xref: /titanic_50/usr/src/uts/common/io/devinfo.c (revision 81fd181a33bee65d5be7a49c6093bb13b382b172)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * driver for accessing kernel devinfo tree.
29  */
30 #include <sys/types.h>
31 #include <sys/pathname.h>
32 #include <sys/debug.h>
33 #include <sys/autoconf.h>
34 #include <sys/vmsystm.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/kmem.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunldi_impl.h>
43 #include <sys/sunndi.h>
44 #include <sys/esunddi.h>
45 #include <sys/sunmdi.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ndi_impldefs.h>
48 #include <sys/mdi_impldefs.h>
49 #include <sys/devinfo_impl.h>
50 #include <sys/thread.h>
51 #include <sys/modhash.h>
52 #include <sys/bitmap.h>
53 #include <util/qsort.h>
54 #include <sys/disp.h>
55 #include <sys/kobj.h>
56 #include <sys/crc32.h>
57 #include <sys/ddi_hp.h>
58 #include <sys/ddi_hp_impl.h>
59 #include <sys/sysmacros.h>
60 #include <sys/list.h>
61 
62 
63 #ifdef DEBUG
64 static int di_debug;
65 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
66 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
67 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
68 #else
69 #define	dcmn_err(args) /* nothing */
70 #define	dcmn_err2(args) /* nothing */
71 #define	dcmn_err3(args) /* nothing */
72 #endif
73 
74 /*
75  * We partition the space of devinfo minor nodes equally between the full and
76  * unprivileged versions of the driver.  The even-numbered minor nodes are the
77  * full version, while the odd-numbered ones are the read-only version.
78  */
79 static int di_max_opens = 32;
80 
81 static int di_prop_dyn = 1;		/* enable dynamic property support */
82 
83 #define	DI_FULL_PARENT		0
84 #define	DI_READONLY_PARENT	1
85 #define	DI_NODE_SPECIES		2
86 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
87 
88 #define	IOC_IDLE	0	/* snapshot ioctl states */
89 #define	IOC_SNAP	1	/* snapshot in progress */
90 #define	IOC_DONE	2	/* snapshot done, but not copied out */
91 #define	IOC_COPY	3	/* copyout in progress */
92 
93 /*
94  * Keep max alignment so we can move snapshot to different platforms.
95  *
96  * NOTE: Most callers should rely on the di_checkmem return value
97  * being aligned, and reestablish *off_p with aligned value, instead
98  * of trying to align size of their allocations: this approach will
99  * minimize memory use.
100  */
101 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
102 
103 /*
104  * To avoid wasting memory, make a linked list of memory chunks.
105  * Size of each chunk is buf_size.
106  */
107 struct di_mem {
108 	struct di_mem	*next;		/* link to next chunk */
109 	char		*buf;		/* contiguous kernel memory */
110 	size_t		buf_size;	/* size of buf in bytes */
111 	devmap_cookie_t	cook;		/* cookie from ddi_umem_alloc */
112 };
113 
114 /*
115  * This is a stack for walking the tree without using recursion.
116  * When the devinfo tree height is above some small size, one
117  * gets watchdog resets on sun4m.
118  */
119 struct di_stack {
120 	void		*offset[MAX_TREE_DEPTH];
121 	struct dev_info *dip[MAX_TREE_DEPTH];
122 	int		circ[MAX_TREE_DEPTH];
123 	int		depth;	/* depth of current node to be copied */
124 };
125 
126 #define	TOP_OFFSET(stack)	\
127 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
128 #define	TOP_NODE(stack)		\
129 	((stack)->dip[(stack)->depth - 1])
130 #define	PARENT_OFFSET(stack)	\
131 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
132 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
133 #define	POP_STACK(stack)	{ \
134 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
135 		(stack)->circ[(stack)->depth - 1]); \
136 	((stack)->depth--); \
137 }
138 #define	PUSH_STACK(stack, node, off_p)	{ \
139 	ASSERT(node != NULL); \
140 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
141 	(stack)->dip[(stack)->depth] = (node); \
142 	(stack)->offset[(stack)->depth] = (void *)(off_p); \
143 	((stack)->depth)++; \
144 }
145 
146 #define	DI_ALL_PTR(s)	DI_ALL(di_mem_addr((s), 0))
147 
148 /*
149  * With devfs, the device tree has no global locks. The device tree is
150  * dynamic and dips may come and go if they are not locked locally. Under
151  * these conditions, pointers are no longer reliable as unique IDs.
152  * Specifically, these pointers cannot be used as keys for hash tables
153  * as the same devinfo structure may be freed in one part of the tree only
154  * to be allocated as the structure for a different device in another
155  * part of the tree. This can happen if DR and the snapshot are
156  * happening concurrently.
157  * The following data structures act as keys for devinfo nodes and
158  * pathinfo nodes.
159  */
160 
161 enum di_ktype {
162 	DI_DKEY = 1,
163 	DI_PKEY = 2
164 };
165 
166 struct di_dkey {
167 	dev_info_t	*dk_dip;
168 	major_t		dk_major;
169 	int		dk_inst;
170 	pnode_t		dk_nodeid;
171 };
172 
173 struct di_pkey {
174 	mdi_pathinfo_t	*pk_pip;
175 	char		*pk_path_addr;
176 	dev_info_t	*pk_client;
177 	dev_info_t	*pk_phci;
178 };
179 
180 struct di_key {
181 	enum di_ktype	k_type;
182 	union {
183 		struct di_dkey dkey;
184 		struct di_pkey pkey;
185 	} k_u;
186 };
187 
188 
189 struct i_lnode;
190 
191 typedef struct i_link {
192 	/*
193 	 * If a di_link struct representing this i_link struct makes it
194 	 * into the snapshot, then self will point to the offset of
195 	 * the di_link struct in the snapshot
196 	 */
197 	di_off_t	self;
198 
199 	int		spec_type;	/* block or char access type */
200 	struct i_lnode	*src_lnode;	/* src i_lnode */
201 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
202 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
203 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
204 } i_link_t;
205 
206 typedef struct i_lnode {
207 	/*
208 	 * If a di_lnode struct representing this i_lnode struct makes it
209 	 * into the snapshot, then self will point to the offset of
210 	 * the di_lnode struct in the snapshot
211 	 */
212 	di_off_t	self;
213 
214 	/*
215 	 * used for hashing and comparing i_lnodes
216 	 */
217 	int		modid;
218 
219 	/*
220 	 * public information describing a link endpoint
221 	 */
222 	struct di_node	*di_node;	/* di_node in snapshot */
223 	dev_t		devt;		/* devt */
224 
225 	/*
226 	 * i_link ptr to links coming into this i_lnode node
227 	 * (this i_lnode is the target of these i_links)
228 	 */
229 	i_link_t	*link_in;
230 
231 	/*
232 	 * i_link ptr to links going out of this i_lnode node
233 	 * (this i_lnode is the source of these i_links)
234 	 */
235 	i_link_t	*link_out;
236 } i_lnode_t;
237 
238 typedef struct i_hp {
239 	di_off_t	hp_off;		/* Offset of di_hp_t in snapshot */
240 	dev_info_t	*hp_child;	/* Child devinfo node of the di_hp_t */
241 	list_node_t	hp_link;	/* List linkage */
242 } i_hp_t;
243 
244 /*
245  * Soft state associated with each instance of driver open.
246  */
247 static struct di_state {
248 	di_off_t	mem_size;	/* total # bytes in memlist */
249 	struct di_mem	*memlist;	/* head of memlist */
250 	uint_t		command;	/* command from ioctl */
251 	int		di_iocstate;	/* snapshot ioctl state	*/
252 	mod_hash_t	*reg_dip_hash;
253 	mod_hash_t	*reg_pip_hash;
254 	int		lnode_count;
255 	int		link_count;
256 
257 	mod_hash_t	*lnode_hash;
258 	mod_hash_t	*link_hash;
259 
260 	list_t		hp_list;
261 } **di_states;
262 
263 static kmutex_t di_lock;	/* serialize instance assignment */
264 
265 typedef enum {
266 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
267 	DI_ERR,
268 	DI_INFO,
269 	DI_TRACE,
270 	DI_TRACE1,
271 	DI_TRACE2
272 } di_cache_debug_t;
273 
274 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
275 
276 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
277 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
278 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
279 
280 /*
281  * Check that whole device tree is being configured as a pre-condition for
282  * cleaning up /etc/devices files.
283  */
284 #define	DEVICES_FILES_CLEANABLE(st)	\
285 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
286 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
287 
288 #define	CACHE_DEBUG(args)	\
289 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
290 
291 typedef struct phci_walk_arg {
292 	di_off_t	off;
293 	struct di_state	*st;
294 } phci_walk_arg_t;
295 
296 static int di_open(dev_t *, int, int, cred_t *);
297 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
298 static int di_close(dev_t, int, int, cred_t *);
299 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
300 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
301 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
302 
303 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
304 static di_off_t di_snapshot_and_clean(struct di_state *);
305 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
306 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
307 static di_off_t di_copynode(struct dev_info *, struct di_stack *,
308     struct di_state *);
309 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
310     struct di_state *);
311 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
312 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
313 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *,
314     struct di_state *);
315 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *,
316     struct di_state *, struct dev_info *);
317 static void di_allocmem(struct di_state *, size_t);
318 static void di_freemem(struct di_state *);
319 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
320 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
321 static void *di_mem_addr(struct di_state *, di_off_t);
322 static int di_setstate(struct di_state *, int);
323 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
324 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
325 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
326     struct di_state *, int);
327 static di_off_t di_getlink_data(di_off_t, struct di_state *);
328 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
329 
330 static int cache_args_valid(struct di_state *st, int *error);
331 static int snapshot_is_cacheable(struct di_state *st);
332 static int di_cache_lookup(struct di_state *st);
333 static int di_cache_update(struct di_state *st);
334 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
335 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
336 static int build_phci_list(dev_info_t *ph_devinfo, void *arg);
337 static void di_hotplug_children(struct di_state *st);
338 
339 extern int modrootloaded;
340 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
341 extern void mdi_vhci_walk_phcis(dev_info_t *,
342 	int (*)(dev_info_t *, void *), void *);
343 
344 
345 static struct cb_ops di_cb_ops = {
346 	di_open,		/* open */
347 	di_close,		/* close */
348 	nodev,			/* strategy */
349 	nodev,			/* print */
350 	nodev,			/* dump */
351 	nodev,			/* read */
352 	nodev,			/* write */
353 	di_ioctl,		/* ioctl */
354 	nodev,			/* devmap */
355 	nodev,			/* mmap */
356 	nodev,			/* segmap */
357 	nochpoll,		/* poll */
358 	ddi_prop_op,		/* prop_op */
359 	NULL,			/* streamtab  */
360 	D_NEW | D_MP		/* Driver compatibility flag */
361 };
362 
363 static struct dev_ops di_ops = {
364 	DEVO_REV,		/* devo_rev, */
365 	0,			/* refcnt  */
366 	di_info,		/* info */
367 	nulldev,		/* identify */
368 	nulldev,		/* probe */
369 	di_attach,		/* attach */
370 	di_detach,		/* detach */
371 	nodev,			/* reset */
372 	&di_cb_ops,		/* driver operations */
373 	NULL			/* bus operations */
374 };
375 
376 /*
377  * Module linkage information for the kernel.
378  */
379 static struct modldrv modldrv = {
380 	&mod_driverops,
381 	"DEVINFO Driver",
382 	&di_ops
383 };
384 
385 static struct modlinkage modlinkage = {
386 	MODREV_1,
387 	&modldrv,
388 	NULL
389 };
390 
391 int
392 _init(void)
393 {
394 	int	error;
395 
396 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
397 
398 	error = mod_install(&modlinkage);
399 	if (error != 0) {
400 		mutex_destroy(&di_lock);
401 		return (error);
402 	}
403 
404 	return (0);
405 }
406 
407 int
408 _info(struct modinfo *modinfop)
409 {
410 	return (mod_info(&modlinkage, modinfop));
411 }
412 
413 int
414 _fini(void)
415 {
416 	int	error;
417 
418 	error = mod_remove(&modlinkage);
419 	if (error != 0) {
420 		return (error);
421 	}
422 
423 	mutex_destroy(&di_lock);
424 	return (0);
425 }
426 
427 static dev_info_t *di_dip;
428 
429 /*ARGSUSED*/
430 static int
431 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
432 {
433 	int	error = DDI_FAILURE;
434 
435 	switch (infocmd) {
436 	case DDI_INFO_DEVT2DEVINFO:
437 		*result = (void *)di_dip;
438 		error = DDI_SUCCESS;
439 		break;
440 	case DDI_INFO_DEVT2INSTANCE:
441 		/*
442 		 * All dev_t's map to the same, single instance.
443 		 */
444 		*result = (void *)0;
445 		error = DDI_SUCCESS;
446 		break;
447 	default:
448 		break;
449 	}
450 
451 	return (error);
452 }
453 
454 static int
455 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
456 {
457 	int	error = DDI_FAILURE;
458 
459 	switch (cmd) {
460 	case DDI_ATTACH:
461 		di_states = kmem_zalloc(
462 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
463 
464 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
465 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
466 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
467 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
468 			kmem_free(di_states,
469 			    di_max_opens * sizeof (struct di_state *));
470 			ddi_remove_minor_node(dip, NULL);
471 			error = DDI_FAILURE;
472 		} else {
473 			di_dip = dip;
474 			ddi_report_dev(dip);
475 
476 			error = DDI_SUCCESS;
477 		}
478 		break;
479 	default:
480 		error = DDI_FAILURE;
481 		break;
482 	}
483 
484 	return (error);
485 }
486 
487 static int
488 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
489 {
490 	int	error = DDI_FAILURE;
491 
492 	switch (cmd) {
493 	case DDI_DETACH:
494 		ddi_remove_minor_node(dip, NULL);
495 		di_dip = NULL;
496 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
497 
498 		error = DDI_SUCCESS;
499 		break;
500 	default:
501 		error = DDI_FAILURE;
502 		break;
503 	}
504 
505 	return (error);
506 }
507 
508 /*
509  * Allow multiple opens by tweaking the dev_t such that it looks like each
510  * open is getting a different minor device.  Each minor gets a separate
511  * entry in the di_states[] table.  Based on the original minor number, we
512  * discriminate opens of the full and read-only nodes.  If all of the instances
513  * of the selected minor node are currently open, we return EAGAIN.
514  */
515 /*ARGSUSED*/
516 static int
517 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
518 {
519 	int	m;
520 	minor_t	minor_parent = getminor(*devp);
521 
522 	if (minor_parent != DI_FULL_PARENT &&
523 	    minor_parent != DI_READONLY_PARENT)
524 		return (ENXIO);
525 
526 	mutex_enter(&di_lock);
527 
528 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
529 		if (di_states[m] != NULL)
530 			continue;
531 
532 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
533 		break;	/* It's ours. */
534 	}
535 
536 	if (m >= di_max_opens) {
537 		/*
538 		 * maximum open instance for device reached
539 		 */
540 		mutex_exit(&di_lock);
541 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
542 		return (EAGAIN);
543 	}
544 	mutex_exit(&di_lock);
545 
546 	ASSERT(m < di_max_opens);
547 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
548 
549 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
550 	    (void *)curthread, m + DI_NODE_SPECIES));
551 
552 	return (0);
553 }
554 
555 /*ARGSUSED*/
556 static int
557 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
558 {
559 	struct di_state	*st;
560 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
561 
562 	if (m < 0) {
563 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
564 		    m + DI_NODE_SPECIES);
565 		return (ENXIO);
566 	}
567 
568 	st = di_states[m];
569 	ASSERT(m < di_max_opens && st != NULL);
570 
571 	di_freemem(st);
572 	kmem_free(st, sizeof (struct di_state));
573 
574 	/*
575 	 * empty slot in state table
576 	 */
577 	mutex_enter(&di_lock);
578 	di_states[m] = NULL;
579 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
580 	    (void *)curthread, m + DI_NODE_SPECIES));
581 	mutex_exit(&di_lock);
582 
583 	return (0);
584 }
585 
586 
587 /*ARGSUSED*/
588 static int
589 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
590 {
591 	int		rv, error;
592 	di_off_t	off;
593 	struct di_all	*all;
594 	struct di_state	*st;
595 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
596 	major_t		i;
597 	char		*drv_name;
598 	size_t		map_size, size;
599 	struct di_mem	*dcp;
600 	int		ndi_flags;
601 
602 	if (m < 0 || m >= di_max_opens) {
603 		return (ENXIO);
604 	}
605 
606 	st = di_states[m];
607 	ASSERT(st != NULL);
608 
609 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
610 
611 	switch (cmd) {
612 	case DINFOIDENT:
613 		/*
614 		 * This is called from di_init to verify that the driver
615 		 * opened is indeed devinfo. The purpose is to guard against
616 		 * sending ioctl to an unknown driver in case of an
617 		 * unresolved major number conflict during bfu.
