1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "bge_impl.h" 30 #include <sys/sdt.h> 31 32 /* 33 * This is the string displayed by modinfo, etc. 34 * Make sure you keep the version ID up to date! 35 */ 36 static char bge_ident[] = "Broadcom Gb Ethernet v0.60"; 37 38 /* 39 * Property names 40 */ 41 static char debug_propname[] = "bge-debug-flags"; 42 static char clsize_propname[] = "cache-line-size"; 43 static char latency_propname[] = "latency-timer"; 44 static char localmac_boolname[] = "local-mac-address?"; 45 static char localmac_propname[] = "local-mac-address"; 46 static char macaddr_propname[] = "mac-address"; 47 static char subdev_propname[] = "subsystem-id"; 48 static char subven_propname[] = "subsystem-vendor-id"; 49 static char rxrings_propname[] = "bge-rx-rings"; 50 static char txrings_propname[] = "bge-tx-rings"; 51 static char fm_cap[] = "fm-capable"; 52 static char default_mtu[] = "default_mtu"; 53 54 static int bge_add_intrs(bge_t *, int); 55 static void bge_rem_intrs(bge_t *); 56 57 /* 58 * Describes the chip's DMA engine 59 */ 60 static ddi_dma_attr_t dma_attr = { 61 DMA_ATTR_V0, /* dma_attr version */ 62 0x0000000000000000ull, /* dma_attr_addr_lo */ 63 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */ 64 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 65 0x0000000000000001ull, /* dma_attr_align */ 66 0x00000FFF, /* dma_attr_burstsizes */ 67 0x00000001, /* dma_attr_minxfer */ 68 0x000000000000FFFFull, /* dma_attr_maxxfer */ 69 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 70 1, /* dma_attr_sgllen */ 71 0x00000001, /* dma_attr_granular */ 72 DDI_DMA_FLAGERR /* dma_attr_flags */ 73 }; 74 75 /* 76 * PIO access attributes for registers 77 */ 78 static ddi_device_acc_attr_t bge_reg_accattr = { 79 DDI_DEVICE_ATTR_V0, 80 DDI_NEVERSWAP_ACC, 81 DDI_STRICTORDER_ACC, 82 DDI_FLAGERR_ACC 83 }; 84 85 /* 86 * DMA access attributes for descriptors: NOT to be byte swapped. 87 */ 88 static ddi_device_acc_attr_t bge_desc_accattr = { 89 DDI_DEVICE_ATTR_V0, 90 DDI_NEVERSWAP_ACC, 91 DDI_STRICTORDER_ACC, 92 DDI_FLAGERR_ACC 93 }; 94 95 /* 96 * DMA access attributes for data: NOT to be byte swapped. 97 */ 98 static ddi_device_acc_attr_t bge_data_accattr = { 99 DDI_DEVICE_ATTR_V0, 100 DDI_NEVERSWAP_ACC, 101 DDI_STRICTORDER_ACC 102 }; 103 104 /* 105 * Versions of the O/S up to Solaris 8 didn't support network booting 106 * from any network interface except the first (NET0). Patching this 107 * flag to a non-zero value will tell the driver to work around this 108 * limitation by creating an extra (internal) pathname node. To do 109 * this, just add a line like the following to the CLIENT'S etc/system 110 * file ON THE ROOT FILESYSTEM SERVER before booting the client: 111 * 112 * set bge:bge_net1_boot_support = 1; 113 */ 114 static uint32_t bge_net1_boot_support = 1; 115 116 static int bge_m_start(void *); 117 static void bge_m_stop(void *); 118 static int bge_m_promisc(void *, boolean_t); 119 static int bge_m_multicst(void *, boolean_t, const uint8_t *); 120 static int bge_m_unicst(void *, const uint8_t *); 121 static void bge_m_resources(void *); 122 static void bge_m_ioctl(void *, queue_t *, mblk_t *); 123 static boolean_t bge_m_getcapab(void *, mac_capab_t, void *); 124 static int bge_unicst_set(void *, const uint8_t *, 125 mac_addr_slot_t); 126 static int bge_m_unicst_add(void *, mac_multi_addr_t *); 127 static int bge_m_unicst_remove(void *, mac_addr_slot_t); 128 static int bge_m_unicst_modify(void *, mac_multi_addr_t *); 129 static int bge_m_unicst_get(void *, mac_multi_addr_t *); 130 131 #define BGE_M_CALLBACK_FLAGS (MC_RESOURCES | MC_IOCTL | MC_GETCAPAB) 132 133 static mac_callbacks_t bge_m_callbacks = { 134 BGE_M_CALLBACK_FLAGS, 135 bge_m_stat, 136 bge_m_start, 137 bge_m_stop, 138 bge_m_promisc, 139 bge_m_multicst, 140 bge_m_unicst, 141 bge_m_tx, 142 bge_m_resources, 143 bge_m_ioctl, 144 bge_m_getcapab 145 }; 146 147 /* 148 * ========== Transmit and receive ring reinitialisation ========== 149 */ 150 151 /* 152 * These <reinit> routines each reset the specified ring to an initial 153 * state, assuming that the corresponding <init> routine has already 154 * been called exactly once. 155 */ 156 157 static void 158 bge_reinit_send_ring(send_ring_t *srp) 159 { 160 bge_queue_t *txbuf_queue; 161 bge_queue_item_t *txbuf_head; 162 sw_txbuf_t *txbuf; 163 sw_sbd_t *ssbdp; 164 uint32_t slot; 165 166 /* 167 * Reinitialise control variables ... 168 */ 169 srp->tx_flow = 0; 170 srp->tx_next = 0; 171 srp->txfill_next = 0; 172 srp->tx_free = srp->desc.nslots; 173 ASSERT(mutex_owned(srp->tc_lock)); 174 srp->tc_next = 0; 175 srp->txpkt_next = 0; 176 srp->tx_block = 0; 177 srp->tx_nobd = 0; 178 srp->tx_nobuf = 0; 179 180 /* 181 * Initialize the tx buffer push queue 182 */ 183 mutex_enter(srp->freetxbuf_lock); 184 mutex_enter(srp->txbuf_lock); 185 txbuf_queue = &srp->freetxbuf_queue; 186 txbuf_queue->head = NULL; 187 txbuf_queue->count = 0; 188 txbuf_queue->lock = srp->freetxbuf_lock; 189 srp->txbuf_push_queue = txbuf_queue; 190 191 /* 192 * Initialize the tx buffer pop queue 193 */ 194 txbuf_queue = &srp->txbuf_queue; 195 txbuf_queue->head = NULL; 196 txbuf_queue->count = 0; 197 txbuf_queue->lock = srp->txbuf_lock; 198 srp->txbuf_pop_queue = txbuf_queue; 199 txbuf_head = srp->txbuf_head; 200 txbuf = srp->txbuf; 201 for (slot = 0; slot < srp->tx_buffers; ++slot) { 202 txbuf_head->item = txbuf; 203 txbuf_head->next = txbuf_queue->head; 204 txbuf_queue->head = txbuf_head; 205 txbuf_queue->count++; 206 txbuf++; 207 txbuf_head++; 208 } 209 mutex_exit(srp->txbuf_lock); 210 mutex_exit(srp->freetxbuf_lock); 211 212 /* 213 * Zero and sync all the h/w Send Buffer Descriptors 214 */ 215 DMA_ZERO(srp->desc); 216 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV); 217 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp)); 218 ssbdp = srp->sw_sbds; 219 for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot) 220 ssbdp->pbuf = NULL; 221 } 222 223 static void 224 bge_reinit_recv_ring(recv_ring_t *rrp) 225 { 226 /* 227 * Reinitialise control variables ... 228 */ 229 rrp->rx_next = 0; 230 } 231 232 static void 233 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring) 234 { 235 bge_rbd_t *hw_rbd_p; 236 sw_rbd_t *srbdp; 237 uint32_t bufsize; 238 uint32_t nslots; 239 uint32_t slot; 240 241 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = { 242 RBD_FLAG_STD_RING, 243 RBD_FLAG_JUMBO_RING, 244 RBD_FLAG_MINI_RING 245 }; 246 247 /* 248 * Zero, initialise and sync all the h/w Receive Buffer Descriptors 249 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>, 250 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>) 251 * should be zeroed, and so don't need to be set up specifically 252 * once the whole area has been cleared. 253 */ 254 DMA_ZERO(brp->desc); 255 256 hw_rbd_p = DMA_VPTR(brp->desc); 257 nslots = brp->desc.nslots; 258 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 259 bufsize = brp->buf[0].size; 260 srbdp = brp->sw_rbds; 261 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) { 262 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress; 263 hw_rbd_p->index = slot; 264 hw_rbd_p->len = bufsize; 265 hw_rbd_p->opaque = srbdp->pbuf.token; 266 hw_rbd_p->flags |= ring_type_flag[ring]; 267 } 268 269 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV); 270 271 /* 272 * Finally, reinitialise the ring control variables ... 273 */ 274 brp->rf_next = (nslots != 0) ? (nslots-1) : 0; 275 } 276 277 /* 278 * Reinitialize all rings 279 */ 280 static void 281 bge_reinit_rings(bge_t *bgep) 282 { 283 uint32_t ring; 284 285 ASSERT(mutex_owned(bgep->genlock)); 286 287 /* 288 * Send Rings ... 289 */ 290 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) 291 bge_reinit_send_ring(&bgep->send[ring]); 292 293 /* 294 * Receive Return Rings ... 295 */ 296 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring) 297 bge_reinit_recv_ring(&bgep->recv[ring]); 298 299 /* 300 * Receive Producer Rings ... 301 */ 302 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 303 bge_reinit_buff_ring(&bgep->buff[ring], ring); 304 } 305 306 /* 307 * ========== Internal state management entry points ========== 308 */ 309 310 #undef BGE_DBG 311 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 312 313 /* 314 * These routines provide all the functionality required by the 315 * corresponding GLD entry points, but don't update the GLD state 316 * so they can be called internally without disturbing our record 317 * of what GLD thinks we should be doing ... 318 */ 319 320 /* 321 * bge_reset() -- reset h/w & rings to initial state 322 */ 323 static int 324 #ifdef BGE_IPMI_ASF 325 bge_reset(bge_t *bgep, uint_t asf_mode) 326 #else 327 bge_reset(bge_t *bgep) 328 #endif 329 { 330 uint32_t ring; 331 int retval; 332 333 BGE_TRACE(("bge_reset($%p)", (void *)bgep)); 334 335 ASSERT(mutex_owned(bgep->genlock)); 336 337 /* 338 * Grab all the other mutexes in the world (this should 339 * ensure no other threads are manipulating driver state) 340 */ 341 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 342 mutex_enter(bgep->recv[ring].rx_lock); 343 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 344 mutex_enter(bgep->buff[ring].rf_lock); 345 rw_enter(bgep->errlock, RW_WRITER); 346 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 347 mutex_enter(bgep->send[ring].tx_lock); 348 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 349 mutex_enter(bgep->send[ring].tc_lock); 350 351 #ifdef BGE_IPMI_ASF 352 retval = bge_chip_reset(bgep, B_TRUE, asf_mode); 353 #else 354 retval = bge_chip_reset(bgep, B_TRUE); 355 #endif 356 bge_reinit_rings(bgep); 357 358 /* 359 * Free the world ... 360 */ 361 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; ) 362 mutex_exit(bgep->send[ring].tc_lock); 363 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 364 mutex_exit(bgep->send[ring].tx_lock); 365 rw_exit(bgep->errlock); 366 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; ) 367 mutex_exit(bgep->buff[ring].rf_lock); 368 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; ) 369 mutex_exit(bgep->recv[ring].rx_lock); 370 371 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep)); 372 return (retval); 373 } 374 375 /* 376 * bge_stop() -- stop processing, don't reset h/w or rings 377 */ 378 static void 379 bge_stop(bge_t *bgep) 380 { 381 BGE_TRACE(("bge_stop($%p)", (void *)bgep)); 382 383 ASSERT(mutex_owned(bgep->genlock)); 384 385 #ifdef BGE_IPMI_ASF 386 if (bgep->asf_enabled) { 387 bgep->asf_pseudostop = B_TRUE; 388 } else { 389 #endif 390 bge_chip_stop(bgep, B_FALSE); 391 #ifdef BGE_IPMI_ASF 392 } 393 #endif 394 395 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep)); 396 } 397 398 /* 399 * bge_start() -- start transmitting/receiving 400 */ 401 static int 402 bge_start(bge_t *bgep, boolean_t reset_phys) 403 { 404 int retval; 405 406 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys)); 407 408 ASSERT(mutex_owned(bgep->genlock)); 409 410 /* 411 * Start chip processing, including enabling interrupts 412 */ 413 retval = bge_chip_start(bgep, reset_phys); 414 415 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys)); 416 return (retval); 417 } 418 419 /* 420 * bge_restart - restart transmitting/receiving after error or suspend 421 */ 422 int 423 bge_restart(bge_t *bgep, boolean_t reset_phys) 424 { 425 int retval = DDI_SUCCESS; 426 ASSERT(mutex_owned(bgep->genlock)); 427 428 #ifdef BGE_IPMI_ASF 429 if (bgep->asf_enabled) { 430 if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS) 431 retval = DDI_FAILURE; 432 } else 433 if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS) 434 retval = DDI_FAILURE; 435 #else 436 if (bge_reset(bgep) != DDI_SUCCESS) 437 retval = DDI_FAILURE; 438 #endif 439 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 440 if (bge_start(bgep, reset_phys) != DDI_SUCCESS) 441 retval = DDI_FAILURE; 442 bgep->watchdog = 0; 443 ddi_trigger_softintr(bgep->drain_id); 444 } 445 446 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys)); 447 return (retval); 448 } 449 450 451 /* 452 * ========== Nemo-required management entry points ========== 453 */ 454 455 #undef BGE_DBG 456 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 457 458 /* 459 * bge_m_stop() -- stop transmitting/receiving 460 */ 461 static void 462 bge_m_stop(void *arg) 463 { 464 bge_t *bgep = arg; /* private device info */ 465 send_ring_t *srp; 466 uint32_t ring; 467 468 BGE_TRACE(("bge_m_stop($%p)", arg)); 469 470 /* 471 * Just stop processing, then record new GLD state 472 */ 473 mutex_enter(bgep->genlock); 474 if (!