xref: /titanic_50/usr/src/uts/common/io/bge/bge_chip2.c (revision 8ffc942d5d69695c8690274a7a3649bf0a80d3fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	0	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * Property names
56  */
57 static char knownids_propname[] = "bge-known-subsystems";
58 
59 /*
60  * Patchable globals:
61  *
62  *	bge_autorecover
63  *		Enables/disables automatic recovery after fault detection
64  *
65  *	bge_mlcr_default
66  *		Value to program into the MLCR; controls the chip's GPIO pins
67  *
68  *	bge_dma_{rd,wr}prio
69  *		Relative priorities of DMA reads & DMA writes respectively.
70  *		These may each be patched to any value 0-3.  Equal values
71  *		will give "fair" (round-robin) arbitration for PCI access.
72  *		Unequal values will give one or the other function priority.
73  *
74  *	bge_dma_rwctrl
75  *		Value to put in the Read/Write DMA control register.  See
76  *	        the Broadcom PRM for things you can fiddle with in this
77  *		register ...
78  *
79  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
80  *		Send/receive interrupt coalescing parameters.  Counts are
81  *		#s of descriptors, ticks are in microseconds.  *norm* values
82  *		apply between status updates/interrupts; the *intr* values
83  *		refer to the 'during-interrupt' versions - see the PRM.
84  *
85  *		NOTE: these values have been determined by measurement. They
86  *		differ significantly from the values recommended in the PRM.
87  */
88 static uint32_t bge_autorecover = 1;
89 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 boolean_t bge_jumbo_enable		= B_TRUE;
155 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
156 
157 /*
158  * ========== Low-level chip & ring buffer manipulation ==========
159  */
160 
161 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
162 
163 
164 /*
165  * Config space read-modify-write routines
166  */
167 
168 #if	BGE_CFG_IO8
169 
170 /*
171  * 8- and 16-bit set/clr operations are not used; all the config registers
172  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
173  * code here, though, in case we ever find that we do want it after all ...
174  */
175 
176 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
177 #pragma	inline(bge_cfg_set8)
178 
179 static void
180 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
181 {
182 	uint8_t regval;
183 
184 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
185 		(void *)bgep, regno, bits));
186 
187 	regval = pci_config_get8(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 		(void *)bgep, regno, bits, regval, regval | bits));
191 
192 	regval |= bits;
193 	pci_config_put8(bgep->cfg_handle, regno, regval);
194 }
195 
196 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
197 #pragma	inline(bge_cfg_clr8)
198 
199 static void
200 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
201 {
202 	uint8_t regval;
203 
204 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
205 		(void *)bgep, regno, bits));
206 
207 	regval = pci_config_get8(bgep->cfg_handle, regno);
208 
209 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
210 		(void *)bgep, regno, bits, regval, regval & ~bits));
211 
212 	regval &= ~bits;
213 	pci_config_put8(bgep->cfg_handle, regno, regval);
214 }
215 
216 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
217 #pragma	inline(bge_cfg_set16)
218 
219 static void
220 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
221 {
222 	uint16_t regval;
223 
224 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
225 		(void *)bgep, regno, bits));
226 
227 	regval = pci_config_get16(bgep->cfg_handle, regno);
228 
229 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
230 		(void *)bgep, regno, bits, regval, regval | bits));
231 
232 	regval |= bits;
233 	pci_config_put16(bgep->cfg_handle, regno, regval);
234 }
235 
236 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
237 #pragma	inline(bge_cfg_clr16)
238 
239 static void
240 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
241 {
242 	uint16_t regval;
243 
244 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
245 		(void *)bgep, regno, bits));
246 
247 	regval = pci_config_get16(bgep->cfg_handle, regno);
248 
249 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
250 		(void *)bgep, regno, bits, regval, regval & ~bits));
251 
252 	regval &= ~bits;
253 	pci_config_put16(bgep->cfg_handle, regno, regval);
254 }
255 
256 #endif	/* BGE_CFG_IO8 */
257 
258 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
259 #pragma	inline(bge_cfg_set32)
260 
261 static void
262 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
263 {
264 	uint32_t regval;
265 
266 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
267 		(void *)bgep, regno, bits));
268 
269 	regval = pci_config_get32(bgep->cfg_handle, regno);
270 
271 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
272 		(void *)bgep, regno, bits, regval, regval | bits));
273 
274 	regval |= bits;
275 	pci_config_put32(bgep->cfg_handle, regno, regval);
276 }
277 
278 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
279 #pragma	inline(bge_cfg_clr32)
280 
281 static void
282 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
283 {
284 	uint32_t regval;
285 
286 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
287 		(void *)bgep, regno, bits));
288 
289 	regval = pci_config_get32(bgep->cfg_handle, regno);
290 
291 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
292 		(void *)bgep, regno, bits, regval, regval & ~bits));
293 
294 	regval &= ~bits;
295 	pci_config_put32(bgep->cfg_handle, regno, regval);
296 }
297 
298 #if	BGE_IND_IO32
299 
300 /*
301  * Indirect access to registers & RISC scratchpads, using config space
302  * accesses only.
303  *
304  * This isn't currently used, but someday we might want to use it for
305  * restoring the Subsystem Device/Vendor registers (which aren't directly
306  * writable in Config Space), or for downloading firmware into the RISCs
307  *
308  * In any case there are endian issues to be resolved before this code is
309  * enabled; the bizarre way that bytes get twisted by this chip AND by
310  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
311  * it's been thoroughly tested for all access sizes on all supported
312  * architectures (SPARC *and* x86!).
313  */
314 static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
315 #pragma	inline(bge_ind_get32)
316 
317 static uint32_t
318 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
319 {
320 	uint32_t val;
321 
322 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
323 
324 	ASSERT(mutex_owned(bgep->genlock));
325 
326 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
327 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
328 
329 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
330 		(void *)bgep, regno, val));
331 
332 	return (val);
333 }
334 
335 static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
336 #pragma	inline(bge_ind_put32)
337 
338 static void
339 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
340 {
341 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
342 		(void *)bgep, regno, val));
343 
344 	ASSERT(mutex_owned(bgep->genlock));
345 
346 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
347 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
348 }
349 
350 #endif	/* BGE_IND_IO32 */
351 
352 #if	BGE_DEBUGGING
353 
354 static void bge_pci_check(bge_t *bgep);
355 #pragma	no_inline(bge_pci_check)
356 
357 static void
358 bge_pci_check(bge_t *bgep)
359 {
360 	uint16_t pcistatus;
361 
362 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
363 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
364 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
365 			(void *)bgep, pcistatus));
366 }
367 
368 #endif	/* BGE_DEBUGGING */
369 
370 /*
371  * Perform first-stage chip (re-)initialisation, using only config-space
372  * accesses:
373  *
374  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
375  *   returning the data in the structure pointed to by <idp>.
376  * + Configure the target-mode endianness (swap) options.
377  * + Disable interrupts and enable Memory Space accesses.
378  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
379  *
380  * This sequence is adapted from Broadcom document 570X-PG102-R,
381  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
382  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
383  *
384  * This function MUST be called before any non-config-space accesses
385  * are made; on this first call <enable_dma> is B_FALSE, and it
386  * effectively performs steps 3-1(!) of the initialisation sequence
387  * (the rest are not required but should be harmless).
388  *
389  * It MUST also be called after a chip reset, as this disables
390  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
391  * it is effectively performing steps 6-8.
392  */
393 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
394 #pragma	no_inline(bge_chip_cfg_init)
395 
396 void
397 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
398 {
399 	ddi_acc_handle_t handle;
400 	uint16_t command;
401 	uint32_t mhcr;
402 	uint16_t value16;
403 	int i;
404 
405 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
406 		(void *)bgep, (void *)cidp, enable_dma));
407 
408 	/*
409 	 * Step 3: save PCI cache line size and subsystem vendor ID
410 	 *
411 	 * Read all the config-space registers that characterise the
412 	 * chip, specifically vendor/device/revision/subsystem vendor
413 	 * and subsystem device id.  We expect (but don't check) that
414 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
415 	 *
416 	 * Also save all bus-transaction related registers (cache-line
417 	 * size, bus-grant/latency parameters, etc).  Some of these are
418 	 * cleared by reset, so we'll have to restore them later.  This
419 	 * comes from the Broadcom document 570X-PG102-R ...
420 	 *
421 	 * Note: Broadcom document 570X-PG102-R seems to be in error
422 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
423 	 * Subsystem (Device) ID registers, which are the opposite way
424 	 * round according to the PCI standard.  For good measure, we
425 	 * save/restore both anyway.
426 	 */
427 	handle = bgep->cfg_handle;
428 
429 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
430 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
431 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
432 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
433 
434 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
435 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
436 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
437 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
438 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
439 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
440 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
441 
442 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
443 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
444 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
445 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
446 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
447 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
448 		cidp->vendor, cidp->device, cidp->revision));
449 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
450 		cidp->subven, cidp->subdev, cidp->asic_rev));
451 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
452 		cidp->clsize, cidp->latency, cidp->command));
453 
454 	/*
455 	 * Step 2 (also step 6): disable and clear interrupts.
456 	 * Steps 11-13: configure PIO endianness options, and enable
457 	 * indirect register access.  We'll also select any other
458 	 * options controlled by the MHCR (e.g. tagged status, mask
459 	 * interrupt mode) at this stage ...
460 	 *
461 	 * Note: internally, the chip is 64-bit and BIG-endian, but
462 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
463 	 * it normally swaps bytes around at the PCI interface.
464 	 * However, the PCI host bridge on SPARC systems normally
465 	 * swaps the byte lanes around too, since SPARCs are also
466 	 * BIG-endian.  So it turns out that on SPARC, the right
467 	 * option is to tell the chip to swap (and the host bridge
468 	 * will swap back again), whereas on x86 we ask the chip
469 	 * NOT to swap, so the natural little-endianness of the
470 	 * PCI bus is assumed.  Then the only thing that doesn't
471 	 * automatically work right is access to an 8-byte register
472 	 * by a little-endian host; but we don't want to set the
473 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
474 	 * accesses don't go where expected ;-(  So we live with
475 	 * that, and perform word-swaps in software in the few cases
476 	 * where a chip register is defined as an 8-byte value --
477 	 * see the code below for details ...
478 	 *
479 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
480 	 * very clear in the register description in the PRM, but
481 	 * Broadcom document 570X-PG104-R page 248 explains a little
482 	 * more (under "Broadcom Mask Mode").  The bit changes the way
483 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
484 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
485 	 * way as the 5700 did, which isn't very convenient.  Setting
486 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
487 	 * bit do just what its name says -- MASK the PCI #INTA output
488 	 * (i.e. deassert the signal at the pin) leaving all internal
489 	 * state unchanged.  This is much more convenient for our
490 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
491 	 *
492 	 * Note: the inconvenient semantics of the interrupt mailbox
493 	 * (nonzero disables and acknowledges/clears the interrupt,
494 	 * zero enables AND CLEARS it) would make race conditions
495 	 * likely in the interrupt handler:
496 	 *
497 	 * (1)	acknowledge & disable interrupts
498 	 * (2)	while (more to do)
499 	 * 		process packets
500 	 * (3)	enable interrupts -- also clears pending
501 	 *
502 	 * If the chip received more packets and internally generated
503 	 * an interrupt between the check at (2) and the mbox write
504 	 * at (3), this interrupt would be lost :-(
505 	 *
506 	 * The best way to avoid this is to use TAGGED STATUS mode,
507 	 * where the chip includes a unique tag in each status block
508 	 * update, and the host, when re-enabling interrupts, passes
509 	 * the last tag it saw back to the chip; then the chip can
510 	 * see whether the host is truly up to date, and regenerate
511 	 * its interrupt if not.
512 	 */
513 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
514 		MHCR_ENABLE_TAGGED_STATUS_MODE |
515 		MHCR_MASK_INTERRUPT_MODE |
516 		MHCR_CLEAR_INTERRUPT_INTA;
517 
518 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
519 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
520 
521 #ifdef	_BIG_ENDIAN
522 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
523 #endif	/* _BIG_ENDIAN */
524 
525 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
526 
527 #ifdef BGE_IPMI_ASF
528 	bgep->asf_wordswapped = B_FALSE;
529 #endif
530 	/*
531 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
532 	 *			 Disable Memory Write/Invalidate
533 	 *			 Enable or disable Bus Mastering
534 	 *
535 	 * Note that all other bits are taken from the original value saved
536 	 * the first time through here, rather than from the current register
537 	 * value, 'cos that will have been cleared by a soft RESET since.
538 	 * In this way we preserve the OBP/nexus-parent's preferred settings
539 	 * of the parity-error and system-error enable bits across multiple
540 	 * chip RESETs.
541 	 */
542 	command = bgep->chipid.command | PCI_COMM_MAE;
543 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
544 	if (enable_dma)
545 		command |= PCI_COMM_ME;
546 	/*
547 	 * on BCM5714 revision A0, false parity error gets generated
548 	 * due to a logic bug. Provide a workaround by disabling parity
549 	 * error.
550 	 */
551 	if (((cidp->device == DEVICE_ID_5714C) ||
552 	    (cidp->device == DEVICE_ID_5714S)) &&
553 	    (cidp->revision == REVISION_ID_5714_A0)) {
554 		command &= ~PCI_COMM_PARITY_DETECT;
555 	}
556 	pci_config_put16(handle, PCI_CONF_COMM, command);
557 
558 	/*
559 	 * On some PCI-E device, there were instances when
560 	 * the device was still link training.
561 	 */
562 	if (bgep->chipid.pci_type == BGE_PCI_E) {
563 		i = 0;
564 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
565 		while ((value16 != command) && (i < 100)) {
566 			drv_usecwait(200);
567 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
568 			++i;
569 		}
570 	}
571 
572 	/*
573 	 * Clear any remaining error status bits
574 	 */
575 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
576 
577 	/*
578 	 * Do following if and only if the device is NOT BCM5714C OR
579 	 * BCM5715C
580 	 */
581 	if (!((cidp->device == DEVICE_ID_5714C) ||
582 		(cidp->device == DEVICE_ID_5715C))) {
583 		/*
584 		 * Make sure these indirect-access registers are sane
585 		 * rather than random after power-up or reset
586 		 */
587 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
588 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
589 	}
590 	/*
591 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
592 	 */
593 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
594 
595 	if (cidp->pci_type == BGE_PCI_E)
596 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
597 				DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
598 }
599 
600 #ifdef __amd64
601 /*
602  * Distinguish CPU types
603  *
604  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
605  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
606  * for PCI-Express based network interface card. This is the work-around
607  * for those nics.
608  */
609 static boolean_t bge_get_em64t_type(void);
610 #pragma	inline(bge_get_em64t_type)
611 
612 static boolean_t
613 bge_get_em64t_type(void)
614 {
615 
616 	return (x86_vendor == X86_VENDOR_Intel);
617 }
618 #endif
619 
620 /*
621  * Operating register get/set access routines
622  */
623 
624 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
625 #pragma	inline(bge_reg_get32)
626 
627 uint32_t
628 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
629 {
630 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
631 		(void *)bgep, regno));
632 
633 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
634 }
635 
636 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
637 #pragma	inline(bge_reg_put32)
638 
639 void
640 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
641 {
642 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
643 		(void *)bgep, regno, data));
644 
645 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
646 	BGE_PCICHK(bgep);
647 }
648 
649 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
650 #pragma	inline(bge_reg_set32)
651 
652 void
653 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
654 {
655 	uint32_t regval;
656 
657 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
658 		(void *)bgep, regno, bits));
659 
660 	regval = bge_reg_get32(bgep, regno);
661 	regval |= bits;
662 	bge_reg_put32(bgep, regno, regval);
663 }
664 
665 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
666 #pragma	inline(bge_reg_clr32)
667 
668 void
669 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
670 {
671 	uint32_t regval;
672 
673 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
674 		(void *)bgep, regno, bits));
675 
676 	regval = bge_reg_get32(bgep, regno);
677 	regval &= ~bits;
678 	bge_reg_put32(bgep, regno, regval);
679 }
680 
681 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
682 #pragma	inline(bge_reg_get64)
683 
684 static uint64_t
685 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
686 {
687 	uint64_t regval;
688 
689 #ifdef	__amd64
690 	if (bge_get_em64t_type()) {
691 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
692 		regval <<= 32;
693 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
694 	} else {
695 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
696 	}
697 #else
698 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
699 #endif
700 
701 #ifdef	_LITTLE_ENDIAN
702 	regval = (regval >> 32) | (regval << 32);
703 #endif	/* _LITTLE_ENDIAN */
704 
705 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
706 		(void *)bgep, regno, regval));
707 
708 	return (regval);
709 }
710 
711 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
712 #pragma	inline(bge_reg_put64)
713 
714 static void
715 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
716 {
717 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
718 		(void *)bgep, regno, data));
719 
720 #ifdef	_LITTLE_ENDIAN
721 	data = ((data >> 32) | (data << 32));
722 #endif	/* _LITTLE_ENDIAN */
723 
724 #ifdef	__amd64
725 	if (bge_get_em64t_type()) {
726 		ddi_put32(bgep->io_handle,
727 			PIO_ADDR(bgep, regno), (uint32_t)data);
728 		BGE_PCICHK(bgep);
729 		ddi_put32(bgep->io_handle,
730 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
731 
732 	} else {
733 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
734 	}
735 #else
736 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
737 #endif
738 
739 	BGE_PCICHK(bgep);
740 }
741 
742 /*
743  * The DDI doesn't provide get/put functions for 128 bit data
744  * so we put RCBs out as two 64-bit chunks instead.
745  */
746 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
747 #pragma	inline(bge_reg_putrcb)
748 
749 static void
750 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
751 {
752 	uint64_t *p;
753 
754 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
755 		(void *)bgep, addr, rcbp->host_ring_addr,
756 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
757 
758 	ASSERT((addr % sizeof (*rcbp)) == 0);
759 
760 	p = (void *)rcbp;
761 	bge_reg_put64(bgep, addr, *p++);
762 	bge_reg_put64(bgep, addr+8, *p);
763 }
764 
765 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
766 #pragma	inline(bge_mbx_put)
767 
768 void
769 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
770 {
771 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
772 		(void *)bgep, regno, data));
773 
774 	/*
775 	 * Mailbox registers are nominally 64 bits on the 5701, but
776 	 * the MSW isn't used.  On the 5703, they're only 32 bits
777 	 * anyway.  So here we just write the lower(!) 32 bits -
778 	 * remembering that the chip is big-endian, even though the
779 	 * PCI bus is little-endian ...
780 	 */
781 #ifdef	_BIG_ENDIAN
782 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
783 #else
784 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
785 #endif	/* _BIG_ENDIAN */
786 	BGE_PCICHK(bgep);
787 }
788 
789 #if	BGE_DEBUGGING
790 
791 void bge_led_mark(bge_t *bgep);
792 #pragma	no_inline(bge_led_mark)
793 
794 void
795 bge_led_mark(bge_t *bgep)
796 {
797 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
798 			    LED_CONTROL_1000MBPS_LED |
799 			    LED_CONTROL_100MBPS_LED |
800 			    LED_CONTROL_10MBPS_LED;
801 
802 	/*
803 	 * Blink all three LINK LEDs on simultaneously, then all off,
804 	 * then restore to automatic hardware control.  This is used
805 	 * in laboratory testing to trigger a logic analyser or scope.
806 	 */
807 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
808 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
809 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
810 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
811 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
812 }
813 
814 #endif	/* BGE_DEBUGGING */
815 
816 /*
817  * NIC on-chip memory access routines
818  *
819  * Only 32K of NIC memory is visible at a time, controlled by the
820  * Memory Window Base Address Register (in PCI config space).  Once
821  * this is set, the 32K region of NIC-local memory that it refers
822  * to can be directly addressed in the upper 32K of the 64K of PCI
823  * memory space used for the device.
