1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _BGE_IMPL_H 28 #define _BGE_IMPL_H 29 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <sys/types.h> 36 #include <sys/stream.h> 37 #include <sys/strsun.h> 38 #include <sys/strsubr.h> 39 #include <sys/stat.h> 40 #include <sys/pci.h> 41 #include <sys/note.h> 42 #include <sys/modctl.h> 43 #include <sys/crc32.h> 44 #ifdef __sparcv9 45 #include <v9/sys/membar.h> 46 #endif /* __sparcv9 */ 47 #include <sys/kstat.h> 48 #include <sys/ethernet.h> 49 #include <sys/vlan.h> 50 #include <sys/errno.h> 51 #include <sys/dlpi.h> 52 #include <sys/devops.h> 53 #include <sys/debug.h> 54 #include <sys/conf.h> 55 56 #include <netinet/ip6.h> 57 58 #include <inet/common.h> 59 #include <inet/ip.h> 60 #include <inet/mi.h> 61 #include <inet/nd.h> 62 #include <sys/pattr.h> 63 64 #include <sys/disp.h> 65 #include <sys/cmn_err.h> 66 #include <sys/ddi.h> 67 #include <sys/sunddi.h> 68 69 #include <sys/ddifm.h> 70 #include <sys/fm/protocol.h> 71 #include <sys/fm/util.h> 72 #include <sys/fm/io/ddi.h> 73 74 #include <sys/mac.h> 75 #include <sys/mac_ether.h> 76 77 #ifdef __amd64 78 #include <sys/x86_archext.h> 79 #endif 80 81 /* 82 * <sys/ethernet.h> *may* already have provided the typedef ether_addr_t; 83 * but of course C doesn't provide a way to check this directly. So here 84 * we rely on the fact that the symbol ETHERTYPE_AT was added to the 85 * header file (as a #define, which we *can* test for) at the same time 86 * as the typedef for ether_addr_t ;-! 87 */ 88 #ifndef ETHERTYPE_AT 89 typedef uchar_t ether_addr_t[ETHERADDRL]; 90 #endif /* ETHERTYPE_AT */ 91 92 /* 93 * Reconfiguring the network devices requires the net_config privilege 94 * in Solaris 10+. 95 */ 96 extern int secpolicy_net_config(const cred_t *, boolean_t); 97 98 #include <sys/netlb.h> /* originally from cassini */ 99 #include <sys/miiregs.h> /* by fjlite out of intel */ 100 101 #include "bge.h" 102 #include "bge_hw.h" 103 104 /* 105 * Compile-time feature switches ... 106 */ 107 #define BGE_DO_PPIO 0 /* peek/poke ioctls */ 108 #define BGE_RX_SOFTINT 0 /* softint per receive ring */ 109 #define BGE_CHOOSE_SEND_METHOD 0 /* send by copying only */ 110 111 /* 112 * NOTES: 113 * 114 * #defines: 115 * 116 * BGE_PCI_CONFIG_RNUMBER and BGE_PCI_OPREGS_RNUMBER are the 117 * register-set numbers to use for the config space registers 118 * and the operating registers respectively. On an OBP-based 119 * machine, regset 0 refers to CONFIG space, and regset 1 will 120 * be the operating registers in MEMORY space. If an expansion 121 * ROM is fitted, it may appear as a further register set. 122 * 123 * BGE_DMA_MODE defines the mode (STREAMING/CONSISTENT) used 124 * for the data buffers. The descriptors are always set up 125 * in CONSISTENT mode. 126 * 127 * BGE_HEADROOM defines how much space we'll leave in allocated 128 * mblks before the first valid data byte. This should be chosen 129 * to be 2 modulo 4, so that once the ethernet header (14 bytes) 130 * has been stripped off, the packet data will be 4-byte aligned. 131 * The remaining space can be used by upstream modules to prepend 132 * any headers required. 133 */ 134 135 #define BGE_PCI_CONFIG_RNUMBER 0 136 #define BGE_PCI_OPREGS_RNUMBER 1 137 #define BGE_DMA_MODE DDI_DMA_STREAMING 138 #define BGE_HEADROOM 34 139 140 /* 141 * BGE_HALFTICK is half the period of the cyclic callback (in 142 * nanoseconds), chosen so that 0.5s <= cyclic period <= 1s. 143 * Other time values are derived as odd multiples of this value 144 * so that there's little chance of ambiguity w.r.t. which tick 145 * a timeout expires on. 146 * 147 * BGE_PHY_STABLE_TIME is the period for which the contents of the 148 * PHY's status register must remain unchanging before we accept 149 * that the link has come up. [Sometimes the link comes up, only 150 * to go down again within a short time as the autonegotiation 151 * process cycles through various options before finding the best 152 * compatible mode. We don't want to report repeated link up/down 153 * cycles, so we wait until we think it's stable.] 154 * 155 * BGE_SERDES_STABLE_TIME is the analogous value for the SerDes 156 * interface. It's much shorter, 'cos the SerDes doesn't show 157 * these effects as much as the copper PHY. 158 * 159 * BGE_LINK_SETTLE_TIME is the period during which we regard link 160 * up/down cycles as an normal event after resetting/reprogramming 161 * the PHY. During this time, link up/down messages are sent to 162 * the log only, not the console. At any other time, link change 163 * events are regarded as unexpected and sent to both console & log. 164 * 165 * These latter two values have no theoretical justification, but 166 * are derived from observations and heuristics - the values below 167 * just seem to work quite well. 168 */ 169 170 #define BGE_HALFTICK 268435456LL /* 2**28 ns! */ 171 #define BGE_CYCLIC_PERIOD (2*BGE_HALFTICK) /* ~0.5s */ 172 #define BGE_SERDES_STABLE_TIME (3*BGE_HALFTICK) /* ~0.8s */ 173 #define BGE_PHY_STABLE_TIME (11*BGE_HALFTICK) /* ~3.0s */ 174 #define BGE_LINK_SETTLE_TIME (111*BGE_HALFTICK) /* ~30.0s */ 175 176 /* 177 * Indices used to identify the different buffer rings internally 178 */ 179 #define BGE_STD_BUFF_RING 0 180 #define BGE_JUMBO_BUFF_RING 1 181 #define BGE_MINI_BUFF_RING 