(bgep->progress & PROGRESS_INTR)) { 475 /* can happen during autorecovery */ 476 mutex_exit(bgep->genlock); 477 return; 478 } 479 bge_stop(bgep); 480 /* 481 * Free the possible tx buffers allocated in tx process. 482 */ 483 #ifdef BGE_IPMI_ASF 484 if (!bgep->asf_pseudostop) 485 #endif 486 { 487 rw_enter(bgep->errlock, RW_WRITER); 488 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) { 489 srp = &bgep->send[ring]; 490 mutex_enter(srp->tx_lock); 491 if (srp->tx_array > 1) 492 bge_free_txbuf_arrays(srp); 493 mutex_exit(srp->tx_lock); 494 } 495 rw_exit(bgep->errlock); 496 } 497 bgep->bge_mac_state = BGE_MAC_STOPPED; 498 BGE_DEBUG(("bge_m_stop($%p) done", arg)); 499 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 500 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); 501 mutex_exit(bgep->genlock); 502 } 503 504 /* 505 * bge_m_start() -- start transmitting/receiving 506 */ 507 static int 508 bge_m_start(void *arg) 509 { 510 bge_t *bgep = arg; /* private device info */ 511 512 BGE_TRACE(("bge_m_start($%p)", arg)); 513 514 /* 515 * Start processing and record new GLD state 516 */ 517 mutex_enter(bgep->genlock); 518 if (!(bgep->progress & PROGRESS_INTR)) { 519 /* can happen during autorecovery */ 520 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 521 mutex_exit(bgep->genlock); 522 return (EIO); 523 } 524 #ifdef BGE_IPMI_ASF 525 if (bgep->asf_enabled) { 526 if ((bgep->asf_status == ASF_STAT_RUN) && 527 (bgep->asf_pseudostop)) { 528 bgep->bge_mac_state = BGE_MAC_STARTED; 529 mutex_exit(bgep->genlock); 530 return (0); 531 } 532 } 533 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) { 534 #else 535 if (bge_reset(bgep) != DDI_SUCCESS) { 536 #endif 537 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 538 (void) bge_check_acc_handle(bgep, bgep->io_handle); 539 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 540 mutex_exit(bgep->genlock); 541 return (EIO); 542 } 543 if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) { 544 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 545 (void) bge_check_acc_handle(bgep, bgep->io_handle); 546 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 547 mutex_exit(bgep->genlock); 548 return (EIO); 549 } 550 bgep->bge_mac_state = BGE_MAC_STARTED; 551 BGE_DEBUG(("bge_m_start($%p) done", arg)); 552 553 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 554 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 555 mutex_exit(bgep->genlock); 556 return (EIO); 557 } 558 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 559 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 560 mutex_exit(bgep->genlock); 561 return (EIO); 562 } 563 #ifdef BGE_IPMI_ASF 564 if (bgep->asf_enabled) { 565 if (bgep->asf_status != ASF_STAT_RUN) { 566 /* start ASF heart beat */ 567 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 568 (void *)bgep, 569 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 570 bgep->asf_status = ASF_STAT_RUN; 571 } 572 } 573 #endif 574 mutex_exit(bgep->genlock); 575 576 return (0); 577 } 578 579 /* 580 * bge_m_unicst() -- set the physical network address 581 */ 582 static int 583 bge_m_unicst(void *arg, const uint8_t *macaddr) 584 { 585 /* 586 * Request to set address in 587 * address slot 0, i.e., default address 588 */ 589 return (bge_unicst_set(arg, macaddr, 0)); 590 } 591 592 /* 593 * bge_unicst_set() -- set the physical network address 594 */ 595 static int 596 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot) 597 { 598 bge_t *bgep = arg; /* private device info */ 599 600 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg, 601 ether_sprintf((void *)macaddr))); 602 /* 603 * Remember the new current address in the driver state 604 * Sync the chip's idea of the address too ... 605 */ 606 mutex_enter(bgep->genlock); 607 if (!(bgep->progress & PROGRESS_INTR)) { 608 /* can happen during autorecovery */ 609 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 610 mutex_exit(bgep->genlock); 611 return (EIO); 612 } 613 ethaddr_copy(macaddr, bgep->curr_addr[slot].addr); 614 #ifdef BGE_IPMI_ASF 615 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) { 616 #else 617 if (bge_chip_sync(bgep) == DDI_FAILURE) { 618 #endif 619 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 620 (void) bge_check_acc_handle(bgep, bgep->io_handle); 621 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 622 mutex_exit(bgep->genlock); 623 return (EIO); 624 } 625 #ifdef BGE_IPMI_ASF 626 if (bgep->asf_enabled) { 627 /* 628 * The above bge_chip_sync() function wrote the ethernet MAC 629 * addresses registers which destroyed the IPMI/ASF sideband. 630 * Here, we have to reset chip to make IPMI/ASF sideband work. 631 */ 632 if (bgep->asf_status == ASF_STAT_RUN) { 633 /* 634 * We must stop ASF heart beat before bge_chip_stop(), 635 * otherwise some computers (ex. IBM HS20 blade server) 636 * may crash. 637 */ 638 bge_asf_update_status(bgep); 639 bge_asf_stop_timer(bgep); 640 bgep->asf_status = ASF_STAT_STOP; 641 642 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 643 } 644 bge_chip_stop(bgep, B_FALSE); 645 646 if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) { 647 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 648 (void) bge_check_acc_handle(bgep, bgep->io_handle); 649 ddi_fm_service_impact(bgep->devinfo, 650 DDI_SERVICE_DEGRADED); 651 mutex_exit(bgep->genlock); 652 return (EIO); 653 } 654 655 /* 656 * Start our ASF heartbeat counter as soon as possible. 657 */ 658 if (bgep->asf_status != ASF_STAT_RUN) { 659 /* start ASF heart beat */ 660 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 661 (void *)bgep, 662 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 663 bgep->asf_status = ASF_STAT_RUN; 664 } 665 } 666 #endif 667 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg)); 668 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 669 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 670 mutex_exit(bgep->genlock); 671 return (EIO); 672 } 673 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 674 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 675 mutex_exit(bgep->genlock); 676 return (EIO); 677 } 678 mutex_exit(bgep->genlock); 679 680 return (0); 681 } 682 683 /* 684 * The following four routines are used as callbacks for multiple MAC 685 * address support: 686 * - bge_m_unicst_add(void *, mac_multi_addr_t *); 687 * - bge_m_unicst_remove(void *, mac_addr_slot_t); 688 * - bge_m_unicst_modify(void *, mac_multi_addr_t *); 689 * - bge_m_unicst_get(void *, mac_multi_addr_t *); 690 */ 691 692 /* 693 * bge_m_unicst_add() - will find an unused address slot, set the 694 * address value to the one specified, reserve that slot and enable 695 * the NIC to start filtering on the new MAC address. 696 * address slot. Returns 0 on success. 697 */ 698 static int 699 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr) 700 { 701 bge_t *bgep = arg; /* private device info */ 702 mac_addr_slot_t slot; 703 int err; 704 705 if (mac_unicst_verify(bgep->mh, 706 maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) 707 return (EINVAL); 708 709 mutex_enter(bgep->genlock); 710 if (bgep->unicst_addr_avail == 0) { 711 /* no slots available */ 712 mutex_exit(bgep->genlock); 713 return (ENOSPC); 714 } 715 716 /* 717 * Primary/default address is in slot 0. The next three 718 * addresses are the multiple MAC addresses. So multiple 719 * MAC address 0 is in slot 1, 1 in slot 2, and so on. 720 * So the first multiple MAC address resides in slot 1. 721 */ 722 for (slot = 1; slot < bgep->unicst_addr_total; slot++) { 723 if (bgep->curr_addr[slot].set == B_FALSE) { 724 bgep->curr_addr[slot].set = B_TRUE; 725 break; 726 } 727 } 728 729 ASSERT(slot < bgep->unicst_addr_total); 730 bgep->unicst_addr_avail--; 731 mutex_exit(bgep->genlock); 732 maddr->mma_slot = slot; 733 734 if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) { 735 mutex_enter(bgep->genlock); 736 bgep->curr_addr[slot].set = B_FALSE; 737 bgep->unicst_addr_avail++; 738 mutex_exit(bgep->genlock); 739 } 740 return (err); 741 } 742 743 /* 744 * bge_m_unicst_remove() - removes a MAC address that was added by a 745 * call to bge_m_unicst_add(). The slot number that was returned in 746 * add() is passed in the call to remove the address. 747 * Returns 0 on success. 748 */ 749 static int 750 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot) 751 { 752 bge_t *bgep = arg; /* private device info */ 753 754 if (slot <= 0 || slot >= bgep->unicst_addr_total) 755 return (EINVAL); 756 757 mutex_enter(bgep->genlock); 758 if (bgep->curr_addr[slot].set == B_TRUE) { 759 bgep->curr_addr[slot].set = B_FALSE; 760 bgep->unicst_addr_avail++; 761 mutex_exit(bgep->genlock); 762 /* 763 * Copy the default address to the passed slot 764 */ 765 return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot)); 766 } 767 mutex_exit(bgep->genlock); 768 return (EINVAL); 769 } 770 771 /* 772 * bge_m_unicst_modify() - modifies the value of an address that 773 * has been added by bge_m_unicst_add(). The new address, address 774 * length and the slot number that was returned in the call to add 775 * should be passed to bge_m_unicst_modify(). mma_flags should be 776 * set to 0. Returns 0 on success. 777 */ 778 static int 779 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr) 780 { 781 bge_t *bgep = arg; /* private device info */ 782 mac_addr_slot_t slot; 783 784 if (mac_unicst_verify(bgep->mh, 785 maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) 786 return (EINVAL); 787 788 slot = maddr->mma_slot; 789 790 if (slot <= 0 || slot >= bgep->unicst_addr_total) 791 return (EINVAL); 792 793 mutex_enter(bgep->genlock); 794 if (bgep->curr_addr[slot].set == B_TRUE) { 795 mutex_exit(bgep->genlock); 796 return (bge_unicst_set(bgep, maddr->mma_addr, slot)); 797 } 798 mutex_exit(bgep->genlock); 799 800 return (EINVAL); 801 } 802 803 /* 804 * bge_m_unicst_get() - will get the MAC address and all other 805 * information related to the address slot passed in mac_multi_addr_t. 806 * mma_flags should be set to 0 in the call. 807 * On return, mma_flags can take the following values: 808 * 1) MMAC_SLOT_UNUSED 809 * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR 810 * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR 811 * 4) MMAC_SLOT_USED 812 */ 813 static int 814 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr) 815 { 816 bge_t *bgep = arg; /* private device info */ 817 mac_addr_slot_t slot; 818 819 slot = maddr->mma_slot; 820 821 if (slot <= 0 || slot >= bgep->unicst_addr_total) 822 return (EINVAL); 823 824 mutex_enter(bgep->genlock); 825 if (bgep->curr_addr[slot].set == B_TRUE) { 826 ethaddr_copy(bgep->curr_addr[slot].addr, 827 maddr->mma_addr); 828 maddr->mma_flags = MMAC_SLOT_USED; 829 } else { 830 maddr->mma_flags = MMAC_SLOT_UNUSED; 831 } 832 mutex_exit(bgep->genlock); 833 834 return (0); 835 } 836 837 /* 838 * Compute the index of the required bit in the multicast hash map. 839 * This must mirror the way the hardware actually does it! 840 * See Broadcom document 570X-PG102-R page 125. 