;
671 		}
672 
673 		di_freemem(st);
674 		(void) di_setstate(st, IOC_IDLE);
675 		return (0);
676 
677 	default:
678 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
679 			/*
680 			 * Invalid ioctl command
681 			 */
682 			return (ENOTTY);
683 		}
684 		/*
685 		 * take a snapshot
686 		 */
687 		st->command = cmd & DIIOC_MASK;
688 		/*FALLTHROUGH*/
689 	}
690 
691 	/*
692 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
693 	 * memory exhaustion by freeing any previously allocated snapshot and
694 	 * refusing the operation; otherwise we would be allowing ioctl(),
695 	 * ioctl(), ioctl(), ..., panic.
696 	 */
697 	if (di_setstate(st, IOC_SNAP) == -1)
698 		return (EBUSY);
699 
700 	size = sizeof (struct di_all) +
701 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
702 	if (size < PAGESIZE)
703 		size = PAGESIZE;
704 	di_allocmem(st, size);
705 
706 	all = (struct di_all *)di_mem_addr(st, 0);
707 	all->devcnt = devcnt;
708 	all->command = st->command;
709 	all->version = DI_SNAPSHOT_VERSION;
710 
711 	/*
712 	 * Note the endianness in case we need to transport snapshot
713 	 * over the network.
714 	 */
715 #if defined(_LITTLE_ENDIAN)
716 	all->endianness = DI_LITTLE_ENDIAN;
717 #else
718 	all->endianness = DI_BIG_ENDIAN;
719 #endif
720 
721 	/* Copyin ioctl args, store in the snapshot. */
722 	if (copyinstr((void *)arg, all->root_path,
723 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
724 		di_freemem(st);
725 		(void) di_setstate(st, IOC_IDLE);
726 		return (EFAULT);
727 	}
728 
729 	error = 0;
730 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
731 		di_freemem(st);
732 		(void) di_setstate(st, IOC_IDLE);
733 		return (error);
734 	}
735 
736 	off = DI_ALIGN(sizeof (struct di_all) + size);
737 
738 	/*
739 	 * Only the fully enabled version may force load drivers or read
740 	 * the parent private data from a driver.
741 	 */
742 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
743 	    DI_UNPRIVILEGED_NODE(m)) {
744 		di_freemem(st);
745 		(void) di_setstate(st, IOC_IDLE);
746 		return (EACCES);
747 	}
748 
749 	/* Do we need private data? */
750 	if (st->command & DINFOPRIVDATA) {
751 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
752 
753 #ifdef _MULTI_DATAMODEL
754 		switch (ddi_model_convert_from(mode & FMODELS)) {
755 		case DDI_MODEL_ILP32: {
756 			/*
757 			 * Cannot copy private data from 64-bit kernel
758 			 * to 32-bit app
759 			 */
760 			di_freemem(st);
761 			(void) di_setstate(st, IOC_IDLE);
762 			return (EINVAL);
763 		}
764 		case DDI_MODEL_NONE:
765 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
766 				di_freemem(st);
767 				(void) di_setstate(st, IOC_IDLE);
768 				return (EFAULT);
769 			}
770 			break;
771 		}
772 #else /* !_MULTI_DATAMODEL */
773 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
774 			di_freemem(st);
775 			(void) di_setstate(st, IOC_IDLE);
776 			return (EFAULT);
777 		}
778 #endif /* _MULTI_DATAMODEL */
779 	}
780 
781 	all->top_devinfo = DI_ALIGN(off);
782 
783 	/*
784 	 * For cache lookups we reallocate memory from scratch,
785 	 * so the value of "all" is no longer valid.
786 	 */
787 	all = NULL;
788 
789 	if (st->command & DINFOCACHE) {
790 		*rvalp = di_cache_lookup(st);
791 	} else if (snapshot_is_cacheable(st)) {
792 		DI_CACHE_LOCK(di_cache);
793 		*rvalp = di_cache_update(st);
794 		DI_CACHE_UNLOCK(di_cache);
795 	} else {
796 		modunload_disable();
797 		*rvalp = di_snapshot(st);
798 		modunload_enable();
799 	}
800 
801 	if (*rvalp) {
802 		DI_ALL_PTR(st)->map_size = *rvalp;
803 		(void) di_setstate(st, IOC_DONE);
804 	} else {
805 		di_freemem(st);
806 		(void) di_setstate(st, IOC_IDLE);
807 	}
808 
809 	return (0);
810 }
811 
812 /*
813  * Get a chunk of memory >= size, for the snapshot
814  */
815 static void
816 di_allocmem(struct di_state *st, size_t size)
817 {
818 	struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem),
819 	    KM_SLEEP);
820 	/*
821 	 * Round up size to nearest power of 2. If it is less
822 	 * than st->mem_size, set it to st->mem_size (i.e.,
823 	 * the mem_size is doubled every time) to reduce the
824 	 * number of memory allocations.
825 	 */
826 	size_t tmp = 1;
827 	while (tmp < size) {
828 		tmp <<= 1;
829 	}
830 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
831 
832 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
833 	mem->buf_size = size;
834 
835 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
836 
837 	if (st->mem_size == 0) {	/* first chunk */
838 		st->memlist = mem;
839 	} else {
840 		/*
841 		 * locate end of linked list and add a chunk at the end
842 		 */
843 		struct di_mem *dcp = st->memlist;
844 		while (dcp->next != NULL) {
845 			dcp = dcp->next;
846 		}
847 
848 		dcp->next = mem;
849 	}
850 
851 	st->mem_size += size;
852 }
853 
854 /*
855  * Copy upto bufsiz bytes of the memlist to buf
856  */
857 static void
858 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
859 {
860 	struct di_mem *dcp;
861 	size_t copysz;
862 
863 	if (st->mem_size == 0) {
864 		ASSERT(st->memlist == NULL);
865 		return;
866 	}
867 
868 	copysz = 0;
869 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
870 
871 		ASSERT(bufsiz > 0);
872 
873 		if (bufsiz <= dcp->buf_size)
874 			copysz = bufsiz;
875 		else
876 			copysz = dcp->buf_size;
877 
878 		bcopy(dcp->buf, buf, copysz);
879 
880 		buf += copysz;
881 		bufsiz -= copysz;
882 
883 		if (bufsiz == 0)
884 			break;
885 	}
886 }
887 
888 /*
889  * Free all memory for the snapshot
890  */
891 static void
892 di_freemem(struct di_state *st)
893 {
894 	struct di_mem *dcp, *tmp;
895 
896 	dcmn_err2((CE_CONT, "di_freemem\n"));
897 
898 	if (st->mem_size) {
899 		dcp = st->memlist;
900 		while (dcp) {	/* traverse the linked list */
901 			tmp = dcp;
902 			dcp = dcp->next;
903 			ddi_umem_free(tmp->cook);
904 			kmem_free(tmp, sizeof (struct di_mem));
905 		}
906 		st->mem_size = 0;
907 		st->memlist = NULL;
908 	}
909 
910 	ASSERT(st->mem_size == 0);
911 	ASSERT(st->memlist == NULL);
912 }
913 
914 /*
915  * Copies cached data to the di_state structure.
916  * Returns:
917  *	- size of data copied, on SUCCESS
918  *	- 0 on failure
919  */
920 static int
921 di_cache2mem(struct di_cache *cache, struct di_state *st)
922 {
923 	caddr_t	pa;
924 
925 	ASSERT(st->mem_size == 0);
926 	ASSERT(st->memlist == NULL);
927 	ASSERT(!servicing_interrupt());
928 	ASSERT(DI_CACHE_LOCKED(*cache));
929 
930 	if (cache->cache_size == 0) {
931 		ASSERT(cache->cache_data == NULL);
932 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
933 		return (0);
934 	}
935 
936 	ASSERT(cache->cache_data);
937 
938 	di_allocmem(st, cache->cache_size);
939 
940 	pa = di_mem_addr(st, 0);
941 
942 	ASSERT(pa);
943 
944 	/*
945 	 * Verify that di_allocmem() allocates contiguous memory,
946 	 * so that it is safe to do straight bcopy()
947 	 */
948 	ASSERT(st->memlist != NULL);
949 	ASSERT(st->memlist->next == NULL);
950 	bcopy(cache->cache_data, pa, cache->cache_size);
951 
952 	return (cache->cache_size);
953 }
954 
955 /*
956  * Copies a snapshot from di_state to the cache
957  * Returns:
958  *	- 0 on failure
959  *	- size of copied data on success
960  */
961 static int
962 di_mem2cache(struct di_state *st, struct di_cache *cache)
963 {
964 	size_t map_size;
965 
966 	ASSERT(cache->cache_size == 0);
967 	ASSERT(cache->cache_data == NULL);
968 	ASSERT(!servicing_interrupt());
969 	ASSERT(DI_CACHE_LOCKED(*cache));
970 
971 	if (st->mem_size == 0) {
972 		ASSERT(st->memlist == NULL);
973 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
974 		return (0);
975 	}
976 
977 	ASSERT(st->memlist);
978 
979 	/*
980 	 * The size of the memory list may be much larger than the
981 	 * size of valid data (map_size). Cache only the valid data
982 	 */
983 	map_size = DI_ALL_PTR(st)->map_size;
984 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
985 	    map_size > st->mem_size) {
986 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
987 		return (0);
988 	}
989 
990 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
991 	cache->cache_size = map_size;
992 	di_copymem(st, cache->cache_data, cache->cache_size);
993 
994 	return (map_size);
995 }
996 
997 /*
998  * Make sure there is at least "size" bytes memory left before
999  * going on. Otherwise, start on a new chunk.
1000  */
1001 static di_off_t
1002 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1003 {
1004 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1005 			off, (int)size));
1006 
1007 	/*
1008 	 * di_checkmem() shouldn't be called with a size of zero.
1009 	 * But in case it is, we want to make sure we return a valid
1010 	 * offset within the memlist and not an offset that points us
1011 	 * at the end of the memlist.
1012 	 */
1013 	if (size == 0) {
1014 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1015 		size = 1;
1016 	}
1017 
1018 	off = DI_ALIGN(off);
1019 	if ((st->mem_size - off) < size) {
1020 		off = st->mem_size;
1021 		di_allocmem(st, size);
1022 	}
1023 
1024 	return (off);
1025 }
1026 
1027 /*
1028  * Copy the private data format from ioctl arg.
1029  * On success, the ending offset is returned. On error 0 is returned.
1030  */
1031 static di_off_t
1032 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1033 {
1034 	di_off_t size;
1035 	struct di_priv_data *priv;
1036 	struct di_all *all = (struct di_all *)di_mem_addr(st, 0);
1037 
1038 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1039 		off, (void *)arg, mode));
1040 
1041 	/*
1042 	 * Copyin data and check version.
1043 	 * We only handle private data version 0.
1044 	 */
1045 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1046 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1047 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1048 		kmem_free(priv, sizeof (struct di_priv_data));
1049 		return (0);
1050 	}
1051 
1052 	/*
1053 	 * Save di_priv_data copied from userland in snapshot.
1054 	 */
1055 	all->pd_version = priv->version;
1056 	all->n_ppdata = priv->n_parent;
1057 	all->n_dpdata = priv->n_driver;
1058 
1059 	/*
1060 	 * copyin private data format, modify offset accordingly
1061 	 */
1062 	if (all->n_ppdata) {	/* parent private data format */
1063 		/*
1064 		 * check memory
1065 		 */
1066 		size = all->n_ppdata * sizeof (struct di_priv_format);
1067 		off = di_checkmem(st, off, size);
1068 		all->ppdata_format = off;
1069 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1070 		    mode) != 0) {
1071 			kmem_free(priv, sizeof (struct di_priv_data));
1072 			return (0);
1073 		}
1074 
1075 		off += size;
1076 	}
1077 
1078 	if (all->n_dpdata) {	/* driver private data format */
1079 		/*
1080 		 * check memory
1081 		 */
1082 		size = all->n_dpdata * sizeof (struct di_priv_format);
1083 		off = di_checkmem(st, off, size);
1084 		all->dpdata_format = off;
1085 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1086 		    mode) != 0) {
1087 			kmem_free(priv, sizeof (struct di_priv_data));
1088 			return (0);
1089 		}
1090 
1091 		off += size;
1092 	}
1093 
1094 	kmem_free(priv, sizeof (struct di_priv_data));
1095 	return (off);
1096 }
1097 
1098 /*
1099  * Return the real address based on the offset (off) within snapshot
1100  */
1101 static caddr_t
1102 di_mem_addr(struct di_state *st, di_off_t off)
1103 {
1104 	struct di_mem *dcp = st->memlist;
1105 
1106 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1107 		(void *)dcp, off));
1108 
1109 	ASSERT(off < st->mem_size);
1110 
1111 	while (off >= dcp->buf_size) {
1112 		off -= dcp->buf_size;
1113 		dcp = dcp->next;
1114 	}
1115 
1116 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1117 		off, (void *)(dcp->buf + off)));
1118 
1119 	return (dcp->buf + off);
1120 }
1121 
1122 /*
1123  * Ideally we would use the whole key to derive the hash
1124  * value. However, the probability that two keys will
1125  * have the same dip (or pip) is very low, so
1126  * hashing by dip (or pip) pointer should suffice.