618 		 */
619 		*rvalp = DI_MAGIC;
620 		return (0);
621 
622 	case DINFOLODRV:
623 		/*
624 		 * Hold an installed driver and return the result
625 		 */
626 		if (DI_UNPRIVILEGED_NODE(m)) {
627 			/*
628 			 * Only the fully enabled instances may issue
629 			 * DINFOLDDRV.
630 			 */
631 			return (EACCES);
632 		}
633 
634 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
635 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
636 			kmem_free(drv_name, MAXNAMELEN);
637 			return (EFAULT);
638 		}
639 
640 		/*
641 		 * Some 3rd party driver's _init() walks the device tree,
642 		 * so we load the driver module before configuring driver.
643 		 */
644 		i = ddi_name_to_major(drv_name);
645 		if (ddi_hold_driver(i) == NULL) {
646 			kmem_free(drv_name, MAXNAMELEN);
647 			return (ENXIO);
648 		}
649 
650 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
651 
652 		/*
653 		 * i_ddi_load_drvconf() below will trigger a reprobe
654 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
655 		 * needed here.
656 		 */
657 		modunload_disable();
658 		(void) i_ddi_load_drvconf(i);
659 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
660 		kmem_free(drv_name, MAXNAMELEN);
661 		ddi_rele_driver(i);
662 		rv = i_ddi_devs_attached(i);
663 		modunload_enable();
664 
665 		i_ddi_di_cache_invalidate();
666 
667 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
668 
669 	case DINFOUSRLD:
670 		/*
671 		 * The case for copying snapshot to userland
672 		 */
673 		if (di_setstate(st, IOC_COPY) == -1)
674 			return (EBUSY);
675 
676 		map_size = DI_ALL_PTR(st)->map_size;
677 		if (map_size == 0) {
678 			(void) di_setstate(st, IOC_DONE);
679 			return (EFAULT);
680 		}
681 
682 		/*
683 		 * copyout the snapshot
684 		 */
685 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
686 
687 		/*
688 		 * Return the map size, so caller may do a sanity
689 		 * check against the return value of snapshot ioctl()
690 		 */
691 		*rvalp = (int)map_size;
692 
693 		/*
694 		 * Copy one chunk at a time
695 		 */
696 		off = 0;
697 		dcp = st->memlist;
698 		while (map_size) {
699 			size = dcp->buf_size;
700 			if (map_size <= size) {
701 				size = map_size;
702 			}
703 
704 			if (ddi_copyout(di_mem_addr(st, off),
705 			    (void *)(arg + off), size, mode) != 0) {
706 				(void) di_setstate(st, IOC_DONE);
707 				return (EFAULT);
708 			}
709 
710 			map_size -= size;
711 			off += size;
712 			dcp = dcp->next;
713 		}
714 
715 		di_freemem(st);
716 		(void) di_setstate(st, IOC_IDLE);
717 		return (0);
718 
719 	default:
720 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
721 			/*
722 			 * Invalid ioctl command
723 			 */
724 			return (ENOTTY);
725 		}
726 		/*
727 		 * take a snapshot
728 		 */
729 		st->command = cmd & DIIOC_MASK;
730 		/*FALLTHROUGH*/
731 	}
732 
733 	/*
734 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
735 	 * memory exhaustion by freeing any previously allocated snapshot and
736 	 * refusing the operation; otherwise we would be allowing ioctl(),
737 	 * ioctl(), ioctl(), ..., panic.
738 	 */
739 	if (di_setstate(st, IOC_SNAP) == -1)
740 		return (EBUSY);
741 
742 	/*
743 	 * Initial memlist always holds di_all and the root_path - and
744 	 * is at least a page and size.
745 	 */
746 	size = sizeof (struct di_all) +
747 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
748 	if (size < PAGESIZE)
749 		size = PAGESIZE;
750 	off = di_checkmem(st, 0, size);
751 	all = DI_ALL_PTR(st);
752 	off += sizeof (struct di_all);		/* real length of di_all */
753 
754 	all->devcnt = devcnt;
755 	all->command = st->command;
756 	all->version = DI_SNAPSHOT_VERSION;
757 	all->top_vhci_devinfo = 0;		/* filled by build_vhci_list. */
758 
759 	/*
760 	 * Note the endianness in case we need to transport snapshot
761 	 * over the network.
762 	 */
763 #if defined(_LITTLE_ENDIAN)
764 	all->endianness = DI_LITTLE_ENDIAN;
765 #else
766 	all->endianness = DI_BIG_ENDIAN;
767 #endif
768 
769 	/* Copyin ioctl args, store in the snapshot. */
770 	if (copyinstr((void *)arg, all->root_path,
771 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
772 		di_freemem(st);
773 		(void) di_setstate(st, IOC_IDLE);
774 		return (EFAULT);
775 	}
776 	off += size;				/* real length of root_path */
777 
778 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
779 		di_freemem(st);
780 		(void) di_setstate(st, IOC_IDLE);
781 		return (EINVAL);
782 	}
783 
784 	error = 0;
785 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
786 		di_freemem(st);
787 		(void) di_setstate(st, IOC_IDLE);
788 		return (error);
789 	}
790 
791 	/*
792 	 * Only the fully enabled version may force load drivers or read
793 	 * the parent private data from a driver.
794 	 */
795 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
796 	    DI_UNPRIVILEGED_NODE(m)) {
797 		di_freemem(st);
798 		(void) di_setstate(st, IOC_IDLE);
799 		return (EACCES);
800 	}
801 
802 	/* Do we need private data? */
803 	if (st->command & DINFOPRIVDATA) {
804 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
805 
806 #ifdef _MULTI_DATAMODEL
807 		switch (ddi_model_convert_from(mode & FMODELS)) {
808 		case DDI_MODEL_ILP32: {
809 			/*
810 			 * Cannot copy private data from 64-bit kernel
811 			 * to 32-bit app
812 			 */
813 			di_freemem(st);
814 			(void) di_setstate(st, IOC_IDLE);
815 			return (EINVAL);
816 		}
817 		case DDI_MODEL_NONE:
818 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
819 				di_freemem(st);
820 				(void) di_setstate(st, IOC_IDLE);
821 				return (EFAULT);
822 			}
823 			break;
824 		}
825 #else /* !_MULTI_DATAMODEL */
826 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
827 			di_freemem(st);
828 			(void) di_setstate(st, IOC_IDLE);
829 			return (EFAULT);
830 		}
831 #endif /* _MULTI_DATAMODEL */
832 	}
833 
834 	all->top_devinfo = DI_ALIGN(off);
835 
836 	/*
837 	 * For cache lookups we reallocate memory from scratch,
838 	 * so the value of "all" is no longer valid.
839 	 */
840 	all = NULL;
841 
842 	if (st->command & DINFOCACHE) {
843 		*rvalp = di_cache_lookup(st);
844 	} else if (snapshot_is_cacheable(st)) {
845 		DI_CACHE_LOCK(di_cache);
846 		*rvalp = di_cache_update(st);
847 		DI_CACHE_UNLOCK(di_cache);
848 	} else
849 		*rvalp = di_snapshot_and_clean(st);
850 
851 	if (*rvalp) {
852 		DI_ALL_PTR(st)->map_size = *rvalp;
853 		(void) di_setstate(st, IOC_DONE);
854 	} else {
855 		di_freemem(st);
856 		(void) di_setstate(st, IOC_IDLE);
857 	}
858 
859 	return (0);
860 }
861 
862 /*
863  * Get a chunk of memory >= size, for the snapshot
864  */
865 static void
866 di_allocmem(struct di_state *st, size_t size)
867 {
868 	struct di_mem	*mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP);
869 
870 	/*
871 	 * Round up size to nearest power of 2. If it is less
872 	 * than st->mem_size, set it to st->mem_size (i.e.,
873 	 * the mem_size is doubled every time) to reduce the
874 	 * number of memory allocations.
875 	 */
876 	size_t tmp = 1;
877 	while (tmp < size) {
878 		tmp <<= 1;
879 	}
880 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
881 
882 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
883 	mem->buf_size = size;
884 
885 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
886 
887 	if (st->mem_size == 0) {	/* first chunk */
888 		st->memlist = mem;
889 	} else {
890 		/*
891 		 * locate end of linked list and add a chunk at the end
892 		 */
893 		struct di_mem *dcp = st->memlist;
894 		while (dcp->next != NULL) {
895 			dcp = dcp->next;
896 		}
897 
898 		dcp->next = mem;
899 	}
900 
901 	st->mem_size += size;
902 }
903 
904 /*
905  * Copy upto bufsiz bytes of the memlist to buf
906  */
907 static void
908 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
909 {
910 	struct di_mem	*dcp;
911 	size_t		copysz;
912 
913 	if (st->mem_size == 0) {
914 		ASSERT(st->memlist == NULL);
915 		return;
916 	}
917 
918 	copysz = 0;
919 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
920 
921 		ASSERT(bufsiz > 0);
922 
923 		if (bufsiz <= dcp->buf_size)
924 			copysz = bufsiz;
925 		else
926 			copysz = dcp->buf_size;
927 
928 		bcopy(dcp->buf, buf, copysz);
929 
930 		buf += copysz;
931 		bufsiz -= copysz;
932 
933 		if (bufsiz == 0)
934 			break;
935 	}
936 }
937 
938 /*
939  * Free all memory for the snapshot
940  */
941 static void
942 di_freemem(struct di_state *st)
943 {
944 	struct di_mem	*dcp, *tmp;
945 
946 	dcmn_err2((CE_CONT, "di_freemem\n"));
947 
948 	if (st->mem_size) {
949 		dcp = st->memlist;
950 		while (dcp) {	/* traverse the linked list */
951 			tmp = dcp;
952 			dcp = dcp->next;
953 			ddi_umem_free(tmp->cook);
954 			kmem_free(tmp, sizeof (struct di_mem));
955 		}
956 		st->mem_size = 0;
957 		st->memlist = NULL;
958 	}
959 
960 	ASSERT(st->mem_size == 0);
961 	ASSERT(st->memlist == NULL);
962 }
963 
964 /*
965  * Copies cached data to the di_state structure.
966  * Returns:
967  *	- size of data copied, on SUCCESS
968  *	- 0 on failure
969  */
970 static int
971 di_cache2mem(struct di_cache *cache, struct di_state *st)
972 {
973 	caddr_t	pa;
974 
975 	ASSERT(st->mem_size == 0);
976 	ASSERT(st->memlist == NULL);
977 	ASSERT(!servicing_interrupt());
978 	ASSERT(DI_CACHE_LOCKED(*cache));
979 
980 	if (cache->cache_size == 0) {
981 		ASSERT(cache->cache_data == NULL);
982 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
983 		return (0);
984 	}
985 
986 	ASSERT(cache->cache_data);
987 
988 	di_allocmem(st, cache->cache_size);
989 
990 	pa = di_mem_addr(st, 0);
991 
992 	ASSERT(pa);
993 
994 	/*
995 	 * Verify that di_allocmem() allocates contiguous memory,
996 	 * so that it is safe to do straight bcopy()
997 	 */
998 	ASSERT(st->memlist != NULL);
999 	ASSERT(st->memlist->next == NULL);
1000 	bcopy(cache->cache_data, pa, cache->cache_size);
1001 
1002 	return (cache->cache_size);
1003 }
1004 
1005 /*
1006  * Copies a snapshot from di_state to the cache
1007  * Returns:
1008  *	- 0 on failure
1009  *	- size of copied data on success
1010  */
1011 static size_t
1012 di_mem2cache(struct di_state *st, struct di_cache *cache)
1013 {
1014 	size_t	map_size;
1015 
1016 	ASSERT(cache->cache_size == 0);
1017 	ASSERT(cache->cache_data == NULL);
1018 	ASSERT(!servicing_interrupt());
1019 	ASSERT(DI_CACHE_LOCKED(*cache));
1020 
1021 	if (st->mem_size == 0) {
1022 		ASSERT(st->memlist == NULL);
1023 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
1024 		return (0);
1025 	}
1026 
1027 	ASSERT(st->memlist);
1028 
1029 	/*
1030 	 * The size of the memory list may be much larger than the
1031 	 * size of valid data (map_size). Cache only the valid data
1032 	 */
1033 	map_size = DI_ALL_PTR(st)->map_size;
1034 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1035 	    map_size > st->mem_size) {
1036 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1037 		return (0);
1038 	}
1039 
1040 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1041 	cache->cache_size = map_size;
1042 	di_copymem(st, cache->cache_data, cache->cache_size);
1043 
1044 	return (map_size);
1045 }
1046 
1047 /*
1048  * Make sure there is at least "size" bytes memory left before
1049  * going on. Otherwise, start on a new chunk.
1050  */
1051 static di_off_t
1052 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1053 {
1054 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1055 	    off, (int)size));
1056 
1057 	/*
1058 	 * di_checkmem() shouldn't be called with a size of zero.
1059 	 * But in case it is, we want to make sure we return a valid
1060 	 * offset within the memlist and not an offset that points us
1061 	 * at the end of the memlist.
1062 	 */
1063 	if (size == 0) {
1064 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1065 		size = 1;
1066 	}
1067 
1068 	off = DI_ALIGN(off);
1069 	if ((st->mem_size - off) < size) {
1070 		off = st->mem_size;
1071 		di_allocmem(st, size);
1072 	}
1073 
1074 	/* verify that return value is aligned */
1075 	ASSERT(off == DI_ALIGN(off));
1076 	return (off);
1077 }
1078 
1079 /*
1080  * Copy the private data format from ioctl arg.
1081  * On success, the ending offset is returned. On error 0 is returned.
1082  */
1083 static di_off_t
1084 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1085 {
1086 	di_off_t		size;
1087 	struct di_priv_data	*priv;
1088 	struct di_all		*all = DI_ALL_PTR(st);
1089 
1090 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1091 	    off, (void *)arg, mode));
1092 
1093 	/*
1094 	 * Copyin data and check version.
1095 	 * We only handle private data version 0.
1096 	 */
1097 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1098 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1099 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1100 		kmem_free(priv, sizeof (struct di_priv_data));
1101 		return (0);
1102 	}
1103 
1104 	/*
1105 	 * Save di_priv_data copied from userland in snapshot.
