xref: /titanic_50/usr/src/uts/common/io/bge/bge_mii.c (revision 352290fbea989358b5153ef1750fc3c3fcdca668)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 /*
30  * Bit test macros, returning boolean_t values
31  */
32 #define	BIS(w, b)	(((w) & (b)) ? B_TRUE : B_FALSE)
33 #define	BIC(w, b)	(((w) & (b)) ? B_FALSE : B_TRUE)
34 #define	UPORDOWN(x)	((x) ? "up" : "down")
35 
36 /*
37  * ========== Copper (PHY) support ==========
38  */
39 
40 #define	BGE_DBG		BGE_DBG_PHY	/* debug flag for this code	*/
41 
42 /*
43  * #defines:
44  *	BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm)
45  *	feature is enabled.  We need to recheck whether this can be
46  *	enabled; at one time it seemed to interact unpleasantly with the
47  *	loopback modes.
48  *
49  *	BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is
50  *	turned off when the PHY is idled i.e. during driver suspend().
51  *	For now this is disabled because the chip doesn't seem to
52  *	resume cleanly if the PHY power is turned off.
53  */
54 #define	BGE_COPPER_WIRESPEED	B_TRUE
55 #define	BGE_COPPER_IDLEOFF	B_FALSE
56 
57 /*
58  * The arrays below can be indexed by the MODE bits from the Auxiliary
59  * Status register to determine the current speed/duplex settings.
60  */
61 static const int16_t bge_copper_link_speed[] = {
62 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
63 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
64 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
65 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
66 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
67 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
68 	1000,				/* MII_AUX_STATUS_MODE_1000_H	*/
69 	1000				/* MII_AUX_STATUS_MODE_1000_F	*/
70 };
71 
72 static const int8_t bge_copper_link_duplex[] = {
73 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
74 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
75 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
76 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
77 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
78 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
79 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_1000_H	*/
80 	LINK_DUPLEX_FULL		/* MII_AUX_STATUS_MODE_1000_F	*/
81 };
82 
83 static const int16_t bge_copper_link_speed_5906[] = {
84 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
85 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
86 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
87 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
88 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
89 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
90 	0,				/* MII_AUX_STATUS_MODE_1000_H	*/
91 	0				/* MII_AUX_STATUS_MODE_1000_F	*/
92 };
93 
94 static const int8_t bge_copper_link_duplex_5906[] = {
95 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
96 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
97 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
98 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
99 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
100 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
101 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_1000_H	*/
102 	LINK_DUPLEX_UNKNOWN		/* MII_AUX_STATUS_MODE_1000_F	*/
103 };
104 
105 #if	BGE_DEBUGGING
106 
107 static void
108 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux)
109 {
110 	uint16_t regs[32];
111 	int i;
112 
113 	ASSERT(mutex_owned(bgep->genlock));
114 
115 	for (i = 0; i < 32; ++i)
116 		switch (i) {
117 		default:
118 			regs[i] = bge_mii_get16(bgep, i);
119 			break;
120 
121 		case MII_STATUS:
122 			regs[i] = mii_status;
123 			break;
124 
125 		case MII_AUX_STATUS:
126 			regs[i] = aux;
127 			break;
128 
129 		case 0x0b: case 0x0c: case 0x0d: case 0x0e:
130 		case 0x15: case 0x16: case 0x17:
131 		case 0x1c:
132 		case 0x1f:
133 			/* reserved registers -- don't read these */
134 			regs[i] = 0;
135 			break;
136 		}
137 
138 	for (i = 0; i < 32; i += 8)
139 		BGE_DEBUG(("bge_phydump: "
140 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
141 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
142 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
143 }
144 
145 #endif	/* BGE_DEBUGGING */
146 
147 /*
148  * Basic low-level function to probe for a PHY
149  *
150  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
151  */
152 static boolean_t
153 bge_phy_probe(bge_t *bgep)
154 {
155 	uint16_t miicfg;
156 	uint32_t nicsig, niccfg;
157 
158 	BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep));
159 
160 	ASSERT(mutex_owned(bgep->genlock));
161 
162 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
163 	if (nicsig == BGE_NIC_DATA_SIG) {
164 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
165 		switch (niccfg & BGE_NIC_CFG_PHY_TYPE_MASK) {
166 		default:
167 		case BGE_NIC_CFG_PHY_TYPE_COPPER:
168 			return (B_TRUE);
169 		case BGE_NIC_CFG_PHY_TYPE_FIBER:
170 			return (B_FALSE);
171 		}
172 	} else {
173 		/*
174 		 * Read the MII_STATUS register twice, in
175 		 * order to clear any sticky bits (but they should
176 		 * have been cleared by the RESET, I think).
177 		 */
178 		miicfg = bge_mii_get16(bgep, MII_STATUS);
179 		miicfg = bge_mii_get16(bgep, MII_STATUS);
180 		BGE_DEBUG(("bge_phy_probe: status 0x%x", miicfg));
181 
182 		/*
183 		 * Now check the value read; it should have at least one bit set
184 		 * (for the device capabilities) and at least one clear (one of
185 		 * the error bits). So if we see all 0s or all 1s, there's a
186 		 * problem.  In particular, bge_mii_get16() returns all 1s if
187 		 * communications fails ...
188 		 */
189 		switch (miicfg) {
190 		case 0x0000:
191 		case 0xffff:
192 			return (B_FALSE);
193 
194 		default :
195 			return (B_TRUE);
196 		}
197 	}
198 }
199 
200 /*
201  * Basic low-level function to reset the PHY.
202  * Doesn't incorporate any special-case workarounds.
203  *
204  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
205  */
206 static boolean_t
207 bge_phy_reset(bge_t *bgep)
208 {
209 	uint16_t control;
210 	uint_t count;
211 
212 	BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep));
213 
214 	ASSERT(mutex_owned(bgep->genlock));
215 
216 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
217 		drv_usecwait(40);
218 		/* put PHY into ready state */
219 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
220 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
221 		drv_usecwait(40);
222 	}
223 
224 	/*
225 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
226 	 */
227 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET);
228 	for (count = 0; ++count < 1000; ) {
229 		drv_usecwait(5);
230 		control = bge_mii_get16(bgep, MII_CONTROL);
231 		if (BIC(control, MII_CONTROL_RESET))
232 			return (B_TRUE);
233 	}
234 
235 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
236 		(void) bge_adj_volt_5906(bgep);
237 
238 	BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control));
239 
240 	return (B_FALSE);
241 }
242 
243 /*
244  * Basic low-level function to powerdown the PHY, if supported
245  * If powerdown support is compiled out, this function does nothing.
246  */
247 static void
248 bge_phy_powerdown(bge_t *bgep)
249 {
250 	BGE_TRACE(("bge_phy_powerdown"));
251 #if	BGE_COPPER_IDLEOFF
252 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN);
253 #endif	/* BGE_COPPER_IDLEOFF */
254 }
255 
256 /*
257  * The following functions are based on sample code provided by
258  * Broadcom (20-June-2003), and implement workarounds said to be
259  * required on the early revisions of the BCM5703/4C.
260  *
261  * The registers and values used are mostly UNDOCUMENTED, and
262  * therefore don't have symbolic names ;-(
263  *
264  * Many of the comments are straight out of the Broadcom code:
265  * even where the code has been restructured, the original
266  * comments have been preserved in order to explain what these
267  * undocumented registers & values are all about ...
