xref: /titanic_50/usr/src/uts/common/io/bge/bge_main2.c (revision 648495d6a097a39eaebc7e56d25f2463ff3bba65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 #include <sys/sdt.h>
31 #include <sys/mac.h>
32 
33 /*
34  * This is the string displayed by modinfo, etc.
35  * Make sure you keep the version ID up to date!
36  */
37 static char bge_ident[] = "Broadcom Gb Ethernet v0.66";
38 
39 /*
40  * Property names
41  */
42 static char debug_propname[] = "bge-debug-flags";
43 static char clsize_propname[] = "cache-line-size";
44 static char latency_propname[] = "latency-timer";
45 static char localmac_boolname[] = "local-mac-address?";
46 static char localmac_propname[] = "local-mac-address";
47 static char macaddr_propname[] = "mac-address";
48 static char subdev_propname[] = "subsystem-id";
49 static char subven_propname[] = "subsystem-vendor-id";
50 static char rxrings_propname[] = "bge-rx-rings";
51 static char txrings_propname[] = "bge-tx-rings";
52 static char fm_cap[] = "fm-capable";
53 static char default_mtu[] = "default_mtu";
54 
55 static int bge_add_intrs(bge_t *, int);
56 static void bge_rem_intrs(bge_t *);
57 
58 /*
59  * Describes the chip's DMA engine
60  */
61 static ddi_dma_attr_t dma_attr = {
62 	DMA_ATTR_V0,			/* dma_attr version	*/
63 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
64 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
65 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
66 	0x0000000000000001ull,		/* dma_attr_align	*/
67 	0x00000FFF,			/* dma_attr_burstsizes	*/
68 	0x00000001,			/* dma_attr_minxfer	*/
69 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
70 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
71 	1,				/* dma_attr_sgllen 	*/
72 	0x00000001,			/* dma_attr_granular 	*/
73 	DDI_DMA_FLAGERR			/* dma_attr_flags */
74 };
75 
76 /*
77  * PIO access attributes for registers
78  */
79 static ddi_device_acc_attr_t bge_reg_accattr = {
80 	DDI_DEVICE_ATTR_V0,
81 	DDI_NEVERSWAP_ACC,
82 	DDI_STRICTORDER_ACC,
83 	DDI_FLAGERR_ACC
84 };
85 
86 /*
87  * DMA access attributes for descriptors: NOT to be byte swapped.
88  */
89 static ddi_device_acc_attr_t bge_desc_accattr = {
90 	DDI_DEVICE_ATTR_V0,
91 	DDI_NEVERSWAP_ACC,
92 	DDI_STRICTORDER_ACC,
93 	DDI_FLAGERR_ACC
94 };
95 
96 /*
97  * DMA access attributes for data: NOT to be byte swapped.
98  */
99 static ddi_device_acc_attr_t bge_data_accattr = {
100 	DDI_DEVICE_ATTR_V0,
101 	DDI_NEVERSWAP_ACC,
102 	DDI_STRICTORDER_ACC
103 };
104 
105 static int		bge_m_start(void *);
106 static void		bge_m_stop(void *);
107 static int		bge_m_promisc(void *, boolean_t);
108 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
109 static int		bge_m_unicst(void *, const uint8_t *);
110 static void		bge_m_resources(void *);
111 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
112 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
113 static int		bge_unicst_set(void *, const uint8_t *,
114     mac_addr_slot_t);
115 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
116 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
117 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
118 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
119 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
120     uint_t, const void *);
121 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
122     uint_t, uint_t, void *);
123 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
124     const void *);
125 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
126     uint_t, void *);
127 
128 #define	BGE_M_CALLBACK_FLAGS\
129 	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
130 
131 static mac_callbacks_t bge_m_callbacks = {
132 	BGE_M_CALLBACK_FLAGS,
133 	bge_m_stat,
134 	bge_m_start,
135 	bge_m_stop,
136 	bge_m_promisc,
137 	bge_m_multicst,
138 	bge_m_unicst,
139 	bge_m_tx,
140 	bge_m_resources,
141 	bge_m_ioctl,
142 	bge_m_getcapab,
143 	NULL,
144 	NULL,
145 	bge_m_setprop,
146 	bge_m_getprop
147 };
148 
149 mac_priv_prop_t bge_priv_prop[] = {
150 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
151 	{"_adv_pause_cap", MAC_PROP_PERM_RW}
152 };
153 
154 #define	BGE_MAX_PRIV_PROPS \
155 	(sizeof (bge_priv_prop) / sizeof (mac_priv_prop_t))
156 
157 /*
158  * ========== Transmit and receive ring reinitialisation ==========
159  */
160 
161 /*
162  * These <reinit> routines each reset the specified ring to an initial
163  * state, assuming that the corresponding <init> routine has already
164  * been called exactly once.
165  */
166 
167 static void
168 bge_reinit_send_ring(send_ring_t *srp)
169 {
170 	bge_queue_t *txbuf_queue;
171 	bge_queue_item_t *txbuf_head;
172 	sw_txbuf_t *txbuf;
173 	sw_sbd_t *ssbdp;
174 	uint32_t slot;
175 
176 	/*
177 	 * Reinitialise control variables ...
178 	 */
179 	srp->tx_flow = 0;
180 	srp->tx_next = 0;
181 	srp->txfill_next = 0;
182 	srp->tx_free = srp->desc.nslots;
183 	ASSERT(mutex_owned(srp->tc_lock));
184 	srp->tc_next = 0;
185 	srp->txpkt_next = 0;
186 	srp->tx_block = 0;
187 	srp->tx_nobd = 0;
188 	srp->tx_nobuf = 0;
189 
190 	/*
191 	 * Initialize the tx buffer push queue
192 	 */
193 	mutex_enter(srp->freetxbuf_lock);
194 	mutex_enter(srp->txbuf_lock);
195 	txbuf_queue = &srp->freetxbuf_queue;
196 	txbuf_queue->head = NULL;
197 	txbuf_queue->count = 0;
198 	txbuf_queue->lock = srp->freetxbuf_lock;
199 	srp->txbuf_push_queue = txbuf_queue;
200 
201 	/*
202 	 * Initialize the tx buffer pop queue
203 	 */
204 	txbuf_queue = &srp->txbuf_queue;
205 	txbuf_queue->head = NULL;
206 	txbuf_queue->count = 0;
207 	txbuf_queue->lock = srp->txbuf_lock;
208 	srp->txbuf_pop_queue = txbuf_queue;
209 	txbuf_head = srp->txbuf_head;
210 	txbuf = srp->txbuf;
211 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
212 		txbuf_head->item = txbuf;
213 		txbuf_head->next = txbuf_queue->head;
214 		txbuf_queue->head = txbuf_head;
215 		txbuf_queue->count++;
216 		txbuf++;
217 		txbuf_head++;
218 	}
219 	mutex_exit(srp->txbuf_lock);
220 	mutex_exit(srp->freetxbuf_lock);
221 
222 	/*
223 	 * Zero and sync all the h/w Send Buffer Descriptors
224 	 */
225 	DMA_ZERO(srp->desc);
226 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
227 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
228 	ssbdp = srp->sw_sbds;
229 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
230 		ssbdp->pbuf = NULL;
231 }
232 
233 static void
234 bge_reinit_recv_ring(recv_ring_t *rrp)
235 {
236 	/*
237 	 * Reinitialise control variables ...
238 	 */
239 	rrp->rx_next = 0;
240 }
241 
242 static void
243 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
244 {
245 	bge_rbd_t *hw_rbd_p;
246 	sw_rbd_t *srbdp;
247 	uint32_t bufsize;
248 	uint32_t nslots;
249 	uint32_t slot;
250 
251 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
252 		RBD_FLAG_STD_RING,
253 		RBD_FLAG_JUMBO_RING,
254 		RBD_FLAG_MINI_RING
255 	};
256 
257 	/*
258 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
259 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
260 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
261 	 * should be zeroed, and so don't need to be set up specifically
262 	 * once the whole area has been cleared.
263 	 */
264 	DMA_ZERO(brp->desc);
265 
266 	hw_rbd_p = DMA_VPTR(brp->desc);
267 	nslots = brp->desc.nslots;
268 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
269 	bufsize = brp->buf[0].size;
270 	srbdp = brp->sw_rbds;
271 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
272 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
273 		hw_rbd_p->index = (uint16_t)slot;
274 		hw_rbd_p->len = (uint16_t)bufsize;
275 		hw_rbd_p->opaque = srbdp->pbuf.token;
276 		hw_rbd_p->flags |= ring_type_flag[ring];
277 	}
278 
279 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
280 
281 	/*
282 	 * Finally, reinitialise the ring control variables ...
283 	 */
284 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
285 }
286 
287 /*
288  * Reinitialize all rings
289  */
290 static void
291 bge_reinit_rings(bge_t *bgep)
292 {
293 	uint32_t ring;
294 
295 	ASSERT(mutex_owned(bgep->genlock));
296 
297 	/*
298 	 * Send Rings ...
299 	 */
300 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
301 		bge_reinit_send_ring(&bgep->send[ring]);
302 
303 	/*
304 	 * Receive Return Rings ...
305 	 */
306 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
307 		bge_reinit_recv_ring(&bgep->recv[ring]);
308 
309 	/*
310 	 * Receive Producer Rings ...
311 	 */
312 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
313 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
314 }
315 
316 /*
317  * ========== Internal state management entry points ==========
318  */
319 
320 #undef	BGE_DBG
321 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
322 
323 /*
324  * These routines provide all the functionality required by the
325  * corresponding GLD entry points, but don't update the GLD state
326  * so they can be called internally without disturbing our record
327  * of what GLD thinks we should be doing ...
328  */
329 
330 /*
331  *	bge_reset() -- reset h/w & rings to initial state
332  */
333 static int
334 #ifdef BGE_IPMI_ASF
335 bge_reset(bge_t *bgep, uint_t asf_mode)
336 #else
337 bge_reset(bge_t *bgep)
338 #endif
339 {
340 	uint32_t	ring;
341 	int retval;
342 
343 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
344 
345 	ASSERT(mutex_owned(bgep->genlock));
346 
347 	/*
348 	 * Grab all the other mutexes in the world (this should
349 	 * ensure no other threads are manipulating driver state)
350 	 */
351 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
352 		mutex_enter(bgep->recv[ring].rx_lock);
353 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
354 		mutex_enter(bgep->buff[ring].rf_lock);
355 	rw_enter(bgep->errlock, RW_WRITER);
356 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
357 		mutex_enter(bgep->send[ring].tx_lock);
358 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
359 		mutex_enter(bgep->send[ring].tc_lock);
360 
361 #ifdef BGE_IPMI_ASF
362 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
363 #else
364 	retval = bge_chip_reset(bgep, B_TRUE);
365 #endif
366 	bge_reinit_rings(bgep);
367 
368 	/*
369 	 * Free the world ...
370 	 */
371 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
372 		mutex_exit(bgep->send[ring].tc_lock);
373 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
374 		mutex_exit(bgep->send[ring].tx_lock);
375 	rw_exit(bgep->errlock);
376 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
377 		mutex_exit(bgep->buff[ring].rf_lock);
378 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
379 		mutex_exit(bgep->recv[ring].rx_lock);
380 
381 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
382 	return (retval);
383 }
384 
385 /*
386  *	bge_stop() -- stop processing, don't reset h/w or rings
387  */
388 static void
389 bge_stop(bge_t *bgep)
390 {
391 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
392 
393 	ASSERT(mutex_owned(bgep->genlock));
394 
395 #ifdef BGE_IPMI_ASF
396 	if (bgep->asf_enabled) {
397 		bgep->asf_pseudostop = B_TRUE;
398 	} else {
399 #endif
400 		bge_chip_stop(bgep, B_FALSE);
401 #ifdef BGE_IPMI_ASF
402 	}
403 #endif
404 
405 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
406 }
407 
408 /*
409  *	bge_start() -- start transmitting/receiving
410  */
411 static int
412 bge_start(bge_t *bgep, boolean_t reset_phys)
413 {
414 	int retval;
415 
416 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
417 
418 	ASSERT(mutex_owned(bgep->genlock));
419 
420 	/*
421 	 * Start chip processing, including enabling interrupts
422 	 */
423 	retval = bge_chip_start(bgep, reset_phys);
424 
425 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
426 	return (retval);
427 }
428 
429 /*
430  * bge_restart - restart transmitting/receiving after error or suspend
431  */
432 int
433 bge_restart(bge_t *bgep, boolean_t reset_phys)
434 {
435 	int retval = DDI_SUCCESS;
436 	ASSERT(mutex_owned(bgep->genlock));
437 
438 #ifdef BGE_IPMI_ASF
439 	if (bgep->asf_enabled) {
440 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
441 			retval = DDI_FAILURE;
442 	} else
443 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
444 			retval = DDI_FAILURE;
445 #else
446 	if (bge_reset(bgep) != DDI_SUCCESS)
447 		retval = DDI_FAILURE;
448 #endif
449 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
450 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
451 			retval = DDI_FAILURE;
452 		bgep->watchdog = 0;
453 		ddi_trigger_softintr(bgep->drain_id);
454 	}
455 
456 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
457 	return (retval);
458 }
459 
460 
461 /*
462  * ========== Nemo-required management entry points ==========
463  */
464 
465 #undef	BGE_DBG
466 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
467 
468 /*
469  *	bge_m_stop() -- stop transmitting/receiving
470  */
471 static void
472 bge_m_stop(void *arg)
473 {
474 	bge_t *bgep = arg;		/* private device info	*/
475 	send_ring_t *srp;
476 	uint32_t ring;
477 
478 	BGE_TRACE(("bge_m_stop($%p)", arg));
479 
480 	/*
481 	 * Just stop processing, then record new GLD state
482 	 */
483 	mutex_enter(bgep->genlock);
484 	if (!(bgep->progress & PROGRESS_INTR)) {
485 		/* can happen during autorecovery */
486 		mutex_exit(bgep->genlock);
487 		return;
488 	}
489 	bge_stop(bgep);
490 
491 	bgep->link_update_timer = 0;
492 	bgep->link_state = LINK_STATE_UNKNOWN;
493 	mac_link_update(bgep->mh, bgep->link_state);
494 
495 	/*
496 	 * Free the possible tx buffers allocated in tx process.