1106 	 */
1107 	all->pd_version = priv->version;
1108 	all->n_ppdata = priv->n_parent;
1109 	all->n_dpdata = priv->n_driver;
1110 
1111 	/*
1112 	 * copyin private data format, modify offset accordingly
1113 	 */
1114 	if (all->n_ppdata) {	/* parent private data format */
1115 		/*
1116 		 * check memory
1117 		 */
1118 		size = all->n_ppdata * sizeof (struct di_priv_format);
1119 		all->ppdata_format = off = di_checkmem(st, off, size);
1120 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1121 		    mode) != 0) {
1122 			kmem_free(priv, sizeof (struct di_priv_data));
1123 			return (0);
1124 		}
1125 
1126 		off += size;
1127 	}
1128 
1129 	if (all->n_dpdata) {	/* driver private data format */
1130 		/*
1131 		 * check memory
1132 		 */
1133 		size = all->n_dpdata * sizeof (struct di_priv_format);
1134 		all->dpdata_format = off = di_checkmem(st, off, size);
1135 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1136 		    mode) != 0) {
1137 			kmem_free(priv, sizeof (struct di_priv_data));
1138 			return (0);
1139 		}
1140 
1141 		off += size;
1142 	}
1143 
1144 	kmem_free(priv, sizeof (struct di_priv_data));
1145 	return (off);
1146 }
1147 
1148 /*
1149  * Return the real address based on the offset (off) within snapshot
1150  */
1151 static void *
1152 di_mem_addr(struct di_state *st, di_off_t off)
1153 {
1154 	struct di_mem	*dcp = st->memlist;
1155 
1156 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1157 	    (void *)dcp, off));
1158 
1159 	ASSERT(off < st->mem_size);
1160 
1161 	while (off >= dcp->buf_size) {
1162 		off -= dcp->buf_size;
1163 		dcp = dcp->next;
1164 	}
1165 
1166 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1167 	    off, (void *)(dcp->buf + off)));
1168 
1169 	return (dcp->buf + off);
1170 }
1171 
1172 /*
1173  * Ideally we would use the whole key to derive the hash
1174  * value. However, the probability that two keys will
1175  * have the same dip (or pip) is very low, so
1176  * hashing by dip (or pip) pointer should suffice.
1177  */
1178 static uint_t
1179 di_hash_byptr(void *arg, mod_hash_key_t key)
1180 {
1181 	struct di_key	*dik = key;
1182 	size_t		rshift;
1183 	void		*ptr;
1184 
1185 	ASSERT(arg == NULL);
1186 
1187 	switch (dik->k_type) {
1188 	case DI_DKEY:
1189 		ptr = dik->k_u.dkey.dk_dip;
1190 		rshift = highbit(sizeof (struct dev_info));
1191 		break;
1192 	case DI_PKEY:
1193 		ptr = dik->k_u.pkey.pk_pip;
1194 		rshift = highbit(sizeof (struct mdi_pathinfo));
1195 		break;
1196 	default:
1197 		panic("devinfo: unknown key type");
1198 		/*NOTREACHED*/
1199 	}
1200 	return (mod_hash_byptr((void *)rshift, ptr));
1201 }
1202 
1203 static void
1204 di_key_dtor(mod_hash_key_t key)
1205 {
1206 	char		*path_addr;
1207 	struct di_key	*dik = key;
1208 
1209 	switch (dik->k_type) {
1210 	case DI_DKEY:
1211 		break;
1212 	case DI_PKEY:
1213 		path_addr = dik->k_u.pkey.pk_path_addr;
1214 		if (path_addr)
1215 			kmem_free(path_addr, strlen(path_addr) + 1);
1216 		break;
1217 	default:
1218 		panic("devinfo: unknown key type");
1219 		/*NOTREACHED*/
1220 	}
1221 
1222 	kmem_free(dik, sizeof (struct di_key));
1223 }
1224 
1225 static int
1226 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1227 {
1228 	if (dk1->dk_dip !=  dk2->dk_dip)
1229 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1230 
1231 	if (dk1->dk_major != DDI_MAJOR_T_NONE &&
1232 	    dk2->dk_major != DDI_MAJOR_T_NONE) {
1233 		if (dk1->dk_major !=  dk2->dk_major)
1234 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1235 
1236 		if (dk1->dk_inst !=  dk2->dk_inst)
1237 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1238 	}
1239 
1240 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1241 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1242 
1243 	return (0);
1244 }
1245 
1246 static int
1247 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1248 {
1249 	char	*p1, *p2;
1250 	int	rv;
1251 
1252 	if (pk1->pk_pip !=  pk2->pk_pip)
1253 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1254 
1255 	p1 = pk1->pk_path_addr;
1256 	p2 = pk2->pk_path_addr;
1257 
1258 	p1 = p1 ? p1 : "";
1259 	p2 = p2 ? p2 : "";
1260 
1261 	rv = strcmp(p1, p2);
1262 	if (rv)
1263 		return (rv > 0  ? 1 : -1);
1264 
1265 	if (pk1->pk_client !=  pk2->pk_client)
1266 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1267 
1268 	if (pk1->pk_phci !=  pk2->pk_phci)
1269 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1270 
1271 	return (0);
1272 }
1273 
1274 static int
1275 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1276 {
1277 	struct di_key	*dik1, *dik2;
1278 
1279 	dik1 = key1;
1280 	dik2 = key2;
1281 
1282 	if (dik1->k_type != dik2->k_type) {
1283 		panic("devinfo: mismatched keys");
1284 		/*NOTREACHED*/
1285 	}
1286 
1287 	switch (dik1->k_type) {
1288 	case DI_DKEY:
1289 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1290 	case DI_PKEY:
1291 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1292 	default:
1293 		panic("devinfo: unknown key type");
1294 		/*NOTREACHED*/
1295 	}
1296 }
1297 
1298 /*
1299  * This is the main function that takes a snapshot
1300  */
1301 static di_off_t
1302 di_snapshot(struct di_state *st)
1303 {
1304 	di_off_t	off;
1305 	struct di_all	*all;
1306 	dev_info_t	*rootnode;
1307 	char		buf[80];
1308 	int		plen;
1309 	char		*path;
1310 	vnode_t		*vp;
1311 
1312 	all = DI_ALL_PTR(st);
1313 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1314 
1315 	/*
1316 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1317 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1318 	 * path against an invalid path results in panic.  The lookupnameat
1319 	 * is done relative to rootdir without a leading '/' on "devices/"
1320 	 * to force the lookup to occur in the global zone.
1321 	 */
1322 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1323 	path = kmem_alloc(plen, KM_SLEEP);
1324 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1325 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1326 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1327 		    all->root_path));
1328 		kmem_free(path, plen);
1329 		return (0);
1330 	}
1331 	kmem_free(path, plen);
1332 	VN_RELE(vp);
1333 
1334 	/*
1335 	 * Hold the devinfo node referred by the path.
1336 	 */
1337 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1338 	if (rootnode == NULL) {
1339 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1340 		    all->root_path));
1341 		return (0);
1342 	}
1343 
1344 	(void) snprintf(buf, sizeof (buf),
1345 	    "devinfo registered dips (statep=%p)", (void *)st);
1346 
1347 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1348 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1349 	    NULL, di_key_cmp, KM_SLEEP);
1350 
1351 
1352 	(void) snprintf(buf, sizeof (buf),
1353 	    "devinfo registered pips (statep=%p)", (void *)st);
1354 
1355 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1356 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1357 	    NULL, di_key_cmp, KM_SLEEP);
1358 
1359 	if (DINFOHP & st->command) {
1360 		list_create(&st->hp_list, sizeof (i_hp_t),
1361 		    offsetof(i_hp_t, hp_link));
1362 	}
1363 
1364 	/*
1365 	 * copy the device tree
1366 	 */
1367 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1368 
1369 	if (DINFOPATH & st->command) {
1370 		mdi_walk_vhcis(build_vhci_list, st);
1371 	}
1372 
1373 	if (DINFOHP & st->command) {
1374 		di_hotplug_children(st);
1375 	}
1376 
1377 	ddi_release_devi(rootnode);
1378 
1379 	/*
1380 	 * copy the devnames array
1381 	 */
1382 	all->devnames = off;
1383 	off = di_copydevnm(&all->devnames, st);
1384 
1385 
1386 	/* initialize the hash tables */
1387 	st->lnode_count = 0;
1388 	st->link_count = 0;
1389 
1390 	if (DINFOLYR & st->command) {
1391 		off = di_getlink_data(off, st);
1392 	}
1393 
1394 	/*
1395 	 * Free up hash tables
1396 	 */
1397 	mod_hash_destroy_hash(st->reg_dip_hash);
1398 	mod_hash_destroy_hash(st->reg_pip_hash);
1399 
1400 	/*
1401 	 * Record the timestamp now that we are done with snapshot.
1402 	 *
1403 	 * We compute the checksum later and then only if we cache
1404 	 * the snapshot, since checksumming adds some overhead.
1405 	 * The checksum is checked later if we read the cache file.
1406 	 * from disk.
1407 	 *
1408 	 * Set checksum field to 0 as CRC is calculated with that
1409 	 * field set to 0.
1410 	 */
1411 	all->snapshot_time = ddi_get_time();
1412 	all->cache_checksum = 0;
1413 
1414 	ASSERT(all->snapshot_time != 0);
1415 
1416 	return (off);
1417 }
1418 
1419 /*
1420  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1421  */
1422 static di_off_t
1423 di_snapshot_and_clean(struct di_state *st)
1424 {
1425 	di_off_t	off;
1426 
1427 	modunload_disable();
1428 	off = di_snapshot(st);
1429 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1430 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1431 		/*
1432 		 * Cleanup /etc/devices files:
1433 		 * In order to accurately account for the system configuration
1434 		 * in /etc/devices files, the appropriate drivers must be
1435 		 * fully configured before the cleanup starts.
1436 		 * So enable modunload only after the cleanup.
1437 		 */
1438 		i_ddi_clean_devices_files();
1439 		/*
1440 		 * Remove backing store nodes for unused devices,
1441 		 * which retain past permissions customizations
1442 		 * and may be undesired for newly configured devices.
1443 		 */
1444 		dev_devices_cleanup();
1445 	}
1446 	modunload_enable();
1447 
1448 	return (off);
1449 }
1450 
1451 /*
1452  * construct vhci linkage in the snapshot.
1453  */
1454 static int
1455 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1456 {
1457 	struct di_all	*all;
1458 	struct di_node	*me;
1459 	struct di_state	*st;
1460 	di_off_t	off;
1461 	phci_walk_arg_t	pwa;
1462 
1463 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1464 
1465 	dcmn_err3((CE_CONT, "vhci node %s%d\n",
1466 	    ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo)));
1467 
1468 	st = (struct di_state *)arg;
1469 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1470 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1471 		return (DDI_WALK_TERMINATE);
1472 	}
1473 
1474 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1475 	    st->mem_size, off));
1476 
1477 	all = DI_ALL_PTR(st);
1478 	if (all->top_vhci_devinfo == 0) {
1479 		all->top_vhci_devinfo = off;
1480 	} else {
1481 		me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo));
1482 
1483 		while (me->next_vhci != 0) {
1484 			me = DI_NODE(di_mem_addr(st, me->next_vhci));
1485 		}
1486 
1487 		me->next_vhci = off;
1488 	}
1489 
1490 	pwa.off = off;
1491 	pwa.st = st;
1492 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1493 
1494 	return (DDI_WALK_CONTINUE);
1495 }
1496 
1497 /*
1498  * construct phci linkage for the given vhci in the snapshot.
1499  */
1500 static int
1501 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1502 {
1503 	struct di_node	*vh_di_node;
1504 	struct di_node	*me;
1505 	phci_walk_arg_t	*pwa;
1506 	di_off_t	off;
1507 
1508 	pwa = (phci_walk_arg_t *)arg;
1509 
1510 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1511 	    pwa->off));
1512 
1513 	vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off));
1514 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1515 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1516 		return (DDI_WALK_TERMINATE);
1517 	}
1518 
1519 	dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n",
1520 	    ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off));
1521 
1522 	if (vh_di_node->top_phci == 0) {
1523 		vh_di_node->top_phci = off;
1524 		return (DDI_WALK_CONTINUE);
1525 	}
1526 
1527 	me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci));
1528 
1529 	while (me->next_phci != 0) {
1530 		me = DI_NODE(di_mem_addr(pwa->st, me->next_phci));
1531 	}
1532 	me->next_phci = off;
1533 
1534 	return (DDI_WALK_CONTINUE);
1535 }
1536 
1537 /*
1538  * Assumes all devinfo nodes in device tree have been snapshotted
1539  */
1540 static void
1541 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p)
1542 {
1543 	struct dev_info	*node;
1544 	struct di_node	*me;
1545 	di_off_t	off;
1546 
1547 	ASSERT(mutex_owned(&dnp->dn_lock));
1548 
1549 	node = DEVI(dnp->dn_head);
1550 	for (; node; node = node->devi_next) {
1551 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1552 			continue;
1553 
1554 		ASSERT(off > 0);
1555 		me = DI_NODE(di_mem_addr(st, off));
1556 		ASSERT(me->next == 0 || me->next == -1);
1557 		/*
1558 		 * Only nodes which were BOUND when they were
1559 		 * snapshotted will be added to per-driver list.
1560 		 */
1561 		if (me->next != -1)
1562 			continue;
1563 
1564 		*off_p = off;
1565 		off_p = &me->next;
1566 	}
1567 
1568 	*off_p = 0;
1569 }
1570 
1571 /*
1572  * Copy the devnames array, so we have a list of drivers in the snapshot.
1573  * Also makes it possible to locate the per-driver devinfo nodes.
1574  */
1575 static di_off_t
1576 di_copydevnm(di_off_t *off_p, struct di_state *st)
1577 {
1578 	int		i;
1579 	di_off_t	off;
1580 	size_t		size;
1581 	struct di_devnm	*dnp;
1582 
1583 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1584 
1585 	/*
1586 	 * make sure there is some allocated memory
1587 	 */
1588 	size = devcnt * sizeof (struct di_devnm);
1589 	*off_p = off = di_checkmem(st, *off_p, size);
1590 	dnp = DI_DEVNM(di_mem_addr(st, off));
1591 	off += size;
1592 
1593 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1594 	    devcnt, off));
1595 
1596 	for (i = 0; i < devcnt; i++) {
1597 		if (devnamesp[i].dn_name == NULL) {
1598 			continue;
1599 		}
1600 
1601 		/*
1602 		 * dn_name is not freed during driver unload or removal.
1603 		 *
1604 		 * There is a race condition when make_devname() changes
1605 		 * dn_name during our strcpy. This should be rare since
1606 		 * only add_drv does this. At any rate, we never had a
1607 		 * problem with ddi_name_to_major(), which should have
1608 		 * the same problem.
1609 		 */
1610 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1611 		    devnamesp[i].dn_name, devnamesp[i].dn_instance, off));
1612 
1613 		size = strlen(devnamesp[i].dn_name) + 1;
1614 		dnp[i].name = off = di_checkmem(st, off, size);
1615 		(void) strcpy((char *)di_mem_addr(st, off),
1616 		    devnamesp[i].dn_name);
1617 		off += size;
1618 
1619 		mutex_enter(&devnamesp[i].dn_lock);
1620 
1621 		/*
1622 		 * Snapshot per-driver node list
1623 		 */
1624 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1625 
1626 		/*
1627 		 * This is not used by libdevinfo, leave it for now
1628 		 */
1629 		dnp[i].flags = devnamesp[i].dn_flags;
1630 		dnp[i].instance = devnamesp[i].dn_instance;
1631 
1632 		/*
1633 		 * get global properties
1634 		 */
1635 		if ((DINFOPROP & st->command) &&
1636 		    devnamesp[i].dn_global_prop_ptr) {
1637 			dnp[i].global_prop = off;
1638 			off = di_getprop(DI_PROP_GLB_LIST,
1639 			    &devnamesp[i].dn_global_prop_ptr->prop_list,
1640 			    &dnp[i].global_prop, st, NULL);
1641 		}
1642 
1643 		/*
1644 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1645 		 */
1646 		if (CB_DRV_INSTALLED(devopsp[i])) {
1647 			if (devopsp[i]->devo_cb_ops) {
1648 				dnp[i].ops |= DI_CB_OPS;
1649 				if (devopsp[i]->devo_cb_ops->cb_str)
1650 					dnp[i].ops |= DI_STREAM_OPS;
1651 			}
1652 			if (NEXUS_DRV(devopsp[i])) {
1653 				dnp[i].ops |= DI_BUS_OPS;
1654 			}
1655 		}
1656 
1657 		mutex_exit(&devnamesp[i].dn_lock);
1658 	}
1659 
1660 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1661 
1662 	return (off);
1663 }
1664 
1665 /*
1666  * Copy the kernel devinfo tree. The tree and the devnames array forms
1667  * the entire snapshot (see also di_copydevnm).