824  */
825 
826 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
827 #pragma	inline(bge_nic_setwin)
828 
829 static void
830 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
831 {
832 	chip_id_t *cidp;
833 
834 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
835 		(void *)bgep, base));
836 
837 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
838 
839 	/*
840 	 * Don't do repeated zero data writes,
841 	 * if the device is BCM5714C/15C.
842 	 */
843 	cidp = &bgep->chipid;
844 	if ((cidp->device == DEVICE_ID_5714C) ||
845 		(cidp->device == DEVICE_ID_5715C)) {
846 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
847 			return;
848 		/* Adjust lastWriteZeroData */
849 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
850 			B_TRUE : B_FALSE);
851 	}
852 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
853 }
854 
855 
856 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
857 #pragma	inline(bge_nic_get32)
858 
859 static uint32_t
860 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
861 {
862 	uint32_t data;
863 
864 #ifdef BGE_IPMI_ASF
865 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
866 		/* workaround for word swap error */
867 		if (addr & 4)
868 			addr = addr - 4;
869 		else
870 			addr = addr + 4;
871 	}
872 #endif
873 
874 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
875 	addr &= MWBAR_GRANULE_MASK;
876 	addr += NIC_MEM_WINDOW_OFFSET;
877 
878 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
879 
880 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
881 		(void *)bgep, addr, data));
882 
883 	return (data);
884 }
885 
886 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
887 #pragma inline(bge_nic_put32)
888 
889 void
890 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
891 {
892 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
893 		(void *)bgep, addr, data));
894 
895 #ifdef BGE_IPMI_ASF
896 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
897 		/* workaround for word swap error */
898 		if (addr & 4)
899 			addr = addr - 4;
900 		else
901 			addr = addr + 4;
902 	}
903 #endif
904 
905 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
906 	addr &= MWBAR_GRANULE_MASK;
907 	addr += NIC_MEM_WINDOW_OFFSET;
908 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
909 	BGE_PCICHK(bgep);
910 }
911 
912 
913 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
914 #pragma	inline(bge_nic_get64)
915 
916 static uint64_t
917 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
918 {
919 	uint64_t data;
920 
921 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
922 	addr &= MWBAR_GRANULE_MASK;
923 	addr += NIC_MEM_WINDOW_OFFSET;
924 
925 #ifdef	__amd64
926 		if (bge_get_em64t_type()) {
927 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
928 			data <<= 32;
929 			data |= ddi_get32(bgep->io_handle,
930 				PIO_ADDR(bgep, addr + 4));
931 		} else {
932 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
933 		}
934 #else
935 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
936 #endif
937 
938 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
939 		(void *)bgep, addr, data));
940 
941 	return (data);
942 }
943 
944 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
945 #pragma	inline(bge_nic_put64)
946 
947 static void
948 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
949 {
950 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
951 		(void *)bgep, addr, data));
952 
953 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
954 	addr &= MWBAR_GRANULE_MASK;
955 	addr += NIC_MEM_WINDOW_OFFSET;
956 
957 #ifdef	__amd64
958 	if (bge_get_em64t_type()) {
959 		ddi_put32(bgep->io_handle,
960 			PIO_ADDR(bgep, addr), (uint32_t)data);
961 		BGE_PCICHK(bgep);
962 		ddi_put32(bgep->io_handle,
963 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
964 	} else {
965 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
966 	}
967 #else
968 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
969 #endif
970 
971 	BGE_PCICHK(bgep);
972 }
973 
974 /*
975  * The DDI doesn't provide get/put functions for 128 bit data
976  * so we put RCBs out as two 64-bit chunks instead.
977  */
978 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
979 #pragma	inline(bge_nic_putrcb)
980 
981 static void
982 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
983 {
984 	uint64_t *p;
985 
986 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
987 		(void *)bgep, addr, rcbp->host_ring_addr,
988 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
989 
990 	ASSERT((addr % sizeof (*rcbp)) == 0);
991 
992 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
993 	addr &= MWBAR_GRANULE_MASK;
994 	addr += NIC_MEM_WINDOW_OFFSET;
995 
996 	p = (void *)rcbp;
997 #ifdef	__amd64
998 	if (bge_get_em64t_type()) {
999 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1000 			(uint32_t)(*p));
1001 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1002 			(uint32_t)(*p >> 32));
1003 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1004 			(uint32_t)(*(p + 1)));
1005 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1006 			(uint32_t)(*p >> 32));
1007 
1008 	} else {
1009 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1010 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1011 	}
1012 #else
1013 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1014 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1015 #endif
1016 
1017 	BGE_PCICHK(bgep);
1018 }
1019 
1020 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1021 #pragma	inline(bge_nic_zero)
1022 
1023 static void
1024 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1025 {
1026 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1027 		(void *)bgep, addr, nbytes));
1028 
1029 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1030 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1031 
1032 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1033 	addr &= MWBAR_GRANULE_MASK;
1034 	addr += NIC_MEM_WINDOW_OFFSET;
1035 
1036 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1037 		nbytes, 1, DDI_DATA_SZ08_ACC);
1038 	BGE_PCICHK(bgep);
1039 }
1040 
1041 /*
1042  * MII (PHY) register get/set access routines
1043  *
1044  * These use the chip's MII auto-access method, controlled by the
1045  * MII Communication register at 0x044c, so the CPU doesn't have
1046  * to fiddle with the individual bits.
1047  */
1048 
1049 #undef	BGE_DBG
1050 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1051 
1052 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1053 				uint16_t data, uint32_t cmd);
1054 #pragma	no_inline(bge_mii_access)
1055 
1056 static uint16_t
1057 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1058 {
1059 	uint32_t timeout;
1060 	uint32_t regval1;
1061 	uint32_t regval2;
1062 
1063 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1064 		(void *)bgep, regno, data, cmd));
1065 
1066 	ASSERT(mutex_owned(bgep->genlock));
1067 
1068 	/*
1069 	 * Assemble the command ...
1070 	 */
1071 	cmd |= data << MI_COMMS_DATA_SHIFT;
1072 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1073 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1074 	cmd |= MI_COMMS_START;
1075 
1076 	/*
1077 	 * Wait for any command already in progress ...
1078 	 *
1079 	 * Note: this *shouldn't* ever find that there is a command
1080 	 * in progress, because we already hold the <genlock> mutex.
1081 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1082 	 * bit set here -- it seems that the chip can initiate MII
1083 	 * accesses internally, even with polling OFF.
1084 	 */
1085 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1086 	for (timeout = 100; ; ) {
1087 		if ((regval2 & MI_COMMS_START) == 0) {
1088 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1089 			break;
1090 		}
1091 		if (--timeout == 0)
1092 			break;
1093 		drv_usecwait(10);
1094 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1095 	}
1096 
1097 	if (timeout == 0)
1098 		return ((uint16_t)~0u);
1099 
1100 	if (timeout != 100)
1101 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1102 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1103 			cmd, 10*(100-timeout), regval1, regval2));
1104 
1105 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1106 	for (timeout = 1000; ; ) {
1107 		if ((regval1 & MI_COMMS_START) == 0)
1108 			break;
1109 		if (--timeout == 0)
1110 			break;
1111 		drv_usecwait(10);
1112 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1113 	}
1114 
1115 	/*
1116 	 * Drop out early if the READ FAILED bit is set -- this chip
1117 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1118 	 */
1119 	if (regval2 & MI_COMMS_READ_FAILED)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout == 0)
1123 		return ((uint16_t)~0u);
1124 
1125 	/*
1126 	 * The PRM says to wait 5us after seeing the START bit clear
1127 	 * and then re-read the register to get the final value of the
1128 	 * data field, in order to avoid a race condition where the
1129 	 * START bit is clear but the data field isn't yet valid.
1130 	 *
1131 	 * Note: we don't actually seem to be encounter this race;
1132 	 * except when the START bit is seen set again (see below),
1133 	 * the data field doesn't change during this 5us interval.
1134 	 */
1135 	drv_usecwait(5);
1136 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1137 
1138 	/*
1139 	 * Unfortunately, when following the PRMs instructions above,
1140 	 * we have occasionally seen the START bit set again(!) in the
1141 	 * value read after the 5us delay. This seems to be due to the
1142 	 * chip autonomously starting another MII access internally.
1143 	 * In such cases, the command/data/etc fields relate to the
1144 	 * internal command, rather than the one that we thought had
1145 	 * just finished.  So in this case, we fall back to returning
1146 	 * the data from the original read that showed START clear.
1147 	 */
1148 	if (regval2 & MI_COMMS_START) {
1149 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1150 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1151 			cmd, regval1, regval2));
1152 		regval2 = regval1;
1153 	}
1154 
1155 	if (regval2 & MI_COMMS_START)
1156 		return ((uint16_t)~0u);
1157 
1158 	if (regval2 & MI_COMMS_READ_FAILED)
1159 		return ((uint16_t)~0u);
1160 
1161 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1162 }
1163 
1164 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1165 #pragma	no_inline(bge_mii_get16)
1166 
1167 uint16_t
1168 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1169 {
1170 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1171 		(void *)bgep, regno));
1172 
1173 	ASSERT(mutex_owned(bgep->genlock));
1174 
1175 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1176 }
1177 
1178 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1179 #pragma	no_inline(bge_mii_put16)
1180 
1181 void
1182 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1183 {
1184 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1185 		(void *)bgep, regno, data));
1186 
1187 	ASSERT(mutex_owned(bgep->genlock));
1188 
1189 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1190 }
1191 
1192 #undef	BGE_DBG
1193 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1194 
1195 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1196 
1197 /*
1198  * Basic SEEPROM get/set access routine
1199  *
1200  * This uses the chip's SEEPROM auto-access method, controlled by the
1201  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1202  * doesn't have to fiddle with the individual bits.
1203  *
1204  * The caller should hold <genlock> and *also* have already acquired
1205  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1206  *
1207  * Return value:
1208  *	0 on success,
1209  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1210  *	EPROTO on other h/w or s/w errors.
1211  *
1212  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1213  * from a (successful) SEEPROM_ACCESS_READ.
1214  */
1215 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1216 				uint32_t *dp);
1217 #pragma	no_inline(bge_seeprom_access)
1218 
1219 static int
1220 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1221 {
1222 	uint32_t tries;
1223 	uint32_t regval;
1224 
1225 	ASSERT(mutex_owned(bgep->genlock));
1226 
1227 	/*
1228 	 * On the newer chips that support both SEEPROM & Flash, we need
1229 	 * to specifically enable SEEPROM access (Flash is the default).
1230 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1231 	 * and the NVM control registers don't exist ...
1232 	 */
1233 	switch (bgep->chipid.nvtype) {
1234 	case BGE_NVTYPE_NONE:
1235 	case BGE_NVTYPE_UNKNOWN:
1236 		_NOTE(NOTREACHED)
1237 	case BGE_NVTYPE_SEEPROM:
1238 		break;
1239 
1240 	case BGE_NVTYPE_LEGACY_SEEPROM:
1241 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1242 	case BGE_NVTYPE_BUFFERED_FLASH:
1243 	default:
1244 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1245 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1246 		break;
1247 	}
1248 
1249 	/*
1250 	 * Check there's no command in progress.
1251 	 *
1252 	 * Note: this *shouldn't* ever find that there is a command
1253 	 * in progress, because we already hold the <genlock> mutex.
1254 	 * Also, to ensure we don't have a conflict with the chip's
1255 	 * internal firmware or a process accessing the same (shared)
1256 	 * SEEPROM through the other port of a 5704, we've already
1257 	 * been through the "software arbitration" protocol.
1258 	 * So this is just a final consistency check: we shouldn't
1259 	 * see EITHER the START bit (command started but not complete)
1260 	 * OR the COMPLETE bit (command completed but not cleared).
1261 	 */
1262 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1263 	if (regval & SEEPROM_ACCESS_START)
1264 		return (EPROTO);
1265 	if (regval & SEEPROM_ACCESS_COMPLETE)
1266 		return (EPROTO);
1267 
1268 	/*
1269 	 * Assemble the command ...
1270 	 */
1271 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1272 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1273 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1274 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1275 	cmd |= SEEPROM_ACCESS_START;
1276 	cmd |= SEEPROM_ACCESS_COMPLETE;
1277 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1278 
1279 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1280 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1281 
1282 	/*
1283 	 * By observation, a successful access takes ~20us on a 5703/4,
1284 	 * but apparently much longer (up to 1000us) on the obsolescent
1285 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1286 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1287 	 * out interrupts for longer than necessary. So we'll allow up
1288 	 * to 1000us ...
1289 	 */
1290 	for (tries = 0; tries < 1000; ++tries) {
1291 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1292 		if (regval & SEEPROM_ACCESS_COMPLETE)
1293 			break;
1294 		drv_usecwait(1);
1295 	}
1296 
1297 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1298 		/*
1299 		 * All OK; read the SEEPROM data register, then write back
1300 		 * the value read from the address register in order to
1301 		 * clear the <complete> bit and leave the SEEPROM access
1302 		 * state machine idle, ready for the next access ...
1303 		 */
1304 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1305 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1306 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1307 		return (0);
1308 	}
1309 
1310 	/*
1311 	 * Hmm ... what happened here?
1312 	 *
1313 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1314 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1315 	 * and didn't respond to being addressed. Either way, it's left
1316 	 * the SEEPROM access state machine wedged. So we'll reset it
1317 	 * before we leave, so it's ready for next time ...
1318 	 */
1319 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1320 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1321 	return (ENODATA);
1322 }
1323 
1324 /*
1325  * Basic Flash get/set access routine
1326  *
1327  * These use the chip's Flash auto-access method, controlled by the
1328  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1329  * fiddle with the individual bits.
1330  *
1331  * The caller should hold <genlock> and *also* have already acquired
1332  * the right to access the Flash, via bge_nvmem_acquire() above.
1333  *
1334  * Return value:
1335  *	0 on success,
1336  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1337  *	ENODEV if the NVmem device is missing or otherwise unusable
1338  *
1339  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1340  * from a (successful) NVM_FLASH_CMD_RD.
1341  */
1342 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1343 				uint32_t *dp);
1344 #pragma	no_inline(bge_flash_access)
1345 
1346 static int
1347 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1348 {
1349 	uint32_t tries;
1350 	uint32_t regval;
1351 
1352 	ASSERT(mutex_owned(bgep->genlock));
1353 
1354 	/*
1355 	 * On the newer chips that support both SEEPROM & Flash, we need
1356 	 * to specifically disable SEEPROM access while accessing Flash.
1357 	 * The older chips don't support Flash, and the NVM registers don't
1358 	 * exist, so we shouldn't be here at all!
1359 	 */
1360 	switch (bgep->chipid.nvtype) {
1361 	case BGE_NVTYPE_NONE:
1362 	case BGE_NVTYPE_UNKNOWN:
1363 		_NOTE(NOTREACHED)
1364 	case BGE_NVTYPE_SEEPROM:
1365 		return (ENODEV);
1366 
1367 	case BGE_NVTYPE_LEGACY_SEEPROM:
1368 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1369 	case BGE_NVTYPE_BUFFERED_FLASH:
1370 	default:
1371 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1372 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1373 		break;
1374 	}
1375 
1376 	/*
1377 	 * Assemble the command ...
1378 	 */
1379 	addr &= NVM_FLASH_ADDR_MASK;
1380 	cmd |= NVM_FLASH_CMD_DOIT;
1381 	cmd |= NVM_FLASH_CMD_FIRST;
1382 	cmd |= NVM_FLASH_CMD_LAST;
1383 	cmd |= NVM_FLASH_CMD_DONE;
1384 
1385 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1386 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1387 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1388 
1389 	/*
1390 	 * Allow up to 1000ms ...
1391 	 */
1392 	for (tries = 0; tries < 1000; ++tries) {
1393 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1394 		if (regval & NVM_FLASH_CMD_DONE)
1395 			break;
1396 		drv_usecwait(1);
1397 	}
1398 
1399 	if (regval & NVM_FLASH_CMD_DONE) {
1400 		/*
1401 		 * All OK; read the data from the Flash read register
1402 		 */
1403 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1404 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1405 		return (0);
1406 	}
1407 
1408 	/*
1409 	 * Hmm ... what happened here?
1410 	 *
1411 	 * Most likely, the user addressed a non-existent Flash. Or
1412 	 * maybe the Flash was busy internally (e.g. processing a write)
1413 	 * and didn't respond to being addressed. Either way, there's
1414 	 * nothing we can here ...
1415 	 */
1416 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1417 	return (ENODATA);
1418 }
1419 
1420 /*
1421  * The next two functions regulate access to the NVram (if fitted).
1422  *
1423  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1424  * (SPI) interface, but they can be accessed through either port. These
1425  * are managed by different instance of this driver and have no software
1426  * state in common.
1427  *
1428  * In addition (and even on a single core chip) the chip's internal
1429  * firmware can access the SEEPROM/Flash, most notably after a RESET
1430  * when it may download code to run internally.
1431  *
1432  * So we need to arbitrate between these various software agents.  For
1433  * this purpose, the chip provides the Software Arbitration Register,
1434  * which implements hardware(!) arbitration.
1435  *
1436  * This functionality didn't exist on older (5700/5701) chips, so there's
1437  * nothing we can do by way of arbitration on those; also, if there's no
1438  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1439  * nothing to do.
1440  *
1441  * The internal firmware appears to use Request 0, which is the highest
1442  * priority.  So we'd like to use Request 2, leaving one higher and one
1443  * lower for any future developments ... but apparently this doesn't
1444  * always work.  So for now, the code uses Request 1 ;-(
1445  */
1446 
1447 #define	NVM_READ_REQ	NVM_READ_REQ1
1448 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1449 #define	NVM_SET_REQ	NVM_SET_REQ1
1450 
1451 static void bge_nvmem_relinquish(bge_t *bgep);
1452 #pragma	no_inline(bge_nvmem_relinquish)
1453 
1454 static void
1455 bge_nvmem_relinquish(bge_t *bgep)
1456 {
1457 	ASSERT(mutex_owned(bgep->genlock));
1458 
1459 	switch (bgep->chipid.nvtype) {
1460 	case BGE_NVTYPE_NONE:
1461 	case BGE_NVTYPE_UNKNOWN:
1462 		_NOTE(NOTREACHED)
1463 		return;
1464 
1465 	case BGE_NVTYPE_SEEPROM:
1466 		/*
1467 		 * No arbitration performed, no release needed
1468 		 */
1469 		return;
1470 
1471 	case BGE_NVTYPE_LEGACY_SEEPROM:
1472 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1473 	case BGE_NVTYPE_BUFFERED_FLASH:
1474 	default:
1475 		break;
1476 	}
1477 
1478 	/*
1479 	 * Our own request should be present (whether or not granted) ...
1480 	 */
1481 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1482 
1483 	/*
1484 	 * ... this will make it go away.