497 	 */
498 #ifdef BGE_IPMI_ASF
499 	if (!bgep->asf_pseudostop)
500 #endif
501 	{
502 		rw_enter(bgep->errlock, RW_WRITER);
503 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
504 			srp = &bgep->send[ring];
505 			mutex_enter(srp->tx_lock);
506 			if (srp->tx_array > 1)
507 				bge_free_txbuf_arrays(srp);
508 			mutex_exit(srp->tx_lock);
509 		}
510 		rw_exit(bgep->errlock);
511 	}
512 	bgep->bge_mac_state = BGE_MAC_STOPPED;
513 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
514 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
515 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
516 	mutex_exit(bgep->genlock);
517 }
518 
519 /*
520  *	bge_m_start() -- start transmitting/receiving
521  */
522 static int
523 bge_m_start(void *arg)
524 {
525 	bge_t *bgep = arg;		/* private device info	*/
526 
527 	BGE_TRACE(("bge_m_start($%p)", arg));
528 
529 	/*
530 	 * Start processing and record new GLD state
531 	 */
532 	mutex_enter(bgep->genlock);
533 	if (!(bgep->progress & PROGRESS_INTR)) {
534 		/* can happen during autorecovery */
535 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
536 		mutex_exit(bgep->genlock);
537 		return (EIO);
538 	}
539 #ifdef BGE_IPMI_ASF
540 	if (bgep->asf_enabled) {
541 		if ((bgep->asf_status == ASF_STAT_RUN) &&
542 		    (bgep->asf_pseudostop)) {
543 			bgep->bge_mac_state = BGE_MAC_STARTED;
544 			mutex_exit(bgep->genlock);
545 			return (0);
546 		}
547 	}
548 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
549 #else
550 	if (bge_reset(bgep) != DDI_SUCCESS) {
551 #endif
552 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
553 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
554 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
555 		mutex_exit(bgep->genlock);
556 		return (EIO);
557 	}
558 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
559 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
560 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
561 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
562 		mutex_exit(bgep->genlock);
563 		return (EIO);
564 	}
565 	bgep->bge_mac_state = BGE_MAC_STARTED;
566 	BGE_DEBUG(("bge_m_start($%p) done", arg));
567 
568 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
569 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
570 		mutex_exit(bgep->genlock);
571 		return (EIO);
572 	}
573 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
574 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
575 		mutex_exit(bgep->genlock);
576 		return (EIO);
577 	}
578 #ifdef BGE_IPMI_ASF
579 	if (bgep->asf_enabled) {
580 		if (bgep->asf_status != ASF_STAT_RUN) {
581 			/* start ASF heart beat */
582 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
583 			    (void *)bgep,
584 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
585 			bgep->asf_status = ASF_STAT_RUN;
586 		}
587 	}
588 #endif
589 	mutex_exit(bgep->genlock);
590 
591 	return (0);
592 }
593 
594 /*
595  *	bge_m_unicst() -- set the physical network address
596  */
597 static int
598 bge_m_unicst(void *arg, const uint8_t *macaddr)
599 {
600 	/*
601 	 * Request to set address in
602 	 * address slot 0, i.e., default address
603 	 */
604 	return (bge_unicst_set(arg, macaddr, 0));
605 }
606 
607 /*
608  *	bge_unicst_set() -- set the physical network address
609  */
610 static int
611 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
612 {
613 	bge_t *bgep = arg;		/* private device info	*/
614 
615 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
616 	    ether_sprintf((void *)macaddr)));
617 	/*
618 	 * Remember the new current address in the driver state
619 	 * Sync the chip's idea of the address too ...
620 	 */
621 	mutex_enter(bgep->genlock);
622 	if (!(bgep->progress & PROGRESS_INTR)) {
623 		/* can happen during autorecovery */
624 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
625 		mutex_exit(bgep->genlock);
626 		return (EIO);
627 	}
628 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
629 #ifdef BGE_IPMI_ASF
630 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
631 #else
632 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
633 #endif
634 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
635 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
636 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
637 		mutex_exit(bgep->genlock);
638 		return (EIO);
639 	}
640 #ifdef BGE_IPMI_ASF
641 	if (bgep->asf_enabled) {
642 		/*
643 		 * The above bge_chip_sync() function wrote the ethernet MAC
644 		 * addresses registers which destroyed the IPMI/ASF sideband.
645 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
646 		 */
647 		if (bgep->asf_status == ASF_STAT_RUN) {
648 			/*
649 			 * We must stop ASF heart beat before bge_chip_stop(),
650 			 * otherwise some computers (ex. IBM HS20 blade server)
651 			 * may crash.
652 			 */
653 			bge_asf_update_status(bgep);
654 			bge_asf_stop_timer(bgep);
655 			bgep->asf_status = ASF_STAT_STOP;
656 
657 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
658 		}
659 		bge_chip_stop(bgep, B_FALSE);
660 
661 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
662 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
663 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
664 			ddi_fm_service_impact(bgep->devinfo,
665 			    DDI_SERVICE_DEGRADED);
666 			mutex_exit(bgep->genlock);
667 			return (EIO);
668 		}
669 
670 		/*
671 		 * Start our ASF heartbeat counter as soon as possible.
672 		 */
673 		if (bgep->asf_status != ASF_STAT_RUN) {
674 			/* start ASF heart beat */
675 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
676 			    (void *)bgep,
677 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
678 			bgep->asf_status = ASF_STAT_RUN;
679 		}
680 	}
681 #endif
682 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
683 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
684 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
685 		mutex_exit(bgep->genlock);
686 		return (EIO);
687 	}
688 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
689 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
690 		mutex_exit(bgep->genlock);
691 		return (EIO);
692 	}
693 	mutex_exit(bgep->genlock);
694 
695 	return (0);
696 }
697 
698 /*
699  * The following four routines are used as callbacks for multiple MAC
700  * address support:
701  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
702  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
703  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
704  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
705  */
706 
707 /*
708  * bge_m_unicst_add() - will find an unused address slot, set the
709  * address value to the one specified, reserve that slot and enable
710  * the NIC to start filtering on the new MAC address.
711  * address slot. Returns 0 on success.
712  */
713 static int
714 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
715 {
716 	bge_t *bgep = arg;		/* private device info	*/
717 	mac_addr_slot_t slot;
718 	int err;
719 
720 	if (mac_unicst_verify(bgep->mh,
721 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
722 		return (EINVAL);
723 
724 	mutex_enter(bgep->genlock);
725 	if (bgep->unicst_addr_avail == 0) {
726 		/* no slots available */
727 		mutex_exit(bgep->genlock);
728 		return (ENOSPC);
729 	}
730 
731 	/*
732 	 * Primary/default address is in slot 0. The next three
733 	 * addresses are the multiple MAC addresses. So multiple
734 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
735 	 * So the first multiple MAC address resides in slot 1.
736 	 */
737 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
738 		if (bgep->curr_addr[slot].set == B_FALSE) {
739 			bgep->curr_addr[slot].set = B_TRUE;
740 			break;
741 		}
742 	}
743 
744 	ASSERT(slot < bgep->unicst_addr_total);
745 	bgep->unicst_addr_avail--;
746 	mutex_exit(bgep->genlock);
747 	maddr->mma_slot = slot;
748 
749 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
750 		mutex_enter(bgep->genlock);
751 		bgep->curr_addr[slot].set = B_FALSE;
752 		bgep->unicst_addr_avail++;
753 		mutex_exit(bgep->genlock);
754 	}
755 	return (err);
756 }
757 
758 /*
759  * bge_m_unicst_remove() - removes a MAC address that was added by a
760  * call to bge_m_unicst_add(). The slot number that was returned in
761  * add() is passed in the call to remove the address.
762  * Returns 0 on success.
763  */
764 static int
765 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
766 {
767 	bge_t *bgep = arg;		/* private device info	*/
768 
769 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
770 		return (EINVAL);
771 
772 	mutex_enter(bgep->genlock);
773 	if (bgep->curr_addr[slot].set == B_TRUE) {
774 		bgep->curr_addr[slot].set = B_FALSE;
775 		bgep->unicst_addr_avail++;
776 		mutex_exit(bgep->genlock);
777 		/*
778 		 * Copy the default address to the passed slot
779 		 */
780 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
781 	}
782 	mutex_exit(bgep->genlock);
783 	return (EINVAL);
784 }
785 
786 /*
787  * bge_m_unicst_modify() - modifies the value of an address that
788  * has been added by bge_m_unicst_add(). The new address, address
789  * length and the slot number that was returned in the call to add
790  * should be passed to bge_m_unicst_modify(). mma_flags should be
791  * set to 0. Returns 0 on success.
792  */
793 static int
794 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
795 {
796 	bge_t *bgep = arg;		/* private device info	*/
797 	mac_addr_slot_t slot;
798 
799 	if (mac_unicst_verify(bgep->mh,
800 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
801 		return (EINVAL);
802 
803 	slot = maddr->mma_slot;
804 
805 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
806 		return (EINVAL);
807 
808 	mutex_enter(bgep->genlock);
809 	if (bgep->curr_addr[slot].set == B_TRUE) {
810 		mutex_exit(bgep->genlock);
811 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
812 	}
813 	mutex_exit(bgep->genlock);
814 
815 	return (EINVAL);
816 }
817 
818 /*
819  * bge_m_unicst_get() - will get the MAC address and all other
820  * information related to the address slot passed in mac_multi_addr_t.
821  * mma_flags should be set to 0 in the call.
822  * On return, mma_flags can take the following values:
823  * 1) MMAC_SLOT_UNUSED
824  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
825  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
826  * 4) MMAC_SLOT_USED
827  */
828 static int
829 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
830 {
831 	bge_t *bgep = arg;		/* private device info	*/
832 	mac_addr_slot_t slot;
833 
834 	slot = maddr->mma_slot;
835 
836 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
837 		return (EINVAL);
838 
839 	mutex_enter(bgep->genlock);
840 	if (bgep->curr_addr[slot].set == B_TRUE) {
841 		ethaddr_copy(bgep->curr_addr[slot].addr,
842 		    maddr->mma_addr);
843 		maddr->mma_flags = MMAC_SLOT_USED;
844 	} else {
845 		maddr->mma_flags = MMAC_SLOT_UNUSED;
846 	}
847 	mutex_exit(bgep->genlock);
848 
849 	return (0);
850 }
851 
852 extern void bge_wake_factotum(bge_t *);
853 
854 static boolean_t
855 bge_param_locked(mac_prop_id_t pr_num)
856 {
857 	/*
858 	 * All adv_* parameters are locked (read-only) while
859 	 * the device is in any sort of loopback mode ...
860 	 */
861 	switch (pr_num) {
862 		case MAC_PROP_ADV_1000FDX_CAP:
863 		case MAC_PROP_EN_1000FDX_CAP:
864 		case MAC_PROP_ADV_1000HDX_CAP:
865 		case MAC_PROP_EN_1000HDX_CAP:
866 		case MAC_PROP_ADV_100FDX_CAP:
867 		case MAC_PROP_EN_100FDX_CAP:
868 		case MAC_PROP_ADV_100HDX_CAP:
869 		case MAC_PROP_EN_100HDX_CAP:
870 		case MAC_PROP_ADV_10FDX_CAP:
871 		case MAC_PROP_EN_10FDX_CAP:
872 		case MAC_PROP_ADV_10HDX_CAP:
873 		case MAC_PROP_EN_10HDX_CAP:
874 		case MAC_PROP_AUTONEG:
875 		case MAC_PROP_FLOWCTRL:
876 			return (B_TRUE);
877 	}
878 	return (B_FALSE);
879 }
880 /*
881  * callback functions for set/get of properties
882  */
883 static int
884 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
885     uint_t pr_valsize, const void *pr_val)
886 {
887 	bge_t *bgep = barg;
888 	int err = 0;
889 	uint32_t cur_mtu, new_mtu;
890 	uint_t	maxsdu;
891 	link_flowctrl_t fl;
892 
893 	mutex_enter(bgep->genlock);
894 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
895 	    bge_param_locked(pr_num)) {
896 		/*
897 		 * All adv_* parameters are locked (read-only)
898 		 * while the device is in any sort of loopback mode.