1127  */
1128 static uint_t
1129 di_hash_byptr(void *arg, mod_hash_key_t key)
1130 {
1131 	struct di_key *dik = key;
1132 	size_t rshift;
1133 	void *ptr;
1134 
1135 	ASSERT(arg == NULL);
1136 
1137 	switch (dik->k_type) {
1138 	case DI_DKEY:
1139 		ptr = dik->k_u.dkey.dk_dip;
1140 		rshift = highbit(sizeof (struct dev_info));
1141 		break;
1142 	case DI_PKEY:
1143 		ptr = dik->k_u.pkey.pk_pip;
1144 		rshift = highbit(sizeof (struct mdi_pathinfo));
1145 		break;
1146 	default:
1147 		panic("devinfo: unknown key type");
1148 		/*NOTREACHED*/
1149 	}
1150 	return (mod_hash_byptr((void *)rshift, ptr));
1151 }
1152 
1153 static void
1154 di_key_dtor(mod_hash_key_t key)
1155 {
1156 	char		*path_addr;
1157 	struct di_key	*dik = key;
1158 
1159 	switch (dik->k_type) {
1160 	case DI_DKEY:
1161 		break;
1162 	case DI_PKEY:
1163 		path_addr = dik->k_u.pkey.pk_path_addr;
1164 		if (path_addr)
1165 			kmem_free(path_addr, strlen(path_addr) + 1);
1166 		break;
1167 	default:
1168 		panic("devinfo: unknown key type");
1169 		/*NOTREACHED*/
1170 	}
1171 
1172 	kmem_free(dik, sizeof (struct di_key));
1173 }
1174 
1175 static int
1176 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1177 {
1178 	if (dk1->dk_dip !=  dk2->dk_dip)
1179 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1180 
1181 	if (dk1->dk_major != -1 && dk2->dk_major != -1) {
1182 		if (dk1->dk_major !=  dk2->dk_major)
1183 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1184 
1185 		if (dk1->dk_inst !=  dk2->dk_inst)
1186 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1187 	}
1188 
1189 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1190 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1191 
1192 	return (0);
1193 }
1194 
1195 static int
1196 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1197 {
1198 	char *p1, *p2;
1199 	int rv;
1200 
1201 	if (pk1->pk_pip !=  pk2->pk_pip)
1202 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1203 
1204 	p1 = pk1->pk_path_addr;
1205 	p2 = pk2->pk_path_addr;
1206 
1207 	p1 = p1 ? p1 : "";
1208 	p2 = p2 ? p2 : "";
1209 
1210 	rv = strcmp(p1, p2);
1211 	if (rv)
1212 		return (rv > 0  ? 1 : -1);
1213 
1214 	if (pk1->pk_client !=  pk2->pk_client)
1215 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1216 
1217 	if (pk1->pk_phci !=  pk2->pk_phci)
1218 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1219 
1220 	return (0);
1221 }
1222 
1223 static int
1224 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1225 {
1226 	struct di_key *dik1, *dik2;
1227 
1228 	dik1 = key1;
1229 	dik2 = key2;
1230 
1231 	if (dik1->k_type != dik2->k_type) {
1232 		panic("devinfo: mismatched keys");
1233 		/*NOTREACHED*/
1234 	}
1235 
1236 	switch (dik1->k_type) {
1237 	case DI_DKEY:
1238 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1239 	case DI_PKEY:
1240 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1241 	default:
1242 		panic("devinfo: unknown key type");
1243 		/*NOTREACHED*/
1244 	}
1245 }
1246 
1247 /*
1248  * This is the main function that takes a snapshot
1249  */
1250 static di_off_t
1251 di_snapshot(struct di_state *st)
1252 {
1253 	di_off_t off;
1254 	struct di_all *all;
1255 	dev_info_t *rootnode;
1256 	char buf[80];
1257 
1258 	all = (struct di_all *)di_mem_addr(st, 0);
1259 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1260 
1261 	/*
1262 	 * Hold the devinfo node referred by the path.
1263 	 */
1264 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1265 	if (rootnode == NULL) {
1266 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1267 		    all->root_path));
1268 		return (0);
1269 	}
1270 
1271 	(void) snprintf(buf, sizeof (buf),
1272 	    "devinfo registered dips (statep=%p)", (void *)st);
1273 
1274 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1275 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1276 	    NULL, di_key_cmp, KM_SLEEP);
1277 
1278 
1279 	(void) snprintf(buf, sizeof (buf),
1280 	    "devinfo registered pips (statep=%p)", (void *)st);
1281 
1282 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1283 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1284 	    NULL, di_key_cmp, KM_SLEEP);
1285 
1286 	/*
1287 	 * copy the device tree
1288 	 */
1289 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1290 
1291 	ddi_release_devi(rootnode);
1292 
1293 	/*
1294 	 * copy the devnames array
1295 	 */
1296 	all->devnames = off;
1297 	off = di_copydevnm(&all->devnames, st);
1298 
1299 
1300 	/* initialize the hash tables */
1301 	st->lnode_count = 0;
1302 	st->link_count = 0;
1303 
1304 	if (DINFOLYR & st->command) {
1305 		off = di_getlink_data(off, st);
1306 	}
1307 
1308 	/*
1309 	 * Free up hash tables
1310 	 */
1311 	mod_hash_destroy_hash(st->reg_dip_hash);
1312 	mod_hash_destroy_hash(st->reg_pip_hash);
1313 
1314 	/*
1315 	 * Record the timestamp now that we are done with snapshot.
1316 	 *
1317 	 * We compute the checksum later and then only if we cache
1318 	 * the snapshot, since checksumming adds some overhead.
1319 	 * The checksum is checked later if we read the cache file.
1320 	 * from disk.
1321 	 *
1322 	 * Set checksum field to 0 as CRC is calculated with that
1323 	 * field set to 0.
1324 	 */
1325 	all->snapshot_time = ddi_get_time();
1326 	all->cache_checksum = 0;
1327 
1328 	return (off);
1329 }
1330 
1331 /*
1332  * Assumes all devinfo nodes in device tree have been snapshotted
1333  */
1334 static void
1335 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p)
1336 {
1337 	struct dev_info *node;
1338 	struct di_node *me;
1339 	di_off_t off;
1340 
1341 	ASSERT(mutex_owned(&dnp->dn_lock));
1342 
1343 	node = DEVI(dnp->dn_head);
1344 	for (; node; node = node->devi_next) {
1345 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1346 			continue;
1347 
1348 		ASSERT(off > 0);
1349 		me = (struct di_node *)di_mem_addr(st, off);
1350 		ASSERT(me->next == 0 || me->next == -1);
1351 		/*
1352 		 * Only nodes which were BOUND when they were
1353 		 * snapshotted will be added to per-driver list.
1354 		 */
1355 		if (me->next != -1)
1356 			continue;
1357 
1358 		*poff_p = off;
1359 		poff_p = &me->next;
1360 	}
1361 
1362 	*poff_p = 0;
1363 }
1364 
1365 /*
1366  * Copy the devnames array, so we have a list of drivers in the snapshot.
1367  * Also makes it possible to locate the per-driver devinfo nodes.
1368  */
1369 static di_off_t
1370 di_copydevnm(di_off_t *off_p, struct di_state *st)
1371 {
1372 	int i;
1373 	di_off_t off;
1374 	size_t size;
1375 	struct di_devnm *dnp;
1376 
1377 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1378 
1379 	/*
1380 	 * make sure there is some allocated memory
1381 	 */
1382 	size = devcnt * sizeof (struct di_devnm);
1383 	off = di_checkmem(st, *off_p, size);
1384 	*off_p = off;
1385 
1386 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1387 		devcnt, off));
1388 
1389 	dnp = (struct di_devnm *)di_mem_addr(st, off);
1390 	off += size;
1391 
1392 	for (i = 0; i < devcnt; i++) {
1393 		if (devnamesp[i].dn_name == NULL) {
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * dn_name is not freed during driver unload or removal.
1399 		 *
1400 		 * There is a race condition when make_devname() changes
1401 		 * dn_name during our strcpy. This should be rare since
1402 		 * only add_drv does this. At any rate, we never had a
1403 		 * problem with ddi_name_to_major(), which should have
1404 		 * the same problem.
1405 		 */
1406 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1407 			devnamesp[i].dn_name, devnamesp[i].dn_instance,
1408 			off));
1409 
1410 		off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1);
1411 		dnp[i].name = off;
1412 		(void) strcpy((char *)di_mem_addr(st, off),
1413 			devnamesp[i].dn_name);
1414 		off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1);
1415 
1416 		mutex_enter(&devnamesp[i].dn_lock);
1417 
1418 		/*
1419 		 * Snapshot per-driver node list
1420 		 */
1421 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1422 
1423 		/*
1424 		 * This is not used by libdevinfo, leave it for now
1425 		 */
1426 		dnp[i].flags = devnamesp[i].dn_flags;
1427 		dnp[i].instance = devnamesp[i].dn_instance;
1428 
1429 		/*
1430 		 * get global properties
1431 		 */
1432 		if ((DINFOPROP & st->command) &&
1433 		    devnamesp[i].dn_global_prop_ptr) {
1434 			dnp[i].global_prop = off;
1435 			off = di_getprop(
1436 			    devnamesp[i].dn_global_prop_ptr->prop_list,
1437 			    &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST);
1438 		}
1439 
1440 		/*
1441 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1442 		 */
1443 		if (CB_DRV_INSTALLED(devopsp[i])) {
1444 			if (devopsp[i]->devo_cb_ops) {
1445 				dnp[i].ops |= DI_CB_OPS;
1446 				if (devopsp[i]->devo_cb_ops->cb_str)
1447 					dnp[i].ops |= DI_STREAM_OPS;
1448 			}
1449 			if (NEXUS_DRV(devopsp[i])) {
1450 				dnp[i].ops |= DI_BUS_OPS;
1451 			}
1452 		}
1453 
1454 		mutex_exit(&devnamesp[i].dn_lock);
1455 	}
1456 
1457 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1458 
1459 	return (off);
1460 }
1461 
1462 /*
1463  * Copy the kernel devinfo tree. The tree and the devnames array forms
1464  * the entire snapshot (see also di_copydevnm).
1465  */
1466 static di_off_t
1467 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1468 {
1469 	di_off_t off;
1470 	struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1471 
1472 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1473 		(void *)root, *off_p));
1474 
1475 	/* force attach drivers */
1476 	if ((i_ddi_node_state((dev_info_t *)root) == DS_READY) &&
1477 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1478 		(void) ndi_devi_config((dev_info_t *)root,
1479 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1480 		    NDI_DRV_CONF_REPROBE);
1481 	}
1482 
1483 	/*
1484 	 * Push top_devinfo onto a stack
1485 	 *
1486 	 * The stack is necessary to avoid recursion, which can overrun
1487 	 * the kernel stack.
1488 	 */
1489 	PUSH_STACK(dsp, root, off_p);
1490 
1491 	/*
1492 	 * As long as there is a node on the stack, copy the node.
1493 	 * di_copynode() is responsible for pushing and popping
1494 	 * child and sibling nodes on the stack.