268  */
269 
270 static void
271 bge_phy_macro_wait(bge_t *bgep)
272 {
273 	uint_t count;
274 
275 	for (count = 100; --count; )
276 		if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0)
277 			break;
278 }
279 
280 /*
281  * PHY test data pattern:
282  *
283  * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
284  * For 5705,    each DFE TAP has 19-bits (low word 15, hi word 4)
285  * For simplicity, we check only 19-bits, so we don't have to
286  * distinguish which chip it is.
287  * the LO word contains 15 bits, make sure pattern data is < 0x7fff
288  * the HI word contains  6 bits, make sure pattern data is < 0x003f
289  */
290 #define	N_CHANNELS	4
291 #define	N_TAPS		3
292 
293 static struct {
294 	uint16_t	lo;
295 	uint16_t	hi;
296 } tap_data[N_CHANNELS][N_TAPS] = {
297 	{
298 		{ 0x5555, 0x0005 },	/* ch0, TAP 0, LO/HI pattern */
299 		{ 0x2aaa, 0x000a },	/* ch0, TAP 1, LO/HI pattern */
300 		{ 0x3456, 0x0003 }	/* ch0, TAP 2, LO/HI pattern */
301 	},
302 	{
303 		{ 0x2aaa, 0x000a },	/* ch1, TAP 0, LO/HI pattern */
304 		{ 0x3333, 0x0003 },	/* ch1, TAP 1, LO/HI pattern */
305 		{ 0x789a, 0x0005 }	/* ch1, TAP 2, LO/HI pattern */
306 	},
307 	{
308 		{ 0x5a5a, 0x0005 },	/* ch2, TAP 0, LO/HI pattern */
309 		{ 0x2a6a, 0x000a },	/* ch2, TAP 1, LO/HI pattern */
310 		{ 0x1bcd, 0x0003 }	/* ch2, TAP 2, LO/HI pattern */
311 	},
312 	{
313 		{ 0x2a5a, 0x000a },	/* ch3, TAP 0, LO/HI pattern */
314 		{ 0x33c3, 0x0003 },	/* ch3, TAP 1, LO/HI pattern */
315 		{ 0x2ef1, 0x0005 }	/* ch3, TAP 2, LO/HI pattern */
316 	}
317 };
318 
319 /*
320  * Check whether the PHY has locked up after a RESET.
321  *
322  * Returns TRUE if it did, FALSE is it's OK ;-)
323  */
324 static boolean_t
325 bge_phy_locked_up(bge_t *bgep)
326 {
327 	uint16_t dataLo;
328 	uint16_t dataHi;
329 	uint_t chan;
330 	uint_t tap;
331 
332 	/*
333 	 * Check TAPs for all 4 channels, as soon as we see a lockup
334 	 * we'll stop checking.
335 	 */
336 	for (chan = 0; chan < N_CHANNELS; ++chan) {
337 		/* Select channel and set TAP index to 0 */
338 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
339 		/* Freeze filter again just to be safe */
340 		bge_mii_put16(bgep, 0x16, 0x0002);
341 
342 		/*
343 		 * Write fixed pattern to the RAM, 3 TAPs for
344 		 * each channel, each TAP have 2 WORDs (LO/HI)
345 		 */
346 		for (tap = 0; tap < N_TAPS; ++tap) {
347 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo);
348 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi);
349 		}
350 
351 		/*
352 		 * Active PHY's Macro operation to write DFE
353 		 * TAP from RAM, and wait for Macro to complete.
354 		 */
355 		bge_mii_put16(bgep, 0x16, 0x0202);
356 		bge_phy_macro_wait(bgep);
357 
358 		/*
359 		 * Done with write phase, now begin read phase.
360 		 */
361 
362 		/* Select channel and set TAP index to 0 */
363 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
364 
365 		/*
366 		 * Active PHY's Macro operation to load DFE
367 		 * TAP to RAM, and wait for Macro to complete
368 		 */
369 		bge_mii_put16(bgep, 0x16, 0x0082);
370 		bge_phy_macro_wait(bgep);
371 
372 		/* Enable "pre-fetch" */
373 		bge_mii_put16(bgep, 0x16, 0x0802);
374 		bge_phy_macro_wait(bgep);
375 
376 		/*
377 		 * Read back the TAP values.  3 TAPs for each
378 		 * channel, each TAP have 2 WORDs (LO/HI)
379 		 */
380 		for (tap = 0; tap < N_TAPS; ++tap) {
381 			/*
382 			 * Read Lo/Hi then wait for 'done' is faster.
383 			 * For DFE TAP, the HI word contains 6 bits,
384 			 * LO word contains 15 bits
385 			 */
386 			dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff;
387 			dataHi = bge_mii_get16(bgep, 0x15) & 0x003f;
388 			bge_phy_macro_wait(bgep);
389 
390 			/*
391 			 * Check if what we wrote is what we read back.
392 			 * If failed, then the PHY is locked up, we need
393 			 * to do PHY reset again
394 			 */
395 			if (dataLo != tap_data[chan][tap].lo)
396 				return (B_TRUE);	/* wedged!	*/
397 
398 			if (dataHi != tap_data[chan][tap].hi)
399 				return (B_TRUE);	/* wedged!	*/
400 		}
401 	}
402 
403 	/*
404 	 * The PHY isn't locked up ;-)
405 	 */
406 	return (B_FALSE);
407 }
408 
409 /*
410  * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782.
411  * Tries up to 5 times to recover from failure to reset or PHY lockup.
412  *
413  * Returns TRUE on success, FALSE if there's an unrecoverable problem
414  */
415 static boolean_t
416 bge_phy_reset_and_check(bge_t *bgep)
417 {
418 	boolean_t reset_success;
419 	boolean_t phy_locked;
420 	uint16_t extctrl;
421 	uint_t retries;
422 
423 	for (retries = 0; retries < 5; ++retries) {
424 		/* Issue a phy reset, and wait for reset to complete */
425 		/* Assuming reset is successful first */
426 		reset_success = bge_phy_reset(bgep);
427 
428 		/*
429 		 * Now go check the DFE TAPs to see if locked up, but
430 		 * first, we need to set up PHY so we can read DFE
431 		 * TAPs.
432 		 */
433 
434 		/*
435 		 * Disable Transmitter and Interrupt, while we play
436 		 * with the PHY registers, so the link partner won't
437 		 * see any strange data and the Driver won't see any
438 		 * interrupts.