841 */ 842 static uint32_t 843 bge_hash_index(const uint8_t *mca) 844 { 845 uint32_t hash; 846 847 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table); 848 849 return (hash); 850 } 851 852 /* 853 * bge_m_multicst_add() -- enable/disable a multicast address 854 */ 855 static int 856 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 857 { 858 bge_t *bgep = arg; /* private device info */ 859 uint32_t hash; 860 uint32_t index; 861 uint32_t word; 862 uint32_t bit; 863 uint8_t *refp; 864 865 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg, 866 (add) ? "add" : "remove", ether_sprintf((void *)mca))); 867 868 /* 869 * Precalculate all required masks, pointers etc ... 870 */ 871 hash = bge_hash_index(mca); 872 index = hash % BGE_HASH_TABLE_SIZE; 873 word = index/32u; 874 bit = 1 << (index % 32u); 875 refp = &bgep->mcast_refs[index]; 876 877 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d", 878 hash, index, word, bit, *refp)); 879 880 /* 881 * We must set the appropriate bit in the hash map (and the 882 * corresponding h/w register) when the refcount goes from 0 883 * to >0, and clear it when the last ref goes away (refcount 884 * goes from >0 back to 0). If we change the hash map, we 885 * must also update the chip's hardware map registers. 886 */ 887 mutex_enter(bgep->genlock); 888 if (!(bgep->progress & PROGRESS_INTR)) { 889 /* can happen during autorecovery */ 890 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 891 mutex_exit(bgep->genlock); 892 return (EIO); 893 } 894 if (add) { 895 if ((*refp)++ == 0) { 896 bgep->mcast_hash[word] |= bit; 897 #ifdef BGE_IPMI_ASF 898 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 899 #else 900 if (bge_chip_sync(bgep) == DDI_FAILURE) { 901 #endif 902 (void) bge_check_acc_handle(bgep, 903 bgep->cfg_handle); 904 (void) bge_check_acc_handle(bgep, 905 bgep->io_handle); 906 ddi_fm_service_impact(bgep->devinfo, 907 DDI_SERVICE_DEGRADED); 908 mutex_exit(bgep->genlock); 909 return (EIO); 910 } 911 } 912 } else { 913 if (--(*refp) == 0) { 914 bgep->mcast_hash[word] &= ~bit; 915 #ifdef BGE_IPMI_ASF 916 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 917 #else 918 if (bge_chip_sync(bgep) == DDI_FAILURE) { 919 #endif 920 (void) bge_check_acc_handle(bgep, 921 bgep->cfg_handle); 922 (void) bge_check_acc_handle(bgep, 923 bgep->io_handle); 924 ddi_fm_service_impact(bgep->devinfo, 925 DDI_SERVICE_DEGRADED); 926 mutex_exit(bgep->genlock); 927 return (EIO); 928 } 929 } 930 } 931 BGE_DEBUG(("bge_m_multicst($%p) done", arg)); 932 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 933 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 934 mutex_exit(bgep->genlock); 935 return (EIO); 936 } 937 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 938 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 939 mutex_exit(bgep->genlock); 940 return (EIO); 941 } 942 mutex_exit(bgep->genlock); 943 944 return (0); 945 } 946 947 /* 948 * bge_m_promisc() -- set or reset promiscuous mode on the board 949 * 950 * Program the hardware to enable/disable promiscuous and/or 951 * receive-all-multicast modes. 952 */ 953 static int 954 bge_m_promisc(void *arg, boolean_t on) 955 { 956 bge_t *bgep = arg; 957 958 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on)); 959 960 /* 961 * Store MAC layer specified mode and pass to chip layer to update h/w 962 */ 963 mutex_enter(bgep->genlock); 964 if (!(bgep->progress & PROGRESS_INTR)) { 965 /* can happen during autorecovery */ 966 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 967 mutex_exit(bgep->genlock); 968 return (EIO); 969 } 970 bgep->promisc = on; 971 #ifdef BGE_IPMI_ASF 972 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 973 #else 974 if (bge_chip_sync(bgep) == DDI_FAILURE) { 975 #endif 976 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 977 (void) bge_check_acc_handle(bgep, bgep->io_handle); 978 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 979 mutex_exit(bgep->genlock); 980 return (EIO); 981 } 982 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg)); 983 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 984 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 985 mutex_exit(bgep->genlock); 986 return (EIO); 987 } 988 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 989 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 990 mutex_exit(bgep->genlock); 991 return (EIO); 992 } 993 mutex_exit(bgep->genlock); 994 return (0); 995 } 996 997 /*ARGSUSED*/ 998 static boolean_t 999 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 1000 { 1001 bge_t *bgep = arg; 1002 1003 switch (cap) { 1004 case MAC_CAPAB_HCKSUM: { 1005 uint32_t *txflags = cap_data; 1006 1007 *txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 1008 break; 1009 } 1010 1011 case MAC_CAPAB_POLL: 1012 /* 1013 * There's nothing for us to fill in, simply returning 1014 * B_TRUE stating that we support polling is sufficient. 1015 */ 1016 break; 1017 1018 case MAC_CAPAB_MULTIADDRESS: { 1019 multiaddress_capab_t *mmacp = cap_data; 1020 1021 mutex_enter(bgep->genlock); 1022 /* 1023 * The number of MAC addresses made available by 1024 * this capability is one less than the total as 1025 * the primary address in slot 0 is counted in 1026 * the total. 1027 */ 1028 mmacp->maddr_naddr = bgep->unicst_addr_total - 1; 1029 mmacp->maddr_naddrfree = bgep->unicst_addr_avail; 1030 /* No multiple factory addresses, set mma_flag to 0 */ 1031 mmacp->maddr_flag = 0; 1032 mmacp->maddr_handle = bgep; 1033 mmacp->maddr_add = bge_m_unicst_add; 1034 mmacp->maddr_remove = bge_m_unicst_remove; 1035 mmacp->maddr_modify = bge_m_unicst_modify; 1036 mmacp->maddr_get = bge_m_unicst_get; 1037 mmacp->maddr_reserve = NULL; 1038 mutex_exit(bgep->genlock); 1039 break; 1040 } 1041 1042 default: 1043 return (B_FALSE); 1044 } 1045 return (B_TRUE); 1046 } 1047 1048 /* 1049 * Loopback ioctl code 1050 */ 1051 1052 static lb_property_t loopmodes[] = { 1053 { normal, "normal", BGE_LOOP_NONE }, 1054 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 }, 1055 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 }, 1056 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 }, 1057 { internal, "PHY", BGE_LOOP_INTERNAL_PHY }, 1058 { internal, "MAC", BGE_LOOP_INTERNAL_MAC } 1059 }; 1060 1061 static enum ioc_reply 1062 bge_set_loop_mode(bge_t *bgep, uint32_t mode) 1063 { 1064 /* 1065 * If the mode isn't being changed, there's nothing to do ... 1066 */ 1067 if (mode == bgep->param_loop_mode) 1068 return (IOC_ACK); 1069 1070 /* 1071 * Validate the requested mode and prepare a suitable message 1072 * to explain the link down/up cycle that the change will 1073 * probably induce ... 1074 */ 1075 switch (mode) { 1076 default: 1077 return (IOC_INVAL); 1078 1079 case BGE_LOOP_NONE: 1080 case BGE_LOOP_EXTERNAL_1000: 1081 case BGE_LOOP_EXTERNAL_100: 1082 case BGE_LOOP_EXTERNAL_10: 1083 case BGE_LOOP_INTERNAL_PHY: 1084 case BGE_LOOP_INTERNAL_MAC: 1085 break; 1086 } 1087 1088 /* 1089 * All OK; tell the caller to reprogram 1090 * the PHY and/or MAC for the new mode ... 1091 */ 1092 bgep->param_loop_mode = mode; 1093 return (IOC_RESTART_ACK); 1094 } 1095 1096 static enum ioc_reply 1097 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 1098 { 1099 lb_info_sz_t *lbsp; 1100 lb_property_t *lbpp; 1101 uint32_t *lbmp; 1102 int cmd; 1103 1104 _NOTE(ARGUNUSED(wq)) 1105 1106 /* 1107 * Validate format of ioctl 1108 */ 1109 if (mp->b_cont == NULL) 1110 return (IOC_INVAL); 1111 1112 cmd = iocp->ioc_cmd; 1113 switch (cmd) { 1114 default: 1115 /* NOTREACHED */ 1116 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd); 1117 return (IOC_INVAL); 1118 1119 case LB_GET_INFO_SIZE: 1120 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 1121 return (IOC_INVAL); 1122 lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr; 1123 *lbsp = sizeof (loopmodes); 1124 return (IOC_REPLY); 1125 1126 case LB_GET_INFO: 1127 if (iocp->ioc_count != sizeof (loopmodes)) 1128 return (IOC_INVAL); 1129 lbpp = (lb_property_t *)mp->b_cont->b_rptr; 1130 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 1131 return (IOC_REPLY); 1132 1133 case LB_GET_MODE: 1134 if (iocp->ioc_count != sizeof (uint32_t)) 1135 return (IOC_INVAL); 1136 lbmp = (uint32_t *)mp->b_cont->b_rptr; 1137 *lbmp = bgep->param_loop_mode; 1138 return (IOC_REPLY); 1139 1140 case LB_SET_MODE: 1141 if (iocp->ioc_count != sizeof (uint32_t)) 1142 return (IOC_INVAL); 1143 lbmp = (uint32_t *)mp->b_cont->b_rptr; 1144 return (bge_set_loop_mode(bgep, *lbmp)); 1145 } 1146 } 1147 1148 /* 1149 * Specific bge IOCTLs, the gld module handles the generic ones. 1150 */ 1151 static void 1152 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 1153 { 1154 bge_t *bgep = arg; 1155 struct iocblk *iocp; 1156 enum ioc_reply status; 1157 boolean_t need_privilege; 1158 int err; 1159 int cmd; 1160 1161 /* 1162 * Validate the command before bothering with the mutex ... 1163 */ 1164 iocp = (struct iocblk *)mp->b_rptr; 1165 iocp->ioc_error = 0; 1166 need_privilege = B_TRUE; 1167 cmd = iocp->ioc_cmd; 1168 switch (cmd) { 1169 default: 1170 miocnak(wq, mp, 0, EINVAL); 1171 return; 1172 1173 case BGE_MII_READ: 1174 case BGE_MII_WRITE: 1175 case BGE_SEE_READ: 1176 case BGE_SEE_WRITE: 1177 case BGE_FLASH_READ: 1178 case BGE_FLASH_WRITE: 1179 case BGE_DIAG: 1180 case BGE_PEEK: 1181 case BGE_POKE: 1182 case BGE_PHY_RESET: 1183 case BGE_SOFT_RESET: 1184 case BGE_HARD_RESET: 1185 break; 1186 1187 case LB_GET_INFO_SIZE: 1188 case LB_GET_INFO: 1189 case LB_GET_MODE: 1190 need_privilege = B_FALSE; 1191 /* FALLTHRU */ 1192 case LB_SET_MODE: 1193 break; 1194 1195 case ND_GET: 1196 need_privilege = B_FALSE; 1197 /* FALLTHRU */ 1198 case ND_SET: 1199 break; 1200 } 1201 1202 if (need_privilege) { 1203 /* 1204 * Check for specific net_config privilege on Solaris 10+. 1205 */ 1206 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 1207 if (err != 0) { 1208 miocnak(wq, mp, 0, err); 1209 return; 1210 } 1211 } 1212 1213 mutex_enter(bgep->genlock); 1214 if (!(bgep->progress & PROGRESS_INTR)) { 1215 /* can happen during autorecovery */ 1216 mutex_exit(bgep->genlock); 1217 miocnak(wq, mp, 0, EIO); 1218 return; 1219 } 1220 1221 switch (cmd) { 1222 default: 1223 _NOTE(NOTREACHED) 1224 status = IOC_INVAL; 1225 break; 1226 1227 case BGE_MII_READ: 1228 case BGE_MII_WRITE: 1229 case BGE_SEE_READ: 1230 case BGE_SEE_WRITE: 1231 case BGE_FLASH_READ: 1232 case BGE_FLASH_WRITE: 1233 case BGE_DIAG: 1234 case BGE_PEEK: 1235 case BGE_POKE: 1236 case BGE_PHY_RESET: 1237 case BGE_SOFT_RESET: 1238 case BGE_HARD_RESET: 1239 status = bge_chip_ioctl(bgep, wq, mp, iocp); 1240 break; 1241 1242 case LB_GET_INFO_SIZE: 1243 case LB_GET_INFO: 1244 case LB_GET_MODE: 1245 case LB_SET_MODE: 1246 status = bge_loop_ioctl(bgep, wq, mp, iocp); 1247 break; 1248 1249 case ND_GET: 1250 case ND_SET: 1251 status = bge_nd_ioctl(bgep, wq, mp, iocp); 1252 break; 1253 } 1254 1255 /* 1256 * Do we need to reprogram the PHY and/or the MAC? 1257 * Do it now, while we still have the mutex. 1258 * 1259 * Note: update the PHY first, 'cos it controls the 1260 * speed/duplex parameters that the MAC code uses. 1261 */ 1262 switch (status) { 1263 case IOC_RESTART_REPLY: 1264 case IOC_RESTART_ACK: 1265 if (bge_phys_update(bgep) != DDI_SUCCESS) { 1266 ddi_fm_service_impact(bgep->devinfo, 1267 DDI_SERVICE_DEGRADED); 1268 status = IOC_INVAL; 1269 } 1270 #ifdef BGE_IPMI_ASF 1271 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 1272 #else 1273 if (bge_chip_sync(bgep) == DDI_FAILURE) { 1274 #endif 1275 ddi_fm_service_impact(bgep->devinfo, 1276 DDI_SERVICE_DEGRADED); 1277 status = IOC_INVAL; 1278 } 1279 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 1280 bge_chip_msi_trig(bgep); 1281 break; 1282 } 1283 1284 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 1285 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1286 status = IOC_INVAL; 1287 } 1288 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 1289 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1290 status = IOC_INVAL; 1291 } 1292 mutex_exit(bgep->genlock); 1293 1294 /* 1295 * Finally, decide how to reply 1296 */ 1297 switch (status) { 1298 default: 1299 case IOC_INVAL: 1300 /* 1301 * Error, reply with a NAK and EINVAL or the specified error 1302 */ 1303 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 1304 EINVAL : iocp->ioc_error); 1305 break; 1306 1307 case IOC_DONE: 1308 /* 1309 * OK, reply already sent 1310 */ 1311 break; 1312 1313 case IOC_RESTART_ACK: 1314 case IOC_ACK: 1315 /* 1316 * OK, reply with an ACK 1317 */ 1318 miocack(wq, mp, 0, 0); 1319 break; 1320 1321 case IOC_RESTART_REPLY: 1322 case IOC_REPLY: 1323 /* 1324 * OK, send prepared reply as ACK or NAK 1325 */ 1326 mp->b_datap->db_type = iocp->ioc_error == 0 ? 