1495 	 */
1496 	while (!EMPTY_STACK(dsp)) {
1497 		off = di_copynode(dsp, st);
1498 	}
1499 
1500 	/*
1501 	 * Free the stack structure
1502 	 */
1503 	kmem_free(dsp, sizeof (struct di_stack));
1504 
1505 	return (off);
1506 }
1507 
1508 /*
1509  * This is the core function, which copies all data associated with a single
1510  * node into the snapshot. The amount of information is determined by the
1511  * ioctl command.
1512  */
1513 static di_off_t
1514 di_copynode(struct di_stack *dsp, struct di_state *st)
1515 {
1516 	di_off_t off;
1517 	struct di_node *me;
1518 	struct dev_info *node;
1519 
1520 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n",
1521 			dsp->depth));
1522 
1523 	node = TOP_NODE(dsp);
1524 
1525 	ASSERT(node != NULL);
1526 
1527 	/*
1528 	 * check memory usage, and fix offsets accordingly.
1529 	 */
1530 	off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node));
1531 	*(TOP_OFFSET(dsp)) = off;
1532 	me = DI_NODE(di_mem_addr(st, off));
1533 
1534 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1535 			node->devi_node_name, node->devi_instance, off));
1536 
1537 	/*
1538 	 * Node parameters:
1539 	 * self		-- offset of current node within snapshot
1540 	 * nodeid	-- pointer to PROM node (tri-valued)
1541 	 * state	-- hot plugging device state
1542 	 * node_state	-- devinfo node state (CF1, CF2, etc.)
1543 	 */
1544 	me->self = off;
1545 	me->instance = node->devi_instance;
1546 	me->nodeid = node->devi_nodeid;
1547 	me->node_class = node->devi_node_class;
1548 	me->attributes = node->devi_node_attributes;
1549 	me->state = node->devi_state;
1550 	me->node_state = node->devi_node_state;
1551 	me->user_private_data = NULL;
1552 
1553 	/*
1554 	 * Get parent's offset in snapshot from the stack
1555 	 * and store it in the current node
1556 	 */
1557 	if (dsp->depth > 1) {
1558 		me->parent = *(PARENT_OFFSET(dsp));
1559 	}
1560 
1561 	/*
1562 	 * Save the offset of this di_node in a hash table.
1563 	 * This is used later to resolve references to this
1564 	 * dip from other parts of the tree (per-driver list,
1565 	 * multipathing linkages, layered usage linkages).
1566 	 * The key used for the hash table is derived from
1567 	 * information in the dip.
1568 	 */
1569 	di_register_dip(st, (dev_info_t *)node, me->self);
1570 
1571 	/*
1572 	 * increment offset
1573 	 */
1574 	off += sizeof (struct di_node);
1575 
1576 #ifdef	DEVID_COMPATIBILITY
1577 	/* check for devid as property marker */
1578 	if (node->devi_devid) {
1579 		ddi_devid_t	devid;
1580 		char 		*devidstr;
1581 		int		devid_size;
1582 
1583 		/*
1584 		 * The devid is now represented as a property.
1585 		 * For micro release compatibility with di_devid interface
1586 		 * in libdevinfo we must return it as a binary structure in'
1587 		 * the snapshot.  When di_devid is removed from libdevinfo
1588 		 * in a future release (and devi_devid is deleted) then
1589 		 * code related to DEVID_COMPATIBILITY can be removed.
1590 		 */
1591 		ASSERT(node->devi_devid == DEVID_COMPATIBILITY);
1592 /* XXX should be DDI_DEV_T_NONE! */
1593 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node,
1594 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) ==
1595 		    DDI_PROP_SUCCESS) {
1596 			if (ddi_devid_str_decode(devidstr, &devid, NULL) ==
1597 			    DDI_SUCCESS) {
1598 				devid_size = ddi_devid_sizeof(devid);
1599 				off = di_checkmem(st, off, devid_size);
1600 				me->devid = off;
1601 				bcopy(devid,
1602 				    di_mem_addr(st, off), devid_size);
1603 				off += devid_size;
1604 				ddi_devid_free(devid);
1605 			}
1606 			ddi_prop_free(devidstr);
1607 		}
1608 	}
1609 #endif	/* DEVID_COMPATIBILITY */
1610 
1611 	if (node->devi_node_name) {
1612 		off = di_checkmem(st, off, strlen(node->devi_node_name) + 1);
1613 		me->node_name = off;
1614 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1615 		off += strlen(node->devi_node_name) + 1;
1616 	}
1617 
1618 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1619 		off = di_checkmem(st, off, node->devi_compat_length);
1620 		me->compat_names = off;
1621 		me->compat_length = node->devi_compat_length;
1622 		bcopy(node->devi_compat_names, di_mem_addr(st, off),
1623 			node->devi_compat_length);
1624 		off += node->devi_compat_length;
1625 	}
1626 
1627 	if (node->devi_addr) {
1628 		off = di_checkmem(st, off, strlen(node->devi_addr) + 1);
1629 		me->address = off;
1630 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1631 		off += strlen(node->devi_addr) + 1;
1632 	}
1633 
1634 	if (node->devi_binding_name) {
1635 		off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1);
1636 		me->bind_name = off;
1637 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1638 		off += strlen(node->devi_binding_name) + 1;
1639 	}
1640 
1641 	me->drv_major = node->devi_major;
1642 
1643 	/*
1644 	 * If the dip is BOUND, set the next pointer of the
1645 	 * per-instance list to -1, indicating that it is yet to be resolved.
1646 	 * This will be resolved later in snap_driver_list().
1647 	 */
1648 	if (me->drv_major != -1) {
1649 		me->next = -1;
1650 	} else {
1651 		me->next = 0;
1652 	}
1653 
1654 	/*
1655 	 * An optimization to skip mutex_enter when not needed.
1656 	 */
1657 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1658 		goto priv_data;
1659 	}
1660 
1661 	/*
1662 	 * Grab current per dev_info node lock to
1663 	 * get minor data and properties.
1664 	 */
1665 	mutex_enter(&(node->devi_lock));
1666 
1667 	if (!(DINFOMINOR & st->command)) {
1668 		goto path;
1669 	}
1670 
1671 	if (node->devi_minor) {		/* minor data */
1672 		me->minor_data = DI_ALIGN(off);
1673 		off = di_getmdata(node->devi_minor, &me->minor_data,
1674 		    me->self, st);
1675 	}
1676 
1677 path:
1678 	if (!(DINFOPATH & st->command)) {
1679 		goto property;
1680 	}
1681 
1682 	if (MDI_CLIENT(node)) {
1683 		me->multipath_client = DI_ALIGN(off);
1684 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1685 		    me->self, st, 1);
1686 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1687 		    "component type = %d.  off=%d",
1688 		    me->multipath_client,
1689 		    (void *)node, node->devi_mdi_component, off));
1690 	}
1691 
1692 	if (MDI_PHCI(node)) {
1693 		me->multipath_phci = DI_ALIGN(off);
1694 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1695 		    me->self, st, 0);
1696 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1697 		    "component type = %d.  off=%d",
1698 		    me->multipath_phci,
1699 		    (void *)node, node->devi_mdi_component, off));
1700 	}
1701 
1702 property:
1703 	if (!(DINFOPROP & st->command)) {
1704 		goto unlock;
1705 	}
1706 
1707 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1708 		me->drv_prop = DI_ALIGN(off);
1709 		off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st,
1710 			node, DI_PROP_DRV_LIST);
1711 	}
1712 
1713 	if (node->devi_sys_prop_ptr) {	/* system property list */
1714 		me->sys_prop = DI_ALIGN(off);
1715 		off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st,
1716 			node, DI_PROP_SYS_LIST);
1717 	}
1718 
1719 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1720 		me->hw_prop = DI_ALIGN(off);
1721 		off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st,
1722 			node, DI_PROP_HW_LIST);
1723 	}
1724 
1725 	if (node->devi_global_prop_list == NULL) {
1726 		me->glob_prop = (di_off_t)-1;	/* not global property */
1727 	} else {
1728 		/*
1729 		 * Make copy of global property list if this devinfo refers
1730 		 * global properties different from what's on the devnames
1731 		 * array. It can happen if there has been a forced
1732 		 * driver.conf update. See mod_drv(1M).
1733 		 */
1734 		ASSERT(me->drv_major != -1);
1735 		if (node->devi_global_prop_list !=
1736 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1737 			me->glob_prop = DI_ALIGN(off);
1738 			off = di_getprop(node->devi_global_prop_list->prop_list,
1739 			    &me->glob_prop, st, node, DI_PROP_GLB_LIST);
1740 		}
1741 	}
1742 
1743 unlock:
1744 	/*
1745 	 * release current per dev_info node lock
1746 	 */
1747 	mutex_exit(&(node->devi_lock));
1748 
1749 priv_data:
1750 	if (!(DINFOPRIVDATA & st->command)) {
1751 		goto pm_info;
1752 	}
1753 
1754 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1755 		me->parent_data = DI_ALIGN(off);
1756 		off = di_getppdata(node, &me->parent_data, st);
1757 	}
1758 
1759 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1760 		me->driver_data = DI_ALIGN(off);
1761 		off = di_getdpdata(node, &me->driver_data, st);
1762 	}
1763 
1764 pm_info: /* NOT implemented */
1765 
1766 subtree:
1767 	if (!(DINFOSUBTREE & st->command)) {
1768 		POP_STACK(dsp);
1769 		return (DI_ALIGN(off));
1770 	}
1771 
1772 child:
1773 	/*
1774 	 * If there is a child--push child onto stack.
1775 	 * Hold the parent busy while doing so.
1776 	 */
1777 	if (node->devi_child) {
1778 		me->child = DI_ALIGN(off);
1779 		PUSH_STACK(dsp, node->devi_child, &me->child);
1780 		return (me->child);
1781 	}
1782 
1783 sibling:
1784 	/*
1785 	 * no child node, unroll the stack till a sibling of
1786 	 * a parent node is found or root node is reached
1787 	 */
1788 	POP_STACK(dsp);
1789 	while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) {
1790 		node = TOP_NODE(dsp);
1791 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1792 		POP_STACK(dsp);
1793 	}
1794 
1795 	if (!EMPTY_STACK(dsp)) {
1796 		/*
1797 		 * a sibling is found, replace top of stack by its sibling
1798 		 */
1799 		me->sibling = DI_ALIGN(off);
1800 		PUSH_STACK(dsp, node->devi_sibling, &me->sibling);
1801 		return (me->sibling);
1802 	}
1803 
1804 	/*
1805 	 * DONE with all nodes
1806 	 */
1807 	return (DI_ALIGN(off));
1808 }
1809 
1810 static i_lnode_t *
1811 i_lnode_alloc(int modid)
1812 {
1813 	i_lnode_t	*i_lnode;
1814 
1815 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1816 
1817 	ASSERT(modid != -1);
1818 	i_lnode->modid = modid;
1819 
1820 	return (i_lnode);
1821 }
1822 
1823 static void
1824 i_lnode_free(i_lnode_t *i_lnode)
1825 {
1826 	kmem_free(i_lnode, sizeof (i_lnode_t));
1827 }
1828 
1829 static void
1830 i_lnode_check_free(i_lnode_t *i_lnode)
1831 {
1832 	/* This lnode and its dip must have been snapshotted */
1833 	ASSERT(i_lnode->self > 0);
1834 	ASSERT(i_lnode->di_node->self > 0);
1835 
1836 	/* at least 1 link (in or out) must exist for this lnode */
1837 	ASSERT(i_lnode->link_in || i_lnode->link_out);
1838 
1839 	i_lnode_free(i_lnode);
1840 }
1841 
1842 static i_link_t *
1843 i_link_alloc(int spec_type)
1844 {
1845 	i_link_t *i_link;
1846 
1847 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
1848 	i_link->spec_type = spec_type;
1849 
1850 	return (i_link);
1851 }
1852 
1853 static void
1854 i_link_check_free(i_link_t *i_link)
1855 {
1856 	/* This link must have been snapshotted */
1857 	ASSERT(i_link->self > 0);
1858 
1859 	/* Both endpoint lnodes must exist for this link */
1860 	ASSERT(i_link->src_lnode);
1861 	ASSERT(i_link->tgt_lnode);
1862 
1863 	kmem_free(i_link, sizeof (i_link_t));
1864 }
1865 
1866 /*ARGSUSED*/
1867 static uint_t
1868 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
1869 {
1870 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
1871 	struct di_node	*ptr;
1872 	dev_t		dev;
1873 
1874 	dev = i_lnode->devt;
1875 	if (dev != DDI_DEV_T_NONE)
1876 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
1877 
1878 	ptr = i_lnode->di_node;
1879 	ASSERT(ptr->self > 0);
1880 	if (ptr) {
1881 		uintptr_t k = (uintptr_t)ptr;
1882 		k >>= (int)highbit(sizeof (struct di_node));
1883 		return ((uint_t)k);
1884 	}
1885 
1886 	return (i_lnode->modid);
1887 }
1888 
1889 static int
1890 i_lnode_cmp(void *arg1, void *arg2)
1891 {
1892 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
1893 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
1894 
1895 	if (i_lnode1->modid != i_lnode2->modid) {
1896 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
1897 	}
1898 
1899 	if (i_lnode1->di_node != i_lnode2->di_node)
1900 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
1901 
1902 	if (i_lnode1->devt != i_lnode2->devt)
1903 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
1904 
1905 	return (0);
1906 }
1907 
1908 /*
1909  * An lnode represents a {dip, dev_t} tuple. A link represents a
1910  * {src_lnode, tgt_lnode, spec_type} tuple.