439 		 */
440 		extctrl = bge_mii_get16(bgep, 0x10);
441 		bge_mii_put16(bgep, 0x10, extctrl | 0x3000);
442 
443 		/* Setup Full-Duplex, 1000 mbps */
444 		bge_mii_put16(bgep, 0x0, 0x0140);
445 
446 		/* Set to Master mode */
447 		bge_mii_put16(bgep, 0x9, 0x1800);
448 
449 		/* Enable SM_DSP_CLOCK & 6dB */
450 		bge_mii_put16(bgep, 0x18, 0x0c00);	/* "the ADC fix" */
451 
452 		/* Work-arounds */
453 		bge_mii_put16(bgep, 0x17, 0x201f);
454 		bge_mii_put16(bgep, 0x15, 0x2aaa);
455 
456 		/* More workarounds */
457 		bge_mii_put16(bgep, 0x17, 0x000a);
458 		bge_mii_put16(bgep, 0x15, 0x0323);	/* "the Gamma fix" */
459 
460 		/* Blocks the PHY control access */
461 		bge_mii_put16(bgep, 0x17, 0x8005);
462 		bge_mii_put16(bgep, 0x15, 0x0800);
463 
464 		/* Test whether PHY locked up ;-( */
465 		phy_locked = bge_phy_locked_up(bgep);
466 		if (reset_success && !phy_locked)
467 			break;
468 
469 		/*
470 		 * Some problem here ... log it & retry
471 		 */
472 		if (!reset_success)
473 			BGE_REPORT((bgep, "PHY didn't reset!"));
474 		if (phy_locked)
475 			BGE_REPORT((bgep, "PHY locked up!"));
476 	}
477 
478 	/* Remove block phy control */
479 	bge_mii_put16(bgep, 0x17, 0x8005);
480 	bge_mii_put16(bgep, 0x15, 0x0000);
481 
482 	/* Unfreeze DFE TAP filter for all channels */
483 	bge_mii_put16(bgep, 0x17, 0x8200);
484 	bge_mii_put16(bgep, 0x16, 0x0000);
485 
486 	/* Restore PHY back to operating state */
487 	bge_mii_put16(bgep, 0x18, 0x0400);
488 
489 	/* Enable transmitter and interrupt */
490 	extctrl = bge_mii_get16(bgep, 0x10);
491 	bge_mii_put16(bgep, 0x10, extctrl & ~0x3000);
492 
493 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
494 		(void) bge_adj_volt_5906(bgep);
495 
496 	if (!reset_success)
497 		bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
498 	else if (phy_locked)
499 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
500 	return (reset_success && !phy_locked);
501 }
502 
503 static void
504 bge_phy_tweak_gmii(bge_t *bgep)
505 {
506 	/* Tweak GMII timing */
507 	bge_mii_put16(bgep, 0x1c, 0x8d68);
508 	bge_mii_put16(bgep, 0x1c, 0x8d68);
509 }
510 
511 /* Bit Error Rate reduction fix */
512 static void
513 bge_phy_bit_err_fix(bge_t *bgep)
514 {
515 	bge_mii_put16(bgep, 0x18, 0x0c00);
516 	bge_mii_put16(bgep, 0x17, 0x000a);
517 	bge_mii_put16(bgep, 0x15, 0x310b);
518 	bge_mii_put16(bgep, 0x17, 0x201f);
519 	bge_mii_put16(bgep, 0x15, 0x9506);
520 	bge_mii_put16(bgep, 0x17, 0x401f);
521 	bge_mii_put16(bgep, 0x15, 0x14e2);
522 	bge_mii_put16(bgep, 0x18, 0x0400);
523 }
524 
525 /*
526  * End of Broadcom-derived workaround code				*
527  */
528 
529 static int
530 bge_restart_copper(bge_t *bgep, boolean_t powerdown)
531 {
532 	uint16_t phy_status;
533 	boolean_t reset_ok;
534 	uint16_t extctrl, auxctrl;
535 
536 	BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown));
537 
538 	ASSERT(mutex_owned(bgep->genlock));
539 
540 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
541 	default:
542 		/*
543 		 * Shouldn't happen; it means we don't recognise this chip.
544 		 * It's probably a new one, so we'll try our best anyway ...
545 		 */
546 	case MHCR_CHIP_ASIC_REV_5703:
547 	case MHCR_CHIP_ASIC_REV_5704:
548 	case MHCR_CHIP_ASIC_REV_5705:
549 	case MHCR_CHIP_ASIC_REV_5752:
550 	case MHCR_CHIP_ASIC_REV_5714:
551 	case MHCR_CHIP_ASIC_REV_5715:
552 		reset_ok = bge_phy_reset_and_check(bgep);
553 		break;
554 
555 	case MHCR_CHIP_ASIC_REV_5906:
556 	case MHCR_CHIP_ASIC_REV_5700:
557 	case MHCR_CHIP_ASIC_REV_5701:
558 	case MHCR_CHIP_ASIC_REV_5723:
559 	case MHCR_CHIP_ASIC_REV_5721_5751:
560 		/*
561 		 * Just a plain reset; the "check" code breaks these chips
562 		 */
563 		reset_ok = bge_phy_reset(bgep);
564 		if (!reset_ok)
565 			bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
566 		break;
567 	}
568 	if (!reset_ok) {
569 		BGE_REPORT((bgep, "PHY failed to reset correctly"));
570 		return (DDI_FAILURE);
571 	}
572 
573 	/*
574 	 * Step 5: disable WOL (not required after RESET)
575 	 *
576 	 * Step 6: refer to errata
577 	 */
578 	switch (bgep->chipid.asic_rev) {
579 	default:
580 		break;
581 
582 	case MHCR_CHIP_REV_5704_A0:
583 		bge_phy_tweak_gmii(bgep);
584 		break;
585 	}
586 
587 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
588 	case MHCR_CHIP_ASIC_REV_5705:
589 	case MHCR_CHIP_ASIC_REV_5721_5751:
590 		bge_phy_bit_err_fix(bgep);
591 		break;
592 	}
593 
594 	if (!(bgep->chipid.flags & CHIP_FLAG_NO_JUMBO) &&
595 	    (bgep->chipid.default_mtu > BGE_DEFAULT_MTU)) {
596 		/* Set the GMII Fifo Elasticity to high latency */
597 		extctrl = bge_mii_get16(bgep, 0x10);
598 		bge_mii_put16(bgep, 0x10, extctrl | 0x1);
599 
600 		/* Allow reception of extended length packets */
601 		bge_mii_put16(bgep, MII_AUX_CONTROL, 0x0007);
602 		auxctrl = bge_mii_get16(bgep, MII_AUX_CONTROL);
603 		auxctrl |= 0x4000;
604 		bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
605 	}
606 
607 	/*
608 	 * Step 7: read the MII_INTR_STATUS register twice,
609 	 * in order to clear any sticky bits (but they should
610 	 * have been cleared by the RESET, I think), and we're
611 	 * not using PHY interrupts anyway.
612 	 *
613 	 * Step 8: enable the PHY to interrupt on link status
614 	 * change (not required)
615 	 *
616 	 * Step 9: configure PHY LED Mode - not applicable?
617 	 *
618 	 * Step 10: read the MII_STATUS register twice, in
619 	 * order to clear any sticky bits (but they should
620 	 * have been cleared by the RESET, I think).
621 	 */
622 	phy_status = bge_mii_get16(bgep, MII_STATUS);
623 	phy_status = bge_mii_get16(bgep, MII_STATUS);
624 	BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status));
625 
626 	/*
627 	 * Finally, shut down the PHY, if required
628 	 */
629 	if (powerdown)
630 		bge_phy_powerdown(bgep);
631 	return (DDI_SUCCESS);
632 }
633 
634 /*
635  * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities
636  * and advertisements with the required settings as specified by the various
637  * param_* variables that can be poked via the NDD interface.
638  *
639  * We always reset the PHY and reprogram *all* the relevant registers,
640  * not just those changed.  This should cause the link to go down, and then
641  * back up again once the link is stable and autonegotiation (if enabled)
642  * is complete.  We should get a link state change interrupt somewhere along
643  * the way ...
