xref: /titanic_50/usr/src/uts/common/io/bge/bge_mii.c (revision 07a48826732249fcd3aa8dd53c8389595e9f1fbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 /*
30  * Bit test macros, returning boolean_t values
31  */
32 #define	BIS(w, b)	(((w) & (b)) ? B_TRUE : B_FALSE)
33 #define	BIC(w, b)	(((w) & (b)) ? B_FALSE : B_TRUE)
34 #define	UPORDOWN(x)	((x) ? "up" : "down")
35 
36 /*
37  * ========== Copper (PHY) support ==========
38  */
39 
40 #define	BGE_DBG		BGE_DBG_PHY	/* debug flag for this code	*/
41 
42 /*
43  * #defines:
44  *	BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm)
45  *	feature is enabled.  We need to recheck whether this can be
46  *	enabled; at one time it seemed to interact unpleasantly with the
47  *	loopback modes.
48  *
49  *	BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is
50  *	turned off when the PHY is idled i.e. during driver suspend().
51  *	For now this is disabled because the chip doesn't seem to
52  *	resume cleanly if the PHY power is turned off.
53  */
54 #define	BGE_COPPER_WIRESPEED	B_TRUE
55 #define	BGE_COPPER_IDLEOFF	B_FALSE
56 
57 /*
58  * The arrays below can be indexed by the MODE bits from the Auxiliary
59  * Status register to determine the current speed/duplex settings.
60  */
61 static const int16_t bge_copper_link_speed[] = {
62 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
63 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
64 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
65 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
66 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
67 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
68 	1000,				/* MII_AUX_STATUS_MODE_1000_H	*/
69 	1000				/* MII_AUX_STATUS_MODE_1000_F	*/
70 };
71 
72 static const int8_t bge_copper_link_duplex[] = {
73 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
74 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
75 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
76 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
77 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
78 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
79 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_1000_H	*/
80 	LINK_DUPLEX_FULL		/* MII_AUX_STATUS_MODE_1000_F	*/
81 };
82 
83 static const int16_t bge_copper_link_speed_5906[] = {
84 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
85 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
86 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
87 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
88 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
89 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
90 	0,				/* MII_AUX_STATUS_MODE_1000_H	*/
91 	0				/* MII_AUX_STATUS_MODE_1000_F	*/
92 };
93 
94 static const int8_t bge_copper_link_duplex_5906[] = {
95 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
96 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
97 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
98 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
99 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
100 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
101 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_1000_H	*/
102 	LINK_DUPLEX_UNKNOWN		/* MII_AUX_STATUS_MODE_1000_F	*/
103 };
104 
105 #if	BGE_DEBUGGING
106 
107 static void
108 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux)
109 {
110 	uint16_t regs[32];
111 	int i;
112 
113 	ASSERT(mutex_owned(bgep->genlock));
114 
115 	for (i = 0; i < 32; ++i)
116 		switch (i) {
117 		default:
118 			regs[i] = bge_mii_get16(bgep, i);
119 			break;
120 
121 		case MII_STATUS:
122 			regs[i] = mii_status;
123 			break;
124 
125 		case MII_AUX_STATUS:
126 			regs[i] = aux;
127 			break;
128 
129 		case 0x0b: case 0x0c: case 0x0d: case 0x0e:
130 		case 0x15: case 0x16: case 0x17:
131 		case 0x1c:
132 		case 0x1f:
133 			/* reserved registers -- don't read these */
134 			regs[i] = 0;
135 			break;
136 		}
137 
138 	for (i = 0; i < 32; i += 8)
139 		BGE_DEBUG(("bge_phydump: "
140 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
141 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
142 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
143 }
144 
145 #endif	/* BGE_DEBUGGING */
146 
147 /*
148  * Basic low-level function to probe for a PHY
149  *
150  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
151  */
152 static boolean_t
153 bge_phy_probe(bge_t *bgep)
154 {
155 	uint16_t miicfg;
156 	uint32_t nicsig, niccfg;
157 
158 	BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep));
159 
160 	ASSERT(mutex_owned(bgep->genlock));
161 
162 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
163 	if (nicsig == BGE_NIC_DATA_SIG) {
164 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
165 		switch (niccfg & BGE_NIC_CFG_PHY_TYPE_MASK) {
166 		default:
167 		case BGE_NIC_CFG_PHY_TYPE_COPPER:
168 			return (B_TRUE);
169 		case BGE_NIC_CFG_PHY_TYPE_FIBER:
170 			return (B_FALSE);
171 		}
172 	} else {
173 		/*
174 		 * Read the MII_STATUS register twice, in
175 		 * order to clear any sticky bits (but they should
176 		 * have been cleared by the RESET, I think).
177 		 */
178 		miicfg = bge_mii_get16(bgep, MII_STATUS);
179 		miicfg = bge_mii_get16(bgep, MII_STATUS);
180 		BGE_DEBUG(("bge_phy_probe: status 0x%x", miicfg));
181 
182 		/*
183 		 * Now check the value read; it should have at least one bit set
184 		 * (for the device capabilities) and at least one clear (one of
185 		 * the error bits). So if we see all 0s or all 1s, there's a
186 		 * problem.  In particular, bge_mii_get16() returns all 1s if
187 		 * communications fails ...
188 		 */
189 		switch (miicfg) {
190 		case 0x0000:
191 		case 0xffff:
192 			return (B_FALSE);
193 
194 		default :
195 			return (B_TRUE);
196 		}
197 	}
198 }
199 
200 /*
201  * Basic low-level function to reset the PHY.
202  * Doesn't incorporate any special-case workarounds.
203  *
204  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
205  */
206 static boolean_t
207 bge_phy_reset(bge_t *bgep)
208 {
209 	uint16_t control;
210 	uint_t count;
211 
212 	BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep));
213 
214 	ASSERT(mutex_owned(bgep->genlock));
215 
216 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
217 		drv_usecwait(40);
218 		/* put PHY into ready state */
219 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
220 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
221 		drv_usecwait(40);
222 	}
223 
224 	/*
225 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
226 	 */
227 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET);
228 	for (count = 0; ++count < 1000; ) {
229 		drv_usecwait(5);
230 		control = bge_mii_get16(bgep, MII_CONTROL);
231 		if (BIC(control, MII_CONTROL_RESET))
232 			return (B_TRUE);
233 	}
234 
235 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
236 		(void) bge_adj_volt_5906(bgep);
237 
238 	BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control));
239 
240 	return (B_FALSE);
241 }
242 
243 /*
244  * Basic low-level function to powerdown the PHY, if supported
245  * If powerdown support is compiled out, this function does nothing.
246  */
247 static void
248 bge_phy_powerdown(bge_t *bgep)
249 {
250 	BGE_TRACE(("bge_phy_powerdown"));
251 #if	BGE_COPPER_IDLEOFF
252 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN);
253 #endif	/* BGE_COPPER_IDLEOFF */
254 }
255 
256 /*
257  * The following functions are based on sample code provided by
258  * Broadcom (20-June-2003), and implement workarounds said to be
259  * required on the early revisions of the BCM5703/4C.
260  *
261  * The registers and values used are mostly UNDOCUMENTED, and
262  * therefore don't have symbolic names ;-(
263  *
264  * Many of the comments are straight out of the Broadcom code:
265  * even where the code has been restructured, the original
266  * comments have been preserved in order to explain what these
267  * undocumented registers & values are all about ...