1668  */
1669 static di_off_t
1670 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1671 {
1672 	di_off_t	off;
1673 	struct dev_info	*node;
1674 	struct di_stack	*dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1675 
1676 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1677 	    (void *)root, *off_p));
1678 
1679 	/* force attach drivers */
1680 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1681 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1682 		(void) ndi_devi_config((dev_info_t *)root,
1683 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1684 		    NDI_DRV_CONF_REPROBE);
1685 	}
1686 
1687 	/*
1688 	 * Push top_devinfo onto a stack
1689 	 *
1690 	 * The stack is necessary to avoid recursion, which can overrun
1691 	 * the kernel stack.
1692 	 */
1693 	PUSH_STACK(dsp, root, off_p);
1694 
1695 	/*
1696 	 * As long as there is a node on the stack, copy the node.
1697 	 * di_copynode() is responsible for pushing and popping
1698 	 * child and sibling nodes on the stack.
1699 	 */
1700 	while (!EMPTY_STACK(dsp)) {
1701 		node = TOP_NODE(dsp);
1702 		off = di_copynode(node, dsp, st);
1703 	}
1704 
1705 	/*
1706 	 * Free the stack structure
1707 	 */
1708 	kmem_free(dsp, sizeof (struct di_stack));
1709 
1710 	return (off);
1711 }
1712 
1713 /*
1714  * This is the core function, which copies all data associated with a single
1715  * node into the snapshot. The amount of information is determined by the
1716  * ioctl command.
1717  */
1718 static di_off_t
1719 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st)
1720 {
1721 	di_off_t	off;
1722 	struct di_node	*me;
1723 	size_t		size;
1724 	struct dev_info *n;
1725 
1726 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth));
1727 	ASSERT((node != NULL) && (node == TOP_NODE(dsp)));
1728 
1729 	/*
1730 	 * check memory usage, and fix offsets accordingly.
1731 	 */
1732 	size = sizeof (struct di_node);
1733 	*(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size);
1734 	me = DI_NODE(di_mem_addr(st, off));
1735 	me->self = off;
1736 	off += size;
1737 
1738 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1739 	    node->devi_node_name, node->devi_instance, off));
1740 
1741 	/*
1742 	 * Node parameters:
1743 	 * self		-- offset of current node within snapshot
1744 	 * nodeid	-- pointer to PROM node (tri-valued)
1745 	 * state	-- hot plugging device state
1746 	 * node_state	-- devinfo node state
1747 	 */
1748 	me->instance = node->devi_instance;
1749 	me->nodeid = node->devi_nodeid;
1750 	me->node_class = node->devi_node_class;
1751 	me->attributes = node->devi_node_attributes;
1752 	me->state = node->devi_state;
1753 	me->flags = node->devi_flags;
1754 	me->node_state = node->devi_node_state;
1755 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1756 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1757 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1758 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1759 	me->user_private_data = NULL;
1760 
1761 	/*
1762 	 * Get parent's offset in snapshot from the stack
1763 	 * and store it in the current node
1764 	 */
1765 	if (dsp->depth > 1) {
1766 		me->parent = *(PARENT_OFFSET(dsp));
1767 	}
1768 
1769 	/*
1770 	 * Save the offset of this di_node in a hash table.
1771 	 * This is used later to resolve references to this
1772 	 * dip from other parts of the tree (per-driver list,
1773 	 * multipathing linkages, layered usage linkages).
1774 	 * The key used for the hash table is derived from
1775 	 * information in the dip.
1776 	 */
1777 	di_register_dip(st, (dev_info_t *)node, me->self);
1778 
1779 #ifdef	DEVID_COMPATIBILITY
1780 	/* check for devid as property marker */
1781 	if (node->devi_devid_str) {
1782 		ddi_devid_t	devid;
1783 
1784 		/*
1785 		 * The devid is now represented as a property. For
1786 		 * compatibility with di_devid() interface in libdevinfo we
1787 		 * must return it as a binary structure in the snapshot. When
1788 		 * (if) di_devid() is removed from libdevinfo then the code
1789 		 * related to DEVID_COMPATIBILITY can be removed.
1790 		 */
1791 		if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) ==
1792 		    DDI_SUCCESS) {
1793 			size = ddi_devid_sizeof(devid);
1794 			off = di_checkmem(st, off, size);
1795 			me->devid = off;
1796 			bcopy(devid, di_mem_addr(st, off), size);
1797 			off += size;
1798 			ddi_devid_free(devid);
1799 		}
1800 	}
1801 #endif	/* DEVID_COMPATIBILITY */
1802 
1803 	if (node->devi_node_name) {
1804 		size = strlen(node->devi_node_name) + 1;
1805 		me->node_name = off = di_checkmem(st, off, size);
1806 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1807 		off += size;
1808 	}
1809 
1810 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1811 		size = node->devi_compat_length;
1812 		me->compat_names = off = di_checkmem(st, off, size);
1813 		me->compat_length = (int)size;
1814 		bcopy(node->devi_compat_names, di_mem_addr(st, off), size);
1815 		off += size;
1816 	}
1817 
1818 	if (node->devi_addr) {
1819 		size = strlen(node->devi_addr) + 1;
1820 		me->address = off = di_checkmem(st, off, size);
1821 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1822 		off += size;
1823 	}
1824 
1825 	if (node->devi_binding_name) {
1826 		size = strlen(node->devi_binding_name) + 1;
1827 		me->bind_name = off = di_checkmem(st, off, size);
1828 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1829 		off += size;
1830 	}
1831 
1832 	me->drv_major = node->devi_major;
1833 
1834 	/*
1835 	 * If the dip is BOUND, set the next pointer of the
1836 	 * per-instance list to -1, indicating that it is yet to be resolved.
1837 	 * This will be resolved later in snap_driver_list().
1838 	 */
1839 	if (me->drv_major != -1) {
1840 		me->next = -1;
1841 	} else {
1842 		me->next = 0;
1843 	}
1844 
1845 	/*
1846 	 * An optimization to skip mutex_enter when not needed.
1847 	 */
1848 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) {
1849 		goto priv_data;
1850 	}
1851 
1852 	/*
1853 	 * LOCKING: We already have an active ndi_devi_enter to gather the
1854 	 * minor data, and we will take devi_lock to gather properties as
1855 	 * needed off di_getprop.
1856 	 */
1857 	if (!(DINFOMINOR & st->command)) {
1858 		goto path;
1859 	}
1860 
1861 	ASSERT(DEVI_BUSY_OWNED(node));
1862 	if (node->devi_minor) {		/* minor data */
1863 		me->minor_data = off;
1864 		off = di_getmdata(node->devi_minor, &me->minor_data,
1865 		    me->self, st);
1866 	}
1867 
1868 path:
1869 	if (!(DINFOPATH & st->command)) {
1870 		goto property;
1871 	}
1872 
1873 	if (MDI_VHCI(node)) {
1874 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1875 	}
1876 
1877 	if (MDI_CLIENT(node)) {
1878 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1879 		me->multipath_client = off;
1880 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1881 		    me->self, st, 1);
1882 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1883 		    "component type = %d.  off=%d",
1884 		    me->multipath_client,
1885 		    (void *)node, node->devi_mdi_component, off));
1886 	}
1887 
1888 	if (MDI_PHCI(node)) {
1889 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1890 		me->multipath_phci = off;
1891 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1892 		    me->self, st, 0);
1893 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1894 		    "component type = %d.  off=%d",
1895 		    me->multipath_phci,
1896 		    (void *)node, node->devi_mdi_component, off));
1897 	}
1898 
1899 property:
1900 	if (!(DINFOPROP & st->command)) {
1901 		goto hotplug_data;
1902 	}
1903 
1904 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1905 		me->drv_prop = off;
1906 		off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr,
1907 		    &me->drv_prop, st, node);
1908 	}
1909 
1910 	if (node->devi_sys_prop_ptr) {	/* system property list */
1911 		me->sys_prop = off;
1912 		off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr,
1913 		    &me->sys_prop, st, node);
1914 	}
1915 
1916 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1917 		me->hw_prop = off;
1918 		off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr,
1919 		    &me->hw_prop, st, node);
1920 	}
1921 
1922 	if (node->devi_global_prop_list == NULL) {
1923 		me->glob_prop = (di_off_t)-1;	/* not global property */
1924 	} else {
1925 		/*
1926 		 * Make copy of global property list if this devinfo refers
1927 		 * global properties different from what's on the devnames
1928 		 * array. It can happen if there has been a forced
1929 		 * driver.conf update. See mod_drv(1M).
1930 		 */
1931 		ASSERT(me->drv_major != -1);
1932 		if (node->devi_global_prop_list !=
1933 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1934 			me->glob_prop = off;
1935 			off = di_getprop(DI_PROP_GLB_LIST,
1936 			    &node->devi_global_prop_list->prop_list,
1937 			    &me->glob_prop, st, node);
1938 		}
1939 	}
1940 
1941 hotplug_data:
1942 	if (!(DINFOHP & st->command)) {
1943 		goto priv_data;
1944 	}
1945 
1946 	if (node->devi_hp_hdlp) {	/* hotplug data */
1947 		me->hp_data = off;
1948 		off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st);
1949 	}
1950 
1951 priv_data:
1952 	if (!(DINFOPRIVDATA & st->command)) {
1953 		goto pm_info;
1954 	}
1955 
1956 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1957 		me->parent_data = off;
1958 		off = di_getppdata(node, &me->parent_data, st);
1959 	}
1960 
1961 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1962 		me->driver_data = off;
1963 		off = di_getdpdata(node, &me->driver_data, st);
1964 	}
1965 
1966 pm_info: /* NOT implemented */
1967 
1968 subtree:
1969 	/* keep the stack aligned */
1970 	off = DI_ALIGN(off);
1971 
1972 	if (!(DINFOSUBTREE & st->command)) {
1973 		POP_STACK(dsp);
1974 		return (off);
1975 	}
1976 
1977 child:
1978 	/*
1979 	 * If there is a visible child--push child onto stack.
1980 	 * Hold the parent (me) busy while doing so.
1981 	 */
1982 	if ((n = node->devi_child) != NULL) {
1983 		/* skip hidden nodes */
1984 		while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
1985 			n = n->devi_sibling;
1986 		if (n) {
1987 			me->child = off;
1988 			PUSH_STACK(dsp, n, &me->child);
1989 			return (me->child);
1990 		}
1991 	}
1992 
1993 sibling:
1994 	/*
1995 	 * Done with any child nodes, unroll the stack till a visible
1996 	 * sibling of a parent node is found or root node is reached.
1997 	 */
1998 	POP_STACK(dsp);
1999 	while (!EMPTY_STACK(dsp)) {
2000 		if ((n = node->devi_sibling) != NULL) {
2001 			/* skip hidden nodes */
2002 			while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2003 				n = n->devi_sibling;
2004 			if (n) {
2005 				me->sibling = DI_ALIGN(off);
2006 				PUSH_STACK(dsp, n, &me->sibling);
2007 				return (me->sibling);
2008 			}
2009 		}
2010 		node = TOP_NODE(dsp);
2011 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
2012 		POP_STACK(dsp);
2013 	}
2014 
2015 	/*
2016 	 * DONE with all nodes
2017 	 */
2018 	return (off);
2019 }
2020 
2021 static i_lnode_t *
2022 i_lnode_alloc(int modid)
2023 {
2024 	i_lnode_t	*i_lnode;
2025 
2026 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
2027 
2028 	ASSERT(modid != -1);
2029 	i_lnode->modid = modid;
2030 
2031 	return (i_lnode);
2032 }
2033 
2034 static void
2035 i_lnode_free(i_lnode_t *i_lnode)
2036 {
2037 	kmem_free(i_lnode, sizeof (i_lnode_t));
2038 }
2039 
2040 static void
2041 i_lnode_check_free(i_lnode_t *i_lnode)
2042 {
2043 	/* This lnode and its dip must have been snapshotted */
2044 	ASSERT(i_lnode->self > 0);
2045 	ASSERT(i_lnode->di_node->self > 0);
2046 
2047 	/* at least 1 link (in or out) must exist for this lnode */
2048 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2049 
2050 	i_lnode_free(i_lnode);
2051 }
2052 
2053 static i_link_t *
2054 i_link_alloc(int spec_type)
2055 {
2056 	i_link_t	*i_link;
2057 
2058 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2059 	i_link->spec_type = spec_type;
2060 
2061 	return (i_link);
2062 }
2063 
2064 static void
2065 i_link_check_free(i_link_t *i_link)
2066 {
2067 	/* This link must have been snapshotted */
2068 	ASSERT(i_link->self > 0);
2069 
2070 	/* Both endpoint lnodes must exist for this link */
2071 	ASSERT(i_link->src_lnode);
2072 	ASSERT(i_link->tgt_lnode);
2073 
2074 	kmem_free(i_link, sizeof (i_link_t));
2075 }
2076 
2077 /*ARGSUSED*/
2078 static uint_t
2079 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2080 {
2081 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2082 	struct di_node	*ptr;
2083 	dev_t		dev;
2084 
2085 	dev = i_lnode->devt;
2086 	if (dev != DDI_DEV_T_NONE)
2087 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2088 
2089 	ptr = i_lnode->di_node;
2090 	ASSERT(ptr->self > 0);
2091 	if (ptr) {
2092 		uintptr_t k = (uintptr_t)ptr;
2093 		k >>= (int)highbit(sizeof (struct di_node));
2094 		return ((uint_t)k);
2095 	}
2096 
2097 	return (i_lnode->modid);
2098 }
2099 
2100 static int
2101 i_lnode_cmp(void *arg1, void *arg2)
2102 {
2103 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2104 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2105 
2106 	if (i_lnode1->modid != i_lnode2->modid) {
2107 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2108 	}
2109 
2110 	if (i_lnode1->di_node != i_lnode2->di_node)
2111 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2112 
2113 	if (i_lnode1->devt != i_lnode2->devt)
2114 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2115 
2116 	return (0);
2117 }
2118 
2119 /*
2120  * An lnode represents a {dip, dev_t} tuple. A link represents a
2121  * {src_lnode, tgt_lnode, spec_type} tuple.
2122  * The following callback assumes that LDI framework ref-counts the
2123  * src_dip and tgt_dip while invoking this callback.
2124  */
2125 static int
2126 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2127 {
2128 	struct di_state	*st = (struct di_state *)arg;
2129 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2130 	i_link_t	**i_link_next, *i_link;
2131 	di_off_t	soff, toff;
2132 	mod_hash_val_t	nodep = NULL;
2133 	int		res;
2134 
2135 	/*
2136 	 * if the source or target of this device usage information doesn't
2137 	 * correspond to a device node then we don't report it via
2138 	 * libdevinfo so return.
2139 	 */
2140 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2141 		return (LDI_USAGE_CONTINUE);
2142 
2143 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2144 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2145 
2146 	/*
2147 	 * Skip the ldi_usage if either src or tgt dip is not in the
2148 	 * snapshot. This saves us from pruning bad lnodes/links later.
2149 	 */
2150 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2151 		return (LDI_USAGE_CONTINUE);
2152 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2153 		return (LDI_USAGE_CONTINUE);
2154 
2155 	ASSERT(soff > 0);
2156 	ASSERT(toff > 0);
2157 
2158 	/*
2159 	 * allocate an i_lnode and add it to the lnode hash
2160 	 * if it is not already present. For this particular
2161 	 * link the lnode is a source, but it may
2162 	 * participate as tgt or src in any number of layered
2163 	 * operations - so it may already be in the hash.