899 		 */
900 		mutex_exit(bgep->genlock);
901 		return (EBUSY);
902 	}
903 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
904 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
905 	    (pr_num == MAC_PROP_EN_100FDX_CAP) ||
906 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
907 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) {
908 		/*
909 		 * these properties are read/write on copper,
910 		 * read-only and 0 on serdes
911 		 */
912 		mutex_exit(bgep->genlock);
913 		return (ENOTSUP);
914 	}
915 
916 	switch (pr_num) {
917 		case MAC_PROP_EN_1000FDX_CAP:
918 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
919 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
920 			goto reprogram;
921 		case MAC_PROP_EN_1000HDX_CAP:
922 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
923 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
924 			goto reprogram;
925 		case MAC_PROP_EN_100FDX_CAP:
926 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
927 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
928 			goto reprogram;
929 		case MAC_PROP_EN_100HDX_CAP:
930 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
931 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
932 			goto reprogram;
933 		case MAC_PROP_EN_10FDX_CAP:
934 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
935 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
936 			goto reprogram;
937 		case MAC_PROP_EN_10HDX_CAP:
938 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
939 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
940 reprogram:
941 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
942 				err = EINVAL;
943 			break;
944 		case MAC_PROP_ADV_1000FDX_CAP:
945 		case MAC_PROP_ADV_1000HDX_CAP:
946 		case MAC_PROP_ADV_100FDX_CAP:
947 		case MAC_PROP_ADV_100HDX_CAP:
948 		case MAC_PROP_ADV_10FDX_CAP:
949 		case MAC_PROP_ADV_10HDX_CAP:
950 		case MAC_PROP_STATUS:
951 		case MAC_PROP_SPEED:
952 		case MAC_PROP_DUPLEX:
953 			err = ENOTSUP; /* read-only prop. Can't set this */
954 			break;
955 		case MAC_PROP_AUTONEG:
956 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
957 			if (bge_reprogram(bgep) == IOC_INVAL)
958 				err = EINVAL;
959 			break;
960 		case MAC_PROP_MTU:
961 			cur_mtu = bgep->chipid.default_mtu;
962 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
963 
964 			if (new_mtu == cur_mtu) {
965 				err = 0;
966 				break;
967 			}
968 			if (new_mtu < BGE_DEFAULT_MTU ||
969 			    new_mtu > BGE_MAXIMUM_MTU) {
970 				err = EINVAL;
971 				break;
972 			}
973 			if ((new_mtu > BGE_DEFAULT_MTU) &&
974 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
975 				err = EINVAL;
976 				break;
977 			}
978 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
979 				err = EBUSY;
980 				break;
981 			}
982 			bgep->chipid.default_mtu = new_mtu;
983 			if (bge_chip_id_init(bgep)) {
984 				err = EINVAL;
985 				break;
986 			}
987 			maxsdu = bgep->chipid.ethmax_size -
988 			    sizeof (struct ether_header);
989 			err = mac_maxsdu_update(bgep->mh, maxsdu);
990 			if (err == 0) {
991 				bgep->bge_dma_error = B_TRUE;
992 				bgep->manual_reset = B_TRUE;
993 				bge_chip_stop(bgep, B_TRUE);
994 				bge_wake_factotum(bgep);
995 				err = 0;
996 			}
997 			break;
998 		case MAC_PROP_FLOWCTRL:
999 			bcopy(pr_val, &fl, sizeof (fl));
1000 			switch (fl) {
1001 			default:
1002 				err = ENOTSUP;
1003 				break;
1004 			case LINK_FLOWCTRL_NONE:
1005 				bgep->param_adv_pause = 0;
1006 				bgep->param_adv_asym_pause = 0;
1007 
1008 				bgep->param_link_rx_pause = B_FALSE;
1009 				bgep->param_link_tx_pause = B_FALSE;
1010 				break;
1011 			case LINK_FLOWCTRL_RX:
1012 				if (!((bgep->param_lp_pause == 0) &&
1013 				    (bgep->param_lp_asym_pause == 1))) {
1014 					err = EINVAL;
1015 					break;
1016 				}
1017 				bgep->param_adv_pause = 1;
1018 				bgep->param_adv_asym_pause = 1;
1019 
1020 				bgep->param_link_rx_pause = B_TRUE;
1021 				bgep->param_link_tx_pause = B_FALSE;
1022 				break;
1023 			case LINK_FLOWCTRL_TX:
1024 				if (!((bgep->param_lp_pause == 1) &&
1025 				    (bgep->param_lp_asym_pause == 1))) {
1026 					err = EINVAL;
1027 					break;
1028 				}
1029 				bgep->param_adv_pause = 0;
1030 				bgep->param_adv_asym_pause = 1;
1031 
1032 				bgep->param_link_rx_pause = B_FALSE;
1033 				bgep->param_link_tx_pause = B_TRUE;
1034 				break;
1035 			case LINK_FLOWCTRL_BI:
1036 				if (bgep->param_lp_pause != 1) {
1037 					err = EINVAL;
1038 					break;
1039 				}
1040 				bgep->param_adv_pause = 1;
1041 
1042 				bgep->param_link_rx_pause = B_TRUE;
1043 				bgep->param_link_tx_pause = B_TRUE;
1044 				break;
1045 			}
1046 
1047 			if (err == 0) {
1048 				if (bge_reprogram(bgep) == IOC_INVAL)
1049 					err = EINVAL;
1050 			}
1051 
1052 			break;
1053 		case MAC_PROP_PRIVATE:
1054 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
1055 			    pr_val);
1056 			break;
1057 		default:
1058 			err = ENOTSUP;
1059 			break;
1060 	}
1061 	mutex_exit(bgep->genlock);
1062 	return (err);
1063 }
1064 
1065 static int
1066 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1067     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
1068 {
1069 	bge_t *bgep = barg;
1070 	int err = 0;
1071 	link_flowctrl_t fl;
1072 	uint64_t speed;
1073 	int flags = bgep->chipid.flags;
1074 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1075 
1076 	if (pr_valsize == 0)
1077 		return (EINVAL);
1078 	bzero(pr_val, pr_valsize);
1079 	switch (pr_num) {
1080 		case MAC_PROP_DUPLEX:
1081 			if (pr_valsize < sizeof (link_duplex_t))
1082 				return (EINVAL);
1083 			bcopy(&bgep->param_link_duplex, pr_val,
1084 			    sizeof (link_duplex_t));
1085 			break;
1086 		case MAC_PROP_SPEED:
1087 			if (pr_valsize < sizeof (speed))
1088 				return (EINVAL);
1089 			speed = bgep->param_link_speed * 1000000ull;
1090 			bcopy(&speed, pr_val, sizeof (speed));
1091 			break;
1092 		case MAC_PROP_STATUS:
1093 			if (pr_valsize < sizeof (link_state_t))
1094 				return (EINVAL);
1095 			bcopy(&bgep->link_state, pr_val,
1096 			    sizeof (link_state_t));
1097 			break;
1098 		case MAC_PROP_AUTONEG:
1099 			if (is_default)
1100 				*(uint8_t *)pr_val = 1;
1101 			else
1102 				*(uint8_t *)pr_val = bgep->param_adv_autoneg;
1103 			break;
1104 		case MAC_PROP_FLOWCTRL:
1105 			if (pr_valsize < sizeof (fl))
1106 				return (EINVAL);
1107 			if (is_default) {
1108 				fl = LINK_FLOWCTRL_BI;
1109 				bcopy(&fl, pr_val, sizeof (fl));
1110 				break;
1111 			}
1112 
1113 			if (bgep->param_link_rx_pause &&
1114 			    !bgep->param_link_tx_pause)
1115 				fl = LINK_FLOWCTRL_RX;
1116 
1117 			if (!bgep->param_link_rx_pause &&
1118 			    !bgep->param_link_tx_pause)
1119 				fl = LINK_FLOWCTRL_NONE;
1120 
1121 			if (!bgep->param_link_rx_pause &&
1122 			    bgep->param_link_tx_pause)
1123 				fl = LINK_FLOWCTRL_TX;
1124 
1125 			if (bgep->param_link_rx_pause &&
1126 			    bgep->param_link_tx_pause)
1127 				fl = LINK_FLOWCTRL_BI;
1128 			bcopy(&fl, pr_val, sizeof (fl));
1129 			break;
1130 		case MAC_PROP_ADV_1000FDX_CAP:
1131 			if (is_default)
1132 				*(uint8_t *)pr_val = 1;
1133 			else
1134 				*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
1135 			break;
1136 		case MAC_PROP_EN_1000FDX_CAP:
1137 			if (is_default)
1138 				*(uint8_t *)pr_val = 1;
1139 			else
1140 				*(uint8_t *)pr_val = bgep->param_en_1000fdx;
1141 			break;
1142 		case MAC_PROP_ADV_1000HDX_CAP:
1143 			if (is_default)
1144 				*(uint8_t *)pr_val = 1;
1145 			else
1146 				*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1147 			break;
1148 		case MAC_PROP_EN_1000HDX_CAP:
1149 			if (is_default)
1150 				*(uint8_t *)pr_val = 1;
1151 			else
1152 				*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1153 			break;
1154 		case MAC_PROP_ADV_100FDX_CAP:
1155 			if (is_default) {
1156 				*(uint8_t *)pr_val =
1157 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1158 			} else {
1159 				*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1160 			}
1161 			break;
1162 		case MAC_PROP_EN_100FDX_CAP:
1163 			if (is_default) {
1164 				*(uint8_t *)pr_val =
1165 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1166 			} else {
1167 				*(uint8_t *)pr_val = bgep->param_en_100fdx;
1168 			}
1169 			break;
1170 		case MAC_PROP_ADV_100HDX_CAP:
1171 			if (is_default) {
1172 				*(uint8_t *)pr_val =
1173 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1174 			} else {
1175 				*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1176 			}
1177 			break;
1178 		case MAC_PROP_EN_100HDX_CAP:
1179 			if (is_default) {
1180 				*(uint8_t *)pr_val =
1181 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1182 			} else {
1183 				*(uint8_t *)pr_val = bgep->param_en_100hdx;
1184 			}
1185 			break;
1186 		case MAC_PROP_ADV_10FDX_CAP:
1187 			if (is_default) {
1188 				*(uint8_t *)pr_val =
1189 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1190 			} else {
1191 				*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1192 			}
1193 			break;
1194 		case MAC_PROP_EN_10FDX_CAP:
1195 			if (is_default) {
1196 				*(uint8_t *)pr_val =
1197 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1198 			} else {
1199 				*(uint8_t *)pr_val = bgep->param_en_10fdx;
1200 			}
1201 			break;
1202 		case MAC_PROP_ADV_10HDX_CAP:
1203 			if (is_default) {
1204 				*(uint8_t *)pr_val =
1205 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1206 			} else {
1207 				*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1208 			}
1209 			break;
1210 		case MAC_PROP_EN_10HDX_CAP:
1211 			if (is_default) {
1212 				*(uint8_t *)pr_val =
1213 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1214 			} else {
1215 				*(uint8_t *)pr_val = bgep->param_en_10hdx;
1216 			}
1217 			break;
1218 		case MAC_PROP_ADV_100T4_CAP:
1219 		case MAC_PROP_EN_100T4_CAP:
1220 			*(uint8_t *)pr_val = 0;
1221 			break;
1222 		case MAC_PROP_PRIVATE:
1223 			err = bge_get_priv_prop(bgep, pr_name, pr_flags,
1224 			    pr_valsize, pr_val);
1225 			return (err);
1226 		default:
1227 			return (ENOTSUP);
1228 	}
1229 	return (0);
1230 }
1231 
1232 /* ARGSUSED */
1233 static int
1234 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1235     const void *pr_val)
1236 {
1237 	int err = 0;
1238 	long result;
1239 
1240 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1241 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1242 		if (result > 1 || result < 0) {
1243 			err = EINVAL;
1244 		} else {
1245 			bgep->param_adv_pause = (uint32_t)result;
1246 			if (bge_reprogram(bgep) == IOC_INVAL)
1247 				err = EINVAL;
1248 		}
1249 		return (err);
1250 	}
1251 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1252 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1253 		if (result > 1 || result < 0) {
1254 			err = EINVAL;
1255 		} else {
1256 			bgep->param_adv_asym_pause = (uint32_t)result;
1257 			if (bge_reprogram(bgep) == IOC_INVAL)
1258 				err = EINVAL;
1259 		}
1260 		return (err);
1261 	}
1262 	if (strcmp(pr_name, "_drain_max") == 0) {
1263 
1264 		/*
1265 		 * on the Tx side, we need to update the h/w register for
1266 		 * real packet transmission per packet. The drain_max parameter
1267 		 * is used to reduce the register access. This parameter
1268 		 * controls the max number of packets that we will hold before
1269 		 * updating the bge h/w to trigger h/w transmit. The bge
1270 		 * chipset usually has a max of 512 Tx descriptors, thus
1271 		 * the upper bound on drain_max is 512.
1272 		 */
1273 		if (pr_val == NULL) {
1274 			err = EINVAL;
1275 			return (err);
1276 		}
1277 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1278 		if (result > 512 || result < 1)
1279 			err = EINVAL;
1280 		else {
1281 			bgep->param_drain_max = (uint32_t)result;
1282 			if (bge_reprogram(bgep) == IOC_INVAL)
1283 				err = EINVAL;
1284 		}
1285 		return (err);
1286 	}
1287 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1288 
1289 		if (pr_val == NULL) {
1290 			err = EINVAL;
1291 			return (err);
1292 		}
1293 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1294 		if (result > 7 || result < 0)
1295 			err = EINVAL;
1296 		else {
1297 			bgep->param_msi_cnt = (uint32_t)result;
1298 			if (bge_reprogram(bgep) == IOC_INVAL)
1299 				err = EINVAL;
1300 		}
1301 		return (err);
1302 	}
1303 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1304 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1305 			return (EINVAL);
1306 
1307 		bgep->chipid.rx_ticks_norm = (uint32_t)result;
1308 		return (0);
1309 	}
1310 
1311 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1312 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1313 			return (EINVAL);
1314 
1315 		bgep->chipid.rx_count_norm = (uint32_t)result;
1316 		return (0);
1317 	}
1318 	return (ENOTSUP);
1319 }
1320 
1321 static int
1322 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_flags,
1323     uint_t pr_valsize, void *pr_val)
1324 {
1325 	int err = ENOTSUP;
1326 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1327 	int value;
1328 
1329 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1330 		value = (is_default? 1 : bge->param_adv_pause);
1331 		err = 0;
1332 		goto done;
1333 	}
1334 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1335 		value = (is_default? 1 : bge->param_adv_asym_pause);
1336 		err = 0;
1337 		goto done;
1338 	}
1339 	if (strcmp(pr_name, "_drain_max") == 0) {
1340 		value = (is_default? 64 : bge->param_drain_max);
1341 		err = 0;
1342 		goto done;
1343 	}
1344 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1345 		value = (is_default? 0 : bge->param_msi_cnt);
1346 		err = 0;
1347 		goto done;
1348 	}
1349 
1350 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1351 		value = (is_default? bge_rx_ticks_norm :
1352 		    bge->chipid.rx_ticks_norm);
1353 		err = 0;
1354 		goto done;
1355 	}
1356 
1357 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1358 		value = (is_default? bge_rx_count_norm :
1359 		    bge->chipid.rx_count_norm);
1360 		err = 0;
1361 		goto done;
1362 	}
1363 
1364 done:
1365 	if (err == 0) {
1366 		(void) snprintf(pr_val, pr_valsize, "%d", value);
1367 	}
1368 	return (err);
1369 }
1370 
1371 /*
1372  * Compute the index of the required bit in the multicast hash map.
1373  * This must mirror the way the hardware actually does it!
1374  * See Broadcom document 570X-PG102-R page 125.
1375  */
1376 static uint32_t
1377 bge_hash_index(const uint8_t *mca)
1378 {
1379 	uint32_t hash;
1380 
1381 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1382 
1383 	return (hash);
1384 }
1385 
1386 /*
1387  *	bge_m_multicst_add() -- enable/disable a multicast address
1388  */
1389 static int
1390 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1391 {
1392 	bge_t *bgep = arg;		/* private device info	*/
1393 	uint32_t hash;
1394 	uint32_t index;
1395 	uint32_t word;
1396 	uint32_t bit;
1397 	uint8_t *refp;
1398 
1399 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1400 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1401 
1402 	/*
1403 	 * Precalculate all required masks, pointers etc ...
1404 	 */
1405 	hash = bge_hash_index(mca);
1406 	index = hash % BGE_HASH_TABLE_SIZE;
1407 	word = index/32u;
1408 	bit = 1 << (index % 32u);
1409 	refp = &bgep->mcast_refs[index];
1410 
1411 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1412 	    hash, index, word, bit, *refp));
1413 
1414 	/*
1415 	 * We must set the appropriate bit in the hash map (and the
1416 	 * corresponding h/w register) when the refcount goes from 0
1417 	 * to >0, and clear it when the last ref goes away (refcount
1418 	 * goes from >0 back to 0).  If we change the hash map, we
1419 	 * must also update the chip's hardware map registers.