268  */
269 
270 static void
271 bge_phy_macro_wait(bge_t *bgep)
272 {
273 	uint_t count;
274 
275 	for (count = 100; --count; )
276 		if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0)
277 			break;
278 }
279 
280 /*
281  * PHY test data pattern:
282  *
283  * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
284  * For 5705,    each DFE TAP has 19-bits (low word 15, hi word 4)
285  * For simplicity, we check only 19-bits, so we don't have to
286  * distinguish which chip it is.
287  * the LO word contains 15 bits, make sure pattern data is < 0x7fff
288  * the HI word contains  6 bits, make sure pattern data is < 0x003f
289  */
290 #define	N_CHANNELS	4
291 #define	N_TAPS		3
292 
293 static struct {
294 	uint16_t	lo;
295 	uint16_t	hi;
296 } tap_data[N_CHANNELS][N_TAPS] = {
297 	{
298 		{ 0x5555, 0x0005 },	/* ch0, TAP 0, LO/HI pattern */
299 		{ 0x2aaa, 0x000a },	/* ch0, TAP 1, LO/HI pattern */
300 		{ 0x3456, 0x0003 }	/* ch0, TAP 2, LO/HI pattern */
301 	},
302 	{
303 		{ 0x2aaa, 0x000a },	/* ch1, TAP 0, LO/HI pattern */
304 		{ 0x3333, 0x0003 },	/* ch1, TAP 1, LO/HI pattern */
305 		{ 0x789a, 0x0005 }	/* ch1, TAP 2, LO/HI pattern */
306 	},
307 	{
308 		{ 0x5a5a, 0x0005 },	/* ch2, TAP 0, LO/HI pattern */
309 		{ 0x2a6a, 0x000a },	/* ch2, TAP 1, LO/HI pattern */
310 		{ 0x1bcd, 0x0003 }	/* ch2, TAP 2, LO/HI pattern */
311 	},
312 	{
313 		{ 0x2a5a, 0x000a },	/* ch3, TAP 0, LO/HI pattern */
314 		{ 0x33c3, 0x0003 },	/* ch3, TAP 1, LO/HI pattern */
315 		{ 0x2ef1, 0x0005 }	/* ch3, TAP 2, LO/HI pattern */
316 	}
317 };
318 
319 /*
320  * Check whether the PHY has locked up after a RESET.
321  *
322  * Returns TRUE if it did, FALSE is it's OK ;-)
323  */
324 static boolean_t
325 bge_phy_locked_up(bge_t *bgep)
326 {
327 	uint16_t dataLo;
328 	uint16_t dataHi;
329 	uint_t chan;
330 	uint_t tap;
331 
332 	/*
333 	 * Check TAPs for all 4 channels, as soon as we see a lockup
334 	 * we'll stop checking.
335 	 */
336 	for (chan = 0; chan < N_CHANNELS; ++chan) {
337 		/* Select channel and set TAP index to 0 */
338 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
339 		/* Freeze filter again just to be safe */
340 		bge_mii_put16(bgep, 0x16, 0x0002);
341 
342 		/*
343 		 * Write fixed pattern to the RAM, 3 TAPs for
344 		 * each channel, each TAP have 2 WORDs (LO/HI)
345 		 */
346 		for (tap = 0; tap < N_TAPS; ++tap) {
347 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo);
348 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi);
349 		}
350 
351 		/*
352 		 * Active PHY's Macro operation to write DFE
353 		 * TAP from RAM, and wait for Macro to complete.
354 		 */
355 		bge_mii_put16(bgep, 0x16, 0x0202);
356 		bge_phy_macro_wait(bgep);
357 
358 		/*
359 		 * Done with write phase, now begin read phase.
360 		 */
361 
362 		/* Select channel and set TAP index to 0 */
363 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
364 
365 		/*
366 		 * Active PHY's Macro operation to load DFE
367 		 * TAP to RAM, and wait for Macro to complete
368 		 */
369 		bge_mii_put16(bgep, 0x16, 0x0082);
370 		bge_phy_macro_wait(bgep);
371 
372 		/* Enable "pre-fetch" */
373 		bge_mii_put16(bgep, 0x16, 0x0802);
374 		bge_phy_macro_wait(bgep);
375 
376 		/*
377 		 * Read back the TAP values.  3 TAPs for each
378 		 * channel, each TAP have 2 WORDs (LO/HI)
379 		 */
380 		for (tap = 0; tap < N_TAPS; ++tap) {
381 			/*
382 			 * Read Lo/Hi then wait for 'done' is faster.
383 			 * For DFE TAP, the HI word contains 6 bits,
384 			 * LO word contains 15 bits
385 			 */
386 			dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff;
387 			dataHi = bge_mii_get16(bgep, 0x15) & 0x003f;
388 			bge_phy_macro_wait(bgep);
389 
390 			/*
391 			 * Check if what we wrote is what we read back.
392 			 * If failed, then the PHY is locked up, we need
393 			 * to do PHY reset again
394 			 */
395 			if (dataLo != tap_data[chan][tap].lo)
396 				return (B_TRUE);	/* wedged!	*/
397 
398 			if (dataHi != tap_data[chan][tap].hi)
399 				return (B_TRUE);	/* wedged!	*/
400 		}
401 	}
402 
403 	/*
404 	 * The PHY isn't locked up ;-)
405 	 */
406 	return (B_FALSE);
407 }
408 
409 /*
410  * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782.
411  * Tries up to 5 times to recover from failure to reset or PHY lockup.
412  *
413  * Returns TRUE on success, FALSE if there's an unrecoverable problem
414  */
415 static boolean_t
416 bge_phy_reset_and_check(bge_t *bgep)
417 {
418 	boolean_t reset_success;
419 	boolean_t phy_locked;
420 	uint16_t extctrl;
421 	uint_t retries;
422 
423 	for (retries = 0; retries < 5; ++retries) {
424 		/* Issue a phy reset, and wait for reset to complete */
425 		/* Assuming reset is successful first */
426 		reset_success = bge_phy_reset(bgep);
427 
428 		/*
429 		 * Now go check the DFE TAPs to see if locked up, but
430 		 * first, we need to set up PHY so we can read DFE
431 		 * TAPs.
432 		 */
433 
434 		/*
435 		 * Disable Transmitter and Interrupt, while we play
436 		 * with the PHY registers, so the link partner won't
437 		 * see any strange data and the Driver won't see any
438 		 * interrupts.