1485 	 */
1486 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1487 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1488 }
1489 
1490 /*
1491  * Arbitrate for access to the NVmem, if necessary
1492  *
1493  * Return value:
1494  *	0 on success
1495  *	EAGAIN if the device is in use (retryable)
1496  *	ENODEV if the NVmem device is missing or otherwise unusable
1497  */
1498 static int bge_nvmem_acquire(bge_t *bgep);
1499 #pragma	no_inline(bge_nvmem_acquire)
1500 
1501 static int
1502 bge_nvmem_acquire(bge_t *bgep)
1503 {
1504 	uint32_t regval;
1505 	uint32_t tries;
1506 
1507 	ASSERT(mutex_owned(bgep->genlock));
1508 
1509 	switch (bgep->chipid.nvtype) {
1510 	case BGE_NVTYPE_NONE:
1511 	case BGE_NVTYPE_UNKNOWN:
1512 		/*
1513 		 * Access denied: no (recognisable) device fitted
1514 		 */
1515 		return (ENODEV);
1516 
1517 	case BGE_NVTYPE_SEEPROM:
1518 		/*
1519 		 * Access granted: no arbitration needed (or possible)
1520 		 */
1521 		return (0);
1522 
1523 	case BGE_NVTYPE_LEGACY_SEEPROM:
1524 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1525 	case BGE_NVTYPE_BUFFERED_FLASH:
1526 	default:
1527 		/*
1528 		 * Access conditional: conduct arbitration protocol
1529 		 */
1530 		break;
1531 	}
1532 
1533 	/*
1534 	 * We're holding the per-port mutex <genlock>, so no-one other
1535 	 * thread can be attempting to access the NVmem through *this*
1536 	 * port. But it could be in use by the *other* port (of a 5704),
1537 	 * or by the chip's internal firmware, so we have to go through
1538 	 * the full (hardware) arbitration protocol ...
1539 	 *
1540 	 * Note that *because* we're holding <genlock>, the interrupt handler
1541 	 * won't be able to progress.  So we're only willing to spin for a
1542 	 * fairly short time.  Specifically:
1543 	 *
1544 	 *	We *must* wait long enough for the hardware to resolve all
1545 	 *	requests and determine the winner.  Fortunately, this is
1546 	 *	"almost instantaneous", even as observed by GHz CPUs.
1547 	 *
1548 	 *	A successful access by another Solaris thread (via either
1549 	 *	port) typically takes ~20us.  So waiting a bit longer than
1550 	 *	that will give a good chance of success, if the other user
1551 	 *	*is* another thread on the other port.
1552 	 *
1553 	 *	However, the internal firmware can hold on to the NVmem
1554 	 *	for *much* longer: at least 10 milliseconds just after a
1555 	 *	RESET, and maybe even longer if the NVmem actually contains
1556 	 *	code to download and run on the internal CPUs.
1557 	 *
1558 	 * So, we'll allow 50us; if that's not enough then it's up to the
1559 	 * caller to retry later (hence the choice of return code EAGAIN).
1560 	 */
1561 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1562 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1563 
1564 	for (tries = 0; tries < 50; ++tries) {
1565 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1566 		if (regval & NVM_WON_REQ1)
1567 			break;
1568 		drv_usecwait(1);
1569 	}
1570 
1571 	if (regval & NVM_WON_REQ1) {
1572 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1573 		return (0);
1574 	}
1575 
1576 	/*
1577 	 * Somebody else must be accessing the NVmem, so abandon our
1578 	 * attempt take control of it.  The caller can try again later ...
1579 	 */
1580 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1581 	bge_nvmem_relinquish(bgep);
1582 	return (EAGAIN);
1583 }
1584 
1585 /*
1586  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1587  * write protect line in such a way that the NVmem is protected when
1588  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1589  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1590  *
1591  * Note: there's only one set of GPIO pins on a 5704, even though they
1592  * can be accessed through either port.  So the chip has to resolve what
1593  * happens if the two ports program a single pin differently ... the rule
1594  * it uses is that if the ports disagree about the *direction* of a pin,
1595  * "output" wins over "input", but if they disagree about its *value* as
1596  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1597  * wins, and the external signal does whatever the external circuitry
1598  * defines as the default -- which we've assumed is the PROTECTED state.
1599  * So, we always change GPIO1 back to being an *input* whenever we're not
1600  * specifically using it to unprotect the NVmem. This allows either port
1601  * to update the NVmem, although obviously only one at a time!
1602  *
1603  * The caller should hold <genlock> and *also* have already acquired the
1604  * right to access the NVmem, via bge_nvmem_acquire() above.
1605  */
1606 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1607 #pragma	inline(bge_nvmem_protect)
1608 
1609 static void
1610 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1611 {
1612 	uint32_t regval;
1613 
1614 	ASSERT(mutex_owned(bgep->genlock));
1615 
1616 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1617 	if (protect) {
1618 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1619 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1620 	} else {
1621 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1622 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1623 	}
1624 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1625 }
1626 
1627 /*
1628  * Now put it all together ...
1629  *
1630  * Try to acquire control of the NVmem; if successful, then:
1631  *	unprotect it (if we want to write to it)
1632  *	perform the requested access
1633  *	reprotect it (after a write)
1634  *	relinquish control
1635  *
1636  * Return value:
1637  *	0 on success,
1638  *	EAGAIN if the device is in use (retryable)
1639  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1640  *	ENODEV if the NVmem device is missing or otherwise unusable
1641  *	EPROTO on other h/w or s/w errors.
1642  */
1643 static int
1644 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1645 {
1646 	int err;
1647 
1648 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1649 		switch (cmd) {
1650 		case BGE_SEE_READ:
1651 			err = bge_seeprom_access(bgep,
1652 			    SEEPROM_ACCESS_READ, addr, dp);
1653 			break;
1654 
1655 		case BGE_SEE_WRITE:
1656 			bge_nvmem_protect(bgep, B_FALSE);
1657 			err = bge_seeprom_access(bgep,
1658 			    SEEPROM_ACCESS_WRITE, addr, dp);
1659 			bge_nvmem_protect(bgep, B_TRUE);
1660 			break;
1661 
1662 		case BGE_FLASH_READ:
1663 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1664 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1665 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1666 				    NVM_ACCESS_ENABLE);
1667 			}
1668 			err = bge_flash_access(bgep,
1669 			    NVM_FLASH_CMD_RD, addr, dp);
1670 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1671 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1672 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1673 				    NVM_ACCESS_ENABLE);
1674 			}
1675 			break;
1676 
1677 		case BGE_FLASH_WRITE:
1678 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1679 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1680 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1681 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1682 			}
1683 			bge_nvmem_protect(bgep, B_FALSE);
1684 			err = bge_flash_access(bgep,
1685 			    NVM_FLASH_CMD_WR, addr, dp);
1686 			bge_nvmem_protect(bgep, B_TRUE);
1687 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1688 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1689 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1690 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1691 			}
1692 
1693 			break;
1694 
1695 		default:
1696 			_NOTE(NOTREACHED)
1697 			break;
1698 		}
1699 		bge_nvmem_relinquish(bgep);
1700 	}
1701 
1702 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1703 	return (err);
1704 }
1705 
1706 /*
1707  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1708  */
1709 static uint64_t bge_get_nvmac(bge_t *bgep);
1710 #pragma no_inline(bge_get_nvmac)
1711 
1712 static uint64_t
1713 bge_get_nvmac(bge_t *bgep)
1714 {
1715 	uint32_t mac_high;
1716 	uint32_t mac_low;
1717 	uint32_t addr;
1718 	uint32_t cmd;
1719 	uint64_t mac;
1720 
1721 	BGE_TRACE(("bge_get_nvmac($%p)",
1722 		(void *)bgep));
1723 
1724 	switch (bgep->chipid.nvtype) {
1725 	case BGE_NVTYPE_NONE:
1726 	case BGE_NVTYPE_UNKNOWN:
1727 	default:
1728 		return (0ULL);
1729 
1730 	case BGE_NVTYPE_SEEPROM:
1731 	case BGE_NVTYPE_LEGACY_SEEPROM:
1732 		cmd = BGE_SEE_READ;
1733 		break;
1734 
1735 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1736 	case BGE_NVTYPE_BUFFERED_FLASH:
1737 		cmd = BGE_FLASH_READ;
1738 		break;
1739 	}
1740 
1741 	addr = NVMEM_DATA_MAC_ADDRESS;
1742 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1743 		return (0ULL);
1744 	addr += 4;
1745 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1746 		return (0ULL);
1747 
1748 	/*
1749 	 * The Broadcom chip is natively BIG-endian, so that's how the
1750 	 * MAC address is represented in NVmem.  We may need to swap it
1751 	 * around on a little-endian host ...
1752 	 */
1753 #ifdef	_BIG_ENDIAN
1754 	mac = mac_high;
1755 	mac = mac << 32;
1756 	mac |= mac_low;
1757 #else
1758 	mac = BGE_BSWAP_32(mac_high);
1759 	mac = mac << 32;
1760 	mac |= BGE_BSWAP_32(mac_low);
1761 #endif	/* _BIG_ENDIAN */
1762 
1763 	return (mac);
1764 }
1765 
1766 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1767 
1768 /*
1769  * Dummy version for when we're not supporting NVmem access
1770  */
1771 static uint64_t bge_get_nvmac(bge_t *bgep);
1772 #pragma inline(bge_get_nvmac)
1773 
1774 static uint64_t
1775 bge_get_nvmac(bge_t *bgep)
1776 {
1777 	_NOTE(ARGUNUSED(bgep))
1778 	return (0ULL);
1779 }
1780 
1781 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1782 
1783 /*
1784  * Determine the type of NVmem that is (or may be) attached to this chip,
1785  */
1786 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1787 #pragma no_inline(bge_nvmem_id)
1788 
1789 static enum bge_nvmem_type
1790 bge_nvmem_id(bge_t *bgep)
1791 {
1792 	enum bge_nvmem_type nvtype;
1793 	uint32_t config1;
1794 
1795 	BGE_TRACE(("bge_nvmem_id($%p)",
1796 		(void *)bgep));
1797 
1798 	switch (bgep->chipid.device) {
1799 	default:
1800 		/*
1801 		 * We shouldn't get here; it means we don't recognise
1802 		 * the chip, which means we don't know how to determine
1803 		 * what sort of NVmem (if any) it has.  So we'll say
1804 		 * NONE, to disable the NVmem access code ...
1805 		 */
1806 		nvtype = BGE_NVTYPE_NONE;
1807 		break;
1808 
1809 	case DEVICE_ID_5700:
1810 	case DEVICE_ID_5700x:
1811 	case DEVICE_ID_5701:
1812 		/*
1813 		 * These devices support *only* SEEPROMs
1814 		 */
1815 		nvtype = BGE_NVTYPE_SEEPROM;
1816 		break;
1817 
1818 	case DEVICE_ID_5702:
1819 	case DEVICE_ID_5702fe:
1820 	case DEVICE_ID_5703C:
1821 	case DEVICE_ID_5703S:
1822 	case DEVICE_ID_5704C:
1823 	case DEVICE_ID_5704S:
1824 	case DEVICE_ID_5704:
1825 	case DEVICE_ID_5705M:
1826 	case DEVICE_ID_5705C:
1827 	case DEVICE_ID_5705_2:
1828 	case DEVICE_ID_5706:
1829 	case DEVICE_ID_5782:
1830 	case DEVICE_ID_5788:
1831 	case DEVICE_ID_5789:
1832 	case DEVICE_ID_5751:
1833 	case DEVICE_ID_5751M:
1834 	case DEVICE_ID_5752:
1835 	case DEVICE_ID_5752M:
1836 	case DEVICE_ID_5721:
1837 	case DEVICE_ID_5714C:
1838 	case DEVICE_ID_5714S:
1839 	case DEVICE_ID_5715C:
1840 	case DEVICE_ID_5715S:
1841 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1842 		if (config1 & NVM_CFG1_FLASH_MODE)
1843 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1844 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1845 			else
1846 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1847 		else
1848 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1849 		break;
1850 	}
1851 
1852 	return (nvtype);
1853 }
1854 
1855 #undef	BGE_DBG
1856 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1857 
1858 static void
1859 bge_init_recv_rule(bge_t *bgep)
1860 {
1861 	bge_recv_rule_t *rulep;
1862 	uint32_t i;
1863 
1864 	/*
1865 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1866 	 * 1. to direct UDP traffic, set:
1867 	 * 	rulep->control = RULE_PROTO_CONTROL;
1868 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1869 	 * 2. to direct ICMP traffic, set:
1870 	 * 	rulep->control = RULE_PROTO_CONTROL;
1871 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1872 	 * 3. to direct traffic by source ip, set:
1873 	 * 	rulep->control = RULE_SIP_CONTROL;
1874 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1875 	 */
1876 	rulep = bgep->recv_rules;
1877 	rulep->control = RULE_PROTO_CONTROL;
1878 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1879 
1880 	/*
1881 	 * set receive rule registers
1882 	 */
1883 	rulep = bgep->recv_rules;
1884 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1885 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1886 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1887 	}
1888 }
1889 
1890 /*
1891  * Using the values captured by bge_chip_cfg_init(), and additional probes
1892  * as required, characterise the chip fully: determine the label by which
1893  * to refer to this chip, the correct settings for various registers, and
1894  * of course whether the device and/or subsystem are supported!
1895  */
1896 int bge_chip_id_init(bge_t *bgep);
1897 #pragma	no_inline(bge_chip_id_init)
1898 
1899 int
1900 bge_chip_id_init(bge_t *bgep)
1901 {
1902 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1903 	boolean_t sys_ok;
1904 	boolean_t dev_ok;
1905 	chip_id_t *cidp;
1906 	uint32_t subid;
1907 	char *devname;
1908 	char *sysname;
1909 	int *ids;
1910 	int err;
1911 	uint_t i;
1912 
1913 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1914 
1915 	sys_ok = dev_ok = B_FALSE;
1916 	cidp = &bgep->chipid;
1917 
1918 	/*
1919 	 * Check the PCI device ID to determine the generic chip type and
1920 	 * select parameters that depend on this.
1921 	 *
1922 	 * Note: because the SPARC platforms in general don't fit the
1923 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1924 	 * as zero - which is why we use <asic_rev> rather than <revision>
1925 	 * below ...
1926 	 *
1927 	 * Note: in general we can't distinguish between the Copper/SerDes
1928 	 * versions by ID alone, as some Copper devices (e.g. some but not
1929 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1930 	 * treat them the same here, and the MII code works out the media
1931 	 * type later on ...
1932 	 */
1933 	cidp->mbuf_base = bge_mbuf_pool_base;
1934 	cidp->mbuf_length = bge_mbuf_pool_len;
1935 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1936 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1937 	cidp->pci_type = BGE_PCI_X;
1938 	cidp->statistic_type = BGE_STAT_BLK;
1939 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1940 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1941 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1942 
1943 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1944 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1945 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1946 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1947 
1948 	cidp->msi_enabled = B_FALSE;
1949 
1950 	switch (cidp->device) {
1951 	case DEVICE_ID_5700:
1952 	case DEVICE_ID_5700x:
1953 		cidp->chip_label = 5700;
1954 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1955 		break;
1956 
1957 	case DEVICE_ID_5701:
1958 		cidp->chip_label = 5701;
1959 		dev_ok = B_TRUE;
1960 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1961 		break;
1962 
1963 	case DEVICE_ID_5702:
1964 	case DEVICE_ID_5702fe:
1965 		cidp->chip_label = 5702;
1966 		dev_ok = B_TRUE;
1967 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1968 		cidp->pci_type = BGE_PCI;
1969 		break;
1970 
1971 	case DEVICE_ID_5703C:
1972 	case DEVICE_ID_5703S:
1973 	case DEVICE_ID_5703:
1974 		/*
1975 		 * Revision A0 of the 5703/5793 had various errata
1976 		 * that we can't or don't work around, so it's not
1977 		 * supported, but all later versions are
1978 		 */
1979 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1980 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1981 			dev_ok = B_TRUE;
1982 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1983 		break;
1984 
1985 	case DEVICE_ID_5704C:
1986 	case DEVICE_ID_5704S:
1987 	case DEVICE_ID_5704:
1988 		/*
1989 		 * Revision A0 of the 5704/5794 had various errata
1990 		 * but we have workarounds, so it *is* supported.
1991 		 */
1992 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1993 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1994 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1995 		dev_ok = B_TRUE;
1996 		if (cidp->asic_rev <  MHCR_CHIP_REV_5704_B0)
1997 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1998 		break;
1999 
2000 	case DEVICE_ID_5705C:
2001 	case DEVICE_ID_5705M:
2002 	case DEVICE_ID_5705MA3:
2003 	case DEVICE_ID_5705F:
2004 	case DEVICE_ID_5705_2:
2005 		cidp->chip_label = 5705;
2006 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2007 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2008 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2009 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2010 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2011 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2012 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2013 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2014 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2015 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2016 		cidp->pci_type = BGE_PCI;
2017 		cidp->statistic_type = BGE_STAT_REG;
2018 		dev_ok = B_TRUE;
2019 		break;
2020 
2021 	case DEVICE_ID_5706:
2022 		cidp->chip_label = 5706;
2023 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2024 		break;
2025 
2026 	case DEVICE_ID_5782:
2027 		/*
2028 		 * Apart from the label, we treat this as a 5705(?)
2029 		 */
2030 		cidp->chip_label = 5782;
2031 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2032 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2033 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2034 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2035 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2036 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2037 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2038 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2039 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2040 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2041 		cidp->statistic_type = BGE_STAT_REG;
2042 		dev_ok = B_TRUE;
2043 		break;
2044 
2045 	case DEVICE_ID_5788:
2046 		/*
2047 		 * Apart from the label, we treat this as a 5705(?)
2048 		 */
2049 		cidp->chip_label = 5788;
2050 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2051 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2052 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2053 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2054 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2055 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2056 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2057 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2058 		cidp->statistic_type = BGE_STAT_REG;
2059 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2060 		dev_ok = B_TRUE;
2061 		break;
2062 
2063 	case DEVICE_ID_5714C:
2064 		if (cidp->revision >= REVISION_ID_5714_A2)
2065 			cidp->msi_enabled = bge_enable_msi;
2066 		/* FALLTHRU */
2067 	case DEVICE_ID_5714S:
2068 		cidp->chip_label = 5714;
2069 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2070 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2071 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2072 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2073 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2074 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2075 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2076 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2077 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2078 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2079 		cidp->pci_type = BGE_PCI_E;
2080 		cidp->statistic_type = BGE_STAT_REG;
2081 		dev_ok = B_TRUE;
2082 		break;
2083 
2084 	case DEVICE_ID_5715C:
2085 	case DEVICE_ID_5715S:
2086 		cidp->chip_label = 5715;
2087 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2088 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2089 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2090 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2091 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2092 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2093 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2094 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2095 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2096 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2097 		cidp->pci_type = BGE_PCI_E;
2098 		cidp->statistic_type = BGE_STAT_REG;
2099 		if (cidp->revision >= REVISION_ID_5715_A2)
2100 			cidp->msi_enabled = bge_enable_msi;
2101 		dev_ok = B_TRUE;
2102 		break;
2103 
2104 	case DEVICE_ID_5721:
2105 		cidp->chip_label = 5721;
2106 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2107 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2108 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2109 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2110 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2111 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2112 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2113 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2114 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2115 		cidp->pci_type = BGE_PCI_E;
2116 		cidp->statistic_type = BGE_STAT_REG;
2117 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2118 		dev_ok = B_TRUE;
2119 		break;
2120 
2121 	case DEVICE_ID_5751:
2122 	case DEVICE_ID_5751M:
2123 		cidp->chip_label = 5751;
2124 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2125 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2126 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2127 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2128 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2129 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2130 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2131 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2132 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2133 		cidp->pci_type = BGE_PCI_E;
2134 		cidp->statistic_type = BGE_STAT_REG;
2135 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2136 		dev_ok = B_TRUE;
2137 		break;
2138 
2139 	case DEVICE_ID_5752:
2140 	case DEVICE_ID_5752M:
2141 		cidp->chip_label = 5752;
2142 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2143 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2144 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2145 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2146 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2147 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2148 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2149 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2150 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2151 		cidp->pci_type = BGE_PCI_E;
2152 		cidp->statistic_type = BGE_STAT_REG;
2153 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2154 		dev_ok = B_TRUE;
2155 		break;
2156 
2157 	case DEVICE_ID_5789:
2158 		cidp->chip_label = 5789;
2159 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2160 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2161 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2162 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2163 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2164 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2165 		cidp->pci_type = BGE_PCI_E;
2166 		cidp->statistic_type = BGE_STAT_REG;
2167 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2168 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2169 		cidp->msi_enabled = B_TRUE;
2170 		dev_ok = B_TRUE;
2171 		break;
2172 
2173 	}
2174 
2175 	/*
2176 	 * Setup the default jumbo parameter.