644  *
645  * NOTE: <genlock> must already be held by the caller
646  */
647 static int
648 bge_update_copper(bge_t *bgep)
649 {
650 	boolean_t adv_autoneg;
651 	boolean_t adv_pause;
652 	boolean_t adv_asym_pause;
653 	boolean_t adv_1000fdx;
654 	boolean_t adv_1000hdx;
655 	boolean_t adv_100fdx;
656 	boolean_t adv_100hdx;
657 	boolean_t adv_10fdx;
658 	boolean_t adv_10hdx;
659 
660 	uint16_t control;
661 	uint16_t gigctrl;
662 	uint16_t auxctrl;
663 	uint16_t anar;
664 
665 	BGE_TRACE(("bge_update_copper($%p)", (void *)bgep));
666 
667 	ASSERT(mutex_owned(bgep->genlock));
668 
669 	BGE_DEBUG(("bge_update_copper: autoneg %d "
670 	    "pause %d asym_pause %d "
671 	    "1000fdx %d 1000hdx %d "
672 	    "100fdx %d 100hdx %d "
673 	    "10fdx %d 10hdx %d ",
674 	    bgep->param_adv_autoneg,
675 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
676 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
677 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
678 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
679 
680 	control = gigctrl = auxctrl = anar = 0;
681 
682 	/*
683 	 * PHY settings are normally based on the param_* variables,
684 	 * but if any loopback mode is in effect, that takes precedence.
685 	 *
686 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
687 	 * and External loopback at a variety of speeds (with a special
688 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
689 	 * is turned ON, and the speed/mastership is forced.
690 	 */
691 	switch (bgep->param_loop_mode) {
692 	case BGE_LOOP_NONE:
693 	default:
694 		adv_autoneg = bgep->param_adv_autoneg;
695 		adv_pause = bgep->param_adv_pause;
696 		adv_asym_pause = bgep->param_adv_asym_pause;
697 		adv_1000fdx = bgep->param_adv_1000fdx;
698 		adv_1000hdx = bgep->param_adv_1000hdx;
699 		adv_100fdx = bgep->param_adv_100fdx;
700 		adv_100hdx = bgep->param_adv_100hdx;
701 		adv_10fdx = bgep->param_adv_10fdx;
702 		adv_10hdx = bgep->param_adv_10hdx;
703 		break;
704 
705 	case BGE_LOOP_EXTERNAL_1000:
706 	case BGE_LOOP_EXTERNAL_100:
707 	case BGE_LOOP_EXTERNAL_10:
708 	case BGE_LOOP_INTERNAL_PHY:
709 	case BGE_LOOP_INTERNAL_MAC:
710 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
711 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
712 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
713 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
714 
715 		switch (bgep->param_loop_mode) {
716 		case BGE_LOOP_EXTERNAL_1000:
717 			bgep->param_link_speed = 1000;
718 			adv_1000fdx = B_TRUE;
719 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
720 			gigctrl |= MII_MSCONTROL_MANUAL;
721 			gigctrl |= MII_MSCONTROL_MASTER;
722 			break;
723 
724 		case BGE_LOOP_EXTERNAL_100:
725 			bgep->param_link_speed = 100;
726 			adv_100fdx = B_TRUE;
727 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
728 			break;
729 
730 		case BGE_LOOP_EXTERNAL_10:
731 			bgep->param_link_speed = 10;
732 			adv_10fdx = B_TRUE;
733 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
734 			break;
735 
736 		case BGE_LOOP_INTERNAL_PHY:
737 			bgep->param_link_speed = 1000;
738 			adv_1000fdx = B_TRUE;
739 			control = MII_CONTROL_LOOPBACK;
740 			break;
741 
742 		case BGE_LOOP_INTERNAL_MAC:
743 			bgep->param_link_speed = 1000;
744 			adv_1000fdx = B_TRUE;
745 			break;
746 		}
747 	}
748 
749 	BGE_DEBUG(("bge_update_copper: autoneg %d "
750 	    "pause %d asym_pause %d "
751 	    "1000fdx %d 1000hdx %d "
752 	    "100fdx %d 100hdx %d "
753 	    "10fdx %d 10hdx %d ",
754 	    adv_autoneg,
755 	    adv_pause, adv_asym_pause,
756 	    adv_1000fdx, adv_1000hdx,
757 	    adv_100fdx, adv_100hdx,
758 	    adv_10fdx, adv_10hdx));
759 
760 	/*
761 	 * We should have at least one technology capability set;
762 	 * if not, we select a default of 1000Mb/s full-duplex
763 	 */
764 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
765 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
766 		adv_1000fdx = B_TRUE;
767 
768 	/*
769 	 * Now transform the adv_* variables into the proper settings
770 	 * of the PHY registers ...
771 	 *
772 	 * If autonegotiation is (now) enabled, we want to trigger
773 	 * a new autonegotiation cycle once the PHY has been
774 	 * programmed with the capabilities to be advertised.
775 	 */
776 	if (adv_autoneg)
777 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
778 
779 	if (adv_1000fdx)
780 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
781 	else if (adv_1000hdx)
782 		control |= MII_CONTROL_1GB;
783 	else if (adv_100fdx)
784 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
785 	else if (adv_100hdx)
786 		control |= MII_CONTROL_100MB;
787 	else if (adv_10fdx)
788 		control |= MII_CONTROL_FDUPLEX;
789 	else if (adv_10hdx)
790 		control |= 0;
791 	else
792 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
793 
794 	if (adv_1000fdx)
795 		gigctrl |= MII_MSCONTROL_1000T_FD;
796 	if (adv_1000hdx)
797 		gigctrl |= MII_MSCONTROL_1000T;
798 
799 	if (adv_100fdx)
800 		anar |= MII_ABILITY_100BASE_TX_FD;
801 	if (adv_100hdx)
802 		anar |= MII_ABILITY_100BASE_TX;
803 	if (adv_10fdx)
804 		anar |= MII_ABILITY_10BASE_T_FD;
805 	if (adv_10hdx)
806 		anar |= MII_ABILITY_10BASE_T;
807 
808 	if (adv_pause)
809 		anar |= MII_ABILITY_PAUSE;
810 	if (adv_asym_pause)
811 		anar |= MII_ABILITY_ASMPAUSE;
812 
813 	/*
814 	 * Munge in any other fixed bits we require ...
815 	 */
816 	anar |= MII_AN_SELECTOR_8023;
817 	auxctrl |= MII_AUX_CTRL_NORM_TX_MODE;
818 	auxctrl |= MII_AUX_CTRL_NORMAL;
819 
820 	/*
821 	 * Restart the PHY and write the new values.  Note the
822 	 * time, so that we can say whether subsequent link state
823 	 * changes can be attributed to our reprogramming the PHY
824 	 */
825 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) == DDI_FAILURE)
826 		return (DDI_FAILURE);
827 	bge_mii_put16(bgep, MII_AN_ADVERT, anar);
828 	bge_mii_put16(bgep, MII_CONTROL, control);
829 	if (auxctrl & MII_AUX_CTRL_NORM_EXT_LOOPBACK)
830 		bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
831 	bge_mii_put16(bgep, MII_MSCONTROL, gigctrl);
832 
833 	BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar));
834 	BGE_DEBUG(("bge_update_copper: control <- 0x%x", control));
835 	BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl));
836 	BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl));
837 
838 #if	BGE_COPPER_WIRESPEED
839 	/*
840 	 * Enable the 'wire-speed' feature, if the chip supports it
841 	 * and we haven't got (any) loopback mode selected.