439 		 */
440 		extctrl = bge_mii_get16(bgep, 0x10);
441 		bge_mii_put16(bgep, 0x10, extctrl | 0x3000);
442 
443 		/* Setup Full-Duplex, 1000 mbps */
444 		bge_mii_put16(bgep, 0x0, 0x0140);
445 
446 		/* Set to Master mode */
447 		bge_mii_put16(bgep, 0x9, 0x1800);
448 
449 		/* Enable SM_DSP_CLOCK & 6dB */
450 		bge_mii_put16(bgep, 0x18, 0x0c00);	/* "the ADC fix" */
451 
452 		/* Work-arounds */
453 		bge_mii_put16(bgep, 0x17, 0x201f);
454 		bge_mii_put16(bgep, 0x15, 0x2aaa);
455 
456 		/* More workarounds */
457 		bge_mii_put16(bgep, 0x17, 0x000a);
458 		bge_mii_put16(bgep, 0x15, 0x0323);	/* "the Gamma fix" */
459 
460 		/* Blocks the PHY control access */
461 		bge_mii_put16(bgep, 0x17, 0x8005);
462 		bge_mii_put16(bgep, 0x15, 0x0800);
463 
464 		/* Test whether PHY locked up ;-( */
465 		phy_locked = bge_phy_locked_up(bgep);
466 		if (reset_success && !phy_locked)
467 			break;
468 
469 		/*
470 		 * Some problem here ... log it & retry
471 		 */
472 		if (!reset_success)
473 			BGE_REPORT((bgep, "PHY didn't reset!"));
474 		if (phy_locked)
475 			BGE_REPORT((bgep, "PHY locked up!"));
476 	}
477 
478 	/* Remove block phy control */
479 	bge_mii_put16(bgep, 0x17, 0x8005);
480 	bge_mii_put16(bgep, 0x15, 0x0000);
481 
482 	/* Unfreeze DFE TAP filter for all channels */
483 	bge_mii_put16(bgep, 0x17, 0x8200);
484 	bge_mii_put16(bgep, 0x16, 0x0000);
485 
486 	/* Restore PHY back to operating state */
487 	bge_mii_put16(bgep, 0x18, 0x0400);
488 
489 	/* Enable transmitter and interrupt */
490 	extctrl = bge_mii_get16(bgep, 0x10);
491 	bge_mii_put16(bgep, 0x10, extctrl & ~0x3000);
492 
493 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
494 		(void) bge_adj_volt_5906(bgep);
495 
496 	if (!reset_success)
497 		bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
498 	else if (phy_locked)
499 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
500 	return (reset_success && !phy_locked);
501 }
502 
503 static void
504 bge_phy_tweak_gmii(bge_t *bgep)
505 {
506 	/* Tweak GMII timing */
507 	bge_mii_put16(bgep, 0x1c, 0x8d68);
508 	bge_mii_put16(bgep, 0x1c, 0x8d68);
509 }
510 
511 /* Bit Error Rate reduction fix */
512 static void
513 bge_phy_bit_err_fix(bge_t *bgep)
514 {
515 	bge_mii_put16(bgep, 0x18, 0x0c00);
516 	bge_mii_put16(bgep, 0x17, 0x000a);
517 	bge_mii_put16(bgep, 0x15, 0x310b);
518 	bge_mii_put16(bgep, 0x17, 0x201f);
519 	bge_mii_put16(bgep, 0x15, 0x9506);
520 	bge_mii_put16(bgep, 0x17, 0x401f);
521 	bge_mii_put16(bgep, 0x15, 0x14e2);
522 	bge_mii_put16(bgep, 0x18, 0x0400);
523 }
524 
525 /*
526  * End of Broadcom-derived workaround code				*
527  */
528 
529 static int
530 bge_restart_copper(bge_t *bgep, boolean_t powerdown)
531 {
532 	uint16_t phy_status;
533 	boolean_t reset_ok;
534 	uint16_t extctrl, auxctrl;
535 
536 	BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown));
537 
538 	ASSERT(mutex_owned(bgep->genlock));
539 
540 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
541 	default:
542 		/*
543 		 * Shouldn't happen; it means we don't recognise this chip.
544 		 * It's probably a new one, so we'll try our best anyway ...
545 		 */
546 	case MHCR_CHIP_ASIC_REV_5703:
547 	case MHCR_CHIP_ASIC_REV_5704:
548 	case MHCR_CHIP_ASIC_REV_5705:
549 	case MHCR_CHIP_ASIC_REV_5752:
550 	case MHCR_CHIP_ASIC_REV_5714:
551 	case MHCR_CHIP_ASIC_REV_5715:
552 		reset_ok = bge_phy_reset_and_check(bgep);
553 		break;
554 
555 	case MHCR_CHIP_ASIC_REV_5906:
556 	case MHCR_CHIP_ASIC_REV_5700:
557 	case MHCR_CHIP_ASIC_REV_5701:
558 	case MHCR_CHIP_ASIC_REV_5723:
559 	case MHCR_CHIP_ASIC_REV_5721_5751:
560 		/*
561 		 * Just a plain reset; the "check" code breaks these chips
562 		 */
563 		reset_ok = bge_phy_reset(bgep);
564 		if (!reset_ok)
565 			bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
566 		break;
567 	}
568 	if (!reset_ok) {
569 		BGE_REPORT((bgep, "PHY failed to reset correctly"));
570 		return (DDI_FAILURE);
571 	}
572 
573 	/*
574 	 * Step 5: disable WOL (not required after RESET)
575 	 *
576 	 * Step 6: refer to errata
577 	 */
578 	switch (bgep->chipid.asic_rev) {
579 	default:
580 		break;
581 
582 	case MHCR_CHIP_REV_5704_A0:
583 		bge_phy_tweak_gmii(bgep);
584 		break;
585 	}
586 
587 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
588 	case MHCR_CHIP_ASIC_REV_5705:
589 	case MHCR_CHIP_ASIC_REV_5721_5751:
590 		bge_phy_bit_err_fix(bgep);
591 		break;
592 	}
593 
594 	if (bgep->chipid.default_mtu > BGE_DEFAULT_MTU) {
595 		/* Set the GMII Fifo Elasticity to high latency */
596 		extctrl = bge_mii_get16(bgep, 0x10);
597 		bge_mii_put16(bgep, 0x10, extctrl | 0x1);
598 
599 		/* Allow reception of extended length packets */
600 		bge_mii_put16(bgep, MII_AUX_CONTROL, 0x0007);
601 		auxctrl = bge_mii_get16(bgep, MII_AUX_CONTROL);
602 		auxctrl |= 0x4000;
603 		bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
604 	}
605 
606 	/*
607 	 * Step 7: read the MII_INTR_STATUS register twice,
608 	 * in order to clear any sticky bits (but they should
609 	 * have been cleared by the RESET, I think), and we're
610 	 * not using PHY interrupts anyway.
611 	 *
612 	 * Step 8: enable the PHY to interrupt on link status
613 	 * change (not required)
614 	 *
615 	 * Step 9: configure PHY LED Mode - not applicable?
616 	 *
617 	 * Step 10: read the MII_STATUS register twice, in
618 	 * order to clear any sticky bits (but they should
619 	 * have been cleared by the RESET, I think).
620 	 */
621 	phy_status = bge_mii_get16(bgep, MII_STATUS);
622 	phy_status = bge_mii_get16(bgep, MII_STATUS);
623 	BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status));
624 
625 	/*
626 	 * Finally, shut down the PHY, if required
627 	 */
628 	if (powerdown)
629 		bge_phy_powerdown(bgep);
630 	return (DDI_SUCCESS);
631 }
632 
633 /*
634  * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities
635  * and advertisements with the required settings as specified by the various
636  * param_* variables that can be poked via the NDD interface.
637  *
638  * We always reset the PHY and reprogram *all* the relevant registers,
639  * not just those changed.  This should cause the link to go down, and then
640  * back up again once the link is stable and autonegotiation (if enabled)
641  * is complete.  We should get a link state change interrupt somewhere along
642  * the way ...