2177 	 */
2178 	cidp->ethmax_size = ETHERMAX;
2179 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2180 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2181 
2182 	/*
2183 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2184 	 * setup below jumbo specific parameters.
2185 	 *
2186 	 * For BCM5714/5715, there is only one standard receive ring. So the
2187 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2188 	 * feature is enabled.
2189 	 */
2190 	if (bge_jumbo_enable &&
2191 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2192 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2193 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2194 	    if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2195 			cidp->mbuf_lo_water_rdma =
2196 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2197 			cidp->mbuf_lo_water_rmac =
2198 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2199 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2200 			cidp->jumbo_slots = 0;
2201 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2202 	    } else {
2203 			cidp->mbuf_lo_water_rdma =
2204 			    RDMA_MBUF_LOWAT_JUMBO;
2205 			cidp->mbuf_lo_water_rmac =
2206 			    MAC_RX_MBUF_LOWAT_JUMBO;
2207 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2208 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2209 		}
2210 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2211 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2212 		cidp->ethmax_size = cidp->default_mtu +
2213 		    sizeof (struct ether_header);
2214 	}
2215 
2216 	/*
2217 	 * Identify the NV memory type: SEEPROM or Flash?
2218 	 */
2219 	cidp->nvtype = bge_nvmem_id(bgep);
2220 
2221 	/*
2222 	 * Now, we want to check whether this device is part of a
2223 	 * supported subsystem (e.g., on the motherboard of a Sun
2224 	 * branded platform).
2225 	 *
2226 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2227 	 */
2228 	if (cidp->subven == VENDOR_ID_SUN)
2229 		sys_ok = B_TRUE;
2230 
2231 	/*
2232 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2233 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2234 	 * doesn't enforce that.
2235 	 */
2236 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2237 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2238 	if (err == DDI_PROP_SUCCESS) {
2239 		/*
2240 		 * Got the list; scan for a matching subsystem vendor/device
2241 		 */
2242 		subid = (cidp->subven << 16) | cidp->subdev;
2243 		while (i--)
2244 			if (ids[i] == subid)
2245 				sys_ok = B_TRUE;
2246 		ddi_prop_free(ids);
2247 	}
2248 
2249 	/*
2250 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2251 	 *
2252 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2253 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2254 	 * we have to check specially for the exact device paths to the
2255 	 * motherboard devices on those platforms ;-(
2256 	 *
2257 	 * Note: we can't just use the "supported-subsystems" mechanism
2258 	 * above, because the entry would have to be 0x14e41647 -- which
2259 	 * would then accept *any* plugin card that *didn't* contain a
2260 	 * (valid) SEEPROM ;-(
2261 	 */
2262 	sysname = ddi_node_name(ddi_root_node());
2263 	devname = ddi_pathname(bgep->devinfo, buf);
2264 	ASSERT(strlen(devname) > 0);
2265 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2266 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2267 			sys_ok = B_TRUE;
2268 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2269 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2270 			sys_ok = B_TRUE;
2271 
2272 	/*
2273 	 * Now check what we've discovered: is this truly a supported
2274 	 * chip on (the motherboard of) a supported platform?
2275 	 *
2276 	 * Possible problems here:
2277 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2278 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2279 	 * 3)	it's a chip we would support if it were on the motherboard
2280 	 *	of a Sun platform, but this one isn't ;-(
2281 	 */
2282 	if (cidp->chip_label == 0)
2283 		bge_problem(bgep,
2284 			"Device 'pci%04x,%04x' not recognized (%d?)",
2285 			cidp->vendor, cidp->device, cidp->device);
2286 	else if (!dev_ok)
2287 		bge_problem(bgep,
2288 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2289 			cidp->vendor, cidp->device, cidp->chip_label,
2290 			cidp->revision);
2291 #if	BGE_DEBUGGING
2292 	else if (!sys_ok)
2293 		bge_problem(bgep,
2294 			"%d-based subsystem 'pci%04x,%04x' not validated",
2295 			cidp->chip_label, cidp->subven, cidp->subdev);
2296 #endif
2297 	else
2298 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2299 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2300 		return (EIO);
2301 	return (0);
2302 }
2303 
2304 void
2305 bge_chip_msi_trig(bge_t *bgep)
2306 {
2307 	uint32_t	regval;
2308 
2309 	regval = bgep->param_msi_cnt<<4;
2310 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2311 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2312 }
2313 
2314 /*
2315  * Various registers that control the chip's internal engines (state
2316  * machines) have a <reset> and <enable> bits (fortunately, in the
2317  * same place in each such register :-).
2318  *
2319  * To reset the state machine, the <reset> bit must be written with 1;
2320  * it will then read back as 1 while the reset is in progress, but
2321  * self-clear to 0 when the reset completes.
2322  *
2323  * To enable a state machine, one must set the <enable> bit, which
2324  * will continue to read back as 0 until the state machine is running.
2325  *
2326  * To disable a state machine, the <enable> bit must be cleared, but
2327  * it will continue to read back as 1 until the state machine actually
2328  * stops.
2329  *
2330  * This routine implements polling for completion of a reset, enable
2331  * or disable operation, returning B_TRUE on success (bit reached the
2332  * required state) or B_FALSE on timeout (200*100us == 20ms).
2333  */
2334 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2335 					uint32_t mask, uint32_t val);
2336 #pragma	no_inline(bge_chip_poll_engine)
2337 
2338 static boolean_t
2339 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2340 	uint32_t mask, uint32_t val)
2341 {
2342 	uint32_t regval;
2343 	uint32_t n;
2344 
2345 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2346 		(void *)bgep, regno, mask, val));
2347 
2348 	for (n = 200; n; --n) {
2349 		regval = bge_reg_get32(bgep, regno);
2350 		if ((regval & mask) == val)
2351 			return (B_TRUE);
2352 		drv_usecwait(100);
2353 	}
2354 
2355 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2356 	return (B_FALSE);
2357 }
2358 
2359 /*
2360  * Various registers that control the chip's internal engines (state
2361  * machines) have a <reset> bit (fortunately, in the same place in
2362  * each such register :-).  To reset the state machine, this bit must
2363  * be written with 1; it will then read back as 1 while the reset is
2364  * in progress, but self-clear to 0 when the reset completes.
2365  *
2366  * This code sets the bit, then polls for it to read back as zero.
2367  * The return value is B_TRUE on success (reset bit cleared itself),
2368  * or B_FALSE if the state machine didn't recover :(
2369  *
2370  * NOTE: the Core reset is similar to other resets, except that we
2371  * can't poll for completion, since the Core reset disables memory
2372  * access!  So we just have to assume that it will all complete in
2373  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2374  */
2375 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2376 #pragma	no_inline(bge_chip_reset_engine)
2377 
2378 static boolean_t
2379 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2380 {
2381 	uint32_t regval;
2382 	uint32_t val32;
2383 
2384 	regval = bge_reg_get32(bgep, regno);
2385 
2386 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2387 		(void *)bgep, regno));
2388 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2389 		regno, regval));
2390 
2391 	regval |= STATE_MACHINE_RESET_BIT;
2392 
2393 	switch (regno) {
2394 	case MISC_CONFIG_REG:
2395 		/*
2396 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2397 		 * resetting PCIE block and bringing PCIE link down, bit 29
2398 		 * in the register needs to be set first, and then set it again
2399 		 * while the reset bit is written.
2400 		 * See:P500 of 57xx-PG102-RDS.pdf.
2401 		 */
2402 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2403 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2404 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2405 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2406 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2407 				if (bgep->chipid.asic_rev ==
2408 				    MHCR_CHIP_REV_5751_A0 ||
2409 				    bgep->chipid.asic_rev ==
2410 				    MHCR_CHIP_REV_5721_A0) {
2411 					val32 = bge_reg_get32(bgep,
2412 					    PHY_TEST_CTRL_REG);
2413 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2414 					    PHY_PCIE_LTASS_MODE))
2415 						bge_reg_put32(bgep,
2416 						    PHY_TEST_CTRL_REG,
2417 						    PHY_PCIE_SCRAM_MODE);
2418 					val32 = pci_config_get32
2419 					    (bgep->cfg_handle,
2420 					    PCI_CONF_BGE_CLKCTL);
2421 					val32 |= CLKCTL_PCIE_A0_FIX;
2422 					pci_config_put32(bgep->cfg_handle,
2423 					    PCI_CONF_BGE_CLKCTL, val32);
2424 				}
2425 				bge_reg_set32(bgep, regno,
2426 					MISC_CONFIG_GRC_RESET_DISABLE);
2427 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2428 			}
2429 		}
2430 
2431 		/*
2432 		 * Special case - causes Core reset
2433 		 *
2434 		 * On SPARC v9 we want to ensure that we don't start
2435 		 * timing until the I/O access has actually reached
2436 		 * the chip, otherwise we might make the next access
2437 		 * too early.  And we can't just force the write out
2438 		 * by following it with a read (even to config space)
2439 		 * because that would cause the fault we're trying
2440 		 * to avoid.  Hence the need for membar_sync() here.
2441 		 */
2442 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2443 #ifdef	__sparcv9
2444 		membar_sync();
2445 #endif	/* __sparcv9 */
2446 		/*
2447 		 * On some platforms,system need about 300us for
2448 		 * link setup.
2449 		 */
2450 		drv_usecwait(300);
2451 
2452 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2453 			/* PCI-E device need more reset time */
2454 			drv_usecwait(120000);
2455 
2456 			/* Set PCIE max payload size and clear error status. */
2457 			if ((bgep->chipid.chip_label == 5721) ||
2458 			    (bgep->chipid.chip_label == 5751) ||
2459 			    (bgep->chipid.chip_label == 5752) ||
2460 			    (bgep->chipid.chip_label == 5789)) {
2461 				pci_config_put16(bgep->cfg_handle,
2462 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2463 				pci_config_put16(bgep->cfg_handle,
2464 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2465 			}
2466 		}
2467 
2468 		BGE_PCICHK(bgep);
2469 		return (B_TRUE);
2470 
2471 	default:
2472 		bge_reg_put32(bgep, regno, regval);
2473 		return (bge_chip_poll_engine(bgep, regno,
2474 		    STATE_MACHINE_RESET_BIT, 0));
2475 	}
2476 }
2477 
2478 /*
2479  * Various registers that control the chip's internal engines (state
2480  * machines) have an <enable> bit (fortunately, in the same place in
2481  * each such register :-).  To stop the state machine, this bit must
2482  * be written with 0, then polled to see when the state machine has
2483  * actually stopped.
2484  *
2485  * The return value is B_TRUE on success (enable bit cleared), or
2486  * B_FALSE if the state machine didn't stop :(
2487  */
2488 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2489 						uint32_t morebits);
2490 #pragma	no_inline(bge_chip_disable_engine)
2491 
2492 static boolean_t
2493 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2494 {
2495 	uint32_t regval;
2496 
2497 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2498 		(void *)bgep, regno, morebits));
2499 
2500 	switch (regno) {
2501 	case FTQ_RESET_REG:
2502 		/*
2503 		 * Not quite like the others; it doesn't
2504 		 * have an <enable> bit, but instead we
2505 		 * have to set and then clear all the bits
2506 		 */
2507 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2508 		drv_usecwait(100);
2509 		bge_reg_put32(bgep, regno, 0);
2510 		return (B_TRUE);
2511 
2512 	default:
2513 		regval = bge_reg_get32(bgep, regno);
2514 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2515 		regval &= ~morebits;
2516 		bge_reg_put32(bgep, regno, regval);
2517 		return (bge_chip_poll_engine(bgep, regno,
2518 		    STATE_MACHINE_ENABLE_BIT, 0));
2519 	}
2520 }
2521 
2522 /*
2523  * Various registers that control the chip's internal engines (state
2524  * machines) have an <enable> bit (fortunately, in the same place in
2525  * each such register :-).  To start the state machine, this bit must
2526  * be written with 1, then polled to see when the state machine has
2527  * actually started.
2528  *
2529  * The return value is B_TRUE on success (enable bit set), or
2530  * B_FALSE if the state machine didn't start :(
2531  */
2532 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2533 					uint32_t morebits);
2534 #pragma	no_inline(bge_chip_enable_engine)
2535 
2536 static boolean_t
2537 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2538 {
2539 	uint32_t regval;
2540 
2541 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2542 		(void *)bgep, regno, morebits));
2543 
2544 	switch (regno) {
2545 	case FTQ_RESET_REG:
2546 		/*
2547 		 * Not quite like the others; it doesn't
2548 		 * have an <enable> bit, but instead we
2549 		 * have to set and then clear all the bits
2550 		 */
2551 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2552 		drv_usecwait(100);
2553 		bge_reg_put32(bgep, regno, 0);
2554 		return (B_TRUE);
2555 
2556 	default:
2557 		regval = bge_reg_get32(bgep, regno);
2558 		regval |= STATE_MACHINE_ENABLE_BIT;
2559 		regval |= morebits;
2560 		bge_reg_put32(bgep, regno, regval);
2561 		return (bge_chip_poll_engine(bgep, regno,
2562 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2563 	}
2564 }
2565 
2566 /*
2567  * Reprogram the Ethernet, Transmit, and Receive MAC
2568  * modes to match the param_* variables
2569  */
2570 static void bge_sync_mac_modes(bge_t *bgep);
2571 #pragma	no_inline(bge_sync_mac_modes)
2572 
2573 static void
2574 bge_sync_mac_modes(bge_t *bgep)
2575 {
2576 	uint32_t macmode;
2577 	uint32_t regval;
2578 
2579 	ASSERT(mutex_owned(bgep->genlock));
2580 
2581 	/*
2582 	 * Reprogram the Ethernet MAC mode ...
2583 	 */
2584 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2585 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2586 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2587 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2588 	else
2589 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2590 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2591 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2592 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2593 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2594 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2595 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2596 	else
2597 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2598 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2599 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2600 	else
2601 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2602 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2603 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2604 	else
2605 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2606 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2607 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2608 		(void *)bgep, regval, macmode));
2609 
2610 	/*
2611 	 * ... the Transmit MAC mode ...
2612 	 */
2613 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2614 	if (bgep->param_link_tx_pause)
2615 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2616 	else
2617 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2618 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2619 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2620 		(void *)bgep, regval, macmode));
2621 
2622 	/*
2623 	 * ... and the Receive MAC mode
2624 	 */
2625 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2626 	if (bgep->param_link_rx_pause)
2627 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2628 	else
2629 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2630 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2631 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2632 		(void *)bgep, regval, macmode));
2633 }
2634 
2635 /*
2636  * bge_chip_sync() -- program the chip with the unicast MAC address,
2637  * the multicast hash table, the required level of promiscuity, and
2638  * the current loopback mode ...
2639  */
2640 #ifdef BGE_IPMI_ASF
2641 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2642 #else
2643 int bge_chip_sync(bge_t *bgep);
2644 #endif
2645 #pragma	no_inline(bge_chip_sync)
2646 
2647 int
2648 #ifdef BGE_IPMI_ASF
2649 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2650 #else
2651 bge_chip_sync(bge_t *bgep)
2652 #endif
2653 {
2654 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2655 	boolean_t promisc;
2656 	uint64_t macaddr;
2657 	uint32_t fill;
2658 	int i, j;
2659 	int retval = DDI_SUCCESS;
2660 
2661 	BGE_TRACE(("bge_chip_sync($%p)",
2662 		(void *)bgep));
2663 
2664 	ASSERT(mutex_owned(bgep->genlock));
2665 
2666 	promisc = B_FALSE;
2667 	fill = ~(uint32_t)0;
2668 
2669 	if (bgep->promisc)
2670 		promisc = B_TRUE;
2671 	else
2672 		fill = (uint32_t)0;
2673 
2674 	/*
2675 	 * If the TX/RX MAC engines are already running, we should stop
2676 	 * them (and reset the RX engine) before changing the parameters.
2677 	 * If they're not running, this will have no effect ...
2678 	 *
2679 	 * NOTE: this is currently disabled by default because stopping
2680 	 * and restarting the Tx engine may cause an outgoing packet in
2681 	 * transit to be truncated.  Also, stopping and restarting the
2682 	 * Rx engine seems to not work correctly on the 5705.  Testing
2683 	 * has not (yet!) revealed any problems with NOT stopping and
2684 	 * restarting these engines (and Broadcom say their drivers don't
2685 	 * do this), but if it is found to cause problems, this variable
2686 	 * can be patched to re-enable the old behaviour ...
2687 	 */
2688 	if (bge_stop_start_on_sync) {
2689 #ifdef BGE_IPMI_ASF
2690 		if (!bgep->asf_enabled) {
2691 			if (!bge_chip_disable_engine(bgep,
2692 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2693 				retval = DDI_FAILURE;
2694 		} else {
2695 			if (!bge_chip_disable_engine(bgep,
2696 			    RECEIVE_MAC_MODE_REG, 0))
2697 				retval = DDI_FAILURE;
2698 		}
2699 #else
2700 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2701 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2702 			retval = DDI_FAILURE;
2703 #endif
2704 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2705 			retval = DDI_FAILURE;
2706 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2707 			retval = DDI_FAILURE;
2708 	}
2709 
2710 	/*
2711 	 * Reprogram the hashed multicast address table ...
2712 	 */
2713 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2714 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2715 			bgep->mcast_hash[i] | fill);
2716 
2717 #ifdef BGE_IPMI_ASF
2718 	if (!bgep->asf_enabled || !asf_keeplive) {
2719 #endif
2720 		/*
2721 		 * Transform the MAC address(es) from host to chip format, then
2722 		 * reprogram the transmit random backoff seed and the unicast
2723 		 * MAC address(es) ...
2724 		 */
2725 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2726 			for (i = 0, fill = 0, macaddr = 0ull;
2727 			    i < ETHERADDRL; ++i) {
2728 				macaddr <<= 8;
2729 				macaddr |= bgep->curr_addr[j].addr[i];
2730 				fill += bgep->curr_addr[j].addr[i];
2731 			}
2732 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2733 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2734 		}
2735 
2736 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2737 			(void *)bgep, macaddr));
2738 #ifdef BGE_IPMI_ASF
2739 	}
2740 #endif
2741 
2742 	/*
2743 	 * Set or clear the PROMISCUOUS mode bit
2744 	 */
2745 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2746 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2747 
2748 	/*
2749 	 * Sync the rest of the MAC modes too ...
2750 	 */
2751 	bge_sync_mac_modes(bgep);
2752 
2753 	/*
2754 	 * Restart RX/TX MAC engines if required ...