842 	 */
843 	switch (bgep->chipid.device) {
844 	case DEVICE_ID_5700:
845 	case DEVICE_ID_5700x:
846 	case DEVICE_ID_5705C:
847 	case DEVICE_ID_5782:
848 		/*
849 		 * These chips are known or assumed not to support it
850 		 */
851 		break;
852 
853 	default:
854 		/*
855 		 * All other Broadcom chips are expected to support it.
856 		 */
857 		if (bgep->param_loop_mode == BGE_LOOP_NONE)
858 			bge_mii_put16(bgep, MII_AUX_CONTROL,
859 			    MII_AUX_CTRL_MISC_WRITE_ENABLE |
860 			    MII_AUX_CTRL_MISC_WIRE_SPEED |
861 			    MII_AUX_CTRL_MISC);
862 		break;
863 	}
864 #endif	/* BGE_COPPER_WIRESPEED */
865 	return (DDI_SUCCESS);
866 }
867 
868 static boolean_t
869 bge_check_copper(bge_t *bgep, boolean_t recheck)
870 {
871 	uint32_t emac_status;
872 	uint16_t mii_status;
873 	uint16_t aux;
874 	uint_t mode;
875 	boolean_t linkup;
876 
877 	/*
878 	 * Step 10: read the status from the PHY (which is self-clearing
879 	 * on read!); also read & clear the main (Ethernet) MAC status
880 	 * (the relevant bits of this are write-one-to-clear).
881 	 */
882 	mii_status = bge_mii_get16(bgep, MII_STATUS);
883 	emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
884 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
885 
886 	BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x "
887 	    "(was 0x%x), Ethernet MAC status 0x%x",
888 	    bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status,
889 	    bgep->phy_gen_status, emac_status));
890 
891 	/*
892 	 * If the PHY status hasn't changed since last we looked, and
893 	 * we not forcing a recheck (i.e. the link state was already
894 	 * known), there's nothing to do.
895 	 */
896 	if (mii_status == bgep->phy_gen_status && !recheck)
897 		return (B_FALSE);
898 
899 	do {
900 		/*
901 		 * Step 11: read AUX STATUS register to find speed/duplex
902 		 */
903 		aux = bge_mii_get16(bgep, MII_AUX_STATUS);
904 		BGE_CDB(bge_phydump, (bgep, mii_status, aux));
905 
906 		/*
907 		 * We will only consider the link UP if all the readings
908 		 * are consistent and give meaningful results ...
909 		 */
910 		mode = aux & MII_AUX_STATUS_MODE_MASK;
911 		mode >>= MII_AUX_STATUS_MODE_SHIFT;
912 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
913 			linkup = BIS(aux, MII_AUX_STATUS_LINKUP);
914 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
915 		} else {
916 			linkup = bge_copper_link_speed[mode] > 0;
917 			linkup &= bge_copper_link_duplex[mode] !=
918 			    LINK_DUPLEX_UNKNOWN;
919 			linkup &= BIS(aux, MII_AUX_STATUS_LINKUP);
920 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
921 		}
922 
923 		BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x "
924 		    "=> mode %d (%s)",
925 		    mii_status, aux,
926 		    mode, UPORDOWN(linkup)));
927 
928 		/*
929 		 * Record current register values, then reread status
930 		 * register & loop until it stabilises ...
931 		 */
932 		bgep->phy_aux_status = aux;
933 		bgep->phy_gen_status = mii_status;
934 		mii_status = bge_mii_get16(bgep, MII_STATUS);
935 	} while (mii_status != bgep->phy_gen_status);
936 
937 	/*
938 	 * Assume very little ...
939 	 */
940 	bgep->param_lp_autoneg = B_FALSE;
941 	bgep->param_lp_1000fdx = B_FALSE;
942 	bgep->param_lp_1000hdx = B_FALSE;
943 	bgep->param_lp_100fdx = B_FALSE;
944 	bgep->param_lp_100hdx = B_FALSE;
945 	bgep->param_lp_10fdx = B_FALSE;
946 	bgep->param_lp_10hdx = B_FALSE;
947 	bgep->param_lp_pause = B_FALSE;
948 	bgep->param_lp_asym_pause = B_FALSE;
949 	bgep->param_link_autoneg = B_FALSE;
950 	bgep->param_link_tx_pause = B_FALSE;
951 	if (bgep->param_adv_autoneg)
952 		bgep->param_link_rx_pause = B_FALSE;
953 	else
954 		bgep->param_link_rx_pause = bgep->param_adv_pause;
955 
956 	/*
957 	 * Discover all the link partner's abilities.
958 	 * These are scattered through various registers ...
959 	 */
960 	if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) {
961 		bgep->param_lp_autoneg = B_TRUE;
962 		bgep->param_link_autoneg = B_TRUE;
963 		bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE);
964 		bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE);
965 
966 		aux = bge_mii_get16(bgep, MII_MSSTATUS);
967 		bgep->param_lp_1000fdx = BIS(aux, MII_MSSTATUS_LP1000T_FD);
968 		bgep->param_lp_1000hdx = BIS(aux, MII_MSSTATUS_LP1000T);
969 
970 		aux = bge_mii_get16(bgep, MII_AN_LPABLE);
971 		bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD);
972 		bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX);
973 		bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD);
974 		bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T);
975 		bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE);
976 		bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASMPAUSE);
977 	}
978 
979 	/*
980 	 * Step 12: update ndd-visible state parameters, BUT!
981 	 * we don't transfer the new state to <link_state> just yet;
982 	 * instead we mark the <link_state> as UNKNOWN, and our caller
983 	 * will resolve it once the status has stopped changing and
984 	 * been stable for several seconds.
985 	 */
986 	BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d",
987 	    UPORDOWN(bgep->param_link_up),
988 	    bgep->param_link_speed,
989 	    bgep->param_link_duplex));
990 
991 	if (!linkup)
992 		mode = MII_AUX_STATUS_MODE_NONE;
993 	bgep->param_link_up = linkup;
994 	bgep->link_state = LINK_STATE_UNKNOWN;
995 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
996 		if (bgep->phy_aux_status & MII_AUX_STATUS_NEG_ENABLED_5906) {
997 			bgep->param_link_speed =
998 			    bge_copper_link_speed_5906[mode];
999 			bgep->param_link_duplex =
1000 			    bge_copper_link_duplex_5906[mode];
1001 		} else {
1002 			bgep->param_link_speed = (bgep->phy_aux_status &
1003 			    MII_AUX_STATUS_SPEED_IND_5906) ?  100 : 10;
1004 			bgep->param_link_duplex = (bgep->phy_aux_status &
1005 			    MII_AUX_STATUS_DUPLEX_IND_5906) ? LINK_DUPLEX_FULL :
1006 			    LINK_DUPLEX_HALF;
1007 		}
1008 	} else {
1009 		bgep->param_link_speed = bge_copper_link_speed[mode];
1010 		bgep->param_link_duplex = bge_copper_link_duplex[mode];
1011 	}
1012 
1013 	BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d",
1014 	    UPORDOWN(bgep->param_link_up),
1015 	    bgep->param_link_speed,
1016 	    bgep->param_link_duplex));
1017 
1018 	return (B_TRUE);
1019 }
1020 
1021 static const phys_ops_t copper_ops = {
1022 	bge_restart_copper,
1023 	bge_update_copper,
1024 	bge_check_copper
1025 };
1026 
1027 
1028 /*
1029  * ========== SerDes support ==========
1030  */
1031 
1032 #undef	BGE_DBG
1033 #define	BGE_DBG		BGE_DBG_SERDES	/* debug flag for this code	*/
1034 
1035 /*
1036  * Reinitialise the SerDes interface.  Note that it normally powers
1037  * up in the disabled state, so we need to explicitly activate it.