1327 M_IOCACK : M_IOCNAK; 1328 qreply(wq, mp); 1329 break; 1330 } 1331 } 1332 1333 static void 1334 bge_m_resources(void *arg) 1335 { 1336 bge_t *bgep = arg; 1337 recv_ring_t *rrp; 1338 mac_rx_fifo_t mrf; 1339 int ring; 1340 1341 mutex_enter(bgep->genlock); 1342 1343 /* 1344 * Register Rx rings as resources and save mac 1345 * resource id for future reference 1346 */ 1347 mrf.mrf_type = MAC_RX_FIFO; 1348 mrf.mrf_blank = bge_chip_blank; 1349 mrf.mrf_arg = (void *)bgep; 1350 mrf.mrf_normal_blank_time = bge_rx_ticks_norm; 1351 mrf.mrf_normal_pkt_count = bge_rx_count_norm; 1352 1353 for (ring = 0; ring < bgep->chipid.rx_rings; ring++) { 1354 rrp = &bgep->recv[ring]; 1355 rrp->handle = mac_resource_add(bgep->mh, 1356 (mac_resource_t *)&mrf); 1357 } 1358 1359 mutex_exit(bgep->genlock); 1360 } 1361 1362 /* 1363 * ========== Per-instance setup/teardown code ========== 1364 */ 1365 1366 #undef BGE_DBG 1367 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 1368 /* 1369 * Allocate an area of memory and a DMA handle for accessing it 1370 */ 1371 static int 1372 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p, 1373 uint_t dma_flags, dma_area_t *dma_p) 1374 { 1375 caddr_t va; 1376 int err; 1377 1378 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)", 1379 (void *)bgep, memsize, attr_p, dma_flags, dma_p)); 1380 1381 /* 1382 * Allocate handle 1383 */ 1384 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr, 1385 DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl); 1386 if (err != DDI_SUCCESS) 1387 return (DDI_FAILURE); 1388 1389 /* 1390 * Allocate memory 1391 */ 1392 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p, 1393 dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, 1394 &dma_p->acc_hdl); 1395 if (err != DDI_SUCCESS) 1396 return (DDI_FAILURE); 1397 1398 /* 1399 * Bind the two together 1400 */ 1401 dma_p->mem_va = va; 1402 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 1403 va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL, 1404 &dma_p->cookie, &dma_p->ncookies); 1405 1406 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies", 1407 dma_p->alength, err, dma_p->ncookies)); 1408 1409 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) 1410 return (DDI_FAILURE); 1411 1412 dma_p->nslots = ~0U; 1413 dma_p->size = ~0U; 1414 dma_p->token = ~0U; 1415 dma_p->offset = 0; 1416 return (DDI_SUCCESS); 1417 } 1418 1419 /* 1420 * Free one allocated area of DMAable memory 1421 */ 1422 static void 1423 bge_free_dma_mem(dma_area_t *dma_p) 1424 { 1425 if (dma_p->dma_hdl != NULL) { 1426 if (dma_p->ncookies) { 1427 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 1428 dma_p->ncookies = 0; 1429 } 1430 ddi_dma_free_handle(&dma_p->dma_hdl); 1431 dma_p->dma_hdl = NULL; 1432 } 1433 1434 if (dma_p->acc_hdl != NULL) { 1435 ddi_dma_mem_free(&dma_p->acc_hdl); 1436 dma_p->acc_hdl = NULL; 1437 } 1438 } 1439 /* 1440 * Utility routine to carve a slice off a chunk of allocated memory, 1441 * updating the chunk descriptor accordingly. The size of the slice 1442 * is given by the product of the <qty> and <size> parameters. 1443 */ 1444 static void 1445 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 1446 uint32_t qty, uint32_t size) 1447 { 1448 static uint32_t sequence = 0xbcd5704a; 1449 size_t totsize; 1450 1451 totsize = qty*size; 1452 ASSERT(size >= 0); 1453 ASSERT(totsize <= chunk->alength); 1454 1455 *slice = *chunk; 1456 slice->nslots = qty; 1457 slice->size = size; 1458 slice->alength = totsize; 1459 slice->token = ++sequence; 1460 1461 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 1462 chunk->alength -= totsize; 1463 chunk->offset += totsize; 1464 chunk->cookie.dmac_laddress += totsize; 1465 chunk->cookie.dmac_size -= totsize; 1466 } 1467 1468 /* 1469 * Initialise the specified Receive Producer (Buffer) Ring, using 1470 * the information in the <dma_area> descriptors that it contains 1471 * to set up all the other fields. This routine should be called 1472 * only once for each ring. 1473 */ 1474 static void 1475 bge_init_buff_ring(bge_t *bgep, uint64_t ring) 1476 { 1477 buff_ring_t *brp; 1478 bge_status_t *bsp; 1479 sw_rbd_t *srbdp; 1480 dma_area_t pbuf; 1481 uint32_t bufsize; 1482 uint32_t nslots; 1483 uint32_t slot; 1484 uint32_t split; 1485 1486 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = { 1487 NIC_MEM_SHADOW_BUFF_STD, 1488 NIC_MEM_SHADOW_BUFF_JUMBO, 1489 NIC_MEM_SHADOW_BUFF_MINI 1490 }; 1491 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = { 1492 RECV_STD_PROD_INDEX_REG, 1493 RECV_JUMBO_PROD_INDEX_REG, 1494 RECV_MINI_PROD_INDEX_REG 1495 }; 1496 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = { 1497 STATUS_STD_BUFF_CONS_INDEX, 1498 STATUS_JUMBO_BUFF_CONS_INDEX, 1499 STATUS_MINI_BUFF_CONS_INDEX 1500 }; 1501 1502 BGE_TRACE(("bge_init_buff_ring($%p, %d)", 1503 (void *)bgep, ring)); 1504 1505 brp = &bgep->buff[ring]; 1506 nslots = brp->desc.nslots; 1507 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 1508 bufsize = brp->buf[0].size; 1509 1510 /* 1511 * Set up the copy of the h/w RCB 1512 * 1513 * Note: unlike Send & Receive Return Rings, (where the max_len 1514 * field holds the number of slots), in a Receive Buffer Ring 1515 * this field indicates the size of each buffer in the ring. 1516 */ 1517 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress; 1518 brp->hw_rcb.max_len = bufsize; 1519 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1520 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring]; 1521 1522 /* 1523 * Other one-off initialisation of per-ring data 1524 */ 1525 brp->bgep = bgep; 1526 bsp = DMA_VPTR(bgep->status_block); 1527 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]]; 1528 brp->chip_mbx_reg = mailbox_regs[ring]; 1529 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER, 1530 DDI_INTR_PRI(bgep->intr_pri)); 1531 1532 /* 1533 * Allocate the array of s/w Receive Buffer Descriptors 1534 */ 1535 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP); 1536 brp->sw_rbds = srbdp; 1537 1538 /* 1539 * Now initialise each array element once and for all 1540 */ 1541 for (split = 0; split < BGE_SPLIT; ++split) { 1542 pbuf = brp->buf[split]; 1543 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot) 1544 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize); 1545 ASSERT(pbuf.alength == 0); 1546 } 1547 } 1548 1549 /* 1550 * Clean up initialisation done above before the memory is freed 1551 */ 1552 static void 1553 bge_fini_buff_ring(bge_t *bgep, uint64_t ring) 1554 { 1555 buff_ring_t *brp; 1556 sw_rbd_t *srbdp; 1557 1558 BGE_TRACE(("bge_fini_buff_ring($%p, %d)", 1559 (void *)bgep, ring)); 1560 1561 brp = &bgep->buff[ring]; 1562 srbdp = brp->sw_rbds; 1563 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp)); 1564 1565 mutex_destroy(brp->rf_lock); 1566 } 1567 1568 /* 1569 * Initialise the specified Receive (Return) Ring, using the 1570 * information in the <dma_area> descriptors that it contains 1571 * to set up all the other fields. This routine should be called 1572 * only once for each ring. 1573 */ 1574 static void 1575 bge_init_recv_ring(bge_t *bgep, uint64_t ring) 1576 { 1577 recv_ring_t *rrp; 1578 bge_status_t *bsp; 1579 uint32_t nslots; 1580 1581 BGE_TRACE(("bge_init_recv_ring($%p, %d)", 1582 (void *)bgep, ring)); 1583 1584 /* 1585 * The chip architecture requires that receive return rings have 1586 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103. 1587 */ 1588 rrp = &bgep->recv[ring]; 1589 nslots = rrp->desc.nslots; 1590 ASSERT(nslots == 0 || nslots == 512 || 1591 nslots == 1024 || nslots == 2048); 1592 1593 /* 1594 * Set up the copy of the h/w RCB 1595 */ 1596 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress; 1597 rrp->hw_rcb.max_len = nslots; 1598 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1599 rrp->hw_rcb.nic_ring_addr = 0; 1600 1601 /* 1602 * Other one-off initialisation of per-ring data 1603 */ 1604 rrp->bgep = bgep; 1605 bsp = DMA_VPTR(bgep->status_block); 1606 rrp->prod_index_p = RECV_INDEX_P(bsp, ring); 1607 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring); 1608 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER, 1609 DDI_INTR_PRI(bgep->intr_pri)); 1610 } 1611 1612 1613 /* 1614 * Clean up initialisation done above before the memory is freed 1615 */ 1616 static void 1617 bge_fini_recv_ring(bge_t *bgep, uint64_t ring) 1618 { 1619 recv_ring_t *rrp; 1620 1621 BGE_TRACE(("bge_fini_recv_ring($%p, %d)", 1622 (void *)bgep, ring)); 1623 1624 rrp = &bgep->recv[ring]; 1625 if (rrp->rx_softint) 1626 ddi_remove_softintr(rrp->rx_softint); 1627 mutex_destroy(rrp->rx_lock); 1628 } 1629 1630 /* 1631 * Initialise the specified Send Ring, using the information in the 1632 * <dma_area> descriptors that it contains to set up all the other 1633 * fields. This routine should be called only once for each ring. 1634 */ 1635 static void 1636 bge_init_send_ring(bge_t *bgep, uint64_t ring) 1637 { 1638 send_ring_t *srp; 1639 bge_status_t *bsp; 1640 sw_sbd_t *ssbdp; 1641 dma_area_t desc; 1642 dma_area_t pbuf; 1643 uint32_t nslots; 1644 uint32_t slot; 1645 uint32_t split; 1646 sw_txbuf_t *txbuf; 1647 1648 BGE_TRACE(("bge_init_send_ring($%p, %d)", 1649 (void *)bgep, ring)); 1650 1651 /* 1652 * The chip architecture requires that host-based send rings 1653 * have 512 elements per ring. See 570X-PG102-R page 56. 1654 */ 1655 srp = &bgep->send[ring]; 1656 nslots = srp->desc.nslots; 1657 ASSERT(nslots == 0 || nslots == 512); 1658 1659 /* 1660 * Set up the copy of the h/w RCB 1661 */ 1662 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress; 1663 srp->hw_rcb.max_len = nslots; 1664 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1665 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots); 1666 1667 /* 1668 * Other one-off initialisation of per-ring data 1669 */ 1670 srp->bgep = bgep; 1671 bsp = DMA_VPTR(bgep->status_block); 1672 srp->cons_index_p = SEND_INDEX_P(bsp, ring); 1673 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring); 1674 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER, 1675 DDI_INTR_PRI(bgep->intr_pri)); 1676 mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER, 1677 DDI_INTR_PRI(bgep->intr_pri)); 1678 mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER, 1679 DDI_INTR_PRI(bgep->intr_pri)); 1680 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER, 1681 DDI_INTR_PRI(bgep->intr_pri)); 1682 if (nslots == 0) 1683 return; 1684 1685 /* 1686 * Allocate the array of s/w Send Buffer Descriptors 1687 */ 1688 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP); 1689 txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP); 1690 srp->txbuf_head = 1691 kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP); 1692 srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP); 1693 srp->sw_sbds = ssbdp; 1694 srp->txbuf = txbuf; 1695 srp->tx_buffers = BGE_SEND_BUF_NUM; 1696 srp->tx_buffers_low = srp->tx_buffers / 4; 1697 if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT) 1698 srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO; 1699 else 1700 srp->tx_array_max = BGE_SEND_BUF_ARRAY; 1701 srp->tx_array = 1; 1702 1703 /* 1704 * Chunk tx desc area 1705 */ 1706 desc = srp->desc; 1707 for (slot = 0; slot < nslots; ++ssbdp, ++slot) { 1708 bge_slice_chunk(&ssbdp->desc, &desc, 1, 1709 sizeof (bge_sbd_t)); 1710 } 1711 ASSERT(desc.alength == 0); 1712 1713 /* 1714 * Chunk tx buffer area 1715 */ 1716 for (split = 0; split < BGE_SPLIT; ++split) { 1717 pbuf = srp->buf[0][split]; 1718 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) { 1719 bge_slice_chunk(&txbuf->buf, &pbuf, 1, 1720 bgep->chipid.snd_buff_size); 1721 txbuf++; 1722 } 1723 ASSERT(pbuf.alength == 0); 1724 } 1725 } 1726 1727 /* 1728 * Clean up initialisation done above before the memory is freed 1729 */ 1730 static void 1731 bge_fini_send_ring(bge_t *bgep, uint64_t ring) 1732 { 1733 send_ring_t *srp; 1734 uint32_t array; 1735 uint32_t split; 1736 uint32_t nslots; 1737 1738 BGE_TRACE(("bge_fini_send_ring($%p, %d)", 1739 (void *)bgep, ring)); 1740 1741 srp = &bgep->send[ring]; 1742 mutex_destroy(srp->tc_lock); 1743 mutex_destroy(srp->freetxbuf_lock); 1744 mutex_destroy(srp->txbuf_lock); 1745 mutex_destroy(srp->tx_lock); 1746 nslots = srp->desc.nslots; 1747 if (nslots == 0) 1748 return; 1749 1750 for (array = 1; array < srp->tx_array; ++array) 1751 for (split = 0; split < BGE_SPLIT; ++split) 1752 bge_free_dma_mem(&srp->buf[array][split]); 1753 kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds)); 1754 kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head)); 1755 kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf)); 1756 kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp)); 1757 srp->sw_sbds = NULL; 1758 srp->txbuf_head = NULL; 1759 srp->txbuf = NULL; 1760 srp->pktp = NULL; 1761 } 1762 1763 /* 1764 * Initialise all transmit, receive, and buffer rings. 