643  *
644  * NOTE: <genlock> must already be held by the caller
645  */
646 static int
647 bge_update_copper(bge_t *bgep)
648 {
649 	boolean_t adv_autoneg;
650 	boolean_t adv_pause;
651 	boolean_t adv_asym_pause;
652 	boolean_t adv_1000fdx;
653 	boolean_t adv_1000hdx;
654 	boolean_t adv_100fdx;
655 	boolean_t adv_100hdx;
656 	boolean_t adv_10fdx;
657 	boolean_t adv_10hdx;
658 
659 	uint16_t control;
660 	uint16_t gigctrl;
661 	uint16_t auxctrl;
662 	uint16_t anar;
663 
664 	BGE_TRACE(("bge_update_copper($%p)", (void *)bgep));
665 
666 	ASSERT(mutex_owned(bgep->genlock));
667 
668 	BGE_DEBUG(("bge_update_copper: autoneg %d "
669 	    "pause %d asym_pause %d "
670 	    "1000fdx %d 1000hdx %d "
671 	    "100fdx %d 100hdx %d "
672 	    "10fdx %d 10hdx %d ",
673 	    bgep->param_adv_autoneg,
674 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
675 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
676 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
677 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
678 
679 	control = gigctrl = auxctrl = anar = 0;
680 
681 	/*
682 	 * PHY settings are normally based on the param_* variables,
683 	 * but if any loopback mode is in effect, that takes precedence.
684 	 *
685 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
686 	 * and External loopback at a variety of speeds (with a special
687 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
688 	 * is turned ON, and the speed/mastership is forced.
689 	 */
690 	switch (bgep->param_loop_mode) {
691 	case BGE_LOOP_NONE:
692 	default:
693 		adv_autoneg = bgep->param_adv_autoneg;
694 		adv_pause = bgep->param_adv_pause;
695 		adv_asym_pause = bgep->param_adv_asym_pause;
696 		adv_1000fdx = bgep->param_adv_1000fdx;
697 		adv_1000hdx = bgep->param_adv_1000hdx;
698 		adv_100fdx = bgep->param_adv_100fdx;
699 		adv_100hdx = bgep->param_adv_100hdx;
700 		adv_10fdx = bgep->param_adv_10fdx;
701 		adv_10hdx = bgep->param_adv_10hdx;
702 		break;
703 
704 	case BGE_LOOP_EXTERNAL_1000:
705 	case BGE_LOOP_EXTERNAL_100:
706 	case BGE_LOOP_EXTERNAL_10:
707 	case BGE_LOOP_INTERNAL_PHY:
708 	case BGE_LOOP_INTERNAL_MAC:
709 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
710 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
711 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
712 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
713 
714 		switch (bgep->param_loop_mode) {
715 		case BGE_LOOP_EXTERNAL_1000:
716 			bgep->param_link_speed = 1000;
717 			adv_1000fdx = B_TRUE;
718 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
719 			gigctrl |= MII_MSCONTROL_MANUAL;
720 			gigctrl |= MII_MSCONTROL_MASTER;
721 			break;
722 
723 		case BGE_LOOP_EXTERNAL_100:
724 			bgep->param_link_speed = 100;
725 			adv_100fdx = B_TRUE;
726 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
727 			break;
728 
729 		case BGE_LOOP_EXTERNAL_10:
730 			bgep->param_link_speed = 10;
731 			adv_10fdx = B_TRUE;
732 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
733 			break;
734 
735 		case BGE_LOOP_INTERNAL_PHY:
736 			bgep->param_link_speed = 1000;
737 			adv_1000fdx = B_TRUE;
738 			control = MII_CONTROL_LOOPBACK;
739 			break;
740 
741 		case BGE_LOOP_INTERNAL_MAC:
742 			bgep->param_link_speed = 1000;
743 			adv_1000fdx = B_TRUE;
744 			break;
745 		}
746 	}
747 
748 	BGE_DEBUG(("bge_update_copper: autoneg %d "
749 	    "pause %d asym_pause %d "
750 	    "1000fdx %d 1000hdx %d "
751 	    "100fdx %d 100hdx %d "
752 	    "10fdx %d 10hdx %d ",
753 	    adv_autoneg,
754 	    adv_pause, adv_asym_pause,
755 	    adv_1000fdx, adv_1000hdx,
756 	    adv_100fdx, adv_100hdx,
757 	    adv_10fdx, adv_10hdx));
758 
759 	/*
760 	 * We should have at least one technology capability set;
761 	 * if not, we select a default of 1000Mb/s full-duplex
762 	 */
763 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
764 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
765 		adv_1000fdx = B_TRUE;
766 
767 	/*
768 	 * Now transform the adv_* variables into the proper settings
769 	 * of the PHY registers ...
770 	 *
771 	 * If autonegotiation is (now) enabled, we want to trigger
772 	 * a new autonegotiation cycle once the PHY has been
773 	 * programmed with the capabilities to be advertised.
774 	 */
775 	if (adv_autoneg)
776 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
777 
778 	if (adv_1000fdx)
779 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
780 	else if (adv_1000hdx)
781 		control |= MII_CONTROL_1GB;
782 	else if (adv_100fdx)
783 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
784 	else if (adv_100hdx)
785 		control |= MII_CONTROL_100MB;
786 	else if (adv_10fdx)
787 		control |= MII_CONTROL_FDUPLEX;
788 	else if (adv_10hdx)
789 		control |= 0;
790 	else
791 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
792 
793 	if (adv_1000fdx)
794 		gigctrl |= MII_MSCONTROL_1000T_FD;
795 	if (adv_1000hdx)
796 		gigctrl |= MII_MSCONTROL_1000T;
797 
798 	if (adv_100fdx)
799 		anar |= MII_ABILITY_100BASE_TX_FD;
800 	if (adv_100hdx)
801 		anar |= MII_ABILITY_100BASE_TX;
802 	if (adv_10fdx)
803 		anar |= MII_ABILITY_10BASE_T_FD;
804 	if (adv_10hdx)
805 		anar |= MII_ABILITY_10BASE_T;
806 
807 	if (adv_pause)
808 		anar |= MII_ABILITY_PAUSE;
809 	if (adv_asym_pause)
810 		anar |= MII_ABILITY_ASMPAUSE;
811 
812 	/*
813 	 * Munge in any other fixed bits we require ...
814 	 */
815 	anar |= MII_AN_SELECTOR_8023;
816 	auxctrl |= MII_AUX_CTRL_NORM_TX_MODE;
817 	auxctrl |= MII_AUX_CTRL_NORMAL;
818 
819 	/*
820 	 * Restart the PHY and write the new values.  Note the
821 	 * time, so that we can say whether subsequent link state
822 	 * changes can be attributed to our reprogramming the PHY
823 	 */
824 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) == DDI_FAILURE)
825 		return (DDI_FAILURE);
826 	bge_mii_put16(bgep, MII_AN_ADVERT, anar);
827 	bge_mii_put16(bgep, MII_CONTROL, control);
828 	if (auxctrl & MII_AUX_CTRL_NORM_EXT_LOOPBACK)
829 		bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
830 	bge_mii_put16(bgep, MII_MSCONTROL, gigctrl);
831 
832 	BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar));
833 	BGE_DEBUG(("bge_update_copper: control <- 0x%x", control));
834 	BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl));
835 	BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl));
836 
837 #if	BGE_COPPER_WIRESPEED
838 	/*
839 	 * Enable the 'wire-speed' feature, if the chip supports it
840 	 * and we haven't got (any) loopback mode selected.