1911  * The following callback assumes that LDI framework ref-counts the
1912  * src_dip and tgt_dip while invoking this callback.
1913  */
1914 static int
1915 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
1916 {
1917 	struct di_state	*st = (struct di_state *)arg;
1918 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
1919 	i_link_t	**i_link_next, *i_link;
1920 	di_off_t	soff, toff;
1921 	mod_hash_val_t	nodep = NULL;
1922 	int		res;
1923 
1924 	/*
1925 	 * if the source or target of this device usage information doesn't
1926 	 * corrospond to a device node then we don't report it via
1927 	 * libdevinfo so return.
1928 	 */
1929 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
1930 		return (LDI_USAGE_CONTINUE);
1931 
1932 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
1933 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
1934 
1935 	/*
1936 	 * Skip the ldi_usage if either src or tgt dip is not in the
1937 	 * snapshot. This saves us from pruning bad lnodes/links later.
1938 	 */
1939 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
1940 		return (LDI_USAGE_CONTINUE);
1941 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
1942 		return (LDI_USAGE_CONTINUE);
1943 
1944 	ASSERT(soff > 0);
1945 	ASSERT(toff > 0);
1946 
1947 	/*
1948 	 * allocate an i_lnode and add it to the lnode hash
1949 	 * if it is not already present. For this particular
1950 	 * link the lnode is a source, but it may
1951 	 * participate as tgt or src in any number of layered
1952 	 * operations - so it may already be in the hash.
1953 	 */
1954 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
1955 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, soff);
1956 	i_lnode->devt = ldi_usage->src_devt;
1957 
1958 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
1959 	if (res == MH_ERR_NOTFOUND) {
1960 		/*
1961 		 * new i_lnode
1962 		 * add it to the hash and increment the lnode count
1963 		 */
1964 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
1965 		ASSERT(res == 0);
1966 		st->lnode_count++;
1967 		src_lnode = i_lnode;
1968 	} else {
1969 		/* this i_lnode already exists in the lnode_hash */
1970 		i_lnode_free(i_lnode);
1971 		src_lnode = (i_lnode_t *)nodep;
1972 	}
1973 
1974 	/*
1975 	 * allocate a tgt i_lnode and add it to the lnode hash
1976 	 */
1977 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
1978 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, toff);
1979 	i_lnode->devt = ldi_usage->tgt_devt;
1980 
1981 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
1982 	if (res == MH_ERR_NOTFOUND) {
1983 		/*
1984 		 * new i_lnode
1985 		 * add it to the hash and increment the lnode count
1986 		 */
1987 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
1988 		ASSERT(res == 0);
1989 		st->lnode_count++;
1990 		tgt_lnode = i_lnode;
1991 	} else {
1992 		/* this i_lnode already exists in the lnode_hash */
1993 		i_lnode_free(i_lnode);
1994 		tgt_lnode = (i_lnode_t *)nodep;
1995 	}
1996 
1997 	/*
1998 	 * allocate a i_link
1999 	 */
2000 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2001 	i_link->src_lnode = src_lnode;
2002 	i_link->tgt_lnode = tgt_lnode;
2003 
2004 	/*
2005 	 * add this link onto the src i_lnodes outbound i_link list
2006 	 */
2007 	i_link_next = &(src_lnode->link_out);
2008 	while (*i_link_next != NULL) {
2009 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2010 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2011 			/* this link already exists */
2012 			kmem_free(i_link, sizeof (i_link_t));
2013 			return (LDI_USAGE_CONTINUE);
2014 		}
2015 		i_link_next = &((*i_link_next)->src_link_next);
2016 	}
2017 	*i_link_next = i_link;
2018 
2019 	/*
2020 	 * add this link onto the tgt i_lnodes inbound i_link list
2021 	 */
2022 	i_link_next = &(tgt_lnode->link_in);
2023 	while (*i_link_next != NULL) {
2024 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2025 		i_link_next = &((*i_link_next)->tgt_link_next);
2026 	}
2027 	*i_link_next = i_link;
2028 
2029 	/*
2030 	 * add this i_link to the link hash
2031 	 */
2032 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2033 	ASSERT(res == 0);
2034 	st->link_count++;
2035 
2036 	return (LDI_USAGE_CONTINUE);
2037 }
2038 
2039 struct i_layer_data {
2040 	struct di_state	*st;
2041 	int		lnode_count;
2042 	int		link_count;
2043 	di_off_t	lnode_off;
2044 	di_off_t 	link_off;
2045 };
2046 
2047 /*ARGSUSED*/
2048 static uint_t
2049 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2050 {
2051 	i_link_t		*i_link  = (i_link_t *)key;
2052 	struct i_layer_data	*data = arg;
2053 	struct di_link		*me;
2054 	struct di_lnode		*melnode;
2055 	struct di_node		*medinode;
2056 
2057 	ASSERT(i_link->self == 0);
2058 
2059 	i_link->self = data->link_off +
2060 	    (data->link_count * sizeof (struct di_link));
2061 	data->link_count++;
2062 
2063 	ASSERT(data->link_off > 0 && data->link_count > 0);
2064 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2065 	ASSERT(data->link_count <= data->st->link_count);
2066 
2067 	/* fill in fields for the di_link snapshot */
2068 	me = (struct di_link *)di_mem_addr(data->st, i_link->self);
2069 	me->self = i_link->self;
2070 	me->spec_type = i_link->spec_type;
2071 
2072 	/*
2073 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2074 	 * are created during the LDI table walk. Since we are
2075 	 * walking the link hash, the lnode hash has already been
2076 	 * walked and the lnodes have been snapshotted. Save lnode
2077 	 * offsets.
2078 	 */
2079 	me->src_lnode = i_link->src_lnode->self;
2080 	me->tgt_lnode = i_link->tgt_lnode->self;
2081 
2082 	/*
2083 	 * Save this link's offset in the src_lnode snapshot's link_out
2084 	 * field
2085 	 */
2086 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->src_lnode);
2087 	me->src_link_next = melnode->link_out;
2088 	melnode->link_out = me->self;
2089 
2090 	/*
2091 	 * Put this link on the tgt_lnode's link_in field
2092 	 */
2093 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->tgt_lnode);
2094 	me->tgt_link_next = melnode->link_in;
2095 	melnode->link_in = me->self;
2096 
2097 	/*
2098 	 * An i_lnode_t is only created if the corresponding dip exists
2099 	 * in the snapshot. A pointer to the di_node is saved in the
2100 	 * i_lnode_t when it is allocated. For this link, get the di_node
2101 	 * for the source lnode. Then put the link on the di_node's list
2102 	 * of src links
2103 	 */
2104 	medinode = i_link->src_lnode->di_node;
2105 	me->src_node_next = medinode->src_links;
2106 	medinode->src_links = me->self;
2107 
2108 	/*
2109 	 * Put this link on the tgt_links list of the target
2110 	 * dip.
2111 	 */
2112 	medinode = i_link->tgt_lnode->di_node;
2113 	me->tgt_node_next = medinode->tgt_links;
2114 	medinode->tgt_links = me->self;
2115 
2116 	return (MH_WALK_CONTINUE);
2117 }
2118 
2119 /*ARGSUSED*/
2120 static uint_t
2121 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2122 {
2123 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2124 	struct i_layer_data	*data = arg;
2125 	struct di_lnode		*me;
2126 	struct di_node		*medinode;
2127 
2128 	ASSERT(i_lnode->self == 0);
2129 
2130 	i_lnode->self = data->lnode_off +
2131 	    (data->lnode_count * sizeof (struct di_lnode));
2132 	data->lnode_count++;
2133 
2134 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2135 	ASSERT(data->link_count == 0); /* links not done yet */
2136 	ASSERT(data->lnode_count <= data->st->lnode_count);
2137 
2138 	/* fill in fields for the di_lnode snapshot */
2139 	me = (struct di_lnode *)di_mem_addr(data->st, i_lnode->self);
2140 	me->self = i_lnode->self;
2141 
2142 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2143 		me->dev_major = (major_t)-1;
2144 		me->dev_minor = (minor_t)-1;
2145 	} else {
2146 		me->dev_major = getmajor(i_lnode->devt);
2147 		me->dev_minor = getminor(i_lnode->devt);
2148 	}
2149 
2150 	/*
2151 	 * The dip corresponding to this lnode must exist in
2152 	 * the snapshot or we wouldn't have created the i_lnode_t
2153 	 * during LDI walk. Save the offset of the dip.
2154 	 */
2155 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2156 	me->node = i_lnode->di_node->self;
2157 
2158 	/*
2159 	 * There must be at least one link in or out of this lnode
2160 	 * or we wouldn't have created it. These fields will be set
2161 	 * during the link hash walk.
2162 	 */
2163 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2164 
2165 	/*
2166 	 * set the offset of the devinfo node associated with this
2167 	 * lnode. Also update the node_next next pointer.  this pointer
2168 	 * is set if there are multiple lnodes associated with the same
2169 	 * devinfo node.  (could occure when multiple minor nodes
2170 	 * are open for one device, etc.)
2171 	 */
2172 	medinode = i_lnode->di_node;
2173 	me->node_next = medinode->lnodes;
2174 	medinode->lnodes = me->self;
2175 
2176 	return (MH_WALK_CONTINUE);
2177 }
2178 
2179 static di_off_t
2180 di_getlink_data(di_off_t off, struct di_state *st)
2181 {
2182 	struct i_layer_data data = {0};
2183 	size_t size;
2184 
2185 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2186 
2187 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2188 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2189 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2190 
2191 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2192 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2193 
2194 	/* get driver layering information */
2195 	(void) ldi_usage_walker(st, di_ldi_callback);
2196 
2197 	/* check if there is any link data to include in the snapshot */
2198 	if (st->lnode_count == 0) {
2199 		ASSERT(st->link_count == 0);
2200 		goto out;
2201 	}
2202 
2203 	ASSERT(st->link_count != 0);
2204 
2205 	/* get a pointer to snapshot memory for all the di_lnodes */
2206 	size = sizeof (struct di_lnode) * st->lnode_count;
2207 	data.lnode_off = off = di_checkmem(st, off, size);
2208 	off += DI_ALIGN(size);
2209 
2210 	/* get a pointer to snapshot memory for all the di_links */
2211 	size = sizeof (struct di_link) * st->link_count;
2212 	data.link_off = off = di_checkmem(st, off, size);
2213 	off += DI_ALIGN(size);
2214 
2215 	data.lnode_count = data.link_count = 0;
2216 	data.st = st;
2217 
2218 	/*
2219 	 * We have lnodes and links that will go into the
2220 	 * snapshot, so let's walk the respective hashes
2221 	 * and snapshot them. The various linkages are
2222 	 * also set up during the walk.