2164 	 */
2165 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2166 	i_lnode->di_node = DI_NODE(di_mem_addr(st, soff));
2167 	i_lnode->devt = ldi_usage->src_devt;
2168 
2169 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2170 	if (res == MH_ERR_NOTFOUND) {
2171 		/*
2172 		 * new i_lnode
2173 		 * add it to the hash and increment the lnode count
2174 		 */
2175 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2176 		ASSERT(res == 0);
2177 		st->lnode_count++;
2178 		src_lnode = i_lnode;
2179 	} else {
2180 		/* this i_lnode already exists in the lnode_hash */
2181 		i_lnode_free(i_lnode);
2182 		src_lnode = (i_lnode_t *)nodep;
2183 	}
2184 
2185 	/*
2186 	 * allocate a tgt i_lnode and add it to the lnode hash
2187 	 */
2188 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2189 	i_lnode->di_node = DI_NODE(di_mem_addr(st, toff));
2190 	i_lnode->devt = ldi_usage->tgt_devt;
2191 
2192 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2193 	if (res == MH_ERR_NOTFOUND) {
2194 		/*
2195 		 * new i_lnode
2196 		 * add it to the hash and increment the lnode count
2197 		 */
2198 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2199 		ASSERT(res == 0);
2200 		st->lnode_count++;
2201 		tgt_lnode = i_lnode;
2202 	} else {
2203 		/* this i_lnode already exists in the lnode_hash */
2204 		i_lnode_free(i_lnode);
2205 		tgt_lnode = (i_lnode_t *)nodep;
2206 	}
2207 
2208 	/*
2209 	 * allocate a i_link
2210 	 */
2211 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2212 	i_link->src_lnode = src_lnode;
2213 	i_link->tgt_lnode = tgt_lnode;
2214 
2215 	/*
2216 	 * add this link onto the src i_lnodes outbound i_link list
2217 	 */
2218 	i_link_next = &(src_lnode->link_out);
2219 	while (*i_link_next != NULL) {
2220 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2221 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2222 			/* this link already exists */
2223 			kmem_free(i_link, sizeof (i_link_t));
2224 			return (LDI_USAGE_CONTINUE);
2225 		}
2226 		i_link_next = &((*i_link_next)->src_link_next);
2227 	}
2228 	*i_link_next = i_link;
2229 
2230 	/*
2231 	 * add this link onto the tgt i_lnodes inbound i_link list
2232 	 */
2233 	i_link_next = &(tgt_lnode->link_in);
2234 	while (*i_link_next != NULL) {
2235 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2236 		i_link_next = &((*i_link_next)->tgt_link_next);
2237 	}
2238 	*i_link_next = i_link;
2239 
2240 	/*
2241 	 * add this i_link to the link hash
2242 	 */
2243 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2244 	ASSERT(res == 0);
2245 	st->link_count++;
2246 
2247 	return (LDI_USAGE_CONTINUE);
2248 }
2249 
2250 struct i_layer_data {
2251 	struct di_state	*st;
2252 	int		lnode_count;
2253 	int		link_count;
2254 	di_off_t	lnode_off;
2255 	di_off_t	link_off;
2256 };
2257 
2258 /*ARGSUSED*/
2259 static uint_t
2260 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2261 {
2262 	i_link_t		*i_link  = (i_link_t *)key;
2263 	struct i_layer_data	*data = arg;
2264 	struct di_link		*me;
2265 	struct di_lnode		*melnode;
2266 	struct di_node		*medinode;
2267 
2268 	ASSERT(i_link->self == 0);
2269 
2270 	i_link->self = data->link_off +
2271 	    (data->link_count * sizeof (struct di_link));
2272 	data->link_count++;
2273 
2274 	ASSERT(data->link_off > 0 && data->link_count > 0);
2275 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2276 	ASSERT(data->link_count <= data->st->link_count);
2277 
2278 	/* fill in fields for the di_link snapshot */
2279 	me = DI_LINK(di_mem_addr(data->st, i_link->self));
2280 	me->self = i_link->self;
2281 	me->spec_type = i_link->spec_type;
2282 
2283 	/*
2284 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2285 	 * are created during the LDI table walk. Since we are
2286 	 * walking the link hash, the lnode hash has already been
2287 	 * walked and the lnodes have been snapshotted. Save lnode
2288 	 * offsets.
2289 	 */
2290 	me->src_lnode = i_link->src_lnode->self;
2291 	me->tgt_lnode = i_link->tgt_lnode->self;
2292 
2293 	/*
2294 	 * Save this link's offset in the src_lnode snapshot's link_out
2295 	 * field
2296 	 */
2297 	melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode));
2298 	me->src_link_next = melnode->link_out;
2299 	melnode->link_out = me->self;
2300 
2301 	/*
2302 	 * Put this link on the tgt_lnode's link_in field
2303 	 */
2304 	melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode));
2305 	me->tgt_link_next = melnode->link_in;
2306 	melnode->link_in = me->self;
2307 
2308 	/*
2309 	 * An i_lnode_t is only created if the corresponding dip exists
2310 	 * in the snapshot. A pointer to the di_node is saved in the
2311 	 * i_lnode_t when it is allocated. For this link, get the di_node
2312 	 * for the source lnode. Then put the link on the di_node's list
2313 	 * of src links
2314 	 */
2315 	medinode = i_link->src_lnode->di_node;
2316 	me->src_node_next = medinode->src_links;
2317 	medinode->src_links = me->self;
2318 
2319 	/*
2320 	 * Put this link on the tgt_links list of the target
2321 	 * dip.
2322 	 */
2323 	medinode = i_link->tgt_lnode->di_node;
2324 	me->tgt_node_next = medinode->tgt_links;
2325 	medinode->tgt_links = me->self;
2326 
2327 	return (MH_WALK_CONTINUE);
2328 }
2329 
2330 /*ARGSUSED*/
2331 static uint_t
2332 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2333 {
2334 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2335 	struct i_layer_data	*data = arg;
2336 	struct di_lnode		*me;
2337 	struct di_node		*medinode;
2338 
2339 	ASSERT(i_lnode->self == 0);
2340 
2341 	i_lnode->self = data->lnode_off +
2342 	    (data->lnode_count * sizeof (struct di_lnode));
2343 	data->lnode_count++;
2344 
2345 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2346 	ASSERT(data->link_count == 0); /* links not done yet */
2347 	ASSERT(data->lnode_count <= data->st->lnode_count);
2348 
2349 	/* fill in fields for the di_lnode snapshot */
2350 	me = DI_LNODE(di_mem_addr(data->st, i_lnode->self));
2351 	me->self = i_lnode->self;
2352 
2353 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2354 		me->dev_major = DDI_MAJOR_T_NONE;
2355 		me->dev_minor = DDI_MAJOR_T_NONE;
2356 	} else {
2357 		me->dev_major = getmajor(i_lnode->devt);
2358 		me->dev_minor = getminor(i_lnode->devt);
2359 	}
2360 
2361 	/*
2362 	 * The dip corresponding to this lnode must exist in
2363 	 * the snapshot or we wouldn't have created the i_lnode_t
2364 	 * during LDI walk. Save the offset of the dip.
2365 	 */
2366 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2367 	me->node = i_lnode->di_node->self;
2368 
2369 	/*
2370 	 * There must be at least one link in or out of this lnode
2371 	 * or we wouldn't have created it. These fields will be set
2372 	 * during the link hash walk.
2373 	 */
2374 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2375 
2376 	/*
2377 	 * set the offset of the devinfo node associated with this
2378 	 * lnode. Also update the node_next next pointer.  this pointer
2379 	 * is set if there are multiple lnodes associated with the same
2380 	 * devinfo node.  (could occure when multiple minor nodes
2381 	 * are open for one device, etc.)
2382 	 */
2383 	medinode = i_lnode->di_node;
2384 	me->node_next = medinode->lnodes;
2385 	medinode->lnodes = me->self;
2386 
2387 	return (MH_WALK_CONTINUE);
2388 }
2389 
2390 static di_off_t
2391 di_getlink_data(di_off_t off, struct di_state *st)
2392 {
2393 	struct i_layer_data	data = {0};
2394 	size_t			size;
2395 
2396 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2397 
2398 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2399 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2400 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2401 
2402 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2403 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2404 
2405 	/* get driver layering information */
2406 	(void) ldi_usage_walker(st, di_ldi_callback);
2407 
2408 	/* check if there is any link data to include in the snapshot */
2409 	if (st->lnode_count == 0) {
2410 		ASSERT(st->link_count == 0);
2411 		goto out;
2412 	}
2413 
2414 	ASSERT(st->link_count != 0);
2415 
2416 	/* get a pointer to snapshot memory for all the di_lnodes */
2417 	size = sizeof (struct di_lnode) * st->lnode_count;
2418 	data.lnode_off = off = di_checkmem(st, off, size);
2419 	off += size;
2420 
2421 	/* get a pointer to snapshot memory for all the di_links */
2422 	size = sizeof (struct di_link) * st->link_count;
2423 	data.link_off = off = di_checkmem(st, off, size);
2424 	off += size;
2425 
2426 	data.lnode_count = data.link_count = 0;
2427 	data.st = st;
2428 
2429 	/*
2430 	 * We have lnodes and links that will go into the
2431 	 * snapshot, so let's walk the respective hashes
2432 	 * and snapshot them. The various linkages are
2433 	 * also set up during the walk.
2434 	 */
2435 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2436 	ASSERT(data.lnode_count == st->lnode_count);
2437 
2438 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2439 	ASSERT(data.link_count == st->link_count);
2440 
2441 out:
2442 	/* free up the i_lnodes and i_links used to create the snapshot */
2443 	mod_hash_destroy_hash(st->lnode_hash);
2444 	mod_hash_destroy_hash(st->link_hash);
2445 	st->lnode_count = 0;
2446 	st->link_count = 0;
2447 
2448 	return (off);
2449 }
2450 
2451 
2452 /*
2453  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2454  * It is called from di_copynode with active ndi_devi_enter to protect
2455  * the list of minor nodes.
2456  */
2457 static di_off_t
2458 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2459 	struct di_state *st)
2460 {
2461 	di_off_t	off;
2462 	struct di_minor	*me;
2463 	size_t		size;
2464 
2465 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2466 
2467 	/*
2468 	 * check memory first
2469 	 */
2470 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2471 	*off_p = off;
2472 
2473 	do {
2474 		me = DI_MINOR(di_mem_addr(st, off));
2475 		me->self = off;
2476 		me->type = mnode->type;
2477 		me->node = node;
2478 		me->user_private_data = NULL;
2479 
2480 		off += sizeof (struct di_minor);
2481 
2482 		/*
2483 		 * Split dev_t to major/minor, so it works for
2484 		 * both ILP32 and LP64 model
2485 		 */
2486 		me->dev_major = getmajor(mnode->ddm_dev);
2487 		me->dev_minor = getminor(mnode->ddm_dev);
2488 		me->spec_type = mnode->ddm_spec_type;
2489 
2490 		if (mnode->ddm_name) {
2491 			size = strlen(mnode->ddm_name) + 1;
2492 			me->name = off = di_checkmem(st, off, size);
2493 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2494 			off += size;
2495 		}
2496 
2497 		if (mnode->ddm_node_type) {
2498 			size = strlen(mnode->ddm_node_type) + 1;
2499 			me->node_type = off = di_checkmem(st, off, size);
2500 			(void) strcpy(di_mem_addr(st, off),
2501 			    mnode->ddm_node_type);
2502 			off += size;
2503 		}
2504 
2505 		off = di_checkmem(st, off, sizeof (struct di_minor));
2506 		me->next = off;
2507 		mnode = mnode->next;
2508 	} while (mnode);
2509 
2510 	me->next = 0;
2511 
2512 	return (off);
2513 }
2514 
2515 /*
2516  * di_register_dip(), di_find_dip(): The dip must be protected
2517  * from deallocation when using these routines - this can either
2518  * be a reference count, a busy hold or a per-driver lock.
2519  */
2520 
2521 static void
2522 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2523 {
2524 	struct dev_info	*node = DEVI(dip);
2525 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2526 	struct di_dkey	*dk;
2527 
2528 	ASSERT(dip);
2529 	ASSERT(off > 0);
2530 
2531 	key->k_type = DI_DKEY;
2532 	dk = &(key->k_u.dkey);
2533 
2534 	dk->dk_dip = dip;
2535 	dk->dk_major = node->devi_major;
2536 	dk->dk_inst = node->devi_instance;
2537 	dk->dk_nodeid = node->devi_nodeid;
2538 
2539 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2540 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2541 		panic(
2542 		    "duplicate devinfo (%p) registered during device "
2543 		    "tree walk", (void *)dip);
2544 	}
2545 }
2546 
2547 
2548 static int
2549 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2550 {
2551 	/*
2552 	 * uintptr_t must be used because it matches the size of void *;
2553 	 * mod_hash expects clients to place results into pointer-size
2554 	 * containers; since di_off_t is always a 32-bit offset, alignment
2555 	 * would otherwise be broken on 64-bit kernels.
2556 	 */
2557 	uintptr_t	offset;
2558 	struct		di_key key = {0};
2559 	struct		di_dkey *dk;
2560 
2561 	ASSERT(st->reg_dip_hash);
2562 	ASSERT(dip);
2563 	ASSERT(off_p);
2564 
2565 
2566 	key.k_type = DI_DKEY;
2567 	dk = &(key.k_u.dkey);
2568 
2569 	dk->dk_dip = dip;
2570 	dk->dk_major = DEVI(dip)->devi_major;
2571 	dk->dk_inst = DEVI(dip)->devi_instance;
2572 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2573 
2574 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2575 	    (mod_hash_val_t *)&offset) == 0) {
2576 		*off_p = (di_off_t)offset;
2577 		return (0);
2578 	} else {
2579 		return (-1);
2580 	}
2581 }
2582 
2583 /*
2584  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2585  * when using these routines. The caller must do this by protecting the
2586  * client(or phci)<->pip linkage while traversing the list and then holding the
2587  * pip when it is found in the list.
2588  */
2589 
2590 static void
2591 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2592 {
2593 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2594 	char		*path_addr;
2595 	struct di_pkey	*pk;
2596 
2597 	ASSERT(pip);
2598 	ASSERT(off > 0);
2599 
2600 	key->k_type = DI_PKEY;
2601 	pk = &(key->k_u.pkey);
2602 
2603 	pk->pk_pip = pip;
2604 	path_addr = mdi_pi_get_addr(pip);
2605 	if (path_addr)
2606 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2607 	pk->pk_client = mdi_pi_get_client(pip);
2608 	pk->pk_phci = mdi_pi_get_phci(pip);
2609 
2610 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2611 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2612 		panic(
2613 		    "duplicate pathinfo (%p) registered during device "
2614 		    "tree walk", (void *)pip);
2615 	}
2616 }
2617 
2618 /*
2619  * As with di_register_pip, the caller must hold or lock the pip
2620  */
2621 static int
2622 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2623 {
2624 	/*
2625 	 * uintptr_t must be used because it matches the size of void *;
2626 	 * mod_hash expects clients to place results into pointer-size
2627 	 * containers; since di_off_t is always a 32-bit offset, alignment
2628 	 * would otherwise be broken on 64-bit kernels.