1038  */
1039 static int
1040 bge_restart_serdes(bge_t *bgep, boolean_t powerdown)
1041 {
1042 	uint32_t macmode;
1043 
1044 	BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown));
1045 
1046 	ASSERT(mutex_owned(bgep->genlock));
1047 
1048 	/*
1049 	 * Ensure that the main Ethernet MAC mode register is programmed
1050 	 * appropriately for the SerDes interface ...
1051 	 */
1052 	macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
1053 	if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1054 		macmode |= ETHERNET_MODE_LINK_POLARITY;
1055 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1056 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
1057 	} else {
1058 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
1059 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1060 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
1061 	}
1062 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
1063 
1064 	/*
1065 	 * Ensure that loopback is OFF and comma detection is enabled.  Then
1066 	 * disable the SerDes output (the first time through, it may/will
1067 	 * already be disabled).  If we're shutting down, leave it disabled.
1068 	 */
1069 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK);
1070 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT);
1071 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1072 	if (powerdown)
1073 		return (DDI_SUCCESS);
1074 
1075 	/*
1076 	 * Otherwise, pause, (re-)enable the SerDes output, and send
1077 	 * all-zero config words in order to force autoneg restart.
1078 	 * Invalidate the saved "link partners received configs", as
1079 	 * we're starting over ...
1080 	 */
1081 	drv_usecwait(10000);
1082 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1083 	bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0);
1084 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1085 	drv_usecwait(10);
1086 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1087 	bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR;
1088 	bgep->serdes_status = ~0U;
1089 	return (DDI_SUCCESS);
1090 }
1091 
1092 /*
1093  * Synchronise the SerDes speed/duplex/autonegotiation capabilities and
1094  * advertisements with the required settings as specified by the various
1095  * param_* variables that can be poked via the NDD interface.
1096  *
1097  * We always reinitalise the SerDes; this should cause the link to go down,
1098  * and then back up again once the link is stable and autonegotiation
1099  * (if enabled) is complete.  We should get a link state change interrupt
1100  * somewhere along the way ...
1101  *
1102  * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the
1103  * param_* variables relating to lower speeds are ignored.
1104  *
1105  * NOTE: <genlock> must already be held by the caller
1106  */
1107 static int
1108 bge_update_serdes(bge_t *bgep)
1109 {
1110 	boolean_t adv_autoneg;
1111 	boolean_t adv_pause;
1112 	boolean_t adv_asym_pause;
1113 	boolean_t adv_1000fdx;
1114 	boolean_t adv_1000hdx;
1115 
1116 	uint32_t serdes;
1117 	uint32_t advert;
1118 
1119 	BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep));
1120 
1121 	ASSERT(mutex_owned(bgep->genlock));
1122 
1123 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1124 	    "pause %d asym_pause %d "
1125 	    "1000fdx %d 1000hdx %d "
1126 	    "100fdx %d 100hdx %d "
1127 	    "10fdx %d 10hdx %d ",
1128 	    bgep->param_adv_autoneg,
1129 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
1130 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
1131 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
1132 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
1133 
1134 	serdes = advert = 0;
1135 
1136 	/*
1137 	 * SerDes settings are normally based on the param_* variables,
1138 	 * but if any loopback mode is in effect, that takes precedence.
1139 	 *
1140 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
1141 	 * and External loopback at a variety of speeds (with a special
1142 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
1143 	 * is turned ON, and the speed/mastership is forced.
1144 	 *
1145 	 * Note: for the SerDes interface, "PHY" internal loopback is
1146 	 * interpreted as SerDes internal loopback, and all external
1147 	 * loopback modes are treated equivalently, as 1Gb/external.
1148 	 */
1149 	switch (bgep->param_loop_mode) {
1150 	case BGE_LOOP_NONE:
1151 	default:
1152 		adv_autoneg = bgep->param_adv_autoneg;
1153 		adv_pause = bgep->param_adv_pause;
1154 		adv_asym_pause = bgep->param_adv_asym_pause;
1155 		adv_1000fdx = bgep->param_adv_1000fdx;
1156 		adv_1000hdx = bgep->param_adv_1000hdx;
1157 		break;
1158 
1159 	case BGE_LOOP_INTERNAL_PHY:
1160 		serdes |= SERDES_CONTROL_TBI_LOOPBACK;
1161 		/* FALLTHRU */
1162 	case BGE_LOOP_INTERNAL_MAC:
1163 	case BGE_LOOP_EXTERNAL_1000:
1164 	case BGE_LOOP_EXTERNAL_100:
1165 	case BGE_LOOP_EXTERNAL_10:
1166 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
1167 		adv_1000fdx = B_TRUE;
1168 		adv_1000hdx = B_FALSE;
1169 		break;
1170 	}
1171 
1172 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1173 	    "pause %d asym_pause %d "
1174 	    "1000fdx %d 1000hdx %d ",
1175 	    adv_autoneg,
1176 	    adv_pause, adv_asym_pause,
1177 	    adv_1000fdx, adv_1000hdx));
1178 
1179 	/*
1180 	 * We should have at least one gigabit technology capability
1181 	 * set; if not, we select a default of 1000Mb/s full-duplex
1182 	 */
1183 	if (!adv_1000fdx && !adv_1000hdx)
1184 		adv_1000fdx = B_TRUE;
1185 
1186 	/*
1187 	 * Now transform the adv_* variables into the proper settings
1188 	 * of the SerDes registers ...
1189 	 *
1190 	 * If autonegotiation is (now) not enabled, pretend it's been
1191 	 * done and failed ...
1192 	 */
1193 	if (!adv_autoneg)
1194 		advert |= AUTONEG_CODE_FAULT_ANEG_ERR;
1195 
1196 	if (adv_1000fdx) {
1197 		advert |= AUTONEG_CODE_FULL_DUPLEX;
1198 		bgep->param_adv_1000fdx = adv_1000fdx;
1199 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
1200 		bgep->param_link_speed = 1000;
1201 	}
1202 	if (adv_1000hdx) {
1203 		advert |= AUTONEG_CODE_HALF_DUPLEX;
1204 		bgep->param_adv_1000hdx = adv_1000hdx;
1205 		bgep->param_link_duplex = LINK_DUPLEX_HALF;
1206 		bgep->param_link_speed = 1000;
1207 	}
1208 
1209 	if (adv_pause)
1210 		advert |= AUTONEG_CODE_PAUSE;
1211 	if (adv_asym_pause)
1212 		advert |= AUTONEG_CODE_ASYM_PAUSE;
1213 
1214 	/*
1215 	 * Restart the SerDes and write the new values.  Note the
1216 	 * time, so that we can say whether subsequent link state
1217 	 * changes can be attributed to our reprogramming the SerDes
1218 	 */
1219 	bgep->serdes_advert = advert;
1220 	(void) bge_restart_serdes(bgep, B_FALSE);
1221 	bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes);
1222 
1223 	BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x",
1224 	    serdes, advert));
1225 	return (DDI_SUCCESS);
1226 }
1227 
1228 /*
1229  * Bare-minimum autoneg protocol
1230  *
1231  * This code is only called when the link is up and we're receiving config
1232  * words, which implies that the link partner wants to autonegotiate
1233  * (otherwise, we wouldn't see configs and wouldn't reach this code).