1765 */ 1766 void 1767 bge_init_rings(bge_t *bgep) 1768 { 1769 uint32_t ring; 1770 1771 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep)); 1772 1773 /* 1774 * Perform one-off initialisation of each ring ... 1775 */ 1776 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1777 bge_init_send_ring(bgep, ring); 1778 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1779 bge_init_recv_ring(bgep, ring); 1780 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1781 bge_init_buff_ring(bgep, ring); 1782 } 1783 1784 /* 1785 * Undo the work of bge_init_rings() above before the memory is freed 1786 */ 1787 void 1788 bge_fini_rings(bge_t *bgep) 1789 { 1790 uint32_t ring; 1791 1792 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep)); 1793 1794 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1795 bge_fini_buff_ring(bgep, ring); 1796 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1797 bge_fini_recv_ring(bgep, ring); 1798 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1799 bge_fini_send_ring(bgep, ring); 1800 } 1801 1802 /* 1803 * Called from the bge_m_stop() to free the tx buffers which are 1804 * allocated from the tx process. 1805 */ 1806 void 1807 bge_free_txbuf_arrays(send_ring_t *srp) 1808 { 1809 uint32_t array; 1810 uint32_t split; 1811 1812 ASSERT(mutex_owned(srp->tx_lock)); 1813 1814 /* 1815 * Free the extra tx buffer DMA area 1816 */ 1817 for (array = 1; array < srp->tx_array; ++array) 1818 for (split = 0; split < BGE_SPLIT; ++split) 1819 bge_free_dma_mem(&srp->buf[array][split]); 1820 1821 /* 1822 * Restore initial tx buffer numbers 1823 */ 1824 srp->tx_array = 1; 1825 srp->tx_buffers = BGE_SEND_BUF_NUM; 1826 srp->tx_buffers_low = srp->tx_buffers / 4; 1827 srp->tx_flow = 0; 1828 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp)); 1829 } 1830 1831 /* 1832 * Called from tx process to allocate more tx buffers 1833 */ 1834 bge_queue_item_t * 1835 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp) 1836 { 1837 bge_queue_t *txbuf_queue; 1838 bge_queue_item_t *txbuf_item_last; 1839 bge_queue_item_t *txbuf_item; 1840 bge_queue_item_t *txbuf_item_rtn; 1841 sw_txbuf_t *txbuf; 1842 dma_area_t area; 1843 size_t txbuffsize; 1844 uint32_t slot; 1845 uint32_t array; 1846 uint32_t split; 1847 uint32_t err; 1848 1849 ASSERT(mutex_owned(srp->tx_lock)); 1850 1851 array = srp->tx_array; 1852 if (array >= srp->tx_array_max) 1853 return (NULL); 1854 1855 /* 1856 * Allocate memory & handles for TX buffers 1857 */ 1858 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size; 1859 ASSERT((txbuffsize % BGE_SPLIT) == 0); 1860 for (split = 0; split < BGE_SPLIT; ++split) { 1861 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 1862 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 1863 &srp->buf[array][split]); 1864 if (err != DDI_SUCCESS) { 1865 /* Free the last already allocated OK chunks */ 1866 for (slot = 0; slot <= split; ++slot) 1867 bge_free_dma_mem(&srp->buf[array][slot]); 1868 srp->tx_alloc_fail++; 1869 return (NULL); 1870 } 1871 } 1872 1873 /* 1874 * Chunk tx buffer area 1875 */ 1876 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM; 1877 for (split = 0; split < BGE_SPLIT; ++split) { 1878 area = srp->buf[array][split]; 1879 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) { 1880 bge_slice_chunk(&txbuf->buf, &area, 1, 1881 bgep->chipid.snd_buff_size); 1882 txbuf++; 1883 } 1884 } 1885 1886 /* 1887 * Add above buffers to the tx buffer pop queue 1888 */ 1889 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM; 1890 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM; 1891 txbuf_item_last = NULL; 1892 for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) { 1893 txbuf_item->item = txbuf; 1894 txbuf_item->next = txbuf_item_last; 1895 txbuf_item_last = txbuf_item; 1896 txbuf++; 1897 txbuf_item++; 1898 } 1899 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM; 1900 txbuf_item_rtn = txbuf_item; 1901 txbuf_item++; 1902 txbuf_queue = srp->txbuf_pop_queue; 1903 mutex_enter(txbuf_queue->lock); 1904 txbuf_item->next = txbuf_queue->head; 1905 txbuf_queue->head = txbuf_item_last; 1906 txbuf_queue->count += BGE_SEND_BUF_NUM - 1; 1907 mutex_exit(txbuf_queue->lock); 1908 1909 srp->tx_array++; 1910 srp->tx_buffers += BGE_SEND_BUF_NUM; 1911 srp->tx_buffers_low = srp->tx_buffers / 4; 1912 1913 return (txbuf_item_rtn); 1914 } 1915 1916 /* 1917 * This function allocates all the transmit and receive buffers 1918 * and descriptors, in four chunks. 1919 */ 1920 int 1921 bge_alloc_bufs(bge_t *bgep) 1922 { 1923 dma_area_t area; 1924 size_t rxbuffsize; 1925 size_t txbuffsize; 1926 size_t rxbuffdescsize; 1927 size_t rxdescsize; 1928 size_t txdescsize; 1929 uint32_t ring; 1930 uint32_t rx_rings = bgep->chipid.rx_rings; 1931 uint32_t tx_rings = bgep->chipid.tx_rings; 1932 int split; 1933 int err; 1934 1935 BGE_TRACE(("bge_alloc_bufs($%p)", 1936 (void *)bgep)); 1937 1938 rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size; 1939 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size; 1940 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE; 1941 1942 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size; 1943 txbuffsize *= tx_rings; 1944 1945 rxdescsize = rx_rings*bgep->chipid.recv_slots; 1946 rxdescsize *= sizeof (bge_rbd_t); 1947 1948 rxbuffdescsize = BGE_STD_SLOTS_USED; 1949 rxbuffdescsize += bgep->chipid.jumbo_slots; 1950 rxbuffdescsize += BGE_MINI_SLOTS_USED; 1951 rxbuffdescsize *= sizeof (bge_rbd_t); 1952 1953 txdescsize = tx_rings*BGE_SEND_SLOTS_USED; 1954 txdescsize *= sizeof (bge_sbd_t); 1955 txdescsize += sizeof (bge_statistics_t); 1956 txdescsize += sizeof (bge_status_t); 1957 txdescsize += BGE_STATUS_PADDING; 1958 1959 /* 1960 * Enable PCI relaxed ordering only for RX/TX data buffers 1961 */ 1962 if (bge_relaxed_ordering) 1963 dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING; 1964 1965 /* 1966 * Allocate memory & handles for RX buffers 1967 */ 1968 ASSERT((rxbuffsize % BGE_SPLIT) == 0); 1969 for (split = 0; split < BGE_SPLIT; ++split) { 1970 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT, 1971 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE, 1972 &bgep->rx_buff[split]); 1973 if (err != DDI_SUCCESS) 1974 return (DDI_FAILURE); 1975 } 1976 1977 /* 1978 * Allocate memory & handles for TX buffers 1979 */ 1980 ASSERT((txbuffsize % BGE_SPLIT) == 0); 1981 for (split = 0; split < BGE_SPLIT; ++split) { 1982 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 1983 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 1984 &bgep->tx_buff[split]); 1985 if (err != DDI_SUCCESS) 1986 return (DDI_FAILURE); 1987 } 1988 1989 dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING; 1990 1991 /* 1992 * Allocate memory & handles for receive return rings 1993 */ 1994 ASSERT((rxdescsize % rx_rings) == 0); 1995 for (split = 0; split < rx_rings; ++split) { 1996 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings, 1997 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1998 &bgep->rx_desc[split]); 1999 if (err != DDI_SUCCESS) 2000 return (DDI_FAILURE); 2001 } 2002 2003 /* 2004 * Allocate memory & handles for buffer (producer) descriptor rings 2005 */ 2006 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr, 2007 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]); 2008 if (err != DDI_SUCCESS) 2009 return (DDI_FAILURE); 2010 2011 /* 2012 * Allocate memory & handles for TX descriptor rings, 2013 * status block, and statistics area 2014 */ 2015 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr, 2016 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc); 2017 if (err != DDI_SUCCESS) 2018 return (DDI_FAILURE); 2019 2020 /* 2021 * Now carve up each of the allocated areas ... 2022 */ 2023 for (split = 0; split < BGE_SPLIT; ++split) { 2024 area = bgep->rx_buff[split]; 2025 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split], 2026 &area, BGE_STD_SLOTS_USED/BGE_SPLIT, 2027 bgep->chipid.std_buf_size); 2028 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split], 2029 &area, bgep->chipid.jumbo_slots/BGE_SPLIT, 2030 bgep->chipid.recv_jumbo_size); 2031 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split], 2032 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT, 2033 BGE_MINI_BUFF_SIZE); 2034 ASSERT(area.alength >= 0); 2035 } 2036 2037 for (split = 0; split < BGE_SPLIT; ++split) { 2038 area = bgep->tx_buff[split]; 2039 for (ring = 0; ring < tx_rings; ++ring) 2040 bge_slice_chunk(&bgep->send[ring].buf[0][split], 2041 &area, BGE_SEND_BUF_NUM/BGE_SPLIT, 2042 bgep->chipid.snd_buff_size); 2043 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 2044 bge_slice_chunk(&bgep->send[ring].buf[0][split], 2045 &area, 0, bgep->chipid.snd_buff_size); 2046 ASSERT(area.alength >= 0); 2047 } 2048 2049 for (ring = 0; ring < rx_rings; ++ring) 2050 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring], 2051 bgep->chipid.recv_slots, sizeof (bge_rbd_t)); 2052 2053 area = bgep->rx_desc[rx_rings]; 2054 for (; ring < BGE_RECV_RINGS_MAX; ++ring) 2055 bge_slice_chunk(&bgep->recv[ring].desc, &area, 2056 0, sizeof (bge_rbd_t)); 2057 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area, 2058 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t)); 2059 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area, 2060 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t)); 2061 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area, 2062 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t)); 2063 ASSERT(area.alength == 0); 2064 2065 area = bgep->tx_desc; 2066 for (ring = 0; ring < tx_rings; ++ring) 2067 bge_slice_chunk(&bgep->send[ring].desc, &area, 2068 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t)); 2069 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 2070 bge_slice_chunk(&bgep->send[ring].desc, &area, 2071 0, sizeof (bge_sbd_t)); 2072 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t)); 2073 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t)); 2074 ASSERT(area.alength == BGE_STATUS_PADDING); 2075 DMA_ZERO(bgep->status_block); 2076 2077 return (DDI_SUCCESS); 2078 } 2079 2080 /* 2081 * This routine frees the transmit and receive buffers and descriptors. 