841 	 */
842 	switch (bgep->chipid.device) {
843 	case DEVICE_ID_5700:
844 	case DEVICE_ID_5700x:
845 	case DEVICE_ID_5705C:
846 	case DEVICE_ID_5782:
847 		/*
848 		 * These chips are known or assumed not to support it
849 		 */
850 		break;
851 
852 	default:
853 		/*
854 		 * All other Broadcom chips are expected to support it.
855 		 */
856 		if (bgep->param_loop_mode == BGE_LOOP_NONE)
857 			bge_mii_put16(bgep, MII_AUX_CONTROL,
858 			    MII_AUX_CTRL_MISC_WRITE_ENABLE |
859 			    MII_AUX_CTRL_MISC_WIRE_SPEED |
860 			    MII_AUX_CTRL_MISC);
861 		break;
862 	}
863 #endif	/* BGE_COPPER_WIRESPEED */
864 	return (DDI_SUCCESS);
865 }
866 
867 static boolean_t
868 bge_check_copper(bge_t *bgep, boolean_t recheck)
869 {
870 	uint32_t emac_status;
871 	uint16_t mii_status;
872 	uint16_t aux;
873 	uint_t mode;
874 	boolean_t linkup;
875 
876 	/*
877 	 * Step 10: read the status from the PHY (which is self-clearing
878 	 * on read!); also read & clear the main (Ethernet) MAC status
879 	 * (the relevant bits of this are write-one-to-clear).
880 	 */
881 	mii_status = bge_mii_get16(bgep, MII_STATUS);
882 	emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
883 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
884 
885 	BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x "
886 	    "(was 0x%x), Ethernet MAC status 0x%x",
887 	    bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status,
888 	    bgep->phy_gen_status, emac_status));
889 
890 	/*
891 	 * If the PHY status hasn't changed since last we looked, and
892 	 * we not forcing a recheck (i.e. the link state was already
893 	 * known), there's nothing to do.
894 	 */
895 	if (mii_status == bgep->phy_gen_status && !recheck)
896 		return (B_FALSE);
897 
898 	do {
899 		/*
900 		 * Step 11: read AUX STATUS register to find speed/duplex
901 		 */
902 		aux = bge_mii_get16(bgep, MII_AUX_STATUS);
903 		BGE_CDB(bge_phydump, (bgep, mii_status, aux));
904 
905 		/*
906 		 * We will only consider the link UP if all the readings
907 		 * are consistent and give meaningful results ...
908 		 */
909 		mode = aux & MII_AUX_STATUS_MODE_MASK;
910 		mode >>= MII_AUX_STATUS_MODE_SHIFT;
911 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
912 			linkup = BIS(aux, MII_AUX_STATUS_LINKUP);
913 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
914 		} else {
915 			linkup = bge_copper_link_speed[mode] > 0;
916 			linkup &= bge_copper_link_duplex[mode] !=
917 			    LINK_DUPLEX_UNKNOWN;
918 			linkup &= BIS(aux, MII_AUX_STATUS_LINKUP);
919 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
920 		}
921 
922 		BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x "
923 		    "=> mode %d (%s)",
924 		    mii_status, aux,
925 		    mode, UPORDOWN(linkup)));
926 
927 		/*
928 		 * Record current register values, then reread status
929 		 * register & loop until it stabilises ...
930 		 */
931 		bgep->phy_aux_status = aux;
932 		bgep->phy_gen_status = mii_status;
933 		mii_status = bge_mii_get16(bgep, MII_STATUS);
934 	} while (mii_status != bgep->phy_gen_status);
935 
936 	/*
937 	 * Assume very little ...
938 	 */
939 	bgep->param_lp_autoneg = B_FALSE;
940 	bgep->param_lp_1000fdx = B_FALSE;
941 	bgep->param_lp_1000hdx = B_FALSE;
942 	bgep->param_lp_100fdx = B_FALSE;
943 	bgep->param_lp_100hdx = B_FALSE;
944 	bgep->param_lp_10fdx = B_FALSE;
945 	bgep->param_lp_10hdx = B_FALSE;
946 	bgep->param_lp_pause = B_FALSE;
947 	bgep->param_lp_asym_pause = B_FALSE;
948 	bgep->param_link_autoneg = B_FALSE;
949 	bgep->param_link_tx_pause = B_FALSE;
950 	if (bgep->param_adv_autoneg)
951 		bgep->param_link_rx_pause = B_FALSE;
952 	else
953 		bgep->param_link_rx_pause = bgep->param_adv_pause;
954 
955 	/*
956 	 * Discover all the link partner's abilities.
957 	 * These are scattered through various registers ...
958 	 */
959 	if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) {
960 		bgep->param_lp_autoneg = B_TRUE;
961 		bgep->param_link_autoneg = B_TRUE;
962 		bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE);
963 		bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE);
964 
965 		aux = bge_mii_get16(bgep, MII_MSSTATUS);
966 		bgep->param_lp_1000fdx = BIS(aux, MII_MSSTATUS_LP1000T_FD);
967 		bgep->param_lp_1000hdx = BIS(aux, MII_MSSTATUS_LP1000T);
968 
969 		aux = bge_mii_get16(bgep, MII_AN_LPABLE);
970 		bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD);
971 		bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX);
972 		bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD);
973 		bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T);
974 		bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE);
975 		bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASMPAUSE);
976 	}
977 
978 	/*
979 	 * Step 12: update ndd-visible state parameters, BUT!
980 	 * we don't transfer the new state to <link_state> just yet;
981 	 * instead we mark the <link_state> as UNKNOWN, and our caller
982 	 * will resolve it once the status has stopped changing and
983 	 * been stable for several seconds.
984 	 */
985 	BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d",
986 	    UPORDOWN(bgep->param_link_up),
987 	    bgep->param_link_speed,
988 	    bgep->param_link_duplex));
989 
990 	if (!linkup)
991 		mode = MII_AUX_STATUS_MODE_NONE;
992 	bgep->param_link_up = linkup;
993 	bgep->link_state = LINK_STATE_UNKNOWN;
994 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
995 		if (bgep->phy_aux_status & MII_AUX_STATUS_NEG_ENABLED_5906) {
996 			bgep->param_link_speed =
997 			    bge_copper_link_speed_5906[mode];
998 			bgep->param_link_duplex =
999 			    bge_copper_link_duplex_5906[mode];
1000 		} else {
1001 			bgep->param_link_speed = (bgep->phy_aux_status &
1002 			    MII_AUX_STATUS_SPEED_IND_5906) ?  100 : 10;
1003 			bgep->param_link_duplex = (bgep->phy_aux_status &
1004 			    MII_AUX_STATUS_DUPLEX_IND_5906) ? LINK_DUPLEX_FULL :
1005 			    LINK_DUPLEX_HALF;
1006 		}
1007 	} else {
1008 		bgep->param_link_speed = bge_copper_link_speed[mode];
1009 		bgep->param_link_duplex = bge_copper_link_duplex[mode];
1010 	}
1011 
1012 	BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d",
1013 	    UPORDOWN(bgep->param_link_up),
1014 	    bgep->param_link_speed,
1015 	    bgep->param_link_duplex));
1016 
1017 	return (B_TRUE);
1018 }
1019 
1020 static const phys_ops_t copper_ops = {
1021 	bge_restart_copper,
1022 	bge_update_copper,
1023 	bge_check_copper
1024 };
1025 
1026 
1027 /*
1028  * ========== SerDes support ==========
1029  */
1030 
1031 #undef	BGE_DBG
1032 #define	BGE_DBG		BGE_DBG_SERDES	/* debug flag for this code	*/
1033 
1034 /*
1035  * Reinitialise the SerDes interface.  Note that it normally powers
1036  * up in the disabled state, so we need to explicitly activate it.