2 182 183 /* 184 * Current implementation limits 185 */ 186 #define BGE_BUFF_RINGS_USED 2 /* std & jumbo ring */ 187 /* for now */ 188 #define BGE_RECV_RINGS_USED 16 /* up to 16 rtn rings */ 189 /* for now */ 190 #define BGE_SEND_RINGS_USED 4 /* up to 4 tx rings */ 191 /* for now */ 192 #define BGE_HASH_TABLE_SIZE 128 /* may be 256 later */ 193 194 /* 195 * Ring/buffer size parameters 196 * 197 * All of the (up to) 16 TX rings & and the corresponding buffers are the 198 * same size. 199 * 200 * Each of the (up to) 3 receive producer (aka buffer) rings is a different 201 * size and has different sized buffers associated with it too. 202 * 203 * The (up to) 16 receive return rings have no buffers associated with them. 204 * The number of slots per receive return ring must be 2048 if the mini 205 * ring is enabled, otherwise it may be 1024. See Broadcom document 206 * 570X-PG102-R page 56. 207 * 208 * Note: only the 5700 supported external memory (and therefore the mini 209 * ring); the 5702/3/4 don't. This driver doesn't support the original 210 * 5700, so we won't ever use the mini ring capability. 211 */ 212 213 #define BGE_SEND_RINGS_DEFAULT 1 214 #define BGE_RECV_RINGS_DEFAULT 1 215 216 #define BGE_SEND_BUFF_SIZE_DEFAULT 1536 217 #define BGE_SEND_BUFF_SIZE_JUMBO 9022 218 #define BGE_SEND_SLOTS_USED 512 219 220 #define BGE_STD_BUFF_SIZE 1536 /* 0x600 */ 221 #define BGE_STD_SLOTS_USED 512 222 223 #define BGE_JUMBO_BUFF_SIZE 9022 /* 9k */ 224 #define BGE_JUMBO_SLOTS_USED 256 225 226 #define BGE_MINI_BUFF_SIZE 128 /* 64? 256? */ 227 #define BGE_MINI_SLOTS_USED 0 /* must be 0; see above */ 228 229 #define BGE_RECV_BUFF_SIZE 0 230 #if BGE_MINI_SLOTS_USED > 0 231 #define BGE_RECV_SLOTS_USED 2048 /* required */ 232 #else 233 #define BGE_RECV_SLOTS_USED 1024 /* could be 2048 anyway */ 234 #endif 235 236 #define BGE_SEND_BUF_NUM 512 237 #define BGE_SEND_BUF_ARRAY 16 238 #define BGE_SEND_BUF_ARRAY_JUMBO 3 239 #define BGE_SEND_BUF_MAX (BGE_SEND_BUF_NUM*BGE_SEND_BUF_ARRAY) 240 241 /* 242 * PCI type. PCI-Express or PCI/PCIX 243 */ 244 #define BGE_PCI 0 245 #define BGE_PCI_E 1 246 #define BGE_PCI_X 2 247 248 /* 249 * Statistic type. There are two type of statistic: 250 * statistic block and statistic registers 251 */ 252 #define BGE_STAT_BLK 1 253 #define BGE_STAT_REG 2 254 255 /* 256 * MTU.for all chipsets ,the default is 1500 ,and some chipsets 257 * support 9k jumbo frames size 258 */ 259 #define BGE_DEFAULT_MTU 1500 260 #define BGE_MAXIMUM_MTU 9000 261 262 /* 263 * Pad the h/w defined status block (which can be up to 80 bytes long) 264 * to a power-of-two boundary 265 */ 266 #define BGE_STATUS_PADDING (128 - sizeof (bge_status_t)) 267 268 /* 269 * On platforms which support DVMA, we can simply allocate one big piece 270 * of memory for all the Tx buffers and another for the Rx buffers, and 271 * then carve them up as required. It doesn't matter if they aren't just 272 * one physically contiguous piece each, because both the CPU *and* the 273 * I/O device can see them *as though they were*. 274 * 275 * However, if only physically-addressed DMA is possible, this doesn't 276 * work; we can't expect to get enough contiguously-addressed memory for 277 * all the buffers of each type, so in this case we request a number of 278 * smaller pieces, each still large enough for several buffers but small 279 * enough to fit within "an I/O page" (e.g. 64K). 280 * 281 * The #define below specifies how many pieces of memory are to be used; 282 * 16 has been shown to work on an i86pc architecture but this could be 283 * different on other non-DVMA platforms ... 284 */ 285 #ifdef _DMA_USES_VIRTADDR 286 #define BGE_SPLIT 1 /* no split required */ 287 #else 288 #if ((BGE_BUFF_RINGS_USED > 1) || (BGE_SEND_RINGS_USED > 1) || \ 289 (BGE_RECV_RINGS_USED > 1)) 290 #define BGE_SPLIT 128 /* split 128 ways */ 291 #else 292 #define BGE_SPLIT 16 /* split 16 ways */ 293 #endif 294 #endif /* _DMA_USES_VIRTADDR */ 295 296 #define BGE_RECV_RINGS_SPLIT (BGE_RECV_RINGS_MAX + 1) 297 298 /* 299 * STREAMS parameters 300 */ 301 #define BGE_IDNUM 0 /* zero seems to work */ 302 #define BGE_LOWAT (256) 303 #define BGE_HIWAT (256*1024) 304 305 306 /* 307 * Basic data types, for clarity in distinguishing 'numbers' 308 * used for different purposes ... 309 * 310 * A <bge_regno_t> is a register 'address' (offset) in any one of 311 * various address spaces (PCI config space, PCI memory-mapped I/O 312 * register space, MII registers, etc). None of these exceeds 64K, 313 * so we could use a 16-bit representation but pointer-sized objects 314 * are more "natural" in most architectures; they seem to be handled 315 * more efficiently on SPARC and no worse on x86. 316 * 317 * BGE_REGNO_NONE represents the non-existent value in this space. 318 */ 319 typedef uintptr_t bge_regno_t; /* register # (offset) */ 320 #define BGE_REGNO_NONE (~(uintptr_t)0u) 321 322 /* 323 * Describes one chunk of allocated DMA-able memory 324 * 325 * In some cases, this is a single chunk as allocated from the system; 326 * but we also use this structure to represent slices carved off such 327 * a chunk. Even when we don't really need all the information, we 328 * use this structure as a convenient way of correlating the various 329 * ways of looking at a piece of memory (kernel VA, IO space DVMA, 330 * handle+offset, etc). 