1234  */
1235 static void
1236 bge_autoneg_serdes(bge_t *bgep)
1237 {
1238 	boolean_t ack;
1239 
1240 	bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG);
1241 	ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE);
1242 
1243 	if (!ack) {
1244 		/*
1245 		 * Phase 1: after SerDes reset, we send a few zero configs
1246 		 * but then stop.  Here the partner is sending configs, but
1247 		 * not ACKing ours; we assume that's 'cos we're not sending
1248 		 * any.  So here we send ours, with ACK already set.
1249 		 */
1250 		bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG,
1251 		    bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE);
1252 		bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
1253 		    ETHERNET_MODE_SEND_CFGS);
1254 	} else {
1255 		/*
1256 		 * Phase 2: partner has ACKed our configs, so now we can
1257 		 * stop sending; once our partner also stops sending, we
1258 		 * can resolve the Tx/Rx configs.
1259 		 */
1260 		bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG,
1261 		    ETHERNET_MODE_SEND_CFGS);
1262 	}
1263 
1264 	BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x",
1265 	    bgep->serdes_lpadv,
1266 	    ack ? "stop" : "send",
1267 	    bgep->serdes_advert));
1268 }
1269 
1270 static boolean_t
1271 bge_check_serdes(bge_t *bgep, boolean_t recheck)
1272 {
1273 	uint32_t emac_status;
1274 	uint32_t lpadv;
1275 	boolean_t linkup;
1276 	boolean_t linkup_old = bgep->param_link_up;
1277 
1278 	for (;;) {
1279 		/*
1280 		 * Step 10: BCM5714S, BCM5715S only
1281 		 * Don't call function bge_autoneg_serdes() as
1282 		 * RX_1000BASEX_AUTONEG_REG (0x0448) is not applicable
1283 		 * to BCM5705, BCM5788, BCM5721, BCM5751, BCM5752,
1284 		 * BCM5714, and BCM5715 devices.
1285 		 */
1286 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1287 			emac_status =  bge_reg_get32(bgep, MI_STATUS_REG);
1288 			linkup = BIS(emac_status, MI_STATUS_LINK);
1289 			bgep->serdes_status = emac_status;
1290 			if ((linkup && linkup_old) ||
1291 			    (!linkup && !linkup_old)) {
1292 				emac_status &= ~ETHERNET_STATUS_LINK_CHANGED;
1293 				emac_status &= ~ETHERNET_STATUS_RECEIVING_CFG;
1294 				break;
1295 			}
1296 			emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1297 			emac_status |= ETHERNET_STATUS_RECEIVING_CFG;
1298 			if (linkup)
1299 				linkup_old = B_TRUE;
1300 			else
1301 				linkup_old = B_FALSE;
1302 			recheck = B_TRUE;
1303 		} else {
1304 			/*
1305 			 * Step 10: others
1306 			 * read & clear the main (Ethernet) MAC status
1307 			 * (the relevant bits of this are write-one-to-clear).
1308 			 */
1309 			emac_status = bge_reg_get32(bgep,
1310 			    ETHERNET_MAC_STATUS_REG);
1311 			bge_reg_put32(bgep,
1312 			    ETHERNET_MAC_STATUS_REG, emac_status);
1313 
1314 			BGE_DEBUG(("bge_check_serdes: link %d/%s, "
1315 			    "MAC status 0x%x (was 0x%x)",
1316 			    bgep->link_state, UPORDOWN(bgep->param_link_up),
1317 			    emac_status, bgep->serdes_status));
1318 
1319 			/*
1320 			 * We will only consider the link UP if all the readings
1321 			 * are consistent and give meaningful results ...
1322 			 */
1323 			bgep->serdes_status = emac_status;
1324 			linkup = BIS(emac_status,
1325 			    ETHERNET_STATUS_SIGNAL_DETECT);
1326 			linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED);
1327 
1328 			/*
1329 			 * Now some fiddling with the interpretation:
1330 			 *	if there's been an error at the PCS level, treat
1331 			 *	it as a link change (the h/w doesn't do this)
1332 			 *
1333 			 *	if there's been a change, but it's only a PCS
1334 			 *	sync change (not a config change), AND the link
1335 			 *	already was & is still UP, then ignore the
1336 			 *	change
1337 			 */
1338 			if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR))
1339 				emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1340 			else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED))
1341 				if (bgep->param_link_up && linkup)
1342 					emac_status &=
1343 					    ~ETHERNET_STATUS_LINK_CHANGED;
1344 
1345 			BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s",
1346 			    bgep->serdes_status, emac_status,
1347 			    UPORDOWN(linkup)));
1348 
1349 			/*
1350 			 * If we're receiving configs, run the autoneg protocol
1351 			 */
1352 			if (linkup && BIS(emac_status,
1353 			    ETHERNET_STATUS_RECEIVING_CFG))
1354 				bge_autoneg_serdes(bgep);
1355 
1356 			/*
1357 			 * If the SerDes status hasn't changed, we're done ...
1358 			 */
1359 			if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED))
1360 				break;
1361 
1362 			/*
1363 			 * Go round again until we no longer see a change ...
1364 			 */
1365 			recheck = B_TRUE;
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * If we're not forcing a recheck (i.e. the link state was already
1371 	 * known), and we didn't see the hardware flag a change, there's
1372 	 * no more to do (and we tell the caller nothing happened).
1373 	 */
1374 	if (!recheck)
1375 		return (B_FALSE);
1376 
1377 	/*
1378 	 * Don't resolve autoneg until we're no longer receiving configs
1379 	 */
1380 	if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1381 		return (B_FALSE);
1382 
1383 	/*
1384 	 * Assume very little ...
1385 	 */
1386 	bgep->param_lp_autoneg = B_FALSE;
1387 	bgep->param_lp_1000fdx = B_FALSE;
1388 	bgep->param_lp_1000hdx = B_FALSE;
1389 	bgep->param_lp_100fdx = B_FALSE;
1390 	bgep->param_lp_100hdx = B_FALSE;
1391 	bgep->param_lp_10fdx = B_FALSE;
1392 	bgep->param_lp_10hdx = B_FALSE;
1393 	bgep->param_lp_pause = B_FALSE;
1394 	bgep->param_lp_asym_pause = B_FALSE;
1395 	bgep->param_link_autoneg = B_FALSE;
1396 	bgep->param_link_tx_pause = B_FALSE;
1397 	if (bgep->param_adv_autoneg)
1398 		bgep->param_link_rx_pause = B_FALSE;
1399 	else
1400 		bgep->param_link_rx_pause = bgep->param_adv_pause;
1401 
1402 	/*
1403 	 * Discover all the link partner's abilities.