1037  */
1038 static int
1039 bge_restart_serdes(bge_t *bgep, boolean_t powerdown)
1040 {
1041 	uint32_t macmode;
1042 
1043 	BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown));
1044 
1045 	ASSERT(mutex_owned(bgep->genlock));
1046 
1047 	/*
1048 	 * Ensure that the main Ethernet MAC mode register is programmed
1049 	 * appropriately for the SerDes interface ...
1050 	 */
1051 	macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
1052 	if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1053 		macmode |= ETHERNET_MODE_LINK_POLARITY;
1054 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1055 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
1056 	} else {
1057 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
1058 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1059 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
1060 	}
1061 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
1062 
1063 	/*
1064 	 * Ensure that loopback is OFF and comma detection is enabled.  Then
1065 	 * disable the SerDes output (the first time through, it may/will
1066 	 * already be disabled).  If we're shutting down, leave it disabled.
1067 	 */
1068 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK);
1069 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT);
1070 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1071 	if (powerdown)
1072 		return (DDI_SUCCESS);
1073 
1074 	/*
1075 	 * Otherwise, pause, (re-)enable the SerDes output, and send
1076 	 * all-zero config words in order to force autoneg restart.
1077 	 * Invalidate the saved "link partners received configs", as
1078 	 * we're starting over ...
1079 	 */
1080 	drv_usecwait(10000);
1081 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1082 	bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0);
1083 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1084 	drv_usecwait(10);
1085 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1086 	bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR;
1087 	bgep->serdes_status = ~0U;
1088 	return (DDI_SUCCESS);
1089 }
1090 
1091 /*
1092  * Synchronise the SerDes speed/duplex/autonegotiation capabilities and
1093  * advertisements with the required settings as specified by the various
1094  * param_* variables that can be poked via the NDD interface.
1095  *
1096  * We always reinitalise the SerDes; this should cause the link to go down,
1097  * and then back up again once the link is stable and autonegotiation
1098  * (if enabled) is complete.  We should get a link state change interrupt
1099  * somewhere along the way ...
1100  *
1101  * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the
1102  * param_* variables relating to lower speeds are ignored.
1103  *
1104  * NOTE: <genlock> must already be held by the caller
1105  */
1106 static int
1107 bge_update_serdes(bge_t *bgep)
1108 {
1109 	boolean_t adv_autoneg;
1110 	boolean_t adv_pause;
1111 	boolean_t adv_asym_pause;
1112 	boolean_t adv_1000fdx;
1113 	boolean_t adv_1000hdx;
1114 
1115 	uint32_t serdes;
1116 	uint32_t advert;
1117 
1118 	BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep));
1119 
1120 	ASSERT(mutex_owned(bgep->genlock));
1121 
1122 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1123 	    "pause %d asym_pause %d "
1124 	    "1000fdx %d 1000hdx %d "
1125 	    "100fdx %d 100hdx %d "
1126 	    "10fdx %d 10hdx %d ",
1127 	    bgep->param_adv_autoneg,
1128 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
1129 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
1130 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
1131 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
1132 
1133 	serdes = advert = 0;
1134 
1135 	/*
1136 	 * SerDes settings are normally based on the param_* variables,
1137 	 * but if any loopback mode is in effect, that takes precedence.
1138 	 *
1139 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
1140 	 * and External loopback at a variety of speeds (with a special
1141 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
1142 	 * is turned ON, and the speed/mastership is forced.
1143 	 *
1144 	 * Note: for the SerDes interface, "PHY" internal loopback is
1145 	 * interpreted as SerDes internal loopback, and all external
1146 	 * loopback modes are treated equivalently, as 1Gb/external.
1147 	 */
1148 	switch (bgep->param_loop_mode) {
1149 	case BGE_LOOP_NONE:
1150 	default:
1151 		adv_autoneg = bgep->param_adv_autoneg;
1152 		adv_pause = bgep->param_adv_pause;
1153 		adv_asym_pause = bgep->param_adv_asym_pause;
1154 		adv_1000fdx = bgep->param_adv_1000fdx;
1155 		adv_1000hdx = bgep->param_adv_1000hdx;
1156 		break;
1157 
1158 	case BGE_LOOP_INTERNAL_PHY:
1159 		serdes |= SERDES_CONTROL_TBI_LOOPBACK;
1160 		/* FALLTHRU */
1161 	case BGE_LOOP_INTERNAL_MAC:
1162 	case BGE_LOOP_EXTERNAL_1000:
1163 	case BGE_LOOP_EXTERNAL_100:
1164 	case BGE_LOOP_EXTERNAL_10:
1165 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
1166 		adv_1000fdx = B_TRUE;
1167 		adv_1000hdx = B_FALSE;
1168 		break;
1169 	}
1170 
1171 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1172 	    "pause %d asym_pause %d "
1173 	    "1000fdx %d 1000hdx %d ",
1174 	    adv_autoneg,
1175 	    adv_pause, adv_asym_pause,
1176 	    adv_1000fdx, adv_1000hdx));
1177 
1178 	/*
1179 	 * We should have at least one gigabit technology capability
1180 	 * set; if not, we select a default of 1000Mb/s full-duplex
1181 	 */
1182 	if (!adv_1000fdx && !adv_1000hdx)
1183 		adv_1000fdx = B_TRUE;
1184 
1185 	/*
1186 	 * Now transform the adv_* variables into the proper settings
1187 	 * of the SerDes registers ...
1188 	 *
1189 	 * If autonegotiation is (now) not enabled, pretend it's been
1190 	 * done and failed ...
1191 	 */
1192 	if (!adv_autoneg)
1193 		advert |= AUTONEG_CODE_FAULT_ANEG_ERR;
1194 
1195 	if (adv_1000fdx) {
1196 		advert |= AUTONEG_CODE_FULL_DUPLEX;
1197 		bgep->param_adv_1000fdx = adv_1000fdx;
1198 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
1199 		bgep->param_link_speed = 1000;
1200 	}
1201 	if (adv_1000hdx) {
1202 		advert |= AUTONEG_CODE_HALF_DUPLEX;
1203 		bgep->param_adv_1000hdx = adv_1000hdx;
1204 		bgep->param_link_duplex = LINK_DUPLEX_HALF;
1205 		bgep->param_link_speed = 1000;
1206 	}
1207 
1208 	if (adv_pause)
1209 		advert |= AUTONEG_CODE_PAUSE;
1210 	if (adv_asym_pause)
1211 		advert |= AUTONEG_CODE_ASYM_PAUSE;
1212 
1213 	/*
1214 	 * Restart the SerDes and write the new values.  Note the
1215 	 * time, so that we can say whether subsequent link state
1216 	 * changes can be attributed to our reprogramming the SerDes
1217 	 */
1218 	bgep->serdes_advert = advert;
1219 	(void) bge_restart_serdes(bgep, B_FALSE);
1220 	bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes);
1221 
1222 	BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x",
1223 	    serdes, advert));
1224 	return (DDI_SUCCESS);
1225 }
1226 
1227 /*
1228  * Bare-minimum autoneg protocol
1229  *
1230  * This code is only called when the link is up and we're receiving config
1231  * words, which implies that the link partner wants to autonegotiate
1232  * (otherwise, we wouldn't see configs and wouldn't reach this code).