331 */ 332 typedef struct { 333 ddi_acc_handle_t acc_hdl; /* handle for memory */ 334 void *mem_va; /* CPU VA of memory */ 335 uint32_t nslots; /* number of slots */ 336 uint32_t size; /* size per slot */ 337 size_t alength; /* allocated size */ 338 /* >= product of above */ 339 340 ddi_dma_handle_t dma_hdl; /* DMA handle */ 341 offset_t offset; /* relative to handle */ 342 ddi_dma_cookie_t cookie; /* associated cookie */ 343 uint32_t ncookies; /* must be 1 */ 344 uint32_t token; /* arbitrary identifier */ 345 } dma_area_t; /* 0x50 (80) bytes */ 346 347 typedef struct bge_queue_item { 348 struct bge_queue_item *next; 349 void *item; 350 } bge_queue_item_t; 351 352 typedef struct bge_queue { 353 bge_queue_item_t *head; 354 uint32_t count; 355 kmutex_t *lock; 356 } bge_queue_t; 357 /* 358 * Software version of the Receive Buffer Descriptor 359 * There's one of these for each receive buffer (up to 256/512/1024 per ring). 360 */ 361 typedef struct sw_rbd { 362 dma_area_t pbuf; /* (const) related */ 363 /* buffer area */ 364 } sw_rbd_t; /* 0x50 (80) bytes */ 365 366 /* 367 * Software Receive Buffer (Producer) Ring Control Block 368 * There's one of these for each receiver producer ring (up to 3), 369 * but each holds buffers of a different size. 370 */ 371 typedef struct buff_ring { 372 dma_area_t desc; /* (const) related h/w */ 373 /* descriptor area */ 374 dma_area_t buf[BGE_SPLIT]; /* (const) related */ 375 /* buffer area(s) */ 376 bge_rcb_t hw_rcb; /* (const) image of h/w */ 377 /* RCB, and used to */ 378 struct bge *bgep; /* (const) containing */ 379 /* driver soft state */ 380 /* initialise same */ 381 volatile uint16_t *cons_index_p; /* (const) ptr to h/w */ 382 /* "consumer index" */ 383 /* (in status block) */ 384 385 /* 386 * The rf_lock must be held when updating the h/w producer index 387 * mailbox register (*chip_mbox_reg), or the s/w producer index 388 * (rf_next). 389 */ 390 bge_regno_t chip_mbx_reg; /* (const) h/w producer */ 391 /* index mailbox offset */ 392 kmutex_t rf_lock[1]; /* serialize refill */ 393 uint64_t rf_next; /* next slot to refill */ 394 /* ("producer index") */ 395 396 sw_rbd_t *sw_rbds; /* software descriptors */ 397 void *spare[4]; /* padding */ 398 } buff_ring_t; /* 0x100 (256) bytes */ 399 400 /* 401 * Software Receive (Return) Ring Control Block 402 * There's one of these for each receiver return ring (up to 16). 403 */ 404 typedef struct recv_ring { 405 /* 406 * The elements flagged (const) in the comments below are 407 * set up once during initialiation and thereafter unchanged. 408 */ 409 dma_area_t desc; /* (const) related h/w */ 410 /* descriptor area */ 411 bge_rcb_t hw_rcb; /* (const) image of h/w */ 412 /* RCB, and used to */ 413 /* initialise same */ 414 struct bge *bgep; /* (const) containing */ 415 /* driver soft state */ 416 ddi_softintr_t rx_softint; /* (const) per-ring */ 417 /* receive callback */ 418 volatile uint16_t *prod_index_p; /* (const) ptr to h/w */ 419 /* "producer index" */ 420 /* (in status block) */ 421 422 /* 423 * The rx_lock must be held when updating the h/w consumer index 424 * mailbox register (*chip_mbox_reg), or the s/w consumer index 425 * (rx_next). 426 */ 427 bge_regno_t chip_mbx_reg; /* (const) h/w consumer */ 428 /* index mailbox offset */ 429 kmutex_t rx_lock[1]; /* serialize receive */ 430 uint64_t rx_next; /* next slot to examine */ 431 mac_resource_handle_t handle; /* per ring cookie */ 432 /* ("producer index") */ 433 } recv_ring_t; /* 0x90 (144) bytes */ 434 435 /* 436 * Send packet structure 437 */ 438 typedef struct send_pkt { 439 uint16_t vlan_tci; 440 uint32_t pflags; 441 boolean_t tx_ready; 442 bge_queue_item_t *txbuf_item; 443 } send_pkt_t; 444 445 /* 446 * Software version of tx buffer structure 447 */ 448 typedef struct sw_txbuf { 449 dma_area_t buf; 450 uint32_t copy_len; 451 } sw_txbuf_t; 452 453 /* 454 * Software version of the Send Buffer Descriptor 455 * There's one of these for each send buffer (up to 512 per ring) 456 */ 457 typedef struct sw_sbd { 458 dma_area_t desc; /* (const) related h/w */ 459 /* descriptor area */ 460 bge_queue_item_t *pbuf; /* (const) related */ 461 /* buffer area */ 462 } sw_sbd_t; 463 464 /* 465 * Software Send Ring Control Block 466 * There's one of these for each of (up to) 16 send rings 467 */ 468 typedef struct send_ring { 469 /* 470 * The elements flagged (const) in the comments below are 471 * set up once during initialiation and thereafter unchanged. 