1420 	 */
1421 	mutex_enter(bgep->genlock);
1422 	if (!(bgep->progress & PROGRESS_INTR)) {
1423 		/* can happen during autorecovery */
1424 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1425 		mutex_exit(bgep->genlock);
1426 		return (EIO);
1427 	}
1428 	if (add) {
1429 		if ((*refp)++ == 0) {
1430 			bgep->mcast_hash[word] |= bit;
1431 #ifdef BGE_IPMI_ASF
1432 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1433 #else
1434 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1435 #endif
1436 				(void) bge_check_acc_handle(bgep,
1437 				    bgep->cfg_handle);
1438 				(void) bge_check_acc_handle(bgep,
1439 				    bgep->io_handle);
1440 				ddi_fm_service_impact(bgep->devinfo,
1441 				    DDI_SERVICE_DEGRADED);
1442 				mutex_exit(bgep->genlock);
1443 				return (EIO);
1444 			}
1445 		}
1446 	} else {
1447 		if (--(*refp) == 0) {
1448 			bgep->mcast_hash[word] &= ~bit;
1449 #ifdef BGE_IPMI_ASF
1450 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1451 #else
1452 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1453 #endif
1454 				(void) bge_check_acc_handle(bgep,
1455 				    bgep->cfg_handle);
1456 				(void) bge_check_acc_handle(bgep,
1457 				    bgep->io_handle);
1458 				ddi_fm_service_impact(bgep->devinfo,
1459 				    DDI_SERVICE_DEGRADED);
1460 				mutex_exit(bgep->genlock);
1461 				return (EIO);
1462 			}
1463 		}
1464 	}
1465 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1466 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1467 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1468 		mutex_exit(bgep->genlock);
1469 		return (EIO);
1470 	}
1471 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1472 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1473 		mutex_exit(bgep->genlock);
1474 		return (EIO);
1475 	}
1476 	mutex_exit(bgep->genlock);
1477 
1478 	return (0);
1479 }
1480 
1481 /*
1482  * bge_m_promisc() -- set or reset promiscuous mode on the board
1483  *
1484  *	Program the hardware to enable/disable promiscuous and/or
1485  *	receive-all-multicast modes.
1486  */
1487 static int
1488 bge_m_promisc(void *arg, boolean_t on)
1489 {
1490 	bge_t *bgep = arg;
1491 
1492 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1493 
1494 	/*
1495 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1496 	 */
1497 	mutex_enter(bgep->genlock);
1498 	if (!(bgep->progress & PROGRESS_INTR)) {
1499 		/* can happen during autorecovery */
1500 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1501 		mutex_exit(bgep->genlock);
1502 		return (EIO);
1503 	}
1504 	bgep->promisc = on;
1505 #ifdef BGE_IPMI_ASF
1506 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1507 #else
1508 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1509 #endif
1510 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1511 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1512 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1513 		mutex_exit(bgep->genlock);
1514 		return (EIO);
1515 	}
1516 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1517 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1518 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1519 		mutex_exit(bgep->genlock);
1520 		return (EIO);
1521 	}
1522 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1523 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1524 		mutex_exit(bgep->genlock);
1525 		return (EIO);
1526 	}
1527 	mutex_exit(bgep->genlock);
1528 	return (0);
1529 }
1530 
1531 /*ARGSUSED*/
1532 static boolean_t
1533 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1534 {
1535 	bge_t *bgep = arg;
1536 
1537 	switch (cap) {
1538 	case MAC_CAPAB_HCKSUM: {
1539 		uint32_t *txflags = cap_data;
1540 
1541 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1542 		break;
1543 	}
1544 
1545 	case MAC_CAPAB_POLL:
1546 		/*
1547 		 * There's nothing for us to fill in, simply returning
1548 		 * B_TRUE stating that we support polling is sufficient.
1549 		 */
1550 		break;
1551 
1552 	case MAC_CAPAB_MULTIADDRESS: {
1553 		multiaddress_capab_t	*mmacp = cap_data;
1554 
1555 		mutex_enter(bgep->genlock);
1556 		/*
1557 		 * The number of MAC addresses made available by
1558 		 * this capability is one less than the total as
1559 		 * the primary address in slot 0 is counted in
1560 		 * the total.
1561 		 */
1562 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
1563 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
1564 		/* No multiple factory addresses, set mma_flag to 0 */
1565 		mmacp->maddr_flag = 0;
1566 		mmacp->maddr_handle = bgep;
1567 		mmacp->maddr_add = bge_m_unicst_add;
1568 		mmacp->maddr_remove = bge_m_unicst_remove;
1569 		mmacp->maddr_modify = bge_m_unicst_modify;
1570 		mmacp->maddr_get = bge_m_unicst_get;
1571 		mmacp->maddr_reserve = NULL;
1572 		mutex_exit(bgep->genlock);
1573 		break;
1574 	}
1575 
1576 	default:
1577 		return (B_FALSE);
1578 	}
1579 	return (B_TRUE);
1580 }
1581 
1582 /*
1583  * Loopback ioctl code
1584  */
1585 
1586 static lb_property_t loopmodes[] = {
1587 	{ normal,	"normal",	BGE_LOOP_NONE		},
1588 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1589 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1590 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1591 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1592 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1593 };
1594 
1595 static enum ioc_reply
1596 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1597 {
1598 	/*
1599 	 * If the mode isn't being changed, there's nothing to do ...
1600 	 */
1601 	if (mode == bgep->param_loop_mode)
1602 		return (IOC_ACK);
1603 
1604 	/*
1605 	 * Validate the requested mode and prepare a suitable message
1606 	 * to explain the link down/up cycle that the change will
1607 	 * probably induce ...
1608 	 */
1609 	switch (mode) {
1610 	default:
1611 		return (IOC_INVAL);
1612 
1613 	case BGE_LOOP_NONE:
1614 	case BGE_LOOP_EXTERNAL_1000:
1615 	case BGE_LOOP_EXTERNAL_100:
1616 	case BGE_LOOP_EXTERNAL_10:
1617 	case BGE_LOOP_INTERNAL_PHY:
1618 	case BGE_LOOP_INTERNAL_MAC:
1619 		break;
1620 	}
1621 
1622 	/*
1623 	 * All OK; tell the caller to reprogram
1624 	 * the PHY and/or MAC for the new mode ...
1625 	 */
1626 	bgep->param_loop_mode = mode;
1627 	return (IOC_RESTART_ACK);
1628 }
1629 
1630 static enum ioc_reply
1631 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1632 {
1633 	lb_info_sz_t *lbsp;
1634 	lb_property_t *lbpp;
1635 	uint32_t *lbmp;
1636 	int cmd;
1637 
1638 	_NOTE(ARGUNUSED(wq))
1639 
1640 	/*
1641 	 * Validate format of ioctl
1642 	 */
1643 	if (mp->b_cont == NULL)
1644 		return (IOC_INVAL);
1645 
1646 	cmd = iocp->ioc_cmd;
1647 	switch (cmd) {
1648 	default:
1649 		/* NOTREACHED */
1650 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1651 		return (IOC_INVAL);
1652 
1653 	case LB_GET_INFO_SIZE:
1654 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1655 			return (IOC_INVAL);
1656 		lbsp = (void *)mp->b_cont->b_rptr;
1657 		*lbsp = sizeof (loopmodes);
1658 		return (IOC_REPLY);
1659 
1660 	case LB_GET_INFO:
1661 		if (iocp->ioc_count != sizeof (loopmodes))
1662 			return (IOC_INVAL);
1663 		lbpp = (void *)mp->b_cont->b_rptr;
1664 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1665 		return (IOC_REPLY);
1666 
1667 	case LB_GET_MODE:
1668 		if (iocp->ioc_count != sizeof (uint32_t))
1669 			return (IOC_INVAL);
1670 		lbmp = (void *)mp->b_cont->b_rptr;
1671 		*lbmp = bgep->param_loop_mode;
1672 		return (IOC_REPLY);
1673 
1674 	case LB_SET_MODE:
1675 		if (iocp->ioc_count != sizeof (uint32_t))
1676 			return (IOC_INVAL);
1677 		lbmp = (void *)mp->b_cont->b_rptr;
1678 		return (bge_set_loop_mode(bgep, *lbmp));
1679 	}
1680 }
1681 
1682 /*
1683  * Specific bge IOCTLs, the gld module handles the generic ones.
1684  */
1685 static void
1686 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1687 {
1688 	bge_t *bgep = arg;
1689 	struct iocblk *iocp;
1690 	enum ioc_reply status;
1691 	boolean_t need_privilege;
1692 	int err;
1693 	int cmd;
1694 
1695 	/*
1696 	 * Validate the command before bothering with the mutex ...
1697 	 */
1698 	iocp = (void *)mp->b_rptr;
1699 	iocp->ioc_error = 0;
1700 	need_privilege = B_TRUE;
1701 	cmd = iocp->ioc_cmd;
1702 	switch (cmd) {
1703 	default:
1704 		miocnak(wq, mp, 0, EINVAL);
1705 		return;
1706 
1707 	case BGE_MII_READ:
1708 	case BGE_MII_WRITE:
1709 	case BGE_SEE_READ:
1710 	case BGE_SEE_WRITE:
1711 	case BGE_FLASH_READ:
1712 	case BGE_FLASH_WRITE:
1713 	case BGE_DIAG:
1714 	case BGE_PEEK:
1715 	case BGE_POKE:
1716 	case BGE_PHY_RESET:
1717 	case BGE_SOFT_RESET:
1718 	case BGE_HARD_RESET:
1719 		break;
1720 
1721 	case LB_GET_INFO_SIZE:
1722 	case LB_GET_INFO:
1723 	case LB_GET_MODE:
1724 		need_privilege = B_FALSE;
1725 		/* FALLTHRU */
1726 	case LB_SET_MODE:
1727 		break;
1728 
1729 	}
1730 
1731 	if (need_privilege) {
1732 		/*
1733 		 * Check for specific net_config privilege on Solaris 10+.
1734 		 */
1735 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1736 		if (err != 0) {
1737 			miocnak(wq, mp, 0, err);
1738 			return;
1739 		}
1740 	}
1741 
1742 	mutex_enter(bgep->genlock);
1743 	if (!(bgep->progress & PROGRESS_INTR)) {
1744 		/* can happen during autorecovery */
1745 		mutex_exit(bgep->genlock);
1746 		miocnak(wq, mp, 0, EIO);
1747 		return;
1748 	}
1749 
1750 	switch (cmd) {
1751 	default:
1752 		_NOTE(NOTREACHED)
1753 		status = IOC_INVAL;
1754 		break;
1755 
1756 	case BGE_MII_READ:
1757 	case BGE_MII_WRITE:
1758 	case BGE_SEE_READ:
1759 	case BGE_SEE_WRITE:
1760 	case BGE_FLASH_READ:
1761 	case BGE_FLASH_WRITE:
1762 	case BGE_DIAG:
1763 	case BGE_PEEK:
1764 	case BGE_POKE:
1765 	case BGE_PHY_RESET:
1766 	case BGE_SOFT_RESET:
1767 	case BGE_HARD_RESET:
1768 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1769 		break;
1770 
1771 	case LB_GET_INFO_SIZE:
1772 	case LB_GET_INFO:
1773 	case LB_GET_MODE:
1774 	case LB_SET_MODE:
1775 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1776 		break;
1777 
1778 	}
1779 
1780 	/*
1781 	 * Do we need to reprogram the PHY and/or the MAC?
1782 	 * Do it now, while we still have the mutex.
1783 	 *
1784 	 * Note: update the PHY first, 'cos it controls the
1785 	 * speed/duplex parameters that the MAC code uses.
1786 	 */
1787 	switch (status) {
1788 	case IOC_RESTART_REPLY:
1789 	case IOC_RESTART_ACK:
1790 		if (bge_reprogram(bgep) == IOC_INVAL)
1791 			status = IOC_INVAL;
1792 		break;
1793 	}
1794 
1795 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1796 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1797 		status = IOC_INVAL;
1798 	}
1799 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1800 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1801 		status = IOC_INVAL;
1802 	}
1803 	mutex_exit(bgep->genlock);
1804 
1805 	/*
1806 	 * Finally, decide how to reply
1807 	 */
1808 	switch (status) {
1809 	default:
1810 	case IOC_INVAL:
1811 		/*
1812 		 * Error, reply with a NAK and EINVAL or the specified error
1813 		 */
1814 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1815 		    EINVAL : iocp->ioc_error);
1816 		break;
1817 
1818 	case IOC_DONE:
1819 		/*
1820 		 * OK, reply already sent
1821 		 */
1822 		break;
1823 
1824 	case IOC_RESTART_ACK:
1825 	case IOC_ACK:
1826 		/*
1827 		 * OK, reply with an ACK
1828 		 */
1829 		miocack(wq, mp, 0, 0);
1830 		break;
1831 
1832 	case IOC_RESTART_REPLY:
1833 	case IOC_REPLY:
1834 		/*
1835 		 * OK, send prepared reply as ACK or NAK
1836 		 */
1837 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1838 		    M_IOCACK : M_IOCNAK;
1839 		qreply(wq, mp);
1840 		break;
1841 	}
1842 }
1843 
1844 static void
1845 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt)
1846 {
1847 
1848 	recv_ring_t *rrp;
1849 	mac_rx_fifo_t mrf;
1850 	int ring;
1851 
1852 	/*
1853 	 * Register Rx rings as resources and save mac
1854 	 * resource id for future reference
1855 	 */
1856 	mrf.mrf_type = MAC_RX_FIFO;
1857 	mrf.mrf_blank = bge_chip_blank;
1858 	mrf.mrf_arg = (void *)bgep;
1859 	mrf.mrf_normal_blank_time = time;
1860 	mrf.mrf_normal_pkt_count = pkt_cnt;
1861 
1862 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1863 		rrp = &bgep->recv[ring];
1864 		rrp->handle = mac_resource_add(bgep->mh,
1865 		    (mac_resource_t *)&mrf);
1866 	}
1867 }
1868 
1869 static void
1870 bge_m_resources(void *arg)
1871 {
1872 	bge_t *bgep = arg;
1873 
1874 	mutex_enter(bgep->genlock);
1875 
1876 	bge_resources_add(bgep, bgep->chipid.rx_ticks_norm,
1877 	    bgep->chipid.rx_count_norm);
1878 	mutex_exit(bgep->genlock);
1879 }
1880 
1881 /*
1882  * ========== Per-instance setup/teardown code ==========
1883  */
1884 
1885 #undef	BGE_DBG
1886 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1887 /*
1888  * Allocate an area of memory and a DMA handle for accessing it
1889  */
1890 static int
1891 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1892 	uint_t dma_flags, dma_area_t *dma_p)
1893 {
1894 	caddr_t va;
1895 	int err;
1896 
1897 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1898 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
1899 
1900 	/*
1901 	 * Allocate handle
1902 	 */
1903 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1904 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
1905 	if (err != DDI_SUCCESS)
1906 		return (DDI_FAILURE);
1907 
1908 	/*
1909 	 * Allocate memory
1910 	 */
1911 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1912 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
1913 	    &dma_p->acc_hdl);
1914 	if (err != DDI_SUCCESS)
1915 		return (DDI_FAILURE);
1916 
1917 	/*
1918 	 * Bind the two together
1919 	 */
1920 	dma_p->mem_va = va;
1921 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1922 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
1923 	    &dma_p->cookie, &dma_p->ncookies);
1924 
1925 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1926 	    dma_p->alength, err, dma_p->ncookies));
1927 
1928 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1929 		return (DDI_FAILURE);
1930 
1931 	dma_p->nslots = ~0U;
1932 	dma_p->size = ~0U;
1933 	dma_p->token = ~0U;
1934 	dma_p->offset = 0;
1935 	return (DDI_SUCCESS);
1936 }
1937 
1938 /*
1939  * Free one allocated area of DMAable memory
1940  */
1941 static void
1942 bge_free_dma_mem(dma_area_t *dma_p)
1943 {
1944 	if (dma_p->dma_hdl != NULL) {
1945 		if (dma_p->ncookies) {
1946 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1947 			dma_p->ncookies = 0;
1948 		}
1949 		ddi_dma_free_handle(&dma_p->dma_hdl);
1950 		dma_p->dma_hdl = NULL;
1951 	}
1952 
1953 	if (dma_p->acc_hdl != NULL) {
1954 		ddi_dma_mem_free(&dma_p->acc_hdl);
1955 		dma_p->acc_hdl = NULL;
1956 	}
1957 }
1958 /*
1959  * Utility routine to carve a slice off a chunk of allocated memory,
1960  * updating the chunk descriptor accordingly.  The size of the slice
1961  * is given by the product of the <qty> and <size> parameters.