1404 	 */
1405 	lpadv = bgep->serdes_lpadv;
1406 	if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) {
1407 		/*
1408 		 * No fault, so derive partner's capabilities
1409 		 */
1410 		bgep->param_lp_autoneg = B_TRUE;
1411 		bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX);
1412 		bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX);
1413 		bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE);
1414 		bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE);
1415 
1416 		/*
1417 		 * Pause direction resolution
1418 		 */
1419 		bgep->param_link_autoneg = B_TRUE;
1420 		if (bgep->param_adv_pause &&
1421 		    bgep->param_lp_pause) {
1422 			bgep->param_link_tx_pause = B_TRUE;
1423 			bgep->param_link_rx_pause = B_TRUE;
1424 		}
1425 		if (bgep->param_adv_asym_pause &&
1426 		    bgep->param_lp_asym_pause) {
1427 			if (bgep->param_adv_pause)
1428 				bgep->param_link_rx_pause = B_TRUE;
1429 			if (bgep->param_lp_pause)
1430 				bgep->param_link_tx_pause = B_TRUE;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Step 12: update ndd-visible state parameters, BUT!
1436 	 * we don't transfer the new state to <link_state> just yet;
1437 	 * instead we mark the <link_state> as UNKNOWN, and our caller
1438 	 * will resolve it once the status has stopped changing and
1439 	 * been stable for several seconds.
1440 	 */
1441 	BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d",
1442 	    UPORDOWN(bgep->param_link_up),
1443 	    bgep->param_link_speed,
1444 	    bgep->param_link_duplex));
1445 
1446 	if (linkup) {
1447 		bgep->param_link_up = B_TRUE;
1448 		bgep->param_link_speed = 1000;
1449 		if (bgep->param_adv_1000fdx)
1450 			bgep->param_link_duplex = LINK_DUPLEX_FULL;
1451 		else
1452 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1453 		if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx)
1454 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1455 	} else {
1456 		bgep->param_link_up = B_FALSE;
1457 		bgep->param_link_speed = 0;
1458 		bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN;
1459 	}
1460 	bgep->link_state = LINK_STATE_UNKNOWN;
1461 
1462 	BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d",
1463 	    UPORDOWN(bgep->param_link_up),
1464 	    bgep->param_link_speed,
1465 	    bgep->param_link_duplex));
1466 
1467 	return (B_TRUE);
1468 }
1469 
1470 static const phys_ops_t serdes_ops = {
1471 	bge_restart_serdes,
1472 	bge_update_serdes,
1473 	bge_check_serdes
1474 };
1475 
1476 /*
1477  * ========== Exported physical layer control routines ==========
1478  */
1479 
1480 #undef	BGE_DBG
1481 #define	BGE_DBG		BGE_DBG_PHYS	/* debug flag for this code	*/
1482 
1483 /*
1484  * Here we have to determine which media we're using (copper or serdes).
1485  * Once that's done, we can initialise the physical layer appropriately.
1486  */
1487 int
1488 bge_phys_init(bge_t *bgep)
1489 {
1490 	BGE_TRACE(("bge_phys_init($%p)", (void *)bgep));
1491 
1492 	mutex_enter(bgep->genlock);
1493 
1494 	/*
1495 	 * Probe for the (internal) PHY.  If it's not there, we'll assume
1496 	 * that this is a 5703/4S, with a SerDes interface rather than
1497 	 * a PHY. BCM5714S/BCM5715S are not supported.It are based on
1498 	 * BCM800x PHY.
1499 	 */
1500 	bgep->phy_mii_addr = 1;
1501 	if (bge_phy_probe(bgep)) {
1502 		bgep->chipid.flags &= ~CHIP_FLAG_SERDES;
1503 		bgep->physops = &copper_ops;
1504 	} else {
1505 		bgep->chipid.flags |= CHIP_FLAG_SERDES;
1506 		bgep->physops = &serdes_ops;
1507 	}
1508 
1509 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS) {
1510 		mutex_exit(bgep->genlock);
1511 		return (EIO);
1512 	}
1513 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1514 		mutex_exit(bgep->genlock);
1515 		return (EIO);
1516 	}
1517 	mutex_exit(bgep->genlock);
1518 	return (0);
1519 }
1520 
1521 /*
1522  * Reset the physical layer
1523  */
1524 void
1525 bge_phys_reset(bge_t *bgep)
1526 {
1527 	BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep));
1528 
1529 	mutex_enter(bgep->genlock);
1530 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS)
1531 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1532 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
1533 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1534 	mutex_exit(bgep->genlock);
1535 }
1536 
1537 /*
1538  * Reset and power off the physical layer.
1539  *
1540  * Another RESET should get it back to working, but it may take a few
1541  * seconds it may take a few moments to return to normal operation ...
1542  */
1543 int
1544 bge_phys_idle(bge_t *bgep)
1545 {
1546 	BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep));
1547 
1548 	ASSERT(mutex_owned(bgep->genlock));
1549 	return ((*bgep->physops->phys_restart)(bgep, B_TRUE));
1550 }
1551 
1552 /*
1553  * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities
1554  * and advertisements with the required settings as specified by the various
1555  * param_* variables that can be poked via the NDD interface.
1556  *
1557  * We always reset the PHYSICAL layer and reprogram *all* relevant registers.
1558  * This is expected to cause the link to go down, and then back up again once
1559  * the link is stable and autonegotiation (if enabled) is complete.  We should
1560  * get a link state change interrupt somewhere along the way ...
1561  *
1562  * NOTE: <genlock> must already be held by the caller
1563  */
1564 int
1565 bge_phys_update(bge_t *bgep)
1566 {
1567 	BGE_TRACE(("bge_phys_update($%p)", (void *)bgep));
1568 
1569 	ASSERT(mutex_owned(bgep->genlock));
1570 	return ((*bgep->physops->phys_update)(bgep));
1571 }
1572 
1573 #undef	BGE_DBG
1574 #define	BGE_DBG		BGE_DBG_LINK	/* debug flag for this code	*/
1575 
1576 /*
1577  * Read the link status and determine whether anything's changed ...
1578  *
1579  * This routine should be called whenever the chip flags a change
1580  * in the hardware link state.
1581  *
1582  * This routine returns B_FALSE if the link state has not changed,
1583  * returns B_TRUE when the change to the new state should be accepted.
1584  * In such a case, the param_* variables give the new hardware state,
1585  * which the caller should use to update link_state etc.
1586  *
1587  * The caller must already hold <genlock>
1588  */
1589 boolean_t
1590 bge_phys_check(bge_t *bgep)
1591 {
1592 	int32_t orig_state;
1593 	boolean_t recheck;
1594 
1595 	BGE_TRACE(("bge_phys_check($%p)", (void *)bgep));
1596 
1597 	ASSERT(mutex_owned(bgep->genlock));
1598 
1599 	orig_state = bgep->link_state;
1600 	recheck = orig_state == LINK_STATE_UNKNOWN;
1601 	recheck = (*bgep->physops->phys_check)(bgep, recheck);
1602 	if (!recheck)
1603 		return (B_FALSE);
1604 
1605 	return (B_TRUE);
1606 }
1607