472 */ 473 dma_area_t desc; /* (const) related h/w */ 474 /* descriptor area */ 475 dma_area_t buf[BGE_SEND_BUF_ARRAY][BGE_SPLIT]; 476 /* buffer area(s) */ 477 bge_rcb_t hw_rcb; /* (const) image of h/w */ 478 /* RCB, and used to */ 479 /* initialise same */ 480 struct bge *bgep; /* (const) containing */ 481 /* driver soft state */ 482 volatile uint16_t *cons_index_p; /* (const) ptr to h/w */ 483 /* "consumer index" */ 484 /* (in status block) */ 485 486 bge_regno_t chip_mbx_reg; /* (const) h/w producer */ 487 /* index mailbox offset */ 488 /* 489 * Tx buffer queue 490 */ 491 bge_queue_t txbuf_queue; 492 bge_queue_t freetxbuf_queue; 493 bge_queue_t *txbuf_push_queue; 494 bge_queue_t *txbuf_pop_queue; 495 kmutex_t txbuf_lock[1]; 496 kmutex_t freetxbuf_lock[1]; 497 bge_queue_item_t *txbuf_head; 498 send_pkt_t *pktp; 499 uint64_t txpkt_next; 500 uint64_t txfill_next; 501 sw_txbuf_t *txbuf; 502 uint32_t tx_buffers; 503 uint32_t tx_buffers_low; 504 uint32_t tx_array_max; 505 uint32_t tx_array; 506 kmutex_t tx_lock[1]; /* serialize h/w update */ 507 /* ("producer index") */ 508 uint64_t tx_next; /* next slot to use */ 509 uint64_t tx_flow; /* # concurrent sends */ 510 uint64_t tx_block; 511 uint64_t tx_nobd; 512 uint64_t tx_nobuf; 513 uint64_t tx_alloc_fail; 514 515 /* 516 * These counters/indexes are manipulated in the transmit 517 * path using atomics rather than mutexes for speed 518 */ 519 uint64_t tx_free; /* # of slots available */ 520 521 /* 522 * The tc_lock must be held while manipulating the s/w consumer 523 * index (tc_next). 524 */ 525 kmutex_t tc_lock[1]; /* serialize recycle */ 526 uint64_t tc_next; /* next slot to recycle */ 527 /* ("consumer index") */ 528 529 sw_sbd_t *sw_sbds; /* software descriptors */ 530 uint64_t mac_resid; /* special per resource id */ 531 } send_ring_t; /* 0x100 (256) bytes */ 532 533 typedef struct { 534 ether_addr_t addr; /* in canonical form */ 535 uint8_t spare; 536 boolean_t set; /* B_TRUE => valid */ 537 } bge_mac_addr_t; 538 539 /* 540 * The original 5700/01 supported only SEEPROMs. Later chips (5702+) 541 * support both SEEPROMs (using the same 2-wire CLK/DATA interface for 542 * the hardware and a backwards-compatible software access method), and 543 * buffered or unbuffered FLASH devices connected to the 4-wire SPI bus 544 * and using a new software access method. 545 * 546 * The access methods for SEEPROM and Flash are generally similar, with 547 * the chip handling the serialisation/deserialisation and handshaking, 548 * but the registers used are different, as are a few details of the 549 * protocol, and the timing, so we have to determine which (if any) is 550 * fitted. 551 * 552 * The value UNKNOWN means just that; we haven't yet tried to determine 553 * the device type. 554 * 555 * The value NONE can indicate either that a real and definite absence of 556 * any NVmem has been detected, or that there may be NVmem but we can't 557 * determine its type, perhaps because the NVconfig pins on the chip have 558 * been wired up incorrectly. In either case, access to the NVmem (if any) 559 * is not supported. 560 */ 561 enum bge_nvmem_type { 562 BGE_NVTYPE_NONE = -1, /* (or indeterminable) */ 563 BGE_NVTYPE_UNKNOWN, /* not yet checked */ 564 BGE_NVTYPE_SEEPROM, /* BCM5700/5701 only */ 565 BGE_NVTYPE_LEGACY_SEEPROM, /* 5702+ */ 566 BGE_NVTYPE_UNBUFFERED_FLASH, /* 5702+ */ 567 BGE_NVTYPE_BUFFERED_FLASH /* 5702+ */ 568 }; 569 570 /* 571 * Describes the characteristics of a specific chip 572 * 573 * Note: elements from <businfo> to <latency> are filled in by during 574 * the first phase of chip initialisation (see bge_chip_cfg_init()). 575 * The remaining ones are determined just after the first RESET, in 576 * bge_poll_firmware(). Thereafter, the entire structure is readonly. 577 */ 578 typedef struct { 579 uint32_t asic_rev; /* masked from MHCR */ 580 uint32_t businfo; /* from private reg */ 581 uint16_t command; /* saved during attach */ 582 583 uint16_t vendor; /* vendor-id */ 584 uint16_t device; /* device-id */ 585 uint16_t subven; /* subsystem-vendor-id */ 586 uint16_t subdev; /* subsystem-id */ 587 uint8_t revision; /* revision-id */ 588 uint8_t clsize; /* cache-line-size */ 589 uint8_t latency; /* latency-timer */ 590 591 uint8_t flags; 592 uint16_t chip_label; /* numeric part only */ 593 /* (e.g. 5703/5794/etc) */ 594 uint32_t mbuf_base; /* Mbuf pool parameters */ 595 uint32_t mbuf_length; /* depend on chiptype */ 596 uint32_t pci_type; 597 uint32_t statistic_type; 598 uint32_t bge_dma_rwctrl; 599 uint32_t bge_mlcr_default; 600 uint32_t recv_slots; /* receive ring size */ 601 enum bge_nvmem_type nvtype; /* SEEPROM or Flash */ 602 603 uint16_t jumbo_slots; 604 uint16_t ethmax_size; 605 uint16_t snd_buff_size; 606 uint16_t recv_jumbo_size; 607 uint16_t std_buf_size; 608 uint32_t mbuf_hi_water; 609 uint32_t mbuf_lo_water_rmac; 610 uint32_t mbuf_lo_water_rdma; 611 612 uint32_t rx_rings; /* from bge.conf */ 613 uint32_t tx_rings; /* from bge.conf */ 614 uint32_t default_mtu; /* from bge.conf */ 615 616 uint64_t hw_mac_addr; /* from chip register */ 617 bge_mac_addr_t vendor_addr; /* transform of same */ 618 boolean_t msi_enabled; /* default to true */ 619 620 uint32_t rx_ticks_norm; 621 uint32_t rx_count_norm; 622 } chip_id_t; 623 624 #define CHIP_FLAG_SUPPORTED 0x80 625 #define CHIP_FLAG_SERDES 0x40 626 #define CHIP_FLAG_PARTIAL_CSUM 0x20 627 #define CHIP_FLAG_NO_JUMBO 0x1 628 629 /* 630 * Collection of physical-layer functions to: 631 * (re)initialise the physical layer 632 * update it to match software settings 633 * check for link status change 634 */ 635 typedef struct { 636 int (*phys_restart)(struct bge *, boolean_t); 637 int (*phys_update)(struct bge *); 638 boolean_t (*phys_check)(struct bge *, boolean_t); 639 } phys_ops_t; 640 641 642 /* 643 * Actual state of the BCM570x chip 644 */ 645 enum bge_chip_state { 646 BGE_CHIP_FAULT = -2, /* fault, need reset */ 647 BGE_CHIP_ERROR, /* error, want reset */ 648 BGE_CHIP_INITIAL, /* Initial state only */ 649 BGE_CHIP_RESET, /* reset, need