2629 	 */
2630 	uintptr_t	offset;
2631 	struct di_key	key = {0};
2632 	struct di_pkey	*pk;
2633 
2634 	ASSERT(st->reg_pip_hash);
2635 	ASSERT(off_p);
2636 
2637 	if (pip == NULL) {
2638 		*off_p = 0;
2639 		return (0);
2640 	}
2641 
2642 	key.k_type = DI_PKEY;
2643 	pk = &(key.k_u.pkey);
2644 
2645 	pk->pk_pip = pip;
2646 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2647 	pk->pk_client = mdi_pi_get_client(pip);
2648 	pk->pk_phci = mdi_pi_get_phci(pip);
2649 
2650 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2651 	    (mod_hash_val_t *)&offset) == 0) {
2652 		*off_p = (di_off_t)offset;
2653 		return (0);
2654 	} else {
2655 		return (-1);
2656 	}
2657 }
2658 
2659 static di_path_state_t
2660 path_state_convert(mdi_pathinfo_state_t st)
2661 {
2662 	switch (st) {
2663 	case MDI_PATHINFO_STATE_ONLINE:
2664 		return (DI_PATH_STATE_ONLINE);
2665 	case MDI_PATHINFO_STATE_STANDBY:
2666 		return (DI_PATH_STATE_STANDBY);
2667 	case MDI_PATHINFO_STATE_OFFLINE:
2668 		return (DI_PATH_STATE_OFFLINE);
2669 	case MDI_PATHINFO_STATE_FAULT:
2670 		return (DI_PATH_STATE_FAULT);
2671 	default:
2672 		return (DI_PATH_STATE_UNKNOWN);
2673 	}
2674 }
2675 
2676 static uint_t
2677 path_flags_convert(uint_t pi_path_flags)
2678 {
2679 	uint_t	di_path_flags = 0;
2680 
2681 	/* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */
2682 
2683 	if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED)
2684 		di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED;
2685 
2686 	return (di_path_flags);
2687 }
2688 
2689 
2690 static di_off_t
2691 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p,
2692     struct di_state *st)
2693 {
2694 	nvpair_t		*prop = NULL;
2695 	struct di_path_prop	*me;
2696 	int			off;
2697 	size_t			size;
2698 	char			*str;
2699 	uchar_t			*buf;
2700 	uint_t			nelems;
2701 
2702 	off = *off_p;
2703 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2704 		*off_p = 0;
2705 		return (off);
2706 	}
2707 
2708 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2709 	*off_p = off;
2710 
2711 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2712 		me = DI_PATHPROP(di_mem_addr(st, off));
2713 		me->self = off;
2714 		off += sizeof (struct di_path_prop);
2715 
2716 		/*
2717 		 * property name
2718 		 */
2719 		size = strlen(nvpair_name(prop)) + 1;
2720 		me->prop_name = off = di_checkmem(st, off, size);
2721 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2722 		off += size;
2723 
2724 		switch (nvpair_type(prop)) {
2725 		case DATA_TYPE_BYTE:
2726 		case DATA_TYPE_INT16:
2727 		case DATA_TYPE_UINT16:
2728 		case DATA_TYPE_INT32:
2729 		case DATA_TYPE_UINT32:
2730 			me->prop_type = DDI_PROP_TYPE_INT;
2731 			size = sizeof (int32_t);
2732 			off = di_checkmem(st, off, size);
2733 			(void) nvpair_value_int32(prop,
2734 			    (int32_t *)di_mem_addr(st, off));
2735 			break;
2736 
2737 		case DATA_TYPE_INT64:
2738 		case DATA_TYPE_UINT64:
2739 			me->prop_type = DDI_PROP_TYPE_INT64;
2740 			size = sizeof (int64_t);
2741 			off = di_checkmem(st, off, size);
2742 			(void) nvpair_value_int64(prop,
2743 			    (int64_t *)di_mem_addr(st, off));
2744 			break;
2745 
2746 		case DATA_TYPE_STRING:
2747 			me->prop_type = DDI_PROP_TYPE_STRING;
2748 			(void) nvpair_value_string(prop, &str);
2749 			size = strlen(str) + 1;
2750 			off = di_checkmem(st, off, size);
2751 			(void) strcpy(di_mem_addr(st, off), str);
2752 			break;
2753 
2754 		case DATA_TYPE_BYTE_ARRAY:
2755 		case DATA_TYPE_INT16_ARRAY:
2756 		case DATA_TYPE_UINT16_ARRAY:
2757 		case DATA_TYPE_INT32_ARRAY:
2758 		case DATA_TYPE_UINT32_ARRAY:
2759 		case DATA_TYPE_INT64_ARRAY:
2760 		case DATA_TYPE_UINT64_ARRAY:
2761 			me->prop_type = DDI_PROP_TYPE_BYTE;
2762 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2763 			size = nelems;
2764 			if (nelems != 0) {
2765 				off = di_checkmem(st, off, size);
2766 				bcopy(buf, di_mem_addr(st, off), size);
2767 			}
2768 			break;
2769 
2770 		default:	/* Unknown or unhandled type; skip it */
2771 			size = 0;
2772 			break;
2773 		}
2774 
2775 		if (size > 0) {
2776 			me->prop_data = off;
2777 		}
2778 
2779 		me->prop_len = (int)size;
2780 		off += size;
2781 
2782 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2783 		me->prop_next = off;
2784 	}
2785 
2786 	me->prop_next = 0;
2787 	return (off);
2788 }
2789 
2790 
2791 static void
2792 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2793     int get_client)
2794 {
2795 	if (get_client) {
2796 		ASSERT(me->path_client == 0);
2797 		me->path_client = noff;
2798 		ASSERT(me->path_c_link == 0);
2799 		*off_pp = &me->path_c_link;
2800 		me->path_snap_state &=
2801 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2802 	} else {
2803 		ASSERT(me->path_phci == 0);
2804 		me->path_phci = noff;
2805 		ASSERT(me->path_p_link == 0);
2806 		*off_pp = &me->path_p_link;
2807 		me->path_snap_state &=
2808 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2809 	}
2810 }
2811 
2812 /*
2813  * off_p: pointer to the linkage field. This links pips along the client|phci
2814  *	   linkage list.
2815  * noff  : Offset for the endpoint dip snapshot.
2816  */
2817 static di_off_t
2818 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff,
2819     struct di_state *st, int get_client)
2820 {
2821 	di_off_t	off;
2822 	mdi_pathinfo_t	*pip;
2823 	struct di_path	*me;
2824 	mdi_pathinfo_t	*(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2825 	size_t		size;
2826 
2827 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2828 
2829 	/*
2830 	 * The naming of the following mdi_xyz() is unfortunately
2831 	 * non-intuitive. mdi_get_next_phci_path() follows the
2832 	 * client_link i.e. the list of pip's belonging to the
2833 	 * given client dip.
2834 	 */
2835 	if (get_client)
2836 		next_pip = &mdi_get_next_phci_path;
2837 	else
2838 		next_pip = &mdi_get_next_client_path;
2839 
2840 	off = *off_p;
2841 
2842 	pip = NULL;
2843 	while (pip = (*next_pip)(dip, pip)) {
2844 		di_off_t stored_offset;
2845 
2846 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2847 
2848 		mdi_pi_lock(pip);
2849 
2850 		/* We don't represent hidden paths in the snapshot */
2851 		if (mdi_pi_ishidden(pip)) {
2852 			dcmn_err((CE_WARN, "hidden, skip"));
2853 			mdi_pi_unlock(pip);
2854 			continue;
2855 		}
2856 
2857 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2858 			/*
2859 			 * We've already seen this pathinfo node so we need to
2860 			 * take care not to snap it again; However, one endpoint
2861 			 * and linkage will be set here. The other endpoint
2862 			 * and linkage has already been set when the pip was
2863 			 * first snapshotted i.e. when the other endpoint dip
2864 			 * was snapshotted.
2865 			 */
2866 			me = DI_PATH(di_mem_addr(st, stored_offset));
2867 			*off_p = stored_offset;
2868 
2869 			di_path_one_endpoint(me, noff, &off_p, get_client);
2870 
2871 			/*
2872 			 * The other endpoint and linkage were set when this
2873 			 * pip was snapshotted. So we are done with both
2874 			 * endpoints and linkages.
2875 			 */
2876 			ASSERT(!(me->path_snap_state &
2877 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2878 			ASSERT(!(me->path_snap_state &
2879 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2880 
2881 			mdi_pi_unlock(pip);
2882 			continue;
2883 		}
2884 
2885 		/*
2886 		 * Now that we need to snapshot this pip, check memory
2887 		 */
2888 		size = sizeof (struct di_path);
2889 		*off_p = off = di_checkmem(st, off, size);
2890 		me = DI_PATH(di_mem_addr(st, off));
2891 		me->self = off;
2892 		off += size;
2893 
2894 		me->path_snap_state =
2895 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2896 		me->path_snap_state |=
2897 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2898 
2899 		/*
2900 		 * Zero out fields as di_checkmem() doesn't guarantee
2901 		 * zero-filled memory
2902 		 */
2903 		me->path_client = me->path_phci = 0;
2904 		me->path_c_link = me->path_p_link = 0;
2905 
2906 		di_path_one_endpoint(me, noff, &off_p, get_client);
2907 
2908 		/*
2909 		 * Note the existence of this pathinfo
2910 		 */
2911 		di_register_pip(st, pip, me->self);
2912 
2913 		me->path_state = path_state_convert(mdi_pi_get_state(pip));
2914 		me->path_flags = path_flags_convert(mdi_pi_get_flags(pip));
2915 
2916 		me->path_instance = mdi_pi_get_path_instance(pip);
2917 
2918 		/*
2919 		 * Get intermediate addressing info.
2920 		 */
2921 		size = strlen(mdi_pi_get_addr(pip)) + 1;
2922 		me->path_addr = off = di_checkmem(st, off, size);
2923 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2924 		off += size;
2925 
2926 		/*
2927 		 * Get path properties if props are to be included in the
2928 		 * snapshot
2929 		 */
2930 		if (DINFOPROP & st->command) {
2931 			me->path_prop = off;
2932 			off = di_path_getprop(pip, &me->path_prop, st);
2933 		} else {
2934 			me->path_prop = 0;
2935 		}
2936 
2937 		mdi_pi_unlock(pip);
2938 	}
2939 
2940 	*off_p = 0;
2941 	return (off);
2942 }
2943 
2944 /*
2945  * Return driver prop_op entry point for the specified devinfo node.
2946  *
2947  * To return a non-NULL value:
2948  * - driver must be attached and held:
2949  *   If driver is not attached we ignore the driver property list.
2950  *   No one should rely on such properties.
2951  * - driver "cb_prop_op != ddi_prop_op":
2952  *   If "cb_prop_op == ddi_prop_op", framework does not need to call driver.
2953  *   XXX or parent's bus_prop_op != ddi_bus_prop_op
2954  */
2955 static int
2956 (*di_getprop_prop_op(struct dev_info *dip))
2957 	(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *)
2958 {
2959 	struct dev_ops	*ops;
2960 
2961 	/* If driver is not attached we ignore the driver property list. */
2962 	if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip))
2963 		return (NULL);
2964 
2965 	/*
2966 	 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev,
2967 	 * or even NULL.
2968 	 */
2969 	ops = dip->devi_ops;
2970 	if (ops && ops->devo_cb_ops &&
2971 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2972 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2973 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2974 	    (ops->devo_cb_ops->cb_prop_op != NULL))
2975 		return (ops->devo_cb_ops->cb_prop_op);
2976 	return (NULL);
2977 }
2978 
2979 static di_off_t
2980 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip,
2981     int (*prop_op)(),
2982     char *name, dev_t devt, int aflags, int alen, caddr_t aval,
2983     di_off_t off, di_off_t **off_pp)
2984 {
2985 	int		need_free = 0;
2986 	dev_t		pdevt;
2987 	int		pflags;
2988 	int		rv;
2989 	caddr_t		val;
2990 	int		len;
2991 	size_t		size;
2992 	struct di_prop	*pp;
2993 
2994 	/* If we have prop_op function, ask driver for latest value */
2995 	if (prop_op) {
2996 		ASSERT(dip);
2997 
2998 		/* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */
2999 		pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt;
3000 
3001 		/*
3002 		 * We have type information in flags, but are invoking an
3003 		 * old non-typed prop_op(9E) interface. Since not all types are
3004 		 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64),
3005 		 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to
3006 		 * expand type bits beyond DDI_PROP_TYPE_ANY.  This allows us
3007 		 * to use the legacy prop_op(9E) interface to obtain updates
3008 		 * non-DDI_PROP_TYPE_ANY dynamic properties.
3009 		 */
3010 		pflags = aflags & ~DDI_PROP_TYPE_MASK;
3011 		pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3012 		    DDI_PROP_CONSUMER_TYPED;
3013 
3014 		/*
3015 		 * Hold and exit across prop_op(9E) to avoid lock order
3016 		 * issues between
3017 		 *   [ndi_devi_enter() ..prop_op(9E).. driver-lock]
3018 		 * .vs.
3019 		 *   [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F)..
3020 		 *   ndi_devi_enter()]
3021 		 * ordering.
3022 		 */
3023 		ndi_hold_devi((dev_info_t *)dip);
3024 		ndi_devi_exit((dev_info_t *)dip, dip->devi_circular);
3025 		rv = (*prop_op)(pdevt, (dev_info_t *)dip,
3026 		    PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len);
3027 		ndi_devi_enter((dev_info_t *)dip, &dip->devi_circular);
3028 		ndi_rele_devi((dev_info_t *)dip);
3029 
3030 		if (rv == DDI_PROP_SUCCESS) {
3031 			need_free = 1;		/* dynamic prop obtained */
3032 		} else if (dyn) {
3033 			/*
3034 			 * A dynamic property must succeed prop_op(9E) to show
3035 			 * up in the snapshot - that is the only source of its
3036 			 * value.
3037 			 */
3038 			return (off);		/* dynamic prop not supported */
3039 		} else {
3040 			/*
3041 			 * In case calling the driver caused an update off
3042 			 * prop_op(9E) of a non-dynamic property (code leading
3043 			 * to ddi_prop_change), we defer picking up val and
3044 			 * len informatiojn until after prop_op(9E) to ensure
3045 			 * that we snapshot the latest value.
3046 			 */
3047 			val = aval;
3048 			len = alen;
3049 
3050 		}
3051 	} else {
3052 		val = aval;
3053 		len = alen;
3054 	}
3055 
3056 	dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n",
3057 	    list, name ? name : "NULL", len, (void *)val));
3058 
3059 	size = sizeof (struct di_prop);
3060 	**off_pp = off = di_checkmem(st, off, size);
3061 	pp = DI_PROP(di_mem_addr(st, off));
3062 	pp->self = off;
3063 	off += size;
3064 
3065 	pp->dev_major = getmajor(devt);
3066 	pp->dev_minor = getminor(devt);
3067 	pp->prop_flags = aflags;
3068 	pp->prop_list = list;
3069 
3070 	/* property name */
3071 	if (name) {
3072 		size = strlen(name) + 1;
3073 		pp->prop_name = off = di_checkmem(st, off, size);
3074 		(void) strcpy(di_mem_addr(st, off), name);
3075 		off += size;
3076 	} else {
3077 		pp->prop_name = -1;
3078 	}
3079 
3080 	pp->prop_len = len;
3081 	if (val == NULL) {
3082 		pp->prop_data = -1;
3083 	} else if (len != 0) {
3084 		size = len;
3085 		pp->prop_data = off = di_checkmem(st, off, size);
3086 		bcopy(val, di_mem_addr(st, off), size);
3087 		off += size;
3088 	}
3089 
3090 	pp->next = 0;			/* assume tail for now */
3091 	*off_pp = &pp->next;		/* return pointer to our next */
3092 
3093 	if (need_free)			/* free PROP_LEN_AND_VAL_ALLOC alloc */
3094 		kmem_free(val, len);
3095 	return (off);
3096 }
3097 
3098 
3099 /*
3100  * Copy a list of properties attached to a devinfo node. Called from
3101  * di_copynode with active ndi_devi_enter. The major number is passed in case
3102  * we need to call driver's prop_op entry. The value of list indicates
3103  * which list we are copying. Possible values are:
3104  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
3105  */
3106 static di_off_t
3107 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p,
3108     struct di_state *st, struct dev_info *dip)
3109 {
3110 	struct ddi_prop		*prop;
3111 	int			(*prop_op)();
3112 	int			off;
3113 	struct ddi_minor_data	*mn;
3114 	i_ddi_prop_dyn_t	*dp;
3115 	struct plist {
3116 		struct plist	*pl_next;
3117 		char		*pl_name;
3118 		int		pl_flags;
3119 		dev_t		pl_dev;
3120 		int		pl_len;
3121 		caddr_t		pl_val;
3122 	}			*pl, *pl0, **plp;
3123 
3124 	ASSERT(st != NULL);
3125 
3126 	off = *off_p;
3127 	*off_p = 0;
3128 	dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n",
3129 	    list, (void *)*pprop));
3130 
3131 	/* get pointer to driver's prop_op(9E) implementation if DRV_LIST */
3132 	prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL;
3133 
3134 	/*
3135 	 * Form private list of properties, holding devi_lock for properties
3136 	 * that hang off the dip.