2223 	 */
2224 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2225 	ASSERT(data.lnode_count == st->lnode_count);
2226 
2227 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2228 	ASSERT(data.link_count == st->link_count);
2229 
2230 out:
2231 	/* free up the i_lnodes and i_links used to create the snapshot */
2232 	mod_hash_destroy_hash(st->lnode_hash);
2233 	mod_hash_destroy_hash(st->link_hash);
2234 	st->lnode_count = 0;
2235 	st->link_count = 0;
2236 
2237 	return (off);
2238 }
2239 
2240 
2241 /*
2242  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2243  * It is called from di_copynode with devi_lock held.
2244  */
2245 static di_off_t
2246 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2247 	struct di_state *st)
2248 {
2249 	di_off_t off;
2250 	struct di_minor *me;
2251 
2252 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2253 
2254 	/*
2255 	 * check memory first
2256 	 */
2257 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2258 	*off_p = off;
2259 
2260 	do {
2261 		me = (struct di_minor *)di_mem_addr(st, off);
2262 		me->self = off;
2263 		me->type = mnode->type;
2264 		me->node = node;
2265 		me->user_private_data = NULL;
2266 
2267 		off += DI_ALIGN(sizeof (struct di_minor));
2268 
2269 		/*
2270 		 * Split dev_t to major/minor, so it works for
2271 		 * both ILP32 and LP64 model
2272 		 */
2273 		me->dev_major = getmajor(mnode->ddm_dev);
2274 		me->dev_minor = getminor(mnode->ddm_dev);
2275 		me->spec_type = mnode->ddm_spec_type;
2276 
2277 		if (mnode->ddm_name) {
2278 			off = di_checkmem(st, off,
2279 				strlen(mnode->ddm_name) + 1);
2280 			me->name = off;
2281 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2282 			off += DI_ALIGN(strlen(mnode->ddm_name) + 1);
2283 		}
2284 
2285 		if (mnode->ddm_node_type) {
2286 			off = di_checkmem(st, off,
2287 				strlen(mnode->ddm_node_type) + 1);
2288 			me->node_type = off;
2289 			(void) strcpy(di_mem_addr(st, off),
2290 					mnode->ddm_node_type);
2291 			off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1);
2292 		}
2293 
2294 		off = di_checkmem(st, off, sizeof (struct di_minor));
2295 		me->next = off;
2296 		mnode = mnode->next;
2297 	} while (mnode);
2298 
2299 	me->next = 0;
2300 
2301 	return (off);
2302 }
2303 
2304 /*
2305  * di_register_dip(), di_find_dip(): The dip must be protected
2306  * from deallocation when using these routines - this can either
2307  * be a reference count, a busy hold or a per-driver lock.
2308  */
2309 
2310 static void
2311 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2312 {
2313 	struct dev_info *node = DEVI(dip);
2314 	struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2315 	struct di_dkey *dk;
2316 
2317 	ASSERT(dip);
2318 	ASSERT(off > 0);
2319 
2320 	key->k_type = DI_DKEY;
2321 	dk = &(key->k_u.dkey);
2322 
2323 	dk->dk_dip = dip;
2324 	dk->dk_major = node->devi_major;
2325 	dk->dk_inst = node->devi_instance;
2326 	dk->dk_nodeid = node->devi_nodeid;
2327 
2328 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2329 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2330 		panic(
2331 		    "duplicate devinfo (%p) registered during device "
2332 		    "tree walk", (void *)dip);
2333 	}
2334 }
2335 
2336 
2337 static int
2338 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2339 {
2340 	/*
2341 	 * uintptr_t must be used because it matches the size of void *;
2342 	 * mod_hash expects clients to place results into pointer-size
2343 	 * containers; since di_off_t is always a 32-bit offset, alignment
2344 	 * would otherwise be broken on 64-bit kernels.
2345 	 */
2346 	uintptr_t	offset;
2347 	struct		di_key key = {0};
2348 	struct		di_dkey *dk;
2349 
2350 	ASSERT(st->reg_dip_hash);
2351 	ASSERT(dip);
2352 	ASSERT(off_p);
2353 
2354 
2355 	key.k_type = DI_DKEY;
2356 	dk = &(key.k_u.dkey);
2357 
2358 	dk->dk_dip = dip;
2359 	dk->dk_major = DEVI(dip)->devi_major;
2360 	dk->dk_inst = DEVI(dip)->devi_instance;
2361 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2362 
2363 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2364 	    (mod_hash_val_t *)&offset) == 0) {
2365 		*off_p = (di_off_t)offset;
2366 		return (0);
2367 	} else {
2368 		return (-1);
2369 	}
2370 }
2371 
2372 /*
2373  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2374  * when using these routines. The caller must do this by protecting the
2375  * client(or phci)<->pip linkage while traversing the list and then holding the
2376  * pip when it is found in the list.
2377  */
2378 
2379 static void
2380 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2381 {
2382 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2383 	char		*path_addr;
2384 	struct di_pkey	*pk;
2385 
2386 	ASSERT(pip);
2387 	ASSERT(off > 0);
2388 
2389 	key->k_type = DI_PKEY;
2390 	pk = &(key->k_u.pkey);
2391 
2392 	pk->pk_pip = pip;
2393 	path_addr = mdi_pi_get_addr(pip);
2394 	if (path_addr)
2395 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2396 	pk->pk_client = mdi_pi_get_client(pip);
2397 	pk->pk_phci = mdi_pi_get_phci(pip);
2398 
2399 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2400 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2401 		panic(
2402 		    "duplicate pathinfo (%p) registered during device "
2403 		    "tree walk", (void *)pip);
2404 	}
2405 }
2406 
2407 /*
2408  * As with di_register_pip, the caller must hold or lock the pip
2409  */
2410 static int
2411 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2412 {
2413 	/*
2414 	 * uintptr_t must be used because it matches the size of void *;
2415 	 * mod_hash expects clients to place results into pointer-size
2416 	 * containers; since di_off_t is always a 32-bit offset, alignment
2417 	 * would otherwise be broken on 64-bit kernels.
2418 	 */
2419 	uintptr_t	offset;
2420 	struct di_key	key = {0};
2421 	struct di_pkey	*pk;
2422 
2423 	ASSERT(st->reg_pip_hash);
2424 	ASSERT(off_p);
2425 
2426 	if (pip == NULL) {
2427 		*off_p = 0;
2428 		return (0);
2429 	}
2430 
2431 	key.k_type = DI_PKEY;
2432 	pk = &(key.k_u.pkey);
2433 
2434 	pk->pk_pip = pip;
2435 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2436 	pk->pk_client = mdi_pi_get_client(pip);
2437 	pk->pk_phci = mdi_pi_get_phci(pip);
2438 
2439 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2440 	    (mod_hash_val_t *)&offset) == 0) {
2441 		*off_p = (di_off_t)offset;
2442 		return (0);
2443 	} else {
2444 		return (-1);
2445 	}
2446 }
2447 
2448 static di_path_state_t
2449 path_state_convert(mdi_pathinfo_state_t st)
2450 {
2451 	switch (st) {
2452 	case MDI_PATHINFO_STATE_ONLINE:
2453 		return (DI_PATH_STATE_ONLINE);
2454 	case MDI_PATHINFO_STATE_STANDBY:
2455 		return (DI_PATH_STATE_STANDBY);
2456 	case MDI_PATHINFO_STATE_OFFLINE:
2457 		return (DI_PATH_STATE_OFFLINE);
2458 	case MDI_PATHINFO_STATE_FAULT:
2459 		return (DI_PATH_STATE_FAULT);
2460 	default:
2461 		return (DI_PATH_STATE_UNKNOWN);
2462 	}
2463 }
2464 
2465 
2466 static di_off_t
2467 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p,
2468     struct di_state *st)
2469 {
2470 	nvpair_t *prop = NULL;
2471 	struct di_path_prop *me;
2472 
2473 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2474 		*off_p = 0;
2475 		return (off);
2476 	}
2477 
2478 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2479 	*off_p = off;
2480 
2481 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2482 		int delta = 0;
2483 
2484 		me = (struct di_path_prop *)di_mem_addr(st, off);
2485 		me->self = off;
2486 		off += sizeof (struct di_path_prop);
2487 
2488 		/*
2489 		 * property name
2490 		 */
2491 		off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1);
2492 		me->prop_name = off;
2493 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2494 		off += strlen(nvpair_name(prop)) + 1;
2495 
2496 		switch (nvpair_type(prop)) {
2497 		case DATA_TYPE_BYTE:
2498 		case DATA_TYPE_INT16:
2499 		case DATA_TYPE_UINT16:
2500 		case DATA_TYPE_INT32:
2501 		case DATA_TYPE_UINT32:
2502 			delta = sizeof (int32_t);
2503 			me->prop_type = DDI_PROP_TYPE_INT;
2504 			off = di_checkmem(st, off, delta);
2505 			(void) nvpair_value_int32(prop,
2506 			    (int32_t *)di_mem_addr(st, off));
2507 			break;
2508 
2509 		case DATA_TYPE_INT64:
2510 		case DATA_TYPE_UINT64:
2511 			delta = sizeof (int64_t);
2512 			me->prop_type = DDI_PROP_TYPE_INT64;
2513 			off = di_checkmem(st, off, delta);
2514 			(void) nvpair_value_int64(prop,
2515 			    (int64_t *)di_mem_addr(st, off));
2516 			break;
2517 
2518 		case DATA_TYPE_STRING:
2519 		{
2520 			char *str;
2521 			(void) nvpair_value_string(prop, &str);
2522 			delta = strlen(str) + 1;
2523 			me->prop_type = DDI_PROP_TYPE_STRING;
2524 			off = di_checkmem(st, off, delta);
2525 			(void) strcpy(di_mem_addr(st, off), str);
2526 			break;
2527 		}
2528 		case DATA_TYPE_BYTE_ARRAY:
2529 		case DATA_TYPE_INT16_ARRAY:
2530 		case DATA_TYPE_UINT16_ARRAY:
2531 		case DATA_TYPE_INT32_ARRAY:
2532 		case DATA_TYPE_UINT32_ARRAY:
2533 		case DATA_TYPE_INT64_ARRAY:
2534 		case DATA_TYPE_UINT64_ARRAY:
2535 		{
2536 			uchar_t *buf;
2537 			uint_t nelems;
2538 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2539 			delta = nelems;
2540 			me->prop_type = DDI_PROP_TYPE_BYTE;
2541 			if (nelems != 0) {
2542 				off = di_checkmem(st, off, delta);
2543 				bcopy(buf, di_mem_addr(st, off), nelems);
2544 			}
2545 			break;
2546 		}
2547 
2548 		default:	/* Unknown or unhandled type; skip it */
2549 			delta = 0;
2550 			break;
2551 		}
2552 
2553 		if (delta > 0) {
2554 			me->prop_data = off;
2555 		}
2556 
2557 		me->prop_len = delta;
2558 		off += delta;
2559 
2560 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2561 		me->prop_next = off;
2562 	}
2563 
2564 	me->prop_next = 0;
2565 	return (off);
2566 }
2567 
2568 
2569 static void
2570 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2571     int get_client)
2572 {
2573 	if (get_client) {
2574 		ASSERT(me->path_client == 0);
2575 		me->path_client = noff;
2576 		ASSERT(me->path_c_link == 0);
2577 		*off_pp = &me->path_c_link;
2578 		me->path_snap_state &=
2579 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2580 	} else {
2581 		ASSERT(me->path_phci == 0);
2582 		me->path_phci = noff;
2583 		ASSERT(me->path_p_link == 0);
2584 		*off_pp = &me->path_p_link;
2585 		me->path_snap_state &=
2586 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2587 	}
2588 }
2589 
2590 /*
2591  * poff_p: pointer to the linkage field. This links pips along the client|phci
2592  *	   linkage list.
2593  * noff  : Offset for the endpoint dip snapshot.
2594  */
2595 static di_off_t
2596 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff,
2597     struct di_state *st, int get_client)
2598 {
2599 	di_off_t off;
2600 	mdi_pathinfo_t *pip;
2601 	struct di_path *me;
2602 	mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2603 
2604 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2605 
2606 	/*
2607 	 * The naming of the following mdi_xyz() is unfortunately
2608 	 * non-intuitive. mdi_get_next_phci_path() follows the
2609 	 * client_link i.e. the list of pip's belonging to the
2610 	 * given client dip.