init */ 650 BGE_CHIP_STOPPED, /* Tx/Rx stopped */ 651 BGE_CHIP_RUNNING /* with interrupts */ 652 }; 653 654 enum bge_mac_state { 655 BGE_MAC_STOPPED = 0, 656 BGE_MAC_STARTED 657 }; 658 659 /* 660 * (Internal) return values from ioctl subroutines 661 */ 662 enum ioc_reply { 663 IOC_INVAL = -1, /* bad, NAK with EINVAL */ 664 IOC_DONE, /* OK, reply sent */ 665 IOC_ACK, /* OK, just send ACK */ 666 IOC_REPLY, /* OK, just send reply */ 667 IOC_RESTART_ACK, /* OK, restart & ACK */ 668 IOC_RESTART_REPLY /* OK, restart & reply */ 669 }; 670 671 /* 672 * (Internal) return values from send_msg subroutines 673 */ 674 enum send_status { 675 SEND_FAIL = -1, /* Not OK */ 676 SEND_KEEP, /* OK, msg queued */ 677 SEND_FREE /* OK, free msg */ 678 }; 679 680 /* 681 * (Internal) enumeration of this driver's kstats 682 */ 683 enum { 684 BGE_KSTAT_RAW = 0, 685 BGE_KSTAT_STATS, 686 BGE_KSTAT_CHIPID, 687 BGE_KSTAT_DRIVER, 688 BGE_KSTAT_PHYS, 689 690 BGE_KSTAT_COUNT 691 }; 692 693 #define BGE_MAX_RESOURCES 255 694 695 /* 696 * Per-instance soft-state structure 697 */ 698 typedef struct bge { 699 /* 700 * These fields are set by attach() and unchanged thereafter ... 701 */ 702 dev_info_t *devinfo; /* device instance */ 703 mac_handle_t mh; /* mac module handle */ 704 ddi_acc_handle_t cfg_handle; /* DDI I/O handle */ 705 ddi_acc_handle_t io_handle; /* DDI I/O handle */ 706 void *io_regs; /* mapped registers */ 707 ddi_periodic_t periodic_id; /* periodical callback */ 708 ddi_softintr_t factotum_id; /* factotum callback */ 709 ddi_softintr_t drain_id; /* reschedule callback */ 710 711 ddi_intr_handle_t *htable; /* For array of interrupts */ 712 int intr_type; /* What type of interrupt */ 713 int intr_cnt; /* # of intrs count returned */ 714 uint_t intr_pri; /* Interrupt priority */ 715 int intr_cap; /* Interrupt capabilities */ 716 uint32_t progress; /* attach tracking */ 717 uint32_t debug; /* per-instance debug */ 718 chip_id_t chipid; 719 const phys_ops_t *physops; 720 char ifname[8]; /* "bge0" ... "bge999" */ 721 722 int fm_capabilities; /* FMA capabilities */ 723 724 /* 725 * These structures describe the blocks of memory allocated during 726 * attach(). They remain unchanged thereafter, although the memory 727 * they describe is carved up into various separate regions and may 728 * therefore be described by other structures as well. 729 */ 730 dma_area_t tx_desc; /* transmit descriptors */ 731 dma_area_t rx_desc[BGE_RECV_RINGS_SPLIT]; 732 /* receive descriptors */ 733 dma_area_t tx_buff[BGE_SPLIT]; 734 dma_area_t rx_buff[BGE_SPLIT]; 735 736 /* 737 * The memory described by the <dma_area> structures above 738 * is carved up into various pieces, which are described by 739 * the structures below. 740 */ 741 dma_area_t statistics; /* describes hardware */ 742 /* statistics area */ 743 dma_area_t status_block; /* describes hardware */ 744 /* status block */ 745 /* 746 * For the BCM5705/5788/5721/5751/5752/5714 and 5715, 747 * the statistic block is not available,the statistic counter must 748 * be gotten from statistic registers.And bge_statistics_reg_t record 749 * the statistic registers value 750 */ 751 bge_statistics_reg_t *pstats; 752 753 /* 754 * Runtime read-write data starts here ... 755 * 756 * 3 Buffer Rings (std/jumbo/mini) 757 * 16 Receive (Return) Rings 758 * 16 Send Rings 759 * 760 * Note: they're not necessarily all used. 761 */ 762 buff_ring_t buff[BGE_BUFF_RINGS_MAX]; /* 3*0x0100 */ 763 recv_ring_t recv[BGE_RECV_RINGS_MAX]; /* 16*0x0090 */ 764 send_ring_t send[BGE_SEND_RINGS_MAX]; /* 16*0x0100 */ 765 766 /* 767 * Locks: 768 * 769 * Each buffer ring contains its own <rf_lock> which regulates 770 * ring refilling. 771 * 772 * Each receive (return) ring contains its own <rx_lock> which 773 * protects the critical cyclic counters etc. 774 * 775 * Each send ring contains two locks: <tx_lock> for the send-path 776 * protocol data and <tc_lock> for send-buffer recycling. 777 * 778 * Finally <genlock> is a general lock, protecting most other 779 * operational data in the state structure and chip register 780 * accesses. It is acquired by the interrupt handler and 781 * most "mode-control" routines. 782 * 783 * Any of the locks can be acquired singly, but where multiple 784 * locks are acquired, they *must* be in the order: 785 * 786 * genlock >>> rx_lock >>> rf_lock >>> tx_lock >>> tc_lock. 787 * 788 * and within any one class of lock the rings must be locked in 789 * ascending order (send[0].tc_lock >>> send[1].tc_lock), etc. 790 * 791 * Note: actually I don't believe there's any need to acquire 792 * locks on multiple rings, or even locks of all these classes 793 * concurrently; but I've set out the above order so there is a 794 * clear definition of lock hierarchy in case it's ever needed. 