2082 * Make sure the chip is stopped before calling it! 2083 */ 2084 void 2085 bge_free_bufs(bge_t *bgep) 2086 { 2087 int split; 2088 2089 BGE_TRACE(("bge_free_bufs($%p)", 2090 (void *)bgep)); 2091 2092 bge_free_dma_mem(&bgep->tx_desc); 2093 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split) 2094 bge_free_dma_mem(&bgep->rx_desc[split]); 2095 for (split = 0; split < BGE_SPLIT; ++split) 2096 bge_free_dma_mem(&bgep->tx_buff[split]); 2097 for (split = 0; split < BGE_SPLIT; ++split) 2098 bge_free_dma_mem(&bgep->rx_buff[split]); 2099 } 2100 2101 /* 2102 * Determine (initial) MAC address ("BIA") to use for this interface 2103 */ 2104 2105 static void 2106 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp) 2107 { 2108 struct ether_addr sysaddr; 2109 char propbuf[8]; /* "true" or "false", plus NUL */ 2110 uchar_t *bytes; 2111 int *ints; 2112 uint_t nelts; 2113 int err; 2114 2115 BGE_TRACE(("bge_find_mac_address($%p)", 2116 (void *)bgep)); 2117 2118 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)", 2119 cidp->hw_mac_addr, 2120 ether_sprintf((void *)cidp->vendor_addr.addr), 2121 cidp->vendor_addr.set ? "" : "not ")); 2122 2123 /* 2124 * The "vendor's factory-set address" may already have 2125 * been extracted from the chip, but if the property 2126 * "local-mac-address" is set we use that instead. It 2127 * will normally be set by OBP, but it could also be 2128 * specified in a .conf file(!) 2129 * 2130 * There doesn't seem to be a way to define byte-array 2131 * properties in a .conf, so we check whether it looks 2132 * like an array of 6 ints instead. 2133 * 2134 * Then, we check whether it looks like an array of 6 2135 * bytes (which it should, if OBP set it). If we can't 2136 * make sense of it either way, we'll ignore it. 2137 */ 2138 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 2139 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts); 2140 if (err == DDI_PROP_SUCCESS) { 2141 if (nelts == ETHERADDRL) { 2142 while (nelts--) 2143 cidp->vendor_addr.addr[nelts] = ints[nelts]; 2144 cidp->vendor_addr.set = B_TRUE; 2145 } 2146 ddi_prop_free(ints); 2147 } 2148 2149 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 2150 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts); 2151 if (err == DDI_PROP_SUCCESS) { 2152 if (nelts == ETHERADDRL) { 2153 while (nelts--) 2154 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 2155 cidp->vendor_addr.set = B_TRUE; 2156 } 2157 ddi_prop_free(bytes); 2158 } 2159 2160 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)", 2161 ether_sprintf((void *)cidp->vendor_addr.addr), 2162 cidp->vendor_addr.set ? "" : "not ")); 2163 2164 /* 2165 * Look up the OBP property "local-mac-address?". Note that even 2166 * though its value is a string (which should be "true" or "false"), 2167 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero 2168 * the buffer first and then fetch the property as an untyped array; 2169 * this may or may not include a final NUL, but since there will 2170 * always be one left at the end of the buffer we can now treat it 2171 * as a string anyway. 2172 */ 2173 nelts = sizeof (propbuf); 2174 bzero(propbuf, nelts--); 2175 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo, 2176 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts); 2177 2178 /* 2179 * Now, if the address still isn't set from the hardware (SEEPROM) 2180 * or the OBP or .conf property, OR if the user has foolishly set 2181 * 'local-mac-address? = false', use "the system address" instead 2182 * (but only if it's non-null i.e. has been set from the IDPROM). 2183 */ 2184 if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0) 2185 if (localetheraddr(NULL, &sysaddr) != 0) { 2186 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr); 2187 cidp->vendor_addr.set = B_TRUE; 2188 } 2189 2190 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)", 2191 ether_sprintf((void *)cidp->vendor_addr.addr), 2192 cidp->vendor_addr.set ? "" : "not ")); 2193 2194 /* 2195 * Finally(!), if there's a valid "mac-address" property (created 2196 * if we netbooted from this interface), we must use this instead 2197 * of any of the above to ensure that the NFS/install server doesn't 2198 * get confused by the address changing as Solaris takes over! 2199 */ 2200 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 2201 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts); 2202 if (err == DDI_PROP_SUCCESS) { 2203 if (nelts == ETHERADDRL) { 2204 while (nelts--) 2205 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 2206 cidp->vendor_addr.set = B_TRUE; 2207 } 2208 ddi_prop_free(bytes); 2209 } 2210 2211 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)", 2212 ether_sprintf((void *)cidp->vendor_addr.addr), 2213 cidp->vendor_addr.set ? "" : "not ")); 2214 } 2215 2216 2217 /*ARGSUSED*/ 2218 int 2219 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle) 2220 { 2221 ddi_fm_error_t de; 2222 2223 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 2224 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); 2225 return (de.fme_status); 2226 } 2227 2228 /*ARGSUSED*/ 2229 int 2230 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle) 2231 { 2232 ddi_fm_error_t de; 2233 2234 ASSERT(bgep->progress & PROGRESS_BUFS); 2235 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 2236 return (de.fme_status); 2237 } 2238 2239 /* 2240 * The IO fault service error handling callback function 2241 */ 2242 /*ARGSUSED*/ 2243 static int 2244 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 2245 { 2246 /* 2247 * as the driver can always deal with an error in any dma or 2248 * access handle, we can just return the fme_status value. 2249 */ 2250 pci_ereport_post(dip, err, NULL); 2251 return (err->fme_status); 2252 } 2253 2254 static void 2255 bge_fm_init(bge_t *bgep) 2256 { 2257 ddi_iblock_cookie_t iblk; 2258 2259 /* Only register with IO Fault Services if we have some capability */ 2260 if (bgep->fm_capabilities) { 2261 bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 2262 bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 2263 dma_attr.dma_attr_flags = DDI_DMA_FLAGERR; 2264 2265 /* Register capabilities with IO Fault Services */ 2266 ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk); 2267 2268 /* 2269 * Initialize pci ereport capabilities if ereport capable 2270 */ 2271 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 2272 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2273 pci_ereport_setup(bgep->devinfo); 2274 2275 /* 2276 * Register error callback if error callback capable 2277 */ 2278 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2279 ddi_fm_handler_register(bgep->devinfo, 2280 bge_fm_error_cb, (void*) bgep); 2281 } else { 2282 /* 2283 * These fields have to be cleared of FMA if there are no 2284 * FMA capabilities at runtime. 2285 */ 2286 bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 2287 bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 2288 dma_attr.dma_attr_flags = 0; 2289 } 2290 } 2291 2292 static void 2293 bge_fm_fini(bge_t *bgep) 2294 { 2295 /* Only unregister FMA capabilities if we registered some */ 2296 if (bgep->fm_capabilities) { 2297 2298 /* 2299 * Release any resources allocated by pci_ereport_setup() 2300 */ 2301 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 2302 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2303 pci_ereport_teardown(bgep->devinfo); 2304 2305 /* 2306 * Un-register error callback if error callback capable 2307 */ 2308 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2309 ddi_fm_handler_unregister(bgep->devinfo); 2310 2311 /* Unregister from IO Fault Services */ 2312 ddi_fm_fini(bgep->devinfo); 2313 } 2314 } 2315 2316 static void 2317 #ifdef BGE_IPMI_ASF 2318 bge_unattach(bge_t *bgep, uint_t asf_mode) 2319 #else 2320 bge_unattach(bge_t *bgep) 2321 #endif 2322 { 2323 BGE_TRACE(("bge_unattach($%p)", 2324 (void *)bgep)); 2325 2326 /* 2327 * Flag that no more activity may be initiated 2328 */ 2329 bgep->progress &= ~PROGRESS_READY; 2330 2331 /* 2332 * Quiesce the PHY and MAC (leave it reset but still powered). 2333 * Clean up and free all BGE data structures 2334 */ 2335 if (bgep->periodic_id != NULL) { 2336 ddi_periodic_delete(bgep->periodic_id); 2337 bgep->periodic_id = NULL; 2338 } 2339 if (bgep->progress & PROGRESS_KSTATS) 2340 bge_fini_kstats(bgep); 2341 if (bgep->progress & PROGRESS_NDD) 2342 bge_nd_cleanup(bgep); 2343 if (bgep->progress & PROGRESS_PHY) 2344 bge_phys_reset(bgep); 2345 if (bgep->progress & PROGRESS_HWINT) { 2346 mutex_enter(bgep->genlock); 2347 #ifdef BGE_IPMI_ASF 2348 if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS) 2349 #else 2350 if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS) 2351 #endif 2352 ddi_fm_service_impact(bgep->devinfo, 2353 DDI_SERVICE_UNAFFECTED); 2354 #ifdef BGE_IPMI_ASF 2355 if (bgep->asf_enabled) { 2356 /* 2357 * This register has been overlaid. We restore its 2358 * initial value here. 2359 */ 2360 bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR, 2361 BGE_NIC_DATA_SIG); 2362 } 2363 #endif 2364 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 2365 ddi_fm_service_impact(bgep->devinfo, 2366 DDI_SERVICE_UNAFFECTED); 2367 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 2368 ddi_fm_service_impact(bgep->devinfo, 2369 DDI_SERVICE_UNAFFECTED); 2370 mutex_exit(bgep->genlock); 2371 } 2372 if (bgep->progress & PROGRESS_INTR) { 2373 bge_intr_disable(bgep); 2374 bge_fini_rings(bgep); 2375 } 2376 if (bgep->progress & PROGRESS_HWINT) { 2377 bge_rem_intrs(bgep); 2378 rw_destroy(bgep->errlock); 2379 mutex_destroy(bgep->softintrlock); 2380 mutex_destroy(bgep->genlock); 2381 } 2382 if (bgep->progress & PROGRESS_FACTOTUM) 2383 ddi_remove_softintr(bgep->factotum_id); 2384 if (bgep->progress & PROGRESS_RESCHED) 2385 ddi_remove_softintr(bgep->drain_id); 2386 if (bgep->progress & PROGRESS_BUFS) 2387 bge_free_bufs(bgep); 2388 if (bgep->progress & PROGRESS_REGS) 2389 ddi_regs_map_free(&bgep->io_handle); 2390 if (bgep->progress & PROGRESS_CFG) 2391 pci_config_teardown(&bgep->cfg_handle); 2392 2393 bge_fm_fini(bgep); 2394 2395 ddi_remove_minor_node(bgep->devinfo, NULL); 2396 kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t)); 2397 kmem_free(bgep->nd_params, PARAM_COUNT * sizeof (nd_param_t)); 2398 kmem_free(bgep, sizeof (*bgep)); 2399 } 2400 2401 static int 2402 bge_resume(dev_info_t *devinfo) 2403 { 2404 bge_t *bgep; /* Our private data */ 2405 chip_id_t *cidp; 2406 chip_id_t chipid; 2407 2408 bgep = ddi_get_driver_private(devinfo); 2409 if (bgep == NULL) 2410 return (DDI_FAILURE); 2411 2412 /* 2413 * Refuse to resume if the data structures aren't consistent 2414 */ 2415 if (bgep->devinfo != devinfo) 2416 return (DDI_FAILURE); 2417 2418 #ifdef BGE_IPMI_ASF 2419 /* 2420 * Power management hasn't been supported in BGE now. If you 2421 * want to implement it, please add the ASF/IPMI related 2422 * code here. 2423 */ 2424 2425 #endif 2426 2427 /* 2428 * Read chip ID & set up config space command register(s) 2429 * Refuse to resume if the chip has changed its identity! 