2755 	 */
2756 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2757 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2758 			retval = DDI_FAILURE;
2759 #ifdef BGE_IPMI_ASF
2760 		if (!bgep->asf_enabled) {
2761 			if (!bge_chip_enable_engine(bgep,
2762 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2763 				retval = DDI_FAILURE;
2764 		} else {
2765 			if (!bge_chip_enable_engine(bgep,
2766 			    RECEIVE_MAC_MODE_REG, 0))
2767 				retval = DDI_FAILURE;
2768 		}
2769 #else
2770 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2771 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2772 			retval = DDI_FAILURE;
2773 #endif
2774 	}
2775 	return (retval);
2776 }
2777 
2778 /*
2779  * This array defines the sequence of state machine control registers
2780  * in which the <enable> bit must be cleared to bring the chip to a
2781  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2782  */
2783 static bge_regno_t shutdown_engine_regs[] = {
2784 	RECEIVE_MAC_MODE_REG,
2785 	RCV_BD_INITIATOR_MODE_REG,
2786 	RCV_LIST_PLACEMENT_MODE_REG,
2787 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2788 	RCV_DATA_BD_INITIATOR_MODE_REG,
2789 	RCV_DATA_COMPLETION_MODE_REG,
2790 	RCV_BD_COMPLETION_MODE_REG,
2791 
2792 	SEND_BD_SELECTOR_MODE_REG,
2793 	SEND_BD_INITIATOR_MODE_REG,
2794 	SEND_DATA_INITIATOR_MODE_REG,
2795 	READ_DMA_MODE_REG,
2796 	SEND_DATA_COMPLETION_MODE_REG,
2797 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2798 	SEND_BD_COMPLETION_MODE_REG,
2799 	TRANSMIT_MAC_MODE_REG,
2800 
2801 	HOST_COALESCE_MODE_REG,
2802 	WRITE_DMA_MODE_REG,
2803 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2804 	FTQ_RESET_REG,		/* special - see code	*/
2805 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2806 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2807 	BGE_REGNO_NONE		/* terminator		*/
2808 };
2809 
2810 /*
2811  * bge_chip_stop() -- stop all chip processing
2812  *
2813  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2814  * we've detected a problem internally; otherwise, this is a normal
2815  * (clean) stop (at user request i.e. the last STREAM has been closed).
2816  */
2817 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2818 #pragma	no_inline(bge_chip_stop)
2819 
2820 void
2821 bge_chip_stop(bge_t *bgep, boolean_t fault)
2822 {
2823 	bge_regno_t regno;
2824 	bge_regno_t *rbp;
2825 	boolean_t ok;
2826 
2827 	BGE_TRACE(("bge_chip_stop($%p)",
2828 		(void *)bgep));
2829 
2830 	ASSERT(mutex_owned(bgep->genlock));
2831 
2832 	rbp = shutdown_engine_regs;
2833 	/*
2834 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2835 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2836 	 * -ory arbiter should not be disabled.
2837 	 */
2838 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2839 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2840 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2841 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2842 				    (regno != DMA_COMPLETION_MODE_REG) &&
2843 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2844 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2845 				    (regno != MEMORY_ARBITER_MODE_REG))
2846 					ok &= bge_chip_disable_engine(bgep,
2847 					    regno, 0);
2848 	}
2849 
2850 	if (!ok && !fault)
2851 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2852 
2853 	/*
2854 	 * Finally, disable (all) MAC events & clear the MAC status
2855 	 */
2856 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2857 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2858 
2859 	/*
2860 	 * if we're stopping the chip because of a detected fault then do
2861 	 * appropriate actions
2862 	 */
2863 	if (fault) {
2864 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2865 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2866 			ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2867 			if (bgep->bge_dma_error) {
2868 				/*
2869 				 * need to free buffers in case the fault was
2870 				 * due to a memory error in a buffer - got to
2871 				 * do a fair bit of tidying first
2872 				 */
2873 				if (bgep->progress & PROGRESS_KSTATS) {
2874 					bge_fini_kstats(bgep);
2875 					bgep->progress &= ~PROGRESS_KSTATS;
2876 				}
2877 				if (bgep->progress & PROGRESS_INTR) {
2878 					bge_intr_disable(bgep);
2879 					rw_enter(bgep->errlock, RW_WRITER);
2880 					bge_fini_rings(bgep);
2881 					rw_exit(bgep->errlock);
2882 					bgep->progress &= ~PROGRESS_INTR;
2883 				}
2884 				if (bgep->progress & PROGRESS_BUFS) {
2885 					bge_free_bufs(bgep);
2886 					bgep->progress &= ~PROGRESS_BUFS;
2887 				}
2888 				bgep->bge_dma_error = B_FALSE;
2889 			}
2890 		}
2891 	} else
2892 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2893 }
2894 
2895 /*
2896  * Poll for completion of chip's ROM firmware; also, at least on the
2897  * first time through, find and return the hardware MAC address, if any.
2898  */
2899 static uint64_t bge_poll_firmware(bge_t *bgep);
2900 #pragma	no_inline(bge_poll_firmware)
2901 
2902 static uint64_t
2903 bge_poll_firmware(bge_t *bgep)
2904 {
2905 	uint64_t magic;
2906 	uint64_t mac;
2907 	uint32_t gen;
2908 	uint32_t i;
2909 
2910 	/*
2911 	 * Step 19: poll for firmware completion (GENCOMM port set
2912 	 * to the ones complement of T3_MAGIC_NUMBER).
2913 	 *
2914 	 * While we're at it, we also read the MAC address register;
2915 	 * at some stage the firmware will load this with the
2916 	 * factory-set value.
2917 	 *
2918 	 * When both the magic number and the MAC address are set,
2919 	 * we're done; but we impose a time limit of one second
2920 	 * (1000*1000us) in case the firmware fails in some fashion
2921 	 * or the SEEPROM that provides that MAC address isn't fitted.
2922 	 *
2923 	 * After the first time through (chip state != INITIAL), we
2924 	 * don't need the MAC address to be set (we've already got it
2925 	 * or not, from the first time), so we don't wait for it, but
2926 	 * we still have to wait for the T3_MAGIC_NUMBER.
2927 	 *
2928 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2929 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2930 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2931 	 * it work correctly on both big- and little-endian hosts.
2932 	 */
2933 	for (i = 0; i < 1000; ++i) {
2934 		drv_usecwait(1000);
2935 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2936 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2937 #ifdef BGE_IPMI_ASF
2938 		if (!bgep->asf_enabled) {
2939 #endif
2940 			if (gen != ~T3_MAGIC_NUMBER)
2941 				continue;
2942 #ifdef BGE_IPMI_ASF
2943 		}
2944 #endif
2945 		if (mac != 0ULL)
2946 			break;
2947 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2948 			break;
2949 	}
2950 
2951 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2952 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2953 		(void *)bgep, gen, i));
2954 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2955 		mac, magic));
2956 
2957 	return (mac);
2958 }
2959 
2960 /*
2961  * Maximum times of trying to get the NVRAM access lock
2962  * by calling bge_nvmem_acquire()
2963  */
2964 #define	MAX_TRY_NVMEM_ACQUIRE	10000
2965 
2966 #ifdef BGE_IPMI_ASF
2967 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
2968 #else
2969 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
2970 #endif
2971 #pragma	no_inline(bge_chip_reset)
2972 
2973 int
2974 #ifdef BGE_IPMI_ASF
2975 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
2976 #else
2977 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
2978 #endif
2979 {
2980 	chip_id_t chipid;
2981 	uint64_t mac;
2982 	uint64_t magic;
2983 	uint32_t modeflags;
2984 	uint32_t mhcr;
2985 	uint32_t sx0;
2986 	uint32_t i, tries;
2987 #ifdef BGE_IPMI_ASF
2988 	uint32_t mailbox;
2989 #endif
2990 	int retval = DDI_SUCCESS;
2991 
2992 	BGE_TRACE(("bge_chip_reset($%p, %d)",
2993 		(void *)bgep, enable_dma));
2994 
2995 	ASSERT(mutex_owned(bgep->genlock));
2996 
2997 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
2998 		(void *)bgep, enable_dma, bgep->bge_chip_state));
2999 
3000 	/*
3001 	 * Do we need to stop the chip cleanly before resetting?
3002 	 */
3003 	switch (bgep->bge_chip_state) {
3004 	default:
3005 		_NOTE(NOTREACHED)
3006 		return (DDI_FAILURE);
3007 
3008 	case BGE_CHIP_INITIAL:
3009 	case BGE_CHIP_STOPPED:
3010 	case BGE_CHIP_RESET:
3011 		break;
3012 
3013 	case BGE_CHIP_RUNNING:
3014 	case BGE_CHIP_ERROR:
3015 	case BGE_CHIP_FAULT:
3016 		bge_chip_stop(bgep, B_FALSE);
3017 		break;
3018 	}
3019 
3020 #ifdef BGE_IPMI_ASF
3021 	if (bgep->asf_enabled) {
3022 		if (asf_mode == ASF_MODE_INIT) {
3023 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3024 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3025 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3026 		}
3027 	}
3028 #endif
3029 	/*
3030 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3031 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3032 	 *
3033 	 * Before reset Core clock,it is
3034 	 * also required to initialize the Memory Arbiter as specified in step9
3035 	 * and Misc Host Control Register as specified in step-13
3036 	 * Step 4-5: reset Core clock & wait for completion
3037 	 * Steps 6-8: are done by bge_chip_cfg_init()
3038 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3039 	 */
3040 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3041 		retval = DDI_FAILURE;
3042 
3043 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3044 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3045 	    MHCR_MASK_INTERRUPT_MODE |
3046 	    MHCR_MASK_PCI_INT_OUTPUT |
3047 	    MHCR_CLEAR_INTERRUPT_INTA;
3048 #ifdef  _BIG_ENDIAN
3049 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3050 #endif  /* _BIG_ENDIAN */
3051 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3052 #ifdef BGE_IPMI_ASF
3053 	if (bgep->asf_enabled)
3054 		bgep->asf_wordswapped = B_FALSE;
3055 #endif
3056 	/*
3057 	 * NVRAM Corruption Workaround
3058 	 */
3059 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3060 		if (bge_nvmem_acquire(bgep) == EAGAIN)
3061 			break;
3062 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3063 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3064 			bgep->ifname));
3065 
3066 #ifdef BGE_IPMI_ASF
3067 	if (!bgep->asf_enabled) {
3068 #endif
3069 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3070 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3071 #ifdef BGE_IPMI_ASF
3072 	}
3073 #endif
3074 
3075 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3076 		retval = DDI_FAILURE;
3077 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3078 
3079 	/*
3080 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3081 	 * a bit set to avoid a fifo overflow/underflow bug.
3082 	 */
3083 	if ((bgep->chipid.chip_label == 5721) ||
3084 		(bgep->chipid.chip_label == 5751) ||
3085 		(bgep->chipid.chip_label == 5752) ||
3086 		(bgep->chipid.chip_label == 5789))
3087 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3088 
3089 
3090 	/*
3091 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3092 	 * not be changed.
3093 	 */
3094 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3095 		retval = DDI_FAILURE;
3096 
3097 	/*
3098 	 * Steps 10-11: configure PIO endianness options and
3099 	 * enable indirect register access -- already done
3100 	 * Steps 12-13: enable writing to the PCI state & clock
3101 	 * control registers -- not required; we aren't going to
3102 	 * use those features.
3103 	 * Steps 14-15: Configure DMA endianness options.  See
3104 	 * the comments on the setting of the MHCR above.
3105 	 */
3106 #ifdef	_BIG_ENDIAN
3107 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3108 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3109 #else
3110 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3111 #endif	/* _BIG_ENDIAN */
3112 #ifdef BGE_IPMI_ASF
3113 	if (bgep->asf_enabled)
3114 		modeflags |= MODE_HOST_STACK_UP;
3115 #endif
3116 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3117 
3118 #ifdef BGE_IPMI_ASF
3119 	if (bgep->asf_enabled) {
3120 		if (asf_mode != ASF_MODE_NONE) {
3121 			/* Wait for NVRAM init */
3122 			i = 0;
3123 			drv_usecwait(5000);
3124 			mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3125 			while ((mailbox != (uint32_t)
3126 				~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3127 				(i < 10000)) {
3128 				drv_usecwait(100);
3129 				mailbox = bge_nic_get32(bgep,
3130 					BGE_FIRMWARE_MAILBOX);
3131 				i++;
3132 			}
3133 			if (!bgep->asf_newhandshake) {
3134 				if ((asf_mode == ASF_MODE_INIT) ||
3135 					(asf_mode == ASF_MODE_POST_INIT)) {
3136 
3137 					bge_asf_post_reset_old_mode(bgep,
3138 						BGE_INIT_RESET);
3139 				} else {
3140 					bge_asf_post_reset_old_mode(bgep,
3141 						BGE_SHUTDOWN_RESET);
3142 				}
3143 			}
3144 		}
3145 	}
3146 #endif
3147 	/*
3148 	 * Steps 16-17: poll for firmware completion
3149 	 */
3150 	mac = bge_poll_firmware(bgep);
3151 
3152 	/*
3153 	 * Step 18: enable external memory -- doesn't apply.
3154 	 *
3155 	 * However we take the opportunity to set the MLCR anyway, as
3156 	 * this register also controls the SEEPROM auto-access method
3157 	 * which we may want to use later ...
3158 	 *
3159 	 * The proper value here depends on the way the chip is wired
3160 	 * into the circuit board, as this register *also* controls which
3161 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3162 	 * values driven onto those pins!
3163 	 *
3164 	 * See also step 74 in the PRM ...
3165 	 */
3166 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3167 	    bgep->chipid.bge_mlcr_default);
3168 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3169 
3170 	/*
3171 	 * Step 20: clear the Ethernet MAC mode register
3172 	 */
3173 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3174 
3175 	/*
3176 	 * Step 21: restore cache-line-size, latency timer, and
3177 	 * subsystem ID registers to their original values (not
3178 	 * those read into the local structure <chipid>, 'cos
3179 	 * that was after they were cleared by the RESET).
3180 	 *
3181 	 * Note: the Subsystem Vendor/Device ID registers are not
3182 	 * directly writable in config space, so we use the shadow
3183 	 * copy in "Page Zero" of register space to restore them
3184 	 * both in one go ...
3185 	 */
3186 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3187 		bgep->chipid.clsize);
3188 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3189 		bgep->chipid.latency);
3190 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3191 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3192 
3193 	/*
3194 	 * The SEND INDEX registers should be reset to zero by the
3195 	 * global chip reset; if they're not, there'll be trouble
3196 	 * later on.
3197 	 */
3198 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3199 	if (sx0 != 0) {
3200 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3201 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3202 		retval = DDI_FAILURE;
3203 	}
3204 
3205 	/* Enable MSI code */
3206 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3207 		bge_reg_set32(bgep, MSI_MODE_REG,
3208 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE);
3209 
3210 	/*
3211 	 * On the first time through, save the factory-set MAC address
3212 	 * (if any).  If bge_poll_firmware() above didn't return one
3213 	 * (from a chip register) consider looking in the attached NV
3214 	 * memory device, if any.  Once we have it, we save it in both
3215 	 * register-image (64-bit) and byte-array forms.  All-zero and
3216 	 * all-one addresses are not valid, and we refuse to stash those.
3217 	 */
3218 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3219 		if (mac == 0ULL)
3220 			mac = bge_get_nvmac(bgep);
3221 		if (mac != 0ULL && mac != ~0ULL) {
3222 			bgep->chipid.hw_mac_addr = mac;
3223 			for (i = ETHERADDRL; i-- != 0; ) {
3224 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3225 				mac >>= 8;
3226 			}
3227 			bgep->chipid.vendor_addr.set = B_TRUE;
3228 		}
3229 	}
3230 
3231 #ifdef BGE_IPMI_ASF
3232 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3233 		if (asf_mode != ASF_MODE_NONE) {
3234 			if ((asf_mode == ASF_MODE_INIT) ||
3235 				(asf_mode == ASF_MODE_POST_INIT)) {
3236 
3237 				bge_asf_post_reset_new_mode(bgep,
3238 					BGE_INIT_RESET);
3239 			} else {
3240 				bge_asf_post_reset_new_mode(bgep,
3241 					BGE_SHUTDOWN_RESET);
3242 			}
3243 		}
3244 	}
3245 #endif
3246 
3247 	/*
3248 	 * Record the new state
3249 	 */
3250 	bgep->chip_resets += 1;
3251 	bgep->bge_chip_state = BGE_CHIP_RESET;
3252 	return (retval);
3253 }
3254 
3255 /*
3256  * bge_chip_start() -- start the chip transmitting and/or receiving,
3257  * including enabling interrupts
3258  */
3259 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3260 #pragma	no_inline(bge_chip_start)
3261 
3262 int
3263 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3264 {
3265 	uint32_t coalmode;
3266 	uint32_t ledctl;
3267 	uint32_t mtu;
3268 	uint32_t maxring;
3269 	uint64_t ring;
3270 	int retval = DDI_SUCCESS;
3271 
3272 	BGE_TRACE(("bge_chip_start($%p)",
3273 		(void *)bgep));
3274 
3275 	ASSERT(mutex_owned(bgep->genlock));
3276 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3277 
3278 	/*
3279 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3280 	 * The document specifies 95 separate steps to fully
3281 	 * initialise the chip!!!!
3282 	 *
3283 	 * The reset code above has already got us as far as step
3284 	 * 21, so we continue with ...
3285 	 *
3286 	 * Step 22: clear the MAC statistics block
3287 	 * (0x0300-0x0aff in NIC-local memory)
3288 	 */
3289 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3290 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3291 		    NIC_MEM_STATISTICS_SIZE);
3292 
3293 	/*
3294 	 * Step 23: clear the status block (in host memory)
3295 	 */
3296 	DMA_ZERO(bgep->status_block);
3297 
3298 	/*
3299 	 * Step 24: set DMA read/write control register
3300 	 */
3301 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3302 		bgep->chipid.bge_dma_rwctrl);
3303 
3304 	/*
3305 	 * Step 25: Configure DMA endianness -- already done (16/17)
3306 	 * Step 26: Configure Host-Based Send Rings
3307 	 * Step 27: Indicate Host Stack Up
3308 	 */
3309 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3310 		MODE_HOST_SEND_BDS |
3311 		MODE_HOST_STACK_UP);
3312 
3313 	/*
3314 	 * Step 28: Configure checksum options:
3315 	 *	Solaris supports the hardware default checksum options.
3316 	 *
3317 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3318 	 */
3319 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3320 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3321 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3322 
3323 	/*
3324 	 * Step 29: configure Timer Prescaler.  The value is always the
3325 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3326 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3327 	 * for the whole chip!
3328 	 */
3329 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3330 
3331 	/*
3332 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3333 	 *
3334 	 * If the mbuf_length is specified as 0, we just leave these at
3335 	 * their hardware defaults, rather than explicitly setting them.