795 * 796 * Note: the combinations of locks that are actually held 797 * concurrently are: 798 * 799 * genlock >>> (bge_chip_interrupt()) 800 * rx_lock[i] >>> (bge_receive()) 801 * rf_lock[n] (bge_refill()) 802 * tc_lock[i] (bge_recycle()) 803 */ 804 kmutex_t genlock[1]; 805 krwlock_t errlock[1]; 806 kmutex_t softintrlock[1]; 807 808 /* 809 * Current Ethernet addresses and multicast hash (bitmap) and 810 * refcount tables, protected by <genlock> 811 */ 812 bge_mac_addr_t curr_addr[MAC_ADDRESS_REGS_MAX]; 813 uint32_t mcast_hash[BGE_HASH_TABLE_SIZE/32]; 814 uint8_t mcast_refs[BGE_HASH_TABLE_SIZE]; 815 uint32_t unicst_addr_total; /* total unicst addresses */ 816 uint32_t unicst_addr_avail; 817 /* unused unicst addr slots */ 818 819 /* 820 * Link state data (protected by genlock) 821 */ 822 link_state_t link_state; 823 824 /* 825 * Physical layer: copper only 826 */ 827 bge_regno_t phy_mii_addr; /* should be (const) 1! */ 828 uint16_t phy_gen_status; 829 uint16_t phy_aux_status; 830 831 /* 832 * Physical layer: serdes only 833 */ 834 uint32_t serdes_status; 835 uint32_t serdes_advert; 836 uint32_t serdes_lpadv; 837 838 /* 839 * Driver kstats, protected by <genlock> where necessary 840 */ 841 kstat_t *bge_kstats[BGE_KSTAT_COUNT]; 842 843 /* 844 * Miscellaneous operating variables (protected by genlock) 845 */ 846 uint64_t chip_resets; /* # of chip RESETs */ 847 uint64_t missed_dmas; /* # of missed DMAs */ 848 uint64_t missed_updates; /* # of missed updates */ 849 enum bge_mac_state bge_mac_state; /* definitions above */ 850 enum bge_chip_state bge_chip_state; /* definitions above */ 851 boolean_t send_hw_tcp_csum; 852 boolean_t recv_hw_tcp_csum; 853 boolean_t promisc; 854 boolean_t manual_reset; 855 856 /* 857 * Miscellaneous operating variables (not synchronised) 858 */ 859 uint32_t watchdog; /* watches for Tx stall */ 860 boolean_t bge_intr_running; 861 boolean_t bge_dma_error; 862 boolean_t tx_resched_needed; 863 uint64_t tx_resched; 864 uint32_t factotum_flag; /* softint pending */ 865 uintptr_t pagemask; 866 867 /* 868 * NDD parameters (protected by genlock) 869 */ 870 caddr_t nd_data_p; 871 872 /* 873 * A flag to prevent excessive config space accesses 874 * on platforms having BCM5714C/15C 875 */ 876 boolean_t lastWriteZeroData; 877 878 /* 879 * Spare space, plus guard element used to check data integrity 880 */ 881 uint64_t spare[5]; 882 uint64_t bge_guard; 883 884 /* 885 * Receive rules configure 886 */ 887 bge_recv_rule_t recv_rules[RECV_RULES_NUM_MAX]; 888 889 #ifdef BGE_IPMI_ASF 890 boolean_t asf_enabled; 891 boolean_t asf_wordswapped; 892 boolean_t asf_newhandshake; 893 boolean_t asf_pseudostop; 894 895 uint32_t asf_status; 896 timeout_id_t asf_timeout_id; 897 #endif 898 uint32_t param_en_pause:1, 899 param_en_asym_pause:1, 900 param_en_1000hdx:1, 901 param_en_1000fdx:1, 902 param_en_100fdx:1, 903 param_en_100hdx:1, 904 param_en_10fdx:1, 905 param_en_10hdx:1, 906 param_adv_autoneg:1, 907 param_adv_1000fdx:1, 908 param_adv_1000hdx:1, 909 param_adv_100fdx:1, 910 param_adv_100hdx:1, 911 param_adv_10fdx:1, 912 param_adv_10hdx:1, 913 param_lp_autoneg:1, 914 param_lp_pause:1, 915 param_lp_asym_pause:1, 916 param_lp_1000fdx:1, 917 param_lp_1000hdx:1, 918 param_lp_100fdx:1, 919 param_lp_100hdx:1, 920 param_lp_10fdx:1, 921 param_lp_10hdx:1, 922 param_link_up:1, 923 param_link_autoneg:1, 924 param_adv_pause:1, 925 param_adv_asym_pause:1, 926 param_link_rx_pause:1, 927 param_link_tx_pause:1, 928 param_pad_to_32:2; 929 930 uint32_t param_loop_mode; 931 uint32_t param_msi_cnt; 932 uint32_t param_drain_max; 933 uint64_t param_link_speed; 934 link_duplex_t param_link_duplex; 935 936 937 uint32_t link_update_timer; 938 } bge_t; 939 940 /* 941 * 'Progress' bit flags ... 942 */ 943 #define PROGRESS_CFG 0x0001 /* config space mapped */ 944 #define PROGRESS_REGS 0x0002 /* registers mapped */ 945 #define PROGRESS_BUFS 0x0004 /* ring buffers allocated */ 946 #define PROGRESS_RESCHED 0x0010 /* resched softint registered */ 947 #define PROGRESS_FACTOTUM 0x0020 /* factotum softint registered */ 948 #define PROGRESS_HWINT 0x0040 /* h/w interrupt registered */ 949 /* and mutexen initialised */ 950 #define PROGRESS_INTR 0x0080 /* Intrs enabled */ 951 #define PROGRESS_PHY 0x0100 /* PHY initialised */ 952 #define PROGRESS_NDD 0x1000 /* NDD parameters set up */ 953 #define PROGRESS_KSTATS 0x2000 /* kstats created */ 954 #define PROGRESS_READY 0x8000 /* ready for work */ 955 956 957 /* 958 * Sync a DMA area described by a dma_area_t 959 */ 960 #define DMA_SYNC(area, flag) ((void) ddi_dma_sync((area).dma_hdl, \ 961 (area).offset, (area).alength, (flag))) 962 963 /* 964 * Find the (kernel virtual) address of block of memory 965 * described by a dma_area_t 966 */ 967 #define DMA_VPTR(area) ((area).mem_va) 968 969 /* 970 * Zero a block of memory described by a dma_area_t 971 */ 972 #define DMA_ZERO(area) bzero(DMA_VPTR(area), (area).alength) 973 974 /* 975 * Next value of a cyclic index 976 */ 977 #define NEXT(index, limit) ((index)+1 < (limit) ? (index)+1 : 0) 978 979 /* 980 * Property lookups 981 */ 982 #define BGE_PROP_EXISTS(d, n) ddi_prop_exists(DDI_DEV_T_ANY, (d), \ 983 DDI_PROP_DONTPASS, (n)) 984 #define BGE_PROP_GET_INT(d, n) ddi_prop_get_int(DDI_DEV_T_ANY, (d), \ 985 DDI_PROP_DONTPASS, (n), -1) 986 987 /* 988 * Copy an ethernet address 989 */ 990 #define ethaddr_copy(src, dst) bcopy((src), (dst), ETHERADDRL) 991 992 /* 993 * Endian swap 994 */ 995 /* BEGIN CSTYLED */ 996 #define BGE_BSWAP_32(x) ((((x) & 0xff000000) >> 24) | \ 997 (((x) & 0x00ff0000) >> 8) | \ 998 (((x) & 0x0000ff00) << 8) | \ 999 (((x) & 0x000000ff) << 24)) 1000 /* END CSTYLED */ 1001 1002 /* 1003 * Marker value placed at the end of the driver's state 1004 */ 1005 #define BGE_GUARD 0x1919306009031802 1006 1007 /* 1008 * Bit flags in the 'debug' word ... 