2430 */ 2431 cidp = &bgep->chipid; 2432 mutex_enter(bgep->genlock); 2433 bge_chip_cfg_init(bgep, &chipid, B_FALSE); 2434 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2435 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2436 mutex_exit(bgep->genlock); 2437 return (DDI_FAILURE); 2438 } 2439 mutex_exit(bgep->genlock); 2440 if (chipid.vendor != cidp->vendor) 2441 return (DDI_FAILURE); 2442 if (chipid.device != cidp->device) 2443 return (DDI_FAILURE); 2444 if (chipid.revision != cidp->revision) 2445 return (DDI_FAILURE); 2446 if (chipid.asic_rev != cidp->asic_rev) 2447 return (DDI_FAILURE); 2448 2449 /* 2450 * All OK, reinitialise h/w & kick off GLD scheduling 2451 */ 2452 mutex_enter(bgep->genlock); 2453 if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) { 2454 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 2455 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2456 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2457 mutex_exit(bgep->genlock); 2458 return (DDI_FAILURE); 2459 } 2460 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2461 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2462 mutex_exit(bgep->genlock); 2463 return (DDI_FAILURE); 2464 } 2465 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2466 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2467 mutex_exit(bgep->genlock); 2468 return (DDI_FAILURE); 2469 } 2470 mutex_exit(bgep->genlock); 2471 return (DDI_SUCCESS); 2472 } 2473 2474 /* 2475 * attach(9E) -- Attach a device to the system 2476 * 2477 * Called once for each board successfully probed. 2478 */ 2479 static int 2480 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 2481 { 2482 bge_t *bgep; /* Our private data */ 2483 mac_register_t *macp; 2484 chip_id_t *cidp; 2485 caddr_t regs; 2486 int instance; 2487 int err; 2488 int intr_types; 2489 #ifdef BGE_IPMI_ASF 2490 uint32_t mhcrValue; 2491 #ifdef __sparc 2492 uint16_t value16; 2493 #endif 2494 #ifdef BGE_NETCONSOLE 2495 int retval; 2496 #endif 2497 #endif 2498 2499 instance = ddi_get_instance(devinfo); 2500 2501 BGE_GTRACE(("bge_attach($%p, %d) instance %d", 2502 (void *)devinfo, cmd, instance)); 2503 BGE_BRKPT(NULL, "bge_attach"); 2504 2505 switch (cmd) { 2506 default: 2507 return (DDI_FAILURE); 2508 2509 case DDI_RESUME: 2510 return (bge_resume(devinfo)); 2511 2512 case DDI_ATTACH: 2513 break; 2514 } 2515 2516 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP); 2517 bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP); 2518 bgep->nd_params = 2519 kmem_zalloc(PARAM_COUNT * sizeof (nd_param_t), KM_SLEEP); 2520 ddi_set_driver_private(devinfo, bgep); 2521 bgep->bge_guard = BGE_GUARD; 2522 bgep->devinfo = devinfo; 2523 2524 /* 2525 * Initialize more fields in BGE private data 2526 */ 2527 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2528 DDI_PROP_DONTPASS, debug_propname, bge_debug); 2529 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d", 2530 BGE_DRIVER_NAME, instance); 2531 2532 /* 2533 * Initialize for fma support 2534 */ 2535 bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2536 DDI_PROP_DONTPASS, fm_cap, 2537 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2538 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2539 BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities)); 2540 bge_fm_init(bgep); 2541 2542 /* 2543 * Look up the IOMMU's page size for DVMA mappings (must be 2544 * a power of 2) and convert to a mask. This can be used to 2545 * determine whether a message buffer crosses a page boundary. 2546 * Note: in 2s complement binary notation, if X is a power of 2547 * 2, then -X has the representation "11...1100...00". 2548 */ 2549 bgep->pagemask = dvma_pagesize(devinfo); 2550 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask)); 2551 bgep->pagemask = -bgep->pagemask; 2552 2553 /* 2554 * Map config space registers 2555 * Read chip ID & set up config space command register(s) 2556 * 2557 * Note: this leaves the chip accessible by Memory Space 2558 * accesses, but with interrupts and Bus Mastering off. 2559 * This should ensure that nothing untoward will happen 2560 * if it has been left active by the (net-)bootloader. 2561 * We'll re-enable Bus Mastering once we've reset the chip, 2562 * and allow interrupts only when everything else is set up. 2563 */ 2564 err = pci_config_setup(devinfo, &bgep->cfg_handle); 2565 #ifdef BGE_IPMI_ASF 2566 #ifdef __sparc 2567 value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM); 2568 value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME); 2569 pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16); 2570 mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS | 2571 MHCR_ENABLE_TAGGED_STATUS_MODE | 2572 MHCR_MASK_INTERRUPT_MODE | 2573 MHCR_MASK_PCI_INT_OUTPUT | 2574 MHCR_CLEAR_INTERRUPT_INTA | 2575 MHCR_ENABLE_ENDIAN_WORD_SWAP | 2576 MHCR_ENABLE_ENDIAN_BYTE_SWAP; 2577 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue); 2578 bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG, 2579 bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) | 2580 MEMORY_ARBITER_ENABLE); 2581 #else 2582 mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR); 2583 #endif 2584 if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) { 2585 bgep->asf_wordswapped = B_TRUE; 2586 } else { 2587 bgep->asf_wordswapped = B_FALSE; 2588 } 2589 bge_asf_get_config(bgep); 2590 #endif 2591 if (err != DDI_SUCCESS) { 2592 bge_problem(bgep, "pci_config_setup() failed"); 2593 goto attach_fail; 2594 } 2595 bgep->progress |= PROGRESS_CFG; 2596 cidp = &bgep->chipid; 2597 bzero(cidp, sizeof (*cidp)); 2598 bge_chip_cfg_init(bgep, cidp, B_FALSE); 2599 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2600 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2601 goto attach_fail; 2602 } 2603 2604 #ifdef BGE_IPMI_ASF 2605 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 2606 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 2607 bgep->asf_newhandshake = B_TRUE; 2608 } else { 2609 bgep->asf_newhandshake = B_FALSE; 2610 } 2611 #endif 2612 2613 /* 2614 * Update those parts of the chip ID derived from volatile 2615 * registers with the values seen by OBP (in case the chip 2616 * has been reset externally and therefore lost them). 2617 */ 2618 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2619 DDI_PROP_DONTPASS, subven_propname, cidp->subven); 2620 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2621 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev); 2622 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2623 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize); 2624 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2625 DDI_PROP_DONTPASS, latency_propname, cidp->latency); 2626 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2627 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings); 2628 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2629 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings); 2630 2631 if (bge_jumbo_enable == B_TRUE) { 2632 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2633 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU); 2634 if ((cidp->default_mtu < BGE_DEFAULT_MTU)|| 2635 (cidp->default_mtu > BGE_MAXIMUM_MTU)) { 2636 cidp->default_mtu = BGE_DEFAULT_MTU; 2637 } 2638 } 2639 /* 2640 * Map operating registers 2641 */ 2642 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER, 2643 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle); 2644 if (err != DDI_SUCCESS) { 2645 bge_problem(bgep, "ddi_regs_map_setup() failed"); 2646 goto attach_fail; 2647 } 2648 bgep->io_regs = regs; 2649 bgep->progress |= PROGRESS_REGS; 2650 2651 /* 2652 * Characterise the device, so we know its requirements. 2653 * Then allocate the appropriate TX and RX descriptors & buffers. 2654 */ 2655 if (bge_chip_id_init(bgep) == EIO) { 2656 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2657 goto attach_fail; 2658 } 2659 err = bge_alloc_bufs(bgep); 2660 if (err != DDI_SUCCESS) { 2661 bge_problem(bgep, "DMA buffer allocation failed"); 2662 goto attach_fail; 2663 } 2664 bgep->progress |= PROGRESS_BUFS; 2665 2666 /* 2667 * Add the softint handlers: 2668 * 2669 * Both of these handlers are used to avoid restrictions on the 2670 * context and/or mutexes required for some operations. In 2671 * particular, the hardware interrupt handler and its subfunctions 2672 * can detect a number of conditions that we don't want to handle 2673 * in that context or with that set of mutexes held. So, these 2674 * softints are triggered instead: 2675 * 2676 * the <resched> softint is triggered if we have previously 2677 * had to refuse to send a packet because of resource shortage 2678 * (we've run out of transmit buffers), but the send completion 2679 * interrupt handler has now detected that more buffers have 2680 * become available. 2681 * 2682 * the <factotum> is triggered if the h/w interrupt handler 2683 * sees the <link state changed> or <error> bits in the status 2684 * block. It's also triggered periodically to poll the link 2685 * state, just in case we aren't getting link status change 2686 * interrupts ... 2687 */ 2688 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id, 2689 NULL, NULL, bge_send_drain, (caddr_t)bgep); 2690 if (err != DDI_SUCCESS) { 2691 bge_problem(bgep, "ddi_add_softintr() failed"); 2692 goto attach_fail; 2693 } 2694 bgep->progress |= PROGRESS_RESCHED; 2695 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id, 2696 NULL, NULL, bge_chip_factotum, (caddr_t)bgep); 2697 if (err != DDI_SUCCESS) { 2698 bge_problem(bgep, "ddi_add_softintr() failed"); 2699 goto attach_fail; 2700 } 2701 bgep->progress |= PROGRESS_FACTOTUM; 2702 2703 /* Get supported interrupt types */ 2704 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) { 2705 bge_error(bgep, "ddi_intr_get_supported_types failed\n"); 2706 2707 goto attach_fail; 2708 } 2709 2710 BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x", 2711 bgep->ifname, intr_types)); 2712 2713 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) { 2714 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 2715 bge_error(bgep, "MSI registration failed, " 2716 "trying FIXED interrupt type\n"); 2717 } else { 2718 BGE_DEBUG(("%s: Using MSI interrupt type", 2719 bgep->ifname)); 2720 bgep->intr_type = DDI_INTR_TYPE_MSI; 2721 bgep->progress |= PROGRESS_HWINT; 2722 } 2723 } 2724 2725 if (!(bgep->progress & PROGRESS_HWINT) && 2726 (intr_types & DDI_INTR_TYPE_FIXED)) { 2727 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 2728 bge_error(bgep, "FIXED interrupt " 2729 "registration failed\n"); 2730 goto attach_fail; 2731 } 2732 2733 BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname)); 2734 2735 bgep->intr_type = DDI_INTR_TYPE_FIXED; 2736 bgep->progress |= PROGRESS_HWINT; 2737 } 2738 2739 if (!(bgep->progress & PROGRESS_HWINT)) { 2740 bge_error(bgep, "No interrupts registered\n"); 2741 goto attach_fail; 2742 } 2743 2744 /* 2745 * Note that interrupts are not enabled yet as 2746 * mutex locks are not initialized. Initialize mutex locks. 2747 */ 2748 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER, 2749 DDI_INTR_PRI(bgep->intr_pri)); 2750 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER, 2751 DDI_INTR_PRI(bgep->intr_pri)); 2752 rw_init(bgep->errlock, NULL, RW_DRIVER, 2753 DDI_INTR_PRI(bgep->intr_pri)); 2754 2755 /* 2756 * Initialize rings. 2757 */ 2758 bge_init_rings(bgep); 2759 2760 /* 2761 * Now that mutex locks are initialized, enable interrupts. 