3336 	 * As the Broadcom HRM,driver better not change the parameters
3337 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3338 	 */
3339 	if ((bgep->chipid.mbuf_length != 0) &&
3340 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3341 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3342 				bgep->chipid.mbuf_base);
3343 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3344 				bgep->chipid.mbuf_length);
3345 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3346 				DMAD_POOL_BASE_DEFAULT);
3347 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3348 				DMAD_POOL_LENGTH_DEFAULT);
3349 	}
3350 
3351 	/*
3352 	 * Step 32: configure MAC memory pool watermarks
3353 	 */
3354 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3355 		bgep->chipid.mbuf_lo_water_rdma);
3356 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3357 		bgep->chipid.mbuf_lo_water_rmac);
3358 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3359 		bgep->chipid.mbuf_hi_water);
3360 
3361 	/*
3362 	 * Step 33: configure DMA resource watermarks
3363 	 */
3364 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3365 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3366 		    bge_dmad_lo_water);
3367 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3368 		    bge_dmad_hi_water);
3369 	}
3370 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3371 
3372 	/*
3373 	 * Steps 34-36: enable buffer manager & internal h/w queues
3374 	 */
3375 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3376 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3377 		retval = DDI_FAILURE;
3378 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3379 		retval = DDI_FAILURE;
3380 
3381 	/*
3382 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3383 	 */
3384 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3385 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3386 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3387 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3388 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3389 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3390 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3391 	}
3392 
3393 	/*
3394 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3395 	 */
3396 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3397 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3398 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3399 		    bge_replenish_jumbo);
3400 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3401 		    bge_replenish_mini);
3402 	}
3403 
3404 	/*
3405 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3406 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3407 	 */
3408 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3409 		maxring = BGE_SEND_RINGS_MAX;
3410 	else
3411 		maxring = BGE_SEND_RINGS_MAX_5705;
3412 	for (ring = 0; ring < maxring; ++ring) {
3413 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3414 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3415 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3416 			&bgep->send[ring].hw_rcb);
3417 	}
3418 
3419 	/*
3420 	 * Steps 44-45: initialise Receive Return Rings
3421 	 * (0x0200-0x02ff in NIC-local memory)
3422 	 */
3423 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3424 		maxring = BGE_RECV_RINGS_MAX;
3425 	else
3426 		maxring = BGE_RECV_RINGS_MAX_5705;
3427 	for (ring = 0; ring < maxring; ++ring)
3428 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3429 			&bgep->recv[ring].hw_rcb);
3430 
3431 	/*
3432 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3433 	 */
3434 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3435 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3436 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3437 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3438 	}
3439 	/*
3440 	 * Step 47: configure the MAC unicast address
3441 	 * Step 48: configure the random backoff seed
3442 	 * Step 96: set up multicast filters
3443 	 */
3444 #ifdef BGE_IPMI_ASF
3445 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3446 #else
3447 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3448 #endif
3449 		retval = DDI_FAILURE;
3450 
3451 	/*
3452 	 * Step 49: configure the MTU
3453 	 */
3454 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3455 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3456 
3457 	/*
3458 	 * Step 50: configure the IPG et al
3459 	 */
3460 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3461 
3462 	/*
3463 	 * Step 51: configure the default Rx Return Ring
3464 	 */
3465 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3466 
3467 	/*
3468 	 * Steps 52-54: configure Receive List Placement,
3469 	 * and enable Receive List Placement Statistics
3470 	 */
3471 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3472 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3473 	bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3474 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3475 
3476 	if (bgep->chipid.rx_rings > 1)
3477 		bge_init_recv_rule(bgep);
3478 
3479 	/*
3480 	 * Steps 55-56: enable Send Data Initiator Statistics
3481 	 */
3482 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3483 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3484 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3485 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3486 	} else {
3487 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3488 		    SEND_INIT_STATS_ENABLE);
3489 	}
3490 	/*
3491 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3492 	 */
3493 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3494 		retval = DDI_FAILURE;
3495 
3496 	/*
3497 	 * Steps 59-62: initialise Host Coalescing parameters
3498 	 */
3499 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3500 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3501 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3502 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3503 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3504 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3505 		    bge_tx_count_intr);
3506 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3507 		    bge_tx_ticks_intr);
3508 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3509 		    bge_rx_count_intr);
3510 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3511 		    bge_rx_ticks_intr);
3512 	}
3513 
3514 	/*
3515 	 * Steps 63-64: initialise status block & statistics
3516 	 * host memory addresses
3517 	 * The statistic block does not exist in some chipsets
3518 	 * Step 65: initialise Statistics Coalescing Tick Counter
3519 	 */
3520 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3521 		bgep->status_block.cookie.dmac_laddress);
3522 
3523 	/*
3524 	 * Steps 66-67: initialise status block & statistics
3525 	 * NIC-local memory addresses
3526 	 */
3527 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3528 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3529 		    bgep->statistics.cookie.dmac_laddress);
3530 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3531 		    STATISTICS_TICKS_DEFAULT);
3532 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3533 		    NIC_MEM_STATUS_BLOCK);
3534 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3535 		    NIC_MEM_STATISTICS);
3536 	}
3537 
3538 	/*
3539 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3540 	 * Completion Engine, the Receive List Placement Engine, and the
3541 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3542 	 * and BCM5715.
3543 	 */
3544 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3545 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3546 		coalmode = COALESCE_64_BYTE_STATUS;
3547 	else
3548 		coalmode = 0;
3549 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3550 		retval = DDI_FAILURE;
3551 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3552 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3553 		retval = DDI_FAILURE;
3554 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3555 		retval = DDI_FAILURE;
3556 
3557 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3558 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3559 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3560 			retval = DDI_FAILURE;
3561 
3562 	/*
3563 	 * Step 72: Enable MAC DMA engines
3564 	 * Step 73: Clear & enable MAC statistics
3565 	 */
3566 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3567 		ETHERNET_MODE_ENABLE_FHDE |
3568 		ETHERNET_MODE_ENABLE_RDE |
3569 		ETHERNET_MODE_ENABLE_TDE);
3570 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3571 		ETHERNET_MODE_ENABLE_TX_STATS |
3572 		ETHERNET_MODE_ENABLE_RX_STATS |
3573 		ETHERNET_MODE_CLEAR_TX_STATS |
3574 		ETHERNET_MODE_CLEAR_RX_STATS);
3575 
3576 	/*
3577 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3578 	 * Register); not required, as we set up the MLCR in step 10
3579 	 * (part of the reset code) above.
3580 	 *
3581 	 * Step 75: clear Interrupt Mailbox 0
3582 	 */
3583 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3584 
3585 	/*
3586 	 * Steps 76-87: Gentlemen, start your engines ...
3587 	 *
3588 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3589 	 * the Read DMA Engine, Receive Data Completion Engine,
3590 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3591 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3592 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3593 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3594 	 *
3595 	 * Beware exhaust fumes?
3596 	 */
3597 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3598 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3599 			retval = DDI_FAILURE;
3600 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3601 	    (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3602 		retval = DDI_FAILURE;
3603 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3604 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3605 		retval = DDI_FAILURE;
3606 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3607 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3608 		retval = DDI_FAILURE;
3609 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3610 		if (!bge_chip_enable_engine(bgep,
3611 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3612 			retval = DDI_FAILURE;
3613 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3614 		retval = DDI_FAILURE;
3615 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3616 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3617 		retval = DDI_FAILURE;
3618 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3619 	    RCV_BD_DISABLED_RING_ATTN))
3620 		retval = DDI_FAILURE;
3621 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3622 	    RCV_DATA_BD_ILL_RING_ATTN))
3623 		retval = DDI_FAILURE;
3624 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3625 		retval = DDI_FAILURE;
3626 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3627 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3628 		retval = DDI_FAILURE;
3629 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3630 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3631 		retval = DDI_FAILURE;
3632 
3633 	/*
3634 	 * Step 88: download firmware -- doesn't apply
3635 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3636 	 */
3637 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3638 		retval = DDI_FAILURE;
3639 #ifdef BGE_IPMI_ASF
3640 	if (!bgep->asf_enabled) {
3641 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3642 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3643 			retval = DDI_FAILURE;
3644 	} else {
3645 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3646 			retval = DDI_FAILURE;
3647 	}
3648 #else
3649 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3650 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3651 		retval = DDI_FAILURE;
3652 #endif
3653 
3654 	/*
3655 	 * Step 91: disable auto-polling of PHY status
3656 	 */
3657 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3658 
3659 	/*
3660 	 * Step 92: configure D0 power state (not required)
3661 	 * Step 93: initialise LED control register ()
3662 	 */
3663 	ledctl = LED_CONTROL_DEFAULT;
3664 	switch (bgep->chipid.device) {
3665 	case DEVICE_ID_5700:
3666 	case DEVICE_ID_5700x:
3667 	case DEVICE_ID_5701:
3668 		/*
3669 		 * Switch to 5700 (MAC) mode on these older chips
3670 		 */
3671 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3672 		ledctl |= LED_CONTROL_LED_MODE_5700;
3673 		break;
3674 
3675 	default:
3676 		break;
3677 	}
3678 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3679 
3680 	/*
3681 	 * Step 94: activate link
3682 	 */
3683 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3684 
3685 	/*
3686 	 * Step 95: set up physical layer (PHY/SerDes)
3687 	 * restart autoneg (if required)
3688 	 */
3689 	if (reset_phys)
3690 		if (bge_phys_update(bgep) == DDI_FAILURE)
3691 			retval = DDI_FAILURE;
3692 
3693 	/*
3694 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3695 	 */
3696 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3697 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3698 			bgep->buff[ring].rf_next);
3699 
3700 	/*
3701 	 * MSI bits:The least significant MSI 16-bit word.
3702 	 * ISR will be triggered different.
3703 	 */
3704 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3705 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3706 
3707 	/*
3708 	 * Extra step (DSG): select which interrupts are enabled
3709 	 *
3710 	 * Program the Ethernet MAC engine to signal attention on
3711 	 * Link Change events, then enable interrupts on MAC, DMA,
3712 	 * and FLOW attention signals.
3713 	 */
3714 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3715 		ETHERNET_EVENT_LINK_INT |
3716 		ETHERNET_STATUS_PCS_ERROR_INT);
3717 #ifdef BGE_IPMI_ASF
3718 	if (bgep->asf_enabled) {
3719 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3720 			MODE_INT_ON_FLOW_ATTN |
3721 			MODE_INT_ON_DMA_ATTN |
3722 			MODE_HOST_STACK_UP|
3723 			MODE_INT_ON_MAC_ATTN);
3724 	} else {
3725 #endif
3726 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3727 			MODE_INT_ON_FLOW_ATTN |
3728 			MODE_INT_ON_DMA_ATTN |
3729 			MODE_INT_ON_MAC_ATTN);
3730 #ifdef BGE_IPMI_ASF
3731 	}
3732 #endif
3733 
3734 	/*
3735 	 * Step 97: enable PCI interrupts!!!
3736 	 */
3737 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3738 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3739 		    MHCR_MASK_PCI_INT_OUTPUT);
3740 
3741 	/*
3742 	 * All done!
3743 	 */
3744 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3745 	return (retval);
3746 }
3747 
3748 
3749 /*
3750  * ========== Hardware interrupt handler ==========
3751  */
3752 
3753 #undef	BGE_DBG
3754 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3755 
3756 /*
3757  * Sync the status block, then atomically clear the specified bits in
3758  * the <flags-and-tag> field of the status block.
3759  * the <flags> word of the status block, returning the value of the
3760  * <tag> and the <flags> before the bits were cleared.
3761  */
3762 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3763 #pragma	inline(bge_status_sync)
3764 
3765 static int
3766 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3767 {
3768 	bge_status_t *bsp;
3769 	int retval;
3770 
3771 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3772 		(void *)bgep, bits));
3773 
3774 	ASSERT(bgep->bge_guard == BGE_GUARD);
3775 
3776 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3777 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3778 	if (retval != DDI_FM_OK)
3779 		return (retval);
3780 
3781 	bsp = DMA_VPTR(bgep->status_block);
3782 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3783 
3784 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3785 		(void *)bgep, bits, *flags));
3786 
3787 	return (retval);
3788 }
3789 
3790 static void bge_wake_factotum(bge_t *bgep);
3791 #pragma	inline(bge_wake_factotum)
3792 
3793 static void
3794 bge_wake_factotum(bge_t *bgep)
3795 {
3796 	mutex_enter(bgep->softintrlock);
3797 	if (bgep->factotum_flag == 0) {
3798 		bgep->factotum_flag = 1;
3799 		ddi_trigger_softintr(bgep->factotum_id);
3800 	}
3801 	mutex_exit(bgep->softintrlock);
3802 }
3803 
3804 /*
3805  *	bge_intr() -- handle chip interrupts
3806  */
3807 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3808 #pragma	no_inline(bge_intr)
3809 
3810 uint_t
3811 bge_intr(caddr_t arg1, caddr_t arg2)
3812 {
3813 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3814 	bge_status_t *bsp;
3815 	uint64_t flags;
3816 	uint32_t mlcr = 0;
3817 	uint_t result;
3818 	int retval;
3819 
3820 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3821 
3822 	/*
3823 	 * GLD v2 checks that s/w setup is complete before passing
3824 	 * interrupts to this routine, thus eliminating the old
3825 	 * (and well-known) race condition around ddi_add_intr()
3826 	 */
3827 	ASSERT(bgep->progress & PROGRESS_HWINT);
3828 
3829 	/*
3830 	 * Check whether chip's says it's asserting #INTA;
3831 	 * if not, don't process or claim the interrupt.
3832 	 *
3833 	 * Note that the PCI signal is active low, so the
3834 	 * bit is *zero* when the interrupt is asserted.
3835 	 */
3836 	result = DDI_INTR_UNCLAIMED;
3837 	mutex_enter(bgep->genlock);
3838 
3839 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3840 		mlcr = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3841 
3842 	BGE_DEBUG(("bge_intr($%p) ($%p) mlcr 0x%08x", arg1, arg2, mlcr));
3843 
3844 	if ((mlcr & MLCR_INTA_STATE) == 0) {
3845 		/*
3846 		 * Block further PCI interrupts ...
3847 		 */
3848 		result = DDI_INTR_CLAIMED;
3849 
3850 		if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3851 			bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3852 				MHCR_MASK_PCI_INT_OUTPUT);
3853 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
3854 			    DDI_FM_OK)
3855 				goto chip_stop;
3856 		}
3857 
3858 		/*
3859 		 * Sync the status block and grab the flags-n-tag from it.
3860 		 * We count the number of interrupts where there doesn't
3861 		 * seem to have been a DMA update of the status block; if
3862 		 * it *has* been updated, the counter will be cleared in
3863 		 * the while() loop below ...
3864 		 */
3865 		bgep->missed_dmas += 1;
3866 		bsp = DMA_VPTR(bgep->status_block);
3867 		for (;;) {
3868 			if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
3869 				/*
3870 				 * bge_chip_stop() may have freed dma area etc
3871 				 * while we were in this interrupt handler -
3872 				 * better not call bge_status_sync()
3873 				 */
3874 				(void) bge_check_acc_handle(bgep,
3875 				    bgep->io_handle);
3876 				mutex_exit(bgep->genlock);
3877 				return (DDI_INTR_CLAIMED);
3878 			}
3879 			retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
3880 			    &flags);
3881 			if (retval != DDI_FM_OK) {
3882 				bgep->bge_dma_error = B_TRUE;
3883 				goto chip_stop;
3884 			}
3885 
3886 			if (!(flags & STATUS_FLAG_UPDATED))
3887 				break;
3888 
3889 			/*
3890 			 * Tell the chip that we're processing the interrupt
3891 			 */
3892 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3893 				INTERRUPT_MBOX_DISABLE(flags));
3894 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
3895 			    DDI_FM_OK)
3896 				goto chip_stop;
3897 
3898 			/*
3899 			 * Drop the mutex while we:
3900 			 * 	Receive any newly-arrived packets
3901 			 *	Recycle any newly-finished send buffers
3902 			 */
3903 			bgep->bge_intr_running = B_TRUE;
3904 			mutex_exit(bgep->genlock);
3905 			bge_receive(bgep, bsp);
3906 			bge_recycle(bgep, bsp);
3907 			mutex_enter(bgep->genlock);
3908 			bgep->bge_intr_running = B_FALSE;
3909 
3910 			/*
3911 			 * Tell the chip we've finished processing, and
3912 			 * give it the tag that we got from the status
3913 			 * block earlier, so that it knows just how far
3914 			 * we've gone.  If it's got more for us to do,
3915 			 * it will now update the status block and try
3916 			 * to assert an interrupt (but we've got the
3917 			 * #INTA blocked at present).  If we see the
3918 			 * update, we'll loop around to do some more.
3919 			 * Eventually we'll get out of here ...
3920 			 */
3921 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3922 				INTERRUPT_MBOX_ENABLE(flags));
3923 			bgep->missed_dmas = 0;
3924 		}
3925 
3926 		/*
3927 		 * Check for exceptional conditions that we need to handle
3928 		 *
3929 		 * Link status changed
3930 		 * Status block not updated
3931 		 */
3932 		if (flags & STATUS_FLAG_LINK_CHANGED)
3933 			bge_wake_factotum(bgep);
3934 
3935 		if (bgep->missed_dmas) {
3936 			/*
3937 			 * Probably due to the internal status tag not
3938 			 * being reset.  Force a status block update now;
3939 			 * this should ensure that we get an update and
3940 			 * a new interrupt.  After that, we should be in
3941 			 * sync again ...
3942 			 */
3943 			BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
3944 				"not updated?", flags));
3945 			bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
3946 				COALESCE_NOW);
3947 
3948 			if (bgep->missed_dmas >= bge_dma_miss_limit) {
3949 				/*
3950 				 * If this happens multiple times in a row,
3951 				 * it means DMA is just not working.  Maybe
3952 				 * the chip's failed, or maybe there's a
3953 				 * problem on the PCI bus or in the host-PCI
3954 				 * bridge (Tomatillo).
3955 				 *
3956 				 * At all events, we want to stop further
3957 				 * interrupts and let the recovery code take
3958 				 * over to see whether anything can be done
3959 				 * about it ...
3960 				 */
3961 				bge_fm_ereport(bgep,
3962 				    DDI_FM_DEVICE_BADINT_LIMIT);
3963 				goto chip_stop;
3964 			}
3965 		}
3966 
3967 		/*
3968 		 * Reenable assertion of #INTA, unless there's a DMA fault
3969 		 */
3970 		if (result == DDI_INTR_CLAIMED) {
3971 			if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3972 				bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
3973 					MHCR_MASK_PCI_INT_OUTPUT);
3974 				if (bge_check_acc_handle(bgep,
3975 				    bgep->cfg_handle) != DDI_FM_OK)
3976 					goto chip_stop;
3977 			}
3978 		}
3979 	}
3980 
3981 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3982 		goto chip_stop;
3983 
3984 	mutex_exit(bgep->genlock);
3985 	return (result);
3986 
3987 chip_stop:
3988 #ifdef BGE_IPMI_ASF
3989 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
3990 		/*
3991 		 * We must stop ASF heart beat before
3992 		 * bge_chip_stop(), otherwise some
3993 		 * computers (ex. IBM HS20 blade
3994 		 * server) may crash.
3995 		 */
3996 		bge_asf_update_status(bgep);
3997 		bge_asf_stop_timer(bgep);
3998 		bgep->asf_status = ASF_STAT_STOP;
3999 
4000 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4001 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4002 	}
4003 #endif
4004 	bge_chip_stop(bgep, B_TRUE);
4005 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4006 	mutex_exit(bgep->genlock);
4007 	return (result);
4008 }
4009 
4010 /*
4011  * ========== Factotum, implemented as a softint handler ==========
4012  */
4013 
4014 #undef	BGE_DBG
4015 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4016 
4017 static void bge_factotum_error_handler(bge_t *bgep);
4018 #pragma	no_inline(bge_factotum_error_handler)
4019 
4020 static void
4021 bge_factotum_error_handler(bge_t *bgep)
4022 {
4023 	uint32_t flow;
4024 	uint32_t rdma;
4025 	uint32_t wdma;
4026 	uint32_t tmac;
4027 	uint32_t rmac;
4028 	uint32_t rxrs;
4029 	uint32_t txrs = 0;
4030 
4031 	ASSERT(mutex_owned(bgep->genlock));
4032 
4033 	/*
4034 	 * Read all the registers that show the possible
4035 	 * reasons for the ERROR bit to be asserted
4036 	 */
4037 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4038 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4039 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4040 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4041 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4042 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4043 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4044 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4045 
4046 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4047 		(void *)bgep, flow, rdma, wdma));
4048 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4049 		(void *)bgep, tmac, rmac, rxrs, txrs));
4050 
4051 	/*
4052 	 * For now, just clear all the errors ...
4053 	 */
4054 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4055 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4056 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4057 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4058 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4059 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4060 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4061 }
4062 
4063 /*
4064  * Handler for hardware link state change.