2611 	 */
2612 	if (get_client)
2613 		next_pip = &mdi_get_next_phci_path;
2614 	else
2615 		next_pip = &mdi_get_next_client_path;
2616 
2617 	off = *poff_p;
2618 
2619 	pip = NULL;
2620 	while (pip = (*next_pip)(dip, pip)) {
2621 		mdi_pathinfo_state_t state;
2622 		di_off_t stored_offset;
2623 
2624 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2625 
2626 		mdi_pi_lock(pip);
2627 
2628 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2629 			/*
2630 			 * We've already seen this pathinfo node so we need to
2631 			 * take care not to snap it again; However, one endpoint
2632 			 * and linkage will be set here. The other endpoint
2633 			 * and linkage has already been set when the pip was
2634 			 * first snapshotted i.e. when the other endpoint dip
2635 			 * was snapshotted.
2636 			 */
2637 			me = (struct di_path *)di_mem_addr(st, stored_offset);
2638 
2639 			*poff_p = stored_offset;
2640 
2641 			di_path_one_endpoint(me, noff, &poff_p, get_client);
2642 
2643 			/*
2644 			 * The other endpoint and linkage were set when this
2645 			 * pip was snapshotted. So we are done with both
2646 			 * endpoints and linkages.
2647 			 */
2648 			ASSERT(!(me->path_snap_state &
2649 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2650 			ASSERT(!(me->path_snap_state &
2651 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2652 
2653 			mdi_pi_unlock(pip);
2654 			continue;
2655 		}
2656 
2657 		/*
2658 		 * Now that we need to snapshot this pip, check memory
2659 		 */
2660 		off = di_checkmem(st, off, sizeof (struct di_path));
2661 		me = (struct di_path *)di_mem_addr(st, off);
2662 		me->self = off;
2663 		*poff_p = off;
2664 		off += sizeof (struct di_path);
2665 
2666 		me->path_snap_state =
2667 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2668 		me->path_snap_state |=
2669 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2670 
2671 		/*
2672 		 * Zero out fields as di_checkmem() doesn't guarantee
2673 		 * zero-filled memory
2674 		 */
2675 		me->path_client = me->path_phci = 0;
2676 		me->path_c_link = me->path_p_link = 0;
2677 
2678 		di_path_one_endpoint(me, noff, &poff_p, get_client);
2679 
2680 		/*
2681 		 * Note the existence of this pathinfo
2682 		 */
2683 		di_register_pip(st, pip, me->self);
2684 
2685 		state = mdi_pi_get_state(pip);
2686 		me->path_state = path_state_convert(state);
2687 
2688 		/*
2689 		 * Get intermediate addressing info.
2690 		 */
2691 		off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1);
2692 		me->path_addr = off;
2693 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2694 		off += strlen(mdi_pi_get_addr(pip)) + 1;
2695 
2696 		/*
2697 		 * Get path properties if props are to be included in the
2698 		 * snapshot
2699 		 */
2700 		if (DINFOPROP & st->command) {
2701 			off = di_path_getprop(pip, off, &me->path_prop, st);
2702 		} else {
2703 			me->path_prop = 0;
2704 		}
2705 
2706 		mdi_pi_unlock(pip);
2707 	}
2708 
2709 	*poff_p = 0;
2710 
2711 	return (off);
2712 }
2713 
2714 /*
2715  * Copy a list of properties attached to a devinfo node. Called from
2716  * di_copynode with devi_lock held. The major number is passed in case
2717  * we need to call driver's prop_op entry. The value of list indicates
2718  * which list we are copying. Possible values are:
2719  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
2720  */
2721 static di_off_t
2722 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st,
2723 	struct dev_info *dip, int list)
2724 {
2725 	dev_t dev;
2726 	int (*prop_op)();
2727 	int off, need_prop_op = 0;
2728 	int prop_op_fail = 0;
2729 	ddi_prop_t *propp = NULL;
2730 	struct di_prop *pp;
2731 	struct dev_ops *ops = NULL;
2732 	int prop_len;
2733 	caddr_t prop_val;
2734 
2735 
2736 	dcmn_err2((CE_CONT, "di_getprop:\n"));
2737 
2738 	ASSERT(st != NULL);
2739 
2740 	dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop));
2741 
2742 	/*
2743 	 * Figure out if we need to call driver's prop_op entry point.
2744 	 * The conditions are:
2745 	 *	-- driver property list
2746 	 *	-- driver must be attached and held
2747 	 *	-- driver's cb_prop_op != ddi_prop_op
2748 	 *		or parent's bus_prop_op != ddi_bus_prop_op
2749 	 */
2750 
2751 	if (list != DI_PROP_DRV_LIST) {
2752 		goto getprop;
2753 	}
2754 
2755 	/*
2756 	 * If driver is not attached or if major is -1, we ignore
2757 	 * the driver property list. No one should rely on such
2758 	 * properties.
2759 	 */
2760 	if (i_ddi_node_state((dev_info_t *)dip) < DS_ATTACHED) {
2761 		off = *off_p;
2762 		*off_p = 0;
2763 		return (off);
2764 	}
2765 
2766 	/*
2767 	 * Now we have a driver which is held. We can examine entry points
2768 	 * and check the condition listed above.
2769 	 */
2770 	ops = dip->devi_ops;
2771 
2772 	/*
2773 	 * Some nexus drivers incorrectly set cb_prop_op to nodev,
2774 	 * nulldev or even NULL.
2775 	 */
2776 	if (ops && ops->devo_cb_ops &&
2777 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2778 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2779 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2780 	    (ops->devo_cb_ops->cb_prop_op != NULL)) {
2781 		need_prop_op = 1;
2782 	}
2783 
2784 getprop:
2785 	/*
2786 	 * check memory availability
2787 	 */
2788 	off = di_checkmem(st, *off_p, sizeof (struct di_prop));
2789 	*off_p = off;
2790 	/*
2791 	 * Now copy properties
2792 	 */
2793 	do {
2794 		pp = (struct di_prop *)di_mem_addr(st, off);
2795 		pp->self = off;
2796 		/*
2797 		 * Split dev_t to major/minor, so it works for
2798 		 * both ILP32 and LP64 model
2799 		 */
2800 		pp->dev_major = getmajor(prop->prop_dev);
2801 		pp->dev_minor = getminor(prop->prop_dev);
2802 		pp->prop_flags = prop->prop_flags;
2803 		pp->prop_list = list;
2804 
2805 		/*
2806 		 * property name
2807 		 */
2808 		off += sizeof (struct di_prop);
2809 		if (prop->prop_name) {
2810 			off = di_checkmem(st, off, strlen(prop->prop_name)
2811 			    + 1);
2812 			pp->prop_name = off;
2813 			(void) strcpy(di_mem_addr(st, off), prop->prop_name);
2814 			off += strlen(prop->prop_name) + 1;
2815 		}
2816 
2817 		/*
2818 		 * Set prop_len here. This may change later
2819 		 * if cb_prop_op returns a different length.
2820 		 */
2821 		pp->prop_len = prop->prop_len;
2822 		if (!need_prop_op) {
2823 			if (prop->prop_val == NULL) {
2824 				dcmn_err((CE_WARN,
2825 				    "devinfo: property fault at %p",
2826 				    (void *)prop));
2827 				pp->prop_data = -1;
2828 			} else if (prop->prop_len != 0) {
2829 				off = di_checkmem(st, off, prop->prop_len);
2830 				pp->prop_data = off;
2831 				bcopy(prop->prop_val, di_mem_addr(st, off),
2832 				    prop->prop_len);
2833 				off += DI_ALIGN(pp->prop_len);
2834 			}
2835 		}
2836 
2837 		off = di_checkmem(st, off, sizeof (struct di_prop));
2838 		pp->next = off;
2839 		prop = prop->prop_next;
2840 	} while (prop);
2841 
2842 	pp->next = 0;
2843 
2844 	if (!need_prop_op) {
2845 		dcmn_err((CE_CONT, "finished property "
2846 		    "list at offset 0x%x\n", off));
2847 		return (off);
2848 	}
2849 
2850 	/*
2851 	 * If there is a need to call driver's prop_op entry,
2852 	 * we must release driver's devi_lock, because the
2853 	 * cb_prop_op entry point will grab it.
2854 	 *
2855 	 * The snapshot memory has already been allocated above,
2856 	 * which means the length of an active property should
2857 	 * remain fixed for this implementation to work.
2858 	 */
2859 
2860 
2861 	prop_op = ops->devo_cb_ops->cb_prop_op;
2862 	pp = (struct di_prop *)di_mem_addr(st, *off_p);
2863 
2864 	mutex_exit(&dip->devi_lock);
2865 
2866 	do {
2867 		int err;
2868 		struct di_prop *tmp;
2869 
2870 		if (pp->next) {
2871 			tmp = (struct di_prop *)
2872 			    di_mem_addr(st, pp->next);
2873 		} else {
2874 			tmp = NULL;
2875 		}
2876 
2877 		/*
2878 		 * call into driver's prop_op entry point
2879 		 *
2880 		 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY
2881 		 */
2882 		dev = makedevice(pp->dev_major, pp->dev_minor);
2883 		if (dev == DDI_DEV_T_NONE)
2884 			dev = DDI_DEV_T_ANY;
2885 
2886 		dcmn_err((CE_CONT, "call prop_op"
2887 		    "(%lx, %p, PROP_LEN_AND_VAL_BUF, "
2888 		    "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n",
2889 		    dev,
2890 		    (void *)dip,
2891 		    (char *)di_mem_addr(st, pp->prop_name),
2892 		    (void *)di_mem_addr(st, pp->prop_data),
2893 		    pp->prop_len));
2894 
2895 		if ((err = (*prop_op)(dev, (dev_info_t)dip,
2896 		    PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS,
2897 		    (char *)di_mem_addr(st, pp->prop_name),
2898 		    &prop_val, &prop_len)) != DDI_PROP_SUCCESS) {
2899 			if ((propp = i_ddi_prop_search(dev,
2900 			    (char *)di_mem_addr(st, pp->prop_name),
2901 			    (uint_t)pp->prop_flags,
2902 			    &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) {
2903 				pp->prop_len = propp->prop_len;
2904 				if (pp->prop_len != 0) {
2905 					off = di_checkmem(st, off,
2906 					    pp->prop_len);
2907 					pp->prop_data = off;
2908 					bcopy(propp->prop_val, di_mem_addr(st,
2909 					    pp->prop_data), propp->prop_len);
2910 					off += DI_ALIGN(pp->prop_len);
2911 				}
2912 			} else {
2913 				prop_op_fail = 1;
2914 			}
2915 		} else if (prop_len != 0) {
2916 			pp->prop_len = prop_len;
2917 			off = di_checkmem(st, off, prop_len);
2918 			pp->prop_data = off;
2919 			bcopy(prop_val, di_mem_addr(st, off), prop_len);
2920 			off += DI_ALIGN(prop_len);
2921 			kmem_free(prop_val, prop_len);
2922 		}
2923 
2924 		if (prop_op_fail) {
2925 			pp->prop_data = -1;
2926 			dcmn_err((CE_WARN, "devinfo: prop_op failure "
2927 			    "for \"%s\" err %d",
2928 			    di_mem_addr(st, pp->prop_name), err));
2929 		}
2930 
2931 		pp = tmp;
2932 
2933 	} while (pp);
2934 
2935 	mutex_enter(&dip->devi_lock);
2936 	dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off));
2937 	return (off);
2938 }
2939 
2940 /*
2941  * find private data format attached to a dip
2942  * parent = 1 to match driver name of parent dip (for parent private data)
2943  *	0 to match driver name of current dip (for driver private data)
2944  */
2945 #define	DI_MATCH_DRIVER	0
2946 #define	DI_MATCH_PARENT	1
2947 
2948 struct di_priv_format *
2949 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
2950 {
2951 	int i, count, len;
2952 	char *drv_name;
2953 	major_t major;
2954 	struct di_all *all;
2955 	struct di_priv_format *form;
2956 
2957 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
2958 		node->devi_node_name, match));
2959 
2960 	if (match == DI_MATCH_PARENT) {
2961 		node = DEVI(node->devi_parent);
2962 	}
2963 
2964 	if (node == NULL) {
2965 		return (NULL);
2966 	}
2967 
2968 	major = ddi_name_to_major(node->devi_binding_name);
2969 	if (major == (major_t)(-1)) {
2970 		return (NULL);
2971 	}
2972 
2973 	/*
2974 	 * Match the driver name.