3137 	 */
3138 	if (dip)
3139 		mutex_enter(&(dip->devi_lock));
3140 	for (pl0 = NULL, plp = &pl0, prop = *pprop;
3141 	    prop; plp = &pl->pl_next, prop = prop->prop_next) {
3142 		pl = kmem_alloc(sizeof (*pl), KM_SLEEP);
3143 		*plp = pl;
3144 		pl->pl_next = NULL;
3145 		if (prop->prop_name)
3146 			pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP);
3147 		else
3148 			pl->pl_name = NULL;
3149 		pl->pl_flags = prop->prop_flags;
3150 		pl->pl_dev = prop->prop_dev;
3151 		if (prop->prop_len) {
3152 			pl->pl_len = prop->prop_len;
3153 			pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP);
3154 			bcopy(prop->prop_val, pl->pl_val, pl->pl_len);
3155 		} else {
3156 			pl->pl_len = 0;
3157 			pl->pl_val = NULL;
3158 		}
3159 	}
3160 	if (dip)
3161 		mutex_exit(&(dip->devi_lock));
3162 
3163 	/*
3164 	 * Now that we have dropped devi_lock, perform a second-pass to
3165 	 * add properties to the snapshot.  We do this as a second pass
3166 	 * because we may need to call prop_op(9E) and we can't hold
3167 	 * devi_lock across that call.
3168 	 */
3169 	for (pl = pl0; pl; pl = pl0) {
3170 		pl0 = pl->pl_next;
3171 		off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name,
3172 		    pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val,
3173 		    off, &off_p);
3174 		if (pl->pl_val)
3175 			kmem_free(pl->pl_val, pl->pl_len);
3176 		if (pl->pl_name)
3177 			kmem_free(pl->pl_name, strlen(pl->pl_name) + 1);
3178 		kmem_free(pl, sizeof (*pl));
3179 	}
3180 
3181 	/*
3182 	 * If there is no prop_op or dynamic property support has been
3183 	 * disabled, we are done.
3184 	 */
3185 	if ((prop_op == NULL) || (di_prop_dyn == 0)) {
3186 		*off_p = 0;
3187 		return (off);
3188 	}
3189 
3190 	/* Add dynamic driver properties to snapshot */
3191 	for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip);
3192 	    dp && dp->dp_name; dp++) {
3193 		if (dp->dp_spec_type) {
3194 			/* if spec_type, property of matching minor */
3195 			ASSERT(DEVI_BUSY_OWNED(dip));
3196 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3197 				if (mn->ddm_spec_type != dp->dp_spec_type)
3198 					continue;
3199 				off = di_getprop_add(list, 1, st, dip, prop_op,
3200 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3201 				    0, NULL, off, &off_p);
3202 			}
3203 		} else {
3204 			/* property of devinfo node */
3205 			off = di_getprop_add(list, 1, st, dip, prop_op,
3206 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3207 			    0, NULL, off, &off_p);
3208 		}
3209 	}
3210 
3211 	/* Add dynamic parent properties to snapshot */
3212 	for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip);
3213 	    dp && dp->dp_name; dp++) {
3214 		if (dp->dp_spec_type) {
3215 			/* if spec_type, property of matching minor */
3216 			ASSERT(DEVI_BUSY_OWNED(dip));
3217 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3218 				if (mn->ddm_spec_type != dp->dp_spec_type)
3219 					continue;
3220 				off = di_getprop_add(list, 1, st, dip, prop_op,
3221 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3222 				    0, NULL, off, &off_p);
3223 			}
3224 		} else {
3225 			/* property of devinfo node */
3226 			off = di_getprop_add(list, 1, st, dip, prop_op,
3227 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3228 			    0, NULL, off, &off_p);
3229 		}
3230 	}
3231 
3232 	*off_p = 0;
3233 	return (off);
3234 }
3235 
3236 /*
3237  * find private data format attached to a dip
3238  * parent = 1 to match driver name of parent dip (for parent private data)
3239  *	0 to match driver name of current dip (for driver private data)
3240  */
3241 #define	DI_MATCH_DRIVER	0
3242 #define	DI_MATCH_PARENT	1
3243 
3244 struct di_priv_format *
3245 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3246 {
3247 	int			i, count, len;
3248 	char			*drv_name;
3249 	major_t			major;
3250 	struct di_all		*all;
3251 	struct di_priv_format	*form;
3252 
3253 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3254 	    node->devi_node_name, match));
3255 
3256 	if (match == DI_MATCH_PARENT) {
3257 		node = DEVI(node->devi_parent);
3258 	}
3259 
3260 	if (node == NULL) {
3261 		return (NULL);
3262 	}
3263 
3264 	major = node->devi_major;
3265 	if (major == (major_t)(-1)) {
3266 		return (NULL);
3267 	}
3268 
3269 	/*
3270 	 * Match the driver name.
3271 	 */
3272 	drv_name = ddi_major_to_name(major);
3273 	if ((drv_name == NULL) || *drv_name == '\0') {
3274 		return (NULL);
3275 	}
3276 
3277 	/* Now get the di_priv_format array */
3278 	all = DI_ALL_PTR(st);
3279 	if (match == DI_MATCH_PARENT) {
3280 		count = all->n_ppdata;
3281 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format));
3282 	} else {
3283 		count = all->n_dpdata;
3284 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format));
3285 	}
3286 
3287 	len = strlen(drv_name);
3288 	for (i = 0; i < count; i++) {
3289 		char *tmp;
3290 
3291 		tmp = form[i].drv_name;
3292 		while (tmp && (*tmp != '\0')) {
3293 			if (strncmp(drv_name, tmp, len) == 0) {
3294 				return (&form[i]);
3295 			}
3296 			/*
3297 			 * Move to next driver name, skipping a white space
3298 			 */
3299 			if (tmp = strchr(tmp, ' ')) {
3300 				tmp++;
3301 			}
3302 		}
3303 	}
3304 
3305 	return (NULL);
3306 }
3307 
3308 /*
3309  * The following functions copy data as specified by the format passed in.
3310  * To prevent invalid format from panicing the system, we call on_fault().
3311  * A return value of 0 indicates an error. Otherwise, the total offset
3312  * is returned.
3313  */
3314 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3315 
3316 static di_off_t
3317 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3318     void *data, di_off_t *off_p, struct di_state *st)
3319 {
3320 	caddr_t		pa;
3321 	void		*ptr;
3322 	int		i, size, repeat;
3323 	di_off_t	off, off0, *tmp;
3324 	char		*path;
3325 	label_t		ljb;
3326 
3327 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3328 
3329 	/*
3330 	 * check memory availability. Private data size is
3331 	 * limited to DI_MAX_PRIVDATA.
3332 	 */
3333 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3334 	*off_p = off;
3335 
3336 	if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3337 		goto failure;
3338 	}
3339 
3340 	if (!on_fault(&ljb)) {
3341 		/* copy the struct */
3342 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3343 		off0 = DI_ALIGN(pdp->bytes);	/* XXX remove DI_ALIGN */
3344 
3345 		/* dereferencing pointers */
3346 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3347 
3348 			if (pdp->ptr[i].size == 0) {
3349 				goto success;	/* no more ptrs */
3350 			}
3351 
3352 			/*
3353 			 * first, get the pointer content
3354 			 */
3355 			if ((pdp->ptr[i].offset < 0) ||
3356 			    (pdp->ptr[i].offset > pdp->bytes - sizeof (char *)))
3357 				goto failure;	/* wrong offset */
3358 
3359 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3360 
3361 			/* save a tmp ptr to store off_t later */
3362 			tmp = (di_off_t *)(intptr_t)pa;
3363 
3364 			/* get pointer value, if NULL continue */
3365 			ptr = *((void **) (intptr_t)pa);
3366 			if (ptr == NULL) {
3367 				continue;
3368 			}
3369 
3370 			/*
3371 			 * next, find the repeat count (array dimension)
3372 			 */
3373 			repeat = pdp->ptr[i].len_offset;
3374 
3375 			/*
3376 			 * Positive value indicates a fixed sized array.
3377 			 * 0 or negative value indicates variable sized array.
3378 			 *
3379 			 * For variable sized array, the variable must be
3380 			 * an int member of the structure, with an offset
3381 			 * equal to the absolution value of struct member.
3382 			 */
3383 			if (repeat > pdp->bytes - sizeof (int)) {
3384 				goto failure;	/* wrong offset */
3385 			}
3386 
3387 			if (repeat >= 0) {
3388 				repeat = *((int *)
3389 				    (intptr_t)((caddr_t)data + repeat));
3390 			} else {
3391 				repeat = -repeat;
3392 			}
3393 
3394 			/*
3395 			 * next, get the size of the object to be copied
3396 			 */
3397 			size = pdp->ptr[i].size * repeat;
3398 
3399 			/*
3400 			 * Arbitrarily limit the total size of object to be
3401 			 * copied (1 byte to 1/4 page).
3402 			 */
3403 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3404 				goto failure;	/* wrong size or too big */
3405 			}
3406 
3407 			/*
3408 			 * Now copy the data
3409 			 */
3410 			*tmp = off0;
3411 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3412 			off0 += DI_ALIGN(size);	/* XXX remove DI_ALIGN */
3413 		}
3414 	} else {
3415 		goto failure;
3416 	}
3417 
3418 success:
3419 	/*
3420 	 * success if reached here
3421 	 */
3422 	no_fault();
3423 	return (off + off0);
3424 	/*NOTREACHED*/
3425 
3426 failure:
3427 	/*
3428 	 * fault occurred
3429 	 */
3430 	no_fault();
3431 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3432 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3433 	    ddi_pathname((dev_info_t *)node, path), data);
3434 	kmem_free(path, MAXPATHLEN);
3435 	*off_p = -1;	/* set private data to indicate error */
3436 
3437 	return (off);
3438 }
3439 
3440 /*
3441  * get parent private data; on error, returns original offset
3442  */
3443 static di_off_t
3444 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3445 {
3446 	int			off;
3447 	struct di_priv_format	*ppdp;
3448 
3449 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3450 
3451 	/* find the parent data format */
3452 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3453 		off = *off_p;
3454 		*off_p = 0;	/* set parent data to none */
3455 		return (off);
3456 	}
3457 
3458 	return (di_getprvdata(ppdp, node,
3459 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3460 }
3461 
3462 /*
3463  * get parent private data; returns original offset
3464  */
3465 static di_off_t
3466 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3467 {
3468 	int			off;
3469 	struct di_priv_format	*dpdp;
3470 
3471 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3472 
3473 	/* find the parent data format */
3474 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3475 		off = *off_p;
3476 		*off_p = 0;	/* set driver data to none */
3477 		return (off);
3478 	}
3479 
3480 	return (di_getprvdata(dpdp, node,
3481 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3482 }
3483 
3484 /*
3485  * Copy hotplug data associated with a devinfo node into the snapshot.
3486  */
3487 static di_off_t
3488 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p,
3489     struct di_state *st)
3490 {
3491 	struct i_hp	*hp;
3492 	struct di_hp	*me;
3493 	size_t		size;
3494 	di_off_t	off;
3495 
3496 	dcmn_err2((CE_CONT, "di_gethpdata:\n"));
3497 
3498 	/*
3499 	 * check memory first
3500 	 */
3501 	off = di_checkmem(st, *off_p, sizeof (struct di_hp));
3502 	*off_p = off;
3503 
3504 	do {
3505 		me = DI_HP(di_mem_addr(st, off));
3506 		me->self = off;
3507 		me->hp_name = 0;
3508 		me->hp_connection = (int)hp_hdl->cn_info.cn_num;
3509 		me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on;
3510 		(void) ddihp_cn_getstate(hp_hdl);
3511 		me->hp_state = (int)hp_hdl->cn_info.cn_state;
3512 		me->hp_type = (int)hp_hdl->cn_info.cn_type;
3513 		me->hp_type_str = 0;
3514 		me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change;
3515 		me->hp_child = 0;
3516 
3517 		/*
3518 		 * Child links are resolved later by di_hotplug_children().
3519 		 * Store a reference to this di_hp_t in the list used later
3520 		 * by di_hotplug_children().
3521 		 */
3522 		hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP);
3523 		hp->hp_off = off;
3524 		hp->hp_child = hp_hdl->cn_info.cn_child;
3525 		list_insert_tail(&st->hp_list, hp);
3526 
3527 		off += sizeof (struct di_hp);
3528 
3529 		/* Add name of this di_hp_t to the snapshot */
3530 		if (hp_hdl->cn_info.cn_name) {
3531 			size = strlen(hp_hdl->cn_info.cn_name) + 1;
3532 			me->hp_name = off = di_checkmem(st, off, size);
3533 			(void) strcpy(di_mem_addr(st, off),
3534 			    hp_hdl->cn_info.cn_name);
3535 			off += size;
3536 		}
3537 
3538 		/* Add type description of this di_hp_t to the snapshot */
3539 		if (hp_hdl->cn_info.cn_type_str) {
3540 			size = strlen(hp_hdl->cn_info.cn_type_str) + 1;
3541 			me->hp_type_str = off = di_checkmem(st, off, size);
3542 			(void) strcpy(di_mem_addr(st, off),
3543 			    hp_hdl->cn_info.cn_type_str);
3544 			off += size;
3545 		}
3546 
3547 		/*
3548 		 * Set link to next in the chain of di_hp_t nodes,
3549 		 * or terminate the chain when processing the last node.
3550 		 */
3551 		if (hp_hdl->next != NULL) {
3552 			off = di_checkmem(st, off, sizeof (struct di_hp));
3553 			me->next = off;
3554 		} else {
3555 			me->next = 0;
3556 		}
3557 
3558 		/* Update pointer to next in the chain */
3559 		hp_hdl = hp_hdl->next;
3560 
3561 	} while (hp_hdl);
3562 
3563 	return (off);
3564 }
3565 
3566 /*
3567  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3568  * This function encapsulates the state machine:
3569  *
3570  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3571  *	|		SNAPSHOT		USRLD	 |
3572  *	--------------------------------------------------
3573  *
3574  * Returns 0 on success and -1 on failure
3575  */
3576 static int
3577 di_setstate(struct di_state *st, int new_state)
3578 {
3579 	int	ret = 0;
3580 
3581 	mutex_enter(&di_lock);
3582 	switch (new_state) {
3583 	case IOC_IDLE:
3584 	case IOC_DONE:
3585 		break;
3586 	case IOC_SNAP:
3587 		if (st->di_iocstate != IOC_IDLE)
3588 			ret = -1;
3589 		break;
3590 	case IOC_COPY:
3591 		if (st->di_iocstate != IOC_DONE)
3592 			ret = -1;
3593 		break;
3594 	default:
3595 		ret = -1;
3596 	}
3597 
3598 	if (ret == 0)
3599 		st->di_iocstate = new_state;
3600 	else
3601 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3602 		    st->di_iocstate, new_state);
3603 	mutex_exit(&di_lock);
3604 	return (ret);
3605 }
3606 
3607 /*
3608  * We cannot assume the presence of the entire
3609  * snapshot in this routine. All we are guaranteed
3610  * is the di_all struct + 1 byte (for root_path)
3611  */
3612 static int
3613 header_plus_one_ok(struct di_all *all)
3614 {
3615 	/*
3616 	 * Refuse to read old versions
3617 	 */
3618 	if (all->version != DI_SNAPSHOT_VERSION) {
3619 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3620 		return (0);
3621 	}
3622 
3623 	if (all->cache_magic != DI_CACHE_MAGIC) {
3624 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3625 		return (0);
3626 	}
3627 
3628 	if (all->snapshot_time == 0) {
3629 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3630 		return (0);
3631 	}
3632 
3633 	if (all->top_devinfo == 0) {
3634 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3635 		return (0);
3636 	}
3637 
3638 	if (all->map_size < sizeof (*all) + 1) {
3639 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3640 		return (0);
3641 	}
3642 
3643 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3644 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3645 		    all->root_path[0], all->root_path[1]));
3646 		return (0);
3647 	}
3648 
3649 	/*
3650 	 * We can't check checksum here as we just have the header
3651 	 */
3652 
3653 	return (1);
3654 }
3655 
3656 static int
3657 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3658 {
3659 	rlim64_t	rlimit;
3660 	ssize_t		resid;
3661 	int		error = 0;
3662 
3663 
3664 	rlimit = RLIM64_INFINITY;
3665 
3666 	while (len) {
3667 		resid = 0;
3668 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3669 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3670 
3671 		if (error || resid < 0) {
3672 			error = error ? error : EIO;
3673 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3674 			break;
3675 		}
3676 
3677 		/*
3678 		 * Check if we are making progress
3679 		 */
3680 		if (resid >= len) {
3681 			error = ENOSPC;
3682 			break;
3683 		}
3684 		buf += len - resid;
3685 		off += len - resid;
3686 		len = resid;
3687 	}
3688 
3689 	return (error);
3690 }
3691 
3692 static void
3693 di_cache_write(struct di_cache *cache)
3694 {
3695 	struct di_all	*all;
3696 	struct vnode	*vp;
3697 	int		oflags;
3698 	size_t		map_size;
3699 	size_t		chunk;
3700 	offset_t	off;
3701 	int		error;
3702 	char		*buf;
3703 
3704 	ASSERT(DI_CACHE_LOCKED(*cache));
3705 	ASSERT(!servicing_interrupt());
3706 
3707 	if (cache->cache_size == 0) {
3708 		ASSERT(cache->cache_data == NULL);
3709 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3710 		return;
3711 	}
3712 
3713 	ASSERT(cache->cache_size > 0);
3714 	ASSERT(cache->cache_data);
3715 
3716 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3717 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3718 		return;
3719 	}
3720 
3721 	all = (struct di_all *)cache->cache_data;
3722 
3723 	if (!header_plus_one_ok(all)) {
3724 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3725 		return;
3726 	}
3727 
3728 	ASSERT(strcmp(all->root_path, "/") == 0);
3729 
3730 	/*
3731 	 * The cache_size is the total allocated memory for the cache.