1233  */
1234 static void
1235 bge_autoneg_serdes(bge_t *bgep)
1236 {
1237 	boolean_t ack;
1238 
1239 	bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG);
1240 	ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE);
1241 
1242 	if (!ack) {
1243 		/*
1244 		 * Phase 1: after SerDes reset, we send a few zero configs
1245 		 * but then stop.  Here the partner is sending configs, but
1246 		 * not ACKing ours; we assume that's 'cos we're not sending
1247 		 * any.  So here we send ours, with ACK already set.
1248 		 */
1249 		bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG,
1250 		    bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE);
1251 		bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
1252 		    ETHERNET_MODE_SEND_CFGS);
1253 	} else {
1254 		/*
1255 		 * Phase 2: partner has ACKed our configs, so now we can
1256 		 * stop sending; once our partner also stops sending, we
1257 		 * can resolve the Tx/Rx configs.
1258 		 */
1259 		bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG,
1260 		    ETHERNET_MODE_SEND_CFGS);
1261 	}
1262 
1263 	BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x",
1264 	    bgep->serdes_lpadv,
1265 	    ack ? "stop" : "send",
1266 	    bgep->serdes_advert));
1267 }
1268 
1269 static boolean_t
1270 bge_check_serdes(bge_t *bgep, boolean_t recheck)
1271 {
1272 	uint32_t emac_status;
1273 	uint32_t lpadv;
1274 	boolean_t linkup;
1275 	boolean_t linkup_old = bgep->param_link_up;
1276 
1277 	for (;;) {
1278 		/*
1279 		 * Step 10: BCM5714S, BCM5715S only
1280 		 * Don't call function bge_autoneg_serdes() as
1281 		 * RX_1000BASEX_AUTONEG_REG (0x0448) is not applicable
1282 		 * to BCM5705, BCM5788, BCM5721, BCM5751, BCM5752,
1283 		 * BCM5714, and BCM5715 devices.
1284 		 */
1285 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1286 			emac_status =  bge_reg_get32(bgep, MI_STATUS_REG);
1287 			linkup = BIS(emac_status, MI_STATUS_LINK);
1288 			bgep->serdes_status = emac_status;
1289 			if ((linkup && linkup_old) ||
1290 			    (!linkup && !linkup_old)) {
1291 				emac_status &= ~ETHERNET_STATUS_LINK_CHANGED;
1292 				emac_status &= ~ETHERNET_STATUS_RECEIVING_CFG;
1293 				break;
1294 			}
1295 			emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1296 			emac_status |= ETHERNET_STATUS_RECEIVING_CFG;
1297 			if (linkup)
1298 				linkup_old = B_TRUE;
1299 			else
1300 				linkup_old = B_FALSE;
1301 			recheck = B_TRUE;
1302 		} else {
1303 			/*
1304 			 * Step 10: others
1305 			 * read & clear the main (Ethernet) MAC status
1306 			 * (the relevant bits of this are write-one-to-clear).
1307 			 */
1308 			emac_status = bge_reg_get32(bgep,
1309 			    ETHERNET_MAC_STATUS_REG);
1310 			bge_reg_put32(bgep,
1311 			    ETHERNET_MAC_STATUS_REG, emac_status);
1312 
1313 			BGE_DEBUG(("bge_check_serdes: link %d/%s, "
1314 			    "MAC status 0x%x (was 0x%x)",
1315 			    bgep->link_state, UPORDOWN(bgep->param_link_up),
1316 			    emac_status, bgep->serdes_status));
1317 
1318 			/*
1319 			 * We will only consider the link UP if all the readings
1320 			 * are consistent and give meaningful results ...
1321 			 */
1322 			bgep->serdes_status = emac_status;
1323 			linkup = BIS(emac_status,
1324 			    ETHERNET_STATUS_SIGNAL_DETECT);
1325 			linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED);
1326 
1327 			/*
1328 			 * Now some fiddling with the interpretation:
1329 			 *	if there's been an error at the PCS level, treat
1330 			 *	it as a link change (the h/w doesn't do this)
1331 			 *
1332 			 *	if there's been a change, but it's only a PCS
1333 			 *	sync change (not a config change), AND the link
1334 			 *	already was & is still UP, then ignore the
1335 			 *	change
1336 			 */
1337 			if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR))
1338 				emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1339 			else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED))
1340 				if (bgep->param_link_up && linkup)
1341 					emac_status &=
1342 					    ~ETHERNET_STATUS_LINK_CHANGED;
1343 
1344 			BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s",
1345 			    bgep->serdes_status, emac_status,
1346 			    UPORDOWN(linkup)));
1347 
1348 			/*
1349 			 * If we're receiving configs, run the autoneg protocol
1350 			 */
1351 			if (linkup && BIS(emac_status,
1352 			    ETHERNET_STATUS_RECEIVING_CFG))
1353 				bge_autoneg_serdes(bgep);
1354 
1355 			/*
1356 			 * If the SerDes status hasn't changed, we're done ...
1357 			 */
1358 			if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED))
1359 				break;
1360 
1361 			/*
1362 			 * Go round again until we no longer see a change ...
1363 			 */
1364 			recheck = B_TRUE;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * If we're not forcing a recheck (i.e. the link state was already
1370 	 * known), and we didn't see the hardware flag a change, there's
1371 	 * no more to do (and we tell the caller nothing happened).
1372 	 */
1373 	if (!recheck)
1374 		return (B_FALSE);
1375 
1376 	/*
1377 	 * Don't resolve autoneg until we're no longer receiving configs
1378 	 */
1379 	if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1380 		return (B_FALSE);
1381 
1382 	/*
1383 	 * Assume very little ...
1384 	 */
1385 	bgep->param_lp_autoneg = B_FALSE;
1386 	bgep->param_lp_1000fdx = B_FALSE;
1387 	bgep->param_lp_1000hdx = B_FALSE;
1388 	bgep->param_lp_100fdx = B_FALSE;
1389 	bgep->param_lp_100hdx = B_FALSE;
1390 	bgep->param_lp_10fdx = B_FALSE;
1391 	bgep->param_lp_10hdx = B_FALSE;
1392 	bgep->param_lp_pause = B_FALSE;
1393 	bgep->param_lp_asym_pause = B_FALSE;
1394 	bgep->param_link_autoneg = B_FALSE;
1395 	bgep->param_link_tx_pause = B_FALSE;
1396 	if (bgep->param_adv_autoneg)
1397 		bgep->param_link_rx_pause = B_FALSE;
1398 	else
1399 		bgep->param_link_rx_pause = bgep->param_adv_pause;
1400 
1401 	/*
1402 	 * Discover all the link partner's abilities.