2975 	 */
2976 	drv_name = ddi_major_to_name(major);
2977 	if ((drv_name == NULL) || *drv_name == '\0') {
2978 		return (NULL);
2979 	}
2980 
2981 	/* Now get the di_priv_format array */
2982 	all = (struct di_all *)di_mem_addr(st, 0);
2983 
2984 	if (match == DI_MATCH_PARENT) {
2985 		count = all->n_ppdata;
2986 		form = (struct di_priv_format *)
2987 			(di_mem_addr(st, 0) + all->ppdata_format);
2988 	} else {
2989 		count = all->n_dpdata;
2990 		form = (struct di_priv_format *)
2991 			((caddr_t)all + all->dpdata_format);
2992 	}
2993 
2994 	len = strlen(drv_name);
2995 	for (i = 0; i < count; i++) {
2996 		char *tmp;
2997 
2998 		tmp = form[i].drv_name;
2999 		while (tmp && (*tmp != '\0')) {
3000 			if (strncmp(drv_name, tmp, len) == 0) {
3001 				return (&form[i]);
3002 			}
3003 			/*
3004 			 * Move to next driver name, skipping a white space
3005 			 */
3006 			if (tmp = strchr(tmp, ' ')) {
3007 				tmp++;
3008 			}
3009 		}
3010 	}
3011 
3012 	return (NULL);
3013 }
3014 
3015 /*
3016  * The following functions copy data as specified by the format passed in.
3017  * To prevent invalid format from panicing the system, we call on_fault().
3018  * A return value of 0 indicates an error. Otherwise, the total offset
3019  * is returned.
3020  */
3021 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3022 
3023 static di_off_t
3024 di_getprvdata(struct di_priv_format *pdp, void *data, di_off_t *off_p,
3025 	struct di_state *st)
3026 {
3027 	caddr_t pa;
3028 	void *ptr;
3029 	int i, size, repeat;
3030 	di_off_t off, off0, *tmp;
3031 
3032 	label_t ljb;
3033 
3034 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3035 
3036 	/*
3037 	 * check memory availability. Private data size is
3038 	 * limited to DI_MAX_PRIVDATA.
3039 	 */
3040 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3041 
3042 	if ((pdp->bytes <= 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3043 		goto failure;
3044 	}
3045 
3046 	if (!on_fault(&ljb)) {
3047 		/* copy the struct */
3048 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3049 		off0 = DI_ALIGN(pdp->bytes);
3050 
3051 		/* dereferencing pointers */
3052 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3053 
3054 			if (pdp->ptr[i].size == 0) {
3055 				goto success;	/* no more ptrs */
3056 			}
3057 
3058 			/*
3059 			 * first, get the pointer content
3060 			 */
3061 			if ((pdp->ptr[i].offset < 0) ||
3062 				(pdp->ptr[i].offset >
3063 				pdp->bytes - sizeof (char *)))
3064 				goto failure;	/* wrong offset */
3065 
3066 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3067 			tmp = (di_off_t *)pa;	/* to store off_t later */
3068 
3069 			ptr = *((void **) pa);	/* get pointer value */
3070 			if (ptr == NULL) {	/* if NULL pointer, go on */
3071 				continue;
3072 			}
3073 
3074 			/*
3075 			 * next, find the repeat count (array dimension)
3076 			 */
3077 			repeat = pdp->ptr[i].len_offset;
3078 
3079 			/*
3080 			 * Positive value indicates a fixed sized array.
3081 			 * 0 or negative value indicates variable sized array.
3082 			 *
3083 			 * For variable sized array, the variable must be
3084 			 * an int member of the structure, with an offset
3085 			 * equal to the absolution value of struct member.
3086 			 */
3087 			if (repeat > pdp->bytes - sizeof (int)) {
3088 				goto failure;	/* wrong offset */
3089 			}
3090 
3091 			if (repeat >= 0) {
3092 				repeat = *((int *)((caddr_t)data + repeat));
3093 			} else {
3094 				repeat = -repeat;
3095 			}
3096 
3097 			/*
3098 			 * next, get the size of the object to be copied
3099 			 */
3100 			size = pdp->ptr[i].size * repeat;
3101 
3102 			/*
3103 			 * Arbitrarily limit the total size of object to be
3104 			 * copied (1 byte to 1/4 page).
3105 			 */
3106 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3107 				goto failure;	/* wrong size or too big */
3108 			}
3109 
3110 			/*
3111 			 * Now copy the data
3112 			 */
3113 			*tmp = off0;
3114 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3115 			off0 += DI_ALIGN(size);
3116 		}
3117 	} else {
3118 		goto failure;
3119 	}
3120 
3121 success:
3122 	/*
3123 	 * success if reached here
3124 	 */
3125 	no_fault();
3126 	*off_p = off;
3127 
3128 	return (off + off0);
3129 	/*NOTREACHED*/
3130 
3131 failure:
3132 	/*
3133 	 * fault occurred
3134 	 */
3135 	no_fault();
3136 	cmn_err(CE_WARN, "devinfo: fault in private data at %p", data);
3137 	*off_p = -1;	/* set private data to indicate error */
3138 
3139 	return (off);
3140 }
3141 
3142 /*
3143  * get parent private data; on error, returns original offset
3144  */
3145 static di_off_t
3146 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3147 {
3148 	int off;
3149 	struct di_priv_format *ppdp;
3150 
3151 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3152 
3153 	/* find the parent data format */
3154 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3155 		off = *off_p;
3156 		*off_p = 0;	/* set parent data to none */
3157 		return (off);
3158 	}
3159 
3160 	return (di_getprvdata(ppdp, ddi_get_parent_data((dev_info_t *)node),
3161 	    off_p, st));
3162 }
3163 
3164 /*
3165  * get parent private data; returns original offset
3166  */
3167 static di_off_t
3168 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3169 {
3170 	int off;
3171 	struct di_priv_format *dpdp;
3172 
3173 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3174 
3175 	/* find the parent data format */
3176 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3177 		off = *off_p;
3178 		*off_p = 0;	/* set driver data to none */
3179 		return (off);
3180 	}
3181 
3182 	return (di_getprvdata(dpdp, ddi_get_driver_private((dev_info_t *)node),
3183 	    off_p, st));
3184 }
3185 
3186 /*
3187  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3188  * This function encapsulates the state machine:
3189  *
3190  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3191  *	|		SNAPSHOT		USRLD	 |
3192  *	--------------------------------------------------
3193  *
3194  * Returns 0 on success and -1 on failure
3195  */
3196 static int
3197 di_setstate(struct di_state *st, int new_state)
3198 {
3199 	int ret = 0;
3200 
3201 	mutex_enter(&di_lock);
3202 	switch (new_state) {
3203 	case IOC_IDLE:
3204 	case IOC_DONE:
3205 		break;
3206 	case IOC_SNAP:
3207 		if (st->di_iocstate != IOC_IDLE)
3208 			ret = -1;
3209 		break;
3210 	case IOC_COPY:
3211 		if (st->di_iocstate != IOC_DONE)
3212 			ret = -1;
3213 		break;
3214 	default:
3215 		ret = -1;
3216 	}
3217 
3218 	if (ret == 0)
3219 		st->di_iocstate = new_state;
3220 	else
3221 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3222 		    st->di_iocstate, new_state);
3223 	mutex_exit(&di_lock);
3224 	return (ret);
3225 }
3226 
3227 /*
3228  * We cannot assume the presence of the entire
3229  * snapshot in this routine. All we are guaranteed
3230  * is the di_all struct + 1 byte (for root_path)
3231  */
3232 static int
3233 header_plus_one_ok(struct di_all *all)
3234 {
3235 	/*
3236 	 * Refuse to read old versions
3237 	 */
3238 	if (all->version != DI_SNAPSHOT_VERSION) {
3239 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3240 		return (0);
3241 	}
3242 
3243 	if (all->cache_magic != DI_CACHE_MAGIC) {
3244 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3245 		return (0);
3246 	}
3247 
3248 	if (all->snapshot_time <= 0) {
3249 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3250 		return (0);
3251 	}
3252 
3253 	if (all->top_devinfo == 0) {
3254 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3255 		return (0);
3256 	}
3257 
3258 	if (all->map_size < sizeof (*all) + 1) {
3259 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3260 		return (0);
3261 	}
3262 
3263 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3264 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3265 		    all->root_path[0], all->root_path[1]));
3266 		return (0);
3267 	}
3268 
3269 	/*
3270 	 * We can't check checksum here as we just have the header
3271 	 */
3272 
3273 	return (1);
3274 }
3275 
3276 static int
3277 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3278 {
3279 	rlim64_t	rlimit;
3280 	ssize_t		resid;
3281 	int		error = 0;
3282 
3283 
3284 	rlimit = RLIM64_INFINITY;
3285 
3286 	while (len) {
3287 		resid = 0;
3288 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3289 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3290 
3291 		if (error || resid < 0) {
3292 			error = error ? error : EIO;
3293 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3294 			break;
3295 		}
3296 
3297 		/*
3298 		 * Check if we are making progress
3299 		 */
3300 		if (resid >= len) {
3301 			error = ENOSPC;
3302 			break;
3303 		}
3304 		buf += len - resid;
3305 		off += len - resid;
3306 		len = resid;
3307 	}
3308 
3309 	return (error);
3310 }
3311 
3312 extern int modrootloaded;
3313 
3314 static void
3315 di_cache_write(struct di_cache *cache)
3316 {
3317 	struct di_all	*all;
3318 	struct vnode	*vp;
3319 	int		oflags;
3320 	size_t		map_size;
3321 	size_t		chunk;
3322 	offset_t	off;
3323 	int		error;
3324 	char		*buf;
3325 
3326 	ASSERT(DI_CACHE_LOCKED(*cache));
3327 	ASSERT(!servicing_interrupt());
3328 
3329 	if (cache->cache_size == 0) {
3330 		ASSERT(cache->cache_data == NULL);
3331 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3332 		return;
3333 	}
3334 
3335 	ASSERT(cache->cache_size > 0);
3336 	ASSERT(cache->cache_data);
3337 
3338 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3339 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3340 		return;
3341 	}
3342 
3343 	all = (struct di_all *)cache->cache_data;
3344 
3345 	if (!header_plus_one_ok(all)) {
3346 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3347 		return;
3348 	}
3349 
3350 	ASSERT(strcmp(all->root_path, "/") == 0);
3351 
3352 	/*
3353 	 * The cache_size is the total allocated memory for the cache.
3354 	 * The map_size is the actual size of valid data in the cache.
3355 	 * map_size may be smaller than cache_size but cannot exceed
3356 	 * cache_size.
3357 	 */
3358 	if (all->map_size > cache->cache_size) {
3359 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3360 		    " Skipping write", all->map_size, cache->cache_size));
3361 		return;
3362 	}
3363 
3364 	/*
3365 	 * First unlink the temp file
3366 	 */
3367 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3368 	if (error && error != ENOENT) {
3369 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3370 		    DI_CACHE_TEMP, error));
3371 	}
3372 
3373 	if (error == EROFS) {
3374 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3375 		return;
3376 	}
3377 
3378 	vp = NULL;
3379 	oflags = (FCREAT|FWRITE);
3380 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3381 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3382 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3383 		    DI_CACHE_TEMP, error));
3384 		return;
3385 	}
3386 
3387 	ASSERT(vp);
3388 
3389 	/*
3390 	 * Paranoid: Check if the file is on a read-only FS
3391 	 */
3392 	if (vn_is_readonly(vp)) {
3393 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3394 		goto fail;
3395 	}
3396 
3397 	/*
3398 	 * Note that we only write map_size bytes to disk - this saves
3399 	 * space as the actual cache size may be larger than size of
3400 	 * valid data in the cache.
3401 	 * Another advantage is that it makes verification of size
3402 	 * easier when the file is read later.