1962  */
1963 static void
1964 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
1965 	uint32_t qty, uint32_t size)
1966 {
1967 	static uint32_t sequence = 0xbcd5704a;
1968 	size_t totsize;
1969 
1970 	totsize = qty*size;
1971 	ASSERT(totsize <= chunk->alength);
1972 
1973 	*slice = *chunk;
1974 	slice->nslots = qty;
1975 	slice->size = size;
1976 	slice->alength = totsize;
1977 	slice->token = ++sequence;
1978 
1979 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
1980 	chunk->alength -= totsize;
1981 	chunk->offset += totsize;
1982 	chunk->cookie.dmac_laddress += totsize;
1983 	chunk->cookie.dmac_size -= totsize;
1984 }
1985 
1986 /*
1987  * Initialise the specified Receive Producer (Buffer) Ring, using
1988  * the information in the <dma_area> descriptors that it contains
1989  * to set up all the other fields. This routine should be called
1990  * only once for each ring.
1991  */
1992 static void
1993 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
1994 {
1995 	buff_ring_t *brp;
1996 	bge_status_t *bsp;
1997 	sw_rbd_t *srbdp;
1998 	dma_area_t pbuf;
1999 	uint32_t bufsize;
2000 	uint32_t nslots;
2001 	uint32_t slot;
2002 	uint32_t split;
2003 
2004 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2005 		NIC_MEM_SHADOW_BUFF_STD,
2006 		NIC_MEM_SHADOW_BUFF_JUMBO,
2007 		NIC_MEM_SHADOW_BUFF_MINI
2008 	};
2009 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2010 		RECV_STD_PROD_INDEX_REG,
2011 		RECV_JUMBO_PROD_INDEX_REG,
2012 		RECV_MINI_PROD_INDEX_REG
2013 	};
2014 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2015 		STATUS_STD_BUFF_CONS_INDEX,
2016 		STATUS_JUMBO_BUFF_CONS_INDEX,
2017 		STATUS_MINI_BUFF_CONS_INDEX
2018 	};
2019 
2020 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2021 	    (void *)bgep, ring));
2022 
2023 	brp = &bgep->buff[ring];
2024 	nslots = brp->desc.nslots;
2025 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2026 	bufsize = brp->buf[0].size;
2027 
2028 	/*
2029 	 * Set up the copy of the h/w RCB
2030 	 *
2031 	 * Note: unlike Send & Receive Return Rings, (where the max_len
2032 	 * field holds the number of slots), in a Receive Buffer Ring
2033 	 * this field indicates the size of each buffer in the ring.
2034 	 */
2035 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2036 	brp->hw_rcb.max_len = (uint16_t)bufsize;
2037 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2038 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2039 
2040 	/*
2041 	 * Other one-off initialisation of per-ring data
2042 	 */
2043 	brp->bgep = bgep;
2044 	bsp = DMA_VPTR(bgep->status_block);
2045 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2046 	brp->chip_mbx_reg = mailbox_regs[ring];
2047 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2048 	    DDI_INTR_PRI(bgep->intr_pri));
2049 
2050 	/*
2051 	 * Allocate the array of s/w Receive Buffer Descriptors
2052 	 */
2053 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2054 	brp->sw_rbds = srbdp;
2055 
2056 	/*
2057 	 * Now initialise each array element once and for all
2058 	 */
2059 	for (split = 0; split < BGE_SPLIT; ++split) {
2060 		pbuf = brp->buf[split];
2061 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2062 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2063 		ASSERT(pbuf.alength == 0);
2064 	}
2065 }
2066 
2067 /*
2068  * Clean up initialisation done above before the memory is freed
2069  */
2070 static void
2071 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2072 {
2073 	buff_ring_t *brp;
2074 	sw_rbd_t *srbdp;
2075 
2076 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2077 	    (void *)bgep, ring));
2078 
2079 	brp = &bgep->buff[ring];
2080 	srbdp = brp->sw_rbds;
2081 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2082 
2083 	mutex_destroy(brp->rf_lock);
2084 }
2085 
2086 /*
2087  * Initialise the specified Receive (Return) Ring, using the
2088  * information in the <dma_area> descriptors that it contains
2089  * to set up all the other fields. This routine should be called
2090  * only once for each ring.
2091  */
2092 static void
2093 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2094 {
2095 	recv_ring_t *rrp;
2096 	bge_status_t *bsp;
2097 	uint32_t nslots;
2098 
2099 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2100 	    (void *)bgep, ring));
2101 
2102 	/*
2103 	 * The chip architecture requires that receive return rings have
2104 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2105 	 */
2106 	rrp = &bgep->recv[ring];
2107 	nslots = rrp->desc.nslots;
2108 	ASSERT(nslots == 0 || nslots == 512 ||
2109 	    nslots == 1024 || nslots == 2048);
2110 
2111 	/*
2112 	 * Set up the copy of the h/w RCB
2113 	 */
2114 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2115 	rrp->hw_rcb.max_len = (uint16_t)nslots;
2116 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2117 	rrp->hw_rcb.nic_ring_addr = 0;
2118 
2119 	/*
2120 	 * Other one-off initialisation of per-ring data
2121 	 */
2122 	rrp->bgep = bgep;
2123 	bsp = DMA_VPTR(bgep->status_block);
2124 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2125 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2126 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2127 	    DDI_INTR_PRI(bgep->intr_pri));
2128 }
2129 
2130 
2131 /*
2132  * Clean up initialisation done above before the memory is freed
2133  */
2134 static void
2135 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2136 {
2137 	recv_ring_t *rrp;
2138 
2139 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2140 	    (void *)bgep, ring));
2141 
2142 	rrp = &bgep->recv[ring];
2143 	if (rrp->rx_softint)
2144 		ddi_remove_softintr(rrp->rx_softint);
2145 	mutex_destroy(rrp->rx_lock);
2146 }
2147 
2148 /*
2149  * Initialise the specified Send Ring, using the information in the
2150  * <dma_area> descriptors that it contains to set up all the other
2151  * fields. This routine should be called only once for each ring.
2152  */
2153 static void
2154 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2155 {
2156 	send_ring_t *srp;
2157 	bge_status_t *bsp;
2158 	sw_sbd_t *ssbdp;
2159 	dma_area_t desc;
2160 	dma_area_t pbuf;
2161 	uint32_t nslots;
2162 	uint32_t slot;
2163 	uint32_t split;
2164 	sw_txbuf_t *txbuf;
2165 
2166 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2167 	    (void *)bgep, ring));
2168 
2169 	/*
2170 	 * The chip architecture requires that host-based send rings
2171 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2172 	 */
2173 	srp = &bgep->send[ring];
2174 	nslots = srp->desc.nslots;
2175 	ASSERT(nslots == 0 || nslots == 512);
2176 
2177 	/*
2178 	 * Set up the copy of the h/w RCB
2179 	 */
2180 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2181 	srp->hw_rcb.max_len = (uint16_t)nslots;
2182 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2183 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2184 
2185 	/*
2186 	 * Other one-off initialisation of per-ring data
2187 	 */
2188 	srp->bgep = bgep;
2189 	bsp = DMA_VPTR(bgep->status_block);
2190 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2191 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2192 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2193 	    DDI_INTR_PRI(bgep->intr_pri));
2194 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2195 	    DDI_INTR_PRI(bgep->intr_pri));
2196 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2197 	    DDI_INTR_PRI(bgep->intr_pri));
2198 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2199 	    DDI_INTR_PRI(bgep->intr_pri));
2200 	if (nslots == 0)
2201 		return;
2202 
2203 	/*
2204 	 * Allocate the array of s/w Send Buffer Descriptors
2205 	 */
2206 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2207 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2208 	srp->txbuf_head =
2209 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2210 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2211 	srp->sw_sbds = ssbdp;
2212 	srp->txbuf = txbuf;
2213 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2214 	srp->tx_buffers_low = srp->tx_buffers / 4;
2215 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2216 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2217 	else
2218 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2219 	srp->tx_array = 1;
2220 
2221 	/*
2222 	 * Chunk tx desc area
2223 	 */
2224 	desc = srp->desc;
2225 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2226 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2227 		    sizeof (bge_sbd_t));
2228 	}
2229 	ASSERT(desc.alength == 0);
2230 
2231 	/*
2232 	 * Chunk tx buffer area
2233 	 */
2234 	for (split = 0; split < BGE_SPLIT; ++split) {
2235 		pbuf = srp->buf[0][split];
2236 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2237 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2238 			    bgep->chipid.snd_buff_size);
2239 			txbuf++;
2240 		}
2241 		ASSERT(pbuf.alength == 0);
2242 	}
2243 }
2244 
2245 /*
2246  * Clean up initialisation done above before the memory is freed
2247  */
2248 static void
2249 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2250 {
2251 	send_ring_t *srp;
2252 	uint32_t array;
2253 	uint32_t split;
2254 	uint32_t nslots;
2255 
2256 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2257 	    (void *)bgep, ring));
2258 
2259 	srp = &bgep->send[ring];
2260 	mutex_destroy(srp->tc_lock);
2261 	mutex_destroy(srp->freetxbuf_lock);
2262 	mutex_destroy(srp->txbuf_lock);
2263 	mutex_destroy(srp->tx_lock);
2264 	nslots = srp->desc.nslots;
2265 	if (nslots == 0)
2266 		return;
2267 
2268 	for (array = 1; array < srp->tx_array; ++array)
2269 		for (split = 0; split < BGE_SPLIT; ++split)
2270 			bge_free_dma_mem(&srp->buf[array][split]);
2271 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2272 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2273 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2274 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2275 	srp->sw_sbds = NULL;
2276 	srp->txbuf_head = NULL;
2277 	srp->txbuf = NULL;
2278 	srp->pktp = NULL;
2279 }
2280 
2281 /*
2282  * Initialise all transmit, receive, and buffer rings.
2283  */
2284 void
2285 bge_init_rings(bge_t *bgep)
2286 {
2287 	uint32_t ring;
2288 
2289 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2290 
2291 	/*
2292 	 * Perform one-off initialisation of each ring ...
2293 	 */
2294 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2295 		bge_init_send_ring(bgep, ring);
2296 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2297 		bge_init_recv_ring(bgep, ring);
2298 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2299 		bge_init_buff_ring(bgep, ring);
2300 }
2301 
2302 /*
2303  * Undo the work of bge_init_rings() above before the memory is freed
2304  */
2305 void
2306 bge_fini_rings(bge_t *bgep)
2307 {
2308 	uint32_t ring;
2309 
2310 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2311 
2312 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2313 		bge_fini_buff_ring(bgep, ring);
2314 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2315 		bge_fini_recv_ring(bgep, ring);
2316 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2317 		bge_fini_send_ring(bgep, ring);
2318 }
2319 
2320 /*
2321  * Called from the bge_m_stop() to free the tx buffers which are
2322  * allocated from the tx process.