1009 */ 1010 #define BGE_DBG_STOP 0x00000001 /* early debug_enter() */ 1011 #define BGE_DBG_TRACE 0x00000002 /* general flow tracing */ 1012 1013 #define BGE_DBG_REGS 0x00000010 /* low-level accesses */ 1014 #define BGE_DBG_MII 0x00000020 /* low-level MII access */ 1015 #define BGE_DBG_SEEPROM 0x00000040 /* low-level SEEPROM IO */ 1016 #define BGE_DBG_CHIP 0x00000080 /* low(ish)-level code */ 1017 1018 #define BGE_DBG_RECV 0x00000100 /* receive-side code */ 1019 #define BGE_DBG_SEND 0x00000200 /* packet-send code */ 1020 1021 #define BGE_DBG_INT 0x00001000 /* interrupt handler */ 1022 #define BGE_DBG_FACT 0x00002000 /* factotum (softint) */ 1023 1024 #define BGE_DBG_PHY 0x00010000 /* Copper PHY code */ 1025 #define BGE_DBG_SERDES 0x00020000 /* SerDes code */ 1026 #define BGE_DBG_PHYS 0x00040000 /* Physical layer code */ 1027 #define BGE_DBG_LINK 0x00080000 /* Link status check */ 1028 1029 #define BGE_DBG_INIT 0x00100000 /* initialisation */ 1030 #define BGE_DBG_NEMO 0x00200000 /* nemo interaction */ 1031 #define BGE_DBG_ADDR 0x00400000 /* address-setting code */ 1032 #define BGE_DBG_STATS 0x00800000 /* statistics */ 1033 1034 #define BGE_DBG_IOCTL 0x01000000 /* ioctl handling */ 1035 #define BGE_DBG_LOOP 0x02000000 /* loopback ioctl code */ 1036 #define BGE_DBG_PPIO 0x04000000 /* Peek/poke ioctls */ 1037 #define BGE_DBG_BADIOC 0x08000000 /* unknown ioctls */ 1038 1039 #define BGE_DBG_MCTL 0x10000000 /* mctl (csum) code */ 1040 #define BGE_DBG_NDD 0x20000000 /* NDD operations */ 1041 1042 /* 1043 * Debugging ... 1044 */ 1045 #ifdef DEBUG 1046 #define BGE_DEBUGGING 1 1047 #else 1048 #define BGE_DEBUGGING 0 1049 #endif /* DEBUG */ 1050 1051 1052 /* 1053 * 'Do-if-debugging' macro. The parameter <command> should be one or more 1054 * C statements (but without the *final* semicolon), which will either be 1055 * compiled inline or completely ignored, depending on the BGE_DEBUGGING 1056 * compile-time flag. 1057 * 1058 * You should get a compile-time error (at least on a DEBUG build) if 1059 * your statement isn't actually a statement, rather than unexpected 1060 * run-time behaviour caused by unintended matching of if-then-elses etc. 1061 * 1062 * Note that the BGE_DDB() macro itself can only be used as a statement, 1063 * not an expression, and should always be followed by a semicolon. 1064 */ 1065 #if BGE_DEBUGGING 1066 #define BGE_DDB(command) do { \ 1067 { command; } \ 1068 _NOTE(CONSTANTCONDITION) \ 1069 } while (0) 1070 #else /* BGE_DEBUGGING */ 1071 #define BGE_DDB(command) do { \ 1072 { _NOTE(EMPTY); } \ 1073 _NOTE(CONSTANTCONDITION) \ 1074 } while (0) 1075 #endif /* BGE_DEBUGGING */ 1076 1077 /* 1078 * 'Internal' macros used to construct the TRACE/DEBUG macros below. 1079 * These provide the primitive conditional-call capability required. 1080 * Note: the parameter <args> is a parenthesised list of the actual 1081 * printf-style arguments to be passed to the debug function ... 1082 */ 1083 #define BGE_XDB(b, w, f, args) BGE_DDB(if ((b) & (w)) f args) 1084 #define BGE_GDB(b, args) BGE_XDB(b, bge_debug, (*bge_gdb()), args) 1085 #define BGE_LDB(b, args) BGE_XDB(b, bgep->debug, (*bge_db(bgep)), args) 1086 #define BGE_CDB(f, args) BGE_XDB(BGE_DBG, bgep->debug, f, args) 1087 1088 /* 1089 * Conditional-print macros. 1090 * 1091 * Define BGE_DBG to be the relevant member of the set of BGE_DBG_* values 1092 * above before using the BGE_GDEBUG() or BGE_DEBUG() macros. The 'G' 1093 * versions look at the Global debug flag word (bge_debug); the non-G 1094 * versions look in the per-instance data (bgep->debug) and so require a 1095 * variable called 'bgep' to be in scope (and initialised!) before use. 1096 * 1097 * You could redefine BGE_TRC too if you really need two different 1098 * flavours of debugging output in the same area of code, but I don't 1099 * really recommend it. 1100 * 1101 * Note: the parameter <args> is a parenthesised list of the actual 1102 * arguments to be passed to the debug function, usually a printf-style 1103 * format string and corresponding values to be formatted. 1104 */ 1105 1106 #define BGE_TRC BGE_DBG_TRACE /* default 'trace' bit */ 1107 #define BGE_GTRACE(args) BGE_GDB(BGE_TRC, args) 1108 #define BGE_GDEBUG(args) BGE_GDB(BGE_DBG, args) 1109 #define BGE_TRACE(args) BGE_LDB(BGE_TRC, args) 1110 #define BGE_DEBUG(args) BGE_LDB(BGE_DBG, args) 1111 1112 /* 1113 * Debug-only action macros 1114 */ 1115 #define BGE_BRKPT(bgep, s) BGE_DDB(bge_dbg_enter(bgep, s)) 1116 #define BGE_MARK(bgep) BGE_DDB(bge_led_mark(bgep)) 1117 #define BGE_PCICHK(bgep) BGE_DDB(bge_pci_check(bgep)) 1118 #define BGE_PKTDUMP(args) BGE_DDB(bge_pkt_dump args) 1119 #define BGE_REPORT(args) BGE_DDB(bge_log args) 1120 1121 /* 1122 * Inter-source-file linkage ... 