1403 	 */
1404 	lpadv = bgep->serdes_lpadv;
1405 	if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) {
1406 		/*
1407 		 * No fault, so derive partner's capabilities
1408 		 */
1409 		bgep->param_lp_autoneg = B_TRUE;
1410 		bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX);
1411 		bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX);
1412 		bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE);
1413 		bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE);
1414 
1415 		/*
1416 		 * Pause direction resolution
1417 		 */
1418 		bgep->param_link_autoneg = B_TRUE;
1419 		if (bgep->param_adv_pause &&
1420 		    bgep->param_lp_pause) {
1421 			bgep->param_link_tx_pause = B_TRUE;
1422 			bgep->param_link_rx_pause = B_TRUE;
1423 		}
1424 		if (bgep->param_adv_asym_pause &&
1425 		    bgep->param_lp_asym_pause) {
1426 			if (bgep->param_adv_pause)
1427 				bgep->param_link_rx_pause = B_TRUE;
1428 			if (bgep->param_lp_pause)
1429 				bgep->param_link_tx_pause = B_TRUE;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * Step 12: update ndd-visible state parameters, BUT!
1435 	 * we don't transfer the new state to <link_state> just yet;
1436 	 * instead we mark the <link_state> as UNKNOWN, and our caller
1437 	 * will resolve it once the status has stopped changing and
1438 	 * been stable for several seconds.
1439 	 */
1440 	BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d",
1441 	    UPORDOWN(bgep->param_link_up),
1442 	    bgep->param_link_speed,
1443 	    bgep->param_link_duplex));
1444 
1445 	if (linkup) {
1446 		bgep->param_link_up = B_TRUE;
1447 		bgep->param_link_speed = 1000;
1448 		if (bgep->param_adv_1000fdx)
1449 			bgep->param_link_duplex = LINK_DUPLEX_FULL;
1450 		else
1451 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1452 		if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx)
1453 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1454 	} else {
1455 		bgep->param_link_up = B_FALSE;
1456 		bgep->param_link_speed = 0;
1457 		bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN;
1458 	}
1459 	bgep->link_state = LINK_STATE_UNKNOWN;
1460 
1461 	BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d",
1462 	    UPORDOWN(bgep->param_link_up),
1463 	    bgep->param_link_speed,
1464 	    bgep->param_link_duplex));
1465 
1466 	return (B_TRUE);
1467 }
1468 
1469 static const phys_ops_t serdes_ops = {
1470 	bge_restart_serdes,
1471 	bge_update_serdes,
1472 	bge_check_serdes
1473 };
1474 
1475 /*
1476  * ========== Exported physical layer control routines ==========
1477  */
1478 
1479 #undef	BGE_DBG
1480 #define	BGE_DBG		BGE_DBG_PHYS	/* debug flag for this code	*/
1481 
1482 /*
1483  * Here we have to determine which media we're using (copper or serdes).
1484  * Once that's done, we can initialise the physical layer appropriately.
1485  */
1486 int
1487 bge_phys_init(bge_t *bgep)
1488 {
1489 	BGE_TRACE(("bge_phys_init($%p)", (void *)bgep));
1490 
1491 	mutex_enter(bgep->genlock);
1492 
1493 	/*
1494 	 * Probe for the (internal) PHY.  If it's not there, we'll assume
1495 	 * that this is a 5703/4S, with a SerDes interface rather than
1496 	 * a PHY. BCM5714S/BCM5715S are not supported.It are based on
1497 	 * BCM800x PHY.
1498 	 */
1499 	bgep->phy_mii_addr = 1;
1500 	if (bge_phy_probe(bgep)) {
1501 		bgep->chipid.flags &= ~CHIP_FLAG_SERDES;
1502 		bgep->physops = &copper_ops;
1503 	} else {
1504 		bgep->chipid.flags |= CHIP_FLAG_SERDES;
1505 		bgep->physops = &serdes_ops;
1506 	}
1507 
1508 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS) {
1509 		mutex_exit(bgep->genlock);
1510 		return (EIO);
1511 	}
1512 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1513 		mutex_exit(bgep->genlock);
1514 		return (EIO);
1515 	}
1516 	mutex_exit(bgep->genlock);
1517 	return (0);
1518 }
1519 
1520 /*
1521  * Reset the physical layer
1522  */
1523 void
1524 bge_phys_reset(bge_t *bgep)
1525 {
1526 	BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep));
1527 
1528 	mutex_enter(bgep->genlock);
1529 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS)
1530 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1531 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
1532 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1533 	mutex_exit(bgep->genlock);
1534 }
1535 
1536 /*
1537  * Reset and power off the physical layer.
1538  *
1539  * Another RESET should get it back to working, but it may take a few
1540  * seconds it may take a few moments to return to normal operation ...
1541  */
1542 int
1543 bge_phys_idle(bge_t *bgep)
1544 {
1545 	BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep));
1546 
1547 	ASSERT(mutex_owned(bgep->genlock));
1548 	return ((*bgep->physops->phys_restart)(bgep, B_TRUE));
1549 }
1550 
1551 /*
1552  * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities
1553  * and advertisements with the required settings as specified by the various
1554  * param_* variables that can be poked via the NDD interface.
1555  *
1556  * We always reset the PHYSICAL layer and reprogram *all* relevant registers.
1557  * This is expected to cause the link to go down, and then back up again once
1558  * the link is stable and autonegotiation (if enabled) is complete.  We should
1559  * get a link state change interrupt somewhere along the way ...
1560  *
1561  * NOTE: <genlock> must already be held by the caller
1562  */
1563 int
1564 bge_phys_update(bge_t *bgep)
1565 {
1566 	BGE_TRACE(("bge_phys_update($%p)", (void *)bgep));
1567 
1568 	ASSERT(mutex_owned(bgep->genlock));
1569 	return ((*bgep->physops->phys_update)(bgep));
1570 }
1571 
1572 #undef	BGE_DBG
1573 #define	BGE_DBG		BGE_DBG_LINK	/* debug flag for this code	*/
1574 
1575 /*
1576  * Read the link status and determine whether anything's changed ...
1577  *
1578  * This routine should be called whenever the chip flags a change
1579  * in the hardware link state.
1580  *
1581  * This routine returns B_FALSE if the link state has not changed,
1582  * returns B_TRUE when the change to the new state should be accepted.
1583  * In such a case, the param_* variables give the new hardware state,
1584  * which the caller should use to update link_state etc.
1585  *
1586  * The caller must already hold <genlock>
1587  */
1588 boolean_t
1589 bge_phys_check(bge_t *bgep)
1590 {
1591 	int32_t orig_state;
1592 	boolean_t recheck;
1593 
1594 	BGE_TRACE(("bge_phys_check($%p)", (void *)bgep));
1595 
1596 	ASSERT(mutex_owned(bgep->genlock));
1597 
1598 	orig_state = bgep->link_state;
1599 	recheck = orig_state == LINK_STATE_UNKNOWN;
1600 	recheck = (*bgep->physops->phys_check)(bgep, recheck);
1601 	if (!recheck)
1602 		return (B_FALSE);
1603 
1604 	return (B_TRUE);
1605 }
1606