2323  */
2324 void
2325 bge_free_txbuf_arrays(send_ring_t *srp)
2326 {
2327 	uint32_t array;
2328 	uint32_t split;
2329 
2330 	ASSERT(mutex_owned(srp->tx_lock));
2331 
2332 	/*
2333 	 * Free the extra tx buffer DMA area
2334 	 */
2335 	for (array = 1; array < srp->tx_array; ++array)
2336 		for (split = 0; split < BGE_SPLIT; ++split)
2337 			bge_free_dma_mem(&srp->buf[array][split]);
2338 
2339 	/*
2340 	 * Restore initial tx buffer numbers
2341 	 */
2342 	srp->tx_array = 1;
2343 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2344 	srp->tx_buffers_low = srp->tx_buffers / 4;
2345 	srp->tx_flow = 0;
2346 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2347 }
2348 
2349 /*
2350  * Called from tx process to allocate more tx buffers
2351  */
2352 bge_queue_item_t *
2353 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2354 {
2355 	bge_queue_t *txbuf_queue;
2356 	bge_queue_item_t *txbuf_item_last;
2357 	bge_queue_item_t *txbuf_item;
2358 	bge_queue_item_t *txbuf_item_rtn;
2359 	sw_txbuf_t *txbuf;
2360 	dma_area_t area;
2361 	size_t txbuffsize;
2362 	uint32_t slot;
2363 	uint32_t array;
2364 	uint32_t split;
2365 	uint32_t err;
2366 
2367 	ASSERT(mutex_owned(srp->tx_lock));
2368 
2369 	array = srp->tx_array;
2370 	if (array >= srp->tx_array_max)
2371 		return (NULL);
2372 
2373 	/*
2374 	 * Allocate memory & handles for TX buffers
2375 	 */
2376 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2377 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2378 	for (split = 0; split < BGE_SPLIT; ++split) {
2379 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2380 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2381 		    &srp->buf[array][split]);
2382 		if (err != DDI_SUCCESS) {
2383 			/* Free the last already allocated OK chunks */
2384 			for (slot = 0; slot <= split; ++slot)
2385 				bge_free_dma_mem(&srp->buf[array][slot]);
2386 			srp->tx_alloc_fail++;
2387 			return (NULL);
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * Chunk tx buffer area
2393 	 */
2394 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2395 	for (split = 0; split < BGE_SPLIT; ++split) {
2396 		area = srp->buf[array][split];
2397 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2398 			bge_slice_chunk(&txbuf->buf, &area, 1,
2399 			    bgep->chipid.snd_buff_size);
2400 			txbuf++;
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * Add above buffers to the tx buffer pop queue
2406 	 */
2407 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2408 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2409 	txbuf_item_last = NULL;
2410 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2411 		txbuf_item->item = txbuf;
2412 		txbuf_item->next = txbuf_item_last;
2413 		txbuf_item_last = txbuf_item;
2414 		txbuf++;
2415 		txbuf_item++;
2416 	}
2417 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2418 	txbuf_item_rtn = txbuf_item;
2419 	txbuf_item++;
2420 	txbuf_queue = srp->txbuf_pop_queue;
2421 	mutex_enter(txbuf_queue->lock);
2422 	txbuf_item->next = txbuf_queue->head;
2423 	txbuf_queue->head = txbuf_item_last;
2424 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2425 	mutex_exit(txbuf_queue->lock);
2426 
2427 	srp->tx_array++;
2428 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2429 	srp->tx_buffers_low = srp->tx_buffers / 4;
2430 
2431 	return (txbuf_item_rtn);
2432 }
2433 
2434 /*
2435  * This function allocates all the transmit and receive buffers
2436  * and descriptors, in four chunks.
2437  */
2438 int
2439 bge_alloc_bufs(bge_t *bgep)
2440 {
2441 	dma_area_t area;
2442 	size_t rxbuffsize;
2443 	size_t txbuffsize;
2444 	size_t rxbuffdescsize;
2445 	size_t rxdescsize;
2446 	size_t txdescsize;
2447 	uint32_t ring;
2448 	uint32_t rx_rings = bgep->chipid.rx_rings;
2449 	uint32_t tx_rings = bgep->chipid.tx_rings;
2450 	int split;
2451 	int err;
2452 
2453 	BGE_TRACE(("bge_alloc_bufs($%p)",
2454 	    (void *)bgep));
2455 
2456 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2457 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2458 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2459 
2460 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2461 	txbuffsize *= tx_rings;
2462 
2463 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2464 	rxdescsize *= sizeof (bge_rbd_t);
2465 
2466 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2467 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2468 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2469 	rxbuffdescsize *= sizeof (bge_rbd_t);
2470 
2471 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2472 	txdescsize *= sizeof (bge_sbd_t);
2473 	txdescsize += sizeof (bge_statistics_t);
2474 	txdescsize += sizeof (bge_status_t);
2475 	txdescsize += BGE_STATUS_PADDING;
2476 
2477 	/*
2478 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2479 	 */
2480 	if (bge_relaxed_ordering)
2481 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2482 
2483 	/*
2484 	 * Allocate memory & handles for RX buffers
2485 	 */
2486 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2487 	for (split = 0; split < BGE_SPLIT; ++split) {
2488 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2489 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2490 		    &bgep->rx_buff[split]);
2491 		if (err != DDI_SUCCESS)
2492 			return (DDI_FAILURE);
2493 	}
2494 
2495 	/*
2496 	 * Allocate memory & handles for TX buffers
2497 	 */
2498 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2499 	for (split = 0; split < BGE_SPLIT; ++split) {
2500 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2501 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2502 		    &bgep->tx_buff[split]);
2503 		if (err != DDI_SUCCESS)
2504 			return (DDI_FAILURE);
2505 	}
2506 
2507 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2508 
2509 	/*
2510 	 * Allocate memory & handles for receive return rings
2511 	 */
2512 	ASSERT((rxdescsize % rx_rings) == 0);
2513 	for (split = 0; split < rx_rings; ++split) {
2514 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2515 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2516 		    &bgep->rx_desc[split]);
2517 		if (err != DDI_SUCCESS)
2518 			return (DDI_FAILURE);
2519 	}
2520 
2521 	/*
2522 	 * Allocate memory & handles for buffer (producer) descriptor rings
2523 	 */
2524 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2525 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2526 	if (err != DDI_SUCCESS)
2527 		return (DDI_FAILURE);
2528 
2529 	/*
2530 	 * Allocate memory & handles for TX descriptor rings,
2531 	 * status block, and statistics area
2532 	 */
2533 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2534 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2535 	if (err != DDI_SUCCESS)
2536 		return (DDI_FAILURE);
2537 
2538 	/*
2539 	 * Now carve up each of the allocated areas ...
2540 	 */
2541 	for (split = 0; split < BGE_SPLIT; ++split) {
2542 		area = bgep->rx_buff[split];
2543 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2544 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2545 		    bgep->chipid.std_buf_size);
2546 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2547 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2548 		    bgep->chipid.recv_jumbo_size);
2549 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2550 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2551 		    BGE_MINI_BUFF_SIZE);
2552 	}
2553 
2554 	for (split = 0; split < BGE_SPLIT; ++split) {
2555 		area = bgep->tx_buff[split];
2556 		for (ring = 0; ring < tx_rings; ++ring)
2557 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2558 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2559 			    bgep->chipid.snd_buff_size);
2560 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2561 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2562 			    &area, 0, bgep->chipid.snd_buff_size);
2563 	}
2564 
2565 	for (ring = 0; ring < rx_rings; ++ring)
2566 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2567 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2568 
2569 	area = bgep->rx_desc[rx_rings];
2570 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2571 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2572 		    0, sizeof (bge_rbd_t));
2573 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2574 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2575 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2576 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2577 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2578 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2579 	ASSERT(area.alength == 0);
2580 
2581 	area = bgep->tx_desc;
2582 	for (ring = 0; ring < tx_rings; ++ring)
2583 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2584 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2585 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2586 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2587 		    0, sizeof (bge_sbd_t));
2588 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2589 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2590 	ASSERT(area.alength == BGE_STATUS_PADDING);
2591 	DMA_ZERO(bgep->status_block);
2592 
2593 	return (DDI_SUCCESS);
2594 }
2595 
2596 /*
2597  * This routine frees the transmit and receive buffers and descriptors.
2598  * Make sure the chip is stopped before calling it!
2599  */
2600 void
2601 bge_free_bufs(bge_t *bgep)
2602 {
2603 	int split;
2604 
2605 	BGE_TRACE(("bge_free_bufs($%p)",
2606 	    (void *)bgep));
2607 
2608 	bge_free_dma_mem(&bgep->tx_desc);
2609 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2610 		bge_free_dma_mem(&bgep->rx_desc[split]);
2611 	for (split = 0; split < BGE_SPLIT; ++split)
2612 		bge_free_dma_mem(&bgep->tx_buff[split]);
2613 	for (split = 0; split < BGE_SPLIT; ++split)
2614 		bge_free_dma_mem(&bgep->rx_buff[split]);
2615 }
2616 
2617 /*
2618  * Determine (initial) MAC address ("BIA") to use for this interface
2619  */
2620 
2621 static void
2622 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2623 {
2624 	struct ether_addr sysaddr;
2625 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2626 	uchar_t *bytes;
2627 	int *ints;
2628 	uint_t nelts;
2629 	int err;
2630 
2631 	BGE_TRACE(("bge_find_mac_address($%p)",
2632 	    (void *)bgep));
2633 
2634 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2635 	    cidp->hw_mac_addr,
2636 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2637 	    cidp->vendor_addr.set ? "" : "not "));
2638 
2639 	/*
2640 	 * The "vendor's factory-set address" may already have
2641 	 * been extracted from the chip, but if the property
2642 	 * "local-mac-address" is set we use that instead.  It
2643 	 * will normally be set by OBP, but it could also be
2644 	 * specified in a .conf file(!)
2645 	 *
2646 	 * There doesn't seem to be a way to define byte-array
2647 	 * properties in a .conf, so we check whether it looks
2648 	 * like an array of 6 ints instead.
2649 	 *
2650 	 * Then, we check whether it looks like an array of 6
2651 	 * bytes (which it should, if OBP set it).  If we can't
2652 	 * make sense of it either way, we'll ignore it.
2653 	 */
2654 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2655 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2656 	if (err == DDI_PROP_SUCCESS) {
2657 		if (nelts == ETHERADDRL) {
2658 			while (nelts--)
2659 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2660 			cidp->vendor_addr.set = B_TRUE;
2661 		}
2662 		ddi_prop_free(ints);
2663 	}
2664 
2665 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2666 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2667 	if (err == DDI_PROP_SUCCESS) {
2668 		if (nelts == ETHERADDRL) {
2669 			while (nelts--)
2670 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2671 			cidp->vendor_addr.set = B_TRUE;
2672 		}
2673 		ddi_prop_free(bytes);
2674 	}
2675 
2676 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2677 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2678 	    cidp->vendor_addr.set ? "" : "not "));
2679 
2680 	/*
2681 	 * Look up the OBP property "local-mac-address?".  Note that even
2682 	 * though its value is a string (which should be "true" or "false"),
2683 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2684 	 * the buffer first and then fetch the property as an untyped array;
2685 	 * this may or may not include a final NUL, but since there will
2686 	 * always be one left at the end of the buffer we can now treat it
2687 	 * as a string anyway.
2688 	 */
2689 	nelts = sizeof (propbuf);
2690 	bzero(propbuf, nelts--);
2691 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2692 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2693 
2694 	/*
2695 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2696 	 * or the OBP or .conf property, OR if the user has foolishly set
2697 	 * 'local-mac-address? = false', use "the system address" instead
2698 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2699 	 */
2700 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2701 		if (localetheraddr(NULL, &sysaddr) != 0) {
2702 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2703 			cidp->vendor_addr.set = B_TRUE;
2704 		}
2705 
2706 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2707 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2708 	    cidp->vendor_addr.set ? "" : "not "));
2709 
2710 	/*
2711 	 * Finally(!), if there's a valid "mac-address" property (created
2712 	 * if we netbooted from this interface), we must use this instead
2713 	 * of any of the above to ensure that the NFS/install server doesn't
2714 	 * get confused by the address changing as Solaris takes over!
2715 	 */
2716 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2717 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2718 	if (err == DDI_PROP_SUCCESS) {
2719 		if (nelts == ETHERADDRL) {
2720 			while (nelts--)
2721 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2722 			cidp->vendor_addr.set = B_TRUE;
2723 		}
2724 		ddi_prop_free(bytes);
2725 	}
2726 
2727 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2728 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2729 	    cidp->vendor_addr.set ? "" : "not "));
2730 }
2731 
2732 
2733 /*ARGSUSED*/
2734 int
2735 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2736 {
2737 	ddi_fm_error_t de;
2738 
2739 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2740 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2741 	return (de.fme_status);
2742 }
2743 
2744 /*ARGSUSED*/
2745 int
2746 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2747 {
2748 	ddi_fm_error_t de;
2749 
2750 	ASSERT(bgep->progress & PROGRESS_BUFS);
2751 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2752 	return (de.fme_status);
2753 }
2754 
2755 /*
2756  * The IO fault service error handling callback function
2757  */
2758 /*ARGSUSED*/
2759 static int
2760 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2761 {
2762 	/*
2763 	 * as the driver can always deal with an error in any dma or
2764 	 * access handle, we can just return the fme_status value.
2765 	 */
2766 	pci_ereport_post(dip, err, NULL);
2767 	return (err->fme_status);
2768 }
2769 
2770 static void
2771 bge_fm_init(bge_t *bgep)
2772 {
2773 	ddi_iblock_cookie_t iblk;
2774 
2775 	/* Only register with IO Fault Services if we have some capability */
2776 	if (bgep->fm_capabilities) {
2777 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2778 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2779 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2780 
2781 		/* Register capabilities with IO Fault Services */
2782 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2783 
2784 		/*
2785 		 * Initialize pci ereport capabilities if ereport capable
2786 		 */
2787 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2788 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2789 			pci_ereport_setup(bgep->devinfo);
2790 
2791 		/*
2792 		 * Register error callback if error callback capable
2793 		 */
2794 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2795 			ddi_fm_handler_register(bgep->devinfo,
2796 			    bge_fm_error_cb, (void*) bgep);
2797 	} else {
2798 		/*
2799 		 * These fields have to be cleared of FMA if there are no
2800 		 * FMA capabilities at runtime.
2801 		 */
2802 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2803 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2804 		dma_attr.dma_attr_flags = 0;
2805 	}
2806 }
2807 
2808 static void
2809 bge_fm_fini(bge_t *bgep)
2810 {
2811 	/* Only unregister FMA capabilities if we registered some */
2812 	if (bgep->fm_capabilities) {
2813 
2814 		/*
2815 		 * Release any resources allocated by pci_ereport_setup()
2816 		 */
2817 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2818 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2819 			pci_ereport_teardown(bgep->devinfo);
2820 
2821 		/*
2822 		 * Un-register error callback if error callback capable
2823 		 */
2824 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2825 			ddi_fm_handler_unregister(bgep->devinfo);
2826 
2827 		/* Unregister from IO Fault Services */
2828 		ddi_fm_fini(bgep->devinfo);
2829 	}
2830 }
2831 
2832 static void
2833 #ifdef BGE_IPMI_ASF
2834 bge_unattach(bge_t *bgep, uint_t asf_mode)
2835 #else
2836 bge_unattach(bge_t *bgep)
2837 #endif
2838 {
2839 	BGE_TRACE(("bge_unattach($%p)",
2840 		(void *)bgep));
2841 
2842 	/*
2843 	 * Flag that no more activity may be initiated
2844 	 */
2845 	bgep->progress &= ~PROGRESS_READY;
2846 
2847 	/*
2848 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2849 	 * Clean up and free all BGE data structures
2850 	 */
2851 	if (bgep->periodic_id != NULL) {
2852 		ddi_periodic_delete(bgep->periodic_id);
2853 		bgep->periodic_id = NULL;
2854 	}
2855 	if (bgep->progress & PROGRESS_KSTATS)
2856 		bge_fini_kstats(bgep);
2857 	if (bgep->progress & PROGRESS_PHY)
2858 		bge_phys_reset(bgep);
2859 	if (bgep->progress & PROGRESS_HWINT) {
2860 		mutex_enter(bgep->genlock);
2861 #ifdef BGE_IPMI_ASF
2862 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2863 #else
2864 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2865 #endif
2866 			ddi_fm_service_impact(bgep->devinfo,
2867 			    DDI_SERVICE_UNAFFECTED);
2868 #ifdef BGE_IPMI_ASF
2869 		if (bgep->asf_enabled) {
2870 			/*
2871 			 * This register has been overlaid. We restore its
2872 			 * initial value here.