1123 */ 1124 1125 /* bge_chip.c */ 1126 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno); 1127 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t value); 1128 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno); 1129 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t value); 1130 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 1131 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 1132 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t value); 1133 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma); 1134 int bge_chip_id_init(bge_t *bgep); 1135 int bge_chip_start(bge_t *bgep, boolean_t reset_phy); 1136 void bge_chip_stop(bge_t *bgep, boolean_t fault); 1137 #ifndef __sparc 1138 void bge_chip_stop_nonblocking(bge_t *bgep); 1139 #endif 1140 #ifdef BGE_IPMI_ASF 1141 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data); 1142 #pragma inline(bge_nic_put32) 1143 uint32_t bge_nic_read32(bge_t *bgep, bge_regno_t addr); 1144 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val); 1145 #pragma inline(bge_ind_put32) 1146 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno); 1147 #pragma inline(bge_ind_get32) 1148 void bge_asf_update_status(bge_t *bgep); 1149 void bge_asf_heartbeat(void *bgep); 1150 void bge_asf_stop_timer(bge_t *bgep); 1151 void bge_asf_get_config(bge_t *bgep); 1152 void bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode); 1153 void bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode); 1154 void bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode); 1155 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode); 1156 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive); 1157 #else 1158 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma); 1159 int bge_chip_sync(bge_t *bgep); 1160 #endif 1161 void bge_chip_blank(void *arg, time_t ticks, uint_t count); 1162 uint_t bge_chip_factotum(caddr_t arg); 1163 void bge_chip_cyclic(void *arg); 1164 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, 1165 struct iocblk *iocp); 1166 uint_t bge_intr(caddr_t arg1, caddr_t arg2); 1167 void bge_sync_mac_modes(bge_t *); 1168 extern uint32_t bge_rx_ticks_norm; 1169 extern uint32_t bge_tx_ticks_norm; 1170 extern uint32_t bge_rx_count_norm; 1171 extern uint32_t bge_tx_count_norm; 1172 extern boolean_t bge_jumbo_enable; 1173 extern boolean_t bge_relaxed_ordering; 1174 1175 void bge_chip_msi_trig(bge_t *bgep); 1176 1177 /* bge_kstats.c */ 1178 void bge_init_kstats(bge_t *bgep, int instance); 1179 void bge_fini_kstats(bge_t *bgep); 1180 int bge_m_stat(void *arg, uint_t stat, uint64_t *val); 1181 1182 /* bge_log.c */ 1183 #if BGE_DEBUGGING 1184 void (*bge_db(bge_t *bgep))(const char *fmt, ...); 1185 void (*bge_gdb(void))(const char *fmt, ...); 1186 void bge_pkt_dump(bge_t *bgep, bge_rbd_t *hbp, sw_rbd_t *sdp, const char *msg); 1187 void bge_dbg_enter(bge_t *bgep, const char *msg); 1188 #endif /* BGE_DEBUGGING */ 1189 void bge_problem(bge_t *bgep, const char *fmt, ...); 1190 void bge_log(bge_t *bgep, const char *fmt, ...); 1191 void bge_error(bge_t *bgep, const char *fmt, ...); 1192 void bge_fm_ereport(bge_t *bgep, char *detail); 1193 extern kmutex_t bge_log_mutex[1]; 1194 extern uint32_t bge_debug; 1195 1196 /* bge_main.c */ 1197 int bge_restart(bge_t *bgep, boolean_t reset_phy); 1198 int bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle); 1199 int bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle); 1200 void bge_init_rings(bge_t *bgep); 1201 void bge_fini_rings(bge_t *bgep); 1202 bge_queue_item_t *bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp); 1203 void bge_free_txbuf_arrays(send_ring_t *srp); 1204 int bge_alloc_bufs(bge_t *bgep); 1205 void bge_free_bufs(bge_t *bgep); 1206 void bge_intr_enable(bge_t *bgep); 1207 void bge_intr_disable(bge_t *bgep); 1208 int bge_reprogram(bge_t *); 1209 1210 /* bge_phys.c */ 1211 int bge_phys_init(bge_t *bgep); 1212 void bge_phys_reset(bge_t *bgep); 1213 int bge_phys_idle(bge_t *bgep); 1214 int bge_phys_update(bge_t *bgep); 1215 boolean_t bge_phys_check(bge_t *bgep); 1216 1217 /* bge_ndd.c */ 1218 int bge_nd_init(bge_t *bgep); 1219 1220 /* bge_recv.c */ 1221 void bge_receive(bge_t *bgep, bge_status_t *bsp); 1222 1223 /* bge_send.c */ 1224 mblk_t *bge_m_tx(void *arg, mblk_t *mp); 1225 void bge_recycle(bge_t *bgep, bge_status_t *bsp); 1226 uint_t bge_send_drain(caddr_t arg); 1227 1228 /* bge_atomic.c */ 1229 uint64_t bge_atomic_reserve(uint64_t *count_p, uint64_t n); 1230 void bge_atomic_renounce(uint64_t *count_p, uint64_t n); 1231 uint64_t bge_atomic_claim(uint64_t *count_p, uint64_t limit); 1232 uint64_t bge_atomic_next(uint64_t *sp, uint64_t limit); 1233 void bge_atomic_sub64(uint64_t *count_p, uint64_t n); 1234 uint64_t bge_atomic_clr64(uint64_t *sp, uint64_t bits); 1235 uint32_t bge_atomic_shl32(uint32_t *sp, uint_t count); 1236 1237 /* bge_mii_5906.c */ 1238 void bge_adj_volt_5906(bge_t *bgep); 1239 1240 /* 1241 * Reset type 1242 */ 1243 #define BGE_SHUTDOWN_RESET 0 1244 #define BGE_INIT_RESET 1 1245 #define BGE_SUSPEND_RESET 2 1246 1247 /* For asf_status */ 1248 #define ASF_STAT_NONE 0 1249 #define ASF_STAT_STOP 1 1250 #define ASF_STAT_RUN 2 1251 #define ASF_STAT_RUN_INIT 3 /* attached but don't plumb */ 1252 1253 /* ASF modes for bge_reset() and bge_chip_reset() */ 1254 #define ASF_MODE_NONE 0 /* don't launch asf */ 1255 #define ASF_MODE_SHUTDOWN 1 /* asf shutdown mode */ 1256 #define ASF_MODE_INIT 2 /* asf init mode */ 1257 #define ASF_MODE_POST_SHUTDOWN 3 /* only do post-shutdown */ 1258 #define ASF_MODE_POST_INIT 4 /* only do post-init */ 1259 1260 #define BGE_ASF_HEARTBEAT_INTERVAL 1500000 1261 1262 #define BGE_LINK_UPDATE_TIMEOUT 10 /* ~ 5 sec */ 1263 #define BGE_LINK_UPDATE_DONE (BGE_LINK_UPDATE_TIMEOUT+1) 1264 1265 #ifdef __cplusplus 1266 } 1267 #endif 1268 1269 #endif /* _BGE_IMPL_H */ 1270