3403 	 */
3404 	map_size = all->map_size;
3405 	off = 0;
3406 	buf = cache->cache_data;
3407 
3408 	while (map_size) {
3409 		ASSERT(map_size > 0);
3410 		/*
3411 		 * Write in chunks so that VM system
3412 		 * is not overwhelmed
3413 		 */
3414 		if (map_size > di_chunk * PAGESIZE)
3415 			chunk = di_chunk * PAGESIZE;
3416 		else
3417 			chunk = map_size;
3418 
3419 		error = chunk_write(vp, off, buf, chunk);
3420 		if (error) {
3421 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3422 			    off, error));
3423 			goto fail;
3424 		}
3425 
3426 		off += chunk;
3427 		buf += chunk;
3428 		map_size -= chunk;
3429 
3430 		/* Give pageout a chance to run */
3431 		delay(1);
3432 	}
3433 
3434 	/*
3435 	 * Now sync the file and close it
3436 	 */
3437 	if (error = VOP_FSYNC(vp, FSYNC, kcred)) {
3438 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3439 	}
3440 
3441 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) {
3442 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3443 		VN_RELE(vp);
3444 		return;
3445 	}
3446 
3447 	VN_RELE(vp);
3448 
3449 	/*
3450 	 * Now do the rename
3451 	 */
3452 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3453 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3454 		return;
3455 	}
3456 
3457 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3458 
3459 	return;
3460 
3461 fail:
3462 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred);
3463 	VN_RELE(vp);
3464 }
3465 
3466 
3467 /*
3468  * Since we could be called early in boot,
3469  * use kobj_read_file()
3470  */
3471 static void
3472 di_cache_read(struct di_cache *cache)
3473 {
3474 	struct _buf	*file;
3475 	struct di_all	*all;
3476 	int		n;
3477 	size_t		map_size, sz, chunk;
3478 	offset_t	off;
3479 	caddr_t		buf;
3480 	uint32_t	saved_crc, crc;
3481 
3482 	ASSERT(modrootloaded);
3483 	ASSERT(DI_CACHE_LOCKED(*cache));
3484 	ASSERT(cache->cache_data == NULL);
3485 	ASSERT(cache->cache_size == 0);
3486 	ASSERT(!servicing_interrupt());
3487 
3488 	file = kobj_open_file(DI_CACHE_FILE);
3489 	if (file == (struct _buf *)-1) {
3490 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3491 		    DI_CACHE_FILE, ENOENT));
3492 		return;
3493 	}
3494 
3495 	/*
3496 	 * Read in the header+root_path first. The root_path must be "/"
3497 	 */
3498 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3499 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3500 
3501 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3502 		kmem_free(all, sizeof (*all) + 1);
3503 		kobj_close_file(file);
3504 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3505 		return;
3506 	}
3507 
3508 	map_size = all->map_size;
3509 
3510 	kmem_free(all, sizeof (*all) + 1);
3511 
3512 	ASSERT(map_size >= sizeof (*all) + 1);
3513 
3514 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3515 	sz = map_size;
3516 	off = 0;
3517 	while (sz) {
3518 		/* Don't overload VM with large reads */
3519 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3520 		n = kobj_read_file(file, buf, chunk, off);
3521 		if (n != chunk) {
3522 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3523 			    DI_CACHE_FILE, off));
3524 			goto fail;
3525 		}
3526 		off += chunk;
3527 		buf += chunk;
3528 		sz -= chunk;
3529 	}
3530 
3531 	ASSERT(off == map_size);
3532 
3533 	/*
3534 	 * Read past expected EOF to verify size.
3535 	 */
3536 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3537 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3538 		goto fail;
3539 	}
3540 
3541 	all = (struct di_all *)di_cache.cache_data;
3542 	if (!header_plus_one_ok(all)) {
3543 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3544 		goto fail;
3545 	}
3546 
3547 	/*
3548 	 * Compute CRC with checksum field in the cache data set to 0
3549 	 */
3550 	saved_crc = all->cache_checksum;
3551 	all->cache_checksum = 0;
3552 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3553 	all->cache_checksum = saved_crc;
3554 
3555 	if (crc != all->cache_checksum) {
3556 		CACHE_DEBUG((DI_ERR,
3557 		    "%s: checksum error: expected=0x%x actual=0x%x",
3558 		    DI_CACHE_FILE, all->cache_checksum, crc));
3559 		goto fail;
3560 	}
3561 
3562 	if (all->map_size != map_size) {
3563 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3564 		goto fail;
3565 	}
3566 
3567 	kobj_close_file(file);
3568 
3569 	di_cache.cache_size = map_size;
3570 
3571 	return;
3572 
3573 fail:
3574 	kmem_free(di_cache.cache_data, map_size);
3575 	kobj_close_file(file);
3576 	di_cache.cache_data = NULL;
3577 	di_cache.cache_size = 0;
3578 }
3579 
3580 
3581 /*
3582  * Checks if arguments are valid for using the cache.
3583  */
3584 static int
3585 cache_args_valid(struct di_state *st, int *error)
3586 {
3587 	ASSERT(error);
3588 	ASSERT(st->mem_size > 0);
3589 	ASSERT(st->memlist != NULL);
3590 
3591 	if (!modrootloaded || !i_ddi_io_initialized()) {
3592 		CACHE_DEBUG((DI_ERR,
3593 		    "cache lookup failure: I/O subsystem not inited"));
3594 		*error = ENOTACTIVE;
3595 		return (0);
3596 	}
3597 
3598 	/*
3599 	 * No other flags allowed with DINFOCACHE
3600 	 */
3601 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3602 		CACHE_DEBUG((DI_ERR,
3603 		    "cache lookup failure: bad flags: 0x%x",
3604 		    st->command));
3605 		*error = EINVAL;
3606 		return (0);
3607 	}
3608 
3609 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3610 		CACHE_DEBUG((DI_ERR,
3611 		    "cache lookup failure: bad root: %s",
3612 		    DI_ALL_PTR(st)->root_path));
3613 		*error = EINVAL;
3614 		return (0);
3615 	}
3616 
3617 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3618 
3619 	*error = 0;
3620 
3621 	return (1);
3622 }
3623 
3624 static int
3625 snapshot_is_cacheable(struct di_state *st)
3626 {
3627 	ASSERT(st->mem_size > 0);
3628 	ASSERT(st->memlist != NULL);
3629 
3630 	if (st->command != (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3631 		CACHE_DEBUG((DI_INFO,
3632 		    "not cacheable: incompatible flags: 0x%x",
3633 		    st->command));
3634 		return (0);
3635 	}
3636 
3637 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3638 		CACHE_DEBUG((DI_INFO,
3639 		    "not cacheable: incompatible root path: %s",
3640 		    DI_ALL_PTR(st)->root_path));
3641 		return (0);
3642 	}
3643 
3644 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3645 
3646 	return (1);
3647 }
3648 
3649 static int
3650 di_cache_lookup(struct di_state *st)
3651 {
3652 	size_t	rval;
3653 	int	cache_valid;
3654 
3655 	ASSERT(cache_args_valid(st, &cache_valid));
3656 	ASSERT(modrootloaded);
3657 
3658 	DI_CACHE_LOCK(di_cache);
3659 
3660 	/*
3661 	 * The following assignment determines the validity
3662 	 * of the cache as far as this snapshot is concerned.
3663 	 */
3664 	cache_valid = di_cache.cache_valid;
3665 
3666 	if (cache_valid && di_cache.cache_data == NULL) {
3667 		di_cache_read(&di_cache);
3668 		/* check for read or file error */
3669 		if (di_cache.cache_data == NULL)
3670 			cache_valid = 0;
3671 	}
3672 
3673 	if (cache_valid) {
3674 		/*
3675 		 * Ok, the cache was valid as of this particular
3676 		 * snapshot. Copy the cached snapshot. This is safe
3677 		 * to do as the cache cannot be freed (we hold the
3678 		 * cache lock). Free the memory allocated in di_state
3679 		 * up until this point - we will simply copy everything
3680 		 * in the cache.
3681 		 */
3682 
3683 		ASSERT(di_cache.cache_data != NULL);
3684 		ASSERT(di_cache.cache_size > 0);
3685 
3686 		di_freemem(st);
3687 
3688 		rval = 0;
3689 		if (di_cache2mem(&di_cache, st) > 0) {
3690 
3691 			ASSERT(DI_ALL_PTR(st));
3692 
3693 			/*
3694 			 * map_size is size of valid data in the
3695 			 * cached snapshot and may be less than
3696 			 * size of the cache.
3697 			 */
3698 			rval = DI_ALL_PTR(st)->map_size;
3699 
3700 			ASSERT(rval >= sizeof (struct di_all));
3701 			ASSERT(rval <= di_cache.cache_size);
3702 		}
3703 	} else {
3704 		/*
3705 		 * The cache isn't valid, we need to take a snapshot.
3706 		 * Set the command flags appropriately
3707 		 */
3708 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3709 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3710 		rval = di_cache_update(st);
3711 		st->command = (DINFOCACHE & DIIOC_MASK);
3712 	}
3713 
3714 	DI_CACHE_UNLOCK(di_cache);
3715 
3716 	/*
3717 	 * For cached snapshots, the devinfo driver always returns
3718 	 * a snapshot rooted at "/".
3719 	 */
3720 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3721 
3722 	return (rval);
3723 }
3724 
3725 /*
3726  * This is a forced update of the cache  - the previous state of the cache
3727  * may be:
3728  *	- unpopulated
3729  *	- populated and invalid
3730  *	- populated and valid
3731  */
3732 static int
3733 di_cache_update(struct di_state *st)
3734 {
3735 	int rval;
3736 	uint32_t crc;
3737 	struct di_all *all;
3738 
3739 	ASSERT(DI_CACHE_LOCKED(di_cache));
3740 	ASSERT(snapshot_is_cacheable(st));
3741 
3742 	/*
3743 	 * Free the in-core cache and the on-disk file (if they exist)
3744 	 */
3745 	i_ddi_di_cache_free(&di_cache);
3746 
3747 	/*
3748 	 * Set valid flag before taking the snapshot,
3749 	 * so that any invalidations that arrive
3750 	 * during or after the snapshot are not
3751 	 * removed by us.
3752 	 */
3753 	atomic_or_32(&di_cache.cache_valid, 1);
3754 
3755 	modunload_disable();
3756 	rval = di_snapshot(st);
3757 	modunload_enable();
3758 
3759 	if (rval == 0) {
3760 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
3761 		return (0);
3762 	}
3763 
3764 	DI_ALL_PTR(st)->map_size = rval;
3765 
3766 	if (di_mem2cache(st, &di_cache) == 0) {
3767 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
3768 		return (0);
3769 	}
3770 
3771 	ASSERT(di_cache.cache_data);
3772 	ASSERT(di_cache.cache_size > 0);
3773 
3774 	/*
3775 	 * Now that we have cached the snapshot, compute its checksum.
3776 	 * The checksum is only computed over the valid data in the
3777 	 * cache, not the entire cache.
3778 	 * Also, set all the fields (except checksum) before computing
3779 	 * checksum.
3780 	 */
3781 	all = (struct di_all *)di_cache.cache_data;
3782 	all->cache_magic = DI_CACHE_MAGIC;
3783 	all->map_size = rval;
3784 
3785 	ASSERT(all->cache_checksum == 0);
3786 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
3787 	all->cache_checksum = crc;
3788 
3789 	di_cache_write(&di_cache);
3790 
3791 	return (rval);
3792 }
3793 
3794 static void
3795 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
3796 {
3797 	va_list	ap;
3798 
3799 	if (di_cache_debug <= DI_QUIET)
3800 		return;
3801 
3802 	if (di_cache_debug < msglevel)
3803 		return;
3804 
3805 	switch (msglevel) {
3806 		case DI_ERR:
3807 			msglevel = CE_WARN;
3808 			break;
3809 		case DI_INFO:
3810 		case DI_TRACE:
3811 		default:
3812 			msglevel = CE_NOTE;
3813 			break;
3814 	}
3815 
3816 	va_start(ap, fmt);
3817 	vcmn_err(msglevel, fmt, ap);
3818 	va_end(ap);
3819 }
3820