2873 			 */
2874 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2875 			    BGE_NIC_DATA_SIG);
2876 		}
2877 #endif
2878 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2879 			ddi_fm_service_impact(bgep->devinfo,
2880 			    DDI_SERVICE_UNAFFECTED);
2881 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2882 			ddi_fm_service_impact(bgep->devinfo,
2883 			    DDI_SERVICE_UNAFFECTED);
2884 		mutex_exit(bgep->genlock);
2885 	}
2886 	if (bgep->progress & PROGRESS_INTR) {
2887 		bge_intr_disable(bgep);
2888 		bge_fini_rings(bgep);
2889 	}
2890 	if (bgep->progress & PROGRESS_HWINT) {
2891 		bge_rem_intrs(bgep);
2892 		rw_destroy(bgep->errlock);
2893 		mutex_destroy(bgep->softintrlock);
2894 		mutex_destroy(bgep->genlock);
2895 	}
2896 	if (bgep->progress & PROGRESS_FACTOTUM)
2897 		ddi_remove_softintr(bgep->factotum_id);
2898 	if (bgep->progress & PROGRESS_RESCHED)
2899 		ddi_remove_softintr(bgep->drain_id);
2900 	if (bgep->progress & PROGRESS_BUFS)
2901 		bge_free_bufs(bgep);
2902 	if (bgep->progress & PROGRESS_REGS)
2903 		ddi_regs_map_free(&bgep->io_handle);
2904 	if (bgep->progress & PROGRESS_CFG)
2905 		pci_config_teardown(&bgep->cfg_handle);
2906 
2907 	bge_fm_fini(bgep);
2908 
2909 	ddi_remove_minor_node(bgep->devinfo, NULL);
2910 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
2911 	kmem_free(bgep, sizeof (*bgep));
2912 }
2913 
2914 static int
2915 bge_resume(dev_info_t *devinfo)
2916 {
2917 	bge_t *bgep;				/* Our private data	*/
2918 	chip_id_t *cidp;
2919 	chip_id_t chipid;
2920 
2921 	bgep = ddi_get_driver_private(devinfo);
2922 	if (bgep == NULL)
2923 		return (DDI_FAILURE);
2924 
2925 	/*
2926 	 * Refuse to resume if the data structures aren't consistent
2927 	 */
2928 	if (bgep->devinfo != devinfo)
2929 		return (DDI_FAILURE);
2930 
2931 #ifdef BGE_IPMI_ASF
2932 	/*
2933 	 * Power management hasn't been supported in BGE now. If you
2934 	 * want to implement it, please add the ASF/IPMI related
2935 	 * code here.
2936 	 */
2937 
2938 #endif
2939 
2940 	/*
2941 	 * Read chip ID & set up config space command register(s)
2942 	 * Refuse to resume if the chip has changed its identity!
2943 	 */
2944 	cidp = &bgep->chipid;
2945 	mutex_enter(bgep->genlock);
2946 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2947 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2948 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2949 		mutex_exit(bgep->genlock);
2950 		return (DDI_FAILURE);
2951 	}
2952 	mutex_exit(bgep->genlock);
2953 	if (chipid.vendor != cidp->vendor)
2954 		return (DDI_FAILURE);
2955 	if (chipid.device != cidp->device)
2956 		return (DDI_FAILURE);
2957 	if (chipid.revision != cidp->revision)
2958 		return (DDI_FAILURE);
2959 	if (chipid.asic_rev != cidp->asic_rev)
2960 		return (DDI_FAILURE);
2961 
2962 	/*
2963 	 * All OK, reinitialise h/w & kick off GLD scheduling
2964 	 */
2965 	mutex_enter(bgep->genlock);
2966 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
2967 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2968 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2969 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2970 		mutex_exit(bgep->genlock);
2971 		return (DDI_FAILURE);
2972 	}
2973 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2974 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2975 		mutex_exit(bgep->genlock);
2976 		return (DDI_FAILURE);
2977 	}
2978 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2979 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2980 		mutex_exit(bgep->genlock);
2981 		return (DDI_FAILURE);
2982 	}
2983 	mutex_exit(bgep->genlock);
2984 	return (DDI_SUCCESS);
2985 }
2986 
2987 /*
2988  * attach(9E) -- Attach a device to the system
2989  *
2990  * Called once for each board successfully probed.
2991  */
2992 static int
2993 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2994 {
2995 	bge_t *bgep;				/* Our private data	*/
2996 	mac_register_t *macp;
2997 	chip_id_t *cidp;
2998 	caddr_t regs;
2999 	int instance;
3000 	int err;
3001 	int intr_types;
3002 #ifdef BGE_IPMI_ASF
3003 	uint32_t mhcrValue;
3004 #ifdef __sparc
3005 	uint16_t value16;
3006 #endif
3007 #ifdef BGE_NETCONSOLE
3008 	int retval;
3009 #endif
3010 #endif
3011 
3012 	instance = ddi_get_instance(devinfo);
3013 
3014 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3015 	    (void *)devinfo, cmd, instance));
3016 	BGE_BRKPT(NULL, "bge_attach");
3017 
3018 	switch (cmd) {
3019 	default:
3020 		return (DDI_FAILURE);
3021 
3022 	case DDI_RESUME:
3023 		return (bge_resume(devinfo));
3024 
3025 	case DDI_ATTACH:
3026 		break;
3027 	}
3028 
3029 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3030 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3031 	ddi_set_driver_private(devinfo, bgep);
3032 	bgep->bge_guard = BGE_GUARD;
3033 	bgep->devinfo = devinfo;
3034 	bgep->param_drain_max = 64;
3035 	bgep->param_msi_cnt = 0;
3036 	bgep->param_loop_mode = 0;
3037 
3038 	/*
3039 	 * Initialize more fields in BGE private data
3040 	 */
3041 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3042 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
3043 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3044 	    BGE_DRIVER_NAME, instance);
3045 
3046 	/*
3047 	 * Initialize for fma support
3048 	 */
3049 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3050 	    DDI_PROP_DONTPASS, fm_cap,
3051 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3052 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3053 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3054 	bge_fm_init(bgep);
3055 
3056 	/*
3057 	 * Look up the IOMMU's page size for DVMA mappings (must be
3058 	 * a power of 2) and convert to a mask.  This can be used to
3059 	 * determine whether a message buffer crosses a page boundary.
3060 	 * Note: in 2s complement binary notation, if X is a power of
3061 	 * 2, then -X has the representation "11...1100...00".
3062 	 */
3063 	bgep->pagemask = dvma_pagesize(devinfo);
3064 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3065 	bgep->pagemask = -bgep->pagemask;
3066 
3067 	/*
3068 	 * Map config space registers
3069 	 * Read chip ID & set up config space command register(s)
3070 	 *
3071 	 * Note: this leaves the chip accessible by Memory Space
3072 	 * accesses, but with interrupts and Bus Mastering off.
3073 	 * This should ensure that nothing untoward will happen
3074 	 * if it has been left active by the (net-)bootloader.
3075 	 * We'll re-enable Bus Mastering once we've reset the chip,
3076 	 * and allow interrupts only when everything else is set up.
3077 	 */
3078 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3079 #ifdef BGE_IPMI_ASF
3080 #ifdef __sparc
3081 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3082 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3083 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3084 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3085 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3086 	    MHCR_MASK_INTERRUPT_MODE |
3087 	    MHCR_MASK_PCI_INT_OUTPUT |
3088 	    MHCR_CLEAR_INTERRUPT_INTA |
3089 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3090 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3091 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3092 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3093 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3094 	    MEMORY_ARBITER_ENABLE);
3095 #else
3096 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3097 #endif
3098 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3099 		bgep->asf_wordswapped = B_TRUE;
3100 	} else {
3101 		bgep->asf_wordswapped = B_FALSE;
3102 	}
3103 	bge_asf_get_config(bgep);
3104 #endif
3105 	if (err != DDI_SUCCESS) {
3106 		bge_problem(bgep, "pci_config_setup() failed");
3107 		goto attach_fail;
3108 	}
3109 	bgep->progress |= PROGRESS_CFG;
3110 	cidp = &bgep->chipid;
3111 	bzero(cidp, sizeof (*cidp));
3112 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3113 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3114 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3115 		goto attach_fail;
3116 	}
3117 
3118 #ifdef BGE_IPMI_ASF
3119 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3120 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3121 		bgep->asf_newhandshake = B_TRUE;
3122 	} else {
3123 		bgep->asf_newhandshake = B_FALSE;
3124 	}
3125 #endif
3126 
3127 	/*
3128 	 * Update those parts of the chip ID derived from volatile
3129 	 * registers with the values seen by OBP (in case the chip
3130 	 * has been reset externally and therefore lost them).
3131 	 */
3132 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3133 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3134 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3135 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3136 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3137 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3138 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3139 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3140 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3141 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3142 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3143 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3144 
3145 	if (bge_jumbo_enable == B_TRUE) {
3146 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3147 		    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3148 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
3149 		    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3150 			cidp->default_mtu = BGE_DEFAULT_MTU;
3151 		}
3152 	}
3153 	/*
3154 	 * Map operating registers
3155 	 */
3156 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3157 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3158 	if (err != DDI_SUCCESS) {
3159 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3160 		goto attach_fail;
3161 	}
3162 	bgep->io_regs = regs;
3163 	bgep->progress |= PROGRESS_REGS;
3164 
3165 	/*
3166 	 * Characterise the device, so we know its requirements.
3167 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3168 	 */
3169 	if (bge_chip_id_init(bgep) == EIO) {
3170 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3171 		goto attach_fail;
3172 	}
3173 
3174 
3175 	err = bge_alloc_bufs(bgep);
3176 	if (err != DDI_SUCCESS) {
3177 		bge_problem(bgep, "DMA buffer allocation failed");
3178 		goto attach_fail;
3179 	}
3180 	bgep->progress |= PROGRESS_BUFS;
3181 
3182 	/*
3183 	 * Add the softint handlers:
3184 	 *
3185 	 * Both of these handlers are used to avoid restrictions on the
3186 	 * context and/or mutexes required for some operations.  In
3187 	 * particular, the hardware interrupt handler and its subfunctions
3188 	 * can detect a number of conditions that we don't want to handle
3189 	 * in that context or with that set of mutexes held.  So, these
3190 	 * softints are triggered instead:
3191 	 *
3192 	 * the <resched> softint is triggered if we have previously
3193 	 * had to refuse to send a packet because of resource shortage
3194 	 * (we've run out of transmit buffers), but the send completion
3195 	 * interrupt handler has now detected that more buffers have
3196 	 * become available.
3197 	 *
3198 	 * the <factotum> is triggered if the h/w interrupt handler
3199 	 * sees the <link state changed> or <error> bits in the status
3200 	 * block.  It's also triggered periodically to poll the link
3201 	 * state, just in case we aren't getting link status change
3202 	 * interrupts ...
3203 	 */
3204 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3205 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3206 	if (err != DDI_SUCCESS) {
3207 		bge_problem(bgep, "ddi_add_softintr() failed");
3208 		goto attach_fail;
3209 	}
3210 	bgep->progress |= PROGRESS_RESCHED;
3211 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3212 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3213 	if (err != DDI_SUCCESS) {
3214 		bge_problem(bgep, "ddi_add_softintr() failed");
3215 		goto attach_fail;
3216 	}
3217 	bgep->progress |= PROGRESS_FACTOTUM;
3218 
3219 	/* Get supported interrupt types */
3220 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3221 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3222 
3223 		goto attach_fail;
3224 	}
3225 
3226 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3227 	    bgep->ifname, intr_types));
3228 
3229 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3230 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3231 			bge_error(bgep, "MSI registration failed, "
3232 			    "trying FIXED interrupt type\n");
3233 		} else {
3234 			BGE_DEBUG(("%s: Using MSI interrupt type",
3235 			    bgep->ifname));
3236 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3237 			bgep->progress |= PROGRESS_HWINT;
3238 		}
3239 	}
3240 
3241 	if (!(bgep->progress & PROGRESS_HWINT) &&
3242 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3243 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3244 			bge_error(bgep, "FIXED interrupt "
3245 			    "registration failed\n");
3246 			goto attach_fail;
3247 		}
3248 
3249 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3250 
3251 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3252 		bgep->progress |= PROGRESS_HWINT;
3253 	}
3254 
3255 	if (!(bgep->progress & PROGRESS_HWINT)) {
3256 		bge_error(bgep, "No interrupts registered\n");
3257 		goto attach_fail;
3258 	}
3259 
3260 	/*
3261 	 * Note that interrupts are not enabled yet as
3262 	 * mutex locks are not initialized. Initialize mutex locks.
3263 	 */
3264 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3265 	    DDI_INTR_PRI(bgep->intr_pri));
3266 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3267 	    DDI_INTR_PRI(bgep->intr_pri));
3268 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3269 	    DDI_INTR_PRI(bgep->intr_pri));
3270 
3271 	/*
3272 	 * Initialize rings.
3273 	 */
3274 	bge_init_rings(bgep);
3275 
3276 	/*
3277 	 * Now that mutex locks are initialized, enable interrupts.
3278 	 */
3279 	bge_intr_enable(bgep);
3280 	bgep->progress |= PROGRESS_INTR;
3281 
3282 	/*
3283 	 * Initialise link state variables
3284 	 * Stop, reset & reinitialise the chip.
3285 	 * Initialise the (internal) PHY.