2762 */ 2763 bge_intr_enable(bgep); 2764 bgep->progress |= PROGRESS_INTR; 2765 2766 /* 2767 * Initialise link state variables 2768 * Stop, reset & reinitialise the chip. 2769 * Initialise the (internal) PHY. 2770 */ 2771 bgep->link_state = LINK_STATE_UNKNOWN; 2772 2773 mutex_enter(bgep->genlock); 2774 2775 /* 2776 * Reset chip & rings to initial state; also reset address 2777 * filtering, promiscuity, loopback mode. 2778 */ 2779 #ifdef BGE_IPMI_ASF 2780 #ifdef BGE_NETCONSOLE 2781 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) { 2782 #else 2783 if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) { 2784 #endif 2785 #else 2786 if (bge_reset(bgep) != DDI_SUCCESS) { 2787 #endif 2788 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 2789 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2790 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2791 mutex_exit(bgep->genlock); 2792 goto attach_fail; 2793 } 2794 2795 #ifdef BGE_IPMI_ASF 2796 if (bgep->asf_enabled) { 2797 bgep->asf_status = ASF_STAT_RUN_INIT; 2798 } 2799 #endif 2800 2801 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash)); 2802 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs)); 2803 bgep->promisc = B_FALSE; 2804 bgep->param_loop_mode = BGE_LOOP_NONE; 2805 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2806 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2807 mutex_exit(bgep->genlock); 2808 goto attach_fail; 2809 } 2810 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2811 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2812 mutex_exit(bgep->genlock); 2813 goto attach_fail; 2814 } 2815 2816 mutex_exit(bgep->genlock); 2817 2818 if (bge_phys_init(bgep) == EIO) { 2819 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2820 goto attach_fail; 2821 } 2822 bgep->progress |= PROGRESS_PHY; 2823 2824 /* 2825 * Register NDD-tweakable parameters 2826 */ 2827 if (bge_nd_init(bgep)) { 2828 bge_problem(bgep, "bge_nd_init() failed"); 2829 goto attach_fail; 2830 } 2831 bgep->progress |= PROGRESS_NDD; 2832 2833 /* 2834 * Create & initialise named kstats 2835 */ 2836 bge_init_kstats(bgep, instance); 2837 bgep->progress |= PROGRESS_KSTATS; 2838 2839 /* 2840 * Determine whether to override the chip's own MAC address 2841 */ 2842 bge_find_mac_address(bgep, cidp); 2843 ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr); 2844 bgep->curr_addr[0].set = B_TRUE; 2845 2846 bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX; 2847 /* 2848 * Address available is one less than MAX 2849 * as primary address is not advertised 2850 * as a multiple MAC address. 2851 */ 2852 bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1; 2853 2854 if ((macp = mac_alloc(MAC_VERSION)) == NULL) 2855 goto attach_fail; 2856 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 2857 macp->m_driver = bgep; 2858 macp->m_dip = devinfo; 2859 macp->m_src_addr = bgep->curr_addr[0].addr; 2860 macp->m_callbacks = &bge_m_callbacks; 2861 macp->m_min_sdu = 0; 2862 macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header); 2863 /* 2864 * Finally, we're ready to register ourselves with the MAC layer 2865 * interface; if this succeeds, we're all ready to start() 2866 */ 2867 err = mac_register(macp, &bgep->mh); 2868 mac_free(macp); 2869 if (err != 0) 2870 goto attach_fail; 2871 2872 /* 2873 * Register a periodical handler. 2874 * bge_chip_cyclic() is invoked in kernel context. 2875 */ 2876 bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep, 2877 BGE_CYCLIC_PERIOD, DDI_IPL_0); 2878 2879 bgep->progress |= PROGRESS_READY; 2880 ASSERT(bgep->bge_guard == BGE_GUARD); 2881 #ifdef BGE_IPMI_ASF 2882 #ifdef BGE_NETCONSOLE 2883 if (bgep->asf_enabled) { 2884 mutex_enter(bgep->genlock); 2885 retval = bge_chip_start(bgep, B_TRUE); 2886 mutex_exit(bgep->genlock); 2887 if (retval != DDI_SUCCESS) 2888 goto attach_fail; 2889 } 2890 #endif 2891 #endif 2892 return (DDI_SUCCESS); 2893 2894 attach_fail: 2895 #ifdef BGE_IPMI_ASF 2896 bge_unattach(bgep, ASF_MODE_SHUTDOWN); 2897 #else 2898 bge_unattach(bgep); 2899 #endif 2900 return (DDI_FAILURE); 2901 } 2902 2903 /* 2904 * bge_suspend() -- suspend transmit/receive for powerdown 2905 */ 2906 static int 2907 bge_suspend(bge_t *bgep) 2908 { 2909 /* 2910 * Stop processing and idle (powerdown) the PHY ... 2911 */ 2912 mutex_enter(bgep->genlock); 2913 #ifdef BGE_IPMI_ASF 2914 /* 2915 * Power management hasn't been supported in BGE now. If you 2916 * want to implement it, please add the ASF/IPMI related 2917 * code here. 2918 */ 2919 #endif 2920 bge_stop(bgep); 2921 if (bge_phys_idle(bgep) != DDI_SUCCESS) { 2922 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2923 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 2924 mutex_exit(bgep->genlock); 2925 return (DDI_FAILURE); 2926 } 2927 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2928 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 2929 mutex_exit(bgep->genlock); 2930 return (DDI_FAILURE); 2931 } 2932 mutex_exit(bgep->genlock); 2933 2934 return (DDI_SUCCESS); 2935 } 2936 2937 /* 2938 * detach(9E) -- Detach a device from the system 2939 */ 2940 static int 2941 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 2942 { 2943 bge_t *bgep; 2944 #ifdef BGE_IPMI_ASF 2945 uint_t asf_mode; 2946 asf_mode = ASF_MODE_NONE; 2947 #endif 2948 2949 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd)); 2950 2951 bgep = ddi_get_driver_private(devinfo); 2952 2953 switch (cmd) { 2954 default: 2955 return (DDI_FAILURE); 2956 2957 case DDI_SUSPEND: 2958 return (bge_suspend(bgep)); 2959 2960 case DDI_DETACH: 2961 break; 2962 } 2963 2964 #ifdef BGE_IPMI_ASF 2965 mutex_enter(bgep->genlock); 2966 if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) || 2967 (bgep->asf_status == ASF_STAT_RUN_INIT))) { 2968 2969 bge_asf_update_status(bgep); 2970 if (bgep->asf_status == ASF_STAT_RUN) { 2971 bge_asf_stop_timer(bgep); 2972 } 2973 bgep->asf_status = ASF_STAT_STOP; 2974 2975 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 2976 2977 if (bgep->asf_pseudostop) { 2978 bge_chip_stop(bgep, B_FALSE); 2979 bgep->bge_mac_state = BGE_MAC_STOPPED; 2980 bgep->asf_pseudostop = B_FALSE; 2981 } 2982 2983 asf_mode = ASF_MODE_POST_SHUTDOWN; 2984 2985 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 2986 ddi_fm_service_impact(bgep->devinfo, 2987 DDI_SERVICE_UNAFFECTED); 2988 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 2989 ddi_fm_service_impact(bgep->devinfo, 2990 DDI_SERVICE_UNAFFECTED); 2991 } 2992 mutex_exit(bgep->genlock); 2993 #endif 2994 2995 /* 2996 * Unregister from the GLD subsystem. This can fail, in 2997 * particular if there are DLPI style-2 streams still open - 2998 * in which case we just return failure without shutting 2999 * down chip operations. 3000 */ 3001 if (mac_unregister(bgep->mh) != 0) 3002 return (DDI_FAILURE); 3003 3004 /* 3005 * All activity stopped, so we can clean up & exit 3006 */ 3007 #ifdef BGE_IPMI_ASF 3008 bge_unattach(bgep, asf_mode); 3009 #else 3010 bge_unattach(bgep); 3011 #endif 3012 return (DDI_SUCCESS); 3013 } 3014 3015 3016 /* 3017 * ========== Module Loading Data & Entry Points ========== 3018 */ 3019 3020 #undef BGE_DBG 3021 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 3022 3023 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach, 3024 nodev, NULL, D_MP, NULL); 3025 3026 static struct modldrv bge_modldrv = { 3027 &mod_driverops, /* Type of module. This one is a driver */ 3028 bge_ident, /* short description */ 3029 &bge_dev_ops /* driver specific ops */ 3030 }; 3031 3032 static struct modlinkage modlinkage = { 3033 MODREV_1, (void *)&bge_modldrv, NULL 3034 }; 3035 3036 3037 int 3038 _info(struct modinfo *modinfop) 3039 { 3040 return (mod_info(&modlinkage, modinfop)); 3041 } 3042 3043 int 3044 _init(void) 3045 { 3046 int status; 3047 3048 mac_init_ops(&bge_dev_ops, "bge"); 3049 status = mod_install(&modlinkage); 3050 if (status == DDI_SUCCESS) 3051 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL); 3052 else 3053 mac_fini_ops(&bge_dev_ops); 3054 return (status); 3055 } 3056 3057 int 3058 _fini(void) 3059 { 3060 int status; 3061 3062 status = mod_remove(&modlinkage); 3063 if (status == DDI_SUCCESS) { 3064 mac_fini_ops(&bge_dev_ops); 3065 mutex_destroy(bge_log_mutex); 3066 } 3067 return (status); 3068 } 3069 3070 3071 /* 3072 * bge_add_intrs: 3073 * 3074 * Register FIXED or MSI interrupts. 3075 */ 3076 static int 3077 bge_add_intrs(bge_t *bgep, int intr_type) 3078 { 3079 dev_info_t *dip = bgep->devinfo; 3080 int avail, actual, intr_size, count = 0; 3081 int i, flag, ret; 3082 3083 BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type)); 3084 3085 /* Get number of interrupts */ 3086 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 3087 if ((ret != DDI_SUCCESS) || (count == 0)) { 3088 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, " 3089 "count: %d", ret, count); 3090 3091 return (DDI_FAILURE); 3092 } 3093 3094 /* Get number of available interrupts */ 3095 ret = ddi_intr_get_navail(dip, intr_type, &avail); 3096 if ((ret != DDI_SUCCESS) || (avail == 0)) { 3097 bge_error(bgep, "ddi_intr_get_navail() failure, " 3098 "ret: %d, avail: %d\n", ret, avail); 3099 3100 return (DDI_FAILURE); 3101 } 3102 3103 if (avail < count) { 3104 BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d", 3105 bgep->ifname, count, avail)); 3106 } 3107 3108 /* 3109 * BGE hardware generates only single MSI even though it claims 3110 * to support multiple MSIs. So, hard code MSI count value to 1. 3111 */ 3112 if (intr_type == DDI_INTR_TYPE_MSI) { 3113 count = 1; 3114 flag = DDI_INTR_ALLOC_STRICT; 3115 } else { 3116 flag = DDI_INTR_ALLOC_NORMAL; 3117 } 3118 3119 /* Allocate an array of interrupt handles */ 3120 intr_size = count * sizeof (ddi_intr_handle_t); 3121 bgep->htable = kmem_alloc(intr_size, KM_SLEEP); 3122 3123 /* Call ddi_intr_alloc() */ 3124 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0, 3125 count, &actual, flag); 3126 3127 if ((ret != DDI_SUCCESS) || (actual == 0)) { 3128 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret); 3129 3130 kmem_free(bgep->htable, intr_size); 3131 return (DDI_FAILURE); 3132 } 3133 3134 if (actual < count) { 3135 BGE_DEBUG(("%s: Requested: %d, Received: %d", 3136 bgep->ifname, count, actual)); 3137 } 3138 3139 bgep->intr_cnt = actual; 3140 3141 /* 3142 * Get priority for first msi, assume remaining are all the same 3143 */ 3144 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) != 3145 DDI_SUCCESS) { 3146 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret); 3147 3148 /* Free already allocated intr */ 3149 for (i = 0; i < actual; i++) { 3150 (void) ddi_intr_free(bgep->htable[i]); 3151 } 3152 3153 kmem_free(bgep->htable, intr_size); 3154 return (DDI_FAILURE); 3155 } 3156 3157 /* Call ddi_intr_add_handler() */ 3158 for (i = 0; i < actual; i++) { 3159 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr, 3160 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 3161 bge_error(bgep, "ddi_intr_add_handler() " 3162 "failed %d\n", ret); 3163 3164 /* Free already allocated intr */ 3165 for (i = 0; i < actual; i++) { 3166 (void) ddi_intr_free(bgep->htable[i]); 3167 } 3168 3169 kmem_free(bgep->htable, intr_size); 3170 return (DDI_FAILURE); 3171 } 3172 } 3173 3174 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap)) 3175 != DDI_SUCCESS) { 3176 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret); 3177 3178 for (i = 0; i < actual; i++) { 3179 (void) ddi_intr_remove_handler(bgep->htable[i]); 3180 (void) ddi_intr_free(bgep->htable[i]); 3181 } 3182 3183 kmem_free(bgep->htable, intr_size); 3184 return (DDI_FAILURE); 3185 } 3186 3187 return (DDI_SUCCESS); 3188 } 3189 3190 /* 3191 * bge_rem_intrs: 3192 * 3193 * Unregister FIXED or MSI interrupts 3194 */ 3195 static void 3196 bge_rem_intrs(bge_t *bgep) 3197 { 3198 int i; 3199 3200 BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep)); 3201 3202 /* Call ddi_intr_remove_handler() */ 3203 for (i = 0; i < bgep->intr_cnt; i++) { 3204 (void) ddi_intr_remove_handler(bgep->htable[i]); 3205 (void) ddi_intr_free(bgep->htable[i]); 3206 } 3207 3208 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t)); 3209 } 3210 3211 3212 void 3213 bge_intr_enable(bge_t *bgep) 3214 { 3215 int i; 3216 3217 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 3218 /* Call ddi_intr_block_enable() for MSI interrupts */ 3219 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt); 3220 } else { 3221 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 3222 for (i = 0; i < bgep->intr_cnt; i++) { 3223 (void) ddi_intr_enable(bgep->htable[i]); 3224 } 3225 } 3226 } 3227 3228 3229 void 3230 bge_intr_disable(bge_t *bgep) 3231 { 3232 int i; 3233 3234 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 3235 /* Call ddi_intr_block_disable() */ 3236 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt); 3237 } else { 3238 for (i = 0; i < bgep->intr_cnt; i++) { 3239 (void) ddi_intr_disable(bgep->htable[i]); 3240 } 3241 } 3242 } 3243