3732 	 * The map_size is the actual size of valid data in the cache.
3733 	 * map_size may be smaller than cache_size but cannot exceed
3734 	 * cache_size.
3735 	 */
3736 	if (all->map_size > cache->cache_size) {
3737 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3738 		    " Skipping write", all->map_size, cache->cache_size));
3739 		return;
3740 	}
3741 
3742 	/*
3743 	 * First unlink the temp file
3744 	 */
3745 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3746 	if (error && error != ENOENT) {
3747 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3748 		    DI_CACHE_TEMP, error));
3749 	}
3750 
3751 	if (error == EROFS) {
3752 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3753 		return;
3754 	}
3755 
3756 	vp = NULL;
3757 	oflags = (FCREAT|FWRITE);
3758 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3759 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3760 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3761 		    DI_CACHE_TEMP, error));
3762 		return;
3763 	}
3764 
3765 	ASSERT(vp);
3766 
3767 	/*
3768 	 * Paranoid: Check if the file is on a read-only FS
3769 	 */
3770 	if (vn_is_readonly(vp)) {
3771 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3772 		goto fail;
3773 	}
3774 
3775 	/*
3776 	 * Note that we only write map_size bytes to disk - this saves
3777 	 * space as the actual cache size may be larger than size of
3778 	 * valid data in the cache.
3779 	 * Another advantage is that it makes verification of size
3780 	 * easier when the file is read later.
3781 	 */
3782 	map_size = all->map_size;
3783 	off = 0;
3784 	buf = cache->cache_data;
3785 
3786 	while (map_size) {
3787 		ASSERT(map_size > 0);
3788 		/*
3789 		 * Write in chunks so that VM system
3790 		 * is not overwhelmed
3791 		 */
3792 		if (map_size > di_chunk * PAGESIZE)
3793 			chunk = di_chunk * PAGESIZE;
3794 		else
3795 			chunk = map_size;
3796 
3797 		error = chunk_write(vp, off, buf, chunk);
3798 		if (error) {
3799 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3800 			    off, error));
3801 			goto fail;
3802 		}
3803 
3804 		off += chunk;
3805 		buf += chunk;
3806 		map_size -= chunk;
3807 
3808 		/* If low on memory, give pageout a chance to run */
3809 		if (freemem < desfree)
3810 			delay(1);
3811 	}
3812 
3813 	/*
3814 	 * Now sync the file and close it
3815 	 */
3816 	if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) {
3817 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3818 	}
3819 
3820 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) {
3821 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3822 		VN_RELE(vp);
3823 		return;
3824 	}
3825 
3826 	VN_RELE(vp);
3827 
3828 	/*
3829 	 * Now do the rename
3830 	 */
3831 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3832 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3833 		return;
3834 	}
3835 
3836 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3837 
3838 	return;
3839 
3840 fail:
3841 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL);
3842 	VN_RELE(vp);
3843 }
3844 
3845 
3846 /*
3847  * Since we could be called early in boot,
3848  * use kobj_read_file()
3849  */
3850 static void
3851 di_cache_read(struct di_cache *cache)
3852 {
3853 	struct _buf	*file;
3854 	struct di_all	*all;
3855 	int		n;
3856 	size_t		map_size, sz, chunk;
3857 	offset_t	off;
3858 	caddr_t		buf;
3859 	uint32_t	saved_crc, crc;
3860 
3861 	ASSERT(modrootloaded);
3862 	ASSERT(DI_CACHE_LOCKED(*cache));
3863 	ASSERT(cache->cache_data == NULL);
3864 	ASSERT(cache->cache_size == 0);
3865 	ASSERT(!servicing_interrupt());
3866 
3867 	file = kobj_open_file(DI_CACHE_FILE);
3868 	if (file == (struct _buf *)-1) {
3869 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3870 		    DI_CACHE_FILE, ENOENT));
3871 		return;
3872 	}
3873 
3874 	/*
3875 	 * Read in the header+root_path first. The root_path must be "/"
3876 	 */
3877 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3878 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3879 
3880 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3881 		kmem_free(all, sizeof (*all) + 1);
3882 		kobj_close_file(file);
3883 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3884 		return;
3885 	}
3886 
3887 	map_size = all->map_size;
3888 
3889 	kmem_free(all, sizeof (*all) + 1);
3890 
3891 	ASSERT(map_size >= sizeof (*all) + 1);
3892 
3893 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3894 	sz = map_size;
3895 	off = 0;
3896 	while (sz) {
3897 		/* Don't overload VM with large reads */
3898 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3899 		n = kobj_read_file(file, buf, chunk, off);
3900 		if (n != chunk) {
3901 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3902 			    DI_CACHE_FILE, off));
3903 			goto fail;
3904 		}
3905 		off += chunk;
3906 		buf += chunk;
3907 		sz -= chunk;
3908 	}
3909 
3910 	ASSERT(off == map_size);
3911 
3912 	/*
3913 	 * Read past expected EOF to verify size.
3914 	 */
3915 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3916 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3917 		goto fail;
3918 	}
3919 
3920 	all = (struct di_all *)di_cache.cache_data;
3921 	if (!header_plus_one_ok(all)) {
3922 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3923 		goto fail;
3924 	}
3925 
3926 	/*
3927 	 * Compute CRC with checksum field in the cache data set to 0
3928 	 */
3929 	saved_crc = all->cache_checksum;
3930 	all->cache_checksum = 0;
3931 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3932 	all->cache_checksum = saved_crc;
3933 
3934 	if (crc != all->cache_checksum) {
3935 		CACHE_DEBUG((DI_ERR,
3936 		    "%s: checksum error: expected=0x%x actual=0x%x",
3937 		    DI_CACHE_FILE, all->cache_checksum, crc));
3938 		goto fail;
3939 	}
3940 
3941 	if (all->map_size != map_size) {
3942 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3943 		goto fail;
3944 	}
3945 
3946 	kobj_close_file(file);
3947 
3948 	di_cache.cache_size = map_size;
3949 
3950 	return;
3951 
3952 fail:
3953 	kmem_free(di_cache.cache_data, map_size);
3954 	kobj_close_file(file);
3955 	di_cache.cache_data = NULL;
3956 	di_cache.cache_size = 0;
3957 }
3958 
3959 
3960 /*
3961  * Checks if arguments are valid for using the cache.
3962  */
3963 static int
3964 cache_args_valid(struct di_state *st, int *error)
3965 {
3966 	ASSERT(error);
3967 	ASSERT(st->mem_size > 0);
3968 	ASSERT(st->memlist != NULL);
3969 
3970 	if (!modrootloaded || !i_ddi_io_initialized()) {
3971 		CACHE_DEBUG((DI_ERR,
3972 		    "cache lookup failure: I/O subsystem not inited"));
3973 		*error = ENOTACTIVE;
3974 		return (0);
3975 	}
3976 
3977 	/*
3978 	 * No other flags allowed with DINFOCACHE
3979 	 */
3980 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3981 		CACHE_DEBUG((DI_ERR,
3982 		    "cache lookup failure: bad flags: 0x%x",
3983 		    st->command));
3984 		*error = EINVAL;
3985 		return (0);
3986 	}
3987 
3988 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3989 		CACHE_DEBUG((DI_ERR,
3990 		    "cache lookup failure: bad root: %s",
3991 		    DI_ALL_PTR(st)->root_path));
3992 		*error = EINVAL;
3993 		return (0);
3994 	}
3995 
3996 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3997 
3998 	*error = 0;
3999 
4000 	return (1);
4001 }
4002 
4003 static int
4004 snapshot_is_cacheable(struct di_state *st)
4005 {
4006 	ASSERT(st->mem_size > 0);
4007 	ASSERT(st->memlist != NULL);
4008 
4009 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
4010 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
4011 		CACHE_DEBUG((DI_INFO,
4012 		    "not cacheable: incompatible flags: 0x%x",
4013 		    st->command));
4014 		return (0);
4015 	}
4016 
4017 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4018 		CACHE_DEBUG((DI_INFO,
4019 		    "not cacheable: incompatible root path: %s",
4020 		    DI_ALL_PTR(st)->root_path));
4021 		return (0);
4022 	}
4023 
4024 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
4025 
4026 	return (1);
4027 }
4028 
4029 static int
4030 di_cache_lookup(struct di_state *st)
4031 {
4032 	size_t	rval;
4033 	int	cache_valid;
4034 
4035 	ASSERT(cache_args_valid(st, &cache_valid));
4036 	ASSERT(modrootloaded);
4037 
4038 	DI_CACHE_LOCK(di_cache);
4039 
4040 	/*
4041 	 * The following assignment determines the validity
4042 	 * of the cache as far as this snapshot is concerned.
4043 	 */
4044 	cache_valid = di_cache.cache_valid;
4045 
4046 	if (cache_valid && di_cache.cache_data == NULL) {
4047 		di_cache_read(&di_cache);
4048 		/* check for read or file error */
4049 		if (di_cache.cache_data == NULL)
4050 			cache_valid = 0;
4051 	}
4052 
4053 	if (cache_valid) {
4054 		/*
4055 		 * Ok, the cache was valid as of this particular
4056 		 * snapshot. Copy the cached snapshot. This is safe
4057 		 * to do as the cache cannot be freed (we hold the
4058 		 * cache lock). Free the memory allocated in di_state
4059 		 * up until this point - we will simply copy everything
4060 		 * in the cache.
4061 		 */
4062 
4063 		ASSERT(di_cache.cache_data != NULL);
4064 		ASSERT(di_cache.cache_size > 0);
4065 
4066 		di_freemem(st);
4067 
4068 		rval = 0;
4069 		if (di_cache2mem(&di_cache, st) > 0) {
4070 			/*
4071 			 * map_size is size of valid data in the
4072 			 * cached snapshot and may be less than
4073 			 * size of the cache.
4074 			 */
4075 			ASSERT(DI_ALL_PTR(st));
4076 			rval = DI_ALL_PTR(st)->map_size;
4077 
4078 			ASSERT(rval >= sizeof (struct di_all));
4079 			ASSERT(rval <= di_cache.cache_size);
4080 		}
4081 	} else {
4082 		/*
4083 		 * The cache isn't valid, we need to take a snapshot.
4084 		 * Set the command flags appropriately
4085 		 */
4086 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
4087 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
4088 		rval = di_cache_update(st);
4089 		st->command = (DINFOCACHE & DIIOC_MASK);
4090 	}
4091 
4092 	DI_CACHE_UNLOCK(di_cache);
4093 
4094 	/*
4095 	 * For cached snapshots, the devinfo driver always returns
4096 	 * a snapshot rooted at "/".
4097 	 */
4098 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
4099 
4100 	return ((int)rval);
4101 }
4102 
4103 /*
4104  * This is a forced update of the cache  - the previous state of the cache
4105  * may be:
4106  *	- unpopulated
4107  *	- populated and invalid
4108  *	- populated and valid
4109  */
4110 static int
4111 di_cache_update(struct di_state *st)
4112 {
4113 	int		rval;
4114 	uint32_t	crc;
4115 	struct di_all	*all;
4116 
4117 	ASSERT(DI_CACHE_LOCKED(di_cache));
4118 	ASSERT(snapshot_is_cacheable(st));
4119 
4120 	/*
4121 	 * Free the in-core cache and the on-disk file (if they exist)
4122 	 */
4123 	i_ddi_di_cache_free(&di_cache);
4124 
4125 	/*
4126 	 * Set valid flag before taking the snapshot,
4127 	 * so that any invalidations that arrive
4128 	 * during or after the snapshot are not
4129 	 * removed by us.
4130 	 */
4131 	atomic_or_32(&di_cache.cache_valid, 1);
4132 
4133 	rval = di_snapshot_and_clean(st);
4134 
4135 	if (rval == 0) {
4136 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
4137 		return (0);
4138 	}
4139 
4140 	DI_ALL_PTR(st)->map_size = rval;
4141 	if (di_mem2cache(st, &di_cache) == 0) {
4142 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
4143 		return (0);
4144 	}
4145 
4146 	ASSERT(di_cache.cache_data);
4147 	ASSERT(di_cache.cache_size > 0);
4148 
4149 	/*
4150 	 * Now that we have cached the snapshot, compute its checksum.
4151 	 * The checksum is only computed over the valid data in the
4152 	 * cache, not the entire cache.
4153 	 * Also, set all the fields (except checksum) before computing
4154 	 * checksum.
4155 	 */
4156 	all = (struct di_all *)di_cache.cache_data;
4157 	all->cache_magic = DI_CACHE_MAGIC;
4158 	all->map_size = rval;
4159 
4160 	ASSERT(all->cache_checksum == 0);
4161 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
4162 	all->cache_checksum = crc;
4163 
4164 	di_cache_write(&di_cache);
4165 
4166 	return (rval);
4167 }
4168 
4169 static void
4170 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
4171 {
4172 	va_list	ap;
4173 
4174 	if (di_cache_debug <= DI_QUIET)
4175 		return;
4176 
4177 	if (di_cache_debug < msglevel)
4178 		return;
4179 
4180 	switch (msglevel) {
4181 		case DI_ERR:
4182 			msglevel = CE_WARN;
4183 			break;
4184 		case DI_INFO:
4185 		case DI_TRACE:
4186 		default:
4187 			msglevel = CE_NOTE;
4188 			break;
4189 	}
4190 
4191 	va_start(ap, fmt);
4192 	vcmn_err(msglevel, fmt, ap);
4193 	va_end(ap);
4194 }
4195 
4196 static void
4197 di_hotplug_children(struct di_state *st)
4198 {
4199 	di_off_t	off;
4200 	struct di_hp	*hp;
4201 	struct i_hp	*hp_list_node;
4202 
4203 	while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) {
4204 
4205 		if ((hp_list_node->hp_child != NULL) &&
4206 		    (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) {
4207 			hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off));
4208 			hp->hp_child = off;
4209 		}
4210 
4211 		kmem_free(hp_list_node, sizeof (i_hp_t));
4212 	}
4213 
4214 	list_destroy(&st->hp_list);
4215 }
4216