4065  *
4066  * When this routine is called, the hardware link state has changed
4067  * and the new state is reflected in the param_* variables.  Here
4068  * we must update the softstate, reprogram the MAC to match, and
4069  * record the change in the log and/or on the console.
4070  */
4071 static void bge_factotum_link_handler(bge_t *bgep);
4072 #pragma	no_inline(bge_factotum_link_handler)
4073 
4074 static void
4075 bge_factotum_link_handler(bge_t *bgep)
4076 {
4077 	void (*logfn)(bge_t *bgep, const char *fmt, ...);
4078 	const char *msg;
4079 	hrtime_t deltat;
4080 
4081 	ASSERT(mutex_owned(bgep->genlock));
4082 
4083 	/*
4084 	 * Update the s/w link_state
4085 	 */
4086 	if (bgep->param_link_up)
4087 		bgep->link_state = LINK_STATE_UP;
4088 	else
4089 		bgep->link_state = LINK_STATE_DOWN;
4090 
4091 	/*
4092 	 * Reprogram the MAC modes to match
4093 	 */
4094 	bge_sync_mac_modes(bgep);
4095 
4096 	/*
4097 	 * Finally, we have to decide whether to write a message
4098 	 * on the console or only in the log.  If the PHY has
4099 	 * been reprogrammed (at user request) "recently", then
4100 	 * the message only goes in the log.  Otherwise it's an
4101 	 * "unexpected" event, and it goes on the console as well.
4102 	 */
4103 	deltat = bgep->phys_event_time - bgep->phys_write_time;
4104 	if (deltat > BGE_LINK_SETTLE_TIME)
4105 		msg = "";
4106 	else if (bgep->param_link_up)
4107 		msg = bgep->link_up_msg;
4108 	else
4109 		msg = bgep->link_down_msg;
4110 
4111 	logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
4112 	(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
4113 }
4114 
4115 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4116 #pragma	no_inline(bge_factotum_link_check)
4117 
4118 static boolean_t
4119 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4120 {
4121 	boolean_t check;
4122 	uint64_t flags;
4123 	uint32_t tmac_status;
4124 
4125 	ASSERT(mutex_owned(bgep->genlock));
4126 
4127 	/*
4128 	 * Get & clear the writable status bits in the Tx status register
4129 	 * (some bits are write-1-to-clear, others are just readonly).
4130 	 */
4131 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4132 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4133 
4134 	/*
4135 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4136 	 */
4137 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4138 	    STATUS_FLAG_LINK_CHANGED, &flags);
4139 	if (*dma_state != DDI_FM_OK)
4140 		return (B_FALSE);
4141 
4142 	/*
4143 	 * Clear any errors flagged in the status block ...
4144 	 */
4145 	if (flags & STATUS_FLAG_ERROR)
4146 		bge_factotum_error_handler(bgep);
4147 
4148 	/*
4149 	 * We need to check the link status if:
4150 	 *	the status block says there's been a link change
4151 	 *	or there's any discrepancy between the various
4152 	 *	flags indicating the link state (link_state,
4153 	 *	param_link_up, and the LINK STATE bit in the
4154 	 *	Transmit MAC status register).
4155 	 */
4156 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4157 	switch (bgep->link_state) {
4158 	case LINK_STATE_UP:
4159 		check |= (bgep->param_link_up == B_FALSE);
4160 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4161 		break;
4162 
4163 	case LINK_STATE_DOWN:
4164 		check |= (bgep->param_link_up != B_FALSE);
4165 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4166 		break;
4167 
4168 	default:
4169 		check = B_TRUE;
4170 		break;
4171 	}
4172 
4173 	/*
4174 	 * If <check> is false, we're sure the link hasn't changed.
4175 	 * If true, however, it's not yet definitive; we have to call
4176 	 * bge_phys_check() to determine whether the link has settled
4177 	 * into a new state yet ... and if it has, then call the link
4178 	 * state change handler.But when the chip is 5700 in Dell 6650
4179 	 * ,even if check is false, the link may have changed.So we
4180 	 * have to call bge_phys_check() to determine the link state.
4181 	 */
4182 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4183 		check = bge_phys_check(bgep);
4184 		if (check)
4185 			bge_factotum_link_handler(bgep);
4186 	}
4187 
4188 	return (check);
4189 }
4190 
4191 /*
4192  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4193  */
4194 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4195 #pragma	no_inline(bge_factotum_stall_check)
4196 
4197 static boolean_t
4198 bge_factotum_stall_check(bge_t *bgep)
4199 {
4200 	uint32_t dogval;
4201 
4202 	ASSERT(mutex_owned(bgep->genlock));
4203 
4204 	/*
4205 	 * Specific check for Tx stall ...
4206 	 *
4207 	 * The 'watchdog' counter is incremented whenever a packet
4208 	 * is queued, reset to 1 when some (but not all) buffers
4209 	 * are reclaimed, reset to 0 (disabled) when all buffers
4210 	 * are reclaimed, and shifted left here.  If it exceeds the
4211 	 * threshold value, the chip is assumed to have stalled and
4212 	 * is put into the ERROR state.  The factotum will then reset
4213 	 * it on the next pass.
4214 	 *
4215 	 * All of which should ensure that we don't get into a state
4216 	 * where packets are left pending indefinitely!
4217 	 */
4218 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4219 	if (dogval < bge_watchdog_count)
4220 		return (B_FALSE);
4221 
4222 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4223 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4224 	return (B_TRUE);
4225 }
4226 
4227 /*
4228  * The factotum is woken up when there's something to do that we'd rather
4229  * not do from inside a hardware interrupt handler or high-level cyclic.
4230  * Its two main tasks are:
4231  *	reset & restart the chip after an error
4232  *	check the link status whenever necessary
4233  */
4234 uint_t bge_chip_factotum(caddr_t arg);
4235 #pragma	no_inline(bge_chip_factotum)
4236 
4237 uint_t
4238 bge_chip_factotum(caddr_t arg)
4239 {
4240 	bge_t *bgep;
4241 	uint_t result;
4242 	boolean_t error;
4243 	boolean_t linkchg;
4244 	int dma_state;
4245 
4246 	bgep = (bge_t *)arg;
4247 
4248 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4249 
4250 	mutex_enter(bgep->softintrlock);
4251 	if (bgep->factotum_flag == 0) {
4252 		mutex_exit(bgep->softintrlock);
4253 		return (DDI_INTR_UNCLAIMED);
4254 	}
4255 	bgep->factotum_flag = 0;
4256 	mutex_exit(bgep->softintrlock);
4257 
4258 	result = DDI_INTR_CLAIMED;
4259 	error = B_FALSE;
4260 	linkchg = B_FALSE;
4261 
4262 	mutex_enter(bgep->genlock);
4263 	switch (bgep->bge_chip_state) {
4264 	default:
4265 		break;
4266 
4267 	case BGE_CHIP_RUNNING:
4268 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4269 		error = bge_factotum_stall_check(bgep);
4270 		if (dma_state != DDI_FM_OK) {
4271 			bgep->bge_dma_error = B_TRUE;
4272 			error = B_TRUE;
4273 		}
4274 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4275 			error = B_TRUE;
4276 		if (error)
4277 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4278 		break;
4279 
4280 	case BGE_CHIP_ERROR:
4281 		error = B_TRUE;
4282 		break;
4283 
4284 	case BGE_CHIP_FAULT:
4285 		/*
4286 		 * Fault detected, time to reset ...
4287 		 */
4288 		if (bge_autorecover) {
4289 			if (!(bgep->progress & PROGRESS_BUFS)) {
4290 				/*
4291 				 * if we can't allocate the ring buffers,
4292 				 * try later
4293 				 */
4294 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4295 					mutex_exit(bgep->genlock);
4296 					return (result);
4297 				}
4298 				bgep->progress |= PROGRESS_BUFS;
4299 			}
4300 			if (!(bgep->progress & PROGRESS_INTR)) {
4301 				bge_init_rings(bgep);
4302 				bge_intr_enable(bgep);
4303 				bgep->progress |= PROGRESS_INTR;
4304 			}
4305 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4306 				bge_init_kstats(bgep,
4307 				    ddi_get_instance(bgep->devinfo));
4308 				bgep->progress |= PROGRESS_KSTATS;
4309 			}
4310 
4311 			BGE_REPORT((bgep, "automatic recovery activated"));
4312 
4313 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4314 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4315 				error = B_TRUE;
4316 			}
4317 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4318 			    DDI_FM_OK) {
4319 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4320 				error = B_TRUE;
4321 			}
4322 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4323 			    DDI_FM_OK) {
4324 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4325 				error = B_TRUE;
4326 			}
4327 			if (error == B_FALSE) {
4328 #ifdef BGE_IPMI_ASF
4329 				if (bgep->asf_enabled &&
4330 				    bgep->asf_status != ASF_STAT_RUN) {
4331 					bgep->asf_timeout_id = timeout(
4332 					    bge_asf_heartbeat, (void *)bgep,
4333 					    drv_usectohz(
4334 					    BGE_ASF_HEARTBEAT_INTERVAL));
4335 					bgep->asf_status = ASF_STAT_RUN;
4336 				}
4337 #endif
4338 				ddi_fm_service_impact(bgep->devinfo,
4339 				    DDI_SERVICE_RESTORED);
4340 			}
4341 		}
4342 		break;
4343 	}
4344 
4345 
4346 	/*
4347 	 * If an error is detected, stop the chip now, marking it as
4348 	 * faulty, so that it will be reset next time through ...
4349 	 *
4350 	 * Note that if intr_running is set, then bge_intr() has dropped
4351 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4352 	 * this point so have to wait until the next time the factotum runs.
4353 	 */
4354 	if (error && !bgep->bge_intr_running) {
4355 #ifdef BGE_IPMI_ASF
4356 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4357 			/*
4358 			 * We must stop ASF heart beat before bge_chip_stop(),
4359 			 * otherwise some computers (ex. IBM HS20 blade server)
4360 			 * may crash.
4361 			 */
4362 			bge_asf_update_status(bgep);
4363 			bge_asf_stop_timer(bgep);
4364 			bgep->asf_status = ASF_STAT_STOP;
4365 
4366 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4367 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4368 		}
4369 #endif
4370 		bge_chip_stop(bgep, B_TRUE);
4371 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4372 	}
4373 	mutex_exit(bgep->genlock);
4374 
4375 	/*
4376 	 * If the link state changed, tell the world about it.
4377 	 * Note: can't do this while still holding the mutex.
4378 	 */
4379 	if (linkchg)
4380 		mac_link_update(bgep->mh, bgep->link_state);
4381 
4382 	return (result);
4383 }
4384 
4385 /*
4386  * High-level cyclic handler
4387  *
4388  * This routine schedules a (low-level) softint callback to the
4389  * factotum, and prods the chip to update the status block (which
4390  * will cause a hardware interrupt when complete).
4391  */
4392 void bge_chip_cyclic(void *arg);
4393 #pragma	no_inline(bge_chip_cyclic)
4394 
4395 void
4396 bge_chip_cyclic(void *arg)
4397 {
4398 	bge_t *bgep;
4399 
4400 	bgep = arg;
4401 
4402 	switch (bgep->bge_chip_state) {
4403 	default:
4404 		return;
4405 
4406 	case BGE_CHIP_RUNNING:
4407 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4408 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4409 			ddi_fm_service_impact(bgep->devinfo,
4410 			    DDI_SERVICE_UNAFFECTED);
4411 		break;
4412 
4413 	case BGE_CHIP_FAULT:
4414 	case BGE_CHIP_ERROR:
4415 		break;
4416 	}
4417 
4418 	bge_wake_factotum(bgep);
4419 }
4420 
4421 
4422 /*
4423  * ========== Ioctl subfunctions ==========
4424  */
4425 
4426 #undef	BGE_DBG
4427 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4428 
4429 #if	BGE_DEBUGGING || BGE_DO_PPIO
4430 
4431 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4432 #pragma	no_inline(bge_chip_peek_cfg)
4433 
4434 static void
4435 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4436 {
4437 	uint64_t regval;
4438 	uint64_t regno;
4439 
4440 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4441 		(void *)bgep, (void *)ppd));
4442 
4443 	regno = ppd->pp_acc_offset;
4444 
4445 	switch (ppd->pp_acc_size) {
4446 	case 1:
4447 		regval = pci_config_get8(bgep->cfg_handle, regno);
4448 		break;
4449 
4450 	case 2:
4451 		regval = pci_config_get16(bgep->cfg_handle, regno);
4452 		break;
4453 
4454 	case 4:
4455 		regval = pci_config_get32(bgep->cfg_handle, regno);
4456 		break;
4457 
4458 	case 8:
4459 		regval = pci_config_get64(bgep->cfg_handle, regno);
4460 		break;
4461 	}
4462 
4463 	ppd->pp_acc_data = regval;
4464 }
4465 
4466 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4467 #pragma	no_inline(bge_chip_poke_cfg)
4468 
4469 static void
4470 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4471 {
4472 	uint64_t regval;
4473 	uint64_t regno;
4474 
4475 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4476 		(void *)bgep, (void *)ppd));
4477 
4478 	regno = ppd->pp_acc_offset;
4479 	regval = ppd->pp_acc_data;
4480 
4481 	switch (ppd->pp_acc_size) {
4482 	case 1:
4483 		pci_config_put8(bgep->cfg_handle, regno, regval);
4484 		break;
4485 
4486 	case 2:
4487 		pci_config_put16(bgep->cfg_handle, regno, regval);
4488 		break;
4489 
4490 	case 4:
4491 		pci_config_put32(bgep->cfg_handle, regno, regval);
4492 		break;
4493 
4494 	case 8:
4495 		pci_config_put64(bgep->cfg_handle, regno, regval);
4496 		break;
4497 	}
4498 }
4499 
4500 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4501 #pragma	no_inline(bge_chip_peek_reg)
4502 
4503 static void
4504 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4505 {
4506 	uint64_t regval;
4507 	void *regaddr;
4508 
4509 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4510 		(void *)bgep, (void *)ppd));
4511 
4512 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4513 
4514 	switch (ppd->pp_acc_size) {
4515 	case 1:
4516 		regval = ddi_get8(bgep->io_handle, regaddr);
4517 		break;
4518 
4519 	case 2:
4520 		regval = ddi_get16(bgep->io_handle, regaddr);
4521 		break;
4522 
4523 	case 4:
4524 		regval = ddi_get32(bgep->io_handle, regaddr);
4525 		break;
4526 
4527 	case 8:
4528 		regval = ddi_get64(bgep->io_handle, regaddr);
4529 		break;
4530 	}
4531 
4532 	ppd->pp_acc_data = regval;
4533 }
4534 
4535 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4536 #pragma	no_inline(bge_chip_peek_reg)
4537 
4538 static void
4539 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4540 {
4541 	uint64_t regval;
4542 	void *regaddr;
4543 
4544 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4545 		(void *)bgep, (void *)ppd));
4546 
4547 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4548 	regval = ppd->pp_acc_data;
4549 
4550 	switch (ppd->pp_acc_size) {
4551 	case 1:
4552 		ddi_put8(bgep->io_handle, regaddr, regval);
4553 		break;
4554 
4555 	case 2:
4556 		ddi_put16(bgep->io_handle, regaddr, regval);
4557 		break;
4558 
4559 	case 4:
4560 		ddi_put32(bgep->io_handle, regaddr, regval);
4561 		break;
4562 
4563 	case 8:
4564 		ddi_put64(bgep->io_handle, regaddr, regval);
4565 		break;
4566 	}
4567 	BGE_PCICHK(bgep);
4568 }
4569 
4570 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4571 #pragma	no_inline(bge_chip_peek_nic)
4572 
4573 static void
4574 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4575 {
4576 	uint64_t regoff;
4577 	uint64_t regval;
4578 	void *regaddr;
4579 
4580 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4581 		(void *)bgep, (void *)ppd));
4582 
4583 	regoff = ppd->pp_acc_offset;
4584 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4585 	regoff &= MWBAR_GRANULE_MASK;
4586 	regoff += NIC_MEM_WINDOW_OFFSET;
4587 	regaddr = PIO_ADDR(bgep, regoff);
4588 
4589 	switch (ppd->pp_acc_size) {
4590 	case 1:
4591 		regval = ddi_get8(bgep->io_handle, regaddr);
4592 		break;
4593 
4594 	case 2:
4595 		regval = ddi_get16(bgep->io_handle, regaddr);
4596 		break;
4597 
4598 	case 4:
4599 		regval = ddi_get32(bgep->io_handle, regaddr);
4600 		break;
4601 
4602 	case 8:
4603 		regval = ddi_get64(bgep->io_handle, regaddr);
4604 		break;
4605 	}
4606 
4607 	ppd->pp_acc_data = regval;
4608 }
4609 
4610 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4611 #pragma	no_inline(bge_chip_poke_nic)
4612 
4613 static void
4614 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4615 {
4616 	uint64_t regoff;
4617 	uint64_t regval;
4618 	void *regaddr;
4619 
4620 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4621 		(void *)bgep, (void *)ppd));
4622 
4623 	regoff = ppd->pp_acc_offset;
4624 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4625 	regoff &= MWBAR_GRANULE_MASK;
4626 	regoff += NIC_MEM_WINDOW_OFFSET;
4627 	regaddr = PIO_ADDR(bgep, regoff);
4628 	regval = ppd->pp_acc_data;
4629 
4630 	switch (ppd->pp_acc_size) {
4631 	case 1:
4632 		ddi_put8(bgep->io_handle, regaddr, regval);
4633 		break;
4634 
4635 	case 2:
4636 		ddi_put16(bgep->io_handle, regaddr, regval);
4637 		break;
4638 
4639 	case 4:
4640 		ddi_put32(bgep->io_handle, regaddr, regval);
4641 		break;
4642 
4643 	case 8:
4644 		ddi_put64(bgep->io_handle, regaddr, regval);
4645 		break;
4646 	}
4647 	BGE_PCICHK(bgep);
4648 }
4649 
4650 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4651 #pragma	no_inline(bge_chip_peek_mii)
4652 
4653 static void
4654 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4655 {
4656 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4657 		(void *)bgep, (void *)ppd));
4658 
4659 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4660 }
4661 
4662 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4663 #pragma	no_inline(bge_chip_poke_mii)
4664 
4665 static void
4666 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4667 {
4668 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4669 		(void *)bgep, (void *)ppd));
4670 
4671 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4672 }
4673 
4674 #if	BGE_SEE_IO32
4675 
4676 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4677 #pragma	no_inline(bge_chip_peek_seeprom)
4678 
4679 static void
4680 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4681 {
4682 	uint32_t data;
4683 	int err;
4684 
4685 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4686 		(void *)bgep, (void *)ppd));
4687 
4688 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4689 	ppd->pp_acc_data = err ? ~0ull : data;
4690 }
4691 
4692 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4693 #pragma	no_inline(bge_chip_poke_seeprom)
4694 
4695 static void
4696 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4697 {
4698 	uint32_t data;
4699 
4700 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4701 		(void *)bgep, (void *)ppd));
4702 
4703 	data = ppd->pp_acc_data;
4704 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4705 }
4706 #endif	/* BGE_SEE_IO32 */
4707 
4708 #if	BGE_FLASH_IO32
4709 
4710 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4711 #pragma	no_inline(bge_chip_peek_flash)
4712 
4713 static void
4714 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4715 {
4716 	uint32_t data;
4717 	int err;
4718 
4719 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4720 		(void *)bgep, (void *)ppd));
4721 
4722 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4723 	ppd->pp_acc_data = err ? ~0ull : data;
4724 }
4725 
4726 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4727 #pragma	no_inline(bge_chip_poke_flash)
4728 
4729 static void
4730 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4731 {
4732 	uint32_t data;
4733 
4734 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4735 		(void *)bgep, (void *)ppd));
4736 
4737 	data = ppd->pp_acc_data;
4738 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4739 	    ppd->pp_acc_offset, &data);
4740 }
4741 #endif	/* BGE_FLASH_IO32 */
4742 
4743 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4744 #pragma	no_inline(bge_chip_peek_mem)
4745 
4746 static void
4747 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4748 {
4749 	uint64_t regval;
4750 	void *vaddr;
4751 
4752 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4753 		(void *)bgep, (void *)ppd));
4754 
4755 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4756 
4757 	switch (ppd->pp_acc_size) {
4758 	case 1:
4759 		regval = *(uint8_t *)vaddr;
4760 		break;
4761 
4762 	case 2:
4763 		regval = *(uint16_t *)vaddr;
4764 		break;
4765 
4766 	case 4:
4767 		regval = *(uint32_t *)vaddr;
4768 		break;
4769 
4770 	case 8:
4771 		regval = *(uint64_t *)vaddr;
4772 		break;
4773 	}
4774 
4775 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4776 		(void *)bgep, (void *)ppd, regval, vaddr));
4777 
4778 	ppd->pp_acc_data = regval;
4779 }
4780 
4781 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4782 #pragma	no_inline(bge_chip_poke_mem)
4783 
4784 static void
4785 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4786 {
4787 	uint64_t regval;
4788 	void *vaddr;
4789 
4790 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4791 		(void *)bgep, (void *)ppd));
4792 
4793 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4794 	regval = ppd->pp_acc_data;
4795 
4796 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4797 		(void *)bgep, (void *)ppd, regval, vaddr));
4798 
4799 	switch (ppd->pp_acc_size) {
4800 	case 1:
4801 		*(uint8_t *)vaddr = (uint8_t)regval;
4802 		break;
4803 
4804 	case 2:
4805 		*(uint16_t *)vaddr = (uint16_t)regval;
4806 		break;
4807 
4808 	case 4:
4809 		*(uint32_t *)vaddr = (uint32_t)regval;
4810 		break;
4811 
4812 	case 8:
4813 		*(uint64_t *)vaddr = (uint64_t)regval;
4814 		break;
4815 	}
4816 }
4817 
4818 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4819 					struct iocblk *iocp);
4820 #pragma	no_inline(bge_pp_ioctl)
4821 
4822 static enum ioc_reply
4823 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4824 {
4825 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4826 	bge_peekpoke_t *ppd;
4827 	dma_area_t *areap;
4828 	uint64_t sizemask;
4829 	uint64_t mem_va;
4830 	uint64_t maxoff;
4831 	boolean_t peek;
4832 
4833 	switch (cmd) {
4834 	default:
4835 		/* NOTREACHED */
4836 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4837 		return (IOC_INVAL);
4838 
4839 	case BGE_PEEK:
4840 		peek = B_TRUE;
4841 		break;
4842 
4843 	case BGE_POKE:
4844 		peek = B_FALSE;
4845 		break;
4846 	}
4847 
4848 	/*
4849 	 * Validate format of ioctl
4850 	 */
4851 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4852 		return (IOC_INVAL);
4853 	if (mp->b_cont == NULL)
4854 		return (IOC_INVAL);
4855 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4856 
4857 	/*
4858 	 * Validate request parameters
4859 	 */
4860 	switch (ppd->pp_acc_space) {
4861 	default:
4862 		return (IOC_INVAL);
4863 
4864 	case BGE_PP_SPACE_CFG:
4865 		/*
4866 		 * Config space
4867 		 */
4868 		sizemask = 8|4|2|1;
4869 		mem_va = 0;
4870 		maxoff = PCI_CONF_HDR_SIZE;
4871 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4872 		break;
4873 
4874 	case BGE_PP_SPACE_REG:
4875 		/*
4876 		 * Memory-mapped I/O space
4877 		 */
4878 		sizemask = 8|4|2|1;
4879 		mem_va = 0;
4880 		maxoff = RIAAR_REGISTER_MAX;
4881 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4882 		break;
4883 
4884 	case BGE_PP_SPACE_NIC:
4885 		/*
4886 		 * NIC on-chip memory
4887 		 */
4888 		sizemask = 8|4|2|1;
4889 		mem_va = 0;
4890 		maxoff = MWBAR_ONCHIP_MAX;
4891 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4892 		break;
4893 
4894 	case BGE_PP_SPACE_MII:
4895 		/*
4896 		 * PHY's MII registers
4897 		 * NB: all PHY registers are two bytes, but the
4898 		 * addresses increment in ones (word addressing).