3286 	 */
3287 	bgep->link_state = LINK_STATE_UNKNOWN;
3288 
3289 	mutex_enter(bgep->genlock);
3290 
3291 	/*
3292 	 * Reset chip & rings to initial state; also reset address
3293 	 * filtering, promiscuity, loopback mode.
3294 	 */
3295 #ifdef BGE_IPMI_ASF
3296 #ifdef BGE_NETCONSOLE
3297 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3298 #else
3299 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3300 #endif
3301 #else
3302 	if (bge_reset(bgep) != DDI_SUCCESS) {
3303 #endif
3304 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3305 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3306 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3307 		mutex_exit(bgep->genlock);
3308 		goto attach_fail;
3309 	}
3310 
3311 #ifdef BGE_IPMI_ASF
3312 	if (bgep->asf_enabled) {
3313 		bgep->asf_status = ASF_STAT_RUN_INIT;
3314 	}
3315 #endif
3316 
3317 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3318 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3319 	bgep->promisc = B_FALSE;
3320 	bgep->param_loop_mode = BGE_LOOP_NONE;
3321 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3322 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3323 		mutex_exit(bgep->genlock);
3324 		goto attach_fail;
3325 	}
3326 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3327 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3328 		mutex_exit(bgep->genlock);
3329 		goto attach_fail;
3330 	}
3331 
3332 	mutex_exit(bgep->genlock);
3333 
3334 	if (bge_phys_init(bgep) == EIO) {
3335 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3336 		goto attach_fail;
3337 	}
3338 	bgep->progress |= PROGRESS_PHY;
3339 
3340 	/*
3341 	 * initialize NDD-tweakable parameters
3342 	 */
3343 	if (bge_nd_init(bgep)) {
3344 		bge_problem(bgep, "bge_nd_init() failed");
3345 		goto attach_fail;
3346 	}
3347 	bgep->progress |= PROGRESS_NDD;
3348 
3349 	/*
3350 	 * Create & initialise named kstats
3351 	 */
3352 	bge_init_kstats(bgep, instance);
3353 	bgep->progress |= PROGRESS_KSTATS;
3354 
3355 	/*
3356 	 * Determine whether to override the chip's own MAC address
3357 	 */
3358 	bge_find_mac_address(bgep, cidp);
3359 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
3360 	bgep->curr_addr[0].set = B_TRUE;
3361 
3362 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3363 	/*
3364 	 * Address available is one less than MAX
3365 	 * as primary address is not advertised
3366 	 * as a multiple MAC address.
3367 	 */
3368 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
3369 
3370 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3371 		goto attach_fail;
3372 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3373 	macp->m_driver = bgep;
3374 	macp->m_dip = devinfo;
3375 	macp->m_src_addr = bgep->curr_addr[0].addr;
3376 	macp->m_callbacks = &bge_m_callbacks;
3377 	macp->m_min_sdu = 0;
3378 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3379 	macp->m_margin = VLAN_TAGSZ;
3380 	macp->m_priv_props = bge_priv_prop;
3381 	macp->m_priv_prop_count = BGE_MAX_PRIV_PROPS;
3382 
3383 	/*
3384 	 * Finally, we're ready to register ourselves with the MAC layer
3385 	 * interface; if this succeeds, we're all ready to start()
3386 	 */
3387 	err = mac_register(macp, &bgep->mh);
3388 	mac_free(macp);
3389 	if (err != 0)
3390 		goto attach_fail;
3391 
3392 	/*
3393 	 * Register a periodical handler.
3394 	 * bge_chip_cyclic() is invoked in kernel context.
3395 	 */
3396 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3397 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3398 
3399 	bgep->progress |= PROGRESS_READY;
3400 	ASSERT(bgep->bge_guard == BGE_GUARD);
3401 #ifdef BGE_IPMI_ASF
3402 #ifdef BGE_NETCONSOLE
3403 	if (bgep->asf_enabled) {
3404 		mutex_enter(bgep->genlock);
3405 		retval = bge_chip_start(bgep, B_TRUE);
3406 		mutex_exit(bgep->genlock);
3407 		if (retval != DDI_SUCCESS)
3408 			goto attach_fail;
3409 	}
3410 #endif
3411 #endif
3412 	return (DDI_SUCCESS);
3413 
3414 attach_fail:
3415 #ifdef BGE_IPMI_ASF
3416 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3417 #else
3418 	bge_unattach(bgep);
3419 #endif
3420 	return (DDI_FAILURE);
3421 }
3422 
3423 /*
3424  *	bge_suspend() -- suspend transmit/receive for powerdown
3425  */
3426 static int
3427 bge_suspend(bge_t *bgep)
3428 {
3429 	/*
3430 	 * Stop processing and idle (powerdown) the PHY ...
3431 	 */
3432 	mutex_enter(bgep->genlock);
3433 #ifdef BGE_IPMI_ASF
3434 	/*
3435 	 * Power management hasn't been supported in BGE now. If you
3436 	 * want to implement it, please add the ASF/IPMI related
3437 	 * code here.
3438 	 */
3439 #endif
3440 	bge_stop(bgep);
3441 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3442 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3443 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3444 		mutex_exit(bgep->genlock);
3445 		return (DDI_FAILURE);
3446 	}
3447 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3448 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3449 		mutex_exit(bgep->genlock);
3450 		return (DDI_FAILURE);
3451 	}
3452 	mutex_exit(bgep->genlock);
3453 
3454 	return (DDI_SUCCESS);
3455 }
3456 
3457 /*
3458  * detach(9E) -- Detach a device from the system
3459  */
3460 static int
3461 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3462 {
3463 	bge_t *bgep;
3464 #ifdef BGE_IPMI_ASF
3465 	uint_t asf_mode;
3466 	asf_mode = ASF_MODE_NONE;
3467 #endif
3468 
3469 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3470 
3471 	bgep = ddi_get_driver_private(devinfo);
3472 
3473 	switch (cmd) {
3474 	default:
3475 		return (DDI_FAILURE);
3476 
3477 	case DDI_SUSPEND:
3478 		return (bge_suspend(bgep));
3479 
3480 	case DDI_DETACH:
3481 		break;
3482 	}
3483 
3484 #ifdef BGE_IPMI_ASF
3485 	mutex_enter(bgep->genlock);
3486 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3487 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3488 
3489 		bge_asf_update_status(bgep);
3490 		if (bgep->asf_status == ASF_STAT_RUN) {
3491 			bge_asf_stop_timer(bgep);
3492 		}
3493 		bgep->asf_status = ASF_STAT_STOP;
3494 
3495 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3496 
3497 		if (bgep->asf_pseudostop) {
3498 			bge_chip_stop(bgep, B_FALSE);
3499 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3500 			bgep->asf_pseudostop = B_FALSE;
3501 		}
3502 
3503 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3504 
3505 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3506 			ddi_fm_service_impact(bgep->devinfo,
3507 			    DDI_SERVICE_UNAFFECTED);
3508 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3509 			ddi_fm_service_impact(bgep->devinfo,
3510 			    DDI_SERVICE_UNAFFECTED);
3511 	}
3512 	mutex_exit(bgep->genlock);
3513 #endif
3514 
3515 	/*
3516 	 * Unregister from the GLD subsystem.  This can fail, in
3517 	 * particular if there are DLPI style-2 streams still open -
3518 	 * in which case we just return failure without shutting
3519 	 * down chip operations.
3520 	 */
3521 	if (mac_unregister(bgep->mh) != 0)
3522 		return (DDI_FAILURE);
3523 
3524 	/*
3525 	 * All activity stopped, so we can clean up & exit
3526 	 */
3527 #ifdef BGE_IPMI_ASF
3528 	bge_unattach(bgep, asf_mode);
3529 #else
3530 	bge_unattach(bgep);
3531 #endif
3532 	return (DDI_SUCCESS);
3533 }
3534 
3535 
3536 /*
3537  * ========== Module Loading Data & Entry Points ==========
3538  */
3539 
3540 #undef	BGE_DBG
3541 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3542 
3543 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
3544     nodev, NULL, D_MP, NULL);
3545 
3546 static struct modldrv bge_modldrv = {
3547 	&mod_driverops,		/* Type of module.  This one is a driver */
3548 	bge_ident,		/* short description */
3549 	&bge_dev_ops		/* driver specific ops */
3550 };
3551 
3552 static struct modlinkage modlinkage = {
3553 	MODREV_1, (void *)&bge_modldrv, NULL
3554 };
3555 
3556 
3557 int
3558 _info(struct modinfo *modinfop)
3559 {
3560 	return (mod_info(&modlinkage, modinfop));
3561 }
3562 
3563 int
3564 _init(void)
3565 {
3566 	int status;
3567 
3568 	mac_init_ops(&bge_dev_ops, "bge");
3569 	status = mod_install(&modlinkage);
3570 	if (status == DDI_SUCCESS)
3571 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3572 	else
3573 		mac_fini_ops(&bge_dev_ops);
3574 	return (status);
3575 }
3576 
3577 int
3578 _fini(void)
3579 {
3580 	int status;
3581 
3582 	status = mod_remove(&modlinkage);
3583 	if (status == DDI_SUCCESS) {
3584 		mac_fini_ops(&bge_dev_ops);
3585 		mutex_destroy(bge_log_mutex);
3586 	}
3587 	return (status);
3588 }
3589 
3590 
3591 /*
3592  * bge_add_intrs:
3593  *
3594  * Register FIXED or MSI interrupts.
3595  */
3596 static int
3597 bge_add_intrs(bge_t *bgep, int	intr_type)
3598 {
3599 	dev_info_t	*dip = bgep->devinfo;
3600 	int		avail, actual, intr_size, count = 0;
3601 	int		i, flag, ret;
3602 
3603 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3604 
3605 	/* Get number of interrupts */
3606 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3607 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3608 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3609 		    "count: %d", ret, count);
3610 
3611 		return (DDI_FAILURE);
3612 	}
3613 
3614 	/* Get number of available interrupts */
3615 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3616 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3617 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3618 		    "ret: %d, avail: %d\n", ret, avail);
3619 
3620 		return (DDI_FAILURE);
3621 	}
3622 
3623 	if (avail < count) {
3624 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3625 		    bgep->ifname, count, avail));
3626 	}
3627 
3628 	/*
3629 	 * BGE hardware generates only single MSI even though it claims
3630 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3631 	 */
3632 	if (intr_type == DDI_INTR_TYPE_MSI) {
3633 		count = 1;
3634 		flag = DDI_INTR_ALLOC_STRICT;
3635 	} else {
3636 		flag = DDI_INTR_ALLOC_NORMAL;
3637 	}
3638 
3639 	/* Allocate an array of interrupt handles */
3640 	intr_size = count * sizeof (ddi_intr_handle_t);
3641 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3642 
3643 	/* Call ddi_intr_alloc() */
3644 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3645 	    count, &actual, flag);
3646 
3647 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3648 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3649 
3650 		kmem_free(bgep->htable, intr_size);
3651 		return (DDI_FAILURE);
3652 	}
3653 
3654 	if (actual < count) {
3655 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3656 		    bgep->ifname, count, actual));
3657 	}
3658 
3659 	bgep->intr_cnt = actual;
3660 
3661 	/*
3662 	 * Get priority for first msi, assume remaining are all the same
3663 	 */
3664 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3665 	    DDI_SUCCESS) {
3666 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3667 
3668 		/* Free already allocated intr */
3669 		for (i = 0; i < actual; i++) {
3670 			(void) ddi_intr_free(bgep->htable[i]);
3671 		}
3672 
3673 		kmem_free(bgep->htable, intr_size);
3674 		return (DDI_FAILURE);
3675 	}
3676 
3677 	/* Call ddi_intr_add_handler() */
3678 	for (i = 0; i < actual; i++) {
3679 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3680 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3681 			bge_error(bgep, "ddi_intr_add_handler() "
3682 			    "failed %d\n", ret);
3683 
3684 			/* Free already allocated intr */
3685 			for (i = 0; i < actual; i++) {
3686 				(void) ddi_intr_free(bgep->htable[i]);
3687 			}
3688 
3689 			kmem_free(bgep->htable, intr_size);
3690 			return (DDI_FAILURE);
3691 		}
3692 	}
3693 
3694 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3695 	    != DDI_SUCCESS) {
3696 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3697 
3698 		for (i = 0; i < actual; i++) {
3699 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3700 			(void) ddi_intr_free(bgep->htable[i]);
3701 		}
3702 
3703 		kmem_free(bgep->htable, intr_size);
3704 		return (DDI_FAILURE);
3705 	}
3706 
3707 	return (DDI_SUCCESS);
3708 }
3709 
3710 /*
3711  * bge_rem_intrs:
3712  *
3713  * Unregister FIXED or MSI interrupts
3714  */
3715 static void
3716 bge_rem_intrs(bge_t *bgep)
3717 {
3718 	int	i;
3719 
3720 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3721 
3722 	/* Call ddi_intr_remove_handler() */
3723 	for (i = 0; i < bgep->intr_cnt; i++) {
3724 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3725 		(void) ddi_intr_free(bgep->htable[i]);
3726 	}
3727 
3728 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3729 }
3730 
3731 
3732 void
3733 bge_intr_enable(bge_t *bgep)
3734 {
3735 	int i;
3736 
3737 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3738 		/* Call ddi_intr_block_enable() for MSI interrupts */
3739 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3740 	} else {
3741 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3742 		for (i = 0; i < bgep->intr_cnt; i++) {
3743 			(void) ddi_intr_enable(bgep->htable[i]);
3744 		}
3745 	}
3746 }
3747 
3748 
3749 void
3750 bge_intr_disable(bge_t *bgep)
3751 {
3752 	int i;
3753 
3754 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3755 		/* Call ddi_intr_block_disable() */
3756 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3757 	} else {
3758 		for (i = 0; i < bgep->intr_cnt; i++) {
3759 			(void) ddi_intr_disable(bgep->htable[i]);
3760 		}
3761 	}
3762 }
3763 
3764 int
3765 bge_reprogram(bge_t *bgep)
3766 {
3767 	int status = 0;
3768 
3769 	ASSERT(mutex_owned(bgep->genlock));
3770 
3771 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3772 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3773 		status = IOC_INVAL;
3774 	}
3775 #ifdef BGE_IPMI_ASF
3776 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3777 #else
3778 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3779 #endif
3780 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3781 		status = IOC_INVAL;
3782 	}
3783 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3784 		bge_chip_msi_trig(bgep);
3785 	return (status);
3786 }
3787