4899 		 * So we scale the address here, then undo the
4900 		 * transformation inside the peek/poke functions.
4901 		 */
4902 		ppd->pp_acc_offset *= 2;
4903 		sizemask = 2;
4904 		mem_va = 0;
4905 		maxoff = (MII_MAXREG+1)*2;
4906 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
4907 		break;
4908 
4909 #if	BGE_SEE_IO32
4910 	case BGE_PP_SPACE_SEEPROM:
4911 		/*
4912 		 * Attached SEEPROM(s), if any.
4913 		 * NB: we use the high-order bits of the 'address' as
4914 		 * a device select to accommodate multiple SEEPROMS,
4915 		 * If each one is the maximum size (64kbytes), this
4916 		 * makes them appear contiguous.  Otherwise, there may
4917 		 * be holes in the mapping.  ENxS doesn't have any
4918 		 * SEEPROMs anyway ...
4919 		 */
4920 		sizemask = 4;
4921 		mem_va = 0;
4922 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
4923 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
4924 		break;
4925 #endif	/* BGE_SEE_IO32 */
4926 
4927 #if	BGE_FLASH_IO32
4928 	case BGE_PP_SPACE_FLASH:
4929 		/*
4930 		 * Attached Flash device (if any); a maximum of one device
4931 		 * is currently supported.  But it can be up to 1MB (unlike
4932 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
4933 		 */
4934 		sizemask = 4;
4935 		mem_va = 0;
4936 		maxoff = NVM_FLASH_ADDR_MASK;
4937 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
4938 		break;
4939 #endif	/* BGE_FLASH_IO32 */
4940 
4941 	case BGE_PP_SPACE_BGE:
4942 		/*
4943 		 * BGE data structure!
4944 		 */
4945 		sizemask = 8|4|2|1;
4946 		mem_va = (uintptr_t)bgep;
4947 		maxoff = sizeof (*bgep);
4948 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4949 		break;
4950 
4951 	case BGE_PP_SPACE_STATUS:
4952 	case BGE_PP_SPACE_STATISTICS:
4953 	case BGE_PP_SPACE_TXDESC:
4954 	case BGE_PP_SPACE_TXBUFF:
4955 	case BGE_PP_SPACE_RXDESC:
4956 	case BGE_PP_SPACE_RXBUFF:
4957 		/*
4958 		 * Various DMA_AREAs
4959 		 */
4960 		switch (ppd->pp_acc_space) {
4961 		case BGE_PP_SPACE_TXDESC:
4962 			areap = &bgep->tx_desc;
4963 			break;
4964 		case BGE_PP_SPACE_TXBUFF:
4965 			areap = &bgep->tx_buff[0];
4966 			break;
4967 		case BGE_PP_SPACE_RXDESC:
4968 			areap = &bgep->rx_desc[0];
4969 			break;
4970 		case BGE_PP_SPACE_RXBUFF:
4971 			areap = &bgep->rx_buff[0];
4972 			break;
4973 		case BGE_PP_SPACE_STATUS:
4974 			areap = &bgep->status_block;
4975 			break;
4976 		case BGE_PP_SPACE_STATISTICS:
4977 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4978 				areap = &bgep->statistics;
4979 			break;
4980 		}
4981 
4982 		sizemask = 8|4|2|1;
4983 		mem_va = (uintptr_t)areap->mem_va;
4984 		maxoff = areap->alength;
4985 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4986 		break;
4987 	}
4988 
4989 	switch (ppd->pp_acc_size) {
4990 	default:
4991 		return (IOC_INVAL);
4992 
4993 	case 8:
4994 	case 4:
4995 	case 2:
4996 	case 1:
4997 		if ((ppd->pp_acc_size & sizemask) == 0)
4998 			return (IOC_INVAL);
4999 		break;
5000 	}
5001 
5002 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5003 		return (IOC_INVAL);
5004 
5005 	if (ppd->pp_acc_offset >= maxoff)
5006 		return (IOC_INVAL);
5007 
5008 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5009 		return (IOC_INVAL);
5010 
5011 	/*
5012 	 * All OK - go do it!
5013 	 */
5014 	ppd->pp_acc_offset += mem_va;
5015 	(*ppfn)(bgep, ppd);
5016 	return (peek ? IOC_REPLY : IOC_ACK);
5017 }
5018 
5019 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5020 					struct iocblk *iocp);
5021 #pragma	no_inline(bge_diag_ioctl)
5022 
5023 static enum ioc_reply
5024 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5025 {
5026 	ASSERT(mutex_owned(bgep->genlock));
5027 
5028 	switch (cmd) {
5029 	default:
5030 		/* NOTREACHED */
5031 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5032 		return (IOC_INVAL);
5033 
5034 	case BGE_DIAG:
5035 		/*
5036 		 * Currently a no-op
5037 		 */
5038 		return (IOC_ACK);
5039 
5040 	case BGE_PEEK:
5041 	case BGE_POKE:
5042 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5043 
5044 	case BGE_PHY_RESET:
5045 		return (IOC_RESTART_ACK);
5046 
5047 	case BGE_SOFT_RESET:
5048 	case BGE_HARD_RESET:
5049 		/*
5050 		 * Reset and reinitialise the 570x hardware
5051 		 */
5052 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5053 		return (IOC_ACK);
5054 	}
5055 
5056 	/* NOTREACHED */
5057 }
5058 
5059 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5060 
5061 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5062 				    struct iocblk *iocp);
5063 #pragma	no_inline(bge_mii_ioctl)
5064 
5065 static enum ioc_reply
5066 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5067 {
5068 	struct bge_mii_rw *miirwp;
5069 
5070 	/*
5071 	 * Validate format of ioctl
5072 	 */
5073 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5074 		return (IOC_INVAL);
5075 	if (mp->b_cont == NULL)
5076 		return (IOC_INVAL);
5077 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5078 
5079 	/*
5080 	 * Validate request parameters ...
5081 	 */
5082 	if (miirwp->mii_reg > MII_MAXREG)
5083 		return (IOC_INVAL);
5084 
5085 	switch (cmd) {
5086 	default:
5087 		/* NOTREACHED */
5088 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5089 		return (IOC_INVAL);
5090 
5091 	case BGE_MII_READ:
5092 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5093 		return (IOC_REPLY);
5094 
5095 	case BGE_MII_WRITE:
5096 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5097 		return (IOC_ACK);
5098 	}
5099 
5100 	/* NOTREACHED */
5101 }
5102 
5103 #if	BGE_SEE_IO32
5104 
5105 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5106 				    struct iocblk *iocp);
5107 #pragma	no_inline(bge_see_ioctl)
5108 
5109 static enum ioc_reply
5110 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5111 {
5112 	struct bge_see_rw *seerwp;
5113 
5114 	/*
5115 	 * Validate format of ioctl
5116 	 */
5117 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5118 		return (IOC_INVAL);
5119 	if (mp->b_cont == NULL)
5120 		return (IOC_INVAL);
5121 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5122 
5123 	/*
5124 	 * Validate request parameters ...
5125 	 */
5126 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5127 		return (IOC_INVAL);
5128 
5129 	switch (cmd) {
5130 	default:
5131 		/* NOTREACHED */
5132 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5133 		return (IOC_INVAL);
5134 
5135 	case BGE_SEE_READ:
5136 	case BGE_SEE_WRITE:
5137 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5138 		    seerwp->see_addr, &seerwp->see_data);
5139 		return (IOC_REPLY);
5140 	}
5141 
5142 	/* NOTREACHED */
5143 }
5144 
5145 #endif	/* BGE_SEE_IO32 */
5146 
5147 #if	BGE_FLASH_IO32
5148 
5149 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5150 				    struct iocblk *iocp);
5151 #pragma	no_inline(bge_flash_ioctl)
5152 
5153 static enum ioc_reply
5154 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5155 {
5156 	struct bge_flash_rw *flashrwp;
5157 
5158 	/*
5159 	 * Validate format of ioctl
5160 	 */
5161 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5162 		return (IOC_INVAL);
5163 	if (mp->b_cont == NULL)
5164 		return (IOC_INVAL);
5165 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5166 
5167 	/*
5168 	 * Validate request parameters ...
5169 	 */
5170 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5171 		return (IOC_INVAL);
5172 
5173 	switch (cmd) {
5174 	default:
5175 		/* NOTREACHED */
5176 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5177 		return (IOC_INVAL);
5178 
5179 	case BGE_FLASH_READ:
5180 	case BGE_FLASH_WRITE:
5181 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5182 		    flashrwp->flash_addr, &flashrwp->flash_data);
5183 		return (IOC_REPLY);
5184 	}
5185 
5186 	/* NOTREACHED */
5187 }
5188 
5189 #endif	/* BGE_FLASH_IO32 */
5190 
5191 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5192 				struct iocblk *iocp);
5193 #pragma	no_inline(bge_chip_ioctl)
5194 
5195 enum ioc_reply
5196 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5197 {
5198 	int cmd;
5199 
5200 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5201 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5202 
5203 	ASSERT(mutex_owned(bgep->genlock));
5204 
5205 	cmd = iocp->ioc_cmd;
5206 	switch (cmd) {
5207 	default:
5208 		/* NOTREACHED */
5209 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5210 		return (IOC_INVAL);
5211 
5212 	case BGE_DIAG:
5213 	case BGE_PEEK:
5214 	case BGE_POKE:
5215 	case BGE_PHY_RESET:
5216 	case BGE_SOFT_RESET:
5217 	case BGE_HARD_RESET:
5218 #if	BGE_DEBUGGING || BGE_DO_PPIO
5219 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5220 #else
5221 		return (IOC_INVAL);
5222 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5223 
5224 	case BGE_MII_READ:
5225 	case BGE_MII_WRITE:
5226 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5227 
5228 #if	BGE_SEE_IO32
5229 	case BGE_SEE_READ:
5230 	case BGE_SEE_WRITE:
5231 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5232 #endif	/* BGE_SEE_IO32 */
5233 
5234 #if	BGE_FLASH_IO32
5235 	case BGE_FLASH_READ:
5236 	case BGE_FLASH_WRITE:
5237 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5238 #endif	/* BGE_FLASH_IO32 */
5239 	}
5240 
5241 	/* NOTREACHED */
5242 }
5243 
5244 void
5245 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5246 {
5247 	bge_t *bgep = arg;
5248 
5249 	mutex_enter(bgep->genlock);
5250 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5251 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5252 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5253 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5254 	mutex_exit(bgep->genlock);
5255 }
5256 
5257 #ifdef BGE_IPMI_ASF
5258 
5259 uint32_t
5260 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5261 {
5262 	uint32_t data;
5263 
5264 	if (!bgep->asf_wordswapped) {
5265 		/* a workaround word swap error */
5266 		if (addr & 4)
5267 			addr = addr - 4;
5268 		else
5269 			addr = addr + 4;
5270 	}
5271 
5272 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5273 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5274 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5275 
5276 	return (data);
5277 }
5278 
5279 
5280 void
5281 bge_asf_update_status(bge_t *bgep)
5282 {
5283 	uint32_t event;
5284 
5285 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5286 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5287 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5288 
5289 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5290 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5291 }
5292 
5293 
5294 /*
5295  * The driver is supposed to notify ASF that the OS is still running
5296  * every three seconds, otherwise the management server may attempt
5297  * to reboot the machine.  If it hasn't actually failed, this is
5298  * not a desirable result.  However, this isn't running as a real-time
5299  * thread, and even if it were, it might not be able to generate the
5300  * heartbeat in a timely manner due to system load.  As it isn't a
5301  * significant strain on the machine, we will set the interval to half
5302  * of the required value.
5303  */
5304 void
5305 bge_asf_heartbeat(void *arg)
5306 {
5307 	bge_t *bgep = (bge_t *)arg;
5308 
5309 	mutex_enter(bgep->genlock);
5310 	bge_asf_update_status((bge_t *)bgep);
5311 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5312 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5313 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5314 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5315 	mutex_exit(bgep->genlock);
5316 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5317 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5318 }
5319 
5320 
5321 void
5322 bge_asf_stop_timer(bge_t *bgep)
5323 {
5324 	timeout_id_t tmp_id = 0;
5325 
5326 	while ((bgep->asf_timeout_id != 0) &&
5327 		(tmp_id != bgep->asf_timeout_id)) {
5328 		tmp_id = bgep->asf_timeout_id;
5329 		(void) untimeout(tmp_id);
5330 	}
5331 	bgep->asf_timeout_id = 0;
5332 }
5333 
5334 
5335 
5336 /*
5337  * This function should be placed at the earliest position of bge_attach().
5338  */
5339 void
5340 bge_asf_get_config(bge_t *bgep)
5341 {
5342 	uint32_t nicsig;
5343 	uint32_t niccfg;
5344 
5345 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5346 	if (nicsig == BGE_NIC_DATA_SIG) {
5347 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5348 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5349 			/*
5350 			 * Here, we don't consider BAXTER, because BGE haven't
5351 			 * supported BAXTER (that is 5752). Also, as I know,
5352 			 * BAXTER doesn't support ASF feature.
5353 			 */
5354 			bgep->asf_enabled = B_TRUE;
5355 		else
5356 			bgep->asf_enabled = B_FALSE;
5357 	} else
5358 		bgep->asf_enabled = B_FALSE;
5359 }
5360 
5361 
5362 void
5363 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5364 {
5365 	uint32_t tries;
5366 	uint32_t event;
5367 
5368 	ASSERT(bgep->asf_enabled);
5369 
5370 	/* Issues "pause firmware" command and wait for ACK */
5371 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5372 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5373 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5374 
5375 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5376 	tries = 0;
5377 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5378 		drv_usecwait(1);
5379 		tries ++;
5380 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5381 	}
5382 
5383 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5384 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5385 
5386 	if (bgep->asf_newhandshake) {
5387 		switch (mode) {
5388 		case BGE_INIT_RESET:
5389 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5390 				BGE_DRV_STATE_START);
5391 			break;
5392 		case BGE_SHUTDOWN_RESET:
5393 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5394 				BGE_DRV_STATE_UNLOAD);
5395 			break;
5396 		case BGE_SUSPEND_RESET:
5397 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5398 				BGE_DRV_STATE_SUSPEND);
5399 			break;
5400 		default:
5401 			break;
5402 		}
5403 	}
5404 }
5405 
5406 
5407 void
5408 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5409 {
5410 	switch (mode) {
5411 	case BGE_INIT_RESET:
5412 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5413 			BGE_DRV_STATE_START);
5414 		break;
5415 	case BGE_SHUTDOWN_RESET:
5416 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5417 			BGE_DRV_STATE_UNLOAD);
5418 		break;
5419 	case BGE_SUSPEND_RESET:
5420 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5421 			BGE_DRV_STATE_SUSPEND);
5422 		break;
5423 	default:
5424 		break;
5425 	}
5426 }
5427 
5428 
5429 void
5430 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5431 {
5432 	switch (mode) {
5433 	case BGE_INIT_RESET:
5434 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5435 			BGE_DRV_STATE_START_DONE);
5436 		break;
5437 	case BGE_SHUTDOWN_RESET:
5438 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5439 			BGE_DRV_STATE_UNLOAD_DONE);
5440 		break;
5441 	default:
5442 		break;
5443 	}
5444 }
5445 
5446 #endif /* BGE_IPMI_ASF */
5447